NFStream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments.
Live Notebook |
|
Project Website |
|
Discussion Channel |
|
Latest Release |
|
Supported Versions |
|
Project License |
|
Build Status |
|
Code Quality |
|
Code Coverage |
|
- Performance: NFStream is designed to be fast (with native PyPy support) with a small CPU and memory footprint.
- Layer-7 visibility: NFStream deep packet inspection engine is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata extraction (e.g. TLS, QUIC, TOR, HTTP, SSH, DNS, etc.).
- Flexibility: add a flow feature in 2 lines as an NFPlugin.
- Machine Learning oriented: add your trained model as an NFPlugin.
- Dealing with a big pcap file and just want to aggregate it as network flows? NFStream make this path easier in few lines:
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap", # or network interface
snaplen=65535,
idle_timeout=30,
active_timeout=300,
plugins=(),
dissect=True,
max_tcp_dissections=80,
max_udp_dissections=16,
statistics=False,
enable_guess=True,
decode_tunnels=True,
bpf_filter=None,
promisc=True
)
for flow in my_awesome_streamer:
print(flow) # print it.
print(flow.to_namedtuple()) # convert it to a namedtuple.
print(flow.to_json()) # convert it to json.
print(flow.keys()) # get flow keys.
print(flow.values()) # get flow values.
NFEntry(id=0,
bidirectional_first_seen_ms=1472393122365,
bidirectional_last_seen_ms=1472393123665,
src2dst_first_seen_ms=1472393122365,
src2dst_last_seen_ms=1472393123408,
dst2src_first_seen_ms=1472393122668,
dst2src_last_seen_ms=1472393123665,
src_ip='192.168.43.18',
src_ip_type=1,
dst_ip='66.220.156.68',
dst_ip_type=0,
version=4,
src_port=52066,
dst_port=443,
protocol=6,
vlan_id=4,
bidirectional_packets=19,
bidirectional_raw_bytes=5745,
bidirectional_ip_bytes=5479,
bidirectional_duration_ms=1300,
src2dst_packets=9,
src2dst_raw_bytes=1345,
src2dst_ip_bytes=1219,
src2dst_duration_ms=1300,
dst2src_packets=10,
dst2src_raw_bytes=4400,
dst2src_ip_bytes=4260,
dst2src_duration_ms=997,
expiration_id=0,
master_protocol=91,
app_protocol=119,
application_name='TLS.Facebook',
category_name='SocialNetwork',
client_info='facebook.com',
server_info='*.facebook.com,*.facebook.net,*.fb.com,\
*.fbcdn.net,*.fbsbx.com,*.m.facebook.com,\
*.messenger.com,*.xx.fbcdn.net,*.xy.fbcdn.net,\
*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
ja3_client='bfcc1a3891601edb4f137ab7ab25b840',
ja3_server='2d1eb5817ece335c24904f516ad5da12')
- NFStream also extracts 60+ flow statistical features
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap", statistics=True)
for flow in my_awesome_streamer:
print(flow)
NFEntry(id=0,
bidirectional_first_seen_ms=1472393122365,
bidirectional_last_seen_ms=1472393123665,
src2dst_first_seen_ms=1472393122365,
src2dst_last_seen_ms=1472393123408,
dst2src_first_seen_ms=1472393122668,
dst2src_last_seen_ms=1472393123665,
src_ip='192.168.43.18',
src_ip_type=1,
dst_ip='66.220.156.68',
dst_ip_type=0,
version=4,
src_port=52066,
dst_port=443,
protocol=6,
vlan_id=4,
bidirectional_packets=19,
bidirectional_raw_bytes=5745,
bidirectional_ip_bytes=5479,
bidirectional_duration_ms=1300,
src2dst_packets=9,
src2dst_raw_bytes=1345,
src2dst_ip_bytes=1219,
src2dst_duration_ms=1300,
dst2src_packets=10,
dst2src_raw_bytes=4400,
dst2src_ip_bytes=4260,
dst2src_duration_ms=997,
expiration_id=0,
bidirectional_min_raw_ps=66,
bidirectional_mean_raw_ps=302.36842105263156,
bidirectional_stdev_raw_ps=425.53315715259754,
bidirectional_max_raw_ps=1454,
src2dst_min_raw_ps=66,
src2dst_mean_raw_ps=149.44444444444446,
src2dst_stdev_raw_ps=132.20354676701294,
src2dst_max_raw_ps=449,
dst2src_min_raw_ps=66,
dst2src_mean_raw_ps=440.0,
dst2src_stdev_raw_ps=549.7164925870628,
dst2src_max_raw_ps=1454,
bidirectional_min_ip_ps=52,
bidirectional_mean_ip_ps=288.36842105263156,
bidirectional_stdev_ip_ps=425.53315715259754,
bidirectional_max_ip_ps=1440,
src2dst_min_ip_ps=52,
src2dst_mean_ip_ps=135.44444444444446,
src2dst_stdev_ip_ps=132.20354676701294,
src2dst_max_ip_ps=435,
dst2src_min_ip_ps=52,
dst2src_mean_ip_ps=426.0,
dst2src_stdev_ip_ps=549.7164925870628,
dst2src_max_ip_ps=1440,
bidirectional_min_piat_ms=0,
bidirectional_mean_piat_ms=72.22222222222223,
bidirectional_stdev_piat_ms=137.34994188549086,
bidirectional_max_piat_ms=398,
src2dst_min_piat_ms=0,
src2dst_mean_piat_ms=130.375,
src2dst_stdev_piat_ms=179.72036811192467,
src2dst_max_piat_ms=415,
dst2src_min_piat_ms=0,
dst2src_mean_piat_ms=110.77777777777777,
dst2src_stdev_piat_ms=169.51458475436397,
dst2src_max_piat_ms=1,
bidirectional_syn_packets=2,
bidirectional_cwr_packets=0,
bidirectional_ece_packets=0,
bidirectional_urg_packets=0,
bidirectional_ack_packets=18,
bidirectional_psh_packets=9,
bidirectional_rst_packets=0,
bidirectional_fin_packets=0,
src2dst_syn_packets=1,
src2dst_cwr_packets=0,
src2dst_ece_packets=0,
src2dst_urg_packets=0,
src2dst_ack_packets=8,
src2dst_psh_packets=4,
src2dst_rst_packets=0,
src2dst_fin_packets=0,
dst2src_syn_packets=1,
dst2src_cwr_packets=0,
dst2src_ece_packets=0,
dst2src_urg_packets=0,
dst2src_ack_packets=10,
dst2src_psh_packets=5,
dst2src_rst_packets=0,
dst2src_fin_packets=0,
master_protocol=91,
app_protocol=119,
application_name='TLS.Facebook',
category_name='SocialNetwork',
client_info='facebook.com',
server_info='*.facebook.com,*.facebook.net,*.fb.com,\
*.fbcdn.net,*.fbsbx.com,*.m.facebook.com,\
*.messenger.com,*.xx.fbcdn.net,*.xy.fbcdn.net,\
*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
j3a_client='bfcc1a3891601edb4f137ab7ab25b840',
j3a_server='2d1eb5817ece335c24904f516ad5da12')
- From pcap to Pandas DataFrame?
my_dataframe = NFStreamer(source='devil.pcap').to_pandas(ip_anonymization=False)
my_dataframe.head(5)
- From pcap to csv file?
flows_rows_count = NFStreamer(source='devil.pcap').to_csv(path="devil.pcap.csv",
sep="|",
ip_anonymization=False)
- Didn't find a specific flow feature? add a plugin to NFStream in few lines:
from nfstream import NFPlugin
class packet_with_666_size(NFPlugin):
def on_init(self, pkt): # flow creation with the first packet
if pkt.raw_size == 666:
return 1
else:
return 0
def on_update(self, pkt, flow): # flow update with each packet belonging to the flow
if pkt.raw_size == 666:
flow.packet_with_666_size += 1
streamer_awesome = NFStreamer(source='devil.pcap', plugins=[packet_with_666_size()])
for flow in streamer_awesome:
print(flow.packet_with_666_size) # see your dynamically created metric in generated flows
In the following, we want to run an early classification of flows based on a trained machine learning model than takes as features the 3 first packets size of a flow.
from nfstream import NFPlugin
class feat_1(NFPlugin):
def on_init(self, obs):
return obs.raw_size
class feat_2(NFPlugin):
def on_update(self, obs, entry):
if entry.bidirectional_packets == 2:
entry.feat_2 = obs.raw_size
class feat_3(NFPlugin):
def on_update(self, obs, entry):
if entry.bidirectional_packets == 3:
entry.feat_3 = obs.raw_size
class model_prediction(NFPlugin):
def on_update(self, obs, entry):
if entry.bidirectional_packets == 3:
entry.model_prediction = self.user_data.predict_proba([entry.feat_1,
entry.feat_2,
entry.feat_3])
# optionally we can trigger NFStreamer to immediately expires the flow
# entry.expiration_id = -1
my_model = function_to_load_your_model() # or whatever
ml_streamer = NFStreamer(source='devil.pcap',
plugins=[feat_1(volatile=True),
feat_2(volatile=True),
feat_3(volatile=True),
model_prediction(user_data=my_model)
])
for flow in ml_streamer:
print(flow.model_prediction) # now you will see your trained model prediction.
- More example and details are provided on the official documentation.
- You can test NFStream without installation using our live demo notebook.
Binary installers for the latest released version are available:
python3 -m pip install nfstream
If you want to build NFStream from sources on your local machine:
sudo apt-get update
sudo apt-get install autoconf automake libtool pkg-config libpcap-dev flex bison
sudo apt-get install libusb-1.0-0-dev libdbus-glib-1-dev libbluetooth-dev libnl-genl-3-dev
git clone https://github.com/nfstream/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel
brew install autoconf automake libtool pkg-config
git clone https://github.com/nfstream/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel
Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.
NFStream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, NFStream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.
This project is licensed under the LGPLv3 License - see the License file for details