From b15541c17446e18d5e8d32cb064319086694ba74 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 17 Sep 2024 17:52:21 +0200 Subject: [PATCH 001/101] Render based tracking module --- modules/tracker/rbt/CMakeLists.txt | 62 + .../rbt/include/visp3/rbt/vpColorHistogram.h | 114 + .../include/visp3/rbt/vpColorHistogramMask.h | 123 + .../rbt/include/visp3/rbt/vpDynamicFactory.h | 93 + .../visp3/rbt/vpObjectCentricRenderer.h | 119 + .../rbt/include/visp3/rbt/vpObjectMask.h | 68 + .../include/visp3/rbt/vpObjectMaskFactory.h | 57 + .../include/visp3/rbt/vpPanda3DDepthFilters.h | 95 + .../include/visp3/rbt/vpRBDenseDepthTracker.h | 178 + .../rbt/include/visp3/rbt/vpRBDriftDetector.h | 107 + .../visp3/rbt/vpRBDriftDetectorFactory.h | 60 + .../include/visp3/rbt/vpRBFeatureTracker.h | 232 + .../visp3/rbt/vpRBFeatureTrackerFactory.h | 57 + .../visp3/rbt/vpRBFeatureTrackerInput.h | 145 + .../rbt/include/visp3/rbt/vpRBKltTracker.h | 197 + .../rbt/vpRBProbabilistic3DDriftDetector.h | 350 + .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 280 + .../visp3/rbt/vpRBSilhouetteControlPoint.h | 180 + .../visp3/rbt/vpRBSilhouetteMeTracker.h | 112 + .../include/visp3/rbt/vpRBSilhouettePoint.h | 57 + .../vpRBSilhouettePointsExtractionSettings.h | 136 + .../rbt/include/visp3/rbt/vpRBTracker.h | 268 + .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 155 + .../src/core/vpRBSilhouetteControlPoint.cpp | 537 + ...vpRBSilhouettePointsExtractionSettings.cpp | 131 + modules/tracker/rbt/src/core/vpRBTracker.cpp | 586 + .../src/drift/vpRBDriftDetectorFactory.cpp | 47 + .../vpRBProbabilistic3DDriftDetector.cpp | 248 + .../src/features/vpRBDenseDepthTracker.cpp | 160 + .../rbt/src/features/vpRBFeatureTracker.cpp | 83 + .../features/vpRBFeatureTrackerFactory.cpp | 67 + .../rbt/src/features/vpRBKltTracker.cpp | 288 + .../src/features/vpRBSilhouetteCCDTracker.cpp | 656 + .../src/features/vpRBSilhouetteMeTracker.cpp | 276 + .../tracker/rbt/src/mask/vpColorHistogram.cpp | 262 + .../rbt/src/mask/vpColorHistogramMask.cpp | 129 + modules/tracker/rbt/src/mask/vpObjectMask.cpp | 48 + .../rbt/src/mask/vpObjectMaskFactory.cpp | 47 + .../src/rendering/vpObjectCentricRenderer.cpp | 191 + .../src/rendering/vpPanda3DDepthFilters.cpp | 255 + tutorial/CMakeLists.txt | 2 + tutorial/tracking/render-based/CMakeLists.txt | 42 + .../render-based/data/sequence1/dragon.0.pos | 6 + .../render-based/data/sequence1/dragon.init | 5 + .../render-based/data/sequence1/dragon.json | 78 + .../render-based/data/sequence1/dragon.mtl | 12 + .../render-based/data/sequence1/dragon.obj | 58578 ++++++++++++++++ .../render-based-tutorial-utils.h | 380 + .../render-based/tutorial-rbt-realsense.cpp | 238 + .../render-based/tutorial-rbt-sequence.cpp | 245 + 50 files changed, 66842 insertions(+) create mode 100644 modules/tracker/rbt/CMakeLists.txt create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h create mode 100644 modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp create mode 100644 modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp create mode 100644 modules/tracker/rbt/src/core/vpRBTracker.cpp create mode 100644 modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp create mode 100644 modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBKltTracker.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp create mode 100644 modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp create mode 100644 modules/tracker/rbt/src/mask/vpColorHistogram.cpp create mode 100644 modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp create mode 100644 modules/tracker/rbt/src/mask/vpObjectMask.cpp create mode 100644 modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp create mode 100644 modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp create mode 100644 modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp create mode 100644 tutorial/tracking/render-based/CMakeLists.txt create mode 100755 tutorial/tracking/render-based/data/sequence1/dragon.0.pos create mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.init create mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.json create mode 100755 tutorial/tracking/render-based/data/sequence1/dragon.mtl create mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.obj create mode 100644 tutorial/tracking/render-based/render-based-tutorial-utils.h create mode 100644 tutorial/tracking/render-based/tutorial-rbt-realsense.cpp create mode 100644 tutorial/tracking/render-based/tutorial-rbt-sequence.cpp diff --git a/modules/tracker/rbt/CMakeLists.txt b/modules/tracker/rbt/CMakeLists.txt new file mode 100644 index 0000000000..f2fe8306e7 --- /dev/null +++ b/modules/tracker/rbt/CMakeLists.txt @@ -0,0 +1,62 @@ +############################################################################# +# +# ViSP, open source Visual Servoing Platform software. +# Copyright (C) 2005 - 2023 by Inria. All rights reserved. +# +# This software is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# See the file LICENSE.txt at the root directory of this source +# distribution for additional information about the GNU GPL. +# +# For using ViSP with software that can not be combined with the GNU +# GPL, please contact Inria about acquiring a ViSP Professional +# Edition License. +# +# See https://visp.inria.fr for more information. +# +# This software was developed at: +# Inria Rennes - Bretagne Atlantique +# Campus Universitaire de Beaulieu +# 35042 Rennes Cedex +# France +# +# If you have questions regarding the use of this file, please contact +# Inria at visp@inria.fr +# +# This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE +# WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. +# +# Description: +# ViSP configuration file. +# +############################################################################# + +# Add optional 3rd parties +set(opt_incs "") +set(opt_libs "") +set(opt_libs_private "") + +if(NOT USE_PANDA3D OR VISP_CXX_STANDARD LESS VISP_CXX_STANDARD_11) + return() +endif() + +if(USE_NLOHMANN_JSON) + get_target_property(_inc_dirs "nlohmann_json::nlohmann_json" INTERFACE_INCLUDE_DIRECTORIES) + list(APPEND opt_incs ${_inc_dirs}) +endif() + +if(WITH_SIMDLIB) + # Simd lib is private + include_directories(${SIMDLIB_INCLUDE_DIRS}) + list(APPEND opt_libs_private ${SIMDLIB_LIBRARIES}) +endif() + +vp_add_module(rbt visp_mbt visp_vision visp_core visp_me visp_visual_features visp_ar OPTIONAL visp_klt visp_gui PRIVATE_OPTIONAL ${opt_libs_private}) +vp_glob_module_sources() + +vp_module_include_directories(${opt_incs}) +vp_create_module(${opt_libs}) + +vp_add_tests(DEPENDS_ON visp_core visp_gui visp_io) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h new file mode 100644 index 0000000000..7029a14b4d --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -0,0 +1,114 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpColorHistogram.h + \brief Color histogram representation +*/ +#ifndef VP_COLOR_HISTOGRAM_H +#define VP_COLOR_HISTOGRAM_H + +#include +#include + +#include + + +template +class vpImage; + +class vpRGBa; + +class vpRect; + + +class VISP_EXPORT vpColorHistogram +{ +public: + + class Builder + { + public: + Builder(unsigned int N) : m_counts(N *N *N, 0), m_N(N), m_binSize(256 / N) { } + inline void add(const vpRGBa &color) + { + unsigned int index = (color.R / m_binSize) * (m_N * m_N) + (color.G / m_binSize) * m_N + (color.B / m_binSize); + ++m_counts[index]; + } + void build(vpColorHistogram &histogram); + private: + std::vector m_counts; + unsigned int m_N, m_binSize; + }; + + vpColorHistogram(); + vpColorHistogram(unsigned int N); + + /** + * \brief Change the number of bins per color component that the histogram has + * After calling this method, the histogram will be reset and the values will not be kept. + * \param N the number of bins per RGB component: the histogram will have N^3 bins in total. N should be a power of 2 between 1 and 128 + */ + void setBinNumber(unsigned int N); + + unsigned int getBinNumber() const { return m_N; } + + unsigned int getNumPixels() const { return m_numPixels; } + + void build(const vpImage &image, const vpImage &mask); + + void build(std::vector &counts); + + void merge(const vpColorHistogram &other, float alpha); + + void computeProbas(const vpImage &image, vpImage &proba) const; + + double probability(const vpRGBa &color) const; + + double kl(const vpColorHistogram &other) const; + + double jsd(const vpColorHistogram &other) const; + + double hellinger(const vpColorHistogram &other) const; + + static void computeSplitHistograms(const vpImage &image, const vpImage &mask, vpColorHistogram &inMask, vpColorHistogram &outsideMask); + static void computeSplitHistograms(const vpImage &image, const vpImage &mask, const vpRect &bbInside, vpColorHistogram &insideMask, vpColorHistogram &outsideMask); + +private: + unsigned int m_N; + std::vector m_probas; + unsigned int m_numPixels; +}; + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h new file mode 100644 index 0000000000..98374620a7 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -0,0 +1,123 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpColorHistogramMask.h + \brief Object mask estimation through global foreground/background color histogram representations +*/ +#ifndef VP_COLOR_HISTOGRAM_MASK_H +#define VP_COLOR_HISTOGRAM_MASK_H + +#include +#include +#include +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + + + +class vpRBFeatureTrackerInput; + +class VISP_EXPORT vpColorHistogramMask : public vpObjectMask +{ +public: + vpColorHistogramMask(); + vpColorHistogramMask(unsigned int N); + + void updateMask(const vpRBFeatureTrackerInput &frame, + const vpRBFeatureTrackerInput &previousFrame, + vpImage &mask) VP_OVERRIDE; + + + /** + * \name Histogram settings + * @{ + */ + void setBinNumber(unsigned int N) + { + m_histBackground.setBinNumber(N); + m_histBackgroundFrame.setBinNumber(N); + m_histObject.setBinNumber(N); + m_histObjectFrame.setBinNumber(N); + } + + float getDepthErrorTolerance() const { return m_depthErrorTolerance; } + void setDepthErrorTolerance(float errorMax) + { + if (errorMax < 0.f) { + throw vpException(vpException::badValue, "Depth error tolerance in histogram computation should be > 0"); + } + m_depthErrorTolerance = errorMax; + } + + float getObjectUpdateRate() const { return m_objectUpdateRate; } + void setObjectUpdateRate(float updateRate) + { + if (updateRate < 0.f || updateRate > 1.f) { + throw vpException(vpException::badValue, "Histogram update rate should be between 0 and 1 (included)"); + } + m_objectUpdateRate = updateRate; + } + + float getBackgroundUpdateRate() const { return m_backgroundUpdateRate; } + void setBackgroundUpdateRate(float updateRate) + { + if (updateRate < 0.f || updateRate > 1.f) { + throw vpException(vpException::badValue, "Histogram update rate should be between 0 and 1 (included)"); + } + m_backgroundUpdateRate = updateRate; + } + /** + * @} + */ + +#if defined(VISP_HAVE_NLOHMANN_JSON) + void loadJsonConfiguration(const nlohmann::json &json) VP_OVERRIDE; +#endif + + +private: + vpColorHistogram m_histObject, m_histBackground, m_histObjectFrame, m_histBackgroundFrame; + float m_depthErrorTolerance; + float m_objectUpdateRate, m_backgroundUpdateRate; + + vpImage m_mask; + vpImage m_probaObject, m_probaBackground; + +}; + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h new file mode 100644 index 0000000000..31a088d1a8 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -0,0 +1,93 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpDynamicFactory.h + \brief Factory-type class that allows for the dynamic registration of subclasses +*/ +#ifndef VP_DYNAMIC_FACTORY_H +#define VP_DYNAMIC_FACTORY_H + +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +#include +#include + +template +class VISP_EXPORT vpDynamicFactory +{ +public: +#if defined(VISP_HAVE_NLOHMANN_JSON) + void registerType(const std::string &key, const std::function(const nlohmann::json &)> &function) + { + if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { + throw vpException(vpException::badValue, "Type %s was already registered in the factory", key.c_str()); + } + m_jsonBuilders[key] = function; + } + + std::shared_ptr buildFromJson(const nlohmann::json &j) + { + const std::string key = m_keyFinder(j); + + if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { + return m_jsonBuilders[key](j); + } + else { + return nullptr; + } + } + + void setJsonKeyFinder(const std::function &finderFn) + { + m_keyFinder = finderFn; + } + +#endif + +protected: + vpDynamicFactory() = default; + + +#if defined(VISP_HAVE_NLOHMANN_JSON) + std::map(const nlohmann::json &)>> m_jsonBuilders; + std::function m_keyFinder; //! Function to retrieve the key from a json object +#endif + +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h new file mode 100644 index 0000000000..b5b4962d4f --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h @@ -0,0 +1,119 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpObjectCentricRenderer.h + \brief Single object focused renderer +*/ +#ifndef VP_OBJECT_CENTRIC_RENDERER_H +#define VP_OBJECT_CENTRIC_RENDERER_H + +#include + +#if defined(VISP_HAVE_PANDA3D) + +#include +#include +#include + +class VISP_EXPORT vpObjectCentricRenderer : public vpPanda3DRendererSet +{ +public: + vpObjectCentricRenderer(const vpPanda3DRenderParameters &renderParameters); + + virtual void setRenderParameters(const vpPanda3DRenderParameters ¶ms) VP_OVERRIDE + { + vpPanda3DRendererSet::setRenderParameters(params); + } + + vpRect getBoundingBox() const { return m_bb; } + + void setFocusedObject(const std::string &focused) + { + m_focusedObject = focused; + m_shouldComputeBBPoints = true; + } + + void beforeFrameRendered() VP_OVERRIDE; + + void computeBoundingBox3DPoints(); + void computeClipping(float &nearV, float &farV); + + std::vector getBoundingBox3D() + { + if (m_shouldComputeBBPoints) { + computeBoundingBox3DPoints(); + m_shouldComputeBBPoints = false; + } + return m_bb3DPoints; + } + + vpRect computeBoundingBox(); + + + template + void placeRenderInto(const vpImage &render, vpImage &target, const T &clearValue) + { + if (!m_enableCrop) { + target = render; + } + else { + const unsigned h = m_renderParameters.getImageHeight(); + const unsigned w = m_renderParameters.getImageWidth(); + const unsigned top = static_cast(std::max(0.0, m_bb.getTop())); + const unsigned left = static_cast(std::max(0.0, m_bb.getLeft())); + const unsigned bottom = static_cast(std::min(static_cast(h), m_bb.getBottom())); + const unsigned right = static_cast(std::min(static_cast(w), m_bb.getRight())); + + target.resize(h, w, clearValue); + for (unsigned int i = top; i < bottom; ++i) { + memcpy(target.bitmap + i * w + left, render[i - top], (right - left) * sizeof(T)); + // for (unsigned int j = left; j < right; ++j) { + // target[i][j] = render[i - unsigned(m_bb.getTop())][j - unsigned(m_bb.getLeft())]; + // } + } + + } + } + +private: + bool m_enableCrop; + std::string m_focusedObject; + vpRect m_bb; + std::vector m_bb3DPoints; + bool m_shouldComputeBBPoints; + vpPanda3DRenderParameters m_subRenderParams; + +}; + +#endif +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h new file mode 100644 index 0000000000..e97c4bcfab --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -0,0 +1,68 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpObjectMask.h + \brief Object mask segmentation for the render-based tracker +*/ +#ifndef VP_OBJECT_MASK_H +#define VP_OBJECT_MASK_H + +#include + +template +class vpImage; + +class vpRBFeatureTrackerInput; + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +class VISP_EXPORT vpObjectMask +{ +public: + virtual void updateMask(const vpRBFeatureTrackerInput &frame, + const vpRBFeatureTrackerInput &previousFrame, + vpImage &mask) = 0; + + virtual void display(const vpImage &mask, vpImage &Imask) const; + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) = 0; +#endif + + +}; + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h new file mode 100644 index 0000000000..a718afa2fe --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h @@ -0,0 +1,57 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpObjectMaskFactory.h + \brief Factory for algorithms that can compute object masks for the render based tracker +*/ +#ifndef VP_OBJECT_MASK_FACTORY_H +#define VP_OBJECT_MASK_FACTORY_H + +#include +#include +#include + +class VISP_EXPORT vpObjectMaskFactory : public vpDynamicFactory +{ +private: + vpObjectMaskFactory(); + +public: + static vpObjectMaskFactory &getFactory() + { + static vpObjectMaskFactory factory; + return factory; + } +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h new file mode 100644 index 0000000000..7bbfde383a --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -0,0 +1,95 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpPanda3DDepthFilters.h + \brief Custom shaders for depth silhouette extraction +*/ +#ifndef VP_PANDA3D_DEPTH_FILTERS_H +#define VP_PANDA3D_DEPTH_FILTERS_H + +#include + +#if defined(VISP_HAVE_PANDA3D) + +#include +#include + +/** + * + * \ingroup group_ar_renderer_panda3d_filters + * \brief Class that implements a gaussian filter on a grayscale image. + * The grayscale image should be contained in the blue channel of the image. + * + */ +class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter +{ +public: + vpPanda3DDepthGaussianBlur(const std::string &name, std::shared_ptr inputRenderer, bool isOutput); + FrameBufferProperties getBufferProperties() const VP_OVERRIDE; + void getRender(vpImage &I) const; + +private: + static const char *FRAGMENT_SHADER; +}; + +/** + * \ingroup group_ar_renderer_panda3d_filters + * \brief Implementation of canny filtering, using Sobel kernels. + * + * The results of the canny are filtered based on a threshold value (defined between 0 and 255), checking whether there is enough gradient information. + * The output of this image is a floating RGB image containing: + * - In the red channel, the value of the convolution with the sobel horizontal kernel + * - In the green channel, the value of the convolution with the sobel vertical kernel + * - In the blue channel, the angle (in radians) of the edge normal. + */ +class VISP_EXPORT vpPanda3DDepthCannyFilter : public vpPanda3DPostProcessFilter +{ +public: + vpPanda3DDepthCannyFilter(const std::string &name, std::shared_ptr inputRenderer, bool isOutput, float edgeThreshold); + FrameBufferProperties getBufferProperties() const VP_OVERRIDE; + void getRender(vpImage &I, vpImage &valid) const; + void getRender(vpImage &I, vpImage &valid, const vpRect &bb, unsigned int h, unsigned w) const; + + void setEdgeThreshold(float edgeThreshold); + +protected: + void setupScene() VP_OVERRIDE; + +private: + static const char *FRAGMENT_SHADER; + float m_edgeThreshold; +}; + + +#endif +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h new file mode 100644 index 0000000000..3550bab78a --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -0,0 +1,178 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBDenseDepthTracker.h + \brief Dense depth features for render-based tracking +*/ + +#ifndef VP_RB_DENSE_DEPTH_TRACKER_H +#define VP_RB_DENSE_DEPTH_TRACKER_H + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +// #if defined(VISP_HAVE_SIMDLIB) +// #include +// #endif +#include +#include + +#include +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + + +/** + * @brief A base class for all features that can be used and tracker in the vpRenderBasedTracker + * + */ +class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker +{ +public: + + vpRBDenseDepthTracker() : vpRBFeatureTracker(), m_step(2), m_useMask(false), m_minMaskConfidence(0.f) { } + + bool requiresRGB() const VP_OVERRIDE { return false; } + bool requiresDepth() const VP_OVERRIDE { return true; } + bool requiresSilhouetteCandidates() const VP_OVERRIDE { return false; } + + /** + * @brief Method called when starting a tracking iteration + * + */ + void onTrackingIterStart() VP_OVERRIDE { } + void onTrackingIterEnd() VP_OVERRIDE { } + + double getVVSTrackerWeight() const VP_OVERRIDE { return m_userVvsWeight / (m_error.size()); } + + void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + void trackFeatures(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) VP_OVERRIDE { } + void initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) VP_OVERRIDE { } + void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; + + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + + struct vpDepthPoint + { + + vpDepthPoint() : currentPoint(3), cameraNormal(3), objectNormal(3) + { + + } + + inline void update(const vpHomogeneousMatrix &cMo, const vpRotationMatrix &cRo) + { + oP.changeFrame(cMo); + oP.projection(); + cameraNormal = cRo * objectNormal; + // f.buildFrom(oP.get_x(), oP.get_y(), oP.get_Z(), log(oP.get_Z() / currentPoint.get_Z())); + } + + inline void error(vpColVector &e, unsigned i) const + { + + double D = -((cameraNormal[0] * oP.get_X()) + (cameraNormal[1] * oP.get_Y()) + (cameraNormal[2] * oP.get_Z())); + + double projNormal = cameraNormal[0] * currentPoint[0] + cameraNormal[1] * currentPoint[1] + cameraNormal[2] * currentPoint[2]; + + e[i] = D + projNormal; + //e[i] = f.get_LogZoverZstar(); + } + inline void interaction(vpMatrix &L, unsigned i) + { + const double X = currentPoint[0], Y = currentPoint[1], Z = currentPoint[2]; + const double nx = cameraNormal[0], ny = cameraNormal[1], nz = cameraNormal[2]; + L[i][0] = nx; + L[i][1] = ny; + L[i][2] = nz; + L[i][3] = nz * Y - ny * Z; + L[i][4] = nx * Z - nz * X; + L[i][5] = ny * X - nx * Y; + // vpMatrix LL = f.interaction(); + // for (unsigned int j = 0; j < 6; ++j) { + // L[i][j] = LL[0][j]; + // } + } + + public: + vpPoint oP; + vpColVector currentPoint; + vpColVector cameraNormal; + vpColVector objectNormal; + vpImagePoint pixelPos; + //vpFeatureDepth f; + }; + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) + { + vpRBFeatureTracker::loadJsonConfiguration(j); + m_step = j.value("step", m_step); + m_useMask = j.value("useMask", m_useMask); + m_minMaskConfidence = j.value("minMaskConfidence", m_minMaskConfidence); + } + +#endif + +protected: + + std::vector m_depthPoints; + vpRobust m_robust; + unsigned int m_step; + bool m_useMask; + float m_minMaskConfidence; + + +}; + + + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h new file mode 100644 index 0000000000..1d08fa789e --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -0,0 +1,107 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBDriftDetector.h + \brief Base class for drift/divergence detection algorithms for the render-based tracker +*/ +#ifndef VP_RB_DRIFT_DETECTOR_H +#define VP_RB_DRIFT_DETECTOR_H + +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +class vpRBFeatureTrackerInput; +class vpHomogeneousMatrix; +class vpRGBa; +template class vpImage; + + +/** + * \brief Base interface for algorithms that should detect tracking drift for the render-based tracker. + * + * In the tracking loop, these algorithms should be used as follows: + * - Perform a tracking step, estimating a new object pose + * - Call vpRBDriftDetector::update to update the drift detection parameters. + * - use vpRBDriftDetector::hasDiverged to detect the drift, or vpRBDriftDetector::getScore to use the estimated tracking reliability. + * + */ +class VISP_EXPORT vpRBDriftDetector +{ +public: + vpRBDriftDetector() = default; + + virtual ~vpRBDriftDetector() = default; + + /** + * \brief Update the algorithm after a new tracking step. + * + * \param previousFrame The previous frame data: contains the input images at t-1 (linked to cprevTo) and the renders at t-2. May be empty for the first iteration + * \param frame The current frame data: contains the input images at time t (linked to the newly estimated cTo) and the renders at t-1 (linked to cprevTo) + * \param cTo the newly estimated object pose in the camera frame + * \param cprevTo the previously estimated object pose in the camera frame + */ + virtual void update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) = 0; + + /** + * \brief Get the estimated tracking reliability. + * A high score should mean that the tracking is reliable. + * Different algorithms may use different value ranges. + * + * \return The estimated tracking accuracy + */ + virtual double getScore() const = 0; + + /** + * \brief Returns whether the tracking has diverged and should be reinitialised. + * This function should be called after update. + * + */ + virtual bool hasDiverged() const = 0; + + /** + * \brief Displays the information used for drift detection. + * + * \param I the image in which to display the information + */ + virtual void display(const vpImage &I) = 0; + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &) = 0; +#endif + +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h new file mode 100644 index 0000000000..b522655cf3 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h @@ -0,0 +1,60 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBDriftDetectorFactory.h + \brief Drift detection algorithm factory +*/ +#ifndef VP_RB_DRIFT_DETECTOR_FACTORY_H +#define VP_RB_DRIFT_DETECTOR_FACTORY_H + +#include +#include +#include + +class VISP_EXPORT vpRBDriftDetectorFactory : public vpDynamicFactory +{ +private: + vpRBDriftDetectorFactory(); + +public: + static vpRBDriftDetectorFactory &getFactory() + { + static vpRBDriftDetectorFactory factory; + return factory; + } +}; + + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h new file mode 100644 index 0000000000..938cc5be81 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -0,0 +1,232 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBFeatureTracker.h + \brief Base class for features that can be tracked using vpRBTracker +*/ +#ifndef VP_RB_FEATURE_TRACKER_H +#define VP_RB_FEATURE_TRACKER_H + +#include +#include +#include +#include +#include +#include +#include + + +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +enum vpRBFeatureDisplayType +{ + SIMPLE = 0, + IMPORTANCE = 1, + ERROR = 2 +}; + + +/** + * @brief A base class for all features that can be used and tracked in the vpRBTracker + */ +class VISP_EXPORT vpRBFeatureTracker +{ +public: + + vpRBFeatureTracker(); + + /** + * @brief Return the type of feature that is used by this tracker + * + * @return vpRBFeatureType + */ + + /** + * @brief Get the number of features used to compute the pose update + * + */ + unsigned getNumFeatures() const { return m_numFeatures; } + + /** + * \name Required inputs + * @{ + */ + + /** + * @brief Whether this tracker requires RGB image to extract features + * + * @return true if the tracker requires an RGB image + * @return false otherwise + */ + virtual bool requiresRGB() const = 0; + + /** + * @brief Whether this tracker requires depth image to extract features + * + */ + virtual bool requiresDepth() const = 0; + + /** + * @brief Whether this tracker requires Silhouette candidates + */ + virtual bool requiresSilhouetteCandidates() const = 0; + /** + * @} + */ + + + /** + * \name Core Tracking methods + * @{ + */ + /** + * @brief Method called when starting a tracking iteration + * + */ + virtual void onTrackingIterStart() = 0; + + /** + * @brief Method called after the tracking iteration has finished + * + */ + virtual void onTrackingIterEnd() = 0; + + /** + * @brief Extract features from the frame data and the current pose estimate + * + */ + virtual void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) = 0; + + /** + * @brief Track the features + */ + virtual void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) = 0; + + virtual void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) = 0; + virtual void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) = 0; + + /** + * @} + */ + + virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const = 0; + + /** + * \name Covariance computation + * @{ + */ + /** + * \brief Retrieve the 6 x 6 pose covariance matrix, computed from the weights associated to each feature. + * + * The updateCovariance method should have been called before + */ + const vpMatrix &getCovariance() const { return m_cov; } + /** + * @brief Update the covariance matrix + * + * @param lambda the visual servoing gain + */ + virtual void updateCovariance(const double lambda); + /** + * @} + */ + + /** + * Returns whether the tracker is considered as having converged to the desired pose. + */ + bool vvsHasConverged() const { return m_vvsConverged; } + + /** + * @brief Get the importance of this tracker in the optimization step. + * The default computation is the following: + * \f$ \sqrt{w / N} \f$, where \f$ w\f$ is the weight defined by setTrackerWeight, and \f$ N \f$ is the number of features. + */ + virtual double getVVSTrackerWeight() const { return sqrt(m_userVvsWeight / m_numFeatures); } + void setTrackerWeight(double weight) { m_userVvsWeight = weight; } + + /** + * @brief Get the leftside term of the Gauss-Newton optimization term + */ + const vpMatrix &getLTL() const { return m_LTL; } + + /** + * @brief Get the rightside term of the Gauss-Newton optimization term + */ + const vpColVector &getLTR() const { return m_LTR; } + + /** + * @brief Get a weighted version of the error vector. + * This should not include the userVVSWeight, but may include reweighting to remove outliers, occlusions, etc. + */ + const vpColVector &getWeightedError() const { return m_weighted_error; } + + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) + { + m_userVvsWeight = j.at("weight"); + } +#endif + +protected: + + static void computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR); + static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector & /*x*/, const vpColVector &b, const vpMatrix &W); + + vpMatrix m_L; //! Error jacobian (In VS terms, the interaction matrix) + vpMatrix m_LTL; //! Left side of the Gauss newton minimization + vpColVector m_LTR; //! Right side of the Gauss Newton minimization + vpMatrix m_cov; //! Covariance matrix + vpColVector m_covWeightDiag; + + + vpColVector m_error; //! Raw VS Error vector + vpColVector m_weighted_error; //! Weighted VS error + vpColVector m_weights; //! Error weights + + + unsigned m_numFeatures; //! Number of considered features + double m_userVvsWeight; //! User-defined weight for this specific type of feature + + bool m_vvsConverged; //! Whether VVS has converged, should be updated every VVS iteration + +}; + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h new file mode 100644 index 0000000000..653b286e06 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -0,0 +1,57 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBFeatureTrackerFactory.h + \brief Factory for trackable features +*/ +#ifndef VP_RB_FEATURE_TRACKER_FACTORY_H +#define VP_RB_FEATURE_TRACKER_FACTORY_H + +#include +#include +#include + +class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory +{ +private: + vpRBFeatureTrackerFactory(); + +public: + static vpRBFeatureTrackerFactory &getFactory() + { + static vpRBFeatureTrackerFactory factory; + return factory; + } +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h new file mode 100644 index 0000000000..6be4dbb8a0 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h @@ -0,0 +1,145 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBFeatureTrackerInput.h + \brief Processable frame for render-based tracking. This includes input images as well as renders +*/ +#ifndef VP_RB_FEATURE_TRACKER_INPUT_H +#define VP_RB_FEATURE_TRACKER_INPUT_H + +#include +#include +#include +#include + +#include + +struct VISP_EXPORT vpRBRenderData +{ + vpImage normals; //! Image containing the per-pixel normal vector (RGB, in object space) + vpImage depth; + vpImage color; + vpImage silhouetteCanny; //! Image containing the orientation of the gradients + vpImage isSilhouette; //! Binary image indicating whether a given pixel is part of the silhouette + double zNear, zFar; // clipping values + vpRect boundingBox; + + vpRBRenderData() : zNear(0.0), zFar(0.0), boundingBox() { } + + vpRBRenderData(const vpRBRenderData &other) + { + *this = other; + } + + vpRBRenderData(vpRBRenderData &&other) + { + *this = std::move(other); + } + + vpRBRenderData &operator=(const vpRBRenderData &o) + { + normals = o.normals; + depth = o.depth; + color = o.color; + silhouetteCanny = o.silhouetteCanny; + isSilhouette = o.isSilhouette; + zNear = o.zNear; + zFar = o.zFar; + boundingBox = o.boundingBox; + return *this; + } + + vpRBRenderData &operator=(vpRBRenderData &&o) + { + normals = std::move(o.normals); + depth = std::move(o.depth); + color = std::move(o.color); + silhouetteCanny = std::move(o.silhouetteCanny); + isSilhouette = std::move(o.isSilhouette); + zNear = std::move(o.zNear); + zFar = std::move(o.zFar); + boundingBox = std::move(o.boundingBox); + return *this; + } + +}; + +class VISP_EXPORT vpRBFeatureTrackerInput +{ +public: + vpImage I; //! Image luminance + vpImage IRGB; //! RGB image, 0 sized if RGB is not available + vpImage depth; //! depth image, 0 sized if depth is not available + vpImage mask; + std::vector silhouettePoints; + vpCameraParameters cam; //! camera parameters + vpRBRenderData renders; + + bool hasDepth() const { return depth.getSize() > 0; } + bool hasMask() const { return mask.getSize() > 0; } + bool hasColorImage() const { return IRGB.getSize() > 0; } + + vpRBFeatureTrackerInput() = default; + + vpRBFeatureTrackerInput &operator=(const vpRBFeatureTrackerInput &o) + { + I = o.I; + IRGB = o.IRGB; + depth = o.depth; + mask = o.mask; + silhouettePoints = o.silhouettePoints; + cam = o.cam; + renders = o.renders; + return *this; + } + vpRBFeatureTrackerInput(const vpRBFeatureTrackerInput &other) + { + *this = other; + } + vpRBFeatureTrackerInput &operator=(vpRBFeatureTrackerInput &&o) + { + I = std::move(o.I); + IRGB = std::move(o.IRGB); + depth = std::move(o.depth); + mask = std::move(o.mask); + silhouettePoints = std::move(o.silhouettePoints); + cam = std::move(o.cam); + renders = std::move(o.renders); + return *this; + } + vpRBFeatureTrackerInput(vpRBFeatureTrackerInput &&other) + { + *this = std::move(other); + } +}; +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h new file mode 100644 index 0000000000..f312de9033 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -0,0 +1,197 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBKltTracker.h + \brief KLT features in the context of render based tracking +*/ +#ifndef VP_RB_KLT_TRACKER_H +#define VP_RB_KLT_TRACKER_H + +#include +#include +#include +#include +#include + +#include + + + +class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker +{ +public: + vpRBKltTracker(); + + + bool requiresRGB() const VP_OVERRIDE { return false; } + + bool requiresDepth() const VP_OVERRIDE { return false; } + + bool requiresSilhouetteCandidates() const VP_OVERRIDE { return false; } + + void onTrackingIterStart() VP_OVERRIDE { } + + void onTrackingIterEnd() VP_OVERRIDE { } + + + void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; + + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) + { + vpRBFeatureTracker::loadJsonConfiguration(j); + + m_klt.setMaxFeatures(j.value("maxFeatures", 10000)); + m_klt.setWindowSize(j.value("windowSize", 5)); + m_klt.setQuality(j.value("quality", 0.01)); + m_klt.setMinDistance(j.value("minDistance", 5)); + m_klt.setHarrisFreeParameter(j.value("harris", 0.01)); + m_klt.setBlockSize(j.value("blockSize", 3)); + m_klt.setPyramidLevels(j.value("pyramidLevels", 3)); + + m_numPointsReinit = j.value("minimumNumPoints", m_numPointsReinit); + m_newPointsDistanceThreshold = j.value("newPointsMinPixelDistance", m_newPointsDistanceThreshold); + m_maxErrorOutliersPixels = j.value("maxReprojectionErrorPixels", m_maxErrorOutliersPixels); + + } +#endif + + + struct vpTrackedKltPoint + { + public: + vpHomogeneousMatrix cTo0; + vpPoint oX; + vpColVector normal; + vpImagePoint currentPos; + + inline double rotationDifferenceToInitial(const vpHomogeneousMatrix &oMc) + { + const vpHomogeneousMatrix cinitTc = cTo0 * oMc; + + return cinitTc.getThetaUVector().getTheta(); + } + inline double normalDotProd(const vpHomogeneousMatrix &cMo) + { + vpColVector cameraNormal = cMo.getRotationMatrix() * normal; + oX.changeFrame(cMo); + vpColVector dir({ -oX.get_X(), -oX.get_Y(), -oX.get_Z() }); + dir.normalize(); + return dir * cameraNormal; + } + + inline void update(const vpHomogeneousMatrix &cMo) + { + oX.changeFrame(cMo); + oX.projection(); + } + + inline void error(vpColVector &e, unsigned i) const + { + e[i * 2] = oX.get_x() - currentPos.get_u(); + e[i * 2 + 1] = oX.get_y() - currentPos.get_v(); + } + + inline double weight(const vpHomogeneousMatrix &cMo) + { + //return static_cast(validAndInlierCount) / static_cast(validCount); + return 1.0; + } + + inline double distance(const vpTrackedKltPoint &other) const + { + const double d = sqrt(std::pow(oX.get_oX() - other.oX.get_oX(), 2) + + std::pow(oX.get_oY() - other.oX.get_oY(), 2) + + std::pow(oX.get_oZ() - other.oX.get_oZ(), 2)); + return d; + } + + + inline void interaction(vpMatrix &L, unsigned i) const + { + double x = oX.get_x(), y = oX.get_y(); + double xy = x * y; + double Zinv = 1.0 / oX.get_Z(); + L[i * 2][0] = -Zinv; + L[i * 2][1] = 0.0; + L[i * 2][2] = x * Zinv; + L[i * 2][3] = xy; + L[i * 2][4] = -(1.0 + x * x); + L[i * 2][5] = y; + + L[i * 2 + 1][0] = 0.0; + L[i * 2 + 1][1] = -Zinv; + L[i * 2 + 1][2] = y * Zinv; + L[i * 2 + 1][3] = 1.0 + y * y; + L[i * 2 + 1][4] = -xy; + L[i * 2 + 1][5] = -x; + } + }; + + +private: + + void tryAddNewPoint(const vpRBFeatureTrackerInput &frame, std::map &points, + long id, const float u, const float v, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc); + + vpRobust m_robust; + + cv::Mat m_I, m_Iprev; + vpKltOpencv m_klt; + + unsigned int m_numPointsReinit; //! Minimum number of KLT points required to avoid performing reinitialization + double m_newPointsDistanceThreshold; //! Minimum distance (to the other tracked points) threshold for a new detected klt point to be considered as novel. In Pixels + unsigned int m_border; //! Image border size, where points should not be considered + + double m_maxErrorOutliersPixels; //! Max 3D reprojection error before a point is considered an outlier and rejected from tracking. In meters + + /*! + * Reject points where the render normals's dot product + * with the inverse camera vector is above this angle threshold. + * Helps removing uncertain keypoints or keypoints that may disappear in the next frame. + */ + double m_normalAcceptanceThresholdDeg; + + std::map m_points; + +}; +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h new file mode 100644 index 0000000000..35be763957 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -0,0 +1,350 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2023 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBProbabilistic3DDriftDetector.h + \brief Drift detection through 3D point statistical description for the render-based tracker +*/ + +#ifndef VP_RB_PROBABILISTIC_3D_DRIFT_DETECTOR_H +#define VP_RB_PROBABILISTIC_3D_DRIFT_DETECTOR_H + +#include +#include +#include + + +#include + + +#include + + +template class vpImage; + + +/** + * \brief Algorithm that uses tracks object surface points in order to estimate the probability that tracking is successful. + * + * Given a set of surface points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$, each point \f$\mathbf{X}_i\f$ being associated to: + * + * - a color distribution \f$\mathcal{N}(\mathbf{\bar c_i}, \mathbf{\Sigma_{c_i}^2})\f$, + * - its distance to the camera being \f$Z_i\f$, + * - its projection in the current color and depth images \f$\mathbf{I_c}, \mathbf{I_Z}\f$ having coordinates \f$u_i, v_i\f$. + * - its visibility V(\mathbf{X_i}), which is 1 if \f$u_i, v_i\f$ lie in the image, + * \f$Z_i\f$ is close to the rendered depth value + * and the normal at the surface marks the point as visible from the camera's point of view. + * + * + * We compute the probability that tracking is successful for a given pose \f$^{c}\mathbf{T}_o\f$ as: + * + * \f[ p(^{c}\mathbf{T}_o) = \frac{1}{\sum_{i=0}^N w_i \cdot V(\mathbf{X_i})}\sum_{i=0}^N w_i \cdot V(\mathbf{X_i}) \cdot p(\mathbf{X_i}) \f] + * + * with \f[ + * \begin{aligned} + * p(\mathbf{X_i}) &= p(\mathbf{I_c}(u_i, v_i)|\mathcal{N}(\mathbf{\bar c_i}, \mathbf{\Sigma_{c_i}^2})) \cdot p(\mathbf{I_Z}(u_i, v_i) | \mathcal{N}(Z_i, \sigma_Z^2)) \\ + * p(\mathbf{I_c}(u_i, v_i) | \mathcal{N}(\mathbf{\bar c_i}, \mathbf{\Sigma_{c_i}^2})) &= erfc(\frac{1}{\sqrt{2}}\lVert \frac{\mathbf{I_c}(u_i, v_i) - \mathbf{\bar c_i}}{diag(\mathbf{\Sigma_{c_i}})} \rVert_2) \\ + * p(\mathbf{I_Z}(u_i, v_i) | \mathcal{N}(Z_i, \sigma_Z^2)) &= erfc(\frac{1}{\sigma_Z \sqrt{2}}\mathbf{I_Z}(u_i, v_i) - Z_i) + * \end{aligned} + * \f] + * + * + * if the depth is unavailable, then we set \f$p(\mathbf{I_Z}(u_i, v_i) | \mathcal{N}(Z_i, \sigma_Z^2)) = 1\f$ + * + * Here, the color distribution is estimated online for each point separately using exponential moving average/variance techniques. + * For each point the update step is computed as \f$p(\mathbf{I_Z}(u_i, v_i) | \mathcal{N}(Z_i, \sigma_Z^2))\cdot \alpha\f$ where \f$\alpha\f$ is a fixed parameter. Larger values will lead to faster update rates and may be more beneficial for non lambertian materials. + * + * For the depth, \f$\sigma_Z\f$ is a fixed parameter to be tweaked by the user. + * + * Every time update is called, the set of points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$ may grow larger: If a new candidate point is visible and is far enough from points already in the set, it is added to it. + * + */ +class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector +{ + +private: + + struct vpStored3DSurfaceColorPoint + { + + /** + * \brief Online estimation of a Gaussian color distribution \f$\mathcal{N}(\mathbf{\bar c}, \mathbf{\Sigma_c^2})\f$, Where \f$\mathbf{\Sigma_c^2}\f$ is a diagonal variance matrix \f$diag(\sigma_r^2, \sigma_g^2, \sigma_b^2)\f$. + * + * This class uses exponential moving average and variance estimation to approximage the distribution of the different RGB color components. + * + * It does not estimate the full covariance matrix, but rather the variance of the individual RGB components. + */ + struct ColorStatistics + { + ColorStatistics() = default; + + void init(const vpRGBf &c, const vpRGBf &var) + { + mean = c; + variance = var; + computeStddev(); + } + + + + /** + * \brief Update the color distribution with a new sample c. + * + * \param c + * \param weight The importance of c (between 0 and 1) in the distribution update (see Exponential moving average). A high value prioritizes the last seen values. + */ + void update(const vpRGBf &c, float weight) + { + const vpRGBf diff(c.R - mean.R, c.G - mean.G, c.B - mean.B); + vpRGBf diffSqr(std::pow(diff.R, 2), std::pow(diff.G, 2), std::pow(diff.B, 2)); + mean = mean + weight * diff; + variance = variance + weight * diffSqr; + computeStddev(); + } + + /** + * \brief Computes the probability that the input color was sampled from the estimated distribution. + * + * \param c + * \return the probability \f$ p(\mathbf{c} | \mathcal{N}(\mathbf{\bar c}, \mathbf{\Sigma_c})) \f$ + */ + double probability(const vpRGBf &c) + { + + const double dist = sqrt( + std::pow((c.R - mean.R) / (standardDev.R), 2) + + std::pow((c.G - mean.G) / (standardDev.G), 2) + + std::pow((c.B - mean.B) / (standardDev.B), 2)); + + const double proba = 1.0 - erf(dist / sqrt(2)); + + return proba; + } + + double trace() + { + return static_cast(variance.R + variance.G + variance.B); + } + + void computeStddev() + { + standardDev.R = sqrt(variance.R); + standardDev.G = sqrt(variance.G); + standardDev.B = sqrt(variance.B); + } + + vpRGBf mean; + vpRGBf variance; + vpRGBf standardDev; + }; + + inline void update(const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo, const vpCameraParameters &cam) + { + fastProjection(cTo, cam, currX, projCurr, projCurrPx); + fastProjection(cprevTo, cam, prevX, projPrev, projPrevPx); + } + + inline double squaredDist(const std::array &p) const + { + return std::pow(p[0] - X[0], 2) + std::pow(p[1] - X[1], 2) + std::pow(p[2] - X[2], 2); + } + + inline void fastProjection(const vpHomogeneousMatrix &cTo, const vpCameraParameters &cam, + std::array &pC, std::array &proj, std::array &px) + { + const double *T = cTo.data; + pC[0] = (T[0] * X[0] + T[1] * X[1] + T[2] * X[2] + T[3]); + pC[1] = (T[4] * X[0] + T[5] * X[1] + T[6] * X[2] + T[7]); + pC[2] = (T[8] * X[0] + T[9] * X[1] + T[10] * X[2] + T[11]); + proj[0] = pC[0] / pC[2]; + proj[1] = pC[1] / pC[2]; + px[0] = static_cast((proj[0] * cam.get_px()) + cam.get_u0()); + px[1] = static_cast((proj[1] * cam.get_py()) + cam.get_v0()); + } + + void updateColor(const vpRGBf ¤tColor, float updateRate) + { + stats.update(currentColor, updateRate); + } + + vpRGBa getDisplayColor() const + { + return vpRGBa(static_cast(stats.mean.R), static_cast(stats.mean.G), static_cast(stats.mean.B)); + } + + std::array X; // Point position in object frame + ColorStatistics stats; //! Color statistics associated to this point + std::array currX, prevX; //! Point position in the current and previous camera frames + std::array projCurr, projPrev; // Projection in camera normalized coordinates of the point for the current and previous camera poses. + std::array projCurrPx, projPrevPx; // Projection in pixels of the point for the current and previous camera poses. + bool visible; // Whether the point is visible + }; + +public: + + + vpRBProbabilistic3DDriftDetector() : m_colorUpdateRate(0.2), m_initialColorSigma(25.0), m_depthSigma(0.04), m_maxError3D(0.001), m_minDist3DNewPoint(0.003) + { } + + void update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) VP_OVERRIDE; + + /** + * \brief Returns the probability [0, 1] that tracking is successful. + * + */ + double getScore() const VP_OVERRIDE; + + bool hasDiverged() const VP_OVERRIDE; + + void display(const vpImage &I) VP_OVERRIDE; + + /** + * \name Settings + * @{ + */ + + + + /** + * \brief Get the minimum distance criterion (in meters) that is used + * when trying to add new points to track for the drift detection. + * + * A candidate surface point is compared to all the currently tracked surface point and + * if any of these points is below the minimum distance, the candidate is rejected. + * + * \return the minimum distance, in meters + */ + double getMinDistForNew3DPoints() const { return m_minDist3DNewPoint; } + + void setMinDistForNew3DPoints(double distance) + { + if (distance <= 0.0) { + throw vpException(vpException::badValue, "Distance criterion for candidate rejection should be greater than 0."); + } + m_minDist3DNewPoint = distance; + } + + /** + * \brief Returns the maximum 3D distance (in meters) above which a tracked surface point is rejected for the drift estimation step. + * + * The surface point's distance to the camera is compared to rendered depth. If the difference between the two is too great, it is rejected. + * + * This is mainly used to handle self occlusions. + */ + double getFilteringMax3DError() const { return m_maxError3D; } + + void setFilteringMax3DError(double maxError) + { + if (maxError <= 0.0) { + throw vpException(vpException::badValue, "Maximum 3D error for rejection should be greater than 0."); + } + m_maxError3D = maxError; + } + + /** + * \brief Get the standard deviation that is used when computing + * the probability that the observed depth Z is the correct depth given the rendered depth at the same pixel. + * + */ + double getDepthStandardDeviation() const { return m_depthSigma; } + void setDepthStandardDeviation(double sigma) + { + if (sigma < 0.0) { + throw vpException(vpException::badValue, "Depth standard deviation should be greater than 0"); + } + m_depthSigma = sigma; + } + + /** + * \brief Get the standard deviation that is used to initialize the color distribution when adding a new surface point. + * This standard deviation is applied on all color components. + * + */ + double getInitialColorStandardDeviation() const { return m_depthSigma; } + void setInitialColorStandardDeviation(double sigma) + { + if (sigma < 0.0) { + throw vpException(vpException::badValue, "Initial color standard deviation should be greater than 0"); + } + m_initialColorSigma = sigma; + } + + /** + * \brief Get the rate at which the colors of surface points are updated. + * + * Note that if depth is available, this component is further multiplied by the probability of depth being correct for a given point. + * + * A high value will lead to a fast update rate (short term memory), while a lower one will update slower. + * A slower update may lead to a more stable tracking score. A higher value may be better suited to non isotropic materials. + */ + double getColorUpdateRate() const { return m_colorUpdateRate; } + + /** + * \brief Set the update rate for the color distribution. It should be between 0 and 1. + * + * \param updateRate the update rate + */ + void setColorUpdateRate(double updateRate) + { + if (updateRate < 0.0 || updateRate > 1.f) { + throw vpException(vpException::badValue, "Color update rate should be between 0 and 1"); + } + m_colorUpdateRate = updateRate; + } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + void loadJsonConfiguration(const nlohmann::json &) VP_OVERRIDE; +#endif + + +/** + * @} + * End settings + */ + + + + +private: + double m_colorUpdateRate; + double m_initialColorSigma; + double m_depthSigma; + double m_maxError3D; + double m_minDist3DNewPoint; + + double m_score; + + std::vector m_points; + +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h new file mode 100644 index 0000000000..995a47c586 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -0,0 +1,280 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBSilhouetteCCDTracker.h + \brief Color silhouette features +*/ +#ifndef VP_SILHOUETTE_CCD_TRACKER_H +#define VP_SILHOUETTE_CCD_TRACKER_H + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// #if defined(VISP_HAVE_SIMDLIB) +// #include +// #endif +#include +#include + +#include +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +class VISP_EXPORT vpCCDParameters +{ +public: + vpCCDParameters() : gamma_1(0.5), gamma_2(4), gamma_3(4), gamma_4(3), alpha(1.3), beta(0.06), kappa(0.5), covarianceIterDecreaseFactor(0.25), h(40), delta_h(1), phi_dim(6) + { } + + + ~vpCCDParameters() = default; + /** + * \brief Curve uncertainty computation hyperparameter + * Recommended to leave fixed + */ + double gamma_1; + /** + * \brief Curve uncertainty computation hyperparameter + * Recommended to leave fixed + */ + double gamma_2; + /** + * \brief Curve uncertainty computation hyperparameter + * Recommended to leave fixed + */ + double gamma_3; + /** + * \brief Curve uncertainty computation hyperparameter + * Recommended to leave fixed + */ + double gamma_4; + double alpha; + double beta; + + /** + * \brief Bias to the diagonal of the covariance of the color statistics of a single pixel. + * Used to avoid singularities and degenerate cases + * + * The final pixel color covariance will be kappa * I(3) + covariance. + * + */ + double kappa; + /** + * + * \brief From the CCD paper: + * maximum decrease of the covariance within one iteration step. Between 0 and 1 + * If c2 is too high, the covariance declines slowly. Hence, a small number of iterations is + * necessary. If c2 is too small, the CCD algorithm may converge to a wrong solution. + * + * it is recommended to leave this value fixed + */ + double covarianceIterDecreaseFactor; + /** + * \brief Size of the vicinity that is used to compute statistics and error. + * Length of the line along the normal (and the opposite direction). To subsample the line, set delta_h > 1. + * Number of pixels used is computed as 2 * floor(h/delta_h). If you expect large motions, set a large value. + * If you want to reduce computation time, decrease this value or increase delta_h + * Recommended value: above 4 + * + */ + int h; + /** + * \brief Sample step when computing statistics and errors. + * Increase this value to decrease computation time, at the risk of obtaining inacurrate statistics. + * + */ + int delta_h; + /** + * \brief Number of parameters estimated by CCD. Either 6 or 8. + * Leave this fixed + */ + int phi_dim; +}; + +#if defined(VISP_HAVE_NLOHMANN_JSON) +inline void from_json(const nlohmann::json &j, vpCCDParameters &ccdParameters) +{ + ccdParameters.alpha = j.value("alpha", ccdParameters.alpha); + ccdParameters.beta = j.value("beta", ccdParameters.beta); + ccdParameters.kappa = j.value("kappa", ccdParameters.kappa); + ccdParameters.covarianceIterDecreaseFactor = j.value("covarianceIterDecreaseFactor", + ccdParameters.covarianceIterDecreaseFactor); + ccdParameters.h = j.value("h", ccdParameters.h); + ccdParameters.delta_h = j.value("delta_h", ccdParameters.delta_h); + ccdParameters.phi_dim = j.value("phi_dim", ccdParameters.phi_dim); + if (j.contains("gamma")) { + nlohmann::json gammaj = j["gamma"]; + if (!j.is_array() || !j.size() != 4) { + throw vpException(vpException::ioError, "CCD parameters: tried to read gamma values from something that is not a 4-sized float array"); + } + ccdParameters.gamma_1 = gammaj[0]; + ccdParameters.gamma_2 = gammaj[1]; + ccdParameters.gamma_3 = gammaj[2]; + ccdParameters.gamma_4 = gammaj[3]; + } +} +#endif + +class VISP_EXPORT vpCCDStatistics +{ +public: + vpMatrix vic; //! Vicinity data + vpMatrix mean_vic; //! Mean + vpMatrix cov_vic; //! Covariance + vpMatrix nv; //! Normal vector + vpMatrix imgPoints; //! Img pixels + vpMatrix weight; //! Whether this pixel is the object + + void reinit(int resolution, unsigned normalPointsNumber) + { + nv.resize(resolution, 2, false, false); + mean_vic.resize(resolution, 6, false, false); + cov_vic.resize(resolution, 18, false, false); + vic.resize(resolution, 20 * normalPointsNumber, false, false); + imgPoints.resize(resolution, 2 * 3 * normalPointsNumber, false, false); + weight.resize(resolution, 2 * normalPointsNumber, false, false); + } + +}; + + +/** + * \brief A base class for all features that can be used and tracker in the vpRenderBasedTracker + * + */ +class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker +{ +public: + + vpRBSilhouetteCCDTracker(); + + + bool requiresRGB() const VP_OVERRIDE { return true; } + + bool requiresDepth() const VP_OVERRIDE { return false; } + + bool requiresSilhouetteCandidates() const VP_OVERRIDE { return true; } + + void setCCDParameters(const vpCCDParameters ¶meters) { m_ccdParameters = parameters; } + //void computeMask(const vpImage &render, vpCCDStatistics &stats); + + /** + * \brief Returns the amount of temporal smoothing applied when computing the tracking error and its jacobian. + * This factor is used to interpolate with the error computed on the previous frame for the features selected at the current iteration + * Temporal smoothing may help smooth out the motion and reduce jitter. + */ + double getTemporalSmoothingFactor() const { return m_temporalSmoothingFac; } + /** + * \brief Sets the temporal smoothing factor. + * + * \see getTemporalSmoothingFactor + * + * @param factor the new temporal smoothing factor. Should be greater than 0 + */ + void setTemporalSmoothingFactor(double factor) { m_temporalSmoothingFac = factor; } + + /** + * \brief Method called when starting a tracking iteration + * + */ + void onTrackingIterStart() VP_OVERRIDE { } + void onTrackingIterEnd() VP_OVERRIDE { } + + double getVVSTrackerWeight() const VP_OVERRIDE { return m_userVvsWeight / (10 * error_ccd.size()); } + + void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE { } + + void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; + void updateCovariance(const double lambda) VP_OVERRIDE { } + + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) + { + vpRBFeatureTracker::loadJsonConfiguration(j); + m_vvsConvergenceThreshold = j.value("convergenceThreshold", m_vvsConvergenceThreshold); + m_temporalSmoothingFac = j.value("temporalSmoothing", m_temporalSmoothingFac); + m_ccdParameters = j.value("ccd", m_ccdParameters); + } + +#endif + +protected: + void updateCCDPoints(const vpHomogeneousMatrix &cMo); + void computeLocalStatistics(const vpImage &I, vpCCDStatistics &stats); + + void computeErrorAndInteractionMatrix(); + + vpCCDParameters m_ccdParameters; + + std::vector m_controlPoints; //! Silhouette points where to compute CCD statistics + vpImage m_silhouette; + vpRobust m_robust; + + vpCCDStatistics m_stats; + vpCCDStatistics m_prevStats; + + vpMatrix Sigma_Phi; + + vpColVector nabla_E; //! Sum of local gradients + vpMatrix hessian_E; //! Sum of local hessians + + double m_vvsConvergenceThreshold; + double tol; + vpColVector error_ccd; + vpColVector weighted_error_ccd; + std::vector m_gradients; + std::vector m_hessians; + double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. + +}; + + + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h new file mode 100644 index 0000000000..495a65b344 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -0,0 +1,180 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBSilhouetteControlPoint.h + \brief Trackable silhouette point representation +*/ + +#ifndef VP_RB_SILHOUETTE_CONTROL_POINT_H +#define VP_RB_SILHOUETTE_CONTROL_POINT_H + +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +class VISP_EXPORT vpRBSilhouetteControlPoint +{ +private: + + double rho, theta; + double thetaInit; + double delta; + int sign; + //double a,b,c; + vpFeatureLine featureline; + vpLine line; + + std::vector m_candidates; + unsigned int m_numCandidates; + vpMe *me; + vpMeSite s; + + bool m_valid; + + +public: + const vpCameraParameters *cam; + //int imin, imax; + //int jmin, jmax; + //double expecteddensity; + // the image point + + vpImagePoint icpoint; + + + // the 3D point + vpPoint cpoint; + vpPoint cpointo; + + //! The moving edge container associated to the control point + //vpMbtMeLine *meline; + //! The 3D line associated to the control point + //vpLine *line; + + //! Normale to surface where the control point lies + vpColVector norm; + vpColVector normw; + + + //! Gradient profile associated to the control Points + + double error; + + vpColVector L; + + double xs, ys, nxs, nys, Zs; + + bool isSilhouette; + bool invnormal; + + +public: + + void init(); + vpRBSilhouetteControlPoint(); + vpRBSilhouetteControlPoint(const vpRBSilhouetteControlPoint &meTracker); + vpRBSilhouetteControlPoint(const vpRBSilhouetteControlPoint &&meTracker); + vpRBSilhouetteControlPoint &operator=(const vpRBSilhouetteControlPoint &meTracker); + vpRBSilhouetteControlPoint &operator=(const vpRBSilhouetteControlPoint &&meTracker); + ~vpRBSilhouetteControlPoint() = default; + + /** + * @brief Set the number of candidates to use for multiple hypotheses testing + * + * @param numCandidates + */ + void setNumCandidates(unsigned numCandidates) { m_numCandidates = numCandidates; } + unsigned getNumCandidates() const { return m_numCandidates; } + void setValid(bool valid) { m_valid = valid; } + bool isValid() const { return m_valid; } + + int outOfImage(int i, int j, int half, int rows, int cols) const; + int outOfImage(const vpImagePoint &iP, int half, int rows, int cols) const; + + bool siteIsValid() const { return s.getState() == vpMeSite::NO_SUPPRESSION; } + const vpMeSite &getSite() const { return s; } + vpMeSite &getSite() { return s; } + const vpFeatureLine &getFeatureLine() const { return featureline; } + const vpLine &getLine() const { return line; } + double getTheta() const { return theta; } + + + void setMovingEdge(vpMe *_me) { me = _me; } + void setCameraParameters(const vpCameraParameters *_cam) { cam = _cam; } + + void initControlPoint(const vpImage &I, double cvlt); + void detectSilhouette(const vpImage &I); + void buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc); + void buildSilhouettePoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc); + void buildPlane(const vpPoint &pointn, const vpColVector &normal, vpPlane &plane); + void buildPLine(const vpHomogeneousMatrix &oMc); + void update(const vpHomogeneousMatrix &_cMo); + void updateSilhouettePoint(const vpHomogeneousMatrix &_cMo); + + /** + * @brief Track the moving edge at this point retaining only the hypothesis with the highest likelihood + * + * @param I The image in which to track + */ + void track(const vpImage &I); + + /** + * @brief Track the moving edge and retain the best numCandidates hypotheses + * + * @param I The image in which to track + * + * \see setNumCandidates + */ + void trackMultipleHypotheses(const vpImage &I); + + void initInteractionMatrixError(); + void computeInteractionMatrixError(const vpHomogeneousMatrix &cMo, const vpImage &I); + void computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, const vpImage &I); + +private: + void sample(const vpImage &) { } + bool isLineDegenerate() const; + + + +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h new file mode 100644 index 0000000000..06305ea189 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -0,0 +1,112 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBSilhouetteMeTracker.h + \brief Moving edge tracking for depth-extracted object contours +*/ +#ifndef VP_RB_SILHOUETTE_ME_TRACKER_H +#define VP_RB_SILHOUETTE_ME_TRACKER_H + +#include +#include +#include +#include + +class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker +{ +public: + + vpRBSilhouetteMeTracker() : vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), m_singlePointConvergedThresholdPixels(3), m_minMaskConfidence(0.f), m_useMask(false) { } + + bool requiresRGB() const VP_OVERRIDE { return false; } + + bool requiresDepth() const VP_OVERRIDE { return false; } + + bool requiresSilhouetteCandidates() const VP_OVERRIDE { return true; } + + void setMovingEdge(const vpMe &me) { m_me = me; } + + void onTrackingIterStart() VP_OVERRIDE + { + m_controlPoints.clear(); + } + + void onTrackingIterEnd() VP_OVERRIDE { } + + /** + * @brief Extract the geometric features from the list of collected silhouette points + */ + void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void clusterIntoLines(); + + void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; + + void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; + + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &j) + { + vpRBFeatureTracker::loadJsonConfiguration(j); + m_numCandidates = j.value("numCandidates", m_numCandidates); + m_singlePointConvergedThresholdPixels = j.value("convergencePixelThreshold", m_singlePointConvergedThresholdPixels); + m_globalVVSConvergenceThreshold = j.value("convergenceRatio", m_globalVVSConvergenceThreshold); + m_me = j.value("movingEdge", m_me); + m_useMask = j.value("useMask", m_useMask); + m_minMaskConfidence = j.value("minMaskConfidence", m_minMaskConfidence); + // m_me.setThresholdMarginRatio(-1.0); + // m_me.setMinThreshold(-1.0); + } +#endif + +private: + + std::vector m_controlPoints; + vpMe m_me; //! Moving edge settings + unsigned int m_numCandidates; //! Number of best candidates kept when finding correspondence points + double m_singlePointConvergedThresholdPixels; //! Whether a single Control point is considered as converged + double m_globalVVSConvergenceThreshold; //! Percentage of control points that should have converged to consider VVS as successful + vpRobust m_robust; //! M-Estimator to filter outliers + bool m_useMask; + float m_minMaskConfidence; + +}; + + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h new file mode 100644 index 0000000000..a7fd44c01e --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h @@ -0,0 +1,57 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBSilhouettePoint.h + \brief Silhouette point simple candidate representation +*/ +#ifndef VP_RB_SILHOUETTE_POINT_H +#define VP_RB_SILHOUETTE_POINT_H + +#include +#include + +class VISP_EXPORT vpRBSilhouettePoint +{ +public: + unsigned int i, j; //! Pixel coordinates of the silhouette point + vpColVector normal; //! Normal to the silhouette at point i,j, in world frame + double orientation; //! angle of the normal in the image. + double Z; //! Point depth + + vpRBSilhouettePoint(unsigned int i, unsigned int j, const vpColVector &normal, double orientation, double Z) : + i(i), j(j), normal(normal), orientation(orientation), Z(Z) + { } + +}; + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h new file mode 100644 index 0000000000..6e3d99ffdd --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -0,0 +1,136 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBSilhouettePointsExtractionSettings.h + \brief Silhouette point extraction settings +*/ + +#ifndef VP_RB_SILHOUETTE_POINTS_EXTRACTION_SETTINGS_H +#define VP_RB_SILHOUETTE_POINTS_EXTRACTION_SETTINGS_H + +#include + +#if defined(VISP_HAVE_PANDA3D) +#include +#include +#include +#include + + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +class vpRBSilhouettePoint; + +class VISP_EXPORT vpSilhouettePointsExtractionSettings +{ + +private: + unsigned int m_sampleStep; //! Step with which to sample the image to acquire candidates + int m_maxNumPoints; //! Max number of points to keep + unsigned int m_border; //! Border rejection parameter: do not seek candidates that are too close to image border + + double m_depthThreshold; + bool m_thresholdIsRelative; + bool m_preferPreviousPoints; + + + void sampleWithoutReplacement(unsigned int count, unsigned int vectorSize, std::vector &indices, vpUniRand &random) const + { + count = std::min(count, vectorSize); + indices.resize(count); + unsigned int added = 0; + for (unsigned i = 0; i < vectorSize; ++i) { + double randomVal = random.uniform(0.0, 1.0); + if ((vectorSize - i) * randomVal < (count - added)) { + indices[added++] = i; + } + if (added == count) { + break; + } + } + } + +public: + + vpSilhouettePointsExtractionSettings(); + vpSilhouettePointsExtractionSettings(const vpSilhouettePointsExtractionSettings &rend); + ~vpSilhouettePointsExtractionSettings() = default; + const vpSilhouettePointsExtractionSettings &operator=(const vpSilhouettePointsExtractionSettings &rend); + + void setThreshold(double lambda) { m_depthThreshold = lambda; } + double getThreshold() const { return m_depthThreshold; } + void setThresholdIsRelative(bool isRelative) { m_thresholdIsRelative = isRelative; } + bool thresholdIsRelative() const { return m_thresholdIsRelative; } + + void setMaxCandidates(int maxCandidates) { m_maxNumPoints = maxCandidates; } + void setSampleStep(unsigned int a) + { + if (m_sampleStep == 0) { + throw vpException(vpException::badValue, "Sample step should be greater than 0"); + } + m_sampleStep = a; + } + + std::vector> getSilhouetteCandidates( + const vpImage &validSilhouette, const vpImage &renderDepth, + const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp, + const std::vector &previousPoints, long randomSeed = 41) const; + + +#if defined(VISP_HAVE_NLOHMANN_JSON) + inline friend void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSettings &settings); +#endif + +}; + +#if defined(VISP_HAVE_NLOHMANN_JSON) +inline void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSettings &settings) +{ + nlohmann::json thresholdSettings = j.at("threshold"); + std::string thresholdType = thresholdSettings.at("type"); + settings.m_thresholdIsRelative = thresholdType == "relative"; + settings.m_preferPreviousPoints = thresholdSettings.at("reusePreviousPoints"); + + settings.m_depthThreshold = thresholdSettings.at("value"); + + nlohmann::json samplingSettings = j.at("sampling"); + settings.m_maxNumPoints = samplingSettings.at("numPoints"); + settings.m_sampleStep = samplingSettings.at("samplingRate"); + +} +#endif + +#endif +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h new file mode 100644 index 0000000000..7409825607 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -0,0 +1,268 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBTracker.h + \brief Render-Based Tracker +*/ +#ifndef VP_RB_TRACKER_H +#define VP_RB_TRACKER_H + +#include + +#if defined(VISP_HAVE_PANDA3D) + +#include + +#include +#include +#include +#include +#include + +class vpObjectMask; +class vpRBDriftDetector; + +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +// #include +// class VISP_EXPORT vpRBTrackerFilter +// { +// public: +// vpRBTrackerFilter() : m_initialized(false) +// { +// double opt_stdevP0 = 1e-8; +// double opt_stdevQ = 1e-10; +// double opt_stdevR = 1e-6; +// vpMatrix Id; +// Id.eye(6); +// vpMatrix P0 = Id * opt_stdevP0 * opt_stdevP0; +// vpMatrix Q = Id * opt_stdevQ * opt_stdevQ; +// vpMatrix R = Id * opt_stdevR * opt_stdevR; +// double alphaPred = 0.01; +// vpUnscentedKalmanPose::State X0; +// Id.eye(3); +// vpMatrix R_ukfm = Id * opt_stdevR * opt_stdevR; +// vpUnscentedKalmanPose ukfm(Q, R_ukfm, std::vector(3, alphaPred), X0, P0, +// vpUnscentedKalmanPose::fSE3, vpUnscentedKalmanPose::hSE3, vpUnscentedKalmanPose::phiSE3, +// vpUnscentedKalmanPose::phiinvSE3); +// m_kalman = std::shared_ptr(new vpUnscentedKalmanPose(ukfm)); +// } + +// void filter(const vpHomogeneousMatrix &cMo, double dt) +// { +// if (!m_initialized) { +// m_kalman->setX0(cMo); +// m_cMoPrev = cMo; +// m_initialized = true; +// } +// else { +// std::ios_base::fmtflags f(std::cerr.flags()); + +// vpColVector v = vpExponentialMap::inverse(m_cMoPrev * cMo.inverse(), dt); +// std::cerr << "Kalman v = " << std::setprecision(4) << std::scientific << v.t() << std::endl; +// std::cerr.flags(f); +// m_kalman->filter(v, vpUnscentedKalmanPose::asPositionVector(cMo), dt); +// m_cMoPrev = cMo; +// } +// } + +// void reinit(const vpHomogeneousMatrix &cMo) +// { +// m_kalman->setX0(cMo); +// m_cMoPrev = cMo; +// m_initialized = true; +// } + +// vpHomogeneousMatrix getFilteredPose() +// { +// return m_kalman->getState(); +// } + + + +// private: +// std::shared_ptr m_kalman; +// vpHomogeneousMatrix m_cMoPrev; +// bool m_initialized; + +// }; + + + + + +class VISP_EXPORT vpRBTracker : public vpMbTracker +{ +public: + + vpRBTracker(); + + ~vpRBTracker() = default; + + + void getPose(vpHomogeneousMatrix &cMo) const; + void setPose(const vpHomogeneousMatrix &cMo); + + vpCameraParameters getCameraParameters() const; + void setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w); + void setSilhouetteExtractionParameters(const vpSilhouettePointsExtractionSettings &settings); + + void reset(); + + void loadObjectModel(const std::string &file); + + void track(const vpImage &I); + void track(const vpImage &I, const vpImage &IRGB); + void track(const vpImage &I, const vpImage &IRGB, const vpImage &depth); + + void addTracker(std::shared_ptr tracker); + + void displayMask(vpImage &Imask) const; + void display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type); + + vpObjectCentricRenderer &getRenderer(); + const vpRBFeatureTrackerInput &getMostRecentFrame() const { return m_currentFrame; } + + const std::shared_ptr getDriftDetector() const { return m_driftDetector; } + + + //vpRBTrackerFilter &getFilter() { return m_filter; } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + void loadConfigurationFile(const std::string &filename); + void loadConfiguration(const nlohmann::json &j); +#endif + + virtual void initCircle(const vpPoint &p1, const vpPoint &p2, const vpPoint &p3, double radius, int idFace = 0, + const std::string &name = "") VP_OVERRIDE + { } + virtual void initCylinder(const vpPoint &p1, const vpPoint &p2, double radius, int idFace = 0, + const std::string &name = "") VP_OVERRIDE + { } + virtual void initFaceFromCorners(vpMbtPolygon &polygon) VP_OVERRIDE { } + virtual void initFaceFromLines(vpMbtPolygon &polygon) VP_OVERRIDE { } + virtual vpColVector getError() const VP_OVERRIDE { return vpColVector(); } + virtual vpColVector getRobustWeights() const { return vpColVector(); } + virtual void display(const vpImage &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, + const vpColor &col, unsigned int thickness = 1, bool displayFullModel = false) VP_OVERRIDE + { } + virtual void display(const vpImage &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, + const vpColor &col, unsigned int thickness = 1, bool displayFullModel = false) VP_OVERRIDE + { } + + virtual std::vector > getModelForDisplay(unsigned int width, unsigned int height, + const vpHomogeneousMatrix &cMo, + const vpCameraParameters &cam, + bool displayFullModel = false) + { + return {}; + } + + virtual void init(const vpImage &I) VP_OVERRIDE { } + virtual void resetTracker() VP_OVERRIDE { } + virtual void setPose(const vpImage &I, const vpHomogeneousMatrix &cdMo) VP_OVERRIDE { } + virtual void setPose(const vpImage &I_color, const vpHomogeneousMatrix &cdMo) VP_OVERRIDE { } + virtual void testTracking() VP_OVERRIDE { } + virtual void track(const vpImage &I) VP_OVERRIDE { } + virtual void computeVVSInit() VP_OVERRIDE { } + virtual void computeVVSInteractionMatrixAndResidu() VP_OVERRIDE { } +protected: + + void track(vpRBFeatureTrackerInput &input); + void updateRender(vpRBFeatureTrackerInput &frame); + + + std::vector extractSilhouettePoints(const vpImage &Inorm, const vpImage &Idepth, + const vpImage &Ior, const vpImage &Ivalid, const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp); + + vpMatrix getCovariance() + { + throw vpException(vpException::notImplementedError); + } + + template + void checkDimensionsOrThrow(const vpImage &I, const std::string &imgType) const + { + if (I.getRows() != m_imageHeight || I.getCols() != m_imageWidth) { + std::stringstream ss; + ss << "vpRBTracker: dimension error: expected " << imgType; + ss << " image to have the following resolution " << m_imageWidth << " x " << m_imageHeight; + ss << ", but got " << I.getCols() << " x " << I.getRows(); + throw vpException(vpException::dimensionError, ss.str()); + } + } + + + bool m_firstIteration; //! Whether this is the first iteration + + std::vector> m_trackers; //! List of trackers + + // vpHomogeneousMatrix m_cMo; + vpHomogeneousMatrix m_cMoPrev; + //vpCameraParameters m_cam; + + vpRBFeatureTrackerInput m_currentFrame; + vpRBFeatureTrackerInput m_previousFrame; + + + double m_lambda; //! VVS gain + unsigned m_vvsIterations; //! Max number of VVS iterations + double m_muInit; //! Initial mu value for Levenberg-Marquardt + double m_muIterFactor; //! Factor with which to multiply mu at every iteration during VVS. + + vpSilhouettePointsExtractionSettings m_depthSilhouetteSettings; + + vpPanda3DRenderParameters m_rendererSettings; + vpObjectCentricRenderer m_renderer; + //vpRenderer m_renderer; + + unsigned m_imageHeight, m_imageWidth; //! Color and render image dimensions + + vpRBTrackerLogger m_logger; + + std::shared_ptr m_mask; + + std::shared_ptr m_driftDetector; + + // vpRBTrackerFilter m_filter; + + vpRBFeatureTrackerInput m_tempRenders; + +}; + +#endif +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h new file mode 100644 index 0000000000..5ccd0d0ad0 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -0,0 +1,155 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +/*! + \file vpRBTrackerLogger.h + \brief Information storage for render based tracking process. +*/ +#ifndef VP_RB_TRACKER_LOGGER_H +#define VP_RB_TRACKER_LOGGER_H + +#include +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +class VISP_EXPORT vpRBTrackerLogger +{ +public: + void reset() + { + m_renderTime = 0.0; + m_silhouetteExtractionTime = 0.0; + m_trackerFeatureExtractionTime.clear(); + m_trackerFeatureTrackingTime.clear(); + m_trackerVVSIterTimes.clear(); + } + + friend std::ostream &operator<<(std::ostream &, const vpRBTrackerLogger &); + + void startTimer() { m_startTime = vpTime::measureTimeMs(); } + double endTimer() + { + if (m_startTime < 0.f) throw vpException(vpException::notInitialized, "Tried to query timer without starting it."); + double elapsed = vpTime::measureTimeMs() - m_startTime; + m_startTime = -1.f; + return elapsed; + } + + void setRenderTime(double elapsed) { m_renderTime = elapsed; } + void setSilhouetteTime(double elapsed) { m_silhouetteExtractionTime = elapsed; } + void setMaskTime(double elapsed) { m_maskTime = elapsed; } + + + void insertTrackerTime(std::map> &map, int id, double elapsed) + { + if (map.find(id) == map.end()) { + map.insert(std::make_pair(id, std::vector())); + } + map.find(id)->second.push_back(elapsed); + } + void addTrackerVVSTime(int id, double elapsed) + { + insertTrackerTime(m_trackerVVSIterTimes, id, elapsed); + } + + void setTrackerFeatureExtractionTime(int id, double elapsed) + { + m_trackerFeatureExtractionTime[id] = elapsed; + } + + void setTrackerFeatureTrackingTime(int id, double elapsed) + { + m_trackerFeatureTrackingTime[id] = elapsed; + } + + void setInitVVSTime(int id, double elapsed) + { + m_trackerInitVVSTime[id] = elapsed; + } + + void setDriftDetectionTime(double elapsed) + { + m_driftTime = elapsed; + } + +private: + double m_startTime; + double m_renderTime; + double m_silhouetteExtractionTime; + double m_maskTime; + double m_driftTime; + std::map> m_trackerVVSIterTimes; + std::map m_trackerFeatureExtractionTime; + std::map m_trackerFeatureTrackingTime; + std::map m_trackerInitVVSTime; + std::map m_trackerNumFeatures; + +}; + +std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) +{ + ssize_t ss = out.precision(); + out << std::setprecision(2) << std::fixed; + out << "====================================================" << std::endl; + out << "Render: " << timer.m_renderTime << "ms" << std::endl; + out << "Mask: " << timer.m_maskTime << "ms" << std::endl; + out << "Drift: " << timer.m_driftTime << "ms" << std::endl; + out << "Silhouette extraction: " << timer.m_silhouetteExtractionTime << "ms" << std::endl; + + out << "Trackers: " << std::endl; + for (const std::pair> &vvsIterData : timer.m_trackerVVSIterTimes) { + double featTrackTime = timer.m_trackerFeatureTrackingTime.find(vvsIterData.first)->second; + double featExtractionTime = timer.m_trackerFeatureExtractionTime.find(vvsIterData.first)->second; + double initVVSTime = timer.m_trackerInitVVSTime.find(vvsIterData.first)->second; + + double ttVVSIter = 0.f; + for (double v : vvsIterData.second) { + ttVVSIter += v; + } + out << "\t" << vvsIterData.first << std::endl; + out << "\t" << "\t" << "Feature tracking: " << featTrackTime << "ms" << std::endl; + out << "\t" << "\t" << "Feature extraction: " << featExtractionTime << "ms" << std::endl; + out << "\t" << "\t" << "VVS init: " << initVVSTime << "ms" << std::endl; + out << "\t" << "\t" << "VVS: " << ttVVSIter << "ms (" << vpMath::getMean(vvsIterData.second) << "ms" + << "+-" << vpMath::getStdev(vvsIterData.second) << "ms)" << std::endl; + } + out << "====================================================" << std::endl; + out << std::setprecision(ss); + return out; +} + + +#endif diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp new file mode 100644 index 0000000000..6b20e12341 --- /dev/null +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -0,0 +1,537 @@ + + +#include +#include +#include +#include + +#define VISP_DEBUG_RB_CONTROL_POINT 1 + +void vpRBSilhouetteControlPoint::init() +{ + m_valid = false; +} + +vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint() +{ + init(); + me = nullptr; + m_numCandidates = 3; + m_candidates.resize(1); + sign = 1; + + norm.resize(3); + theta = 0; + isSilhouette = false; + invnormal = false; + m_valid = true; +} + +vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint(const vpRBSilhouetteControlPoint &meTracker) +{ + init(); + *this = meTracker; +} + +vpRBSilhouetteControlPoint &vpRBSilhouetteControlPoint::operator=(const vpRBSilhouetteControlPoint &meTracker) +{ + me = meTracker.me; + s = meTracker.s; + m_numCandidates = meTracker.m_numCandidates; + cam = meTracker.cam; + icpoint = meTracker.icpoint; + cpoint = meTracker.cpoint; + cpointo = meTracker.cpointo; + norm = meTracker.norm; + normw = meTracker.normw; + error = meTracker.error; + L = meTracker.L; + xs = meTracker.xs; + ys = meTracker.ys; + nxs = meTracker.nxs; + nys = meTracker.nys; + Zs = meTracker.Zs; + isSilhouette = meTracker.isSilhouette; + invnormal = meTracker.invnormal; + rho = meTracker.rho; + theta = meTracker.theta; + thetaInit = meTracker.thetaInit; + delta = meTracker.delta; + sign = meTracker.sign; + featureline = meTracker.featureline; + line = meTracker.line; + m_valid = meTracker.m_valid; + return *this; +} + +vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint(const vpRBSilhouetteControlPoint &&meTracker) +{ + *this = meTracker; +} + +vpRBSilhouetteControlPoint &vpRBSilhouetteControlPoint::operator=(const vpRBSilhouetteControlPoint &&meTracker) +{ + me = std::move(meTracker.me); + s = std::move(meTracker.s); + thetaInit = std::move(meTracker.thetaInit); + m_numCandidates = std::move(meTracker.m_numCandidates); + cam = std::move(meTracker.cam); + icpoint = std::move(meTracker.icpoint); + cpoint = std::move(meTracker.cpoint); + cpointo = std::move(meTracker.cpointo); + norm = std::move(meTracker.norm); + normw = std::move(meTracker.normw); + error = std::move(meTracker.error); + L = std::move(meTracker.L); + xs = std::move(meTracker.xs); + ys = std::move(meTracker.ys); + nxs = std::move(meTracker.nxs); + nys = std::move(meTracker.nys); + Zs = std::move(meTracker.Zs); + isSilhouette = std::move(meTracker.isSilhouette); + invnormal = std::move(meTracker.invnormal); + rho = std::move(meTracker.rho); + theta = std::move(meTracker.theta); + delta = std::move(meTracker.delta); + sign = std::move(meTracker.sign); + featureline = std::move(meTracker.featureline); + line = std::move(meTracker.line); + m_valid = std::move(meTracker.m_valid); + return *this; +} + + + + +int vpRBSilhouetteControlPoint::outOfImage(int i, int j, int half, int rows, int cols) const +{ + return (!((i> half+2) && + (i< rows -(half+2)) && + (j>half+2) && + (j half+2) && + (i< rows -(half+2)) && + (j>half+2) && + (j &I) +{ + + if (s.getState() == vpMeSite::NO_SUPPRESSION) { + try { + if (s.m_convlt == 0) { + s.track(I, me, false); + } + else { + s.track(I, me, false); + } + } + catch (vpTrackingException) { + vpERROR_TRACE("catch exception "); + s.setState(vpMeSite::THRESHOLD); + } + } +} + + +void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImage &I) +{ + // If element hasn't been suppressed + try { + if (s.getState() == vpMeSite::NO_SUPPRESSION) { + const bool testContrast = s.m_convlt != 0.0; + s.trackMultipleHypotheses(I, *me, false, m_candidates, m_numCandidates); + } + } + catch (vpTrackingException) { + vpERROR_TRACE("catch exception "); + s.setState(vpMeSite::THRESHOLD); + } +} + + + +/*! + Build a 3D plane thanks the 3D coordinate of the control point and the normal vector to the surface + + \param plane : The vpPlane instance used to store the computed plane equation. +*/ +void +vpRBSilhouetteControlPoint::buildPlane(const vpPoint &pointn, const vpColVector &normal, vpPlane &plane) +{ + //Equation of the plane is given by: + double A = normal[0]; + double B = normal[1]; + double C = normal[2]; + //double D=-(A*(double)cpoint.get_oX()+B*(double)cpoint.get_oY()+C*(double)cpoint.get_oZ()); + double D = -(A*(double)pointn.get_oX()+B*pointn.get_oY()+C*(double)pointn.get_oZ()); + + double normp = sqrt(A*A+B*B+C*C); + plane.setA(A/normp); + plane.setB(B/normp); + plane.setC(C/normp); + plane.setD(D/normp); +} + + + + +void +vpRBSilhouetteControlPoint::buildPLine(const vpHomogeneousMatrix &oMc) +{ + vpPlane plane; + vpPlane plane1; + vpPlane plane2; + buildPlane(cpoint, norm, plane); + vpRotationMatrix R; + oMc.extract(R); + + + vpColVector V(3); + vpColVector Vo(3); + if (abs(theta) > 1e-2) { + V[0] = ((cpoint.get_oX()/cpoint.get_oZ())+1)*cpoint.get_oZ()-cpoint.get_oX(); + V[1] = ((cpoint.get_oY()/cpoint.get_oZ())-cos(theta)/sin(theta))*cpoint.get_oZ()-cpoint.get_oY(); + V[2] = (-plane.getD()-V[0]*plane.getA()-V[1]*plane.getB())/plane.getC()-cpoint.get_oZ(); + } + else { + V[0] = ((cpoint.get_oX()/cpoint.get_oZ())+1)*cpoint.get_oZ()-cpoint.get_oX(); + V[1] = ((cpoint.get_oY()/cpoint.get_oZ()))*cpoint.get_oZ()-cpoint.get_oY(); + V[2] = (-plane.getD()-V[0]*plane.getA()-V[1]*plane.getB())/plane.getC()-cpoint.get_oZ(); + } + // V[0] = ((cpoint.get_oX()/cpoint.get_oZ())+ cos(theta))*cpoint.get_oZ()-cpoint.get_oX(); + // V[1] = ((cpoint.get_oY()/cpoint.get_oZ()) - sin(theta))*cpoint.get_oZ()-cpoint.get_oY(); + // V[2] = (-plane.getD()-V[0]*plane.getA()-V[1]*plane.getB())/plane.getC()-cpoint.get_oZ(); + //V = V.normalize(); + //std::cout << V.t() << std::endl; + Vo = R*V; + vpColVector norm2 = vpColVector::cross(Vo, normw); + buildPlane(cpointo, norm2, plane2); + buildPlane(cpointo, normw, plane1); + + line.setWorldCoordinates(plane1.getA(), plane1.getB(), plane1.getC(), plane1.getD(), + plane2.getA(), plane2.getB(), plane2.getC(), plane2.getD()); +} + + +void +vpRBSilhouetteControlPoint::buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) +{ + vpRotationMatrix R; + cMo.extract(R); + theta = orient; + thetaInit = theta; + double px = cam->get_px(); + double py = cam->get_py(); + int jc = cam->get_u0(); + int ic = cam->get_v0(); + icpoint.set_i(n); + icpoint.set_j(m); + double x, y; + x = (m-jc)/px; + y = (n-ic)/py; + rho = x*cos(theta)+y*sin(theta); + cpoint.setWorldCoordinates(x*Z, y*Z, Z); + cpoint.changeFrame(oMc); + cpointo.setWorldCoordinates(cpoint.get_X(), cpoint.get_Y(), cpoint.get_Z()); + normw = normo; + norm = R*normo; + nxs = cos(theta); + nys = sin(theta); + buildPLine(oMc); + m_valid = isLineDegenerate(); +} + +void +vpRBSilhouetteControlPoint::buildSilhouettePoint(int n, int m, const double &Z, double orient, const vpColVector &normo, + const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) +{ + vpRotationMatrix R; + //oMc.extract(R); + cMo.extract(R); + theta = orient; + thetaInit = theta; + double px = cam->get_px(); + double py = cam->get_py(); + int jc = cam->get_u0(); + int ic = cam->get_v0(); + icpoint.set_i(n); + icpoint.set_j(m); + xs = (m-jc)/px; + ys = (n-ic)/py; + Zs = Z; + + nxs = cos(theta); + nys = sin(theta); + double x, y; + x = (m-jc)/px; + y = (n-ic)/py; + cpoint.setWorldCoordinates(x*Z, y*Z, Z); + cpoint.changeFrame(oMc); + cpointo.setWorldCoordinates(cpoint.get_X(), cpoint.get_Y(), cpoint.get_Z()); + normw = normo; + norm = R*normo; + buildPLine(oMc); +#if VISP_DEBUG_RB_CONTROL_POINT + if (std::isnan(line.getTheta())) { + std::cout << "Line in camera frame = " << line.cP << std::endl; + throw vpException(vpException::fatalError, "Incorrect line definition"); + + } +#endif + m_valid = isLineDegenerate(); +} + + +void +vpRBSilhouetteControlPoint::update(const vpHomogeneousMatrix &_cMo) +{ + + cpointo.changeFrame(_cMo); + cpointo.projection(); + double px = cam->get_px(); + double py = cam->get_py(); + double uc = cam->get_u0(); + double vc = cam->get_v0(); + double u, v; + v = py*cpointo.get_y()+vc; + u = px*cpointo.get_x()+uc; + icpoint.set_uv(u, v); +} + +void +vpRBSilhouetteControlPoint::updateSilhouettePoint(const vpHomogeneousMatrix &cMo) +{ + cpointo.changeFrame(cMo); + cpointo.projection(); + const double px = cam->get_px(); + const double py = cam->get_py(); + const double uc = cam->get_u0(); + const double vc = cam->get_v0(); + const double v = py * cpointo.get_y() + vc; + const double u = px * cpointo.get_x() + uc; + icpoint.set_uv(u, v); + xs = cpointo.get_x(); + ys = cpointo.get_y(); + Zs = cpointo.get_Z(); + if (m_valid) { + try { + line.changeFrame(cMo); + line.projection(); + } + catch (vpException &e) { + m_valid = false; + } + m_valid = !isLineDegenerate(); + if (m_valid) { + vpFeatureBuilder::create(featureline, line); + double theta0 = theta; + theta = featureline.getTheta(); +#if VISP_DEBUG_RB_CONTROL_POINT + if (std::isnan(theta)) { + throw vpException(vpException::fatalError, "Got nan theta in updateSilhouettePoint"); + } +#endif + if (fabs(theta - thetaInit) < M_PI / 2.0) { + nxs = cos(theta); + nys = sin(theta); + } + else { + nxs = -cos(theta); + nys = -sin(theta); + } + } + } +} + + +void vpRBSilhouetteControlPoint::initControlPoint(const vpImage &I, double cvlt) +{ + double delta = theta; + s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, cvlt, sign); + if (me != nullptr) { + const double marginRatio = me->getThresholdMarginRatio(); + double convolution = s.convolution(I, me); + s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, convolution, sign); + double contrastThreshold = fabs(convolution) * marginRatio; + s.setContrastThreshold(contrastThreshold, *me); + } +} + + +void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) +{ + + int k = 0, k1 = 0, k2 = 0; + int range = 4; + double c = cos(theta); + double s = sin(theta); + for (int n = -range; n <= range; n++) { + unsigned int ii = static_cast(round(icpoint.get_i() + s * n)); + unsigned int jj = static_cast(round(icpoint.get_j() + c * n)); + int isBg = static_cast(I[ii][jj] == 0.f); + k += isBg; + k1 += isBg && n < 0; + k2 += isBg && n > 0; + } + if (k > 2) { + isSilhouette = true; + // if (k1 > k2) { + // invnormal = true; + // theta = -theta; + // nxs = -nxs; + // nys = -nys; + // } + // else { + // invnormal = false; + // } + } +} + +/*! + Construct a list of vpMeSite moving edges at a particular sampling + step between the two extremities of the line. + + \param I : Image in which the line appears. +*/ + +void +vpRBSilhouetteControlPoint::initInteractionMatrixError() +{ + L.resize(6, false); + error = 0; +} + + + + +/*! + Compute the interaction matrix and the error vector corresponding to the line. +*/ +void +vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMatrix &cMo, const vpImage &/*I*/) +{ + line.changeFrame(cMo); + + m_valid = false; + if (!isLineDegenerate()) { + line.projection(); + vpFeatureBuilder::create(featureline, line); + + double rho0 = featureline.getRho(); + double theta0 = featureline.getTheta(); +#if VISP_DEBUG_RB_CONTROL_POINT + if (std::isnan(theta0)) { + std::cout << "Line in camera frame = " << line.cP.t() << std::endl; + std::cout << "Line in object frame = " << line.oP.t() << std::endl; + featureline.print(); + throw vpException(vpException::fatalError, "Got nan theta in computeInteractionMatrixError"); + } +#endif + double co = cos(theta0); + double si = sin(theta0); + + double mx = 1.0/cam->get_px(); + double my = 1.0/cam->get_py(); + double xc = cam->get_u0(); + double yc = cam->get_v0(); + + vpMatrix H; + H = featureline.interaction(); + double x = (double)s.m_j, y = (double)s.m_i; + + x = (x-xc)*mx; + y = (y-yc)*my; + + const double alpha = x*si - y*co; + + double *Lrho = H[0]; + double *Ltheta = H[1]; + // Calculate interaction matrix for a distance + for (unsigned int k = 0; k < 6; k++) { + L[k] = (Lrho[k] + alpha*Ltheta[k]); + } + error = rho0 - (x*co + y*si); + m_valid = true; + } +} + +void +vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, const vpImage &/*I*/) +{ + line.changeFrame(cMo); + + m_valid = false; + if (!isLineDegenerate()) { + line.projection(); + + vpFeatureBuilder::create(featureline, line); + const double rho0 = featureline.getRho(); + const double theta0 = featureline.getTheta(); + if (std::isnan(theta0)) { + throw; + } + + const double co = cos(theta0); + const double si = sin(theta0); + + const double mx = 1.0/cam->get_px(); + const double my = 1.0/cam->get_py(); + const double xc = cam->get_u0(); + const double yc = cam->get_v0(); + const vpMatrix &H = featureline.interaction(); + double xmin, ymin; + double errormin = 2.0; + + const int n_hyp = m_numCandidates; + const std::vector &cs = m_candidates; + xmin = (s.m_j - xc) * mx; + ymin = (s.m_i - yc) * my; + for (unsigned int l = 0; l < (unsigned)n_hyp; l++) //for each candidate of P + { + const vpMeSite &Pk = cs[l]; + + if ((Pk.getState() == vpMeSite::NO_SUPPRESSION)) { + const double x = (Pk.m_j - xc) * mx; + const double y = (Pk.m_i - yc) * my; + const double err = fabs(rho0 - (x * co + y * si)); + if (err <= errormin) { + errormin = err; + xmin = x; + ymin = y; + m_valid = true; + } + } + } + if (m_valid) { + error = rho0 - (xmin * co + ymin * si); + const double alpha = xmin * si - ymin * co; + + const double *Lrho = H[0]; + const double *Ltheta = H[1]; + // Calculate interaction matrix for a distance + for (unsigned int k = 0; k < 6; k++) { + L[k] = (Lrho[k] + alpha * Ltheta[k]); + } + } + } +} + +bool vpRBSilhouetteControlPoint::isLineDegenerate() const +{ + double a, b, d; + a = line.cP[4]*line.cP[3] - line.cP[0]*line.cP[7]; + b = line.cP[5]*line.cP[3] - line.cP[1]*line.cP[7]; + //c = line.cP[6]*line.cP[3] - line.cP[2]*line.cP[7]; + d = a*a + b*b; + return d <= 1e-7; +} diff --git a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp new file mode 100644 index 0000000000..9a653269ae --- /dev/null +++ b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp @@ -0,0 +1,131 @@ + +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include +#include +#include +#include +#include + +#include +#include + +vpSilhouettePointsExtractionSettings::vpSilhouettePointsExtractionSettings() +{ + m_depthThreshold = 0.1; + m_thresholdIsRelative = false; + m_preferPreviousPoints = false; + m_sampleStep = 5; + m_maxNumPoints = 0; + m_border = 10; +} + +vpSilhouettePointsExtractionSettings::vpSilhouettePointsExtractionSettings(const vpSilhouettePointsExtractionSettings &rend) +{ + *this = rend; +} + +const vpSilhouettePointsExtractionSettings &vpSilhouettePointsExtractionSettings::operator=(const vpSilhouettePointsExtractionSettings &rend) +{ + m_depthThreshold = rend.m_depthThreshold; + m_thresholdIsRelative = rend.m_thresholdIsRelative; + m_sampleStep = rend.m_sampleStep; + m_maxNumPoints = rend.m_maxNumPoints; + m_preferPreviousPoints = rend.m_preferPreviousPoints; + m_border = rend.m_border; + return *this; +} + +std::vector> vpSilhouettePointsExtractionSettings::getSilhouetteCandidates( + const vpImage &validSilhouette, const vpImage &renderDepth, + const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp, + const std::vector &previousPoints, long randomSeed) const +{ + const unsigned int rows = validSilhouette.getHeight(); + const unsigned int cols = validSilhouette.getWidth(); + + std::vector> finalCandidates; + std::vector> candidates; + if (m_maxNumPoints) { + finalCandidates.reserve(m_maxNumPoints); + candidates.reserve(m_maxNumPoints); + } + if (m_preferPreviousPoints) { + for (const vpRBSilhouettePoint &p: previousPoints) { + double x, y; + vpPixelMeterConversion::convertPoint(cam, p.j, p.i, x, y); + vpColVector cpX({ x * p.Z, y * p.Z, p.Z, 1.0 }); + vpColVector cX = cTcp * cpX; + cX /= cX[3]; + vpMeterPixelConversion::convertPoint(cam, cX[0] / cX[2], cX[1] / cX[2], x, y); + + unsigned nu = static_cast(round(x)), nv = static_cast(round(y)); + if (nu > 0 && nv > 0 && nv < rows && nu < cols) { + if (validSilhouette[nv][nu] > 0 && fabs((renderDepth[nv][nu] / p.Z) - 1.0) < 0.01) { + finalCandidates.push_back(std::make_pair(nv, nu)); + } + + } + } + } + if (m_maxNumPoints > 0 && finalCandidates.size() >= m_maxNumPoints) { + return finalCandidates; + } + + for (unsigned int n = m_border; n < rows - m_border; n += m_sampleStep) { + for (unsigned int m = m_border; m < cols - m_border; m += m_sampleStep) { + //std::cout << "n = " << n << ", m = " << m << ", h = " << rows << ", w = " << cols << std::endl; + //std::cout << "m = " << m << ", n = " << n << ", s = " << (int)(validSilhouette[n][m]) << std::endl; + if (validSilhouette[n][m] > 0) { + candidates.push_back(std::make_pair(n, m)); + } + } + } + + if (m_maxNumPoints > 0) { + vpUniRand random(randomSeed); + std::vector indices(m_maxNumPoints - finalCandidates.size()); + sampleWithoutReplacement(m_maxNumPoints - finalCandidates.size(), candidates.size(), indices, random); + for (unsigned int i = 0; i < indices.size(); ++i) { + finalCandidates.push_back(candidates[indices[i]]); + } + } + else { + for (unsigned int i = 0; i < candidates.size(); ++i) { + finalCandidates.push_back(candidates[i]); + } + } + return finalCandidates; +} diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp new file mode 100644 index 0000000000..7668cb65d2 --- /dev/null +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -0,0 +1,586 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +#include + +#include +#include +#include + +#include +#include +#include +#include + + +#define VP_DEBUG_RB_TRACKER 1 + + +vpRBTracker::vpRBTracker() : m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_imageHeight(480), m_imageWidth(640), +m_firstIteration(true), m_renderer(m_rendererSettings), m_trackers(0) +{ + m_rendererSettings.setClippingDistance(0.01, 1.0); + const std::shared_ptr geometryRenderer = std::make_shared( + vpPanda3DGeometryRenderer::vpRenderType::OBJECT_NORMALS); + + //geometryRenderer->setRenderOrder(-1000); + m_renderer.addSubRenderer(geometryRenderer); + // std::shared_ptr blur = std::make_shared( + // "depthBlur", geometryRenderer, true); + // m_renderer.addSubRenderer(blur); + m_renderer.addSubRenderer(std::make_shared( + "depthCanny", geometryRenderer, true, 0.0)); + //m_renderer.addSubRenderer(std::make_shared(false)); + + m_renderer.setRenderParameters(m_rendererSettings); + //m_renderer.initFramework(); + m_driftDetector = nullptr; + +} + +void vpRBTracker::getPose(vpHomogeneousMatrix &cMo) const +{ + cMo = m_cMo; +} + +void vpRBTracker::setPose(const vpHomogeneousMatrix &cMo) +{ + m_cMo = cMo; + m_cMoPrev = cMo; + m_renderer.setCameraPose(cMo.inverse()); +} + +vpCameraParameters vpRBTracker::getCameraParameters() const { return m_cam; } + +void vpRBTracker::setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w) +{ + m_cam = cam; + m_imageHeight = h; + m_imageWidth = w; + m_rendererSettings.setCameraIntrinsics(m_cam); + m_rendererSettings.setImageResolution(m_imageHeight, m_imageWidth); + m_renderer.setRenderParameters(m_rendererSettings); +} + +void vpRBTracker::setSilhouetteExtractionParameters(const vpSilhouettePointsExtractionSettings &settings) +{ + m_depthSilhouetteSettings = settings; +} + + +void vpRBTracker::reset() +{ + m_firstIteration = true; +} + +void vpRBTracker::loadObjectModel(const std::string &file) +{ + m_renderer.initFramework(); + //m_renderer.enableSharedDepthBuffer(*m_renderer.getRenderer()); + m_renderer.addLight(vpPanda3DAmbientLight("ambient", vpRGBf(0.4f))); + //m_renderer.addLight(vpPanda3DDirectionalLight("dir", vpRGBf(1.f), vpColVector({ 0.0, -0.0, 1.0 }))); + //m_renderer.addLight(vpPanda3DPointLight("point", vpRGBf(8.f), vpColVector({ 0.0, 0.1, 0.1 }), vpColVector({ 1.0, 0.0, 0.0 }))); + m_renderer.addNodeToScene(m_renderer.loadObject("object", file)); + m_renderer.setFocusedObject("object"); +} + +void vpRBTracker::track(const vpImage &I) +{ + for (std::shared_ptr tracker : m_trackers) { + if (tracker->requiresDepth() || tracker->requiresRGB()) { + throw vpException(vpException::badValue, "Some tracked features require RGB or depth features"); + } + } + checkDimensionsOrThrow(I, "grayscale"); + vpRBFeatureTrackerInput frameInput; + frameInput.I = I; + frameInput.cam = m_cam; + track(frameInput); +} + +void vpRBTracker::track(const vpImage &I, const vpImage &IRGB) +{ + for (std::shared_ptr &tracker : m_trackers) { + if (tracker->requiresDepth()) { + throw vpException(vpException::badValue, "Some tracked features require depth features"); + } + } + checkDimensionsOrThrow(I, "grayscale"); + checkDimensionsOrThrow(IRGB, "color"); + vpRBFeatureTrackerInput frameInput; + frameInput.I = I; + frameInput.IRGB = IRGB; + frameInput.cam = m_cam; + track(frameInput); +} + +void vpRBTracker::track(const vpImage &I, const vpImage &IRGB, const vpImage &depth) +{ + checkDimensionsOrThrow(I, "grayscale"); + checkDimensionsOrThrow(IRGB, "color"); + checkDimensionsOrThrow(depth, "depth"); + vpRBFeatureTrackerInput frameInput; + frameInput.I = I; + frameInput.IRGB = IRGB; + frameInput.depth = depth; + frameInput.cam = m_cam; + track(frameInput); +} + +void vpRBTracker::track(vpRBFeatureTrackerInput &input) +{ + m_logger.reset(); + + m_logger.startTimer(); + updateRender(input); + m_logger.setRenderTime(m_logger.endTimer()); + if (m_firstIteration) { + m_firstIteration = false; + m_previousFrame.I = input.I; + m_previousFrame.IRGB = input.IRGB; + } + + m_logger.startTimer(); + if (m_mask) { + m_mask->updateMask(input, m_previousFrame, input.mask); + } + m_logger.setMaskTime(m_logger.endTimer()); + + + bool requiresSilhouetteCandidates = false; + for (std::shared_ptr &tracker : m_trackers) { + if (tracker->requiresSilhouetteCandidates()) { + requiresSilhouetteCandidates = true; + break; + } + } + + m_logger.startTimer(); + if (requiresSilhouetteCandidates) { + const vpHomogeneousMatrix cTcp = m_cMo * m_cMoPrev.inverse(); + input.silhouettePoints = extractSilhouettePoints(input.renders.normals, input.renders.depth, + input.renders.silhouetteCanny, input.renders.isSilhouette, input.cam, cTcp); + if (input.silhouettePoints.size() == 0) { + throw vpException(vpException::badValue, "Could not extract silhouette from depth canny: Object may not be in image"); + } + } + m_logger.setSilhouetteTime(m_logger.endTimer()); + + + + for (std::shared_ptr &tracker : m_trackers) { + tracker->onTrackingIterStart(); + } + + int id = 0; + for (std::shared_ptr &tracker : m_trackers) { + m_logger.startTimer(); + try { + tracker->extractFeatures(input, m_previousFrame, m_cMo); + } + catch (vpException &) { + std::cerr << "Tracker " << id << " raised an exception in extractFeatures" << std::endl; + } + m_logger.setTrackerFeatureExtractionTime(id, m_logger.endTimer()); + id += 1; + } + id = 0; + for (std::shared_ptr &tracker : m_trackers) { + m_logger.startTimer(); + tracker->trackFeatures(input, m_previousFrame, m_cMo); + m_logger.setTrackerFeatureTrackingTime(id, m_logger.endTimer()); + id += 1; + } + + + id = 0; + for (std::shared_ptr &tracker : m_trackers) { + m_logger.startTimer(); + tracker->initVVS(input, m_previousFrame, m_cMo); + m_logger.setInitVVSTime(id, m_logger.endTimer()); + //std::cout << "Tracker " << id << " has " << tracker->getNumFeatures() << " features" << std::endl; + id += 1; + } + + m_cMoPrev = m_cMo; + double bestError = std::numeric_limits::max(); + vpHomogeneousMatrix best_cMo = m_cMo; + double mu = m_muInit; + for (unsigned int iter = 0; iter < m_vvsIterations; ++iter) { + id = 0; + for (std::shared_ptr &tracker : m_trackers) { + m_logger.startTimer(); + try { + tracker->computeVVSIter(input, m_cMo, iter); + } + catch (vpException &) { + std::cerr << "Tracker " << id << " raised an exception in computeVVSIter" << std::endl; + throw; + } + m_logger.addTrackerVVSTime(id, m_logger.endTimer()); + id += 1; + } + + //! Check if all trackers have converged + bool converged = true; + for (std::shared_ptr &tracker : m_trackers) { + if (!tracker->vvsHasConverged()) { + converged = false; + break; + } + } + if (converged) { + break; + } + + vpMatrix LTL(6, 6, 0.0); + vpColVector LTR(6, 0.0); + double error = 0.f; + unsigned int numFeatures = 0; + + for (std::shared_ptr &tracker : m_trackers) { + if (tracker->getNumFeatures() > 0) { + numFeatures += tracker->getNumFeatures(); + const double weight = tracker->getVVSTrackerWeight(); + LTL += weight * tracker->getLTL(); + LTR += weight * tracker->getLTR(); + error += (weight * tracker->getWeightedError()).sumSquare(); + //std::cout << "Error = " << (weight * tracker->getWeightedError()).sumSquare() << std::endl; + } + + } + + if (numFeatures >= 6) { + + if (error < bestError) { + bestError = error; + best_cMo = m_cMo; + } + + vpMatrix H(6, 6); + H.eye(6); + try { + vpColVector v = -m_lambda * ((LTL + mu * H).pseudoInverse(LTL.getRows() * std::numeric_limits::epsilon()) * LTR); + m_cMo = vpExponentialMap::direct(v).inverse() * m_cMo; + } + catch (vpException &) { + std::cerr << "Could not compute pseudo inverse" << std::endl; + } + mu *= m_muIterFactor; + } + else { + return; + } + } + + //m_cMo = best_cMo; + + for (std::shared_ptr &tracker : m_trackers) { + tracker->onTrackingIterEnd(); + } + //m_cMo = m_kalman.filter(m_cMo, 1.0 / 20.0); +#if VP_DEBUG_RB_TRACKER + std::cout << m_logger << std::endl; +#endif + if (m_currentFrame.I.getSize() == 0) { + m_currentFrame = input; + m_previousFrame = input; + } + else { + m_previousFrame = std::move(m_currentFrame); + m_currentFrame = std::move(input); + } + m_logger.startTimer(); + if (m_driftDetector) { + m_driftDetector->update(m_previousFrame, m_currentFrame, m_cMo, m_cMoPrev); + } + m_logger.setDriftDetectionTime(m_logger.endTimer()); +} + +void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) +{ + m_renderer.setCameraPose(m_cMo.inverse()); + + // Update clipping distances + frame.renders.normals.resize(m_imageHeight, m_imageWidth); + frame.renders.silhouetteCanny.resize(m_imageHeight, m_imageWidth); + float clipNear, clipFar; + m_renderer.computeClipping(clipNear, clipFar); + frame.renders.zNear = std::max(0.001f, clipNear); + frame.renders.zFar = clipFar; + m_rendererSettings.setClippingDistance(frame.renders.zNear, frame.renders.zFar); + m_renderer.setRenderParameters(m_rendererSettings); + + // For silhouette extraction, update depth difference threshold + double thresholdValue = m_depthSilhouetteSettings.getThreshold(); + if (m_depthSilhouetteSettings.thresholdIsRelative()) { + m_renderer.getRenderer()->setEdgeThreshold((frame.renders.zFar - frame.renders.zNear) * thresholdValue); + } + else { + m_renderer.getRenderer()->setEdgeThreshold(thresholdValue); + } + + // Call Panda renderer + m_renderer.renderFrame(); + + frame.renders.boundingBox = m_renderer.getBoundingBox(); + + // Extract data from Panda textures +#pragma omp sections + { +#pragma omp section + { + m_renderer.getRenderer()->getRender(frame.renders.normals, frame.renders.depth, frame.renders.boundingBox, m_imageHeight, m_imageWidth); + } +#pragma omp section + { + m_renderer.getRenderer()->getRender(frame.renders.silhouetteCanny, frame.renders.isSilhouette, frame.renders.boundingBox, m_imageHeight, m_imageWidth); + // m_renderer.placeRenderInto(m_tempRenders.renders.silhouetteCanny, frame.renders.silhouetteCanny, vpRGBf(0.f)); + // m_renderer.placeRenderInto(m_tempRenders.renders.isSilhouette, frame.renders.isSilhouette, (unsigned char)(0)); + } +// #pragma omp section +// { +// vpImage renders.color; +// m_renderer.getRenderer()->getRender(renders.color); +// m_renderer.placeRendernto(renders.color, frame.renders.color, vpRGBa(0)); +// } + } + +} + +std::vector vpRBTracker::extractSilhouettePoints( + const vpImage &Inorm, const vpImage &Idepth, + const vpImage &silhouetteCanny, const vpImage &Ivalid, + const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp) +{ + std::vector> candidates = + m_depthSilhouetteSettings.getSilhouetteCandidates(Ivalid, Idepth, cam, cTcp, m_previousFrame.silhouettePoints, 42); + + std::vector points; + vpColVector norm(3); + + for (unsigned int i = 0; i < candidates.size(); ++i) { + unsigned int n = candidates[i].first, m = candidates[i].second; + double theta = silhouetteCanny[n][m].B; + if (std::isnan(theta)) { + continue; + } + + norm[0] = Inorm[n][m].R; + norm[1] = Inorm[n][m].G; + norm[2] = Inorm[n][m].B; + const double l = std::sqrt(norm[0] * norm[0] + norm[1] * norm[1] + norm[2] * norm[2]); + + if (l > 1e-1) { + const double Z = Idepth[n][m]; + //bool noNeighbor = true; + // double nx = cos(theta); + // double ny = sin(theta); + // const double Zn = Idepth[static_cast(round(n + ny * 1))][static_cast(round(m + nx * 2))]; +#if VP_DEBUG_RB_TRACKER + if (fabs(theta) > M_PI + 1e-6) { + throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); + } +#endif + points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); + // if (Zn > 0) { + // theta = -theta; + // } + // Code to filter when two edges are too close and should not be used + // for (unsigned int normalOffset = 1; normalOffset <= 3; ++normalOffset) { + // unsigned char offY = static_cast(round(n + normalOffset * ny)); + // unsigned char offX = static_cast(round(m + normalOffset * nx)); + // unsigned char negOffY = static_cast(round(n - normalOffset * ny)); + // unsigned char negOffX = static_cast(round(m - normalOffset * nx)); + // if (offY == n || offX == m || negOffY == n||negOffX == m) { + // continue; + // } + + // if (Ivalid(offY, offX) || Ivalid(negOffY, negOffX)) { + // noNeighbor = false; + // // std::cout << (unsigned int)(Ivalid(n + normalOffset * ny, m + normalOffset * nx)) << std::endl; + // break; + // } + // } + // if (noNeighbor) { + // points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); + // } + } + } + + return points; +} + +void vpRBTracker::addTracker(std::shared_ptr tracker) +{ + m_trackers.push_back(tracker); +} + +void vpRBTracker::displayMask(vpImage &Imask) const +{ + if (m_mask) { + m_mask->display(m_currentFrame.mask, Imask); + } +} + +void vpRBTracker::display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) +{ + if (m_currentFrame.renders.normals.getSize() == 0) { + return; + } + + // vpRect bb = m_currentFrame.boundingBox; + // unsigned int bottom = bb.getBottom(); + // for (unsigned int i = bb.getTop(); i < bottom; ++i) { + // unsigned int linear_index = i * IRGB.getWidth() + static_cast(bb.getLeft()); + // unsigned int stop = linear_index + static_cast(bb.getWidth()); + // while (linear_index < stop) { + // const vpRGBf &normal = m_currentFrame.renders.normals.bitmap[linear_index]; + // if (normal.R == 0.f && normal.G == 0.f && normal.B == 0.f) { + // ++linear_index; + // continue; + // } + // const vpRGBa rgb = IRGB.bitmap[linear_index]; + // const float blendFactor = 0.5; + // const vpRGBf rgbF = vpRGBf(static_cast(rgb.R), static_cast(rgb.G), static_cast(rgb.B)); + // vpRGBf blendF = ((normal + vpRGBf(1.f)) * 127.5f) * blendFactor + rgbF * (1.f - blendFactor); + // IRGB.bitmap[linear_index] = vpRGBa(static_cast(blendF.R), static_cast(blendF.G), static_cast(blendF.B)); + // ++linear_index; + // } + // } + vpDisplay::display(IRGB); + + for (std::shared_ptr &tracker : m_trackers) { + tracker->display(m_currentFrame.cam, I, IRGB, depth, type); + } + + if (m_driftDetector) { + m_driftDetector->display(IRGB); + } + + // vpDisplay::displayRectangle(IRGB, m_renderer.getBoundingBox(), vpColor::red); +} + +vpObjectCentricRenderer &vpRBTracker::getRenderer() +{ + return m_renderer; +} + +#if defined(VISP_HAVE_NLOHMANN_JSON) +void vpRBTracker::loadConfigurationFile(const std::string &filename) +{ + std::ifstream jsonFile(filename); + if (!jsonFile.good()) { + throw vpException(vpException::ioError, "Could not read from settings file " + filename + " to initialise the vpMbGenericTracker"); + } + nlohmann::json settings; + try { + settings = nlohmann::json::parse(jsonFile); + } + catch (nlohmann::json::parse_error &e) { + std::stringstream msg; + msg << "Could not parse JSON file : \n"; + + msg << e.what() << std::endl; + msg << "Byte position of error: " << e.byte; + throw vpException(vpException::ioError, msg.str()); + } + loadConfiguration(settings); + jsonFile.close(); +} +void vpRBTracker::loadConfiguration(const nlohmann::json &j) +{ + std::cout << "Loading configuration file" << std::endl; + m_firstIteration = true; + nlohmann::json cameraSettings = j.at("camera"); + m_cam = cameraSettings.at("intrinsics"); + m_imageHeight = cameraSettings.value("height", m_imageHeight); + m_imageWidth = cameraSettings.value("width", m_imageWidth); + m_rendererSettings.setCameraIntrinsics(m_cam); + m_rendererSettings.setImageResolution(m_imageHeight, m_imageWidth); + m_renderer.setRenderParameters(m_rendererSettings); + + std::cout << "Loading object" << std::endl; + if (j.contains("model")) { + loadObjectModel(j.at("model")); + } + + //TODO: Clear Panda3D renderer list? + std::cout << "Loading vvs settings" << std::endl; + nlohmann::json vvsSettings = j.at("vvs"); + m_vvsIterations = vvsSettings.value("maxIterations", m_vvsIterations); + m_lambda = vvsSettings.value("gain", m_lambda); + m_muInit = vvsSettings.value("mu", m_muInit); + m_muIterFactor = vvsSettings.value("muIterFactor", m_muIterFactor); + + + + std::cout << "Loading silhouette extraction settings" << std::endl; + m_depthSilhouetteSettings = j.at("silhouetteExtractionSettings"); + + + std::cout << "Loading the different trackers" << std::endl;; + m_trackers.clear(); + nlohmann::json features = j.at("features"); + vpRBFeatureTrackerFactory &featureFactory = vpRBFeatureTrackerFactory::getFactory(); + for (const nlohmann::json &trackerSettings: features) { + std::shared_ptr tracker = featureFactory.buildFromJson(trackerSettings); + if (tracker == nullptr) { + throw vpException(vpException::badValue, "Cannot instanciate subtracker with the current settings, make sure that the type is registered. Settings: %s", trackerSettings.dump(2).c_str()); + } + m_trackers.push_back(tracker); + } + + if (j.contains("mask")) { + vpObjectMaskFactory &maskFactory = vpObjectMaskFactory::getFactory(); + nlohmann::json maskSettings = j.at("mask"); + m_mask = maskFactory.buildFromJson(maskSettings); + if (m_mask == nullptr) { + throw vpException(vpException::badValue, "Cannot instanciate object mask with the current settings, make sure that the type is registered. Settings: %s", maskSettings.dump(2).c_str()); + } + } + if (j.contains("drift")) { + vpRBDriftDetectorFactory &factory = vpRBDriftDetectorFactory::getFactory(); + nlohmann::json driftSettings = j.at("drift"); + m_driftDetector = factory.buildFromJson(driftSettings); + if (m_driftDetector == nullptr) { + throw vpException(vpException::badValue, "Cannot instanciate drift detection with the current settings, make sure that the type is registered in the factory"); + } + } +} +#endif diff --git a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp new file mode 100644 index 0000000000..eedcc8f781 --- /dev/null +++ b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp @@ -0,0 +1,47 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include +#include + +vpRBDriftDetectorFactory::vpRBDriftDetectorFactory() +{ + setJsonKeyFinder([](const nlohmann::json &j) -> std::string { + return j.at("type"); + }); + + registerType("probabilistic", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBProbabilistic3DDriftDetector()); + p->loadJsonConfiguration(j); + return p; + }); +} diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp new file mode 100644 index 0000000000..02eea2ddca --- /dev/null +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -0,0 +1,248 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include + +#include +#include +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) +{ + + const vpTranslationVector t = cprevTo.inverse().getTranslationVector(); + + if (m_points.size() > 0) { + + // Step 0: project all points +#pragma omp parallel for + for (vpStored3DSurfaceColorPoint &p : m_points) { + p.update(cTo, cprevTo, frame.cam); + } + + // Step 1: gather points visible in both images and in render + std::vector visiblePoints; + for (vpStored3DSurfaceColorPoint &p : m_points) { + p.visible = true; + if ( + p.projPrevPx[0] < 2 || p.projPrevPx[0] >= frame.IRGB.getWidth() - 2 + || p.projPrevPx[1] < 2 || p.projPrevPx[1] >= frame.IRGB.getHeight() - 2 + || p.projCurrPx[0] < 2 || p.projCurrPx[0] >= frame.IRGB.getWidth() - 2 + || p.projCurrPx[1] < 2 || p.projCurrPx[1] >= frame.IRGB.getHeight() - 2) { + p.visible = false; // Point is outside of either current or previous image, ignore it + continue; + } + + // if (fabs(p.currX[2] - ZcurrMap) > m_maxError3D || fabs(p.prevX[2] - ZprevMap) > m_maxError3D) { + // continue; // Depth is wrong: probable occlusion, ignore it + // } + + float ZrenderMap = frame.renders.depth[p.projPrevPx[1]][p.projPrevPx[0]]; + // Version 2: compare previous projection with render, this does not filter occlusions + if (ZrenderMap == 0.f || fabs(p.prevX[2] - ZrenderMap) > m_maxError3D) { + p.visible = false; + continue; + } + + vpRGBf normalObject = frame.renders.normals[p.projPrevPx[1]][p.projPrevPx[0]]; + + vpColVector vector({ t[0] - p.X[0], t[1] - p.X[1], t[2] - p.X[2] }); + + vector.normalize(); + double angle = acos(vpColVector::dotProd(vpColVector({ normalObject.R, normalObject.G, normalObject.B }).normalize(), vector)); + if (angle > vpMath::rad(75)) { + p.visible = false; + continue; + } + + if (frame.silhouettePoints.size() > 0) { + for (const vpRBSilhouettePoint &sp: frame.silhouettePoints) { + if (std::pow(static_cast(sp.i) - p.projPrevPx[1], 2) + std::pow(static_cast(sp.j) - p.projPrevPx[0], 2) < vpMath::sqr(5)) { + p.visible = false; + break; + } + } + } + // Version 3: could be using version 1 and 2. If 1 is wrong but 2 is ok, then there is an issue that is not self occlusion + // We could reweigh the error by the number of problematic points + // ... + + if (p.visible) { + visiblePoints.push_back(&p); + } + } + + + if (visiblePoints.size() > 0) { + // Compute sample weight + double maxTrace = 0.0; + + for (vpStored3DSurfaceColorPoint *p : visiblePoints) { + double trace = p->stats.trace(); + if (trace > maxTrace) { + maxTrace = trace; + } + } + maxTrace = std::max(maxTrace, 80.0); + double weightSum = 0.0; + m_score = 0.0; + for (vpStored3DSurfaceColorPoint *p : visiblePoints) { + double maxProba = 0.0; + vpRGBf minColor; + const bool hasCorrectDepth = frame.hasDepth() && frame.depth[p->projPrevPx[1]][p->projPrevPx[0]] > 0.f; + const double Z = hasCorrectDepth ? frame.depth[p->projPrevPx[1]][p->projPrevPx[0]] : 0.0; + double depthError = Z > 0 ? fabs(p->prevX[2] - Z) : 0.0; + double probaDepth = 1.0; + if (hasCorrectDepth) { + probaDepth = 1.0 - erf((depthError) / (m_depthSigma * sqrt(2.0))); + } + // double weight = 1.0 - ((p->stats.trace() / maxTrace)); + // if (weight < 0.0) { + // throw vpException(vpException::badValue, "Got invalid weight"); + // } + double weight = 1.0; + + vpRGBf averageColor(0.f, 0.f, 0.f); + for (int i = -1; i < 2; ++i) { + for (int j = -1; j < 2; ++j) { + const vpRGBa currentColor = frame.IRGB[p->projCurrPx[1] + i][p->projCurrPx[0] + j]; + averageColor.R += currentColor.R; + averageColor.G += currentColor.G; + averageColor.B += currentColor.B; + } + } + averageColor = averageColor * (1.0 / 9.0); + // const vpRGBf c(currentColor.R, currentColor.G, currentColor.B); + const vpRGBf c(averageColor); + + const double probaColor = p->stats.probability(c); + const double proba = probaColor * probaDepth; + if (probaDepth > 1.f || probaDepth < 0.0) { + throw vpException(vpException::badValue, "Wrong depth probability"); + } + if (proba > maxProba) { + maxProba = proba; + minColor = c; + } + + m_score += maxProba * weight; + weightSum += weight; + p->updateColor(minColor, m_colorUpdateRate * probaDepth); + } + m_score /= (weightSum); + } + else { + m_score = 1.0; + } + } + else { + m_score = 1.0; + } + + // Step 4: Sample bb to add new visible points + const vpHomogeneousMatrix oMcprev = cprevTo.inverse(); + vpColVector cX(4, 1.0); + vpColVector oX(4, 1.0); + + for (unsigned int i = frame.renders.boundingBox.getTop(); i < frame.renders.boundingBox.getBottom(); i += 2) { + for (unsigned int j = frame.renders.boundingBox.getLeft(); j < frame.renders.boundingBox.getRight(); j += 2) { + double u = j, v = i; + double x, y; + double Z = frame.renders.depth[i][j]; + if (Z > 0.f) { + vpPixelMeterConversion::convertPoint(frame.cam, u, v, x, y); + cX[0] = x * Z; + cX[1] = y * Z; + cX[2] = Z; + oX = oMcprev * cX; + vpStored3DSurfaceColorPoint newPoint; + newPoint.X[0] = oX[0] / oX[3]; + newPoint.X[1] = oX[1] / oX[3]; + newPoint.X[2] = oX[2] / oX[3]; + const vpRGBa &c = previousFrame.IRGB[i][j]; + const float colorVariance = std::pow(static_cast(m_initialColorSigma), 2); + newPoint.stats.init(vpRGBf(c.R, c.G, c.B), vpRGBf(colorVariance)); + bool canAdd = true; + for (const vpStored3DSurfaceColorPoint &p : m_points) { + if (p.squaredDist(newPoint.X) < vpMath::sqr(m_minDist3DNewPoint)) { + canAdd = false; + break; + } + } + if (canAdd) { + m_points.push_back(newPoint); + } + } + } + } +} + +void vpRBProbabilistic3DDriftDetector::display(const vpImage &/*I*/) +{ + // for (const vpStored3DSurfaceColorPoint &p : m_points) { + // if (p.visible) { + // const vpRGBf color = p.stats.mean; + // // vpDisplay::displayPoint(I, p.projCurrPx[1], p.projCurrPx[0], vpColor::blue); + // vpDisplay::displayPoint(I, p.projCurrPx[1], p.projCurrPx[0], vpColor(color.R, color.G, color.B), 3); + // // vpDisplay::displayPoint(I, p.projCurrPx[1], p.projCurrPx[0], vpColor::white, 3); + + // // vpDisplay::displayLine(I, p.projCurrPx[1], p.projCurrPx[0], p.projPrevPx[1], p.projPrevPx[0], vpColor::red); + // } + // } +} + +double vpRBProbabilistic3DDriftDetector::getScore() const +{ + return m_score; +} + +bool vpRBProbabilistic3DDriftDetector::hasDiverged() const +{ + return m_score < 0.2; +} + +#if defined(VISP_HAVE_NLOHMANN_JSON) +void vpRBProbabilistic3DDriftDetector::loadJsonConfiguration(const nlohmann::json &j) +{ + setColorUpdateRate(j.value("colorUpdateRate", m_colorUpdateRate)); + setDepthStandardDeviation(j.value("depthSigma", m_depthSigma)); + setFilteringMax3DError(j.value("filteringMaxDistance", m_maxError3D)); + setInitialColorStandardDeviation(j.value("initialColorSigma", m_initialColorSigma)); + setMinDistForNew3DPoints(j.value("minDistanceNewPoints", m_minDist3DNewPoint)); +} +#endif diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp new file mode 100644 index 0000000000..87cdcb209c --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -0,0 +1,160 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include +#include + +void fastRotationMatmul(const vpRotationMatrix &cRo, const vpRGBf &v, vpColVector &res) +{ + res.resize(3, false); + const double r = static_cast(v.R), g = static_cast(v.G), b = static_cast(v.B); + const double *R = cRo.data; + res[0] = R[0] * r + R[1] * g + R[2] * b; + res[1] = R[3] * r + R[4] * g + R[5] * b; + res[2] = R[6] * r + R[7] * g + R[8] * b; +} + + +void fastProjection(const vpHomogeneousMatrix &oTc, double X, double Y, double Z, vpPoint &p) +{ + + const double *T = oTc.data; + p.set_oX(T[0] * X + T[1] * Y + T[2] * Z + T[3]); + p.set_oY(T[4] * X + T[5] * Y + T[6] * Z + T[7]); + p.set_oZ(T[8] * X + T[9] * Y + T[10] * Z + T[11]); + p.set_oW(1.0); +} + +void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + double t1 = vpTime::measureTimeMs(); + const vpImage &depthMap = frame.depth; + const vpImage &renderDepth = frame.renders.depth; + vpRect bb = frame.renders.boundingBox; + vpHomogeneousMatrix oMc = cMo.inverse(); + vpRotationMatrix cRo = cMo.getRotationMatrix(); + bool useMask = m_useMask && frame.mask.getSize() > 0; + m_depthPoints.clear(); + m_depthPoints.reserve(static_cast(bb.getArea() / (m_step * m_step * 2))); + vpDepthPoint point; + for (unsigned int i = static_cast(bb.getTop()); i < static_cast(bb.getBottom()); i += m_step) { + for (unsigned int j = static_cast(bb.getLeft()); j < static_cast(bb.getRight()); j += m_step) { + // if (renderDepth[i][j] > frame.renders.zNear && renderDepth[i][j] < frame.renders.zFar && depthMap[i][j] > frame.renders.zNear * 0.33 && depthMap[i][j] < frame.renders.zFar * 3.0) { + double Z = renderDepth[i][j]; + double currZ = depthMap[i][j]; + if (Z > 0.f && currZ > 0.f) { + if (useMask && frame.mask[i][j] < m_minMaskConfidence) { + continue; + } + double x, y; + vpPixelMeterConversion::convertPoint(frame.cam, j, i, x, y); + //vpColVector objectNormal({ frame.renders.normals[i][j].R, frame.renders.normals[i][j].G, frame.renders.normals[i][j].B }); + point.objectNormal[0] = frame.renders.normals[i][j].R; + point.objectNormal[1] = frame.renders.normals[i][j].G; + point.objectNormal[2] = frame.renders.normals[i][j].B; + + //fastRotationMatmul(cRo, frame.renders.normals[i][j], point.objectNormal); + //vpColVector cameraNormal = cRo * objectNormal; + // if (acos(cameraNormal * vpColVector({ 0.0, 0.0, -1.0 })) > vpMath::rad(70.0)) { + // continue; + // } + // vpColVector cp({ x * Z, y * Z, Z, 1 }); + // vpColVector oP = oMc * cp; + fastProjection(oMc, x * Z, y * Z, Z, point.oP); + // point.oP = vpPoint(oP); + point.pixelPos.set_ij(i, j); + point.currentPoint[0] = x * currZ; + point.currentPoint[1] = y * currZ; + point.currentPoint[2] = currZ; + + m_depthPoints.push_back(point); + } + } + } + if (m_depthPoints.size() > 0) { + m_error.resize(m_depthPoints.size(), false); + m_weights.resize(m_depthPoints.size(), false); + m_weighted_error.resize(m_depthPoints.size(), false); + m_L.resize(m_depthPoints.size(), 6, false, false); + m_numFeatures = m_L.getRows(); + } + else { + m_numFeatures = 0; + } + std::cout << "Depth extraction took: " << vpTime::measureTimeMs() - t1 << std::endl; + +} + +void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +{ + if (m_numFeatures == 0) { + m_LTL = 0; + m_LTR = 0; + m_error = 0; + m_weights = 1.0; + m_weighted_error = 0.0; + } + double t1 = vpTime::measureTimeMs(); + vpRotationMatrix cRo = cMo.getRotationMatrix(); +#pragma omp parallel for + for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { + vpDepthPoint &depthPoint = m_depthPoints[i]; + depthPoint.update(cMo, cRo); + depthPoint.error(m_error, i); + depthPoint.interaction(m_L, i); + } + +//m_weights = 0.0; +//m_robust.setMinMedianAbsoluteDeviation(1e-3); + t1 = vpTime::measureTimeMs(); + m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); + for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { + m_weighted_error[i] = m_error[i] * m_weights[i]; + for (unsigned int dof = 0; dof < 6; ++dof) { + m_L[i][dof] *= m_weights[i]; + } + } + + m_LTL = m_L.AtA(); + computeJTR(m_L, m_weighted_error, m_LTR); + m_vvsConverged = false; +} + +void vpRBDenseDepthTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +{ + // for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { + // const vpDepthPoint &p = m_depthPoints[i]; + // vpColor c(0, static_cast(m_weights[i] * 255), 0); + // vpDisplay::displayPoint(depth, p.pixelPos, c, 2); + // } + +} diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp new file mode 100644 index 0000000000..6b01904cc9 --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -0,0 +1,83 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#if defined(VISP_HAVE_SIMDLIB) +#include +#endif + +vpRBFeatureTracker::vpRBFeatureTracker() +{ + m_numFeatures = 0; + m_userVvsWeight = 1.0; + m_vvsConverged = false; +} + + + +void vpRBFeatureTracker::updateCovariance(const double lambda) +{ + vpMatrix D; + D.diag(m_covWeightDiag); + vpColVector v; + m_cov = computeCovarianceMatrix(m_L, -v, lambda * m_error, D); +} + + +void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR) +{ + if (interaction.getRows() != error.getRows() || interaction.getCols() != 6) { + throw vpMatrixException(vpMatrixException::incorrectMatrixSizeError, "Incorrect matrices size in computeJTR."); + } + + JTR.resize(6, false); +#if defined(VISP_HAVE_SIMDLIB) + SimdComputeJtR(interaction.data, interaction.getRows(), error.data, JTR.data); +#else + const unsigned int N = interaction.getRows(); + + for (unsigned int i = 0; i < 6; ++i) { + double ssum = 0; + for (unsigned int j = 0; j < N; ++j) { + ssum += interaction[j][i] * error[j]; + } + JTR[i] = ssum; +} +#endif +} + +vpMatrix vpRBFeatureTracker::computeCovarianceMatrix(const vpMatrix &A, const vpColVector & /*x*/, const vpColVector &b, const vpMatrix &W) +{ + double sigma2 = (((W * b).t()) * W * b)/((double)b.getRows()); + return (A.t() * W * A).pseudoInverse(b.getRows() * std::numeric_limits::epsilon()) * sigma2; +} diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp new file mode 100644 index 0000000000..fddcb8ecb7 --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp @@ -0,0 +1,67 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include +#include +#include +#include + + +vpRBFeatureTrackerFactory::vpRBFeatureTrackerFactory() +{ + setJsonKeyFinder([](const nlohmann::json &j) -> std::string { + return j.at("type"); + }); + + registerType("silhouetteMe", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBSilhouetteMeTracker()); + p->loadJsonConfiguration(j); + return p; + }); + registerType("silhouetteColor", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBSilhouetteCCDTracker()); + p->loadJsonConfiguration(j); + return p; + }); + registerType("klt", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBKltTracker()); + p->loadJsonConfiguration(j); + return p; + }); + registerType("depth", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBDenseDepthTracker()); + p->loadJsonConfiguration(j); + return p; + }); +} diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp new file mode 100644 index 0000000000..8470c3e243 --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -0,0 +1,288 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include +#include +#include +#include +#include + +inline bool isTooCloseToBorder(unsigned int i, unsigned int j, unsigned int h, unsigned w, unsigned int border) +{ + return i < border || j < border || i >(h - border) || j >(w - border); +} + +inline void vpRBKltTracker::tryAddNewPoint(const vpRBFeatureTrackerInput &frame, std::map &points, +long id, const float u, const float v, +const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) +{ + unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); + if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { + return; + } + float Z = frame.renders.depth[uv][uu]; + if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 5e-3)) { + return; + } + double x, y; + vpRBKltTracker::vpTrackedKltPoint p; + p.cTo0 = cMo; + vpRGBf normalRGB = frame.renders.normals[uv][uu]; + p.normal = vpColVector({ normalRGB.R, normalRGB.G, normalRGB.B }); + vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); + vpColVector oC({ x * Z, y * Z, Z, 1.0 }); + vpColVector oX = oMc * oC; + oX /= oX[3]; + p.oX = vpPoint(oX[0], oX[1], oX[2]); + p.currentPos = vpImagePoint(y, x); + points[id] = p; + +} + +vpRBKltTracker::vpRBKltTracker() : + vpRBFeatureTracker(), m_numPointsReinit(20), m_newPointsDistanceThreshold(5.0), m_border(5), + m_maxErrorOutliersPixels(10.0) +{ + +} + + +void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + m_Iprev = m_I; + vpImageConvert::convert(frame.I, m_I); + const vpHomogeneousMatrix oMc = cMo.inverse(); + if (m_maxErrorOutliersPixels > 0.0) { + double distanceThresholdPxSquare = vpMath::sqr(m_maxErrorOutliersPixels); + // Detect outliers + for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + long id; + float u, v; + double x, y; + m_klt.getFeature(i, id, u, v); + if (m_points.find(id) != m_points.end()) { + unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); + if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { + return; + } + + float Z = frame.renders.depth[uv][uu]; + if (Z > 0.f) { + vpTrackedKltPoint &p = m_points[id]; + vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); + vpColVector oXn = oMc * vpColVector({ x * Z, y * Z, Z, 1.0 }); + oXn /= oXn[3]; + p.update(cMo); + double x1 = p.oX.get_x(), y1 = p.oX.get_y(); + double u1, v1; + vpMeterPixelConversion::convertPoint(frame.cam, x1, y1, u1, v1); + double distancePx = vpMath::sqr(u1 - u) + vpMath::sqr(v1 - v); + + vpColVector oX = p.oX.get_oP(); + if (distancePx > m_maxErrorOutliersPixels) { + m_points.erase(id); + m_klt.suppressFeature(i); + } + } + } + } + } + + cv::Mat mask = cv::Mat::zeros(m_I.rows, m_I.cols, CV_8U); + vpRect bb = frame.renders.boundingBox; + double timeBeforeMask = vpTime::measureTimeMs(); + for (unsigned int i = bb.getTop(); i < bb.getBottom(); ++i) { + for (unsigned int j = bb.getLeft(); j < bb.getRight(); ++j) { + mask.at(i, j) = (frame.renders.depth[i][j] > 0.f) * 255; + } + } + + if (m_Iprev.rows > 0) { + // Consider that there are not enough points: reinit KLT tracking + if (m_points.size() < m_numPointsReinit) { + m_klt.initTracking(m_Iprev, mask); + m_points.clear(); + for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + long id; + float u, v; + m_klt.getFeature(i, id, u, v); + tryAddNewPoint(frame, m_points, id, u, v, cMo, oMc); + } + } + else { // Otherwise, try and get new points + vpKltOpencv kltTemp; + kltTemp.setMaxFeatures(m_klt.getMaxFeatures()); + kltTemp.setWindowSize(m_klt.getWindowSize()); + kltTemp.setQuality(m_klt.getQuality()); + kltTemp.setMinDistance(m_klt.getMinDistance()); + kltTemp.setHarrisFreeParameter(m_klt.getHarrisFreeParameter()); + kltTemp.setBlockSize(m_klt.getBlockSize()); + kltTemp.setPyramidLevels(m_klt.getPyramidLevels()); + kltTemp.initTracking(m_Iprev, mask); + + for (unsigned int i = 0; i < kltTemp.getNbFeatures(); ++i) { + double threshold = vpMath::sqr(m_newPointsDistanceThreshold); // distance threshold, in squared pixels + double tooClose = false; + float u, v; + long id; + kltTemp.getFeature(i, id, u, v); + for (unsigned int j = 0; j < m_klt.getNbFeatures(); ++j) { + float uj, vj; + long idj; + m_klt.getFeature(j, idj, uj, vj); + if (vpMath::sqr(uj - u) + vpMath::sqr(vj - v) < threshold) { + tooClose = true; + break; + } + } + if (tooClose) { + continue; + } + + m_klt.addFeature(u, v); + const std::vector &ids = m_klt.getFeaturesId(); + id = ids[ids.size() - 1]; + tryAddNewPoint(frame, m_points, id, u, v, cMo, oMc); + + } + } + } + else { + m_klt.initTracking(m_I, mask); + m_points.clear(); + for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + long id; + float u, v; + m_klt.getFeature(i, id, u, v); + tryAddNewPoint(frame, m_points, id, u, v, cMo, oMc); + } + } +} + +void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + if (m_klt.getNbFeatures() > 0) { + m_klt.track(m_I); + } + std::map newPoints; + const vpHomogeneousMatrix oMc = cMo.inverse(); + + for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + long id; + float u, v; + double x, y; + m_klt.getFeature(i, id, u, v); + unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); + if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { + continue; + } + + if (frame.mask.getSize() > 0 && frame.mask[uv][uu] > 0.5 && m_points.find(id) != m_points.end()) { + vpTrackedKltPoint &p = m_points[id]; + if (p.rotationDifferenceToInitial(oMc) > vpMath::rad(45.0) && p.normalDotProd(cMo) < cos(vpMath::rad(70))) { + continue; + } + vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); + p.currentPos = vpImagePoint(y, x); + newPoints[id] = p; + } + // float Z = frame.renders.depth[uv][uu]; + // if (Z > 0.f && m_points.find(id) != m_points.end()) { + // vpTrackedKltPoint &p = m_points[id]; + // if (p.rotationDifferenceToInitial(oMc) > vpMath::rad(30.0)) { + // continue; + // } + // vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); + // p.currentPos = vpImagePoint(y, x); + // newPoints[id] = p; + // } + } + + m_points = newPoints; + m_numFeatures = m_points.size() * 2; +} + +void vpRBKltTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + if (m_numFeatures < m_numPointsReinit * 2) { + m_numFeatures = 0; + return; + } + m_L.resize(m_numFeatures, 6, false, false); + m_error.resize(m_numFeatures, false); + m_weighted_error.resize(m_numFeatures, false); + m_weights.resize(m_numFeatures, false); + m_LTL.resize(6, 6, false, false); + m_LTR.resize(6, false); + m_error = 0; +} + +void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +{ + if (m_numFeatures < m_numPointsReinit * 2) { + m_LTL = 0; + m_LTR = 0; + m_error = 0; + return; + } + unsigned int pointIndex = 0; + + for (std::pair &p : m_points) { + p.second.update(cMo); + p.second.interaction(m_L, pointIndex); + p.second.error(m_error, pointIndex); + ++pointIndex; + } + + //m_robust.setMinMedianAbsoluteDeviation(2.0 / frame.cam.get_px()); + m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); + for (unsigned int i = 0; i < m_error.getRows(); ++i) { + m_weighted_error[i] = m_error[i] * m_weights[i]; + for (unsigned int dof = 0; dof < 6; ++dof) { + m_L[i][dof] *= m_weights[i]; + } + } + + m_LTL = m_L.AtA(); + computeJTR(m_L, m_weighted_error, m_LTR); + //std::cout << "m_LTL klt = " << m_LTL << std::endl; +} + + +void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +{ + for (const std::pair &p : m_points) { + double u, v; + vpMeterPixelConversion::convertPoint(cam, p.second.currentPos.get_j(), p.second.currentPos.get_i(), u, v); + vpDisplay::displayPoint(I, v, u, vpColor::red, 2); + } +} diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp new file mode 100644 index 0000000000..893dd8db79 --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -0,0 +1,656 @@ + +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include +#include + +#define VISP_DEBUG_CCD_TRACKER 0 + +template class FastMat33 +{ +public: + std::array data; + + FastMat33() { } + + inline T operator[](const size_t i) const { return data[i]; } + + inline T &operator[](const size_t i) { return data[i]; } + + void inverse(FastMat33 &minv) const + { + // determinant + T det = data[0] * (data[4] * data[8] - data[7] * data[5]) - data[1] * (data[3] * data[8] - data[5] * data[6]) + + data[2] * (data[3] * data[7] - data[4] * data[6]); + T invdet = 1 / det; + + minv[0] = (data[4] * data[8] - data[7] * data[5]) * invdet; + minv[1] = (data[2] * data[7] - data[1] * data[8]) * invdet; + minv[2] = (data[1] * data[5] - data[2] * data[4]) * invdet; + minv[3] = (data[5] * data[6] - data[3] * data[8]) * invdet; + minv[4] = (data[0] * data[8] - data[2] * data[6]) * invdet; + minv[5] = (data[3] * data[2] - data[0] * data[5]) * invdet; + minv[6] = (data[3] * data[7] - data[6] * data[4]) * invdet; + minv[7] = (data[6] * data[1] - data[0] * data[7]) * invdet; + minv[8] = (data[0] * data[4] - data[3] * data[1]) * invdet; + + } + + static void multiply(const vpMatrix &A, const FastMat33 &B, vpMatrix &C) + { + C.resize(A.getRows(), 3, false, false); + for (unsigned int i = 0; i < A.getRows(); ++i) { + C[i][0] = A[i][0] * B.data[0] + A[i][1] * B.data[3] + A[i][2] * B.data[6]; + C[i][1] = A[i][0] * B.data[1] + A[i][1] * B.data[4] + A[i][2] * B.data[7]; + C[i][2] = A[i][0] * B.data[2] + A[i][1] * B.data[5] + A[i][2] * B.data[8]; + } + } +}; + + + +vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1) +{ } + +void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + const unsigned rows = frame.I.getRows(), cols = frame.I.getCols(); + float sceneSize = frame.renders.zFar - frame.renders.zNear; + + + m_controlPoints.clear(); + //m_controlPoints.reserve(frame.silhouettePoints.size()); + const vpHomogeneousMatrix oMc = cMo.inverse(); + for (const vpRBSilhouettePoint &sp : frame.silhouettePoints) { + // std::cout << m_ccdParameters.h << std::endl; + // std::cout << sp.j << ", " << sp.i << std::endl; + int ii = sp.i, jj = sp.j; + + vpRBSilhouetteControlPoint pccd; + pccd.setCameraParameters(&frame.cam); + pccd.buildSilhouettePoint(ii, jj, sp.Z, sp.orientation, sp.normal, cMo, oMc); + pccd.detectSilhouette(frame.renders.depth); + if (pccd.isSilhouette && !std::isnan(sp.orientation) && pccd.isValid()) { + m_controlPoints.push_back(std::move(pccd)); + } + } +} + + + +void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + // Reinit all variables + Sigma_Phi = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); + m_cov.resize(6, 6); + tol = 0.0; + m_vvsConverged = false; + + unsigned int resolution = m_controlPoints.size(); + int normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); + unsigned nerror_ccd = 2 * normal_points_number * 3 * resolution; + m_numFeatures = nerror_ccd; + + m_stats.reinit(resolution, normal_points_number); + m_prevStats.reinit(resolution, normal_points_number); + nabla_E = vpMatrix(m_ccdParameters.phi_dim, 1, 0.0); + hessian_E = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); + m_gradients.resize(m_controlPoints.size() * 2 * normal_points_number, vpColVector(nabla_E.getRows())); + m_hessians.resize(m_controlPoints.size() * 2 * normal_points_number, vpMatrix(hessian_E.getRows(), hessian_E.getCols())); + + + //m_weights.resize(nerror_ccd); + m_weights.resize(m_numFeatures, false); + // m_weights = 1; + // computeMask(frame.renders.color, m_stats); + // computeMask(frame.renders.color, m_prevStats); + // m_stats.weight = 1.0; + // m_prevStats.weight = 1.0; + computeLocalStatistics(previousFrame.IRGB, m_prevStats); + //computeLocalStatistics(image, m_stats); +} + +void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +{ + vpColVector oldPoints(m_controlPoints.size() * 2); + for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { + oldPoints[i * 2] = m_controlPoints[i].icpoint.get_u(); + oldPoints[i * 2 + 1] = m_controlPoints[i].icpoint.get_v(); + } + updateCCDPoints(cMo); + + tol = 0.0; + for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { + tol += abs(oldPoints[i * 2] - m_controlPoints[i].icpoint.get_u()); + tol += abs(oldPoints[i * 2 + 1] - m_controlPoints[i].icpoint.get_v()); + } + tol /= m_controlPoints.size(); + double t1 = vpTime::measureTimeMs(); + computeLocalStatistics(frame.IRGB, m_stats); + computeErrorAndInteractionMatrix(); // Update interaction matrix, and gauss newton left and right side terms + + m_vvsConverged = false; + if (iteration > 0 && tol < m_vvsConvergenceThreshold) { + m_vvsConverged = true; + } +} + + + +void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +{ + unsigned normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); + unsigned nerror_per_point = 2 * normal_points_number * 3; + if (type == vpRBFeatureDisplayType::SIMPLE) { + + for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { + const vpRBSilhouetteControlPoint &p = m_controlPoints[i]; + vpDisplay::displayCross(IRGB, p.icpoint.get_i(), p.icpoint.get_j(), 3, vpColor::green, 1); + vpImagePoint diff(m_stats.nv[i][1] * m_ccdParameters.h, m_stats.nv[i][0] * m_ccdParameters.h); + + // vpImagePoint ip2 = p.icpoint + diff; + // vpDisplay::displayArrow(IRGB, p.icpoint, ip2, p.invnormal ? vpColor::red : vpColor::lightBlue); + } + } + else if (type == vpRBFeatureDisplayType::ERROR) { + vpColVector errorPerPoint(m_controlPoints.size()); + double maxPointError = 0.0; + for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { + double sum = 0.0; + for (unsigned j = 0; j < nerror_per_point; ++j) { + sum += error_ccd[i * nerror_per_point + j]; + } + if (sum > maxPointError) { + maxPointError = sum; + } + errorPerPoint[i] = sum; + } + const vpColor bestColor = vpColor::green; + const vpColor worstColor = vpColor::red; + unsigned idx = 0; + for (const vpRBSilhouetteControlPoint &p : m_controlPoints) { + const double weight = errorPerPoint[idx] / maxPointError; + const double diffR = (double)(worstColor.R) - (double)(bestColor.R); + const double diffG = (double)(worstColor.G) - (double)(bestColor.G); + const double diffB = (double)(worstColor.B) - (double)(bestColor.B); + + vpColor c; + c.R = (unsigned char)((double)(bestColor.R) + diffR * weight); + c.G = (unsigned char)((double)(bestColor.G) + diffG * weight); + c.B = (unsigned char)((double)(bestColor.B) + diffB * weight); + + vpDisplay::displayCross(IRGB, p.icpoint.get_i(), p.icpoint.get_j(), 3, c, 1); + ++idx; + } + } + else if (type == vpRBFeatureDisplayType::IMPORTANCE) { + vpColVector weightPerPoint(m_controlPoints.size()); + for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { + double sum = 0.0; + for (unsigned j = 0; j < nerror_per_point; ++j) { + sum += m_weights[i * nerror_per_point + j]; + } + + weightPerPoint[i] = sum / nerror_per_point; + } + const vpColor bestColor = vpColor::green; + unsigned idx = 0; + for (const vpRBSilhouetteControlPoint &p : m_controlPoints) { + const double weight = weightPerPoint[idx]; + vpColor c; + c.R = 0; + c.G = (unsigned char)(255.f * weight); + c.B = 0; + + vpDisplay::displayCross(IRGB, p.icpoint.get_i(), p.icpoint.get_j(), 3, c, 1); + idx++; + } + } + else { + throw vpException(vpException::badValue, "Unknown display type"); + } +} + +void vpRBSilhouetteCCDTracker::updateCCDPoints(const vpHomogeneousMatrix &cMo) +{ +#pragma omp parallel for + for (vpRBSilhouetteControlPoint &p : m_controlPoints) { + p.updateSilhouettePoint(cMo); + } +} + + + + + +void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vpCCDStatistics &stats) +{ + + const double minus_exp_gamma2 = exp(-m_ccdParameters.gamma_2); + + const double sigma = m_ccdParameters.h / (m_ccdParameters.alpha * m_ccdParameters.gamma_3); + // sigma_hat = gamma_3 * sigma + + // double sigma_hat = max(h/sqrt(2*gamma_2), gamma_4); + const double sigma_hat = m_ccdParameters.gamma_3 * sigma + m_ccdParameters.gamma_4; + unsigned int resolution = m_controlPoints.size(); + // to save the normalized parameters of vic[i,8] + // dimension: resolution x 2 + // the first column save the normalized coefficient outside the curve + // the second column store the one inside the curve + vpMatrix normalized_param = vpMatrix(resolution, 2, 0.0); + +#pragma omp parallel for + for (unsigned int kk = 0; kk < m_controlPoints.size(); kk++) { + // temporary points used to store those points in the + // normal direction as well as negative normal direction + std::array pt1, pt2; + + // store the distance from a point in normal(negative norml) direction + // to the point on the curve + std::array dist1, dist2; + + vpRBSilhouetteControlPoint &p = m_controlPoints[kk]; + int ccdh = m_ccdParameters.h; + if (p.icpoint.get_i() <= ccdh || p.icpoint.get_i() > (I.getHeight() - ccdh) || p.icpoint.get_j() <= ccdh || p.icpoint.get_j() > (I.getWidth() - ccdh)) { + p.setValid(false); // invalidate points that are too close to image border + } + + if (!p.isValid()) { + continue; + } + double *nv_ptr = stats.nv[kk]; + double *weight_ptr = stats.weight[kk]; + nv_ptr[0] = p.nxs; + nv_ptr[1] = p.nys; +#if VISP_DEBUG_CCD_TRACKER + if (std::isnan(nv_ptr[0]) || std::isnan(nv_ptr[1])) { + throw vpException(vpException::fatalError, "x: %f, theta = %f", p.xs, p.getTheta()); + } +#endif + + int k = 0; + double alpha = 0.5; + double *vic_ptr = stats.vic[kk]; + for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { + /////////////////////////////////////////////////////////////////////////////////////////// + // calculate in the direction +n: (n_x, n_y) + ///////////////////////////////////////////////////////////////////////////////////////// + // x_{k,l} + pt1[0] = round(p.icpoint.get_u() + j * nv_ptr[0]); + // y_{k,l} + pt1[1] = round(p.icpoint.get_v() + j * nv_ptr[1]); + // distance between x_{k,l} and x_{k,0} in the normal direction + // appoximately it is l*h, l = {1,2,3,.....} + dist1[0] = (pt1[0] - p.icpoint.get_u()) * nv_ptr[0] + (pt1[1] - p.icpoint.get_v()) * nv_ptr[1]; + // distance between y_{k,l} and y_{k,0} along the curve + // it approximates 0 + dist1[1] = (pt1[0] - p.icpoint.get_u()) * nv_ptr[1] - (pt1[1] - p.icpoint.get_v()) * nv_ptr[0]; + vic_ptr[10 * k + 0] = pt1[1]; + vic_ptr[10 * k + 1] = pt1[0]; + vic_ptr[10 * k + 2] = dist1[0]; + vic_ptr[10 * k + 3] = dist1[1]; + //std::cout << tmp1 << std::endl; + + // fuzzy assignment a(d_{k,l}) = 1/2*(erf(d_{kl})/\sqrt(2)*sigma) + 1/2 + vic_ptr[10 * k + 4] = 0.5 * (erf((dist1[0]) / (sqrt(2) * sigma)) + 1.0); + //vic_ptr[10*k + 4] = logistic(dist1[0]/(sqrt(2)*sigma)); + //double wp1 = (a_{d,l} - gamm_1) /(1-gamma_1) + double wp1 = (vic_ptr[10 * k + 4] - m_ccdParameters.gamma_1) / (1 - m_ccdParameters.gamma_1); + + // wp1^4, why? if a_{d,l} \approx 0.5, do not count the point + vic_ptr[10 * k + 5] = wp1 * wp1 * wp1 * wp1; + + // wp1 = (1-a_{d,l} - gamm_1) /(1-gamma_1) + // double wp2 = (1-vic_ptr[10*k + 4] - gamma_1)/(1-gamma_1); + double wp2 = (1 - vic_ptr[10 * k + 4] - 0.25); + vic_ptr[10 * k + 6] = -64 * wp2 * wp2 * wp2 * wp2 + 0.25; + // W_p(d_p, simga_p) = c*max[0, exp(-d_p^2/2*sigma_p'^2) - exp(-gamma_2))] + vic_ptr[10 * k + 7] = std::max((exp(-0.5 * dist1[0] * dist1[0] / (sigma_hat * sigma_hat)) - minus_exp_gamma2), 0.0); + // W' = 0.5*exp(-|d_v= - d_p=|/alpha)/alpha + vic_ptr[10 * k + 8] = 0.5 * exp(-abs(dist1[1]) / alpha) / alpha; + // the derivative of col_5: 1/(sqrt(2*PI)*sigma)*exp{-d_{k,l}^2/(2*sigma*sigma)} + vic_ptr[10 * k + 9] = exp(-dist1[0] * dist1[0] / (2 * sigma * sigma)) / (sqrt(2.0 * M_PI) * sigma); + + + // calculate the normalization parameter c + normalized_param[kk][0] += vic_ptr[10 * k + 7]; + + /////////////////////////////////////////////////////////////////////////////////////////// + // calculate in the direction -n: (-n_x, -n_y) + ///////////////////////////////////////////////////////////////////////////////////////// + pt2[0] = round(p.icpoint.get_u() - j * nv_ptr[0]); + pt2[1] = round(p.icpoint.get_v() - j * nv_ptr[1]); + + // cv::circle(canvas_tmp, cv::Point2d(pt2[0], pt2[1]), 1, CV_RGB(255,0,0), 1);#ifdef DEBUG + + // start compute the size in the direction of -(n_x, n_y) + dist2[0] = (pt2[0] - p.icpoint.get_u()) * nv_ptr[0] + (pt2[1] - p.icpoint.get_v()) * nv_ptr[1]; + dist2[1] = (pt2[0] - p.icpoint.get_u()) * nv_ptr[1] - (pt2[1] - p.icpoint.get_v()) * nv_ptr[0]; + int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); + vic_ptr[10 * negative_normal + 0] = pt2[1]; + vic_ptr[10 * negative_normal + 1] = pt2[0]; + vic_ptr[10 * negative_normal + 2] = dist2[0]; + vic_ptr[10 * negative_normal + 3] = dist2[1]; + //std::cout << " u " << p.icpoint.get_u() << " v " << p.icpoint.get_v() << " dist " << dist2[0] << " nx " << nv_ptr[0] << " ny "<< nv_ptr[1] << " theta " << p.get_theta() << std::endl; + vic_ptr[10 * negative_normal + 4] = 0.5 * (erf(dist2[0] / (sqrt(2) * sigma)) + 1); + //vic_ptr[10*negative_normal + 4] = logistic(dist2[0]/(sqrt(2)*sigma)); + // vic_ptr[10*negative_normal + 4] = 0.5; + wp1 = (vic_ptr[10 * negative_normal + 4] - 0.25); + vic_ptr[10 * negative_normal + 5] = -64 * wp1 * wp1 * wp1 * wp1 + 0.25; + wp2 = (1 - vic_ptr[10 * negative_normal + 4] - m_ccdParameters.gamma_1) / (1 - m_ccdParameters.gamma_1); + vic_ptr[10 * negative_normal + 6] = wp2 * wp2 * wp2 * wp2; + vic_ptr[10 * negative_normal + 7] = std::max((exp(-0.5 * dist2[0] * dist2[0] / (sigma_hat * sigma_hat)) - minus_exp_gamma2), 0.0); + vic_ptr[10 * negative_normal + 8] = 0.5 * exp(-abs(dist2[0]) / alpha) / alpha; + vic_ptr[10 * negative_normal + 9] = exp(-dist2[0] * dist2[0] / (2 * sigma * sigma)) / (sqrt(2 * CV_PI) * sigma); + normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; + } + + } + +#pragma omp parallel for + for (unsigned int i = 0; i < resolution; ++i) { + if (!m_controlPoints[i].isValid()) { + continue; + } + + int k = 0; + // w1 = \sum wp_1, w2 = \sum wp_2 + double w1 = 0.0, w2 = 0.0; + + // store mean value near the curve + std::array m1 { 0.0, 0.0, 0.0 }, m2 { 0.0, 0.0, 0.0 }; + + // store the second mean value near the curve + std::array m1_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + std::array m2_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + + // compute local statistics + + // start search the points in the +n direction as well as -n direction + double wp1 = 0.0, wp2 = 0.0; + + double *vic_ptr = stats.vic[i]; + double *mean_vic_ptr = stats.mean_vic[i]; + double *cov_vic_ptr = stats.cov_vic[i]; + double *pix_ptr = stats.imgPoints[i]; + double *weight_ptr = stats.weight[i]; + + for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { + wp1 = 0.0, wp2 = 0.0; + int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); + const double *vic_k = vic_ptr + 10 * k; + + // wp1 = w(a_{k,l})*w(d_{k,l})*w(d) + wp1 = (vic_k[5] * vic_k[7] / normalized_param[i][0]); + + // wp2 = w(a_{k,l})*w(d_{k,l})*w(d) + wp2 = (vic_k[6] * vic_k[7] / normalized_param[i][1]); + //w1 = \sum{wp1} + w1 += wp1; + + //w2 = \sum{wp2} + w2 += wp2; + + // compute the mean value in the vicinity of a point + // m_{ks} = I{k}^{s} = \sum_{l} w_{kls}{I_{kl}} : s = 1 or 2 + const vpRGBa pixelRGBa = I(vic_k[0], vic_k[1]); + double *pixel = pix_ptr + k * 3; + pixel[0] = pixelRGBa.R; + pixel[1] = pixelRGBa.G; + pixel[2] = pixelRGBa.B; + + m1[0] += wp1 * pixel[0]; + m1[1] += wp1 * pixel[1]; + m1[2] += wp1 * pixel[2]; + + m2[0] += wp2 * pixel[0]; + m2[1] += wp2 * pixel[1]; + m2[2] += wp2 * pixel[2]; + + + // compute second order local statistics + // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + m1_o2[m * 3 + n] += wp1 * pixel[m] * pixel[n]; + m2_o2[m * 3 + n] += wp2 * pixel[m] * pixel[n]; + } + } + const double *vic_neg = vic_ptr + 10 * negative_normal; + const vpRGBa pixelNegRGBa = I(vic_neg[0], vic_neg[1]); + double *pixelNeg = pix_ptr + negative_normal * 3; + + pixelNeg[0] = pixelNegRGBa.R; + pixelNeg[1] = pixelNegRGBa.G; + pixelNeg[2] = pixelNegRGBa.B; + wp1 = (vic_neg[5] * vic_neg[7] / normalized_param[i][0]); + wp2 = (vic_neg[6] * vic_neg[7] / normalized_param[i][1]); + w1 += wp1; + w2 += wp2; + + m1[0] += wp1 * pixelNeg[0]; + m1[1] += wp1 * pixelNeg[1]; + m1[2] += wp1 * pixelNeg[2]; + + m2[0] += wp2 * pixelNeg[0]; + m2[1] += wp2 * pixelNeg[1]; + m2[2] += wp2 * pixelNeg[2]; + + for (int m = 0; m < 3; ++m) { + for (int n = 0; n < 3; ++n) { + m1_o2[m * 3 + n] += wp1 * pixelNeg[m] * pixelNeg[n]; + m2_o2[m * 3 + n] += wp2 * pixelNeg[m] * pixelNeg[n]; + } + } + } + mean_vic_ptr[0] = m1[0] / w1; + mean_vic_ptr[1] = m1[1] / w1; + mean_vic_ptr[2] = m1[2] / w1; + + mean_vic_ptr[3] = m2[0] / w2; + mean_vic_ptr[4] = m2[1] / w2; + mean_vic_ptr[5] = m2[2] / w2; + + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + cov_vic_ptr[m * 3 + n] = m1_o2[m * 3 + n] / w1 - m1[m] * m1[n] / (w1 * w1); + cov_vic_ptr[9 + m * 3 + n] = m2_o2[m * 3 + n] / w2 - m2[m] * m2[n] / (w2 * w2); + } + cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; + cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; + } + + } +} + +void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() +{ + const int npointsccd = m_controlPoints.size(); + const int normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); + const int nerror_ccd = 2 * normal_points_number * 3 * npointsccd; + error_ccd.resize(nerror_ccd, false); + m_weighted_error.resize(nerror_ccd, false); + m_L.resize(nerror_ccd, 6, false, false); + double beforeParallel = vpTime::measureTimeMs(); +#pragma omp parallel + { + + // vpMatrix tmp_cov(3, 3); + // vpMatrix tmp_cov_inv(3, 3); + FastMat33 tmp_cov, tmp_cov_inv; + vpMatrix tmp_jacobian(m_ccdParameters.phi_dim, 3); + vpMatrix tmp_jacobian_x_tmp_cov_inv(tmp_jacobian.getRows(), 3); + vpColVector tmp_pixel_diff(3); + double Lnvp[6]; + unsigned int normal_points_number = static_cast(floor(m_ccdParameters.h / m_ccdParameters.delta_h)); + +#pragma omp for + for (unsigned int kk = 0; kk < m_controlPoints.size(); kk++) { + const int i = kk; + const vpRBSilhouetteControlPoint &p = m_controlPoints[kk]; + + if (!p.isValid()) { + for (int j = 0; j < 2 * normal_points_number; ++j) { + for (int m = 0; m < 3; ++m) { + error_ccd[i * 2 * normal_points_number * 3 + j * 3 + m] = 0.0; + } + } + continue; + } + + const double *vic_ptr = m_stats.vic[i]; + const double *nv_ptr = m_stats.nv[i]; + const double *mean_vic_ptr = m_stats.mean_vic[i]; + const double *cov_vic_ptr = m_stats.cov_vic[i]; + const double *pix_ptr = m_stats.imgPoints[i]; + const double *weight_ptr = m_stats.weight[i]; + + const double *mean_vic_ptr_prev = m_prevStats.mean_vic[i]; + const double *cov_vic_ptr_prev = m_prevStats.cov_vic[i]; + const vpCameraParameters &cam = *p.cam; + + Lnvp[0] = (-nv_ptr[0] / p.Zs); + Lnvp[1] = (-nv_ptr[1] / p.Zs); + Lnvp[2] = ((nv_ptr[0] * p.xs + nv_ptr[1] * p.ys) / p.Zs); + Lnvp[3] = (nv_ptr[0] * p.xs * p.ys + nv_ptr[1] * (1.0 + p.ys * p.ys)); + Lnvp[4] = (-nv_ptr[1] * p.xs * p.ys - nv_ptr[0] * (1.0 + p.xs * p.xs)); + Lnvp[5] = (nv_ptr[0] * p.ys - nv_ptr[1] * p.xs); + + + for (int j = 0; j < 2 * normal_points_number; ++j) { + const double *vic_j = vic_ptr + 10 * j; + const double *pix_j = pix_ptr + j * 3; + const double errf = vic_j[4]; + const double smooth2 = m_temporalSmoothingFac * m_temporalSmoothingFac; + double *error_ccd_j = error_ccd.data + i * 2 * normal_points_number * 3 + j * 3; + + for (unsigned n = 0; n < 9; ++n) { + //double *tmp_cov_ptr = tmp_cov[m]; + tmp_cov[n] = errf * cov_vic_ptr[n] + (1.0 - errf) * cov_vic_ptr[n + 9] + + smooth2 * (errf * cov_vic_ptr_prev[n] + (1.0 - errf) * cov_vic_ptr_prev[n + 9]); + } + + tmp_cov.inverse(tmp_cov_inv); + + //compute the difference between I_{kl} and \hat{I_{kl}} + for (int m = 0; m < 3; ++m) { + double err = (pix_j[m] - errf * mean_vic_ptr[m] - (1.0 - errf) * mean_vic_ptr[m + 3]) + + m_temporalSmoothingFac * (pix_j[m] - errf * mean_vic_ptr_prev[m] - (1.0 - errf) * mean_vic_ptr_prev[m + 3]); + tmp_pixel_diff[m] = err; + //error_ccd[i*2*normal_points_number*3 + j*3 + m] = img(vic_ptr[10*j+0], vic_ptr[10*j+1])[m]- errf * mean_vic_ptr[m]- (1-errf)* mean_vic_ptr[m+3]; + error_ccd_j[m] = err; + } + + //compute jacobian matrix + //memset(tmp_jacobian.data, 0, 3 * m_ccdParameters.phi_dim * sizeof(double)); + for (int n = 0; n < 3; ++n) { + const double f = -cam.get_px() * (vic_j[9] * (mean_vic_ptr[n] - mean_vic_ptr[n + 3])); + const double facPrev = -cam.get_px() * m_temporalSmoothingFac * (vic_j[9] * (mean_vic_ptr_prev[n] - mean_vic_ptr_prev[n + 3])); + for (unsigned int dof = 0; dof < 6; ++dof) { + tmp_jacobian[dof][n] = f * Lnvp[dof] + facPrev * Lnvp[dof]; + } + } + + FastMat33::multiply(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); + //vpMatrix::mult2Matrices(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); + vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_pixel_diff, m_gradients[i * 2 * normal_points_number + j]); + vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_jacobian.t(), m_hessians[i * 2 * normal_points_number + j]); + + } + } + } + double afterParallel = vpTime::measureTimeMs(); + //std::cout << "Parallel region took: " << afterParallel - beforeParallel << std::endl; + nabla_E = 0.0; + hessian_E = 0.0; + double beforeMestimator = vpTime::measureTimeMs(); + //m_robust.setMinMedianAbsoluteDeviation(1.0); + m_robust.MEstimator(vpRobust::vpRobustEstimatorType::TUKEY, error_ccd, m_weights); + + double beforeWeightAndSum = vpTime::measureTimeMs(); + for (unsigned int i = 0; i < m_L.getRows(); ++i) { + m_weighted_error[i] = error_ccd[i] * m_weights[i]; + for (unsigned int j = 0; j < 6; ++j) { + m_L[i][j] *= m_weights[i]; + } + } + + + + std::vector localGradients; // Store all the gradients and hessians and then sum them up after the parallel region. This ensures that computation is determinist + std::vector localHessians; +#pragma omp parallel + { + vpColVector localGradient(nabla_E.getRows(), 0.0); + vpMatrix localHessian(hessian_E.getRows(), hessian_E.getCols(), 0.0); +#pragma omp single + { + localGradients.resize(omp_get_num_threads(), localGradient); + localHessians.resize(omp_get_num_threads(), localHessian); + } + +#pragma omp for schedule(static) + for (unsigned int i = 0; i < m_gradients.size(); ++i) { + m_gradients[i] *= m_weights[i]; + m_hessians[i] *= m_weights[i]; + localHessian += m_hessians[i]; + localGradient += m_gradients[i]; + } + localGradients[omp_get_thread_num()] = localGradient; + localHessians[omp_get_thread_num()] = localHessian; + } + for (unsigned int i = 0; i < localGradients.size(); ++i) { + nabla_E += localGradients[i]; + hessian_E += localHessians[i]; + } + double afterWeight = vpTime::measureTimeMs(); + //std::cout << "Weighting and sum took " << afterWeight - beforeWeightAndSum << std::endl; + + //sigmaF = 0.2*sigmaF + 0.8*computeCovarianceMatrix(m_L,v,error_ccd); + //std::cout << " sigmaF " << sigmaF << std::endl; + + m_LTL = hessian_E; + m_LTR = -nabla_E; + + // m_LTL = m_L.AtA(); + // std::cout << m_LTL - hessian_E << std::endl; + // computeJTR(m_L, -m_weighted_error, m_LTR); + + vpMatrix hessian_E_inv = hessian_E.inverseByCholesky(); + //Sigma_Phi = /*Sigma_Phi +*/ 2*hessian_E_inv; + Sigma_Phi = m_ccdParameters.covarianceIterDecreaseFactor * Sigma_Phi + 2 * (1 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; + + m_cov = Sigma_Phi; + //std::cout << "Rest took: " << vpTime::measureTimeMs() - afterWeight << std::endl; +} diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp new file mode 100644 index 0000000000..79b37a3498 --- /dev/null +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -0,0 +1,276 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#define VISP_DEBUG_ME_TRACKER 0 + +/** + * @brief Extract the geometric features from the list of collected silhouette points + */ +void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + m_controlPoints.clear(); + m_controlPoints.reserve(frame.silhouettePoints.size()); + const vpHomogeneousMatrix oMc = cMo.inverse(); + vpColVector oC = oMc.getRotationMatrix() * vpColVector({ 0.0, 0.0, -1.0 }); + for (const vpRBSilhouettePoint &sp: frame.silhouettePoints) { + // float angle = vpMath::deg(acos(sp.normal * oC)); + // if (angle > 89.0) { + // continue; + // } + // std::cout << angle << std::endl; +#if VISP_DEBUG_ME_TRACKER + if (sp.Z == 0) { + throw vpException(vpException::badValue, "Got a point with Z == 0"); + } + if (std::isnan(sp.orientation)) { + throw vpException(vpException::badValue, "Got a point with theta nan"); + } +#endif + + if (m_useMask && frame.hasMask()) { + float confidence = frame.mask[sp.i][sp.j]; + if (confidence < m_minMaskConfidence) { + continue; + } + } + + vpRBSilhouetteControlPoint p; + p.setCameraParameters(&frame.cam); + p.setMovingEdge(&m_me); + p.buildPoint((int)sp.i, (int)sp.j, sp.Z, sp.orientation, sp.normal, cMo, oMc); + if (previousFrame.I.getSize() == frame.I.getSize()) { + p.initControlPoint(previousFrame.I, 0); + } + else { + p.initControlPoint(frame.I, 0); + } + + p.setNumCandidates(m_numCandidates); + m_controlPoints.push_back(p); + } + m_numFeatures = m_controlPoints.size(); + + m_robust.setMinMedianAbsoluteDeviation(std::max(m_singlePointConvergedThresholdPixels * 0.5, 1.0) / frame.cam.get_px()); +} + + +void vpRBSilhouetteMeTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + if (m_numCandidates <= 1) { + for (vpRBSilhouetteControlPoint &p: m_controlPoints) { + p.track(frame.I); + } + } + else { + for (vpRBSilhouetteControlPoint &p: m_controlPoints) { + p.trackMultipleHypotheses(frame.I); + } + } +} + +void vpRBSilhouetteMeTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +{ + if (m_numFeatures == 0) { + return; + } + + for (unsigned int k = 0; k < m_controlPoints.size(); k++) { + m_controlPoints[k].initInteractionMatrixError(); + } + + m_weighted_error.resize(m_numFeatures, false); + m_weights.resize(m_numFeatures, false); + m_weights = 0; + m_L.resize(m_numFeatures, 6, false, false); + m_covWeightDiag.resize(m_numFeatures, false); + m_vvsConverged = false; + m_error.resize(m_numFeatures, false); +} + +void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +{ + vpColVector factor(m_numFeatures, 1.0); + const double threshold = m_singlePointConvergedThresholdPixels / frame.cam.get_px(); //Transformation limite pixel en limite metre. + + unsigned count = 0; + unsigned countValidSites = 0; + + for (unsigned int k = 0; k < m_controlPoints.size(); k++) { + vpRBSilhouetteControlPoint &p = m_controlPoints[k]; + //p.update(cMo); + if (m_numCandidates <= 1) { + p.computeInteractionMatrixError(cMo, frame.I); + } + else { + p.computeInteractionMatrixErrorMH(cMo, frame.I); + } + + + m_error[k] = p.error; //On remplit la matrice d'erreur + + m_weights[k] = 1; + if (!p.siteIsValid() || !p.isValid()) { + factor[k] = 0.0; + for (unsigned int j = 0; j < 6; j++) { + m_L[k][j] = 0; + } + } + else { + countValidSites++; + if (m_error[k] <= threshold) { + ++count; + } + for (unsigned int j = 0; j < 6; j++) { + m_L[k][j] = p.L[j]; + } + } + } + + if (countValidSites == 0) { + m_vvsConverged = false; + } + else { + const double percentageConverged = (double)count / (double)countValidSites; + if (percentageConverged < m_globalVVSConvergenceThreshold) { + m_vvsConverged = false; + } + else { + m_vvsConverged = true; + } + +} + + m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); + + for (unsigned int i = 0; i < m_error.size(); i++) { + const double wi = m_weights[i] * factor[i]; + const double eri = m_error[i]; + m_covWeightDiag[i] = wi * wi; + m_weighted_error[i] = wi * eri; + } + + for (unsigned int i = 0; i < m_error.size(); i++) { + for (unsigned int j = 0; j < 6; j++) { + m_L[i][j] = m_weights[i] * m_L[i][j]; + } + } + + m_LTL = m_L.AtA(); + computeJTR(m_L, m_weighted_error, m_LTR); + +#if VISP_DEBUG_ME_TRACKER + for (unsigned int i = 0; i < 6; ++i) { + if (std::isnan(m_LTR[i])) { + std::cerr << m_L << std::endl; + throw vpException(vpException::badValue, "Some components were nan in ME tracker computation"); + } + } +#endif + +} + +void vpRBSilhouetteMeTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +{ + + if (type == vpRBFeatureDisplayType::SIMPLE) { + for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { + const vpMeSite &s = p.getSite(); + s.display(I); + // vpImagePoint diff(p.nys * m_me.getRange(), p.nxs * m_me.getRange()); + // vpImagePoint ip2 = p.icpoint + diff; + // vpDisplay::displayLine(I, p.icpoint, ip2, vpColor::lightBlue, 2); + // vpDisplay::displayPoint(I, p.icpoint, vpColor::red, 2); + + } + vpColor cs[6] = { + vpColor::red, + vpColor::blue, + vpColor::green, + vpColor::purple, + vpColor::cyan, + vpColor::darkGreen + + }; + // unsigned colorIndex = 0; + // for (const vpTrackedSilhouetteLine &line: m_lines) { + // if (line.getPoints().size() > 10) { + // for (const vpRBSilhouetteControlPoint *p: line.getPoints()) { + // vpDisplay::displayCross(I, p->getSite().m_i, p->getSite().m_j, 3, cs[colorIndex]); + // } + // colorIndex = (colorIndex + 1) % 6; + // } + // //line.getLine().display(I, cam); + // } + } + else if (type == vpRBFeatureDisplayType::IMPORTANCE) { + const double maxWeight = m_weights.getMaxValue(); + unsigned idx = 0; + const vpColor bestColor = vpColor::green; + for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { + const vpMeSite &s = p.getSite(); + + if (s.getState() == vpMeSite::NO_SUPPRESSION) { + double weight = m_weights[idx] / maxWeight; + vpColor c((unsigned char)((double)(bestColor.R) * weight), (unsigned char)((double)(bestColor.G) * weight), (unsigned char)((double)(bestColor.B) * weight)); + vpDisplay::displayCross(I, s.get_i(), s.get_j(), 3, c, 1); + } + else { + s.display(I); + } + ++idx; + } + } + else if (type == vpRBFeatureDisplayType::ERROR) { + unsigned idx = 0; + const vpColor bestColor = vpColor::green; + double maxError = m_error.getMaxValue(); + + for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { + const vpMeSite &s = p.getSite(); + + if (s.getState() == vpMeSite::NO_SUPPRESSION) { + double weight = m_error[idx] / maxError; + vpColor c((unsigned char)((double)(bestColor.R) * weight), (unsigned char)((double)(bestColor.G) * weight), (unsigned char)((double)(bestColor.B) * weight)); + vpDisplay::displayCross(I, s.get_i(), s.get_j(), 3, c, 1); + } + else { + s.display(I); + } + ++idx; + } + } + else { + throw vpException(vpException::notImplementedError, "Display not implemented for unknown type"); + } +} diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp new file mode 100644 index 0000000000..929a2212aa --- /dev/null +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -0,0 +1,262 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include +#include + +void vpColorHistogram::Builder::build(vpColorHistogram &histogram) +{ + if (histogram.getBinNumber() != m_N) { + throw vpException(vpException::dimensionError, "Different number of bins between builder and histogram when building histogram"); + } + unsigned int count = 0; + for (unsigned int i = 0; i < m_counts.size(); ++i) { + count += m_counts[i]; + } + const float countFloat = static_cast(count); + for (unsigned int i = 0; i < m_counts.size(); ++i) { + histogram.m_probas[i] = static_cast(m_counts[i]) / countFloat; + } + histogram.m_numPixels = count; + +} + +vpColorHistogram::vpColorHistogram() : m_N(0), m_numPixels(0) +{ } + + +vpColorHistogram::vpColorHistogram(unsigned int N) +{ + setBinNumber(N); +} + +void vpColorHistogram::setBinNumber(unsigned int N) +{ + if (N != 1 && N != 2 && N != 4 && N != 8 && N != 16 && N != 32 && N != 64 && N != 128) { + throw vpException(vpException::badValue, "The number of bins per component should be a power of 2 (below or equal to 128)"); + } + m_N = N; + m_numPixels = 0; + m_probas = std::vector(N * N * N, 0.f); +} + +inline unsigned int colorToIndex(const vpRGBa &p, unsigned int N, unsigned int binSize) +{ + return (p.R / binSize) * (N * N) + (p.G / binSize) * N + (p.B / binSize); +} + +void vpColorHistogram::build(const vpImage &image, const vpImage &mask) +{ + std::vector histo(m_N * m_N * m_N, 0); + m_probas.resize(m_N * m_N * m_N); + unsigned binSize = 256 / m_N; + unsigned int pixels = 0; + for (unsigned int i = 0; i < image.getSize(); ++i) { + if (mask.bitmap[i]) { + unsigned int index = colorToIndex(image.bitmap[i], m_N, binSize); + ++histo[index]; + ++pixels; + } + } + m_numPixels = pixels; + for (unsigned int i = 0; i < histo.size(); ++i) { + m_probas[i] = static_cast(histo[i]) / pixels; + } +} + +void vpColorHistogram::build(std::vector &counts) +{ + if (m_probas.size() != counts.size()) { + throw vpException(vpException::dimensionError, "Number of bins are not the same"); + } + m_probas.resize(m_N * m_N * m_N); + m_numPixels = 0; + for (unsigned int count : counts) { + m_numPixels += count; + } + for (unsigned int i = 0; i < m_probas.size(); ++i) { + m_probas[i] = static_cast(counts[i]) / m_numPixels; + } +} + +void vpColorHistogram::merge(const vpColorHistogram &other, float alpha) +{ + if (other.m_N != m_N) { + throw vpException(vpException::badValue, "Histograms should have same dimensions"); + } + float malpha = 1.f - alpha; + + for (unsigned int i = 0; i < m_probas.size(); ++i) { + m_probas[i] = malpha * m_probas[i] + alpha * other.m_probas[i]; + } + +} + +void vpColorHistogram::computeProbas(const vpImage &image, vpImage &proba) const +{ + proba.resize(image.getHeight(), image.getWidth()); + + unsigned int binSize = 256 / m_N; +#pragma omp parallel for + for (unsigned int i = 0; i < image.getSize(); ++i) { + proba.bitmap[i] = m_probas[colorToIndex(image.bitmap[i], m_N, binSize)]; + } +} + +double vpColorHistogram::probability(const vpRGBa &color) const +{ + return m_probas[colorToIndex(color, m_N, 256 / m_N)]; +} + +double vpColorHistogram::kl(const vpColorHistogram &other) const +{ + if (other.m_N != m_N) { + throw vpException(vpException::badValue, "Histograms should have same dimensions"); + } + double divergence = 0.0; + for (unsigned int i = 0; i < m_probas.size(); ++i) { + if (other.m_probas[i] > 0.0 && m_probas[i] > 0.0) { + divergence += m_probas[i] * log(m_probas[i] / other.m_probas[i]); + } + } + return divergence; +} + +double vpColorHistogram::jsd(const vpColorHistogram &other) const +{ + + vpColorHistogram mixture(m_N); + + for (unsigned int i = 0; i < m_probas.size(); ++i) { + mixture.m_probas[i] = m_probas[i] * 0.5 + other.m_probas[i] * 0.5; + } + // JSD = 0.5KL(P || M) + 0.5(Q||M) where M is the average mixture distrib of P and Q + return (kl(mixture) + other.kl(mixture)) / 2.0; +} + +double vpColorHistogram::hellinger(const vpColorHistogram &other) const +{ + double bcoeff = 0.0; + + for (unsigned int i = 0; i < m_probas.size(); ++i) { + bcoeff += sqrt(m_probas[i] * other.m_probas[i]); + } + + return sqrt(1.0 - bcoeff); +} + + +void vpColorHistogram::computeSplitHistograms(const vpImage &image, const vpImage &mask, vpColorHistogram &insideMask, vpColorHistogram &outsideMask) +{ + if (insideMask.m_N != outsideMask.m_N) { + throw vpException(vpException::badValue, "Histograms should have same number of bins"); + } + + unsigned int bins = insideMask.m_probas.size(); + + std::vector countsIn(bins, 0), countsOut(bins, 0); + unsigned binSize = 256 / insideMask.m_N; + unsigned int pixels = 0; +#pragma omp parallel + { + std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); +#pragma omp for schedule(static, 1024) + for (unsigned int i = 0; i < image.getSize(); ++i) { + unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + localCountsIn[index] += mask.bitmap[i] > 0; + localCountsOut[index] += mask.bitmap[i] == 0; + } +#pragma omp critical + { + for (unsigned int i = 0; i < bins; ++i) { + countsIn[i] += localCountsIn[i]; + countsOut[i] += localCountsOut[i]; + } + } + } + insideMask.build(countsIn); + outsideMask.build(countsOut); + +} + +void vpColorHistogram::computeSplitHistograms(const vpImage &image, const vpImage &mask, const vpRect &bbInside, vpColorHistogram &insideMask, vpColorHistogram &outsideMask) +{ + if (insideMask.m_N != outsideMask.m_N) { + throw vpException(vpException::badValue, "Histograms should have same number of bins"); + } + + const unsigned int bins = insideMask.m_probas.size(); + + std::vector countsIn(bins, 0), countsOut(bins, 0); + const unsigned binSize = 256 / insideMask.m_N; + + const unsigned int beforeBBStart = static_cast(bbInside.getTop()) * image.getWidth() + static_cast(bbInside.getLeft()); + const unsigned int afterBBEnd = static_cast(bbInside.getBottom()) * image.getWidth() + static_cast(bbInside.getRight()); + + +//#pragma omp parallel + { + std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); +//#pragma omp for schedule(static, 64) + for (unsigned int i = 0; i < beforeBBStart; ++i) { + const unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + ++localCountsOut[index]; + } +//#pragma omp for schedule(static, 64) + for (unsigned int i = afterBBEnd; i < image.getSize(); ++i) { + const unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + ++localCountsOut[index]; + } +//#pragma omp for schedule(static, 64) + for (unsigned int i = static_cast(bbInside.getTop()); i < static_cast(round(bbInside.getBottom())); ++i) { + for (unsigned int j = static_cast(bbInside.getLeft()); j < static_cast(round(bbInside.getRight())); ++j) { + const unsigned int bitmapIndex = i * image.getWidth() + j; + const unsigned int index = colorToIndex(image.bitmap[bitmapIndex], insideMask.m_N, binSize); + const bool pixelInMask = mask.bitmap[bitmapIndex] > 0; + localCountsIn[index] += static_cast(pixelInMask); + localCountsOut[index] += static_cast(!pixelInMask); + } + } +//#pragma omp critical + { + for (unsigned int i = 0; i < bins; ++i) { + countsIn[i] += localCountsIn[i]; + countsOut[i] += localCountsOut[i]; + } + } + } + insideMask.build(countsIn); + outsideMask.build(countsOut); + +} diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp new file mode 100644 index 0000000000..73a89242be --- /dev/null +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -0,0 +1,129 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +vpColorHistogramMask::vpColorHistogramMask() { } + +void vpColorHistogramMask::updateMask( + const vpRBFeatureTrackerInput &frame, + const vpRBFeatureTrackerInput &previousFrame, + vpImage &mask) +{ + // Prefer the last frame: + // we have updated the render to match the pose so we should get better object and background histogram separation. + const vpImage &rgb = previousFrame.IRGB.getSize() == 0 ? frame.IRGB : previousFrame.IRGB; + + const int height = static_cast(rgb.getHeight()), width = static_cast(rgb.getWidth()); + m_mask.resize(height, width, false); + const vpRect renderBB = frame.renders.boundingBox; + const int top = static_cast(renderBB.getTop()); + const int left = static_cast(renderBB.getLeft()); + const int bottom = std::min(height - 1, static_cast(renderBB.getBottom())); + const int right = std::min(width - 1, static_cast(renderBB.getRight())); + + const vpImage &renderDepth = frame.renders.depth; + const vpImage &depth = previousFrame.depth.getSize() == 0 ? frame.depth : previousFrame.depth; + if (depth.getSize() > 0 && m_depthErrorTolerance > 0.f) { + for (unsigned int i = top; i <= bottom; ++i) { + for (unsigned int j = left; j <= right; ++j) { + m_mask[i][j] = renderDepth[i][j] > 0.f && fabs(renderDepth[i][j] - depth[i][j]) <= m_depthErrorTolerance; + } + } + } + else { + for (unsigned int i = top; i <= bottom; ++i) { + for (unsigned int j = left; j <= right; ++j) { + m_mask[i][j] = renderDepth[i][j] > 0.f; + } + } + } + + vpColorHistogram::computeSplitHistograms(rgb, m_mask, renderBB, m_histObjectFrame, m_histBackgroundFrame); + + const float pObject = static_cast(m_histObjectFrame.getNumPixels()) / static_cast(m_mask.getSize()); + const float pBackground = 1.f - pObject; +#pragma omp sections + { +#pragma omp section + { + if (pObject != 0.f) { + m_histObject.merge(m_histObjectFrame, m_objectUpdateRate); + } + m_histObject.computeProbas(frame.IRGB, m_probaObject); + } +#pragma omp section + { + if (pBackground != 0.f) { + m_histBackground.merge(m_histBackgroundFrame, m_backgroundUpdateRate); + } + m_histBackground.computeProbas(frame.IRGB, m_probaBackground); + } + } + + + mask.resize(height, width); +#pragma omp parallel for + for (unsigned int i = 0; i < mask.getSize(); ++i) { + float denom = (pObject * m_probaObject.bitmap[i] + pBackground * m_probaBackground.bitmap[i]); + + // float value = (objectSegmentation.bitmap[i] * (IProba.bitmap[i] / denom) + (1.f - objectSegmentation.bitmap[i]) * (IProbaBg.bitmap[i] / denom)); + //float value = (objectSegmentation.bitmap[i] * (IProba.bitmap[i] / denom)) + ((1.f - objectSegmentation.bitmap[i]) * (IProbaBg.bitmap[i] / denom)); + //float pb = static_cast(denom > 0.f) * (m_probaBackground.bitmap[i] / denom); + if (denom > 0.f) { + mask.bitmap[i] = std::max(0.f, std::min(1.f, (m_probaObject.bitmap[i] / denom))); + } + else { + mask.bitmap[i] = 0.f; + } + + + } + +} + + +#if defined(VISP_HAVE_NLOHMANN_JSON) +void vpColorHistogramMask::loadJsonConfiguration(const nlohmann::json &json) +{ + setBinNumber(json.at("bins")); + m_backgroundUpdateRate = json.at("backgroundUpdateRate"); + m_objectUpdateRate = json.at("objectUpdateRate"); + m_depthErrorTolerance = json.at("maxDepthError"); +} +#endif diff --git a/modules/tracker/rbt/src/mask/vpObjectMask.cpp b/modules/tracker/rbt/src/mask/vpObjectMask.cpp new file mode 100644 index 0000000000..1bcc8bd83a --- /dev/null +++ b/modules/tracker/rbt/src/mask/vpObjectMask.cpp @@ -0,0 +1,48 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include + +void vpObjectMask::display(const vpImage &mask, vpImage &Imask) const +{ + if (mask.getSize() != Imask.getSize()) { + throw vpException(vpException::dimensionError, "Cannot convert float mask to unsigned char mask as they do not have the same size"); + } + +#pragma omp parallel for + for (unsigned int i = 0; i < mask.getSize(); ++i) { + Imask.bitmap[i] = static_cast(mask.bitmap[i] * 255.f); + } + +} diff --git a/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp new file mode 100644 index 0000000000..89806eca83 --- /dev/null +++ b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp @@ -0,0 +1,47 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include +#include + +vpObjectMaskFactory::vpObjectMaskFactory() +{ + setJsonKeyFinder([](const nlohmann::json &j) -> std::string { + return j.at("type"); + }); + + registerType("histogram", [](const nlohmann::json &j) { + std::shared_ptr p(new vpColorHistogramMask()); + p->loadJsonConfiguration(j); + return p; + }); +} diff --git a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp new file mode 100644 index 0000000000..9c9d54923b --- /dev/null +++ b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp @@ -0,0 +1,191 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#include + +#include "boundingSphere.h" +#include "boundingBox.h" +#include "load_prc_file.h" +vpObjectCentricRenderer::vpObjectCentricRenderer(const vpPanda3DRenderParameters &renderParameters) : vpPanda3DRendererSet(renderParameters), m_enableCrop(true), m_shouldComputeBBPoints(true) +{ + m_renderParameters = renderParameters; + load_prc_file_data("", "textures-power-2 none\n" + "back-buffers 0\n" + "auto-flip 1\n" + // "pstats-gpu-timing 1\n" + // "gl-finish 1\n" + // "texture-minfilter mipmap\n" + "load-file-type p3assimp\n" + "audio-library-name null\n" + "model-cache-dir\n"); +} + +void vpObjectCentricRenderer::beforeFrameRendered() +{ + if (m_shouldComputeBBPoints) { + computeBoundingBox3DPoints(); + m_shouldComputeBBPoints = false; + } + m_bb = computeBoundingBox(); + + double delta = 0.0; + m_bb.setTop(std::max(m_bb.getTop() - delta, 0.0)); + m_bb.setLeft(std::max(m_bb.getLeft() - delta, 0.0)); + m_bb.setBottom(std::min(m_bb.getBottom() + delta, (double)m_renderParameters.getImageHeight())); + m_bb.setRight(std::min(m_bb.getRight() + delta, (double)m_renderParameters.getImageWidth())); + + + if (m_enableCrop) { + vpPanda3DRenderParameters subParams = m_renderParameters; + + unsigned width = (unsigned)(m_bb.getWidth()); + unsigned height = (unsigned)(m_bb.getHeight()); + + subParams.setImageResolution(height, width); + + const vpCameraParameters cam = subParams.getCameraIntrinsics(); + subParams.setCameraIntrinsics(vpCameraParameters(cam.get_px(), cam.get_py(), cam.get_u0() - m_bb.getLeft(), cam.get_v0() - m_bb.getTop())); + for (std::shared_ptr &subrenderer : m_subRenderers) { + subrenderer->setRenderParameters(subParams); + } + + } +} + +void vpObjectCentricRenderer::computeBoundingBox3DPoints() +{ + if (m_subRenderers.size() == 0) { + throw vpException(vpException::fatalError, "Cannot compute bounding box with no subrender"); + } + std::shared_ptr subrenderer = m_subRenderers[0]; + NodePath object = subrenderer->getRenderRoot().find(m_focusedObject); + if (object.is_empty()) { + throw vpException(vpException::badValue, "Focused node %s was not found", m_focusedObject.c_str()); + } + m_bb3DPoints.clear(); + LPoint3 minP, maxP; + double t1 = vpTime::measureTimeMs(); + object.calc_tight_bounds(minP, maxP); + const BoundingBox box(minP, maxP); + + for (unsigned int i = 0; i < 8; ++i) { + const LPoint3 p = box.get_point(i); + m_bb3DPoints.push_back(vpColVector({ p.get_x(), -p.get_z(), p.get_y(), 1.0 })); + + } +} + +void vpObjectCentricRenderer::computeClipping(float &nearV, float &farV) +{ + if (m_subRenderers.size() == 0) { + throw vpException(vpException::fatalError, "Cannot compute clpping distances with no subrenderer"); + } + std::shared_ptr subrenderer = m_subRenderers[0]; + NodePath object = subrenderer->getRenderRoot().find(m_focusedObject); + if (object.is_empty()) { + throw vpException(vpException::badValue, "Node %s was not found", m_focusedObject.c_str()); + } + if (m_shouldComputeBBPoints) { + computeBoundingBox3DPoints(); + m_shouldComputeBBPoints = false; + } + const vpHomogeneousMatrix wTcam = getCameraPose(); + const vpHomogeneousMatrix wTobj = getNodePose(m_focusedObject) * vpPanda3DBaseRenderer::PANDA_T_VISP; + const vpHomogeneousMatrix camTobj = wTcam.inverse() * wTobj; + float minZ = std::numeric_limits::max(), maxZ = 0.f; + for (unsigned int i = 0; i < m_bb3DPoints.size(); ++i) { + vpColVector cpV = camTobj * m_bb3DPoints[i]; + cpV /= cpV[3]; + float Z = cpV[2]; + if (Z > maxZ) { + maxZ = Z; + } + if (Z < minZ) { + minZ = Z; + } + } + + nearV = minZ; + farV = maxZ; +} + +vpRect vpObjectCentricRenderer::computeBoundingBox() +{ + if (m_subRenderers.size() == 0) { + throw vpException(vpException::fatalError, "Cannot compute bounding box with no subrenderer"); + } + std::shared_ptr subrenderer = m_subRenderers[0]; + NodePath object = subrenderer->getRenderRoot().find(m_focusedObject); + if (object.is_empty()) { + throw vpException(vpException::badValue, "Node %s was not found", m_focusedObject.c_str()); + } + if (m_shouldComputeBBPoints) { + computeBoundingBox3DPoints(); + m_shouldComputeBBPoints = false; + } + const auto pointToPixel = [this](const vpHomogeneousMatrix &camTobj, const vpColVector &point) -> vpImagePoint { + vpColVector cpV = camTobj * point; + cpV /= cpV[3]; + double x = cpV[0] / cpV[2]; + double y = cpV[1] / cpV[2]; + vpImagePoint ip; + vpMeterPixelConversion::convertPoint(m_renderParameters.getCameraIntrinsics(), x, y, ip); + ip.set_j(vpMath::clamp(ip.get_j(), 0.0, m_renderParameters.getImageWidth() - 1.0)); + ip.set_i(vpMath::clamp(ip.get_i(), 0.0, m_renderParameters.getImageHeight() - 1.0)); + return ip; + }; + + const vpHomogeneousMatrix wTcam = getCameraPose(); + const vpHomogeneousMatrix wTobj = getNodePose(m_focusedObject) * vpPanda3DBaseRenderer::PANDA_T_VISP; + const vpHomogeneousMatrix camTobj = wTcam.inverse() * wTobj; + + double minu = m_renderParameters.getImageWidth(), maxu = 0.0, minv = m_renderParameters.getImageHeight(), maxv = 0.0; + for (unsigned int i = 0; i < m_bb3DPoints.size(); ++i) { + const vpImagePoint ip = pointToPixel(camTobj, m_bb3DPoints[i]); + double u = ip.get_u(), v = ip.get_v(); + if (u < minu) { + minu = u; + } + if (u > maxu) { + maxu = u; + } + if (v < minv) { + minv = v; + } + if (v > maxv) { + maxv = v; + } + } + return vpRect(vpImagePoint(minv, minu), vpImagePoint(maxv, maxu)); +} diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp new file mode 100644 index 0000000000..3b79f0e741 --- /dev/null +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -0,0 +1,255 @@ +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ + +#include + +#if defined(VISP_HAVE_PANDA3D) + +const char *vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER = R"shader( +#version 330 + +in vec2 texcoords; + +uniform sampler2D p3d_Texture0; +uniform vec2 dp; // 1 divided by number of pixels + +const float kernel[25] = float[25]( + 2, 4, 5, 4, 2, + 4, 9, 12, 9, 4, + 5, 12, 15, 12, 5, + 4, 9, 12, 9, 4, + 2, 4, 5, 4, 2 +); +const float normalize = 1 / 159.0; + +vec2 offset[25] = vec2[25]( + vec2(-2*dp.x,-2*dp.y), vec2(-dp.x,-2*dp.y), vec2(0,-2*dp.y), vec2(dp.x,-2*dp.y), vec2(2*dp.x,-2*dp.y), + vec2(-2*dp.x,-dp.y), vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y), vec2(2*dp.x,-dp.y), + vec2(-2*dp.x,0.0), vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0), vec2(2*dp.x,0.0), + vec2(-2*dp.x, dp.y), vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y), vec2(2*dp.x, dp.y), + vec2(-2*dp.x, 2*dp.y), vec2(-dp.x, 2*dp.y), vec2(0.0, 2*dp.y), vec2(dp.x, 2*dp.y), vec2(2*dp.x, 2*dp.y) +); + +out vec4 p3d_FragData; + +void main() { + float v = 0.f; + + for(int i = 0; i < 25; ++i) { + v += kernel[i] * texture(p3d_Texture0, texcoords + offset[i]).a; + } + p3d_FragData.a = v * normalize; +} +)shader"; + +vpPanda3DDepthGaussianBlur::vpPanda3DDepthGaussianBlur(const std::string &name, std::shared_ptr inputRenderer, bool isOutput) + : vpPanda3DPostProcessFilter(name, inputRenderer, isOutput, vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER) +{ } + +FrameBufferProperties vpPanda3DDepthGaussianBlur::getBufferProperties() const +{ + FrameBufferProperties fbp; + fbp.set_depth_bits(0); + fbp.set_rgba_bits(0, 0, 0, 32); + fbp.set_float_color(true); + return fbp; +} + +void vpPanda3DDepthGaussianBlur::getRender(vpImage &I) const +{ + vpPanda3DPostProcessFilter::getRenderBasic(I); +} + +const char *vpPanda3DDepthCannyFilter::FRAGMENT_SHADER = R"shader( +#version 330 + +in vec2 texcoords; + +uniform sampler2D p3d_Texture0; +uniform vec2 dp; // 1 divided by number of pixels +uniform float edgeThreshold; + + +const float kernel[9] = float[9]( + 0.0, 1.0, 0.0, + 1.0,-4.0, 1.0, + 0.0, 1.0, 0.0 +); + +const float kernel_h[9] = float[9]( + -1.0, 0.0, 1.0, + -2.0, 0.0, 2.0, + -1.0, 0.0, 1.0 +); + +const float kernel_v[9] = float[9]( + -1.0, -2.0, -1.0, + 0.0, 0.0, 0.0, + 1.0, 2.0, 1.0 +); + +vec2 offset[9] = vec2[9]( + vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y), + vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0), + vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y) +); + +float textureValues[9]; + + +out vec4 p3d_FragData; + +void main() { + if(texture(p3d_Texture0, texcoords).a == 0) { + p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f); + } else { + + float sum = 0.f; + for(int i = 0; i < 9; ++i) { + float pix = texture(p3d_Texture0, texcoords + offset[i]).a; + pix = (pix < 1e-5f ? 1000.f: pix); + textureValues[i] = pix; + sum += pix * kernel[i]; + } + if(abs(sum) > edgeThreshold) { + float sum_h = 0.f; + float sum_v = 0.f; + for(int i = 0; i < 9; ++i) { + float pix = textureValues[i]; + sum_h += pix * kernel_h[i]; + sum_v += pix * kernel_v[i]; + } + float norm = sqrt(sum_v * sum_v + sum_h * sum_h); + vec2 orientationAndValid = (sum_h != 0.f) ? vec2(atan(sum_v, -sum_h), 1.f) : vec2(0.f, 0.f); + p3d_FragData.bgra = vec4(sum_h, sum_v, orientationAndValid.x, orientationAndValid.y); + } else { + p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f); + } + } +} +)shader"; + +vpPanda3DDepthCannyFilter::vpPanda3DDepthCannyFilter(const std::string &name, std::shared_ptr inputRenderer, bool isOutput, float edgeThreshold) + : vpPanda3DPostProcessFilter(name, inputRenderer, isOutput, vpPanda3DDepthCannyFilter::FRAGMENT_SHADER), m_edgeThreshold(edgeThreshold) +{ } + +void vpPanda3DDepthCannyFilter::setupScene() +{ + vpPanda3DPostProcessFilter::setupScene(); + m_renderRoot.set_shader_input("edgeThreshold", LVector2f(m_edgeThreshold)); +} + +void vpPanda3DDepthCannyFilter::setEdgeThreshold(float edgeThreshold) +{ + m_edgeThreshold = edgeThreshold; + m_renderRoot.set_shader_input("edgeThreshold", LVector2f(m_edgeThreshold)); +} + + +FrameBufferProperties vpPanda3DDepthCannyFilter::getBufferProperties() const +{ + FrameBufferProperties fbp; + fbp.set_depth_bits(0); + fbp.set_rgba_bits(32, 32, 32, 32); + fbp.set_float_color(true); + return fbp; +} + +void vpPanda3DDepthCannyFilter::getRender(vpImage &I, vpImage &valid) const +{ + if (!m_isOutput) { + throw vpException(vpException::fatalError, "Tried to fetch output of a postprocessing filter that was configured as an intermediate output"); + } + + I.resize(m_renderParameters.getImageHeight(), m_renderParameters.getImageWidth()); + + valid.resize(I.getHeight(), I.getWidth()); + const unsigned numComponents = m_texture->get_num_components(); + int rowIncrement = I.getWidth() * numComponents; // we ask for only 8 bits image, but we may get an rgb image + float *data = (float *)(&(m_texture->get_ram_image().front())); + // Panda3D stores data upside down + data += rowIncrement * (I.getHeight() - 1); + rowIncrement = -rowIncrement; + if (numComponents != 4) { + throw; + } + for (unsigned int i = 0; i < I.getHeight(); ++i) { + vpRGBf *colorRow = I[i]; + unsigned char *validRow = valid[i]; + for (unsigned int j = 0; j < I.getWidth(); ++j) { + colorRow[j].R = data[j * numComponents]; + colorRow[j].G = data[j * numComponents + 1]; + colorRow[j].B = data[j * numComponents + 2]; + validRow[j] = static_cast(data[j * numComponents + 3]); + } + data += rowIncrement; + } +} + +void vpPanda3DDepthCannyFilter::getRender(vpImage &I, vpImage &valid, const vpRect &bb, unsigned int h, unsigned w) const +{ + if (!m_isOutput) { + throw vpException(vpException::fatalError, "Tried to fetch output of a postprocessing filter that was configured as an intermediate output"); + } + + I.resize(h, w); + memset(I.bitmap, 0, I.getSize() * sizeof(vpRGBf)); + valid.resize(I.getHeight(), I.getWidth(), 0); + + const unsigned top = static_cast(std::max(0.0, bb.getTop())); + const unsigned left = static_cast(std::max(0.0, bb.getLeft())); + const unsigned bottom = static_cast(std::min(static_cast(h), bb.getBottom())); + const unsigned right = static_cast(std::min(static_cast(w), bb.getRight())); + const unsigned numComponents = m_texture->get_num_components(); + const unsigned rowIncrement = m_renderParameters.getImageWidth() * numComponents; // we ask for only 8 bits image, but we may get an rgb image + + const float *data = (float *)(&(m_texture->get_ram_image().front())); + data += rowIncrement * (m_renderParameters.getImageHeight() - 1); + if (numComponents != 4) { + throw vpException(vpException::dimensionError, "Expected panda texture to have 4 components!"); + } + for (unsigned int i = 0; i < m_renderParameters.getImageHeight(); ++i) { + const float *rowData = data - i * rowIncrement; + vpRGBf *colorRow = I[top + i]; + unsigned char *validRow = valid[top + i]; + for (unsigned int j = 0; j < m_renderParameters.getImageWidth(); ++j) { + colorRow[left + j].R = rowData[j * numComponents]; + colorRow[left + j].G = rowData[j * numComponents + 1]; + colorRow[left + j].B = rowData[j * numComponents + 2]; + validRow[left + j] = static_cast(rowData[j * numComponents + 3]); + } + } +} + + + +#endif diff --git a/tutorial/CMakeLists.txt b/tutorial/CMakeLists.txt index 38d101ae34..c4b5dbf39f 100644 --- a/tutorial/CMakeLists.txt +++ b/tutorial/CMakeLists.txt @@ -68,6 +68,8 @@ visp_add_subdirectory(tracking/model-based/old/edges REQUIRED_DEPS visp_co visp_add_subdirectory(tracking/model-based/old/generic REQUIRED_DEPS visp_core visp_mbt visp_io visp_gui) visp_add_subdirectory(tracking/model-based/old/hybrid REQUIRED_DEPS visp_core visp_mbt visp_klt visp_io visp_gui) visp_add_subdirectory(tracking/model-based/old/keypoint REQUIRED_DEPS visp_core visp_mbt visp_klt visp_io visp_gui) +visp_add_subdirectory(tracking/render-based REQUIRED_DEPS visp_core visp_rbt visp_io visp_gui) + visp_add_subdirectory(tracking/template-tracker REQUIRED_DEPS visp_core visp_tt visp_io visp_gui) visp_add_subdirectory(tracking/moving-edges REQUIRED_DEPS visp_core visp_me visp_io visp_gui visp_sensor) visp_add_subdirectory(tracking/dnn REQUIRED_DEPS visp_core visp_detection visp_dnn_tracker visp_io visp_gui visp_sensor) diff --git a/tutorial/tracking/render-based/CMakeLists.txt b/tutorial/tracking/render-based/CMakeLists.txt new file mode 100644 index 0000000000..2e8c94e4bf --- /dev/null +++ b/tutorial/tracking/render-based/CMakeLists.txt @@ -0,0 +1,42 @@ +cmake_minimum_required(VERSION 3.5) + +project(tutorial-render-based-tracking) + +find_package(VISP REQUIRED visp_core visp_rbt visp_io visp_gui) + +# set the list of source files +set(tutorial_cpp + tutorial-rbt-sequence.cpp + tutorial-rbt-realsense.cpp) + +list(APPEND tutorial_data_dir "data") + +foreach(cpp ${tutorial_cpp}) + visp_add_target(${cpp}) + + if(VISP_HAVE_OGRE) + # Add specific build flag to turn off warnings coming from Ogre3D 3rd party + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-deprecated-copy") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-float-equal") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-ignored-qualifiers") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-overloaded-virtual") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-register") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-unused-parameter") + list(APPEND CXX_FLAGS_MUTE_WARNINGS "-Wno-unused-but-set-parameter") + endif() + + if(CXX_FLAGS_MUTE_WARNINGS) + # Add specific build flag to turn off warnings + visp_set_source_file_compile_flag(${cpp} ${CXX_FLAGS_MUTE_WARNINGS}) + endif() + + if(COMMAND visp_add_dependency) + visp_add_dependency(${cpp} "tutorials") + endif() +endforeach() + +# Copy the data files to the same location than the target +foreach(data_dir ${tutorial_data_dir}) + visp_copy_dir(tutorial-rbt-sequence.cpp "${CMAKE_CURRENT_SOURCE_DIR}" ${data_dir}) + visp_copy_dir(tutorial-rbt-realsense.cpp "${CMAKE_CURRENT_SOURCE_DIR}" ${data_dir}) +endforeach() diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.0.pos b/tutorial/tracking/render-based/data/sequence1/dragon.0.pos new file mode 100755 index 0000000000..1f8b41994b --- /dev/null +++ b/tutorial/tracking/render-based/data/sequence1/dragon.0.pos @@ -0,0 +1,6 @@ +0.03385069791 +0.009459969456 +0.1522304652 +-2.625824241 +-0.03646930969 +0.601980212 \ No newline at end of file diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.init b/tutorial/tracking/render-based/data/sequence1/dragon.init new file mode 100644 index 0000000000..77a278c11c --- /dev/null +++ b/tutorial/tracking/render-based/data/sequence1/dragon.init @@ -0,0 +1,5 @@ +4 +-0.0476 0.0276 0.011 # tip of the tongue +0.00435 0.046124 -0.01048 # tip of the crest +0.053011 0.0229 0.002352 # Tip of the tail +0.02405 -0.023972 0.018323 # Leftmost of the back left foot diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json new file mode 100644 index 0000000000..600a84b7a5 --- /dev/null +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -0,0 +1,78 @@ +{ + "camera": { + "intrinsics": { + "model": "perspectiveWithoutDistortion", + "px": 302.573, + "py": 302.396, + "u0": 162.776, + "v0": 122.475 + }, + "height": 240, + "width": 320 + }, + "vvs": { + "gain": 2.0, + "maxIterations": 10 + }, + "model": "data/sequence1/dragon.obj", + + "silhouetteExtractionSettings" : { + "threshold": { + "type": "relative", + "value": 0.1, + "reusePreviousPoints": true + }, + "sampling" : { + "samplingRate": 1, + "numPoints": 512 + } + }, + +"mask": { + "type": "histogram", + "bins": 32, + "objectUpdateRate": 0.1, + "backgroundUpdateRate": 0.1, + "maxDepthError": 0.01 +}, +"drift": { + "type": "probabilistic", + "colorUpdateRate": 0.3, + "initialColorSigma": 15.0, + "depthSigma": 0.01, + "filteringMaxDistance": 0.001, + "minDistanceNewPoints": 0.005 +}, +"features": [ + { + "type": "depth", + "weight": 0.1, + "step": 8, + "useMask": true, + "minMaskConfidence": 0.7 + }, + { + "type": "silhouetteColor", + "weight": 0.01, + "ccd": { + "h": 8, + "delta_h": 1 + } + }, + { + "type": "klt", + "weight": 0.1, + "maxReprojectionErrorPixels": 5.0, + "newPointsMinPixelDistance": 2, + "minimumNumPoints": 20, + "blockSize": 3, + "harris": 0.05, + "maskBorder": 5, + "maxFeatures": 200, + "minDistance": 5.0, + "pyramidLevels": 3, + "quality": 0.1, + "windowSize": 5 + } +] +} diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.mtl b/tutorial/tracking/render-based/data/sequence1/dragon.mtl new file mode 100755 index 0000000000..21a14b379f --- /dev/null +++ b/tutorial/tracking/render-based/data/sequence1/dragon.mtl @@ -0,0 +1,12 @@ +# Blender 3.4.1 MTL File: 'None' +# www.blender.org + +newmtl Material.002 +Ns 0.000000 +Ka 1.000000 1.000000 1.000000 +Kd 0.800000 0.015198 0.007607 +Ks 0.000000 0.000000 0.000000 +Ke 0.000000 0.000000 0.000000 +Ni 1.450000 +d 1.000000 +illum 1 diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.obj b/tutorial/tracking/render-based/data/sequence1/dragon.obj new file mode 100644 index 0000000000..dced87ac26 --- /dev/null +++ b/tutorial/tracking/render-based/data/sequence1/dragon.obj @@ -0,0 +1,58578 @@ +# Blender 4.2.1 LTS +# www.blender.org +mtllib dragon.mtl +o stanford_dragon +v 0.021793 -0.020850 0.022920 +v -0.034272 0.010277 0.008211 +v 0.023778 0.018954 0.011798 +v 0.023496 0.018710 0.011374 +v -0.039781 0.010787 -0.025248 +v 0.022555 -0.020873 0.022555 +v -0.034690 0.002925 -0.037135 +v -0.003943 -0.000769 -0.033376 +v -0.009694 -0.001628 0.000876 +v 0.021359 -0.020764 0.023366 +v 0.039381 0.016915 0.015149 +v -0.012642 0.005015 -0.035779 +v 0.002809 0.006012 0.010020 +v 0.029930 -0.000079 0.005180 +v -0.039811 0.005917 -0.033749 +v 0.021298 -0.020448 0.022733 +v -0.027228 0.014305 0.020178 +v 0.038028 0.017209 0.015125 +v -0.002928 0.009072 0.023764 +v -0.003026 0.008896 0.023325 +v -0.009898 0.002908 -0.036338 +v -0.023252 0.011947 0.022540 +v -0.016790 0.006242 -0.020301 +v 0.022128 -0.020529 0.021836 +v -0.009589 -0.003061 -0.009323 +v -0.034994 0.008935 -0.036146 +v -0.035944 0.009618 -0.035542 +v -0.016382 0.015039 0.011826 +v -0.032015 -0.001750 -0.022596 +v -0.026729 0.008277 -0.033093 +v 0.043394 -0.001511 -0.001886 +v 0.023466 -0.020652 0.022026 +v -0.000854 0.000968 -0.035855 +v 0.045297 -0.000603 -0.005204 +v -0.035584 0.001578 -0.029648 +v 0.012714 -0.004365 0.007812 +v -0.004518 0.009490 0.014160 +v -0.038383 0.005246 -0.024120 +v 0.023042 -0.020608 0.021430 +v 0.045123 0.007563 0.015745 +v -0.022383 0.008614 -0.019821 +v -0.038246 0.000310 -0.029504 +v -0.025822 0.007623 -0.034165 +v -0.040428 -0.000579 -0.031795 +v 0.000154 0.007013 0.016079 +v -0.006582 -0.001234 -0.002453 +v 0.041955 -0.000840 -0.022756 +v -0.019220 0.019826 0.024514 +v -0.027160 0.005952 -0.020707 +v 0.015312 0.014933 0.019507 +v 0.040724 -0.001013 -0.017922 +v 0.040029 -0.002580 -0.017948 +v -0.038069 0.002194 -0.029651 +v 0.019583 0.000356 -0.000855 +v 0.024287 0.018690 0.013001 +v -0.032168 0.000082 0.022307 +v -0.015110 0.004385 -0.020153 +v -0.033291 0.004133 -0.024200 +v -0.033397 0.007928 -0.024170 +v -0.033628 0.008572 -0.023673 +v -0.014552 0.005079 -0.035852 +v 0.022387 -0.020323 0.023470 +v -0.027232 -0.002595 -0.037387 +v -0.029068 0.010387 -0.032675 +v 0.017799 0.009455 0.018914 +v -0.021393 0.012477 0.003787 +v -0.011459 -0.002541 -0.006265 +v -0.008038 0.000371 -0.016903 +v -0.009788 0.002377 -0.017899 +v 0.045734 0.000449 -0.024138 +v -0.007980 0.000987 -0.035838 +v 0.042594 0.016057 0.016789 +v 0.030568 -0.000877 0.013635 +v -0.019319 0.013132 0.004655 +v -0.031134 -0.000374 -0.019621 +v -0.022824 -0.003093 -0.026954 +v 0.028611 0.011548 0.013854 +v 0.029134 -0.001173 0.010094 +v -0.008408 0.017405 0.020093 +v 0.028855 0.003920 -0.008054 +v -0.035367 0.001125 -0.023390 +v 0.040910 0.001212 0.017075 +v 0.039681 -0.000681 0.017354 +v -0.047673 0.011541 -0.027683 +v -0.047530 0.010846 -0.028104 +v -0.021304 0.022164 0.016283 +v 0.037381 -0.000028 -0.001924 +v -0.039614 -0.001831 -0.032105 +v 0.028975 -0.002848 -0.024899 +v 0.026584 0.004473 0.011792 +v 0.013493 -0.000970 0.008738 +v -0.014640 0.004430 -0.017105 +v -0.012736 0.016543 0.014379 +v -0.021180 0.007269 -0.033947 +v -0.035597 0.002576 -0.000339 +v 0.022800 0.012385 0.004664 +v -0.029841 0.010583 -0.022952 +v 0.050872 0.000249 -0.022431 +v -0.037405 0.003625 -0.038848 +v 0.013292 0.005906 0.021683 +v -0.016700 0.007174 -0.031232 +v 0.023865 0.012565 -0.000857 +v -0.034454 0.006824 0.018226 +v -0.035690 -0.003438 0.010602 +v -0.002783 0.014169 0.018035 +v 0.019481 -0.001089 -0.002471 +v -0.029888 0.010558 0.001827 +v 0.034027 0.005017 0.011377 +v -0.006018 0.016560 0.024665 +v -0.007445 0.016893 0.023085 +v -0.015299 -0.001962 0.001094 +v -0.015948 0.000840 -0.001280 +v -0.020893 -0.001246 -0.039031 +v 0.014947 0.002544 0.011228 +v 0.010129 -0.002623 0.001774 +v 0.044122 0.009013 -0.001080 +v 0.014411 -0.002667 -0.008466 +v -0.015376 -0.001589 0.001998 +v -0.002012 -0.000134 -0.025895 +v 0.024325 -0.020615 0.021459 +v 0.039284 0.006098 0.000140 +v -0.008149 0.013276 0.013194 +v 0.021672 0.000440 -0.005587 +v -0.003323 -0.000507 -0.031924 +v -0.017115 0.006139 -0.034234 +v 0.047380 0.007552 0.009980 +v -0.046292 0.004952 -0.019853 +v 0.045407 -0.001771 -0.011123 +v 0.044925 0.000335 0.001111 +v 0.019165 0.008501 0.022172 +v 0.021812 0.011773 0.006201 +v 0.038348 0.004186 0.004045 +v 0.024569 -0.020508 0.019922 +v -0.016613 0.017233 0.019340 +v 0.039783 -0.001840 -0.016695 +v 0.050277 -0.002589 -0.016517 +v 0.011239 0.006972 0.021933 +v 0.036918 0.009431 0.008311 +v -0.009082 -0.000789 -0.034857 +v 0.043638 0.000891 0.002968 +v -0.021654 0.000276 -0.038935 +v 0.023883 0.011802 0.004046 +v 0.038207 -0.001646 -0.008991 +v -0.010038 -0.001036 0.002304 +v -0.021723 0.014287 0.024670 +v -0.021698 0.013124 0.023920 +v 0.019582 0.013209 0.011083 +v -0.019204 0.005456 -0.037200 +v 0.040444 0.006099 -0.003303 +v 0.025038 -0.020217 0.020040 +v -0.038305 0.001897 -0.035029 +v -0.000422 0.013153 0.014569 +v 0.011161 0.006249 0.019413 +v -0.036857 0.000259 0.003646 +v 0.021783 0.013641 0.006472 +v 0.021818 -0.019860 0.023792 +v -0.032348 0.002969 -0.031107 +v 0.020833 -0.020169 0.023288 +v -0.032191 0.011510 0.010515 +v -0.038773 0.002605 -0.029761 +v -0.038530 0.001969 -0.029663 +v -0.025572 0.010625 -0.021401 +v -0.006085 -0.003217 -0.025738 +v -0.038083 0.004459 -0.023187 +v -0.041975 0.002967 -0.036876 +v -0.000840 0.001589 -0.029105 +v -0.021403 0.000555 -0.027872 +v -0.037592 -0.002728 -0.029854 +v 0.047415 0.010450 0.010812 +v 0.035715 0.000679 -0.008022 +v -0.039018 0.013104 -0.035769 +v -0.010654 0.001733 -0.012200 +v 0.009380 0.015105 0.022429 +v -0.006069 -0.002154 -0.019357 +v -0.027815 0.014454 0.015203 +v 0.001256 -0.000477 -0.030455 +v 0.018451 0.006965 0.021178 +v -0.005596 0.007053 0.005142 +v 0.040075 0.001665 0.001339 +v -0.025318 0.020524 0.015860 +v -0.012646 0.008427 0.006195 +v -0.035314 0.010302 -0.023188 +v 0.007473 0.002077 -0.020184 +v 0.019552 0.013170 0.010056 +v 0.022535 -0.000088 -0.009508 +v -0.035724 0.014333 -0.020484 +v 0.009350 0.006316 0.020861 +v -0.007455 0.003602 -0.034998 +v -0.012434 0.012084 0.008602 +v 0.026548 0.011776 0.010369 +v 0.027583 0.012694 0.010452 +v 0.028718 0.012604 0.024658 +v -0.006701 0.002814 -0.034586 +v 0.000311 0.001452 0.020427 +v -0.028249 0.003692 -0.020037 +v -0.030231 0.006519 -0.024663 +v -0.038197 0.012251 -0.036998 +v -0.034582 0.008656 0.003802 +v -0.032640 -0.000954 -0.028565 +v -0.027399 0.005649 -0.037154 +v -0.027903 0.005700 -0.036587 +v 0.022725 -0.019952 0.020808 +v 0.038160 -0.001379 -0.008386 +v 0.050656 -0.001342 -0.018851 +v 0.025432 -0.019908 0.020857 +v 0.020671 0.000016 -0.003914 +v -0.024890 0.022895 0.014388 +v -0.015377 0.020346 0.019938 +v -0.033823 0.003669 -0.024153 +v -0.000304 0.008835 0.022105 +v -0.026321 0.002102 -0.012748 +v -0.015617 0.006034 -0.032439 +v 0.023595 -0.019739 0.019335 +v 0.014649 0.008477 0.014517 +v -0.034936 0.010132 -0.019309 +v 0.050001 0.001055 -0.018148 +v -0.023636 0.005539 -0.029128 +v -0.012238 0.003738 -0.019814 +v 0.001218 0.000382 -0.030280 +v 0.024616 0.003377 -0.014329 +v 0.051499 0.002209 -0.020599 +v 0.049935 -0.001967 -0.018988 +v -0.004735 0.001175 -0.035620 +v -0.044083 0.007979 -0.021415 +v -0.007413 0.006194 0.004270 +v 0.041372 0.015295 0.008176 +v -0.008170 -0.002532 -0.002789 +v 0.020133 -0.005715 0.024669 +v -0.039307 0.013297 -0.024331 +v -0.034501 0.010115 0.013372 +v 0.005753 0.005085 -0.006200 +v -0.012150 0.001978 -0.039608 +v 0.024078 0.008522 0.010968 +v 0.024105 -0.020156 0.019291 +v 0.038782 -0.003437 -0.017499 +v -0.002240 0.000164 -0.031649 +v -0.030297 0.009988 -0.000441 +v 0.045668 0.003695 0.008135 +v -0.047644 0.011472 -0.027186 +v -0.030382 0.003924 -0.035384 +v -0.008265 -0.000735 -0.014599 +v -0.019803 0.022321 0.021974 +v 0.024074 0.011341 0.014962 +v -0.019084 0.022217 0.020694 +v 0.023576 -0.019879 0.022986 +v -0.034623 0.008193 -0.037148 +v -0.008644 0.001647 -0.020131 +v -0.020819 -0.003521 -0.020586 +v -0.032832 -0.002504 -0.027148 +v -0.034248 -0.001906 -0.027541 +v 0.023766 0.009712 -0.005831 +v -0.022731 0.008004 -0.033179 +v -0.008791 -0.003534 -0.008925 +v 0.024650 0.007291 -0.008579 +v 0.024349 0.007019 -0.010407 +v -0.024098 0.009559 -0.019408 +v 0.021434 -0.019283 0.021685 +v -0.019743 0.007008 -0.026774 +v 0.019093 0.003909 0.009217 +v -0.010101 -0.001952 0.000257 +v 0.010394 0.003395 -0.018485 +v -0.036516 0.011630 -0.031026 +v -0.013500 -0.001849 0.003678 +v 0.002668 0.003769 -0.011534 +v 0.001276 0.003552 -0.010934 +v 0.020887 0.002575 0.003836 +v -0.012642 -0.002002 -0.038236 +v -0.040144 0.001047 -0.019466 +v 0.031003 0.015420 0.016142 +v -0.029261 0.007354 -0.006241 +v -0.039482 0.009416 -0.038516 +v -0.040611 0.008583 -0.038456 +v 0.002077 0.003338 0.017332 +v -0.013227 -0.001055 0.002656 +v -0.031314 0.012011 -0.030569 +v -0.027284 0.006574 -0.008703 +v -0.022205 0.017850 0.013921 +v 0.029206 -0.002164 0.009063 +v -0.015507 0.002832 -0.004846 +v -0.040615 0.002774 -0.035964 +v -0.037802 0.003278 -0.023079 +v -0.012418 -0.003743 -0.004937 +v -0.027134 0.002798 -0.020030 +v -0.032433 0.003186 -0.024248 +v 0.009681 0.000545 -0.023052 +v -0.014644 0.005395 -0.032265 +v -0.042536 0.007871 -0.026761 +v 0.002382 0.001056 0.017658 +v -0.003372 0.017381 0.024170 +v 0.053011 0.002352 -0.022986 +v -0.043376 0.011313 -0.026981 +v 0.024733 0.011461 0.014571 +v -0.025020 0.010723 -0.031341 +v 0.024814 -0.019575 0.019263 +v -0.013514 0.004472 -0.037035 +v -0.018225 0.004866 -0.028511 +v -0.032016 0.002976 -0.035740 +v -0.042571 0.015005 -0.022165 +v -0.006424 -0.002909 -0.017689 +v 0.020443 0.008653 0.022898 +v 0.011334 0.017752 0.022492 +v -0.032997 0.011038 -0.019652 +v 0.021095 -0.019944 0.023754 +v -0.043644 0.001673 -0.018243 +v -0.017373 0.014175 0.020061 +v -0.030271 -0.002885 0.022087 +v -0.003259 0.002561 -0.005489 +v -0.012219 0.005434 -0.030229 +v -0.012848 0.005638 -0.029973 +v 0.041504 0.012023 0.002819 +v -0.010706 0.011342 0.021829 +v -0.035736 0.008607 0.006124 +v 0.043648 0.000890 -0.020132 +v -0.022991 0.006947 -0.028540 +v 0.004142 0.002171 0.014257 +v -0.034041 0.012572 -0.022149 +v 0.033775 -0.000180 -0.001174 +v -0.037670 0.002653 -0.031190 +v -0.006237 0.000791 -0.021728 +v -0.006482 0.002025 -0.021972 +v -0.008621 -0.002878 -0.010244 +v -0.018773 0.020655 0.014213 +v 0.029379 0.013436 0.000487 +v -0.009848 -0.001355 -0.035196 +v 0.045199 -0.000806 -0.011826 +v -0.003452 0.008372 0.022492 +v -0.027570 0.015327 0.020645 +v -0.020736 0.021740 0.023595 +v -0.039174 0.014608 -0.023029 +v -0.037638 0.014281 -0.022783 +v 0.024864 -0.019461 0.022836 +v 0.007763 -0.001706 0.007689 +v -0.038199 0.011328 -0.032204 +v 0.009025 -0.002569 0.004623 +v -0.023420 0.011440 0.003175 +v 0.024345 0.010916 0.014476 +v 0.045342 -0.000622 -0.003489 +v -0.040509 0.002071 -0.022143 +v 0.050825 0.000315 -0.013491 +v -0.028110 0.003115 0.024489 +v 0.013222 0.005167 0.015192 +v -0.039932 0.012148 -0.037168 +v -0.031300 -0.003377 0.021148 +v -0.003712 -0.000601 -0.027186 +v 0.021922 -0.018605 0.020490 +v -0.036348 0.008895 -0.037711 +v 0.025369 -0.019181 0.021804 +v 0.023533 0.015943 0.005943 +v 0.043981 0.015783 0.012385 +v -0.027786 0.017963 0.021557 +v -0.025584 0.002757 -0.038387 +v -0.016368 0.004209 -0.017792 +v -0.005188 0.005890 0.023713 +v -0.020263 0.003610 -0.021470 +v -0.017801 0.003159 -0.020674 +v 0.022230 0.010522 0.022289 +v -0.029211 0.004070 0.024051 +v -0.022714 0.014544 0.011969 +v 0.040964 0.002371 0.015292 +v 0.040838 0.003256 0.015176 +v -0.015171 0.011945 0.019348 +v -0.021339 0.004637 -0.026139 +v 0.003876 0.005530 0.007136 +v 0.004560 0.005486 0.005472 +v -0.018011 0.005711 -0.028738 +v -0.020324 0.005402 -0.037573 +v -0.024372 0.001661 -0.038881 +v -0.021057 -0.001106 -0.020519 +v 0.046741 0.002810 0.003483 +v -0.000547 0.013545 0.015423 +v -0.022849 0.023461 0.015800 +v 0.039316 0.016315 0.010972 +v -0.033455 0.002171 -0.030743 +v 0.018965 0.010774 0.017319 +v -0.028125 -0.001774 -0.023526 +v 0.024321 0.012731 0.019855 +v 0.014206 -0.002059 0.021612 +v 0.028714 0.012815 -0.000645 +v -0.028423 -0.002625 -0.010124 +v -0.037467 0.000362 -0.018240 +v -0.015363 -0.002812 0.005793 +v -0.040663 0.007216 -0.019914 +v -0.035613 0.009625 -0.031863 +v -0.041058 0.005609 -0.035181 +v -0.021597 0.006396 -0.028525 +v -0.014236 0.020260 0.021420 +v -0.040811 0.001597 -0.031661 +v -0.040926 0.001809 -0.018159 +v 0.016098 0.000072 0.004798 +v 0.039041 0.000286 0.015417 +v 0.016609 0.010122 0.011395 +v -0.032465 0.004131 -0.031242 +v -0.036406 -0.000183 -0.028635 +v 0.044872 0.014924 0.011991 +v -0.042421 0.014635 -0.020550 +v -0.012028 0.005419 -0.021875 +v -0.023937 0.024660 0.015292 +v -0.032111 0.009861 0.001670 +v -0.037050 0.003565 -0.022520 +v -0.029981 0.009224 -0.020097 +v -0.037164 0.000918 -0.023328 +v 0.012785 0.005395 0.019684 +v 0.041770 0.016098 0.011809 +v -0.026217 0.006836 -0.035225 +v -0.027965 0.012510 0.011349 +v -0.029153 0.012393 0.013654 +v -0.030710 0.001329 -0.024072 +v 0.047070 -0.001499 -0.021974 +v 0.043616 0.000411 -0.021003 +v -0.031243 0.000406 -0.008155 +v 0.045742 0.005282 0.011050 +v 0.001734 0.011193 0.017540 +v 0.034779 -0.003546 -0.000291 +v -0.025086 0.009721 -0.002389 +v 0.021664 0.014852 0.008852 +v 0.021184 0.014286 0.009806 +v -0.033202 0.007943 0.019585 +v 0.046068 0.011584 0.014837 +v 0.030215 0.016892 0.004212 +v 0.039847 0.001192 0.014940 +v 0.046537 0.001747 -0.001754 +v -0.025958 0.011401 0.003399 +v 0.024453 0.011102 0.013713 +v 0.026269 0.011073 0.024668 +v 0.025753 0.011794 0.023672 +v 0.000870 0.008202 0.014830 +v -0.037886 0.010533 -0.032192 +v -0.026071 0.002679 -0.029907 +v -0.040205 0.002383 -0.024179 +v -0.040141 0.002779 -0.024302 +v 0.034477 -0.000507 0.000524 +v -0.021398 0.007904 0.024668 +v 0.035104 0.001348 -0.011756 +v 0.024808 0.010614 0.007769 +v -0.014570 0.011064 0.020910 +v -0.021341 0.002682 -0.026946 +v -0.025414 0.007895 -0.007479 +v 0.040977 -0.000729 -0.015387 +v -0.031373 -0.003905 -0.019146 +v -0.015229 0.000158 -0.002794 +v 0.019741 0.003419 -0.020460 +v -0.012968 0.011376 0.020819 +v 0.024934 0.005142 0.011316 +v 0.033494 -0.000167 0.016488 +v 0.038864 0.005950 0.010336 +v 0.000717 0.007161 0.014563 +v 0.017367 -0.004368 -0.010499 +v 0.017377 -0.001523 -0.026601 +v -0.017641 0.015813 0.022336 +v 0.044126 0.012293 0.003253 +v 0.021168 -0.019285 0.022414 +v 0.020950 -0.019596 0.023458 +v 0.021769 -0.019378 0.022780 +v 0.024452 0.017596 0.024040 +v 0.048782 -0.001395 -0.012663 +v 0.016921 0.009066 0.022049 +v -0.028417 0.006839 -0.033229 +v 0.040034 0.008493 0.000666 +v -0.022889 0.015667 0.012519 +v -0.039487 0.012270 -0.035738 +v 0.038246 0.004055 0.002220 +v -0.043652 0.001711 -0.019039 +v 0.044894 0.004258 -0.005183 +v 0.036659 0.002993 0.015937 +v -0.039610 0.007716 -0.025369 +v -0.027163 0.001706 -0.020105 +v -0.026051 0.004120 -0.011489 +v -0.002376 0.003051 -0.005629 +v -0.005494 0.014614 0.018337 +v 0.041048 0.004919 0.012617 +v 0.025085 0.010217 0.010412 +v -0.026526 0.006689 -0.034719 +v -0.025979 0.000635 -0.013208 +v 0.022934 0.005510 0.011385 +v 0.021372 -0.001740 -0.010341 +v -0.018373 0.020792 0.017691 +v -0.012473 0.002064 -0.008818 +v 0.014245 0.000082 -0.010422 +v -0.036086 0.009463 -0.023463 +v 0.029012 -0.001342 0.011301 +v 0.010381 0.007390 0.019086 +v -0.031318 0.004365 -0.006797 +v 0.025988 -0.018395 0.019718 +v -0.035571 0.006195 -0.039106 +v -0.030723 0.011583 -0.019511 +v 0.028845 0.011831 0.002136 +v 0.005134 0.004116 -0.011985 +v -0.043898 0.010123 -0.024266 +v 0.031653 -0.002691 -0.023225 +v -0.025574 0.011903 0.021345 +v -0.019284 0.011914 0.021422 +v 0.027682 0.012669 0.009606 +v -0.043310 0.010717 -0.024337 +v 0.009434 0.003821 -0.009315 +v 0.026035 0.014073 -0.001934 +v 0.024447 0.003044 0.006627 +v -0.022185 0.008591 -0.032243 +v -0.034586 0.000847 -0.022489 +v 0.023368 0.008234 -0.004289 +v -0.038516 0.012655 -0.020409 +v 0.022083 -0.019338 0.023241 +v 0.024344 0.007858 -0.004406 +v -0.008402 0.001994 -0.020583 +v -0.010035 0.017020 0.020554 +v 0.042903 0.016058 0.011622 +v -0.001422 0.000695 -0.025336 +v -0.002840 0.001382 -0.026076 +v 0.008802 0.016824 0.023207 +v -0.023930 0.008140 -0.020739 +v 0.023396 -0.019199 0.023168 +v 0.032513 0.002321 -0.003440 +v 0.009415 0.006813 0.021432 +v -0.030202 -0.000058 -0.036266 +v -0.025825 0.023786 0.018227 +v 0.024331 0.019791 0.009637 +v -0.033646 0.009174 -0.024145 +v 0.018318 0.001318 0.003964 +v -0.018999 0.008100 -0.019918 +v -0.030229 0.007635 -0.033873 +v -0.037981 0.002458 -0.030143 +v 0.041475 0.016346 0.017738 +v 0.035775 -0.000789 0.001208 +v 0.038291 0.006721 0.004713 +v -0.030037 -0.003790 -0.034348 +v -0.043929 0.001586 -0.034926 +v 0.037796 0.003286 0.015116 +v -0.014926 0.005992 -0.027523 +v 0.018340 -0.001118 -0.000487 +v 0.022736 -0.000586 -0.025857 +v -0.032223 0.010390 0.017091 +v -0.010379 -0.002829 0.001231 +v -0.010152 -0.002347 0.000339 +v 0.030926 -0.003194 0.004928 +v 0.022912 -0.018988 0.019502 +v 0.010341 0.016545 0.019250 +v -0.004119 0.011897 0.015231 +v -0.003644 0.010978 0.014656 +v 0.019090 0.010634 0.018997 +v -0.038157 0.001853 -0.018460 +v 0.023635 0.008700 -0.008153 +v 0.023118 -0.018911 0.019019 +v -0.038304 0.009476 -0.033448 +v 0.024750 0.013435 -0.001538 +v 0.011634 0.003792 -0.015215 +v 0.018795 0.010388 0.023346 +v 0.045290 0.001385 -0.023066 +v 0.042891 0.004554 0.019409 +v -0.020749 0.003083 -0.028989 +v 0.036900 0.012288 0.008547 +v 0.048301 0.000722 -0.021480 +v 0.049678 0.000743 -0.022207 +v 0.023767 0.008544 -0.009259 +v 0.036723 0.006005 0.008847 +v 0.044518 -0.001805 -0.005289 +v 0.053571 0.000998 -0.016969 +v 0.025573 0.016140 -0.001237 +v -0.029969 0.009466 -0.023244 +v 0.000358 0.006890 0.003535 +v 0.020492 -0.019518 0.017181 +v 0.033719 -0.002673 -0.021523 +v -0.007782 0.003192 -0.031127 +v -0.005883 0.002685 -0.029899 +v 0.004918 0.005339 -0.000046 +v 0.005810 0.005040 -0.000518 +v 0.024195 0.009843 0.013275 +v 0.021554 -0.019359 0.017083 +v 0.003285 0.004274 -0.009713 +v -0.029874 0.012057 -0.020968 +v 0.048040 0.008868 0.006890 +v -0.037852 0.002359 0.006315 +v 0.018338 0.000695 -0.013439 +v -0.023311 0.008525 -0.006217 +v 0.020775 -0.019430 0.016201 +v 0.004285 0.003482 0.011830 +v -0.013130 -0.001751 -0.002949 +v -0.042666 0.005421 -0.025195 +v -0.004555 -0.000212 -0.023506 +v -0.021196 0.002242 -0.016664 +v 0.007653 0.000820 0.006804 +v -0.000880 0.008335 0.004949 +v -0.033447 0.012760 -0.034387 +v -0.004265 0.001691 -0.031888 +v 0.030696 0.000278 0.006640 +v -0.036073 -0.000092 -0.018074 +v 0.047715 -0.003730 -0.017257 +v -0.019572 0.005536 -0.013270 +v 0.030563 0.007289 0.012715 +v -0.009549 0.002007 -0.015382 +v 0.018218 0.000366 0.002279 +v 0.010399 0.007776 0.021423 +v -0.034818 -0.001485 -0.020116 +v -0.043772 0.010991 -0.021817 +v -0.018567 0.007470 -0.020511 +v 0.029753 0.014664 0.005748 +v -0.019511 0.007770 -0.005598 +v 0.024431 -0.018567 0.023220 +v -0.019344 0.002917 -0.017947 +v 0.028298 0.014142 0.008597 +v -0.006974 0.009835 0.013303 +v -0.006548 0.010166 0.014276 +v -0.008235 0.002375 -0.041266 +v -0.004852 0.001781 -0.035592 +v -0.018638 0.006958 -0.000980 +v -0.038286 0.004457 -0.018848 +v 0.009329 0.012377 0.021680 +v -0.003270 0.013089 0.014956 +v 0.010150 0.008801 0.019760 +v -0.040075 0.005256 -0.023319 +v 0.014767 0.006456 0.011184 +v 0.026828 0.010986 -0.004962 +v -0.042048 0.009139 -0.026861 +v -0.004854 0.000290 -0.004330 +v -0.008095 0.014536 0.015163 +v 0.017202 0.006082 0.020284 +v 0.015602 -0.003754 -0.009607 +v 0.029955 0.015538 0.017262 +v 0.045948 0.001147 -0.005309 +v 0.006802 0.003977 0.001643 +v -0.015932 0.019648 0.023674 +v 0.000185 0.014140 0.018253 +v 0.049184 -0.000817 -0.021752 +v 0.020879 0.010841 0.023178 +v 0.000443 0.007009 0.004927 +v -0.044096 0.006786 -0.020967 +v -0.021425 0.007575 -0.008801 +v -0.000067 0.004627 -0.005847 +v 0.024706 0.017231 0.015617 +v -0.037575 0.009459 -0.037101 +v -0.026763 -0.001416 0.024364 +v 0.022533 0.016790 0.023919 +v -0.020141 0.008418 -0.019709 +v 0.025969 0.011237 0.013383 +v -0.029311 -0.003385 -0.018968 +v -0.010566 0.004742 -0.033005 +v -0.020167 0.007766 -0.024081 +v 0.003070 -0.000545 0.017008 +v -0.011048 -0.000603 0.002871 +v 0.021133 -0.019290 0.018089 +v 0.019587 -0.019043 0.018451 +v -0.039819 0.003693 -0.023321 +v -0.025052 0.009881 -0.029094 +v 0.049223 -0.001218 -0.021368 +v -0.003327 -0.000131 0.024087 +v -0.013226 0.005288 -0.031393 +v -0.040561 0.010822 -0.025594 +v -0.035421 -0.001191 -0.028131 +v 0.042510 0.004117 0.016385 +v -0.023758 0.008401 -0.032492 +v 0.011216 0.005991 0.019088 +v -0.038730 0.010684 -0.033833 +v -0.041014 0.005884 -0.038346 +v -0.007144 -0.002560 -0.005376 +v 0.003838 -0.000994 -0.019539 +v -0.034449 0.013641 -0.019039 +v -0.033774 0.001962 -0.004754 +v -0.033105 0.001963 -0.005672 +v -0.010078 0.002340 -0.036434 +v 0.024641 0.009170 0.013572 +v -0.019429 0.007911 -0.003828 +v 0.043795 0.006703 -0.003528 +v 0.028244 0.013389 0.006631 +v -0.028713 0.004159 -0.019510 +v -0.009268 0.009527 0.022869 +v -0.027869 -0.002853 -0.020495 +v 0.048126 0.001592 -0.021149 +v 0.037714 0.006030 0.006133 +v 0.008087 0.010982 0.021060 +v -0.035564 0.008623 -0.037837 +v 0.021477 -0.018903 0.016171 +v 0.011969 -0.002480 0.015588 +v 0.022288 0.012739 0.020923 +v -0.034572 0.009413 -0.035521 +v 0.043729 -0.002118 -0.003842 +v -0.016014 0.020268 0.016447 +v -0.000777 0.000920 -0.023370 +v 0.021683 0.001911 -0.002082 +v -0.040115 -0.001016 -0.032789 +v -0.023198 0.006898 -0.034484 +v -0.009575 0.004462 -0.023938 +v 0.010438 0.008628 0.019322 +v -0.011975 0.004715 -0.023433 +v -0.011532 0.004467 -0.023394 +v 0.014694 0.005639 0.019273 +v 0.015072 0.006221 0.019743 +v 0.010206 -0.003240 0.000893 +v -0.027676 -0.001142 -0.011238 +v -0.027504 0.000190 -0.011544 +v 0.007834 0.010635 0.023786 +v 0.021422 0.016344 0.021916 +v 0.004897 -0.002351 -0.021297 +v 0.025172 -0.019002 0.022788 +v -0.009904 0.002287 -0.037390 +v 0.022162 0.014898 0.010460 +v 0.045582 -0.001159 -0.011304 +v -0.002781 0.008463 0.022762 +v -0.010406 0.004604 -0.023543 +v 0.029660 0.002049 0.011523 +v -0.014004 0.004676 -0.011304 +v 0.025267 0.011471 0.012830 +v 0.025389 0.011633 0.013015 +v 0.021616 -0.018844 0.021664 +v 0.004543 0.005562 -0.002748 +v -0.010854 -0.001127 -0.009544 +v -0.019475 0.006033 -0.021300 +v -0.019245 0.008860 -0.020482 +v -0.025429 0.024556 0.015005 +v -0.025518 0.023485 0.014660 +v 0.011618 0.003136 -0.011634 +v 0.008506 0.009967 0.021638 +v -0.001687 0.007308 0.004902 +v -0.044501 0.002715 -0.018611 +v -0.029897 0.001192 -0.037861 +v 0.017822 0.003080 0.024667 +v 0.028556 0.015920 0.000080 +v -0.004170 0.006742 0.022067 +v 0.044580 0.013712 0.006679 +v -0.027415 0.002212 -0.025130 +v 0.027333 0.010472 -0.002539 +v 0.035007 0.005246 0.013157 +v 0.045471 0.001545 -0.018975 +v 0.025106 0.003377 0.000939 +v 0.028152 0.014312 0.016699 +v -0.035302 0.004155 -0.024162 +v -0.036210 0.003919 -0.023679 +v 0.023830 0.003160 -0.000929 +v -0.031360 0.012944 -0.033018 +v -0.043516 0.003027 -0.021026 +v -0.044609 0.004171 -0.021720 +v -0.034758 0.003507 -0.023808 +v 0.046813 0.001754 -0.021032 +v 0.018039 0.012719 0.019662 +v -0.022249 0.001445 -0.026798 +v 0.023680 0.017958 0.008736 +v -0.033544 0.003773 -0.004029 +v -0.045561 0.008875 -0.022392 +v 0.018314 -0.019051 0.018412 +v 0.016363 0.009868 0.022212 +v -0.025720 0.021204 0.016638 +v 0.018193 0.014891 0.020454 +v 0.014030 -0.002960 -0.026663 +v -0.037497 0.000263 0.006108 +v 0.007899 0.000603 0.005600 +v 0.007917 -0.000676 0.006961 +v -0.028024 0.002765 -0.030068 +v -0.011689 0.011039 0.021628 +v -0.037620 0.001507 -0.024807 +v 0.022155 -0.018899 0.018557 +v 0.038567 -0.000358 -0.001914 +v -0.034926 0.011495 -0.023637 +v 0.039766 0.004370 0.005418 +v 0.008595 0.015374 0.023121 +v 0.031052 0.014455 0.014025 +v 0.019247 -0.019069 0.017466 +v 0.041856 0.001201 0.018653 +v 0.045412 -0.002776 -0.011161 +v 0.033719 -0.000834 0.016748 +v 0.035190 0.016030 0.021714 +v -0.004269 -0.003671 -0.011144 +v -0.011475 0.008335 0.006533 +v -0.005511 -0.001095 -0.004049 +v -0.026133 0.006792 -0.036916 +v 0.013411 0.015971 0.022789 +v 0.023826 0.009047 0.008946 +v -0.034152 -0.000918 -0.002918 +v -0.041744 0.009688 -0.020802 +v -0.040838 0.007501 -0.026011 +v -0.039199 0.010091 -0.033736 +v -0.038994 0.007290 -0.034097 +v -0.039112 0.006856 -0.034059 +v -0.031562 0.000747 0.022841 +v 0.035067 -0.000274 -0.000222 +v 0.035574 -0.000408 0.000905 +v -0.001095 0.003748 0.021564 +v -0.025627 0.007068 -0.008518 +v -0.025417 -0.002508 0.024083 +v -0.003199 0.007381 0.006163 +v 0.023813 0.007371 -0.009407 +v -0.020350 0.010998 0.022440 +v -0.001872 0.016824 0.021272 +v -0.002240 -0.000730 -0.010991 +v 0.011355 0.007519 0.018313 +v -0.017775 0.010976 0.021705 +v -0.020805 0.000298 -0.018643 +v 0.010165 0.007792 0.020712 +v -0.033842 0.005391 -0.037477 +v 0.029338 0.003908 -0.012475 +v 0.020860 -0.018842 0.015762 +v 0.044332 -0.000238 -0.022214 +v -0.036503 0.010929 -0.030622 +v -0.036480 0.010428 -0.030974 +v -0.031337 -0.001424 -0.028420 +v 0.000350 0.011203 0.014027 +v 0.029743 0.004646 0.012149 +v 0.007620 0.010469 0.022524 +v 0.012280 -0.001833 0.011857 +v -0.005706 0.000251 -0.022089 +v 0.043120 0.000686 0.022175 +v 0.047911 -0.000150 -0.014068 +v 0.022508 0.008642 0.008221 +v -0.029287 0.009864 -0.023408 +v -0.028268 0.009929 -0.023514 +v 0.022850 -0.018699 0.022850 +v -0.038513 0.009538 -0.025124 +v 0.039219 0.000752 -0.000516 +v -0.035325 0.007236 0.016722 +v -0.005789 0.000436 -0.022315 +v -0.004011 0.000684 -0.022697 +v -0.018739 0.007398 -0.003649 +v -0.011340 -0.002353 0.002715 +v -0.021625 0.022433 0.016932 +v -0.019339 0.021001 0.016559 +v -0.024195 0.003738 -0.037748 +v -0.037147 -0.000089 -0.028816 +v -0.008325 0.004310 -0.027834 +v -0.022791 0.004152 -0.021555 +v -0.009475 0.004364 -0.032666 +v -0.009330 0.004319 -0.027102 +v -0.019204 0.016802 0.024669 +v 0.011982 -0.001089 -0.005725 +v 0.049207 0.001130 -0.017613 +v -0.004995 0.002420 -0.022785 +v 0.026422 0.008994 -0.007736 +v 0.007466 0.000133 -0.021846 +v 0.010306 -0.001740 -0.024921 +v 0.001491 -0.000058 -0.029303 +v 0.026109 -0.018065 0.020360 +v -0.009385 0.014522 0.013285 +v 0.008037 -0.001584 0.006917 +v 0.023039 0.013428 -0.000493 +v 0.000318 0.008043 0.011167 +v -0.009311 -0.000740 0.002241 +v 0.016067 0.004082 0.020724 +v -0.034113 0.002450 -0.022608 +v -0.021941 0.000814 -0.021109 +v -0.009029 -0.002301 -0.033981 +v 0.000621 0.004365 -0.006969 +v 0.017450 0.009380 0.018478 +v -0.039152 0.005596 -0.024464 +v -0.016977 0.014039 0.006462 +v 0.005109 0.005014 0.002856 +v -0.019390 0.016592 0.012016 +v -0.042708 0.012246 -0.024160 +v 0.025101 -0.018499 0.018888 +v -0.006847 0.002084 -0.021770 +v -0.007133 -0.002893 -0.005989 +v 0.011910 -0.002760 0.014050 +v -0.044684 0.002487 -0.019257 +v 0.016833 0.002132 -0.014561 +v 0.025515 0.008151 -0.009637 +v -0.029406 0.000554 -0.010218 +v -0.035415 0.014728 -0.018320 +v -0.034084 0.012151 -0.034915 +v 0.017772 -0.018799 0.018061 +v 0.005588 -0.001461 0.012403 +v 0.012334 -0.003183 -0.005089 +v -0.021453 0.007511 -0.035706 +v 0.050865 -0.000717 -0.019543 +v 0.029937 0.017122 0.007367 +v 0.031962 -0.001450 0.015404 +v 0.001165 -0.000850 -0.030077 +v -0.029627 0.006875 -0.023922 +v -0.028360 0.007026 -0.023662 +v 0.036968 -0.000899 -0.006154 +v 0.030000 0.001971 0.000609 +v -0.012868 0.004035 -0.019455 +v 0.044220 0.015307 0.010156 +v -0.001837 0.014256 0.018935 +v 0.013813 0.002664 0.012606 +v 0.014358 0.003363 0.011384 +v 0.018204 0.003915 0.009583 +v -0.005999 0.000965 -0.001282 +v -0.028235 -0.002107 -0.020446 +v -0.041346 0.003477 -0.031738 +v -0.035245 -0.002379 0.001179 +v 0.009672 0.016187 0.020291 +v -0.031007 -0.002290 -0.018464 +v -0.022395 0.011474 0.022527 +v 0.015388 0.015814 0.022930 +v 0.038266 0.000672 -0.003970 +v 0.037632 0.000529 -0.003319 +v 0.009486 0.016677 0.023228 +v 0.040608 0.005077 0.009881 +v -0.002580 -0.000409 0.023377 +v -0.035345 -0.004095 0.009901 +v 0.028358 0.012851 0.006061 +v 0.028441 0.013093 0.005478 +v -0.035014 -0.000852 -0.001572 +v 0.026358 0.009315 -0.000982 +v -0.028915 0.000510 -0.024491 +v 0.050833 0.002560 -0.022136 +v 0.046314 0.002909 0.004983 +v -0.017523 0.015344 0.011943 +v -0.029713 -0.002069 -0.019929 +v -0.029688 0.011424 -0.030002 +v -0.034313 -0.002925 -0.000877 +v 0.023974 0.017526 0.024385 +v 0.010454 0.012071 0.022740 +v 0.025606 0.011458 0.006870 +v -0.005221 0.009148 0.024662 +v 0.034557 0.000927 -0.015986 +v -0.035698 0.006654 0.002134 +v 0.019620 -0.018724 0.016529 +v -0.043302 0.001010 -0.032930 +v 0.041211 0.004105 0.015545 +v 0.045696 0.010728 0.002144 +v 0.025263 0.011141 0.014267 +v 0.001547 0.005248 -0.004787 +v -0.023637 0.004768 -0.025252 +v 0.050897 -0.000511 -0.018963 +v -0.031022 -0.000530 -0.032442 +v 0.022454 -0.018384 0.017336 +v -0.027642 0.007250 -0.023799 +v -0.036594 0.007754 -0.038581 +v 0.028820 0.018144 0.009217 +v -0.010519 0.004862 -0.040239 +v -0.000624 -0.000462 -0.031293 +v -0.001647 -0.000783 -0.031407 +v -0.038241 -0.002411 -0.031748 +v 0.039533 -0.002973 -0.005584 +v -0.040448 0.004671 -0.019349 +v -0.012736 -0.001506 -0.037465 +v -0.036694 -0.001183 0.005527 +v -0.013489 0.005759 -0.019199 +v 0.047582 0.004547 0.004047 +v 0.006441 -0.000936 0.010233 +v 0.031498 0.002653 0.012974 +v -0.010512 -0.002226 -0.007123 +v -0.006445 0.011327 0.014428 +v -0.001087 0.001600 -0.028702 +v -0.037699 0.009808 -0.033071 +v 0.001328 0.014367 0.020988 +v -0.025563 -0.002829 -0.028713 +v -0.025911 -0.003096 -0.028722 +v 0.002132 -0.000662 0.017999 +v -0.039776 -0.000126 -0.033968 +v 0.005145 0.001709 0.012475 +v -0.043984 0.009503 -0.024919 +v 0.019825 0.011832 0.007745 +v 0.020561 0.012205 0.007186 +v -0.038428 0.012837 -0.036740 +v -0.025817 0.004496 -0.029600 +v 0.023750 0.002836 -0.005342 +v 0.022173 0.014438 0.023836 +v 0.030451 0.000297 0.007904 +v -0.003137 -0.003625 0.023052 +v -0.003255 -0.000285 -0.027499 +v 0.037216 -0.001356 -0.008316 +v 0.027937 0.009138 0.013297 +v 0.030303 0.009541 0.013029 +v -0.029910 0.000623 -0.009226 +v -0.018330 0.008129 0.024665 +v -0.022589 0.009495 -0.031375 +v 0.042188 -0.002288 -0.002965 +v 0.040107 0.011199 0.022990 +v 0.050824 -0.001152 -0.020176 +v 0.021781 -0.018323 0.021047 +v 0.028659 0.000276 0.006963 +v -0.047152 0.011272 -0.028082 +v -0.045521 0.011621 -0.027231 +v -0.026089 0.009086 -0.024448 +v 0.025506 0.011060 0.006566 +v -0.035091 0.007965 -0.024376 +v 0.003354 0.006173 0.004690 +v -0.007633 -0.003468 -0.014230 +v -0.007795 -0.003638 -0.013106 +v -0.000099 0.002614 0.020933 +v -0.004487 0.002276 -0.026688 +v -0.004473 0.009923 0.014957 +v -0.011305 0.007142 0.005572 +v 0.017371 -0.018483 0.019750 +v 0.016738 -0.018514 0.019522 +v -0.024193 -0.002602 -0.024929 +v 0.026299 0.003724 -0.009264 +v 0.038003 -0.002268 -0.011779 +v 0.029957 0.001556 0.010833 +v -0.031465 0.002581 0.023057 +v 0.008379 0.001994 -0.020529 +v 0.003423 0.001384 0.016284 +v 0.017469 -0.018839 0.019246 +v -0.013859 0.005806 -0.028124 +v -0.008940 0.002565 -0.041538 +v -0.039258 0.003185 -0.023687 +v -0.037579 0.001597 0.007280 +v -0.000970 -0.002019 -0.013721 +v -0.017254 0.004070 -0.001493 +v -0.014932 0.020351 0.023563 +v 0.037237 -0.000876 -0.002096 +v -0.025258 0.010182 -0.019622 +v -0.016035 0.000669 0.000678 +v -0.035965 0.005395 0.017084 +v 0.017241 0.010425 0.019438 +v -0.037828 0.012221 -0.024857 +v 0.013211 0.001732 -0.022905 +v 0.044788 -0.001206 -0.011064 +v 0.044061 -0.000551 -0.010373 +v -0.013764 0.005216 -0.029263 +v 0.029275 0.018013 0.003462 +v 0.038983 0.014840 0.008210 +v 0.038610 0.015400 0.009569 +v 0.032530 0.003178 0.013679 +v -0.006094 -0.000317 -0.022139 +v 0.029295 -0.003419 0.007519 +v -0.024258 0.009909 -0.022570 +v -0.037271 -0.000187 0.005008 +v -0.001717 -0.002596 -0.012773 +v -0.027876 0.004870 -0.029978 +v 0.024566 -0.017863 0.018714 +v -0.022902 -0.001556 -0.026724 +v -0.029729 0.006442 -0.007143 +v 0.037096 -0.000408 -0.004262 +v 0.021536 0.007130 0.009033 +v -0.020942 0.005715 -0.037344 +v -0.026713 0.008231 -0.020857 +v 0.029569 0.015726 0.001027 +v 0.011158 0.005369 0.022279 +v 0.010422 0.005670 0.022834 +v -0.036059 0.011942 -0.024240 +v -0.006902 0.009571 0.010540 +v -0.004691 0.017303 0.023677 +v 0.027925 0.000905 0.009414 +v 0.027462 0.001201 0.010215 +v -0.037865 -0.000041 -0.019535 +v -0.017207 0.013688 0.019215 +v 0.022561 -0.018645 0.018447 +v -0.028298 0.013678 0.014919 +v 0.031209 0.001894 0.013105 +v 0.025566 0.003054 0.010115 +v -0.044419 0.004623 -0.022903 +v -0.044815 0.005096 -0.022441 +v 0.023447 0.007984 0.012265 +v 0.004786 0.005236 -0.005317 +v 0.044178 -0.001463 -0.021461 +v -0.020855 0.009372 -0.019866 +v 0.000206 0.003630 0.019800 +v 0.017051 -0.003808 -0.000123 +v -0.011609 0.007902 0.024669 +v -0.007940 0.003729 -0.021705 +v 0.023219 0.014731 0.004148 +v -0.021562 0.019057 0.013507 +v 0.023848 0.002950 -0.021645 +v -0.025983 0.012757 0.011383 +v 0.010976 0.005311 0.022095 +v 0.042849 0.014569 0.006917 +v 0.045247 0.014013 0.008190 +v 0.042114 0.002873 -0.008128 +v -0.026944 0.008948 -0.004753 +v 0.025893 0.002370 0.006368 +v -0.023031 0.003722 -0.029301 +v -0.036834 0.008586 -0.033768 +v 0.027326 0.013380 0.011770 +v -0.016581 0.005087 -0.036632 +v 0.032625 0.004933 0.011729 +v -0.013623 0.001459 0.004206 +v 0.039199 0.010937 0.004116 +v 0.029101 0.015324 0.018933 +v 0.007904 0.016514 0.022452 +v -0.015903 0.005495 -0.012557 +v -0.030254 0.008430 -0.022892 +v -0.025063 -0.002345 -0.024576 +v 0.029799 0.000590 0.009861 +v 0.009406 0.000544 0.001109 +v -0.036074 -0.002676 0.004669 +v 0.035714 -0.002337 0.000312 +v 0.039315 0.005788 0.008829 +v 0.044303 0.003685 0.011835 +v 0.042615 0.003658 0.013808 +v 0.020374 -0.017913 0.015800 +v -0.027996 0.004828 -0.034664 +v -0.034489 -0.000569 -0.028800 +v -0.033108 -0.001133 -0.028305 +v 0.030206 0.001755 0.011523 +v 0.040364 0.014989 0.021146 +v 0.024849 -0.018376 0.023007 +v -0.034542 -0.001097 -0.032024 +v -0.033352 -0.002690 -0.031684 +v -0.011291 -0.002266 -0.036509 +v 0.019128 0.014119 0.018583 +v 0.009748 0.015879 0.023326 +v -0.030677 0.000831 -0.023135 +v -0.030032 -0.000017 -0.022916 +v 0.025511 -0.017581 0.021539 +v 0.008844 -0.002015 0.005247 +v 0.008922 -0.002346 0.004929 +v -0.030150 -0.001414 -0.019923 +v -0.037492 0.003348 0.010996 +v -0.046585 0.005178 -0.021027 +v -0.036573 0.004118 0.003230 +v -0.039396 0.005757 -0.038245 +v 0.031669 0.016395 0.019268 +v 0.023079 0.016164 0.023904 +v -0.017520 0.011872 0.020329 +v -0.042702 0.004975 -0.037864 +v -0.014923 0.019504 0.023214 +v -0.023476 0.022262 0.023094 +v 0.026806 0.014893 0.014197 +v -0.006756 -0.000238 -0.020740 +v 0.016007 -0.002298 0.023614 +v -0.031354 0.011637 0.013749 +v 0.025131 0.012532 0.021986 +v 0.021472 -0.018286 0.019845 +v 0.038599 0.001234 -0.003401 +v -0.014923 0.006376 -0.026075 +v -0.019367 -0.004246 0.024669 +v 0.020850 0.002431 -0.015161 +v -0.018896 0.008215 -0.021009 +v 0.027231 0.002044 0.011160 +v 0.001814 0.013106 0.019728 +v 0.015431 0.004094 0.019244 +v -0.030375 -0.002354 -0.034280 +v -0.031014 -0.001682 -0.033193 +v 0.024376 0.002776 -0.011856 +v -0.035887 -0.003545 0.006700 +v -0.000974 -0.002907 -0.014954 +v -0.028332 0.013970 0.013897 +v -0.015313 -0.002717 -0.001089 +v 0.025839 0.003796 -0.015486 +v -0.016227 0.005792 -0.010004 +v -0.030362 0.001957 -0.030402 +v -0.020110 0.009000 -0.020114 +v -0.043594 0.004151 -0.037208 +v -0.043973 0.003793 -0.035826 +v 0.041422 0.009121 -0.000488 +v -0.027588 0.019681 0.021219 +v -0.010217 0.004087 -0.033858 +v -0.024861 0.007254 -0.034914 +v -0.017495 0.004626 0.001152 +v 0.025558 0.002617 -0.022309 +v 0.025750 0.020002 0.004976 +v -0.026595 0.008287 -0.028913 +v 0.025163 0.018841 0.003486 +v 0.026071 -0.016808 0.018132 +v 0.008677 0.003965 -0.007256 +v 0.016705 -0.018074 0.018759 +v -0.023222 0.008436 -0.028568 +v 0.009873 0.009839 0.019625 +v 0.009748 0.009298 0.019443 +v -0.044130 0.002894 -0.035979 +v -0.044113 0.002074 -0.034429 +v -0.029477 -0.000396 0.023733 +v 0.044129 0.002634 0.006371 +v -0.023373 0.001639 -0.026535 +v 0.052215 -0.001220 -0.017794 +v 0.037131 0.005962 0.010019 +v -0.024637 -0.000651 -0.014399 +v 0.046494 0.013098 0.009360 +v -0.017236 0.017809 0.022562 +v -0.036469 -0.002491 0.006084 +v 0.022216 0.016365 0.010811 +v 0.043691 0.000966 -0.018723 +v 0.044678 0.001114 -0.017540 +v -0.024962 0.001225 -0.013540 +v 0.047817 0.009550 0.005608 +v 0.052479 0.000286 -0.013141 +v 0.023735 -0.017603 0.018876 +v 0.022059 0.003323 -0.021246 +v 0.013323 0.003694 0.012870 +v -0.035195 0.011153 -0.030761 +v -0.045521 0.003630 -0.020746 +v -0.012280 -0.001081 0.002421 +v -0.006437 -0.003330 -0.008514 +v 0.023103 0.007597 0.010131 +v 0.011287 0.010336 0.022337 +v 0.018364 0.002768 -0.015732 +v 0.042479 0.016376 0.013017 +v -0.013720 0.005228 -0.033681 +v -0.030591 0.009556 -0.033316 +v 0.045620 -0.003311 -0.011654 +v 0.023368 -0.017331 0.018286 +v 0.022824 0.013472 0.020448 +v -0.023511 0.024549 0.016013 +v -0.021427 0.003598 -0.026286 +v 0.037531 -0.000979 0.018147 +v -0.025739 -0.000178 -0.020645 +v -0.026937 -0.001840 -0.020523 +v -0.024396 0.011936 0.004062 +v -0.000409 0.002651 -0.009430 +v -0.037043 0.006951 -0.039281 +v -0.042051 0.011629 -0.025166 +v -0.030853 0.008229 -0.003329 +v -0.003930 0.001985 -0.027132 +v -0.029910 0.005577 -0.019570 +v -0.035567 0.002937 -0.001390 +v -0.035098 0.004194 -0.000759 +v -0.047698 0.010046 -0.027366 +v 0.023203 0.012912 0.019491 +v 0.017258 -0.001833 -0.011317 +v -0.015748 0.010245 0.022666 +v 0.019397 0.004275 0.009508 +v -0.028625 -0.000928 -0.037631 +v -0.030025 -0.001245 -0.036949 +v -0.041208 0.005076 -0.033229 +v -0.040246 0.005413 -0.033738 +v 0.022940 0.015412 0.002599 +v 0.014542 0.003299 0.017940 +v -0.011441 0.010109 0.008820 +v 0.018946 0.009385 0.008093 +v -0.021704 0.008690 -0.003539 +v 0.022834 -0.017680 0.022245 +v -0.018760 0.002300 -0.037894 +v 0.022793 0.014942 0.003115 +v 0.036670 0.006305 0.008671 +v 0.025792 0.016480 0.015189 +v 0.042894 -0.003136 -0.005421 +v 0.001003 0.006955 0.012113 +v 0.009898 0.013986 0.021756 +v -0.014122 0.005595 -0.035156 +v 0.023625 0.014325 -0.001180 +v 0.022284 0.000412 -0.025532 +v -0.035393 0.011451 -0.023784 +v -0.001779 0.000006 -0.022863 +v -0.009009 0.003354 -0.031797 +v 0.021681 0.015692 0.019910 +v 0.040053 -0.001534 -0.017378 +v -0.008592 -0.001160 -0.033871 +v -0.021111 0.009405 -0.020943 +v -0.025688 -0.002023 -0.038378 +v 0.036395 0.002168 0.016335 +v 0.020179 -0.018156 0.019599 +v 0.043519 0.001997 0.004866 +v -0.008374 0.002280 0.002678 +v 0.028460 0.003256 -0.001229 +v 0.024587 0.013299 0.016473 +v -0.031389 0.009585 -0.019852 +v 0.037141 -0.005468 0.024670 +v -0.009435 -0.001730 -0.000205 +v -0.010704 -0.000246 -0.035945 +v -0.010557 0.016478 0.015903 +v -0.031132 0.007015 -0.034362 +v -0.041537 0.004670 -0.034594 +v -0.029159 0.006016 -0.024843 +v -0.003796 0.007862 0.006931 +v -0.006834 0.007406 0.005670 +v 0.039871 0.006581 -0.001440 +v -0.038873 0.013625 -0.020173 +v 0.046455 -0.002729 -0.020284 +v -0.001414 0.001391 0.022516 +v -0.026550 0.009614 -0.032957 +v -0.040022 0.008445 -0.025834 +v -0.013713 0.003036 -0.008072 +v 0.040102 0.004812 0.006969 +v 0.019811 0.010649 0.018215 +v 0.014079 0.006342 0.021261 +v -0.036173 0.005091 0.002497 +v -0.040273 0.013250 -0.024468 +v -0.007691 0.001867 0.001478 +v -0.008656 0.003966 -0.035421 +v -0.011851 0.002167 0.004510 +v -0.036296 0.003344 0.017200 +v 0.001312 0.010152 0.018817 +v 0.019895 0.009980 0.018601 +v -0.021829 -0.000762 -0.028364 +v -0.022499 -0.002358 -0.028451 +v -0.015820 0.005862 -0.027413 +v -0.036336 0.002499 -0.023258 +v -0.036276 0.002640 -0.023414 +v 0.017634 -0.017985 0.017847 +v -0.004212 -0.003406 -0.010946 +v -0.003536 -0.002178 -0.009722 +v -0.013471 0.014726 0.009850 +v -0.024443 0.007459 -0.028567 +v -0.015128 0.004553 0.004210 +v -0.014437 0.005836 -0.019694 +v 0.027677 0.014561 0.011913 +v -0.002999 0.006807 0.021037 +v 0.019567 -0.017838 0.016456 +v -0.034156 0.011782 -0.031252 +v -0.031985 0.011316 -0.030291 +v -0.037135 0.004131 -0.022736 +v 0.029934 -0.001142 0.008935 +v 0.019520 0.006533 0.008669 +v 0.019838 0.007255 0.008430 +v -0.012457 0.003739 -0.037314 +v -0.018191 -0.000642 -0.039042 +v 0.014686 0.000372 0.021758 +v -0.035379 -0.002343 -0.031106 +v 0.000500 0.000231 -0.030902 +v -0.007244 0.002635 -0.020988 +v -0.026193 0.012764 0.008091 +v 0.024307 0.011128 0.023559 +v 0.014041 0.000579 0.010626 +v -0.007949 0.003141 -0.033075 +v -0.042314 0.014575 -0.022948 +v -0.034318 0.002856 -0.022975 +v 0.023124 0.017640 0.022574 +v 0.028728 0.001572 0.010289 +v 0.015796 0.015871 0.022599 +v -0.027512 0.008646 -0.020552 +v 0.021749 -0.017270 0.020420 +v -0.039009 0.001487 -0.029782 +v 0.023938 0.003649 -0.017908 +v -0.036946 0.001261 -0.034107 +v -0.022986 0.009114 0.023927 +v -0.015587 0.002015 -0.037694 +v -0.005752 0.013405 0.015906 +v 0.019822 -0.001812 -0.003644 +v -0.037055 -0.000537 0.011618 +v 0.012503 0.010484 0.022182 +v -0.024237 0.002750 -0.013479 +v 0.020780 0.004554 0.009890 +v -0.030638 0.006691 0.022690 +v -0.022833 0.000350 -0.015704 +v 0.030480 0.015890 0.017954 +v 0.031673 0.015974 0.016139 +v -0.010874 0.004828 -0.032297 +v 0.021439 -0.017854 0.020377 +v -0.009589 0.012823 0.023779 +v -0.021802 0.008659 -0.004568 +v 0.012095 0.000998 -0.023893 +v -0.011467 0.000932 -0.009798 +v 0.043373 0.004561 0.017868 +v 0.019736 -0.000754 -0.026401 +v -0.012991 0.012420 0.020143 +v 0.033256 -0.002441 0.015790 +v 0.003550 -0.003078 -0.020380 +v 0.008185 -0.001928 0.006338 +v -0.012915 0.015124 0.011507 +v -0.010006 0.003629 -0.041179 +v -0.025863 -0.003746 -0.020991 +v 0.027499 0.012586 0.014935 +v -0.011243 0.004403 -0.020252 +v -0.044624 0.006305 -0.023134 +v -0.028112 -0.000290 -0.023914 +v -0.002103 0.009305 0.006927 +v 0.000892 0.011477 0.015469 +v 0.013355 0.003468 0.014515 +v 0.034724 0.005589 0.010932 +v -0.012518 -0.000804 -0.006870 +v -0.027061 0.005888 -0.009739 +v 0.044919 0.003427 0.009043 +v 0.023377 0.015201 0.021684 +v -0.000760 0.000686 -0.012131 +v -0.035961 -0.000812 0.015589 +v 0.021780 0.010998 0.022329 +v 0.011499 0.017400 0.022858 +v -0.026134 0.019022 0.024671 +v 0.028251 0.013252 0.009039 +v 0.028075 0.013411 0.010149 +v -0.022963 0.009799 -0.020256 +v -0.023578 0.009952 -0.001141 +v 0.040646 0.001223 -0.010010 +v -0.003675 0.010771 0.012143 +v 0.002837 0.003605 0.015932 +v -0.039420 -0.000992 -0.033445 +v 0.048333 -0.000954 -0.010983 +v -0.029143 -0.000343 -0.023168 +v -0.027906 0.001684 -0.038336 +v -0.004157 0.002077 -0.028826 +v 0.039913 0.006810 0.023061 +v 0.043653 -0.000670 -0.021674 +v -0.009290 0.002915 -0.037741 +v 0.029059 0.012376 0.002456 +v 0.020160 -0.003581 -0.010384 +v -0.004605 0.004027 -0.000495 +v 0.010860 0.002728 -0.009050 +v -0.035198 0.008922 0.014336 +v 0.021079 -0.001528 -0.006040 +v -0.007668 -0.001399 -0.000629 +v 0.038157 0.001262 -0.000172 +v 0.000101 0.013604 0.016976 +v 0.019105 0.002005 -0.014684 +v 0.015173 -0.001207 0.004762 +v 0.000701 0.007142 0.013816 +v -0.005587 0.004590 0.024669 +v -0.033275 0.000871 -0.022434 +v -0.034364 -0.002750 -0.030694 +v -0.003307 0.010468 0.009481 +v 0.048769 -0.000999 -0.012757 +v -0.040589 0.006485 -0.034248 +v 0.015010 0.007140 0.021233 +v 0.018617 0.002884 0.007937 +v -0.021493 0.008562 -0.029094 +v 0.023373 0.009499 -0.001389 +v -0.016605 0.014957 0.018895 +v -0.023164 -0.002440 -0.021269 +v 0.008348 -0.002561 0.006051 +v 0.047402 0.000779 -0.022748 +v -0.034138 0.009885 0.005307 +v -0.031107 0.002801 -0.008273 +v 0.022787 0.013299 0.004419 +v 0.023152 0.012187 0.001987 +v 0.023052 0.011891 0.021110 +v 0.010738 0.017818 0.021216 +v 0.023369 0.010814 -0.001552 +v -0.025762 0.006570 0.024229 +v -0.019742 0.008476 -0.031227 +v 0.048274 -0.000789 -0.021420 +v -0.025032 -0.003180 -0.028670 +v -0.025197 -0.003387 -0.028701 +v -0.036023 -0.002562 0.013155 +v 0.046337 -0.000624 -0.013034 +v 0.005206 -0.001043 -0.020649 +v -0.012845 0.005954 -0.038189 +v 0.037432 -0.003060 -0.017537 +v -0.027998 0.011209 -0.019940 +v 0.019015 0.007768 0.021432 +v -0.002964 0.008299 0.022841 +v 0.047214 0.011448 0.007569 +v 0.016857 -0.017629 0.019711 +v -0.020561 -0.000597 -0.019597 +v -0.007155 0.003049 -0.022386 +v -0.023491 0.002626 -0.038564 +v -0.006154 -0.001928 -0.005781 +v 0.018342 -0.017570 0.019545 +v 0.019526 -0.017528 0.019701 +v 0.045874 0.001177 -0.024192 +v -0.027229 -0.002859 -0.011093 +v 0.004877 -0.000665 0.013894 +v 0.039033 0.003915 0.023989 +v -0.014417 0.017279 0.017602 +v 0.042680 0.003704 0.017202 +v -0.024752 -0.001512 -0.025751 +v -0.019233 0.007373 -0.032952 +v -0.030072 0.002329 -0.037412 +v -0.015155 -0.002172 -0.000358 +v 0.037826 0.006140 0.011650 +v 0.019603 -0.003013 -0.011082 +v 0.000732 0.008754 0.013725 +v 0.047812 0.007747 0.002520 +v -0.034416 0.006203 -0.000428 +v -0.033469 0.007912 -0.000090 +v 0.024789 0.011726 0.014138 +v 0.025692 0.011783 0.012619 +v -0.004300 0.000054 0.024532 +v 0.013952 0.009621 0.019433 +v -0.038356 0.003807 -0.022870 +v 0.027995 0.011615 0.002436 +v -0.001851 0.006984 0.019590 +v -0.020161 0.021930 0.023081 +v 0.047190 -0.000256 -0.023217 +v -0.032486 0.000632 -0.033481 +v 0.041501 0.016816 0.016086 +v -0.015347 -0.002639 -0.041637 +v 0.050874 0.000568 -0.019027 +v 0.011478 -0.002316 -0.025583 +v 0.021960 0.007763 0.008653 +v -0.033689 0.002114 -0.035064 +v 0.047419 0.006203 0.008761 +v -0.039499 0.001215 -0.021136 +v -0.023201 0.013720 0.024268 +v 0.022835 0.006788 0.011803 +v 0.030483 0.002202 -0.000279 +v 0.021761 -0.017365 0.015909 +v -0.009921 0.000113 -0.035666 +v -0.003550 -0.000859 -0.026083 +v -0.010500 0.001604 0.004065 +v 0.052293 -0.000318 -0.012951 +v 0.028876 0.016009 0.009751 +v 0.020494 -0.000287 -0.011797 +v -0.034123 0.010432 0.011894 +v 0.025943 -0.003308 -0.026446 +v 0.032727 0.015948 0.015033 +v -0.037422 0.002167 0.014085 +v -0.000507 -0.000787 -0.034199 +v -0.034560 0.007830 -0.032516 +v 0.039870 0.002672 -0.007394 +v -0.009319 0.006223 0.004851 +v -0.001435 0.006289 0.019306 +v 0.009571 0.010582 0.018731 +v -0.018020 0.004709 -0.015629 +v 0.017011 0.003072 0.009743 +v -0.016930 0.019090 0.023285 +v -0.010985 0.005244 -0.039706 +v 0.049802 0.001442 -0.018610 +v -0.016105 0.014738 0.008016 +v -0.037772 0.002124 -0.037056 +v -0.031822 0.007025 -0.004450 +v -0.027772 0.010502 0.001033 +v -0.014508 -0.000449 -0.001557 +v 0.001949 0.004281 -0.009351 +v -0.037046 0.014764 -0.018727 +v -0.015855 0.003807 -0.019917 +v -0.043409 0.005181 -0.024013 +v -0.036081 0.006370 0.014589 +v 0.034843 0.008483 0.010579 +v -0.030806 0.005747 -0.006405 +v 0.023082 0.013997 0.019637 +v -0.023128 -0.002836 -0.028763 +v 0.016407 -0.017467 0.019633 +v -0.045771 0.008781 -0.026341 +v -0.025867 0.009429 -0.023420 +v 0.045534 0.003456 0.007338 +v 0.027372 0.003321 -0.000397 +v 0.013049 0.004743 0.015143 +v -0.042110 0.005863 -0.038126 +v -0.021077 0.005345 -0.021703 +v 0.051722 -0.001440 -0.016057 +v -0.014273 -0.000387 0.002169 +v -0.027443 0.003661 -0.037749 +v -0.006309 0.003232 -0.035758 +v 0.019304 -0.001318 -0.011771 +v 0.008021 0.003827 -0.003040 +v 0.042005 0.011028 0.021383 +v -0.036878 0.006102 0.005049 +v 0.024972 0.013032 -0.001860 +v -0.031113 0.001420 -0.035553 +v -0.038943 0.001419 -0.022155 +v 0.043273 0.002518 0.019769 +v -0.021499 0.023132 0.019407 +v 0.035905 0.015884 0.012068 +v 0.037293 -0.004110 0.019027 +v -0.004197 0.006047 0.002448 +v -0.025687 0.020118 0.024296 +v 0.026126 0.012814 0.014099 +v 0.026272 0.012530 0.014192 +v -0.048224 0.011044 -0.027375 +v -0.034448 0.010676 -0.028551 +v 0.016802 -0.001027 0.024659 +v -0.009846 0.011935 0.023004 +v -0.035845 0.001867 -0.023180 +v -0.035902 0.001556 -0.023188 +v -0.002986 0.011161 0.013906 +v -0.012875 0.009971 0.022729 +v 0.039787 0.012758 0.004947 +v -0.029004 0.011849 -0.019889 +v 0.023079 -0.017247 0.017143 +v -0.035003 0.004048 -0.002292 +v 0.036050 0.007535 0.009378 +v 0.036412 0.007010 0.009070 +v -0.042786 0.011220 -0.025842 +v -0.016455 0.001228 -0.000154 +v 0.024772 0.007664 -0.006537 +v -0.010339 -0.015315 0.024669 +v -0.042771 0.005424 -0.037190 +v -0.041584 0.006904 -0.037338 +v 0.016337 0.005952 0.009631 +v 0.019842 0.003169 0.007558 +v -0.017711 0.018745 0.023560 +v -0.019099 0.019061 0.024666 +v 0.015292 0.003190 -0.020751 +v -0.035728 0.008220 -0.038288 +v -0.005685 -0.017273 -0.030149 +v -0.025535 0.003713 -0.012534 +v -0.004925 -0.017247 -0.030406 +v 0.042747 0.016147 0.015821 +v 0.023336 0.003519 -0.020017 +v 0.024830 0.003400 -0.020527 +v 0.025713 0.014427 0.015638 +v 0.000813 -0.002425 0.019585 +v 0.024080 -0.016259 0.021505 +v 0.023576 0.019350 0.010401 +v 0.023666 0.019476 0.009561 +v 0.023175 0.002988 0.005633 +v 0.027311 0.011926 0.010854 +v -0.030288 0.011964 0.008102 +v -0.004242 0.001448 -0.032564 +v -0.032944 0.009278 0.018153 +v 0.024980 -0.016761 0.021697 +v 0.048627 -0.000822 -0.011765 +v -0.036116 0.011432 -0.035238 +v 0.009713 0.014658 0.022642 +v 0.013283 0.000155 0.012971 +v -0.011218 0.013237 0.022320 +v -0.012181 0.014123 0.021332 +v -0.003206 -0.000129 -0.026801 +v 0.009807 0.004071 -0.012779 +v 0.013842 0.004552 0.017028 +v -0.040367 0.003995 -0.023255 +v -0.005472 -0.000314 -0.023146 +v 0.034663 0.006094 0.010669 +v 0.002959 0.005042 -0.006652 +v 0.047765 0.000325 -0.021572 +v 0.010221 0.013967 0.022305 +v 0.030268 0.015121 0.002403 +v -0.026298 -0.000649 -0.025267 +v -0.018369 0.004713 -0.027700 +v -0.031634 0.000641 -0.022482 +v -0.031611 0.009266 -0.030240 +v 0.039077 0.003972 0.014907 +v 0.040274 0.008475 0.023133 +v -0.014195 -0.000174 -0.004482 +v 0.012081 -0.001905 0.012960 +v 0.012055 -0.001861 0.012992 +v -0.004852 0.017191 0.021000 +v -0.045325 0.009915 -0.026002 +v 0.026018 0.010504 0.012562 +v 0.001837 0.012545 0.018035 +v 0.022610 0.017390 0.008026 +v -0.037870 0.006351 -0.039347 +v -0.020935 0.008153 -0.005330 +v -0.008424 -0.002198 -0.002078 +v -0.016581 0.019668 0.013136 +v -0.039624 0.003004 -0.029639 +v 0.023552 0.010421 0.007035 +v -0.041652 0.004615 -0.024456 +v 0.044696 -0.000760 -0.001699 +v -0.033324 0.008289 -0.031434 +v -0.017143 0.006953 -0.020164 +v -0.001909 0.009472 0.024648 +v -0.016207 0.005029 -0.006155 +v -0.003479 0.008446 0.022460 +v -0.003756 0.008494 0.022639 +v -0.022983 -0.001751 -0.016185 +v -0.027938 0.000406 -0.019946 +v 0.026362 0.012443 0.014083 +v -0.034401 0.010429 -0.028780 +v -0.021075 0.006368 -0.011456 +v 0.017382 -0.017113 0.018384 +v 0.039646 -0.001077 -0.012527 +v -0.024614 0.008710 -0.032311 +v 0.028356 0.013009 0.004844 +v -0.036409 0.007239 0.013541 +v -0.024297 0.005219 -0.037725 +v -0.037367 -0.003063 -0.030273 +v -0.034455 0.002459 0.020399 +v 0.019600 0.001833 -0.024502 +v 0.016413 0.000370 0.024155 +v -0.043713 0.010347 -0.024918 +v 0.043980 0.003575 0.008690 +v -0.009429 0.004219 -0.022422 +v -0.011377 -0.001594 0.001860 +v 0.010333 0.002615 -0.020514 +v 0.037349 0.005673 0.008033 +v 0.001601 -0.000586 -0.029673 +v -0.036685 0.003979 -0.023633 +v 0.036282 -0.000266 -0.011570 +v -0.006346 -0.016913 -0.029619 +v 0.014881 0.001907 0.020314 +v -0.004394 -0.017045 -0.029933 +v 0.047046 0.003737 -0.001930 +v -0.028985 -0.000134 -0.037567 +v -0.007317 0.015501 0.024666 +v -0.041410 0.005877 -0.025047 +v 0.038122 0.002433 0.001503 +v -0.027705 0.004357 -0.025235 +v -0.027770 0.005069 -0.025230 +v -0.026392 0.004364 -0.025520 +v 0.026334 0.011593 0.011003 +v -0.041960 0.006910 -0.025941 +v 0.028728 0.001706 -0.021959 +v 0.038655 -0.001952 -0.011039 +v -0.016759 0.006995 -0.021518 +v 0.042022 -0.001488 0.023056 +v -0.041214 0.002559 -0.032524 +v -0.032960 -0.001843 -0.004665 +v -0.013559 0.004463 -0.036118 +v -0.027141 0.005496 -0.034937 +v -0.027600 0.005278 -0.034281 +v -0.004626 -0.016473 -0.031148 +v 0.045621 0.006386 0.013047 +v 0.040514 0.014789 0.007362 +v -0.004796 0.002118 -0.029137 +v -0.005486 -0.016894 -0.031382 +v -0.003578 0.016012 0.019752 +v 0.022606 0.012994 0.019281 +v -0.032386 0.010820 -0.029861 +v -0.003316 -0.000336 -0.032935 +v 0.038830 0.017173 0.017626 +v 0.025662 0.015365 0.015868 +v -0.014302 0.019579 0.021278 +v -0.039774 0.002537 -0.035473 +v -0.037403 0.008929 -0.037268 +v -0.017424 0.005185 -0.021276 +v -0.017633 0.021137 0.020857 +v -0.002180 0.014276 0.015097 +v -0.003359 0.008381 0.023063 +v 0.031575 0.000170 -0.021546 +v -0.007523 -0.000989 -0.032974 +v -0.023011 0.014215 0.010259 +v -0.004007 0.006023 0.022884 +v 0.010925 0.003653 -0.016562 +v -0.006169 -0.000694 -0.002291 +v 0.017620 0.003491 -0.018576 +v -0.028149 0.014329 0.016518 +v -0.028287 0.013815 0.016912 +v 0.013288 0.005097 0.021326 +v -0.023888 0.012852 0.004753 +v -0.018205 0.000967 -0.038582 +v -0.037256 0.009707 -0.019432 +v 0.047339 0.011411 0.009510 +v 0.037693 -0.002830 -0.015541 +v 0.032095 0.003348 -0.011087 +v 0.042307 0.014797 0.019223 +v -0.021814 0.000679 -0.029328 +v -0.018434 0.011609 0.020951 +v -0.041652 0.003256 -0.033320 +v -0.010353 0.006038 0.004776 +v 0.038225 0.001430 0.000582 +v 0.045243 0.000178 -0.006747 +v 0.026744 -0.016501 0.019614 +v -0.003452 0.008355 0.007471 +v 0.016504 -0.017266 0.019731 +v 0.038753 0.005137 0.002056 +v -0.037138 0.007766 -0.037652 +v -0.026725 0.009441 -0.002605 +v -0.007826 -0.002708 -0.031837 +v -0.002179 0.013728 0.014523 +v 0.009812 -0.003454 0.002373 +v 0.017255 -0.017238 0.018962 +v 0.006708 -0.001706 -0.022523 +v 0.039931 -0.002465 -0.014381 +v -0.013373 -0.001707 -0.002591 +v -0.013694 -0.001530 -0.001561 +v -0.039717 -0.001041 -0.030890 +v -0.033007 0.005005 -0.031495 +v -0.001252 0.001328 -0.023731 +v -0.026811 -0.002076 -0.038060 +v 0.044809 0.004474 0.014040 +v -0.036298 0.007881 -0.024546 +v -0.023825 -0.002977 -0.021134 +v -0.042242 0.004732 -0.020101 +v 0.023232 0.001563 -0.011570 +v 0.017051 -0.017125 0.019009 +v 0.009259 0.002869 -0.004941 +v -0.044483 0.010754 -0.025802 +v 0.026418 0.009311 -0.005487 +v -0.025062 0.012729 0.022374 +v 0.023629 0.008495 -0.002528 +v -0.012247 0.005380 -0.019159 +v -0.013377 -0.000868 -0.005131 +v -0.012407 -0.001348 -0.004782 +v 0.009503 0.003384 -0.006952 +v 0.013723 0.003494 -0.018526 +v -0.039383 0.001301 -0.018169 +v 0.022978 0.010590 0.022703 +v 0.024119 0.012108 0.021906 +v 0.031734 0.001330 -0.019917 +v -0.008112 0.008651 0.023123 +v 0.046320 0.006408 -0.001978 +v -0.021080 0.010103 0.023030 +v -0.034376 0.006265 -0.001504 +v -0.009434 -0.002107 -0.000499 +v -0.009515 -0.002509 -0.000039 +v -0.034997 -0.000312 -0.018390 +v 0.041305 -0.000871 -0.021061 +v -0.029406 -0.002489 -0.008761 +v -0.025367 -0.002809 -0.028791 +v -0.025369 -0.002925 -0.028753 +v 0.011195 0.015603 0.018967 +v 0.010965 0.014881 0.019135 +v 0.017988 -0.017052 0.017728 +v 0.041930 0.003938 0.008010 +v -0.013509 0.000614 0.003817 +v 0.021959 0.005364 0.010643 +v -0.031492 -0.002688 -0.022282 +v 0.004041 0.005818 0.003880 +v -0.038017 0.016272 -0.020002 +v -0.037782 0.015966 -0.018906 +v 0.023600 0.011995 0.021293 +v 0.009651 0.006109 0.020437 +v -0.015369 0.018534 0.017670 +v -0.042635 0.000466 -0.032082 +v 0.010141 0.009629 0.020569 +v 0.010447 0.009342 0.020953 +v 0.042836 0.000138 -0.015118 +v 0.016090 0.002654 0.010200 +v -0.041443 0.000327 -0.030867 +v 0.045396 0.002253 0.004741 +v 0.026120 0.019598 0.002670 +v -0.032435 0.008193 -0.034670 +v 0.002153 0.006560 0.005672 +v -0.031629 -0.002172 -0.018313 +v -0.019326 0.007043 -0.009066 +v -0.031864 0.002196 -0.006868 +v -0.023648 0.004555 -0.021214 +v 0.015623 0.003899 0.010306 +v -0.007337 -0.016157 -0.030438 +v -0.016682 0.002253 0.001878 +v 0.013689 0.005599 0.013062 +v -0.039979 0.008336 -0.034490 +v -0.045694 0.007478 -0.021160 +v 0.014108 -0.001197 0.006902 +v -0.020202 0.009165 -0.021390 +v -0.039626 0.012051 -0.037604 +v -0.016396 0.012232 0.019101 +v 0.042996 0.003989 0.009844 +v 0.043537 0.013001 0.004182 +v -0.027059 0.006854 0.024211 +v -0.023329 -0.000597 -0.020764 +v 0.000161 -0.001868 -0.015451 +v 0.018425 0.005754 0.023089 +v -0.002539 0.008628 0.022776 +v -0.005915 -0.016904 -0.036007 +v -0.006458 -0.016654 -0.035298 +v -0.001650 0.005824 -0.000341 +v -0.005479 -0.016683 -0.035706 +v -0.027299 0.017316 0.016786 +v -0.034428 -0.002056 -0.001301 +v -0.040937 0.011749 -0.025244 +v -0.006416 -0.016541 -0.036647 +v -0.000445 0.008515 0.021294 +v -0.032355 0.012658 -0.019467 +v 0.041387 -0.002524 -0.003497 +v 0.005638 0.004825 -0.008666 +v 0.015681 0.009921 0.013859 +v -0.039593 0.006303 -0.033661 +v -0.005185 -0.002261 -0.006794 +v 0.017000 0.011584 0.019781 +v 0.038818 -0.000027 -0.009101 +v -0.001777 -0.003742 0.021966 +v -0.037533 0.003683 0.007134 +v 0.007033 0.015781 0.024026 +v 0.046392 0.004943 -0.002897 +v 0.010821 0.014781 0.022888 +v 0.032344 0.014189 0.013374 +v 0.026471 -0.015981 0.020402 +v 0.036973 0.017258 0.016208 +v -0.012599 0.015132 0.013970 +v -0.004387 0.001635 -0.035413 +v 0.026253 0.002042 0.009333 +v -0.044936 0.010537 -0.022172 +v 0.019317 0.001227 0.001937 +v -0.010817 0.015088 0.013584 +v -0.038477 0.011178 -0.033811 +v -0.011123 0.015037 0.014973 +v -0.010402 0.001992 -0.040353 +v 0.026139 0.000702 -0.024289 +v -0.015738 0.014124 0.007374 +v -0.036276 0.013422 -0.033568 +v -0.043082 0.001466 -0.032692 +v -0.011574 -0.002527 -0.037047 +v -0.026334 0.011303 -0.030887 +v -0.012384 -0.001903 0.002773 +v -0.015232 0.007701 0.004983 +v -0.013923 -0.000490 -0.002597 +v -0.014634 -0.000293 0.001525 +v -0.006315 -0.001788 -0.003777 +v -0.026934 0.000299 -0.012486 +v -0.011946 0.004501 -0.030764 +v 0.051245 -0.000002 -0.018563 +v -0.025700 0.001711 -0.029755 +v 0.035836 -0.001645 0.000833 +v 0.023771 0.007355 -0.010388 +v -0.035172 0.012565 -0.034461 +v -0.011796 -0.001489 -0.007616 +v -0.036991 0.003426 -0.023428 +v 0.020670 0.009997 0.007309 +v 0.008668 -0.002652 0.005342 +v 0.006145 -0.001889 0.011081 +v 0.037837 0.017033 0.017164 +v -0.029577 0.008085 0.022679 +v 0.026933 -0.016249 0.018619 +v -0.020274 0.013724 0.023872 +v -0.014422 0.004618 -0.010106 +v 0.001005 0.006401 0.014307 +v -0.024745 -0.002558 -0.020995 +v -0.030514 0.010729 0.018927 +v -0.027110 -0.002700 -0.020772 +v -0.006782 0.007485 0.023298 +v -0.032550 -0.003454 -0.031390 +v -0.020674 0.007841 -0.006910 +v 0.038495 0.004480 0.014828 +v -0.033892 -0.000150 -0.022454 +v -0.037296 0.004647 0.014013 +v -0.023293 -0.001047 -0.015489 +v 0.043864 0.002436 -0.007597 +v -0.002885 0.004298 -0.002902 +v -0.035848 0.013166 -0.034495 +v -0.020046 0.008796 -0.000277 +v 0.000580 0.012748 0.015564 +v -0.022297 0.005560 -0.037035 +v -0.016700 0.006512 -0.030507 +v 0.011234 0.009064 0.021585 +v -0.023815 -0.001709 -0.029088 +v -0.004910 0.009548 0.011788 +v 0.021661 0.016033 0.021021 +v 0.038051 0.004816 0.006071 +v -0.013649 -0.002931 0.005540 +v 0.051366 -0.000586 -0.020983 +v -0.045708 0.004876 -0.019391 +v -0.021486 -0.003110 -0.018309 +v 0.023499 0.007831 -0.009541 +v -0.005392 0.002397 -0.036246 +v 0.021988 0.016982 0.023128 +v 0.015138 0.014169 0.023008 +v 0.017120 0.014210 0.023687 +v -0.007916 0.007348 0.005450 +v 0.017006 0.014870 0.020210 +v -0.030952 -0.001629 -0.023133 +v 0.043221 0.013855 0.005719 +v -0.005284 0.002133 -0.032533 +v 0.015600 0.000371 0.006471 +v -0.046285 0.006267 -0.020288 +v -0.023995 0.007916 -0.035574 +v 0.020702 -0.016855 0.015724 +v -0.041990 0.001945 -0.036368 +v -0.004066 -0.001649 -0.008371 +v -0.012717 0.000546 -0.036898 +v -0.041762 0.005147 -0.035437 +v 0.028255 0.000504 0.008588 +v -0.019718 0.009027 0.000808 +v -0.022693 0.021630 0.023778 +v -0.015716 0.015709 0.018665 +v 0.018311 -0.000017 0.000889 +v 0.048039 -0.000459 -0.011468 +v 0.022278 0.001742 -0.004812 +v 0.030051 0.000755 0.010923 +v -0.017672 0.006785 -0.025387 +v 0.026383 0.018734 0.001069 +v -0.004286 -0.016395 -0.030105 +v -0.011641 0.005132 -0.021162 +v -0.003120 0.009103 0.024664 +v 0.045608 0.000246 -0.000848 +v -0.028594 0.000823 -0.038064 +v 0.011155 0.000488 -0.005559 +v -0.028812 0.009312 -0.033645 +v 0.022621 0.004307 0.009508 +v 0.022614 0.005133 0.010451 +v -0.005805 0.002530 -0.026299 +v -0.007321 0.003635 -0.026709 +v -0.039788 -0.000298 -0.030058 +v 0.026988 0.014472 -0.001807 +v -0.012230 0.001249 -0.037260 +v -0.010917 0.001740 -0.038313 +v 0.024827 0.003313 -0.001417 +v -0.036361 -0.001665 0.013463 +v 0.032612 0.000920 -0.001033 +v 0.028260 0.012398 0.005090 +v -0.007005 -0.016762 -0.036007 +v -0.019630 0.005129 -0.021923 +v 0.002882 0.001567 -0.016351 +v -0.011969 0.005763 -0.038853 +v -0.038410 0.013446 -0.035907 +v 0.028428 0.015596 0.011022 +v 0.036945 0.017002 0.019376 +v 0.023991 0.002675 -0.007076 +v -0.032364 0.002304 0.022316 +v -0.005561 -0.016455 -0.036410 +v 0.012095 -0.001865 0.012960 +v 0.044726 0.009082 0.017247 +v -0.014291 0.009705 0.023455 +v 0.029684 0.003779 -0.005461 +v 0.020325 0.005059 0.009775 +v -0.016986 0.004879 0.002767 +v -0.021456 -0.000482 -0.017626 +v -0.022818 0.007145 -0.026097 +v 0.023671 0.011442 -0.000288 +v 0.023949 0.012049 -0.000978 +v -0.011011 0.008561 0.023957 +v 0.037028 -0.001851 -0.013188 +v 0.042945 0.002323 0.022669 +v -0.035209 0.004995 -0.038833 +v 0.034612 0.015002 0.012085 +v 0.034946 -0.000166 -0.003385 +v -0.004259 0.008929 0.009301 +v 0.001030 0.013323 0.022146 +v -0.037923 0.007662 -0.034247 +v -0.034148 0.011745 -0.023279 +v -0.039706 0.002516 -0.029522 +v -0.022601 0.004935 -0.037294 +v -0.021444 0.004886 -0.037749 +v 0.028318 0.013235 -0.001515 +v 0.039428 -0.002748 -0.016015 +v -0.001459 0.015097 0.024668 +v -0.024764 0.006261 -0.021523 +v 0.035126 -0.002744 -0.019889 +v 0.022282 -0.016568 0.020231 +v 0.032558 0.016335 0.016665 +v -0.000172 0.000136 -0.023600 +v -0.036669 0.004084 0.002065 +v 0.009415 0.005345 0.022788 +v 0.035310 0.016485 0.014230 +v -0.019113 0.006542 -0.034889 +v -0.002871 0.005519 0.021939 +v -0.014621 0.018204 0.013656 +v 0.010355 0.009745 0.021624 +v 0.039331 -0.002931 -0.015655 +v -0.032844 0.010873 0.011545 +v -0.040003 0.010337 -0.038360 +v -0.023572 0.008324 -0.025384 +v -0.010557 0.004508 -0.027811 +v 0.047424 -0.002399 -0.020139 +v -0.015292 0.006364 -0.020465 +v 0.046480 -0.002372 -0.011103 +v 0.020058 -0.017030 0.019803 +v 0.020798 0.002702 0.005391 +v -0.035859 0.000230 -0.028707 +v -0.024455 0.002109 -0.026143 +v -0.016022 0.001983 0.003023 +v -0.038192 0.007707 -0.019386 +v 0.033104 -0.000498 0.003733 +v -0.033843 0.001597 -0.022458 +v -0.003403 0.001340 -0.023314 +v -0.003343 0.000369 -0.022892 +v -0.009877 0.004327 -0.040516 +v -0.010248 0.004611 -0.040087 +v -0.016471 0.009721 0.023480 +v 0.033495 0.003879 0.013861 +v -0.016497 0.020807 0.017821 +v 0.049230 -0.000636 -0.012997 +v -0.041855 0.001087 -0.017737 +v 0.017959 -0.016932 0.018235 +v 0.024390 -0.016815 0.018415 +v -0.004182 0.005179 0.000703 +v -0.020876 0.022402 0.015153 +v 0.006769 0.002845 0.005302 +v 0.014463 0.016418 0.020817 +v -0.010666 0.003629 -0.039415 +v 0.008843 0.015748 0.021009 +v -0.032209 0.008552 -0.030610 +v -0.000037 0.007473 0.017193 +v -0.030086 -0.002518 -0.027683 +v 0.008707 0.010251 0.021165 +v 0.008268 0.010333 0.021591 +v -0.024361 -0.001531 -0.029353 +v -0.034388 0.000940 0.020243 +v 0.036086 -0.002916 0.017405 +v -0.013651 0.009643 0.007213 +v 0.047666 -0.000760 -0.021612 +v 0.039500 -0.003440 -0.016744 +v 0.009791 0.009919 0.022328 +v -0.018362 0.004600 -0.028075 +v -0.018180 0.003568 -0.018015 +v 0.006627 0.003712 -0.015108 +v 0.013730 -0.003166 0.005379 +v 0.009574 0.013375 0.021270 +v -0.019872 0.007878 -0.019893 +v -0.002520 0.016179 0.019806 +v -0.034999 -0.000864 0.017813 +v 0.019727 -0.016689 0.016213 +v 0.046879 0.001108 -0.023935 +v 0.023072 -0.016273 0.016273 +v -0.025405 0.015992 0.014934 +v -0.023301 0.012746 0.023642 +v -0.021702 0.012270 0.022726 +v -0.038553 0.001325 -0.029427 +v -0.016733 0.018120 0.022551 +v 0.027637 0.003907 -0.014672 +v -0.010788 0.004626 -0.040476 +v 0.040716 0.003086 0.024385 +v -0.024565 0.013092 0.005901 +v -0.007606 -0.016563 -0.029543 +v -0.007344 -0.016556 -0.029177 +v -0.014309 -0.001164 -0.000417 +v -0.022350 0.014337 0.011333 +v -0.037004 -0.001400 0.009017 +v 0.039446 0.001694 -0.008117 +v 0.013693 0.000120 0.011166 +v 0.037209 0.006142 0.011344 +v 0.039988 -0.003534 -0.017700 +v -0.011163 0.005003 -0.028767 +v 0.025361 0.010678 0.001508 +v -0.030453 -0.003409 -0.036591 +v -0.004169 0.001735 -0.023219 +v 0.040102 -0.000699 0.018872 +v 0.020041 0.015460 0.018755 +v 0.001727 0.013589 0.019238 +v 0.050669 0.000742 -0.018438 +v -0.020411 0.000396 -0.020581 +v 0.037398 0.015018 0.022410 +v -0.007836 -0.016122 -0.030978 +v 0.036176 -0.001976 0.017555 +v -0.037830 0.001719 0.010265 +v -0.006125 -0.016467 -0.031843 +v -0.027247 0.007386 -0.033266 +v -0.004973 -0.016109 -0.031675 +v -0.040644 0.014784 -0.022425 +v -0.018474 0.014092 0.005954 +v -0.039554 0.003230 -0.031545 +v -0.030441 0.000288 -0.035298 +v -0.001300 -0.000647 0.022545 +v 0.022231 0.015412 0.009290 +v 0.021967 0.015999 0.008612 +v -0.018722 0.015677 0.023972 +v -0.031743 -0.000346 -0.019341 +v -0.017874 0.012930 0.020092 +v -0.005647 0.003285 0.000316 +v -0.042915 0.006438 -0.024623 +v -0.021143 -0.000974 -0.018878 +v 0.044596 -0.001077 -0.008165 +v 0.009539 0.009514 0.019265 +v 0.029467 0.000889 0.009509 +v 0.049454 0.000977 -0.016500 +v 0.009222 0.012265 0.019898 +v 0.009297 0.011700 0.019070 +v 0.013837 0.007552 0.021632 +v -0.018826 0.020134 0.024191 +v 0.022363 0.011731 0.022083 +v -0.032587 0.010973 -0.023059 +v -0.009317 -0.015756 -0.035525 +v -0.008244 -0.016046 -0.036189 +v 0.038832 0.013117 0.006252 +v -0.014346 -0.002257 -0.041450 +v 0.048056 0.006648 0.002832 +v -0.016276 -0.003310 -0.040902 +v -0.026727 -0.003399 0.023652 +v -0.035630 0.006808 0.003368 +v -0.036823 0.011291 -0.031343 +v -0.031360 -0.001678 -0.007278 +v -0.031740 -0.001998 -0.006075 +v 0.000940 0.014798 0.022062 +v -0.012318 0.009709 0.007927 +v -0.032346 0.005031 -0.024453 +v -0.043163 0.003746 -0.022832 +v -0.016206 0.005491 -0.007633 +v -0.025602 0.006548 -0.029201 +v -0.025204 0.020816 0.015608 +v -0.023569 0.021453 0.014491 +v -0.032203 0.006874 -0.019060 +v -0.020460 0.001751 -0.038537 +v -0.001647 0.011993 0.013667 +v 0.040251 0.017084 0.015852 +v 0.027997 0.013188 0.008902 +v 0.032310 -0.000410 0.002216 +v 0.039967 0.010412 0.002529 +v 0.001458 0.013405 0.018198 +v 0.037010 0.013653 0.008945 +v -0.042528 0.001756 -0.017474 +v -0.005184 0.002441 -0.024802 +v -0.039757 0.009998 -0.025740 +v 0.035106 -0.000698 0.001431 +v 0.033609 0.015379 0.022697 +v -0.018948 0.007209 -0.020611 +v -0.032447 -0.001742 0.020985 +v -0.017211 0.020238 0.014886 +v -0.021658 0.022964 0.021725 +v 0.030859 0.003677 -0.010737 +v -0.025435 0.014028 0.023620 +v -0.034701 -0.003914 0.014292 +v 0.025043 0.003278 -0.009082 +v 0.014947 0.003523 -0.018742 +v -0.015372 0.006047 -0.028768 +v -0.017342 0.005125 -0.003254 +v 0.033783 0.002674 -0.009583 +v -0.042226 0.010640 -0.026908 +v 0.013408 0.003620 0.015642 +v -0.025237 -0.002959 -0.028792 +v -0.000712 0.000966 -0.024441 +v 0.024606 0.009645 0.009671 +v -0.027458 0.010722 -0.021726 +v -0.027509 0.014862 0.014053 +v -0.043953 0.012587 -0.022280 +v -0.031390 0.012357 -0.020665 +v 0.019123 -0.015693 0.017499 +v 0.023733 0.011301 0.000343 +v -0.032964 0.003936 -0.005528 +v -0.020336 0.009597 0.001596 +v -0.019724 0.007319 -0.025277 +v 0.009809 0.012362 0.019177 +v -0.014644 0.019251 0.021183 +v 0.025491 0.009150 -0.009432 +v -0.041123 0.013470 -0.024258 +v -0.043605 0.007055 -0.024884 +v 0.045513 0.007147 -0.002231 +v -0.008533 0.015015 0.016685 +v 0.011656 0.005808 0.019983 +v -0.006565 -0.002466 -0.028586 +v -0.044224 0.003991 -0.019109 +v -0.013944 0.004260 -0.019565 +v -0.026968 0.009867 -0.029043 +v -0.025052 0.008415 -0.028573 +v 0.015881 -0.002107 0.002734 +v -0.033168 -0.003191 -0.027277 +v -0.003635 0.014439 0.019165 +v -0.023411 0.009199 -0.023094 +v 0.016736 0.003422 0.010011 +v -0.032670 -0.003226 0.019959 +v -0.036747 -0.002079 0.007918 +v 0.008640 0.009710 0.023226 +v -0.016564 0.009291 0.005367 +v -0.026301 0.002290 -0.020540 +v -0.014752 0.018698 0.014948 +v 0.008756 0.011503 0.019780 +v -0.034280 0.004133 -0.037792 +v -0.030626 0.000648 -0.019380 +v 0.020282 0.003212 -0.017154 +v -0.035625 0.008391 0.011179 +v 0.045935 0.003754 -0.004517 +v 0.045535 0.005786 -0.003369 +v -0.005097 0.008893 0.010310 +v 0.000061 0.005715 0.017523 +v -0.000150 0.006785 0.003322 +v -0.038530 0.006843 -0.024849 +v -0.010267 0.015027 0.015524 +v 0.035896 -0.000338 -0.014329 +v -0.025223 -0.003407 -0.028506 +v 0.039720 0.016630 0.012147 +v 0.018256 0.011489 0.009680 +v -0.034309 0.008864 0.002494 +v -0.038413 0.002631 -0.036953 +v 0.029402 0.012754 0.003745 +v -0.039414 0.012623 -0.037019 +v -0.004180 0.000837 -0.035562 +v 0.031705 0.002468 -0.017612 +v 0.007990 0.009958 0.023971 +v 0.002226 0.006229 0.003793 +v -0.000862 0.014603 0.017050 +v -0.017475 0.006175 -0.035434 +v -0.037514 0.010805 -0.023732 +v 0.016021 0.004866 0.019763 +v -0.038898 0.001719 -0.023056 +v -0.022821 0.004556 -0.013203 +v -0.016986 0.017394 0.021345 +v -0.010565 0.003713 -0.022046 +v -0.016905 0.012055 0.019687 +v -0.004632 -0.015995 -0.029665 +v -0.004038 0.008628 0.023108 +v -0.003570 0.008671 0.023412 +v 0.038497 0.004293 0.005851 +v -0.023955 0.008128 -0.007666 +v -0.002613 0.007432 0.020773 +v 0.011377 -0.000126 -0.004868 +v -0.002816 -0.002067 -0.010970 +v -0.004921 -0.001007 -0.005632 +v 0.044152 0.000857 -0.021069 +v -0.032253 0.002373 -0.024072 +v 0.028497 0.014513 -0.000737 +v 0.042059 0.003856 0.013842 +v -0.040618 -0.000281 -0.032761 +v -0.010206 0.003010 -0.021024 +v -0.005640 -0.000625 -0.023135 +v -0.004569 -0.015899 -0.031138 +v -0.013583 0.001786 -0.038722 +v 0.010593 0.009304 0.021520 +v 0.038805 0.010226 0.024327 +v -0.007134 -0.016023 -0.032076 +v -0.015279 -0.010849 0.024669 +v 0.046735 -0.003122 -0.013084 +v 0.048026 -0.002302 -0.012982 +v -0.037414 0.001117 0.011089 +v -0.035609 0.011470 -0.035161 +v -0.007398 -0.016333 -0.034941 +v -0.007686 0.001256 -0.020669 +v -0.000674 0.006554 0.002003 +v -0.006313 -0.015669 -0.034818 +v -0.001279 0.008419 0.020789 +v 0.017613 -0.001790 0.000338 +v -0.027085 0.019559 0.017271 +v -0.005483 -0.015902 -0.035318 +v -0.028161 0.012823 0.012559 +v -0.012053 0.015416 0.014767 +v 0.010624 0.002767 -0.008087 +v -0.044072 0.011867 -0.022127 +v 0.030330 -0.001178 0.007847 +v -0.035118 0.005615 -0.024356 +v -0.018591 0.005138 -0.027423 +v 0.030360 0.016653 0.005212 +v 0.027084 0.002386 0.003687 +v -0.029226 -0.000782 -0.010172 +v 0.007981 0.009880 0.023335 +v 0.020858 0.010326 0.022785 +v -0.014610 0.021120 0.021243 +v -0.033975 -0.003341 0.017373 +v -0.038450 0.004632 -0.039078 +v -0.024822 -0.003616 -0.013320 +v 0.048596 -0.001474 -0.011344 +v -0.030414 0.009934 -0.029858 +v -0.012285 0.000375 0.003976 +v -0.040178 0.014305 -0.023594 +v 0.009021 0.000030 0.002879 +v 0.034650 0.013520 0.011317 +v -0.007330 -0.000897 -0.000305 +v 0.023498 -0.015760 0.020719 +v 0.013860 0.002197 0.015701 +v -0.000504 0.014340 0.016162 +v 0.007783 0.015924 0.022428 +v 0.027873 0.003201 0.012016 +v 0.046696 -0.002804 -0.011730 +v 0.038824 -0.002064 -0.011553 +v 0.008519 0.011261 0.020536 +v -0.033046 0.008714 -0.023151 +v -0.028089 0.005648 -0.019983 +v -0.012210 0.011798 0.020907 +v -0.033305 0.010038 -0.024508 +v 0.038067 0.011137 0.006500 +v -0.009812 0.007558 0.006134 +v -0.034491 0.013213 -0.019037 +v -0.039079 0.011572 -0.020256 +v -0.005673 0.009623 0.011404 +v 0.009880 0.017012 0.021873 +v -0.031118 -0.003158 -0.021333 +v -0.038690 0.008587 -0.034170 +v 0.038088 0.004942 0.005179 +v 0.021531 0.008335 0.007892 +v 0.011747 0.011851 0.022632 +v 0.024686 0.008478 -0.001604 +v 0.033090 0.002830 -0.013328 +v 0.023086 0.014508 0.019853 +v 0.044375 0.005066 0.016400 +v -0.045833 0.011557 -0.026973 +v 0.001113 0.008775 0.015367 +v -0.003631 0.001930 -0.026238 +v -0.024367 -0.003238 -0.014373 +v 0.040855 -0.003563 -0.005738 +v 0.016200 0.007657 0.021355 +v 0.015820 0.007629 0.021052 +v 0.044571 -0.001339 -0.003700 +v 0.030555 -0.000050 0.007962 +v 0.022756 0.014622 0.001714 +v -0.033506 0.010837 -0.024994 +v -0.032770 0.007740 0.020311 +v -0.031470 0.007854 0.021152 +v 0.043947 -0.003192 -0.007715 +v 0.027226 0.012195 -0.003515 +v 0.046783 0.007825 -0.000055 +v 0.010433 0.006428 0.019411 +v 0.025066 -0.016400 0.018153 +v 0.010292 0.009288 0.019917 +v 0.018065 -0.003645 -0.010825 +v 0.028601 0.002284 0.002286 +v 0.026287 0.017532 -0.000292 +v 0.025955 0.013129 -0.003624 +v 0.038136 0.003081 0.003110 +v -0.014272 -0.002173 0.004728 +v 0.022869 0.000602 -0.010671 +v 0.000674 0.005267 0.016793 +v 0.025047 -0.015570 0.016751 +v 0.008038 0.015745 0.023214 +v -0.017031 -0.002216 0.002790 +v -0.035752 0.004722 -0.024149 +v 0.005108 -0.002872 0.013252 +v 0.024161 0.015410 0.000458 +v -0.033158 0.009654 0.002946 +v 0.030688 0.002945 -0.016528 +v -0.028170 0.005028 -0.035823 +v 0.047404 -0.001030 -0.010564 +v -0.039234 -0.002025 -0.031202 +v 0.019850 -0.016497 0.015637 +v 0.021526 0.008747 0.007714 +v 0.015023 0.013313 0.019913 +v 0.016815 0.012935 0.020019 +v -0.017030 -0.002502 0.001387 +v 0.002953 0.005782 -0.002192 +v -0.041982 0.001303 -0.035014 +v -0.022148 0.009764 0.023153 +v -0.036727 0.005105 -0.039491 +v 0.021389 -0.016351 0.015639 +v 0.045250 0.001547 -0.021996 +v -0.027007 -0.002476 0.023811 +v -0.038627 0.008395 -0.025202 +v -0.006904 -0.016119 -0.023296 +v -0.002345 -0.000607 -0.024152 +v -0.038316 -0.001355 -0.029716 +v -0.006127 -0.016240 -0.023745 +v -0.029094 -0.002631 -0.023865 +v -0.017589 0.019551 0.012666 +v 0.014287 0.006168 0.019827 +v 0.018424 0.001349 -0.025127 +v 0.018982 0.008206 0.020412 +v -0.008249 -0.016132 -0.028603 +v -0.008651 -0.016104 -0.028918 +v 0.036101 -0.000727 0.000306 +v 0.011353 -0.003028 -0.002408 +v 0.037924 0.005421 0.006895 +v 0.011130 -0.002924 -0.001416 +v -0.030071 0.005823 -0.034440 +v -0.000707 0.005720 0.019144 +v 0.047208 -0.000625 -0.010912 +v -0.033509 -0.001441 0.019833 +v -0.006316 -0.015844 -0.029164 +v 0.047491 0.009702 0.004259 +v -0.003383 0.008523 0.022734 +v -0.024207 0.001769 -0.021236 +v -0.039264 0.004802 -0.038170 +v -0.010297 -0.002983 -0.006400 +v -0.012887 0.005861 -0.038631 +v 0.036969 -0.000341 -0.002909 +v -0.007928 -0.015829 -0.029983 +v -0.004604 0.017242 0.024223 +v 0.052487 0.002075 -0.023228 +v -0.000918 0.007562 0.018947 +v 0.013989 0.001853 0.016862 +v -0.011812 0.005413 -0.038615 +v -0.010504 0.004026 -0.020457 +v 0.021650 0.003487 -0.018213 +v -0.002107 -0.000146 -0.035777 +v 0.004591 0.002207 0.013438 +v 0.030302 -0.002769 0.013782 +v 0.037956 0.004514 0.005468 +v -0.001962 0.008502 0.022013 +v 0.010136 0.010388 0.022992 +v 0.030780 0.003764 -0.009188 +v -0.000669 0.008677 0.007140 +v -0.034160 0.009458 -0.023467 +v 0.030873 0.000054 0.002703 +v 0.023797 0.010961 -0.000102 +v 0.027058 0.010157 0.000098 +v -0.020219 0.001524 -0.018586 +v -0.008435 -0.015860 -0.034492 +v -0.022350 -0.000089 -0.026835 +v 0.024921 0.010091 0.011509 +v 0.015452 0.001766 -0.024005 +v -0.038345 0.014848 -0.021528 +v -0.009831 -0.015318 -0.034160 +v -0.027194 0.006166 -0.034282 +v -0.018411 0.015048 0.011502 +v -0.045353 0.008154 -0.023000 +v 0.033332 -0.000437 0.000444 +v -0.038464 0.003418 -0.032560 +v -0.030221 0.002613 -0.036398 +v 0.021187 0.015537 0.023770 +v -0.025477 0.018592 0.015208 +v 0.026864 0.010219 -0.005251 +v 0.015334 0.007702 0.011122 +v 0.001290 0.009217 0.015650 +v 0.030010 -0.000884 -0.023530 +v -0.005635 -0.016050 -0.036459 +v 0.033489 0.001585 0.015012 +v 0.032465 0.000374 0.014846 +v -0.031444 0.006819 -0.024522 +v -0.000403 0.010158 0.010810 +v -0.001949 0.009701 0.008066 +v -0.025817 -0.002058 -0.029032 +v 0.018924 0.014865 0.019896 +v -0.028751 0.012429 0.009604 +v -0.012410 0.004289 -0.034124 +v 0.005210 0.002591 -0.017550 +v 0.046057 0.012411 0.006106 +v 0.046151 0.012804 0.006884 +v -0.016484 0.019359 0.012800 +v 0.047361 0.003489 0.003169 +v 0.026138 -0.015331 0.020643 +v 0.026993 0.001236 0.009544 +v 0.021789 0.005927 0.010523 +v -0.000183 -0.001009 0.020837 +v -0.045651 0.008072 -0.021483 +v -0.046446 0.006766 -0.021160 +v -0.045996 0.007841 -0.021616 +v -0.004676 -0.002485 -0.009597 +v -0.002696 0.000018 -0.027879 +v 0.038825 -0.000647 -0.010223 +v -0.014759 0.006375 -0.030880 +v -0.034020 0.006595 -0.037178 +v -0.035296 0.003167 -0.031723 +v -0.005248 0.002507 -0.001727 +v -0.005322 0.001685 -0.002200 +v -0.036500 0.003532 -0.022772 +v 0.012390 0.005606 0.021058 +v 0.010556 0.000209 -0.023753 +v -0.023912 0.006355 -0.021558 +v -0.034560 0.011233 -0.024099 +v -0.034056 0.011093 -0.024894 +v 0.025585 0.011289 0.011753 +v 0.017046 0.000297 0.003667 +v -0.034922 0.010910 -0.023751 +v 0.019206 0.003234 -0.017004 +v -0.042287 0.011291 -0.025667 +v -0.033369 0.010673 0.007817 +v -0.044034 0.002420 -0.020155 +v 0.034829 0.017065 0.016492 +v -0.010956 0.003015 -0.014567 +v 0.018705 -0.016135 0.017187 +v -0.036652 -0.000571 -0.019857 +v 0.025114 -0.015819 0.017618 +v -0.027970 0.009987 -0.001048 +v -0.015282 0.018704 0.016130 +v -0.026091 0.007301 -0.036509 +v 0.002644 -0.004325 0.016404 +v 0.002911 -0.000016 -0.017724 +v -0.026285 0.010205 -0.019308 +v -0.012687 -0.000700 0.002744 +v -0.001222 0.013594 0.014394 +v 0.041924 -0.003149 -0.019287 +v 0.036179 0.005914 0.009343 +v -0.000726 0.012674 0.024667 +v 0.006072 0.004898 -0.006944 +v 0.038620 0.002754 0.003189 +v -0.007734 -0.002374 -0.004432 +v 0.020911 -0.016427 0.015265 +v -0.031003 -0.002713 -0.032734 +v -0.030761 -0.002960 -0.032014 +v -0.031224 -0.002094 -0.032106 +v -0.001279 -0.000632 -0.024685 +v -0.020394 0.002692 -0.028641 +v 0.019575 -0.016664 0.014132 +v -0.011670 0.001588 -0.038947 +v -0.008847 -0.001213 -0.000518 +v -0.031612 -0.003469 -0.031495 +v -0.042735 0.002674 -0.018220 +v -0.032214 -0.000372 -0.006062 +v 0.020465 -0.016663 0.013872 +v -0.036130 0.001190 0.017286 +v -0.022484 -0.001276 -0.020916 +v -0.006324 0.002600 -0.032136 +v -0.035797 0.008444 -0.024422 +v -0.018661 0.008340 0.002484 +v 0.034177 0.001612 -0.004811 +v -0.036785 0.012203 -0.033230 +v 0.020552 -0.016194 0.012863 +v -0.023855 0.009682 -0.029846 +v 0.019862 -0.016443 0.012722 +v -0.036441 0.009238 -0.033085 +v -0.034590 0.008885 -0.032003 +v -0.034124 0.008888 -0.023745 +v -0.025107 0.007678 -0.021206 +v -0.029579 0.000559 -0.019875 +v -0.031515 -0.001611 -0.032034 +v -0.005736 -0.016028 -0.023606 +v -0.010411 0.013890 0.022887 +v -0.007360 -0.016230 -0.023694 +v -0.026998 0.001970 -0.011709 +v -0.041395 -0.000058 -0.031044 +v -0.018603 0.007407 -0.030643 +v 0.045130 0.014719 0.013566 +v 0.026644 0.013818 0.012499 +v 0.010068 -0.003033 0.001381 +v 0.043131 0.016330 0.014458 +v -0.002838 0.014458 0.015686 +v -0.038366 0.007294 -0.038222 +v -0.006870 -0.016297 -0.024136 +v 0.044338 -0.000736 -0.011416 +v 0.036020 -0.000457 -0.001368 +v -0.026877 0.012817 0.011892 +v -0.027213 0.014271 0.012774 +v -0.006567 -0.015978 -0.024482 +v -0.008514 0.001352 -0.035989 +v -0.004443 0.013388 0.016774 +v -0.014112 -0.015022 0.024669 +v -0.013541 0.005031 -0.025230 +v -0.032905 0.012386 -0.031204 +v -0.008632 -0.002754 -0.012302 +v -0.034430 0.009125 0.015228 +v -0.021784 0.003270 -0.038110 +v -0.001429 0.001248 -0.034313 +v 0.008769 0.015382 0.022776 +v -0.035846 0.003597 -0.038504 +v -0.015065 0.017766 0.017434 +v 0.038471 -0.002228 -0.012617 +v -0.005551 -0.015454 -0.029464 +v -0.004659 0.002608 -0.031248 +v 0.038128 0.005727 0.006178 +v 0.009157 -0.003700 0.004216 +v 0.046334 0.001479 -0.023921 +v 0.040413 0.013700 0.005664 +v -0.006083 0.002147 -0.036450 +v -0.045531 0.003132 -0.019838 +v 0.010004 0.017175 0.022775 +v -0.019409 0.020249 0.013353 +v 0.050227 -0.002165 -0.014832 +v 0.001350 0.006007 -0.001523 +v 0.002447 0.006037 -0.000649 +v -0.021987 0.006365 -0.036305 +v -0.035143 0.001385 -0.034784 +v 0.032621 0.001339 -0.018681 +v 0.013679 0.006158 0.015196 +v 0.023630 0.012923 0.018784 +v -0.032131 -0.003358 -0.019989 +v 0.037500 0.001221 0.024669 +v -0.012477 0.005403 -0.023219 +v -0.027225 0.000469 0.024395 +v 0.039098 0.003481 -0.002737 +v 0.038926 0.001041 -0.007902 +v 0.024365 0.003026 0.007230 +v -0.009403 0.010507 0.010858 +v 0.022841 0.001583 -0.024256 +v 0.035397 0.003603 0.014856 +v 0.015084 -0.003789 0.002769 +v -0.040077 0.001000 -0.034222 +v 0.019000 0.012824 0.012514 +v 0.041727 0.000806 -0.021002 +v -0.023105 0.010138 0.000219 +v -0.007024 -0.015287 -0.034365 +v -0.016372 0.011210 0.021318 +v -0.039041 0.007877 -0.033858 +v 0.014602 0.005513 0.018964 +v -0.011029 0.014810 0.012040 +v 0.000163 0.008399 0.019323 +v -0.001324 0.008707 0.021441 +v -0.001161 0.008564 0.021152 +v 0.003511 0.004690 -0.008393 +v -0.011876 0.005523 -0.039527 +v -0.009669 0.003847 0.003942 +v -0.024332 0.007705 -0.036583 +v -0.006486 0.002987 -0.026225 +v -0.021867 0.016757 0.012986 +v -0.009417 0.010131 0.010425 +v 0.043056 0.003844 0.020599 +v 0.010321 0.003754 -0.010586 +v -0.001893 0.008685 0.022217 +v -0.005023 0.003269 -0.027292 +v 0.027926 0.005627 0.012326 +v -0.001255 0.008933 0.022202 +v -0.043949 0.012166 -0.023087 +v -0.024813 0.000064 -0.021015 +v -0.026068 0.004353 -0.037588 +v -0.020319 0.006454 -0.035999 +v -0.002648 -0.000893 -0.028640 +v -0.010844 0.003138 -0.020133 +v -0.003587 0.000088 -0.007573 +v 0.041325 -0.001597 -0.018827 +v -0.037194 0.000108 0.010679 +v -0.046346 0.010966 -0.026764 +v -0.032494 0.008254 -0.022978 +v 0.005372 0.003202 -0.015942 +v 0.005535 0.001705 0.010794 +v 0.021535 -0.015076 0.019183 +v -0.032704 0.013177 -0.033417 +v 0.030819 0.001272 0.013077 +v 0.015917 -0.003466 0.001869 +v -0.044727 0.011221 -0.027655 +v 0.012181 -0.001552 0.015370 +v -0.010015 0.001684 -0.039439 +v -0.038371 0.010361 -0.023921 +v -0.024136 0.007411 -0.021426 +v -0.037583 0.002147 -0.028001 +v 0.010314 0.009862 0.022072 +v 0.026524 -0.015565 0.017581 +v -0.021411 0.003383 -0.021190 +v 0.038178 -0.000924 -0.007414 +v -0.036510 0.008427 -0.019194 +v -0.039308 0.004015 -0.036829 +v -0.038685 0.003907 -0.036951 +v 0.012182 0.006485 0.018274 +v -0.036391 0.000644 0.016470 +v -0.002398 0.008466 0.022895 +v 0.043261 0.000534 -0.010154 +v -0.035985 0.007266 -0.018752 +v -0.035693 0.005334 -0.018693 +v -0.019154 0.021091 0.015683 +v -0.042874 0.007616 -0.020614 +v -0.024690 0.002446 -0.020895 +v -0.041400 0.000078 -0.032994 +v -0.035269 0.001070 -0.034133 +v -0.000460 -0.002361 -0.014945 +v 0.021873 0.011002 0.006428 +v -0.013560 0.001457 -0.006823 +v 0.038963 0.002620 -0.002119 +v 0.025459 0.002970 0.003100 +v 0.047737 0.006246 0.007106 +v -0.008817 -0.002320 -0.001815 +v 0.018334 0.015078 0.023449 +v 0.022583 0.012167 0.021524 +v 0.023924 0.001653 -0.024260 +v 0.020460 0.015325 0.015973 +v -0.041950 0.004951 -0.025446 +v -0.034677 0.007773 0.017578 +v 0.026236 -0.000139 -0.024833 +v 0.020670 0.012151 0.016778 +v -0.003145 -0.000306 -0.022879 +v 0.028497 0.019168 0.005279 +v 0.019247 -0.016184 0.012728 +v 0.034800 -0.000381 -0.002029 +v 0.017930 -0.015680 0.013952 +v 0.021972 0.015936 0.018853 +v 0.017082 0.004188 0.022741 +v 0.001030 -0.000156 -0.035904 +v 0.041893 -0.000268 0.020750 +v -0.021602 0.013685 0.004849 +v 0.028763 0.000313 0.006085 +v 0.038007 -0.002908 -0.004841 +v -0.029139 0.009196 -0.002663 +v 0.036353 0.012754 0.024659 +v 0.041940 -0.003701 -0.018344 +v 0.053992 -0.000063 -0.017429 +v -0.018175 0.015047 0.009195 +v -0.043377 0.004294 -0.035458 +v 0.022404 0.014089 0.006069 +v -0.039583 0.014917 -0.022243 +v -0.036005 0.000324 -0.021944 +v -0.035045 -0.000459 -0.021765 +v -0.036580 0.000042 0.014294 +v -0.008369 0.011616 0.024640 +v -0.014162 0.015899 0.019104 +v -0.030695 0.012108 -0.019925 +v 0.013149 0.009931 0.019488 +v -0.009086 -0.015932 -0.028375 +v 0.021276 0.011303 0.022199 +v -0.002773 -0.002611 -0.011723 +v 0.013954 0.006553 0.017726 +v -0.007087 -0.014913 -0.028287 +v 0.000204 0.015614 0.022826 +v -0.001312 0.016703 0.023506 +v 0.024999 0.010806 0.005087 +v 0.024097 0.011927 0.004457 +v -0.043310 0.004037 -0.037400 +v -0.026856 0.010853 0.001285 +v 0.028973 0.003381 -0.002090 +v 0.007304 0.002753 0.002685 +v -0.006153 -0.015154 -0.029147 +v -0.034670 0.011220 -0.029231 +v 0.012712 -0.003151 0.018762 +v -0.020577 -0.000892 -0.020131 +v 0.025146 0.010811 0.002643 +v -0.037680 0.002353 -0.028805 +v -0.005919 -0.001564 -0.025091 +v 0.000446 0.015518 0.021757 +v -0.029551 -0.001370 -0.028950 +v -0.015286 0.021389 0.020905 +v -0.025977 0.010429 0.000025 +v 0.030195 0.000399 0.009031 +v 0.044046 0.015318 0.015485 +v -0.009690 0.003084 -0.021511 +v -0.009561 0.002326 -0.020753 +v 0.007499 -0.002263 -0.023183 +v 0.010684 0.002017 -0.021599 +v 0.027457 0.014334 0.020639 +v 0.019653 0.013339 0.017485 +v -0.035287 0.010277 -0.030663 +v -0.034895 0.010079 -0.029906 +v -0.003338 -0.000567 -0.034998 +v -0.000014 -0.000712 -0.035752 +v -0.020887 0.003572 -0.015516 +v -0.009352 -0.015559 -0.031802 +v 0.034389 0.014171 0.024002 +v 0.032809 0.013658 0.024669 +v -0.006132 0.006786 0.023469 +v -0.008561 -0.015408 -0.032237 +v -0.008478 0.015961 0.023575 +v 0.009128 0.015062 0.021548 +v -0.034124 0.004627 -0.032084 +v -0.005881 -0.015364 -0.032035 +v -0.038685 0.004882 -0.033868 +v -0.010795 -0.015854 -0.032052 +v -0.007691 -0.014940 -0.032478 +v -0.036650 0.006990 0.006108 +v -0.010181 -0.015745 -0.032625 +v 0.042111 0.000627 -0.018617 +v -0.012286 0.002689 -0.039855 +v -0.035444 0.002800 0.018432 +v 0.038199 0.005423 0.004324 +v -0.029427 0.003831 -0.036531 +v -0.028779 0.003946 -0.037414 +v -0.029326 0.003695 -0.037488 +v -0.013392 0.005192 -0.033253 +v -0.018605 0.007878 -0.020610 +v 0.029561 -0.003557 0.023826 +v -0.035879 -0.000597 -0.018860 +v 0.022981 0.015229 0.020821 +v -0.018917 0.014569 0.006594 +v -0.037282 0.000035 0.006919 +v 0.019628 0.015233 0.019785 +v -0.009428 0.013515 0.012119 +v -0.012642 0.003844 -0.017287 +v -0.028844 0.012282 -0.031965 +v 0.015996 0.000402 -0.025488 +v 0.000814 0.000525 -0.035620 +v -0.027712 0.009402 -0.023945 +v 0.030947 0.002872 -0.002716 +v -0.007463 -0.001807 -0.003302 +v -0.034401 0.004302 -0.024191 +v -0.041671 0.002445 -0.032976 +v -0.010272 -0.016446 0.023320 +v -0.009287 -0.016267 0.023258 +v 0.043279 0.005313 0.019066 +v -0.013597 -0.016151 0.022904 +v -0.011554 -0.016121 0.024076 +v 0.021391 0.016733 0.016740 +v 0.042535 -0.001145 -0.022515 +v -0.034084 0.001896 -0.003617 +v -0.004466 0.003099 -0.027860 +v -0.003359 0.002587 -0.028245 +v -0.008482 -0.016223 0.022397 +v 0.024692 0.016350 0.001824 +v -0.011745 -0.016232 0.021328 +v 0.027689 0.000694 0.007953 +v -0.015850 0.018147 0.019101 +v -0.003496 0.008647 0.023758 +v -0.024005 0.004533 -0.029325 +v -0.039504 0.000995 -0.018428 +v -0.012274 0.017855 0.016627 +v -0.014003 0.005290 -0.036698 +v -0.046293 0.006007 -0.022002 +v 0.041985 0.000625 0.024284 +v -0.026223 0.016026 0.024122 +v -0.024043 0.007235 -0.009311 +v 0.022264 0.002824 -0.022624 +v 0.050064 -0.001779 -0.013301 +v -0.039590 0.002955 -0.036275 +v 0.039189 -0.001201 0.018786 +v -0.037843 0.003020 0.008373 +v -0.016919 0.005795 -0.028817 +v -0.028374 -0.002308 -0.036987 +v -0.029211 -0.003711 -0.036509 +v 0.026721 0.012349 0.005803 +v 0.008863 0.010915 0.020285 +v 0.025822 0.002468 0.008715 +v -0.003584 -0.000322 -0.032336 +v -0.003995 -0.000810 -0.032550 +v 0.038521 -0.001986 -0.010328 +v -0.005242 0.000824 -0.035607 +v -0.026238 0.002093 -0.025721 +v 0.023636 0.008060 -0.007517 +v 0.024910 0.017512 0.001780 +v -0.011263 -0.003247 -0.006051 +v 0.012660 0.002599 -0.021572 +v 0.030961 0.001601 -0.020492 +v -0.040128 0.004002 -0.032204 +v 0.024844 0.006787 0.012195 +v 0.024812 0.007615 0.012740 +v 0.022202 -0.015417 0.015857 +v -0.036751 0.010729 -0.023763 +v -0.014214 0.005702 -0.024988 +v 0.023911 0.016998 0.022659 +v 0.014049 0.000848 0.019059 +v -0.008093 0.017199 0.019141 +v -0.006240 0.003594 -0.025032 +v -0.036547 -0.000444 0.001846 +v 0.036351 -0.003999 -0.003214 +v 0.039127 0.002312 -0.005929 +v 0.001524 -0.000967 0.019009 +v -0.027973 0.011100 0.002669 +v 0.011011 0.003174 -0.010110 +v -0.027747 0.010136 0.021778 +v -0.016195 0.020813 0.019860 +v -0.016640 0.021642 0.020997 +v 0.018830 0.000242 -0.012795 +v -0.007329 0.013911 0.014678 +v 0.000276 0.010320 0.022841 +v 0.017749 0.011900 0.012563 +v -0.014348 0.004878 -0.013563 +v -0.009306 0.003848 -0.033787 +v 0.037831 0.005822 0.006658 +v 0.019269 -0.015595 0.012368 +v -0.002148 0.008621 0.023093 +v -0.031583 0.010956 0.003875 +v -0.036588 0.001537 -0.023830 +v 0.026023 0.003703 -0.018479 +v -0.008900 -0.015204 -0.023433 +v 0.046099 0.000591 -0.002483 +v 0.051618 -0.001105 -0.018313 +v -0.015189 0.004019 -0.019705 +v -0.026582 -0.003401 -0.024774 +v -0.005875 -0.015632 -0.023580 +v -0.020246 0.010241 0.003048 +v 0.027491 0.011313 0.014253 +v 0.040596 0.008107 -0.001025 +v -0.009733 -0.015228 -0.024493 +v 0.051507 -0.001194 -0.013070 +v -0.029667 0.004230 -0.035994 +v 0.007821 0.010742 0.021796 +v 0.009273 -0.002127 0.003778 +v 0.009430 -0.002554 0.003628 +v -0.039533 0.005271 -0.033658 +v -0.031276 0.002959 -0.024387 +v 0.039382 0.005776 -0.001312 +v -0.028004 0.017759 0.019446 +v 0.026135 0.003568 -0.000750 +v 0.027295 0.011629 0.003797 +v -0.028119 -0.000032 -0.038186 +v -0.009989 -0.015520 -0.027503 +v -0.027745 0.012170 0.006697 +v -0.031840 0.003981 -0.018914 +v -0.035795 -0.000481 -0.028581 +v -0.010161 0.011880 0.010499 +v 0.036210 0.016483 0.013052 +v -0.038587 0.001955 -0.036171 +v 0.012534 0.011210 0.019104 +v 0.050217 -0.000270 -0.012783 +v -0.042788 0.014388 -0.022787 +v -0.044187 0.005793 -0.023916 +v -0.019945 0.014793 0.010679 +v -0.027937 0.008753 -0.033466 +v -0.043940 0.008114 -0.027103 +v -0.032342 -0.000315 -0.032631 +v 0.014295 0.007814 0.016058 +v 0.021751 0.016994 0.013012 +v 0.024530 0.019951 0.008049 +v 0.025112 0.003012 -0.010807 +v 0.009342 0.010499 0.019795 +v 0.017770 0.014274 0.020051 +v -0.040422 0.003261 -0.023620 +v -0.041105 0.002921 -0.023516 +v 0.020083 0.009669 0.023162 +v -0.032665 0.004391 -0.035829 +v -0.032105 0.005469 -0.035385 +v -0.011123 -0.014418 -0.029718 +v 0.026231 0.002136 -0.022481 +v -0.035093 -0.002130 -0.027823 +v 0.052530 -0.000755 -0.013676 +v 0.038328 0.005383 0.007366 +v -0.029960 -0.000709 -0.008916 +v -0.032730 0.007526 -0.024379 +v -0.028186 0.004293 -0.010287 +v -0.028207 0.002056 -0.011008 +v 0.015516 -0.000727 -0.026038 +v 0.024731 0.012323 -0.003165 +v 0.037034 -0.002356 -0.014613 +v -0.029066 0.002070 -0.038202 +v 0.032954 0.002857 -0.012431 +v -0.021946 0.009894 -0.020614 +v -0.036919 0.011558 -0.032182 +v 0.036644 0.003812 0.015289 +v -0.014819 0.019000 0.020322 +v -0.014996 0.019396 0.019920 +v 0.003754 0.002083 -0.016309 +v 0.023294 0.010323 -0.001113 +v -0.047898 0.010964 -0.027007 +v 0.015854 0.007968 0.021610 +v -0.016346 0.004423 -0.037174 +v 0.013088 0.004340 0.014934 +v 0.001258 0.006422 0.002019 +v -0.033533 0.000859 -0.029963 +v -0.009364 0.002588 -0.037432 +v 0.038285 0.014382 0.008178 +v 0.017582 0.000118 -0.025861 +v -0.029124 0.011875 0.017640 +v 0.029625 0.014035 0.004976 +v -0.011686 -0.015360 -0.032761 +v -0.038955 0.004911 -0.023460 +v -0.009761 -0.015131 -0.033202 +v -0.044997 0.008812 -0.027577 +v 0.023758 0.011416 0.003492 +v -0.008869 0.003281 -0.041055 +v 0.022770 0.015275 0.020046 +v -0.005214 -0.003329 -0.010540 +v 0.006305 0.002079 0.008329 +v 0.031677 -0.000695 0.006181 +v 0.006908 -0.001890 0.009056 +v 0.023572 0.011346 0.001948 +v -0.006248 -0.015321 -0.034902 +v -0.040709 0.005677 -0.034276 +v -0.024235 0.005099 -0.012197 +v 0.013490 -0.003176 -0.007130 +v 0.008346 0.003856 -0.015745 +v 0.024589 0.012469 0.017674 +v 0.043140 -0.000265 -0.011809 +v -0.040897 0.015565 -0.021352 +v 0.025009 -0.001174 -0.025743 +v -0.020554 0.002317 -0.028186 +v -0.017628 0.006772 -0.026840 +v -0.035471 0.001587 -0.022503 +v 0.052412 0.002723 -0.022866 +v 0.027480 0.010696 0.001740 +v 0.029359 -0.003396 0.012552 +v -0.007694 -0.014917 -0.036262 +v -0.034771 0.011345 -0.030352 +v 0.032756 0.001830 0.014434 +v 0.040390 0.004096 0.023464 +v -0.007857 0.009027 0.023131 +v -0.038303 0.000260 -0.018901 +v 0.013322 -0.000701 -0.025698 +v 0.012609 0.005439 0.021330 +v -0.036944 0.002509 0.003657 +v 0.022578 0.007404 0.009425 +v 0.038644 0.004058 0.004668 +v -0.013203 0.004051 -0.010739 +v 0.007195 0.004354 -0.012073 +v 0.046084 0.013119 0.007884 +v 0.023761 0.018597 0.007889 +v 0.038218 -0.001878 -0.003768 +v -0.037092 0.015181 -0.018745 +v -0.005334 0.016621 0.020167 +v -0.004595 0.015865 0.019594 +v 0.025431 0.003699 -0.005966 +v -0.033948 0.001424 -0.018683 +v 0.034171 -0.002025 0.002695 +v 0.013064 0.016874 0.021055 +v -0.015784 0.017225 0.018090 +v -0.015982 0.014287 0.018687 +v -0.028587 0.012757 0.013580 +v -0.008368 0.001505 -0.040563 +v 0.034591 -0.000685 -0.018624 +v -0.023145 -0.002716 -0.038752 +v -0.003144 0.001642 -0.006555 +v -0.043270 0.001791 -0.017624 +v -0.042920 0.001292 -0.018039 +v -0.026751 0.010599 -0.032068 +v 0.016259 0.000097 -0.011962 +v 0.023729 0.012837 0.018149 +v 0.017145 0.005395 0.021778 +v -0.006870 -0.015875 0.021260 +v -0.041598 0.001572 -0.017644 +v 0.038124 0.003869 0.015163 +v -0.018578 0.010045 0.023484 +v -0.041031 0.003691 -0.031132 +v 0.033855 0.015182 0.012904 +v 0.027512 0.012624 0.010133 +v 0.026924 0.012506 0.010219 +v 0.012212 -0.001970 0.011359 +v 0.013154 -0.000987 0.009737 +v 0.000229 0.001001 -0.030597 +v -0.007322 -0.016137 0.020915 +v 0.026930 0.003784 -0.017007 +v -0.014709 0.014226 0.008297 +v 0.015682 0.009805 0.015426 +v -0.013313 0.004340 -0.013890 +v -0.026791 -0.000558 -0.012567 +v -0.021587 0.011014 0.002991 +v -0.021245 0.010661 0.002716 +v -0.026765 -0.001644 -0.023965 +v 0.018027 0.003079 -0.017213 +v 0.047032 0.002410 0.000210 +v 0.038023 0.002441 0.000094 +v -0.027915 0.008484 -0.024002 +v -0.028767 0.008347 -0.029579 +v 0.039404 -0.002727 -0.014005 +v -0.013228 -0.015701 0.020133 +v -0.032790 -0.001165 -0.018738 +v -0.009369 -0.015945 0.020317 +v -0.007712 -0.015702 0.019203 +v -0.006395 -0.015891 0.019533 +v -0.023180 -0.002849 0.024633 +v -0.037718 0.004209 0.005925 +v -0.001328 0.003370 -0.007155 +v -0.002284 0.001838 -0.007499 +v 0.007628 0.003112 -0.018203 +v 0.008569 0.003088 -0.018533 +v 0.040574 0.000046 0.017533 +v -0.035271 0.002509 -0.022604 +v -0.033969 -0.000921 -0.018557 +v -0.036706 0.009377 -0.036867 +v -0.022535 -0.003535 -0.021207 +v 0.027178 0.013611 0.011943 +v 0.048004 -0.003059 -0.018451 +v 0.015570 0.000585 0.022829 +v 0.016312 0.001919 0.023536 +v -0.035824 0.002454 -0.031044 +v 0.019570 0.010520 0.007683 +v 0.032165 0.003326 -0.007083 +v -0.041669 0.003081 -0.019221 +v 0.027595 -0.015461 0.017994 +v 0.010703 0.005808 0.020492 +v 0.027296 -0.003338 -0.025740 +v -0.007863 0.010818 0.024668 +v -0.018201 0.006706 -0.009293 +v 0.006727 -0.003062 0.009505 +v -0.007312 0.003497 -0.021771 +v 0.036113 0.009795 0.009427 +v 0.010738 0.017114 0.019937 +v -0.002927 0.011147 0.010475 +v 0.030798 0.012023 0.013301 +v -0.026566 0.012373 0.020136 +v -0.007027 -0.003751 -0.015410 +v 0.014513 0.004357 0.011007 +v 0.018949 -0.015894 0.016473 +v -0.040524 0.004234 -0.032498 +v 0.044354 0.001374 -0.020606 +v 0.027452 0.003907 -0.013426 +v 0.001697 0.009818 0.016984 +v -0.025837 0.021831 0.017198 +v 0.026400 0.009389 -0.004077 +v -0.001863 0.001719 -0.029448 +v 0.042304 -0.000264 -0.013116 +v -0.003794 0.002202 -0.034467 +v -0.027340 0.006420 -0.036228 +v -0.029502 0.006301 0.023322 +v -0.003373 0.001078 -0.027358 +v -0.003051 0.000689 -0.027622 +v -0.006599 0.000119 -0.021535 +v 0.024588 0.010859 0.005365 +v -0.002827 0.008550 0.022271 +v -0.040656 0.015818 -0.020405 +v 0.052669 0.000558 -0.017822 +v 0.022697 -0.014781 0.014499 +v 0.021743 -0.015314 0.014012 +v 0.011138 0.013754 0.022552 +v -0.006011 0.006045 0.024276 +v -0.033101 0.010517 0.015540 +v -0.023555 0.023330 0.014626 +v 0.044344 0.003217 -0.006412 +v -0.032579 0.008100 -0.019083 +v -0.016647 0.017781 0.021633 +v -0.022233 0.002470 -0.021145 +v 0.028785 0.012787 0.004608 +v 0.028998 0.012906 0.005021 +v -0.022423 0.007526 -0.026254 +v 0.035616 0.006221 0.009666 +v -0.025498 0.024859 0.016710 +v -0.024231 0.024984 0.016062 +v 0.018453 0.013769 0.019366 +v -0.030753 0.004469 -0.007777 +v 0.018228 -0.015304 0.013009 +v 0.014678 0.008126 0.013355 +v 0.033682 0.010784 0.011623 +v -0.037050 0.010309 -0.032015 +v 0.006352 0.004836 -0.002300 +v -0.004287 0.001765 -0.003709 +v -0.015338 0.005401 -0.036005 +v -0.043314 0.007402 -0.026392 +v -0.034274 0.005559 -0.018559 +v 0.040065 -0.004090 0.023201 +v -0.005892 -0.015317 -0.024044 +v 0.037807 -0.002111 0.018398 +v -0.031764 0.010210 -0.022955 +v -0.010180 -0.014709 -0.025545 +v 0.014152 0.008827 0.018902 +v -0.038627 0.011650 -0.024819 +v 0.051560 0.001180 -0.017606 +v -0.006657 -0.014729 -0.025043 +v -0.037499 0.001882 -0.024674 +v -0.036746 0.002065 -0.024193 +v 0.022688 0.009581 0.023903 +v 0.035149 0.005786 0.010359 +v 0.009661 -0.002763 0.002851 +v -0.008874 -0.014621 -0.027180 +v -0.017298 0.007473 -0.032020 +v -0.019161 0.007609 -0.032410 +v 0.038708 0.016852 0.013393 +v 0.046336 0.008836 0.013671 +v -0.019617 0.012370 0.021766 +v 0.012148 0.005397 0.018942 +v -0.020482 0.014891 0.009194 +v -0.021123 0.006048 -0.026836 +v -0.027856 0.001645 -0.030094 +v -0.024355 0.007024 -0.025477 +v 0.048178 -0.000680 -0.013142 +v -0.024044 0.010249 -0.020230 +v -0.024847 0.006004 -0.024793 +v 0.044658 -0.003513 -0.019241 +v 0.033260 0.015365 0.013497 +v 0.017909 0.010640 0.016962 +v -0.038950 0.006600 -0.038395 +v -0.032295 0.011395 0.007480 +v -0.020714 0.001291 -0.017624 +v 0.038235 -0.003526 -0.016536 +v 0.015595 0.001193 -0.012958 +v -0.042184 0.005796 -0.036733 +v -0.010160 -0.015207 -0.031330 +v -0.021162 0.021652 0.013522 +v -0.027930 0.005478 -0.033877 +v 0.004931 0.000930 0.013525 +v 0.019381 0.005490 0.024667 +v 0.024919 0.014578 0.017146 +v -0.009474 -0.002239 -0.011183 +v 0.028721 0.013986 0.007229 +v -0.040379 0.002553 -0.031116 +v -0.037611 0.013254 -0.034275 +v 0.007842 -0.002927 0.007517 +v 0.013999 0.006955 0.018270 +v 0.051098 -0.001588 -0.015511 +v -0.035903 0.009233 -0.037129 +v -0.008911 0.001066 0.003082 +v 0.039116 0.002887 -0.004539 +v 0.039584 0.004834 -0.003138 +v -0.033207 0.002415 0.021410 +v 0.023128 0.008556 -0.004789 +v -0.013978 -0.014584 -0.031915 +v 0.043950 -0.000115 -0.021431 +v -0.006260 0.002895 -0.036280 +v -0.028804 0.004604 -0.009151 +v -0.002463 0.012000 0.014164 +v 0.039206 -0.001395 -0.011760 +v -0.036420 0.010667 -0.023486 +v -0.031890 0.011480 0.011896 +v -0.004242 0.012741 0.015914 +v 0.038994 -0.000742 0.016617 +v -0.008607 -0.000019 0.002121 +v -0.008634 -0.014769 -0.033471 +v -0.005202 0.005275 0.002206 +v -0.009373 -0.015092 -0.033777 +v 0.009189 0.009770 0.022830 +v -0.006522 0.003854 0.001574 +v -0.010706 -0.014911 -0.034193 +v -0.023862 0.012398 0.022788 +v 0.009026 0.005848 0.022136 +v 0.022125 0.017593 0.014686 +v 0.023902 0.008337 -0.010275 +v 0.024096 0.007848 -0.010566 +v -0.036919 0.004469 -0.023696 +v 0.020575 0.007917 0.008097 +v -0.036785 0.001087 -0.027935 +v -0.002615 0.008767 0.006648 +v -0.022553 -0.000908 -0.029238 +v 0.052628 0.000360 -0.013532 +v -0.031772 0.001168 -0.007596 +v -0.041228 0.001483 -0.018225 +v -0.033797 0.010360 0.009920 +v 0.029290 0.015754 0.008552 +v 0.009560 0.003949 -0.010690 +v -0.030092 -0.003552 -0.033971 +v -0.030649 -0.003248 -0.033286 +v 0.024082 0.012326 0.018369 +v 0.025246 0.013100 0.018362 +v 0.030549 0.002751 0.012061 +v -0.009682 -0.015445 0.024375 +v 0.000806 0.010030 0.021173 +v -0.019312 0.004903 -0.028793 +v -0.014494 -0.015437 0.024300 +v 0.023890 0.016198 0.023696 +v 0.018466 0.003313 -0.018920 +v 0.038173 0.002745 0.001284 +v -0.015270 0.006452 -0.021815 +v -0.014217 -0.003021 -0.002652 +v -0.008007 -0.015589 0.023184 +v 0.039403 0.004689 -0.000206 +v -0.019682 -0.003488 -0.038956 +v 0.033970 -0.000418 0.003358 +v -0.033847 0.009229 -0.035060 +v 0.005105 0.000665 -0.019666 +v 0.046554 0.001828 0.001872 +v -0.018350 0.006979 -0.006139 +v -0.026043 -0.000377 0.024667 +v 0.034082 -0.003540 0.000850 +v 0.008437 0.015593 0.023806 +v -0.022601 0.013739 0.005374 +v 0.031667 -0.000201 0.005122 +v -0.027068 -0.004485 -0.010055 +v -0.024288 0.024556 0.017143 +v -0.008781 -0.003108 -0.000924 +v 0.021668 0.004510 0.009717 +v -0.032981 0.005580 -0.003723 +v 0.042621 0.006152 -0.004547 +v 0.042591 0.006808 -0.003557 +v 0.025037 -0.014793 0.020746 +v -0.036218 0.010934 -0.024121 +v 0.049859 0.002081 -0.019652 +v -0.027187 0.000059 -0.038402 +v -0.003458 -0.000693 -0.033199 +v -0.036667 0.004144 0.014984 +v 0.016870 0.011019 0.014145 +v 0.052491 0.000670 -0.022578 +v -0.033382 -0.001494 -0.027737 +v 0.008827 0.011731 0.021646 +v -0.044770 0.010428 -0.023371 +v -0.035030 0.008048 0.002303 +v -0.032416 0.001527 -0.034780 +v -0.007661 -0.003029 -0.005167 +v -0.043456 0.000957 -0.033787 +v -0.016924 0.020790 0.023878 +v -0.012197 0.004792 -0.026201 +v -0.036181 0.001517 -0.023948 +v 0.008414 0.000930 0.003867 +v -0.031754 0.000167 -0.029589 +v 0.053121 0.001316 -0.022877 +v 0.018915 0.002995 -0.022101 +v -0.037082 0.015601 -0.019232 +v -0.008859 0.016923 0.017648 +v 0.026366 0.010093 0.013705 +v -0.010835 0.000749 0.004017 +v 0.026779 0.012297 0.007762 +v -0.003994 0.017037 0.022477 +v 0.009329 0.010997 0.023246 +v -0.014398 0.000422 -0.037542 +v 0.031103 0.003438 -0.013587 +v 0.029453 0.001991 -0.021040 +v -0.035017 0.009769 0.009979 +v -0.006603 -0.015901 0.018280 +v 0.027805 -0.015234 0.019009 +v 0.034406 -0.000503 0.001802 +v -0.000672 0.006233 0.001271 +v -0.002710 0.016587 0.024662 +v 0.018791 -0.015509 0.016936 +v -0.028137 0.006568 0.023994 +v -0.003389 0.005346 0.000397 +v 0.031115 -0.003694 0.013843 +v -0.025172 0.008476 -0.025088 +v -0.006606 0.015960 0.018338 +v -0.019425 0.004032 -0.028753 +v -0.045452 0.006194 -0.022685 +v 0.026300 0.018890 0.011435 +v -0.036691 0.006158 0.006772 +v 0.018192 -0.015566 0.015933 +v -0.024534 0.005746 -0.011134 +v -0.008684 0.001481 -0.039833 +v -0.038587 0.005678 -0.039101 +v 0.022383 -0.015131 0.015883 +v -0.030626 0.001234 -0.030056 +v 0.034272 -0.000899 0.003148 +v 0.010380 0.010441 0.018543 +v -0.010118 0.008332 0.023940 +v -0.022473 0.009181 -0.019792 +v -0.039030 0.011100 -0.034962 +v 0.045749 0.011524 0.003425 +v 0.039525 0.002670 0.024660 +v 0.020283 -0.015602 0.012422 +v 0.051509 0.001129 -0.019862 +v -0.020185 0.009332 0.023878 +v 0.042714 0.002890 0.006218 +v -0.006820 -0.015263 -0.023052 +v 0.000699 0.001768 -0.013126 +v 0.001588 -0.002683 -0.018013 +v 0.005484 0.003705 -0.014987 +v -0.028337 0.011248 0.019902 +v 0.026790 0.011851 0.003234 +v 0.040166 0.016872 0.018062 +v 0.037228 0.002991 0.024332 +v 0.035888 0.001038 0.024302 +v -0.023623 0.003195 -0.029332 +v 0.039019 -0.001771 -0.003685 +v 0.024521 0.015929 0.000773 +v -0.030173 -0.000504 -0.034391 +v -0.037620 0.003187 0.012809 +v 0.018786 -0.002361 -0.002296 +v 0.007965 0.011102 0.021832 +v -0.037932 0.003677 0.009925 +v -0.010173 -0.015595 -0.027823 +v 0.015322 -0.003180 0.023083 +v 0.014915 0.003228 -0.016058 +v -0.043361 0.008705 -0.027248 +v 0.011960 -0.004270 -0.003571 +v -0.003014 0.008601 0.022877 +v -0.003225 0.008434 0.023072 +v -0.017632 0.006639 -0.006128 +v 0.040655 -0.000795 -0.014022 +v 0.029786 0.015668 0.007436 +v 0.008146 0.016200 0.021761 +v -0.001072 0.008746 0.021453 +v -0.024273 0.015037 0.013159 +v -0.010540 0.002671 -0.019948 +v 0.040858 0.011279 0.002357 +v 0.007098 0.001891 0.006752 +v -0.009402 0.002434 -0.036185 +v -0.012026 -0.015256 -0.031296 +v -0.014066 0.001175 -0.037654 +v -0.027645 0.015191 0.019349 +v -0.007242 -0.003727 -0.004511 +v -0.037034 0.011786 -0.024081 +v 0.005869 0.004881 -0.003945 +v -0.023273 0.016488 0.014008 +v -0.005750 -0.003360 -0.009089 +v -0.033982 -0.001669 -0.019355 +v -0.038155 0.009947 -0.033358 +v 0.023728 0.004037 0.009795 +v -0.041120 0.007840 -0.038253 +v 0.051493 -0.000234 -0.015027 +v 0.051678 -0.000731 -0.015081 +v 0.036753 0.005857 0.012573 +v 0.053656 -0.000764 -0.016552 +v -0.000742 0.014168 0.018151 +v -0.019658 0.011829 0.003934 +v -0.015317 -0.001476 -0.039162 +v -0.043615 0.003288 -0.021911 +v 0.027553 0.012414 0.009783 +v 0.027484 0.012247 0.009887 +v 0.019343 0.015302 0.023291 +v 0.043719 -0.002762 -0.005673 +v -0.015697 0.005372 0.004133 +v -0.027983 -0.002095 -0.028606 +v -0.037369 0.013280 -0.035578 +v 0.042095 0.007748 -0.002510 +v -0.000317 -0.000529 -0.034133 +v 0.000481 -0.000459 -0.034658 +v -0.018298 0.007643 -0.022461 +v 0.036438 -0.002266 -0.001588 +v -0.006946 -0.014818 -0.035885 +v -0.012934 0.009393 0.023520 +v -0.009674 -0.014098 -0.035974 +v 0.029423 -0.003292 -0.025022 +v -0.014945 0.015155 0.011711 +v -0.031280 -0.003089 -0.026859 +v 0.007283 0.010198 0.023078 +v 0.046589 0.001543 -0.000133 +v 0.020471 0.004090 0.008821 +v 0.023792 0.012232 0.018646 +v -0.026743 0.006007 -0.024394 +v 0.037316 0.006987 0.007544 +v 0.017754 0.007770 0.019830 +v 0.025588 0.007961 -0.008629 +v 0.007553 -0.003262 0.008048 +v -0.025417 0.009696 -0.019655 +v -0.034011 0.000504 -0.004040 +v 0.007573 0.010639 0.023210 +v -0.037731 0.011153 -0.036906 +v 0.020728 0.015978 0.023179 +v 0.002338 0.002617 -0.014201 +v 0.027771 0.014569 0.011549 +v -0.016388 0.005436 -0.036167 +v -0.018479 0.007546 -0.023622 +v -0.000537 0.004039 -0.007029 +v -0.043691 0.012474 -0.021779 +v -0.043065 0.013838 -0.021166 +v -0.040277 0.010734 -0.037926 +v -0.007283 0.000974 0.000848 +v -0.013598 -0.015535 0.021542 +v 0.036049 0.002361 0.016325 +v -0.033135 -0.002248 -0.020512 +v 0.033893 0.000639 -0.018007 +v 0.034777 0.001922 0.015719 +v -0.006877 -0.003295 -0.005739 +v 0.046781 0.005380 0.008883 +v 0.036890 -0.001127 -0.008899 +v 0.020336 0.010846 0.018015 +v -0.016786 0.004151 -0.003128 +v 0.040185 0.004751 0.023202 +v -0.022306 -0.001874 -0.027682 +v -0.039597 0.009680 -0.035537 +v -0.016969 0.020352 0.024359 +v 0.046289 0.002547 -0.004421 +v 0.030587 -0.000227 -0.022794 +v -0.043970 0.007523 -0.025578 +v -0.026204 0.010914 0.021696 +v 0.016132 0.007396 0.020109 +v -0.016682 0.013028 0.005907 +v 0.043401 0.003122 0.007257 +v 0.026803 0.013982 0.017901 +v 0.042910 0.004204 0.018288 +v -0.022549 0.000026 -0.016399 +v -0.010302 -0.015547 0.019696 +v -0.027613 0.002949 -0.038076 +v 0.011885 -0.002548 -0.003949 +v 0.014253 0.002409 -0.012976 +v 0.016171 0.001679 0.008178 +v 0.026253 0.003867 -0.004064 +v -0.008835 -0.015407 0.018464 +v 0.010914 0.003780 -0.013567 +v 0.024827 0.015888 -0.000750 +v 0.022167 0.014781 0.009883 +v 0.026884 0.015112 -0.001210 +v 0.048051 -0.002116 -0.011371 +v 0.001163 0.002399 -0.012601 +v -0.034149 0.011140 -0.035166 +v -0.012984 0.004075 -0.037322 +v -0.037468 0.013344 -0.023234 +v -0.014828 -0.001386 0.000313 +v -0.008989 0.009219 0.008431 +v 0.008232 0.010099 0.022285 +v 0.026009 0.018256 0.000468 +v -0.043504 0.002422 -0.017846 +v -0.007904 -0.001578 -0.032256 +v -0.032147 0.005760 -0.005298 +v 0.017397 0.009874 0.009412 +v -0.002647 0.008596 0.023207 +v -0.000502 0.006679 0.017747 +v -0.035010 0.010679 -0.035534 +v 0.004542 0.004710 0.008151 +v -0.007641 -0.015372 0.016330 +v -0.035445 0.000251 0.017809 +v -0.039422 0.002174 -0.023074 +v 0.051647 -0.000339 -0.020725 +v -0.029931 0.001627 -0.024602 +v 0.045677 0.014002 0.012783 +v -0.007025 0.003134 -0.022898 +v 0.013564 -0.001284 0.020472 +v -0.040553 0.000778 -0.033989 +v 0.021072 0.015813 0.013576 +v 0.047679 0.001751 -0.020667 +v 0.025167 -0.014984 0.016086 +v 0.014253 -0.000910 -0.025889 +v -0.023947 0.014817 0.024668 +v 0.019689 0.010487 0.017936 +v -0.036848 -0.001795 0.011251 +v -0.006734 -0.001862 -0.029723 +v 0.036006 -0.002108 -0.017171 +v 0.022080 0.001409 -0.024868 +v -0.001983 0.017048 0.022511 +v -0.020933 0.002539 -0.021214 +v -0.029436 0.003129 -0.030464 +v 0.022793 0.012543 0.020971 +v -0.038870 0.006468 -0.024957 +v -0.024163 0.001592 -0.014466 +v 0.024007 0.012947 0.017274 +v 0.035363 -0.002619 -0.019092 +v 0.011331 0.008832 0.018890 +v 0.007215 0.016144 0.023378 +v 0.003819 0.003108 -0.014397 +v -0.008638 -0.014348 -0.023062 +v 0.009782 0.005958 0.023073 +v -0.029492 0.012387 -0.031487 +v -0.030533 0.001272 -0.036212 +v 0.027387 0.002599 -0.020678 +v -0.017858 0.006335 -0.004726 +v -0.006496 -0.015062 -0.023587 +v 0.011248 0.013075 0.019839 +v -0.001204 0.010005 0.024655 +v -0.025623 0.021728 0.022409 +v -0.039921 0.001579 -0.030922 +v -0.036938 -0.000384 -0.018754 +v -0.038216 0.001494 -0.028260 +v -0.010570 0.004878 -0.029082 +v -0.020510 -0.003428 -0.019923 +v 0.000453 0.002830 -0.010798 +v 0.027977 0.001704 0.011046 +v 0.022804 0.017986 0.014618 +v 0.023212 0.014593 0.021187 +v -0.004530 0.009703 0.011783 +v -0.036880 -0.000758 -0.033141 +v -0.024095 0.023122 0.018993 +v 0.015476 0.002655 0.010788 +v 0.000995 0.009127 0.018045 +v 0.035998 -0.000673 0.017528 +v -0.022208 0.009463 -0.001331 +v 0.041697 0.016726 0.013831 +v -0.035598 0.012760 -0.019390 +v -0.009316 0.017390 0.019430 +v -0.035331 0.008782 0.007496 +v 0.012401 0.008003 0.018216 +v -0.042426 0.006006 -0.024984 +v 0.000329 0.007830 0.009983 +v -0.011418 -0.001093 0.002068 +v -0.010563 -0.015185 -0.028399 +v -0.027840 0.014508 0.018007 +v -0.000131 0.015446 0.023509 +v -0.032798 0.012460 -0.019182 +v 0.006396 0.004619 -0.009324 +v 0.039265 0.004424 -0.001460 +v -0.000124 -0.003391 -0.016135 +v 0.017982 0.008246 0.021095 +v -0.042992 0.014402 -0.021319 +v 0.026292 0.020049 0.004870 +v -0.019552 0.001589 -0.020229 +v 0.044999 -0.000037 -0.023367 +v 0.021334 0.014076 0.013203 +v 0.021217 0.013568 0.013204 +v 0.033040 0.002935 -0.010052 +v 0.018580 0.002373 0.006535 +v 0.049887 0.000325 -0.015288 +v 0.050942 0.000135 -0.015254 +v 0.051321 0.000325 -0.015725 +v -0.019410 0.004171 -0.037915 +v -0.034614 0.000070 -0.032719 +v 0.042938 0.000018 0.001106 +v 0.026123 0.003756 -0.012006 +v -0.010877 -0.001551 -0.008770 +v -0.042556 0.001518 -0.036097 +v 0.012080 -0.001782 0.013200 +v 0.043484 0.014516 0.017976 +v 0.019325 0.006836 0.023402 +v -0.029895 0.007680 -0.023132 +v -0.006621 -0.014212 -0.031875 +v 0.047111 -0.001794 -0.010694 +v -0.005577 -0.001198 -0.027125 +v -0.002819 0.002093 -0.031062 +v -0.033539 0.010270 0.014381 +v 0.027377 0.019728 0.007578 +v -0.040685 0.003784 -0.031068 +v -0.023657 0.007106 -0.036637 +v 0.038600 -0.001696 -0.009950 +v -0.014800 -0.014114 -0.030758 +v -0.016934 0.006872 -0.023053 +v -0.034479 0.005251 0.019471 +v 0.046972 0.004176 0.006408 +v 0.034490 0.002156 -0.008896 +v 0.016681 0.007961 0.021486 +v 0.009453 0.002045 -0.021321 +v -0.002230 -0.003298 -0.012814 +v -0.002987 0.014572 0.016464 +v -0.032284 0.011595 -0.022340 +v 0.002269 0.005554 0.013189 +v -0.042670 0.010167 -0.021518 +v 0.027128 0.013781 0.012471 +v 0.026985 0.014328 0.013210 +v -0.001508 0.008077 0.021001 +v 0.027559 0.012531 0.009896 +v -0.030120 -0.003438 -0.031583 +v -0.020330 0.019270 0.013078 +v 0.038499 0.001940 -0.001860 +v -0.010897 -0.014874 -0.033450 +v 0.036823 0.016280 0.020769 +v 0.037900 0.016801 0.019907 +v -0.008170 -0.014826 -0.033994 +v -0.037177 0.005647 -0.034047 +v -0.025616 0.006690 -0.021099 +v 0.013420 0.005674 0.016415 +v -0.005709 -0.002757 -0.021325 +v 0.006866 -0.000324 0.008703 +v 0.009144 -0.001914 0.004331 +v -0.008300 0.003689 -0.023795 +v -0.009734 0.004346 -0.025020 +v 0.048226 -0.001945 -0.020611 +v 0.025956 0.007607 0.012685 +v -0.023306 -0.002510 -0.026212 +v 0.017465 0.011398 0.014729 +v -0.027315 0.016596 0.022640 +v -0.022844 0.003766 -0.037574 +v 0.033301 -0.000746 -0.020561 +v 0.021136 0.013061 0.014357 +v -0.008918 -0.011904 0.024671 +v -0.041680 0.003568 -0.024211 +v -0.010786 -0.014421 -0.035642 +v 0.007211 0.001003 -0.021091 +v -0.017858 0.018489 0.012194 +v 0.006100 0.004065 0.003755 +v -0.005211 0.001163 0.024670 +v 0.025058 0.009025 -0.009646 +v -0.024716 -0.001572 0.024667 +v 0.032712 0.000355 0.024667 +v 0.008182 0.009508 0.023428 +v 0.023159 0.012018 0.019767 +v -0.015586 -0.015187 0.023572 +v -0.007235 -0.002559 -0.030139 +v -0.003280 0.017472 0.023357 +v -0.040934 0.004051 -0.032579 +v -0.014701 -0.015591 0.022495 +v -0.042033 0.006313 -0.025248 +v 0.031006 -0.002097 0.014657 +v 0.013114 -0.000454 0.011036 +v -0.026238 -0.001459 -0.024194 +v -0.007060 -0.014822 0.022722 +v -0.018234 0.020937 0.022474 +v -0.028246 -0.000935 -0.029396 +v -0.034097 0.005824 -0.002429 +v -0.000763 0.000051 -0.023066 +v -0.017618 -0.002906 0.001372 +v 0.025786 0.011234 0.004730 +v 0.040882 0.003079 0.004275 +v 0.025798 0.012340 0.015467 +v 0.014920 0.000398 0.008035 +v -0.032796 -0.015456 0.020438 +v -0.002629 0.008834 0.022978 +v -0.028853 0.003403 -0.038051 +v -0.030371 -0.000297 -0.035606 +v -0.037856 0.004031 -0.033242 +v 0.012905 0.016321 0.019748 +v -0.031425 0.004129 -0.035701 +v 0.021491 0.012258 0.023462 +v -0.010013 0.010169 0.022459 +v 0.016624 0.002873 -0.015859 +v -0.043788 0.008682 -0.024838 +v -0.000776 -0.004067 0.020427 +v 0.032195 -0.003090 -0.023496 +v 0.036756 0.001840 0.016036 +v 0.034993 0.016989 0.019266 +v 0.013946 0.001336 0.013107 +v -0.030460 0.000100 -0.033951 +v 0.024737 0.016380 0.002887 +v 0.042984 0.004272 0.017367 +v -0.028706 0.005224 -0.034013 +v 0.045685 0.000005 -0.023863 +v -0.006610 0.008035 0.023177 +v 0.023682 0.010836 0.005889 +v 0.013611 0.016672 0.022389 +v -0.006172 -0.015491 0.017882 +v -0.000309 0.011927 0.014155 +v -0.001231 0.012377 0.013965 +v -0.040912 0.006108 -0.024921 +v -0.034721 0.014342 -0.018610 +v 0.027062 -0.015334 0.017409 +v 0.040710 0.016548 0.013725 +v 0.029049 0.002845 -0.019426 +v 0.022786 0.016949 0.021632 +v 0.036855 0.005007 0.013880 +v 0.026706 0.003226 -0.020094 +v 0.042387 0.004903 0.020621 +v -0.001696 0.008513 0.005483 +v 0.021479 0.014054 0.011900 +v 0.049797 -0.001936 -0.019996 +v 0.026535 -0.015132 0.017163 +v -0.029340 0.002839 -0.019325 +v 0.039885 0.000558 0.015488 +v 0.029224 0.003700 -0.015461 +v 0.023181 0.014993 0.023456 +v 0.010496 0.013058 0.019989 +v 0.031718 -0.001675 0.005442 +v 0.040566 -0.003521 -0.018230 +v 0.047018 0.011168 0.005627 +v -0.007042 0.009037 0.008791 +v 0.012578 -0.004233 0.018370 +v -0.001441 0.014157 0.015514 +v 0.039194 0.016029 0.020708 +v 0.012086 0.006083 0.021892 +v 0.012202 0.005505 0.019668 +v -0.032221 0.009061 -0.000224 +v 0.000130 -0.000483 -0.028667 +v 0.020288 0.013311 0.008457 +v -0.030444 0.009688 0.020494 +v 0.016692 -0.015492 0.013766 +v -0.036917 0.005783 0.010667 +v -0.003471 0.000818 -0.031855 +v -0.009888 0.004178 -0.040874 +v -0.034696 0.012874 -0.033923 +v -0.009224 0.010261 0.022802 +v 0.013270 -0.000989 -0.008130 +v -0.039940 0.002919 -0.030970 +v 0.023305 0.015773 0.002820 +v -0.037977 0.006025 -0.034386 +v -0.019679 0.005840 -0.028569 +v 0.044442 -0.002310 -0.020888 +v -0.027453 0.000968 -0.025221 +v 0.011057 0.013768 0.019832 +v -0.024386 0.022802 0.021577 +v 0.047278 0.008311 0.001629 +v -0.011357 -0.014315 -0.025727 +v 0.012973 -0.002870 0.007147 +v 0.024868 0.011237 0.005792 +v -0.026706 0.018966 0.016463 +v 0.013340 0.001730 -0.011470 +v 0.045659 0.009735 0.000651 +v 0.005518 0.000175 0.012509 +v -0.011964 -0.015044 -0.026917 +v 0.038945 -0.002837 -0.014950 +v 0.029670 0.000388 -0.022967 +v 0.009338 0.006419 0.022571 +v -0.000882 0.000961 -0.028548 +v 0.041358 0.001332 0.024657 +v -0.009777 -0.014364 -0.026558 +v -0.014029 0.005756 -0.022284 +v -0.012489 -0.014646 -0.028865 +v -0.028635 0.004575 -0.035868 +v 0.024153 -0.001269 -0.026111 +v 0.040819 0.015987 0.009980 +v 0.046565 0.010720 0.003460 +v -0.040877 0.015163 -0.019900 +v -0.004189 0.003292 -0.002221 +v -0.012592 0.003608 -0.019196 +v -0.026465 0.021809 0.019287 +v -0.031429 0.001896 -0.035139 +v -0.003520 0.004313 -0.000937 +v -0.033739 -0.003569 -0.028051 +v 0.027324 0.003997 -0.007111 +v 0.039082 -0.003562 -0.016584 +v 0.039096 -0.003408 0.019932 +v -0.039612 0.012319 -0.025520 +v -0.014650 0.015044 0.010186 +v -0.005949 -0.014642 -0.029367 +v 0.024357 0.016456 0.004632 +v -0.009619 -0.014681 -0.029553 +v -0.006231 -0.014091 -0.029582 +v 0.026476 0.009556 -0.003066 +v 0.021764 0.012047 0.021775 +v -0.016815 -0.002463 0.004822 +v 0.025046 0.011682 -0.005592 +v -0.038325 0.012130 -0.034553 +v 0.009492 0.010074 0.021326 +v 0.043434 -0.001958 -0.021752 +v -0.008491 0.004742 0.003944 +v -0.036826 0.009768 -0.023651 +v -0.024297 0.013675 0.012314 +v -0.021098 0.008828 -0.019527 +v 0.052659 -0.001179 -0.016250 +v 0.053124 -0.000413 -0.016074 +v -0.003543 0.002518 -0.027792 +v -0.015192 0.005595 -0.036596 +v 0.016631 0.002128 -0.023789 +v 0.008723 0.015289 0.021867 +v -0.002660 0.001706 0.023627 +v -0.004985 0.000858 -0.021829 +v -0.042095 0.004168 -0.037732 +v 0.014737 0.002987 -0.014789 +v -0.006730 -0.014449 -0.032233 +v 0.038249 0.002547 0.002125 +v -0.000038 0.005071 -0.004518 +v -0.013393 -0.002372 -0.002842 +v 0.033460 0.004829 0.011755 +v -0.003686 0.008732 0.023051 +v -0.018510 0.011321 0.021714 +v -0.025587 -0.001580 -0.020997 +v -0.030945 0.003892 -0.019181 +v -0.035529 0.000656 -0.033509 +v -0.028782 0.011455 0.004412 +v -0.026333 0.015253 0.015339 +v 0.027390 0.012903 0.006806 +v 0.044002 -0.003675 -0.019272 +v -0.025911 0.021684 0.015655 +v -0.035855 0.003541 -0.023163 +v 0.052822 -0.000343 -0.013701 +v -0.033177 0.008981 -0.030307 +v -0.037287 0.000458 -0.021516 +v 0.026508 0.012385 0.013974 +v 0.028115 0.011790 -0.001662 +v -0.016386 0.001525 -0.001789 +v -0.020755 0.007638 -0.026141 +v -0.003867 0.013357 0.016492 +v -0.025134 0.004834 -0.021217 +v 0.027115 0.013061 0.023290 +v -0.026208 0.014266 0.022859 +v 0.036354 0.000722 0.017438 +v -0.035677 0.002291 -0.036783 +v 0.044453 -0.001591 -0.010172 +v -0.045151 0.009644 -0.022022 +v -0.030647 -0.000211 -0.022721 +v -0.007603 -0.004300 -0.010641 +v 0.039275 0.007913 0.001602 +v -0.041018 0.003480 -0.023768 +v -0.025979 0.001214 -0.013189 +v 0.031024 -0.001499 0.007046 +v -0.027109 0.003658 0.024377 +v 0.022765 0.013704 0.020795 +v -0.001606 -0.000437 -0.033455 +v 0.042194 0.003832 0.012481 +v 0.027977 0.013598 0.009312 +v -0.022909 0.005716 -0.025516 +v -0.026271 0.000683 -0.029916 +v 0.038618 0.008499 0.024667 +v -0.032727 -0.002734 -0.019448 +v -0.014708 -0.015172 0.020341 +v -0.015069 0.000556 -0.003909 +v -0.005178 0.000740 -0.003375 +v -0.033939 -0.015363 0.021465 +v -0.036413 0.011824 -0.032108 +v 0.037362 0.003655 0.015483 +v -0.035022 0.011542 -0.031096 +v -0.036941 0.001703 -0.035862 +v 0.020749 0.015690 0.020823 +v 0.043665 0.013270 0.018625 +v 0.024066 0.015019 0.018272 +v -0.017489 0.006176 -0.033105 +v -0.029874 -0.000020 -0.036933 +v -0.015621 0.019763 0.017165 +v -0.034613 -0.015538 0.019606 +v 0.001462 0.010841 0.019097 +v 0.045764 0.014285 0.011333 +v -0.033913 0.010029 0.006663 +v -0.036334 -0.001075 0.003199 +v 0.012221 0.000677 -0.008196 +v -0.005206 -0.000260 -0.035075 +v -0.008240 -0.002798 -0.002129 +v 0.001232 0.011876 0.021209 +v 0.000129 0.014993 0.019349 +v 0.000368 -0.000868 -0.014680 +v -0.034242 -0.015163 0.018653 +v -0.010071 -0.000283 0.003174 +v 0.043354 0.008898 -0.001309 +v -0.028254 0.009069 0.022518 +v -0.025534 0.022741 0.020165 +v 0.024028 0.019155 0.007708 +v 0.028725 -0.003942 0.009194 +v -0.022212 0.022981 0.015075 +v -0.035747 0.001175 0.000073 +v -0.000229 0.005904 -0.000652 +v 0.040336 -0.001535 -0.015176 +v -0.026241 0.009605 0.023131 +v -0.024769 0.014363 0.024269 +v 0.046084 0.013643 0.010068 +v 0.028521 -0.014690 0.018273 +v -0.035078 0.000201 -0.029340 +v 0.053902 0.000869 -0.016535 +v -0.038273 0.003510 -0.038286 +v -0.033291 0.009276 0.001456 +v 0.043903 0.015689 0.013793 +v 0.035857 -0.000246 -0.005761 +v -0.034231 -0.004031 -0.028548 +v -0.030803 0.006692 -0.030705 +v 0.034211 -0.000326 0.017104 +v 0.001670 0.007057 0.007824 +v 0.038734 0.014860 0.021851 +v 0.025778 0.011155 0.014439 +v -0.040963 0.005123 -0.032967 +v -0.031486 0.008432 -0.033874 +v 0.013098 0.005409 0.020461 +v 0.024641 0.008213 -0.010409 +v 0.004001 0.004163 -0.011684 +v 0.011590 0.003239 -0.018906 +v -0.020835 0.022314 0.014272 +v 0.014653 0.012082 0.019353 +v 0.046553 0.007280 0.012191 +v -0.016697 0.006962 0.003904 +v -0.039314 0.009231 -0.034416 +v -0.018869 0.021792 0.019176 +v -0.014792 0.001270 -0.037629 +v -0.006944 -0.015169 0.016062 +v -0.037082 0.012343 -0.020018 +v -0.037031 0.009697 -0.036219 +v -0.017405 0.020726 0.019987 +v -0.028358 0.012451 0.016433 +v -0.013999 0.008549 0.006083 +v 0.008159 0.015580 0.022512 +v -0.015593 0.004950 -0.015069 +v -0.037511 0.002451 -0.023885 +v 0.016014 -0.015194 0.015140 +v -0.010240 0.002687 0.004018 +v -0.033280 0.003194 -0.035787 +v 0.053828 -0.000796 -0.016992 +v 0.018729 0.011093 0.008676 +v -0.027702 0.005038 -0.035303 +v 0.023016 0.009417 -0.003363 +v -0.015132 0.015598 0.012814 +v 0.020271 0.011371 0.018058 +v 0.042509 -0.003842 -0.006573 +v -0.029553 0.007964 -0.005256 +v -0.016433 0.006465 -0.029371 +v 0.015988 -0.015075 0.013923 +v 0.041455 -0.002663 -0.018905 +v 0.016057 -0.003614 -0.027148 +v -0.043362 0.003101 -0.034017 +v -0.003703 0.000452 -0.032387 +v -0.003535 0.000806 -0.032888 +v -0.013774 0.013075 0.008028 +v -0.041949 0.007097 -0.020368 +v 0.031155 0.015215 0.022453 +v 0.030951 0.013385 0.024668 +v 0.014965 -0.000722 0.022616 +v 0.032914 -0.000389 0.000966 +v 0.021408 -0.014519 0.013172 +v 0.019166 -0.014576 0.012487 +v -0.037675 0.000058 0.008193 +v -0.037808 0.000398 0.009340 +v 0.020141 -0.014957 0.012399 +v -0.017085 0.011500 0.020946 +v -0.018092 0.011500 0.020888 +v -0.021887 -0.002521 -0.017433 +v -0.035586 0.012935 -0.032564 +v -0.041415 0.003827 -0.033093 +v -0.038721 0.008804 -0.019936 +v -0.003219 0.008555 0.022565 +v -0.006215 -0.001563 -0.028744 +v 0.003210 0.004707 0.012177 +v 0.037908 0.016775 0.013144 +v -0.006547 -0.014478 -0.024591 +v -0.030734 0.005169 -0.035275 +v -0.014089 -0.009521 0.024667 +v -0.024954 0.014877 0.013274 +v 0.007989 0.010229 0.021953 +v -0.033574 -0.000807 -0.004420 +v -0.020392 0.003521 -0.026860 +v -0.036104 0.005901 -0.024151 +v -0.037306 0.006477 -0.024397 +v -0.034013 0.005671 -0.032271 +v 0.024924 0.011412 0.013833 +v 0.025223 0.003420 -0.012843 +v 0.020409 0.000195 -0.025794 +v -0.020879 0.014438 0.006329 +v -0.040568 0.001536 -0.020424 +v -0.003202 0.002977 0.023877 +v 0.001107 0.005619 -0.002946 +v 0.024460 0.017811 0.003852 +v 0.009736 0.005541 0.021542 +v 0.016856 -0.001891 0.001365 +v -0.006595 -0.014273 -0.028466 +v 0.053838 0.000406 -0.016315 +v -0.009643 -0.014751 -0.029082 +v 0.037855 -0.002678 -0.014184 +v 0.032904 -0.001286 0.023973 +v -0.042418 0.000944 -0.031780 +v -0.012570 0.005408 -0.019009 +v -0.015366 0.001918 0.003580 +v -0.014462 0.000332 0.002560 +v 0.033114 -0.003418 0.001978 +v 0.008356 0.011148 0.023220 +v 0.028031 0.014010 0.010136 +v 0.007943 -0.003954 -0.024242 +v 0.000521 0.000301 -0.036068 +v -0.021287 0.000951 -0.028836 +v 0.037561 0.005393 0.007799 +v -0.007997 -0.014098 -0.033255 +v -0.014008 -0.013191 -0.033012 +v 0.028190 0.013274 0.006097 +v -0.004989 0.011440 0.015329 +v 0.036417 0.005607 0.010506 +v -0.025564 -0.003242 -0.028569 +v -0.008443 0.001791 -0.041365 +v 0.018852 0.012082 0.019149 +v -0.010233 -0.003160 -0.039900 +v -0.038491 0.010443 -0.038094 +v -0.007203 -0.014618 -0.034493 +v 0.018992 0.014055 0.023844 +v 0.020213 0.011347 0.023601 +v -0.016707 0.013088 0.018659 +v 0.046850 0.012092 0.012017 +v 0.030205 0.014448 0.014965 +v 0.052538 -0.000131 -0.014346 +v 0.010928 -0.000703 -0.003149 +v 0.009815 0.000247 -0.000367 +v -0.023368 0.006878 -0.033933 +v 0.020817 0.009572 0.022811 +v -0.009437 0.000536 -0.013493 +v 0.036469 -0.000774 -0.005718 +v 0.035837 -0.000499 -0.004391 +v 0.024592 0.012476 0.017182 +v -0.032399 0.002348 -0.035525 +v -0.020342 0.022853 0.020239 +v 0.043401 0.000130 -0.014702 +v 0.023959 -0.005536 0.024668 +v 0.023576 0.018122 0.024215 +v 0.027218 -0.003971 0.024668 +v -0.038982 0.012709 -0.024673 +v -0.038281 0.003667 -0.023126 +v -0.018284 0.016976 0.023996 +v -0.016861 -0.015237 0.021907 +v -0.025808 0.007496 -0.036034 +v -0.028069 0.010609 -0.019591 +v -0.003199 0.000634 -0.026654 +v -0.035430 0.005446 -0.032930 +v -0.046819 0.009317 -0.027641 +v 0.010236 0.015774 0.019152 +v 0.025291 0.008483 -0.002017 +v -0.033873 0.004998 0.020386 +v -0.000350 -0.000318 -0.023874 +v -0.031091 -0.003036 -0.031667 +v -0.032743 -0.014879 0.021609 +v -0.017341 -0.015073 0.020541 +v 0.034894 -0.002111 0.001265 +v -0.030845 -0.003956 -0.035265 +v 0.008961 0.010879 0.019379 +v -0.032476 -0.015134 0.021002 +v -0.024584 0.013718 0.008405 +v 0.032088 0.005943 0.011966 +v -0.041543 0.013979 -0.023392 +v -0.034681 0.009571 0.006193 +v -0.020540 0.006390 -0.021706 +v 0.024824 -0.013541 0.020010 +v 0.010630 0.008554 0.021173 +v -0.005508 -0.001475 -0.005190 +v -0.035474 -0.015038 0.019080 +v 0.015908 0.003454 -0.017142 +v 0.052139 -0.000801 -0.014512 +v -0.017493 -0.002911 -0.039062 +v 0.007337 0.004329 -0.004391 +v 0.039458 0.003026 0.014806 +v -0.012887 -0.014332 0.018692 +v -0.009819 -0.014933 0.018515 +v 0.047870 0.000217 -0.015378 +v -0.017368 0.010400 0.022804 +v 0.006048 0.004923 0.000556 +v 0.003188 0.005391 -0.005320 +v 0.024793 0.007227 -0.009318 +v -0.008743 -0.015062 0.016959 +v 0.046492 0.000565 -0.024336 +v -0.007708 0.000820 -0.020221 +v 0.024689 0.011107 0.006152 +v -0.011506 0.013663 0.010183 +v -0.027502 0.012374 0.008690 +v -0.002306 0.000993 -0.033588 +v 0.021428 -0.000048 -0.011968 +v -0.025450 0.004599 -0.025534 +v -0.032086 0.006319 -0.035254 +v 0.026729 -0.014637 0.015923 +v -0.032903 -0.003596 -0.002612 +v 0.018302 -0.014929 0.016465 +v -0.025402 0.015560 0.014601 +v -0.027921 0.006963 -0.007892 +v -0.015020 0.012882 0.018727 +v 0.014495 0.015968 0.019805 +v 0.036944 -0.000432 -0.002129 +v 0.025328 -0.014116 0.015623 +v -0.035453 0.012001 -0.032081 +v -0.035912 0.001846 -0.018464 +v -0.037575 0.015551 -0.020435 +v 0.013317 0.000825 -0.024400 +v 0.015217 -0.014635 0.015533 +v 0.014258 0.002632 0.016999 +v 0.020631 0.001952 -0.024381 +v 0.017899 0.011565 0.010830 +v -0.028815 0.010591 0.020754 +v 0.024138 0.017494 0.015551 +v 0.027689 0.010930 -0.000604 +v 0.030515 0.001519 0.011915 +v 0.042084 0.002560 0.016583 +v -0.032472 0.010298 -0.023329 +v 0.028783 0.001401 0.004124 +v -0.007336 0.003292 -0.036147 +v 0.017520 -0.014969 0.013144 +v 0.019919 0.013749 0.016737 +v -0.038856 0.000474 -0.030029 +v 0.026730 0.013257 0.016500 +v 0.032830 -0.000245 0.024205 +v 0.026080 0.008613 -0.008850 +v -0.040038 0.003398 -0.036442 +v -0.026156 0.003259 0.024669 +v 0.037953 0.005815 0.005161 +v -0.016478 0.005578 -0.035279 +v -0.001391 -0.001174 -0.012758 +v -0.014267 -0.002683 -0.001785 +v -0.008589 0.003347 0.003211 +v 0.045540 0.001306 0.002582 +v -0.018707 0.007131 0.000024 +v -0.012257 -0.013818 -0.024171 +v -0.017014 0.020048 0.024451 +v -0.006513 -0.002451 -0.007424 +v -0.017259 0.006339 -0.008385 +v 0.014081 0.007421 0.018461 +v -0.009188 -0.014385 -0.025754 +v 0.015879 0.009719 0.016553 +v 0.021901 -0.001423 -0.009018 +v -0.013472 -0.014259 -0.026612 +v 0.012581 0.013206 0.020058 +v -0.024981 0.010490 0.022368 +v 0.023966 0.016568 0.023156 +v -0.006277 0.014237 0.016608 +v 0.039380 -0.003267 0.021650 +v -0.039547 0.001013 -0.030610 +v 0.028944 0.014803 0.017453 +v 0.039563 0.011786 0.004119 +v 0.039434 -0.002935 -0.016490 +v 0.027048 0.012494 0.012642 +v -0.029643 0.003918 -0.024786 +v 0.041599 -0.001903 0.023821 +v 0.023035 0.018410 0.012589 +v 0.042192 -0.002680 -0.020790 +v -0.026185 0.007924 -0.033180 +v -0.009204 0.003375 -0.041393 +v -0.012769 0.005075 -0.031757 +v -0.038528 0.015718 -0.018800 +v 0.007954 0.016131 0.024176 +v -0.014114 -0.014287 -0.030612 +v -0.015398 -0.001709 0.002792 +v -0.037195 0.000926 -0.027923 +v -0.010173 0.004111 -0.031521 +v 0.023191 0.010844 0.005871 +v 0.017393 0.003703 0.023958 +v -0.037599 0.005500 0.009604 +v 0.020224 0.008998 0.022641 +v 0.001477 -0.003970 0.017872 +v -0.014238 -0.014171 -0.032417 +v 0.009805 0.001285 -0.002959 +v -0.034712 0.001775 -0.030462 +v 0.016653 0.003284 -0.017583 +v -0.044484 0.008096 -0.025557 +v -0.002130 0.014855 0.016641 +v 0.008252 0.004377 -0.009485 +v 0.041559 0.007086 0.021823 +v 0.008465 0.004050 -0.013403 +v -0.026463 0.022841 0.019323 +v -0.003199 0.008816 0.023632 +v -0.039371 0.016333 -0.019412 +v -0.043866 0.008543 -0.024139 +v -0.036031 -0.002390 0.003205 +v -0.030714 0.011337 0.005220 +v -0.012441 -0.002265 -0.003281 +v 0.023264 0.003493 0.008440 +v -0.002717 0.001806 -0.029662 +v 0.027216 0.013560 0.012512 +v -0.016498 0.016587 0.018837 +v 0.030932 0.000257 0.007167 +v -0.023009 0.023197 0.017513 +v -0.027510 0.014847 0.016967 +v 0.036152 0.000499 0.017531 +v -0.020365 0.008503 -0.023246 +v -0.040517 0.005429 -0.023633 +v -0.029935 0.005438 -0.030627 +v 0.031571 0.015154 0.014910 +v 0.000995 0.003922 0.018846 +v 0.008939 0.010306 0.021336 +v -0.011464 0.001402 -0.036300 +v 0.027591 0.013242 0.008931 +v 0.007387 -0.001194 0.008217 +v -0.033259 0.002482 -0.035419 +v -0.007711 0.002746 -0.020824 +v 0.020680 0.015691 0.019492 +v -0.004584 0.008612 0.008801 +v -0.035812 -0.014680 0.020399 +v 0.025661 0.009952 -0.008489 +v -0.029399 -0.000871 -0.023090 +v -0.031003 -0.000937 -0.019746 +v -0.027603 -0.001661 -0.037812 +v -0.026185 0.010783 -0.020638 +v -0.039789 0.016167 -0.021086 +v -0.030948 -0.003868 -0.036077 +v -0.031725 0.012494 -0.033524 +v 0.041521 -0.001562 -0.019420 +v 0.005897 0.001024 -0.019887 +v 0.020772 0.012232 0.015761 +v -0.029878 0.004598 -0.035122 +v -0.014907 0.000238 -0.000004 +v 0.000209 0.003871 -0.007806 +v -0.003496 0.008502 0.023071 +v -0.006684 0.000721 -0.000469 +v -0.012335 0.017701 0.017503 +v 0.018324 0.015274 0.021953 +v 0.024994 0.012394 0.016552 +v -0.008917 0.002185 -0.038333 +v -0.039432 0.011815 -0.025520 +v -0.025053 0.009278 -0.004271 +v -0.039324 0.002170 -0.034783 +v 0.008433 -0.001850 0.006067 +v -0.008636 0.002544 -0.039625 +v 0.023057 0.009078 -0.002662 +v -0.009420 -0.014723 0.017236 +v -0.031188 0.003760 -0.031085 +v 0.021678 -0.013953 0.018536 +v 0.028169 -0.014827 0.016384 +v 0.041931 -0.000246 -0.023005 +v -0.012826 0.014240 0.009734 +v -0.006337 -0.014016 0.015914 +v -0.032981 0.005090 0.021028 +v -0.024320 0.006611 0.024669 +v -0.042147 0.015387 -0.020641 +v 0.017695 0.012173 0.023236 +v 0.026497 0.013613 0.021892 +v 0.023814 0.008642 0.012773 +v 0.037153 0.015625 0.010782 +v -0.013554 0.005704 -0.021131 +v -0.024249 0.018535 0.014541 +v -0.009855 0.003380 -0.037642 +v -0.001934 0.005323 0.021415 +v -0.010003 -0.014810 0.015891 +v -0.030357 0.006575 -0.019286 +v -0.035349 -0.002259 0.016265 +v 0.007809 0.003128 -0.000258 +v 0.020471 0.011662 0.016558 +v -0.018805 -0.004069 0.001958 +v -0.007875 -0.015105 0.015549 +v 0.044559 -0.001673 -0.006941 +v 0.015033 -0.014797 0.015109 +v -0.029320 0.008660 -0.020270 +v -0.027899 0.008017 -0.020494 +v -0.014836 0.006049 -0.023684 +v -0.039979 0.007408 -0.034823 +v -0.007785 0.008458 0.007811 +v -0.028649 0.011412 -0.030476 +v 0.009106 -0.001055 -0.023799 +v 0.026643 0.009535 -0.006710 +v 0.023399 0.018167 0.010372 +v 0.033343 0.013163 0.012225 +v 0.013557 0.005280 0.021117 +v 0.012848 -0.000290 0.013623 +v 0.009641 0.012138 0.022448 +v 0.016369 0.015602 0.020738 +v -0.040383 0.003704 -0.031314 +v -0.023236 0.023213 0.020735 +v -0.023524 0.013991 0.007621 +v -0.018553 0.002593 -0.020102 +v -0.010697 -0.014497 -0.026140 +v 0.020849 0.001983 0.001060 +v -0.024917 0.008611 -0.005861 +v 0.041304 0.005139 -0.005214 +v -0.000228 -0.000517 -0.013703 +v 0.047476 0.001447 -0.021223 +v -0.037652 0.007906 -0.037526 +v 0.015733 0.008933 0.018676 +v -0.015396 0.017194 0.012756 +v -0.021741 0.003915 -0.014618 +v -0.027178 0.019015 0.023678 +v -0.007515 -0.014277 -0.027656 +v -0.024606 0.024250 0.014558 +v -0.024760 0.007825 -0.032823 +v 0.023696 0.017632 0.005658 +v 0.011721 0.008470 0.021600 +v -0.032814 -0.002276 -0.032070 +v -0.041215 0.012608 -0.021042 +v 0.016655 0.008233 0.009652 +v -0.014524 -0.000727 0.001072 +v -0.006803 -0.013647 -0.029869 +v 0.024107 0.015790 0.003798 +v -0.012187 -0.014305 -0.030547 +v -0.026945 0.003524 -0.025141 +v -0.014067 -0.003624 0.006165 +v -0.019155 0.009976 0.003652 +v 0.027882 0.003104 -0.019182 +v -0.011704 0.012515 0.021480 +v 0.029892 0.013872 0.001478 +v -0.018564 0.006899 -0.034021 +v -0.007772 -0.013996 -0.034217 +v -0.031253 0.000980 -0.034380 +v 0.020381 0.000578 -0.013113 +v -0.025670 0.012362 0.005989 +v -0.030603 0.000027 0.023048 +v 0.001104 0.007224 0.009430 +v -0.004874 -0.000737 -0.024688 +v 0.038913 0.009602 0.003829 +v -0.015534 0.015245 0.012364 +v -0.008960 -0.013693 -0.035929 +v -0.023424 0.009094 -0.003064 +v -0.005126 0.007261 0.022712 +v 0.012652 0.012093 0.019276 +v 0.037760 0.001346 -0.001849 +v 0.017732 -0.003031 0.024669 +v 0.045301 0.011936 0.016510 +v 0.044434 -0.000438 -0.008839 +v -0.007882 -0.014077 0.023956 +v -0.028789 0.011669 0.018816 +v -0.014779 0.012400 0.007041 +v 0.035548 0.012180 0.010100 +v -0.018157 -0.014487 0.022905 +v 0.029582 0.000992 0.008508 +v -0.000888 0.005112 -0.002399 +v -0.033399 -0.014655 0.021941 +v -0.016467 0.004659 -0.020961 +v -0.035694 0.001457 -0.001196 +v -0.042392 0.000194 -0.032689 +v -0.002305 0.008395 0.021776 +v -0.005425 -0.013396 0.020310 +v 0.039515 0.013279 0.022612 +v 0.029290 0.001083 0.009854 +v 0.027740 -0.012580 0.019754 +v -0.015156 -0.014695 0.019147 +v -0.000829 0.015134 0.019192 +v -0.031614 -0.014529 0.019352 +v 0.028274 -0.013426 0.019507 +v -0.043827 0.007360 -0.024802 +v -0.021675 0.007737 -0.020796 +v -0.004675 0.000295 -0.022710 +v -0.037073 0.006752 0.009220 +v -0.020266 0.007177 -0.020910 +v -0.007366 0.004144 0.002450 +v 0.002510 0.006043 0.000486 +v -0.039068 0.000286 -0.034338 +v 0.024348 0.003328 0.009670 +v -0.009400 0.014634 0.023569 +v -0.026097 0.012674 0.020842 +v -0.012791 0.004101 -0.015013 +v 0.029334 0.018100 0.008008 +v -0.005739 0.012010 0.015205 +v -0.032428 -0.014290 0.018509 +v -0.037993 0.001167 -0.024095 +v -0.005003 0.009763 0.014968 +v -0.005317 0.009359 0.014495 +v 0.032366 0.002877 -0.014386 +v -0.011867 -0.014629 0.018535 +v -0.002379 0.008565 0.023073 +v -0.002081 0.003918 0.022244 +v -0.011558 0.004262 -0.030973 +v -0.026553 0.008524 -0.024610 +v -0.010955 -0.014955 0.017777 +v 0.007725 0.016655 0.023824 +v 0.007368 0.000325 0.007674 +v -0.004822 0.012606 0.015964 +v -0.005492 -0.014015 0.017503 +v 0.027174 0.015025 0.013132 +v -0.011784 -0.014640 0.017383 +v 0.017668 0.002529 -0.023431 +v -0.012451 0.005893 -0.019628 +v 0.041719 0.000770 -0.022336 +v 0.013409 0.003561 -0.017036 +v -0.023582 0.007256 -0.033372 +v -0.029336 0.009632 -0.020092 +v 0.040949 -0.001858 -0.002395 +v -0.040482 0.002717 -0.023907 +v 0.046274 -0.000030 -0.015014 +v -0.046478 0.009877 -0.027989 +v -0.044533 0.009812 -0.027755 +v -0.003714 0.008375 0.023267 +v 0.018247 0.001529 0.005073 +v 0.036447 0.014597 0.010062 +v 0.017469 0.001460 0.024667 +v -0.010669 0.003495 -0.038754 +v 0.038137 0.001993 0.015051 +v 0.017359 -0.014086 0.015906 +v 0.038276 0.006868 0.024669 +v -0.034005 0.010619 -0.025438 +v 0.039882 -0.002940 0.024669 +v 0.041197 0.004692 0.022269 +v -0.006414 -0.001823 -0.027753 +v 0.013575 0.000105 0.018882 +v -0.009027 -0.014533 0.015121 +v 0.037535 -0.000678 -0.002146 +v -0.026041 0.007522 -0.020972 +v -0.035429 -0.000624 -0.000071 +v 0.016500 -0.014369 0.013607 +v -0.017841 0.012485 0.020070 +v -0.039344 0.009850 -0.034399 +v -0.044476 0.003123 -0.018630 +v -0.011479 0.004360 -0.035351 +v -0.008287 -0.013490 -0.023204 +v -0.013159 -0.003310 -0.043389 +v 0.020571 0.003352 -0.020453 +v -0.007699 -0.013759 -0.023625 +v 0.038332 -0.000029 -0.005471 +v -0.016871 -0.001348 -0.039011 +v 0.025504 0.012287 -0.004916 +v -0.011787 0.003824 -0.036521 +v -0.007074 -0.013661 -0.025221 +v 0.000588 0.000201 -0.034985 +v 0.013936 0.005905 0.018091 +v 0.022277 0.001518 -0.013286 +v -0.008002 -0.013698 -0.026014 +v -0.013092 0.000969 -0.037219 +v -0.040708 0.011265 -0.025429 +v -0.028230 -0.001066 0.023877 +v -0.025936 -0.003163 -0.028406 +v -0.025801 -0.003194 -0.028476 +v 0.011097 0.005518 0.021666 +v 0.027583 0.014671 0.012093 +v -0.027586 0.015262 0.017767 +v 0.022378 0.015845 0.020693 +v -0.033769 0.009593 0.016841 +v -0.037485 0.000560 0.012725 +v 0.008630 0.010127 0.023951 +v -0.039894 0.006429 -0.019676 +v -0.028050 0.012605 0.012085 +v -0.014302 -0.003348 -0.043719 +v 0.026367 0.012442 0.014176 +v -0.013865 0.005032 -0.038611 +v -0.002577 0.004122 0.022955 +v 0.052779 0.002657 -0.022575 +v 0.044033 0.000776 -0.008781 +v -0.007692 -0.013923 -0.032696 +v -0.003603 -0.000105 -0.022970 +v -0.038726 -0.002480 -0.031277 +v -0.015422 0.008253 0.024652 +v 0.050480 -0.000902 -0.012681 +v 0.012794 -0.002425 0.007977 +v 0.018115 0.008369 0.020151 +v -0.013071 -0.013397 -0.033629 +v -0.030331 -0.004001 0.021493 +v 0.001071 0.000099 -0.015208 +v -0.014963 0.005773 -0.030071 +v -0.012638 -0.013819 -0.035395 +v 0.033593 -0.000131 0.003128 +v -0.012188 -0.013822 -0.035452 +v -0.008245 -0.013348 -0.034568 +v 0.022609 0.013554 0.002684 +v 0.022619 0.013876 0.000486 +v 0.025314 0.009118 -0.000593 +v 0.010122 0.011781 0.018643 +v 0.028964 0.003725 -0.004891 +v 0.031522 -0.000236 0.005673 +v -0.011887 0.015412 0.021004 +v -0.005568 -0.001009 -0.024682 +v -0.034903 0.006786 -0.024484 +v 0.025428 0.020150 0.007092 +v 0.014966 0.010342 0.019547 +v -0.027214 0.012755 0.018878 +v -0.034908 0.013841 -0.020414 +v -0.024056 0.013564 0.011783 +v -0.001867 0.008798 0.022427 +v 0.009881 0.013921 0.021267 +v -0.006230 0.005437 0.002820 +v 0.047006 -0.003692 -0.014126 +v 0.038394 0.015929 0.010478 +v 0.049191 0.002328 -0.021270 +v -0.035436 -0.014294 0.021891 +v 0.054291 0.000435 -0.016754 +v -0.041880 0.015676 -0.021277 +v -0.040665 0.009464 -0.020541 +v 0.025970 0.006092 0.012076 +v 0.026208 0.011350 -0.005559 +v 0.028394 0.013050 0.014678 +v -0.019509 -0.014675 0.020548 +v -0.031035 -0.013314 0.020819 +v 0.013021 0.016556 0.022722 +v -0.002151 0.014565 0.019281 +v 0.018568 0.007572 0.008491 +v -0.031586 0.012931 -0.032279 +v -0.046164 0.008732 -0.026811 +v -0.031281 -0.014353 0.020030 +v 0.022695 0.016392 0.009283 +v 0.052004 0.002554 -0.021888 +v -0.034492 0.007535 -0.018900 +v -0.025907 -0.002969 -0.028502 +v -0.018093 -0.014401 0.018885 +v -0.008293 0.001818 -0.040022 +v 0.042068 -0.000141 -0.016138 +v -0.017719 0.004799 -0.036755 +v 0.022365 0.006247 0.011462 +v -0.036383 -0.014147 0.019698 +v 0.037672 -0.001802 -0.003140 +v 0.015344 0.001313 0.009483 +v -0.014067 0.005895 -0.026272 +v -0.024122 0.010155 -0.021070 +v 0.036636 -0.000939 -0.006996 +v 0.025032 0.016688 0.000568 +v 0.045477 0.012550 0.005043 +v -0.001037 -0.001056 -0.029695 +v -0.040376 0.006512 -0.033871 +v 0.037266 -0.002678 -0.002608 +v -0.022413 0.001311 -0.038962 +v 0.028905 -0.013583 0.019006 +v -0.023421 0.022265 0.014328 +v -0.030604 0.011621 0.016163 +v -0.020785 0.002710 -0.027512 +v 0.022947 0.014321 0.004699 +v -0.022864 0.000392 -0.029598 +v -0.030834 0.003197 -0.035451 +v -0.034361 -0.014177 0.017795 +v -0.025315 0.016051 0.024669 +v 0.013652 -0.003565 0.020720 +v 0.040769 0.002714 -0.008080 +v -0.003709 -0.003505 -0.012675 +v 0.010765 0.012249 0.018761 +v -0.011814 -0.014379 0.016724 +v -0.011105 -0.014605 0.016645 +v 0.044679 -0.003287 -0.010739 +v -0.027850 -0.000661 -0.020384 +v 0.029684 0.013110 0.002149 +v 0.021175 -0.003615 -0.009516 +v -0.017749 0.006725 -0.020368 +v 0.037433 0.000647 -0.001888 +v 0.027172 0.012531 0.010321 +v 0.027388 0.012483 0.010201 +v 0.027196 0.012539 0.010205 +v 0.018109 -0.013976 0.016152 +v 0.019329 0.008001 0.022048 +v -0.011860 0.017636 0.016163 +v -0.012544 -0.003553 -0.004164 +v 0.023190 0.003113 0.002234 +v -0.009447 -0.003345 -0.008071 +v -0.013241 0.005341 -0.034773 +v 0.030982 0.002596 0.012251 +v 0.027704 0.017771 0.011551 +v 0.005934 0.002614 -0.017882 +v 0.015411 -0.014296 0.015682 +v 0.023486 0.012026 0.003954 +v 0.021740 0.014826 0.008143 +v 0.035520 0.014884 0.011364 +v 0.034773 0.001633 -0.010909 +v 0.015391 0.002177 0.021098 +v 0.021760 0.014519 0.011581 +v 0.025888 0.003731 -0.003101 +v 0.024053 0.003312 0.008583 +v 0.006994 0.016334 0.023860 +v -0.020787 0.017448 0.012753 +v -0.000133 0.012401 0.024044 +v 0.049168 -0.001444 -0.012947 +v 0.032645 0.002159 -0.016704 +v 0.010519 -0.002436 -0.000097 +v -0.021489 0.020104 0.024668 +v 0.011315 0.009368 0.018961 +v -0.000908 0.005120 0.020252 +v 0.044453 0.010140 0.000449 +v 0.022863 0.015461 0.019165 +v 0.041828 0.004237 0.015587 +v -0.015927 -0.013144 -0.027407 +v 0.025563 0.010973 0.004994 +v -0.006525 -0.013843 -0.028773 +v -0.020494 0.022343 0.017711 +v -0.014325 -0.013490 -0.029669 +v -0.026812 0.009722 -0.019978 +v -0.026988 0.011124 -0.020357 +v -0.035704 0.005912 -0.024363 +v -0.036483 0.002256 -0.030539 +v -0.012962 0.004963 -0.026041 +v 0.024875 0.009759 -0.008165 +v 0.023570 0.002701 -0.013636 +v -0.036678 0.001683 -0.028075 +v -0.021374 0.009297 -0.000046 +v 0.042794 0.001258 -0.020063 +v -0.013873 -0.014085 -0.035502 +v 0.025168 0.003421 -0.019455 +v -0.026579 0.020241 0.023637 +v -0.005709 0.008773 0.008285 +v -0.015405 -0.014214 0.024643 +v 0.052622 0.000983 -0.016489 +v 0.032292 0.003455 0.012716 +v 0.032906 0.004482 0.012485 +v -0.008890 -0.014010 0.024659 +v -0.001482 0.001470 -0.035325 +v -0.024244 0.009286 -0.003430 +v -0.017872 -0.002887 0.003946 +v 0.042159 0.000863 -0.022247 +v 0.022663 0.001134 -0.007267 +v 0.014760 0.002469 -0.022453 +v 0.025868 0.011562 0.014685 +v -0.016376 0.014930 0.008627 +v -0.015077 0.021113 0.023471 +v -0.019744 0.008298 -0.001987 +v 0.012716 -0.002340 0.009029 +v 0.044594 0.001790 -0.007284 +v -0.011489 0.003296 0.004513 +v -0.005905 -0.002039 -0.024687 +v -0.006275 0.009481 0.024669 +v 0.027109 0.001642 0.006884 +v -0.035204 -0.001320 -0.019302 +v -0.017317 0.003562 -0.037246 +v 0.001864 0.004599 -0.008284 +v 0.027132 0.012327 0.010222 +v 0.027237 0.012609 0.010120 +v 0.001076 -0.000464 -0.035485 +v 0.000811 -0.000511 -0.036076 +v -0.025388 -0.000840 -0.013371 +v -0.022015 0.003012 -0.026581 +v 0.028366 0.012914 0.007841 +v -0.043814 0.002754 -0.036380 +v -0.032755 0.010508 0.005243 +v 0.004119 -0.000711 0.015038 +v -0.012005 -0.002394 -0.004005 +v -0.035587 -0.014260 0.018233 +v -0.016424 0.010763 0.022247 +v 0.032522 -0.002172 0.004453 +v 0.043352 0.003126 0.020134 +v 0.037594 -0.001927 -0.010605 +v -0.019162 0.002363 -0.020442 +v 0.033020 0.016829 0.018778 +v 0.040258 0.003428 -0.006356 +v -0.036583 0.000723 -0.022370 +v 0.012656 0.015225 0.019370 +v -0.034613 0.010263 -0.023932 +v 0.028536 -0.014123 0.015781 +v -0.026283 -0.002998 -0.012220 +v 0.000732 -0.000788 -0.035415 +v 0.028474 0.011445 0.001295 +v -0.003636 -0.001031 -0.031584 +v 0.027746 -0.014151 0.015339 +v -0.026236 0.023532 0.015818 +v 0.013786 0.003585 -0.015780 +v -0.013550 0.011749 0.019948 +v 0.040039 0.000137 -0.011405 +v -0.041021 0.007954 -0.037324 +v -0.028653 0.000372 0.024286 +v -0.030262 0.002754 0.023528 +v 0.030421 -0.003623 -0.024765 +v 0.023482 0.011608 0.004821 +v 0.009304 0.009679 0.023321 +v 0.024762 -0.013962 0.014952 +v -0.015890 0.019286 0.015016 +v -0.040334 0.012828 -0.020921 +v -0.028786 0.002310 -0.019896 +v -0.028148 0.013952 0.013173 +v 0.022407 0.002786 0.004922 +v -0.012274 0.004700 -0.019784 +v 0.038913 0.003041 -0.000764 +v -0.010846 -0.013310 -0.023212 +v -0.030394 -0.002695 -0.034828 +v -0.040104 0.011004 -0.036879 +v 0.016529 0.013908 0.019924 +v 0.036605 -0.000471 0.017928 +v -0.020883 0.001966 -0.028949 +v -0.012791 -0.013714 -0.025776 +v -0.007178 -0.013889 -0.025588 +v 0.002239 0.006436 0.011038 +v -0.036959 0.012355 -0.023993 +v -0.003067 0.006576 0.003311 +v -0.008118 -0.013541 -0.026700 +v 0.044104 -0.000812 -0.021623 +v -0.007504 -0.013494 -0.027427 +v -0.024648 0.008447 0.023828 +v 0.029560 0.013848 0.004313 +v 0.029879 0.000994 0.008914 +v -0.026519 0.019367 0.024394 +v -0.013284 0.004009 -0.036554 +v -0.041818 0.003986 -0.019782 +v -0.010800 0.014843 0.012651 +v 0.042036 0.004000 0.016012 +v -0.006830 -0.001513 -0.030864 +v -0.014159 -0.014020 -0.034810 +v -0.030000 -0.002269 -0.023553 +v -0.013166 -0.013661 -0.034720 +v 0.015072 -0.001304 -0.010195 +v 0.028590 -0.004978 0.010526 +v 0.039236 -0.002065 -0.012708 +v 0.030796 0.015952 0.020729 +v -0.032364 0.008443 -0.001668 +v -0.013667 -0.013670 -0.035930 +v -0.026252 0.023076 0.017128 +v -0.032510 0.011209 0.009008 +v -0.016251 -0.013813 -0.039822 +v -0.016471 -0.013766 -0.040276 +v 0.013489 0.012633 0.022552 +v -0.017744 0.020621 0.018273 +v -0.015545 0.006325 -0.026924 +v -0.015305 -0.013917 -0.040842 +v -0.014417 -0.013726 -0.040911 +v -0.015544 -0.013635 -0.041201 +v -0.014744 -0.013401 -0.041350 +v -0.016466 0.001519 -0.037809 +v -0.022494 0.006874 -0.021709 +v 0.024158 0.014550 0.018050 +v 0.021463 0.007679 0.024669 +v 0.052773 0.001325 -0.023169 +v 0.031345 -0.000140 0.007238 +v 0.047132 0.001578 -0.018945 +v 0.043568 0.012032 0.019240 +v -0.036127 -0.014550 0.021444 +v -0.036366 -0.014157 0.022056 +v 0.039824 0.002572 0.002585 +v -0.014352 -0.000848 0.002140 +v 0.037764 0.001597 -0.000777 +v 0.030057 -0.002509 0.006604 +v -0.037514 0.003137 0.004893 +v -0.026998 -0.002288 -0.024058 +v -0.037298 -0.014025 0.020881 +v 0.020464 0.002495 -0.023607 +v -0.021050 -0.014244 0.020100 +v -0.002170 0.002157 0.022888 +v 0.033324 0.002543 -0.005887 +v 0.022028 0.002796 0.003044 +v 0.009642 0.012803 0.020728 +v -0.012937 0.006239 0.004984 +v -0.033247 -0.003907 0.019181 +v 0.016541 -0.001374 0.002258 +v 0.022233 0.003553 0.008014 +v -0.030243 0.000944 -0.037344 +v 0.047975 -0.003620 -0.016378 +v 0.027872 0.003928 -0.010156 +v 0.023254 -0.013201 0.019069 +v -0.015345 -0.013990 0.018056 +v -0.005356 -0.013972 0.018391 +v -0.020485 0.007398 -0.028751 +v -0.034141 0.000681 -0.033108 +v -0.001867 0.004344 -0.003842 +v -0.035199 -0.013707 0.017830 +v -0.012493 0.017478 0.015122 +v 0.020246 -0.012395 0.017240 +v 0.032510 -0.000781 0.005091 +v -0.020270 0.007928 -0.029164 +v 0.025475 0.010095 0.000295 +v -0.006821 -0.013908 0.015569 +v -0.040194 0.004789 -0.032752 +v -0.030882 0.005033 -0.031030 +v -0.037684 0.000839 -0.018091 +v -0.010137 0.003830 -0.035748 +v 0.006170 -0.004201 0.010506 +v 0.041588 -0.000942 -0.000809 +v -0.007772 0.000658 -0.018474 +v 0.011205 0.016673 0.019202 +v -0.007640 0.003265 -0.021092 +v 0.031765 -0.003131 0.023444 +v -0.010409 -0.013408 0.015192 +v -0.007300 -0.001174 -0.016457 +v 0.014408 -0.013876 0.014988 +v -0.038946 0.007486 -0.038244 +v 0.022670 -0.013804 0.013831 +v 0.028963 0.017405 0.009617 +v -0.037070 0.001868 0.002670 +v 0.049074 0.001726 -0.018781 +v 0.020056 -0.013268 0.012899 +v -0.038823 0.002629 -0.023234 +v -0.038557 0.002233 -0.023329 +v -0.008161 -0.013066 -0.023456 +v 0.047408 0.006319 0.000035 +v -0.024985 0.025013 0.015443 +v -0.025716 0.024855 0.016224 +v -0.014493 0.020436 0.023049 +v 0.053198 0.002003 -0.022483 +v -0.011685 0.006083 0.005070 +v -0.020838 0.009022 -0.001523 +v -0.001023 0.006784 0.003746 +v -0.014558 0.006312 -0.031470 +v 0.037819 0.000818 -0.001216 +v -0.026564 0.010126 0.022527 +v 0.044157 0.014838 0.008935 +v -0.014904 -0.013279 -0.029909 +v -0.031512 0.009860 0.019696 +v -0.015913 0.013080 0.018514 +v -0.031019 -0.002869 -0.026958 +v 0.028353 0.014968 0.018878 +v -0.004926 0.007450 0.005580 +v -0.015469 -0.013039 -0.032544 +v 0.023794 0.007063 0.012407 +v 0.023292 0.007175 0.012264 +v 0.044423 0.001325 -0.018620 +v -0.008232 -0.013410 -0.033335 +v 0.032930 0.016208 0.021109 +v 0.040776 -0.000332 -0.012569 +v 0.027762 0.012604 0.009575 +v -0.007093 0.001234 -0.021384 +v 0.007447 0.004500 -0.006084 +v 0.041604 0.001952 0.003311 +v 0.029081 0.014043 0.015080 +v 0.032011 0.013699 0.013224 +v -0.016095 0.018960 0.012688 +v 0.027638 0.013450 0.007377 +v 0.038475 0.003043 0.000381 +v -0.017316 -0.013674 -0.038711 +v -0.017693 -0.013648 -0.038898 +v -0.017009 -0.013759 -0.039585 +v -0.035042 0.009522 -0.023306 +v -0.005638 0.010111 0.014970 +v -0.008736 0.001886 -0.039121 +v -0.023691 -0.000013 -0.026360 +v -0.015527 -0.013494 -0.039880 +v 0.024619 0.002960 0.004086 +v 0.024385 0.003146 0.002510 +v -0.021355 -0.001855 -0.018716 +v 0.025863 0.011469 0.009383 +v 0.034925 -0.001059 0.001807 +v 0.042017 -0.000243 -0.012445 +v 0.043314 -0.000682 0.000012 +v 0.024966 0.007885 -0.005183 +v 0.025556 0.008538 -0.006152 +v -0.037237 0.005504 -0.024308 +v -0.005678 -0.002892 -0.008479 +v 0.036761 -0.000815 -0.001686 +v 0.026577 0.010712 0.012493 +v -0.037494 -0.014311 0.022062 +v 0.025996 0.013175 0.017785 +v 0.030224 0.001266 0.011588 +v -0.013937 -0.001243 -0.037988 +v -0.034387 0.012871 -0.032035 +v -0.012327 -0.003648 0.005371 +v -0.031868 -0.013045 0.021435 +v 0.018160 0.015117 0.020929 +v -0.006295 -0.004229 -0.027356 +v -0.010878 0.002991 -0.015464 +v -0.013349 0.015207 0.013542 +v 0.038008 0.013527 0.023369 +v -0.015449 0.018590 0.022901 +v 0.011411 -0.004360 -0.002315 +v -0.002504 0.011589 0.011705 +v -0.029747 -0.013755 0.019311 +v -0.007456 0.017267 0.021647 +v 0.039734 0.004413 -0.004145 +v -0.021687 -0.013974 0.018861 +v -0.019600 -0.013948 0.018411 +v -0.030670 -0.013990 0.018157 +v -0.029274 -0.013700 0.018611 +v -0.026493 0.002723 -0.038368 +v 0.009189 -0.002700 0.003915 +v -0.035781 -0.013463 0.018322 +v -0.040140 0.002521 -0.029997 +v -0.017275 0.005081 -0.014983 +v 0.038227 0.005629 0.024181 +v 0.017838 0.008481 0.021874 +v -0.032805 -0.013575 0.017756 +v 0.030142 0.015502 0.005838 +v 0.030182 0.014569 0.003459 +v -0.032867 0.004943 -0.031124 +v -0.023655 0.003517 -0.026155 +v 0.025990 0.012626 0.014850 +v -0.029329 0.001280 0.024084 +v -0.032652 -0.002449 -0.018915 +v 0.025929 -0.013564 0.014875 +v -0.018862 0.014918 0.023754 +v -0.001596 0.001778 -0.009284 +v -0.011657 -0.013700 -0.021761 +v -0.012102 -0.013426 -0.021204 +v -0.012414 -0.013874 -0.021998 +v -0.013461 -0.013571 -0.022271 +v -0.011441 -0.013429 -0.021489 +v -0.043363 0.004783 -0.020215 +v -0.037195 0.005433 0.012833 +v 0.024224 0.010810 0.005451 +v 0.038758 -0.000903 0.017685 +v -0.013706 -0.013669 -0.024425 +v -0.014537 -0.013234 -0.026137 +v 0.013565 0.002949 -0.013417 +v -0.027027 0.011333 -0.031787 +v -0.011863 0.016777 0.019745 +v -0.036869 0.008915 -0.024598 +v 0.052861 0.000775 -0.022130 +v -0.007162 -0.013027 -0.028119 +v -0.021391 0.014975 0.011639 +v 0.034372 -0.004279 0.016118 +v -0.011560 -0.003180 0.004188 +v -0.016886 -0.012652 -0.031759 +v 0.010472 0.007421 0.021784 +v 0.022890 -0.003296 -0.027084 +v -0.015694 0.006585 -0.021076 +v -0.008031 -0.000415 0.000944 +v 0.024050 0.018323 0.023972 +v -0.015296 -0.013620 -0.033718 +v -0.016023 -0.013522 -0.034048 +v -0.033103 0.012478 -0.021032 +v -0.013894 -0.013196 -0.033957 +v -0.015870 -0.013319 -0.034818 +v 0.023965 0.003233 -0.002887 +v -0.012416 0.004877 -0.020351 +v -0.034072 0.009844 -0.024322 +v -0.011971 -0.012867 -0.035795 +v -0.010462 -0.012607 -0.035741 +v -0.017685 -0.013325 -0.037984 +v 0.008396 0.010120 0.022003 +v 0.035276 -0.003410 -0.020948 +v 0.040307 0.010003 0.001397 +v -0.017753 -0.013421 0.023860 +v -0.022138 -0.013193 0.021641 +v -0.038062 -0.013797 0.022102 +v -0.037476 -0.013860 0.022575 +v -0.028196 0.004288 -0.037052 +v -0.022250 -0.013701 0.020673 +v -0.038052 0.002668 -0.018781 +v 0.035411 0.001414 0.016924 +v 0.045948 0.007984 -0.000998 +v 0.028105 0.019002 0.008903 +v -0.034304 0.010455 -0.025052 +v 0.017362 0.003099 -0.021163 +v -0.000002 0.007395 0.006908 +v -0.005837 -0.001605 -0.023032 +v 0.026307 0.019656 0.009390 +v 0.024946 0.014483 -0.001582 +v -0.023757 0.006285 -0.037291 +v -0.020439 0.015007 0.011550 +v -0.036420 0.000468 0.001242 +v -0.033110 0.004697 -0.004813 +v -0.017370 0.004185 -0.021250 +v -0.017942 0.006080 -0.012064 +v -0.031216 -0.013133 0.017403 +v -0.012519 -0.013646 0.017431 +v -0.037138 -0.001101 -0.028733 +v -0.014924 -0.013579 0.016919 +v -0.006994 0.003931 -0.024969 +v -0.005141 -0.013701 0.016478 +v 0.012067 -0.001940 0.013064 +v 0.028286 0.012697 0.008317 +v -0.011346 -0.014022 0.015919 +v 0.014778 -0.013543 0.015468 +v 0.015105 -0.013667 0.015378 +v -0.012538 0.004489 -0.028033 +v -0.003445 0.004158 0.023652 +v -0.001953 0.014846 0.017344 +v 0.014705 -0.014072 0.014678 +v -0.002604 0.005887 0.001589 +v 0.042122 0.010090 0.000176 +v 0.012072 0.003520 -0.013338 +v -0.040792 0.002557 -0.023444 +v -0.033165 -0.001377 -0.022125 +v 0.013598 0.005812 0.017379 +v -0.013618 -0.012973 -0.021662 +v -0.029662 0.012196 -0.032526 +v 0.014963 0.008479 0.017303 +v -0.012290 -0.013378 -0.022951 +v -0.008451 -0.012780 -0.023116 +v -0.011076 -0.002854 -0.037607 +v -0.031894 -0.001031 -0.019155 +v 0.025476 0.011862 0.012954 +v 0.003361 0.006097 0.002056 +v -0.003272 0.008696 0.023550 +v 0.011734 0.001967 -0.022291 +v -0.014732 -0.013350 -0.024867 +v -0.008716 -0.004033 0.001173 +v 0.019782 0.014862 0.017976 +v -0.007599 -0.013257 -0.026131 +v -0.040366 0.007325 -0.035864 +v -0.006295 0.003252 -0.023843 +v -0.015161 0.018808 0.019315 +v 0.027743 0.014666 0.011881 +v 0.027839 0.014739 0.011652 +v -0.023929 0.009990 -0.019613 +v -0.016372 -0.012236 -0.029097 +v -0.031924 0.007536 -0.003131 +v -0.006892 -0.002982 -0.007195 +v -0.016163 -0.012928 -0.032269 +v -0.030485 0.011727 0.006188 +v -0.014454 -0.012978 -0.033445 +v 0.027448 0.012576 0.010024 +v -0.037069 0.014292 -0.021592 +v 0.016168 0.003176 -0.020461 +v -0.009110 0.008442 0.007136 +v -0.014646 -0.012607 -0.035739 +v -0.018306 -0.013397 -0.037933 +v -0.018740 -0.013146 -0.038116 +v 0.025486 0.011195 0.013309 +v 0.026115 0.010945 0.012025 +v 0.025710 0.011319 0.012321 +v -0.023466 -0.000840 -0.039086 +v -0.014191 -0.013196 -0.039676 +v 0.032181 -0.000174 0.004774 +v 0.000777 -0.000825 -0.029074 +v -0.014164 -0.013051 -0.040848 +v 0.041698 -0.000477 -0.017942 +v -0.019664 -0.013227 0.023132 +v 0.023416 0.018285 0.023681 +v 0.001174 -0.003340 -0.018438 +v 0.034239 0.001757 -0.014317 +v 0.013582 -0.002050 0.007045 +v 0.014802 0.002571 0.019559 +v 0.027089 -0.012310 0.019707 +v 0.035849 0.013697 0.024244 +v -0.022944 0.022746 0.014435 +v -0.036240 -0.013665 0.019279 +v -0.006698 0.016518 0.018906 +v -0.028900 0.010628 -0.022063 +v 0.023793 0.017994 0.022984 +v -0.025118 0.013287 0.010278 +v -0.023332 -0.013586 0.018872 +v -0.013179 0.004966 -0.029216 +v 0.013623 0.001073 0.014438 +v -0.010961 0.004044 -0.022079 +v -0.022228 -0.013378 0.017899 +v -0.034963 0.013175 -0.032647 +v 0.031148 -0.002550 0.023574 +v 0.042774 0.004448 -0.006284 +v -0.006067 0.008108 0.023249 +v -0.017100 -0.013628 0.017709 +v 0.029531 0.000087 0.006670 +v -0.015712 -0.013575 0.016184 +v -0.014072 0.003995 -0.019000 +v 0.028439 0.014049 0.022645 +v -0.041651 0.008038 -0.026417 +v 0.026742 0.012723 0.010118 +v -0.026689 0.016092 0.023637 +v 0.022718 0.013085 0.000472 +v 0.020936 0.012631 0.015324 +v -0.036580 0.004875 -0.024136 +v -0.014667 0.016737 0.018254 +v 0.016898 -0.012519 0.014341 +v 0.023090 0.012974 0.003528 +v -0.005132 -0.013783 0.012686 +v 0.022575 0.017388 0.023758 +v -0.030536 -0.003138 -0.018283 +v -0.006127 -0.003096 -0.026759 +v -0.006688 -0.013698 0.011174 +v 0.018322 -0.013220 0.013308 +v -0.003501 0.013900 0.017786 +v 0.028035 -0.001323 -0.024714 +v 0.022647 0.011386 0.021807 +v -0.004988 -0.013472 0.009917 +v -0.009006 0.016419 0.016951 +v -0.044868 0.003927 -0.019047 +v -0.011356 -0.012910 -0.021238 +v -0.009992 0.000094 -0.011540 +v -0.013469 -0.013335 -0.023463 +v -0.034203 -0.002481 0.018291 +v -0.009955 -0.002691 -0.007473 +v -0.011455 -0.013206 -0.023085 +v -0.008958 0.004368 -0.025390 +v -0.028012 0.012353 0.017361 +v -0.015446 -0.012567 -0.023948 +v -0.002323 0.008432 0.021698 +v -0.002360 0.008396 0.021674 +v 0.026443 0.002907 0.001380 +v -0.007687 -0.012655 -0.025853 +v -0.014936 0.014038 0.019048 +v 0.050197 -0.002434 -0.018130 +v 0.041846 0.012996 0.004285 +v 0.019595 0.009455 0.023138 +v -0.016648 -0.013168 -0.032924 +v -0.017679 -0.012604 -0.033932 +v -0.033683 0.010181 -0.025107 +v -0.009898 -0.012478 -0.035318 +v -0.033443 -0.003484 0.018484 +v 0.012387 0.005113 0.019590 +v -0.022414 0.021192 0.013782 +v 0.051797 -0.000375 -0.015651 +v 0.037776 0.011300 0.024652 +v -0.018839 -0.013101 -0.037256 +v -0.012846 -0.002664 -0.041291 +v -0.017277 -0.012932 -0.038106 +v -0.017244 0.005829 -0.020902 +v 0.026045 0.003667 -0.007777 +v -0.013998 -0.012931 -0.039534 +v 0.014556 0.002906 0.017768 +v -0.015945 -0.012892 -0.040716 +v -0.019624 0.003405 -0.017108 +v 0.027806 0.014618 0.011773 +v -0.036462 0.015115 -0.020402 +v -0.035656 0.015117 -0.019582 +v -0.022006 0.002017 -0.015628 +v -0.037996 -0.013315 0.022251 +v 0.028010 0.012879 0.009012 +v -0.036432 -0.012922 0.022112 +v -0.008232 0.009752 0.023253 +v -0.027071 0.019751 0.023504 +v -0.037109 -0.013344 0.020490 +v -0.022234 -0.001751 -0.020620 +v 0.012582 -0.001247 0.017077 +v -0.034343 0.010012 0.010587 +v -0.016820 0.011787 0.005441 +v 0.019438 0.012181 0.015088 +v -0.045524 0.008391 -0.027180 +v 0.029582 -0.000304 0.012173 +v -0.033347 0.010608 -0.034407 +v -0.016156 -0.001289 -0.038966 +v 0.039213 0.005041 0.013713 +v -0.015776 0.018241 0.022539 +v -0.013121 -0.013078 0.016974 +v -0.038266 -0.000720 -0.033177 +v -0.025488 0.010156 -0.022113 +v -0.017522 -0.013640 0.015398 +v -0.035327 0.015008 -0.018685 +v -0.019091 -0.013624 0.015715 +v 0.017496 -0.013212 0.015133 +v -0.019871 -0.013720 0.014188 +v -0.020585 -0.013326 0.015520 +v -0.007628 -0.013015 0.014870 +v -0.006205 -0.013594 0.014846 +v 0.053691 0.000534 -0.017521 +v -0.020005 0.003193 -0.028114 +v 0.042743 0.000178 0.023199 +v 0.028169 -0.013245 0.014939 +v 0.031864 0.010098 0.012675 +v 0.017562 0.008075 0.019846 +v -0.017076 -0.003895 0.006039 +v 0.026292 0.012364 0.014188 +v -0.025680 0.007160 -0.034891 +v -0.018545 -0.013514 0.013754 +v 0.015205 -0.013332 0.014936 +v -0.024617 0.010353 0.000574 +v -0.004705 -0.013608 0.012629 +v 0.013698 0.006553 0.018383 +v -0.022015 -0.013529 0.013910 +v -0.020155 -0.013580 0.012883 +v 0.019592 0.005122 0.009355 +v -0.006757 -0.013432 0.013819 +v -0.012358 0.004566 -0.028596 +v 0.021402 -0.012906 0.013167 +v -0.042089 0.003296 -0.023811 +v 0.026615 0.003739 -0.014958 +v -0.022887 -0.013561 0.012804 +v -0.026329 0.023385 0.018322 +v -0.046241 0.005184 -0.021728 +v -0.021981 -0.013710 0.011741 +v -0.024557 -0.013370 0.012028 +v -0.020264 -0.013476 0.011922 +v -0.007289 -0.013272 0.010764 +v -0.022757 -0.013312 0.009727 +v -0.017728 0.021136 0.021795 +v -0.006717 -0.013304 0.008586 +v -0.006258 -0.013546 0.008692 +v -0.005359 -0.013302 0.006734 +v -0.039590 0.016527 -0.020171 +v 0.010528 0.005114 0.022686 +v 0.001336 0.000438 -0.029386 +v 0.010082 0.013142 0.022158 +v -0.008030 -0.012351 -0.025222 +v -0.018169 0.008023 -0.021097 +v -0.007721 -0.012944 -0.026623 +v -0.015779 -0.012623 -0.026640 +v -0.007563 -0.012787 -0.027469 +v 0.039572 -0.004510 0.024030 +v 0.022907 0.013924 0.003790 +v -0.041845 0.004116 -0.024212 +v 0.031910 0.003031 -0.015246 +v 0.035783 0.002351 0.024400 +v -0.009774 -0.011019 -0.031837 +v -0.017320 -0.012838 -0.032490 +v -0.015291 -0.012998 -0.032937 +v 0.023112 0.009052 0.024669 +v 0.042014 0.014478 0.006862 +v 0.024967 0.010654 0.006391 +v -0.006027 0.017205 0.021403 +v -0.026336 0.021972 0.020631 +v -0.002223 0.000174 -0.027776 +v -0.003035 -0.000607 -0.027950 +v -0.032993 0.011339 -0.030303 +v -0.003776 -0.003872 0.023665 +v -0.025325 0.000209 -0.038853 +v 0.027610 0.016329 0.012725 +v -0.019295 -0.012897 -0.037272 +v -0.019007 -0.012593 -0.036535 +v -0.015592 -0.012820 -0.038766 +v -0.042558 0.004809 -0.025275 +v -0.017128 -0.011978 -0.037344 +v -0.019182 -0.011765 -0.037791 +v -0.010233 -0.009739 0.024251 +v 0.029905 0.012386 0.013830 +v -0.034179 0.011330 -0.029064 +v -0.037490 -0.013437 0.022559 +v -0.006871 -0.013308 0.022945 +v 0.014924 0.008139 0.018243 +v 0.026348 0.009439 -0.008086 +v 0.015363 0.007429 0.020438 +v -0.024332 -0.013194 0.019615 +v -0.028838 -0.012285 0.020175 +v -0.040010 0.006951 -0.025485 +v -0.035786 -0.012763 0.019312 +v -0.032854 -0.001507 -0.018753 +v -0.027030 0.000616 -0.020535 +v 0.041302 0.015786 0.019212 +v 0.036324 0.003502 0.024668 +v -0.004146 -0.013381 0.016527 +v 0.030517 -0.012358 0.018042 +v -0.020282 -0.013022 0.017361 +v 0.022655 0.003218 -0.016105 +v 0.033233 -0.000822 0.003844 +v -0.024476 0.011746 0.022111 +v 0.003364 0.006014 0.008206 +v 0.004467 0.005553 0.001199 +v -0.021177 0.011605 0.022364 +v 0.027780 0.014606 0.011907 +v -0.006631 0.001969 0.000320 +v 0.038256 -0.000914 0.018121 +v -0.018653 -0.013247 0.016885 +v -0.009756 0.016133 0.022241 +v -0.003480 -0.012811 0.014745 +v 0.018829 -0.012892 0.016219 +v -0.015525 -0.013021 0.015264 +v -0.036215 0.011745 -0.019872 +v -0.010150 -0.003883 0.003179 +v -0.014485 0.015227 0.019244 +v 0.023903 0.002089 -0.009668 +v -0.014855 -0.001135 0.002270 +v 0.041614 0.004051 -0.006830 +v 0.001472 0.001007 0.019388 +v 0.029719 0.018018 0.005846 +v -0.018826 -0.012806 0.012002 +v -0.037829 0.011635 -0.032500 +v -0.041760 -0.000124 -0.032019 +v -0.000525 0.000002 -0.024652 +v -0.020773 -0.012728 0.009927 +v 0.023874 0.002689 -0.022814 +v 0.047573 0.005035 0.006088 +v -0.024735 -0.013381 0.010319 +v -0.023808 -0.013374 0.009716 +v -0.031616 0.008704 -0.022770 +v -0.033211 -0.000878 0.020786 +v -0.012071 0.004576 -0.020156 +v -0.004985 -0.013108 0.007565 +v -0.033085 0.013034 -0.020263 +v -0.020607 0.008753 -0.022431 +v -0.005758 0.003260 -0.028309 +v -0.010850 -0.012784 -0.022847 +v -0.008398 -0.012647 -0.023753 +v -0.038664 0.016183 -0.020856 +v -0.016926 -0.011899 -0.025295 +v -0.037805 0.012755 -0.024673 +v -0.018151 0.010756 0.022416 +v -0.038382 0.001600 -0.024004 +v 0.037591 -0.003733 -0.018657 +v -0.018605 -0.012090 -0.033131 +v -0.009665 -0.012007 -0.033893 +v 0.008890 0.011475 0.022882 +v 0.013842 0.006047 0.018696 +v -0.016661 -0.012016 -0.034992 +v 0.036748 0.000811 0.017130 +v -0.013550 0.014036 0.020187 +v 0.019228 0.009777 0.019040 +v -0.014211 -0.012652 -0.037691 +v -0.013907 -0.012561 -0.039115 +v 0.036284 -0.000853 -0.000720 +v 0.029760 0.014883 0.016009 +v 0.035213 -0.001241 0.017371 +v -0.027816 0.009887 -0.033215 +v 0.011514 0.000174 -0.024429 +v 0.040069 0.004253 0.015070 +v 0.001850 0.006807 0.006280 +v -0.014236 -0.012310 -0.039733 +v 0.013219 0.004077 0.013485 +v -0.025315 0.021708 0.014890 +v 0.022774 0.009806 0.006927 +v -0.035470 -0.012777 0.018247 +v -0.042771 0.000611 -0.033926 +v -0.002790 0.008467 0.022341 +v 0.030128 -0.012614 0.019106 +v 0.041249 0.013587 0.021414 +v -0.003999 -0.012801 0.017767 +v -0.034831 -0.012196 0.018021 +v -0.033648 -0.012103 0.017795 +v -0.028058 -0.012732 0.017492 +v 0.008272 0.010698 0.020929 +v -0.042783 0.004358 -0.024172 +v -0.040730 0.002043 -0.031716 +v -0.036406 -0.003314 -0.030303 +v -0.012109 -0.012273 0.016203 +v -0.037149 0.010658 -0.032000 +v -0.022335 -0.012448 0.016889 +v -0.014567 -0.012785 0.015885 +v 0.016731 -0.012703 0.014746 +v 0.022861 0.014207 0.022513 +v -0.007383 -0.012854 0.014662 +v -0.022635 -0.013135 0.014785 +v -0.043144 0.001082 -0.035347 +v 0.023022 -0.012877 0.013756 +v 0.040615 -0.002142 0.021095 +v 0.020643 -0.012810 0.012835 +v -0.001032 0.011361 0.011572 +v 0.037940 0.002256 0.000798 +v -0.029032 0.011557 -0.021079 +v 0.010351 0.014066 0.020184 +v 0.010264 0.015032 0.019311 +v -0.030421 -0.001789 0.022358 +v 0.023967 -0.013177 0.011124 +v 0.025097 -0.013214 0.009313 +v 0.027378 0.003705 -0.009131 +v -0.014082 0.012826 0.019338 +v 0.025258 -0.013024 0.008171 +v -0.032108 -0.000615 -0.022668 +v -0.005420 -0.012819 0.006127 +v 0.014184 -0.012814 -0.016118 +v 0.013160 -0.012874 -0.017594 +v 0.032782 0.004417 0.012091 +v 0.013012 -0.012806 -0.019433 +v 0.014455 -0.012849 -0.019474 +v 0.018977 -0.012983 -0.019912 +v 0.021062 -0.012706 -0.018796 +v -0.012959 0.005091 -0.021196 +v 0.017851 -0.012754 -0.018851 +v 0.016751 -0.012845 -0.020912 +v 0.019251 -0.012794 -0.021033 +v 0.020667 -0.012780 -0.021932 +v 0.017089 -0.012550 -0.021944 +v 0.021326 -0.012730 -0.021374 +v -0.036725 0.007423 -0.034047 +v -0.007784 -0.012484 -0.023418 +v -0.018194 0.005554 -0.036047 +v 0.042282 0.000784 0.002287 +v -0.017322 -0.012388 -0.028446 +v -0.007867 -0.012602 -0.028799 +v -0.008870 -0.003523 -0.008364 +v 0.015079 0.001906 0.010850 +v 0.014671 0.001683 0.011641 +v -0.008566 -0.012035 -0.030666 +v -0.018002 -0.012344 -0.031777 +v -0.015448 -0.012381 -0.035755 +v -0.031677 0.012419 -0.031454 +v -0.019957 -0.012387 -0.036478 +v -0.013057 0.004051 -0.039468 +v -0.000418 -0.000800 -0.028647 +v -0.014704 -0.012588 -0.036844 +v -0.039950 0.014711 -0.019755 +v -0.028495 -0.002532 -0.028158 +v -0.036757 0.002553 0.015120 +v -0.013958 -0.012173 -0.038135 +v -0.012901 0.013012 0.020711 +v -0.021586 0.007264 -0.034645 +v 0.010842 0.006343 0.018902 +v -0.015848 -0.012758 0.024667 +v -0.015781 0.021672 0.023142 +v -0.001647 0.001316 -0.031267 +v -0.018367 -0.012330 0.023710 +v 0.021763 -0.001425 -0.007805 +v -0.037213 -0.012796 0.021887 +v -0.023277 0.020245 0.014572 +v 0.042217 0.002175 0.023809 +v -0.032809 0.009872 -0.029620 +v 0.003303 0.005500 -0.003381 +v -0.001100 -0.000275 -0.023147 +v 0.027480 0.013568 0.011480 +v -0.001488 0.000600 -0.010590 +v 0.030232 -0.003456 0.023299 +v -0.017541 0.008537 0.004047 +v -0.029215 -0.012317 0.017043 +v -0.008423 0.006811 0.024665 +v -0.035194 0.001981 -0.002375 +v 0.011818 0.005617 0.021562 +v -0.039731 0.004973 -0.037920 +v -0.016492 -0.012897 0.014413 +v 0.044827 0.013740 0.016241 +v -0.019163 0.006380 -0.011693 +v -0.026806 0.003286 -0.029941 +v -0.007260 -0.012695 0.014263 +v 0.025169 -0.012417 0.014271 +v -0.003592 -0.012599 0.011960 +v 0.018915 -0.012606 0.012911 +v 0.026766 -0.012954 0.010640 +v 0.026465 -0.012863 0.012350 +v 0.022652 -0.012974 0.011391 +v -0.027478 0.019868 0.018896 +v -0.026637 -0.012765 0.010306 +v 0.024553 -0.013069 0.008627 +v -0.026367 -0.012958 0.008919 +v 0.052274 0.000348 -0.021210 +v -0.023973 -0.012537 0.007657 +v -0.004517 -0.012594 0.006154 +v -0.004779 -0.012873 0.005816 +v 0.022730 -0.012953 0.005433 +v 0.008961 -0.012779 -0.011212 +v 0.008647 -0.012770 -0.012491 +v 0.009277 -0.012821 -0.013840 +v 0.011231 -0.012828 -0.014024 +v 0.007773 -0.012627 -0.014639 +v 0.013064 -0.012579 -0.013828 +v 0.010846 -0.012797 -0.015449 +v 0.008040 -0.012356 -0.015841 +v 0.013626 -0.012548 -0.014679 +v 0.010922 -0.012833 -0.016848 +v 0.035535 -0.003899 -0.001742 +v 0.015364 -0.012690 -0.016914 +v 0.024383 -0.012735 -0.017876 +v 0.023847 -0.012579 -0.016742 +v 0.010425 -0.012354 -0.018790 +v 0.017579 -0.012804 -0.017973 +v 0.021024 -0.012673 -0.017681 +v -0.039495 0.009708 -0.020153 +v 0.019619 -0.012257 -0.016769 +v 0.023327 -0.012735 -0.018826 +v -0.026768 0.014898 0.013422 +v 0.021782 -0.012759 -0.018927 +v 0.008319 0.001800 0.002070 +v 0.007567 -0.004079 0.007793 +v 0.051006 0.002386 -0.020752 +v 0.005841 -0.000686 0.011387 +v -0.005226 -0.004624 -0.022396 +v -0.000186 0.007898 0.004380 +v 0.015730 -0.012533 -0.022129 +v 0.032434 -0.003933 0.023826 +v 0.025627 0.017037 -0.000544 +v 0.019085 -0.012208 -0.023208 +v -0.017956 0.006659 0.002139 +v -0.017919 0.003319 -0.019322 +v 0.033429 0.007345 0.011590 +v -0.011137 -0.010918 -0.021810 +v -0.009830 -0.012198 -0.023001 +v -0.010743 -0.011821 -0.022417 +v -0.016150 -0.011953 -0.023190 +v -0.017132 -0.011602 -0.027314 +v -0.017837 -0.011991 -0.028201 +v -0.034684 0.014114 -0.018279 +v -0.004390 0.007734 0.022576 +v -0.017313 -0.011887 -0.029888 +v -0.018401 -0.011229 -0.030295 +v -0.014575 -0.012277 -0.035942 +v -0.006405 -0.000597 -0.034417 +v -0.012581 -0.011683 -0.035801 +v -0.001912 0.005229 -0.001650 +v -0.016516 -0.012045 -0.037384 +v -0.003283 0.003271 -0.003897 +v -0.015057 -0.012401 -0.040445 +v -0.016308 -0.011234 -0.039315 +v 0.023315 0.012179 0.000467 +v -0.023394 -0.012194 0.021404 +v 0.048171 -0.002875 -0.013939 +v 0.021260 0.009398 0.022899 +v 0.025695 -0.011817 0.019056 +v 0.016366 0.006082 0.019995 +v -0.025838 -0.012818 0.018203 +v -0.047008 0.009871 -0.026853 +v 0.023251 -0.012004 0.018200 +v -0.039644 0.004251 -0.023125 +v -0.015381 0.005865 -0.033094 +v -0.033096 -0.012070 0.017770 +v -0.026471 -0.012025 0.016746 +v 0.013644 0.002341 0.014081 +v -0.015656 0.015214 0.010544 +v 0.030601 -0.011896 0.017342 +v 0.044289 0.001366 0.003811 +v 0.030195 -0.011755 0.016663 +v -0.021149 -0.012742 0.016345 +v 0.017527 -0.012524 0.015061 +v -0.024556 -0.012728 0.014212 +v 0.029945 0.016144 0.002017 +v 0.018376 -0.012663 0.013298 +v 0.022411 -0.012616 0.013140 +v -0.017138 0.007756 -0.020818 +v -0.026053 0.004484 -0.020574 +v 0.009956 0.005088 0.022927 +v 0.024452 0.010636 0.006453 +v -0.025928 -0.012784 0.012103 +v -0.007639 0.003747 -0.030083 +v -0.034009 0.013010 -0.032976 +v -0.038159 0.001492 -0.034739 +v -0.026722 0.007344 -0.034056 +v 0.041331 0.004579 0.015048 +v 0.042649 0.011242 0.001597 +v 0.020350 -0.012892 0.007756 +v 0.027056 -0.012528 0.008875 +v -0.025992 -0.012755 0.007813 +v 0.024213 -0.012374 0.007883 +v -0.029225 0.002361 -0.009598 +v -0.015203 0.021772 0.022138 +v 0.027334 0.010550 0.000972 +v 0.022536 -0.012810 0.006567 +v 0.026250 -0.012497 0.007536 +v 0.017840 -0.012448 0.007906 +v 0.019962 -0.012705 0.005388 +v 0.037495 -0.003548 -0.019917 +v -0.007122 0.003682 -0.028614 +v -0.012413 -0.003399 -0.042159 +v -0.003139 -0.003420 -0.013073 +v 0.025291 -0.012505 0.004990 +v 0.024655 -0.012695 0.003691 +v 0.021713 -0.012722 0.003694 +v -0.011950 0.002975 -0.011658 +v 0.023414 -0.012866 0.002140 +v 0.021391 -0.012587 0.002554 +v 0.024935 -0.012772 0.001828 +v 0.007659 -0.012554 -0.008099 +v 0.006328 -0.012676 -0.008697 +v 0.006129 -0.012590 -0.011239 +v -0.015760 0.006593 -0.023623 +v 0.011353 -0.012332 -0.011307 +v 0.005600 -0.012346 -0.012140 +v -0.022290 0.008190 -0.024551 +v 0.034776 0.016690 0.014975 +v 0.008209 -0.012276 -0.017140 +v 0.024512 -0.012391 -0.016040 +v 0.025156 -0.012400 -0.016510 +v 0.027056 -0.012519 -0.017049 +v -0.026291 0.010694 -0.019446 +v -0.002359 0.001865 -0.028050 +v 0.027834 0.014447 0.011902 +v 0.024872 -0.012479 -0.018876 +v -0.016449 -0.001906 -0.039459 +v -0.028976 0.011320 -0.019436 +v -0.000439 0.007733 0.003969 +v 0.011164 -0.012303 -0.019912 +v -0.023485 -0.003463 -0.025264 +v -0.004592 -0.001274 -0.030160 +v 0.012742 -0.012395 -0.020743 +v 0.024470 -0.012290 -0.020243 +v 0.024292 -0.012336 -0.021840 +v 0.014046 -0.011954 -0.022614 +v 0.022826 -0.012687 -0.020831 +v 0.041492 0.007319 -0.002609 +v 0.018071 -0.012276 -0.023196 +v 0.020315 -0.012378 -0.023033 +v 0.021227 -0.012220 -0.023158 +v -0.009396 -0.011243 -0.023547 +v -0.031982 0.005719 -0.031221 +v -0.019186 0.002146 -0.019739 +v -0.008487 -0.011291 -0.026100 +v 0.039386 -0.000266 -0.011145 +v -0.019615 -0.011304 -0.031886 +v -0.008432 0.010046 0.011546 +v 0.043113 0.015192 0.009057 +v -0.014565 0.005694 -0.037286 +v -0.012618 0.006048 -0.019415 +v 0.020852 0.016284 0.016834 +v -0.019560 -0.012574 -0.036340 +v -0.014252 -0.011909 -0.037103 +v -0.003356 0.008895 0.023844 +v -0.002882 0.008748 0.023699 +v 0.013018 0.005281 0.019075 +v -0.007749 -0.012928 0.024056 +v -0.003488 0.008633 0.023142 +v -0.034488 -0.011856 0.022013 +v 0.033082 -0.003268 -0.022764 +v -0.036279 -0.012734 0.020412 +v -0.027189 -0.012192 0.019458 +v -0.026069 -0.012517 0.019313 +v -0.003723 -0.011961 0.017868 +v -0.027105 -0.012628 0.018142 +v 0.033242 -0.002122 0.003048 +v -0.016033 0.005998 -0.020436 +v -0.031827 -0.012143 0.017435 +v -0.024137 -0.011957 0.016455 +v 0.018551 -0.012116 0.016217 +v 0.027922 -0.011645 0.014840 +v 0.026781 -0.012006 0.014486 +v 0.027818 0.001348 -0.022965 +v -0.016304 0.006675 -0.020707 +v 0.048075 -0.003186 -0.015473 +v -0.016991 0.019609 0.024284 +v 0.024839 -0.012823 0.012644 +v 0.026287 -0.012056 0.013847 +v -0.013640 0.005816 -0.037447 +v 0.021714 -0.012642 0.011290 +v 0.018460 -0.012623 0.011019 +v -0.005207 0.001443 -0.036258 +v -0.007890 -0.011238 0.009786 +v -0.007213 -0.011497 0.008157 +v 0.023164 -0.012562 0.009015 +v 0.003139 0.003319 -0.013671 +v 0.017434 -0.012270 0.009270 +v -0.025523 -0.012398 0.007160 +v 0.041546 -0.000442 -0.019914 +v 0.023110 0.014712 0.000023 +v 0.019646 -0.012493 0.004594 +v 0.023452 -0.012489 0.000173 +v 0.027471 -0.012397 0.000837 +v 0.026203 -0.012574 -0.000373 +v 0.024548 -0.012511 -0.001496 +v 0.026724 -0.012588 -0.001975 +v 0.004321 -0.012441 -0.003771 +v 0.004004 -0.012613 -0.005585 +v 0.006192 -0.012602 -0.005457 +v 0.006230 -0.012191 -0.003391 +v 0.007199 -0.012337 -0.004897 +v 0.006370 -0.012554 -0.006575 +v 0.003782 -0.012401 -0.007000 +v 0.003619 -0.012297 -0.009026 +v 0.005382 -0.012469 -0.008719 +v 0.029475 -0.012455 -0.008898 +v 0.008952 -0.012532 -0.009726 +v 0.009457 -0.012291 -0.008267 +v -0.030796 -0.000610 -0.032756 +v 0.006209 -0.012525 -0.009838 +v -0.002312 0.008742 0.022900 +v 0.029580 -0.012356 -0.010085 +v 0.009267 0.015426 0.023280 +v 0.027038 -0.012441 -0.011030 +v 0.028662 -0.012490 -0.011154 +v 0.027531 -0.012410 -0.012839 +v 0.027710 -0.012458 -0.014664 +v 0.005600 -0.012079 -0.014317 +v 0.025765 -0.012211 -0.014016 +v 0.025164 -0.012361 -0.014631 +v 0.016162 -0.011908 -0.014313 +v 0.025977 -0.012237 -0.015423 +v 0.017716 -0.012057 -0.015301 +v 0.025810 0.003742 0.010818 +v -0.015650 0.020488 0.018449 +v 0.027641 -0.012249 -0.015990 +v 0.022292 -0.012226 -0.016785 +v 0.026517 -0.012347 -0.019150 +v 0.027690 -0.012253 -0.018603 +v 0.026284 -0.012225 -0.020299 +v 0.008596 0.009505 0.023825 +v 0.016671 -0.011399 -0.024152 +v -0.008657 -0.012054 -0.023322 +v -0.007572 -0.011825 -0.023575 +v -0.031878 0.007753 -0.030892 +v -0.020615 -0.011583 -0.035423 +v -0.014491 -0.011739 -0.036033 +v -0.020258 -0.011876 -0.036545 +v -0.027288 0.007587 -0.020831 +v 0.026716 0.010608 0.011563 +v 0.027055 0.010736 0.011190 +v -0.014987 -0.011615 -0.039096 +v -0.036163 -0.012145 0.021603 +v -0.006557 -0.012458 0.022362 +v -0.030420 -0.010600 0.021244 +v -0.036178 -0.012122 0.021173 +v -0.040688 0.015562 -0.019909 +v -0.029341 -0.002216 -0.037092 +v -0.026237 -0.011587 0.020072 +v -0.036051 -0.012165 0.019825 +v 0.036085 -0.003850 -0.022130 +v 0.030131 -0.011858 0.019944 +v -0.035560 -0.012270 0.018427 +v -0.021089 0.022163 0.013802 +v -0.023591 -0.012006 0.016052 +v 0.028678 0.019050 0.006622 +v -0.014627 0.017991 0.016710 +v -0.012677 -0.011782 0.016188 +v -0.014043 -0.011474 0.015342 +v -0.025881 0.001458 -0.038690 +v -0.006275 -0.003806 0.024669 +v 0.047771 -0.001328 -0.021249 +v 0.016919 -0.012205 0.014549 +v 0.018885 -0.012431 0.012565 +v 0.006022 0.003945 -0.013652 +v 0.021226 -0.012466 0.012378 +v -0.002804 0.008402 0.022904 +v -0.002652 -0.011425 0.012621 +v -0.017979 -0.011875 0.011569 +v 0.041827 0.001302 -0.009973 +v -0.002352 0.007807 0.005994 +v -0.019790 -0.011866 0.009678 +v -0.030030 -0.003726 -0.007042 +v -0.008244 0.011380 0.012403 +v -0.028400 -0.011855 0.007972 +v -0.004218 -0.011884 0.007718 +v -0.035307 0.014186 -0.018266 +v -0.004788 0.003986 0.024332 +v -0.022169 0.007170 -0.034039 +v 0.003611 0.001306 -0.017288 +v 0.025641 -0.012009 0.007077 +v 0.017015 0.014895 0.023616 +v 0.018864 0.008227 0.021266 +v 0.027463 -0.012274 -0.001073 +v 0.004644 -0.012467 -0.001982 +v 0.001973 -0.012341 -0.002238 +v 0.028515 -0.012421 -0.002872 +v 0.025024 -0.012042 -0.003721 +v -0.011242 0.004955 -0.021759 +v 0.027221 -0.012325 -0.004362 +v 0.026852 -0.012392 -0.005083 +v 0.001605 -0.012154 -0.005458 +v 0.028503 -0.012410 -0.006382 +v 0.030077 -0.012102 -0.005593 +v -0.037945 0.011925 -0.034101 +v 0.030202 -0.012212 -0.007420 +v -0.036199 0.008544 0.009805 +v 0.027250 -0.012328 -0.009002 +v 0.011355 -0.011782 -0.009400 +v -0.010678 -0.001825 0.000747 +v -0.023176 -0.003670 -0.015432 +v -0.028165 0.010825 -0.029519 +v 0.025729 -0.011813 -0.008287 +v 0.026465 0.012148 0.009736 +v 0.004458 0.005661 0.002927 +v 0.004234 -0.011948 -0.011361 +v 0.030601 -0.012178 -0.011563 +v 0.025712 -0.011883 -0.011695 +v 0.013516 -0.011425 -0.011171 +v 0.030436 -0.012030 -0.012850 +v 0.014095 -0.012088 -0.013001 +v 0.028520 -0.012130 -0.015377 +v 0.030410 -0.012094 -0.014711 +v 0.013034 -0.001633 0.009505 +v 0.044214 -0.003010 -0.009496 +v -0.023158 0.009960 -0.030737 +v -0.019765 0.004188 -0.027085 +v -0.016897 0.021642 0.022029 +v 0.022105 -0.012092 -0.015701 +v 0.038347 0.005462 0.003395 +v -0.001255 -0.003660 -0.016288 +v 0.043315 0.001840 0.021881 +v 0.028209 -0.011921 -0.018960 +v 0.009846 -0.011827 -0.020283 +v -0.042362 0.001780 -0.019546 +v 0.025151 -0.011928 -0.021767 +v -0.013031 -0.011429 -0.021032 +v 0.012802 -0.011731 -0.022598 +v 0.036242 -0.004353 0.017952 +v 0.021721 -0.011717 -0.024069 +v -0.009024 -0.011204 -0.029806 +v -0.017970 -0.011575 -0.029558 +v -0.017348 -0.011388 -0.039076 +v -0.021222 -0.011476 0.022538 +v 0.038085 0.003093 0.024298 +v 0.026367 0.012047 0.013967 +v -0.003288 -0.011802 0.016786 +v -0.030399 -0.011123 0.016956 +v 0.018943 -0.011947 0.016720 +v 0.017624 -0.012097 0.015266 +v 0.016886 -0.011828 0.014767 +v -0.026425 -0.011701 0.014110 +v 0.024252 -0.012392 0.013503 +v -0.015266 -0.011144 0.014034 +v -0.023837 0.007998 -0.036182 +v 0.029511 -0.003437 -0.025490 +v -0.016765 -0.011802 0.012837 +v -0.008043 -0.011145 0.013466 +v 0.028093 -0.012013 0.012911 +v 0.016436 -0.011859 0.012161 +v 0.050722 0.002326 -0.022410 +v -0.034153 0.013370 -0.019177 +v -0.048203 0.010897 -0.027731 +v -0.017809 -0.003537 0.005231 +v -0.022841 -0.011820 0.007520 +v -0.023720 -0.010933 0.006300 +v 0.032354 -0.003144 0.003290 +v -0.026239 -0.011565 0.005899 +v 0.027414 0.011135 -0.003480 +v 0.017144 -0.011717 0.006708 +v 0.025131 -0.012056 0.006621 +v -0.004675 -0.011726 0.005194 +v -0.046226 0.004362 -0.020286 +v 0.027434 -0.011633 0.003822 +v 0.027373 -0.012106 0.001914 +v 0.002562 -0.012248 0.001838 +v 0.029448 0.014995 0.022096 +v 0.045973 0.012737 0.014316 +v 0.003284 -0.012140 0.001226 +v 0.001485 -0.012270 0.000081 +v 0.021731 -0.011851 -0.000235 +v 0.028488 -0.012099 -0.000103 +v 0.004464 -0.012115 -0.000029 +v 0.006574 -0.012036 -0.002073 +v 0.029862 -0.012185 -0.004058 +v 0.025966 -0.011922 -0.006578 +v 0.009625 -0.011940 -0.007296 +v 0.031620 -0.012025 -0.008033 +v 0.030663 -0.011995 -0.009660 +v 0.003363 -0.011912 -0.010202 +v 0.047878 0.005661 0.001267 +v 0.031045 -0.011833 -0.014198 +v 0.005996 -0.011733 -0.015868 +v 0.029776 -0.012095 -0.016013 +v -0.011176 0.004312 -0.039239 +v 0.030331 -0.011782 -0.017225 +v 0.029705 -0.011731 -0.018120 +v -0.016153 0.003046 -0.037534 +v 0.007612 -0.011533 -0.018706 +v 0.029293 -0.011721 -0.019263 +v 0.026696 -0.011739 -0.021068 +v -0.014857 -0.011349 -0.021616 +v -0.011821 -0.011096 -0.021212 +v 0.010538 -0.010793 -0.022420 +v -0.023913 0.023303 0.018377 +v 0.024969 -0.011545 -0.022870 +v 0.023981 -0.011891 -0.023099 +v -0.028130 0.012948 0.016386 +v 0.015782 -0.011306 -0.024325 +v 0.023074 -0.011806 -0.023480 +v -0.008689 -0.011956 -0.023657 +v 0.017998 -0.011871 -0.023909 +v -0.006108 -0.001089 -0.022241 +v 0.045974 0.004783 0.009176 +v -0.010565 -0.010641 -0.033209 +v -0.011833 -0.010246 -0.034667 +v -0.020711 -0.010966 -0.034757 +v 0.011394 0.017781 0.020942 +v -0.003485 0.008448 0.023235 +v 0.008656 0.003740 -0.016037 +v -0.031454 0.010455 -0.030051 +v 0.007667 0.015613 0.023509 +v 0.021420 -0.011562 0.017718 +v 0.028777 -0.011373 0.015295 +v -0.010506 0.003557 -0.036221 +v 0.017057 -0.012026 0.013811 +v 0.030931 -0.000225 0.004051 +v -0.003101 -0.011589 0.010206 +v 0.009386 0.005753 0.023079 +v -0.028548 -0.011793 0.009919 +v 0.028495 -0.011600 0.010009 +v 0.027935 -0.011803 0.008683 +v 0.027539 -0.011569 0.007570 +v 0.040197 0.004173 -0.005526 +v 0.026680 -0.011362 0.006797 +v -0.003577 -0.011612 0.005982 +v -0.005948 -0.011178 0.006109 +v 0.026157 -0.011647 0.005994 +v 0.019118 -0.011920 0.003570 +v -0.001007 -0.012036 0.003170 +v 0.001876 -0.011886 0.003528 +v -0.000624 -0.011999 0.002068 +v 0.041383 -0.000496 -0.022486 +v -0.000977 -0.012019 0.000397 +v -0.000586 -0.011820 -0.002171 +v 0.006453 -0.011418 -0.000038 +v 0.027783 0.014463 0.012049 +v 0.023056 -0.011435 -0.002638 +v 0.007408 -0.011913 -0.003791 +v 0.031195 -0.011354 -0.002478 +v 0.041215 0.016857 0.014912 +v 0.024792 -0.011346 -0.006071 +v 0.001453 -0.012095 -0.003731 +v 0.009427 -0.011422 -0.005198 +v -0.005715 0.002397 -0.035050 +v 0.001050 -0.011538 -0.007240 +v 0.032211 -0.011584 -0.006581 +v 0.032185 -0.011715 -0.009736 +v 0.032132 -0.011854 -0.010704 +v 0.002610 -0.011201 -0.012385 +v 0.025068 -0.011424 -0.010336 +v 0.024813 -0.011969 -0.013327 +v 0.024179 -0.011574 -0.013025 +v -0.025873 -0.003143 -0.028540 +v 0.020490 -0.011161 -0.014339 +v 0.005658 -0.011356 -0.016975 +v 0.008419 -0.011249 -0.020188 +v -0.017149 -0.010710 -0.022925 +v 0.014410 -0.010729 -0.024396 +v 0.019986 -0.010582 -0.025183 +v -0.008676 -0.011072 -0.024958 +v -0.011690 -0.002807 -0.005491 +v -0.018070 -0.010499 -0.025171 +v -0.019671 -0.011149 -0.029103 +v -0.020430 -0.010872 -0.029790 +v -0.018519 -0.011182 -0.033766 +v -0.017624 -0.011316 -0.036160 +v -0.006161 -0.011379 0.021364 +v 0.031554 -0.011498 0.019553 +v -0.036299 -0.011553 0.018357 +v -0.033828 -0.011915 0.018088 +v -0.027902 -0.011514 0.016439 +v 0.011504 0.005427 0.021931 +v 0.011892 -0.004186 0.015048 +v -0.008314 -0.011449 0.014498 +v -0.028998 -0.011260 0.010601 +v -0.029106 -0.004163 -0.023612 +v 0.014993 -0.011112 0.011483 +v -0.020100 -0.010525 0.008341 +v 0.016241 -0.011411 0.007981 +v -0.031296 0.010822 -0.022865 +v -0.026348 0.015712 0.015776 +v -0.003955 -0.011685 0.005555 +v -0.000230 -0.012003 0.004305 +v 0.000648 -0.011812 0.004356 +v -0.004026 0.017008 0.024662 +v 0.029123 0.017132 0.001576 +v 0.029269 -0.011150 0.002070 +v 0.004581 -0.011843 0.001846 +v 0.029856 -0.011736 -0.000617 +v -0.001190 -0.011382 -0.003346 +v 0.022898 0.013249 0.019902 +v -0.032314 0.001583 -0.022768 +v -0.000021 -0.011213 -0.006389 +v -0.029925 -0.003321 -0.018385 +v 0.014663 -0.011429 -0.012389 +v 0.003237 -0.011147 -0.013290 +v 0.034692 0.005390 0.011593 +v 0.004604 -0.011350 -0.015251 +v 0.032797 -0.011270 -0.014748 +v 0.031081 -0.011509 -0.015693 +v 0.022688 -0.011429 -0.014304 +v -0.018172 0.020741 0.016014 +v 0.028576 -0.011163 -0.021308 +v 0.020623 0.014436 0.014921 +v -0.012686 -0.010968 -0.020865 +v 0.019308 -0.010624 -0.025376 +v -0.018481 -0.010023 -0.027997 +v -0.019410 -0.010964 -0.030498 +v -0.017613 -0.011327 -0.034631 +v -0.013649 -0.010151 -0.035514 +v -0.018408 -0.011032 -0.035673 +v -0.014701 -0.011346 -0.036171 +v -0.014838 -0.011156 -0.037269 +v -0.017993 -0.009797 -0.038018 +v -0.035785 -0.011226 0.021601 +v -0.036174 -0.011456 0.021109 +v 0.027489 -0.011409 0.019602 +v -0.025996 -0.011216 0.015760 +v -0.009747 -0.011025 0.014812 +v -0.002732 -0.010732 0.014901 +v 0.027931 -0.011368 0.014373 +v -0.004961 0.001983 -0.022226 +v -0.008172 -0.011107 0.011543 +v 0.015214 -0.011043 0.010319 +v -0.021373 -0.010745 0.007505 +v -0.014457 0.021083 0.022262 +v -0.001074 -0.011684 0.007453 +v -0.002054 -0.011792 0.006155 +v -0.027356 -0.011184 0.005539 +v 0.029392 -0.002638 0.024669 +v -0.001011 -0.011725 0.005592 +v 0.001968 -0.011719 0.005173 +v 0.038181 0.005450 0.008867 +v -0.002893 -0.011589 0.003251 +v 0.003785 -0.011295 0.003886 +v 0.022701 0.002756 -0.015044 +v -0.001854 -0.011514 -0.000640 +v 0.007379 -0.011290 -0.001047 +v 0.031775 -0.011587 -0.004811 +v 0.009650 0.015557 0.020146 +v 0.001153 -0.011376 -0.008878 +v 0.033082 -0.011230 -0.008661 +v 0.000901 -0.010496 -0.010591 +v 0.016369 0.009125 0.018225 +v 0.033093 -0.011421 -0.011913 +v 0.032741 -0.011341 -0.013275 +v 0.018891 -0.011406 -0.014438 +v 0.032379 -0.010985 -0.016077 +v 0.026572 -0.010784 -0.023218 +v 0.027861 -0.011198 -0.022025 +v -0.009677 -0.010620 -0.023157 +v 0.013449 -0.010528 -0.024428 +v -0.027661 -0.004217 -0.019113 +v 0.024126 -0.010251 -0.024897 +v 0.024785 0.010118 0.024669 +v 0.021139 -0.010827 -0.025095 +v -0.008905 -0.010901 -0.028805 +v -0.019994 -0.010752 -0.032353 +v -0.012563 -0.009669 -0.034847 +v -0.020974 -0.010074 -0.036166 +v -0.016538 -0.010722 0.024091 +v -0.036355 -0.011158 0.020348 +v 0.029117 -0.011576 0.020080 +v -0.029637 -0.003641 -0.026659 +v -0.037162 -0.010468 0.019403 +v 0.024225 -0.011140 0.018319 +v -0.035662 -0.011555 0.018249 +v -0.033680 -0.011316 0.018015 +v -0.032715 -0.011474 0.017830 +v 0.020019 -0.011650 0.017437 +v 0.017487 -0.011388 0.016770 +v 0.029735 -0.010792 0.011322 +v -0.033476 -0.004536 -0.029450 +v -0.007415 -0.011007 0.007826 +v -0.003581 -0.011448 0.007556 +v 0.000341 -0.011375 0.006431 +v -0.003689 -0.011378 0.004697 +v 0.003776 -0.011155 0.005105 +v -0.002331 -0.011325 0.001743 +v -0.024578 0.019828 0.024663 +v 0.018235 -0.010307 0.001584 +v 0.006426 -0.011116 0.000936 +v 0.008870 -0.010673 -0.003172 +v -0.025576 0.000298 -0.025829 +v 0.041029 0.000365 0.018778 +v 0.011004 -0.010900 -0.007188 +v 0.012679 -0.010857 -0.009624 +v -0.039279 0.003844 -0.023522 +v 0.031971 -0.011079 -0.017085 +v 0.007354 -0.010746 -0.020244 +v 0.030502 -0.010637 -0.020007 +v -0.015829 -0.011347 -0.020439 +v -0.014441 -0.011163 -0.019397 +v 0.029660 -0.011181 -0.020585 +v -0.014372 -0.011059 -0.020815 +v -0.015663 -0.011061 -0.021724 +v -0.002285 0.008854 0.022756 +v 0.029014 -0.004107 0.011883 +v -0.020856 0.014550 0.024665 +v 0.025731 -0.010692 -0.023978 +v 0.023363 -0.010538 -0.025074 +v -0.020242 -0.010706 -0.029112 +v -0.018882 -0.011134 -0.034491 +v -0.019060 -0.010839 -0.035051 +v -0.019615 -0.010730 -0.034882 +v -0.002493 -0.003905 -0.014152 +v 0.040063 0.003533 0.004496 +v -0.015199 -0.010446 -0.035978 +v -0.015980 -0.010092 -0.037505 +v -0.034870 -0.010796 0.022055 +v 0.028936 -0.010691 0.020390 +v -0.003432 -0.010363 0.017175 +v 0.015630 -0.011029 0.014597 +v 0.029397 -0.011024 0.013474 +v -0.028270 -0.010285 0.013772 +v 0.029696 -0.009904 0.010181 +v -0.001834 -0.011276 0.010516 +v -0.001760 -0.011372 0.009045 +v -0.030241 -0.009969 0.006585 +v 0.000552 -0.011342 0.007959 +v -0.028917 -0.010748 0.006085 +v 0.001714 -0.011111 0.007468 +v 0.016095 -0.011077 0.006362 +v -0.004578 -0.011380 0.004846 +v 0.018179 -0.010795 0.002443 +v 0.004925 -0.010939 0.003772 +v -0.004040 -0.010974 0.001754 +v 0.031204 -0.011031 -0.001241 +v -0.001671 -0.010704 -0.004205 +v -0.001271 -0.010632 -0.005998 +v 0.033197 -0.010895 -0.005777 +v 0.034052 -0.010695 -0.008197 +v 0.024768 -0.011102 -0.009740 +v 0.033579 -0.010970 -0.011601 +v 0.017236 -0.011072 -0.013634 +v 0.033507 -0.010677 -0.014590 +v 0.004703 -0.010668 -0.017175 +v 0.005816 -0.009941 -0.019306 +v -0.015164 -0.010990 -0.019129 +v -0.016725 -0.010957 -0.020467 +v -0.013416 -0.010830 -0.020420 +v -0.017410 -0.010943 -0.021543 +v -0.022188 -0.003200 0.024669 +v -0.018490 -0.010073 -0.024072 +v -0.008680 -0.010271 -0.024898 +v -0.034970 0.011817 -0.019662 +v -0.019137 -0.009816 -0.028444 +v -0.020407 -0.010553 -0.030452 +v 0.002309 -0.010764 -0.043434 +v 0.002385 -0.010863 -0.044550 +v 0.003274 -0.010928 -0.044407 +v 0.004260 -0.010811 -0.044834 +v 0.003822 -0.010850 -0.045551 +v 0.004839 -0.010805 -0.045565 +v 0.004355 -0.010480 -0.046124 +v -0.024710 -0.010688 0.020909 +v 0.026032 -0.010422 0.018971 +v -0.037148 -0.010476 0.017888 +v 0.024646 -0.010430 0.018621 +v -0.031867 -0.011044 0.017218 +v -0.027470 -0.010548 0.015701 +v -0.012190 -0.010908 0.015888 +v 0.014761 -0.010633 0.013678 +v -0.002189 -0.011074 0.011780 +v -0.016719 -0.009900 0.011502 +v 0.015266 -0.011066 0.009036 +v -0.030280 -0.010398 0.008409 +v 0.027801 -0.010465 0.007201 +v -0.025593 -0.010871 0.005235 +v -0.004697 -0.010893 0.004117 +v 0.016571 -0.010601 0.004488 +v -0.003450 -0.010862 0.000232 +v 0.030520 -0.010860 0.000316 +v 0.032496 -0.010601 -0.002482 +v -0.002918 -0.010142 -0.002940 +v -0.001338 -0.009725 -0.007334 +v 0.023832 -0.010693 -0.011827 +v 0.015551 -0.009115 -0.010375 +v 0.002488 -0.010415 -0.014140 +v 0.018548 -0.009173 -0.012299 +v 0.031734 -0.010393 -0.019505 +v -0.013731 -0.010461 -0.018701 +v 0.008660 -0.009744 -0.022175 +v -0.020385 -0.010219 -0.034196 +v -0.022104 -0.009967 -0.034522 +v -0.021355 -0.010686 -0.035495 +v 0.003147 -0.010323 -0.043525 +v 0.002404 -0.010380 -0.045263 +v 0.004877 -0.010346 -0.045745 +v -0.008544 -0.011036 0.024015 +v -0.027324 -0.009967 0.020188 +v -0.026990 -0.010927 0.020151 +v 0.019220 -0.010951 0.018554 +v -0.026446 -0.010945 0.015222 +v -0.013317 -0.010400 0.015241 +v 0.028901 -0.010938 0.015026 +v -0.007862 -0.000556 -0.034576 +v -0.022167 -0.009779 0.006607 +v -0.027555 -0.010139 0.004442 +v -0.025677 -0.003350 -0.028496 +v 0.030441 -0.010394 0.001518 +v 0.020578 -0.010277 -0.001566 +v 0.034375 -0.010438 -0.010299 +v 0.021564 -0.009847 -0.012874 +v 0.032111 -0.010424 -0.018527 +v -0.012817 -0.010374 -0.018809 +v -0.017353 -0.010391 -0.020664 +v 0.030050 -0.010464 -0.021084 +v -0.011085 -0.010529 -0.021310 +v -0.018266 -0.010480 -0.022489 +v 0.028266 -0.010206 -0.023097 +v 0.016681 -0.009639 -0.025875 +v -0.022672 -0.009714 -0.029418 +v -0.020089 -0.010757 -0.033505 +v -0.020905 -0.009933 -0.033629 +v -0.016558 -0.010246 -0.038295 +v 0.001708 -0.010571 -0.042941 +v 0.000455 -0.010543 -0.043029 +v -0.001056 -0.010054 -0.042948 +v -0.026904 -0.004060 0.023197 +v 0.004739 -0.010109 -0.045110 +v -0.033207 -0.007076 0.022094 +v -0.036718 -0.010303 0.021767 +v -0.036972 -0.010901 0.021242 +v -0.036734 -0.010810 0.020869 +v 0.031827 -0.010792 0.020648 +v -0.005371 -0.010024 0.019525 +v 0.033215 -0.009868 0.019243 +v 0.032501 -0.009945 0.018030 +v -0.009526 -0.010804 0.014282 +v -0.015237 -0.010051 0.013478 +v 0.000471 -0.010563 0.010722 +v 0.029271 -0.009687 0.009113 +v 0.015109 -0.010403 0.007857 +v 0.027711 -0.010365 0.006569 +v -0.006675 -0.010260 0.004480 +v 0.008234 -0.009112 0.000948 +v -0.009958 0.004167 -0.029849 +v 0.023404 -0.010217 -0.006788 +v 0.021630 -0.009667 -0.003867 +v 0.023614 -0.010464 -0.010494 +v 0.034943 -0.010142 -0.011888 +v 0.034695 -0.010027 -0.013288 +v 0.034647 -0.010028 -0.014316 +v 0.033640 -0.009960 -0.017123 +v -0.014824 -0.010219 -0.018795 +v -0.012032 -0.010267 -0.020172 +v 0.029474 -0.010011 -0.022128 +v 0.025657 -0.010054 -0.024624 +v -0.008471 -0.009986 -0.025272 +v -0.010780 -0.009836 -0.032908 +v -0.014848 -0.009750 -0.035711 +v -0.016141 -0.009668 -0.036382 +v -0.000120 -0.010177 -0.041956 +v 0.002194 -0.009828 -0.042697 +v 0.004020 -0.010012 -0.044322 +v -0.000132 -0.009739 -0.043989 +v -0.037426 0.001426 -0.034621 +v 0.031256 -0.010483 0.021224 +v -0.025828 -0.009459 0.020314 +v 0.032479 -0.010761 0.019887 +v 0.020112 -0.009910 0.019695 +v -0.036513 -0.010229 0.017024 +v -0.033820 -0.010111 0.016849 +v -0.035809 -0.010244 0.016905 +v -0.032372 -0.010555 0.016662 +v 0.029724 -0.010325 0.015727 +v -0.009869 -0.010562 0.010398 +v 0.014279 -0.010378 0.011836 +v -0.017482 -0.009689 0.010326 +v -0.008804 -0.010380 0.008675 +v 0.002964 -0.010387 0.008186 +v -0.007830 -0.009927 0.006074 +v 0.029590 -0.009247 0.004627 +v -0.005548 -0.009840 0.002167 +v 0.006590 -0.009875 0.003053 +v -0.004617 -0.009959 0.000924 +v 0.033413 -0.010059 -0.003375 +v 0.034143 -0.009900 -0.004469 +v 0.011379 -0.009873 -0.006406 +v -0.001224 -0.009351 -0.008460 +v 0.023098 -0.009875 -0.009556 +v 0.000211 -0.010561 -0.009433 +v 0.000348 -0.009581 -0.011659 +v 0.022710 -0.010305 -0.011836 +v 0.020859 -0.009933 -0.013262 +v 0.002902 -0.009565 -0.016165 +v 0.034179 -0.009633 -0.015997 +v -0.010290 -0.009972 -0.020482 +v 0.030955 -0.009837 -0.021324 +v -0.009370 -0.010208 -0.022760 +v -0.008534 -0.009969 -0.026904 +v -0.008903 -0.009966 -0.028944 +v -0.021586 -0.009735 -0.030937 +v -0.009609 -0.009916 -0.030723 +v 0.002442 -0.009194 -0.045140 +v 0.003594 -0.009661 -0.045669 +v 0.004507 -0.009773 -0.045610 +v -0.017193 -0.009483 0.023616 +v 0.018775 -0.010247 0.019383 +v 0.016719 -0.009865 0.019098 +v -0.030343 -0.010336 0.016459 +v -0.011179 -0.010475 0.015043 +v 0.014139 -0.009830 0.014698 +v -0.036457 0.003020 -0.023634 +v 0.030151 -0.010321 0.013062 +v -0.010522 -0.010392 0.012807 +v -0.001944 -0.010308 0.014058 +v 0.026805 0.011209 0.010767 +v 0.014390 -0.010133 0.010231 +v 0.014818 -0.009599 0.006426 +v -0.008895 -0.009933 0.007034 +v -0.006555 -0.009630 0.003229 +v 0.031914 -0.009625 0.000625 +v 0.045206 -0.001983 -0.021746 +v 0.031889 -0.010041 -0.000911 +v 0.009407 -0.009106 -0.001558 +v 0.034769 -0.010194 -0.009140 +v 0.020205 -0.009199 -0.012444 +v 0.004959 -0.009459 -0.019234 +v 0.032425 -0.009521 -0.019952 +v -0.019327 -0.009470 -0.020760 +v 0.007621 -0.009384 -0.022100 +v -0.018680 -0.010054 -0.021904 +v -0.018846 -0.009844 -0.026632 +v -0.021455 -0.010134 -0.032621 +v -0.021500 -0.008797 -0.036105 +v -0.019588 -0.009354 -0.037146 +v -0.017947 -0.008918 -0.037497 +v -0.001307 -0.010033 -0.041633 +v -0.001646 -0.010017 -0.042365 +v 0.000972 -0.009552 -0.041916 +v 0.003207 -0.009445 -0.043631 +v 0.003967 -0.009587 -0.044701 +v -0.018715 -0.009903 0.023078 +v 0.032877 -0.010083 0.021718 +v 0.033035 -0.010384 0.020878 +v 0.015013 -0.009853 0.016963 +v 0.030324 -0.010132 0.016368 +v -0.029130 -0.010086 0.016230 +v -0.027426 -0.009766 0.015323 +v -0.012405 -0.010113 0.015045 +v -0.002386 -0.010382 0.014696 +v -0.000114 -0.009819 0.013257 +v 0.030639 -0.009814 0.013114 +v 0.001391 -0.009870 0.011344 +v -0.018220 -0.009353 0.009441 +v 0.028202 -0.009568 0.006773 +v -0.023364 -0.009027 0.005483 +v -0.004199 -0.009795 -0.001049 +v 0.035402 -0.009160 -0.010531 +v -0.014473 -0.009980 -0.018311 +v -0.011446 -0.010089 -0.018373 +v -0.019676 -0.009730 -0.021799 +v -0.019656 -0.009370 -0.023705 +v 0.010925 -0.009289 -0.024224 +v 0.029053 -0.009325 -0.023553 +v -0.008125 -0.009559 -0.024417 +v 0.022028 -0.008222 -0.026667 +v 0.020857 -0.009126 -0.026463 +v -0.025669 -0.008453 -0.029240 +v -0.024227 -0.009116 -0.029936 +v -0.009977 -0.008818 -0.032297 +v -0.022203 -0.009568 -0.033821 +v -0.013627 -0.009064 -0.035422 +v -0.016837 -0.008906 -0.036798 +v -0.000907 -0.009609 -0.041163 +v -0.002675 -0.009555 -0.040714 +v -0.015677 -0.009212 0.023961 +v -0.037715 -0.010464 0.021619 +v -0.007777 -0.009552 0.021577 +v -0.038928 -0.009924 0.020723 +v -0.037504 -0.010053 0.019087 +v -0.028135 -0.009544 0.020424 +v -0.003093 -0.009842 0.016959 +v -0.012049 -0.010266 0.013188 +v -0.030082 -0.009686 0.011191 +v 0.012162 -0.004145 0.010659 +v -0.011256 -0.009897 0.008995 +v -0.010451 -0.010028 0.008789 +v 0.016058 -0.009515 0.003964 +v 0.018557 -0.009877 0.000706 +v 0.010711 -0.009110 -0.004180 +v -0.003362 -0.008131 -0.005622 +v 0.022304 -0.009012 -0.006475 +v 0.035076 -0.009048 -0.005923 +v 0.012259 -0.009086 -0.006362 +v -0.001365 -0.008055 -0.009722 +v 0.000583 -0.008748 -0.013167 +v 0.035181 -0.009093 -0.015001 +v -0.014254 -0.009717 -0.016555 +v -0.012140 -0.009782 -0.016526 +v 0.033641 -0.008992 -0.018489 +v -0.016788 -0.009098 -0.019611 +v -0.008875 -0.009508 -0.020608 +v 0.014515 -0.009187 -0.025631 +v -0.019101 -0.009764 -0.025230 +v 0.019140 -0.008134 -0.026777 +v -0.020537 -0.009712 -0.027260 +v -0.019273 -0.009458 -0.028061 +v -0.008105 -0.009221 -0.026899 +v -0.022490 -0.008431 -0.035510 +v 0.000616 -0.008654 -0.044396 +v -0.010249 -0.009077 0.023246 +v -0.038707 -0.010206 0.022119 +v -0.034574 -0.008104 0.022254 +v -0.036835 -0.009330 0.017115 +v -0.031647 -0.009775 0.016438 +v -0.027658 -0.009656 0.014784 +v -0.013863 -0.009879 0.014096 +v -0.012027 -0.010126 0.011060 +v 0.013759 -0.008625 0.008641 +v 0.005066 -0.008674 0.008389 +v -0.009779 -0.009511 0.006921 +v 0.028606 -0.008684 0.008072 +v 0.005033 -0.009042 0.007253 +v -0.020202 -0.009135 0.007692 +v -0.030730 -0.008296 0.005081 +v -0.029736 -0.008842 0.004533 +v -0.003529 -0.008833 -0.003997 +v 0.035486 -0.009101 -0.006836 +v 0.022791 -0.009223 -0.008539 +v 0.014304 -0.009238 -0.009310 +v -0.005543 -0.004606 -0.019456 +v 0.021195 -0.008219 -0.011120 +v 0.002344 -0.008742 -0.016447 +v -0.009126 -0.009478 -0.018374 +v 0.030938 -0.008973 -0.022467 +v 0.027917 -0.008722 -0.024530 +v 0.027104 -0.008712 -0.025140 +v 0.011821 -0.009384 -0.024410 +v 0.024227 -0.008496 -0.026259 +v -0.021587 -0.009089 -0.024699 +v -0.020759 -0.009418 -0.026550 +v -0.021641 -0.009300 -0.027513 +v -0.008358 -0.009223 -0.028627 +v -0.021193 -0.009258 -0.028628 +v -0.022505 -0.008946 -0.028921 +v -0.009235 -0.008837 -0.030797 +v -0.022950 -0.008882 -0.032709 +v -0.011542 -0.009346 -0.033923 +v -0.022896 -0.009071 -0.034110 +v -0.001864 -0.009042 -0.040471 +v -0.000557 -0.008950 -0.040982 +v 0.000018 -0.008749 -0.041301 +v 0.001989 -0.008996 -0.042718 +v -0.001433 -0.009145 -0.043538 +v -0.038854 -0.009787 0.022534 +v -0.039429 -0.009892 0.022124 +v -0.037662 -0.009955 0.021960 +v -0.022568 -0.009324 0.021308 +v 0.034494 -0.009203 0.021069 +v 0.018955 -0.009472 0.020977 +v 0.021145 -0.009840 0.019840 +v 0.022254 -0.009440 0.020134 +v 0.023442 -0.009481 0.019885 +v -0.035925 -0.009572 0.016610 +v -0.028349 -0.009445 0.015885 +v -0.015780 -0.009666 0.012261 +v -0.013958 -0.009843 0.012198 +v 0.013474 -0.009030 0.011771 +v 0.030569 -0.008684 0.011413 +v 0.028496 -0.008552 0.007345 +v 0.006656 -0.009033 0.004346 +v 0.032672 -0.009173 -0.000356 +v 0.019411 -0.008450 -0.001631 +v 0.033567 -0.008796 -0.001309 +v 0.016188 -0.009439 -0.011256 +v 0.035601 -0.009171 -0.011861 +v -0.015140 -0.009475 -0.015364 +v -0.013200 -0.009392 -0.015270 +v -0.015883 -0.009375 -0.018707 +v -0.018093 -0.009269 -0.020026 +v 0.006134 -0.008335 -0.021538 +v 0.029897 -0.008937 -0.023114 +v 0.013566 -0.008368 -0.026095 +v 0.025354 -0.008113 -0.026061 +v -0.008193 -0.009297 -0.026117 +v -0.021198 -0.009005 -0.026230 +v -0.016074 -0.008660 -0.036387 +v -0.019144 -0.008096 -0.037107 +v -0.005253 -0.009117 -0.040606 +v 0.002631 -0.008880 -0.044673 +v -0.022472 -0.003003 0.024669 +v -0.019931 -0.009504 0.022464 +v 0.033051 -0.009212 0.022560 +v -0.037602 -0.009402 0.021777 +v 0.028601 -0.007543 0.021059 +v 0.026524 -0.009190 0.019750 +v -0.004034 -0.009283 0.018450 +v -0.037534 -0.009456 0.018731 +v 0.015088 -0.008324 0.019489 +v -0.031057 -0.009229 0.016573 +v -0.001673 -0.008622 0.017285 +v -0.000841 -0.009563 0.014872 +v -0.015410 -0.009484 0.010637 +v -0.014733 -0.009302 0.010268 +v -0.016953 -0.009570 0.010480 +v -0.031161 -0.008659 0.009514 +v -0.012639 -0.009212 0.008925 +v -0.031134 -0.009006 0.007163 +v 0.013331 -0.007243 0.008183 +v -0.024960 -0.008482 0.004031 +v 0.017608 -0.008664 0.000976 +v 0.009984 -0.008146 -0.001087 +v 0.011471 -0.008426 -0.004419 +v -0.011466 -0.009370 -0.015049 +v -0.017693 -0.008608 -0.017143 +v -0.008242 -0.008914 -0.018011 +v 0.033529 -0.008789 -0.019679 +v -0.020747 -0.009294 -0.020339 +v -0.019771 -0.009163 -0.019619 +v -0.020043 -0.009283 -0.021160 +v -0.007571 -0.009015 -0.022200 +v 0.008949 -0.007887 -0.024041 +v -0.007242 -0.008640 -0.023763 +v -0.024753 -0.008079 -0.030649 +v -0.023729 -0.008652 -0.031962 +v -0.011952 -0.008627 -0.034602 +v -0.004308 -0.008858 -0.039745 +v -0.004425 -0.008806 -0.042390 +v 0.001522 -0.008690 -0.044595 +v 0.031208 -0.008960 0.022165 +v -0.038772 -0.009348 0.020247 +v 0.017798 -0.009367 0.020696 +v -0.005334 -0.009464 0.019646 +v 0.021256 -0.009528 0.020614 +v 0.014029 -0.008765 0.017032 +v 0.031204 -0.009371 0.014767 +v 0.013275 -0.008564 0.014242 +v -0.018781 -0.008552 0.008471 +v -0.008355 -0.008662 0.004298 +v 0.006687 -0.008685 0.005499 +v 0.030976 -0.008099 0.003453 +v -0.006555 -0.008693 0.001628 +v 0.018362 -0.008310 -0.000465 +v 0.034940 -0.008101 -0.003435 +v 0.035560 -0.009171 -0.008983 +v 0.017057 -0.007978 -0.010798 +v 0.035529 -0.008750 -0.013391 +v -0.013668 -0.009328 -0.013401 +v -0.012159 -0.009132 -0.013619 +v -0.009067 -0.008850 -0.016536 +v -0.016993 -0.008795 -0.019170 +v 0.031961 -0.008731 -0.021119 +v 0.008074 -0.008031 -0.023492 +v -0.021300 -0.008731 -0.023736 +v -0.022288 -0.008804 -0.025193 +v 0.017766 -0.008335 -0.026693 +v -0.023992 -0.008840 -0.032990 +v -0.005688 -0.008890 -0.041451 +v 0.000487 -0.008161 -0.041847 +v -0.038916 -0.009368 0.022489 +v -0.039472 -0.009275 0.022065 +v 0.018540 -0.008464 0.022083 +v 0.024643 -0.008676 0.020707 +v 0.032342 -0.008521 0.017284 +v -0.027479 -0.008599 0.015807 +v 0.003591 -0.008360 0.011108 +v -0.019703 -0.008502 0.007960 +v -0.026487 -0.008236 0.003420 +v -0.005944 -0.008737 0.000898 +v -0.004750 -0.007608 -0.003020 +v 0.020674 -0.008266 -0.004035 +v -0.002332 -0.008159 -0.007325 +v -0.014813 -0.009130 -0.012438 +v -0.012960 -0.008293 -0.011019 +v -0.015974 -0.008930 -0.013819 +v 0.035280 -0.008050 -0.017221 +v -0.018189 -0.008492 -0.019251 +v 0.004469 -0.007661 -0.020243 +v -0.022301 -0.008262 -0.022558 +v 0.029486 -0.006942 -0.024964 +v -0.021740 -0.008142 -0.026683 +v -0.022253 -0.008603 -0.027269 +v -0.023703 -0.008915 -0.034055 +v -0.010929 -0.008173 -0.033894 +v -0.008776 -0.007846 -0.038682 +v -0.008565 -0.008109 -0.040092 +v -0.013971 -0.008943 0.024366 +v -0.011517 -0.009523 0.024659 +v 0.021863 -0.009048 0.021124 +v -0.027095 -0.008235 0.020057 +v -0.037222 -0.008821 0.019050 +v 0.031865 -0.008704 0.016721 +v -0.036230 -0.008479 0.016960 +v -0.029449 -0.009135 0.016698 +v -0.027433 -0.008740 0.015130 +v 0.031470 -0.008652 0.013580 +v 0.000588 -0.008524 0.014484 +v -0.029357 -0.008336 0.013572 +v -0.014867 -0.008794 0.009357 +v -0.011419 -0.007719 0.006426 +v 0.028563 -0.007979 0.007956 +v -0.009205 -0.009025 0.005777 +v 0.014100 -0.007246 0.005720 +v -0.028967 -0.006843 0.003031 +v 0.008151 -0.008546 0.002433 +v 0.031839 -0.007933 0.002504 +v -0.005061 -0.008918 -0.000477 +v 0.014121 -0.008481 -0.008266 +v 0.021733 -0.008975 -0.011390 +v 0.036284 -0.008489 -0.011622 +v -0.015946 -0.008885 -0.011411 +v -0.017623 -0.008791 -0.012728 +v 0.020149 -0.007778 -0.011293 +v -0.016959 -0.008989 -0.014969 +v 0.001372 -0.007980 -0.015267 +v 0.034950 -0.004812 0.024656 +v -0.006620 -0.008161 -0.026326 +v -0.024348 -0.007848 -0.028343 +v -0.024946 -0.008409 -0.033434 +v -0.013128 -0.007236 -0.036350 +v -0.004591 -0.008131 -0.039220 +v -0.000729 -0.007964 -0.041020 +v -0.006735 -0.007653 -0.042019 +v -0.000883 -0.008041 -0.043740 +v 0.000975 -0.008040 -0.043698 +v -0.017910 -0.008722 0.022807 +v 0.034718 -0.008706 0.022628 +v -0.038621 -0.009000 0.021748 +v 0.034792 -0.008914 0.022029 +v -0.007096 -0.009014 0.021287 +v 0.020341 -0.008450 0.022128 +v 0.035086 -0.008307 0.020268 +v -0.033324 -0.009209 0.016872 +v -0.032136 -0.008302 0.017743 +v -0.030888 -0.008850 0.017045 +v -0.017109 -0.008231 0.008612 +v 0.015490 -0.007862 0.003540 +v 0.033967 -0.009196 -0.003139 +v 0.035912 -0.007922 -0.006509 +v 0.013178 -0.008052 -0.006750 +v -0.017732 -0.008684 -0.011444 +v -0.035565 -0.003725 0.007961 +v -0.018947 -0.008448 -0.014260 +v -0.009906 -0.008050 -0.013827 +v 0.036322 -0.007044 -0.015982 +v 0.003198 -0.008480 -0.017740 +v 0.034278 -0.008048 -0.018589 +v -0.021290 -0.007681 -0.019331 +v -0.022987 -0.008154 -0.020749 +v -0.006756 -0.008139 -0.021799 +v 0.011388 -0.007582 -0.025569 +v -0.023167 -0.007884 -0.025599 +v -0.023555 -0.008009 -0.027302 +v -0.007615 -0.008054 -0.029366 +v -0.006868 -0.007673 -0.028285 +v -0.023155 -0.008210 -0.035149 +v -0.021353 -0.007925 -0.036580 +v -0.017451 -0.007968 -0.036880 +v -0.011336 -0.008604 0.023470 +v -0.008484 -0.008624 0.022097 +v 0.022517 -0.008169 0.022225 +v -0.037892 -0.008682 0.021345 +v 0.033992 -0.008381 0.018784 +v -0.035401 -0.008685 0.016824 +v -0.028285 -0.007817 0.016294 +v 0.032466 -0.007902 0.014779 +v 0.012805 -0.006617 0.009954 +v -0.020783 -0.007700 0.007148 +v 0.006074 -0.008302 0.006979 +v 0.007742 -0.008098 0.003782 +v 0.033409 -0.007008 0.000365 +v 0.036631 -0.007836 -0.009510 +v -0.015401 -0.008300 -0.009147 +v 0.036405 -0.008177 -0.010638 +v 0.016858 -0.007235 -0.010325 +v -0.016783 -0.008322 -0.010317 +v 0.019178 -0.007589 -0.011438 +v -0.019627 -0.008026 -0.013036 +v 0.036457 -0.007693 -0.013264 +v -0.010669 -0.007636 -0.012289 +v -0.008633 -0.006750 -0.013593 +v -0.018990 -0.007918 -0.019173 +v 0.034350 -0.007589 -0.019479 +v -0.022187 -0.008150 -0.019513 +v 0.032497 -0.007755 -0.021740 +v -0.025152 -0.007153 -0.024159 +v 0.013593 -0.006870 -0.026856 +v -0.025710 -0.007736 -0.033717 +v -0.025488 -0.007705 -0.034357 +v -0.002258 -0.007147 -0.040269 +v -0.009398 -0.007764 -0.040515 +v -0.008767 -0.007364 -0.041360 +v -0.013538 -0.008432 0.023733 +v -0.009726 -0.008415 0.022835 +v -0.020870 -0.008225 0.021504 +v 0.035473 -0.007725 0.023644 +v 0.033378 -0.008038 0.023326 +v -0.036038 -0.008809 0.021886 +v -0.005958 -0.007907 0.022094 +v -0.025470 -0.007939 0.019904 +v -0.034581 -0.008632 0.017300 +v 0.032735 -0.007937 0.015578 +v 0.034816 -0.001738 0.024669 +v 0.031761 -0.007531 0.013517 +v 0.001842 -0.007929 0.014045 +v -0.031291 -0.006899 0.011068 +v 0.035602 -0.007360 -0.004754 +v 0.014350 -0.007258 -0.007800 +v -0.019147 -0.008325 -0.010746 +v -0.020226 -0.008039 -0.011299 +v -0.012154 -0.008050 -0.011150 +v 0.000755 -0.007762 -0.014675 +v 0.036315 -0.007872 -0.014550 +v 0.033533 -0.006688 -0.021588 +v -0.024108 -0.007206 -0.023606 +v 0.026346 -0.007247 -0.026371 +v 0.016538 -0.007541 -0.026902 +v 0.019964 -0.007302 -0.027398 +v -0.022351 -0.007165 -0.026959 +v -0.026504 -0.007429 -0.030089 +v -0.025795 -0.007818 -0.032452 +v -0.009106 -0.007420 -0.032733 +v 0.000528 -0.008020 -0.043909 +v -0.015874 -0.008206 0.023286 +v -0.011596 -0.008112 0.023457 +v -0.017886 -0.008236 0.022787 +v -0.035782 -0.007496 0.021812 +v -0.036295 -0.007932 0.021416 +v -0.036678 -0.008324 0.017950 +v -0.030707 -0.008337 0.017212 +v -0.034885 -0.008108 0.017680 +v 0.005838 -0.007816 0.008354 +v -0.008262 -0.006399 0.001887 +v 0.009551 -0.007436 0.000316 +v -0.005865 -0.007581 -0.000917 +v -0.017342 -0.008254 -0.008608 +v 0.015083 -0.007459 -0.009095 +v -0.018322 -0.008189 -0.009417 +v -0.013916 -0.007942 -0.009293 +v 0.035383 -0.006458 -0.019276 +v -0.018550 -0.007875 -0.018742 +v -0.019515 -0.007393 -0.019238 +v -0.006523 -0.008001 -0.019286 +v 0.031919 -0.006989 -0.023166 +v -0.006471 -0.008074 -0.024327 +v -0.004875 -0.008049 -0.026046 +v 0.013303 -0.007423 -0.026455 +v -0.026972 -0.007667 -0.028464 +v -0.007059 -0.007820 -0.029417 +v -0.007740 -0.007716 -0.030408 +v -0.023682 -0.007827 -0.036305 +v -0.033558 -0.003762 -0.000680 +v -0.019069 -0.007083 -0.037145 +v -0.008531 -0.007546 -0.038096 +v -0.007061 -0.007415 -0.038160 +v -0.006466 -0.007187 -0.038237 +v -0.004627 -0.007119 -0.039148 +v -0.036593 -0.008149 0.020953 +v -0.022483 -0.008238 0.020860 +v 0.024048 -0.007815 0.022030 +v -0.027612 -0.007682 0.015557 +v 0.029488 -0.008017 0.009688 +v -0.032023 -0.006724 0.008502 +v -0.031945 -0.006645 0.006586 +v 0.029388 -0.006767 0.006545 +v 0.010923 -0.006879 -0.002041 +v 0.011593 -0.007015 -0.003263 +v -0.000869 -0.007296 -0.011631 +v -0.020347 -0.007704 -0.013881 +v 0.002349 -0.006449 -0.019113 +v -0.021966 -0.007478 -0.019217 +v -0.023398 -0.007783 -0.019532 +v -0.025045 -0.007155 -0.019908 +v -0.005054 -0.007354 -0.020333 +v 0.032915 -0.006312 -0.022578 +v 0.005260 -0.006510 -0.022235 +v -0.005148 -0.007819 -0.023159 +v -0.004002 -0.007827 -0.025530 +v -0.003883 -0.007709 -0.026386 +v -0.022459 -0.006806 -0.026379 +v -0.004701 -0.007481 -0.027922 +v -0.007723 -0.007306 -0.031290 +v -0.026581 -0.007355 -0.031560 +v -0.011167 -0.006405 -0.035547 +v -0.024735 -0.007463 -0.036450 +v -0.003873 -0.006585 -0.039484 +v -0.013878 -0.007898 0.023513 +v 0.036473 -0.007574 0.022756 +v 0.016738 -0.007484 0.022053 +v -0.031149 -0.005825 0.021966 +v -0.028995 -0.005498 0.021316 +v 0.027377 -0.007459 0.021104 +v 0.026483 -0.007024 0.021788 +v 0.014038 -0.006976 0.019347 +v -0.035526 -0.007798 0.018108 +v -0.000015 -0.006520 0.017958 +v -0.028388 -0.007145 0.016232 +v 0.030541 -0.007463 0.011599 +v -0.013826 -0.007224 0.007646 +v -0.012715 -0.008187 0.007766 +v -0.018428 -0.006469 0.007093 +v -0.011113 -0.006536 0.005487 +v -0.024648 -0.007482 0.004090 +v -0.025570 -0.007124 0.003206 +v -0.016805 -0.007700 -0.006916 +v 0.021661 -0.006566 -0.008036 +v -0.014464 -0.006684 -0.006894 +v -0.007430 -0.007547 -0.016495 +v -0.019464 -0.007571 -0.016496 +v -0.006401 -0.007354 -0.017514 +v -0.020663 -0.007547 -0.019381 +v -0.025533 -0.006572 -0.021495 +v 0.004357 -0.006983 -0.021112 +v -0.033920 -0.004688 0.003765 +v -0.004261 -0.007440 -0.022686 +v 0.007200 -0.006754 -0.023897 +v -0.004978 -0.007611 -0.024552 +v -0.004270 -0.007198 -0.024348 +v -0.003615 -0.007446 -0.025482 +v 0.017926 -0.006913 -0.027405 +v 0.021687 -0.006784 -0.027719 +v 0.023379 -0.007211 -0.027244 +v -0.023762 -0.006457 -0.026977 +v -0.022657 -0.006675 -0.026962 +v -0.024279 -0.007415 -0.027095 +v -0.004446 -0.007353 -0.027559 +v -0.004318 -0.007662 -0.028931 +v -0.028772 -0.006829 -0.028796 +v -0.005373 -0.007597 -0.029660 +v -0.008211 -0.007386 -0.031912 +v -0.026592 -0.006779 -0.033071 +v -0.025560 -0.007176 -0.035061 +v -0.012042 -0.006798 -0.036253 +v -0.022809 -0.007200 -0.037267 +v -0.020761 -0.006794 -0.037240 +v -0.011732 -0.006953 -0.040628 +v -0.000086 -0.007441 -0.042384 +v -0.009583 -0.007295 0.024090 +v 0.019960 -0.008020 0.023028 +v 0.021886 -0.007771 0.023178 +v -0.035924 -0.006563 0.021941 +v -0.021369 -0.007887 0.021566 +v -0.024511 -0.007550 0.020143 +v -0.035947 -0.007812 0.018803 +v -0.026006 -0.007405 0.020006 +v 0.033887 -0.006983 0.017851 +v 0.001374 -0.007040 0.015684 +v -0.016176 -0.007084 0.007782 +v -0.008597 -0.007065 0.003281 +v -0.006830 -0.007111 0.000776 +v 0.009247 -0.007128 0.001729 +v 0.035440 -0.006758 -0.003217 +v -0.004477 -0.006539 -0.004850 +v 0.021104 -0.006241 -0.006343 +v -0.019345 -0.007821 -0.007446 +v -0.003035 -0.006885 -0.007942 +v -0.017538 -0.007127 -0.005209 +v -0.021216 -0.007512 -0.007068 +v 0.013565 -0.006756 -0.006802 +v -0.012491 -0.006950 -0.009548 +v -0.011416 -0.006936 -0.010510 +v -0.000254 -0.006365 -0.014498 +v -0.019241 -0.007220 -0.018842 +v -0.005189 -0.007414 -0.017559 +v -0.004819 -0.007162 -0.020905 +v 0.011148 -0.006597 -0.026160 +v 0.016225 -0.007229 -0.027394 +v 0.020686 -0.007057 -0.027685 +v -0.027510 -0.006496 -0.027740 +v -0.006242 -0.007052 -0.031009 +v -0.027918 -0.006962 -0.034406 +v -0.025643 -0.006725 -0.036592 +v -0.002108 -0.006640 -0.040943 +v -0.002434 -0.006960 -0.043014 +v -0.007652 -0.007421 0.023398 +v 0.037525 -0.006402 0.022410 +v -0.036201 -0.007530 0.019961 +v -0.034597 -0.007528 0.017846 +v -0.029589 -0.006887 0.016668 +v 0.012945 -0.007192 0.016454 +v 0.033875 -0.006602 0.016271 +v -0.028044 -0.007192 0.015099 +v 0.029398 -0.006258 0.010332 +v -0.022363 -0.007590 0.006158 +v 0.032802 -0.006300 0.001694 +v 0.012269 -0.006642 -0.004614 +v 0.036241 -0.007095 -0.005882 +v -0.022139 -0.007301 -0.008750 +v 0.021379 -0.006315 -0.009496 +v -0.022891 -0.007080 -0.010832 +v 0.036911 -0.007106 -0.011719 +v -0.019927 -0.007086 -0.017182 +v -0.004671 -0.007230 -0.017322 +v 0.001588 -0.006643 -0.017689 +v -0.023217 -0.007065 -0.019243 +v -0.020545 -0.007207 -0.019793 +v 0.007967 -0.006315 -0.024687 +v -0.024859 -0.006573 -0.025228 +v -0.003869 -0.007101 -0.025031 +v -0.003793 -0.007220 -0.026515 +v -0.025849 -0.006758 -0.026992 +v -0.004018 -0.007175 -0.028491 +v -0.004119 -0.007130 -0.029156 +v -0.007636 -0.006925 -0.032958 +v -0.026752 -0.006916 -0.033526 +v -0.027918 -0.006795 -0.033998 +v -0.010105 -0.006396 -0.034864 +v -0.028061 -0.006763 -0.034806 +v -0.014099 -0.007020 -0.036916 +v -0.015457 -0.006564 -0.037507 +v -0.012472 -0.006810 -0.036866 +v -0.013480 -0.006894 -0.037397 +v -0.009361 -0.006610 -0.037131 +v -0.007551 -0.006953 -0.037913 +v -0.012901 -0.006965 -0.040007 +v -0.004263 -0.005492 -0.041228 +v 0.032304 -0.006515 0.023427 +v -0.017967 -0.006242 0.024229 +v 0.018556 -0.007046 0.023395 +v 0.023973 -0.007168 0.023205 +v -0.004610 -0.006692 0.022437 +v -0.022072 -0.007316 0.022145 +v -0.003299 -0.006275 0.021734 +v -0.027589 -0.005974 0.020879 +v 0.015647 -0.006261 0.021981 +v -0.001311 -0.006600 0.019394 +v 0.000790 -0.006835 0.016809 +v -0.030128 -0.006754 0.013165 +v 0.004901 -0.006554 0.011163 +v 0.028665 -0.006657 0.009262 +v 0.028977 -0.006230 0.007395 +v 0.008302 -0.005736 0.005260 +v -0.030092 -0.006916 0.003703 +v 0.014909 -0.005360 0.003239 +v -0.027097 -0.007106 0.002817 +v -0.020520 -0.007208 -0.004136 +v 0.019842 -0.005333 -0.004498 +v -0.018504 -0.007076 -0.004229 +v -0.021431 -0.007183 -0.005586 +v -0.015569 -0.006832 -0.005918 +v 0.038912 -0.005014 0.023569 +v -0.013300 -0.006605 -0.007849 +v 0.019186 -0.005957 -0.010785 +v -0.009496 -0.006444 -0.012420 +v -0.007516 -0.006693 -0.014799 +v 0.036432 -0.006249 -0.017565 +v -0.004715 -0.007195 -0.018626 +v -0.025521 -0.007247 -0.018982 +v -0.024944 -0.007161 -0.018481 +v -0.023964 -0.007317 -0.019203 +v -0.021684 -0.006965 -0.020028 +v -0.004056 -0.007041 -0.021874 +v -0.025181 -0.006466 -0.022737 +v -0.003826 -0.006784 -0.022772 +v 0.009645 -0.006927 -0.025317 +v 0.035830 -0.006846 0.024232 +v 0.012790 -0.006951 -0.026761 +v 0.024963 -0.006460 -0.027449 +v -0.004373 -0.007015 -0.027663 +v 0.016789 -0.006659 -0.029167 +v -0.028354 -0.006388 -0.029828 +v -0.005658 -0.006975 -0.031778 +v -0.006776 -0.006928 -0.032938 +v -0.006005 -0.007079 -0.032263 +v -0.010481 -0.006558 -0.041273 +v -0.005164 -0.006136 -0.042372 +v -0.011388 -0.006534 0.024664 +v 0.021682 -0.006244 0.024662 +v 0.029927 -0.006058 0.022088 +v -0.036478 -0.007381 0.021212 +v -0.032357 -0.006922 0.017530 +v 0.003303 -0.006865 0.013338 +v 0.032865 -0.005093 0.014720 +v 0.012326 -0.006111 0.012780 +v -0.031291 -0.006717 0.005030 +v -0.009999 -0.006432 0.004376 +v 0.008254 -0.006450 0.004884 +v -0.021887 -0.007136 -0.003779 +v -0.024123 -0.006884 -0.006816 +v -0.005971 -0.006713 -0.014725 +v -0.021530 -0.006015 -0.016035 +v 0.001199 -0.006807 -0.016527 +v -0.005163 -0.006465 -0.015832 +v -0.023523 -0.006686 -0.018943 +v 0.034662 -0.006225 -0.020449 +v -0.004332 -0.006547 -0.021310 +v 0.006591 -0.006744 -0.023600 +v -0.004241 -0.006880 -0.024430 +v 0.032511 -0.006323 -0.023606 +v -0.025077 -0.007165 -0.024636 +v 0.030578 -0.006205 -0.024688 +v -0.024892 -0.004035 -0.037729 +v 0.026755 -0.006815 -0.026765 +v 0.018419 -0.006126 -0.028954 +v 0.020684 -0.006546 -0.029416 +v -0.028831 -0.006159 -0.029457 +v -0.005742 -0.006741 -0.030895 +v -0.005755 -0.006791 -0.032647 +v -0.027751 -0.005573 -0.032558 +v -0.007853 -0.006179 -0.033956 +v -0.011592 -0.006695 -0.036776 +v -0.025413 -0.005824 -0.037235 +v -0.006710 -0.006618 -0.038430 +v -0.014897 -0.006420 -0.039671 +v -0.005553 -0.006828 -0.042416 +v 0.036872 -0.006909 0.024017 +v -0.015642 -0.006746 0.023991 +v -0.020838 -0.006684 0.023264 +v -0.036734 -0.007029 0.021063 +v -0.035842 -0.005801 0.018154 +v -0.034980 -0.007101 0.017798 +v -0.031288 -0.006074 0.016984 +v -0.013390 -0.005510 0.006610 +v -0.024309 -0.007106 0.004084 +v 0.031233 -0.005260 0.004129 +v -0.006561 -0.006400 -0.000612 +v -0.005367 -0.006331 -0.003383 +v -0.023487 -0.006891 -0.003349 +v -0.024080 -0.006778 -0.009099 +v 0.020824 -0.006179 -0.010245 +v 0.037092 -0.006279 -0.014438 +v -0.022431 -0.006406 -0.013786 +v -0.004137 -0.006372 -0.017281 +v -0.024290 -0.006855 -0.018341 +v -0.019813 -0.005871 -0.019673 +v -0.004483 -0.006548 -0.020652 +v -0.020048 -0.006287 -0.019875 +v 0.010310 -0.006664 -0.026089 +v -0.004684 -0.005990 -0.026425 +v -0.025996 -0.005408 -0.026590 +v 0.013607 -0.006477 -0.028962 +v 0.015098 -0.006091 -0.028913 +v 0.017604 -0.006539 -0.028180 +v 0.024894 -0.006352 -0.028809 +v 0.022215 -0.005977 -0.028876 +v 0.017405 -0.006549 -0.029340 +v -0.028129 -0.006428 -0.031131 +v -0.005428 -0.006589 -0.031857 +v -0.010257 -0.005893 -0.036728 +v -0.023860 -0.005723 -0.037671 +v -0.016408 -0.005909 -0.038402 +v -0.006504 -0.005962 -0.038380 +v -0.013696 -0.006382 -0.041555 +v -0.012611 -0.006286 -0.041393 +v -0.013799 -0.006805 0.024347 +v -0.019231 -0.006659 0.023525 +v 0.025216 -0.006762 0.022878 +v -0.033444 -0.005861 0.022122 +v -0.036996 -0.006981 0.021471 +v -0.025519 -0.006987 0.020377 +v -0.020691 -0.006189 0.005818 +v -0.023952 -0.006725 0.003230 +v -0.007567 -0.006059 0.000596 +v -0.019980 -0.006521 -0.002815 +v 0.036817 -0.004562 -0.005179 +v -0.023380 -0.006982 -0.005452 +v 0.037309 -0.006076 -0.008856 +v -0.002559 -0.006261 -0.009337 +v -0.002156 -0.005543 -0.011540 +v -0.001193 -0.005972 -0.013417 +v -0.004500 -0.006429 -0.016377 +v -0.004280 -0.006495 -0.018929 +v -0.027190 -0.005991 -0.018470 +v -0.023735 -0.005945 -0.019879 +v -0.020358 -0.006166 -0.020473 +v 0.034318 -0.006315 -0.021212 +v 0.004223 -0.006603 -0.021917 +v 0.005211 -0.006025 -0.023104 +v -0.026373 -0.006222 -0.024450 +v 0.029851 -0.006441 -0.025407 +v 0.027953 -0.006374 -0.026259 +v 0.010032 -0.006339 -0.027461 +v 0.014757 -0.006110 -0.028915 +v -0.005473 -0.005881 -0.028071 +v 0.021918 -0.005780 -0.029158 +v -0.004680 -0.006244 -0.029075 +v -0.005626 -0.006283 -0.030592 +v -0.005729 -0.006299 -0.032427 +v -0.026866 -0.006167 -0.035229 +v -0.028168 -0.005808 -0.035497 +v -0.026496 -0.005821 -0.035949 +v -0.014258 -0.006193 -0.042283 +v -0.012047 -0.005999 -0.041543 +v -0.009690 -0.005512 -0.041572 +v -0.002273 -0.006573 -0.042576 +v -0.010798 -0.006447 -0.046761 +v -0.010571 -0.006386 -0.046276 +v -0.011545 -0.006190 -0.047080 +v -0.009004 -0.006244 0.024670 +v -0.022970 -0.005917 0.023120 +v -0.036207 -0.006930 0.019367 +v 0.036232 -0.005363 0.019167 +v 0.012404 -0.006084 0.016085 +v -0.029539 -0.006840 0.014065 +v -0.007411 -0.005434 0.024669 +v -0.031362 -0.006615 0.011644 +v 0.028498 -0.005631 0.009539 +v 0.007087 -0.006053 0.007549 +v -0.026947 -0.006804 0.002111 +v 0.016876 -0.005008 0.000308 +v -0.025378 -0.006756 0.000652 +v 0.010511 -0.005453 0.000250 +v -0.025202 -0.006727 -0.002959 +v -0.024467 -0.006570 -0.004780 +v -0.026340 -0.006332 -0.006236 +v -0.003873 -0.005842 -0.006910 +v 0.037180 -0.005229 -0.007169 +v -0.025294 -0.006246 -0.007891 +v -0.011932 -0.005247 -0.007964 +v 0.015159 -0.005515 -0.008693 +v -0.024892 -0.005971 -0.010881 +v -0.021067 -0.005889 -0.017158 +v -0.025964 -0.006525 -0.018244 +v -0.020003 -0.005905 -0.019009 +v -0.023744 -0.006195 -0.018823 +v -0.023973 -0.006009 -0.018806 +v -0.024190 -0.006020 -0.019249 +v -0.027733 -0.005831 -0.020461 +v 0.003654 -0.006280 -0.023005 +v -0.005260 -0.004968 -0.024477 +v -0.004458 -0.006271 -0.025416 +v 0.028005 -0.006192 -0.027849 +v -0.027800 -0.005859 -0.026813 +v 0.025031 -0.005937 -0.029247 +v 0.021368 -0.006093 -0.029667 +v 0.016923 -0.006116 -0.029696 +v -0.007729 -0.005863 -0.033991 +v -0.029663 -0.005818 -0.034494 +v -0.017115 -0.005844 -0.038044 +v -0.007273 -0.005328 -0.038244 +v -0.011306 -0.005860 -0.041492 +v -0.012732 -0.006050 -0.042867 +v -0.012270 -0.006188 -0.044197 +v -0.012786 -0.006283 -0.045374 +v -0.011801 -0.006066 -0.044510 +v -0.010974 -0.006109 -0.045356 +v -0.010341 -0.005964 -0.046794 +v -0.010756 -0.006064 -0.047183 +v -0.016704 -0.006157 0.024316 +v -0.024368 -0.006858 0.021169 +v -0.037439 -0.006679 0.021177 +v -0.029235 -0.006511 0.015954 +v 0.030065 -0.005018 0.012108 +v -0.022835 -0.006540 0.004277 +v -0.009516 -0.004880 0.003031 +v -0.028068 -0.006620 0.000391 +v -0.023720 -0.006551 0.001487 +v -0.022326 -0.006463 -0.000555 +v -0.026388 -0.006438 -0.000960 +v -0.028432 -0.006293 -0.000890 +v -0.025089 -0.006688 -0.001590 +v 0.017587 -0.004636 -0.001032 +v -0.023187 -0.006476 -0.001830 +v -0.021852 -0.006619 -0.001263 +v 0.018285 -0.004625 -0.001960 +v -0.026831 -0.006416 -0.002782 +v -0.026883 -0.006253 -0.003875 +v -0.015470 -0.005530 -0.004355 +v -0.026507 -0.005610 -0.008828 +v 0.038100 -0.005413 -0.011917 +v -0.007716 -0.006164 -0.012089 +v -0.008810 -0.005828 -0.011981 +v -0.007216 -0.006098 -0.012169 +v -0.005542 -0.006218 -0.013886 +v 0.001893 -0.005970 -0.019399 +v -0.021608 -0.005792 -0.021088 +v 0.004377 -0.005995 -0.024613 +v -0.027304 -0.005818 -0.023491 +v 0.007920 -0.005676 -0.025980 +v 0.005230 -0.005775 -0.024744 +v 0.006412 -0.006146 -0.026219 +v 0.007157 -0.006014 -0.026553 +v -0.024789 -0.005232 -0.025408 +v -0.022795 -0.005010 -0.026560 +v 0.009020 -0.005734 -0.027377 +v 0.011166 -0.005881 -0.027793 +v 0.028786 -0.005795 -0.027074 +v -0.023150 -0.005108 -0.027155 +v -0.024423 -0.005307 -0.027056 +v 0.010345 -0.005971 -0.028039 +v 0.012931 -0.006122 -0.028929 +v 0.025968 -0.005777 -0.028427 +v -0.030463 -0.005780 -0.029005 +v 0.020673 -0.006078 -0.029771 +v -0.030159 -0.005584 -0.035364 +v -0.010535 -0.005676 -0.036152 +v -0.008902 -0.004798 -0.037299 +v -0.004883 -0.005427 -0.039844 +v -0.012523 -0.005824 -0.042230 +v -0.014470 -0.005702 -0.044461 +v -0.010538 -0.005718 -0.045716 +v -0.012689 -0.005971 -0.046405 +v -0.006887 -0.006004 0.024323 +v 0.024856 -0.005839 0.024140 +v 0.027099 -0.005650 0.023300 +v -0.037664 -0.006529 0.021873 +v -0.037760 -0.006766 0.021549 +v -0.027022 -0.006445 0.020726 +v 0.024344 0.009826 0.024669 +v -0.036254 -0.005972 0.019071 +v -0.033061 -0.005928 0.017512 +v 0.034681 -0.006042 0.017218 +v -0.031164 -0.006150 0.014458 +v -0.032064 -0.006259 0.010117 +v -0.033461 -0.005865 0.007898 +v -0.018854 -0.005387 0.006270 +v -0.025057 -0.006456 0.001974 +v -0.030948 -0.005991 0.001472 +v -0.019002 -0.006079 -0.001792 +v -0.017854 -0.005869 -0.002342 +v 0.014114 -0.005013 -0.007108 +v 0.014956 -0.005690 -0.008329 +v -0.003489 -0.005254 -0.008887 +v 0.015054 -0.005630 -0.008530 +v -0.010201 -0.005927 -0.010750 +v -0.006453 -0.005822 -0.013153 +v -0.004885 -0.005957 -0.015692 +v 0.036954 -0.005880 -0.016849 +v 0.000891 -0.005846 -0.020120 +v 0.036179 -0.005748 -0.018902 +v -0.024955 -0.006137 -0.018539 +v -0.004627 -0.005819 -0.019508 +v 0.035197 -0.005636 -0.022155 +v 0.033799 -0.005334 -0.024483 +v -0.004981 -0.005757 -0.025077 +v 0.031302 -0.005707 -0.026445 +v 0.028914 -0.005630 -0.027921 +v 0.026334 -0.005557 -0.028466 +v -0.030147 -0.005966 -0.028068 +v 0.014081 -0.005948 -0.029578 +v 0.018577 -0.005784 -0.029174 +v -0.010197 -0.005542 -0.035701 +v -0.015879 -0.005558 -0.041057 +v -0.008233 -0.004994 -0.041658 +v -0.004806 -0.005549 -0.041958 +v -0.014156 -0.005410 -0.045255 +v -0.012571 -0.005451 -0.046651 +v 0.038622 -0.005466 0.024157 +v -0.037920 -0.006213 0.020903 +v 0.013252 -0.006033 0.018829 +v -0.031170 -0.005690 0.016560 +v -0.033375 -0.005842 0.009002 +v -0.033298 -0.005724 0.005733 +v -0.030974 -0.006277 0.003180 +v -0.031430 -0.005339 -0.000356 +v -0.021999 -0.005924 0.000947 +v 0.010957 -0.005267 -0.000435 +v 0.012201 -0.005389 -0.004230 +v -0.016512 -0.005286 -0.003175 +v -0.007741 -0.004823 -0.010591 +v -0.005259 -0.005705 -0.014136 +v -0.000329 -0.005730 -0.015945 +v -0.004521 -0.005608 -0.017978 +v -0.026185 -0.005736 -0.018240 +v -0.027897 -0.005177 -0.018273 +v -0.026058 -0.005357 -0.018876 +v -0.024994 -0.005856 -0.019319 +v -0.023269 -0.005194 -0.020830 +v -0.020893 -0.005419 -0.021139 +v 0.033810 -0.005236 -0.023188 +v 0.002841 -0.005440 -0.023350 +v 0.003818 -0.005626 -0.024600 +v 0.032036 -0.005068 -0.025567 +v 0.005890 -0.005568 -0.025952 +v -0.023198 -0.005108 -0.026049 +v 0.006770 -0.005681 -0.026818 +v -0.026899 -0.004649 -0.026566 +v -0.033381 -0.004668 -0.028762 +v 0.014616 -0.005639 -0.029132 +v 0.014286 -0.005642 -0.029492 +v 0.017781 -0.005771 -0.029858 +v 0.021009 -0.004975 -0.029804 +v 0.021315 -0.005353 -0.029917 +v -0.007917 -0.004274 -0.032421 +v -0.029379 -0.004199 -0.033704 +v -0.030201 -0.005238 -0.035814 +v -0.011281 -0.004409 -0.041801 +v -0.011772 -0.005065 -0.046936 +v -0.010921 -0.005372 -0.047158 +v -0.020513 -0.006033 0.023957 +v -0.005072 -0.005799 0.023496 +v 0.027502 -0.005704 0.022675 +v -0.024650 -0.006305 0.021957 +v -0.038386 -0.006242 0.021913 +v -0.029707 -0.004755 0.021493 +v 0.036958 -0.005648 0.020106 +v 0.031499 -0.005578 0.013376 +v -0.016433 -0.004939 0.006843 +v 0.013717 -0.004775 0.005185 +v -0.010869 -0.005337 0.004465 +v -0.021358 -0.005783 0.004009 +v 0.031722 -0.003830 0.003604 +v -0.020816 -0.005517 0.002163 +v 0.010249 -0.005460 0.000750 +v 0.009816 -0.005159 0.002245 +v 0.035755 -0.004806 -0.002818 +v -0.029035 -0.005881 -0.003043 +v 0.011885 -0.004848 -0.003040 +v -0.005137 -0.004612 -0.005748 +v 0.012610 -0.005540 -0.004836 +v -0.028812 -0.005604 -0.004578 +v -0.027928 -0.005632 -0.006300 +v -0.002722 -0.005398 -0.010925 +v 0.021255 -0.004872 -0.008528 +v -0.010385 -0.005004 -0.009217 +v 0.037719 -0.005621 -0.014474 +v -0.001397 -0.005572 -0.016101 +v -0.005118 -0.005671 -0.016480 +v 0.037895 -0.005454 -0.017749 +v -0.009553 -0.003731 -0.008005 +v -0.029103 -0.005175 -0.019517 +v -0.020018 -0.005172 -0.019530 +v 0.001831 -0.005526 -0.020841 +v 0.035717 -0.005147 -0.021005 +v 0.002157 -0.005513 -0.021521 +v -0.028753 -0.004725 -0.022235 +v -0.005285 -0.004755 -0.023116 +v 0.002563 -0.005366 -0.022778 +v 0.032457 -0.005028 -0.025163 +v 0.006470 -0.005295 -0.026682 +v 0.032121 -0.005198 -0.026222 +v -0.029267 -0.004973 -0.026683 +v -0.005711 -0.005029 -0.026570 +v 0.029628 -0.005357 -0.027226 +v -0.030581 -0.004992 -0.027537 +v 0.010622 -0.005481 -0.028380 +v 0.028034 -0.005683 -0.028289 +v -0.005604 -0.005570 -0.029246 +v 0.022210 -0.005246 -0.029055 +v 0.025619 -0.005229 -0.029365 +v 0.018362 -0.005472 -0.029105 +v 0.013616 -0.005256 -0.029452 +v 0.017055 -0.005263 -0.029827 +v -0.029110 -0.004883 -0.030488 +v -0.029124 -0.004880 -0.035945 +v -0.010198 -0.005041 -0.036209 +v -0.026308 -0.005209 -0.036551 +v -0.017492 -0.005085 -0.038546 +v -0.011987 -0.004774 -0.042242 +v -0.011527 -0.005044 -0.044694 +v -0.010596 -0.005321 -0.046772 +v -0.015185 -0.005460 0.024639 +v 0.016737 -0.004468 0.023769 +v -0.021406 -0.004464 0.024508 +v -0.037947 -0.005864 0.022359 +v -0.036725 -0.005777 0.021989 +v -0.035145 -0.005726 0.021872 +v 0.029500 -0.005043 0.022372 +v -0.032564 -0.005953 0.012687 +v 0.006127 -0.005931 0.009469 +v -0.020288 -0.005692 0.000229 +v 0.011340 -0.004950 -0.001822 +v 0.015094 -0.005481 -0.008485 +v 0.017412 -0.005313 -0.010182 +v -0.006180 -0.005397 -0.013006 +v -0.026904 -0.005305 -0.018302 +v 0.000329 -0.005137 -0.020611 +v 0.002386 -0.005249 -0.022394 +v 0.034438 -0.004899 -0.024102 +v 0.004263 -0.005269 -0.024718 +v 0.005135 -0.005398 -0.024835 +v 0.007792 -0.005469 -0.026118 +v 0.011385 -0.005402 -0.027925 +v -0.006240 -0.005196 -0.028047 +v 0.010223 -0.005113 -0.028266 +v -0.006419 -0.004454 -0.003346 +v 0.013171 -0.004878 -0.028927 +v 0.015156 -0.005419 -0.028925 +v 0.017935 -0.005371 -0.029017 +v -0.028106 -0.005209 -0.036475 +v -0.027194 -0.005047 -0.036669 +v -0.019354 -0.004343 -0.038750 +v -0.013529 -0.004355 -0.045616 +v -0.019060 -0.005374 0.024363 +v -0.024642 -0.005271 0.023198 +v 0.014313 -0.004916 0.021213 +v 0.038198 -0.004554 0.020820 +v -0.002465 -0.006822 0.020324 +v -0.037416 -0.005633 0.020273 +v 0.000311 -0.004330 0.019306 +v 0.004845 -0.004949 0.012746 +v -0.033533 -0.005513 0.010777 +v -0.005822 -0.004973 -0.003453 +v -0.029848 -0.004958 -0.005404 +v -0.013057 -0.004704 -0.006199 +v -0.004451 -0.004802 -0.007319 +v 0.021186 -0.004527 -0.007789 +v 0.014946 -0.005480 -0.008418 +v 0.014982 -0.005535 -0.008440 +v 0.015013 -0.005470 -0.008461 +v 0.038103 -0.004886 -0.009873 +v -0.006748 -0.005249 -0.011120 +v -0.002416 -0.004884 -0.015010 +v -0.023874 -0.005186 -0.013554 +v -0.005568 -0.004916 -0.018404 +v 0.038562 -0.004914 -0.017444 +v 0.037021 -0.004861 -0.019023 +v -0.024907 -0.004941 -0.020560 +v 0.001148 -0.005379 -0.021038 +v -0.021830 -0.004292 -0.021336 +v 0.036322 -0.004415 -0.021799 +v 0.034737 -0.004735 -0.023197 +v -0.027566 -0.004433 -0.024487 +v 0.009500 -0.004753 -0.027639 +v 0.011028 -0.005281 -0.027844 +v 0.021802 -0.005207 -0.029098 +v -0.029879 -0.005056 -0.029670 +v -0.006591 -0.004801 -0.029422 +v -0.008240 -0.004199 -0.033088 +v -0.028576 -0.004515 -0.033148 +v -0.030685 -0.004813 -0.035217 +v -0.010043 -0.004870 -0.035706 +v -0.009978 -0.004722 -0.036758 +v -0.022650 -0.004664 -0.038038 +v -0.017364 -0.004647 -0.039193 +v -0.006903 -0.004708 -0.039450 +v -0.012149 -0.004682 -0.043049 +v -0.015309 -0.004903 -0.043437 +v -0.011184 -0.004942 -0.046654 +v 0.024776 0.010113 0.024669 +v -0.038447 -0.005598 0.021897 +v -0.026149 -0.004730 0.022710 +v -0.033695 -0.005102 0.017732 +v 0.034775 -0.005276 0.016650 +v -0.007636 -0.004002 -0.000778 +v -0.030026 -0.005424 -0.003021 +v 0.020572 -0.004514 -0.006121 +v 0.014930 -0.005228 -0.008585 +v 0.037631 -0.005167 -0.008997 +v 0.015239 -0.004828 -0.008382 +v 0.015889 -0.005049 -0.009329 +v -0.027404 -0.004934 -0.009049 +v 0.020750 -0.004607 -0.009790 +v -0.008692 -0.005024 -0.009292 +v 0.018136 -0.004448 -0.010494 +v -0.008218 -0.005072 -0.010597 +v 0.040566 -0.004855 -0.011958 +v 0.041936 -0.005531 -0.012332 +v 0.043263 -0.005330 -0.011931 +v 0.041075 -0.005248 -0.013160 +v 0.044281 -0.005216 -0.015177 +v 0.041516 -0.005172 -0.015573 +v -0.001615 -0.005126 -0.017306 +v -0.000611 -0.005122 -0.017885 +v -0.021774 -0.004100 -0.017268 +v -0.007429 -0.005455 0.024669 +v 0.001753 -0.004976 -0.020996 +v 0.002179 -0.005135 -0.021621 +v 0.003257 -0.005000 -0.023526 +v 0.006202 -0.004597 -0.025498 +v 0.007527 -0.005489 -0.026341 +v 0.007542 -0.004685 -0.024949 +v 0.006863 -0.005156 -0.026651 +v 0.031800 -0.005126 -0.026730 +v 0.029472 -0.004955 -0.027330 +v 0.029099 -0.004956 -0.028182 +v 0.028209 -0.004735 -0.028400 +v 0.016976 -0.004897 -0.029537 +v -0.030814 -0.004688 -0.030209 +v 0.021367 -0.004869 -0.028676 +v -0.017936 -0.004487 -0.038726 +v -0.022458 -0.003014 0.024669 +v -0.007191 -0.004434 -0.040359 +v 0.015239 -0.004648 0.022331 +v 0.027689 -0.004918 0.023467 +v -0.033630 -0.005105 0.021787 +v -0.025681 -0.003553 -0.028200 +v -0.037405 -0.005405 0.020932 +v -0.036202 -0.005296 0.020038 +v -0.036146 -0.005448 0.019361 +v -0.034586 -0.004856 0.010142 +v -0.020091 -0.004823 0.003336 +v 0.011168 -0.004741 -0.001351 +v -0.028618 -0.004116 -0.008388 +v 0.019628 -0.004149 -0.010339 +v -0.006515 -0.004895 -0.011665 +v -0.008446 0.013152 0.024665 +v 0.044674 -0.005114 -0.013223 +v 0.039324 -0.004736 -0.011378 +v -0.003150 -0.005041 -0.013989 +v 0.039383 -0.004417 -0.013132 +v 0.041100 -0.005155 -0.014093 +v -0.005665 -0.005049 -0.014732 +v 0.039185 -0.004939 -0.014537 +v -0.006495 -0.004247 -0.016491 +v 0.039139 -0.004404 -0.016462 +v -0.029644 -0.004670 -0.018825 +v -0.000520 -0.004944 -0.018266 +v 0.036956 -0.005009 -0.020130 +v -0.024801 -0.004092 -0.021321 +v 0.035995 -0.004481 -0.022366 +v 0.004695 -0.004852 -0.023551 +v 0.014036 -0.004612 -0.027232 +v 0.013764 -0.005000 -0.029099 +v 0.017723 -0.004476 -0.027579 +v 0.017564 -0.003773 0.024270 +v 0.020315 -0.004638 -0.029223 +v -0.029582 -0.003945 -0.030795 +v -0.028666 -0.004204 -0.031917 +v -0.007527 -0.004542 -0.041201 +v -0.009927 -0.004281 -0.041442 +v -0.011452 -0.004754 -0.045214 +v -0.004913 -0.004091 0.024229 +v -0.022933 -0.004558 0.024257 +v -0.038017 -0.005330 0.022031 +v 0.030805 -0.004428 0.022752 +v -0.035489 -0.005245 0.021349 +v -0.035191 -0.005332 0.017710 +v 0.003620 -0.004427 0.014832 +v -0.034093 -0.004655 0.012808 +v 0.008452 -0.004394 0.005951 +v 0.009166 -0.005347 0.003503 +v -0.015778 -0.004308 -0.002972 +v 0.012370 -0.005035 -0.004265 +v 0.013333 -0.004668 -0.005951 +v -0.012007 -0.004518 -0.006861 +v 0.037693 -0.004367 -0.006872 +v 0.041624 -0.005002 -0.009610 +v 0.042628 -0.004601 -0.008783 +v 0.040605 -0.004786 -0.009523 +v -0.003639 -0.004721 -0.011896 +v 0.043808 -0.004802 -0.011104 +v -0.006079 -0.005152 -0.013284 +v -0.001335 -0.004671 -0.017728 +v -0.020990 -0.004359 -0.018732 +v -0.027805 -0.004781 -0.018269 +v -0.029160 -0.004399 -0.018121 +v -0.030693 -0.004019 -0.020190 +v 0.000985 -0.004697 -0.021017 +v 0.032229 -0.004725 -0.025333 +v 0.006754 -0.003802 -0.023707 +v 0.008696 -0.004578 -0.026428 +v 0.031689 -0.004599 -0.026830 +v -0.007425 -0.005452 0.024669 +v 0.010811 -0.004666 -0.026253 +v -0.022939 -0.004197 -0.027378 +v 0.026038 -0.004971 -0.028401 +v 0.016169 -0.004039 -0.027514 +v 0.023767 -0.004369 -0.028945 +v 0.024767 -0.004486 -0.029191 +v -0.009669 -0.004046 -0.034928 +v -0.028056 -0.004085 -0.036976 +v -0.014919 -0.003964 -0.043789 +v -0.012442 -0.004327 -0.045910 +v -0.030782 -0.004527 0.021484 +v -0.035528 -0.005055 0.020679 +v -0.033974 -0.005212 0.005955 +v -0.018694 -0.004591 0.005559 +v 0.030063 -0.003510 0.005781 +v -0.034111 -0.004269 0.001953 +v -0.018475 -0.004277 0.000740 +v -0.017079 -0.003902 -0.000705 +v -0.004603 -0.004744 -0.009708 +v -0.008056 -0.004501 -0.009794 +v -0.007039 -0.004710 -0.010897 +v -0.004235 -0.004146 -0.011059 +v -0.003607 -0.004589 -0.014028 +v 0.046457 -0.004461 -0.015609 +v -0.003050 -0.004704 -0.014799 +v 0.044123 -0.005098 -0.015953 +v 0.041343 -0.004368 -0.017582 +v -0.001893 -0.004482 -0.017269 +v 0.042363 -0.004386 -0.017386 +v -0.000723 -0.004667 -0.017883 +v 0.037665 -0.004192 -0.018689 +v -0.025920 -0.004449 -0.020294 +v -0.020402 -0.004120 -0.019670 +v 0.036417 -0.004346 -0.021014 +v 0.000537 -0.004544 -0.020495 +v 0.002957 -0.003822 -0.020634 +v -0.029090 -0.004526 -0.023191 +v -0.005784 -0.004362 -0.025958 +v 0.031902 -0.004436 -0.026443 +v -0.028780 -0.003984 -0.026622 +v 0.028728 -0.004526 -0.027138 +v 0.010016 -0.004667 -0.027709 +v -0.023892 -0.004512 -0.027867 +v -0.006871 -0.004051 -0.029182 +v 0.025019 -0.004459 -0.027813 +v 0.019685 -0.003765 -0.027429 +v 0.023258 -0.003828 -0.027499 +v -0.033114 -0.003963 -0.030069 +v -0.008935 -0.003924 -0.038416 +v -0.035454 -0.004891 0.018542 +v -0.034112 -0.004734 0.018396 +v -0.033188 -0.004762 0.017527 +v 0.010336 -0.003991 0.000645 +v -0.031192 -0.003793 -0.005039 +v 0.012474 -0.004561 -0.004769 +v -0.005889 -0.003959 -0.004647 +v -0.013896 -0.003950 -0.004470 +v -0.010505 -0.004327 -0.007120 +v -0.009589 -0.004300 -0.008477 +v 0.039890 -0.004703 -0.011139 +v 0.039805 -0.004164 -0.014634 +v 0.040057 -0.004109 -0.013608 +v 0.042785 -0.003990 -0.018607 +v -0.030183 -0.003971 -0.018256 +v 0.037740 -0.004160 -0.019757 +v 0.003477 -0.004426 -0.023111 +v 0.004933 -0.004096 -0.022118 +v 0.006230 -0.003609 -0.022996 +v 0.034477 -0.004390 -0.024420 +v 0.031689 -0.004342 -0.025421 +v -0.031441 -0.003953 -0.026924 +v 0.012926 -0.004225 -0.027013 +v -0.023193 -0.003871 -0.028056 +v 0.027782 -0.004092 -0.028027 +v -0.034915 -0.004083 -0.029654 +v -0.007274 -0.004755 -0.030818 +v -0.010724 -0.003772 -0.036270 +v -0.025978 -0.003953 -0.037095 +v -0.012125 -0.003947 -0.042311 +v -0.012099 -0.004142 -0.044329 +v 0.028373 -0.004173 0.023765 +v -0.028843 -0.004515 0.021756 +v -0.034466 -0.004527 0.020431 +v -0.033038 -0.004483 0.016806 +v -0.018852 -0.004009 0.004005 +v -0.032066 -0.003359 -0.004342 +v -0.005614 -0.003828 -0.008771 +v -0.008463 -0.004301 -0.008804 +v 0.039348 -0.003856 -0.007798 +v -0.004957 -0.004183 -0.010567 +v 0.043890 -0.004162 -0.010115 +v -0.006846 -0.004154 -0.012874 +v -0.003902 -0.004121 -0.013085 +v -0.002500 -0.004495 -0.015269 +v 0.039736 -0.003968 -0.015655 +v 0.039852 -0.004034 -0.016136 +v -0.000695 -0.004235 -0.017090 +v 0.001838 -0.004014 -0.019364 +v 0.034494 -0.004159 -0.023169 +v 0.009104 -0.003593 -0.024928 +v 0.009502 -0.004008 -0.025911 +v 0.021006 -0.004256 -0.027620 +v 0.024558 -0.003962 -0.027116 +v -0.010476 -0.003848 -0.036826 +v -0.024124 -0.004414 0.023943 +v -0.032303 -0.004260 0.021021 +v -0.033510 -0.004474 0.018233 +v -0.032334 -0.004488 -0.001942 +v 0.019721 -0.004179 -0.004505 +v 0.042924 -0.003893 -0.007433 +v 0.039029 -0.004253 -0.010004 +v 0.039749 -0.003795 -0.016728 +v 0.040276 -0.004138 -0.017189 +v -0.028944 -0.004077 -0.018201 +v 0.037702 -0.003719 -0.019936 +v 0.036247 -0.003946 -0.020951 +v 0.003988 -0.003749 -0.021428 +v 0.034238 -0.003921 -0.024303 +v 0.033914 -0.003908 -0.024639 +v 0.027611 -0.003943 -0.026220 +v 0.030565 -0.004042 -0.026686 +v -0.010913 -0.003376 -0.041053 +v -0.033048 -0.004244 0.020410 +v -0.033251 -0.004401 0.017523 +v 0.011727 -0.003692 -0.003017 +v -0.012142 -0.003772 -0.005730 +v -0.006128 -0.004005 -0.007482 +v -0.008268 -0.003858 -0.008976 +v -0.002550 -0.004212 -0.014953 +v -0.001756 -0.003851 -0.016370 +v 0.009928 -0.003640 -0.025369 +v 0.012881 -0.003739 -0.026553 +v -0.031758 -0.003939 0.020998 +v -0.033678 -0.004334 0.019522 +v -0.010324 -0.003682 -0.006508 +v -0.003470 -0.004093 -0.014455 +v 0.039265 -0.003779 -0.016713 +v 0.038995 -0.003851 -0.017380 +v 0.026463 -0.003641 -0.026939 +v -0.025271 -0.003676 -0.028363 +v -0.025269 -0.003626 -0.028370 +v -0.025349 -0.003555 -0.028411 +vn -0.6148 0.7877 -0.0387 +vn -0.6149 0.7877 -0.0385 +vn -0.5114 -0.7878 -0.3432 +vn -0.5113 -0.7879 -0.3431 +vn -0.5111 -0.7880 -0.3433 +vn 0.1101 -0.9499 0.2924 +vn 0.1107 -0.9502 0.2913 +vn 0.1105 -0.9501 0.2916 +vn -0.6327 0.7089 -0.3118 +vn -0.6326 0.7089 -0.3119 +vn -0.6327 0.7089 -0.3116 +vn -0.1841 -0.9256 -0.3308 +vn -0.1841 -0.9256 -0.3307 +vn -0.1843 -0.9257 -0.3303 +vn 0.1375 -0.9755 -0.1717 +vn 0.1380 -0.9755 -0.1716 +vn 0.1377 -0.9755 -0.1717 +vn -0.7205 0.6812 0.1301 +vn -0.7205 0.6811 0.1301 +vn -0.7204 0.6812 0.1301 +vn -0.0031 -0.9974 -0.0722 +vn -0.0035 -0.9974 -0.0722 +vn -0.0030 -0.9974 -0.0721 +vn -0.1455 0.7981 0.5847 +vn -0.1441 0.7989 0.5839 +vn -0.1463 0.7980 0.5847 +vn -0.0039 -0.9975 -0.0701 +vn 0.7899 0.5665 0.2349 +vn 0.7898 0.5666 0.2349 +vn 0.7897 0.5668 0.2348 +vn 0.2872 -0.7975 0.5306 +vn 0.2874 -0.7975 0.5305 +vn 0.3200 0.9409 -0.1106 +vn 0.3197 0.9410 -0.1108 +vn 0.3205 0.9408 -0.1104 +vn 0.6292 0.2666 -0.7301 +vn 0.6295 0.2665 -0.7299 +vn 0.6288 0.2666 -0.7304 +vn 0.5066 -0.4359 -0.7439 +vn 0.5068 -0.4359 -0.7437 +vn 0.5061 -0.4358 -0.7443 +vn -0.4917 -0.7809 -0.3852 +vn -0.4916 -0.7810 -0.3852 +vn -0.4924 -0.7807 -0.3848 +vn 0.0016 -0.3947 -0.9188 +vn 0.0013 -0.3945 -0.9189 +vn 0.0014 -0.3945 -0.9189 +vn -0.6755 -0.1338 -0.7251 +vn -0.6750 -0.1334 -0.7256 +vn -0.6752 -0.1335 -0.7254 +vn -0.2194 -0.9241 -0.3129 +vn -0.2192 -0.9241 -0.3129 +vn -0.3463 0.9318 0.1092 +vn -0.3464 0.9317 0.1091 +vn -0.3462 0.9318 0.1092 +vn 0.0028 -0.4251 0.9051 +vn 0.0015 -0.4253 0.9050 +vn 0.0017 -0.4252 0.9051 +vn -0.6404 -0.4860 0.5948 +vn -0.6403 -0.4859 0.5949 +vn -0.6403 -0.4858 0.5950 +vn 0.1134 -0.4688 0.8760 +vn 0.1135 -0.4690 0.8759 +vn 0.1131 -0.4688 0.8760 +vn -0.1534 -0.9218 -0.3559 +vn -0.1538 -0.9212 -0.3574 +vn -0.1532 -0.9220 -0.3556 +vn -0.7058 -0.6586 -0.2609 +vn -0.3923 -0.4598 -0.7967 +vn -0.3925 -0.4597 -0.7966 +vn 0.4732 -0.7142 0.5157 +vn -0.5232 0.6208 -0.5838 +vn -0.5232 0.6210 -0.5836 +vn 0.3941 -0.7378 0.5481 +vn -0.5351 -0.7764 -0.3330 +vn -0.5349 -0.7766 -0.3327 +vn -0.5347 -0.7769 -0.3325 +vn -0.3306 -0.7281 -0.6004 +vn -0.3305 -0.7281 -0.6005 +vn 0.5499 -0.8347 0.0295 +vn 0.5500 -0.8347 0.0293 +vn 0.5499 -0.8347 0.0294 +vn 0.5124 -0.8553 0.0762 +vn 0.5126 -0.8551 0.0776 +vn 0.5127 -0.8552 0.0764 +vn -0.5736 -0.6930 -0.4367 +vn -0.5737 -0.6929 -0.4367 +vn -0.5731 -0.6933 -0.4369 +vn -0.9724 -0.2102 -0.1014 +vn -0.9725 -0.2098 -0.1014 +vn -0.9724 -0.2103 -0.1014 +vn 0.4712 0.8808 -0.0466 +vn 0.4762 -0.7108 0.5178 +vn 0.1032 0.8144 -0.5710 +vn -0.6769 -0.4473 -0.5846 +vn -0.6772 -0.4470 -0.5845 +vn -0.6770 -0.4472 -0.5846 +vn 0.3167 -0.7844 0.5334 +vn 0.3164 -0.7848 0.5329 +vn 0.7353 -0.4623 0.4956 +vn 0.7354 -0.4625 0.4953 +vn 0.1261 0.0365 -0.9913 +vn 0.1258 0.0366 -0.9914 +vn 0.1259 0.0365 -0.9914 +vn -0.3783 0.1763 0.9088 +vn -0.3782 0.1764 0.9088 +vn -0.3796 -0.8158 -0.4364 +vn -0.3797 -0.8157 -0.4364 +vn -0.3800 -0.8155 -0.4366 +vn -0.6288 -0.7770 0.0288 +vn -0.6284 -0.7773 0.0304 +vn -0.6285 -0.7773 0.0294 +vn 0.5194 -0.5786 -0.6288 +vn 0.5198 -0.5792 -0.6279 +vn 0.5198 -0.5791 -0.6280 +vn 0.4572 -0.5884 -0.6669 +vn 0.4567 -0.5885 -0.6671 +vn 0.4571 -0.5885 -0.6669 +vn -0.8786 0.0406 0.4759 +vn -0.8786 0.0406 0.4758 +vn -0.8787 0.0405 0.4756 +vn -0.8480 0.4815 -0.2212 +vn -0.7972 0.4665 -0.3833 +vn -0.7972 0.4661 -0.3837 +vn -0.5311 0.8262 0.1880 +vn -0.5310 0.8261 0.1887 +vn -0.5312 0.8259 0.1892 +vn 0.6213 -0.7728 0.1292 +vn 0.6215 -0.7727 0.1293 +vn -0.7019 -0.4568 -0.5466 +vn -0.7018 -0.4569 -0.5465 +vn -0.7021 -0.4566 -0.5464 +vn 0.6294 -0.6997 0.3380 +vn 0.6295 -0.6997 0.3379 +vn 0.6295 -0.6996 0.3380 +vn 0.8740 -0.3557 0.3312 +vn -0.9863 -0.1201 0.1135 +vn -0.5117 0.3128 -0.8002 +vn -0.5118 0.3131 -0.8000 +vn -0.5116 0.3126 -0.8004 +vn 0.6185 -0.7028 0.3515 +vn 0.6190 -0.7024 0.3515 +vn 0.6189 -0.7025 0.3514 +vn 0.4122 -0.1235 0.9027 +vn 0.4126 -0.1235 0.9025 +vn 0.4124 -0.1235 0.9026 +vn 0.6370 0.6377 0.4332 +vn 0.6371 0.6372 0.4337 +vn 0.6371 0.6380 0.4325 +vn -0.9397 0.0179 -0.3415 +vn -0.9398 0.0174 -0.3414 +vn -0.9397 0.0165 -0.3416 +vn -0.7969 -0.3497 -0.4926 +vn -0.7970 -0.3497 -0.4924 +vn -0.7969 -0.3498 -0.4926 +vn -0.5949 -0.5025 -0.6273 +vn -0.5947 -0.5026 -0.6275 +vn 0.8097 -0.4933 -0.3180 +vn 0.8099 -0.4931 -0.3176 +vn 0.8088 -0.4943 -0.3186 +vn -0.8539 0.2129 0.4748 +vn -0.6256 0.7797 -0.0249 +vn -0.1146 0.6157 0.7796 +vn -0.1147 0.6163 0.7791 +vn -0.1143 0.6152 0.7800 +vn 0.8432 -0.5118 0.1644 +vn 0.8433 -0.5117 0.1645 +vn 0.4922 0.2864 0.8220 +vn 0.4922 0.2865 0.8220 +vn -0.0254 0.3236 -0.9458 +vn -0.0255 0.3238 -0.9458 +vn -0.0254 0.3238 -0.9458 +vn -0.0255 0.9602 0.2780 +vn -0.0258 0.9601 0.2783 +vn -0.0250 0.9603 0.2777 +vn 0.7605 -0.6458 0.0678 +vn 0.7605 -0.6458 0.0672 +vn 0.7604 -0.6458 0.0685 +vn -0.9621 0.2392 -0.1309 +vn -0.9621 0.2393 -0.1306 +vn -0.9621 0.2390 -0.1315 +vn -0.4882 0.8636 0.1257 +vn -0.4879 0.8637 0.1264 +vn -0.4880 0.8637 0.1260 +vn -0.9266 0.2422 0.2876 +vn -0.9266 0.2422 0.2875 +vn 0.3190 0.8754 -0.3633 +vn 0.3190 0.8753 -0.3635 +vn 0.6807 -0.4562 -0.5732 +vn -0.0359 0.7357 0.6763 +vn -0.0351 0.7350 0.6771 +vn -0.0353 0.7353 0.6768 +vn 0.4109 -0.1349 0.9016 +vn 0.4116 -0.1351 0.9013 +vn 0.4115 -0.1351 0.9013 +vn 0.8152 -0.5182 0.2587 +vn 0.8153 -0.5181 0.2586 +vn 0.8152 -0.5182 0.2588 +vn -0.9727 -0.2320 0.0050 +vn -0.9726 -0.2326 0.0037 +vn -0.9729 -0.2310 0.0059 +vn -0.8540 0.1801 -0.4881 +vn -0.8542 0.1800 -0.4877 +vn -0.7234 -0.5639 -0.3985 +vn -0.7222 -0.5644 -0.3999 +vn -0.7229 -0.5640 -0.3992 +vn 0.2733 0.7018 -0.6578 +vn 0.2718 0.7024 -0.6579 +vn 0.2708 0.7023 -0.6583 +vn 0.1608 -0.9776 0.1355 +vn 0.1609 -0.9777 0.1352 +vn 0.1607 -0.9776 0.1356 +vn 0.1451 -0.9883 -0.0474 +vn 0.1453 -0.9883 -0.0473 +vn 0.1453 -0.9882 -0.0476 +vn 0.4910 0.3090 -0.8145 +vn -0.2093 0.9760 0.0598 +vn -0.2094 0.9760 0.0599 +vn -0.2095 0.9760 0.0602 +vn 0.2063 -0.3028 0.9305 +vn 0.2065 -0.3028 0.9304 +vn 0.2062 -0.3028 0.9305 +vn -0.0990 0.0772 -0.9921 +vn -0.0988 0.0774 -0.9921 +vn -0.0994 0.0776 -0.9920 +vn 0.8175 -0.1281 -0.5614 +vn 0.8174 -0.1282 -0.5617 +vn 0.8175 -0.1278 -0.5616 +vn -0.3289 0.8564 -0.3980 +vn -0.3290 0.8564 -0.3979 +vn 0.8457 -0.4823 -0.2283 +vn 0.8457 -0.4824 -0.2282 +vn -0.6968 -0.5265 -0.4871 +vn -0.6969 -0.5264 -0.4871 +vn -0.6970 -0.5264 -0.4869 +vn -0.2660 -0.0169 0.9638 +vn -0.2658 -0.0171 0.9639 +vn 0.0063 0.0088 0.9999 +vn 0.0060 0.0088 0.9999 +vn 0.0067 0.0087 0.9999 +vn 0.2759 -0.3803 -0.8827 +vn 0.2763 -0.3799 -0.8828 +vn 0.2772 -0.3801 -0.8824 +vn -0.5016 -0.5458 -0.6712 +vn -0.5015 -0.5457 -0.6713 +vn -0.0273 0.7310 -0.6819 +vn -0.0270 0.7312 -0.6816 +vn -0.0282 0.7306 -0.6822 +vn 0.2065 0.8768 0.4343 +vn 0.2063 0.8769 0.4342 +vn 0.2061 0.8770 0.4340 +vn 0.3059 0.2116 0.9283 +vn 0.3057 0.2117 0.9283 +vn 0.3057 0.2114 0.9284 +vn -0.3099 -0.9415 0.1325 +vn -0.3093 -0.9418 0.1319 +vn -0.3094 -0.9417 0.1322 +vn 0.1875 -0.9655 0.1806 +vn 0.1873 -0.9655 0.1807 +vn 0.1880 -0.9654 0.1805 +vn 0.2752 -0.9442 0.1811 +vn 0.2755 -0.9443 0.1800 +vn 0.2753 -0.9443 0.1804 +vn -0.7823 0.4985 -0.3736 +vn -0.7823 0.4984 -0.3738 +vn -0.7821 0.4981 -0.3744 +vn -0.3719 -0.9087 -0.1896 +vn -0.3718 -0.9088 -0.1894 +vn 0.5363 -0.7359 -0.4133 +vn 0.5363 -0.7361 -0.4130 +vn -0.0172 0.7997 -0.6002 +vn -0.0174 0.7996 -0.6003 +vn -0.0178 0.7997 -0.6002 +vn -0.0402 0.7349 0.6769 +vn -0.0404 0.7347 0.6772 +vn -0.5233 0.8022 0.2872 +vn -0.5235 0.8022 0.2872 +vn -0.5539 0.6466 -0.5245 +vn -0.5541 0.6464 -0.5245 +vn -0.5540 0.6465 -0.5245 +vn -0.1355 0.8863 0.4429 +vn -0.1355 0.8863 0.4428 +vn -0.8824 0.3459 -0.3190 +vn -0.8821 0.3452 -0.3206 +vn -0.8817 0.3451 -0.3216 +vn 0.8102 0.3631 0.4602 +vn 0.8100 0.3630 0.4606 +vn -0.4461 -0.4541 0.7712 +vn -0.4460 -0.4538 0.7715 +vn -0.4459 -0.4540 0.7714 +vn -0.6940 -0.5290 -0.4884 +vn -0.6941 -0.5288 -0.4885 +vn 0.1568 0.8130 -0.5607 +vn 0.1570 0.8131 -0.5606 +vn 0.1569 0.8130 -0.5607 +vn -0.6393 0.1409 0.7560 +vn -0.6390 0.1419 0.7560 +vn -0.6384 0.1435 0.7562 +vn 0.0244 -0.7932 0.6085 +vn 0.0237 -0.7935 0.6081 +vn -0.2930 0.1892 0.9372 +vn -0.2928 0.1895 0.9372 +vn -0.1636 0.7915 0.5889 +vn -0.1634 0.7914 0.5890 +vn -0.1632 0.7913 0.5893 +vn -0.0821 -0.9512 0.2974 +vn 0.0049 -0.9997 0.0228 +vn 0.0053 -0.9997 0.0227 +vn 0.0057 -0.9997 0.0227 +vn -0.7331 0.6141 -0.2922 +vn -0.7331 0.6142 -0.2920 +vn -0.7333 0.6141 -0.2918 +vn 0.0312 0.6463 -0.7625 +vn 0.0309 0.6460 -0.7627 +vn -0.5010 -0.8646 0.0376 +vn -0.5011 -0.8646 0.0376 +vn -0.5548 -0.6840 -0.4737 +vn -0.5550 -0.6840 -0.4734 +vn -0.5547 -0.6839 -0.4740 +vn 0.4077 -0.5850 -0.7011 +vn 0.4078 -0.5850 -0.7010 +vn 0.2620 0.9325 -0.2487 +vn 0.2619 0.9325 -0.2485 +vn 0.0931 -0.2335 0.9679 +vn 0.0930 -0.2335 0.9679 +vn 0.0932 -0.2333 0.9679 +vn -0.0070 0.5304 0.8477 +vn -0.0071 0.5302 0.8478 +vn -0.0072 0.5304 0.8477 +vn 0.4151 -0.1832 0.8911 +vn 0.4143 -0.1819 0.8918 +vn 0.4149 -0.1827 0.8913 +vn -0.4991 0.7525 0.4297 +vn -0.4997 0.7520 0.4298 +vn -0.4998 0.7520 0.4298 +vn -0.0209 0.9856 -0.1677 +vn -0.0210 0.9856 -0.1678 +vn -0.0207 0.9856 -0.1678 +vn -0.9153 0.3673 -0.1650 +vn -0.9154 0.3672 -0.1649 +vn -0.9152 0.3675 -0.1653 +vn 0.9390 -0.3438 -0.0013 +vn 0.9389 -0.3443 -0.0015 +vn 0.6510 -0.3982 -0.6462 +vn -0.3525 -0.9280 -0.1206 +vn -0.3524 -0.9280 -0.1207 +vn -0.3526 -0.9280 -0.1204 +vn 0.3636 -0.3741 0.8531 +vn 0.3632 -0.3741 0.8533 +vn 0.3640 -0.3742 0.8529 +vn -0.0018 -0.9699 0.2436 +vn -0.0003 -0.9697 0.2442 +vn -0.0010 -0.9698 0.2438 +vn 0.7629 -0.4559 0.4584 +vn 0.7645 -0.4541 0.4575 +vn 0.7637 -0.4552 0.4577 +vn -0.0372 -0.9513 -0.3060 +vn -0.0372 -0.9512 -0.3063 +vn -0.0373 -0.9514 -0.3058 +vn -0.9579 0.2748 0.0831 +vn -0.9574 0.2764 0.0833 +vn -0.9577 0.2754 0.0832 +vn -0.6239 0.4297 0.6528 +vn -0.6235 0.4303 0.6528 +vn -0.8705 -0.4615 -0.1711 +vn -0.8707 -0.4613 -0.1708 +vn -0.8708 -0.4612 -0.1702 +vn -0.2735 -0.9284 -0.2515 +vn -0.2726 -0.9285 -0.2523 +vn -0.2740 -0.9286 -0.2501 +vn 0.0008 -0.8753 0.4836 +vn 0.0011 -0.8749 0.4842 +vn 0.0009 -0.8752 0.4837 +vn 0.5410 -0.8400 0.0414 +vn 0.5411 -0.8399 0.0415 +vn -0.3308 -0.8355 -0.4387 +vn -0.3306 -0.8356 -0.4387 +vn -0.0370 0.7900 0.6120 +vn -0.0355 0.7898 0.6123 +vn -0.0390 0.7895 0.6125 +vn 0.7325 -0.5809 -0.3550 +vn 0.7327 -0.5808 -0.3547 +vn -0.4943 -0.4756 -0.7276 +vn -0.4940 -0.4753 -0.7281 +vn -0.4937 -0.4750 -0.7284 +vn 0.0288 0.9271 0.3738 +vn 0.0290 0.9269 0.3741 +vn 0.0292 0.9268 0.3743 +vn -0.2417 0.3213 0.9156 +vn -0.2414 0.3213 0.9157 +vn -0.2415 0.3213 0.9157 +vn -0.6464 0.1588 -0.7463 +vn -0.6463 0.1589 -0.7464 +vn -0.6463 0.1588 -0.7464 +vn 0.6453 0.7566 -0.1053 +vn -0.1322 0.1219 -0.9837 +vn -0.9681 0.0088 -0.2504 +vn -0.9681 0.0088 -0.2505 +vn -0.8558 0.4459 -0.2623 +vn -0.8556 0.4461 -0.2625 +vn -0.8560 0.4457 -0.2621 +vn 0.9256 -0.2688 0.2666 +vn 0.9253 -0.2689 0.2673 +vn 0.9254 -0.2690 0.2671 +vn 0.0707 0.8680 -0.4915 +vn 0.0705 0.8681 -0.4913 +vn -0.1591 -0.8201 0.5496 +vn -0.1592 -0.8202 0.5495 +vn -0.1590 -0.8201 0.5497 +vn 0.1329 -0.8162 0.5623 +vn 0.1331 -0.8162 0.5623 +vn 0.1333 -0.8160 0.5624 +vn 0.9458 0.3102 0.0961 +vn 0.9458 0.3103 0.0962 +vn 0.9458 0.3102 0.0965 +vn 0.0527 -0.9895 -0.1348 +vn 0.0529 -0.9895 -0.1348 +vn -0.4448 -0.8843 -0.1418 +vn -0.4444 -0.8845 -0.1422 +vn -0.4449 -0.8843 -0.1417 +vn -0.9230 0.3846 -0.0101 +vn -0.9234 0.3836 -0.0112 +vn -0.9239 0.3824 -0.0114 +vn -0.0166 -0.2269 -0.9738 +vn -0.0165 -0.2263 -0.9739 +vn -0.4536 -0.2627 -0.8516 +vn -0.4539 -0.2627 -0.8515 +vn 0.3242 -0.2514 0.9120 +vn 0.3249 -0.2510 0.9118 +vn 0.3245 -0.2511 0.9119 +vn -0.0507 0.7475 -0.6623 +vn 0.2892 -0.7292 -0.6202 +vn 0.2890 -0.7293 -0.6202 +vn 0.2894 -0.7291 -0.6202 +vn -0.8272 0.2095 -0.5215 +vn -0.8274 0.2093 -0.5211 +vn -0.8270 0.2095 -0.5218 +vn 0.2315 -0.9701 0.0726 +vn 0.2315 -0.9701 0.0725 +vn 0.2318 -0.9701 0.0720 +vn 0.7457 -0.6288 -0.2203 +vn 0.7457 -0.6288 -0.2204 +vn 0.7780 0.2519 0.5756 +vn 0.7780 0.2518 0.5756 +vn 0.8769 0.3914 -0.2789 +vn 0.8772 0.3912 -0.2785 +vn 0.8771 0.3912 -0.2785 +vn -0.5287 -0.2436 -0.8131 +vn -0.5296 -0.2421 -0.8129 +vn -0.5281 -0.2441 -0.8134 +vn 0.4770 -0.0616 0.8767 +vn 0.4770 -0.0625 0.8767 +vn 0.4772 -0.0618 0.8766 +vn -0.5661 -0.5532 -0.6112 +vn -0.5657 -0.5536 -0.6111 +vn -0.5659 -0.5535 -0.6110 +vn 0.9767 -0.0561 0.2072 +vn 0.9771 -0.0563 0.2053 +vn 0.9768 -0.0562 0.2068 +vn 0.6990 0.2361 0.6750 +vn 0.6997 0.2379 0.6736 +vn 0.6980 0.2354 0.6763 +vn -0.7056 0.6719 -0.2249 +vn -0.7053 0.6722 -0.2252 +vn -0.7058 0.6717 -0.2250 +vn -0.0569 0.6731 -0.7373 +vn -0.8433 0.0611 -0.5339 +vn 0.3286 0.9095 -0.2545 +vn 0.3286 0.9095 -0.2546 +vn 0.3285 0.9095 -0.2546 +vn 0.1252 -0.7996 0.5873 +vn 0.1254 -0.7995 0.5874 +vn 0.1253 -0.7995 0.5874 +vn -0.3824 -0.8956 0.2273 +vn -0.3823 -0.8957 0.2272 +vn -0.3827 -0.8955 0.2273 +vn 0.5877 -0.5868 -0.5570 +vn 0.5876 -0.5869 -0.5570 +vn -0.6810 -0.0884 0.7269 +vn -0.6812 -0.0885 0.7268 +vn 0.0155 -0.7949 0.6065 +vn 0.0156 -0.7949 0.6065 +vn -0.6713 -0.6548 -0.3473 +vn -0.6712 -0.6548 -0.3474 +vn -0.6714 -0.6548 -0.3472 +vn 0.7659 -0.5519 0.3300 +vn -0.1599 -0.9212 0.3548 +vn -0.1597 -0.9213 0.3546 +vn -0.1601 -0.9212 0.3547 +vn 0.1123 0.9780 -0.1760 +vn 0.1130 0.9780 -0.1755 +vn 0.1128 0.9779 -0.1759 +vn -0.4702 0.1609 -0.8678 +vn -0.4698 0.1609 -0.8680 +vn -0.4694 0.1608 -0.8682 +vn -0.8764 -0.4613 0.1380 +vn -0.8763 -0.4615 0.1381 +vn -0.8765 -0.4612 0.1379 +vn 0.0129 0.8360 0.5486 +vn 0.0130 0.8358 0.5489 +vn 0.0131 0.8359 0.5487 +vn -0.0546 0.8765 0.4783 +vn -0.0543 0.8765 0.4783 +vn -0.0549 0.8766 0.4780 +vn -0.3119 0.9477 0.0679 +vn -0.3122 0.9476 0.0681 +vn -0.3121 0.9476 0.0675 +vn 0.2565 0.9325 -0.2542 +vn 0.2565 0.9325 -0.2543 +vn 0.2555 0.9326 -0.2548 +vn 0.1876 -0.2780 -0.9421 +vn 0.1871 -0.2779 -0.9422 +vn 0.1868 -0.2781 -0.9422 +vn 0.8262 0.2481 0.5058 +vn 0.8261 0.2474 0.5063 +vn 0.8262 0.2479 0.5059 +vn 0.8907 -0.0027 0.4545 +vn 0.8908 -0.0026 0.4544 +vn 0.8908 -0.0025 0.4543 +vn -0.9396 0.1798 -0.2911 +vn -0.9396 0.1799 -0.2911 +vn -0.4573 -0.8818 -0.1155 +vn -0.4581 -0.8813 -0.1156 +vn -0.4577 -0.8816 -0.1156 +vn -0.0456 -0.9956 0.0819 +vn -0.0456 -0.9955 0.0829 +vn -0.0457 -0.9956 0.0823 +vn 0.4556 0.6494 -0.6089 +vn -0.2149 -0.4301 0.8768 +vn -0.2144 -0.4297 0.8771 +vn -0.2146 -0.4299 0.8770 +vn -0.7156 0.5308 0.4540 +vn -0.7156 0.5309 0.4539 +vn -0.7154 0.5313 0.4538 +vn -0.1963 -0.0126 -0.9805 +vn -0.1964 -0.0126 -0.9804 +vn -0.1966 -0.0125 -0.9804 +vn -0.0062 -0.2711 -0.9625 +vn -0.0065 -0.2714 -0.9624 +vn -0.0061 -0.2708 -0.9626 +vn -0.8127 0.2465 0.5280 +vn -0.8126 0.2466 0.5281 +vn -0.8125 0.2463 0.5284 +vn 0.0838 0.7256 -0.6830 +vn 0.0839 0.7257 -0.6829 +vn -0.2396 0.9706 0.0240 +vn -0.8265 0.3194 0.4636 +vn -0.8264 0.3196 0.4637 +vn -0.8265 0.3191 0.4638 +vn 0.8443 -0.4978 -0.1983 +vn -0.7920 -0.3829 0.4756 +vn -0.7914 -0.3838 0.4757 +vn -0.7915 -0.3834 0.4759 +vn 0.7616 -0.4907 -0.4233 +vn 0.7611 -0.4929 -0.4217 +vn 0.7611 -0.4920 -0.4227 +vn 0.0182 0.9129 0.4077 +vn 0.0182 0.9127 0.4083 +vn 0.0182 0.9128 0.4080 +vn -0.2368 0.4925 0.8375 +vn -0.2371 0.4920 0.8377 +vn -0.2370 0.4921 0.8376 +vn -0.6637 0.3733 0.6482 +vn -0.6639 0.3731 0.6481 +vn -0.6638 0.3734 0.6480 +vn -0.8436 -0.5342 0.0548 +vn -0.8437 -0.5341 0.0547 +vn -0.8146 -0.4738 0.3347 +vn 0.9340 0.0867 0.3466 +vn 0.9339 0.0857 0.3470 +vn 0.9340 0.0866 0.3466 +vn -0.2044 -0.8163 -0.5403 +vn -0.2043 -0.8163 -0.5403 +vn -0.9488 -0.2888 -0.1280 +vn -0.9496 -0.2859 -0.1282 +vn -0.9491 -0.2875 -0.1284 +vn -0.4634 -0.7191 -0.5179 +vn -0.4572 -0.5789 -0.6752 +vn -0.4570 -0.5792 -0.6750 +vn -0.4567 -0.5797 -0.6748 +vn 0.5810 -0.3549 -0.7325 +vn 0.5811 -0.3550 -0.7323 +vn 0.5812 -0.3551 -0.7322 +vn -0.6555 -0.2940 -0.6956 +vn -0.6555 -0.2941 -0.6956 +vn -0.6318 -0.1010 -0.7685 +vn -0.6323 -0.1008 -0.7682 +vn -0.6319 -0.1008 -0.7685 +vn 0.1470 -0.2327 0.9614 +vn 0.1471 -0.2321 0.9615 +vn 0.1473 -0.2333 0.9612 +vn -0.1325 -0.0272 -0.9908 +vn -0.1322 -0.0276 -0.9908 +vn -0.1330 -0.0268 -0.9908 +vn -0.7045 0.4750 0.5273 +vn -0.7042 0.4754 0.5273 +vn -0.7040 0.4761 0.5269 +vn -0.8197 -0.3120 -0.4804 +vn -0.8193 -0.3122 -0.4810 +vn -0.8192 -0.3121 -0.4812 +vn -0.3426 -0.1614 -0.9255 +vn 0.1489 0.9387 0.3108 +vn 0.1486 0.9390 0.3102 +vn 0.1485 0.9391 0.3099 +vn 0.4497 -0.6992 0.5557 +vn 0.4498 -0.6991 0.5557 +vn -0.1938 -0.7672 0.6114 +vn -0.0317 0.5776 -0.8157 +vn -0.0318 0.5774 -0.8158 +vn -0.0317 0.5775 -0.8157 +vn -0.2306 -0.1728 0.9576 +vn -0.2303 -0.1726 0.9577 +vn -0.2303 -0.1727 0.9577 +vn -0.3310 -0.1544 0.9309 +vn -0.3309 -0.1540 0.9310 +vn -0.3307 -0.1535 0.9312 +vn -0.7494 0.0959 -0.6551 +vn -0.7493 0.0964 -0.6551 +vn -0.7494 0.0971 -0.6550 +vn 0.8881 0.3212 -0.3289 +vn 0.6375 -0.4675 -0.6124 +vn 0.6373 -0.4682 -0.6121 +vn -0.7975 0.3910 -0.4595 +vn -0.7982 0.3911 -0.4581 +vn -0.7979 0.3910 -0.4588 +vn 0.7961 -0.1254 -0.5921 +vn 0.7958 -0.1255 -0.5924 +vn 0.7961 -0.1254 -0.5920 +vn 0.4883 0.8702 -0.0660 +vn 0.4882 0.8702 -0.0665 +vn 0.8115 -0.5302 -0.2456 +vn 0.8116 -0.5300 -0.2458 +vn 0.8115 -0.5304 -0.2453 +vn -0.5424 -0.2984 -0.7853 +vn -0.6339 -0.1031 -0.7665 +vn -0.6342 -0.1028 -0.7663 +vn -0.6331 -0.1037 -0.7671 +vn 0.5206 -0.2359 -0.8206 +vn 0.0566 -0.3098 -0.9491 +vn 0.0571 -0.3103 -0.9489 +vn 0.0569 -0.3101 -0.9490 +vn 0.1226 0.7475 -0.6528 +vn 0.1223 0.7475 -0.6529 +vn -0.7195 0.3402 0.6054 +vn -0.7196 0.3402 0.6054 +vn -0.8054 0.1094 -0.5825 +vn -0.8054 0.1093 -0.5826 +vn -0.8054 0.1096 -0.5825 +vn -0.0418 0.5601 -0.8274 +vn -0.0421 0.5605 -0.8271 +vn -0.0417 0.5603 -0.8273 +vn 0.0449 0.0714 0.9964 +vn 0.0456 0.0715 0.9964 +vn 0.0452 0.0713 0.9964 +vn 0.2018 0.9001 0.3862 +vn 0.2021 0.8999 0.3864 +vn 0.2015 0.9003 0.3858 +vn 0.6755 0.1082 -0.7293 +vn 0.6767 0.1052 -0.7287 +vn 0.6762 0.1065 -0.7289 +vn -0.5872 0.7868 -0.1899 +vn -0.5871 0.7868 -0.1901 +vn -0.5872 0.7868 -0.1900 +vn -0.6619 0.6706 -0.3350 +vn 0.6946 -0.6989 0.1706 +vn 0.6947 -0.6987 0.1709 +vn 0.6948 -0.6986 0.1708 +vn 0.6736 -0.2451 -0.6972 +vn 0.6734 -0.2450 -0.6975 +vn 0.6741 -0.2452 -0.6968 +vn 0.2959 0.3774 -0.8775 +vn 0.2959 0.3777 -0.8774 +vn 0.2959 0.3779 -0.8773 +vn 0.8107 0.5021 0.3011 +vn 0.8105 0.5023 0.3012 +vn 0.8105 0.5024 0.3011 +vn -0.3128 0.9495 0.0263 +vn -0.3128 0.9495 0.0262 +vn 0.7484 0.3808 0.5430 +vn 0.7484 0.3806 0.5432 +vn -0.9525 0.3046 0.0068 +vn -0.9515 0.3075 0.0090 +vn -0.9518 0.3065 0.0077 +vn -0.3631 -0.5031 0.7843 +vn -0.3629 -0.5032 0.7843 +vn -0.3632 -0.5031 0.7842 +vn -0.3170 0.0988 0.9433 +vn 0.0859 0.3652 0.9270 +vn 0.0870 0.3669 0.9262 +vn 0.0885 0.3676 0.9258 +vn -0.1159 -0.2752 0.9544 +vn -0.9042 -0.3838 -0.1873 +vn -0.9037 -0.3838 -0.1896 +vn -0.9041 -0.3837 -0.1882 +vn -0.9393 -0.2723 -0.2086 +vn -0.9392 -0.2723 -0.2092 +vn -0.9391 -0.2722 -0.2096 +vn 0.1386 0.9779 -0.1566 +vn 0.1385 0.9779 -0.1566 +vn -0.1138 -0.3485 -0.9304 +vn -0.1128 -0.3485 -0.9305 +vn -0.1140 -0.3485 -0.9303 +vn -0.6950 0.2234 -0.6834 +vn -0.6950 0.2235 -0.6834 +vn -0.3575 0.9305 -0.0797 +vn -0.3576 0.9305 -0.0795 +vn -0.3580 0.9303 -0.0797 +vn 0.5945 -0.2354 0.7688 +vn 0.5944 -0.2355 0.7689 +vn -0.0820 -0.9381 -0.3364 +vn 0.0420 -0.8036 0.5937 +vn 0.0436 -0.8031 0.5943 +vn 0.0427 -0.8035 0.5938 +vn -0.3702 -0.6484 0.6652 +vn -0.3702 -0.6481 0.6655 +vn -0.3701 -0.6484 0.6653 +vn -0.2133 -0.0126 -0.9769 +vn -0.2133 -0.0128 -0.9769 +vn -0.2134 -0.0124 -0.9769 +vn 0.1235 -0.9545 0.2713 +vn 0.1234 -0.9545 0.2713 +vn 0.1236 -0.9545 0.2713 +vn 0.6281 -0.6504 -0.4272 +vn 0.6283 -0.6503 -0.4270 +vn 0.6284 -0.6503 -0.4269 +vn -0.0709 -0.9504 -0.3027 +vn -0.0708 -0.9504 -0.3027 +vn -0.0709 -0.9504 -0.3028 +vn -0.1730 0.5711 0.8024 +vn -0.1727 0.5708 0.8027 +vn -0.1728 0.5710 0.8026 +vn -0.4274 0.7799 -0.4572 +vn -0.4264 0.7799 -0.4581 +vn -0.4268 0.7800 -0.4576 +vn 0.0993 0.9786 -0.1804 +vn 0.0989 0.9785 -0.1808 +vn 0.0991 0.9785 -0.1806 +vn 0.2459 0.9684 -0.0418 +vn -0.9693 0.1513 -0.1937 +vn -0.9693 0.1512 -0.1939 +vn -0.0805 0.3309 -0.9402 +vn -0.0803 0.3308 -0.9403 +vn 0.0177 0.8832 0.4686 +vn 0.0181 0.8832 0.4687 +vn 0.0174 0.8832 0.4686 +vn 0.4638 0.4065 0.7872 +vn 0.4635 0.4066 0.7873 +vn 0.4635 0.4067 0.7872 +vn 0.9269 0.3354 0.1682 +vn 0.9265 0.3355 0.1702 +vn 0.9268 0.3353 0.1694 +vn -0.7357 0.4113 -0.5381 +vn -0.7363 0.4123 -0.5365 +vn -0.7359 0.4121 -0.5373 +vn 0.5500 0.8301 0.0920 +vn -0.1071 0.9920 -0.0666 +vn -0.1069 0.9920 -0.0666 +vn -0.1072 0.9920 -0.0665 +vn 0.5128 0.8085 0.2887 +vn 0.5128 0.8085 0.2888 +vn 0.5128 0.8084 0.2889 +vn -0.8099 0.4087 -0.4208 +vn -0.8100 0.4086 -0.4206 +vn -0.8342 0.5392 -0.1159 +vn -0.8339 0.5395 -0.1166 +vn 0.0044 0.3122 0.9500 +vn 0.0037 0.3115 0.9502 +vn 0.0042 0.3118 0.9501 +vn 0.4228 -0.7910 0.4422 +vn 0.4227 -0.7911 0.4421 +vn 0.4230 -0.7909 0.4423 +vn -0.7303 0.1953 -0.6546 +vn -0.7305 0.1952 -0.6544 +vn -0.7304 0.1953 -0.6545 +vn -0.6812 0.2738 -0.6790 +vn -0.6809 0.2741 -0.6791 +vn -0.6813 0.2734 -0.6790 +vn -0.3938 0.9041 0.1658 +vn -0.3940 0.9039 0.1664 +vn -0.3940 0.9039 0.1665 +vn 0.9824 0.1718 -0.0735 +vn 0.9824 0.1718 -0.0736 +vn 0.9824 0.1717 -0.0735 +vn -0.2327 -0.9147 0.3304 +vn -0.2317 -0.9153 0.3295 +vn -0.2336 -0.9143 0.3308 +vn 0.2149 0.9766 -0.0007 +vn 0.2150 0.9766 -0.0007 +vn 0.2148 0.9767 -0.0006 +vn -0.8885 0.2932 -0.3531 +vn -0.8884 0.2934 -0.3531 +vn -0.8883 0.2936 -0.3531 +vn 0.5334 -0.2328 -0.8132 +vn 0.5334 -0.2330 -0.8132 +vn 0.5333 -0.2326 -0.8133 +vn 0.4848 -0.6956 -0.5302 +vn 0.5332 -0.6112 -0.5849 +vn 0.5334 -0.6109 -0.5850 +vn 0.5336 -0.6105 -0.5853 +vn -0.1168 -0.9008 -0.4183 +vn -0.1170 -0.9006 -0.4186 +vn -0.1167 -0.9007 -0.4184 +vn 0.8527 -0.1574 0.4981 +vn 0.8531 -0.1577 0.4974 +vn 0.8529 -0.1575 0.4977 +vn 0.0652 0.9977 0.0206 +vn 0.0653 0.9977 0.0204 +vn -0.7881 0.5410 -0.2935 +vn -0.2732 -0.3150 0.9089 +vn -0.2727 -0.3154 0.9089 +vn -0.2730 -0.3151 0.9089 +vn 0.5903 0.5447 0.5957 +vn 0.5902 0.5447 0.5958 +vn 0.5904 0.5447 0.5956 +vn -0.7377 0.6738 0.0426 +vn -0.7377 0.6738 0.0428 +vn -0.7376 0.6738 0.0428 +vn -0.6736 -0.3311 0.6608 +vn -0.6736 -0.3309 0.6609 +vn -0.2749 -0.3036 -0.9123 +vn -0.2748 -0.3037 -0.9123 +vn -0.2743 -0.3035 -0.9125 +vn 0.3830 0.0836 -0.9200 +vn 0.3830 0.0835 -0.9200 +vn -0.4079 0.6791 0.6103 +vn -0.4081 0.6792 0.6100 +vn -0.4078 0.6793 0.6101 +vn 0.3482 0.5012 0.7922 +vn 0.3481 0.5014 0.7921 +vn 0.3486 0.5010 0.7921 +vn 0.1647 0.9717 0.1693 +vn 0.1655 0.9715 0.1695 +vn 0.1641 0.9718 0.1693 +vn 0.1725 -0.0043 -0.9850 +vn 0.1721 -0.0035 -0.9851 +vn 0.1714 -0.0029 -0.9852 +vn -0.2517 -0.9471 0.1991 +vn -0.2516 -0.9471 0.1992 +vn -0.2515 -0.9472 0.1990 +vn 0.1210 -0.3931 0.9115 +vn 0.1207 -0.3933 0.9115 +vn 0.1205 -0.3933 0.9115 +vn -0.4331 -0.7647 -0.4771 +vn -0.4887 -0.8085 -0.3279 +vn -0.4886 -0.8086 -0.3277 +vn -0.4889 -0.8085 -0.3274 +vn 0.1861 -0.0233 -0.9823 +vn 0.1859 -0.0235 -0.9823 +vn -0.1383 0.9900 0.0281 +vn -0.1378 0.9901 0.0281 +vn -0.2552 0.7974 -0.5468 +vn -0.2554 0.7974 -0.5467 +vn 0.1541 -0.8890 0.4312 +vn 0.1542 -0.8889 0.4313 +vn 0.1544 -0.8890 0.4311 +vn -0.8900 -0.3448 0.2983 +vn -0.8899 -0.3449 0.2984 +vn -0.8898 -0.3451 0.2985 +vn -0.1255 -0.9622 0.2419 +vn 0.2458 -0.7450 -0.6202 +vn 0.2461 -0.7449 -0.6201 +vn 0.2465 -0.7449 -0.6200 +vn 0.5934 -0.7430 -0.3095 +vn 0.5934 -0.7430 -0.3096 +vn 0.5934 -0.7430 -0.3097 +vn -0.8446 0.4192 -0.3331 +vn -0.6175 0.6048 0.5029 +vn -0.0619 0.6126 -0.7880 +vn -0.0623 0.6121 -0.7883 +vn -0.0624 0.6120 -0.7884 +vn -0.3215 0.1516 0.9347 +vn -0.3214 0.1519 0.9347 +vn -0.3216 0.1515 0.9347 +vn 0.2479 0.1924 0.9495 +vn 0.9212 -0.3879 0.0304 +vn 0.9211 -0.3882 0.0306 +vn 0.9211 -0.3881 0.0306 +vn 0.9365 -0.3396 0.0876 +vn 0.9363 -0.3401 0.0880 +vn 0.9363 -0.3400 0.0879 +vn -0.5551 0.4498 -0.6997 +vn -0.5547 0.4501 -0.6998 +vn -0.7146 0.5555 -0.4252 +vn -0.7138 0.5565 -0.4251 +vn -0.7110 0.5592 -0.4263 +vn 0.5024 0.6939 0.5158 +vn 0.5020 0.6933 0.5171 +vn 0.5021 0.6939 0.5162 +vn -0.1267 -0.0668 0.9897 +vn -0.1269 -0.0671 0.9896 +vn -0.1270 -0.0672 0.9896 +vn -0.1967 -0.2275 -0.9537 +vn -0.1961 -0.2267 -0.9540 +vn -0.1949 -0.2265 -0.9543 +vn 0.6523 -0.5542 -0.5171 +vn 0.6520 -0.5545 -0.5172 +vn 0.6525 -0.5540 -0.5170 +vn -0.2615 0.9537 0.1489 +vn -0.2613 0.9537 0.1487 +vn -0.2614 0.9536 0.1493 +vn 0.0467 0.9032 0.4267 +vn 0.0466 0.9031 0.4268 +vn 0.4230 -0.6926 -0.5843 +vn 0.4233 -0.6923 -0.5844 +vn 0.4231 -0.6924 -0.5844 +vn 0.0478 -0.9648 0.2588 +vn 0.0478 -0.9648 0.2587 +vn -0.3465 0.9081 -0.2351 +vn -0.3466 0.9082 -0.2345 +vn -0.3464 0.9081 -0.2353 +vn -0.7023 -0.0518 -0.7100 +vn -0.7023 -0.0517 -0.7100 +vn -0.7024 -0.0515 -0.7099 +vn -0.6173 0.1357 -0.7749 +vn -0.6174 0.1352 -0.7749 +vn -0.3965 0.8900 -0.2250 +vn -0.3963 0.8901 -0.2251 +vn 0.2543 -0.3863 0.8866 +vn 0.2546 -0.3864 0.8865 +vn 0.2541 -0.3862 0.8867 +vn -0.8902 -0.0785 -0.4488 +vn -0.8905 -0.0799 -0.4479 +vn -0.8903 -0.0794 -0.4484 +vn -0.3468 -0.8764 -0.3343 +vn -0.3472 -0.8764 -0.3337 +vn -0.3469 -0.8763 -0.3342 +vn -0.1968 0.3622 -0.9111 +vn -0.1968 0.3624 -0.9110 +vn -0.1970 0.3622 -0.9110 +vn 0.4634 -0.5571 -0.6891 +vn 0.4634 -0.5572 -0.6890 +vn 0.4634 -0.5573 -0.6890 +vn -0.2671 0.2131 0.9398 +vn -0.2671 0.2132 0.9398 +vn 0.2728 -0.4867 -0.8299 +vn 0.2730 -0.4867 -0.8298 +vn 0.2729 -0.4867 -0.8298 +vn -0.2051 -0.9322 0.2983 +vn -0.2048 -0.9323 0.2981 +vn -0.2049 -0.9322 0.2982 +vn 0.8864 -0.3956 0.2405 +vn 0.8864 -0.3956 0.2402 +vn 0.4778 0.8719 -0.1074 +vn 0.4773 0.8721 -0.1078 +vn 0.4776 0.8720 -0.1076 +vn -0.3995 0.6311 0.6649 +vn -0.3467 -0.7426 -0.5730 +vn -0.3465 -0.7429 -0.5727 +vn -0.3461 -0.7431 -0.5727 +vn -0.1691 -0.1184 -0.9785 +vn -0.1694 -0.1186 -0.9784 +vn 0.2708 -0.0683 -0.9602 +vn 0.2707 -0.0674 -0.9603 +vn 0.2707 -0.0669 -0.9603 +vn -0.3998 0.8345 0.3792 +vn 0.1266 0.6036 0.7872 +vn 0.1265 0.6039 0.7870 +vn 0.1266 0.6042 0.7867 +vn 0.1664 -0.5314 0.8306 +vn 0.1665 -0.5315 0.8305 +vn 0.1665 -0.5314 0.8306 +vn -0.8545 -0.2002 -0.4793 +vn -0.8544 -0.2002 -0.4795 +vn -0.4601 -0.4463 -0.7676 +vn -0.4608 -0.7294 -0.5056 +vn -0.4606 -0.7291 -0.5062 +vn 0.8490 -0.3875 0.3593 +vn 0.8490 -0.3878 0.3590 +vn 0.8488 -0.3883 0.3589 +vn -0.1838 -0.2954 -0.9375 +vn -0.1845 -0.2963 -0.9371 +vn -0.1825 -0.2948 -0.9380 +vn 0.5954 0.2240 -0.7716 +vn 0.5953 0.2239 -0.7716 +vn 0.5956 0.2241 -0.7714 +vn -0.1457 -0.3104 -0.9394 +vn 0.2250 -0.2042 -0.9527 +vn 0.2251 -0.2041 -0.9527 +vn 0.2249 -0.2043 -0.9527 +vn -0.7373 0.1978 -0.6460 +vn -0.7376 0.1986 -0.6454 +vn -0.7374 0.1984 -0.6457 +vn -0.5859 0.0506 -0.8088 +vn -0.4629 -0.1230 -0.8778 +vn -0.4613 -0.1239 -0.8786 +vn -0.4623 -0.1236 -0.8781 +vn -0.2829 -0.9341 0.2180 +vn -0.2825 -0.9345 0.2167 +vn -0.2826 -0.9344 0.2169 +vn -0.7293 0.5129 0.4528 +vn -0.7831 -0.3644 0.5039 +vn -0.3990 0.3093 -0.8632 +vn -0.3991 0.3090 -0.8633 +vn -0.3996 0.3087 -0.8632 +vn 0.3080 -0.8850 -0.3491 +vn 0.3071 -0.8849 -0.3501 +vn 0.3078 -0.8850 -0.3493 +vn 0.7993 0.0260 0.6003 +vn 0.7992 0.0241 0.6006 +vn 0.7991 0.0275 0.6006 +vn 0.9304 -0.2292 -0.2859 +vn 0.9305 -0.2293 -0.2857 +vn -0.2758 -0.9416 0.1932 +vn -0.2759 -0.9414 0.1940 +vn -0.2759 -0.9416 0.1932 +vn -0.3292 -0.8983 -0.2909 +vn -0.3290 -0.8985 -0.2904 +vn -0.3506 0.8664 -0.3557 +vn 0.3316 -0.4523 0.8279 +vn 0.3839 -0.4088 0.8279 +vn 0.3841 -0.4087 0.8279 +vn 0.3841 -0.4089 0.8278 +vn -0.4330 -0.8351 -0.3393 +vn -0.4312 -0.8363 -0.3386 +vn -0.4323 -0.8355 -0.3392 +vn 0.9060 -0.1981 0.3739 +vn 0.9062 -0.1978 0.3737 +vn 0.9059 -0.1985 0.3740 +vn -0.7366 -0.5746 0.3568 +vn -0.7365 -0.5747 0.3567 +vn -0.7368 -0.5741 0.3571 +vn -0.1198 0.8124 -0.5707 +vn -0.1202 0.8132 -0.5694 +vn -0.1201 0.8127 -0.5702 +vn 0.1772 0.6115 0.7711 +vn 0.4703 0.8824 0.0142 +vn 0.4699 0.8826 0.0140 +vn 0.8939 -0.1628 0.4176 +vn 0.8939 -0.1626 0.4177 +vn -0.3263 0.8090 0.4889 +vn -0.3262 0.8088 0.4894 +vn -0.3264 0.8088 0.4892 +vn -0.3964 0.7141 0.5770 +vn -0.3962 0.7142 0.5770 +vn -0.3960 0.7145 0.5768 +vn -0.1460 0.9882 0.0470 +vn -0.1460 0.9882 0.0469 +vn -0.1459 0.9882 0.0465 +vn -0.1164 0.1567 0.9808 +vn -0.1164 0.1563 0.9808 +vn -0.1164 0.1562 0.9808 +vn 0.3852 -0.6132 -0.6896 +vn 0.6396 -0.5120 0.5734 +vn 0.6402 -0.5102 0.5743 +vn 0.6397 -0.5110 0.5741 +vn 0.6042 -0.5269 -0.5978 +vn 0.6041 -0.5270 -0.5978 +vn 0.6037 -0.5274 -0.5978 +vn 0.0551 -0.2374 -0.9699 +vn 0.0549 -0.2377 -0.9698 +vn 0.0549 -0.9765 0.2086 +vn 0.0551 -0.9765 0.2082 +vn -0.0349 -0.9784 0.2038 +vn -0.0357 -0.9782 0.2048 +vn -0.0355 -0.9782 0.2044 +vn -0.2721 -0.9266 0.2597 +vn -0.2722 -0.9265 0.2599 +vn -0.2720 -0.9267 0.2594 +vn -0.5897 -0.5893 -0.5522 +vn -0.5893 -0.5896 -0.5523 +vn -0.6755 -0.5738 -0.4632 +vn -0.6048 -0.0671 0.7935 +vn -0.6046 -0.0672 0.7937 +vn -0.6047 -0.0670 0.7936 +vn 0.7020 0.5499 0.4525 +vn 0.7035 0.5480 0.4526 +vn 0.7013 0.5515 0.4518 +vn 0.9489 -0.0890 -0.3027 +vn -0.1768 0.9839 0.0259 +vn -0.1771 0.9839 0.0257 +vn -0.6917 0.4717 0.5468 +vn -0.6918 0.4717 0.5467 +vn 0.8099 -0.0685 -0.5826 +vn 0.8100 -0.0685 -0.5825 +vn 0.8101 -0.0685 -0.5822 +vn 0.5665 0.4533 -0.6882 +vn 0.5664 0.4533 -0.6883 +vn 0.2105 0.8822 -0.4211 +vn 0.2104 0.8819 -0.4219 +vn 0.2104 0.8820 -0.4216 +vn 0.8682 -0.4908 0.0734 +vn 0.8683 -0.4907 0.0732 +vn 0.8683 -0.4906 0.0733 +vn -0.2995 -0.9188 0.2573 +vn -0.2994 -0.9185 0.2584 +vn -0.2995 -0.9185 0.2584 +vn 0.2175 0.8708 0.4409 +vn 0.2180 0.8706 0.4410 +vn 0.2931 0.6972 -0.6542 +vn 0.2930 0.6970 -0.6545 +vn 0.2930 0.6974 -0.6541 +vn 0.4623 -0.2950 0.8362 +vn 0.4613 -0.2934 0.8373 +vn 0.4618 -0.2946 0.8366 +vn 0.4060 0.1421 0.9028 +vn 0.4056 0.1412 0.9031 +vn 0.4056 0.1417 0.9030 +vn 0.9938 0.0522 -0.0985 +vn 0.9938 0.0524 -0.0983 +vn 0.9760 0.1577 -0.1498 +vn 0.9760 0.1579 -0.1499 +vn 0.9760 0.1578 -0.1499 +vn 0.6611 -0.4822 -0.5747 +vn 0.6612 -0.4820 -0.5749 +vn 0.6613 -0.4821 -0.5747 +vn -0.1190 -0.0132 -0.9928 +vn -0.1183 -0.0128 -0.9929 +vn -0.1179 -0.0129 -0.9929 +vn -0.8284 0.5040 0.2444 +vn -0.8285 0.5040 0.2443 +vn 0.5266 0.6297 -0.5711 +vn 0.4541 0.7933 0.4056 +vn 0.4536 0.7934 0.4058 +vn 0.2003 0.7180 0.6666 +vn 0.2000 0.7178 0.6669 +vn 0.2002 0.7176 0.6671 +vn -0.3679 0.9299 -0.0010 +vn -0.3680 0.9298 -0.0010 +vn 0.5285 0.1828 0.8290 +vn -0.6092 0.6115 0.5049 +vn -0.6091 0.6118 0.5047 +vn -0.6091 0.6115 0.5051 +vn -0.1373 0.7860 0.6028 +vn -0.1372 0.7860 0.6029 +vn -0.1371 0.7859 0.6029 +vn -0.0026 0.0144 0.9999 +vn -0.6497 0.4560 0.6082 +vn -0.6497 0.4565 0.6079 +vn -0.6495 0.4569 0.6078 +vn -0.9876 -0.0386 0.1521 +vn -0.9876 -0.0385 0.1519 +vn -0.9876 -0.0384 0.1520 +vn 0.3480 -0.9370 -0.0305 +vn 0.3483 -0.9369 -0.0309 +vn 0.3480 -0.9370 -0.0303 +vn 0.6976 0.6526 -0.2956 +vn 0.6975 0.6530 -0.2952 +vn 0.6977 0.6527 -0.2955 +vn -0.4767 0.8442 -0.2452 +vn -0.4765 0.8441 -0.2458 +vn -0.4764 0.8442 -0.2455 +vn 0.5932 -0.7787 -0.2042 +vn 0.5922 -0.7793 -0.2048 +vn 0.5942 -0.7780 -0.2040 +vn -0.4779 -0.5900 -0.6507 +vn -0.4783 -0.5898 -0.6507 +vn 0.9320 0.1041 0.3471 +vn 0.9320 0.1041 0.3472 +vn 0.9321 0.1042 0.3468 +vn -0.6098 -0.4046 -0.6815 +vn -0.6100 -0.4048 -0.6812 +vn -0.6099 -0.4048 -0.6813 +vn -0.3286 -0.8721 -0.3626 +vn -0.3285 -0.8722 -0.3624 +vn -0.0470 0.2678 -0.9623 +vn -0.0487 0.2682 -0.9621 +vn -0.0464 0.2673 -0.9625 +vn -0.8793 -0.4557 0.1385 +vn -0.8793 -0.4557 0.1383 +vn -0.2075 -0.6690 -0.7137 +vn -0.2074 -0.6690 -0.7137 +vn 0.1447 -0.5980 -0.7884 +vn -0.4976 0.7042 -0.5065 +vn -0.4975 0.7040 -0.5069 +vn -0.4974 0.7039 -0.5071 +vn 0.0288 -0.9942 0.1036 +vn 0.0290 -0.9942 0.1035 +vn 0.0291 -0.9942 0.1035 +vn -0.5366 -0.1486 0.8307 +vn -0.5366 -0.1487 0.8306 +vn 0.3839 -0.9154 0.1210 +vn 0.3838 -0.9154 0.1210 +vn 0.3793 -0.8522 -0.3603 +vn 0.3792 -0.8522 -0.3604 +vn 0.3787 -0.8522 -0.3610 +vn -0.0489 -0.9852 -0.1644 +vn -0.0489 -0.9852 -0.1642 +vn -0.0490 -0.9852 -0.1642 +vn 0.2173 -0.7800 0.5868 +vn 0.2193 -0.7812 0.5845 +vn 0.2187 -0.7805 0.5857 +vn 0.4749 0.8609 -0.1823 +vn 0.3140 -0.8190 -0.4802 +vn 0.3140 -0.8191 -0.4801 +vn -0.1913 -0.9685 0.1592 +vn -0.1926 -0.9685 0.1576 +vn -0.1930 -0.9687 0.1563 +vn 0.2296 0.9642 0.1329 +vn -0.8439 0.5068 0.1762 +vn -0.8437 0.5071 0.1759 +vn -0.8437 0.5072 0.1758 +vn -0.2347 0.8530 -0.4661 +vn -0.2347 0.8529 -0.4664 +vn -0.2347 0.8529 -0.4663 +vn 0.4459 -0.0213 -0.8948 +vn 0.4462 -0.0212 -0.8947 +vn 0.4459 -0.0217 -0.8948 +vn 0.2926 0.1490 0.9446 +vn 0.2928 0.1486 0.9445 +vn 0.2933 0.1482 0.9445 +vn 0.7478 0.6526 -0.1218 +vn 0.7477 0.6528 -0.1217 +vn 0.7474 0.6531 -0.1216 +vn -0.3202 0.9389 -0.1260 +vn -0.3206 0.9389 -0.1256 +vn -0.3206 0.9389 -0.1253 +vn 0.0335 -0.9787 0.2024 +vn 0.0338 -0.9788 0.2021 +vn 0.0337 -0.9788 0.2020 +vn 0.1701 0.8693 -0.4641 +vn 0.1680 0.8707 -0.4623 +vn 0.1689 0.8699 -0.4634 +vn -0.3485 -0.2133 -0.9127 +vn -0.3485 -0.2135 -0.9127 +vn -0.3483 -0.2134 -0.9127 +vn -0.2757 -0.9078 0.3161 +vn -0.2754 -0.9078 0.3164 +vn -0.2764 -0.9077 0.3158 +vn 0.1765 -0.4505 0.8752 +vn 0.1760 -0.4510 0.8750 +vn 0.1757 -0.4522 0.8744 +vn 0.6738 -0.4362 0.5964 +vn 0.6739 -0.4363 0.5962 +vn 0.6742 -0.4360 0.5961 +vn -0.5239 0.8415 0.1323 +vn -0.3631 -0.9183 0.1577 +vn -0.3636 -0.9179 0.1587 +vn -0.3639 -0.9178 0.1591 +vn -0.8386 -0.4150 -0.3529 +vn -0.8387 -0.4149 -0.3528 +vn -0.7488 0.2703 -0.6051 +vn -0.7489 0.2703 -0.6050 +vn -0.7488 0.2703 -0.6052 +vn 0.9356 0.0211 0.3525 +vn 0.9357 0.0212 0.3521 +vn 0.9360 0.0218 0.3513 +vn 0.3008 0.9537 0.0071 +vn 0.3006 0.9537 0.0077 +vn 0.2999 0.9539 0.0081 +vn 0.4025 0.5511 0.7310 +vn 0.4016 0.5527 0.7303 +vn 0.4019 0.5519 0.7307 +vn -0.3469 0.6542 0.6721 +vn -0.5878 -0.6453 -0.4880 +vn -0.1080 0.8120 -0.5735 +vn -0.1083 0.8121 -0.5734 +vn -0.2463 0.4576 0.8544 +vn -0.2468 0.4576 0.8543 +vn -0.7218 0.6513 -0.2341 +vn -0.7213 0.6517 -0.2345 +vn -0.7219 0.6514 -0.2338 +vn 0.4365 -0.7343 -0.5199 +vn -0.1610 -0.3486 -0.9233 +vn -0.1610 -0.3487 -0.9233 +vn -0.1609 -0.3487 -0.9233 +vn 0.9184 -0.2184 0.3298 +vn -0.8220 0.5416 -0.1762 +vn -0.8226 0.5405 -0.1766 +vn -0.8225 0.5407 -0.1764 +vn 0.1901 0.2187 0.9571 +vn 0.1901 0.2185 0.9571 +vn 0.1899 0.2187 0.9571 +vn 0.0858 -0.5083 -0.8569 +vn 0.0865 -0.5087 -0.8566 +vn 0.0856 -0.5081 -0.8570 +vn 0.1604 0.9868 -0.0211 +vn 0.1604 0.9868 -0.0216 +vn 0.1600 0.9869 -0.0220 +vn 0.0719 -0.8435 -0.5323 +vn -0.1086 -0.8863 -0.4503 +vn -0.1086 -0.8862 -0.4504 +vn -0.1085 -0.8862 -0.4505 +vn 0.1736 0.5901 0.7884 +vn 0.1730 0.5914 0.7876 +vn 0.1721 0.5920 0.7874 +vn -0.8248 0.5045 0.2554 +vn -0.8248 0.5044 0.2556 +vn -0.8249 0.5042 0.2557 +vn 0.0644 0.9826 0.1743 +vn 0.0649 0.9825 0.1743 +vn 0.4850 -0.7385 -0.4684 +vn 0.4849 -0.7385 -0.4685 +vn 0.1121 -0.9850 0.1315 +vn 0.1121 -0.9849 0.1316 +vn -0.6209 0.2562 0.7408 +vn -0.6209 0.2554 0.7411 +vn -0.6209 0.2558 0.7410 +vn -0.4894 -0.8537 -0.1780 +vn -0.4895 -0.8536 -0.1781 +vn -0.4894 -0.8538 -0.1777 +vn -0.3805 -0.8983 -0.2199 +vn -0.3804 -0.8983 -0.2198 +vn -0.3801 -0.8985 -0.2195 +vn 0.3066 0.7492 -0.5872 +vn 0.3068 0.7492 -0.5870 +vn 0.3067 0.7491 -0.5872 +vn 0.2898 -0.4902 0.8220 +vn 0.2898 -0.4899 0.8222 +vn 0.2899 -0.4896 0.8223 +vn -0.4661 -0.6868 -0.5577 +vn -0.4661 -0.6873 -0.5572 +vn -0.4660 -0.6875 -0.5569 +vn 0.2644 -0.1838 0.9467 +vn 0.2645 -0.1838 0.9467 +vn 0.2643 -0.1837 0.9468 +vn 0.5368 0.5489 -0.6408 +vn 0.5384 0.5488 -0.6395 +vn 0.5374 0.5490 -0.6401 +vn 0.7934 0.6042 0.0740 +vn 0.7932 0.6044 0.0741 +vn 0.7935 0.6041 0.0739 +vn -0.2262 -0.9466 -0.2298 +vn 0.2069 -0.2098 -0.9556 +vn 0.2064 -0.2094 -0.9558 +vn 0.2067 -0.2097 -0.9557 +vn -0.8840 0.3166 0.3440 +vn -0.8840 0.3165 0.3441 +vn 0.1350 -0.1942 -0.9716 +vn 0.1338 -0.1948 -0.9717 +vn 0.1345 -0.1944 -0.9717 +vn 0.1184 -0.9821 0.1468 +vn 0.1170 -0.9824 0.1459 +vn 0.1166 -0.9825 0.1450 +vn 0.3398 0.5287 -0.7778 +vn 0.3389 0.5286 -0.7783 +vn 0.3380 0.5282 -0.7789 +vn 0.1334 -0.5138 0.8475 +vn 0.1333 -0.5139 0.8474 +vn 0.1333 -0.5141 0.8473 +vn -0.3920 0.9038 -0.1716 +vn -0.3919 0.9038 -0.1717 +vn 0.5140 -0.6788 0.5244 +vn 0.5148 -0.6783 0.5243 +vn 0.5146 -0.6786 0.5241 +vn 0.5231 0.6706 0.5260 +vn 0.5229 0.6707 0.5260 +vn 0.5225 0.6708 0.5263 +vn -0.1138 -0.9681 0.2232 +vn 0.1841 -0.9750 0.1248 +vn 0.1848 -0.9748 0.1252 +vn 0.1851 -0.9747 0.1253 +vn -0.0816 -0.9956 -0.0463 +vn -0.0815 -0.9956 -0.0462 +vn -0.0816 -0.9956 -0.0458 +vn 0.9417 -0.2157 0.2582 +vn 0.9418 -0.2154 0.2582 +vn 0.1098 0.5948 -0.7963 +vn 0.1093 0.5950 -0.7963 +vn 0.1099 0.5950 -0.7962 +vn 0.6958 0.0895 0.7126 +vn 0.6960 0.0904 0.7123 +vn 0.6960 0.0900 0.7124 +vn -0.6162 -0.0951 -0.7818 +vn -0.6163 -0.0948 -0.7818 +vn -0.6161 -0.0952 -0.7819 +vn -0.5984 -0.6471 -0.4724 +vn -0.5986 -0.6467 -0.4727 +vn -0.5976 -0.6481 -0.4720 +vn 0.6148 -0.6870 0.3873 +vn 0.6140 -0.6879 0.3869 +vn -0.4828 -0.7535 0.4463 +vn -0.4832 -0.7529 0.4469 +vn -0.4841 -0.7523 0.4469 +vn 0.2557 -0.9367 0.2394 +vn 0.2565 -0.9368 0.2380 +vn 0.2548 -0.9368 0.2397 +vn 0.5937 -0.7604 -0.2633 +vn 0.5934 -0.7604 -0.2638 +vn 0.1869 0.9758 0.1134 +vn 0.6890 -0.7079 0.1556 +vn -0.7123 -0.5547 -0.4301 +vn -0.7120 -0.5551 -0.4300 +vn -0.7121 -0.5549 -0.4302 +vn -0.7224 -0.5933 -0.3552 +vn -0.7223 -0.5935 -0.3550 +vn -0.7230 -0.5922 -0.3558 +vn 0.3552 -0.1158 -0.9276 +vn 0.3551 -0.1160 -0.9276 +vn 0.3327 -0.8609 0.3850 +vn 0.3328 -0.8608 0.3851 +vn 0.3610 0.9130 0.1899 +vn 0.3607 0.9131 0.1902 +vn 0.3612 0.9131 0.1890 +vn -0.3864 0.8382 -0.3850 +vn -0.3863 0.8380 -0.3854 +vn -0.3864 0.8381 -0.3851 +vn -0.9775 -0.1879 -0.0958 +vn 0.0232 0.7992 0.6006 +vn 0.0231 0.7995 0.6002 +vn -0.8442 -0.4041 -0.3521 +vn -0.8443 -0.4041 -0.3519 +vn -0.2215 -0.5039 -0.8349 +vn -0.2223 -0.5030 -0.8352 +vn -0.2220 -0.5034 -0.8350 +vn -0.7091 0.6653 -0.2336 +vn -0.7092 0.6650 -0.2342 +vn -0.7091 0.6655 -0.2329 +vn -0.3651 -0.7014 0.6122 +vn -0.3649 -0.7021 0.6115 +vn -0.3641 -0.7008 0.6134 +vn -0.1363 0.3717 -0.9183 +vn -0.1359 0.3710 -0.9186 +vn -0.1360 0.3713 -0.9185 +vn -0.9167 -0.1424 0.3733 +vn -0.9167 -0.1426 0.3733 +vn -0.9168 -0.1421 0.3732 +vn 0.5433 -0.6352 -0.5490 +vn 0.5428 -0.6343 -0.5505 +vn 0.5432 -0.6345 -0.5498 +vn -0.6478 0.3855 -0.6571 +vn -0.6477 0.3854 -0.6572 +vn -0.6475 0.3855 -0.6574 +vn -0.3161 -0.9243 -0.2140 +vn -0.3178 -0.9234 -0.2153 +vn -0.3168 -0.9238 -0.2151 +vn -0.9467 0.1632 -0.2778 +vn -0.9466 0.1633 -0.2779 +vn -0.1395 -0.9433 0.3013 +vn -0.1402 -0.9432 0.3012 +vn -0.1404 -0.9432 0.3012 +vn -0.1465 -0.9441 0.2952 +vn -0.1416 -0.9448 0.2954 +vn -0.1445 -0.9447 0.2944 +vn -0.1222 0.8639 -0.4886 +vn -0.1223 0.8636 -0.4891 +vn -0.1219 0.8641 -0.4884 +vn 0.8588 0.2944 0.4192 +vn 0.8589 0.2947 0.4189 +vn 0.8589 0.2946 0.4190 +vn 0.3285 -0.4891 0.8080 +vn 0.1255 0.6752 0.7269 +vn 0.1249 0.6752 0.7270 +vn -0.1537 0.9373 -0.3127 +vn -0.1537 0.9373 -0.3128 +vn -0.1536 0.9373 -0.3129 +vn 0.4152 -0.1186 0.9020 +vn 0.4147 -0.1188 0.9022 +vn 0.4153 -0.1188 0.9019 +vn -0.6301 -0.5313 -0.5663 +vn -0.6308 -0.5306 -0.5662 +vn -0.6304 -0.5308 -0.5664 +vn 0.3998 0.8537 -0.3336 +vn 0.8791 -0.3855 0.2803 +vn 0.8793 -0.3852 0.2801 +vn 0.1610 0.3025 -0.9395 +vn 0.1611 0.3027 -0.9394 +vn 0.1609 0.3025 -0.9395 +vn 0.2637 0.7893 -0.5546 +vn 0.2636 0.7893 -0.5546 +vn 0.2637 0.7892 -0.5546 +vn 0.0517 -0.1545 0.9866 +vn 0.0518 -0.1543 0.9867 +vn 0.0518 -0.1547 0.9866 +vn -0.7142 0.2212 -0.6640 +vn -0.7142 0.2212 -0.6641 +vn 0.6217 0.4471 -0.6430 +vn 0.6217 0.4473 -0.6430 +vn 0.6219 0.4473 -0.6428 +vn -0.2308 -0.7077 -0.6678 +vn -0.0573 -0.3744 -0.9255 +vn -0.0571 -0.3744 -0.9255 +vn 0.8914 -0.0577 -0.4496 +vn 0.8914 -0.0583 -0.4495 +vn 0.8914 -0.0584 -0.4495 +vn 0.4917 0.7829 0.3812 +vn 0.4936 0.7816 0.3813 +vn 0.4926 0.7822 0.3815 +vn 0.0169 -0.3159 0.9486 +vn 0.1261 -0.4707 0.8732 +vn 0.1272 -0.4708 0.8730 +vn 0.1266 -0.4705 0.8733 +vn 0.1969 -0.9801 0.0263 +vn 0.1963 -0.9802 0.0265 +vn 0.1965 -0.9801 0.0265 +vn 0.3506 0.9322 -0.0899 +vn 0.1712 -0.2650 -0.9489 +vn 0.1708 -0.2653 -0.9489 +vn 0.1709 -0.2656 -0.9488 +vn -0.0075 0.9149 -0.4036 +vn -0.1968 -0.9023 -0.3836 +vn -0.1967 -0.9023 -0.3835 +vn -0.1966 -0.9023 -0.3836 +vn -0.0725 -0.6344 -0.7696 +vn -0.0725 -0.6343 -0.7697 +vn -0.0726 -0.6344 -0.7696 +vn 0.2304 -0.5313 0.8153 +vn 0.2306 -0.5310 0.8154 +vn 0.2307 -0.5306 0.8156 +vn 0.0435 0.1738 0.9838 +vn 0.0436 0.1739 0.9838 +vn -0.4397 -0.2407 0.8653 +vn -0.4405 -0.2400 0.8651 +vn -0.4396 -0.2408 0.8653 +vn 0.5349 0.1012 0.8388 +vn 0.5351 0.1015 0.8387 +vn 0.0952 0.9885 -0.1172 +vn 0.6304 0.7548 -0.1814 +vn 0.6303 0.7549 -0.1813 +vn 0.6303 0.7548 -0.1817 +vn -0.2298 0.0510 -0.9719 +vn -0.2299 0.0510 -0.9719 +vn -0.2297 0.0509 -0.9719 +vn -0.4208 -0.8831 -0.2076 +vn -0.4210 -0.8830 -0.2074 +vn -0.4211 -0.8830 -0.2073 +vn 0.1203 0.7324 -0.6702 +vn 0.1201 0.7324 -0.6702 +vn 0.1198 0.7325 -0.6702 +vn 0.5334 0.3200 0.7830 +vn 0.5328 0.3195 0.7836 +vn 0.5331 0.3197 0.7833 +vn -0.9113 -0.2105 -0.3539 +vn -0.9112 -0.2103 -0.3543 +vn -0.9113 -0.2106 -0.3538 +vn -0.3132 -0.7274 0.6106 +vn -0.3127 -0.7274 0.6109 +vn -0.3126 -0.7273 0.6110 +vn -0.8843 -0.4520 0.1173 +vn -0.8842 -0.4521 0.1175 +vn -0.8841 -0.4523 0.1177 +vn -0.8115 0.3745 -0.4486 +vn -0.8112 0.3747 -0.4490 +vn -0.8114 0.3746 -0.4486 +vn 0.7677 -0.5054 0.3940 +vn 0.7676 -0.5055 0.3940 +vn -0.5597 0.5671 -0.6043 +vn -0.5596 0.5671 -0.6043 +vn -0.5592 0.5667 -0.6051 +vn 0.2193 -0.9633 0.1546 +vn 0.2189 -0.9634 0.1545 +vn 0.2198 -0.9632 0.1547 +vn 0.0119 -0.0055 0.9999 +vn -0.2229 0.1970 0.9547 +vn -0.2228 0.1966 0.9548 +vn -0.2229 0.1972 0.9547 +vn 0.2088 -0.0986 -0.9730 +vn 0.2093 -0.0991 -0.9728 +vn 0.2091 -0.0989 -0.9729 +vn 0.6452 -0.0918 0.7585 +vn 0.6452 -0.0913 0.7586 +vn 0.6452 -0.0915 0.7585 +vn 0.1568 -0.9853 0.0680 +vn 0.1585 -0.9851 0.0673 +vn 0.1548 -0.9856 0.0673 +vn -0.3190 0.2475 -0.9149 +vn -0.4952 0.8646 -0.0853 +vn -0.4950 0.8646 -0.0862 +vn -0.4951 0.8646 -0.0856 +vn 0.3451 -0.3537 0.8694 +vn 0.3450 -0.3538 0.8694 +vn 0.3452 -0.3541 0.8692 +vn 0.5509 0.1879 -0.8132 +vn 0.5508 0.1881 -0.8132 +vn -0.0326 -0.1558 0.9872 +vn -0.0327 -0.1557 0.9873 +vn -0.0330 -0.1557 0.9872 +vn -0.9839 0.1537 0.0915 +vn -0.9839 0.1536 0.0917 +vn -0.9839 0.1535 0.0918 +vn -0.3561 -0.9305 0.0863 +vn -0.3566 -0.9303 0.0856 +vn -0.3549 -0.9309 0.0870 +vn 0.7620 -0.6473 -0.0192 +vn 0.6239 -0.7354 -0.2645 +vn 0.6235 -0.7361 -0.2634 +vn 0.6236 -0.7358 -0.2640 +vn 0.3657 0.8917 -0.2667 +vn 0.3657 0.8918 -0.2663 +vn 0.3656 0.8920 -0.2660 +vn -0.7282 0.6853 0.0008 +vn -0.7286 0.6849 0.0011 +vn -0.7285 0.6851 0.0009 +vn -0.6306 0.5422 -0.5552 +vn -0.6306 0.5423 -0.5552 +vn -0.2800 0.5326 0.7987 +vn -0.8178 -0.2590 -0.5139 +vn -0.8177 -0.2587 -0.5142 +vn -0.8178 -0.2586 -0.5142 +vn 0.4557 0.8864 -0.0817 +vn 0.4574 0.8853 -0.0837 +vn 0.4560 0.8861 -0.0825 +vn 0.3550 -0.0933 -0.9302 +vn 0.3558 -0.0925 -0.9300 +vn 0.3554 -0.0928 -0.9301 +vn 0.7024 0.1022 0.7044 +vn 0.7029 0.1014 0.7040 +vn 0.7022 0.1026 0.7046 +vn -0.4293 -0.8856 0.1772 +vn -0.4293 -0.8857 0.1770 +vn -0.4293 -0.8856 0.1773 +vn 0.6544 -0.7517 -0.0819 +vn 0.6547 -0.7515 -0.0812 +vn 0.6550 -0.7513 -0.0808 +vn 0.1160 0.8201 -0.5603 +vn 0.1161 0.8201 -0.5603 +vn 0.1156 0.8202 -0.5603 +vn -0.7278 0.0921 -0.6796 +vn -0.7277 0.0918 -0.6797 +vn -0.7279 0.0921 -0.6795 +vn 0.2691 -0.2895 0.9186 +vn 0.2696 -0.2880 0.9189 +vn 0.2695 -0.2870 0.9192 +vn 0.5174 0.1284 0.8460 +vn 0.5176 0.1274 0.8461 +vn 0.5181 0.1264 0.8459 +vn 0.9324 0.3138 0.1791 +vn 0.9323 0.3135 0.1805 +vn 0.9324 0.3135 0.1798 +vn 0.6930 -0.2626 -0.6714 +vn 0.6932 -0.2627 -0.6712 +vn 0.8899 -0.1194 -0.4402 +vn 0.8897 -0.1194 -0.4406 +vn 0.8896 -0.1194 -0.4408 +vn -0.0462 -0.7136 -0.6991 +vn -0.0459 -0.7133 -0.6993 +vn -0.0457 -0.7132 -0.6995 +vn 0.4482 0.7126 0.5397 +vn 0.4474 0.7126 0.5404 +vn 0.4479 0.7126 0.5399 +vn -0.4125 0.3670 0.8338 +vn -0.4130 0.3668 0.8336 +vn -0.4130 0.3666 0.8337 +vn -0.4493 -0.8899 -0.0788 +vn -0.4494 -0.8899 -0.0788 +vn -0.2431 0.9692 0.0391 +vn 0.7242 0.2657 -0.6363 +vn 0.7242 0.2656 -0.6363 +vn -0.5488 0.1426 -0.8237 +vn -0.5489 0.1429 -0.8235 +vn -0.5487 0.1425 -0.8238 +vn -0.5854 -0.7889 -0.1869 +vn -0.5862 -0.7880 -0.1884 +vn 0.0153 0.9144 -0.4046 +vn 0.0153 0.9143 -0.4047 +vn -0.3581 -0.8935 0.2708 +vn -0.3585 -0.8934 0.2706 +vn -0.3589 -0.8932 0.2707 +vn -0.4100 -0.9010 0.1419 +vn -0.4097 -0.9010 0.1428 +vn -0.8867 0.4018 -0.2287 +vn 0.0443 -0.7630 0.6448 +vn 0.6992 0.6612 0.2721 +vn 0.6991 0.6612 0.2720 +vn 0.6489 0.1310 0.7495 +vn 0.6485 0.1294 0.7501 +vn 0.6489 0.1316 0.7494 +vn -0.9589 0.1893 0.2112 +vn 0.1760 0.7859 -0.5928 +vn 0.1760 0.7860 -0.5926 +vn 0.1760 0.7862 -0.5924 +vn -0.8152 0.2278 -0.5325 +vn -0.8153 0.2279 -0.5323 +vn -0.8152 0.2277 -0.5326 +vn -0.0909 0.9828 0.1609 +vn -0.0912 0.9828 0.1607 +vn 0.1975 -0.9801 0.0202 +vn 0.1977 -0.9801 0.0200 +vn 0.1976 -0.9801 0.0201 +vn -0.3702 -0.9128 -0.1726 +vn -0.3686 -0.9137 -0.1709 +vn -0.3693 -0.9132 -0.1720 +vn -0.2576 0.8138 -0.5209 +vn -0.2530 0.8149 -0.5215 +vn -0.2559 0.8145 -0.5207 +vn -0.1476 -0.7627 0.6297 +vn -0.1473 -0.7628 0.6297 +vn -0.1470 -0.7628 0.6297 +vn 0.1039 -0.4550 0.8844 +vn 0.1044 -0.4551 0.8843 +vn 0.1046 -0.4551 0.8843 +vn 0.2943 -0.9443 -0.1471 +vn 0.5677 0.0942 0.8178 +vn 0.5672 0.0935 0.8183 +vn 0.5665 0.0921 0.8189 +vn -0.6259 0.7736 0.0994 +vn -0.6262 0.7734 0.0992 +vn -0.6257 0.7737 0.0995 +vn 0.1336 0.8341 -0.5351 +vn 0.1340 0.8339 -0.5354 +vn 0.1338 0.8340 -0.5353 +vn -0.1397 0.9901 0.0149 +vn -0.1409 0.9899 0.0145 +vn -0.1384 0.9902 0.0160 +vn -0.1414 0.1781 -0.9738 +vn -0.1418 0.1780 -0.9738 +vn -0.1415 0.1781 -0.9738 +vn -0.7161 0.6181 -0.3243 +vn -0.7159 0.6183 -0.3244 +vn -0.7160 0.6182 -0.3243 +vn 0.0587 0.2752 -0.9596 +vn 0.0584 0.2752 -0.9596 +vn 0.0589 0.2750 -0.9596 +vn -0.5381 0.8114 -0.2283 +vn -0.5381 0.8115 -0.2279 +vn -0.5381 0.8114 -0.2282 +vn 0.1759 -0.7606 0.6249 +vn 0.1758 -0.7606 0.6250 +vn 0.1759 -0.7607 0.6248 +vn -0.1857 -0.9177 0.3512 +vn -0.1859 -0.9176 0.3513 +vn -0.1861 -0.9175 0.3514 +vn 0.2715 -0.8909 0.3641 +vn 0.2715 -0.8911 0.3636 +vn 0.2709 -0.8910 0.3644 +vn 0.4499 -0.8076 0.3811 +vn 0.4497 -0.8077 0.3812 +vn 0.2246 -0.5005 -0.8361 +vn 0.2244 -0.5008 -0.8360 +vn 0.0128 -0.2290 -0.9733 +vn 0.0129 -0.2289 -0.9734 +vn 0.4443 -0.8094 0.3841 +vn 0.4446 -0.8094 0.3837 +vn 0.4446 -0.8094 0.3838 +vn 0.4616 0.8856 0.0503 +vn 0.3538 -0.9081 0.2242 +vn 0.3539 -0.9080 0.2243 +vn 0.3538 -0.9080 0.2243 +vn 0.0518 0.4325 0.9002 +vn 0.0518 0.4328 0.9000 +vn 0.0518 0.4327 0.9001 +vn 0.4271 -0.8953 0.1266 +vn 0.4267 -0.8954 0.1273 +vn 0.4272 -0.8953 0.1263 +vn 0.0564 -0.9874 -0.1478 +vn 0.0558 -0.9874 -0.1479 +vn 0.0561 -0.9874 -0.1477 +vn -0.0819 -0.9701 -0.2286 +vn -0.0821 -0.9700 -0.2288 +vn -0.0818 -0.9701 -0.2285 +vn -0.9412 -0.2976 -0.1597 +vn -0.9412 -0.2977 -0.1595 +vn -0.5003 0.5022 0.7054 +vn -0.5001 0.5020 0.7056 +vn -0.0889 0.9631 -0.2540 +vn -0.0886 0.9631 -0.2540 +vn -0.1811 0.8907 0.4170 +vn -0.1812 0.8907 0.4170 +vn -0.1812 0.8906 0.4170 +vn -0.2890 0.4481 0.8460 +vn -0.2889 0.4487 0.8457 +vn -0.2889 0.4484 0.8459 +vn 0.2158 -0.9761 -0.0270 +vn 0.2151 -0.9762 -0.0280 +vn 0.2149 -0.9762 -0.0288 +vn 0.4442 0.8957 0.0200 +vn 0.4438 0.8959 0.0201 +vn 0.4446 0.8955 0.0199 +vn 0.1298 -0.6765 -0.7249 +vn 0.1314 -0.6793 -0.7220 +vn 0.1299 -0.6781 -0.7234 +vn 0.1048 -0.6791 -0.7265 +vn 0.1049 -0.6791 -0.7266 +vn 0.1047 -0.6792 -0.7265 +vn 0.3552 -0.4866 -0.7982 +vn 0.3562 -0.4861 -0.7980 +vn 0.3560 -0.4863 -0.7980 +vn 0.0572 0.3648 0.9293 +vn 0.0569 0.3647 0.9294 +vn -0.7688 0.3225 0.5522 +vn -0.7669 0.3195 0.5565 +vn -0.7634 0.3195 0.5613 +vn -0.1453 0.9176 -0.3700 +vn -0.1458 0.9176 -0.3699 +vn -0.1456 0.9176 -0.3699 +vn -0.3242 0.0719 -0.9433 +vn -0.3243 0.0718 -0.9432 +vn 0.9212 0.2149 -0.3243 +vn -0.7288 -0.1077 -0.6762 +vn -0.7293 -0.1084 -0.6755 +vn 0.6114 -0.3562 -0.7066 +vn 0.6113 -0.3567 -0.7065 +vn 0.6113 -0.3566 -0.7065 +vn -0.4849 -0.8611 0.1529 +vn -0.4841 -0.8617 0.1520 +vn -0.4846 -0.8613 0.1524 +vn -0.5198 -0.8461 0.1179 +vn -0.5197 -0.8462 0.1177 +vn 0.5988 -0.5021 -0.6240 +vn 0.5986 -0.5021 -0.6242 +vn 0.5990 -0.5018 -0.6240 +vn 0.8995 -0.4322 -0.0638 +vn 0.8992 -0.4328 -0.0633 +vn 0.8997 -0.4317 -0.0646 +vn -0.5558 -0.4184 -0.7183 +vn -0.5558 -0.4186 -0.7182 +vn -0.5557 -0.4180 -0.7187 +vn 0.3339 -0.4609 -0.8222 +vn 0.3335 -0.4610 -0.8224 +vn 0.3335 -0.4611 -0.8223 +vn 0.1316 0.6100 0.7814 +vn 0.1320 0.6102 0.7812 +vn 0.0491 -0.3577 -0.9325 +vn 0.0485 -0.3581 -0.9324 +vn 0.0489 -0.3579 -0.9325 +vn 0.2448 0.6764 -0.6946 +vn 0.2448 0.6762 -0.6949 +vn 0.2448 0.6761 -0.6950 +vn -0.0243 0.9853 -0.1690 +vn -0.0242 0.9854 -0.1688 +vn -0.0243 0.9853 -0.1691 +vn -0.1408 -0.1405 0.9800 +vn -0.2971 -0.8990 -0.3218 +vn -0.2953 -0.8995 -0.3220 +vn -0.2988 -0.8989 -0.3206 +vn -0.3621 0.8572 -0.3662 +vn -0.3622 0.8571 -0.3664 +vn -0.9981 -0.0449 0.0411 +vn 0.0716 0.8823 0.4652 +vn 0.0715 0.8823 0.4652 +vn 0.2656 -0.5993 0.7552 +vn 0.2667 -0.5997 0.7545 +vn 0.2664 -0.5992 0.7550 +vn 0.7233 0.6705 0.1652 +vn 0.7233 0.6708 0.1640 +vn 0.7231 0.6712 0.1631 +vn -0.4248 -0.8486 -0.3154 +vn -0.4247 -0.8486 -0.3154 +vn -0.6679 -0.0261 -0.7438 +vn -0.6680 -0.0263 -0.7437 +vn -0.6683 -0.0267 -0.7434 +vn -0.1533 0.9808 0.1202 +vn 0.2989 0.1757 -0.9380 +vn -0.5816 -0.8001 -0.1469 +vn -0.5804 -0.8009 -0.1470 +vn -0.5809 -0.8006 -0.1468 +vn -0.1969 -0.7104 0.6757 +vn -0.1971 -0.7101 0.6759 +vn -0.1970 -0.7102 0.6759 +vn -0.5172 -0.0993 0.8501 +vn -0.5171 -0.0991 0.8502 +vn -0.5170 -0.0990 0.8503 +vn -0.1105 -0.3388 -0.9343 +vn -0.1106 -0.3386 -0.9344 +vn -0.1106 -0.3390 -0.9343 +vn 0.1340 0.9675 -0.2145 +vn 0.1342 0.9676 -0.2138 +vn 0.1345 0.9677 -0.2132 +vn 0.6194 0.4839 -0.6182 +vn 0.6192 0.4840 -0.6183 +vn -0.8296 -0.5549 -0.0615 +vn -0.8297 -0.5548 -0.0616 +vn -0.0975 -0.6450 -0.7579 +vn -0.0977 -0.6450 -0.7579 +vn -0.0977 -0.6449 -0.7580 +vn -0.1966 0.9719 0.1292 +vn -0.1969 0.9719 0.1291 +vn -0.1968 0.9720 0.1288 +vn 0.0573 -0.7042 -0.7077 +vn 0.0576 -0.7042 -0.7077 +vn -0.6955 0.5096 -0.5066 +vn -0.6954 0.5097 -0.5065 +vn -0.6953 0.5098 -0.5065 +vn -0.6217 0.5681 -0.5392 +vn -0.6219 0.5678 -0.5393 +vn -0.6221 0.5677 -0.5392 +vn 0.1994 0.9639 -0.1767 +vn 0.1996 0.9639 -0.1764 +vn 0.1993 0.9638 -0.1770 +vn 0.2551 -0.4737 0.8430 +vn 0.2551 -0.4737 0.8429 +vn -0.4228 -0.8971 0.1283 +vn -0.4230 -0.8970 0.1281 +vn -0.4228 -0.8971 0.1280 +vn 0.5988 0.8007 -0.0164 +vn 0.5987 0.8008 -0.0164 +vn 0.0658 0.9639 -0.2579 +vn -0.1409 0.0041 -0.9900 +vn -0.1410 0.0040 -0.9900 +vn -0.1415 0.0039 -0.9899 +vn 0.2795 0.6328 -0.7221 +vn 0.2793 0.6328 -0.7222 +vn 0.2800 0.6330 -0.7218 +vn 0.1780 -0.7610 0.6238 +vn 0.1779 -0.7611 0.6237 +vn 0.0094 0.7234 -0.6904 +vn 0.0096 0.7235 -0.6903 +vn -0.1246 0.5008 -0.8565 +vn -0.1238 0.5021 -0.8559 +vn -0.1235 0.5034 -0.8552 +vn -0.3652 -0.8485 -0.3830 +vn -0.3651 -0.8487 -0.3827 +vn -0.3651 -0.8486 -0.3829 +vn -0.0114 -0.9184 -0.3955 +vn -0.0113 -0.9183 -0.3957 +vn -0.0112 -0.9182 -0.3959 +vn 0.0418 -0.9876 -0.1515 +vn 0.0421 -0.9876 -0.1515 +vn -0.5676 0.6927 0.4450 +vn -0.5679 0.6922 0.4453 +vn -0.5677 0.6925 0.4451 +vn -0.0821 -0.8907 -0.4470 +vn -0.0825 -0.8908 -0.4469 +vn -0.1808 -0.9296 -0.3212 +vn -0.1807 -0.9296 -0.3212 +vn -0.4138 -0.9086 0.0560 +vn -0.4139 -0.9086 0.0562 +vn -0.4140 -0.9086 0.0561 +vn -0.3074 -0.9366 -0.1683 +vn -0.3070 -0.9367 -0.1686 +vn -0.3071 -0.9366 -0.1685 +vn -0.2677 -0.9564 -0.1169 +vn -0.2681 -0.9562 -0.1172 +vn -0.2675 -0.9564 -0.1172 +vn -0.7295 -0.1624 0.6644 +vn -0.7296 -0.1624 0.6643 +vn 0.7467 0.0200 -0.6649 +vn 0.7469 0.0208 -0.6646 +vn 0.7471 0.0211 -0.6644 +vn 0.6864 -0.7258 -0.0462 +vn 0.6863 -0.7259 -0.0461 +vn 0.6868 -0.7254 -0.0465 +vn -0.4655 0.3285 0.8218 +vn 0.4938 0.7708 -0.4026 +vn 0.4940 0.7706 -0.4026 +vn 0.4939 0.7705 -0.4030 +vn -0.9451 0.0018 -0.3268 +vn -0.9453 0.0029 -0.3263 +vn -0.9453 0.0028 -0.3263 +vn 0.3955 -0.7247 -0.5642 +vn 0.3952 -0.7249 -0.5642 +vn 0.3954 -0.7248 -0.5642 +vn -0.5852 -0.7114 0.3892 +vn -0.5854 -0.7113 0.3890 +vn -0.5852 -0.7114 0.3891 +vn 0.8183 0.3041 0.4877 +vn 0.8977 -0.4378 0.0488 +vn 0.8978 -0.4377 0.0488 +vn 0.4966 -0.2369 -0.8350 +vn 0.4966 -0.2368 -0.8351 +vn 0.4962 -0.2372 -0.8352 +vn 0.2210 -0.8129 0.5388 +vn 0.2210 -0.8128 0.5390 +vn 0.2209 -0.8132 0.5384 +vn 0.7252 0.6498 -0.2278 +vn 0.7252 0.6499 -0.2273 +vn 0.7250 0.6504 -0.2267 +vn -0.4545 -0.7827 -0.4253 +vn -0.4555 -0.7821 -0.4252 +vn -0.4548 -0.7825 -0.4254 +vn 0.7168 -0.6539 -0.2421 +vn -0.2559 -0.6448 0.7202 +vn -0.2559 -0.6453 0.7198 +vn -0.2557 -0.6450 0.7201 +vn -0.6513 -0.6125 -0.4479 +vn -0.6512 -0.6125 -0.4480 +vn 0.0500 0.7893 -0.6120 +vn 0.3184 0.0771 -0.9448 +vn 0.3183 0.0770 -0.9449 +vn -0.1351 -0.2582 0.9566 +vn -0.1352 -0.2582 0.9566 +vn 0.7547 0.5577 0.3456 +vn 0.7547 0.5578 0.3455 +vn -0.2148 -0.3315 0.9187 +vn 0.5557 0.6095 0.5655 +vn 0.5558 0.6097 0.5652 +vn 0.5555 0.6092 0.5660 +vn -0.3421 -0.9388 -0.0407 +vn -0.3422 -0.9387 -0.0406 +vn -0.3424 -0.9387 -0.0405 +vn -0.0448 0.4872 0.8722 +vn -0.0447 0.4871 0.8722 +vn 0.6915 -0.2548 -0.6760 +vn 0.6913 -0.2553 -0.6760 +vn 0.6914 -0.2551 -0.6759 +vn -0.1669 -0.8979 -0.4073 +vn -0.1670 -0.8979 -0.4073 +vn 0.0242 -0.5986 -0.8007 +vn 0.0238 -0.5980 -0.8011 +vn 0.0247 -0.5990 -0.8004 +vn -0.1375 -0.9430 0.3030 +vn -0.1386 -0.9428 0.3031 +vn -0.1376 -0.9430 0.3031 +vn 0.0750 0.4016 0.9128 +vn 0.0751 0.4017 0.9127 +vn 0.0748 0.4013 0.9129 +vn -0.4286 0.7759 -0.4630 +vn -0.4287 0.7759 -0.4628 +vn -0.4286 0.7762 -0.4625 +vn -0.9456 -0.2133 0.2455 +vn -0.9456 -0.2131 0.2459 +vn -0.9455 -0.2131 0.2462 +vn 0.3907 -0.0926 -0.9158 +vn 0.3911 -0.0927 -0.9157 +vn 0.3912 -0.0927 -0.9156 +vn 0.3732 -0.5495 0.7475 +vn 0.3728 -0.5499 0.7474 +vn -0.4139 -0.4027 -0.8164 +vn -0.4144 -0.4021 -0.8164 +vn -0.4148 -0.4019 -0.8164 +vn 0.6431 -0.1705 0.7466 +vn 0.6428 -0.1709 0.7467 +vn -0.9749 0.2207 0.0279 +vn -0.9749 0.2204 0.0306 +vn -0.9750 0.2204 0.0289 +vn 0.2047 -0.0159 0.9787 +vn 0.2047 -0.0158 0.9787 +vn 0.2047 -0.0160 0.9787 +vn 0.1433 0.8724 0.4673 +vn 0.1432 0.8722 0.4677 +vn 0.1431 0.8722 0.4678 +vn 0.4960 0.8662 -0.0603 +vn 0.4963 0.8660 -0.0603 +vn 0.4963 0.8661 -0.0603 +vn -0.9269 -0.0600 -0.3704 +vn -0.9269 -0.0599 -0.3705 +vn -0.7232 -0.1567 -0.6727 +vn -0.7231 -0.1566 -0.6727 +vn -0.2131 -0.9219 0.3235 +vn -0.2116 -0.9223 0.3234 +vn -0.2126 -0.9221 0.3234 +vn -0.7952 0.4201 -0.4372 +vn -0.7944 0.4211 -0.4378 +vn -0.7933 0.4216 -0.4393 +vn -0.0058 0.3021 0.9533 +vn -0.0063 0.3022 0.9532 +vn -0.0067 0.3022 0.9532 +vn 0.0323 -0.7588 0.6505 +vn 0.0326 -0.7586 0.6507 +vn 0.0326 -0.7587 0.6507 +vn 0.0363 0.9977 -0.0579 +vn 0.0372 0.9976 -0.0578 +vn 0.0353 0.9977 -0.0584 +vn -0.3480 -0.9231 0.1636 +vn -0.3479 -0.9232 0.1635 +vn -0.3482 -0.9230 0.1635 +vn -0.3619 -0.9244 0.1208 +vn -0.3616 -0.9245 0.1206 +vn -0.3621 -0.9243 0.1209 +vn 0.3002 0.7672 -0.5668 +vn 0.3002 0.7673 -0.5667 +vn 0.5137 0.8113 -0.2793 +vn 0.9305 0.3568 -0.0823 +vn 0.9304 0.3572 -0.0824 +vn 0.9439 -0.2498 0.2159 +vn 0.9433 -0.2509 0.2175 +vn 0.9427 -0.2521 0.2184 +vn 0.2850 -0.8443 -0.4538 +vn 0.2848 -0.8444 -0.4538 +vn -0.0476 -0.7918 -0.6089 +vn -0.0482 -0.7911 -0.6097 +vn -0.0466 -0.7922 -0.6085 +vn 0.4186 0.9078 -0.0252 +vn -0.4190 -0.9058 -0.0626 +vn -0.5824 0.6152 -0.5313 +vn 0.9720 0.2048 0.1151 +vn 0.9720 0.2046 0.1156 +vn 0.9720 0.2048 0.1154 +vn -0.2296 0.8814 -0.4127 +vn -0.2299 0.8820 -0.4114 +vn -0.2294 0.8827 -0.4101 +vn -0.5238 -0.6245 -0.5793 +vn -0.5240 -0.6244 -0.5793 +vn -0.5245 -0.6241 -0.5791 +vn 0.5062 0.0827 0.8584 +vn 0.6842 0.7155 0.1412 +vn 0.6841 0.7155 0.1416 +vn 0.6842 0.7154 0.1415 +vn 0.9509 0.0629 0.3030 +vn 0.9510 0.0628 0.3026 +vn -0.3983 0.8716 0.2858 +vn 0.0007 -0.9455 -0.3255 +vn 0.0008 -0.9455 -0.3256 +vn 0.0008 -0.9455 -0.3255 +vn -0.3431 -0.1934 0.9192 +vn -0.3625 -0.9033 0.2295 +vn -0.3625 -0.9032 0.2299 +vn -0.3626 -0.9032 0.2297 +vn -0.6952 0.6584 -0.2885 +vn -0.6951 0.6585 -0.2885 +vn -0.6951 0.6584 -0.2885 +vn 0.6806 -0.5497 0.4843 +vn 0.6805 -0.5497 0.4845 +vn 0.6805 -0.5498 0.4844 +vn -0.2956 -0.8707 -0.3930 +vn 0.0203 0.9029 -0.4294 +vn 0.0201 0.9027 -0.4298 +vn 0.0206 0.9030 -0.4291 +vn -0.3483 -0.9372 0.0176 +vn -0.3482 -0.9373 0.0183 +vn -0.3484 -0.9372 0.0175 +vn 0.7163 0.5752 -0.3950 +vn 0.7163 0.5753 -0.3949 +vn 0.4712 -0.8774 -0.0898 +vn 0.4712 -0.8775 -0.0898 +vn 0.4706 -0.8778 -0.0899 +vn 0.7600 -0.3883 0.5212 +vn 0.7598 -0.3887 0.5212 +vn 0.7602 -0.3881 0.5211 +vn -0.0572 -0.9544 -0.2929 +vn -0.0576 -0.9545 -0.2927 +vn -0.0577 -0.9544 -0.2929 +vn 0.2716 0.9617 0.0371 +vn 0.6359 -0.7652 -0.1007 +vn 0.6358 -0.7653 -0.1006 +vn -0.3413 -0.9398 0.0158 +vn -0.3418 -0.9396 0.0154 +vn -0.3411 -0.9399 0.0161 +vn 0.2441 -0.8772 -0.4134 +vn -0.2509 0.7309 0.6347 +vn -0.2506 0.7305 0.6353 +vn -0.2513 0.7309 0.6345 +vn 0.1055 -0.6929 -0.7133 +vn 0.1054 -0.6928 -0.7134 +vn 0.1054 -0.6926 -0.7136 +vn 0.8342 -0.5355 0.1316 +vn 0.8343 -0.5355 0.1315 +vn -0.6655 -0.5901 -0.4570 +vn -0.6654 -0.5902 -0.4570 +vn 0.3895 0.1502 -0.9087 +vn 0.3895 0.1500 -0.9087 +vn 0.2661 -0.8855 -0.3809 +vn 0.2653 -0.8852 -0.3821 +vn 0.2654 -0.8854 -0.3815 +vn 0.0065 0.9785 -0.2064 +vn 0.0065 0.9785 -0.2060 +vn 0.0065 0.9786 -0.2058 +vn 0.8337 -0.4528 0.3159 +vn 0.8338 -0.4529 0.3158 +vn 0.8338 -0.4527 0.3161 +vn 0.3593 0.6264 -0.6918 +vn 0.3594 0.6262 -0.6919 +vn 0.3589 0.6268 -0.6916 +vn -0.8308 0.3715 0.4143 +vn -0.8310 0.3714 0.4142 +vn -0.8310 0.3713 0.4142 +vn 0.3291 -0.1209 -0.9365 +vn 0.3289 -0.1206 -0.9366 +vn 0.2389 -0.3621 0.9010 +vn 0.2385 -0.3612 0.9015 +vn 0.2397 -0.3626 0.9006 +vn 0.6660 -0.7451 -0.0363 +vn 0.6662 -0.7448 -0.0374 +vn 0.6660 -0.7451 -0.0348 +vn -0.6700 0.4711 -0.5738 +vn -0.6700 0.4712 -0.5737 +vn -0.6700 0.4710 -0.5739 +vn 0.6211 0.7036 0.3452 +vn 0.9891 0.1440 -0.0316 +vn 0.9889 0.1450 -0.0319 +vn 0.9889 0.1449 -0.0319 +vn 0.1530 0.9863 0.0616 +vn 0.1535 0.9862 0.0618 +vn 0.1523 0.9864 0.0614 +vn 0.6094 0.6684 0.4265 +vn 0.6086 0.6690 0.4266 +vn 0.6102 0.6675 0.4267 +vn -0.2502 -0.9069 -0.3390 +vn -0.2485 -0.9068 -0.3406 +vn -0.2488 -0.9069 -0.3400 +vn -0.8260 0.1931 -0.5296 +vn -0.8261 0.1933 -0.5293 +vn -0.3043 -0.4932 0.8150 +vn -0.2575 -0.1314 0.9573 +vn -0.2579 -0.1309 0.9573 +vn -0.2575 -0.1320 0.9572 +vn 0.3463 -0.3632 -0.8649 +vn 0.3461 -0.3627 -0.8652 +vn 0.3467 -0.3634 -0.8647 +vn -0.9008 0.4257 0.0855 +vn -0.9009 0.4254 0.0856 +vn 0.1462 0.9878 0.0533 +vn 0.1462 0.9877 0.0553 +vn 0.1461 0.9878 0.0544 +vn -0.3384 -0.9357 -0.1000 +vn -0.1079 -0.8428 -0.5273 +vn -0.1078 -0.8428 -0.5273 +vn -0.1077 -0.8427 -0.5275 +vn -0.1731 0.0874 -0.9810 +vn -0.1731 0.0872 -0.9810 +vn -0.1730 0.0873 -0.9811 +vn 0.5162 -0.1732 -0.8388 +vn 0.5159 -0.1743 -0.8387 +vn 0.5160 -0.1740 -0.8387 +vn -0.1130 0.7654 -0.6335 +vn -0.6987 0.3142 0.6427 +vn 0.6677 0.5456 0.5065 +vn 0.6713 0.5439 0.5036 +vn 0.6697 0.5450 0.5045 +vn 0.7648 0.6400 0.0744 +vn 0.7648 0.6399 0.0743 +vn 0.0566 0.4664 0.8828 +vn 0.0568 0.4666 0.8826 +vn 0.0570 0.4669 0.8825 +vn 0.5593 0.3963 -0.7281 +vn 0.5594 0.3959 -0.7283 +vn 0.5593 0.3947 -0.7290 +vn 0.8008 -0.4603 0.3831 +vn 0.8011 -0.4600 0.3829 +vn 0.8010 -0.4602 0.3829 +vn -0.2068 0.8590 -0.4683 +vn -0.2069 0.8589 -0.4684 +vn -0.2068 0.8592 -0.4679 +vn 0.0297 -0.6153 0.7878 +vn 0.0303 -0.6160 0.7872 +vn 0.0300 -0.6156 0.7875 +vn -0.4959 -0.7754 0.3910 +vn -0.4960 -0.7751 0.3913 +vn -0.4956 -0.7756 0.3910 +vn 0.7848 0.6183 -0.0419 +vn 0.7849 0.6182 -0.0417 +vn -0.2400 0.7620 -0.6014 +vn -0.2399 0.7621 -0.6014 +vn -0.2397 0.7622 -0.6013 +vn 0.3667 0.7958 -0.4819 +vn 0.3667 0.7957 -0.4821 +vn -0.1803 -0.9656 -0.1875 +vn -0.1798 -0.9656 -0.1879 +vn -0.1797 -0.9656 -0.1880 +vn 0.3385 -0.9266 0.1636 +vn 0.3379 -0.9269 0.1635 +vn 0.3374 -0.9270 0.1637 +vn -0.0116 -0.8545 0.5193 +vn -0.0118 -0.8546 0.5191 +vn -0.0115 -0.8545 0.5194 +vn 0.2600 -0.9068 0.3318 +vn 0.5507 0.3011 0.7785 +vn 0.5512 0.3014 0.7780 +vn 0.5508 0.3012 0.7784 +vn -0.0681 0.6888 -0.7217 +vn -0.0689 0.6889 -0.7216 +vn -0.3808 0.9155 0.1298 +vn -0.3808 0.9155 0.1300 +vn 0.9692 0.1264 -0.2114 +vn 0.9692 0.1266 -0.2112 +vn -0.3645 0.7994 0.4776 +vn -0.3645 0.7998 0.4769 +vn -0.3643 0.7997 0.4773 +vn 0.2773 0.8031 -0.5274 +vn 0.2780 0.8030 -0.5271 +vn 0.2776 0.8032 -0.5271 +vn 0.1456 0.4020 -0.9040 +vn 0.1464 0.4025 -0.9036 +vn 0.1457 0.4020 -0.9040 +vn -0.1848 0.2898 0.9391 +vn -0.1844 0.2899 0.9391 +vn -0.1852 0.2895 0.9391 +vn 0.1316 0.0663 0.9891 +vn 0.1318 0.0665 0.9890 +vn 0.1317 0.0660 0.9891 +vn 0.3908 -0.6698 0.6314 +vn 0.3907 -0.6696 0.6316 +vn -0.6589 0.1163 -0.7432 +vn -0.6588 0.1162 -0.7433 +vn 0.3747 0.1834 -0.9088 +vn -0.4441 -0.8955 -0.0292 +vn -0.4443 -0.8954 -0.0289 +vn 0.1916 -0.6303 0.7523 +vn 0.1926 -0.6306 0.7518 +vn 0.1932 -0.6310 0.7514 +vn 0.9612 -0.2536 0.1087 +vn 0.9605 -0.2558 0.1093 +vn 0.9607 -0.2555 0.1089 +vn -0.3148 0.7245 -0.6132 +vn -0.1141 -0.9753 -0.1893 +vn -0.2000 0.9276 0.3155 +vn -0.1996 0.9278 0.3153 +vn -0.2006 0.9274 0.3157 +vn 0.0138 -0.9678 0.2512 +vn 0.0137 -0.9678 0.2513 +vn 0.0140 -0.9679 0.2508 +vn -0.4999 0.8513 0.1592 +vn -0.7218 -0.6611 0.2050 +vn 0.0015 -0.9957 0.0927 +vn 0.0018 -0.9957 0.0928 +vn 0.0016 -0.9957 0.0930 +vn -0.8442 0.3621 0.3952 +vn -0.8442 0.3622 0.3952 +vn -0.3336 -0.9424 0.0247 +vn -0.3338 -0.9423 0.0247 +vn -0.3334 -0.9425 0.0246 +vn 0.9462 -0.2400 -0.2169 +vn 0.9462 -0.2398 -0.2172 +vn 0.9463 -0.2398 -0.2170 +vn 0.3425 0.7199 -0.6037 +vn 0.3426 0.7200 -0.6035 +vn -0.2630 0.7498 -0.6071 +vn -0.2630 0.7497 -0.6073 +vn -0.2627 0.7494 -0.6078 +vn 0.1783 -0.9369 -0.3006 +vn 0.1789 -0.9367 -0.3009 +vn 0.1781 -0.9370 -0.3006 +vn -0.3377 0.7041 -0.6247 +vn -0.3372 0.7055 -0.6233 +vn -0.3374 0.7046 -0.6242 +vn -0.3784 0.9237 0.0603 +vn -0.3699 0.6416 0.6719 +vn -0.3697 0.6415 0.6721 +vn -0.3700 0.6415 0.6720 +vn -0.8648 0.3344 -0.3747 +vn -0.8647 0.3343 -0.3748 +vn 0.0738 0.8349 -0.5454 +vn 0.0744 0.8350 -0.5452 +vn 0.0731 0.8349 -0.5456 +vn -0.9807 0.1900 0.0455 +vn -0.9807 0.1901 0.0454 +vn -0.9807 0.1902 0.0456 +vn 0.6767 0.7188 -0.1595 +vn 0.6768 0.7187 -0.1595 +vn 0.1182 0.6882 -0.7158 +vn 0.1179 0.6880 -0.7161 +vn 0.1181 0.6880 -0.7160 +vn 0.7087 -0.6805 0.1865 +vn -0.6088 0.5537 0.5681 +vn -0.6089 0.5537 0.5680 +vn -0.6089 0.5534 0.5683 +vn -0.1798 -0.9768 -0.1166 +vn 0.3957 0.6270 -0.6710 +vn 0.3948 0.6264 -0.6722 +vn 0.3956 0.6280 -0.6701 +vn -0.6393 0.6520 -0.4076 +vn 0.3981 -0.8438 0.3599 +vn 0.3979 -0.8437 0.3603 +vn 0.3979 -0.8436 0.3606 +vn 0.0695 -0.6948 -0.7158 +vn -0.3332 0.6152 0.7145 +vn -0.3331 0.6152 0.7146 +vn -0.3329 0.6158 0.7141 +vn -0.8810 -0.0484 0.4705 +vn -0.8811 -0.0480 0.4704 +vn -0.8810 -0.0481 0.4706 +vn -0.4448 0.8884 -0.1133 +vn -0.4451 0.8883 -0.1132 +vn -0.4448 0.8884 -0.1136 +vn 0.4649 -0.8171 -0.3410 +vn 0.4648 -0.8173 -0.3405 +vn 0.4649 -0.8172 -0.3407 +vn 0.3425 -0.8954 -0.2846 +vn 0.3424 -0.8954 -0.2845 +vn 0.3423 -0.8954 -0.2847 +vn 0.1148 -0.9378 -0.3277 +vn 0.1151 -0.9381 -0.3265 +vn 0.1148 -0.9380 -0.3270 +vn -0.0301 0.1697 -0.9850 +vn -0.0301 0.1696 -0.9850 +vn -0.0299 0.1693 -0.9851 +vn -0.8766 -0.1836 -0.4449 +vn -0.8757 -0.1835 -0.4467 +vn -0.8751 -0.1839 -0.4476 +vn 0.4089 0.5992 -0.6883 +vn 0.4087 0.5992 -0.6884 +vn 0.4088 0.5992 -0.6884 +vn 0.1775 0.6938 0.6980 +vn 0.1779 0.6935 0.6981 +vn 0.0507 0.8281 -0.5582 +vn 0.2949 0.9218 0.2515 +vn 0.2947 0.9219 0.2513 +vn 0.2945 0.9220 0.2513 +vn -0.8994 -0.1858 -0.3957 +vn -0.8992 -0.1859 -0.3960 +vn -0.1968 -0.9770 0.0823 +vn -0.1666 -0.9775 0.1293 +vn -0.1668 -0.9774 0.1298 +vn -0.1667 -0.9776 0.1288 +vn -0.0821 -0.9169 -0.3905 +vn -0.0819 -0.9170 -0.3904 +vn -0.0822 -0.9169 -0.3906 +vn -0.9937 -0.0500 -0.0999 +vn -0.5134 0.0469 -0.8569 +vn -0.5136 0.0467 -0.8568 +vn -0.5135 0.0467 -0.8568 +vn 0.0556 0.1225 -0.9909 +vn 0.0555 0.1224 -0.9909 +vn -0.1131 -0.0612 -0.9917 +vn -0.0301 0.8467 0.5312 +vn -0.0301 0.8466 0.5314 +vn -0.5966 0.3000 0.7444 +vn -0.5970 0.2997 0.7442 +vn 0.4435 -0.2247 -0.8677 +vn 0.4430 -0.2246 -0.8679 +vn 0.4426 -0.2245 -0.8682 +vn 0.3056 -0.9477 0.0918 +vn 0.3058 -0.9477 0.0918 +vn 0.3060 -0.9476 0.0916 +vn 0.4378 -0.7851 -0.4381 +vn 0.2086 0.6142 0.7611 +vn 0.2087 0.6142 0.7611 +vn 0.1125 -0.1836 -0.9765 +vn 0.1126 -0.1837 -0.9765 +vn 0.1126 -0.1836 -0.9765 +vn 0.3125 -0.6328 0.7084 +vn 0.3116 -0.6316 0.7099 +vn 0.3125 -0.6359 0.7057 +vn 0.3972 -0.4969 0.7716 +vn 0.3975 -0.4972 0.7712 +vn 0.3967 -0.4969 0.7718 +vn -0.4281 0.7680 0.4763 +vn -0.4286 0.7682 0.4755 +vn -0.4287 0.7688 0.4745 +vn -0.9446 0.1678 0.2821 +vn -0.9444 0.1671 0.2832 +vn -0.9448 0.1679 0.2813 +vn -0.8390 0.4823 -0.2520 +vn -0.8390 0.4822 -0.2522 +vn -0.8390 0.4823 -0.2519 +vn 0.2506 0.4531 -0.8555 +vn 0.2500 0.4529 -0.8558 +vn 0.2501 0.4532 -0.8556 +vn 0.6142 -0.2668 0.7427 +vn 0.6139 -0.2665 0.7431 +vn 0.6144 -0.2669 0.7425 +vn 0.5174 0.1554 0.8415 +vn 0.5175 0.1544 0.8416 +vn 0.5174 0.1549 0.8416 +vn -0.3031 -0.9151 0.2659 +vn -0.3032 -0.9150 0.2661 +vn -0.3032 -0.9151 0.2660 +vn 0.5273 0.6512 -0.5458 +vn 0.5274 0.6511 -0.5459 +vn 0.5271 0.6514 -0.5458 +vn -0.2405 0.9700 0.0346 +vn -0.8232 0.3774 0.4241 +vn -0.8227 0.3764 0.4260 +vn -0.8229 0.3772 0.4249 +vn 0.6697 0.5072 -0.5425 +vn 0.6700 0.5063 -0.5429 +vn 0.6697 0.5070 -0.5426 +vn 0.1225 -0.6110 0.7821 +vn 0.2411 0.0163 -0.9704 +vn 0.2407 0.0163 -0.9705 +vn 0.2404 0.0162 -0.9705 +vn 0.8628 -0.1725 0.4751 +vn 0.8628 -0.1726 0.4752 +vn 0.1317 -0.6430 -0.7544 +vn 0.1318 -0.6428 -0.7546 +vn -0.0149 0.4681 -0.8836 +vn -0.0150 0.4683 -0.8834 +vn -0.0148 0.4676 -0.8838 +vn -0.8534 0.2684 -0.4469 +vn -0.8534 0.2685 -0.4468 +vn 0.0259 -0.0778 0.9966 +vn 0.0260 -0.0782 0.9966 +vn 0.0256 -0.0779 0.9966 +vn 0.6401 0.7405 0.2047 +vn 0.6399 0.7411 0.2033 +vn 0.6399 0.7412 0.2028 +vn 0.5921 0.8058 -0.0085 +vn 0.5919 0.8060 -0.0086 +vn -0.9622 -0.2558 -0.0934 +vn -0.9621 -0.2563 -0.0933 +vn -0.9622 -0.2560 -0.0934 +vn 0.0257 -0.3932 -0.9191 +vn 0.0258 -0.3932 -0.9191 +vn 0.0259 -0.3929 -0.9192 +vn 0.3853 -0.1693 0.9071 +vn 0.3861 -0.1701 0.9066 +vn 0.3862 -0.1701 0.9066 +vn -0.2100 -0.9590 0.1901 +vn -0.2099 -0.9590 0.1902 +vn -0.5943 -0.7987 0.0945 +vn -0.5943 -0.7987 0.0947 +vn -0.5943 -0.7987 0.0944 +vn -0.7946 0.1847 0.5784 +vn -0.7945 0.1845 0.5785 +vn -0.1432 -0.9873 -0.0682 +vn -0.0503 -0.9803 -0.1912 +vn -0.0502 -0.9803 -0.1911 +vn 0.3178 0.9105 -0.2646 +vn 0.3176 0.9106 -0.2646 +vn 0.2548 -0.8958 0.3641 +vn 0.2541 -0.8957 0.3648 +vn 0.2544 -0.8958 0.3645 +vn 0.2780 -0.8358 0.4735 +vn 0.2783 -0.8360 0.4730 +vn 0.2784 -0.8360 0.4728 +vn 0.2814 0.4107 0.8672 +vn 0.2810 0.4106 0.8674 +vn -0.3913 0.6130 -0.6863 +vn -0.3915 0.6129 -0.6864 +vn -0.3914 0.6131 -0.6862 +vn -0.5996 0.5454 0.5857 +vn -0.5998 0.5450 0.5858 +vn -0.5995 0.5455 0.5857 +vn -0.1720 0.4499 -0.8764 +vn -0.1720 0.4496 -0.8765 +vn -0.1721 0.4502 -0.8762 +vn 0.0999 0.6461 -0.7567 +vn 0.0991 0.6463 -0.7566 +vn 0.1007 0.6464 -0.7563 +vn 0.7624 -0.3493 0.5447 +vn 0.7626 -0.3494 0.5444 +vn 0.7625 -0.3494 0.5445 +vn -0.2034 0.0760 -0.9761 +vn -0.2026 0.0758 -0.9763 +vn -0.2026 0.0757 -0.9763 +vn -0.0662 -0.7155 -0.6954 +vn 0.2963 -0.5607 -0.7732 +vn 0.2963 -0.5608 -0.7731 +vn -0.0676 0.8683 0.4914 +vn -0.0676 0.8682 0.4917 +vn -0.0676 0.8683 0.4915 +vn -0.7566 0.6367 0.1486 +vn -0.7563 0.6370 0.1490 +vn -0.7560 0.6373 0.1493 +vn -0.1401 -0.5106 -0.8483 +vn -0.1403 -0.5097 -0.8488 +vn -0.1401 -0.5102 -0.8486 +vn -0.1317 0.4758 0.8696 +vn 0.5236 0.5162 0.6778 +vn 0.5230 0.5161 0.6783 +vn 0.5231 0.5161 0.6782 +vn -0.3829 -0.8951 -0.2283 +vn -0.3830 -0.8950 -0.2286 +vn -0.3830 -0.8951 -0.2285 +vn 0.5229 0.8077 -0.2725 +vn -0.8542 0.0239 -0.5194 +vn 0.0337 0.0192 -0.9992 +vn 0.0336 0.0187 -0.9993 +vn 0.3450 -0.8890 -0.3009 +vn -0.8157 -0.2832 0.5044 +vn -0.8153 -0.2825 0.5054 +vn -0.8160 -0.2834 0.5038 +vn 0.0379 0.9471 0.3187 +vn 0.0380 0.9471 0.3187 +vn 0.0382 0.9472 0.3182 +vn 0.0882 -0.4823 -0.8716 +vn 0.0881 -0.4823 -0.8716 +vn 0.0879 -0.4820 -0.8717 +vn 0.5016 0.8378 0.2156 +vn 0.5019 0.8377 0.2154 +vn -0.2350 0.5568 -0.7967 +vn -0.5613 0.2106 -0.8003 +vn -0.5613 0.2106 -0.8004 +vn -0.5613 0.2107 -0.8003 +vn -0.0879 -0.0351 0.9955 +vn -0.0891 -0.0360 0.9954 +vn -0.0889 -0.0357 0.9954 +vn 0.8538 -0.4692 -0.2257 +vn 0.8539 -0.4689 -0.2258 +vn -0.3764 -0.9263 0.0170 +vn -0.3765 -0.9263 0.0163 +vn -0.3763 -0.9263 0.0172 +vn 0.3277 0.9434 -0.0515 +vn 0.3279 0.9433 -0.0519 +vn 0.3277 0.9434 -0.0518 +vn -0.1433 0.7349 0.6628 +vn -0.1421 0.7357 0.6623 +vn -0.1416 0.7361 0.6619 +vn 0.4648 0.3946 -0.7926 +vn 0.4667 0.3932 -0.7922 +vn 0.4659 0.3936 -0.7925 +vn -0.5314 -0.8131 -0.2377 +vn -0.5319 -0.8129 -0.2371 +vn -0.5313 -0.8131 -0.2380 +vn 0.1375 -0.2444 0.9599 +vn 0.1371 -0.2450 0.9598 +vn 0.1381 -0.2438 0.9599 +vn 0.2401 0.0063 -0.9707 +vn 0.2408 0.0073 -0.9705 +vn 0.2383 0.0052 -0.9712 +vn -0.9923 -0.0276 -0.1207 +vn -0.9922 -0.0274 -0.1216 +vn -0.9922 -0.0274 -0.1213 +vn -0.3607 -0.4205 -0.8325 +vn -0.3607 -0.4207 -0.8324 +vn -0.3608 -0.4212 -0.8321 +vn 0.7668 -0.2843 -0.5755 +vn 0.7668 -0.2840 -0.5756 +vn 0.7667 -0.2841 -0.5757 +vn 0.6781 -0.2141 -0.7031 +vn 0.6783 -0.2144 -0.7028 +vn 0.6780 -0.2139 -0.7033 +vn -0.2313 -0.1049 0.9672 +vn -0.2323 -0.1045 0.9670 +vn -0.2332 -0.1045 0.9668 +vn 0.5872 0.7108 0.3872 +vn 0.5878 0.7101 0.3877 +vn 0.5883 0.7095 0.3878 +vn 0.9109 0.3278 -0.2508 +vn 0.9109 0.3277 -0.2507 +vn -0.4460 -0.8586 0.2527 +vn -0.4468 -0.8580 0.2535 +vn -0.4462 -0.8588 0.2519 +vn 0.8301 0.3762 -0.4116 +vn 0.8307 0.3774 -0.4093 +vn 0.8305 0.3764 -0.4106 +vn 0.1065 -0.5075 -0.8550 +vn 0.1067 -0.5072 -0.8552 +vn 0.1070 -0.5071 -0.8552 +vn -0.5229 0.7698 0.3661 +vn -0.5230 0.7696 0.3663 +vn -0.5228 0.7698 0.3661 +vn -0.4437 0.7954 0.4129 +vn -0.4440 0.7953 0.4127 +vn 0.0335 0.2008 0.9791 +vn 0.0336 0.2002 0.9792 +vn 0.0341 0.1993 0.9793 +vn 0.2510 -0.9350 0.2506 +vn 0.2495 -0.9356 0.2497 +vn 0.2501 -0.9354 0.2498 +vn 0.5581 -0.8003 0.2191 +vn 0.5581 -0.8003 0.2192 +vn 0.7573 -0.6491 -0.0719 +vn 0.7573 -0.6492 -0.0712 +vn -0.9797 0.1579 -0.1233 +vn -0.9796 0.1579 -0.1240 +vn -0.9797 0.1578 -0.1240 +vn -0.4236 0.3643 -0.8294 +vn -0.4235 0.3643 -0.8294 +vn 0.8001 -0.0595 0.5969 +vn 0.7998 -0.0593 0.5973 +vn -0.0810 -0.0420 0.9958 +vn -0.0808 -0.0422 0.9958 +vn -0.0812 -0.0418 0.9958 +vn 0.0863 0.8535 -0.5140 +vn 0.4015 0.9031 0.1522 +vn 0.9035 -0.4117 -0.1190 +vn 0.9034 -0.4119 -0.1191 +vn 0.9037 -0.4115 -0.1186 +vn -0.3000 -0.8873 0.3503 +vn -0.2984 -0.8876 0.3508 +vn -0.2971 -0.8881 0.3507 +vn 0.8044 0.5518 0.2200 +vn 0.8047 0.5515 0.2197 +vn 0.7429 -0.4183 0.5227 +vn 0.7429 -0.4183 0.5226 +vn 0.7430 -0.4182 0.5225 +vn -0.9853 -0.1668 0.0378 +vn -0.9852 -0.1671 0.0378 +vn -0.3780 -0.4947 -0.7825 +vn 0.7315 -0.5885 -0.3444 +vn 0.7312 -0.5886 -0.3450 +vn 0.7326 -0.5879 -0.3431 +vn -0.8819 0.2981 0.3654 +vn -0.8819 0.2983 0.3651 +vn -0.8819 0.2980 0.3652 +vn 0.5187 -0.6670 0.5348 +vn 0.5186 -0.6671 0.5349 +vn 0.5185 -0.6671 0.5350 +vn 0.3972 0.2755 0.8754 +vn 0.3972 0.2753 0.8755 +vn 0.3972 0.2756 0.8754 +vn 0.9608 0.0381 0.2746 +vn 0.9608 0.0379 0.2748 +vn 0.9608 0.0380 0.2746 +vn 0.3571 0.9189 -0.1675 +vn 0.3571 0.9188 -0.1680 +vn 0.3572 0.9189 -0.1677 +vn 0.4901 -0.5383 -0.6856 +vn 0.4903 -0.5384 -0.6853 +vn 0.4906 -0.5384 -0.6851 +vn -0.2606 -0.0850 -0.9617 +vn -0.2608 -0.0848 -0.9617 +vn -0.2604 -0.0857 -0.9617 +vn -0.0844 0.6952 -0.7138 +vn -0.0844 0.6957 -0.7134 +vn -0.0844 0.6961 -0.7130 +vn 0.6553 0.4459 -0.6097 +vn 0.5455 0.6618 0.5142 +vn 0.5455 0.6619 0.5142 +vn 0.5454 0.6617 0.5145 +vn -0.6444 -0.7641 -0.0301 +vn -0.6441 -0.7644 -0.0296 +vn -0.6442 -0.7643 -0.0298 +vn -0.7493 0.5203 -0.4096 +vn -0.7493 0.5204 -0.4096 +vn -0.7494 0.5202 -0.4097 +vn 0.0016 0.3424 0.9395 +vn 0.0015 0.3426 0.9395 +vn 0.0013 0.3427 0.9394 +vn 0.5651 -0.0732 -0.8218 +vn 0.5650 -0.0732 -0.8218 +vn 0.5648 -0.0732 -0.8220 +vn -0.0466 -0.0061 -0.9989 +vn -0.0467 -0.0062 -0.9989 +vn -0.4233 0.6191 0.6615 +vn -0.4234 0.6187 0.6618 +vn -0.4231 0.6195 0.6613 +vn 0.2852 -0.7788 0.5587 +vn 0.2856 -0.7785 0.5589 +vn 0.2859 -0.7780 0.5595 +vn 0.0584 0.4729 -0.8792 +vn 0.0584 0.4732 -0.8790 +vn 0.0584 0.4727 -0.8793 +vn 0.7130 -0.0778 0.6968 +vn -0.0617 -0.9346 -0.3502 +vn 0.2580 0.4712 0.8434 +vn 0.2579 0.4708 0.8437 +vn 0.6155 -0.7696 0.1697 +vn 0.6156 -0.7696 0.1694 +vn 0.6153 -0.7697 0.1700 +vn -0.3196 0.6345 -0.7038 +vn -0.3201 0.6349 -0.7032 +vn -0.3199 0.6347 -0.7035 +vn -0.4035 0.7450 -0.5312 +vn -0.4034 0.7450 -0.5312 +vn -0.4036 0.7450 -0.5311 +vn -0.3910 -0.2128 -0.8955 +vn -0.3913 -0.2128 -0.8953 +vn -0.3914 -0.2127 -0.8953 +vn 0.6740 0.6660 0.3198 +vn 0.6740 0.6659 0.3199 +vn 0.3958 0.9146 0.0822 +vn 0.3960 0.9146 0.0821 +vn -0.5394 -0.8372 0.0903 +vn -0.5392 -0.8373 0.0902 +vn 0.9812 -0.0642 0.1822 +vn 0.3049 -0.3712 -0.8771 +vn 0.3037 -0.3708 -0.8777 +vn 0.3046 -0.3712 -0.8772 +vn -0.7517 -0.2452 -0.6122 +vn -0.7525 -0.2448 -0.6114 +vn -0.7518 -0.2452 -0.6121 +vn -0.7530 -0.4712 -0.4593 +vn -0.7531 -0.4712 -0.4592 +vn -0.7529 -0.4713 -0.4593 +vn 0.2739 0.8462 0.4571 +vn 0.2741 0.8462 0.4569 +vn 0.2750 0.1598 -0.9481 +vn 0.2762 0.1588 -0.9479 +vn 0.2755 0.1593 -0.9480 +vn -0.7204 0.1502 0.6771 +vn -0.7205 0.1502 0.6770 +vn -0.1934 -0.8367 -0.5124 +vn -0.1932 -0.8367 -0.5124 +vn -0.1939 -0.8366 -0.5124 +vn 0.9280 -0.3710 0.0355 +vn 0.9280 -0.3709 0.0350 +vn 0.9280 -0.3709 0.0353 +vn -0.3869 -0.7454 -0.5428 +vn -0.3876 -0.7451 -0.5428 +vn -0.3883 -0.7445 -0.5430 +vn -0.2373 -0.8692 -0.4337 +vn -0.2379 -0.8694 -0.4331 +vn -0.2375 -0.8693 -0.4334 +vn 0.2771 0.9418 -0.1901 +vn 0.2765 0.9419 -0.1906 +vn 0.2776 0.9418 -0.1896 +vn 0.6621 -0.7205 -0.2060 +vn -0.4294 -0.8601 -0.2755 +vn -0.4293 -0.8601 -0.2755 +vn -0.4292 -0.8602 -0.2755 +vn -0.1836 -0.2289 0.9560 +vn -0.1829 -0.2297 0.9559 +vn -0.1832 -0.2292 0.9560 +vn -0.5071 -0.8325 -0.2232 +vn -0.5072 -0.8324 -0.2232 +vn -0.5070 -0.8326 -0.2232 +vn 0.0745 0.2834 0.9561 +vn 0.0738 0.2842 0.9559 +vn 0.0740 0.2837 0.9560 +vn -0.4494 0.8495 0.2763 +vn -0.4497 0.8493 0.2765 +vn -0.4488 0.8498 0.2764 +vn 0.2768 0.9583 0.0709 +vn 0.2767 0.9583 0.0710 +vn 0.2766 0.9583 0.0718 +vn 0.0708 0.9970 0.0322 +vn 0.0708 0.9970 0.0321 +vn 0.7817 -0.4647 -0.4160 +vn 0.1307 -0.9375 -0.3226 +vn 0.1304 -0.9374 -0.3230 +vn 0.1304 -0.9373 -0.3233 +vn 0.6315 0.1349 0.7636 +vn 0.6309 0.1351 0.7640 +vn 0.6304 0.1351 0.7644 +vn -0.1675 -0.9070 -0.3865 +vn -0.1682 -0.9063 -0.3876 +vn -0.1681 -0.9066 -0.3870 +vn 0.0195 -0.9035 -0.4281 +vn 0.0194 -0.9036 -0.4279 +vn 0.0195 -0.9034 -0.4284 +vn 0.1585 -0.0201 0.9872 +vn 0.1597 -0.0199 0.9870 +vn 0.1608 -0.0190 0.9868 +vn 0.2397 0.9395 -0.2446 +vn 0.2397 0.9395 -0.2448 +vn 0.2392 0.9396 -0.2449 +vn -0.1326 0.8302 -0.5415 +vn -0.1321 0.8301 -0.5417 +vn 0.0987 -0.7550 -0.6482 +vn 0.0986 -0.7552 -0.6480 +vn 0.0987 -0.7557 -0.6475 +vn -0.2415 -0.9688 0.0557 +vn -0.2412 -0.9689 0.0560 +vn -0.2411 -0.9689 0.0562 +vn 0.0955 0.4830 -0.8704 +vn 0.0954 0.4829 -0.8704 +vn -0.2851 -0.5849 0.7593 +vn 0.1536 0.9878 0.0253 +vn 0.1535 0.9878 0.0252 +vn 0.1535 0.9878 0.0254 +vn 0.0211 0.6899 -0.7236 +vn 0.0207 0.6898 -0.7237 +vn 0.0204 0.6897 -0.7238 +vn -0.3188 -0.8067 0.4976 +vn -0.3187 -0.8065 0.4979 +vn -0.3451 -0.8180 0.4602 +vn -0.3453 -0.8179 0.4602 +vn -0.3447 -0.8181 0.4603 +vn 0.0753 -0.1772 0.9813 +vn 0.0755 -0.1773 0.9813 +vn 0.0752 -0.1771 0.9813 +vn -0.4034 -0.3605 -0.8410 +vn -0.4042 -0.3615 -0.8402 +vn -0.4038 -0.3608 -0.8407 +vn 0.6551 0.7488 0.1006 +vn 0.6551 0.7488 0.1007 +vn -0.4759 0.7374 -0.4794 +vn -0.4755 0.7376 -0.4794 +vn -0.4757 0.7375 -0.4794 +vn -0.4865 0.7261 -0.4859 +vn -0.4867 0.7259 -0.4860 +vn -0.4866 0.7260 -0.4859 +vn 0.6064 0.5501 0.5742 +vn 0.6064 0.5503 0.5739 +vn 0.6064 0.5503 0.5740 +vn -0.2742 -0.3534 0.8944 +vn -0.2743 -0.3534 0.8943 +vn -0.2744 -0.3535 0.8943 +vn 0.7370 0.6302 0.2443 +vn 0.3707 -0.3316 -0.8675 +vn 0.3712 -0.3323 -0.8670 +vn 0.3709 -0.3321 -0.8673 +vn -0.9001 -0.2807 -0.3332 +vn -0.9000 -0.2806 -0.3334 +vn -0.9000 -0.2808 -0.3335 +vn -0.3063 -0.9492 -0.0723 +vn -0.3064 -0.9491 -0.0725 +vn -0.3065 -0.9491 -0.0725 +vn -0.0202 0.8270 -0.5618 +vn -0.0205 0.8272 -0.5616 +vn -0.0206 0.8273 -0.5614 +vn 0.0718 -0.6374 0.7672 +vn 0.0715 -0.6375 0.7671 +vn 0.0716 -0.6375 0.7671 +vn 0.5513 0.8170 -0.1689 +vn 0.5513 0.8170 -0.1688 +vn 0.5513 0.8171 -0.1688 +vn -0.6436 0.6927 -0.3254 +vn -0.6435 0.6932 -0.3246 +vn -0.6436 0.6929 -0.3252 +vn 0.9433 -0.2673 0.1969 +vn 0.0185 0.7460 0.6657 +vn 0.0186 0.7465 0.6651 +vn -0.0758 -0.7921 -0.6056 +vn -0.0767 -0.7925 -0.6050 +vn -0.0761 -0.7922 -0.6055 +vn -0.2340 -0.7757 -0.5861 +vn -0.2335 -0.7759 -0.5861 +vn -0.2341 -0.7758 -0.5860 +vn -0.0623 -0.9353 -0.3484 +vn -0.0618 -0.9350 -0.3492 +vn -0.0620 -0.9351 -0.3488 +vn -0.1537 -0.9760 -0.1542 +vn -0.1536 -0.9760 -0.1542 +vn -0.1539 -0.9761 -0.1537 +vn 0.9173 0.3869 0.0942 +vn 0.9172 0.3871 0.0942 +vn 0.1831 0.0528 -0.9817 +vn 0.1838 0.0529 -0.9815 +vn 0.1841 0.0523 -0.9815 +vn -0.8254 0.3492 -0.4437 +vn -0.8253 0.3493 -0.4437 +vn -0.1263 -0.0223 0.9917 +vn -0.1257 -0.0230 0.9918 +vn -0.1251 -0.0234 0.9919 +vn 0.6542 0.7395 -0.1587 +vn 0.6549 0.7388 -0.1590 +vn 0.6545 0.7392 -0.1588 +vn -0.0331 -0.6227 0.7818 +vn -0.0328 -0.6229 0.7816 +vn -0.0332 -0.6226 0.7818 +vn 0.5983 -0.7045 -0.3819 +vn 0.6013 -0.7024 -0.3809 +vn 0.6006 -0.7031 -0.3808 +vn -0.2744 0.4686 -0.8397 +vn 0.6723 0.2153 -0.7083 +vn 0.6727 0.2151 -0.7080 +vn -0.4281 -0.7940 -0.4315 +vn 0.3840 0.9225 -0.0391 +vn 0.3838 0.9226 -0.0389 +vn 0.3842 0.9224 -0.0392 +vn 0.1905 0.9534 0.2341 +vn 0.1909 0.9532 0.2343 +vn 0.9061 -0.3877 0.1692 +vn 0.9058 -0.3882 0.1695 +vn 0.9060 -0.3880 0.1693 +vn 0.4557 0.0210 0.8899 +vn 0.4557 0.0211 0.8899 +vn -0.0397 -0.6422 -0.7655 +vn -0.0394 -0.6424 -0.7654 +vn -0.0394 -0.6423 -0.7654 +vn 0.0265 0.0576 -0.9980 +vn 0.2864 0.7704 -0.5696 +vn 0.2864 0.7705 -0.5694 +vn 0.6656 0.4710 -0.5789 +vn 0.6655 0.4713 -0.5788 +vn -0.0779 0.4979 0.8637 +vn -0.0778 0.4978 0.8638 +vn 0.3196 0.5411 -0.7779 +vn 0.3192 0.5411 -0.7780 +vn 0.3194 0.5411 -0.7779 +vn -0.0566 0.2099 -0.9761 +vn -0.0568 0.2098 -0.9761 +vn -0.0567 0.2098 -0.9761 +vn -0.7200 0.0337 -0.6932 +vn 0.6874 0.5174 0.5096 +vn 0.6873 0.5177 0.5095 +vn 0.6876 0.5177 0.5091 +vn 0.3009 0.1917 0.9342 +vn 0.6392 -0.3904 0.6626 +vn 0.6398 -0.3903 0.6621 +vn 0.6396 -0.3903 0.6622 +vn -0.1307 0.6560 0.7433 +vn -0.1309 0.6559 0.7434 +vn -0.4452 0.1840 -0.8763 +vn -0.4451 0.1839 -0.8764 +vn -0.5655 0.0999 -0.8187 +vn -0.5656 0.0999 -0.8186 +vn -0.5656 0.0998 -0.8186 +vn 0.7490 -0.6442 -0.1549 +vn 0.7485 -0.6450 -0.1543 +vn 0.7487 -0.6447 -0.1544 +vn -0.3172 -0.9093 0.2693 +vn -0.3170 -0.9094 0.2694 +vn -0.3176 -0.9092 0.2692 +vn 0.1638 -0.6339 0.7559 +vn 0.1639 -0.6337 0.7560 +vn 0.1640 -0.6335 0.7561 +vn -0.4668 -0.8825 0.0576 +vn -0.4663 -0.8827 0.0579 +vn -0.0552 0.9334 -0.3545 +vn -0.0554 0.9335 -0.3543 +vn -0.0554 0.9331 -0.3552 +vn -0.3490 -0.9371 0.0108 +vn -0.3486 -0.9372 0.0107 +vn -0.3488 -0.9371 0.0106 +vn 0.0668 0.9861 -0.1523 +vn 0.0667 0.9861 -0.1524 +vn -0.4520 -0.8578 0.2446 +vn 0.8808 -0.0393 0.4719 +vn 0.8807 -0.0395 0.4720 +vn 0.8807 -0.0398 0.4721 +vn -0.0733 0.4969 0.8647 +vn -0.0742 0.4967 0.8648 +vn -0.0728 0.4968 0.8648 +vn 0.8753 -0.4177 0.2438 +vn 0.8758 -0.4170 0.2432 +vn 0.8755 -0.4174 0.2433 +vn 0.0461 -0.4481 -0.8928 +vn 0.0459 -0.4480 -0.8928 +vn 0.0460 -0.4480 -0.8928 +vn -0.8883 0.4126 -0.2017 +vn -0.8880 0.4128 -0.2025 +vn -0.8882 0.4126 -0.2022 +vn -0.6456 -0.0980 -0.7574 +vn -0.6436 -0.0966 -0.7592 +vn -0.6444 -0.0976 -0.7584 +vn -0.9307 -0.0503 -0.3624 +vn -0.9308 -0.0496 -0.3622 +vn -0.9308 -0.0494 -0.3622 +vn -0.8951 0.4373 0.0867 +vn -0.8953 0.4368 0.0876 +vn -0.8952 0.4372 0.0863 +vn -0.2043 -0.9189 0.3375 +vn -0.2045 -0.9186 0.3383 +vn -0.2044 -0.9187 0.3380 +vn 0.3450 -0.6267 0.6987 +vn 0.3456 -0.6270 0.6981 +vn 0.3454 -0.6268 0.6984 +vn -0.3467 0.7194 0.6019 +vn -0.3464 0.7197 0.6017 +vn -0.3467 0.7192 0.6021 +vn 0.9370 -0.1092 -0.3319 +vn 0.9373 -0.1087 -0.3312 +vn 0.9366 -0.1104 -0.3326 +vn -0.3570 -0.9061 -0.2270 +vn -0.3567 -0.9063 -0.2268 +vn -0.3560 -0.9066 -0.2267 +vn -0.9778 0.2059 0.0392 +vn -0.9778 0.2059 0.0395 +vn -0.9778 0.2059 0.0394 +vn -0.5832 -0.3460 0.7350 +vn -0.5830 -0.3458 0.7352 +vn -0.5829 -0.3460 0.7352 +vn 0.8772 -0.4791 0.0332 +vn 0.8771 -0.4791 0.0332 +vn 0.8772 -0.4789 0.0332 +vn -0.5817 0.5187 -0.6266 +vn -0.5815 0.5193 -0.6263 +vn -0.5819 0.5184 -0.6267 +vn -0.0975 -0.7091 0.6983 +vn -0.0978 -0.7094 0.6980 +vn -0.0979 -0.7095 0.6979 +vn 0.8044 -0.4039 0.4357 +vn 0.8042 -0.4035 0.4363 +vn 0.8043 -0.4036 0.4361 +vn 0.1608 -0.8404 0.5175 +vn 0.1622 -0.8405 0.5170 +vn 0.1614 -0.8404 0.5174 +vn -0.1395 -0.9600 0.2429 +vn -0.1398 -0.9599 0.2428 +vn -0.1389 -0.9599 0.2434 +vn -0.5798 0.6984 -0.4196 +vn -0.5802 0.6981 -0.4196 +vn -0.5804 0.6979 -0.4196 +vn 0.5384 0.8416 0.0417 +vn 0.5378 0.8421 0.0412 +vn 0.5371 0.8426 0.0399 +vn -0.4764 0.7589 -0.4440 +vn 0.7817 -0.4659 -0.4146 +vn 0.7816 -0.4661 -0.4146 +vn 0.7701 0.3000 -0.5629 +vn 0.7702 0.2999 -0.5629 +vn 0.7703 0.2998 -0.5629 +vn -0.3556 0.4692 -0.8083 +vn 0.1189 -0.0091 -0.9929 +vn 0.1191 -0.0092 -0.9928 +vn 0.1190 -0.0089 -0.9929 +vn -0.3648 -0.9055 0.2167 +vn -0.3648 -0.9057 0.2161 +vn 0.5265 0.1866 -0.8294 +vn 0.5256 0.1880 -0.8297 +vn 0.5253 0.1898 -0.8295 +vn -0.7999 0.5137 -0.3101 +vn -0.8003 0.5135 -0.3097 +vn -0.8007 0.5130 -0.3093 +vn 0.0902 -0.8343 0.5438 +vn 0.0879 -0.8350 0.5432 +vn 0.0895 -0.8348 0.5433 +vn 0.8858 -0.1676 0.4327 +vn 0.8859 -0.1674 0.4326 +vn 0.1217 0.2147 0.9691 +vn 0.1213 0.2138 0.9693 +vn 0.1219 0.2156 0.9688 +vn 0.0843 -0.2756 -0.9576 +vn 0.0844 -0.2757 -0.9575 +vn -0.1741 -0.9463 -0.2725 +vn -0.1750 -0.9461 -0.2725 +vn -0.1745 -0.9462 -0.2726 +vn 0.1252 -0.0172 0.9920 +vn 0.1251 -0.0173 0.9920 +vn 0.1253 -0.0170 0.9920 +vn 0.6882 -0.4142 -0.5957 +vn 0.6880 -0.4142 -0.5959 +vn 0.6885 -0.4143 -0.5953 +vn -0.1727 -0.5744 0.8001 +vn -0.1732 -0.5746 0.7999 +vn -0.1730 -0.5745 0.8000 +vn 0.2903 0.9568 0.0161 +vn -0.6993 -0.5699 -0.4315 +vn -0.6998 -0.5695 -0.4313 +vn -0.6992 -0.5700 -0.4316 +vn 0.9161 -0.3673 -0.1606 +vn 0.9163 -0.3668 -0.1604 +vn -0.4493 -0.0731 -0.8904 +vn -0.4486 -0.0747 -0.8906 +vn -0.4492 -0.0737 -0.8904 +vn -0.3015 -0.2695 -0.9146 +vn -0.3014 -0.2694 -0.9147 +vn -0.3016 -0.2695 -0.9146 +vn 0.6450 0.5076 -0.5713 +vn 0.6448 0.5074 -0.5716 +vn 0.6449 0.5077 -0.5712 +vn -0.4513 0.0708 0.8896 +vn -0.4510 0.0706 0.8897 +vn -0.4528 0.0706 0.8888 +vn 0.4999 0.0792 -0.8625 +vn 0.5002 0.0791 -0.8623 +vn 0.9108 -0.0808 0.4049 +vn 0.0629 0.1331 0.9891 +vn 0.0626 0.1332 0.9891 +vn 0.0649 0.1335 0.9889 +vn -0.5686 0.7392 -0.3610 +vn -0.5686 0.7390 -0.3613 +vn -0.5684 0.7392 -0.3613 +vn -0.4219 -0.7603 0.4939 +vn -0.4226 -0.7601 0.4936 +vn -0.4224 -0.7603 0.4934 +vn 0.9391 0.0186 0.3432 +vn 0.9392 0.0187 0.3429 +vn -0.1657 -0.2536 0.9530 +vn -0.1656 -0.2535 0.9531 +vn -0.1656 -0.2537 0.9530 +vn 0.1829 -0.8641 -0.4689 +vn 0.1826 -0.8644 -0.4685 +vn 0.1827 -0.8643 -0.4687 +vn -0.2439 -0.4123 0.8778 +vn -0.2453 -0.4122 0.8774 +vn 0.5077 -0.6635 -0.5495 +vn 0.5077 -0.6636 -0.5494 +vn 0.9453 -0.0274 0.3250 +vn 0.9452 -0.0278 0.3252 +vn 0.9452 -0.0279 0.3252 +vn -0.8130 0.5594 -0.1618 +vn 0.8335 0.2238 0.5051 +vn 0.8332 0.2239 0.5056 +vn 0.8331 0.2242 0.5056 +vn -0.7146 0.6887 0.1225 +vn -0.5138 0.4192 -0.7485 +vn -0.4605 0.3363 -0.8215 +vn -0.4603 0.3365 -0.8215 +vn -0.4606 0.3360 -0.8215 +vn -0.6865 0.6494 -0.3272 +vn 0.2592 -0.5015 0.8254 +vn 0.2589 -0.5014 0.8256 +vn 0.2590 -0.5013 0.8256 +vn -0.1385 -0.5209 -0.8423 +vn -0.1384 -0.5209 -0.8423 +vn 0.3358 -0.1975 -0.9210 +vn 0.3359 -0.1975 -0.9209 +vn 0.3356 -0.1974 -0.9211 +vn 0.4602 -0.4668 -0.7552 +vn 0.4596 -0.4675 -0.7551 +vn 0.4599 -0.4672 -0.7551 +vn -0.4710 -0.7498 -0.4647 +vn -0.7821 0.4681 0.4113 +vn -0.7824 0.4676 0.4114 +vn -0.7821 0.4680 0.4115 +vn -0.3261 0.0175 0.9452 +vn -0.3254 0.0173 0.9454 +vn -0.3246 0.0167 0.9457 +vn -0.5463 -0.8368 -0.0352 +vn -0.5453 -0.8375 -0.0346 +vn -0.5449 -0.8378 -0.0347 +vn -0.5008 -0.8615 0.0841 +vn -0.5006 -0.8616 0.0841 +vn 0.3979 0.8586 0.3232 +vn 0.3980 0.8586 0.3233 +vn 0.3979 0.8586 0.3231 +vn 0.7708 0.6351 0.0505 +vn 0.7706 0.6353 0.0505 +vn 0.7705 0.6354 0.0505 +vn -0.1237 -0.1462 -0.9815 +vn -0.1229 -0.1477 -0.9814 +vn -0.1232 -0.1467 -0.9815 +vn -0.0250 0.2058 -0.9783 +vn -0.0248 0.2059 -0.9783 +vn -0.2859 -0.3911 -0.8748 +vn -0.2865 -0.3910 -0.8746 +vn -0.2856 -0.3910 -0.8750 +vn -0.0360 0.9987 0.0366 +vn -0.0365 0.9987 0.0366 +vn -0.3824 0.8721 -0.3053 +vn -0.3824 0.8725 -0.3043 +vn -0.3824 0.8724 -0.3043 +vn -0.1961 0.6430 -0.7404 +vn -0.1968 0.6429 -0.7402 +vn -0.1965 0.6430 -0.7403 +vn -0.0029 0.1628 -0.9867 +vn -0.0039 0.1611 -0.9869 +vn -0.0034 0.1616 -0.9868 +vn -0.2771 0.7200 -0.6362 +vn -0.2772 0.7200 -0.6362 +vn -0.2770 0.7201 -0.6362 +vn -0.2420 -0.6322 0.7361 +vn -0.1099 -0.4958 0.8615 +vn -0.1098 -0.4957 0.8615 +vn -0.1095 -0.4958 0.8615 +vn 0.2429 -0.8819 -0.4041 +vn 0.2433 -0.8815 -0.4047 +vn 0.2426 -0.8821 -0.4038 +vn -0.1755 -0.9685 0.1767 +vn -0.1751 -0.9685 0.1771 +vn -0.1756 -0.9685 0.1767 +vn 0.6953 -0.4994 0.5169 +vn 0.6955 -0.4989 0.5170 +vn 0.6954 -0.4992 0.5169 +vn 0.7644 0.5438 0.3463 +vn 0.7645 0.5435 0.3465 +vn 0.7643 0.5440 0.3462 +vn -0.4935 0.5173 0.6992 +vn -0.4931 0.5179 0.6990 +vn -0.4929 0.5184 0.6988 +vn 0.6421 -0.1854 0.7439 +vn 0.6421 -0.1855 0.7438 +vn -0.5837 0.4151 -0.6979 +vn -0.5837 0.4152 -0.6978 +vn -0.5837 0.4153 -0.6977 +vn -0.1731 -0.9375 -0.3018 +vn 0.3922 -0.1245 0.9114 +vn 0.5758 -0.8145 -0.0711 +vn 0.5753 -0.8148 -0.0715 +vn 0.5758 -0.8145 -0.0712 +vn 0.8063 -0.4935 -0.3261 +vn 0.8063 -0.4937 -0.3259 +vn 0.8063 -0.4937 -0.3258 +vn -0.6919 -0.7217 0.0194 +vn -0.6917 -0.7219 0.0189 +vn -0.6920 -0.7216 0.0196 +vn 0.3129 -0.8633 -0.3959 +vn 0.3130 -0.8632 -0.3961 +vn 0.3127 -0.8635 -0.3958 +vn 0.1729 0.4513 -0.8755 +vn 0.1737 0.4522 -0.8748 +vn 0.1736 0.4521 -0.8749 +vn -0.3919 0.3892 0.8336 +vn -0.3920 0.3892 0.8336 +vn 0.1585 0.0343 -0.9868 +vn 0.1584 0.0344 -0.9868 +vn 0.1588 0.0338 -0.9867 +vn 0.1045 -0.9923 0.0658 +vn 0.1051 -0.9923 0.0657 +vn 0.1048 -0.9923 0.0658 +vn -0.1641 0.9655 -0.2024 +vn -0.1640 0.9654 -0.2025 +vn -0.5596 -0.7682 0.3110 +vn -0.5595 -0.7682 0.3110 +vn -0.3297 0.5029 0.7990 +vn -0.3294 0.5032 0.7989 +vn -0.3295 0.5030 0.7990 +vn -0.3484 -0.9372 -0.0153 +vn -0.3484 -0.9372 -0.0155 +vn 0.8906 -0.4401 -0.1145 +vn 0.8909 -0.4396 -0.1145 +vn 0.8910 -0.4393 -0.1149 +vn 0.2219 -0.9227 -0.3153 +vn 0.2220 -0.9227 -0.3152 +vn 0.2221 -0.9225 -0.3156 +vn -0.0122 -0.9861 -0.1654 +vn -0.0122 -0.9861 -0.1655 +vn -0.0120 -0.9861 -0.1655 +vn -0.2318 -0.9375 -0.2595 +vn -0.2318 -0.9375 -0.2596 +vn -0.2317 -0.9375 -0.2595 +vn -0.5448 0.5252 -0.6537 +vn 0.6471 -0.7597 -0.0647 +vn 0.6467 -0.7598 -0.0663 +vn 0.6468 -0.7597 -0.0673 +vn -0.4298 0.7089 -0.5592 +vn -0.4297 0.7090 -0.5592 +vn -0.4300 0.7089 -0.5591 +vn 0.3252 -0.4463 -0.8337 +vn 0.3251 -0.4464 -0.8337 +vn -0.1091 -0.9879 0.1099 +vn -0.1092 -0.9879 0.1101 +vn -0.1091 -0.9879 0.1100 +vn -0.5962 0.1402 0.7905 +vn -0.5964 0.1401 0.7903 +vn -0.5961 0.1399 0.7906 +vn -0.2273 0.0992 -0.9688 +vn -0.2273 0.0989 -0.9688 +vn -0.2272 0.0992 -0.9688 +vn 0.2761 0.9534 0.1217 +vn 0.2790 0.9528 0.1196 +vn 0.2772 0.9532 0.1206 +vn -0.2446 0.3321 0.9110 +vn -0.2445 0.3324 0.9109 +vn -0.9105 0.4135 0.0044 +vn -0.0667 -0.3637 0.9291 +vn -0.0657 -0.3640 0.9291 +vn -0.0639 -0.3654 0.9286 +vn -0.2014 -0.8114 -0.5487 +vn -0.2013 -0.8114 -0.5487 +vn -0.8110 0.4984 -0.3065 +vn -0.8110 0.4981 -0.3070 +vn -0.8111 0.4985 -0.3060 +vn -0.0684 0.9635 -0.2590 +vn -0.0684 0.9635 -0.2589 +vn -0.0687 0.9635 -0.2589 +vn 0.2053 0.9042 -0.3746 +vn 0.2051 0.9042 -0.3747 +vn 0.2052 0.9042 -0.3746 +vn -0.1005 -0.0275 0.9946 +vn -0.1004 -0.0275 0.9946 +vn -0.1002 -0.0273 0.9946 +vn -0.7481 0.3169 0.5831 +vn 0.8667 -0.2494 0.4321 +vn 0.8667 -0.2492 0.4322 +vn 0.8665 -0.2491 0.4326 +vn 0.2613 0.8718 -0.4144 +vn 0.2458 0.9581 -0.1471 +vn 0.2455 0.9582 -0.1471 +vn 0.2462 0.9580 -0.1469 +vn 0.6858 0.6432 0.3405 +vn 0.6859 0.6431 0.3405 +vn 0.6861 0.6430 0.3404 +vn 0.9143 0.2518 0.3172 +vn 0.9143 0.2521 0.3171 +vn 0.9144 0.2517 0.3171 +vn 0.8851 0.2818 -0.3704 +vn 0.8851 0.2819 -0.3703 +vn 0.8851 0.2821 -0.3701 +vn -0.4892 -0.8721 -0.0040 +vn -0.4891 -0.8722 -0.0044 +vn -0.4891 -0.8722 -0.0042 +vn -0.4907 0.8713 0.0070 +vn -0.4920 0.8705 0.0073 +vn -0.4915 0.8708 0.0074 +vn -0.1716 -0.7567 0.6309 +vn -0.1714 -0.7567 0.6309 +vn -0.1715 -0.7567 0.6309 +vn 0.0986 -0.9903 -0.0981 +vn 0.8892 -0.1681 0.4255 +vn 0.8890 -0.1692 0.4255 +vn 0.8890 -0.1711 0.4247 +vn -0.3721 0.8223 -0.4305 +vn -0.3723 0.8224 -0.4301 +vn -0.4239 -0.9031 -0.0694 +vn -0.4239 -0.9030 -0.0695 +vn -0.4239 -0.9031 -0.0695 +vn 0.6327 -0.2857 0.7198 +vn 0.6326 -0.2859 0.7198 +vn 0.6329 -0.2854 0.7197 +vn -0.1711 0.4930 -0.8531 +vn -0.1710 0.4931 -0.8530 +vn -0.6805 0.3152 0.6615 +vn -0.6797 0.3147 0.6625 +vn -0.6811 0.3170 0.6600 +vn 0.8535 0.4974 0.1555 +vn 0.8536 0.4971 0.1555 +vn 0.8536 0.4970 0.1558 +vn 0.4770 0.4535 0.7529 +vn 0.4770 0.4535 0.7528 +vn 0.4767 0.4535 0.7530 +vn -0.3307 0.0532 -0.9422 +vn -0.2683 -0.9379 0.2198 +vn -0.2688 -0.9378 0.2198 +vn -0.2687 -0.9378 0.2198 +vn 0.4166 0.7276 -0.5450 +vn 0.4169 0.7277 -0.5447 +vn 0.4171 0.7274 -0.5449 +vn -0.4637 -0.8285 -0.3140 +vn 0.6652 0.7149 -0.2155 +vn 0.6649 0.7150 -0.2160 +vn 0.6650 0.7150 -0.2158 +vn -0.4963 0.6997 -0.5139 +vn -0.4966 0.6995 -0.5139 +vn -0.4971 0.6993 -0.5137 +vn 0.5889 0.5799 -0.5630 +vn 0.5888 0.5800 -0.5629 +vn -0.3170 -0.4368 -0.8419 +vn -0.3168 -0.4372 -0.8417 +vn 0.8872 -0.0974 -0.4510 +vn 0.8872 -0.0976 -0.4510 +vn 0.8866 -0.0986 -0.4518 +vn -0.2063 0.4545 0.8666 +vn -0.2064 0.4544 0.8666 +vn -0.2065 0.4546 0.8664 +vn 0.9711 0.1114 0.2111 +vn 0.9711 0.1114 0.2110 +vn -0.1790 0.9760 -0.1242 +vn -0.1791 0.9760 -0.1239 +vn 0.7608 0.6326 0.1449 +vn 0.7607 0.6327 0.1449 +vn 0.7606 0.6329 0.1448 +vn 0.1666 -0.8287 -0.5343 +vn 0.2426 0.1037 -0.9646 +vn 0.2427 0.1036 -0.9646 +vn 0.2428 0.1035 -0.9645 +vn -0.3686 0.2391 0.8983 +vn -0.3688 0.2394 0.8982 +vn -0.3688 0.2397 0.8981 +vn -0.0002 -0.0000 1.0000 +vn -0.0012 1.0000 0.0029 +vn -0.0011 1.0000 0.0028 +vn -0.5414 -0.5747 0.6136 +vn -0.3519 -0.6624 0.6613 +vn -0.3518 -0.6628 0.6610 +vn -0.3519 -0.6628 0.6610 +vn 0.3432 0.8919 0.2945 +vn 0.3429 0.8916 0.2956 +vn 0.3431 0.8917 0.2951 +vn -0.4790 -0.5914 -0.6487 +vn -0.5939 0.6512 0.4725 +vn -0.5939 0.6512 0.4724 +vn 0.0460 0.8956 -0.4425 +vn 0.1718 -0.1746 0.9695 +vn 0.1715 -0.1743 0.9696 +vn 0.1717 -0.1743 0.9696 +vn -0.1349 -0.9795 -0.1499 +vn -0.1360 -0.9793 -0.1501 +vn -0.1364 -0.9792 -0.1505 +vn 0.8823 0.4604 0.0975 +vn 0.8823 0.4605 0.0976 +vn -0.3562 0.6587 0.6627 +vn -0.3561 0.6587 0.6628 +vn -0.3560 0.6588 0.6628 +vn -0.0260 0.2928 -0.9558 +vn -0.0246 0.2934 -0.9557 +vn -0.0249 0.2930 -0.9558 +vn 0.8578 -0.3577 0.3692 +vn 0.8576 -0.3577 0.3695 +vn 0.8576 -0.3577 0.3697 +vn 0.6040 -0.7896 0.1081 +vn 0.8841 0.2164 0.4142 +vn 0.8841 0.2165 0.4141 +vn 0.8841 0.2167 0.4140 +vn 0.2705 0.9615 -0.0488 +vn 0.2707 0.9615 -0.0484 +vn 0.2706 0.9615 -0.0485 +vn -0.4303 0.9018 0.0387 +vn -0.4305 0.9017 0.0387 +vn -0.4298 0.9021 0.0389 +vn 0.1885 0.2018 0.9611 +vn 0.1895 0.2010 0.9611 +vn 0.1892 0.2015 0.9610 +vn 0.7044 0.6773 0.2122 +vn -0.3935 0.9191 0.0213 +vn -0.3936 0.9190 0.0214 +vn -0.3701 0.3645 -0.8545 +vn -0.3698 0.3643 -0.8547 +vn -0.3703 0.3645 -0.8544 +vn -0.0370 0.9687 -0.2456 +vn -0.0367 0.9688 -0.2453 +vn -0.0363 0.9688 -0.2453 +vn 0.5083 -0.0565 0.8593 +vn 0.5085 -0.0565 0.8592 +vn 0.5084 -0.0565 0.8593 +vn 0.1808 0.4264 -0.8863 +vn 0.1798 0.4259 -0.8867 +vn 0.1816 0.4262 -0.8862 +vn -0.4247 -0.6948 0.5805 +vn -0.4247 -0.6945 0.5807 +vn -0.0958 0.9552 -0.2800 +vn -0.0954 0.9550 -0.2810 +vn -0.0943 0.9547 -0.2823 +vn 0.8699 -0.4698 0.1500 +vn 0.8698 -0.4700 0.1504 +vn 0.3297 -0.7756 -0.5383 +vn 0.3302 -0.7756 -0.5380 +vn 0.3299 -0.7756 -0.5381 +vn -0.5358 0.6774 -0.5040 +vn 0.7139 -0.2280 -0.6621 +vn 0.7137 -0.2283 -0.6622 +vn -0.0218 -0.7221 -0.6914 +vn -0.0220 -0.7223 -0.6912 +vn -0.2895 -0.7244 -0.6256 +vn -0.2898 -0.7246 -0.6253 +vn -0.2137 -0.6566 -0.7234 +vn -0.2136 -0.6565 -0.7234 +vn 0.0715 0.6278 0.7751 +vn 0.0708 0.6281 0.7749 +vn 0.0720 0.6277 0.7751 +vn 0.2398 -0.6202 -0.7469 +vn 0.2395 -0.6202 -0.7470 +vn 0.2397 -0.6202 -0.7469 +vn 0.0140 -0.7245 -0.6892 +vn 0.0142 -0.7244 -0.6892 +vn 0.0141 -0.7244 -0.6892 +vn -0.3384 0.8460 -0.4120 +vn -0.3384 0.8459 -0.4121 +vn -0.3383 0.8460 -0.4121 +vn -0.2433 -0.8499 -0.4674 +vn -0.2446 -0.8495 -0.4675 +vn -0.2436 -0.8498 -0.4675 +vn -0.3184 -0.8861 -0.3367 +vn -0.3191 -0.8853 -0.3381 +vn -0.3185 -0.8856 -0.3380 +vn -0.3170 -0.9242 -0.2128 +vn -0.3173 -0.9242 -0.2123 +vn -0.3172 -0.9243 -0.2124 +vn 0.0099 0.7603 -0.6495 +vn 0.0100 0.7601 -0.6497 +vn -0.3325 0.2330 0.9139 +vn -0.3326 0.2329 0.9139 +vn -0.3325 0.2331 0.9138 +vn -0.6123 0.5919 -0.5241 +vn -0.6122 0.5921 -0.5241 +vn -0.7758 -0.3519 -0.5237 +vn 0.0119 -0.4720 -0.8815 +vn 0.0118 -0.4722 -0.8814 +vn 0.0121 -0.4718 -0.8816 +vn 0.0715 -0.8239 -0.5622 +vn 0.0716 -0.8240 -0.5621 +vn 0.6581 -0.1563 -0.7365 +vn 0.6584 -0.1570 -0.7361 +vn 0.6573 -0.1560 -0.7373 +vn -0.4281 -0.7074 -0.5624 +vn -0.4283 -0.7075 -0.5621 +vn -0.4279 -0.7074 -0.5626 +vn 0.2736 0.2006 0.9407 +vn 0.2737 0.2006 0.9407 +vn 0.2737 0.2004 0.9407 +vn 0.6961 0.5714 -0.4346 +vn 0.6960 0.5714 -0.4348 +vn 0.6965 0.5712 -0.4344 +vn -0.3736 -0.6131 -0.6961 +vn -0.3734 -0.6133 -0.6960 +vn -0.3738 -0.6129 -0.6961 +vn 0.2742 0.4589 -0.8451 +vn 0.2747 0.4587 -0.8450 +vn 0.2752 0.4586 -0.8450 +vn -0.8207 0.5711 -0.0160 +vn -0.8207 0.5711 -0.0159 +vn -0.8208 0.5710 -0.0161 +vn -0.2741 -0.7399 -0.6143 +vn -0.2742 -0.7396 -0.6147 +vn -0.7465 -0.5568 -0.3643 +vn -0.7468 -0.5568 -0.3636 +vn -0.7473 -0.5565 -0.3631 +vn -0.5128 -0.0106 -0.8585 +vn -0.3836 0.0608 -0.9215 +vn -0.3836 0.0601 -0.9215 +vn -0.5214 0.5664 -0.6382 +vn -0.9471 0.3199 -0.0279 +vn -0.1984 0.9223 0.3316 +vn -0.1981 0.9224 0.3314 +vn -0.1983 0.9224 0.3315 +vn -0.2180 -0.3316 0.9179 +vn -0.2185 -0.3312 0.9179 +vn -0.2183 -0.3314 0.9179 +vn 0.6299 0.5971 0.4967 +vn 0.6302 0.5969 0.4966 +vn 0.6304 0.5965 0.4967 +vn -0.0977 -0.9904 -0.0976 +vn -0.0976 -0.9904 -0.0976 +vn -0.0975 -0.9904 -0.0977 +vn -0.3714 -0.4747 0.7979 +vn -0.3713 -0.4750 0.7978 +vn -0.3722 -0.4743 0.7978 +vn 0.4172 0.8300 -0.3701 +vn 0.8270 -0.5462 0.1330 +vn 0.8270 -0.5463 0.1326 +vn 0.8270 -0.5463 0.1328 +vn 0.5784 0.4631 0.6716 +vn 0.5782 0.4635 0.6714 +vn 0.5784 0.4632 0.6715 +vn -0.2930 0.1847 0.9381 +vn -0.2928 0.1849 0.9381 +vn -0.2934 0.1844 0.9380 +vn 0.0495 0.7437 -0.6667 +vn 0.0498 0.7435 -0.6669 +vn 0.0494 0.7437 -0.6667 +vn 0.8685 0.2709 -0.4152 +vn 0.8686 0.2708 -0.4149 +vn 0.8685 0.2709 -0.4151 +vn -0.3154 0.0278 0.9485 +vn -0.3163 0.0289 0.9482 +vn -0.3157 0.0284 0.9484 +vn -0.3876 -0.9192 0.0694 +vn 0.1148 0.4693 -0.8755 +vn 0.1153 0.4692 -0.8755 +vn 0.1151 0.4694 -0.8755 +vn 0.8295 0.3817 0.4078 +vn 0.8293 0.3815 0.4082 +vn 0.8292 0.3815 0.4084 +vn 0.0804 0.6332 -0.7698 +vn 0.0803 0.6333 -0.7697 +vn 0.0802 0.6334 -0.7696 +vn -0.1815 -0.6395 0.7470 +vn -0.1811 -0.6397 0.7470 +vn -0.1814 -0.6396 0.7470 +vn 0.3484 -0.5735 0.7414 +vn 0.3483 -0.5737 0.7413 +vn 0.3484 -0.5737 0.7413 +vn -0.4407 -0.8907 0.1112 +vn -0.4410 -0.8906 0.1112 +vn -0.4408 -0.8907 0.1112 +vn 0.2900 0.5232 -0.8014 +vn 0.2899 0.5234 -0.8012 +vn 0.2903 0.5232 -0.8012 +vn 0.3783 -0.2641 0.8872 +vn 0.3780 -0.2644 0.8873 +vn 0.3784 -0.2641 0.8871 +vn 0.0583 0.7645 -0.6420 +vn 0.0575 0.7656 -0.6407 +vn 0.0581 0.7649 -0.6415 +vn 0.2747 -0.8890 -0.3665 +vn 0.6895 0.7213 -0.0663 +vn 0.6893 0.7215 -0.0661 +vn -0.5286 -0.8299 0.1785 +vn -0.5285 -0.8300 0.1784 +vn -0.5530 -0.8269 -0.1024 +vn -0.5530 -0.8268 -0.1025 +vn -0.5529 -0.8269 -0.1025 +vn 0.8481 0.4440 0.2892 +vn 0.8480 0.4441 0.2892 +vn 0.2758 -0.8641 0.4210 +vn 0.2760 -0.8641 0.4210 +vn 0.2763 -0.8640 0.4209 +vn 0.1932 -0.9663 0.1701 +vn -0.8013 0.0790 0.5930 +vn -0.8014 0.0790 0.5929 +vn -0.8016 0.0788 0.5926 +vn -0.7756 -0.1787 0.6054 +vn -0.7759 -0.1783 0.6052 +vn -0.7759 -0.1782 0.6052 +vn -0.3701 0.7932 0.4836 +vn -0.3702 0.7932 0.4835 +vn -0.0445 -0.9958 0.0795 +vn -0.0443 -0.9958 0.0797 +vn -0.0444 -0.9958 0.0795 +vn -0.0882 -0.9943 -0.0592 +vn -0.0881 -0.9943 -0.0594 +vn -0.0881 -0.9943 -0.0595 +vn -0.1454 -0.9888 -0.0331 +vn -0.1457 -0.9888 -0.0324 +vn -0.1454 -0.9889 -0.0318 +vn -0.9506 0.0042 0.3103 +vn -0.9506 0.0043 0.3104 +vn -0.3294 -0.8338 -0.4431 +vn -0.3295 -0.8345 -0.4416 +vn -0.3293 -0.8336 -0.4435 +vn 0.0940 -0.7487 -0.6562 +vn 0.0958 -0.7476 -0.6572 +vn 0.0947 -0.7481 -0.6568 +vn 0.1126 -0.7582 -0.6422 +vn 0.1131 -0.7582 -0.6421 +vn 0.1139 -0.7579 -0.6423 +vn 0.7175 0.6813 0.1447 +vn 0.7173 0.6816 0.1448 +vn 0.7174 0.6814 0.1448 +vn -0.3593 0.4327 0.8268 +vn -0.3591 0.4327 0.8269 +vn 0.8054 0.5393 0.2459 +vn 0.8053 0.5395 0.2458 +vn 0.8053 0.5395 0.2461 +vn -0.1719 0.4891 -0.8551 +vn -0.1717 0.4889 -0.8553 +vn 0.4663 0.5535 -0.6901 +vn 0.4662 0.5533 -0.6903 +vn 0.4663 0.5537 -0.6899 +vn -0.0296 -0.8467 0.5313 +vn -0.0297 -0.8467 0.5312 +vn 0.2705 -0.3180 -0.9087 +vn 0.2704 -0.3177 -0.9088 +vn 0.8761 -0.1087 0.4698 +vn 0.8759 -0.1085 0.4701 +vn 0.8763 -0.1087 0.4694 +vn -0.8123 0.3062 -0.4963 +vn -0.8122 0.3064 -0.4964 +vn -0.4043 -0.9146 -0.0082 +vn -0.4042 -0.9146 -0.0084 +vn -0.1553 0.3027 -0.9404 +vn -0.1555 0.3024 -0.9404 +vn -0.1551 0.3028 -0.9404 +vn 0.2195 0.4074 0.8865 +vn -0.8593 0.1853 0.4767 +vn -0.8592 0.1852 0.4770 +vn -0.8591 0.1850 0.4773 +vn -0.5202 0.5602 0.6446 +vn -0.9796 0.0891 -0.1799 +vn -0.9796 0.0891 -0.1801 +vn -0.9796 0.0891 -0.1803 +vn 0.3171 -0.0752 0.9454 +vn 0.3182 -0.0748 0.9451 +vn 0.3180 -0.0750 0.9451 +vn -0.1855 -0.9330 -0.3085 +vn -0.1852 -0.9331 -0.3082 +vn 0.6610 0.6698 0.3384 +vn 0.6609 0.6699 0.3383 +vn 0.4079 -0.9130 -0.0065 +vn 0.4077 -0.9131 -0.0064 +vn 0.4078 -0.9131 -0.0062 +vn 0.5265 -0.3500 0.7748 +vn 0.5264 -0.3498 0.7750 +vn 0.5264 -0.3503 0.7747 +vn 0.8661 0.4900 0.0984 +vn 0.8663 0.4898 0.0983 +vn 0.8662 0.4900 0.0982 +vn -0.7665 -0.5206 -0.3761 +vn -0.7663 -0.5208 -0.3762 +vn 0.2528 0.9489 -0.1890 +vn 0.8390 -0.5120 0.1844 +vn 0.8389 -0.5123 0.1839 +vn 0.8387 -0.5123 0.1848 +vn 0.7724 -0.5150 0.3718 +vn 0.7727 -0.5148 0.3713 +vn 0.7725 -0.5150 0.3716 +vn -0.0618 -0.9349 -0.3496 +vn -0.0615 -0.9348 -0.3497 +vn -0.0621 -0.9349 -0.3495 +vn -0.6100 0.0267 -0.7920 +vn -0.6095 0.0271 -0.7923 +vn -0.6097 0.0270 -0.7922 +vn 0.3040 0.3820 -0.8728 +vn 0.3036 0.3816 -0.8730 +vn 0.3036 0.3819 -0.8729 +vn 0.1276 0.7181 0.6841 +vn 0.1275 0.7181 0.6841 +vn -0.5381 -0.0637 -0.8405 +vn -0.5385 -0.0643 -0.8402 +vn -0.5386 -0.0645 -0.8401 +vn 0.3652 0.9105 -0.1939 +vn 0.3651 0.9105 -0.1943 +vn 0.3653 0.9105 -0.1939 +vn -0.2764 -0.4307 -0.8591 +vn -0.2766 -0.4305 -0.8592 +vn -0.2764 -0.4306 -0.8592 +vn 0.9350 0.3430 0.0898 +vn 0.9351 0.3429 0.0896 +vn -0.4988 0.2354 0.8341 +vn -0.2459 -0.7784 -0.5776 +vn -0.8720 -0.1488 0.4663 +vn -0.8718 -0.1493 0.4665 +vn -0.8719 -0.1492 0.4663 +vn -0.0876 0.2537 -0.9633 +vn -0.0878 0.2536 -0.9633 +vn -0.5816 0.4145 0.7000 +vn -0.5812 0.4146 0.7002 +vn -0.5810 0.4147 0.7003 +vn 0.4884 -0.3580 -0.7958 +vn 0.4884 -0.3579 -0.7959 +vn 0.4885 -0.3579 -0.7958 +vn 0.3649 -0.7076 -0.6051 +vn 0.3651 -0.7076 -0.6050 +vn -0.3226 0.0356 0.9459 +vn -0.3228 0.0359 0.9458 +vn -0.3222 0.0357 0.9460 +vn 0.8976 -0.4055 0.1727 +vn 0.8976 -0.4055 0.1726 +vn 0.8974 -0.4059 0.1730 +vn 0.0023 0.0336 0.9994 +vn -0.7288 0.5075 -0.4596 +vn -0.7290 0.5072 -0.4597 +vn -0.7293 0.5069 -0.4595 +vn -0.7792 -0.5764 0.2462 +vn -0.7792 -0.5763 0.2463 +vn -0.7794 -0.5760 0.2465 +vn -0.0115 0.9984 -0.0562 +vn -0.0114 0.9983 -0.0563 +vn -0.0116 0.9984 -0.0560 +vn -0.2698 0.7637 0.5865 +vn -0.2699 0.7636 0.5866 +vn 0.3914 -0.9094 -0.1409 +vn 0.3913 -0.9094 -0.1407 +vn 0.6024 0.7340 -0.3135 +vn 0.6022 0.7343 -0.3134 +vn 0.6023 0.7342 -0.3134 +vn 0.5912 -0.4439 -0.6734 +vn 0.2464 0.1346 0.9598 +vn 0.2465 0.1350 0.9597 +vn 0.2463 0.1341 0.9599 +vn 0.5997 -0.4477 -0.6633 +vn 0.5996 -0.4476 -0.6634 +vn -0.0571 0.4415 0.8954 +vn -0.0578 0.4416 0.8954 +vn -0.0573 0.4415 0.8954 +vn 0.0245 0.2854 -0.9581 +vn 0.0249 0.2849 -0.9582 +vn -0.2837 0.0378 -0.9582 +vn -0.2837 0.0377 -0.9582 +vn -0.2838 0.0372 -0.9582 +vn 0.6355 0.2447 0.7323 +vn 0.6362 0.2439 0.7319 +vn 0.6366 0.2436 0.7317 +vn 0.8395 0.3174 -0.4411 +vn 0.8395 0.3173 -0.4411 +vn 0.8394 0.3176 -0.4410 +vn -0.3412 0.9248 0.1684 +vn -0.3410 0.9248 0.1686 +vn -0.0393 -0.8584 0.5115 +vn -0.0385 -0.8586 0.5113 +vn -0.0397 -0.8582 0.5119 +vn 0.6758 0.6719 0.3031 +vn 0.6759 0.6717 0.3031 +vn 0.6757 0.6720 0.3031 +vn -0.8461 0.4902 0.2095 +vn -0.8460 0.4902 0.2100 +vn -0.8461 0.4902 0.2094 +vn -0.3718 -0.9071 -0.1973 +vn -0.3720 -0.9071 -0.1968 +vn 0.4172 -0.8480 -0.3268 +vn 0.4170 -0.8480 -0.3270 +vn 0.4089 -0.8718 -0.2698 +vn 0.4090 -0.8718 -0.2696 +vn 0.4089 -0.8718 -0.2696 +vn 0.6501 -0.7520 0.1087 +vn 0.6499 -0.7522 0.1088 +vn -0.1680 0.0917 0.9815 +vn -0.1683 0.0921 0.9814 +vn 0.6090 -0.6366 0.4732 +vn 0.2062 0.5152 -0.8319 +vn -0.5653 0.8241 0.0365 +vn -0.5651 0.8242 0.0364 +vn 0.7887 0.4692 0.3972 +vn -0.5607 0.8069 -0.1856 +vn -0.0325 -0.5886 0.8078 +vn -0.0322 -0.5885 0.8078 +vn 0.5934 0.7729 -0.2246 +vn 0.5936 0.7727 -0.2247 +vn 0.5938 0.7726 -0.2248 +vn 0.9121 -0.3529 -0.2088 +vn 0.9121 -0.3528 -0.2087 +vn 0.9122 -0.3527 -0.2086 +vn -0.6428 0.3722 -0.6695 +vn -0.6421 0.3721 -0.6703 +vn -0.6435 0.3728 -0.6685 +vn -0.6800 0.6946 -0.2347 +vn -0.6799 0.6947 -0.2349 +vn -0.6800 0.6946 -0.2348 +vn -0.8709 0.4251 -0.2467 +vn -0.8709 0.4250 -0.2469 +vn 0.9080 0.3382 0.2472 +vn 0.9080 0.3380 0.2474 +vn 0.9080 0.3381 0.2476 +vn -0.2659 -0.9638 -0.0180 +vn -0.2653 -0.9640 -0.0179 +vn -0.2651 -0.9641 -0.0180 +vn -0.8476 -0.4984 0.1822 +vn -0.8474 -0.4987 0.1820 +vn -0.8474 -0.4988 0.1820 +vn 0.1075 -0.8297 -0.5478 +vn 0.1074 -0.8297 -0.5478 +vn -0.4508 -0.5229 -0.7235 +vn -0.4505 -0.5225 -0.7239 +vn -0.4509 -0.5234 -0.7230 +vn 0.8081 0.2173 0.5475 +vn 0.8079 0.2173 0.5478 +vn 0.7461 0.2507 0.6169 +vn 0.7461 0.2506 0.6168 +vn 0.7460 0.2508 0.6169 +vn 0.2158 -0.7509 -0.6242 +vn -0.2210 -0.2146 -0.9514 +vn -0.2213 -0.2145 -0.9513 +vn -0.2211 -0.2145 -0.9514 +vn -0.7851 0.6165 -0.0599 +vn -0.7850 0.6165 -0.0600 +vn -0.7850 0.6166 -0.0600 +vn -0.0986 -0.9932 0.0612 +vn -0.0987 -0.9933 0.0608 +vn -0.0986 -0.9932 0.0613 +vn 0.3921 -0.8062 0.4430 +vn 0.3903 -0.8072 0.4429 +vn 0.3913 -0.8068 0.4427 +vn -0.2296 0.1222 -0.9656 +vn 0.3601 0.8560 -0.3709 +vn 0.3607 0.8558 -0.3707 +vn 0.3597 0.8561 -0.3711 +vn -0.0513 0.9747 -0.2174 +vn -0.0513 0.9747 -0.2176 +vn -0.0508 0.9747 -0.2178 +vn 0.1018 0.9921 -0.0738 +vn 0.1413 0.9767 -0.1616 +vn 0.1415 0.9767 -0.1614 +vn 0.1414 0.9767 -0.1612 +vn -0.8853 -0.4591 0.0737 +vn -0.8857 -0.4584 0.0733 +vn -0.8860 -0.4580 0.0729 +vn 0.1128 -0.8122 0.5724 +vn 0.1142 -0.8120 0.5724 +vn 0.1107 -0.8129 0.5718 +vn 0.1115 0.0955 -0.9892 +vn -0.7456 0.4978 -0.4431 +vn -0.7457 0.4976 -0.4430 +vn -0.2834 -0.9213 -0.2664 +vn -0.2840 -0.9210 -0.2665 +vn -0.2847 -0.9207 -0.2670 +vn 0.4183 -0.1133 0.9012 +vn 0.4183 -0.1127 0.9013 +vn 0.4183 -0.1132 0.9012 +vn -0.0366 0.9079 -0.4176 +vn -0.0370 0.9080 -0.4174 +vn -0.0368 0.9080 -0.4174 +vn 0.9797 -0.1774 -0.0933 +vn 0.9795 -0.1785 -0.0933 +vn 0.9796 -0.1782 -0.0932 +vn -0.4597 -0.8466 -0.2683 +vn 0.1549 0.6578 0.7371 +vn 0.1536 0.6588 0.7364 +vn 0.1542 0.6582 0.7369 +vn -0.6449 -0.5463 -0.5344 +vn -0.6446 -0.5462 -0.5349 +vn -0.6445 -0.5461 -0.5351 +vn 0.2783 0.1147 -0.9536 +vn 0.2783 0.1151 -0.9536 +vn 0.2783 0.1149 -0.9536 +vn 0.3840 -0.9219 0.0519 +vn 0.3839 -0.9219 0.0521 +vn -0.7039 0.6183 -0.3496 +vn -0.7043 0.6183 -0.3489 +vn -0.7038 0.6183 -0.3497 +vn -0.1711 -0.9349 -0.3108 +vn -0.4003 0.4161 0.8165 +vn -0.4003 0.4160 0.8165 +vn -0.4002 0.4159 0.8166 +vn -0.6561 0.6333 0.4103 +vn -0.6562 0.6332 0.4104 +vn -0.6560 0.6334 0.4104 +vn -0.4781 0.4835 0.7333 +vn -0.4779 0.4835 0.7334 +vn -0.5149 0.0459 -0.8560 +vn -0.5148 0.0451 -0.8561 +vn -0.5148 0.0454 -0.8561 +vn 0.0856 -0.9344 -0.3459 +vn 0.0867 -0.9345 -0.3453 +vn 0.0853 -0.9343 -0.3461 +vn 0.2636 -0.9402 -0.2156 +vn 0.2634 -0.9404 -0.2152 +vn 0.2632 -0.9405 -0.2148 +vn 0.0973 0.9792 -0.1780 +vn 0.0991 0.9788 -0.1795 +vn 0.0979 0.9790 -0.1790 +vn 0.0246 -0.8377 -0.5456 +vn -0.9085 0.4148 -0.0496 +vn -0.0081 0.8672 -0.4979 +vn -0.0080 0.8672 -0.4980 +vn -0.8703 0.1478 -0.4698 +vn -0.8704 0.1476 -0.4697 +vn -0.8699 0.1481 -0.4705 +vn 0.8845 -0.4291 0.1830 +vn 0.8845 -0.4293 0.1827 +vn 0.8845 -0.4291 0.1828 +vn 0.3739 -0.1557 0.9143 +vn 0.3737 -0.1552 0.9144 +vn 0.3737 -0.1553 0.9144 +vn -0.4800 0.6489 -0.5904 +vn -0.4805 0.6489 -0.5900 +vn -0.4794 0.6487 -0.5910 +vn 0.1076 0.7144 0.6914 +vn 0.1073 0.7147 0.6912 +vn 0.1070 0.7149 0.6910 +vn 0.1715 -0.3888 0.9052 +vn 0.1728 -0.3890 0.9049 +vn 0.1710 -0.3885 0.9054 +vn -0.9403 0.3327 -0.0714 +vn -0.9402 0.3329 -0.0716 +vn -0.9432 0.3202 -0.0883 +vn -0.9433 0.3199 -0.0883 +vn -0.9432 0.3203 -0.0882 +vn -0.7501 0.5026 -0.4297 +vn -0.7502 0.5023 -0.4300 +vn -0.7500 0.5030 -0.4296 +vn 0.1573 -0.8450 0.5112 +vn 0.1570 -0.8449 0.5113 +vn 0.1567 -0.8449 0.5115 +vn 0.4305 -0.3632 -0.8263 +vn 0.4303 -0.3634 -0.8263 +vn -0.5256 -0.5761 0.6260 +vn -0.5255 -0.5758 0.6263 +vn -0.5255 -0.5759 0.6263 +vn 0.4302 -0.5253 -0.7341 +vn -0.3762 -0.4117 -0.8301 +vn -0.3764 -0.4116 -0.8300 +vn -0.7682 0.2910 -0.5703 +vn -0.7679 0.2908 -0.5708 +vn -0.7682 0.2914 -0.5701 +vn -0.7494 -0.4416 0.4933 +vn -0.7494 -0.4417 0.4933 +vn 0.2622 -0.8686 -0.4205 +vn 0.2628 -0.8684 -0.4205 +vn 0.6695 0.0547 0.7408 +vn 0.6696 0.0547 0.7407 +vn 0.6698 0.0550 0.7405 +vn -0.1369 -0.7420 -0.6563 +vn -0.1367 -0.7415 -0.6569 +vn -0.1369 -0.7417 -0.6566 +vn -0.3475 0.1601 -0.9239 +vn 0.9213 0.1709 -0.3494 +vn 0.9213 0.1704 -0.3495 +vn 0.9212 0.1710 -0.3496 +vn 0.3190 0.8486 -0.4220 +vn 0.3188 0.8482 -0.4231 +vn 0.3190 0.8484 -0.4224 +vn -0.2665 0.9604 -0.0810 +vn -0.2661 0.9605 -0.0814 +vn -0.2661 0.9605 -0.0817 +vn 0.0495 -0.8796 0.4732 +vn 0.0491 -0.8783 0.4756 +vn 0.0490 -0.8787 0.4749 +vn -0.3621 -0.7447 0.5607 +vn -0.3609 -0.7450 0.5610 +vn -0.3614 -0.7450 0.5607 +vn 0.0268 0.8062 -0.5910 +vn 0.0268 0.8062 -0.5911 +vn 0.0268 0.8061 -0.5911 +vn -0.1046 0.6470 -0.7553 +vn -0.1046 0.6469 -0.7554 +vn -0.1048 0.6470 -0.7552 +vn 0.0309 0.8340 -0.5509 +vn -0.1867 -0.9644 -0.1873 +vn -0.1867 -0.9644 -0.1872 +vn -0.1869 -0.9643 -0.1877 +vn -0.5596 -0.7842 -0.2680 +vn -0.5597 -0.7842 -0.2679 +vn -0.5596 -0.7842 -0.2681 +vn 0.6492 -0.5248 0.5506 +vn 0.6490 -0.5249 0.5507 +vn 0.9248 -0.3238 0.1999 +vn 0.9246 -0.3235 0.2012 +vn 0.9248 -0.3233 0.2006 +vn -0.2707 -0.9623 0.0280 +vn -0.2703 -0.9624 0.0279 +vn -0.2705 -0.9623 0.0280 +vn 0.3072 -0.4965 -0.8118 +vn 0.3066 -0.4970 -0.8118 +vn 0.3076 -0.4959 -0.8121 +vn -0.2909 -0.7917 -0.5372 +vn -0.2908 -0.7917 -0.5373 +vn -0.0007 0.3428 0.9394 +vn -0.0006 0.3429 0.9394 +vn -0.1053 0.9046 -0.4131 +vn -0.1053 0.9046 -0.4132 +vn 0.2925 0.1135 -0.9495 +vn 0.2925 0.1138 -0.9495 +vn 0.2918 0.1143 -0.9496 +vn 0.6448 -0.2217 0.7315 +vn 0.6445 -0.2215 0.7318 +vn 0.6442 -0.2217 0.7320 +vn -0.4874 -0.8157 -0.3117 +vn -0.4875 -0.8156 -0.3117 +vn -0.4871 -0.8159 -0.3115 +vn 0.8312 0.5393 0.1350 +vn 0.8312 0.5391 0.1361 +vn 0.8310 0.5392 0.1367 +vn 0.2276 -0.1773 -0.9575 +vn 0.2272 -0.1775 -0.9575 +vn 0.2270 -0.1776 -0.9576 +vn -0.2988 0.2623 0.9176 +vn -0.2992 0.2624 0.9174 +vn -0.2991 0.2624 0.9174 +vn -0.3493 -0.9368 0.0196 +vn 0.4567 -0.4650 -0.7584 +vn 0.4568 -0.4651 -0.7583 +vn 0.4568 -0.4649 -0.7584 +vn 0.8278 0.2179 -0.5170 +vn 0.8274 0.2230 -0.5154 +vn 0.8281 0.2195 -0.5159 +vn -0.0037 0.1688 0.9856 +vn -0.0032 0.1686 0.9857 +vn -0.0044 0.1692 0.9856 +vn -0.1609 -0.6332 0.7571 +vn -0.1613 -0.6333 0.7569 +vn -0.1611 -0.6331 0.7571 +vn 0.1155 0.0841 0.9897 +vn 0.1158 0.0842 0.9897 +vn 0.1154 0.0839 0.9898 +vn -0.1980 -0.9686 0.1502 +vn -0.1975 -0.9688 0.1500 +vn -0.1982 -0.9686 0.1502 +vn 0.0085 -0.9722 0.2342 +vn 0.0084 -0.9721 0.2344 +vn 0.0088 -0.9721 0.2345 +vn -0.4301 -0.8482 -0.3093 +vn -0.4298 -0.8484 -0.3090 +vn 0.2072 -0.7350 0.6456 +vn 0.9628 -0.0714 -0.2607 +vn 0.9627 -0.0719 -0.2607 +vn 0.9628 -0.0718 -0.2606 +vn -0.8377 0.4683 0.2808 +vn -0.8378 0.4686 0.2800 +vn -0.8378 0.4686 0.2803 +vn 0.3657 0.6278 -0.6871 +vn 0.3218 -0.5480 -0.7721 +vn 0.3224 -0.5480 -0.7718 +vn 0.3228 -0.5483 -0.7714 +vn -0.1198 -0.3107 -0.9429 +vn -0.1197 -0.3107 -0.9429 +vn -0.1199 -0.3105 -0.9430 +vn -0.7917 0.1414 -0.5944 +vn -0.7913 0.1412 -0.5949 +vn -0.7918 0.1414 -0.5942 +vn -0.9601 -0.2496 -0.1265 +vn -0.9601 -0.2496 -0.1264 +vn -0.2247 -0.2838 -0.9322 +vn -0.2249 -0.2832 -0.9323 +vn -0.0206 0.1443 -0.9893 +vn -0.0204 0.1445 -0.9893 +vn -0.0204 0.1450 -0.9892 +vn -0.5297 0.1775 -0.8294 +vn -0.5294 0.1783 -0.8294 +vn -0.5294 0.1771 -0.8297 +vn 0.1405 -0.8627 0.4859 +vn 0.1399 -0.8631 0.4853 +vn -0.4042 -0.5778 0.7090 +vn -0.4038 -0.5780 0.7092 +vn -0.1463 -0.9761 0.1608 +vn -0.1467 -0.9760 0.1611 +vn -0.1475 -0.9758 0.1612 +vn 0.3877 -0.7926 0.4707 +vn 0.3878 -0.7925 0.4706 +vn -0.5258 -0.7500 -0.4013 +vn -0.5256 -0.7500 -0.4015 +vn -0.5263 -0.7496 -0.4014 +vn 0.1498 -0.9175 0.3685 +vn 0.1499 -0.9175 0.3684 +vn 0.2210 -0.8735 0.4337 +vn 0.2213 -0.8734 0.4337 +vn 0.2211 -0.8735 0.4337 +vn -0.4225 -0.5111 0.7485 +vn -0.4224 -0.5112 0.7485 +vn 0.6861 0.3172 -0.6547 +vn 0.6859 0.3169 -0.6550 +vn 0.6857 0.3167 -0.6554 +vn -0.5280 -0.6301 0.5694 +vn -0.5283 -0.6300 0.5692 +vn -0.5278 -0.6301 0.5695 +vn 0.1067 -0.7482 0.6548 +vn 0.1068 -0.7483 0.6547 +vn 0.1069 -0.7483 0.6547 +vn 0.4004 0.9062 0.1363 +vn 0.4001 0.9063 0.1362 +vn 0.3998 0.9065 0.1359 +vn 0.3039 0.9416 -0.1447 +vn 0.3042 0.9416 -0.1447 +vn 0.3044 0.9415 -0.1447 +vn -0.5150 0.7094 0.4811 +vn -0.5151 0.7095 0.4809 +vn 0.4658 0.6331 0.6182 +vn 0.4656 0.6331 0.6184 +vn 0.4660 0.6331 0.6181 +vn -0.9873 0.1522 0.0448 +vn -0.9873 0.1521 0.0451 +vn -0.9873 0.1522 0.0450 +vn 0.2789 0.8371 -0.4706 +vn 0.2789 0.8369 -0.4709 +vn 0.2789 0.8372 -0.4704 +vn -0.6563 -0.7016 -0.2775 +vn -0.6564 -0.7015 -0.2775 +vn -0.6565 -0.7013 -0.2777 +vn -0.3137 -0.9148 0.2545 +vn -0.3134 -0.9149 0.2545 +vn -0.3135 -0.9149 0.2545 +vn -0.5687 -0.0375 -0.8217 +vn -0.5688 -0.0377 -0.8216 +vn -0.3408 -0.9391 0.0447 +vn -0.3409 -0.9390 0.0450 +vn -0.3409 -0.9390 0.0449 +vn -0.0792 -0.3372 -0.9381 +vn 0.0019 0.8261 -0.5635 +vn 0.0020 0.8260 -0.5637 +vn 0.0020 0.8259 -0.5639 +vn 0.4531 0.0248 0.8911 +vn 0.4529 0.0242 0.8912 +vn 0.4532 0.0246 0.8911 +vn 0.1648 0.6047 0.7792 +vn 0.1648 0.6045 0.7794 +vn 0.1646 0.6045 0.7794 +vn 0.2630 0.9564 -0.1273 +vn 0.9049 -0.1391 0.4022 +vn 0.9049 -0.1392 0.4022 +vn -0.4307 -0.7324 -0.5274 +vn -0.4307 -0.7322 -0.5276 +vn -0.4076 -0.9131 0.0115 +vn -0.4078 -0.9130 0.0114 +vn -0.4079 -0.9130 0.0116 +vn -0.0291 -0.9798 -0.1980 +vn -0.0293 -0.9799 -0.1975 +vn -0.0294 -0.9796 -0.1989 +vn -0.8746 -0.1421 -0.4635 +vn -0.8746 -0.1422 -0.4635 +vn 0.3838 -0.9028 0.1940 +vn 0.3810 -0.9038 0.1951 +vn 0.3854 -0.9024 0.1929 +vn -0.8766 -0.1628 -0.4529 +vn -0.8766 -0.1629 -0.4528 +vn -0.8765 -0.1627 -0.4531 +vn 0.8720 0.2457 -0.4234 +vn -0.0296 0.8559 -0.5163 +vn -0.0295 0.8560 -0.5162 +vn -0.0297 0.8559 -0.5163 +vn 0.2309 -0.6457 -0.7278 +vn 0.2308 -0.6456 -0.7279 +vn 0.2307 -0.6455 -0.7281 +vn -0.2499 0.8371 -0.4867 +vn -0.3737 0.6432 0.6683 +vn -0.3125 -0.7930 -0.5229 +vn -0.3126 -0.7931 -0.5227 +vn -0.3126 -0.7932 -0.5226 +vn 0.3259 0.0958 0.9405 +vn 0.3258 0.0957 0.9406 +vn 0.3251 0.0952 0.9409 +vn -0.8042 -0.5921 -0.0523 +vn 0.0653 0.6529 0.7546 +vn 0.0668 0.6526 0.7548 +vn 0.0659 0.6528 0.7546 +vn -0.7942 -0.5764 -0.1923 +vn -0.7942 -0.5763 -0.1926 +vn -0.7941 -0.5764 -0.1925 +vn -0.5859 0.2569 0.7686 +vn -0.5860 0.2569 0.7685 +vn -0.5864 0.2576 0.7680 +vn 0.3277 -0.9287 -0.1737 +vn 0.3276 -0.9287 -0.1740 +vn -0.9428 0.3332 -0.0109 +vn -0.9426 0.3338 -0.0112 +vn -0.9425 0.3339 -0.0112 +vn 0.3078 0.5221 0.7954 +vn 0.3078 0.5220 0.7954 +vn 0.3078 0.5220 0.7955 +vn -0.0271 0.6283 -0.7775 +vn -0.0270 0.6287 -0.7772 +vn -0.0270 0.6286 -0.7773 +vn -0.3664 0.8600 -0.3552 +vn -0.3663 0.8600 -0.3553 +vn -0.5269 0.8006 -0.2852 +vn -0.5270 0.8006 -0.2852 +vn -0.6540 0.0475 0.7550 +vn -0.6551 0.0482 0.7540 +vn -0.6544 0.0479 0.7546 +vn 0.0003 0.0008 1.0000 +vn -0.6874 -0.2371 0.6865 +vn -0.6877 -0.2368 0.6863 +vn -0.6873 -0.2372 0.6865 +vn -0.2084 -0.0821 0.9746 +vn -0.2089 -0.0822 0.9745 +vn -0.2083 -0.0824 0.9746 +vn -0.0578 -0.7183 -0.6933 +vn -0.0577 -0.7188 -0.6928 +vn -0.0576 -0.7190 -0.6926 +vn 0.1833 -0.3217 -0.9289 +vn 0.1830 -0.3219 -0.9289 +vn -0.7801 0.3815 -0.4958 +vn -0.7801 0.3815 -0.4959 +vn 0.6739 0.3058 -0.6726 +vn 0.1896 0.6860 0.7025 +vn 0.1892 0.6857 0.7029 +vn 0.1895 0.6859 0.7026 +vn 0.5712 -0.3095 -0.7602 +vn 0.5712 -0.3094 -0.7603 +vn 0.4025 0.4266 -0.8099 +vn 0.4028 0.4266 -0.8098 +vn 0.4027 0.4266 -0.8098 +vn 0.1124 0.2858 -0.9517 +vn 0.1133 0.2864 -0.9514 +vn 0.1128 0.2859 -0.9516 +vn -0.0008 0.9490 -0.3153 +vn 0.5560 0.3036 -0.7738 +vn 0.2428 -0.7788 0.5783 +vn 0.2430 -0.7790 0.5780 +vn 0.2433 -0.7792 0.5776 +vn 0.7229 0.6860 0.0825 +vn -0.3895 -0.7059 0.5915 +vn -0.3894 -0.7058 0.5918 +vn -0.3892 -0.7058 0.5919 +vn 0.2869 -0.9068 0.3088 +vn 0.2867 -0.9068 0.3090 +vn 0.2871 -0.9068 0.3086 +vn 0.4355 0.4915 -0.7542 +vn 0.4354 0.4915 -0.7542 +vn 0.3211 -0.8569 -0.4033 +vn 0.3210 -0.8563 -0.4045 +vn 0.3210 -0.8566 -0.4039 +vn 0.9427 -0.3045 -0.1361 +vn 0.9425 -0.3051 -0.1363 +vn 0.1588 -0.8840 -0.4398 +vn 0.4271 -0.2564 -0.8671 +vn -0.2276 -0.9555 -0.1876 +vn 0.4096 -0.0188 0.9121 +vn 0.4095 -0.0185 0.9121 +vn 0.4095 -0.0186 0.9121 +vn 0.1537 0.9811 -0.1175 +vn 0.1537 0.9812 -0.1171 +vn -0.0410 -0.8566 0.5143 +vn -0.0411 -0.8568 0.5141 +vn -0.1574 -0.9202 0.3583 +vn -0.4607 0.7103 -0.5322 +vn -0.4606 0.7105 -0.5320 +vn -0.3615 0.9095 0.2053 +vn -0.3615 0.9095 0.2054 +vn -0.0618 -0.9744 -0.2163 +vn -0.0627 -0.9743 -0.2163 +vn -0.0624 -0.9743 -0.2163 +vn -0.2449 -0.9615 -0.1249 +vn -0.2448 -0.9615 -0.1249 +vn -0.2444 -0.9616 -0.1248 +vn 0.9021 0.4313 -0.0107 +vn 0.9022 0.4311 -0.0108 +vn 0.9025 0.4306 -0.0112 +vn -0.8091 0.5874 -0.0190 +vn -0.8092 0.5872 -0.0191 +vn -0.8092 0.5872 -0.0192 +vn 0.8823 0.2431 -0.4031 +vn 0.8825 0.2434 -0.4023 +vn 0.8822 0.2423 -0.4036 +vn 0.0933 0.8779 0.4696 +vn 0.0941 0.8781 0.4691 +vn 0.0942 0.8781 0.4691 +vn -0.3212 -0.6520 0.6868 +vn -0.6015 0.4459 -0.6629 +vn -0.6011 0.4463 -0.6630 +vn -0.6013 0.4462 -0.6628 +vn 0.0075 0.9735 -0.2287 +vn 0.6728 -0.6883 -0.2713 +vn 0.6728 -0.6883 -0.2714 +vn 0.6685 -0.5164 0.5352 +vn 0.6685 -0.5165 0.5351 +vn -0.5593 0.4291 0.7092 +vn -0.5590 0.4294 0.7093 +vn 0.0352 0.9985 0.0431 +vn 0.0351 0.9984 0.0434 +vn 0.8256 0.2309 0.5148 +vn 0.8258 0.2308 0.5146 +vn -0.3379 0.9390 0.0646 +vn -0.5265 -0.8499 -0.0209 +vn 0.0357 -0.7583 -0.6510 +vn 0.0358 -0.7583 -0.6509 +vn 0.8044 0.2377 -0.5445 +vn 0.3918 0.8810 0.2653 +vn 0.3917 0.8810 0.2653 +vn -0.5534 -0.8310 -0.0572 +vn -0.5534 -0.8309 -0.0573 +vn -0.5535 -0.8309 -0.0571 +vn -0.3144 -0.4373 -0.8426 +vn -0.3145 -0.4373 -0.8425 +vn 0.1347 0.3762 -0.9167 +vn 0.1348 0.3761 -0.9167 +vn 0.1350 0.3764 -0.9166 +vn 0.0267 -0.6329 -0.7738 +vn 0.0266 -0.6329 -0.7738 +vn -0.2167 -0.9590 0.1825 +vn -0.2167 -0.9591 0.1820 +vn -0.2161 -0.9588 0.1847 +vn -0.4607 0.6296 -0.6256 +vn -0.4611 0.6305 -0.6244 +vn -0.4622 0.6311 -0.6230 +vn -0.1136 0.7710 0.6266 +vn -0.4317 -0.7612 0.4840 +vn -0.4320 -0.7611 0.4838 +vn 0.3421 -0.7098 0.6158 +vn 0.2807 -0.7314 0.6215 +vn 0.2802 -0.7324 0.6206 +vn 0.2803 -0.7329 0.6200 +vn 0.5691 0.7587 0.3169 +vn -0.3223 -0.9133 0.2491 +vn -0.3228 -0.9132 0.2489 +vn 0.7985 0.6017 0.0199 +vn 0.7983 0.6019 0.0213 +vn 0.7983 0.6019 0.0210 +vn 0.2722 0.3688 -0.8888 +vn 0.2722 0.3690 -0.8887 +vn 0.2722 0.3692 -0.8886 +vn -0.1317 0.7869 -0.6029 +vn -0.1315 0.7871 -0.6027 +vn -0.1315 0.7870 -0.6028 +vn 0.1623 0.9489 0.2706 +vn -0.4680 -0.2806 -0.8380 +vn -0.4682 -0.2808 -0.8378 +vn 0.5497 0.7725 -0.3179 +vn 0.5496 0.7725 -0.3182 +vn 0.5495 0.7725 -0.3183 +vn 0.1226 -0.9879 -0.0945 +vn 0.1226 -0.9879 -0.0948 +vn 0.1226 -0.9879 -0.0953 +vn -0.7183 0.5077 -0.4756 +vn -0.7183 0.5078 -0.4756 +vn -0.7183 0.5077 -0.4757 +vn -0.4780 -0.8751 -0.0756 +vn -0.4779 -0.8751 -0.0758 +vn -0.4782 -0.8750 -0.0755 +vn 0.6494 -0.5027 0.5706 +vn 0.6488 -0.5021 0.5718 +vn 0.6498 -0.5028 0.5701 +vn -0.8829 -0.3776 -0.2792 +vn -0.8827 -0.3778 -0.2794 +vn -0.6563 -0.5310 -0.5360 +vn -0.6563 -0.5308 -0.5362 +vn -0.6563 -0.5311 -0.5359 +vn 0.4901 -0.5643 0.6644 +vn 0.4890 -0.5651 0.6645 +vn 0.4888 -0.5655 0.6643 +vn -0.0639 0.0700 0.9955 +vn -0.0645 0.0712 0.9954 +vn -0.0649 0.0716 0.9953 +vn -0.7805 0.6193 0.0858 +vn -0.7805 0.6192 0.0858 +vn -0.7801 0.6197 0.0859 +vn -0.8566 -0.5092 0.0832 +vn -0.8565 -0.5095 0.0832 +vn -0.8404 -0.3015 0.4503 +vn -0.8401 -0.3017 0.4507 +vn -0.8397 -0.3023 0.4512 +vn 0.8910 0.4033 0.2086 +vn 0.8909 0.4036 0.2083 +vn 0.9372 -0.3480 -0.0224 +vn 0.7075 -0.1994 -0.6780 +vn 0.7073 -0.1996 -0.6782 +vn 0.7079 -0.1991 -0.6777 +vn -0.2168 0.6351 -0.7414 +vn -0.2171 0.6351 -0.7413 +vn -0.2171 0.6348 -0.7415 +vn -0.0078 -0.0046 1.0000 +vn -0.7411 -0.6527 0.1574 +vn -0.3141 0.0083 -0.9494 +vn -0.3149 0.0089 -0.9491 +vn -0.3153 0.0097 -0.9490 +vn -0.3458 -0.5489 0.7610 +vn -0.3457 -0.5488 0.7611 +vn -0.3455 -0.5489 0.7611 +vn -0.9480 0.3029 -0.0978 +vn -0.9480 0.3028 -0.0979 +vn -0.4497 -0.6842 0.5741 +vn -0.4499 -0.6839 0.5744 +vn -0.4513 -0.6823 0.5751 +vn 0.5451 -0.1826 0.8182 +vn 0.5455 -0.1825 0.8180 +vn 0.5454 -0.1823 0.8181 +vn -0.3195 -0.9245 0.2078 +vn -0.3197 -0.9246 0.2073 +vn -0.3194 -0.9245 0.2079 +vn -0.6595 0.1706 -0.7321 +vn -0.6594 0.1708 -0.7321 +vn -0.6593 0.1711 -0.7322 +vn -0.4109 0.8567 -0.3118 +vn -0.4109 0.8568 -0.3116 +vn -0.4110 0.8567 -0.3117 +vn -0.9186 0.3498 0.1837 +vn -0.9187 0.3497 0.1835 +vn 0.8085 0.3596 0.4659 +vn 0.8086 0.3594 0.4659 +vn -0.0664 0.9847 -0.1613 +vn -0.0659 0.9847 -0.1611 +vn -0.0661 0.9847 -0.1612 +vn 0.7171 -0.5212 0.4628 +vn 0.0729 0.3332 0.9400 +vn 0.0725 0.3328 0.9402 +vn 0.0729 0.3331 0.9401 +vn -0.7752 -0.2662 -0.5729 +vn -0.7752 -0.2659 -0.5730 +vn -0.7753 -0.2661 -0.5728 +vn -0.4510 -0.7846 -0.4255 +vn -0.4510 -0.7843 -0.4259 +vn -0.3656 -0.0874 -0.9267 +vn -0.3663 -0.0867 -0.9264 +vn -0.3668 -0.0863 -0.9263 +vn -0.9930 -0.0171 -0.1168 +vn -0.9930 -0.0170 -0.1166 +vn -0.9930 -0.0170 -0.1172 +vn 0.6422 0.7658 -0.0338 +vn 0.6431 0.7650 -0.0336 +vn 0.6429 0.7652 -0.0339 +vn -0.0929 -0.8691 -0.4858 +vn -0.0931 -0.8692 -0.4856 +vn -0.0932 -0.8690 -0.4859 +vn -0.8084 0.3760 -0.4528 +vn -0.8079 0.3753 -0.4544 +vn -0.8082 0.3759 -0.4534 +vn 0.8917 -0.4502 -0.0469 +vn 0.3987 0.8857 -0.2377 +vn 0.3989 0.8858 -0.2372 +vn 0.3983 0.8859 -0.2378 +vn 0.0031 0.0018 1.0000 +vn -0.0317 -0.8227 -0.5676 +vn -0.0680 -0.8421 -0.5350 +vn -0.0687 -0.8422 -0.5347 +vn -0.0674 -0.8422 -0.5349 +vn 0.0436 -0.7133 -0.6995 +vn 0.0438 -0.7133 -0.6995 +vn -0.0603 -0.8098 -0.5835 +vn -0.8908 -0.0723 -0.4487 +vn -0.8909 -0.0725 -0.4484 +vn -0.8909 -0.0724 -0.4483 +vn 0.7185 -0.6927 0.0627 +vn 0.7185 -0.6927 0.0624 +vn 0.0874 0.9889 0.1199 +vn 0.0872 0.9889 0.1204 +vn 0.0875 0.9889 0.1198 +vn -0.0388 -0.9352 -0.3519 +vn -0.0390 -0.9354 -0.3515 +vn -0.0391 -0.9353 -0.3516 +vn -0.2140 -0.0517 -0.9755 +vn -0.2140 -0.0518 -0.9755 +vn -0.2139 -0.0513 -0.9755 +vn -0.0127 0.3206 0.9471 +vn -0.0126 0.3207 0.9471 +vn 0.3770 -0.1199 -0.9184 +vn 0.3784 -0.1187 -0.9180 +vn 0.3778 -0.1190 -0.9182 +vn -0.9739 0.1889 -0.1257 +vn -0.9738 0.1894 -0.1256 +vn -0.9737 0.1901 -0.1259 +vn -0.6273 0.3722 0.6841 +vn -0.6272 0.3723 0.6841 +vn -0.6271 0.3705 0.6852 +vn -0.0386 0.9537 -0.2984 +vn -0.0391 0.9536 -0.2986 +vn -0.0379 0.9537 -0.2984 +vn -0.5747 -0.6341 0.5173 +vn -0.5746 -0.6342 0.5173 +vn 0.5025 0.4866 0.7147 +vn 0.5026 0.4866 0.7146 +vn 0.6745 0.1296 -0.7268 +vn 0.9430 -0.0479 0.3294 +vn 0.9429 -0.0480 0.3297 +vn 0.9430 -0.0478 0.3295 +vn 0.6832 0.4922 -0.5395 +vn 0.6829 0.4923 -0.5398 +vn 0.6837 0.4919 -0.5391 +vn 0.3220 0.1865 0.9282 +vn 0.3220 0.1858 0.9283 +vn -0.1565 0.6683 0.7272 +vn -0.1565 0.6684 0.7272 +vn -0.1564 0.6684 0.7272 +vn 0.1700 -0.0922 -0.9811 +vn 0.1698 -0.0912 -0.9813 +vn 0.1700 -0.0920 -0.9811 +vn 0.2662 -0.8657 -0.4240 +vn 0.2663 -0.8659 -0.4235 +vn 0.2664 -0.8658 -0.4236 +vn 0.3613 -0.7831 0.5063 +vn 0.3614 -0.7825 0.5071 +vn 0.3612 -0.7832 0.5061 +vn 0.6986 0.2674 -0.6637 +vn 0.3739 -0.5176 -0.7696 +vn 0.3746 -0.5175 -0.7694 +vn 0.3734 -0.5176 -0.7698 +vn -0.1756 0.9772 -0.1197 +vn -0.1755 0.9772 -0.1197 +vn -0.4149 0.4115 -0.8115 +vn -0.4149 0.4116 -0.8115 +vn -0.4146 0.4114 -0.8117 +vn 0.3678 -0.9259 -0.0863 +vn 0.3671 -0.9262 -0.0855 +vn 0.3671 -0.9262 -0.0854 +vn 0.7664 -0.6423 0.0045 +vn 0.7665 -0.6423 0.0046 +vn 0.7667 -0.6420 0.0047 +vn 0.3192 0.8931 -0.3169 +vn 0.3190 0.8931 -0.3173 +vn 0.3185 0.8930 -0.3180 +vn -0.1518 0.9523 -0.2647 +vn -0.1520 0.9524 -0.2644 +vn -0.1518 0.9522 -0.2650 +vn 0.3332 0.9263 0.1761 +vn 0.3332 0.9262 0.1766 +vn 0.3328 0.9261 0.1777 +vn 0.1374 -0.9356 -0.3254 +vn 0.1371 -0.9355 -0.3256 +vn 0.8086 -0.5307 0.2540 +vn -0.6733 0.3350 -0.6591 +vn -0.6732 0.3349 -0.6592 +vn 0.6292 0.7715 0.0946 +vn 0.6291 0.7715 0.0948 +vn 0.6294 0.7713 0.0945 +vn -0.3157 -0.9309 -0.1836 +vn -0.3161 -0.9307 -0.1840 +vn -0.3153 -0.9311 -0.1834 +vn 0.1285 -0.9181 -0.3750 +vn 0.1289 -0.9181 -0.3748 +vn -0.3368 0.9148 0.2229 +vn -0.3368 0.9148 0.2230 +vn -0.3367 0.9149 0.2228 +vn -0.4150 -0.8232 0.3874 +vn -0.4149 -0.8233 0.3874 +vn 0.0310 0.2482 -0.9682 +vn 0.0309 0.2485 -0.9681 +vn 0.0309 0.2484 -0.9682 +vn 0.7968 0.5704 0.1996 +vn 0.7965 0.5708 0.1996 +vn 0.7961 0.5713 0.1996 +vn 0.4165 -0.7665 0.4889 +vn 0.4154 -0.7658 0.4909 +vn 0.4157 -0.7663 0.4899 +vn 0.8778 0.3006 -0.3730 +vn 0.2000 0.9757 -0.0891 +vn 0.2001 0.9757 -0.0890 +vn 0.2001 0.9758 -0.0887 +vn 0.7596 -0.4444 -0.4749 +vn 0.7594 -0.4448 -0.4748 +vn 0.7593 -0.4450 -0.4748 +vn -0.4875 -0.7296 0.4796 +vn -0.4870 -0.7299 0.4797 +vn -0.4880 -0.7293 0.4796 +vn 0.4625 -0.5860 -0.6653 +vn 0.4634 -0.5854 -0.6653 +vn 0.4629 -0.5856 -0.6654 +vn -0.3254 0.6892 0.6474 +vn -0.3252 0.6909 0.6457 +vn -0.3256 0.6900 0.6464 +vn 0.8088 0.2169 0.5467 +vn 0.8088 0.2171 0.5466 +vn 0.8088 0.2169 0.5466 +vn -0.0324 0.8705 -0.4911 +vn -0.0322 0.8705 -0.4911 +vn -0.0325 0.8704 -0.4913 +vn 0.2329 0.3862 0.8925 +vn 0.2335 0.3868 0.8921 +vn 0.2326 0.3855 0.8929 +vn 0.6418 0.7598 -0.1038 +vn -0.8920 0.2898 0.3469 +vn -0.8919 0.2898 0.3471 +vn -0.8919 0.2896 0.3472 +vn -0.2575 0.1352 -0.9568 +vn -0.2573 0.1354 -0.9568 +vn -0.2574 0.1353 -0.9568 +vn -0.5258 -0.7703 -0.3607 +vn -0.5257 -0.7704 -0.3607 +vn -0.5338 -0.7766 -0.3346 +vn -0.5340 -0.7765 -0.3345 +vn -0.5343 -0.7763 -0.3345 +vn -0.3855 -0.5036 -0.7732 +vn -0.3856 -0.5035 -0.7732 +vn -0.3852 -0.5037 -0.7732 +vn -0.6031 -0.1599 -0.7815 +vn -0.6030 -0.1603 -0.7815 +vn -0.6030 -0.1602 -0.7815 +vn 0.2246 0.8178 -0.5299 +vn 0.2247 0.8178 -0.5298 +vn 0.2245 0.8176 -0.5302 +vn 0.7648 0.0787 -0.6394 +vn 0.7658 0.0784 -0.6383 +vn 0.7659 0.0785 -0.6381 +vn -0.4045 0.1170 -0.9070 +vn -0.4044 0.1159 -0.9072 +vn -0.4046 0.1164 -0.9070 +vn 0.3695 -0.7286 0.5767 +vn 0.3694 -0.7287 0.5766 +vn 0.7611 0.5484 -0.3463 +vn 0.7610 0.5485 -0.3465 +vn 0.7605 0.5489 -0.3468 +vn 0.1738 -0.7043 -0.6883 +vn 0.1735 -0.7041 -0.6886 +vn 0.1739 -0.7045 -0.6880 +vn 0.0508 0.9770 -0.2069 +vn 0.0518 0.9772 -0.2061 +vn 0.0507 0.9770 -0.2070 +vn -0.4780 -0.8219 -0.3098 +vn -0.8299 -0.3842 0.4046 +vn -0.8298 -0.3848 0.4042 +vn -0.8296 -0.3854 0.4041 +vn -0.7442 -0.4727 0.4719 +vn -0.7442 -0.4728 0.4719 +vn -0.7445 -0.4722 0.4720 +vn -0.5877 -0.1311 -0.7984 +vn -0.5877 -0.1310 -0.7984 +vn -0.5869 0.8023 0.1090 +vn -0.5870 0.8023 0.1082 +vn -0.5873 0.8022 0.1077 +vn 0.2805 0.9045 -0.3213 +vn 0.2806 0.9045 -0.3212 +vn 0.2802 0.9045 -0.3216 +vn 0.4733 0.8066 0.3542 +vn 0.4737 0.8060 0.3549 +vn 0.4733 0.8064 0.3546 +vn -0.4964 -0.8680 -0.0128 +vn -0.4965 -0.8679 -0.0129 +vn -0.4965 -0.8680 -0.0125 +vn 0.1400 -0.8621 0.4871 +vn -0.8334 0.5004 -0.2344 +vn -0.8331 0.5006 -0.2352 +vn -0.8013 0.5027 0.3243 +vn 0.1117 -0.8473 0.5192 +vn 0.1116 -0.8471 0.5196 +vn 0.1116 -0.8470 0.5198 +vn -0.9664 0.1795 -0.1838 +vn -0.9665 0.1792 -0.1837 +vn -0.9664 0.1794 -0.1839 +vn 0.8185 -0.5723 -0.0507 +vn 0.8189 -0.5718 -0.0496 +vn 0.8194 -0.5711 -0.0490 +vn -0.2821 0.4110 -0.8669 +vn -0.2818 0.4110 -0.8670 +vn -0.2817 0.4111 -0.8670 +vn 0.2606 0.6275 -0.7337 +vn 0.2604 0.6275 -0.7338 +vn 0.2607 0.6274 -0.7338 +vn 0.0248 0.9973 0.0687 +vn 0.0260 0.9973 0.0681 +vn 0.0261 0.9974 0.0679 +vn 0.0974 0.9070 -0.4097 +vn 0.0972 0.9070 -0.4098 +vn 0.7622 -0.1859 0.6201 +vn 0.5020 -0.8583 0.1065 +vn 0.5040 -0.8568 0.1093 +vn 0.5037 -0.8571 0.1085 +vn 0.8400 -0.5421 -0.0212 +vn 0.8401 -0.5421 -0.0212 +vn 0.8399 -0.5423 -0.0212 +vn -0.4119 -0.6160 0.6715 +vn -0.4118 -0.6158 0.6718 +vn -0.4124 -0.6163 0.6709 +vn -0.0269 -0.8389 -0.5436 +vn -0.0269 -0.8389 -0.5437 +vn -0.6326 -0.1484 0.7601 +vn -0.6326 -0.1481 0.7602 +vn -0.6326 -0.1485 0.7601 +vn 0.3983 -0.0194 0.9170 +vn 0.3979 -0.0192 0.9172 +vn 0.3983 -0.0197 0.9170 +vn 0.2760 -0.7160 -0.6413 +vn 0.2773 -0.7149 -0.6418 +vn 0.2750 -0.7180 -0.6394 +vn 0.0804 -0.8584 -0.5067 +vn -0.6953 0.5777 -0.4276 +vn -0.7144 0.6379 -0.2877 +vn -0.7145 0.6377 -0.2877 +vn 0.4481 0.8815 0.1491 +vn 0.2024 0.9481 0.2451 +vn 0.7913 0.1540 0.5917 +vn 0.7913 0.1543 0.5916 +vn 0.7031 0.5227 -0.4820 +vn 0.7030 0.5229 -0.4820 +vn 0.0066 -0.4131 -0.9107 +vn 0.0065 -0.4131 -0.9107 +vn 0.0064 -0.4131 -0.9107 +vn -0.0561 0.4019 -0.9140 +vn -0.0563 0.4010 -0.9143 +vn 0.7910 -0.6109 -0.0334 +vn 0.7908 -0.6111 -0.0339 +vn 0.7906 -0.6113 -0.0349 +vn 0.3460 0.7984 0.4928 +vn 0.3469 0.7986 0.4918 +vn 0.3464 0.7973 0.4942 +vn -0.2281 -0.9707 0.0749 +vn -0.7666 0.4023 -0.5004 +vn -0.7665 0.4021 -0.5008 +vn -0.7664 0.4017 -0.5013 +vn 0.2024 0.8948 -0.3979 +vn 0.2025 0.8949 -0.3976 +vn 0.2025 0.8951 -0.3973 +vn 0.1621 -0.3910 -0.9060 +vn 0.1614 -0.3908 -0.9062 +vn 0.1626 -0.3911 -0.9059 +vn 0.4182 -0.5978 0.6839 +vn -0.6620 -0.0763 -0.7456 +vn -0.6621 -0.0763 -0.7455 +vn -0.6618 -0.0764 -0.7457 +vn -0.0357 -0.6713 -0.7404 +vn -0.0354 -0.6709 -0.7407 +vn -0.0355 -0.6709 -0.7407 +vn 0.5937 0.8042 0.0295 +vn 0.8523 0.4375 0.2865 +vn 0.8524 0.4374 0.2866 +vn 0.8524 0.4373 0.2867 +vn -0.1641 -0.9696 -0.1817 +vn -0.1642 -0.9695 -0.1819 +vn -0.1639 -0.9696 -0.1815 +vn -0.9937 0.1078 -0.0312 +vn -0.9937 0.1077 -0.0317 +vn 0.2322 -0.9389 -0.2540 +vn 0.2320 -0.9389 -0.2541 +vn 0.2325 -0.9389 -0.2537 +vn 0.2756 -0.6181 -0.7362 +vn 0.0369 -0.9993 -0.0014 +vn 0.0365 -0.9993 -0.0015 +vn 0.3092 -0.9338 -0.1802 +vn -0.4496 0.2648 0.8531 +vn -0.4491 0.2650 0.8533 +vn -0.4487 0.2663 0.8531 +vn 0.3723 -0.8778 -0.3015 +vn 0.3725 -0.8777 -0.3015 +vn 0.3729 -0.8776 -0.3014 +vn -0.1321 -0.9910 0.0211 +vn 0.5576 0.6897 -0.4621 +vn 0.5574 0.6897 -0.4622 +vn 0.3002 0.7827 0.5452 +vn 0.3002 0.7827 0.5453 +vn 0.3002 0.7825 0.5456 +vn 0.1392 0.2929 -0.9459 +vn 0.1390 0.2930 -0.9459 +vn 0.1393 0.2928 -0.9460 +vn 0.8583 -0.5110 -0.0466 +vn 0.8582 -0.5112 -0.0466 +vn 0.8580 -0.5115 -0.0464 +vn -0.4636 0.2590 0.8473 +vn -0.4633 0.2592 0.8474 +vn -0.4631 0.2594 0.8475 +vn -0.2144 -0.9620 0.1691 +vn -0.2141 -0.9621 0.1691 +vn 0.3868 -0.3255 -0.8628 +vn 0.3868 -0.3254 -0.8628 +vn -0.1456 -0.6703 -0.7277 +vn -0.1458 -0.6701 -0.7278 +vn -0.8459 0.0806 -0.5273 +vn -0.8457 0.0808 -0.5275 +vn -0.3338 0.1421 -0.9319 +vn -0.3333 0.1423 -0.9320 +vn -0.3336 0.1421 -0.9319 +vn 0.7366 0.6711 0.0838 +vn 0.7370 0.6706 0.0839 +vn 0.7367 0.6710 0.0838 +vn 0.4127 -0.6323 -0.6556 +vn 0.4130 -0.6323 -0.6554 +vn -0.3542 -0.8536 -0.3819 +vn -0.3538 -0.8539 -0.3817 +vn -0.3540 -0.8539 -0.3815 +vn -0.3040 -0.8310 -0.4659 +vn -0.3042 -0.8309 -0.4659 +vn -0.3036 -0.8311 -0.4659 +vn 0.3918 0.6519 0.6493 +vn 0.3916 0.6519 0.6494 +vn 0.3919 0.6520 0.6491 +vn -0.9453 0.1948 0.2616 +vn -0.9454 0.1951 0.2610 +vn -0.9453 0.1945 0.2619 +vn -0.6538 0.6845 -0.3224 +vn -0.6543 0.6841 -0.3223 +vn 0.0998 0.9806 -0.1688 +vn 0.0868 -0.4364 -0.8956 +vn 0.0871 -0.4365 -0.8955 +vn 0.0869 -0.4365 -0.8955 +vn 0.0020 -0.9981 0.0617 +vn 0.1073 -0.9842 -0.1412 +vn 0.1075 -0.9841 -0.1414 +vn 0.1072 -0.9841 -0.1414 +vn -0.0937 -0.9948 0.0405 +vn 0.3820 -0.9239 0.0210 +vn -0.4160 0.5497 -0.7244 +vn -0.4037 0.5493 -0.7316 +vn -0.3995 0.5384 -0.7420 +vn 0.2363 -0.7984 -0.5538 +vn 0.2365 -0.7985 -0.5537 +vn 0.2366 -0.7985 -0.5536 +vn -0.8584 -0.3760 0.3489 +vn -0.8585 -0.3757 0.3490 +vn -0.8586 -0.3756 0.3488 +vn 0.9662 -0.0483 0.2533 +vn 0.9661 -0.0483 0.2536 +vn 0.9661 -0.0484 0.2535 +vn 0.0272 -0.6001 0.7994 +vn 0.0272 -0.6006 0.7991 +vn 0.0272 -0.6004 0.7993 +vn 0.1115 -0.9851 -0.1307 +vn 0.1114 -0.9851 -0.1307 +vn 0.2184 -0.4187 -0.8815 +vn 0.2183 -0.4187 -0.8815 +vn 0.2179 -0.4185 -0.8817 +vn -0.0777 -0.9930 -0.0888 +vn -0.0778 -0.9930 -0.0889 +vn -0.0781 -0.9929 -0.0892 +vn 0.2901 -0.8707 0.3971 +vn 0.2905 -0.8706 0.3970 +vn 0.2908 -0.8705 0.3971 +vn 0.0529 -0.8375 0.5438 +vn 0.0531 -0.8377 0.5436 +vn 0.0528 -0.8373 0.5441 +vn -0.1977 0.4155 -0.8878 +vn -0.1977 0.4156 -0.8878 +vn -0.4128 -0.9070 0.0829 +vn -0.4144 -0.9063 0.0834 +vn -0.4116 -0.9078 0.0810 +vn -0.0679 -0.9944 0.0808 +vn -0.0682 -0.9944 0.0808 +vn 0.0185 -0.9963 0.0841 +vn 0.0183 -0.9963 0.0842 +vn 0.1466 -0.9815 -0.1233 +vn -0.8837 0.3401 -0.3217 +vn -0.8835 0.3408 -0.3214 +vn -0.8837 0.3402 -0.3214 +vn -0.7122 -0.5724 0.4063 +vn -0.7125 -0.5720 0.4065 +vn -0.3913 -0.4101 -0.8239 +vn -0.3916 -0.4102 -0.8236 +vn -0.6060 -0.7929 0.0640 +vn -0.1902 -0.6175 0.7632 +vn -0.1893 -0.6181 0.7629 +vn -0.1904 -0.6174 0.7633 +vn -0.1440 -0.9797 -0.1394 +vn -0.1437 -0.9798 -0.1391 +vn -0.1437 -0.9798 -0.1392 +vn -0.5166 -0.8474 -0.1227 +vn -0.5163 -0.8475 -0.1228 +vn -0.5166 -0.8473 -0.1232 +vn 0.1751 0.8671 -0.4663 +vn -0.4387 -0.8890 -0.1312 +vn -0.4384 -0.8891 -0.1313 +vn -0.4385 -0.8891 -0.1312 +vn -0.0145 -0.8434 0.5370 +vn -0.0152 -0.8434 0.5371 +vn -0.0149 -0.8434 0.5371 +vn 0.3773 -0.3364 -0.8628 +vn 0.3773 -0.3359 -0.8630 +vn 0.3773 -0.3363 -0.8629 +vn 0.3291 -0.9401 -0.0890 +vn 0.3291 -0.9402 -0.0882 +vn 0.3289 -0.9402 -0.0886 +vn 0.0253 -0.9963 -0.0818 +vn 0.1682 0.0427 0.9848 +vn 0.1681 0.0428 0.9848 +vn 0.2205 -0.9752 -0.0209 +vn 0.2181 -0.9756 -0.0244 +vn 0.2201 -0.9752 -0.0232 +vn 0.1802 0.9549 -0.2360 +vn -0.6293 0.7100 0.3162 +vn 0.3500 -0.4508 0.8211 +vn 0.3495 -0.4512 0.8211 +vn 0.3501 -0.4508 0.8211 +vn 0.4628 -0.1529 0.8732 +vn 0.4635 -0.1532 0.8727 +vn 0.4633 -0.1530 0.8729 +vn -0.2212 -0.0129 -0.9752 +vn -0.2213 -0.0142 -0.9751 +vn -0.2212 -0.0137 -0.9751 +vn -0.1076 -0.0885 0.9902 +vn -0.1076 -0.0883 0.9903 +vn 0.8005 0.1114 0.5889 +vn 0.8007 0.1115 0.5885 +vn 0.8010 0.1114 0.5882 +vn -0.8130 -0.4503 -0.3691 +vn -0.8127 -0.4506 -0.3695 +vn -0.8122 -0.4512 -0.3698 +vn -0.7114 0.6473 -0.2735 +vn -0.7115 0.6472 -0.2737 +vn 0.8382 0.5381 0.0886 +vn 0.8382 0.5382 0.0888 +vn 0.8383 0.5379 0.0887 +vn 0.1587 0.3671 -0.9165 +vn 0.7623 0.5551 0.3329 +vn 0.7622 0.5551 0.3332 +vn 0.7621 0.5551 0.3333 +vn -0.8918 0.2071 -0.4022 +vn -0.8917 0.2073 -0.4023 +vn -0.8917 0.2072 -0.4023 +vn 0.4558 0.8160 -0.3555 +vn 0.7151 -0.1625 0.6799 +vn -0.0285 0.9869 0.1586 +vn -0.8792 0.3620 0.3099 +vn -0.8792 0.3620 0.3098 +vn -0.5389 -0.6455 0.5412 +vn -0.5388 -0.6458 0.5410 +vn -0.5388 -0.6457 0.5411 +vn 0.9759 0.0930 0.1976 +vn 0.9758 0.0925 0.1979 +vn 0.8632 0.1013 0.4947 +vn 0.8630 0.1014 0.4949 +vn -0.1571 -0.8865 -0.4352 +vn -0.1568 -0.8865 -0.4353 +vn -0.1548 0.8683 0.4712 +vn -0.1551 0.8683 0.4711 +vn -0.1552 0.8683 0.4711 +vn -0.0623 0.9667 -0.2481 +vn -0.0622 0.9667 -0.2482 +vn 0.6201 0.7673 -0.1634 +vn 0.6198 0.7675 -0.1637 +vn 0.8208 0.0982 0.5627 +vn 0.8208 0.0984 0.5627 +vn -0.3136 -0.6955 0.6464 +vn -0.3137 -0.6956 0.6464 +vn -0.3135 -0.6958 0.6463 +vn 0.5977 0.0413 -0.8006 +vn 0.5989 0.0410 -0.7998 +vn 0.5982 0.0416 -0.8003 +vn 0.3917 0.2980 0.8705 +vn 0.3918 0.2980 0.8704 +vn 0.6590 0.6560 -0.3679 +vn 0.6588 0.6562 -0.3678 +vn -0.0107 -0.9363 0.3510 +vn 0.8822 0.2660 0.3886 +vn 0.1237 -0.9912 -0.0474 +vn -0.7328 0.6454 0.2155 +vn -0.7329 0.6454 0.2153 +vn -0.7325 0.6457 0.2155 +vn -0.1583 -0.9724 -0.1714 +vn -0.1584 -0.9726 -0.1701 +vn -0.1580 -0.9723 -0.1720 +vn 0.1026 -0.7770 0.6211 +vn 0.1015 -0.7774 0.6208 +vn 0.1022 -0.7771 0.6210 +vn 0.9268 -0.3221 -0.1931 +vn 0.9266 -0.3226 -0.1932 +vn 0.9270 -0.3216 -0.1931 +vn -0.3059 -0.9402 -0.1496 +vn -0.3059 -0.9402 -0.1497 +vn -0.4829 -0.8756 0.0056 +vn -0.4829 -0.8756 0.0053 +vn -0.4831 -0.8756 0.0058 +vn -0.4033 0.7425 0.5349 +vn -0.4037 0.7424 0.5347 +vn -0.4034 0.7424 0.5349 +vn -0.2759 -0.9556 0.1034 +vn -0.2765 -0.9554 0.1036 +vn -0.2763 -0.9555 0.1035 +vn -0.9381 0.2896 0.1903 +vn -0.9380 0.2895 0.1907 +vn -0.9380 0.2896 0.1906 +vn 0.2051 -0.4132 0.8873 +vn 0.2053 -0.4134 0.8871 +vn 0.2052 -0.4133 0.8872 +vn 0.5789 0.2368 0.7802 +vn -0.6878 0.6836 -0.2441 +vn -0.6875 0.6841 -0.2436 +vn -0.6877 0.6838 -0.2439 +vn 0.3852 0.8055 0.4504 +vn 0.3854 0.8052 0.4506 +vn 0.3849 0.8057 0.4502 +vn 0.2718 -0.3664 0.8899 +vn 0.2722 -0.3664 0.8898 +vn 0.2709 -0.3667 0.8900 +vn 0.0080 0.1585 -0.9873 +vn 0.0086 0.1581 -0.9874 +vn 0.0086 0.1578 -0.9874 +vn 0.4111 0.8311 0.3744 +vn 0.2276 -0.7686 0.5979 +vn 0.2280 -0.7686 0.5977 +vn -0.4061 -0.9138 -0.0004 +vn -0.4061 -0.9138 -0.0002 +vn -0.4061 -0.9138 -0.0005 +vn 0.2831 0.1808 -0.9419 +vn 0.2852 0.1836 -0.9407 +vn 0.2849 0.1829 -0.9410 +vn -0.1403 -0.9730 0.1833 +vn -0.1404 -0.9729 0.1835 +vn -0.6961 -0.0557 -0.7158 +vn -0.6963 -0.0558 -0.7156 +vn -0.6962 -0.0559 -0.7156 +vn 0.4706 -0.5945 0.6521 +vn 0.4704 -0.5948 0.6519 +vn 0.4705 -0.5947 0.6519 +vn -0.4617 0.3939 0.7947 +vn -0.4617 0.3940 0.7947 +vn -0.9697 -0.2439 -0.0147 +vn -0.9697 -0.2439 -0.0146 +vn 0.4996 0.7325 0.4623 +vn -0.6660 0.0256 -0.7455 +vn -0.6659 0.0257 -0.7456 +vn -0.6661 0.0254 -0.7454 +vn 0.5726 0.6989 0.4285 +vn -0.7090 0.0745 -0.7012 +vn -0.7093 0.0745 -0.7010 +vn 0.2489 -0.1676 0.9539 +vn 0.2489 -0.1675 0.9539 +vn 0.2489 -0.1677 0.9539 +vn -0.8694 0.1131 0.4810 +vn -0.8693 0.1133 0.4811 +vn -0.8693 0.1132 0.4811 +vn 0.7524 -0.1432 0.6429 +vn -0.5210 0.0151 0.8534 +vn -0.5210 0.0148 0.8534 +vn -0.5210 0.0145 0.8534 +vn 0.4316 0.0465 0.9009 +vn 0.4317 0.0464 0.9008 +vn 0.4320 0.0461 0.9007 +vn -0.7178 -0.6632 0.2120 +vn -0.7179 -0.6630 0.2123 +vn 0.9421 -0.0038 -0.3353 +vn 0.9428 -0.0046 -0.3333 +vn 0.9434 -0.0058 -0.3317 +vn 0.8609 -0.1795 0.4760 +vn 0.8613 -0.1788 0.4756 +vn 0.8617 -0.1768 0.4757 +vn -0.4023 -0.7900 0.4627 +vn -0.4022 -0.7908 0.4613 +vn -0.4021 -0.7905 0.4620 +vn -0.8014 0.3487 0.4859 +vn -0.8008 0.3509 0.4854 +vn -0.8012 0.3499 0.4854 +vn -0.8517 -0.0593 -0.5206 +vn -0.8517 -0.0593 -0.5207 +vn -0.2670 0.6615 0.7008 +vn -0.2668 0.6617 0.7007 +vn -0.1431 0.4817 0.8646 +vn -0.1429 0.4826 0.8641 +vn -0.1435 0.4844 0.8630 +vn 0.5196 -0.5913 0.6167 +vn -0.8207 -0.0955 -0.5633 +vn -0.8208 -0.0952 -0.5632 +vn -0.8206 -0.0958 -0.5635 +vn -0.2886 -0.9506 0.1139 +vn -0.2887 -0.9506 0.1139 +vn -0.2885 -0.9507 0.1137 +vn -0.8714 0.4724 -0.1325 +vn 0.1618 0.9854 -0.0529 +vn 0.1607 0.9856 -0.0530 +vn 0.1613 0.9855 -0.0530 +vn -0.6282 0.6756 0.3859 +vn -0.6280 0.6756 0.3862 +vn -0.6281 0.6756 0.3861 +vn -0.6892 -0.6872 -0.2296 +vn -0.6895 -0.6869 -0.2298 +vn -0.6894 -0.6870 -0.2297 +vn 0.6461 0.4964 -0.5798 +vn 0.6461 0.4965 -0.5797 +vn -0.8455 0.4335 -0.3116 +vn -0.8456 0.4338 -0.3110 +vn -0.8456 0.4337 -0.3112 +vn 0.5994 -0.1945 0.7765 +vn 0.5990 -0.1943 0.7768 +vn 0.5999 -0.1945 0.7761 +vn 0.6481 0.5875 -0.4845 +vn 0.6481 0.5880 -0.4840 +vn 0.6484 0.5869 -0.4849 +vn 0.7604 -0.6381 0.1209 +vn 0.7613 -0.6369 0.1214 +vn 0.7600 -0.6386 0.1209 +vn -0.8872 0.3870 -0.2511 +vn -0.8871 0.3872 -0.2513 +vn -0.8871 0.3873 -0.2512 +vn 0.7525 -0.6523 -0.0902 +vn 0.7531 -0.6516 -0.0907 +vn 0.7533 -0.6513 -0.0909 +vn -0.1958 0.9762 0.0937 +vn -0.1959 0.9762 0.0934 +vn 0.1639 0.9349 -0.3147 +vn 0.1641 0.9350 -0.3145 +vn 0.1638 0.9349 -0.3147 +vn 0.7768 0.4551 0.4353 +vn 0.7769 0.4553 0.4349 +vn 0.7770 0.4552 0.4348 +vn -0.0783 -0.7728 -0.6298 +vn -0.0782 -0.7728 -0.6299 +vn -0.0785 -0.7728 -0.6298 +vn -0.4198 0.9061 0.0522 +vn -0.4201 0.9060 0.0522 +vn 0.3990 0.9145 0.0665 +vn 0.4148 -0.9097 -0.0197 +vn 0.4150 -0.9096 -0.0200 +vn 0.4149 -0.9096 -0.0199 +vn 0.5574 0.7360 0.3841 +vn 0.5572 0.7359 0.3847 +vn 0.5580 0.7363 0.3827 +vn -0.3367 -0.7818 -0.5248 +vn -0.3373 -0.7827 -0.5231 +vn -0.3367 -0.7822 -0.5241 +vn -0.0574 0.2623 -0.9633 +vn -0.0576 0.2624 -0.9632 +vn -0.0575 0.2626 -0.9632 +vn 0.2342 0.3667 -0.9004 +vn 0.2335 0.3668 -0.9005 +vn 0.2329 0.3672 -0.9005 +vn 0.2072 0.9732 0.0998 +vn 0.2072 0.9732 0.0999 +vn -0.5674 0.8045 -0.1756 +vn -0.5674 0.8046 -0.1751 +vn -0.5673 0.8048 -0.1747 +vn -0.3333 0.8530 -0.4017 +vn -0.3331 0.8531 -0.4017 +vn 0.3452 -0.8052 -0.4822 +vn 0.0998 -0.3449 -0.9333 +vn 0.1009 -0.3433 -0.9338 +vn 0.1004 -0.3442 -0.9335 +vn 0.6976 0.6526 -0.2959 +vn 0.6976 0.6527 -0.2956 +vn -0.0088 0.9980 0.0625 +vn -0.0092 0.9980 0.0629 +vn -0.0089 0.9980 0.0627 +vn -0.3341 -0.9424 -0.0173 +vn -0.3339 -0.9424 -0.0171 +vn -0.3339 -0.9424 -0.0168 +vn -0.8021 -0.2469 -0.5438 +vn -0.7852 -0.2502 -0.5665 +vn -0.7853 -0.2501 -0.5664 +vn -0.7852 -0.2503 -0.5664 +vn -0.8192 -0.5646 0.1005 +vn -0.8196 -0.5640 0.1009 +vn -0.8188 -0.5652 0.1003 +vn -0.8325 0.2727 -0.4823 +vn -0.8326 0.2729 -0.4820 +vn -0.8326 0.2725 -0.4822 +vn 0.0498 -0.9556 0.2904 +vn 0.0501 -0.9556 0.2903 +vn 0.0502 -0.9556 0.2903 +vn 0.5887 -0.8074 -0.0376 +vn 0.5887 -0.8074 -0.0377 +vn -0.4608 0.7125 -0.5292 +vn -0.4615 0.7125 -0.5286 +vn -0.4631 0.7119 -0.5280 +vn -0.9333 -0.3584 -0.0215 +vn -0.9334 -0.3582 -0.0214 +vn -0.9332 -0.3586 -0.0217 +vn 0.3041 -0.9525 0.0141 +vn 0.3036 -0.9527 0.0137 +vn 0.3029 -0.9529 0.0125 +vn -0.3287 0.1594 0.9309 +vn -0.3281 0.1592 0.9311 +vn -0.3284 0.1593 0.9310 +vn 0.2340 -0.8537 -0.4653 +vn 0.2342 -0.8535 -0.4655 +vn 0.2343 -0.8533 -0.4658 +vn -0.5721 -0.1665 -0.8031 +vn -0.5718 -0.1663 -0.8034 +vn -0.5720 -0.1665 -0.8032 +vn -0.4690 0.5980 -0.6499 +vn -0.1558 -0.7415 -0.6526 +vn -0.1551 -0.7416 -0.6527 +vn -0.1544 -0.7414 -0.6531 +vn 0.7534 0.5534 0.3551 +vn 0.4262 0.6708 0.6069 +vn 0.4256 0.6702 0.6080 +vn 0.4252 0.6700 0.6086 +vn -0.3681 -0.9250 0.0942 +vn 0.5532 -0.1434 -0.8206 +vn 0.5549 -0.1436 -0.8194 +vn 0.5521 -0.1420 -0.8216 +vn -0.1837 -0.9782 0.0971 +vn -0.1838 -0.9781 0.0974 +vn -0.4335 -0.1473 -0.8890 +vn -0.4335 -0.1474 -0.8890 +vn -0.2612 0.5332 0.8047 +vn -0.7257 0.6032 -0.3309 +vn -0.7257 0.6031 -0.3309 +vn -0.7258 0.6033 -0.3306 +vn -0.8152 -0.3251 0.4793 +vn -0.8151 -0.3252 0.4794 +vn -0.8153 -0.3249 0.4793 +vn -0.5652 0.8143 -0.1323 +vn -0.5656 0.8141 -0.1319 +vn -0.5651 0.8144 -0.1321 +vn 0.4847 0.4560 0.7464 +vn 0.4848 0.4558 0.7465 +vn 0.4849 0.4557 0.7465 +vn 0.3531 0.1306 0.9264 +vn 0.3533 0.1302 0.9264 +vn 0.3533 0.1303 0.9264 +vn -0.2549 -0.5966 -0.7610 +vn -0.2550 -0.5966 -0.7610 +vn -0.2545 -0.5966 -0.7611 +vn -0.8987 0.4227 0.1168 +vn -0.8988 0.4226 0.1167 +vn -0.8988 0.4225 0.1169 +vn -0.1145 -0.9678 0.2242 +vn -0.1143 -0.9679 0.2240 +vn -0.1144 -0.9678 0.2242 +vn -0.6360 -0.6562 -0.4061 +vn -0.6360 -0.6562 -0.4062 +vn 0.0335 0.4854 0.8737 +vn 0.0332 0.4856 0.8736 +vn 0.0338 0.4853 0.8737 +vn -0.8480 -0.2031 0.4896 +vn -0.8480 -0.2029 0.4896 +vn 0.2945 0.0799 -0.9523 +vn 0.2945 0.0794 -0.9523 +vn -0.4137 0.7250 -0.5507 +vn -0.3456 0.3200 -0.8821 +vn -0.3456 0.3201 -0.8821 +vn -0.3455 0.3199 -0.8822 +vn 0.6664 0.6487 -0.3675 +vn 0.4809 0.0317 -0.8762 +vn 0.4809 0.0321 -0.8762 +vn 0.4809 0.0322 -0.8762 +vn 0.3303 0.6139 0.7169 +vn 0.3305 0.6139 0.7169 +vn 0.3307 0.6137 0.7169 +vn -0.7151 0.4667 -0.5204 +vn -0.7155 0.4664 -0.5202 +vn -0.7151 0.4665 -0.5205 +vn -0.7911 0.3262 0.5174 +vn -0.7910 0.3261 0.5177 +vn -0.7911 0.3260 0.5175 +vn 0.8892 0.0100 -0.4575 +vn 0.8889 0.0087 -0.4580 +vn 0.8891 0.0096 -0.4576 +vn 0.4695 -0.3725 -0.8005 +vn 0.4698 -0.3721 -0.8005 +vn 0.4696 -0.3723 -0.8006 +vn -0.1272 -0.9914 0.0314 +vn -0.1273 -0.9914 0.0313 +vn -0.4203 -0.8530 -0.3095 +vn -0.4219 -0.8528 -0.3077 +vn -0.4207 -0.8531 -0.3086 +vn -0.1651 -0.7224 -0.6715 +vn -0.1649 -0.7225 -0.6714 +vn 0.1639 -0.9092 -0.3829 +vn 0.9544 -0.2675 0.1326 +vn 0.9544 -0.2675 0.1325 +vn 0.9544 -0.2674 0.1324 +vn 0.0357 -0.9994 0.0027 +vn -0.7259 0.5354 -0.4317 +vn -0.7777 0.6257 0.0601 +vn -0.7775 0.6260 0.0600 +vn -0.7775 0.6259 0.0602 +vn -0.0527 -0.5064 -0.8607 +vn -0.0525 -0.5065 -0.8607 +vn -0.0523 -0.5065 -0.8606 +vn 0.0575 -0.9955 0.0754 +vn 0.0593 -0.9953 0.0764 +vn 0.0582 -0.9954 0.0755 +vn 0.3031 0.7050 0.6412 +vn 0.3031 0.7049 0.6412 +vn 0.8273 -0.0975 0.5532 +vn 0.8260 -0.0999 0.5547 +vn 0.8267 -0.0993 0.5539 +vn -0.3507 0.7667 -0.5378 +vn 0.0118 0.9874 -0.1578 +vn 0.0117 0.9875 -0.1572 +vn 0.0118 0.9875 -0.1573 +vn 0.7192 0.6641 -0.2043 +vn 0.7191 0.6642 -0.2045 +vn 0.0153 0.2048 -0.9787 +vn 0.6477 -0.7530 -0.1157 +vn 0.6479 -0.7528 -0.1159 +vn 0.4533 0.8689 0.1991 +vn 0.4533 0.8689 0.1989 +vn 0.3916 0.5850 -0.7102 +vn 0.3911 0.5852 -0.7104 +vn 0.3914 0.5850 -0.7103 +vn 0.3766 0.9104 -0.1712 +vn 0.3765 0.9104 -0.1716 +vn 0.3769 0.9103 -0.1711 +vn 0.8951 -0.3969 -0.2033 +vn 0.8950 -0.3970 -0.2033 +vn 0.8951 -0.3966 -0.2036 +vn 0.7994 0.3252 0.5051 +vn 0.7994 0.3253 0.5051 +vn 0.7995 0.3251 0.5052 +vn -0.0903 0.9952 0.0387 +vn -0.0898 0.9952 0.0390 +vn -0.0900 0.9952 0.0395 +vn -0.3948 -0.8728 -0.2869 +vn -0.3950 -0.8727 -0.2870 +vn -0.3940 -0.8733 -0.2866 +vn 0.0771 0.6584 -0.7487 +vn 0.0771 0.6583 -0.7488 +vn -0.7840 -0.1151 0.6099 +vn -0.7841 -0.1151 0.6098 +vn -0.7840 -0.1153 0.6100 +vn 0.4235 0.8292 0.3647 +vn 0.4238 0.8291 0.3646 +vn 0.4239 0.8290 0.3647 +vn 0.3679 -0.0052 -0.9299 +vn 0.7652 -0.6432 0.0285 +vn 0.7652 -0.6432 0.0282 +vn 0.7653 -0.6430 0.0278 +vn 0.6091 -0.7694 -0.1923 +vn 0.6090 -0.7692 -0.1936 +vn 0.6090 -0.7693 -0.1932 +vn 0.0929 0.0225 0.9954 +vn 0.0930 0.0227 0.9954 +vn 0.0931 0.0227 0.9954 +vn 0.0751 -0.5706 0.8178 +vn 0.0753 -0.5705 0.8178 +vn 0.0756 -0.5704 0.8179 +vn 0.3521 0.5165 -0.7806 +vn 0.3518 0.5168 -0.7805 +vn 0.3516 0.5170 -0.7805 +vn 0.8361 0.5443 0.0679 +vn 0.8362 0.5442 0.0678 +vn 0.8359 0.5447 0.0676 +vn -0.4202 -0.8265 0.3745 +vn -0.4201 -0.8266 0.3745 +vn 0.7987 0.5821 0.1526 +vn 0.7985 0.5824 0.1522 +vn 0.5522 0.7103 -0.4365 +vn 0.5519 0.7103 -0.4369 +vn 0.5521 0.7103 -0.4367 +vn 0.6441 0.3815 0.6630 +vn 0.6440 0.3823 0.6626 +vn 0.6444 0.3809 0.6631 +vn 0.0516 -0.2092 0.9765 +vn 0.9745 0.1924 -0.1157 +vn 0.9745 0.1926 -0.1151 +vn 0.9745 0.1925 -0.1154 +vn 0.4977 0.6761 0.5433 +vn 0.4972 0.6756 0.5443 +vn 0.4972 0.6755 0.5444 +vn 0.7895 -0.4892 0.3705 +vn 0.7894 -0.4893 0.3706 +vn 0.7893 -0.4895 0.3707 +vn 0.8007 0.5952 0.0680 +vn 0.8005 0.5954 0.0681 +vn 0.1490 -0.9307 0.3340 +vn 0.1492 -0.9309 0.3335 +vn 0.1452 0.8622 -0.4854 +vn 0.1446 0.8622 -0.4854 +vn 0.1455 0.8621 -0.4854 +vn 0.5152 0.8134 0.2702 +vn 0.5146 0.8135 0.2709 +vn 0.5150 0.8134 0.2704 +vn -0.0895 0.4834 -0.8708 +vn -0.0896 0.4836 -0.8707 +vn -0.0899 0.4838 -0.8706 +vn 0.3835 0.9078 -0.1698 +vn 0.3835 0.9077 -0.1701 +vn 0.3833 0.9079 -0.1694 +vn 0.6852 -0.7279 -0.0247 +vn 0.6851 -0.7280 -0.0246 +vn 0.6851 -0.7280 -0.0249 +vn -0.3066 0.7750 -0.5526 +vn -0.3063 0.7750 -0.5528 +vn -0.3061 0.7750 -0.5529 +vn -0.1338 -0.9390 0.3168 +vn -0.1341 -0.9390 0.3167 +vn -0.1342 -0.9390 0.3167 +vn -0.8706 0.3177 -0.3757 +vn -0.1533 -0.8855 0.4386 +vn -0.1535 -0.8856 0.4384 +vn -0.4969 -0.8677 -0.0172 +vn -0.4970 -0.8676 -0.0171 +vn -0.4970 -0.8676 -0.0170 +vn -0.1597 -0.9397 -0.3023 +vn -0.1599 -0.9397 -0.3022 +vn -0.1598 -0.9397 -0.3023 +vn 0.6134 0.5190 -0.5953 +vn 0.6135 0.5190 -0.5952 +vn 0.6127 0.5192 -0.5959 +vn -0.6492 -0.2633 -0.7136 +vn -0.6491 -0.2635 -0.7136 +vn -0.6491 -0.2636 -0.7136 +vn -0.4570 -0.8889 -0.0301 +vn 0.6932 0.7202 0.0296 +vn 0.6931 0.7202 0.0295 +vn 0.0771 0.6496 0.7563 +vn 0.0775 0.6489 0.7569 +vn 0.0772 0.6498 0.7562 +vn 0.2376 0.1336 -0.9621 +vn 0.2376 0.1340 -0.9621 +vn 0.2375 0.1338 -0.9621 +vn 0.1978 0.4132 -0.8889 +vn 0.1979 0.4133 -0.8888 +vn 0.1977 0.4129 -0.8890 +vn 0.5536 0.7590 -0.3427 +vn 0.5535 0.7591 -0.3426 +vn 0.5533 0.7592 -0.3427 +vn -0.4164 -0.3643 -0.8330 +vn -0.4167 -0.3640 -0.8330 +vn -0.4166 -0.3641 -0.8330 +vn -0.0248 0.6398 -0.7682 +vn -0.0248 0.6395 -0.7684 +vn -0.0248 0.6396 -0.7683 +vn 0.7831 0.3502 0.5138 +vn -0.4093 -0.8911 0.1962 +vn -0.4099 -0.8910 0.1952 +vn -0.4072 -0.8917 0.1978 +vn 0.1821 -0.7832 0.5945 +vn 0.1821 -0.7833 0.5944 +vn -0.5193 -0.1255 -0.8453 +vn -0.5194 -0.1253 -0.8453 +vn -0.5192 -0.1252 -0.8454 +vn 0.6230 0.1923 0.7582 +vn 0.6223 0.1925 0.7588 +vn 0.6224 0.1925 0.7586 +vn 0.3196 -0.9129 0.2541 +vn 0.3197 -0.9131 0.2530 +vn 0.3190 -0.9128 0.2550 +vn 0.7456 -0.6410 0.1823 +vn 0.7454 -0.6410 0.1832 +vn 0.8967 -0.4105 0.1655 +vn 0.8966 -0.4107 0.1654 +vn 0.8967 -0.4106 0.1653 +vn 0.0084 -0.8541 0.5201 +vn 0.0076 -0.8553 0.5181 +vn 0.0103 -0.8535 0.5210 +vn 0.7492 -0.5609 0.3524 +vn 0.7497 -0.5596 0.3533 +vn 0.7494 -0.5603 0.3529 +vn -0.5838 0.6695 -0.4594 +vn -0.5840 0.6694 -0.4591 +vn -0.1243 0.6450 -0.7540 +vn -0.1242 0.6450 -0.7540 +vn -0.1239 0.6448 -0.7542 +vn 0.1882 0.6916 -0.6973 +vn 0.1880 0.6916 -0.6974 +vn 0.5890 0.6056 0.5351 +vn 0.0021 -0.0027 1.0000 +vn -0.1227 0.0952 -0.9879 +vn -0.1236 0.0949 -0.9878 +vn -0.1228 0.0952 -0.9879 +vn 0.5257 0.7498 0.4017 +vn -0.1232 0.6945 0.7088 +vn -0.1228 0.6941 0.7094 +vn -0.1234 0.6948 0.7085 +vn 0.2920 0.9163 0.2741 +vn 0.2916 0.9165 0.2738 +vn 0.2920 0.9164 0.2739 +vn -0.4457 0.8176 0.3645 +vn -0.4455 0.8177 0.3645 +vn -0.4455 0.8177 0.3646 +vn 0.1573 0.0162 -0.9874 +vn 0.1569 0.0159 -0.9875 +vn -0.8630 0.2544 -0.4364 +vn -0.8628 0.2549 -0.4366 +vn -0.8623 0.2555 -0.4372 +vn 0.6991 0.7126 0.0585 +vn 0.6988 0.7130 0.0582 +vn 0.6989 0.7129 0.0582 +vn -0.5289 0.6452 -0.5513 +vn -0.5291 0.6452 -0.5512 +vn -0.5288 0.6452 -0.5514 +vn 0.4776 -0.6457 0.5958 +vn 0.4776 -0.6454 0.5961 +vn 0.4775 -0.6456 0.5960 +vn -0.9429 0.0135 -0.3328 +vn -0.9429 0.0139 -0.3329 +vn -0.9427 0.0139 -0.3334 +vn -0.8962 0.4364 0.0803 +vn -0.8959 0.4366 0.0819 +vn -0.8961 0.4366 0.0799 +vn -0.1550 0.2769 -0.9483 +vn -0.1548 0.2771 -0.9483 +vn -0.1548 0.2768 -0.9484 +vn 0.9831 -0.1796 -0.0357 +vn 0.9833 -0.1785 -0.0367 +vn 0.9831 -0.1792 -0.0362 +vn -0.6335 0.6159 -0.4683 +vn -0.6330 0.6164 -0.4683 +vn -0.6329 0.6165 -0.4684 +vn -0.4013 0.8407 0.3635 +vn -0.4016 0.8405 0.3638 +vn -0.4010 0.8409 0.3634 +vn 0.6941 -0.6824 0.2293 +vn 0.6944 -0.6804 0.2341 +vn 0.6946 -0.6803 0.2340 +vn 0.6945 -0.6803 0.2341 +vn 0.0042 0.9985 -0.0543 +vn 0.0042 0.9985 -0.0544 +vn -0.2101 -0.8793 -0.4274 +vn -0.2102 -0.8793 -0.4275 +vn -0.2103 -0.8793 -0.4274 +vn -0.5901 0.1812 -0.7867 +vn -0.5900 0.1817 -0.7867 +vn -0.5901 0.1814 -0.7867 +vn -0.1978 0.1691 -0.9655 +vn -0.1983 0.1696 -0.9654 +vn -0.1971 0.1692 -0.9657 +vn 0.1825 0.9353 0.3032 +vn 0.1857 0.9350 0.3023 +vn 0.1840 0.9350 0.3031 +vn 0.5068 -0.7227 0.4700 +vn 0.5070 -0.7226 0.4699 +vn 0.5072 -0.7225 0.4699 +vn -0.6146 -0.5584 0.5572 +vn -0.6146 -0.5586 0.5570 +vn -0.2117 -0.9761 -0.0500 +vn -0.2096 -0.9764 -0.0528 +vn -0.2098 -0.9764 -0.0513 +vn -0.2644 -0.9629 0.0538 +vn -0.2643 -0.9629 0.0540 +vn -0.2646 -0.9628 0.0540 +vn 0.7265 -0.6367 -0.2584 +vn 0.7259 -0.6374 -0.2584 +vn -0.5548 -0.6211 -0.5535 +vn -0.5550 -0.6213 -0.5531 +vn -0.5551 -0.6211 -0.5532 +vn -0.3819 0.0338 -0.9236 +vn -0.3820 0.0344 -0.9235 +vn -0.3820 0.0340 -0.9235 +vn 0.1877 -0.8091 -0.5569 +vn 0.1873 -0.8097 -0.5562 +vn 0.1867 -0.8101 -0.5558 +vn 0.2908 -0.7539 -0.5892 +vn 0.2906 -0.7538 -0.5893 +vn -0.2845 0.4048 0.8690 +vn -0.2840 0.4049 0.8691 +vn -0.2852 0.4046 0.8689 +vn -0.4319 0.1473 -0.8898 +vn 0.8175 0.3624 0.4476 +vn 0.8174 0.3625 0.4478 +vn 0.0465 0.1993 0.9788 +vn 0.0462 0.1994 0.9788 +vn -0.0371 0.2526 0.9669 +vn -0.0381 0.2525 0.9668 +vn -0.0389 0.2526 0.9668 +vn -0.2302 -0.8618 0.4520 +vn -0.2304 -0.8617 0.4521 +vn 0.3149 0.3667 -0.8754 +vn 0.3150 0.3621 -0.8773 +vn 0.3147 0.3635 -0.8768 +vn -0.3009 -0.1278 0.9451 +vn -0.3004 -0.1276 0.9452 +vn -0.3009 -0.1280 0.9450 +vn -0.5931 0.5827 0.5556 +vn -0.5928 0.5829 0.5558 +vn -0.5926 0.5829 0.5560 +vn 0.4533 0.8911 -0.0214 +vn 0.4532 0.8911 -0.0212 +vn 0.3003 0.5294 0.7934 +vn 0.3008 0.5291 0.7935 +vn 0.3002 0.5294 0.7935 +vn -0.0281 0.5784 0.8153 +vn -0.0277 0.5780 0.8155 +vn -0.0274 0.5780 0.8156 +vn 0.0079 0.4394 0.8983 +vn 0.0081 0.4397 0.8981 +vn 0.0074 0.4393 0.8983 +vn -0.3193 -0.8626 0.3924 +vn 0.9800 -0.1926 0.0494 +vn 0.9801 -0.1922 0.0496 +vn 0.9801 -0.1925 0.0493 +vn 0.6162 0.4554 -0.6426 +vn 0.6160 0.4556 -0.6426 +vn 0.6163 0.4553 -0.6426 +vn 0.0664 -0.2769 -0.9586 +vn 0.0662 -0.2769 -0.9586 +vn 0.0659 -0.2767 -0.9587 +vn -0.5023 0.5682 -0.6518 +vn -0.5015 0.5683 -0.6524 +vn -0.5019 0.5684 -0.6520 +vn 0.8189 0.4753 0.3216 +vn -0.5417 -0.8250 0.1609 +vn -0.5426 -0.8245 0.1605 +vn -0.5418 -0.8250 0.1608 +vn -0.3944 0.4115 -0.8217 +vn -0.3945 0.4114 -0.8217 +vn -0.9286 0.2217 -0.2977 +vn -0.9286 0.2210 -0.2980 +vn -0.9286 0.2206 -0.2983 +vn 0.1197 -0.5465 0.8289 +vn -0.6307 0.6362 -0.4443 +vn -0.6307 0.6363 -0.4443 +vn -0.0174 -0.0051 -0.9998 +vn -0.0173 -0.0053 -0.9998 +vn -0.0169 -0.0051 -0.9998 +vn 0.4926 0.0383 0.8694 +vn 0.4921 0.0385 0.8697 +vn 0.4924 0.0383 0.8695 +vn 0.0477 0.5258 -0.8493 +vn 0.0475 0.5264 -0.8489 +vn 0.0475 0.5260 -0.8491 +vn -0.7911 -0.6023 0.1066 +vn -0.7912 -0.6022 0.1063 +vn -0.7909 -0.6026 0.1068 +vn 0.2943 -0.4928 -0.8188 +vn 0.2938 -0.4934 -0.8187 +vn 0.2930 -0.4949 -0.8181 +vn -0.6406 -0.5728 -0.5114 +vn -0.6405 -0.5732 -0.5111 +vn -0.6407 -0.5726 -0.5115 +vn 0.4243 -0.8938 -0.1453 +vn 0.4242 -0.8938 -0.1454 +vn 0.6282 0.7781 -0.0004 +vn 0.6282 0.7781 -0.0003 +vn 0.6849 -0.0170 0.7284 +vn -0.1920 -0.5195 -0.8326 +vn -0.1902 -0.5214 -0.8319 +vn -0.1899 -0.5223 -0.8314 +vn 0.3147 0.0544 -0.9476 +vn 0.3150 0.0546 -0.9475 +vn 0.3149 0.0547 -0.9476 +vn -0.3904 -0.9194 0.0466 +vn -0.8053 0.5669 -0.1737 +vn -0.8052 0.5666 -0.1748 +vn -0.8050 0.5676 -0.1724 +vn -0.3127 -0.8117 -0.4934 +vn -0.3127 -0.8117 -0.4933 +vn -0.1342 -0.8297 -0.5418 +vn -0.1343 -0.8297 -0.5418 +vn -0.1343 -0.8297 -0.5419 +vn -0.1048 -0.9797 -0.1709 +vn -0.1044 -0.9797 -0.1710 +vn -0.1038 -0.9797 -0.1714 +vn -0.1609 -0.9836 -0.0814 +vn -0.1607 -0.9836 -0.0813 +vn 0.0999 0.7320 -0.6739 +vn 0.0999 0.7321 -0.6739 +vn -0.6152 -0.6479 -0.4492 +vn -0.6140 -0.6486 -0.4497 +vn -0.6130 -0.6489 -0.4507 +vn 0.5419 -0.8389 -0.0497 +vn 0.5416 -0.8392 -0.0492 +vn 0.5418 -0.8391 -0.0495 +vn -0.6306 -0.3757 0.6791 +vn -0.6306 -0.3757 0.6792 +vn -0.6304 -0.3756 0.6793 +vn -0.0042 -0.9990 0.0444 +vn -0.0040 -0.9990 0.0442 +vn 0.8661 -0.3886 0.3143 +vn 0.8662 -0.3887 0.3141 +vn 0.8661 -0.3886 0.3144 +vn -0.7856 -0.5372 0.3069 +vn -0.7856 -0.5372 0.3070 +vn 0.8616 -0.3569 -0.3608 +vn 0.8617 -0.3562 -0.3613 +vn 0.8616 -0.3570 -0.3607 +vn -0.0186 -0.9975 0.0685 +vn -0.0294 -0.9990 -0.0341 +vn -0.0294 -0.9990 -0.0345 +vn -0.0294 -0.9990 -0.0343 +vn 0.1185 -0.9928 -0.0196 +vn 0.1185 -0.9928 -0.0197 +vn 0.1182 -0.9928 -0.0200 +vn 0.5037 0.1042 -0.8576 +vn 0.5037 0.1041 -0.8576 +vn -0.8334 0.4200 0.3593 +vn 0.0094 -0.9999 0.0108 +vn 0.0092 -0.9999 0.0107 +vn 0.0097 -0.9999 0.0108 +vn 0.1865 0.8767 0.4434 +vn 0.1862 0.8768 0.4433 +vn 0.1866 0.8767 0.4434 +vn -0.1067 -0.9892 0.1001 +vn -0.1070 -0.9892 0.1000 +vn -0.1066 -0.9892 0.1002 +vn -0.6949 0.5725 -0.4352 +vn -0.6951 0.5724 -0.4349 +vn -0.6953 0.5724 -0.4347 +vn -0.8811 -0.3744 0.2890 +vn -0.2920 0.1110 -0.9500 +vn -0.2927 0.1108 -0.9498 +vn -0.2936 0.1098 -0.9496 +vn 0.0120 -0.9865 -0.1636 +vn -0.1123 -0.9748 -0.1930 +vn -0.1123 -0.9748 -0.1925 +vn -0.1124 -0.9747 -0.1932 +vn -0.0086 0.9091 0.4164 +vn -0.0085 0.9091 0.4166 +vn 0.0788 -0.0495 0.9957 +vn 0.0788 -0.0498 0.9956 +vn 0.0790 -0.0496 0.9956 +vn -0.0031 0.0040 1.0000 +vn -0.4127 0.4083 -0.8142 +vn -0.4127 0.4079 -0.8144 +vn 0.8141 0.2238 -0.5359 +vn 0.8153 0.2225 -0.5345 +vn 0.8147 0.2235 -0.5351 +vn 0.0064 -0.9620 -0.2729 +vn 0.0061 -0.9621 -0.2726 +vn 0.6686 0.5037 0.5471 +vn 0.6686 0.5037 0.5470 +vn 0.6687 0.5037 0.5469 +vn 0.8721 -0.3434 0.3487 +vn 0.8723 -0.3429 0.3485 +vn 0.8722 -0.3431 0.3486 +vn 0.9218 -0.2800 0.2681 +vn 0.9217 -0.2805 0.2679 +vn 0.9217 -0.2802 0.2684 +vn -0.0273 0.5380 0.8425 +vn -0.0278 0.5364 0.8435 +vn -0.0274 0.5352 0.8443 +vn 0.5138 -0.3827 0.7678 +vn 0.5135 -0.3832 0.7678 +vn 0.5143 -0.3821 0.7678 +vn -0.5214 -0.6362 0.5687 +vn -0.5215 -0.6360 0.5689 +vn 0.7900 0.5324 0.3040 +vn 0.7908 0.5313 0.3041 +vn 0.7904 0.5318 0.3041 +vn -0.5488 -0.8357 -0.0176 +vn -0.5491 -0.8356 -0.0176 +vn -0.5481 -0.8363 -0.0179 +vn -0.3881 -0.9104 -0.1432 +vn -0.3880 -0.9104 -0.1434 +vn -0.3882 -0.9105 -0.1426 +vn -0.9649 0.0074 -0.2626 +vn -0.9649 0.0066 -0.2626 +vn -0.9649 0.0073 -0.2626 +vn -0.4147 0.8576 0.3042 +vn -0.4145 0.8577 0.3042 +vn -0.4144 0.8578 0.3041 +vn -0.7387 0.5488 -0.3913 +vn -0.7388 0.5487 -0.3913 +vn 0.0537 0.7861 0.6158 +vn 0.0536 0.7865 0.6153 +vn 0.0537 0.7862 0.6157 +vn 0.6833 0.7293 -0.0347 +vn 0.6832 0.7294 -0.0351 +vn 0.6835 0.7291 -0.0345 +vn -0.3879 -0.6797 0.6225 +vn -0.3883 -0.6797 0.6223 +vn 0.4774 0.2880 0.8301 +vn 0.4775 0.2881 0.8301 +vn 0.4776 0.2879 0.8301 +vn -0.2802 0.6698 -0.6877 +vn -0.2799 0.6688 -0.6887 +vn -0.2801 0.6695 -0.6879 +vn -0.1122 0.4726 -0.8741 +vn 0.4700 0.0667 0.8801 +vn 0.4700 0.0668 0.8802 +vn 0.4699 0.0668 0.8802 +vn -0.2526 -0.8920 0.3749 +vn -0.2527 -0.8920 0.3749 +vn -0.4052 -0.8275 -0.3887 +vn -0.4056 -0.8275 -0.3882 +vn -0.4057 -0.8276 -0.3880 +vn -0.7224 0.0062 -0.6915 +vn -0.7227 0.0063 -0.6911 +vn -0.7227 0.0062 -0.6911 +vn 0.4701 -0.5941 0.6527 +vn 0.4701 -0.5941 0.6528 +vn 0.4702 -0.5941 0.6526 +vn 0.0382 0.4748 0.8793 +vn 0.0375 0.4744 0.8795 +vn 0.0382 0.4747 0.8793 +vn -0.2716 -0.9620 0.0288 +vn 0.0332 0.0124 -0.9994 +vn 0.0334 0.0124 -0.9994 +vn 0.0332 0.0123 -0.9994 +vn -0.5574 0.4723 0.6828 +vn -0.5569 0.4732 0.6826 +vn -0.5573 0.4729 0.6825 +vn 0.1793 0.7256 0.6643 +vn 0.1792 0.7256 0.6644 +vn -0.4659 0.8576 -0.2179 +vn -0.4662 -0.8683 0.1696 +vn -0.4663 -0.8682 0.1697 +vn 0.1042 0.9780 -0.1807 +vn 0.1041 0.9780 -0.1806 +vn 0.1044 0.9780 -0.1805 +vn -0.7492 -0.2991 -0.5910 +vn -0.7491 -0.2992 -0.5911 +vn -0.0599 -0.9872 0.1478 +vn -0.0598 -0.9872 0.1479 +vn 0.0284 -0.1638 -0.9861 +vn 0.0284 -0.1639 -0.9861 +vn 0.3232 0.9184 0.2280 +vn 0.9290 -0.3242 0.1787 +vn 0.9292 -0.3239 0.1781 +vn 0.9293 -0.3238 0.1776 +vn 0.0010 0.5249 0.8512 +vn 0.0011 0.5249 0.8512 +vn 0.0019 0.5254 0.8508 +vn 0.7418 -0.3898 0.5457 +vn 0.7419 -0.3897 0.5457 +vn 0.9869 -0.1139 -0.1146 +vn 0.9869 -0.1139 -0.1143 +vn 0.9868 -0.1138 -0.1150 +vn -0.8026 0.3746 -0.4642 +vn 0.8432 0.4715 -0.2582 +vn 0.8431 0.4712 -0.2589 +vn 0.8434 0.4714 -0.2577 +vn 0.4447 0.7137 -0.5412 +vn 0.4445 0.7137 -0.5413 +vn 0.4445 0.7139 -0.5411 +vn 0.3480 0.7906 -0.5038 +vn 0.3481 0.7906 -0.5037 +vn 0.3480 0.7907 -0.5037 +vn 0.7891 -0.1571 -0.5938 +vn -0.3644 -0.0772 0.9280 +vn -0.3639 -0.0784 0.9281 +vn -0.3641 -0.0776 0.9281 +vn -0.3613 -0.0773 0.9292 +vn -0.3611 -0.0774 0.9293 +vn -0.3610 -0.0773 0.9294 +vn -0.7557 -0.2407 0.6091 +vn -0.7558 -0.2406 0.6090 +vn -0.7554 -0.2411 0.6093 +vn 0.8863 -0.4196 0.1959 +vn 0.8862 -0.4198 0.1960 +vn 0.8861 -0.4199 0.1962 +vn -0.2012 0.7517 0.6280 +vn -0.2007 0.7515 0.6284 +vn -0.2008 0.7516 0.6283 +vn 0.1715 -0.0341 0.9846 +vn 0.1715 -0.0340 0.9846 +vn -0.0603 -0.2008 0.9778 +vn -0.0599 -0.2007 0.9778 +vn -0.0602 -0.2001 0.9779 +vn 0.2712 -0.9160 -0.2957 +vn 0.2709 -0.9163 -0.2951 +vn 0.2708 -0.9164 -0.2947 +vn -0.6241 0.7112 -0.3236 +vn -0.6242 0.7111 -0.3236 +vn -0.6245 0.7107 -0.3239 +vn 0.2458 0.0709 0.9667 +vn 0.7529 -0.6534 0.0791 +vn 0.4969 0.5082 0.7034 +vn 0.4966 0.5081 0.7037 +vn 0.4970 0.5083 0.7033 +vn 0.0646 0.9976 -0.0267 +vn 0.0651 0.9975 -0.0267 +vn 0.0644 0.9976 -0.0269 +vn -0.1906 -0.9459 -0.2627 +vn -0.1904 -0.9459 -0.2627 +vn -0.4234 -0.7811 0.4589 +vn -0.4235 -0.7809 0.4592 +vn 0.7894 -0.5110 -0.3401 +vn 0.7897 -0.5106 -0.3402 +vn 0.7895 -0.5108 -0.3401 +vn -0.3696 0.6627 0.6513 +vn 0.7490 -0.3952 -0.5318 +vn 0.7489 -0.3954 -0.5318 +vn 0.7488 -0.3950 -0.5322 +vn 0.8505 0.5097 0.1299 +vn 0.8497 0.5108 0.1306 +vn 0.8492 0.5116 0.1308 +vn -0.3529 -0.8222 -0.4465 +vn -0.3525 -0.8223 -0.4467 +vn -0.3536 -0.8220 -0.4464 +vn 0.7681 -0.6153 -0.1774 +vn 0.7683 -0.6150 -0.1776 +vn 0.7682 -0.6151 -0.1774 +vn 0.3311 0.8381 -0.4336 +vn 0.3304 0.8381 -0.4341 +vn 0.3316 0.8383 -0.4328 +vn -0.8875 0.3744 -0.2687 +vn -0.8875 0.3741 -0.2690 +vn -0.8875 0.3743 -0.2689 +vn -0.3118 -0.9467 0.0807 +vn -0.5279 0.3452 -0.7760 +vn -0.0317 0.2864 -0.9576 +vn -0.0319 0.2864 -0.9576 +vn -0.0318 0.2865 -0.9576 +vn 0.4299 0.7081 -0.5601 +vn 0.4298 0.7082 -0.5601 +vn -0.1731 -0.9045 -0.3898 +vn -0.0289 0.0099 -0.9995 +vn 0.3102 -0.8595 -0.4063 +vn 0.3101 -0.8594 -0.4065 +vn 0.3100 -0.8596 -0.4062 +vn -0.0507 -0.7373 -0.6737 +vn -0.0506 -0.7374 -0.6735 +vn -0.0508 -0.7372 -0.6737 +vn -0.0933 0.8586 -0.5041 +vn -0.0935 0.8584 -0.5045 +vn -0.0932 0.8584 -0.5044 +vn 0.8336 -0.5374 -0.1276 +vn 0.8338 -0.5371 -0.1277 +vn 0.8339 -0.5369 -0.1277 +vn 0.0903 -0.6030 -0.7926 +vn 0.0896 -0.6031 -0.7926 +vn 0.0910 -0.6031 -0.7924 +vn -0.0873 -0.8020 -0.5909 +vn -0.0869 -0.8017 -0.5914 +vn -0.0877 -0.8021 -0.5907 +vn -0.0490 -0.6577 -0.7517 +vn 0.4111 -0.7296 -0.5466 +vn 0.4112 -0.7296 -0.5464 +vn 0.4113 -0.7296 -0.5464 +vn 0.9477 0.2916 -0.1296 +vn 0.9476 0.2920 -0.1297 +vn 0.6529 0.7574 -0.0104 +vn 0.6526 0.7577 -0.0108 +vn 0.6530 0.7573 -0.0103 +vn 0.3856 -0.8237 -0.4159 +vn 0.3857 -0.8237 -0.4157 +vn 0.3851 -0.8239 -0.4158 +vn 0.1486 -0.8633 0.4823 +vn 0.1500 -0.8633 0.4819 +vn 0.1467 -0.8638 0.4820 +vn -0.2621 -0.8856 0.3835 +vn -0.0380 -0.6793 -0.7329 +vn -0.0378 -0.6793 -0.7329 +vn -0.0385 -0.6796 -0.7326 +vn -0.1123 -0.9326 0.3430 +vn -0.1115 -0.9326 0.3432 +vn -0.2809 0.4364 0.8548 +vn -0.2810 0.4363 0.8548 +vn -0.2810 0.4365 0.8547 +vn 0.1802 0.7951 -0.5791 +vn -0.2601 0.7946 0.5485 +vn -0.2622 0.7944 0.5479 +vn -0.2611 0.7944 0.5484 +vn 0.7162 -0.5755 -0.3948 +vn 0.7162 -0.5756 -0.3946 +vn -0.0854 0.9752 0.2041 +vn -0.0858 0.9752 0.2040 +vn -0.0860 0.9752 0.2039 +vn 0.1581 0.9787 0.1310 +vn 0.2471 -0.8792 -0.4074 +vn 0.2471 -0.8792 -0.4073 +vn 0.2471 -0.8795 -0.4068 +vn 0.3115 -0.2704 -0.9109 +vn 0.3126 -0.2705 -0.9105 +vn 0.3132 -0.2709 -0.9102 +vn -0.8510 -0.3421 -0.3985 +vn -0.8511 -0.3418 -0.3985 +vn -0.8507 -0.3432 -0.3981 +vn -0.2630 -0.9360 0.2340 +vn -0.2633 -0.9360 0.2338 +vn -0.2630 -0.9359 0.2344 +vn 0.2653 -0.1774 -0.9477 +vn 0.2662 -0.1775 -0.9474 +vn 0.2656 -0.1778 -0.9475 +vn 0.6397 0.6460 -0.4165 +vn 0.6394 0.6463 -0.4166 +vn 0.6396 0.6461 -0.4165 +vn -0.4924 -0.1365 -0.8596 +vn -0.4926 -0.1364 -0.8595 +vn -0.4558 0.7631 -0.4581 +vn -0.4559 0.7632 -0.4578 +vn 0.3374 -0.2016 -0.9195 +vn 0.3373 -0.2017 -0.9195 +vn -0.5018 -0.8637 -0.0474 +vn -0.2686 -0.9340 0.2354 +vn -0.2684 -0.9340 0.2358 +vn -0.2683 -0.9341 0.2356 +vn -0.6220 0.7299 -0.2835 +vn -0.6220 0.7306 -0.2815 +vn -0.6219 0.7305 -0.2823 +vn -0.2351 -0.9325 0.2743 +vn -0.2350 -0.9324 0.2745 +vn -0.2352 -0.9324 0.2744 +vn -0.2283 0.0029 -0.9736 +vn -0.2282 0.0031 -0.9736 +vn -0.2394 0.1534 -0.9587 +vn 0.7120 -0.4590 0.5314 +vn 0.7121 -0.4593 0.5310 +vn 0.7121 -0.4596 0.5308 +vn 0.2505 -0.8830 -0.3969 +vn 0.2505 -0.8830 -0.3970 +vn -0.0512 -0.0754 -0.9958 +vn -0.0503 -0.0745 -0.9960 +vn -0.0501 -0.0740 -0.9960 +vn -0.4982 -0.7050 0.5047 +vn -0.2489 -0.9661 -0.0686 +vn -0.2485 -0.9663 -0.0667 +vn -0.2489 -0.9660 -0.0697 +vn -0.0132 0.0140 -0.9998 +vn -0.0117 0.0132 -0.9998 +vn -0.0124 0.0138 -0.9998 +vn -0.2781 0.8125 -0.5123 +vn -0.2778 0.8125 -0.5125 +vn -0.2777 0.8124 -0.5128 +vn -0.7866 0.4998 -0.3626 +vn -0.7866 0.4997 -0.3627 +vn -0.7864 0.4997 -0.3631 +vn 0.0911 -0.9934 0.0694 +vn -0.2281 0.0761 0.9707 +vn -0.2293 0.0762 0.9704 +vn -0.2287 0.0761 0.9705 +vn 0.0928 -0.9926 0.0785 +vn 0.0926 -0.9926 0.0780 +vn 0.0927 -0.9926 0.0784 +vn 0.2978 -0.9083 -0.2936 +vn 0.2977 -0.9084 -0.2936 +vn 0.0046 0.3687 -0.9295 +vn 0.0041 0.3705 -0.9288 +vn 0.0041 0.3694 -0.9293 +vn -0.3059 -0.9456 0.1103 +vn -0.3060 -0.9456 0.1100 +vn -0.3062 -0.9456 0.1101 +vn -0.3171 0.0796 0.9450 +vn -0.3155 0.0790 0.9456 +vn -0.3151 0.0785 0.9458 +vn -0.1689 -0.9822 -0.0819 +vn -0.3115 0.2894 -0.9051 +vn -0.3116 0.2893 -0.9051 +vn 0.4870 0.0576 0.8715 +vn 0.4871 0.0578 0.8714 +vn 0.4871 0.0579 0.8714 +vn -0.7898 -0.5378 -0.2949 +vn -0.7898 -0.5378 -0.2950 +vn -0.7823 0.2512 -0.5701 +vn 0.2918 0.9155 -0.2771 +vn 0.9523 0.3052 -0.0027 +vn 0.9523 0.3053 -0.0026 +vn 0.2495 -0.9604 -0.1239 +vn 0.2499 -0.9602 -0.1249 +vn 0.2498 -0.9603 -0.1244 +vn 0.0584 -0.9232 -0.3800 +vn 0.7223 0.6207 0.3050 +vn 0.7218 0.6210 0.3055 +vn 0.7221 0.6208 0.3053 +vn -0.0464 -0.9839 -0.1728 +vn -0.0467 -0.9838 -0.1729 +vn -0.0468 -0.9838 -0.1730 +vn 0.6548 0.4292 -0.6221 +vn 0.6547 0.4292 -0.6222 +vn 0.6543 0.4288 -0.6229 +vn -0.1040 0.9932 0.0528 +vn -0.1041 0.9932 0.0525 +vn -0.1041 0.9932 0.0524 +vn -0.4991 0.7005 -0.5101 +vn 0.7324 -0.6808 -0.0058 +vn 0.7324 -0.6809 -0.0059 +vn -0.5601 -0.5206 0.6444 +vn -0.4778 0.8681 0.1344 +vn -0.4779 0.8681 0.1343 +vn -0.4779 0.8681 0.1341 +vn -0.3366 -0.7550 -0.5628 +vn -0.3384 -0.7548 -0.5620 +vn -0.3400 -0.7540 -0.5621 +vn -0.3471 0.4863 -0.8019 +vn -0.3470 0.4865 -0.8018 +vn -0.3471 0.4864 -0.8018 +vn -0.3795 0.8096 -0.4478 +vn -0.1180 -0.9928 -0.0191 +vn -0.1175 -0.9929 -0.0187 +vn -0.1178 -0.9929 -0.0186 +vn 0.2351 0.7736 -0.5884 +vn 0.2350 0.7735 -0.5887 +vn 0.2350 0.7734 -0.5888 +vn -0.3825 0.7097 0.5916 +vn 0.1293 -0.9904 0.0496 +vn 0.1293 -0.9904 0.0493 +vn 0.1291 -0.9904 0.0497 +vn -0.0069 -0.9750 -0.2220 +vn -0.0070 -0.9751 -0.2217 +vn -0.0073 -0.9751 -0.2214 +vn -0.1342 -0.9804 -0.1442 +vn 0.1027 -0.9935 -0.0493 +vn -0.0058 -0.9998 -0.0216 +vn -0.0061 -0.9998 -0.0215 +vn -0.0056 -0.9998 -0.0216 +vn 0.0819 -0.9962 0.0310 +vn 0.0810 -0.9962 0.0314 +vn 0.0811 -0.9962 0.0315 +vn -0.0322 -0.9848 0.1709 +vn -0.0324 -0.9848 0.1708 +vn -0.0320 -0.9848 0.1708 +vn -0.2448 -0.0702 0.9670 +vn -0.2446 -0.0703 0.9671 +vn 0.0896 -0.9957 -0.0220 +vn 0.0764 -0.9608 0.2666 +vn 0.0767 -0.9607 0.2667 +vn 0.0762 -0.9608 0.2665 +vn -0.2284 0.5597 0.7966 +vn -0.2282 0.5597 0.7967 +vn -0.2281 0.5596 0.7967 +vn -0.0899 -0.9722 -0.2163 +vn 0.1162 0.8237 -0.5551 +vn 0.2471 -0.9687 0.0214 +vn -0.0875 -0.9917 0.0940 +vn -0.0871 -0.9918 0.0938 +vn -0.0870 -0.9918 0.0938 +vn -0.2893 0.9486 -0.1281 +vn -0.2893 0.9486 -0.1286 +vn -0.2891 0.9486 -0.1285 +vn 0.0725 -0.9967 0.0353 +vn 0.0724 -0.9968 0.0353 +vn 0.0101 -0.9747 0.2231 +vn 0.1479 0.5796 0.8014 +vn 0.1480 0.5798 0.8012 +vn 0.1479 0.5799 0.8012 +vn 0.0670 0.0244 -0.9975 +vn 0.0670 0.0247 -0.9974 +vn -0.0685 -0.9973 0.0272 +vn -0.0684 -0.9973 0.0278 +vn 0.0117 -0.9748 0.2228 +vn -0.2638 -0.3027 0.9159 +vn -0.2639 -0.3026 0.9158 +vn 0.4511 0.8104 -0.3739 +vn 0.4509 0.8105 -0.3739 +vn 0.4509 0.8107 -0.3735 +vn -0.4650 0.2894 -0.8367 +vn -0.4652 0.2897 -0.8365 +vn 0.4594 0.8653 0.2004 +vn 0.4593 0.8654 0.2004 +vn 0.2391 0.7727 0.5881 +vn 0.2383 0.7728 0.5882 +vn 0.2388 0.7727 0.5881 +vn 0.1005 -0.8956 -0.4333 +vn 0.1008 -0.8956 -0.4333 +vn 0.0174 -0.9995 -0.0279 +vn -0.0715 -0.9974 0.0010 +vn -0.0718 -0.9974 0.0009 +vn -0.1521 0.0947 0.9838 +vn -0.1523 0.0947 0.9838 +vn 0.1203 -0.9925 0.0216 +vn 0.4130 0.8700 0.2694 +vn 0.4130 0.8702 0.2686 +vn 0.4130 0.8701 0.2689 +vn 0.0337 -0.9992 -0.0202 +vn 0.0340 -0.9992 -0.0203 +vn 0.0339 -0.9992 -0.0203 +vn -0.1007 -0.9810 -0.1656 +vn -0.1007 -0.9810 -0.1659 +vn -0.1008 -0.9811 -0.1654 +vn 0.0943 -0.9953 -0.0210 +vn 0.0963 -0.9765 -0.1926 +vn 0.0964 -0.9767 -0.1915 +vn 0.0961 -0.9770 -0.1904 +vn 0.2743 0.8834 -0.3799 +vn 0.2734 0.8835 -0.3804 +vn 0.2745 0.8834 -0.3797 +vn 0.5031 -0.5348 0.6789 +vn 0.5034 -0.5349 0.6785 +vn 0.5033 -0.5349 0.6787 +vn -0.9038 -0.4265 0.0345 +vn -0.9038 -0.4266 0.0343 +vn -0.3027 -0.1204 0.9455 +vn -0.3027 -0.1203 0.9455 +vn 0.0232 -0.9629 -0.2689 +vn 0.0231 -0.9629 -0.2688 +vn 0.0008 -0.9658 -0.2593 +vn 0.0007 -0.9658 -0.2594 +vn 0.5480 0.6279 -0.5527 +vn 0.5478 0.6280 -0.5528 +vn 0.5479 0.6280 -0.5526 +vn -0.7069 0.5541 0.4396 +vn -0.7069 0.5539 0.4400 +vn -0.7068 0.5540 0.4400 +vn -0.1785 -0.3267 -0.9281 +vn -0.1786 -0.3268 -0.9281 +vn 0.0170 0.7451 0.6668 +vn 0.0169 0.7452 0.6667 +vn 0.0169 0.7452 0.6666 +vn 0.7560 0.1976 0.6240 +vn -0.3436 0.9347 -0.0914 +vn -0.3436 0.9347 -0.0908 +vn -0.3436 0.9347 -0.0913 +vn -0.1407 -0.2831 -0.9487 +vn -0.1408 -0.2830 -0.9487 +vn 0.5124 -0.2852 -0.8100 +vn 0.5121 -0.2843 -0.8105 +vn 0.5122 -0.2849 -0.8102 +vn -0.5014 0.8652 -0.0014 +vn -0.5015 0.8651 -0.0015 +vn -0.5663 -0.7910 0.2316 +vn -0.5661 -0.7910 0.2320 +vn -0.5662 -0.7909 0.2321 +vn 0.2320 0.8068 0.5433 +vn 0.2321 0.8067 0.5436 +vn 0.9204 -0.3776 0.1015 +vn 0.9205 -0.3774 0.1016 +vn 0.9204 -0.3777 0.1014 +vn -0.6671 -0.5498 0.5027 +vn -0.6672 -0.5501 0.5022 +vn -0.6672 -0.5504 0.5019 +vn -0.9773 0.1773 0.1158 +vn -0.9774 0.1773 0.1155 +vn -0.9774 0.1771 0.1154 +vn -0.5685 -0.4840 0.6652 +vn -0.5691 -0.4838 0.6649 +vn -0.5688 -0.4839 0.6650 +vn -0.5658 -0.8026 -0.1889 +vn -0.5663 -0.8023 -0.1887 +vn -0.5669 -0.8019 -0.1885 +vn -0.5602 -0.2413 0.7924 +vn -0.5612 -0.2401 0.7921 +vn -0.5607 -0.2409 0.7922 +vn 0.5135 0.8581 0.0020 +vn 0.4591 -0.4875 -0.7427 +vn 0.4590 -0.4874 -0.7428 +vn 0.4591 -0.4876 -0.7426 +vn -0.8216 0.3429 -0.4553 +vn -0.8215 0.3429 -0.4556 +vn -0.8213 0.3426 -0.4561 +vn -0.5094 0.8605 -0.0067 +vn -0.5095 0.8605 -0.0069 +vn -0.5097 0.8603 -0.0070 +vn -0.1026 -0.4745 -0.8743 +vn -0.1028 -0.4745 -0.8742 +vn -0.1023 -0.4745 -0.8743 +vn -0.6012 0.7580 -0.2530 +vn -0.6012 0.7581 -0.2527 +vn 0.1197 0.3110 0.9428 +vn 0.1201 0.3109 0.9428 +vn 0.1204 0.3106 0.9429 +vn 0.6421 -0.0106 -0.7666 +vn 0.6417 -0.0106 -0.7669 +vn 0.6418 -0.0106 -0.7668 +vn -0.0996 -0.2425 0.9650 +vn -0.0995 -0.2424 0.9651 +vn -0.9772 0.1815 -0.1098 +vn -0.9773 0.1810 -0.1098 +vn -0.9774 0.1805 -0.1099 +vn 0.0520 -0.0552 0.9971 +vn 0.0517 -0.0554 0.9971 +vn 0.0521 -0.0552 0.9971 +vn 0.7504 -0.5689 -0.3365 +vn 0.7497 -0.5694 -0.3373 +vn 0.7501 -0.5691 -0.3368 +vn 0.2491 -0.1558 0.9559 +vn 0.2489 -0.1559 0.9559 +vn -0.0504 -0.1116 -0.9925 +vn 0.3710 0.6290 -0.6832 +vn 0.3708 0.6290 -0.6832 +vn 0.3710 0.6287 -0.6834 +vn 0.1318 0.0976 -0.9865 +vn 0.9511 -0.2236 0.2132 +vn -0.7870 0.6142 0.0586 +vn -0.7870 0.6141 0.0595 +vn -0.7870 0.6141 0.0591 +vn 0.7178 0.6854 0.1226 +vn 0.1755 -0.9364 0.3039 +vn 0.1768 -0.9362 0.3038 +vn 0.1741 -0.9367 0.3037 +vn -0.9525 0.1627 0.2574 +vn -0.8122 -0.4121 -0.4131 +vn -0.8113 -0.4118 -0.4150 +vn -0.8131 -0.4110 -0.4122 +vn 0.2768 0.8305 -0.4834 +vn -0.6780 0.7084 -0.1963 +vn -0.6780 0.7084 -0.1964 +vn -0.6786 0.7077 -0.1968 +vn -0.6785 0.5761 -0.4559 +vn -0.6792 0.5755 -0.4556 +vn -0.6786 0.5760 -0.4558 +vn -0.0457 0.9965 -0.0697 +vn -0.0458 0.9965 -0.0695 +vn -0.0458 0.9965 -0.0696 +vn 0.4961 0.5301 0.6877 +vn 0.4960 0.5303 0.6876 +vn -0.0695 -0.8894 0.4519 +vn -0.6574 0.2760 -0.7012 +vn -0.6575 0.2759 -0.7012 +vn -0.5877 0.2794 -0.7593 +vn -0.5881 0.2797 -0.7589 +vn -0.5886 0.2798 -0.7585 +vn -0.0725 0.5595 0.8256 +vn -0.0723 0.5597 0.8255 +vn -0.7749 0.5223 -0.3561 +vn -0.7748 0.5223 -0.3562 +vn -0.7747 0.5225 -0.3561 +vn -0.7203 -0.6412 0.2647 +vn -0.7199 -0.6418 0.2641 +vn -0.7193 -0.6425 0.2641 +vn -0.3283 0.0194 0.9444 +vn -0.3282 0.0192 0.9444 +vn -0.3282 0.0191 0.9444 +vn -0.5965 0.7250 0.3444 +vn -0.5965 0.7249 0.3446 +vn -0.8804 0.4622 -0.1062 +vn -0.8804 0.4622 -0.1060 +vn -0.8804 0.4622 -0.1058 +vn 0.7209 0.6749 -0.1574 +vn 0.7210 0.6748 -0.1575 +vn 0.7211 0.6747 -0.1576 +vn -0.0744 0.7396 0.6690 +vn -0.0732 0.7395 0.6692 +vn -0.0721 0.7392 0.6696 +vn -0.1963 0.7872 -0.5846 +vn -0.1962 0.7872 -0.5847 +vn 0.8419 0.0580 0.5366 +vn 0.8421 0.0577 0.5362 +vn 0.8416 0.0575 0.5371 +vn -0.3633 0.3955 0.8436 +vn -0.3634 0.3955 0.8435 +vn -0.3636 0.3958 0.8433 +vn 0.0552 0.8730 0.4846 +vn -0.8205 0.4278 -0.3792 +vn -0.8205 0.4279 -0.3791 +vn -0.8203 0.4280 -0.3793 +vn -0.1878 0.5465 0.8161 +vn -0.9361 0.3369 0.1013 +vn -0.9364 0.3357 0.1027 +vn -0.9362 0.3362 0.1025 +vn -0.6228 0.5056 -0.5972 +vn -0.6227 0.5054 -0.5973 +vn -0.6229 0.5056 -0.5970 +vn -0.1105 0.8861 -0.4502 +vn -0.1104 0.8861 -0.4502 +vn 0.4728 -0.8441 0.2530 +vn 0.4729 -0.8440 0.2530 +vn 0.2657 -0.9439 0.1962 +vn 0.2657 -0.9438 0.1965 +vn 0.2656 -0.9439 0.1962 +vn 0.1707 0.5350 0.8274 +vn 0.1707 0.5353 0.8272 +vn 0.1707 0.5350 0.8275 +vn 0.7190 0.2849 -0.6339 +vn 0.7198 0.2846 -0.6331 +vn 0.7195 0.2848 -0.6335 +vn -0.5030 0.2286 -0.8335 +vn -0.5021 0.2289 -0.8340 +vn -0.5029 0.2286 -0.8336 +vn 0.2436 -0.8847 0.3975 +vn 0.2435 -0.8847 0.3975 +vn 0.2436 -0.8846 0.3977 +vn 0.1095 -0.6174 -0.7790 +vn 0.1098 -0.6175 -0.7788 +vn 0.1104 -0.6176 -0.7787 +vn -0.0379 -0.7629 -0.6454 +vn -0.0383 -0.7631 -0.6451 +vn -0.0378 -0.7628 -0.6455 +vn 0.7110 0.3984 -0.5794 +vn 0.7847 -0.5852 -0.2042 +vn 0.7846 -0.5854 -0.2043 +vn 0.7845 -0.5855 -0.2044 +vn 0.0162 0.0938 -0.9955 +vn 0.1486 -0.7974 0.5849 +vn 0.1486 -0.7977 0.5844 +vn 0.1484 -0.7976 0.5846 +vn 0.8888 -0.4074 0.2100 +vn 0.8886 -0.4065 0.2125 +vn 0.8876 -0.4073 0.2150 +vn -0.2129 -0.9748 0.0661 +vn -0.2114 -0.9752 0.0649 +vn -0.2122 -0.9751 0.0650 +vn 0.3169 0.6429 0.6973 +vn 0.4699 -0.7714 -0.4290 +vn 0.4698 -0.7716 -0.4288 +vn 0.7344 -0.2836 -0.6166 +vn 0.7345 -0.2839 -0.6163 +vn 0.7343 -0.2837 -0.6167 +vn -0.5924 0.8012 -0.0842 +vn -0.5923 0.8013 -0.0841 +vn -0.5923 0.8014 -0.0840 +vn -0.5622 -0.1122 -0.8194 +vn -0.6437 0.1037 0.7582 +vn -0.6432 0.1038 0.7586 +vn -0.6430 0.1038 0.7588 +vn 0.5024 0.8488 -0.1645 +vn 0.5024 0.8489 -0.1645 +vn 0.5023 0.8489 -0.1646 +vn 0.3155 -0.2398 0.9181 +vn 0.3153 -0.2409 0.9179 +vn 0.3155 -0.2404 0.9180 +vn -0.3871 0.1151 0.9148 +vn -0.3867 0.1150 0.9150 +vn -0.3874 0.1151 0.9147 +vn -0.0068 0.9637 -0.2670 +vn -0.0065 0.9637 -0.2668 +vn 0.0982 0.9238 0.3701 +vn 0.0983 0.9236 0.3705 +vn -0.4488 0.7941 -0.4099 +vn -0.4487 0.7941 -0.4100 +vn -0.4493 0.7940 -0.4095 +vn 0.3843 0.5823 0.7164 +vn 0.3843 0.5828 0.7160 +vn 0.3844 0.5825 0.7162 +vn 0.2420 0.9636 0.1135 +vn 0.2420 0.9636 0.1136 +vn 0.2419 0.9636 0.1134 +vn 0.3610 -0.8851 -0.2936 +vn 0.3611 -0.8851 -0.2935 +vn 0.3792 -0.8347 -0.3994 +vn 0.3797 -0.8346 -0.3991 +vn 0.3799 -0.8346 -0.3989 +vn -0.5732 0.0424 -0.8183 +vn -0.5726 0.0422 -0.8187 +vn -0.5727 0.0422 -0.8187 +vn 0.4317 0.0219 -0.9017 +vn 0.4311 0.0222 -0.9020 +vn 0.4313 0.0220 -0.9019 +vn 0.0364 -0.9762 0.2139 +vn -0.2395 0.9687 0.0659 +vn -0.2415 0.9677 0.0728 +vn -0.2388 0.9686 0.0693 +vn -0.4929 0.8558 0.1569 +vn -0.4930 0.8557 0.1570 +vn -0.4917 0.8565 0.1569 +vn 0.1737 0.5526 0.8152 +vn 0.1737 0.5532 0.8147 +vn 0.1740 0.5521 0.8154 +vn 0.1657 0.5902 0.7900 +vn 0.1654 0.5902 0.7901 +vn 0.1656 0.5904 0.7899 +vn -0.5488 0.1622 0.8201 +vn -0.5487 0.1620 0.8201 +vn 0.9149 0.1188 -0.3857 +vn 0.9149 0.1184 -0.3858 +vn 0.9149 0.1181 -0.3860 +vn -0.8295 0.3578 0.4288 +vn -0.8281 0.3622 0.4278 +vn -0.8283 0.3604 0.4290 +vn -0.8401 -0.5419 -0.0248 +vn -0.8404 -0.5414 -0.0243 +vn -0.8396 -0.5426 -0.0263 +vn -0.0927 -0.9561 0.2780 +vn -0.0916 -0.9562 0.2780 +vn -0.0923 -0.9561 0.2780 +vn 0.0149 -0.9759 0.2176 +vn 0.0151 -0.9759 0.2179 +vn -0.9503 0.2779 -0.1404 +vn -0.9485 0.2827 -0.1426 +vn -0.9495 0.2799 -0.1421 +vn -0.5442 -0.1867 0.8179 +vn -0.5444 -0.1865 0.8179 +vn -0.3921 0.8711 -0.2957 +vn -0.3922 0.8711 -0.2956 +vn 0.4039 -0.8179 -0.4097 +vn -0.8358 -0.5364 0.1173 +vn 0.6437 0.7139 -0.2757 +vn 0.6437 0.7137 -0.2761 +vn 0.6437 0.7139 -0.2758 +vn 0.6328 -0.7673 -0.1045 +vn -0.7150 0.3696 -0.5935 +vn -0.7154 0.3687 -0.5936 +vn -0.7152 0.3690 -0.5936 +vn -0.3918 -0.8881 -0.2403 +vn -0.3920 -0.8881 -0.2402 +vn -0.3916 -0.8882 -0.2404 +vn -0.3076 -0.9486 0.0741 +vn -0.3073 -0.9487 0.0741 +vn 0.2030 -0.7344 -0.6477 +vn 0.2024 -0.7346 -0.6476 +vn 0.2029 -0.7344 -0.6477 +vn -0.4173 -0.7507 -0.5121 +vn -0.4170 -0.7508 -0.5122 +vn -0.4176 -0.7507 -0.5119 +vn 0.3241 -0.9302 -0.1725 +vn 0.3243 -0.9301 -0.1725 +vn -0.0928 -0.9733 -0.2101 +vn -0.0924 -0.9733 -0.2101 +vn -0.8536 0.2309 -0.4669 +vn -0.8535 0.2310 -0.4670 +vn -0.8536 0.2308 -0.4670 +vn 0.0692 -0.9221 -0.3806 +vn 0.0694 -0.9222 -0.3805 +vn 0.0695 -0.9221 -0.3807 +vn 0.6579 0.7308 0.1821 +vn 0.8926 -0.4190 0.1663 +vn 0.8928 -0.4187 0.1662 +vn -0.7693 0.2611 0.5831 +vn -0.8627 0.4947 0.1051 +vn -0.8625 0.4946 0.1066 +vn -0.8625 0.4948 0.1061 +vn -0.7361 -0.5211 -0.4321 +vn -0.7363 -0.5209 -0.4319 +vn -0.7359 -0.5213 -0.4321 +vn -0.1764 -0.9832 -0.0474 +vn -0.1760 -0.9832 -0.0477 +vn -0.1768 -0.9831 -0.0472 +vn -0.7541 0.0061 -0.6567 +vn -0.7541 0.0063 -0.6568 +vn -0.7540 0.0062 -0.6568 +vn 0.9383 -0.2040 -0.2792 +vn -0.0044 -0.9970 -0.0774 +vn -0.0043 -0.9970 -0.0771 +vn 0.1885 0.1423 -0.9717 +vn 0.1886 0.1424 -0.9717 +vn 0.1887 0.1422 -0.9717 +vn 0.3515 0.7937 -0.4965 +vn 0.3514 0.7940 -0.4960 +vn 0.3514 0.7940 -0.4961 +vn -0.0915 -0.9898 0.1091 +vn -0.0918 -0.9896 0.1104 +vn -0.0918 -0.9897 0.1097 +vn 0.4613 -0.8750 0.1468 +vn 0.4611 -0.8752 0.1462 +vn -0.0866 -0.9930 -0.0802 +vn -0.0866 -0.9930 -0.0799 +vn 0.0088 -0.9906 -0.1363 +vn 0.0087 -0.9906 -0.1362 +vn 0.0090 -0.9907 -0.1361 +vn -0.1516 -0.9856 -0.0745 +vn 0.0092 -0.9947 0.1023 +vn 0.0731 -0.9960 0.0519 +vn 0.0728 -0.9960 0.0520 +vn 0.0725 -0.9960 0.0521 +vn -0.2548 -0.9450 -0.2051 +vn -0.2546 -0.9450 -0.2053 +vn -0.2549 -0.9450 -0.2052 +vn 0.0674 -0.9962 0.0557 +vn 0.0674 -0.9962 0.0558 +vn 0.3024 -0.5519 -0.7771 +vn 0.3026 -0.5518 -0.7771 +vn 0.3025 -0.5519 -0.7771 +vn 0.7036 0.5018 0.5032 +vn 0.7036 0.5017 0.5032 +vn -0.0057 -0.9989 0.0464 +vn -0.0058 -0.9989 0.0467 +vn -0.0057 -0.9989 0.0461 +vn -0.0670 -0.9844 0.1627 +vn -0.0671 -0.9844 0.1627 +vn -0.0669 -0.9844 0.1628 +vn -0.0673 -0.9977 0.0090 +vn -0.0674 -0.9977 0.0091 +vn -0.1402 -0.9805 -0.1374 +vn -0.1398 -0.9806 -0.1372 +vn -0.1395 -0.9807 -0.1371 +vn 0.1808 -0.9822 -0.0510 +vn 0.1809 -0.9822 -0.0509 +vn 0.1808 -0.9822 -0.0512 +vn 0.0851 -0.8908 -0.4463 +vn 0.0849 -0.8908 -0.4464 +vn 0.0853 -0.8908 -0.4464 +vn 0.1181 -0.9888 0.0916 +vn 0.1187 -0.9887 0.0914 +vn 0.1179 -0.9888 0.0915 +vn 0.0138 -0.9838 0.1785 +vn 0.0137 -0.9839 0.1782 +vn 0.0136 -0.9838 0.1785 +vn 0.1136 -0.9782 0.1740 +vn 0.1132 -0.9782 0.1739 +vn 0.1133 -0.9782 0.1740 +vn -0.2394 -0.9703 0.0340 +vn -0.2396 -0.9703 0.0341 +vn 0.1397 -0.6129 -0.7777 +vn 0.1402 -0.6128 -0.7777 +vn 0.1399 -0.6120 -0.7784 +vn -0.9385 0.1697 -0.3006 +vn -0.9384 0.1699 -0.3009 +vn -0.0707 0.9478 -0.3109 +vn -0.1581 -0.9873 0.0162 +vn -0.1584 -0.9872 0.0166 +vn -0.1582 -0.9873 0.0162 +vn -0.1915 -0.9778 -0.0848 +vn 0.0866 -0.9805 0.1764 +vn 0.0871 -0.9806 0.1755 +vn 0.0867 -0.9805 0.1762 +vn -0.0087 -0.1067 -0.9943 +vn -0.0088 -0.1065 -0.9943 +vn -0.3921 -0.5710 -0.7212 +vn -0.3921 -0.5710 -0.7213 +vn -0.3919 -0.5709 -0.7214 +vn -0.2232 -0.9664 0.1278 +vn 0.2049 -0.9602 0.1898 +vn -0.2710 -0.9624 0.0195 +vn -0.2711 -0.9624 0.0185 +vn -0.2713 -0.9623 0.0201 +vn 0.7228 -0.6895 0.0470 +vn 0.7225 -0.6897 0.0474 +vn 0.5175 0.8539 -0.0557 +vn 0.5176 0.8539 -0.0551 +vn 0.5180 0.8535 -0.0571 +vn -0.1308 -0.9828 -0.1304 +vn -0.1308 -0.9828 -0.1303 +vn -0.1308 -0.9828 -0.1302 +vn -0.2058 0.7898 -0.5778 +vn -0.2057 0.7900 -0.5776 +vn -0.2061 0.7900 -0.5775 +vn -0.2590 -0.9658 -0.0149 +vn 0.1548 -0.9729 -0.1718 +vn 0.1547 -0.9729 -0.1716 +vn -0.1015 0.9899 -0.0994 +vn -0.1028 0.9897 -0.0993 +vn -0.1025 0.9898 -0.0992 +vn 0.2871 -0.4300 -0.8560 +vn -0.0363 -0.9555 -0.2926 +vn -0.0367 -0.9555 -0.2925 +vn -0.0365 -0.9556 -0.2925 +vn 0.4935 -0.8590 0.1359 +vn 0.4935 -0.8588 0.1378 +vn 0.4929 -0.8596 0.1344 +vn -0.6645 0.7437 -0.0735 +vn -0.6640 0.7442 -0.0730 +vn -0.6635 0.7446 -0.0726 +vn -0.7263 -0.0682 -0.6840 +vn -0.7264 -0.0682 -0.6839 +vn -0.7267 -0.0683 -0.6835 +vn -0.7423 0.6606 0.1122 +vn -0.2559 -0.9381 -0.2332 +vn -0.2562 -0.9380 -0.2336 +vn -0.2565 -0.9379 -0.2338 +vn -0.6616 0.2976 -0.6883 +vn -0.6621 0.2980 -0.6876 +vn -0.6620 0.2980 -0.6877 +vn -0.8713 0.0408 0.4890 +vn -0.8713 0.0406 0.4891 +vn 0.7729 0.0238 0.6341 +vn 0.7730 0.0235 0.6340 +vn 0.7737 0.0228 0.6332 +vn 0.4814 0.5242 -0.7025 +vn 0.4810 0.5241 -0.7028 +vn 0.4805 0.5243 -0.7030 +vn -0.2690 0.8904 -0.3672 +vn -0.2680 0.8905 -0.3676 +vn -0.2675 0.8906 -0.3679 +vn -0.5781 0.7646 -0.2849 +vn -0.5783 0.7646 -0.2846 +vn -0.5776 0.7647 -0.2856 +vn 0.5278 0.4143 -0.7415 +vn 0.5277 0.4148 -0.7413 +vn 0.5277 0.4145 -0.7414 +vn -0.1470 -0.9576 -0.2476 +vn -0.1475 -0.9575 -0.2479 +vn 0.2912 -0.6972 -0.6551 +vn 0.2895 -0.6986 -0.6543 +vn 0.2929 -0.6968 -0.6548 +vn 0.8626 0.2500 -0.4398 +vn 0.8627 0.2500 -0.4397 +vn -0.7900 0.3149 -0.5261 +vn -0.7899 0.3148 -0.5263 +vn -0.7898 0.3149 -0.5264 +vn -0.1191 0.9901 0.0744 +vn -0.1187 0.9901 0.0747 +vn -0.1186 0.9901 0.0751 +vn 0.0628 -0.9842 -0.1657 +vn 0.0634 -0.9840 -0.1665 +vn 0.0631 -0.9841 -0.1663 +vn 0.3045 -0.9107 -0.2792 +vn 0.3038 -0.9110 -0.2789 +vn 0.3037 -0.9112 -0.2785 +vn -0.5629 -0.6559 0.5030 +vn -0.5638 -0.6549 0.5032 +vn -0.9523 0.2802 -0.1205 +vn -0.9521 0.2811 -0.1202 +vn -0.9523 0.2806 -0.1203 +vn -0.7460 -0.3653 -0.5568 +vn -0.7461 -0.3649 -0.5570 +vn -0.7457 -0.3660 -0.5567 +vn -0.0858 -0.9439 -0.3190 +vn -0.0852 -0.9439 -0.3192 +vn -0.0854 -0.9439 -0.3189 +vn 0.1088 -0.9221 -0.3715 +vn -0.0226 -0.3988 -0.9168 +vn -0.0251 -0.3987 -0.9167 +vn -0.0237 -0.3989 -0.9167 +vn -0.8749 -0.4719 0.1088 +vn -0.8751 -0.4713 0.1094 +vn -0.8751 -0.4715 0.1091 +vn -0.6837 0.1532 -0.7135 +vn -0.6841 0.1536 -0.7130 +vn -0.6837 0.1533 -0.7135 +vn 0.5161 -0.3496 -0.7819 +vn 0.5148 -0.3518 -0.7818 +vn 0.5156 -0.3502 -0.7820 +vn -0.5480 -0.8215 0.1577 +vn -0.5481 -0.8214 0.1577 +vn -0.5482 -0.8214 0.1575 +vn 0.4117 0.2519 0.8758 +vn 0.4114 0.2515 0.8761 +vn -0.9223 -0.3848 0.0361 +vn 0.8596 0.5103 0.0247 +vn 0.8598 0.5100 0.0249 +vn 0.8598 0.5101 0.0245 +vn 0.0395 -0.9148 0.4019 +vn 0.2650 0.9424 -0.2042 +vn 0.8914 -0.3632 0.2712 +vn 0.8914 -0.3631 0.2712 +vn 0.9773 -0.1278 0.1690 +vn 0.9774 -0.1277 0.1682 +vn 0.9775 -0.1278 0.1677 +vn -0.8119 0.1196 -0.5714 +vn -0.8117 0.1198 -0.5717 +vn 0.4523 0.3183 -0.8331 +vn 0.4523 0.3181 -0.8332 +vn 0.4524 0.3180 -0.8332 +vn -0.8128 0.4953 0.3065 +vn -0.8111 0.4971 0.3082 +vn -0.8119 0.4964 0.3072 +vn -0.4556 -0.7942 0.4020 +vn -0.4555 -0.7944 0.4019 +vn -0.4753 -0.8605 0.1836 +vn -0.4752 -0.8605 0.1836 +vn -0.6099 -0.7820 0.1283 +vn -0.5438 -0.8371 0.0587 +vn -0.5438 -0.8372 0.0587 +vn -0.5437 -0.8372 0.0587 +vn 0.4698 0.5602 -0.6823 +vn -0.5358 -0.8390 0.0950 +vn 0.5448 0.7941 0.2695 +vn -0.5273 -0.4189 -0.7393 +vn 0.5441 0.7263 0.4200 +vn -0.1217 -0.4996 -0.8577 +vn -0.1218 -0.4992 -0.8579 +vn -0.1220 -0.4989 -0.8580 +vn 0.6873 0.5978 -0.4127 +vn 0.6870 0.5977 -0.4132 +vn 0.6870 0.5976 -0.4134 +vn 0.2940 -0.4519 0.8422 +vn 0.2929 -0.4505 0.8433 +vn 0.2934 -0.4507 0.8431 +vn -0.2929 -0.9561 -0.0066 +vn -0.2922 -0.9563 -0.0070 +vn -0.2916 -0.9565 -0.0069 +vn 0.5804 -0.3788 0.7209 +vn 0.4748 -0.5931 0.6503 +vn 0.4748 -0.5931 0.6502 +vn -0.7873 -0.5072 -0.3507 +vn -0.7873 -0.5071 -0.3506 +vn -0.7872 -0.5072 -0.3507 +vn -0.7578 0.4890 -0.4319 +vn -0.7579 0.4889 -0.4319 +vn -0.7574 0.4895 -0.4322 +vn -0.6416 -0.0137 0.7669 +vn -0.6416 -0.0140 0.7669 +vn 0.9282 -0.1982 0.3148 +vn 0.9283 -0.1981 0.3148 +vn -0.9939 0.0545 -0.0957 +vn -0.9939 0.0544 -0.0962 +vn -0.9939 0.0548 -0.0960 +vn 0.7923 0.5799 -0.1895 +vn 0.7925 0.5797 -0.1897 +vn 0.7924 0.5798 -0.1895 +vn -0.4975 0.6195 -0.6073 +vn -0.4976 0.6195 -0.6071 +vn -0.2703 0.5009 -0.8222 +vn -0.2701 0.5011 -0.8222 +vn -0.1122 0.6284 -0.7698 +vn -0.1117 0.6287 -0.7696 +vn -0.1125 0.6281 -0.7700 +vn 0.0054 0.0002 1.0000 +vn -0.0659 0.5025 -0.8621 +vn -0.0659 0.5026 -0.8620 +vn -0.0661 0.5036 -0.8614 +vn 0.7988 0.1099 0.5915 +vn 0.7987 0.1096 0.5917 +vn 0.7990 0.1104 0.5911 +vn -0.3381 0.9162 -0.2150 +vn -0.0028 0.9843 0.1768 +vn -0.0030 0.9843 0.1767 +vn -0.0028 0.9843 0.1765 +vn 0.4124 0.5951 -0.6898 +vn 0.4122 0.5950 -0.6900 +vn 0.4123 0.5950 -0.6899 +vn -0.1841 -0.3784 -0.9072 +vn -0.1836 -0.3788 -0.9071 +vn -0.1847 -0.3782 -0.9071 +vn 0.0527 -0.0046 0.9986 +vn 0.0528 -0.0045 0.9986 +vn -0.4744 -0.4110 0.7785 +vn -0.4748 -0.4110 0.7782 +vn -0.4752 -0.4114 0.7778 +vn -0.6577 0.6917 -0.2983 +vn -0.6584 0.6911 -0.2981 +vn -0.6574 0.6919 -0.2983 +vn -0.5615 0.7546 -0.3395 +vn -0.5614 0.7547 -0.3396 +vn 0.3409 0.9395 0.0335 +vn 0.8478 -0.0849 0.5234 +vn 0.8479 -0.0845 0.5234 +vn -0.3921 -0.8158 0.4252 +vn -0.3922 -0.8157 0.4253 +vn -0.9891 0.0544 0.1371 +vn -0.9891 0.0544 0.1369 +vn -0.9891 0.0540 0.1372 +vn 0.8553 -0.2041 0.4762 +vn 0.8556 -0.2038 0.4759 +vn 0.8555 -0.2039 0.4760 +vn 0.0014 -0.9654 -0.2606 +vn 0.0443 -0.4401 -0.8969 +vn 0.0441 -0.4401 -0.8969 +vn 0.0440 -0.4401 -0.8969 +vn -0.2846 0.9539 0.0951 +vn -0.2843 0.9540 0.0954 +vn -0.2846 0.9539 0.0950 +vn -0.7508 0.5253 0.4005 +vn -0.7508 0.5252 0.4005 +vn -0.5654 -0.7494 0.3446 +vn -0.5661 -0.7495 0.3433 +vn -0.5663 -0.7498 0.3423 +vn -0.9531 -0.1691 -0.2509 +vn -0.6945 0.5773 -0.4295 +vn -0.6946 0.5771 -0.4295 +vn -0.6944 0.5773 -0.4295 +vn -0.3841 -0.9081 0.1669 +vn -0.3841 -0.9082 0.1664 +vn -0.3841 -0.9081 0.1667 +vn -0.0473 0.8632 -0.5027 +vn -0.0468 0.8629 -0.5032 +vn -0.0465 0.8627 -0.5036 +vn -0.6749 -0.7355 0.0590 +vn -0.6750 -0.7355 0.0588 +vn -0.6747 -0.7357 0.0592 +vn 0.1782 0.2347 -0.9556 +vn 0.1783 0.2347 -0.9556 +vn 0.1782 0.2344 -0.9557 +vn 0.7465 0.6434 -0.1698 +vn 0.7465 0.6433 -0.1698 +vn 0.7468 0.6429 -0.1700 +vn -0.4842 0.5140 0.7081 +vn -0.4837 0.5139 0.7085 +vn -0.4839 0.5140 0.7083 +vn 0.8548 -0.3289 0.4014 +vn 0.8547 -0.3290 0.4015 +vn 0.8550 -0.3285 0.4015 +vn -0.7845 0.5629 0.2602 +vn -0.7842 0.5631 0.2606 +vn 0.5064 0.7339 -0.4527 +vn 0.5062 0.7338 -0.4531 +vn 0.4737 -0.8804 0.0243 +vn 0.4726 -0.8809 0.0257 +vn 0.4734 -0.8805 0.0250 +vn 0.5349 -0.3555 -0.7665 +vn 0.5367 -0.3544 -0.7658 +vn 0.5356 -0.3552 -0.7661 +vn -0.1358 -0.5853 -0.7994 +vn -0.1355 -0.5852 -0.7995 +vn -0.1360 -0.5854 -0.7993 +vn -0.0362 0.0140 -0.9992 +vn -0.0364 0.0137 -0.9992 +vn -0.0366 0.0135 -0.9992 +vn 0.7177 -0.6346 0.2866 +vn 0.7176 -0.6355 0.2849 +vn 0.7182 -0.6336 0.2876 +vn 0.5654 0.7875 -0.2452 +vn 0.5656 0.7875 -0.2449 +vn 0.5656 0.7875 -0.2448 +vn -0.1928 -0.0874 -0.9773 +vn 0.6680 0.7033 0.2432 +vn 0.6679 0.7035 0.2430 +vn 0.6682 0.7031 0.2433 +vn 0.3165 0.2242 0.9217 +vn 0.3167 0.2245 0.9216 +vn 0.3166 0.2247 0.9216 +vn -0.4549 -0.2412 -0.8572 +vn -0.4548 -0.2411 -0.8573 +vn 0.7816 -0.5600 -0.2747 +vn 0.7817 -0.5600 -0.2745 +vn -0.3773 0.3057 -0.8742 +vn -0.3776 0.3067 -0.8737 +vn -0.3776 0.3063 -0.8739 +vn -0.5134 0.7669 -0.3850 +vn -0.5140 0.7670 -0.3841 +vn -0.5140 0.7673 -0.3836 +vn 0.6833 0.7261 -0.0762 +vn 0.6836 0.7258 -0.0765 +vn -0.5300 -0.1877 0.8270 +vn 0.8247 -0.4609 -0.3278 +vn 0.8247 -0.4609 -0.3279 +vn 0.9077 0.1855 -0.3764 +vn 0.9077 0.1854 -0.3765 +vn 0.9078 0.1852 -0.3763 +vn 0.6888 -0.7219 -0.0666 +vn 0.6887 -0.7220 -0.0663 +vn 0.6884 -0.7223 -0.0661 +vn 0.5633 -0.6942 0.4481 +vn 0.5632 -0.6943 0.4481 +vn -0.4296 0.8960 -0.1126 +vn -0.4293 0.8961 -0.1130 +vn -0.4297 0.8960 -0.1124 +vn -0.1765 -0.1555 -0.9719 +vn 0.0523 -0.2086 -0.9766 +vn 0.0524 -0.2092 -0.9765 +vn 0.0525 -0.2091 -0.9765 +vn 0.1448 0.8784 -0.4554 +vn 0.1447 0.8785 -0.4554 +vn 0.1444 0.8787 -0.4550 +vn -0.1678 -0.8666 0.4699 +vn -0.1678 -0.8667 0.4698 +vn -0.3571 0.4335 0.8274 +vn -0.3570 0.4338 0.8273 +vn -0.3572 0.4337 0.8273 +vn -0.4493 -0.8927 -0.0337 +vn -0.4494 -0.8927 -0.0337 +vn -0.4492 -0.8928 -0.0336 +vn 0.2096 -0.3432 -0.9156 +vn -0.1108 0.9908 -0.0771 +vn -0.1108 0.9909 -0.0770 +vn 0.4851 0.8688 0.0990 +vn 0.4850 0.8689 0.0990 +vn 0.1507 0.9859 0.0727 +vn 0.1508 0.9859 0.0727 +vn 0.1502 0.9860 0.0728 +vn -0.9843 -0.0216 -0.1752 +vn -0.9843 -0.0217 -0.1749 +vn -0.9844 -0.0221 -0.1746 +vn -0.7949 -0.3734 0.4783 +vn -0.7949 -0.3730 0.4786 +vn -0.7949 -0.3729 0.4786 +vn 0.6403 -0.7634 -0.0850 +vn 0.6401 -0.7636 -0.0849 +vn 0.3151 -0.0651 0.9468 +vn 0.2165 -0.8029 -0.5554 +vn 0.2164 -0.8029 -0.5554 +vn -0.3902 -0.6658 -0.6360 +vn -0.3896 -0.6659 -0.6363 +vn -0.3904 -0.6657 -0.6360 +vn -0.1243 -0.8899 -0.4389 +vn -0.1248 -0.8898 -0.4389 +vn -0.1246 -0.8899 -0.4388 +vn 0.0516 0.0014 0.9987 +vn 0.0516 0.0013 0.9987 +vn 0.0517 0.0013 0.9987 +vn -0.1157 0.9527 -0.2809 +vn 0.0161 -0.8888 0.4580 +vn 0.0164 -0.8890 0.4577 +vn 0.0165 -0.8890 0.4576 +vn -0.3344 -0.9424 0.0021 +vn -0.3345 -0.9424 0.0024 +vn -0.3348 -0.9423 0.0026 +vn -0.0448 -0.9798 0.1949 +vn -0.0447 -0.9798 0.1947 +vn 0.5138 0.7716 -0.3749 +vn 0.5139 0.7717 -0.3748 +vn -0.1507 0.2697 0.9511 +vn -0.1504 0.2697 0.9511 +vn -0.9838 -0.0796 -0.1607 +vn -0.9839 -0.0797 -0.1600 +vn -0.9838 -0.0796 -0.1606 +vn 0.2524 -0.0738 0.9648 +vn 0.2527 -0.0741 0.9647 +vn 0.2537 -0.0745 0.9644 +vn -0.9270 0.1619 -0.3382 +vn -0.9272 0.1614 -0.3381 +vn -0.9272 0.1613 -0.3381 +vn 0.4900 0.7742 -0.4008 +vn 0.4900 0.7743 -0.4005 +vn 0.4902 0.7740 -0.4007 +vn -0.9345 -0.3316 0.1294 +vn -0.9344 -0.3320 0.1295 +vn -0.9346 -0.3313 0.1294 +vn 0.6608 0.0311 0.7499 +vn -0.0125 -0.9970 0.0761 +vn -0.0123 -0.9970 0.0762 +vn -0.0122 -0.9970 0.0763 +vn -0.3050 -0.9255 -0.2246 +vn -0.3053 -0.9253 -0.2251 +vn -0.3054 -0.9250 -0.2261 +vn -0.6948 -0.5242 -0.4924 +vn -0.6946 -0.5245 -0.4924 +vn -0.6949 -0.5242 -0.4923 +vn -0.3736 0.0105 -0.9275 +vn -0.3726 0.0093 -0.9279 +vn -0.3749 0.0108 -0.9270 +vn 0.0830 -0.1986 0.9766 +vn 0.0834 -0.1985 0.9765 +vn 0.0836 -0.1985 0.9765 +vn 0.5911 -0.8061 -0.0284 +vn 0.5911 -0.8061 -0.0286 +vn 0.5911 -0.8061 -0.0289 +vn -0.5862 0.7428 -0.3235 +vn -0.5860 0.7431 -0.3231 +vn -0.5864 0.7426 -0.3236 +vn -0.7888 -0.5325 -0.3071 +vn -0.7887 -0.5323 -0.3075 +vn -0.7891 -0.5325 -0.3063 +vn 0.3904 0.6268 0.6743 +vn 0.3905 0.6269 0.6742 +vn 0.3905 0.6265 0.6746 +vn -0.5741 0.4469 -0.6861 +vn -0.5163 0.8528 -0.0791 +vn -0.5162 0.8528 -0.0791 +vn -0.5158 0.8531 -0.0786 +vn 0.0814 -0.9935 0.0802 +vn -0.6989 0.1504 -0.6993 +vn -0.6988 0.1509 -0.6992 +vn -0.6988 0.1507 -0.6993 +vn -0.5224 -0.4319 -0.7352 +vn -0.5223 -0.4318 -0.7354 +vn -0.5225 -0.4319 -0.7352 +vn -0.5439 0.7888 -0.2862 +vn 0.0005 -0.0003 1.0000 +vn -0.3502 -0.1940 0.9164 +vn -0.3504 -0.1938 0.9163 +vn -0.3501 -0.1941 0.9164 +vn 0.7689 0.0990 -0.6317 +vn 0.7691 0.0987 -0.6315 +vn 0.7689 0.0990 -0.6316 +vn -0.8125 0.5189 -0.2657 +vn -0.8125 0.5188 -0.2658 +vn -0.3170 -0.7622 -0.5644 +vn -0.3169 -0.7622 -0.5645 +vn -0.3173 -0.7620 -0.5645 +vn -0.8223 0.3232 -0.4684 +vn -0.8870 -0.4431 0.1302 +vn -0.8868 -0.4434 0.1302 +vn 0.0208 0.2820 -0.9592 +vn 0.0211 0.2816 -0.9593 +vn -0.0030 0.8799 0.4752 +vn -0.8416 0.5130 0.1690 +vn -0.0238 0.9935 -0.1110 +vn 0.1953 -0.9682 0.1565 +vn 0.1954 -0.9681 0.1568 +vn 0.1954 -0.9682 0.1561 +vn 0.2161 0.5627 0.7979 +vn -0.6418 0.0989 0.7605 +vn 0.1820 -0.9817 0.0558 +vn 0.1819 -0.9817 0.0558 +vn -0.1191 0.4621 -0.8788 +vn -0.1189 0.4622 -0.8788 +vn -0.1186 0.4626 -0.8786 +vn 0.8196 0.4809 0.3116 +vn 0.8196 0.4809 0.3113 +vn 0.8195 0.4810 0.3115 +vn -0.1888 -0.9647 -0.1834 +vn -0.1887 -0.9648 -0.1830 +vn -0.1886 -0.9649 -0.1826 +vn -0.1181 -0.4406 -0.8899 +vn 0.3819 0.9239 0.0242 +vn -0.1734 -0.9668 -0.1877 +vn -0.1735 -0.9668 -0.1878 +vn -0.1737 -0.9667 -0.1881 +vn 0.2429 0.9661 -0.0869 +vn 0.2431 0.9661 -0.0869 +vn 0.2435 0.9660 -0.0870 +vn 0.3996 0.9149 -0.0575 +vn 0.3993 0.9150 -0.0571 +vn 0.3995 0.9149 -0.0574 +vn 0.1451 -0.9894 -0.0057 +vn 0.1451 -0.9894 -0.0056 +vn -0.4563 -0.1446 0.8780 +vn -0.4562 -0.1448 0.8780 +vn -0.4560 -0.1451 0.8781 +vn 0.0218 -0.9820 -0.1875 +vn 0.0219 -0.9821 -0.1873 +vn 0.0220 -0.9821 -0.1872 +vn -0.0549 -0.9913 -0.1196 +vn -0.0550 -0.9913 -0.1196 +vn -0.0325 -0.9994 -0.0082 +vn -0.0325 -0.9994 -0.0086 +vn -0.0358 -0.9994 -0.0035 +vn -0.0359 -0.9993 -0.0034 +vn 0.5570 -0.7491 -0.3585 +vn -0.6503 -0.4964 -0.5750 +vn 0.6264 -0.7768 0.0647 +vn 0.6264 -0.7769 0.0644 +vn -0.8647 0.2146 -0.4542 +vn -0.9005 0.0129 0.4346 +vn -0.9004 0.0125 0.4349 +vn 0.1495 -0.9703 0.1903 +vn -0.0006 -0.9954 0.0962 +vn -0.0010 -0.9954 0.0960 +vn -0.0014 -0.9954 0.0958 +vn 0.0071 -0.9991 -0.0425 +vn 0.0072 -0.9991 -0.0425 +vn 0.0074 -0.9991 -0.0425 +vn -0.0347 -0.9892 -0.1423 +vn -0.0347 -0.9892 -0.1427 +vn -0.0346 -0.9892 -0.1424 +vn 0.4147 0.2900 -0.8625 +vn 0.4148 0.2897 -0.8626 +vn 0.4144 0.2905 -0.8625 +vn -0.0533 -0.9975 -0.0459 +vn -0.0531 -0.9975 -0.0457 +vn -0.0530 -0.9976 -0.0455 +vn -0.0975 -0.9952 0.0042 +vn -0.0981 -0.9952 0.0043 +vn -0.0971 -0.9953 0.0044 +vn -0.2147 -0.9748 0.0603 +vn -0.0423 0.2127 -0.9762 +vn 0.0707 -0.9966 0.0429 +vn 0.0708 -0.9966 0.0428 +vn 0.1535 -0.9818 0.1115 +vn 0.1541 -0.9818 0.1114 +vn 0.1534 -0.9819 0.1115 +vn -0.3987 0.1468 -0.9053 +vn -0.3983 0.1465 -0.9055 +vn -0.0543 -0.9947 -0.0873 +vn -0.0542 -0.9946 -0.0883 +vn -0.0540 -0.9946 -0.0887 +vn -0.2098 -0.9720 -0.1062 +vn -0.2094 -0.9720 -0.1063 +vn -0.2100 -0.9719 -0.1060 +vn 0.4805 0.8562 0.1898 +vn 0.4806 0.8562 0.1896 +vn 0.4804 0.8562 0.1900 +vn 0.0036 -0.9914 -0.1311 +vn 0.0037 -0.9913 -0.1318 +vn 0.0035 -0.9913 -0.1313 +vn -0.3165 -0.3974 0.8613 +vn -0.3166 -0.3973 0.8614 +vn -0.3166 -0.3973 0.8613 +vn -0.4203 0.8269 0.3736 +vn -0.4197 0.8272 0.3735 +vn -0.4193 0.8279 0.3726 +vn -0.3332 0.9218 -0.1981 +vn -0.3312 0.9222 -0.1996 +vn -0.3306 0.9223 -0.2001 +vn -0.0752 0.9961 -0.0459 +vn -0.0752 0.9961 -0.0460 +vn 0.6807 -0.7290 0.0723 +vn 0.6807 -0.7289 0.0725 +vn 0.5425 -0.6821 0.4903 +vn 0.5418 -0.6821 0.4911 +vn 0.5423 -0.6822 0.4904 +vn 0.1853 -0.9693 0.1617 +vn 0.1853 -0.9692 0.1621 +vn 0.1853 -0.9692 0.1625 +vn -0.9475 -0.2410 0.2102 +vn -0.9475 -0.2411 0.2102 +vn -0.4827 0.5075 -0.7138 +vn -0.6943 0.6343 -0.3401 +vn -0.6945 0.6342 -0.3399 +vn -0.9549 0.0780 -0.2864 +vn -0.9675 0.2424 0.0726 +vn -0.0332 -0.9991 -0.0254 +vn -0.0331 -0.9991 -0.0253 +vn -0.0334 -0.9991 -0.0258 +vn -0.8315 0.3745 -0.4102 +vn -0.8314 0.3747 -0.4104 +vn -0.8311 0.3750 -0.4107 +vn -0.1415 0.9892 -0.0380 +vn -0.1407 0.9893 -0.0379 +vn -0.1401 0.9894 -0.0380 +vn 0.9129 0.1739 0.3694 +vn 0.9129 0.1739 0.3692 +vn 0.9129 0.1739 0.3693 +vn -0.2421 -0.9630 -0.1182 +vn -0.1213 -0.9925 0.0142 +vn 0.3993 0.9134 -0.0787 +vn 0.3994 0.9134 -0.0786 +vn 0.3994 0.9134 -0.0785 +vn -0.1250 -0.9922 0.0005 +vn -0.1251 -0.9921 0.0005 +vn -0.4091 0.8999 -0.1513 +vn -0.4088 0.8999 -0.1515 +vn -0.4094 0.8998 -0.1512 +vn 0.2006 0.9521 -0.2309 +vn 0.2001 0.9522 -0.2307 +vn 0.1997 0.9523 -0.2307 +vn -0.5045 -0.1766 -0.8452 +vn -0.5071 -0.1757 -0.8438 +vn -0.5059 -0.1758 -0.8445 +vn -0.0006 -0.9998 0.0204 +vn 0.0001 -0.9998 0.0198 +vn 0.0001 -0.9998 0.0196 +vn 0.7562 0.2321 -0.6118 +vn 0.7563 0.2314 -0.6120 +vn -0.0587 -0.9864 -0.1534 +vn -0.0592 -0.9864 -0.1533 +vn -0.0589 -0.9864 -0.1536 +vn -0.2578 -0.1935 -0.9466 +vn -0.2576 -0.1936 -0.9467 +vn -0.2577 -0.1936 -0.9466 +vn 0.6245 0.3680 0.6889 +vn 0.6248 0.3677 0.6888 +vn 0.6248 0.3676 0.6889 +vn 0.5357 0.5996 0.5946 +vn 0.5357 0.5995 0.5947 +vn 0.5356 0.5997 0.5945 +vn -0.9260 0.3624 -0.1061 +vn -0.9261 0.3621 -0.1061 +vn -0.9258 0.3627 -0.1061 +vn 0.9113 0.1539 0.3820 +vn 0.9112 0.1539 0.3820 +vn 0.0652 -0.9747 0.2137 +vn 0.0646 -0.9748 0.2135 +vn 0.0654 -0.9747 0.2138 +vn 0.9323 0.2803 -0.2287 +vn 0.9323 0.2803 -0.2286 +vn 0.1818 -0.9763 0.1172 +vn 0.1814 -0.9764 0.1172 +vn 0.1810 -0.9764 0.1175 +vn 0.1006 -0.9596 0.2627 +vn 0.1006 -0.9594 0.2634 +vn 0.2817 0.2354 -0.9302 +vn 0.2819 0.2368 -0.9298 +vn 0.2820 0.2361 -0.9299 +vn 0.7276 0.6617 0.1811 +vn 0.7275 0.6618 0.1810 +vn 0.3932 -0.2546 0.8835 +vn 0.3932 -0.2555 0.8832 +vn 0.3935 -0.2561 0.8829 +vn 0.1142 -0.9779 0.1752 +vn 0.1141 -0.9780 0.1747 +vn -0.8122 -0.0210 -0.5830 +vn -0.8121 -0.0206 -0.5832 +vn -0.8121 -0.0205 -0.5832 +vn 0.5195 -0.3843 -0.7632 +vn -0.0019 0.0031 1.0000 +vn 0.8675 0.3336 0.3689 +vn 0.8677 0.3336 0.3685 +vn 0.8679 0.3337 0.3679 +vn -0.8385 -0.4048 -0.3649 +vn -0.8385 -0.4047 -0.3650 +vn -0.8385 -0.4050 -0.3646 +vn -0.0796 -0.9950 -0.0610 +vn 0.3923 0.9187 0.0461 +vn 0.3906 0.9193 0.0476 +vn 0.3913 0.9191 0.0468 +vn 0.0008 -0.9703 0.2418 +vn 0.0006 -0.9702 0.2422 +vn 0.0007 -0.9703 0.2420 +vn 0.4296 -0.9028 -0.0207 +vn 0.4295 -0.9028 -0.0207 +vn 0.4293 -0.9029 -0.0205 +vn -0.1790 -0.9646 -0.1935 +vn -0.1791 -0.9647 -0.1931 +vn -0.1789 -0.9647 -0.1935 +vn 0.0846 -0.9961 0.0238 +vn 0.0843 -0.9962 0.0239 +vn 0.0839 -0.9962 0.0240 +vn 0.1323 -0.9846 -0.1145 +vn 0.1549 -0.9716 -0.1789 +vn 0.1547 -0.9716 -0.1789 +vn -0.1910 -0.9471 -0.2578 +vn -0.1269 0.9915 0.0300 +vn -0.1267 0.9915 0.0302 +vn -0.1262 0.9915 0.0306 +vn 0.0600 -0.9913 -0.1174 +vn 0.2633 -0.9608 -0.0873 +vn 0.2632 -0.9608 -0.0873 +vn 0.2633 -0.9608 -0.0872 +vn 0.0307 -0.9888 -0.1462 +vn -0.4556 -0.2165 -0.8634 +vn -0.4556 -0.2163 -0.8635 +vn -0.4556 -0.2159 -0.8636 +vn -0.0572 -0.9619 -0.2672 +vn -0.0574 -0.9621 -0.2667 +vn 0.2342 -0.9722 0.0042 +vn 0.2338 -0.9723 0.0041 +vn 0.2336 -0.9723 0.0041 +vn -0.2223 0.6637 -0.7142 +vn -0.2224 0.6641 -0.7138 +vn -0.2229 0.6648 -0.7130 +vn -0.1300 0.8133 -0.5672 +vn -0.1306 0.8131 -0.5673 +vn -0.1300 0.8133 -0.5671 +vn 0.8935 0.2566 0.3685 +vn 0.8937 0.2564 0.3681 +vn 0.8643 0.3583 0.3530 +vn 0.8643 0.3584 0.3529 +vn 0.8643 0.3581 0.3532 +vn 0.5271 0.6512 -0.5459 +vn 0.5271 0.6512 -0.5460 +vn 0.5272 0.6513 -0.5457 +vn -0.2417 0.0459 0.9693 +vn -0.2409 0.0458 0.9695 +vn -0.2399 0.0461 0.9697 +vn 0.3323 0.7726 -0.5410 +vn 0.2122 0.9769 -0.0268 +vn 0.2125 0.9768 -0.0270 +vn 0.6555 -0.3099 0.6887 +vn 0.8624 -0.4590 0.2134 +vn 0.8623 -0.4592 0.2133 +vn 0.8623 -0.4592 0.2132 +vn -0.8818 0.3211 -0.3454 +vn -0.8816 0.3216 -0.3455 +vn -0.8817 0.3214 -0.3455 +vn 0.1358 -0.9441 -0.3003 +vn 0.1356 -0.9441 -0.3004 +vn 0.1357 -0.9441 -0.3004 +vn -0.2372 0.9040 -0.3556 +vn -0.2371 0.9041 -0.3554 +vn -0.2372 0.9040 -0.3557 +vn -0.0996 0.0457 -0.9940 +vn -0.0995 0.0465 -0.9940 +vn -0.0995 0.0460 -0.9940 +vn -0.5076 0.8211 -0.2608 +vn -0.5077 0.8211 -0.2607 +vn -0.5078 0.8209 -0.2611 +vn -0.2718 -0.8738 -0.4032 +vn -0.2718 -0.8738 -0.4033 +vn -0.2719 -0.8737 -0.4033 +vn 0.9004 -0.3231 -0.2913 +vn 0.9007 -0.3228 -0.2908 +vn 0.9003 -0.3233 -0.2914 +vn 0.1721 0.9664 -0.1909 +vn 0.1734 0.9664 -0.1896 +vn 0.1716 0.9662 -0.1926 +vn 0.8102 -0.2827 0.5135 +vn 0.8103 -0.2826 0.5134 +vn 0.8101 -0.2830 0.5134 +vn -0.5529 -0.3007 -0.7771 +vn -0.5528 -0.3008 -0.7771 +vn -0.5524 -0.3008 -0.7774 +vn 0.2117 0.3214 0.9230 +vn 0.0510 -0.8668 -0.4960 +vn 0.0513 -0.8669 -0.4958 +vn 0.0508 -0.8667 -0.4963 +vn -0.7766 0.4278 -0.4624 +vn -0.7766 0.4279 -0.4624 +vn -0.7767 0.4274 -0.4626 +vn 0.0762 0.9867 -0.1435 +vn 0.0761 0.9867 -0.1434 +vn 0.0761 0.9867 -0.1433 +vn 0.2380 -0.4585 0.8562 +vn 0.2380 -0.4584 0.8563 +vn 0.8072 -0.4823 0.3402 +vn 0.8072 -0.4822 0.3405 +vn 0.8071 -0.4823 0.3405 +vn 0.5244 0.8411 -0.1325 +vn 0.5245 0.8410 -0.1328 +vn 0.5245 0.8410 -0.1329 +vn 0.6181 0.7828 -0.0720 +vn 0.6184 0.7826 -0.0723 +vn -0.7773 0.1591 0.6087 +vn -0.7774 0.1592 0.6085 +vn -0.6255 0.3678 -0.6881 +vn -0.6255 0.3680 -0.6880 +vn -0.5561 -0.8169 0.1530 +vn -0.5561 -0.8170 0.1526 +vn -0.5561 -0.8169 0.1528 +vn -0.4969 -0.6901 -0.5261 +vn -0.4952 -0.6918 -0.5256 +vn -0.4967 -0.6904 -0.5260 +vn -0.5732 -0.7633 0.2982 +vn 0.5445 0.5250 0.6541 +vn 0.5451 0.5244 0.6541 +vn 0.5440 0.5253 0.6543 +vn -0.2327 -0.8059 0.5444 +vn -0.2327 -0.8059 0.5443 +vn -0.2325 -0.8058 0.5446 +vn -0.0267 0.8151 -0.5788 +vn -0.0266 0.8147 -0.5792 +vn -0.0266 0.8149 -0.5790 +vn 0.7055 0.6981 -0.1221 +vn -0.3873 -0.9203 0.0556 +vn -0.4554 -0.7931 -0.4045 +vn -0.4556 -0.7930 -0.4044 +vn -0.4556 -0.7929 -0.4047 +vn 0.6827 0.6195 -0.3875 +vn 0.6826 0.6195 -0.3876 +vn 0.6828 0.6196 -0.3872 +vn 0.6761 0.1869 -0.7127 +vn -0.9339 0.2212 -0.2809 +vn -0.9339 0.2207 -0.2812 +vn -0.9339 0.2215 -0.2807 +vn -0.2143 0.4711 0.8556 +vn 0.8901 -0.1677 -0.4238 +vn 0.8906 -0.1677 -0.4228 +vn 0.8902 -0.1677 -0.4236 +vn -0.9386 -0.2586 -0.2282 +vn -0.9385 -0.2588 -0.2285 +vn -0.0781 0.1065 -0.9912 +vn -0.0782 0.1065 -0.9912 +vn -0.0782 0.1066 -0.9912 +vn 0.0657 0.0288 -0.9974 +vn 0.9821 -0.1695 -0.0823 +vn 0.9821 -0.1694 -0.0822 +vn 0.5776 -0.7984 -0.1700 +vn 0.5774 -0.7985 -0.1702 +vn 0.5773 -0.7985 -0.1707 +vn 0.8464 -0.4642 0.2611 +vn 0.8465 -0.4640 0.2610 +vn 0.7981 -0.3466 0.4928 +vn 0.7980 -0.3455 0.4938 +vn 0.7980 -0.3462 0.4932 +vn -0.4952 -0.8562 0.1475 +vn -0.4949 -0.8563 0.1476 +vn -0.4953 -0.8561 0.1473 +vn -0.4461 -0.3403 -0.8277 +vn -0.4460 -0.3406 -0.8277 +vn 0.8435 -0.0314 0.5362 +vn -0.1921 -0.6578 -0.7283 +vn -0.1922 -0.6578 -0.7283 +vn -0.1919 -0.6579 -0.7282 +vn -0.0305 0.5833 0.8117 +vn -0.0306 0.5832 0.8117 +vn -0.0298 0.5839 0.8113 +vn -0.2195 0.6190 -0.7541 +vn -0.2189 0.6190 -0.7543 +vn -0.2196 0.6191 -0.7540 +vn -0.5464 0.8174 -0.1825 +vn -0.5463 0.8174 -0.1826 +vn -0.1362 0.5767 0.8055 +vn -0.1368 0.5775 0.8049 +vn -0.1361 0.5766 0.8056 +vn 0.2584 0.2121 0.9425 +vn 0.2582 0.2118 0.9426 +vn 0.2581 0.2117 0.9426 +vn -0.3213 0.4399 -0.8386 +vn -0.8102 0.5835 0.0562 +vn -0.8090 0.5850 0.0564 +vn -0.8086 0.5856 0.0571 +vn -0.4478 -0.8661 -0.2219 +vn -0.4476 -0.8663 -0.2217 +vn -0.4479 -0.8661 -0.2219 +vn 0.0600 -0.4139 -0.9083 +vn 0.0599 -0.4139 -0.9083 +vn -0.6780 0.2612 0.6871 +vn -0.6775 0.2614 0.6875 +vn -0.6778 0.2611 0.6873 +vn -0.9108 -0.0572 -0.4089 +vn -0.9108 -0.0571 -0.4089 +vn -0.3381 0.5531 0.7614 +vn -0.3371 0.5534 0.7616 +vn -0.3377 0.5533 0.7615 +vn -0.3092 0.5753 0.7573 +vn 0.4838 -0.8216 0.3014 +vn -0.5097 0.6991 0.5014 +vn -0.3516 -0.0695 -0.9336 +vn -0.3515 -0.0697 -0.9336 +vn -0.3516 -0.0699 -0.9335 +vn -0.9565 -0.0693 -0.2834 +vn -0.9566 -0.0692 -0.2832 +vn -0.9566 -0.0694 -0.2829 +vn 0.0636 -0.2570 0.9643 +vn 0.0638 -0.2567 0.9644 +vn 0.0554 0.9831 0.1748 +vn 0.0551 0.9830 0.1752 +vn -0.1553 -0.9614 0.2271 +vn -0.1542 -0.9615 0.2273 +vn -0.1548 -0.9615 0.2270 +vn -0.4667 -0.0736 0.8813 +vn 0.3035 -0.7949 -0.5253 +vn -0.0469 -0.0010 -0.9989 +vn -0.0470 -0.0009 -0.9989 +vn -0.0465 -0.0010 -0.9989 +vn -0.2137 0.6617 -0.7187 +vn -0.2136 0.6617 -0.7187 +vn -0.2135 0.6617 -0.7187 +vn 0.3470 -0.8614 -0.3709 +vn 0.3469 -0.8615 -0.3708 +vn 0.3471 -0.8614 -0.3708 +vn 0.4289 -0.8834 0.1886 +vn 0.4285 -0.8836 0.1886 +vn 0.4287 -0.8836 0.1886 +vn -0.9838 0.1082 -0.1430 +vn -0.9838 0.1082 -0.1428 +vn -0.9838 0.1082 -0.1431 +vn 0.0008 -0.0110 0.9999 +vn 0.7736 -0.3441 -0.5320 +vn 0.7737 -0.3441 -0.5320 +vn -0.2777 -0.9566 -0.0884 +vn -0.3271 -0.4086 -0.8521 +vn -0.3286 -0.4081 -0.8518 +vn -0.3298 -0.4067 -0.8520 +vn 0.3329 0.2987 0.8944 +vn 0.3328 0.2988 0.8944 +vn 0.3326 0.2988 0.8945 +vn 0.4582 -0.4894 -0.7420 +vn 0.4584 -0.4892 -0.7420 +vn 0.3721 0.5220 0.7675 +vn 0.3730 0.5221 0.7670 +vn 0.3725 0.5221 0.7672 +vn 0.8386 -0.5249 0.1455 +vn 0.8386 -0.5250 0.1451 +vn -0.6812 -0.2476 0.6889 +vn -0.6819 -0.2475 0.6883 +vn -0.6823 -0.2473 0.6880 +vn -0.4543 -0.7080 -0.5406 +vn -0.4544 -0.7080 -0.5406 +vn -0.4543 -0.7079 -0.5409 +vn -0.2632 0.9088 -0.3238 +vn 0.0533 -0.1124 0.9922 +vn 0.0532 -0.1127 0.9922 +vn 0.0055 0.9833 -0.1820 +vn 0.0057 0.9833 -0.1820 +vn 0.0060 0.9833 -0.1820 +vn -0.3372 0.9024 0.2683 +vn -0.3381 0.9023 0.2674 +vn -0.3371 0.9023 0.2687 +vn 0.7856 -0.5277 -0.3231 +vn 0.3196 -0.9022 -0.2898 +vn 0.3196 -0.9021 -0.2898 +vn -0.2366 -0.0559 -0.9700 +vn -0.2363 -0.0561 -0.9701 +vn -0.2367 -0.0557 -0.9700 +vn -0.4581 -0.8881 -0.0373 +vn -0.4580 -0.8881 -0.0374 +vn 0.6480 0.6017 0.4670 +vn 0.6479 0.6017 0.4670 +vn 0.2058 -0.8111 -0.5474 +vn 0.2056 -0.8109 -0.5478 +vn 0.2057 -0.8110 -0.5477 +vn 0.2772 -0.8908 -0.3600 +vn 0.7263 0.6810 0.0935 +vn 0.7264 0.6809 0.0935 +vn 0.7262 0.6810 0.0936 +vn 0.2245 -0.8289 -0.5123 +vn -0.5307 -0.0092 -0.8475 +vn -0.5311 -0.0092 -0.8473 +vn -0.5316 -0.0092 -0.8470 +vn 0.6435 0.6235 0.4441 +vn 0.0652 -0.8751 0.4795 +vn 0.4425 0.2505 0.8611 +vn 0.4422 0.2511 0.8610 +vn 0.4423 0.2506 0.8611 +vn -0.7565 -0.5634 0.3321 +vn -0.7583 -0.5615 0.3312 +vn -0.7571 -0.5630 0.3314 +vn -0.0789 0.9955 0.0529 +vn -0.0787 0.9955 0.0536 +vn -0.0787 0.9955 0.0535 +vn -0.0628 -0.7546 -0.6532 +vn -0.0610 -0.7556 -0.6522 +vn -0.0606 -0.7565 -0.6512 +vn 0.1142 -0.8588 -0.4994 +vn 0.1125 -0.8592 -0.4991 +vn 0.1163 -0.8576 -0.5010 +vn 0.5438 0.3670 -0.7548 +vn 0.5438 0.3667 -0.7549 +vn 0.5439 0.3668 -0.7548 +vn 0.8292 0.3614 -0.4264 +vn 0.6033 0.6936 0.3937 +vn -0.2276 -0.9597 0.1651 +vn -0.0598 0.0103 -0.9982 +vn -0.0597 0.0112 -0.9982 +vn -0.3246 0.5651 -0.7585 +vn -0.3250 0.5649 -0.7585 +vn -0.3245 0.5652 -0.7585 +vn -0.0021 -0.9873 0.1588 +vn 0.2898 0.9297 -0.2274 +vn -0.0159 -0.9917 0.1277 +vn 0.3048 0.9472 -0.0993 +vn 0.5575 0.6619 0.5011 +vn 0.5573 0.6620 0.5012 +vn 0.4969 -0.7129 -0.4949 +vn 0.4970 -0.7130 -0.4946 +vn 0.4969 -0.7130 -0.4947 +vn -0.3176 0.6143 0.7224 +vn -0.3193 0.6143 0.7216 +vn -0.3171 0.6141 0.7227 +vn 0.1032 -0.9942 0.0311 +vn 0.1030 -0.9942 0.0309 +vn 0.1030 -0.9942 0.0311 +vn -0.2221 0.2338 -0.9466 +vn -0.2222 0.2335 -0.9466 +vn -0.2221 0.2339 -0.9466 +vn -0.2368 -0.9699 -0.0575 +vn -0.2365 -0.9699 -0.0575 +vn -0.2367 -0.9699 -0.0575 +vn 0.1663 0.9827 0.0813 +vn 0.1663 0.9827 0.0814 +vn 0.1665 0.9827 0.0815 +vn -0.6366 0.3829 0.6695 +vn -0.1309 -0.9785 -0.1591 +vn -0.1300 -0.9781 -0.1628 +vn -0.1299 -0.9782 -0.1620 +vn 0.6198 0.7298 -0.2886 +vn 0.6198 0.7297 -0.2887 +vn 0.6197 0.7298 -0.2887 +vn 0.2867 -0.7879 -0.5450 +vn 0.2868 -0.7879 -0.5450 +vn -0.0051 0.9110 -0.4123 +vn -0.1691 -0.9825 0.0779 +vn -0.8386 -0.1471 -0.5245 +vn -0.8390 -0.1468 -0.5240 +vn -0.8388 -0.1470 -0.5243 +vn 0.2172 -0.9751 0.0439 +vn 0.2175 -0.9751 0.0442 +vn 0.4113 -0.7478 -0.5211 +vn 0.4111 -0.7479 -0.5211 +vn 0.6245 0.6003 0.4996 +vn 0.6245 0.6003 0.4997 +vn 0.6246 0.6002 0.4997 +vn 0.3407 -0.9131 -0.2242 +vn 0.3405 -0.9131 -0.2243 +vn 0.3402 -0.9132 -0.2242 +vn -0.0430 -0.2292 -0.9724 +vn -0.0430 -0.2294 -0.9724 +vn -0.0428 -0.2293 -0.9724 +vn -0.0938 -0.9576 -0.2723 +vn -0.0939 -0.9576 -0.2724 +vn -0.9166 -0.1718 -0.3611 +vn -0.9167 -0.1716 -0.3609 +vn -0.9165 -0.1719 -0.3612 +vn -0.0596 -0.6488 0.7586 +vn -0.0598 -0.6492 0.7583 +vn -0.0597 -0.6495 0.7580 +vn -0.3258 0.0978 -0.9404 +vn -0.3255 0.0976 -0.9405 +vn -0.3252 0.0976 -0.9406 +vn 0.4899 -0.7295 0.4773 +vn 0.4898 -0.7297 0.4772 +vn 0.4896 -0.7298 0.4772 +vn 0.0615 -0.8937 -0.4444 +vn 0.0619 -0.8935 -0.4447 +vn 0.0617 -0.8936 -0.4447 +vn -0.2251 -0.6737 -0.7039 +vn -0.0534 -0.7215 -0.6904 +vn -0.0535 -0.7208 -0.6911 +vn -0.0538 -0.7203 -0.6915 +vn 0.6982 -0.5476 0.4611 +vn -0.9433 -0.1965 -0.2677 +vn -0.9433 -0.1965 -0.2676 +vn -0.8025 -0.1463 -0.5785 +vn -0.8023 -0.1467 -0.5787 +vn -0.2813 -0.9492 -0.1410 +vn -0.2814 -0.9491 -0.1415 +vn -0.2818 -0.9489 -0.1420 +vn 0.2616 -0.9236 0.2801 +vn 0.2614 -0.9238 0.2799 +vn 0.2617 -0.9236 0.2802 +vn -0.8670 0.3769 -0.3261 +vn -0.8669 0.3771 -0.3261 +vn -0.0648 -0.2699 0.9607 +vn -0.0649 -0.2702 0.9606 +vn -0.0643 -0.2693 0.9609 +vn -0.0852 0.3662 -0.9266 +vn -0.0854 0.3664 -0.9265 +vn -0.0396 -0.9966 0.0727 +vn -0.0397 -0.9966 0.0727 +vn -0.0401 -0.9966 0.0725 +vn 0.0595 0.7971 -0.6010 +vn 0.0598 0.7971 -0.6009 +vn 0.0587 0.7969 -0.6013 +vn -0.2931 -0.9556 -0.0301 +vn -0.2932 -0.9556 -0.0300 +vn -0.2935 -0.9555 -0.0298 +vn 0.2355 0.3412 0.9100 +vn -0.1472 -0.1369 0.9796 +vn -0.1474 -0.1370 0.9795 +vn 0.2030 0.6848 -0.6999 +vn 0.2033 0.6843 -0.7003 +vn 0.3558 0.8533 -0.3813 +vn 0.3559 0.8533 -0.3811 +vn 0.3559 0.8532 -0.3814 +vn 0.2121 -0.9740 -0.0793 +vn 0.2125 -0.9740 -0.0790 +vn 0.2122 -0.9740 -0.0791 +vn -0.1563 0.9875 -0.0224 +vn -0.1562 0.9875 -0.0224 +vn -0.1561 0.9875 -0.0224 +vn 0.2839 -0.9536 0.1003 +vn 0.2840 -0.9536 0.1000 +vn 0.2838 -0.9536 0.1005 +vn 0.2799 0.8730 0.3994 +vn 0.1836 -0.9650 0.1872 +vn 0.1829 -0.9651 0.1873 +vn 0.1826 -0.9652 0.1872 +vn -0.8239 0.2823 -0.4914 +vn -0.8241 0.2822 -0.4912 +vn -0.8240 0.2821 -0.4913 +vn -0.0838 -0.9715 -0.2218 +vn -0.0837 -0.9715 -0.2217 +vn -0.0482 -0.9988 -0.0065 +vn -0.0481 -0.9988 -0.0072 +vn -0.0478 -0.9988 -0.0072 +vn -0.9684 0.0597 -0.2422 +vn -0.9684 0.0596 -0.2422 +vn -0.9685 0.0595 -0.2420 +vn 0.0418 -0.9941 -0.1001 +vn 0.9592 0.2794 -0.0436 +vn 0.9592 0.2794 -0.0437 +vn -0.0227 -0.9834 -0.1801 +vn -0.0221 -0.9833 -0.1806 +vn -0.0222 -0.9833 -0.1806 +vn -0.1680 -0.9756 -0.1415 +vn -0.1678 -0.9756 -0.1415 +vn 0.0660 -0.9905 -0.1209 +vn 0.0887 -0.9772 0.1931 +vn 0.0886 -0.9771 0.1933 +vn 0.0888 -0.9772 0.1930 +vn 0.6666 0.6487 0.3672 +vn 0.6665 0.6490 0.3669 +vn 0.6665 0.6490 0.3668 +vn -0.3207 0.1902 -0.9279 +vn -0.3210 0.1904 -0.9277 +vn -0.3208 0.1903 -0.9278 +vn 0.8432 0.0676 0.5333 +vn 0.8425 0.0688 0.5342 +vn 0.8429 0.0683 0.5337 +vn -0.1811 -0.9756 0.1244 +vn -0.1810 -0.9756 0.1240 +vn -0.1809 -0.9757 0.1238 +vn 0.0434 -0.9966 0.0707 +vn 0.0429 -0.9966 0.0703 +vn 0.0434 -0.9966 0.0706 +vn -0.6395 -0.6202 0.4543 +vn 0.9136 -0.0879 0.3970 +vn 0.9137 -0.0876 0.3968 +vn 0.2549 -0.9670 -0.0000 +vn 0.2553 -0.9669 -0.0000 +vn 0.2550 -0.9669 -0.0000 +vn 0.1831 -0.6671 -0.7221 +vn 0.1833 -0.6670 -0.7221 +vn 0.1836 -0.6665 -0.7226 +vn 0.0411 -0.0363 0.9985 +vn 0.0403 -0.0370 0.9985 +vn 0.0406 -0.0368 0.9985 +vn 0.9271 0.0907 0.3636 +vn 0.9270 0.0909 0.3639 +vn 0.9271 0.0909 0.3636 +vn 0.1568 -0.9852 0.0696 +vn 0.1568 -0.9852 0.0695 +vn 0.1570 -0.9852 0.0695 +vn 0.9192 0.3020 0.2529 +vn -0.1930 -0.9744 -0.1157 +vn 0.0985 -0.9919 0.0806 +vn 0.0985 -0.9919 0.0808 +vn 0.0985 -0.9918 0.0809 +vn 0.5601 0.3014 0.7716 +vn 0.5596 0.3016 0.7719 +vn 0.5596 0.3017 0.7719 +vn 0.1653 -0.9828 0.0818 +vn 0.1652 -0.9829 0.0819 +vn 0.1658 -0.9358 0.3111 +vn 0.1656 -0.9358 0.3112 +vn -0.2117 0.9652 -0.1536 +vn -0.2117 0.9651 -0.1540 +vn -0.2117 0.9651 -0.1544 +vn -0.0567 -0.9984 -0.0045 +vn -0.0565 -0.9984 -0.0044 +vn -0.1723 0.8618 0.4770 +vn 0.0045 0.5551 -0.8317 +vn 0.0046 0.5551 -0.8317 +vn 0.0034 0.5552 -0.8317 +vn 0.7026 0.1157 0.7021 +vn 0.7029 0.1151 0.7019 +vn -0.8591 0.4827 0.1701 +vn -0.8589 0.4830 0.1701 +vn -0.0408 -0.9523 -0.3023 +vn -0.0404 -0.9524 -0.3021 +vn -0.0396 -0.9525 -0.3021 +vn -0.2855 -0.9548 0.0829 +vn -0.2847 -0.9550 0.0831 +vn -0.2851 -0.9549 0.0832 +vn 0.2895 0.0429 0.9562 +vn 0.0118 -0.9985 0.0539 +vn 0.0117 -0.9985 0.0541 +vn 0.2527 -0.9297 0.2679 +vn 0.2529 -0.9297 0.2678 +vn 0.2530 -0.9297 0.2676 +vn 0.0122 0.9738 -0.2272 +vn 0.0118 0.9740 -0.2263 +vn 0.0127 0.9736 -0.2278 +vn -0.0207 -0.9902 0.1383 +vn -0.0192 -0.9903 0.1377 +vn -0.0197 -0.9903 0.1378 +vn -0.3837 -0.0170 0.9233 +vn -0.3841 -0.0168 0.9231 +vn -0.3840 -0.0168 0.9232 +vn -0.3237 -0.9442 0.0612 +vn -0.3241 -0.9441 0.0611 +vn -0.3235 -0.9443 0.0611 +vn 0.7124 0.4318 0.5531 +vn 0.1555 -0.9878 -0.0124 +vn 0.1560 -0.9877 -0.0127 +vn 0.1561 -0.9877 -0.0129 +vn -0.2191 0.9699 0.1066 +vn -0.2188 0.9699 0.1067 +vn -0.8050 0.0353 -0.5922 +vn -0.8051 0.0356 -0.5921 +vn 0.0293 0.9928 0.1161 +vn 0.0293 0.9928 0.1162 +vn 0.0292 0.9928 0.1165 +vn 0.3502 -0.8789 0.3238 +vn 0.3504 -0.8790 0.3235 +vn 0.3503 -0.8790 0.3236 +vn 0.1308 -0.9829 -0.1298 +vn 0.8872 -0.4547 0.0783 +vn 0.8872 -0.4546 0.0786 +vn 0.1283 -0.9829 -0.1320 +vn -0.4555 0.3165 0.8321 +vn -0.4554 0.3168 0.8320 +vn -0.8295 0.4991 -0.2505 +vn 0.4004 -0.8933 0.2043 +vn 0.3999 -0.8931 0.2058 +vn 0.4004 -0.8933 0.2042 +vn 0.1303 -0.9909 0.0328 +vn 0.1305 -0.9909 0.0326 +vn 0.1304 -0.9909 0.0324 +vn 0.0507 -0.9947 -0.0900 +vn 0.3089 -0.9358 0.1700 +vn 0.3086 -0.9358 0.1702 +vn 0.3088 -0.9358 0.1703 +vn -0.0434 -0.9605 0.2750 +vn -0.0427 -0.9605 0.2751 +vn -0.0430 -0.9605 0.2750 +vn 0.6878 -0.7049 0.1731 +vn 0.4223 -0.9041 0.0662 +vn 0.4221 -0.9042 0.0646 +vn 0.4220 -0.9043 0.0651 +vn 0.2106 -0.9561 0.2037 +vn 0.2108 -0.9560 0.2040 +vn 0.1225 -0.9346 0.3340 +vn 0.1222 -0.9348 0.3336 +vn -0.0638 0.9396 -0.3362 +vn -0.0637 0.9397 -0.3361 +vn -0.0637 0.9397 -0.3360 +vn -0.9986 -0.0237 0.0474 +vn -0.9986 -0.0241 0.0473 +vn -0.9986 -0.0233 0.0474 +vn 0.2022 -0.9462 0.2528 +vn 0.5144 -0.8117 0.2767 +vn 0.5115 -0.8134 0.2771 +vn 0.5132 -0.8126 0.2764 +vn -0.1445 -0.7762 -0.6137 +vn 0.2402 0.9474 -0.2115 +vn 0.2398 0.9475 -0.2116 +vn 0.2406 0.9474 -0.2113 +vn -0.3515 -0.9184 0.1819 +vn -0.3516 -0.9184 0.1813 +vn -0.3514 -0.9187 0.1805 +vn 0.5640 0.8246 -0.0440 +vn 0.2354 0.8534 -0.4650 +vn 0.2351 0.8537 -0.4646 +vn 0.5276 -0.1638 -0.8335 +vn 0.5277 -0.1638 -0.8335 +vn 0.1695 -0.9853 0.0213 +vn 0.1696 -0.9853 0.0211 +vn 0.1697 -0.9853 0.0212 +vn 0.1954 -0.9795 0.0480 +vn -0.6403 0.7199 -0.2681 +vn -0.6403 0.7198 -0.2681 +vn -0.6071 0.3263 -0.7246 +vn -0.7551 0.6268 -0.1923 +vn -0.7549 0.6269 -0.1927 +vn -0.0172 -0.9868 0.1612 +vn -0.0174 -0.9868 0.1611 +vn -0.0171 -0.9868 0.1609 +vn -0.1317 -0.9189 0.3718 +vn -0.1319 -0.9189 0.3719 +vn -0.1321 -0.9189 0.3717 +vn 0.2421 -0.9562 -0.1648 +vn 0.2418 -0.9563 -0.1645 +vn 0.2419 -0.9562 -0.1646 +vn -0.2189 -0.9182 0.3302 +vn -0.2191 -0.9182 0.3300 +vn -0.2187 -0.9181 0.3304 +vn -0.0367 0.5070 0.8612 +vn -0.0368 0.5068 0.8613 +vn -0.0368 0.5070 0.8612 +vn -0.0737 -0.9453 0.3176 +vn -0.0741 -0.9454 0.3174 +vn 0.2279 -0.9609 0.1575 +vn -0.1822 0.9251 -0.3332 +vn 0.4083 -0.9128 0.0086 +vn 0.4083 -0.9128 0.0088 +vn 0.4083 -0.9128 0.0090 +vn 0.5447 -0.8385 0.0115 +vn -0.2755 0.7280 -0.6278 +vn -0.2751 0.7284 -0.6275 +vn -0.2750 0.7282 -0.6277 +vn -0.2746 -0.9348 -0.2251 +vn -0.2748 -0.9348 -0.2251 +vn 0.3038 0.9525 -0.0203 +vn -0.5625 0.5399 -0.6261 +vn 0.0283 -0.9754 -0.2185 +vn 0.0282 -0.9753 -0.2191 +vn -0.3455 -0.2389 0.9075 +vn -0.2728 0.9127 -0.3042 +vn -0.2733 0.9126 -0.3041 +vn -0.1697 -0.9263 -0.3365 +vn -0.1697 -0.9263 -0.3364 +vn -0.1698 -0.9263 -0.3363 +vn 0.4308 -0.9022 -0.0212 +vn 0.4305 -0.9023 -0.0217 +vn 0.4305 -0.9023 -0.0213 +vn 0.8681 0.0465 0.4943 +vn 0.9340 -0.2261 0.2767 +vn 0.9337 -0.2267 0.2770 +vn 0.0107 -0.9491 -0.3147 +vn 0.8309 -0.2172 0.5123 +vn 0.8309 -0.2167 0.5126 +vn 0.8309 -0.2170 0.5124 +vn -0.4292 -0.2057 0.8795 +vn -0.4292 -0.2059 0.8794 +vn 0.1624 -0.9459 -0.2808 +vn 0.1621 -0.9460 -0.2808 +vn 0.5811 0.1884 0.7917 +vn 0.5811 0.1879 0.7919 +vn 0.5812 0.1888 0.7915 +vn -0.4474 -0.1527 -0.8812 +vn -0.4474 -0.1532 -0.8811 +vn -0.4479 -0.1538 -0.8807 +vn -0.3018 0.6084 0.7340 +vn -0.3014 0.6083 0.7343 +vn -0.3016 0.6085 0.7340 +vn 0.4109 0.8985 -0.1542 +vn 0.2330 0.9662 0.1107 +vn 0.2327 0.9662 0.1111 +vn 0.4110 -0.6647 0.6239 +vn 0.4112 -0.6647 0.6238 +vn 0.1539 0.3065 0.9394 +vn 0.1515 0.3077 0.9393 +vn 0.1521 0.3071 0.9394 +vn 0.5903 0.4878 -0.6431 +vn 0.5903 0.4880 -0.6430 +vn -0.1451 -0.8937 -0.4246 +vn -0.1450 -0.8951 -0.4216 +vn -0.1455 -0.8940 -0.4238 +vn 0.3718 0.1008 0.9228 +vn 0.3716 0.1005 0.9229 +vn 0.3716 0.1006 0.9229 +vn -0.1206 0.3008 -0.9460 +vn 0.5544 0.6749 0.4871 +vn 0.0530 0.1589 -0.9859 +vn 0.0527 0.1589 -0.9859 +vn 0.0526 0.1589 -0.9859 +vn -0.3584 0.0159 -0.9334 +vn -0.3584 0.0162 -0.9334 +vn 0.2383 0.2238 0.9450 +vn 0.2384 0.2246 0.9448 +vn 0.2391 0.2255 0.9444 +vn 0.4573 0.4296 -0.7787 +vn 0.4580 0.4295 -0.7783 +vn 0.4576 0.4296 -0.7785 +vn -0.2055 -0.8432 -0.4967 +vn 0.8071 0.5772 -0.1246 +vn 0.8064 0.5781 -0.1250 +vn 0.8072 0.5770 -0.1244 +vn 0.6606 0.6293 0.4094 +vn 0.6608 0.6291 0.4094 +vn 0.4275 0.8006 -0.4199 +vn 0.4277 0.8004 -0.4201 +vn 0.4276 0.8005 -0.4199 +vn 0.6431 0.6066 0.4674 +vn 0.6438 0.6055 0.4678 +vn 0.6436 0.6059 0.4676 +vn 0.7122 -0.0013 0.7020 +vn 0.7125 -0.0009 0.7017 +vn 0.7121 -0.0011 0.7021 +vn -0.6133 -0.2742 -0.7407 +vn -0.6127 -0.2737 -0.7414 +vn -0.6136 -0.2746 -0.7403 +vn -0.4217 0.9041 0.0698 +vn -0.4217 0.9040 0.0700 +vn -0.4905 -0.8127 0.3146 +vn -0.4907 -0.8125 0.3147 +vn -0.4914 -0.8121 0.3148 +vn 0.2188 -0.5449 -0.8095 +vn 0.2187 -0.5449 -0.8095 +vn -0.4460 0.6742 -0.5887 +vn -0.4447 0.6749 -0.5889 +vn -0.4456 0.6744 -0.5888 +vn 0.3531 0.3950 -0.8481 +vn 0.3534 0.3933 -0.8488 +vn 0.3531 0.3941 -0.8485 +vn -0.7507 -0.0873 -0.6549 +vn -0.7508 -0.0873 -0.6548 +vn -0.7509 -0.0869 -0.6547 +vn -0.3525 -0.9291 0.1123 +vn -0.3526 -0.9290 0.1124 +vn -0.3524 -0.9291 0.1120 +vn 0.7902 -0.5855 0.1811 +vn 0.7901 -0.5855 0.1814 +vn 0.5877 0.7907 -0.1712 +vn 0.5875 0.7909 -0.1711 +vn 0.5877 0.7908 -0.1712 +vn -0.1825 0.8961 0.4046 +vn -0.1827 0.8960 0.4047 +vn -0.1828 0.8961 0.4046 +vn -0.2635 0.5886 -0.7643 +vn -0.2637 0.5885 -0.7643 +vn -0.2632 0.5886 -0.7643 +vn 0.8094 0.3090 0.4994 +vn 0.8089 0.3108 0.4991 +vn 0.8094 0.3097 0.4990 +vn 0.4621 -0.3033 0.8333 +vn 0.4622 -0.3030 0.8334 +vn 0.4622 -0.3032 0.8334 +vn 0.7464 0.2825 0.6026 +vn 0.7458 0.2822 0.6035 +vn 0.7445 0.2829 0.6048 +vn -0.3604 -0.9261 0.1116 +vn -0.3601 -0.9263 0.1109 +vn -0.3592 -0.9268 0.1096 +vn -0.5478 0.6864 -0.4783 +vn -0.5481 0.6866 -0.4776 +vn -0.5480 0.6860 -0.4786 +vn 0.5226 -0.2464 0.8162 +vn 0.5228 -0.2466 0.8160 +vn 0.5227 -0.2463 0.8162 +vn 0.3681 -0.2251 0.9021 +vn 0.3683 -0.2247 0.9022 +vn 0.3683 -0.2249 0.9021 +vn 0.1436 0.8120 -0.5657 +vn -0.4794 -0.6052 0.6355 +vn -0.4798 -0.6050 0.6354 +vn -0.4795 -0.6054 0.6353 +vn 0.7432 -0.6691 0.0041 +vn 0.7428 -0.6695 0.0035 +vn 0.7428 -0.6695 0.0033 +vn 0.3406 -0.6232 0.7040 +vn 0.3403 -0.6234 0.7040 +vn 0.3404 -0.6234 0.7039 +vn 0.2690 -0.9603 -0.0737 +vn 0.2691 -0.9603 -0.0736 +vn 0.4819 -0.4528 0.7502 +vn 0.4821 -0.4529 0.7500 +vn 0.4821 -0.4528 0.7501 +vn -0.1662 -0.1097 -0.9800 +vn -0.1660 -0.1093 -0.9800 +vn -0.1663 -0.1095 -0.9800 +vn -0.2304 -0.9279 0.2931 +vn -0.2302 -0.9280 0.2929 +vn -0.3469 -0.2009 0.9161 +vn -0.3469 -0.2012 0.9161 +vn -0.3470 -0.2010 0.9161 +vn 0.4518 0.4776 -0.7535 +vn 0.4519 0.4776 -0.7534 +vn 0.8905 -0.3345 0.3086 +vn 0.8907 -0.3343 0.3080 +vn 0.8899 -0.3345 0.3100 +vn -0.1011 0.9748 -0.1989 +vn -0.1011 0.9749 -0.1986 +vn -0.1011 0.9748 -0.1988 +vn -0.4921 0.2119 -0.8444 +vn -0.4921 0.2121 -0.8443 +vn -0.4920 0.2122 -0.8443 +vn -0.3255 0.4103 0.8519 +vn 0.8190 0.5003 -0.2810 +vn 0.8189 0.5006 -0.2807 +vn 0.8189 0.5007 -0.2807 +vn -0.1123 -0.8928 -0.4362 +vn -0.1122 -0.8928 -0.4363 +vn -0.1124 -0.8928 -0.4363 +vn 0.7185 -0.6870 -0.1088 +vn 0.7186 -0.6869 -0.1089 +vn 0.7185 -0.6869 -0.1089 +vn -0.2578 -0.0412 -0.9653 +vn -0.2580 -0.0411 -0.9653 +vn -0.2580 -0.0406 -0.9653 +vn -0.2407 -0.1178 -0.9634 +vn -0.2407 -0.1176 -0.9634 +vn -0.1736 -0.8949 -0.4112 +vn -0.1735 -0.8947 -0.4116 +vn -0.7250 0.4683 0.5050 +vn -0.7249 0.4683 0.5051 +vn -0.0386 -0.7373 -0.6745 +vn -0.3046 -0.8136 0.4952 +vn -0.3045 -0.8135 0.4954 +vn -0.3660 -0.7860 -0.4982 +vn -0.3657 -0.7863 -0.4980 +vn -0.3658 -0.7862 -0.4980 +vn 0.3297 0.0005 0.9441 +vn 0.3304 0.0008 0.9438 +vn 0.3290 -0.0002 0.9443 +vn -0.3175 -0.8136 0.4871 +vn -0.3177 -0.8135 0.4871 +vn -0.3179 -0.8135 0.4871 +vn -0.8872 0.1661 -0.4305 +vn -0.8893 0.1623 -0.4276 +vn -0.8879 0.1643 -0.4298 +vn 0.4228 -0.0174 0.9061 +vn 0.4229 -0.0175 0.9060 +vn 0.4233 -0.0177 0.9058 +vn -0.5578 -0.0691 -0.8271 +vn -0.5580 -0.0690 -0.8270 +vn -0.5582 -0.0689 -0.8268 +vn -0.9311 0.2389 -0.2756 +vn -0.9316 0.2392 -0.2736 +vn -0.9317 0.2420 -0.2707 +vn -0.4265 -0.8961 0.1228 +vn -0.4261 -0.8962 0.1235 +vn -0.1059 0.9612 -0.2546 +vn 0.9006 -0.2667 0.3433 +vn -0.4766 -0.8436 0.2473 +vn -0.4763 -0.8437 0.2475 +vn -0.4770 -0.8434 0.2472 +vn 0.6525 -0.5643 -0.5058 +vn 0.6525 -0.5645 -0.5055 +vn 0.6524 -0.5643 -0.5059 +vn -0.4159 0.2647 0.8700 +vn -0.4162 0.2647 0.8699 +vn -0.4161 0.2647 0.8699 +vn 0.5349 -0.6486 -0.5414 +vn 0.5350 -0.6486 -0.5414 +vn -0.2560 0.9392 -0.2287 +vn -0.2568 0.9390 -0.2286 +vn -0.2574 0.9389 -0.2287 +vn -0.5394 0.6696 -0.5106 +vn -0.5399 0.6692 -0.5106 +vn -0.5388 0.6703 -0.5103 +vn 0.0634 -0.8733 0.4830 +vn 0.0633 -0.8733 0.4831 +vn -0.7640 0.3583 0.5366 +vn -0.7640 0.3582 0.5366 +vn -0.7640 0.3583 0.5365 +vn -0.3463 -0.8584 0.3784 +vn -0.3465 -0.8584 0.3784 +vn -0.3458 -0.8586 0.3785 +vn -0.6082 -0.6148 -0.5021 +vn -0.6081 -0.6149 -0.5020 +vn -0.6082 -0.6150 -0.5019 +vn -0.5126 -0.7340 0.4455 +vn -0.5129 -0.7338 0.4455 +vn -0.5130 -0.7337 0.4455 +vn -0.4398 -0.8140 -0.3795 +vn -0.4395 -0.8141 -0.3797 +vn -0.4394 -0.8141 -0.3797 +vn -0.0224 0.5218 0.8528 +vn -0.0225 0.5221 0.8526 +vn -0.0224 0.5221 0.8526 +vn -0.5874 0.1635 0.7926 +vn -0.5877 0.1636 0.7924 +vn -0.5875 0.1634 0.7926 +vn -0.9050 -0.4184 0.0772 +vn -0.9050 -0.4182 0.0775 +vn 0.7740 -0.1148 -0.6227 +vn -0.5127 0.2979 -0.8052 +vn 0.3829 0.8245 0.4165 +vn 0.3828 0.8246 0.4166 +vn 0.3830 0.8244 0.4166 +vn -0.3795 0.7733 -0.5079 +vn -0.3794 0.7737 -0.5074 +vn -0.3792 0.7742 -0.5067 +vn 0.3327 0.9425 0.0308 +vn 0.3322 0.9427 0.0310 +vn 0.3331 0.9424 0.0310 +vn 0.1364 0.1944 -0.9714 +vn 0.1362 0.1946 -0.9714 +vn 0.4255 -0.8965 0.1234 +vn 0.4257 -0.8964 0.1232 +vn -0.8127 0.5226 -0.2577 +vn -0.8127 0.5225 -0.2578 +vn -0.8125 0.5228 -0.2580 +vn 0.7840 -0.5720 -0.2409 +vn -0.7984 -0.4031 0.4473 +vn -0.7978 -0.4035 0.4480 +vn -0.7982 -0.4033 0.4475 +vn -0.8238 0.1292 0.5520 +vn -0.8238 0.1290 0.5520 +vn -0.8238 0.1292 0.5519 +vn -0.4202 0.4045 -0.8123 +vn -0.4201 0.4044 -0.8124 +vn -0.1991 0.7823 -0.5903 +vn -0.1989 0.7822 -0.5904 +vn -0.1993 0.7821 -0.5904 +vn -0.9210 -0.3095 -0.2365 +vn -0.9209 -0.3097 -0.2368 +vn -0.9209 -0.3097 -0.2367 +vn 0.4643 0.6753 0.5731 +vn 0.4642 0.6771 0.5710 +vn 0.4641 0.6751 0.5734 +vn 0.8491 -0.5221 -0.0797 +vn -0.3522 -0.8926 -0.2816 +vn -0.3525 -0.8924 -0.2816 +vn -0.3528 -0.8923 -0.2818 +vn -0.6942 0.2459 -0.6765 +vn -0.6940 0.2465 -0.6765 +vn -0.6941 0.2464 -0.6764 +vn -0.8633 0.4770 0.1650 +vn -0.1274 0.9339 -0.3342 +vn -0.1274 0.9338 -0.3343 +vn -0.1272 0.9343 -0.3330 +vn 0.0914 0.1678 -0.9816 +vn -0.0000 0.0001 1.0000 +vn 0.1779 -0.6518 -0.7372 +vn 0.9684 0.1881 0.1640 +vn -0.8040 -0.3371 -0.4899 +vn -0.8038 -0.3374 -0.4899 +vn -0.8037 -0.3370 -0.4904 +vn 0.8820 0.2257 -0.4137 +vn 0.8820 0.2258 -0.4136 +vn 0.8821 0.2255 -0.4136 +vn 0.2785 -0.9596 -0.0399 +vn 0.2789 -0.9595 -0.0400 +vn 0.2790 -0.9595 -0.0401 +vn 0.0722 0.5815 -0.8103 +vn 0.0718 0.5815 -0.8104 +vn 0.0713 0.5815 -0.8104 +vn -0.5481 -0.0728 -0.8332 +vn -0.5484 -0.0728 -0.8330 +vn -0.5481 -0.0729 -0.8333 +vn -0.5924 -0.2294 -0.7723 +vn -0.5924 -0.2289 -0.7725 +vn -0.5925 -0.2296 -0.7722 +vn -0.0180 0.7454 0.6664 +vn -0.0178 0.7451 0.6667 +vn -0.0174 0.7450 0.6668 +vn -0.2163 -0.3556 0.9092 +vn -0.2165 -0.3554 0.9093 +vn -0.2167 -0.3554 0.9092 +vn -0.4698 -0.8482 -0.2446 +vn -0.4246 -0.4020 -0.8112 +vn -0.4246 -0.4019 -0.8113 +vn -0.4245 -0.4019 -0.8113 +vn 0.8486 0.3163 -0.4240 +vn 0.8484 0.3166 -0.4243 +vn 0.8488 0.3161 -0.4238 +vn 0.8496 -0.0728 0.5223 +vn 0.8493 -0.0733 0.5228 +vn 0.8499 -0.0723 0.5219 +vn 0.7591 0.5961 0.2615 +vn 0.7594 0.5959 0.2612 +vn 0.7593 0.5961 0.2610 +vn 0.3933 -0.9188 0.0331 +vn 0.3933 -0.9188 0.0332 +vn 0.3932 -0.9189 0.0331 +vn 0.1612 -0.9848 0.0646 +vn 0.1615 -0.9847 0.0655 +vn 0.1621 -0.9846 0.0658 +vn 0.1317 0.9083 -0.3971 +vn 0.1316 0.9083 -0.3971 +vn 0.3788 0.9153 -0.1371 +vn 0.3791 0.9151 -0.1373 +vn 0.2445 -0.9303 0.2736 +vn 0.5262 -0.7341 -0.4291 +vn 0.5263 -0.7342 -0.4290 +vn 0.5264 -0.7341 -0.4289 +vn -0.2754 -0.9207 -0.2766 +vn -0.2754 -0.9206 -0.2767 +vn -0.2754 -0.9207 -0.2767 +vn 0.8939 -0.0357 0.4468 +vn 0.8939 -0.0355 0.4468 +vn -0.7332 0.1935 0.6519 +vn -0.7332 0.1933 0.6520 +vn 0.0888 0.8260 -0.5567 +vn 0.0886 0.8259 -0.5568 +vn 0.0876 0.8261 -0.5567 +vn 0.2535 0.9302 -0.2656 +vn 0.2536 0.9302 -0.2654 +vn 0.2537 0.9300 -0.2660 +vn -0.8756 0.2770 0.3957 +vn -0.8757 0.2768 0.3957 +vn -0.8757 0.2766 0.3957 +vn -0.9456 0.1499 0.2888 +vn -0.9455 0.1497 0.2890 +vn -0.9456 0.1499 0.2886 +vn 0.7245 -0.2140 -0.6552 +vn -0.2603 0.8524 -0.4535 +vn -0.2605 0.8524 -0.4533 +vn -0.2602 0.8524 -0.4537 +vn 0.0027 0.7259 0.6878 +vn 0.0023 0.7258 0.6879 +vn 0.3965 0.8344 0.3829 +vn 0.3967 0.8343 0.3829 +vn 0.5990 -0.5387 -0.5925 +vn 0.5980 -0.5385 -0.5937 +vn 0.5984 -0.5387 -0.5930 +vn -0.6735 0.2738 -0.6866 +vn 0.6483 -0.7362 0.1943 +vn 0.1043 -0.9932 -0.0526 +vn 0.1048 -0.9931 -0.0521 +vn 0.1047 -0.9932 -0.0517 +vn 0.0853 0.9517 0.2950 +vn 0.0859 0.9516 0.2950 +vn -0.0911 -0.2274 -0.9695 +vn -0.0907 -0.2278 -0.9695 +vn -0.0912 -0.2272 -0.9696 +vn 0.0526 -0.9978 0.0411 +vn 0.0527 -0.9978 0.0410 +vn 0.0528 -0.9978 0.0409 +vn 0.2080 -0.9771 -0.0445 +vn 0.2084 -0.9770 -0.0450 +vn 0.2081 -0.9771 -0.0447 +vn 0.8014 0.5781 0.1533 +vn 0.8015 0.5781 0.1529 +vn -0.0628 -0.9831 0.1719 +vn -0.0627 -0.9831 0.1717 +vn -0.3018 -0.9350 -0.1863 +vn -0.3016 -0.9351 -0.1862 +vn 0.8506 0.4651 -0.2454 +vn 0.8505 0.4651 -0.2458 +vn 0.8505 0.4651 -0.2455 +vn 0.2060 -0.4942 -0.8446 +vn 0.2063 -0.4936 -0.8449 +vn 0.2062 -0.4938 -0.8448 +vn 0.4547 0.6838 -0.5707 +vn 0.7015 0.6859 0.1935 +vn 0.7016 0.6858 0.1934 +vn 0.7017 0.6858 0.1933 +vn 0.1370 -0.9898 -0.0389 +vn -0.4671 0.8685 0.1662 +vn -0.1208 -0.9853 -0.1211 +vn 0.1321 0.5067 0.8519 +vn 0.8375 -0.5353 0.1094 +vn 0.0865 0.6975 0.7113 +vn 0.0872 0.6980 0.7108 +vn 0.0859 0.6966 0.7123 +vn -0.8105 0.2939 -0.5067 +vn -0.8105 0.2938 -0.5066 +vn -0.8105 0.2940 -0.5067 +vn -0.1194 -0.9926 0.0223 +vn -0.1191 -0.9926 0.0223 +vn -0.1193 -0.9926 0.0223 +vn 0.6469 0.1806 -0.7408 +vn -0.0873 -0.9868 0.1364 +vn 0.1295 -0.9837 0.1246 +vn 0.1295 -0.9837 0.1245 +vn 0.1297 -0.9837 0.1248 +vn 0.0581 -0.9973 -0.0458 +vn -0.2807 -0.9506 -0.1325 +vn -0.2809 -0.9505 -0.1329 +vn -0.7205 -0.4132 -0.5570 +vn -0.7206 -0.4132 -0.5568 +vn -0.7206 -0.4130 -0.5569 +vn -0.6024 -0.5248 -0.6014 +vn -0.6030 -0.5242 -0.6013 +vn -0.6026 -0.5246 -0.6014 +vn -0.4530 -0.3665 -0.8127 +vn -0.4529 -0.3665 -0.8128 +vn -0.4527 -0.3665 -0.8128 +vn -0.5649 -0.0932 0.8199 +vn -0.5650 -0.0933 0.8198 +vn 0.3899 0.5442 -0.7428 +vn 0.3893 0.5444 -0.7430 +vn -0.1691 -0.9646 -0.2025 +vn -0.1693 -0.9645 -0.2027 +vn -0.1693 -0.9645 -0.2026 +vn 0.8024 0.5927 0.0702 +vn 0.8023 0.5928 0.0701 +vn 0.8023 0.5928 0.0700 +vn 0.2587 -0.9605 0.1023 +vn 0.2589 -0.9605 0.1024 +vn 0.9614 0.0030 -0.2752 +vn 0.9614 0.0030 -0.2751 +vn 0.9614 0.0028 -0.2753 +vn -0.7085 -0.4649 -0.5309 +vn -0.7084 -0.4652 -0.5308 +vn -0.2423 -0.0450 -0.9692 +vn -0.2425 -0.0452 -0.9691 +vn -0.2424 -0.0450 -0.9691 +vn -0.5570 -0.1869 -0.8092 +vn -0.5570 -0.1867 -0.8092 +vn -0.5570 -0.1868 -0.8092 +vn 0.2922 0.8209 -0.4907 +vn 0.2922 0.8208 -0.4908 +vn 0.2922 0.8207 -0.4910 +vn -0.1529 -0.2719 0.9501 +vn -0.1544 -0.2714 0.9500 +vn -0.1521 -0.2726 0.9500 +vn -0.1933 -0.9792 0.0613 +vn -0.1932 -0.9792 0.0612 +vn -0.3091 0.3398 0.8883 +vn -0.3093 0.3392 0.8884 +vn -0.3089 0.3403 0.8881 +vn 0.4752 0.8702 0.1300 +vn 0.4752 0.8703 0.1298 +vn 0.2907 -0.9551 0.0572 +vn 0.2904 -0.9552 0.0573 +vn 0.2909 -0.9551 0.0570 +vn 0.7706 0.5534 -0.3160 +vn 0.7709 0.5530 -0.3161 +vn 0.7705 0.5538 -0.3157 +vn -0.3208 -0.3833 -0.8661 +vn -0.3209 -0.3834 -0.8660 +vn -0.3207 -0.3831 -0.8662 +vn 0.3504 -0.9364 -0.0183 +vn 0.3504 -0.9364 -0.0182 +vn 0.3504 -0.9364 -0.0181 +vn 0.3389 -0.0324 -0.9403 +vn 0.3395 -0.0340 -0.9400 +vn 0.3383 -0.0366 -0.9403 +vn 0.3328 -0.9418 -0.0480 +vn 0.3326 -0.9418 -0.0479 +vn 0.3330 -0.9417 -0.0480 +vn 0.2129 0.9701 -0.1164 +vn -0.2051 -0.9733 -0.1028 +vn 0.2855 -0.9547 0.0835 +vn 0.2854 -0.9548 0.0835 +vn 0.2851 -0.9549 0.0833 +vn -0.3171 -0.9458 -0.0702 +vn -0.3171 -0.9458 -0.0707 +vn -0.3170 -0.9458 -0.0709 +vn 0.9469 0.1870 -0.2614 +vn -0.9510 -0.2448 0.1888 +vn -0.9510 -0.2447 0.1889 +vn -0.9510 -0.2447 0.1888 +vn -0.3397 -0.9342 -0.1085 +vn -0.3396 -0.9343 -0.1085 +vn -0.5330 0.4001 -0.7456 +vn -0.5331 0.3995 -0.7458 +vn -0.3736 0.4837 0.7915 +vn -0.3732 0.4836 0.7917 +vn -0.1510 -0.9793 0.1348 +vn 0.2696 -0.7539 -0.5991 +vn 0.2696 -0.7538 -0.5993 +vn 0.2699 -0.7535 -0.5995 +vn -0.1967 -0.9715 0.1320 +vn -0.1969 -0.9715 0.1318 +vn -0.1966 -0.9715 0.1323 +vn 0.2803 0.9387 0.2008 +vn 0.2804 0.9387 0.2006 +vn 0.2805 0.9387 0.2004 +vn 0.4829 0.5297 0.6973 +vn 0.4840 0.5295 0.6967 +vn 0.4822 0.5296 0.6978 +vn 0.3622 -0.9317 0.0276 +vn 0.3622 -0.9317 0.0275 +vn 0.3621 -0.9317 0.0277 +vn 0.8019 -0.3415 0.4903 +vn 0.8018 -0.3415 0.4904 +vn 0.8019 -0.3415 0.4902 +vn -0.9460 -0.3153 -0.0747 +vn -0.9461 -0.3153 -0.0745 +vn 0.0277 0.1930 0.9808 +vn 0.0276 0.1929 0.9808 +vn 0.0958 0.8105 0.5778 +vn 0.0959 0.8107 0.5776 +vn 0.0958 0.8106 0.5777 +vn 0.6576 -0.2758 0.7011 +vn 0.6576 -0.2761 0.7009 +vn 0.6575 -0.2762 0.7010 +vn 0.0227 -0.9997 -0.0113 +vn 0.0231 -0.9997 -0.0111 +vn 0.0230 -0.9997 -0.0112 +vn -0.2759 -0.9232 -0.2675 +vn -0.2768 -0.9231 -0.2671 +vn -0.2779 -0.9228 -0.2669 +vn -0.2733 -0.9223 -0.2732 +vn -0.2734 -0.9223 -0.2732 +vn 0.9411 0.2674 0.2068 +vn 0.9412 0.2672 0.2067 +vn 0.9412 0.2672 0.2066 +vn -0.8213 0.2737 0.5006 +vn -0.8213 0.2738 0.5005 +vn -0.8212 0.2739 0.5006 +vn 0.5047 -0.8425 0.1882 +vn 0.5012 -0.8447 0.1878 +vn 0.5025 -0.8441 0.1873 +vn -0.6902 0.0166 0.7234 +vn -0.6918 0.0159 0.7219 +vn -0.6912 0.0159 0.7225 +vn 0.2507 0.7517 -0.6100 +vn 0.2506 0.7516 -0.6102 +vn 0.2507 0.7519 -0.6098 +vn -0.2903 -0.9522 -0.0948 +vn -0.2907 -0.9520 -0.0958 +vn -0.2903 -0.9520 -0.0969 +vn -0.0049 -0.4811 0.8766 +vn 0.0726 -0.9934 0.0887 +vn 0.0690 -0.9825 -0.1730 +vn 0.0692 -0.9825 -0.1730 +vn 0.0689 -0.9826 -0.1726 +vn 0.0065 0.0070 1.0000 +vn -0.0286 -0.8093 -0.5867 +vn -0.0284 -0.8095 -0.5865 +vn -0.0277 -0.8093 -0.5868 +vn 0.6221 0.7739 0.1190 +vn 0.2564 0.7517 0.6076 +vn 0.2568 0.7518 0.6074 +vn 0.2559 0.7517 0.6079 +vn 0.2657 -0.8673 -0.4209 +vn 0.2656 -0.8675 -0.4206 +vn 0.5702 -0.7969 -0.1996 +vn 0.5701 -0.7970 -0.1995 +vn 0.5702 -0.7968 -0.1998 +vn -0.3045 -0.2583 0.9168 +vn 0.1407 0.0224 0.9898 +vn 0.1405 0.0221 0.9898 +vn 0.0375 0.5182 0.8545 +vn 0.0375 0.5185 0.8543 +vn 0.0373 0.5179 0.8546 +vn 0.1120 0.6330 -0.7660 +vn -0.0399 0.9675 0.2496 +vn -0.0398 0.9675 0.2496 +vn -0.0397 0.9675 0.2496 +vn 0.1447 0.8022 -0.5793 +vn 0.1444 0.8024 -0.5790 +vn 0.1442 0.8026 -0.5788 +vn 0.4270 -0.8300 -0.3588 +vn 0.4269 -0.8301 -0.3588 +vn 0.4269 -0.8300 -0.3589 +vn 0.1226 0.5468 -0.8282 +vn 0.4954 0.8536 -0.1613 +vn 0.4954 0.8535 -0.1614 +vn 0.4954 0.8535 -0.1615 +vn 0.0580 -0.9368 -0.3450 +vn 0.0579 -0.9368 -0.3450 +vn 0.0572 -0.9368 -0.3452 +vn -0.7705 0.2118 0.6012 +vn -0.7707 0.2117 0.6010 +vn -0.1564 -0.8607 -0.4846 +vn -0.1559 -0.8607 -0.4847 +vn 0.2850 0.2137 -0.9344 +vn 0.0531 -0.8731 -0.4846 +vn 0.0529 -0.8730 -0.4849 +vn -0.9509 -0.2970 0.0866 +vn -0.9508 -0.2975 0.0870 +vn -0.9509 -0.2972 0.0868 +vn 0.2162 0.5631 0.7976 +vn 0.2161 0.5629 0.7978 +vn 0.2163 0.5630 0.7977 +vn -0.0032 -0.8870 -0.4617 +vn -0.1338 0.9478 0.2894 +vn -0.1335 0.9480 0.2889 +vn -0.1332 0.9481 0.2887 +vn 0.2599 0.8142 -0.5191 +vn 0.2585 0.8136 -0.5208 +vn 0.2596 0.8137 -0.5200 +vn -0.8097 0.5856 0.0382 +vn -0.8090 0.5865 0.0393 +vn -0.8094 0.5860 0.0388 +vn 0.7825 -0.5514 -0.2892 +vn 0.7830 -0.5507 -0.2893 +vn 0.7821 -0.5518 -0.2896 +vn -0.9005 0.4239 -0.0971 +vn -0.9007 0.4237 -0.0965 +vn -0.9004 0.4241 -0.0973 +vn 0.0149 -0.6700 -0.7423 +vn 0.0158 -0.6696 -0.7426 +vn 0.0171 -0.6681 -0.7439 +vn -0.2465 -0.3209 -0.9145 +vn -0.2467 -0.3209 -0.9144 +vn -0.4920 -0.4253 -0.7597 +vn -0.4920 -0.4253 -0.7596 +vn -0.4922 -0.4255 -0.7594 +vn 0.1259 -0.8948 -0.4283 +vn 0.1272 -0.8948 -0.4279 +vn 0.1265 -0.8948 -0.4282 +vn -0.7979 0.5402 -0.2675 +vn -0.7973 0.5411 -0.2674 +vn -0.7979 0.5403 -0.2674 +vn -0.1424 0.3922 0.9088 +vn -0.1421 0.3922 0.9088 +vn 0.8298 0.5211 0.1995 +vn 0.8299 0.5212 0.1990 +vn 0.8299 0.5210 0.1996 +vn -0.9614 -0.0148 -0.2748 +vn -0.9614 -0.0152 -0.2747 +vn -0.9616 -0.0156 -0.2742 +vn -0.9744 -0.1855 0.1267 +vn -0.9749 -0.1844 0.1250 +vn -0.9746 -0.1852 0.1259 +vn -0.1676 0.4352 -0.8846 +vn -0.1675 0.4352 -0.8846 +vn 0.8020 0.5886 -0.1014 +vn 0.8020 0.5887 -0.1013 +vn 0.8022 0.5884 -0.1015 +vn -0.2249 0.8923 -0.3915 +vn -0.4004 -0.9137 0.0696 +vn -0.3993 -0.9142 0.0691 +vn -0.3999 -0.9140 0.0692 +vn -0.5401 0.2612 0.8001 +vn -0.5403 0.2613 0.7999 +vn 0.3990 0.5969 -0.6961 +vn 0.3991 0.5971 -0.6958 +vn 0.3994 0.5973 -0.6955 +vn 0.8369 0.3217 -0.4428 +vn 0.8380 0.3196 -0.4424 +vn 0.8375 0.3203 -0.4427 +vn 0.6514 0.7516 -0.1037 +vn -0.5682 -0.8225 -0.0245 +vn -0.5684 -0.8224 -0.0241 +vn 0.4066 0.5637 -0.7189 +vn 0.4065 0.5649 -0.7181 +vn 0.4065 0.5642 -0.7187 +vn -0.1319 -0.5306 -0.8373 +vn -0.1316 -0.5302 -0.8376 +vn -0.1125 -0.7365 0.6671 +vn -0.1125 -0.7369 0.6666 +vn -0.1128 -0.7368 0.6666 +vn 0.0655 0.9741 -0.2164 +vn 0.0662 0.9740 -0.2167 +vn 0.0659 0.9741 -0.2165 +vn 0.2555 -0.5811 0.7727 +vn 0.2550 -0.5813 0.7727 +vn 0.2542 -0.5815 0.7728 +vn 0.4736 -0.4934 0.7296 +vn 0.4735 -0.4933 0.7297 +vn 0.4734 -0.4930 0.7300 +vn -0.7348 -0.6777 -0.0278 +vn 0.2123 0.9765 -0.0376 +vn 0.1546 0.2400 -0.9584 +vn 0.4984 0.8638 0.0740 +vn 0.4988 0.8635 0.0739 +vn 0.4985 0.8637 0.0739 +vn 0.3643 0.7719 -0.5211 +vn 0.3647 0.7717 -0.5210 +vn 0.3650 0.7716 -0.5209 +vn 0.6154 0.7782 -0.1253 +vn 0.6151 0.7784 -0.1255 +vn 0.6154 0.7782 -0.1252 +vn -0.1009 0.7950 -0.5981 +vn -0.0683 -0.1598 -0.9848 +vn -0.0680 -0.1599 -0.9848 +vn -0.0681 -0.1599 -0.9848 +vn -0.9703 -0.2414 -0.0143 +vn -0.9703 -0.2414 -0.0144 +vn -0.4378 -0.0867 0.8949 +vn -0.4384 -0.0866 0.8946 +vn 0.6829 -0.4565 -0.5703 +vn -0.2859 0.5921 0.7535 +vn -0.2859 0.5920 0.7535 +vn -0.2858 0.5921 0.7535 +vn 0.6149 -0.7806 0.1119 +vn 0.6147 -0.7808 0.1120 +vn 0.6151 -0.7805 0.1116 +vn -0.4409 0.3124 0.8414 +vn -0.4411 0.3123 0.8414 +vn -0.4411 0.3121 0.8415 +vn -0.4577 -0.3853 0.8013 +vn -0.9544 0.2820 -0.0976 +vn -0.9545 0.2820 -0.0975 +vn 0.1575 0.9864 -0.0474 +vn -0.7422 0.6307 0.2267 +vn -0.7413 0.6315 0.2273 +vn -0.7412 0.6316 0.2273 +vn -0.0143 -0.2908 0.9567 +vn -0.0150 -0.2911 0.9566 +vn -0.0146 -0.2909 0.9566 +vn 0.7130 0.5885 0.3812 +vn 0.7130 0.5883 0.3814 +vn 0.7130 0.5883 0.3816 +vn -0.6215 0.0334 -0.7827 +vn -0.6214 0.0325 -0.7828 +vn -0.6215 0.0331 -0.7827 +vn -0.6543 -0.7300 -0.1975 +vn -0.6546 -0.7298 -0.1972 +vn -0.6538 -0.7303 -0.1979 +vn 0.4684 -0.6586 0.5889 +vn 0.4698 -0.6591 0.5873 +vn 0.4702 -0.6590 0.5870 +vn -0.9071 0.4107 0.0926 +vn -0.9070 0.4108 0.0926 +vn -0.9071 0.4105 0.0926 +vn 0.9415 0.2323 -0.2441 +vn 0.9415 0.2322 -0.2443 +vn 0.9415 0.2323 -0.2442 +vn -0.0840 -0.6259 0.7754 +vn -0.0842 -0.6261 0.7752 +vn -0.0839 -0.6255 0.7757 +vn -0.5414 -0.5179 -0.6623 +vn -0.5412 -0.5182 -0.6623 +vn -0.5413 -0.5179 -0.6624 +vn -0.6321 -0.7439 -0.2171 +vn -0.6323 -0.7437 -0.2171 +vn -0.6323 -0.7437 -0.2170 +vn -0.8014 -0.1283 -0.5842 +vn 0.0947 0.9345 0.3430 +vn 0.0962 0.9340 0.3441 +vn 0.0937 0.9347 0.3429 +vn 0.8035 -0.0930 0.5880 +vn 0.8035 -0.0929 0.5880 +vn 0.8036 -0.0932 0.5879 +vn 0.2827 -0.9206 -0.2694 +vn 0.2828 -0.9205 -0.2696 +vn 0.2826 -0.9207 -0.2693 +vn 0.8427 0.2574 0.4729 +vn 0.8428 0.2570 0.4729 +vn 0.8426 0.2574 0.4731 +vn 0.0023 -0.7269 -0.6867 +vn 0.0014 -0.7271 -0.6865 +vn 0.0017 -0.7270 -0.6866 +vn 0.2730 0.9581 -0.0864 +vn 0.2729 0.9582 -0.0863 +vn -0.4625 -0.6667 0.5844 +vn -0.4624 -0.6666 0.5847 +vn 0.2318 0.9109 0.3413 +vn 0.2316 0.9110 0.3414 +vn 0.2314 0.9110 0.3415 +vn 0.8887 0.2664 0.3732 +vn 0.8884 0.2666 0.3737 +vn 0.8881 0.2668 0.3743 +vn -0.9206 0.2344 0.3123 +vn 0.7992 0.5653 0.2043 +vn 0.7991 0.5654 0.2044 +vn -0.7083 -0.1692 0.6853 +vn -0.7084 -0.1691 0.6853 +vn -0.9432 -0.0940 -0.3185 +vn -0.9432 -0.0940 -0.3187 +vn -0.9433 -0.0940 -0.3184 +vn 0.5548 -0.4978 -0.6666 +vn 0.4657 0.0175 -0.8848 +vn -0.3800 0.0434 0.9240 +vn -0.3802 0.0445 0.9238 +vn -0.3802 0.0448 0.9238 +vn -0.6007 -0.2302 0.7656 +vn -0.6009 -0.2302 0.7655 +vn 0.2997 -0.0122 -0.9540 +vn 0.2999 -0.0121 -0.9539 +vn -0.6807 0.2019 0.7042 +vn -0.6802 0.2015 0.7048 +vn -0.6812 0.2021 0.7037 +vn 0.1996 0.9332 -0.2987 +vn -0.9726 0.1039 -0.2078 +vn -0.9727 0.1038 -0.2077 +vn -0.7438 -0.5611 -0.3633 +vn -0.7448 -0.5599 -0.3630 +vn -0.7442 -0.5605 -0.3633 +vn -0.4993 -0.4222 -0.7566 +vn -0.4997 -0.4225 -0.7562 +vn -0.4995 -0.4224 -0.7564 +vn -0.8866 -0.4080 0.2177 +vn -0.8864 -0.4088 0.2173 +vn -0.8867 -0.4076 0.2181 +vn -0.0670 0.9974 -0.0263 +vn -0.0673 0.9974 -0.0260 +vn 0.5330 -0.7034 -0.4703 +vn 0.5331 -0.7033 -0.4703 +vn 0.5330 -0.7033 -0.4704 +vn -0.3558 0.5387 0.7637 +vn -0.3561 0.5382 0.7639 +vn -0.3561 0.5381 0.7639 +vn -0.2253 -0.9742 -0.0138 +vn 0.6062 0.4677 0.6433 +vn 0.6061 0.4677 0.6434 +vn 0.6063 0.4676 0.6432 +vn -0.7174 0.6553 0.2367 +vn -0.7167 0.6563 0.2358 +vn -0.7170 0.6559 0.2360 +vn -0.2521 -0.9495 0.1869 +vn -0.2522 -0.9494 0.1873 +vn -0.2522 -0.9494 0.1872 +vn 0.5144 -0.6997 -0.4958 +vn 0.5146 -0.6997 -0.4955 +vn 0.5147 -0.6997 -0.4955 +vn -0.2431 0.1581 -0.9570 +vn -0.2430 0.1585 -0.9570 +vn -0.2433 0.1585 -0.9569 +vn -0.5105 -0.8381 0.1924 +vn -0.5108 -0.8379 0.1923 +vn 0.1253 -0.2536 0.9592 +vn 0.1248 -0.2536 0.9592 +vn 0.1252 -0.2536 0.9592 +vn -0.3463 -0.9380 0.0143 +vn -0.3467 -0.9379 0.0145 +vn 0.5911 -0.8009 -0.0958 +vn 0.5913 -0.8008 -0.0957 +vn 0.5911 -0.8009 -0.0959 +vn 0.7259 -0.6526 -0.2171 +vn 0.7259 -0.6527 -0.2168 +vn 0.7260 -0.6527 -0.2166 +vn -0.1680 0.1639 0.9721 +vn -0.1670 0.1636 0.9723 +vn -0.1675 0.1639 0.9722 +vn 0.6118 -0.7786 -0.1392 +vn 0.6713 -0.7085 -0.2177 +vn 0.6713 -0.7085 -0.2178 +vn -0.4740 -0.8805 -0.0080 +vn -0.4590 -0.8878 0.0341 +vn 0.3922 0.7021 -0.5943 +vn 0.3918 0.7023 -0.5944 +vn 0.3925 0.7022 -0.5940 +vn 0.5502 -0.7590 -0.3482 +vn 0.5499 -0.7590 -0.3486 +vn 0.5543 -0.7895 0.2636 +vn 0.5542 -0.7895 0.2636 +vn 0.5540 -0.7897 0.2635 +vn -0.1071 -0.3402 0.9342 +vn 0.8817 -0.3777 0.2827 +vn 0.8817 -0.3778 0.2826 +vn -0.9548 0.2719 -0.1199 +vn -0.9549 0.2718 -0.1198 +vn -0.9548 0.2721 -0.1200 +vn 0.5497 -0.2798 0.7871 +vn -0.2619 -0.6730 0.6917 +vn -0.9666 0.2329 -0.1073 +vn -0.9668 0.2321 -0.1072 +vn -0.9664 0.2335 -0.1076 +vn 0.1434 -0.5768 -0.8042 +vn 0.1436 -0.5768 -0.8042 +vn -0.0754 -0.8518 -0.5184 +vn -0.0755 -0.8517 -0.5185 +vn 0.1871 -0.9759 -0.1120 +vn 0.1876 -0.9758 -0.1121 +vn 0.1875 -0.9758 -0.1122 +vn 0.7882 0.2604 -0.5575 +vn 0.7883 0.2604 -0.5575 +vn 0.8403 -0.5355 0.0846 +vn 0.8402 -0.5357 0.0846 +vn 0.0591 0.9950 -0.0802 +vn 0.0590 0.9950 -0.0807 +vn 0.0590 0.9950 -0.0805 +vn 0.5784 -0.8111 0.0867 +vn 0.5784 -0.8111 0.0865 +vn 0.5784 -0.8111 0.0868 +vn -0.7007 0.6842 0.2024 +vn -0.7007 0.6841 0.2025 +vn 0.8486 -0.1721 -0.5003 +vn 0.8483 -0.1724 -0.5006 +vn 0.8484 -0.1724 -0.5006 +vn -0.6287 -0.2122 -0.7481 +vn -0.6286 -0.2123 -0.7482 +vn -0.6284 -0.2123 -0.7483 +vn 0.2907 0.7111 0.6402 +vn 0.2906 0.7106 0.6408 +vn 0.2905 0.7108 0.6406 +vn -0.2581 -0.8936 -0.3671 +vn -0.2582 -0.8937 -0.3669 +vn 0.8666 -0.1887 0.4620 +vn 0.8666 -0.1884 0.4621 +vn 0.8666 -0.1885 0.4621 +vn 0.3406 0.9127 0.2256 +vn 0.3411 0.9124 0.2260 +vn 0.3400 0.9131 0.2251 +vn -0.5822 0.2550 0.7720 +vn -0.5820 0.2552 0.7721 +vn -0.0629 -0.9809 0.1839 +vn -0.0627 -0.9809 0.1839 +vn -0.0627 -0.9810 0.1839 +vn -0.6383 0.4774 0.6039 +vn -0.6383 0.4773 0.6040 +vn 0.3427 0.7701 -0.5381 +vn 0.3433 0.7701 -0.5377 +vn 0.3425 0.7700 -0.5383 +vn -0.3813 -0.8814 -0.2788 +vn -0.3813 -0.8812 -0.2794 +vn -0.3815 -0.8810 -0.2799 +vn -0.0731 -0.9956 0.0580 +vn -0.0731 -0.9956 0.0583 +vn -0.0733 -0.9956 0.0580 +vn -0.0972 -0.9947 0.0325 +vn -0.8458 0.4847 0.2227 +vn -0.8460 0.4841 0.2232 +vn -0.8461 0.4841 0.2233 +vn -0.9222 0.1697 -0.3475 +vn -0.9222 0.1695 -0.3477 +vn 0.1610 -0.9781 0.1318 +vn 0.1067 0.9892 0.1009 +vn 0.5951 0.7596 0.2624 +vn 0.5949 0.7597 0.2625 +vn 0.0530 -0.9981 0.0300 +vn -0.1129 -0.9891 -0.0944 +vn -0.1130 -0.9891 -0.0941 +vn 0.0589 -0.9915 0.1164 +vn 0.0591 -0.9914 0.1164 +vn 0.0593 -0.9914 0.1166 +vn 0.8927 0.4377 0.1077 +vn 0.8920 0.4392 0.1068 +vn 0.8928 0.4372 0.1084 +vn -0.7944 -0.4160 -0.4426 +vn -0.7946 -0.4158 -0.4425 +vn 0.7438 -0.5131 0.4285 +vn 0.7439 -0.5130 0.4283 +vn 0.7438 -0.5130 0.4284 +vn -0.2008 -0.9796 -0.0105 +vn -0.2007 -0.9796 -0.0104 +vn -0.7432 0.5210 -0.4197 +vn -0.7431 0.5212 -0.4198 +vn -0.7432 0.5209 -0.4199 +vn 0.2965 -0.9482 0.1137 +vn 0.2964 -0.9482 0.1139 +vn 0.2966 -0.9483 0.1134 +vn 0.2215 -0.9294 0.2954 +vn 0.6683 0.5331 0.5188 +vn 0.6693 0.5325 0.5182 +vn 0.6686 0.5329 0.5187 +vn 0.3610 -0.9301 0.0684 +vn 0.3607 -0.9302 0.0682 +vn 0.3611 -0.9300 0.0687 +vn -0.2003 -0.9756 -0.0901 +vn -0.2002 -0.9756 -0.0902 +vn 0.3371 -0.9204 0.1981 +vn 0.3370 -0.9204 0.1981 +vn 0.2189 -0.9740 0.0589 +vn 0.2185 -0.9741 0.0584 +vn 0.2182 -0.9742 0.0575 +vn 0.2469 -0.9678 0.0493 +vn 0.2470 -0.9677 0.0499 +vn 0.2466 -0.9679 0.0490 +vn -0.0701 0.0287 0.9971 +vn -0.0700 0.0288 0.9971 +vn -0.0701 0.0285 0.9971 +vn 0.7584 -0.5257 0.3853 +vn 0.7583 -0.5258 0.3853 +vn 0.3128 -0.9051 0.2878 +vn 0.3130 -0.9051 0.2878 +vn 0.3128 -0.9052 0.2877 +vn -0.6761 0.3415 -0.6529 +vn -0.2268 0.9714 -0.0703 +vn -0.2251 0.9719 -0.0695 +vn -0.2262 0.9715 -0.0702 +vn -0.6765 0.0585 -0.7342 +vn -0.6767 0.0586 -0.7339 +vn 0.6554 -0.4274 0.6227 +vn 0.6552 -0.4274 0.6229 +vn 0.6551 -0.4274 0.6230 +vn 0.1234 -0.7730 -0.6222 +vn 0.0383 0.9154 -0.4008 +vn 0.0377 0.9152 -0.4013 +vn 0.0374 0.9152 -0.4012 +vn -0.2746 -0.9318 -0.2374 +vn -0.2745 -0.9318 -0.2375 +vn -0.2747 -0.9318 -0.2373 +vn 0.4650 -0.1772 -0.8674 +vn 0.4651 -0.1772 -0.8673 +vn -0.3281 -0.9445 -0.0166 +vn -0.3286 -0.9443 -0.0164 +vn -0.3274 -0.9447 -0.0168 +vn 0.1273 0.9561 -0.2640 +vn 0.0992 -0.9922 -0.0761 +vn 0.0990 -0.9922 -0.0763 +vn 0.0993 -0.9922 -0.0759 +vn 0.1743 -0.9774 -0.1196 +vn 0.1745 -0.9774 -0.1195 +vn 0.7862 0.2375 0.5705 +vn 0.7863 0.2375 0.5703 +vn 0.7861 0.2368 0.5709 +vn 0.7280 0.3701 0.5770 +vn 0.7281 0.3701 0.5770 +vn 0.7281 0.3702 0.5770 +vn -0.0795 0.8176 -0.5703 +vn -0.0798 0.8185 -0.5689 +vn -0.0795 0.8181 -0.5695 +vn 0.1849 -0.9788 0.0883 +vn 0.8892 -0.1051 0.4453 +vn -0.1894 -0.9757 -0.1105 +vn -0.1892 -0.9757 -0.1108 +vn -0.1893 -0.9757 -0.1107 +vn 0.1328 -0.9821 0.1338 +vn -0.4277 -0.8984 0.0998 +vn -0.4274 -0.8985 0.1002 +vn 0.7107 -0.4049 -0.5753 +vn 0.7107 -0.4050 -0.5752 +vn -0.3027 -0.9322 -0.1986 +vn -0.3029 -0.9320 -0.1988 +vn -0.3028 -0.9321 -0.1989 +vn -0.3563 -0.8583 -0.3692 +vn -0.3559 -0.8585 -0.3691 +vn -0.3562 -0.8584 -0.3692 +vn -0.9446 0.2174 -0.2459 +vn -0.9445 0.2177 -0.2462 +vn -0.9446 0.2175 -0.2460 +vn -0.3705 -0.9100 -0.1861 +vn -0.3706 -0.9099 -0.1863 +vn 0.1350 -0.9166 0.3764 +vn 0.1347 -0.9168 0.3759 +vn 0.1357 -0.9164 0.3765 +vn 0.6683 -0.6195 0.4118 +vn 0.6686 -0.6193 0.4117 +vn 0.8335 0.2130 0.5098 +vn 0.8335 0.2133 0.5098 +vn 0.8332 0.2135 0.5101 +vn -0.5222 0.1341 0.8422 +vn -0.5223 0.1341 0.8422 +vn -0.9182 0.3865 -0.0866 +vn -0.9179 0.3874 -0.0861 +vn -0.9180 0.3870 -0.0864 +vn 0.7620 -0.5370 0.3619 +vn 0.7640 -0.5359 0.3594 +vn 0.7626 -0.5369 0.3607 +vn -0.3239 -0.4001 0.8573 +vn -0.3238 -0.4004 0.8572 +vn -0.3240 -0.4003 0.8572 +vn -0.3629 -0.8571 -0.3656 +vn -0.3629 -0.8572 -0.3655 +vn -0.6961 -0.1858 -0.6935 +vn -0.6974 -0.1831 -0.6929 +vn -0.6941 -0.1875 -0.6950 +vn -0.6940 -0.4865 -0.5307 +vn -0.6937 -0.4866 -0.5310 +vn -0.6939 -0.4865 -0.5308 +vn 0.9372 0.3412 0.0727 +vn 0.9372 0.3413 0.0727 +vn 0.1833 -0.8885 0.4207 +vn 0.1831 -0.8884 0.4210 +vn 0.4294 0.0965 -0.8980 +vn 0.4296 0.0961 -0.8979 +vn 0.4294 0.0963 -0.8980 +vn 0.5774 -0.1835 -0.7956 +vn 0.5769 -0.1836 -0.7959 +vn 0.5772 -0.1835 -0.7957 +vn -0.3512 0.3349 -0.8743 +vn -0.3513 0.3348 -0.8744 +vn -0.3512 0.3350 -0.8743 +vn 0.4245 0.2061 -0.8817 +vn 0.4243 0.2061 -0.8818 +vn 0.4242 0.2059 -0.8819 +vn 0.2062 -0.8608 -0.4654 +vn 0.2062 -0.8609 -0.4651 +vn 0.2061 -0.8606 -0.4658 +vn -0.3439 -0.9162 -0.2056 +vn -0.3438 -0.9162 -0.2057 +vn 0.5464 0.7130 -0.4394 +vn 0.5463 0.7131 -0.4394 +vn 0.1694 -0.9700 -0.1743 +vn 0.1698 -0.9700 -0.1742 +vn 0.1698 -0.9700 -0.1743 +vn -0.0391 -0.9982 -0.0464 +vn -0.0392 -0.9982 -0.0463 +vn -0.0395 -0.9981 -0.0464 +vn 0.1743 -0.9821 -0.0714 +vn 0.1742 -0.9821 -0.0715 +vn -0.2759 -0.9048 -0.3244 +vn -0.2757 -0.9049 -0.3241 +vn -0.2761 -0.9046 -0.3247 +vn 0.1591 -0.9841 -0.0791 +vn 0.1595 -0.9840 -0.0790 +vn 0.1592 -0.9841 -0.0791 +vn -0.2738 -0.9060 -0.3229 +vn -0.2740 -0.9059 -0.3229 +vn -0.5221 0.4392 -0.7311 +vn -0.5219 0.4389 -0.7314 +vn -0.5226 0.4394 -0.7307 +vn 0.2635 -0.9264 -0.2691 +vn 0.3317 0.1019 -0.9379 +vn 0.3314 0.1018 -0.9380 +vn 0.2861 -0.8713 -0.3988 +vn 0.2862 -0.8712 -0.3989 +vn 0.2863 -0.8711 -0.3990 +vn 0.2485 0.7026 -0.6668 +vn -0.2813 -0.8519 -0.4418 +vn -0.2815 -0.8518 -0.4418 +vn -0.2813 -0.8518 -0.4420 +vn -0.3831 -0.8659 -0.3216 +vn -0.3832 -0.8659 -0.3215 +vn -0.9264 0.2735 0.2588 +vn -0.9261 0.2745 0.2588 +vn -0.9259 0.2750 0.2589 +vn -0.0956 0.1557 0.9832 +vn -0.0955 0.1558 0.9832 +vn -0.4592 -0.0916 0.8836 +vn 0.3846 -0.8364 -0.3905 +vn 0.3846 -0.8363 -0.3907 +vn 0.3845 -0.8364 -0.3906 +vn -0.1584 -0.6087 -0.7774 +vn -0.1583 -0.6089 -0.7773 +vn -0.1583 -0.6087 -0.7774 +vn 0.4101 -0.5188 0.7501 +vn 0.4102 -0.5185 0.7503 +vn -0.7700 -0.6199 -0.1511 +vn -0.7696 -0.6203 -0.1515 +vn -0.7696 -0.6203 -0.1514 +vn 0.2680 0.8608 -0.4327 +vn 0.2679 0.8609 -0.4325 +vn 0.2680 0.8609 -0.4325 +vn 0.2484 -0.6784 -0.6914 +vn 0.2480 -0.6787 -0.6913 +vn 0.2489 -0.6781 -0.6915 +vn 0.7140 0.6874 0.1329 +vn -0.8038 0.5628 -0.1929 +vn -0.8038 0.5627 -0.1929 +vn -0.2824 0.7603 0.5849 +vn 0.1196 0.8799 -0.4599 +vn 0.1193 0.8800 -0.4598 +vn 0.1189 0.8800 -0.4599 +vn 0.0125 -0.7745 -0.6325 +vn 0.0125 -0.7744 -0.6326 +vn 0.0124 -0.7742 -0.6328 +vn 0.8761 0.3807 0.2959 +vn 0.8761 0.3807 0.2957 +vn -0.6729 -0.5882 0.4486 +vn -0.6728 -0.5883 0.4486 +vn -0.6731 -0.5881 0.4484 +vn 0.3232 0.4717 0.8204 +vn 0.3228 0.4731 0.8197 +vn 0.3215 0.4746 0.8194 +vn -0.0552 0.9689 -0.2411 +vn -0.0550 0.9690 -0.2409 +vn -0.0551 0.9689 -0.2412 +vn 0.6035 0.7662 0.2208 +vn 0.6034 0.7662 0.2210 +vn 0.6034 0.7662 0.2208 +vn -0.5821 -0.8109 -0.0606 +vn -0.6807 -0.2937 0.6711 +vn -0.6807 -0.2936 0.6712 +vn -0.0611 0.1932 -0.9793 +vn -0.0607 0.1929 -0.9793 +vn -0.0609 0.1932 -0.9793 +vn -0.0303 -0.9683 0.2481 +vn -0.0304 -0.9683 0.2481 +vn 0.8013 0.5896 -0.1012 +vn 0.8008 0.5902 -0.1016 +vn 0.8010 0.5900 -0.1013 +vn -0.3341 0.7806 -0.5282 +vn -0.3342 0.7807 -0.5281 +vn -0.3344 0.7808 -0.5278 +vn -0.5109 -0.8207 0.2558 +vn -0.5115 -0.8203 0.2557 +vn 0.2840 -0.0657 -0.9566 +vn 0.2839 -0.0659 -0.9566 +vn 0.2838 -0.0657 -0.9566 +vn -0.2758 0.2914 0.9160 +vn -0.2753 0.2917 0.9160 +vn -0.2750 0.2919 0.9161 +vn -0.4774 -0.8690 -0.1300 +vn -0.4771 -0.8692 -0.1299 +vn -0.4763 -0.8697 -0.1295 +vn 0.0781 0.7696 0.6338 +vn 0.0780 0.7696 0.6337 +vn 0.9283 -0.2781 -0.2467 +vn 0.9280 -0.2793 -0.2466 +vn 0.9282 -0.2784 -0.2468 +vn -0.3895 -0.9086 0.1508 +vn -0.3903 -0.9081 0.1515 +vn -0.3898 -0.9084 0.1510 +vn -0.8322 -0.2987 -0.4671 +vn -0.8322 -0.2989 -0.4670 +vn -0.8321 -0.2993 -0.4669 +vn -0.7177 -0.3520 -0.6009 +vn -0.7177 -0.3522 -0.6007 +vn -0.7177 -0.3521 -0.6008 +vn 0.3474 -0.8137 -0.4660 +vn 0.3475 -0.8137 -0.4659 +vn 0.9663 0.0886 -0.2415 +vn 0.9664 0.0885 -0.2413 +vn 0.9661 0.0891 -0.2424 +vn -0.1212 0.5512 -0.8255 +vn -0.1224 0.5508 -0.8256 +vn -0.1234 0.5500 -0.8260 +vn 0.7075 0.6283 -0.3236 +vn 0.7075 0.6283 -0.3235 +vn 0.7075 0.6281 -0.3240 +vn 0.8449 -0.0362 0.5337 +vn 0.8449 -0.0372 0.5336 +vn 0.8453 -0.0382 0.5330 +vn -0.7723 -0.6352 0.0031 +vn -0.7724 -0.6351 0.0036 +vn -0.7724 -0.6351 0.0034 +vn -0.1527 0.2629 -0.9527 +vn -0.8152 -0.5137 -0.2675 +vn -0.8154 -0.5135 -0.2675 +vn -0.2586 0.8621 -0.4359 +vn -0.2589 0.8621 -0.4357 +vn -0.2600 0.8624 -0.4343 +vn 0.8602 0.4979 0.1103 +vn 0.8603 0.4973 0.1121 +vn -0.0675 -0.8822 0.4660 +vn -0.0679 -0.8822 0.4660 +vn -0.0672 -0.8823 0.4659 +vn -0.7219 0.3952 -0.5681 +vn -0.7219 0.3951 -0.5681 +vn -0.7221 0.3950 -0.5679 +vn -0.5223 0.1484 -0.8397 +vn -0.5229 0.1483 -0.8394 +vn -0.5219 0.1484 -0.8400 +vn 0.3952 -0.0327 0.9180 +vn 0.3951 -0.0328 0.9181 +vn 0.3953 -0.0326 0.9180 +vn -0.4447 0.5053 -0.7395 +vn -0.4446 0.5052 -0.7396 +vn -0.4448 0.5051 -0.7396 +vn -0.9554 0.2954 0.0040 +vn -0.9554 0.2953 0.0042 +vn -0.9553 0.2955 0.0040 +vn -0.3879 -0.0327 0.9211 +vn -0.6683 0.6604 -0.3424 +vn -0.6682 0.6605 -0.3424 +vn 0.4176 0.8908 -0.1791 +vn 0.4173 0.8907 -0.1802 +vn 0.4164 0.8910 -0.1810 +vn 0.9078 -0.1784 0.3796 +vn 0.9078 -0.1781 0.3798 +vn 0.9078 -0.1780 0.3797 +vn 0.0107 0.1196 -0.9928 +vn 0.0120 0.1192 -0.9928 +vn 0.0099 0.1203 -0.9927 +vn -0.0156 -0.4706 0.8822 +vn -0.0154 -0.4715 0.8817 +vn -0.0155 -0.4711 0.8819 +vn -0.0445 -0.2290 0.9724 +vn -0.0447 -0.2292 0.9723 +vn -0.7563 -0.2500 -0.6045 +vn -0.7562 -0.2498 -0.6048 +vn -0.7564 -0.2500 -0.6044 +vn -0.5753 -0.6428 -0.5059 +vn -0.5756 -0.6426 -0.5057 +vn -0.5750 -0.6432 -0.5056 +vn 0.4580 -0.8319 -0.3135 +vn -0.3107 0.3756 0.8732 +vn -0.3105 0.3754 0.8733 +vn -0.3103 0.3751 0.8735 +vn 0.6626 -0.3801 -0.6453 +vn 0.6969 -0.7141 0.0657 +vn 0.6970 -0.7141 0.0654 +vn -0.1769 0.7739 -0.6081 +vn -0.1771 0.7740 -0.6079 +vn -0.1772 0.7743 -0.6075 +vn -0.2843 -0.1430 0.9480 +vn -0.2842 -0.1430 0.9480 +vn -0.2840 -0.1430 0.9481 +vn 0.0595 0.9913 -0.1171 +vn 0.0592 0.9913 -0.1173 +vn 0.0595 0.9914 -0.1169 +vn 0.7566 0.5224 0.3933 +vn 0.7564 0.5226 0.3935 +vn 0.7563 0.5227 0.3936 +vn -0.3748 -0.0094 0.9271 +vn -0.3751 -0.0074 0.9270 +vn -0.1038 -0.1746 -0.9792 +vn -0.1037 -0.1748 -0.9791 +vn -0.0270 -0.5709 -0.8206 +vn -0.0270 -0.5708 -0.8207 +vn -0.0269 -0.5708 -0.8206 +vn 0.1408 0.1371 0.9805 +vn 0.1408 0.1369 0.9805 +vn 0.1408 0.1368 0.9805 +vn -0.0603 -0.7501 -0.6585 +vn -0.2179 -0.9598 -0.1771 +vn -0.2163 -0.9598 -0.1787 +vn -0.2170 -0.9599 -0.1777 +vn 0.5383 -0.8039 -0.2528 +vn 0.5374 -0.8047 -0.2522 +vn 0.5381 -0.8041 -0.2526 +vn 0.3357 -0.5693 -0.7505 +vn 0.3356 -0.5692 -0.7505 +vn 0.3356 -0.5694 -0.7505 +vn 0.4620 0.0976 -0.8815 +vn 0.4620 0.0975 -0.8815 +vn 0.4621 0.0974 -0.8815 +vn 0.8695 -0.4702 0.1511 +vn -0.5526 0.8331 0.0237 +vn -0.5532 0.8327 0.0234 +vn -0.9744 -0.0283 0.2229 +vn -0.9744 -0.0283 0.2230 +vn -0.9743 -0.0281 0.2233 +vn 0.9263 -0.2517 0.2804 +vn 0.9264 -0.2506 0.2811 +vn 0.9264 -0.2512 0.2807 +vn 0.7768 -0.2292 0.5866 +vn 0.7771 -0.2298 0.5859 +vn 0.7763 -0.2290 0.5873 +vn -0.5275 0.6735 -0.5179 +vn -0.5275 0.6734 -0.5180 +vn 0.5631 -0.5051 -0.6541 +vn 0.5632 -0.5050 -0.6540 +vn -0.4358 -0.3850 -0.8135 +vn -0.4360 -0.3851 -0.8134 +vn -0.4359 -0.3851 -0.8135 +vn -0.7265 -0.5321 -0.4348 +vn -0.7268 -0.5318 -0.4347 +vn -0.7264 -0.5324 -0.4347 +vn -0.3322 -0.3061 -0.8922 +vn -0.3331 -0.3058 -0.8919 +vn -0.4613 0.5130 -0.7239 +vn -0.4612 0.5130 -0.7239 +vn -0.0000 -0.0002 1.0000 +vn 0.2594 -0.9569 -0.1309 +vn 0.2587 -0.9571 -0.1305 +vn 0.2581 -0.9573 -0.1300 +vn 0.2028 -0.9414 -0.2697 +vn 0.2033 -0.9411 -0.2702 +vn 0.2021 -0.9416 -0.2694 +vn 0.6700 0.5240 0.5258 +vn -0.5045 -0.8137 -0.2887 +vn -0.5059 -0.8130 -0.2883 +vn -0.5077 -0.8118 -0.2884 +vn -0.9622 -0.1568 0.2227 +vn -0.9622 -0.1570 0.2226 +vn -0.9622 -0.1565 0.2231 +vn 0.5142 0.8286 -0.2214 +vn 0.5115 0.8308 -0.2196 +vn 0.5176 0.8267 -0.2208 +vn -0.3069 0.0912 -0.9474 +vn -0.3068 0.0916 -0.9474 +vn -0.3075 0.0908 -0.9472 +vn -0.7165 -0.6049 -0.3475 +vn -0.7164 -0.6051 -0.3472 +vn -0.7166 -0.6045 -0.3478 +vn 0.8493 -0.4472 -0.2804 +vn 0.8493 -0.4471 -0.2806 +vn 0.8494 -0.4470 -0.2807 +vn 0.3931 0.9194 -0.0119 +vn -0.5365 -0.7910 0.2940 +vn 0.7992 -0.5960 -0.0781 +vn 0.7994 -0.5957 -0.0782 +vn 0.7992 -0.5959 -0.0781 +vn 0.3131 0.9283 -0.2004 +vn 0.3129 0.9284 -0.2005 +vn -0.2309 0.5174 0.8240 +vn -0.2312 0.5173 0.8240 +vn -0.2316 0.5174 0.8238 +vn -0.8938 0.0997 -0.4372 +vn -0.8939 0.0994 -0.4370 +vn -0.8941 0.0990 -0.4367 +vn -0.4807 -0.8165 0.3197 +vn -0.4809 -0.8164 0.3196 +vn -0.4810 -0.8163 0.3198 +vn -0.4490 -0.8931 -0.0278 +vn -0.4491 -0.8931 -0.0277 +vn 0.1583 0.5041 -0.8490 +vn 0.3599 -0.6160 -0.7007 +vn 0.3599 -0.6159 -0.7008 +vn 0.3597 -0.6158 -0.7010 +vn -0.4993 -0.8507 0.1642 +vn -0.4994 -0.8507 0.1640 +vn -0.4993 -0.8507 0.1643 +vn -0.5455 -0.8364 -0.0531 +vn -0.5455 -0.8364 -0.0530 +vn -0.4261 0.1524 0.8918 +vn -0.4262 0.1523 0.8917 +vn -0.4259 0.1528 0.8918 +vn 0.5535 -0.7534 -0.3550 +vn 0.5534 -0.7533 -0.3554 +vn 0.5532 -0.7532 -0.3558 +vn 0.4217 0.2762 -0.8637 +vn 0.4223 0.2769 -0.8631 +vn 0.4222 0.2768 -0.8632 +vn 0.8025 0.3943 0.4478 +vn 0.8021 0.3944 0.4484 +vn 0.8027 0.3943 0.4474 +vn 0.0039 0.9741 -0.2261 +vn 0.0040 0.9740 -0.2265 +vn -0.8017 -0.2638 -0.5363 +vn -0.3685 0.0030 0.9296 +vn -0.3684 0.0029 0.9297 +vn -0.9917 0.1278 0.0161 +vn -0.9917 0.1273 0.0161 +vn -0.9918 0.1271 0.0161 +vn 0.7990 -0.5853 -0.1380 +vn 0.7989 -0.5855 -0.1377 +vn 0.7989 -0.5854 -0.1379 +vn -0.4653 -0.8524 -0.2386 +vn -0.4661 -0.8521 -0.2380 +vn -0.4658 -0.8522 -0.2383 +vn -0.5646 -0.4134 0.7143 +vn -0.5650 -0.4123 0.7147 +vn -0.5666 -0.4103 0.7146 +vn -0.6238 -0.2671 0.7345 +vn -0.6233 -0.2670 0.7350 +vn -0.6249 -0.2667 0.7338 +vn -0.1414 -0.9819 0.1261 +vn -0.1412 -0.9820 0.1258 +vn -0.1416 -0.9818 0.1264 +vn 0.0073 -0.9948 0.1013 +vn 0.2161 -0.9755 -0.0406 +vn 0.2162 -0.9755 -0.0405 +vn 0.2158 -0.9756 -0.0408 +vn -0.0572 0.3546 -0.9333 +vn 0.5848 0.8098 -0.0477 +vn 0.5851 0.8096 -0.0476 +vn 0.5852 0.8095 -0.0475 +vn -0.0037 -0.9965 0.0835 +vn 0.2497 -0.9415 0.2265 +vn 0.2495 -0.9415 0.2266 +vn 0.0602 -0.9981 -0.0137 +vn 0.0606 -0.9981 -0.0137 +vn 0.0601 -0.9981 -0.0137 +vn -0.5874 -0.8010 -0.1160 +vn -0.5875 -0.8008 -0.1167 +vn -0.5874 -0.8009 -0.1161 +vn 0.2985 0.1665 0.9398 +vn 0.2983 0.1671 0.9397 +vn 0.2985 0.1668 0.9397 +vn 0.4272 -0.8807 0.2047 +vn 0.0202 0.9994 0.0268 +vn -0.2711 -0.6129 0.7422 +vn -0.2713 -0.6134 0.7417 +vn -0.2714 -0.6137 0.7414 +vn 0.1812 0.9372 -0.2981 +vn 0.1812 0.9376 -0.2969 +vn 0.1806 0.9370 -0.2990 +vn 0.7704 0.4278 -0.4728 +vn 0.7703 0.4276 -0.4730 +vn -0.8319 0.3238 0.4506 +vn -0.8320 0.3237 0.4506 +vn -0.8321 0.3235 0.4506 +vn 0.4690 -0.8416 0.2679 +vn 0.4692 -0.8415 0.2679 +vn 0.1877 -0.7493 0.6351 +vn 0.1884 -0.7509 0.6330 +vn 0.1896 -0.7513 0.6322 +vn 0.1262 -0.0564 -0.9904 +vn 0.4678 -0.8513 0.2375 +vn 0.4685 -0.8512 0.2366 +vn 0.4682 -0.8513 0.2369 +vn -0.1096 0.8475 0.5193 +vn -0.1102 0.8480 0.5184 +vn -0.1104 0.8487 0.5172 +vn -0.8274 0.3407 0.4465 +vn 0.3257 -0.9245 0.1981 +vn 0.3263 -0.9245 0.1970 +vn 0.3260 -0.9245 0.1977 +vn -0.6176 -0.4017 -0.6762 +vn -0.6175 -0.4021 -0.6760 +vn 0.1885 0.0560 0.9805 +vn 0.1876 0.0560 0.9806 +vn 0.1889 0.0560 0.9804 +vn 0.4812 0.3256 0.8139 +vn 0.4812 0.3255 0.8140 +vn -0.1500 -0.8573 -0.4925 +vn -0.1500 -0.8573 -0.4924 +vn -0.1498 -0.8574 -0.4924 +vn -0.2535 -0.9342 -0.2510 +vn -0.7359 0.3372 -0.5872 +vn -0.7359 0.3370 -0.5873 +vn -0.7359 0.3373 -0.5871 +vn 0.3667 0.8673 -0.3366 +vn 0.3670 0.8672 -0.3366 +vn 0.3673 0.8670 -0.3368 +vn -0.4907 0.1867 -0.8511 +vn -0.4911 0.1864 -0.8509 +vn -0.4903 0.1868 -0.8513 +vn -0.0901 0.9686 -0.2316 +vn -0.0900 0.9686 -0.2318 +vn 0.2799 0.8226 0.4950 +vn 0.2794 0.8224 0.4955 +vn 0.2786 0.8224 0.4960 +vn 0.0437 0.3476 -0.9366 +vn 0.6423 0.7472 -0.1705 +vn 0.6424 0.7470 -0.1711 +vn 0.6423 0.7472 -0.1706 +vn 0.3973 -0.8818 0.2541 +vn 0.3974 -0.8817 0.2543 +vn 0.3974 -0.8817 0.2542 +vn -0.3558 0.3408 -0.8702 +vn -0.3563 0.3409 -0.8700 +vn -0.3567 0.3406 -0.8699 +vn 0.2946 -0.9556 -0.0104 +vn 0.2947 -0.9555 -0.0107 +vn 0.4943 0.7377 -0.4599 +vn 0.2629 -0.9627 0.0631 +vn 0.2684 -0.9603 0.0762 +vn 0.2687 -0.9602 0.0763 +vn 0.2133 -0.9556 0.2032 +vn 0.2134 -0.9556 0.2031 +vn 0.1845 0.7797 -0.5983 +vn 0.1849 0.7796 -0.5984 +vn 0.1850 0.7794 -0.5986 +vn 0.3875 -0.8861 0.2543 +vn 0.3875 -0.8861 0.2544 +vn 0.3875 -0.8862 0.2540 +vn -0.4171 0.8665 0.2744 +vn -0.4177 0.8664 0.2737 +vn -0.4190 0.8660 0.2729 +vn 0.8365 -0.1417 0.5293 +vn 0.8367 -0.1414 0.5291 +vn 0.8369 -0.1417 0.5288 +vn -0.2565 -0.1551 0.9540 +vn -0.2562 -0.1549 0.9541 +vn 0.0710 0.9813 0.1790 +vn 0.0708 0.9803 0.1844 +vn 0.0717 0.9809 0.1811 +vn -0.0909 0.1046 0.9904 +vn -0.0908 0.1046 0.9904 +vn -0.4629 -0.8862 -0.0188 +vn -0.4629 -0.8862 -0.0186 +vn -0.4630 -0.8862 -0.0191 +vn 0.3598 -0.8968 0.2575 +vn 0.3599 -0.8968 0.2573 +vn 0.1392 0.6754 0.7242 +vn 0.1385 0.6752 0.7245 +vn 0.1399 0.6753 0.7242 +vn -0.2642 -0.9446 0.1949 +vn -0.2642 -0.9445 0.1951 +vn -0.4833 -0.7130 -0.5080 +vn -0.4820 -0.7128 -0.5095 +vn -0.4829 -0.7129 -0.5085 +vn -0.2518 -0.1007 -0.9625 +vn -0.2515 -0.1009 -0.9626 +vn -0.2510 -0.1008 -0.9627 +vn -0.1335 0.3308 0.9342 +vn -0.1333 0.3307 0.9343 +vn -0.9472 0.2696 -0.1734 +vn -0.9473 0.2695 -0.1732 +vn -0.9473 0.2694 -0.1731 +vn -0.5946 0.3763 0.7106 +vn -0.5944 0.3761 0.7108 +vn -0.5944 0.3762 0.7107 +vn -0.4068 -0.9068 -0.1102 +vn -0.4070 -0.9067 -0.1105 +vn -0.4073 -0.9065 -0.1111 +vn 0.3178 0.7990 -0.5105 +vn 0.3180 0.7990 -0.5104 +vn 0.3174 0.7992 -0.5105 +vn 0.3795 -0.7846 0.4903 +vn 0.3795 -0.7846 0.4904 +vn 0.3797 -0.7845 0.4903 +vn -0.3752 -0.8627 0.3392 +vn -0.3751 -0.8627 0.3392 +vn 0.0760 0.0149 -0.9970 +vn 0.0761 0.0146 -0.9970 +vn -0.3197 -0.9303 0.1797 +vn -0.3195 -0.9304 0.1797 +vn 0.0581 0.2484 0.9669 +vn 0.0578 0.2463 0.9675 +vn 0.0582 0.2481 0.9670 +vn 0.3170 0.1991 0.9273 +vn 0.3167 0.1995 0.9273 +vn 0.3178 0.1989 0.9271 +vn -0.9411 0.3372 0.0256 +vn -0.9412 0.3370 0.0258 +vn -0.9412 0.3368 0.0260 +vn 0.4922 -0.8531 -0.1731 +vn 0.4922 -0.8531 -0.1732 +vn 0.0983 -0.8550 0.5093 +vn 0.0985 -0.8551 0.5090 +vn 0.0989 -0.8552 0.5088 +vn 0.1742 -0.9197 0.3518 +vn 0.1742 -0.9198 0.3517 +vn 0.1741 -0.9198 0.3517 +vn -0.1335 -0.8841 0.4478 +vn -0.1337 -0.8841 0.4477 +vn -0.1333 -0.8842 0.4477 +vn 0.6071 0.6739 0.4210 +vn 0.6072 0.6738 0.4210 +vn 0.4439 -0.8697 -0.2157 +vn 0.4182 -0.9073 -0.0434 +vn 0.8314 -0.4831 0.2745 +vn 0.8315 -0.4831 0.2743 +vn 0.8313 -0.4834 0.2744 +vn -0.1472 0.9844 0.0960 +vn -0.1473 0.9844 0.0960 +vn -0.0418 0.2104 -0.9767 +vn -0.0419 0.2107 -0.9767 +vn -0.3395 -0.8935 -0.2938 +vn -0.3397 -0.8934 -0.2940 +vn -0.3397 -0.8935 -0.2939 +vn 0.3129 -0.6001 -0.7362 +vn 0.3131 -0.6001 -0.7361 +vn -0.4535 0.8471 -0.2771 +vn -0.4535 0.8470 -0.2773 +vn -0.4533 0.8471 -0.2775 +vn -0.8669 0.3032 -0.3956 +vn -0.8669 0.3035 -0.3954 +vn -0.8669 0.3033 -0.3955 +vn -0.4401 0.2049 0.8743 +vn -0.4404 0.2046 0.8742 +vn -0.4403 0.2048 0.8742 +vn -0.3015 0.3167 -0.8993 +vn -0.3020 0.3162 -0.8993 +vn -0.3020 0.3164 -0.8993 +vn 0.5204 -0.8314 -0.1946 +vn 0.5205 -0.8314 -0.1948 +vn -0.3791 -0.9088 -0.1743 +vn -0.3790 -0.9088 -0.1746 +vn -0.3792 -0.9087 -0.1745 +vn 0.5540 0.2380 -0.7978 +vn 0.0940 -0.9515 -0.2928 +vn 0.0938 -0.9514 -0.2932 +vn -0.3070 0.8945 -0.3250 +vn 0.2521 -0.9317 -0.2614 +vn -0.8753 -0.4816 0.0442 +vn 0.6301 0.1508 0.7617 +vn 0.6300 0.1509 0.7618 +vn 0.6300 0.1510 0.7618 +vn 0.6303 0.7762 0.0155 +vn 0.6303 0.7762 0.0154 +vn 0.6299 0.7765 0.0161 +vn -0.2863 -0.3223 -0.9023 +vn -0.2869 -0.3228 -0.9019 +vn -0.2866 -0.3226 -0.9021 +vn 0.2756 0.7627 -0.5851 +vn -0.0530 0.9162 -0.3971 +vn -0.3357 0.7979 -0.5006 +vn -0.3359 0.7980 -0.5004 +vn -0.1073 0.9914 0.0755 +vn -0.1073 0.9913 0.0757 +vn -0.1071 0.9914 0.0753 +vn 0.2693 -0.8948 -0.3562 +vn 0.2695 -0.8946 -0.3564 +vn -0.5789 -0.5875 0.5654 +vn -0.5793 -0.5872 0.5653 +vn -0.5797 -0.5868 0.5653 +vn 0.4357 0.8697 -0.2320 +vn -0.4840 0.8225 0.2988 +vn -0.4842 0.8225 0.2984 +vn -0.4841 0.8225 0.2986 +vn -0.0009 0.0049 1.0000 +vn -0.0011 0.0049 1.0000 +vn -0.0010 0.0049 1.0000 +vn -0.4139 -0.8021 0.4305 +vn -0.4137 -0.8025 0.4300 +vn -0.4137 -0.8024 0.4302 +vn 0.1697 0.9855 -0.0055 +vn -0.4919 -0.0320 -0.8701 +vn -0.4920 -0.0322 -0.8700 +vn -0.4921 -0.0320 -0.8699 +vn -0.2640 0.8023 -0.5354 +vn -0.2640 0.8024 -0.5352 +vn 0.7467 0.6647 0.0268 +vn 0.5745 0.7930 0.2029 +vn 0.5743 0.7931 0.2032 +vn 0.5744 0.7930 0.2030 +vn 0.6757 0.6075 0.4176 +vn 0.6764 0.6070 0.4172 +vn 0.6760 0.6073 0.4174 +vn -0.2204 -0.8581 -0.4637 +vn -0.2204 -0.8580 -0.4639 +vn 0.1220 -0.8073 -0.5773 +vn 0.1222 -0.8072 -0.5775 +vn 0.9076 0.3440 0.2407 +vn 0.9073 0.3452 0.2400 +vn 0.9075 0.3446 0.2404 +vn 0.5191 -0.7033 0.4857 +vn 0.5190 -0.7034 0.4856 +vn 0.8954 0.4405 0.0651 +vn 0.8954 0.4405 0.0650 +vn 0.8955 0.4403 0.0650 +vn -0.7300 0.6431 0.2312 +vn -0.7301 0.6430 0.2314 +vn -0.7298 0.6432 0.2315 +vn -0.1025 -0.6757 0.7300 +vn -0.1027 -0.6757 0.7300 +vn -0.1025 -0.6758 0.7299 +vn -0.3810 0.8345 -0.3982 +vn -0.3804 0.8344 -0.3989 +vn -0.3813 0.8344 -0.3980 +vn -0.6950 -0.6465 0.3146 +vn -0.6950 -0.6466 0.3145 +vn -0.4862 -0.8521 0.1938 +vn -0.4863 -0.8520 0.1937 +vn -0.8514 -0.4333 0.2956 +vn -0.8513 -0.4334 0.2957 +vn -0.3132 -0.7975 0.5157 +vn -0.3137 -0.7973 0.5156 +vn -0.3138 -0.7973 0.5155 +vn 0.5879 0.2695 -0.7627 +vn 0.5882 0.2697 -0.7624 +vn -0.4099 -0.1551 -0.8988 +vn -0.4098 -0.1553 -0.8989 +vn -0.4095 -0.1553 -0.8990 +vn 0.7241 0.6357 -0.2675 +vn 0.7242 0.6358 -0.2669 +vn 0.7241 0.6358 -0.2671 +vn 0.7764 0.5437 0.3188 +vn 0.7765 0.5434 0.3189 +vn -0.2189 0.7736 0.5946 +vn -0.2188 0.7737 0.5945 +vn -0.2188 0.7733 0.5951 +vn 0.7425 0.6183 -0.2577 +vn 0.7427 0.6182 -0.2573 +vn -0.6166 0.6972 -0.3656 +vn -0.6166 0.6973 -0.3656 +vn -0.6168 0.6970 -0.3658 +vn -0.6167 -0.5632 -0.5500 +vn -0.6168 -0.5632 -0.5499 +vn -0.6169 -0.5636 -0.5493 +vn 0.1391 -0.9691 -0.2036 +vn 0.1390 -0.9691 -0.2037 +vn 0.1391 -0.9691 -0.2037 +vn -0.4362 0.8944 0.0989 +vn -0.4364 0.8943 0.0989 +vn -0.4363 0.8943 0.0988 +vn -0.5855 -0.8107 -0.0018 +vn -0.5855 -0.8107 -0.0017 +vn -0.5856 -0.8106 -0.0019 +vn 0.1903 -0.7846 0.5900 +vn 0.1906 -0.7854 0.5889 +vn 0.1894 -0.7847 0.5903 +vn -0.0195 -0.8762 0.4815 +vn -0.0188 -0.8757 0.4824 +vn -0.0193 -0.8759 0.4822 +vn 0.9216 -0.3634 0.1364 +vn 0.9217 -0.3632 0.1364 +vn 0.9217 -0.3631 0.1364 +vn -0.7259 0.6196 -0.2987 +vn 0.7893 0.6139 0.0094 +vn 0.7893 0.6140 0.0095 +vn 0.7895 0.6137 0.0090 +vn 0.7810 0.6211 0.0650 +vn 0.7811 0.6210 0.0650 +vn 0.0761 -0.9901 -0.1178 +vn 0.0538 0.7238 -0.6879 +vn 0.0547 0.7234 -0.6883 +vn 0.1946 0.3074 -0.9315 +vn 0.1952 0.3074 -0.9313 +vn 0.1948 0.3071 -0.9315 +vn -0.7082 0.6808 0.1872 +vn -0.7083 0.6807 0.1871 +vn -0.7082 0.6807 0.1871 +vn 0.5708 0.4538 -0.6843 +vn 0.5709 0.4535 -0.6844 +vn 0.5714 0.4528 -0.6844 +vn -0.3278 0.1525 0.9324 +vn -0.3277 0.1526 0.9324 +vn -0.3277 0.1527 0.9324 +vn -0.1006 -0.5147 -0.8514 +vn -0.9994 0.0111 0.0321 +vn -0.9994 0.0109 0.0320 +vn -0.9994 0.0114 0.0324 +vn 0.2528 -0.0958 -0.9628 +vn 0.2536 -0.0959 -0.9625 +vn 0.2532 -0.0958 -0.9627 +vn 0.9604 0.2644 0.0874 +vn 0.9605 0.2641 0.0878 +vn 0.9604 0.2646 0.0872 +vn 0.7239 -0.2705 -0.6346 +vn 0.7239 -0.2708 -0.6345 +vn -0.2774 0.0656 0.9585 +vn -0.2774 0.0659 0.9585 +vn -0.0205 0.1252 0.9919 +vn -0.0208 0.1253 0.9919 +vn -0.0208 0.1251 0.9919 +vn 0.2107 0.9367 0.2795 +vn 0.2102 0.9368 0.2797 +vn 0.2109 0.9367 0.2794 +vn -0.0535 -0.9934 0.1014 +vn -0.0756 0.8177 -0.5706 +vn -0.0759 0.8178 -0.5705 +vn -0.0753 0.8177 -0.5707 +vn -0.1136 0.0213 -0.9933 +vn -0.7176 -0.6860 -0.1202 +vn -0.7175 -0.6862 -0.1200 +vn -0.8991 0.2020 -0.3882 +vn -0.8990 0.2019 -0.3886 +vn -0.8992 0.2023 -0.3880 +vn 0.0226 -0.2453 -0.9692 +vn 0.0229 -0.2452 -0.9692 +vn -0.0259 -0.9104 0.4129 +vn -0.0268 -0.9103 0.4131 +vn -0.0264 -0.9104 0.4130 +vn 0.3531 0.8541 -0.3819 +vn 0.3532 0.8539 -0.3822 +vn -0.6364 -0.6219 -0.4564 +vn -0.6364 -0.6223 -0.4559 +vn -0.6364 -0.6226 -0.4554 +vn -0.0582 -0.7588 -0.6487 +vn -0.0574 -0.7583 -0.6494 +vn -0.0580 -0.7588 -0.6488 +vn -0.1054 0.8728 -0.4765 +vn -0.1054 0.8725 -0.4771 +vn -0.1052 0.8728 -0.4766 +vn -0.2963 -0.8121 0.5026 +vn -0.2964 -0.8120 0.5028 +vn -0.2964 -0.8119 0.5030 +vn -0.0290 0.9203 -0.3901 +vn -0.0290 0.9203 -0.3902 +vn -0.0290 0.9204 -0.3900 +vn -0.3915 -0.8447 0.3650 +vn -0.3909 -0.8448 0.3654 +vn -0.3911 -0.8448 0.3652 +vn -0.5617 -0.6003 -0.5693 +vn -0.5616 -0.6006 -0.5691 +vn -0.5619 -0.6002 -0.5693 +vn -0.8034 -0.5030 0.3185 +vn -0.8034 -0.5032 0.3184 +vn -0.8033 -0.5033 0.3185 +vn 0.0600 0.4187 -0.9061 +vn 0.0601 0.4189 -0.9061 +vn 0.0485 -0.2688 -0.9620 +vn 0.0484 -0.2688 -0.9620 +vn 0.6799 -0.0823 -0.7287 +vn 0.9470 0.0998 -0.3054 +vn 0.9469 0.0994 -0.3057 +vn 0.9469 0.0993 -0.3059 +vn -0.6390 -0.2284 -0.7345 +vn -0.6390 -0.2283 -0.7345 +vn 0.3595 0.9320 0.0455 +vn 0.3593 0.9321 0.0457 +vn 0.3592 0.9321 0.0458 +vn 0.4838 0.4829 0.7299 +vn 0.4840 0.4827 0.7299 +vn 0.4836 0.4829 0.7300 +vn 0.9514 -0.2837 0.1196 +vn 0.9514 -0.2836 0.1199 +vn 0.1085 -0.2193 -0.9696 +vn 0.1073 -0.2197 -0.9696 +vn 0.1088 -0.2193 -0.9696 +vn -0.6096 0.1626 -0.7758 +vn -0.6096 0.1621 -0.7760 +vn -0.8989 0.3861 -0.2072 +vn -0.8985 0.3867 -0.2078 +vn -0.8991 0.3856 -0.2072 +vn -0.9839 0.0176 -0.1779 +vn -0.9839 0.0175 -0.1779 +vn 0.4449 -0.8501 -0.2816 +vn 0.4427 -0.8516 -0.2808 +vn 0.4441 -0.8506 -0.2816 +vn 0.5280 -0.5152 -0.6751 +vn 0.1348 0.3743 -0.9175 +vn -0.1274 0.9882 -0.0856 +vn 0.2698 -0.8339 0.4815 +vn 0.2699 -0.8338 0.4815 +vn 0.5631 -0.2134 -0.7983 +vn 0.5617 -0.2133 -0.7994 +vn 0.5613 -0.2131 -0.7997 +vn -0.8828 0.3676 -0.2925 +vn -0.8829 0.3674 -0.2924 +vn -0.8830 0.3672 -0.2923 +vn -0.5957 0.7189 -0.3582 +vn -0.5950 0.7194 -0.3583 +vn -0.5929 0.7202 -0.3601 +vn -0.9177 -0.3937 0.0541 +vn -0.9177 -0.3936 0.0543 +vn -0.9177 -0.3936 0.0538 +vn 0.8056 -0.5821 -0.1102 +vn 0.8055 -0.5823 -0.1101 +vn -0.9336 -0.3365 -0.1234 +vn -0.9335 -0.3366 -0.1237 +vn 0.4437 0.8317 -0.3338 +vn 0.4438 0.8316 -0.3338 +vn 0.4436 0.8317 -0.3338 +vn 0.6511 -0.5558 0.5168 +vn 0.6512 -0.5559 0.5166 +vn 0.6513 -0.5559 0.5165 +vn -0.8671 -0.3999 -0.2971 +vn -0.8671 -0.4000 -0.2970 +vn 0.3864 0.3840 0.8386 +vn 0.3868 0.3838 0.8385 +vn 0.3867 0.3839 0.8385 +vn -0.5146 -0.8525 -0.0919 +vn -0.5141 -0.8528 -0.0917 +vn 0.8523 -0.1443 0.5027 +vn 0.8520 -0.1441 0.5033 +vn 0.8522 -0.1442 0.5030 +vn -0.8343 0.4181 0.3594 +vn -0.8344 0.4173 0.3600 +vn 0.5009 -0.7953 0.3413 +vn 0.5011 -0.7955 0.3407 +vn 0.5007 -0.7954 0.3415 +vn -0.7159 -0.1123 0.6891 +vn -0.7161 -0.1122 0.6889 +vn 0.9378 -0.2206 0.2679 +vn -0.0397 0.8389 -0.5429 +vn -0.0381 0.8394 -0.5421 +vn -0.0410 0.8381 -0.5440 +vn -0.9120 0.2736 0.3055 +vn -0.9121 0.2740 0.3049 +vn -0.9120 0.2749 0.3045 +vn 0.3200 -0.6400 -0.6986 +vn 0.3202 -0.6398 -0.6987 +vn 0.4503 -0.6008 -0.6605 +vn 0.4505 -0.6009 -0.6603 +vn -0.3454 -0.8562 -0.3843 +vn 0.4140 -0.8282 -0.3777 +vn 0.4143 -0.8282 -0.3775 +vn -0.5431 0.8136 -0.2076 +vn -0.5442 0.8130 -0.2070 +vn -0.5436 0.8134 -0.2071 +vn 0.4022 -0.9135 0.0606 +vn 0.4023 -0.9135 0.0607 +vn 0.8670 -0.4947 0.0599 +vn 0.8669 -0.4949 0.0601 +vn 0.8670 -0.4947 0.0600 +vn 0.2505 -0.9664 -0.0584 +vn 0.2505 -0.9664 -0.0585 +vn 0.2506 -0.9664 -0.0579 +vn -0.6986 0.3253 -0.6373 +vn 0.4999 -0.8216 0.2740 +vn 0.4997 -0.8211 0.2758 +vn 0.4996 -0.8221 0.2729 +vn 0.3319 0.9428 0.0295 +vn 0.3319 0.9428 0.0297 +vn 0.3316 0.9430 0.0293 +vn 0.4896 -0.8249 0.2826 +vn 0.1846 -0.9317 0.3127 +vn -0.9200 -0.1219 -0.3724 +vn -0.9182 -0.1231 -0.3765 +vn -0.9193 -0.1231 -0.3738 +vn 0.5228 -0.5146 -0.6796 +vn 0.5223 -0.5146 -0.6800 +vn 0.5231 -0.5146 -0.6794 +vn -0.8437 0.5031 -0.1873 +vn -0.8436 0.5030 -0.1879 +vn -0.8438 0.5029 -0.1875 +vn -0.7388 0.5705 -0.3587 +vn -0.7389 0.5704 -0.3588 +vn -0.7388 0.5704 -0.3590 +vn 0.2800 -0.9566 0.0810 +vn 0.2802 -0.9565 0.0809 +vn 0.2800 -0.9566 0.0809 +vn 0.8011 -0.2728 0.5327 +vn 0.8011 -0.2731 0.5326 +vn 0.8012 -0.2725 0.5327 +vn 0.8610 -0.3693 0.3498 +vn -0.9260 0.1186 -0.3583 +vn -0.9261 0.1185 -0.3583 +vn -0.9261 0.1188 -0.3580 +vn -0.2337 -0.9392 -0.2516 +vn -0.2338 -0.9391 -0.2517 +vn -0.2334 -0.9393 -0.2514 +vn -0.3284 0.7796 -0.5332 +vn -0.3284 0.7794 -0.5336 +vn -0.3383 -0.9290 -0.1497 +vn -0.3384 -0.9290 -0.1498 +vn -0.7821 0.6195 -0.0670 +vn -0.7818 0.6199 -0.0673 +vn -0.7818 0.6199 -0.0672 +vn -0.9666 -0.1600 -0.2000 +vn -0.9667 -0.1598 -0.2000 +vn -0.9666 -0.1599 -0.2001 +vn -0.7757 -0.6303 -0.0309 +vn -0.7758 -0.6302 -0.0319 +vn -0.7757 -0.6303 -0.0305 +vn 0.4923 0.8538 -0.1695 +vn -0.3774 -0.9172 -0.1278 +vn -0.3774 -0.9172 -0.1279 +vn 0.1722 0.9835 -0.0562 +vn 0.1725 0.9834 -0.0564 +vn 0.1723 0.9834 -0.0562 +vn 0.3723 0.9191 -0.1292 +vn 0.3721 0.9193 -0.1284 +vn 0.3713 0.9197 -0.1274 +vn 0.1146 -0.9321 0.3436 +vn 0.1146 -0.9321 0.3437 +vn 0.1147 -0.9321 0.3436 +vn 0.3802 0.9175 0.1168 +vn 0.3803 0.9174 0.1171 +vn 0.3803 0.9174 0.1169 +vn 0.4294 -0.8564 0.2867 +vn 0.4293 -0.8564 0.2867 +vn 0.4290 -0.8566 0.2868 +vn -0.3581 -0.8666 -0.3475 +vn -0.3584 -0.8665 -0.3475 +vn -0.3580 -0.8666 -0.3476 +vn -0.3890 -0.9106 -0.1399 +vn 0.5222 -0.8304 0.1941 +vn -0.0848 0.9175 -0.3885 +vn -0.0848 0.9176 -0.3883 +vn -0.0850 0.9174 -0.3888 +vn -0.4384 -0.8651 -0.2436 +vn -0.4383 -0.8651 -0.2439 +vn -0.4384 -0.8651 -0.2437 +vn 0.7605 -0.1474 0.6324 +vn 0.7607 -0.1476 0.6321 +vn 0.7599 -0.1471 0.6332 +vn 0.3960 -0.8795 0.2638 +vn 0.3962 -0.8794 0.2639 +vn -0.9303 0.2963 -0.2163 +vn -0.9303 0.2963 -0.2164 +vn -0.9303 0.2960 -0.2165 +vn 0.6490 0.7563 0.0825 +vn 0.6489 0.7563 0.0830 +vn -0.4999 -0.8426 -0.2002 +vn -0.4995 -0.8428 -0.2003 +vn -0.4995 -0.8428 -0.2005 +vn -0.3951 -0.5358 -0.7462 +vn -0.4136 -0.8925 -0.1797 +vn 0.6899 0.6725 0.2679 +vn 0.6898 0.6726 0.2678 +vn 0.6896 0.6728 0.2679 +vn 0.6751 0.5717 -0.4663 +vn 0.6749 0.5716 -0.4666 +vn 0.6749 0.5717 -0.4665 +vn 0.4963 -0.8661 0.0596 +vn 0.4963 -0.8661 0.0597 +vn 0.4964 -0.8661 0.0596 +vn -0.3528 -0.9288 -0.1134 +vn -0.3527 -0.9288 -0.1135 +vn -0.2991 -0.9539 -0.0249 +vn 0.4804 0.8495 0.2181 +vn 0.4808 0.8492 0.2183 +vn 0.4810 0.8490 0.2187 +vn 0.3949 0.8430 0.3653 +vn 0.3948 0.8430 0.3654 +vn 0.3660 -0.1442 -0.9194 +vn 0.3659 -0.1443 -0.9194 +vn 0.3795 0.6362 0.6717 +vn 0.3797 0.6359 0.6719 +vn 0.3797 0.6360 0.6718 +vn 0.7711 0.5837 0.2545 +vn 0.7709 0.5838 0.2548 +vn 0.7713 0.5833 0.2548 +vn -0.4679 -0.8650 -0.1814 +vn -0.4677 -0.8650 -0.1817 +vn -0.4677 -0.8650 -0.1818 +vn -0.2026 0.2453 0.9480 +vn -0.2029 0.2454 0.9480 +vn -0.2025 0.2453 0.9481 +vn -0.6591 -0.7487 0.0705 +vn -0.6590 -0.7488 0.0709 +vn -0.6591 -0.7487 0.0704 +vn 0.5624 -0.6809 0.4692 +vn 0.5629 -0.6811 0.4682 +vn 0.5611 -0.6816 0.4697 +vn 0.5424 -0.6503 0.5318 +vn 0.5428 -0.6504 0.5314 +vn 0.5421 -0.6500 0.5326 +vn 0.0826 -0.7714 0.6310 +vn 0.0811 -0.7712 0.6314 +vn 0.0798 -0.7707 0.6321 +vn 0.5055 -0.8575 0.0961 +vn 0.5056 -0.8573 0.0964 +vn 0.5054 -0.8576 0.0960 +vn -0.5546 0.8146 -0.1698 +vn -0.3530 0.2570 0.8997 +vn -0.3528 0.2568 0.8998 +vn 0.2239 0.8826 -0.4134 +vn 0.6216 0.7818 -0.0497 +vn 0.6215 0.7819 -0.0496 +vn 0.2288 0.8512 -0.4724 +vn 0.2287 0.8511 -0.4725 +vn 0.2287 0.8512 -0.4724 +vn 0.3847 0.7670 -0.5136 +vn 0.2728 -0.9540 -0.1243 +vn 0.2729 -0.9540 -0.1243 +vn 0.2731 -0.9539 -0.1245 +vn 0.4485 -0.7844 0.4284 +vn 0.4480 -0.7853 0.4273 +vn 0.4480 -0.7855 0.4270 +vn -0.2742 -0.9300 -0.2449 +vn -0.2742 -0.9300 -0.2448 +vn -0.2742 -0.9301 -0.2445 +vn 0.2696 -0.9521 -0.1441 +vn 0.2695 -0.9522 -0.1440 +vn 0.2696 -0.9521 -0.1442 +vn 0.0196 0.1906 0.9815 +vn -0.0283 0.5798 0.8143 +vn -0.0288 0.5798 0.8143 +vn -0.0290 0.5796 0.8144 +vn 0.6143 0.6703 0.4164 +vn 0.6145 0.6701 0.4164 +vn 0.2853 -0.9584 -0.0104 +vn 0.2858 -0.9582 -0.0110 +vn 0.2855 -0.9583 -0.0106 +vn 0.3396 -0.8158 0.4681 +vn 0.3395 -0.8158 0.4682 +vn -0.4377 -0.8730 -0.2152 +vn 0.3265 0.9268 -0.1853 +vn 0.3270 0.9267 -0.1853 +vn 0.3266 0.9268 -0.1855 +vn 0.1666 -0.7413 0.6502 +vn 0.1663 -0.7412 0.6504 +vn 0.1665 -0.7412 0.6503 +vn 0.1268 0.8085 0.5747 +vn 0.1271 0.8087 0.5743 +vn -0.7237 0.2669 -0.6364 +vn -0.7235 0.2670 -0.6365 +vn -0.7238 0.2666 -0.6364 +vn -0.0256 0.9631 -0.2679 +vn -0.0255 0.9631 -0.2679 +vn -0.3726 -0.8804 -0.2933 +vn -0.3727 -0.8804 -0.2933 +vn -0.3722 -0.8806 -0.2934 +vn -0.1142 -0.8780 0.4649 +vn -0.1145 -0.8781 0.4645 +vn -0.1145 -0.8779 0.4649 +vn 0.2430 -0.9493 -0.1995 +vn 0.2432 -0.9493 -0.1992 +vn 0.2431 -0.9494 -0.1990 +vn -0.3451 -0.9156 -0.2063 +vn -0.3453 -0.9155 -0.2066 +vn -0.3453 -0.9154 -0.2069 +vn 0.5506 0.7133 0.4337 +vn 0.5507 0.7131 0.4338 +vn 0.6444 -0.7446 0.1738 +vn 0.6448 -0.7443 0.1740 +vn -0.8380 0.5139 -0.1835 +vn -0.8377 0.5143 -0.1836 +vn -0.8379 0.5141 -0.1835 +vn 0.0654 0.1481 0.9868 +vn 0.0653 0.1482 0.9868 +vn 0.0655 0.1481 0.9868 +vn -0.9371 0.2108 -0.2782 +vn -0.9370 0.2109 -0.2783 +vn -0.9372 0.2108 -0.2780 +vn 0.1513 0.8791 -0.4521 +vn 0.1513 0.8791 -0.4519 +vn 0.1513 0.8791 -0.4520 +vn 0.1545 0.9654 -0.2102 +vn 0.1540 0.9654 -0.2102 +vn 0.1536 0.9655 -0.2104 +vn 0.8723 0.0511 0.4862 +vn 0.8724 0.0515 0.4861 +vn 0.8724 0.0513 0.4861 +vn 0.3472 -0.8499 0.3963 +vn 0.3472 -0.8500 0.3961 +vn 0.3471 -0.8502 0.3958 +vn -0.0877 0.9695 0.2290 +vn -0.0880 0.9696 0.2285 +vn 0.2597 -0.4940 0.8298 +vn 0.2598 -0.4941 0.8297 +vn 0.8646 -0.4367 0.2485 +vn -0.1774 -0.8619 -0.4750 +vn -0.1774 -0.8620 -0.4748 +vn 0.2610 -0.9412 -0.2143 +vn -0.8217 0.4938 -0.2847 +vn -0.4502 0.1971 -0.8709 +vn 0.3211 -0.8590 -0.3988 +vn 0.3205 -0.8591 -0.3991 +vn 0.3204 -0.8591 -0.3992 +vn -0.5353 -0.4275 0.7285 +vn -0.5346 -0.4277 0.7289 +vn -0.5341 -0.4283 0.7289 +vn -0.0753 -0.9440 0.3213 +vn -0.0748 -0.9440 0.3213 +vn 0.0958 0.8976 -0.4303 +vn 0.0951 0.8975 -0.4307 +vn 0.0953 0.8975 -0.4306 +vn 0.3911 0.9193 -0.0440 +vn 0.3910 0.9193 -0.0441 +vn -0.5686 0.7219 -0.3944 +vn -0.5683 0.7223 -0.3942 +vn -0.5684 0.7222 -0.3941 +vn 0.6865 -0.1758 0.7056 +vn -0.1489 -0.8006 -0.5804 +vn 0.4393 0.0428 -0.8973 +vn 0.4406 0.0427 -0.8967 +vn 0.4398 0.0428 -0.8971 +vn 0.3968 0.6831 0.6131 +vn 0.3967 0.6831 0.6132 +vn 0.3967 0.6829 0.6134 +vn 0.3844 -0.6973 -0.6050 +vn 0.0010 -0.0006 1.0000 +vn -0.2881 -0.7604 -0.5821 +vn -0.2882 -0.7605 -0.5819 +vn -0.2882 -0.7603 -0.5822 +vn 0.2051 -0.7320 -0.6497 +vn 0.2050 -0.7319 -0.6498 +vn 0.2111 -0.7998 -0.5619 +vn 0.2103 -0.8003 -0.5616 +vn 0.2112 -0.7997 -0.5620 +vn 0.6286 -0.4013 0.6662 +vn 0.6279 -0.4007 0.6672 +vn 0.6282 -0.4009 0.6668 +vn 0.0003 0.7075 -0.7067 +vn 0.0008 0.7076 -0.7066 +vn 0.0006 0.7075 -0.7067 +vn 0.6253 0.7789 -0.0487 +vn -0.5196 -0.2545 0.8156 +vn -0.5197 -0.2544 0.8156 +vn 0.9868 0.0793 -0.1413 +vn 0.9869 0.0793 -0.1405 +vn 0.9868 0.0795 -0.1409 +vn -0.1396 -0.3895 -0.9104 +vn -0.5545 0.3386 -0.7602 +vn -0.1924 -0.8419 -0.5042 +vn -0.1934 -0.8417 -0.5042 +vn -0.1919 -0.8423 -0.5037 +vn 0.3608 0.8619 -0.3562 +vn 0.3605 0.8624 -0.3553 +vn 0.3607 0.8619 -0.3563 +vn -0.5344 -0.7996 0.2739 +vn -0.5344 -0.7995 0.2743 +vn -0.5342 -0.7997 0.2740 +vn 0.7431 0.6336 -0.2151 +vn 0.7429 0.6338 -0.2153 +vn -0.7329 -0.6561 -0.1800 +vn -0.7331 -0.6559 -0.1798 +vn -0.7331 -0.6560 -0.1796 +vn 0.0202 0.8491 0.5279 +vn 0.0200 0.8491 0.5279 +vn 0.0204 0.8491 0.5279 +vn -0.6970 -0.3654 -0.6170 +vn -0.6973 -0.3653 -0.6167 +vn 0.3165 0.0339 -0.9480 +vn 0.3166 0.0338 -0.9480 +vn 0.9588 0.2753 -0.0697 +vn 0.9589 0.2751 -0.0698 +vn 0.9589 0.2749 -0.0695 +vn 0.0708 0.6635 0.7449 +vn 0.0713 0.6628 0.7454 +vn 0.0709 0.6632 0.7450 +vn 0.3631 0.3874 0.8474 +vn 0.3637 0.3867 0.8474 +vn 0.3625 0.3875 0.8476 +vn 0.6422 0.6669 -0.3778 +vn -0.1641 -0.9750 -0.1498 +vn -0.1640 -0.9750 -0.1499 +vn -0.1640 -0.9751 -0.1496 +vn 0.5760 -0.7217 0.3838 +vn -0.2815 0.5682 0.7732 +vn -0.2817 0.5681 0.7732 +vn 0.7684 0.3729 0.5200 +vn 0.7686 0.3729 0.5198 +vn 0.7687 0.3730 0.5197 +vn 0.1246 -0.1836 -0.9751 +vn 0.1242 -0.1833 -0.9752 +vn 0.1240 -0.1835 -0.9752 +vn 0.1092 0.2560 -0.9605 +vn 0.1087 0.2564 -0.9604 +vn -0.7416 -0.1570 -0.6522 +vn -0.7415 -0.1576 -0.6522 +vn -0.7414 -0.1578 -0.6522 +vn 0.9091 -0.0205 0.4160 +vn 0.9093 -0.0218 0.4156 +vn 0.9092 -0.0193 0.4158 +vn 0.4795 0.8753 -0.0628 +vn 0.4796 0.8752 -0.0629 +vn 0.4797 0.8752 -0.0629 +vn 0.0803 -0.9608 -0.2655 +vn 0.0802 -0.9608 -0.2654 +vn -0.2631 0.4566 -0.8499 +vn -0.2625 0.4568 -0.8500 +vn -0.2624 0.4569 -0.8499 +vn 0.4023 0.8507 -0.3384 +vn 0.4020 0.8507 -0.3388 +vn 0.4028 0.8507 -0.3377 +vn -0.2064 -0.7558 0.6214 +vn -0.2065 -0.7561 0.6210 +vn -0.2066 -0.7565 0.6205 +vn -0.8867 0.3715 0.2752 +vn -0.8866 0.3718 0.2752 +vn -0.8867 0.3716 0.2752 +vn 0.7252 0.3180 0.6107 +vn 0.7254 0.3178 0.6106 +vn -0.3314 0.0463 -0.9423 +vn -0.3313 0.0463 -0.9424 +vn -0.3312 0.0463 -0.9424 +vn 0.2038 0.7406 -0.6403 +vn -0.2556 0.1076 0.9608 +vn -0.2554 0.1082 0.9608 +vn -0.2557 0.1075 0.9608 +vn -0.8100 0.3326 0.4829 +vn -0.8099 0.3325 0.4832 +vn -0.1602 -0.9022 -0.4005 +vn -0.1603 -0.9024 -0.4000 +vn -0.1839 0.9437 -0.2751 +vn -0.1840 0.9436 -0.2752 +vn 0.1266 0.6468 -0.7520 +vn 0.1985 0.4217 -0.8848 +vn 0.3708 -0.4916 0.7879 +vn 0.3709 -0.4916 0.7879 +vn -0.8412 -0.3888 -0.3758 +vn -0.8412 -0.3891 -0.3756 +vn -0.0841 -0.6397 0.7640 +vn -0.0841 -0.6396 0.7641 +vn 0.7955 0.6026 0.0629 +vn 0.7957 0.6025 0.0630 +vn 0.7958 0.6022 0.0631 +vn 0.3476 -0.6975 0.6266 +vn 0.3475 -0.6974 0.6268 +vn 0.3476 -0.6976 0.6265 +vn -0.8431 -0.5117 0.1656 +vn -0.8453 -0.5087 0.1635 +vn -0.8440 -0.5102 0.1652 +vn -0.3337 0.2544 0.9077 +vn -0.3340 0.2541 0.9077 +vn 0.6108 -0.7911 0.0325 +vn 0.6103 -0.7914 0.0336 +vn 0.6099 -0.7918 0.0336 +vn -0.5120 -0.4540 0.7292 +vn -0.5124 -0.4536 0.7292 +vn -0.3228 -0.2870 0.9019 +vn -0.3227 -0.2871 0.9019 +vn -0.1609 -0.2615 -0.9517 +vn -0.1614 -0.2619 -0.9515 +vn -0.1623 -0.2619 -0.9513 +vn -0.2712 -0.9603 0.0652 +vn -0.2714 -0.9603 0.0651 +vn -0.2712 -0.9603 0.0651 +vn -0.4462 -0.2756 -0.8514 +vn -0.1333 0.1666 -0.9770 +vn -0.1338 0.1663 -0.9770 +vn -0.1332 0.1666 -0.9770 +vn -0.1704 0.5321 0.8293 +vn -0.1702 0.5320 0.8295 +vn 0.1070 -0.1465 -0.9834 +vn 0.1071 -0.1464 -0.9834 +vn 0.1071 -0.1461 -0.9835 +vn -0.9374 0.3165 -0.1452 +vn 0.7776 0.3614 0.5144 +vn -0.3250 0.2992 -0.8971 +vn -0.3252 0.2987 -0.8972 +vn -0.7079 -0.3074 0.6359 +vn -0.7080 -0.3075 0.6358 +vn 0.5660 -0.2747 0.7773 +vn 0.5661 -0.2746 0.7773 +vn 0.3526 0.8205 0.4500 +vn 0.3526 0.8208 0.4495 +vn 0.3527 0.8206 0.4497 +vn 0.8842 0.2913 0.3652 +vn 0.8841 0.2912 0.3655 +vn 0.8840 0.2910 0.3659 +vn -0.3622 0.0708 -0.9294 +vn -0.3623 0.0708 -0.9294 +vn 0.4302 -0.8963 -0.1075 +vn 0.4305 -0.8962 -0.1074 +vn 0.5108 0.8078 -0.2943 +vn 0.5085 0.8092 -0.2942 +vn 0.5098 0.8085 -0.2938 +vn 0.5145 0.7611 0.3949 +vn 0.5143 0.7610 0.3954 +vn 0.5139 0.7610 0.3960 +vn 0.0763 0.8822 0.4646 +vn 0.0760 0.8823 0.4646 +vn -0.2733 -0.9273 -0.2559 +vn -0.2726 -0.9274 -0.2560 +vn -0.2720 -0.9275 -0.2564 +vn 0.3431 0.1091 -0.9329 +vn 0.3427 0.1099 -0.9330 +vn 0.3430 0.1094 -0.9330 +vn -0.7817 0.6220 -0.0456 +vn -0.7815 0.6222 -0.0456 +vn -0.7814 0.6223 -0.0460 +vn -0.5080 0.0041 -0.8613 +vn -0.5088 0.0053 -0.8609 +vn -0.5081 0.0047 -0.8613 +vn -0.4267 -0.7442 0.5140 +vn -0.4273 -0.7437 0.5141 +vn -0.4264 -0.7444 0.5138 +vn 0.1909 0.7648 -0.6153 +vn 0.1910 0.7648 -0.6153 +vn 0.2213 0.9716 0.0838 +vn 0.2205 0.9718 0.0832 +vn 0.2200 0.9719 0.0832 +vn -0.4764 -0.8791 -0.0158 +vn -0.4768 -0.8789 -0.0157 +vn -0.4771 -0.8787 -0.0155 +vn -0.2380 -0.0881 -0.9673 +vn -0.2381 -0.0876 -0.9673 +vn -0.8195 0.2937 -0.4921 +vn -0.8188 0.2943 -0.4929 +vn -0.8200 0.2937 -0.4913 +vn -0.4390 -0.7472 0.4990 +vn -0.4390 -0.7471 0.4992 +vn -0.1280 -0.8141 0.5665 +vn -0.1283 -0.8143 0.5662 +vn -0.1278 -0.8139 0.5668 +vn -0.0265 0.6308 0.7755 +vn -0.9688 0.2226 -0.1090 +vn -0.9686 0.2232 -0.1091 +vn -0.1322 0.4759 -0.8695 +vn -0.1320 0.4758 -0.8696 +vn -0.1318 0.4756 -0.8697 +vn 0.2407 0.9386 0.2473 +vn 0.2406 0.9386 0.2472 +vn 0.7311 0.3048 -0.6104 +vn -0.4846 -0.8698 0.0929 +vn -0.4848 -0.8696 0.0937 +vn -0.4846 -0.8698 0.0933 +vn 0.2359 -0.8795 0.4134 +vn 0.2359 -0.8796 0.4132 +vn 0.2357 -0.8797 0.4131 +vn -0.0634 0.9716 -0.2278 +vn -0.0635 0.9716 -0.2278 +vn -0.8328 -0.3337 -0.4417 +vn -0.8329 -0.3331 -0.4419 +vn -0.8329 -0.3334 -0.4418 +vn -0.8310 0.4908 -0.2618 +vn -0.8309 0.4912 -0.2616 +vn 0.1211 0.1602 0.9796 +vn 0.1213 0.1609 0.9795 +vn 0.1212 0.1598 0.9797 +vn 0.8005 0.1508 0.5800 +vn 0.8006 0.1510 0.5799 +vn 0.8006 0.1512 0.5798 +vn 0.6850 -0.1487 0.7132 +vn 0.6849 -0.1490 0.7132 +vn 0.6849 -0.1491 0.7132 +vn 0.5981 -0.7981 -0.0737 +vn 0.5977 -0.7984 -0.0734 +vn 0.1557 0.9823 -0.1044 +vn 0.1552 0.9824 -0.1042 +vn 0.1554 0.9823 -0.1044 +vn -0.8625 -0.3584 0.3574 +vn -0.8626 -0.3583 0.3572 +vn -0.8624 -0.3588 0.3571 +vn 0.0533 0.9982 0.0270 +vn 0.0551 0.9981 0.0282 +vn 0.0544 0.9981 0.0275 +vn 0.5095 -0.6011 -0.6157 +vn 0.5087 -0.6015 -0.6160 +vn 0.5080 -0.6015 -0.6165 +vn 0.4549 -0.6302 -0.6292 +vn 0.4550 -0.6301 -0.6292 +vn -0.1820 0.9251 -0.3332 +vn -0.1820 0.9250 -0.3334 +vn -0.2583 0.7237 -0.6400 +vn -0.2580 0.7237 -0.6401 +vn -0.7254 0.6761 0.1293 +vn -0.7254 0.6761 0.1290 +vn -0.7252 0.6762 0.1297 +vn -0.0859 -0.9850 0.1497 +vn -0.0863 -0.9849 0.1498 +vn -0.0853 -0.9851 0.1492 +vn 0.6861 -0.3904 0.6139 +vn 0.6861 -0.3895 0.6144 +vn 0.6861 -0.3898 0.6143 +vn 0.1973 -0.9799 0.0283 +vn -0.1243 -0.8498 -0.5122 +vn -0.1295 -0.9862 0.1028 +vn -0.1295 -0.9862 0.1030 +vn -0.1295 -0.9862 0.1032 +vn 0.2596 -0.9656 -0.0160 +vn 0.2595 -0.9656 -0.0159 +vn 0.2594 -0.9656 -0.0159 +vn -0.4381 0.2251 0.8703 +vn -0.4385 0.2253 0.8700 +vn -0.5696 0.7787 -0.2630 +vn -0.5697 0.7787 -0.2627 +vn -0.5698 0.7787 -0.2626 +vn 0.4592 0.8617 0.2158 +vn 0.4591 0.8618 0.2159 +vn 0.2358 0.8359 -0.4957 +vn 0.2363 0.8349 -0.4972 +vn 0.2360 0.8356 -0.4961 +vn 0.0778 -0.9967 0.0251 +vn 0.0776 -0.9967 0.0254 +vn 0.0780 -0.9966 0.0251 +vn -0.0764 0.1842 0.9799 +vn -0.0760 0.1843 0.9799 +vn -0.0762 0.1844 0.9799 +vn -0.0892 0.9938 -0.0658 +vn 0.0411 -0.0975 -0.9944 +vn 0.0429 -0.0959 -0.9945 +vn 0.0423 -0.0961 -0.9945 +vn 0.1145 -0.9687 0.2203 +vn 0.1144 -0.9687 0.2203 +vn -0.1592 0.8429 -0.5139 +vn -0.1593 0.8426 -0.5144 +vn -0.1590 0.8424 -0.5149 +vn -0.4371 0.2879 -0.8521 +vn -0.4369 0.2885 -0.8520 +vn -0.4372 0.2876 -0.8521 +vn -0.7250 0.6568 -0.2074 +vn -0.7250 0.6567 -0.2076 +vn -0.7250 0.6567 -0.2075 +vn -0.0966 -0.9807 -0.1702 +vn -0.0542 -0.9748 -0.2165 +vn 0.8610 -0.4682 -0.1988 +vn 0.8609 -0.4685 -0.1984 +vn 0.8609 -0.4684 -0.1986 +vn -0.1489 -0.9869 0.0624 +vn -0.2232 -0.9669 0.1233 +vn -0.2233 -0.9669 0.1233 +vn -0.2231 -0.9669 0.1235 +vn 0.3001 -0.9472 0.1127 +vn 0.3002 -0.9472 0.1126 +vn 0.2998 -0.9473 0.1127 +vn 0.9823 -0.1746 0.0683 +vn 0.9825 -0.1736 0.0677 +vn 0.9823 -0.1745 0.0682 +vn 0.6892 -0.6716 0.2720 +vn 0.6890 -0.6719 0.2719 +vn 0.6890 -0.6720 0.2716 +vn 0.2314 -0.9276 0.2933 +vn 0.2313 -0.9277 0.2930 +vn 0.2313 -0.9277 0.2931 +vn 0.3307 -0.9156 0.2286 +vn 0.0809 -0.9542 0.2879 +vn 0.5559 -0.0145 0.8311 +vn 0.4126 0.9066 0.0883 +vn 0.4130 0.9064 0.0883 +vn 0.4753 -0.8253 0.3049 +vn 0.4745 -0.8256 0.3052 +vn 0.4741 -0.8259 0.3052 +vn -0.9598 0.2791 -0.0295 +vn -0.9598 0.2790 -0.0296 +vn -0.9598 0.2792 -0.0293 +vn 0.7824 0.6204 -0.0537 +vn 0.7821 0.6208 -0.0535 +vn 0.7822 0.6207 -0.0537 +vn 0.1400 0.1532 -0.9782 +vn 0.1405 0.1528 -0.9782 +vn 0.4342 -0.8860 0.1627 +vn 0.4340 -0.8861 0.1626 +vn 0.4078 -0.9069 0.1064 +vn 0.4078 -0.9068 0.1065 +vn 0.4079 -0.9067 0.1069 +vn 0.3870 -0.7935 0.4696 +vn 0.9663 -0.1659 0.1968 +vn 0.9663 -0.1653 0.1975 +vn 0.9663 -0.1665 0.1963 +vn 0.1451 0.9884 0.0440 +vn 0.1453 0.9884 0.0438 +vn 0.1552 0.9404 -0.3026 +vn 0.1555 0.9403 -0.3027 +vn 0.2284 0.9736 -0.0010 +vn 0.2279 0.9737 -0.0007 +vn 0.5890 -0.7867 0.1848 +vn -0.5993 0.7092 -0.3714 +vn -0.5998 0.7089 -0.3711 +vn -0.5987 0.7095 -0.3716 +vn -0.7365 0.2305 -0.6360 +vn -0.7365 0.2308 -0.6359 +vn -0.7366 0.2302 -0.6360 +vn -0.6380 0.6413 -0.4262 +vn -0.6382 0.6412 -0.4262 +vn -0.6381 0.6412 -0.4262 +vn 0.4797 -0.7718 0.4174 +vn 0.4799 -0.7718 0.4172 +vn 0.4798 -0.7716 0.4177 +vn 0.3568 -0.9167 0.1800 +vn 0.3569 -0.9167 0.1798 +vn -0.2835 -0.9370 -0.2040 +vn -0.2835 -0.9370 -0.2039 +vn -0.2834 -0.9371 -0.2036 +vn -0.6346 0.3335 -0.6972 +vn -0.6357 0.3329 -0.6965 +vn -0.6351 0.3334 -0.6968 +vn 0.6550 0.6210 -0.4304 +vn 0.6551 0.6210 -0.4304 +vn 0.6549 0.6211 -0.4305 +vn -0.1564 -0.6093 -0.7774 +vn -0.1562 -0.6093 -0.7774 +vn -0.1561 -0.6093 -0.7774 +vn -0.2799 -0.9468 -0.1591 +vn -0.2798 -0.9467 -0.1593 +vn -0.2797 -0.9468 -0.1589 +vn -0.1872 -0.1034 0.9769 +vn -0.1871 -0.1035 0.9769 +vn -0.1874 -0.1033 0.9768 +vn -0.4468 0.8912 0.0777 +vn 0.7735 0.3237 0.5449 +vn 0.7738 0.3237 0.5444 +vn 0.7741 0.3242 0.5437 +vn -0.4942 -0.8692 -0.0143 +vn -0.4943 -0.8692 -0.0137 +vn -0.4941 -0.8693 -0.0141 +vn 0.4127 -0.7260 -0.5501 +vn 0.4140 -0.7271 -0.5477 +vn 0.4136 -0.7264 -0.5489 +vn -0.7997 -0.5565 0.2253 +vn -0.8000 -0.5560 0.2257 +vn -0.7998 -0.5563 0.2255 +vn -0.0384 0.9992 0.0136 +vn -0.0392 0.9991 0.0129 +vn -0.0392 0.9991 0.0130 +vn 0.5729 -0.7257 0.3811 +vn 0.5729 -0.7257 0.3810 +vn 0.5360 -0.7506 0.3863 +vn 0.5355 -0.7510 0.3863 +vn 0.5359 -0.7507 0.3863 +vn -0.8247 0.5352 0.1827 +vn 0.4765 -0.8792 -0.0013 +vn 0.4764 -0.8792 -0.0015 +vn 0.6839 -0.2452 0.6871 +vn 0.6840 -0.2453 0.6870 +vn 0.9234 -0.2736 0.2692 +vn 0.9238 -0.2727 0.2686 +vn 0.9235 -0.2734 0.2689 +vn -0.6283 0.1542 0.7625 +vn -0.6283 0.1546 0.7625 +vn -0.6284 0.1542 0.7624 +vn -0.4481 -0.8719 0.1972 +vn -0.4483 -0.8719 0.1971 +vn 0.2634 -0.9567 -0.1236 +vn 0.2635 -0.9567 -0.1236 +vn -0.4544 0.6615 -0.5967 +vn -0.4546 0.6617 -0.5962 +vn -0.4547 0.6616 -0.5963 +vn -0.7816 -0.4447 -0.4375 +vn -0.7816 -0.4446 -0.4375 +vn 0.5778 0.8113 -0.0888 +vn 0.5778 0.8113 -0.0891 +vn -0.5993 -0.0245 -0.8002 +vn -0.5992 -0.0247 -0.8002 +vn -0.5988 -0.0253 -0.8005 +vn 0.2948 -0.9549 -0.0349 +vn 0.2951 -0.9548 -0.0352 +vn 0.2952 -0.9548 -0.0353 +vn 0.7157 0.2219 -0.6623 +vn 0.8109 0.5040 -0.2972 +vn 0.8108 0.5042 -0.2973 +vn 0.8110 0.5040 -0.2971 +vn 0.3576 -0.9320 -0.0586 +vn 0.3577 -0.9320 -0.0588 +vn 0.3950 -0.9182 -0.0301 +vn 0.3952 -0.9181 -0.0300 +vn 0.3949 -0.9182 -0.0302 +vn -0.3341 -0.0294 0.9421 +vn -0.3341 -0.0282 0.9421 +vn -0.3341 -0.0287 0.9421 +vn 0.3211 0.4424 -0.8374 +vn 0.3213 0.4423 -0.8374 +vn 0.3212 0.4423 -0.8374 +vn 0.3641 0.9310 -0.0261 +vn 0.3642 0.9309 -0.0261 +vn 0.3645 0.9308 -0.0260 +vn -0.7650 0.5387 -0.3529 +vn -0.7650 0.5388 -0.3527 +vn -0.7811 0.4357 -0.4474 +vn -0.7810 0.4360 -0.4472 +vn -0.7810 0.4363 -0.4470 +vn -0.0032 0.9354 0.3535 +vn 0.7042 -0.4916 0.5123 +vn 0.7041 -0.4917 0.5123 +vn 0.9150 -0.0027 -0.4034 +vn 0.9149 -0.0025 -0.4036 +vn 0.9148 -0.0025 -0.4039 +vn 0.0167 0.7997 -0.6002 +vn 0.0165 0.7998 -0.6000 +vn -0.5277 0.8426 -0.1077 +vn -0.5269 0.8430 -0.1084 +vn -0.5278 0.8426 -0.1072 +vn 0.0876 -0.9082 -0.4092 +vn 0.0874 -0.9082 -0.4093 +vn 0.0877 -0.9083 -0.4091 +vn 0.3184 0.7099 0.6282 +vn 0.3184 0.7098 0.6283 +vn 0.9181 -0.0830 -0.3875 +vn 0.9178 -0.0828 -0.3883 +vn 0.9175 -0.0819 -0.3892 +vn 0.7303 0.2315 -0.6427 +vn 0.6717 -0.1504 0.7254 +vn 0.6718 -0.1505 0.7253 +vn 0.6717 -0.1508 0.7253 +vn -0.0122 0.5861 0.8102 +vn -0.0114 0.5864 0.8100 +vn -0.0106 0.5864 0.8100 +vn -0.6302 -0.7753 0.0420 +vn -0.6303 -0.7752 0.0421 +vn -0.6301 -0.7754 0.0416 +vn 0.5589 -0.7829 -0.2734 +vn 0.5591 -0.7827 -0.2734 +vn 0.5592 -0.7826 -0.2734 +vn 0.2031 -0.7822 -0.5890 +vn 0.2025 -0.7824 -0.5889 +vn 0.2024 -0.7825 -0.5889 +vn 0.1576 -0.2632 0.9518 +vn 0.1572 -0.2629 0.9519 +vn 0.1575 -0.2632 0.9518 +vn 0.2534 0.9187 -0.3030 +vn 0.2538 0.9185 -0.3033 +vn 0.1402 0.3634 -0.9210 +vn 0.1398 0.3639 -0.9209 +vn 0.1402 0.3637 -0.9209 +vn 0.1473 0.7704 0.6204 +vn 0.1472 0.7705 0.6202 +vn 0.1000 -0.7214 -0.6853 +vn 0.1003 -0.7214 -0.6853 +vn 0.1002 -0.7214 -0.6852 +vn 0.4845 0.6832 -0.5464 +vn -0.3870 0.5162 -0.7641 +vn -0.3868 0.5164 -0.7640 +vn 0.5462 0.0900 0.8328 +vn 0.5461 0.0899 0.8329 +vn 0.5461 0.0897 0.8329 +vn 0.6944 0.7182 -0.0447 +vn 0.6944 0.7182 -0.0449 +vn 0.1218 -0.7990 -0.5889 +vn 0.1220 -0.7989 -0.5889 +vn 0.1213 -0.7993 -0.5886 +vn 0.6786 -0.0241 0.7341 +vn 0.6787 -0.0244 0.7340 +vn -0.3371 0.8459 -0.4134 +vn -0.3374 0.8456 -0.4137 +vn 0.5130 0.8336 -0.2047 +vn 0.5128 0.8336 -0.2051 +vn 0.5130 0.8336 -0.2046 +vn 0.3359 0.7069 -0.6224 +vn 0.3361 0.7063 -0.6230 +vn 0.3359 0.7067 -0.6226 +vn -0.1481 -0.9889 0.0077 +vn -0.1487 -0.9889 0.0071 +vn -0.1486 -0.9889 0.0072 +vn -0.6141 0.7571 -0.2231 +vn -0.6143 0.7568 -0.2235 +vn -0.6144 0.7567 -0.2236 +vn 0.7892 0.5652 0.2404 +vn 0.7891 0.5654 0.2403 +vn 0.7891 0.5654 0.2402 +vn -0.8587 0.0551 0.5096 +vn -0.8587 0.0554 0.5095 +vn -0.8586 0.0548 0.5097 +vn -0.5027 -0.8200 -0.2736 +vn -0.5033 -0.8198 -0.2733 +vn -0.5035 -0.8197 -0.2731 +vn 0.2182 -0.6074 0.7638 +vn 0.2185 -0.6074 0.7638 +vn 0.2186 -0.6073 0.7638 +vn -0.3417 -0.9398 -0.0050 +vn -0.3417 -0.9398 -0.0049 +vn -0.3418 -0.9398 -0.0053 +vn -0.6063 -0.4234 0.6731 +vn -0.6072 -0.4232 0.6725 +vn -0.6066 -0.4232 0.6730 +vn 0.7282 -0.1736 0.6630 +vn 0.7287 -0.1735 0.6625 +vn 0.7283 -0.1735 0.6629 +vn 0.0544 0.6592 -0.7500 +vn 0.0548 0.6595 -0.7497 +vn 0.0543 0.6589 -0.7503 +vn 0.1699 0.6649 -0.7273 +vn 0.4902 -0.8043 0.3359 +vn 0.4900 -0.8044 0.3359 +vn 0.4903 -0.8042 0.3359 +vn 0.8773 0.4791 0.0294 +vn 0.8774 0.4788 0.0291 +vn 0.8778 0.4783 0.0281 +vn 0.8191 0.1991 -0.5380 +vn 0.8191 0.1992 -0.5379 +vn 0.3060 -0.8596 -0.4091 +vn 0.3059 -0.8599 -0.4087 +vn 0.3057 -0.8601 -0.4085 +vn 0.1640 0.9256 -0.3411 +vn 0.1644 0.9256 -0.3410 +vn 0.1641 0.9256 -0.3412 +vn 0.6453 0.7116 -0.2779 +vn 0.6452 0.7116 -0.2781 +vn 0.6451 0.7117 -0.2780 +vn 0.4335 0.7710 -0.4665 +vn 0.4337 0.7709 -0.4665 +vn 0.2714 -0.8807 0.3882 +vn 0.2715 -0.8806 0.3884 +vn 0.2715 -0.8807 0.3883 +vn -0.6794 0.7203 -0.1398 +vn 0.0014 -0.0018 1.0000 +vn -0.1982 -0.9352 0.2934 +vn -0.1982 -0.9352 0.2935 +vn 0.3072 -0.8710 0.3834 +vn 0.3077 -0.8709 0.3833 +vn -0.3115 0.2300 0.9220 +vn -0.3115 0.2293 0.9222 +vn -0.3119 0.2291 0.9221 +vn 0.2018 0.9621 0.1834 +vn 0.2020 0.9621 0.1835 +vn -0.9693 0.0322 0.2436 +vn -0.9692 0.0321 0.2442 +vn -0.9695 0.0327 0.2427 +vn -0.9653 -0.2474 -0.0833 +vn -0.9653 -0.2473 -0.0834 +vn -0.9654 -0.2470 -0.0831 +vn -0.4381 -0.0888 0.8945 +vn -0.4384 -0.0887 0.8944 +vn 0.2463 0.7791 -0.5764 +vn 0.2470 0.7797 -0.5754 +vn 0.2464 0.7785 -0.5773 +vn 0.8728 -0.1771 0.4549 +vn 0.8725 -0.1776 0.4551 +vn 0.8729 -0.1764 0.4550 +vn 0.9191 -0.0696 0.3877 +vn 0.9192 -0.0696 0.3877 +vn 0.9191 -0.0697 0.3877 +vn 0.6400 0.5707 -0.5144 +vn 0.6402 0.5685 -0.5167 +vn 0.6395 0.5679 -0.5182 +vn 0.8391 0.0795 0.5381 +vn 0.8392 0.0796 0.5380 +vn -0.0685 0.9735 -0.2182 +vn -0.0685 0.9735 -0.2183 +vn -0.6100 -0.4011 0.6834 +vn -0.6098 -0.4010 0.6836 +vn -0.6101 -0.4010 0.6833 +vn -0.7708 -0.5911 -0.2375 +vn -0.7708 -0.5911 -0.2376 +vn -0.7710 -0.5910 -0.2372 +vn -0.3370 0.2550 0.9063 +vn -0.3375 0.2549 0.9062 +vn -0.6181 0.3543 0.7017 +vn -0.6169 0.3550 0.7024 +vn -0.6178 0.3544 0.7020 +vn -0.0639 -0.9553 -0.2886 +vn -0.0634 -0.9554 -0.2884 +vn -0.0644 -0.9552 -0.2889 +vn -0.5629 -0.2922 -0.7732 +vn -0.5628 -0.2924 -0.7732 +vn -0.1985 -0.0695 -0.9776 +vn -0.1985 -0.0697 -0.9776 +vn 0.2878 -0.2632 0.9208 +vn -0.1817 0.7830 -0.5950 +vn -0.1823 0.7828 -0.5950 +vn -0.1821 0.7829 -0.5949 +vn -0.2352 0.2451 -0.9405 +vn -0.2353 0.2450 -0.9405 +vn -0.2350 0.2454 -0.9405 +vn -0.7636 0.5593 -0.3225 +vn -0.2484 -0.7052 0.6641 +vn 0.0399 0.1211 0.9918 +vn 0.0395 0.1211 0.9919 +vn 0.0404 0.1207 0.9919 +vn 0.3993 -0.7046 0.5866 +vn 0.3973 -0.7045 0.5881 +vn 0.3983 -0.7047 0.5871 +vn 0.8278 -0.0729 0.5563 +vn 0.8277 -0.0730 0.5565 +vn 0.8278 -0.0730 0.5563 +vn 0.0274 -0.0503 -0.9984 +vn 0.0274 -0.0501 -0.9984 +vn 0.0273 -0.0505 -0.9984 +vn 0.3350 0.9194 -0.2062 +vn 0.3351 0.9194 -0.2058 +vn 0.3353 0.9194 -0.2057 +vn 0.0764 0.5869 0.8061 +vn 0.0765 0.5870 0.8060 +vn 0.0763 0.5868 0.8061 +vn 0.9163 -0.3866 0.1049 +vn 0.3958 -0.7936 -0.4621 +vn 0.3957 -0.7936 -0.4621 +vn 0.6241 -0.7546 -0.2026 +vn 0.6240 -0.7547 -0.2028 +vn -0.5435 -0.8330 0.1033 +vn -0.5436 -0.8330 0.1033 +vn -0.2886 -0.0445 -0.9564 +vn -0.2890 -0.0445 -0.9563 +vn -0.2891 -0.0443 -0.9563 +vn -0.8935 0.3455 0.2869 +vn -0.8936 0.3455 0.2866 +vn -0.8934 0.3457 0.2870 +vn 0.0153 0.6145 0.7888 +vn 0.0561 0.7040 -0.7079 +vn 0.0541 0.7019 -0.7102 +vn 0.0513 0.7002 -0.7121 +vn -0.6093 -0.7070 0.3592 +vn -0.6096 -0.7068 0.3589 +vn -0.6094 -0.7070 0.3589 +vn 0.4576 -0.6057 -0.6510 +vn 0.4574 -0.6060 -0.6508 +vn 0.4579 -0.6053 -0.6511 +vn 0.5902 -0.8072 -0.0104 +vn 0.2476 0.9525 0.1775 +vn 0.2479 0.9524 0.1777 +vn 0.2478 0.9524 0.1774 +vn -0.9958 -0.0813 -0.0411 +vn -0.9958 -0.0813 -0.0412 +vn -0.9958 -0.0812 -0.0414 +vn 0.3816 0.8307 0.4054 +vn 0.3815 0.8307 0.4054 +vn 0.3816 0.8306 0.4055 +vn 0.2162 0.9686 0.1228 +vn 0.9655 0.0245 0.2591 +vn -0.5314 -0.8338 -0.1499 +vn -0.5316 -0.8336 -0.1500 +vn -0.5318 -0.8335 -0.1499 +vn -0.0385 -0.9813 0.1885 +vn -0.0386 -0.9814 0.1883 +vn -0.0386 -0.9813 0.1884 +vn -0.1289 0.1708 0.9768 +vn -0.1289 0.1709 0.9768 +vn 0.0472 -0.5033 -0.8628 +vn 0.0471 -0.5028 -0.8631 +vn 0.0471 -0.5030 -0.8630 +vn 0.0703 -0.4209 -0.9044 +vn 0.0702 -0.4207 -0.9045 +vn 0.0706 -0.4215 -0.9041 +vn 0.2254 0.1880 0.9559 +vn 0.2259 0.1878 0.9559 +vn 0.2262 0.1878 0.9558 +vn 0.8719 -0.4642 0.1560 +vn 0.8719 -0.4641 0.1563 +vn 0.8719 -0.4640 0.1565 +vn -0.5510 0.7758 -0.3075 +vn 0.0988 -0.9926 -0.0703 +vn 0.0989 -0.9926 -0.0704 +vn 0.0991 -0.9926 -0.0704 +vn 0.8597 -0.0238 0.5103 +vn 0.8601 -0.0240 0.5096 +vn 0.8599 -0.0239 0.5099 +vn -0.3293 -0.9442 0.0043 +vn 0.5365 -0.8318 -0.1426 +vn 0.5369 -0.8318 -0.1409 +vn 0.5367 -0.8317 -0.1420 +vn -0.1010 -0.8591 0.5018 +vn 0.7405 -0.5763 -0.3457 +vn 0.7406 -0.5762 -0.3458 +vn 0.7407 -0.5761 -0.3456 +vn 0.5820 0.7482 -0.3184 +vn 0.5822 0.7485 -0.3175 +vn 0.5821 0.7484 -0.3180 +vn -0.0862 -0.9840 0.1557 +vn -0.0862 -0.9841 0.1551 +vn 0.3070 0.6468 -0.6982 +vn 0.3069 0.6472 -0.6978 +vn 0.3072 0.6466 -0.6983 +vn -0.9606 -0.2756 -0.0352 +vn -0.9607 -0.2754 -0.0352 +vn -0.2283 -0.5252 0.8198 +vn -0.2283 -0.5253 0.8197 +vn -0.2283 -0.5254 0.8196 +vn -0.5404 -0.8207 -0.1857 +vn -0.5403 -0.8207 -0.1856 +vn 0.2148 0.7012 -0.6798 +vn 0.2144 0.7011 -0.6801 +vn -0.3715 -0.8418 -0.3916 +vn -0.3964 -0.5207 -0.7561 +vn -0.3974 -0.5205 -0.7558 +vn -0.3961 -0.5208 -0.7562 +vn -0.0071 -0.9667 0.2557 +vn -0.0072 -0.9668 0.2556 +vn -0.0073 -0.9668 0.2555 +vn 0.8983 0.2791 0.3393 +vn 0.8984 0.2790 0.3392 +vn 0.8984 0.2790 0.3391 +vn 0.8992 0.4368 0.0251 +vn 0.8991 0.4369 0.0251 +vn -0.1747 0.9738 -0.1454 +vn -0.1748 0.9738 -0.1453 +vn -0.4559 -0.7589 0.4651 +vn -0.4556 -0.7591 0.4649 +vn -0.4551 -0.7595 0.4648 +vn -0.0701 0.9873 -0.1426 +vn -0.0700 0.9873 -0.1426 +vn 0.1895 -0.7656 -0.6147 +vn 0.1893 -0.7660 -0.6144 +vn 0.1892 -0.7662 -0.6141 +vn 0.3155 -0.7382 -0.5962 +vn 0.3153 -0.7381 -0.5965 +vn 0.6776 -0.4270 0.5987 +vn -0.0530 -0.9787 0.1984 +vn -0.0530 -0.9787 0.1983 +vn -0.0531 -0.9787 0.1983 +vn -0.6399 -0.4481 -0.6243 +vn -0.6401 -0.4485 -0.6238 +vn -0.6400 -0.4484 -0.6240 +vn 0.2947 -0.9153 0.2745 +vn 0.2946 -0.9153 0.2746 +vn 0.3955 -0.8968 -0.1983 +vn 0.3956 -0.8968 -0.1981 +vn 0.3958 -0.8968 -0.1979 +vn 0.6683 0.0126 -0.7438 +vn 0.6681 0.0128 -0.7440 +vn 0.6681 0.0133 -0.7440 +vn 0.0354 0.1957 0.9800 +vn 0.0356 0.1956 0.9800 +vn -0.5930 0.4818 -0.6451 +vn -0.5930 0.4820 -0.6450 +vn -0.5928 0.4821 -0.6451 +vn -0.0593 -0.9348 -0.3503 +vn -0.0590 -0.9349 -0.3500 +vn -0.0587 -0.9350 -0.3498 +vn -0.8855 0.1160 -0.4500 +vn -0.8851 0.1170 -0.4505 +vn -0.8853 0.1163 -0.4502 +vn 0.0961 0.3494 -0.9320 +vn 0.0987 0.3476 -0.9324 +vn 0.0997 0.3451 -0.9333 +vn -0.5602 -0.7712 -0.3024 +vn -0.5602 -0.7712 -0.3023 +vn -0.5604 -0.7709 -0.3027 +vn -0.3834 0.5298 -0.7565 +vn -0.3884 -0.9181 -0.0790 +vn -0.3882 -0.9182 -0.0791 +vn 0.3109 -0.8808 0.3570 +vn -0.5119 -0.2157 -0.8315 +vn 0.0931 0.9754 0.1996 +vn 0.0925 0.9757 0.1986 +vn 0.4776 0.8280 -0.2940 +vn 0.4777 0.8279 -0.2940 +vn 0.4777 0.8278 -0.2941 +vn 0.8616 -0.3411 -0.3760 +vn 0.8614 -0.3415 -0.3761 +vn 0.8617 -0.3408 -0.3760 +vn -0.0884 0.5127 0.8540 +vn -0.3803 -0.9201 0.0934 +vn -0.3807 -0.9200 0.0935 +vn -0.3808 -0.9199 0.0935 +vn -0.5318 -0.7573 -0.3791 +vn -0.4761 -0.8790 -0.0262 +vn 0.3200 -0.9021 0.2895 +vn 0.3201 -0.9022 0.2892 +vn 0.3202 -0.9023 0.2887 +vn 0.9572 0.2732 0.0956 +vn 0.9570 0.2737 0.0962 +vn 0.9572 0.2731 0.0955 +vn -0.1731 0.4926 0.8528 +vn -0.1749 0.4919 0.8529 +vn -0.1741 0.4921 0.8530 +vn -0.0748 -0.3055 0.9493 +vn -0.0744 -0.3057 0.9492 +vn -0.0742 -0.3058 0.9492 +vn 0.2917 -0.6061 0.7400 +vn 0.2920 -0.6066 0.7395 +vn 0.2919 -0.6062 0.7398 +vn 0.1105 -0.0013 0.9939 +vn -0.0045 0.0015 1.0000 +vn 0.0989 0.8136 -0.5729 +vn -0.8361 -0.0786 -0.5429 +vn -0.8359 -0.0779 -0.5433 +vn -0.8359 -0.0780 -0.5433 +vn 0.5267 -0.8236 0.2103 +vn 0.5268 -0.8236 0.2102 +vn 0.5266 -0.8236 0.2107 +vn -0.0859 -0.9200 -0.3824 +vn -0.0841 -0.9204 -0.3818 +vn -0.0852 -0.9201 -0.3824 +vn 0.9508 -0.0681 0.3023 +vn 0.9507 -0.0685 0.3025 +vn 0.9507 -0.0686 0.3025 +vn 0.8453 -0.3641 0.3909 +vn 0.8451 -0.3643 0.3912 +vn 0.8454 -0.3641 0.3908 +vn 0.6284 0.7692 0.1161 +vn 0.6285 0.7690 0.1163 +vn -0.0862 -0.6655 -0.7414 +vn -0.0854 -0.6659 -0.7411 +vn -0.0838 -0.6658 -0.7414 +vn 0.2012 0.9588 0.2008 +vn 0.2012 0.9587 0.2008 +vn 0.4648 -0.7889 -0.4020 +vn 0.4647 -0.7888 -0.4023 +vn 0.4648 -0.7890 -0.4018 +vn 0.3230 0.4641 0.8248 +vn 0.3244 0.4650 0.8237 +vn 0.3227 0.4636 0.8252 +vn 0.5710 -0.7828 0.2472 +vn 0.4212 0.0440 0.9059 +vn 0.1351 0.9906 0.0199 +vn 0.1347 0.9907 0.0200 +vn 0.1353 0.9906 0.0201 +vn -0.4390 -0.8985 0.0044 +vn -0.4385 -0.8987 0.0044 +vn -0.4384 -0.8988 0.0042 +vn 0.4044 -0.1809 0.8965 +vn 0.4046 -0.1807 0.8965 +vn 0.4051 -0.1805 0.8963 +vn -0.3428 -0.8549 -0.3893 +vn -0.3427 -0.8552 -0.3889 +vn -0.3429 -0.8549 -0.3894 +vn -0.6715 0.6573 0.3421 +vn -0.6716 0.6570 0.3425 +vn -0.6716 0.6576 0.3413 +vn -0.1328 -0.8123 0.5680 +vn -0.1327 -0.8123 0.5680 +vn -0.1330 -0.8123 0.5679 +vn 0.6772 0.5996 0.4265 +vn -0.0770 0.3435 -0.9360 +vn -0.7143 0.5461 -0.4376 +vn -0.7138 0.5465 -0.4379 +vn -0.7141 0.5463 -0.4377 +vn 0.2623 0.9097 -0.3218 +vn 0.2628 0.9096 -0.3218 +vn 0.2634 0.9094 -0.3220 +vn -0.9456 0.3089 -0.1025 +vn -0.9453 0.3097 -0.1026 +vn -0.9457 0.3084 -0.1026 +vn 0.8262 0.5444 0.1450 +vn 0.8263 0.5443 0.1449 +vn 0.2851 -0.9144 -0.2874 +vn -0.0909 0.9879 -0.1258 +vn -0.0903 0.9880 -0.1254 +vn -0.0911 0.9878 -0.1262 +vn -0.9811 0.1917 0.0259 +vn -0.9811 0.1917 0.0257 +vn -0.9812 0.1915 0.0256 +vn 0.8069 0.4118 0.4234 +vn 0.8069 0.4118 0.4235 +vn 0.8070 0.4119 0.4231 +vn 0.0313 -0.8184 -0.5738 +vn 0.6187 -0.7645 -0.1812 +vn 0.6185 -0.7646 -0.1812 +vn 0.6185 -0.7645 -0.1816 +vn -0.9171 0.2329 -0.3235 +vn -0.9173 0.2325 -0.3233 +vn -0.1090 -0.9431 0.3141 +vn -0.1089 -0.9432 0.3139 +vn -0.3805 -0.8471 -0.3710 +vn -0.3805 -0.8471 -0.3709 +vn -0.3808 -0.8470 -0.3710 +vn -0.1878 0.9549 -0.2300 +vn -0.1867 0.9552 -0.2296 +vn -0.1869 0.9552 -0.2297 +vn -0.3852 0.8731 0.2990 +vn -0.3851 0.8731 0.2989 +vn -0.8353 0.5446 -0.0748 +vn -0.8353 0.5448 -0.0747 +vn 0.1583 0.9096 0.3841 +vn 0.1579 0.9098 0.3839 +vn 0.1581 0.9097 0.3840 +vn -0.7966 0.3118 -0.5179 +vn -0.7964 0.3119 -0.5182 +vn 0.1773 -0.9820 -0.0647 +vn 0.1769 -0.9821 -0.0646 +vn 0.1775 -0.9820 -0.0648 +vn 0.2551 -0.9651 -0.0589 +vn 0.2549 -0.9652 -0.0591 +vn 0.2549 -0.9652 -0.0592 +vn 0.7993 0.2563 0.5434 +vn 0.7994 0.2563 0.5434 +vn 0.7996 0.2568 0.5428 +vn 0.7001 0.5826 0.4129 +vn 0.6999 0.5830 0.4127 +vn -0.3929 -0.8876 0.2406 +vn -0.3930 -0.8879 0.2390 +vn -0.3927 -0.8879 0.2398 +vn 0.0472 -0.3733 0.9265 +vn 0.0465 -0.3730 0.9266 +vn 0.0474 -0.3733 0.9265 +vn 0.2003 -0.9257 -0.3210 +vn 0.2000 -0.9257 -0.3211 +vn -0.5374 -0.7444 0.3964 +vn -0.5373 -0.7444 0.3965 +vn 0.1394 -0.9705 -0.1967 +vn 0.1397 -0.9705 -0.1965 +vn 0.1396 -0.9705 -0.1966 +vn -0.1767 -0.8861 0.4285 +vn -0.1767 -0.8862 0.4284 +vn 0.5430 0.4405 0.7149 +vn 0.5429 0.4408 0.7148 +vn 0.5433 0.4406 0.7146 +vn -0.2372 -0.8246 0.5136 +vn -0.2373 -0.8243 0.5140 +vn -0.2371 -0.8245 0.5138 +vn 0.9303 -0.2196 0.2936 +vn 0.9302 -0.2200 0.2939 +vn 0.9305 -0.2194 0.2934 +vn 0.8850 0.3952 -0.2462 +vn 0.8853 0.3949 -0.2456 +vn 0.8851 0.3951 -0.2461 +vn -0.1964 -0.2040 -0.9591 +vn -0.6459 0.7622 0.0428 +vn -0.6458 0.7623 0.0435 +vn -0.6459 0.7622 0.0431 +vn -0.8699 -0.4926 -0.0236 +vn -0.8701 -0.4922 -0.0235 +vn -0.8700 -0.4926 -0.0236 +vn -0.9389 -0.3209 -0.1242 +vn -0.9390 -0.3207 -0.1240 +vn -0.9389 -0.3209 -0.1245 +vn -0.3499 -0.7933 0.4983 +vn -0.3498 -0.7932 0.4984 +vn 0.3820 0.9185 -0.1025 +vn 0.3820 0.9184 -0.1027 +vn 0.3821 0.9184 -0.1026 +vn 0.2746 0.4289 0.8606 +vn 0.2755 0.4287 0.8604 +vn 0.2751 0.4288 0.8605 +vn -0.3526 -0.9204 0.1687 +vn -0.3522 -0.9206 0.1689 +vn -0.3532 -0.9203 0.1684 +vn 0.1202 -0.0629 -0.9908 +vn 0.1206 -0.0624 -0.9907 +vn 0.1206 -0.0626 -0.9907 +vn 0.8736 -0.1207 0.4715 +vn 0.8737 -0.1210 0.4712 +vn 0.8737 -0.1210 0.4711 +vn 0.3239 0.4683 -0.8221 +vn 0.3248 0.4678 -0.8220 +vn 0.3259 0.4675 -0.8217 +vn 0.1931 0.4214 0.8861 +vn 0.1933 0.4206 0.8864 +vn 0.1932 0.4211 0.8862 +vn 0.9657 -0.1081 0.2359 +vn 0.9657 -0.1082 0.2361 +vn 0.3057 -0.8443 -0.4401 +vn 0.3053 -0.8444 -0.4401 +vn 0.3632 -0.4129 0.8352 +vn -0.1503 -0.8021 -0.5780 +vn -0.1507 -0.8020 -0.5780 +vn -0.1498 -0.8020 -0.5782 +vn 0.0985 -0.8196 -0.5644 +vn 0.0983 -0.8195 -0.5646 +vn 0.0985 -0.8197 -0.5642 +vn -0.6589 -0.6213 0.4241 +vn -0.6588 -0.6214 0.4241 +vn 0.3889 0.9196 0.0562 +vn 0.3888 0.9196 0.0565 +vn 0.0714 -0.9503 -0.3031 +vn 0.0713 -0.9504 -0.3027 +vn 0.0712 -0.9504 -0.3027 +vn -0.0554 0.7665 -0.6399 +vn -0.0552 0.7665 -0.6399 +vn -0.0553 0.7665 -0.6399 +vn -0.1808 -0.8161 -0.5489 +vn -0.2514 -0.4191 0.8724 +vn -0.2511 -0.4189 0.8726 +vn 0.3469 0.8635 -0.3662 +vn 0.3470 0.8633 -0.3665 +vn -0.5498 0.0576 0.8333 +vn -0.1610 0.9792 -0.1233 +vn -0.1608 0.9793 -0.1233 +vn -0.1607 0.9793 -0.1234 +vn -0.2919 -0.9211 -0.2576 +vn -0.2917 -0.9212 -0.2575 +vn -0.2913 -0.9214 -0.2573 +vn -0.2103 -0.8785 -0.4289 +vn -0.2101 -0.8785 -0.4291 +vn -0.3159 -0.9372 0.1477 +vn -0.3155 -0.9372 0.1486 +vn -0.3158 -0.9372 0.1482 +vn -0.3147 -0.8138 0.4885 +vn -0.3128 -0.8149 0.4879 +vn -0.3137 -0.8145 0.4880 +vn 0.7607 -0.5340 0.3691 +vn 0.7611 -0.5339 0.3682 +vn 0.7612 -0.5339 0.3681 +vn -0.3091 0.9076 0.2842 +vn -0.3092 0.9076 0.2839 +vn -0.3092 0.9076 0.2840 +vn 0.6026 0.7980 -0.0102 +vn 0.6026 0.7980 -0.0099 +vn 0.6025 0.7981 -0.0100 +vn 0.3994 0.2880 0.8704 +vn -0.4874 -0.7263 0.4847 +vn -0.4871 -0.7266 0.4845 +vn -0.4874 -0.7266 0.4842 +vn -0.2517 -0.9658 0.0619 +vn -0.5976 0.7450 -0.2964 +vn 0.6008 0.5928 -0.5363 +vn -0.1489 -0.9772 0.1515 +vn -0.1487 -0.9772 0.1516 +vn -0.1495 -0.9772 0.1509 +vn 0.7029 0.5697 -0.4260 +vn 0.7029 0.5697 -0.4258 +vn 0.7028 0.5696 -0.4261 +vn 0.3439 0.4004 -0.8494 +vn 0.3444 0.4006 -0.8491 +vn 0.3441 0.4006 -0.8492 +vn 0.4068 0.1275 -0.9046 +vn 0.6261 0.3486 -0.6975 +vn 0.6260 0.3487 -0.6976 +vn 0.7937 0.5998 0.1012 +vn -0.3724 -0.1250 -0.9196 +vn -0.3718 -0.1255 -0.9198 +vn -0.3722 -0.1252 -0.9197 +vn -0.1001 -0.9916 0.0823 +vn -0.0999 -0.9916 0.0822 +vn -0.1003 -0.9915 0.0824 +vn 0.6698 0.7411 0.0456 +vn 0.6699 0.7410 0.0455 +vn -0.0857 -0.9929 0.0819 +vn -0.0859 -0.9929 0.0819 +vn -0.0861 -0.9929 0.0820 +vn 0.2868 -0.8564 0.4294 +vn 0.2875 -0.8565 0.4288 +vn 0.2873 -0.8563 0.4292 +vn -0.7310 0.4666 0.4979 +vn -0.7310 0.4666 0.4980 +vn -0.0810 -0.3546 -0.9315 +vn -0.0802 -0.3554 -0.9313 +vn -0.0804 -0.3552 -0.9313 +vn -0.0573 -0.9940 -0.0937 +vn -0.0565 -0.9940 -0.0936 +vn -0.0581 -0.9939 -0.0939 +vn 0.1151 -0.9932 -0.0158 +vn 0.1148 -0.9933 -0.0165 +vn 0.1153 -0.9932 -0.0148 +vn 0.0486 -0.9985 0.0253 +vn 0.0470 -0.9986 0.0233 +vn 0.0477 -0.9986 0.0239 +vn 0.5692 -0.2484 0.7838 +vn 0.0324 -0.8526 -0.5215 +vn 0.0322 -0.8526 -0.5216 +vn 0.0325 -0.8525 -0.5216 +vn 0.2631 -0.0533 0.9633 +vn 0.2634 -0.0534 0.9632 +vn 0.2632 -0.0532 0.9633 +vn -0.6666 0.6652 -0.3363 +vn 0.2489 0.8188 -0.5174 +vn 0.2493 0.8187 -0.5172 +vn 0.2485 0.8187 -0.5177 +vn -0.1007 -0.9753 0.1964 +vn -0.1011 -0.9753 0.1963 +vn -0.1012 -0.9753 0.1963 +vn -0.4370 -0.0897 0.8950 +vn -0.4374 -0.0902 0.8947 +vn -0.4375 -0.0903 0.8947 +vn 0.2358 0.0185 0.9716 +vn 0.2360 0.0188 0.9716 +vn 0.2359 0.0187 0.9716 +vn -0.5471 0.8204 -0.1661 +vn -0.5474 0.8201 -0.1666 +vn -0.5471 0.8202 -0.1671 +vn 0.0205 0.1104 -0.9937 +vn 0.0202 0.1105 -0.9937 +vn 0.0208 0.1101 -0.9937 +vn 0.7935 0.5630 0.2309 +vn 0.7937 0.5626 0.2312 +vn 0.1182 -0.2992 0.9468 +vn 0.1181 -0.2993 0.9468 +vn 0.1185 -0.2992 0.9468 +vn -0.1720 0.9172 -0.3593 +vn -0.1718 0.9173 -0.3592 +vn -0.1716 0.9175 -0.3589 +vn 0.3869 0.1823 -0.9039 +vn 0.3868 0.1824 -0.9039 +vn 0.2344 0.9621 0.1392 +vn 0.2344 0.9621 0.1393 +vn 0.2344 0.9621 0.1396 +vn -0.2859 -0.4258 0.8585 +vn -0.2857 -0.4264 0.8582 +vn -0.1484 -0.8931 -0.4246 +vn -0.1486 -0.8930 -0.4248 +vn -0.1485 -0.8930 -0.4249 +vn 0.7862 0.2387 0.5701 +vn 0.7853 0.2393 0.5710 +vn 0.7856 0.2388 0.5708 +vn -0.0958 0.5441 -0.8335 +vn -0.8578 -0.5140 -0.0065 +vn -0.8576 -0.5143 -0.0065 +vn -0.8577 -0.5141 -0.0066 +vn -0.5297 -0.6524 -0.5420 +vn -0.5298 -0.6521 -0.5423 +vn -0.5298 -0.6520 -0.5424 +vn 0.8290 -0.5330 -0.1695 +vn 0.8294 -0.5321 -0.1703 +vn 0.8296 -0.5315 -0.1710 +vn -0.1549 -0.3094 0.9382 +vn -0.1562 -0.3087 0.9382 +vn -0.1540 -0.3093 0.9384 +vn -0.2247 0.1208 0.9669 +vn -0.6968 0.5988 -0.3948 +vn -0.6967 0.5992 -0.3945 +vn 0.9069 -0.2671 0.3259 +vn 0.9068 -0.2673 0.3259 +vn 0.9069 -0.2672 0.3258 +vn 0.2648 0.7142 -0.6479 +vn 0.2651 0.7143 -0.6477 +vn 0.2652 0.7142 -0.6477 +vn -0.9573 0.1288 -0.2587 +vn -0.9571 0.1303 -0.2586 +vn -0.9572 0.1296 -0.2587 +vn 0.2150 -0.6841 -0.6970 +vn 0.2149 -0.6841 -0.6970 +vn 0.2144 -0.6844 -0.6969 +vn 0.5802 -0.7504 0.3166 +vn 0.5803 -0.7504 0.3164 +vn -0.1625 -0.6884 -0.7069 +vn -0.1627 -0.6884 -0.7068 +vn -0.6994 -0.6233 -0.3499 +vn -0.6999 -0.6229 -0.3494 +vn -0.7001 -0.6228 -0.3491 +vn -0.2665 0.8397 0.4731 +vn -0.2387 -0.3023 -0.9228 +vn -0.2386 -0.3023 -0.9229 +vn 0.6249 -0.0928 -0.7752 +vn 0.6250 -0.0928 -0.7751 +vn 0.6246 -0.0930 -0.7754 +vn -0.1596 0.8550 -0.4934 +vn -0.1596 0.8551 -0.4933 +vn -0.1596 0.8552 -0.4931 +vn 0.7102 -0.5994 0.3692 +vn 0.7101 -0.5995 0.3694 +vn 0.7103 -0.5993 0.3691 +vn -0.1211 -0.7380 -0.6639 +vn -0.5123 -0.7935 0.3285 +vn -0.5124 -0.7935 0.3284 +vn -0.5125 -0.7935 0.3282 +vn 0.3788 -0.4815 -0.7903 +vn 0.3791 -0.4813 -0.7903 +vn 0.3793 -0.4813 -0.7902 +vn -0.1691 0.6945 0.6993 +vn -0.1696 0.6950 0.6987 +vn -0.1693 0.6946 0.6991 +vn -0.1723 -0.2324 -0.9572 +vn -0.1726 -0.2328 -0.9571 +vn -0.1725 -0.2327 -0.9571 +vn -0.5342 -0.4026 0.7434 +vn -0.5336 -0.4029 0.7436 +vn -0.5339 -0.4025 0.7436 +vn -0.4596 -0.8463 -0.2695 +vn 0.0686 0.0581 -0.9960 +vn 0.0685 0.0581 -0.9960 +vn 0.0684 0.0581 -0.9960 +vn 0.0697 0.9904 -0.1192 +vn 0.0695 0.9904 -0.1192 +vn 0.0695 0.9905 -0.1189 +vn -0.2759 -0.9311 -0.2387 +vn -0.2758 -0.9311 -0.2387 +vn -0.2757 -0.9313 -0.2382 +vn 0.2595 0.9144 -0.3108 +vn 0.2594 0.9144 -0.3107 +vn 0.2592 0.9144 -0.3109 +vn -0.0157 0.3250 -0.9456 +vn -0.0176 0.3246 -0.9457 +vn -0.0170 0.3250 -0.9456 +vn -0.0894 0.1020 0.9908 +vn -0.0898 0.1022 0.9907 +vn -0.0901 0.1022 0.9907 +vn -0.3669 0.4965 0.7867 +vn -0.3667 0.4965 0.7868 +vn -0.3670 0.4964 0.7867 +vn -0.0226 -0.6811 0.7318 +vn -0.0225 -0.6812 0.7318 +vn -0.4695 0.0174 0.8827 +vn -0.4696 0.0173 0.8827 +vn -0.4694 0.0173 0.8828 +vn 0.0272 0.3723 -0.9277 +vn 0.0273 0.3723 -0.9277 +vn 0.0277 0.3723 -0.9277 +vn 0.2202 0.9718 0.0849 +vn -0.5043 -0.8531 0.1336 +vn -0.5042 -0.8532 0.1338 +vn 0.1707 0.3274 0.9293 +vn 0.1708 0.3275 0.9293 +vn 0.1711 0.3278 0.9291 +vn 0.0305 0.2716 0.9619 +vn -0.4541 0.8436 -0.2867 +vn -0.4540 0.8436 -0.2867 +vn 0.6016 -0.7988 0.0088 +vn 0.6016 -0.7988 0.0086 +vn -0.1693 0.9835 -0.0635 +vn -0.1685 0.9837 -0.0628 +vn -0.1690 0.9836 -0.0632 +vn -0.2353 -0.7967 -0.5567 +vn -0.2345 -0.7963 -0.5576 +vn -0.2349 -0.7964 -0.5573 +vn 0.6605 -0.4425 -0.6066 +vn 0.6604 -0.4426 -0.6066 +vn -0.3768 -0.8337 -0.4037 +vn -0.3764 -0.8339 -0.4037 +vn 0.5497 -0.8342 -0.0449 +vn 0.5496 -0.8342 -0.0455 +vn 0.5495 -0.8343 -0.0451 +vn -0.9046 -0.3821 -0.1890 +vn -0.9048 -0.3816 -0.1889 +vn -0.9049 -0.3814 -0.1889 +vn -0.0273 -0.9430 0.3317 +vn -0.0243 -0.9437 0.3299 +vn -0.0220 -0.9445 0.3279 +vn -0.6685 0.6306 -0.3943 +vn 0.1872 -0.9605 0.2059 +vn 0.1874 -0.9605 0.2059 +vn -0.1842 0.7948 -0.5782 +vn -0.1843 0.7948 -0.5783 +vn -0.1846 0.7947 -0.5783 +vn -0.3275 0.6210 -0.7122 +vn 0.4105 0.8752 0.2559 +vn 0.4106 0.8750 0.2565 +vn 0.4110 0.8748 0.2565 +vn -0.6638 0.7302 0.1615 +vn -0.6639 0.7301 0.1616 +vn -0.6639 0.7302 0.1615 +vn -0.6119 0.7875 -0.0738 +vn -0.8189 -0.5124 -0.2585 +vn -0.8189 -0.5126 -0.2583 +vn -0.8189 -0.5125 -0.2584 +vn 0.2217 -0.9723 0.0743 +vn 0.2218 -0.9723 0.0742 +vn 0.2218 -0.9723 0.0741 +vn 0.8017 -0.5397 -0.2571 +vn 0.8014 -0.5400 -0.2574 +vn 0.1570 -0.6568 0.7375 +vn 0.1571 -0.6562 0.7381 +vn 0.1571 -0.6572 0.7371 +vn -0.9958 0.0484 -0.0777 +vn -0.9958 0.0482 -0.0782 +vn -0.9958 0.0484 -0.0781 +vn -0.6164 -0.7871 -0.0223 +vn -0.6164 -0.7871 -0.0222 +vn -0.3546 -0.9110 -0.2107 +vn -0.3546 -0.9110 -0.2106 +vn 0.2796 0.0045 0.9601 +vn 0.2791 0.0053 0.9602 +vn 0.2790 0.0062 0.9603 +vn 0.2732 0.5828 -0.7653 +vn 0.2729 0.5828 -0.7654 +vn 0.2739 0.5829 -0.7650 +vn 0.5624 0.7189 0.4086 +vn 0.5618 0.7192 0.4089 +vn 0.5613 0.7193 0.4094 +vn 0.5144 0.8213 -0.2468 +vn 0.1912 -0.9815 -0.0074 +vn 0.1904 -0.9817 -0.0066 +vn 0.1907 -0.9816 -0.0069 +vn 0.5664 -0.3807 -0.7309 +vn 0.5665 -0.3807 -0.7308 +vn 0.5664 -0.3806 -0.7310 +vn -0.6407 -0.5923 -0.4885 +vn -0.6409 -0.5923 -0.4883 +vn -0.6404 -0.5926 -0.4886 +vn 0.3941 0.8384 -0.3765 +vn 0.0397 0.9960 0.0798 +vn 0.0392 0.9960 0.0800 +vn 0.0394 0.9960 0.0798 +vn -0.0883 -0.8355 -0.5423 +vn -0.0886 -0.8356 -0.5422 +vn -0.5323 0.7589 0.3751 +vn -0.5325 0.7587 0.3753 +vn 0.5350 -0.7864 0.3087 +vn 0.5350 -0.7864 0.3088 +vn 0.5350 -0.7865 0.3086 +vn 0.7940 0.5899 0.1467 +vn 0.7940 0.5900 0.1462 +vn 0.7940 0.5902 0.1458 +vn 0.1646 -0.9318 -0.3236 +vn 0.1648 -0.9324 -0.3216 +vn 0.1636 -0.9338 -0.3181 +vn 0.1336 -0.9529 0.2723 +vn 0.1334 -0.9530 0.2719 +vn 0.9344 -0.3300 -0.1344 +vn 0.9344 -0.3299 -0.1341 +vn 0.9344 -0.3300 -0.1342 +vn 0.4329 0.1898 -0.8812 +vn -0.6719 0.7023 -0.2350 +vn -0.6719 0.7024 -0.2350 +vn -0.9083 0.4176 -0.0258 +vn -0.9084 0.4173 -0.0262 +vn -0.9084 0.4173 -0.0261 +vn -0.1978 -0.9506 -0.2394 +vn -0.1978 -0.9506 -0.2392 +vn -0.1975 -0.9506 -0.2394 +vn -0.2008 -0.9684 -0.1480 +vn -0.2008 -0.9684 -0.1479 +vn -0.2009 -0.9684 -0.1480 +vn -0.3793 -0.9253 -0.0022 +vn -0.3794 -0.9252 -0.0022 +vn 0.4477 0.8941 0.0113 +vn 0.4475 0.8942 0.0117 +vn 0.7721 0.5131 -0.3749 +vn 0.7725 0.5127 -0.3747 +vn 0.7725 0.5128 -0.3746 +vn 0.5520 -0.7674 0.3262 +vn 0.5519 -0.7674 0.3264 +vn -0.3721 0.7837 -0.4973 +vn -0.2756 -0.5375 -0.7969 +vn -0.2761 -0.5372 -0.7970 +vn -0.2760 -0.5372 -0.7970 +vn 0.4619 0.6236 -0.6307 +vn 0.4620 0.6236 -0.6307 +vn 0.4620 0.6235 -0.6308 +vn -0.1618 -0.2401 -0.9572 +vn -0.1619 -0.2401 -0.9572 +vn -0.1620 -0.2400 -0.9572 +vn -0.2255 0.5516 0.8031 +vn -0.2260 0.5512 0.8032 +vn -0.2254 0.5521 0.8027 +vn -0.7512 0.5723 -0.3289 +vn -0.7510 0.5723 -0.3294 +vn -0.7512 0.5722 -0.3290 +vn 0.9009 0.2370 0.3635 +vn 0.9007 0.2372 0.3639 +vn 0.9012 0.2371 0.3629 +vn -0.6120 -0.7199 -0.3274 +vn -0.6118 -0.7203 -0.3270 +vn -0.6119 -0.7202 -0.3271 +vn -0.4004 0.9113 0.0960 +vn -0.4005 0.9113 0.0955 +vn -0.4003 0.9113 0.0960 +vn 0.5570 -0.8015 0.2178 +vn 0.5569 -0.8015 0.2180 +vn 0.5569 -0.8015 0.2181 +vn 0.3219 0.9415 -0.0998 +vn 0.3220 0.9415 -0.0996 +vn 0.3221 0.9414 -0.0999 +vn -0.6889 0.3476 0.6361 +vn -0.6888 0.3476 0.6362 +vn -0.6888 0.3475 0.6363 +vn -0.4680 -0.8540 -0.2272 +vn -0.7311 0.4209 -0.5370 +vn -0.7311 0.4207 -0.5371 +vn -0.7312 0.4203 -0.5373 +vn 0.5001 -0.8573 0.1222 +vn 0.5000 -0.8573 0.1225 +vn -0.7875 -0.2631 0.5573 +vn -0.7877 -0.2631 0.5570 +vn -0.7876 -0.2632 0.5571 +vn 0.7820 -0.5004 -0.3716 +vn -0.0311 0.4050 -0.9138 +vn -0.0324 0.4071 -0.9128 +vn -0.0313 0.4060 -0.9133 +vn -0.5434 -0.7366 -0.4026 +vn -0.5416 -0.8390 -0.0529 +vn -0.5418 -0.8388 -0.0528 +vn -0.5417 -0.8389 -0.0528 +vn 0.4658 -0.8838 0.0441 +vn 0.4656 -0.8839 0.0442 +vn 0.4654 -0.8840 0.0446 +vn 0.4873 -0.8731 -0.0127 +vn 0.4876 -0.8730 -0.0126 +vn 0.4881 -0.8727 -0.0126 +vn 0.8478 -0.4061 -0.3411 +vn 0.8478 -0.4061 -0.3410 +vn -0.0234 0.9896 0.1420 +vn -0.0230 0.9895 0.1424 +vn -0.0218 0.9895 0.1430 +vn -0.1451 -0.1446 0.9788 +vn -0.1451 -0.1447 0.9788 +vn 0.3115 -0.4638 0.8294 +vn 0.3116 -0.4638 0.8293 +vn 0.3119 -0.4635 0.8294 +vn -0.4257 -0.4082 0.8076 +vn -0.4259 -0.4082 0.8075 +vn -0.4256 -0.4083 0.8076 +vn -0.7159 0.3739 -0.5896 +vn -0.4812 -0.8688 -0.1165 +vn 0.6175 -0.7715 0.1534 +vn 0.8907 0.4255 0.1600 +vn 0.8906 0.4257 0.1601 +vn -0.0029 0.0518 0.9987 +vn -0.0029 0.0516 0.9987 +vn -0.0026 0.0510 0.9987 +vn -0.7115 -0.6480 0.2719 +vn -0.7114 -0.6480 0.2719 +vn -0.7112 -0.6483 0.2719 +vn -0.6054 0.1732 0.7769 +vn -0.6065 0.1740 0.7758 +vn -0.6059 0.1733 0.7765 +vn -0.4532 -0.7755 0.4396 +vn -0.4531 -0.7756 0.4395 +vn -0.4532 -0.7754 0.4396 +vn -0.8806 0.4723 0.0379 +vn -0.8809 0.4717 0.0379 +vn -0.8811 0.4715 0.0379 +vn 0.1643 0.9628 0.2146 +vn 0.1643 0.9628 0.2145 +vn 0.1642 0.9629 0.2143 +vn -0.7932 0.5044 -0.3412 +vn -0.5156 0.7586 -0.3983 +vn -0.5156 0.7587 -0.3982 +vn -0.0388 0.6615 0.7490 +vn -0.0400 0.6598 0.7504 +vn -0.0396 0.6600 0.7502 +vn -0.1436 0.7409 0.6561 +vn -0.1460 0.7408 0.6557 +vn -0.1453 0.7409 0.6557 +vn 0.6428 -0.7660 -0.0121 +vn 0.6431 -0.7657 -0.0118 +vn 0.6430 -0.7658 -0.0118 +vn -0.5030 -0.8225 -0.2655 +vn -0.3488 0.9265 -0.1412 +vn -0.3488 0.9265 -0.1410 +vn -0.0907 -0.6418 0.7615 +vn -0.0908 -0.6418 0.7615 +vn -0.0906 -0.6419 0.7614 +vn -0.2196 -0.1787 -0.9591 +vn 0.0930 -0.6090 0.7877 +vn 0.0930 -0.6091 0.7876 +vn 0.0929 -0.6091 0.7876 +vn 0.4020 -0.8470 -0.3478 +vn 0.4026 -0.8468 -0.3475 +vn 0.4015 -0.8472 -0.3479 +vn 0.4050 0.8619 -0.3053 +vn 0.4048 0.8617 -0.3058 +vn 0.3952 -0.8583 -0.3273 +vn 0.3941 -0.8590 -0.3268 +vn 0.3946 -0.8586 -0.3272 +vn -0.4873 -0.7312 -0.4773 +vn -0.4873 -0.7311 -0.4775 +vn -0.4874 -0.7310 -0.4776 +vn -0.5758 -0.7625 -0.2951 +vn -0.5755 -0.7628 -0.2948 +vn -0.5756 -0.7627 -0.2949 +vn 0.4413 -0.8753 -0.1979 +vn 0.4412 -0.8753 -0.1979 +vn 0.4409 -0.8754 -0.1981 +vn 0.0715 -0.7389 0.6700 +vn 0.0724 -0.7392 0.6696 +vn 0.0719 -0.7391 0.6698 +vn 0.3229 -0.8716 -0.3689 +vn -0.5374 0.1488 -0.8301 +vn -0.5375 0.1487 -0.8301 +vn 0.8771 0.4535 0.1585 +vn -0.3774 -0.8259 0.4190 +vn -0.3773 -0.8259 0.4190 +vn -0.3771 -0.8258 0.4193 +vn 0.4027 -0.9090 0.1076 +vn 0.6714 -0.6337 -0.3842 +vn 0.6714 -0.6335 -0.3846 +vn 0.6717 -0.6337 -0.3836 +vn 0.4160 0.5351 -0.7353 +vn -0.4548 0.6769 -0.5787 +vn -0.4549 0.6769 -0.5787 +vn 0.2629 0.8682 -0.4208 +vn 0.2637 0.8681 -0.4204 +vn 0.2634 0.8683 -0.4204 +vn 0.2369 0.9664 0.1002 +vn 0.2366 0.9665 0.0994 +vn 0.2363 0.9665 0.0999 +vn 0.5788 0.7794 0.2399 +vn 0.5789 0.7796 0.2391 +vn 0.5787 0.7796 0.2395 +vn 0.0606 -0.9204 0.3863 +vn 0.0604 -0.9205 0.3861 +vn 0.0606 -0.9204 0.3862 +vn -0.0193 -0.6848 0.7285 +vn -0.0194 -0.6847 0.7285 +vn -0.0191 -0.6848 0.7285 +vn 0.3972 -0.9082 -0.1317 +vn 0.3973 -0.9082 -0.1317 +vn 0.3975 -0.9081 -0.1313 +vn 0.2047 0.1500 0.9673 +vn 0.2047 0.1501 0.9673 +vn -0.3355 -0.7305 -0.5948 +vn -0.3356 -0.7305 -0.5947 +vn 0.6910 0.7221 0.0331 +vn 0.6909 0.7222 0.0339 +vn 0.6909 0.7222 0.0341 +vn -0.2052 -0.8545 0.4772 +vn -0.2049 -0.8544 0.4774 +vn -0.0840 -0.9801 -0.1799 +vn -0.0843 -0.9801 -0.1798 +vn -0.0889 -0.9695 -0.2285 +vn -0.0885 -0.9695 -0.2284 +vn -0.0887 -0.9695 -0.2285 +vn 0.1454 -0.7523 -0.6426 +vn 0.3555 0.9067 0.2269 +vn 0.3668 0.1844 0.9118 +vn 0.3677 0.1855 0.9113 +vn 0.3671 0.1849 0.9116 +vn 0.4640 0.8818 -0.0842 +vn 0.4644 0.8817 -0.0837 +vn 0.4891 -0.0789 -0.8687 +vn 0.4890 -0.0791 -0.8687 +vn -0.1176 0.9929 0.0166 +vn -0.1169 0.9930 0.0168 +vn -0.0702 0.9869 -0.1453 +vn -0.0702 0.9869 -0.1452 +vn 0.5739 0.6092 -0.5473 +vn -0.4644 0.5341 0.7064 +vn -0.5949 0.8033 -0.0268 +vn -0.5946 0.8036 -0.0268 +vn -0.5947 0.8035 -0.0267 +vn -0.3404 -0.7104 -0.6159 +vn -0.6381 -0.7681 0.0527 +vn -0.6378 -0.7684 0.0525 +vn -0.6383 -0.7680 0.0527 +vn 0.4031 -0.7504 -0.5238 +vn 0.4030 -0.7503 -0.5240 +vn 0.4030 -0.7504 -0.5240 +vn 0.2617 0.9410 0.2145 +vn 0.2614 0.9410 0.2147 +vn 0.2619 0.9410 0.2141 +vn -0.3992 -0.4518 0.7978 +vn -0.3989 -0.4517 0.7980 +vn 0.8880 -0.3392 0.3106 +vn 0.8880 -0.3390 0.3106 +vn 0.8881 -0.3389 0.3105 +vn -0.4312 0.8172 -0.3825 +vn -0.4310 0.8172 -0.3827 +vn -0.4675 -0.8708 -0.1521 +vn -0.4677 -0.8707 -0.1523 +vn -0.4678 -0.8706 -0.1524 +vn -0.0474 0.9988 0.0095 +vn -0.0476 0.9988 0.0090 +vn -0.0473 0.9988 0.0097 +vn -0.6810 0.6757 0.2824 +vn -0.6809 0.6758 0.2824 +vn -0.6808 0.6758 0.2825 +vn 0.5155 -0.8477 -0.1254 +vn 0.5153 -0.8478 -0.1253 +vn 0.1337 -0.8735 0.4681 +vn 0.1332 -0.8734 0.4684 +vn 0.1334 -0.8735 0.4682 +vn -0.4441 -0.6980 0.5617 +vn -0.4440 -0.6981 0.5617 +vn -0.2579 -0.9659 0.0248 +vn -0.2582 -0.9658 0.0251 +vn -0.2581 -0.9658 0.0258 +vn 0.2402 0.5216 -0.8186 +vn 0.2404 0.5222 -0.8183 +vn -0.5352 -0.7632 -0.3621 +vn -0.5388 -0.8038 -0.2522 +vn 0.9746 0.2125 0.0708 +vn 0.9746 0.2128 0.0706 +vn 0.9747 0.2121 0.0709 +vn -0.2807 -0.7235 0.6307 +vn -0.2809 -0.7244 0.6295 +vn -0.2813 -0.7228 0.6312 +vn -0.5953 -0.7317 0.3320 +vn -0.5946 -0.7327 0.3310 +vn -0.5951 -0.7322 0.3314 +vn 0.2244 -0.6446 0.7308 +vn 0.2246 -0.6450 0.7304 +vn 0.2243 -0.6448 0.7307 +vn -0.7624 -0.6369 -0.1140 +vn -0.7627 -0.6366 -0.1143 +vn -0.7621 -0.6373 -0.1140 +vn 0.2082 0.4178 -0.8844 +vn 0.2083 0.4173 -0.8846 +vn 0.2080 0.4180 -0.8843 +vn 0.8723 0.4884 -0.0235 +vn 0.8722 0.4886 -0.0236 +vn -0.8502 0.3345 -0.4065 +vn -0.8502 0.3345 -0.4064 +vn 0.3764 0.9227 0.0836 +vn 0.3758 0.9230 0.0829 +vn 0.3755 0.9231 0.0828 +vn -0.5834 0.1152 -0.8040 +vn -0.5843 0.1136 -0.8035 +vn -0.5844 0.1135 -0.8035 +vn 0.6907 0.7107 -0.1335 +vn -0.2166 0.9731 -0.0781 +vn -0.2168 0.9731 -0.0778 +vn -0.0434 -0.9474 0.3171 +vn -0.0433 -0.9475 0.3169 +vn -0.3140 -0.5609 -0.7661 +vn -0.3144 -0.5606 -0.7661 +vn 0.4241 0.7325 0.5326 +vn 0.4250 0.7318 0.5328 +vn 0.4246 0.7320 0.5329 +vn -0.5201 0.5703 0.6358 +vn -0.5201 0.5702 0.6359 +vn -0.5202 0.5705 0.6356 +vn 0.4216 -0.6734 0.6073 +vn 0.4208 -0.6725 0.6089 +vn 0.4214 -0.6729 0.6080 +vn -0.0672 0.9937 0.0899 +vn -0.3624 -0.7662 -0.5307 +vn -0.3625 -0.7663 -0.5304 +vn -0.3623 -0.7662 -0.5308 +vn 0.8157 0.1421 0.5608 +vn 0.8156 0.1424 0.5608 +vn 0.8158 0.1420 0.5606 +vn 0.0328 0.9976 -0.0610 +vn 0.0330 0.9976 -0.0612 +vn 0.0332 0.9976 -0.0615 +vn -0.3462 -0.6063 -0.7159 +vn -0.3452 -0.6069 -0.7159 +vn -0.3470 -0.6060 -0.7158 +vn 0.6078 -0.3328 -0.7210 +vn 0.6075 -0.3329 -0.7212 +vn 0.7420 -0.5962 0.3066 +vn 0.7422 -0.5959 0.3066 +vn 0.7421 -0.5961 0.3066 +vn 0.6180 0.4526 0.6428 +vn 0.6185 0.4525 0.6424 +vn 0.6179 0.4526 0.6429 +vn -0.3222 0.7829 -0.5322 +vn -0.3739 -0.1718 0.9114 +vn -0.3742 -0.1712 0.9114 +vn -0.3740 -0.1716 0.9114 +vn -0.2696 0.9625 -0.0293 +vn 0.5737 0.7599 0.3058 +vn 0.5737 0.7598 0.3058 +vn -0.3089 0.8776 -0.3665 +vn -0.3089 0.8776 -0.3666 +vn 0.1364 -0.1201 0.9833 +vn 0.1368 -0.1203 0.9833 +vn 0.1365 -0.1202 0.9833 +vn 0.0027 -0.0313 -0.9995 +vn 0.0030 -0.0312 -0.9995 +vn 0.2799 0.8810 0.3814 +vn 0.6815 0.7177 0.1433 +vn 0.6816 0.7176 0.1434 +vn 0.6733 0.6602 -0.3329 +vn 0.6723 0.6610 -0.3332 +vn 0.6730 0.6605 -0.3329 +vn 0.0312 -0.0269 0.9992 +vn 0.0312 -0.0272 0.9991 +vn 0.0313 -0.0276 0.9991 +vn 0.0836 -0.0366 -0.9958 +vn 0.0836 -0.0365 -0.9958 +vn 0.0129 0.3814 -0.9243 +vn -0.2755 -0.0635 0.9592 +vn -0.2755 -0.0642 0.9591 +vn -0.2751 -0.0622 0.9594 +vn -0.2522 -0.3944 0.8836 +vn -0.2523 -0.3946 0.8835 +vn -0.2519 -0.3942 0.8838 +vn -0.8168 -0.4410 0.3720 +vn -0.8167 -0.4411 0.3720 +vn -0.8171 -0.4404 0.3721 +vn -0.7027 -0.6804 0.2079 +vn -0.7028 -0.6804 0.2078 +vn -0.2717 0.9440 -0.1872 +vn -0.2712 0.9441 -0.1876 +vn -0.2704 0.9441 -0.1886 +vn -0.3447 0.4555 -0.8208 +vn -0.3169 0.1330 0.9391 +vn -0.3169 0.1329 0.9391 +vn 0.6179 -0.7860 0.0215 +vn 0.6172 -0.7865 0.0219 +vn 0.6175 -0.7863 0.0216 +vn 0.0536 -0.9767 0.2078 +vn 0.1999 0.8300 0.5208 +vn 0.2000 0.8301 0.5206 +vn 0.2000 0.8297 0.5211 +vn 0.2783 0.2507 -0.9272 +vn 0.2784 0.2506 -0.9272 +vn -0.6706 0.4828 -0.5632 +vn -0.6709 0.4828 -0.5628 +vn -0.6706 0.4827 -0.5633 +vn 0.5624 0.7615 -0.3221 +vn 0.5623 0.7616 -0.3221 +vn 0.5625 0.7615 -0.3222 +vn -0.2434 -0.6019 -0.7606 +vn -0.2434 -0.6022 -0.7604 +vn -0.2434 -0.6021 -0.7604 +vn 0.6671 0.2341 -0.7073 +vn 0.6660 0.2333 -0.7086 +vn 0.6663 0.2334 -0.7082 +vn 0.9583 -0.1532 -0.2411 +vn 0.9584 -0.1529 -0.2410 +vn 0.9584 -0.1530 -0.2409 +vn -0.5396 -0.4945 -0.6814 +vn -0.5398 -0.4948 -0.6810 +vn -0.5397 -0.4946 -0.6813 +vn -0.7286 0.6254 -0.2793 +vn 0.3705 0.8412 -0.3939 +vn -0.2890 0.4492 -0.8454 +vn -0.2888 0.4491 -0.8455 +vn -0.2885 0.4490 -0.8457 +vn 0.0747 0.9854 -0.1528 +vn 0.6564 -0.1834 -0.7318 +vn 0.6562 -0.1834 -0.7320 +vn 0.6565 -0.1835 -0.7316 +vn -0.2103 -0.5321 -0.8202 +vn -0.2104 -0.5323 -0.8200 +vn -0.2105 -0.5324 -0.8199 +vn 0.1450 -0.9233 -0.3557 +vn 0.1443 -0.9234 -0.3557 +vn 0.1447 -0.9233 -0.3557 +vn 0.3571 -0.3245 -0.8759 +vn 0.3568 -0.3247 -0.8759 +vn 0.3572 -0.3246 -0.8758 +vn 0.3784 0.7467 0.5471 +vn 0.3785 0.7467 0.5469 +vn 0.3784 0.7468 0.5469 +vn -0.5807 -0.1109 -0.8065 +vn -0.5805 -0.1109 -0.8067 +vn -0.5803 -0.1109 -0.8068 +vn 0.7653 0.4193 0.4884 +vn 0.7653 0.4186 0.4889 +vn 0.7650 0.4181 0.4899 +vn 0.5220 -0.5499 -0.6520 +vn 0.5222 -0.5499 -0.6519 +vn 0.5217 -0.5500 -0.6522 +vn 0.5866 -0.7004 -0.4065 +vn 0.5870 -0.7005 -0.4059 +vn 0.5869 -0.7005 -0.4061 +vn -0.4751 0.0302 0.8794 +vn -0.4754 0.0300 0.8793 +vn -0.4754 0.0303 0.8792 +vn -0.3348 -0.8765 -0.3459 +vn -0.3346 -0.8766 -0.3459 +vn -0.3349 -0.8766 -0.3457 +vn 0.4366 -0.8046 0.4024 +vn 0.4367 -0.8046 0.4024 +vn -0.5139 -0.8496 0.1190 +vn 0.7564 -0.6184 0.2131 +vn 0.7565 -0.6182 0.2133 +vn 0.7566 -0.6181 0.2134 +vn 0.2040 0.6130 -0.7633 +vn 0.2041 0.6123 -0.7638 +vn 0.2038 0.6137 -0.7628 +vn 0.4016 0.6303 -0.6645 +vn 0.8818 0.1748 0.4380 +vn 0.8818 0.1749 0.4380 +vn 0.8818 0.1750 0.4380 +vn 0.3471 0.3199 -0.8816 +vn 0.3473 0.3198 -0.8815 +vn 0.3472 0.3199 -0.8815 +vn 0.7558 -0.6314 -0.1736 +vn 0.7557 -0.6313 -0.1745 +vn 0.7557 -0.6314 -0.1739 +vn -0.1513 0.8893 -0.4315 +vn -0.1512 0.8894 -0.4313 +vn -0.1511 0.8896 -0.4311 +vn 0.2402 0.2370 -0.9413 +vn 0.2401 0.2372 -0.9413 +vn 0.2403 0.2368 -0.9414 +vn -0.1760 0.9592 0.2214 +vn -0.1762 0.9590 0.2220 +vn -0.1760 0.9592 0.2213 +vn 0.0155 -0.7169 -0.6970 +vn 0.0153 -0.7171 -0.6968 +vn -0.7279 -0.2549 -0.6366 +vn -0.7279 -0.2548 -0.6366 +vn -0.6420 -0.3575 0.6783 +vn -0.6420 -0.3572 0.6784 +vn 0.1581 -0.9544 0.2534 +vn 0.1578 -0.9546 0.2527 +vn 0.1580 -0.9544 0.2533 +vn 0.1164 -0.9551 0.2723 +vn 0.3908 0.9185 -0.0606 +vn -0.5204 -0.1673 -0.8374 +vn -0.5203 -0.1675 -0.8374 +vn -0.5204 -0.1674 -0.8373 +vn -0.8012 0.1579 -0.5772 +vn -0.8007 0.1584 -0.5778 +vn -0.8000 0.1593 -0.5784 +vn 0.6209 0.7606 0.1898 +vn 0.6206 0.7608 0.1898 +vn 0.6207 0.7607 0.1899 +vn -0.2772 0.9606 0.0197 +vn -0.2769 0.9607 0.0193 +vn -0.8393 0.5082 -0.1931 +vn -0.8394 0.5081 -0.1930 +vn 0.0509 0.3821 0.9227 +vn 0.0503 0.3820 0.9228 +vn 0.0516 0.3820 0.9227 +vn 0.2157 0.8309 0.5129 +vn 0.2154 0.8308 0.5132 +vn 0.2155 0.8309 0.5130 +vn 0.0586 0.8559 -0.5139 +vn 0.0586 0.8561 -0.5134 +vn -0.5859 0.7771 0.2299 +vn -0.5859 0.7771 0.2300 +vn 0.0806 -0.9833 0.1629 +vn 0.0803 -0.9834 0.1629 +vn 0.1067 0.2157 -0.9706 +vn 0.1064 0.2158 -0.9706 +vn -0.1078 0.0063 0.9942 +vn 0.1114 0.7295 -0.6748 +vn 0.1113 0.7294 -0.6749 +vn -0.1814 0.1669 0.9691 +vn -0.1806 0.1663 0.9694 +vn -0.1813 0.1668 0.9692 +vn 0.9132 -0.1364 0.3840 +vn -0.2856 -0.8742 0.3927 +vn -0.2858 -0.8744 0.3921 +vn -0.2854 -0.8741 0.3930 +vn -0.2008 0.9046 -0.3759 +vn -0.2009 0.9046 -0.3759 +vn -0.2005 0.9048 -0.3757 +vn -0.7495 0.6583 -0.0694 +vn -0.7493 0.6586 -0.0696 +vn -0.7497 0.6582 -0.0693 +vn 0.0247 -0.7028 -0.7110 +vn 0.0249 -0.7029 -0.7109 +vn 0.0247 -0.7027 -0.7110 +vn -0.4125 -0.8524 -0.3214 +vn -0.4126 -0.8525 -0.3210 +vn -0.4130 -0.8525 -0.3206 +vn -0.1640 0.9513 -0.2612 +vn -0.1644 0.9511 -0.2613 +vn -0.1637 0.9513 -0.2614 +vn -0.4753 -0.8292 -0.2940 +vn -0.4752 -0.8294 -0.2938 +vn -0.4753 -0.8292 -0.2941 +vn -0.3947 -0.9155 -0.0778 +vn -0.4892 0.8290 0.2711 +vn -0.4892 0.8279 0.2744 +vn -0.4880 0.8277 0.2771 +vn 0.4754 0.3368 -0.8128 +vn 0.4756 0.3368 -0.8126 +vn 0.4758 0.3371 -0.8124 +vn -0.9343 0.2093 -0.2885 +vn -0.9344 0.2093 -0.2884 +vn -0.9344 0.2089 -0.2884 +vn -0.8512 0.1921 0.4885 +vn 0.2368 -0.5427 -0.8059 +vn 0.2373 -0.5427 -0.8057 +vn 0.2357 -0.5430 -0.8060 +vn -0.1393 0.5101 -0.8488 +vn -0.1398 0.5103 -0.8485 +vn -0.1395 0.5103 -0.8486 +vn 0.9067 0.0911 -0.4119 +vn 0.9066 0.0909 -0.4120 +vn 0.9066 0.0910 -0.4120 +vn 0.7356 -0.3147 0.5998 +vn 0.7352 -0.3146 0.6005 +vn 0.7353 -0.3146 0.6002 +vn -0.2457 0.9684 0.0433 +vn -0.2458 0.9683 0.0432 +vn 0.6612 0.5693 -0.4886 +vn 0.6607 0.5695 -0.4890 +vn 0.6612 0.5694 -0.4885 +vn -0.2600 0.3845 -0.8857 +vn -0.2602 0.3851 -0.8854 +vn -0.7266 0.6207 -0.2946 +vn -0.7264 0.6209 -0.2945 +vn -0.7262 0.6212 -0.2946 +vn -0.3785 -0.7937 -0.4763 +vn -0.3786 -0.7937 -0.4761 +vn -0.3787 -0.7937 -0.4760 +vn -0.3703 0.2135 -0.9040 +vn -0.3703 0.2132 -0.9041 +vn -0.3703 0.2131 -0.9041 +vn -0.4288 0.7369 -0.5226 +vn 0.5880 -0.6572 -0.4716 +vn 0.5878 -0.6578 -0.4709 +vn 0.5878 -0.6568 -0.4723 +vn 0.4769 0.8307 -0.2873 +vn 0.4776 0.8300 -0.2880 +vn 0.4774 0.8302 -0.2878 +vn -0.7650 0.5870 -0.2649 +vn -0.6290 0.7608 -0.1600 +vn -0.6292 0.7605 -0.1603 +vn -0.6290 0.7607 -0.1601 +vn 0.4895 -0.8446 0.2170 +vn -0.9362 -0.1890 0.2963 +vn -0.9362 -0.1889 0.2964 +vn 0.0661 0.8495 0.5234 +vn 0.1550 0.9875 -0.0302 +vn 0.1546 0.9875 -0.0304 +vn 0.1547 0.9875 -0.0305 +vn 0.6388 -0.0827 -0.7649 +vn 0.9122 -0.0682 0.4040 +vn 0.9119 -0.0686 0.4046 +vn 0.9121 -0.0684 0.4043 +vn 0.5477 -0.8041 0.2312 +vn 0.5475 -0.8043 0.2311 +vn -0.6753 -0.3920 -0.6248 +vn -0.6776 -0.3914 -0.6227 +vn -0.6767 -0.3912 -0.6237 +vn 0.6324 0.6517 0.4188 +vn -0.0385 -0.1029 -0.9939 +vn -0.0388 -0.1030 -0.9939 +vn -0.0389 -0.1030 -0.9939 +vn 0.5078 -0.8545 0.1096 +vn 0.5078 -0.8545 0.1092 +vn 0.5079 -0.8545 0.1093 +vn -0.5904 0.7292 -0.3459 +vn -0.5902 0.7292 -0.3463 +vn -0.5902 0.7292 -0.3462 +vn 0.2241 -0.0391 -0.9738 +vn 0.2243 -0.0389 -0.9737 +vn -0.4283 -0.5607 -0.7087 +vn -0.4283 -0.5605 -0.7088 +vn -0.4283 -0.5609 -0.7085 +vn 0.0153 -0.8685 0.4954 +vn 0.0156 -0.8687 0.4951 +vn 0.4992 -0.8660 -0.0299 +vn 0.4991 -0.8660 -0.0300 +vn 0.4992 -0.8660 -0.0298 +vn -0.9459 0.3242 -0.0156 +vn -0.9457 0.3245 -0.0156 +vn -0.9458 0.3244 -0.0156 +vn 0.5107 -0.8589 0.0387 +vn -0.6061 -0.7867 0.1176 +vn -0.6061 -0.7867 0.1175 +vn 0.7563 -0.2458 -0.6064 +vn -0.2148 -0.8687 -0.4463 +vn -0.2149 -0.8688 -0.4461 +vn -0.2151 -0.8689 -0.4459 +vn -0.8353 0.3732 0.4038 +vn -0.8358 0.3696 0.4061 +vn -0.8352 0.3716 0.4054 +vn 0.4020 0.7706 -0.4946 +vn 0.7381 -0.6350 -0.2280 +vn 0.7380 -0.6355 -0.2269 +vn 0.7378 -0.6360 -0.2264 +vn -0.6560 -0.4529 -0.6038 +vn -0.6558 -0.4527 -0.6042 +vn -0.6559 -0.4528 -0.6040 +vn 0.0595 -0.6855 0.7257 +vn 0.2259 0.9735 0.0368 +vn 0.2242 0.9738 0.0369 +vn 0.2251 0.9737 0.0365 +vn 0.7618 0.6264 0.1650 +vn 0.4088 0.7718 0.4871 +vn 0.7193 -0.5356 0.4424 +vn 0.7191 -0.5357 0.4426 +vn 0.7192 -0.5356 0.4425 +vn 0.2577 0.6158 0.7446 +vn 0.2583 0.6154 0.7447 +vn 0.2582 0.6155 0.7447 +vn -0.9965 0.0577 0.0606 +vn -0.9965 0.0579 0.0600 +vn -0.9965 0.0579 0.0601 +vn -0.7438 0.1237 -0.6569 +vn -0.5131 -0.8004 -0.3101 +vn -0.4412 -0.7538 -0.4869 +vn -0.4413 -0.7536 -0.4871 +vn -0.4411 -0.7537 -0.4872 +vn -0.0549 0.2734 -0.9603 +vn -0.0551 0.2736 -0.9603 +vn -0.0550 0.2735 -0.9603 +vn 0.6888 0.1933 -0.6987 +vn 0.6888 0.1931 -0.6988 +vn 0.6890 0.1931 -0.6986 +vn 0.1478 -0.7670 0.6244 +vn 0.1475 -0.7670 0.6244 +vn -0.8589 0.2780 -0.4302 +vn -0.8588 0.2779 -0.4304 +vn -0.8589 0.2781 -0.4300 +vn 0.1872 0.9772 0.1006 +vn 0.1873 0.9771 0.1006 +vn -0.4796 0.8596 0.1762 +vn -0.4795 0.8597 0.1762 +vn -0.5952 -0.4216 0.6840 +vn -0.5955 -0.4217 0.6837 +vn -0.5950 -0.4219 0.6841 +vn 0.5823 0.7063 0.4026 +vn 0.5822 0.7065 0.4023 +vn 0.5822 0.7060 0.4032 +vn 0.7160 0.2234 0.6614 +vn 0.7160 0.2233 0.6614 +vn 0.8811 0.0396 -0.4713 +vn 0.8810 0.0395 -0.4715 +vn 0.8808 0.0399 -0.4718 +vn 0.2329 0.2803 -0.9312 +vn -0.0593 0.9434 -0.3262 +vn -0.0595 0.9434 -0.3263 +vn -0.0592 0.9435 -0.3260 +vn -0.3162 -0.7366 -0.5978 +vn -0.3165 -0.7366 -0.5977 +vn -0.3164 -0.7366 -0.5978 +vn 0.5790 -0.6716 0.4623 +vn 0.5792 -0.6711 0.4627 +vn 0.9656 -0.0614 0.2528 +vn 0.9656 -0.0612 0.2527 +vn 0.9655 -0.0616 0.2530 +vn -0.4713 -0.7250 -0.5023 +vn -0.4711 -0.7252 -0.5022 +vn 0.4287 0.9017 -0.0563 +vn 0.4283 0.9019 -0.0563 +vn 0.4285 0.9018 -0.0563 +vn -0.2752 -0.9381 -0.2101 +vn -0.0724 -0.3897 0.9181 +vn -0.0724 -0.3896 0.9181 +vn -0.0727 -0.3895 0.9181 +vn 0.6133 -0.5978 -0.5162 +vn 0.6142 -0.5967 -0.5165 +vn 0.6136 -0.5973 -0.5164 +vn 0.8978 0.3961 0.1924 +vn 0.2987 -0.7549 -0.5839 +vn 0.2986 -0.7548 -0.5841 +vn 0.2991 -0.7548 -0.5838 +vn 0.1142 0.8913 -0.4388 +vn 0.1140 0.8913 -0.4388 +vn 0.1141 0.8913 -0.4389 +vn 0.7978 0.4239 -0.4287 +vn 0.8798 0.1072 0.4631 +vn 0.8799 0.1072 0.4629 +vn 0.8800 0.1074 0.4628 +vn 0.7460 -0.6578 -0.1042 +vn 0.7460 -0.6577 -0.1042 +vn 0.0657 -0.6982 -0.7128 +vn 0.0661 -0.6981 -0.7129 +vn -0.1192 -0.7826 -0.6111 +vn 0.9864 -0.0077 0.1644 +vn 0.9926 0.0865 0.0853 +vn 0.9926 0.0865 0.0856 +vn 0.9926 0.0864 0.0855 +vn -0.7635 -0.6343 0.1215 +vn -0.0613 -0.9916 -0.1139 +vn -0.0617 -0.9916 -0.1140 +vn -0.0616 -0.9916 -0.1140 +vn 0.9848 -0.0639 -0.1613 +vn 0.9849 -0.0639 -0.1612 +vn 0.9848 -0.0639 -0.1612 +vn -0.3525 -0.4390 0.8264 +vn -0.3527 -0.4393 0.8262 +vn -0.3526 -0.4395 0.8262 +vn 0.4415 0.8971 -0.0141 +vn 0.4416 0.8971 -0.0141 +vn -0.0695 0.9634 -0.2590 +vn -0.0695 0.9634 -0.2589 +vn -0.3782 0.7332 0.5652 +vn -0.3786 0.7329 0.5653 +vn -0.3790 0.7327 0.5653 +vn 0.1952 -0.5787 -0.7918 +vn 0.1953 -0.5785 -0.7920 +vn -0.3552 -0.8944 0.2719 +vn 0.6945 0.7154 -0.0764 +vn 0.6944 0.7155 -0.0765 +vn 0.6944 0.7155 -0.0766 +vn -0.8207 0.3623 -0.4417 +vn -0.1754 0.6914 -0.7008 +vn -0.1753 0.6918 -0.7005 +vn -0.3952 -0.9178 0.0379 +vn -0.3951 -0.9178 0.0380 +vn -0.3951 -0.9179 0.0380 +vn -0.3899 0.5543 -0.7353 +vn -0.3910 0.5545 -0.7346 +vn -0.3901 0.5544 -0.7351 +vn -0.5130 0.8428 -0.1627 +vn -0.5123 0.8429 -0.1643 +vn -0.5130 0.8428 -0.1628 +vn -0.6672 -0.6980 -0.2599 +vn -0.6670 -0.6982 -0.2602 +vn -0.6670 -0.6982 -0.2601 +vn 0.0353 -0.7813 0.6232 +vn 0.0361 -0.7816 0.6228 +vn 0.0357 -0.7813 0.6231 +vn -0.2100 0.1174 0.9706 +vn -0.2102 0.1176 0.9706 +vn -0.2099 0.1173 0.9707 +vn -0.7985 -0.1669 -0.5784 +vn -0.7981 -0.1668 -0.5790 +vn -0.7979 -0.1666 -0.5793 +vn -0.7761 -0.1819 -0.6038 +vn -0.7762 -0.1818 -0.6037 +vn -0.7762 -0.1817 -0.6037 +vn 0.4027 -0.5392 0.7397 +vn -0.3882 -0.8032 -0.4519 +vn -0.3885 -0.8031 -0.4518 +vn 0.6906 0.7038 -0.1663 +vn 0.1715 0.9849 -0.0242 +vn -0.0260 0.8151 -0.5787 +vn -0.0261 0.8151 -0.5788 +vn -0.1376 0.2458 -0.9595 +vn -0.1385 0.2455 -0.9595 +vn -0.1392 0.2456 -0.9593 +vn 0.1026 0.9910 -0.0855 +vn 0.1029 0.9910 -0.0854 +vn 0.1020 0.9911 -0.0858 +vn -0.8287 0.4192 0.3708 +vn -0.8288 0.4193 0.3706 +vn -0.8286 0.4194 0.3708 +vn 0.8137 0.5119 0.2753 +vn 0.8138 0.5113 0.2764 +vn 0.8137 0.5118 0.2756 +vn -0.3094 -0.9156 -0.2567 +vn -0.3093 -0.9158 -0.2561 +vn -0.3095 -0.9156 -0.2568 +vn 0.3872 -0.5922 0.7066 +vn 0.3865 -0.5927 0.7066 +vn 0.3860 -0.5935 0.7063 +vn -0.2118 -0.4456 0.8698 +vn -0.6224 -0.0586 0.7805 +vn -0.6225 -0.0582 0.7805 +vn -0.3113 -0.9293 -0.1988 +vn -0.0037 -0.4846 0.8747 +vn -0.0036 -0.4846 0.8747 +vn -0.9913 0.1069 -0.0772 +vn -0.9913 0.1067 -0.0769 +vn -0.9913 0.1069 -0.0774 +vn -0.4166 -0.7465 -0.5188 +vn -0.4170 -0.7462 -0.5190 +vn -0.4167 -0.7464 -0.5189 +vn -0.6432 -0.5912 -0.4866 +vn -0.3895 0.8974 0.2072 +vn -0.3894 0.8975 0.2069 +vn 0.7069 0.4303 -0.5614 +vn 0.7069 0.4303 -0.5613 +vn 0.7535 -0.2797 0.5951 +vn 0.7535 -0.2799 0.5950 +vn 0.0573 0.0793 0.9952 +vn -0.8111 0.4548 0.3678 +vn -0.8117 0.4538 0.3676 +vn -0.8124 0.4524 0.3679 +vn -0.3109 0.1250 0.9422 +vn -0.3105 0.1251 0.9423 +vn -0.3106 0.1251 0.9423 +vn 0.4718 -0.4573 0.7538 +vn 0.4719 -0.4573 0.7538 +vn -0.8905 -0.2526 -0.3784 +vn -0.8905 -0.2524 -0.3785 +vn -0.8905 -0.2525 -0.3785 +vn -0.2462 -0.4069 0.8797 +vn -0.2458 -0.4070 0.8797 +vn -0.2460 -0.4071 0.8796 +vn -0.3777 -0.6892 0.6183 +vn -0.3776 -0.6896 0.6180 +vn -0.3775 -0.6897 0.6179 +vn 0.8611 0.4505 -0.2356 +vn 0.8612 0.4504 -0.2358 +vn -0.7372 -0.6697 -0.0898 +vn -0.7373 -0.6696 -0.0897 +vn -0.7374 -0.6695 -0.0894 +vn 0.2393 -0.4903 -0.8381 +vn 0.2393 -0.4900 -0.8382 +vn 0.2393 -0.4902 -0.8381 +vn 0.3538 -0.9326 0.0708 +vn 0.3539 -0.9327 0.0701 +vn 0.2987 0.0072 -0.9543 +vn 0.2986 0.0073 -0.9543 +vn 0.3425 -0.7749 0.5313 +vn 0.0733 -0.8467 0.5271 +vn 0.0734 -0.8467 0.5270 +vn 0.0734 -0.8467 0.5269 +vn 0.9060 -0.4128 0.0936 +vn 0.7480 0.3391 0.5705 +vn 0.7479 0.3390 0.5707 +vn -0.2953 -0.3681 0.8816 +vn -0.2956 -0.3680 0.8816 +vn -0.2954 -0.3680 0.8816 +vn 0.7053 -0.6923 -0.1527 +vn 0.7056 -0.6919 -0.1526 +vn 0.4724 0.7989 -0.3723 +vn 0.4732 0.7988 -0.3715 +vn 0.4727 0.7988 -0.3721 +vn -0.3867 0.1503 0.9099 +vn -0.3865 0.1500 0.9100 +vn -0.3865 0.1502 0.9100 +vn 0.1781 0.9840 -0.0054 +vn 0.1779 0.9840 -0.0053 +vn -0.2022 -0.8884 0.4122 +vn -0.2020 -0.8885 0.4121 +vn -0.2018 -0.8886 0.4118 +vn 0.1525 -0.7861 0.5990 +vn 0.1523 -0.7864 0.5987 +vn 0.1523 -0.7863 0.5987 +vn -0.0736 -0.7889 0.6101 +vn -0.0734 -0.7890 0.6100 +vn -0.7283 0.2625 0.6330 +vn -0.7282 0.2623 0.6332 +vn -0.7283 0.2621 0.6331 +vn 0.8971 0.4261 0.1171 +vn 0.8972 0.4260 0.1168 +vn 0.8971 0.4260 0.1172 +vn 0.7333 -0.6038 -0.3125 +vn 0.7332 -0.6039 -0.3125 +vn 0.0047 -0.7159 -0.6982 +vn 0.0046 -0.7161 -0.6980 +vn 0.0047 -0.7157 -0.6984 +vn 0.3320 -0.3185 -0.8879 +vn 0.3323 -0.3185 -0.8878 +vn 0.3313 -0.3185 -0.8881 +vn -0.2986 0.8586 0.4167 +vn 0.9533 0.2355 0.1889 +vn 0.9532 0.2359 0.1891 +vn 0.9531 0.2358 0.1895 +vn 0.3483 0.5025 -0.7913 +vn 0.3484 0.5023 -0.7914 +vn 0.3483 0.5026 -0.7913 +vn 0.3204 0.8921 -0.3185 +vn 0.3204 0.8922 -0.3183 +vn 0.3201 0.8925 -0.3177 +vn -0.1562 0.9617 -0.2251 +vn -0.1564 0.9617 -0.2250 +vn 0.4264 -0.8810 0.2051 +vn 0.4258 -0.8815 0.2040 +vn 0.4258 -0.8817 0.2033 +vn 0.7203 -0.4265 -0.5470 +vn 0.7203 -0.4269 -0.5467 +vn 0.7203 -0.4267 -0.5470 +vn -0.4042 -0.9073 -0.1160 +vn -0.4046 -0.9072 -0.1152 +vn -0.4051 -0.9070 -0.1147 +vn -0.2729 0.8248 -0.4952 +vn -0.2728 0.8246 -0.4956 +vn -0.2728 0.8247 -0.4954 +vn -0.4016 -0.2289 -0.8867 +vn 0.6406 0.6356 0.4309 +vn 0.1350 0.9692 0.2059 +vn 0.1354 0.9691 0.2060 +vn 0.1356 0.9691 0.2060 +vn 0.3139 -0.9367 0.1550 +vn 0.3131 -0.9370 0.1552 +vn 0.3129 -0.9370 0.1552 +vn 0.6763 -0.2579 0.6900 +vn 0.4097 0.9086 -0.0816 +vn 0.2133 0.8784 -0.4277 +vn 0.0531 0.9970 0.0570 +vn 0.0530 0.9970 0.0572 +vn -0.5926 0.0714 0.8024 +vn -0.5918 0.0725 0.8028 +vn -0.5929 0.0713 0.8021 +vn 0.6734 -0.3503 -0.6510 +vn 0.6730 -0.3500 -0.6516 +vn 0.7907 -0.5816 0.1911 +vn 0.7907 -0.5818 0.1907 +vn 0.7908 -0.5815 0.1909 +vn 0.6258 0.7173 -0.3064 +vn -0.1748 0.9846 0.0040 +vn -0.1749 0.9846 0.0042 +vn -0.5535 0.6343 -0.5397 +vn -0.5535 0.6344 -0.5396 +vn 0.0125 0.8997 -0.4364 +vn 0.0121 0.8999 -0.4360 +vn -0.9315 -0.3514 0.0938 +vn -0.9311 -0.3525 0.0942 +vn -0.9312 -0.3522 0.0942 +vn -0.1867 0.1726 -0.9671 +vn -0.1866 0.1726 -0.9672 +vn -0.1856 0.1726 -0.9673 +vn 0.7907 0.5746 -0.2115 +vn 0.4969 0.3410 -0.7980 +vn 0.4968 0.3413 -0.7980 +vn 0.4967 0.3415 -0.7979 +vn 0.4460 0.7001 -0.5577 +vn 0.4457 0.6999 -0.5581 +vn 0.4458 0.6999 -0.5581 +vn 0.2946 0.8584 -0.4200 +vn 0.2932 0.8590 -0.4198 +vn 0.2930 0.8591 -0.4196 +vn -0.9575 -0.0846 -0.2757 +vn -0.9575 -0.0844 -0.2758 +vn -0.7211 -0.6700 -0.1766 +vn -0.7208 -0.6702 -0.1767 +vn 0.7467 -0.1862 0.6386 +vn 0.6746 -0.6990 0.2372 +vn 0.6744 -0.6993 0.2369 +vn 0.6744 -0.6992 0.2370 +vn 0.2892 -0.9542 0.0769 +vn 0.2889 -0.9543 0.0764 +vn 0.2891 -0.9542 0.0765 +vn 0.0923 -0.9951 -0.0347 +vn 0.0921 -0.9952 -0.0343 +vn 0.0923 -0.9951 -0.0351 +vn -0.1837 0.4216 -0.8880 +vn -0.1838 0.4216 -0.8880 +vn 0.2941 -0.9176 0.2673 +vn 0.2944 -0.9175 0.2675 +vn 0.8156 -0.4353 -0.3812 +vn 0.8156 -0.4357 -0.3807 +vn 0.8155 -0.4351 -0.3818 +vn -0.7595 0.3178 -0.5676 +vn -0.6086 -0.7235 -0.3258 +vn -0.6089 -0.7232 -0.3260 +vn -0.6290 -0.7538 -0.1902 +vn -0.6292 -0.7537 -0.1901 +vn -0.6291 -0.7537 -0.1903 +vn -0.4822 -0.8658 -0.1333 +vn -0.4823 -0.8658 -0.1332 +vn 0.5024 -0.4858 -0.7152 +vn 0.5020 -0.4861 -0.7153 +vn 0.5020 -0.4863 -0.7152 +vn 0.1217 0.0826 -0.9891 +vn 0.1220 0.0825 -0.9891 +vn 0.1228 0.0827 -0.9890 +vn 0.6553 -0.7265 -0.2067 +vn 0.6551 -0.7266 -0.2069 +vn 0.6552 -0.7266 -0.2068 +vn -0.5657 -0.7693 -0.2968 +vn -0.5657 -0.7693 -0.2969 +vn 0.4957 -0.5377 0.6820 +vn 0.4962 -0.5380 0.6814 +vn 0.4956 -0.5378 0.6821 +vn -0.2307 -0.0670 0.9707 +vn -0.2296 -0.0675 0.9709 +vn -0.2303 -0.0671 0.9708 +vn 0.1973 0.8090 0.5538 +vn 0.1973 0.8089 0.5538 +vn -0.1062 0.9297 -0.3527 +vn -0.1062 0.9295 -0.3532 +vn -0.1062 0.9297 -0.3528 +vn -0.1335 0.9878 0.0804 +vn -0.1335 0.9878 0.0805 +vn -0.1334 0.9878 0.0806 +vn 0.3080 -0.9449 0.1109 +vn 0.3080 -0.9450 0.1103 +vn 0.3080 -0.9449 0.1105 +vn -0.7499 -0.3172 0.5806 +vn -0.7511 -0.3185 0.5782 +vn -0.7508 -0.3179 0.5791 +vn 0.7946 0.4782 0.3741 +vn 0.7945 0.4785 0.3739 +vn 0.7946 0.4781 0.3741 +vn -0.9692 0.0665 -0.2370 +vn -0.9693 0.0666 -0.2369 +vn -0.9692 0.0664 -0.2370 +vn 0.7097 -0.6067 0.3581 +vn 0.7098 -0.6070 0.3573 +vn 0.7094 -0.6066 0.3588 +vn -0.4303 -0.3459 0.8338 +vn -0.4308 -0.3456 0.8337 +vn -0.4307 -0.3458 0.8336 +vn -0.0586 -0.8541 0.5169 +vn -0.0583 -0.8547 0.5159 +vn -0.0588 -0.8545 0.5161 +vn 0.2852 -0.3412 -0.8957 +vn 0.2864 -0.3424 -0.8949 +vn 0.2845 -0.3409 -0.8960 +vn -0.6869 -0.7263 0.0258 +vn -0.6873 -0.7260 0.0239 +vn -0.6862 -0.7269 0.0277 +vn 0.6160 -0.7196 0.3206 +vn 0.6158 -0.7197 0.3207 +vn 0.6159 -0.7196 0.3207 +vn -0.1402 0.2322 0.9625 +vn -0.8323 0.4085 0.3748 +vn -0.8327 0.4078 0.3745 +vn -0.8322 0.4086 0.3748 +vn -0.0734 0.8052 -0.5885 +vn -0.0742 0.8048 -0.5889 +vn -0.0738 0.8049 -0.5888 +vn -0.5277 -0.7392 -0.4184 +vn -0.5276 -0.7394 -0.4183 +vn 0.8280 0.0461 0.5589 +vn 0.8280 0.0461 0.5588 +vn -0.6013 -0.7772 -0.1855 +vn -0.0549 -0.2872 0.9563 +vn -0.0549 -0.2871 0.9563 +vn 0.2028 0.9786 0.0346 +vn 0.2028 0.9786 0.0345 +vn 0.1473 0.9440 0.2953 +vn 0.1479 0.9439 0.2953 +vn 0.1475 0.9440 0.2952 +vn 0.3527 0.8095 -0.4693 +vn 0.3521 0.8096 -0.4695 +vn 0.5009 -0.8655 -0.0109 +vn 0.5005 -0.8657 -0.0107 +vn -0.6044 -0.7544 -0.2560 +vn -0.6049 -0.7535 -0.2574 +vn -0.6037 -0.7552 -0.2555 +vn -0.6787 -0.7119 -0.1806 +vn -0.6787 -0.7119 -0.1805 +vn -0.6787 -0.7119 -0.1803 +vn -0.0919 0.9814 0.1688 +vn 0.9278 0.1440 0.3441 +vn 0.9277 0.1441 0.3444 +vn 0.9277 0.1442 0.3444 +vn -0.2662 -0.7182 0.6429 +vn -0.4884 -0.7338 -0.4723 +vn -0.4887 -0.7337 -0.4721 +vn -0.4886 -0.7337 -0.4722 +vn -0.0435 -0.1575 0.9866 +vn -0.0445 -0.1580 0.9864 +vn -0.0441 -0.1580 0.9865 +vn -0.6096 -0.7843 -0.1152 +vn -0.6095 -0.7843 -0.1156 +vn -0.6098 -0.7842 -0.1150 +vn -0.8289 -0.5151 0.2181 +vn 0.2803 -0.0058 -0.9599 +vn 0.2803 -0.0052 -0.9599 +vn 0.2804 -0.0063 -0.9599 +vn -0.0169 0.9999 -0.0007 +vn -0.0171 0.9999 -0.0008 +vn -0.0169 0.9999 -0.0006 +vn -0.5206 0.6477 -0.5563 +vn -0.5207 0.6477 -0.5562 +vn -0.5207 0.6477 -0.5563 +vn -0.4937 -0.8010 -0.3386 +vn 0.6764 0.5659 0.4714 +vn 0.6771 0.5649 0.4715 +vn 0.6770 0.5652 0.4714 +vn 0.0761 0.8129 -0.5774 +vn 0.0766 0.8128 -0.5775 +vn 0.0772 0.8129 -0.5773 +vn -0.4593 -0.4959 0.7370 +vn -0.4594 -0.4964 0.7366 +vn -0.4593 -0.4961 0.7368 +vn -0.4482 0.2648 0.8538 +vn -0.4479 0.2650 0.8539 +vn -0.4483 0.2647 0.8538 +vn -0.7547 -0.4044 -0.5166 +vn -0.7566 -0.4058 -0.5128 +vn -0.7555 -0.4057 -0.5145 +vn 0.5442 -0.6612 0.5164 +vn 0.5447 -0.6614 0.5156 +vn 0.5447 -0.6613 0.5157 +vn -0.1173 0.9646 -0.2361 +vn -0.1174 0.9646 -0.2362 +vn -0.1171 0.9647 -0.2360 +vn 0.5239 -0.8513 0.0296 +vn 0.5242 -0.8511 0.0293 +vn 0.5238 -0.8513 0.0297 +vn 0.5170 0.8505 -0.0968 +vn 0.5158 0.8511 -0.0977 +vn 0.5163 0.8509 -0.0971 +vn 0.8303 -0.4660 0.3058 +vn -0.0780 -0.3563 0.9311 +vn -0.0777 -0.3564 0.9311 +vn -0.0776 -0.3560 0.9313 +vn 0.5564 -0.8256 -0.0941 +vn 0.5565 -0.8255 -0.0942 +vn 0.5563 -0.8257 -0.0939 +vn 0.2916 0.4611 -0.8381 +vn 0.2915 0.4610 -0.8382 +vn 0.2917 0.4609 -0.8382 +vn 0.5161 0.6944 0.5013 +vn 0.5160 0.6945 0.5014 +vn -0.4865 -0.7503 0.4476 +vn -0.4265 -0.8356 -0.3463 +vn -0.4264 -0.8356 -0.3463 +vn -0.4266 -0.8355 -0.3462 +vn -0.7978 0.5974 0.0816 +vn -0.7973 0.5978 0.0834 +vn -0.7976 0.5975 0.0828 +vn 0.1047 -0.1775 0.9785 +vn -0.1309 0.1904 0.9729 +vn -0.1302 0.1896 0.9732 +vn -0.1303 0.1902 0.9731 +vn 0.0844 -0.6717 0.7360 +vn 0.0844 -0.6718 0.7359 +vn 0.0844 -0.6715 0.7361 +vn -0.3619 0.9122 0.1922 +vn -0.3619 0.9122 0.1923 +vn -0.3619 0.9121 0.1925 +vn 0.0989 0.4704 0.8769 +vn 0.0985 0.4709 0.8767 +vn 0.0984 0.4710 0.8766 +vn 0.0175 0.6675 -0.7444 +vn 0.0178 0.6676 -0.7443 +vn 0.0174 0.6674 -0.7445 +vn 0.5487 -0.8234 -0.1446 +vn 0.5486 -0.8235 -0.1449 +vn 0.5486 -0.8234 -0.1448 +vn -0.4814 0.2534 -0.8390 +vn 0.6875 0.1655 -0.7071 +vn 0.6873 0.1651 -0.7073 +vn 0.6874 0.1652 -0.7073 +vn 0.4544 0.8680 -0.2001 +vn 0.4539 0.8681 -0.2007 +vn 0.4542 0.8681 -0.2004 +vn 0.5247 -0.7931 -0.3093 +vn 0.7867 0.3012 0.5389 +vn 0.7867 0.3013 0.5388 +vn 0.7868 0.3015 0.5386 +vn -0.1541 -0.3336 0.9300 +vn -0.1540 -0.3336 0.9301 +vn -0.1538 -0.3336 0.9301 +vn 0.6119 -0.7748 0.1588 +vn 0.6118 -0.7750 0.1580 +vn 0.6121 -0.7748 0.1584 +vn 0.3689 -0.3827 0.8470 +vn 0.3689 -0.3825 0.8471 +vn 0.3687 -0.3829 0.8470 +vn 0.0611 0.6050 0.7939 +vn 0.0610 0.6053 0.7937 +vn 0.0611 0.6048 0.7941 +vn 0.1702 0.8846 0.4342 +vn 0.1699 0.8847 0.4342 +vn 0.1113 0.8431 0.5261 +vn 0.1113 0.8432 0.5260 +vn 0.1115 0.8428 0.5265 +vn 0.3540 -0.9260 0.1314 +vn 0.3543 -0.9259 0.1311 +vn 0.3541 -0.9260 0.1310 +vn -0.1099 -0.0953 -0.9894 +vn 0.0615 -0.4764 -0.8771 +vn 0.0616 -0.4758 -0.8774 +vn 0.0615 -0.4765 -0.8770 +vn 0.1724 0.7988 -0.5763 +vn 0.1721 0.7989 -0.5763 +vn 0.3527 -0.8039 0.4789 +vn 0.3528 -0.8040 0.4787 +vn 0.3526 -0.8040 0.4788 +vn -0.6257 0.6593 -0.4169 +vn -0.6258 0.6592 -0.4169 +vn -0.6259 0.6592 -0.4168 +vn -0.6759 -0.6033 0.4233 +vn -0.6761 -0.6031 0.4233 +vn -0.6760 -0.6032 0.4233 +vn 0.3245 -0.2667 0.9075 +vn 0.3240 -0.2666 0.9077 +vn 0.3234 -0.2664 0.9080 +vn 0.2210 -0.8942 0.3893 +vn -0.8707 0.2724 0.4095 +vn -0.8708 0.2727 0.4091 +vn -0.8707 0.2718 0.4100 +vn 0.1638 -0.0788 -0.9833 +vn 0.5856 -0.0529 0.8089 +vn 0.5856 -0.0531 0.8088 +vn 0.5856 -0.0531 0.8089 +vn -0.0940 -0.4425 -0.8918 +vn -0.0942 -0.4426 -0.8918 +vn -0.0940 -0.4426 -0.8918 +vn 0.5693 -0.6760 0.4679 +vn 0.5692 -0.6759 0.4681 +vn 0.7486 -0.1051 0.6546 +vn 0.7489 -0.1057 0.6542 +vn 0.7489 -0.1062 0.6541 +vn 0.5046 -0.7259 -0.4673 +vn 0.5049 -0.7261 -0.4668 +vn 0.6153 -0.1687 -0.7701 +vn 0.6153 -0.1686 -0.7700 +vn -0.3107 0.6065 -0.7318 +vn -0.3095 0.6069 -0.7320 +vn -0.3113 0.6063 -0.7318 +vn 0.7811 -0.5168 0.3504 +vn 0.7812 -0.5167 0.3505 +vn 0.7812 -0.5168 0.3503 +vn -0.2957 0.5238 0.7989 +vn -0.2958 0.5239 0.7988 +vn 0.0027 0.6357 -0.7719 +vn 0.0039 0.6361 -0.7716 +vn 0.0021 0.6347 -0.7727 +vn -0.8314 0.3696 -0.4149 +vn -0.2453 0.5414 -0.8042 +vn 0.5395 0.8027 -0.2541 +vn 0.5396 0.8023 -0.2552 +vn 0.5400 0.8030 -0.2523 +vn 0.8708 -0.0357 0.4903 +vn 0.8701 -0.0361 0.4915 +vn 0.8705 -0.0360 0.4909 +vn 0.9457 0.1355 0.2955 +vn 0.9457 0.1349 0.2956 +vn -0.0453 0.6794 -0.7324 +vn -0.0457 0.6794 -0.7323 +vn -0.0456 0.6794 -0.7324 +vn 0.1132 -0.9485 0.2959 +vn 0.1134 -0.9485 0.2957 +vn 0.1131 -0.9486 0.2957 +vn -0.1265 0.9883 0.0848 +vn -0.1267 0.9883 0.0848 +vn -0.1266 0.9883 0.0848 +vn -0.7018 -0.6615 -0.2643 +vn -0.7017 -0.6617 -0.2642 +vn -0.7018 -0.6616 -0.2642 +vn -0.1170 -0.6944 -0.7100 +vn -0.1167 -0.6947 -0.7097 +vn -0.6188 -0.7730 -0.1398 +vn -0.6190 -0.7728 -0.1398 +vn -0.6193 -0.7726 -0.1397 +vn 0.2043 0.9140 -0.3506 +vn 0.2045 0.9140 -0.3505 +vn 0.2044 0.9140 -0.3505 +vn 0.7826 -0.6214 -0.0365 +vn -0.7212 -0.6921 -0.0290 +vn -0.7214 -0.6919 -0.0288 +vn 0.9379 0.2851 -0.1978 +vn 0.5511 -0.5772 0.6026 +vn 0.5509 -0.5773 0.6027 +vn 0.5510 -0.5773 0.6027 +vn -0.9956 0.0896 -0.0284 +vn -0.9956 0.0896 -0.0287 +vn -0.9955 0.0897 -0.0290 +vn 0.7652 -0.0604 -0.6410 +vn 0.7657 -0.0610 -0.6403 +vn 0.7654 -0.0607 -0.6407 +vn 0.8396 0.4739 -0.2657 +vn 0.8398 0.4735 -0.2655 +vn 0.8393 0.4741 -0.2660 +vn 0.8451 0.3702 -0.3857 +vn 0.0104 0.4692 0.8830 +vn 0.0106 0.4691 0.8831 +vn 0.0105 0.4691 0.8831 +vn 0.8186 0.5060 -0.2717 +vn 0.8183 0.5062 -0.2723 +vn 0.8186 0.5060 -0.2718 +vn -0.9287 0.3706 -0.0148 +vn -0.9287 0.3705 -0.0149 +vn -0.9285 0.3710 -0.0145 +vn 0.3207 0.9447 0.0684 +vn 0.3207 0.9447 0.0681 +vn 0.3206 0.9447 0.0686 +vn 0.6745 0.7098 -0.2029 +vn 0.6744 0.7099 -0.2030 +vn 0.6743 0.7101 -0.2030 +vn -0.2068 -0.7662 0.6084 +vn -0.2071 -0.7662 0.6083 +vn -0.0025 -0.6683 -0.7439 +vn -0.1153 -0.7971 0.5928 +vn -0.1154 -0.7971 0.5927 +vn 0.0950 0.7271 -0.6799 +vn 0.0951 0.7263 -0.6808 +vn 0.0948 0.7267 -0.6804 +vn 0.0797 0.9933 -0.0838 +vn 0.0797 0.9933 -0.0837 +vn -0.0444 -0.9525 0.3014 +vn -0.0436 -0.9519 0.3033 +vn -0.0445 -0.9524 0.3016 +vn 0.8841 0.2564 0.3906 +vn 0.8840 0.2569 0.3906 +vn 0.8841 0.2560 0.3909 +vn 0.8290 -0.0000 -0.5592 +vn 0.8289 0.0003 -0.5593 +vn 0.8291 -0.0001 -0.5591 +vn 0.3964 -0.5110 0.7627 +vn 0.3963 -0.5109 0.7629 +vn 0.3963 -0.5109 0.7628 +vn 0.7002 -0.2248 0.6776 +vn 0.7001 -0.2249 0.6778 +vn 0.7001 -0.2250 0.6777 +vn -0.4678 -0.6404 -0.6091 +vn 0.7087 -0.2214 0.6699 +vn 0.7087 -0.2213 0.6699 +vn 0.7082 -0.2218 0.6703 +vn 0.5668 -0.2416 0.7876 +vn 0.3863 0.5575 0.7348 +vn 0.3862 0.5579 0.7346 +vn 0.3862 0.5577 0.7347 +vn 0.9763 0.0043 0.2166 +vn 0.9762 0.0015 0.2168 +vn 0.9763 0.0003 0.2164 +vn -0.8086 0.5532 -0.2005 +vn -0.8084 0.5534 -0.2008 +vn -0.8085 0.5532 -0.2007 +vn -0.3561 0.1865 0.9156 +vn -0.3560 0.1865 0.9157 +vn -0.3559 0.1864 0.9157 +vn -0.1636 -0.1417 0.9763 +vn -0.1635 -0.1415 0.9763 +vn -0.1637 -0.1419 0.9763 +vn -0.8253 0.5010 0.2605 +vn -0.8253 0.5011 0.2605 +vn -0.8252 0.5010 0.2607 +vn -0.3742 -0.5167 0.7701 +vn -0.3741 -0.5166 0.7702 +vn -0.3744 -0.5169 0.7699 +vn -0.5472 -0.6638 -0.5099 +vn -0.5469 -0.6642 -0.5097 +vn -0.5471 -0.6640 -0.5097 +vn 0.2627 0.6452 0.7175 +vn 0.2620 0.6398 0.7225 +vn 0.2637 0.6423 0.7196 +vn -0.0768 -0.6447 0.7606 +vn -0.0766 -0.6448 0.7605 +vn -0.0767 -0.6446 0.7607 +vn 0.3492 -0.3626 -0.8641 +vn 0.3487 -0.3624 -0.8643 +vn 0.7214 0.6098 0.3282 +vn -0.7598 -0.5779 -0.2979 +vn -0.0856 0.8436 -0.5300 +vn -0.0855 0.8437 -0.5299 +vn -0.9153 -0.4013 0.0355 +vn -0.9152 -0.4015 0.0356 +vn -0.3125 0.8524 0.4193 +vn -0.1867 0.8193 0.5422 +vn -0.0841 -0.7934 -0.6029 +vn 0.1199 -0.5259 0.8421 +vn 0.1185 -0.5256 0.8424 +vn 0.1167 -0.5243 0.8435 +vn 0.2409 0.9607 -0.1381 +vn 0.2407 0.9607 -0.1380 +vn -0.4204 0.4867 -0.7658 +vn -0.4193 0.4876 -0.7658 +vn -0.4199 0.4873 -0.7657 +vn 0.7117 -0.5882 -0.3840 +vn 0.7126 -0.5871 -0.3840 +vn 0.7122 -0.5875 -0.3841 +vn -0.6709 0.3302 -0.6640 +vn -0.2007 -0.6925 -0.6929 +vn -0.2005 -0.6924 -0.6931 +vn -0.2010 -0.6925 -0.6929 +vn 0.6539 0.0794 0.7524 +vn 0.6541 0.0794 0.7523 +vn 0.9597 -0.0580 -0.2749 +vn 0.9597 -0.0580 -0.2750 +vn 0.9019 -0.4215 0.0946 +vn 0.9020 -0.4213 0.0947 +vn 0.6961 -0.4971 -0.5180 +vn 0.6963 -0.4970 -0.5178 +vn 0.6960 -0.4971 -0.5181 +vn -0.6800 -0.7320 -0.0425 +vn -0.6805 -0.7315 -0.0422 +vn -0.6802 -0.7318 -0.0423 +vn 0.1623 -0.0805 -0.9835 +vn 0.9566 0.0177 0.2910 +vn 0.9564 0.0181 0.2914 +vn 0.9567 0.0172 0.2906 +vn 0.0391 -0.6389 0.7683 +vn 0.6211 0.3623 -0.6949 +vn 0.6210 0.3617 -0.6953 +vn 0.6209 0.3632 -0.6947 +vn 0.7479 -0.4890 -0.4490 +vn 0.7476 -0.4891 -0.4493 +vn 0.7482 -0.4890 -0.4485 +vn -0.3206 0.9117 0.2569 +vn -0.6405 0.5797 0.5036 +vn -0.6407 0.5798 0.5033 +vn -0.6408 0.5796 0.5035 +vn 0.7744 0.5955 0.2138 +vn 0.7749 0.5948 0.2139 +vn 0.7748 0.5949 0.2139 +vn -0.5955 -0.6693 0.4443 +vn -0.5955 -0.6694 0.4441 +vn -0.4457 -0.7457 -0.4953 +vn -0.4452 -0.7468 -0.4941 +vn -0.4457 -0.7456 -0.4954 +vn 0.3662 0.9284 -0.0638 +vn 0.3659 0.9285 -0.0636 +vn 0.0374 0.9322 -0.3600 +vn -0.2764 0.9540 -0.1160 +vn -0.6948 -0.7145 0.0821 +vn -0.6947 -0.7146 0.0819 +vn 0.9500 0.0722 -0.3037 +vn 0.9503 0.0725 -0.3029 +vn 0.9501 0.0723 -0.3034 +vn 0.5632 0.5993 -0.5689 +vn -0.2439 -0.9690 -0.0386 +vn 0.0500 0.4617 -0.8856 +vn 0.0501 0.4619 -0.8855 +vn 0.0493 0.4619 -0.8856 +vn -0.3068 -0.9518 0.0021 +vn -0.3069 -0.9518 0.0018 +vn -0.3069 -0.9517 0.0021 +vn 0.7021 -0.4658 -0.5385 +vn 0.7022 -0.4657 -0.5387 +vn 0.7021 -0.4659 -0.5385 +vn 0.9694 0.2318 0.0804 +vn -0.3578 0.8781 0.3177 +vn -0.3579 0.8781 0.3177 +vn -0.3580 0.8780 0.3177 +vn 0.6300 -0.4863 -0.6055 +vn 0.6301 -0.4863 -0.6054 +vn 0.6299 -0.4862 -0.6056 +vn 0.8846 0.0690 0.4612 +vn 0.8846 0.0692 0.4611 +vn 0.8847 0.0701 0.4609 +vn -0.1631 -0.5115 -0.8437 +vn -0.1632 -0.5116 -0.8436 +vn -0.1631 -0.5117 -0.8436 +vn -0.3184 -0.9478 0.0196 +vn 0.8806 0.4529 0.1393 +vn 0.8805 0.4530 0.1395 +vn 0.8806 0.4529 0.1394 +vn 0.9078 0.2705 0.3205 +vn -0.1619 0.2893 0.9434 +vn -0.1638 0.2888 0.9433 +vn -0.1630 0.2894 0.9432 +vn 0.5035 0.7456 0.4365 +vn 0.5036 0.7457 0.4362 +vn 0.5035 0.7456 0.4366 +vn -0.9610 0.1678 0.2199 +vn -0.9609 0.1680 0.2199 +vn -0.9610 0.1677 0.2199 +vn 0.8081 -0.4259 -0.4070 +vn 0.8080 -0.4265 -0.4065 +vn 0.0778 -0.0688 0.9946 +vn 0.0780 -0.0689 0.9946 +vn 0.0779 -0.0690 0.9946 +vn 0.4445 0.3427 -0.8277 +vn 0.4443 0.3429 -0.8276 +vn -0.0041 0.0179 0.9998 +vn -0.0035 0.0183 0.9998 +vn -0.0041 0.0178 0.9998 +vn -0.5207 -0.6012 -0.6062 +vn -0.5207 -0.6015 -0.6058 +vn -0.6549 -0.7497 -0.0953 +vn -0.6549 -0.7497 -0.0951 +vn 0.3402 -0.4753 -0.8114 +vn 0.3404 -0.4754 -0.8113 +vn 0.3360 -0.8891 0.3108 +vn 0.3361 -0.8891 0.3108 +vn 0.3362 -0.8891 0.3105 +vn 0.6942 0.6827 0.2280 +vn 0.6942 0.6827 0.2279 +vn 0.6943 0.6828 0.2277 +vn 0.6642 -0.7268 -0.1747 +vn 0.5053 0.8627 0.0194 +vn 0.5054 0.8627 0.0193 +vn -0.1175 0.0987 -0.9882 +vn -0.1177 0.0980 -0.9882 +vn -0.1177 0.0983 -0.9882 +vn 0.9231 0.3342 0.1900 +vn 0.9230 0.3344 0.1904 +vn 0.5001 0.2892 -0.8163 +vn 0.5007 0.2884 -0.8162 +vn 0.4996 0.2894 -0.8165 +vn -0.8988 0.1665 0.4056 +vn -0.8984 0.1673 0.4061 +vn -0.8983 0.1674 0.4062 +vn -0.4458 0.2558 -0.8578 +vn -0.4071 -0.8614 -0.3038 +vn 0.5340 -0.7767 0.3340 +vn 0.5347 -0.7764 0.3337 +vn -0.3995 -0.7009 -0.5909 +vn -0.3994 -0.7009 -0.5910 +vn -0.3995 -0.7008 -0.5910 +vn -0.0262 -0.7254 -0.6879 +vn -0.0259 -0.7253 -0.6879 +vn -0.0265 -0.7253 -0.6880 +vn 0.3205 0.9470 0.0237 +vn 0.3207 0.9469 0.0236 +vn 0.3202 0.9471 0.0237 +vn -0.7226 0.3009 0.6224 +vn -0.7226 0.3007 0.6225 +vn -0.7227 0.3006 0.6224 +vn -0.8600 0.1600 -0.4845 +vn -0.9621 0.2689 0.0464 +vn -0.9620 0.2691 0.0464 +vn -0.9619 0.2694 0.0463 +vn -0.0204 0.8531 -0.5214 +vn -0.0205 0.8531 -0.5214 +vn -0.9368 0.3081 0.1659 +vn -0.9369 0.3076 0.1659 +vn 0.6403 -0.7591 0.1176 +vn 0.6405 -0.7589 0.1178 +vn 0.6402 -0.7592 0.1175 +vn 0.5920 -0.6807 0.4316 +vn 0.5921 -0.6805 0.4316 +vn 0.8933 -0.1758 0.4137 +vn 0.8931 -0.1762 0.4139 +vn -0.7151 0.4941 -0.4945 +vn -0.7214 -0.6191 0.3103 +vn -0.7213 -0.6192 0.3103 +vn -0.7212 -0.6192 0.3105 +vn -0.9988 -0.0268 0.0416 +vn -0.9988 -0.0243 0.0426 +vn -0.9986 -0.0312 0.0416 +vn 0.7225 -0.6535 0.2255 +vn 0.7232 -0.6528 0.2255 +vn 0.7241 -0.6520 0.2249 +vn 0.6561 -0.2589 -0.7089 +vn 0.6562 -0.2589 -0.7088 +vn -0.5379 -0.7382 -0.4071 +vn 0.5960 -0.6566 0.4623 +vn 0.5959 -0.6569 0.4620 +vn 0.5958 -0.6570 0.4619 +vn -0.4363 0.8955 0.0882 +vn -0.4363 0.8953 0.0896 +vn -0.4364 0.8953 0.0891 +vn -0.2855 -0.0035 -0.9584 +vn -0.2854 -0.0035 -0.9584 +vn 0.6996 -0.6094 0.3731 +vn 0.6995 -0.6095 0.3731 +vn 0.5378 0.2784 0.7958 +vn 0.5375 0.2780 0.7961 +vn 0.5372 0.2775 0.7965 +vn -0.3532 0.9113 0.2115 +vn -0.3532 0.9114 0.2113 +vn -0.9197 0.3902 -0.0424 +vn -0.9202 0.3893 -0.0418 +vn -0.9202 0.3892 -0.0417 +vn -0.5288 -0.7288 -0.4350 +vn 0.2241 0.1923 -0.9554 +vn 0.5310 -0.8138 0.2360 +vn 0.5309 -0.8140 0.2358 +vn 0.5305 -0.8142 0.2357 +vn -0.5596 -0.8073 -0.1874 +vn -0.5597 -0.8073 -0.1874 +vn 0.7095 -0.5720 0.4116 +vn 0.7095 -0.5720 0.4115 +vn 0.7094 -0.5720 0.4117 +vn -0.1961 0.8668 -0.4585 +vn -0.1964 0.8670 -0.4580 +vn -0.1962 0.8669 -0.4582 +vn 0.2702 0.1479 -0.9514 +vn 0.2701 0.1478 -0.9514 +vn 0.2703 0.1477 -0.9514 +vn 0.3651 0.8005 -0.4753 +vn 0.6652 -0.1300 0.7353 +vn -0.4289 0.2199 0.8762 +vn -0.4290 0.2200 0.8761 +vn -0.4290 0.2201 0.8761 +vn 0.0938 0.9593 -0.2665 +vn 0.0934 0.9593 -0.2665 +vn 0.0932 0.9593 -0.2666 +vn -0.6709 -0.7381 -0.0711 +vn -0.6706 -0.7384 -0.0712 +vn -0.6708 -0.7382 -0.0711 +vn 0.6710 -0.5885 0.4510 +vn -0.4989 -0.6529 0.5699 +vn -0.4988 -0.6531 0.5698 +vn -0.4991 -0.6526 0.5701 +vn 0.4648 0.8227 -0.3274 +vn 0.4650 0.8226 -0.3273 +vn 0.4652 0.8225 -0.3273 +vn -0.5140 -0.8555 0.0629 +vn -0.5140 -0.8555 0.0632 +vn -0.2370 0.0213 -0.9713 +vn -0.2366 0.0215 -0.9714 +vn -0.6177 -0.7261 -0.3021 +vn -0.6178 -0.7261 -0.3019 +vn -0.5978 0.0922 -0.7964 +vn -0.5976 0.0921 -0.7965 +vn -0.5981 0.0922 -0.7961 +vn 0.0672 0.2065 0.9761 +vn 0.0669 0.2066 0.9761 +vn 0.0671 0.2066 0.9761 +vn 0.4850 0.5019 -0.7161 +vn 0.4823 0.5023 -0.7177 +vn 0.4837 0.5017 -0.7172 +vn 0.1395 0.9900 0.0192 +vn 0.1406 0.9899 0.0193 +vn 0.1392 0.9901 0.0192 +vn 0.4872 -0.8587 -0.1586 +vn 0.4870 -0.8589 -0.1584 +vn 0.4871 -0.8588 -0.1585 +vn 0.7901 0.5755 0.2109 +vn -0.5238 0.8065 -0.2743 +vn -0.5237 0.8066 -0.2741 +vn -0.3249 -0.9440 -0.0570 +vn -0.3256 -0.9438 -0.0567 +vn -0.3249 -0.9440 -0.0568 +vn 0.2177 -0.6575 0.7213 +vn -0.2544 -0.7414 0.6210 +vn -0.2540 -0.7419 0.6205 +vn 0.1225 0.5457 -0.8290 +vn 0.1227 0.5459 -0.8288 +vn 0.1226 0.5458 -0.8289 +vn -0.8357 0.2422 0.4930 +vn -0.8357 0.2423 0.4929 +vn -0.8357 0.2421 0.4930 +vn 0.5565 0.7625 -0.3300 +vn 0.5565 0.7625 -0.3301 +vn 0.5138 -0.8483 -0.1279 +vn 0.5137 -0.8484 -0.1278 +vn 0.5140 -0.8482 -0.1278 +vn 0.5574 -0.8299 -0.0245 +vn 0.5577 -0.8296 -0.0252 +vn 0.5574 -0.8299 -0.0250 +vn -0.5418 -0.7298 -0.4170 +vn -0.5415 -0.7299 -0.4171 +vn -0.5418 -0.7297 -0.4172 +vn 0.6449 -0.6796 -0.3497 +vn 0.6448 -0.6798 -0.3494 +vn 0.6453 -0.6797 -0.3487 +vn 0.9434 -0.1115 0.3124 +vn 0.9437 -0.1093 0.3123 +vn 0.9436 -0.1105 0.3122 +vn 0.3796 0.9232 0.0594 +vn 0.3797 0.9232 0.0594 +vn 0.3800 0.9231 0.0595 +vn -0.4062 0.6521 0.6401 +vn -0.4063 0.6519 0.6403 +vn -0.4070 0.6519 0.6398 +vn 0.3209 0.9404 0.1126 +vn 0.3208 0.9404 0.1126 +vn 0.0052 0.7517 -0.6595 +vn 0.0053 0.7516 -0.6596 +vn 0.0055 0.7515 -0.6597 +vn -0.8307 0.5165 0.2076 +vn -0.8308 0.5164 0.2075 +vn -0.8306 0.5166 0.2077 +vn -0.2887 -0.8763 0.3856 +vn -0.5885 -0.0898 0.8035 +vn -0.5878 -0.0899 0.8040 +vn -0.5880 -0.0900 0.8038 +vn 0.1462 0.3656 -0.9192 +vn -0.6017 0.7895 -0.1208 +vn -0.6016 0.7896 -0.1208 +vn 0.2116 -0.7804 0.5884 +vn 0.2118 -0.7804 0.5883 +vn -0.8600 0.4983 -0.1100 +vn -0.8599 0.4984 -0.1100 +vn -0.8603 0.4978 -0.1098 +vn -0.8216 -0.3297 -0.4650 +vn -0.8218 -0.3306 -0.4642 +vn -0.8217 -0.3306 -0.4642 +vn 0.1546 -0.9857 -0.0665 +vn 0.1538 -0.9859 -0.0660 +vn 0.1540 -0.9859 -0.0661 +vn -0.0243 0.9985 0.0482 +vn -0.0235 0.9986 0.0479 +vn -0.0247 0.9985 0.0484 +vn 0.7246 0.6099 0.3209 +vn 0.7239 0.6115 0.3194 +vn 0.7242 0.6094 0.3228 +vn 0.0451 0.8712 0.4888 +vn 0.0444 0.8718 0.4879 +vn 0.0458 0.8710 0.4892 +vn 0.5254 -0.8351 0.1633 +vn 0.5253 -0.8351 0.1634 +vn 0.5253 -0.8350 0.1636 +vn 0.5305 0.4216 -0.7354 +vn 0.5305 0.4214 -0.7355 +vn 0.5305 0.4217 -0.7353 +vn -0.5945 -0.6622 0.4562 +vn -0.5941 -0.6623 0.4565 +vn -0.5943 -0.6622 0.4564 +vn 0.3792 -0.7151 -0.5872 +vn 0.3791 -0.7152 -0.5872 +vn 0.3789 -0.7150 -0.5876 +vn -0.5955 -0.7887 0.1529 +vn -0.4622 -0.7839 -0.4147 +vn -0.2728 -0.9397 -0.2063 +vn -0.2753 -0.9394 -0.2045 +vn -0.2745 -0.9394 -0.2055 +vn 0.0794 -0.9222 -0.3784 +vn 0.0785 -0.9219 -0.3793 +vn 0.0791 -0.9221 -0.3788 +vn 0.9794 0.0724 -0.1887 +vn 0.9794 0.0722 -0.1886 +vn 0.9794 0.0724 -0.1884 +vn 0.6615 -0.7122 0.2347 +vn 0.6614 -0.7122 0.2351 +vn 0.6609 -0.7124 0.2360 +vn -0.1880 0.9379 -0.2914 +vn -0.1883 0.9377 -0.2920 +vn -0.1879 0.9380 -0.2913 +vn -0.5096 -0.2142 -0.8333 +vn -0.5104 -0.2136 -0.8330 +vn -0.5101 -0.2139 -0.8331 +vn 0.1751 0.9742 0.1422 +vn 0.1748 0.9743 0.1422 +vn 0.1750 0.9743 0.1421 +vn -0.4398 0.8362 -0.3276 +vn -0.0350 0.9988 -0.0334 +vn 0.2125 -0.6830 -0.6989 +vn 0.6754 0.5765 0.4598 +vn 0.6751 0.5767 0.4601 +vn -0.1267 -0.6954 -0.7074 +vn -0.1270 -0.6953 -0.7074 +vn -0.1260 -0.6958 -0.7071 +vn -0.0422 -0.0194 0.9989 +vn -0.0410 -0.0207 0.9989 +vn -0.0389 -0.0216 0.9990 +vn -0.6943 0.0240 -0.7193 +vn -0.6942 0.0241 -0.7194 +vn 0.5211 -0.6629 0.5376 +vn 0.5198 -0.6653 0.5360 +vn 0.5230 -0.6615 0.5375 +vn 0.4565 0.7661 -0.4524 +vn -0.6065 -0.7274 -0.3209 +vn -0.6065 -0.7276 -0.3206 +vn -0.6063 -0.7277 -0.3205 +vn -0.7013 0.4225 -0.5741 +vn -0.6850 0.4140 -0.5994 +vn -0.6852 0.4139 -0.5994 +vn -0.2300 -0.2770 0.9329 +vn -0.2300 -0.2769 0.9330 +vn -0.2301 -0.2772 0.9328 +vn -0.0721 0.9544 -0.2897 +vn -0.0724 0.9545 -0.2894 +vn -0.0721 0.9545 -0.2892 +vn -0.4379 -0.8899 0.1277 +vn -0.4380 -0.8899 0.1276 +vn 0.8421 -0.1380 -0.5213 +vn 0.8418 -0.1376 -0.5220 +vn 0.8415 -0.1374 -0.5225 +vn -0.4147 -0.9098 0.0147 +vn -0.4146 -0.9099 0.0146 +vn -0.7766 -0.6214 -0.1042 +vn -0.7766 -0.6213 -0.1044 +vn -0.7767 -0.6211 -0.1046 +vn 0.8052 0.5736 -0.1505 +vn 0.8051 0.5737 -0.1504 +vn 0.8050 0.5738 -0.1505 +vn -0.3361 0.9212 -0.1963 +vn -0.5964 -0.6606 -0.4559 +vn -0.5963 -0.6606 -0.4561 +vn -0.5965 -0.6605 -0.4560 +vn 0.6431 -0.6548 -0.3972 +vn 0.6426 -0.6553 -0.3971 +vn -0.0192 -0.2313 0.9727 +vn -0.0185 -0.2308 0.9728 +vn -0.0188 -0.2310 0.9728 +vn 0.0143 0.9811 -0.1931 +vn 0.0142 0.9810 -0.1934 +vn 0.0146 0.9810 -0.1932 +vn 0.0762 -0.9823 -0.1712 +vn 0.0762 -0.9822 -0.1715 +vn 0.0489 -0.9165 0.3971 +vn 0.0483 -0.9164 0.3973 +vn 0.0488 -0.9164 0.3974 +vn 0.8680 -0.1687 0.4670 +vn 0.8679 -0.1694 0.4670 +vn 0.8680 -0.1682 0.4673 +vn 0.9125 0.0996 0.3967 +vn 0.9139 0.0984 0.3939 +vn 0.9130 0.0988 0.3958 +vn 0.9307 -0.2288 0.2855 +vn 0.9308 -0.2289 0.2850 +vn 0.9308 -0.2291 0.2848 +vn -0.0047 0.9654 -0.2608 +vn -0.0046 0.9653 -0.2610 +vn 0.8183 0.2601 0.5125 +vn 0.8340 0.1679 -0.5256 +vn 0.8339 0.1688 -0.5255 +vn 0.8340 0.1683 -0.5255 +vn -0.0339 -0.9500 0.3103 +vn -0.0325 -0.9499 0.3109 +vn -0.0308 -0.9499 0.3110 +vn -0.7024 0.3539 -0.6176 +vn -0.2211 -0.9717 0.0830 +vn -0.2210 -0.9717 0.0830 +vn -0.2216 -0.9717 0.0824 +vn 0.2946 -0.5642 0.7713 +vn 0.2945 -0.5643 0.7713 +vn 0.2944 -0.5637 0.7718 +vn 0.2413 0.8664 -0.4372 +vn -0.2452 -0.7737 -0.5842 +vn -0.2456 -0.7751 -0.5822 +vn -0.2464 -0.7755 -0.5813 +vn -0.3937 0.1409 -0.9084 +vn -0.3938 0.1410 -0.9083 +vn -0.3935 0.1407 -0.9085 +vn 0.4387 0.4647 -0.7691 +vn 0.4386 0.4647 -0.7692 +vn 0.3886 0.6273 -0.6749 +vn 0.4710 0.8392 -0.2719 +vn 0.4710 0.8390 -0.2725 +vn -0.2227 0.0773 -0.9718 +vn -0.2225 0.0775 -0.9718 +vn -0.2226 0.0772 -0.9718 +vn -0.3223 0.1958 0.9262 +vn -0.3222 0.1956 0.9263 +vn 0.2246 -0.0564 0.9728 +vn 0.2245 -0.0567 0.9728 +vn -0.0058 -0.6591 0.7520 +vn -0.0056 -0.6589 0.7522 +vn -0.0060 -0.6590 0.7521 +vn -0.4963 0.0610 -0.8660 +vn -0.4964 0.0607 -0.8660 +vn -0.4964 0.0608 -0.8660 +vn -0.0913 -0.5410 -0.8360 +vn -0.0911 -0.5385 -0.8377 +vn -0.0913 -0.5409 -0.8361 +vn 0.1898 0.8859 -0.4232 +vn 0.1896 0.8858 -0.4235 +vn 0.1895 0.8859 -0.4233 +vn 0.2983 -0.7363 -0.6074 +vn 0.2982 -0.7359 -0.6079 +vn 0.2985 -0.7353 -0.6085 +vn 0.9472 0.2352 0.2181 +vn 0.9472 0.2351 0.2181 +vn -0.3674 -0.9238 -0.1077 +vn -0.3676 -0.9236 -0.1085 +vn -0.3675 -0.9236 -0.1091 +vn 0.4903 0.8678 -0.0809 +vn 0.4908 0.8674 -0.0818 +vn 0.4907 0.8675 -0.0813 +vn 0.1184 0.9804 -0.1575 +vn 0.1187 0.9804 -0.1575 +vn 0.4878 -0.7823 0.3875 +vn 0.4881 -0.7822 0.3872 +vn 0.4875 -0.7824 0.3876 +vn -0.6616 -0.7496 0.0194 +vn -0.6616 -0.7496 0.0195 +vn -0.6620 -0.7492 0.0194 +vn 0.2853 -0.1562 0.9456 +vn 0.2846 -0.1561 0.9459 +vn 0.2852 -0.1560 0.9457 +vn 0.7084 -0.7049 0.0366 +vn -0.1081 0.8282 -0.5498 +vn -0.1082 0.8287 -0.5492 +vn -0.1082 0.8285 -0.5494 +vn 0.4261 -0.5026 -0.7522 +vn -0.3098 0.0227 -0.9505 +vn -0.3101 0.0233 -0.9504 +vn -0.3100 0.0228 -0.9505 +vn -0.4477 -0.7194 0.5311 +vn -0.4474 -0.7193 0.5314 +vn -0.4473 -0.7193 0.5316 +vn 0.6127 0.4711 -0.6346 +vn 0.6126 0.4711 -0.6347 +vn 0.1116 0.9936 -0.0177 +vn 0.1114 0.9936 -0.0165 +vn 0.1116 0.9936 -0.0171 +vn 0.8188 -0.0452 0.5723 +vn 0.8186 -0.0451 0.5726 +vn 0.8185 -0.0452 0.5728 +vn -0.5102 -0.6503 -0.5628 +vn -0.5104 -0.6506 -0.5623 +vn -0.5103 -0.6503 -0.5628 +vn -0.5917 0.6898 0.4173 +vn -0.5917 0.6899 0.4171 +vn -0.5920 0.6894 0.4174 +vn -0.1164 -0.7172 -0.6870 +vn -0.1167 -0.7168 -0.6875 +vn -0.1164 -0.7172 -0.6871 +vn 0.0266 -0.6937 -0.7198 +vn 0.0266 -0.6938 -0.7197 +vn 0.5903 0.8048 0.0615 +vn 0.5906 0.8047 0.0609 +vn 0.5903 0.8048 0.0616 +vn -0.1303 -0.7144 -0.6875 +vn -0.1304 -0.7145 -0.6874 +vn -0.1312 -0.7148 -0.6869 +vn -0.8974 0.4386 0.0486 +vn -0.8966 0.4401 0.0498 +vn -0.8970 0.4393 0.0495 +vn 0.7099 0.2799 -0.6464 +vn 0.7097 0.2798 -0.6465 +vn -0.4348 -0.8921 0.1226 +vn -0.4348 -0.8921 0.1227 +vn -0.4350 -0.8921 0.1224 +vn 0.9285 -0.0068 0.3712 +vn 0.9285 -0.0067 0.3713 +vn 0.9286 -0.0070 0.3711 +vn -0.0595 0.9195 -0.3886 +vn -0.3812 -0.4475 -0.8089 +vn -0.3812 -0.4476 -0.8089 +vn -0.3812 -0.4477 -0.8089 +vn 0.8673 0.1011 -0.4873 +vn 0.8680 0.0999 -0.4865 +vn 0.8665 0.1014 -0.4887 +vn 0.1684 -0.9850 -0.0378 +vn 0.1685 -0.9850 -0.0377 +vn 0.1683 -0.9850 -0.0383 +vn -0.5876 0.6772 -0.4429 +vn -0.5876 0.6771 -0.4430 +vn 0.9323 0.2071 0.2965 +vn 0.9327 0.2073 0.2952 +vn 0.9326 0.2072 0.2955 +vn -0.3472 -0.5992 -0.7214 +vn -0.3471 -0.5990 -0.7216 +vn -0.3469 -0.5994 -0.7214 +vn -0.3515 -0.0174 0.9360 +vn -0.3514 -0.0186 0.9360 +vn -0.3515 -0.0165 0.9360 +vn 0.6323 -0.3657 -0.6830 +vn 0.6326 -0.3656 -0.6828 +vn 0.6321 -0.3657 -0.6832 +vn 0.5605 -0.4452 -0.6983 +vn 0.5607 -0.4452 -0.6982 +vn 0.5607 -0.4454 -0.6981 +vn -0.4528 0.8157 -0.3601 +vn -0.4527 0.8160 -0.3595 +vn -0.4525 0.8156 -0.3606 +vn 0.1051 0.7363 -0.6684 +vn 0.1062 0.7361 -0.6685 +vn 0.1056 0.7363 -0.6684 +vn -0.3802 -0.7880 -0.4842 +vn -0.3800 -0.7881 -0.4843 +vn -0.3809 -0.7877 -0.4841 +vn -0.8848 0.4488 -0.1252 +vn -0.8848 0.4490 -0.1250 +vn -0.8848 0.4488 -0.1251 +vn -0.5929 -0.7724 0.2276 +vn -0.5933 -0.7722 0.2273 +vn -0.5936 -0.7720 0.2271 +vn -0.6096 -0.7594 0.2273 +vn -0.6094 -0.7595 0.2275 +vn -0.6093 -0.7595 0.2279 +vn 0.2530 0.8831 0.3951 +vn 0.2529 0.8832 0.3950 +vn 0.2380 0.5591 -0.7942 +vn 0.2381 0.5591 -0.7942 +vn 0.2384 0.5595 -0.7938 +vn -0.2903 0.3611 -0.8862 +vn 0.4105 0.1779 0.8944 +vn 0.4903 0.7544 -0.4365 +vn 0.4887 0.7539 -0.4392 +vn 0.4897 0.7544 -0.4371 +vn 0.7125 -0.4146 -0.5661 +vn 0.7123 -0.4148 -0.5661 +vn 0.7122 -0.4149 -0.5663 +vn 0.4803 -0.8458 0.2324 +vn 0.4799 -0.8463 0.2314 +vn 0.4788 -0.8471 0.2306 +vn -0.3472 -0.9374 -0.0267 +vn -0.3468 -0.9376 -0.0266 +vn -0.3474 -0.9373 -0.0268 +vn 0.1641 0.9597 -0.2282 +vn 0.1642 0.9599 -0.2274 +vn 0.1641 0.9597 -0.2281 +vn -0.9665 0.2256 -0.1224 +vn -0.9665 0.2257 -0.1219 +vn -0.9669 0.2251 -0.1203 +vn -0.2751 -0.0579 -0.9597 +vn -0.2747 -0.0579 -0.9598 +vn -0.2750 -0.0580 -0.9597 +vn 0.6905 -0.7227 0.0310 +vn -0.7051 -0.6159 0.3515 +vn -0.7050 -0.6158 0.3517 +vn -0.0493 0.2958 -0.9540 +vn -0.0431 -0.4491 0.8924 +vn -0.0430 -0.4491 0.8924 +vn -0.0430 -0.4490 0.8925 +vn -0.4080 0.7993 0.4411 +vn -0.4079 0.7993 0.4412 +vn -0.4074 0.7995 0.4414 +vn 0.6239 -0.4740 -0.6213 +vn 0.6237 -0.4738 -0.6217 +vn 0.6237 -0.4737 -0.6218 +vn 0.2192 0.9506 -0.2199 +vn -0.7403 -0.6721 -0.0180 +vn -0.3948 -0.8554 -0.3352 +vn -0.3949 -0.8554 -0.3351 +vn -0.3948 -0.8555 -0.3350 +vn -0.7564 -0.4315 -0.4916 +vn -0.7563 -0.4315 -0.4918 +vn 0.2141 0.6270 -0.7490 +vn 0.2139 0.6271 -0.7490 +vn 0.2140 0.6270 -0.7490 +vn -0.5098 -0.8310 -0.2227 +vn -0.5097 -0.8311 -0.2226 +vn -0.5099 -0.8308 -0.2230 +vn 0.7560 -0.6035 -0.2535 +vn 0.7561 -0.6034 -0.2534 +vn 0.4345 0.8548 -0.2839 +vn 0.4345 0.8548 -0.2838 +vn 0.3532 -0.8911 0.2850 +vn 0.3529 -0.8911 0.2852 +vn 0.3530 -0.8911 0.2850 +vn 0.1123 -0.5043 0.8562 +vn 0.1122 -0.5043 0.8562 +vn 0.8059 -0.3507 -0.4769 +vn 0.8058 -0.3509 -0.4771 +vn 0.6288 0.7189 0.2962 +vn 0.6286 0.7190 0.2964 +vn 0.6283 0.7192 0.2966 +vn -0.9793 0.1836 0.0850 +vn 0.7286 -0.2797 -0.6252 +vn -0.0001 0.0010 1.0000 +vn 0.2318 0.8872 0.3989 +vn -0.7436 -0.6359 -0.2066 +vn -0.7435 -0.6364 -0.2056 +vn -0.7436 -0.6364 -0.2050 +vn -0.4190 0.8922 -0.1685 +vn -0.4191 0.8922 -0.1685 +vn 0.0639 -0.9075 -0.4151 +vn 0.0638 -0.9075 -0.4151 +vn -0.4663 -0.7146 -0.5214 +vn -0.4662 -0.7149 -0.5212 +vn -0.4505 -0.8401 -0.3022 +vn -0.4499 -0.8403 -0.3025 +vn -0.4504 -0.8401 -0.3024 +vn 0.4912 0.3575 0.7943 +vn 0.4165 -0.8500 0.3226 +vn 0.4186 -0.8497 0.3206 +vn 0.4159 -0.8486 0.3270 +vn 0.2061 0.7490 -0.6296 +vn 0.9612 -0.2723 0.0444 +vn 0.9611 -0.2726 0.0445 +vn 0.9611 -0.2725 0.0443 +vn -0.7327 0.6246 -0.2702 +vn -0.7326 0.6247 -0.2703 +vn -0.5377 -0.8140 -0.2196 +vn -0.5376 -0.8141 -0.2197 +vn -0.5375 -0.8142 -0.2196 +vn -0.8206 0.3117 -0.4791 +vn -0.8208 0.3114 -0.4789 +vn -0.8205 0.3118 -0.4792 +vn 0.3109 0.3949 0.8645 +vn 0.3112 0.3944 0.8646 +vn -0.9081 0.1654 -0.3846 +vn -0.4285 0.7762 -0.4625 +vn -0.4281 0.7765 -0.4624 +vn -0.7523 0.4017 -0.5222 +vn -0.7522 0.4017 -0.5223 +vn -0.2269 0.9653 -0.1290 +vn -0.2269 0.9654 -0.1287 +vn -0.2268 0.9655 -0.1281 +vn -0.3595 -0.8191 -0.4470 +vn -0.3176 -0.8119 -0.4899 +vn -0.3178 -0.8119 -0.4897 +vn -0.3178 -0.8119 -0.4898 +vn 0.1438 0.3170 -0.9375 +vn 0.1437 0.3168 -0.9375 +vn -0.1225 0.7225 -0.6805 +vn -0.1221 0.7222 -0.6808 +vn -0.1224 0.7225 -0.6805 +vn 0.6080 -0.7041 0.3669 +vn 0.6077 -0.7044 0.3668 +vn -0.6899 -0.6503 -0.3180 +vn -0.6896 -0.6507 -0.3178 +vn -0.6892 -0.6513 -0.3175 +vn -0.1898 0.8269 0.5294 +vn -0.1901 0.8268 0.5294 +vn -0.1902 0.8268 0.5294 +vn 0.5856 -0.7415 0.3276 +vn 0.5855 -0.7416 0.3275 +vn -0.6772 -0.5325 -0.5078 +vn -0.6774 -0.5324 -0.5076 +vn -0.6776 -0.5321 -0.5076 +vn 0.8795 0.4448 -0.1691 +vn 0.8797 0.4445 -0.1691 +vn 0.8796 0.4446 -0.1692 +vn 0.9176 -0.0312 -0.3963 +vn 0.9175 -0.0309 -0.3966 +vn 0.9180 -0.0318 -0.3953 +vn 0.0625 0.8983 0.4348 +vn -0.5459 0.8266 -0.1366 +vn -0.5467 0.8258 -0.1386 +vn -0.5462 0.8267 -0.1351 +vn 0.0118 0.9991 0.0408 +vn 0.0120 0.9991 0.0409 +vn 0.0123 0.9991 0.0408 +vn 0.7279 -0.5970 0.3374 +vn 0.3826 0.9166 0.1165 +vn 0.3824 0.9166 0.1167 +vn 0.3820 0.9167 0.1169 +vn 0.9779 -0.0977 0.1848 +vn 0.9779 -0.0978 0.1847 +vn 0.7079 -0.5767 0.4078 +vn 0.7080 -0.5768 0.4075 +vn 0.7079 -0.5768 0.4076 +vn 0.4737 -0.0414 -0.8797 +vn 0.4731 -0.0421 -0.8800 +vn 0.4741 -0.0412 -0.8795 +vn 0.2199 0.9678 -0.1222 +vn 0.2197 0.9679 -0.1219 +vn 0.2202 0.9677 -0.1224 +vn -0.8412 -0.3718 0.3927 +vn -0.8410 -0.3718 0.3931 +vn -0.8408 -0.3719 0.3933 +vn 0.5951 -0.6446 0.4800 +vn 0.5946 -0.6449 0.4802 +vn 0.5935 -0.6459 0.4802 +vn 0.3061 0.5030 0.8083 +vn 0.3060 0.5031 0.8082 +vn 0.3062 0.5029 0.8083 +vn -0.6158 -0.7863 -0.0497 +vn -0.6157 -0.7864 -0.0498 +vn -0.6159 -0.7863 -0.0497 +vn 0.5695 0.3727 0.7326 +vn -0.5670 -0.7629 -0.3108 +vn -0.4996 -0.8657 0.0306 +vn -0.4993 -0.8659 0.0309 +vn -0.4996 -0.8657 0.0307 +vn -0.7506 -0.6608 0.0014 +vn 0.0647 -0.9074 -0.4152 +vn 0.0646 -0.9075 -0.4151 +vn 0.0647 -0.9076 -0.4149 +vn -0.8170 0.5436 0.1921 +vn -0.8171 0.5436 0.1920 +vn 0.5577 -0.8299 -0.0159 +vn 0.5577 -0.8299 -0.0160 +vn 0.5578 -0.8298 -0.0162 +vn 0.2403 0.1517 -0.9588 +vn 0.2405 0.1518 -0.9587 +vn 0.2404 0.1517 -0.9587 +vn -0.4484 -0.8857 0.1202 +vn -0.4485 -0.8857 0.1201 +vn -0.9448 0.2788 0.1722 +vn -0.9445 0.2795 0.1727 +vn -0.9446 0.2793 0.1726 +vn 0.4644 -0.3621 -0.8082 +vn 0.4646 -0.3620 -0.8081 +vn 0.4645 -0.3619 -0.8082 +vn 0.4252 -0.5933 0.6836 +vn 0.4253 -0.5932 0.6835 +vn 0.4250 -0.5934 0.6836 +vn -0.3254 -0.9394 0.1080 +vn -0.3257 -0.9393 0.1081 +vn -0.3252 -0.9395 0.1076 +vn 0.2112 0.6990 0.6832 +vn 0.2107 0.6994 0.6830 +vn 0.2101 0.6998 0.6828 +vn 0.9069 0.2221 0.3580 +vn 0.9068 0.2225 0.3580 +vn 0.9069 0.2224 0.3579 +vn -0.6716 0.6899 -0.2702 +vn -0.6718 0.6897 -0.2702 +vn -0.6714 0.6901 -0.2701 +vn 0.2788 0.1272 -0.9519 +vn 0.2784 0.1271 -0.9520 +vn 0.2789 0.1272 -0.9519 +vn -0.9790 0.0740 0.1898 +vn -0.9793 0.0736 0.1886 +vn -0.9789 0.0739 0.1904 +vn 0.2683 -0.8618 0.4304 +vn 0.3897 -0.6940 0.6055 +vn 0.3896 -0.6939 0.6055 +vn -0.1057 0.7650 0.6352 +vn -0.1061 0.7652 0.6350 +vn -0.1051 0.7650 0.6354 +vn -0.6020 0.7633 -0.2344 +vn -0.6019 0.7633 -0.2348 +vn -0.6017 0.7633 -0.2354 +vn -0.4486 -0.0272 -0.8933 +vn -0.4485 -0.0271 -0.8934 +vn -0.4484 -0.0271 -0.8934 +vn -0.6566 -0.0284 0.7537 +vn -0.6563 -0.0285 0.7540 +vn -0.6565 -0.0285 0.7538 +vn 0.4892 0.4933 0.7193 +vn 0.4893 0.4933 0.7192 +vn -0.1987 -0.4223 -0.8844 +vn -0.1989 -0.4227 -0.8842 +vn -0.6118 -0.7354 -0.2914 +vn -0.6120 -0.7354 -0.2910 +vn -0.6118 -0.7354 -0.2913 +vn 0.1468 -0.4753 0.8675 +vn 0.1462 -0.4759 0.8673 +vn 0.1476 -0.4751 0.8675 +vn 0.2551 0.9406 0.2242 +vn 0.2522 0.9416 0.2232 +vn 0.2532 0.9411 0.2240 +vn -0.8954 -0.3546 -0.2694 +vn -0.8954 -0.3543 -0.2696 +vn -0.4581 -0.7402 -0.4923 +vn -0.4583 -0.7400 -0.4924 +vn 0.7987 0.5517 0.2401 +vn -0.8082 -0.5294 0.2579 +vn -0.8086 -0.5289 0.2578 +vn -0.8085 -0.5290 0.2580 +vn -0.4523 -0.7535 -0.4771 +vn -0.4524 -0.7535 -0.4772 +vn -0.0186 0.4964 -0.8679 +vn -0.0185 0.4963 -0.8680 +vn 0.8833 -0.0655 0.4643 +vn 0.8833 -0.0654 0.4642 +vn -0.2304 -0.0706 0.9705 +vn -0.2303 -0.0705 0.9706 +vn -0.2302 -0.0703 0.9706 +vn 0.5019 0.5733 0.6476 +vn 0.5028 0.5744 0.6460 +vn 0.5050 0.5743 0.6443 +vn -0.3017 -0.1380 0.9434 +vn -0.3017 -0.1379 0.9434 +vn -0.3017 -0.1382 0.9433 +vn 0.2266 -0.0276 -0.9736 +vn 0.2268 -0.0271 -0.9736 +vn 0.2263 -0.0279 -0.9737 +vn -0.8629 0.4464 -0.2371 +vn -0.8628 0.4462 -0.2376 +vn -0.8627 0.4465 -0.2375 +vn -0.3392 0.1387 0.9304 +vn -0.3391 0.1389 0.9304 +vn -0.3392 0.1388 0.9304 +vn 0.9879 -0.1334 0.0789 +vn 0.9878 -0.1341 0.0795 +vn 0.9879 -0.1334 0.0790 +vn -0.3017 -0.7474 -0.5919 +vn 0.4992 -0.6607 -0.5606 +vn 0.4989 -0.6610 -0.5605 +vn 0.4991 -0.6608 -0.5606 +vn 0.3793 -0.7539 -0.5364 +vn 0.4928 -0.7656 0.4134 +vn 0.2955 0.8728 -0.3884 +vn 0.2956 0.8728 -0.3883 +vn 0.2954 0.8727 -0.3888 +vn 0.7173 -0.5795 0.3868 +vn 0.7174 -0.5795 0.3867 +vn 0.7178 -0.5791 0.3865 +vn 0.5005 -0.7217 -0.4782 +vn 0.5004 -0.7215 -0.4786 +vn 0.2525 -0.8866 0.3875 +vn 0.2528 -0.8863 0.3881 +vn 0.2528 -0.8864 0.3879 +vn -0.3281 -0.6580 -0.6778 +vn -0.3281 -0.6579 -0.6779 +vn -0.3283 -0.6582 -0.6775 +vn -0.2925 0.3282 0.8982 +vn -0.2927 0.3285 0.8980 +vn -0.2925 0.3281 0.8982 +vn -0.4670 -0.6538 -0.5953 +vn -0.4668 -0.6538 -0.5956 +vn -0.4666 -0.6537 -0.5958 +vn -0.9216 -0.3011 0.2450 +vn -0.1581 0.9812 0.1105 +vn -0.1578 0.9812 0.1108 +vn -0.1580 0.9812 0.1108 +vn -0.2579 0.7784 -0.5723 +vn -0.2582 0.7786 -0.5720 +vn -0.2584 0.7787 -0.5717 +vn -0.7983 -0.3214 -0.5094 +vn -0.7986 -0.3219 -0.5086 +vn -0.7984 -0.3217 -0.5090 +vn 0.3014 -0.8012 -0.5169 +vn 0.3015 -0.8010 -0.5172 +vn 0.3016 -0.8010 -0.5171 +vn -0.1598 0.3988 -0.9030 +vn -0.6738 -0.7384 0.0281 +vn -0.6738 -0.7384 0.0278 +vn -0.6738 -0.7384 0.0276 +vn -0.2279 -0.8738 -0.4297 +vn -0.2281 -0.8736 -0.4298 +vn -0.2282 -0.8736 -0.4298 +vn -0.6153 0.7776 -0.1296 +vn -0.6153 0.7775 -0.1298 +vn -0.6149 0.7779 -0.1294 +vn -0.7325 -0.6722 -0.1080 +vn -0.7325 -0.6721 -0.1080 +vn -0.7324 -0.6723 -0.1077 +vn 0.1671 0.7946 0.5837 +vn 0.1672 0.7946 0.5836 +vn 0.9835 -0.0283 -0.1789 +vn 0.9836 -0.0277 -0.1783 +vn 0.9835 -0.0279 -0.1787 +vn 0.9271 -0.0578 -0.3702 +vn 0.9271 -0.0577 -0.3703 +vn 0.1773 0.8902 -0.4197 +vn 0.1775 0.8900 -0.4200 +vn 0.0065 -0.2795 0.9601 +vn 0.0065 -0.2802 0.9599 +vn 0.0067 -0.2794 0.9602 +vn 0.1922 -0.9790 -0.0677 +vn 0.1921 -0.9791 -0.0675 +vn 0.0512 0.2491 0.9671 +vn 0.0513 0.2490 0.9671 +vn 0.0510 0.2491 0.9671 +vn 0.1631 0.9519 0.2594 +vn 0.1637 0.9519 0.2591 +vn 0.1638 0.9519 0.2590 +vn 0.1656 0.9812 -0.0990 +vn 0.1654 0.9813 -0.0986 +vn 0.4835 0.4396 0.7569 +vn 0.4834 0.4410 0.7562 +vn 0.4835 0.4403 0.7565 +vn 0.8805 0.0654 -0.4696 +vn 0.8805 0.0652 -0.4696 +vn 0.2613 0.9279 -0.2660 +vn 0.2618 0.9278 -0.2658 +vn 0.2617 0.9278 -0.2659 +vn -0.5611 0.6233 -0.5447 +vn -0.5610 0.6229 -0.5453 +vn -0.5609 0.6241 -0.5440 +vn 0.6691 0.2436 0.7021 +vn 0.6693 0.2432 0.7021 +vn -0.0432 -0.5859 0.8093 +vn -0.0436 -0.5859 0.8092 +vn -0.0450 -0.5864 0.8088 +vn 0.8644 0.4583 0.2067 +vn 0.8645 0.4582 0.2067 +vn 0.2363 0.2415 -0.9412 +vn 0.2366 0.2416 -0.9411 +vn 0.2366 0.2414 -0.9411 +vn 0.2513 0.1778 -0.9514 +vn 0.2514 0.1778 -0.9514 +vn -0.7150 -0.2636 -0.6475 +vn -0.7152 -0.2647 -0.6469 +vn -0.7149 -0.2643 -0.6473 +vn -0.3840 0.6016 -0.7005 +vn -0.3841 0.6015 -0.7005 +vn -0.3837 0.6016 -0.7006 +vn -0.5976 0.0289 -0.8013 +vn -0.5970 0.0287 -0.8017 +vn -0.5977 0.0290 -0.8012 +vn -0.0194 0.4339 -0.9008 +vn -0.0196 0.4338 -0.9008 +vn -0.4788 -0.8383 -0.2609 +vn -0.4789 -0.8382 -0.2610 +vn -0.0047 0.5112 -0.8595 +vn -0.0050 0.5114 -0.8593 +vn -0.6596 0.7141 0.2344 +vn -0.6604 0.7133 0.2348 +vn -0.6592 0.7147 0.2336 +vn 0.3811 -0.5048 0.7745 +vn 0.3810 -0.5049 0.7745 +vn -0.2755 -0.5987 -0.7521 +vn -0.2755 -0.5971 -0.7534 +vn -0.2748 -0.5999 -0.7514 +vn -0.7958 0.3595 -0.4873 +vn -0.7955 0.3598 -0.4877 +vn -0.2131 0.0693 0.9746 +vn -0.2132 0.0696 0.9745 +vn -0.2135 0.0695 0.9745 +vn 0.8518 0.4856 0.1967 +vn 0.8517 0.4858 0.1964 +vn 0.8517 0.4858 0.1966 +vn 0.6667 0.0442 0.7441 +vn 0.6638 0.0456 0.7465 +vn 0.6637 0.0452 0.7466 +vn 0.6637 0.0453 0.7466 +vn 0.7239 -0.3770 -0.5778 +vn 0.1213 0.9774 -0.1729 +vn 0.1213 0.9774 -0.1730 +vn 0.6507 0.5496 0.5240 +vn 0.6507 0.5497 0.5239 +vn 0.6150 0.7741 0.1501 +vn 0.6150 0.7741 0.1499 +vn 0.8392 0.5434 -0.0221 +vn 0.8389 0.5438 -0.0228 +vn 0.8386 0.5442 -0.0232 +vn 0.1221 0.5667 -0.8148 +vn 0.1220 0.5669 -0.8147 +vn 0.1215 0.5671 -0.8146 +vn 0.1489 0.4184 -0.8960 +vn 0.1484 0.4181 -0.8962 +vn -0.9576 0.0119 -0.2878 +vn -0.9576 0.0123 -0.2880 +vn 0.5277 -0.8446 0.0904 +vn 0.5275 -0.8448 0.0902 +vn 0.5274 -0.8449 0.0898 +vn -0.3615 0.2711 0.8921 +vn -0.3614 0.2709 0.8922 +vn -0.1745 -0.3650 -0.9145 +vn -0.1734 -0.3653 -0.9146 +vn -0.1732 -0.3654 -0.9146 +vn -0.2365 0.0984 -0.9666 +vn -0.2367 0.0986 -0.9666 +vn -0.2364 0.0984 -0.9666 +vn -0.6149 -0.5835 -0.5305 +vn -0.6136 -0.5844 -0.5309 +vn -0.6165 -0.5815 -0.5309 +vn 0.2510 0.9672 -0.0390 +vn 0.2509 0.9672 -0.0389 +vn 0.2511 0.9672 -0.0391 +vn -0.3713 -0.9270 -0.0534 +vn -0.3722 -0.9266 -0.0538 +vn -0.3718 -0.9268 -0.0535 +vn 0.7390 -0.6727 -0.0356 +vn -0.1804 -0.5194 0.8353 +vn -0.1809 -0.5197 0.8350 +vn -0.1796 -0.5195 0.8354 +vn 0.0507 -0.8580 0.5111 +vn 0.0499 -0.8574 0.5122 +vn 0.0503 -0.8577 0.5116 +vn -0.0144 -0.4369 -0.8994 +vn -0.0146 -0.4367 -0.8995 +vn -0.0145 -0.4369 -0.8994 +vn 0.5321 0.8455 0.0454 +vn 0.5319 0.8456 0.0453 +vn 0.5319 0.8456 0.0452 +vn -0.5286 0.7678 -0.3621 +vn -0.5278 0.7684 -0.3620 +vn -0.5288 0.7677 -0.3620 +vn 0.2779 -0.9396 0.1999 +vn 0.2780 -0.9396 0.1997 +vn -0.4432 0.8893 -0.1127 +vn -0.3262 0.1547 0.9325 +vn 0.1260 0.3883 -0.9129 +vn 0.1262 0.3883 -0.9128 +vn 0.6387 -0.5228 -0.5646 +vn 0.6388 -0.5227 -0.5646 +vn 0.9928 -0.0597 -0.1039 +vn 0.9928 -0.0593 -0.1040 +vn 0.9928 -0.0594 -0.1040 +vn 0.0370 -0.7516 0.6586 +vn 0.0371 -0.7517 0.6585 +vn -0.7700 -0.6380 -0.0041 +vn -0.7700 -0.6380 -0.0040 +vn -0.7701 -0.6379 -0.0041 +vn 0.9405 0.0504 0.3361 +vn 0.9405 0.0501 0.3362 +vn 0.9405 0.0508 0.3360 +vn 0.1172 0.8522 0.5099 +vn 0.1179 0.8520 0.5100 +vn 0.1176 0.8521 0.5099 +vn 0.1462 0.9891 0.0173 +vn 0.1463 0.9891 0.0173 +vn 0.1467 0.9890 0.0171 +vn -0.3190 -0.8004 0.5075 +vn -0.3195 -0.7997 0.5084 +vn -0.3191 -0.8001 0.5080 +vn 0.0596 0.8858 0.4602 +vn 0.0597 0.8856 0.4606 +vn 0.0599 0.8856 0.4605 +vn -0.2339 -0.2580 0.9374 +vn -0.2342 -0.2578 0.9374 +vn -0.2333 -0.2592 0.9372 +vn 0.1601 0.4980 0.8523 +vn -0.3735 -0.2407 -0.8959 +vn -0.3735 -0.2406 -0.8959 +vn -0.7667 0.4084 -0.4954 +vn -0.7667 0.4084 -0.4953 +vn -0.7666 0.4083 -0.4956 +vn 0.6057 -0.1884 -0.7730 +vn -0.3149 -0.8358 -0.4497 +vn 0.0134 -0.7444 -0.6676 +vn -0.1755 -0.5144 -0.8394 +vn -0.1758 -0.5143 -0.8394 +vn -0.1754 -0.5145 -0.8394 +vn -0.0503 -0.5307 -0.8461 +vn -0.2420 -0.3417 -0.9081 +vn -0.2425 -0.3413 -0.9081 +vn -0.2417 -0.3419 -0.9081 +vn -0.2915 -0.7105 -0.6405 +vn -0.2921 -0.7091 -0.6418 +vn -0.2920 -0.7098 -0.6410 +vn 0.8470 -0.4183 0.3280 +vn 0.8466 -0.4185 0.3289 +vn -0.5042 -0.3527 -0.7883 +vn -0.5044 -0.3523 -0.7883 +vn -0.5042 -0.3524 -0.7884 +vn 0.0746 -0.7158 -0.6943 +vn -0.5426 -0.8005 0.2545 +vn -0.5431 -0.8002 0.2545 +vn -0.5424 -0.8005 0.2547 +vn -0.2193 -0.7350 -0.6416 +vn -0.2195 -0.7350 -0.6415 +vn 0.2100 0.9606 -0.1820 +vn 0.2103 0.9605 -0.1821 +vn 0.2101 0.9606 -0.1821 +vn -0.8449 0.5188 0.1305 +vn -0.2423 -0.9643 -0.1069 +vn -0.2423 -0.9643 -0.1071 +vn -0.2423 -0.9643 -0.1070 +vn -0.3887 -0.6234 0.6784 +vn -0.3887 -0.6234 0.6785 +vn -0.3889 -0.6233 0.6784 +vn 0.4705 -0.8598 0.1983 +vn 0.4704 -0.8598 0.1987 +vn 0.4706 -0.8597 0.1988 +vn -0.0983 -0.9930 -0.0658 +vn 0.7107 -0.7003 0.0663 +vn -0.6555 -0.4613 0.5979 +vn -0.6552 -0.4614 0.5981 +vn -0.6550 -0.4615 0.5983 +vn 0.3030 -0.8931 0.3326 +vn 0.3032 -0.8931 0.3324 +vn 0.7193 -0.6945 0.0166 +vn 0.7197 -0.6941 0.0170 +vn 0.7203 -0.6935 0.0172 +vn -0.1936 -0.9809 0.0183 +vn -0.1939 -0.9809 0.0182 +vn -0.1938 -0.9809 0.0181 +vn 0.2691 -0.9363 0.2255 +vn 0.2692 -0.9363 0.2254 +vn 0.7250 0.4425 -0.5278 +vn 0.7246 0.4426 -0.5283 +vn 0.7249 0.4426 -0.5279 +vn -0.8755 0.3478 -0.3355 +vn -0.8756 0.3475 -0.3355 +vn -0.8752 0.3487 -0.3354 +vn -0.1675 -0.5813 0.7963 +vn -0.1672 -0.5812 0.7964 +vn -0.8180 0.2566 -0.5148 +vn -0.8179 0.2566 -0.5149 +vn -0.8180 0.2566 -0.5149 +vn -0.0233 0.9838 0.1776 +vn -0.7436 -0.6514 -0.1508 +vn 0.7631 -0.4967 -0.4136 +vn 0.7629 -0.4968 -0.4137 +vn 0.9389 0.2961 -0.1752 +vn 0.2035 0.9135 -0.3523 +vn 0.2031 0.9137 -0.3520 +vn 0.2033 0.9136 -0.3522 +vn -0.8394 -0.5239 -0.1448 +vn 0.8239 0.4749 0.3093 +vn 0.6329 -0.3836 -0.6726 +vn 0.6329 -0.3835 -0.6726 +vn -0.8663 0.1428 -0.4787 +vn -0.8664 0.1428 -0.4785 +vn -0.8661 0.1431 -0.4790 +vn -0.5719 0.8098 -0.1309 +vn -0.5717 0.8100 -0.1309 +vn -0.9649 0.0273 -0.2613 +vn -0.9649 0.0275 -0.2612 +vn 0.0738 0.7526 0.6544 +vn 0.0729 0.7530 0.6540 +vn 0.0744 0.7526 0.6543 +vn -0.3515 0.9230 -0.1564 +vn -0.3514 0.9231 -0.1565 +vn -0.3515 0.9230 -0.1567 +vn -0.1051 0.7447 0.6591 +vn -0.1052 0.7447 0.6591 +vn 0.2210 0.9235 -0.3134 +vn 0.2203 0.9234 -0.3145 +vn 0.2208 0.9234 -0.3139 +vn -0.3379 0.9409 -0.0210 +vn -0.0234 0.6291 0.7769 +vn -0.0230 0.6290 0.7771 +vn -0.6210 0.7726 0.1319 +vn -0.6210 0.7726 0.1320 +vn -0.5030 -0.8404 -0.2018 +vn -0.5028 -0.8405 -0.2019 +vn -0.5026 -0.8406 -0.2019 +vn -0.4033 0.9034 -0.1455 +vn -0.4032 0.9036 -0.1450 +vn -0.4033 0.9035 -0.1448 +vn -0.7660 -0.0339 -0.6419 +vn -0.7659 -0.0340 -0.6420 +vn 0.8586 -0.4740 -0.1952 +vn 0.8586 -0.4743 -0.1948 +vn 0.8586 -0.4741 -0.1950 +vn -0.8024 0.4144 0.4295 +vn -0.0383 0.7499 0.6604 +vn -0.0392 0.7500 0.6603 +vn -0.0386 0.7499 0.6604 +vn 0.4253 -0.2044 -0.8817 +vn 0.4248 -0.2044 -0.8819 +vn 0.9479 0.3150 -0.0479 +vn 0.4988 0.5610 -0.6607 +vn 0.4990 0.5611 -0.6605 +vn 0.4990 0.5613 -0.6603 +vn 0.3225 0.5987 0.7332 +vn 0.3225 0.5986 0.7332 +vn 0.3223 0.5990 0.7330 +vn 0.2113 0.9428 0.2579 +vn 0.2108 0.9431 0.2573 +vn 0.2113 0.9428 0.2580 +vn 0.9955 -0.0802 -0.0505 +vn 0.6740 -0.6942 0.2525 +vn -0.7176 0.6574 -0.2302 +vn -0.7174 0.6575 -0.2303 +vn -0.6198 -0.7711 -0.1459 +vn -0.3006 -0.8112 0.5016 +vn -0.2986 -0.8122 0.5011 +vn -0.2995 -0.8119 0.5011 +vn -0.1474 -0.3618 0.9205 +vn -0.3403 0.2853 -0.8960 +vn -0.3405 0.2857 -0.8958 +vn -0.3406 0.2856 -0.8958 +vn 0.6082 0.7885 -0.0916 +vn 0.6089 0.7879 -0.0922 +vn 0.6085 0.7882 -0.0918 +vn 0.6546 -0.5245 0.5444 +vn 0.6545 -0.5246 0.5445 +vn -0.8957 -0.1053 0.4321 +vn -0.8958 -0.1053 0.4318 +vn 0.9693 -0.2118 -0.1246 +vn 0.9692 -0.2123 -0.1245 +vn -0.4651 -0.0292 -0.8848 +vn -0.4653 -0.0290 -0.8847 +vn -0.4653 -0.0292 -0.8847 +vn -0.0040 0.9606 -0.2777 +vn -0.0039 0.9608 -0.2772 +vn -0.0042 0.9606 -0.2779 +vn 0.3935 -0.5433 -0.7416 +vn -0.6007 0.3227 0.7314 +vn -0.1124 0.3762 0.9197 +vn -0.1126 0.3767 0.9195 +vn 0.1362 0.7457 0.6522 +vn 0.2536 0.1928 -0.9479 +vn 0.2541 0.1933 -0.9477 +vn 0.2535 0.1929 -0.9479 +vn -0.6131 -0.7386 -0.2803 +vn -0.6133 -0.7384 -0.2803 +vn -0.6132 -0.7385 -0.2803 +vn 0.6480 -0.6033 0.4649 +vn 0.6477 -0.6035 0.4651 +vn 0.6478 -0.6035 0.4649 +vn -0.4866 -0.8305 -0.2710 +vn -0.4871 -0.8303 -0.2708 +vn -0.4869 -0.8304 -0.2710 +vn 0.4634 -0.8821 0.0848 +vn 0.4635 -0.8820 0.0854 +vn -0.2172 0.7515 0.6230 +vn -0.2168 0.7512 0.6234 +vn -0.2165 0.7512 0.6236 +vn 0.7058 -0.4769 0.5239 +vn 0.7060 -0.4772 0.5234 +vn 0.7057 -0.4768 0.5241 +vn 0.1415 -0.7811 -0.6082 +vn 0.1416 -0.7811 -0.6081 +vn 0.1414 -0.7811 -0.6082 +vn 0.1325 0.7402 0.6592 +vn 0.1327 0.7401 0.6593 +vn 0.0904 0.7572 0.6469 +vn 0.3510 0.1987 0.9150 +vn 0.3509 0.1980 0.9152 +vn 0.3514 0.1996 0.9147 +vn 0.3768 0.7590 -0.5310 +vn 0.3777 0.7584 -0.5312 +vn 0.3784 0.7581 -0.5311 +vn 0.3941 -0.8924 0.2198 +vn 0.3937 -0.8925 0.2201 +vn 0.3939 -0.8924 0.2200 +vn -0.9976 -0.0306 -0.0617 +vn -0.8513 -0.2832 0.4418 +vn -0.8507 -0.2833 0.4428 +vn -0.8518 -0.2835 0.4405 +vn -0.3361 -0.0477 0.9406 +vn -0.3362 -0.0477 0.9406 +vn 0.1139 0.9672 -0.2269 +vn 0.1137 0.9672 -0.2270 +vn 0.1137 0.9671 -0.2274 +vn 0.6647 -0.0088 0.7470 +vn 0.0194 0.6251 -0.7803 +vn 0.0193 0.6247 -0.7806 +vn -0.0985 0.9200 -0.3793 +vn -0.7573 0.3279 0.5648 +vn -0.7573 0.3280 0.5648 +vn -0.5044 -0.8291 0.2413 +vn -0.5045 -0.8290 0.2413 +vn -0.5046 -0.8290 0.2412 +vn -0.7495 0.5846 -0.3108 +vn -0.7492 0.5847 -0.3112 +vn -0.7498 0.5842 -0.3105 +vn -0.5167 -0.4117 -0.7507 +vn -0.5181 -0.4111 -0.7500 +vn -0.5170 -0.4117 -0.7505 +vn 0.5091 0.7593 -0.4054 +vn -0.4068 0.1460 -0.9018 +vn 0.8316 -0.5461 0.1011 +vn 0.8319 -0.5455 0.1014 +vn 0.8318 -0.5458 0.1012 +vn -0.5918 0.1070 -0.7989 +vn -0.6233 0.7245 -0.2943 +vn -0.6230 0.7248 -0.2941 +vn -0.1665 -0.2338 -0.9579 +vn -0.1665 -0.2339 -0.9579 +vn -0.1663 -0.2340 -0.9579 +vn 0.6288 0.6959 -0.3468 +vn -0.5673 -0.1166 -0.8152 +vn -0.5672 -0.1166 -0.8153 +vn 0.5257 -0.7838 -0.3305 +vn 0.5837 -0.7605 -0.2845 +vn 0.5835 -0.7605 -0.2847 +vn 0.5834 -0.7607 -0.2846 +vn -0.1394 -0.9480 0.2861 +vn -0.1393 -0.9480 0.2862 +vn -0.1389 -0.9480 0.2863 +vn -0.2241 -0.8000 0.5566 +vn -0.2241 -0.7999 0.5567 +vn 0.1336 -0.9681 0.2118 +vn 0.1337 -0.9681 0.2118 +vn -0.2235 0.6925 -0.6859 +vn 0.1911 -0.9810 0.0341 +vn 0.1912 -0.9810 0.0338 +vn 0.1913 -0.9810 0.0336 +vn 0.1540 0.6439 0.7494 +vn 0.1541 0.6439 0.7495 +vn -0.3154 0.9351 -0.1618 +vn -0.3140 0.9353 -0.1630 +vn -0.3143 0.9353 -0.1627 +vn 0.4396 0.4517 0.7763 +vn 0.4391 0.4516 0.7767 +vn 0.4391 0.4518 0.7766 +vn 0.0828 0.1940 0.9775 +vn 0.0827 0.1940 0.9775 +vn 0.0826 0.1939 0.9775 +vn 0.0729 -0.7818 0.6193 +vn 0.0729 -0.7816 0.6195 +vn 0.0731 -0.7819 0.6191 +vn 0.4759 -0.8148 -0.3313 +vn -0.4095 -0.8439 0.3466 +vn -0.4090 -0.8440 0.3470 +vn -0.4092 -0.8439 0.3468 +vn -0.3028 -0.9507 0.0666 +vn -0.3029 -0.9507 0.0666 +vn 0.2108 0.1781 0.9612 +vn 0.2108 0.1780 0.9612 +vn 0.2108 0.1782 0.9612 +vn 0.3734 -0.8952 0.2432 +vn 0.3735 -0.8952 0.2432 +vn 0.3735 -0.8951 0.2436 +vn 0.4311 0.1645 -0.8872 +vn 0.4312 0.1649 -0.8871 +vn 0.4315 0.1655 -0.8868 +vn -0.6625 -0.7458 0.0701 +vn -0.6655 -0.7428 0.0731 +vn -0.6639 -0.7445 0.0707 +vn -0.4406 -0.6393 -0.6302 +vn -0.4395 -0.6397 -0.6306 +vn -0.4387 -0.6405 -0.6303 +vn 0.1072 0.9309 0.3491 +vn 0.1068 0.9311 0.3489 +vn 0.3408 0.9312 -0.1294 +vn 0.3408 0.9313 -0.1289 +vn 0.3407 0.9313 -0.1289 +vn -0.0458 -0.0326 0.9984 +vn -0.5413 -0.8299 -0.1351 +vn -0.5411 -0.8299 -0.1357 +vn -0.5411 -0.8299 -0.1361 +vn 0.6794 -0.6933 0.2401 +vn 0.6796 -0.6933 0.2397 +vn 0.6795 -0.6934 0.2399 +vn 0.5087 -0.5819 -0.6345 +vn 0.5091 -0.5814 -0.6346 +vn 0.5086 -0.5820 -0.6345 +vn 0.0725 0.4900 0.8687 +vn 0.0725 0.4895 0.8690 +vn -0.3032 -0.4092 -0.8606 +vn 0.1935 0.7108 -0.6763 +vn 0.1930 0.7110 -0.6762 +vn -0.0319 0.8128 -0.5817 +vn -0.0316 0.8129 -0.5815 +vn 0.2365 0.9715 0.0117 +vn -0.2123 -0.6016 -0.7701 +vn 0.2958 0.9551 -0.0173 +vn 0.2960 0.9550 -0.0174 +vn 0.2959 0.9551 -0.0174 +vn -0.0751 -0.6339 -0.7698 +vn -0.0750 -0.6339 -0.7698 +vn -0.0747 -0.6338 -0.7699 +vn -0.1775 0.3159 0.9320 +vn -0.1777 0.3158 0.9320 +vn -0.1777 0.3160 0.9320 +vn 0.7688 0.4817 0.4206 +vn 0.7694 0.4815 0.4198 +vn 0.7691 0.4816 0.4202 +vn -0.6292 0.6229 -0.4648 +vn -0.6292 0.6229 -0.4649 +vn -0.2577 -0.3553 0.8985 +vn -0.2579 -0.3552 0.8985 +vn -0.2582 -0.3552 0.8984 +vn -0.3822 -0.9198 0.0887 +vn -0.3825 -0.9197 0.0886 +vn -0.3831 -0.9195 0.0884 +vn -0.3690 -0.8322 -0.4138 +vn -0.7386 0.6622 0.1265 +vn -0.7381 0.6626 0.1270 +vn -0.7389 0.6619 0.1263 +vn -0.9982 0.0258 0.0538 +vn -0.9982 0.0258 0.0540 +vn -0.5599 -0.8278 -0.0350 +vn -0.2970 0.9250 -0.2368 +vn -0.2969 0.9251 -0.2367 +vn -0.2970 0.9250 -0.2369 +vn 0.2179 -0.7797 -0.5870 +vn 0.2175 -0.7796 -0.5874 +vn 0.2170 -0.7792 -0.5881 +vn -0.5736 0.3840 -0.7235 +vn -0.5739 0.3839 -0.7234 +vn -0.5738 0.3839 -0.7234 +vn 0.8185 0.3798 -0.4311 +vn 0.2190 0.9612 -0.1675 +vn 0.2192 0.9612 -0.1674 +vn 0.2195 0.9612 -0.1672 +vn 0.7638 0.2461 -0.5967 +vn 0.7637 0.2463 -0.5968 +vn 0.1873 0.0791 -0.9791 +vn 0.4637 0.1011 -0.8802 +vn 0.4625 0.1012 -0.8808 +vn 0.4632 0.1011 -0.8805 +vn -0.6108 0.1072 -0.7845 +vn 0.9443 -0.0126 0.3288 +vn -0.6119 0.4106 -0.6761 +vn -0.6118 0.4104 -0.6762 +vn -0.6117 0.4108 -0.6761 +vn -0.3427 0.4210 -0.8398 +vn -0.3422 0.4211 -0.8400 +vn -0.3423 0.4212 -0.8399 +vn -0.1663 0.6341 0.7552 +vn -0.1675 0.6331 0.7557 +vn -0.1668 0.6336 0.7555 +vn 0.1800 0.9599 -0.2149 +vn 0.0793 -0.7710 0.6319 +vn 0.0794 -0.7711 0.6317 +vn 0.0795 -0.7712 0.6316 +vn -0.2080 -0.9753 0.0747 +vn -0.2082 -0.9753 0.0745 +vn -0.2078 -0.9753 0.0749 +vn 0.3131 -0.5964 0.7391 +vn 0.3134 -0.5968 0.7387 +vn 0.3132 -0.5967 0.7388 +vn 0.4591 0.6860 -0.5645 +vn -0.5701 0.0193 -0.8214 +vn -0.5699 0.0192 -0.8215 +vn -0.5704 0.0196 -0.8211 +vn -0.5858 -0.6257 -0.5151 +vn 0.2272 -0.0799 0.9706 +vn 0.2274 -0.0794 0.9706 +vn 0.2272 -0.0798 0.9706 +vn 0.0010 0.8493 -0.5279 +vn 0.0009 0.8492 -0.5281 +vn 0.0008 0.8493 -0.5280 +vn -0.8181 0.3834 -0.4287 +vn -0.8179 0.3835 -0.4289 +vn 0.6229 0.7518 0.2162 +vn -0.3799 0.1058 -0.9190 +vn -0.3798 0.1057 -0.9190 +vn -0.3800 0.1058 -0.9189 +vn 0.2633 0.4233 0.8669 +vn 0.2627 0.4237 0.8669 +vn 0.2628 0.4237 0.8669 +vn 0.4846 -0.3933 -0.7813 +vn 0.1469 0.9398 0.3085 +vn 0.1469 0.9397 0.3088 +vn 0.1470 0.9398 0.3086 +vn -0.5264 -0.1068 -0.8435 +vn -0.5261 -0.1066 -0.8437 +vn -0.5640 0.7283 -0.3893 +vn 0.1853 -0.0665 0.9804 +vn 0.1856 -0.0663 0.9804 +vn 0.9357 -0.0099 0.3526 +vn 0.9358 -0.0100 0.3525 +vn -0.9053 -0.2367 -0.3527 +vn -0.2009 -0.2890 -0.9360 +vn -0.2009 -0.2889 -0.9360 +vn -0.2010 -0.2889 -0.9360 +vn 0.2357 -0.9009 0.3645 +vn 0.2353 -0.9010 0.3644 +vn 0.2360 -0.9007 0.3647 +vn 0.0536 0.8002 -0.5973 +vn 0.0538 0.8001 -0.5975 +vn 0.0535 0.8002 -0.5973 +vn -0.9194 -0.2044 -0.3361 +vn -0.9194 -0.2039 -0.3364 +vn -0.9193 -0.2046 -0.3362 +vn -0.0893 0.9818 0.1677 +vn -0.4763 0.8766 0.0684 +vn -0.4763 0.8766 0.0685 +vn -0.5321 -0.7442 -0.4038 +vn -0.5319 -0.7442 -0.4041 +vn -0.5318 -0.7442 -0.4042 +vn 0.4071 -0.1864 0.8942 +vn 0.4070 -0.1866 0.8942 +vn 0.4068 -0.1866 0.8942 +vn -0.8065 0.4169 -0.4192 +vn 0.2090 -0.1423 0.9675 +vn 0.2093 -0.1420 0.9675 +vn 0.2095 -0.1420 0.9674 +vn -0.1787 -0.8864 -0.4271 +vn -0.1777 -0.8868 -0.4266 +vn -0.1780 -0.8867 -0.4267 +vn 0.2557 0.8143 -0.5210 +vn 0.2557 0.8144 -0.5210 +vn 0.0850 0.4091 0.9085 +vn 0.0853 0.4092 0.9085 +vn 0.0854 0.4093 0.9084 +vn 0.7126 -0.6878 -0.1379 +vn 0.7127 -0.6878 -0.1381 +vn -0.0003 0.0006 1.0000 +vn 0.9512 0.1181 0.2850 +vn -0.0367 -0.7774 0.6279 +vn -0.0360 -0.7773 0.6281 +vn -0.0363 -0.7773 0.6280 +vn -0.9305 -0.1117 -0.3488 +vn -0.9305 -0.1119 -0.3487 +vn -0.4011 -0.5043 -0.7647 +vn -0.3998 -0.5041 -0.7655 +vn -0.4019 -0.5039 -0.7646 +vn 0.0841 -0.7568 0.6483 +vn -0.4466 0.6756 0.5866 +vn -0.4467 0.6761 0.5859 +vn -0.4467 0.6764 0.5857 +vn 0.1360 0.9387 0.3167 +vn 0.1358 0.9388 0.3165 +vn -0.4689 -0.8017 0.3706 +vn -0.4689 -0.8016 0.3708 +vn 0.4842 -0.5254 -0.6996 +vn 0.4841 -0.5252 -0.6998 +vn 0.4842 -0.5250 -0.7000 +vn -0.8810 0.3599 0.3071 +vn -0.8810 0.3596 0.3075 +vn -0.8810 0.3598 0.3072 +vn -0.8490 0.4039 0.3408 +vn -0.8489 0.4039 0.3408 +vn -0.8491 0.4037 0.3407 +vn -0.4799 -0.8158 0.3227 +vn -0.4801 -0.8156 0.3229 +vn -0.4803 -0.8157 0.3225 +vn -0.3764 0.8694 -0.3201 +vn -0.3763 0.8692 -0.3207 +vn -0.3764 0.8692 -0.3206 +vn -0.4665 -0.7123 0.5244 +vn -0.4666 -0.7122 0.5244 +vn 0.0669 -0.5043 0.8609 +vn 0.0669 -0.5042 0.8610 +vn -0.8822 -0.3314 -0.3345 +vn -0.8822 -0.3304 -0.3354 +vn -0.8822 -0.3309 -0.3351 +vn 0.0945 -0.9793 -0.1791 +vn 0.0944 -0.9793 -0.1793 +vn 0.0940 -0.9792 -0.1799 +vn 0.0763 0.8310 0.5511 +vn -0.6540 -0.3995 0.6424 +vn -0.6537 -0.3994 0.6428 +vn -0.6534 -0.3990 0.6433 +vn 0.7110 -0.6943 0.1115 +vn 0.7112 -0.6940 0.1118 +vn 0.7109 -0.6944 0.1114 +vn -0.5474 0.1669 0.8201 +vn -0.5474 0.1664 0.8201 +vn -0.5471 0.1665 0.8203 +vn -0.2831 -0.9588 0.0247 +vn -0.2832 -0.9587 0.0253 +vn -0.2831 -0.9588 0.0254 +vn 0.3434 0.4398 0.8299 +vn 0.3430 0.4395 0.8302 +vn 0.3431 0.4396 0.8301 +vn 0.0224 0.9950 -0.0971 +vn 0.0224 0.9950 -0.0975 +vn 0.3558 -0.8964 0.2644 +vn 0.3560 -0.8963 0.2642 +vn 0.3430 0.8763 -0.3383 +vn 0.4693 -0.7432 0.4769 +vn 0.4691 -0.7433 0.4770 +vn 0.4692 -0.7433 0.4769 +vn 0.3386 0.8101 -0.4786 +vn 0.3385 0.8102 -0.4786 +vn 0.3383 0.8102 -0.4787 +vn -0.4464 0.6188 -0.6464 +vn -0.4460 0.6189 -0.6466 +vn -0.4461 0.6188 -0.6466 +vn 0.0680 0.9156 0.3963 +vn 0.0683 0.9156 0.3963 +vn 0.0682 0.9156 0.3963 +vn -0.0971 -0.9931 -0.0656 +vn -0.0972 -0.9931 -0.0655 +vn -0.8231 0.4244 0.3774 +vn -0.8238 0.4247 0.3756 +vn -0.8234 0.4244 0.3766 +vn 0.0033 0.0060 1.0000 +vn -0.8378 0.4149 0.3549 +vn -0.8377 0.4147 0.3553 +vn -0.8378 0.4147 0.3552 +vn -0.9502 0.2947 -0.1012 +vn -0.9502 0.2945 -0.1014 +vn -0.3866 -0.4329 -0.8143 +vn -0.3867 -0.4327 -0.8144 +vn -0.3864 -0.4333 -0.8142 +vn -0.2655 0.5008 -0.8238 +vn -0.2653 0.5007 -0.8240 +vn -0.2654 0.5007 -0.8239 +vn -0.1440 0.8706 0.4704 +vn -0.1438 0.8706 0.4705 +vn -0.4054 0.3350 0.8506 +vn -0.4050 0.3353 0.8506 +vn -0.4052 0.3352 0.8506 +vn 0.1502 0.9801 -0.1295 +vn 0.1501 0.9802 -0.1295 +vn -0.2138 -0.9476 -0.2375 +vn -0.2139 -0.9477 -0.2370 +vn -0.2138 -0.9476 -0.2374 +vn 0.4087 -0.8464 0.3415 +vn 0.4086 -0.8462 0.3421 +vn 0.4087 -0.8463 0.3417 +vn 0.1889 0.9291 -0.3179 +vn 0.1899 0.9295 -0.3162 +vn 0.1873 0.9292 -0.3185 +vn -0.6775 -0.6615 -0.3216 +vn -0.6774 -0.6615 -0.3217 +vn -0.6775 -0.6614 -0.3217 +vn 0.1302 0.9582 0.2549 +vn 0.1310 0.9580 0.2551 +vn 0.1304 0.9581 0.2549 +vn -0.0249 0.9827 0.1835 +vn -0.0246 0.9827 0.1835 +vn -0.0251 0.9827 0.1835 +vn -0.2169 -0.9476 -0.2346 +vn -0.2170 -0.9476 -0.2344 +vn -0.2176 -0.9476 -0.2339 +vn -0.2175 -0.9449 -0.2446 +vn -0.2174 -0.9449 -0.2449 +vn -0.2176 -0.9449 -0.2444 +vn 0.3574 0.9304 0.0816 +vn -0.0975 0.9536 -0.2849 +vn -0.0976 0.9535 -0.2851 +vn -0.0974 0.9536 -0.2850 +vn 0.1473 0.1815 0.9723 +vn 0.1475 0.1814 0.9723 +vn 0.1479 0.1813 0.9722 +vn -0.7026 0.4114 -0.5806 +vn 0.9184 0.3724 -0.1333 +vn 0.9185 0.3723 -0.1335 +vn -0.8633 0.4757 -0.1685 +vn -0.8642 0.4745 -0.1674 +vn -0.8637 0.4752 -0.1679 +vn -0.1277 -0.8349 -0.5354 +vn -0.1276 -0.8347 -0.5358 +vn -0.1107 0.9928 0.0447 +vn -0.1109 0.9928 0.0448 +vn -0.1103 0.9929 0.0446 +vn -0.4689 0.5653 -0.6787 +vn -0.4694 0.5650 -0.6786 +vn -0.1015 -0.8077 -0.5808 +vn -0.1017 -0.8077 -0.5807 +vn -0.1014 -0.8077 -0.5808 +vn -0.9589 0.2415 0.1490 +vn 0.8078 -0.2953 0.5102 +vn 0.8079 -0.2951 0.5101 +vn 0.8078 -0.2949 0.5103 +vn 0.6173 -0.6987 0.3616 +vn -0.7404 0.5172 -0.4294 +vn 0.6597 0.6593 0.3608 +vn 0.6598 0.6593 0.3606 +vn -0.4267 -0.6741 -0.6029 +vn -0.4268 -0.6742 -0.6028 +vn -0.4266 -0.6741 -0.6031 +vn -0.0161 0.9784 -0.2059 +vn -0.0162 0.9784 -0.2060 +vn -0.7195 -0.6069 -0.3377 +vn -0.5821 -0.2074 -0.7862 +vn -0.8601 0.0199 -0.5098 +vn -0.8601 0.0196 -0.5098 +vn -0.4499 0.1029 -0.8871 +vn -0.4500 0.1031 -0.8870 +vn -0.4543 -0.8511 -0.2632 +vn -0.4544 -0.8511 -0.2631 +vn -0.4539 -0.8512 -0.2633 +vn 0.2926 0.3344 -0.8959 +vn -0.5886 -0.7700 -0.2461 +vn 0.6310 0.7438 -0.2205 +vn 0.6316 0.7431 -0.2211 +vn 0.6314 0.7434 -0.2208 +vn 0.0574 -0.5245 -0.8495 +vn 0.0576 -0.5248 -0.8493 +vn 0.0575 -0.5247 -0.8494 +vn -0.6037 -0.7494 -0.2719 +vn -0.6035 -0.7496 -0.2717 +vn -0.6037 -0.7496 -0.2714 +vn 0.8636 -0.2599 0.4321 +vn 0.8635 -0.2600 0.4321 +vn 0.8635 -0.2601 0.4322 +vn -0.7709 0.4395 -0.4610 +vn -0.7710 0.4395 -0.4609 +vn -0.4731 0.8145 0.3359 +vn -0.4731 0.8144 0.3360 +vn -0.2381 0.9577 -0.1616 +vn -0.2382 0.9577 -0.1617 +vn 0.5816 0.4922 0.6477 +vn 0.5816 0.4922 0.6476 +vn 0.5655 0.8247 -0.0109 +vn 0.5656 0.8246 -0.0113 +vn 0.5654 0.8247 -0.0109 +vn 0.3362 0.9241 0.1817 +vn 0.3360 0.9239 0.1832 +vn 0.3355 0.9247 0.1801 +vn -0.7667 -0.6111 -0.1968 +vn -0.7669 -0.6109 -0.1968 +vn -0.7666 -0.6112 -0.1969 +vn -0.7762 0.1451 -0.6136 +vn -0.7761 0.1451 -0.6136 +vn 0.6788 0.0705 0.7309 +vn 0.6790 0.0709 0.7307 +vn 0.6789 0.0708 0.7309 +vn -0.7378 -0.5852 -0.3364 +vn -0.7380 -0.5849 -0.3365 +vn -0.7381 -0.5848 -0.3365 +vn -0.6767 -0.5118 -0.5293 +vn -0.2116 0.3076 -0.9277 +vn -0.2113 0.3068 -0.9280 +vn -0.2113 0.3070 -0.9280 +vn -0.8898 0.4317 -0.1480 +vn -0.8902 0.4311 -0.1472 +vn -0.8901 0.4312 -0.1475 +vn 0.3095 0.5543 0.7726 +vn 0.3099 0.5540 0.7727 +vn 0.3089 0.5548 0.7725 +vn -0.5964 0.2145 -0.7735 +vn -0.5964 0.2144 -0.7735 +vn -0.5964 0.2146 -0.7734 +vn 0.7764 -0.4399 0.4513 +vn 0.7760 -0.4403 0.4516 +vn 0.1042 -0.7624 0.6387 +vn 0.1041 -0.7624 0.6387 +vn 0.7948 -0.6010 -0.0843 +vn 0.7945 -0.6014 -0.0844 +vn 0.7945 -0.6013 -0.0843 +vn 0.7928 0.5592 0.2423 +vn 0.7931 0.5587 0.2426 +vn 0.7927 0.5596 0.2418 +vn 0.4148 0.8969 0.1535 +vn 0.4153 0.8969 0.1523 +vn 0.4151 0.8970 0.1517 +vn -0.5439 0.8390 0.0144 +vn 0.7621 -0.6352 -0.1254 +vn 0.7623 -0.6349 -0.1259 +vn 0.7623 -0.6349 -0.1257 +vn -0.3600 0.3137 -0.8786 +vn -0.3600 0.3136 -0.8787 +vn -0.3599 0.3136 -0.8787 +vn -0.9364 -0.1920 -0.2938 +vn -0.9363 -0.1920 -0.2940 +vn -0.9365 -0.1918 -0.2935 +vn 0.7844 -0.5965 0.1699 +vn 0.7843 -0.5966 0.1702 +vn 0.7846 -0.5964 0.1694 +vn 0.4552 -0.6775 0.5778 +vn 0.4554 -0.6775 0.5776 +vn 0.4553 -0.6777 0.5774 +vn -0.8609 0.0553 0.5058 +vn -0.8608 0.0555 0.5058 +vn -0.8610 0.0553 0.5056 +vn 0.3657 -0.6561 0.6601 +vn 0.9411 -0.1865 0.2821 +vn -0.6531 -0.3597 -0.6664 +vn -0.6536 -0.3597 -0.6659 +vn -0.6534 -0.3596 -0.6662 +vn 0.2253 0.9155 0.3333 +vn 0.4053 -0.0161 -0.9141 +vn 0.4055 -0.0162 -0.9139 +vn -0.7072 -0.6618 -0.2486 +vn -0.7075 -0.6618 -0.2477 +vn -0.7073 -0.6618 -0.2484 +vn 0.0489 -0.7237 0.6884 +vn 0.1465 0.9603 0.2374 +vn 0.1464 0.9605 0.2368 +vn -0.5884 0.7845 0.1960 +vn -0.5880 0.7846 0.1966 +vn -0.5870 0.7851 0.1978 +vn -0.5199 -0.4065 0.7513 +vn -0.5201 -0.4064 0.7512 +vn -0.5188 -0.4073 0.7516 +vn -0.1893 -0.4328 0.8814 +vn -0.1894 -0.4328 0.8814 +vn 0.6012 -0.7971 -0.0563 +vn -0.0320 -0.9877 0.1530 +vn -0.0320 -0.9877 0.1528 +vn -0.0318 -0.9877 0.1528 +vn -0.6388 -0.5722 -0.5143 +vn -0.4345 0.2543 0.8640 +vn -0.4346 0.2540 0.8641 +vn -0.4348 0.2537 0.8641 +vn 0.8311 0.1947 0.5209 +vn 0.8312 0.1947 0.5207 +vn 0.8311 0.1947 0.5210 +vn 0.5804 0.5270 -0.6208 +vn 0.5807 0.5271 -0.6205 +vn 0.5808 0.5271 -0.6204 +vn -0.8847 0.1450 -0.4430 +vn -0.8846 0.1449 -0.4432 +vn 0.7036 0.0171 -0.7104 +vn 0.3559 -0.0338 0.9339 +vn 0.3554 -0.0339 0.9341 +vn 0.3556 -0.0338 0.9340 +vn 0.2468 -0.9367 0.2484 +vn -0.4076 -0.8883 -0.2115 +vn -0.6884 -0.5848 -0.4291 +vn -0.6884 -0.5847 -0.4291 +vn 0.6602 -0.6987 -0.2757 +vn 0.6603 -0.6985 -0.2759 +vn 0.6604 -0.6985 -0.2758 +vn 0.2538 -0.9635 0.0857 +vn 0.2539 -0.9634 0.0859 +vn 0.6644 -0.6817 -0.3063 +vn 0.6643 -0.6817 -0.3064 +vn 0.6648 -0.6815 -0.3058 +vn -0.5310 -0.3836 0.7556 +vn -0.5314 -0.3839 0.7551 +vn -0.5314 -0.3838 0.7552 +vn 0.1739 -0.9839 0.0407 +vn 0.0497 0.5597 -0.8272 +vn 0.0502 0.5596 -0.8273 +vn 0.0506 0.5595 -0.8273 +vn 0.3214 -0.9199 0.2246 +vn -0.8967 0.1984 -0.3956 +vn -0.8968 0.1984 -0.3954 +vn -0.8965 0.1983 -0.3962 +vn 0.1341 0.8834 0.4491 +vn 0.1352 0.8825 0.4504 +vn 0.1381 0.8816 0.4514 +vn 0.2036 0.7831 0.5876 +vn 0.2036 0.7824 0.5886 +vn 0.2035 0.7827 0.5882 +vn 0.6683 0.2249 -0.7091 +vn 0.6686 0.2249 -0.7088 +vn 0.6684 0.2250 -0.7090 +vn -0.5670 0.8117 0.1401 +vn -0.5672 0.8116 0.1400 +vn -0.5669 0.8118 0.1402 +vn 0.3627 0.0983 0.9267 +vn 0.3630 0.0973 0.9267 +vn 0.3627 0.0991 0.9266 +vn -0.2817 0.0085 0.9595 +vn -0.2816 0.0084 0.9595 +vn -0.2812 0.0085 0.9596 +vn -0.6431 0.1413 0.7526 +vn 0.5353 0.8413 -0.0753 +vn 0.5355 0.8412 -0.0752 +vn 0.5822 0.1323 0.8022 +vn 0.5819 0.1323 0.8024 +vn 0.5716 0.6510 -0.4994 +vn 0.5717 0.6509 -0.4995 +vn -0.2134 -0.7268 -0.6529 +vn -0.2134 -0.7268 -0.6528 +vn -0.0412 0.3841 -0.9224 +vn -0.0410 0.3841 -0.9224 +vn -0.0416 0.3839 -0.9224 +vn -0.1607 0.1459 -0.9762 +vn -0.1615 0.1452 -0.9761 +vn -0.1619 0.1451 -0.9761 +vn -0.1039 -0.6176 -0.7796 +vn -0.1040 -0.6177 -0.7795 +vn -0.2128 -0.6014 -0.7701 +vn 0.7392 0.6653 -0.1044 +vn -0.1802 0.6944 -0.6966 +vn -0.1802 0.6945 -0.6966 +vn -0.4165 -0.9088 -0.0238 +vn -0.4162 -0.9089 -0.0238 +vn -0.0190 -0.4907 -0.8711 +vn -0.0188 -0.4907 -0.8712 +vn -0.0189 -0.4907 -0.8711 +vn 0.9092 -0.4145 -0.0389 +vn 0.9092 -0.4145 -0.0391 +vn 0.9091 -0.4147 -0.0392 +vn -0.0909 -0.9950 0.0409 +vn -0.0913 -0.9949 0.0418 +vn -0.0911 -0.9950 0.0415 +vn 0.8013 0.2869 0.5249 +vn 0.8014 0.2869 0.5249 +vn -0.8385 0.4957 -0.2262 +vn -0.1924 0.1917 0.9624 +vn -0.1582 0.3743 -0.9137 +vn -0.1602 0.3714 -0.9145 +vn -0.1589 0.3736 -0.9139 +vn -0.5376 -0.7031 0.4654 +vn -0.5380 -0.7025 0.4658 +vn -0.5382 -0.7022 0.4661 +vn -0.4138 -0.8806 0.2311 +vn -0.4128 -0.8806 0.2327 +vn -0.4147 -0.8803 0.2305 +vn 0.8565 0.4917 0.1568 +vn 0.8566 0.4916 0.1569 +vn 0.8565 0.4918 0.1566 +vn 0.5124 -0.7279 -0.4556 +vn 0.5117 -0.7283 -0.4558 +vn 0.5119 -0.7282 -0.4558 +vn -0.5600 -0.6988 -0.4451 +vn -0.2916 -0.9346 0.2037 +vn -0.2925 -0.9342 0.2043 +vn -0.2921 -0.9343 0.2042 +vn -0.2657 -0.8763 -0.4019 +vn -0.2652 -0.8764 -0.4020 +vn -0.8409 -0.4260 -0.3339 +vn -0.8408 -0.4262 -0.3337 +vn -0.4728 -0.8658 -0.1636 +vn -0.4728 -0.8660 -0.1629 +vn -0.4728 -0.8659 -0.1633 +vn 0.6794 -0.4597 0.5720 +vn 0.6804 -0.4585 0.5717 +vn 0.6807 -0.4578 0.5719 +vn -0.7759 0.4246 -0.4666 +vn -0.7760 0.4245 -0.4665 +vn -0.7758 0.4245 -0.4669 +vn -0.3171 -0.9323 -0.1738 +vn -0.3165 -0.9326 -0.1734 +vn -0.3159 -0.9328 -0.1733 +vn 0.6755 -0.3196 -0.6645 +vn 0.6755 -0.3199 -0.6643 +vn 0.6756 -0.3198 -0.6643 +vn 0.0674 0.9768 -0.2035 +vn 0.0674 0.9766 -0.2040 +vn 0.0674 0.9767 -0.2039 +vn 0.5201 0.6815 -0.5148 +vn 0.5200 0.6816 -0.5149 +vn 0.5197 0.6817 -0.5150 +vn 0.6491 0.2654 -0.7129 +vn 0.6490 0.2650 -0.7132 +vn -0.4582 -0.7889 -0.4095 +vn -0.4586 -0.7888 -0.4092 +vn 0.4432 0.5251 -0.7266 +vn 0.4432 0.5253 -0.7264 +vn 0.4432 0.5250 -0.7266 +vn -0.1002 0.3137 -0.9442 +vn -0.0999 0.3137 -0.9443 +vn -0.4216 0.8874 -0.1863 +vn 0.1273 -0.7894 0.6005 +vn 0.1271 -0.7893 0.6007 +vn 0.1266 -0.7891 0.6011 +vn 0.1202 0.6145 0.7797 +vn 0.1209 0.6145 0.7796 +vn 0.1215 0.6144 0.7796 +vn -0.1513 -0.9505 0.2715 +vn -0.1515 -0.9507 0.2707 +vn -0.1510 -0.9509 0.2701 +vn -0.7336 0.4263 -0.5292 +vn -0.7339 0.4262 -0.5288 +vn -0.7334 0.4264 -0.5294 +vn -0.0569 0.9850 0.1630 +vn -0.8287 -0.3286 0.4531 +vn -0.8288 -0.3286 0.4529 +vn -0.8288 -0.3284 0.4530 +vn 0.9540 -0.2576 -0.1535 +vn 0.6132 0.7431 -0.2679 +vn 0.6137 0.7427 -0.2677 +vn 0.6134 0.7430 -0.2678 +vn 0.9127 0.0897 0.3987 +vn 0.9128 0.0900 0.3984 +vn 0.7364 0.5018 0.4537 +vn 0.7363 0.5019 0.4538 +vn 0.7365 0.5018 0.4536 +vn -0.1079 0.7955 -0.5963 +vn -0.1085 0.7954 -0.5963 +vn -0.1070 0.7955 -0.5964 +vn -0.4539 -0.0231 -0.8908 +vn -0.4536 -0.0233 -0.8909 +vn -0.4540 -0.0229 -0.8907 +vn -0.1001 0.6444 0.7581 +vn -0.3273 -0.1906 -0.9255 +vn -0.3273 -0.1909 -0.9254 +vn -0.3273 -0.1910 -0.9254 +vn 0.5227 0.5504 0.6511 +vn 0.5225 0.5506 0.6510 +vn 0.5229 0.5500 0.6512 +vn 0.4670 0.7420 0.4811 +vn 0.4669 0.7421 0.4809 +vn 0.4668 0.7419 0.4813 +vn -0.1685 -0.0546 0.9842 +vn -0.1688 -0.0546 0.9841 +vn -0.1687 -0.0547 0.9842 +vn 0.6757 -0.7346 -0.0619 +vn 0.6762 -0.7341 -0.0628 +vn 0.6752 -0.7351 -0.0615 +vn 0.0551 -0.8375 0.5437 +vn 0.0556 -0.8375 0.5436 +vn 0.0552 -0.8375 0.5437 +vn -0.3147 -0.9389 -0.1393 +vn -0.3146 -0.9389 -0.1393 +vn -0.3146 -0.9390 -0.1393 +vn 0.2406 0.8071 0.5392 +vn 0.2409 0.8072 0.5389 +vn 0.2405 0.8070 0.5394 +vn 0.8781 0.1874 0.4403 +vn 0.8782 0.1871 0.4401 +vn -0.2931 0.0105 0.9560 +vn -0.2930 0.0104 0.9561 +vn -0.2933 0.0103 0.9560 +vn 0.0074 -0.0058 1.0000 +vn 0.1070 -0.7650 0.6351 +vn 0.1075 -0.7648 0.6352 +vn 0.1078 -0.7646 0.6354 +vn 0.2336 0.4249 -0.8746 +vn 0.2335 0.4250 -0.8745 +vn 0.2332 0.4250 -0.8746 +vn -0.2244 -0.8476 0.4808 +vn -0.2247 -0.8476 0.4808 +vn 0.7698 -0.5869 -0.2508 +vn 0.7699 -0.5868 -0.2508 +vn 0.7703 -0.5864 -0.2507 +vn -0.0079 0.1478 -0.9890 +vn -0.0078 0.1476 -0.9890 +vn -0.0929 0.7326 -0.6743 +vn -0.0926 0.7325 -0.6744 +vn -0.0921 0.7325 -0.6745 +vn -0.5107 -0.1205 -0.8513 +vn -0.5109 -0.1209 -0.8511 +vn -0.5106 -0.1206 -0.8513 +vn -0.2528 -0.9184 -0.3045 +vn -0.2527 -0.9183 -0.3048 +vn -0.2527 -0.9182 -0.3051 +vn 0.7695 -0.5806 0.2662 +vn 0.7697 -0.5803 0.2660 +vn 0.7693 -0.5808 0.2662 +vn -0.7582 -0.2094 -0.6176 +vn -0.7580 -0.2095 -0.6176 +vn -0.9638 0.2435 0.1088 +vn -0.9639 0.2433 0.1085 +vn -0.9637 0.2438 0.1091 +vn 0.0012 -0.4015 -0.9159 +vn 0.5151 0.8532 -0.0815 +vn 0.5148 0.8534 -0.0818 +vn 0.5153 0.8532 -0.0810 +vn 0.8647 -0.3911 0.3152 +vn 0.8647 -0.3912 0.3152 +vn 0.8645 -0.3916 0.3150 +vn -0.1661 -0.1256 -0.9781 +vn -0.1657 -0.1255 -0.9782 +vn -0.1662 -0.1257 -0.9780 +vn -0.8329 0.4898 -0.2577 +vn -0.8334 0.4891 -0.2573 +vn -0.8337 0.4886 -0.2573 +vn -0.0748 -0.2104 -0.9748 +vn 0.7610 -0.5360 0.3655 +vn -0.0429 -0.9620 -0.2697 +vn -0.0433 -0.9619 -0.2699 +vn -0.0426 -0.9620 -0.2697 +vn -0.4525 0.8835 -0.1211 +vn -0.4524 0.8836 -0.1212 +vn -0.3252 -0.8877 -0.3259 +vn 0.0628 0.7607 -0.6461 +vn -0.7475 -0.6360 0.1915 +vn -0.7473 -0.6362 0.1920 +vn -0.7469 -0.6365 0.1924 +vn 0.1692 -0.8647 -0.4729 +vn 0.1690 -0.8647 -0.4730 +vn 0.1001 0.9945 0.0301 +vn 0.1001 0.9945 0.0300 +vn 0.1001 0.9945 0.0302 +vn 0.4568 0.4364 0.7752 +vn 0.4570 0.4363 0.7751 +vn 0.3341 -0.7871 -0.5185 +vn 0.3343 -0.7888 -0.5157 +vn 0.3346 -0.7880 -0.5169 +vn -0.8756 0.4785 0.0658 +vn -0.8756 0.4784 0.0663 +vn -0.8756 0.4785 0.0659 +vn -0.0160 0.0541 -0.9984 +vn -0.0161 0.0539 -0.9984 +vn -0.0158 0.0544 -0.9984 +vn 0.7120 -0.6929 0.1139 +vn 0.7110 -0.6940 0.1131 +vn 0.7104 -0.6947 0.1131 +vn 0.8806 0.4540 -0.1358 +vn 0.8806 0.4539 -0.1359 +vn -0.5783 -0.6863 0.4412 +vn -0.0697 -0.9337 0.3513 +vn -0.0699 -0.9337 0.3511 +vn 0.7981 0.5921 0.1115 +vn 0.7981 0.5921 0.1118 +vn 0.7979 0.5923 0.1121 +vn -0.4047 -0.8993 0.1658 +vn -0.4040 -0.8995 0.1663 +vn -0.4043 -0.8994 0.1661 +vn -0.6161 0.5105 -0.5998 +vn -0.6154 0.5105 -0.6006 +vn -0.6158 0.5105 -0.6002 +vn 0.8682 -0.4596 0.1871 +vn 0.8684 -0.4593 0.1867 +vn 0.3521 0.9351 -0.0406 +vn 0.3518 0.9352 -0.0399 +vn 0.3521 0.9351 -0.0402 +vn 0.4061 -0.8473 0.3423 +vn 0.4062 -0.8472 0.3425 +vn 0.4062 -0.8472 0.3424 +vn -0.1980 -0.9517 -0.2345 +vn -0.1978 -0.9517 -0.2347 +vn -0.1981 -0.9517 -0.2345 +vn 0.1034 0.7207 -0.6855 +vn 0.1036 0.7208 -0.6853 +vn 0.0298 -0.6679 -0.7436 +vn 0.0299 -0.6682 -0.7434 +vn 0.0300 -0.6684 -0.7432 +vn -0.9676 0.1513 0.2023 +vn -0.9676 0.1518 0.2020 +vn -0.7164 0.5887 -0.3744 +vn 0.2847 0.6735 -0.6822 +vn -0.2530 -0.9465 -0.2001 +vn -0.2529 -0.9466 -0.2001 +vn -0.8419 -0.4452 0.3048 +vn -0.8418 -0.4454 0.3048 +vn -0.2784 -0.0441 -0.9595 +vn -0.2784 -0.0443 -0.9595 +vn -0.7208 -0.6575 0.2193 +vn -0.4417 0.8918 -0.0976 +vn -0.4416 0.8919 -0.0975 +vn -0.4415 0.8919 -0.0977 +vn -0.1736 0.7523 -0.6355 +vn -0.1737 0.7522 -0.6357 +vn -0.1734 0.7525 -0.6354 +vn 0.5473 0.6414 -0.5377 +vn 0.5476 0.6424 -0.5361 +vn 0.5477 0.6417 -0.5368 +vn -0.8240 -0.5362 -0.1828 +vn -0.8240 -0.5363 -0.1826 +vn -0.8240 -0.5365 -0.1823 +vn 0.6133 -0.2968 -0.7320 +vn -0.4553 -0.7301 -0.5095 +vn -0.4554 -0.7301 -0.5095 +vn -0.4550 -0.7300 -0.5099 +vn -0.8206 -0.5379 -0.1932 +vn 0.5586 -0.3172 -0.7664 +vn 0.5585 -0.3171 -0.7665 +vn -0.3628 -0.8562 -0.3679 +vn -0.3627 -0.8563 -0.3677 +vn -0.3626 -0.8564 -0.3675 +vn -0.0780 0.5550 0.8282 +vn -0.0781 0.5551 0.8281 +vn -0.0781 0.5554 0.8279 +vn 0.3635 0.8648 -0.3463 +vn 0.3638 0.8648 -0.3460 +vn 0.3637 0.8649 -0.3460 +vn 0.3825 0.4024 -0.8317 +vn 0.3823 0.4025 -0.8318 +vn 0.3704 0.9033 0.2163 +vn 0.3701 0.9034 0.2164 +vn 0.3706 0.9034 0.2159 +vn 0.4657 -0.4217 -0.7780 +vn 0.4658 -0.4217 -0.7780 +vn 0.4658 -0.4217 -0.7779 +vn 0.9011 -0.2633 0.3446 +vn 0.9010 -0.2635 0.3446 +vn 0.9010 -0.2634 0.3446 +vn -0.5721 -0.6343 -0.5200 +vn -0.5721 -0.6339 -0.5205 +vn -0.5721 -0.6342 -0.5201 +vn -0.1566 0.0108 -0.9876 +vn -0.1569 0.0108 -0.9876 +vn -0.1567 0.0108 -0.9876 +vn 0.0820 0.9693 0.2320 +vn -0.2334 0.9709 -0.0534 +vn -0.2335 0.9709 -0.0534 +vn -0.2340 0.9708 -0.0530 +vn 0.2390 0.9449 -0.2237 +vn 0.2389 0.9449 -0.2239 +vn 0.2389 0.9449 -0.2238 +vn 0.2432 0.7062 0.6650 +vn 0.2431 0.7061 0.6651 +vn 0.2433 0.7062 0.6649 +vn -0.3192 0.4673 -0.8245 +vn -0.3191 0.4673 -0.8245 +vn -0.2785 0.1483 -0.9489 +vn -0.2782 0.1483 -0.9490 +vn -0.3138 -0.1373 0.9395 +vn -0.3143 -0.1364 0.9395 +vn -0.3136 -0.1360 0.9398 +vn -0.5671 0.8235 -0.0173 +vn -0.5669 0.8236 -0.0175 +vn -0.5668 0.8237 -0.0175 +vn -0.2140 0.0038 0.9768 +vn -0.2141 0.0036 0.9768 +vn 0.4502 0.8649 -0.2220 +vn 0.4506 0.8646 -0.2222 +vn 0.4504 0.8648 -0.2221 +vn -0.6998 -0.1373 -0.7010 +vn -0.6997 -0.1372 -0.7011 +vn -0.7000 -0.1375 -0.7008 +vn -0.4963 -0.3062 -0.8124 +vn -0.4960 -0.3063 -0.8125 +vn -0.7980 0.1504 -0.5836 +vn -0.7981 0.1502 -0.5835 +vn -0.7979 0.1504 -0.5837 +vn -0.6789 -0.5541 -0.4817 +vn -0.6790 -0.5541 -0.4815 +vn 0.6215 -0.6643 0.4153 +vn 0.6215 -0.6642 0.4154 +vn 0.0417 -0.0867 -0.9954 +vn 0.0411 -0.0865 -0.9954 +vn 0.0408 -0.0866 -0.9954 +vn 0.2290 -0.1033 0.9679 +vn 0.2285 -0.1036 0.9680 +vn 0.2280 -0.1037 0.9681 +vn 0.2895 -0.1178 -0.9499 +vn -0.6646 -0.6295 -0.4026 +vn -0.6647 -0.6292 -0.4029 +vn -0.6646 -0.6301 -0.4017 +vn 0.0575 0.3488 0.9354 +vn 0.0575 0.3490 0.9354 +vn 0.1406 0.9765 0.1635 +vn 0.7034 -0.6358 0.3177 +vn 0.7032 -0.6363 0.3174 +vn 0.7032 -0.6362 0.3174 +vn -0.0280 0.4398 0.8977 +vn -0.0275 0.4397 0.8977 +vn -0.0278 0.4396 0.8978 +vn -0.4388 0.8978 -0.0371 +vn -0.4392 0.8977 -0.0352 +vn -0.4391 0.8977 -0.0361 +vn -0.7619 -0.6116 -0.2131 +vn -0.7618 -0.6118 -0.2129 +vn -0.7618 -0.6118 -0.2130 +vn 0.2619 0.8961 -0.3583 +vn 0.2621 0.8960 -0.3585 +vn 0.7286 -0.5951 0.3392 +vn 0.7286 -0.5950 0.3393 +vn -0.6709 -0.7139 -0.2007 +vn -0.6708 -0.7139 -0.2008 +vn -0.6708 -0.7140 -0.2007 +vn 0.3160 -0.9181 0.2393 +vn 0.3159 -0.9181 0.2395 +vn 0.3161 -0.9179 0.2398 +vn -0.4848 0.4777 -0.7326 +vn -0.4850 0.4773 -0.7328 +vn -0.4850 0.4770 -0.7330 +vn 0.3734 0.2947 -0.8796 +vn 0.3735 0.2947 -0.8796 +vn 0.7103 -0.6082 0.3542 +vn -0.2879 0.2213 -0.9317 +vn -0.2877 0.2212 -0.9318 +vn -0.0026 0.7341 -0.6790 +vn -0.0027 0.7341 -0.6790 +vn -0.0026 0.7341 -0.6791 +vn 0.9141 0.0760 0.3983 +vn 0.9139 0.0761 0.3987 +vn 0.9140 0.0760 0.3985 +vn 0.7105 -0.5723 0.4095 +vn 0.4593 0.7967 -0.3929 +vn 0.1499 -0.0829 -0.9852 +vn -0.0020 0.2191 -0.9757 +vn -0.0019 0.2189 -0.9757 +vn -0.0020 0.2193 -0.9757 +vn 0.5691 -0.7658 0.2994 +vn 0.5690 -0.7661 0.2989 +vn 0.5691 -0.7657 0.2998 +vn -0.3173 -0.3752 -0.8709 +vn 0.7301 -0.6802 0.0650 +vn 0.7302 -0.6801 0.0650 +vn 0.7305 -0.6799 0.0649 +vn 0.5845 -0.6789 0.4444 +vn 0.5842 -0.6791 0.4444 +vn 0.5842 -0.6790 0.4446 +vn 0.7492 -0.6165 0.2421 +vn 0.5441 -0.6484 0.5325 +vn 0.5439 -0.6485 0.5325 +vn 0.5442 -0.6485 0.5323 +vn -0.7262 -0.5100 -0.4610 +vn -0.7261 -0.5099 -0.4613 +vn 0.6859 0.7049 -0.1806 +vn 0.6858 0.7051 -0.1805 +vn 0.6860 0.7048 -0.1807 +vn 0.5280 -0.6521 0.5440 +vn 0.5281 -0.6520 0.5441 +vn 0.5280 -0.6522 0.5440 +vn 0.0019 -0.6182 0.7860 +vn 0.0020 -0.6182 0.7860 +vn -0.0537 0.8853 -0.4619 +vn -0.0531 0.8854 -0.4617 +vn -0.0538 0.8853 -0.4619 +vn 0.3998 0.9039 0.1523 +vn 0.3989 0.9042 0.1529 +vn 0.4000 0.9038 0.1522 +vn -0.8932 0.0514 -0.4467 +vn -0.8932 0.0517 -0.4467 +vn -0.8933 0.0517 -0.4465 +vn -0.6468 -0.6232 0.4397 +vn -0.6469 -0.6232 0.4395 +vn -0.6468 -0.6232 0.4396 +vn -0.6097 -0.6497 -0.4540 +vn -0.6101 -0.6500 -0.4532 +vn -0.6101 -0.6493 -0.4542 +vn -0.8387 0.5053 -0.2029 +vn -0.8388 0.5046 -0.2042 +vn -0.8386 0.5044 -0.2057 +vn -0.7617 0.6180 -0.1945 +vn -0.7619 0.6179 -0.1944 +vn -0.0052 -0.7915 -0.6111 +vn -0.0054 -0.7916 -0.6110 +vn -0.0051 -0.7915 -0.6112 +vn -0.8529 0.1755 0.4918 +vn -0.8528 0.1754 0.4918 +vn 0.6869 -0.6419 -0.3408 +vn 0.6868 -0.6420 -0.3408 +vn 0.6866 -0.6423 -0.3406 +vn -0.4561 0.7098 -0.5367 +vn -0.4561 0.7100 -0.5366 +vn -0.4558 0.7105 -0.5361 +vn -0.8152 0.4637 0.3470 +vn -0.8153 0.4636 0.3468 +vn -0.8153 0.4635 0.3469 +vn -0.8874 -0.0551 -0.4577 +vn -0.8873 -0.0548 -0.4579 +vn -0.8874 -0.0555 -0.4576 +vn 0.8365 -0.1404 0.5298 +vn -0.7618 -0.5533 -0.3369 +vn -0.7619 -0.5526 -0.3379 +vn -0.3017 0.8959 -0.3260 +vn -0.3016 0.8959 -0.3262 +vn -0.3015 0.8960 -0.3261 +vn 0.6154 -0.6426 -0.4564 +vn 0.6155 -0.6427 -0.4562 +vn 0.6152 -0.6426 -0.4567 +vn -0.5608 -0.5050 0.6561 +vn 0.1279 0.9016 0.4132 +vn 0.1280 0.9015 0.4134 +vn 0.1278 0.9015 0.4135 +vn -0.9774 -0.0508 -0.2051 +vn -0.9774 -0.0507 -0.2054 +vn 0.3411 0.0110 -0.9399 +vn -0.6225 0.2457 -0.7430 +vn -0.0413 -0.9091 0.4145 +vn -0.0412 -0.9090 0.4148 +vn -0.0414 -0.9091 0.4146 +vn -0.6231 -0.5846 -0.5197 +vn -0.6230 -0.5848 -0.5195 +vn 0.3322 -0.8527 -0.4032 +vn 0.3322 -0.8528 -0.4029 +vn 0.3323 -0.8529 -0.4026 +vn 0.3979 0.2136 -0.8922 +vn 0.3977 0.2137 -0.8923 +vn 0.3887 -0.7329 -0.5584 +vn 0.3886 -0.7328 -0.5585 +vn 0.3888 -0.7329 -0.5583 +vn -0.7053 0.5657 0.4272 +vn -0.7051 0.5658 0.4274 +vn 0.5079 -0.7077 -0.4911 +vn 0.3334 -0.5231 -0.7844 +vn 0.3332 -0.5231 -0.7844 +vn 0.3340 -0.5230 -0.7842 +vn -0.2748 -0.5606 0.7811 +vn -0.2744 -0.5605 0.7813 +vn -0.2751 -0.5606 0.7811 +vn -0.5849 0.7899 0.1844 +vn -0.5839 0.7905 0.1849 +vn -0.5854 0.7894 0.1846 +vn 0.7852 -0.5528 -0.2791 +vn 0.7854 -0.5526 -0.2788 +vn 0.7853 -0.5528 -0.2789 +vn 0.9051 0.0110 0.4251 +vn 0.9051 0.0105 0.4251 +vn 0.9051 0.0108 0.4250 +vn -0.0692 0.9871 -0.1444 +vn -0.0693 0.9871 -0.1445 +vn 0.4068 -0.6752 -0.6153 +vn 0.7949 -0.6064 -0.0182 +vn 0.7949 -0.6064 -0.0185 +vn -0.2731 0.7746 -0.5705 +vn -0.2735 0.7739 -0.5712 +vn -0.2317 -0.9628 0.1387 +vn -0.2316 -0.9629 0.1387 +vn -0.2315 -0.9629 0.1385 +vn -0.1988 0.1682 -0.9655 +vn -0.1984 0.1681 -0.9656 +vn -0.1981 0.1679 -0.9657 +vn 0.4567 -0.8734 -0.1691 +vn 0.4566 -0.8735 -0.1690 +vn 0.4571 -0.8731 -0.1697 +vn 0.5345 0.0544 -0.8434 +vn 0.5345 0.0543 -0.8434 +vn 0.5349 0.0538 -0.8432 +vn -0.4807 0.7201 0.5003 +vn -0.4808 0.7203 0.5000 +vn -0.4807 0.7199 0.5007 +vn 0.8846 0.1041 -0.4545 +vn 0.8847 0.1043 -0.4544 +vn 0.8846 0.1042 -0.4545 +vn 0.2311 -0.7178 -0.6568 +vn 0.2310 -0.7178 -0.6568 +vn 0.2308 -0.7173 -0.6574 +vn -0.7866 0.4435 -0.4296 +vn -0.7861 0.4435 -0.4305 +vn -0.7863 0.4436 -0.4301 +vn -0.2194 -0.1684 -0.9610 +vn 0.0251 -0.9634 -0.2669 +vn 0.0250 -0.9634 -0.2670 +vn -0.5772 -0.8152 -0.0475 +vn -0.5775 -0.8150 -0.0476 +vn -0.0259 0.9679 -0.2499 +vn -0.0260 0.9679 -0.2499 +vn -0.0264 0.9679 -0.2500 +vn 0.6188 0.6547 -0.4341 +vn 0.6189 0.6545 -0.4343 +vn 0.6189 0.6545 -0.4344 +vn 0.8281 -0.5399 -0.1507 +vn 0.8282 -0.5400 -0.1500 +vn 0.8282 -0.5400 -0.1497 +vn -0.6918 0.5973 0.4057 +vn -0.6919 0.5968 0.4063 +vn -0.6922 0.5963 0.4066 +vn -0.2452 -0.4881 0.8376 +vn -0.2455 -0.4881 0.8376 +vn -0.2450 -0.4879 0.8378 +vn -0.2882 0.7770 0.5596 +vn -0.2885 0.7770 0.5595 +vn -0.2885 0.7769 0.5596 +vn -0.8307 -0.4361 0.3460 +vn -0.8306 -0.4360 0.3463 +vn -0.8307 -0.4358 0.3463 +vn -0.4109 -0.8936 0.1804 +vn -0.4109 -0.8937 0.1801 +vn 0.2476 0.2662 -0.9316 +vn 0.2475 0.2663 -0.9316 +vn -0.9427 0.3089 0.1257 +vn -0.9427 0.3089 0.1259 +vn -0.9427 0.3090 0.1259 +vn -0.8235 0.3528 -0.4444 +vn 0.5028 0.0618 -0.8622 +vn -0.9307 0.0643 -0.3601 +vn -0.9304 0.0652 -0.3607 +vn -0.9308 0.0640 -0.3599 +vn -0.6115 0.0293 -0.7907 +vn -0.6116 0.0294 -0.7906 +vn -0.5206 0.5639 -0.6411 +vn -0.5208 0.5636 -0.6412 +vn -0.5207 0.5640 -0.6409 +vn -0.7587 0.6291 -0.1694 +vn -0.6247 -0.0035 -0.7809 +vn -0.6246 -0.0031 -0.7809 +vn -0.6246 -0.0034 -0.7809 +vn 0.7661 0.6299 -0.1280 +vn 0.7659 0.6302 -0.1275 +vn 0.1711 -0.6332 0.7549 +vn 0.1713 -0.6333 0.7547 +vn 0.1710 -0.6331 0.7550 +vn -0.4350 -0.2373 -0.8686 +vn -0.4338 -0.2375 -0.8691 +vn -0.4341 -0.2373 -0.8690 +vn 0.6617 0.7458 -0.0772 +vn 0.5472 -0.4811 0.6849 +vn 0.5473 -0.4812 0.6848 +vn 0.1879 0.0767 0.9792 +vn -0.7255 0.0893 -0.6824 +vn 0.8157 -0.4708 0.3362 +vn 0.8158 -0.4706 0.3361 +vn -0.8553 -0.4238 -0.2982 +vn -0.8553 -0.4237 -0.2983 +vn -0.8551 -0.4240 -0.2984 +vn 0.6718 0.6663 -0.3236 +vn 0.6717 0.6667 -0.3231 +vn 0.6310 0.1745 0.7559 +vn 0.6310 0.1750 0.7558 +vn 0.6314 0.1744 0.7556 +vn -0.4459 0.4719 -0.7606 +vn -0.4460 0.4718 -0.7606 +vn -0.4457 0.4721 -0.7606 +vn -0.3688 -0.7487 -0.5508 +vn -0.3685 -0.7488 -0.5509 +vn -0.3684 -0.7489 -0.5509 +vn -0.6606 0.2946 -0.6905 +vn -0.6605 0.2945 -0.6907 +vn -0.6607 0.2946 -0.6905 +vn -0.3485 0.1073 -0.9312 +vn -0.3482 0.1069 -0.9313 +vn -0.3484 0.1072 -0.9312 +vn 0.1369 0.8403 -0.5245 +vn 0.1346 0.8402 -0.5253 +vn 0.1357 0.8405 -0.5246 +vn -0.9567 0.2021 -0.2096 +vn -0.9567 0.2019 -0.2096 +vn 0.8967 0.2641 0.3552 +vn 0.8967 0.2642 0.3552 +vn 0.8967 0.2640 0.3553 +vn -0.7403 0.0791 -0.6676 +vn -0.7403 0.0787 -0.6676 +vn -0.7403 0.0789 -0.6677 +vn 0.5559 0.6213 0.5522 +vn 0.5559 0.6212 0.5524 +vn 0.5558 0.6208 0.5529 +vn 0.7536 0.0471 0.6556 +vn 0.7535 0.0475 0.6558 +vn 0.7535 0.0472 0.6557 +vn -0.3096 -0.7218 0.6190 +vn -0.3096 -0.7214 0.6194 +vn -0.5009 0.7736 -0.3882 +vn -0.5008 0.7736 -0.3882 +vn 0.2603 -0.6323 0.7297 +vn 0.2602 -0.6322 0.7298 +vn 0.2604 -0.6324 0.7296 +vn 0.5742 0.0615 -0.8164 +vn 0.5740 0.0616 -0.8165 +vn 0.6638 0.5272 0.5304 +vn 0.6638 0.5275 0.5302 +vn 0.6640 0.5277 0.5298 +vn -0.4018 -0.9078 -0.1204 +vn -0.4007 -0.9087 -0.1171 +vn -0.4015 -0.9081 -0.1186 +vn 0.1684 -0.0844 0.9821 +vn 0.1694 -0.0841 0.9819 +vn 0.1699 -0.0839 0.9819 +vn -0.6573 -0.3606 0.6618 +vn -0.6571 -0.3610 0.6617 +vn 0.4385 0.5586 -0.7041 +vn 0.8238 0.4587 0.3330 +vn 0.8243 0.4582 0.3324 +vn 0.8246 0.4581 0.3320 +vn 0.0393 0.9412 -0.3356 +vn 0.0393 0.9412 -0.3357 +vn -0.8891 -0.4182 0.1861 +vn -0.8890 -0.4179 0.1871 +vn -0.8890 -0.4181 0.1867 +vn -0.8874 0.3448 -0.3060 +vn -0.8874 0.3450 -0.3058 +vn -0.8876 0.3444 -0.3059 +vn -0.6292 0.3297 -0.7038 +vn -0.1161 -0.1001 0.9882 +vn -0.3773 -0.3726 0.8478 +vn -0.3768 -0.3727 0.8480 +vn -0.3774 -0.3726 0.8478 +vn 0.1087 -0.8627 0.4939 +vn 0.1091 -0.8625 0.4941 +vn 0.1093 -0.8625 0.4942 +vn -0.4620 0.7039 -0.5395 +vn -0.4618 0.7040 -0.5396 +vn 0.3968 0.8499 -0.3468 +vn 0.3980 0.8494 -0.3466 +vn 0.3957 0.8497 -0.3484 +vn 0.0584 -0.7255 0.6857 +vn 0.0579 -0.7257 0.6855 +vn 0.6223 0.4782 0.6197 +vn 0.6164 0.6870 0.3848 +vn 0.6176 0.6866 0.3837 +vn 0.6169 0.6868 0.3844 +vn -0.3913 0.9202 -0.0099 +vn -0.3914 0.9202 -0.0097 +vn -0.3913 0.9202 -0.0095 +vn -0.4443 -0.2312 0.8655 +vn -0.4438 -0.0852 0.8921 +vn -0.7632 0.4309 -0.4816 +vn 0.5613 0.8180 0.1254 +vn 0.5612 0.8181 0.1251 +vn -0.2811 0.9432 -0.1773 +vn -0.2809 0.9432 -0.1771 +vn -0.8621 0.2026 -0.4646 +vn -0.8622 0.2029 -0.4643 +vn -0.8620 0.2037 -0.4642 +vn -0.1920 -0.5194 0.8327 +vn -0.1919 -0.5193 0.8328 +vn -0.1918 -0.5195 0.8327 +vn -0.8149 0.0334 0.5786 +vn -0.8149 0.0340 0.5786 +vn 0.3086 -0.6472 -0.6971 +vn 0.3083 -0.6475 -0.6969 +vn 0.3088 -0.6471 -0.6971 +vn 0.8577 -0.3917 -0.3332 +vn 0.8578 -0.3911 -0.3334 +vn 0.8579 -0.3910 -0.3334 +vn -0.4908 -0.2920 -0.8209 +vn -0.4912 -0.2920 -0.8207 +vn -0.4915 -0.2920 -0.8205 +vn 0.1621 -0.3837 0.9091 +vn 0.1635 -0.3840 0.9088 +vn 0.1613 -0.3840 0.9091 +vn -0.1597 -0.4169 -0.8948 +vn -0.1594 -0.4170 -0.8948 +vn -0.1605 -0.4167 -0.8947 +vn -0.8571 0.3773 -0.3507 +vn -0.8574 0.3771 -0.3502 +vn -0.8574 0.3772 -0.3501 +vn -0.3280 -0.1046 -0.9389 +vn -0.3283 -0.1046 -0.9388 +vn -0.3283 -0.1048 -0.9387 +vn 0.1844 0.9822 -0.0343 +vn 0.1862 0.9820 -0.0328 +vn 0.1840 0.9823 -0.0353 +vn 0.5569 -0.8300 0.0327 +vn 0.5569 -0.8299 0.0328 +vn -0.9796 0.0817 -0.1836 +vn -0.9800 0.0810 -0.1815 +vn -0.9799 0.0811 -0.1822 +vn 0.4401 -0.8747 0.2031 +vn 0.4398 -0.8748 0.2030 +vn 0.4400 -0.8748 0.2029 +vn 0.3682 -0.8783 0.3050 +vn -0.9098 -0.3986 -0.1161 +vn -0.9095 -0.3991 -0.1163 +vn -0.9096 -0.3989 -0.1164 +vn -0.1885 -0.9811 0.0429 +vn -0.1886 -0.9811 0.0430 +vn -0.1884 -0.9812 0.0429 +vn 0.2916 -0.8675 -0.4029 +vn 0.2907 -0.8679 -0.4027 +vn 0.2913 -0.8677 -0.4028 +vn -0.7243 -0.6831 0.0935 +vn -0.7253 -0.6820 0.0935 +vn -0.7245 -0.6829 0.0934 +vn -0.3359 -0.6000 0.7261 +vn -0.3357 -0.6003 0.7259 +vn -0.3358 -0.6002 0.7260 +vn 0.5484 -0.6951 -0.4648 +vn 0.5484 -0.6951 -0.4649 +vn 0.5488 -0.6949 -0.4647 +vn -0.2409 -0.9682 -0.0675 +vn -0.2415 -0.9681 -0.0668 +vn -0.2411 -0.9682 -0.0673 +vn -0.2689 -0.1790 -0.9464 +vn -0.2668 -0.1789 -0.9470 +vn -0.1502 -0.9886 -0.0110 +vn -0.1501 -0.9886 -0.0107 +vn -0.1503 -0.9886 -0.0113 +vn 0.1782 0.8726 -0.4547 +vn 0.1784 0.8724 -0.4550 +vn -0.9085 0.2794 -0.3109 +vn -0.9087 0.2790 -0.3105 +vn -0.9087 0.2791 -0.3105 +vn 0.1591 0.0474 0.9861 +vn 0.1596 0.0475 0.9860 +vn 0.1587 0.0472 0.9862 +vn -0.1765 0.8718 -0.4570 +vn -0.1752 0.8714 -0.4582 +vn -0.1757 0.8716 -0.4576 +vn -0.9061 0.4229 0.0053 +vn -0.9062 0.4229 0.0053 +vn -0.0243 0.9616 0.2734 +vn -0.0234 0.9616 0.2735 +vn -0.0248 0.9615 0.2736 +vn -0.7011 -0.7119 -0.0411 +vn -0.7008 -0.7122 -0.0408 +vn -0.7004 -0.7126 -0.0407 +vn 0.4640 0.7986 -0.3832 +vn 0.4640 0.7987 -0.3831 +vn 0.4640 0.7986 -0.3834 +vn 0.3862 0.8196 -0.4232 +vn 0.3016 0.9049 -0.3004 +vn 0.8378 -0.0485 -0.5438 +vn 0.8375 -0.0487 -0.5443 +vn 0.8378 -0.0484 -0.5439 +vn 0.5980 -0.7100 -0.3719 +vn 0.5981 -0.7099 -0.3719 +vn -0.2829 0.2322 0.9306 +vn -0.2831 0.2319 0.9306 +vn -0.2831 0.2318 0.9306 +vn 0.1317 0.9229 0.3619 +vn 0.1315 0.9230 0.3616 +vn 0.1316 0.9229 0.3618 +vn 0.2269 -0.2104 0.9509 +vn 0.5181 -0.8062 -0.2856 +vn -0.4492 0.8770 0.1704 +vn -0.4491 0.8772 0.1695 +vn -0.1609 -0.0784 0.9839 +vn 0.5723 0.3598 0.7369 +vn 0.5720 0.3598 0.7371 +vn 0.5723 0.3600 0.7368 +vn -0.3590 0.8693 -0.3398 +vn -0.3587 0.8697 -0.3391 +vn 0.5358 -0.2971 -0.7903 +vn 0.5357 -0.2974 -0.7903 +vn 0.2772 -0.4838 -0.8301 +vn 0.2772 -0.4844 -0.8298 +vn 0.2772 -0.4840 -0.8300 +vn 0.4126 0.8991 0.1459 +vn 0.4127 0.8992 0.1455 +vn 0.4128 0.8991 0.1458 +vn 0.9739 -0.0314 -0.2247 +vn 0.9738 -0.0307 -0.2255 +vn 0.9738 -0.0310 -0.2254 +vn -0.7431 -0.5410 -0.3939 +vn -0.7428 -0.5415 -0.3937 +vn -0.7430 -0.5411 -0.3940 +vn -0.4316 0.8820 0.1893 +vn -0.4315 0.8820 0.1895 +vn 0.6102 -0.6777 0.4102 +vn -0.9989 0.0350 0.0320 +vn -0.8468 -0.0650 -0.5280 +vn -0.8468 -0.0645 -0.5279 +vn -0.8467 -0.0653 -0.5280 +vn -0.7939 -0.3753 0.4785 +vn -0.7939 -0.3754 0.4783 +vn -0.7938 -0.3752 0.4786 +vn -0.3059 0.8255 -0.4743 +vn 0.4295 0.9024 0.0335 +vn 0.4102 -0.7428 0.5291 +vn -0.1756 0.2443 -0.9537 +vn -0.1757 0.2439 -0.9537 +vn -0.3103 0.6598 -0.6844 +vn -0.3103 0.6600 -0.6842 +vn -0.3102 0.6599 -0.6844 +vn -0.1534 0.9501 0.2715 +vn -0.1533 0.9501 0.2716 +vn -0.1537 0.9501 0.2714 +vn 0.8080 0.5752 -0.1276 +vn 0.8080 0.5751 -0.1277 +vn -0.6185 -0.6773 -0.3984 +vn 0.6379 -0.7564 0.1450 +vn 0.6378 -0.7564 0.1449 +vn 0.6434 -0.7303 0.2294 +vn 0.6435 -0.7303 0.2294 +vn 0.6437 -0.7301 0.2292 +vn -0.7942 -0.0247 0.6071 +vn -0.7941 -0.0248 0.6073 +vn -0.6760 0.4498 -0.5837 +vn -0.6762 0.4496 -0.5836 +vn -0.6760 0.4499 -0.5836 +vn 0.4960 -0.7393 0.4555 +vn 0.1958 -0.4237 0.8844 +vn 0.1944 -0.4239 0.8846 +vn 0.1952 -0.4239 0.8844 +vn -0.7004 -0.6160 -0.3605 +vn -0.6998 -0.6162 -0.3614 +vn -0.7005 -0.6161 -0.3601 +vn 0.2714 0.4523 -0.8496 +vn 0.2704 0.4522 -0.8500 +vn 0.2711 0.4521 -0.8498 +vn 0.0028 0.3653 0.9309 +vn 0.0027 0.3654 0.9308 +vn 0.0027 0.3654 0.9309 +vn -0.9290 0.2251 -0.2939 +vn -0.9289 0.2253 -0.2939 +vn -0.1525 0.8017 -0.5780 +vn -0.1526 0.8018 -0.5778 +vn -0.1522 0.8015 -0.5783 +vn 0.9167 0.3149 -0.2460 +vn 0.9168 0.3146 -0.2461 +vn 0.7200 -0.5702 0.3957 +vn 0.7201 -0.5699 0.3958 +vn 0.7201 -0.5697 0.3960 +vn 0.9248 0.3736 0.0718 +vn 0.9247 0.3738 0.0719 +vn 0.9247 0.3739 0.0717 +vn 0.6828 0.5941 0.4252 +vn 0.6825 0.5943 0.4255 +vn 0.6826 0.5941 0.4255 +vn 0.7021 -0.7113 0.0338 +vn 0.6955 -0.6931 0.1894 +vn 0.6957 -0.6929 0.1894 +vn 0.6954 -0.6932 0.1894 +vn 0.6751 -0.4645 0.5731 +vn 0.6753 -0.4636 0.5736 +vn 0.6752 -0.4641 0.5733 +vn -0.7494 -0.6530 -0.1097 +vn -0.7494 -0.6530 -0.1096 +vn -0.7494 -0.6530 -0.1098 +vn -0.4890 -0.5143 -0.7045 +vn -0.4890 -0.5143 -0.7046 +vn -0.4890 -0.5142 -0.7046 +vn -0.1048 0.9445 -0.3114 +vn -0.1048 0.9445 -0.3112 +vn 0.5888 -0.6758 0.4433 +vn 0.5890 -0.6759 0.4431 +vn 0.5889 -0.6758 0.4433 +vn 0.4242 0.4108 -0.8071 +vn -0.7404 -0.6266 0.2433 +vn -0.7402 -0.6268 0.2433 +vn -0.0431 -0.3201 -0.9464 +vn -0.0432 -0.3202 -0.9464 +vn 0.3322 0.8967 0.2926 +vn 0.3324 0.8965 0.2928 +vn 0.3319 0.8969 0.2924 +vn -0.8626 0.2913 -0.4136 +vn -0.8627 0.2911 -0.4136 +vn -0.2567 -0.7351 0.6275 +vn -0.2569 -0.7351 0.6274 +vn -0.7261 -0.1052 0.6795 +vn -0.7255 -0.1067 0.6799 +vn -0.7268 -0.1047 0.6788 +vn -0.4893 0.8602 0.1435 +vn -0.4894 0.8601 0.1438 +vn -0.4894 0.8602 0.1437 +vn 0.0321 -0.9747 0.2214 +vn 0.0321 -0.9746 0.2217 +vn 0.0322 -0.9746 0.2215 +vn 0.4051 0.8373 -0.3671 +vn -0.0237 -0.9600 0.2790 +vn -0.0240 -0.9600 0.2790 +vn 0.3529 0.9089 -0.2223 +vn 0.3535 0.9087 -0.2220 +vn 0.3538 0.9087 -0.2217 +vn -0.0335 -0.9618 0.2716 +vn -0.0334 -0.9618 0.2717 +vn -0.0337 -0.9619 0.2714 +vn 0.2020 -0.9635 0.1756 +vn 0.2022 -0.9634 0.1762 +vn 0.2024 -0.9633 0.1764 +vn 0.2512 0.0314 -0.9674 +vn 0.2511 0.0313 -0.9675 +vn 0.2510 0.0314 -0.9675 +vn 0.1886 0.7745 0.6038 +vn 0.1891 0.7746 0.6035 +vn 0.1894 0.7746 0.6034 +vn -0.4308 -0.8831 0.1860 +vn -0.4309 -0.8829 0.1866 +vn -0.4305 -0.8832 0.1862 +vn -0.4261 -0.8915 0.1539 +vn -0.5361 0.2519 -0.8057 +vn -0.5360 0.2519 -0.8058 +vn -0.5361 0.2521 -0.8056 +vn 0.8214 0.1341 -0.5544 +vn 0.8216 0.1346 -0.5540 +vn 0.8213 0.1337 -0.5546 +vn 0.3167 -0.9474 0.0472 +vn -0.3252 -0.6203 0.7137 +vn -0.3253 -0.6202 0.7138 +vn -0.3252 -0.6204 0.7137 +vn -0.1781 -0.5720 0.8007 +vn -0.1784 -0.5717 0.8008 +vn -0.1785 -0.5717 0.8008 +vn -0.6150 -0.5957 -0.5166 +vn -0.6150 -0.5958 -0.5165 +vn 0.5689 -0.6854 -0.4546 +vn 0.5688 -0.6858 -0.4541 +vn 0.5688 -0.6858 -0.4540 +vn -0.9103 0.2790 -0.3059 +vn -0.9102 0.2804 -0.3047 +vn -0.9102 0.2799 -0.3052 +vn 0.5789 -0.3294 0.7459 +vn 0.5788 -0.3296 0.7459 +vn -0.6761 0.5457 0.4950 +vn -0.6758 0.5454 0.4958 +vn -0.6755 0.5455 0.4962 +vn -0.4287 0.8191 -0.3811 +vn -0.4288 0.8193 -0.3806 +vn -0.4287 0.8193 -0.3809 +vn 0.3115 -0.3885 -0.8672 +vn 0.3130 -0.3878 -0.8670 +vn 0.3140 -0.3867 -0.8671 +vn -0.4029 0.6795 0.6132 +vn -0.4028 0.6797 0.6130 +vn -0.4029 0.6793 0.6134 +vn 0.2063 0.9784 0.0096 +vn 0.2070 0.9783 0.0090 +vn 0.2073 0.9782 0.0085 +vn 0.3567 -0.7026 -0.6157 +vn 0.3565 -0.7027 -0.6158 +vn 0.3566 -0.7026 -0.6158 +vn -0.6272 -0.5191 0.5807 +vn -0.6269 -0.5187 0.5814 +vn -0.6278 -0.5194 0.5797 +vn 0.5597 -0.6696 -0.4882 +vn 0.5603 -0.6697 -0.4874 +vn 0.5598 -0.6697 -0.4880 +vn 0.2640 -0.6188 -0.7399 +vn -0.8333 0.4597 -0.3070 +vn -0.2405 -0.5467 0.8021 +vn -0.2404 -0.5468 0.8020 +vn -0.2403 -0.5472 0.8018 +vn -0.5072 -0.8610 0.0379 +vn -0.5584 -0.6977 0.4488 +vn -0.5583 -0.6977 0.4489 +vn -0.5584 -0.6976 0.4489 +vn 0.3751 0.7481 -0.5474 +vn 0.3742 0.7476 -0.5487 +vn 0.3747 0.7481 -0.5477 +vn 0.1155 0.3736 -0.9204 +vn 0.1158 0.3734 -0.9204 +vn 0.1159 0.3733 -0.9205 +vn 0.4420 -0.6685 -0.5982 +vn 0.4415 -0.6687 -0.5983 +vn 0.4416 -0.6688 -0.5981 +vn 0.0476 -0.9160 0.3984 +vn 0.0473 -0.9161 0.3982 +vn 0.0474 -0.9160 0.3983 +vn 0.3622 -0.8448 0.3938 +vn 0.3635 -0.8444 0.3935 +vn 0.3637 -0.8443 0.3936 +vn 0.5373 0.7418 0.4013 +vn 0.5374 0.7416 0.4015 +vn 0.5373 0.7417 0.4014 +vn -0.1342 -0.6007 -0.7881 +vn -0.1341 -0.6007 -0.7882 +vn -0.1341 -0.6005 -0.7883 +vn 0.2139 -0.5603 -0.8002 +vn 0.2143 -0.5604 -0.8000 +vn 0.2141 -0.5605 -0.8000 +vn -0.4987 0.2897 0.8169 +vn -0.4986 0.2898 0.8170 +vn -0.4989 0.2898 0.8168 +vn 0.0116 -0.5068 0.8620 +vn 0.0117 -0.5066 0.8621 +vn -0.8463 -0.0447 0.5309 +vn -0.8464 -0.0450 0.5307 +vn -0.8463 -0.0447 0.5308 +vn 0.9514 -0.3015 0.0627 +vn 0.9513 -0.3016 0.0630 +vn 0.3831 -0.5801 -0.7188 +vn 0.3832 -0.5797 -0.7191 +vn 0.3834 -0.5793 -0.7193 +vn -0.7497 -0.6227 -0.2242 +vn -0.7495 -0.6227 -0.2246 +vn 0.0773 -0.5352 -0.8412 +vn 0.0771 -0.5351 -0.8413 +vn 0.0768 -0.5351 -0.8413 +vn 0.8665 -0.4966 0.0498 +vn 0.8665 -0.4968 0.0498 +vn -0.3881 -0.8882 0.2460 +vn -0.3877 -0.8883 0.2461 +vn 0.0944 0.6688 0.7374 +vn -0.0066 -0.9506 -0.3104 +vn -0.0069 -0.9506 -0.3103 +vn -0.0075 -0.9506 -0.3104 +vn -0.2762 -0.3004 0.9129 +vn -0.2761 -0.3004 0.9130 +vn -0.2765 -0.3003 0.9129 +vn -0.9889 0.1478 0.0168 +vn -0.9889 0.1476 0.0168 +vn -0.9888 0.1480 0.0170 +vn -0.2580 -0.7498 0.6093 +vn 0.7021 -0.7060 -0.0928 +vn 0.7020 -0.7062 -0.0927 +vn 0.7020 -0.7061 -0.0927 +vn 0.8109 -0.4243 -0.4029 +vn 0.8110 -0.4244 -0.4026 +vn 0.8115 -0.4240 -0.4022 +vn 0.8743 -0.3295 -0.3563 +vn 0.8744 -0.3296 -0.3562 +vn 0.8465 -0.3228 -0.4233 +vn 0.8466 -0.3229 -0.4231 +vn 0.8465 -0.3229 -0.4233 +vn 0.8120 -0.3715 -0.4501 +vn 0.8120 -0.3723 -0.4494 +vn 0.8119 -0.3720 -0.4499 +vn 0.2722 -0.0867 -0.9583 +vn 0.2722 -0.0868 -0.9583 +vn -0.6372 -0.7054 0.3105 +vn -0.6371 -0.7055 0.3105 +vn 0.5235 0.4356 -0.7323 +vn 0.5236 0.4359 -0.7320 +vn 0.5235 0.4357 -0.7322 +vn -0.7641 -0.4740 -0.4375 +vn -0.7639 -0.4738 -0.4381 +vn -0.7642 -0.4738 -0.4376 +vn -0.5697 -0.2918 -0.7683 +vn -0.7326 -0.5110 -0.4497 +vn -0.7324 -0.5111 -0.4498 +vn -0.7320 -0.5113 -0.4503 +vn -0.2393 -0.1219 0.9633 +vn -0.2391 -0.1220 0.9633 +vn -0.8594 0.2408 -0.4510 +vn -0.8594 0.2399 -0.4516 +vn -0.8594 0.2401 -0.4514 +vn 0.4579 -0.0373 -0.8882 +vn 0.4583 -0.0374 -0.8880 +vn 0.4575 -0.0372 -0.8884 +vn -0.5089 -0.1690 -0.8441 +vn -0.5089 -0.1693 -0.8440 +vn 0.4857 -0.0381 -0.8733 +vn 0.4855 -0.0386 -0.8734 +vn 0.4844 -0.0397 -0.8739 +vn 0.1355 0.9737 -0.1832 +vn 0.1356 0.9737 -0.1830 +vn 0.0552 0.7491 -0.6602 +vn 0.0544 0.7499 -0.6593 +vn 0.0553 0.7495 -0.6597 +vn 0.7182 0.0158 -0.6957 +vn 0.7182 0.0148 -0.6957 +vn 0.7181 0.0146 -0.6958 +vn -0.1851 -0.7102 -0.6792 +vn -0.1852 -0.7102 -0.6792 +vn -0.2882 -0.9514 -0.1082 +vn -0.2876 -0.9518 -0.1069 +vn -0.2888 -0.9512 -0.1085 +vn 0.6098 -0.7212 0.3287 +vn 0.6098 -0.7214 0.3281 +vn 0.6098 -0.7213 0.3285 +vn -0.7951 -0.5289 -0.2968 +vn -0.7949 -0.5288 -0.2976 +vn -0.7950 -0.5288 -0.2973 +vn 0.6550 0.7330 0.1836 +vn 0.6551 0.7329 0.1836 +vn 0.6550 0.7330 0.1835 +vn 0.9181 -0.0174 0.3960 +vn 0.9182 -0.0171 0.3958 +vn 0.3655 -0.2509 0.8964 +vn 0.3663 -0.2504 0.8962 +vn 0.3667 -0.2506 0.8960 +vn -0.4620 0.8792 -0.1162 +vn -0.4621 0.8793 -0.1154 +vn -0.4621 0.8793 -0.1157 +vn -0.4039 -0.3793 -0.8325 +vn -0.4033 -0.3796 -0.8326 +vn -0.4042 -0.3785 -0.8327 +vn -0.2514 0.8894 -0.3818 +vn -0.2515 0.8893 -0.3821 +vn -0.2514 0.8893 -0.3819 +vn 0.5566 0.1569 0.8158 +vn 0.5567 0.1569 0.8158 +vn -0.3738 -0.8684 -0.3258 +vn -0.3738 -0.8686 -0.3252 +vn -0.3738 -0.8686 -0.3254 +vn 0.4439 0.7781 -0.4444 +vn 0.4436 0.7782 -0.4445 +vn 0.4437 0.7783 -0.4443 +vn -0.6538 -0.7478 0.1153 +vn -0.3675 -0.1006 -0.9246 +vn -0.3663 -0.0998 -0.9251 +vn -0.3667 -0.0998 -0.9250 +vn 0.4676 0.8785 0.0983 +vn 0.4677 0.8785 0.0975 +vn 0.4675 0.8785 0.0980 +vn -0.7330 0.6003 -0.3198 +vn -0.7769 0.5229 -0.3506 +vn -0.7770 0.5229 -0.3505 +vn 0.0011 0.0031 1.0000 +vn -0.0001 0.0003 1.0000 +vn 0.0447 -0.1645 0.9854 +vn 0.0443 -0.1642 0.9854 +vn -0.7891 0.4672 -0.3987 +vn -0.7890 0.4677 -0.3985 +vn -0.7892 0.4671 -0.3987 +vn -0.3674 0.1559 0.9169 +vn -0.3673 0.1563 0.9169 +vn -0.3676 0.1559 0.9168 +vn -0.3709 0.2754 0.8869 +vn -0.3708 0.2755 0.8869 +vn -0.3708 0.2756 0.8869 +vn -0.8534 0.4125 -0.3186 +vn -0.6850 0.3531 -0.6373 +vn -0.6850 0.3530 -0.6373 +vn -0.0511 -0.6880 0.7239 +vn -0.0512 -0.6881 0.7238 +vn -0.1894 0.4428 -0.8764 +vn -0.1891 0.4419 -0.8769 +vn -0.1894 0.4407 -0.8775 +vn -0.2049 0.5287 0.8237 +vn -0.2046 0.5288 0.8237 +vn -0.2048 0.5287 0.8237 +vn -0.4583 0.2354 0.8571 +vn -0.4966 0.7391 -0.4550 +vn -0.4968 0.7389 -0.4553 +vn -0.4968 0.7388 -0.4553 +vn 0.0362 0.4057 -0.9133 +vn 0.0362 0.4058 -0.9132 +vn -0.1631 0.0043 0.9866 +vn -0.1637 0.0048 0.9865 +vn -0.1633 0.0046 0.9866 +vn 0.5660 0.2994 0.7681 +vn 0.5662 0.2998 0.7678 +vn 0.5661 0.2995 0.7680 +vn 0.8316 -0.0169 0.5551 +vn 0.8316 -0.0172 0.5552 +vn 0.2566 -0.9197 -0.2971 +vn 0.2564 -0.9197 -0.2972 +vn 0.2569 -0.9197 -0.2969 +vn -0.3204 -0.0430 -0.9463 +vn 0.2429 0.3972 -0.8850 +vn 0.2429 0.3973 -0.8850 +vn 0.9099 0.1562 0.3842 +vn 0.9099 0.1561 0.3843 +vn 0.9100 0.1562 0.3841 +vn -0.1193 -0.3736 0.9199 +vn -0.1195 -0.3734 0.9199 +vn -0.1192 -0.3738 0.9198 +vn -0.1581 0.7592 -0.6313 +vn -0.1580 0.7592 -0.6314 +vn -0.1582 0.7594 -0.6312 +vn -0.4539 0.6730 -0.5840 +vn -0.1912 0.4203 -0.8870 +vn -0.1905 0.4198 -0.8874 +vn -0.1899 0.4189 -0.8879 +vn -0.2153 -0.4596 0.8617 +vn -0.2155 -0.4597 0.8615 +vn 0.4756 0.7880 -0.3910 +vn 0.4759 0.7876 -0.3915 +vn 0.4757 0.7878 -0.3913 +vn 0.7376 -0.2173 0.6393 +vn 0.7373 -0.2173 0.6397 +vn 0.7369 -0.2171 0.6402 +vn 0.6950 -0.4037 0.5950 +vn 0.6953 -0.4063 0.5928 +vn 0.6963 -0.4071 0.5911 +vn -0.5585 -0.7031 0.4401 +vn -0.5573 -0.7039 0.4404 +vn -0.5593 -0.7021 0.4408 +vn 0.9471 0.0768 0.3115 +vn 0.9472 0.0767 0.3113 +vn -0.5601 0.8164 -0.1407 +vn -0.5600 0.8165 -0.1407 +vn -0.0470 0.9419 0.3325 +vn -0.0463 0.9419 0.3328 +vn -0.0453 0.9422 0.3320 +vn -0.2392 0.9432 0.2304 +vn -0.2397 0.9431 0.2303 +vn -0.2401 0.9431 0.2302 +vn 0.5160 0.8495 0.1102 +vn 0.5162 0.8493 0.1106 +vn 0.0290 0.9909 -0.1315 +vn 0.0291 0.9909 -0.1314 +vn -0.5698 -0.3307 -0.7523 +vn -0.5698 -0.3321 -0.7517 +vn -0.5698 -0.3315 -0.7520 +vn -0.0451 0.9508 -0.3065 +vn -0.0454 0.9509 -0.3063 +vn -0.5472 0.6701 -0.5016 +vn -0.5469 0.6704 -0.5015 +vn -0.1866 0.7458 -0.6395 +vn -0.1866 0.7460 -0.6393 +vn -0.0967 -0.9952 -0.0146 +vn -0.0964 -0.9952 -0.0145 +vn -0.0969 -0.9952 -0.0149 +vn -0.2511 -0.9143 -0.3179 +vn 0.5745 0.5838 0.5737 +vn 0.0883 -0.9492 -0.3020 +vn 0.0882 -0.9491 -0.3024 +vn 0.2108 -0.8061 -0.5529 +vn 0.4935 -0.7883 -0.3675 +vn -0.7539 -0.3303 -0.5679 +vn -0.7540 -0.3301 -0.5679 +vn -0.8296 0.3755 0.4133 +vn -0.8297 0.3754 0.4132 +vn -0.8296 0.3757 0.4131 +vn 0.3027 -0.8837 -0.3570 +vn 0.3014 -0.8841 -0.3571 +vn 0.3036 -0.8837 -0.3563 +vn 0.2353 0.8216 0.5192 +vn 0.2354 0.8217 0.5191 +vn 0.2355 0.8217 0.5191 +vn 0.4661 0.7798 -0.4179 +vn 0.4657 0.7796 -0.4187 +vn 0.4657 0.7798 -0.4184 +vn -0.6711 0.5488 0.4984 +vn -0.3627 0.8977 -0.2500 +vn -0.4194 -0.8720 -0.2524 +vn -0.8187 -0.5396 0.1964 +vn -0.0531 0.9219 -0.3837 +vn -0.0533 0.9220 -0.3836 +vn -0.3103 0.9487 -0.0601 +vn -0.3104 0.9487 -0.0600 +vn -0.3102 0.9488 -0.0601 +vn -0.5321 0.8441 -0.0659 +vn -0.7012 -0.5479 -0.4561 +vn -0.7012 -0.5480 -0.4560 +vn -0.7014 -0.5479 -0.4558 +vn 0.3436 0.8661 0.3630 +vn 0.3433 0.8665 0.3624 +vn 0.3432 0.8666 0.3622 +vn 0.7432 -0.5724 -0.3465 +vn 0.7434 -0.5721 -0.3464 +vn 0.7436 -0.5719 -0.3464 +vn 0.8062 -0.0766 -0.5867 +vn 0.8062 -0.0763 -0.5867 +vn 0.8062 -0.0760 -0.5867 +vn -0.1833 -0.0005 -0.9831 +vn -0.1838 -0.0003 -0.9830 +vn -0.1836 -0.0004 -0.9830 +vn -0.7710 -0.6162 -0.1610 +vn -0.7708 -0.6163 -0.1614 +vn -0.7708 -0.6162 -0.1618 +vn -0.8912 0.4175 0.1773 +vn -0.8910 0.4179 0.1774 +vn -0.8911 0.4178 0.1772 +vn 0.7126 0.4093 0.5698 +vn 0.7126 0.4094 0.5697 +vn -0.8717 -0.4813 -0.0924 +vn -0.8719 -0.4809 -0.0921 +vn -0.8720 -0.4807 -0.0921 +vn 0.0668 0.9494 -0.3069 +vn 0.0677 0.9491 -0.3076 +vn 0.0676 0.9492 -0.3074 +vn 0.9271 -0.3474 0.1405 +vn -0.1042 -0.7322 -0.6731 +vn -0.1039 -0.7325 -0.6727 +vn -0.1041 -0.7323 -0.6730 +vn 0.4707 -0.6159 0.6317 +vn 0.4706 -0.6161 0.6316 +vn 0.4707 -0.6160 0.6317 +vn -0.5308 -0.3972 0.7487 +vn -0.5309 -0.3971 0.7486 +vn -0.5307 -0.3973 0.7487 +vn -0.3193 -0.8043 -0.5012 +vn -0.3192 -0.8042 -0.5014 +vn 0.9400 0.2705 0.2077 +vn 0.9395 0.2715 0.2089 +vn 0.9388 0.2737 0.2092 +vn 0.2502 0.9380 0.2400 +vn 0.2503 0.9377 0.2411 +vn 0.2509 0.9373 0.2420 +vn -0.6108 -0.6397 -0.4666 +vn -0.6111 -0.6404 -0.4653 +vn -0.6109 -0.6398 -0.4662 +vn -0.2697 -0.9628 0.0149 +vn -0.2703 -0.9627 0.0147 +vn -0.2699 -0.9628 0.0147 +vn 0.5458 0.7130 -0.4401 +vn 0.4379 -0.4227 -0.7935 +vn 0.4378 -0.4228 -0.7934 +vn 0.4377 -0.4228 -0.7935 +vn 0.7353 -0.5517 0.3937 +vn 0.7354 -0.5516 0.3936 +vn 0.7352 -0.5517 0.3938 +vn 0.7046 -0.7069 0.0624 +vn 0.7047 -0.7068 0.0622 +vn 0.8473 0.4609 0.2639 +vn 0.8472 0.4610 0.2640 +vn 0.8470 0.4613 0.2642 +vn 0.0190 0.9922 -0.1235 +vn -0.4558 0.7905 -0.4091 +vn -0.4560 0.7904 -0.4090 +vn -0.4559 0.7902 -0.4095 +vn -0.0317 0.9668 -0.2536 +vn -0.0312 0.9668 -0.2537 +vn -0.0314 0.9668 -0.2537 +vn 0.0830 0.6942 0.7150 +vn 0.0831 0.6941 0.7150 +vn -0.7247 -0.4643 -0.5092 +vn -0.7250 -0.4641 -0.5090 +vn -0.7248 -0.4642 -0.5091 +vn 0.0986 0.7916 0.6031 +vn 0.0988 0.7914 0.6033 +vn 0.0988 0.7917 0.6029 +vn 0.2854 -0.5931 -0.7529 +vn 0.2854 -0.5933 -0.7527 +vn 0.2854 -0.5932 -0.7528 +vn 0.5481 0.7970 0.2538 +vn 0.5481 0.7970 0.2537 +vn 0.5482 0.7970 0.2537 +vn -0.9691 0.0928 -0.2285 +vn -0.9693 0.0929 -0.2277 +vn -0.1969 -0.8696 -0.4527 +vn -0.1968 -0.8698 -0.4525 +vn -0.1968 -0.8697 -0.4526 +vn 0.6696 -0.6406 0.3759 +vn 0.6694 -0.6408 0.3760 +vn 0.6690 -0.6413 0.3758 +vn 0.4461 0.8947 0.0234 +vn 0.4458 0.8948 0.0236 +vn 0.4463 0.8946 0.0232 +vn 0.4984 0.8631 0.0821 +vn 0.2815 0.8678 -0.4096 +vn -0.7929 -0.4215 -0.4401 +vn -0.7927 -0.4215 -0.4403 +vn -0.6752 -0.6279 -0.3871 +vn -0.6751 -0.6279 -0.3872 +vn 0.0698 0.9172 -0.3923 +vn 0.0691 0.9174 -0.3920 +vn 0.0708 0.9171 -0.3924 +vn 0.5061 0.2764 -0.8170 +vn 0.5063 0.2763 -0.8169 +vn -0.8799 -0.4736 0.0377 +vn -0.8799 -0.4737 0.0377 +vn 0.9802 -0.1840 -0.0735 +vn 0.9801 -0.1843 -0.0734 +vn 0.9802 -0.1837 -0.0736 +vn 0.1975 -0.9111 0.3617 +vn 0.2633 0.0170 -0.9646 +vn 0.2634 0.0170 -0.9645 +vn -0.6020 0.1891 -0.7758 +vn -0.6020 0.1890 -0.7758 +vn -0.7509 -0.6406 -0.1608 +vn -0.7511 -0.6403 -0.1608 +vn -0.7507 -0.6408 -0.1608 +vn -0.9739 0.1112 0.1980 +vn -0.9739 0.1111 0.1980 +vn -0.9739 0.1111 0.1981 +vn -0.5507 0.8157 -0.1770 +vn -0.5508 0.8159 -0.1760 +vn -0.5506 0.8161 -0.1754 +vn -0.6525 0.5095 -0.5610 +vn -0.6528 0.5095 -0.5606 +vn -0.6530 0.5095 -0.5604 +vn 0.7617 -0.3004 0.5741 +vn 0.7611 -0.2991 0.5756 +vn 0.7612 -0.2993 0.5753 +vn -0.0784 -0.7724 0.6303 +vn 0.2977 -0.8755 -0.3806 +vn 0.2976 -0.8756 -0.3806 +vn 0.8735 -0.3166 0.3698 +vn 0.8733 -0.3168 0.3701 +vn 0.8734 -0.3166 0.3700 +vn 0.2328 0.6082 0.7589 +vn 0.2320 0.6082 0.7591 +vn -0.1102 0.7153 -0.6901 +vn -0.1105 0.7150 -0.6903 +vn -0.1103 0.7152 -0.6902 +vn 0.0408 -0.9982 0.0439 +vn 0.0407 -0.9982 0.0439 +vn -0.1063 0.6835 0.7221 +vn -0.1064 0.6837 0.7220 +vn -0.1065 0.6838 0.7219 +vn 0.0065 -0.9993 0.0356 +vn 0.0068 -0.9994 0.0351 +vn 0.0067 -0.9994 0.0353 +vn -0.5859 0.7222 -0.3676 +vn 0.4865 0.2203 -0.8454 +vn 0.4859 0.2202 -0.8458 +vn 0.4860 0.2207 -0.8457 +vn 0.4333 0.8917 -0.1311 +vn 0.4333 0.8917 -0.1306 +vn -0.8583 0.2996 -0.4166 +vn -0.8583 0.2999 -0.4164 +vn -0.8583 0.2993 -0.4169 +vn -0.2849 -0.4336 0.8549 +vn -0.2846 -0.4337 0.8549 +vn -0.2852 -0.4338 0.8547 +vn -0.5096 0.7993 -0.3185 +vn -0.5093 0.7994 -0.3186 +vn -0.5089 0.7999 -0.3180 +vn -0.2448 0.9674 0.0653 +vn -0.4328 0.6706 -0.6025 +vn -0.4328 0.6706 -0.6024 +vn -0.4326 0.6707 -0.6025 +vn 0.5754 -0.7956 -0.1896 +vn 0.5753 -0.7955 -0.1902 +vn 0.5751 -0.7956 -0.1906 +vn 0.4627 0.6621 -0.5895 +vn 0.4628 0.6609 -0.5907 +vn 0.4629 0.6616 -0.5899 +vn 0.0001 -0.9658 0.2594 +vn 0.0005 -0.9659 0.2588 +vn 0.1782 0.2128 0.9607 +vn 0.1781 0.2129 0.9607 +vn 0.1778 0.2125 0.9609 +vn 0.3423 0.3580 -0.8687 +vn 0.3432 0.3594 -0.8678 +vn 0.3429 0.3585 -0.8683 +vn -0.1651 -0.9741 -0.1544 +vn -0.1648 -0.9741 -0.1547 +vn -0.1648 -0.9741 -0.1550 +vn -0.0473 -0.9690 0.2423 +vn -0.0473 -0.9690 0.2424 +vn -0.0477 -0.9689 0.2427 +vn -0.3611 0.8650 -0.3485 +vn -0.3610 0.8650 -0.3486 +vn -0.3610 0.8652 -0.3480 +vn -0.0750 -0.0175 -0.9970 +vn -0.0745 -0.0177 -0.9971 +vn -0.0747 -0.0176 -0.9971 +vn 0.5196 -0.6910 0.5024 +vn 0.5186 -0.6914 0.5030 +vn 0.5192 -0.6912 0.5027 +vn 0.2190 0.1974 -0.9556 +vn 0.2187 0.1968 -0.9557 +vn 0.2190 0.1972 -0.9556 +vn 0.9468 -0.0711 0.3138 +vn 0.9468 -0.0713 0.3138 +vn 0.9468 -0.0707 0.3138 +vn 0.0448 0.9349 0.3519 +vn 0.0454 0.9350 0.3518 +vn 0.0449 0.9350 0.3519 +vn -0.4158 -0.8398 0.3490 +vn -0.4157 -0.8400 0.3487 +vn -0.4158 -0.8399 0.3489 +vn 0.5125 -0.8443 0.1563 +vn 0.5125 -0.8444 0.1562 +vn -0.5562 -0.0072 -0.8310 +vn -0.5562 -0.0077 -0.8310 +vn -0.0001 0.0147 0.9999 +vn -0.0778 0.8971 -0.4349 +vn -0.0777 0.8972 -0.4347 +vn -0.0777 0.8973 -0.4346 +vn -0.3219 -0.9298 -0.1786 +vn -0.3220 -0.9298 -0.1784 +vn -0.8674 -0.3823 0.3186 +vn -0.8669 -0.3834 0.3185 +vn -0.8671 -0.3830 0.3184 +vn 0.6388 -0.7464 0.1869 +vn 0.6387 -0.7464 0.1869 +vn 0.6387 -0.7465 0.1866 +vn 0.2784 -0.6383 -0.7177 +vn 0.1985 0.8470 -0.4931 +vn 0.1987 0.8468 -0.4934 +vn 0.1988 0.8465 -0.4938 +vn -0.7617 -0.5713 0.3057 +vn -0.0262 0.4626 -0.8862 +vn -0.0266 0.4628 -0.8861 +vn -0.0264 0.4626 -0.8862 +vn -0.9180 -0.1775 -0.3546 +vn -0.9180 -0.1774 -0.3546 +vn -0.1646 -0.0036 0.9864 +vn -0.1666 -0.0042 0.9860 +vn -0.1633 -0.0020 0.9866 +vn 0.3037 -0.5664 -0.7661 +vn 0.7968 -0.5926 0.1180 +vn -0.3112 -0.9367 -0.1606 +vn -0.3113 -0.9366 -0.1608 +vn -0.6017 0.2500 0.7586 +vn -0.6019 0.2497 0.7585 +vn -0.7447 -0.6673 -0.0032 +vn -0.2023 0.5948 0.7780 +vn -0.2027 0.5947 0.7780 +vn -0.2022 0.5949 0.7779 +vn 0.0192 0.9428 -0.3328 +vn 0.0197 0.9426 -0.3334 +vn 0.0194 0.9427 -0.3332 +vn 0.6962 0.1427 0.7035 +vn 0.6961 0.1427 0.7036 +vn 0.6977 0.1437 0.7018 +vn -0.6530 0.3424 0.6756 +vn 0.7375 -0.1934 -0.6470 +vn 0.7373 -0.1936 -0.6472 +vn 0.7372 -0.1935 -0.6474 +vn -0.9168 -0.0331 -0.3981 +vn 0.0231 0.5258 0.8503 +vn 0.0228 0.5256 0.8504 +vn 0.3659 0.8440 -0.3921 +vn 0.3658 0.8440 -0.3921 +vn -0.4159 -0.3080 0.8556 +vn 0.3603 0.7274 -0.5840 +vn 0.3604 0.7273 -0.5841 +vn 0.3604 0.7273 -0.5840 +vn -0.8604 -0.0270 -0.5089 +vn -0.8603 -0.0273 -0.5090 +vn 0.8547 -0.4775 0.2037 +vn 0.8548 -0.4774 0.2034 +vn 0.8546 -0.4775 0.2041 +vn 0.1770 -0.6361 0.7511 +vn 0.1764 -0.6364 0.7509 +vn 0.1776 -0.6354 0.7515 +vn 0.5141 0.3579 0.7795 +vn 0.5142 0.3578 0.7795 +vn 0.5136 0.3585 0.7796 +vn -0.1364 -0.8985 0.4172 +vn -0.1362 -0.8987 0.4169 +vn -0.1359 -0.8988 0.4168 +vn 0.6610 0.5179 -0.5430 +vn 0.6612 0.5177 -0.5429 +vn 0.6614 0.5174 -0.5431 +vn 0.6442 0.1811 0.7431 +vn 0.6442 0.1810 0.7431 +vn 0.6443 0.1809 0.7431 +vn -0.9223 0.3728 -0.1020 +vn -0.9224 0.3725 -0.1021 +vn -0.4915 -0.3312 0.8054 +vn -0.4915 -0.3315 0.8053 +vn -0.4916 -0.3313 0.8053 +vn 0.3558 -0.4184 0.8357 +vn 0.3555 -0.4185 0.8357 +vn 0.3559 -0.4183 0.8357 +vn -0.5664 0.4942 0.6595 +vn -0.5613 0.4962 0.6624 +vn -0.5644 0.4957 0.6601 +vn -0.5762 0.2579 0.7756 +vn -0.5759 0.2587 0.7755 +vn -0.5758 0.2597 0.7752 +vn -0.3646 -0.0950 -0.9263 +vn -0.3645 -0.0951 -0.9263 +vn -0.3648 -0.0951 -0.9262 +vn -0.6956 0.2289 -0.6810 +vn -0.6963 0.2256 -0.6814 +vn -0.6962 0.2315 -0.6795 +vn -0.4277 0.6813 -0.5941 +vn -0.1518 0.5847 -0.7969 +vn -0.1517 0.5844 -0.7971 +vn 0.0640 0.8162 -0.5742 +vn 0.0638 0.8158 -0.5748 +vn 0.0636 0.8153 -0.5755 +vn -0.2544 0.2260 0.9403 +vn 0.6425 -0.3698 0.6711 +vn 0.6427 -0.3698 0.6709 +vn 0.6423 -0.3698 0.6713 +vn -0.0037 0.5010 -0.8654 +vn -0.0037 0.5011 -0.8654 +vn -0.5312 0.8104 0.2470 +vn -0.5313 0.8105 0.2465 +vn 0.5239 0.7531 0.3980 +vn 0.5268 0.7505 0.3991 +vn 0.5264 0.7510 0.3986 +vn 0.1980 0.5566 0.8068 +vn 0.1941 0.5579 0.8069 +vn 0.1917 0.5579 0.8074 +vn -0.9922 -0.0542 0.1120 +vn -0.9922 -0.0543 0.1120 +vn 0.0024 0.0007 1.0000 +vn -0.0716 -0.0657 0.9953 +vn 0.2880 0.2731 0.9179 +vn 0.2880 0.2732 0.9178 +vn 0.2880 0.2734 0.9178 +vn 0.4286 -0.8217 0.3757 +vn 0.4286 -0.8220 0.3749 +vn 0.4285 -0.8219 0.3753 +vn -0.9302 -0.0964 -0.3542 +vn -0.9303 -0.0965 -0.3538 +vn -0.9299 -0.0966 -0.3550 +vn 0.6078 -0.7776 0.1607 +vn -0.9412 -0.0236 -0.3371 +vn -0.9412 -0.0228 -0.3370 +vn -0.4622 -0.8671 0.1858 +vn -0.4626 -0.8668 0.1860 +vn -0.1911 -0.8733 0.4481 +vn -0.1918 -0.8740 0.4465 +vn -0.1916 -0.8748 0.4451 +vn 0.4948 0.8586 0.1337 +vn 0.4948 0.8587 0.1336 +vn -0.9811 0.1867 -0.0513 +vn -0.9810 0.1870 -0.0515 +vn -0.9809 0.1873 -0.0522 +vn 0.6111 -0.2049 0.7645 +vn 0.6114 -0.2046 0.7644 +vn 0.6108 -0.2050 0.7648 +vn 0.6435 0.6371 0.4242 +vn 0.6434 0.6372 0.4243 +vn 0.1284 -0.8975 0.4218 +vn -0.4594 -0.0159 0.8881 +vn -0.4593 -0.0158 0.8881 +vn -0.4594 -0.0157 0.8881 +vn 0.4823 0.0914 0.8712 +vn 0.4826 0.0916 0.8711 +vn 0.2773 0.9534 0.1189 +vn 0.2773 0.9534 0.1191 +vn 0.2773 0.9534 0.1187 +vn -0.1266 0.9047 -0.4069 +vn -0.1267 0.9046 -0.4070 +vn 0.6328 -0.7556 -0.1691 +vn 0.6329 -0.7555 -0.1694 +vn 0.6329 -0.7556 -0.1689 +vn -0.0649 -0.0588 0.9962 +vn -0.0650 -0.0588 0.9962 +vn 0.2385 -0.7444 -0.6237 +vn 0.2394 -0.7438 -0.6240 +vn 0.2394 -0.7439 -0.6240 +vn 0.0098 -0.9282 0.3721 +vn 0.0097 -0.9281 0.3721 +vn -0.9557 0.2939 0.0136 +vn -0.9561 0.2928 0.0140 +vn -0.9560 0.2931 0.0139 +vn 0.2402 -0.9112 0.3346 +vn 0.2394 -0.9116 0.3343 +vn 0.2398 -0.9114 0.3343 +vn -0.3456 0.9379 -0.0310 +vn -0.3459 0.9378 -0.0311 +vn -0.3458 0.9378 -0.0311 +vn -0.7834 0.2628 -0.5632 +vn -0.7840 0.2639 -0.5618 +vn -0.7833 0.2611 -0.5641 +vn 0.1054 -0.7653 0.6350 +vn 0.1057 -0.7654 0.6348 +vn 0.1060 -0.7659 0.6342 +vn 0.0999 -0.7491 0.6549 +vn 0.0997 -0.7492 0.6548 +vn 0.0996 -0.7491 0.6549 +vn 0.6779 -0.1968 0.7083 +vn 0.6778 -0.1969 0.7084 +vn 0.1341 0.7123 -0.6889 +vn 0.1344 0.7120 -0.6892 +vn -0.9585 -0.1808 -0.2206 +vn -0.9585 -0.1808 -0.2205 +vn -0.9586 -0.1804 -0.2205 +vn -0.6931 0.0389 -0.7198 +vn -0.6929 0.0390 -0.7200 +vn -0.6929 0.0387 -0.7200 +vn -0.0061 -0.7826 0.6225 +vn -0.0062 -0.7823 0.6228 +vn -0.0054 -0.7829 0.6222 +vn -0.5015 -0.0929 -0.8602 +vn 0.1060 -0.0297 -0.9939 +vn 0.1063 -0.0300 -0.9939 +vn 0.1065 -0.0302 -0.9939 +vn 0.0814 0.1565 -0.9843 +vn 0.0812 0.1564 -0.9843 +vn -0.1834 -0.0152 -0.9829 +vn -0.1833 -0.0148 -0.9830 +vn -0.1836 -0.0152 -0.9829 +vn 0.6625 -0.6066 -0.4395 +vn 0.6619 -0.6075 -0.4391 +vn 0.6622 -0.6071 -0.4393 +vn -0.5406 0.2186 -0.8124 +vn -0.5405 0.2185 -0.8125 +vn -0.5406 0.2187 -0.8124 +vn 0.5614 -0.7480 0.3539 +vn -0.3166 -0.4417 -0.8394 +vn -0.3169 -0.4419 -0.8392 +vn -0.6203 0.4874 -0.6145 +vn -0.6204 0.4872 -0.6146 +vn -0.0018 -0.0005 1.0000 +vn 0.0559 -0.6955 0.7164 +vn 0.0562 -0.6948 0.7170 +vn 0.0554 -0.6960 0.7159 +vn 0.2591 0.6113 0.7478 +vn 0.2589 0.6121 0.7472 +vn 0.2590 0.6120 0.7473 +vn -0.0975 0.9710 -0.2182 +vn -0.0978 0.9709 -0.2185 +vn -0.0980 0.9708 -0.2189 +vn -0.5330 -0.8309 -0.1598 +vn -0.5344 -0.8302 -0.1588 +vn -0.5337 -0.8306 -0.1592 +vn -0.2558 0.1052 -0.9610 +vn -0.2550 0.1056 -0.9612 +vn -0.2555 0.1054 -0.9610 +vn -0.0000 0.0007 1.0000 +vn -0.8588 -0.5116 0.0273 +vn -0.6579 -0.6599 0.3630 +vn -0.6578 -0.6598 0.3631 +vn 0.2766 -0.8511 0.4462 +vn 0.2763 -0.8511 0.4463 +vn 0.4286 0.8909 -0.1504 +vn 0.4280 0.8912 -0.1502 +vn 0.4283 0.8911 -0.1501 +vn 0.1447 0.9833 0.1101 +vn 0.1450 0.9833 0.1102 +vn 0.1451 0.9833 0.1101 +vn -0.1011 -0.9858 -0.1345 +vn -0.2325 -0.3832 0.8939 +vn -0.2313 -0.3844 0.8937 +vn -0.2319 -0.3841 0.8937 +vn 0.9045 -0.3215 -0.2801 +vn 0.9043 -0.3219 -0.2803 +vn 0.9044 -0.3218 -0.2801 +vn 0.0657 -0.9932 -0.0957 +vn -0.8480 -0.5118 -0.1376 +vn -0.8480 -0.5118 -0.1377 +vn -0.2406 -0.9555 -0.1707 +vn -0.2405 -0.9555 -0.1708 +vn 0.7572 -0.2419 0.6067 +vn -0.5118 -0.1095 -0.8521 +vn -0.5117 -0.1093 -0.8522 +vn -0.1803 -0.9219 -0.3430 +vn -0.1804 -0.9217 -0.3434 +vn 0.5490 -0.7375 0.3933 +vn 0.5490 -0.7374 0.3935 +vn -0.5089 0.6247 0.5922 +vn -0.5092 0.6246 0.5921 +vn -0.5088 0.6247 0.5924 +vn 0.6398 -0.3686 -0.6744 +vn 0.6405 -0.3689 -0.6736 +vn 0.6397 -0.3675 -0.6751 +vn 0.7175 -0.6513 0.2469 +vn 0.7178 -0.6509 0.2473 +vn -0.9046 0.4263 0.0082 +vn -0.9054 0.4245 0.0070 +vn -0.9057 0.4239 0.0055 +vn 0.2809 0.9590 -0.0366 +vn 0.2815 0.9589 -0.0368 +vn 0.1819 0.9150 -0.3603 +vn 0.1818 0.9150 -0.3602 +vn 0.9258 -0.3221 -0.1979 +vn 0.9257 -0.3222 -0.1980 +vn -0.3408 0.9384 0.0570 +vn -0.3408 0.9384 0.0571 +vn -0.9552 0.2886 -0.0656 +vn 0.7765 -0.1951 0.5991 +vn 0.7766 -0.1953 0.5990 +vn -0.4144 -0.7832 -0.4634 +vn -0.4144 -0.7833 -0.4634 +vn 0.6643 0.7250 0.1819 +vn 0.6645 0.7247 0.1822 +vn 0.3364 0.3281 -0.8827 +vn 0.3363 0.3283 -0.8827 +vn 0.3362 0.3281 -0.8828 +vn 0.4043 -0.8765 0.2612 +vn 0.0891 0.9802 0.1767 +vn -0.6363 -0.7047 -0.3138 +vn -0.6363 -0.7045 -0.3143 +vn 0.0413 0.6826 -0.7296 +vn 0.0411 0.6832 -0.7291 +vn 0.0412 0.6821 -0.7301 +vn 0.4881 -0.4937 -0.7197 +vn 0.4880 -0.4937 -0.7198 +vn 0.4876 -0.4939 -0.7200 +vn 0.6377 -0.6846 0.3532 +vn 0.6376 -0.6847 0.3530 +vn 0.6376 -0.6848 0.3529 +vn 0.7676 -0.0212 -0.6406 +vn 0.7672 -0.0217 -0.6411 +vn 0.7674 -0.0213 -0.6408 +vn -0.3263 0.6837 0.6527 +vn -0.3268 0.6835 0.6527 +vn -0.3255 0.6841 0.6527 +vn -0.1551 0.9088 -0.3874 +vn -0.1552 0.9089 -0.3871 +vn -0.1549 0.9088 -0.3875 +vn -0.4749 0.8520 0.2205 +vn -0.4745 0.8522 0.2206 +vn -0.4742 0.8523 0.2208 +vn 0.4435 0.5573 0.7019 +vn 0.4434 0.5572 0.7021 +vn 0.4437 0.5573 0.7018 +vn -0.7331 -0.4648 -0.4965 +vn -0.7330 -0.4646 -0.4969 +vn -0.7332 -0.4650 -0.4962 +vn 0.7276 0.6486 0.2233 +vn 0.7274 0.6488 0.2237 +vn 0.7274 0.6488 0.2235 +vn -0.8332 0.4494 -0.3223 +vn -0.8332 0.4487 -0.3231 +vn -0.8331 0.4493 -0.3226 +vn -0.7384 0.6241 -0.2555 +vn -0.7385 0.6239 -0.2556 +vn 0.9089 0.0553 0.4133 +vn 0.9087 0.0554 0.4137 +vn 0.9093 0.0551 0.4126 +vn -0.6944 -0.4838 -0.5327 +vn -0.6945 -0.4835 -0.5328 +vn -0.6945 -0.4838 -0.5326 +vn 0.0793 0.4084 0.9094 +vn 0.0793 0.4084 0.9093 +vn -0.6872 -0.4590 -0.5631 +vn -0.8627 0.3994 -0.3103 +vn -0.8627 0.4000 -0.3094 +vn -0.8627 0.3992 -0.3105 +vn 0.4597 -0.4267 -0.7788 +vn 0.4599 -0.4271 -0.7785 +vn 0.4597 -0.4268 -0.7788 +vn -0.0022 -0.3836 -0.9235 +vn -0.0022 -0.3834 -0.9236 +vn -0.0025 -0.3831 -0.9237 +vn 0.6416 -0.5560 -0.5283 +vn 0.6415 -0.5559 -0.5286 +vn 0.6418 -0.5562 -0.5280 +vn 0.7002 -0.6309 0.3341 +vn 0.7001 -0.6309 0.3343 +vn 0.0135 0.7572 0.6531 +vn 0.0138 0.7573 0.6530 +vn 0.6867 -0.6418 0.3414 +vn 0.6861 -0.6427 0.3408 +vn 0.7282 -0.4824 0.4869 +vn 0.7282 -0.4825 0.4867 +vn 0.7280 -0.4821 0.4875 +vn -0.8172 -0.5666 0.1057 +vn -0.8173 -0.5665 0.1055 +vn -0.8172 -0.5666 0.1058 +vn 0.3153 0.2937 -0.9024 +vn 0.3158 0.2917 -0.9029 +vn 0.3159 0.2929 -0.9024 +vn -0.6375 -0.6183 -0.4596 +vn -0.6375 -0.6182 -0.4598 +vn -0.4405 0.6056 0.6627 +vn -0.4404 0.6056 0.6628 +vn -0.4407 0.6055 0.6627 +vn 0.2807 -0.0074 0.9598 +vn 0.2808 -0.0069 0.9597 +vn 0.2804 -0.0074 0.9599 +vn -0.1906 -0.4566 -0.8690 +vn -0.1903 -0.4566 -0.8691 +vn 0.5953 -0.6891 0.4132 +vn 0.5949 -0.6894 0.4133 +vn 0.5946 -0.6895 0.4135 +vn -0.3754 0.9084 0.1842 +vn -0.3755 0.9083 0.1845 +vn -0.1134 -0.8543 0.5073 +vn -0.1131 -0.8544 0.5072 +vn -0.1129 -0.8547 0.5068 +vn -0.9728 0.2281 -0.0399 +vn -0.9729 0.2279 -0.0399 +vn 0.7434 -0.5645 0.3588 +vn 0.7433 -0.5645 0.3589 +vn 0.7431 -0.5646 0.3592 +vn -0.9253 0.0307 -0.3781 +vn -0.9252 0.0308 -0.3783 +vn -0.7440 -0.5689 -0.3505 +vn -0.7438 -0.5692 -0.3505 +vn -0.0189 -0.5392 0.8420 +vn -0.0185 -0.5389 0.8422 +vn -0.4417 0.4663 -0.7665 +vn -0.4415 0.4662 -0.7666 +vn -0.4416 0.4663 -0.7665 +vn 0.6098 -0.1663 0.7749 +vn 0.6098 -0.1664 0.7749 +vn -0.4089 -0.5205 -0.7496 +vn -0.4086 -0.5202 -0.7499 +vn -0.4089 -0.5208 -0.7494 +vn -0.7348 -0.5141 -0.4424 +vn -0.7350 -0.5139 -0.4424 +vn -0.7352 -0.5136 -0.4424 +vn -0.2469 0.1323 -0.9600 +vn -0.7182 -0.6641 0.2078 +vn -0.7177 -0.6644 0.2083 +vn -0.7178 -0.6644 0.2080 +vn -0.1678 -0.1696 -0.9711 +vn -0.1675 -0.1698 -0.9711 +vn 0.0444 0.0937 0.9946 +vn 0.0445 0.0939 0.9946 +vn 0.8196 -0.5584 0.1279 +vn 0.8196 -0.5585 0.1279 +vn 0.8196 -0.5585 0.1280 +vn 0.7559 -0.3400 0.5595 +vn 0.7558 -0.3403 0.5595 +vn 0.7831 0.1415 0.6056 +vn -0.7287 0.6771 -0.1029 +vn 0.8156 -0.5465 -0.1901 +vn 0.8149 -0.5475 -0.1902 +vn 0.8151 -0.5471 -0.1904 +vn 0.8155 -0.5468 -0.1895 +vn 0.8155 -0.5469 -0.1894 +vn -0.0685 -0.9900 0.1234 +vn -0.0686 -0.9899 0.1240 +vn 0.1582 -0.9583 0.2379 +vn 0.1586 -0.9582 0.2380 +vn 0.1588 -0.9582 0.2380 +vn -0.5563 -0.0787 -0.8273 +vn -0.5564 -0.0792 -0.8271 +vn -0.5564 -0.0790 -0.8271 +vn -0.7109 -0.5849 -0.3905 +vn -0.7108 -0.5849 -0.3906 +vn -0.7108 -0.5849 -0.3908 +vn 0.6220 0.1825 -0.7615 +vn 0.6221 0.1824 -0.7614 +vn -0.2419 0.8217 -0.5161 +vn -0.2419 0.8215 -0.5163 +vn -0.2416 0.8215 -0.5165 +vn -0.5772 0.4122 -0.7050 +vn -0.5774 0.4120 -0.7049 +vn -0.2730 -0.9589 -0.0770 +vn -0.2734 -0.9589 -0.0765 +vn -0.2734 -0.9588 -0.0768 +vn -0.7844 0.2317 -0.5754 +vn -0.7842 0.2316 -0.5756 +vn -0.7845 0.2316 -0.5753 +vn -0.3028 -0.9525 -0.0326 +vn -0.3032 -0.9524 -0.0322 +vn -0.3030 -0.9524 -0.0325 +vn 0.1681 -0.0265 0.9854 +vn 0.1684 -0.0263 0.9854 +vn 0.1682 -0.0265 0.9854 +vn -0.3008 0.8428 -0.4464 +vn -0.7959 -0.0921 -0.5984 +vn -0.7951 -0.0913 -0.5996 +vn -0.7954 -0.0917 -0.5992 +vn -0.1647 -0.8311 -0.5312 +vn -0.1648 -0.8311 -0.5311 +vn -0.1645 -0.8310 -0.5314 +vn 0.4229 -0.4409 0.7917 +vn 0.4228 -0.4410 0.7917 +vn 0.4227 -0.4409 0.7918 +vn -0.8878 0.0846 -0.4524 +vn -0.3723 -0.5842 -0.7212 +vn -0.4106 0.9113 -0.0285 +vn -0.4106 0.9114 -0.0281 +vn -0.4107 0.9114 -0.0283 +vn -0.4282 -0.5929 -0.6820 +vn -0.4283 -0.5930 -0.6819 +vn -0.1280 -0.7083 0.6942 +vn -0.1281 -0.7086 0.6939 +vn -0.1278 -0.7085 0.6940 +vn 0.5100 -0.0685 0.8574 +vn 0.5101 -0.0686 0.8574 +vn -0.6137 -0.7690 0.1790 +vn -0.6141 -0.7684 0.1801 +vn -0.6140 -0.7687 0.1792 +vn -0.5235 0.4950 -0.6935 +vn -0.5238 0.4948 -0.6934 +vn -0.5237 0.4949 -0.6934 +vn 0.5677 0.7123 0.4127 +vn 0.5676 0.7127 0.4123 +vn 0.5672 0.7132 0.4119 +vn 0.6503 -0.4843 -0.5853 +vn 0.6505 -0.4843 -0.5851 +vn -0.2219 0.2695 -0.9371 +vn 0.5682 -0.8221 -0.0362 +vn -0.8467 -0.1036 -0.5219 +vn -0.8467 -0.1037 -0.5218 +vn 0.8182 0.3301 0.4707 +vn 0.2741 -0.6671 -0.6927 +vn -0.6503 -0.2598 -0.7139 +vn -0.6504 -0.2597 -0.7138 +vn -0.6502 -0.2598 -0.7139 +vn -0.1245 0.9411 -0.3144 +vn -0.1249 0.9411 -0.3141 +vn -0.1241 0.9411 -0.3144 +vn -0.6687 0.6653 -0.3320 +vn -0.6687 0.6653 -0.3319 +vn -0.6616 0.7357 -0.1448 +vn -0.6612 0.7359 -0.1459 +vn -0.6615 0.7358 -0.1451 +vn -0.7747 -0.1665 -0.6101 +vn -0.7747 -0.1664 -0.6100 +vn -0.7748 -0.1663 -0.6099 +vn 0.5674 -0.8197 -0.0778 +vn 0.5676 -0.8197 -0.0777 +vn 0.5676 -0.8197 -0.0772 +vn 0.0374 0.1852 -0.9820 +vn 0.0377 0.1848 -0.9820 +vn 0.0375 0.1853 -0.9820 +vn -0.6197 -0.4971 0.6073 +vn -0.9598 0.2719 0.0692 +vn -0.3617 -0.9262 0.1062 +vn -0.3613 -0.9264 0.1062 +vn -0.3620 -0.9261 0.1060 +vn -0.0663 0.0208 0.9976 +vn -0.0665 0.0210 0.9976 +vn -0.2404 -0.9701 -0.0325 +vn -0.2409 -0.9700 -0.0321 +vn -0.2398 -0.9703 -0.0328 +vn -0.1638 -0.9071 0.3877 +vn -0.1633 -0.9072 0.3876 +vn -0.1641 -0.9071 0.3876 +vn -0.4533 0.6701 -0.5878 +vn -0.3935 -0.5477 -0.7384 +vn -0.3933 -0.5476 -0.7386 +vn -0.8249 -0.1457 -0.5462 +vn -0.8251 -0.1454 -0.5459 +vn -0.8249 -0.1458 -0.5461 +vn 0.3318 -0.5907 -0.7355 +vn 0.3316 -0.5909 -0.7354 +vn 0.3311 -0.5915 -0.7352 +vn 0.0226 -0.6414 -0.7669 +vn 0.0225 -0.6415 -0.7668 +vn -0.2942 -0.9474 -0.1257 +vn -0.2942 -0.9474 -0.1259 +vn 0.0907 -0.5292 -0.8436 +vn 0.0905 -0.5292 -0.8437 +vn 0.0903 -0.5292 -0.8437 +vn 0.3191 0.8809 0.3496 +vn 0.3188 0.8810 0.3496 +vn 0.3189 0.8809 0.3497 +vn -0.1561 0.2595 0.9531 +vn -0.1557 0.2593 0.9532 +vn -0.1566 0.2595 0.9529 +vn -0.0807 0.9229 -0.3764 +vn -0.0808 0.9231 -0.3761 +vn 0.8615 -0.4923 -0.1240 +vn 0.8616 -0.4922 -0.1241 +vn 0.8616 -0.4923 -0.1239 +vn -0.8146 -0.2202 -0.5366 +vn -0.0563 0.8493 -0.5249 +vn -0.0569 0.8491 -0.5252 +vn -0.0563 0.8494 -0.5247 +vn -0.2733 -0.9332 0.2332 +vn -0.2728 -0.9335 0.2328 +vn -0.2736 -0.9331 0.2333 +vn 0.9502 0.3113 0.0167 +vn 0.9502 0.3112 0.0166 +vn 0.2103 0.9610 -0.1796 +vn -0.3348 -0.6427 -0.6891 +vn -0.4653 -0.8377 -0.2860 +vn -0.4656 -0.8377 -0.2854 +vn -0.4647 -0.8379 -0.2864 +vn -0.8399 0.3497 -0.4151 +vn -0.8398 0.3496 -0.4153 +vn -0.8398 0.3496 -0.4154 +vn -0.5795 -0.7190 -0.3838 +vn -0.5795 -0.7191 -0.3835 +vn 0.1532 0.9824 -0.1068 +vn 0.1533 0.9824 -0.1068 +vn 0.1535 0.9824 -0.1067 +vn -0.3977 0.8778 -0.2671 +vn -0.3977 0.8777 -0.2673 +vn -0.3978 0.8777 -0.2671 +vn -0.4174 -0.9024 0.1069 +vn -0.4170 -0.9026 0.1071 +vn -0.4172 -0.9025 0.1070 +vn -0.0184 -0.9827 0.1840 +vn -0.0186 -0.9827 0.1845 +vn -0.0183 -0.9827 0.1841 +vn 0.9992 -0.0069 -0.0405 +vn 0.9992 -0.0068 -0.0402 +vn 0.9992 -0.0070 -0.0399 +vn 0.6911 -0.2460 -0.6796 +vn 0.6910 -0.2455 -0.6799 +vn 0.6913 -0.2466 -0.6792 +vn 0.3307 -0.2001 -0.9223 +vn 0.5169 0.7409 0.4288 +vn 0.6826 0.4677 0.5615 +vn 0.6827 0.4677 0.5614 +vn 0.0004 0.3785 0.9256 +vn -0.0003 0.3783 0.9257 +vn 0.0010 0.3784 0.9256 +vn 0.9390 -0.0034 0.3440 +vn -0.0158 0.0318 0.9994 +vn -0.7623 0.4994 -0.4118 +vn -0.7623 0.4994 -0.4117 +vn -0.7624 0.4993 -0.4117 +vn 0.8298 0.5181 0.2075 +vn 0.8294 0.5185 0.2079 +vn 0.8296 0.5183 0.2078 +vn -0.3364 -0.7828 -0.5235 +vn -0.3363 -0.7829 -0.5235 +vn -0.3363 -0.7829 -0.5234 +vn 0.1864 0.8874 -0.4217 +vn 0.1860 0.8874 -0.4217 +vn 0.1863 0.8874 -0.4217 +vn 0.5585 0.1539 0.8151 +vn 0.5585 0.1538 0.8151 +vn 0.5983 -0.5764 -0.5566 +vn 0.6002 -0.5760 -0.5549 +vn 0.5997 -0.5763 -0.5552 +vn 0.1591 0.9653 -0.2073 +vn 0.6730 -0.7341 0.0901 +vn 0.2862 0.8187 0.4978 +vn 0.1001 0.3040 -0.9474 +vn 0.1001 0.3034 -0.9476 +vn 0.0969 0.8085 -0.5804 +vn 0.0961 0.8085 -0.5806 +vn 0.0971 0.8086 -0.5803 +vn -0.0354 0.4866 0.8729 +vn -0.0340 0.4873 0.8726 +vn -0.0362 0.4866 0.8729 +vn 0.1967 0.9244 -0.3267 +vn 0.1961 0.9238 -0.3288 +vn 0.1966 0.9248 -0.3256 +vn 0.3285 0.2094 0.9210 +vn 0.3288 0.2095 0.9209 +vn 0.3286 0.2095 0.9209 +vn 0.1801 0.8600 -0.4774 +vn 0.1796 0.8600 -0.4777 +vn 0.1798 0.8599 -0.4777 +vn -0.5842 0.0056 0.8116 +vn -0.5843 0.0053 0.8115 +vn -0.5993 0.0298 0.8000 +vn -0.5994 0.0297 0.7999 +vn -0.6000 0.0293 0.7995 +vn 0.4475 0.1626 0.8794 +vn 0.4678 0.2290 0.8537 +vn 0.4677 0.2290 0.8537 +vn -0.6731 -0.5685 0.4730 +vn -0.6738 -0.5676 0.4730 +vn 0.2832 -0.9482 -0.1436 +vn 0.2831 -0.9483 -0.1434 +vn -0.0475 -0.0581 0.9972 +vn -0.3504 0.2903 0.8905 +vn -0.3502 0.2902 0.8906 +vn -0.3506 0.2902 0.8904 +vn -0.0661 -0.9443 -0.3225 +vn -0.0658 -0.9442 -0.3227 +vn -0.0660 -0.9442 -0.3226 +vn -0.7927 -0.1508 0.5906 +vn -0.7925 -0.1503 0.5911 +vn -0.7929 -0.1509 0.5904 +vn 0.0491 0.9793 0.1962 +vn 0.0494 0.9793 0.1960 +vn 0.0492 0.9793 0.1961 +vn -0.7418 0.6192 0.2575 +vn -0.7420 0.6189 0.2578 +vn -0.7427 0.6180 0.2579 +vn -0.2512 0.8196 -0.5150 +vn -0.2512 0.8193 -0.5153 +vn -0.2511 0.8197 -0.5148 +vn -0.8540 -0.4571 0.2483 +vn -0.8538 -0.4575 0.2485 +vn -0.8542 -0.4569 0.2482 +vn -0.9188 -0.1277 0.3736 +vn 0.9270 0.0651 -0.3694 +vn 0.9270 0.0652 -0.3693 +vn -0.0132 0.6481 -0.7614 +vn -0.0126 0.6490 -0.7607 +vn -0.0131 0.6484 -0.7612 +vn 0.0324 -0.9370 0.3478 +vn 0.0322 -0.9370 0.3479 +vn 0.0320 -0.9370 0.3477 +vn -0.8120 0.5631 -0.1535 +vn -0.6478 0.2837 -0.7070 +vn -0.6479 0.2837 -0.7069 +vn -0.6482 0.2835 -0.7068 +vn -0.2230 -0.8784 0.4226 +vn -0.2228 -0.8785 0.4225 +vn -0.2229 -0.8783 0.4229 +vn -0.5075 -0.7621 -0.4021 +vn 0.9347 -0.2984 -0.1932 +vn 0.9347 -0.2982 -0.1934 +vn -0.0920 0.3391 -0.9362 +vn -0.0921 0.3388 -0.9363 +vn 0.6012 -0.7562 -0.2581 +vn 0.6012 -0.7563 -0.2580 +vn 0.6012 -0.7562 -0.2582 +vn -0.7303 -0.3054 -0.6111 +vn -0.7302 -0.3053 -0.6112 +vn -0.7314 -0.3747 -0.5698 +vn -0.7313 -0.3746 -0.5700 +vn -0.7313 -0.3746 -0.5699 +vn -0.4610 0.7224 -0.5154 +vn -0.4604 0.7230 -0.5151 +vn -0.4598 0.7233 -0.5151 +vn 0.1536 0.0277 -0.9877 +vn 0.1541 0.0285 -0.9876 +vn 0.1534 0.0276 -0.9878 +vn -0.9393 -0.3199 -0.1237 +vn -0.9393 -0.3200 -0.1236 +vn -0.9393 -0.3199 -0.1235 +vn -0.0100 0.7432 -0.6690 +vn -0.0114 0.7429 -0.6693 +vn -0.0092 0.7430 -0.6693 +vn -0.1772 0.7967 0.5779 +vn -0.1771 0.7967 0.5779 +vn -0.0744 0.9328 0.3527 +vn -0.0743 0.9329 0.3525 +vn -0.7652 0.5922 -0.2527 +vn -0.7652 0.5923 -0.2524 +vn -0.7652 0.5920 -0.2529 +vn -0.0247 -0.9695 -0.2438 +vn -0.0250 -0.9694 -0.2442 +vn -0.0246 -0.9695 -0.2439 +vn -0.9173 -0.0144 -0.3980 +vn -0.9173 -0.0144 -0.3979 +vn -0.9175 -0.0145 -0.3974 +vn -0.5847 -0.1066 -0.8042 +vn -0.5847 -0.1064 -0.8043 +vn -0.5846 -0.1057 -0.8044 +vn -0.2045 0.1372 -0.9692 +vn -0.1190 0.3576 -0.9263 +vn 0.0414 0.4499 -0.8921 +vn 0.0412 0.4500 -0.8921 +vn 0.0416 0.4498 -0.8921 +vn 0.0021 0.8435 -0.5372 +vn 0.2040 0.3664 -0.9078 +vn 0.2044 0.3667 -0.9076 +vn 0.2040 0.3665 -0.9078 +vn -0.8469 0.1809 0.5000 +vn -0.8471 0.1805 0.4998 +vn -0.8471 0.1807 0.4997 +vn -0.4002 0.3350 -0.8530 +vn -0.4002 0.3352 -0.8529 +vn -0.4003 0.3348 -0.8531 +vn 0.3788 -0.8105 0.4467 +vn 0.5766 -0.8128 0.0827 +vn 0.5765 -0.8129 0.0826 +vn 0.5764 -0.8130 0.0824 +vn -0.7328 0.4192 -0.5359 +vn -0.7321 0.4202 -0.5362 +vn -0.7317 0.4205 -0.5365 +vn -0.6225 0.7740 -0.1157 +vn -0.6230 0.7735 -0.1163 +vn -0.6227 0.7738 -0.1158 +vn -0.3073 0.3365 0.8901 +vn -0.3074 0.3365 0.8901 +vn -0.3076 0.3363 0.8901 +vn -0.8350 -0.5468 0.0618 +vn -0.8342 -0.5479 0.0623 +vn -0.8354 -0.5461 0.0620 +vn 0.5439 0.8387 -0.0290 +vn 0.5439 0.8386 -0.0289 +vn -0.7373 0.5413 0.4043 +vn -0.7372 0.5415 0.4042 +vn -0.7372 0.5413 0.4045 +vn 0.4640 -0.4335 0.7725 +vn 0.4640 -0.4334 0.7726 +vn 0.4641 -0.4335 0.7724 +vn 0.3636 0.4948 -0.7893 +vn 0.3635 0.4951 -0.7891 +vn -0.0214 0.9960 0.0873 +vn 0.1100 0.9227 -0.3696 +vn 0.1101 0.9228 -0.3693 +vn 0.1102 0.9227 -0.3694 +vn -0.0917 -0.6691 0.7375 +vn 0.5594 -0.7324 0.3881 +vn -0.4606 0.1987 0.8651 +vn -0.4608 0.1983 0.8651 +vn -0.4608 0.1985 0.8650 +vn -0.9380 0.3373 -0.0798 +vn -0.9380 0.3374 -0.0798 +vn -0.9379 0.3375 -0.0798 +vn 0.1975 0.4316 -0.8802 +vn 0.1975 0.4321 -0.8799 +vn 0.1975 0.4317 -0.8801 +vn 0.6390 -0.1880 -0.7459 +vn 0.6395 -0.1868 -0.7457 +vn 0.6394 -0.1874 -0.7457 +vn 0.8345 0.2915 0.4675 +vn 0.8345 0.2913 0.4677 +vn 0.8345 0.2915 0.4677 +vn 0.6013 -0.7651 0.2304 +vn 0.7591 -0.5024 0.4139 +vn 0.7594 -0.5020 0.4138 +vn 0.0529 0.7560 0.6525 +vn 0.0528 0.7561 0.6524 +vn 0.0528 0.7561 0.6523 +vn 0.9236 0.3466 0.1639 +vn 0.9237 0.3465 0.1635 +vn 0.9237 0.3465 0.1636 +vn -0.1193 -0.8490 0.5148 +vn -0.1192 -0.8490 0.5148 +vn -0.1190 -0.8491 0.5147 +vn 0.7431 0.1149 0.6592 +vn 0.7431 0.1150 0.6592 +vn 0.0934 0.9947 -0.0420 +vn 0.0936 0.9947 -0.0430 +vn 0.0940 0.9946 -0.0441 +vn 0.7114 0.6269 -0.3176 +vn -0.4354 0.8484 -0.3011 +vn -0.4353 0.8485 -0.3010 +vn -0.4251 -0.7913 -0.4395 +vn -0.4248 -0.7915 -0.4394 +vn -0.4249 -0.7914 -0.4395 +vn -0.1981 -0.1409 0.9700 +vn 0.4477 -0.8595 0.2465 +vn -0.1064 -0.7940 -0.5985 +vn -0.1068 -0.7938 -0.5987 +vn -0.1071 -0.7935 -0.5990 +vn 0.5606 0.7895 0.2499 +vn 0.5606 0.7894 0.2500 +vn 0.5602 0.7897 0.2500 +vn -0.7502 0.3822 -0.5396 +vn -0.7500 0.3826 -0.5395 +vn -0.9456 -0.0813 -0.3149 +vn -0.9455 -0.0809 -0.3153 +vn -0.9458 -0.0815 -0.3145 +vn -0.6965 0.1498 -0.7017 +vn -0.6966 0.1499 -0.7016 +vn -0.3894 0.9000 -0.1962 +vn -0.2079 -0.1625 0.9646 +vn -0.2084 -0.1624 0.9645 +vn 0.1184 0.4693 -0.8751 +vn 0.1179 0.4696 -0.8750 +vn 0.1182 0.4694 -0.8750 +vn -0.7234 -0.1304 0.6780 +vn 0.7618 -0.5113 0.3978 +vn 0.7619 -0.5113 0.3977 +vn 0.7617 -0.5113 0.3979 +vn -0.5806 -0.7029 -0.4109 +vn -0.5810 -0.7026 -0.4109 +vn -0.5808 -0.7028 -0.4108 +vn -0.9781 0.0477 0.2027 +vn 0.0315 0.1695 -0.9850 +vn 0.0314 0.1696 -0.9850 +vn 0.0317 0.1695 -0.9850 +vn 0.0059 0.9945 -0.1042 +vn 0.0071 0.9945 -0.1041 +vn 0.0061 0.9945 -0.1043 +vn 0.5232 0.6425 0.5599 +vn 0.5234 0.6425 0.5597 +vn 0.1697 0.9852 -0.0248 +vn 0.1698 0.9852 -0.0245 +vn 0.1697 0.9852 -0.0249 +vn 0.1251 -0.9052 -0.4062 +vn -0.5909 -0.8061 0.0328 +vn -0.5909 -0.8061 0.0324 +vn -0.5910 -0.8060 0.0330 +vn -0.0485 0.3183 0.9467 +vn -0.0504 0.3166 0.9472 +vn -0.0487 0.3182 0.9468 +vn -0.5678 -0.7005 -0.4323 +vn -0.5675 -0.7006 -0.4326 +vn -0.5676 -0.7006 -0.4325 +vn -0.6173 -0.6785 -0.3983 +vn -0.6178 -0.6783 -0.3979 +vn -0.6175 -0.6783 -0.3982 +vn 0.1393 -0.9587 0.2480 +vn 0.1394 -0.9586 0.2481 +vn 0.1396 -0.9586 0.2482 +vn 0.5292 0.7674 0.3619 +vn 0.5293 0.7675 0.3616 +vn 0.5291 0.7675 0.3618 +vn 0.8874 0.1896 0.4203 +vn 0.8876 0.1892 0.4199 +vn 0.4427 0.6171 0.6506 +vn 0.4427 0.6171 0.6505 +vn 0.4426 0.6170 0.6508 +vn 0.0581 -0.9637 0.2606 +vn 0.0585 -0.9639 0.2598 +vn 0.0576 -0.9637 0.2609 +vn -0.0000 -0.0006 1.0000 +vn 0.5628 -0.8249 -0.0529 +vn -0.8048 0.4780 -0.3517 +vn -0.8046 0.4783 -0.3519 +vn 0.0496 0.0510 0.9975 +vn 0.0498 0.0511 0.9975 +vn 0.2133 0.9522 -0.2186 +vn -0.7582 -0.5589 -0.3357 +vn -0.7582 -0.5589 -0.3358 +vn 0.0240 -0.8521 -0.5229 +vn 0.0236 -0.8518 -0.5233 +vn 0.0238 -0.8519 -0.5231 +vn 0.3139 0.9189 -0.2388 +vn 0.3142 0.9188 -0.2388 +vn 0.3147 0.9187 -0.2387 +vn -0.5278 -0.8133 0.2448 +vn -0.9918 -0.1253 -0.0247 +vn -0.9919 -0.1248 -0.0250 +vn -0.9919 -0.1244 -0.0251 +vn 0.7223 -0.6899 0.0478 +vn 0.7221 -0.6901 0.0474 +vn 0.7224 -0.6898 0.0481 +vn 0.9750 0.0087 -0.2219 +vn 0.9750 0.0085 -0.2221 +vn 0.9749 0.0087 -0.2225 +vn 0.1517 0.9875 -0.0430 +vn 0.1518 0.9875 -0.0431 +vn 0.1517 0.9875 -0.0425 +vn 0.8031 0.4347 -0.4076 +vn 0.6238 0.5192 0.5842 +vn 0.6244 0.5189 0.5838 +vn 0.6241 0.5189 0.5842 +vn -0.7564 0.5758 0.3105 +vn -0.7563 0.5759 0.3103 +vn -0.7563 0.5760 0.3101 +vn 0.1702 -0.9213 0.3497 +vn 0.5232 0.7046 0.4794 +vn 0.5231 0.7045 0.4795 +vn -0.3359 -0.9303 0.1471 +vn -0.3360 -0.9303 0.1469 +vn -0.3361 -0.9303 0.1470 +vn 0.8360 -0.5473 -0.0395 +vn 0.8361 -0.5471 -0.0394 +vn 0.8361 -0.5472 -0.0394 +vn 0.4236 -0.8873 0.1822 +vn 0.4231 -0.8875 0.1823 +vn 0.4233 -0.8874 0.1824 +vn 0.8441 -0.5319 -0.0678 +vn 0.8442 -0.5318 -0.0679 +vn 0.8440 -0.5320 -0.0679 +vn -0.2011 -0.9002 0.3862 +vn -0.2011 -0.9002 0.3863 +vn -0.2048 -0.9527 0.2246 +vn -0.2048 -0.9526 0.2248 +vn -0.2050 -0.9527 0.2243 +vn -0.1896 -0.0727 -0.9792 +vn -0.1897 -0.0726 -0.9792 +vn -0.1898 -0.0729 -0.9791 +vn 0.2531 0.8191 -0.5147 +vn 0.2531 0.8193 -0.5145 +vn 0.2529 0.8192 -0.5148 +vn -0.8149 0.3676 0.4481 +vn 0.3306 0.3522 -0.8756 +vn 0.3304 0.3528 -0.8754 +vn 0.3702 -0.8823 0.2906 +vn 0.3699 -0.8825 0.2903 +vn 0.3703 -0.8822 0.2909 +vn 0.1870 -0.9208 0.3423 +vn 0.1881 -0.9206 0.3421 +vn 0.1874 -0.9207 0.3423 +vn 0.5829 -0.5971 0.5510 +vn 0.5826 -0.5973 0.5513 +vn 0.5822 -0.5974 0.5515 +vn -0.1225 -0.2978 0.9467 +vn -0.1227 -0.2976 0.9468 +vn -0.1223 -0.2979 0.9467 +vn 0.4330 -0.8569 0.2798 +vn 0.4329 -0.8569 0.2799 +vn 0.4329 -0.8569 0.2798 +vn -0.5097 0.2039 0.8358 +vn -0.5099 0.2036 0.8358 +vn 0.4242 0.8463 -0.3223 +vn 0.4241 0.8464 -0.3221 +vn 0.4239 0.8464 -0.3224 +vn -0.0508 0.4291 -0.9018 +vn -0.0135 0.9275 0.3735 +vn -0.0134 0.9275 0.3737 +vn -0.6790 -0.4318 0.5937 +vn -0.5362 -0.7911 0.2943 +vn 0.5536 0.7854 -0.2769 +vn 0.5539 0.7853 -0.2767 +vn 0.5534 0.7855 -0.2771 +vn 0.5160 -0.8537 0.0702 +vn 0.5161 -0.8536 0.0703 +vn 0.5163 -0.8535 0.0703 +vn 0.1306 -0.6913 0.7107 +vn 0.1307 -0.6913 0.7106 +vn 0.1306 -0.6912 0.7107 +vn 0.0235 0.9953 -0.0940 +vn 0.0236 0.9953 -0.0939 +vn 0.0235 0.9953 -0.0942 +vn -0.1191 0.5760 0.8087 +vn -0.1190 0.5761 0.8087 +vn -0.1191 0.5761 0.8087 +vn 0.7117 0.6019 -0.3622 +vn 0.7117 0.6020 -0.3620 +vn 0.7117 0.6020 -0.3621 +vn -0.3631 -0.5295 -0.7667 +vn -0.3631 -0.5296 -0.7666 +vn -0.3633 -0.5293 -0.7667 +vn -0.2643 0.4935 -0.8286 +vn -0.2642 0.4933 -0.8288 +vn -0.2643 0.4937 -0.8285 +vn -0.6809 0.5689 -0.4613 +vn -0.6809 0.5685 -0.4618 +vn -0.6809 0.5688 -0.4614 +vn 0.7044 -0.5603 -0.4358 +vn 0.7046 -0.5601 -0.4357 +vn 0.7042 -0.5605 -0.4358 +vn -0.8945 0.1150 -0.4319 +vn -0.8945 0.1149 -0.4320 +vn -0.5275 -0.8084 0.2613 +vn -0.7459 -0.1161 0.6558 +vn -0.7460 -0.1160 0.6558 +vn -0.7457 -0.1164 0.6561 +vn -0.3516 -0.9190 -0.1783 +vn -0.3521 -0.9187 -0.1788 +vn -0.3517 -0.9189 -0.1786 +vn -0.4767 -0.5855 -0.6557 +vn -0.4768 -0.5853 -0.6558 +vn -0.4769 -0.5852 -0.6558 +vn -0.9175 0.3659 -0.1560 +vn -0.9174 0.3663 -0.1556 +vn -0.9175 0.3660 -0.1560 +vn 0.4529 0.4079 0.7928 +vn 0.4530 0.4079 0.7927 +vn 0.4531 0.4080 0.7926 +vn 0.1685 0.8299 -0.5319 +vn 0.1684 0.8300 -0.5318 +vn 0.1687 0.8298 -0.5319 +vn 0.7045 -0.3706 -0.6053 +vn 0.7046 -0.3708 -0.6050 +vn 0.7044 -0.3706 -0.6054 +vn 0.8678 -0.4849 -0.1090 +vn 0.8679 -0.4846 -0.1090 +vn 0.8678 -0.4848 -0.1090 +vn -0.0341 0.9954 0.0892 +vn 0.8760 -0.4032 0.2646 +vn 0.8760 -0.4032 0.2647 +vn 0.1284 0.9481 -0.2908 +vn 0.1289 0.9483 -0.2900 +vn 0.1287 0.9483 -0.2901 +vn -0.9530 0.2842 0.1047 +vn -0.9531 0.2842 0.1043 +vn -0.9531 0.2843 0.1041 +vn -0.2850 -0.6994 0.6555 +vn -0.2845 -0.7002 0.6548 +vn 0.0268 -0.5485 -0.8357 +vn 0.0275 -0.5467 -0.8369 +vn 0.0269 -0.5474 -0.8364 +vn -0.1858 -0.9754 0.1185 +vn -0.1860 -0.9754 0.1182 +vn -0.1861 -0.9754 0.1179 +vn -0.7551 -0.6040 -0.2551 +vn -0.7548 -0.6042 -0.2555 +vn -0.7550 -0.6040 -0.2552 +vn -0.6812 -0.4632 0.5669 +vn -0.6813 -0.4635 0.5666 +vn -0.6812 -0.4633 0.5668 +vn -0.3490 -0.5637 0.7486 +vn -0.3492 -0.5640 0.7483 +vn -0.3491 -0.5639 0.7484 +vn -0.8259 -0.0817 -0.5579 +vn -0.8260 -0.0816 -0.5577 +vn -0.5063 -0.8474 0.1600 +vn -0.5064 -0.8473 0.1601 +vn -0.5065 -0.8472 0.1601 +vn 0.3501 -0.6433 -0.6809 +vn 0.3497 -0.6432 -0.6812 +vn -0.1661 -0.9779 0.1270 +vn -0.1654 -0.9782 0.1256 +vn -0.1662 -0.9783 0.1237 +vn -0.7695 -0.3544 0.5312 +vn -0.7692 -0.3547 0.5316 +vn -0.7692 -0.3546 0.5316 +vn -0.1892 -0.9818 0.0166 +vn -0.1893 -0.9818 0.0168 +vn -0.1895 -0.9817 0.0170 +vn 0.3075 0.9364 -0.1691 +vn -0.0136 -0.0184 -0.9997 +vn -0.0141 -0.0188 -0.9997 +vn -0.0139 -0.0185 -0.9997 +vn 0.4515 -0.0545 -0.8906 +vn 0.4514 -0.0543 -0.8907 +vn 0.4514 -0.0542 -0.8907 +vn -0.0741 0.9971 -0.0163 +vn -0.0743 0.9971 -0.0164 +vn -0.0744 0.9971 -0.0161 +vn -0.3277 0.4331 -0.8397 +vn -0.3282 0.4330 -0.8395 +vn -0.3289 0.4329 -0.8393 +vn -0.2363 0.9397 -0.2473 +vn -0.2364 0.9396 -0.2476 +vn -0.4781 0.8580 0.1878 +vn -0.4786 0.8574 0.1894 +vn -0.4785 0.8577 0.1883 +vn 0.5939 0.7460 -0.3014 +vn -0.4321 0.1809 -0.8835 +vn -0.4322 0.1810 -0.8834 +vn -0.4322 0.1808 -0.8835 +vn 0.8248 -0.1590 -0.5426 +vn 0.8247 -0.1590 -0.5428 +vn 0.8246 -0.1587 -0.5429 +vn 0.9839 -0.1768 -0.0256 +vn 0.9839 -0.1771 -0.0254 +vn -0.1062 -0.9123 0.3956 +vn -0.1060 -0.9114 0.3977 +vn -0.1084 -0.9094 0.4015 +vn 0.2066 -0.5186 0.8297 +vn 0.2067 -0.5189 0.8295 +vn 0.2066 -0.5188 0.8296 +vn -0.8728 0.4825 -0.0741 +vn -0.8728 0.4825 -0.0740 +vn -0.8727 0.4826 -0.0740 +vn -0.3039 -0.9476 -0.0980 +vn -0.3037 -0.9477 -0.0983 +vn -0.6974 -0.4192 0.5812 +vn -0.6971 -0.4197 0.5813 +vn -0.6967 -0.4206 0.5812 +vn -0.8702 -0.4922 0.0237 +vn -0.8703 -0.4920 0.0238 +vn -0.8705 -0.4916 0.0236 +vn -0.9019 0.0461 -0.4295 +vn -0.9019 0.0463 -0.4295 +vn 0.6389 0.1854 0.7466 +vn 0.6390 0.1853 0.7466 +vn 0.6389 0.1855 0.7466 +vn -0.2855 0.6522 -0.7022 +vn -0.2848 0.6526 -0.7021 +vn -0.2851 0.6525 -0.7021 +vn 0.5818 0.6828 0.4420 +vn 0.5819 0.6825 0.4422 +vn 0.5819 0.6826 0.4421 +vn 0.5745 0.7584 0.3080 +vn 0.5742 0.7575 0.3106 +vn 0.5755 0.7582 0.3066 +vn 0.4286 0.0023 -0.9035 +vn 0.4284 0.0024 -0.9036 +vn 0.4287 0.0022 -0.9034 +vn 0.9024 -0.3558 -0.2432 +vn 0.9030 -0.3540 -0.2435 +vn 0.9027 -0.3547 -0.2435 +vn -0.3383 0.3059 0.8899 +vn -0.3389 0.3054 0.8899 +vn -0.3394 0.3046 0.8900 +vn -0.6494 0.7478 -0.1381 +vn -0.6493 0.7479 -0.1381 +vn -0.8375 -0.3710 -0.4011 +vn -0.8375 -0.3709 -0.4013 +vn -0.8383 -0.3715 -0.3990 +vn -0.5883 -0.0679 0.8058 +vn -0.5886 -0.0679 0.8056 +vn -0.5883 -0.0677 0.8058 +vn -0.9183 0.2341 -0.3193 +vn -0.9183 0.2342 -0.3193 +vn 0.5579 -0.5597 0.6128 +vn 0.5573 -0.5599 0.6132 +vn 0.8166 0.3628 0.4489 +vn 0.4821 0.5482 -0.6834 +vn 0.4822 0.5479 -0.6835 +vn 0.4820 0.5477 -0.6839 +vn 0.1660 0.6494 0.7421 +vn 0.1659 0.6493 0.7422 +vn -0.2632 0.0427 0.9638 +vn 0.3287 0.9422 -0.0652 +vn 0.3289 0.9421 -0.0649 +vn 0.3286 0.9422 -0.0653 +vn -0.0968 -0.9434 0.3171 +vn -0.0978 -0.9433 0.3171 +vn -0.0994 -0.9434 0.3163 +vn 0.3506 -0.9355 -0.0442 +vn 0.3519 -0.9349 -0.0452 +vn 0.3493 -0.9360 -0.0437 +vn 0.2889 -0.7321 -0.6169 +vn 0.2888 -0.7318 -0.6173 +vn 0.2888 -0.7319 -0.6172 +vn 0.4907 -0.4068 -0.7706 +vn 0.4908 -0.4067 -0.7705 +vn -0.1170 0.6930 0.7114 +vn -0.2569 -0.9023 0.3461 +vn -0.2580 -0.9018 0.3466 +vn -0.2573 -0.9021 0.3464 +vn -0.6494 0.2647 -0.7129 +vn -0.6493 0.2644 -0.7130 +vn -0.2929 0.1869 0.9377 +vn -0.2927 0.1872 0.9377 +vn -0.2930 0.1873 0.9376 +vn 0.2906 -0.8457 0.4475 +vn 0.2904 -0.8458 0.4476 +vn 0.2903 -0.8458 0.4476 +vn 0.8144 -0.5743 -0.0834 +vn 0.8143 -0.5743 -0.0836 +vn 0.6149 0.5844 0.5295 +vn 0.6148 0.5840 0.5300 +vn 0.6147 0.5839 0.5303 +vn 0.4181 -0.9027 0.1017 +vn 0.4182 -0.9027 0.1015 +vn 0.4179 -0.9028 0.1015 +vn 0.2955 0.0318 0.9548 +vn 0.2954 0.0320 0.9548 +vn 0.2955 0.0320 0.9548 +vn -0.3217 0.9050 -0.2782 +vn -0.3218 0.9051 -0.2780 +vn -0.3078 0.8461 0.4352 +vn -0.3075 0.8457 0.4362 +vn -0.1638 0.0383 0.9858 +vn -0.2944 0.7768 -0.5567 +vn -0.2930 0.7770 -0.5571 +vn -0.6959 0.7174 -0.0313 +vn -0.6968 0.7166 -0.0302 +vn -0.6962 0.7172 -0.0308 +vn 0.1010 -0.7802 0.6174 +vn 0.1010 -0.7803 0.6172 +vn 0.1010 -0.7800 0.6176 +vn -0.5626 -0.3383 -0.7544 +vn -0.4415 0.4730 -0.7625 +vn -0.4417 0.4731 -0.7623 +vn -0.4412 0.4730 -0.7626 +vn -0.6116 0.5756 -0.5428 +vn -0.6115 0.5752 -0.5433 +vn -0.6120 0.5759 -0.5420 +vn 0.8666 -0.3396 0.3656 +vn 0.8666 -0.3393 0.3659 +vn 0.8465 0.3709 0.3820 +vn 0.8465 0.3711 0.3818 +vn 0.8465 0.3708 0.3820 +vn -0.3556 0.8579 -0.3710 +vn -0.3555 0.8580 -0.3708 +vn -0.3554 0.8580 -0.3708 +vn 0.1096 -0.8307 0.5458 +vn 0.1097 -0.8306 0.5459 +vn 0.5926 -0.3198 -0.7393 +vn 0.5925 -0.3197 -0.7394 +vn 0.5111 0.0949 -0.8543 +vn 0.5110 0.0949 -0.8543 +vn 0.6754 -0.6394 -0.3674 +vn 0.6753 -0.6396 -0.3674 +vn 0.6746 -0.6409 -0.3663 +vn 0.0727 0.1965 -0.9778 +vn 0.0725 0.1966 -0.9778 +vn 0.0733 0.1960 -0.9779 +vn 0.0931 0.5114 -0.8543 +vn 0.0938 0.5100 -0.8550 +vn 0.0938 0.5101 -0.8550 +vn 0.1026 0.8586 0.5022 +vn 0.1020 0.8588 0.5021 +vn 0.1027 0.8586 0.5023 +vn -0.8927 -0.4409 -0.0932 +vn -0.3857 -0.3200 -0.8654 +vn -0.3857 -0.3201 -0.8653 +vn -0.3856 -0.3203 -0.8653 +vn -0.4434 0.8947 -0.0536 +vn -0.4435 0.8947 -0.0535 +vn -0.2092 -0.2278 -0.9510 +vn -0.2093 -0.2286 -0.9507 +vn -0.2091 -0.2276 -0.9510 +vn 0.5692 0.4543 0.6853 +vn 0.9422 0.2319 0.2419 +vn -0.7213 0.4560 -0.5213 +vn -0.7214 0.4559 -0.5213 +vn -0.7212 0.4565 -0.5210 +vn 0.4965 -0.6138 -0.6138 +vn 0.4965 -0.6137 -0.6138 +vn 0.4021 -0.1414 -0.9046 +vn -0.7044 -0.3288 0.6291 +vn -0.7045 -0.3288 0.6289 +vn -0.7046 -0.3287 0.6290 +vn 0.8309 -0.5386 -0.1397 +vn -0.4006 0.1926 -0.8958 +vn -0.4018 0.1932 -0.8951 +vn -0.4015 0.1931 -0.8953 +vn -0.7926 -0.3944 0.4650 +vn -0.1017 0.0025 -0.9948 +vn -0.1015 0.0026 -0.9948 +vn -0.1015 0.0036 -0.9948 +vn -0.2409 0.8711 -0.4279 +vn -0.2411 0.8712 -0.4277 +vn -0.4713 0.7304 -0.4944 +vn -0.4726 0.7291 -0.4950 +vn -0.4725 0.7294 -0.4947 +vn 0.5404 -0.7145 0.4444 +vn 0.5403 -0.7145 0.4445 +vn 0.5407 -0.7142 0.4444 +vn -0.3924 -0.7874 0.4755 +vn -0.3917 -0.7878 0.4754 +vn -0.3921 -0.7876 0.4754 +vn -0.7152 -0.1589 -0.6806 +vn -0.7158 -0.1605 -0.6796 +vn -0.7155 -0.1600 -0.6800 +vn 0.5627 0.8130 0.1497 +vn 0.5625 0.8131 0.1499 +vn 0.8915 -0.3605 -0.2744 +vn 0.8913 -0.3607 -0.2748 +vn 0.8918 -0.3599 -0.2743 +vn -0.2070 0.1656 0.9642 +vn -0.8179 0.2599 -0.5133 +vn -0.8177 0.2590 -0.5141 +vn -0.8177 0.2584 -0.5144 +vn -0.2587 -0.1654 0.9517 +vn -0.0297 -0.8737 -0.4855 +vn -0.0314 -0.8744 -0.4841 +vn -0.0312 -0.8741 -0.4847 +vn 0.3424 -0.6763 -0.6522 +vn 0.3411 -0.6764 -0.6528 +vn 0.3415 -0.6764 -0.6525 +vn 0.0960 -0.8931 -0.4394 +vn 0.0964 -0.8929 -0.4397 +vn 0.0968 -0.8926 -0.4404 +vn 0.8024 -0.4587 -0.3818 +vn 0.8025 -0.4587 -0.3816 +vn 0.8026 -0.4586 -0.3815 +vn 0.0768 -0.2064 0.9755 +vn 0.0774 -0.2076 0.9751 +vn 0.0762 -0.2038 0.9760 +vn -0.3922 -0.7318 0.5574 +vn -0.3923 -0.7320 0.5570 +vn -0.3922 -0.7312 0.5581 +vn -0.8758 -0.4787 0.0616 +vn -0.8756 -0.4789 0.0624 +vn 0.5941 0.7981 0.1004 +vn 0.5939 0.7983 0.1001 +vn 0.5940 0.7982 0.1003 +vn -0.9532 -0.2849 0.1016 +vn -0.9532 -0.2847 0.1017 +vn -0.9532 -0.2847 0.1015 +vn -0.6568 -0.6638 -0.3578 +vn -0.6570 -0.6637 -0.3574 +vn -0.6562 -0.6639 -0.3587 +vn -0.7928 -0.3980 -0.4616 +vn -0.7926 -0.3981 -0.4618 +vn -0.7931 -0.3977 -0.4613 +vn -0.6138 -0.6755 -0.4086 +vn -0.6140 -0.6753 -0.4087 +vn -0.6137 -0.6757 -0.4084 +vn -0.8883 0.4352 -0.1466 +vn -0.8885 0.4350 -0.1462 +vn -0.8885 0.4350 -0.1463 +vn 0.5358 -0.3151 -0.7833 +vn 0.5351 -0.3159 -0.7835 +vn 0.5354 -0.3155 -0.7834 +vn -0.0199 0.8128 -0.5822 +vn -0.0189 0.8128 -0.5822 +vn -0.0194 0.8128 -0.5822 +vn -0.0464 0.9874 -0.1512 +vn -0.0465 0.9874 -0.1511 +vn 0.0808 0.9545 -0.2872 +vn 0.0807 0.9547 -0.2864 +vn 0.0808 0.9546 -0.2867 +vn -0.1946 -0.7343 0.6504 +vn -0.1945 -0.7342 0.6504 +vn -0.1946 -0.7343 0.6503 +vn -0.9074 0.4060 0.1085 +vn -0.9073 0.4062 0.1087 +vn -0.9075 0.4057 0.1087 +vn -0.8355 -0.5490 -0.0224 +vn -0.8355 -0.5490 -0.0225 +vn -0.8355 -0.5490 -0.0226 +vn 0.8511 0.5215 0.0611 +vn 0.8511 0.5215 0.0608 +vn 0.8508 0.5220 0.0603 +vn -0.3233 -0.4858 -0.8120 +vn 0.1407 -0.5287 -0.8370 +vn 0.1411 -0.5287 -0.8370 +vn -0.6081 -0.6842 -0.4026 +vn -0.6082 -0.6840 -0.4028 +vn -0.6081 -0.6840 -0.4029 +vn 0.6839 -0.6264 0.3740 +vn 0.6838 -0.6272 0.3728 +vn 0.6840 -0.6267 0.3733 +vn -0.0054 0.3976 -0.9175 +vn -0.0053 0.3977 -0.9175 +vn 0.1879 -0.6834 -0.7054 +vn 0.1878 -0.6834 -0.7055 +vn 0.1879 -0.6835 -0.7053 +vn -0.7653 -0.3934 -0.5095 +vn -0.7651 -0.3933 -0.5098 +vn -0.7653 -0.3933 -0.5095 +vn 0.6850 -0.6673 0.2923 +vn 0.6852 -0.6672 0.2922 +vn 0.6852 -0.6672 0.2924 +vn 0.6233 -0.5686 0.5368 +vn 0.6232 -0.5684 0.5371 +vn 0.6233 -0.5685 0.5370 +vn 0.4129 0.8102 -0.4160 +vn 0.4130 0.8103 -0.4158 +vn 0.4132 0.8104 -0.4154 +vn -0.8315 0.5063 -0.2285 +vn -0.6387 -0.7005 -0.3183 +vn 0.0159 0.9884 -0.1508 +vn 0.0155 0.9884 -0.1509 +vn 0.0157 0.9884 -0.1509 +vn 0.8833 -0.1139 -0.4547 +vn 0.8833 -0.1141 -0.4547 +vn 0.8833 -0.1140 -0.4548 +vn 0.1887 0.2584 -0.9474 +vn 0.1887 0.2586 -0.9474 +vn 0.1890 0.2588 -0.9473 +vn -0.7719 -0.5218 -0.3632 +vn -0.7525 -0.4961 -0.4333 +vn -0.7528 -0.4957 -0.4332 +vn -0.7036 -0.5369 -0.4654 +vn -0.7036 -0.5371 -0.4653 +vn -0.7036 -0.5370 -0.4654 +vn 0.7394 -0.5505 0.3876 +vn 0.7392 -0.5508 0.3876 +vn 0.7392 -0.5507 0.3876 +vn 0.6488 -0.1604 -0.7439 +vn 0.6489 -0.1598 -0.7439 +vn 0.6489 -0.1601 -0.7439 +vn 0.1260 0.6343 0.7627 +vn 0.1263 0.6344 0.7626 +vn 0.2298 0.9612 -0.1524 +vn -0.2084 -0.2831 0.9362 +vn -0.2093 -0.2827 0.9361 +vn -0.2095 -0.2829 0.9360 +vn 0.8312 -0.5033 0.2364 +vn 0.8312 -0.5034 0.2360 +vn 0.8310 -0.5037 0.2361 +vn 0.4881 0.3284 0.8086 +vn 0.4881 0.3290 0.8084 +vn 0.4882 0.3277 0.8089 +vn 0.1095 0.9021 -0.4175 +vn 0.1093 0.9020 -0.4178 +vn -0.8530 0.3755 -0.3625 +vn -0.7547 -0.4779 -0.4494 +vn -0.7548 -0.4782 -0.4490 +vn -0.7547 -0.4778 -0.4495 +vn -0.3316 0.9113 -0.2442 +vn -0.3315 0.9113 -0.2440 +vn -0.3315 0.9114 -0.2439 +vn 0.4265 0.3818 -0.8200 +vn 0.4260 0.3824 -0.8199 +vn 0.4268 0.3815 -0.8199 +vn -0.0445 -0.3918 -0.9190 +vn -0.0430 -0.3918 -0.9190 +vn -0.0468 -0.3928 -0.9184 +vn 0.7886 -0.4981 0.3606 +vn 0.7881 -0.4983 0.3613 +vn 0.7884 -0.4982 0.3609 +vn 0.6045 0.6329 -0.4837 +vn 0.6043 0.6334 -0.4833 +vn 0.6042 0.6335 -0.4833 +vn -0.3567 0.2500 -0.9002 +vn -0.3573 0.2497 -0.9000 +vn -0.0869 0.9588 0.2704 +vn 0.6820 -0.7232 0.1093 +vn 0.6819 -0.7232 0.1092 +vn 0.6819 -0.7233 0.1091 +vn -0.7869 -0.3857 -0.4818 +vn -0.7870 -0.3856 -0.4816 +vn -0.7867 -0.3858 -0.4819 +vn 0.6940 0.0046 -0.7200 +vn 0.6947 0.0041 -0.7193 +vn 0.6939 0.0047 -0.7200 +vn -0.0613 0.9188 -0.3899 +vn -0.0612 0.9188 -0.3898 +vn -0.3691 -0.5943 0.7145 +vn -0.3689 -0.5945 0.7145 +vn -0.3686 -0.5945 0.7146 +vn -0.1293 -0.9871 0.0946 +vn -0.1292 -0.9871 0.0947 +vn -0.1291 -0.9871 0.0947 +vn 0.1409 -0.9232 0.3576 +vn 0.1407 -0.9230 0.3582 +vn 0.1409 -0.9231 0.3577 +vn 0.0164 0.8695 0.4937 +vn -0.3706 0.6487 -0.6647 +vn 0.2688 0.9548 0.1272 +vn -0.0421 0.8840 -0.4656 +vn -0.0422 0.8841 -0.4654 +vn -0.1148 -0.9922 -0.0486 +vn -0.1142 -0.9923 -0.0484 +vn -0.1145 -0.9922 -0.0486 +vn -0.9201 -0.1678 -0.3539 +vn -0.9197 -0.1682 -0.3547 +vn -0.9198 -0.1681 -0.3546 +vn -0.8613 0.3432 0.3747 +vn -0.8608 0.3437 0.3754 +vn -0.8616 0.3426 0.3746 +vn -0.0303 -0.9965 0.0774 +vn -0.0300 -0.9965 0.0785 +vn -0.0300 -0.9965 0.0781 +vn -0.7553 -0.4708 -0.4559 +vn -0.7550 -0.4710 -0.4562 +vn 0.2873 0.8767 0.3858 +vn 0.3907 -0.8577 0.3343 +vn 0.3910 -0.8573 0.3349 +vn 0.3907 -0.8580 0.3335 +vn -0.8820 0.3557 -0.3090 +vn -0.8820 0.3562 -0.3086 +vn 0.0859 0.3351 -0.9383 +vn 0.0874 0.3363 -0.9377 +vn 0.0867 0.3355 -0.9381 +vn 0.8796 -0.0658 0.4712 +vn 0.8796 -0.0659 0.4712 +vn 0.8795 -0.0660 0.4713 +vn 0.6236 0.7783 -0.0737 +vn 0.6238 0.7781 -0.0736 +vn 0.6236 0.7783 -0.0738 +vn -0.2991 0.7869 0.5398 +vn -0.2989 0.7868 0.5399 +vn -0.3931 0.2998 -0.8693 +vn -0.3206 -0.9428 0.0914 +vn -0.3198 -0.9431 0.0909 +vn -0.3202 -0.9430 0.0910 +vn -0.5930 -0.6830 0.4264 +vn -0.5926 -0.6830 0.4271 +vn -0.5930 -0.6833 0.4259 +vn 0.3776 0.7990 -0.4681 +vn 0.3776 0.7990 -0.4679 +vn 0.3776 0.7989 -0.4681 +vn -0.3368 -0.8240 0.4557 +vn -0.3367 -0.8235 0.4565 +vn -0.3367 -0.8242 0.4553 +vn -0.4405 -0.8952 -0.0670 +vn -0.4387 -0.8962 -0.0666 +vn -0.4393 -0.8959 -0.0667 +vn 0.5097 -0.8574 0.0718 +vn 0.5096 -0.8574 0.0716 +vn 0.5095 -0.8575 0.0718 +vn -0.2471 -0.8480 0.4689 +vn -0.2473 -0.8480 0.4687 +vn -0.2472 -0.8480 0.4689 +vn -0.6913 0.3501 -0.6321 +vn -0.6911 0.3500 -0.6323 +vn 0.6960 -0.6295 -0.3454 +vn 0.6961 -0.6295 -0.3454 +vn 0.6961 -0.6294 -0.3454 +vn -0.6325 -0.5832 -0.5097 +vn -0.6329 -0.5828 -0.5097 +vn 0.5368 -0.5841 -0.6089 +vn 0.5367 -0.5843 -0.6087 +vn 0.7613 0.5966 0.2538 +vn 0.7612 0.5968 0.2537 +vn 0.7613 0.5967 0.2539 +vn -0.7564 0.3193 0.5709 +vn -0.0588 0.4165 -0.9072 +vn -0.9896 0.0639 0.1289 +vn -0.9896 0.0638 0.1292 +vn -0.4479 -0.3200 0.8349 +vn -0.4484 -0.3203 0.8344 +vn 0.0230 0.8977 0.4400 +vn 0.0234 0.8976 0.4401 +vn 0.0236 0.8976 0.4401 +vn 0.6660 -0.7329 -0.1391 +vn 0.6664 -0.7325 -0.1393 +vn 0.6663 -0.7326 -0.1391 +vn -0.1060 -0.7950 -0.5972 +vn -0.1075 -0.7946 -0.5975 +vn 0.6286 0.7728 0.0875 +vn 0.6287 0.7728 0.0873 +vn 0.6287 0.7728 0.0868 +vn -0.9592 -0.0795 -0.2715 +vn 0.5855 -0.8106 -0.0143 +vn 0.5858 -0.8104 -0.0129 +vn 0.5852 -0.8108 -0.0145 +vn 0.7184 0.2827 -0.6355 +vn 0.7184 0.2828 -0.6355 +vn 0.7185 0.2829 -0.6354 +vn 0.9816 0.0166 -0.1904 +vn 0.9816 0.0162 -0.1904 +vn 0.9816 0.0168 -0.1903 +vn -0.1398 0.9584 0.2488 +vn -0.1399 0.9584 0.2489 +vn -0.1554 0.6722 -0.7239 +vn -0.1552 0.6723 -0.7238 +vn -0.1555 0.6723 -0.7238 +vn -0.8147 0.4224 -0.3973 +vn -0.8150 0.4221 -0.3970 +vn 0.5224 -0.5798 -0.6253 +vn 0.5230 -0.5794 -0.6251 +vn 0.5229 -0.5796 -0.6251 +vn -0.2582 0.6360 0.7272 +vn -0.2580 0.6359 0.7273 +vn -0.3071 -0.7937 0.5251 +vn -0.3077 -0.7933 0.5253 +vn -0.3083 -0.7929 0.5257 +vn 0.6527 -0.6549 -0.3808 +vn 0.6527 -0.6548 -0.3811 +vn 0.4138 0.8745 0.2530 +vn 0.4150 0.8736 0.2542 +vn 0.4155 0.8734 0.2541 +vn -0.4619 -0.8865 0.0265 +vn -0.4622 -0.8864 0.0267 +vn -0.4616 -0.8867 0.0263 +vn 0.4211 0.4455 -0.7901 +vn 0.4210 0.4451 -0.7904 +vn 0.4211 0.4450 -0.7904 +vn -0.2855 -0.2841 -0.9153 +vn -0.2852 -0.2843 -0.9153 +vn -0.2853 -0.2840 -0.9154 +vn 0.1256 0.6324 0.7644 +vn 0.1257 0.6324 0.7644 +vn -0.3948 -0.9178 -0.0425 +vn -0.4446 -0.1329 -0.8858 +vn -0.4446 -0.1331 -0.8858 +vn -0.4445 -0.1327 -0.8859 +vn -0.3432 -0.2985 -0.8906 +vn -0.3436 -0.2983 -0.8905 +vn -0.3443 -0.2983 -0.8902 +vn 0.2492 -0.4910 -0.8347 +vn 0.2485 -0.4904 -0.8353 +vn 0.2489 -0.4909 -0.8349 +vn 0.1464 0.9843 0.0981 +vn 0.1465 0.9843 0.0983 +vn 0.7247 0.0302 0.6884 +vn 0.7246 0.0301 0.6885 +vn 0.7245 0.0300 0.6886 +vn 0.8238 -0.1256 -0.5528 +vn 0.8244 -0.1253 -0.5520 +vn 0.8236 -0.1258 -0.5530 +vn -0.4297 0.1798 -0.8849 +vn -0.4296 0.1797 -0.8850 +vn -0.4298 0.1798 -0.8848 +vn 0.1222 -0.9268 -0.3551 +vn 0.1220 -0.9268 -0.3551 +vn 0.1225 -0.9268 -0.3551 +vn -0.5738 0.6753 0.4633 +vn -0.5748 0.6721 0.4669 +vn -0.5747 0.6723 0.4667 +vn 0.0693 0.5097 -0.8576 +vn 0.0671 0.5101 -0.8575 +vn 0.0709 0.5086 -0.8581 +vn 0.8132 0.4289 -0.3932 +vn 0.8132 0.4291 -0.3931 +vn 0.8133 0.4290 -0.3929 +vn 0.3199 0.7831 0.5333 +vn 0.3197 0.7835 0.5329 +vn -0.7611 0.4037 -0.5078 +vn -0.7611 0.4041 -0.5073 +vn 0.8840 0.4104 0.2241 +vn 0.8853 0.4089 0.2213 +vn 0.8830 0.4110 0.2267 +vn 0.4625 0.8866 0.0084 +vn 0.4627 0.8865 0.0081 +vn 0.4625 0.8866 0.0089 +vn 0.4516 0.1129 0.8851 +vn 0.4519 0.1132 0.8849 +vn 0.4516 0.1132 0.8850 +vn -0.0669 0.8311 0.5520 +vn -0.3237 0.9382 -0.1224 +vn -0.3238 0.9382 -0.1224 +vn -0.3239 0.9382 -0.1223 +vn -0.8872 0.2467 0.3900 +vn -0.8875 0.2466 0.3892 +vn -0.8878 0.2464 0.3886 +vn 0.5989 0.7268 0.3362 +vn 0.5991 0.7268 0.3359 +vn 0.5989 0.7270 0.3358 +vn -0.3628 -0.4671 -0.8063 +vn -0.3629 -0.4671 -0.8063 +vn -0.3752 -0.7188 -0.5853 +vn -0.3752 -0.7188 -0.5852 +vn -0.3752 -0.7186 -0.5855 +vn -0.3916 0.0276 -0.9197 +vn -0.3913 0.0274 -0.9198 +vn -0.3915 0.0275 -0.9198 +vn 0.4141 0.9067 -0.0801 +vn 0.4145 0.9065 -0.0797 +vn 0.4143 0.9066 -0.0800 +vn 0.4681 0.8836 -0.0009 +vn 0.4677 0.8839 -0.0010 +vn 0.4679 0.8838 -0.0012 +vn 0.1035 0.8327 -0.5440 +vn 0.1046 0.8324 -0.5442 +vn 0.1028 0.8329 -0.5438 +vn -0.7930 0.5883 -0.1584 +vn -0.7931 0.5881 -0.1582 +vn -0.7931 0.5881 -0.1586 +vn 0.1043 0.9717 -0.2121 +vn 0.1037 0.9716 -0.2128 +vn 0.1038 0.9716 -0.2127 +vn 0.9915 0.0964 -0.0874 +vn 0.9915 0.0965 -0.0875 +vn 0.9915 0.0967 -0.0876 +vn -0.2741 0.4888 0.8282 +vn -0.2742 0.4887 0.8282 +vn -0.2745 0.4885 0.8282 +vn -0.6196 0.1460 0.7712 +vn -0.5073 0.8559 -0.1002 +vn 0.5248 0.8342 0.1696 +vn 0.5245 0.8344 0.1692 +vn 0.5247 0.8342 0.1694 +vn 0.9535 -0.1799 0.2419 +vn 0.2992 0.7990 0.5217 +vn 0.2993 0.7989 0.5217 +vn 0.2994 0.7990 0.5215 +vn 0.7791 0.2843 0.5587 +vn 0.7792 0.2841 0.5586 +vn 0.7791 0.2843 0.5588 +vn 0.9094 0.4007 -0.1117 +vn 0.9093 0.4008 -0.1121 +vn 0.9094 0.4007 -0.1118 +vn -0.4059 0.4582 0.7908 +vn -0.2752 0.6234 -0.7318 +vn -0.2754 0.6233 -0.7319 +vn 0.9054 0.2702 0.3274 +vn 0.9054 0.2704 0.3272 +vn 0.9053 0.2701 0.3277 +vn -0.3030 0.4045 0.8629 +vn -0.3648 0.1066 0.9250 +vn -0.3648 0.1068 0.9250 +vn -0.3647 0.1069 0.9250 +vn 0.1863 -0.7032 0.6862 +vn 0.1861 -0.7033 0.6861 +vn 0.1862 -0.7032 0.6862 +vn -0.6793 0.3175 -0.6617 +vn -0.6791 0.3173 -0.6619 +vn -0.6789 0.3171 -0.6622 +vn -0.1472 0.9075 0.3934 +vn -0.1472 0.9075 0.3933 +vn -0.6776 0.5143 -0.5258 +vn -0.6776 0.5137 -0.5263 +vn -0.6777 0.5146 -0.5253 +vn 0.1903 0.0733 0.9790 +vn -0.2464 -0.5150 0.8210 +vn 0.2999 0.8006 0.5188 +vn 0.2999 0.8005 0.5188 +vn 0.2999 0.8007 0.5186 +vn 0.1602 -0.0596 0.9853 +vn 0.2007 0.5602 0.8037 +vn 0.2002 0.5600 0.8039 +vn 0.2005 0.5601 0.8038 +vn 0.0592 0.2178 0.9742 +vn 0.0574 0.2178 0.9743 +vn 0.0615 0.2166 0.9743 +vn -0.3628 0.9150 -0.1766 +vn -0.3629 0.9151 -0.1758 +vn -0.3624 0.9155 -0.1749 +vn 0.2649 0.9487 -0.1724 +vn 0.2647 0.9488 -0.1724 +vn 0.2646 0.9489 -0.1721 +vn -0.5180 0.7515 -0.4086 +vn -0.5178 0.7516 -0.4086 +vn -0.5181 0.7514 -0.4086 +vn 0.0695 -0.7232 0.6871 +vn 0.0696 -0.7230 0.6873 +vn -0.0074 -0.8630 0.5051 +vn -0.0077 -0.8632 0.5047 +vn -0.4834 -0.2313 0.8443 +vn -0.4833 -0.2314 0.8443 +vn -0.4833 -0.2315 0.8443 +vn -0.8088 0.5269 -0.2613 +vn -0.8087 0.5269 -0.2615 +vn -0.8087 0.5269 -0.2614 +vn 0.8060 -0.5540 0.2085 +vn 0.8061 -0.5538 0.2085 +vn 0.0893 -0.8258 0.5569 +vn 0.0895 -0.8256 0.5571 +vn 0.0892 -0.8257 0.5570 +vn -0.2172 -0.7605 0.6119 +vn 0.5894 -0.3503 0.7279 +vn 0.5898 -0.3510 0.7272 +vn 0.5889 -0.3500 0.7285 +vn 0.3183 -0.8646 0.3889 +vn 0.3183 -0.8645 0.3889 +vn 0.3173 -0.8652 0.3883 +vn 0.0488 -0.9221 0.3839 +vn 0.0487 -0.9219 0.3843 +vn 0.0489 -0.9221 0.3839 +vn -0.6375 0.7486 -0.1820 +vn -0.6375 0.7484 -0.1828 +vn -0.6376 0.7483 -0.1832 +vn -0.0873 0.6964 0.7123 +vn -0.0876 0.6956 0.7131 +vn -0.0876 0.6955 0.7131 +vn 0.2017 0.9777 -0.0585 +vn 0.2022 0.9776 -0.0582 +vn 0.2019 0.9777 -0.0584 +vn -0.4393 0.8798 -0.1815 +vn -0.5218 0.6111 -0.5952 +vn -0.5220 0.6109 -0.5953 +vn -0.5223 0.6106 -0.5952 +vn 0.6845 0.4736 0.5542 +vn 0.6848 0.4734 0.5541 +vn 0.6843 0.4738 0.5542 +vn 0.0701 -0.6207 -0.7809 +vn 0.0702 -0.6205 -0.7811 +vn 0.0702 -0.6210 -0.7807 +vn -0.1700 0.4442 -0.8797 +vn -0.1699 0.4443 -0.8796 +vn -0.1700 0.4447 -0.8794 +vn -0.0040 0.9099 -0.4148 +vn -0.0038 0.9099 -0.4149 +vn -0.5507 0.8311 0.0776 +vn -0.5509 0.8310 0.0775 +vn -0.5505 0.8312 0.0778 +vn -0.6889 -0.5394 0.4842 +vn 0.2794 0.3492 0.8944 +vn 0.2793 0.3488 0.8946 +vn 0.2795 0.3493 0.8944 +vn -0.3943 0.1341 -0.9091 +vn -0.3945 0.1342 -0.9090 +vn -0.3943 0.1342 -0.9091 +vn 0.4631 -0.1700 -0.8699 +vn 0.4629 -0.1695 -0.8700 +vn -0.4495 0.1576 -0.8793 +vn -0.4495 0.1577 -0.8793 +vn 0.0427 0.9798 0.1954 +vn 0.0428 0.9798 0.1953 +vn 0.0430 0.9799 0.1948 +vn -0.0741 0.7919 -0.6061 +vn -0.0743 0.7919 -0.6061 +vn -0.0742 0.7919 -0.6061 +vn -0.0007 0.7778 -0.6285 +vn 0.0002 0.7770 -0.6295 +vn -0.0006 0.7776 -0.6288 +vn 0.1628 0.0504 0.9854 +vn 0.1629 0.0508 0.9853 +vn 0.1631 0.0512 0.9853 +vn -0.6259 0.0124 0.7798 +vn -0.6259 0.0121 0.7798 +vn -0.6259 0.0127 0.7798 +vn 0.7848 0.5082 0.3546 +vn 0.7850 0.5083 0.3543 +vn 0.7848 0.5083 0.3545 +vn 0.3471 -0.6153 -0.7078 +vn 0.3471 -0.6153 -0.7077 +vn -0.8216 0.2342 -0.5197 +vn -0.8215 0.2343 -0.5198 +vn -0.8218 0.2342 -0.5194 +vn 0.5756 -0.0348 0.8170 +vn 0.5756 -0.0347 0.8170 +vn -0.9826 -0.0438 -0.1805 +vn -0.9827 -0.0434 -0.1802 +vn -0.9826 -0.0442 -0.1806 +vn 0.3671 0.2060 -0.9071 +vn 0.3672 0.2060 -0.9070 +vn -0.9168 0.3994 -0.0020 +vn -0.9168 0.3993 -0.0017 +vn -0.9168 0.3994 -0.0021 +vn -0.9978 -0.0196 -0.0634 +vn -0.9978 -0.0199 -0.0633 +vn -0.9978 -0.0197 -0.0636 +vn -0.9107 0.0714 0.4068 +vn -0.9108 0.0713 0.4067 +vn -0.1675 0.9127 -0.3728 +vn -0.1677 0.9126 -0.3728 +vn -0.1676 0.9126 -0.3728 +vn -0.8032 -0.5315 -0.2692 +vn -0.8030 -0.5320 -0.2686 +vn -0.8030 -0.5319 -0.2688 +vn 0.7268 -0.1025 0.6791 +vn 0.0189 0.3906 0.9204 +vn 0.0190 0.3908 0.9203 +vn 0.0191 0.3909 0.9202 +vn 0.7687 -0.5645 0.3009 +vn 0.7675 -0.5649 0.3029 +vn 0.7682 -0.5645 0.3019 +vn 0.9410 0.0160 0.3381 +vn 0.9408 0.0155 0.3387 +vn 0.9406 0.0145 0.3393 +vn 0.0558 0.2176 -0.9744 +vn 0.0557 0.2177 -0.9744 +vn -0.9569 0.2576 -0.1342 +vn -0.9570 0.2572 -0.1342 +vn -0.9569 0.2574 -0.1342 +vn 0.8234 -0.4574 -0.3359 +vn 0.8242 -0.4569 -0.3345 +vn 0.8238 -0.4572 -0.3350 +vn -0.5149 0.8566 0.0341 +vn -0.5148 0.8566 0.0341 +vn -0.4540 0.7626 -0.4608 +vn -0.4540 0.7626 -0.4607 +vn -0.4540 0.7627 -0.4607 +vn -0.7470 0.3836 -0.5430 +vn 0.8586 0.5015 0.1061 +vn 0.8591 0.5008 0.1057 +vn 0.8595 0.5003 0.1052 +vn 0.5822 0.8129 -0.0126 +vn -0.7747 -0.2337 -0.5875 +vn -0.7744 -0.2349 -0.5875 +vn -0.7747 -0.2326 -0.5880 +vn -0.0509 -0.9161 0.3976 +vn -0.0510 -0.9162 0.3976 +vn -0.0061 -0.6918 -0.7221 +vn -0.0067 -0.6920 -0.7219 +vn 0.0001 0.0003 1.0000 +vn -0.1232 -0.5546 -0.8229 +vn -0.1233 -0.5545 -0.8230 +vn 0.6042 0.6811 0.4136 +vn 0.6043 0.6810 0.4136 +vn 0.6041 0.6813 0.4135 +vn -0.1084 -0.9667 -0.2317 +vn -0.1085 -0.9667 -0.2316 +vn -0.1084 -0.9667 -0.2318 +vn -0.8627 0.3311 -0.3823 +vn -0.8624 0.3304 -0.3836 +vn -0.8627 0.3309 -0.3825 +vn 0.7731 -0.4660 0.4303 +vn 0.7733 -0.4658 0.4302 +vn -0.2186 -0.9706 0.1003 +vn -0.2184 -0.9708 0.0993 +vn -0.2184 -0.9709 0.0981 +vn -0.7818 -0.5274 -0.3327 +vn -0.7818 -0.5273 -0.3328 +vn 0.2127 0.4942 -0.8429 +vn -0.7456 -0.2252 0.6272 +vn -0.7452 -0.2254 0.6276 +vn -0.9819 -0.1788 0.0628 +vn -0.9819 -0.1786 0.0628 +vn -0.2808 0.6724 -0.6849 +vn 0.4712 -0.2927 0.8320 +vn 0.4708 -0.2909 0.8329 +vn 0.4714 -0.2892 0.8332 +vn -0.0012 0.2345 -0.9721 +vn -0.0017 0.2341 -0.9722 +vn -0.0003 0.2349 -0.9720 +vn 0.6138 -0.3038 -0.7287 +vn 0.6139 -0.3039 -0.7286 +vn 0.6140 -0.3037 -0.7286 +vn -0.0958 -0.0209 -0.9952 +vn -0.0964 -0.0206 -0.9951 +vn -0.0969 -0.0204 -0.9951 +vn -0.9760 -0.1543 -0.1537 +vn -0.7075 -0.6382 -0.3036 +vn -0.7084 -0.6380 -0.3019 +vn -0.7070 -0.6377 -0.3058 +vn 0.2506 -0.8878 0.3860 +vn 0.2507 -0.8878 0.3860 +vn -0.6734 -0.7265 -0.1370 +vn -0.6730 -0.7269 -0.1367 +vn -0.6731 -0.7268 -0.1367 +vn -0.7022 0.6774 0.2191 +vn -0.7015 0.6783 0.2186 +vn -0.7018 0.6779 0.2191 +vn -0.1684 0.5360 0.8272 +vn -0.1685 0.5360 0.8272 +vn -0.6647 0.5779 -0.4735 +vn -0.6646 0.5780 -0.4735 +vn -0.6645 0.5781 -0.4735 +vn -0.9152 -0.3554 0.1901 +vn -0.9152 -0.3552 0.1904 +vn -0.9151 -0.3556 0.1900 +vn 0.7245 -0.6012 0.3370 +vn 0.7244 -0.6015 0.3369 +vn 0.7242 -0.6014 0.3374 +vn -0.7882 -0.5095 -0.3452 +vn -0.7882 -0.5097 -0.3449 +vn -0.7883 -0.5094 -0.3451 +vn 0.4712 -0.8131 0.3417 +vn 0.4709 -0.8139 0.3404 +vn 0.4711 -0.8135 0.3411 +vn -0.6417 0.7397 -0.2026 +vn -0.6418 0.7397 -0.2026 +vn -0.6417 0.7397 -0.2028 +vn 0.3445 0.3285 -0.8794 +vn 0.3445 0.3289 -0.8793 +vn 0.3444 0.3287 -0.8794 +vn 0.1864 0.1128 -0.9760 +vn 0.1863 0.1127 -0.9760 +vn -0.6846 -0.6407 -0.3476 +vn 0.4071 0.7370 0.5396 +vn 0.4067 0.7371 0.5398 +vn -0.4164 0.8801 -0.2280 +vn -0.4171 0.8797 -0.2282 +vn -0.4175 0.8796 -0.2281 +vn 0.1172 -0.9292 0.3505 +vn 0.1221 -0.9293 0.3486 +vn 0.1161 -0.9287 0.3522 +vn -0.8701 -0.1515 0.4691 +vn -0.8699 -0.1521 0.4693 +vn -0.7295 0.6019 -0.3249 +vn -0.7297 0.6013 -0.3255 +vn -0.7297 0.6015 -0.3253 +vn -0.4521 -0.5523 0.7004 +vn -0.4522 -0.5522 0.7005 +vn -0.4518 -0.5523 0.7006 +vn 0.6852 -0.5271 0.5026 +vn 0.6855 -0.5268 0.5026 +vn 0.6856 -0.5268 0.5024 +vn -0.9728 0.2034 -0.1109 +vn -0.9728 0.2034 -0.1108 +vn -0.0420 0.2999 0.9531 +vn -0.0434 0.2997 0.9531 +vn -0.0411 0.2997 0.9532 +vn -0.9764 -0.0470 -0.2106 +vn 0.7219 0.6010 -0.3430 +vn 0.3025 0.2271 0.9257 +vn 0.3022 0.2267 0.9259 +vn 0.1329 0.8117 -0.5687 +vn 0.5885 0.8068 -0.0520 +vn 0.5886 0.8068 -0.0519 +vn -0.7730 0.3466 -0.5313 +vn -0.7730 0.3472 -0.5309 +vn -0.7728 0.3478 -0.5308 +vn 0.9090 0.2499 0.3335 +vn 0.9091 0.2499 0.3332 +vn -0.6508 -0.6191 0.4395 +vn -0.6515 -0.6191 0.4385 +vn -0.6505 -0.6193 0.4397 +vn -0.1123 -0.9909 0.0737 +vn -0.1124 -0.9909 0.0734 +vn -0.2636 0.9406 -0.2139 +vn -0.2636 0.9406 -0.2138 +vn -0.2638 0.9406 -0.2137 +vn 0.2204 0.9675 0.1241 +vn 0.2202 0.9676 0.1239 +vn -0.0023 0.0021 1.0000 +vn -0.7946 -0.6036 -0.0657 +vn -0.2610 -0.9653 0.0084 +vn -0.2609 -0.9653 0.0086 +vn -0.2610 -0.9653 0.0085 +vn 0.0517 0.6067 -0.7933 +vn 0.0516 0.6066 -0.7933 +vn -0.3086 -0.2742 0.9108 +vn -0.3082 -0.2741 0.9110 +vn -0.3083 -0.2741 0.9109 +vn -0.7148 -0.6967 0.0604 +vn -0.7147 -0.6968 0.0604 +vn -0.7151 -0.6964 0.0603 +vn -0.1971 0.0361 -0.9797 +vn -0.1973 0.0359 -0.9797 +vn 0.7095 -0.5849 -0.3931 +vn 0.7096 -0.5848 -0.3931 +vn 0.7094 -0.5849 -0.3932 +vn -0.2892 0.8414 -0.4565 +vn -0.2892 0.8412 -0.4569 +vn -0.2892 0.8411 -0.4570 +vn 0.7642 -0.6318 -0.1297 +vn 0.7436 -0.6471 -0.1680 +vn -0.6131 -0.5930 -0.5220 +vn -0.6132 -0.5924 -0.5225 +vn -0.6130 -0.5919 -0.5234 +vn -0.3240 0.7745 -0.5433 +vn -0.3250 0.7743 -0.5429 +vn -0.3245 0.7745 -0.5430 +vn 0.2796 0.7172 -0.6384 +vn 0.2795 0.7166 -0.6390 +vn 0.2793 0.7170 -0.6387 +vn -0.9055 0.4198 0.0612 +vn -0.9055 0.4198 0.0613 +vn 0.5344 -0.8445 -0.0345 +vn 0.5345 -0.8445 -0.0346 +vn 0.6755 -0.6019 -0.4260 +vn -0.0779 -0.9854 -0.1511 +vn -0.0778 -0.9855 -0.1509 +vn -0.0778 -0.9854 -0.1513 +vn -0.2393 -0.6127 -0.7532 +vn -0.2394 -0.6126 -0.7533 +vn -0.2389 -0.6135 -0.7527 +vn 0.5209 0.6949 0.4959 +vn 0.5209 0.6949 0.4958 +vn 0.2441 0.9697 -0.0064 +vn 0.2442 0.9697 -0.0063 +vn 0.2442 0.9697 -0.0062 +vn -0.4763 -0.8251 0.3040 +vn -0.4749 -0.8258 0.3043 +vn -0.4746 -0.8259 0.3044 +vn -0.5795 -0.7963 0.1735 +vn -0.5794 -0.7962 0.1740 +vn -0.5792 -0.7964 0.1741 +vn 0.5411 -0.8410 -0.0040 +vn 0.6301 -0.7190 0.2931 +vn 0.6300 -0.7191 0.2933 +vn -0.2701 -0.9314 -0.2440 +vn -0.8335 0.5525 -0.0072 +vn -0.7018 0.3061 -0.6432 +vn -0.7026 0.3059 -0.6425 +vn -0.7021 0.3060 -0.6430 +vn -0.9961 -0.0718 -0.0514 +vn -0.9961 -0.0715 -0.0514 +vn -0.4749 -0.8783 -0.0548 +vn -0.4747 -0.8785 -0.0547 +vn -0.2747 -0.6430 -0.7149 +vn -0.2745 -0.6434 -0.7147 +vn -0.2749 -0.6429 -0.7150 +vn -0.3396 0.1613 -0.9266 +vn -0.6809 0.4771 -0.5556 +vn -0.6808 0.4770 -0.5558 +vn 0.2097 0.9776 -0.0184 +vn 0.2101 0.9775 -0.0169 +vn 0.2099 0.9775 -0.0193 +vn -0.0899 -0.6688 -0.7380 +vn -0.0902 -0.6685 -0.7382 +vn 0.7832 0.6196 -0.0516 +vn 0.7830 0.6199 -0.0515 +vn 0.3301 0.8276 0.4540 +vn 0.3301 0.8277 0.4539 +vn 0.3300 0.8279 0.4535 +vn -0.2245 -0.5664 -0.7930 +vn -0.2240 -0.5664 -0.7931 +vn -0.2598 0.8834 -0.3901 +vn -0.2601 0.8832 -0.3902 +vn -0.2599 0.8833 -0.3901 +vn 0.7704 0.6361 -0.0429 +vn 0.7707 0.6358 -0.0426 +vn 0.7708 0.6357 -0.0427 +vn 0.0201 0.7283 0.6849 +vn 0.0200 0.7281 0.6852 +vn 0.0201 0.7284 0.6848 +vn -0.5466 -0.7142 -0.4373 +vn -0.5464 -0.7143 -0.4373 +vn -0.5465 -0.7142 -0.4373 +vn 0.3295 -0.8930 0.3065 +vn 0.3296 -0.8930 0.3064 +vn -0.0228 0.9857 -0.1671 +vn -0.0228 0.9857 -0.1672 +vn -0.1026 0.9363 -0.3360 +vn 0.2295 -0.5549 -0.7996 +vn 0.2296 -0.5549 -0.7996 +vn 0.2287 -0.5553 -0.7996 +vn 0.3768 0.9259 0.0268 +vn 0.3766 0.9260 0.0268 +vn 0.3767 0.9259 0.0268 +vn 0.0016 0.0670 0.9978 +vn 0.9565 -0.2829 -0.0715 +vn 0.9565 -0.2829 -0.0716 +vn 0.3964 0.8930 -0.2131 +vn 0.3962 0.8931 -0.2131 +vn 0.3965 0.8930 -0.2129 +vn -0.2536 -0.5101 0.8219 +vn -0.0034 0.0004 1.0000 +vn 0.6654 -0.7172 -0.2071 +vn -0.4139 -0.8879 -0.2007 +vn -0.4140 -0.8879 -0.2008 +vn 0.5626 0.6721 0.4814 +vn 0.5630 0.6718 0.4814 +vn 0.5632 0.6718 0.4812 +vn -0.0376 0.9199 0.3903 +vn -0.0382 0.9200 0.3900 +vn -0.0373 0.9199 0.3905 +vn -0.6309 0.1130 0.7676 +vn 0.3132 0.6186 0.7206 +vn 0.3143 0.6180 0.7206 +vn 0.3130 0.6187 0.7206 +vn 0.7271 -0.3661 -0.5808 +vn -0.7524 0.4829 -0.4480 +vn -0.7524 0.4842 -0.4466 +vn -0.7525 0.4835 -0.4472 +vn -0.1907 -0.7794 -0.5968 +vn -0.1905 -0.7791 -0.5973 +vn -0.1911 -0.7794 -0.5967 +vn -0.5000 -0.7251 -0.4736 +vn -0.5007 -0.7244 -0.4739 +vn 0.4829 -0.4971 -0.7209 +vn 0.4823 -0.4974 -0.7211 +vn 0.4826 -0.4972 -0.7210 +vn 0.6765 -0.0570 -0.7342 +vn 0.6766 -0.0567 -0.7341 +vn 0.6765 -0.0569 -0.7342 +vn -0.2623 -0.3730 -0.8900 +vn -0.2624 -0.3730 -0.8900 +vn -0.2622 -0.3732 -0.8900 +vn -0.5704 -0.3188 -0.7570 +vn -0.5705 -0.3189 -0.7568 +vn -0.5701 -0.3187 -0.7572 +vn -0.5576 0.8250 0.0914 +vn -0.5576 0.8251 0.0913 +vn -0.6214 0.1052 -0.7764 +vn -0.6220 0.1052 -0.7759 +vn -0.2410 -0.4338 -0.8682 +vn -0.2409 -0.4337 -0.8683 +vn -0.2408 -0.4338 -0.8682 +vn 0.4151 0.1935 -0.8890 +vn 0.4154 0.1933 -0.8889 +vn 0.4148 0.1937 -0.8890 +vn 0.5291 0.7444 -0.4073 +vn 0.5299 0.7451 -0.4051 +vn 0.5292 0.7447 -0.4066 +vn -0.3301 0.2714 -0.9041 +vn -0.3299 0.2711 -0.9043 +vn -0.0709 0.7083 0.7023 +vn -0.0709 0.7083 0.7024 +vn 0.4364 0.5121 -0.7398 +vn 0.4364 0.5123 -0.7397 +vn -0.6693 0.6797 -0.3000 +vn -0.6695 0.6795 -0.3001 +vn -0.2671 -0.9538 0.1375 +vn -0.2670 -0.9538 0.1379 +vn -0.2672 -0.9538 0.1372 +vn 0.0688 -0.0274 0.9973 +vn 0.0687 -0.0274 0.9973 +vn 0.5105 0.4833 0.7112 +vn 0.5106 0.4830 0.7113 +vn 0.5107 0.4829 0.7113 +vn 0.4184 -0.5968 -0.6847 +vn 0.4182 -0.5967 -0.6848 +vn 0.4186 -0.5967 -0.6846 +vn 0.7014 0.7116 -0.0406 +vn 0.7014 0.7116 -0.0407 +vn 0.7012 0.7118 -0.0408 +vn 0.5647 0.0831 -0.8211 +vn 0.5645 0.0831 -0.8212 +vn 0.5648 0.0832 -0.8210 +vn 0.3359 0.9393 -0.0702 +vn 0.3358 0.9393 -0.0700 +vn 0.3356 0.9394 -0.0696 +vn -0.4058 -0.9137 -0.0234 +vn -0.4058 -0.9137 -0.0233 +vn -0.1497 0.5871 -0.7955 +vn -0.1515 0.5868 -0.7954 +vn -0.1514 0.5867 -0.7956 +vn 0.2575 0.8483 -0.4627 +vn 0.2586 0.8485 -0.4618 +vn 0.2582 0.8484 -0.4622 +vn -0.5920 0.7565 0.2780 +vn -0.7400 0.4467 -0.5029 +vn -0.7399 0.4467 -0.5030 +vn -0.1825 0.9320 -0.3131 +vn -0.1826 0.9320 -0.3131 +vn -0.5017 0.7204 -0.4789 +vn -0.5018 0.7205 -0.4786 +vn -0.5018 0.7204 -0.4788 +vn -0.2740 -0.9436 0.1857 +vn 0.5218 0.1145 0.8454 +vn 0.5225 0.1140 0.8450 +vn 0.5212 0.1146 0.8457 +vn 0.5531 -0.0445 0.8319 +vn 0.5531 -0.0448 0.8319 +vn 0.1242 0.9905 -0.0592 +vn 0.1243 0.9905 -0.0592 +vn 0.1243 0.9905 -0.0594 +vn -0.4953 0.6807 -0.5397 +vn -0.4952 0.6808 -0.5397 +vn 0.4325 0.5299 -0.7295 +vn 0.4325 0.5301 -0.7293 +vn 0.4328 0.5298 -0.7294 +vn 0.4730 -0.1302 0.8714 +vn 0.4732 -0.1302 0.8713 +vn 0.4733 -0.1303 0.8712 +vn 0.3277 0.9135 -0.2411 +vn 0.3277 0.9135 -0.2410 +vn 0.3276 0.9135 -0.2414 +vn 0.8761 -0.1179 -0.4674 +vn 0.8760 -0.1174 -0.4678 +vn 0.8764 -0.1188 -0.4667 +vn -0.6514 0.0492 0.7571 +vn -0.6515 0.0491 0.7571 +vn -0.6515 0.0494 0.7570 +vn -0.1345 -0.3305 0.9342 +vn -0.1346 -0.3304 0.9342 +vn -0.1347 -0.3303 0.9342 +vn -0.3495 0.3801 0.8564 +vn -0.3494 0.3801 0.8564 +vn -0.3495 0.3799 0.8565 +vn -0.4055 0.6809 -0.6098 +vn -0.4050 0.6810 -0.6101 +vn -0.4060 0.6810 -0.6094 +vn 0.1861 0.9779 -0.0953 +vn -0.4660 0.8709 -0.1562 +vn -0.4662 0.8709 -0.1558 +vn -0.4658 0.8710 -0.1563 +vn 0.8634 0.4783 -0.1606 +vn -0.5673 0.5403 0.6215 +vn 0.1933 0.9743 -0.1160 +vn 0.1935 0.9742 -0.1158 +vn 0.1932 0.9744 -0.1152 +vn 0.7454 -0.6433 -0.1750 +vn 0.7455 -0.6430 -0.1752 +vn -0.2068 -0.6160 0.7601 +vn -0.5087 0.6109 -0.6067 +vn -0.5086 0.6108 -0.6069 +vn 0.1901 -0.8258 0.5309 +vn 0.4425 -0.5122 0.7361 +vn 0.4423 -0.5122 0.7362 +vn 0.4421 -0.5126 0.7361 +vn -0.8613 0.4541 -0.2280 +vn -0.8613 0.4540 -0.2280 +vn -0.8613 0.4540 -0.2281 +vn -0.8427 -0.5265 -0.1125 +vn -0.8425 -0.5268 -0.1125 +vn -0.2681 0.7688 -0.5806 +vn -0.2675 0.7684 -0.5814 +vn -0.2685 0.7688 -0.5804 +vn -0.8747 -0.4447 0.1927 +vn -0.8749 -0.4446 0.1921 +vn -0.8747 -0.4447 0.1929 +vn 0.7297 -0.5938 0.3391 +vn 0.7296 -0.5938 0.3392 +vn -0.3948 0.7694 0.5021 +vn -0.3949 0.7694 0.5020 +vn -0.3949 0.7694 0.5021 +vn 0.7070 -0.5974 -0.3786 +vn 0.7072 -0.5975 -0.3781 +vn 0.7067 -0.5975 -0.3789 +vn -0.9262 0.3451 0.1517 +vn -0.9262 0.3453 0.1517 +vn -0.4182 -0.3078 0.8546 +vn -0.4180 -0.3078 0.8547 +vn -0.4183 -0.3077 0.8546 +vn 0.7304 -0.4475 -0.5161 +vn 0.3363 -0.0626 -0.9397 +vn 0.6301 0.5097 0.5858 +vn -0.0598 0.7303 -0.6805 +vn 0.8968 -0.1190 0.4261 +vn 0.8969 -0.1162 0.4267 +vn 0.8970 -0.1209 0.4251 +vn -0.0867 0.2818 -0.9555 +vn -0.0863 0.2813 -0.9557 +vn -0.0863 0.2812 -0.9558 +vn 0.0322 -0.9936 0.1082 +vn 0.0320 -0.9936 0.1082 +vn 0.0323 -0.9936 0.1080 +vn -0.5374 0.2257 -0.8126 +vn -0.5373 0.2256 -0.8127 +vn -0.5707 0.7442 0.3471 +vn -0.5705 0.7444 0.3471 +vn -0.6556 0.3868 -0.6485 +vn -0.6552 0.3870 -0.6487 +vn 0.6538 -0.5925 0.4707 +vn 0.6536 -0.5927 0.4706 +vn 0.6539 -0.5923 0.4707 +vn 0.7854 0.5465 0.2906 +vn 0.7855 0.5465 0.2905 +vn 0.0582 0.3152 -0.9472 +vn 0.0580 0.3148 -0.9474 +vn 0.0580 0.3144 -0.9475 +vn 0.7408 -0.6353 -0.2181 +vn 0.7409 -0.6352 -0.2181 +vn 0.7409 -0.6353 -0.2178 +vn -0.9697 -0.1610 -0.1838 +vn -0.9697 -0.1609 -0.1838 +vn -0.9696 -0.1612 -0.1839 +vn 0.3722 0.9216 -0.1104 +vn 0.3719 0.9217 -0.1100 +vn 0.3717 0.9218 -0.1098 +vn 0.1293 -0.0007 -0.9916 +vn 0.1280 -0.0005 -0.9918 +vn 0.1278 -0.0006 -0.9918 +vn 0.1701 -0.1450 -0.9747 +vn 0.1700 -0.1450 -0.9747 +vn 0.1698 -0.1450 -0.9748 +vn -0.2777 0.7510 -0.5991 +vn -0.2781 0.7513 -0.5985 +vn -0.2771 0.7508 -0.5996 +vn -0.1392 -0.3266 0.9348 +vn -0.1853 0.9015 -0.3910 +vn -0.1855 0.9015 -0.3911 +vn -0.5466 -0.5865 -0.5977 +vn -0.5467 -0.5866 -0.5975 +vn -0.5468 -0.5868 -0.5972 +vn 0.1434 0.3871 -0.9108 +vn 0.1444 0.3873 -0.9106 +vn 0.1440 0.3875 -0.9106 +vn -0.2481 -0.8606 -0.4447 +vn -0.2480 -0.8607 -0.4447 +vn 0.3038 -0.2761 0.9118 +vn 0.3041 -0.2762 0.9117 +vn 0.3042 -0.2762 0.9117 +vn 0.4293 0.7032 -0.5667 +vn 0.4295 0.7031 -0.5668 +vn -0.8942 0.4477 0.0033 +vn -0.8941 0.4478 0.0033 +vn -0.8943 0.4475 0.0033 +vn -0.2856 -0.6540 -0.7005 +vn -0.2879 -0.6534 -0.7001 +vn -0.2868 -0.6538 -0.7002 +vn 0.0867 0.9566 -0.2781 +vn 0.0868 0.9567 -0.2777 +vn 0.9888 0.0372 -0.1448 +vn 0.9888 0.0361 -0.1449 +vn 0.9888 0.0369 -0.1448 +vn -0.4743 0.8773 -0.0736 +vn -0.4745 0.8772 -0.0735 +vn -0.4744 0.8772 -0.0735 +vn -0.1545 0.9611 -0.2289 +vn -0.1547 0.9611 -0.2288 +vn 0.5962 -0.6827 0.4224 +vn 0.5963 -0.6826 0.4225 +vn 0.5963 -0.6826 0.4224 +vn -0.5309 0.4096 0.7419 +vn -0.5308 0.4099 0.7418 +vn -0.5311 0.4100 0.7415 +vn 0.5723 -0.0135 -0.8199 +vn 0.5721 -0.0134 -0.8201 +vn 0.6646 0.6572 0.3555 +vn 0.6647 0.6573 0.3553 +vn 0.6646 0.6573 0.3555 +vn 0.5769 0.7715 -0.2683 +vn 0.5770 0.7715 -0.2680 +vn 0.5769 0.7715 -0.2682 +vn -0.0732 -0.8662 0.4944 +vn -0.0732 -0.8665 0.4938 +vn -0.8520 0.3949 0.3438 +vn -0.6056 0.7891 0.1030 +vn -0.6055 0.7892 0.1029 +vn 0.6947 -0.6937 0.1900 +vn 0.6948 -0.6937 0.1901 +vn 0.6949 -0.6936 0.1899 +vn -0.1903 -0.9510 -0.2437 +vn -0.1903 -0.9512 -0.2428 +vn -0.1904 -0.9511 -0.2433 +vn 0.2488 0.9510 -0.1838 +vn 0.2498 0.9511 -0.1817 +vn 0.2498 0.9510 -0.1822 +vn -0.1321 0.4283 -0.8939 +vn -0.1322 0.4284 -0.8939 +vn -0.1319 0.4283 -0.8940 +vn -0.7374 0.1288 -0.6631 +vn -0.7374 0.1289 -0.6630 +vn -0.7375 0.1288 -0.6630 +vn -0.8227 -0.3890 -0.4146 +vn 0.2563 -0.4878 -0.8345 +vn 0.2561 -0.4877 -0.8346 +vn -0.8269 0.5269 0.1964 +vn -0.8271 0.5266 0.1964 +vn -0.2446 -0.3672 -0.8974 +vn -0.2446 -0.3670 -0.8975 +vn -0.1939 0.6566 0.7289 +vn -0.1941 0.6565 0.7290 +vn 0.0107 -0.0037 -0.9999 +vn 0.0116 -0.0081 -0.9999 +vn 0.0105 -0.0056 -0.9999 +vn -0.5714 0.5947 -0.5656 +vn -0.5704 0.5952 -0.5660 +vn -0.5709 0.5951 -0.5656 +vn -0.1796 0.2670 0.9468 +vn -0.1798 0.2670 0.9468 +vn -0.3503 -0.2751 0.8953 +vn -0.3527 -0.2750 0.8944 +vn -0.3521 -0.2751 0.8946 +vn 0.1270 0.9610 -0.2457 +vn 0.1272 0.9609 -0.2458 +vn 0.6080 -0.3254 -0.7242 +vn 0.6079 -0.3256 -0.7242 +vn 0.6083 -0.3254 -0.7240 +vn 0.2451 0.6980 0.6728 +vn 0.2450 0.6981 0.6728 +vn 0.2450 0.6979 0.6730 +vn -0.9444 -0.2416 -0.2232 +vn 0.7414 -0.4836 0.4653 +vn 0.7415 -0.4835 0.4652 +vn -0.8311 -0.5543 0.0455 +vn 0.2398 -0.7687 -0.5929 +vn 0.8240 -0.4070 0.3942 +vn 0.8242 -0.4070 0.3938 +vn -0.7983 0.5487 -0.2482 +vn -0.7982 0.5488 -0.2485 +vn -0.9815 0.1028 -0.1613 +vn -0.9815 0.1029 -0.1614 +vn 0.8559 0.4536 -0.2484 +vn 0.8558 0.4537 -0.2487 +vn 0.8560 0.4536 -0.2481 +vn 0.7119 -0.4208 0.5623 +vn 0.7116 -0.4208 0.5626 +vn 0.7118 -0.4207 0.5625 +vn -0.8172 -0.5175 -0.2537 +vn 0.7019 -0.6879 0.1847 +vn 0.7020 -0.6878 0.1847 +vn -0.5404 0.5248 -0.6577 +vn -0.5406 0.5246 -0.6577 +vn -0.5410 0.5244 -0.6575 +vn 0.6562 0.1051 -0.7472 +vn 0.6561 0.1053 -0.7473 +vn 0.6559 0.1053 -0.7474 +vn 0.1624 -0.9643 0.2093 +vn 0.1627 -0.9643 0.2090 +vn 0.1625 -0.9643 0.2091 +vn 0.6329 -0.4582 0.6241 +vn 0.6332 -0.4580 0.6239 +vn 0.7005 -0.7004 0.1368 +vn 0.7006 -0.7003 0.1368 +vn 0.0639 -0.9651 0.2539 +vn 0.0642 -0.9652 0.2536 +vn 0.0646 -0.9653 0.2532 +vn -0.1099 -0.9162 0.3853 +vn -0.1102 -0.9161 0.3854 +vn 0.3694 0.8150 -0.4465 +vn 0.3694 0.8150 -0.4464 +vn 0.1344 -0.9201 0.3680 +vn 0.1344 -0.9200 0.3681 +vn 0.1344 -0.9201 0.3678 +vn -0.9664 -0.0600 -0.2501 +vn -0.9663 -0.0602 -0.2502 +vn -0.9663 -0.0602 -0.2503 +vn 0.0892 0.0457 0.9950 +vn 0.0895 0.0459 0.9949 +vn 0.0897 0.0461 0.9949 +vn 0.9082 -0.4174 -0.0295 +vn -0.2439 0.1938 -0.9502 +vn -0.2443 0.1941 -0.9501 +vn -0.2449 0.1950 -0.9497 +vn 0.0687 -0.4970 0.8650 +vn 0.0688 -0.4974 0.8648 +vn 0.0688 -0.4972 0.8649 +vn -0.0071 0.8072 -0.5902 +vn -0.0069 0.8076 -0.5897 +vn -0.0073 0.8069 -0.5906 +vn -0.5452 0.8380 0.0242 +vn 0.7473 -0.6310 -0.2082 +vn 0.7473 -0.6311 -0.2080 +vn -0.8612 0.2071 -0.4642 +vn 0.4231 -0.7998 0.4258 +vn 0.4233 -0.7996 0.4260 +vn 0.4273 -0.8214 0.3779 +vn 0.4267 -0.8220 0.3771 +vn 0.4266 -0.8229 0.3753 +vn -0.6139 0.3678 0.6985 +vn -0.6137 0.3681 0.6985 +vn -0.6135 0.3683 0.6986 +vn 0.6208 -0.6786 0.3927 +vn -0.7633 -0.5986 -0.2430 +vn -0.7639 -0.5981 -0.2423 +vn -0.7627 -0.5993 -0.2432 +vn 0.4066 0.9120 -0.0541 +vn 0.4066 0.9120 -0.0540 +vn -0.5001 -0.8658 0.0171 +vn -0.5005 -0.8656 0.0173 +vn -0.5002 -0.8657 0.0172 +vn 0.8560 0.3016 -0.4199 +vn 0.8560 0.3025 -0.4192 +vn 0.8561 0.3017 -0.4197 +vn -0.7898 0.4528 -0.4138 +vn -0.0809 0.9346 -0.3463 +vn 0.6890 -0.5195 -0.5053 +vn 0.6890 -0.5195 -0.5054 +vn 0.6889 -0.5195 -0.5055 +vn -0.7971 -0.6038 0.0004 +vn -0.7973 -0.6036 0.0007 +vn -0.7972 -0.6037 0.0008 +vn -0.5433 0.7670 0.3413 +vn -0.5448 0.7660 0.3413 +vn -0.5442 0.7665 0.3410 +vn -0.3016 -0.7786 0.5503 +vn -0.3017 -0.7786 0.5503 +vn -0.3010 -0.7783 0.5510 +vn 0.5100 0.7951 0.3283 +vn 0.8721 -0.2633 0.4125 +vn 0.8720 -0.2631 0.4127 +vn 0.8721 -0.2631 0.4126 +vn -0.5083 0.8327 -0.2197 +vn -0.5081 0.8327 -0.2200 +vn 0.9751 -0.1335 0.1771 +vn 0.9751 -0.1336 0.1771 +vn 0.9751 -0.1331 0.1772 +vn 0.3837 0.7521 -0.5358 +vn 0.3846 0.7520 -0.5353 +vn 0.3853 0.7523 -0.5344 +vn -0.1384 0.8737 -0.4664 +vn -0.1383 0.8739 -0.4660 +vn -0.1387 0.8734 -0.4668 +vn 0.7342 -0.6789 -0.0088 +vn 0.7342 -0.6789 -0.0087 +vn -0.3281 -0.6432 -0.6918 +vn -0.3278 -0.6431 -0.6921 +vn 0.5686 -0.4933 -0.6583 +vn -0.5123 -0.5796 0.6337 +vn -0.5133 -0.5801 0.6324 +vn -0.5126 -0.5796 0.6335 +vn -0.0937 0.5064 0.8572 +vn -0.0932 0.5066 0.8571 +vn -0.0936 0.5064 0.8572 +vn 0.9327 -0.3473 0.0978 +vn 0.9326 -0.3475 0.0975 +vn 0.9326 -0.3474 0.0977 +vn 0.5853 -0.8108 -0.0074 +vn 0.5853 -0.8108 -0.0073 +vn 0.5852 -0.8109 -0.0072 +vn 0.0439 -0.4541 -0.8899 +vn 0.0433 -0.4539 -0.8900 +vn 0.0434 -0.4540 -0.8900 +vn -0.1275 -0.5036 -0.8545 +vn -0.1276 -0.5037 -0.8544 +vn -0.5877 -0.6548 -0.4753 +vn -0.5876 -0.6548 -0.4753 +vn -0.5878 -0.6548 -0.4752 +vn 0.5790 0.5126 0.6340 +vn 0.5791 0.5124 0.6341 +vn 0.5791 0.5121 0.6343 +vn 0.2894 -0.9064 0.3077 +vn 0.2890 -0.9065 0.3078 +vn -0.3119 -0.9076 -0.2809 +vn -0.3117 -0.9077 -0.2810 +vn -0.3116 -0.9076 -0.2812 +vn 0.2979 0.9347 0.1940 +vn -0.6825 0.1017 -0.7238 +vn 0.6256 -0.7347 -0.2622 +vn 0.5116 0.8390 0.1851 +vn 0.5116 0.8391 0.1849 +vn 0.5116 0.8391 0.1850 +vn -0.5180 -0.8120 0.2690 +vn -0.5186 -0.8116 0.2689 +vn 0.8036 -0.5836 -0.1166 +vn 0.8036 -0.5836 -0.1167 +vn -0.4599 -0.1406 -0.8768 +vn -0.4603 -0.1412 -0.8765 +vn -0.4599 -0.1408 -0.8767 +vn -0.0496 -0.5331 0.8446 +vn -0.0493 -0.5338 0.8442 +vn -0.0494 -0.5337 0.8442 +vn -0.3934 -0.6470 0.6532 +vn -0.3936 -0.6471 0.6530 +vn -0.3939 -0.6471 0.6528 +vn 0.6214 -0.7205 -0.3078 +vn 0.6214 -0.7204 -0.3081 +vn 0.6214 -0.7203 -0.3084 +vn 0.1405 0.7414 0.6562 +vn 0.1400 0.7414 0.6563 +vn -0.5894 -0.7710 -0.2411 +vn -0.4922 -0.8071 -0.3262 +vn -0.4920 -0.8071 -0.3264 +vn 0.6295 -0.3114 -0.7118 +vn 0.6295 -0.3115 -0.7118 +vn 0.1235 -0.6708 0.7313 +vn 0.1233 -0.6710 0.7312 +vn -0.3643 -0.6909 -0.6245 +vn -0.3641 -0.6912 -0.6243 +vn -0.3637 -0.6915 -0.6241 +vn -0.8144 -0.3271 0.4794 +vn -0.4663 0.4334 0.7712 +vn -0.4663 0.4330 0.7714 +vn -0.4661 0.4327 0.7717 +vn 0.0775 0.5140 -0.8543 +vn 0.0774 0.5138 -0.8544 +vn 0.5120 0.2637 -0.8175 +vn 0.6219 0.1413 0.7702 +vn 0.6219 0.1413 0.7703 +vn 0.2063 -0.5179 0.8302 +vn 0.2065 -0.5180 0.8301 +vn 0.2059 -0.5178 0.8304 +vn -0.0246 0.5482 -0.8360 +vn -0.0248 0.5483 -0.8359 +vn 0.4889 0.1193 0.8641 +vn 0.4882 0.1198 0.8645 +vn 0.4886 0.1196 0.8643 +vn 0.5052 -0.7817 0.3655 +vn -0.5944 0.6009 -0.5344 +vn -0.5943 0.6009 -0.5345 +vn -0.5945 0.6009 -0.5343 +vn -0.3767 -0.7284 -0.5723 +vn -0.3766 -0.7284 -0.5724 +vn -0.3770 -0.7284 -0.5721 +vn 0.5544 0.6234 0.5514 +vn 0.5540 0.6236 0.5516 +vn 0.3923 0.8266 -0.4035 +vn -0.2840 -0.0338 -0.9582 +vn -0.2393 0.8893 -0.3898 +vn -0.2395 0.8891 -0.3900 +vn -0.2388 0.8895 -0.3895 +vn -0.7045 0.6829 -0.1933 +vn -0.7044 0.6830 -0.1932 +vn -0.2639 -0.6535 -0.7094 +vn -0.2635 -0.6538 -0.7093 +vn -0.2630 -0.6536 -0.7097 +vn -0.1242 0.9297 -0.3468 +vn -0.1238 0.9295 -0.3473 +vn -0.1239 0.9296 -0.3471 +vn -0.3226 -0.7535 0.5729 +vn -0.3222 -0.7535 0.5731 +vn -0.3227 -0.7535 0.5728 +vn 0.5276 -0.7418 -0.4140 +vn 0.5273 -0.7419 -0.4142 +vn 0.4689 0.8607 0.1985 +vn 0.4687 0.8609 0.1979 +vn 0.4687 0.8605 0.1997 +vn -0.3359 0.5585 -0.7584 +vn -0.3361 0.5584 -0.7585 +vn -0.3360 0.5587 -0.7583 +vn -0.2496 0.8308 0.4975 +vn -0.2487 0.8309 0.4978 +vn -0.2492 0.8308 0.4976 +vn 0.4203 0.6863 0.5936 +vn 0.4203 0.6865 0.5934 +vn 0.4201 0.6865 0.5935 +vn -0.2766 0.5639 0.7782 +vn -0.2773 0.5634 0.7782 +vn -0.2778 0.5633 0.7782 +vn 0.2769 0.7077 -0.6500 +vn 0.2764 0.7079 -0.6500 +vn 0.2760 0.7080 -0.6501 +vn -0.9606 0.1979 -0.1953 +vn -0.9608 0.1974 -0.1949 +vn -0.9604 0.1982 -0.1956 +vn 0.6259 0.4604 -0.6295 +vn 0.6259 0.4605 -0.6294 +vn 0.6261 0.4603 -0.6294 +vn 0.1077 0.1055 0.9886 +vn 0.1077 0.1054 0.9886 +vn 0.1075 0.1057 0.9886 +vn 0.3171 0.3079 0.8970 +vn 0.3169 0.3078 0.8971 +vn 0.3176 0.3079 0.8968 +vn 0.2109 -0.7766 0.5936 +vn 0.2108 -0.7768 0.5934 +vn 0.2107 -0.7770 0.5932 +vn -0.4781 0.5271 -0.7025 +vn -0.4781 0.5271 -0.7026 +vn -0.4780 0.5272 -0.7025 +vn -0.0617 0.9706 -0.2328 +vn -0.2467 -0.4805 0.8416 +vn -0.2461 -0.4806 0.8417 +vn -0.2467 -0.4803 0.8417 +vn 0.0419 -0.0015 -0.9991 +vn 0.0417 -0.0015 -0.9991 +vn 0.5035 0.8540 0.1312 +vn 0.5036 0.8539 0.1312 +vn 0.5035 0.8540 0.1310 +vn -0.3066 0.4171 0.8556 +vn 0.1221 -0.3929 0.9114 +vn 0.1223 -0.3928 0.9115 +vn 0.9639 0.1521 -0.2187 +vn 0.9639 0.1524 -0.2183 +vn 0.9639 0.1517 -0.2189 +vn -0.2254 0.4311 0.8737 +vn -0.2255 0.4312 0.8736 +vn -0.2249 0.4312 0.8738 +vn 0.1035 0.7945 -0.5984 +vn 0.1035 0.7946 -0.5983 +vn 0.1035 0.7945 -0.5983 +vn 0.0802 -0.7707 0.6321 +vn 0.0792 -0.7712 0.6317 +vn 0.0790 -0.7723 0.6304 +vn 0.0207 0.4753 -0.8796 +vn 0.0210 0.4746 -0.8800 +vn 0.0209 0.4748 -0.8799 +vn 0.2212 0.8885 -0.4020 +vn 0.2215 0.8884 -0.4021 +vn -0.1231 0.7968 0.5916 +vn -0.1230 0.7969 0.5915 +vn -0.1231 0.7967 0.5918 +vn 0.0127 0.9937 0.1117 +vn 0.0126 0.9937 0.1118 +vn 0.0129 0.9937 0.1115 +vn 0.3396 -0.0070 0.9406 +vn 0.3401 -0.0075 0.9403 +vn 0.3399 -0.0074 0.9404 +vn -0.2836 0.3842 0.8786 +vn -0.2835 0.3838 0.8788 +vn -0.2836 0.3838 0.8788 +vn 0.3391 0.9324 0.1251 +vn 0.3420 0.9317 0.1220 +vn 0.3401 0.9323 0.1232 +vn -0.4194 0.8906 -0.1759 +vn -0.4195 0.8906 -0.1758 +vn 0.1584 0.2680 0.9503 +vn 0.1584 0.2678 0.9504 +vn 0.1584 0.2677 0.9504 +vn -0.1632 -0.4784 0.8629 +vn -0.1644 -0.4788 0.8624 +vn -0.1640 -0.4786 0.8626 +vn 0.6957 -0.6762 -0.2422 +vn 0.6959 -0.6759 -0.2426 +vn 0.6962 -0.6757 -0.2423 +vn -0.1673 -0.7325 0.6599 +vn -0.1674 -0.7324 0.6600 +vn -0.1675 -0.7325 0.6598 +vn 0.3318 -0.7549 0.5658 +vn 0.3317 -0.7551 0.5655 +vn 0.3318 -0.7553 0.5652 +vn -0.9598 -0.0864 -0.2669 +vn -0.9600 -0.0862 -0.2665 +vn -0.9600 -0.0861 -0.2664 +vn -0.5016 -0.6698 0.5475 +vn 0.7832 0.6058 0.1398 +vn 0.7833 0.6057 0.1398 +vn 0.9758 -0.1374 0.1701 +vn 0.9758 -0.1373 0.1701 +vn 0.9758 -0.1376 0.1701 +vn 0.4517 -0.0867 -0.8879 +vn 0.4515 -0.0866 -0.8881 +vn -0.0904 0.4949 -0.8642 +vn -0.0917 0.4935 -0.8649 +vn -0.0909 0.4940 -0.8647 +vn -0.8420 0.5060 -0.1872 +vn -0.8419 0.5061 -0.1871 +vn -0.8419 0.5062 -0.1870 +vn 0.4641 -0.6914 0.5537 +vn 0.4643 -0.6919 0.5530 +vn 0.4641 -0.6916 0.5535 +vn -0.6669 -0.6285 0.4003 +vn -0.8478 0.4111 -0.3351 +vn -0.8478 0.4110 -0.3351 +vn -0.7726 0.4724 -0.4241 +vn -0.6978 0.3888 -0.6016 +vn -0.6977 0.3887 -0.6018 +vn -0.6979 0.3886 -0.6016 +vn 0.2213 0.8478 -0.4820 +vn 0.2215 0.8486 -0.4804 +vn 0.2231 0.8460 -0.4842 +vn -0.0000 -0.0008 1.0000 +vn -0.5989 0.5184 -0.6104 +vn 0.9508 -0.2901 -0.1087 +vn 0.9509 -0.2900 -0.1082 +vn 0.9509 -0.2902 -0.1075 +vn 0.7053 -0.5163 0.4858 +vn -0.3210 0.2424 -0.9155 +vn -0.3210 0.2425 -0.9155 +vn 0.6763 -0.7363 0.0223 +vn 0.6763 -0.7363 0.0224 +vn -0.3189 -0.0164 0.9477 +vn -0.3188 -0.0165 0.9477 +vn -0.7064 -0.6563 0.2651 +vn -0.7063 -0.6564 0.2650 +vn -0.7064 -0.6564 0.2650 +vn 0.7482 0.4225 -0.5116 +vn 0.5995 -0.6536 0.4619 +vn 0.5996 -0.6534 0.4621 +vn 0.6089 -0.6940 0.3841 +vn -0.3523 0.8011 0.4839 +vn -0.3523 0.8011 0.4838 +vn 0.2749 0.9614 0.0113 +vn 0.2747 0.9615 0.0111 +vn 0.2750 0.9614 0.0112 +vn -0.0730 0.9603 0.2694 +vn -0.0725 0.9604 0.2691 +vn -0.0729 0.9604 0.2689 +vn 0.2682 -0.8509 -0.4516 +vn 0.2682 -0.8509 -0.4517 +vn 0.2682 -0.8510 -0.4516 +vn 0.8945 -0.2545 -0.3676 +vn 0.5412 -0.7228 0.4297 +vn 0.5416 -0.7225 0.4297 +vn 0.5413 -0.7227 0.4298 +vn 0.0075 0.8680 0.4965 +vn 0.0064 0.8682 0.4961 +vn 0.0096 0.8684 0.4958 +vn -0.9729 0.1199 -0.1979 +vn -0.8689 -0.3624 0.3373 +vn -0.2495 0.2259 -0.9417 +vn -0.2493 0.2262 -0.9416 +vn -0.8813 -0.4146 -0.2267 +vn -0.8811 -0.4151 -0.2268 +vn 0.9299 0.0058 -0.3677 +vn 0.9299 0.0055 -0.3678 +vn 0.9300 0.0059 -0.3676 +vn -0.0108 -0.8131 -0.5820 +vn -0.0102 -0.8133 -0.5818 +vn -0.1607 0.5684 -0.8069 +vn -0.1608 0.5683 -0.8070 +vn -0.1610 0.5682 -0.8070 +vn 0.2015 -0.7883 -0.5814 +vn 0.2014 -0.7884 -0.5813 +vn 0.2011 -0.7886 -0.5811 +vn 0.6796 0.6848 -0.2631 +vn 0.6788 0.6851 -0.2643 +vn 0.6791 0.6850 -0.2640 +vn -0.5761 -0.6631 -0.4778 +vn -0.5761 -0.6630 -0.4781 +vn 0.2953 -0.9229 0.2470 +vn -0.3633 0.4507 -0.8154 +vn -0.3633 0.4508 -0.8153 +vn 0.3635 -0.6050 -0.7084 +vn 0.3629 -0.6040 -0.7095 +vn 0.3621 -0.6036 -0.7103 +vn 0.2634 0.3512 -0.8985 +vn 0.2639 0.3512 -0.8983 +vn 0.2625 0.3516 -0.8986 +vn -0.1642 -0.4307 0.8874 +vn -0.3080 -0.7220 -0.6196 +vn -0.3085 -0.7220 -0.6193 +vn -0.3083 -0.7220 -0.6194 +vn 0.3996 0.6856 -0.6085 +vn 0.3995 0.6857 -0.6085 +vn -0.3522 -0.0304 -0.9354 +vn -0.3523 -0.0303 -0.9354 +vn -0.4406 0.8575 -0.2655 +vn -0.4409 0.8574 -0.2656 +vn -0.4403 0.8577 -0.2655 +vn -0.0817 0.8937 -0.4411 +vn -0.0819 0.8937 -0.4411 +vn -0.0818 0.8937 -0.4411 +vn -0.0386 -0.1034 -0.9939 +vn -0.0385 -0.1031 -0.9939 +vn -0.0386 -0.1035 -0.9939 +vn 0.8412 0.2819 0.4615 +vn 0.8413 0.2819 0.4613 +vn 0.6040 -0.7624 0.2320 +vn 0.6047 -0.7622 0.2312 +vn 0.6041 -0.7624 0.2319 +vn -0.9697 0.2442 -0.0015 +vn -0.9698 0.2439 -0.0013 +vn -0.9698 0.2439 -0.0012 +vn -0.0752 0.5704 -0.8179 +vn -0.0750 0.5702 -0.8180 +vn -0.0750 0.5702 -0.8181 +vn -0.3924 0.6313 0.6689 +vn -0.3925 0.6312 0.6689 +vn -0.3923 0.6314 0.6689 +vn -0.3433 0.0238 -0.9389 +vn -0.3433 0.0237 -0.9389 +vn -0.8490 0.1944 -0.4914 +vn -0.8491 0.1943 -0.4912 +vn -0.8492 0.1944 -0.4910 +vn -0.8677 -0.1102 0.4847 +vn -0.8680 -0.1104 0.4842 +vn 0.0683 0.1668 0.9836 +vn 0.0681 0.1666 0.9837 +vn 0.1102 0.9449 -0.3083 +vn 0.1098 0.9449 -0.3084 +vn 0.1104 0.9450 -0.3080 +vn 0.7086 -0.5774 0.4056 +vn 0.7085 -0.5771 0.4062 +vn 0.7086 -0.5771 0.4060 +vn 0.4741 -0.6405 0.6042 +vn 0.4753 -0.6403 0.6034 +vn 0.4748 -0.6405 0.6036 +vn -0.5056 0.4583 0.7310 +vn -0.5054 0.4584 0.7311 +vn -0.5053 0.4584 0.7311 +vn 0.4682 0.5620 -0.6819 +vn 0.4689 0.5619 -0.6815 +vn 0.4681 0.5623 -0.6817 +vn -0.8209 0.5670 0.0673 +vn -0.8210 0.5670 0.0670 +vn -0.8210 0.5670 0.0669 +vn 0.6542 -0.5715 0.4954 +vn 0.6544 -0.5715 0.4951 +vn 0.6546 -0.5715 0.4949 +vn 0.8348 -0.5157 0.1927 +vn 0.8348 -0.5157 0.1929 +vn -0.8278 0.3443 -0.4429 +vn -0.8283 0.3441 -0.4423 +vn -0.8280 0.3442 -0.4427 +vn 0.2316 0.7436 -0.6273 +vn 0.2318 0.7435 -0.6273 +vn 0.2316 0.7435 -0.6273 +vn 0.1638 0.6608 0.7325 +vn 0.1627 0.6608 0.7327 +vn 0.1630 0.6607 0.7327 +vn 0.8975 0.3649 -0.2476 +vn 0.8978 0.3642 -0.2478 +vn 0.8979 0.3637 -0.2482 +vn 0.7664 -0.5713 0.2936 +vn 0.7658 -0.5720 0.2937 +vn 0.7656 -0.5726 0.2934 +vn 0.3117 0.9378 -0.1530 +vn 0.3119 0.9377 -0.1529 +vn 0.1333 0.7459 0.6525 +vn 0.1333 0.7459 0.6526 +vn 0.1335 0.7459 0.6525 +vn -0.0204 0.9916 0.1274 +vn -0.0205 0.9916 0.1275 +vn 0.6675 -0.5789 0.4683 +vn 0.6676 -0.5790 0.4681 +vn 0.5800 0.7565 0.3020 +vn 0.5798 0.7567 0.3021 +vn 0.8839 -0.4193 0.2070 +vn 0.8840 -0.4192 0.2071 +vn 0.8839 -0.4194 0.2072 +vn -0.0723 0.8367 0.5429 +vn -0.0721 0.8366 0.5430 +vn -0.7275 -0.4429 0.5240 +vn -0.7274 -0.4431 0.5240 +vn -0.7276 -0.4427 0.5240 +vn 0.2628 0.4344 -0.8615 +vn 0.2627 0.4344 -0.8616 +vn 0.2279 -0.7164 0.6594 +vn 0.2278 -0.7163 0.6596 +vn 0.2277 -0.7162 0.6597 +vn 0.5093 0.3973 0.7634 +vn 0.5094 0.3974 0.7633 +vn 0.6932 -0.7165 -0.0783 +vn 0.6927 -0.7170 -0.0779 +vn 0.6923 -0.7174 -0.0775 +vn 0.9779 -0.0046 -0.2089 +vn 0.9780 -0.0045 -0.2084 +vn 0.9781 -0.0038 -0.2079 +vn -0.2354 -0.9256 0.2965 +vn -0.2355 -0.9256 0.2963 +vn -0.1501 -0.9696 0.1930 +vn 0.1654 0.9560 0.2424 +vn 0.1653 0.9561 0.2421 +vn 0.1654 0.9560 0.2422 +vn 0.5580 0.8223 0.1114 +vn 0.5584 0.8221 0.1117 +vn -0.0604 0.9258 0.3732 +vn -0.0608 0.9264 0.3716 +vn -0.0605 0.9261 0.3723 +vn -0.2517 -0.9677 -0.0113 +vn -0.2514 -0.9678 -0.0110 +vn -0.2514 -0.9678 -0.0109 +vn 0.3235 -0.8669 0.3792 +vn -0.2311 -0.6172 0.7521 +vn -0.2312 -0.6170 0.7522 +vn -0.2308 -0.6175 0.7519 +vn 0.2875 0.0270 0.9574 +vn 0.2879 0.0269 0.9573 +vn -0.3628 -0.9307 0.0474 +vn -0.3627 -0.9307 0.0476 +vn -0.2708 0.9622 -0.0287 +vn -0.2708 0.9622 -0.0290 +vn -0.2707 0.9622 -0.0292 +vn 0.7263 -0.6458 -0.2354 +vn 0.7264 -0.6458 -0.2353 +vn 0.7265 -0.6456 -0.2354 +vn 0.7646 0.6441 0.0217 +vn 0.7647 0.6441 0.0215 +vn 0.7648 0.6439 0.0218 +vn -0.2070 0.2631 0.9423 +vn -0.2063 0.2631 0.9425 +vn -0.2065 0.2631 0.9424 +vn -0.3681 -0.9228 0.1137 +vn -0.3682 -0.9228 0.1138 +vn -0.3679 -0.9229 0.1134 +vn -0.4267 0.3922 -0.8149 +vn 0.3326 0.8942 -0.2998 +vn 0.3323 0.8942 -0.3001 +vn 0.6148 0.7071 0.3494 +vn 0.6148 0.7072 0.3492 +vn 0.6147 0.7073 0.3490 +vn 0.5266 -0.1651 -0.8339 +vn 0.5265 -0.1648 -0.8340 +vn 0.5267 -0.1652 -0.8338 +vn -0.3422 -0.8987 -0.2744 +vn 0.4542 0.4797 -0.7507 +vn 0.6390 -0.6651 0.3863 +vn 0.6389 -0.6652 0.3865 +vn 0.6389 -0.6649 0.3869 +vn 0.8248 -0.5365 0.1782 +vn 0.8244 -0.5371 0.1786 +vn 0.8245 -0.5370 0.1785 +vn -0.2217 -0.6945 0.6845 +vn -0.2218 -0.6944 0.6846 +vn 0.8074 -0.5642 -0.1725 +vn 0.8073 -0.5644 -0.1724 +vn -0.0913 -0.2596 0.9614 +vn -0.0916 -0.2600 0.9613 +vn -0.0914 -0.2597 0.9613 +vn -0.0984 -0.2879 0.9526 +vn -0.0987 -0.2880 0.9525 +vn -0.0988 -0.2881 0.9525 +vn -0.5716 -0.7832 0.2448 +vn -0.5717 -0.7846 0.2400 +vn -0.5721 -0.7833 0.2432 +vn -0.0637 -0.2507 0.9660 +vn -0.0645 -0.2511 0.9658 +vn -0.0640 -0.2508 0.9659 +vn 0.6611 -0.5748 0.4823 +vn 0.6597 -0.5775 0.4809 +vn 0.6608 -0.5759 0.4813 +vn 0.0623 -0.6783 -0.7322 +vn 0.0619 -0.6787 -0.7318 +vn 0.0624 -0.6784 -0.7321 +vn -0.6277 -0.5645 -0.5360 +vn -0.6277 -0.5644 -0.5361 +vn -0.6277 -0.5646 -0.5360 +vn -0.4345 -0.8937 -0.1121 +vn -0.4347 -0.8936 -0.1120 +vn -0.4346 -0.8936 -0.1120 +vn 0.6728 -0.6232 -0.3987 +vn 0.5310 0.5103 -0.6765 +vn 0.5307 0.5105 -0.6766 +vn 0.5317 0.5100 -0.6762 +vn 0.8514 0.4331 -0.2960 +vn 0.8516 0.4329 -0.2954 +vn 0.8515 0.4330 -0.2957 +vn 0.6395 -0.7335 -0.2303 +vn 0.6399 -0.7329 -0.2310 +vn 0.6394 -0.7337 -0.2300 +vn 0.6555 -0.7398 0.1521 +vn 0.6555 -0.7397 0.1521 +vn 0.6558 -0.7395 0.1520 +vn -0.3114 0.7107 -0.6308 +vn -0.3116 0.7106 -0.6309 +vn -0.3112 0.7107 -0.6309 +vn 0.3800 -0.5222 -0.7635 +vn 0.3801 -0.5222 -0.7634 +vn 0.4625 0.8771 -0.1299 +vn -0.3533 -0.4186 -0.8367 +vn -0.3530 -0.4187 -0.8367 +vn -0.3529 -0.4187 -0.8368 +vn 0.2335 -0.5554 -0.7982 +vn 0.2338 -0.5554 -0.7980 +vn 0.2340 -0.5555 -0.7979 +vn 0.0469 0.7057 -0.7070 +vn 0.0467 0.7054 -0.7073 +vn 0.0462 0.7053 -0.7074 +vn 0.3172 0.3188 -0.8932 +vn 0.3171 0.3175 -0.8937 +vn 0.3170 0.3181 -0.8935 +vn 0.1498 0.9751 0.1635 +vn 0.1496 0.9751 0.1635 +vn 0.1499 0.9751 0.1635 +vn -0.1913 -0.4413 -0.8767 +vn -0.1910 -0.4413 -0.8768 +vn -0.1915 -0.4413 -0.8767 +vn -0.0017 -0.0272 0.9996 +vn -0.6573 0.2430 0.7134 +vn -0.6574 0.2431 0.7132 +vn -0.6574 0.2434 0.7132 +vn 0.1360 0.9907 -0.0011 +vn 0.1361 0.9907 -0.0011 +vn -0.1283 -0.4924 -0.8609 +vn -0.1285 -0.4921 -0.8610 +vn 0.1452 -0.3938 -0.9076 +vn 0.1453 -0.3940 -0.9075 +vn -0.6505 -0.2022 0.7321 +vn -0.6506 -0.2033 0.7317 +vn -0.6505 -0.2029 0.7319 +vn 0.5644 -0.6403 -0.5211 +vn 0.5643 -0.6404 -0.5210 +vn 0.5644 -0.6401 -0.5212 +vn 0.6349 0.6210 -0.4596 +vn 0.6348 0.6210 -0.4598 +vn 0.5123 0.2024 -0.8346 +vn -0.3541 -0.8841 0.3050 +vn -0.3556 -0.8838 0.3041 +vn -0.3561 -0.8840 0.3030 +vn -0.8648 0.3065 -0.3978 +vn -0.8636 0.3079 -0.3992 +vn -0.8644 0.3069 -0.3984 +vn -0.1839 0.8682 -0.4609 +vn -0.1834 0.8678 -0.4618 +vn -0.4400 -0.6497 -0.6199 +vn -0.4385 -0.6502 -0.6204 +vn -0.4394 -0.6501 -0.6199 +vn 0.7328 -0.5710 -0.3701 +vn 0.7329 -0.5709 -0.3700 +vn -0.0232 0.8673 -0.4973 +vn -0.6393 -0.7632 -0.0942 +vn -0.6396 -0.7630 -0.0939 +vn -0.6399 -0.7628 -0.0934 +vn 0.5152 0.7916 0.3286 +vn 0.5153 0.7915 0.3287 +vn 0.5148 0.7920 0.3282 +vn 0.0778 0.6150 0.7847 +vn 0.3987 0.7330 -0.5512 +vn 0.3989 0.7328 -0.5513 +vn 0.3992 0.7326 -0.5513 +vn -0.1178 0.4777 -0.8706 +vn -0.1184 0.4781 -0.8703 +vn -0.1190 0.4782 -0.8701 +vn -0.2274 0.0715 0.9712 +vn 0.8588 -0.4883 0.1553 +vn 0.8587 -0.4883 0.1557 +vn 0.8587 -0.4883 0.1558 +vn 0.0869 -0.3874 -0.9178 +vn 0.0877 -0.3890 -0.9171 +vn 0.0857 -0.3868 -0.9182 +vn -0.7160 -0.6837 0.1412 +vn 0.8130 0.4855 -0.3214 +vn 0.8130 0.4856 -0.3214 +vn 0.8131 0.4855 -0.3213 +vn 0.3637 0.7983 -0.4800 +vn 0.3635 0.7982 -0.4803 +vn 0.3636 0.7983 -0.4801 +vn -0.0836 -0.8724 0.4816 +vn -0.0836 -0.8725 0.4815 +vn -0.0681 0.2422 -0.9678 +vn -0.0682 0.2421 -0.9679 +vn -0.0683 0.2418 -0.9679 +vn -0.0499 -0.5827 -0.8112 +vn -0.0498 -0.5830 -0.8110 +vn -0.0499 -0.5826 -0.8112 +vn 0.5633 0.1687 -0.8089 +vn 0.1341 -0.2085 -0.9688 +vn 0.1342 -0.2085 -0.9688 +vn 0.1344 -0.2087 -0.9687 +vn 0.3646 -0.0216 0.9309 +vn 0.3644 -0.0218 0.9310 +vn 0.3651 -0.0213 0.9307 +vn -0.3202 -0.9374 -0.1370 +vn -0.3201 -0.9374 -0.1372 +vn -0.5461 0.7302 0.4107 +vn -0.5461 0.7300 0.4109 +vn -0.5460 0.7300 0.4111 +vn 0.5691 0.2653 0.7783 +vn 0.5692 0.2650 0.7783 +vn 0.5690 0.2671 0.7777 +vn 0.0307 -0.1309 0.9909 +vn 0.0548 0.9969 0.0569 +vn 0.0554 0.9968 0.0579 +vn 0.0549 0.9969 0.0556 +vn -0.3340 -0.3945 -0.8561 +vn -0.3339 -0.3945 -0.8561 +vn 0.3323 -0.7429 0.5811 +vn 0.3323 -0.7431 0.5809 +vn -0.9754 0.0248 -0.2189 +vn -0.9754 0.0249 -0.2189 +vn -0.9754 0.0247 -0.2192 +vn 0.0584 -0.8394 0.5404 +vn 0.0579 -0.8392 0.5407 +vn 0.0583 -0.8393 0.5406 +vn -0.3632 0.8763 -0.3164 +vn -0.3633 0.8763 -0.3163 +vn -0.0550 0.9973 0.0480 +vn -0.0560 0.9972 0.0487 +vn -0.0555 0.9973 0.0481 +vn -0.1061 0.5957 -0.7962 +vn -0.1059 0.5955 -0.7964 +vn -0.1059 0.5955 -0.7963 +vn 0.1310 0.9254 -0.3557 +vn -0.6459 0.2281 -0.7286 +vn -0.6458 0.2279 -0.7287 +vn 0.1824 -0.0536 0.9818 +vn 0.1825 -0.0535 0.9818 +vn 0.1825 -0.0532 0.9818 +vn 0.1344 0.7740 0.6187 +vn 0.0959 0.7414 0.6641 +vn -0.1076 0.5393 0.8352 +vn -0.1075 0.5396 0.8350 +vn 0.3244 0.6035 -0.7284 +vn 0.3257 0.6037 -0.7276 +vn 0.3230 0.6024 -0.7300 +vn 0.1252 0.0923 0.9878 +vn -0.1201 0.8494 0.5139 +vn 0.5233 0.5149 -0.6790 +vn 0.5231 0.5149 -0.6792 +vn -0.3140 0.4859 0.8157 +vn -0.3139 0.4858 0.8158 +vn -0.3139 0.4857 0.8158 +vn -0.4525 -0.2105 0.8666 +vn -0.4527 -0.2102 0.8665 +vn -0.4529 -0.2099 0.8665 +vn -0.2641 0.3933 -0.8807 +vn -0.2637 0.3940 -0.8805 +vn -0.2632 0.3943 -0.8805 +vn 0.5445 0.0393 -0.8378 +vn 0.5444 0.0388 -0.8379 +vn 0.5443 0.0395 -0.8379 +vn -0.0470 -0.5369 0.8423 +vn -0.0469 -0.5368 0.8424 +vn -0.0470 -0.5370 0.8423 +vn -0.3258 0.0469 0.9443 +vn -0.3255 0.0466 0.9444 +vn -0.3255 0.0467 0.9444 +vn -0.9272 0.3436 -0.1493 +vn -0.9272 0.3431 -0.1505 +vn -0.9273 0.3435 -0.1487 +vn 0.5600 -0.6064 0.5646 +vn -0.2937 0.1100 0.9495 +vn -0.2938 0.1096 0.9496 +vn -0.2930 0.1087 0.9499 +vn 0.0422 -0.0052 -0.9991 +vn 0.0423 -0.0052 -0.9991 +vn 0.0421 -0.0053 -0.9991 +vn 0.8002 -0.5075 -0.3197 +vn 0.7992 -0.5083 -0.3208 +vn 0.8009 -0.5072 -0.3184 +vn 0.0116 -0.4313 -0.9022 +vn 0.0120 -0.4310 -0.9023 +vn -0.2298 0.4067 0.8842 +vn -0.2299 0.4065 0.8842 +vn 0.0079 0.5091 -0.8607 +vn 0.0078 0.5093 -0.8605 +vn 0.0079 0.5092 -0.8606 +vn 0.3484 0.4555 -0.8192 +vn 0.3486 0.4556 -0.8191 +vn 0.3484 0.4554 -0.8193 +vn 0.1921 -0.8192 0.5404 +vn 0.1918 -0.8197 0.5398 +vn 0.1921 -0.8194 0.5401 +vn -0.3448 0.3873 0.8551 +vn -0.3443 0.3873 0.8552 +vn -0.3438 0.3877 0.8553 +vn 0.3593 -0.3381 -0.8698 +vn 0.3594 -0.3381 -0.8698 +vn 0.3591 -0.3381 -0.8699 +vn 0.8554 -0.1443 0.4975 +vn 0.8556 -0.1442 0.4972 +vn 0.8552 -0.1445 0.4977 +vn -0.8611 0.4962 -0.1109 +vn -0.1020 0.9230 -0.3710 +vn -0.1031 0.9225 -0.3720 +vn -0.1021 0.9227 -0.3717 +vn -0.2844 -0.2115 -0.9351 +vn -0.2843 -0.2125 -0.9349 +vn -0.2841 -0.2104 -0.9354 +vn 0.7363 -0.6407 0.2175 +vn -0.9683 0.1070 -0.2255 +vn -0.9683 0.1069 -0.2256 +vn -0.9683 0.1068 -0.2257 +vn 0.0131 0.2990 -0.9542 +vn 0.0129 0.2992 -0.9541 +vn 0.0128 0.2995 -0.9540 +vn 0.1826 -0.6712 0.7184 +vn 0.1823 -0.6711 0.7186 +vn 0.1819 -0.6710 0.7188 +vn -0.9507 -0.1576 -0.2672 +vn -0.9506 -0.1575 -0.2675 +vn -0.9505 -0.1575 -0.2678 +vn -0.4177 0.4707 0.7771 +vn 0.5679 0.8174 -0.0966 +vn 0.5687 0.8166 -0.0983 +vn 0.5680 0.8172 -0.0975 +vn -0.1792 0.2949 0.9386 +vn -0.1795 0.2949 0.9385 +vn -0.1793 0.2954 0.9384 +vn -0.8360 0.1178 0.5360 +vn -0.8351 0.1171 0.5374 +vn -0.8355 0.1173 0.5369 +vn -0.0259 0.2665 -0.9635 +vn -0.3082 0.0079 0.9513 +vn -0.3082 0.0081 0.9513 +vn -0.3080 0.0080 0.9514 +vn -0.3145 0.8070 0.4998 +vn -0.3145 0.8071 0.4997 +vn -0.3143 0.8072 0.4997 +vn 0.6570 -0.2910 -0.6955 +vn -0.6819 0.6074 0.4075 +vn -0.6823 0.6068 0.4077 +vn -0.6818 0.6078 0.4071 +vn 0.1093 -0.7370 -0.6670 +vn -0.3130 0.3910 -0.8655 +vn -0.3132 0.3912 -0.8654 +vn -0.3131 0.3911 -0.8655 +vn -0.5394 -0.3802 0.7513 +vn -0.5394 -0.3799 0.7514 +vn -0.1521 0.3554 -0.9223 +vn -0.1519 0.3554 -0.9223 +vn -0.1518 0.3553 -0.9223 +vn -0.5954 0.0615 0.8011 +vn -0.5951 0.0609 0.8013 +vn -0.5959 0.0617 0.8007 +vn -0.3212 0.8148 0.4826 +vn -0.3209 0.8148 0.4827 +vn -0.3217 0.8146 0.4827 +vn -0.2860 -0.0651 0.9560 +vn -0.2861 -0.0656 0.9560 +vn -0.2855 -0.0649 0.9562 +vn 0.7913 -0.6087 -0.0575 +vn -0.8031 0.5942 0.0445 +vn 0.5256 0.0253 -0.8503 +vn 0.5254 0.0252 -0.8505 +vn 0.5252 0.0255 -0.8506 +vn 0.3243 0.9418 -0.0882 +vn -0.5675 0.0477 -0.8220 +vn -0.9101 -0.4132 -0.0302 +vn -0.9101 -0.4132 -0.0301 +vn -0.1534 0.9862 0.0624 +vn -0.1526 0.9862 0.0636 +vn -0.1530 0.9862 0.0628 +vn -0.9046 -0.2643 0.3344 +vn -0.9044 -0.2646 0.3346 +vn -0.9045 -0.2643 0.3346 +vn -0.3369 -0.7387 -0.5838 +vn -0.3240 -0.2444 0.9139 +vn -0.3242 -0.2464 0.9133 +vn -0.3239 -0.2453 0.9137 +vn 0.5231 -0.1092 -0.8453 +vn 0.5229 -0.1097 -0.8453 +vn -0.5389 -0.6434 -0.5437 +vn -0.0450 -0.0164 -0.9989 +vn -0.0449 -0.0163 -0.9989 +vn 0.0786 0.0079 0.9969 +vn 0.0789 0.0078 0.9969 +vn 0.0789 0.0080 0.9968 +vn -0.3553 0.7912 0.4977 +vn -0.3550 0.7913 0.4978 +vn -0.3554 0.7912 0.4977 +vn -0.2950 0.0792 -0.9522 +vn -0.2961 0.0796 -0.9518 +vn -0.2974 0.0791 -0.9515 +vn -0.5486 0.8121 0.1987 +vn -0.5494 0.8115 0.1989 +vn -0.5491 0.8118 0.1989 +vn -0.7775 -0.5427 -0.3176 +vn -0.7776 -0.5424 -0.3180 +vn 0.8612 0.2462 -0.4447 +vn 0.8608 0.2464 -0.4453 +vn 0.8606 0.2468 -0.4455 +vn 0.3617 0.7046 -0.6105 +vn 0.3617 0.7046 -0.6106 +vn 0.3617 0.7045 -0.6106 +vn 0.1944 0.9560 -0.2198 +vn 0.1950 0.9562 -0.2183 +vn 0.1945 0.9561 -0.2193 +vn -0.3947 0.8509 0.3467 +vn -0.3947 0.8509 0.3466 +vn 0.8089 -0.4202 0.4112 +vn 0.8089 -0.4203 0.4111 +vn 0.8049 -0.5380 0.2505 +vn 0.8049 -0.5382 0.2501 +vn -0.9309 0.0905 0.3538 +vn -0.9309 0.0906 0.3539 +vn -0.9307 0.0908 0.3544 +vn -0.7338 -0.4620 -0.4981 +vn -0.7340 -0.4619 -0.4979 +vn -0.7341 -0.4619 -0.4978 +vn -0.7259 -0.5654 -0.3917 +vn 0.9804 -0.1160 0.1595 +vn 0.9567 -0.2072 0.2046 +vn 0.9568 -0.2068 0.2044 +vn 0.9566 -0.2071 0.2048 +vn -0.0744 -0.3384 -0.9381 +vn 0.1125 0.3663 0.9237 +vn 0.1123 0.3663 0.9237 +vn 0.1121 0.3664 0.9237 +vn 0.1577 0.9816 -0.1075 +vn 0.1572 0.9817 -0.1075 +vn 0.1576 0.9816 -0.1075 +vn -0.9943 -0.0089 -0.1064 +vn -0.9943 -0.0092 -0.1058 +vn -0.9942 -0.0088 -0.1068 +vn 0.9427 0.1823 -0.2793 +vn 0.9427 0.1824 -0.2794 +vn -0.7015 -0.6862 -0.1925 +vn -0.7014 -0.6863 -0.1925 +vn -0.7016 -0.6861 -0.1924 +vn -0.1097 -0.0289 -0.9935 +vn -0.1099 -0.0288 -0.9935 +vn -0.1097 -0.0292 -0.9935 +vn 0.0589 -0.9540 0.2940 +vn 0.0591 -0.9540 0.2940 +vn 0.0589 -0.9541 0.2937 +vn 0.8309 0.4260 -0.3580 +vn 0.2630 0.9642 0.0344 +vn 0.0660 -0.9061 -0.4179 +vn 0.0659 -0.9062 -0.4176 +vn 0.0660 -0.9061 -0.4180 +vn -0.0141 -0.9992 0.0376 +vn -0.0137 -0.9992 0.0376 +vn -0.0136 -0.9992 0.0376 +vn -0.5680 0.2260 -0.7914 +vn -0.5674 0.2264 -0.7917 +vn -0.5670 0.2263 -0.7920 +vn 0.6270 -0.3575 0.6921 +vn 0.6269 -0.3577 0.6922 +vn 0.6269 -0.3575 0.6922 +vn -0.3694 0.8967 0.2439 +vn -0.3699 0.8965 0.2439 +vn -0.1651 -0.3514 0.9216 +vn -0.1650 -0.3514 0.9216 +vn -0.1653 -0.3514 0.9215 +vn -0.0785 -0.9968 0.0133 +vn -0.0781 -0.9969 0.0130 +vn -0.0786 -0.9968 0.0135 +vn 0.7858 -0.6178 0.0290 +vn 0.7857 -0.6179 0.0289 +vn 0.6353 0.6314 0.4446 +vn -0.0153 -0.2200 -0.9754 +vn 0.2520 -0.9115 0.3249 +vn 0.2524 -0.9113 0.3252 +vn 0.2524 -0.9114 0.3251 +vn 0.3138 -0.4498 0.8362 +vn 0.3143 -0.4492 0.8363 +vn 0.3141 -0.4492 0.8364 +vn 0.3981 -0.4813 0.7809 +vn 0.3979 -0.4818 0.7808 +vn 0.3980 -0.4814 0.7809 +vn 0.1559 0.1194 0.9805 +vn 0.1562 0.1194 0.9805 +vn 0.1561 0.1194 0.9805 +vn -0.4067 -0.0683 -0.9110 +vn -0.4062 -0.0687 -0.9112 +vn -0.4065 -0.0684 -0.9111 +vn -0.3124 0.9339 -0.1738 +vn -0.3114 0.9341 -0.1747 +vn -0.3116 0.9341 -0.1743 +vn 0.3321 -0.5485 0.7674 +vn 0.3319 -0.5485 0.7674 +vn 0.3320 -0.5485 0.7674 +vn -0.0013 0.0008 1.0000 +vn -0.0001 0.0002 1.0000 +vn -0.0019 0.0017 1.0000 +vn -0.3831 0.2988 0.8740 +vn -0.2544 -0.9624 -0.0949 +vn -0.2549 -0.9623 -0.0949 +vn 0.5810 0.8081 0.0970 +vn 0.4913 -0.7982 0.3487 +vn 0.4911 -0.7984 0.3485 +vn 0.4910 -0.7985 0.3483 +vn 0.5771 0.7864 -0.2201 +vn 0.5770 0.7864 -0.2206 +vn 0.5770 0.7864 -0.2204 +vn -0.6554 -0.5958 -0.4642 +vn -0.6555 -0.5959 -0.4640 +vn -0.1005 0.6309 0.7693 +vn -0.1013 0.6299 0.7700 +vn -0.0993 0.6312 0.7692 +vn -0.2898 0.9483 0.1297 +vn -0.2893 0.9484 0.1300 +vn -0.9168 0.3660 -0.1595 +vn -0.9169 0.3658 -0.1596 +vn -0.9169 0.3657 -0.1596 +vn 0.1287 -0.5669 -0.8137 +vn 0.1284 -0.5671 -0.8136 +vn 0.1287 -0.5667 -0.8138 +vn -0.9213 0.3194 -0.2217 +vn -0.9214 0.3193 -0.2217 +vn 0.8176 0.4663 0.3379 +vn 0.8177 0.4665 0.3373 +vn 0.7645 0.6134 0.1983 +vn 0.7643 0.6136 0.1984 +vn 0.7641 0.6138 0.1985 +vn 0.6269 -0.6311 -0.4569 +vn 0.6269 -0.6310 -0.4570 +vn 0.6268 -0.6314 -0.4566 +vn -0.3599 0.8256 -0.4347 +vn -0.3593 0.8259 -0.4346 +vn -0.3596 0.8257 -0.4347 +vn -0.5269 -0.8436 -0.1039 +vn -0.5270 -0.8434 -0.1042 +vn 0.2403 -0.4805 -0.8434 +vn 0.2397 -0.4816 -0.8430 +vn 0.2397 -0.4825 -0.8424 +vn -0.7063 -0.4835 -0.5171 +vn -0.7063 -0.4832 -0.5173 +vn -0.7065 -0.4833 -0.5170 +vn 0.8230 -0.5290 -0.2070 +vn -0.6919 0.0355 -0.7211 +vn -0.6919 0.0356 -0.7211 +vn 0.1406 0.9823 0.1237 +vn 0.1408 0.9823 0.1238 +vn 0.1409 0.9822 0.1239 +vn -0.1833 -0.6723 -0.7172 +vn -0.1833 -0.6718 -0.7177 +vn -0.1832 -0.6716 -0.7179 +vn -0.8063 -0.5811 -0.1101 +vn -0.8064 -0.5810 -0.1103 +vn -0.2866 -0.9387 0.1918 +vn -0.2873 -0.9384 0.1919 +vn -0.7163 0.5380 -0.4445 +vn 0.9897 -0.1431 -0.0091 +vn 0.9897 -0.1432 -0.0091 +vn 0.4113 -0.9114 0.0128 +vn 0.4115 -0.9113 0.0118 +vn 0.4115 -0.9113 0.0124 +vn -0.1137 0.4949 -0.8615 +vn -0.1137 0.4955 -0.8611 +vn -0.1133 0.4958 -0.8610 +vn 0.9909 -0.1346 -0.0040 +vn 0.9909 -0.1348 -0.0039 +vn 0.5043 -0.6439 -0.5754 +vn 0.5045 -0.6440 -0.5751 +vn 0.5044 -0.6440 -0.5752 +vn -0.4468 0.8790 -0.1666 +vn -0.4470 0.8789 -0.1666 +vn -0.4469 0.8789 -0.1667 +vn 0.5169 -0.1622 -0.8405 +vn 0.5169 -0.1623 -0.8405 +vn 0.4929 0.8557 0.1575 +vn -0.9686 0.0505 0.2434 +vn -0.9688 0.0506 0.2428 +vn -0.9686 0.0505 0.2433 +vn 0.6598 -0.5168 -0.5455 +vn 0.6593 -0.5169 -0.5461 +vn 0.6596 -0.5169 -0.5457 +vn -0.1493 -0.9637 -0.2214 +vn -0.1487 -0.9638 -0.2213 +vn -0.1489 -0.9638 -0.2213 +vn -0.4785 -0.8762 -0.0578 +vn 0.3445 0.6861 -0.6408 +vn 0.3450 0.6864 -0.6402 +vn 0.3440 0.6862 -0.6409 +vn 0.6139 -0.7879 0.0484 +vn 0.6140 -0.7878 0.0483 +vn 0.2726 -0.9051 0.3264 +vn 0.2725 -0.9051 0.3264 +vn 0.2730 -0.9050 0.3263 +vn 0.8391 0.0544 0.5412 +vn 0.8389 0.0544 0.5415 +vn 0.8390 0.0544 0.5414 +vn -0.3830 -0.8226 0.4203 +vn -0.0384 -0.0287 0.9989 +vn -0.4566 -0.8787 0.1394 +vn -0.1604 0.9043 -0.3956 +vn -0.1595 0.9039 -0.3969 +vn -0.1602 0.9040 -0.3963 +vn 0.2991 -0.9540 0.0189 +vn -0.6137 -0.2544 0.7474 +vn -0.6137 -0.2543 0.7475 +vn -0.6140 -0.2541 0.7473 +vn 0.1488 -0.8661 0.4771 +vn 0.1482 -0.8665 0.4766 +vn 0.1485 -0.8664 0.4768 +vn -0.3808 -0.5631 -0.7334 +vn -0.3807 -0.5632 -0.7334 +vn -0.0701 -0.0362 0.9969 +vn -0.0699 -0.0322 0.9970 +vn -0.0706 -0.0343 0.9969 +vn 0.2826 0.8336 -0.4747 +vn 0.2824 0.8335 -0.4749 +vn 0.2825 0.8335 -0.4748 +vn 0.1284 0.7899 -0.5996 +vn 0.1292 0.7892 -0.6004 +vn 0.1289 0.7896 -0.6000 +vn 0.1112 0.0014 0.9938 +vn 0.1109 0.0016 0.9938 +vn 0.1111 0.0013 0.9938 +vn -0.2417 -0.0181 0.9702 +vn -0.2417 -0.0182 0.9702 +vn -0.2414 -0.0180 0.9703 +vn 0.0008 -0.0005 1.0000 +vn -0.1343 -0.5028 -0.8539 +vn -0.1342 -0.5029 -0.8539 +vn 0.5298 -0.8257 0.1938 +vn 0.5297 -0.8259 0.1932 +vn 0.5293 -0.8261 0.1934 +vn 0.3077 0.7379 -0.6007 +vn 0.3077 0.7380 -0.6005 +vn 0.3076 0.7383 -0.6003 +vn -0.0762 -0.5485 0.8326 +vn -0.0767 -0.5485 0.8326 +vn -0.0762 -0.5483 0.8328 +vn 0.3908 -0.9189 0.0541 +vn -0.2884 0.8122 -0.5072 +vn -0.2877 0.8130 -0.5062 +vn -0.2882 0.8125 -0.5067 +vn -0.4144 -0.8706 0.2652 +vn 0.6088 -0.6587 -0.4422 +vn 0.6089 -0.6586 -0.4421 +vn 0.6090 -0.6586 -0.4420 +vn -0.3925 -0.9150 0.0935 +vn -0.3924 -0.9150 0.0934 +vn -0.3926 -0.9149 0.0936 +vn -0.4586 -0.8787 0.1324 +vn 0.3029 -0.9487 -0.0910 +vn 0.3030 -0.9487 -0.0909 +vn 0.3029 -0.9487 -0.0911 +vn 0.5984 -0.5531 -0.5796 +vn 0.5985 -0.5530 -0.5796 +vn 0.7839 -0.5159 0.3454 +vn 0.7837 -0.5164 0.3452 +vn -0.5723 0.7966 -0.1946 +vn -0.5723 0.7966 -0.1948 +vn -0.5724 0.7964 -0.1950 +vn -0.3772 -0.9166 -0.1326 +vn -0.3770 -0.9167 -0.1325 +vn -0.3770 -0.9166 -0.1328 +vn -0.0974 -0.8561 -0.5075 +vn -0.0970 -0.8558 -0.5082 +vn -0.0964 -0.8557 -0.5085 +vn 0.4401 0.2581 -0.8600 +vn 0.4404 0.2583 -0.8598 +vn 0.4406 0.2585 -0.8597 +vn -0.2338 -0.0184 -0.9721 +vn -0.2338 -0.0186 -0.9721 +vn -0.2336 -0.0188 -0.9721 +vn 0.2077 0.6851 -0.6982 +vn 0.2078 0.6855 -0.6978 +vn -0.7830 -0.2274 0.5790 +vn -0.7830 -0.2273 0.5790 +vn 0.0921 -0.6523 0.7524 +vn 0.0922 -0.6528 0.7519 +vn 0.0919 -0.6522 0.7525 +vn 0.3366 0.9366 -0.0978 +vn 0.3363 0.9366 -0.0980 +vn 0.3360 0.9368 -0.0978 +vn 0.0630 0.5590 0.8268 +vn 0.0626 0.5604 0.8259 +vn 0.0642 0.5575 0.8277 +vn 0.5096 -0.8404 0.1847 +vn 0.5096 -0.8403 0.1849 +vn 0.5096 -0.8403 0.1850 +vn 0.7340 0.6467 0.2074 +vn 0.7339 0.6468 0.2075 +vn 0.7338 0.6470 0.2074 +vn 0.1984 0.9397 -0.2785 +vn 0.1984 0.9398 -0.2784 +vn 0.1983 0.9398 -0.2782 +vn 0.6279 0.7782 -0.0108 +vn 0.6278 0.7783 -0.0101 +vn 0.6278 0.7783 -0.0094 +vn -0.0797 0.9833 -0.1633 +vn -0.0796 0.9833 -0.1634 +vn -0.0799 0.9833 -0.1632 +vn -0.3680 -0.7046 -0.6067 +vn -0.3680 -0.7044 -0.6069 +vn -0.3676 -0.7052 -0.6063 +vn 0.2929 0.3342 -0.8958 +vn 0.4373 -0.8490 -0.2965 +vn 0.4373 -0.8490 -0.2967 +vn 0.4370 -0.8493 -0.2961 +vn 0.0272 -0.9933 0.1127 +vn -0.9929 0.0737 0.0930 +vn 0.9612 -0.1350 0.2405 +vn 0.9613 -0.1349 0.2403 +vn 0.9613 -0.1349 0.2402 +vn 0.9714 0.1790 0.1559 +vn 0.9713 0.1794 0.1561 +vn 0.9714 0.1789 0.1559 +vn -0.1531 0.2928 0.9438 +vn -0.1524 0.2931 0.9439 +vn -0.1537 0.2924 0.9439 +vn 0.3388 0.2050 0.9182 +vn 0.3389 0.2052 0.9182 +vn 0.3391 0.2049 0.9182 +vn -0.7606 0.5605 -0.3276 +vn -0.7607 0.5608 -0.3269 +vn -0.7608 0.5600 -0.3281 +vn 0.1307 0.1111 -0.9852 +vn 0.1310 0.1111 -0.9851 +vn 0.1442 -0.7715 0.6197 +vn 0.1441 -0.7713 0.6200 +vn 0.1441 -0.7710 0.6203 +vn 0.8835 0.1867 0.4296 +vn 0.8835 0.1867 0.4297 +vn -0.1544 -0.5835 -0.7973 +vn -0.1544 -0.5837 -0.7971 +vn -0.1544 -0.5837 -0.7972 +vn -0.2259 0.0769 0.9711 +vn -0.2261 0.0767 0.9711 +vn -0.2259 0.0770 0.9711 +vn -0.1785 -0.4545 -0.8727 +vn -0.1781 -0.4545 -0.8728 +vn -0.1777 -0.4545 -0.8728 +vn -0.0312 0.7985 0.6012 +vn -0.0297 0.7986 0.6011 +vn -0.0301 0.7986 0.6011 +vn -0.5811 0.7263 -0.3672 +vn -0.5814 0.7261 -0.3670 +vn -0.5815 0.7262 -0.3668 +vn -0.7006 -0.1193 0.7035 +vn -0.8353 -0.2094 -0.5084 +vn -0.8353 -0.2093 -0.5084 +vn -0.8352 -0.2095 -0.5084 +vn 0.3054 0.9287 0.2101 +vn 0.3054 0.9288 0.2101 +vn 0.2201 -0.6654 0.7133 +vn 0.2200 -0.6654 0.7133 +vn 0.2202 -0.6655 0.7132 +vn 0.7019 0.4623 0.5418 +vn 0.7018 0.4624 0.5418 +vn 0.7019 0.4626 0.5416 +vn -0.3609 -0.3002 -0.8830 +vn -0.3612 -0.3003 -0.8828 +vn -0.3613 -0.3004 -0.8827 +vn -0.2602 0.3082 0.9150 +vn -0.2602 0.3090 0.9148 +vn -0.2605 0.3095 0.9145 +vn -0.9618 -0.2468 -0.1186 +vn -0.9617 -0.2460 -0.1208 +vn -0.9617 -0.2465 -0.1199 +vn -0.0712 0.9874 0.1412 +vn 0.0975 0.1896 0.9770 +vn 0.0973 0.1895 0.9770 +vn 0.0972 0.1895 0.9771 +vn 0.8235 0.5038 0.2607 +vn 0.8233 0.5042 0.2607 +vn 0.1870 0.9426 -0.2766 +vn 0.1872 0.9427 -0.2763 +vn 0.1872 0.9427 -0.2760 +vn -0.9256 -0.1266 0.3568 +vn -0.9259 -0.1259 0.3561 +vn -0.9265 -0.1255 0.3548 +vn 0.4001 0.7363 0.5456 +vn 0.4005 0.7360 0.5458 +vn 0.4010 0.7356 0.5460 +vn 0.3389 0.6724 -0.6580 +vn 0.3391 0.6725 -0.6578 +vn 0.3391 0.6726 -0.6577 +vn 0.8167 0.5762 0.0304 +vn 0.8164 0.5767 0.0305 +vn 0.8165 0.5765 0.0310 +vn 0.3176 0.8291 0.4601 +vn 0.3173 0.8290 0.4606 +vn 0.3177 0.8293 0.4597 +vn -0.0354 0.4457 0.8945 +vn -0.0360 0.4457 0.8945 +vn -0.9875 -0.1538 -0.0349 +vn -0.9875 -0.1537 -0.0345 +vn 0.6175 0.7581 0.2097 +vn 0.6174 0.7582 0.2099 +vn 0.6173 0.7579 0.2109 +vn -0.3477 0.8256 -0.4444 +vn -0.3490 0.8260 -0.4427 +vn -0.3478 0.8250 -0.4455 +vn 0.7310 -0.6244 -0.2753 +vn 0.7312 -0.6243 -0.2750 +vn 0.7311 -0.6243 -0.2751 +vn 0.0854 0.8139 0.5747 +vn 0.0848 0.8136 0.5751 +vn 0.0851 0.8139 0.5748 +vn 0.5063 -0.7381 0.4459 +vn -0.6704 0.7155 -0.1965 +vn -0.6701 0.7158 -0.1965 +vn -0.6704 0.7156 -0.1963 +vn 0.2029 -0.5937 0.7787 +vn 0.0215 0.9915 -0.1284 +vn -0.5102 0.5728 0.6416 +vn -0.5100 0.5739 0.6407 +vn -0.5098 0.5745 0.6404 +vn -0.6119 -0.6579 -0.4390 +vn -0.6136 -0.6572 -0.4377 +vn -0.6152 -0.6561 -0.4371 +vn 0.3961 -0.0696 -0.9156 +vn 0.3959 -0.0700 -0.9156 +vn 0.3965 -0.0692 -0.9154 +vn -0.9380 0.1798 -0.2963 +vn -0.9380 0.1797 -0.2964 +vn -0.9380 0.1800 -0.2962 +vn -0.3219 0.5246 0.7882 +vn -0.3221 0.5242 0.7883 +vn -0.3229 0.5237 0.7883 +vn -0.2382 0.9623 -0.1311 +vn -0.2380 0.9624 -0.1310 +vn -0.7335 0.4833 -0.4778 +vn 0.8659 0.0585 -0.4968 +vn -0.2605 -0.7317 -0.6299 +vn -0.2604 -0.7316 -0.6301 +vn -0.2603 -0.7315 -0.6302 +vn -0.9213 -0.3859 0.0471 +vn 0.8816 0.0369 -0.4706 +vn 0.8817 0.0370 -0.4704 +vn 0.8814 0.0372 -0.4709 +vn 0.8274 -0.0296 -0.5608 +vn 0.8271 -0.0295 -0.5613 +vn 0.5561 -0.0897 -0.8263 +vn 0.5560 -0.0897 -0.8263 +vn 0.5558 -0.0897 -0.8264 +vn 0.5003 0.7796 -0.3767 +vn 0.5003 0.7797 -0.3765 +vn 0.1678 -0.4079 -0.8975 +vn 0.1680 -0.4081 -0.8973 +vn 0.1682 -0.4084 -0.8972 +vn 0.3307 0.9390 -0.0942 +vn 0.3309 0.9389 -0.0945 +vn -0.0540 0.8765 0.4784 +vn -0.0542 0.8765 0.4783 +vn -0.0554 0.8764 0.4784 +vn 0.6000 0.7804 0.1763 +vn 0.6000 0.7804 0.1760 +vn 0.6000 0.7804 0.1758 +vn -0.8234 -0.2237 -0.5214 +vn -0.8238 -0.2238 -0.5209 +vn -0.8233 -0.2234 -0.5218 +vn -0.5828 -0.6262 -0.5178 +vn -0.5824 -0.6268 -0.5177 +vn -0.5823 -0.6269 -0.5176 +vn 0.6914 0.4937 -0.5274 +vn 0.6914 0.4938 -0.5274 +vn 0.6918 0.4933 -0.5273 +vn -0.8214 -0.3786 -0.4266 +vn 0.6186 0.7825 0.0713 +vn 0.6187 0.7824 0.0714 +vn -0.1917 -0.2763 -0.9418 +vn -0.1915 -0.2764 -0.9418 +vn 0.5427 0.5049 -0.6712 +vn 0.5423 0.5052 -0.6713 +vn 0.5426 0.5051 -0.6712 +vn 0.1987 -0.9331 0.2998 +vn 0.1984 -0.9330 0.3003 +vn 0.1987 -0.9332 0.2993 +vn -0.2113 0.9745 0.0752 +vn -0.2113 0.9745 0.0751 +vn -0.2113 0.9745 0.0749 +vn -0.6786 0.4833 -0.5531 +vn -0.6787 0.4835 -0.5528 +vn -0.6788 0.4839 -0.5523 +vn -0.6531 0.1967 0.7312 +vn -0.1635 -0.4466 -0.8797 +vn 0.4853 0.8294 -0.2768 +vn 0.4852 0.8294 -0.2769 +vn 0.4854 0.8293 -0.2767 +vn 0.7877 -0.5364 0.3031 +vn 0.7876 -0.5365 0.3030 +vn 0.9028 0.3189 -0.2886 +vn 0.9030 0.3178 -0.2892 +vn 0.9029 0.3166 -0.2907 +vn 0.8709 0.3406 -0.3542 +vn 0.8710 0.3403 -0.3543 +vn 0.8029 -0.4160 0.4270 +vn 0.8031 -0.4154 0.4271 +vn 0.8030 -0.4158 0.4269 +vn -0.5471 0.8362 0.0376 +vn -0.5474 0.8360 0.0377 +vn -0.0070 -0.8193 0.5733 +vn -0.0069 -0.8191 0.5736 +vn 0.7727 -0.6340 -0.0306 +vn 0.7728 -0.6339 -0.0305 +vn 0.7727 -0.6341 -0.0305 +vn 0.8362 0.3920 -0.3836 +vn -0.0017 0.5291 -0.8485 +vn -0.0018 0.5291 -0.8485 +vn -0.0018 0.5292 -0.8485 +vn -0.5704 0.7533 0.3274 +vn -0.5706 0.7531 0.3274 +vn -0.5702 0.7534 0.3274 +vn -0.9739 -0.0264 0.2253 +vn -0.9739 -0.0262 0.2256 +vn -0.9740 -0.0266 0.2251 +vn 0.2213 0.4048 -0.8872 +vn 0.2212 0.4045 -0.8874 +vn 0.2208 0.4070 -0.8864 +vn -0.0692 -0.9950 -0.0715 +vn -0.0694 -0.9950 -0.0713 +vn -0.0696 -0.9950 -0.0715 +vn 0.8347 -0.4651 0.2949 +vn 0.8348 -0.4649 0.2950 +vn 0.8349 -0.4646 0.2952 +vn 0.8145 -0.0680 0.5762 +vn 0.8145 -0.0679 0.5762 +vn 0.8144 -0.0679 0.5763 +vn 0.7990 0.5723 0.1847 +vn 0.7992 0.5720 0.1847 +vn 0.7989 0.5724 0.1846 +vn -0.0913 0.8848 -0.4570 +vn -0.0912 0.8848 -0.4570 +vn -0.0914 0.8848 -0.4569 +vn 0.0381 -0.7762 0.6293 +vn 0.0378 -0.7764 0.6291 +vn 0.0376 -0.7766 0.6289 +vn -0.1255 0.4226 0.8976 +vn -0.1256 0.4227 0.8975 +vn -0.1261 0.4227 0.8974 +vn 0.7457 -0.3540 0.5645 +vn -0.4154 -0.7051 0.5747 +vn -0.4152 -0.7048 0.5752 +vn -0.4151 -0.7051 0.5750 +vn -0.7669 -0.2824 0.5763 +vn -0.7671 -0.2830 0.5758 +vn -0.7668 -0.2822 0.5766 +vn 0.7885 -0.6132 0.0469 +vn 0.7885 -0.6133 0.0467 +vn 0.7885 -0.6132 0.0468 +vn -0.3453 0.7827 -0.5179 +vn -0.3452 0.7825 -0.5182 +vn -0.8248 0.4865 -0.2882 +vn -0.8394 0.3755 0.3929 +vn -0.8397 0.3753 0.3925 +vn -0.8396 0.3754 0.3926 +vn 0.7643 0.3891 0.5142 +vn 0.7646 0.3894 0.5136 +vn 0.7642 0.3888 0.5147 +vn 0.3901 -0.2203 -0.8940 +vn 0.3900 -0.2206 -0.8940 +vn 0.3901 -0.2205 -0.8940 +vn -0.1501 -0.9830 0.1058 +vn -0.1499 -0.9831 0.1053 +vn -0.1500 -0.9830 0.1056 +vn 0.6608 -0.7490 -0.0478 +vn -0.8924 -0.3353 0.3019 +vn 0.2944 -0.8995 0.3229 +vn 0.2940 -0.8996 0.3230 +vn 0.4515 0.2309 0.8619 +vn 0.1715 -0.6006 0.7810 +vn 0.1722 -0.6011 0.7804 +vn 0.1720 -0.6010 0.7805 +vn 0.5558 -0.4029 0.7272 +vn 0.5558 -0.4029 0.7271 +vn 0.5557 -0.4029 0.7272 +vn 0.1557 0.0207 -0.9876 +vn 0.1554 0.0207 -0.9876 +vn 0.1555 0.0207 -0.9876 +vn -0.4475 0.4254 -0.7866 +vn -0.4475 0.4253 -0.7867 +vn -0.4477 0.4252 -0.7866 +vn 0.3221 -0.8772 0.3560 +vn 0.3216 -0.8772 0.3564 +vn 0.3229 -0.8770 0.3558 +vn -0.7662 0.5630 -0.3099 +vn -0.4075 0.5179 0.7522 +vn -0.4076 0.5178 0.7522 +vn 0.2902 0.8406 -0.4574 +vn 0.2872 0.8409 -0.4586 +vn 0.2887 0.8405 -0.4585 +vn 0.3203 -0.8879 0.3303 +vn 0.3202 -0.8879 0.3302 +vn 0.3203 -0.8878 0.3305 +vn -0.8281 0.4429 -0.3437 +vn -0.9102 -0.1968 -0.3644 +vn -0.9101 -0.1970 -0.3645 +vn -0.0389 0.9889 -0.1435 +vn -0.6982 0.4143 -0.5839 +vn -0.6978 0.4141 -0.5845 +vn -0.6981 0.4142 -0.5841 +vn 0.2540 -0.0178 0.9670 +vn 0.2534 -0.0177 0.9672 +vn -0.2956 -0.9491 -0.1090 +vn -0.2962 -0.9490 -0.1081 +vn -0.2957 -0.9491 -0.1086 +vn -0.0200 0.9472 -0.3199 +vn -0.0202 0.9472 -0.3201 +vn 0.7353 -0.6775 -0.0146 +vn 0.7511 -0.6601 0.0093 +vn -0.5143 0.2607 -0.8170 +vn -0.5143 0.2605 -0.8171 +vn -0.5141 0.2605 -0.8172 +vn 0.0745 -0.4803 -0.8739 +vn 0.0744 -0.4816 -0.8732 +vn 0.0737 -0.4774 -0.8756 +vn 0.9289 0.3188 -0.1885 +vn 0.9288 0.3189 -0.1887 +vn 0.9287 0.3191 -0.1888 +vn -0.2622 0.7506 -0.6065 +vn -0.2613 0.7505 -0.6070 +vn -0.2617 0.7506 -0.6067 +vn -0.1962 0.2936 -0.9356 +vn -0.1969 0.2938 -0.9354 +vn -0.1973 0.2940 -0.9352 +vn 0.3675 -0.3564 0.8590 +vn 0.3665 -0.3569 0.8593 +vn 0.3676 -0.3564 0.8590 +vn -0.8470 -0.2857 0.4483 +vn -0.8469 -0.2858 0.4484 +vn -0.8469 -0.2856 0.4486 +vn -0.1240 0.7611 0.6367 +vn 0.2859 0.9502 0.1239 +vn 0.2858 0.9503 0.1237 +vn -0.0888 0.9955 0.0325 +vn -0.0490 0.7750 -0.6301 +vn -0.0487 0.7747 -0.6304 +vn -0.0498 0.7754 -0.6295 +vn 0.3207 0.8674 -0.3804 +vn 0.3218 0.8672 -0.3800 +vn 0.3211 0.8674 -0.3802 +vn 0.4605 0.8714 0.1689 +vn 0.4604 0.8715 0.1689 +vn 0.4609 0.8712 0.1688 +vn -0.2320 0.1321 0.9637 +vn -0.2327 0.1329 0.9634 +vn -0.2328 0.1330 0.9634 +vn -0.4566 -0.7096 0.5366 +vn -0.4395 -0.0078 0.8982 +vn -0.4397 -0.0080 0.8981 +vn -0.0963 0.9772 -0.1889 +vn -0.0963 0.9773 -0.1890 +vn -0.0961 0.9772 -0.1891 +vn 0.3959 0.2037 0.8954 +vn 0.4426 0.8956 -0.0453 +vn 0.4426 0.8956 -0.0454 +vn 0.4425 0.8956 -0.0451 +vn -0.9299 -0.2291 0.2877 +vn -0.9299 -0.2291 0.2878 +vn -0.4381 0.2230 0.8708 +vn -0.4381 0.2227 0.8709 +vn -0.4382 0.2224 0.8709 +vn -0.3818 -0.9121 0.1491 +vn -0.3821 -0.9120 0.1492 +vn 0.9827 0.1184 0.1423 +vn 0.9827 0.1180 0.1426 +vn 0.6327 -0.5171 -0.5765 +vn 0.6328 -0.5172 -0.5763 +vn 0.6328 -0.5173 -0.5761 +vn 0.0202 -0.3231 -0.9461 +vn 0.0200 -0.3233 -0.9461 +vn 0.0201 -0.3234 -0.9460 +vn -0.7209 0.6390 -0.2682 +vn -0.7212 0.6385 -0.2687 +vn -0.7209 0.6389 -0.2685 +vn 0.6166 0.6870 0.3846 +vn 0.6164 0.6872 0.3845 +vn 0.6168 0.6868 0.3846 +vn 0.3169 0.8055 0.5007 +vn 0.3168 0.8057 0.5004 +vn 0.3171 0.8056 0.5005 +vn -0.0024 -0.7197 -0.6943 +vn 0.2883 0.3134 0.9048 +vn 0.2865 0.3132 0.9054 +vn 0.2864 0.3132 0.9055 +vn -0.3524 0.0897 0.9316 +vn 0.6186 0.5496 0.5615 +vn 0.1930 -0.9812 -0.0044 +vn 0.1933 -0.9811 -0.0040 +vn 0.1932 -0.9812 -0.0041 +vn -0.5629 -0.4936 -0.6629 +vn 0.2892 0.6186 0.7305 +vn 0.2893 0.6185 0.7306 +vn 0.2894 0.6186 0.7305 +vn -0.1539 0.1847 0.9707 +vn -0.1536 0.1844 0.9708 +vn -0.1543 0.1849 0.9706 +vn -0.0475 -0.0660 0.9967 +vn -0.0473 -0.0663 0.9967 +vn 0.1604 0.2075 0.9650 +vn 0.1601 0.2077 0.9650 +vn 0.1601 0.2078 0.9650 +vn -0.6575 0.5612 0.5027 +vn -0.3574 -0.7104 0.6063 +vn -0.3571 -0.7103 0.6065 +vn -0.3576 -0.7103 0.6063 +vn -0.6568 0.5558 -0.5097 +vn -0.6567 0.5559 -0.5096 +vn -0.5288 -0.2445 0.8128 +vn -0.4182 -0.4895 -0.7652 +vn -0.5968 -0.7812 -0.1829 +vn -0.5968 -0.7815 -0.1820 +vn -0.5968 -0.7815 -0.1817 +vn -0.5141 -0.8556 -0.0594 +vn -0.5145 -0.8554 -0.0594 +vn -0.6929 0.5853 0.4210 +vn -0.6930 0.5854 0.4207 +vn -0.0577 0.9982 0.0135 +vn -0.0579 0.9982 0.0135 +vn -0.0579 0.9982 0.0134 +vn 0.8383 0.5293 -0.1308 +vn 0.8383 0.5293 -0.1309 +vn 0.0175 -0.9593 0.2820 +vn 0.0172 -0.9593 0.2818 +vn 0.0176 -0.9592 0.2823 +vn 0.5622 -0.3418 -0.7531 +vn 0.5621 -0.3417 -0.7532 +vn 0.5619 -0.3416 -0.7533 +vn 0.0749 -0.9551 0.2865 +vn 0.0749 -0.9552 0.2863 +vn 0.0748 -0.9552 0.2862 +vn 0.0214 0.3670 0.9300 +vn 0.0220 0.3668 0.9300 +vn 0.0221 0.3665 0.9301 +vn 0.5598 -0.3841 -0.7342 +vn 0.5597 -0.3840 -0.7343 +vn 0.7055 0.4136 -0.5754 +vn 0.7060 0.4131 -0.5753 +vn 0.7057 0.4135 -0.5753 +vn -0.8659 -0.4898 0.1014 +vn 0.2957 -0.9510 -0.0900 +vn -0.9152 0.2296 0.3312 +vn -0.9151 0.2296 0.3315 +vn -0.9149 0.2299 0.3317 +vn 0.6341 -0.7238 0.2719 +vn 0.6338 -0.7240 0.2721 +vn 0.6337 -0.7242 0.2721 +vn 0.3637 0.9122 -0.1890 +vn 0.3640 0.9121 -0.1888 +vn 0.3636 0.9122 -0.1890 +vn 0.2327 -0.9363 -0.2631 +vn 0.2318 -0.9364 -0.2635 +vn 0.2326 -0.9363 -0.2632 +vn -0.0025 -0.0004 1.0000 +vn -0.1222 -0.2176 0.9684 +vn -0.1223 -0.2176 0.9683 +vn -0.1243 0.5709 -0.8116 +vn 0.3414 -0.8811 -0.3272 +vn 0.3416 -0.8813 -0.3265 +vn 0.3415 -0.8816 -0.3257 +vn 0.9407 -0.2820 0.1888 +vn 0.9406 -0.2822 0.1887 +vn 0.9407 -0.2817 0.1890 +vn 0.7526 0.6395 0.1572 +vn 0.7523 0.6398 0.1574 +vn 0.7520 0.6400 0.1577 +vn 0.1636 0.3242 0.9318 +vn 0.1638 0.3241 0.9318 +vn 0.1640 0.3240 0.9317 +vn 0.6326 -0.4819 -0.6063 +vn 0.6327 -0.4818 -0.6063 +vn -0.4179 -0.4656 -0.7801 +vn -0.4179 -0.4655 -0.7802 +vn -0.4627 0.8028 -0.3760 +vn -0.4624 0.8029 -0.3763 +vn -0.4630 0.8027 -0.3760 +vn -0.5465 0.3223 0.7729 +vn -0.5468 0.3222 0.7728 +vn -0.5466 0.3223 0.7729 +vn 0.6889 0.7186 -0.0947 +vn 0.6884 0.7191 -0.0951 +vn 0.6890 0.7186 -0.0946 +vn 0.7930 -0.3585 0.4926 +vn 0.7929 -0.3583 0.4928 +vn 0.2646 -0.3912 0.8814 +vn 0.2647 -0.3913 0.8814 +vn 0.7352 0.6464 0.2040 +vn 0.7355 0.6462 0.2038 +vn 0.7350 0.6466 0.2041 +vn -0.8348 0.3694 0.4082 +vn -0.8348 0.3693 0.4084 +vn -0.8347 0.3699 0.4080 +vn 0.3052 -0.0056 -0.9523 +vn 0.3799 -0.2266 -0.8969 +vn 0.3789 -0.2272 -0.8971 +vn 0.3791 -0.2272 -0.8970 +vn 0.5650 0.6488 0.5098 +vn 0.5650 0.6486 0.5100 +vn 0.5649 0.6490 0.5097 +vn -0.7724 0.3388 -0.5373 +vn -0.7724 0.3387 -0.5373 +vn -0.7724 0.3387 -0.5374 +vn 0.2525 0.3995 -0.8813 +vn 0.2545 0.3998 -0.8806 +vn 0.2534 0.3995 -0.8810 +vn 0.4075 -0.0325 0.9126 +vn 0.4077 -0.0326 0.9125 +vn 0.4076 -0.0325 0.9126 +vn 0.6528 0.6526 0.3846 +vn 0.6528 0.6524 0.3850 +vn 0.6528 0.6525 0.3848 +vn -0.5586 0.7049 0.4371 +vn -0.5580 0.7056 0.4369 +vn -0.5613 0.7034 0.4361 +vn -0.6170 -0.3281 -0.7153 +vn -0.6158 -0.3286 -0.7162 +vn -0.6164 -0.3286 -0.7156 +vn 0.4626 0.4766 -0.7475 +vn 0.4626 0.4769 -0.7474 +vn -0.5342 0.0023 -0.8454 +vn -0.5340 0.0030 -0.8455 +vn -0.5337 0.0033 -0.8457 +vn -0.2846 -0.0504 -0.9573 +vn -0.2836 -0.0509 -0.9576 +vn -0.2843 -0.0503 -0.9574 +vn 0.7755 0.5421 0.3236 +vn 0.7755 0.5422 0.3236 +vn 0.7756 0.5420 0.3236 +vn 0.1442 -0.6798 -0.7191 +vn 0.1443 -0.6798 -0.7191 +vn -0.9694 -0.2442 0.0253 +vn -0.9694 -0.2444 0.0249 +vn -0.9693 -0.2444 0.0254 +vn 0.4376 -0.0203 -0.8989 +vn -0.3676 -0.3630 0.8562 +vn -0.3677 -0.3629 0.8562 +vn -0.3675 -0.3622 0.8566 +vn -0.2419 0.0516 0.9689 +vn -0.2416 0.0516 0.9690 +vn -0.2411 0.0518 0.9691 +vn -0.2113 0.6521 -0.7281 +vn -0.2113 0.6522 -0.7280 +vn -0.3942 0.0562 0.9173 +vn -0.3935 0.0562 0.9176 +vn -0.3928 0.0565 0.9179 +vn 0.3911 0.7788 -0.4905 +vn 0.3907 0.7788 -0.4907 +vn 0.3910 0.7787 -0.4906 +vn 0.6258 0.2673 0.7328 +vn 0.6257 0.2674 0.7328 +vn -0.0041 -0.9027 0.4303 +vn 0.9203 -0.3837 0.0766 +vn 0.9204 -0.3834 0.0768 +vn 0.9204 -0.3834 0.0771 +vn -0.1541 -0.0346 0.9875 +vn -0.1542 -0.0350 0.9874 +vn -0.1543 -0.0350 0.9874 +vn -0.2404 0.8525 -0.4642 +vn -0.2403 0.8523 -0.4646 +vn 0.2703 -0.7330 0.6243 +vn 0.1536 0.5592 -0.8147 +vn 0.1537 0.5593 -0.8146 +vn 0.1539 0.5593 -0.8146 +vn 0.0780 -0.7997 0.5953 +vn 0.0772 -0.7996 0.5955 +vn 0.0775 -0.7996 0.5955 +vn 0.6840 0.3191 -0.6559 +vn 0.6844 0.3193 -0.6555 +vn 0.6842 0.3191 -0.6557 +vn -0.9492 0.1053 -0.2964 +vn -0.9493 0.1055 -0.2960 +vn -0.9493 0.1054 -0.2961 +vn -0.4324 0.8984 0.0766 +vn -0.4324 0.8984 0.0768 +vn -0.4323 0.8985 0.0769 +vn -0.5398 0.6149 -0.5749 +vn -0.5401 0.6142 -0.5754 +vn -0.5406 0.6136 -0.5755 +vn -0.9791 0.0559 0.1957 +vn -0.9791 0.0560 0.1957 +vn -0.9791 0.0559 0.1955 +vn -0.3757 -0.6720 0.6382 +vn -0.3759 -0.6717 0.6384 +vn -0.3755 -0.6719 0.6384 +vn 0.2537 -0.7540 0.6059 +vn 0.2531 -0.7538 0.6064 +vn 0.2534 -0.7539 0.6062 +vn 0.1234 0.9677 -0.2199 +vn 0.1233 0.9676 -0.2205 +vn 0.1234 0.9675 -0.2209 +vn -0.2402 0.9699 -0.0388 +vn -0.2403 0.9699 -0.0385 +vn -0.4159 0.8961 -0.1549 +vn -0.4155 0.8962 -0.1555 +vn -0.4151 0.8964 -0.1556 +vn -0.3020 0.4853 -0.8206 +vn -0.3019 0.4854 -0.8205 +vn -0.0785 0.5221 -0.8492 +vn -0.0794 0.5220 -0.8492 +vn -0.0792 0.5221 -0.8492 +vn -0.0692 0.6000 -0.7970 +vn -0.0691 0.6001 -0.7970 +vn -0.0102 0.9968 0.0797 +vn -0.0100 0.9968 0.0797 +vn -0.0100 0.9968 0.0798 +vn 0.4015 0.9142 -0.0558 +vn 0.4017 0.9141 -0.0556 +vn 0.4022 0.9139 -0.0554 +vn -0.5316 0.2041 0.8221 +vn -0.5310 0.2047 0.8223 +vn -0.5314 0.2045 0.8221 +vn -0.1069 0.8619 0.4957 +vn -0.6044 0.2672 -0.7505 +vn -0.7005 -0.6661 -0.2562 +vn -0.7004 -0.6662 -0.2563 +vn -0.7005 -0.6660 -0.2563 +vn -0.1701 0.9854 0.0114 +vn -0.1686 0.9856 0.0125 +vn -0.1692 0.9855 0.0117 +vn 0.0821 0.0637 0.9946 +vn 0.0822 0.0635 0.9946 +vn 0.0820 0.0635 0.9946 +vn 0.4385 -0.8395 -0.3209 +vn 0.4382 -0.8395 -0.3212 +vn 0.4391 -0.8395 -0.3201 +vn -0.9734 -0.0563 0.2219 +vn -0.9730 -0.0571 0.2234 +vn -0.9733 -0.0566 0.2223 +vn -0.6280 0.7754 -0.0664 +vn -0.6278 0.7755 -0.0665 +vn -0.6279 0.7755 -0.0662 +vn -0.2559 -0.1902 -0.9478 +vn -0.2561 -0.1902 -0.9478 +vn -0.2553 -0.1902 -0.9480 +vn 0.4634 -0.7047 0.5373 +vn 0.4635 -0.7046 0.5373 +vn 0.6100 0.6153 -0.4993 +vn -0.2638 -0.2069 -0.9421 +vn -0.2630 -0.2079 -0.9421 +vn -0.2635 -0.2076 -0.9421 +vn 0.0608 0.6064 -0.7928 +vn 0.0619 0.6065 -0.7927 +vn 0.0601 0.6065 -0.7928 +vn 0.0450 0.6579 -0.7517 +vn 0.0453 0.6576 -0.7520 +vn 0.0449 0.6580 -0.7517 +vn -0.7241 -0.6387 -0.2602 +vn -0.7240 -0.6391 -0.2595 +vn -0.7241 -0.6389 -0.2598 +vn 0.0197 0.8235 -0.5670 +vn -0.3968 -0.7177 -0.5723 +vn 0.6360 0.6523 -0.4124 +vn 0.6361 0.6524 -0.4120 +vn 0.6360 0.6523 -0.4123 +vn 0.6567 0.5727 -0.4906 +vn 0.6574 0.5726 -0.4898 +vn 0.6569 0.5727 -0.4904 +vn 0.1145 0.8244 -0.5543 +vn 0.1122 0.8244 -0.5548 +vn 0.1130 0.8245 -0.5544 +vn 0.9761 0.0190 0.2165 +vn 0.9761 0.0188 0.2165 +vn -0.0425 0.8448 -0.5334 +vn -0.0426 0.8447 -0.5335 +vn -0.0424 0.8446 -0.5337 +vn 0.0333 0.7247 -0.6883 +vn 0.5317 0.3906 -0.7515 +vn 0.7778 0.6283 0.0164 +vn 0.7777 0.6284 0.0166 +vn -0.4579 -0.3622 -0.8119 +vn -0.4573 -0.3620 -0.8123 +vn -0.4588 -0.3619 -0.8115 +vn 0.0359 -0.9202 0.3898 +vn 0.0360 -0.9206 0.3889 +vn 0.0360 -0.9207 0.3887 +vn 0.5077 -0.6877 0.5190 +vn 0.5076 -0.6878 0.5190 +vn -0.0888 0.9607 -0.2631 +vn 0.1572 0.9858 0.0590 +vn 0.1570 0.9859 0.0587 +vn -0.6402 -0.1282 0.7575 +vn -0.6402 -0.1282 0.7574 +vn -0.8286 -0.3398 0.4450 +vn -0.8287 -0.3400 0.4447 +vn 0.0178 0.6597 -0.7513 +vn 0.0174 0.6594 -0.7516 +vn 0.0176 0.6596 -0.7514 +vn -0.5962 0.2096 -0.7750 +vn -0.5815 0.2177 -0.7839 +vn -0.5889 0.2105 -0.7803 +vn 0.6076 -0.0245 -0.7939 +vn 0.2566 0.9382 0.2321 +vn 0.2567 0.9383 0.2319 +vn 0.2567 0.9382 0.2320 +vn 0.9467 -0.3145 -0.0692 +vn 0.9467 -0.3147 -0.0692 +vn 0.9466 -0.3148 -0.0695 +vn 0.8270 -0.4649 0.3161 +vn 0.8271 -0.4649 0.3157 +vn -0.3937 -0.5457 -0.7398 +vn 0.5043 -0.8466 0.1701 +vn 0.5049 -0.8466 0.1685 +vn 0.5046 -0.8466 0.1693 +vn 0.3826 0.8045 -0.4543 +vn 0.7057 -0.6208 0.3415 +vn 0.7052 -0.6211 0.3419 +vn 0.7055 -0.6208 0.3418 +vn -0.4214 -0.0989 -0.9015 +vn -0.4213 -0.0990 -0.9015 +vn -0.4212 -0.0992 -0.9015 +vn 0.4597 -0.2454 -0.8535 +vn 0.4597 -0.2456 -0.8534 +vn 0.0843 0.0491 0.9952 +vn 0.0838 0.0493 0.9953 +vn -0.9405 -0.3360 -0.0501 +vn -0.9406 -0.3359 -0.0499 +vn -0.6693 0.6101 -0.4241 +vn -0.6718 0.6113 -0.4183 +vn -0.6700 0.6116 -0.4208 +vn 0.5321 0.6514 -0.5409 +vn 0.5322 0.6512 -0.5410 +vn 0.5324 0.6510 -0.5411 +vn 0.0077 0.8444 0.5356 +vn 0.0078 0.8444 0.5357 +vn 0.2929 -0.3421 0.8928 +vn 0.2930 -0.3422 0.8928 +vn 0.8742 -0.2505 0.4159 +vn 0.6068 0.0506 -0.7932 +vn 0.6071 0.0506 -0.7930 +vn 0.6075 0.0507 -0.7927 +vn 0.4099 -0.6546 -0.6352 +vn 0.4102 -0.6545 -0.6351 +vn -0.4887 -0.4608 -0.7408 +vn 0.3735 0.8283 0.4177 +vn 0.3725 0.8277 0.4196 +vn 0.3728 0.8282 0.4185 +vn -0.6643 0.6638 -0.3436 +vn -0.6644 0.6636 -0.3438 +vn 0.4340 -0.8703 0.2329 +vn 0.4339 -0.8705 0.2323 +vn 0.4336 -0.8703 0.2336 +vn -0.9272 0.3712 -0.0504 +vn -0.9273 0.3709 -0.0498 +vn -0.9273 0.3710 -0.0502 +vn 0.7618 -0.6470 -0.0324 +vn 0.7618 -0.6471 -0.0307 +vn 0.7621 -0.6466 -0.0317 +vn 0.3034 -0.2012 0.9314 +vn 0.3027 -0.2010 0.9317 +vn 0.3041 -0.2020 0.9310 +vn -0.4421 0.8863 -0.1381 +vn -0.4491 0.8924 -0.0442 +vn -0.0022 -0.4709 -0.8822 +vn -0.0025 -0.4706 -0.8823 +vn -0.0019 -0.4711 -0.8821 +vn 0.9072 -0.0760 0.4137 +vn 0.0775 0.3751 -0.9237 +vn 0.0755 0.3729 -0.9248 +vn 0.0794 0.3755 -0.9234 +vn 0.4947 0.5977 -0.6309 +vn 0.4945 0.5976 -0.6311 +vn 0.4948 0.5977 -0.6308 +vn -0.1312 0.9117 -0.3895 +vn 0.7376 -0.4260 0.5239 +vn 0.7375 -0.4257 0.5243 +vn 0.7374 -0.4260 0.5241 +vn 0.7598 0.6230 0.1860 +vn 0.7596 0.6231 0.1863 +vn 0.7597 0.6231 0.1860 +vn 0.7746 -0.4409 0.4534 +vn 0.7750 -0.4405 0.4531 +vn 0.7754 -0.4401 0.4529 +vn 0.6894 0.2308 0.6866 +vn 0.6721 -0.1401 0.7271 +vn 0.6720 -0.1402 0.7272 +vn 0.6719 -0.1402 0.7272 +vn 0.4852 0.8232 0.2948 +vn 0.4850 0.8232 0.2951 +vn 0.4852 0.8232 0.2950 +vn 0.2983 0.8496 0.4349 +vn 0.2981 0.8497 0.4349 +vn 0.2982 0.8497 0.4349 +vn 0.4297 0.4167 0.8010 +vn 0.2194 0.2110 0.9525 +vn 0.2196 0.2109 0.9525 +vn 0.2197 0.2109 0.9525 +vn -0.1404 0.4423 -0.8858 +vn -0.1404 0.4421 -0.8859 +vn -0.1404 0.4418 -0.8861 +vn -0.0195 -0.9503 0.3106 +vn 0.3829 -0.8917 0.2414 +vn 0.3823 -0.8919 0.2416 +vn 0.3819 -0.8920 0.2420 +vn -0.0208 -0.9483 0.3168 +vn -0.0210 -0.9482 0.3171 +vn -0.2980 0.8460 -0.4422 +vn 0.2883 0.3484 -0.8919 +vn 0.2878 0.3486 -0.8920 +vn -0.2048 0.8089 -0.5511 +vn -0.2059 0.8090 -0.5506 +vn -0.2046 0.8088 -0.5513 +vn 0.2501 -0.8328 0.4939 +vn 0.2499 -0.8326 0.4943 +vn 0.8049 -0.4028 0.4357 +vn 0.8050 -0.4028 0.4356 +vn 0.8051 -0.4027 0.4355 +vn -0.0752 0.9240 0.3748 +vn -0.0750 0.9240 0.3749 +vn -0.4910 0.8228 -0.2861 +vn -0.4912 0.8226 -0.2864 +vn -0.4913 0.8225 -0.2865 +vn -0.1277 -0.8604 0.4933 +vn -0.1277 -0.8606 0.4931 +vn 0.2827 0.9126 -0.2954 +vn 0.2831 0.9128 -0.2942 +vn 0.2829 0.9128 -0.2946 +vn 0.5916 -0.6554 -0.4696 +vn -0.8162 -0.4308 -0.3850 +vn -0.8162 -0.4312 -0.3847 +vn -0.8162 -0.4307 -0.3850 +vn -0.4328 -0.5607 0.7059 +vn -0.4331 -0.5603 0.7060 +vn -0.4326 -0.5608 0.7059 +vn -0.2099 0.9200 -0.3311 +vn -0.2102 0.9201 -0.3306 +vn -0.2103 0.9202 -0.3302 +vn 0.2315 0.8958 -0.3795 +vn 0.2316 0.8958 -0.3793 +vn -0.4577 -0.8876 0.0517 +vn 0.8172 0.5709 -0.0794 +vn 0.8172 0.5708 -0.0795 +vn 0.0404 -0.5838 -0.8109 +vn 0.0400 -0.5838 -0.8109 +vn 0.0401 -0.5838 -0.8109 +vn 0.7337 0.6153 0.2882 +vn 0.7338 0.6153 0.2880 +vn 0.7337 0.6153 0.2881 +vn 0.7495 -0.5747 -0.3286 +vn 0.7492 -0.5751 -0.3287 +vn 0.4171 0.4916 -0.7645 +vn 0.4159 0.4933 -0.7640 +vn 0.4192 0.4904 -0.7641 +vn -0.6949 0.1685 -0.6991 +vn -0.6951 0.1684 -0.6989 +vn -0.5310 -0.8412 -0.1018 +vn -0.5310 -0.8412 -0.1019 +vn -0.5310 -0.8412 -0.1020 +vn 0.5860 -0.7485 0.3104 +vn 0.5867 -0.7481 0.3101 +vn 0.5880 -0.7470 0.3102 +vn 0.3477 0.5130 0.7848 +vn 0.3476 0.5128 0.7850 +vn 0.3480 0.5131 0.7846 +vn 0.1688 0.9729 -0.1581 +vn 0.1687 0.9729 -0.1582 +vn 0.3793 -0.3583 0.8531 +vn 0.3799 -0.3589 0.8526 +vn 0.3791 -0.3578 0.8534 +vn -0.5811 -0.5018 0.6407 +vn -0.5806 -0.5024 0.6407 +vn -0.5809 -0.5022 0.6406 +vn 0.0319 -0.4110 0.9111 +vn 0.0318 -0.4099 0.9116 +vn 0.0314 -0.4117 0.9108 +vn -0.1682 0.9153 0.3658 +vn -0.1687 0.9153 0.3657 +vn -0.1686 0.9153 0.3658 +vn -0.0627 0.0575 0.9964 +vn -0.0630 0.0576 0.9964 +vn -0.0626 0.0575 0.9964 +vn -0.0152 0.2184 0.9757 +vn -0.0150 0.2180 0.9758 +vn -0.0149 0.2187 0.9757 +vn 0.0231 0.9633 -0.2676 +vn 0.0234 0.9632 -0.2677 +vn 0.0234 0.9633 -0.2676 +vn -0.5771 0.3723 -0.7268 +vn -0.5770 0.3728 -0.7267 +vn -0.5771 0.3725 -0.7268 +vn 0.7283 -0.6685 0.1506 +vn 0.7293 -0.6670 0.1524 +vn 0.7266 -0.6704 0.1505 +vn 0.2059 0.9330 -0.2952 +vn 0.2059 0.9331 -0.2950 +vn 0.2059 0.9330 -0.2951 +vn -0.4840 -0.8591 -0.1666 +vn -0.4840 -0.8591 -0.1665 +vn -0.4840 -0.8591 -0.1664 +vn -0.6095 -0.6620 -0.4362 +vn -0.6088 -0.6628 -0.4360 +vn -0.6094 -0.6622 -0.4360 +vn 0.6135 -0.5315 -0.5840 +vn -0.2469 0.8640 -0.4389 +vn -0.2474 0.8642 -0.4381 +vn -0.2471 0.8641 -0.4385 +vn -0.3026 0.9441 -0.1307 +vn -0.3027 0.9441 -0.1307 +vn 0.3591 -0.9086 0.2134 +vn -0.3935 -0.7501 0.5316 +vn -0.3935 -0.7500 0.5316 +vn -0.2954 0.9419 -0.1601 +vn -0.2953 0.9419 -0.1602 +vn 0.2797 -0.9538 -0.1096 +vn -0.1001 0.6982 -0.7088 +vn -0.1006 0.6977 -0.7093 +vn -0.4145 0.7415 -0.5277 +vn -0.4147 0.7415 -0.5275 +vn -0.4145 0.7415 -0.5276 +vn 0.3012 0.3237 -0.8970 +vn 0.4680 -0.7846 0.4067 +vn -0.3496 0.0076 -0.9369 +vn -0.3495 0.0077 -0.9369 +vn -0.3497 0.0075 -0.9368 +vn 0.3243 -0.8025 0.5009 +vn 0.3243 -0.8024 0.5010 +vn -0.5119 -0.7050 -0.4909 +vn -0.5118 -0.7051 -0.4909 +vn -0.5118 -0.7050 -0.4909 +vn 0.5938 -0.7338 0.3301 +vn 0.5936 -0.7341 0.3298 +vn 0.3891 -0.5280 -0.7548 +vn 0.3889 -0.5279 -0.7550 +vn 0.3890 -0.5280 -0.7549 +vn 0.4766 -0.5500 0.6858 +vn 0.4761 -0.5497 0.6864 +vn 0.7006 -0.7136 -0.0000 +vn 0.7007 -0.7135 0.0001 +vn 0.7007 -0.7135 -0.0000 +vn -0.4475 -0.3119 -0.8381 +vn -0.4473 -0.3119 -0.8382 +vn -0.4474 -0.3120 -0.8381 +vn -0.6749 0.7187 -0.1672 +vn -0.6747 0.7188 -0.1675 +vn -0.6749 0.7188 -0.1669 +vn 0.9604 -0.2107 0.1824 +vn 0.9603 -0.2109 0.1826 +vn -0.1278 -0.4325 -0.8925 +vn -0.1356 -0.4430 -0.8862 +vn -0.5838 0.5152 0.6275 +vn -0.5842 0.5152 0.6272 +vn -0.5844 0.5152 0.6269 +vn 0.0815 -0.5745 -0.8144 +vn 0.0812 -0.5747 -0.8143 +vn 0.0814 -0.5746 -0.8144 +vn 0.0800 -0.5726 -0.8159 +vn 0.1248 -0.1874 0.9743 +vn -0.1960 -0.1149 0.9739 +vn -0.1961 -0.1150 0.9738 +vn -0.1959 -0.1149 0.9739 +vn -0.2660 0.7395 -0.6183 +vn -0.2660 0.7395 -0.6184 +vn -0.2660 0.7399 -0.6179 +vn 0.1048 -0.9548 -0.2783 +vn 0.1046 -0.9547 -0.2785 +vn 0.1047 -0.9548 -0.2783 +vn 0.8305 -0.2773 -0.4831 +vn 0.8304 -0.2773 -0.4833 +vn 0.8301 -0.2776 -0.4835 +vn 0.6928 -0.6581 0.2947 +vn 0.6927 -0.6583 0.2946 +vn 0.6928 -0.6582 0.2947 +vn 0.1271 -0.9584 -0.2554 +vn 0.1269 -0.9585 -0.2554 +vn 0.1888 0.9008 0.3911 +vn 0.1890 0.9006 0.3915 +vn 0.1889 0.9005 0.3916 +vn 0.0415 0.6564 0.7533 +vn 0.0416 0.6564 0.7533 +vn 0.0682 -0.9908 0.1172 +vn 0.0244 -0.9822 0.1861 +vn 0.0985 -0.9688 -0.2273 +vn 0.0976 -0.9687 -0.2283 +vn 0.0989 -0.9691 -0.2260 +vn -0.4757 -0.8646 -0.1619 +vn -0.2052 -0.7832 -0.5869 +vn -0.2055 -0.7831 -0.5870 +vn -0.2054 -0.7831 -0.5870 +vn 0.2860 0.8241 -0.4889 +vn 0.2859 0.8240 -0.4892 +vn 0.2856 0.8239 -0.4895 +vn 0.1046 -0.9793 -0.1731 +vn 0.1052 -0.9793 -0.1732 +vn 0.1058 -0.9791 -0.1736 +vn -0.0398 0.0241 -0.9989 +vn -0.0396 0.0242 -0.9989 +vn -0.0397 0.0242 -0.9989 +vn -0.4117 -0.9050 0.1069 +vn 0.6959 0.0470 -0.7166 +vn 0.6959 0.0471 -0.7166 +vn 0.6958 0.0470 -0.7167 +vn 0.3048 -0.9052 -0.2961 +vn 0.3044 -0.9054 -0.2959 +vn 0.3052 -0.9051 -0.2959 +vn -0.7616 -0.6411 -0.0942 +vn -0.7623 -0.6403 -0.0944 +vn -0.7620 -0.6406 -0.0944 +vn -0.3496 -0.7651 -0.5408 +vn -0.3500 -0.7653 -0.5402 +vn -0.3500 -0.7652 -0.5404 +vn 0.4162 0.6037 0.6799 +vn 0.4162 0.6037 0.6800 +vn 0.4163 0.6036 0.6800 +vn 0.4294 0.6610 -0.6154 +vn 0.4294 0.6611 -0.6153 +vn -0.3960 -0.9171 -0.0457 +vn 0.3052 0.9316 -0.1975 +vn -0.2997 -0.9380 -0.1743 +vn 0.3174 -0.6278 -0.7107 +vn 0.3170 -0.6281 -0.7107 +vn 0.3176 -0.6277 -0.7107 +vn -0.2047 0.3757 0.9038 +vn -0.2045 0.3758 0.9039 +vn -0.2049 0.3757 0.9038 +vn 0.2984 -0.5992 -0.7429 +vn 0.2983 -0.5993 -0.7429 +vn -0.4573 0.2262 0.8601 +vn -0.4591 0.2279 0.8586 +vn -0.4582 0.2266 0.8595 +vn -0.1044 -0.7862 -0.6091 +vn -0.1048 -0.7861 -0.6092 +vn -0.1041 -0.7864 -0.6089 +vn 0.1357 -0.0488 -0.9895 +vn 0.1362 -0.0489 -0.9895 +vn 0.1353 -0.0486 -0.9896 +vn 0.6577 0.5691 0.4936 +vn 0.6578 0.5687 0.4939 +vn 0.6697 0.3309 0.6648 +vn 0.6693 0.3303 0.6655 +vn 0.6693 0.3298 0.6658 +vn -0.1927 -0.9810 0.0215 +vn 0.4448 -0.0478 0.8943 +vn -0.4249 -0.8993 0.1037 +vn -0.4253 -0.8991 0.1036 +vn -0.4252 -0.8991 0.1041 +vn 0.6460 0.6126 -0.4555 +vn 0.1991 0.4706 -0.8596 +vn -0.8810 -0.4123 0.2319 +vn -0.8811 -0.4122 0.2320 +vn -0.8812 -0.4119 0.2322 +vn -0.2721 -0.1728 0.9466 +vn -0.2722 -0.1729 0.9466 +vn 0.0491 0.5312 0.8458 +vn 0.0488 0.5314 0.8457 +vn 0.0488 0.5310 0.8460 +vn -0.1130 0.4354 -0.8931 +vn -0.1127 0.4357 -0.8930 +vn 0.0610 0.4132 0.9086 +vn -0.7777 -0.4170 -0.4705 +vn -0.7779 -0.4165 -0.4705 +vn -0.7779 -0.4169 -0.4703 +vn -0.9849 -0.1704 0.0294 +vn -0.9849 -0.1705 0.0287 +vn 0.1613 0.5991 -0.7843 +vn 0.1618 0.5992 -0.7841 +vn -0.0268 0.9300 0.3665 +vn 0.4681 0.5754 0.6706 +vn 0.4681 0.5762 0.6700 +vn 0.4681 0.5752 0.6709 +vn -0.0727 -0.0737 -0.9946 +vn -0.0727 -0.0739 -0.9946 +vn -0.0727 -0.0741 -0.9946 +vn 0.2658 0.9623 -0.0572 +vn 0.2658 0.9623 -0.0573 +vn 0.2655 0.9624 -0.0575 +vn -0.0959 0.9000 -0.4251 +vn -0.0958 0.9000 -0.4253 +vn -0.0957 0.9000 -0.4252 +vn 0.0965 -0.8943 0.4368 +vn 0.0966 -0.8944 0.4367 +vn -0.4196 -0.1857 0.8885 +vn -0.4196 -0.1858 0.8885 +vn -0.4195 -0.1856 0.8886 +vn 0.6656 0.6292 0.4014 +vn 0.6657 0.6292 0.4012 +vn 0.6657 0.6292 0.4011 +vn 0.4927 -0.8009 0.3403 +vn 0.4931 -0.8007 0.3401 +vn -0.7936 -0.5998 0.1023 +vn -0.8573 0.3470 -0.3804 +vn -0.8570 0.3466 -0.3813 +vn -0.8571 0.3468 -0.3808 +vn 0.1395 -0.1260 0.9822 +vn 0.1391 -0.1260 0.9822 +vn 0.1400 -0.1264 0.9821 +vn -0.0831 0.0091 -0.9965 +vn -0.0832 0.0093 -0.9965 +vn 0.7211 -0.6611 -0.2073 +vn 0.7212 -0.6610 -0.2072 +vn 0.7210 -0.6612 -0.2074 +vn 0.6085 -0.7919 0.0516 +vn 0.6088 -0.7916 0.0518 +vn 0.6082 -0.7921 0.0514 +vn -0.6007 0.7690 -0.2186 +vn -0.6009 0.7688 -0.2189 +vn -0.6007 0.7691 -0.2185 +vn -0.2973 -0.5807 0.7579 +vn -0.2970 -0.5806 0.7581 +vn -0.2968 -0.5804 0.7583 +vn 0.2979 -0.7315 0.6133 +vn 0.2973 -0.7319 0.6132 +vn 0.2969 -0.7323 0.6129 +vn -0.1418 0.6819 0.7176 +vn -0.1416 0.6818 0.7177 +vn -0.1416 0.6817 0.7178 +vn 0.7325 0.2774 -0.6217 +vn 0.7325 0.2771 -0.6218 +vn 0.7325 0.2770 -0.6219 +vn -0.5018 -0.6726 0.5438 +vn -0.5021 -0.6726 0.5435 +vn -0.5019 -0.6727 0.5437 +vn -0.0133 -0.6114 0.7912 +vn -0.0138 -0.6114 0.7912 +vn -0.0134 -0.6115 0.7912 +vn -0.6652 -0.6168 -0.4208 +vn -0.6648 -0.6164 -0.4220 +vn -0.6647 -0.6157 -0.4232 +vn -0.2897 0.1331 0.9478 +vn -0.2900 0.1328 0.9478 +vn 0.9103 0.2626 0.3201 +vn 0.7498 -0.6348 -0.1868 +vn -0.6138 0.7877 0.0528 +vn -0.6139 0.7876 0.0530 +vn -0.6137 0.7878 0.0531 +vn -0.7944 0.6037 -0.0674 +vn 0.9217 -0.2178 0.3210 +vn 0.1184 0.7393 -0.6628 +vn 0.1183 0.7393 -0.6629 +vn 0.7264 0.6380 0.2555 +vn 0.7263 0.6380 0.2557 +vn 0.7261 0.6384 0.2555 +vn 0.9496 0.3071 -0.0632 +vn -0.7173 -0.6967 -0.0123 +vn -0.7177 -0.6962 -0.0128 +vn -0.7179 -0.6960 -0.0131 +vn 0.5652 0.6232 0.5405 +vn -0.3805 0.8999 -0.2133 +vn -0.3802 0.9001 -0.2129 +vn -0.3805 0.8998 -0.2136 +vn -0.2393 0.2567 0.9364 +vn -0.2396 0.2567 0.9363 +vn 0.2217 0.9574 -0.1852 +vn 0.2217 0.9574 -0.1851 +vn -0.7390 -0.5312 0.4143 +vn -0.7391 -0.5311 0.4143 +vn -0.7390 -0.5311 0.4144 +vn -0.3602 0.8829 -0.3013 +vn -0.3601 0.8828 -0.3015 +vn -0.3602 0.8828 -0.3016 +vn 0.0402 0.2564 -0.9657 +vn 0.5497 -0.8293 0.1007 +vn 0.5499 -0.8291 0.1007 +vn 0.5495 -0.8294 0.1003 +vn 0.7490 -0.6588 0.0702 +vn 0.7481 -0.6600 0.0690 +vn 0.7498 -0.6579 0.0703 +vn -0.3641 0.2815 -0.8878 +vn -0.2740 0.9254 -0.2618 +vn -0.2737 0.9255 -0.2618 +vn 0.7130 -0.0736 -0.6973 +vn -0.3843 -0.0113 -0.9231 +vn 0.1465 0.9655 -0.2153 +vn 0.1463 0.9656 -0.2150 +vn -0.2750 0.1545 -0.9489 +vn -0.2757 0.1546 -0.9487 +vn -0.2758 0.1548 -0.9487 +vn 0.8625 0.4288 -0.2687 +vn 0.8623 0.4290 -0.2690 +vn -0.9437 -0.3028 -0.1334 +vn -0.9437 -0.3027 -0.1334 +vn -0.4405 0.0782 -0.8943 +vn -0.4405 0.0779 -0.8944 +vn -0.8411 -0.5072 0.1878 +vn -0.8412 -0.5072 0.1876 +vn -0.8413 -0.5070 0.1876 +vn -0.6411 -0.2381 0.7296 +vn 0.8146 -0.2421 -0.5270 +vn 0.8152 -0.2427 -0.5259 +vn 0.8148 -0.2425 -0.5265 +vn 0.3541 -0.0372 -0.9345 +vn 0.3544 -0.0377 -0.9343 +vn 0.3547 -0.0386 -0.9342 +vn 0.5657 0.8246 0.0001 +vn 0.5663 0.8242 0.0008 +vn 0.5658 0.8245 0.0003 +vn 0.8302 0.5223 0.1947 +vn 0.8302 0.5223 0.1948 +vn -0.5950 0.8002 -0.0751 +vn -0.5948 0.8003 -0.0752 +vn 0.8597 0.0961 -0.5016 +vn 0.8599 0.0963 -0.5012 +vn 0.4876 -0.8608 -0.1456 +vn 0.4876 -0.8609 -0.1455 +vn 0.6778 -0.5920 0.4360 +vn -0.9817 0.1867 0.0379 +vn -0.9816 0.1871 0.0384 +vn -0.9816 0.1869 0.0381 +vn 0.7147 -0.5119 -0.4766 +vn 0.7149 -0.5116 -0.4766 +vn 0.7149 -0.5115 -0.4768 +vn -0.6016 0.4878 -0.6326 +vn -0.6002 0.4883 -0.6335 +vn -0.6008 0.4881 -0.6331 +vn -0.9269 -0.2847 0.2446 +vn 0.8972 -0.2970 0.3268 +vn 0.0962 -0.6339 -0.7674 +vn 0.0963 -0.6339 -0.7674 +vn 0.2512 0.8367 -0.4867 +vn 0.2513 0.8367 -0.4866 +vn 0.2513 0.8366 -0.4867 +vn 0.1900 -0.6715 -0.7162 +vn 0.1895 -0.6715 -0.7164 +vn 0.1897 -0.6714 -0.7164 +vn 0.2753 -0.5632 -0.7791 +vn 0.2755 -0.5632 -0.7791 +vn 0.3786 0.9205 -0.0966 +vn 0.3783 0.9206 -0.0970 +vn 0.3781 0.9206 -0.0978 +vn 0.7198 0.5155 0.4650 +vn -0.1602 0.1473 -0.9760 +vn -0.1603 0.1475 -0.9760 +vn -0.1604 0.1476 -0.9759 +vn 0.6800 -0.7277 -0.0902 +vn 0.0420 -0.0076 0.9991 +vn 0.0421 -0.0076 0.9991 +vn 0.5405 -0.3943 0.7432 +vn 0.5398 -0.3940 0.7439 +vn -0.5624 -0.2547 -0.7866 +vn -0.5628 -0.2542 -0.7866 +vn -0.8780 -0.3744 -0.2981 +vn -0.8506 0.4277 -0.3059 +vn -0.8507 0.4277 -0.3057 +vn 0.6016 0.7871 -0.1359 +vn 0.6015 0.7872 -0.1361 +vn 0.6014 0.7873 -0.1358 +vn 0.6355 -0.1543 -0.7565 +vn 0.6352 -0.1544 -0.7567 +vn 0.6353 -0.1545 -0.7567 +vn 0.6633 -0.1154 -0.7394 +vn 0.6633 -0.1151 -0.7394 +vn 0.6633 -0.1153 -0.7395 +vn -0.8264 0.3157 -0.4663 +vn -0.8263 0.3158 -0.4664 +vn -0.6244 -0.4847 -0.6125 +vn -0.0748 0.0882 0.9933 +vn -0.0757 0.0881 0.9932 +vn -0.0736 0.0889 0.9933 +vn 0.3083 0.8032 0.5097 +vn -0.7059 -0.4270 -0.5651 +vn -0.0149 0.9748 0.2224 +vn -0.0141 0.9747 0.2230 +vn -0.0152 0.9749 0.2220 +vn 0.2542 0.9657 0.0536 +vn 0.2545 0.9656 0.0541 +vn 0.3648 0.9221 -0.1288 +vn 0.3650 0.9221 -0.1284 +vn -0.7318 -0.5653 -0.3807 +vn 0.9609 -0.2764 -0.0167 +vn 0.9610 -0.2761 -0.0164 +vn -0.8295 -0.2005 -0.5214 +vn -0.5470 -0.3596 -0.7559 +vn -0.5470 -0.3594 -0.7561 +vn -0.5470 -0.3595 -0.7560 +vn -0.2294 -0.5900 0.7741 +vn -0.0000 -0.0000 1.0000 +vn -0.0209 -0.0771 -0.9968 +vn -0.0210 -0.0772 -0.9968 +vn 0.2441 0.7290 0.6395 +vn 0.2440 0.7290 0.6396 +vn 0.2439 0.7289 0.6397 +vn 0.5711 0.4510 -0.6859 +vn 0.5713 0.4509 -0.6858 +vn 0.7223 0.2167 0.6568 +vn 0.7223 0.2172 0.6566 +vn 0.7223 0.2169 0.6567 +vn -0.4784 0.6761 -0.5604 +vn -0.4785 0.6762 -0.5602 +vn -0.4785 0.6763 -0.5601 +vn -0.9679 -0.2416 0.0691 +vn -0.9677 -0.2424 0.0691 +vn -0.9679 -0.2414 0.0694 +vn 0.5723 0.6127 0.5451 +vn 0.5705 0.6142 0.5453 +vn 0.5709 0.6137 0.5454 +vn -0.0375 0.6343 -0.7722 +vn -0.0374 0.6344 -0.7721 +vn -0.6986 -0.5848 -0.4123 +vn -0.6988 -0.5846 -0.4122 +vn -0.9821 0.1848 0.0360 +vn -0.2780 0.8274 0.4880 +vn -0.2778 0.8274 0.4881 +vn -0.2776 0.8275 0.4881 +vn -0.9170 -0.3559 -0.1800 +vn 0.7227 -0.1907 0.6644 +vn 0.7228 -0.1906 0.6642 +vn 0.7227 -0.1904 0.6644 +vn -0.2896 0.3907 0.8738 +vn -0.2897 0.3908 0.8737 +vn -0.2892 0.3907 0.8739 +vn -0.3124 -0.8837 -0.3484 +vn -0.3125 -0.8837 -0.3484 +vn -0.3124 -0.8837 -0.3485 +vn -0.0066 0.9998 0.0190 +vn -0.0066 0.9998 0.0187 +vn 0.7944 -0.3396 0.5036 +vn 0.7945 -0.3396 0.5034 +vn 0.7945 -0.3394 0.5036 +vn -0.8293 -0.4323 -0.3541 +vn -0.1396 -0.9841 0.1100 +vn -0.1403 -0.9840 0.1097 +vn -0.1399 -0.9841 0.1098 +vn -0.1849 -0.9591 0.2145 +vn -0.1848 -0.9591 0.2144 +vn -0.1849 -0.9591 0.2144 +vn 0.9690 -0.2463 -0.0179 +vn 0.9690 -0.2464 -0.0185 +vn -0.6183 -0.7172 0.3215 +vn -0.6184 -0.7171 0.3214 +vn -0.6185 -0.7171 0.3213 +vn -0.2118 -0.9635 0.1640 +vn -0.2119 -0.9634 0.1641 +vn -0.2123 -0.9632 0.1647 +vn 0.5152 -0.3286 -0.7916 +vn 0.5159 -0.3284 -0.7912 +vn 0.5157 -0.3285 -0.7913 +vn -0.2865 -0.9560 0.0632 +vn -0.2866 -0.9560 0.0629 +vn -0.2867 -0.9560 0.0627 +vn -0.4067 0.8568 -0.3170 +vn -0.4067 0.8569 -0.3169 +vn -0.4067 0.8568 -0.3171 +vn 0.3401 0.0221 -0.9401 +vn 0.3397 0.0222 -0.9403 +vn -0.6729 0.6142 -0.4123 +vn -0.6726 0.6146 -0.4122 +vn -0.6731 0.6140 -0.4122 +vn -0.9354 -0.2341 -0.2651 +vn -0.9353 -0.2341 -0.2652 +vn -0.9355 -0.2340 -0.2648 +vn 0.9054 -0.1335 0.4031 +vn 0.9053 -0.1340 0.4030 +vn 0.9055 -0.1336 0.4027 +vn -0.8417 0.1435 -0.5205 +vn -0.8417 0.1433 -0.5206 +vn -0.8417 0.1432 -0.5206 +vn -0.7370 0.4071 -0.5395 +vn -0.7369 0.4071 -0.5397 +vn 0.5839 0.3776 0.7186 +vn 0.5837 0.3771 0.7191 +vn 0.5840 0.3777 0.7185 +vn -0.5398 -0.6840 0.4907 +vn -0.5400 -0.6837 0.4909 +vn -0.5412 -0.6823 0.4915 +vn -0.9043 -0.0423 0.4248 +vn -0.2959 0.9433 -0.1505 +vn -0.2960 0.9433 -0.1504 +vn -0.2960 0.9434 -0.1496 +vn -0.8181 -0.4720 -0.3286 +vn -0.8184 -0.4716 -0.3285 +vn -0.4327 0.8965 0.0956 +vn -0.4331 0.8964 0.0946 +vn -0.4328 0.8965 0.0948 +vn 0.4394 -0.6979 -0.5655 +vn 0.4391 -0.6978 -0.5660 +vn 0.4397 -0.6982 -0.5649 +vn -0.3294 -0.0601 -0.9423 +vn -0.3275 -0.0602 -0.9429 +vn -0.3258 -0.0611 -0.9435 +vn -0.9005 -0.4338 -0.0318 +vn -0.9005 -0.4336 -0.0319 +vn -0.9005 -0.4337 -0.0316 +vn -0.8015 -0.4885 -0.3448 +vn -0.8228 -0.4517 0.3450 +vn -0.8228 -0.4516 0.3449 +vn 0.3275 0.8103 -0.4860 +vn 0.3274 0.8103 -0.4860 +vn 0.3277 0.8102 -0.4860 +vn -0.2221 -0.9460 0.2360 +vn -0.2226 -0.9459 0.2361 +vn -0.2224 -0.9459 0.2363 +vn -0.2679 0.8551 -0.4439 +vn -0.2680 0.8550 -0.4440 +vn -0.2679 0.8552 -0.4436 +vn 0.4387 -0.8534 0.2814 +vn -0.1622 0.2599 0.9519 +vn -0.1622 0.2602 0.9518 +vn -0.1620 0.2583 0.9524 +vn -0.7035 0.0790 -0.7063 +vn -0.7041 0.0793 -0.7057 +vn -0.7051 0.0792 -0.7047 +vn -0.1606 0.5163 -0.8412 +vn -0.1604 0.5159 -0.8415 +vn -0.1252 -0.3637 0.9231 +vn -0.1250 -0.3636 0.9231 +vn -0.1248 -0.3637 0.9231 +vn -0.1312 -0.3370 0.9323 +vn -0.1300 -0.3373 0.9324 +vn -0.1295 -0.3376 0.9323 +vn -0.0044 0.9549 -0.2970 +vn -0.0043 0.9549 -0.2968 +vn -0.0040 0.9550 -0.2967 +vn -0.2646 0.1354 0.9548 +vn -0.2646 0.1353 0.9548 +vn -0.5704 0.8202 -0.0438 +vn -0.5704 0.8202 -0.0439 +vn -0.1825 -0.1823 0.9661 +vn -0.1822 -0.1822 0.9662 +vn -0.1823 -0.1820 0.9663 +vn 0.4048 0.9130 -0.0503 +vn -0.2070 -0.2471 0.9466 +vn -0.2069 -0.2470 0.9467 +vn -0.2071 -0.2474 0.9465 +vn -0.5971 -0.5198 -0.6109 +vn -0.5974 -0.5194 -0.6110 +vn 0.2763 -0.9328 0.2315 +vn 0.2761 -0.9327 0.2321 +vn 0.2762 -0.9327 0.2317 +vn -0.4347 0.5714 0.6961 +vn -0.4348 0.5714 0.6960 +vn -0.4349 0.5716 0.6958 +vn -0.5725 -0.5774 -0.5821 +vn -0.5726 -0.5774 -0.5821 +vn 0.4270 -0.9005 -0.0817 +vn 0.4269 -0.9006 -0.0815 +vn 0.4269 -0.9006 -0.0820 +vn -0.5450 0.7453 -0.3841 +vn 0.5316 -0.8171 -0.2232 +vn 0.5299 -0.8181 -0.2236 +vn 0.5306 -0.8176 -0.2236 +vn -0.3660 0.3261 0.8716 +vn 0.9275 0.2350 0.2906 +vn 0.9271 0.2367 0.2905 +vn 0.5844 -0.6557 0.4780 +vn 0.5855 -0.6544 0.4786 +vn 0.5847 -0.6554 0.4781 +vn 0.0937 -0.2765 0.9564 +vn 0.0940 -0.2778 0.9560 +vn 0.0937 -0.2770 0.9563 +vn 0.1055 0.6059 0.7885 +vn 0.1049 0.6062 0.7884 +vn 0.1059 0.6056 0.7887 +vn 0.5129 0.8098 0.2848 +vn 0.5135 0.8093 0.2854 +vn -0.8311 0.2081 -0.5157 +vn -0.8311 0.2082 -0.5158 +vn -0.8310 0.2082 -0.5159 +vn 0.5675 -0.2403 -0.7875 +vn 0.5678 -0.2400 -0.7874 +vn 0.5677 -0.2401 -0.7875 +vn -0.6238 0.4326 -0.6510 +vn -0.6231 0.4329 -0.6514 +vn -0.6235 0.4327 -0.6512 +vn 0.3369 -0.6331 -0.6969 +vn 0.3366 -0.6333 -0.6969 +vn 0.3368 -0.6332 -0.6969 +vn -0.1876 0.1395 -0.9723 +vn -0.2067 -0.8794 -0.4289 +vn -0.2065 -0.8795 -0.4288 +vn -0.2065 -0.8794 -0.4289 +vn -0.0522 0.7975 0.6010 +vn -0.0524 0.7979 0.6005 +vn -0.0519 0.7972 0.6014 +vn -0.9713 0.0792 0.2244 +vn 0.0107 -0.4490 -0.8935 +vn -0.2919 0.9554 -0.0449 +vn 0.0182 0.8063 -0.5912 +vn 0.0179 0.8054 -0.5925 +vn 0.0181 0.8058 -0.5919 +vn 0.0263 -0.5859 -0.8099 +vn 0.0264 -0.5860 -0.8099 +vn -0.3703 0.6200 0.6917 +vn -0.3697 0.6200 0.6920 +vn -0.3701 0.6199 0.6919 +vn -0.1527 -0.6682 0.7281 +vn 0.4630 -0.6607 -0.5909 +vn 0.4633 -0.6607 -0.5906 +vn 0.4631 -0.6607 -0.5908 +vn 0.1991 -0.7049 -0.6808 +vn 0.1993 -0.7049 -0.6807 +vn -0.2204 -0.1552 -0.9630 +vn -0.2203 -0.1552 -0.9630 +vn -0.2203 -0.1548 -0.9631 +vn -0.4849 -0.7010 -0.5230 +vn -0.4849 -0.7009 -0.5231 +vn -0.4847 -0.7011 -0.5229 +vn 0.3135 -0.7926 -0.5230 +vn 0.3117 -0.7924 -0.5243 +vn 0.3128 -0.7924 -0.5237 +vn 0.7637 -0.0983 0.6381 +vn 0.7637 -0.0982 0.6381 +vn 0.7637 -0.0983 0.6380 +vn 0.1923 -0.8606 -0.4716 +vn 0.1921 -0.8609 -0.4712 +vn 0.1924 -0.8608 -0.4711 +vn 0.0003 0.0002 1.0000 +vn 0.5596 -0.7549 -0.3421 +vn 0.5585 -0.7554 -0.3428 +vn 0.5601 -0.7549 -0.3411 +vn 0.5509 0.8276 0.1081 +vn -0.6440 0.7258 -0.2417 +vn -0.6441 0.7258 -0.2416 +vn -0.6442 0.7257 -0.2417 +vn 0.7647 -0.1379 -0.6294 +vn 0.7648 -0.1380 -0.6293 +vn 0.7648 -0.1381 -0.6293 +vn 0.2578 0.9581 -0.1251 +vn -0.8652 -0.3039 0.3989 +vn -0.8653 -0.3036 0.3989 +vn -0.7474 0.6642 0.0156 +vn -0.7475 0.6641 0.0154 +vn -0.7474 0.6642 0.0155 +vn -0.0732 -0.9588 0.2745 +vn -0.0738 -0.9587 0.2746 +vn -0.0741 -0.9587 0.2746 +vn 0.6532 0.6601 -0.3709 +vn 0.6207 0.4612 -0.6341 +vn 0.6207 0.4615 -0.6339 +vn 0.6207 0.4614 -0.6339 +vn -0.0048 -0.2072 -0.9783 +vn -0.2878 -0.9467 -0.1444 +vn -0.2876 -0.9468 -0.1443 +vn -0.8365 0.5409 -0.0877 +vn -0.8365 0.5410 -0.0876 +vn 0.4775 0.8288 -0.2917 +vn -0.1698 -0.7481 -0.6415 +vn -0.1697 -0.7483 -0.6413 +vn 0.6970 -0.0323 0.7164 +vn 0.6969 -0.0322 0.7165 +vn 0.6967 -0.0320 0.7166 +vn -0.6489 -0.2500 0.7187 +vn -0.6505 -0.2487 0.7176 +vn -0.6495 -0.2493 0.7183 +vn -0.6242 -0.0582 0.7791 +vn -0.0821 0.4091 -0.9088 +vn -0.0816 0.4090 -0.9089 +vn -0.0474 -0.8806 0.4715 +vn -0.0473 -0.8807 0.4713 +vn -0.2619 -0.3901 -0.8827 +vn -0.2616 -0.3905 -0.8827 +vn -0.2617 -0.3903 -0.8827 +vn -0.2779 0.9568 0.0857 +vn -0.2780 0.9568 0.0857 +vn 0.4352 -0.0048 0.9003 +vn 0.4354 -0.0043 0.9002 +vn 0.4354 -0.0046 0.9002 +vn 0.9589 0.2823 0.0281 +vn 0.9590 0.2821 0.0279 +vn -0.2482 -0.7918 -0.5581 +vn -0.2477 -0.7919 -0.5582 +vn -0.2486 -0.7915 -0.5584 +vn 0.6041 -0.7130 -0.3560 +vn 0.6042 -0.7128 -0.3561 +vn 0.6045 -0.7125 -0.3562 +vn -0.1580 0.3861 -0.9088 +vn -0.1590 0.3859 -0.9087 +vn -0.1599 0.3850 -0.9090 +vn -0.9045 -0.4193 -0.0783 +vn -0.9046 -0.4191 -0.0782 +vn -0.9045 -0.4192 -0.0786 +vn 0.2451 0.8695 -0.4289 +vn 0.2454 0.8693 -0.4291 +vn 0.5649 0.6824 -0.4639 +vn 0.5647 0.6823 -0.4643 +vn 0.5647 0.6822 -0.4645 +vn -0.1201 -0.2731 -0.9545 +vn 0.7397 0.6645 0.1061 +vn 0.7397 0.6646 0.1059 +vn 0.7397 0.6645 0.1062 +vn -0.1873 -0.2249 -0.9562 +vn -0.1874 -0.2251 -0.9561 +vn -0.1875 -0.2251 -0.9561 +vn -0.6116 0.7736 0.1659 +vn -0.9887 -0.1088 -0.1032 +vn -0.9887 -0.1088 -0.1036 +vn -0.9886 -0.1089 -0.1042 +vn 0.2612 0.6620 0.7025 +vn 0.2611 0.6627 0.7019 +vn 0.2609 0.6625 0.7022 +vn -0.3466 -0.3024 0.8879 +vn -0.3465 -0.3027 0.8879 +vn -0.3463 -0.3022 0.8881 +vn -0.1935 0.6770 0.7101 +vn -0.1936 0.6770 0.7100 +vn -0.1934 0.6770 0.7101 +vn 0.1480 -0.2402 0.9594 +vn 0.1480 -0.2400 0.9594 +vn 0.0788 -0.8859 0.4572 +vn -0.4168 0.8761 0.2425 +vn -0.4173 0.8759 0.2422 +vn -0.4166 0.8762 0.2425 +vn -0.1700 -0.1854 0.9678 +vn -0.1697 -0.1854 0.9679 +vn -0.1704 -0.1856 0.9677 +vn 0.4006 0.3343 0.8531 +vn 0.4014 0.3338 0.8529 +vn 0.4011 0.3342 0.8529 +vn -0.4581 0.8737 0.1636 +vn -0.4584 0.8736 0.1637 +vn -0.3202 -0.6056 0.7285 +vn -0.3201 -0.6058 0.7284 +vn -0.3202 -0.6057 0.7284 +vn 0.1200 0.3453 0.9308 +vn 0.1197 0.3455 0.9307 +vn 0.1202 0.3451 0.9308 +vn -0.0597 0.7707 0.6344 +vn -0.0593 0.7715 0.6335 +vn -0.0596 0.7707 0.6344 +vn 0.6301 0.5374 0.5606 +vn 0.6242 0.5401 0.5645 +vn 0.6277 0.5376 0.5630 +vn -0.0585 0.8416 -0.5369 +vn -0.0586 0.8414 -0.5373 +vn -0.6903 0.1751 0.7021 +vn -0.6904 0.1751 0.7019 +vn -0.6901 0.1749 0.7023 +vn -0.8364 0.3230 -0.4428 +vn -0.8364 0.3231 -0.4428 +vn -0.7453 0.6196 0.2463 +vn -0.7451 0.6200 0.2458 +vn -0.7450 0.6201 0.2458 +vn 0.1011 0.6669 -0.7382 +vn 0.1008 0.6657 -0.7394 +vn 0.1003 0.6680 -0.7374 +vn -0.9462 0.2218 -0.2358 +vn -0.9462 0.2219 -0.2356 +vn 0.4133 -0.1300 0.9013 +vn 0.4134 -0.1300 0.9012 +vn 0.4126 -0.1300 0.9016 +vn 0.6024 0.7913 0.1044 +vn 0.6024 0.7914 0.1044 +vn 0.6744 0.1962 0.7118 +vn -0.1983 0.1653 -0.9661 +vn -0.1982 0.1654 -0.9661 +vn -0.1985 0.1654 -0.9660 +vn -0.9483 0.1914 -0.2531 +vn -0.9477 0.1929 -0.2543 +vn -0.9480 0.1925 -0.2536 +vn -0.9326 0.3066 -0.1904 +vn -0.9326 0.3068 -0.1902 +vn -0.9326 0.3069 -0.1899 +vn 0.1353 0.6736 0.7266 +vn 0.1346 0.6727 0.7275 +vn 0.1346 0.6725 0.7277 +vn -0.0222 -0.0382 -0.9990 +vn -0.0221 -0.0380 -0.9990 +vn -0.0223 -0.0384 -0.9990 +vn 0.4269 0.8607 0.2775 +vn 0.4280 0.8601 0.2774 +vn 0.4276 0.8603 0.2776 +vn 0.7872 0.2701 0.5544 +vn 0.5214 0.4659 -0.7149 +vn 0.5215 0.4661 -0.7147 +vn 0.8785 0.3791 0.2906 +vn 0.8786 0.3791 0.2905 +vn 0.4477 0.8858 -0.1220 +vn -0.8916 0.4457 0.0802 +vn -0.8904 0.4479 0.0813 +vn -0.8921 0.4449 0.0786 +vn 0.0571 0.3991 0.9151 +vn 0.0579 0.3991 0.9151 +vn 0.0569 0.3987 0.9153 +vn 0.6372 -0.3932 -0.6629 +vn 0.6360 -0.3930 -0.6641 +vn 0.6367 -0.3929 -0.6635 +vn -0.3568 0.4173 -0.8358 +vn -0.1273 -0.1767 0.9760 +vn -0.9598 0.1058 0.2599 +vn -0.8038 -0.4689 0.3661 +vn -0.8039 -0.4691 0.3657 +vn 0.8825 0.4154 -0.2207 +vn 0.8823 0.4155 -0.2211 +vn 0.2768 -0.9556 -0.1013 +vn 0.2767 -0.9556 -0.1015 +vn 0.6295 -0.6787 -0.3783 +vn 0.6306 -0.6779 -0.3779 +vn 0.6289 -0.6794 -0.3780 +vn -0.1994 -0.1214 -0.9724 +vn -0.1998 -0.1220 -0.9722 +vn -0.1994 -0.1217 -0.9723 +vn -0.7738 -0.4951 0.3951 +vn -0.7742 -0.4953 0.3941 +vn -0.7740 -0.4951 0.3946 +vn -0.2560 0.0031 0.9667 +vn 0.7361 0.6496 -0.1901 +vn 0.7358 0.6499 -0.1902 +vn 0.7365 0.6492 -0.1901 +vn -0.3649 0.8685 -0.3355 +vn -0.3649 0.8684 -0.3357 +vn -0.3650 0.8683 -0.3358 +vn -0.8355 -0.3202 0.4465 +vn -0.8354 -0.3203 0.4466 +vn -0.8358 -0.3200 0.4462 +vn 0.6154 0.7802 -0.1124 +vn 0.6154 0.7802 -0.1119 +vn 0.6153 0.7803 -0.1124 +vn 0.8403 0.1004 -0.5327 +vn 0.8404 0.0993 -0.5327 +vn 0.8403 0.1006 -0.5327 +vn -0.8893 -0.2009 0.4108 +vn 0.3556 0.8606 -0.3646 +vn 0.3558 0.8605 -0.3647 +vn 0.3552 0.8607 -0.3648 +vn -0.4745 0.4245 -0.7712 +vn -0.4744 0.4246 -0.7711 +vn -0.4746 0.4243 -0.7712 +vn -0.2579 0.8756 -0.4083 +vn -0.2577 0.8755 -0.4088 +vn 0.0986 -0.5612 -0.8218 +vn 0.0989 -0.5614 -0.8216 +vn -0.4462 0.8514 0.2757 +vn -0.9650 -0.1531 -0.2128 +vn -0.9650 -0.1535 -0.2128 +vn -0.9650 -0.1538 -0.2126 +vn 0.9158 -0.3380 -0.2170 +vn 0.9158 -0.3377 -0.2176 +vn 0.9157 -0.3376 -0.2179 +vn 0.9019 0.3389 0.2678 +vn 0.9019 0.3390 0.2677 +vn 0.9017 0.3391 0.2683 +vn 0.4281 0.8078 -0.4052 +vn 0.4282 0.8080 -0.4048 +vn 0.4282 0.8077 -0.4053 +vn 0.8073 -0.2277 0.5445 +vn 0.8082 -0.2287 0.5427 +vn 0.8094 -0.2289 0.5408 +vn 0.7585 -0.3578 0.5447 +vn 0.7584 -0.3579 0.5448 +vn -0.5153 -0.0307 0.8565 +vn -0.5154 -0.0311 0.8564 +vn -0.5155 -0.0315 0.8563 +vn -0.6959 -0.4943 -0.5210 +vn -0.6958 -0.4943 -0.5211 +vn 0.6767 0.5053 -0.5354 +vn 0.1161 0.5196 0.8465 +vn 0.1159 0.5194 0.8466 +vn 0.1163 0.5197 0.8464 +vn 0.9203 -0.3778 -0.1017 +vn 0.9203 -0.3779 -0.1010 +vn 0.9200 -0.3781 -0.1027 +vn 0.6503 -0.1604 -0.7426 +vn 0.6503 -0.1603 -0.7425 +vn 0.6504 -0.1604 -0.7425 +vn 0.2824 -0.4019 -0.8711 +vn 0.2822 -0.4014 -0.8714 +vn 0.2823 -0.4012 -0.8714 +vn 0.1000 0.9353 -0.3394 +vn 0.0999 0.9353 -0.3395 +vn 0.1003 0.9353 -0.3393 +vn -0.6769 -0.4368 -0.5925 +vn -0.0745 0.6683 -0.7401 +vn -0.0743 0.6683 -0.7401 +vn -0.0736 0.6683 -0.7402 +vn 0.7745 -0.4353 0.4590 +vn 0.7744 -0.4355 0.4590 +vn 0.7746 -0.4354 0.4588 +vn 0.8325 -0.5459 0.0940 +vn 0.8323 -0.5463 0.0938 +vn 0.8242 -0.4869 0.2893 +vn 0.8243 -0.4868 0.2892 +vn 0.8240 -0.4871 0.2894 +vn 0.7733 -0.4242 0.4712 +vn 0.7732 -0.4241 0.4715 +vn -0.8389 -0.2867 -0.4627 +vn 0.6051 -0.3417 0.7191 +vn 0.6051 -0.3418 0.7190 +vn 0.2133 0.8945 -0.3928 +vn 0.2131 0.8945 -0.3929 +vn 0.2136 0.8946 -0.3926 +vn -0.4387 0.7926 -0.4235 +vn -0.4389 0.7925 -0.4235 +vn 0.3364 -0.5267 -0.7807 +vn 0.3379 -0.5271 -0.7797 +vn 0.3372 -0.5272 -0.7800 +vn 0.8721 -0.3519 0.3401 +vn 0.8721 -0.3518 0.3400 +vn 0.8723 -0.3516 0.3397 +vn 0.7544 0.3834 0.5328 +vn 0.7780 -0.5458 0.3112 +vn 0.7780 -0.5456 0.3114 +vn 0.7780 -0.5457 0.3114 +vn -0.1364 -0.9817 0.1331 +vn -0.1365 -0.9816 0.1333 +vn 0.1428 -0.9594 0.2434 +vn 0.1431 -0.9594 0.2432 +vn 0.1431 -0.9594 0.2429 +vn 0.1264 0.1471 0.9810 +vn 0.1269 0.1469 0.9810 +vn 0.1271 0.1469 0.9810 +vn -0.1941 -0.8435 -0.5008 +vn -0.1949 -0.8432 -0.5011 +vn -0.1950 -0.8431 -0.5011 +vn -0.8977 -0.3795 -0.2240 +vn -0.8978 -0.3793 -0.2240 +vn 0.3548 -0.8228 0.4440 +vn 0.3547 -0.8227 0.4442 +vn 0.3549 -0.8228 0.4439 +vn -0.9074 -0.4065 0.1071 +vn -0.9073 -0.4067 0.1068 +vn -0.9074 -0.4064 0.1071 +vn 0.8789 0.0173 0.4767 +vn 0.8789 0.0174 0.4767 +vn 0.3505 0.9138 -0.2053 +vn 0.3505 0.9138 -0.2054 +vn 0.3558 0.8863 0.2965 +vn 0.3561 0.8862 0.2964 +vn 0.3557 0.8863 0.2965 +vn -0.6062 0.6641 -0.4375 +vn -0.6064 0.6639 -0.4377 +vn -0.6063 0.6639 -0.4377 +vn -0.7765 -0.4555 -0.4354 +vn -0.7766 -0.4555 -0.4352 +vn -0.7767 -0.4555 -0.4350 +vn -0.2259 -0.9741 0.0019 +vn -0.2259 -0.9741 0.0020 +vn 0.7784 -0.4278 0.4595 +vn 0.7780 -0.4289 0.4591 +vn 0.7781 -0.4294 0.4585 +vn -0.4468 -0.8867 0.1193 +vn -0.4474 -0.8863 0.1192 +vn -0.4479 -0.8861 0.1190 +vn -0.1190 0.3008 -0.9462 +vn -0.1191 0.3006 -0.9463 +vn -0.1190 0.3003 -0.9464 +vn 0.0962 0.7706 -0.6300 +vn 0.0973 0.7708 -0.6296 +vn 0.0969 0.7708 -0.6297 +vn 0.3894 0.8968 0.2098 +vn 0.3890 0.8970 0.2098 +vn 0.3893 0.8969 0.2098 +vn -0.7640 0.3380 0.5496 +vn -0.7636 0.3381 0.5501 +vn -0.7634 0.3382 0.5502 +vn -0.4909 0.7662 -0.4146 +vn -0.4911 0.7664 -0.4141 +vn -0.3351 -0.9420 0.0185 +vn -0.3355 -0.9419 0.0185 +vn -0.3362 -0.9416 0.0188 +vn 0.9113 -0.4114 0.0182 +vn 0.8510 -0.5247 -0.0198 +vn 0.8506 -0.5255 -0.0196 +vn 0.8502 -0.5261 -0.0186 +vn 0.5645 -0.6596 0.4962 +vn -0.8227 -0.4338 -0.3673 +vn 0.5196 0.8345 -0.1831 +vn 0.5200 0.8344 -0.1827 +vn 0.5198 0.8345 -0.1827 +vn 0.2770 0.4444 0.8519 +vn 0.2771 0.4442 0.8520 +vn 0.2769 0.4443 0.8520 +vn 0.8222 -0.1294 -0.5542 +vn 0.8223 -0.1298 -0.5540 +vn 0.8224 -0.1298 -0.5538 +vn 0.8416 -0.5194 0.1481 +vn -0.7618 -0.4984 -0.4138 +vn -0.7622 -0.4979 -0.4137 +vn -0.7617 -0.4988 -0.4136 +vn 0.7603 0.1921 0.6206 +vn 0.7603 0.1919 0.6206 +vn 0.7604 0.1920 0.6204 +vn -0.5040 -0.8354 -0.2194 +vn -0.5035 -0.8357 -0.2194 +vn -0.5035 -0.8357 -0.2195 +vn -0.2168 0.8847 -0.4127 +vn -0.2173 0.8847 -0.4124 +vn -0.2168 0.8849 -0.4123 +vn 0.5178 -0.7307 0.4450 +vn -0.5687 -0.8016 -0.1847 +vn -0.5691 -0.8014 -0.1840 +vn -0.5689 -0.8015 -0.1845 +vn 0.2636 -0.9089 -0.3230 +vn 0.2628 -0.9094 -0.3223 +vn 0.2630 -0.9093 -0.3226 +vn 0.0340 -0.9706 -0.2382 +vn 0.0337 -0.9706 -0.2385 +vn 0.0336 -0.9705 -0.2386 +vn 0.2039 0.0750 -0.9761 +vn 0.2036 0.0752 -0.9762 +vn 0.2035 0.0752 -0.9762 +vn -0.7053 -0.4406 -0.5554 +vn -0.7052 -0.4407 -0.5554 +vn -0.7055 -0.4404 -0.5552 +vn -0.0336 -0.9381 0.3448 +vn -0.4225 0.8870 -0.1862 +vn -0.4223 0.8872 -0.1861 +vn -0.4225 0.8871 -0.1862 +vn 0.2957 -0.9506 0.0946 +vn 0.2955 -0.9508 0.0934 +vn 0.2955 -0.9507 0.0943 +vn -0.7183 -0.5692 -0.4000 +vn -0.7185 -0.5689 -0.4001 +vn -0.7181 -0.5695 -0.4001 +vn 0.4200 -0.9067 -0.0388 +vn 0.4201 -0.9066 -0.0390 +vn 0.4199 -0.9067 -0.0393 +vn -0.4448 0.1457 -0.8837 +vn -0.4442 0.1460 -0.8840 +vn -0.4440 0.1459 -0.8841 +vn 0.2833 0.1755 0.9428 +vn 0.2832 0.1756 0.9428 +vn 0.2832 0.1757 0.9428 +vn -0.6156 -0.6012 -0.5096 +vn 0.6474 0.1243 0.7519 +vn 0.6470 0.1243 0.7523 +vn 0.6473 0.1245 0.7520 +vn -0.5806 -0.5169 0.6291 +vn -0.5818 -0.5161 0.6286 +vn -0.5813 -0.5164 0.6288 +vn -0.6764 -0.4168 0.6072 +vn -0.6765 -0.4165 0.6073 +vn -0.0017 0.8274 0.5617 +vn -0.0013 0.8270 0.5622 +vn -0.0017 0.8280 0.5607 +vn 0.4071 -0.9134 0.0038 +vn 0.4073 -0.9133 0.0041 +vn 0.4072 -0.9133 0.0038 +vn -0.4057 -0.8015 0.4393 +vn -0.4054 -0.8016 0.4394 +vn -0.4052 -0.8019 0.4390 +vn 0.6733 0.3509 -0.6508 +vn 0.6734 0.3510 -0.6507 +vn 0.6732 0.3510 -0.6508 +vn 0.2827 0.9398 0.1918 +vn 0.2829 0.9397 0.1920 +vn 0.7589 -0.4390 -0.4810 +vn 0.7587 -0.4389 -0.4814 +vn 0.4842 -0.8700 -0.0926 +vn 0.4842 -0.8700 -0.0927 +vn 0.4844 -0.8699 -0.0931 +vn -0.4910 -0.5125 -0.7044 +vn 0.9654 -0.0244 0.2598 +vn 0.9653 -0.0247 0.2601 +vn 0.9654 -0.0240 0.2598 +vn -0.1381 0.9892 -0.0491 +vn -0.9028 0.3810 -0.1994 +vn -0.9023 0.3819 -0.2000 +vn -0.9025 0.3815 -0.1997 +vn 0.7170 -0.0178 0.6968 +vn 0.7168 -0.0177 0.6970 +vn 0.7166 -0.0175 0.6973 +vn 0.4497 -0.4854 -0.7498 +vn 0.4498 -0.4856 -0.7496 +vn 0.4494 -0.4853 -0.7500 +vn -0.0762 -0.1746 -0.9817 +vn -0.0764 -0.1741 -0.9818 +vn -0.0763 -0.1739 -0.9818 +vn 0.5283 -0.8394 -0.1273 +vn 0.5285 -0.8394 -0.1271 +vn 0.5284 -0.8394 -0.1272 +vn -0.4825 0.8744 -0.0504 +vn -0.4823 0.8746 -0.0502 +vn -0.4823 0.8746 -0.0498 +vn -0.0541 0.9977 -0.0419 +vn -0.0538 0.9977 -0.0418 +vn -0.0539 0.9977 -0.0418 +vn -0.3797 -0.5445 -0.7479 +vn 0.8118 0.4226 0.4030 +vn 0.8110 0.4234 0.4038 +vn 0.8109 0.4235 0.4038 +vn 0.0653 0.7555 -0.6519 +vn 0.0630 0.7555 -0.6521 +vn 0.0638 0.7553 -0.6523 +vn 0.3315 0.1007 0.9381 +vn 0.3316 0.1006 0.9380 +vn 0.0481 0.6907 0.7216 +vn 0.0481 0.6905 0.7217 +vn 0.0482 0.6906 0.7217 +vn -0.5316 -0.4924 -0.6892 +vn -0.5315 -0.4925 -0.6892 +vn -0.5313 -0.4929 -0.6890 +vn 0.3756 0.9208 -0.1055 +vn 0.3758 0.9207 -0.1056 +vn 0.3757 0.9207 -0.1054 +vn 0.8629 -0.0212 0.5050 +vn 0.8631 -0.0218 0.5046 +vn 0.8632 -0.0220 0.5043 +vn 0.7141 -0.5099 -0.4796 +vn 0.7140 -0.5103 -0.4794 +vn 0.7144 -0.5103 -0.4788 +vn -0.9610 0.1749 -0.2141 +vn -0.9611 0.1749 -0.2137 +vn -0.9611 0.1747 -0.2139 +vn -0.6133 -0.3187 0.7227 +vn -0.6131 -0.3193 0.7226 +vn -0.6131 -0.3191 0.7227 +vn -0.3154 -0.5438 -0.7777 +vn -0.3153 -0.5438 -0.7777 +vn -0.3151 -0.5438 -0.7778 +vn -0.2012 -0.2681 -0.9421 +vn 0.9492 -0.2295 -0.2154 +vn 0.9491 -0.2295 -0.2157 +vn -0.3576 -0.4185 -0.8349 +vn -0.3580 -0.4178 -0.8350 +vn -0.3581 -0.4182 -0.8348 +vn -0.6026 -0.0454 0.7967 +vn -0.6024 -0.0450 0.7969 +vn -0.6026 -0.0452 0.7968 +vn 0.8279 -0.2800 -0.4859 +vn 0.8276 -0.2831 -0.4847 +vn 0.8274 -0.2822 -0.4855 +vn -0.7123 0.5593 -0.4241 +vn -0.7124 0.5593 -0.4238 +vn -0.7123 0.5592 -0.4242 +vn -0.6268 0.4940 -0.6025 +vn -0.3381 -0.9276 -0.1589 +vn -0.3378 -0.9277 -0.1591 +vn -0.3379 -0.9276 -0.1590 +vn 0.1374 -0.0707 0.9880 +vn 0.1374 -0.0710 0.9880 +vn 0.1374 -0.0711 0.9880 +vn -0.0993 -0.5306 -0.8418 +vn -0.0993 -0.5308 -0.8416 +vn -0.0992 -0.5308 -0.8417 +vn 0.4576 0.8828 0.1059 +vn 0.4575 0.8829 0.1057 +vn 0.4570 0.8832 0.1053 +vn 0.4233 -0.9056 0.0244 +vn 0.4231 -0.9058 0.0240 +vn 0.4230 -0.9058 0.0240 +vn 0.5646 -0.2428 0.7888 +vn 0.5645 -0.2431 0.7888 +vn 0.5645 -0.2430 0.7889 +vn -0.0768 -0.5497 0.8319 +vn -0.0763 -0.5495 0.8320 +vn -0.0770 -0.5492 0.8321 +vn -0.1143 0.3909 0.9133 +vn -0.1140 0.3912 0.9132 +vn -0.1142 0.3912 0.9132 +vn -0.4392 -0.8843 0.1585 +vn -0.4397 -0.8840 0.1588 +vn -0.4394 -0.8842 0.1587 +vn 0.6127 -0.7032 0.3607 +vn 0.6126 -0.7037 0.3599 +vn 0.6133 -0.7024 0.3612 +vn 0.8992 -0.4072 -0.1599 +vn 0.8992 -0.4072 -0.1600 +vn 0.8993 -0.4070 -0.1598 +vn 0.9008 0.1644 0.4019 +vn 0.9011 0.1637 0.4015 +vn 0.9009 0.1641 0.4018 +vn -0.0624 0.8866 -0.4583 +vn -0.3727 -0.1263 -0.9193 +vn -0.3742 -0.1263 -0.9187 +vn -0.3720 -0.1256 -0.9197 +vn 0.5618 -0.4924 -0.6648 +vn 0.5614 -0.4923 -0.6652 +vn 0.5618 -0.4922 -0.6649 +vn -0.2942 0.9528 0.0747 +vn -0.2944 0.9528 0.0745 +vn -0.2944 0.9527 0.0749 +vn -0.8210 -0.5480 -0.1602 +vn -0.8208 -0.5484 -0.1598 +vn -0.8214 -0.5472 -0.1606 +vn 0.2279 -0.8842 -0.4078 +vn -0.2743 -0.2455 0.9298 +vn -0.2744 -0.2457 0.9297 +vn -0.2745 -0.2457 0.9297 +vn -0.3558 -0.9342 -0.0270 +vn -0.3560 -0.9341 -0.0270 +vn -0.3557 -0.9342 -0.0270 +vn -0.0378 0.5831 -0.8115 +vn -0.0377 0.5829 -0.8117 +vn -0.0377 0.5828 -0.8117 +vn 0.5486 -0.7495 0.3706 +vn 0.5489 -0.7495 0.3701 +vn 0.5489 -0.7496 0.3700 +vn 0.2722 -0.9270 -0.2581 +vn 0.2722 -0.9270 -0.2579 +vn 0.2723 -0.9270 -0.2578 +vn 0.1883 0.9552 -0.2283 +vn 0.1885 0.9553 -0.2279 +vn 0.1884 0.9551 -0.2288 +vn -0.9050 -0.0834 0.4172 +vn -0.9051 -0.0835 0.4170 +vn -0.9052 -0.0838 0.4166 +vn -0.5187 -0.7520 0.4068 +vn -0.5188 -0.7518 0.4071 +vn -0.5189 -0.7515 0.4075 +vn -0.4054 -0.8463 0.3455 +vn -0.3505 -0.6140 0.7072 +vn -0.3491 -0.6141 0.7078 +vn -0.3518 -0.6136 0.7069 +vn 0.5213 0.4416 0.7303 +vn 0.5213 0.4415 0.7303 +vn 0.5944 -0.5790 -0.5580 +vn 0.5946 -0.5791 -0.5578 +vn 0.5943 -0.5793 -0.5579 +vn 0.5394 0.2749 0.7959 +vn 0.5399 0.2757 0.7953 +vn -0.2676 -0.8980 -0.3493 +vn -0.2675 -0.8980 -0.3493 +vn -0.2673 -0.8980 -0.3495 +vn -0.6003 -0.7752 -0.1967 +vn 0.3777 0.8564 -0.3521 +vn 0.3781 0.8562 -0.3520 +vn 0.3779 0.8564 -0.3518 +vn 0.0678 -0.4861 -0.8713 +vn 0.0679 -0.4861 -0.8713 +vn 0.0676 -0.4864 -0.8711 +vn 0.0761 -0.4071 0.9102 +vn 0.0761 -0.4072 0.9102 +vn 0.8995 -0.0977 -0.4258 +vn 0.8993 -0.0977 -0.4262 +vn 0.8991 -0.0976 -0.4267 +vn 0.8532 -0.2852 -0.4366 +vn 0.8532 -0.2854 -0.4366 +vn 0.8533 -0.2850 -0.4367 +vn -0.0796 -0.9490 0.3051 +vn -0.0798 -0.9487 0.3059 +vn -0.0797 -0.9488 0.3057 +vn 0.6247 -0.6812 -0.3818 +vn 0.6246 -0.6813 -0.3816 +vn -0.1575 0.2750 -0.9484 +vn -0.1572 0.2756 -0.9483 +vn -0.1572 0.2767 -0.9480 +vn -0.8771 -0.0641 -0.4760 +vn -0.8771 -0.0638 -0.4760 +vn -0.8771 -0.0648 -0.4760 +vn 0.4352 -0.0483 0.8990 +vn 0.4354 -0.0485 0.8989 +vn 0.4354 -0.0483 0.8989 +vn 0.7817 0.6069 0.1438 +vn 0.7817 0.6069 0.1436 +vn 0.7816 0.6069 0.1438 +vn -0.1815 -0.5437 -0.8194 +vn -0.1817 -0.5440 -0.8192 +vn -0.1818 -0.5441 -0.8191 +vn 0.2439 0.8266 -0.5072 +vn 0.2437 0.8267 -0.5071 +vn 0.5879 0.5789 0.5651 +vn 0.5874 0.5794 0.5650 +vn 0.5876 0.5790 0.5652 +vn -0.5351 0.3073 -0.7869 +vn -0.5352 0.3067 -0.7871 +vn -0.5344 0.3080 -0.7871 +vn 0.5351 0.5176 0.6677 +vn 0.5337 0.5190 0.6677 +vn 0.5327 0.5213 0.6667 +vn 0.9422 -0.2288 -0.2446 +vn 0.9421 -0.2289 -0.2449 +vn 0.9422 -0.2288 -0.2449 +vn -0.2680 0.8284 -0.4919 +vn -0.2679 0.8287 -0.4914 +vn -0.2681 0.8290 -0.4909 +vn 0.8931 -0.1850 0.4101 +vn 0.8929 -0.1854 0.4103 +vn 0.8931 -0.1847 0.4101 +vn 0.3486 0.9291 0.1238 +vn 0.3486 0.9293 0.1223 +vn 0.3480 0.9292 0.1247 +vn -0.1998 0.2659 0.9431 +vn -0.1996 0.2660 0.9431 +vn 0.5268 0.8321 -0.1735 +vn 0.5262 0.8325 -0.1733 +vn 0.5268 0.8320 -0.1741 +vn 0.3249 0.9117 -0.2515 +vn 0.4009 0.9116 -0.0908 +vn 0.4004 0.9119 -0.0905 +vn 0.3996 0.9122 -0.0906 +vn 0.5601 0.8121 0.1637 +vn 0.5601 0.8121 0.1636 +vn -0.9970 -0.0491 -0.0606 +vn -0.9970 -0.0487 -0.0605 +vn -0.4996 -0.5739 0.6489 +vn -0.4996 -0.5741 0.6487 +vn -0.0593 0.7368 -0.6735 +vn -0.0589 0.7366 -0.6737 +vn -0.0590 0.7366 -0.6738 +vn 0.5224 0.8312 0.1905 +vn 0.5226 0.8311 0.1903 +vn 0.4759 -0.7816 0.4034 +vn 0.4758 -0.7816 0.4034 +vn 0.4757 -0.7817 0.4034 +vn -0.7211 0.5300 0.4463 +vn -0.2664 -0.6540 0.7080 +vn -0.2662 -0.6538 0.7083 +vn -0.2663 -0.6539 0.7082 +vn -0.8530 -0.1371 -0.5036 +vn -0.8560 -0.1421 -0.4971 +vn -0.8501 -0.1356 -0.5089 +vn 0.4781 0.8604 0.1766 +vn 0.0031 0.0019 1.0000 +vn 0.7644 -0.5743 -0.2929 +vn 0.4559 0.2536 -0.8531 +vn 0.4560 0.2536 -0.8531 +vn 0.2570 -0.8397 0.4784 +vn 0.2571 -0.8398 0.4782 +vn 0.2568 -0.8396 0.4786 +vn -0.0052 -0.7186 -0.6954 +vn -0.0050 -0.7183 -0.6957 +vn -0.0052 -0.7187 -0.6953 +vn 0.2002 0.0988 -0.9748 +vn 0.2004 0.0986 -0.9747 +vn 0.2001 0.0991 -0.9747 +vn -0.8406 0.4698 -0.2695 +vn -0.8405 0.4702 -0.2693 +vn -0.8405 0.4698 -0.2698 +vn -0.3559 -0.6330 0.6875 +vn -0.3557 -0.6330 0.6876 +vn -0.3557 -0.6329 0.6877 +vn -0.0316 0.9796 -0.1987 +vn -0.0307 0.9794 -0.1998 +vn -0.0311 0.9795 -0.1991 +vn 0.0003 -0.0005 1.0000 +vn -0.7213 0.5024 -0.4768 +vn -0.7214 0.5023 -0.4769 +vn -0.7212 0.5024 -0.4770 +vn -0.0067 0.7157 -0.6984 +vn -0.0066 0.7160 -0.6981 +vn 0.5053 0.6052 -0.6151 +vn 0.5055 0.6053 -0.6149 +vn 0.5058 0.6046 -0.6153 +vn -0.8239 -0.0664 0.5629 +vn -0.8240 -0.0661 0.5627 +vn -0.8239 -0.0663 0.5628 +vn -0.4167 -0.3574 0.8358 +vn -0.4166 -0.3575 0.8359 +vn -0.4167 -0.3575 0.8358 +vn 0.3976 0.9063 -0.1431 +vn 0.3975 0.9064 -0.1429 +vn 0.3975 0.9064 -0.1428 +vn -0.6587 0.6214 -0.4242 +vn -0.6588 0.6213 -0.4242 +vn 0.9105 -0.0035 -0.4136 +vn 0.9104 -0.0040 -0.4137 +vn 0.9103 -0.0044 -0.4139 +vn 0.8724 -0.2691 0.4081 +vn 0.8723 -0.2692 0.4082 +vn -0.3672 -0.6377 0.6771 +vn -0.3670 -0.6374 0.6775 +vn -0.3673 -0.6378 0.6770 +vn 0.9893 0.0665 0.1295 +vn 0.9893 0.0665 0.1296 +vn 0.9893 0.0665 0.1297 +vn -0.3462 -0.7922 -0.5026 +vn -0.3464 -0.7923 -0.5022 +vn -0.3464 -0.7923 -0.5023 +vn -0.0876 -0.8319 -0.5480 +vn -0.0870 -0.8320 -0.5480 +vn -0.0873 -0.8319 -0.5480 +vn -0.1202 0.9176 -0.3789 +vn -0.1209 0.9174 -0.3792 +vn -0.1200 0.9177 -0.3787 +vn 0.5334 -0.7008 0.4737 +vn 0.8854 0.4501 0.1163 +vn 0.8853 0.4503 0.1159 +vn 0.8853 0.4502 0.1166 +vn -0.1653 0.1269 0.9780 +vn -0.1655 0.1268 0.9780 +vn 0.3555 0.9181 0.1752 +vn 0.3556 0.9181 0.1754 +vn 0.1084 -0.0815 0.9908 +vn 0.2407 0.8739 0.4224 +vn 0.2411 0.8740 0.4219 +vn 0.2418 0.8740 0.4214 +vn -0.0871 0.9590 -0.2697 +vn -0.0873 0.9591 -0.2692 +vn -0.0870 0.9590 -0.2698 +vn -0.2194 0.8967 -0.3845 +vn -0.2217 0.8958 -0.3852 +vn -0.2205 0.8961 -0.3851 +vn -0.5057 -0.4688 0.7242 +vn -0.5045 -0.4698 0.7244 +vn -0.5051 -0.4695 0.7242 +vn 0.6161 -0.0561 -0.7857 +vn 0.6161 -0.0560 -0.7857 +vn 0.4450 -0.8219 0.3556 +vn 0.4451 -0.8221 0.3550 +vn 0.4446 -0.8221 0.3555 +vn -0.9768 -0.2142 -0.0026 +vn -0.9769 -0.2139 -0.0029 +vn -0.9767 -0.2144 -0.0021 +vn -0.2372 -0.1353 0.9620 +vn -0.2373 -0.1359 0.9619 +vn -0.2372 -0.1355 0.9620 +vn 0.5808 -0.6256 0.5208 +vn 0.5810 -0.6255 0.5208 +vn 0.5810 -0.6254 0.5208 +vn -0.8299 -0.4523 0.3267 +vn -0.8300 -0.4521 0.3267 +vn -0.8298 -0.4523 0.3269 +vn 0.7136 -0.5622 -0.4181 +vn 0.7142 -0.5613 -0.4182 +vn 0.7150 -0.5594 -0.4192 +vn 0.5194 0.7749 -0.3602 +vn 0.2249 -0.6414 -0.7335 +vn 0.2247 -0.6418 -0.7332 +vn 0.6934 -0.7000 -0.1708 +vn 0.6932 -0.7002 -0.1708 +vn -0.3551 -0.0758 -0.9318 +vn 0.5553 -0.6166 0.5581 +vn 0.6996 0.4070 0.5873 +vn 0.6997 0.4072 0.5871 +vn 0.6997 0.4067 0.5874 +vn 0.5802 -0.6819 0.4453 +vn 0.5803 -0.6821 0.4450 +vn 0.5803 -0.6821 0.4449 +vn 0.7298 -0.6760 0.1018 +vn -0.6228 -0.1680 -0.7641 +vn -0.6229 -0.1682 -0.7640 +vn -0.7317 -0.2759 -0.6233 +vn -0.2844 -0.0174 0.9586 +vn -0.2842 -0.0168 0.9586 +vn -0.2839 -0.0167 0.9587 +vn -0.4660 0.1502 -0.8719 +vn -0.3244 -0.5007 0.8025 +vn -0.3248 -0.5001 0.8027 +vn -0.3246 -0.5004 0.8026 +vn 0.8081 -0.0981 0.5809 +vn 0.6565 -0.5846 0.4767 +vn 0.0275 0.9190 -0.3933 +vn 0.0274 0.9189 -0.3935 +vn -0.8306 -0.2802 0.4812 +vn -0.8305 -0.2804 0.4813 +vn -0.8308 -0.2802 0.4809 +vn 0.7066 -0.5269 0.4724 +vn 0.4809 -0.5698 0.6664 +vn 0.4810 -0.5695 0.6666 +vn 0.4809 -0.5699 0.6663 +vn -0.7548 0.1929 0.6270 +vn -0.7546 0.1932 0.6271 +vn -0.7544 0.1934 0.6273 +vn 0.2180 0.9736 0.0685 +vn 0.2180 0.9735 0.0684 +vn 0.2181 0.9735 0.0683 +vn 0.7472 0.2627 -0.6104 +vn 0.7472 0.2627 -0.6105 +vn 0.7474 0.2629 -0.6101 +vn 0.4835 0.8750 0.0260 +vn 0.4838 0.8748 0.0256 +vn 0.4838 0.8748 0.0253 +vn -0.9205 0.3617 0.1478 +vn -0.9205 0.3616 0.1479 +vn -0.9205 0.3616 0.1480 +vn -0.8050 0.5200 0.2856 +vn -0.8058 0.5196 0.2841 +vn -0.8063 0.5190 0.2837 +vn -0.1883 0.3860 -0.9031 +vn -0.1879 0.3855 -0.9034 +vn -0.1882 0.3858 -0.9032 +vn 0.2146 -0.7727 -0.5974 +vn 0.2146 -0.7726 -0.5975 +vn -0.8920 -0.3562 -0.2783 +vn -0.8920 -0.3563 -0.2782 +vn 0.9858 -0.1599 -0.0511 +vn 0.9859 -0.1592 -0.0506 +vn 0.9859 -0.1593 -0.0508 +vn -0.5726 -0.6605 -0.4856 +vn -0.5728 -0.6602 -0.4859 +vn -0.5726 -0.6609 -0.4851 +vn 0.4282 -0.2522 -0.8678 +vn 0.4283 -0.2524 -0.8677 +vn 0.4285 -0.2527 -0.8675 +vn -0.1885 -0.0777 -0.9790 +vn -0.1886 -0.0779 -0.9790 +vn -0.1886 -0.0780 -0.9790 +vn -0.0158 0.9502 0.3113 +vn -0.0165 0.9502 0.3112 +vn -0.0172 0.9503 0.3109 +vn 0.3696 0.6493 0.6647 +vn 0.3697 0.6493 0.6647 +vn 0.3266 -0.8252 -0.4609 +vn 0.3263 -0.8249 -0.4616 +vn 0.3265 -0.8250 -0.4614 +vn 0.0629 0.9524 -0.2982 +vn 0.0626 0.9522 -0.2990 +vn 0.0629 0.9525 -0.2981 +vn -0.6018 -0.4065 -0.6875 +vn -0.6016 -0.4066 -0.6876 +vn -0.6017 -0.4065 -0.6875 +vn -0.2203 0.9265 -0.3049 +vn -0.2205 0.9265 -0.3048 +vn -0.2206 0.9265 -0.3050 +vn -0.4426 -0.4241 -0.7901 +vn -0.4428 -0.4243 -0.7899 +vn -0.4428 -0.4242 -0.7899 +vn 0.9270 -0.1650 -0.3369 +vn 0.9268 -0.1690 -0.3353 +vn 0.9266 -0.1678 -0.3366 +vn -0.3601 0.2788 0.8903 +vn -0.3601 0.2789 0.8903 +vn -0.3602 0.2787 0.8903 +vn 0.2273 -0.3606 -0.9046 +vn 0.2273 -0.3605 -0.9046 +vn 0.2270 -0.3607 -0.9046 +vn -0.8489 -0.1363 -0.5107 +vn -0.8488 -0.1365 -0.5108 +vn -0.8439 -0.0093 -0.5365 +vn -0.8438 -0.0082 -0.5367 +vn -0.8438 -0.0088 -0.5366 +vn -0.5815 0.6327 -0.5114 +vn -0.5835 0.6328 -0.5089 +vn -0.5801 0.6331 -0.5125 +vn 0.8217 -0.4939 0.2844 +vn -0.5678 -0.6884 0.4513 +vn -0.5677 -0.6884 0.4515 +vn -0.8396 -0.3999 -0.3676 +vn -0.2014 -0.1195 0.9722 +vn -0.2009 -0.1200 0.9722 +vn -0.2011 -0.1199 0.9722 +vn -0.0961 -0.5476 -0.8312 +vn -0.0960 -0.5477 -0.8311 +vn -0.0959 -0.5479 -0.8310 +vn 0.4996 0.7460 0.4404 +vn 0.4984 0.7454 0.4427 +vn 0.4988 0.7458 0.4415 +vn -0.2477 0.7864 -0.5659 +vn -0.2476 0.7863 -0.5661 +vn -0.2474 0.7862 -0.5663 +vn -0.8465 -0.3080 -0.4343 +vn -0.8467 -0.3079 -0.4340 +vn -0.8469 -0.3076 -0.4337 +vn -0.6351 0.1031 0.7656 +vn -0.6348 0.1033 0.7658 +vn -0.6350 0.1028 0.7656 +vn 0.4642 -0.2577 -0.8474 +vn 0.4643 -0.2579 -0.8473 +vn 0.4644 -0.2581 -0.8472 +vn 0.0734 -0.9756 0.2067 +vn 0.1397 -0.9720 0.1888 +vn 0.1396 -0.9720 0.1888 +vn 0.1395 -0.9721 0.1885 +vn -0.7552 0.5779 -0.3094 +vn -0.7554 0.5777 -0.3091 +vn -0.7557 0.5776 -0.3088 +vn -0.0541 0.7860 -0.6159 +vn -0.0539 0.7862 -0.6156 +vn -0.0542 0.7859 -0.6160 +vn -0.2065 0.9746 -0.0865 +vn -0.2062 0.9747 -0.0864 +vn -0.2060 0.9747 -0.0864 +vn -0.3412 0.8571 -0.3859 +vn 0.2797 -0.8676 0.4112 +vn 0.2793 -0.8674 0.4118 +vn 0.2798 -0.8678 0.4106 +vn 0.8335 -0.2273 0.5036 +vn 0.8334 -0.2269 0.5039 +vn 0.8335 -0.2274 0.5035 +vn 0.0371 0.4136 -0.9097 +vn 0.0371 0.4137 -0.9097 +vn 0.0370 0.4134 -0.9098 +vn 0.3993 0.9017 0.1660 +vn 0.3992 0.9017 0.1660 +vn 0.3994 0.9016 0.1661 +vn 0.9011 -0.3818 0.2053 +vn 0.9011 -0.3819 0.2054 +vn -0.1589 0.4675 -0.8696 +vn -0.1590 0.4673 -0.8697 +vn 0.0017 0.8907 -0.4546 +vn 0.0019 0.8909 -0.4542 +vn 0.0016 0.8907 -0.4546 +vn 0.3201 0.5495 0.7718 +vn 0.3203 0.5495 0.7717 +vn 0.3201 0.5493 0.7719 +vn -0.2161 -0.1685 -0.9617 +vn -0.2160 -0.1685 -0.9617 +vn -0.2160 -0.1686 -0.9617 +vn 0.4920 -0.0093 0.8705 +vn 0.4922 -0.0098 0.8704 +vn 0.6821 -0.4720 0.5585 +vn 0.6823 -0.4716 0.5586 +vn -0.9065 0.3350 0.2571 +vn -0.9065 0.3348 0.2572 +vn -0.9066 0.3345 0.2573 +vn 0.3422 -0.9279 0.1480 +vn 0.3424 -0.9280 0.1469 +vn 0.3423 -0.9280 0.1473 +vn 0.4657 -0.7398 0.4856 +vn 0.4656 -0.7397 0.4858 +vn 0.4658 -0.7399 0.4854 +vn -0.0093 0.9848 0.1734 +vn -0.0093 0.9848 0.1737 +vn -0.2582 -0.9661 -0.0092 +vn -0.2583 -0.9660 -0.0091 +vn -0.2586 -0.9659 -0.0091 +vn 0.7400 0.3906 0.5476 +vn 0.7396 0.3905 0.5482 +vn 0.7392 0.3899 0.5491 +vn 0.5754 -0.4059 0.7100 +vn 0.5752 -0.4063 0.7100 +vn 0.4068 -0.3699 0.8353 +vn 0.4072 -0.3699 0.8351 +vn 0.4060 -0.3703 0.8355 +vn 0.5079 -0.6569 0.5572 +vn 0.5079 -0.6568 0.5573 +vn 0.0103 0.9494 -0.3138 +vn 0.0104 0.9495 -0.3137 +vn -0.2084 0.0367 -0.9774 +vn -0.2083 0.0368 -0.9774 +vn -0.2084 0.0366 -0.9774 +vn -0.8624 -0.0763 -0.5005 +vn -0.8631 -0.0767 -0.4992 +vn -0.8627 -0.0767 -0.4998 +vn 0.1154 -0.6923 -0.7123 +vn 0.1143 -0.6928 -0.7120 +vn 0.1152 -0.6928 -0.7119 +vn -0.1641 0.9605 -0.2247 +vn -0.1642 0.9605 -0.2245 +vn -0.1641 0.9605 -0.2246 +vn 0.5930 0.0043 0.8052 +vn -0.3314 -0.9145 -0.2323 +vn -0.3312 -0.9145 -0.2323 +vn -0.3313 -0.9145 -0.2323 +vn 0.5665 -0.7241 0.3933 +vn -0.8215 0.5627 0.0923 +vn -0.8216 0.5627 0.0917 +vn -0.8212 0.5631 0.0924 +vn -0.0156 -0.7726 0.6347 +vn -0.0152 -0.7722 0.6352 +vn -0.0155 -0.7724 0.6350 +vn 0.0541 -0.0703 -0.9961 +vn 0.0538 -0.0706 -0.9960 +vn 0.0537 -0.0711 -0.9960 +vn 0.7430 -0.5438 -0.3902 +vn 0.7423 -0.5442 -0.3910 +vn 0.7421 -0.5443 -0.3912 +vn -0.6077 -0.7816 -0.1407 +vn -0.6074 -0.7818 -0.1409 +vn -0.6075 -0.7817 -0.1408 +vn 0.8917 0.2009 0.4056 +vn 0.8919 0.2006 0.4054 +vn 0.8916 0.2009 0.4059 +vn 0.2651 -0.8040 0.5322 +vn 0.2648 -0.8039 0.5325 +vn 0.6804 -0.7306 -0.0575 +vn 0.6813 -0.7298 -0.0567 +vn 0.6818 -0.7294 -0.0555 +vn 0.7352 -0.6250 -0.2626 +vn -0.2450 -0.1065 0.9636 +vn -0.8130 0.5072 -0.2859 +vn -0.8130 0.5071 -0.2860 +vn -0.8129 0.5074 -0.2859 +vn 0.0871 0.8722 0.4813 +vn 0.0877 0.8721 0.4814 +vn 0.0869 0.8722 0.4814 +vn -0.0172 -0.9818 0.1892 +vn 0.2223 0.4630 -0.8580 +vn 0.2211 0.4622 -0.8588 +vn 0.2222 0.4630 -0.8581 +vn 0.2933 -0.7925 0.5347 +vn 0.2929 -0.7922 0.5354 +vn 0.2937 -0.7927 0.5343 +vn -0.6653 0.6578 0.3530 +vn -0.6649 0.6581 0.3533 +vn -0.0628 -0.9899 -0.1269 +vn -0.0619 -0.9900 -0.1270 +vn -0.0620 -0.9900 -0.1270 +vn 0.1957 0.7233 -0.6622 +vn 0.1953 0.7232 -0.6624 +vn 0.1953 0.7232 -0.6625 +vn 0.1824 -0.4065 0.8952 +vn 0.1826 -0.4063 0.8953 +vn 0.1825 -0.4071 0.8950 +vn 0.3793 0.8923 0.2449 +vn 0.3792 0.8920 0.2462 +vn 0.3789 0.8923 0.2455 +vn -0.1626 -0.3416 -0.9257 +vn -0.1630 -0.3415 -0.9256 +vn -0.1640 -0.3412 -0.9256 +vn -0.0193 0.8798 -0.4750 +vn -0.0199 0.8801 -0.4744 +vn -0.0198 0.8800 -0.4745 +vn 0.1512 0.2482 -0.9568 +vn 0.1509 0.2484 -0.9568 +vn 0.1137 -0.1686 0.9791 +vn 0.1131 -0.1688 0.9791 +vn 0.1130 -0.1688 0.9792 +vn -0.1794 0.7830 0.5956 +vn -0.1793 0.7831 0.5955 +vn 0.4934 0.8566 0.1513 +vn 0.4932 0.8567 0.1510 +vn 0.1132 0.8213 0.5591 +vn 0.1133 0.8214 0.5590 +vn 0.3014 0.7711 -0.5609 +vn 0.3018 0.7708 -0.5610 +vn -0.0289 0.0708 -0.9971 +vn -0.0288 0.0706 -0.9971 +vn 0.0305 0.7666 0.6414 +vn -0.7458 -0.4890 -0.4524 +vn 0.2269 -0.0138 0.9738 +vn 0.2263 -0.0136 0.9740 +vn 0.2267 -0.0136 0.9739 +vn 0.4322 0.8206 -0.3739 +vn -0.0002 -0.0001 1.0000 +vn -0.2827 0.1597 -0.9458 +vn 0.5101 -0.8599 -0.0184 +vn 0.5105 -0.8597 -0.0178 +vn 0.5106 -0.8597 -0.0177 +vn -0.6807 0.7188 -0.1412 +vn -0.6789 0.7206 -0.1409 +vn -0.6800 0.7195 -0.1412 +vn 0.7764 -0.3745 0.5069 +vn 0.7766 -0.3744 0.5066 +vn 0.7769 -0.3742 0.5064 +vn 0.4890 -0.8255 0.2816 +vn 0.4890 -0.8257 0.2813 +vn 0.4889 -0.8258 0.2811 +vn -0.5169 -0.8435 -0.1462 +vn -0.5170 -0.8434 -0.1463 +vn -0.5169 -0.8434 -0.1463 +vn -0.8834 -0.2118 0.4181 +vn -0.8833 -0.2119 0.4182 +vn -0.4727 -0.8567 -0.2065 +vn -0.4726 -0.8568 -0.2063 +vn -0.2123 -0.0444 0.9762 +vn -0.2123 -0.0441 0.9762 +vn 0.6668 -0.5093 -0.5441 +vn 0.6669 -0.5092 -0.5440 +vn -0.8026 -0.2065 -0.5596 +vn -0.8028 -0.2065 -0.5593 +vn -0.8022 -0.2061 -0.5603 +vn -0.5309 -0.8450 0.0640 +vn 0.8238 -0.5605 -0.0849 +vn 0.8237 -0.5606 -0.0854 +vn 0.8238 -0.5605 -0.0848 +vn -0.5397 0.2442 -0.8057 +vn -0.5383 0.2447 -0.8065 +vn -0.5409 0.2432 -0.8052 +vn -0.6344 0.2946 -0.7146 +vn -0.6345 0.2943 -0.7147 +vn -0.6343 0.2945 -0.7148 +vn -0.1946 0.9489 0.2483 +vn -0.1942 0.9491 0.2481 +vn -0.4401 -0.5312 -0.7240 +vn -0.4403 -0.5311 -0.7240 +vn -0.4403 -0.5311 -0.7239 +vn -0.0002 -0.0742 0.9972 +vn -0.0000 -0.0741 0.9972 +vn -0.0003 -0.0739 0.9973 +vn 0.8124 0.5830 0.0141 +vn 0.8129 0.5822 0.0142 +vn 0.8127 0.5825 0.0143 +vn 0.7844 0.5839 -0.2093 +vn 0.7844 0.5837 -0.2098 +vn 0.7843 0.5839 -0.2094 +vn 0.2344 -0.6820 0.6928 +vn 0.0253 0.1367 0.9903 +vn 0.0251 0.1366 0.9903 +vn 0.0254 0.1368 0.9903 +vn -0.8463 0.4483 -0.2877 +vn -0.8467 0.4479 -0.2873 +vn -0.8460 0.4484 -0.2883 +vn -0.0718 -0.9674 -0.2428 +vn -0.0715 -0.9675 -0.2426 +vn -0.0711 -0.9676 -0.2422 +vn -0.5459 -0.4742 0.6908 +vn -0.5456 -0.4740 0.6911 +vn -0.5455 -0.4735 0.6915 +vn -0.7052 0.4286 -0.5648 +vn 0.2374 0.4391 -0.8665 +vn 0.2375 0.4390 -0.8665 +vn -0.4548 0.5625 -0.6905 +vn -0.4548 0.5626 -0.6904 +vn -0.0375 -0.5737 -0.8182 +vn -0.0376 -0.5738 -0.8181 +vn -0.0377 -0.5739 -0.8180 +vn -0.7058 -0.0734 -0.7046 +vn -0.8570 -0.4928 0.1508 +vn -0.8573 -0.4923 0.1504 +vn -0.8567 -0.4933 0.1510 +vn 0.2420 -0.4841 -0.8409 +vn 0.2423 -0.4842 -0.8408 +vn 0.2426 -0.4843 -0.8406 +vn -0.1423 -0.4752 0.8683 +vn -0.1420 -0.4750 0.8685 +vn -0.1418 -0.4752 0.8684 +vn -0.1120 0.7640 -0.6354 +vn -0.1095 0.7652 -0.6344 +vn -0.1134 0.7626 -0.6369 +vn -0.2520 -0.7036 0.6644 +vn 0.1404 -0.7912 -0.5952 +vn 0.1406 -0.7910 -0.5954 +vn 0.1405 -0.7912 -0.5952 +vn -0.9965 -0.0389 -0.0737 +vn -0.9965 -0.0388 -0.0735 +vn -0.9965 -0.0388 -0.0739 +vn -0.7088 0.4551 -0.5390 +vn 0.2541 -0.9519 -0.1714 +vn 0.2529 -0.9522 -0.1715 +vn 0.2520 -0.9524 -0.1718 +vn -0.1255 0.4555 -0.8813 +vn -0.1256 0.4555 -0.8813 +vn -0.6906 -0.7211 -0.0558 +vn -0.3140 -0.5122 -0.7994 +vn 0.9117 -0.0746 0.4041 +vn 0.9120 -0.0743 0.4035 +vn 0.9117 -0.0746 0.4040 +vn -0.3677 0.7136 0.5963 +vn 0.9061 0.1348 -0.4010 +vn 0.1512 -0.2357 0.9600 +vn 0.1509 -0.2358 0.9600 +vn 0.1503 -0.2357 0.9601 +vn -0.2066 -0.2503 0.9459 +vn -0.2066 -0.2504 0.9459 +vn -0.2067 -0.2502 0.9459 +vn -0.5043 -0.6290 -0.5916 +vn -0.5042 -0.6291 -0.5916 +vn 0.7475 -0.5733 -0.3355 +vn 0.7476 -0.5731 -0.3356 +vn 0.7477 -0.5729 -0.3357 +vn -0.0201 -0.6709 -0.7413 +vn -0.0201 -0.6709 -0.7412 +vn -0.4932 -0.8698 -0.0166 +vn -0.4934 -0.8696 -0.0175 +vn -0.4928 -0.8700 -0.0162 +vn -0.1493 -0.7453 -0.6498 +vn -0.1493 -0.7452 -0.6500 +vn 0.5058 0.5702 0.6474 +vn 0.5055 0.5703 0.6474 +vn -0.5165 -0.8562 -0.0101 +vn -0.5169 -0.8560 -0.0104 +vn -0.2248 -0.8678 -0.4432 +vn -0.2250 -0.8677 -0.4433 +vn -0.2249 -0.8677 -0.4432 +vn 0.1590 -0.9873 0.0029 +vn 0.1592 -0.9872 0.0029 +vn 0.1596 -0.9872 0.0027 +vn 0.1663 -0.9655 -0.2006 +vn 0.1664 -0.9655 -0.2004 +vn 0.1661 -0.9655 -0.2005 +vn -0.4400 -0.0939 -0.8931 +vn -0.4394 -0.0936 -0.8934 +vn -0.4398 -0.0942 -0.8932 +vn -0.4708 0.7744 -0.4227 +vn -0.4711 0.7742 -0.4227 +vn -0.4709 0.7743 -0.4227 +vn -0.7688 0.3857 -0.5100 +vn -0.7690 0.3856 -0.5098 +vn -0.7689 0.3856 -0.5100 +vn 0.4441 -0.5761 -0.6862 +vn 0.4410 -0.5790 -0.6858 +vn 0.4428 -0.5768 -0.6865 +vn -0.7554 -0.5336 -0.3804 +vn -0.7549 -0.5341 -0.3805 +vn -0.7958 0.4777 -0.3722 +vn -0.7958 0.4778 -0.3721 +vn -0.7958 0.4776 -0.3723 +vn -0.2755 -0.4219 -0.8638 +vn -0.2759 -0.4224 -0.8634 +vn -0.2763 -0.4231 -0.8629 +vn -0.4249 0.7294 -0.5361 +vn -0.4249 0.7296 -0.5358 +vn 0.7504 0.6002 -0.2768 +vn 0.7503 0.6004 -0.2769 +vn 0.7502 0.6005 -0.2767 +vn 0.1242 -0.8367 -0.5334 +vn 0.3816 -0.8899 -0.2500 +vn 0.3813 -0.8900 -0.2500 +vn 0.1957 -0.5065 -0.8397 +vn 0.1955 -0.5063 -0.8399 +vn -0.4682 -0.7754 -0.4237 +vn -0.4682 -0.7753 -0.4239 +vn -0.4683 -0.7753 -0.4239 +vn 0.1211 -0.5481 -0.8276 +vn 0.1215 -0.5478 -0.8278 +vn 0.1216 -0.5476 -0.8279 +vn -0.7882 0.4121 -0.4570 +vn -0.7882 0.4124 -0.4569 +vn 0.1064 -0.6657 0.7386 +vn 0.1053 -0.6657 0.7387 +vn 0.1060 -0.6656 0.7388 +vn 0.4242 -0.8419 0.3335 +vn 0.4245 -0.8419 0.3332 +vn 0.4244 -0.8419 0.3333 +vn 0.2737 -0.9577 -0.0883 +vn 0.2742 -0.9576 -0.0886 +vn 0.2741 -0.9576 -0.0885 +vn 0.0031 -0.0013 1.0000 +vn -0.3761 0.1760 0.9097 +vn 0.2243 -0.2681 0.9369 +vn 0.2268 -0.2664 0.9368 +vn 0.2260 -0.2673 0.9367 +vn -0.2253 -0.9740 -0.0243 +vn -0.2250 -0.9741 -0.0242 +vn -0.2615 -0.8190 -0.5107 +vn -0.2610 -0.8191 -0.5109 +vn -0.2617 -0.8190 -0.5107 +vn 0.3843 0.9114 0.1471 +vn 0.3853 0.9113 0.1456 +vn 0.3843 0.9115 0.1465 +vn 0.3602 0.5009 -0.7870 +vn 0.3601 0.5009 -0.7871 +vn 0.5618 0.7338 0.3819 +vn 0.5620 0.7334 0.3824 +vn 0.5619 0.7339 0.3816 +vn 0.7697 -0.5374 -0.3447 +vn 0.7698 -0.5372 -0.3448 +vn 0.7699 -0.5371 -0.3447 +vn -0.4960 0.8670 -0.0475 +vn -0.4956 0.8673 -0.0468 +vn -0.4950 0.8676 -0.0463 +vn 0.7911 0.3243 0.5186 +vn 0.7912 0.3241 0.5187 +vn 0.0630 0.7391 -0.6706 +vn 0.0636 0.7387 -0.6711 +vn -0.0028 -0.6073 0.7945 +vn -0.0029 -0.6074 0.7944 +vn 0.0963 -0.7482 0.6564 +vn 0.0965 -0.7482 0.6564 +vn 0.0965 -0.7481 0.6566 +vn 0.2610 0.7038 -0.6607 +vn 0.1819 -0.7429 0.6442 +vn 0.1821 -0.7430 0.6441 +vn 0.1823 -0.7430 0.6440 +vn 0.0349 -0.6941 0.7190 +vn 0.0347 -0.6935 0.7196 +vn 0.0348 -0.6940 0.7191 +vn 0.2156 -0.7821 0.5846 +vn 0.2157 -0.7822 0.5845 +vn 0.2339 -0.8313 0.5042 +vn 0.2343 -0.8313 0.5041 +vn 0.2337 -0.8314 0.5041 +vn 0.3444 0.9385 -0.0230 +vn 0.3442 0.9386 -0.0231 +vn 0.5774 0.7707 -0.2695 +vn 0.5774 0.7706 -0.2696 +vn 0.5775 0.7707 -0.2694 +vn 0.1730 -0.9097 0.3775 +vn 0.1731 -0.9096 0.3776 +vn 0.1732 -0.9096 0.3777 +vn 0.3711 0.9286 0.0073 +vn -0.3152 -0.6096 0.7273 +vn -0.3151 -0.6098 0.7272 +vn -0.3151 -0.6093 0.7277 +vn -0.8677 0.3547 -0.3484 +vn -0.8678 0.3546 -0.3480 +vn -0.8677 0.3546 -0.3483 +vn -0.3315 0.8573 0.3940 +vn -0.3315 0.8571 0.3943 +vn -0.3315 0.8570 0.3944 +vn -0.8641 0.4977 -0.0746 +vn -0.8642 0.4976 -0.0749 +vn -0.2371 -0.0760 0.9685 +vn -0.2379 -0.0758 0.9683 +vn -0.2369 -0.0761 0.9686 +vn -0.1309 0.9877 0.0850 +vn -0.1301 0.9878 0.0853 +vn -0.1288 0.9880 0.0850 +vn 0.7497 0.5618 0.3497 +vn 0.7490 0.5619 0.3511 +vn 0.7484 0.5623 0.3518 +vn -0.4670 -0.1831 0.8651 +vn -0.4671 -0.1833 0.8650 +vn -0.6467 0.0713 0.7594 +vn -0.6473 0.0709 0.7589 +vn -0.6480 0.0701 0.7584 +vn 0.2352 0.9032 -0.3592 +vn 0.2350 0.9035 -0.3584 +vn 0.2351 0.9033 -0.3589 +vn -0.0916 0.1273 -0.9876 +vn -0.0912 0.1271 -0.9877 +vn -0.0914 0.1271 -0.9877 +vn -0.2980 -0.8357 0.4613 +vn -0.2976 -0.8358 0.4614 +vn -0.2981 -0.8357 0.4612 +vn -0.0015 0.0005 1.0000 +vn -0.6858 -0.3121 0.6574 +vn -0.6860 -0.3119 0.6573 +vn -0.6861 -0.3118 0.6573 +vn -0.1086 0.9797 0.1688 +vn -0.1084 0.9797 0.1685 +vn -0.1083 0.9798 0.1683 +vn -0.1148 -0.2979 0.9477 +vn 0.4247 0.8912 -0.1595 +vn 0.4248 0.8912 -0.1591 +vn 0.4243 0.8915 -0.1590 +vn 0.1619 0.4720 0.8666 +vn 0.1622 0.4721 0.8665 +vn 0.1625 0.4721 0.8664 +vn 0.3173 0.9069 0.2772 +vn -0.1561 0.9385 -0.3080 +vn -0.1553 0.9384 -0.3088 +vn -0.1551 0.9378 -0.3107 +vn 0.7791 -0.6184 0.1031 +vn 0.7790 -0.6186 0.1030 +vn 0.7790 -0.6185 0.1031 +vn -0.0945 -0.1654 -0.9817 +vn -0.0944 -0.1666 -0.9815 +vn -0.0945 -0.1660 -0.9816 +vn -0.3440 -0.1971 -0.9181 +vn 0.1332 0.7451 -0.6536 +vn 0.1330 0.7449 -0.6538 +vn 0.4728 -0.4694 0.7458 +vn 0.4727 -0.4696 0.7456 +vn 0.4728 -0.4692 0.7459 +vn -0.4750 0.3162 -0.8212 +vn -0.8401 -0.5074 0.1921 +vn -0.8399 -0.5076 0.1922 +vn 0.6014 -0.6699 0.4353 +vn 0.6019 -0.6696 0.4351 +vn 0.6017 -0.6697 0.4353 +vn -0.6175 0.6758 0.4025 +vn -0.6174 0.6760 0.4024 +vn 0.8491 -0.1306 -0.5118 +vn 0.8487 -0.1303 -0.5126 +vn 0.8490 -0.1302 -0.5121 +vn -0.6891 -0.1544 0.7080 +vn -0.6891 -0.1542 0.7081 +vn 0.5369 -0.5767 -0.6158 +vn 0.5356 -0.5787 -0.6150 +vn 0.5362 -0.5780 -0.6151 +vn -0.6615 0.4896 -0.5681 +vn -0.6618 0.4898 -0.5676 +vn -0.6617 0.4898 -0.5677 +vn -0.2426 -0.2054 -0.9481 +vn -0.2428 -0.2050 -0.9482 +vn -0.2427 -0.2052 -0.9481 +vn -0.6390 0.5388 -0.5490 +vn -0.6386 0.5390 -0.5493 +vn -0.6387 0.5389 -0.5492 +vn -0.3426 0.8397 -0.4214 +vn -0.3424 0.8395 -0.4219 +vn -0.3427 0.8399 -0.4208 +vn -0.6391 -0.5398 -0.5479 +vn 0.0212 0.9672 -0.2530 +vn 0.0212 0.9673 -0.2529 +vn 0.0214 0.9673 -0.2526 +vn -0.9273 -0.3396 -0.1572 +vn -0.9272 -0.3403 -0.1567 +vn -0.9273 -0.3397 -0.1573 +vn -0.6971 -0.5004 0.5135 +vn -0.6970 -0.5000 0.5139 +vn -0.6973 -0.5006 0.5130 +vn 0.3098 0.7265 -0.6133 +vn 0.3099 0.7264 -0.6134 +vn 0.3098 0.7264 -0.6135 +vn 0.7791 0.2991 -0.5509 +vn 0.7789 0.2996 -0.5510 +vn 0.7793 0.2987 -0.5508 +vn 0.9308 -0.3178 -0.1805 +vn 0.9308 -0.3178 -0.1806 +vn 0.8832 0.3815 -0.2729 +vn 0.8833 0.3813 -0.2728 +vn -0.0822 -0.7088 -0.7006 +vn -0.0823 -0.7088 -0.7006 +vn 0.9753 -0.2045 0.0840 +vn 0.8101 -0.4952 0.3140 +vn 0.8100 -0.4951 0.3144 +vn 0.8100 -0.4949 0.3147 +vn -0.3847 -0.1795 0.9054 +vn -0.3848 -0.1798 0.9053 +vn -0.0224 0.9996 0.0163 +vn -0.0232 0.9996 0.0159 +vn 0.0133 -0.9989 0.0456 +vn 0.3205 0.1839 -0.9292 +vn 0.3205 0.1836 -0.9293 +vn 0.3206 0.1836 -0.9292 +vn -0.4543 0.6429 -0.6167 +vn -0.4542 0.6428 -0.6168 +vn -0.4542 0.6428 -0.6169 +vn 0.1345 0.9772 -0.1641 +vn 0.1346 0.9772 -0.1640 +vn 0.1343 0.9772 -0.1647 +vn 0.8127 -0.4764 0.3356 +vn 0.8126 -0.4763 0.3358 +vn 0.8127 -0.4763 0.3357 +vn -0.8463 -0.2532 -0.4687 +vn -0.8463 -0.2535 -0.4685 +vn -0.8461 -0.2536 -0.4688 +vn 0.5084 -0.4687 -0.7224 +vn 0.5086 -0.4685 -0.7223 +vn 0.5083 -0.4688 -0.7224 +vn -0.3952 0.6932 -0.6027 +vn -0.1343 0.0696 -0.9885 +vn -0.5168 -0.7028 -0.4888 +vn -0.5159 -0.7040 -0.4881 +vn -0.5161 -0.7036 -0.4884 +vn -0.8220 0.3784 -0.4256 +vn 0.3168 0.2446 -0.9164 +vn 0.3170 0.2444 -0.9164 +vn 0.3171 0.2443 -0.9164 +vn 0.8260 0.1974 0.5280 +vn 0.8260 0.1974 0.5279 +vn 0.8261 0.1974 0.5278 +vn 0.8287 -0.2377 0.5067 +vn 0.8289 -0.2376 0.5065 +vn 0.8286 -0.2381 0.5067 +vn 0.2709 0.9375 0.2185 +vn 0.2704 0.9377 0.2183 +vn 0.2706 0.9377 0.2181 +vn -0.5496 0.7059 -0.4468 +vn -0.5497 0.7058 -0.4469 +vn -0.5497 0.7053 -0.4476 +vn 0.4524 0.4598 -0.7641 +vn 0.4523 0.4598 -0.7642 +vn 0.1056 0.6448 -0.7570 +vn 0.1052 0.6446 -0.7572 +vn 0.1050 0.6446 -0.7573 +vn -0.1915 0.9179 -0.3475 +vn -0.7732 -0.4893 -0.4034 +vn -0.7733 -0.4891 -0.4036 +vn -0.7734 -0.4891 -0.4033 +vn -0.6058 0.7891 -0.1018 +vn -0.6058 0.7891 -0.1017 +vn -0.6057 0.7890 -0.1026 +vn -0.8596 -0.0746 -0.5054 +vn -0.8595 -0.0749 -0.5057 +vn -0.8597 -0.0747 -0.5054 +vn 0.0069 0.4987 0.8667 +vn 0.0066 0.4986 0.8668 +vn 0.0064 0.4986 0.8668 +vn 0.5479 0.8128 0.1978 +vn 0.5477 0.8129 0.1981 +vn 0.5475 0.8130 0.1982 +vn 0.7929 -0.2965 0.5323 +vn 0.7930 -0.2963 0.5323 +vn 0.0106 0.9992 -0.0377 +vn 0.0109 0.9992 -0.0375 +vn 0.0109 0.9992 -0.0378 +vn -0.7423 0.5199 -0.4226 +vn -0.7426 0.5198 -0.4223 +vn -0.7426 0.5197 -0.4225 +vn -0.1781 -0.3178 -0.9313 +vn -0.1780 -0.3178 -0.9313 +vn -0.2911 -0.9420 0.1670 +vn -0.2914 -0.9419 0.1668 +vn -0.1724 0.9840 -0.0439 +vn -0.1720 0.9841 -0.0441 +vn -0.1731 0.9840 -0.0428 +vn 0.7031 -0.6528 0.2819 +vn 0.7030 -0.6527 0.2824 +vn 0.7031 -0.6528 0.2821 +vn -0.1600 0.8962 -0.4139 +vn -0.1604 0.8965 -0.4130 +vn -0.1601 0.8964 -0.4134 +vn 0.0604 0.9749 -0.2141 +vn 0.0604 0.9749 -0.2144 +vn 0.0606 0.9750 -0.2139 +vn -0.1881 0.9820 -0.0171 +vn -0.1885 0.9819 -0.0176 +vn -0.1883 0.9820 -0.0172 +vn 0.3706 0.7157 -0.5919 +vn 0.3705 0.7158 -0.5919 +vn 0.3701 0.7161 -0.5919 +vn -0.5866 -0.6828 0.4356 +vn -0.5867 -0.6828 0.4355 +vn -0.5867 -0.6827 0.4355 +vn 0.4238 0.6895 -0.5874 +vn 0.4238 0.6896 -0.5873 +vn 0.4236 0.6896 -0.5874 +vn 0.4540 -0.7419 0.4934 +vn 0.4539 -0.7420 0.4933 +vn 0.4540 -0.7420 0.4933 +vn 0.1803 0.9045 -0.3864 +vn 0.1804 0.9045 -0.3864 +vn 0.1807 0.9044 -0.3866 +vn -0.7789 -0.3598 0.5136 +vn -0.7793 -0.3591 0.5135 +vn -0.7785 -0.3609 0.5135 +vn 0.8879 -0.4583 -0.0401 +vn 0.8878 -0.4585 -0.0403 +vn 0.8878 -0.4584 -0.0402 +vn 0.6443 -0.5799 0.4986 +vn -0.3670 -0.8929 -0.2609 +vn -0.3619 0.8897 -0.2784 +vn -0.5283 -0.8447 -0.0856 +vn -0.5283 -0.8447 -0.0857 +vn -0.6925 0.4441 -0.5686 +vn -0.6923 0.4439 -0.5689 +vn -0.6922 0.4435 -0.5693 +vn -0.5245 -0.7893 -0.3193 +vn -0.5243 -0.7894 -0.3193 +vn -0.5244 -0.7893 -0.3193 +vn 0.6453 0.6366 -0.4223 +vn -0.6560 -0.5950 -0.4644 +vn -0.6558 -0.5954 -0.4642 +vn -0.6558 -0.5950 -0.4646 +vn -0.2977 0.8396 -0.4544 +vn -0.2979 0.8394 -0.4545 +vn 0.3127 0.9498 0.0097 +vn 0.3128 0.9498 0.0100 +vn 0.3128 0.9498 0.0096 +vn 0.4527 -0.8817 0.1329 +vn 0.8122 -0.0827 0.5775 +vn 0.3334 -0.9288 0.1619 +vn 0.3334 -0.9287 0.1622 +vn 0.3335 -0.9286 0.1625 +vn 0.8010 -0.5558 -0.2225 +vn 0.8011 -0.5557 -0.2223 +vn -0.6558 -0.7243 -0.2126 +vn -0.0232 -0.9886 -0.1487 +vn -0.0222 -0.9886 -0.1486 +vn 0.4387 0.8090 -0.3913 +vn 0.4387 0.8088 -0.3917 +vn 0.4387 0.8089 -0.3914 +vn -0.4344 0.7263 -0.5328 +vn -0.4345 0.7263 -0.5327 +vn 0.8623 0.1219 -0.4915 +vn 0.6287 -0.1100 0.7698 +vn 0.6291 -0.1099 0.7695 +vn 0.6280 -0.1101 0.7704 +vn -0.7191 0.6921 0.0616 +vn -0.7191 0.6922 0.0615 +vn -0.7192 0.6921 0.0617 +vn 0.2455 0.7783 0.5779 +vn 0.9520 0.2726 -0.1390 +vn 0.9522 0.2715 -0.1397 +vn -0.2419 -0.8574 -0.4543 +vn -0.2418 -0.8574 -0.4543 +vn -0.6823 -0.7105 0.1720 +vn -0.6827 -0.7101 0.1719 +vn -0.6826 -0.7103 0.1720 +vn 0.7047 -0.5114 -0.4918 +vn 0.7044 -0.5114 -0.4922 +vn 0.7045 -0.5116 -0.4919 +vn 0.2644 0.9619 -0.0694 +vn 0.2645 0.9620 -0.0681 +vn 0.2648 0.9619 -0.0677 +vn -0.8091 0.5301 -0.2537 +vn -0.6105 -0.6607 -0.4368 +vn 0.5745 -0.8176 -0.0383 +vn 0.5743 -0.8177 -0.0379 +vn 0.5746 -0.8176 -0.0373 +vn 0.0850 -0.0235 -0.9961 +vn 0.0842 -0.0240 -0.9962 +vn 0.0844 -0.0238 -0.9961 +vn 0.2445 0.7421 0.6242 +vn 0.2446 0.7420 0.6242 +vn 0.2444 0.7421 0.6242 +vn -0.5498 -0.5150 -0.6577 +vn -0.5496 -0.5151 -0.6577 +vn 0.8355 -0.5465 0.0576 +vn -0.2211 0.9724 -0.0750 +vn -0.2210 0.9724 -0.0750 +vn -0.2212 0.9723 -0.0751 +vn 0.1196 -0.9526 0.2798 +vn 0.1195 -0.9525 0.2802 +vn 0.1197 -0.9526 0.2796 +vn 0.0715 0.9607 0.2683 +vn 0.0714 0.9607 0.2683 +vn 0.4878 -0.5239 -0.6983 +vn 0.4877 -0.5240 -0.6982 +vn 0.8829 0.4585 0.1013 +vn 0.9611 -0.1504 -0.2317 +vn 0.9612 -0.1504 -0.2312 +vn 0.9610 -0.1504 -0.2320 +vn -0.4939 -0.8024 0.3350 +vn 0.3138 -0.7029 -0.6384 +vn 0.3142 -0.7030 -0.6380 +vn 0.3145 -0.7030 -0.6379 +vn -0.1014 0.9335 -0.3438 +vn -0.1013 0.9336 -0.3438 +vn 0.6644 0.6478 0.3728 +vn 0.6643 0.6479 0.3727 +vn 0.5213 -0.5205 -0.6762 +vn 0.5214 -0.5206 -0.6761 +vn -0.4651 -0.5688 -0.6784 +vn -0.4652 -0.5685 -0.6785 +vn -0.4648 -0.5692 -0.6782 +vn 0.8592 0.0517 0.5091 +vn 0.8592 0.0516 0.5091 +vn 0.3698 -0.3838 0.8462 +vn 0.3698 -0.3841 0.8460 +vn 0.3697 -0.3842 0.8460 +vn -0.3434 -0.6516 -0.6764 +vn -0.3437 -0.6513 -0.6765 +vn -0.3428 -0.6518 -0.6765 +vn -0.3178 -0.5436 -0.7768 +vn -0.3177 -0.5437 -0.7768 +vn -0.3177 -0.5438 -0.7768 +vn -0.2430 0.9251 -0.2918 +vn -0.2427 0.9252 -0.2917 +vn -0.2427 0.9252 -0.2918 +vn -0.8910 0.2998 -0.3410 +vn -0.8912 0.2997 -0.3406 +vn 0.2208 -0.0460 0.9742 +vn 0.4595 -0.7957 -0.3946 +vn -0.1931 -0.2204 0.9561 +vn -0.1952 -0.2205 0.9557 +vn -0.1963 -0.2215 0.9552 +vn -0.3964 -0.8818 0.2554 +vn -0.3964 -0.8819 0.2553 +vn 0.2051 0.5906 -0.7805 +vn 0.2057 0.5908 -0.7801 +vn 0.2055 0.5907 -0.7803 +vn 0.2089 -0.6422 -0.7375 +vn 0.2088 -0.6422 -0.7376 +vn 0.1807 -0.3712 -0.9108 +vn 0.1803 -0.3715 -0.9107 +vn 0.1801 -0.3716 -0.9108 +vn -0.0530 -0.2117 0.9759 +vn 0.8199 -0.3251 -0.4713 +vn 0.8200 -0.3249 -0.4712 +vn 0.5343 0.5155 0.6699 +vn 0.5360 0.5145 0.6693 +vn 0.5352 0.5149 0.6696 +vn -0.5261 -0.0927 -0.8454 +vn -0.5262 -0.0913 -0.8454 +vn -0.5270 -0.0889 -0.8452 +vn 0.0879 0.8042 -0.5878 +vn 0.0896 0.8038 -0.5881 +vn 0.0907 0.8039 -0.5878 +vn 0.0562 -0.9974 -0.0448 +vn 0.0563 -0.9974 -0.0449 +vn -0.3061 -0.8780 0.3679 +vn -0.3059 -0.8782 0.3678 +vn -0.3054 -0.8783 0.3678 +vn -0.1942 -0.3966 0.8972 +vn -0.1947 -0.3964 0.8972 +vn -0.1945 -0.3964 0.8973 +vn -0.6663 -0.4958 -0.5570 +vn -0.6667 -0.4956 -0.5567 +vn -0.6664 -0.4958 -0.5568 +vn 0.3987 0.1583 0.9033 +vn 0.3987 0.1584 0.9033 +vn 0.3985 0.1586 0.9034 +vn -0.7194 -0.5196 -0.4609 +vn -0.7194 -0.5197 -0.4609 +vn -0.7195 -0.5195 -0.4610 +vn -0.9370 -0.0947 -0.3363 +vn -0.9370 -0.0947 -0.3362 +vn -0.9372 -0.0947 -0.3356 +vn 0.8157 0.5373 0.2144 +vn 0.8146 0.5388 0.2147 +vn 0.8138 0.5397 0.2156 +vn 0.5446 0.7130 -0.4416 +vn 0.5448 0.7131 -0.4413 +vn 0.5445 0.7130 -0.4418 +vn -0.8050 0.1004 -0.5847 +vn -0.8049 0.1005 -0.5849 +vn 0.3348 0.9421 0.0189 +vn 0.3347 0.9421 0.0189 +vn 0.3350 0.9420 0.0189 +vn -0.3357 -0.6767 -0.6552 +vn -0.3357 -0.6768 -0.6552 +vn -0.3357 -0.6760 -0.6560 +vn -0.4993 -0.8594 -0.1102 +vn -0.4980 -0.8602 -0.1097 +vn -0.4986 -0.8598 -0.1103 +vn 0.5141 -0.5984 -0.6145 +vn 0.5139 -0.5984 -0.6147 +vn -0.5279 -0.8468 -0.0657 +vn -0.5279 -0.8468 -0.0652 +vn -0.5278 -0.8469 -0.0646 +vn -0.0152 0.0181 0.9997 +vn -0.0156 0.0172 0.9997 +vn -0.0151 0.0183 0.9997 +vn -0.1786 0.9592 0.2193 +vn -0.1786 0.9591 0.2195 +vn 0.1642 -0.9861 0.0260 +vn -0.5980 -0.5830 0.5500 +vn -0.5966 -0.5838 0.5507 +vn -0.5970 -0.5837 0.5504 +vn 0.5614 -0.7944 -0.2317 +vn 0.5610 -0.7948 -0.2313 +vn 0.5610 -0.7949 -0.2309 +vn 0.0055 -0.9162 -0.4006 +vn 0.0054 -0.9164 -0.4003 +vn -0.9465 -0.1428 0.2895 +vn -0.9466 -0.1429 0.2891 +vn -0.9464 -0.1426 0.2899 +vn 0.2469 -0.8447 -0.4749 +vn 0.2467 -0.8448 -0.4748 +vn -0.7436 -0.6539 -0.1396 +vn -0.7437 -0.6538 -0.1396 +vn -0.7436 -0.6539 -0.1395 +vn 0.5344 0.8420 -0.0736 +vn 0.5346 0.8419 -0.0735 +vn 0.6007 0.7967 0.0658 +vn 0.6006 0.7968 0.0653 +vn 0.6008 0.7967 0.0656 +vn -0.3245 -0.6913 -0.6456 +vn -0.3245 -0.6912 -0.6457 +vn -0.3246 -0.6914 -0.6454 +vn 0.2865 0.9509 -0.1167 +vn 0.2862 0.9510 -0.1166 +vn 0.2861 0.9511 -0.1165 +vn -0.9054 -0.1562 0.3948 +vn -0.9048 -0.1561 0.3962 +vn -0.9060 -0.1570 0.3932 +vn -0.0420 -0.5210 -0.8526 +vn -0.0423 -0.5213 -0.8523 +vn -0.0424 -0.5211 -0.8524 +vn 0.1368 -0.6780 -0.7222 +vn 0.1368 -0.6779 -0.7223 +vn 0.1369 -0.6778 -0.7224 +vn 0.1322 -0.2579 0.9571 +vn 0.1327 -0.2576 0.9571 +vn 0.1321 -0.2579 0.9571 +vn 0.6732 -0.4757 -0.5661 +vn 0.6733 -0.4758 -0.5659 +vn 0.6736 -0.4761 -0.5654 +vn -0.8558 -0.0078 -0.5172 +vn -0.8555 -0.0072 -0.5178 +vn -0.8556 -0.0076 -0.5176 +vn 0.7089 0.4041 0.5781 +vn 0.7090 0.4038 0.5781 +vn -0.3680 0.0287 -0.9294 +vn -0.3688 0.0296 -0.9290 +vn -0.3691 0.0311 -0.9289 +vn 0.9595 -0.2567 -0.1163 +vn 0.9595 -0.2566 -0.1166 +vn 0.9596 -0.2560 -0.1168 +vn -0.3589 0.1320 0.9240 +vn -0.3591 0.1318 0.9240 +vn -0.2799 -0.5015 -0.8186 +vn -0.2796 -0.5015 -0.8187 +vn -0.2792 -0.5017 -0.8187 +vn -0.7726 0.5641 -0.2913 +vn -0.0355 -0.4898 -0.8711 +vn -0.0355 -0.4897 -0.8712 +vn -0.7846 0.3942 -0.4786 +vn -0.7846 0.3941 -0.4787 +vn -0.7845 0.3941 -0.4788 +vn -0.7049 0.5795 0.4091 +vn 0.0217 0.1994 0.9797 +vn 0.0222 0.1993 0.9797 +vn 0.0225 0.1991 0.9797 +vn 0.1303 -0.9873 -0.0913 +vn 0.1302 -0.9873 -0.0910 +vn -0.4672 -0.0259 -0.8838 +vn -0.4673 -0.0261 -0.8837 +vn 0.0880 -0.9386 0.3335 +vn 0.0890 -0.9385 0.3336 +vn 0.0897 -0.9386 0.3331 +vn -0.3357 -0.9233 0.1866 +vn -0.3356 -0.9233 0.1870 +vn -0.3355 -0.9232 0.1872 +vn -0.0609 0.8736 0.4829 +vn -0.0608 0.8735 0.4830 +vn -0.0606 0.8736 0.4829 +vn -0.0423 -0.3567 -0.9332 +vn -0.0067 0.8423 -0.5390 +vn -0.0066 0.8424 -0.5388 +vn -0.0067 0.8422 -0.5391 +vn 0.2179 -0.5992 0.7703 +vn 0.2178 -0.5993 0.7703 +vn 0.2179 -0.5993 0.7703 +vn -0.8636 0.1561 -0.4794 +vn -0.8635 0.1559 -0.4797 +vn -0.8635 0.1558 -0.4796 +vn 0.5956 -0.3412 -0.7272 +vn 0.5951 -0.3414 -0.7275 +vn 0.5952 -0.3415 -0.7274 +vn 0.3408 0.4326 0.8347 +vn 0.3396 0.4317 0.8356 +vn 0.3400 0.4322 0.8352 +vn -0.2270 0.7520 -0.6189 +vn -0.2269 0.7516 -0.6194 +vn -0.2269 0.7518 -0.6191 +vn 0.3858 0.4400 0.8109 +vn 0.3854 0.4403 0.8109 +vn -0.9583 0.1396 -0.2493 +vn -0.7749 -0.5517 -0.3084 +vn -0.7744 -0.5522 -0.3087 +vn -0.7742 -0.5525 -0.3087 +vn 0.1946 0.9177 0.3463 +vn 0.1940 0.9178 0.3465 +vn 0.1953 0.9177 0.3459 +vn 0.6242 0.6678 0.4055 +vn 0.6244 0.6676 0.4055 +vn 0.4986 0.3083 0.8101 +vn 0.4988 0.3082 0.8101 +vn 0.4986 0.3078 0.8103 +vn -0.1564 0.1483 -0.9765 +vn -0.1563 0.1483 -0.9765 +vn -0.1012 -0.9787 -0.1786 +vn -0.1009 -0.9787 -0.1787 +vn -0.1011 -0.9787 -0.1787 +vn -0.2730 -0.4883 -0.8289 +vn -0.2733 -0.4884 -0.8287 +vn -0.2727 -0.4883 -0.8290 +vn -0.3230 -0.6059 -0.7270 +vn -0.3228 -0.6053 -0.7277 +vn -0.3221 -0.6051 -0.7281 +vn 0.0686 0.6940 -0.7167 +vn -0.1779 0.1629 -0.9705 +vn -0.1781 0.1630 -0.9704 +vn -0.1778 0.1626 -0.9705 +vn 0.8940 -0.4084 0.1845 +vn -0.3846 0.5006 -0.7755 +vn -0.3847 0.5006 -0.7755 +vn -0.3850 0.5005 -0.7755 +vn 0.8999 -0.1641 0.4040 +vn -0.0374 -0.6055 0.7950 +vn -0.0373 -0.6056 0.7949 +vn -0.0375 -0.6054 0.7950 +vn -0.0390 -0.6033 0.7965 +vn -0.0392 -0.6037 0.7962 +vn -0.0393 -0.6043 0.7958 +vn -0.2896 -0.8529 -0.4344 +vn -0.2896 -0.8528 -0.4345 +vn -0.2897 -0.8528 -0.4345 +vn -0.5269 0.2099 -0.8236 +vn -0.5268 0.2101 -0.8236 +vn -0.5268 0.2097 -0.8237 +vn 0.4574 0.5137 0.7259 +vn 0.4571 0.5140 0.7258 +vn 0.4578 0.5131 0.7260 +vn 0.5797 0.4213 -0.6974 +vn 0.5799 0.4208 -0.6976 +vn 0.5799 0.4207 -0.6977 +vn -0.0475 -0.5426 0.8386 +vn -0.0468 -0.5427 0.8386 +vn -0.0471 -0.5428 0.8386 +vn -0.2141 -0.3964 0.8928 +vn -0.2139 -0.3971 0.8925 +vn -0.2141 -0.3975 0.8923 +vn -0.0345 -0.4313 0.9015 +vn -0.0348 -0.4316 0.9014 +vn -0.0347 -0.4315 0.9014 +vn 0.4115 -0.8540 0.3183 +vn 0.4118 -0.8540 0.3181 +vn 0.4113 -0.8540 0.3185 +vn -0.6309 0.7609 0.1518 +vn -0.6308 0.7610 0.1517 +vn -0.1490 0.7459 0.6492 +vn -0.1486 0.7458 0.6494 +vn -0.1482 0.7460 0.6493 +vn -0.4761 0.1548 -0.8657 +vn -0.6332 -0.2383 0.7364 +vn -0.6331 -0.2382 0.7365 +vn -0.6333 -0.2383 0.7363 +vn 0.4864 -0.0225 0.8734 +vn 0.4861 -0.0227 0.8736 +vn 0.4863 -0.0227 0.8735 +vn 0.0650 0.9242 -0.3763 +vn 0.0646 0.9243 -0.3762 +vn 0.0649 0.9242 -0.3763 +vn -0.0917 0.1604 -0.9828 +vn -0.0925 0.1609 -0.9826 +vn -0.0923 0.1608 -0.9827 +vn 0.1074 0.9911 0.0788 +vn 0.1074 0.9911 0.0791 +vn 0.9052 0.3031 0.2979 +vn 0.9051 0.3033 0.2979 +vn -0.2913 0.1242 -0.9485 +vn -0.2915 0.1241 -0.9485 +vn -0.5921 0.4548 0.6653 +vn -0.5920 0.4548 0.6654 +vn -0.5484 -0.5691 -0.6127 +vn -0.5484 -0.5687 -0.6130 +vn -0.1427 0.2490 -0.9579 +vn -0.1420 0.2491 -0.9580 +vn -0.1422 0.2492 -0.9580 +vn 0.3011 -0.0975 0.9486 +vn 0.2667 0.4367 -0.8592 +vn 0.2668 0.4366 -0.8592 +vn 0.2666 0.4369 -0.8591 +vn 0.4985 -0.6978 0.5143 +vn 0.4985 -0.6977 0.5145 +vn 0.4985 -0.6981 0.5140 +vn -0.1134 0.9119 -0.3943 +vn -0.7853 -0.6112 -0.0989 +vn -0.7853 -0.6111 -0.0992 +vn -0.7853 -0.6112 -0.0988 +vn 0.1038 0.7734 -0.6253 +vn 0.1037 0.7735 -0.6253 +vn -0.0323 -0.0216 0.9992 +vn -0.0322 -0.0216 0.9992 +vn -0.2549 -0.8228 -0.5079 +vn -0.2546 -0.8229 -0.5079 +vn -0.2548 -0.8229 -0.5079 +vn -0.5360 0.7839 -0.3133 +vn -0.5339 0.7870 -0.3092 +vn -0.5340 0.7859 -0.3117 +vn -0.2949 0.0141 -0.9554 +vn -0.2950 0.0143 -0.9554 +vn -0.2950 0.0142 -0.9554 +vn -0.1873 -0.2710 -0.9442 +vn -0.1863 -0.2713 -0.9443 +vn -0.1868 -0.2712 -0.9442 +vn 0.7776 0.6179 -0.1164 +vn -0.1217 0.9742 -0.1902 +vn -0.6541 -0.7374 -0.1684 +vn -0.6544 -0.7374 -0.1676 +vn -0.6542 -0.7374 -0.1680 +vn -0.9224 -0.0478 0.3834 +vn -0.9223 -0.0478 0.3835 +vn 0.6548 -0.5726 0.4933 +vn 0.6566 -0.5709 0.4929 +vn 0.6559 -0.5717 0.4928 +vn 0.3919 0.9179 -0.0622 +vn 0.3920 0.9179 -0.0617 +vn 0.3920 0.9179 -0.0619 +vn 0.8419 0.0741 -0.5345 +vn 0.8420 0.0738 -0.5344 +vn 0.8420 0.0739 -0.5344 +vn 0.1127 0.1741 0.9783 +vn 0.1126 0.1741 0.9783 +vn 0.1128 0.1741 0.9782 +vn 0.8228 0.2317 -0.5189 +vn 0.8227 0.2328 -0.5187 +vn 0.8228 0.2323 -0.5187 +vn 0.3678 0.9058 -0.2102 +vn 0.3669 0.9062 -0.2103 +vn 0.3668 0.9062 -0.2104 +vn 0.8092 -0.3851 0.4437 +vn 0.8090 -0.3853 0.4440 +vn 0.3048 0.9403 0.1517 +vn 0.3047 0.9403 0.1518 +vn 0.9920 0.0399 -0.1194 +vn 0.9920 0.0398 -0.1196 +vn 0.9921 0.0397 -0.1193 +vn -0.5550 0.8307 0.0448 +vn -0.5551 0.8306 0.0446 +vn -0.5550 0.8306 0.0449 +vn 0.5262 -0.4375 -0.7292 +vn 0.5254 -0.4390 -0.7289 +vn 0.5257 -0.4381 -0.7292 +vn 0.5900 0.3469 -0.7291 +vn -0.4893 -0.6637 -0.5658 +vn -0.4896 -0.6640 -0.5652 +vn -0.4895 -0.6632 -0.5662 +vn -0.8776 -0.3232 -0.3539 +vn -0.3123 0.9380 -0.1507 +vn -0.3129 0.9377 -0.1508 +vn -0.2603 0.2341 -0.9367 +vn -0.2600 0.2337 -0.9369 +vn -0.2602 0.2340 -0.9368 +vn -0.5795 -0.5176 -0.6295 +vn -0.8891 -0.2282 -0.3968 +vn -0.8892 -0.2282 -0.3966 +vn -0.8891 -0.2286 -0.3964 +vn -0.1419 0.7682 -0.6243 +vn -0.1421 0.7682 -0.6243 +vn -0.1424 0.7680 -0.6244 +vn 0.2721 0.9520 -0.1401 +vn 0.2720 0.9520 -0.1402 +vn 0.5605 -0.5164 -0.6474 +vn 0.5608 -0.5166 -0.6470 +vn 0.5604 -0.5162 -0.6476 +vn -0.7328 -0.2804 -0.6200 +vn 0.5588 -0.3850 0.7345 +vn 0.5599 -0.3865 0.7329 +vn 0.5597 -0.3883 0.7321 +vn -0.8916 0.4245 -0.1577 +vn -0.8914 0.4250 -0.1576 +vn -0.8914 0.4249 -0.1576 +vn 0.9940 -0.1065 0.0258 +vn 0.9940 -0.1064 0.0262 +vn 0.9940 -0.1059 0.0264 +vn -0.7086 -0.5554 -0.4351 +vn -0.7088 -0.5553 -0.4349 +vn -0.7089 -0.5552 -0.4350 +vn -0.6278 -0.0678 0.7754 +vn -0.6275 -0.0681 0.7756 +vn -0.6272 -0.0682 0.7759 +vn 0.8128 -0.4333 0.3894 +vn 0.8127 -0.4329 0.3900 +vn 0.8127 -0.4336 0.3891 +vn 0.6110 0.0416 0.7905 +vn 0.6109 0.0415 0.7906 +vn 0.6126 0.0410 0.7893 +vn -0.8165 -0.4699 -0.3354 +vn 0.1382 0.4160 -0.8988 +vn 0.1379 0.4149 -0.8993 +vn 0.1380 0.4155 -0.8991 +vn 0.3903 0.9164 -0.0885 +vn 0.3904 0.9164 -0.0886 +vn 0.3905 0.9163 -0.0887 +vn 0.8273 -0.3425 0.4453 +vn 0.8272 -0.3427 0.4454 +vn 0.8274 -0.3425 0.4451 +vn -0.5357 -0.0448 -0.8432 +vn -0.5356 -0.0449 -0.8433 +vn -0.5355 -0.0448 -0.8434 +vn -0.0005 0.0003 1.0000 +vn -0.8187 -0.5535 -0.1528 +vn -0.8186 -0.5536 -0.1530 +vn -0.8185 -0.5538 -0.1528 +vn -0.0725 0.4955 -0.8656 +vn -0.0727 0.4955 -0.8656 +vn -0.0722 0.4956 -0.8655 +vn -0.3193 -0.3741 0.8707 +vn -0.3190 -0.3739 0.8709 +vn -0.3191 -0.3740 0.8708 +vn -0.7883 -0.4730 -0.3934 +vn -0.6938 0.1104 -0.7116 +vn 0.8203 -0.5654 0.0860 +vn 0.8202 -0.5655 0.0860 +vn 0.8203 -0.5655 0.0859 +vn 0.5575 0.7118 -0.4272 +vn -0.8440 -0.4547 -0.2844 +vn -0.8442 -0.4543 -0.2845 +vn -0.8439 -0.4550 -0.2844 +vn -0.0503 -0.9986 0.0136 +vn -0.0505 -0.9986 0.0137 +vn 0.4683 -0.7114 -0.5241 +vn 0.4703 -0.7120 -0.5214 +vn 0.4664 -0.7116 -0.5255 +vn -0.1026 -0.9947 -0.0000 +vn 0.9494 0.3103 -0.0492 +vn 0.9494 0.3103 -0.0491 +vn 0.9494 0.3102 -0.0491 +vn -0.8485 -0.3083 -0.4302 +vn -0.8488 -0.3077 -0.4300 +vn -0.8486 -0.3080 -0.4302 +vn 0.1298 0.9915 0.0103 +vn 0.1298 0.9915 0.0098 +vn 0.1299 0.9915 0.0099 +vn -0.0865 -0.9752 0.2039 +vn 0.0066 -0.3810 -0.9246 +vn 0.0074 -0.3805 -0.9247 +vn 0.0059 -0.3809 -0.9246 +vn -0.8270 -0.3374 -0.4497 +vn -0.8271 -0.3374 -0.4495 +vn -0.4673 0.6971 -0.5438 +vn -0.4676 0.6968 -0.5439 +vn -0.7915 0.5785 -0.1971 +vn -0.7917 0.5783 -0.1970 +vn -0.7913 0.5788 -0.1972 +vn 0.3783 -0.8775 0.2948 +vn 0.4640 -0.8579 0.2206 +vn 0.4643 -0.8578 0.2205 +vn 0.5219 0.8319 0.1885 +vn 0.5218 0.8321 0.1880 +vn 0.5218 0.8322 0.1876 +vn -0.7232 0.4189 -0.5491 +vn -0.7231 0.4190 -0.5491 +vn -0.7231 0.4189 -0.5492 +vn -0.4669 0.7228 -0.5094 +vn -0.4658 0.7232 -0.5100 +vn -0.4667 0.7229 -0.5096 +vn -0.6413 -0.0733 -0.7638 +vn -0.6411 -0.0734 -0.7639 +vn -0.2117 -0.9773 -0.0053 +vn -0.2121 -0.9772 -0.0056 +vn -0.5724 0.3934 -0.7194 +vn 0.4285 0.8612 -0.2734 +vn 0.4283 0.8613 -0.2733 +vn -0.8262 0.4544 -0.3329 +vn -0.8262 0.4544 -0.3330 +vn -0.8261 0.4545 -0.3332 +vn -0.6514 0.6038 -0.4595 +vn -0.6513 0.6039 -0.4595 +vn -0.6514 0.6039 -0.4594 +vn 0.0118 0.9958 -0.0908 +vn 0.0117 0.9958 -0.0909 +vn -0.8132 -0.4658 -0.3489 +vn -0.8131 -0.4659 -0.3490 +vn -0.4619 -0.1179 -0.8791 +vn -0.4619 -0.1177 -0.8791 +vn -0.4617 -0.1175 -0.8792 +vn -0.3568 0.9267 0.1178 +vn -0.3570 0.9267 0.1177 +vn -0.3570 0.9267 0.1176 +vn -0.5745 0.4465 -0.6860 +vn -0.5754 0.4457 -0.6858 +vn -0.5749 0.4462 -0.6858 +vn -0.3186 -0.4222 0.8486 +vn -0.3189 -0.4224 0.8485 +vn -0.8015 0.3133 -0.5093 +vn -0.8015 0.3134 -0.5092 +vn -0.8014 0.3137 -0.5093 +vn 0.4600 0.6662 0.5870 +vn 0.4601 0.6661 0.5870 +vn -0.5576 0.7548 -0.3454 +vn -0.5576 0.7549 -0.3453 +vn 0.0659 0.6046 0.7938 +vn 0.0657 0.6044 0.7939 +vn 0.0662 0.6047 0.7937 +vn 0.7818 0.2623 0.5657 +vn 0.7826 0.2613 0.5650 +vn 0.7821 0.2617 0.5656 +vn 0.9035 -0.4148 -0.1078 +vn 0.9035 -0.4148 -0.1076 +vn 0.9035 -0.4148 -0.1079 +vn 0.8815 -0.4649 -0.0821 +vn 0.8814 -0.4652 -0.0821 +vn 0.8815 -0.4649 -0.0822 +vn 0.6494 -0.5887 0.4814 +vn 0.6496 -0.5889 0.4809 +vn 0.6496 -0.5890 0.4808 +vn 0.6404 0.4979 -0.5848 +vn 0.6403 0.4979 -0.5849 +vn 0.0920 -0.9591 -0.2678 +vn 0.4326 0.8939 -0.1174 +vn 0.4324 0.8940 -0.1177 +vn 0.4325 0.8939 -0.1175 +vn -0.4407 -0.2441 0.8638 +vn -0.4410 -0.2443 0.8636 +vn -0.4413 -0.2445 0.8634 +vn -0.0923 0.9724 -0.2142 +vn -0.0923 0.9725 -0.2140 +vn -0.0922 0.9725 -0.2138 +vn 0.0519 0.8092 -0.5852 +vn 0.0516 0.8094 -0.5850 +vn 0.0517 0.8094 -0.5850 +vn 0.8799 -0.4129 -0.2351 +vn 0.8801 -0.4128 -0.2344 +vn -0.7563 -0.4900 -0.4335 +vn -0.7562 -0.4902 -0.4335 +vn -0.7561 -0.4903 -0.4335 +vn -0.6456 -0.7316 -0.2191 +vn 0.5991 -0.3329 -0.7282 +vn 0.5993 -0.3329 -0.7280 +vn -0.9083 0.0686 0.4126 +vn -0.9082 0.0686 0.4128 +vn -0.9079 0.0688 0.4135 +vn -0.7783 0.5829 -0.2333 +vn -0.7783 0.5829 -0.2334 +vn -0.7784 0.5827 -0.2337 +vn 0.2600 0.8717 -0.4154 +vn 0.2520 -0.3322 0.9089 +vn 0.2521 -0.3324 0.9088 +vn 0.5077 -0.5545 -0.6593 +vn 0.5077 -0.5546 -0.6593 +vn 0.5077 -0.5545 -0.6594 +vn 0.8236 0.4710 0.3159 +vn 0.8233 0.4711 0.3165 +vn 0.8234 0.4711 0.3164 +vn -0.8020 0.4107 -0.4337 +vn -0.8012 0.4121 -0.4338 +vn -0.8016 0.4113 -0.4338 +vn 0.8593 0.4886 0.1514 +vn 0.8593 0.4886 0.1513 +vn -0.9707 -0.0534 0.2341 +vn -0.9710 -0.0518 0.2335 +vn -0.9712 -0.0511 0.2327 +vn -0.3506 -0.7660 0.5388 +vn -0.3507 -0.7659 0.5389 +vn -0.3506 -0.7661 0.5387 +vn -0.8037 -0.5195 -0.2902 +vn 0.8232 0.5372 0.1838 +vn 0.8233 0.5371 0.1837 +vn 0.8230 0.5374 0.1837 +vn -0.8182 -0.4411 -0.3688 +vn -0.8181 -0.4410 -0.3691 +vn -0.8181 -0.4410 -0.3692 +vn -0.5946 -0.7322 -0.3321 +vn -0.5945 -0.7323 -0.3322 +vn -0.5942 -0.7324 -0.3324 +vn 0.0565 0.2730 -0.9603 +vn 0.0564 0.2730 -0.9604 +vn -0.7456 -0.2904 0.5998 +vn -0.7462 -0.2899 0.5993 +vn -0.7454 -0.2905 0.6000 +vn -0.8225 0.0023 0.5688 +vn -0.8220 0.0016 0.5694 +vn -0.8223 0.0022 0.5691 +vn 0.9911 0.0316 -0.1293 +vn 0.9911 0.0315 -0.1294 +vn 0.9911 0.0316 -0.1295 +vn 0.4957 0.5866 -0.6405 +vn 0.4955 0.5868 -0.6404 +vn 0.4959 0.5865 -0.6404 +vn -0.4103 0.2971 0.8622 +vn -0.4102 0.2970 0.8623 +vn -0.4105 0.2970 0.8621 +vn 0.6754 -0.5237 -0.5192 +vn 0.8842 -0.4649 -0.0454 +vn 0.8839 -0.4654 -0.0458 +vn 0.8846 -0.4641 -0.0453 +vn -0.7458 0.1116 -0.6567 +vn -0.7460 0.1115 -0.6566 +vn -0.7461 0.1114 -0.6565 +vn 0.7573 0.4503 0.4730 +vn 0.7568 0.4506 0.4735 +vn 0.7566 0.4507 0.4738 +vn 0.7789 -0.2299 0.5834 +vn 0.7790 -0.2300 0.5833 +vn 0.6434 0.6416 -0.4176 +vn 0.6433 0.6417 -0.4176 +vn 0.6431 0.6420 -0.4175 +vn -0.7846 0.5041 0.3608 +vn -0.7847 0.5042 0.3607 +vn -0.1039 0.2681 0.9578 +vn -0.1984 0.2410 -0.9500 +vn -0.3021 -0.6873 -0.6606 +vn -0.3031 -0.6880 -0.6594 +vn -0.3028 -0.6876 -0.6600 +vn 0.0790 -0.9016 -0.4253 +vn 0.0794 -0.9022 -0.4240 +vn 0.0792 -0.9018 -0.4248 +vn 0.0764 0.9527 -0.2943 +vn 0.0764 0.9526 -0.2945 +vn -0.2366 0.9628 -0.1306 +vn -0.2369 0.9627 -0.1307 +vn -0.2368 0.9627 -0.1306 +vn -0.7113 0.5993 -0.3673 +vn -0.7113 0.5990 -0.3678 +vn -0.7113 0.5992 -0.3675 +vn 0.7891 0.5646 0.2421 +vn 0.7891 0.5645 0.2423 +vn 0.7892 0.5643 0.2425 +vn 0.8727 -0.4862 -0.0446 +vn 0.8727 -0.4862 -0.0447 +vn 0.8727 -0.4863 -0.0445 +vn -0.0558 0.9911 0.1206 +vn -0.0557 0.9911 0.1206 +vn -0.7352 0.5209 -0.4336 +vn -0.7356 0.5208 -0.4332 +vn -0.7347 0.5214 -0.4341 +vn 0.8121 0.5833 -0.0123 +vn 0.0506 -0.9585 -0.2807 +vn 0.0511 -0.9586 -0.2800 +vn 0.0507 -0.9585 -0.2806 +vn 0.3761 -0.5984 -0.7074 +vn 0.3756 -0.5983 -0.7078 +vn 0.3767 -0.5988 -0.7068 +vn 0.8088 0.5878 -0.0177 +vn 0.8089 0.5877 -0.0179 +vn -0.3125 0.9039 -0.2921 +vn -0.3122 0.9042 -0.2914 +vn -0.3121 0.9043 -0.2913 +vn 0.7799 -0.4814 -0.4000 +vn 0.7664 0.5760 -0.2844 +vn 0.0708 0.9029 -0.4239 +vn 0.6642 0.6574 0.3559 +vn 0.6642 0.6576 0.3555 +vn 0.6643 0.6572 0.3561 +vn -0.7105 0.7033 0.0220 +vn -0.7106 0.7033 0.0223 +vn -0.4461 -0.8711 0.2052 +vn -0.4462 -0.8711 0.2050 +vn 0.2094 -0.5699 0.7946 +vn 0.2087 -0.5706 0.7943 +vn 0.2095 -0.5699 0.7946 +vn -0.2140 -0.8515 -0.4787 +vn -0.3125 0.8699 -0.3816 +vn -0.3125 0.8701 -0.3812 +vn -0.3124 0.8700 -0.3815 +vn 0.5270 -0.0281 -0.8494 +vn 0.5270 -0.0277 -0.8494 +vn 0.5269 -0.0283 -0.8495 +vn -0.3453 -0.8559 -0.3850 +vn -0.0659 -0.8461 -0.5290 +vn -0.0663 -0.8461 -0.5289 +vn -0.0662 -0.8461 -0.5289 +vn -0.2163 0.6317 -0.7444 +vn -0.2163 0.6322 -0.7440 +vn 0.6336 0.6222 -0.4598 +vn 0.6336 0.6224 -0.4596 +vn 0.6336 0.6226 -0.4593 +vn -0.3641 0.9311 -0.0221 +vn -0.3643 0.9310 -0.0218 +vn 0.2095 -0.9379 -0.2766 +vn 0.2095 -0.9376 -0.2774 +vn 0.2091 -0.9381 -0.2761 +vn 0.2257 0.3311 0.9162 +vn 0.2260 0.3312 0.9161 +vn 0.2262 0.3314 0.9160 +vn 0.8705 -0.4856 0.0803 +vn 0.2929 0.6716 -0.6806 +vn 0.0925 -0.9566 -0.2762 +vn 0.0922 -0.9566 -0.2764 +vn 0.0920 -0.9566 -0.2765 +vn 0.5143 0.1570 -0.8431 +vn 0.5141 0.1572 -0.8432 +vn 0.5139 0.1576 -0.8432 +vn 0.8673 0.0945 -0.4887 +vn 0.8671 0.0941 -0.4892 +vn 0.8672 0.0944 -0.4889 +vn -0.6563 -0.4369 -0.6151 +vn -0.6562 -0.4370 -0.6151 +vn -0.6563 -0.4368 -0.6152 +vn 0.5227 -0.8517 0.0377 +vn 0.5224 -0.8519 0.0379 +vn 0.5223 -0.8519 0.0379 +vn 0.7641 -0.3436 0.5459 +vn 0.8223 -0.5319 -0.2025 +vn 0.8221 -0.5322 -0.2024 +vn -0.2677 0.5050 0.8206 +vn -0.2677 0.5051 0.8205 +vn -0.2678 0.5051 0.8205 +vn 0.1665 -0.7716 -0.6139 +vn 0.1662 -0.7713 -0.6144 +vn 0.1666 -0.7714 -0.6141 +vn 0.2897 -0.8037 -0.5197 +vn 0.2897 -0.8036 -0.5198 +vn 0.2898 -0.8035 -0.5200 +vn -0.6284 -0.1058 0.7707 +vn -0.6282 -0.1060 0.7708 +vn -0.6285 -0.1058 0.7706 +vn -0.7344 0.4685 -0.4911 +vn -0.7335 0.4691 -0.4919 +vn -0.7329 0.4689 -0.4929 +vn -0.3194 0.8404 -0.4379 +vn -0.3196 0.8400 -0.4385 +vn -0.3196 0.8400 -0.4384 +vn 0.1368 -0.9878 -0.0746 +vn 0.1365 -0.9878 -0.0745 +vn 0.1370 -0.9878 -0.0746 +vn 0.9716 -0.1598 -0.1747 +vn 0.9719 -0.1596 -0.1729 +vn 0.9717 -0.1599 -0.1740 +vn 0.1601 -0.3213 0.9333 +vn 0.1602 -0.3213 0.9333 +vn 0.5513 0.7721 0.3160 +vn 0.5512 0.7722 0.3159 +vn -0.2786 -0.5073 -0.8155 +vn -0.2790 -0.5072 -0.8154 +vn -0.2792 -0.5071 -0.8154 +vn 0.9471 0.3055 0.0979 +vn 0.9481 0.3026 0.0980 +vn 0.9472 0.3054 0.0979 +vn -0.1276 -0.9074 -0.4005 +vn -0.1273 -0.9074 -0.4006 +vn -0.1271 -0.9074 -0.4007 +vn 0.8996 0.0533 -0.4334 +vn 0.8997 0.0533 -0.4333 +vn 0.8998 0.0531 -0.4330 +vn -0.5230 -0.3847 0.7606 +vn 0.0186 0.2763 -0.9609 +vn 0.0187 0.2766 -0.9608 +vn 0.0187 0.2765 -0.9608 +vn 0.9759 -0.2177 0.0167 +vn 0.4765 -0.4877 0.7315 +vn 0.4750 -0.4895 0.7313 +vn 0.4738 -0.4901 0.7317 +vn -0.1250 -0.7812 0.6116 +vn -0.1249 -0.7814 0.6114 +vn -0.1247 -0.7815 0.6113 +vn -0.2696 -0.9624 -0.0331 +vn -0.2694 -0.9625 -0.0330 +vn -0.2694 -0.9625 -0.0329 +vn 0.9730 -0.0651 0.2213 +vn 0.9731 -0.0650 0.2212 +vn 0.9730 -0.0650 0.2213 +vn 0.7344 -0.6139 0.2894 +vn 0.7344 -0.6140 0.2892 +vn 0.7344 -0.6141 0.2891 +vn -0.6335 0.3861 -0.6705 +vn 0.9742 0.1630 0.1559 +vn 0.9743 0.1629 0.1554 +vn 0.4230 0.8745 0.2373 +vn 0.4232 0.8743 0.2377 +vn 0.4230 0.8746 0.2371 +vn 0.7907 0.5773 0.2037 +vn 0.7906 0.5774 0.2037 +vn 0.7910 0.5770 0.2037 +vn 0.3077 0.9362 -0.1699 +vn -0.2385 -0.8513 -0.4673 +vn -0.2387 -0.8513 -0.4672 +vn -0.2386 -0.8511 -0.4676 +vn -0.5644 0.6938 -0.4473 +vn -0.5646 0.6937 -0.4472 +vn -0.5646 0.6936 -0.4475 +vn 0.9435 0.2474 0.2205 +vn 0.1305 -0.5881 0.7982 +vn 0.1304 -0.5881 0.7982 +vn 0.1306 -0.5880 0.7983 +vn -0.4197 -0.6886 0.5913 +vn 0.3725 0.6802 -0.6313 +vn 0.3727 0.6802 -0.6312 +vn 0.3727 0.6803 -0.6311 +vn -0.0017 -0.0027 1.0000 +vn -0.6408 0.4801 -0.5991 +vn -0.6408 0.4800 -0.5991 +vn -0.1818 -0.5641 0.8054 +vn -0.1816 -0.5643 0.8054 +vn 0.4090 0.6835 -0.6046 +vn 0.4088 0.6836 -0.6046 +vn -0.3032 -0.0166 -0.9528 +vn -0.3022 -0.0171 -0.9531 +vn -0.3031 -0.0167 -0.9528 +vn -0.0118 -0.1744 -0.9846 +vn -0.0118 -0.1743 -0.9846 +vn -0.0116 -0.1738 -0.9847 +vn -0.6134 0.6105 0.5011 +vn -0.6111 0.6104 0.5040 +vn -0.6120 0.6108 0.5024 +vn -0.0908 -0.3801 0.9205 +vn -0.0910 -0.3802 0.9204 +vn 0.3818 -0.7996 0.4635 +vn 0.3820 -0.7997 0.4632 +vn 0.3830 -0.7997 0.4625 +vn -0.5097 -0.2031 0.8360 +vn -0.5099 -0.2032 0.8359 +vn -0.5097 -0.2033 0.8360 +vn -0.0852 -0.7996 0.5945 +vn -0.0850 -0.7995 0.5946 +vn -0.0847 -0.7995 0.5947 +vn -0.4969 0.8593 0.1214 +vn -0.4953 0.8600 0.1228 +vn -0.4963 0.8596 0.1215 +vn -0.1095 0.8533 0.5098 +vn -0.1092 0.8537 0.5092 +vn -0.1090 0.8539 0.5090 +vn -0.1442 -0.7861 0.6011 +vn -0.1444 -0.7859 0.6013 +vn -0.1445 -0.7858 0.6014 +vn -0.3843 -0.7631 -0.5196 +vn -0.3841 -0.7631 -0.5197 +vn 0.3064 -0.7814 0.5437 +vn 0.3067 -0.7814 0.5435 +vn 0.3069 -0.7814 0.5434 +vn -0.8972 -0.2627 0.3549 +vn 0.6414 -0.5039 0.5785 +vn 0.6413 -0.5036 0.5789 +vn 0.3484 0.8514 0.3920 +vn 0.3476 0.8519 0.3917 +vn 0.3479 0.8518 0.3917 +vn -0.5470 0.3746 -0.7487 +vn -0.5470 0.3748 -0.7486 +vn -0.2684 0.4216 -0.8661 +vn -0.2685 0.4216 -0.8661 +vn 0.7023 -0.6863 -0.1893 +vn -0.4478 -0.8167 0.3639 +vn -0.4478 -0.8166 0.3643 +vn -0.3671 0.4602 0.8084 +vn -0.3669 0.4599 0.8086 +vn -0.3671 0.4600 0.8085 +vn 0.4379 -0.4423 0.7827 +vn 0.4381 -0.4425 0.7825 +vn 0.4378 -0.4422 0.7828 +vn -0.0408 0.8530 -0.5204 +vn -0.0409 0.8528 -0.5206 +vn -0.0411 0.8526 -0.5209 +vn -0.7623 0.6444 -0.0600 +vn -0.7623 0.6444 -0.0604 +vn -0.7623 0.6444 -0.0602 +vn 0.5780 0.1487 0.8024 +vn 0.5780 0.1492 0.8023 +vn 0.5781 0.1496 0.8021 +vn 0.4888 -0.6743 0.5535 +vn 0.6510 -0.7590 0.0131 +vn 0.6554 0.6475 0.3888 +vn 0.3992 0.9140 -0.0717 +vn 0.3991 0.9141 -0.0719 +vn -0.3217 0.1065 -0.9408 +vn -0.1364 0.9729 -0.1867 +vn -0.1365 0.9729 -0.1866 +vn -0.6268 -0.5253 0.5755 +vn -0.4473 0.3852 -0.8072 +vn -0.4473 0.3850 -0.8073 +vn -0.4473 0.3849 -0.8073 +vn 0.3860 0.8071 -0.4469 +vn -0.3816 -0.7399 0.5540 +vn -0.3827 -0.7394 0.5539 +vn -0.3823 -0.7395 0.5541 +vn -0.5042 0.8144 -0.2874 +vn -0.5041 0.8144 -0.2874 +vn 0.4906 -0.6744 0.5518 +vn -0.2991 -0.7723 0.5605 +vn -0.2996 -0.7722 0.5604 +vn -0.2988 -0.7723 0.5606 +vn -0.3949 0.2844 -0.8736 +vn -0.3951 0.2843 -0.8735 +vn -0.3951 0.2844 -0.8735 +vn 0.2553 -0.2807 0.9252 +vn 0.2550 -0.2804 0.9254 +vn 0.2550 -0.2805 0.9254 +vn -0.1285 -0.5673 0.8134 +vn -0.1283 -0.5673 0.8134 +vn -0.1281 -0.5674 0.8134 +vn -0.9074 0.0109 0.4202 +vn -0.9074 0.0108 0.4202 +vn 0.8717 -0.1992 0.4478 +vn 0.8717 -0.1991 0.4477 +vn 0.6988 -0.5216 -0.4894 +vn 0.8999 -0.3267 0.2889 +vn 0.9001 -0.3266 0.2882 +vn 0.9003 -0.3265 0.2879 +vn 0.8857 -0.4271 0.1818 +vn 0.8861 -0.4264 0.1817 +vn 0.8847 -0.4287 0.1831 +vn -0.9370 -0.1402 -0.3200 +vn -0.9370 -0.1404 -0.3198 +vn -0.9370 -0.1401 -0.3200 +vn -0.4438 -0.0501 -0.8947 +vn -0.9091 -0.0527 -0.4133 +vn -0.9092 -0.0525 -0.4130 +vn -0.9093 -0.0521 -0.4130 +vn 0.1661 0.7740 -0.6110 +vn 0.1661 0.7741 -0.6109 +vn 0.1660 0.7744 -0.6105 +vn 0.4058 0.5073 -0.7602 +vn -0.8964 -0.0129 0.4431 +vn -0.8966 -0.0126 0.4426 +vn 0.7958 -0.5290 -0.2946 +vn 0.7967 -0.5278 -0.2945 +vn 0.7952 -0.5303 -0.2940 +vn -0.8051 0.3768 -0.4581 +vn -0.8051 0.3768 -0.4580 +vn -0.8052 0.3766 -0.4581 +vn -0.1725 0.9098 -0.3776 +vn -0.1721 0.9098 -0.3777 +vn -0.1718 0.9097 -0.3780 +vn 0.3826 0.7246 -0.5732 +vn 0.3818 0.7262 -0.5717 +vn 0.3819 0.7259 -0.5720 +vn -0.8649 0.4698 0.1769 +vn -0.8647 0.4701 0.1767 +vn -0.0279 0.9768 -0.2123 +vn -0.2945 -0.9502 0.1018 +vn -0.2945 -0.9504 0.1005 +vn -0.2947 -0.9502 0.1012 +vn -0.0992 -0.2552 -0.9618 +vn 0.6904 0.7231 -0.0195 +vn 0.6903 0.7232 -0.0202 +vn 0.6904 0.7231 -0.0200 +vn -0.9313 -0.3641 -0.0063 +vn -0.2599 -0.1967 -0.9454 +vn -0.2598 -0.1965 -0.9455 +vn -0.2594 -0.1961 -0.9457 +vn 0.7163 -0.5333 0.4500 +vn 0.4609 0.8809 0.1074 +vn 0.4611 0.8808 0.1073 +vn 0.4607 0.8811 0.1072 +vn 0.4097 -0.8768 0.2517 +vn 0.4095 -0.8768 0.2522 +vn 0.4096 -0.8767 0.2523 +vn 0.6733 -0.7331 0.0959 +vn 0.6732 -0.7333 0.0956 +vn 0.6730 -0.7335 0.0954 +vn 0.8703 -0.4306 0.2390 +vn 0.8703 -0.4306 0.2393 +vn 0.8703 -0.4304 0.2395 +vn 0.8395 -0.4825 -0.2500 +vn 0.8393 -0.4827 -0.2501 +vn 0.8394 -0.4826 -0.2501 +vn 0.5137 0.7928 -0.3280 +vn 0.5131 0.7932 -0.3280 +vn 0.5137 0.7928 -0.3278 +vn 0.4129 0.8983 0.1501 +vn 0.4120 0.8988 0.1496 +vn 0.4125 0.8986 0.1496 +vn -0.1740 0.4730 -0.8637 +vn -0.1740 0.4728 -0.8638 +vn -0.1743 0.4725 -0.8639 +vn -0.2259 0.8635 -0.4509 +vn -0.2257 0.8638 -0.4505 +vn -0.2258 0.8636 -0.4508 +vn -0.3932 0.2096 -0.8952 +vn -0.3935 0.2097 -0.8951 +vn 0.5518 0.5307 0.6434 +vn 0.5537 0.5299 0.6423 +vn -0.3369 -0.6237 -0.7053 +vn -0.3372 -0.6237 -0.7052 +vn -0.3376 -0.6237 -0.7050 +vn -0.7964 0.3407 -0.4996 +vn -0.7954 0.3419 -0.5005 +vn -0.7960 0.3410 -0.5001 +vn 0.8355 -0.1822 0.5184 +vn 0.8353 -0.1820 0.5188 +vn 0.8352 -0.1820 0.5190 +vn 0.2973 0.8680 -0.3976 +vn 0.2975 0.8679 -0.3978 +vn 0.2971 0.8681 -0.3977 +vn 0.8328 -0.0725 0.5489 +vn 0.8028 -0.4054 0.4372 +vn 0.8032 -0.4053 0.4366 +vn 0.8030 -0.4054 0.4369 +vn 0.6767 0.6933 0.2477 +vn 0.2518 -0.8653 0.4334 +vn 0.2516 -0.8655 0.4331 +vn 0.2515 -0.8652 0.4338 +vn -0.2409 -0.1481 -0.9592 +vn 0.3086 0.1108 -0.9447 +vn 0.3092 0.1098 -0.9446 +vn 0.3082 0.1110 -0.9448 +vn -0.1297 0.9818 0.1388 +vn -0.1296 0.9817 0.1392 +vn -0.1294 0.9817 0.1397 +vn 0.0737 0.9740 0.2144 +vn 0.0733 0.9741 0.2141 +vn 0.0726 0.9743 0.2131 +vn -0.6656 -0.4693 -0.5803 +vn -0.6652 -0.4693 -0.5807 +vn -0.6654 -0.4692 -0.5806 +vn 0.6133 -0.7795 0.1275 +vn 0.6131 -0.7798 0.1262 +vn 0.6133 -0.7796 0.1268 +vn -0.1686 -0.4706 -0.8661 +vn -0.1687 -0.4703 -0.8662 +vn -0.1684 -0.4708 -0.8660 +vn 0.8872 0.0757 0.4552 +vn 0.8874 0.0750 0.4549 +vn 0.8873 0.0755 0.4551 +vn -0.6724 -0.0463 -0.7387 +vn -0.6727 -0.0467 -0.7384 +vn -0.6726 -0.0465 -0.7386 +vn -0.6515 0.6719 0.3523 +vn -0.6515 0.6718 0.3525 +vn -0.6514 0.6721 0.3521 +vn 0.7420 0.5867 0.3243 +vn 0.7422 0.5866 0.3242 +vn 0.7421 0.5868 0.3242 +vn 0.1767 -0.8822 -0.4364 +vn 0.1767 -0.8823 -0.4363 +vn 0.2432 -0.8721 -0.4246 +vn 0.2430 -0.8722 -0.4246 +vn 0.2434 -0.8722 -0.4243 +vn -0.8295 0.2558 0.4965 +vn -0.8294 0.2561 0.4965 +vn 0.9149 -0.2172 0.3402 +vn 0.0073 0.4037 -0.9149 +vn 0.0075 0.4038 -0.9148 +vn 0.8665 0.4660 0.1790 +vn 0.8665 0.4658 0.1793 +vn -0.2106 -0.0825 -0.9741 +vn -0.2104 -0.0824 -0.9741 +vn 0.0787 -0.8970 0.4350 +vn -0.7766 -0.4866 -0.4002 +vn -0.7766 -0.4872 -0.3993 +vn -0.7767 -0.4869 -0.3996 +vn 0.8963 -0.3718 0.2417 +vn 0.8965 -0.3715 0.2413 +vn 0.8964 -0.3716 0.2414 +vn 0.9038 -0.3568 0.2361 +vn 0.9036 -0.3576 0.2358 +vn 0.9037 -0.3573 0.2360 +vn -0.1418 -0.9892 0.0367 +vn -0.1415 -0.9893 0.0367 +vn -0.2841 0.3152 -0.9055 +vn -0.2842 0.3153 -0.9054 +vn 0.7242 -0.6233 0.2950 +vn 0.7242 -0.6233 0.2952 +vn 0.7243 -0.6233 0.2949 +vn 0.2335 0.9588 0.1621 +vn 0.6090 -0.5399 0.5810 +vn 0.6086 -0.5404 0.5810 +vn -0.4160 0.5030 -0.7576 +vn -0.4158 0.5036 -0.7573 +vn -0.4159 0.5033 -0.7574 +vn -0.2083 -0.9771 0.0423 +vn -0.2081 -0.9772 0.0422 +vn -0.2083 -0.9771 0.0424 +vn 0.3038 -0.7806 -0.5462 +vn 0.3025 -0.7814 -0.5458 +vn 0.3022 -0.7826 -0.5443 +vn -0.9026 -0.2901 0.3181 +vn -0.9025 -0.2907 0.3178 +vn -0.9026 -0.2899 0.3183 +vn -0.2524 -0.9664 -0.0489 +vn -0.2524 -0.9664 -0.0490 +vn -0.2036 0.8961 0.3943 +vn -0.2037 0.8962 0.3941 +vn 0.6518 -0.6206 0.4359 +vn 0.6519 -0.6206 0.4359 +vn -0.7268 0.6054 -0.3245 +vn 0.5750 -0.1876 0.7964 +vn 0.5750 -0.1876 0.7963 +vn -0.4323 0.4797 -0.7635 +vn -0.4321 0.4795 -0.7638 +vn -0.4318 0.4794 -0.7640 +vn -0.9708 0.0055 -0.2399 +vn -0.9709 0.0054 -0.2396 +vn 0.3812 0.4327 -0.8170 +vn 0.3820 0.4325 -0.8167 +vn 0.3826 0.4321 -0.8166 +vn -0.7466 -0.5276 -0.4052 +vn -0.7465 -0.5278 -0.4051 +vn -0.7467 -0.5274 -0.4053 +vn -0.2076 -0.3620 0.9088 +vn -0.2076 -0.3616 0.9089 +vn -0.2072 -0.3612 0.9092 +vn 0.9330 -0.3426 -0.1099 +vn 0.9325 -0.3436 -0.1115 +vn 0.9333 -0.3422 -0.1086 +vn 0.5388 -0.6296 0.5598 +vn 0.5390 -0.6296 0.5596 +vn 0.5390 -0.6295 0.5597 +vn 0.4666 0.5578 -0.6864 +vn 0.4670 0.5579 -0.6860 +vn 0.4668 0.5578 -0.6862 +vn 0.8197 -0.0625 0.5694 +vn 0.8197 -0.0626 0.5694 +vn 0.8196 -0.0627 0.5694 +vn 0.8175 0.3978 -0.4164 +vn 0.8174 0.3980 -0.4165 +vn 0.8176 0.3978 -0.4163 +vn -0.2221 -0.0859 -0.9712 +vn -0.2220 -0.0857 -0.9713 +vn 0.8993 -0.4356 -0.0381 +vn -0.0617 0.2896 -0.9552 +vn 0.0165 -0.8877 0.4601 +vn 0.0164 -0.8880 0.4595 +vn 0.0164 -0.8874 0.4607 +vn 0.4679 -0.7140 0.5208 +vn 0.4677 -0.7141 0.5209 +vn 0.4678 -0.7141 0.5207 +vn 0.8059 -0.5155 0.2911 +vn 0.4966 0.1244 0.8590 +vn 0.4966 0.1241 0.8591 +vn 0.0275 0.0151 -0.9995 +vn 0.0279 0.0152 -0.9995 +vn 0.0277 0.0151 -0.9995 +vn 0.3608 0.1406 0.9220 +vn 0.3609 0.1408 0.9219 +vn 0.8401 -0.5406 -0.0436 +vn 0.8402 -0.5406 -0.0429 +vn 0.8399 -0.5409 -0.0440 +vn -0.8898 -0.1976 0.4115 +vn -0.2850 -0.8994 -0.3314 +vn -0.2851 -0.8994 -0.3313 +vn -0.2849 -0.8994 -0.3315 +vn 0.4598 0.3026 0.8349 +vn 0.4598 0.3028 0.8348 +vn 0.0001 -0.0002 1.0000 +vn -0.9277 -0.3108 -0.2070 +vn -0.9277 -0.3107 -0.2072 +vn 0.8520 0.4081 0.3280 +vn -0.2453 0.1880 -0.9510 +vn -0.2453 0.1880 -0.9511 +vn -0.2452 0.1879 -0.9511 +vn 0.1487 -0.9160 0.3725 +vn 0.1485 -0.9159 0.3728 +vn 0.1485 -0.9158 0.3733 +vn 0.7857 0.6182 0.0207 +vn 0.8296 -0.5524 -0.0813 +vn 0.8297 -0.5523 -0.0815 +vn 0.8296 -0.5525 -0.0811 +vn 0.1633 0.9865 -0.0147 +vn -0.6656 0.6836 -0.2996 +vn -0.6660 0.6830 -0.3000 +vn -0.6658 0.6834 -0.2996 +vn -0.0705 -0.2240 0.9720 +vn -0.0706 -0.2242 0.9720 +vn -0.0704 -0.2238 0.9721 +vn -0.7104 0.0613 0.7012 +vn 0.8831 0.0144 0.4690 +vn 0.1941 0.1143 0.9743 +vn 0.1943 0.1138 0.9743 +vn 0.1939 0.1152 0.9742 +vn 0.8288 -0.5272 0.1877 +vn 0.8287 -0.5270 0.1883 +vn 0.8283 -0.5286 0.1860 +vn 0.3162 0.8937 0.3182 +vn 0.9370 0.1894 0.2934 +vn 0.9371 0.1893 0.2933 +vn 0.9371 0.1894 0.2933 +vn -0.0959 0.4455 -0.8901 +vn -0.0955 0.4450 -0.8904 +vn -0.0955 0.4445 -0.8907 +vn 0.0519 0.4100 0.9106 +vn 0.0518 0.4098 0.9107 +vn 0.0520 0.4101 0.9105 +vn 0.1664 0.8741 -0.4564 +vn 0.1664 0.8740 -0.4565 +vn -0.3390 -0.5887 -0.7338 +vn -0.3392 -0.5891 -0.7334 +vn -0.3386 -0.5857 -0.7364 +vn -0.5913 -0.8032 -0.0718 +vn -0.5912 -0.8033 -0.0721 +vn -0.5916 -0.8031 -0.0709 +vn -0.2056 -0.8681 0.4518 +vn -0.2055 -0.8682 0.4516 +vn -0.3615 0.4389 0.8226 +vn -0.3608 0.4404 0.8221 +vn -0.3611 0.4395 0.8225 +vn 0.9880 -0.0279 -0.1518 +vn 0.9881 -0.0280 -0.1514 +vn 0.9881 -0.0278 -0.1514 +vn 0.0632 0.7887 -0.6115 +vn 0.0612 0.7884 -0.6121 +vn 0.0647 0.7885 -0.6116 +vn -0.3128 0.9072 0.2814 +vn -0.3131 0.9072 0.2811 +vn -0.3126 0.9073 0.2813 +vn -0.4350 0.6264 -0.6468 +vn -0.4347 0.6266 -0.6469 +vn -0.4345 0.6266 -0.6469 +vn 0.9303 -0.3646 0.0390 +vn 0.9305 -0.3643 0.0392 +vn -0.7041 0.7090 0.0395 +vn -0.7043 0.7088 0.0394 +vn 0.7426 0.6317 0.2227 +vn 0.7425 0.6317 0.2227 +vn 0.7422 0.6320 0.2228 +vn -0.9006 -0.0824 -0.4267 +vn 0.0314 0.5344 0.8446 +vn 0.0304 0.5345 0.8446 +vn 0.0305 0.5345 0.8446 +vn 0.2683 0.9579 -0.1021 +vn 0.2662 0.9585 -0.1022 +vn 0.2675 0.9581 -0.1024 +vn 0.1958 0.9703 -0.1417 +vn 0.2543 -0.7372 -0.6260 +vn 0.2544 -0.7372 -0.6260 +vn 0.2542 -0.7372 -0.6260 +vn 0.5193 0.8544 -0.0199 +vn 0.5192 0.8544 -0.0200 +vn 0.5193 0.8544 -0.0196 +vn 0.8724 0.3473 0.3440 +vn 0.8724 0.3472 0.3439 +vn 0.8723 0.3475 0.3440 +vn -0.5835 0.7758 -0.2402 +vn -0.5836 0.7757 -0.2402 +vn -0.5387 -0.7197 0.4379 +vn 0.0377 0.9341 0.3549 +vn 0.0968 -0.9642 -0.2470 +vn 0.0969 -0.9641 -0.2474 +vn 0.0969 -0.9641 -0.2473 +vn -0.3639 -0.7509 -0.5512 +vn -0.3645 -0.7509 -0.5507 +vn -0.3651 -0.7511 -0.5500 +vn -0.3852 -0.8436 -0.3741 +vn 0.1147 -0.7265 -0.6775 +vn 0.0134 0.1258 0.9920 +vn 0.0133 0.1259 0.9920 +vn 0.0132 0.1256 0.9920 +vn -0.1957 0.9724 -0.1273 +vn -0.1955 0.9724 -0.1274 +vn 0.7777 0.2155 -0.5905 +vn 0.9623 -0.0572 -0.2660 +vn 0.9621 -0.0567 -0.2668 +vn 0.9620 -0.0556 -0.2674 +vn -0.8538 0.0923 0.5123 +vn -0.8538 0.0924 0.5123 +vn -0.8538 0.0922 0.5123 +vn 0.1586 -0.8628 -0.4801 +vn 0.1591 -0.8625 -0.4803 +vn 0.1583 -0.8631 -0.4796 +vn -0.6032 -0.4811 -0.6361 +vn -0.6033 -0.4810 -0.6361 +vn 0.4168 -0.9043 -0.0925 +vn 0.0745 -0.9802 -0.1836 +vn 0.0744 -0.9803 -0.1832 +vn 0.0744 -0.9803 -0.1828 +vn 0.9632 -0.0708 -0.2594 +vn 0.9633 -0.0715 -0.2587 +vn 0.9632 -0.0711 -0.2592 +vn 0.2863 -0.9222 -0.2601 +vn 0.2875 -0.9218 -0.2601 +vn 0.2870 -0.9219 -0.2602 +vn -0.2417 -0.2743 0.9308 +vn -0.2417 -0.2737 0.9309 +vn -0.2416 -0.2739 0.9309 +vn 0.4841 0.6386 -0.5982 +vn -0.2849 -0.2908 0.9134 +vn -0.2845 -0.2910 0.9134 +vn -0.2851 -0.2908 0.9133 +vn 0.7389 0.6459 0.1920 +vn 0.0637 0.1012 0.9928 +vn 0.2198 0.9734 -0.0642 +vn 0.2197 0.9734 -0.0642 +vn 0.4191 -0.9056 -0.0654 +vn 0.4187 -0.9057 -0.0657 +vn 0.4193 -0.9055 -0.0652 +vn -0.2474 -0.8754 -0.4153 +vn 0.2931 0.5324 0.7941 +vn 0.2941 0.5322 0.7939 +vn 0.2936 0.5323 0.7940 +vn 0.8379 0.5390 -0.0858 +vn 0.8388 0.5375 -0.0862 +vn 0.8372 0.5401 -0.0859 +vn -0.6113 0.7367 -0.2892 +vn -0.6114 0.7366 -0.2892 +vn -0.6109 0.7370 -0.2892 +vn 0.7269 0.5077 -0.4625 +vn 0.7268 0.5077 -0.4625 +vn 0.7346 0.2339 -0.6369 +vn 0.7346 0.2337 -0.6370 +vn 0.7349 0.2345 -0.6364 +vn -0.3947 0.9024 -0.1730 +vn 0.9023 0.1351 -0.4095 +vn 0.9023 0.1344 -0.4097 +vn 0.9022 0.1352 -0.4096 +vn -0.6347 -0.5766 -0.5145 +vn -0.6346 -0.5768 -0.5144 +vn -0.6346 -0.5772 -0.5139 +vn 0.5805 0.3662 0.7273 +vn 0.5806 0.3667 0.7270 +vn 0.5811 0.3677 0.7260 +vn 0.3000 0.9397 -0.1645 +vn 0.3002 0.9395 -0.1653 +vn 0.2999 0.9398 -0.1637 +vn 0.4723 0.7424 -0.4752 +vn 0.4723 0.7424 -0.4751 +vn 0.4725 0.7422 -0.4754 +vn 0.0074 -0.8010 -0.5986 +vn 0.0077 -0.8013 -0.5983 +vn 0.0072 -0.8008 -0.5989 +vn -0.2936 -0.1729 -0.9402 +vn -0.2935 -0.1730 -0.9402 +vn -0.2937 -0.1730 -0.9401 +vn 0.2923 -0.5963 -0.7476 +vn 0.2927 -0.5964 -0.7474 +vn 0.2937 -0.5960 -0.7473 +vn -0.3596 -0.7756 -0.5188 +vn -0.1254 0.8125 0.5693 +vn -0.1261 0.8130 0.5684 +vn -0.1268 0.8132 0.5680 +vn -0.5301 -0.7847 0.3212 +vn -0.5301 -0.7848 0.3211 +vn -0.2351 0.6632 0.7106 +vn -0.2355 0.6626 0.7110 +vn -0.2353 0.6630 0.7107 +vn 0.4337 -0.6064 -0.6664 +vn -0.4907 -0.7203 -0.4903 +vn -0.4906 -0.7202 -0.4905 +vn -0.4910 -0.7205 -0.4897 +vn 0.4721 0.8767 0.0926 +vn 0.4722 0.8766 0.0928 +vn 0.9820 -0.1800 0.0564 +vn 0.0347 -0.4053 -0.9135 +vn 0.0343 -0.4055 -0.9134 +vn 0.0345 -0.4054 -0.9135 +vn 0.0735 0.9959 -0.0522 +vn -0.3604 0.7758 0.5179 +vn -0.3604 0.7756 0.5183 +vn -0.3604 0.7761 0.5175 +vn -0.2235 -0.4029 -0.8875 +vn -0.2233 -0.4030 -0.8875 +vn -0.2232 -0.4030 -0.8876 +vn -0.1149 -0.8551 -0.5055 +vn -0.1148 -0.8550 -0.5058 +vn -0.3367 0.1571 -0.9284 +vn -0.3374 0.1563 -0.9283 +vn -0.3370 0.1570 -0.9283 +vn 0.0276 0.9815 -0.1897 +vn 0.0271 0.9815 -0.1897 +vn 0.0273 0.9815 -0.1895 +vn -0.3195 -0.9476 0.0020 +vn -0.3193 -0.9477 0.0022 +vn -0.3194 -0.9476 0.0020 +vn -0.0004 0.0008 1.0000 +vn 0.3608 -0.7969 -0.4846 +vn 0.3606 -0.7969 -0.4847 +vn 0.3607 -0.7965 -0.4852 +vn 0.1399 -0.6603 -0.7379 +vn 0.1402 -0.6604 -0.7377 +vn 0.1402 -0.6609 -0.7373 +vn 0.1411 -0.9004 -0.4116 +vn 0.1408 -0.9004 -0.4117 +vn -0.1343 -0.7085 -0.6928 +vn -0.1343 -0.7083 -0.6930 +vn -0.1344 -0.7083 -0.6930 +vn -0.4742 -0.5544 -0.6839 +vn -0.9395 0.2796 0.1980 +vn 0.1786 0.9702 -0.1640 +vn 0.1780 0.9702 -0.1642 +vn -0.4725 -0.8809 0.0279 +vn 0.0950 -0.4845 0.8696 +vn 0.0951 -0.4845 0.8696 +vn 0.0952 -0.4845 0.8696 +vn 0.3493 0.7759 -0.5253 +vn 0.3494 0.7760 -0.5251 +vn 0.9075 0.3624 -0.2122 +vn 0.9076 0.3618 -0.2130 +vn 0.9076 0.3623 -0.2124 +vn -0.4981 0.6266 -0.5993 +vn -0.4980 0.6266 -0.5994 +vn -0.5356 0.4892 -0.6884 +vn -0.5359 0.4890 -0.6883 +vn -0.5362 0.4891 -0.6880 +vn 0.0604 -0.5078 0.8594 +vn 0.0602 -0.5081 0.8592 +vn 0.8744 0.4833 0.0417 +vn 0.8744 0.4834 0.0416 +vn 0.8745 0.4832 0.0416 +vn -0.1720 -0.5899 0.7889 +vn -0.1721 -0.5899 0.7889 +vn 0.4456 0.2279 -0.8658 +vn 0.4453 0.2285 -0.8657 +vn 0.4455 0.2281 -0.8658 +vn 0.3344 0.8790 -0.3399 +vn 0.3343 0.8789 -0.3403 +vn -0.2461 -0.5746 0.7806 +vn -0.2438 0.9652 -0.0944 +vn -0.2444 0.9651 -0.0943 +vn -0.3405 -0.7603 0.5532 +vn -0.3405 -0.7600 0.5536 +vn -0.3404 -0.7597 0.5540 +vn -0.7106 0.2921 0.6401 +vn -0.7104 0.2921 0.6403 +vn -0.7105 0.2919 0.6403 +vn -0.2852 -0.3228 0.9025 +vn -0.2854 -0.3228 0.9024 +vn -0.2851 -0.3228 0.9025 +vn -0.9815 0.1154 -0.1527 +vn -0.9815 0.1155 -0.1527 +vn -0.1736 0.9755 0.1352 +vn -0.1735 0.9755 0.1353 +vn -0.1738 0.9755 0.1348 +vn -0.0334 -0.9932 0.1112 +vn -0.0333 -0.9932 0.1112 +vn -0.0333 -0.9933 0.1111 +vn -0.1040 -0.3426 0.9337 +vn -0.1041 -0.3425 0.9337 +vn -0.1038 -0.3423 0.9338 +vn 0.8071 0.5890 0.0405 +vn 0.8066 0.5896 0.0410 +vn 0.8065 0.5897 0.0414 +vn -0.1030 0.9911 -0.0842 +vn -0.1031 0.9911 -0.0846 +vn -0.1029 0.9911 -0.0849 +vn -0.9930 0.0748 0.0909 +vn -0.9931 0.0747 0.0909 +vn -0.3343 -0.1802 0.9251 +vn -0.3346 -0.1805 0.9249 +vn -0.3341 -0.1798 0.9252 +vn -0.5309 0.7681 0.3580 +vn -0.5302 0.7683 0.3585 +vn -0.6762 -0.6436 -0.3585 +vn 0.8233 -0.3890 0.4134 +vn 0.8232 -0.3889 0.4136 +vn 0.8232 -0.3890 0.4135 +vn -0.7306 0.3571 0.5819 +vn -0.7313 0.3558 0.5819 +vn -0.7317 0.3534 0.5828 +vn -0.7730 0.5135 -0.3726 +vn -0.7731 0.5134 -0.3725 +vn -0.7733 0.5132 -0.3724 +vn 0.2833 0.9450 -0.1635 +vn 0.2833 0.9450 -0.1634 +vn 0.2832 0.9450 -0.1638 +vn 0.7510 -0.5498 -0.3658 +vn 0.7507 -0.5500 -0.3660 +vn 0.7508 -0.5499 -0.3659 +vn 0.1903 -0.2989 0.9351 +vn 0.1901 -0.2981 0.9354 +vn 0.1900 -0.2984 0.9353 +vn 0.2785 0.7698 -0.5743 +vn 0.4392 0.8869 -0.1431 +vn 0.4392 0.8869 -0.1430 +vn -0.4063 -0.8898 0.2078 +vn -0.4063 -0.8899 0.2073 +vn -0.4065 -0.8900 0.2066 +vn -0.5921 -0.7788 0.2068 +vn -0.5923 -0.7789 0.2061 +vn -0.5920 -0.7789 0.2071 +vn -0.6517 0.6472 0.3956 +vn -0.6516 0.6473 0.3954 +vn 0.1742 -0.9778 0.1164 +vn 0.1739 -0.9780 0.1155 +vn 0.1744 -0.9776 0.1174 +vn 0.5568 0.5934 0.5813 +vn 0.5567 0.5933 0.5814 +vn -0.7621 -0.4600 -0.4556 +vn -0.7621 -0.4602 -0.4554 +vn -0.3009 0.9175 -0.2600 +vn -0.3005 0.9178 -0.2595 +vn -0.0331 0.4939 -0.8689 +vn -0.0328 0.4941 -0.8688 +vn -0.0323 0.4946 -0.8685 +vn 0.6584 -0.4110 -0.6305 +vn 0.6589 -0.4107 -0.6303 +vn 0.6591 -0.4105 -0.6302 +vn 0.8727 -0.4797 0.0905 +vn 0.8727 -0.4797 0.0906 +vn 0.8728 -0.4797 0.0903 +vn -0.4487 -0.2177 -0.8668 +vn -0.4481 -0.2183 -0.8669 +vn -0.4476 -0.2200 -0.8667 +vn 0.4237 0.8839 -0.1979 +vn 0.4236 0.8840 -0.1979 +vn 0.4238 0.8839 -0.1978 +vn 0.5080 0.6814 -0.5269 +vn 0.5083 0.6814 -0.5266 +vn -0.0520 -0.1553 -0.9865 +vn -0.0519 -0.1555 -0.9865 +vn -0.0518 -0.1553 -0.9865 +vn -0.1122 -0.0982 -0.9888 +vn -0.1120 -0.0981 -0.9889 +vn 0.6798 0.0109 0.7333 +vn 0.6811 0.0106 0.7321 +vn 0.6807 0.0106 0.7325 +vn -0.1744 0.1988 0.9644 +vn -0.1743 0.1988 0.9644 +vn -0.1745 0.1988 0.9644 +vn -0.9554 -0.2259 0.1903 +vn -0.9554 -0.2261 0.1901 +vn -0.9554 -0.2262 0.1900 +vn 0.8114 -0.4408 -0.3839 +vn 0.8117 -0.4404 -0.3836 +vn 0.8123 -0.4400 -0.3829 +vn 0.8771 0.3001 -0.3751 +vn 0.8770 0.3000 -0.3754 +vn 0.8770 0.3000 -0.3753 +vn -0.3512 0.8851 -0.3055 +vn -0.3511 0.8851 -0.3056 +vn -0.3509 0.8852 -0.3056 +vn 0.8772 0.4614 -0.1327 +vn 0.8774 0.4611 -0.1322 +vn 0.8772 0.4614 -0.1329 +vn -0.3953 0.1833 -0.9001 +vn -0.3950 0.1843 -0.9000 +vn -0.3951 0.1837 -0.9001 +vn -0.9371 -0.3348 -0.0990 +vn -0.9370 -0.3349 -0.0989 +vn -0.9371 -0.3348 -0.0988 +vn -0.8750 0.4841 -0.0050 +vn -0.8749 0.4842 -0.0053 +vn -0.8750 0.4841 -0.0048 +vn 0.1026 0.8016 -0.5890 +vn 0.1026 0.8015 -0.5891 +vn 0.1028 0.8017 -0.5889 +vn 0.9221 0.2325 -0.3092 +vn 0.9225 0.2327 -0.3080 +vn 0.9224 0.2335 -0.3076 +vn 0.9186 0.2911 0.2672 +vn 0.9186 0.2912 0.2673 +vn -0.9844 0.0841 0.1546 +vn 0.9558 -0.1455 0.2557 +vn 0.9557 -0.1456 0.2557 +vn 0.9558 -0.1451 0.2559 +vn -0.1950 -0.4020 -0.8946 +vn -0.1951 -0.4022 -0.8945 +vn -0.1951 -0.4021 -0.8946 +vn 0.3599 0.9316 0.0508 +vn 0.5188 0.7997 -0.3022 +vn 0.5185 0.7997 -0.3027 +vn 0.3440 0.9388 0.0186 +vn 0.3437 0.9389 0.0187 +vn 0.3445 0.9386 0.0186 +vn 0.5198 0.4123 -0.7482 +vn 0.7334 -0.3551 0.5797 +vn 0.7327 -0.3554 0.5804 +vn -0.2355 0.1961 0.9519 +vn -0.2354 0.1962 0.9519 +vn 0.4281 0.5934 -0.6816 +vn 0.4280 0.5933 -0.6817 +vn -0.2028 -0.3723 -0.9057 +vn -0.2023 -0.3726 -0.9057 +vn -0.2020 -0.3725 -0.9058 +vn -0.2409 -0.4000 -0.8843 +vn -0.2409 -0.3999 -0.8843 +vn -0.2411 -0.4000 -0.8842 +vn 0.5045 0.8565 -0.1092 +vn 0.5047 0.8564 -0.1092 +vn 0.5049 0.8563 -0.1091 +vn 0.8315 0.0827 0.5494 +vn 0.8314 0.0831 0.5495 +vn 0.8314 0.0829 0.5494 +vn -0.9719 0.2181 -0.0886 +vn -0.9719 0.2182 -0.0887 +vn -0.9718 0.2182 -0.0888 +vn 0.2317 -0.9207 -0.3139 +vn -0.0139 -0.3813 -0.9244 +vn -0.0139 -0.3821 -0.9240 +vn -0.0135 -0.3837 -0.9234 +vn 0.7409 -0.2192 0.6349 +vn 0.7409 -0.2190 0.6349 +vn 0.7405 -0.2193 0.6352 +vn 0.6616 0.7439 0.0947 +vn 0.6615 0.7439 0.0947 +vn -0.9828 0.0652 0.1729 +vn -0.9828 0.0646 0.1729 +vn -0.9829 0.0641 0.1727 +vn -0.3552 0.5054 0.7864 +vn -0.3550 0.5055 0.7864 +vn -0.3549 0.5054 0.7865 +vn -0.9930 -0.0286 -0.1146 +vn -0.9930 -0.0289 -0.1145 +vn -0.6646 -0.5524 -0.5032 +vn -0.6647 -0.5523 -0.5031 +vn -0.6648 -0.5524 -0.5029 +vn -0.0283 0.8843 -0.4660 +vn -0.0284 0.8843 -0.4660 +vn -0.0055 0.6253 -0.7804 +vn -0.0055 0.6255 -0.7802 +vn -0.0055 0.6252 -0.7804 +vn -0.6543 0.4547 -0.6043 +vn -0.6543 0.4549 -0.6041 +vn -0.6542 0.4544 -0.6046 +vn 0.3355 0.9417 -0.0255 +vn 0.3358 0.9416 -0.0254 +vn -0.7878 -0.5668 0.2410 +vn -0.7870 -0.5676 0.2418 +vn -0.7864 -0.5684 0.2418 +vn -0.4771 0.8410 -0.2550 +vn -0.4774 0.8410 -0.2545 +vn -0.0508 -0.2500 0.9669 +vn -0.0510 -0.2503 0.9668 +vn -0.0508 -0.2501 0.9669 +vn 0.0690 -0.5489 -0.8330 +vn 0.0689 -0.5487 -0.8332 +vn 0.0690 -0.5491 -0.8329 +vn -0.5212 0.6079 -0.5990 +vn -0.5216 0.6077 -0.5989 +vn -0.7318 -0.2693 -0.6260 +vn 0.1370 -0.9621 0.2358 +vn 0.0915 0.9957 0.0142 +vn 0.0912 0.9957 0.0142 +vn 0.0912 0.9957 0.0145 +vn -0.0885 -0.9955 0.0351 +vn -0.0882 -0.9955 0.0348 +vn -0.0885 -0.9955 0.0349 +vn -0.0677 -0.9213 -0.3829 +vn -0.0666 -0.9210 -0.3837 +vn -0.0685 -0.9217 -0.3818 +vn -0.0720 -0.9583 0.2767 +vn -0.0717 -0.9583 0.2766 +vn -0.0717 -0.9583 0.2767 +vn 0.2093 -0.9584 0.1940 +vn 0.2093 -0.9585 0.1936 +vn 0.2098 -0.9586 0.1926 +vn -0.3328 0.9382 0.0955 +vn -0.3324 0.9382 0.0967 +vn -0.3325 0.9384 0.0938 +vn -0.2020 -0.1826 -0.9622 +vn -0.2017 -0.1828 -0.9622 +vn -0.2020 -0.1827 -0.9622 +vn 0.0669 -0.8965 0.4379 +vn 0.0670 -0.8965 0.4379 +vn 0.3084 0.5902 -0.7460 +vn 0.3088 0.5905 -0.7456 +vn 0.2740 0.9140 -0.2992 +vn 0.2739 0.9140 -0.2993 +vn 0.2738 0.9140 -0.2994 +vn 0.4231 0.6780 -0.6011 +vn 0.2955 0.2309 0.9270 +vn -0.2523 -0.9479 0.1947 +vn -0.2523 -0.9477 0.1954 +vn -0.2523 -0.9478 0.1948 +vn -0.2598 -0.6261 -0.7352 +vn -0.2593 -0.6262 -0.7353 +vn -0.2595 -0.6262 -0.7352 +vn -0.4563 0.8108 -0.3666 +vn -0.4563 0.8108 -0.3667 +vn 0.2220 0.9564 -0.1896 +vn 0.2223 0.9564 -0.1897 +vn -0.3011 -0.9488 0.0956 +vn -0.3006 -0.9490 0.0956 +vn 0.4329 0.8531 -0.2912 +vn 0.4327 0.8529 -0.2921 +vn 0.4328 0.8530 -0.2918 +vn -0.8680 -0.3762 -0.3240 +vn -0.8681 -0.3761 -0.3239 +vn 0.9090 -0.4114 0.0674 +vn 0.9093 -0.4107 0.0670 +vn 0.9089 -0.4116 0.0673 +vn 0.2143 0.0086 0.9767 +vn 0.2139 0.0085 0.9768 +vn 0.2140 0.0085 0.9768 +vn -0.1966 -0.0376 0.9798 +vn -0.4413 -0.8959 -0.0509 +vn -0.4409 -0.8961 -0.0506 +vn -0.4408 -0.8962 -0.0502 +vn -0.7707 0.4301 -0.4701 +vn -0.7706 0.4301 -0.4703 +vn -0.7709 0.4300 -0.4700 +vn 0.8754 -0.3259 0.3571 +vn 0.8752 -0.3261 0.3573 +vn 0.8751 -0.3262 0.3575 +vn -0.6454 -0.5903 -0.4847 +vn -0.6456 -0.5900 -0.4849 +vn -0.6455 -0.5901 -0.4849 +vn 0.5033 0.7311 -0.4606 +vn 0.5033 0.7312 -0.4604 +vn -0.8030 -0.5723 0.1663 +vn 0.2301 0.9380 -0.2591 +vn 0.2296 0.9382 -0.2591 +vn 0.2304 0.9378 -0.2596 +vn 0.3372 0.1999 -0.9200 +vn 0.3371 0.2000 -0.9200 +vn 0.3370 0.2001 -0.9200 +vn -0.2150 -0.1559 -0.9641 +vn -0.2147 -0.1558 -0.9642 +vn -0.2152 -0.1563 -0.9640 +vn -0.4740 -0.8630 -0.1748 +vn -0.8369 0.4004 0.3733 +vn -0.8369 0.4004 0.3732 +vn -0.0342 0.7924 -0.6090 +vn -0.0346 0.7925 -0.6089 +vn -0.0344 0.7924 -0.6090 +vn -0.5686 0.8186 0.0811 +vn 0.2706 -0.1370 0.9529 +vn 0.2708 -0.1375 0.9528 +vn 0.2709 -0.1375 0.9527 +vn 0.5422 0.5501 -0.6352 +vn 0.5423 0.5501 -0.6351 +vn -0.7822 -0.5595 -0.2741 +vn -0.7822 -0.5595 -0.2740 +vn -0.7821 -0.5597 -0.2739 +vn -0.6778 -0.6441 -0.3546 +vn -0.8026 -0.4339 -0.4094 +vn -0.8038 -0.4331 -0.4079 +vn -0.8047 -0.4320 -0.4072 +vn -0.0351 -0.8744 0.4839 +vn -0.0350 -0.8745 0.4838 +vn -0.5067 -0.7916 -0.3414 +vn -0.5067 -0.7917 -0.3412 +vn -0.5067 -0.7916 -0.3415 +vn -0.0332 -0.8932 0.4484 +vn -0.0334 -0.8932 0.4484 +vn -0.8678 0.0400 0.4952 +vn -0.8683 0.0406 0.4944 +vn -0.8863 0.4630 -0.0043 +vn -0.8865 0.4627 -0.0042 +vn -0.8865 0.4627 -0.0041 +vn -0.5050 0.6936 -0.5137 +vn -0.5051 0.6935 -0.5137 +vn -0.0539 -0.9513 0.3035 +vn -0.0526 -0.9512 0.3042 +vn -0.0523 -0.9510 0.3047 +vn -0.4048 0.9142 -0.0192 +vn -0.4046 0.9143 -0.0189 +vn 0.8482 -0.5286 -0.0343 +vn 0.8484 -0.5283 -0.0351 +vn 0.8485 -0.5281 -0.0353 +vn -0.0211 -0.3796 0.9249 +vn 0.0682 0.8719 -0.4849 +vn 0.0680 0.8718 -0.4851 +vn 0.0674 0.8719 -0.4851 +vn 0.4389 0.8224 -0.3619 +vn 0.4387 0.8226 -0.3617 +vn 0.4391 0.8222 -0.3623 +vn -0.8446 -0.4650 -0.2655 +vn -0.5357 -0.0730 -0.8412 +vn 0.6538 0.5899 0.4738 +vn 0.1798 0.3078 -0.9343 +vn 0.1797 0.3075 -0.9344 +vn 0.7277 0.6769 -0.1104 +vn 0.7271 0.6776 -0.1105 +vn 0.7265 0.6781 -0.1112 +vn 0.1769 0.9125 -0.3689 +vn 0.1768 0.9126 -0.3688 +vn 0.1773 0.9125 -0.3686 +vn 0.4422 0.8349 -0.3276 +vn 0.4426 0.8350 -0.3269 +vn 0.4424 0.8350 -0.3272 +vn 0.5555 0.8220 -0.1256 +vn 0.5552 0.8222 -0.1257 +vn 0.5552 0.8222 -0.1254 +vn 0.3355 0.6157 -0.7129 +vn 0.3357 0.6153 -0.7132 +vn 0.3358 0.6155 -0.7131 +vn 0.9310 -0.2172 0.2933 +vn 0.9309 -0.2171 0.2939 +vn 0.9311 -0.2175 0.2929 +vn 0.4880 0.2280 -0.8426 +vn 0.4885 0.2282 -0.8422 +vn -0.9350 0.3399 -0.1008 +vn -0.9352 0.3394 -0.1008 +vn -0.9351 0.3397 -0.1008 +vn -0.3776 -0.8822 -0.2812 +vn -0.3772 -0.8823 -0.2815 +vn -0.3776 -0.8823 -0.2810 +vn -0.9136 0.3933 -0.1031 +vn -0.9135 0.3935 -0.1030 +vn -0.9133 0.3942 -0.1025 +vn -0.5586 -0.7473 -0.3598 +vn -0.5587 -0.7472 -0.3599 +vn 0.1198 0.9741 0.1915 +vn 0.1197 0.9741 0.1917 +vn 0.1199 0.9741 0.1918 +vn -0.4546 0.8480 0.2725 +vn -0.4547 0.8479 0.2726 +vn -0.4545 0.8480 0.2726 +vn -0.0227 -0.9995 0.0208 +vn -0.0227 -0.9995 0.0206 +vn -0.0227 -0.9995 0.0213 +vn -0.5889 0.1188 -0.7994 +vn -0.5887 0.1187 -0.7996 +vn 0.0013 -0.0010 1.0000 +vn 0.1154 0.1361 -0.9840 +vn 0.1148 0.1362 -0.9840 +vn 0.1151 0.1362 -0.9840 +vn -0.0486 -0.9059 -0.4206 +vn -0.0475 -0.9058 -0.4210 +vn -0.0484 -0.9059 -0.4208 +vn 0.4889 0.8723 0.0036 +vn 0.4897 0.8719 0.0040 +vn 0.4905 0.8714 0.0045 +vn 0.3949 -0.8037 -0.4451 +vn -0.4632 0.5918 0.6597 +vn -0.4633 0.5918 0.6596 +vn -0.8248 0.1964 -0.5302 +vn -0.8243 0.1967 -0.5309 +vn -0.8240 0.1966 -0.5314 +vn 0.4568 0.8455 -0.2766 +vn 0.4565 0.8457 -0.2766 +vn 0.4565 0.8456 -0.2767 +vn 0.2786 0.0595 -0.9585 +vn 0.2788 0.0595 -0.9585 +vn 0.2787 0.0597 -0.9585 +vn -0.5318 -0.7519 -0.3897 +vn 0.2758 -0.0814 -0.9578 +vn 0.2757 -0.0815 -0.9578 +vn -0.7891 0.6128 -0.0418 +vn -0.7901 0.6114 -0.0440 +vn -0.7897 0.6120 -0.0427 +vn 0.1441 0.9881 0.0541 +vn 0.1441 0.9881 0.0540 +vn 0.1440 0.9881 0.0541 +vn -0.8987 -0.2306 0.3730 +vn -0.9515 0.3042 0.0448 +vn -0.9517 0.3039 0.0447 +vn -0.9517 0.3037 0.0446 +vn 0.0101 -0.9271 -0.3746 +vn 0.0102 -0.9271 -0.3748 +vn 0.0101 -0.9271 -0.3747 +vn 0.6370 0.1890 -0.7473 +vn 0.6369 0.1887 -0.7475 +vn 0.6367 0.1876 -0.7479 +vn -0.9195 0.3769 -0.1120 +vn -0.9195 0.3769 -0.1119 +vn -0.7942 0.5440 -0.2707 +vn -0.7939 0.5448 -0.2701 +vn -0.7940 0.5448 -0.2696 +vn -0.1893 -0.4332 0.8812 +vn -0.1892 -0.4332 0.8812 +vn -0.4829 -0.5254 -0.7006 +vn -0.4830 -0.5253 -0.7005 +vn -0.4829 -0.5253 -0.7006 +vn 0.5830 -0.7324 -0.3519 +vn 0.5834 -0.7321 -0.3517 +vn 0.5832 -0.7322 -0.3519 +vn 0.2185 0.9039 -0.3678 +vn 0.2182 0.9039 -0.3678 +vn 0.2179 0.9040 -0.3678 +vn -0.2907 0.4065 -0.8661 +vn -0.2911 0.4066 -0.8660 +vn -0.2909 0.4065 -0.8661 +vn 0.1023 -0.9692 -0.2239 +vn 0.0904 -0.8111 0.5778 +vn 0.0903 -0.8111 0.5778 +vn 0.0902 -0.8112 0.5778 +vn -0.3956 0.6739 -0.6240 +vn -0.3958 0.6738 -0.6239 +vn -0.3959 0.6738 -0.6239 +vn -0.1979 -0.1765 0.9642 +vn -0.1979 -0.1762 0.9642 +vn -0.1981 -0.1763 0.9642 +vn -0.8385 -0.5192 0.1653 +vn -0.8382 -0.5199 0.1645 +vn -0.8380 -0.5204 0.1642 +vn -0.4619 0.1870 -0.8670 +vn -0.4619 0.1869 -0.8670 +vn 0.0903 -0.1696 0.9814 +vn -0.7182 0.6139 -0.3275 +vn -0.7185 0.6135 -0.3278 +vn -0.7188 0.6131 -0.3278 +vn -0.3105 -0.5575 -0.7699 +vn -0.3101 -0.5577 -0.7699 +vn -0.3097 -0.5574 -0.7703 +vn 0.3800 -0.9203 -0.0932 +vn 0.3799 -0.9203 -0.0934 +vn 0.3799 -0.9204 -0.0928 +vn 0.8516 -0.5061 -0.1364 +vn 0.8519 -0.5055 -0.1365 +vn 0.8521 -0.5051 -0.1369 +vn 0.1529 0.9497 0.2731 +vn 0.1528 0.9498 0.2729 +vn -0.3373 -0.8213 0.4601 +vn -0.3377 -0.8213 0.4598 +vn -0.3376 -0.8213 0.4599 +vn 0.4127 0.0219 -0.9106 +vn 0.4123 0.0213 -0.9108 +vn 0.4125 0.0218 -0.9107 +vn -0.2617 0.3240 0.9092 +vn -0.2617 0.3231 0.9095 +vn -0.2618 0.3236 0.9093 +vn 0.0536 -0.9462 -0.3191 +vn 0.0535 -0.9463 -0.3189 +vn -0.2941 0.8552 -0.4268 +vn -0.2946 0.8552 -0.4264 +vn -0.2942 0.8553 -0.4266 +vn -0.2665 -0.5643 0.7814 +vn -0.2144 -0.5841 0.7828 +vn -0.2131 -0.5840 0.7833 +vn -0.2129 -0.5835 0.7837 +vn 0.3068 -0.9359 -0.1731 +vn 0.3068 -0.9359 -0.1730 +vn 0.3070 -0.9359 -0.1728 +vn -0.2732 0.2177 -0.9370 +vn -0.2756 0.2173 -0.9364 +vn -0.2745 0.2171 -0.9367 +vn 0.0275 -0.8951 -0.4451 +vn 0.0277 -0.8953 -0.4447 +vn 0.0276 -0.8949 -0.4454 +vn -0.1495 0.2023 -0.9678 +vn -0.1500 0.2025 -0.9677 +vn -0.1503 0.2026 -0.9677 +vn -0.6985 -0.4633 -0.5454 +vn -0.6986 -0.4630 -0.5455 +vn -0.6984 -0.4632 -0.5456 +vn -0.1619 -0.8583 -0.4869 +vn -0.1621 -0.8583 -0.4869 +vn -0.1623 -0.8582 -0.4869 +vn 0.2085 -0.8176 -0.5367 +vn 0.2084 -0.8172 -0.5373 +vn 0.2082 -0.8167 -0.5381 +vn 0.3711 -0.7008 0.6093 +vn 0.3713 -0.7009 0.6090 +vn 0.3708 -0.7006 0.6097 +vn -0.0968 -0.7956 -0.5981 +vn -0.0966 -0.7954 -0.5983 +vn -0.0968 -0.7955 -0.5981 +vn 0.0502 0.0309 0.9983 +vn 0.0502 0.0310 0.9983 +vn 0.0503 0.0307 0.9983 +vn -0.9080 0.3299 -0.2582 +vn 0.9337 -0.2401 0.2655 +vn 0.4680 -0.8476 -0.2500 +vn 0.4682 -0.8476 -0.2499 +vn 0.4680 -0.8476 -0.2501 +vn 0.9397 0.2608 0.2215 +vn 0.9396 0.2609 0.2215 +vn 0.9396 0.2610 0.2214 +vn -0.0028 0.9749 -0.2227 +vn -0.0028 0.9749 -0.2225 +vn 0.0689 0.8831 -0.4642 +vn 0.0703 0.8831 -0.4639 +vn 0.0713 0.8833 -0.4633 +vn 0.8485 -0.4597 0.2620 +vn 0.6274 0.2908 -0.7224 +vn 0.6270 0.2907 -0.7228 +vn 0.6275 0.2908 -0.7223 +vn -0.5196 0.6913 -0.5021 +vn -0.5197 0.6913 -0.5021 +vn -0.7388 -0.2979 -0.6044 +vn -0.7388 -0.2980 -0.6045 +vn 0.4095 0.6655 -0.6240 +vn 0.4097 0.6651 -0.6243 +vn 0.4093 0.6653 -0.6244 +vn 0.5219 0.4426 -0.7292 +vn 0.5218 0.4429 -0.7291 +vn 0.7919 -0.2286 0.5663 +vn 0.7920 -0.2287 0.5661 +vn 0.7922 -0.2286 0.5659 +vn 0.1526 0.8601 0.4867 +vn 0.1529 0.8600 0.4868 +vn 0.1528 0.8599 0.4871 +vn -0.2296 0.8814 -0.4129 +vn -0.2307 0.8814 -0.4122 +vn -0.7680 -0.6245 -0.1421 +vn -0.7682 -0.6242 -0.1421 +vn -0.7681 -0.6243 -0.1421 +vn 0.4907 -0.8322 0.2583 +vn 0.4912 -0.8319 0.2581 +vn -0.1558 0.9705 -0.1838 +vn -0.1548 0.9707 -0.1837 +vn -0.1540 0.9708 -0.1839 +vn -0.2658 -0.8909 -0.3682 +vn -0.2659 -0.8912 -0.3674 +vn -0.2670 -0.8914 -0.3663 +vn -0.3913 -0.6947 0.6036 +vn -0.3917 -0.6946 0.6034 +vn -0.3914 -0.6946 0.6037 +vn 0.2340 -0.1303 -0.9635 +vn 0.2328 -0.1300 -0.9638 +vn 0.2349 -0.1311 -0.9631 +vn 0.3827 0.9217 -0.0638 +vn 0.3830 0.9216 -0.0638 +vn 0.3832 0.9215 -0.0638 +vn 0.0549 -0.6666 -0.7434 +vn 0.0552 -0.6663 -0.7437 +vn 0.4376 0.3438 -0.8309 +vn 0.4377 0.3437 -0.8308 +vn 0.4376 0.3440 -0.8307 +vn -0.9488 0.2768 0.1523 +vn -0.9487 0.2771 0.1521 +vn 0.2867 -0.1610 0.9444 +vn 0.2869 -0.1611 0.9443 +vn 0.2868 -0.1609 0.9444 +vn 0.6248 -0.2217 0.7486 +vn 0.6249 -0.2218 0.7485 +vn 0.6249 -0.2216 0.7486 +vn -0.4365 -0.8052 0.4015 +vn -0.4333 -0.8059 0.4035 +vn -0.4352 -0.8056 0.4020 +vn 0.4672 -0.7793 -0.4177 +vn 0.4669 -0.7793 -0.4179 +vn 0.5911 0.6026 0.5362 +vn 0.5935 0.6018 0.5344 +vn 0.5921 0.6020 0.5357 +vn 0.3625 0.0651 0.9297 +vn 0.3642 0.0647 0.9291 +vn 0.3653 0.0648 0.9286 +vn 0.0602 0.7097 -0.7020 +vn 0.0603 0.7097 -0.7020 +vn -0.4478 0.7025 -0.5532 +vn -0.4471 0.7024 -0.5539 +vn -0.4468 0.7021 -0.5545 +vn -0.2687 -0.0097 0.9632 +vn -0.2688 -0.0100 0.9631 +vn 0.5060 0.6315 0.5875 +vn 0.5059 0.6316 0.5875 +vn -0.2830 -0.9470 -0.1518 +vn -0.2828 -0.9471 -0.1520 +vn -0.2830 -0.9470 -0.1522 +vn 0.4337 0.8966 -0.0892 +vn -0.3262 -0.9324 0.1554 +vn -0.3267 -0.9325 0.1540 +vn -0.3266 -0.9325 0.1545 +vn -0.9133 -0.1661 0.3720 +vn -0.9138 -0.1640 0.3715 +vn -0.9146 -0.1626 0.3703 +vn 0.1521 0.8981 -0.4126 +vn 0.1520 0.8982 -0.4125 +vn 0.1525 0.8979 -0.4130 +vn 0.1021 -0.1848 -0.9774 +vn 0.1020 -0.1853 -0.9774 +vn 0.3628 0.3072 -0.8798 +vn 0.3629 0.3074 -0.8797 +vn 0.3630 0.3076 -0.8796 +vn -0.0037 -0.9686 -0.2487 +vn 0.1527 -0.9761 0.1549 +vn 0.1527 -0.9763 0.1536 +vn 0.1522 -0.9760 0.1556 +vn -0.6852 0.3139 -0.6572 +vn -0.6853 0.3139 -0.6571 +vn -0.6854 0.3139 -0.6571 +vn 0.0549 -0.9970 0.0542 +vn 0.0553 -0.9970 0.0540 +vn 0.0547 -0.9970 0.0544 +vn 0.7069 0.1673 0.6873 +vn 0.7071 0.1674 0.6870 +vn 0.7068 0.1670 0.6875 +vn -0.0184 -0.9957 0.0903 +vn -0.0185 -0.9957 0.0905 +vn -0.0186 -0.9957 0.0906 +vn 0.5365 -0.6313 0.5600 +vn 0.5362 -0.6318 0.5597 +vn 0.5362 -0.6325 0.5590 +vn 0.1719 0.6733 -0.7191 +vn 0.1722 0.6733 -0.7191 +vn 0.0245 -0.9929 0.1163 +vn 0.0248 -0.9929 0.1162 +vn 0.0230 -0.9929 0.1165 +vn 0.4319 -0.7932 0.4294 +vn 0.4321 -0.7931 0.4292 +vn 0.4314 -0.7933 0.4296 +vn -0.9200 -0.3637 -0.1461 +vn -0.2314 -0.9473 -0.2216 +vn -0.2315 -0.9472 -0.2217 +vn -0.2316 -0.9473 -0.2215 +vn 0.6964 -0.6757 -0.2417 +vn 0.1709 -0.5077 0.8444 +vn 0.1709 -0.5076 0.8445 +vn 0.1708 -0.5079 0.8443 +vn 0.6135 -0.6128 -0.4981 +vn 0.6130 -0.6133 -0.4981 +vn 0.6126 -0.6136 -0.4982 +vn 0.0308 -0.7433 -0.6683 +vn 0.0305 -0.7433 -0.6683 +vn 0.0303 -0.7433 -0.6683 +vn -0.4822 -0.7998 -0.3575 +vn -0.4822 -0.8001 -0.3568 +vn -0.4822 -0.7999 -0.3573 +vn -0.0063 0.0196 0.9998 +vn -0.0065 0.0199 0.9998 +vn -0.0062 0.0192 0.9998 +vn 0.4914 -0.7731 0.4011 +vn 0.4922 -0.7731 0.4001 +vn 0.4902 -0.7734 0.4020 +vn 0.2444 -0.5669 0.7867 +vn 0.2434 -0.5671 0.7869 +vn 0.2453 -0.5671 0.7863 +vn -0.1860 -0.5554 0.8105 +vn -0.0639 -0.5673 0.8210 +vn -0.0636 -0.5676 0.8209 +vn 0.1848 -0.6712 0.7179 +vn 0.1844 -0.6713 0.7179 +vn 0.1840 -0.6715 0.7178 +vn 0.6400 0.7676 0.0343 +vn 0.6398 0.7678 0.0342 +vn 0.6395 0.7680 0.0342 +vn 0.5433 0.8376 -0.0566 +vn 0.5436 0.8374 -0.0569 +vn 0.5432 0.8377 -0.0564 +vn -0.3966 -0.5052 -0.7665 +vn -0.3965 -0.5051 -0.7666 +vn -0.5944 -0.2379 0.7682 +vn -0.5951 -0.2377 0.7677 +vn -0.5938 -0.2381 0.7686 +vn 0.3084 0.9456 -0.1041 +vn 0.3084 0.9455 -0.1042 +vn 0.3085 0.9455 -0.1040 +vn -0.0285 0.4685 -0.8830 +vn -0.0264 0.4697 -0.8824 +vn -0.0275 0.4689 -0.8828 +vn 0.5078 -0.8445 0.1704 +vn 0.5072 -0.8448 0.1705 +vn 0.5077 -0.8445 0.1704 +vn 0.1174 -0.0006 0.9931 +vn 0.1173 -0.0007 0.9931 +vn 0.4959 0.6290 0.5987 +vn 0.4960 0.6288 0.5988 +vn 0.4958 0.6291 0.5987 +vn 0.1444 0.9694 -0.1985 +vn 0.1445 0.9694 -0.1985 +vn 0.1444 0.9694 -0.1983 +vn 0.3599 0.4571 -0.8134 +vn 0.3600 0.4569 -0.8134 +vn -0.0279 0.1273 -0.9915 +vn -0.0279 0.1276 -0.9914 +vn -0.6684 -0.5171 -0.5346 +vn -0.6683 -0.5172 -0.5347 +vn -0.2781 -0.3655 0.8883 +vn -0.2781 -0.3656 0.8882 +vn -0.2783 -0.3654 0.8883 +vn -0.2852 -0.8486 -0.4457 +vn -0.2856 -0.8487 -0.4451 +vn -0.2849 -0.8485 -0.4459 +vn 0.4177 -0.1547 0.8953 +vn 0.4196 -0.1534 0.8947 +vn 0.4187 -0.1535 0.8951 +vn -0.9668 -0.1124 -0.2294 +vn 0.3226 0.9392 -0.1179 +vn 0.3225 0.9392 -0.1180 +vn 0.3227 0.9391 -0.1179 +vn 0.7945 0.3899 0.4656 +vn 0.7946 0.3899 0.4654 +vn 0.7945 0.3901 0.4654 +vn -0.1941 0.5044 -0.8414 +vn -0.1941 0.5042 -0.8415 +vn -0.1942 0.5044 -0.8414 +vn -0.8219 0.4120 -0.3933 +vn -0.8210 0.4125 -0.3947 +vn -0.0490 -0.6306 0.7745 +vn -0.0490 -0.6309 0.7743 +vn -0.0488 -0.6304 0.7747 +vn -0.7731 0.5381 -0.3358 +vn 0.0185 -0.5414 -0.8406 +vn 0.0191 -0.5418 -0.8403 +vn 0.0194 -0.5421 -0.8401 +vn -0.7445 0.6564 -0.1221 +vn -0.7443 0.6566 -0.1220 +vn -0.7442 0.6568 -0.1221 +vn -0.5702 0.8214 0.0118 +vn -0.5702 0.8214 0.0115 +vn -0.5702 0.8214 0.0120 +vn -0.1547 0.9878 -0.0159 +vn -0.1548 0.9878 -0.0161 +vn -0.7798 0.3953 -0.4854 +vn -0.4818 -0.4065 0.7763 +vn -0.4819 -0.4063 0.7763 +vn 0.2142 0.2459 0.9453 +vn 0.2136 0.2459 0.9455 +vn 0.2149 0.2453 0.9453 +vn 0.9091 0.1958 -0.3678 +vn 0.9091 0.1960 -0.3677 +vn 0.9091 0.1959 -0.3677 +vn 0.4274 -0.8163 -0.3885 +vn 0.4273 -0.8163 -0.3888 +vn 0.4273 -0.8163 -0.3887 +vn 0.1081 0.3966 0.9116 +vn 0.1078 0.3963 0.9118 +vn -0.8955 -0.3426 0.2842 +vn -0.8953 -0.3430 0.2842 +vn -0.8954 -0.3429 0.2842 +vn -0.3310 -0.1778 -0.9267 +vn -0.3314 -0.1776 -0.9266 +vn -0.3311 -0.1776 -0.9267 +vn -0.7707 0.4226 -0.4769 +vn -0.7707 0.4226 -0.4770 +vn -0.7711 0.4222 -0.4766 +vn -0.2560 -0.1617 -0.9531 +vn -0.2560 -0.1615 -0.9531 +vn -0.2559 -0.1616 -0.9531 +vn 0.3966 0.9041 -0.1593 +vn -0.3664 -0.7382 -0.5664 +vn -0.3673 -0.7374 -0.5668 +vn -0.3658 -0.7385 -0.5664 +vn 0.4134 0.9007 0.1336 +vn 0.4133 0.9008 0.1332 +vn 0.4137 0.9006 0.1332 +vn -0.5643 -0.8138 -0.1388 +vn -0.5641 -0.8140 -0.1385 +vn -0.5644 -0.8138 -0.1388 +vn -0.8727 0.4716 -0.1265 +vn -0.8728 0.4714 -0.1263 +vn -0.8728 0.4715 -0.1263 +vn -0.0083 0.3808 -0.9246 +vn -0.7074 0.2084 0.6755 +vn -0.7074 0.2082 0.6754 +vn 0.0797 0.9956 0.0485 +vn 0.0800 0.9956 0.0486 +vn 0.0857 0.8803 -0.4667 +vn 0.0861 0.8804 -0.4664 +vn 0.0861 0.8803 -0.4665 +vn -0.8733 0.4860 -0.0346 +vn -0.8726 0.4869 -0.0379 +vn -0.8730 0.4864 -0.0369 +vn -0.1464 0.9891 -0.0149 +vn -0.1466 0.9891 -0.0145 +vn -0.7188 0.5880 -0.3710 +vn -0.7190 0.5874 -0.3715 +vn -0.7189 0.5869 -0.3724 +vn 0.5875 0.3793 -0.7148 +vn 0.5874 0.3794 -0.7148 +vn -0.5006 -0.7991 0.3330 +vn -0.1002 -0.7442 -0.6604 +vn -0.1000 -0.7440 -0.6607 +vn -0.1004 -0.7446 -0.6599 +vn 0.4432 -0.6609 -0.6057 +vn 0.4431 -0.6610 -0.6057 +vn 0.4432 -0.6608 -0.6057 +vn -0.0628 0.9720 -0.2264 +vn 0.7665 -0.3811 -0.5170 +vn 0.2681 0.9205 -0.2843 +vn 0.2682 0.9206 -0.2837 +vn 0.2680 0.9206 -0.2842 +vn -0.0483 0.9207 -0.3873 +vn -0.0487 0.9207 -0.3872 +vn -0.0490 0.9207 -0.3871 +vn 0.5264 -0.1492 0.8371 +vn 0.5263 -0.1494 0.8371 +vn 0.5266 -0.1489 0.8370 +vn -0.6456 0.7518 -0.1340 +vn -0.6455 0.7519 -0.1344 +vn -0.6457 0.7518 -0.1335 +vn -0.1124 0.9441 -0.3099 +vn -0.1122 0.9441 -0.3099 +vn -0.1121 0.9441 -0.3099 +vn 0.6375 0.2991 -0.7100 +vn -0.4495 0.2726 -0.8507 +vn -0.4493 0.2725 -0.8508 +vn -0.4491 0.2725 -0.8509 +vn -0.5620 -0.4433 -0.6983 +vn -0.5616 -0.4435 -0.6985 +vn -0.1516 -0.9683 -0.1984 +vn -0.1540 -0.9681 -0.1977 +vn -0.1546 -0.9680 -0.1978 +vn 0.5228 0.3681 0.7689 +vn 0.5221 0.3680 0.7694 +vn 0.5238 0.3686 0.7680 +vn 0.3385 -0.2013 -0.9192 +vn 0.3386 -0.2016 -0.9191 +vn 0.3386 -0.2014 -0.9191 +vn -0.3986 0.0215 -0.9169 +vn -0.3980 0.0207 -0.9171 +vn -0.3985 0.0219 -0.9169 +vn 0.4840 0.8204 -0.3044 +vn 0.4834 0.8210 -0.3036 +vn 0.4836 0.8208 -0.3039 +vn -0.3769 0.9224 0.0844 +vn -0.3769 0.9225 0.0837 +vn -0.3769 0.9224 0.0840 +vn -0.1242 0.9272 -0.3533 +vn -0.1244 0.9270 -0.3539 +vn -0.1243 0.9271 -0.3536 +vn 0.3755 -0.8678 -0.3254 +vn 0.3751 -0.8680 -0.3255 +vn 0.3755 -0.8677 -0.3258 +vn 0.7160 -0.6128 0.3345 +vn 0.7160 -0.6127 0.3344 +vn 0.7376 -0.4577 -0.4964 +vn 0.7377 -0.4575 -0.4965 +vn 0.7377 -0.4573 -0.4967 +vn 0.3746 -0.8949 -0.2425 +vn 0.3747 -0.8948 -0.2426 +vn 0.3747 -0.8949 -0.2425 +vn -0.6695 -0.3583 -0.6507 +vn -0.6696 -0.3582 -0.6506 +vn -0.6699 -0.3581 -0.6504 +vn 0.8323 0.2293 0.5047 +vn 0.8322 0.2290 0.5050 +vn 0.8322 0.2293 0.5049 +vn -0.2677 -0.8026 -0.5330 +vn -0.2677 -0.8027 -0.5330 +vn -0.2481 -0.0212 -0.9685 +vn -0.2476 -0.0214 -0.9686 +vn -0.2472 -0.0217 -0.9687 +vn -0.9985 -0.0298 -0.0452 +vn 0.1758 -0.6704 -0.7209 +vn 0.1759 -0.6703 -0.7209 +vn 0.1755 -0.6703 -0.7210 +vn -0.6769 -0.5124 -0.5284 +vn -0.6771 -0.5121 -0.5284 +vn -0.6769 -0.5123 -0.5285 +vn -0.1733 -0.8917 -0.4182 +vn 0.1564 -0.9287 -0.3363 +vn 0.1567 -0.9285 -0.3367 +vn 0.1563 -0.9286 -0.3365 +vn 0.1432 -0.9206 -0.3634 +vn -0.0228 -0.9955 -0.0923 +vn -0.0227 -0.9955 -0.0923 +vn -0.3313 0.8144 -0.4765 +vn -0.7408 0.5895 -0.3219 +vn 0.3348 0.7009 0.6299 +vn 0.3348 0.7009 0.6298 +vn 0.3345 0.7004 0.6305 +vn -0.7825 -0.2599 -0.5658 +vn -0.7826 -0.2599 -0.5657 +vn -0.7826 -0.2598 -0.5657 +vn 0.2444 0.9400 0.2379 +vn 0.2447 0.9400 0.2379 +vn 0.2449 0.9399 0.2378 +vn 0.1908 -0.9660 0.1743 +vn 0.1909 -0.9660 0.1742 +vn 0.1906 -0.9661 0.1744 +vn 0.0090 -0.9752 0.2210 +vn 0.0092 -0.9752 0.2210 +vn 0.8289 -0.1284 0.5445 +vn -0.0429 -0.9960 -0.0778 +vn -0.8425 0.4808 0.2429 +vn -0.8427 0.4809 0.2421 +vn -0.8425 0.4809 0.2428 +vn 0.1084 -0.9936 0.0304 +vn 0.1082 -0.9937 0.0299 +vn -0.7057 -0.5667 -0.4253 +vn -0.7057 -0.5666 -0.4253 +vn -0.7057 -0.5666 -0.4254 +vn -0.6424 0.6827 -0.3483 +vn -0.6425 0.6825 -0.3484 +vn -0.6422 0.6830 -0.3480 +vn -0.0329 -0.9843 -0.1735 +vn -0.0331 -0.9842 -0.1740 +vn 0.0877 -0.9960 -0.0185 +vn 0.0879 -0.9960 -0.0187 +vn 0.8959 0.3007 0.3272 +vn 0.8957 0.3013 0.3270 +vn 0.8958 0.3009 0.3272 +vn 0.8119 -0.3806 0.4427 +vn 0.8118 -0.3804 0.4430 +vn 0.8120 -0.3805 0.4425 +vn -0.2153 -0.9750 -0.0553 +vn -0.2161 -0.9748 -0.0553 +vn -0.2145 -0.9751 -0.0557 +vn 0.1032 -0.9929 -0.0595 +vn 0.1029 -0.9929 -0.0590 +vn -0.7718 -0.2528 -0.5835 +vn 0.9607 -0.2701 -0.0637 +vn 0.9607 -0.2701 -0.0636 +vn 0.2634 -0.5644 0.7823 +vn 0.2634 -0.5643 0.7824 +vn 0.2634 -0.5644 0.7824 +vn -0.1537 -0.9815 0.1140 +vn -0.1536 -0.9816 0.1138 +vn 0.3688 0.8293 -0.4199 +vn 0.3689 0.8290 -0.4203 +vn -0.1894 -0.9613 0.1999 +vn -0.1895 -0.9613 0.1998 +vn -0.1894 -0.9614 0.1996 +vn -0.1829 -0.9822 0.0425 +vn -0.4573 0.8677 -0.1950 +vn -0.4573 0.8677 -0.1948 +vn 0.5417 0.6958 -0.4716 +vn 0.5420 0.6950 -0.4725 +vn 0.5414 0.6962 -0.4714 +vn 0.0294 0.6778 0.7346 +vn 0.0176 -0.9241 0.3818 +vn 0.2489 0.8455 -0.4724 +vn -0.1254 -0.9828 -0.1356 +vn -0.1256 -0.9828 -0.1351 +vn -0.1256 -0.9828 -0.1352 +vn -0.2367 -0.8557 -0.4601 +vn -0.2386 -0.8554 -0.4598 +vn -0.2400 -0.8548 -0.4601 +vn -0.6284 0.1841 -0.7558 +vn -0.6284 0.1840 -0.7558 +vn -0.6285 0.1843 -0.7556 +vn -0.5675 -0.7025 0.4295 +vn -0.5674 -0.7025 0.4296 +vn -0.5670 -0.7027 0.4298 +vn -0.3414 -0.9396 0.0238 +vn -0.2951 -0.7970 -0.5269 +vn -0.2953 -0.7964 -0.5278 +vn -0.2948 -0.7956 -0.5292 +vn 0.8568 -0.3095 0.4124 +vn 0.8570 -0.3094 0.4121 +vn 0.8569 -0.3095 0.4124 +vn -0.0773 -0.9874 0.1384 +vn -0.0775 -0.9874 0.1383 +vn -0.0773 -0.9874 0.1383 +vn -0.6250 0.7644 -0.1583 +vn -0.6250 0.7643 -0.1586 +vn -0.6251 0.7643 -0.1583 +vn 0.3244 -0.7370 0.5930 +vn 0.3246 -0.7371 0.5928 +vn -0.1970 0.2543 -0.9468 +vn -0.1975 0.2538 -0.9469 +vn -0.1974 0.2539 -0.9469 +vn -0.4792 0.8249 -0.3000 +vn 0.4834 0.1296 0.8657 +vn 0.4831 0.1299 0.8659 +vn 0.4831 0.1298 0.8659 +vn 0.4977 -0.6727 0.5474 +vn 0.4978 -0.6727 0.5475 +vn -0.0893 -0.9399 -0.3295 +vn -0.0891 -0.9401 -0.3291 +vn -0.0892 -0.9396 -0.3305 +vn -0.0662 0.9876 0.1426 +vn -0.0645 0.9877 0.1424 +vn -0.0655 0.9876 0.1427 +vn 0.6204 -0.6366 0.4581 +vn 0.6196 -0.6374 0.4580 +vn 0.6200 -0.6370 0.4580 +vn 0.5161 -0.8021 0.3003 +vn -0.3370 -0.4125 0.8463 +vn -0.3370 -0.4127 0.8462 +vn -0.3369 -0.4124 0.8464 +vn -0.2575 0.9566 0.1364 +vn -0.2577 0.9566 0.1363 +vn -0.2576 0.9566 0.1361 +vn -0.2340 -0.3606 -0.9029 +vn -0.2351 -0.3602 -0.9028 +vn -0.2345 -0.3605 -0.9028 +vn 0.7027 0.4346 0.5633 +vn 0.7021 0.4340 0.5646 +vn 0.7023 0.4345 0.5639 +vn -0.1796 -0.9534 -0.2425 +vn -0.1797 -0.9535 -0.2418 +vn -0.1795 -0.9535 -0.2421 +vn -0.2173 -0.8581 0.4652 +vn -0.2174 -0.8580 0.4653 +vn 0.1689 -0.9491 0.2659 +vn 0.1691 -0.9490 0.2662 +vn 0.1692 -0.9490 0.2662 +vn 0.2517 -0.9498 0.1858 +vn 0.2508 -0.9503 0.1843 +vn 0.2515 -0.9500 0.1852 +vn -0.9135 0.3926 0.1066 +vn -0.9130 0.3936 0.1070 +vn -0.9134 0.3929 0.1066 +vn -0.5452 -0.0215 -0.8380 +vn -0.9053 -0.2960 0.3046 +vn -0.9051 -0.2962 0.3050 +vn -0.9053 -0.2960 0.3048 +vn -0.1637 0.9189 -0.3588 +vn -0.1637 0.9192 -0.3583 +vn -0.1636 0.9191 -0.3585 +vn -0.3166 0.6458 -0.6948 +vn -0.3165 0.6455 -0.6951 +vn -0.3163 0.6451 -0.6956 +vn 0.1795 -0.2527 -0.9507 +vn 0.0283 -0.8673 0.4969 +vn 0.0286 -0.8669 0.4977 +vn 0.0284 -0.8672 0.4972 +vn -0.2921 -0.9411 -0.1701 +vn -0.2919 -0.9413 -0.1696 +vn -0.2920 -0.9414 -0.1690 +vn 0.3255 0.0888 0.9414 +vn 0.3254 0.0888 0.9414 +vn -0.2784 -0.9604 -0.0115 +vn -0.9239 0.3339 0.1869 +vn -0.9234 0.3352 0.1873 +vn -0.9229 0.3359 0.1881 +vn 0.6101 -0.2805 0.7410 +vn 0.6101 -0.2806 0.7410 +vn 0.6102 -0.2807 0.7409 +vn 0.5231 0.8440 0.1188 +vn 0.5241 0.8433 0.1193 +vn 0.5237 0.8436 0.1189 +vn 0.9072 0.1885 0.3761 +vn 0.9068 0.1885 0.3770 +vn 0.9077 0.1893 0.3744 +vn 0.7622 -0.5982 -0.2474 +vn 0.4946 -0.5368 -0.6835 +vn 0.4947 -0.5368 -0.6834 +vn -0.5875 0.3932 -0.7073 +vn -0.5873 0.3931 -0.7075 +vn -0.5873 0.3929 -0.7076 +vn 0.3124 -0.8047 0.5048 +vn 0.3132 -0.8046 0.5046 +vn 0.3129 -0.8046 0.5046 +vn -0.0949 0.4783 -0.8731 +vn -0.0948 0.4784 -0.8730 +vn -0.0948 0.4783 -0.8731 +vn -0.1263 0.9715 0.2004 +vn -0.1264 0.9716 0.1999 +vn -0.1264 0.9715 0.2004 +vn -0.4241 -0.7591 0.4938 +vn -0.4229 -0.7593 0.4946 +vn -0.4214 -0.7599 0.4950 +vn 0.6057 0.0791 0.7918 +vn 0.6057 0.0790 0.7917 +vn 0.6056 0.0788 0.7918 +vn 0.7358 0.5629 -0.3765 +vn 0.7356 0.5631 -0.3767 +vn 0.8725 -0.4320 0.2281 +vn 0.8720 -0.4326 0.2289 +vn 0.7096 -0.6054 -0.3605 +vn 0.7095 -0.6055 -0.3606 +vn 0.1848 -0.3123 -0.9318 +vn 0.1847 -0.3122 -0.9319 +vn 0.1849 -0.3124 -0.9318 +vn -0.9220 0.1902 -0.3372 +vn -0.9223 0.1895 -0.3368 +vn -0.9221 0.1899 -0.3370 +vn 0.2903 0.4063 -0.8664 +vn 0.2904 0.4061 -0.8665 +vn 0.2904 0.4058 -0.8666 +vn 0.0871 -0.2497 -0.9644 +vn 0.0874 -0.2497 -0.9644 +vn 0.0880 -0.2495 -0.9644 +vn -0.5819 -0.8079 0.0929 +vn -0.5817 -0.8081 0.0922 +vn -0.5900 0.1263 0.7975 +vn -0.5901 0.1265 0.7974 +vn 0.1284 0.6525 -0.7468 +vn 0.4770 -0.8141 0.3313 +vn 0.4762 -0.8143 0.3318 +vn 0.4778 -0.8139 0.3304 +vn -0.4072 0.7317 -0.5466 +vn -0.4073 0.7317 -0.5466 +vn -0.4061 0.7320 -0.5470 +vn -0.7532 0.4488 0.4809 +vn -0.7536 0.4485 0.4805 +vn -0.7534 0.4487 0.4807 +vn -0.9804 0.1402 0.1381 +vn -0.9803 0.1409 0.1382 +vn -0.9805 0.1396 0.1381 +vn 0.3241 0.6226 0.7122 +vn 0.7794 0.6155 -0.1173 +vn 0.7797 0.6150 -0.1176 +vn 0.7799 0.6148 -0.1176 +vn 0.6933 -0.1705 0.7002 +vn 0.6933 -0.1706 0.7001 +vn 0.6932 -0.1703 0.7003 +vn 0.1500 0.6853 -0.7126 +vn 0.1497 0.6854 -0.7126 +vn 0.1495 0.6854 -0.7126 +vn -0.5043 -0.8316 -0.2328 +vn -0.5044 -0.8315 -0.2327 +vn -0.5045 -0.8314 -0.2329 +vn 0.4633 -0.8801 -0.1037 +vn 0.4630 -0.8802 -0.1044 +vn 0.4636 -0.8800 -0.1032 +vn -0.7905 0.0558 -0.6099 +vn -0.8347 0.3034 -0.4595 +vn -0.8348 0.3035 -0.4594 +vn -0.8348 0.3036 -0.4592 +vn -0.0697 -0.8726 -0.4834 +vn -0.0697 -0.8725 -0.4836 +vn 0.4603 -0.6952 -0.5521 +vn 0.4604 -0.6952 -0.5520 +vn 0.4602 -0.6954 -0.5520 +vn -0.1199 -0.9670 -0.2250 +vn -0.1201 -0.9669 -0.2252 +vn -0.1201 -0.9669 -0.2253 +vn 0.3630 0.6808 -0.6362 +vn 0.6412 -0.7282 -0.2422 +vn 0.6408 -0.7287 -0.2416 +vn 0.6404 -0.7293 -0.2410 +vn -0.3214 -0.7828 0.5328 +vn -0.3213 -0.7829 0.5328 +vn -0.3212 -0.7830 0.5327 +vn -0.3716 0.5829 0.7226 +vn -0.3714 0.5826 0.7230 +vn -0.3717 0.5826 0.7228 +vn 0.8584 0.4528 -0.2412 +vn 0.8584 0.4528 -0.2413 +vn 0.8583 0.4529 -0.2412 +vn 0.2913 0.6593 -0.6931 +vn 0.2793 -0.9587 -0.0540 +vn 0.2794 -0.9587 -0.0541 +vn 0.0577 -0.8960 -0.4404 +vn 0.0589 -0.8954 -0.4414 +vn 0.0595 -0.8948 -0.4425 +vn 0.5986 0.0844 -0.7966 +vn 0.5983 0.0842 -0.7968 +vn -0.4765 -0.8636 -0.1646 +vn -0.4769 -0.8635 -0.1644 +vn 0.5362 -0.8107 -0.2350 +vn 0.5360 -0.8108 -0.2353 +vn 0.5361 -0.8107 -0.2354 +vn 0.0699 0.4202 0.9047 +vn 0.0427 0.3053 -0.9513 +vn 0.0425 0.3050 -0.9514 +vn 0.0426 0.3051 -0.9514 +vn -0.1209 -0.9696 -0.2128 +vn 0.4771 0.8503 -0.2222 +vn 0.4777 0.8501 -0.2218 +vn 0.4765 0.8506 -0.2223 +vn 0.0467 -0.9623 -0.2679 +vn 0.0466 -0.9621 -0.2685 +vn 0.0466 -0.9618 -0.2696 +vn -0.6143 0.5737 0.5417 +vn -0.6143 0.5736 0.5418 +vn -0.6139 0.5738 0.5421 +vn 0.1733 0.9431 -0.2839 +vn 0.1732 0.9429 -0.2846 +vn 0.1734 0.9430 -0.2841 +vn 0.1705 -0.8772 -0.4489 +vn -0.0553 0.1879 0.9806 +vn -0.0550 0.1879 0.9806 +vn 0.4293 -0.8680 0.2496 +vn 0.4293 -0.8681 0.2493 +vn 0.4293 -0.8681 0.2492 +vn -0.5156 -0.7055 -0.4863 +vn -0.0596 -0.2914 0.9547 +vn -0.0599 -0.2910 0.9548 +vn -0.0589 -0.2913 0.9548 +vn 0.2904 -0.9165 -0.2751 +vn 0.2905 -0.9164 -0.2752 +vn 0.0399 -0.9150 -0.4015 +vn 0.0401 -0.9152 -0.4010 +vn 0.0400 -0.9152 -0.4011 +vn -0.5657 0.3708 0.7366 +vn -0.5653 0.3708 0.7369 +vn -0.5656 0.3707 0.7366 +vn 0.5148 -0.8536 -0.0797 +vn 0.5146 -0.8537 -0.0799 +vn 0.1043 0.6647 0.7398 +vn 0.1042 0.6646 0.7399 +vn -0.1851 -0.8040 -0.5651 +vn -0.1852 -0.8040 -0.5650 +vn -0.1850 -0.8039 -0.5652 +vn 0.6647 0.6978 0.2668 +vn 0.6647 0.6979 0.2668 +vn 0.6647 0.6980 0.2667 +vn -0.3066 -0.9008 -0.3075 +vn -0.3066 -0.9007 -0.3077 +vn -0.3068 -0.9006 -0.3078 +vn -0.4708 0.8762 0.1029 +vn -0.4709 0.8761 0.1031 +vn -0.4709 0.8761 0.1036 +vn -0.4447 0.4487 0.7752 +vn -0.4452 0.4480 0.7753 +vn -0.4448 0.4483 0.7754 +vn 0.0416 -0.8398 -0.5413 +vn 0.0413 -0.8399 -0.5412 +vn 0.0412 -0.8399 -0.5412 +vn -0.2703 -0.7937 -0.5450 +vn -0.2711 -0.7931 -0.5455 +vn -0.2707 -0.7933 -0.5454 +vn -0.6923 0.3269 -0.6434 +vn 0.7685 -0.6323 0.0975 +vn 0.7687 -0.6322 0.0970 +vn 0.7687 -0.6322 0.0972 +vn 0.4192 0.9018 0.1054 +vn 0.4188 0.9019 0.1056 +vn 0.4190 0.9018 0.1056 +vn -0.0253 -0.8540 -0.5197 +vn -0.0249 -0.8540 -0.5198 +vn -0.3671 -0.8352 0.4095 +vn -0.3673 -0.8350 0.4097 +vn -0.3672 -0.8349 0.4100 +vn 0.9482 -0.0976 0.3022 +vn 0.9483 -0.0975 0.3021 +vn 0.4957 -0.8635 -0.0924 +vn 0.4953 -0.8638 -0.0923 +vn 0.4948 -0.8641 -0.0925 +vn -0.4237 -0.7604 -0.4923 +vn -0.4251 -0.7593 -0.4927 +vn -0.4263 -0.7577 -0.4941 +vn -0.8722 0.1441 0.4674 +vn -0.0009 -0.8206 -0.5716 +vn -0.0010 -0.8206 -0.5715 +vn -0.0007 -0.8206 -0.5715 +vn -0.0809 -0.2046 0.9755 +vn -0.0812 -0.2045 0.9755 +vn -0.0813 -0.2043 0.9755 +vn -0.6843 0.6181 -0.3869 +vn -0.6853 0.6169 -0.3870 +vn -0.6845 0.6179 -0.3869 +vn -0.7625 0.3976 -0.5104 +vn -0.7626 0.3972 -0.5105 +vn -0.7626 0.3980 -0.5100 +vn -0.0854 -0.7078 -0.7012 +vn -0.0841 -0.7071 -0.7021 +vn -0.0861 -0.7103 -0.6986 +vn -0.4053 -0.8882 -0.2163 +vn -0.7002 0.3951 -0.5947 +vn -0.7002 0.3950 -0.5947 +vn -0.0830 -0.6852 -0.7236 +vn -0.0833 -0.6849 -0.7238 +vn -0.0825 -0.6855 -0.7234 +vn 0.5096 0.8372 -0.1986 +vn 0.5094 0.8372 -0.1989 +vn 0.5093 0.8372 -0.1990 +vn 0.1064 -0.5986 -0.7940 +vn 0.1060 -0.5986 -0.7940 +vn -0.6892 0.6057 -0.3976 +vn -0.6890 0.6061 -0.3974 +vn -0.6890 0.6060 -0.3974 +vn -0.2840 0.3183 0.9045 +vn -0.2837 0.3184 0.9045 +vn 0.8946 -0.3813 0.2330 +vn 0.8946 -0.3814 0.2330 +vn 0.1304 0.9832 -0.1275 +vn 0.1303 0.9832 -0.1279 +vn 0.1304 0.9832 -0.1280 +vn 0.4511 -0.2684 -0.8512 +vn 0.4506 -0.2686 -0.8514 +vn 0.4505 -0.2686 -0.8514 +vn -0.3018 -0.3290 0.8948 +vn -0.3019 -0.3292 0.8947 +vn -0.3015 -0.3296 0.8947 +vn -0.4134 -0.8672 -0.2776 +vn -0.4142 -0.8668 -0.2778 +vn -0.4132 -0.8673 -0.2776 +vn -0.5492 -0.8309 0.0896 +vn -0.5489 -0.8311 0.0893 +vn 0.3391 0.9386 -0.0630 +vn 0.3390 0.9387 -0.0632 +vn 0.3391 0.9386 -0.0629 +vn 0.0055 -0.5860 -0.8103 +vn 0.0056 -0.5860 -0.8103 +vn -0.4586 -0.6857 -0.5652 +vn -0.4585 -0.6857 -0.5654 +vn -0.4584 -0.6856 -0.5655 +vn 0.5823 -0.7550 -0.3014 +vn 0.4949 -0.7095 0.5017 +vn 0.4941 -0.7100 0.5017 +vn 0.4945 -0.7098 0.5017 +vn -0.4421 -0.8599 0.2550 +vn -0.4421 -0.8603 0.2539 +vn -0.4428 -0.8601 0.2533 +vn -0.1276 0.6643 0.7365 +vn -0.1274 0.6638 0.7370 +vn -0.1275 0.6645 0.7363 +vn -0.2307 -0.8266 0.5133 +vn 0.5218 0.0827 0.8490 +vn 0.5221 0.0830 0.8488 +vn 0.5221 0.0829 0.8489 +vn -0.9529 -0.2057 0.2227 +vn -0.9531 -0.2053 0.2223 +vn -0.9532 -0.2049 0.2221 +vn -0.1954 0.1695 -0.9660 +vn -0.1954 0.1696 -0.9659 +vn -0.1955 0.1698 -0.9659 +vn -0.5199 -0.5855 -0.6220 +vn -0.5199 -0.5855 -0.6219 +vn 0.4329 -0.1945 -0.8802 +vn 0.4327 -0.1946 -0.8803 +vn 0.4324 -0.1948 -0.8804 +vn -0.2247 -0.1070 -0.9685 +vn -0.2246 -0.1070 -0.9686 +vn 0.3487 0.8758 -0.3338 +vn 0.3483 0.8756 -0.3346 +vn 0.3479 0.8757 -0.3349 +vn 0.9270 -0.0110 0.3748 +vn 0.9270 -0.0121 0.3748 +vn 0.9270 -0.0119 0.3749 +vn 0.1503 -0.8724 -0.4652 +vn 0.1502 -0.8724 -0.4651 +vn 0.3105 -0.8456 -0.4342 +vn 0.3111 -0.8449 -0.4352 +vn 0.3104 -0.8458 -0.4339 +vn 0.6767 -0.5528 0.4864 +vn 0.6766 -0.5526 0.4867 +vn 0.6768 -0.5531 0.4859 +vn 0.7028 -0.5947 0.3904 +vn -0.0146 0.5837 -0.8118 +vn -0.0144 0.5836 -0.8119 +vn -0.0142 0.5835 -0.8120 +vn 0.8514 0.3754 0.3664 +vn 0.8522 0.3741 0.3657 +vn 0.8518 0.3749 0.3660 +vn -0.3780 0.1342 0.9160 +vn -0.3945 0.3898 -0.8321 +vn -0.3944 0.3899 -0.8321 +vn -0.3946 0.3899 -0.8320 +vn -0.4003 -0.9017 -0.1636 +vn -0.4008 -0.9014 -0.1637 +vn -0.4012 -0.9012 -0.1637 +vn 0.3323 0.7490 0.5732 +vn 0.3326 0.7486 0.5735 +vn 0.3323 0.7490 0.5733 +vn -0.8553 0.4816 0.1911 +vn -0.9313 -0.1633 -0.3255 +vn -0.9309 -0.1637 -0.3266 +vn -0.9304 -0.1638 -0.3278 +vn 0.1393 -0.0665 0.9880 +vn 0.1390 -0.0669 0.9880 +vn 0.1400 -0.0666 0.9879 +vn -0.2821 -0.3092 -0.9082 +vn -0.2820 -0.3091 -0.9083 +vn -0.2819 -0.3091 -0.9083 +vn -0.1400 0.3324 -0.9327 +vn -0.1398 0.3328 -0.9326 +vn -0.9079 0.2957 -0.2972 +vn -0.9083 0.2951 -0.2965 +vn -0.9085 0.2944 -0.2964 +vn 0.1021 -0.7784 0.6195 +vn 0.1023 -0.7786 0.6191 +vn 0.1021 -0.7783 0.6195 +vn -0.3481 0.9127 -0.2139 +vn -0.3482 0.9127 -0.2137 +vn -0.3483 0.9127 -0.2136 +vn -0.4535 -0.8394 -0.2996 +vn -0.4537 -0.8394 -0.2994 +vn -0.9957 0.0883 -0.0269 +vn -0.9958 0.0880 -0.0268 +vn 0.8099 0.5838 0.0577 +vn 0.8098 0.5838 0.0578 +vn 0.7719 -0.4307 0.4677 +vn 0.7718 -0.4307 0.4678 +vn 0.7716 -0.4310 0.4679 +vn 0.9446 0.1088 0.3098 +vn 0.9445 0.1086 0.3099 +vn 0.9445 0.1084 0.3101 +vn 0.9458 -0.2330 0.2262 +vn 0.9457 -0.2330 0.2267 +vn 0.9457 -0.2330 0.2264 +vn -0.3485 -0.8874 -0.3019 +vn -0.7946 0.5440 -0.2695 +vn -0.5210 0.8520 0.0524 +vn -0.5209 0.8520 0.0527 +vn -0.5208 0.8521 0.0528 +vn -0.5372 0.8265 -0.1679 +vn -0.5371 0.8266 -0.1681 +vn -0.5371 0.8266 -0.1680 +vn -0.0134 -0.5867 0.8097 +vn -0.0135 -0.5865 0.8098 +vn -0.0134 -0.5862 0.8101 +vn -0.1587 0.4916 -0.8563 +vn -0.1586 0.4913 -0.8564 +vn -0.1586 0.4914 -0.8564 +vn -0.3848 0.6682 -0.6368 +vn -0.3852 0.6681 -0.6366 +vn -0.3847 0.6681 -0.6369 +vn 0.1954 -0.6073 0.7701 +vn 0.1952 -0.6074 0.7700 +vn 0.5348 -0.7369 0.4135 +vn 0.5340 -0.7363 0.4156 +vn 0.5343 -0.7369 0.4141 +vn -0.3428 0.2468 0.9064 +vn -0.3429 0.2469 0.9063 +vn -0.3426 0.2467 0.9065 +vn -0.7316 -0.6806 0.0407 +vn -0.7315 -0.6806 0.0410 +vn -0.7314 -0.6807 0.0410 +vn -0.5505 -0.1228 0.8257 +vn -0.5492 -0.1226 0.8267 +vn -0.5502 -0.1226 0.8260 +vn 0.3866 -0.6901 0.6118 +vn 0.3874 -0.6897 0.6118 +vn 0.3868 -0.6900 0.6118 +vn -0.2857 -0.6646 0.6904 +vn 0.4880 0.8163 -0.3090 +vn 0.4882 0.8162 -0.3089 +vn 0.4878 0.8165 -0.3088 +vn 0.3253 -0.7616 0.5605 +vn 0.3251 -0.7618 0.5604 +vn 0.3250 -0.7619 0.5603 +vn -0.7757 -0.5503 -0.3088 +vn -0.7758 -0.5502 -0.3089 +vn -0.7759 -0.5496 -0.3095 +vn -0.1045 0.1099 0.9884 +vn -0.1046 0.1099 0.9884 +vn -0.1402 -0.1055 -0.9845 +vn -0.1401 -0.1056 -0.9845 +vn -0.1404 -0.1052 -0.9845 +vn 0.6578 0.7500 0.0691 +vn 0.6568 0.7509 0.0686 +vn 0.6586 0.7492 0.0705 +vn -0.0265 0.9996 -0.0046 +vn -0.0252 0.9997 -0.0059 +vn -0.0259 0.9996 -0.0056 +vn -0.2624 -0.1533 0.9527 +vn -0.2623 -0.1533 0.9527 +vn -0.2622 -0.1534 0.9527 +vn -0.7740 -0.5140 -0.3697 +vn -0.7742 -0.5140 -0.3694 +vn -0.7744 -0.5140 -0.3689 +vn 0.1873 0.5950 -0.7816 +vn 0.1874 0.5950 -0.7816 +vn -0.8480 0.3923 -0.3564 +vn -0.8481 0.3923 -0.3562 +vn -0.8474 0.3921 -0.3579 +vn -0.0970 0.9497 0.2978 +vn -0.0968 0.9496 0.2980 +vn -0.0969 0.9497 0.2978 +vn -0.7112 0.4309 -0.5555 +vn -0.7107 0.4304 -0.5564 +vn -0.7108 0.4305 -0.5562 +vn -0.4669 0.6767 -0.5693 +vn -0.4667 0.6769 -0.5692 +vn -0.4672 0.6766 -0.5691 +vn 0.6364 -0.2631 -0.7251 +vn 0.6366 -0.2633 -0.7248 +vn -0.2471 0.9685 0.0312 +vn -0.2478 0.9683 0.0303 +vn -0.2474 0.9684 0.0307 +vn 0.6344 0.3067 -0.7096 +vn 0.4036 0.6946 -0.5955 +vn -0.4646 -0.8646 -0.1914 +vn -0.4639 -0.8651 -0.1905 +vn -0.4635 -0.8655 -0.1901 +vn -0.0581 0.9981 0.0201 +vn -0.0599 0.9980 0.0187 +vn -0.0587 0.9981 0.0194 +vn -0.2155 -0.8335 0.5088 +vn -0.2155 -0.8335 0.5087 +vn -0.9871 0.1330 0.0894 +vn -0.9871 0.1327 0.0899 +vn -0.9870 0.1330 0.0899 +vn 0.8721 -0.4541 0.1823 +vn 0.8723 -0.4540 0.1818 +vn 0.8722 -0.4541 0.1820 +vn -0.2108 -0.8692 0.4473 +vn -0.2104 -0.8694 0.4470 +vn -0.6862 -0.4769 0.5492 +vn -0.6863 -0.4769 0.5491 +vn -0.7350 -0.3115 0.6022 +vn -0.7351 -0.3116 0.6022 +vn -0.7348 -0.3115 0.6026 +vn -0.1392 0.9844 -0.1076 +vn -0.8531 0.3348 -0.4001 +vn -0.8533 0.3348 -0.3998 +vn -0.8532 0.3348 -0.3999 +vn 0.6407 -0.3921 -0.6601 +vn -0.1177 0.8762 -0.4674 +vn -0.1177 0.8761 -0.4675 +vn -0.1814 -0.6916 -0.6991 +vn -0.1819 -0.6920 -0.6986 +vn -0.1818 -0.6925 -0.6981 +vn 0.2634 0.7683 -0.5833 +vn 0.2637 0.7683 -0.5833 +vn 0.2636 0.7682 -0.5834 +vn 0.6929 -0.7000 -0.1728 +vn 0.6931 -0.6997 -0.1731 +vn 0.6926 -0.7005 -0.1724 +vn -0.2987 -0.6752 0.6744 +vn -0.2995 -0.6746 0.6747 +vn -0.3000 -0.6744 0.6747 +vn 0.0684 0.9777 -0.1984 +vn -0.3624 -0.3661 -0.8571 +vn -0.3623 -0.3658 -0.8573 +vn -0.3622 -0.3659 -0.8573 +vn 0.4924 0.6352 -0.5950 +vn 0.4923 0.6353 -0.5950 +vn 0.4925 0.6352 -0.5950 +vn 0.2159 0.6758 0.7048 +vn 0.2158 0.6761 0.7045 +vn 0.2161 0.6757 0.7048 +vn 0.2641 0.8509 -0.4541 +vn -0.4741 0.5662 -0.6743 +vn -0.4738 0.5664 -0.6743 +vn -0.4736 0.5666 -0.6743 +vn -0.3634 -0.9059 0.2174 +vn -0.3634 -0.9059 0.2173 +vn -0.1841 0.8930 -0.4108 +vn -0.1843 0.8928 -0.4110 +vn 0.1839 -0.4634 -0.8669 +vn 0.1842 -0.4632 -0.8669 +vn -0.9070 -0.4045 0.1174 +vn -0.9069 -0.4047 0.1173 +vn -0.9068 -0.4048 0.1173 +vn 0.4391 0.8757 0.2008 +vn 0.4390 0.8758 0.2008 +vn 0.4389 0.8758 0.2007 +vn -0.3981 0.4926 -0.7738 +vn -0.3979 0.4920 -0.7744 +vn -0.3981 0.4914 -0.7747 +vn 0.6811 0.6887 -0.2487 +vn 0.6811 0.6886 -0.2489 +vn 0.6812 0.6886 -0.2488 +vn -0.3403 -0.9205 0.1920 +vn -0.3404 -0.9206 0.1913 +vn -0.7641 -0.6102 0.2094 +vn -0.7642 -0.6101 0.2092 +vn 0.7103 -0.6816 -0.1761 +vn 0.7103 -0.6815 -0.1763 +vn 0.7103 -0.6815 -0.1762 +vn -0.4069 -0.0099 0.9134 +vn -0.4073 -0.0093 0.9132 +vn -0.4071 -0.0095 0.9133 +vn 0.4657 0.4196 0.7791 +vn 0.4662 0.4192 0.7791 +vn 0.4661 0.4192 0.7791 +vn -0.1753 0.6236 -0.7618 +vn -0.7322 0.4431 -0.5173 +vn -0.7319 0.4436 -0.5172 +vn 0.4436 0.5963 0.6691 +vn 0.4434 0.5961 0.6694 +vn 0.4439 0.5966 0.6686 +vn -0.8799 0.1940 0.4338 +vn -0.8800 0.1941 0.4335 +vn 0.8271 -0.4128 0.3814 +vn 0.8275 -0.4124 0.3811 +vn 0.8281 -0.4113 0.3809 +vn 0.3913 0.8834 -0.2577 +vn 0.3923 0.8835 -0.2561 +vn 0.3918 0.8834 -0.2573 +vn -0.2888 -0.4402 -0.8502 +vn 0.3983 -0.3605 -0.8434 +vn 0.3980 -0.3607 -0.8435 +vn 0.3979 -0.3607 -0.8435 +vn 0.0995 0.2840 0.9537 +vn 0.0994 0.2841 0.9536 +vn 0.3833 -0.6228 -0.6821 +vn 0.3831 -0.6227 -0.6823 +vn 0.3833 -0.6229 -0.6820 +vn -0.5477 -0.4284 -0.7187 +vn -0.5476 -0.4287 -0.7186 +vn 0.2791 0.9361 -0.2142 +vn -0.3261 0.6963 0.6393 +vn -0.3262 0.6964 0.6392 +vn -0.3262 0.6966 0.6390 +vn 0.5521 -0.8337 0.0114 +vn 0.5519 -0.8338 0.0112 +vn 0.5520 -0.8338 0.0116 +vn 0.4705 0.7381 0.4836 +vn 0.4706 0.7380 0.4836 +vn 0.4708 0.7378 0.4838 +vn 0.4495 -0.6788 -0.5807 +vn 0.4495 -0.6787 -0.5807 +vn -0.4503 -0.8483 -0.2787 +vn -0.4503 -0.8483 -0.2785 +vn -0.8749 0.4835 0.0260 +vn -0.8749 0.4837 0.0256 +vn 0.2361 -0.7488 -0.6193 +vn 0.2365 -0.7491 -0.6188 +vn -0.4134 -0.0154 0.9104 +vn -0.4137 -0.0162 0.9103 +vn -0.4135 -0.0155 0.9104 +vn 0.2464 -0.0220 0.9689 +vn 0.2242 -0.9723 -0.0656 +vn 0.2237 -0.9725 -0.0655 +vn 0.2250 -0.9721 -0.0663 +vn -0.1119 -0.9873 -0.1131 +vn -0.2581 0.5143 -0.8179 +vn -0.2583 0.5143 -0.8178 +vn -0.7340 -0.0671 0.6758 +vn -0.7340 -0.0673 0.6759 +vn -0.7341 -0.0676 0.6757 +vn 0.4052 0.9089 0.0984 +vn 0.4052 0.9089 0.0982 +vn 0.4050 0.9090 0.0980 +vn 0.1442 0.9877 -0.0596 +vn 0.4041 0.9146 -0.0136 +vn 0.4042 0.9146 -0.0135 +vn -0.7519 0.5339 -0.3868 +vn -0.7506 0.5352 -0.3876 +vn -0.7515 0.5342 -0.3872 +vn 0.8872 -0.3731 0.2715 +vn 0.8871 -0.3732 0.2715 +vn -0.2703 -0.9486 -0.1648 +vn -0.2706 -0.9484 -0.1650 +vn -0.2706 -0.9484 -0.1652 +vn -0.3965 -0.9176 -0.0297 +vn -0.3967 -0.9175 -0.0300 +vn -0.3965 -0.9175 -0.0298 +vn -0.0759 -0.9709 -0.2270 +vn -0.0761 -0.9709 -0.2270 +vn 0.9091 -0.0750 0.4098 +vn -0.7647 0.4180 -0.4905 +vn -0.7645 0.4187 -0.4902 +vn -0.7645 0.4186 -0.4903 +vn 0.4410 -0.7193 0.5368 +vn 0.4416 -0.7191 0.5366 +vn 0.4426 -0.7184 0.5367 +vn -0.7327 -0.3816 0.5635 +vn -0.7326 -0.3818 0.5635 +vn -0.7318 -0.3825 0.5641 +vn -0.2806 0.0269 -0.9594 +vn -0.2822 0.0270 -0.9590 +vn -0.2851 0.0282 -0.9581 +vn 0.2130 -0.9149 0.3430 +vn 0.2129 -0.9148 0.3432 +vn -0.4233 0.9002 0.1025 +vn -0.4231 0.9003 0.1026 +vn -0.4235 0.9001 0.1024 +vn -0.1746 -0.9841 0.0311 +vn -0.1746 -0.9842 0.0310 +vn -0.1746 -0.9842 0.0306 +vn 0.8807 -0.3469 0.3226 +vn 0.8808 -0.3466 0.3226 +vn 0.8809 -0.3465 0.3225 +vn -0.0327 -0.9899 0.1379 +vn -0.0328 -0.9899 0.1379 +vn -0.0324 -0.9899 0.1382 +vn 0.2198 -0.9544 0.2018 +vn 0.2198 -0.9545 0.2017 +vn 0.2196 -0.9545 0.2016 +vn 0.7797 0.6229 0.0632 +vn 0.7798 0.6228 0.0631 +vn 0.4083 -0.6755 -0.6140 +vn -0.1992 -0.9708 -0.1340 +vn -0.1990 -0.9707 -0.1346 +vn -0.1991 -0.9707 -0.1342 +vn 0.3732 -0.5807 0.7236 +vn 0.3732 -0.5812 0.7232 +vn 0.3733 -0.5811 0.7232 +vn -0.1730 0.8739 -0.4542 +vn -0.1731 0.8740 -0.4540 +vn -0.1729 0.8739 -0.4544 +vn -0.5912 0.6424 -0.4876 +vn -0.5913 0.6425 -0.4873 +vn -0.5913 0.6422 -0.4878 +vn 0.6505 -0.6938 0.3090 +vn 0.6505 -0.6939 0.3086 +vn 0.6506 -0.6936 0.3092 +vn -0.1867 -0.9696 -0.1580 +vn -0.1866 -0.9697 -0.1579 +vn -0.1869 -0.9696 -0.1579 +vn -0.2472 -0.9687 -0.0238 +vn -0.2470 -0.9687 -0.0239 +vn -0.2471 -0.9687 -0.0236 +vn -0.8341 -0.4000 -0.3799 +vn 0.7105 -0.7009 0.0626 +vn 0.7104 -0.7011 0.0622 +vn 0.7107 -0.7008 0.0623 +vn 0.4090 0.7459 -0.5256 +vn 0.4092 0.7461 -0.5252 +vn 0.4093 0.7458 -0.5256 +vn -0.8203 0.4937 -0.2888 +vn -0.2916 -0.9279 -0.2325 +vn -0.6809 -0.5429 -0.4915 +vn 0.8981 -0.3616 0.2502 +vn 0.8867 -0.4166 0.2007 +vn 0.8869 -0.4162 0.2006 +vn -0.0674 0.3586 0.9311 +vn -0.0673 0.3587 0.9310 +vn -0.0675 0.3587 0.9310 +vn 0.0653 0.9140 -0.4004 +vn -0.5432 0.8300 0.1267 +vn -0.5429 0.8301 0.1273 +vn -0.5428 0.8302 0.1274 +vn 0.8487 -0.1577 0.5048 +vn -0.4372 -0.8983 -0.0438 +vn -0.4370 -0.8984 -0.0440 +vn 0.9047 -0.1130 0.4107 +vn 0.9047 -0.1128 0.4108 +vn 0.9048 -0.1134 0.4104 +vn 0.8739 -0.1298 0.4685 +vn 0.8743 -0.1301 0.4677 +vn 0.8739 -0.1298 0.4684 +vn -0.7436 -0.4776 -0.4679 +vn -0.7437 -0.4773 -0.4681 +vn -0.4425 -0.8754 -0.1946 +vn -0.4429 -0.8752 -0.1945 +vn -0.6164 0.6071 -0.5015 +vn -0.6167 0.6067 -0.5016 +vn -0.1664 0.9252 -0.3409 +vn -0.1667 0.9252 -0.3408 +vn -0.1792 0.9125 0.3677 +vn 0.6894 -0.2504 0.6797 +vn 0.6881 -0.2505 0.6810 +vn 0.6881 -0.2507 0.6809 +vn 0.3937 0.9134 0.1035 +vn 0.3938 0.9134 0.1032 +vn 0.3938 0.9134 0.1034 +vn 0.2316 -0.2481 0.9406 +vn 0.2316 -0.2478 0.9407 +vn 0.2315 -0.2484 0.9406 +vn 0.3290 -0.3522 0.8762 +vn 0.2480 -0.9208 0.3011 +vn 0.7035 -0.2907 -0.6485 +vn -0.2832 -0.8373 -0.4676 +vn -0.2853 -0.8361 -0.4685 +vn -0.2826 -0.8378 -0.4671 +vn -0.4625 -0.8463 -0.2644 +vn -0.4624 -0.8463 -0.2646 +vn -0.4623 -0.8464 -0.2644 +vn -0.3268 -0.3378 -0.8826 +vn -0.3269 -0.3380 -0.8825 +vn -0.3269 -0.3381 -0.8825 +vn 0.1795 -0.9798 0.0884 +vn 0.1793 -0.9798 0.0884 +vn 0.3976 0.5296 -0.7493 +vn 0.3977 0.5295 -0.7493 +vn 0.3978 0.5294 -0.7493 +vn 0.3826 -0.9100 0.1595 +vn 0.3828 -0.9100 0.1593 +vn 0.3830 -0.9099 0.1592 +vn 0.7404 -0.5219 0.4235 +vn -0.5006 -0.8520 -0.1534 +vn -0.5005 -0.8518 -0.1546 +vn -0.5004 -0.8519 -0.1547 +vn -0.5058 0.8607 -0.0580 +vn -0.5058 0.8608 -0.0568 +vn -0.5050 0.8613 -0.0554 +vn 0.5675 -0.4938 0.6589 +vn -0.0822 0.4786 -0.8742 +vn -0.0824 0.4786 -0.8742 +vn -0.0821 0.4786 -0.8742 +vn -0.2807 -0.9330 -0.2252 +vn -0.6805 -0.6413 -0.3544 +vn -0.6807 -0.6411 -0.3544 +vn -0.6804 -0.6415 -0.3542 +vn -0.5773 0.3411 -0.7418 +vn -0.5773 0.3410 -0.7419 +vn -0.5771 0.3405 -0.7423 +vn 0.0601 0.0142 0.9981 +vn 0.0594 0.0138 0.9981 +vn 0.0609 0.0141 0.9980 +vn 0.2941 0.6638 0.6876 +vn 0.2943 0.6641 0.6873 +vn 0.2941 0.6640 0.6874 +vn 0.3624 0.5447 0.7563 +vn 0.3624 0.5447 0.7562 +vn 0.7734 0.6124 -0.1638 +vn 0.7733 0.6125 -0.1639 +vn 0.7733 0.6126 -0.1638 +vn 0.1873 0.4190 0.8885 +vn 0.1876 0.4191 0.8883 +vn 0.1876 0.4193 0.8883 +vn -0.5984 0.7250 -0.3410 +vn -0.5985 0.7248 -0.3411 +vn 0.1320 -0.9307 -0.3412 +vn 0.1315 -0.9307 -0.3413 +vn 0.1309 -0.9307 -0.3415 +vn 0.3345 0.8756 -0.3486 +vn 0.3370 0.8755 -0.3464 +vn 0.3318 0.8763 -0.3493 +vn 0.3202 0.9402 -0.1166 +vn 0.3225 0.9395 -0.1152 +vn 0.3212 0.9398 -0.1164 +vn 0.8148 0.2942 0.4996 +vn 0.8150 0.2940 0.4994 +vn 0.8149 0.2941 0.4995 +vn 0.4945 -0.0333 -0.8685 +vn 0.4940 -0.0333 -0.8688 +vn 0.4937 -0.0333 -0.8690 +vn 0.2825 0.6495 0.7059 +vn -0.5369 -0.7473 -0.3915 +vn -0.5368 -0.7474 -0.3914 +vn -0.3629 -0.6171 0.6982 +vn -0.3622 -0.6168 0.6988 +vn -0.3626 -0.6170 0.6984 +vn -0.8056 0.4681 -0.3632 +vn -0.8055 0.4682 -0.3634 +vn -0.8055 0.4679 -0.3636 +vn 0.6055 0.7934 -0.0629 +vn 0.6054 0.7934 -0.0633 +vn 0.6053 0.7934 -0.0636 +vn 0.6222 0.5857 0.5194 +vn 0.6220 0.5857 0.5197 +vn 0.6218 0.5856 0.5200 +vn -0.5014 -0.8211 -0.2726 +vn -0.5013 -0.8212 -0.2726 +vn -0.1668 0.3610 0.9175 +vn -0.1666 0.3606 0.9177 +vn -0.1666 0.3607 0.9177 +vn 0.5655 -0.5885 0.5778 +vn 0.5659 -0.5887 0.5773 +vn 0.2535 -0.0644 -0.9652 +vn 0.2546 -0.0638 -0.9649 +vn 0.2553 -0.0639 -0.9647 +vn 0.4858 -0.8587 -0.1633 +vn 0.4852 -0.8590 -0.1635 +vn 0.4854 -0.8589 -0.1634 +vn 0.4636 0.6691 -0.5808 +vn 0.6666 0.6670 -0.3328 +vn 0.6665 0.6669 -0.3332 +vn 0.6666 0.6671 -0.3326 +vn -0.3927 -0.8793 0.2695 +vn -0.3911 -0.8799 0.2698 +vn -0.3944 -0.8790 0.2679 +vn 0.0729 -0.9627 0.2605 +vn 0.0729 -0.9628 0.2603 +vn 0.0727 -0.9630 0.2596 +vn 0.3136 -0.9300 -0.1918 +vn -0.5621 -0.8007 -0.2070 +vn -0.5622 -0.8007 -0.2072 +vn -0.2040 -0.2030 0.9577 +vn -0.2041 -0.2035 0.9576 +vn -0.2045 -0.2040 0.9574 +vn 0.0061 -0.0039 1.0000 +vn 0.7521 0.6217 0.2187 +vn 0.7521 0.6216 0.2190 +vn -0.4957 -0.8576 -0.1373 +vn -0.4958 -0.8576 -0.1370 +vn -0.4910 -0.3440 -0.8004 +vn -0.0003 0.0002 1.0000 +vn -0.8327 -0.4408 0.3352 +vn -0.8326 -0.4409 0.3352 +vn -0.8327 -0.4407 0.3352 +vn -0.3644 -0.1043 -0.9254 +vn -0.3644 -0.1047 -0.9253 +vn -0.0266 -0.1142 -0.9931 +vn -0.0270 -0.1131 -0.9932 +vn -0.0264 -0.1116 -0.9934 +vn -0.4670 -0.8198 -0.3315 +vn -0.4675 -0.8194 -0.3318 +vn -0.4672 -0.8196 -0.3316 +vn -0.8936 -0.3744 -0.2476 +vn -0.8937 -0.3744 -0.2473 +vn -0.5060 -0.8043 -0.3116 +vn -0.5062 -0.8042 -0.3115 +vn -0.4975 0.2842 -0.8196 +vn 0.1589 0.6922 0.7040 +vn 0.1587 0.6930 0.7033 +vn 0.1586 0.6927 0.7035 +vn -0.2069 -0.6809 0.7025 +vn -0.2071 -0.6809 0.7025 +vn -0.2067 -0.6810 0.7025 +vn 0.1470 0.5491 -0.8227 +vn 0.1466 0.5489 -0.8229 +vn 0.1467 0.5489 -0.8229 +vn -0.6666 0.6936 0.2730 +vn -0.6670 0.6933 0.2728 +vn 0.2272 -0.8710 -0.4356 +vn 0.2277 -0.8713 -0.4347 +vn 0.2270 -0.8710 -0.4357 +vn 0.8275 0.3894 0.4046 +vn 0.8274 0.3896 0.4045 +vn 0.8276 0.3890 0.4046 +vn -0.2436 0.1952 -0.9500 +vn -0.2456 0.1964 -0.9493 +vn -0.2446 0.1954 -0.9497 +vn 0.8962 0.4437 0.0009 +vn 0.8963 0.4435 0.0012 +vn 0.6481 0.7188 0.2518 +vn 0.4604 0.8695 -0.1792 +vn 0.3077 0.9453 -0.1082 +vn 0.1312 -0.9880 -0.0820 +vn 0.1304 -0.9881 -0.0822 +vn 0.1307 -0.9880 -0.0822 +vn 0.2036 -0.9705 0.1292 +vn 0.2034 -0.9706 0.1289 +vn 0.2835 -0.8238 -0.4909 +vn 0.2834 -0.8238 -0.4910 +vn 0.2832 -0.8238 -0.4910 +vn 0.6025 -0.7794 -0.1718 +vn -0.7586 0.2792 -0.5887 +vn -0.7587 0.2790 -0.5887 +vn -0.7588 0.2789 -0.5886 +vn -0.3163 -0.6208 -0.7173 +vn -0.3161 -0.6206 -0.7176 +vn 0.4010 -0.9140 -0.0614 +vn 0.4012 -0.9139 -0.0620 +vn 0.4010 -0.9140 -0.0616 +vn 0.9847 0.1383 -0.1056 +vn 0.9848 0.1380 -0.1059 +vn 0.0852 0.6658 -0.7413 +vn 0.0854 0.6660 -0.7410 +vn 0.0851 0.6657 -0.7413 +vn -0.3351 -0.5715 -0.7491 +vn -0.3355 -0.5722 -0.7483 +vn -0.3353 -0.5719 -0.7486 +vn 0.4909 -0.6343 -0.5972 +vn 0.4909 -0.6344 -0.5972 +vn 0.1175 -0.9289 -0.3513 +vn 0.1175 -0.9290 -0.3509 +vn 0.1174 -0.9289 -0.3511 +vn 0.8115 -0.0139 0.5842 +vn -0.2810 0.9417 -0.1849 +vn -0.2815 0.9416 -0.1846 +vn -0.2813 0.9417 -0.1847 +vn 0.8917 0.1130 0.4382 +vn 0.8918 0.1127 0.4382 +vn 0.0780 -0.5784 -0.8120 +vn 0.0779 -0.5785 -0.8120 +vn -0.6747 0.6992 -0.2363 +vn -0.6750 0.6991 -0.2359 +vn -0.6751 0.6990 -0.2357 +vn -0.7585 0.4946 0.4242 +vn -0.7589 0.4950 0.4231 +vn -0.7589 0.4956 0.4224 +vn -0.2039 -0.1217 0.9714 +vn -0.2027 -0.1218 0.9716 +vn -0.2053 -0.1221 0.9711 +vn -0.3873 0.5276 -0.7560 +vn -0.3877 0.5277 -0.7558 +vn -0.3876 0.5275 -0.7560 +vn -0.0078 0.8477 -0.5304 +vn 0.9515 -0.0215 0.3070 +vn 0.9511 -0.0213 0.3081 +vn 0.9513 -0.0213 0.3076 +vn 0.5179 -0.2900 -0.8048 +vn 0.5181 -0.2899 -0.8047 +vn 0.5167 -0.2912 -0.8051 +vn -0.0406 -0.5894 -0.8068 +vn -0.0405 -0.5895 -0.8068 +vn -0.0405 -0.5894 -0.8068 +vn 0.2560 -0.0929 -0.9622 +vn 0.2560 -0.0928 -0.9622 +vn 0.2560 -0.0930 -0.9622 +vn -0.6178 0.4596 -0.6380 +vn 0.9665 -0.1683 0.1938 +vn 0.9665 -0.1684 0.1937 +vn 0.6857 0.6891 -0.2346 +vn 0.6858 0.6889 -0.2347 +vn 0.6860 0.6887 -0.2347 +vn 0.0709 -0.2942 -0.9531 +vn 0.5395 -0.6114 -0.5789 +vn 0.5396 -0.6111 -0.5791 +vn 0.5395 -0.6113 -0.5791 +vn 0.0042 -0.5916 -0.8062 +vn 0.6780 0.7246 0.1231 +vn 0.3653 -0.5033 0.7831 +vn 0.3646 -0.5037 0.7832 +vn -0.4735 0.8739 0.1096 +vn -0.4733 0.8740 0.1097 +vn -0.4737 0.8738 0.1097 +vn 0.9090 0.3783 -0.1753 +vn 0.9091 0.3778 -0.1757 +vn 0.9092 0.3772 -0.1761 +vn -0.4646 -0.8611 -0.2064 +vn 0.5084 0.6282 0.5890 +vn 0.5083 0.6282 0.5890 +vn -0.4803 -0.8560 -0.1913 +vn -0.4805 -0.8559 -0.1911 +vn -0.4805 -0.8559 -0.1912 +vn 0.0040 0.8950 -0.4460 +vn 0.0038 0.8949 -0.4462 +vn 0.0041 0.8951 -0.4459 +vn -0.7183 -0.6812 -0.1416 +vn -0.7191 -0.6801 -0.1427 +vn -0.7193 -0.6797 -0.1434 +vn 0.5181 0.8393 -0.1645 +vn -0.3024 0.2171 0.9281 +vn -0.3026 0.2173 0.9280 +vn -0.3025 0.2173 0.9281 +vn 0.3850 0.3575 0.8509 +vn 0.5953 -0.6869 -0.4170 +vn -0.2368 -0.1249 -0.9635 +vn -0.2369 -0.1250 -0.9635 +vn -0.2364 -0.1250 -0.9636 +vn 0.0672 0.1808 0.9812 +vn 0.0679 0.1809 0.9812 +vn 0.0680 0.1810 0.9811 +vn -0.1336 0.2042 -0.9698 +vn -0.1352 0.2054 -0.9693 +vn -0.1365 0.2085 -0.9685 +vn -0.7826 0.1568 -0.6025 +vn -0.7826 0.1570 -0.6024 +vn 0.4005 0.6632 -0.6323 +vn 0.4005 0.6630 -0.6324 +vn -0.1671 0.1553 -0.9736 +vn -0.1668 0.1556 -0.9736 +vn -0.1669 0.1555 -0.9736 +vn 0.1261 0.7190 -0.6835 +vn 0.1248 0.7190 -0.6837 +vn 0.1236 0.7194 -0.6836 +vn -0.4585 -0.8755 -0.1527 +vn 0.4924 -0.8584 0.1439 +vn 0.4922 -0.8584 0.1442 +vn 0.4924 -0.8584 0.1441 +vn 0.8676 0.4758 0.1446 +vn 0.8677 0.4756 0.1443 +vn 0.8677 0.4756 0.1446 +vn 0.0209 0.5687 -0.8223 +vn 0.0207 0.5688 -0.8222 +vn 0.0204 0.5690 -0.8221 +vn -0.5541 -0.1938 -0.8096 +vn -0.5542 -0.1939 -0.8095 +vn -0.5541 -0.1940 -0.8095 +vn -0.7793 -0.1757 0.6015 +vn -0.4691 0.4859 -0.7375 +vn -0.4689 0.4858 -0.7376 +vn -0.4692 0.4860 -0.7373 +vn -0.8009 0.5186 -0.2994 +vn -0.8008 0.5188 -0.2991 +vn -0.8009 0.5187 -0.2993 +vn 0.9156 0.3399 0.2150 +vn 0.9149 0.3413 0.2157 +vn 0.9160 0.3394 0.2139 +vn -0.4823 0.7826 0.3936 +vn -0.6980 0.7161 -0.0065 +vn -0.6979 0.7162 -0.0067 +vn -0.6979 0.7162 -0.0066 +vn 0.0014 0.0005 1.0000 +vn 0.7922 -0.5807 0.1876 +vn 0.7922 -0.5808 0.1874 +vn 0.7922 -0.5807 0.1877 +vn -0.9211 -0.0917 -0.3784 +vn -0.9211 -0.0918 -0.3783 +vn -0.9211 -0.0916 -0.3784 +vn -0.6071 0.7590 -0.2353 +vn -0.6071 0.7589 -0.2354 +vn -0.6071 0.7589 -0.2355 +vn -0.6649 -0.7340 -0.1386 +vn -0.7707 0.2525 0.5850 +vn -0.7709 0.2524 0.5848 +vn -0.7711 0.2522 0.5846 +vn -0.2595 -0.2961 0.9192 +vn -0.2596 -0.2961 0.9192 +vn -0.2596 -0.2960 0.9192 +vn 0.5698 -0.1049 0.8151 +vn 0.5688 -0.1056 0.8157 +vn 0.5682 -0.1064 0.8160 +vn 0.3222 -0.7797 0.5369 +vn 0.3220 -0.7795 0.5374 +vn 0.3225 -0.7799 0.5365 +vn -0.2064 -0.2858 0.9358 +vn -0.2066 -0.2861 0.9357 +vn -0.2072 -0.2862 0.9355 +vn -0.0519 -0.8625 -0.5035 +vn 0.6130 -0.7620 0.2088 +vn 0.6130 -0.7619 0.2089 +vn 0.6130 -0.7621 0.2086 +vn 0.1158 0.7019 -0.7028 +vn 0.1171 0.7010 -0.7035 +vn 0.1166 0.7016 -0.7030 +vn -0.3142 0.8248 -0.4702 +vn -0.3143 0.8250 -0.4697 +vn -0.3142 0.8248 -0.4701 +vn 0.3814 -0.6175 0.6879 +vn 0.3815 -0.6174 0.6880 +vn 0.5362 -0.0228 0.8438 +vn 0.5362 -0.0227 0.8438 +vn 0.5364 -0.0226 0.8436 +vn 0.2405 0.9663 -0.0919 +vn 0.2419 0.9658 -0.0938 +vn 0.2417 0.9659 -0.0927 +vn 0.2445 -0.6688 0.7021 +vn -0.3143 0.9156 -0.2509 +vn -0.3141 0.9156 -0.2510 +vn -0.3967 -0.6826 0.6137 +vn 0.3745 0.8413 -0.3898 +vn 0.3741 0.8414 -0.3901 +vn 0.3747 0.8413 -0.3896 +vn 0.9485 0.0937 0.3026 +vn 0.9485 0.0939 0.3026 +vn 0.9485 0.0934 0.3027 +vn -0.0429 -0.6981 0.7147 +vn -0.0420 -0.6974 0.7154 +vn -0.0427 -0.6977 0.7152 +vn 0.6786 -0.7340 0.0263 +vn 0.6781 -0.7345 0.0268 +vn 0.6783 -0.7343 0.0266 +vn 0.0189 0.9006 -0.4343 +vn 0.0190 0.9004 -0.4347 +vn 0.0196 0.9003 -0.4348 +vn -0.5025 -0.8623 0.0624 +vn -0.1547 -0.7742 0.6138 +vn -0.1549 -0.7741 0.6138 +vn -0.1546 -0.7742 0.6138 +vn -0.1204 0.8122 -0.5709 +vn -0.1511 0.8108 -0.5655 +vn -0.1512 0.8108 -0.5655 +vn 0.3071 0.1732 0.9358 +vn 0.3082 0.1731 0.9354 +vn 0.3092 0.1724 0.9352 +vn 0.8971 -0.0955 0.4314 +vn 0.8968 -0.0955 0.4319 +vn -0.9338 -0.0078 -0.3577 +vn -0.9336 -0.0075 -0.3582 +vn -0.9338 -0.0079 -0.3577 +vn -0.9120 -0.4098 0.0163 +vn -0.9119 -0.4100 0.0166 +vn -0.9120 -0.4099 0.0161 +vn -0.2661 -0.2512 0.9306 +vn -0.2658 -0.2511 0.9308 +vn 0.8417 -0.0314 0.5391 +vn 0.8418 -0.0312 0.5389 +vn 0.8421 -0.0310 0.5384 +vn 0.9326 0.3111 0.1828 +vn -0.5764 -0.7649 -0.2876 +vn -0.5763 -0.7651 -0.2874 +vn -0.5766 -0.7647 -0.2877 +vn 0.2270 -0.7636 0.6044 +vn 0.2270 -0.7636 0.6045 +vn 0.0903 0.0452 0.9949 +vn 0.0904 0.0453 0.9949 +vn 0.0901 0.0451 0.9949 +vn -0.0195 0.5583 -0.8294 +vn -0.0195 0.5577 -0.8298 +vn -0.0197 0.5586 -0.8292 +vn -0.9287 -0.3513 -0.1185 +vn -0.9286 -0.3514 -0.1190 +vn -0.9287 -0.3514 -0.1188 +vn 0.8024 -0.5906 0.0859 +vn 0.8029 -0.5900 0.0855 +vn 0.8025 -0.5904 0.0857 +vn -0.1281 -0.9076 -0.3998 +vn -0.1283 -0.9075 -0.3999 +vn -0.4704 -0.7174 -0.5139 +vn -0.4703 -0.7174 -0.5139 +vn -0.4703 -0.7175 -0.5139 +vn 0.1630 -0.2438 0.9560 +vn 0.1629 -0.2438 0.9561 +vn 0.1631 -0.2438 0.9560 +vn -0.2492 -0.5978 -0.7619 +vn 0.3237 -0.9195 -0.2229 +vn 0.3236 -0.9194 -0.2236 +vn 0.3233 -0.9198 -0.2222 +vn 0.3504 0.9253 0.1450 +vn 0.3507 0.9252 0.1450 +vn 0.0463 0.9974 0.0554 +vn 0.0476 0.9973 0.0560 +vn 0.0469 0.9973 0.0558 +vn 0.4574 0.6116 0.6456 +vn 0.4574 0.6116 0.6455 +vn 0.4575 0.6117 0.6454 +vn 0.9139 0.2449 0.3238 +vn 0.9140 0.2447 0.3236 +vn -0.1854 0.6671 0.7215 +vn -0.2527 0.8909 -0.3774 +vn -0.2526 0.8909 -0.3774 +vn -0.2523 0.8910 -0.3775 +vn -0.9373 -0.3477 0.0250 +vn -0.7383 0.5353 -0.4102 +vn -0.7383 0.5354 -0.4102 +vn -0.2779 -0.8058 0.5230 +vn -0.8047 -0.5933 0.0209 +vn -0.8053 -0.5924 0.0211 +vn -0.8049 -0.5930 0.0209 +vn -0.3561 -0.9232 0.1445 +vn -0.3563 -0.9231 0.1444 +vn -0.3567 -0.9230 0.1442 +vn 0.0076 0.9987 -0.0498 +vn 0.8276 0.2642 -0.4953 +vn -0.7415 -0.6491 0.1696 +vn -0.7431 -0.6470 0.1706 +vn -0.7434 -0.6468 0.1703 +vn 0.1199 0.9862 -0.1138 +vn 0.1196 0.9863 -0.1139 +vn 0.1198 0.9863 -0.1138 +vn -0.4693 -0.8517 0.2333 +vn -0.4316 0.7442 0.5098 +vn -0.4317 0.7442 0.5097 +vn 0.7179 0.6207 0.3152 +vn 0.7177 0.6200 0.3169 +vn 0.7180 0.6193 0.3177 +vn 0.3862 -0.4503 -0.8050 +vn 0.3857 -0.4510 -0.8049 +vn 0.3864 -0.4497 -0.8053 +vn 0.8162 -0.3817 0.4337 +vn 0.8162 -0.3818 0.4336 +vn 0.8162 -0.3817 0.4338 +vn -0.3691 0.7517 -0.5465 +vn -0.3692 0.7517 -0.5464 +vn 0.1841 0.6872 -0.7027 +vn 0.1830 0.6875 -0.7028 +vn 0.1834 0.6876 -0.7026 +vn 0.2536 -0.5193 -0.8161 +vn 0.2532 -0.5191 -0.8163 +vn -0.8516 -0.5242 -0.0044 +vn -0.8516 -0.5242 -0.0043 +vn -0.8514 -0.5246 -0.0046 +vn -0.0033 -0.5905 0.8070 +vn -0.0035 -0.5905 0.8071 +vn 0.7304 0.6779 0.0836 +vn 0.7304 0.6779 0.0835 +vn -0.8263 -0.5631 -0.0127 +vn -0.8259 -0.5637 -0.0132 +vn -0.8261 -0.5633 -0.0130 +vn 0.7401 0.2112 0.6385 +vn 0.7400 0.2116 0.6384 +vn -0.0914 -0.6677 0.7388 +vn -0.0912 -0.6678 0.7387 +vn -0.0913 -0.6678 0.7387 +vn 0.0711 -0.1245 0.9897 +vn 0.2359 0.9654 -0.1112 +vn 0.2356 0.9654 -0.1114 +vn 0.8347 -0.1971 0.5143 +vn 0.8346 -0.1972 0.5144 +vn 0.8347 -0.1971 0.5142 +vn 0.0249 -0.7174 0.6963 +vn 0.0251 -0.7168 0.6968 +vn 0.0250 -0.7172 0.6965 +vn 0.0537 0.5548 -0.8302 +vn 0.0528 0.5544 -0.8306 +vn 0.0514 0.5544 -0.8307 +vn -0.9767 -0.1472 0.1564 +vn -0.9766 -0.1471 0.1567 +vn -0.1471 0.9618 -0.2308 +vn -0.1474 0.9618 -0.2306 +vn -0.4146 0.9096 0.0268 +vn -0.4150 0.9094 0.0263 +vn -0.4148 0.9095 0.0266 +vn 0.8229 -0.3820 0.4206 +vn 0.8229 -0.3816 0.4209 +vn 0.7918 -0.1756 0.5850 +vn 0.7917 -0.1761 0.5850 +vn 0.7919 -0.1759 0.5848 +vn -0.2790 -0.9442 -0.1750 +vn -0.2790 -0.9442 -0.1751 +vn -0.2689 -0.9493 -0.1630 +vn -0.2691 -0.9492 -0.1633 +vn -0.2691 -0.9492 -0.1631 +vn 0.6638 0.7420 0.0939 +vn 0.6642 0.7416 0.0940 +vn 0.6636 0.7422 0.0939 +vn -0.2289 0.9260 0.3001 +vn -0.6666 0.5864 -0.4602 +vn -0.6667 0.5866 -0.4598 +vn -0.6667 0.5868 -0.4596 +vn 0.3971 -0.8877 0.2331 +vn 0.3972 -0.8877 0.2330 +vn 0.3968 -0.8878 0.2332 +vn -0.4245 0.8800 -0.2130 +vn -0.4243 0.8801 -0.2129 +vn -0.4246 0.8799 -0.2130 +vn -0.3068 -0.2878 -0.9072 +vn -0.3072 -0.2877 -0.9071 +vn -0.3066 -0.2877 -0.9073 +vn -0.8287 -0.2569 -0.4972 +vn 0.9289 0.2488 0.2742 +vn 0.9291 0.2487 0.2738 +vn 0.9288 0.2490 0.2746 +vn 0.8053 -0.2885 0.5180 +vn 0.8054 -0.2883 0.5179 +vn -0.0689 -0.9976 0.0043 +vn -0.0688 -0.9976 0.0045 +vn 0.8588 -0.3708 0.3536 +vn 0.8588 -0.3708 0.3535 +vn -0.8394 -0.3979 -0.3703 +vn -0.8393 -0.3980 -0.3702 +vn 0.3523 -0.8388 0.4151 +vn 0.5904 0.7995 0.1108 +vn 0.5899 0.7997 0.1114 +vn 0.5895 0.7999 0.1125 +vn -0.1584 0.9555 0.2488 +vn -0.1585 0.9555 0.2487 +vn -0.8396 0.5275 -0.1296 +vn -0.8390 0.5283 -0.1299 +vn -0.8397 0.5274 -0.1295 +vn 0.8700 -0.1067 0.4813 +vn 0.8700 -0.1069 0.4813 +vn -0.9820 -0.1879 0.0183 +vn -0.9820 -0.1880 0.0179 +vn 0.8263 0.2973 0.4784 +vn -0.0735 0.9843 0.1606 +vn 0.3884 -0.7719 0.5033 +vn 0.3884 -0.7720 0.5032 +vn 0.1369 0.9618 -0.2372 +vn 0.1369 0.9618 -0.2371 +vn -0.1965 0.8070 -0.5570 +vn -0.1967 0.8070 -0.5569 +vn -0.1966 0.8070 -0.5569 +vn -0.2705 0.7826 -0.5606 +vn -0.2706 0.7826 -0.5607 +vn 0.3120 0.9499 0.0167 +vn 0.3120 0.9499 0.0168 +vn 0.3121 0.9499 0.0169 +vn -0.4408 0.8400 -0.3163 +vn -0.5185 0.7704 -0.3709 +vn -0.5186 0.7704 -0.3708 +vn -0.5186 0.7703 -0.3711 +vn 0.6796 -0.7299 0.0736 +vn 0.6798 -0.7296 0.0738 +vn 0.6797 -0.7297 0.0739 +vn 0.9070 -0.1616 0.3889 +vn 0.9071 -0.1616 0.3887 +vn 0.9071 -0.1614 0.3888 +vn -0.3167 -0.8296 0.4598 +vn -0.6841 0.5207 -0.5108 +vn -0.6846 0.5206 -0.5102 +vn 0.6868 0.2704 -0.6746 +vn 0.6865 0.2711 -0.6747 +vn 0.6867 0.2708 -0.6746 +vn -0.9672 0.2537 0.0133 +vn -0.9673 0.2534 0.0142 +vn -0.9672 0.2537 0.0136 +vn -0.1505 0.9867 0.0610 +vn -0.1507 0.9867 0.0607 +vn -0.1510 0.9867 0.0602 +vn -0.7599 0.4652 0.4539 +vn -0.7598 0.4654 0.4539 +vn 0.8860 -0.4169 0.2028 +vn 0.8858 -0.4173 0.2032 +vn 0.8859 -0.4172 0.2029 +vn -0.8057 -0.1992 0.5578 +vn -0.8058 -0.1993 0.5577 +vn -0.8058 -0.1998 0.5575 +vn -0.3645 -0.1020 -0.9256 +vn -0.3659 -0.1027 -0.9250 +vn -0.3654 -0.1026 -0.9252 +vn -0.1577 0.2108 0.9647 +vn -0.1578 0.2107 0.9647 +vn -0.5166 -0.7635 -0.3876 +vn -0.9921 0.1048 -0.0693 +vn -0.9921 0.1049 -0.0692 +vn 0.3830 0.0742 -0.9208 +vn 0.3829 0.0740 -0.9208 +vn 0.3830 0.0740 -0.9208 +vn 0.9978 0.0191 -0.0641 +vn 0.9978 0.0167 -0.0645 +vn 0.9978 0.0183 -0.0644 +vn 0.4368 -0.7905 0.4293 +vn 0.4366 -0.7905 0.4296 +vn 0.4367 -0.7905 0.4294 +vn 0.8731 0.3574 -0.3317 +vn 0.8731 0.3574 -0.3316 +vn -0.0445 0.7552 -0.6540 +vn -0.0449 0.7550 -0.6542 +vn -0.3060 0.3717 0.8765 +vn -0.3063 0.3713 0.8765 +vn -0.3061 0.3716 0.8765 +vn 0.4882 -0.8615 0.1395 +vn 0.4881 -0.8616 0.1390 +vn 0.4887 -0.8611 0.1404 +vn 0.4631 0.6707 -0.5794 +vn 0.4635 0.6706 -0.5792 +vn 0.4634 0.6706 -0.5793 +vn -0.8458 0.0781 -0.5278 +vn -0.8459 0.0782 -0.5276 +vn -0.0483 0.7814 -0.6221 +vn -0.0484 0.7813 -0.6223 +vn -0.0483 0.7811 -0.6225 +vn 0.5749 0.7450 -0.3383 +vn 0.5752 0.7449 -0.3381 +vn 0.5750 0.7450 -0.3381 +vn -0.6586 -0.3393 0.6716 +vn -0.6587 -0.3394 0.6715 +vn 0.6367 -0.7613 0.1228 +vn 0.6366 -0.7614 0.1223 +vn 0.6366 -0.7614 0.1226 +vn -0.5132 0.2287 -0.8272 +vn -0.5137 0.2286 -0.8270 +vn -0.5135 0.2286 -0.8271 +vn 0.8232 -0.5510 -0.1371 +vn 0.8233 -0.5509 -0.1370 +vn 0.8230 -0.5511 -0.1375 +vn -0.3406 0.8074 -0.4818 +vn -0.3406 0.8075 -0.4816 +vn -0.6232 -0.7277 -0.2863 +vn -0.6232 -0.7278 -0.2863 +vn -0.6231 -0.7279 -0.2862 +vn 0.1036 0.9931 -0.0557 +vn 0.1035 0.9931 -0.0557 +vn 0.1039 0.9930 -0.0558 +vn -0.3777 0.7953 -0.4741 +vn -0.3780 0.7952 -0.4741 +vn 0.7805 0.5866 0.2161 +vn 0.7809 0.5862 0.2159 +vn 0.7797 0.5878 0.2159 +vn 0.4869 0.6433 -0.5908 +vn 0.0129 0.9937 -0.1112 +vn 0.0116 0.9938 -0.1107 +vn 0.0122 0.9937 -0.1111 +vn -0.6755 -0.6339 -0.3768 +vn -0.6739 -0.6355 -0.3767 +vn -0.6747 -0.6348 -0.3766 +vn 0.9245 0.3656 -0.1078 +vn 0.9246 0.3654 -0.1075 +vn -0.2061 -0.0656 0.9763 +vn -0.2050 -0.0649 0.9766 +vn -0.2046 -0.0643 0.9767 +vn -0.0355 0.5479 -0.8358 +vn -0.0363 0.5485 -0.8354 +vn -0.0358 0.5485 -0.8354 +vn 0.9196 0.3758 -0.1146 +vn 0.9198 0.3754 -0.1139 +vn 0.9202 0.3746 -0.1133 +vn -0.3343 0.3925 -0.8568 +vn -0.3343 0.3924 -0.8569 +vn -0.3343 0.3926 -0.8568 +vn 0.3252 0.8434 -0.4278 +vn 0.3254 0.8434 -0.4275 +vn 0.3251 0.8434 -0.4279 +vn -0.2882 0.9338 0.2118 +vn -0.2883 0.9338 0.2118 +vn -0.2884 0.9338 0.2116 +vn 0.1580 -0.8660 0.4744 +vn 0.1584 -0.8666 0.4732 +vn 0.1582 -0.8663 0.4738 +vn -0.0278 0.9405 0.3387 +vn -0.0276 0.9404 0.3389 +vn -0.0279 0.9405 0.3386 +vn -0.0501 0.8673 -0.4953 +vn -0.0498 0.8672 -0.4955 +vn -0.0501 0.8672 -0.4954 +vn -0.1765 0.9792 0.0999 +vn -0.1762 0.9793 0.1000 +vn 0.3800 -0.4829 0.7890 +vn 0.3804 -0.4832 0.7886 +vn 0.3802 -0.4831 0.7887 +vn -0.8411 0.2355 0.4869 +vn -0.8427 0.2348 0.4845 +vn -0.8419 0.2350 0.4857 +vn -0.6885 0.1297 -0.7136 +vn 0.9209 0.3717 -0.1174 +vn 0.9206 0.3722 -0.1180 +vn 0.9210 0.3716 -0.1174 +vn 0.3697 0.5822 0.7241 +vn -0.5644 0.2225 0.7950 +vn -0.5645 0.2220 0.7950 +vn -0.5648 0.2213 0.7950 +vn 0.5998 0.5227 -0.6058 +vn 0.5998 0.5229 -0.6057 +vn -0.3300 0.4097 0.8504 +vn -0.9012 0.4333 -0.0031 +vn -0.9012 0.4334 -0.0031 +vn -0.9012 0.4334 -0.0032 +vn 0.1261 0.7564 -0.6418 +vn 0.1263 0.7548 -0.6437 +vn 0.1260 0.7554 -0.6431 +vn -0.3977 -0.8942 -0.2057 +vn -0.3978 -0.8942 -0.2054 +vn -0.3976 -0.8942 -0.2057 +vn 0.1169 0.8886 -0.4436 +vn 0.1170 0.8886 -0.4436 +vn 0.1168 0.8886 -0.4435 +vn -0.0117 0.6717 0.7407 +vn -0.0118 0.6716 0.7408 +vn -0.0110 0.6720 0.7405 +vn -0.2121 0.5606 0.8004 +vn -0.2119 0.5605 0.8006 +vn -0.2124 0.5608 0.8003 +vn -0.4392 0.7610 0.4775 +vn -0.2317 0.5560 0.7982 +vn -0.2318 0.5560 0.7982 +vn -0.2318 0.5561 0.7981 +vn 0.9629 -0.1559 0.2201 +vn 0.9630 -0.1560 0.2198 +vn -0.5054 -0.8532 -0.1292 +vn -0.5052 -0.8532 -0.1294 +vn 0.7103 0.0729 -0.7001 +vn 0.7102 0.0730 -0.7002 +vn 0.7105 0.0727 -0.6999 +vn 0.6677 -0.7001 -0.2531 +vn 0.6681 -0.6997 -0.2531 +vn 0.6673 -0.7004 -0.2533 +vn -0.9197 -0.3232 0.2230 +vn -0.5949 -0.7213 -0.3546 +vn -0.5949 -0.7214 -0.3545 +vn -0.5953 -0.7208 -0.3550 +vn 0.1086 0.1193 0.9869 +vn 0.1086 0.1192 0.9869 +vn 0.1087 0.1192 0.9869 +vn -0.0325 0.9619 0.2716 +vn -0.0294 0.9619 0.2720 +vn -0.0306 0.9620 0.2713 +vn 0.7918 0.3603 0.4932 +vn -0.7546 0.3195 0.5731 +vn -0.7544 0.3198 0.5732 +vn -0.7545 0.3197 0.5731 +vn 0.4515 0.7263 0.5183 +vn 0.1336 0.9745 -0.1801 +vn 0.1337 0.9746 -0.1799 +vn 0.1338 0.9746 -0.1795 +vn -0.3249 -0.1535 -0.9332 +vn -0.3248 -0.1534 -0.9333 +vn -0.3250 -0.1536 -0.9332 +vn 0.4275 0.2545 -0.8675 +vn 0.4284 0.2551 -0.8668 +vn 0.4277 0.2547 -0.8673 +vn -0.2100 -0.9191 -0.3334 +vn -0.6384 -0.1290 -0.7588 +vn -0.6389 -0.1290 -0.7584 +vn -0.6386 -0.1290 -0.7587 +vn 0.7140 0.6992 0.0364 +vn 0.7140 0.6992 0.0360 +vn 0.7141 0.6991 0.0356 +vn -0.4405 -0.8107 -0.3857 +vn -0.4407 -0.8107 -0.3854 +vn -0.3336 -0.9394 -0.0793 +vn -0.3347 -0.9390 -0.0797 +vn -0.3350 -0.9388 -0.0797 +vn -0.7495 -0.2022 -0.6304 +vn -0.7494 -0.2024 -0.6305 +vn -0.7492 -0.2026 -0.6306 +vn 0.3917 0.4967 -0.7745 +vn 0.2512 0.9662 0.0576 +vn 0.2508 0.9663 0.0575 +vn 0.1397 -0.8900 -0.4341 +vn -0.1398 0.5336 -0.8341 +vn -0.1399 0.5336 -0.8341 +vn -0.1395 0.5339 -0.8340 +vn -0.1720 -0.7249 -0.6671 +vn -0.1725 -0.7255 -0.6662 +vn -0.1718 -0.7247 -0.6673 +vn -0.0875 -0.1361 0.9868 +vn -0.0878 -0.1361 0.9868 +vn -0.0875 -0.1362 0.9868 +vn 0.9030 -0.4266 0.0505 +vn 0.9030 -0.4267 0.0505 +vn 0.6582 0.6751 0.3331 +vn 0.6583 0.6751 0.3328 +vn 0.6581 0.6750 0.3335 +vn -0.6234 0.6513 0.4326 +vn -0.6236 0.6512 0.4326 +vn -0.6235 0.6513 0.4325 +vn -0.6213 -0.3952 0.6766 +vn -0.6215 -0.3951 0.6765 +vn -0.6214 -0.3947 0.6768 +vn -0.3527 0.8499 0.3914 +vn -0.3523 0.8503 0.3910 +vn -0.3528 0.8500 0.3911 +vn 0.5185 -0.8506 -0.0875 +vn 0.5185 -0.8506 -0.0876 +vn 0.4111 -0.3072 0.8583 +vn 0.4105 -0.3072 0.8586 +vn 0.4107 -0.3071 0.8585 +vn -0.2545 0.4921 -0.8325 +vn -0.2553 0.4933 -0.8315 +vn -0.2547 0.4929 -0.8320 +vn 0.2823 0.9523 0.1160 +vn 0.4015 0.7692 -0.4971 +vn 0.4020 0.7692 -0.4968 +vn 0.4019 0.7693 -0.4967 +vn -0.4338 -0.6351 -0.6391 +vn -0.4335 -0.6351 -0.6393 +vn -0.4337 -0.6349 -0.6394 +vn -0.2797 0.7529 0.5957 +vn -0.2797 0.7528 0.5958 +vn -0.9244 -0.2605 0.2785 +vn -0.0298 0.7302 -0.6826 +vn -0.5788 0.8154 0.0080 +vn -0.5772 0.8165 0.0107 +vn -0.5783 0.8158 0.0046 +vn 0.1660 -0.4264 -0.8892 +vn 0.1653 -0.4263 -0.8893 +vn 0.1670 -0.4270 -0.8887 +vn 0.0306 -0.6532 -0.7566 +vn 0.0305 -0.6531 -0.7566 +vn -0.2855 -0.3386 0.8966 +vn -0.4435 -0.8736 0.2002 +vn -0.4433 -0.8737 0.2002 +vn -0.4434 -0.8737 0.2002 +vn -0.2980 -0.6250 -0.7215 +vn -0.2983 -0.6250 -0.7214 +vn -0.2977 -0.6250 -0.7217 +vn 0.0282 -0.4147 -0.9095 +vn 0.0284 -0.4146 -0.9096 +vn 0.0275 -0.4150 -0.9094 +vn 0.6539 -0.2337 -0.7196 +vn 0.6536 -0.2331 -0.7201 +vn 0.6533 -0.2327 -0.7204 +vn 0.1573 -0.1509 -0.9760 +vn 0.1573 -0.1507 -0.9760 +vn 0.1572 -0.1510 -0.9759 +vn 0.5058 -0.6169 -0.6029 +vn 0.5062 -0.6168 -0.6028 +vn 0.5044 -0.6179 -0.6032 +vn -0.3032 -0.4127 -0.8589 +vn -0.3034 -0.4128 -0.8588 +vn -0.3026 -0.4128 -0.8591 +vn -0.2637 -0.5870 -0.7654 +vn -0.2638 -0.5868 -0.7655 +vn -0.2636 -0.5871 -0.7654 +vn 0.3972 0.1588 0.9039 +vn -0.1831 0.6006 -0.7783 +vn -0.8225 0.3547 -0.4446 +vn 0.5899 0.7101 -0.3844 +vn 0.5899 0.7100 -0.3847 +vn 0.5901 0.7098 -0.3846 +vn 0.9380 0.0706 0.3393 +vn 0.9380 0.0705 0.3395 +vn 0.9381 0.0707 0.3391 +vn -0.3856 -0.8436 -0.3736 +vn -0.3855 -0.8436 -0.3738 +vn -0.3855 -0.8436 -0.3739 +vn 0.5490 -0.8076 0.2154 +vn 0.5482 -0.8080 0.2161 +vn 0.5487 -0.8077 0.2155 +vn 0.8977 -0.4395 0.0292 +vn -0.3588 -0.9213 -0.1499 +vn -0.3591 -0.9211 -0.1502 +vn -0.3589 -0.9213 -0.1499 +vn -0.4683 -0.7985 -0.3784 +vn -0.4694 -0.7981 -0.3778 +vn -0.4689 -0.7983 -0.3779 +vn -0.7854 -0.3804 -0.4883 +vn -0.7852 -0.3805 -0.4885 +vn -0.7853 -0.3805 -0.4884 +vn 0.7025 0.3530 0.6180 +vn 0.7025 0.3531 0.6179 +vn 0.7024 0.3532 0.6180 +vn 0.1503 0.9039 0.4005 +vn 0.1499 0.9040 0.4005 +vn 0.1507 0.9039 0.4004 +vn -0.4264 -0.3351 0.8401 +vn -0.4263 -0.3347 0.8404 +vn 0.3404 -0.6407 -0.6882 +vn 0.3417 -0.6399 -0.6883 +vn 0.3401 -0.6408 -0.6882 +vn -0.2839 -0.7717 -0.5691 +vn -0.2835 -0.7718 -0.5692 +vn -0.2831 -0.7719 -0.5692 +vn -0.9480 0.2794 0.1526 +vn -0.9478 0.2798 0.1528 +vn -0.9480 0.2790 0.1531 +vn 0.5948 0.6259 -0.5045 +vn 0.5949 0.6257 -0.5046 +vn -0.1269 -0.8428 -0.5230 +vn -0.1268 -0.8430 -0.5228 +vn -0.1266 -0.8431 -0.5226 +vn 0.6214 -0.7437 -0.2464 +vn 0.6215 -0.7441 -0.2452 +vn 0.6214 -0.7439 -0.2461 +vn 0.6328 0.7005 0.3299 +vn 0.6331 0.7003 0.3298 +vn 0.6334 0.7001 0.3295 +vn -0.2051 -0.1570 0.9661 +vn -0.2051 -0.1571 0.9661 +vn 0.3652 -0.0636 0.9287 +vn 0.3653 -0.0633 0.9287 +vn 0.3655 -0.0638 0.9286 +vn 0.4520 0.0271 0.8916 +vn 0.4520 0.0286 0.8915 +vn 0.4522 0.0283 0.8915 +vn 0.0402 0.6308 0.7749 +vn 0.4588 0.6065 0.6494 +vn 0.4596 0.6065 0.6488 +vn 0.4581 0.6061 0.6503 +vn -0.2855 -0.3129 0.9059 +vn -0.2858 -0.3126 0.9059 +vn -0.2857 -0.3127 0.9059 +vn 0.2073 0.2153 0.9543 +vn 0.4480 0.8797 0.1593 +vn 0.4483 0.8796 0.1593 +vn 0.4518 0.8807 0.1421 +vn 0.4515 0.8810 0.1414 +vn 0.4516 0.8808 0.1425 +vn -0.4554 -0.4423 -0.7726 +vn 0.5884 -0.7730 -0.2372 +vn 0.5887 -0.7727 -0.2374 +vn 0.5884 -0.7730 -0.2371 +vn 0.0488 0.8768 -0.4784 +vn 0.0495 0.8768 -0.4783 +vn 0.0490 0.8768 -0.4784 +vn -0.0060 0.5775 -0.8164 +vn -0.0063 0.5767 -0.8169 +vn -0.0070 0.5758 -0.8176 +vn -0.3551 -0.6766 -0.6451 +vn -0.3550 -0.6765 -0.6453 +vn -0.3550 -0.6776 -0.6440 +vn 0.0828 -0.6205 -0.7799 +vn 0.0808 -0.6222 -0.7787 +vn 0.0802 -0.6225 -0.7785 +vn 0.2971 0.9096 -0.2904 +vn 0.2968 0.9097 -0.2903 +vn 0.2969 0.9097 -0.2904 +vn -0.3443 -0.7112 -0.6129 +vn 0.8556 0.1152 0.5046 +vn 0.8555 0.1152 0.5048 +vn 0.8556 0.1153 0.5047 +vn 0.8595 -0.1439 0.4904 +vn 0.8598 -0.1445 0.4898 +vn 0.8597 -0.1443 0.4901 +vn 0.1462 -0.8243 -0.5470 +vn 0.1463 -0.8241 -0.5472 +vn -0.6123 -0.6340 -0.4723 +vn -0.6120 -0.6342 -0.4726 +vn -0.6124 -0.6340 -0.4722 +vn 0.9582 0.1709 -0.2293 +vn 0.9582 0.1711 -0.2294 +vn -0.6510 -0.1977 -0.7328 +vn -0.6508 -0.1976 -0.7330 +vn -0.6514 -0.1981 -0.7324 +vn 0.2506 0.5950 -0.7637 +vn 0.2499 0.5946 -0.7642 +vn 0.2503 0.5947 -0.7640 +vn -0.9169 0.3989 0.0138 +vn -0.9170 0.3987 0.0140 +vn -0.9168 0.3992 0.0136 +vn -0.5270 -0.2609 -0.8088 +vn -0.5267 -0.2611 -0.8090 +vn -0.5273 -0.2608 -0.8087 +vn -0.3562 0.0502 -0.9331 +vn -0.3564 0.0502 -0.9330 +vn -0.3567 0.0502 -0.9329 +vn 0.6503 0.1833 -0.7372 +vn 0.6498 0.1835 -0.7376 +vn 0.6502 0.1835 -0.7373 +vn -0.1309 0.0053 -0.9914 +vn -0.1308 0.0053 -0.9914 +vn -0.1870 -0.3889 0.9021 +vn -0.1872 -0.3888 0.9021 +vn -0.4659 0.0338 0.8842 +vn -0.4661 0.0339 0.8841 +vn -0.4659 0.0343 0.8842 +vn -0.6950 0.3845 -0.6076 +vn -0.6949 0.3848 -0.6076 +vn -0.6951 0.3847 -0.6073 +vn 0.8126 0.4939 0.3095 +vn 0.8130 0.4926 0.3104 +vn 0.8126 0.4937 0.3097 +vn 0.2034 -0.6502 0.7321 +vn -0.1053 -0.6990 0.7073 +vn -0.1049 -0.6989 0.7075 +vn 0.7478 0.4199 -0.5142 +vn 0.3481 -0.6361 0.6886 +vn 0.3481 -0.6360 0.6887 +vn 0.3819 -0.6178 0.6874 +vn 0.3822 -0.6178 0.6872 +vn 0.2501 0.3324 0.9094 +vn 0.2502 0.3324 0.9093 +vn -0.6236 0.6196 -0.4767 +vn 0.7287 -0.6784 -0.0940 +vn 0.7290 -0.6782 -0.0925 +vn 0.7290 -0.6781 -0.0932 +vn 0.4826 -0.6947 0.5334 +vn 0.4827 -0.6946 0.5333 +vn 0.1123 0.0449 0.9927 +vn 0.7512 -0.2283 0.6193 +vn 0.7513 -0.2285 0.6192 +vn 0.7515 -0.2281 0.6190 +vn -0.6754 0.5837 -0.4508 +vn -0.6755 0.5836 -0.4506 +vn -0.6756 0.5836 -0.4506 +vn -0.8212 0.5484 -0.1579 +vn -0.8212 0.5484 -0.1578 +vn 0.4649 0.8852 -0.0147 +vn 0.4650 0.8852 -0.0146 +vn 0.4649 0.8852 -0.0148 +vn 0.5587 -0.7136 0.4227 +vn 0.5589 -0.7136 0.4224 +vn 0.5584 -0.7136 0.4230 +vn 0.0676 -0.0104 0.9977 +vn 0.0676 -0.0100 0.9977 +vn 0.0675 -0.0099 0.9977 +vn -0.7709 -0.2484 0.5865 +vn -0.7708 -0.2484 0.5867 +vn -0.7708 -0.2484 0.5866 +vn 0.7254 0.5911 0.3526 +vn 0.7253 0.5912 0.3528 +vn 0.2280 -0.6583 0.7174 +vn -0.2577 -0.7424 0.6184 +vn -0.2579 -0.7427 0.6180 +vn -0.2577 -0.7421 0.6188 +vn -0.9751 0.2216 -0.0037 +vn -0.9751 0.2217 -0.0038 +vn -0.8592 -0.3743 0.3489 +vn -0.8591 -0.3744 0.3490 +vn -0.8591 -0.3743 0.3491 +vn -0.5596 0.4687 0.6835 +vn -0.5594 0.4692 0.6833 +vn -0.5594 0.4693 0.6832 +vn 0.2830 0.0408 0.9582 +vn 0.2830 0.0409 0.9582 +vn 0.2670 0.9536 -0.1389 +vn 0.5020 0.1496 -0.8518 +vn 0.5022 0.1496 -0.8517 +vn -0.5772 -0.7639 -0.2887 +vn -0.5769 -0.7640 -0.2889 +vn -0.5774 -0.7638 -0.2884 +vn -0.6700 -0.3449 -0.6574 +vn -0.6701 -0.3447 -0.6574 +vn -0.6703 -0.3446 -0.6572 +vn 0.9460 0.3196 -0.0546 +vn 0.9460 0.3195 -0.0541 +vn 0.9460 0.3194 -0.0544 +vn -0.0100 0.9687 -0.2482 +vn -0.0109 0.9684 -0.2490 +vn -0.0104 0.9686 -0.2486 +vn 0.0707 0.7044 -0.7063 +vn 0.0708 0.7046 -0.7061 +vn 0.0708 0.7047 -0.7060 +vn -0.4798 0.5912 -0.6483 +vn -0.4799 0.5908 -0.6486 +vn -0.4802 0.5901 -0.6490 +vn -0.7019 -0.2401 -0.6706 +vn 0.3306 -0.0853 -0.9399 +vn 0.3295 -0.0865 -0.9402 +vn 0.3266 -0.0877 -0.9411 +vn -0.4986 0.0780 -0.8633 +vn -0.4984 0.0784 -0.8634 +vn -0.4985 0.0782 -0.8633 +vn -0.5072 -0.1045 -0.8555 +vn -0.5081 -0.1045 -0.8550 +vn -0.5084 -0.1043 -0.8548 +vn -0.1112 -0.0638 -0.9917 +vn -0.1115 -0.0633 -0.9917 +vn -0.1115 -0.0632 -0.9917 +vn 0.9078 -0.0447 -0.4169 +vn 0.9078 -0.0448 -0.4171 +vn 0.9080 -0.0445 -0.4166 +vn 0.2109 0.9751 0.0688 +vn 0.2105 0.9752 0.0681 +vn 0.2102 0.9753 0.0681 +vn -0.1547 0.4575 -0.8756 +vn -0.1545 0.4574 -0.8758 +vn -0.0386 -0.9869 -0.1569 +vn -0.0387 -0.9868 -0.1574 +vn -0.0387 -0.9867 -0.1578 +vn -0.4173 -0.6140 -0.6700 +vn -0.4174 -0.6141 -0.6698 +vn -0.4173 -0.6139 -0.6701 +vn 0.3749 0.9123 0.1650 +vn 0.3749 0.9123 0.1649 +vn 0.3750 0.9122 0.1650 +vn -0.4655 -0.6673 -0.5814 +vn -0.4653 -0.6670 -0.5819 +vn -0.3379 -0.9164 0.2145 +vn -0.3379 -0.9164 0.2146 +vn 0.7007 -0.1146 -0.7042 +vn 0.7007 -0.1149 -0.7041 +vn 0.7006 -0.1149 -0.7042 +vn 0.8972 -0.2834 -0.3388 +vn 0.8970 -0.2836 -0.3391 +vn 0.8973 -0.2834 -0.3384 +vn -0.0763 0.2482 -0.9657 +vn -0.0768 0.2485 -0.9656 +vn -0.3055 0.0616 -0.9502 +vn -0.3063 0.0615 -0.9499 +vn -0.3059 0.0615 -0.9501 +vn -0.2279 -0.4425 0.8673 +vn -0.2295 -0.4402 0.8681 +vn -0.2287 -0.4407 0.8680 +vn -0.5202 0.7857 -0.3348 +vn -0.5201 0.7857 -0.3350 +vn -0.4273 -0.0648 -0.9018 +vn -0.4273 -0.0658 -0.9017 +vn -0.4271 -0.0666 -0.9018 +vn 0.7198 0.5760 0.3875 +vn 0.7198 0.5754 0.3883 +vn 0.7198 0.5757 0.3879 +vn 0.7712 0.0551 0.6342 +vn 0.7120 -0.4019 0.5758 +vn 0.7123 -0.4020 0.5754 +vn 0.7121 -0.4019 0.5757 +vn 0.8308 -0.4654 0.3054 +vn -0.5301 -0.8459 0.0584 +vn -0.5302 -0.8459 0.0585 +vn 0.8182 0.5636 0.1135 +vn 0.8183 0.5635 0.1131 +vn 0.8184 0.5635 0.1129 +vn -0.1559 -0.4812 -0.8626 +vn -0.1564 -0.4815 -0.8624 +vn 0.4313 -0.6115 -0.6633 +vn 0.4316 -0.6106 -0.6640 +vn 0.4316 -0.6111 -0.6635 +vn -0.5665 0.7317 0.3790 +vn -0.5665 0.7316 0.3793 +vn 0.5500 0.1335 0.8244 +vn 0.5498 0.1333 0.8246 +vn 0.5498 0.1335 0.8246 +vn -0.4947 0.8563 -0.1483 +vn -0.6158 -0.4355 -0.6566 +vn -0.6158 -0.4354 -0.6567 +vn -0.6159 -0.4353 -0.6567 +vn -0.7217 -0.6356 -0.2742 +vn -0.7217 -0.6355 -0.2743 +vn -0.7219 -0.6354 -0.2741 +vn 0.8736 -0.4270 0.2335 +vn 0.8736 -0.4266 0.2340 +vn 0.8734 -0.4275 0.2333 +vn 0.0281 0.9979 0.0576 +vn 0.0285 0.9979 0.0578 +vn -0.5519 -0.7922 0.2604 +vn -0.5520 -0.7920 0.2607 +vn 0.8231 -0.0747 0.5630 +vn 0.8231 -0.0745 0.5630 +vn -0.7898 -0.2506 -0.5598 +vn -0.7899 -0.2508 -0.5596 +vn -0.7896 -0.2507 -0.5600 +vn -0.3919 0.8086 -0.4388 +vn -0.3923 0.8086 -0.4385 +vn 0.3547 -0.9286 -0.1090 +vn 0.3547 -0.9286 -0.1092 +vn 0.3386 -0.9408 -0.0146 +vn 0.4323 0.7503 0.5001 +vn 0.4337 0.7493 0.5005 +vn 0.4331 0.7497 0.5004 +vn 0.8833 -0.3382 0.3246 +vn 0.8831 -0.3384 0.3251 +vn 0.8825 -0.3390 0.3259 +vn 0.8556 0.3306 0.3983 +vn -0.3327 -0.9126 -0.2378 +vn -0.4596 0.5252 -0.7162 +vn -0.2858 0.7966 -0.5326 +vn 0.2097 0.9542 -0.2135 +vn 0.2108 0.9541 -0.2129 +vn 0.2107 0.9541 -0.2129 +vn 0.2339 -0.9166 0.3243 +vn 0.2341 -0.9166 0.3241 +vn 0.8495 -0.1931 0.4910 +vn 0.8496 -0.1939 0.4905 +vn 0.8496 -0.1935 0.4906 +vn -0.3481 0.7510 0.5610 +vn -0.3483 0.7508 0.5612 +vn -0.3488 0.7508 0.5609 +vn 0.8528 -0.2331 0.4673 +vn 0.8531 -0.2327 0.4671 +vn 0.8531 -0.2327 0.4670 +vn -0.2202 -0.9675 -0.1243 +vn -0.2201 -0.9676 -0.1239 +vn -0.2201 -0.9675 -0.1243 +vn 0.2612 0.9521 -0.1592 +vn 0.2609 0.9521 -0.1595 +vn 0.2608 0.9521 -0.1597 +vn 0.5887 0.2280 -0.7755 +vn 0.5888 0.2279 -0.7755 +vn 0.5890 0.2279 -0.7754 +vn 0.8570 -0.1673 0.4874 +vn 0.8568 -0.1674 0.4877 +vn -0.9356 0.0830 -0.3430 +vn -0.9355 0.0833 -0.3435 +vn -0.9355 0.0832 -0.3434 +vn 0.5355 -0.7825 0.3177 +vn 0.5354 -0.7825 0.3177 +vn 0.5352 -0.7827 0.3176 +vn -0.5890 0.0139 -0.8080 +vn 0.8996 -0.1629 0.4052 +vn 0.8995 -0.1632 0.4053 +vn 0.4383 -0.7657 0.4707 +vn 0.4379 -0.7660 0.4707 +vn 0.4380 -0.7659 0.4707 +vn -0.0197 0.3522 0.9357 +vn -0.0195 0.3522 0.9357 +vn -0.0196 0.3520 0.9358 +vn -0.7866 -0.4607 -0.4112 +vn -0.7864 -0.4609 -0.4112 +vn 0.0459 0.8919 0.4499 +vn 0.0456 0.8919 0.4500 +vn 0.0455 0.8917 0.4504 +vn -0.5850 0.0732 0.8077 +vn 0.8458 -0.1604 0.5088 +vn 0.8454 -0.1606 0.5094 +vn 0.0909 0.9948 -0.0452 +vn -0.3901 -0.9019 -0.1856 +vn 0.9222 -0.2841 0.2622 +vn 0.9222 -0.2842 0.2621 +vn 0.9221 -0.2842 0.2625 +vn 0.0014 0.0012 1.0000 +vn -0.0940 0.4190 -0.9031 +vn -0.5142 0.7667 0.3844 +vn -0.5140 0.7667 0.3846 +vn -0.5143 0.7667 0.3842 +vn 0.5331 -0.5924 0.6040 +vn 0.5331 -0.5926 0.6038 +vn 0.5331 -0.5928 0.6036 +vn -0.4438 -0.6009 -0.6647 +vn -0.4385 0.8049 -0.3997 +vn -0.4384 0.8050 -0.3996 +vn -0.4388 0.8047 -0.3998 +vn -0.8656 -0.4082 -0.2900 +vn -0.8657 -0.4080 -0.2899 +vn -0.8656 -0.4083 -0.2899 +vn -0.4598 0.8137 -0.3556 +vn -0.4591 0.8143 -0.3552 +vn -0.4589 0.8146 -0.3548 +vn -0.7642 -0.5966 -0.2450 +vn -0.7643 -0.5965 -0.2451 +vn 0.0545 0.9516 -0.3026 +vn 0.0551 0.9514 -0.3030 +vn -0.3310 0.9365 -0.1159 +vn 0.5046 0.3093 0.8060 +vn 0.5050 0.3090 0.8060 +vn 0.5045 0.3091 0.8062 +vn 0.3255 0.2143 0.9209 +vn 0.3256 0.2143 0.9209 +vn 0.3260 0.2141 0.9208 +vn 0.3095 0.9486 -0.0668 +vn 0.3094 0.9486 -0.0661 +vn 0.3094 0.9486 -0.0664 +vn 0.6052 -0.6005 0.5226 +vn 0.6051 -0.6005 0.5227 +vn 0.6050 -0.6005 0.5228 +vn 0.5510 -0.2195 0.8051 +vn 0.5510 -0.2198 0.8050 +vn -0.8410 0.5056 -0.1925 +vn -0.8406 0.5066 -0.1918 +vn -0.8410 0.5054 -0.1932 +vn -0.8214 -0.4800 -0.3082 +vn -0.8216 -0.4796 -0.3080 +vn -0.8215 -0.4799 -0.3080 +vn 0.3659 0.9077 -0.2053 +vn 0.3664 0.9076 -0.2051 +vn 0.2796 0.9548 -0.1006 +vn 0.2792 0.9550 -0.1002 +vn 0.2791 0.9550 -0.1001 +vn -0.4414 -0.5429 0.7144 +vn -0.4419 -0.5427 0.7143 +vn -0.4421 -0.5424 0.7144 +vn 0.3902 -0.7804 0.4887 +vn 0.3898 -0.7810 0.4880 +vn 0.3902 -0.7804 0.4885 +vn 0.8120 -0.5789 -0.0739 +vn 0.5710 0.5978 -0.5627 +vn 0.7095 -0.6858 -0.1621 +vn 0.7094 -0.6859 -0.1620 +vn 0.2217 0.9721 0.0765 +vn 0.0937 0.9943 0.0503 +vn 0.0934 0.9944 0.0504 +vn -0.6800 0.6305 -0.3743 +vn 0.8924 -0.3594 0.2727 +vn -0.4748 -0.8750 -0.0943 +vn 0.7111 -0.6860 -0.1542 +vn -0.4193 0.4341 -0.7974 +vn -0.4193 0.4338 -0.7975 +vn -0.0779 -0.9143 -0.3974 +vn -0.0779 -0.9144 -0.3973 +vn -0.9217 -0.0925 -0.3766 +vn -0.9219 -0.0925 -0.3763 +vn -0.9220 -0.0924 -0.3759 +vn -0.2011 -0.0740 0.9768 +vn -0.2007 -0.0745 0.9768 +vn 0.1267 0.7150 0.6875 +vn -0.6915 -0.5960 -0.4082 +vn -0.6915 -0.5960 -0.4081 +vn 0.4873 -0.0743 0.8701 +vn 0.4872 -0.0743 0.8701 +vn 0.4874 -0.0745 0.8700 +vn 0.1745 -0.2496 -0.9525 +vn 0.1744 -0.2497 -0.9525 +vn 0.1743 -0.2498 -0.9525 +vn 0.6284 0.7474 0.2155 +vn 0.6287 0.7472 0.2153 +vn 0.6282 0.7474 0.2160 +vn -0.9970 0.0262 0.0728 +vn -0.9970 0.0260 0.0727 +vn -0.9968 0.0280 0.0752 +vn 0.5021 0.7687 0.3962 +vn 0.5019 0.7690 0.3959 +vn 0.3776 0.7595 0.5296 +vn 0.3777 0.7595 0.5296 +vn 0.3778 0.7597 0.5293 +vn 0.5007 0.8222 0.2706 +vn 0.5004 0.8225 0.2703 +vn 0.5006 0.8223 0.2707 +vn 0.3467 0.3479 0.8711 +vn 0.3471 0.3478 0.8710 +vn 0.3474 0.3478 0.8708 +vn 0.2088 0.9700 -0.1246 +vn 0.2085 0.9700 -0.1246 +vn -0.4097 -0.9115 0.0369 +vn -0.4107 -0.9110 0.0370 +vn -0.4105 -0.9111 0.0369 +vn -0.9859 -0.0407 0.1620 +vn -0.9859 -0.0417 0.1622 +vn -0.9860 -0.0406 0.1618 +vn -0.9353 -0.2193 -0.2777 +vn -0.9355 -0.2191 -0.2773 +vn -0.9359 -0.2182 -0.2766 +vn 0.7827 -0.4832 -0.3923 +vn 0.7828 -0.4831 -0.3923 +vn 0.1298 0.9326 -0.3368 +vn 0.1302 0.9323 -0.3373 +vn 0.1293 0.9328 -0.3365 +vn -0.4614 0.3223 -0.8266 +vn -0.4615 0.3219 -0.8267 +vn -0.4615 0.3222 -0.8266 +vn 0.0959 -0.9502 -0.2967 +vn 0.9712 0.2025 0.1258 +vn 0.9712 0.2023 0.1257 +vn 0.9712 0.2023 0.1259 +vn -0.5174 -0.1084 -0.8488 +vn -0.5175 -0.1083 -0.8488 +vn -0.5176 -0.1081 -0.8488 +vn -0.3684 -0.2818 0.8859 +vn -0.3683 -0.2818 0.8860 +vn 0.1776 -0.5582 -0.8105 +vn 0.1776 -0.5592 -0.8098 +vn 0.1776 -0.5590 -0.8099 +vn 0.3459 0.2311 -0.9094 +vn 0.3458 0.2312 -0.9094 +vn 0.3456 0.2312 -0.9094 +vn 0.2964 0.8954 -0.3324 +vn 0.2957 0.8958 -0.3318 +vn 0.2960 0.8956 -0.3322 +vn 0.6426 -0.7396 -0.2000 +vn 0.6424 -0.7398 -0.2001 +vn 0.6430 -0.7393 -0.2001 +vn -0.4251 -0.8574 -0.2901 +vn 0.2945 0.9532 0.0685 +vn 0.2946 0.9532 0.0684 +vn 0.2944 0.9532 0.0685 +vn 0.8069 0.3018 -0.5078 +vn 0.8072 0.3021 -0.5071 +vn 0.8062 0.3025 -0.5085 +vn 0.6424 -0.4617 0.6117 +vn 0.6423 -0.4616 0.6118 +vn 0.6423 -0.4615 0.6119 +vn -0.6710 -0.6616 -0.3349 +vn -0.6703 -0.6620 -0.3353 +vn -0.6709 -0.6615 -0.3351 +vn 0.2526 0.9519 0.1735 +vn 0.2525 0.9520 0.1730 +vn -0.0958 0.9274 -0.3616 +vn -0.0959 0.9274 -0.3616 +vn -0.0956 0.9275 -0.3615 +vn 0.1001 -0.9924 -0.0710 +vn 0.1004 -0.9924 -0.0709 +vn 0.1003 -0.9924 -0.0710 +vn -0.1246 0.2663 -0.9558 +vn -0.1245 0.2658 -0.9560 +vn -0.1248 0.2668 -0.9556 +vn -0.8829 0.4656 0.0610 +vn -0.8828 0.4659 0.0607 +vn -0.8828 0.4658 0.0606 +vn 0.7861 0.5935 0.1728 +vn 0.7860 0.5937 0.1727 +vn -0.2508 -0.8120 -0.5270 +vn -0.2505 -0.8122 -0.5269 +vn -0.2506 -0.8121 -0.5270 +vn 0.4971 0.8126 -0.3041 +vn -0.0986 -0.3666 -0.9251 +vn -0.0985 -0.3667 -0.9251 +vn -0.3655 -0.8681 0.3358 +vn -0.3669 -0.8679 0.3347 +vn -0.3671 -0.8682 0.3338 +vn -0.6524 -0.7245 -0.2223 +vn -0.6528 -0.7243 -0.2220 +vn -0.6520 -0.7247 -0.2229 +vn -0.9287 0.1265 0.3487 +vn 0.9205 0.1553 0.3585 +vn 0.8660 0.4594 -0.1976 +vn 0.8664 0.4590 -0.1965 +vn 0.8670 0.4582 -0.1959 +vn -0.5187 -0.7710 -0.3696 +vn -0.5187 -0.7711 -0.3693 +vn -0.5186 -0.7710 -0.3697 +vn 0.2256 -0.9635 -0.1440 +vn 0.2362 0.7317 -0.6394 +vn 0.2363 0.7318 -0.6393 +vn 0.2362 0.7318 -0.6393 +vn -0.6751 0.0618 -0.7352 +vn -0.6749 0.0618 -0.7353 +vn -0.6746 0.0620 -0.7356 +vn 0.1494 -0.7568 -0.6364 +vn 0.1497 -0.7567 -0.6364 +vn 0.1495 -0.7568 -0.6364 +vn 0.5049 -0.8296 -0.2384 +vn 0.5048 -0.8296 -0.2386 +vn 0.5048 -0.8296 -0.2385 +vn -0.7490 -0.4498 -0.4865 +vn -0.7491 -0.4498 -0.4863 +vn -0.7493 -0.4500 -0.4859 +vn 0.5294 -0.8168 0.2292 +vn 0.5295 -0.8168 0.2292 +vn 0.5050 -0.8568 0.1044 +vn 0.5035 -0.8577 0.1039 +vn 0.5057 -0.8564 0.1043 +vn -0.4100 0.8929 -0.1860 +vn -0.4092 0.8932 -0.1862 +vn -0.4107 0.8927 -0.1855 +vn 0.0888 0.5736 0.8143 +vn 0.0889 0.5740 0.8140 +vn -0.6847 -0.3088 -0.6602 +vn -0.6847 -0.3088 -0.6601 +vn -0.6841 -0.3088 -0.6608 +vn 0.2909 0.6102 0.7369 +vn 0.2916 0.6093 0.7374 +vn 0.2923 0.6087 0.7376 +vn -0.6919 -0.3045 -0.6546 +vn -0.6919 -0.3045 -0.6547 +vn -0.6923 -0.3043 -0.6543 +vn 0.3858 0.9206 -0.0610 +vn 0.3856 0.9206 -0.0609 +vn 0.3853 0.9208 -0.0610 +vn 0.2645 0.2166 0.9398 +vn -0.4025 -0.0908 -0.9109 +vn -0.9462 -0.1486 0.2875 +vn -0.9462 -0.1487 0.2875 +vn 0.0892 -0.6026 0.7930 +vn 0.0892 -0.6024 0.7932 +vn 0.0891 -0.6026 0.7931 +vn 0.6627 0.6492 -0.3734 +vn 0.6628 0.6492 -0.3733 +vn 0.6628 0.6492 -0.3732 +vn 0.7406 0.6278 -0.2394 +vn 0.7406 0.6275 -0.2404 +vn 0.7405 0.6282 -0.2388 +vn 0.3548 0.6457 -0.6761 +vn 0.3544 0.6458 -0.6763 +vn -0.9501 -0.1029 -0.2946 +vn -0.9499 -0.1030 -0.2950 +vn -0.9500 -0.1030 -0.2949 +vn 0.8757 -0.3032 -0.3759 +vn 0.8754 -0.3037 -0.3762 +vn 0.8760 -0.3030 -0.3752 +vn 0.2809 -0.6497 -0.7064 +vn 0.2808 -0.6498 -0.7064 +vn 0.7639 -0.1467 -0.6285 +vn 0.7596 -0.1506 -0.6327 +vn 0.7625 -0.1492 -0.6296 +vn 0.2071 0.9775 -0.0405 +vn 0.2071 0.9775 -0.0406 +vn 0.2070 0.9775 -0.0405 +vn 0.9112 -0.2628 0.3173 +vn 0.9114 -0.2623 0.3172 +vn 0.9114 -0.2622 0.3171 +vn 0.2750 0.1721 -0.9459 +vn 0.3728 -0.0547 -0.9263 +vn 0.3756 -0.0544 -0.9252 +vn 0.3739 -0.0548 -0.9258 +vn 0.5413 -0.6856 -0.4867 +vn 0.5411 -0.6857 -0.4868 +vn 0.5417 -0.6856 -0.4864 +vn 0.5882 -0.5832 -0.5603 +vn 0.5882 -0.5829 -0.5606 +vn 0.5882 -0.5831 -0.5603 +vn -0.4337 0.8984 -0.0691 +vn -0.4348 0.8980 -0.0675 +vn -0.4343 0.8982 -0.0687 +vn -0.1752 -0.7165 0.6752 +vn -0.1754 -0.7164 0.6753 +vn -0.1754 -0.7165 0.6751 +vn 0.7208 -0.1760 -0.6704 +vn 0.7211 -0.1758 -0.6701 +vn 0.7209 -0.1759 -0.6703 +vn -0.3352 -0.4761 -0.8130 +vn -0.3357 -0.4759 -0.8129 +vn 0.0450 -0.0233 0.9987 +vn -0.4688 -0.1557 -0.8695 +vn -0.4690 -0.1554 -0.8694 +vn -0.4685 -0.1559 -0.8696 +vn 0.7358 -0.0894 -0.6713 +vn 0.5561 0.5289 -0.6411 +vn 0.5577 0.5272 -0.6411 +vn 0.5570 0.5277 -0.6413 +vn -0.4350 0.8639 -0.2537 +vn -0.4348 0.8642 -0.2532 +vn -0.4350 0.8640 -0.2537 +vn 0.4773 0.5628 -0.6748 +vn -0.5859 0.4255 -0.6897 +vn -0.5859 0.4254 -0.6898 +vn -0.3937 -0.0826 -0.9155 +vn -0.3939 -0.0825 -0.9154 +vn -0.9220 0.0170 0.3869 +vn -0.9222 0.0165 0.3863 +vn -0.2669 0.0532 -0.9623 +vn -0.2671 0.0533 -0.9622 +vn -0.1321 -0.1313 -0.9825 +vn -0.1322 -0.1316 -0.9824 +vn -0.1321 -0.1315 -0.9825 +vn -0.2817 0.0590 -0.9577 +vn -0.2819 0.0591 -0.9576 +vn -0.2816 0.0589 -0.9577 +vn 0.1351 -0.3093 -0.9413 +vn 0.1346 -0.3095 -0.9413 +vn 0.1348 -0.3094 -0.9413 +vn -0.8609 -0.4910 -0.1336 +vn -0.9721 -0.2229 -0.0728 +vn -0.9722 -0.2226 -0.0726 +vn -0.9722 -0.2227 -0.0727 +vn 0.7383 0.6727 -0.0491 +vn 0.7386 0.6724 -0.0488 +vn 0.7380 0.6730 -0.0492 +vn -0.3840 -0.3145 0.8681 +vn -0.3844 -0.3142 0.8680 +vn 0.3222 0.6231 -0.7127 +vn 0.6105 0.2673 0.7456 +vn 0.6104 0.2674 0.7456 +vn 0.9371 -0.1921 -0.2914 +vn 0.9373 -0.1914 -0.2911 +vn 0.9370 -0.1928 -0.2914 +vn 0.0247 -0.4128 -0.9105 +vn 0.0249 -0.4133 -0.9103 +vn 0.0247 -0.4129 -0.9104 +vn 0.5663 -0.3927 -0.7246 +vn 0.5663 -0.3924 -0.7248 +vn 0.5661 -0.3919 -0.7252 +vn 0.7736 -0.4509 -0.4453 +vn 0.7738 -0.4507 -0.4451 +vn -0.8846 0.3706 -0.2830 +vn -0.8846 0.3707 -0.2830 +vn -0.6609 -0.4089 -0.6293 +vn -0.6606 -0.4089 -0.6296 +vn -0.6607 -0.4089 -0.6295 +vn -0.1635 -0.8539 -0.4942 +vn 0.6673 0.3252 0.6700 +vn 0.6675 0.3249 0.6700 +vn 0.6676 0.3250 0.6698 +vn -0.7629 -0.3197 -0.5619 +vn -0.7628 -0.3198 -0.5620 +vn -0.7628 -0.3200 -0.5619 +vn -0.0082 -0.3580 -0.9337 +vn -0.0083 -0.3583 -0.9336 +vn -0.0042 -0.2092 -0.9779 +vn -0.0046 -0.2088 -0.9779 +vn -0.0044 -0.2090 -0.9779 +vn -0.7409 0.5615 -0.3685 +vn -0.7404 0.5621 -0.3686 +vn -0.7407 0.5616 -0.3686 +vn 0.7163 -0.3736 -0.5894 +vn 0.7161 -0.3739 -0.5894 +vn 0.1281 -0.9287 0.3481 +vn 0.1281 -0.9285 0.3484 +vn 0.1281 -0.9287 0.3479 +vn -0.6173 0.6962 -0.3664 +vn -0.6171 0.6964 -0.3663 +vn -0.6170 0.6966 -0.3661 +vn 0.6300 -0.6220 0.4651 +vn 0.6296 -0.6225 0.4648 +vn 0.6299 -0.6223 0.4647 +vn 0.3848 -0.8945 0.2278 +vn 0.3847 -0.8946 0.2275 +vn 0.3851 -0.8943 0.2279 +vn 0.4604 -0.1691 0.8715 +vn 0.4605 -0.1690 0.8714 +vn 0.7119 -0.0650 0.6992 +vn 0.1866 0.8157 -0.5475 +vn 0.1867 0.8157 -0.5475 +vn 0.2351 0.9681 0.0863 +vn 0.2347 0.9682 0.0861 +vn 0.2356 0.9680 0.0865 +vn 0.9268 0.3651 0.0876 +vn 0.9268 0.3652 0.0872 +vn 0.9269 0.3648 0.0879 +vn -0.1320 0.7405 -0.6590 +vn 0.0495 0.9316 -0.3602 +vn 0.0496 0.9315 -0.3602 +vn 0.0494 0.9315 -0.3603 +vn 0.7089 0.3029 -0.6369 +vn 0.7087 0.3031 -0.6371 +vn -0.2243 0.0778 -0.9714 +vn -0.2241 0.0780 -0.9714 +vn 0.0188 -0.4569 0.8893 +vn 0.0189 -0.4570 0.8893 +vn 0.0187 -0.4569 0.8893 +vn -0.2428 0.9620 -0.1245 +vn 0.5555 0.7626 -0.3313 +vn 0.5556 0.7625 -0.3315 +vn 0.5557 0.7624 -0.3317 +vn 0.4809 0.8031 0.3518 +vn 0.4809 0.8031 0.3519 +vn -0.9515 -0.2024 -0.2317 +vn -0.9515 -0.2025 -0.2316 +vn -0.9516 -0.2020 -0.2317 +vn -0.2691 -0.2520 0.9295 +vn -0.2689 -0.2520 0.9296 +vn -0.2690 -0.2519 0.9296 +vn -0.3662 -0.4920 -0.7898 +vn -0.3662 -0.4920 -0.7899 +vn 0.9284 -0.3521 -0.1190 +vn 0.9284 -0.3521 -0.1189 +vn -0.7397 0.2425 -0.6277 +vn -0.7395 0.2423 -0.6280 +vn -0.4629 -0.4380 0.7706 +vn -0.5172 0.6974 0.4961 +vn 0.7546 0.6514 -0.0785 +vn 0.7536 0.6524 -0.0800 +vn 0.7541 0.6519 -0.0798 +vn 0.1306 0.3701 -0.9198 +vn 0.1307 0.3700 -0.9198 +vn -0.5223 -0.4220 0.7410 +vn -0.5224 -0.4219 0.7410 +vn -0.5225 -0.4218 0.7410 +vn -0.8370 -0.4887 0.2462 +vn -0.8366 -0.4893 0.2463 +vn -0.8371 -0.4884 0.2465 +vn -0.6478 0.5392 0.5382 +vn -0.6482 0.5391 0.5378 +vn -0.6481 0.5390 0.5380 +vn -0.3459 -0.2972 -0.8900 +vn -0.3459 -0.2973 -0.8899 +vn -0.3458 -0.2968 -0.8901 +vn -0.7354 -0.1716 -0.6555 +vn -0.7355 -0.1719 -0.6554 +vn -0.7354 -0.1714 -0.6556 +vn -0.5087 0.7100 0.4870 +vn 0.2671 0.9622 -0.0536 +vn 0.2667 0.9623 -0.0532 +vn -0.2100 -0.6364 0.7423 +vn -0.2099 -0.6363 0.7423 +vn -0.2104 -0.6364 0.7421 +vn 0.1755 0.9844 0.0141 +vn -0.0405 -0.1050 0.9937 +vn -0.0403 -0.1050 0.9937 +vn -0.0404 -0.1050 0.9937 +vn 0.0740 0.0176 0.9971 +vn 0.0745 0.0175 0.9971 +vn 0.0746 0.0174 0.9971 +vn -0.1273 0.1989 0.9717 +vn -0.1273 0.1986 0.9718 +vn -0.1274 0.1988 0.9717 +vn 0.8571 0.4659 -0.2198 +vn 0.8571 0.4660 -0.2198 +vn 0.6445 -0.7629 0.0508 +vn 0.6449 -0.7626 0.0504 +vn -0.5729 0.1334 0.8087 +vn -0.5861 -0.2093 0.7827 +vn -0.5861 -0.2097 0.7826 +vn -0.5862 -0.2098 0.7826 +vn -0.8225 -0.1399 -0.5513 +vn 0.8365 -0.2030 0.5090 +vn 0.8357 -0.2030 0.5102 +vn 0.8356 -0.2030 0.5105 +vn -0.4201 -0.7884 0.4493 +vn -0.4211 -0.7890 0.4473 +vn -0.4183 -0.7888 0.4504 +vn -0.8866 -0.4025 -0.2280 +vn -0.8868 -0.4023 -0.2276 +vn 0.8307 0.1537 0.5350 +vn -0.8854 -0.4473 0.1268 +vn -0.8855 -0.4471 0.1267 +vn -0.0773 0.7738 0.6287 +vn -0.0777 0.7737 0.6288 +vn -0.0779 0.7737 0.6287 +vn 0.4807 0.5076 -0.7150 +vn 0.4803 0.5077 -0.7152 +vn -0.2643 0.4842 0.8341 +vn -0.2645 0.4839 0.8342 +vn -0.2642 0.4842 0.8341 +vn 0.0021 0.7420 0.6704 +vn 0.0021 0.7421 0.6703 +vn 0.0020 0.7420 0.6704 +vn 0.6888 -0.4132 0.5957 +vn -0.4617 -0.5014 -0.7318 +vn -0.4620 -0.5012 -0.7317 +vn -0.4624 -0.5011 -0.7315 +vn -0.2951 -0.2258 -0.9284 +vn 0.8040 -0.3583 -0.4745 +vn 0.8033 -0.3588 -0.4754 +vn 0.8024 -0.3599 -0.4761 +vn 0.3097 0.6072 -0.7317 +vn 0.3109 0.6075 -0.7309 +vn 0.3087 0.6074 -0.7320 +vn -0.8456 -0.0344 -0.5328 +vn -0.8458 -0.0336 -0.5324 +vn -0.8459 -0.0332 -0.5323 +vn 0.1894 0.9300 -0.3151 +vn 0.6949 0.0401 -0.7180 +vn 0.6949 0.0400 -0.7180 +vn 0.6949 0.0404 -0.7180 +vn -0.5536 0.7791 -0.2942 +vn -0.5534 0.7792 -0.2943 +vn -0.5537 0.7790 -0.2942 +vn 0.8257 -0.4883 0.2824 +vn 0.8257 -0.4884 0.2823 +vn -0.3367 -0.9273 0.1634 +vn -0.3367 -0.9273 0.1635 +vn -0.3369 -0.9273 0.1632 +vn -0.8452 -0.2425 -0.4762 +vn -0.8451 -0.2427 -0.4764 +vn -0.8454 -0.2424 -0.4759 +vn 0.6946 0.2748 -0.6648 +vn 0.6948 0.2749 -0.6646 +vn 0.9842 0.1396 -0.1086 +vn 0.9843 0.1395 -0.1085 +vn 0.8767 -0.4563 0.1522 +vn 0.8767 -0.4565 0.1519 +vn 0.8767 -0.4563 0.1525 +vn -0.5471 0.3372 -0.7662 +vn -0.5467 0.3372 -0.7664 +vn -0.5471 0.3372 -0.7661 +vn 0.2175 -0.9607 0.1725 +vn 0.2178 -0.9607 0.1724 +vn 0.2180 -0.9606 0.1727 +vn -0.4670 0.7534 -0.4629 +vn -0.4669 0.7534 -0.4631 +vn -0.4669 0.7534 -0.4629 +vn 0.4726 0.8580 -0.2015 +vn -0.4947 -0.8673 -0.0550 +vn -0.4946 -0.8674 -0.0549 +vn -0.4945 -0.8674 -0.0550 +vn -0.0769 -0.4076 -0.9099 +vn -0.0770 -0.4081 -0.9097 +vn -0.2480 -0.6215 0.7432 +vn -0.2475 -0.6216 0.7432 +vn 0.7809 -0.2826 0.5571 +vn 0.7808 -0.2824 0.5573 +vn 0.7810 -0.2828 0.5569 +vn -0.2867 0.0771 -0.9549 +vn -0.2868 0.0771 -0.9549 +vn -0.2864 0.0773 -0.9550 +vn -0.0210 0.9380 -0.3460 +vn -0.0216 0.9379 -0.3462 +vn -0.0211 0.9380 -0.3459 +vn 0.4993 0.8664 0.0039 +vn 0.4993 0.8664 0.0041 +vn -0.7098 0.2767 0.6478 +vn -0.7090 0.2773 0.6484 +vn -0.7095 0.2770 0.6480 +vn 0.3815 -0.8622 -0.3332 +vn 0.3813 -0.8622 -0.3334 +vn 0.3815 -0.8621 -0.3335 +vn -0.2701 0.8478 -0.4564 +vn -0.2703 0.8479 -0.4562 +vn 0.5912 0.7383 -0.3248 +vn 0.5904 0.7385 -0.3255 +vn 0.5904 0.7386 -0.3253 +vn -0.0997 -0.7932 -0.6008 +vn -0.0994 -0.7931 -0.6009 +vn -0.0992 -0.7931 -0.6010 +vn -0.1319 -0.9892 -0.0646 +vn -0.1318 -0.9892 -0.0647 +vn 0.7026 -0.4656 0.5382 +vn 0.7025 -0.4658 0.5381 +vn 0.7027 -0.4652 0.5383 +vn -0.8326 -0.3947 -0.3886 +vn -0.1110 0.8260 0.5527 +vn -0.1110 0.8259 0.5528 +vn -0.4065 0.0438 -0.9126 +vn 0.8536 -0.3472 0.3884 +vn 0.8537 -0.3471 0.3883 +vn 0.8536 -0.3470 0.3885 +vn 0.8188 -0.3834 0.4273 +vn 0.8197 -0.3816 0.4271 +vn 0.8192 -0.3826 0.4273 +vn -0.5155 -0.7114 0.4777 +vn -0.5159 -0.7112 0.4775 +vn -0.5153 -0.7115 0.4778 +vn 0.2435 -0.9285 0.2802 +vn -0.2699 0.5697 -0.7763 +vn -0.2701 0.5698 -0.7761 +vn -0.2696 0.5696 -0.7764 +vn -0.5012 0.3729 0.7809 +vn -0.5013 0.3726 0.7809 +vn -0.8241 -0.2521 -0.5073 +vn -0.8239 -0.2527 -0.5073 +vn 0.5238 0.7351 0.4305 +vn 0.5239 0.7351 0.4303 +vn 0.5236 0.7351 0.4308 +vn 0.0950 -0.9875 0.1259 +vn 0.0945 -0.9875 0.1259 +vn 0.0942 -0.9875 0.1260 +vn 0.8196 -0.3747 0.4334 +vn 0.8195 -0.3749 0.4335 +vn -0.6772 0.6652 -0.3145 +vn 0.0776 0.6628 0.7447 +vn 0.0779 0.6631 0.7445 +vn 0.0776 0.6628 0.7448 +vn -0.5549 -0.3123 0.7710 +vn -0.3172 -0.9439 -0.0922 +vn -0.3171 -0.9439 -0.0920 +vn -0.0152 0.9984 0.0547 +vn -0.0155 0.9984 0.0547 +vn -0.6475 -0.2387 -0.7237 +vn -0.6475 -0.2388 -0.7237 +vn -0.6474 -0.2389 -0.7237 +vn -0.2270 0.0737 0.9711 +vn -0.2269 0.0736 0.9711 +vn -0.2268 0.0738 0.9711 +vn -0.7644 -0.4692 -0.4421 +vn -0.7637 -0.4707 -0.4418 +vn -0.7634 -0.4721 -0.4409 +vn 0.2339 0.0649 0.9701 +vn 0.2341 0.0645 0.9701 +vn 0.2340 0.0647 0.9701 +vn 0.9479 -0.2673 -0.1734 +vn 0.9478 -0.2673 -0.1740 +vn 0.9477 -0.2674 -0.1743 +vn 0.8058 -0.1331 0.5770 +vn -0.8357 0.4686 -0.2865 +vn -0.8356 0.4688 -0.2864 +vn -0.1925 -0.9230 -0.3331 +vn -0.3060 -0.9513 -0.0385 +vn 0.3582 0.2215 0.9070 +vn 0.1755 -0.7011 0.6912 +vn 0.1769 -0.7011 0.6908 +vn 0.1789 -0.7021 0.6893 +vn -0.8007 -0.4548 -0.3899 +vn -0.8004 -0.4552 -0.3901 +vn -0.8008 -0.4548 -0.3898 +vn 0.1245 -0.9904 -0.0595 +vn 0.5803 -0.7697 0.2662 +vn 0.5804 -0.7696 0.2662 +vn 0.5801 -0.7699 0.2660 +vn 0.3416 0.0547 -0.9383 +vn 0.3419 0.0544 -0.9382 +vn 0.3417 0.0546 -0.9382 +vn 0.2216 0.9751 0.0109 +vn 0.2215 0.9751 0.0107 +vn 0.2218 0.9750 0.0109 +vn -0.3004 -0.9234 -0.2388 +vn -0.3005 -0.9234 -0.2390 +vn -0.3003 -0.9235 -0.2388 +vn 0.7503 -0.1209 0.6499 +vn 0.7501 -0.1212 0.6501 +vn 0.9114 0.1575 0.3803 +vn 0.9109 0.1581 0.3812 +vn 0.9110 0.1580 0.3810 +vn 0.9355 -0.2955 0.1936 +vn 0.9355 -0.2954 0.1939 +vn 0.8750 -0.3478 0.3368 +vn 0.8754 -0.3498 0.3335 +vn 0.8757 -0.3418 0.3410 +vn 0.7838 0.0859 0.6151 +vn 0.7840 0.0858 0.6148 +vn -0.9696 -0.1890 0.1556 +vn -0.9695 -0.1889 0.1559 +vn 0.1596 0.8108 -0.5631 +vn 0.1601 0.8107 -0.5631 +vn 0.1605 0.8108 -0.5629 +vn 0.8847 -0.2503 0.3931 +vn 0.8844 -0.2495 0.3945 +vn 0.8844 -0.2497 0.3943 +vn 0.8920 -0.4505 -0.0379 +vn 0.8921 -0.4502 -0.0380 +vn 0.8923 -0.4498 -0.0381 +vn -0.0000 0.9704 -0.2414 +vn -0.0000 0.9704 -0.2415 +vn -0.0002 0.9703 -0.2418 +vn 0.1499 0.2007 0.9681 +vn -0.8591 0.2762 -0.4308 +vn -0.8593 0.2760 -0.4307 +vn -0.8591 0.2762 -0.4309 +vn 0.9705 -0.2267 0.0825 +vn 0.9703 -0.2271 0.0828 +vn 0.9705 -0.2265 0.0826 +vn -0.1608 -0.7372 0.6562 +vn -0.1610 -0.7372 0.6562 +vn -0.1607 -0.7371 0.6564 +vn 0.1927 -0.8021 0.5652 +vn 0.1924 -0.8025 0.5648 +vn 0.1922 -0.8028 0.5644 +vn 0.3444 -0.6430 -0.6841 +vn 0.3448 -0.6429 -0.6840 +vn 0.3444 -0.6433 -0.6838 +vn 0.8179 -0.5575 0.1421 +vn 0.8179 -0.5576 0.1419 +vn 0.8180 -0.5574 0.1422 +vn 0.7101 -0.5890 0.3858 +vn 0.7102 -0.5891 0.3856 +vn 0.6849 0.7216 0.1007 +vn 0.6850 0.7216 0.1007 +vn 0.6851 0.7215 0.1006 +vn 0.3569 0.3671 -0.8590 +vn 0.3569 0.3666 -0.8592 +vn 0.3569 0.3663 -0.8593 +vn 0.3602 0.9324 -0.0306 +vn 0.3599 0.9325 -0.0306 +vn 0.3601 0.9324 -0.0306 +vn 0.3924 -0.5121 0.7641 +vn 0.3926 -0.5122 0.7639 +vn 0.3930 -0.5124 0.7635 +vn -0.2921 0.5026 0.8137 +vn -0.4763 0.8613 -0.1767 +vn 0.7423 0.3902 -0.5447 +vn 0.7416 0.3913 -0.5449 +vn 0.7415 0.3915 -0.5449 +vn -0.4657 0.2204 0.8571 +vn -0.4654 0.2205 0.8572 +vn -0.4659 0.2202 0.8570 +vn 0.1396 0.9443 -0.2980 +vn 0.1395 0.9443 -0.2980 +vn 0.9613 0.2751 0.0155 +vn 0.9613 0.2749 0.0156 +vn -0.6617 0.7398 -0.1222 +vn -0.6613 0.7401 -0.1221 +vn -0.6607 0.7407 -0.1216 +vn -0.6846 0.7269 0.0535 +vn 0.8989 0.1549 0.4098 +vn 0.8988 0.1553 0.4099 +vn -0.6077 -0.7787 -0.1562 +vn 0.5215 0.8525 -0.0361 +vn 0.5213 0.8526 -0.0365 +vn 0.5215 0.8525 -0.0363 +vn 0.1094 -0.2614 -0.9590 +vn 0.1093 -0.2613 -0.9590 +vn 0.4845 -0.8696 0.0950 +vn -0.4413 0.8540 -0.2757 +vn 0.4024 -0.8295 -0.3872 +vn -0.0036 -0.2386 0.9711 +vn -0.0031 -0.2387 0.9711 +vn -0.0040 -0.2384 0.9712 +vn -0.1807 -0.1596 0.9705 +vn -0.1810 -0.1596 0.9704 +vn -0.8127 -0.3513 -0.4648 +vn -0.8125 -0.3510 -0.4654 +vn -0.8128 -0.3512 -0.4647 +vn 0.3260 -0.9055 0.2718 +vn 0.3259 -0.9057 0.2711 +vn -0.6830 0.6819 -0.2618 +vn -0.6829 0.6822 -0.2612 +vn -0.6830 0.6823 -0.2607 +vn 0.7255 0.5647 -0.3934 +vn 0.7250 0.5655 -0.3933 +vn 0.7258 0.5643 -0.3934 +vn 0.4502 -0.6957 -0.5598 +vn 0.4501 -0.6957 -0.5599 +vn 0.4501 -0.6957 -0.5598 +vn -0.2765 0.9521 -0.1306 +vn -0.2767 0.9520 -0.1308 +vn -0.2768 0.9520 -0.1309 +vn 0.1031 0.3014 -0.9479 +vn 0.1027 0.3017 -0.9479 +vn 0.3125 0.6875 0.6555 +vn 0.3124 0.6876 0.6555 +vn 0.9863 0.0742 0.1474 +vn 0.6418 -0.7436 -0.1876 +vn 0.6419 -0.7435 -0.1876 +vn 0.6418 -0.7435 -0.1878 +vn 0.6718 -0.7404 -0.0204 +vn 0.6718 -0.7404 -0.0205 +vn 0.6718 -0.7405 -0.0202 +vn 0.1098 0.7961 0.5951 +vn 0.1098 0.7963 0.5948 +vn 0.1097 0.7967 0.5944 +vn 0.1562 -0.3760 -0.9134 +vn 0.1560 -0.3760 -0.9134 +vn 0.1559 -0.3761 -0.9134 +vn 0.1354 0.8758 0.4633 +vn 0.1350 0.8759 0.4632 +vn 0.1356 0.8758 0.4633 +vn -0.8131 -0.0675 0.5783 +vn 0.3396 0.6509 0.6790 +vn 0.3395 0.6509 0.6790 +vn -0.0588 -0.8834 -0.4650 +vn -0.0588 -0.8833 -0.4652 +vn -0.2213 0.0301 -0.9747 +vn 0.9196 0.3058 0.2465 +vn 0.9196 0.3057 0.2466 +vn 0.9193 0.3068 0.2467 +vn 0.6563 -0.7337 -0.1760 +vn 0.6564 -0.7335 -0.1764 +vn 0.6566 -0.7333 -0.1762 +vn 0.0145 -0.9537 0.3005 +vn 0.0145 -0.9537 0.3003 +vn 0.0144 -0.9538 0.3002 +vn -0.8250 0.3488 -0.4445 +vn -0.8250 0.3484 -0.4450 +vn -0.8251 0.3487 -0.4446 +vn -0.5429 0.8122 -0.2137 +vn -0.5433 0.8120 -0.2135 +vn 0.6386 0.5981 -0.4843 +vn 0.6386 0.5980 -0.4844 +vn 0.6386 0.5982 -0.4841 +vn -0.6496 -0.7024 -0.2911 +vn -0.6500 -0.7020 -0.2912 +vn -0.6501 -0.7018 -0.2914 +vn 0.1103 0.8547 -0.5073 +vn 0.1104 0.8547 -0.5073 +vn -0.6117 0.7004 0.3677 +vn -0.6118 0.7005 0.3674 +vn -0.4741 0.2972 -0.8288 +vn -0.4733 0.2969 -0.8294 +vn -0.4758 0.2972 -0.8278 +vn -0.4522 -0.8686 -0.2027 +vn -0.4522 -0.8686 -0.2026 +vn -0.9003 -0.2904 -0.3241 +vn -0.9004 -0.2903 -0.3241 +vn -0.9002 -0.2906 -0.3242 +vn -0.6820 -0.6879 -0.2484 +vn -0.6822 -0.6877 -0.2485 +vn -0.3411 0.1475 0.9284 +vn -0.3414 0.1471 0.9284 +vn 0.5836 -0.8102 -0.0542 +vn 0.5835 -0.8102 -0.0555 +vn 0.5836 -0.8102 -0.0557 +vn -0.6299 -0.7098 -0.3153 +vn -0.6295 -0.7103 -0.3150 +vn -0.6291 -0.7109 -0.3145 +vn -0.0207 0.3287 0.9442 +vn -0.0209 0.3287 0.9442 +vn -0.4692 0.7779 0.4181 +vn -0.4691 0.7780 0.4178 +vn -0.4692 0.7778 0.4182 +vn 0.2391 0.9571 0.1636 +vn 0.2393 0.9570 0.1638 +vn 0.2389 0.9571 0.1640 +vn -0.2909 0.4293 -0.8550 +vn -0.2905 0.4291 -0.8553 +vn -0.2910 0.4294 -0.8550 +vn -0.1274 -0.1610 -0.9787 +vn -0.1273 -0.1615 -0.9786 +vn -0.1273 -0.1618 -0.9786 +vn -0.0826 -0.2535 -0.9638 +vn -0.1559 -0.1654 -0.9738 +vn -0.1560 -0.1654 -0.9738 +vn -0.1558 -0.1658 -0.9738 +vn 0.3000 -0.7275 -0.6170 +vn 0.3002 -0.7273 -0.6172 +vn -0.9407 0.3326 0.0670 +vn -0.9413 0.3311 0.0663 +vn -0.9407 0.3327 0.0670 +vn -0.2447 0.8998 -0.3613 +vn -0.2448 0.8997 -0.3613 +vn -0.2451 0.8996 -0.3615 +vn 0.4286 -0.8272 -0.3634 +vn 0.4289 -0.8272 -0.3630 +vn 0.4288 -0.8272 -0.3632 +vn -0.1281 -0.3453 -0.9297 +vn 0.5000 0.8647 0.0484 +vn 0.5000 0.8646 0.0490 +vn 0.5003 0.8645 0.0490 +vn -0.8047 -0.3256 -0.4964 +vn -0.8045 -0.3252 -0.4971 +vn -0.8050 -0.3258 -0.4958 +vn 0.0367 0.9955 0.0878 +vn 0.0369 0.9955 0.0878 +vn 0.0347 0.9957 0.0862 +vn 0.6825 0.7304 0.0248 +vn 0.6825 0.7305 0.0248 +vn 0.6823 0.7306 0.0250 +vn 0.6011 -0.7319 -0.3210 +vn 0.6010 -0.7321 -0.3207 +vn 0.6012 -0.7314 -0.3219 +vn 0.2295 0.6047 -0.7627 +vn 0.2299 0.6041 -0.7630 +vn 0.2285 0.6055 -0.7624 +vn 0.6323 -0.1182 -0.7656 +vn 0.6322 -0.1179 -0.7658 +vn 0.6316 -0.1170 -0.7664 +vn 0.6441 -0.1461 -0.7509 +vn 0.6427 -0.1464 -0.7520 +vn 0.6459 -0.1472 -0.7491 +vn 0.7965 0.5944 0.1109 +vn 0.7961 0.5949 0.1111 +vn 0.7963 0.5947 0.1109 +vn -0.2159 -0.0660 0.9742 +vn -0.2159 -0.0661 0.9742 +vn -0.2158 -0.0657 0.9742 +vn -0.0230 -0.1837 0.9827 +vn -0.0231 -0.1837 0.9827 +vn -0.0233 -0.1834 0.9828 +vn 0.5415 -0.0371 -0.8399 +vn 0.5413 -0.0371 -0.8400 +vn 0.5414 -0.0371 -0.8400 +vn 0.2056 -0.6499 -0.7317 +vn 0.6456 0.7619 -0.0516 +vn 0.6452 0.7623 -0.0516 +vn 0.9863 -0.1466 0.0753 +vn 0.9863 -0.1467 0.0752 +vn 0.0602 0.1037 0.9928 +vn 0.0602 0.1034 0.9928 +vn 0.0604 0.1043 0.9927 +vn 0.3932 0.9024 0.1763 +vn 0.3935 0.9023 0.1763 +vn 0.3933 0.9023 0.1763 +vn 0.3594 0.6417 -0.6776 +vn 0.3594 0.6418 -0.6774 +vn 0.6296 0.7143 -0.3056 +vn 0.6297 0.7142 -0.3058 +vn 0.4419 -0.8910 -0.1044 +vn 0.4418 -0.8910 -0.1046 +vn 0.4423 -0.8908 -0.1039 +vn 0.2576 -0.2814 -0.9244 +vn 0.2569 -0.2808 -0.9247 +vn 0.2573 -0.2810 -0.9246 +vn -0.2087 -0.5367 0.8175 +vn -0.2088 -0.5366 0.8176 +vn -0.4669 -0.3142 -0.8266 +vn -0.4666 -0.3140 -0.8269 +vn -0.4662 -0.3135 -0.8273 +vn 0.4945 -0.4314 -0.7546 +vn 0.4948 -0.4313 -0.7544 +vn 0.4946 -0.4315 -0.7545 +vn -0.5390 0.0123 -0.8422 +vn -0.5391 0.0123 -0.8421 +vn -0.5383 0.0126 -0.8427 +vn 0.1730 -0.3968 -0.9014 +vn 0.1729 -0.3967 -0.9015 +vn -0.4816 0.5710 -0.6649 +vn 0.4696 -0.5933 -0.6538 +vn 0.4695 -0.5932 -0.6540 +vn 0.4698 -0.5932 -0.6538 +vn -0.5448 0.5739 0.6114 +vn -0.5452 0.5750 0.6100 +vn -0.5455 0.5718 0.6127 +vn 0.1739 0.0929 -0.9804 +vn 0.1739 0.0930 -0.9804 +vn 0.1742 0.0929 -0.9803 +vn 0.5642 0.8115 0.1522 +vn 0.3804 -0.7292 -0.5689 +vn 0.3805 -0.7292 -0.5688 +vn 0.6096 -0.1840 -0.7711 +vn 0.6096 -0.1834 -0.7712 +vn 0.6095 -0.1838 -0.7712 +vn -0.2291 0.9679 0.1030 +vn -0.2272 0.9683 0.1040 +vn -0.2280 0.9681 0.1037 +vn -0.4310 0.0188 -0.9022 +vn -0.4299 0.0185 -0.9027 +vn -0.4304 0.0185 -0.9024 +vn 0.1191 0.8884 -0.4434 +vn -0.7818 -0.2992 -0.5471 +vn -0.7823 -0.2991 -0.5464 +vn 0.1025 0.8697 -0.4828 +vn 0.1023 0.8698 -0.4827 +vn -0.6608 -0.5562 -0.5040 +vn -0.6596 -0.5568 -0.5049 +vn -0.6596 -0.5567 -0.5049 +vn 0.6974 0.4852 0.5275 +vn 0.6975 0.4849 0.5276 +vn 0.3986 0.5141 0.7595 +vn 0.3987 0.5140 0.7595 +vn -0.1633 0.9827 -0.0870 +vn -0.1630 0.9828 -0.0868 +vn 0.4737 -0.0405 -0.8798 +vn 0.4735 -0.0405 -0.8798 +vn 0.4734 -0.0405 -0.8799 +vn -0.5629 -0.7699 -0.3006 +vn -0.5633 -0.7695 -0.3010 +vn -0.5630 -0.7698 -0.3008 +vn 0.2569 -0.3806 -0.8883 +vn 0.2560 -0.3812 -0.8883 +vn 0.2576 -0.3800 -0.8884 +vn 0.5940 0.5166 -0.6167 +vn 0.0631 -0.5250 0.8488 +vn 0.0633 -0.5251 0.8487 +vn 0.0628 -0.5249 0.8488 +vn -0.4629 0.2349 0.8547 +vn -0.4631 0.2354 0.8545 +vn -0.4632 0.2359 0.8543 +vn 0.5931 -0.6278 -0.5041 +vn 0.5932 -0.6279 -0.5038 +vn 0.5926 -0.6277 -0.5048 +vn -0.5048 -0.8387 -0.2045 +vn -0.5049 -0.8386 -0.2044 +vn -0.5049 -0.8386 -0.2043 +vn -0.8092 -0.3945 -0.4355 +vn -0.8092 -0.3945 -0.4354 +vn -0.4842 -0.7318 -0.4797 +vn -0.4844 -0.7313 -0.4802 +vn -0.4842 -0.7316 -0.4799 +vn 0.1347 0.4907 -0.8609 +vn 0.1353 0.4907 -0.8607 +vn 0.1337 0.4908 -0.8610 +vn -0.0299 -0.6978 -0.7157 +vn -0.0293 -0.6975 -0.7160 +vn -0.0294 -0.6976 -0.7159 +vn 0.9399 -0.0830 0.3312 +vn 0.9398 -0.0832 0.3314 +vn 0.9399 -0.0830 0.3311 +vn -0.6989 -0.2893 -0.6541 +vn -0.6990 -0.2892 -0.6541 +vn -0.6986 -0.2896 -0.6543 +vn 0.1243 -0.0302 0.9918 +vn 0.1244 -0.0304 0.9918 +vn 0.1242 -0.0301 0.9918 +vn 0.3892 -0.0552 0.9195 +vn 0.3885 -0.0566 0.9197 +vn 0.3888 -0.0563 0.9196 +vn 0.5775 -0.2407 0.7801 +vn 0.5775 -0.2409 0.7801 +vn 0.5774 -0.2400 0.7804 +vn -0.2781 0.0374 0.9598 +vn -0.2792 0.0371 0.9595 +vn -0.2774 0.0379 0.9600 +vn 0.2245 0.6968 -0.6812 +vn -0.1101 -0.5105 -0.8528 +vn -0.1102 -0.5109 -0.8526 +vn -0.1343 -0.5111 -0.8490 +vn -0.0270 -0.5594 -0.8285 +vn -0.0265 -0.5592 -0.8286 +vn -0.0267 -0.5593 -0.8286 +vn -0.3946 -0.6352 -0.6640 +vn -0.3942 -0.6348 -0.6646 +vn -0.3940 -0.6349 -0.6646 +vn 0.8621 0.4511 0.2307 +vn 0.8624 0.4506 0.2308 +vn 0.8626 0.4501 0.2308 +vn 0.9144 0.1487 -0.3764 +vn 0.9146 0.1487 -0.3761 +vn 0.9146 0.1488 -0.3760 +vn -0.1213 0.9792 -0.1628 +vn -0.1210 0.9793 -0.1625 +vn -0.1208 0.9793 -0.1624 +vn -0.5716 -0.7909 -0.2183 +vn -0.5713 -0.7911 -0.2185 +vn 0.3764 0.7701 0.5150 +vn 0.3758 0.7702 0.5153 +vn 0.3766 0.7701 0.5148 +vn -0.8818 0.2822 -0.3779 +vn -0.8820 0.2817 -0.3777 +vn -0.8817 0.2828 -0.3778 +vn 0.1717 0.7895 0.5892 +vn 0.1717 0.7896 0.5891 +vn 0.1710 0.7892 0.5898 +vn 0.5124 0.8109 -0.2827 +vn 0.5113 0.8113 -0.2834 +vn 0.5106 0.8113 -0.2847 +vn -0.8123 -0.2436 0.5299 +vn -0.8123 -0.2439 0.5298 +vn -0.8124 -0.2437 0.5298 +vn 0.0125 -0.2837 -0.9588 +vn 0.1510 -0.4953 -0.8555 +vn 0.1511 -0.4954 -0.8554 +vn 0.3257 -0.7450 -0.5822 +vn 0.3259 -0.7453 -0.5817 +vn 0.3258 -0.7452 -0.5818 +vn 0.9014 -0.4053 -0.1522 +vn 0.9015 -0.4051 -0.1523 +vn 0.0568 0.9867 -0.1522 +vn 0.0571 0.9867 -0.1519 +vn 0.0571 0.9867 -0.1521 +vn -0.9605 0.2242 0.1647 +vn -0.9603 0.2247 0.1653 +vn -0.9602 0.2249 0.1655 +vn -0.7668 -0.6373 0.0765 +vn -0.7671 -0.6369 0.0765 +vn -0.7674 -0.6366 0.0765 +vn 0.6835 -0.0962 0.7236 +vn 0.6830 -0.0961 0.7241 +vn 0.6841 -0.0958 0.7230 +vn 0.5617 0.8226 -0.0881 +vn 0.5618 0.8226 -0.0880 +vn 0.5620 0.8224 -0.0884 +vn 0.8299 -0.4740 0.2942 +vn -0.5781 -0.2220 -0.7852 +vn -0.5781 -0.2219 -0.7852 +vn 0.8711 -0.4867 0.0652 +vn -0.4060 0.7645 -0.5007 +vn -0.4059 0.7645 -0.5008 +vn -0.9920 -0.1263 -0.0031 +vn -0.9920 -0.1262 -0.0033 +vn -0.9920 -0.1262 -0.0031 +vn 0.0146 -0.5475 0.8366 +vn -0.5551 -0.6986 0.4515 +vn -0.5552 -0.6989 0.4509 +vn -0.5551 -0.6988 0.4511 +vn 0.2924 -0.7304 0.6173 +vn 0.2928 -0.7301 0.6175 +vn 0.2492 0.9456 -0.2093 +vn -0.4708 -0.5223 0.7110 +vn -0.4722 -0.5236 0.7092 +vn -0.4732 -0.5238 0.7083 +vn 0.1657 0.8241 -0.5417 +vn 0.1657 0.8237 -0.5423 +vn 0.1657 0.8242 -0.5415 +vn -0.0109 -0.0001 0.9999 +vn 0.6438 0.3501 -0.6805 +vn 0.6438 0.3497 -0.6806 +vn 0.6437 0.3501 -0.6805 +vn 0.3395 0.6012 0.7234 +vn 0.3404 0.6009 0.7232 +vn 0.3398 0.6010 0.7234 +vn -0.6103 -0.4683 -0.6389 +vn -0.1712 -0.8342 0.5243 +vn -0.1716 -0.8340 0.5244 +vn -0.1715 -0.8340 0.5245 +vn 0.2859 -0.8043 0.5209 +vn 0.2856 -0.8042 0.5213 +vn 0.2860 -0.8044 0.5207 +vn 0.2876 -0.4813 0.8280 +vn 0.2875 -0.4811 0.8282 +vn 0.2874 -0.4811 0.8282 +vn -0.9776 0.1818 -0.1063 +vn -0.9776 0.1817 -0.1060 +vn -0.9775 0.1819 -0.1066 +vn -0.0759 0.4875 -0.8698 +vn -0.7386 0.6507 -0.1762 +vn 0.0011 -0.4643 0.8857 +vn 0.0009 -0.4643 0.8857 +vn 0.0008 -0.4644 0.8856 +vn -0.9038 -0.0933 -0.4177 +vn -0.9032 -0.0930 -0.4190 +vn -0.9042 -0.0940 -0.4167 +vn 0.2372 0.7471 0.6209 +vn -0.2316 0.1363 0.9632 +vn -0.2313 0.1355 0.9634 +vn -0.2316 0.1360 0.9633 +vn -0.8301 -0.2096 0.5167 +vn -0.8302 -0.2097 0.5165 +vn -0.8302 -0.2098 0.5164 +vn -0.2549 0.8408 0.4777 +vn -0.2543 0.8413 0.4770 +vn -0.2546 0.8410 0.4774 +vn -0.7289 -0.1025 -0.6769 +vn -0.9248 0.3551 -0.1368 +vn -0.9250 0.3543 -0.1369 +vn -0.9249 0.3548 -0.1368 +vn -0.6105 0.3266 -0.7216 +vn -0.6104 0.3268 -0.7215 +vn -0.6106 0.3263 -0.7216 +vn -0.2026 0.9766 0.0725 +vn -0.2026 0.9765 0.0728 +vn -0.2028 0.9766 0.0723 +vn -0.8861 -0.1753 -0.4290 +vn -0.8861 -0.1756 -0.4290 +vn -0.8861 -0.1752 -0.4291 +vn 0.9660 0.1546 -0.2070 +vn 0.9661 0.1547 -0.2068 +vn -0.5677 0.3577 0.7415 +vn -0.5679 0.3576 0.7414 +vn -0.5678 0.3576 0.7414 +vn 0.7221 0.6430 0.2552 +vn 0.7219 0.6432 0.2554 +vn 0.7224 0.6427 0.2550 +vn -0.7669 0.6078 -0.2059 +vn -0.7669 0.6079 -0.2059 +vn -0.7670 0.6078 -0.2059 +vn -0.2316 -0.3845 0.8936 +vn -0.2320 -0.3845 0.8935 +vn -0.2318 -0.3842 0.8937 +vn 0.7796 0.5608 0.2790 +vn 0.7797 0.5606 0.2791 +vn 0.2605 0.0659 -0.9632 +vn 0.2614 0.0663 -0.9629 +vn 0.2613 0.0663 -0.9630 +vn -0.2618 0.8776 -0.4015 +vn -0.2619 0.8776 -0.4015 +vn 0.2094 0.9723 0.1035 +vn 0.8815 -0.0106 0.4721 +vn 0.8812 -0.0106 0.4727 +vn 0.8816 -0.0104 0.4720 +vn 0.0295 -0.0524 0.9982 +vn 0.7485 -0.4525 0.4848 +vn 0.7485 -0.4526 0.4847 +vn 0.7485 -0.4525 0.4847 +vn -0.4446 -0.8955 0.0192 +vn -0.4445 -0.8956 0.0195 +vn -0.4445 -0.8955 0.0193 +vn -0.9470 -0.0798 0.3111 +vn -0.4748 -0.8800 0.0118 +vn -0.4749 -0.8800 0.0116 +vn -0.4006 -0.9068 0.1311 +vn -0.4005 -0.9068 0.1311 +vn -0.4004 -0.9069 0.1311 +vn 0.2593 -0.6232 -0.7378 +vn 0.2594 -0.6223 -0.7386 +vn 0.2599 -0.6242 -0.7368 +vn -0.2115 0.9773 0.0078 +vn -0.2117 0.9773 0.0079 +vn -0.2113 0.9774 0.0078 +vn -0.2982 -0.6882 -0.6614 +vn 0.8406 0.4913 0.2280 +vn 0.8404 0.4916 0.2281 +vn -0.2316 0.6569 -0.7176 +vn -0.2315 0.6576 -0.7169 +vn -0.2315 0.6577 -0.7168 +vn 0.1869 0.9784 -0.0887 +vn 0.1874 0.9783 -0.0881 +vn 0.1870 0.9784 -0.0885 +vn 0.0004 -0.0000 1.0000 +vn -0.5188 -0.8496 -0.0944 +vn -0.5592 0.2125 -0.8013 +vn -0.5592 0.2124 -0.8014 +vn -0.5588 0.2126 -0.8016 +vn -0.8507 0.4412 -0.2858 +vn -0.9335 -0.2093 -0.2911 +vn -0.9335 -0.2092 -0.2912 +vn -0.9337 -0.2091 -0.2907 +vn -0.5810 0.6783 -0.4499 +vn -0.5812 0.6780 -0.4500 +vn -0.5815 0.6770 -0.4511 +vn -0.6964 0.6208 0.3601 +vn -0.0822 -0.3816 0.9207 +vn -0.0816 -0.3809 0.9210 +vn -0.0820 -0.3828 0.9202 +vn -0.8588 -0.2341 -0.4556 +vn -0.8592 -0.2338 -0.4551 +vn -0.8594 -0.2334 -0.4549 +vn -0.4494 -0.8654 -0.2216 +vn -0.9752 0.2202 -0.0240 +vn -0.9752 0.2201 -0.0239 +vn -0.9753 0.2197 -0.0236 +vn 0.3373 0.0484 -0.9402 +vn 0.3374 0.0485 -0.9401 +vn 0.3379 0.0486 -0.9399 +vn 0.2945 -0.2173 -0.9306 +vn -0.5926 -0.4139 -0.6910 +vn -0.5920 -0.4139 -0.6916 +vn -0.5928 -0.4137 -0.6910 +vn -0.9736 0.1705 -0.1518 +vn -0.9736 0.1703 -0.1520 +vn -0.9736 0.1704 -0.1521 +vn 0.2010 -0.9079 0.3679 +vn 0.2009 -0.9079 0.3679 +vn 0.4558 -0.8901 0.0063 +vn 0.4556 -0.8902 0.0060 +vn 0.4555 -0.8902 0.0053 +vn -0.8219 -0.3972 -0.4083 +vn -0.8218 -0.3973 -0.4085 +vn 0.1767 0.9807 0.0832 +vn 0.1767 0.9808 0.0826 +vn -0.7872 -0.4062 -0.4639 +vn -0.7868 -0.4064 -0.4646 +vn -0.7861 -0.4070 -0.4652 +vn 0.8393 0.5350 -0.0964 +vn 0.8394 0.5349 -0.0963 +vn 0.8393 0.5351 -0.0963 +vn -0.0955 -0.7347 -0.6717 +vn -0.0950 -0.7352 -0.6712 +vn -0.0954 -0.7349 -0.6715 +vn 0.4639 0.3498 -0.8139 +vn 0.4644 0.3502 -0.8135 +vn 0.4648 0.3507 -0.8130 +vn 0.1902 -0.9717 0.1401 +vn -0.2614 0.8873 -0.3799 +vn 0.5397 -0.7009 -0.4664 +vn 0.5394 -0.7010 -0.4666 +vn 0.5396 -0.7008 -0.4665 +vn -0.8452 0.2394 0.4779 +vn -0.8452 0.2395 0.4778 +vn -0.8451 0.2395 0.4779 +vn -0.9921 0.1153 -0.0503 +vn -0.9921 0.1152 -0.0495 +vn -0.9921 0.1152 -0.0501 +vn 0.3123 -0.1026 -0.9444 +vn 0.3126 -0.1027 -0.9443 +vn 0.3126 -0.1023 -0.9444 +vn 0.0567 0.9904 -0.1259 +vn 0.0549 0.9904 -0.1272 +vn 0.0556 0.9904 -0.1268 +vn 0.5321 -0.4083 -0.7418 +vn 0.5321 -0.4082 -0.7418 +vn 0.5320 -0.4083 -0.7418 +vn 0.2474 -0.3488 0.9039 +vn 0.2474 -0.3485 0.9041 +vn 0.2472 -0.3485 0.9041 +vn 0.1066 0.4848 0.8681 +vn 0.9504 -0.2293 0.2100 +vn 0.9503 -0.2294 0.2104 +vn 0.9503 -0.2295 0.2103 +vn -0.3077 -0.2579 0.9159 +vn -0.3077 -0.2578 0.9159 +vn -0.3082 -0.2578 0.9157 +vn -0.0281 0.2329 -0.9721 +vn -0.0284 0.2329 -0.9721 +vn -0.0287 0.2329 -0.9721 +vn -0.6620 0.0481 -0.7480 +vn -0.6618 0.0482 -0.7481 +vn -0.6617 0.0484 -0.7482 +vn -0.2082 -0.9568 -0.2029 +vn -0.2079 -0.9568 -0.2030 +vn -0.2738 -0.9532 -0.1286 +vn -0.1955 -0.1862 -0.9629 +vn -0.1955 -0.1864 -0.9628 +vn -0.3246 -0.0489 0.9446 +vn -0.3248 -0.0493 0.9445 +vn -0.3248 -0.0495 0.9445 +vn -0.8533 0.4938 -0.1675 +vn -0.8533 0.4939 -0.1671 +vn -0.8533 0.4937 -0.1678 +vn 0.7171 -0.2806 0.6379 +vn 0.7172 -0.2803 0.6380 +vn -0.9055 0.2108 -0.3682 +vn -0.9055 0.2105 -0.3683 +vn -0.9056 0.2101 -0.3685 +vn 0.6699 0.2332 0.7049 +vn 0.6697 0.2333 0.7050 +vn 0.6696 0.2334 0.7051 +vn -0.4041 -0.8938 -0.1946 +vn -0.4045 -0.8936 -0.1946 +vn -0.4045 -0.8936 -0.1945 +vn -0.5219 -0.3937 0.7567 +vn 0.3035 0.0157 0.9527 +vn -0.4692 -0.3653 0.8040 +vn 0.3677 -0.3268 0.8706 +vn 0.3677 -0.3270 0.8705 +vn 0.3677 -0.3269 0.8706 +vn 0.6070 -0.7711 -0.1924 +vn 0.6068 -0.7712 -0.1926 +vn 0.6070 -0.7709 -0.1932 +vn -0.3853 -0.8952 -0.2240 +vn -0.3855 -0.8950 -0.2245 +vn -0.3856 -0.8950 -0.2241 +vn -0.1061 -0.9260 -0.3623 +vn -0.1058 -0.9261 -0.3622 +vn 0.7527 -0.1204 0.6472 +vn -0.4832 -0.8606 -0.1611 +vn -0.3549 0.3882 0.8505 +vn -0.3548 0.3881 0.8506 +vn 0.0418 0.5730 0.8185 +vn 0.0417 0.5741 0.8177 +vn 0.0438 0.5698 0.8206 +vn 0.2890 0.1551 0.9447 +vn 0.2909 0.1538 0.9443 +vn 0.2936 0.1528 0.9436 +vn 0.7731 0.2782 0.5700 +vn 0.7732 0.2780 0.5699 +vn 0.7721 0.2790 0.5710 +vn -0.5166 -0.6997 -0.4935 +vn 0.8541 0.4969 0.1538 +vn 0.8540 0.4972 0.1533 +vn 0.8541 0.4968 0.1539 +vn -0.9565 -0.2771 0.0916 +vn -0.9551 -0.2810 0.0938 +vn -0.9541 -0.2845 0.0936 +vn 0.6116 0.0824 -0.7869 +vn 0.6088 0.0853 -0.7887 +vn 0.6120 0.0808 -0.7867 +vn -0.7094 0.1272 -0.6932 +vn -0.7112 0.1279 -0.6912 +vn -0.7106 0.1277 -0.6919 +vn 0.7934 0.1214 0.5964 +vn 0.7928 0.1214 0.5973 +vn 0.7942 0.1222 0.5952 +vn 0.2952 0.8931 0.3396 +vn -0.2834 0.1609 0.9454 +vn -0.2825 0.1621 0.9455 +vn -0.2833 0.1610 0.9454 +vn -0.9387 -0.0588 0.3396 +vn -0.4342 -0.8375 0.3317 +vn -0.4337 -0.8377 0.3318 +vn -0.4339 -0.8377 0.3317 +vn 0.5080 -0.7096 0.4882 +vn 0.5080 -0.7098 0.4880 +vn 0.5079 -0.7097 0.4883 +vn -0.2863 -0.1256 0.9499 +vn -0.2864 -0.1255 0.9499 +vn -0.2861 -0.1256 0.9499 +vn 0.6042 -0.7967 -0.0116 +vn 0.6044 -0.7966 -0.0114 +vn 0.0908 0.5644 0.8205 +vn 0.0909 0.5647 0.8203 +vn -0.2058 -0.1662 0.9644 +vn -0.2057 -0.1661 0.9644 +vn 0.5473 0.1355 -0.8259 +vn 0.5476 0.1350 -0.8258 +vn 0.5469 0.1359 -0.8261 +vn -0.6792 0.5275 -0.5103 +vn -0.6791 0.5274 -0.5106 +vn -0.6791 0.5273 -0.5107 +vn -0.6979 -0.1179 -0.7064 +vn -0.6977 -0.1175 -0.7067 +vn 0.6748 -0.6915 0.2579 +vn 0.6752 -0.6914 0.2572 +vn 0.6749 -0.6915 0.2576 +vn -0.7472 -0.0825 -0.6595 +vn -0.7469 -0.0826 -0.6598 +vn -0.7463 -0.0831 -0.6604 +vn -0.5812 0.1879 0.7918 +vn -0.5814 0.1880 0.7916 +vn -0.5811 0.1878 0.7919 +vn -0.8600 -0.1321 -0.4929 +vn -0.8600 -0.1319 -0.4930 +vn -0.8599 -0.1318 -0.4931 +vn 0.7577 -0.1018 0.6446 +vn 0.7581 -0.1023 0.6441 +vn 0.7580 -0.1022 0.6442 +vn -0.5763 -0.8097 -0.1106 +vn 0.4964 0.8681 -0.0082 +vn -0.3858 -0.2725 -0.8814 +vn -0.3862 -0.2731 -0.8811 +vn -0.3859 -0.2725 -0.8814 +vn 0.4444 0.4048 -0.7992 +vn 0.4202 -0.9067 -0.0365 +vn -0.6163 0.3825 -0.6884 +vn -0.4027 -0.8970 0.1821 +vn -0.4023 -0.8975 0.1808 +vn -0.4023 -0.8974 0.1813 +vn 0.1716 0.7696 0.6150 +vn 0.1715 0.7696 0.6151 +vn 0.4096 0.8897 0.2016 +vn 0.4097 0.8898 0.2008 +vn 0.4099 0.8894 0.2025 +vn -0.6076 -0.7788 -0.1556 +vn -0.6076 -0.7789 -0.1555 +vn -0.6073 -0.7790 -0.1559 +vn 0.5592 -0.8045 0.2001 +vn 0.5583 -0.8052 0.2001 +vn 0.5588 -0.8048 0.2000 +vn 0.2440 0.9360 0.2537 +vn 0.2439 0.9360 0.2538 +vn 0.4714 0.8526 0.2255 +vn 0.4716 0.8525 0.2256 +vn 0.4719 0.8523 0.2257 +vn -0.3111 0.7196 -0.6208 +vn -0.3116 0.7195 -0.6206 +vn -0.3108 0.7196 -0.6210 +vn -0.5178 0.7670 -0.3789 +vn -0.5175 0.7670 -0.3793 +vn -0.0427 -0.9151 0.4010 +vn 0.9067 0.1894 -0.3769 +vn 0.9066 0.1894 -0.3771 +vn 0.9065 0.1893 -0.3774 +vn 0.5211 -0.5800 -0.6261 +vn -0.4461 0.1990 0.8726 +vn -0.4460 0.1994 0.8725 +vn -0.4460 0.1996 0.8725 +vn -0.4399 0.5452 -0.7136 +vn -0.4401 0.5458 -0.7130 +vn -0.4401 0.5460 -0.7129 +vn -0.0134 -0.4432 0.8963 +vn -0.0131 -0.4433 0.8963 +vn -0.0130 -0.4433 0.8963 +vn -0.9641 0.2634 -0.0347 +vn -0.8149 -0.4572 -0.3563 +vn -0.8150 -0.4570 -0.3563 +vn -0.8147 -0.4576 -0.3562 +vn -0.7516 0.6247 -0.2118 +vn -0.7517 0.6246 -0.2119 +vn 0.5300 0.6641 0.5273 +vn 0.5303 0.6640 0.5271 +vn -0.0864 0.1184 0.9892 +vn -0.0863 0.1183 0.9892 +vn -0.0793 0.3551 0.9315 +vn -0.0795 0.3550 0.9315 +vn 0.9194 0.2812 0.2749 +vn 0.9194 0.2814 0.2748 +vn 0.9193 0.2817 0.2748 +vn 0.4413 0.7964 0.4135 +vn 0.4412 0.7964 0.4136 +vn -0.8239 0.0575 0.5638 +vn -0.8242 0.0576 0.5633 +vn -0.8241 0.0573 0.5636 +vn 0.4342 0.8676 -0.2424 +vn 0.4339 0.8677 -0.2426 +vn 0.2199 0.7103 0.6687 +vn 0.5066 -0.7313 -0.4567 +vn 0.4310 -0.7572 -0.4909 +vn -0.4761 -0.7218 -0.5023 +vn -0.4758 -0.7218 -0.5026 +vn -0.4760 -0.7218 -0.5025 +vn -0.9858 0.1325 0.1032 +vn -0.9858 0.1324 0.1029 +vn -0.2436 0.5040 -0.8287 +vn -0.2436 0.5044 -0.8284 +vn -0.0151 0.1609 0.9869 +vn -0.0151 0.1608 0.9869 +vn -0.0152 0.1607 0.9869 +vn 0.1371 0.2024 0.9697 +vn 0.7025 -0.6942 0.1568 +vn 0.7026 -0.6941 0.1570 +vn 0.7025 -0.6942 0.1569 +vn -0.1816 0.9657 -0.1856 +vn -0.1817 0.9657 -0.1856 +vn 0.4063 0.6589 -0.6331 +vn 0.2529 -0.7374 -0.6264 +vn 0.2530 -0.7376 -0.6261 +vn 0.2531 -0.7376 -0.6261 +vn 0.3350 -0.6344 -0.6966 +vn 0.3349 -0.6343 -0.6968 +vn 0.3350 -0.6344 -0.6967 +vn 0.9159 0.3935 0.0795 +vn 0.9160 0.3935 0.0786 +vn 0.9159 0.3936 0.0789 +vn 0.6113 -0.7801 0.1331 +vn 0.6115 -0.7800 0.1329 +vn 0.6110 -0.7803 0.1333 +vn 0.4032 0.8180 -0.4103 +vn 0.4028 0.8181 -0.4105 +vn 0.4025 0.8183 -0.4104 +vn 0.9629 0.2412 0.1210 +vn 0.9630 0.2408 0.1213 +vn 0.9630 0.2407 0.1214 +vn -0.4368 0.7911 -0.4282 +vn -0.4367 0.7913 -0.4279 +vn -0.4368 0.7910 -0.4283 +vn -0.0732 0.8816 -0.4662 +vn -0.0731 0.8816 -0.4662 +vn -0.0727 0.8815 -0.4666 +vn 0.5468 0.5071 0.6662 +vn 0.5467 0.5075 0.6660 +vn 0.5473 0.5063 0.6664 +vn -0.4408 -0.4701 -0.7647 +vn -0.3649 0.8904 -0.2720 +vn -0.3392 -0.1078 -0.9345 +vn -0.3393 -0.1079 -0.9345 +vn -0.3395 -0.1081 -0.9344 +vn 0.2900 0.9480 0.1312 +vn 0.2897 0.9481 0.1311 +vn -0.0458 -0.2897 0.9560 +vn 0.4932 0.1800 -0.8511 +vn 0.4933 0.1801 -0.8510 +vn 0.4937 0.1804 -0.8507 +vn -0.5985 -0.6677 -0.4428 +vn -0.5986 -0.6676 -0.4427 +vn -0.5984 -0.6677 -0.4429 +vn 0.2397 -0.5836 -0.7759 +vn 0.2403 -0.5837 -0.7756 +vn 0.2407 -0.5840 -0.7753 +vn -0.4676 0.5887 0.6593 +vn -0.4677 0.5886 0.6594 +vn -0.5546 0.7606 -0.3376 +vn -0.5543 0.7610 -0.3371 +vn -0.5546 0.7609 -0.3369 +vn -0.3683 -0.8165 0.4447 +vn -0.3684 -0.8163 0.4450 +vn -0.3684 -0.8165 0.4446 +vn 0.5634 0.7533 0.3393 +vn 0.5633 0.7534 0.3392 +vn -0.3753 -0.7101 0.5958 +vn -0.3751 -0.7104 0.5955 +vn -0.3749 -0.7108 0.5951 +vn -0.4812 -0.2650 -0.8356 +vn -0.4808 -0.2649 -0.8358 +vn -0.4809 -0.2649 -0.8358 +vn 0.5651 0.6925 -0.4484 +vn 0.5654 0.6924 -0.4482 +vn 0.4972 0.4110 -0.7641 +vn 0.4972 0.4111 -0.7641 +vn 0.1890 0.8643 -0.4661 +vn 0.1885 0.8643 -0.4663 +vn 0.1898 0.8647 -0.4650 +vn 0.1134 -0.7520 -0.6494 +vn 0.1133 -0.7519 -0.6495 +vn 0.1132 -0.7517 -0.6497 +vn 0.2686 0.6699 0.6921 +vn 0.2685 0.6699 0.6922 +vn 0.2688 0.6698 0.6922 +vn -0.3884 0.8322 -0.3958 +vn -0.3896 0.8322 -0.3945 +vn -0.3872 0.8326 -0.3961 +vn -0.4078 -0.8735 0.2660 +vn -0.4077 -0.8736 0.2657 +vn -0.5607 -0.0555 -0.8261 +vn -0.5605 -0.0550 -0.8263 +vn -0.5605 -0.0548 -0.8263 +vn 0.6642 0.7378 0.1206 +vn 0.6640 0.7380 0.1205 +vn 0.6990 -0.7131 0.0540 +vn 0.6990 -0.7131 0.0541 +vn 0.0844 0.9955 -0.0440 +vn 0.0847 0.9954 -0.0439 +vn 0.0844 0.9955 -0.0441 +vn -0.5692 0.1997 0.7976 +vn -0.5684 0.2002 0.7980 +vn 0.5125 0.7132 -0.4782 +vn 0.5129 0.7125 -0.4789 +vn 0.5133 0.7120 -0.4791 +vn 0.1150 0.1255 -0.9854 +vn 0.1141 0.1259 -0.9855 +vn 0.1138 0.1262 -0.9855 +vn -0.1250 -0.2358 -0.9637 +vn -0.1250 -0.2357 -0.9637 +vn -0.1250 -0.2361 -0.9636 +vn 0.5837 0.8108 -0.0447 +vn 0.5840 0.8105 -0.0446 +vn 0.3555 0.6818 -0.6393 +vn 0.3553 0.6821 -0.6392 +vn 0.3552 0.6822 -0.6391 +vn 0.5598 0.8265 0.0599 +vn 0.5595 0.8267 0.0603 +vn 0.5595 0.8266 0.0602 +vn 0.5775 0.6921 -0.4330 +vn 0.5774 0.6921 -0.4331 +vn 0.8201 0.2230 -0.5269 +vn 0.8202 0.2229 -0.5268 +vn 0.8204 0.2230 -0.5266 +vn -0.0894 -0.0916 -0.9918 +vn -0.0891 -0.0915 -0.9918 +vn -0.0893 -0.0911 -0.9918 +vn -0.9501 0.2568 0.1773 +vn -0.9499 0.2571 0.1778 +vn -0.9501 0.2568 0.1770 +vn 0.0735 0.2263 -0.9713 +vn 0.0730 0.2270 -0.9712 +vn 0.0738 0.2258 -0.9714 +vn 0.4040 0.6212 -0.6715 +vn 0.4044 0.6210 -0.6715 +vn 0.4050 0.6207 -0.6713 +vn -0.5416 0.7973 0.2665 +vn -0.5413 0.7976 0.2661 +vn 0.6204 0.7332 -0.2784 +vn 0.6203 0.7333 -0.2783 +vn 0.6205 0.7331 -0.2783 +vn 0.6604 0.6590 -0.3599 +vn -0.8337 -0.3481 -0.4287 +vn -0.8335 -0.3474 -0.4297 +vn -0.8332 -0.3474 -0.4303 +vn 0.0568 0.9984 -0.0035 +vn -0.3647 -0.9182 0.1544 +vn -0.3647 -0.9183 0.1543 +vn -0.3646 -0.9183 0.1542 +vn -0.6895 -0.5908 0.4190 +vn -0.6900 -0.5904 0.4187 +vn -0.6897 -0.5907 0.4188 +vn 0.5522 -0.1348 -0.8227 +vn 0.5527 -0.1348 -0.8224 +vn 0.5519 -0.1346 -0.8230 +vn -0.7677 -0.5751 0.2825 +vn -0.7679 -0.5751 0.2822 +vn -0.7679 -0.5751 0.2821 +vn -0.4915 0.8208 -0.2909 +vn -0.4926 0.8205 -0.2901 +vn -0.4922 0.8206 -0.2905 +vn -0.2142 0.8707 -0.4427 +vn -0.2143 0.8708 -0.4425 +vn -0.2141 0.8706 -0.4429 +vn -0.4306 0.5325 0.7287 +vn -0.4303 0.5328 0.7287 +vn -0.4301 0.5333 0.7284 +vn -0.0310 -0.6915 -0.7217 +vn -0.0307 -0.6914 -0.7218 +vn -0.0309 -0.6914 -0.7218 +vn 0.7764 -0.3685 0.5112 +vn 0.7763 -0.3685 0.5114 +vn 0.7762 -0.3685 0.5115 +vn 0.9439 -0.2194 0.2467 +vn 0.9439 -0.2195 0.2468 +vn 0.0261 0.9976 0.0642 +vn 0.0257 0.9976 0.0644 +vn 0.0253 0.9976 0.0649 +vn -0.0381 -0.2888 -0.9566 +vn -0.0380 -0.2886 -0.9567 +vn -0.0381 -0.2887 -0.9567 +vn 0.2842 0.1447 0.9478 +vn 0.2843 0.1452 0.9477 +vn 0.2842 0.1451 0.9477 +vn 0.0131 0.6297 0.7767 +vn 0.0130 0.6298 0.7766 +vn 0.0128 0.6298 0.7767 +vn 0.4752 -0.8659 -0.1560 +vn 0.4752 -0.8659 -0.1562 +vn 0.4751 -0.8659 -0.1563 +vn -0.7106 -0.5340 -0.4582 +vn -0.7106 -0.5341 -0.4580 +vn -0.9065 0.3079 0.2890 +vn -0.9661 0.0118 -0.2580 +vn -0.5175 0.8200 -0.2444 +vn -0.0835 -0.5082 -0.8572 +vn -0.0836 -0.5083 -0.8571 +vn 0.2350 0.9671 -0.0972 +vn 0.5358 0.8264 -0.1731 +vn 0.8667 -0.4456 -0.2242 +vn 0.8666 -0.4458 -0.2242 +vn 0.8666 -0.4457 -0.2242 +vn -0.1100 0.0180 -0.9938 +vn -0.1099 0.0179 -0.9938 +vn 0.8623 -0.3163 0.3955 +vn 0.8623 -0.3161 0.3956 +vn 0.8623 -0.3162 0.3955 +vn 0.7609 0.5148 0.3949 +vn 0.7612 0.5144 0.3949 +vn 0.7608 0.5150 0.3950 +vn -0.6472 0.7216 0.2458 +vn -0.6474 0.7214 0.2458 +vn -0.6471 0.7217 0.2457 +vn 0.7591 0.6221 0.1917 +vn 0.7592 0.6221 0.1916 +vn 0.7590 0.6221 0.1921 +vn 0.5396 0.8419 -0.0089 +vn 0.5394 0.8420 -0.0091 +vn 0.5395 0.8420 -0.0090 +vn 0.1940 -0.4297 0.8819 +vn 0.1939 -0.4299 0.8818 +vn 0.4151 0.7872 -0.4560 +vn 0.4153 0.7871 -0.4561 +vn 0.4152 0.7872 -0.4560 +vn 0.5503 0.0416 0.8339 +vn 0.5505 0.0418 0.8338 +vn 0.5507 0.0421 0.8336 +vn 0.9290 -0.1778 0.3246 +vn 0.9289 -0.1778 0.3248 +vn 0.7888 0.1783 0.5882 +vn -0.0076 0.0001 1.0000 +vn -0.0076 -0.0000 1.0000 +vn -0.7645 0.5948 -0.2487 +vn -0.7644 0.5945 -0.2493 +vn -0.7646 0.5946 -0.2487 +vn -0.5973 -0.8013 -0.0337 +vn -0.5973 -0.8013 -0.0336 +vn -0.5973 -0.8013 -0.0338 +vn -0.0883 -0.0211 0.9959 +vn -0.1015 0.9806 -0.1675 +vn -0.1011 0.9807 -0.1674 +vn -0.1023 0.9805 -0.1679 +vn -0.2304 0.8615 -0.4524 +vn -0.2291 0.8620 -0.4522 +vn -0.2309 0.8614 -0.4524 +vn 0.9888 0.0498 0.1407 +vn 0.9890 0.0494 0.1397 +vn 0.9891 0.0488 0.1388 +vn -0.8612 0.2612 0.4360 +vn -0.8610 0.2617 0.4361 +vn -0.8609 0.2619 0.4362 +vn -0.2572 -0.7407 0.6206 +vn -0.2574 -0.7407 0.6205 +vn -0.5008 -0.0807 0.8618 +vn -0.2857 0.1433 0.9476 +vn -0.2856 0.1435 0.9476 +vn -0.8561 0.2120 -0.4714 +vn 0.6010 0.1235 0.7897 +vn 0.6008 0.1236 0.7898 +vn 0.6005 0.1236 0.7900 +vn 0.8916 0.4028 -0.2067 +vn 0.8917 0.4023 -0.2074 +vn 0.8916 0.4027 -0.2070 +vn -0.8250 0.4866 0.2873 +vn -0.8250 0.4867 0.2873 +vn -0.8416 0.5349 0.0748 +vn -0.8416 0.5349 0.0750 +vn -0.8414 0.5352 0.0748 +vn -0.6939 -0.0488 0.7184 +vn -0.6940 -0.0479 0.7184 +vn -0.6939 -0.0480 0.7185 +vn 0.6275 0.7740 0.0845 +vn 0.6275 0.7741 0.0840 +vn -0.2988 -0.3998 0.8665 +vn -0.2986 -0.3996 0.8667 +vn -0.2990 -0.3999 0.8664 +vn -0.1789 0.8638 -0.4710 +vn 0.2254 -0.6279 0.7449 +vn 0.2255 -0.6280 0.7448 +vn 0.2254 -0.6279 0.7450 +vn -0.3235 -0.6411 0.6959 +vn 0.1983 0.9755 0.0948 +vn 0.1984 0.9755 0.0949 +vn 0.1983 0.9756 0.0947 +vn 0.1094 0.9934 -0.0334 +vn 0.1096 0.9934 -0.0334 +vn -0.1590 0.9693 -0.1873 +vn 0.2921 -0.9466 -0.1367 +vn 0.2930 -0.9462 -0.1374 +vn 0.4400 0.8475 -0.2970 +vn 0.4398 0.8476 -0.2969 +vn -0.8279 0.4683 -0.3087 +vn 0.2757 -0.2437 0.9298 +vn 0.2751 -0.2441 0.9299 +vn 0.2746 -0.2449 0.9299 +vn 0.5836 0.4698 0.6624 +vn 0.5837 0.4700 0.6621 +vn 0.5836 0.4697 0.6624 +vn 0.0098 0.9973 -0.0726 +vn 0.0096 0.9973 -0.0727 +vn -0.2225 0.9673 -0.1216 +vn -0.2227 0.9673 -0.1212 +vn -0.2227 0.9673 -0.1215 +vn 0.7996 -0.4169 -0.4322 +vn 0.7994 -0.4170 -0.4325 +vn 0.7991 -0.4171 -0.4329 +vn 0.7245 0.6872 0.0530 +vn 0.8863 -0.4008 -0.2321 +vn 0.8867 -0.4001 -0.2318 +vn 0.8870 -0.3993 -0.2319 +vn 0.6821 -0.1972 -0.7042 +vn 0.6821 -0.1974 -0.7041 +vn 0.6825 -0.1974 -0.7037 +vn -0.2405 0.9666 0.0884 +vn -0.3272 -0.9232 0.2014 +vn -0.3273 -0.9231 0.2017 +vn -0.3272 -0.9232 0.2015 +vn -0.2076 0.6409 0.7390 +vn -0.6164 -0.0173 -0.7872 +vn -0.6164 -0.0174 -0.7873 +vn 0.4024 0.8818 0.2461 +vn 0.4045 0.8805 0.2471 +vn 0.4040 0.8809 0.2465 +vn -0.9873 -0.1407 0.0736 +vn -0.9873 -0.1408 0.0735 +vn 0.5386 0.3266 -0.7767 +vn 0.5383 0.3264 -0.7770 +vn 0.5379 0.3263 -0.7773 +vn 0.2439 0.9660 -0.0854 +vn 0.2438 0.9661 -0.0853 +vn 0.5913 0.3774 0.7127 +vn 0.5911 0.3775 0.7128 +vn -0.5649 0.7675 -0.3031 +vn -0.5648 0.7677 -0.3027 +vn -0.5653 0.7678 -0.3017 +vn -0.5117 0.4855 -0.7089 +vn -0.5116 0.4866 -0.7082 +vn 0.2682 -0.1533 -0.9511 +vn 0.2679 -0.1533 -0.9512 +vn 0.2683 -0.1532 -0.9511 +vn 0.1311 0.3060 0.9430 +vn 0.1305 0.3066 0.9428 +vn 0.1307 0.3062 0.9430 +vn -0.2920 0.9478 0.1278 +vn -0.2921 0.9478 0.1275 +vn -0.2922 0.9478 0.1274 +vn -0.7282 -0.5907 0.3476 +vn -0.7281 -0.5905 0.3480 +vn -0.7282 -0.5906 0.3477 +vn 0.3255 -0.7668 -0.5532 +vn 0.3253 -0.7671 -0.5529 +vn -0.9519 -0.2300 -0.2027 +vn -0.9519 -0.2299 -0.2027 +vn -0.9521 -0.2292 -0.2026 +vn 0.9786 -0.1837 0.0927 +vn 0.9787 -0.1836 0.0923 +vn 0.9787 -0.1837 0.0918 +vn -0.8155 0.5314 -0.2295 +vn -0.8155 0.5316 -0.2290 +vn -0.8154 0.5315 -0.2294 +vn 0.3816 0.8969 -0.2236 +vn 0.1493 0.9050 -0.3984 +vn 0.1487 0.9053 -0.3979 +vn 0.1496 0.9048 -0.3987 +vn 0.1749 -0.3775 -0.9093 +vn 0.1751 -0.3775 -0.9093 +vn 0.1750 -0.3777 -0.9092 +vn 0.4098 0.8593 -0.3061 +vn 0.4092 0.8597 -0.3057 +vn 0.4098 0.8593 -0.3060 +vn 0.0612 0.3930 0.9175 +vn 0.0611 0.3930 0.9175 +vn 0.2643 0.8886 -0.3748 +vn 0.2643 0.8887 -0.3747 +vn -0.4856 0.1983 -0.8514 +vn -0.4854 0.1975 -0.8517 +vn -0.4856 0.1970 -0.8517 +vn -0.3011 0.0309 -0.9531 +vn -0.8927 0.4196 -0.1644 +vn -0.8931 0.4188 -0.1642 +vn -0.8934 0.4183 -0.1638 +vn -0.0238 0.9890 -0.1459 +vn -0.0240 0.9890 -0.1459 +vn -0.0237 0.9890 -0.1458 +vn -0.0860 0.2165 -0.9725 +vn -0.0859 0.2161 -0.9726 +vn -0.0860 0.2164 -0.9725 +vn -0.9547 0.1471 -0.2588 +vn -0.9546 0.1471 -0.2592 +vn -0.9546 0.1473 -0.2591 +vn -0.4944 -0.8013 0.3369 +vn -0.4942 -0.8014 0.3369 +vn -0.4943 -0.8014 0.3369 +vn -0.5327 0.6105 -0.5861 +vn -0.5324 0.6104 -0.5865 +vn -0.5329 0.6109 -0.5855 +vn 0.3004 0.9243 0.2356 +vn 0.3020 0.9240 0.2344 +vn 0.3014 0.9242 0.2346 +vn -0.0225 -0.5422 0.8399 +vn -0.0225 -0.5425 0.8397 +vn -0.0225 -0.5424 0.8398 +vn -0.3092 -0.8510 -0.4245 +vn -0.3095 -0.8511 -0.4241 +vn -0.3093 -0.8513 -0.4238 +vn -0.8723 0.1483 0.4659 +vn -0.8723 0.1482 0.4660 +vn -0.8724 0.1485 0.4657 +vn -0.7593 -0.3762 -0.5310 +vn -0.7594 -0.3760 -0.5309 +vn -0.7587 -0.3773 -0.5310 +vn 0.0729 -0.0605 0.9955 +vn -0.5266 0.2048 0.8251 +vn -0.5256 0.2047 0.8257 +vn -0.5240 0.2055 0.8266 +vn -0.2422 0.9235 0.2975 +vn -0.2424 0.9237 0.2967 +vn -0.2416 0.9233 0.2986 +vn 0.6170 0.7283 0.2980 +vn 0.6165 0.7283 0.2991 +vn 0.6176 0.7282 0.2972 +vn 0.6118 0.4511 -0.6498 +vn 0.6114 0.4515 -0.6499 +vn 0.6117 0.4512 -0.6498 +vn 0.2878 0.9409 0.1785 +vn 0.2878 0.9409 0.1784 +vn 0.2877 0.9409 0.1787 +vn 0.9730 -0.0928 0.2112 +vn 0.9730 -0.0930 0.2111 +vn 0.9731 -0.0929 0.2109 +vn -0.3358 0.3710 -0.8658 +vn -0.3356 0.3717 -0.8656 +vn -0.3355 0.3713 -0.8658 +vn -0.6428 0.3121 -0.6996 +vn -0.6429 0.3116 -0.6997 +vn -0.6427 0.3122 -0.6996 +vn 0.9624 -0.0304 0.2698 +vn 0.9624 -0.0305 0.2698 +vn -0.4126 -0.8841 -0.2195 +vn -0.4129 -0.8841 -0.2189 +vn -0.9498 -0.2202 0.2224 +vn -0.9498 -0.2201 0.2223 +vn -0.3962 -0.8951 -0.2046 +vn -0.3963 -0.8950 -0.2047 +vn 0.7542 -0.3012 0.5835 +vn 0.7543 -0.3013 0.5833 +vn 0.2109 0.5159 -0.8303 +vn 0.2108 0.5159 -0.8303 +vn -0.6208 0.4855 -0.6155 +vn -0.6207 0.4855 -0.6156 +vn -0.6209 0.4856 -0.6154 +vn -0.7999 -0.4358 -0.4126 +vn -0.8001 -0.4356 -0.4124 +vn -0.7998 -0.4359 -0.4127 +vn 0.5723 -0.6025 0.5563 +vn 0.5723 -0.6024 0.5563 +vn 0.5723 -0.6027 0.5561 +vn -0.7895 -0.5473 -0.2778 +vn -0.7892 -0.5479 -0.2773 +vn -0.7894 -0.5475 -0.2776 +vn -0.0011 0.0004 1.0000 +vn 0.6060 -0.5640 0.5610 +vn 0.6060 -0.5641 0.5609 +vn -0.7719 -0.5526 -0.3143 +vn -0.9435 -0.1854 -0.2746 +vn -0.9435 -0.1852 -0.2746 +vn -0.9435 -0.1853 -0.2747 +vn -0.4148 0.8996 0.1364 +vn -0.4147 0.8997 0.1364 +vn 0.6670 -0.2593 -0.6985 +vn 0.6682 -0.2597 -0.6972 +vn 0.6665 -0.2594 -0.6989 +vn 0.3823 -0.2649 0.8852 +vn 0.3823 -0.2650 0.8852 +vn 0.0916 0.2652 -0.9598 +vn -0.4036 -0.5242 -0.7499 +vn -0.4037 -0.5231 -0.7506 +vn -0.4040 -0.5250 -0.7491 +vn -0.2754 -0.7496 -0.6018 +vn -0.2766 -0.7484 -0.6028 +vn 0.3962 -0.2287 0.8892 +vn 0.3960 -0.2283 0.8894 +vn 0.3962 -0.2286 0.8893 +vn 0.9112 -0.2570 0.3219 +vn 0.9106 -0.2566 0.3239 +vn 0.9105 -0.2558 0.3249 +vn -0.7993 -0.5805 -0.1553 +vn -0.7990 -0.5811 -0.1545 +vn -0.7991 -0.5810 -0.1548 +vn 0.0491 0.7754 0.6296 +vn 0.0491 0.7760 0.6289 +vn 0.0490 0.7755 0.6295 +vn -0.5342 0.8230 -0.1930 +vn -0.5329 0.8239 -0.1930 +vn -0.5336 0.8234 -0.1931 +vn -0.4420 -0.4356 -0.7841 +vn -0.4419 -0.4378 -0.7830 +vn -0.4418 -0.4366 -0.7837 +vn 0.0136 -0.8565 0.5159 +vn 0.0138 -0.8565 0.5159 +vn -0.5690 0.2467 0.7844 +vn -0.5691 0.2468 0.7844 +vn 0.0332 0.6230 -0.7815 +vn 0.0333 0.6225 -0.7819 +vn 0.0332 0.6221 -0.7822 +vn 0.3407 0.0543 0.9386 +vn 0.3406 0.0541 0.9386 +vn 0.3407 0.0542 0.9386 +vn -0.3268 -0.1509 0.9330 +vn -0.3267 -0.1509 0.9330 +vn -0.6159 -0.7013 -0.3589 +vn -0.6154 -0.7017 -0.3590 +vn -0.6157 -0.7015 -0.3589 +vn -0.5688 -0.7459 -0.3464 +vn -0.5686 -0.7459 -0.3470 +vn -0.5687 -0.7458 -0.3469 +vn 0.2349 0.1869 0.9539 +vn 0.3524 -0.8767 0.3276 +vn 0.3526 -0.8764 0.3279 +vn 0.8652 -0.4962 0.0727 +vn 0.8652 -0.4961 0.0733 +vn 0.8652 -0.4962 0.0721 +vn -0.0447 0.2515 0.9668 +vn -0.5871 -0.2769 -0.7607 +vn -0.5870 -0.2770 -0.7608 +vn -0.5868 -0.2769 -0.7609 +vn -0.4128 -0.9031 0.1186 +vn -0.4131 -0.9029 0.1186 +vn -0.4125 -0.9032 0.1186 +vn 0.0805 0.9830 -0.1653 +vn 0.0806 0.9829 -0.1653 +vn 0.0809 0.9829 -0.1655 +vn -0.6226 -0.6537 -0.4301 +vn 0.1467 -0.9891 0.0114 +vn 0.9041 0.1658 0.3939 +vn 0.9041 0.1656 0.3940 +vn 0.9041 0.1654 0.3939 +vn -0.8881 -0.2915 -0.3553 +vn -0.8881 -0.2914 -0.3554 +vn -0.6387 0.2933 -0.7113 +vn -0.8147 0.5705 -0.1041 +vn -0.8147 0.5705 -0.1040 +vn -0.2816 -0.9570 -0.0692 +vn -0.2816 -0.9570 -0.0690 +vn -0.2816 -0.9570 -0.0691 +vn -0.0001 -0.9939 -0.1101 +vn 0.6596 -0.0924 0.7459 +vn 0.6596 -0.0925 0.7459 +vn 0.6862 0.6466 -0.3333 +vn 0.6861 0.6467 -0.3333 +vn -0.6339 -0.6789 -0.3706 +vn -0.6338 -0.6790 -0.3706 +vn -0.8485 -0.3575 -0.3903 +vn -0.8482 -0.3576 -0.3908 +vn -0.8481 -0.3577 -0.3910 +vn 0.1854 -0.3828 0.9050 +vn 0.1858 -0.3830 0.9049 +vn -0.1004 -0.9534 -0.2846 +vn -0.1004 -0.9534 -0.2844 +vn -0.1004 -0.9534 -0.2845 +vn -0.6827 0.0640 -0.7279 +vn -0.1770 -0.9330 -0.3133 +vn -0.1774 -0.9330 -0.3132 +vn -0.1773 -0.9330 -0.3133 +vn 0.0568 0.4065 0.9119 +vn 0.0532 0.4053 0.9126 +vn 0.0559 0.4059 0.9122 +vn -0.3539 -0.1880 0.9162 +vn -0.3535 -0.1880 0.9164 +vn 0.1294 0.3139 0.9406 +vn 0.1291 0.3140 0.9406 +vn 0.0020 -0.0011 1.0000 +vn 0.0014 -0.0008 1.0000 +vn 0.7741 0.4366 0.4585 +vn 0.7743 0.4363 0.4583 +vn 0.7742 0.4363 0.4585 +vn -0.0919 -0.3422 0.9351 +vn -0.0917 -0.3425 0.9350 +vn -0.0920 -0.3422 0.9351 +vn -0.6388 -0.6196 0.4561 +vn -0.6390 -0.6195 0.4559 +vn -0.6389 -0.6195 0.4562 +vn 0.9422 -0.0232 0.3341 +vn 0.9423 -0.0230 0.3341 +vn 0.9423 -0.0227 0.3339 +vn -0.7551 -0.3903 -0.5267 +vn -0.7552 -0.3907 -0.5264 +vn -0.7552 -0.3906 -0.5264 +vn -0.9249 -0.2101 -0.3169 +vn -0.9244 -0.2099 -0.3185 +vn -0.9246 -0.2101 -0.3178 +vn -0.6796 -0.6964 -0.2305 +vn -0.6799 -0.6963 -0.2298 +vn -0.6798 -0.6963 -0.2302 +vn 0.8585 -0.0704 0.5079 +vn 0.8589 -0.0707 0.5072 +vn 0.8577 -0.0705 0.5093 +vn -0.7257 -0.2049 -0.6568 +vn -0.7253 -0.2053 -0.6571 +vn -0.7255 -0.2050 -0.6570 +vn 0.7075 0.5609 -0.4299 +vn 0.7076 0.5608 -0.4299 +vn -0.0339 0.8932 -0.4483 +vn -0.0338 0.8933 -0.4482 +vn -0.0334 0.8935 -0.4477 +vn 0.4593 0.8882 0.0125 +vn 0.4594 0.8882 0.0124 +vn -0.6523 0.5209 -0.5506 +vn -0.6521 0.5209 -0.5509 +vn -0.6515 0.5212 -0.5513 +vn 0.2224 -0.2378 -0.9455 +vn 0.2227 -0.2378 -0.9454 +vn 0.2222 -0.2376 -0.9456 +vn 0.0186 0.9860 -0.1657 +vn 0.0190 0.9860 -0.1655 +vn 0.0185 0.9860 -0.1657 +vn -0.8731 -0.2428 -0.4228 +vn 0.9109 0.4122 -0.0178 +vn 0.9109 0.4122 -0.0177 +vn 0.9108 0.4125 -0.0175 +vn -0.8329 -0.0913 -0.5459 +vn -0.8333 -0.0910 -0.5453 +vn -0.8326 -0.0917 -0.5462 +vn -0.7683 -0.6232 0.1459 +vn -0.7687 -0.6227 0.1461 +vn -0.7686 -0.6228 0.1461 +vn 0.1201 0.5057 0.8543 +vn 0.1199 0.5053 0.8546 +vn 0.1200 0.5057 0.8543 +vn -0.9663 -0.0118 -0.2570 +vn -0.9662 -0.0117 -0.2575 +vn -0.2174 0.4714 0.8547 +vn -0.2171 0.4712 0.8549 +vn 0.9253 0.3523 -0.1407 +vn 0.9254 0.3524 -0.1397 +vn 0.9253 0.3524 -0.1401 +vn 0.7053 0.6482 0.2869 +vn 0.7054 0.6481 0.2870 +vn 0.7049 0.6486 0.2872 +vn -0.1215 0.0501 0.9913 +vn -0.6875 0.4084 -0.6005 +vn -0.6878 0.4083 -0.6002 +vn -0.6868 0.4090 -0.6008 +vn 0.8154 0.5739 -0.0756 +vn 0.8158 0.5734 -0.0755 +vn 0.8156 0.5736 -0.0758 +vn 0.6472 0.3701 -0.6664 +vn -0.5864 0.5293 -0.6132 +vn -0.5861 0.5292 -0.6135 +vn -0.5867 0.5291 -0.6131 +vn -0.7016 0.7125 0.0139 +vn -0.7015 0.7126 0.0139 +vn -0.7019 0.7121 0.0139 +vn 0.5593 0.7161 -0.4176 +vn 0.5581 0.7169 -0.4178 +vn 0.5585 0.7165 -0.4179 +vn -0.7006 -0.4585 -0.5468 +vn -0.7002 -0.4584 -0.5473 +vn -0.2798 -0.8568 -0.4332 +vn -0.2797 -0.8561 -0.4346 +vn -0.2797 -0.8566 -0.4336 +vn 0.9778 -0.2088 0.0204 +vn 0.7771 0.5861 0.2295 +vn 0.7770 0.5863 0.2292 +vn 0.7770 0.5864 0.2290 +vn -0.3244 0.6224 -0.7123 +vn -0.3247 0.6224 -0.7122 +vn -0.3249 0.6223 -0.7122 +vn -0.8674 0.3774 -0.3244 +vn -0.8674 0.3773 -0.3245 +vn -0.8674 0.3769 -0.3248 +vn 0.3381 0.8120 -0.4758 +vn 0.3383 0.8119 -0.4758 +vn 0.3390 0.8118 -0.4755 +vn 0.2411 0.6863 0.6862 +vn 0.2423 0.6861 0.6860 +vn 0.2416 0.6861 0.6862 +vn 0.8340 0.5431 0.0975 +vn 0.8340 0.5431 0.0974 +vn -0.8414 0.4788 -0.2507 +vn 0.1894 0.1343 0.9727 +vn -0.7909 0.0621 0.6088 +vn -0.7907 0.0624 0.6090 +vn -0.7905 0.0626 0.6093 +vn 0.6102 -0.7899 -0.0601 +vn 0.6104 -0.7898 -0.0599 +vn 0.6102 -0.7900 -0.0601 +vn 0.5559 -0.6994 -0.4493 +vn 0.5561 -0.6993 -0.4491 +vn 0.5559 -0.6994 -0.4492 +vn -0.0383 0.3067 -0.9510 +vn -0.0369 0.3058 -0.9514 +vn -0.0380 0.3065 -0.9511 +vn -0.8252 -0.1950 0.5301 +vn -0.8253 -0.1947 0.5301 +vn -0.9257 0.3782 -0.0052 +vn -0.9255 0.3787 -0.0050 +vn -0.9259 0.3777 -0.0052 +vn 0.2346 -0.1328 -0.9630 +vn 0.2343 -0.1328 -0.9631 +vn 0.2337 -0.1330 -0.9632 +vn -0.1190 0.9405 -0.3183 +vn -0.1189 0.9405 -0.3183 +vn -0.1187 0.9405 -0.3185 +vn -0.9698 0.0952 -0.2247 +vn -0.9698 0.0946 -0.2248 +vn 0.4806 0.8743 0.0682 +vn 0.4823 0.8733 0.0684 +vn 0.4791 0.8751 0.0688 +vn 0.8890 0.2438 -0.3877 +vn 0.8889 0.2439 -0.3877 +vn 0.8892 0.2424 -0.3881 +vn 0.7125 -0.4150 -0.5658 +vn 0.7123 -0.4153 -0.5658 +vn 0.7124 -0.4151 -0.5659 +vn -0.4102 0.8250 -0.3887 +vn -0.4106 0.8249 -0.3885 +vn -0.4103 0.8250 -0.3886 +vn 0.8264 0.4316 0.3616 +vn 0.8263 0.4316 0.3618 +vn -0.6238 0.0993 -0.7753 +vn -0.6236 0.0994 -0.7754 +vn 0.0899 0.7447 0.6613 +vn 0.0901 0.7450 0.6610 +vn 0.2019 -0.1491 -0.9680 +vn 0.2010 -0.1484 -0.9683 +vn -0.4575 0.5143 0.7254 +vn -0.4568 0.5147 0.7256 +vn -0.4567 0.5147 0.7256 +vn 0.5143 -0.0299 0.8571 +vn 0.5144 -0.0296 0.8570 +vn -0.3564 -0.9341 0.0210 +vn -0.3562 -0.9342 0.0209 +vn 0.7740 0.4410 -0.4544 +vn 0.7740 0.4408 -0.4545 +vn 0.7423 0.5017 0.4442 +vn -0.3732 0.3604 0.8549 +vn -0.3728 0.3605 0.8550 +vn -0.3733 0.3601 0.8550 +vn 0.9678 -0.1157 0.2236 +vn 0.9678 -0.1159 0.2235 +vn 0.9678 -0.1162 0.2233 +vn -0.4016 0.5133 -0.7584 +vn -0.4019 0.5133 -0.7583 +vn -0.4017 0.5132 -0.7585 +vn 0.0287 0.6990 -0.7146 +vn 0.1936 0.0511 -0.9797 +vn 0.1934 0.0513 -0.9798 +vn 0.1109 -0.7193 -0.6858 +vn 0.1108 -0.7193 -0.6858 +vn 0.1606 0.8971 0.4116 +vn -0.3025 -0.4362 0.8475 +vn -0.3019 -0.4373 0.8471 +vn -0.3023 -0.4368 0.8472 +vn -0.2612 0.0339 -0.9647 +vn -0.3533 0.5204 -0.7774 +vn 0.6797 0.7321 -0.0447 +vn 0.6492 0.3441 -0.6783 +vn 0.6491 0.3442 -0.6783 +vn -0.8211 0.5166 -0.2426 +vn -0.1990 -0.1117 0.9736 +vn 0.1382 -0.0940 0.9859 +vn 0.1382 -0.0945 0.9859 +vn 0.1382 -0.0941 0.9859 +vn 0.9518 -0.2173 -0.2166 +vn 0.9518 -0.2175 -0.2164 +vn 0.9518 -0.2178 -0.2161 +vn -0.6219 -0.0349 -0.7823 +vn 0.8226 0.5534 -0.1308 +vn 0.8227 0.5532 -0.1308 +vn 0.8230 0.5527 -0.1312 +vn -0.1341 0.6925 -0.7088 +vn -0.1341 0.6926 -0.7087 +vn -0.0604 -0.1628 0.9848 +vn -0.1944 -0.0645 -0.9788 +vn -0.1948 -0.0644 -0.9787 +vn 0.4439 0.8843 -0.1446 +vn 0.4444 0.8842 -0.1442 +vn 0.4450 0.8840 -0.1432 +vn 0.0953 0.9915 -0.0883 +vn 0.0954 0.9915 -0.0881 +vn 0.0953 0.9916 -0.0878 +vn 0.0363 0.0429 0.9984 +vn 0.0365 0.0433 0.9984 +vn 0.0364 0.0431 0.9984 +vn -0.0000 0.0012 1.0000 +vn 0.3681 0.9218 0.1216 +vn 0.3681 0.9217 0.1223 +vn 0.3684 0.9218 0.1211 +vn -0.1690 0.8036 0.5707 +vn 0.2573 0.9303 -0.2615 +vn 0.2584 0.9300 -0.2615 +vn 0.2580 0.9301 -0.2614 +vn -0.8203 0.1625 -0.5483 +vn -0.8201 0.1626 -0.5486 +vn -0.8203 0.1625 -0.5484 +vn 0.1168 -0.5484 0.8280 +vn 0.1164 -0.5484 0.8281 +vn 0.1160 -0.5485 0.8281 +vn 0.0444 0.6763 -0.7353 +vn 0.0439 0.6762 -0.7354 +vn 0.0432 0.6757 -0.7359 +vn -0.5935 0.7420 0.3117 +vn -0.5934 0.7421 0.3118 +vn -0.8288 -0.4555 -0.3250 +vn -0.8290 -0.4553 -0.3248 +vn -0.8290 -0.4552 -0.3248 +vn -0.5568 0.8304 0.0205 +vn -0.5570 0.8303 0.0193 +vn 0.2139 0.8951 0.3912 +vn 0.2142 0.8950 0.3913 +vn 0.2138 0.8951 0.3912 +vn -0.6536 0.1325 -0.7451 +vn -0.6533 0.1322 -0.7454 +vn -0.6537 0.1325 -0.7451 +vn -0.4630 0.3610 -0.8095 +vn -0.4629 0.3608 -0.8096 +vn 0.1252 0.7876 -0.6033 +vn 0.1239 0.7875 -0.6037 +vn 0.1262 0.7875 -0.6033 +vn 0.4975 0.2339 0.8353 +vn 0.4974 0.2348 0.8351 +vn 0.4975 0.2355 0.8349 +vn 0.9120 0.2448 0.3292 +vn 0.9119 0.2447 0.3294 +vn 0.9121 0.2447 0.3290 +vn 0.7623 0.5569 -0.3299 +vn 0.7626 0.5566 -0.3295 +vn 0.7623 0.5569 -0.3298 +vn 0.3975 0.7276 0.5591 +vn 0.3970 0.7276 0.5594 +vn 0.3973 0.7275 0.5593 +vn 0.3761 0.8868 -0.2685 +vn -0.2926 -0.4947 0.8183 +vn -0.3679 -0.8843 0.2876 +vn -0.3681 -0.8840 0.2882 +vn -0.3679 -0.8842 0.2879 +vn -0.6078 0.7078 -0.3600 +vn -0.4917 0.8623 -0.1212 +vn -0.0204 0.9840 0.1769 +vn -0.0199 0.9840 0.1773 +vn -0.0201 0.9840 0.1771 +vn 0.1664 0.5886 0.7911 +vn 0.1663 0.5888 0.7910 +vn 0.1664 0.5887 0.7911 +vn -0.7667 0.5916 -0.2492 +vn -0.7666 0.5917 -0.2493 +vn -0.7664 0.5918 -0.2496 +vn 0.3822 0.7840 0.4892 +vn 0.3823 0.7840 0.4890 +vn 0.3823 0.7840 0.4891 +vn -0.6374 -0.3142 0.7036 +vn -0.6373 -0.3143 0.7036 +vn 0.3041 -0.5438 0.7822 +vn 0.3041 -0.5439 0.7821 +vn 0.3040 -0.5440 0.7821 +vn -0.4627 -0.5735 0.6761 +vn -0.4628 -0.5730 0.6764 +vn -0.4628 -0.5727 0.6766 +vn -0.4345 -0.6904 0.5784 +vn -0.4347 -0.6901 0.5786 +vn -0.4347 -0.6903 0.5784 +vn -0.8323 -0.2013 -0.5165 +vn -0.8326 -0.2016 -0.5159 +vn -0.8326 -0.2022 -0.5156 +vn 0.3545 -0.6600 0.6624 +vn 0.3545 -0.6600 0.6623 +vn -0.1049 0.3844 0.9172 +vn -0.1055 0.3843 0.9172 +vn -0.1040 0.3843 0.9173 +vn 0.6221 -0.0088 0.7829 +vn -0.1243 -0.3144 0.9411 +vn -0.1245 -0.3143 0.9411 +vn -0.1233 -0.3148 0.9411 +vn 0.3786 -0.7615 -0.5261 +vn 0.3798 -0.7599 -0.5276 +vn 0.3774 -0.7639 -0.5235 +vn -0.7872 0.2478 -0.5647 +vn -0.7873 0.2476 -0.5647 +vn 0.9478 0.2024 -0.2464 +vn 0.9478 0.2024 -0.2462 +vn -0.5890 0.7929 0.1564 +vn -0.8336 0.1451 -0.5330 +vn -0.8335 0.1453 -0.5331 +vn -0.8335 0.1454 -0.5330 +vn -0.7430 -0.1442 -0.6536 +vn -0.7681 0.6128 -0.1856 +vn -0.7682 0.6128 -0.1853 +vn -0.7684 0.6127 -0.1848 +vn -0.0011 -0.0007 1.0000 +vn -0.7121 0.2911 0.6389 +vn -0.7126 0.2879 0.6398 +vn -0.7125 0.2899 0.6390 +vn -0.5561 0.4892 -0.6719 +vn -0.5558 0.4895 -0.6719 +vn -0.5567 0.4885 -0.6719 +vn -0.9584 -0.1563 0.2389 +vn -0.9583 -0.1570 0.2389 +vn -0.9585 -0.1559 0.2386 +vn 0.4122 0.8193 0.3985 +vn 0.4122 0.8192 0.3988 +vn 0.4122 0.8193 0.3986 +vn -0.7450 0.6309 -0.2165 +vn -0.7450 0.6310 -0.2165 +vn -0.7451 0.6308 -0.2167 +vn 0.6720 -0.4579 0.5821 +vn 0.6720 -0.4578 0.5821 +vn 0.6723 -0.4579 0.5817 +vn -0.9177 -0.2719 0.2898 +vn -0.9177 -0.2718 0.2899 +vn -0.9176 -0.2717 0.2900 +vn 0.3795 0.5976 -0.7063 +vn 0.3794 0.5975 -0.7065 +vn 0.3794 0.5975 -0.7064 +vn -0.4895 0.4619 -0.7396 +vn 0.3408 0.9131 0.2237 +vn -0.6933 0.3019 -0.6544 +vn -0.6931 0.3017 -0.6547 +vn -0.6933 0.3017 -0.6545 +vn -0.2868 -0.0189 -0.9578 +vn -0.6867 0.5516 0.4735 +vn -0.6862 0.5515 0.4743 +vn -0.6867 0.5517 0.4734 +vn -0.2947 -0.9032 -0.3121 +vn -0.2940 -0.9034 -0.3122 +vn -0.4345 0.1659 0.8853 +vn -0.4345 0.1660 0.8852 +vn 0.1279 0.4335 -0.8920 +vn 0.1278 0.4327 -0.8924 +vn 0.1279 0.4325 -0.8925 +vn -0.3575 0.2744 0.8927 +vn -0.3575 0.2748 0.8926 +vn -0.3575 0.2746 0.8926 +vn 0.9518 0.1038 0.2885 +vn 0.9519 0.1040 0.2883 +vn 0.9519 0.1038 0.2884 +vn -0.0339 0.9332 0.3578 +vn -0.0334 0.9329 0.3586 +vn -0.0337 0.9331 0.3580 +vn 0.7034 -0.0918 -0.7048 +vn -0.0656 0.9845 0.1628 +vn -0.0665 0.9844 0.1631 +vn -0.0676 0.9840 0.1649 +vn 0.7391 -0.4816 0.4709 +vn 0.7390 -0.4817 0.4709 +vn 0.7390 -0.4818 0.4709 +vn 0.7118 -0.4316 0.5541 +vn 0.7119 -0.4317 0.5540 +vn 0.7121 -0.4317 0.5537 +vn -0.1986 -0.8234 0.5315 +vn 0.1918 0.9797 -0.0587 +vn 0.1922 0.9796 -0.0590 +vn 0.1924 0.9795 -0.0590 +vn -0.9397 -0.3300 0.0899 +vn -0.9397 -0.3299 0.0900 +vn 0.0645 0.7344 -0.6756 +vn 0.0647 0.7346 -0.6754 +vn 0.0645 0.7346 -0.6754 +vn -0.6428 -0.6084 0.4655 +vn -0.6426 -0.6085 0.4656 +vn -0.6424 -0.6082 0.4663 +vn -0.0067 -0.0004 1.0000 +vn -0.9679 -0.2174 -0.1264 +vn -0.9679 -0.2173 -0.1263 +vn -0.5707 -0.8148 0.1022 +vn 0.7123 0.6892 -0.1325 +vn 0.7121 0.6895 -0.1322 +vn 0.7119 0.6897 -0.1322 +vn -0.9284 0.2138 -0.3040 +vn -0.9285 0.2137 -0.3038 +vn -0.9284 0.2138 -0.3039 +vn 0.9468 0.2201 -0.2348 +vn 0.9469 0.2207 -0.2338 +vn 0.9468 0.2205 -0.2343 +vn -0.8928 0.3522 -0.2807 +vn -0.5688 -0.8162 0.1013 +vn -0.5687 -0.8163 0.1010 +vn -0.5686 -0.8164 0.1008 +vn -0.8617 -0.4986 0.0940 +vn -0.8617 -0.4987 0.0938 +vn -0.8619 -0.4982 0.0944 +vn 0.6877 0.7043 -0.1762 +vn 0.2876 -0.5063 -0.8130 +vn 0.2878 -0.5060 -0.8131 +vn 0.6093 0.6181 0.4968 +vn 0.6095 0.6177 0.4970 +vn 0.6100 0.6171 0.4971 +vn -0.8302 -0.0414 0.5559 +vn -0.8303 -0.0415 0.5558 +vn 0.5078 0.2921 0.8104 +vn 0.4382 -0.6466 -0.6244 +vn 0.4382 -0.6467 -0.6243 +vn -0.4982 -0.8222 -0.2754 +vn -0.4986 -0.8220 -0.2752 +vn 0.0014 0.9900 -0.1414 +vn 0.0012 0.9899 -0.1416 +vn 0.0010 0.9899 -0.1417 +vn 0.5059 -0.8307 -0.2325 +vn 0.5059 -0.8307 -0.2324 +vn 0.8885 -0.2583 0.3793 +vn 0.8886 -0.2586 0.3789 +vn 0.8885 -0.2583 0.3792 +vn 0.3024 -0.8391 0.4522 +vn 0.3011 -0.8399 0.4516 +vn 0.3020 -0.8394 0.4520 +vn 0.3301 0.4207 0.8450 +vn 0.3294 0.4224 0.8444 +vn 0.3300 0.4196 0.8456 +vn 0.2191 0.8277 -0.5167 +vn 0.2191 0.8278 -0.5165 +vn 0.2192 0.8275 -0.5169 +vn -0.8161 -0.3044 -0.4912 +vn -0.8160 -0.3045 -0.4913 +vn -0.8163 -0.3043 -0.4910 +vn -0.0010 0.0001 1.0000 +vn -0.0693 0.2384 0.9687 +vn -0.0682 0.2380 0.9689 +vn -0.0686 0.2381 0.9688 +vn -0.1661 0.9853 0.0393 +vn 0.0585 -0.2132 0.9753 +vn 0.7999 -0.0345 0.5992 +vn 0.7994 -0.0352 0.5997 +vn 0.7991 -0.0355 0.6002 +vn 0.0916 -0.8114 0.5772 +vn 0.0912 -0.8114 0.5773 +vn 0.0913 -0.8114 0.5773 +vn 0.9485 0.1256 0.2906 +vn 0.9485 0.1253 0.2909 +vn 0.6458 0.7346 -0.2081 +vn 0.6455 0.7349 -0.2082 +vn 0.6460 0.7344 -0.2081 +vn 0.8941 -0.2361 0.3805 +vn 0.6594 0.1663 -0.7332 +vn -0.8705 -0.3114 -0.3810 +vn -0.8707 -0.3109 -0.3811 +vn -0.8707 -0.3106 -0.3813 +vn 0.0053 1.0000 0.0003 +vn 0.0053 1.0000 -0.0004 +vn 0.0050 1.0000 -0.0005 +vn 0.4930 0.7317 -0.4707 +vn 0.4930 0.7318 -0.4706 +vn 0.7930 0.1416 -0.5926 +vn 0.7929 0.1417 -0.5926 +vn 0.1338 0.9551 -0.2644 +vn 0.1344 0.9549 -0.2646 +vn 0.1337 0.9551 -0.2644 +vn 0.5237 0.8477 -0.0849 +vn 0.5240 0.8476 -0.0840 +vn 0.5238 0.8476 -0.0846 +vn 0.3526 -0.5937 -0.7233 +vn 0.3529 -0.5939 -0.7230 +vn 0.3528 -0.5937 -0.7232 +vn -0.6725 0.1426 -0.7262 +vn 0.0853 0.9608 0.2638 +vn 0.0852 0.9608 0.2638 +vn 0.0854 0.9607 0.2641 +vn 0.2555 0.1837 -0.9492 +vn 0.2555 0.1838 -0.9492 +vn 0.2554 0.1837 -0.9492 +vn 0.8976 -0.2232 0.3801 +vn 0.8976 -0.2234 0.3800 +vn 0.8303 -0.4511 0.3273 +vn 0.8301 -0.4513 0.3276 +vn 0.8300 -0.4514 0.3277 +vn -0.5060 0.8614 0.0440 +vn -0.5060 0.8614 0.0438 +vn -0.5060 0.8614 0.0439 +vn -0.6295 0.6473 0.4298 +vn -0.6295 0.6472 0.4299 +vn -0.6293 0.6473 0.4301 +vn 0.1221 0.6944 -0.7091 +vn 0.1219 0.6946 -0.7090 +vn 0.1221 0.6945 -0.7091 +vn 0.8394 -0.1724 0.5155 +vn 0.8399 -0.1730 0.5145 +vn 0.8396 -0.1726 0.5150 +vn -0.3196 0.8442 -0.4302 +vn -0.3196 0.8443 -0.4301 +vn -0.3195 0.8445 -0.4298 +vn -0.1947 0.9653 0.1742 +vn -0.1942 0.9653 0.1746 +vn -0.1930 0.9653 0.1758 +vn 0.0022 -0.9524 0.3048 +vn 0.0023 -0.9524 0.3047 +vn 0.3932 0.6315 0.6683 +vn 0.3933 0.6312 0.6685 +vn 0.3931 0.6316 0.6682 +vn -0.1959 0.9578 -0.2104 +vn -0.1957 0.9576 -0.2112 +vn -0.1957 0.9578 -0.2107 +vn -0.7407 0.0666 -0.6685 +vn -0.7407 0.0665 -0.6685 +vn -0.7409 0.0663 -0.6684 +vn -0.9786 -0.1516 -0.1392 +vn -0.2141 0.8055 0.5525 +vn -0.2146 0.8057 0.5521 +vn -0.2144 0.8056 0.5523 +vn 0.7499 0.3959 0.5301 +vn 0.7506 0.3953 0.5295 +vn 0.7503 0.3955 0.5298 +vn -0.9734 -0.2287 0.0159 +vn 0.5649 -0.0444 -0.8240 +vn 0.5649 -0.0442 -0.8240 +vn 0.5649 -0.0443 -0.8240 +vn 0.7128 -0.4724 0.5185 +vn 0.7127 -0.4726 0.5184 +vn 0.7127 -0.4724 0.5185 +vn 0.7312 -0.3509 0.5850 +vn 0.7313 -0.3506 0.5850 +vn 0.3963 -0.6468 0.6516 +vn -0.9096 -0.2825 0.3047 +vn 0.1815 -0.1321 0.9745 +vn 0.1814 -0.1317 0.9746 +vn 0.7738 -0.6305 -0.0610 +vn 0.7740 -0.6302 -0.0613 +vn -0.9826 -0.1681 -0.0785 +vn -0.9827 -0.1680 -0.0783 +vn -0.9827 -0.1678 -0.0782 +vn -0.4471 -0.7517 -0.4848 +vn -0.4476 -0.7515 -0.4845 +vn -0.4478 -0.7517 -0.4842 +vn -0.3305 -0.8333 -0.4432 +vn -0.3311 -0.8331 -0.4431 +vn -0.3308 -0.8331 -0.4433 +vn 0.3787 -0.9094 0.1720 +vn 0.3785 -0.9095 0.1720 +vn 0.3301 0.3886 0.8602 +vn 0.8600 -0.3208 0.3969 +vn 0.8601 -0.3206 0.3969 +vn 0.8600 -0.3206 0.3970 +vn 0.9014 0.4329 -0.0090 +vn 0.9014 0.4329 -0.0089 +vn 0.9014 0.4329 -0.0088 +vn 0.3169 0.1700 -0.9331 +vn 0.3171 0.1699 -0.9330 +vn 0.3172 0.1699 -0.9330 +vn -0.4662 0.5622 -0.6831 +vn -0.4658 0.5624 -0.6832 +vn -0.4654 0.5626 -0.6833 +vn 0.4415 -0.8540 0.2751 +vn 0.4385 -0.8552 0.2762 +vn 0.4400 -0.8548 0.2752 +vn -0.7038 0.4289 -0.5663 +vn -0.4114 -0.9027 0.1261 +vn -0.4111 -0.9028 0.1260 +vn -0.4107 -0.9030 0.1260 +vn 0.0360 -0.7443 0.6669 +vn 0.0862 -0.9759 0.2004 +vn 0.0861 -0.9761 0.1997 +vn 0.0860 -0.9760 0.2000 +vn 0.9408 -0.1619 0.2977 +vn 0.9408 -0.1620 0.2979 +vn 0.9408 -0.1619 0.2978 +vn 0.1883 0.0497 0.9809 +vn 0.1883 0.0496 0.9809 +vn 0.1882 0.0499 0.9809 +vn -0.3141 -0.9470 -0.0675 +vn -0.3145 -0.9468 -0.0676 +vn -0.7295 -0.3697 0.5754 +vn -0.7292 -0.3699 0.5757 +vn -0.7288 -0.3700 0.5762 +vn 0.7767 0.3099 0.5484 +vn 0.7775 0.3093 0.5475 +vn 0.7784 0.3081 0.5470 +vn -0.7457 -0.6611 -0.0834 +vn -0.7457 -0.6610 -0.0835 +vn -0.7461 -0.6608 -0.0823 +vn 0.1672 -0.9858 0.0178 +vn -0.2166 -0.9708 -0.1029 +vn -0.2166 -0.9710 -0.1012 +vn -0.2180 -0.9709 -0.0988 +vn 0.7046 0.6643 0.2493 +vn 0.7046 0.6644 0.2492 +vn 0.7047 0.6643 0.2491 +vn 0.3082 -0.1025 0.9458 +vn 0.3072 -0.1027 0.9461 +vn 0.3079 -0.1029 0.9458 +vn -0.2519 0.1536 -0.9555 +vn -0.2510 0.1537 -0.9557 +vn -0.2510 0.1536 -0.9557 +vn -0.5508 0.3763 0.7450 +vn -0.5517 0.3773 0.7438 +vn -0.5514 0.3767 0.7444 +vn 0.8032 0.5877 0.0971 +vn 0.8032 0.5876 0.0978 +vn 0.8032 0.5876 0.0975 +vn 0.3955 0.5284 -0.7512 +vn 0.3954 0.5283 -0.7513 +vn 0.3953 0.5283 -0.7514 +vn 0.5128 -0.4089 0.7549 +vn 0.7919 -0.5116 0.3333 +vn 0.7917 -0.5122 0.3330 +vn 0.7922 -0.5110 0.3336 +vn -0.4284 0.6945 -0.5781 +vn -0.2633 0.9561 -0.1291 +vn -0.2631 0.9561 -0.1287 +vn -0.2629 0.9562 -0.1287 +vn -0.2568 0.6133 -0.7469 +vn -0.2567 0.6135 -0.7468 +vn -0.2567 0.6132 -0.7470 +vn -0.7683 -0.4119 -0.4900 +vn -0.7680 -0.4120 -0.4903 +vn -0.7682 -0.4119 -0.4901 +vn 0.7177 0.6953 0.0390 +vn 0.7175 0.6954 0.0394 +vn 0.7177 0.6952 0.0390 +vn 0.5739 -0.7861 -0.2296 +vn 0.5736 -0.7863 -0.2296 +vn 0.5739 -0.7861 -0.2297 +vn 0.5421 -0.8324 0.1146 +vn 0.5420 -0.8325 0.1147 +vn 0.5425 -0.8322 0.1146 +vn -0.1364 -0.9800 -0.1448 +vn -0.1359 -0.9800 -0.1455 +vn -0.1365 -0.9800 -0.1447 +vn 0.0916 0.2080 0.9738 +vn 0.0907 0.2079 0.9739 +vn 0.6788 0.6779 -0.2823 +vn 0.6787 0.6781 -0.2821 +vn 0.6788 0.6778 -0.2824 +vn -0.3891 -0.5189 0.7611 +vn -0.3894 -0.5188 0.7611 +vn -0.3892 -0.5189 0.7611 +vn 0.4075 0.7464 0.5261 +vn 0.4075 0.7469 0.5255 +vn 0.4075 0.7467 0.5257 +vn 0.8239 0.3212 -0.4670 +vn 0.8240 0.3218 -0.4663 +vn 0.8239 0.3215 -0.4667 +vn 0.1313 -0.9692 0.2085 +vn 0.1312 -0.9692 0.2083 +vn 0.1313 -0.9691 0.2088 +vn -0.4875 -0.8419 0.2314 +vn -0.4880 -0.8416 0.2316 +vn -0.4879 -0.8416 0.2315 +vn 0.4345 -0.7378 0.5166 +vn 0.5872 0.7955 -0.1493 +vn 0.5872 0.7956 -0.1493 +vn 0.5868 0.7958 -0.1495 +vn -0.4841 0.5929 -0.6435 +vn -0.4835 0.5935 -0.6434 +vn -0.4831 0.5941 -0.6432 +vn 0.4079 0.8895 0.2062 +vn 0.4079 0.8895 0.2061 +vn 0.8828 0.4669 -0.0507 +vn 0.8828 0.4670 -0.0504 +vn 0.7867 0.5867 0.1920 +vn 0.7868 0.5865 0.1923 +vn 0.3734 0.8791 0.2962 +vn 0.3726 0.8794 0.2963 +vn 0.3736 0.8790 0.2961 +vn -0.7807 -0.5687 0.2591 +vn -0.7801 -0.5696 0.2588 +vn -0.7801 -0.5697 0.2587 +vn -0.8168 -0.1303 0.5620 +vn -0.8170 -0.1302 0.5618 +vn -0.8166 -0.1305 0.5622 +vn 0.7974 0.5976 0.0833 +vn 0.7974 0.5977 0.0832 +vn 0.7975 0.5976 0.0833 +vn 0.3003 -0.9353 -0.1870 +vn 0.3006 -0.9353 -0.1868 +vn 0.3005 -0.9353 -0.1868 +vn 0.2212 0.6356 0.7396 +vn -0.5009 -0.7133 -0.4903 +vn -0.5012 -0.7130 -0.4903 +vn -0.5005 -0.7135 -0.4903 +vn 0.2796 -0.7191 0.6362 +vn 0.2796 -0.7190 0.6363 +vn -0.4516 0.3284 -0.8296 +vn -0.4517 0.3284 -0.8295 +vn -0.1380 -0.2803 -0.9499 +vn -0.1375 -0.2796 -0.9502 +vn -0.1391 -0.2803 -0.9498 +vn 0.8854 0.4390 -0.1527 +vn 0.3897 0.8006 -0.4551 +vn 0.3895 0.8008 -0.4551 +vn 0.3894 0.8452 -0.3660 +vn 0.3896 0.8452 -0.3658 +vn -0.1228 0.5677 -0.8140 +vn -0.1227 0.5678 -0.8140 +vn -0.8077 0.5305 -0.2574 +vn -0.8080 0.5301 -0.2571 +vn -0.8079 0.5302 -0.2573 +vn 0.7374 -0.5725 -0.3584 +vn 0.7371 -0.5726 -0.3588 +vn 0.7375 -0.5727 -0.3579 +vn 0.6972 -0.6295 -0.3430 +vn 0.6969 -0.6299 -0.3429 +vn 0.6975 -0.6292 -0.3431 +vn -0.7537 0.4449 -0.4838 +vn -0.7528 0.4462 -0.4839 +vn -0.7541 0.4445 -0.4835 +vn -0.7355 0.5264 -0.4265 +vn -0.7354 0.5262 -0.4270 +vn -0.7353 0.5259 -0.4274 +vn -0.5535 -0.6411 -0.5315 +vn -0.5532 -0.6412 -0.5318 +vn -0.2855 0.4222 0.8604 +vn -0.2856 0.4222 0.8603 +vn -0.2402 0.2181 0.9459 +vn -0.2400 0.2183 0.9459 +vn -0.2406 0.2180 0.9458 +vn -0.5962 -0.7839 0.1732 +vn -0.5962 -0.7839 0.1734 +vn 0.0882 0.9270 -0.3644 +vn 0.0884 0.9269 -0.3646 +vn 0.0883 0.9270 -0.3646 +vn -0.5080 -0.3540 -0.7853 +vn -0.5072 -0.3547 -0.7855 +vn -0.5076 -0.3541 -0.7854 +vn 0.8474 0.0075 0.5309 +vn 0.8473 0.0078 0.5310 +vn 0.8473 0.0082 0.5311 +vn -0.7970 -0.0010 0.6039 +vn -0.7969 -0.0007 0.6040 +vn -0.6972 0.5414 -0.4699 +vn -0.6974 0.5414 -0.4696 +vn -0.5536 0.7346 -0.3924 +vn -0.5539 0.7342 -0.3925 +vn -0.5538 0.7343 -0.3924 +vn -0.6924 0.4754 -0.5427 +vn -0.6930 0.4747 -0.5426 +vn -0.6927 0.4750 -0.5427 +vn 0.3795 0.5183 -0.7664 +vn 0.3790 0.5179 -0.7669 +vn 0.3790 0.5181 -0.7667 +vn 0.7930 -0.2359 0.5618 +vn 0.7929 -0.2363 0.5617 +vn 0.7929 -0.2361 0.5617 +vn 0.2554 0.2743 0.9271 +vn 0.2559 0.2741 0.9270 +vn 0.2556 0.2742 0.9271 +vn -0.6166 0.3885 -0.6847 +vn -0.6163 0.3893 -0.6845 +vn -0.6164 0.3890 -0.6846 +vn -0.2646 -0.8536 0.4487 +vn -0.4602 -0.3476 0.8169 +vn -0.4599 -0.3477 0.8171 +vn -0.9713 -0.2345 0.0404 +vn -0.9712 -0.2350 0.0399 +vn -0.9711 -0.2356 0.0394 +vn 0.8948 0.4437 -0.0488 +vn 0.8949 0.4437 -0.0489 +vn -0.4242 0.8331 -0.3550 +vn -0.4240 0.8331 -0.3553 +vn -0.4237 0.8331 -0.3555 +vn -0.0400 -0.2080 -0.9773 +vn -0.0401 -0.2081 -0.9773 +vn -0.0403 -0.2080 -0.9773 +vn 0.6757 -0.0624 0.7345 +vn -0.3375 -0.4420 -0.8311 +vn -0.3369 -0.4420 -0.8314 +vn -0.3362 -0.4415 -0.8319 +vn 0.4511 0.6705 -0.5891 +vn 0.4511 0.6705 -0.5890 +vn 0.4120 0.7802 -0.4707 +vn 0.4117 0.7804 -0.4705 +vn 0.4119 0.7803 -0.4707 +vn -0.1546 0.8492 -0.5050 +vn -0.1545 0.8490 -0.5052 +vn -0.1542 0.8496 -0.5044 +vn 0.7874 -0.5360 0.3046 +vn 0.7876 -0.5357 0.3043 +vn -0.4105 -0.7320 0.5438 +vn -0.4106 -0.7319 0.5438 +vn 0.2379 0.7593 0.6057 +vn -0.5972 0.3567 -0.7184 +vn -0.5972 0.3568 -0.7184 +vn -0.3749 0.9267 -0.0244 +vn -0.3740 0.9271 -0.0255 +vn -0.3751 0.9267 -0.0235 +vn 0.3649 0.8803 0.3032 +vn 0.3649 0.8802 0.3034 +vn -0.1690 0.2422 0.9554 +vn -0.7262 0.6641 -0.1775 +vn -0.7266 0.6637 -0.1777 +vn 0.0923 -0.1317 -0.9870 +vn 0.0927 -0.1316 -0.9870 +vn 0.0926 -0.1315 -0.9870 +vn -0.2307 0.0173 -0.9729 +vn -0.2301 0.0174 -0.9730 +vn -0.2302 0.0177 -0.9730 +vn 0.3714 0.6076 -0.7021 +vn 0.3713 0.6075 -0.7022 +vn 0.3713 0.6076 -0.7021 +vn 0.4319 -0.5879 0.6840 +vn 0.6059 0.7921 0.0737 +vn 0.6059 0.7921 0.0735 +vn 0.6060 0.7921 0.0729 +vn 0.6861 0.6045 0.4048 +vn 0.6859 0.6046 0.4050 +vn 0.6859 0.6046 0.4051 +vn -0.5343 0.4014 -0.7439 +vn -0.5349 0.4008 -0.7438 +vn -0.5338 0.4020 -0.7440 +vn -0.4282 0.0687 0.9011 +vn -0.4294 0.0682 0.9005 +vn -0.4288 0.0683 0.9008 +vn 0.6854 0.5925 0.4233 +vn 0.6853 0.5928 0.4230 +vn -0.7395 -0.4009 -0.5407 +vn -0.7396 -0.4009 -0.5406 +vn -0.7398 -0.4010 -0.5403 +vn -0.0008 0.8107 -0.5854 +vn -0.0008 0.8109 -0.5852 +vn -0.0008 0.8105 -0.5857 +vn -0.9333 -0.2378 -0.2690 +vn -0.1237 0.9917 -0.0357 +vn -0.1237 0.9917 -0.0358 +vn 0.2469 0.5320 0.8099 +vn 0.2472 0.5318 0.8100 +vn 0.2466 0.5319 0.8101 +vn 0.4983 0.8266 0.2614 +vn 0.4984 0.8266 0.2613 +vn 0.4527 0.8628 -0.2251 +vn 0.4530 0.8626 -0.2251 +vn 0.4529 0.8627 -0.2249 +vn 0.1915 0.9805 -0.0435 +vn 0.1916 0.9805 -0.0435 +vn 0.6090 0.6346 -0.4757 +vn 0.6089 0.6347 -0.4759 +vn 0.2884 0.9323 0.2183 +vn 0.2884 0.9323 0.2184 +vn 0.2883 0.9323 0.2184 +vn 0.6106 0.2119 -0.7630 +vn 0.6106 0.2118 -0.7631 +vn 0.6101 0.2121 -0.7634 +vn 0.8564 -0.2800 0.4337 +vn 0.8564 -0.2801 0.4337 +vn 0.8564 -0.2802 0.4337 +vn 0.3134 -0.1314 -0.9405 +vn 0.3137 -0.1322 -0.9403 +vn -0.6803 0.4736 -0.5593 +vn -0.6807 0.4734 -0.5591 +vn -0.6806 0.4736 -0.5590 +vn -0.8371 0.5175 -0.1772 +vn -0.8373 0.5171 -0.1774 +vn 0.3926 -0.4958 0.7746 +vn 0.3925 -0.4959 0.7746 +vn 0.6829 0.7284 -0.0554 +vn -0.0394 0.7359 0.6759 +vn -0.0395 0.7360 0.6759 +vn -0.0394 0.7358 0.6760 +vn 0.7954 -0.5636 0.2227 +vn 0.7951 -0.5640 0.2232 +vn 0.7952 -0.5638 0.2229 +vn -0.8078 -0.5827 0.0893 +vn -0.8082 -0.5821 0.0896 +vn -0.8077 -0.5828 0.0892 +vn -0.7427 -0.6555 -0.1369 +vn -0.7429 -0.6553 -0.1363 +vn -0.6097 -0.5546 0.5662 +vn -0.6091 -0.5534 0.5681 +vn -0.6092 -0.5532 0.5682 +vn 0.5571 -0.3243 0.7645 +vn 0.5577 -0.3241 0.7642 +vn -0.1234 -0.3996 -0.9083 +vn -0.1234 -0.3994 -0.9084 +vn -0.1234 -0.3996 -0.9084 +vn -0.3071 0.5511 -0.7759 +vn -0.3072 0.5511 -0.7758 +vn -0.3074 0.5510 -0.7758 +vn -0.9452 0.3066 -0.1120 +vn -0.9453 0.3065 -0.1119 +vn -0.1855 0.8217 -0.5389 +vn -0.1855 0.8218 -0.5387 +vn 0.0423 -0.9760 0.2134 +vn 0.0427 -0.9759 0.2138 +vn 0.0425 -0.9760 0.2136 +vn -0.5995 -0.6029 -0.5263 +vn 0.2581 0.9270 -0.2721 +vn 0.2580 0.9271 -0.2719 +vn 0.2579 0.9271 -0.2719 +vn -0.6651 -0.1610 -0.7292 +vn -0.8565 -0.3327 -0.3947 +vn -0.1636 0.9749 -0.1510 +vn -0.1635 0.9749 -0.1510 +vn -0.7085 -0.6184 -0.3400 +vn 0.8131 -0.3002 -0.4987 +vn 0.8132 -0.3001 -0.4987 +vn 0.2806 0.9314 -0.2318 +vn 0.2807 0.9314 -0.2317 +vn 0.2805 0.9314 -0.2320 +vn 0.4774 -0.8563 0.1972 +vn 0.4773 -0.8564 0.1969 +vn 0.4772 -0.8566 0.1965 +vn 0.3627 0.9158 0.1724 +vn 0.3629 0.9157 0.1724 +vn 0.3627 0.9158 0.1725 +vn 0.8623 0.3286 0.3853 +vn 0.8624 0.3285 0.3852 +vn 0.5864 -0.1791 -0.7900 +vn 0.5865 -0.1790 -0.7899 +vn 0.5488 0.3791 0.7451 +vn 0.4154 -0.0101 -0.9096 +vn 0.4161 -0.0103 -0.9093 +vn 0.4146 -0.0101 -0.9099 +vn -0.8392 -0.3127 -0.4450 +vn -0.8391 -0.3127 -0.4450 +vn -0.8392 -0.3126 -0.4449 +vn -0.4259 0.3006 0.8534 +vn -0.4253 0.3007 0.8537 +vn -0.4255 0.3009 0.8535 +vn -0.1920 -0.8410 0.5058 +vn -0.1923 -0.8409 0.5059 +vn -0.1924 -0.8407 0.5062 +vn 0.1211 -0.8204 0.5588 +vn 0.1211 -0.8206 0.5585 +vn -0.8206 0.1657 0.5469 +vn -0.8206 0.1656 0.5469 +vn 0.0015 -0.0044 1.0000 +vn 0.0037 -0.0030 1.0000 +vn 0.0031 -0.0049 1.0000 +vn -0.3942 -0.3472 0.8509 +vn -0.3945 -0.3470 0.8509 +vn 0.4178 -0.3912 0.8200 +vn 0.4176 -0.3917 0.8199 +vn 0.4177 -0.3917 0.8198 +vn -0.2760 -0.3257 0.9043 +vn -0.2759 -0.3259 0.9043 +vn -0.2762 -0.3255 0.9043 +vn -0.2426 -0.5207 0.8185 +vn 0.7104 -0.6679 0.2220 +vn 0.7100 -0.6689 0.2202 +vn 0.7100 -0.6687 0.2208 +vn -0.0362 -0.2547 0.9663 +vn -0.5234 -0.7386 -0.4249 +vn 0.5288 -0.4037 0.7466 +vn -0.2023 0.9413 0.2704 +vn -0.2020 0.9415 0.2699 +vn -0.2020 0.9416 0.2694 +vn -0.3960 0.0874 0.9141 +vn -0.3961 0.0875 0.9140 +vn -0.3453 -0.9191 0.1898 +vn -0.3448 -0.9192 0.1903 +vn -0.3455 -0.9190 0.1897 +vn -0.4964 0.4085 0.7660 +vn -0.4965 0.4078 0.7663 +vn -0.4966 0.4069 0.7667 +vn 0.2102 0.5322 0.8201 +vn 0.0693 0.1095 0.9916 +vn 0.0691 0.1096 0.9916 +vn 0.0690 0.1100 0.9915 +vn -0.6133 0.6707 0.4172 +vn -0.6134 0.6705 0.4173 +vn -0.6134 0.6705 0.4174 +vn -0.2206 0.6409 0.7352 +vn -0.2209 0.6406 0.7354 +vn -0.2208 0.6407 0.7354 +vn -0.3667 -0.5167 0.7736 +vn -0.3669 -0.5167 0.7736 +vn -0.3668 -0.5167 0.7736 +vn 0.1611 -0.8514 -0.4992 +vn 0.1609 -0.8512 -0.4995 +vn -0.4359 0.8486 -0.2996 +vn -0.4361 0.8485 -0.2999 +vn 0.5909 0.8050 0.0528 +vn 0.5907 0.8051 0.0532 +vn 0.1375 -0.4190 0.8975 +vn 0.1360 -0.4187 0.8979 +vn 0.1382 -0.4195 0.8972 +vn -0.4212 -0.0038 0.9070 +vn -0.4209 -0.0037 0.9071 +vn -0.4281 0.8558 -0.2904 +vn -0.4282 0.8558 -0.2902 +vn -0.4284 0.8558 -0.2900 +vn 0.7255 -0.5814 -0.3683 +vn 0.7254 -0.5817 -0.3680 +vn 0.6630 0.6164 0.4248 +vn 0.6632 0.6162 0.4248 +vn 0.6632 0.6163 0.4247 +vn 0.0228 -0.9054 -0.4240 +vn 0.0211 -0.9057 -0.4234 +vn 0.0218 -0.9056 -0.4235 +vn -0.8400 0.4301 -0.3308 +vn -0.8402 0.4300 -0.3305 +vn -0.8402 0.4299 -0.3305 +vn -0.3018 0.9244 -0.2334 +vn -0.9127 0.4002 0.0828 +vn -0.9126 0.4003 0.0829 +vn -0.8752 0.3587 -0.3246 +vn -0.8751 0.3587 -0.3248 +vn -0.8750 0.3587 -0.3251 +vn 0.6842 0.0801 0.7249 +vn 0.6844 0.0800 0.7247 +vn 0.2828 0.8942 -0.3470 +vn 0.2832 0.8940 -0.3471 +vn 0.2824 0.8945 -0.3466 +vn -0.0237 0.2407 -0.9703 +vn -0.0236 0.2409 -0.9703 +vn -0.0233 0.2410 -0.9702 +vn 0.7337 -0.4822 -0.4786 +vn -0.2764 0.6209 0.7335 +vn -0.2765 0.6198 0.7345 +vn -0.2764 0.6208 0.7336 +vn -0.2176 -0.3150 -0.9238 +vn -0.2176 -0.3149 -0.9238 +vn -0.2175 -0.3148 -0.9239 +vn -0.8794 -0.1995 -0.4323 +vn -0.8791 -0.1998 -0.4328 +vn 0.7378 -0.4662 0.4883 +vn 0.7382 -0.4660 0.4878 +vn -0.9390 0.2096 0.2725 +vn -0.9390 0.2098 0.2724 +vn -0.9390 0.2099 0.2723 +vn 0.7187 0.6250 -0.3047 +vn 0.7190 0.6248 -0.3044 +vn 0.7189 0.6249 -0.3045 +vn -0.5326 -0.8303 0.1644 +vn 0.7311 -0.4230 0.5352 +vn 0.3932 -0.1324 0.9099 +vn 0.3934 -0.1326 0.9098 +vn 0.3935 -0.1328 0.9097 +vn -0.6136 -0.4142 -0.6723 +vn -0.6135 -0.4144 -0.6722 +vn -0.7623 -0.2734 -0.5867 +vn -0.7624 -0.2728 -0.5867 +vn -0.7626 -0.2720 -0.5869 +vn 0.8541 -0.1278 -0.5042 +vn 0.4176 0.7033 0.5754 +vn 0.4174 0.7032 0.5756 +vn 0.4175 0.7032 0.5755 +vn -0.1312 0.9719 0.1956 +vn -0.1316 0.9719 0.1953 +vn -0.1316 0.9719 0.1952 +vn 0.9674 -0.0813 0.2400 +vn 0.9674 -0.0815 0.2399 +vn 0.9674 -0.0815 0.2398 +vn -0.6504 -0.2649 -0.7119 +vn -0.6505 -0.2651 -0.7118 +vn -0.8662 0.1459 -0.4780 +vn -0.6237 0.6946 -0.3585 +vn -0.6236 0.6946 -0.3587 +vn 0.8796 -0.0734 0.4700 +vn 0.8796 -0.0734 0.4699 +vn 0.8798 -0.0733 0.4697 +vn -0.0551 0.9980 0.0325 +vn -0.0570 0.9978 0.0330 +vn -0.0560 0.9979 0.0325 +vn -0.9195 -0.2381 -0.3128 +vn -0.9196 -0.2379 -0.3127 +vn -0.9195 -0.2382 -0.3128 +vn -0.5152 0.7259 -0.4557 +vn -0.5153 0.7259 -0.4556 +vn -0.5153 0.7257 -0.4558 +vn -0.7379 0.6512 0.1773 +vn -0.7376 0.6517 0.1768 +vn -0.7378 0.6514 0.1771 +vn -0.7470 -0.3380 -0.5725 +vn -0.7472 -0.3379 -0.5723 +vn -0.7468 -0.3381 -0.5727 +vn -0.6328 -0.7492 -0.1957 +vn -0.6329 -0.7491 -0.1955 +vn -0.6330 -0.7491 -0.1953 +vn 0.2461 0.8424 -0.4793 +vn 0.2464 0.8425 -0.4791 +vn -0.2514 0.9633 -0.0941 +vn -0.2506 0.9635 -0.0943 +vn -0.2517 0.9632 -0.0937 +vn 0.5504 -0.7480 -0.3708 +vn -0.8484 0.5007 -0.1714 +vn 0.6264 -0.7762 0.0721 +vn -0.2099 0.7643 0.6098 +vn -0.2099 0.7640 0.6102 +vn -0.0563 -0.0993 -0.9935 +vn -0.0562 -0.0994 -0.9935 +vn -0.0564 -0.0992 -0.9935 +vn -0.8549 0.4529 -0.2530 +vn -0.8551 0.4529 -0.2525 +vn -0.2205 -0.9630 0.1552 +vn -0.2206 -0.9630 0.1551 +vn 0.6437 -0.5235 -0.5581 +vn 0.6437 -0.5233 -0.5584 +vn 0.6436 -0.5236 -0.5582 +vn 0.7335 -0.3940 -0.5538 +vn 0.7334 -0.3941 -0.5539 +vn 0.7338 -0.3938 -0.5535 +vn 0.9274 -0.2486 0.2796 +vn 0.9274 -0.2489 0.2792 +vn 0.4280 -0.8774 0.2166 +vn 0.4277 -0.8775 0.2168 +vn -0.8008 -0.3088 -0.5131 +vn -0.8008 -0.3091 -0.5130 +vn -0.8010 -0.3088 -0.5129 +vn 0.5566 -0.7644 -0.3254 +vn -0.2083 -0.0527 -0.9766 +vn -0.2083 -0.0527 -0.9767 +vn 0.1789 0.7817 -0.5974 +vn 0.1788 0.7818 -0.5974 +vn 0.1787 0.7819 -0.5972 +vn 0.2307 0.4538 0.8607 +vn 0.2310 0.4535 0.8608 +vn 0.2314 0.4529 0.8610 +vn -0.1794 0.7453 0.6422 +vn -0.1791 0.7451 0.6425 +vn -0.1792 0.7451 0.6424 +vn -0.4144 -0.8899 -0.1905 +vn -0.4146 -0.8899 -0.1900 +vn -0.4149 -0.8898 -0.1899 +vn 0.1239 0.9874 0.0985 +vn 0.1241 0.9874 0.0986 +vn -0.0877 0.8531 0.5143 +vn -0.0876 0.8531 0.5143 +vn 0.0915 0.9690 -0.2293 +vn 0.6335 0.5664 -0.5270 +vn 0.6333 0.5666 -0.5272 +vn 0.6334 0.5665 -0.5271 +vn -0.2836 0.1598 0.9455 +vn 0.5660 -0.5510 0.6132 +vn 0.0828 -0.9660 0.2450 +vn 0.0808 -0.9654 0.2479 +vn 0.0812 -0.9657 0.2468 +vn 0.7997 0.1488 0.5817 +vn 0.7998 0.1486 0.5815 +vn -0.8947 -0.3167 -0.3151 +vn -0.8942 -0.3173 -0.3159 +vn -0.8946 -0.3169 -0.3151 +vn -0.2156 0.9029 0.3718 +vn -0.2157 0.9029 0.3718 +vn 0.4105 0.6803 -0.6072 +vn 0.4107 0.6805 -0.6068 +vn -0.3398 -0.7941 0.5040 +vn -0.3398 -0.7941 0.5039 +vn -0.3397 -0.7942 0.5039 +vn -0.2591 0.2587 -0.9305 +vn -0.2591 0.2589 -0.9305 +vn -0.2590 0.2590 -0.9305 +vn -0.8515 -0.1993 -0.4850 +vn -0.8517 -0.1992 -0.4846 +vn -0.8515 -0.1992 -0.4850 +vn 0.9608 0.0600 0.2706 +vn 0.9609 0.0591 0.2705 +vn 0.9607 0.0608 0.2710 +vn -0.8139 -0.0809 -0.5754 +vn -0.8138 -0.0801 -0.5755 +vn -0.8138 -0.0799 -0.5757 +vn -0.1985 0.9689 -0.1480 +vn -0.1986 0.9688 -0.1481 +vn 0.8315 0.0196 0.5551 +vn 0.8310 0.0199 0.5559 +vn 0.8313 0.0197 0.5555 +vn -0.5955 0.7192 -0.3578 +vn -0.5957 0.7192 -0.3576 +vn -0.5955 0.7193 -0.3579 +vn 0.2274 0.9076 0.3528 +vn 0.2277 0.9068 0.3548 +vn 0.2278 0.9071 0.3539 +vn -0.6402 -0.7066 -0.3014 +vn 0.6400 0.1003 -0.7618 +vn 0.6401 0.1004 -0.7617 +vn 0.9295 -0.2957 0.2204 +vn 0.9295 -0.2959 0.2204 +vn 0.3075 -0.7423 0.5953 +vn 0.3075 -0.7421 0.5956 +vn 0.3075 -0.7425 0.5951 +vn 0.1191 -0.6666 0.7359 +vn 0.1200 -0.6683 0.7341 +vn 0.1195 -0.6675 0.7350 +vn 0.2361 -0.2412 0.9413 +vn -0.4575 0.7506 -0.4768 +vn -0.5042 0.6934 -0.5148 +vn -0.5044 0.6932 -0.5148 +vn -0.5040 0.6937 -0.5146 +vn 0.1737 0.9529 -0.2488 +vn 0.1734 0.9529 -0.2489 +vn 0.1735 0.9529 -0.2489 +vn -0.8821 -0.2691 0.3867 +vn -0.8820 -0.2694 0.3867 +vn -0.8821 -0.2693 0.3866 +vn -0.5265 -0.7946 -0.3022 +vn -0.5260 -0.7946 -0.3032 +vn -0.5262 -0.7946 -0.3029 +vn 0.8805 -0.4529 -0.1398 +vn 0.8808 -0.4522 -0.1405 +vn 0.8808 -0.4521 -0.1406 +vn -0.0594 0.9278 -0.3683 +vn -0.5087 -0.2612 0.8204 +vn -0.5090 -0.2613 0.8201 +vn 0.5907 0.7619 -0.2656 +vn 0.1706 -0.9516 0.2558 +vn 0.1704 -0.9516 0.2558 +vn 0.1709 -0.9515 0.2556 +vn -0.5646 0.8189 -0.1030 +vn -0.0224 0.9918 0.1256 +vn -0.0234 0.9919 0.1252 +vn -0.0231 0.9919 0.1252 +vn 0.2407 0.7319 -0.6374 +vn 0.2406 0.7319 -0.6375 +vn 0.2405 0.7320 -0.6374 +vn -0.0548 -0.2265 0.9725 +vn -0.0547 -0.2264 0.9725 +vn -0.1044 0.1640 0.9809 +vn -0.1042 0.1644 0.9809 +vn -0.1042 0.1633 0.9811 +vn 0.8677 -0.4557 0.1984 +vn 0.8678 -0.4557 0.1983 +vn -0.2063 -0.9781 0.0285 +vn -0.2033 -0.9787 0.0279 +vn -0.2070 -0.9779 0.0297 +vn -0.8418 -0.2972 -0.4507 +vn -0.8419 -0.2970 -0.4506 +vn -0.8419 -0.2971 -0.4505 +vn 0.3787 0.7476 0.5456 +vn 0.3786 0.7477 0.5456 +vn -0.9036 -0.3556 -0.2390 +vn -0.9035 -0.3557 -0.2390 +vn -0.3556 0.8354 -0.4191 +vn -0.3550 0.8355 -0.4193 +vn -0.3553 0.8355 -0.4191 +vn 0.2823 -0.3584 0.8899 +vn 0.2822 -0.3586 0.8898 +vn 0.2827 -0.3581 0.8898 +vn 0.9586 -0.0823 0.2726 +vn 0.9580 -0.0839 0.2742 +vn 0.9579 -0.0860 0.2741 +vn -0.4779 0.7380 -0.4764 +vn 0.3993 -0.8693 0.2914 +vn 0.3992 -0.8693 0.2914 +vn 0.3998 -0.8691 0.2914 +vn 0.2076 0.8766 0.4341 +vn 0.0056 -0.9704 -0.2416 +vn 0.0061 -0.9703 -0.2417 +vn 0.0060 -0.9704 -0.2413 +vn -0.0471 -0.9820 -0.1830 +vn -0.0470 -0.9819 -0.1837 +vn -0.0468 -0.9818 -0.1841 +vn 0.5989 -0.8005 -0.0245 +vn 0.5989 -0.8004 -0.0245 +vn 0.5990 -0.8004 -0.0247 +vn 0.1849 0.9784 0.0922 +vn 0.1845 0.9785 0.0922 +vn 0.1846 0.9785 0.0922 +vn -0.9493 -0.2271 0.2174 +vn -0.0770 -0.2347 0.9690 +vn 0.4170 -0.8691 0.2661 +vn 0.4157 -0.8696 0.2665 +vn 0.4175 -0.8691 0.2654 +vn 0.3951 0.2729 0.8772 +vn 0.3942 0.2725 0.8777 +vn -0.6093 -0.7896 -0.0722 +vn -0.6093 -0.7897 -0.0722 +vn 0.3501 -0.8879 0.2985 +vn 0.3505 -0.8878 0.2983 +vn 0.3504 -0.8878 0.2983 +vn 0.7360 0.6759 -0.0395 +vn 0.7359 0.6759 -0.0396 +vn 0.7359 0.6760 -0.0397 +vn -0.2035 -0.1271 0.9708 +vn -0.2033 -0.1274 0.9708 +vn 0.3138 -0.2947 0.9026 +vn 0.4501 0.8922 -0.0382 +vn 0.4501 0.8922 -0.0379 +vn 0.4504 0.8920 -0.0381 +vn 0.4310 0.0057 0.9023 +vn 0.4312 0.0055 0.9022 +vn 0.4310 0.0056 0.9023 +vn 0.1207 0.2070 -0.9709 +vn 0.1208 0.2071 -0.9708 +vn 0.1207 0.2074 -0.9708 +vn 0.0065 -0.9881 -0.1535 +vn 0.0063 -0.9881 -0.1538 +vn 0.0067 -0.9881 -0.1535 +vn 0.1837 0.9806 -0.0684 +vn 0.1835 0.9806 -0.0683 +vn 0.7148 0.6915 0.1046 +vn -0.5759 0.5468 0.6078 +vn -0.3065 -0.8221 -0.4798 +vn -0.3066 -0.8221 -0.4797 +vn -0.4478 -0.4542 -0.7702 +vn -0.4442 -0.4553 -0.7716 +vn -0.4455 -0.4551 -0.7710 +vn 0.9402 -0.2345 0.2470 +vn 0.9406 -0.2344 0.2457 +vn 0.9404 -0.2342 0.2464 +vn -0.9430 0.2500 -0.2197 +vn -0.9431 0.2494 -0.2198 +vn 0.0283 -0.0191 0.9994 +vn 0.0279 -0.0197 0.9994 +vn 0.0280 -0.0195 0.9994 +vn -0.8318 0.5059 -0.2284 +vn 0.1604 0.2087 0.9647 +vn 0.1605 0.2084 0.9648 +vn -0.7095 0.6653 -0.2323 +vn -0.7099 0.6650 -0.2322 +vn -0.7096 0.6652 -0.2323 +vn 0.4298 0.7014 0.5686 +vn 0.4297 0.7018 0.5682 +vn 0.4292 0.7022 0.5681 +vn -0.4100 0.2303 0.8825 +vn -0.4101 0.2301 0.8825 +vn -0.4102 0.2302 0.8825 +vn 0.0876 -0.9633 -0.2537 +vn 0.0876 -0.9633 -0.2536 +vn -0.9875 -0.1063 0.1165 +vn -0.9874 -0.1065 0.1167 +vn -0.9874 -0.1066 0.1169 +vn -0.1281 0.8440 -0.5208 +vn -0.1280 0.8440 -0.5209 +vn 0.0059 0.6523 0.7579 +vn 0.0050 0.6525 0.7578 +vn 0.8061 0.5405 0.2409 +vn 0.8060 0.5406 0.2410 +vn 0.7274 -0.6846 0.0467 +vn 0.7275 -0.6845 0.0467 +vn 0.7276 -0.6844 0.0467 +vn -0.4503 -0.6906 -0.5659 +vn -0.4504 -0.6906 -0.5659 +vn -0.4502 -0.6906 -0.5660 +vn -0.3710 0.5304 -0.7622 +vn -0.3710 0.5305 -0.7622 +vn -0.5193 -0.2936 -0.8026 +vn -0.5195 -0.2937 -0.8024 +vn -0.5196 -0.2935 -0.8024 +vn 0.0032 0.9849 -0.1731 +vn 0.0035 0.9849 -0.1730 +vn -0.5253 -0.8306 -0.1848 +vn -0.5252 -0.8306 -0.1849 +vn -0.5254 -0.8305 -0.1848 +vn -0.5255 -0.8241 -0.2112 +vn -0.5249 -0.8247 -0.2106 +vn -0.5252 -0.8245 -0.2108 +vn 0.3990 -0.1066 0.9107 +vn 0.3988 -0.1064 0.9108 +vn -0.5673 -0.6724 -0.4754 +vn -0.5673 -0.6720 -0.4760 +vn -0.5672 -0.6723 -0.4757 +vn 0.0474 0.9908 0.1269 +vn 0.0473 0.9908 0.1271 +vn 0.0475 0.9908 0.1267 +vn 0.5072 -0.6158 0.6030 +vn 0.5242 0.1871 -0.8308 +vn -0.4833 -0.0847 -0.8714 +vn -0.4826 -0.0842 -0.8718 +vn -0.4830 -0.0844 -0.8715 +vn 0.0387 0.0416 -0.9984 +vn 0.0387 0.0419 -0.9984 +vn 0.0391 0.0429 -0.9983 +vn -0.9173 0.3545 0.1812 +vn -0.7707 0.5649 -0.2948 +vn -0.7706 0.5651 -0.2947 +vn -0.7706 0.5650 -0.2948 +vn 0.7524 -0.6579 -0.0332 +vn -0.7817 -0.1213 -0.6117 +vn -0.7819 -0.1209 -0.6115 +vn -0.7813 -0.1216 -0.6122 +vn 0.7493 0.2496 0.6134 +vn 0.7490 0.2499 0.6137 +vn 0.7492 0.2497 0.6135 +vn -0.1496 -0.5780 -0.8022 +vn -0.1491 -0.5779 -0.8024 +vn -0.1494 -0.5779 -0.8023 +vn 0.5448 -0.4999 -0.6733 +vn 0.5449 -0.5002 -0.6730 +vn 0.5447 -0.5000 -0.6733 +vn 0.7983 0.0487 -0.6003 +vn 0.7983 0.0491 -0.6002 +vn 0.7983 0.0489 -0.6003 +vn -0.3939 0.9009 0.1824 +vn -0.3934 0.9012 0.1820 +vn -0.3931 0.9013 0.1818 +vn -0.9941 0.0264 -0.1056 +vn -0.5214 0.6215 -0.5847 +vn -0.5207 0.6228 -0.5839 +vn -0.5210 0.6221 -0.5844 +vn 0.6584 -0.4366 -0.6131 +vn 0.6599 -0.4368 -0.6113 +vn 0.6599 -0.4368 -0.6114 +vn 0.2009 0.7599 0.6183 +vn 0.2012 0.7594 0.6187 +vn 0.2010 0.7596 0.6185 +vn -0.5443 -0.2697 0.7944 +vn -0.5444 -0.2696 0.7943 +vn 0.2824 -0.9504 0.1303 +vn 0.2827 -0.9504 0.1300 +vn 0.2826 -0.9504 0.1301 +vn 0.6798 0.1116 -0.7248 +vn 0.6795 0.1105 -0.7253 +vn 0.6798 0.1117 -0.7248 +vn -0.7741 0.4534 -0.4419 +vn -0.7738 0.4525 -0.4433 +vn -0.7741 0.4529 -0.4424 +vn 0.7808 -0.5856 0.2178 +vn 0.7809 -0.5855 0.2177 +vn 0.5427 0.7707 -0.3339 +vn 0.5426 0.7706 -0.3343 +vn 0.2194 -0.5046 -0.8350 +vn 0.2198 -0.5045 -0.8350 +vn 0.2196 -0.5049 -0.8348 +vn -0.7121 -0.6938 -0.1069 +vn -0.1972 0.3054 -0.9316 +vn -0.1962 0.3063 -0.9315 +vn -0.1950 0.3065 -0.9317 +vn 0.0071 0.9950 -0.0999 +vn 0.0075 0.9950 -0.0999 +vn 0.0068 0.9950 -0.0997 +vn 0.5259 -0.8439 -0.1063 +vn 0.5260 -0.8438 -0.1063 +vn 0.8495 0.0808 -0.5214 +vn 0.8497 0.0791 -0.5213 +vn 0.8496 0.0774 -0.5218 +vn -0.2383 0.1760 -0.9551 +vn -0.2378 0.1767 -0.9551 +vn -0.2382 0.1760 -0.9551 +vn 0.2294 -0.0291 0.9729 +vn 0.2290 -0.0293 0.9730 +vn 0.2286 -0.0295 0.9731 +vn -0.0000 -0.0000 -1.0000 +vn 0.2946 -0.4388 0.8489 +vn 0.2947 -0.4388 0.8489 +vn -0.8400 0.3056 0.4484 +vn -0.8401 0.3052 0.4485 +vn -0.8401 0.3054 0.4483 +vn -0.7930 0.2391 -0.5603 +vn -0.3413 0.7917 -0.5066 +vn -0.3413 0.7917 -0.5067 +vn 0.3379 0.0125 0.9411 +vn 0.3378 0.0126 0.9411 +vn 0.3380 0.0124 0.9411 +vn 0.8251 0.4842 0.2912 +vn 0.6484 -0.2045 0.7333 +vn -0.3969 0.8306 -0.3905 +vn -0.0999 0.7266 0.6798 +vn -0.0999 0.7267 0.6797 +vn -0.0998 0.7266 0.6798 +vn 0.8685 0.4519 0.2037 +vn 0.8685 0.4520 0.2037 +vn 0.8684 0.4521 0.2037 +vn -0.0645 0.7330 0.6772 +vn -0.0646 0.7327 0.6775 +vn -0.0643 0.7319 0.6784 +vn -0.8518 0.4259 -0.3050 +vn -0.8518 0.4259 -0.3051 +vn -0.8518 0.4259 -0.3052 +vn -0.3519 0.8551 -0.3808 +vn -0.3521 0.8550 -0.3808 +vn -0.3512 0.8556 -0.3803 +vn -0.3499 -0.4872 0.8002 +vn -0.7003 -0.7080 -0.0912 +vn -0.7003 -0.7080 -0.0911 +vn -0.9468 0.2455 0.2081 +vn -0.9468 0.2461 0.2073 +vn -0.9468 0.2460 0.2075 +vn 0.9029 0.1710 -0.3944 +vn 0.9026 0.1711 -0.3951 +vn 0.9025 0.1711 -0.3953 +vn 0.5053 0.8479 -0.1605 +vn 0.5052 0.8480 -0.1605 +vn 0.2207 0.8430 -0.4906 +vn 0.2208 0.8411 -0.4938 +vn 0.2211 0.8419 -0.4922 +vn 0.3390 0.2263 0.9132 +vn 0.3388 0.2261 0.9133 +vn -0.1568 0.3291 -0.9312 +vn -0.1567 0.3287 -0.9313 +vn -0.1568 0.3290 -0.9312 +vn 0.4188 0.0471 0.9069 +vn 0.4192 0.0464 0.9067 +vn 0.4181 0.0476 0.9072 +vn -0.6470 0.4702 -0.6003 +vn 0.0973 -0.0482 -0.9941 +vn 0.0963 -0.0490 -0.9941 +vn 0.0967 -0.0486 -0.9941 +vn 0.5430 0.7220 -0.4288 +vn 0.5430 0.7221 -0.4287 +vn -0.3633 -0.9227 -0.1287 +vn -0.3634 -0.9227 -0.1287 +vn -0.7296 -0.3430 0.5916 +vn -0.7297 -0.3429 0.5916 +vn -0.7259 0.3870 0.5686 +vn -0.7259 0.3877 0.5682 +vn -0.7259 0.3875 0.5683 +vn -0.4414 -0.8676 0.2291 +vn -0.2297 -0.1326 -0.9642 +vn -0.2298 -0.1322 -0.9642 +vn -0.2296 -0.1325 -0.9642 +vn -0.2650 0.6611 -0.7019 +vn -0.2650 0.6610 -0.7021 +vn -0.2649 0.6610 -0.7021 +vn -0.4634 0.7501 0.4718 +vn -0.4633 0.7501 0.4719 +vn 0.9311 0.1037 0.3496 +vn 0.9313 0.1043 0.3489 +vn 0.9310 0.1026 0.3503 +vn -0.0905 0.1276 -0.9877 +vn -0.7989 0.5900 -0.1168 +vn -0.7990 0.5898 -0.1171 +vn -0.7991 0.5896 -0.1172 +vn -0.9283 0.3261 -0.1788 +vn 0.4263 0.5282 -0.7343 +vn 0.4265 0.5281 -0.7343 +vn 0.4263 0.5285 -0.7342 +vn -0.4570 -0.5693 -0.6834 +vn -0.4574 -0.5699 -0.6826 +vn -0.4582 -0.5702 -0.6819 +vn -0.2763 0.9252 0.2600 +vn -0.2766 0.9252 0.2598 +vn 0.2182 0.8876 0.4057 +vn -0.0713 -0.0603 0.9956 +vn -0.0715 -0.0605 0.9956 +vn 0.6586 0.7134 -0.2395 +vn 0.6588 0.7133 -0.2392 +vn -0.2056 0.5982 -0.7745 +vn -0.2061 0.5978 -0.7747 +vn -0.1604 -0.6423 0.7495 +vn -0.1605 -0.6424 0.7494 +vn 0.3865 -0.9062 0.1717 +vn 0.3865 -0.9061 0.1719 +vn 0.3865 -0.9061 0.1720 +vn -0.7296 -0.1939 0.6558 +vn -0.8149 -0.4976 -0.2973 +vn -0.8148 -0.4973 -0.2979 +vn -0.8085 -0.4995 -0.3111 +vn -0.8084 -0.4995 -0.3113 +vn -0.8088 -0.4994 -0.3106 +vn 0.1409 0.9780 0.1539 +vn -0.0154 -0.2971 -0.9547 +vn -0.0152 -0.2965 -0.9549 +vn -0.0151 -0.2965 -0.9549 +vn 0.5897 -0.4007 0.7012 +vn 0.5895 -0.4006 0.7014 +vn 0.5901 -0.4010 0.7007 +vn 0.3572 0.9199 0.1620 +vn 0.3595 0.9192 0.1610 +vn 0.3583 0.9196 0.1612 +vn 0.5075 0.5656 -0.6500 +vn 0.5074 0.5652 -0.6505 +vn 0.5076 0.5652 -0.6503 +vn 0.5629 -0.6929 0.4505 +vn 0.3208 0.9471 -0.0026 +vn -0.5434 -0.5854 -0.6016 +vn -0.5427 -0.5866 -0.6011 +vn -0.5432 -0.5858 -0.6015 +vn 0.2398 0.1470 -0.9596 +vn 0.2397 0.1471 -0.9596 +vn 0.2396 0.1472 -0.9596 +vn -0.0904 0.0897 -0.9919 +vn -0.0904 0.0898 -0.9919 +vn -0.0902 0.0899 -0.9919 +vn -0.8672 0.1437 -0.4768 +vn -0.8338 -0.0976 -0.5434 +vn -0.8338 -0.0977 -0.5433 +vn -0.8337 -0.0975 -0.5436 +vn -0.8189 -0.0549 -0.5712 +vn -0.8189 -0.0565 -0.5712 +vn -0.8190 -0.0561 -0.5710 +vn -0.8215 0.1338 -0.5543 +vn -0.8218 0.1326 -0.5542 +vn 0.7164 0.6964 0.0428 +vn 0.7163 0.6965 0.0429 +vn 0.7159 0.6969 0.0430 +vn -0.1696 0.9487 0.2669 +vn -0.1701 0.9485 0.2674 +vn -0.1700 0.9485 0.2673 +vn -0.2592 0.6221 -0.7388 +vn -0.2591 0.6219 -0.7390 +vn -0.2592 0.6219 -0.7389 +vn 0.0803 0.8347 -0.5449 +vn 0.0803 0.8351 -0.5443 +vn 0.0815 0.8367 -0.5415 +vn 0.2696 -0.5610 0.7827 +vn 0.2705 -0.5610 0.7824 +vn 0.2698 -0.5610 0.7826 +vn -0.4036 -0.3599 0.8412 +vn -0.4039 -0.3600 0.8410 +vn -0.2719 0.9317 -0.2409 +vn -0.2721 0.9316 -0.2411 +vn -0.2717 0.9317 -0.2411 +vn -0.0490 -0.2494 0.9672 +vn -0.0485 -0.2487 0.9674 +vn -0.0728 -0.2818 0.9567 +vn -0.0730 -0.2820 0.9566 +vn -0.0736 -0.2827 0.9564 +vn 0.2430 0.0793 0.9668 +vn -0.0736 -0.1047 0.9918 +vn -0.0737 -0.1047 0.9918 +vn -0.0737 -0.1048 0.9918 +vn -0.0080 0.6832 0.7302 +vn -0.0077 0.6830 0.7304 +vn -0.0072 0.6828 0.7305 +vn 0.2247 0.9692 -0.1004 +vn 0.2247 0.9692 -0.1011 +vn 0.2246 0.9692 -0.1007 +vn 0.9798 0.1799 -0.0874 +vn -0.8230 0.3741 -0.4275 +vn -0.8229 0.3743 -0.4274 +vn -0.8229 0.3742 -0.4276 +vn -0.8928 -0.1837 -0.4113 +vn 0.2201 0.9565 -0.1916 +vn 0.2205 0.9563 -0.1917 +vn 0.2202 0.9564 -0.1918 +vn 0.3072 -0.2723 0.9119 +vn 0.3071 -0.2721 0.9120 +vn 0.3074 -0.2722 0.9118 +vn 0.3614 0.9314 -0.0430 +vn 0.3612 0.9315 -0.0432 +vn 0.3610 0.9316 -0.0435 +vn 0.0169 0.8635 -0.5041 +vn 0.0173 0.8635 -0.5040 +vn 0.0166 0.8634 -0.5042 +vn 0.1908 -0.3830 0.9038 +vn 0.1917 -0.3830 0.9037 +vn 0.1916 -0.3831 0.9036 +vn -0.0863 -0.6387 0.7646 +vn -0.0859 -0.6387 0.7646 +vn -0.0857 -0.6386 0.7647 +vn -0.8289 0.5528 0.0861 +vn -0.8292 0.5521 0.0873 +vn -0.8286 0.5533 0.0855 +vn -0.0003 0.0003 -1.0000 +vn 0.2665 -0.1865 0.9456 +vn 0.6355 -0.6178 0.4631 +vn 0.6353 -0.6185 0.4624 +vn 0.6357 -0.6178 0.4629 +vn -0.0179 0.9993 -0.0328 +vn -0.0182 0.9993 -0.0330 +vn -0.0177 0.9993 -0.0327 +vn 0.4694 0.7718 0.4290 +vn 0.4696 0.7717 0.4289 +vn -0.1136 -0.2898 0.9503 +vn -0.1137 -0.2897 0.9503 +vn -0.1131 -0.2897 0.9504 +vn -0.3408 0.0089 0.9401 +vn -0.3410 0.0085 0.9400 +vn -0.3410 0.0089 0.9400 +vn -0.7811 0.2572 -0.5689 +vn 0.1863 0.8872 -0.4221 +vn 0.1866 0.8874 -0.4216 +vn 0.1863 0.8873 -0.4219 +vn -0.0396 0.9978 0.0536 +vn -0.0398 0.9978 0.0531 +vn -0.0396 0.9978 0.0533 +vn 0.6359 0.7661 -0.0931 +vn 0.6358 0.7662 -0.0931 +vn 0.0143 0.4080 0.9129 +vn 0.0457 0.9756 0.2148 +vn 0.0576 0.3309 0.9419 +vn 0.0569 0.3315 0.9417 +vn 0.0582 0.3308 0.9419 +vn 0.7956 0.4752 0.3758 +vn 0.7957 0.4752 0.3756 +vn 0.1399 0.7710 0.6213 +vn 0.1396 0.7711 0.6212 +vn 0.1386 0.7715 0.6209 +vn -0.0610 0.9928 -0.1030 +vn -0.0601 0.9929 -0.1028 +vn -0.0615 0.9928 -0.1029 +vn 0.1916 0.0062 -0.9814 +vn 0.1917 0.0059 -0.9814 +vn 0.1920 0.0059 -0.9814 +vn 0.8950 -0.0390 0.4444 +vn 0.8950 -0.0390 0.4443 +vn 0.8688 -0.2434 -0.4313 +vn 0.8688 -0.2436 -0.4312 +vn 0.5126 -0.1740 0.8408 +vn 0.5127 -0.1744 0.8407 +vn -0.4537 0.2761 -0.8473 +vn -0.4534 0.2761 -0.8474 +vn -0.4536 0.2761 -0.8473 +vn 0.6754 -0.4587 0.5774 +vn -0.4959 -0.7171 0.4897 +vn -0.4960 -0.7169 0.4900 +vn -0.4956 -0.7172 0.4899 +vn -0.7270 -0.4040 0.5552 +vn -0.7271 -0.4037 0.5553 +vn -0.7270 -0.4039 0.5553 +vn -0.3086 0.9007 -0.3058 +vn -0.2008 0.9678 -0.1516 +vn 0.6065 0.7297 -0.3158 +vn 0.6065 0.7298 -0.3156 +vn 0.2472 0.9500 -0.1907 +vn 0.2473 0.9501 -0.1901 +vn 0.2474 0.9500 -0.1905 +vn -0.7617 0.3691 -0.5326 +vn -0.7620 0.3694 -0.5318 +vn -0.7618 0.3695 -0.5321 +vn 0.6197 -0.4050 0.6723 +vn 0.6193 -0.4051 0.6726 +vn 0.6063 -0.4067 0.6833 +vn 0.6066 -0.4066 0.6832 +vn -0.9587 0.1294 -0.2534 +vn -0.9587 0.1297 -0.2533 +vn -0.9586 0.1295 -0.2535 +vn -0.9400 0.3005 -0.1616 +vn -0.9400 0.2998 -0.1631 +vn -0.9400 0.3002 -0.1620 +vn 0.2739 0.4596 0.8448 +vn 0.2768 0.4740 0.8359 +vn 0.2773 0.4753 0.8350 +vn 0.2663 0.9639 0.0020 +vn 0.2665 0.9638 0.0019 +vn -0.3520 -0.7027 -0.6183 +vn -0.3524 -0.7042 -0.6164 +vn -0.3520 -0.7031 -0.6178 +vn -0.1137 -0.2665 -0.9571 +vn -0.1136 -0.2661 -0.9572 +vn -0.1132 -0.2658 -0.9574 +vn -0.8006 0.4911 -0.3434 +vn -0.8004 0.4911 -0.3437 +vn -0.8002 0.4910 -0.3444 +vn 0.4487 0.4953 -0.7438 +vn 0.4490 0.4955 -0.7435 +vn 0.4490 0.4953 -0.7437 +vn -0.7041 0.5084 -0.4957 +vn -0.7042 0.5084 -0.4956 +vn -0.7044 0.5084 -0.4953 +vn 0.9517 -0.0583 -0.3015 +vn 0.9516 -0.0585 -0.3016 +vn 0.9516 -0.0588 -0.3016 +vn 0.7527 -0.4223 0.5051 +vn 0.7527 -0.4224 0.5050 +vn 0.3400 0.3589 -0.8693 +vn 0.3398 0.3594 -0.8691 +vn 0.3400 0.3598 -0.8689 +vn -0.1044 0.3604 -0.9269 +vn -0.1041 0.3607 -0.9269 +vn -0.1043 0.3603 -0.9270 +vn -0.1171 0.0770 0.9901 +vn -0.6588 0.6808 -0.3203 +vn -0.6587 0.6809 -0.3201 +vn -0.6587 0.6810 -0.3198 +vn -0.2727 -0.9532 -0.1305 +vn -0.2728 -0.9532 -0.1305 +vn -0.8253 0.4208 -0.3766 +vn -0.8252 0.4213 -0.3762 +vn -0.8253 0.4210 -0.3764 +vn 0.1918 0.9693 0.1536 +vn 0.1917 0.9694 0.1535 +vn 0.5965 0.7439 0.3012 +vn 0.5965 0.7440 0.3012 +vn -0.9685 -0.2480 0.0242 +vn -0.9684 -0.2481 0.0243 +vn -0.9685 -0.2479 0.0241 +vn -0.5168 -0.7937 0.3208 +vn -0.5169 -0.7939 0.3203 +vn -0.5168 -0.7937 0.3209 +vn 0.6028 -0.2166 0.7679 +vn 0.6027 -0.2164 0.7681 +vn 0.3855 -0.0650 0.9204 +vn 0.3855 -0.0648 0.9204 +vn -0.0384 0.0012 0.9993 +vn -0.0382 0.0004 0.9993 +vn -0.0375 -0.0005 0.9993 +vn 0.2501 0.6157 -0.7472 +vn 0.2502 0.6157 -0.7472 +vn 0.8212 -0.3077 0.4806 +vn 0.8212 -0.3077 0.4805 +vn 0.6886 0.3298 -0.6458 +vn 0.6884 0.3299 -0.6460 +vn 0.6886 0.3297 -0.6459 +vn -0.8828 -0.4633 0.0779 +vn -0.8830 -0.4629 0.0773 +vn -0.8828 -0.4631 0.0787 +vn -0.6725 0.4287 -0.6033 +vn -0.6722 0.4287 -0.6036 +vn -0.6723 0.4287 -0.6035 +vn -0.8070 -0.5775 0.1231 +vn -0.8074 -0.5770 0.1228 +vn -0.8072 -0.5773 0.1231 +vn -0.6206 -0.7781 -0.0971 +vn -0.6205 -0.7782 -0.0969 +vn -0.6206 -0.7781 -0.0967 +vn 0.4084 0.9112 -0.0544 +vn 0.4077 0.9114 -0.0552 +vn 0.4082 0.9112 -0.0548 +vn -0.4048 0.6325 0.6603 +vn -0.4044 0.6321 0.6610 +vn 0.0064 -0.4428 -0.8966 +vn 0.0079 -0.4408 -0.8976 +vn 0.0074 -0.4413 -0.8973 +vn -0.5179 -0.2488 -0.8185 +vn -0.5180 -0.2492 -0.8183 +vn -0.5178 -0.2488 -0.8185 +vn 0.9175 0.3824 0.1096 +vn 0.9174 0.3830 0.1078 +vn 0.9175 0.3827 0.1084 +vn 0.1767 0.7761 -0.6054 +vn -0.1657 0.9601 -0.2252 +vn -0.1660 0.9602 -0.2248 +vn -0.1658 0.9602 -0.2249 +vn -0.7560 -0.4874 -0.4368 +vn -0.7562 -0.4884 -0.4355 +vn -0.7562 -0.4878 -0.4360 +vn 0.7748 0.2486 -0.5813 +vn 0.7738 0.2489 -0.5824 +vn 0.7745 0.2486 -0.5817 +vn 0.1119 -0.0565 0.9921 +vn 0.1117 -0.0570 0.9921 +vn 0.1119 -0.0564 0.9921 +vn -0.4897 -0.8586 -0.1517 +vn -0.4896 -0.8586 -0.1518 +vn -0.5558 0.3423 -0.7576 +vn -0.5559 0.3421 -0.7576 +vn -0.2328 0.9313 -0.2801 +vn -0.2330 0.9313 -0.2800 +vn -0.2333 0.9313 -0.2798 +vn 0.1990 0.9374 0.2858 +vn 0.1989 0.9374 0.2858 +vn 0.4603 0.8600 0.2202 +vn 0.4600 0.8601 0.2204 +vn 0.4944 0.8661 -0.0735 +vn 0.4944 0.8661 -0.0737 +vn 0.4944 0.8661 -0.0738 +vn 0.9795 0.1845 0.0806 +vn 0.9795 0.1847 0.0799 +vn 0.9795 0.1855 0.0788 +vn 0.5593 -0.7979 0.2249 +vn -0.1939 -0.9765 0.0941 +vn -0.1939 -0.9765 0.0940 +vn 0.2871 0.9560 -0.0603 +vn 0.2883 0.9555 -0.0618 +vn 0.2880 0.9557 -0.0609 +vn -0.0466 -0.2733 0.9608 +vn 0.3222 0.8900 0.3226 +vn 0.3223 0.8901 0.3224 +vn 0.3221 0.8900 0.3228 +vn 0.3398 -0.8601 0.3804 +vn 0.3398 -0.8599 0.3809 +vn -0.8879 0.4542 -0.0732 +vn -0.1633 0.9635 0.2123 +vn -0.1644 0.9630 0.2137 +vn -0.1640 0.9633 0.2126 +vn -0.4500 -0.8682 -0.2094 +vn -0.4501 -0.8680 -0.2098 +vn -0.8218 -0.3945 -0.4111 +vn -0.8217 -0.3941 -0.4117 +vn -0.8218 -0.3943 -0.4114 +vn -0.6256 -0.7305 -0.2740 +vn -0.6255 -0.7305 -0.2740 +vn 0.0905 0.6786 0.7289 +vn 0.0911 0.6785 0.7289 +vn 0.0906 0.6786 0.7289 +vn 0.8448 -0.3659 0.3903 +vn 0.8447 -0.3659 0.3906 +vn 0.3406 0.7617 -0.5512 +vn 0.3403 0.7618 -0.5512 +vn 0.3402 0.7616 -0.5515 +vn -0.4812 -0.3358 -0.8098 +vn -0.4812 -0.3366 -0.8094 +vn -0.4811 -0.3362 -0.8096 +vn -0.8499 0.3368 -0.4051 +vn 0.9473 0.1105 0.3008 +vn 0.5945 -0.6360 0.4921 +vn 0.5945 -0.6361 0.4919 +vn 0.5947 -0.6360 0.4917 +vn 0.8103 0.0749 0.5812 +vn 0.8097 0.0749 0.5821 +vn 0.8101 0.0750 0.5814 +vn -0.1690 0.9561 0.2394 +vn -0.1690 0.9561 0.2395 +vn 0.2554 0.7910 -0.5560 +vn 0.2553 0.7908 -0.5563 +vn 0.2553 0.7909 -0.5561 +vn -0.4503 -0.8258 -0.3394 +vn -0.4503 -0.8258 -0.3395 +vn 0.4521 -0.7301 0.5125 +vn 0.4520 -0.7301 0.5125 +vn -0.9117 -0.2386 -0.3345 +vn -0.9118 -0.2382 -0.3346 +vn -0.9118 -0.2384 -0.3345 +vn -0.6965 0.6473 0.3096 +vn -0.6961 0.6482 0.3087 +vn -0.6962 0.6480 0.3089 +vn -0.2644 -0.4838 0.8343 +vn -0.2638 -0.4835 0.8347 +vn -0.2640 -0.4837 0.8345 +vn 0.8153 -0.5495 0.1826 +vn -0.9903 -0.0109 -0.1385 +vn -0.9903 -0.0108 -0.1387 +vn -0.9903 -0.0112 -0.1384 +vn -0.4077 0.1084 0.9067 +vn -0.4082 0.1079 0.9065 +vn -0.4076 0.1085 0.9067 +vn -0.2366 0.1467 0.9605 +vn -0.2366 0.1463 0.9605 +vn -0.2365 0.1459 0.9606 +vn 0.0947 -0.9511 -0.2940 +vn 0.0952 -0.9511 -0.2939 +vn -0.4195 -0.9077 0.0056 +vn -0.4189 -0.9080 0.0060 +vn -0.4192 -0.9079 0.0059 +vn 0.0218 -0.7357 0.6770 +vn -0.0658 0.8882 0.4546 +vn -0.8151 0.5723 0.0900 +vn -0.8154 0.5720 0.0898 +vn -0.8153 0.5720 0.0900 +vn -0.8568 0.2543 -0.4486 +vn -0.8567 0.2547 -0.4487 +vn -0.8568 0.2544 -0.4485 +vn 0.6858 -0.7269 0.0349 +vn 0.6861 -0.7267 0.0351 +vn 0.6860 -0.7268 0.0352 +vn 0.5774 0.3004 -0.7592 +vn 0.5773 0.3005 -0.7592 +vn 0.5771 0.3007 -0.7593 +vn 0.7357 -0.6141 0.2858 +vn 0.7352 -0.6147 0.2856 +vn 0.7354 -0.6144 0.2857 +vn 0.2048 0.0367 0.9781 +vn 0.2049 0.0369 0.9781 +vn 0.2049 0.0365 0.9781 +vn -0.1024 -0.4397 -0.8923 +vn -0.1026 -0.4397 -0.8923 +vn -0.1026 -0.4396 -0.8923 +vn 0.4147 -0.1443 0.8984 +vn 0.4154 -0.1440 0.8982 +vn 0.4139 -0.1448 0.8987 +vn 0.5239 0.8353 -0.1670 +vn 0.5238 0.8353 -0.1672 +vn 0.5237 0.8354 -0.1668 +vn 0.2322 0.9695 -0.0786 +vn 0.2325 0.9694 -0.0787 +vn 0.2322 0.9695 -0.0789 +vn 0.0362 0.3870 0.9214 +vn 0.0365 0.3873 0.9212 +vn 0.8277 0.2364 0.5089 +vn 0.8278 0.2366 0.5087 +vn 0.8277 0.2368 0.5087 +vn -0.6156 -0.6615 -0.4284 +vn -0.6155 -0.6616 -0.4284 +vn -0.6155 -0.6615 -0.4285 +vn 0.1346 0.8520 -0.5060 +vn 0.1348 0.8519 -0.5061 +vn -0.9008 -0.1995 0.3856 +vn -0.9010 -0.1993 0.3853 +vn -0.9010 -0.1993 0.3854 +vn 0.5254 -0.8402 -0.1344 +vn 0.5255 -0.8401 -0.1345 +vn 0.5253 -0.8403 -0.1343 +vn 0.6610 0.4113 -0.6276 +vn 0.6610 0.4117 -0.6273 +vn 0.6611 0.4110 -0.6277 +vn -0.0196 -0.8881 -0.4592 +vn -0.0194 -0.8881 -0.4592 +vn -0.0198 -0.8882 -0.4590 +vn -0.7013 -0.7108 -0.0546 +vn -0.7013 -0.7108 -0.0547 +vn -0.7012 -0.7108 -0.0548 +vn -0.5856 -0.8105 -0.0129 +vn -0.5858 -0.8103 -0.0128 +vn 0.9002 -0.3334 0.2803 +vn -0.7262 -0.6823 -0.0844 +vn -0.7265 -0.6820 -0.0842 +vn -0.8988 -0.2593 -0.3536 +vn -0.8988 -0.2593 -0.3535 +vn 0.0265 0.1980 0.9798 +vn 0.4349 -0.1399 0.8895 +vn 0.4350 -0.1398 0.8895 +vn 0.4352 -0.1396 0.8895 +vn -0.2175 -0.7795 -0.5874 +vn -0.2175 -0.7796 -0.5872 +vn -0.2175 -0.7796 -0.5873 +vn 0.8667 -0.1394 0.4789 +vn 0.8667 -0.1394 0.4790 +vn 0.8669 -0.1391 0.4787 +vn 0.1993 -0.0431 -0.9790 +vn 0.1990 -0.0431 -0.9790 +vn 0.1992 -0.0430 -0.9790 +vn 0.8434 -0.2282 0.4864 +vn 0.8435 -0.2282 0.4863 +vn 0.8433 -0.2279 0.4868 +vn 0.7543 0.0188 -0.6563 +vn 0.7531 0.0189 -0.6576 +vn 0.7536 0.0188 -0.6571 +vn 0.3249 -0.9456 -0.0160 +vn -0.4218 -0.8701 -0.2549 +vn -0.4211 -0.8698 -0.2571 +vn -0.4213 -0.8702 -0.2555 +vn -0.3724 -0.8386 -0.3976 +vn -0.3715 -0.8386 -0.3984 +vn -0.3720 -0.8386 -0.3980 +vn -0.7341 -0.3686 -0.5704 +vn 0.3382 -0.6915 0.6383 +vn 0.3382 -0.6917 0.6381 +vn 0.3382 -0.6913 0.6385 +vn -0.6603 -0.7352 -0.1533 +vn -0.6601 -0.7354 -0.1528 +vn 0.9189 0.3744 -0.1241 +vn -0.6717 0.6254 -0.3971 +vn -0.6716 0.6251 -0.3977 +vn -0.6718 0.6255 -0.3968 +vn -0.8882 -0.3697 -0.2728 +vn -0.8884 -0.3702 -0.2715 +vn -0.8887 -0.3699 -0.2708 +vn 0.6530 0.7340 0.1866 +vn 0.6527 0.7343 0.1863 +vn -0.4353 0.8528 0.2886 +vn -0.4349 0.8530 0.2885 +vn -0.4351 0.8529 0.2885 +vn -0.5222 -0.8416 -0.1376 +vn -0.5223 -0.8416 -0.1374 +vn -0.5220 -0.8418 -0.1376 +vn 0.7024 0.6402 0.3109 +vn 0.7024 0.6403 0.3109 +vn 0.7030 0.6396 0.3110 +vn -0.0326 0.9013 0.4319 +vn -0.0326 0.9013 0.4320 +vn -0.0326 0.9012 0.4321 +vn 0.3823 0.6227 -0.6827 +vn -0.0332 -0.9117 -0.4095 +vn -0.0331 -0.9117 -0.4096 +vn 0.1127 0.9931 -0.0335 +vn 0.1125 0.9931 -0.0332 +vn -0.9526 0.0425 0.3013 +vn -0.9524 0.0428 0.3017 +vn -0.9526 0.0423 0.3014 +vn -0.2296 -0.0096 0.9732 +vn -0.2302 -0.0095 0.9731 +vn -0.2308 -0.0088 0.9730 +vn -0.2420 -0.0562 -0.9686 +vn -0.2421 -0.0557 -0.9686 +vn -0.2422 -0.0555 -0.9686 +vn -0.9192 -0.2261 -0.3224 +vn -0.9192 -0.2263 -0.3224 +vn -0.9190 -0.2268 -0.3225 +vn -0.6764 0.6563 0.3344 +vn 0.6249 -0.3899 -0.6764 +vn 0.0997 -0.0347 0.9944 +vn 0.0997 -0.0349 0.9944 +vn 0.0996 -0.0350 0.9944 +vn 0.5063 0.7767 -0.3746 +vn -0.9203 -0.2385 -0.3102 +vn -0.9198 -0.2378 -0.3121 +vn -0.9204 -0.2404 -0.3083 +vn 0.0909 -0.8939 0.4390 +vn 0.0908 -0.8938 0.4392 +vn 0.0910 -0.8939 0.4390 +vn 0.0605 0.5054 -0.8608 +vn 0.0607 0.5065 -0.8601 +vn 0.0604 0.5060 -0.8604 +vn -0.8758 -0.2052 0.4369 +vn 0.5582 -0.7718 0.3045 +vn 0.5581 -0.7720 0.3041 +vn 0.5585 -0.7720 0.3034 +vn 0.4532 -0.8187 0.3527 +vn 0.4531 -0.8188 0.3524 +vn 0.4535 -0.8187 0.3523 +vn 0.5411 -0.4790 -0.6912 +vn 0.5414 -0.4789 -0.6910 +vn 0.5417 -0.4790 -0.6908 +vn -0.5992 0.7670 0.2294 +vn -0.5993 0.7669 0.2295 +vn -0.6518 0.3614 -0.6668 +vn -0.6517 0.3614 -0.6668 +vn 0.3852 -0.0877 0.9187 +vn 0.3850 -0.0877 0.9187 +vn 0.3642 0.1811 0.9135 +vn 0.3634 0.1810 0.9139 +vn 0.3648 0.1808 0.9134 +vn 0.2169 0.1901 0.9575 +vn -0.8883 0.4295 -0.1627 +vn -0.8884 0.4295 -0.1622 +vn -0.8884 0.4296 -0.1621 +vn 0.4384 -0.4065 0.8016 +vn 0.4385 -0.4063 0.8016 +vn -0.7142 0.6386 -0.2867 +vn -0.7146 0.6379 -0.2870 +vn -0.7139 0.6390 -0.2865 +vn 0.2409 0.5473 0.8015 +vn 0.2404 0.5468 0.8020 +vn 0.2408 0.5471 0.8017 +vn -0.0558 -0.7523 -0.6564 +vn -0.0564 -0.7526 -0.6561 +vn -0.0559 -0.7524 -0.6564 +vn 0.2429 0.8968 -0.3698 +vn 0.2428 0.8968 -0.3698 +vn -0.7311 0.6074 -0.3108 +vn -0.5818 -0.8126 0.0359 +vn -0.7075 0.5711 -0.4163 +vn -0.7074 0.5711 -0.4164 +vn -0.7075 0.5712 -0.4161 +vn 0.1672 0.2702 -0.9482 +vn 0.1680 0.2700 -0.9481 +vn 0.1668 0.2704 -0.9482 +vn -0.0244 0.9131 -0.4071 +vn -0.0245 0.9131 -0.4070 +vn -0.0247 0.9131 -0.4069 +vn -0.0980 0.9525 0.2883 +vn -0.0981 0.9525 0.2884 +vn -0.7368 -0.4250 0.5258 +vn -0.7378 -0.4247 0.5246 +vn -0.7357 -0.4245 0.5278 +vn 0.4752 -0.8799 0.0009 +vn 0.4752 -0.8799 0.0011 +vn 0.1778 0.9035 -0.3900 +vn 0.1782 0.9036 -0.3896 +vn 0.1782 0.9036 -0.3895 +vn 0.7280 0.4070 0.5517 +vn 0.4831 0.5000 -0.7188 +vn 0.4831 0.4998 -0.7189 +vn 0.4830 0.4999 -0.7189 +vn 0.3982 -0.2244 -0.8894 +vn 0.3984 -0.2243 -0.8894 +vn 0.3988 -0.2243 -0.8892 +vn 0.1221 -0.9272 -0.3542 +vn 0.1228 -0.9275 -0.3532 +vn 0.1229 -0.9276 -0.3527 +vn 0.8980 0.3475 -0.2700 +vn 0.8979 0.3474 -0.2702 +vn 0.8980 0.3475 -0.2698 +vn -0.3727 0.3462 -0.8610 +vn -0.3729 0.3463 -0.8608 +vn -0.3728 0.3462 -0.8609 +vn -0.5908 0.3266 -0.7378 +vn -0.5902 0.3269 -0.7381 +vn -0.5908 0.3267 -0.7377 +vn -0.7837 -0.5778 0.2279 +vn -0.7836 -0.5781 0.2277 +vn -0.7837 -0.5777 0.2280 +vn -0.2438 0.8108 -0.5322 +vn -0.2437 0.8108 -0.5322 +vn -0.2443 0.8110 -0.5316 +vn -0.3405 -0.7638 -0.5484 +vn -0.3406 -0.7638 -0.5483 +vn -0.3403 -0.7638 -0.5484 +vn -0.6871 0.5272 -0.4999 +vn -0.6872 0.5274 -0.4996 +vn -0.6871 0.5269 -0.5003 +vn 0.9512 0.2100 -0.2261 +vn 0.9513 0.2101 -0.2257 +vn 0.9512 0.2101 -0.2259 +vn 0.8548 0.0958 -0.5101 +vn 0.8547 0.0951 -0.5104 +vn 0.8542 0.0946 -0.5112 +vn 0.3092 -0.3345 0.8902 +vn 0.3094 -0.3346 0.8901 +vn 0.3089 -0.3345 0.8903 +vn -0.0432 -0.0392 0.9983 +vn -0.0428 -0.0395 0.9983 +vn -0.0433 -0.0392 0.9983 +vn -0.0821 0.5989 -0.7966 +vn -0.8368 0.5415 -0.0808 +vn -0.9034 -0.1601 -0.3978 +vn -0.9034 -0.1601 -0.3977 +vn -0.9035 -0.1599 -0.3977 +vn 0.8863 0.3016 -0.3515 +vn 0.8861 0.3018 -0.3518 +vn 0.8860 0.3019 -0.3520 +vn -0.8124 -0.5687 -0.1292 +vn 0.4298 0.3768 0.8205 +vn 0.4300 0.3774 0.8202 +vn 0.4300 0.3773 0.8202 +vn 0.1631 -0.5248 -0.8355 +vn 0.1632 -0.5246 -0.8356 +vn 0.1632 -0.5243 -0.8357 +vn -0.3878 -0.7843 -0.4842 +vn -0.3881 -0.7843 -0.4840 +vn -0.3880 -0.7843 -0.4841 +vn -0.3068 0.8876 -0.3435 +vn -0.3070 0.8875 -0.3437 +vn -0.5413 0.6641 -0.5157 +vn -0.5415 0.6636 -0.5161 +vn -0.5413 0.6637 -0.5162 +vn -0.0160 0.9710 -0.2384 +vn -0.0160 0.9710 -0.2387 +vn -0.0163 0.9709 -0.2391 +vn 0.4502 0.8703 -0.2000 +vn 0.4498 0.8705 -0.1998 +vn 0.4507 0.8700 -0.2001 +vn -0.2068 0.7243 -0.6578 +vn -0.2068 0.7245 -0.6575 +vn -0.2072 0.7233 -0.6587 +vn -0.2836 0.7791 -0.5590 +vn -0.2835 0.7792 -0.5590 +vn -0.2834 0.7792 -0.5591 +vn -0.3554 -0.5632 0.7460 +vn -0.3550 -0.5633 0.7461 +vn -0.3549 -0.5633 0.7462 +vn 0.9309 0.2455 -0.2705 +vn 0.9311 0.2457 -0.2697 +vn 0.9310 0.2453 -0.2702 +vn 0.8291 0.4752 0.2947 +vn 0.8291 0.4751 0.2948 +vn 0.8292 0.4750 0.2947 +vn 0.5755 0.7800 -0.2459 +vn 0.8685 -0.1239 0.4800 +vn 0.8682 -0.1238 0.4805 +vn -0.2644 0.4062 0.8747 +vn -0.2642 0.4061 0.8748 +vn -0.2643 0.4063 0.8747 +vn 0.1365 0.9657 -0.2211 +vn 0.1364 0.9656 -0.2212 +vn 0.1363 0.9656 -0.2214 +vn -0.2503 0.8056 -0.5370 +vn -0.2499 0.8056 -0.5372 +vn -0.2493 0.8053 -0.5380 +vn 0.3369 0.5250 -0.7816 +vn 0.3360 0.5245 -0.7823 +vn 0.3371 0.5256 -0.7811 +vn -0.2499 0.1719 -0.9529 +vn -0.2498 0.1720 -0.9529 +vn -0.2497 0.1722 -0.9529 +vn 0.9219 0.2679 0.2797 +vn 0.9221 0.2677 0.2795 +vn 0.9219 0.2680 0.2798 +vn 0.9160 0.3812 -0.1247 +vn 0.9160 0.3813 -0.1250 +vn 0.9160 0.3812 -0.1250 +vn -0.3888 0.7828 -0.4859 +vn -0.3890 0.7824 -0.4863 +vn 0.7419 0.5407 -0.3964 +vn 0.7418 0.5409 -0.3964 +vn 0.7421 0.5404 -0.3965 +vn -0.2296 0.8824 -0.4106 +vn -0.2296 0.8823 -0.4108 +vn -0.2293 0.8825 -0.4107 +vn -0.5169 -0.6135 0.5970 +vn 0.6120 0.6726 -0.4160 +vn 0.6115 0.6731 -0.4160 +vn 0.6124 0.6721 -0.4162 +vn 0.4209 -0.8250 0.3771 +vn 0.4208 -0.8250 0.3773 +vn 0.4210 -0.8250 0.3770 +vn 0.2321 0.9546 0.1865 +vn 0.2324 0.9546 0.1866 +vn 0.2322 0.9546 0.1866 +vn 0.5712 0.6375 0.5170 +vn 0.5712 0.6380 0.5164 +vn 0.5709 0.6373 0.5176 +vn -0.1721 0.4145 -0.8936 +vn -0.1725 0.4149 -0.8934 +vn -0.1716 0.4143 -0.8938 +vn 0.5243 0.4621 -0.7152 +vn 0.5243 0.4624 -0.7150 +vn 0.5245 0.4622 -0.7151 +vn 0.1876 -0.1287 0.9738 +vn -0.7593 0.4003 0.5131 +vn -0.7383 -0.5150 -0.4355 +vn -0.7385 -0.5149 -0.4353 +vn 0.0318 0.9825 0.1834 +vn -0.6223 -0.0744 0.7793 +vn -0.6221 -0.0743 0.7794 +vn -0.6215 -0.0738 0.7799 +vn -0.0342 -0.0563 -0.9978 +vn -0.0330 -0.0560 -0.9979 +vn -0.0331 -0.0558 -0.9979 +vn 0.0341 -0.4322 -0.9011 +vn 0.0342 -0.4318 -0.9013 +vn 0.4446 0.3158 0.8382 +vn 0.4440 0.3155 0.8387 +vn 0.4434 0.3155 0.8390 +vn -0.2555 -0.1865 -0.9487 +vn -0.2557 -0.1867 -0.9486 +vn -0.2557 -0.1869 -0.9485 +vn 0.5172 0.6818 0.5174 +vn 0.5172 0.6808 0.5186 +vn 0.5172 0.6819 0.5172 +vn -0.4278 0.8961 0.1180 +vn 0.5225 0.6813 0.5126 +vn 0.5227 0.6812 0.5127 +vn 0.5230 0.6809 0.5127 +vn 0.5990 -0.7534 0.2713 +vn 0.5989 -0.7534 0.2713 +vn 0.6703 -0.4613 -0.5813 +vn 0.6701 -0.4614 -0.5814 +vn 0.6706 -0.4611 -0.5811 +vn -0.2659 0.7813 -0.5647 +vn -0.2660 0.7813 -0.5647 +vn 0.1435 0.5866 -0.7971 +vn 0.1434 0.5866 -0.7971 +vn 0.5246 0.0190 -0.8511 +vn 0.5248 0.0190 -0.8510 +vn 0.5241 0.0191 -0.8514 +vn -0.2512 0.7951 -0.5519 +vn 0.9177 0.2754 0.2864 +vn 0.9176 0.2755 0.2865 +vn 0.9175 0.2756 0.2867 +vn 0.8208 0.5145 0.2481 +vn 0.8211 0.5130 0.2502 +vn 0.8208 0.5140 0.2492 +vn -0.7487 0.2340 -0.6202 +vn -0.7487 0.2343 -0.6201 +vn -0.7486 0.2342 -0.6202 +vn -0.3811 0.4001 -0.8335 +vn -0.3813 0.4001 -0.8334 +vn -0.3814 0.4001 -0.8333 +vn 0.2439 0.5082 0.8260 +vn 0.2440 0.5082 0.8260 +vn -0.0983 0.3401 -0.9352 +vn -0.0982 0.3402 -0.9352 +vn 0.3428 0.9216 -0.1822 +vn -0.1998 0.7334 -0.6498 +vn -0.1950 0.7350 -0.6494 +vn -0.1980 0.7344 -0.6492 +vn 0.8585 -0.5121 -0.0273 +vn 0.8584 -0.5122 -0.0272 +vn -0.0422 0.9391 -0.3411 +vn -0.0423 0.9392 -0.3408 +vn -0.0421 0.9393 -0.3405 +vn -0.2144 0.2618 0.9410 +vn -0.2143 0.2618 0.9410 +vn 0.5403 -0.2298 0.8095 +vn 0.5402 -0.2298 0.8095 +vn 0.5400 -0.2293 0.8098 +vn 0.1777 -0.3016 0.9367 +vn -0.8909 -0.3746 0.2569 +vn -0.8907 -0.3749 0.2572 +vn -0.8908 -0.3748 0.2571 +vn 0.3225 -0.6123 0.7218 +vn 0.3227 -0.6123 0.7218 +vn 0.3868 -0.7093 0.5893 +vn 0.3865 -0.7091 0.5897 +vn 0.3867 -0.7091 0.5896 +vn -0.3502 -0.1258 0.9282 +vn -0.3501 -0.1255 0.9283 +vn -0.2064 -0.6249 0.7529 +vn -0.2063 -0.6249 0.7529 +vn 0.2388 0.7158 0.6562 +vn 0.6886 -0.5092 0.5163 +vn 0.6882 -0.5101 0.5159 +vn 0.6885 -0.5094 0.5162 +vn 0.5910 -0.2203 0.7760 +vn 0.5918 -0.2195 0.7756 +vn 0.5888 -0.2217 0.7773 +vn -0.4730 0.0787 -0.8776 +vn -0.4730 0.0789 -0.8775 +vn -0.4731 0.0789 -0.8774 +vn -0.6927 -0.3167 0.6480 +vn -0.6925 -0.3167 0.6481 +vn -0.6925 -0.3169 0.6481 +vn -0.3382 -0.6332 0.6962 +vn -0.8885 0.4589 -0.0060 +vn -0.8884 0.4590 -0.0061 +vn -0.8884 0.4591 -0.0061 +vn 0.5902 0.3860 0.7090 +vn 0.5903 0.3860 0.7089 +vn 0.5905 0.3862 0.7086 +vn -0.1393 0.9507 0.2770 +vn -0.1393 0.9507 0.2771 +vn -0.1395 0.9507 0.2771 +vn -0.8652 -0.2687 0.4233 +vn -0.8651 -0.2690 0.4233 +vn -0.8647 -0.2698 0.4236 +vn 0.7061 -0.6862 -0.1746 +vn 0.7061 -0.6863 -0.1745 +vn 0.7058 -0.6865 -0.1749 +vn -0.9000 0.4037 -0.1643 +vn -0.9002 0.4033 -0.1643 +vn -0.7572 -0.3154 0.5721 +vn -0.7572 -0.3154 0.5720 +vn -0.7571 -0.3154 0.5722 +vn -0.5342 -0.6162 -0.5787 +vn -0.5355 -0.6167 -0.5770 +vn -0.5327 -0.6135 -0.5830 +vn -0.7480 0.6311 -0.2055 +vn -0.7481 0.6310 -0.2056 +vn -0.7481 0.6309 -0.2056 +vn -0.3459 -0.0675 -0.9358 +vn -0.3456 -0.0674 -0.9360 +vn -0.3456 -0.0673 -0.9360 +vn 0.4721 -0.7775 0.4156 +vn 0.4718 -0.7774 0.4161 +vn 0.4720 -0.7776 0.4154 +vn 0.6658 -0.5776 -0.4723 +vn 0.6659 -0.5776 -0.4722 +vn 0.7443 -0.6655 -0.0554 +vn 0.7446 -0.6652 -0.0556 +vn 0.7445 -0.6653 -0.0555 +vn -0.1204 0.8343 -0.5380 +vn -0.1209 0.8342 -0.5380 +vn -0.3585 -0.0236 -0.9332 +vn -0.3588 -0.0236 -0.9331 +vn -0.3579 -0.0236 -0.9335 +vn 0.7337 -0.4600 -0.5001 +vn 0.7337 -0.4601 -0.4999 +vn 0.7338 -0.4604 -0.4996 +vn 0.6787 -0.3752 0.6314 +vn 0.6789 -0.3752 0.6311 +vn 0.6786 -0.3754 0.6313 +vn -0.0671 0.5873 -0.8066 +vn -0.0661 0.5868 -0.8071 +vn -0.5168 -0.8368 0.1805 +vn -0.5168 -0.8369 0.1804 +vn -0.5169 -0.8368 0.1805 +vn 0.6453 0.3873 0.6585 +vn 0.6457 0.3869 0.6583 +vn 0.6454 0.3870 0.6585 +vn 0.9217 0.3874 0.0194 +vn 0.9217 0.3874 0.0190 +vn -0.5956 -0.4943 -0.6332 +vn -0.5959 -0.4950 -0.6324 +vn -0.5946 -0.4937 -0.6346 +vn -0.2376 0.9670 0.0915 +vn -0.2376 0.9670 0.0918 +vn -0.2375 0.9671 0.0912 +vn 0.3930 0.6298 -0.6700 +vn 0.3932 0.6300 -0.6697 +vn 0.0731 0.9203 0.3844 +vn 0.0720 0.9204 0.3843 +vn 0.0725 0.9204 0.3842 +vn -0.6375 -0.7613 0.1184 +vn -0.6376 -0.7612 0.1185 +vn -0.6373 -0.7615 0.1183 +vn -0.0031 0.8736 -0.4867 +vn -0.0036 0.8734 -0.4869 +vn -0.0032 0.8735 -0.4868 +vn -0.8652 0.3082 -0.3955 +vn -0.8651 0.3084 -0.3957 +vn -0.8651 0.3083 -0.3956 +vn 0.8527 -0.3509 0.3870 +vn 0.8526 -0.3509 0.3872 +vn 0.7605 0.4119 -0.5020 +vn 0.8669 -0.2627 0.4237 +vn 0.8668 -0.2631 0.4236 +vn 0.7772 -0.5991 0.1923 +vn 0.4328 -0.4967 0.7523 +vn 0.4329 -0.4965 0.7524 +vn 0.8260 0.1881 -0.5314 +vn 0.8263 0.1879 -0.5310 +vn 0.8266 0.1876 -0.5306 +vn -0.8757 0.3950 -0.2778 +vn -0.8756 0.3952 -0.2778 +vn -0.8754 0.3953 -0.2783 +vn -0.9379 0.1012 -0.3318 +vn -0.9380 0.1010 -0.3316 +vn -0.9379 0.1011 -0.3318 +vn 0.4190 0.8390 -0.3472 +vn 0.4103 -0.8850 0.2201 +vn -0.4920 -0.8582 -0.1466 +vn -0.0478 0.9987 0.0150 +vn -0.8234 -0.0754 -0.5624 +vn -0.8234 -0.0755 -0.5625 +vn -0.1105 0.9672 -0.2288 +vn -0.1104 0.9672 -0.2287 +vn -0.1103 0.9672 -0.2289 +vn -0.1876 0.7645 -0.6167 +vn -0.1878 0.7644 -0.6168 +vn -0.1875 0.7646 -0.6166 +vn -0.1232 0.0006 -0.9924 +vn 0.8433 -0.0418 0.5359 +vn 0.8430 -0.0417 0.5363 +vn 0.8425 -0.0418 0.5370 +vn 0.7203 0.6677 0.1880 +vn 0.7201 0.6680 0.1876 +vn 0.7199 0.6683 0.1873 +vn 0.8437 -0.2739 0.4616 +vn 0.8436 -0.2740 0.4618 +vn 0.5857 -0.6416 0.4953 +vn 0.5854 -0.6417 0.4955 +vn 0.5859 -0.6414 0.4952 +vn 0.8786 0.2388 0.4136 +vn 0.8787 0.2385 0.4136 +vn 0.8787 0.2386 0.4135 +vn 0.0900 0.9274 0.3631 +vn 0.0899 0.9274 0.3630 +vn 0.0900 0.9273 0.3633 +vn 0.0166 0.4323 -0.9016 +vn 0.0167 0.4324 -0.9015 +vn 0.0171 0.4326 -0.9014 +vn -0.7456 0.4015 0.5319 +vn -0.5782 0.4520 0.6792 +vn -0.5782 0.4516 0.6795 +vn 0.3333 0.9160 -0.2234 +vn 0.3337 0.9157 -0.2237 +vn 0.3336 0.9158 -0.2237 +vn 0.6924 0.7209 -0.0300 +vn 0.4214 0.9069 -0.0014 +vn 0.4216 0.9068 -0.0016 +vn -0.1572 -0.1745 0.9720 +vn -0.1567 -0.1747 0.9721 +vn 0.3820 0.9238 -0.0253 +vn 0.3820 0.9238 -0.0256 +vn 0.3832 0.9233 -0.0242 +vn -0.1017 -0.0981 0.9900 +vn -0.1014 -0.0980 0.9900 +vn -0.5948 -0.1492 0.7899 +vn -0.5946 -0.1490 0.7901 +vn -0.3645 -0.2242 0.9038 +vn -0.3642 -0.2245 0.9039 +vn -0.3644 -0.2244 0.9038 +vn -0.3160 0.1954 0.9284 +vn -0.3159 0.1955 0.9284 +vn -0.3161 0.1952 0.9284 +vn 0.1994 -0.8115 0.5493 +vn 0.1994 -0.8114 0.5494 +vn 0.1994 -0.8113 0.5495 +vn 0.6242 -0.1687 0.7628 +vn 0.6244 -0.1687 0.7627 +vn 0.6245 -0.1684 0.7626 +vn -0.1629 0.9002 0.4038 +vn -0.1638 0.9000 0.4039 +vn -0.1632 0.9002 0.4038 +vn -0.5484 0.1463 0.8233 +vn -0.5473 0.1460 0.8241 +vn -0.5481 0.1464 0.8235 +vn 0.1321 0.7088 -0.6929 +vn 0.1320 0.7088 -0.6929 +vn 0.7580 -0.6175 0.2103 +vn 0.7584 -0.6171 0.2099 +vn 0.7582 -0.6173 0.2100 +vn -0.0490 0.9309 -0.3619 +vn -0.0492 0.9309 -0.3619 +vn 0.6668 -0.3064 0.6794 +vn 0.6667 -0.3066 0.6793 +vn 0.6667 -0.3067 0.6793 +vn 0.1520 0.2060 0.9667 +vn 0.1520 0.2063 0.9666 +vn 0.2032 -0.6591 0.7241 +vn 0.2036 -0.6591 0.7239 +vn 0.2030 -0.6592 0.7241 +vn 0.2707 -0.8710 0.4100 +vn 0.2704 -0.8711 0.4099 +vn 0.2708 -0.8708 0.4103 +vn 0.7484 -0.5181 0.4142 +vn 0.7485 -0.5173 0.4149 +vn 0.7485 -0.5173 0.4148 +vn 0.2836 0.8412 -0.4604 +vn 0.2835 0.8412 -0.4605 +vn 0.2834 0.8410 -0.4609 +vn -0.7485 0.3431 -0.5675 +vn -0.7486 0.3428 -0.5675 +vn -0.7488 0.3425 -0.5675 +vn -0.0461 0.7319 -0.6798 +vn -0.0464 0.7319 -0.6798 +vn -0.0468 0.7319 -0.6798 +vn 0.4101 -0.8672 0.2825 +vn 0.4098 -0.8670 0.2834 +vn 0.4101 -0.8670 0.2832 +vn 0.3147 0.9375 -0.1486 +vn 0.3146 0.9375 -0.1486 +vn 0.3148 0.9375 -0.1486 +vn -0.6177 -0.7659 -0.1787 +vn -0.6178 -0.7658 -0.1787 +vn -0.6179 -0.7658 -0.1784 +vn 0.0300 0.3167 0.9480 +vn 0.0308 0.3178 0.9477 +vn 0.0303 0.3170 0.9479 +vn 0.5705 -0.7954 0.2046 +vn 0.5704 -0.7955 0.2044 +vn -0.1840 -0.9824 0.0317 +vn -0.1847 -0.9823 0.0318 +vn -0.1849 -0.9822 0.0318 +vn -0.3052 -0.4282 0.8506 +vn -0.3046 -0.4287 0.8506 +vn -0.3047 -0.4287 0.8505 +vn -0.2649 0.9260 -0.2690 +vn -0.2651 0.9259 -0.2690 +vn 0.2980 -0.0762 0.9515 +vn 0.2980 -0.0761 0.9515 +vn 0.2980 -0.0760 0.9515 +vn -0.9642 0.2393 0.1140 +vn -0.9642 0.2395 0.1140 +vn 0.5331 -0.8206 0.2061 +vn -0.0898 -0.2991 0.9500 +vn -0.0903 -0.2987 0.9501 +vn -0.0898 -0.2999 0.9497 +vn 0.0464 0.9894 -0.1375 +vn 0.0462 0.9895 -0.1372 +vn 0.0463 0.9895 -0.1370 +vn 0.3576 0.9159 0.1822 +vn 0.9763 0.1865 -0.1099 +vn 0.9763 0.1860 -0.1106 +vn 0.9764 0.1856 -0.1108 +vn -0.2105 0.9776 -0.0012 +vn 0.3664 0.4513 -0.8137 +vn -0.5618 -0.1078 -0.8202 +vn -0.5618 -0.1080 -0.8202 +vn -0.5618 -0.1081 -0.8202 +vn 0.1968 -0.5250 -0.8280 +vn 0.1966 -0.5248 -0.8282 +vn 0.1969 -0.5249 -0.8281 +vn 0.8390 0.1751 0.5152 +vn 0.8390 0.1751 0.5151 +vn 0.8391 0.1751 0.5150 +vn 0.6626 0.7473 0.0504 +vn 0.6618 0.7482 0.0469 +vn 0.6618 0.7481 0.0479 +vn -0.7254 -0.6827 -0.0875 +vn -0.7258 -0.6823 -0.0879 +vn 0.5175 0.7292 0.4478 +vn 0.5174 0.7292 0.4478 +vn 0.5174 0.7293 0.4477 +vn -0.6402 -0.6787 -0.3599 +vn -0.6400 -0.6788 -0.3601 +vn -0.6401 -0.6787 -0.3600 +vn -0.5280 0.4402 0.7263 +vn -0.5282 0.4404 0.7259 +vn -0.5282 0.4403 0.7260 +vn -0.7399 -0.3621 -0.5670 +vn -0.7399 -0.3622 -0.5669 +vn -0.7400 -0.3623 -0.5667 +vn 0.4433 0.8758 0.1909 +vn 0.4430 0.8760 0.1905 +vn 0.4433 0.8758 0.1908 +vn 0.4400 0.3622 -0.8217 +vn 0.4399 0.3624 -0.8217 +vn 0.4404 0.3617 -0.8217 +vn -0.0026 0.8132 -0.5820 +vn -0.0023 0.8134 -0.5817 +vn -0.0022 0.8134 -0.5816 +vn -0.4014 -0.5638 -0.7218 +vn -0.4009 -0.5637 -0.7222 +vn -0.4016 -0.5638 -0.7217 +vn 0.7558 -0.6262 -0.1915 +vn 0.7557 -0.6262 -0.1916 +vn 0.7557 -0.6262 -0.1917 +vn 0.1338 0.9482 -0.2883 +vn 0.1337 0.9482 -0.2881 +vn 0.1339 0.9481 -0.2883 +vn -0.1273 0.9670 0.2206 +vn -0.1270 0.9671 0.2204 +vn 0.5542 -0.2471 0.7949 +vn 0.5541 -0.2469 0.7950 +vn 0.5540 -0.2468 0.7951 +vn -0.8880 -0.3722 -0.2701 +vn -0.8881 -0.3722 -0.2697 +vn 0.2850 -0.9372 -0.2012 +vn 0.2852 -0.9371 -0.2012 +vn 0.2851 -0.9371 -0.2012 +vn -0.9493 0.3135 -0.0236 +vn -0.9493 0.3134 -0.0237 +vn -0.9493 0.3136 -0.0236 +vn -0.7529 0.6161 0.2313 +vn -0.7532 0.6158 0.2313 +vn -0.7530 0.6160 0.2314 +vn -0.3118 -0.8913 -0.3292 +vn -0.3120 -0.8915 -0.3285 +vn -0.3119 -0.8914 -0.3287 +vn 0.2028 0.9398 -0.2750 +vn 0.2031 0.9397 -0.2752 +vn 0.0570 -0.9258 -0.3738 +vn 0.0566 -0.9260 -0.3733 +vn 0.0567 -0.9259 -0.3734 +vn -0.2721 0.3630 0.8912 +vn -0.2718 0.3629 0.8913 +vn -0.2714 0.3627 0.8915 +vn 0.1245 0.9699 -0.2091 +vn -0.5111 -0.7849 -0.3502 +vn -0.5114 -0.7848 -0.3500 +vn -0.5117 -0.7847 -0.3498 +vn -0.1008 -0.9352 -0.3395 +vn -0.1009 -0.9352 -0.3394 +vn -0.1008 -0.9353 -0.3392 +vn 0.2843 -0.1116 0.9522 +vn -0.4459 0.8452 -0.2948 +vn -0.4457 0.8453 -0.2947 +vn -0.4461 0.8451 -0.2948 +vn -0.4162 0.4149 -0.8091 +vn -0.4161 0.4151 -0.8091 +vn -0.4162 0.4148 -0.8091 +vn -0.6649 -0.2496 -0.7040 +vn -0.6647 -0.2497 -0.7042 +vn 0.2122 0.7760 -0.5939 +vn 0.2121 0.7762 -0.5938 +vn 0.7974 0.5738 0.1868 +vn 0.7976 0.5737 0.1863 +vn 0.7975 0.5737 0.1864 +vn 0.4988 -0.8620 -0.0903 +vn 0.4989 -0.8619 -0.0903 +vn 0.0108 0.7260 0.6876 +vn 0.0109 0.7260 0.6876 +vn -0.3884 -0.7419 0.5466 +vn -0.3880 -0.7420 0.5467 +vn -0.3885 -0.7418 0.5466 +vn 0.2468 0.9123 0.3267 +vn 0.2466 0.9125 0.3265 +vn 0.2467 0.9124 0.3267 +vn 0.6910 -0.3487 -0.6332 +vn 0.6907 -0.3490 -0.6333 +vn 0.6905 -0.3492 -0.6335 +vn 0.4261 0.7166 0.5523 +vn 0.4261 0.7164 0.5525 +vn 0.4267 0.7157 0.5529 +vn 0.7146 -0.6991 0.0246 +vn 0.7128 -0.7009 0.0239 +vn 0.7135 -0.7003 0.0240 +vn 0.4811 0.7163 0.5053 +vn 0.4813 0.7163 0.5053 +vn -0.4059 0.7566 0.5126 +vn -0.4058 0.7566 0.5127 +vn -0.8422 0.3741 -0.3883 +vn -0.8426 0.3739 -0.3877 +vn 0.7238 -0.6883 0.0487 +vn 0.7239 -0.6882 0.0488 +vn -0.9298 -0.3121 0.1949 +vn -0.9298 -0.3123 0.1947 +vn -0.9298 -0.3122 0.1949 +vn -0.8602 -0.2883 -0.4207 +vn -0.8599 -0.2889 -0.4208 +vn -0.8603 -0.2877 -0.4208 +vn -0.1492 -0.8287 -0.5395 +vn -0.1501 -0.8284 -0.5396 +vn -0.1508 -0.8281 -0.5400 +vn -0.0726 0.9929 0.0944 +vn -0.5047 0.6895 -0.5194 +vn -0.5043 0.6900 -0.5192 +vn -0.5045 0.6899 -0.5192 +vn -0.2447 0.2428 0.9387 +vn -0.2447 0.2426 0.9388 +vn -0.2447 0.2425 0.9388 +vn 0.3496 0.9364 0.0306 +vn 0.3486 0.9368 0.0294 +vn 0.3498 0.9363 0.0313 +vn -0.3687 0.9293 0.0209 +vn -0.7774 0.2488 -0.5777 +vn -0.7776 0.2493 -0.5772 +vn -0.7768 0.2483 -0.5787 +vn -0.5296 0.7912 -0.3057 +vn -0.5291 0.7915 -0.3060 +vn -0.5298 0.7911 -0.3057 +vn 0.9340 -0.2384 -0.2662 +vn 0.9340 -0.2384 -0.2663 +vn 0.2523 0.9386 -0.2354 +vn 0.2520 0.9388 -0.2350 +vn 0.2516 0.9388 -0.2353 +vn 0.9765 0.2151 -0.0158 +vn 0.9764 0.2152 -0.0156 +vn 0.9765 0.2149 -0.0159 +vn 0.3501 -0.0174 -0.9365 +vn -0.7089 0.2814 0.6468 +vn -0.7086 0.2819 0.6468 +vn -0.7086 0.2820 0.6468 +vn -0.3073 0.0285 -0.9512 +vn 0.1775 0.8493 -0.4971 +vn 0.1797 0.8500 -0.4952 +vn 0.1802 0.8512 -0.4929 +vn -0.0367 0.9968 0.0717 +vn 0.0399 0.9086 -0.4157 +vn 0.0399 0.9085 -0.4159 +vn -0.6353 -0.6290 -0.4481 +vn -0.6352 -0.6291 -0.4480 +vn 0.5734 0.8181 0.0444 +vn -0.6574 -0.7534 -0.0131 +vn -0.6574 -0.7535 -0.0130 +vn -0.6572 -0.7536 -0.0129 +vn -0.5740 0.6748 0.4638 +vn -0.5741 0.6747 0.4639 +vn -0.5743 0.6742 0.4643 +vn -0.8994 -0.0261 -0.4363 +vn -0.8987 -0.0250 -0.4378 +vn -0.8999 -0.0282 -0.4353 +vn -0.5446 0.6422 -0.5395 +vn -0.5448 0.6419 -0.5396 +vn -0.5447 0.6421 -0.5395 +vn 0.4917 0.8535 -0.1726 +vn 0.4918 0.8534 -0.1727 +vn 0.3687 0.8835 -0.2889 +vn 0.3689 0.8834 -0.2890 +vn -0.4659 -0.2953 -0.8341 +vn -0.4644 -0.2961 -0.8347 +vn -0.4634 -0.2971 -0.8348 +vn 0.8850 0.3647 -0.2895 +vn 0.8850 0.3646 -0.2897 +vn 0.1068 0.2170 -0.9703 +vn 0.1067 0.2169 -0.9703 +vn -0.3903 -0.6856 0.6145 +vn -0.3901 -0.6859 0.6143 +vn -0.3902 -0.6857 0.6145 +vn 0.2254 0.9481 -0.2243 +vn 0.2888 0.9401 0.1813 +vn 0.2886 0.9402 0.1812 +vn 0.2885 0.9402 0.1812 +vn 0.7868 0.5933 0.1699 +vn 0.7869 0.5933 0.1699 +vn 0.7868 0.5934 0.1699 +vn -0.8427 0.0381 -0.5371 +vn -0.8427 0.0382 -0.5371 +vn -0.8427 0.0380 -0.5371 +vn 0.0227 -0.9828 0.1831 +vn 0.2001 0.6312 0.7494 +vn 0.2003 0.6314 0.7491 +vn 0.2000 0.6313 0.7493 +vn 0.9377 0.0089 0.3473 +vn 0.9378 0.0082 0.3471 +vn 0.9377 0.0087 0.3473 +vn -0.3013 0.5541 0.7760 +vn -0.3013 0.5546 0.7757 +vn -0.3013 0.5543 0.7759 +vn 0.2655 0.9226 -0.2798 +vn 0.2655 0.9226 -0.2799 +vn 0.2656 0.9226 -0.2798 +vn -0.3009 0.6937 -0.6544 +vn -0.2997 0.6940 -0.6547 +vn -0.2979 0.6953 -0.6541 +vn 0.2050 0.9514 -0.2299 +vn 0.2045 0.9514 -0.2304 +vn 0.2049 0.9514 -0.2299 +vn 0.9546 0.2259 -0.1942 +vn 0.9546 0.2262 -0.1939 +vn -0.4790 0.5765 0.6619 +vn -0.4791 0.5766 0.6618 +vn -0.4794 0.5764 0.6618 +vn 0.3307 0.6265 -0.7058 +vn 0.3311 0.6267 -0.7054 +vn 0.3310 0.6265 -0.7056 +vn 0.2595 -0.8007 0.5399 +vn 0.2603 -0.8005 0.5399 +vn 0.2598 -0.8006 0.5399 +vn 0.0172 0.1898 0.9817 +vn 0.0169 0.1897 0.9817 +vn -0.0104 0.1068 -0.9942 +vn -0.0111 0.1068 -0.9942 +vn -0.0112 0.1068 -0.9942 +vn 0.6995 -0.6199 0.3555 +vn 0.0838 0.2766 0.9573 +vn -0.4443 -0.8233 0.3533 +vn 0.2638 0.8711 -0.4142 +vn 0.2637 0.8711 -0.4142 +vn 0.2636 0.8712 -0.4142 +vn -0.2161 0.6412 -0.7363 +vn -0.6838 0.0601 -0.7272 +vn -0.6839 0.0601 -0.7271 +vn -0.6830 0.0601 -0.7280 +vn -0.8940 0.0757 -0.4415 +vn -0.8940 0.0758 -0.4417 +vn -0.2786 -0.9496 -0.1437 +vn 0.3391 0.3190 -0.8850 +vn 0.3390 0.3189 -0.8851 +vn 0.3389 0.3191 -0.8851 +vn 0.5421 0.7079 0.4527 +vn -0.4381 0.8146 0.3802 +vn -0.4380 0.8143 0.3808 +vn -0.4378 0.8143 0.3811 +vn 0.2086 -0.8275 -0.5213 +vn 0.2084 -0.8274 -0.5215 +vn 0.2085 -0.8275 -0.5213 +vn -0.2454 -0.6360 -0.7317 +vn -0.2455 -0.6361 -0.7315 +vn -0.2454 -0.6362 -0.7315 +vn -0.2209 -0.7530 -0.6199 +vn -0.2210 -0.7536 -0.6190 +vn -0.2211 -0.7531 -0.6196 +vn -0.1185 -0.6752 0.7281 +vn -0.1192 -0.6754 0.7277 +vn -0.1187 -0.6753 0.7279 +vn -0.0191 0.0419 0.9989 +vn -0.0196 0.0426 0.9989 +vn -0.0208 0.0438 0.9988 +vn -0.8310 -0.3555 -0.4278 +vn -0.8311 -0.3556 -0.4277 +vn -0.4611 0.1909 -0.8666 +vn -0.4605 0.1909 -0.8669 +vn -0.4618 0.1914 -0.8661 +vn 0.2857 0.2659 0.9207 +vn 0.2855 0.2657 0.9208 +vn 0.2853 0.2656 0.9209 +vn 0.1846 0.7039 -0.6859 +vn 0.1846 0.7038 -0.6860 +vn 0.1846 0.7036 -0.6862 +vn 0.7084 0.4907 -0.5074 +vn 0.7083 0.4905 -0.5077 +vn 0.7079 0.4905 -0.5083 +vn 0.7564 0.6020 0.2559 +vn 0.7564 0.6020 0.2558 +vn 0.3196 -0.8510 0.4168 +vn 0.3200 -0.8506 0.4173 +vn 0.3195 -0.8512 0.4163 +vn -0.4524 -0.3996 -0.7973 +vn -0.4523 -0.3997 -0.7973 +vn -0.4521 -0.3999 -0.7973 +vn -0.5211 -0.4016 -0.7531 +vn 0.9475 0.0577 -0.3145 +vn 0.9473 0.0594 -0.3149 +vn 0.9474 0.0584 -0.3148 +vn 0.7116 0.4471 0.5420 +vn 0.7116 0.4470 0.5420 +vn -0.4458 -0.3479 -0.8248 +vn -0.4458 -0.3480 -0.8247 +vn -0.4647 0.2957 -0.8346 +vn -0.4650 0.2962 -0.8343 +vn -0.4651 0.2965 -0.8341 +vn 0.5697 -0.5344 0.6243 +vn 0.5694 -0.5345 0.6246 +vn 0.5695 -0.5345 0.6245 +vn -0.1754 -0.1384 -0.9747 +vn -0.1747 -0.1379 -0.9749 +vn -0.1743 -0.1375 -0.9750 +vn 0.7752 0.6003 0.1969 +vn 0.1475 0.8965 0.4177 +vn 0.1481 0.8965 0.4177 +vn -0.1031 0.0147 -0.9946 +vn -0.1023 0.0141 -0.9947 +vn -0.1026 0.0146 -0.9946 +vn -0.0057 0.4316 -0.9021 +vn -0.0061 0.4316 -0.9020 +vn -0.0056 0.4315 -0.9021 +vn 0.9726 0.1489 -0.1787 +vn 0.9726 0.1488 -0.1788 +vn 0.9725 0.1487 -0.1790 +vn 0.7252 0.3774 0.5759 +vn 0.7251 0.3775 0.5759 +vn 0.7251 0.3775 0.5760 +vn 0.4704 0.8128 0.3436 +vn 0.4700 0.8130 0.3436 +vn 0.4707 0.8128 0.3434 +vn -0.8294 0.5353 0.1596 +vn -0.8295 0.5351 0.1597 +vn -0.1434 -0.2321 0.9621 +vn -0.1436 -0.2322 0.9620 +vn -0.8216 0.0441 -0.5683 +vn -0.8217 0.0439 -0.5683 +vn 0.5177 -0.7748 -0.3629 +vn 0.5176 -0.7748 -0.3630 +vn 0.5178 -0.7748 -0.3628 +vn 0.1654 -0.0714 0.9836 +vn 0.1655 -0.0712 0.9836 +vn 0.1654 -0.0713 0.9837 +vn 0.4213 0.1313 0.8974 +vn 0.4214 0.1311 0.8974 +vn 0.4212 0.1314 0.8974 +vn -0.8073 0.4307 -0.4035 +vn -0.8072 0.4307 -0.4036 +vn -0.3765 -0.2435 -0.8939 +vn -0.3769 -0.2436 -0.8937 +vn 0.5323 0.8437 0.0698 +vn 0.5325 0.8435 0.0706 +vn 0.5326 0.8434 0.0707 +vn 0.3246 -0.8352 0.4438 +vn 0.3249 -0.8355 0.4431 +vn 0.3249 -0.8354 0.4433 +vn -0.3078 0.8963 -0.3192 +vn -0.0184 0.5220 0.8528 +vn -0.0188 0.5220 0.8527 +vn -0.0191 0.5221 0.8527 +vn -0.4397 0.3169 -0.8404 +vn -0.4398 0.3168 -0.8404 +vn -0.4399 0.3165 -0.8404 +vn 0.2443 0.8097 -0.5337 +vn -0.2212 -0.7170 0.6610 +vn -0.2213 -0.7174 0.6606 +vn -0.2213 -0.7172 0.6608 +vn 0.7526 -0.6465 -0.1251 +vn 0.7523 -0.6469 -0.1251 +vn 0.7528 -0.6463 -0.1250 +vn -0.0969 0.8477 -0.5215 +vn -0.0970 0.8477 -0.5216 +vn 0.0719 -0.9679 -0.2409 +vn 0.0719 -0.9678 -0.2411 +vn 0.6332 -0.4325 0.6418 +vn 0.6334 -0.4324 0.6418 +vn 0.6331 -0.4327 0.6418 +vn -0.2735 -0.3051 0.9122 +vn -0.2737 -0.3052 0.9121 +vn -0.2739 -0.3052 0.9121 +vn 0.2752 0.9445 -0.1793 +vn 0.2753 0.9445 -0.1794 +vn -0.8949 0.4111 -0.1735 +vn -0.8939 0.4123 -0.1759 +vn -0.8938 0.4112 -0.1788 +vn -0.2966 -0.6668 0.6837 +vn -0.2969 -0.6666 0.6837 +vn -0.2965 -0.6669 0.6837 +vn 0.1473 0.9884 -0.0370 +vn 0.1463 0.9886 -0.0366 +vn 0.1454 0.9887 -0.0366 +vn -0.1033 0.0588 0.9929 +vn -0.1033 0.0591 0.9929 +vn -0.1037 0.0587 0.9929 +vn 0.2844 0.4785 -0.8307 +vn 0.2846 0.4783 -0.8308 +vn -0.6240 0.0634 -0.7788 +vn -0.6241 0.0636 -0.7788 +vn -0.0649 0.9970 -0.0429 +vn -0.1774 0.8604 0.4777 +vn -0.1775 0.8604 0.4777 +vn -0.1773 0.8604 0.4777 +vn -0.4210 -0.2762 0.8640 +vn -0.4213 -0.2759 0.8640 +vn -0.4211 -0.2761 0.8640 +vn -0.3764 0.8861 0.2706 +vn -0.3757 0.8862 0.2712 +vn -0.3763 0.8861 0.2707 +vn 0.7017 -0.4508 0.5516 +vn 0.2917 -0.7779 0.5565 +vn 0.2921 -0.7777 0.5566 +vn 0.2917 -0.7780 0.5565 +vn -0.9148 0.3875 0.1138 +vn -0.9147 0.3875 0.1146 +vn -0.9148 0.3875 0.1141 +vn 0.6379 -0.5948 -0.4892 +vn -0.1551 0.8521 -0.4999 +vn -0.5914 0.7182 -0.3667 +vn -0.6092 0.5973 -0.5216 +vn -0.6090 0.5973 -0.5219 +vn -0.3158 -0.0656 -0.9466 +vn -0.6614 -0.7420 -0.1095 +vn -0.6607 -0.7425 -0.1101 +vn -0.6613 -0.7421 -0.1095 +vn -0.4661 -0.5893 -0.6599 +vn -0.4665 -0.5894 -0.6596 +vn 0.4599 -0.8747 -0.1526 +vn 0.4599 -0.8747 -0.1527 +vn 0.4597 -0.8748 -0.1529 +vn -0.1148 -0.9876 -0.1071 +vn -0.1149 -0.9876 -0.1073 +vn -0.1146 -0.9876 -0.1072 +vn -0.5094 0.8080 -0.2960 +vn -0.5094 0.8080 -0.2961 +vn -0.5093 0.8081 -0.2960 +vn 0.1758 0.9842 -0.0187 +vn 0.1764 0.9841 -0.0185 +vn 0.6406 0.7646 0.0713 +vn 0.6405 0.7646 0.0713 +vn 0.6407 0.7645 0.0712 +vn -0.6855 -0.5421 -0.4860 +vn 0.9818 -0.1256 0.1428 +vn 0.9817 -0.1256 0.1430 +vn 0.9818 -0.1256 0.1426 +vn 0.0450 -0.3767 0.9252 +vn 0.0450 -0.3771 0.9251 +vn 0.0451 -0.3770 0.9251 +vn -0.7701 0.5441 0.3329 +vn -0.7699 0.5443 0.3331 +vn -0.7700 0.5442 0.3331 +vn 0.5777 0.5490 -0.6040 +vn 0.5795 0.5482 -0.6031 +vn 0.5800 0.5482 -0.6025 +vn 0.5909 0.5365 -0.6025 +vn 0.5908 0.5373 -0.6019 +vn 0.5908 0.5369 -0.6022 +vn -0.7266 0.4533 0.5163 +vn -0.7266 0.4535 0.5162 +vn -0.7265 0.4534 0.5164 +vn 0.0670 0.9969 -0.0410 +vn 0.0671 0.9969 -0.0412 +vn 0.0670 0.9969 -0.0408 +vn 0.3699 0.4997 -0.7833 +vn 0.2171 0.0959 0.9714 +vn -0.6736 -0.7349 -0.0787 +vn -0.6735 -0.7350 -0.0784 +vn -0.6733 -0.7351 -0.0787 +vn -0.6435 0.7436 -0.1816 +vn -0.6435 0.7436 -0.1815 +vn -0.6436 0.7435 -0.1815 +vn 0.0621 -0.9827 -0.1746 +vn 0.0635 -0.9825 -0.1753 +vn 0.0638 -0.9824 -0.1756 +vn 0.6172 0.4534 0.6431 +vn 0.6173 0.4530 0.6432 +vn 0.6172 0.4532 0.6431 +vn -0.1241 -0.2681 -0.9554 +vn -0.1245 -0.2683 -0.9553 +vn -0.1245 -0.2682 -0.9553 +vn 0.2850 -0.4683 -0.8363 +vn 0.2849 -0.4685 -0.8363 +vn 0.2847 -0.4687 -0.8362 +vn -0.4435 0.5466 0.7103 +vn -0.4435 0.5474 0.7097 +vn -0.4434 0.5472 0.7099 +vn -0.2411 0.0134 0.9704 +vn -0.2408 0.0137 0.9705 +vn 0.8290 -0.3265 0.4541 +vn 0.0857 0.3545 -0.9311 +vn 0.0856 0.3544 -0.9312 +vn 0.0857 0.3548 -0.9310 +vn 0.8022 -0.0271 0.5964 +vn 0.9944 -0.0914 -0.0537 +vn 0.9945 -0.0911 -0.0510 +vn 0.9946 -0.0918 -0.0484 +vn -0.1334 0.9204 -0.3676 +vn -0.1333 0.9204 -0.3675 +vn -0.1331 0.9204 -0.3677 +vn 0.5481 0.5155 0.6587 +vn 0.5485 0.5147 0.6590 +vn 0.5486 0.5144 0.6591 +vn 0.8829 -0.2886 0.3705 +vn 0.8826 -0.2888 0.3709 +vn 0.8825 -0.2891 0.3710 +vn -0.9003 0.0267 -0.4344 +vn -0.9002 0.0267 -0.4347 +vn -0.9004 0.0267 -0.4342 +vn 0.2546 -0.8183 0.5154 +vn 0.2547 -0.8183 0.5152 +vn 0.9493 0.0684 -0.3069 +vn 0.9493 0.0682 -0.3069 +vn -0.0143 0.3262 -0.9452 +vn -0.0146 0.3260 -0.9453 +vn -0.7901 0.3948 -0.4690 +vn -0.7910 0.3936 -0.4684 +vn -0.7892 0.3965 -0.4689 +vn 0.0836 -0.5594 -0.8247 +vn 0.0840 -0.5586 -0.8252 +vn 0.0839 -0.5590 -0.8249 +vn 0.5363 -0.8288 0.1598 +vn -0.4905 -0.8536 -0.1753 +vn -0.4905 -0.8536 -0.1755 +vn -0.4907 -0.8535 -0.1754 +vn -0.4109 0.9107 -0.0423 +vn -0.4106 0.9108 -0.0418 +vn -0.4115 0.9104 -0.0428 +vn 0.9549 -0.0208 0.2961 +vn 0.9551 -0.0207 0.2954 +vn 0.9550 -0.0208 0.2959 +vn -0.8562 0.5064 0.1021 +vn -0.8563 0.5062 0.1025 +vn 0.5197 0.5492 0.6545 +vn 0.5200 0.5489 0.6545 +vn 0.5198 0.5490 0.6545 +vn -0.8040 0.5356 -0.2585 +vn -0.8040 0.5357 -0.2581 +vn -0.8039 0.5356 -0.2588 +vn 0.4511 -0.7542 0.4772 +vn 0.4509 -0.7542 0.4773 +vn 0.4505 -0.7543 0.4776 +vn 0.6362 -0.6250 0.4523 +vn 0.6366 -0.6252 0.4516 +vn 0.6364 -0.6250 0.4521 +vn 0.6459 0.5990 0.4733 +vn 0.6460 0.5989 0.4732 +vn 0.6450 0.5996 0.4738 +vn -0.3869 0.9208 0.0486 +vn -0.3869 0.9209 0.0486 +vn -0.3867 0.9209 0.0485 +vn 0.2252 0.9287 0.2947 +vn 0.2253 0.9286 0.2949 +vn 0.2254 0.9285 0.2950 +vn 0.7361 0.2604 -0.6248 +vn 0.7354 0.2610 -0.6253 +vn 0.6998 0.4269 -0.5727 +vn 0.6996 0.4273 -0.5727 +vn 0.6994 0.4278 -0.5726 +vn -0.5924 -0.7588 -0.2709 +vn -0.5926 -0.7586 -0.2707 +vn -0.9963 0.0855 0.0002 +vn -0.9963 0.0856 0.0002 +vn 0.9646 -0.1481 0.2182 +vn 0.9646 -0.1471 0.2189 +vn 0.9646 -0.1475 0.2187 +vn 0.0566 0.5506 0.8329 +vn 0.0565 0.5506 0.8328 +vn 0.0565 0.5507 0.8328 +vn 0.9263 0.1589 0.3417 +vn 0.9263 0.1593 0.3416 +vn 0.9263 0.1589 0.3416 +vn 0.0782 0.5763 -0.8135 +vn 0.0783 0.5762 -0.8136 +vn 0.0782 0.5764 -0.8134 +vn -0.5809 0.7599 0.2917 +vn -0.8122 0.5060 -0.2904 +vn -0.8121 0.5059 -0.2908 +vn -0.8122 0.5061 -0.2903 +vn -0.6720 -0.7157 -0.1902 +vn 0.6133 -0.5709 0.5458 +vn 0.6135 -0.5708 0.5457 +vn 0.1191 -0.7659 -0.6318 +vn -0.1433 -0.0143 -0.9896 +vn -0.1435 -0.0143 -0.9895 +vn -0.8620 0.4860 -0.1441 +vn -0.8624 0.4855 -0.1435 +vn -0.8625 0.4854 -0.1434 +vn -0.4674 -0.7820 -0.4124 +vn 0.2973 0.9185 0.2607 +vn 0.2974 0.9188 0.2597 +vn 0.2974 0.9187 0.2601 +vn -0.3630 0.2797 0.8888 +vn -0.3629 0.2794 0.8889 +vn -0.7514 -0.1509 -0.6424 +vn -0.7511 -0.1507 -0.6427 +vn -0.7508 -0.1504 -0.6432 +vn 0.2053 0.5993 0.7737 +vn 0.2050 0.5990 0.7740 +vn 0.2053 0.5993 0.7738 +vn -0.9191 -0.3880 -0.0680 +vn -0.9191 -0.3881 -0.0677 +vn -0.9191 -0.3880 -0.0681 +vn -0.4071 0.7403 0.5350 +vn -0.4067 0.7402 0.5354 +vn -0.4068 0.7402 0.5353 +vn -0.4226 -0.2705 0.8650 +vn -0.4228 -0.2703 0.8650 +vn -0.4223 -0.2704 0.8652 +vn 0.3831 -0.8722 0.3042 +vn 0.3832 -0.8721 0.3043 +vn -0.1335 0.6895 0.7119 +vn -0.1331 0.6892 0.7122 +vn -0.1328 0.6890 0.7125 +vn 0.4629 -0.8351 0.2972 +vn 0.4626 -0.8353 0.2970 +vn 0.4625 -0.8354 0.2969 +vn 0.8410 -0.2176 0.4953 +vn 0.8412 -0.2178 0.4949 +vn 0.8411 -0.2176 0.4952 +vn 0.2825 -0.6208 0.7313 +vn 0.2826 -0.6208 0.7313 +vn 0.2818 -0.6207 0.7317 +vn 0.0485 -0.3655 -0.9295 +vn 0.0484 -0.3651 -0.9297 +vn 0.0484 -0.3650 -0.9298 +vn 0.6550 -0.5758 0.4893 +vn 0.1692 -0.9733 0.1553 +vn -0.0926 0.2691 0.9586 +vn -0.0925 0.2688 0.9587 +vn -0.0926 0.2688 0.9587 +vn -0.6556 -0.5839 -0.4787 +vn -0.6554 -0.5838 -0.4791 +vn -0.6557 -0.5843 -0.4782 +vn 0.2691 0.8963 -0.3525 +vn 0.2695 0.8963 -0.3521 +vn -0.0014 0.8169 0.5767 +vn -0.0014 0.8169 0.5768 +vn -0.0015 0.8170 0.5766 +vn -0.6212 -0.2531 0.7416 +vn -0.6209 -0.2535 0.7417 +vn -0.6212 -0.2532 0.7417 +vn -0.7353 -0.5919 -0.3301 +vn -0.7351 -0.5923 -0.3299 +vn -0.7350 -0.5926 -0.3295 +vn -0.0972 -0.9002 -0.4245 +vn -0.0975 -0.9003 -0.4243 +vn -0.0969 -0.9001 -0.4248 +vn -0.3584 0.2014 0.9116 +vn -0.3584 0.2010 0.9117 +vn -0.3583 0.2004 0.9118 +vn 0.3967 -0.7827 0.4796 +vn 0.3976 -0.7817 0.4805 +vn 0.3966 -0.7829 0.4794 +vn -0.9497 -0.1120 -0.2926 +vn -0.9495 -0.1125 -0.2929 +vn 0.3177 -0.8715 0.3736 +vn 0.3178 -0.8715 0.3736 +vn 0.3179 -0.8714 0.3737 +vn 0.4015 -0.0193 0.9157 +vn 0.4011 -0.0192 0.9158 +vn 0.4010 -0.0189 0.9159 +vn -0.1380 0.9685 -0.2074 +vn -0.1379 0.9684 -0.2079 +vn -0.1380 0.9683 -0.2082 +vn 0.0057 0.7477 -0.6640 +vn 0.0058 0.7477 -0.6640 +vn -0.7714 0.5523 -0.3159 +vn 0.2657 0.0553 -0.9625 +vn 0.2658 0.0552 -0.9624 +vn 0.4221 0.8328 -0.3582 +vn 0.4223 0.8328 -0.3579 +vn 0.4218 0.8330 -0.3580 +vn -0.6397 -0.7655 0.0694 +vn -0.6396 -0.7656 0.0695 +vn 0.8581 -0.1920 0.4762 +vn 0.8585 -0.1919 0.4756 +vn 0.8576 -0.1922 0.4770 +vn 0.7158 0.6498 0.2559 +vn 0.7159 0.6497 0.2557 +vn 0.7160 0.6496 0.2557 +vn 0.6423 0.7186 0.2665 +vn 0.6424 0.7185 0.2665 +vn 0.6422 0.7188 0.2664 +vn -0.0395 -0.0397 0.9984 +vn -0.0399 -0.0396 0.9984 +vn -0.0402 -0.0394 0.9984 +vn -0.1609 0.0108 -0.9869 +vn -0.9852 0.1517 -0.0803 +vn -0.9851 0.1519 -0.0805 +vn -0.9851 0.1519 -0.0804 +vn -0.5166 -0.3809 0.7668 +vn -0.5168 -0.3807 0.7668 +vn 0.4126 0.3370 -0.8463 +vn 0.5825 -0.7349 0.3472 +vn 0.5823 -0.7351 0.3471 +vn 0.5827 -0.7348 0.3471 +vn -0.8814 -0.4704 -0.0420 +vn -0.8815 -0.4703 -0.0423 +vn -0.3137 -0.5215 -0.7935 +vn -0.3127 -0.5211 -0.7942 +vn -0.3126 -0.5211 -0.7942 +vn -0.0478 0.9618 0.2697 +vn -0.0476 0.9617 0.2699 +vn 0.4361 -0.3100 0.8448 +vn -0.0369 0.9711 -0.2359 +vn -0.0372 0.9709 -0.2365 +vn -0.0367 0.9712 -0.2355 +vn 0.4521 0.4241 -0.7847 +vn 0.4521 0.4245 -0.7845 +vn 0.4521 0.4244 -0.7846 +vn 0.6079 0.6470 0.4603 +vn 0.3977 0.6843 0.6112 +vn 0.3981 0.6841 0.6111 +vn -0.8028 -0.2491 -0.5418 +vn -0.8027 -0.2491 -0.5418 +vn 0.8101 0.3772 0.4488 +vn 0.8100 0.3770 0.4491 +vn 0.8101 0.3770 0.4489 +vn -0.2480 -0.5679 0.7849 +vn -0.2482 -0.5674 0.7852 +vn -0.2481 -0.5682 0.7846 +vn 0.9713 -0.1466 0.1871 +vn 0.9713 -0.1465 0.1873 +vn -0.6624 0.1441 0.7351 +vn -0.6625 0.1439 0.7351 +vn -0.6622 0.1443 0.7353 +vn -0.1472 0.8658 -0.4783 +vn -0.1475 0.8656 -0.4786 +vn -0.1474 0.8656 -0.4785 +vn 0.3733 -0.9030 0.2126 +vn 0.3732 -0.9032 0.2121 +vn 0.3729 -0.9034 0.2118 +vn -0.5639 0.8250 0.0381 +vn -0.5638 0.8250 0.0382 +vn -0.1766 0.0351 -0.9837 +vn -0.1769 0.0354 -0.9836 +vn -0.1764 0.0347 -0.9837 +vn -0.0544 0.9356 -0.3489 +vn -0.0543 0.9354 -0.3495 +vn -0.0540 0.9358 -0.3483 +vn -0.7719 0.6357 -0.0030 +vn -0.2575 0.9574 0.1309 +vn -0.2572 0.9575 0.1307 +vn -0.2571 0.9576 0.1304 +vn 0.7337 0.5569 0.3892 +vn 0.7334 0.5564 0.3906 +vn 0.7336 0.5566 0.3898 +vn -0.8180 0.4440 -0.3658 +vn -0.8176 0.4430 -0.3679 +vn -0.8177 0.4439 -0.3664 +vn 0.2565 0.9634 -0.0786 +vn 0.2567 0.9633 -0.0783 +vn 0.2573 0.9632 -0.0783 +vn -0.1785 0.8989 0.4001 +vn -0.1783 0.8990 0.4000 +vn -0.1782 0.8990 0.4000 +vn -0.4988 -0.6582 0.5639 +vn -0.4989 -0.6584 0.5635 +vn -0.6061 -0.0820 0.7911 +vn -0.6062 -0.0814 0.7912 +vn -0.6059 -0.0826 0.7912 +vn 0.2737 0.1230 -0.9539 +vn -0.7145 0.6245 -0.3156 +vn -0.7144 0.6244 -0.3160 +vn -0.7140 0.6247 -0.3162 +vn 0.0936 0.9715 0.2177 +vn 0.0939 0.9715 0.2178 +vn 0.0937 0.9715 0.2177 +vn -0.5063 0.8146 -0.2829 +vn -0.5064 0.8146 -0.2828 +vn -0.3816 -0.7292 0.5680 +vn -0.3813 -0.7290 0.5684 +vn -0.4221 -0.7438 0.5182 +vn -0.4225 -0.7435 0.5184 +vn -0.4239 -0.7426 0.5185 +vn 0.4640 0.6979 0.5456 +vn -0.4047 0.9065 0.1199 +vn -0.4046 0.9066 0.1199 +vn -0.4045 0.9066 0.1200 +vn 0.0631 -0.6302 -0.7739 +vn 0.0627 -0.6303 -0.7738 +vn -0.7502 -0.3504 -0.5607 +vn -0.7500 -0.3493 -0.5617 +vn -0.7499 -0.3496 -0.5616 +vn -0.6114 -0.7855 0.0952 +vn 0.4461 0.7335 0.5128 +vn 0.4464 0.7334 0.5128 +vn 0.4463 0.7334 0.5128 +vn -0.9215 0.1691 -0.3497 +vn 0.6745 -0.3312 -0.6598 +vn 0.6746 -0.3314 -0.6596 +vn 0.6746 -0.3316 -0.6596 +vn -0.2210 0.8691 -0.4426 +vn -0.2209 0.8690 -0.4428 +vn 0.3118 0.8311 -0.4605 +vn 0.3117 0.8312 -0.4605 +vn 0.3117 0.8313 -0.4602 +vn 0.1519 0.8485 -0.5069 +vn 0.1526 0.8481 -0.5073 +vn 0.1525 0.8481 -0.5073 +vn -0.1953 0.9803 0.0310 +vn -0.1951 0.9803 0.0313 +vn -0.1949 0.9803 0.0312 +vn -0.5703 0.7203 -0.3949 +vn -0.5703 0.7202 -0.3951 +vn -0.5705 0.7202 -0.3947 +vn 0.8606 0.3264 0.3910 +vn -0.7083 0.7045 0.0446 +vn -0.7084 0.7044 0.0445 +vn 0.4539 0.5637 0.6901 +vn 0.4540 0.5637 0.6900 +vn 0.4541 0.5637 0.6899 +vn -0.2919 -0.0360 0.9558 +vn -0.2920 -0.0362 0.9557 +vn -0.2929 -0.0364 0.9555 +vn -0.2994 -0.0769 0.9510 +vn -0.2987 -0.0788 0.9511 +vn -0.2974 -0.0794 0.9514 +vn -0.1473 -0.9890 -0.0119 +vn -0.1474 -0.9890 -0.0117 +vn -0.1470 -0.9891 -0.0122 +vn -0.6926 0.6539 -0.3046 +vn -0.6927 0.6539 -0.3044 +vn 0.9349 0.2147 0.2826 +vn 0.9350 0.2145 0.2825 +vn 0.9351 0.2142 0.2823 +vn 0.7975 0.5311 0.2863 +vn 0.7977 0.5308 0.2863 +vn 0.1652 0.8966 -0.4108 +vn 0.1650 0.8965 -0.4112 +vn 0.2634 0.8416 0.4715 +vn 0.2636 0.8416 0.4714 +vn 0.2635 0.8417 0.4712 +vn 0.7635 -0.5599 -0.3218 +vn 0.7618 -0.5623 -0.3217 +vn 0.7625 -0.5615 -0.3215 +vn -0.5194 0.7890 -0.3281 +vn -0.5189 0.7892 -0.3283 +vn -0.5192 0.7891 -0.3282 +vn -0.0077 0.9778 0.2094 +vn -0.0082 0.9777 0.2098 +vn -0.0089 0.9777 0.2099 +vn -0.3924 -0.8581 -0.3312 +vn -0.3929 -0.8581 -0.3306 +vn -0.3928 -0.8580 -0.3311 +vn -0.8343 0.5272 -0.1614 +vn -0.8343 0.5271 -0.1614 +vn 0.9166 0.3913 -0.0825 +vn 0.9167 0.3909 -0.0825 +vn 0.2282 0.0671 -0.9713 +vn 0.2284 0.0672 -0.9712 +vn 0.2285 0.0672 -0.9712 +vn 0.6365 0.7566 0.1495 +vn 0.5912 0.7877 -0.1734 +vn 0.5916 0.7873 -0.1736 +vn 0.2234 0.9734 -0.0504 +vn 0.2239 0.9733 -0.0503 +vn 0.5251 0.4990 0.6894 +vn 0.5249 0.4979 0.6903 +vn 0.5259 0.4957 0.6912 +vn 0.4414 -0.1627 -0.8824 +vn 0.4414 -0.1621 -0.8825 +vn 0.4415 -0.1625 -0.8825 +vn -0.8048 0.4885 -0.3371 +vn -0.8048 0.4883 -0.3374 +vn -0.5308 0.7673 -0.3598 +vn -0.5307 0.7673 -0.3600 +vn -0.7640 0.3223 -0.5590 +vn -0.7639 0.3222 -0.5591 +vn 0.1084 0.1764 0.9783 +vn 0.1112 0.1795 0.9775 +vn 0.1092 0.1784 0.9779 +vn 0.0362 0.5321 0.8459 +vn 0.0356 0.5318 0.8461 +vn 0.0351 0.5308 0.8468 +vn 0.2304 0.9260 -0.2992 +vn 0.2308 0.9258 -0.2992 +vn 0.2303 0.9260 -0.2992 +vn -0.7430 0.6675 -0.0491 +vn -0.7428 0.6677 -0.0488 +vn -0.3662 0.8546 -0.3682 +vn -0.3662 0.8546 -0.3681 +vn -0.3662 0.8547 -0.3680 +vn -0.4033 -0.7748 -0.4868 +vn -0.4031 -0.7750 -0.4868 +vn -0.4850 0.8621 0.1467 +vn -0.4851 0.8621 0.1468 +vn 0.5768 0.7294 -0.3678 +vn -0.9795 0.0250 0.2001 +vn -0.9794 0.0253 0.2002 +vn -0.9794 0.0254 0.2002 +vn -0.2047 0.8983 -0.3888 +vn -0.2046 0.8983 -0.3889 +vn -0.2045 0.8982 -0.3890 +vn -0.6192 0.7650 -0.1770 +vn -0.6193 0.7650 -0.1767 +vn -0.6193 0.7650 -0.1769 +vn 0.1054 0.4410 -0.8913 +vn 0.1055 0.4409 -0.8913 +vn 0.1052 0.4395 -0.8920 +vn -0.2122 0.9151 0.3429 +vn 0.2544 0.8698 -0.4227 +vn 0.2547 0.8697 -0.4228 +vn 0.2546 0.8698 -0.4227 +vn -0.1467 0.9250 -0.3505 +vn -0.1465 0.9250 -0.3505 +vn -0.1466 0.9251 -0.3504 +vn -0.5078 -0.1412 0.8498 +vn -0.5079 -0.1412 0.8497 +vn 0.4450 0.7037 -0.5539 +vn 0.4446 0.7036 -0.5544 +vn 0.4442 0.7036 -0.5546 +vn -0.5537 -0.7110 -0.4335 +vn -0.5538 -0.7112 -0.4330 +vn -0.5533 -0.7112 -0.4336 +vn 0.5580 0.6661 -0.4949 +vn 0.7919 0.5976 0.1256 +vn 0.7918 0.5976 0.1260 +vn 0.7918 0.5976 0.1259 +vn 0.8158 0.4697 -0.3375 +vn 0.8155 0.4702 -0.3375 +vn 0.8153 0.4705 -0.3375 +vn -0.5837 0.7613 0.2823 +vn -0.5840 0.7610 0.2825 +vn -0.5836 0.7614 0.2821 +vn -0.8340 0.3056 0.4594 +vn 0.6518 0.6285 0.4245 +vn 0.6519 0.6285 0.4243 +vn 0.5294 0.8339 -0.1558 +vn 0.5296 0.8338 -0.1560 +vn 0.5295 0.8339 -0.1557 +vn 0.6243 -0.7759 -0.0908 +vn 0.6246 -0.7756 -0.0905 +vn 0.6239 -0.7762 -0.0913 +vn -0.6063 0.2998 0.7365 +vn -0.6062 0.2997 0.7367 +vn -0.6067 0.2997 0.7363 +vn -0.2881 0.8178 -0.4982 +vn -0.2873 0.8177 -0.4988 +vn -0.2878 0.8177 -0.4985 +vn -0.1431 0.6118 -0.7779 +vn -0.1431 0.6123 -0.7776 +vn 0.5488 0.2772 -0.7887 +vn 0.5491 0.2771 -0.7885 +vn -0.1294 0.8386 -0.5292 +vn -0.1284 0.8378 -0.5306 +vn -0.1286 0.8369 -0.5320 +vn 0.3654 -0.9282 0.0703 +vn 0.3656 -0.9281 0.0701 +vn -0.3236 0.0317 -0.9457 +vn -0.3253 0.0328 -0.9450 +vn 0.0241 -0.9764 0.2145 +vn 0.0239 -0.9764 0.2144 +vn 0.0239 -0.9765 0.2143 +vn 0.1231 0.7541 0.6451 +vn 0.1229 0.7540 0.6453 +vn 0.1227 0.7538 0.6455 +vn 0.4043 0.9099 -0.0931 +vn 0.4046 0.9098 -0.0930 +vn 0.4045 0.9098 -0.0931 +vn -0.0502 0.4762 -0.8779 +vn -0.0502 0.4759 -0.8781 +vn -0.0502 0.4760 -0.8780 +vn 0.4189 0.8820 -0.2158 +vn 0.4186 0.8822 -0.2158 +vn -0.2942 0.8147 -0.4997 +vn 0.2720 0.9598 -0.0695 +vn 0.2726 0.9597 -0.0688 +vn 0.0989 0.9081 -0.4068 +vn 0.0990 0.9079 -0.4074 +vn 0.0993 0.9077 -0.4077 +vn -0.0529 0.4988 0.8651 +vn 0.8180 0.4279 -0.3844 +vn 0.8180 0.4280 -0.3843 +vn 0.8180 0.4278 -0.3844 +vn 0.1114 -0.7213 -0.6836 +vn 0.1114 -0.7214 -0.6835 +vn 0.1114 -0.7211 -0.6838 +vn 0.6344 -0.3231 -0.7022 +vn 0.6345 -0.3235 -0.7020 +vn 0.6344 -0.3233 -0.7021 +vn -0.7170 -0.5170 -0.4677 +vn -0.7175 -0.5170 -0.4667 +vn -0.7169 -0.5169 -0.4679 +vn -0.9264 -0.2539 0.2781 +vn -0.9263 -0.2550 0.2775 +vn -0.9263 -0.2547 0.2778 +vn -0.7331 -0.1240 0.6688 +vn -0.7325 -0.1241 0.6693 +vn -0.7322 -0.1245 0.6697 +vn -0.3209 -0.9398 -0.1176 +vn -0.3415 -0.5049 -0.7927 +vn -0.3400 -0.5067 -0.7923 +vn -0.3397 -0.5084 -0.7913 +vn 0.3036 0.1461 -0.9415 +vn 0.3035 0.1460 -0.9416 +vn 0.3034 0.1461 -0.9416 +vn 0.6782 0.0333 0.7341 +vn 0.6783 0.0336 0.7340 +vn 0.8581 0.3494 0.3763 +vn 0.8583 0.3496 0.3757 +vn 0.8585 0.3497 0.3751 +vn -0.8506 0.0838 -0.5191 +vn -0.8505 0.0836 -0.5193 +vn -0.8506 0.0836 -0.5192 +vn 0.5528 0.6632 0.5046 +vn 0.5527 0.6632 0.5047 +vn -0.4385 -0.7091 0.5521 +vn -0.4386 -0.7091 0.5522 +vn -0.4384 -0.7091 0.5523 +vn -0.9121 0.4097 0.0173 +vn 0.5129 0.4243 -0.7462 +vn 0.5128 0.4241 -0.7464 +vn -0.6381 0.4693 -0.6104 +vn -0.6389 0.4692 -0.6097 +vn -0.6385 0.4693 -0.6100 +vn -0.7293 0.3796 -0.5692 +vn -0.7286 0.3795 -0.5702 +vn -0.7296 0.3800 -0.5686 +vn -0.8704 0.1932 -0.4528 +vn -0.8705 0.1932 -0.4526 +vn -0.8705 0.1933 -0.4527 +vn 0.8720 -0.4821 0.0849 +vn 0.8719 -0.4824 0.0838 +vn 0.8719 -0.4824 0.0844 +vn 0.9988 -0.0457 0.0149 +vn 0.9986 -0.0516 0.0137 +vn 0.9987 -0.0491 0.0130 +vn -0.2113 -0.3949 -0.8941 +vn -0.2122 -0.3944 -0.8941 +vn -0.2104 -0.3951 -0.8942 +vn -0.7243 0.5045 -0.4700 +vn 0.2934 -0.8400 0.4565 +vn 0.2933 -0.8400 0.4565 +vn 0.2932 -0.8400 0.4565 +vn -0.1839 0.7603 -0.6230 +vn -0.1839 0.7601 -0.6233 +vn -0.0884 -0.3748 0.9229 +vn -0.0886 -0.3747 0.9229 +vn -0.0882 -0.3743 0.9231 +vn 0.2797 -0.5313 0.7997 +vn 0.2802 -0.5308 0.7999 +vn 0.2800 -0.5311 0.7997 +vn -0.1576 0.3570 0.9207 +vn -0.5315 0.0054 0.8471 +vn -0.5315 0.0056 0.8471 +vn 0.3860 0.8408 -0.3795 +vn 0.3870 0.8406 -0.3789 +vn 0.3864 0.8407 -0.3794 +vn -0.8232 0.5359 -0.1874 +vn -0.8235 0.5353 -0.1877 +vn 0.2071 0.9775 -0.0396 +vn -0.5260 -0.1038 0.8441 +vn -0.5259 -0.1039 0.8442 +vn -0.6004 0.5108 -0.6153 +vn -0.6005 0.5109 -0.6151 +vn -0.6005 0.5106 -0.6153 +vn 0.0875 0.1006 0.9911 +vn 0.0873 0.1009 0.9911 +vn 0.0873 0.1010 0.9911 +vn -0.2479 -0.9453 -0.2120 +vn -0.2482 -0.9453 -0.2119 +vn -0.2481 -0.9453 -0.2119 +vn -0.0764 0.7314 0.6777 +vn -0.0768 0.7313 0.6777 +vn -0.0765 0.7314 0.6776 +vn 0.7950 0.3013 0.5266 +vn 0.7948 0.3012 0.5268 +vn 0.0633 0.3312 0.9414 +vn 0.0633 0.3310 0.9415 +vn 0.0634 0.3311 0.9415 +vn -0.1701 -0.3774 0.9103 +vn -0.1694 -0.3776 0.9103 +vn -0.1687 -0.3780 0.9103 +vn -0.3517 -0.9361 -0.0090 +vn -0.3514 -0.9362 -0.0087 +vn -0.4576 0.8450 0.2767 +vn -0.4579 0.8449 0.2768 +vn -0.3143 0.8516 0.4196 +vn -0.3141 0.8515 0.4199 +vn -0.3146 0.8514 0.4196 +vn -0.1656 0.7940 -0.5850 +vn -0.1655 0.7949 -0.5837 +vn -0.4237 0.8993 0.1081 +vn -0.4239 0.8993 0.1076 +vn -0.4236 0.8993 0.1083 +vn 0.4097 -0.1085 0.9058 +vn 0.4101 -0.1087 0.9055 +vn 0.4111 -0.1088 0.9051 +vn 0.5716 -0.5512 -0.6078 +vn 0.5716 -0.5512 -0.6079 +vn 0.5354 -0.5601 -0.6322 +vn 0.5348 -0.5606 -0.6322 +vn 0.5349 -0.5604 -0.6323 +vn 0.2613 -0.7596 0.5956 +vn 0.2614 -0.7593 0.5959 +vn 0.2614 -0.7597 0.5954 +vn -0.6084 0.0524 -0.7919 +vn -0.4458 0.6366 -0.6293 +vn -0.4457 0.6366 -0.6293 +vn -0.4448 0.6367 -0.6299 +vn 0.4303 0.8283 -0.3588 +vn -0.7724 -0.5738 -0.2724 +vn -0.7724 -0.5739 -0.2720 +vn -0.7724 -0.5739 -0.2721 +vn -0.0959 0.9904 0.1000 +vn -0.0994 0.4355 0.8947 +vn -0.0997 0.4355 0.8947 +vn -0.0996 0.4354 0.8947 +vn -0.1055 0.9864 0.1264 +vn -0.1057 0.9863 0.1264 +vn -0.1059 0.9863 0.1265 +vn -0.9553 0.1032 -0.2769 +vn -0.9554 0.1029 -0.2769 +vn -0.9555 0.1030 -0.2766 +vn -0.0861 0.9958 0.0319 +vn -0.0860 0.9958 0.0317 +vn -0.0861 0.9958 0.0324 +vn 0.2862 -0.8950 0.3422 +vn 0.2863 -0.8950 0.3422 +vn 0.2861 -0.8950 0.3422 +vn 0.6102 0.3051 -0.7312 +vn 0.6103 0.3050 -0.7311 +vn 0.6106 0.3049 -0.7309 +vn -0.6310 -0.7559 0.1743 +vn -0.6312 -0.7562 0.1727 +vn -0.6312 -0.7560 0.1733 +vn -0.7135 0.5244 0.4647 +vn -0.7135 0.5240 0.4652 +vn -0.7133 0.5238 0.4657 +vn 0.8285 0.0993 0.5511 +vn 0.8286 0.0987 0.5510 +vn -0.9646 -0.2005 -0.1716 +vn -0.9645 -0.2005 -0.1720 +vn -0.9645 -0.2005 -0.1719 +vn -0.5000 -0.8655 0.0307 +vn -0.5001 -0.8654 0.0315 +vn -0.4999 -0.8655 0.0309 +vn 0.8553 -0.2632 0.4462 +vn 0.8553 -0.2638 0.4460 +vn 0.8553 -0.2642 0.4458 +vn -0.4447 -0.4576 -0.7699 +vn -0.4441 -0.4579 -0.7701 +vn -0.3944 -0.3422 -0.8529 +vn -0.3943 -0.3420 -0.8530 +vn -0.3944 -0.3421 -0.8529 +vn 0.2819 0.7523 -0.5955 +vn 0.2817 0.7523 -0.5956 +vn 0.2815 0.7522 -0.5958 +vn 0.5432 0.8255 0.1532 +vn 0.5433 0.8254 0.1534 +vn 0.5432 0.8255 0.1533 +vn 0.7914 -0.0471 0.6095 +vn 0.7913 -0.0471 0.6096 +vn 0.8259 0.1391 -0.5464 +vn -0.0242 0.7225 0.6910 +vn -0.0240 0.7224 0.6911 +vn -0.0245 0.7225 0.6909 +vn -0.9867 0.0754 0.1441 +vn -0.9866 0.0747 0.1450 +vn -0.9866 0.0752 0.1445 +vn -0.3724 -0.3872 -0.8434 +vn -0.3723 -0.3870 -0.8436 +vn -0.9926 0.0858 -0.0862 +vn -0.9925 0.0859 -0.0865 +vn 0.8732 -0.4481 0.1917 +vn 0.8729 -0.4482 0.1925 +vn 0.8732 -0.4484 0.1910 +vn -0.0946 0.4442 0.8909 +vn -0.0947 0.4442 0.8909 +vn -0.0944 0.4443 0.8909 +vn 0.2371 -0.9587 0.1571 +vn 0.2368 -0.9587 0.1573 +vn 0.2368 -0.9587 0.1574 +vn 0.9756 0.0308 -0.2174 +vn 0.9757 0.0318 -0.2169 +vn 0.9757 0.0327 -0.2167 +vn -0.5752 -0.2914 0.7644 +vn -0.5754 -0.2913 0.7643 +vn 0.9072 0.2516 -0.3371 +vn 0.9073 0.2517 -0.3370 +vn 0.9072 0.2515 -0.3372 +vn 0.8865 -0.0197 0.4624 +vn 0.8865 -0.0185 0.4624 +vn 0.8865 -0.0192 0.4623 +vn 0.1831 -0.5306 -0.8276 +vn 0.1832 -0.5306 -0.8276 +vn 0.1829 -0.5305 -0.8277 +vn -0.8223 -0.3357 -0.4595 +vn -0.8225 -0.3355 -0.4593 +vn -0.8225 -0.3356 -0.4593 +vn 0.4039 -0.8581 -0.3170 +vn -0.5824 -0.8066 -0.1008 +vn -0.3572 0.0675 -0.9316 +vn -0.3577 0.0675 -0.9314 +vn -0.3569 0.0679 -0.9317 +vn 0.5473 -0.8046 0.2305 +vn -0.3502 0.7533 0.5567 +vn 0.6511 -0.5869 0.4812 +vn 0.6521 -0.5864 0.4806 +vn 0.6519 -0.5865 0.4807 +vn 0.8767 0.2584 0.4057 +vn 0.8768 0.2568 0.4065 +vn 0.8769 0.2596 0.4045 +vn 0.2832 -0.0376 0.9583 +vn 0.2829 -0.0363 0.9585 +vn -0.6217 -0.6131 -0.4875 +vn -0.6214 -0.6132 -0.4877 +vn -0.6217 -0.6132 -0.4874 +vn 0.9171 0.1994 0.3451 +vn 0.9172 0.1994 0.3450 +vn 0.9171 0.1995 0.3451 +vn -0.8432 -0.4324 -0.3195 +vn -0.8431 -0.4325 -0.3194 +vn -0.8894 -0.0966 -0.4468 +vn -0.8893 -0.0968 -0.4469 +vn -0.8894 -0.0962 -0.4468 +vn 0.9831 0.1630 -0.0836 +vn 0.9831 0.1628 -0.0835 +vn 0.9832 0.1623 -0.0835 +vn -0.5338 -0.8350 -0.1335 +vn -0.5339 -0.8349 -0.1333 +vn 0.3244 -0.7754 -0.5418 +vn 0.3242 -0.7753 -0.5420 +vn 0.3246 -0.7755 -0.5415 +vn -0.0374 -0.7462 0.6646 +vn -0.0373 -0.7466 0.6642 +vn -0.0373 -0.7463 0.6646 +vn 0.6267 -0.7734 0.0951 +vn 0.6264 -0.7737 0.0954 +vn 0.6265 -0.7736 0.0954 +vn -0.7394 0.2296 -0.6329 +vn -0.7393 0.2297 -0.6329 +vn -0.7393 0.2297 -0.6330 +vn -0.5333 0.7531 -0.3853 +vn -0.5332 0.7530 -0.3855 +vn -0.1397 -0.9828 -0.1211 +vn -0.9382 0.0999 -0.3314 +vn -0.9382 0.0996 -0.3315 +vn -0.9382 0.0995 -0.3315 +vn -0.0366 -0.8824 0.4691 +vn -0.0355 -0.8826 0.4688 +vn -0.0354 -0.8826 0.4687 +vn -0.8244 -0.5643 -0.0437 +vn -0.8246 -0.5640 -0.0436 +vn -0.8245 -0.5642 -0.0437 +vn 0.2848 0.8383 -0.4649 +vn 0.2849 0.8382 -0.4650 +vn 0.2849 0.8384 -0.4647 +vn 0.5028 0.7940 0.3416 +vn 0.5024 0.7943 0.3416 +vn 0.5026 0.7941 0.3417 +vn 0.2242 -0.5918 0.7743 +vn 0.2249 -0.5919 0.7740 +vn 0.2243 -0.5918 0.7743 +vn 0.3545 0.5294 0.7708 +vn 0.3549 0.5291 0.7708 +vn 0.3547 0.5294 0.7707 +vn -0.9940 -0.0997 -0.0448 +vn -0.9940 -0.0999 -0.0448 +vn -0.6172 -0.5743 0.5379 +vn -0.6173 -0.5745 0.5374 +vn -0.6174 -0.5741 0.5378 +vn 0.5926 -0.0278 0.8050 +vn 0.5925 -0.0278 0.8051 +vn 0.5926 -0.0279 0.8050 +vn 0.1435 0.9432 -0.2995 +vn 0.8681 0.1829 0.4615 +vn 0.8679 0.1830 0.4618 +vn 0.8682 0.1829 0.4612 +vn 0.5090 0.2875 0.8113 +vn 0.5091 0.2876 0.8113 +vn 0.5094 0.2874 0.8111 +vn 0.5694 -0.8195 0.0651 +vn -0.3480 -0.9314 0.1066 +vn -0.3479 -0.9315 0.1065 +vn 0.5373 0.0575 -0.8414 +vn 0.5373 0.0576 -0.8414 +vn -0.0484 0.9842 0.1705 +vn -0.0485 0.9842 0.1704 +vn -0.0824 -0.9454 0.3153 +vn -0.0823 -0.9452 0.3161 +vn -0.0822 -0.9450 0.3166 +vn 0.2450 -0.3447 0.9062 +vn 0.2459 -0.3449 0.9059 +vn 0.2454 -0.3449 0.9060 +vn -0.2639 -0.8535 -0.4494 +vn -0.2637 -0.8537 -0.4491 +vn -0.2638 -0.8534 -0.4496 +vn -0.1627 0.6085 -0.7767 +vn -0.1634 0.6090 -0.7761 +vn -0.1632 0.6087 -0.7764 +vn -0.5967 -0.7225 0.3492 +vn 0.1475 -0.5497 0.8223 +vn -0.2724 0.1579 -0.9491 +vn -0.2725 0.1580 -0.9491 +vn -0.2721 0.1578 -0.9492 +vn 0.9444 -0.0744 -0.3202 +vn 0.1368 0.0735 0.9879 +vn -0.7811 -0.6097 -0.1346 +vn -0.7811 -0.6097 -0.1347 +vn -0.7811 -0.6095 -0.1356 +vn 0.2823 -0.9370 -0.2058 +vn 0.2823 -0.9370 -0.2059 +vn 0.6589 -0.5735 0.4867 +vn 0.6593 -0.5734 0.4864 +vn 0.6582 -0.5740 0.4871 +vn 0.9055 0.2823 0.3168 +vn 0.9063 0.2811 0.3156 +vn 0.9072 0.2808 0.3132 +vn 0.1305 -0.9762 -0.1730 +vn 0.1304 -0.9762 -0.1731 +vn -0.4737 -0.8484 -0.2364 +vn -0.4736 -0.8485 -0.2362 +vn -0.4737 -0.8484 -0.2363 +vn -0.1159 -0.1418 -0.9831 +vn -0.1163 -0.1426 -0.9829 +vn -0.1166 -0.1445 -0.9826 +vn 0.8111 0.5708 0.1278 +vn 0.7383 -0.5385 0.4061 +vn 0.7384 -0.5385 0.4060 +vn 0.7384 -0.5385 0.4059 +vn 0.7615 0.6368 -0.1209 +vn 0.7615 0.6368 -0.1208 +vn 0.7614 0.6368 -0.1220 +vn 0.5665 -0.7981 0.2050 +vn 0.6996 0.7060 0.1101 +vn 0.6998 0.7058 0.1099 +vn 0.7824 -0.6117 0.1168 +vn 0.7822 -0.6120 0.1166 +vn 0.7823 -0.6119 0.1167 +vn -0.5468 0.5484 -0.6327 +vn -0.5467 0.5483 -0.6329 +vn -0.5469 0.5482 -0.6327 +vn -0.6471 -0.0156 -0.7622 +vn -0.6466 -0.0161 -0.7626 +vn -0.6462 -0.0164 -0.7630 +vn -0.9578 0.2678 -0.1048 +vn -0.9578 0.2672 -0.1060 +vn -0.9577 0.2679 -0.1055 +vn 0.7247 -0.6664 -0.1751 +vn 0.7251 -0.6661 -0.1751 +vn 0.7249 -0.6662 -0.1751 +vn -0.3320 0.8118 -0.4804 +vn -0.3321 0.8118 -0.4802 +vn -0.3325 0.8118 -0.4801 +vn 0.7293 -0.6840 -0.0163 +vn 0.7295 -0.6838 -0.0160 +vn 0.7297 -0.6836 -0.0164 +vn -0.2191 0.9587 0.1814 +vn -0.2192 0.9587 0.1815 +vn -0.2196 0.9586 0.1812 +vn 0.0574 0.9854 0.1600 +vn 0.0571 0.9854 0.1604 +vn 0.0570 0.9854 0.1606 +vn 0.2796 0.8979 -0.3400 +vn 0.2795 0.8980 -0.3398 +vn 0.4376 0.4452 0.7812 +vn 0.4379 0.4447 0.7813 +vn 0.4384 0.4441 0.7814 +vn -0.7162 -0.6969 -0.0369 +vn -0.7163 -0.6969 -0.0369 +vn -0.7161 -0.6970 -0.0369 +vn -0.5640 -0.8254 -0.0256 +vn -0.5648 -0.8248 -0.0271 +vn -0.5646 -0.8249 -0.0265 +vn -0.0159 0.0136 0.9998 +vn -0.0154 0.0134 0.9998 +vn -0.0151 0.0133 0.9998 +vn -0.9389 0.0656 -0.3379 +vn 0.2633 0.9250 -0.2740 +vn 0.2632 0.9251 -0.2738 +vn 0.2634 0.9250 -0.2739 +vn -0.1482 0.8130 -0.5631 +vn -0.1483 0.8128 -0.5633 +vn 0.8776 -0.3362 -0.3417 +vn 0.8776 -0.3363 -0.3417 +vn 0.8775 -0.3365 -0.3416 +vn -0.7000 0.4838 -0.5253 +vn -0.7001 0.4834 -0.5255 +vn -0.7000 0.4840 -0.5251 +vn 0.6967 0.7108 0.0967 +vn 0.6968 0.7107 0.0967 +vn 0.6310 0.7363 -0.2444 +vn 0.6309 0.7363 -0.2446 +vn 0.2381 -0.8895 -0.3900 +vn 0.1404 0.9563 -0.2566 +vn 0.1421 0.9560 -0.2566 +vn 0.1410 0.9562 -0.2564 +vn -0.8386 -0.1251 -0.5302 +vn -0.8379 -0.1266 -0.5310 +vn -0.8387 -0.1238 -0.5304 +vn 0.1462 0.1450 0.9786 +vn 0.1461 0.1452 0.9786 +vn 0.1461 0.1453 0.9785 +vn 0.9391 0.1901 0.2863 +vn 0.9393 0.1899 0.2859 +vn 0.9391 0.1898 0.2863 +vn 0.3298 0.2491 -0.9106 +vn 0.3299 0.2494 -0.9105 +vn 0.3298 0.2492 -0.9106 +vn -0.7157 0.5465 0.4349 +vn -0.7157 0.5465 0.4348 +vn -0.7159 0.5464 0.4347 +vn 0.4105 0.7005 0.5837 +vn 0.4105 0.7005 0.5838 +vn 0.4103 0.7014 0.5829 +vn -0.3771 -0.9147 -0.1455 +vn 0.5078 0.5841 0.6332 +vn 0.5081 0.5841 0.6330 +vn 0.5084 0.5842 0.6326 +vn -0.2602 0.0657 0.9633 +vn -0.2604 0.0656 0.9633 +vn -0.4506 0.5863 -0.6732 +vn -0.4507 0.5863 -0.6731 +vn 0.7476 0.0507 0.6622 +vn 0.7475 0.0511 0.6623 +vn 0.7475 0.0513 0.6623 +vn -0.8003 -0.3873 -0.4577 +vn -0.8004 -0.3873 -0.4576 +vn -0.2626 -0.8691 0.4192 +vn -0.2625 -0.8691 0.4192 +vn -0.2630 -0.8690 0.4192 +vn -0.2621 0.8149 -0.5170 +vn -0.2617 0.8150 -0.5170 +vn -0.2622 0.8149 -0.5169 +vn -0.0144 0.8852 -0.4650 +vn 0.4968 0.2492 -0.8313 +vn 0.4975 0.2488 -0.8310 +vn 0.4971 0.2490 -0.8312 +vn 0.8745 0.4751 -0.0979 +vn 0.8750 0.4744 -0.0962 +vn 0.8746 0.4750 -0.0974 +vn -0.4347 -0.5275 -0.7299 +vn 0.9901 -0.1391 -0.0202 +vn 0.9901 -0.1392 -0.0202 +vn 0.9900 -0.1393 -0.0203 +vn -0.2201 -0.0587 -0.9737 +vn -0.2200 -0.0587 -0.9737 +vn -0.2202 -0.0586 -0.9737 +vn -0.1490 0.9205 -0.3612 +vn -0.1490 0.9205 -0.3613 +vn -0.1491 0.9205 -0.3611 +vn 0.8929 0.4280 -0.1396 +vn 0.8932 0.4276 -0.1391 +vn 0.8929 0.4281 -0.1397 +vn -0.5011 0.7287 -0.4668 +vn -0.5011 0.7287 -0.4667 +vn -0.5013 0.7286 -0.4666 +vn -0.4623 0.8867 0.0092 +vn -0.4631 0.8863 0.0089 +vn -0.4635 0.8861 0.0091 +vn 0.7721 -0.5140 -0.3737 +vn 0.8459 -0.4794 -0.2339 +vn 0.2907 0.1966 -0.9364 +vn 0.2904 0.1965 -0.9365 +vn 0.2905 0.1964 -0.9365 +vn 0.9347 0.2846 -0.2129 +vn 0.9347 0.2846 -0.2131 +vn 0.9347 0.2851 -0.2123 +vn 0.2493 0.8948 0.3705 +vn 0.2499 0.8947 0.3701 +vn 0.2497 0.8947 0.3704 +vn -0.9838 0.1789 0.0078 +vn -0.9838 0.1789 0.0076 +vn -0.2896 0.8338 -0.4700 +vn -0.2896 0.8339 -0.4699 +vn -0.2896 0.8339 -0.4697 +vn -0.1153 0.1981 0.9734 +vn -0.1151 0.1984 0.9733 +vn -0.1152 0.1983 0.9733 +vn 0.8570 -0.2562 0.4472 +vn 0.8569 -0.2561 0.4473 +vn 0.2032 0.7303 -0.6522 +vn 0.2032 0.7318 -0.6506 +vn 0.2032 0.7318 -0.6505 +vn -0.7901 0.1456 -0.5955 +vn -0.7904 0.1451 -0.5952 +vn 0.8575 -0.2543 0.4472 +vn 0.8576 -0.2543 0.4471 +vn 0.8574 -0.2543 0.4474 +vn 0.5594 0.7116 -0.4251 +vn -0.9678 0.2513 -0.0126 +vn -0.9678 0.2514 -0.0125 +vn -0.9678 0.2515 -0.0124 +vn -0.7848 -0.3293 0.5251 +vn -0.7848 -0.3291 0.5251 +vn -0.7849 -0.3294 0.5249 +vn 0.3258 0.7914 -0.5173 +vn 0.3265 0.7911 -0.5173 +vn 0.3246 0.7921 -0.5169 +vn -0.4122 0.9094 -0.0553 +vn 0.2610 -0.9534 0.1511 +vn 0.5455 0.8320 0.1007 +vn 0.5457 0.8319 0.1008 +vn 0.5457 0.8319 0.1009 +vn 0.2710 0.6163 0.7394 +vn 0.7020 0.4287 -0.5687 +vn 0.7020 0.4286 -0.5688 +vn -0.1794 0.9288 -0.3244 +vn -0.1798 0.9287 -0.3244 +vn -0.0672 -0.1335 0.9888 +vn -0.0768 -0.1352 0.9878 +vn -0.0601 -0.1275 0.9900 +vn -0.7397 0.4158 -0.5291 +vn -0.7395 0.4159 -0.5293 +vn -0.4089 -0.6892 0.5982 +vn -0.4083 -0.6893 0.5984 +vn -0.4079 -0.6894 0.5986 +vn -0.4965 0.8108 0.3100 +vn -0.2603 0.5891 -0.7650 +vn -0.2603 0.5892 -0.7649 +vn -0.6068 -0.2499 -0.7546 +vn -0.6075 -0.2502 -0.7539 +vn -0.6071 -0.2501 -0.7542 +vn -0.0776 0.7887 -0.6098 +vn -0.0774 0.7888 -0.6097 +vn -0.0779 0.7886 -0.6100 +vn -0.4956 0.6440 -0.5827 +vn -0.4958 0.6440 -0.5826 +vn -0.4955 0.6442 -0.5827 +vn 0.4323 0.4512 -0.7807 +vn 0.4321 0.4509 -0.7810 +vn 0.4322 0.4512 -0.7808 +vn 0.0158 0.0821 -0.9965 +vn 0.0157 0.0819 -0.9965 +vn 0.2187 0.9757 0.0144 +vn 0.2189 0.9756 0.0138 +vn 0.2195 0.9755 0.0131 +vn 0.6012 0.7664 0.2260 +vn 0.6013 0.7665 0.2256 +vn 0.6011 0.7663 0.2269 +vn 0.1778 -0.7329 -0.6567 +vn 0.9496 -0.0668 -0.3062 +vn 0.9498 -0.0669 -0.3057 +vn 0.9499 -0.0671 -0.3054 +vn 0.1194 0.6710 0.7318 +vn 0.1184 0.6710 0.7320 +vn 0.1191 0.6711 0.7318 +vn 0.2599 0.1371 0.9559 +vn 0.2600 0.1372 0.9558 +vn 0.2600 0.1373 0.9558 +vn 0.2834 0.7982 0.5316 +vn 0.2838 0.7982 0.5313 +vn 0.2836 0.7982 0.5314 +vn -0.0913 -0.5727 0.8147 +vn -0.0911 -0.5728 0.8146 +vn -0.3546 0.1787 0.9178 +vn -0.3545 0.1788 0.9178 +vn 0.0272 0.9385 -0.3441 +vn 0.0260 0.9383 -0.3448 +vn 0.0261 0.9383 -0.3448 +vn 0.5001 -0.8622 -0.0809 +vn 0.5010 -0.8616 -0.0811 +vn 0.5012 -0.8615 -0.0810 +vn -0.5603 0.5203 -0.6445 +vn -0.7200 0.5556 -0.4158 +vn -0.7200 0.5557 -0.4158 +vn -0.7201 0.5556 -0.4156 +vn 0.3334 0.9194 -0.2088 +vn 0.3326 0.9195 -0.2094 +vn 0.3331 0.9194 -0.2091 +vn 0.0203 0.4655 0.8848 +vn 0.0211 0.4644 0.8854 +vn 0.0209 0.4652 0.8850 +vn -0.3394 -0.8639 0.3721 +vn -0.3398 -0.8640 0.3714 +vn -0.3400 -0.8641 0.3712 +vn -0.7799 0.6147 -0.1179 +vn -0.7798 0.6148 -0.1178 +vn -0.4665 -0.8651 0.1844 +vn -0.4665 -0.8651 0.1842 +vn -0.4666 -0.8650 0.1848 +vn 0.0336 0.1036 0.9940 +vn 0.0338 0.1037 0.9940 +vn 0.0337 0.1037 0.9940 +vn -0.9787 -0.1765 0.1050 +vn -0.9786 -0.1768 0.1050 +vn -0.9787 -0.1762 0.1053 +vn -0.8703 0.3352 -0.3610 +vn -0.8704 0.3352 -0.3607 +vn -0.8703 0.3351 -0.3610 +vn -0.7032 -0.2829 0.6523 +vn -0.7033 -0.2829 0.6522 +vn -0.7034 -0.2831 0.6520 +vn -0.1684 -0.3549 -0.9196 +vn 0.1116 -0.7007 -0.7047 +vn -0.5049 -0.2251 -0.8333 +vn -0.5034 -0.2251 -0.8342 +vn -0.5042 -0.2250 -0.8338 +vn -0.2023 0.8843 0.4209 +vn -0.2018 0.8844 0.4209 +vn -0.2293 -0.3793 -0.8964 +vn -0.2291 -0.3795 -0.8964 +vn -0.2292 -0.3793 -0.8964 +vn -0.0527 0.6671 -0.7431 +vn -0.0536 0.6669 -0.7432 +vn -0.0550 0.6677 -0.7424 +vn -0.1751 -0.2918 -0.9403 +vn -0.1754 -0.2921 -0.9402 +vn 0.3279 0.8931 0.3080 +vn 0.0500 0.9914 0.1208 +vn 0.0501 0.9914 0.1206 +vn -0.8845 0.1606 -0.4380 +vn 0.1510 0.7908 0.5932 +vn 0.1507 0.7935 0.5897 +vn 0.1501 0.7922 0.5916 +vn -0.4035 0.5937 -0.6962 +vn -0.4020 0.5942 -0.6967 +vn -0.4045 0.5929 -0.6963 +vn 0.9101 -0.0915 0.4042 +vn 0.9101 -0.0911 0.4043 +vn 0.8363 0.2891 0.4659 +vn 0.8363 0.2890 0.4659 +vn -0.6004 0.5625 -0.5684 +vn -0.1060 -0.4325 0.8954 +vn -0.3019 0.8922 -0.3359 +vn -0.3016 0.8923 -0.3358 +vn 0.3418 0.8312 -0.4384 +vn 0.3416 0.8314 -0.4383 +vn 0.3415 0.8315 -0.4381 +vn -0.8690 0.3748 -0.3230 +vn -0.0357 0.9988 -0.0341 +vn -0.0363 0.9988 -0.0337 +vn -0.0355 0.9988 -0.0341 +vn -0.8655 0.3728 -0.3344 +vn -0.8656 0.3734 -0.3337 +vn -0.8656 0.3727 -0.3346 +vn -0.6547 -0.0669 -0.7530 +vn -0.6549 -0.0669 -0.7528 +vn -0.6552 -0.0669 -0.7525 +vn -0.2757 -0.5308 0.8014 +vn -0.2755 -0.5304 0.8017 +vn -0.2751 -0.5306 0.8017 +vn 0.7572 0.0153 0.6530 +vn 0.7571 0.0154 0.6532 +vn 0.7574 0.0150 0.6528 +vn 0.2674 0.4093 0.8723 +vn 0.2662 0.4100 0.8724 +vn 0.2684 0.4078 0.8727 +vn -0.2618 0.9338 0.2439 +vn -0.2628 0.9337 0.2430 +vn -0.2621 0.9338 0.2435 +vn -0.0842 0.9315 -0.3539 +vn -0.0842 0.9315 -0.3538 +vn 0.4609 -0.5519 0.6949 +vn -0.5717 -0.5869 0.5733 +vn -0.5718 -0.5867 0.5735 +vn -0.1450 0.7347 0.6627 +vn -0.1449 0.7347 0.6628 +vn -0.1451 0.7347 0.6627 +vn -0.1587 0.7760 -0.6105 +vn -0.1580 0.7760 -0.6107 +vn -0.1595 0.7762 -0.6100 +vn -0.8249 0.4285 -0.3687 +vn -0.8248 0.4285 -0.3688 +vn 0.1899 0.0749 0.9790 +vn 0.1899 0.0747 0.9790 +vn 0.1900 0.0745 0.9790 +vn -0.2759 -0.7477 0.6040 +vn -0.2757 -0.7481 0.6036 +vn -0.2752 -0.7486 0.6032 +vn 0.5513 -0.3985 0.7329 +vn 0.5516 -0.3985 0.7328 +vn 0.7905 -0.5385 -0.2918 +vn 0.7911 -0.5378 -0.2915 +vn 0.7908 -0.5382 -0.2915 +vn -0.5014 0.7596 -0.4143 +vn -0.5012 0.7598 -0.4141 +vn 0.6994 -0.4730 -0.5359 +vn 0.6993 -0.4729 -0.5361 +vn -0.3121 0.8590 0.4059 +vn -0.3119 0.8592 0.4057 +vn -0.3118 0.8591 0.4058 +vn -0.9486 0.3095 -0.0664 +vn -0.1973 0.6859 0.7004 +vn -0.1967 0.6860 0.7005 +vn -0.1962 0.6860 0.7006 +vn -0.2007 -0.3078 -0.9300 +vn -0.2008 -0.3071 -0.9303 +vn -0.1303 -0.9518 0.2778 +vn -0.1293 -0.9520 0.2775 +vn -0.1316 -0.9517 0.2775 +vn 0.2614 -0.9134 0.3120 +vn 0.2613 -0.9134 0.3121 +vn 0.2613 -0.9135 0.3117 +vn -0.4123 0.9102 0.0403 +vn -0.2791 0.9594 -0.0404 +vn -0.2784 0.9596 -0.0399 +vn -0.2789 0.9595 -0.0403 +vn -0.4546 0.2259 -0.8616 +vn -0.4541 0.2270 -0.8616 +vn -0.4542 0.2263 -0.8617 +vn -0.8679 -0.2100 0.4502 +vn -0.8681 -0.2091 0.4502 +vn -0.8679 -0.2098 0.4502 +vn -0.5441 -0.1854 -0.8183 +vn -0.5442 -0.1857 -0.8182 +vn -0.5443 -0.1857 -0.8181 +vn 0.4479 -0.0821 0.8903 +vn 0.4473 -0.0817 0.8907 +vn 0.4472 -0.0816 0.8907 +vn -0.1417 0.9486 -0.2831 +vn -0.1419 0.9486 -0.2829 +vn -0.1418 0.9486 -0.2831 +vn 0.8170 -0.5659 0.1106 +vn 0.8170 -0.5659 0.1107 +vn 0.8169 -0.5660 0.1108 +vn 0.4700 0.7155 -0.5169 +vn -0.9418 0.2872 0.1749 +vn -0.9416 0.2880 0.1746 +vn -0.9419 0.2867 0.1748 +vn 0.5776 0.2314 -0.7829 +vn 0.8126 -0.2327 0.5344 +vn 0.8126 -0.2329 0.5343 +vn 0.8126 -0.2326 0.5345 +vn -0.9869 -0.1488 -0.0615 +vn -0.9869 -0.1489 -0.0614 +vn 0.2446 0.9629 -0.1138 +vn 0.2442 0.9630 -0.1140 +vn 0.2445 0.9629 -0.1142 +vn 0.7617 -0.6478 -0.0102 +vn 0.7615 -0.6481 -0.0091 +vn 0.7615 -0.6481 -0.0090 +vn 0.4333 -0.3833 -0.8156 +vn -0.4484 -0.0911 0.8892 +vn -0.4480 -0.0913 0.8894 +vn -0.4482 -0.0912 0.8893 +vn -0.6918 -0.7220 -0.0140 +vn -0.6917 -0.7221 -0.0138 +vn 0.0702 -0.0617 0.9956 +vn 0.0703 -0.0621 0.9956 +vn 0.0701 -0.0615 0.9956 +vn -0.6444 -0.7628 0.0547 +vn -0.6444 -0.7627 0.0545 +vn 0.1405 0.8496 -0.5084 +vn 0.1408 0.8496 -0.5082 +vn 0.1418 0.8494 -0.5084 +vn -0.3287 0.7792 -0.5337 +vn -0.3285 0.7791 -0.5340 +vn 0.4276 -0.6134 -0.6640 +vn 0.4282 -0.6129 -0.6641 +vn 0.4273 -0.6137 -0.6638 +vn -0.6472 0.5416 0.5365 +vn -0.6477 0.5414 0.5361 +vn -0.6471 0.5417 0.5365 +vn -0.6622 -0.4787 -0.5765 +vn -0.6622 -0.4785 -0.5767 +vn -0.6625 -0.4789 -0.5760 +vn 0.6340 -0.7003 -0.3281 +vn 0.6337 -0.7012 -0.3268 +vn 0.6338 -0.7007 -0.3276 +vn -0.8584 -0.0558 -0.5100 +vn -0.8586 -0.0555 -0.5096 +vn -0.8584 -0.0558 -0.5099 +vn 0.7687 -0.1464 0.6226 +vn 0.7691 -0.1466 0.6221 +vn 0.7697 -0.1463 0.6214 +vn 0.7640 0.1040 -0.6368 +vn 0.7641 0.1042 -0.6366 +vn 0.7643 0.1048 -0.6362 +vn 0.7012 -0.6464 0.3007 +vn -0.6544 0.7319 -0.1900 +vn -0.6542 0.7321 -0.1901 +vn -0.6544 0.7318 -0.1902 +vn 0.9579 -0.0364 0.2848 +vn -0.1927 0.4816 -0.8549 +vn -0.1931 0.4818 -0.8548 +vn -0.1946 0.4822 -0.8542 +vn -0.1077 0.8108 0.5754 +vn -0.1069 0.8107 0.5757 +vn -0.1081 0.8106 0.5756 +vn 0.4894 0.7078 -0.5095 +vn 0.4893 0.7077 -0.5097 +vn -0.1349 0.2319 -0.9633 +vn -0.1350 0.2319 -0.9633 +vn 0.6855 0.6681 -0.2895 +vn 0.6855 0.6679 -0.2898 +vn 0.6853 0.6682 -0.2896 +vn -0.2395 0.1305 0.9621 +vn -0.2396 0.1307 0.9620 +vn 0.7674 -0.4050 0.4970 +vn 0.7677 -0.4038 0.4976 +vn 0.7678 -0.4041 0.4972 +vn 0.9432 -0.0270 0.3311 +vn 0.9431 -0.0270 0.3314 +vn 0.3267 0.5984 0.7316 +vn 0.3267 0.5985 0.7315 +vn 0.3257 0.5983 0.7321 +vn -0.3282 0.8475 -0.4171 +vn -0.3280 0.8478 -0.4168 +vn -0.3281 0.8478 -0.4166 +vn -0.2642 0.9605 -0.0874 +vn -0.6633 -0.7251 -0.1851 +vn -0.6641 -0.7242 -0.1857 +vn -0.6625 -0.7257 -0.1854 +vn -0.5015 -0.7599 -0.4135 +vn -0.4562 0.6491 -0.6088 +vn -0.4561 0.6492 -0.6087 +vn -0.5841 -0.2781 0.7625 +vn -0.5844 -0.2777 0.7625 +vn 0.5703 0.0658 -0.8188 +vn 0.5704 0.0656 -0.8187 +vn 0.5708 0.0645 -0.8185 +vn 0.5853 -0.5383 0.6063 +vn 0.5850 -0.5387 0.6063 +vn -0.2917 -0.2466 -0.9242 +vn -0.2916 -0.2469 -0.9241 +vn -0.2917 -0.2465 -0.9242 +vn -0.5692 0.7564 -0.3223 +vn -0.6122 0.0810 -0.7865 +vn -0.6122 0.0808 -0.7866 +vn 0.7569 -0.5662 0.3263 +vn 0.7569 -0.5662 0.3264 +vn 0.7570 -0.5662 0.3262 +vn 0.3352 0.4059 -0.8503 +vn -0.7475 -0.4893 -0.4492 +vn -0.7474 -0.4893 -0.4493 +vn 0.0823 0.7608 -0.6437 +vn 0.0823 0.7609 -0.6437 +vn -0.4557 -0.4562 0.7643 +vn -0.4564 -0.4560 0.7640 +vn -0.4567 -0.4561 0.7638 +vn -0.2084 -0.9544 -0.2136 +vn -0.2085 -0.9544 -0.2137 +vn -0.2081 -0.9545 -0.2137 +vn 0.8308 0.2893 0.4755 +vn 0.8306 0.2892 0.4758 +vn 0.8311 0.2892 0.4750 +vn -0.4637 0.7130 -0.5259 +vn -0.4629 0.7140 -0.5252 +vn -0.4632 0.7137 -0.5255 +vn 0.0206 -0.9362 0.3508 +vn 0.0204 -0.9363 0.3507 +vn 0.0209 -0.9360 0.3513 +vn 0.7902 0.0116 0.6127 +vn -0.5988 0.3878 0.7008 +vn -0.5987 0.3880 0.7008 +vn -0.5989 0.3876 0.7008 +vn 0.7899 -0.4744 0.3887 +vn 0.7901 -0.4744 0.3882 +vn 0.7896 -0.4748 0.3887 +vn -0.4229 0.3973 -0.8144 +vn -0.4229 0.3971 -0.8145 +vn -0.6581 -0.7526 0.0238 +vn -0.6581 -0.7525 0.0237 +vn -0.6581 -0.7526 0.0240 +vn 0.1284 0.7779 0.6151 +vn 0.1289 0.7783 0.6146 +vn 0.1286 0.7780 0.6149 +vn -0.4551 -0.0697 0.8877 +vn -0.1616 -0.9130 0.3745 +vn -0.1607 -0.9132 0.3745 +vn 0.5049 -0.2104 0.8372 +vn -0.3536 0.7267 -0.5890 +vn 0.3928 -0.8956 0.2087 +vn 0.8797 -0.2378 0.4119 +vn 0.8800 -0.2363 0.4121 +vn 0.8797 -0.2354 0.4131 +vn 0.8825 -0.2311 0.4096 +vn 0.8824 -0.2313 0.4097 +vn -0.8756 0.2624 0.4056 +vn -0.8755 0.2623 0.4058 +vn -0.1234 0.5259 0.8416 +vn -0.1235 0.5257 0.8416 +vn -0.1237 0.5256 0.8417 +vn 0.4205 -0.7656 0.4868 +vn 0.4203 -0.7655 0.4872 +vn 0.4205 -0.7656 0.4869 +vn -0.3714 -0.9031 0.2155 +vn -0.3714 -0.9030 0.2162 +vn -0.3713 -0.9031 0.2157 +vn 0.8848 -0.1898 0.4255 +vn 0.8847 -0.1908 0.4253 +vn 0.8848 -0.1904 0.4253 +vn 0.7167 0.6293 0.3005 +vn 0.7167 0.6294 0.3004 +vn 0.7171 0.6291 0.3000 +vn 0.7834 0.4650 0.4125 +vn 0.7834 0.4649 0.4125 +vn 0.8103 0.5723 -0.1262 +vn 0.8106 0.5719 -0.1258 +vn 0.5063 0.2955 0.8102 +vn 0.5062 0.2952 0.8103 +vn 0.5061 0.2951 0.8104 +vn -0.3511 -0.1211 0.9285 +vn -0.3517 -0.1215 0.9282 +vn -0.3512 -0.1212 0.9284 +vn -0.7546 0.0974 -0.6490 +vn -0.7547 0.0973 -0.6488 +vn -0.7546 0.0974 -0.6489 +vn 0.0339 0.3830 0.9231 +vn 0.0338 0.3828 0.9232 +vn 0.7472 0.3954 -0.5341 +vn 0.7472 0.3955 -0.5341 +vn 0.7471 0.3956 -0.5341 +vn -0.0171 0.8110 0.5848 +vn -0.0172 0.8111 0.5847 +vn -0.0176 0.8111 0.5847 +vn 0.8035 -0.5282 0.2746 +vn 0.8034 -0.5283 0.2745 +vn 0.8035 -0.5283 0.2745 +vn -0.7085 -0.4282 -0.5609 +vn -0.7086 -0.4284 -0.5607 +vn -0.0783 0.3235 0.9430 +vn -0.0781 0.3243 0.9427 +vn -0.0781 0.3252 0.9424 +vn -0.1279 -0.3322 -0.9345 +vn -0.1296 -0.3309 -0.9347 +vn -0.1287 -0.3319 -0.9345 +vn 0.9263 0.3728 0.0552 +vn 0.9262 0.3730 0.0551 +vn 0.9263 0.3727 0.0553 +vn 0.3904 -0.9194 -0.0482 +vn 0.3897 -0.9196 -0.0487 +vn 0.3906 -0.9193 -0.0480 +vn -0.9537 0.0051 -0.3008 +vn -0.9536 0.0050 -0.3010 +vn -0.5602 -0.8161 0.1420 +vn -0.6472 -0.5844 -0.4895 +vn -0.2694 0.6993 -0.6621 +vn -0.2713 0.6988 -0.6619 +vn -0.2684 0.6993 -0.6625 +vn -0.3215 0.9468 0.0110 +vn -0.3208 0.9471 0.0125 +vn -0.3213 0.9469 0.0113 +vn 0.8402 0.5084 0.1887 +vn 0.8413 0.5068 0.1881 +vn 0.8406 0.5077 0.1889 +vn 0.7972 -0.5799 -0.1679 +vn 0.7979 -0.5787 -0.1685 +vn 0.8004 -0.5757 -0.1669 +vn 0.4169 0.8911 -0.1792 +vn 0.3838 -0.6888 -0.6150 +vn 0.3839 -0.6887 -0.6151 +vn 0.3837 -0.6890 -0.6149 +vn -0.6478 -0.1175 0.7527 +vn -0.6479 -0.1178 0.7526 +vn -0.4593 -0.8882 0.0111 +vn -0.4587 -0.8885 0.0112 +vn 0.1724 0.9453 0.2770 +vn 0.1720 0.9453 0.2771 +vn 0.1726 0.9452 0.2770 +vn 0.3236 -0.6725 0.6656 +vn 0.3232 -0.6728 0.6655 +vn 0.3234 -0.6726 0.6656 +vn -0.9465 0.1486 -0.2864 +vn -0.9463 0.1486 -0.2870 +vn -0.9459 0.1492 -0.2882 +vn 0.9684 0.2393 -0.0706 +vn 0.9685 0.2389 -0.0709 +vn 0.9684 0.2390 -0.0709 +vn -0.7687 0.5727 -0.2848 +vn 0.2489 0.3205 0.9140 +vn 0.2491 0.3204 0.9140 +vn 0.2485 0.3203 0.9142 +vn -0.0460 0.2816 -0.9584 +vn -0.0462 0.2812 -0.9585 +vn -0.0463 0.2809 -0.9586 +vn -0.0199 -0.8906 0.4544 +vn -0.0197 -0.8905 0.4545 +vn -0.0201 -0.8905 0.4545 +vn 0.0146 0.9938 -0.1106 +vn 0.0147 0.9937 -0.1107 +vn 0.0146 0.9937 -0.1109 +vn 0.2860 -0.9373 -0.1992 +vn 0.2859 -0.9373 -0.1994 +vn 0.9315 0.3623 -0.0306 +vn 0.9315 0.3624 -0.0307 +vn 0.9316 0.3622 -0.0302 +vn -0.1846 0.8089 -0.5582 +vn -0.1847 0.8089 -0.5582 +vn -0.1844 0.8090 -0.5581 +vn 0.2012 0.8572 -0.4741 +vn 0.7114 -0.2500 -0.6568 +vn 0.7115 -0.2501 -0.6567 +vn -0.0184 0.6872 -0.7262 +vn -0.0174 0.6867 -0.7267 +vn -0.0170 0.6866 -0.7268 +vn 0.1024 -0.7861 -0.6096 +vn 0.1026 -0.7860 -0.6096 +vn 0.4378 0.8628 0.2529 +vn 0.4379 0.8628 0.2527 +vn 0.4377 0.8628 0.2531 +vn -0.9044 -0.3866 0.1806 +vn -0.9044 -0.3865 0.1808 +vn 0.8202 0.4207 -0.3876 +vn 0.8202 0.4208 -0.3874 +vn -0.4069 -0.8178 -0.4070 +vn -0.4067 -0.8178 -0.4072 +vn -0.4068 -0.8178 -0.4071 +vn 0.1965 -0.4180 -0.8869 +vn 0.1965 -0.4179 -0.8870 +vn 0.1963 -0.4182 -0.8869 +vn -0.8143 0.3713 -0.4462 +vn 0.6977 -0.5226 0.4900 +vn 0.6976 -0.5219 0.4909 +vn 0.6980 -0.5228 0.4894 +vn 0.3332 0.7793 -0.5307 +vn 0.3333 0.7792 -0.5308 +vn -0.7894 -0.1754 -0.5883 +vn -0.7894 -0.1750 -0.5884 +vn -0.7894 -0.1752 -0.5884 +vn 0.6892 -0.2221 -0.6896 +vn 0.6893 -0.2218 -0.6897 +vn 0.6891 -0.2226 -0.6897 +vn -0.2351 -0.3820 -0.8937 +vn -0.2352 -0.3819 -0.8938 +vn 0.4067 0.6263 0.6651 +vn 0.4067 0.6268 0.6646 +vn -0.3773 -0.6133 -0.6939 +vn 0.6632 -0.2786 -0.6947 +vn 0.6632 -0.2787 -0.6946 +vn -0.4000 0.9094 0.1143 +vn -0.3998 0.9094 0.1144 +vn -0.1493 -0.7767 0.6120 +vn -0.1509 -0.7769 0.6113 +vn -0.1526 -0.7765 0.6114 +vn 0.1563 -0.7263 0.6693 +vn 0.1564 -0.7264 0.6692 +vn 0.6514 -0.7368 0.1813 +vn 0.6519 -0.7368 0.1795 +vn 0.6516 -0.7369 0.1801 +vn 0.9117 0.3995 -0.0963 +vn 0.9120 0.3989 -0.0955 +vn 0.9123 0.3984 -0.0946 +vn 0.9386 0.3147 -0.1415 +vn 0.9388 0.3144 -0.1405 +vn 0.9389 0.3143 -0.1401 +vn 0.8589 0.0643 -0.5080 +vn 0.8598 0.0624 -0.5069 +vn 0.8593 0.0632 -0.5075 +vn -0.2848 0.9160 -0.2825 +vn -0.2847 0.9160 -0.2827 +vn 0.4985 0.2418 -0.8325 +vn 0.4983 0.2424 -0.8324 +vn 0.4985 0.2419 -0.8324 +vn 0.4979 0.0520 0.8657 +vn 0.4982 0.0515 0.8655 +vn 0.4978 0.0521 0.8657 +vn 0.1845 0.9805 -0.0681 +vn 0.1844 0.9805 -0.0680 +vn -0.7335 0.0399 0.6785 +vn -0.7336 0.0399 0.6784 +vn -0.7335 0.0401 0.6785 +vn 0.0705 -0.3804 -0.9221 +vn 0.0703 -0.3806 -0.9221 +vn -0.4133 -0.1161 -0.9032 +vn -0.4130 -0.1156 -0.9034 +vn -0.4130 -0.1159 -0.9033 +vn -0.6134 0.5215 -0.5931 +vn -0.6135 0.5214 -0.5931 +vn -0.6136 0.5213 -0.5931 +vn 0.6405 0.4768 -0.6020 +vn 0.6403 0.4770 -0.6021 +vn 0.6404 0.4771 -0.6019 +vn -0.3710 0.8885 -0.2699 +vn -0.3708 0.8887 -0.2697 +vn -0.3708 0.8887 -0.2696 +vn -0.4471 0.8664 -0.2223 +vn -0.4458 0.8671 -0.2221 +vn -0.4456 0.8672 -0.2223 +vn 0.6614 0.5821 -0.4730 +vn 0.6614 0.5819 -0.4732 +vn 0.6610 0.5827 -0.4728 +vn 0.3656 0.8913 -0.2682 +vn 0.3653 0.8914 -0.2682 +vn 0.3651 0.8915 -0.2683 +vn -0.4523 0.6968 -0.5567 +vn -0.4524 0.6968 -0.5566 +vn -0.4523 0.6967 -0.5568 +vn 0.8655 -0.4959 -0.0706 +vn 0.8655 -0.4959 -0.0704 +vn 0.4535 0.1126 -0.8841 +vn -0.3206 0.4432 -0.8371 +vn -0.3204 0.4432 -0.8372 +vn -0.3197 0.4434 -0.8374 +vn -0.1870 0.8750 -0.4465 +vn -0.1869 0.8753 -0.4459 +vn -0.1869 0.8751 -0.4464 +vn 0.3008 0.6607 0.6878 +vn 0.3016 0.6610 0.6871 +vn 0.3012 0.6608 0.6875 +vn -0.1672 -0.7462 -0.6444 +vn 0.3086 0.9306 -0.1967 +vn 0.3093 0.9305 -0.1961 +vn 0.3099 0.9303 -0.1960 +vn 0.8996 0.4359 -0.0253 +vn 0.8996 0.4359 -0.0252 +vn -0.3766 0.6191 -0.6891 +vn -0.0663 0.8038 -0.5912 +vn -0.0391 0.8823 0.4691 +vn -0.0389 0.8822 0.4692 +vn -0.0390 0.8823 0.4691 +vn -0.0566 -0.0337 0.9978 +vn 0.9077 0.2265 0.3532 +vn 0.9074 0.2263 0.3541 +vn 0.9075 0.2263 0.3538 +vn 0.2699 -0.6601 -0.7010 +vn 0.2698 -0.6605 -0.7007 +vn 0.2698 -0.6603 -0.7009 +vn -0.2424 0.9677 0.0693 +vn -0.2422 0.9677 0.0694 +vn -0.2419 0.9678 0.0695 +vn -0.3843 -0.5025 0.7744 +vn -0.0740 0.8008 -0.5944 +vn -0.0764 0.7989 -0.5966 +vn -0.0758 0.7997 -0.5956 +vn 0.0985 0.6889 -0.7182 +vn -0.1824 0.4416 -0.8785 +vn 0.1933 0.8003 0.5676 +vn 0.1932 0.8003 0.5676 +vn 0.1930 0.8003 0.5677 +vn -0.9010 0.0860 -0.4252 +vn -0.9010 0.0859 -0.4253 +vn -0.9011 0.0859 -0.4250 +vn 0.3685 0.9276 0.0623 +vn 0.3685 0.9275 0.0625 +vn 0.3675 0.6046 0.7067 +vn 0.3672 0.6048 0.7067 +vn -0.1514 0.8344 -0.5300 +vn 0.6487 0.0795 0.7569 +vn 0.2243 0.8567 -0.4644 +vn 0.2242 0.8568 -0.4644 +vn 0.2246 0.8566 -0.4645 +vn 0.5722 0.7094 -0.4115 +vn 0.5715 0.7094 -0.4124 +vn 0.5719 0.7096 -0.4117 +vn -0.6892 0.1953 0.6977 +vn -0.6892 0.1954 0.6977 +vn -0.6893 0.1952 0.6976 +vn -0.4129 -0.7496 0.5173 +vn -0.4130 -0.7498 0.5170 +vn -0.4130 -0.7499 0.5168 +vn 0.4631 0.2131 -0.8603 +vn 0.4631 0.2127 -0.8604 +vn 0.4631 0.2132 -0.8603 +vn -0.6839 -0.3741 0.6263 +vn -0.6839 -0.3742 0.6263 +vn -0.6840 -0.3738 0.6264 +vn 0.3257 0.9422 -0.0785 +vn 0.3255 0.9423 -0.0789 +vn 0.3257 0.9422 -0.0784 +vn 0.2568 -0.1828 -0.9490 +vn 0.2571 -0.1829 -0.9489 +vn 0.2567 -0.1829 -0.9490 +vn 0.3325 0.9217 -0.1997 +vn 0.3324 0.9218 -0.1997 +vn 0.3326 0.9217 -0.1998 +vn -0.2936 -0.8437 -0.4493 +vn -0.2936 -0.8435 -0.4497 +vn -0.2937 -0.8436 -0.4495 +vn -0.0844 -0.7496 -0.6565 +vn -0.0853 -0.7494 -0.6566 +vn -0.0840 -0.7493 -0.6569 +vn 0.2617 -0.6126 -0.7458 +vn 0.2614 -0.6128 -0.7457 +vn 0.2618 -0.6125 -0.7458 +vn -0.4772 -0.3428 -0.8092 +vn -0.4765 -0.3430 -0.8095 +vn -0.4785 -0.3432 -0.8082 +vn -0.0182 -0.9984 -0.0540 +vn -0.4279 -0.8881 0.1681 +vn -0.4279 -0.8881 0.1682 +vn -0.4281 -0.8880 0.1680 +vn -0.6980 -0.6469 0.3070 +vn -0.6982 -0.6463 0.3079 +vn -0.6982 -0.6472 0.3061 +vn -0.6289 0.4340 -0.6450 +vn -0.6291 0.4340 -0.6449 +vn -0.3105 0.3046 -0.9004 +vn 0.2128 0.9769 0.0210 +vn 0.2130 0.9768 0.0212 +vn -0.1593 0.5189 -0.8399 +vn -0.5599 0.1270 -0.8188 +vn -0.5601 0.1280 -0.8185 +vn -0.5602 0.1257 -0.8188 +vn 0.0844 0.8316 -0.5489 +vn 0.0846 0.8320 -0.5483 +vn 0.0845 0.8319 -0.5485 +vn 0.7369 -0.5203 0.4316 +vn 0.7361 -0.5226 0.4302 +vn 0.7361 -0.5219 0.4311 +vn 0.5320 0.6792 -0.5057 +vn 0.5314 0.6798 -0.5055 +vn 0.5316 0.6794 -0.5058 +vn 0.0318 0.5104 0.8593 +vn 0.0316 0.5105 0.8593 +vn 0.0320 0.5105 0.8593 +vn -0.5321 0.2553 0.8073 +vn -0.5316 0.2551 0.8077 +vn -0.6323 0.0132 -0.7746 +vn -0.6317 0.0137 -0.7751 +vn -0.6322 0.0133 -0.7747 +vn -0.8358 -0.0199 -0.5487 +vn -0.8357 -0.0199 -0.5488 +vn 0.5826 0.7417 -0.3323 +vn 0.5828 0.7416 -0.3324 +vn 0.5825 0.7417 -0.3324 +vn 0.3990 0.9094 0.1172 +vn 0.3988 0.9095 0.1172 +vn 0.3987 0.9096 0.1173 +vn 0.4164 0.8987 0.1374 +vn 0.4160 0.8989 0.1378 +vn 0.4172 0.8984 0.1370 +vn 0.3407 0.9053 -0.2537 +vn 0.3405 0.9054 -0.2537 +vn 0.3409 0.9052 -0.2539 +vn 0.1673 0.5381 -0.8261 +vn 0.1673 0.5378 -0.8263 +vn 0.1383 0.5165 -0.8450 +vn 0.1385 0.5177 -0.8443 +vn 0.1383 0.5166 -0.8450 +vn 0.4903 -0.8669 0.0900 +vn 0.4902 -0.8670 0.0899 +vn 0.4900 -0.8671 0.0896 +vn 0.8790 0.4754 -0.0372 +vn 0.8788 0.4758 -0.0364 +vn 0.8788 0.4757 -0.0365 +vn 0.2054 0.5561 0.8053 +vn 0.2045 0.5561 0.8056 +vn 0.2032 0.5555 0.8063 +vn 0.9879 -0.0972 0.1205 +vn 0.9880 -0.0968 0.1206 +vn 0.9880 -0.0961 0.1209 +vn 0.4855 0.8499 -0.2048 +vn 0.4853 0.8501 -0.2046 +vn -0.8590 -0.5089 0.0561 +vn -0.8585 -0.5096 0.0568 +vn -0.8583 -0.5100 0.0569 +vn -0.4036 0.1204 0.9070 +vn -0.4036 0.1203 0.9070 +vn -0.4037 0.1200 0.9070 +vn 0.8825 0.3236 0.3414 +vn 0.8825 0.3236 0.3413 +vn 0.8824 0.3236 0.3416 +vn 0.5208 0.7839 -0.3380 +vn 0.5209 0.7841 -0.3376 +vn 0.5207 0.7840 -0.3379 +vn -0.1971 0.3879 0.9004 +vn -0.1965 0.3882 0.9004 +vn -0.1736 0.7501 0.6382 +vn -0.1735 0.7501 0.6381 +vn 0.6665 -0.1092 -0.7375 +vn 0.6661 -0.1086 -0.7379 +vn 0.4664 0.0012 0.8846 +vn 0.4665 0.0016 0.8845 +vn 0.1566 -0.4307 0.8888 +vn 0.1563 -0.4308 0.8888 +vn 0.1562 -0.4309 0.8888 +vn 0.6914 -0.1270 0.7113 +vn 0.6913 -0.1275 0.7112 +vn 0.6908 -0.1282 0.7116 +vn 0.9210 0.3014 -0.2469 +vn 0.9210 0.3015 -0.2467 +vn -0.3479 -0.0673 0.9351 +vn -0.3491 -0.0679 0.9346 +vn -0.3476 -0.0673 0.9352 +vn -0.3675 0.8756 0.3134 +vn 0.3156 0.9470 -0.0604 +vn 0.3157 0.9469 -0.0605 +vn 0.7595 0.1485 -0.6333 +vn 0.7594 0.1484 -0.6334 +vn 0.6186 -0.7852 -0.0285 +vn 0.6187 -0.7851 -0.0284 +vn 0.4682 -0.3849 0.7954 +vn 0.4683 -0.3848 0.7954 +vn 0.4686 -0.3849 0.7952 +vn 0.2374 0.7169 -0.6555 +vn 0.2372 0.7169 -0.6556 +vn -0.4176 -0.4413 0.7943 +vn -0.4179 -0.4399 0.7949 +vn -0.4178 -0.4408 0.7944 +vn -0.1556 0.0121 0.9877 +vn -0.1555 0.0121 0.9878 +vn -0.1559 0.0126 0.9877 +vn 0.0486 0.3682 0.9285 +vn 0.0493 0.3674 0.9288 +vn 0.0475 0.3689 0.9283 +vn 0.3740 -0.6206 0.6892 +vn 0.3738 -0.6206 0.6893 +vn 0.9755 0.0267 -0.2186 +vn 0.9755 0.0263 -0.2184 +vn 0.9755 0.0266 -0.2185 +vn -0.2040 0.4054 0.8911 +vn -0.2039 0.4054 0.8911 +vn -0.2042 0.4039 0.8917 +vn -0.0090 -0.0055 0.9999 +vn -0.0093 -0.0053 0.9999 +vn -0.0092 -0.0054 0.9999 +vn -0.1655 0.8662 0.4715 +vn -0.9057 0.2137 0.3661 +vn -0.9058 0.2137 0.3659 +vn -0.9058 0.2139 0.3658 +vn 0.1325 0.1026 0.9859 +vn 0.1322 0.1029 0.9859 +vn 0.1323 0.1028 0.9859 +vn 0.0424 0.2733 -0.9610 +vn 0.0425 0.2731 -0.9610 +vn 0.0421 0.2733 -0.9610 +vn -0.1947 0.9800 0.0399 +vn -0.1945 0.9801 0.0400 +vn -0.1950 0.9800 0.0398 +vn -0.4264 0.8916 -0.1524 +vn -0.4261 0.8918 -0.1524 +vn -0.7571 0.6317 -0.1667 +vn -0.7570 0.6318 -0.1665 +vn -0.7571 0.6317 -0.1669 +vn -0.9206 -0.1665 -0.3532 +vn -0.9206 -0.1663 -0.3533 +vn -0.9207 -0.1664 -0.3529 +vn -0.5186 -0.5584 0.6475 +vn -0.5193 -0.5576 0.6477 +vn -0.5180 -0.5589 0.6475 +vn -0.1665 -0.0999 -0.9810 +vn -0.1673 -0.1000 -0.9808 +vn -0.1673 -0.0999 -0.9808 +vn -0.1490 -0.3368 -0.9297 +vn -0.1490 -0.3349 -0.9304 +vn -0.1480 -0.3319 -0.9316 +vn -0.8650 0.0209 0.5013 +vn -0.8649 0.0212 0.5015 +vn -0.7038 0.6565 -0.2716 +vn -0.7042 0.6561 -0.2714 +vn -0.7043 0.6560 -0.2713 +vn -0.9747 -0.1784 0.1349 +vn -0.7010 0.6179 -0.3560 +vn -0.2076 0.7573 -0.6192 +vn -0.2056 0.7567 -0.6206 +vn -0.2096 0.7568 -0.6191 +vn -0.8166 -0.3944 -0.4215 +vn -0.8166 -0.3948 -0.4211 +vn -0.8164 -0.3954 -0.4208 +vn 0.6948 0.3029 -0.6523 +vn 0.6949 0.3029 -0.6522 +vn 0.3240 0.6619 0.6760 +vn -0.7451 -0.6405 0.1861 +vn 0.1114 0.9535 0.2799 +vn 0.1113 0.9535 0.2802 +vn 0.1114 0.9535 0.2800 +vn -0.8955 -0.1054 -0.4324 +vn -0.8955 -0.1055 -0.4324 +vn -0.8955 -0.1055 -0.4323 +vn 0.6097 0.3908 -0.6896 +vn 0.6096 0.3910 -0.6896 +vn 0.6094 0.3910 -0.6898 +vn -0.6978 -0.7140 -0.0571 +vn 0.3712 -0.1928 0.9083 +vn 0.3715 -0.1924 0.9083 +vn 0.3650 0.9310 0.0063 +vn -0.9330 0.3343 0.1330 +vn -0.9331 0.3342 0.1331 +vn -0.3006 0.7725 -0.5594 +vn -0.3009 0.7731 -0.5584 +vn -0.3009 0.7733 -0.5581 +vn -0.1219 0.9900 -0.0705 +vn -0.1224 0.9900 -0.0705 +vn 0.6427 -0.5355 0.5479 +vn 0.6426 -0.5358 0.5477 +vn 0.6428 -0.5347 0.5485 +vn 0.0994 -0.0173 -0.9949 +vn 0.3235 -0.3527 0.8781 +vn 0.3235 -0.3525 0.8781 +vn -0.4041 -0.7757 0.4848 +vn -0.4038 -0.7754 0.4854 +vn -0.4042 -0.7758 0.4846 +vn -0.7008 -0.2457 -0.6697 +vn -0.7103 0.4608 -0.5321 +vn -0.7088 0.4616 -0.5335 +vn -0.7096 0.4610 -0.5328 +vn -0.6430 -0.3035 -0.7032 +vn -0.6430 -0.3033 -0.7033 +vn 0.8846 -0.1808 0.4298 +vn 0.8846 -0.1807 0.4299 +vn 0.8846 -0.1810 0.4297 +vn -0.1025 -0.7702 -0.6295 +vn -0.1023 -0.7699 -0.6299 +vn -0.1023 -0.7701 -0.6297 +vn -0.7585 -0.4071 -0.5088 +vn -0.7578 -0.4078 -0.5094 +vn -0.7585 -0.4072 -0.5088 +vn -0.1817 -0.9773 -0.1086 +vn -0.1810 -0.9774 -0.1088 +vn -0.1827 -0.9771 -0.1090 +vn 0.5343 -0.8445 0.0367 +vn -0.8235 -0.0813 -0.5614 +vn -0.8236 -0.0811 -0.5613 +vn -0.3000 0.0025 0.9539 +vn 0.4198 0.3592 -0.8335 +vn 0.4199 0.3593 -0.8334 +vn 0.4200 0.3591 -0.8335 +vn -0.8192 0.4687 -0.3304 +vn -0.8192 0.4688 -0.3304 +vn -0.5458 -0.7938 -0.2683 +vn -0.5461 -0.7934 -0.2688 +vn 0.7622 -0.4820 -0.4321 +vn 0.7621 -0.4823 -0.4321 +vn 0.0683 0.2061 -0.9761 +vn 0.0685 0.2055 -0.9763 +vn 0.0683 0.2060 -0.9762 +vn -0.4230 -0.8963 0.1331 +vn -0.4229 -0.8965 0.1322 +vn 0.1955 0.7007 -0.6861 +vn 0.1960 0.7009 -0.6858 +vn 0.1963 0.7009 -0.6857 +vn 0.9166 -0.0136 0.3997 +vn 0.9166 -0.0130 0.3996 +vn 0.9164 -0.0134 0.4001 +vn -0.6158 -0.6842 -0.3907 +vn -0.6152 -0.6842 -0.3917 +vn -0.6156 -0.6841 -0.3912 +vn -0.4520 0.7335 0.5077 +vn -0.8601 -0.0941 -0.5013 +vn -0.8603 -0.0943 -0.5010 +vn 0.4428 -0.3252 0.8356 +vn 0.7926 -0.5942 0.1369 +vn -0.1974 -0.5012 -0.8425 +vn -0.1972 -0.5011 -0.8426 +vn -0.6662 0.7126 -0.2201 +vn 0.8881 0.4589 0.0255 +vn 0.8882 0.4588 0.0252 +vn 0.8881 0.4590 0.0258 +vn 0.7995 0.2112 0.5623 +vn 0.7993 0.2116 0.5625 +vn 0.7998 0.2111 0.5620 +vn 0.7850 -0.5975 0.1636 +vn 0.6268 -0.7395 0.2454 +vn 0.6267 -0.7397 0.2451 +vn -0.5057 -0.1400 -0.8512 +vn -0.5052 -0.1398 -0.8516 +vn -0.5056 -0.1400 -0.8513 +vn -0.7237 0.5877 -0.3618 +vn -0.7236 0.5879 -0.3617 +vn 0.7395 -0.5959 0.3130 +vn 0.7394 -0.5960 0.3132 +vn 0.7394 -0.5961 0.3130 +vn 0.5702 -0.7400 0.3568 +vn 0.5705 -0.7396 0.3572 +vn 0.5708 -0.7393 0.3573 +vn 0.4825 -0.6539 0.5828 +vn 0.4822 -0.6539 0.5830 +vn 0.8628 0.4698 0.1866 +vn 0.8624 0.4707 0.1864 +vn 0.8625 0.4704 0.1865 +vn 0.4882 -0.7488 -0.4483 +vn 0.4884 -0.7488 -0.4481 +vn 0.4889 -0.7486 -0.4479 +vn 0.0839 -0.6086 0.7890 +vn 0.0851 -0.6089 0.7887 +vn 0.0857 -0.6088 0.7887 +vn 0.2082 -0.7031 0.6800 +vn 0.2081 -0.7030 0.6801 +vn 0.2079 -0.7029 0.6802 +vn 0.0263 -0.9027 -0.4295 +vn 0.0260 -0.9024 -0.4301 +vn 0.0266 -0.9031 -0.4287 +vn -0.6004 -0.6701 -0.4364 +vn -0.6005 -0.6702 -0.4363 +vn 0.8720 0.4467 0.2002 +vn 0.7215 -0.5725 0.3896 +vn 0.7214 -0.5728 0.3893 +vn 0.7213 -0.5727 0.3896 +vn 0.1181 -0.6781 0.7255 +vn 0.1182 -0.6784 0.7251 +vn 0.1179 -0.6782 0.7253 +vn 0.1013 0.5206 -0.8477 +vn 0.1013 0.5207 -0.8477 +vn 0.1015 0.5204 -0.8479 +vn -0.0185 -0.9991 0.0371 +vn -0.0187 -0.9991 0.0371 +vn 0.3745 -0.8972 0.2343 +vn 0.3743 -0.8972 0.2344 +vn 0.4845 0.3492 0.8020 +vn 0.4843 0.3495 0.8021 +vn 0.4844 0.3492 0.8021 +vn -0.6328 -0.2658 -0.7273 +vn -0.2281 -0.9268 0.2984 +vn -0.2280 -0.9268 0.2984 +vn -0.2280 -0.9268 0.2985 +vn -0.2038 0.1609 -0.9657 +vn -0.2037 0.1607 -0.9657 +vn 0.7426 -0.4556 0.4909 +vn 0.7426 -0.4557 0.4908 +vn -0.2416 -0.3565 -0.9025 +vn -0.2411 -0.3565 -0.9027 +vn -0.2423 -0.3564 -0.9024 +vn 0.7042 -0.0339 0.7092 +vn 0.7042 -0.0336 0.7092 +vn 0.7043 -0.0340 0.7091 +vn 0.7210 -0.0985 0.6859 +vn 0.7210 -0.0984 0.6859 +vn 0.7210 -0.0988 0.6858 +vn 0.5933 -0.7594 0.2670 +vn 0.5930 -0.7596 0.2672 +vn 0.8205 0.2877 0.4940 +vn 0.8202 0.2883 0.4941 +vn 0.6365 -0.6706 0.3809 +vn 0.6364 -0.6707 0.3809 +vn 0.6366 -0.6704 0.3811 +vn 0.1598 -0.3813 -0.9105 +vn 0.1597 -0.3813 -0.9106 +vn 0.1591 -0.3815 -0.9106 +vn -0.6960 0.3590 0.6219 +vn -0.6965 0.3578 0.6220 +vn -0.6968 0.3574 0.6219 +vn -0.7317 -0.6678 -0.1366 +vn -0.7320 -0.6676 -0.1363 +vn -0.7319 -0.6676 -0.1364 +vn 0.2285 -0.6259 -0.7457 +vn -0.5718 0.0811 -0.8164 +vn 0.7855 -0.1389 0.6031 +vn -0.0420 -0.9777 0.2059 +vn -0.0422 -0.9774 0.2070 +vn -0.0423 -0.9774 0.2072 +vn -0.9816 -0.1011 -0.1621 +vn -0.9815 -0.1011 -0.1628 +vn -0.9817 -0.1010 -0.1617 +vn 0.6262 0.7638 0.1564 +vn 0.6260 0.7640 0.1561 +vn -0.6502 -0.2872 -0.7034 +vn -0.6496 -0.2891 -0.7032 +vn -0.6497 -0.2880 -0.7036 +vn 0.4042 0.8696 0.2835 +vn 0.4042 0.8697 0.2834 +vn 0.4043 0.8696 0.2833 +vn -0.6507 -0.4535 -0.6090 +vn -0.6508 -0.4535 -0.6089 +vn -0.6511 -0.4535 -0.6086 +vn 0.7019 0.6143 0.3605 +vn 0.7024 0.6142 0.3597 +vn 0.7028 0.6143 0.3588 +vn 0.2500 0.7052 0.6635 +vn 0.2497 0.7052 0.6635 +vn 0.2499 0.7053 0.6634 +vn -0.9330 -0.1915 0.3045 +vn -0.9329 -0.1925 0.3042 +vn -0.9330 -0.1920 0.3044 +vn -0.3758 0.2897 0.8803 +vn -0.9378 0.1720 -0.3016 +vn -0.9381 0.1716 -0.3008 +vn -0.9378 0.1721 -0.3014 +vn -0.0722 0.9336 -0.3509 +vn -0.0723 0.9336 -0.3510 +vn -0.0718 0.9338 -0.3505 +vn -0.8259 0.2880 -0.4847 +vn -0.8258 0.2879 -0.4849 +vn 0.8771 -0.0877 0.4722 +vn 0.8771 -0.0863 0.4725 +vn 0.8770 -0.0870 0.4725 +vn 0.6263 0.2790 0.7280 +vn 0.1448 -0.9676 0.2066 +vn 0.1449 -0.9676 0.2068 +vn -0.6422 0.3175 -0.6977 +vn -0.6417 0.3169 -0.6984 +vn -0.6430 0.3180 -0.6967 +vn -0.1504 -0.2414 -0.9587 +vn -0.1481 -0.2416 -0.9590 +vn -0.1494 -0.2419 -0.9587 +vn 0.5093 0.1583 -0.8459 +vn 0.5093 0.1586 -0.8458 +vn -0.4120 -0.8762 -0.2501 +vn 0.1882 -0.3264 -0.9263 +vn 0.1885 -0.3264 -0.9262 +vn 0.1887 -0.3263 -0.9262 +vn 0.5589 -0.7308 -0.3918 +vn 0.5590 -0.7309 -0.3915 +vn 0.2535 0.9438 -0.2119 +vn 0.2538 0.9441 -0.2105 +vn 0.2548 0.9442 -0.2087 +vn -0.0418 -0.3649 -0.9301 +vn -0.0417 -0.3651 -0.9300 +vn -0.0421 -0.3654 -0.9299 +vn 0.4736 -0.8803 -0.0300 +vn 0.4733 -0.8804 -0.0300 +vn -0.8274 0.5270 -0.1941 +vn -0.8274 0.5270 -0.1942 +vn -0.2551 -0.7560 0.6028 +vn -0.2548 -0.7559 0.6031 +vn -0.2552 -0.7561 0.6027 +vn 0.4060 0.4134 -0.8151 +vn 0.8921 -0.3114 -0.3275 +vn 0.8920 -0.3112 -0.3278 +vn -0.7040 -0.6236 -0.3399 +vn -0.7040 -0.6235 -0.3401 +vn -0.0334 -0.4222 -0.9059 +vn -0.0326 -0.4223 -0.9059 +vn -0.0340 -0.4222 -0.9058 +vn -0.0863 0.2108 -0.9737 +vn -0.0835 0.2119 -0.9737 +vn -0.0847 0.2112 -0.9738 +vn -0.1527 0.4856 0.8608 +vn -0.1523 0.4855 0.8609 +vn -0.1525 0.4856 0.8608 +vn 0.5102 -0.8502 0.1297 +vn 0.5104 -0.8501 0.1298 +vn -0.3650 -0.7527 -0.5480 +vn -0.8842 -0.1116 -0.4536 +vn -0.8843 -0.1116 -0.4535 +vn 0.1907 -0.3403 0.9208 +vn 0.1911 -0.3402 0.9207 +vn 0.1904 -0.3404 0.9208 +vn -0.9285 -0.2912 -0.2302 +vn -0.9285 -0.2913 -0.2303 +vn -0.9285 -0.2913 -0.2302 +vn 0.0050 0.5354 -0.8446 +vn 0.0050 0.5353 -0.8447 +vn 0.0048 0.5354 -0.8446 +vn -0.5702 0.7738 -0.2758 +vn -0.5701 0.7737 -0.2762 +vn 0.6761 0.1399 -0.7234 +vn 0.6757 0.1403 -0.7237 +vn -0.1027 0.9935 -0.0498 +vn -0.7003 0.1687 -0.6936 +vn -0.7000 0.1689 -0.6939 +vn -0.0229 0.2561 0.9664 +vn -0.0231 0.2557 0.9665 +vn -0.0233 0.2551 0.9666 +vn -0.7002 0.1016 -0.7067 +vn 0.6266 -0.1658 0.7615 +vn 0.6267 -0.1662 0.7613 +vn 0.9447 0.1019 -0.3117 +vn 0.9447 0.1020 -0.3118 +vn 0.3760 0.3895 -0.8408 +vn 0.6668 0.1597 -0.7279 +vn 0.6673 0.1602 -0.7274 +vn 0.6670 0.1600 -0.7277 +vn 0.4849 0.3177 -0.8148 +vn 0.0874 0.8535 -0.5138 +vn 0.0873 0.8535 -0.5137 +vn 0.0872 0.8535 -0.5137 +vn -0.4536 0.3354 -0.8257 +vn -0.4536 0.3353 -0.8257 +vn -0.4539 0.3347 -0.8258 +vn -0.6695 -0.7428 0.0088 +vn 0.0221 -0.9186 -0.3946 +vn 0.9841 0.1544 0.0876 +vn 0.9841 0.1540 0.0887 +vn 0.9841 0.1542 0.0883 +vn 0.9906 0.1155 0.0728 +vn 0.9906 0.1156 0.0729 +vn 0.9906 0.1155 0.0731 +vn 0.5772 0.5611 0.5933 +vn 0.5769 0.5613 0.5934 +vn 0.5769 0.5612 0.5936 +vn -0.9562 -0.2329 0.1771 +vn -0.9562 -0.2330 0.1770 +vn -0.7738 -0.2404 -0.5861 +vn -0.7739 -0.2414 -0.5855 +vn -0.7741 -0.2420 -0.5850 +vn 0.7773 -0.6291 0.0059 +vn -0.4577 -0.2334 0.8579 +vn -0.4580 -0.2337 0.8577 +vn -0.4579 -0.2335 0.8578 +vn -0.9673 0.2315 -0.1038 +vn -0.9673 0.2312 -0.1039 +vn -0.9672 0.2316 -0.1040 +vn -0.0010 0.1126 -0.9936 +vn -0.0013 0.1131 -0.9936 +vn -0.0011 0.1129 -0.9936 +vn 0.9396 0.0788 -0.3332 +vn 0.9397 0.0790 -0.3329 +vn 0.8415 0.5394 -0.0314 +vn 0.8417 0.5390 -0.0316 +vn -0.4473 -0.6941 -0.5640 +vn -0.4474 -0.6941 -0.5639 +vn -0.4475 -0.6942 -0.5637 +vn -0.4023 -0.2194 -0.8888 +vn -0.4021 -0.2194 -0.8889 +vn -0.4022 -0.2194 -0.8889 +vn 0.2876 0.9011 0.3246 +vn 0.2877 0.9011 0.3245 +vn -0.2909 0.6947 -0.6579 +vn -0.2909 0.6948 -0.6577 +vn 0.8777 -0.4780 -0.0352 +vn -0.8352 0.4910 -0.2479 +vn -0.8352 0.4909 -0.2480 +vn -0.8353 0.4908 -0.2478 +vn 0.1695 -0.0868 0.9817 +vn 0.1690 -0.0866 0.9818 +vn 0.1692 -0.0867 0.9818 +vn -0.2867 0.6472 0.7064 +vn -0.2871 0.6476 0.7059 +vn -0.2870 0.6473 0.7061 +vn 0.0768 -0.5093 -0.8572 +vn 0.0781 -0.5083 -0.8576 +vn 0.0783 -0.5069 -0.8584 +vn -0.1970 0.7388 -0.6445 +vn -0.1949 0.7386 -0.6454 +vn -0.1961 0.7388 -0.6448 +vn 0.8916 0.1467 0.4285 +vn 0.8916 0.1467 0.4284 +vn -0.4649 0.8727 0.1495 +vn 0.0731 0.9731 -0.2185 +vn 0.0730 0.9731 -0.2183 +vn 0.0731 0.9732 -0.2182 +vn 0.6152 -0.5863 -0.5270 +vn 0.6152 -0.5864 -0.5269 +vn 0.6151 -0.5865 -0.5270 +vn -0.4416 -0.5178 0.7327 +vn -0.4414 -0.5179 0.7328 +vn -0.4413 -0.5180 0.7327 +vn -0.3241 -0.0895 0.9418 +vn -0.3243 -0.0898 0.9417 +vn -0.3238 -0.0895 0.9419 +vn 0.3823 0.9001 -0.2091 +vn 0.3815 0.9003 -0.2096 +vn 0.3814 0.9003 -0.2096 +vn 0.9667 0.2559 -0.0094 +vn 0.3838 0.9234 -0.0049 +vn 0.1847 0.8376 0.5141 +vn 0.1843 0.8376 0.5143 +vn 0.6258 0.4734 -0.6199 +vn -0.3294 0.5556 0.7634 +vn -0.3292 0.5558 0.7634 +vn -0.3296 0.5554 0.7635 +vn -0.1370 -0.0541 0.9891 +vn -0.1376 -0.0550 0.9890 +vn -0.1369 -0.0541 0.9891 +vn 0.4952 0.7936 0.3535 +vn 0.4956 0.7933 0.3537 +vn 0.4949 0.7938 0.3536 +vn 0.3732 0.9020 -0.2173 +vn 0.3734 0.9019 -0.2172 +vn -0.1375 -0.0495 0.9893 +vn -0.1371 -0.0491 0.9893 +vn -0.1369 -0.0489 0.9894 +vn -0.4397 0.8765 -0.1959 +vn -0.4399 0.8764 -0.1957 +vn -0.4399 0.8765 -0.1956 +vn 0.3458 0.9238 -0.1644 +vn 0.3457 0.9238 -0.1645 +vn 0.3456 0.9238 -0.1646 +vn -0.4171 -0.6546 0.6305 +vn -0.4177 -0.6543 0.6304 +vn -0.4175 -0.6544 0.6304 +vn 0.8493 -0.4611 -0.2572 +vn 0.8493 -0.4619 -0.2554 +vn 0.8497 -0.4618 -0.2544 +vn -0.4047 0.8998 -0.1629 +vn -0.4049 0.8998 -0.1623 +vn -0.4049 0.8999 -0.1622 +vn 0.3096 0.6652 0.6794 +vn 0.3099 0.6649 0.6796 +vn 0.3095 0.6655 0.6792 +vn 0.1571 0.6680 -0.7274 +vn 0.1574 0.6679 -0.7274 +vn -0.0672 0.5840 -0.8090 +vn -0.0672 0.5842 -0.8088 +vn -0.0671 0.5843 -0.8087 +vn 0.2688 0.6987 -0.6630 +vn 0.2667 0.6990 -0.6636 +vn 0.2675 0.6987 -0.6635 +vn 0.3666 0.0258 -0.9300 +vn 0.3661 0.0259 -0.9302 +vn 0.3663 0.0259 -0.9301 +vn 0.1395 -0.9702 0.1980 +vn 0.1396 -0.9701 0.1983 +vn 0.1396 -0.9702 0.1981 +vn 0.0096 0.9524 -0.3047 +vn 0.0093 0.9523 -0.3049 +vn -0.5318 -0.0724 -0.8438 +vn -0.5319 -0.0726 -0.8437 +vn 0.4091 0.9047 0.1191 +vn 0.4099 0.9042 0.1200 +vn 0.4097 0.9043 0.1198 +vn 0.5951 0.5173 -0.6150 +vn -0.2513 0.8709 -0.4223 +vn -0.2517 0.8710 -0.4219 +vn -0.2515 0.8710 -0.4221 +vn 0.3927 0.8534 0.3428 +vn 0.3935 0.8531 0.3425 +vn 0.3943 0.8526 0.3429 +vn -0.2559 0.1497 0.9551 +vn -0.2555 0.1497 0.9551 +vn -0.0341 -0.0719 0.9968 +vn 0.3375 0.6780 0.6530 +vn 0.3366 0.6805 0.6508 +vn 0.3374 0.6775 0.6536 +vn -0.9778 0.0131 -0.2091 +vn -0.9779 0.0137 -0.2085 +vn -0.9779 0.0135 -0.2088 +vn -0.6167 0.7839 -0.0713 +vn -0.6168 0.7839 -0.0713 +vn -0.2535 -0.6316 -0.7327 +vn -0.2496 -0.6301 -0.7353 +vn -0.2481 -0.6305 -0.7355 +vn -0.9345 0.2591 -0.2440 +vn -0.9345 0.2595 -0.2438 +vn -0.9345 0.2594 -0.2439 +vn 0.0383 -0.6573 -0.7526 +vn 0.0383 -0.6573 -0.7527 +vn 0.0382 -0.6571 -0.7528 +vn -0.4929 -0.8456 -0.2052 +vn -0.4930 -0.8455 -0.2052 +vn 0.6141 -0.6544 -0.4411 +vn 0.6140 -0.6545 -0.4411 +vn -0.6263 -0.7602 -0.1727 +vn -0.6264 -0.7602 -0.1726 +vn -0.6265 -0.7602 -0.1722 +vn -0.9597 0.2722 0.0700 +vn -0.9596 0.2723 0.0703 +vn -0.9598 0.2718 0.0695 +vn 0.7899 0.1915 -0.5825 +vn 0.7900 0.1916 -0.5824 +vn -0.7561 0.4875 -0.4367 +vn -0.7561 0.4879 -0.4363 +vn -0.7561 0.4873 -0.4369 +vn 0.7895 0.2482 0.5613 +vn 0.7899 0.2476 0.5610 +vn -0.0350 -0.3944 -0.9183 +vn 0.2214 0.5812 0.7831 +vn 0.2216 0.5813 0.7829 +vn 0.2218 0.5812 0.7829 +vn -0.8771 0.1552 0.4545 +vn 0.5304 0.6974 0.4820 +vn 0.5301 0.6977 0.4820 +vn 0.5302 0.6977 0.4818 +vn -0.0147 -0.9915 -0.1290 +vn 0.2927 0.8941 -0.3390 +vn 0.2932 0.8939 -0.3390 +vn 0.2936 0.8938 -0.3391 +vn -0.2158 -0.1631 0.9627 +vn -0.1351 0.4875 0.8626 +vn -0.1355 0.4872 0.8627 +vn -0.1354 0.4872 0.8627 +vn -0.0453 0.9937 0.1026 +vn -0.1158 0.9527 -0.2810 +vn -0.2047 -0.8561 -0.4745 +vn -0.2051 -0.8570 -0.4727 +vn -0.2031 -0.8556 -0.4762 +vn 0.5533 0.3494 -0.7562 +vn 0.5534 0.3495 -0.7560 +vn 0.5535 0.3498 -0.7558 +vn 0.6345 0.4984 -0.5908 +vn 0.6337 0.4994 -0.5907 +vn 0.6339 0.4992 -0.5907 +vn -0.4776 0.2270 -0.8488 +vn -0.4774 0.2268 -0.8489 +vn -0.4505 0.3300 0.8295 +vn -0.3115 0.7750 0.5498 +vn 0.2352 -0.7233 -0.6493 +vn 0.2352 -0.7233 -0.6492 +vn 0.2352 -0.7234 -0.6491 +vn -0.5549 0.6200 -0.5547 +vn -0.5553 0.6198 -0.5546 +vn -0.5552 0.6200 -0.5544 +vn 0.1578 0.8900 -0.4279 +vn 0.1578 0.8899 -0.4280 +vn 0.1574 0.8898 -0.4283 +vn -0.1616 0.8431 -0.5129 +vn -0.1613 0.8432 -0.5128 +vn -0.1609 0.8434 -0.5126 +vn -0.4038 0.6299 0.6634 +vn -0.4043 0.6298 0.6632 +vn -0.4036 0.6301 0.6634 +vn 0.7613 0.6426 0.0868 +vn -0.1131 -0.5479 -0.8289 +vn -0.1132 -0.5478 -0.8289 +vn -0.1131 -0.5480 -0.8288 +vn -0.2897 0.0147 0.9570 +vn -0.2898 0.0155 0.9570 +vn -0.2893 0.0138 0.9571 +vn 0.4313 0.4177 0.7997 +vn 0.4317 0.4178 0.7994 +vn 0.4316 0.4178 0.7995 +vn -0.5587 -0.5955 -0.5773 +vn -0.5584 -0.5958 -0.5773 +vn -0.5593 -0.5949 -0.5773 +vn -0.0841 -0.6177 0.7819 +vn 0.6173 0.1863 0.7643 +vn 0.6177 0.1866 0.7640 +vn 0.6175 0.1863 0.7642 +vn 0.9000 -0.4280 -0.0824 +vn 0.8999 -0.4283 -0.0825 +vn -0.7863 -0.0122 0.6177 +vn -0.7862 -0.0116 0.6179 +vn -0.7863 -0.0119 0.6177 +vn 0.4136 0.7407 -0.5294 +vn 0.4139 0.7407 -0.5291 +vn -0.1461 0.8484 -0.5088 +vn -0.1454 0.8489 -0.5082 +vn -0.1458 0.8486 -0.5086 +vn -0.3042 -0.4605 0.8339 +vn -0.3047 -0.4607 0.8336 +vn -0.3043 -0.4606 0.8338 +vn 0.8820 -0.3665 0.2962 +vn 0.8822 -0.3664 0.2959 +vn 0.8409 -0.2164 0.4961 +vn 0.8408 -0.2168 0.4960 +vn 0.8408 -0.2165 0.4961 +vn -0.9299 0.2839 -0.2338 +vn -0.9299 0.2840 -0.2336 +vn -0.9299 0.2841 -0.2335 +vn 0.3135 -0.6712 0.6717 +vn 0.3136 -0.6712 0.6717 +vn -0.3859 0.0200 -0.9223 +vn -0.3836 0.0235 -0.9232 +vn -0.3841 0.0214 -0.9230 +vn -0.8324 0.3330 -0.4429 +vn -0.6354 -0.3228 0.7014 +vn -0.6355 -0.3230 0.7013 +vn -0.6354 -0.3232 0.7013 +vn -0.0864 -0.3873 0.9179 +vn -0.0864 -0.3855 0.9187 +vn -0.0865 -0.3860 0.9184 +vn 0.3730 -0.5914 0.7149 +vn 0.3734 -0.5909 0.7152 +vn 0.3733 -0.5910 0.7151 +vn 0.4505 0.8862 -0.1087 +vn 0.4505 0.8862 -0.1084 +vn 0.4505 0.8861 -0.1090 +vn 0.3871 0.1192 -0.9143 +vn 0.3866 0.1189 -0.9145 +vn 0.3869 0.1191 -0.9144 +vn 0.7882 -0.5381 -0.2988 +vn 0.7881 -0.5381 -0.2990 +vn 0.7881 -0.5381 -0.2988 +vn -0.3057 0.2480 0.9193 +vn -0.3061 0.2472 0.9194 +vn -0.3063 0.2470 0.9193 +vn -0.2201 -0.0585 0.9737 +vn -0.2208 -0.0590 0.9735 +vn -0.2191 -0.0581 0.9740 +vn 0.0307 0.4742 -0.8799 +vn -0.4294 -0.2413 0.8703 +vn 0.5833 0.6669 0.4637 +vn 0.5836 0.6667 0.4636 +vn 0.5820 0.6677 0.4642 +vn -0.6968 0.1842 -0.6933 +vn -0.6969 0.1843 -0.6931 +vn -0.6969 0.1840 -0.6932 +vn -0.1812 -0.4428 0.8781 +vn -0.1811 -0.4429 0.8781 +vn -0.6185 0.7720 0.1464 +vn -0.6188 0.7718 0.1463 +vn -0.6194 0.7714 0.1460 +vn -0.5099 -0.6194 -0.5970 +vn 0.7057 0.7082 -0.0183 +vn 0.7058 0.7082 -0.0184 +vn 0.7057 0.7082 -0.0181 +vn -0.0216 0.9982 -0.0564 +vn -0.0226 0.9982 -0.0563 +vn -0.0211 0.9982 -0.0558 +vn 0.0243 0.8207 -0.5709 +vn 0.0243 0.8202 -0.5715 +vn 0.0241 0.8201 -0.5717 +vn 0.8003 0.2243 -0.5560 +vn 0.8011 0.2242 -0.5550 +vn 0.8012 0.2242 -0.5548 +vn -0.8025 -0.5712 -0.1722 +vn -0.8020 -0.5724 -0.1709 +vn -0.8020 -0.5723 -0.1709 +vn -0.9680 -0.1535 0.1983 +vn -0.9681 -0.1532 0.1981 +vn 0.6013 0.7259 -0.3338 +vn 0.6005 0.7263 -0.3344 +vn 0.5999 0.7265 -0.3352 +vn 0.5487 0.4616 -0.6971 +vn 0.5489 0.4617 -0.6968 +vn -0.0825 0.9744 -0.2092 +vn 0.5281 -0.6855 0.5011 +vn 0.5280 -0.6858 0.5010 +vn 0.5280 -0.6855 0.5013 +vn 0.8814 0.2875 0.3749 +vn 0.8815 0.2871 0.3748 +vn 0.8815 0.2872 0.3747 +vn 0.6203 -0.1396 -0.7718 +vn 0.6206 -0.1390 -0.7717 +vn 0.6206 -0.1389 -0.7718 +vn -0.7250 -0.6438 0.2447 +vn -0.7249 -0.6440 0.2446 +vn -0.7249 -0.6439 0.2446 +vn 0.8702 -0.2179 0.4420 +vn -0.9718 0.2343 -0.0284 +vn -0.9718 0.2342 -0.0283 +vn -0.9718 0.2342 -0.0284 +vn 0.5385 -0.3566 -0.7634 +vn 0.5386 -0.3567 -0.7633 +vn 0.5384 -0.3565 -0.7635 +vn 0.8361 -0.1815 0.5177 +vn 0.8364 -0.1814 0.5172 +vn 0.8362 -0.1815 0.5174 +vn -0.6042 0.7899 0.1048 +vn -0.6811 0.6283 -0.3760 +vn 0.2181 -0.3174 0.9229 +vn 0.9506 -0.1206 0.2861 +vn 0.9506 -0.1208 0.2860 +vn 0.9506 -0.1210 0.2859 +vn 0.9053 -0.1199 0.4076 +vn 0.9053 -0.1201 0.4075 +vn 0.1201 -0.0258 0.9924 +vn 0.1200 -0.0261 0.9924 +vn 0.1200 -0.0255 0.9924 +vn 0.1466 0.9651 0.2171 +vn 0.1470 0.9650 0.2171 +vn 0.5274 -0.6232 -0.5774 +vn 0.5276 -0.6229 -0.5776 +vn 0.5275 -0.6230 -0.5775 +vn 0.4147 0.8785 0.2371 +vn -0.6163 0.3078 -0.7249 +vn 0.1704 0.8931 0.4164 +vn 0.1706 0.8930 0.4164 +vn 0.1704 0.8930 0.4165 +vn 0.4224 0.8447 -0.3287 +vn 0.4223 0.8450 -0.3281 +vn 0.4229 0.8446 -0.3284 +vn -0.8947 0.3137 -0.3180 +vn -0.8946 0.3139 -0.3180 +vn -0.8944 0.3143 -0.3182 +vn -0.7403 -0.6553 -0.1500 +vn -0.7405 -0.6552 -0.1498 +vn -0.0094 -0.1304 -0.9914 +vn -0.0096 -0.1309 -0.9913 +vn -0.0093 -0.1307 -0.9914 +vn 0.7939 -0.1442 0.5907 +vn -0.3962 -0.6230 -0.6745 +vn 0.8744 -0.1073 0.4733 +vn 0.8745 -0.1076 0.4729 +vn 0.8744 -0.1078 0.4731 +vn -0.5363 0.4768 0.6964 +vn -0.5364 0.4769 0.6963 +vn -0.5362 0.4769 0.6964 +vn -0.8779 -0.0440 -0.4769 +vn -0.8778 -0.0439 -0.4770 +vn 0.6153 0.2431 0.7499 +vn 0.9058 0.0922 0.4135 +vn 0.9057 0.0921 0.4139 +vn 0.9056 0.0921 0.4140 +vn 0.8989 0.0859 0.4297 +vn 0.8982 0.0866 0.4309 +vn 0.8990 0.0856 0.4294 +vn 0.8678 -0.4649 0.1756 +vn 0.8675 -0.4657 0.1748 +vn 0.8677 -0.4653 0.1749 +vn -0.1769 0.8652 -0.4692 +vn -0.6326 0.1536 0.7591 +vn -0.6327 0.1540 0.7590 +vn 0.2898 0.7388 0.6084 +vn 0.9490 0.1277 0.2882 +vn 0.9490 0.1278 0.2882 +vn 0.2264 0.9727 -0.0508 +vn 0.2261 0.9728 -0.0508 +vn -0.0067 0.9943 0.1061 +vn -0.0069 0.9943 0.1061 +vn -0.0065 0.9943 0.1064 +vn -0.6008 -0.1316 -0.7885 +vn -0.6010 -0.1322 -0.7883 +vn -0.6013 -0.1329 -0.7879 +vn 0.0142 0.7510 -0.6602 +vn 0.0139 0.7512 -0.6599 +vn 0.0136 0.7518 -0.6593 +vn -0.1382 0.3352 0.9320 +vn -0.1378 0.3353 0.9320 +vn -0.8332 -0.1045 -0.5430 +vn -0.8332 -0.1047 -0.5430 +vn -0.8331 -0.1045 -0.5432 +vn 0.5615 -0.1367 0.8161 +vn 0.5616 -0.1359 0.8162 +vn 0.5615 -0.1364 0.8161 +vn 0.0330 0.8530 -0.5208 +vn 0.0330 0.8531 -0.5207 +vn -0.7766 0.4646 -0.4256 +vn -0.7783 -0.4850 -0.3987 +vn -0.7784 -0.4849 -0.3987 +vn 0.9199 0.1762 0.3503 +vn 0.9198 0.1765 0.3504 +vn -0.2817 0.5213 0.8055 +vn -0.2820 0.5212 0.8055 +vn -0.2813 0.5215 0.8056 +vn 0.1565 -0.8762 0.4559 +vn 0.1552 -0.8770 0.4548 +vn 0.1563 -0.8764 0.4555 +vn 0.5855 -0.7600 0.2822 +vn 0.5850 -0.7604 0.2821 +vn 0.5853 -0.7600 0.2825 +vn -0.0860 0.9894 -0.1173 +vn -0.0858 0.9894 -0.1174 +vn -0.0858 0.9894 -0.1171 +vn -0.6426 0.0247 -0.7658 +vn -0.6422 0.0246 -0.7661 +vn -0.6425 0.0247 -0.7659 +vn -0.3270 0.9105 0.2532 +vn -0.3271 0.9104 0.2534 +vn 0.6366 0.0656 -0.7684 +vn 0.6368 0.0654 -0.7682 +vn 0.6368 0.0655 -0.7683 +vn -0.6592 -0.6345 -0.4036 +vn 0.0828 0.9874 -0.1350 +vn 0.0831 0.9873 -0.1354 +vn 0.0830 0.9873 -0.1352 +vn -0.5988 -0.7983 0.0636 +vn -0.5989 -0.7983 0.0632 +vn -0.5989 -0.7983 0.0639 +vn 0.1203 -0.5824 0.8039 +vn 0.1204 -0.5824 0.8040 +vn 0.1202 -0.5821 0.8042 +vn 0.7938 0.5400 -0.2798 +vn 0.7937 0.5401 -0.2800 +vn 0.7938 0.5400 -0.2797 +vn -0.1666 0.5819 0.7960 +vn -0.1667 0.5818 0.7961 +vn -0.1664 0.5820 0.7960 +vn 0.6947 0.2918 0.6574 +vn 0.6948 0.2919 0.6573 +vn 0.6947 0.2920 0.6574 +vn 0.1836 0.9657 -0.1839 +vn 0.1835 0.9656 -0.1840 +vn 0.1838 0.9657 -0.1836 +vn 0.9169 -0.2262 0.3288 +vn 0.9168 -0.2265 0.3289 +vn 0.9169 -0.2263 0.3289 +vn -0.3319 0.8104 -0.4828 +vn -0.3322 0.8101 -0.4830 +vn -0.3321 0.8102 -0.4829 +vn 0.2566 -0.0557 -0.9649 +vn 0.2569 -0.0556 -0.9648 +vn 0.2573 -0.0550 -0.9648 +vn 0.2163 -0.6309 0.7451 +vn 0.2164 -0.6307 0.7452 +vn 0.2165 -0.6310 0.7450 +vn -0.7133 0.1575 0.6829 +vn -0.7135 0.1573 0.6827 +vn -0.7132 0.1578 0.6830 +vn -0.8214 -0.2209 0.5259 +vn -0.2571 0.0222 0.9661 +vn -0.2572 0.0217 0.9661 +vn -0.2571 0.0219 0.9661 +vn 0.5759 -0.7631 0.2933 +vn 0.5760 -0.7630 0.2934 +vn 0.2145 0.7289 -0.6502 +vn 0.2149 0.7285 -0.6504 +vn 0.2141 0.7289 -0.6502 +vn -0.0713 -0.3095 0.9482 +vn -0.0714 -0.3096 0.9482 +vn -0.0711 -0.3094 0.9483 +vn -0.0594 0.5017 -0.8630 +vn -0.0589 0.5015 -0.8631 +vn -0.0595 0.5019 -0.8629 +vn 0.6813 -0.7028 -0.2045 +vn 0.6814 -0.7027 -0.2046 +vn -0.0244 0.9298 0.3673 +vn -0.0243 0.9299 0.3669 +vn -0.0241 0.9300 0.3668 +vn -0.8775 -0.4164 -0.2381 +vn -0.8771 -0.4169 -0.2385 +vn 0.3386 0.3734 0.8637 +vn 0.3390 0.3729 0.8637 +vn 0.3391 0.3717 0.8642 +vn -0.2964 0.3467 0.8899 +vn -0.2961 0.3469 0.8899 +vn -0.2965 0.3467 0.8899 +vn -0.1469 -0.0936 -0.9847 +vn -0.1469 -0.0935 -0.9847 +vn -0.1470 -0.0934 -0.9847 +vn -0.0784 0.0566 0.9953 +vn -0.0774 0.0578 0.9953 +vn -0.0780 0.0573 0.9953 +vn 0.3674 0.3583 -0.8583 +vn 0.3657 0.3585 -0.8589 +vn 0.3669 0.3582 -0.8585 +vn 0.3334 0.9403 0.0688 +vn 0.3329 0.9404 0.0689 +vn 0.3319 0.9408 0.0689 +vn -0.5456 -0.1866 -0.8170 +vn -0.5462 -0.1871 -0.8165 +vn -0.5458 -0.1869 -0.8168 +vn 0.6491 -0.6336 0.4209 +vn 0.7257 -0.1693 0.6669 +vn 0.4507 -0.3223 0.8324 +vn 0.4508 -0.3230 0.8321 +vn 0.4513 -0.3235 0.8317 +vn 0.4319 0.8806 0.1948 +vn 0.4318 0.8807 0.1946 +vn 0.4315 0.8809 0.1943 +vn -0.0399 0.9025 -0.4289 +vn -0.0398 0.9024 -0.4290 +vn -0.0396 0.9025 -0.4289 +vn 0.2016 0.6304 0.7496 +vn 0.2020 0.6302 0.7497 +vn 0.2017 0.6303 0.7497 +vn -0.5867 -0.7937 -0.1606 +vn 0.5990 -0.7798 0.1817 +vn 0.5990 -0.7799 0.1816 +vn 0.5994 -0.7795 0.1818 +vn 0.0065 0.9696 -0.2446 +vn 0.0069 0.9695 -0.2449 +vn 0.2770 -0.4093 -0.8693 +vn 0.2770 -0.4095 -0.8692 +vn 0.2769 -0.4092 -0.8694 +vn -0.2185 0.8143 -0.5378 +vn -0.2208 0.8153 -0.5352 +vn -0.2199 0.8153 -0.5357 +vn 0.5252 -0.8413 0.1277 +vn 0.5226 -0.8432 0.1261 +vn 0.5244 -0.8420 0.1266 +vn 0.6837 0.6354 0.3590 +vn 0.6839 0.6353 0.3589 +vn 0.6838 0.6353 0.3588 +vn 0.9431 -0.0239 0.3316 +vn 0.9430 -0.0236 0.3320 +vn 0.9431 -0.0237 0.3317 +vn 0.9052 -0.4036 0.1332 +vn -0.4811 -0.6873 -0.5442 +vn -0.4814 -0.6871 -0.5442 +vn 0.9396 0.1982 0.2789 +vn 0.9397 0.1978 0.2788 +vn 0.9399 0.1975 0.2785 +vn -0.2847 0.9012 -0.3266 +vn -0.2845 0.9013 -0.3266 +vn -0.2847 0.9013 -0.3264 +vn 0.0410 0.1276 0.9910 +vn 0.0410 0.1278 0.9910 +vn 0.0410 0.1275 0.9910 +vn -0.8172 0.4382 -0.3744 +vn -0.8170 0.4376 -0.3755 +vn -0.8175 0.4383 -0.3737 +vn 0.2041 -0.9010 -0.3829 +vn 0.2554 0.9396 0.2280 +vn 0.2553 0.9396 0.2280 +vn -0.1476 -0.6838 -0.7146 +vn -0.1474 -0.6836 -0.7148 +vn -0.5805 0.7610 -0.2897 +vn -0.5806 0.7607 -0.2902 +vn 0.1568 -0.8995 -0.4077 +vn 0.1568 -0.8994 -0.4080 +vn 0.1569 -0.8994 -0.4079 +vn 0.4263 0.7637 0.4848 +vn 0.4264 0.7639 0.4844 +vn -0.6644 0.6355 0.3933 +vn -0.6643 0.6355 0.3935 +vn -0.0474 0.6913 0.7210 +vn -0.0464 0.6909 0.7215 +vn -0.0475 0.6913 0.7210 +vn 0.4767 0.6683 -0.5711 +vn 0.4766 0.6683 -0.5712 +vn 0.4765 0.6682 -0.5714 +vn 0.0057 0.9596 -0.2812 +vn 0.0058 0.9596 -0.2814 +vn -0.7308 0.5549 -0.3975 +vn -0.7312 0.5543 -0.3976 +vn -0.7313 0.5542 -0.3975 +vn 0.2127 0.9741 -0.0772 +vn 0.2127 0.9741 -0.0774 +vn 0.2130 0.9740 -0.0769 +vn -0.6184 0.6457 -0.4480 +vn -0.6186 0.6456 -0.4478 +vn -0.6185 0.6456 -0.4479 +vn -0.4319 -0.8827 -0.1851 +vn -0.4317 -0.8829 -0.1848 +vn 0.4452 0.6693 0.5949 +vn 0.4454 0.6693 0.5947 +vn 0.4455 0.6692 0.5947 +vn 0.5005 0.3393 -0.7965 +vn 0.5006 0.3389 -0.7966 +vn 0.5006 0.3390 -0.7965 +vn 0.5514 0.5003 -0.6676 +vn -0.4449 0.8110 -0.3800 +vn -0.4453 0.8108 -0.3799 +vn 0.1277 0.1650 0.9780 +vn 0.1277 0.1649 0.9780 +vn 0.3343 0.6613 -0.6715 +vn 0.3337 0.6616 -0.6715 +vn 0.3330 0.6624 -0.6711 +vn -0.2304 0.8385 0.4938 +vn -0.2304 0.8386 0.4936 +vn -0.2305 0.8385 0.4937 +vn 0.7409 0.6063 0.2890 +vn 0.7413 0.6063 0.2879 +vn 0.7413 0.6063 0.2878 +vn 0.9756 0.1930 0.1049 +vn 0.9755 0.1931 0.1051 +vn 0.9756 0.1931 0.1049 +vn -0.6496 0.6616 -0.3745 +vn -0.6055 -0.7276 -0.3224 +vn -0.6056 -0.7274 -0.3226 +vn -0.6057 -0.7273 -0.3226 +vn -0.7302 0.3500 0.5869 +vn -0.7302 0.3499 0.5869 +vn -0.7300 0.3498 0.5871 +vn 0.2756 0.0952 0.9565 +vn 0.2755 0.0951 0.9566 +vn 0.5924 -0.7989 -0.1042 +vn -0.7347 0.4819 -0.4775 +vn -0.7348 0.4820 -0.4773 +vn -0.5783 0.3746 0.7247 +vn -0.5794 0.3773 0.7224 +vn -0.5793 0.3761 0.7231 +vn 0.4697 -0.5221 0.7119 +vn 0.4695 -0.5222 0.7119 +vn 0.4697 -0.5223 0.7117 +vn -0.6346 -0.5983 -0.4892 +vn -0.6346 -0.5966 -0.4913 +vn -0.6345 -0.5977 -0.4901 +vn -0.0966 -0.3965 0.9129 +vn -0.0970 -0.3970 0.9127 +vn -0.0970 -0.3972 0.9126 +vn 0.0583 0.7641 -0.6425 +vn 0.0587 0.7640 -0.6425 +vn 0.0582 0.7641 -0.6425 +vn 0.7450 -0.1062 0.6585 +vn 0.7452 -0.1069 0.6582 +vn 0.7451 -0.1066 0.6584 +vn 0.4083 0.9073 0.1006 +vn 0.4081 0.9074 0.1007 +vn 0.9809 0.1601 -0.1104 +vn 0.9809 0.1599 -0.1103 +vn 0.9810 0.1601 -0.1100 +vn -0.5773 0.5283 0.6225 +vn -0.0580 -0.0264 -0.9980 +vn -0.0615 -0.0276 -0.9977 +vn -0.0597 -0.0273 -0.9978 +vn -0.1732 0.9772 -0.1227 +vn -0.1733 0.9773 -0.1219 +vn -0.1731 0.9773 -0.1223 +vn 0.8520 0.0986 0.5141 +vn 0.8519 0.0987 0.5143 +vn 0.8517 0.0989 0.5146 +vn 0.2866 -0.9001 0.3282 +vn 0.2866 -0.9000 0.3284 +vn 0.6409 -0.1976 0.7418 +vn 0.6402 -0.1979 0.7423 +vn 0.6405 -0.1978 0.7420 +vn 0.2498 -0.8079 -0.5338 +vn 0.2500 -0.8074 -0.5345 +vn 0.2497 -0.8076 -0.5343 +vn -0.2246 0.8428 -0.4892 +vn -0.2247 0.8427 -0.4892 +vn -0.2245 0.8427 -0.4893 +vn -0.7189 0.0937 -0.6887 +vn -0.7191 0.0936 -0.6886 +vn -0.1952 -0.6359 0.7467 +vn -0.1951 -0.6365 0.7462 +vn -0.1950 -0.6351 0.7474 +vn -0.0476 0.8734 -0.4846 +vn -0.0478 0.8734 -0.4846 +vn -0.0480 0.8736 -0.4843 +vn -0.1518 0.0828 0.9849 +vn -0.1517 0.0822 0.9850 +vn -0.1519 0.0816 0.9850 +vn 0.3474 0.6871 -0.6381 +vn 0.3476 0.6871 -0.6380 +vn 0.3476 0.6872 -0.6379 +vn -0.4136 0.8830 0.2219 +vn 0.4874 0.0279 -0.8727 +vn 0.4871 0.0279 -0.8729 +vn 0.4873 0.0279 -0.8728 +vn -0.3919 0.5706 0.7217 +vn 0.3726 -0.9061 0.2005 +vn 0.3726 -0.9061 0.2006 +vn -0.4606 -0.7750 -0.4327 +vn -0.4613 -0.7747 -0.4325 +vn -0.4612 -0.7748 -0.4325 +vn 0.9396 0.0386 -0.3402 +vn 0.9396 0.0386 -0.3401 +vn 0.9397 0.0385 -0.3398 +vn 0.7598 0.5512 -0.3448 +vn 0.5601 0.4488 -0.6964 +vn 0.5602 0.4490 -0.6961 +vn 0.5604 0.4491 -0.6959 +vn 0.2335 0.7168 0.6570 +vn 0.2334 0.7169 0.6569 +vn 0.2334 0.7172 0.6567 +vn 0.8075 -0.2318 -0.5425 +vn 0.8077 -0.2322 -0.5420 +vn 0.8073 -0.2317 -0.5428 +vn 0.3974 0.1160 0.9103 +vn 0.3972 0.1159 0.9104 +vn 0.3970 0.1161 0.9104 +vn 0.1957 -0.1492 -0.9693 +vn 0.1955 -0.1488 -0.9693 +vn -0.2390 -0.6716 -0.7013 +vn -0.2399 -0.6710 -0.7016 +vn -0.2421 -0.6702 -0.7016 +vn -0.3360 -0.7258 -0.6002 +vn -0.3378 -0.7247 -0.6006 +vn -0.3368 -0.7252 -0.6006 +vn -0.7748 0.6313 -0.0338 +vn -0.7750 0.6311 -0.0339 +vn -0.7756 0.6303 -0.0346 +vn -0.2957 0.5519 0.7797 +vn -0.2958 0.5517 0.7798 +vn -0.2958 0.5518 0.7797 +vn -0.0803 -0.0268 -0.9964 +vn 0.0809 -0.0534 0.9953 +vn 0.0809 -0.0536 0.9953 +vn 0.0805 -0.0532 0.9953 +vn -0.3697 -0.7166 -0.5915 +vn -0.3697 -0.7166 -0.5914 +vn -0.5038 -0.7903 0.3488 +vn -0.4472 -0.8368 0.3159 +vn -0.0726 -0.5945 -0.8008 +vn -0.0729 -0.5948 -0.8006 +vn -0.0731 -0.5950 -0.8004 +vn 0.1590 0.7020 -0.6942 +vn 0.1591 0.7016 -0.6945 +vn -0.0732 0.9548 -0.2880 +vn -0.9469 0.1268 -0.2954 +vn -0.3770 0.9260 -0.0208 +vn -0.3772 0.9259 -0.0207 +vn -0.3769 0.9260 -0.0208 +vn -0.3354 -0.8803 -0.3355 +vn -0.3359 -0.8801 -0.3356 +vn -0.3362 -0.8799 -0.3359 +vn -0.5779 -0.8111 0.0897 +vn -0.5781 -0.8110 0.0895 +vn 0.8991 0.1069 -0.4246 +vn 0.8992 0.1070 -0.4243 +vn 0.8995 0.1070 -0.4236 +vn -0.8913 0.4076 0.1986 +vn -0.8913 0.4079 0.1981 +vn -0.8914 0.4076 0.1983 +vn 0.4074 -0.5055 0.7606 +vn 0.4068 -0.5057 0.7608 +vn 0.7907 0.2018 -0.5780 +vn 0.7894 0.2013 -0.5799 +vn 0.7900 0.2014 -0.5791 +vn -0.2698 -0.4465 -0.8531 +vn -0.2700 -0.4467 -0.8530 +vn -0.2701 -0.4468 -0.8529 +vn -0.3947 -0.0768 -0.9156 +vn -0.3949 -0.0763 -0.9155 +vn 0.5654 0.6342 0.5273 +vn 0.5654 0.6342 0.5274 +vn 0.0764 -0.2787 -0.9573 +vn 0.0761 -0.2788 -0.9573 +vn 0.0762 -0.2787 -0.9573 +vn 0.0274 -0.2801 -0.9596 +vn 0.0272 -0.2804 -0.9595 +vn 0.0272 -0.2805 -0.9595 +vn -0.6725 -0.6106 -0.4182 +vn -0.6722 -0.6109 -0.4183 +vn 0.0865 0.6238 -0.7768 +vn 0.0864 0.6238 -0.7768 +vn 0.0863 0.6239 -0.7767 +vn 0.5038 0.8610 -0.0704 +vn 0.5035 0.8611 -0.0705 +vn 0.5035 0.8611 -0.0704 +vn -0.2364 -0.3863 -0.8916 +vn -0.2363 -0.3860 -0.8917 +vn -0.1380 -0.3713 -0.9182 +vn -0.1378 -0.3714 -0.9182 +vn -0.1377 -0.3716 -0.9181 +vn 0.4617 0.8855 0.0521 +vn -0.5400 -0.3047 -0.7846 +vn -0.5399 -0.3045 -0.7847 +vn -0.5399 -0.3044 -0.7848 +vn 0.4466 0.8018 -0.3970 +vn 0.4465 0.8019 -0.3969 +vn 0.4464 0.8019 -0.3971 +vn -0.1374 -0.3522 0.9258 +vn -0.1376 -0.3526 0.9256 +vn -0.1694 0.7592 0.6285 +vn -0.1698 0.7592 0.6283 +vn -0.8956 0.2179 -0.3879 +vn 0.2926 0.7323 -0.6149 +vn 0.2928 0.7324 -0.6147 +vn 0.2929 0.7325 -0.6146 +vn -0.5311 -0.8155 -0.2301 +vn -0.5312 -0.8155 -0.2299 +vn 0.3585 -0.1896 0.9141 +vn 0.3584 -0.1896 0.9141 +vn 0.3583 -0.1896 0.9142 +vn -0.7547 0.5129 -0.4092 +vn -0.7547 0.5129 -0.4091 +vn -0.2851 0.5931 0.7529 +vn -0.2849 0.5932 0.7530 +vn -0.2848 0.5931 0.7531 +vn -0.8060 -0.4588 -0.3740 +vn -0.8061 -0.4588 -0.3738 +vn -0.8059 -0.4588 -0.3743 +vn 0.8579 -0.0911 0.5057 +vn 0.8581 -0.0912 0.5052 +vn 0.8581 -0.0914 0.5053 +vn -0.8845 -0.1769 -0.4318 +vn -0.8419 0.3977 0.3648 +vn -0.8417 0.3979 0.3649 +vn -0.8420 0.3977 0.3646 +vn 0.6138 -0.3609 0.7021 +vn 0.6135 -0.3611 0.7023 +vn 0.6135 -0.3612 0.7023 +vn -0.3758 -0.5258 0.7631 +vn -0.3759 -0.5259 0.7630 +vn -0.3759 -0.5258 0.7630 +vn -0.0428 0.4769 0.8779 +vn -0.0427 0.4768 0.8780 +vn 0.1978 0.1652 0.9662 +vn 0.1976 0.1651 0.9663 +vn -0.5831 -0.2669 0.7673 +vn 0.5674 0.8229 -0.0294 +vn 0.8385 0.5449 -0.0052 +vn 0.8394 0.5435 -0.0051 +vn 0.8401 0.5423 -0.0057 +vn -0.0418 -0.5497 0.8343 +vn -0.0421 -0.5498 0.8342 +vn -0.0417 -0.5496 0.8344 +vn -0.3135 0.9496 -0.0008 +vn -0.3135 0.9496 -0.0009 +vn 0.4433 0.5547 -0.7041 +vn 0.4431 0.5547 -0.7042 +vn -0.7345 0.0307 -0.6779 +vn -0.7350 0.0319 -0.6773 +vn -0.7343 0.0304 -0.6782 +vn -0.3281 -0.6362 0.6983 +vn -0.3281 -0.6357 0.6988 +vn -0.3282 -0.6361 0.6983 +vn -0.5603 0.4212 0.7132 +vn -0.5600 0.4226 0.7126 +vn -0.5602 0.4220 0.7128 +vn -0.7100 0.6931 0.1249 +vn -0.7097 0.6933 0.1251 +vn 0.0217 -0.5715 0.8203 +vn 0.0217 -0.5712 0.8206 +vn 0.0222 -0.5707 0.8208 +vn 0.5497 -0.5957 0.5857 +vn -0.5387 -0.0503 0.8410 +vn -0.5387 -0.0504 0.8410 +vn -0.5386 -0.0505 0.8410 +vn -0.0092 -0.2726 -0.9621 +vn -0.0090 -0.2730 -0.9620 +vn 0.9077 0.1977 0.3702 +vn 0.9076 0.1981 0.3701 +vn 0.9076 0.1982 0.3700 +vn 0.6820 -0.0260 -0.7309 +vn 0.6821 -0.0260 -0.7308 +vn 0.6823 -0.0262 -0.7306 +vn -0.8246 -0.1812 -0.5360 +vn -0.8244 -0.1805 -0.5365 +vn -0.8243 -0.1800 -0.5368 +vn 0.5803 0.8144 -0.0034 +vn 0.5803 0.8144 -0.0035 +vn 0.4012 -0.7230 -0.5624 +vn 0.4013 -0.7231 -0.5622 +vn -0.9457 0.3146 0.0818 +vn -0.9456 0.3149 0.0812 +vn -0.9457 0.3150 0.0803 +vn 0.3528 0.6261 -0.6954 +vn 0.3522 0.6271 -0.6948 +vn 0.3521 0.6274 -0.6945 +vn -0.2360 -0.1958 0.9518 +vn -0.2368 -0.1954 0.9517 +vn -0.2374 -0.1946 0.9517 +vn -0.7490 -0.1294 0.6498 +vn -0.7491 -0.1291 0.6497 +vn -0.7491 -0.1289 0.6497 +vn -0.3661 0.8649 -0.3433 +vn -0.3662 0.8650 -0.3431 +vn -0.3663 0.8646 -0.3439 +vn 0.7722 0.1113 -0.6256 +vn 0.7718 0.1121 -0.6259 +vn 0.7718 0.1118 -0.6259 +vn -0.5391 0.7859 0.3028 +vn -0.5387 0.7860 0.3034 +vn -0.1940 0.8946 -0.4025 +vn -0.1941 0.8948 -0.4021 +vn -0.7230 0.6631 -0.1941 +vn -0.7227 0.6634 -0.1940 +vn -0.7216 0.6644 -0.1944 +vn -0.6197 0.7843 -0.0293 +vn -0.6198 0.7843 -0.0278 +vn -0.6196 0.7844 -0.0287 +vn 0.5290 0.6582 -0.5356 +vn 0.6942 -0.0987 -0.7129 +vn 0.6940 -0.0990 -0.7131 +vn 0.8397 0.1321 -0.5267 +vn 0.8398 0.1320 -0.5267 +vn 0.8398 0.1318 -0.5266 +vn -0.2661 0.9607 -0.0788 +vn -0.2661 0.9607 -0.0786 +vn -0.2661 0.9607 -0.0787 +vn 0.5671 0.7798 0.2652 +vn 0.5671 0.7798 0.2650 +vn 0.5675 0.7797 0.2646 +vn 0.6907 0.6671 0.2791 +vn 0.6906 0.6672 0.2790 +vn 0.0026 0.4606 0.8876 +vn 0.0027 0.4605 0.8876 +vn -0.4644 -0.5722 -0.6759 +vn -0.4613 -0.5786 -0.6726 +vn -0.4645 -0.5749 -0.6736 +vn -0.2808 0.3582 0.8904 +vn -0.2809 0.3580 0.8905 +vn -0.6020 0.7711 -0.2072 +vn -0.6021 0.7710 -0.2074 +vn -0.6020 0.7709 -0.2080 +vn -0.9955 -0.0026 0.0944 +vn -0.9955 -0.0034 0.0951 +vn -0.9954 -0.0037 0.0961 +vn -0.9804 0.0987 0.1705 +vn -0.9804 0.0988 0.1707 +vn -0.9804 0.0989 0.1703 +vn -0.2016 0.9699 0.1369 +vn -0.2016 0.9699 0.1368 +vn -0.2016 0.9699 0.1367 +vn 0.9348 -0.1983 0.2947 +vn 0.9350 -0.1980 0.2942 +vn 0.9347 -0.1984 0.2948 +vn 0.0910 -0.9156 -0.3917 +vn 0.0906 -0.9163 -0.3901 +vn 0.0885 -0.9172 -0.3885 +vn 0.8022 -0.2313 0.5504 +vn 0.8022 -0.2315 0.5503 +vn 0.8023 -0.2319 0.5501 +vn 0.2057 -0.5144 -0.8325 +vn 0.6520 -0.6635 -0.3669 +vn 0.6528 -0.6633 -0.3660 +vn 0.6525 -0.6635 -0.3661 +vn 0.8695 -0.4888 0.0704 +vn 0.7079 -0.6354 -0.3083 +vn 0.7077 -0.6356 -0.3085 +vn 0.7082 -0.6352 -0.3082 +vn -0.5682 0.7415 0.3568 +vn -0.5683 0.7415 0.3568 +vn -0.5681 0.7416 0.3568 +vn 0.7586 -0.3419 0.5546 +vn 0.7589 -0.3418 0.5542 +vn 0.7589 -0.3418 0.5543 +vn 0.7208 -0.3483 0.5993 +vn 0.7209 -0.3482 0.5992 +vn 0.7206 -0.3481 0.5996 +vn 0.9355 -0.1361 0.3261 +vn 0.9354 -0.1364 0.3263 +vn 0.9354 -0.1361 0.3262 +vn -0.9668 0.2369 -0.0959 +vn -0.9669 0.2366 -0.0959 +vn -0.3271 0.8276 0.4562 +vn -0.3268 0.8274 0.4567 +vn -0.3271 0.8279 0.4556 +vn 0.7075 0.3142 -0.6330 +vn 0.7095 0.3141 -0.6309 +vn 0.7112 0.3129 -0.6296 +vn 0.1113 0.3583 -0.9270 +vn 0.1119 0.3583 -0.9269 +vn 0.1117 0.3583 -0.9269 +vn 0.9237 -0.2900 -0.2504 +vn 0.9232 -0.2910 -0.2510 +vn 0.9234 -0.2907 -0.2506 +vn 0.9430 -0.0227 0.3321 +vn -0.0478 0.7628 -0.6448 +vn -0.0479 0.7631 -0.6445 +vn -0.0480 0.7630 -0.6446 +vn -0.1953 -0.2603 0.9456 +vn -0.1953 -0.2602 0.9456 +vn -0.1956 -0.2604 0.9455 +vn -0.4538 0.7999 -0.3928 +vn -0.4536 0.7999 -0.3929 +vn -0.4536 0.8000 -0.3927 +vn 0.3949 -0.8218 0.4107 +vn 0.3948 -0.8219 0.4106 +vn 0.3946 -0.8220 0.4106 +vn 0.7383 -0.6023 0.3036 +vn 0.7383 -0.6024 0.3035 +vn -0.7202 0.4870 -0.4941 +vn -0.7206 0.4872 -0.4933 +vn -0.7201 0.4858 -0.4955 +vn -0.3742 -0.8996 -0.2251 +vn -0.3759 -0.8986 -0.2263 +vn -0.3744 -0.8994 -0.2257 +vn 0.2483 0.8376 0.4867 +vn 0.2483 0.8375 0.4868 +vn 0.9708 0.0269 0.2383 +vn 0.9709 0.0295 0.2378 +vn 0.9709 0.0279 0.2378 +vn -0.6758 -0.6791 -0.2865 +vn -0.6757 -0.6792 -0.2866 +vn -0.6926 -0.6595 -0.2921 +vn -0.6928 -0.6595 -0.2918 +vn -0.6928 -0.6594 -0.2919 +vn 0.9619 0.0590 0.2669 +vn 0.9621 0.0590 0.2664 +vn 0.9620 0.0590 0.2665 +vn -0.8501 -0.1474 -0.5055 +vn -0.1044 0.1346 0.9854 +vn -0.1047 0.1346 0.9854 +vn 0.2071 0.9133 -0.3508 +vn 0.2075 0.9137 -0.3493 +vn 0.2075 0.9134 -0.3501 +vn 0.3648 0.1350 0.9213 +vn 0.3647 0.1349 0.9213 +vn 0.3646 0.1350 0.9213 +vn 0.8048 -0.3618 0.4705 +vn 0.8048 -0.3618 0.4706 +vn 0.1210 0.7767 0.6182 +vn 0.1211 0.7767 0.6182 +vn 0.1211 0.7766 0.6182 +vn -0.2424 -0.8905 -0.3850 +vn 0.6896 -0.6363 0.3458 +vn -0.1562 -0.9004 -0.4062 +vn -0.9897 -0.1364 -0.0439 +vn -0.1027 0.3609 -0.9269 +vn -0.1025 0.3603 -0.9272 +vn -0.1025 0.3608 -0.9270 +vn 0.4924 0.4595 -0.7392 +vn 0.4920 0.4585 -0.7401 +vn 0.4920 0.4587 -0.7399 +vn -0.2168 0.2887 -0.9326 +vn -0.2173 0.2885 -0.9325 +vn -0.2169 0.2887 -0.9325 +vn -0.6046 -0.7940 0.0632 +vn -0.6044 -0.7942 0.0632 +vn -0.9425 0.1890 -0.2757 +vn -0.9424 0.1891 -0.2760 +vn -0.9422 0.1895 -0.2763 +vn -0.3716 -0.4380 -0.8186 +vn -0.3706 -0.4380 -0.8190 +vn -0.3710 -0.4379 -0.8189 +vn 0.0664 0.9066 -0.4168 +vn 0.0658 0.9065 -0.4170 +vn 0.0660 0.9065 -0.4170 +vn -0.9401 0.2227 -0.2580 +vn 0.3351 0.9324 -0.1352 +vn 0.3349 0.9325 -0.1349 +vn 0.1376 0.6855 -0.7150 +vn 0.1376 0.6854 -0.7150 +vn 0.1376 0.6855 -0.7149 +vn 0.7066 -0.4499 0.5461 +vn 0.7058 -0.4503 0.5468 +vn 0.7051 -0.4505 0.5476 +vn 0.4313 -0.8496 0.3036 +vn 0.4314 -0.8496 0.3034 +vn 0.4310 -0.8499 0.3032 +vn 0.1978 0.7712 -0.6051 +vn 0.1980 0.7706 -0.6058 +vn 0.1979 0.7711 -0.6052 +vn 0.4514 0.7478 -0.4869 +vn 0.4518 0.7476 -0.4869 +vn 0.4520 0.7474 -0.4869 +vn 0.6136 -0.7038 0.3580 +vn 0.6132 -0.7041 0.3580 +vn -0.4003 -0.1971 -0.8949 +vn -0.3995 -0.1974 -0.8952 +vn -0.4007 -0.1968 -0.8948 +vn -0.5629 -0.7570 -0.3316 +vn -0.5634 -0.7569 -0.3313 +vn -0.5629 -0.7571 -0.3317 +vn -0.5752 0.0352 -0.8172 +vn -0.5751 0.0352 -0.8173 +vn -0.5749 0.0354 -0.8175 +vn -0.1782 -0.0768 0.9810 +vn -0.5380 -0.5750 -0.6164 +vn -0.5380 -0.5749 -0.6164 +vn -0.5381 -0.5755 -0.6157 +vn 0.0676 -0.3581 -0.9312 +vn 0.0682 -0.3579 -0.9313 +vn 0.0681 -0.3580 -0.9312 +vn 0.8133 0.3518 0.4634 +vn 0.8133 0.3517 0.4636 +vn 0.8132 0.3516 0.4638 +vn 0.9408 -0.3214 0.1080 +vn 0.9408 -0.3215 0.1075 +vn 0.9407 -0.3213 0.1088 +vn -0.8919 -0.2651 0.3664 +vn -0.8919 -0.2651 0.3663 +vn -0.8922 -0.2648 0.3660 +vn 0.3181 -0.8426 0.4345 +vn 0.3188 -0.8425 0.4342 +vn 0.3176 -0.8428 0.4346 +vn -0.9041 -0.2607 -0.3387 +vn -0.9041 -0.2608 -0.3385 +vn 0.5122 0.3030 0.8036 +vn 0.5119 0.3033 0.8037 +vn 0.5119 0.3030 0.8038 +vn 0.9683 0.1647 -0.1878 +vn 0.9683 0.1665 -0.1860 +vn 0.9684 0.1655 -0.1868 +vn -0.1681 0.3667 0.9150 +vn -0.1703 0.3657 0.9150 +vn -0.1665 0.3667 0.9153 +vn 0.8040 -0.4400 0.4000 +vn 0.8041 -0.4399 0.3999 +vn 0.8041 -0.4398 0.4000 +vn -0.5707 -0.1464 -0.8080 +vn -0.5700 -0.1469 -0.8084 +vn -0.5704 -0.1467 -0.8081 +vn 0.3856 0.8755 0.2913 +vn 0.3881 0.8745 0.2909 +vn 0.3873 0.8747 0.2913 +vn -0.9220 0.3871 -0.0089 +vn 0.5993 -0.4942 0.6298 +vn 0.5996 -0.4942 0.6295 +vn 0.5989 -0.4941 0.6302 +vn -0.7095 -0.4527 -0.5401 +vn -0.7094 -0.4532 -0.5397 +vn -0.7098 -0.4523 -0.5400 +vn 0.7693 0.6294 0.1095 +vn 0.7694 0.6293 0.1096 +vn 0.7694 0.6293 0.1091 +vn -0.2490 0.9382 -0.2402 +vn -0.2489 0.9383 -0.2403 +vn -0.2492 0.9382 -0.2401 +vn -0.8558 0.4444 -0.2648 +vn -0.8555 0.4446 -0.2653 +vn -0.1851 -0.0087 0.9827 +vn -0.1857 -0.0084 0.9826 +vn -0.1860 -0.0084 0.9825 +vn 0.6589 -0.6538 0.3719 +vn 0.6593 -0.6536 0.3718 +vn 0.6591 -0.6537 0.3719 +vn 0.9667 -0.0835 0.2420 +vn 0.9667 -0.0836 0.2420 +vn 0.9666 -0.0837 0.2421 +vn 0.5620 0.1791 -0.8075 +vn -0.8574 0.4429 -0.2622 +vn -0.3819 0.7915 -0.4772 +vn -0.3814 0.7916 -0.4774 +vn -0.3817 0.7915 -0.4773 +vn 0.7286 0.6320 0.2641 +vn -0.7599 0.5346 -0.3697 +vn -0.7600 0.5346 -0.3696 +vn -0.6198 0.7471 -0.2403 +vn -0.6196 0.7472 -0.2404 +vn -0.6194 0.7474 -0.2403 +vn 0.5557 -0.8209 0.1314 +vn 0.5554 -0.8212 0.1310 +vn 0.5557 -0.8209 0.1313 +vn 0.6051 0.6330 -0.4829 +vn 0.6048 0.6332 -0.4830 +vn 0.6051 0.6329 -0.4830 +vn 0.8574 -0.4511 -0.2476 +vn 0.8579 -0.4501 -0.2477 +vn 0.8572 -0.4519 -0.2469 +vn 0.5747 -0.7605 0.3021 +vn 0.5749 -0.7605 0.3020 +vn 0.5749 -0.7604 0.3020 +vn 0.7937 0.5248 -0.3076 +vn 0.7937 0.5248 -0.3077 +vn -0.6800 0.6824 -0.2683 +vn -0.6800 0.6823 -0.2683 +vn -0.6799 0.6826 -0.2681 +vn -0.0332 -0.0682 -0.9971 +vn -0.2040 -0.3645 -0.9086 +vn 0.8607 0.3316 -0.3863 +vn 0.8609 0.3313 -0.3861 +vn 0.8606 0.3318 -0.3864 +vn 0.7152 0.6842 -0.1429 +vn 0.7145 0.6849 -0.1430 +vn -0.6148 0.7361 -0.2830 +vn -0.6197 0.6629 -0.4201 +vn -0.6202 0.6625 -0.4200 +vn 0.9340 -0.2854 0.2150 +vn -0.0767 0.6741 -0.7346 +vn -0.0769 0.6741 -0.7346 +vn -0.0769 0.6744 -0.7344 +vn -0.0290 0.5111 -0.8590 +vn -0.0291 0.5110 -0.8591 +vn -0.0289 0.5111 -0.8591 +vn 0.8749 0.1733 0.4522 +vn 0.8749 0.1734 0.4521 +vn 0.8748 0.1737 0.4522 +vn 0.7436 -0.6434 -0.1820 +vn 0.7438 -0.6431 -0.1821 +vn 0.7434 -0.6437 -0.1818 +vn 0.2535 -0.8682 -0.4266 +vn 0.2531 -0.8686 -0.4260 +vn 0.2534 -0.8684 -0.4263 +vn -0.1785 -0.5785 0.7959 +vn -0.1783 -0.5786 0.7959 +vn -0.0288 0.2046 0.9784 +vn -0.0288 0.2048 0.9784 +vn -0.0289 0.2043 0.9785 +vn 0.3262 0.9413 -0.0863 +vn 0.3260 0.9414 -0.0863 +vn 0.3261 0.9414 -0.0865 +vn 0.2199 0.4596 -0.8605 +vn 0.2200 0.4596 -0.8605 +vn 0.2198 0.4596 -0.8605 +vn 0.4949 0.7495 0.4397 +vn 0.3479 -0.8374 -0.4215 +vn 0.3482 -0.8372 -0.4218 +vn -0.7720 -0.5542 -0.3112 +vn -0.7721 -0.5543 -0.3109 +vn 0.3417 0.7234 -0.6000 +vn 0.3421 0.7229 -0.6003 +vn 0.3413 0.7237 -0.5998 +vn -0.9741 0.0665 -0.2161 +vn -0.9740 0.0662 -0.2164 +vn 0.0866 -0.9730 0.2139 +vn 0.0860 -0.9731 0.2137 +vn 0.0863 -0.9731 0.2138 +vn 0.6382 0.7673 0.0630 +vn 0.6384 0.7671 0.0635 +vn 0.6383 0.7672 0.0631 +vn 0.4272 0.8726 0.2370 +vn 0.4272 0.8726 0.2368 +vn 0.4073 0.5722 -0.7119 +vn -0.6587 0.1906 0.7279 +vn 0.4494 -0.3273 0.8312 +vn -0.7039 -0.6038 0.3740 +vn -0.7038 -0.6041 0.3738 +vn -0.7037 -0.6043 0.3736 +vn -0.1191 0.9842 -0.1313 +vn -0.1193 0.9842 -0.1312 +vn 0.0242 0.9720 -0.2336 +vn 0.0242 0.9721 -0.2335 +vn 0.0241 0.9721 -0.2334 +vn -0.5099 0.6110 -0.6056 +vn -0.5100 0.6109 -0.6055 +vn -0.5098 0.6110 -0.6057 +vn 0.5216 -0.4514 0.7240 +vn -0.9949 0.0991 -0.0189 +vn -0.9949 0.0991 -0.0191 +vn -0.9949 0.0992 -0.0187 +vn -0.9360 0.2594 -0.2381 +vn -0.9360 0.2590 -0.2382 +vn -0.9363 0.2570 -0.2392 +vn -0.2125 -0.1377 -0.9674 +vn -0.2132 -0.1375 -0.9673 +vn -0.2126 -0.1377 -0.9674 +vn -0.2245 0.8690 -0.4409 +vn -0.2252 0.8691 -0.4405 +vn -0.2250 0.8691 -0.4405 +vn -0.5969 -0.8012 0.0426 +vn -0.5970 -0.8011 0.0427 +vn -0.5968 -0.8012 0.0426 +vn 0.5029 -0.0431 0.8633 +vn -0.0771 0.9904 -0.1151 +vn -0.0729 0.9917 -0.1056 +vn -0.0733 0.9912 -0.1103 +vn -0.1122 -0.9060 -0.4081 +vn -0.1120 -0.9059 -0.4084 +vn -0.1121 -0.9059 -0.4083 +vn 0.4368 0.8388 -0.3249 +vn 0.4368 0.8389 -0.3248 +vn 0.2428 -0.9091 0.3386 +vn 0.2421 -0.9091 0.3389 +vn 0.2425 -0.9091 0.3387 +vn 0.2825 0.9288 -0.2400 +vn 0.2824 0.9288 -0.2399 +vn -0.7724 0.0693 -0.6313 +vn -0.7726 0.0691 -0.6312 +vn -0.7722 0.0697 -0.6315 +vn 0.5081 0.1372 -0.8503 +vn 0.5079 0.1378 -0.8503 +vn 0.5080 0.1376 -0.8503 +vn 0.1796 0.6426 0.7448 +vn 0.1798 0.6428 0.7447 +vn 0.1796 0.6429 0.7446 +vn 0.1422 0.7906 -0.5956 +vn 0.1423 0.7906 -0.5955 +vn 0.1429 0.7906 -0.5954 +vn -0.3263 0.0506 -0.9439 +vn -0.3275 0.0503 -0.9435 +vn -0.3266 0.0507 -0.9438 +vn -0.1494 0.1886 -0.9706 +vn -0.1491 0.1886 -0.9707 +vn -0.7432 0.1736 -0.6461 +vn -0.7434 0.1745 -0.6457 +vn -0.7427 0.1732 -0.6468 +vn 0.3180 -0.4979 -0.8068 +vn 0.3179 -0.4982 -0.8067 +vn 0.9185 0.1763 -0.3540 +vn 0.9185 0.1759 -0.3542 +vn 0.9183 0.1756 -0.3547 +vn 0.2530 0.9644 -0.0772 +vn 0.2531 0.9644 -0.0772 +vn -0.3506 0.2662 -0.8979 +vn 0.0313 0.7348 -0.6776 +vn 0.0307 0.7342 -0.6783 +vn 0.0316 0.7350 -0.6773 +vn 0.5550 -0.8149 0.1672 +vn 0.5549 -0.8150 0.1670 +vn 0.5555 -0.8144 0.1675 +vn 0.5640 -0.1784 0.8063 +vn 0.5643 -0.1780 0.8062 +vn 0.5635 -0.1799 0.8063 +vn 0.4613 -0.8830 -0.0865 +vn 0.4614 -0.8830 -0.0865 +vn -0.4652 0.6616 -0.5881 +vn -0.4655 0.6613 -0.5882 +vn -0.4649 0.6618 -0.5882 +vn -0.0756 0.7875 -0.6117 +vn -0.0758 0.7874 -0.6118 +vn -0.0755 0.7876 -0.6116 +vn -0.2392 0.9681 0.0743 +vn -0.2391 0.9682 0.0741 +vn -0.2388 0.9682 0.0741 +vn 0.2481 0.6922 0.6777 +vn 0.2478 0.6922 0.6778 +vn 0.2486 0.6923 0.6775 +vn 0.8454 -0.4850 0.2237 +vn 0.8453 -0.4852 0.2237 +vn -0.9065 -0.3801 0.1835 +vn 0.3904 0.6399 0.6619 +vn -0.8393 0.5023 -0.2081 +vn -0.8393 0.5022 -0.2080 +vn -0.8394 0.5022 -0.2078 +vn 0.3644 0.7364 0.5700 +vn 0.3650 0.7362 0.5699 +vn 0.3653 0.7361 0.5698 +vn 0.0304 0.5209 0.8531 +vn 0.0313 0.5219 0.8524 +vn 0.0315 0.5228 0.8519 +vn 0.0257 0.5235 0.8516 +vn 0.0253 0.5236 0.8516 +vn 0.3449 0.7714 0.5348 +vn 0.3448 0.7714 0.5348 +vn 0.3451 0.7714 0.5347 +vn 0.3051 0.8013 0.5146 +vn 0.3189 0.7955 0.5153 +vn 0.3153 0.7973 0.5147 +vn -0.4108 -0.8996 -0.1480 +vn -0.4110 -0.8995 -0.1483 +vn -0.4112 -0.8993 -0.1490 +vn -0.9141 -0.0336 -0.4040 +vn 0.5251 0.1714 -0.8336 +vn 0.5263 0.1713 -0.8329 +vn 0.5256 0.1714 -0.8333 +vn 0.6457 -0.3607 -0.6730 +vn 0.6458 -0.3611 -0.6727 +vn 0.6458 -0.3616 -0.6724 +vn 0.9626 0.0651 -0.2630 +vn 0.9625 0.0655 -0.2632 +vn 0.9625 0.0658 -0.2633 +vn 0.0032 -0.6396 -0.7687 +vn 0.0037 -0.6393 -0.7690 +vn -0.5144 -0.1123 0.8502 +vn 0.9332 0.0769 -0.3510 +vn 0.9331 0.0768 -0.3513 +vn 0.9387 0.0883 -0.3331 +vn 0.9388 0.0882 -0.3330 +vn -0.1608 -0.4272 0.8898 +vn -0.1606 -0.4276 0.8896 +vn -0.6733 0.7320 0.1044 +vn -0.6736 0.7317 0.1040 +vn -0.6730 0.7321 0.1051 +vn -0.0205 -0.8646 0.5021 +vn -0.0204 -0.8645 0.5023 +vn -0.0203 -0.8645 0.5022 +vn -0.5510 -0.8284 -0.1010 +vn -0.5505 -0.8287 -0.1010 +vn -0.5514 -0.8281 -0.1009 +vn 0.8748 0.1449 -0.4623 +vn 0.8748 0.1451 -0.4623 +vn -0.3571 -0.4943 -0.7925 +vn -0.3572 -0.4946 -0.7923 +vn -0.3575 -0.4945 -0.7922 +vn 0.2459 0.9337 -0.2602 +vn 0.2460 0.9338 -0.2598 +vn 0.2461 0.9339 -0.2594 +vn 0.2476 0.9621 -0.1141 +vn 0.2475 0.9621 -0.1142 +vn 0.2475 0.9621 -0.1144 +vn 0.7907 0.0405 -0.6109 +vn 0.7906 0.0405 -0.6110 +vn 0.7906 0.0407 -0.6110 +vn -0.7544 0.0439 0.6550 +vn -0.7547 0.0435 0.6546 +vn -0.7546 0.0434 0.6547 +vn -0.0260 -0.3651 -0.9306 +vn -0.0259 -0.3652 -0.9306 +vn -0.0260 -0.3649 -0.9307 +vn -0.5171 -0.1108 0.8487 +vn 0.7350 0.6342 0.2398 +vn 0.7346 0.6346 0.2400 +vn 0.7340 0.6350 0.2410 +vn -0.0493 0.6514 -0.7571 +vn -0.0503 0.6511 -0.7573 +vn -0.0498 0.6511 -0.7573 +vn -0.4434 -0.5534 -0.7051 +vn -0.4480 -0.5634 -0.6941 +vn 0.9466 -0.2243 0.2315 +vn -0.2503 0.2614 0.9322 +vn -0.2502 0.2615 0.9322 +vn -0.2501 0.2618 0.9321 +vn -0.3350 0.9266 -0.1710 +vn -0.3345 0.9267 -0.1710 +vn -0.3348 0.9266 -0.1710 +vn 0.5102 0.2496 -0.8230 +vn 0.5102 0.2501 -0.8229 +vn 0.5104 0.2502 -0.8228 +vn -0.8844 0.2234 0.4098 +vn -0.8850 0.2221 0.4093 +vn -0.8841 0.2246 0.4097 +vn -0.1079 0.1450 0.9835 +vn -0.1079 0.1447 0.9836 +vn -0.1079 0.1448 0.9836 +vn -0.7959 0.1551 -0.5852 +vn 0.3782 0.9248 -0.0409 +vn 0.3784 0.9247 -0.0412 +vn 0.3783 0.9248 -0.0410 +vn 0.4732 0.8519 -0.2243 +vn 0.4731 0.8519 -0.2247 +vn 0.4725 0.8520 -0.2256 +vn -0.1670 0.8237 0.5419 +vn -0.1670 0.8240 0.5414 +vn -0.1668 0.8242 0.5412 +vn 0.5663 0.8229 0.0463 +vn 0.5663 0.8229 0.0465 +vn 0.5663 0.8229 0.0466 +vn 0.0755 0.9312 -0.3566 +vn 0.0757 0.9315 -0.3558 +vn 0.0751 0.9310 -0.3573 +vn 0.4968 -0.4294 0.7542 +vn 0.4959 -0.4290 0.7550 +vn 0.4961 -0.4292 0.7548 +vn -0.9577 0.1611 -0.2386 +vn -0.9577 0.1607 -0.2389 +vn -0.3279 -0.0080 -0.9447 +vn -0.3277 -0.0080 -0.9447 +vn 0.9313 -0.0944 0.3519 +vn 0.9314 -0.0955 0.3513 +vn 0.9313 -0.0948 0.3517 +vn -0.4762 -0.3456 0.8086 +vn -0.4763 -0.3453 0.8086 +vn -0.4763 -0.3454 0.8086 +vn -0.0267 0.4240 0.9053 +vn -0.0267 0.4238 0.9054 +vn -0.0267 0.4246 0.9050 +vn 0.0520 0.6102 0.7906 +vn 0.0520 0.6104 0.7904 +vn 0.0518 0.6105 0.7903 +vn -0.4534 0.8762 0.1633 +vn -0.4528 0.8766 0.1631 +vn -0.4525 0.8767 0.1630 +vn 0.4995 -0.4255 0.7546 +vn 0.4996 -0.4257 0.7544 +vn 0.2841 0.9458 0.1572 +vn 0.2840 0.9459 0.1567 +vn -0.5203 0.5855 0.6217 +vn 0.9425 0.2424 0.2299 +vn 0.9425 0.2425 0.2298 +vn 0.9426 0.2419 0.2300 +vn -0.2486 0.0310 -0.9681 +vn -0.4261 -0.7909 -0.4392 +vn -0.4260 -0.7910 -0.4393 +vn -0.4259 -0.7910 -0.4393 +vn 0.5416 0.1065 0.8338 +vn 0.5417 0.1070 0.8337 +vn -0.8776 0.1979 -0.4366 +vn -0.8777 0.1978 -0.4365 +vn 0.0212 0.1630 0.9864 +vn 0.1377 0.8524 -0.5045 +vn 0.1377 0.8523 -0.5046 +vn 0.1376 0.8523 -0.5046 +vn 0.0354 0.9040 0.4261 +vn -0.8318 -0.5483 -0.0862 +vn -0.8318 -0.5483 -0.0867 +vn -0.8319 -0.5480 -0.0870 +vn 0.8179 0.4335 -0.3783 +vn 0.8178 0.4336 -0.3784 +vn 0.8177 0.4338 -0.3784 +vn 0.0852 -0.8947 0.4385 +vn 0.0853 -0.8946 0.4386 +vn 0.6029 0.5343 0.5925 +vn 0.6033 0.5340 0.5924 +vn 0.6037 0.5338 0.5921 +vn -0.1579 -0.3723 0.9146 +vn -0.1580 -0.3722 0.9146 +vn 0.4030 -0.7222 -0.5622 +vn 0.4031 -0.7224 -0.5618 +vn 0.4030 -0.7220 -0.5624 +vn 0.9920 -0.1088 0.0643 +vn 0.9920 -0.1089 0.0644 +vn 0.9920 -0.1089 0.0640 +vn -0.1023 -0.1872 0.9770 +vn -0.1023 -0.1871 0.9770 +vn -0.1018 -0.1874 0.9770 +vn 0.1938 -0.6244 0.7567 +vn 0.1936 -0.6244 0.7567 +vn 0.1935 -0.6244 0.7567 +vn -0.6825 0.6912 -0.2375 +vn -0.6824 0.6914 -0.2375 +vn -0.6823 0.6913 -0.2378 +vn -0.2190 0.9306 0.2932 +vn -0.2200 0.9304 0.2931 +vn -0.2205 0.9304 0.2929 +vn 0.8147 -0.5449 0.1985 +vn 0.8146 -0.5450 0.1986 +vn 0.8146 -0.5450 0.1985 +vn 0.7773 -0.2865 0.5601 +vn 0.7773 -0.2868 0.5600 +vn -0.9515 -0.2941 0.0903 +vn -0.9515 -0.2945 0.0893 +vn -0.9515 -0.2943 0.0899 +vn -0.1088 0.3615 -0.9260 +vn 0.3802 -0.9175 -0.1163 +vn 0.3800 -0.9176 -0.1165 +vn 0.3805 -0.9175 -0.1162 +vn -0.3243 -0.1665 0.9312 +vn -0.3241 -0.1664 0.9313 +vn 0.0363 0.0364 -0.9987 +vn 0.0361 0.0363 -0.9987 +vn 0.0366 0.0364 -0.9987 +vn -0.2320 0.0598 0.9709 +vn -0.2321 0.0596 0.9709 +vn 0.1226 0.9870 -0.1038 +vn 0.1236 0.9867 -0.1053 +vn 0.1239 0.9867 -0.1056 +vn -0.7091 0.6982 -0.0982 +vn 0.5506 0.8346 -0.0181 +vn 0.5510 0.8343 -0.0182 +vn 0.5508 0.8344 -0.0181 +vn -0.9393 -0.1914 0.2846 +vn 0.7931 -0.2294 0.5643 +vn 0.8024 0.4440 0.3988 +vn 0.8018 0.4446 0.3993 +vn 0.8014 0.4449 0.3999 +vn -0.1329 0.5600 0.8178 +vn -0.1330 0.5600 0.8178 +vn 0.8166 -0.5507 0.1729 +vn -0.4201 0.7001 -0.5774 +vn -0.4203 0.7002 -0.5772 +vn -0.4202 0.7000 -0.5774 +vn 0.9022 -0.1146 0.4158 +vn 0.9021 -0.1138 0.4162 +vn 0.9022 -0.1152 0.4157 +vn -0.9341 0.0038 -0.3570 +vn -0.9342 0.0037 -0.3568 +vn -0.9341 0.0036 -0.3569 +vn -0.2179 0.0293 0.9755 +vn -0.2178 0.0293 0.9756 +vn -0.9144 0.0562 -0.4008 +vn -0.7108 -0.6796 -0.1815 +vn -0.7110 -0.6794 -0.1814 +vn -0.7106 -0.6797 -0.1815 +vn 0.4653 0.4597 -0.7564 +vn 0.4656 0.4597 -0.7562 +vn 0.4667 0.4597 -0.7555 +vn 0.4538 0.5123 0.7291 +vn 0.4536 0.5127 0.7289 +vn -0.8795 0.0640 -0.4715 +vn -0.8991 -0.3662 -0.2399 +vn -0.8991 -0.3660 -0.2400 +vn -0.8992 -0.3656 -0.2403 +vn 0.4229 0.6085 -0.6715 +vn 0.7639 -0.2669 0.5876 +vn 0.7638 -0.2664 0.5879 +vn 0.7639 -0.2670 0.5876 +vn -0.0619 -0.2225 0.9730 +vn -0.0624 -0.2224 0.9730 +vn -0.0618 -0.2225 0.9730 +vn 0.7423 0.6680 0.0533 +vn 0.7423 0.6679 0.0535 +vn -0.3207 0.9445 0.0714 +vn -0.3206 0.9445 0.0715 +vn -0.4418 -0.8707 -0.2163 +vn -0.4409 -0.8712 -0.2157 +vn -0.4412 -0.8711 -0.2158 +vn -0.2759 0.7954 0.5396 +vn -0.2760 0.7952 0.5398 +vn -0.2761 0.7953 0.5397 +vn -0.7009 0.2691 0.6606 +vn -0.7007 0.2696 0.6605 +vn 0.9671 0.0912 0.2374 +vn 0.9671 0.0904 0.2377 +vn 0.9672 0.0895 0.2376 +vn -0.8741 -0.1839 -0.4496 +vn -0.8739 -0.1843 -0.4498 +vn -0.8737 -0.1848 -0.4500 +vn 0.8022 -0.0242 0.5965 +vn 0.0291 0.9994 -0.0202 +vn 0.0286 0.9994 -0.0200 +vn -0.8442 0.3136 -0.4347 +vn -0.8443 0.3135 -0.4345 +vn 0.6413 -0.6132 0.4612 +vn 0.6414 -0.6132 0.4611 +vn 0.6415 -0.6132 0.4610 +vn -0.5569 -0.7661 -0.3209 +vn -0.5569 -0.7661 -0.3210 +vn -0.5568 -0.7662 -0.3209 +vn 0.9153 0.0963 0.3910 +vn 0.9154 0.0964 0.3909 +vn 0.9153 0.0960 0.3911 +vn -0.7538 -0.2443 -0.6100 +vn -0.7537 -0.2443 -0.6101 +vn 0.7739 0.6135 -0.1573 +vn -0.8224 0.5384 -0.1837 +vn -0.8225 0.5383 -0.1837 +vn -0.8225 0.5382 -0.1838 +vn 0.5263 -0.4281 0.7347 +vn 0.5262 -0.4285 0.7345 +vn 0.5263 -0.4283 0.7346 +vn 0.3125 -0.6104 -0.7278 +vn 0.3129 -0.6104 -0.7277 +vn -0.7355 -0.6350 -0.2362 +vn 0.9759 0.0282 0.2164 +vn -0.2039 -0.6602 0.7229 +vn -0.2038 -0.6599 0.7232 +vn -0.2039 -0.6598 0.7232 +vn 0.7555 -0.6521 0.0636 +vn 0.7556 -0.6519 0.0633 +vn 0.3863 0.9147 0.1187 +vn 0.3860 0.9148 0.1191 +vn -0.2749 0.2317 -0.9331 +vn -0.2749 0.2313 -0.9332 +vn -0.2750 0.2318 -0.9331 +vn -0.0134 -0.9058 0.4236 +vn -0.0135 -0.9058 0.4236 +vn -0.0132 -0.9058 0.4234 +vn 0.4936 -0.7209 0.4865 +vn 0.4933 -0.7210 0.4866 +vn -0.2791 0.8569 0.4333 +vn -0.2792 0.8570 0.4332 +vn -0.2795 0.8570 0.4330 +vn -0.3517 -0.0911 0.9317 +vn -0.6475 -0.6605 -0.3802 +vn -0.6481 -0.6607 -0.3788 +vn -0.6474 -0.6605 -0.3803 +vn 0.2303 -0.8071 0.5436 +vn 0.2303 -0.8072 0.5435 +vn -0.0188 -0.3120 -0.9499 +vn -0.0187 -0.3118 -0.9499 +vn -0.0186 -0.3119 -0.9499 +vn -0.1530 0.9709 0.1840 +vn -0.1528 0.9708 0.1848 +vn -0.1529 0.9709 0.1844 +vn 0.4010 0.6856 -0.6076 +vn 0.4007 0.6859 -0.6074 +vn 0.1190 0.4537 0.8832 +vn 0.1197 0.4530 0.8835 +vn 0.1199 0.4522 0.8838 +vn -0.0832 0.1750 -0.9810 +vn -0.0833 0.1750 -0.9810 +vn -0.0836 0.1749 -0.9810 +vn -0.0970 0.9642 0.2467 +vn -0.0966 0.9642 0.2468 +vn -0.5499 -0.7231 -0.4181 +vn -0.5499 -0.7231 -0.4180 +vn -0.9244 0.1671 -0.3429 +vn -0.9244 0.1673 -0.3427 +vn -0.9244 0.1672 -0.3428 +vn 0.1817 0.8821 0.4347 +vn 0.1814 0.8818 0.4354 +vn -0.8116 -0.5716 -0.1205 +vn -0.7704 0.5503 -0.3220 +vn -0.7702 0.5505 -0.3221 +vn -0.7703 0.5503 -0.3221 +vn 0.7213 -0.5333 0.4419 +vn 0.7212 -0.5339 0.4413 +vn 0.7212 -0.5337 0.4416 +vn -0.5569 0.7580 0.3395 +vn -0.5573 0.7578 0.3393 +vn -0.5572 0.7578 0.3394 +vn 0.8735 -0.1666 0.4574 +vn 0.8730 -0.1657 0.4587 +vn 0.8741 -0.1669 0.4562 +vn 0.7185 -0.4300 0.5466 +vn 0.7187 -0.4297 0.5466 +vn 0.7193 -0.4290 0.5464 +vn 0.7448 0.2600 0.6146 +vn 0.7449 0.2599 0.6145 +vn 0.7450 0.2598 0.6144 +vn 0.5190 0.5556 -0.6496 +vn 0.5188 0.5556 -0.6498 +vn 0.8613 -0.3556 -0.3630 +vn 0.8611 -0.3560 -0.3631 +vn 0.8618 -0.3547 -0.3627 +vn 0.1168 0.7150 -0.6893 +vn 0.1165 0.7148 -0.6895 +vn -0.3318 -0.8353 0.4384 +vn -0.3317 -0.8354 0.4383 +vn -0.5942 0.6226 0.5092 +vn -0.5946 0.6223 0.5092 +vn -0.5952 0.6214 0.5095 +vn 0.4786 0.8362 0.2678 +vn 0.4784 0.8359 0.2689 +vn 0.4786 0.8360 0.2684 +vn -0.4079 -0.5119 0.7560 +vn -0.4080 -0.5121 0.7558 +vn -0.4081 -0.5121 0.7558 +vn 0.4606 0.0262 0.8872 +vn 0.4607 0.0263 0.8872 +vn 0.4606 0.0264 0.8872 +vn 0.7142 0.2771 0.6427 +vn 0.7141 0.2769 0.6429 +vn 0.7142 0.2770 0.6428 +vn -0.6194 0.7819 0.0713 +vn -0.6189 0.7822 0.0716 +vn -0.6185 0.7825 0.0719 +vn 0.3020 0.9531 0.0195 +vn 0.3014 0.9533 0.0202 +vn 0.3018 0.9532 0.0197 +vn -0.5933 0.5943 -0.5429 +vn -0.5925 0.5948 -0.5433 +vn -0.5928 0.5946 -0.5432 +vn -0.9114 -0.3217 -0.2567 +vn -0.9110 -0.3226 -0.2569 +vn 0.5298 0.8462 0.0560 +vn 0.5303 0.8459 0.0563 +vn -0.9356 -0.0899 -0.3413 +vn -0.9362 -0.0869 -0.3406 +vn -0.9358 -0.0893 -0.3409 +vn -0.0613 0.9700 -0.2352 +vn -0.0608 0.9701 -0.2350 +vn -0.0610 0.9701 -0.2348 +vn -0.6478 0.0671 0.7589 +vn -0.6478 0.0675 0.7588 +vn -0.6480 0.0672 0.7587 +s 0 +usemtl Material.002 +f 4026//1 3//1 4//2 +f 1//3 10//4 16//5 +f 6//6 10//7 1//8 +f 3545//9 2027//10 2949//11 +f 24//12 6//13 1//14 +f 32//15 6//16 39//17 +f 1341//18 37//19 1511//20 +f 39//21 120//22 32//23 +f 3346//24 2066//25 48//26 +f 39//27 133//27 120//27 +f 4043//28 1894//29 1703//30 +f 62//31 10//32 6//31 +f 1631//33 3151//34 3488//35 +f 3190//36 6051//37 81//38 +f 82//39 2977//40 83//41 +f 1//42 16//43 24//44 +f 4534//45 5070//46 1172//47 +f 1753//48 2459//49 656//50 +f 39//51 6//52 24//52 +f 147//53 2538//54 3462//55 +f 10//56 156//57 303//58 +f 303//59 158//60 10//61 +f 156//62 10//63 62//64 +f 164//65 3128//66 1268//67 +f 10//68 158//68 16//68 +f 516//69 2473//69 4766//70 +f 62//71 6//71 32//71 +f 3529//72 4089//73 183//72 +f 120//74 245//74 32//74 +f 3546//75 1322//76 889//77 +f 24//78 202//79 39//78 +f 120//80 133//81 205//82 +f 205//83 133//84 150//85 +f 39//86 202//87 213//88 +f 1147//89 2147//90 922//91 +f 3268//92 69//92 247//92 +f 245//93 62//93 32//93 +f 252//94 497//94 94//94 +f 257//95 24//96 16//97 +f 245//98 120//99 331//99 +f 1269//100 78//101 278//101 +f 3915//102 281//103 4635//104 +f 3405//105 2038//106 4500//106 +f 133//107 39//108 213//109 +f 133//110 213//111 234//112 +f 133//113 294//114 150//115 +f 234//116 294//117 133//118 +f 303//119 452//120 158//121 +f 1493//122 2694//122 312//122 +f 1361//123 2004//123 4863//124 +f 333//125 5085//126 5540//127 +f 1554//128 344//129 946//129 +f 345//130 24//131 257//132 +f 331//133 120//134 205//135 +f 331//136 205//136 347//136 +f 2815//137 327//137 350//137 +f 459//138 358//139 3267//140 +f 4003//141 369//142 1747//143 +f 245//144 156//145 62//146 +f 4192//147 1659//148 715//149 +f 158//150 451//151 257//152 +f 16//153 158//154 257//155 +f 24//156 345//157 202//157 +f 3985//158 1026//159 2577//160 +f 4831//161 3345//161 4516//161 +f 1213//162 438//162 51//162 +f 303//163 156//164 452//165 +f 2270//166 1990//166 426//167 +f 4556//168 447//169 1186//169 +f 7319//170 448//171 1311//172 +f 451//173 452//174 453//175 +f 2235//176 3368//177 455//178 +f 452//179 451//180 158//181 +f 3432//182 4026//183 3125//184 +f 2698//185 3489//185 103//186 +f 5021//187 4433//187 2303//188 +f 294//189 483//189 150//189 +f 452//190 156//191 501//192 +f 510//193 156//194 245//195 +f 691//196 331//197 347//198 +f 3139//199 1109//200 524//201 +f 535//202 3923//203 875//202 +f 213//204 534//205 541//206 +f 2037//207 3057//208 555//209 +f 566//210 638//211 559//212 +f 566//213 559//214 573//215 +f 489//216 89//216 2385//216 +f 452//217 501//218 453//219 +f 596//220 245//221 331//222 +f 1842//223 1364//224 5165//225 +f 4959//226 2357//227 2903//228 +f 269//229 5119//229 616//230 +f 483//231 205//231 150//232 +f 213//233 202//234 534//235 +f 2599//236 624//237 3827//236 +f 2563//238 3695//239 1835//240 +f 234//241 843//242 294//243 +f 213//244 541//245 234//245 +f 637//246 2237//247 3760//248 +f 4138//249 5547//250 641//251 +f 2230//252 356//253 1333//254 +f 753//255 559//256 639//257 +f 1310//258 647//259 1066//260 +f 566//261 747//262 638//263 +f 1788//264 2531//265 2026//266 +f 573//267 559//268 753//268 +f 566//269 573//270 669//270 +f 672//271 246//272 26//273 +f 501//274 156//274 510//275 +f 802//276 453//276 501//277 +f 2891//278 1532//279 467//280 +f 451//281 453//281 701//282 +f 701//283 257//284 451//285 +f 2605//286 1327//287 703//287 +f 1909//288 704//289 3938//290 +f 345//291 534//291 202//292 +f 2534//293 4590//294 2745//295 +f 4953//296 2462//297 1374//298 +f 1218//299 638//299 747//300 +f 1673//301 4391//302 3132//302 +f 1512//303 745//304 442//305 +f 638//306 639//306 559//306 +f 736//307 753//308 639//309 +f 3556//310 91//311 1280//312 +f 1625//313 3314//314 3963//314 +f 777//315 1822//315 255//316 +f 902//317 573//318 753//319 +f 787//320 669//321 573//320 +f 1102//322 527//323 4568//323 +f 510//324 245//325 596//326 +f 510//327 802//328 501//329 +f 596//330 331//331 691//332 +f 701//333 453//334 802//335 +f 820//336 3057//337 216//338 +f 257//339 701//340 345//341 +f 483//342 826//342 205//343 +f 843//344 483//344 294//344 +f 736//345 979//346 853//347 +f 3227//348 5411//349 2925//350 +f 639//351 979//352 736//353 +f 1708//354 865//355 4528//356 +f 1805//357 2581//358 2455//359 +f 4516//360 4532//361 3331//362 +f 2687//363 5072//364 4227//364 +f 4276//365 887//366 1777//367 +f 853//368 753//369 736//370 +f 899//371 4260//372 2736//373 +f 566//374 1024//375 747//375 +f 902//376 753//377 853//377 +f 1037//378 1609//379 4624//380 +f 669//381 911//381 566//382 +f 787//383 573//384 902//385 +f 3472//386 67//387 927//388 +f 802//389 510//390 596//391 +f 2987//392 938//393 939//394 +f 4342//395 654//395 5597//395 +f 587//396 948//396 949//396 +f 956//397 345//398 701//398 +f 4365//399 1148//400 733//401 +f 826//402 347//403 205//404 +f 958//405 84//405 959//406 +f 979//407 970//408 971//409 +f 639//410 1218//411 979//412 +f 1520//413 3709//414 985//415 +f 747//416 541//416 534//417 +f 979//418 971//419 853//420 +f 2407//421 735//422 2406//423 +f 234//424 541//425 843//424 +f 1008//426 3520//427 1411//426 +f 5484//428 1013//429 4134//430 +f 2612//431 1208//431 2534//431 +f 541//432 747//433 1024//434 +f 3252//435 7382//436 1035//437 +f 1015//438 1042//439 5718//440 +f 911//441 1024//442 566//442 +f 1050//443 5216//444 2484//443 +f 2340//445 1418//446 3630//447 +f 902//448 1067//449 787//450 +f 1073//451 596//452 691//453 +f 1074//454 1075//455 1365//456 +f 1081//457 691//458 347//459 +f 5082//460 4070//461 194//462 +f 760//463 2193//464 3941//465 +f 2502//466 1401//466 3523//466 +f 1109//467 1110//467 3250//467 +f 5227//468 2994//469 1117//470 +f 1218//471 970//472 979//473 +f 1100//474 747//475 534//476 +f 483//477 843//477 1131//478 +f 1135//479 1136//480 607//480 +f 1218//481 639//482 638//482 +f 971//483 1133//484 853//485 +f 955//486 3388//486 857//486 +f 1100//487 1218//488 747//489 +f 3443//490 79//491 2774//492 +f 3853//493 1171//494 362//495 +f 5598//496 1184//497 1505//498 +f 1187//499 1976//500 1920//501 +f 1191//502 1192//503 2890//504 +f 4594//505 4527//506 1542//507 +f 4945//508 4944//509 3195//510 +f 1729//511 1728//512 4504//513 +f 1081//514 1073//515 691//516 +f 826//517 1081//518 347//519 +f 135//520 1213//520 52//521 +f 1100//522 534//523 345//524 +f 1329//525 1065//526 3728//527 +f 3196//528 1227//528 4412//528 +f 1234//529 395//530 4524//531 +f 4145//532 605//533 3182//534 +f 541//535 1154//536 1007//537 +f 843//538 541//539 1007//540 +f 3457//541 3330//542 395//543 +f 4619//544 4281//544 1246//545 +f 65//546 1250//546 837//546 +f 1251//547 1673//548 1252//549 +f 1515//550 1024//550 911//550 +f 2008//551 2338//552 5094//553 +f 1515//554 911//555 669//556 +f 1266//557 5033//558 1267//559 +f 1198//560 802//561 596//562 +f 1198//563 701//564 802//565 +f 956//566 1305//566 345//567 +f 345//568 1305//568 1100//568 +f 3097//569 1375//570 1315//571 +f 1343//572 918//573 88//573 +f 971//574 1478//575 1133//576 +f 1343//577 88//577 677//577 +f 1079//578 1322//579 1345//580 +f 1154//581 541//582 1024//583 +f 1133//584 1256//585 853//585 +f 902//586 853//587 1265//588 +f 2264//589 1162//590 4566//591 +f 1874//592 787//593 1067//594 +f 701//595 1198//596 1288//597 +f 1288//598 956//599 701//600 +f 621//601 1386//601 551//601 +f 4313//602 4366//603 221//604 +f 4432//605 2207//606 5300//606 +f 1218//607 1100//607 1305//607 +f 1401//608 351//609 812//610 +f 971//611 1398//612 1478//613 +f 1398//614 971//615 970//616 +f 1405//617 70//618 3460//619 +f 1418//620 4638//620 3630//620 +f 1024//621 1168//621 1154//622 +f 1421//623 1422//624 700//625 +f 3956//626 2010//627 1429//628 +f 4229//629 4702//630 2712//629 +f 1024//631 1515//632 1168//633 +f 853//634 1256//634 1265//634 +f 902//635 1265//636 1067//637 +f 787//638 1442//638 669//638 +f 71//639 1443//640 2495//641 +f 672//642 26//643 27//642 +f 1288//644 1305//644 956//645 +f 3932//646 2152//647 2064//648 +f 969//649 1456//650 1676//651 +f 1218//652 1398//653 970//654 +f 2048//655 318//656 2378//657 +f 4982//658 1503//659 1504//660 +f 4492//661 2427//662 3082//663 +f 1009//664 1475//664 270//664 +f 1521//665 3317//666 4688//667 +f 669//668 1442//669 1515//670 +f 484//671 1177//672 1530//673 +f 1589//674 2112//675 3342//676 +f 1544//677 4563//678 2394//677 +f 1081//679 1547//679 1073//680 +f 1251//681 167//682 3881//683 +f 1404//684 1218//685 1305//686 +f 1404//687 1305//687 1288//687 +f 1218//688 1403//689 1398//690 +f 1403//691 1218//691 1404//691 +f 795//692 1571//693 1572//694 +f 227//695 3755//696 1580//697 +f 4966//698 2859//698 1003//699 +f 1131//700 843//701 1007//702 +f 1597//703 1256//703 1133//704 +f 2346//705 1010//706 3905//707 +f 945//708 1789//709 2050//709 +f 5570//710 1980//710 462//710 +f 1618//711 1616//712 1531//713 +f 1677//714 4583//715 1623//716 +f 1624//717 1625//718 1626//719 +f 1618//720 1531//721 1533//722 +f 1533//723 1638//724 1618//725 +f 1531//726 1642//727 1533//728 +f 1198//729 596//730 1539//731 +f 2493//732 2120//733 5265//734 +f 3662//735 4472//736 5312//737 +f 2106//738 2361//738 1671//738 +f 121//739 1682//740 3721//739 +f 2441//741 3583//742 1686//742 +f 1688//743 1398//744 1403//745 +f 4704//746 4933//747 4211//748 +f 4439//749 2883//750 2267//751 +f 1133//752 1478//753 1702//754 +f 1711//755 2221//755 1132//755 +f 3791//756 4252//757 1712//758 +f 1597//759 1702//760 1688//761 +f 1702//762 1597//763 1133//763 +f 693//764 3366//765 4426//764 +f 1726//766 1727//767 1387//768 +f 5420//769 136//770 3099//771 +f 1730//772 1256//773 1597//774 +f 3331//775 1958//776 272//777 +f 1099//778 1738//779 1715//780 +f 5470//781 1740//782 3747//783 +f 1616//784 2021//785 1531//786 +f 4252//787 3257//788 1712//789 +f 3040//790 1378//791 1753//792 +f 139//793 324//794 1443//795 +f 1638//796 1533//796 1642//796 +f 2403//797 4991//798 1011//799 +f 1779//800 1772//801 1908//802 +f 1081//803 826//804 1795//805 +f 5653//806 1382//807 301//807 +f 738//808 2217//808 5236//808 +f 1398//809 1681//810 1478//811 +f 1688//812 1681//813 1398//814 +f 175//815 2120//816 1114//817 +f 1508//818 311//819 3620//819 +f 1154//820 1982//821 1007//822 +f 1867//823 4533//824 50//824 +f 3096//825 3840//826 1808//827 +f 4359//828 3580//829 1334//830 +f 5590//831 1873//832 856//833 +f 1874//834 1442//835 787//836 +f 1616//837 2022//838 2021//839 +f 2339//840 1616//841 1618//842 +f 1531//843 2021//843 1756//843 +f 1642//844 1531//845 1756//846 +f 519//847 1895//848 2831//848 +f 4764//849 725//850 1904//850 +f 586//851 2681//851 4160//852 +f 1775//853 1773//854 1772//855 +f 1664//856 5643//857 4341//858 +f 1773//859 1908//859 1772//859 +f 1779//860 1917//861 1772//862 +f 1917//863 1775//864 1772//865 +f 783//866 3083//866 2367//866 +f 1198//867 1946//867 1288//867 +f 346//868 1530//869 913//870 +f 1964//871 1404//872 1288//873 +f 137//874 1015//874 3609//874 +f 483//875 1831//876 826//877 +f 1679//878 826//879 1831//880 +f 2681//881 4946//882 4160//881 +f 1478//883 1681//884 1702//885 +f 1681//886 1688//887 1702//888 +f 1403//889 1404//890 1964//891 +f 1971//892 833//893 5738//894 +f 483//895 1131//896 1831//897 +f 1597//898 1688//899 1981//900 +f 1403//901 1981//901 1688//902 +f 1982//903 1154//904 1168//905 +f 5215//906 2618//907 2321//907 +f 1597//908 1981//909 1730//910 +f 2431//911 2009//912 1265//913 +f 1874//914 1067//914 1265//915 +f 2020//916 3934//917 4149//917 +f 2339//918 2022//919 1616//920 +f 1999//921 52//922 2029//923 +f 2043//924 1642//925 2040//926 +f 2044//927 3089//928 457//929 +f 1638//930 1642//931 2045//932 +f 3405//933 834//933 2038//934 +f 2045//935 1642//936 2043//937 +f 1773//938 2211//939 1908//940 +f 111//941 3373//942 118//941 +f 3402//943 2856//944 1670//945 +f 3713//946 425//946 424//946 +f 1779//947 1908//948 2070//949 +f 2813//950 2082//951 4024//951 +f 1917//952 1779//953 2386//954 +f 5206//955 5563//955 3188//955 +f 596//956 1073//957 1539//958 +f 145//959 146//960 5845//961 +f 2776//962 4791//963 4276//963 +f 3922//964 5598//964 85//964 +f 3543//965 2057//965 2132//966 +f 3287//967 3811//968 4351//969 +f 1982//970 2286//971 1007//972 +f 4751//973 6712//974 1313//975 +f 1007//976 2286//976 1131//976 +f 2162//977 2319//978 1698//979 +f 1256//980 1730//981 2431//982 +f 2431//983 1265//983 1256//983 +f 2009//984 1874//985 1265//986 +f 2022//987 2330//988 2021//989 +f 614//990 2179//990 832//990 +f 2252//991 5202//991 1312//991 +f 1298//992 211//993 1532//994 +f 2186//995 20//996 2187//997 +f 1889//998 2185//999 1618//1000 +f 1638//1001 1889//1001 1618//1002 +f 2040//1003 1642//1004 1756//1005 +f 2040//1006 2205//1006 2043//1007 +f 2630//1008 3818//1008 1179//1008 +f 2214//1009 1773//1009 1775//1009 +f 1775//1010 2218//1011 2214//1012 +f 1908//1013 2069//1014 2070//1015 +f 1425//1016 3915//1017 164//1018 +f 2232//1019 4911//1020 4126//1021 +f 1314//1022 7340//1023 7390//1024 +f 1539//1025 1073//1025 1547//1025 +f 3483//1026 5501//1027 2619//1027 +f 1795//1028 826//1028 1679//1029 +f 1981//1030 1403//1031 1964//1032 +f 1981//1033 1964//1034 2123//1035 +f 1854//1036 4235//1037 37//1038 +f 2597//1039 3049//1040 4367//1041 +f 2011//1042 2296//1042 1515//1042 +f 2566//1043 5032//1044 344//1045 +f 1442//1046 2011//1047 1515//1048 +f 1874//1049 2316//1050 1442//1050 +f 2489//1051 2320//1052 2479//1052 +f 2323//1053 2320//1054 2489//1055 +f 2329//1056 2330//1057 2022//1058 +f 2330//1059 2347//1059 2021//1060 +f 2021//1061 2347//1061 1756//1061 +f 937//1062 1479//1063 3567//1064 +f 2352//1065 1975//1066 1462//1067 +f 2201//1068 1889//1068 1638//1068 +f 4284//1069 2155//1070 2354//1069 +f 2939//1071 2624//1071 1770//1072 +f 2045//1073 2201//1074 1638//1075 +f 3214//1076 6882//1077 2357//1076 +f 4472//1078 839//1079 2708//1080 +f 471//1081 2370//1082 233//1083 +f 2373//1084 1908//1085 2211//1086 +f 4044//1087 4449//1087 35//1088 +f 4944//1089 2372//1090 3976//1091 +f 491//1092 3069//1093 5067//1094 +f 2088//1095 1223//1096 3030//1097 +f 2218//1098 1775//1098 1917//1099 +f 2386//1100 2218//1101 1917//1102 +f 2387//1103 444//1104 2388//1105 +f 2389//1106 2851//1107 196//1108 +f 177//1109 1395//1110 2328//1109 +f 60//1111 2572//1111 59//1111 +f 3694//1112 491//1112 5105//1113 +f 4653//1114 791//1115 3181//1116 +f 2621//1117 431//1118 771//1117 +f 2401//1119 1547//1119 1081//1119 +f 1946//1120 1198//1121 2242//1122 +f 1607//1123 1519//1124 2269//1125 +f 4435//1126 5826//1126 1335//1126 +f 1252//1127 1477//1128 7346//1129 +f 154//1130 2912//1131 4632//1132 +f 4683//1133 1627//1134 2422//1135 +f 3604//1136 4381//1137 2397//1138 +f 3751//1139 2//1140 2427//1141 +f 1168//1142 1515//1143 2433//1144 +f 3626//1145 1032//1146 6061//1146 +f 828//1147 743//1148 332//1149 +f 3036//1150 1201//1151 2443//1152 +f 2307//1153 1874//1153 2009//1154 +f 4867//1155 4387//1156 3028//1157 +f 2449//1158 2450//1158 2451//1159 +f 2448//1160 1874//1160 2307//1161 +f 917//1162 4510//1162 124//1162 +f 342//1163 2171//1164 1763//1165 +f 2307//1166 2454//1167 2460//1168 +f 2179//1169 2544//1170 1108//1170 +f 692//1171 657//1171 1903//1172 +f 2470//1173 2468//1174 2460//1175 +f 2460//1176 2454//1177 2470//1178 +f 2320//1179 2323//1180 2477//1181 +f 560//1182 4771//1182 7389//1182 +f 2323//1183 2489//1183 2494//1184 +f 2329//1185 2645//1186 2330//1187 +f 1609//1188 679//1188 696//1188 +f 1123//1189 4951//1190 5030//1191 +f 2965//1192 2507//1193 4558//1194 +f 2099//1195 1238//1196 611//1197 +f 2508//1198 2339//1199 2185//1200 +f 931//1201 2036//1202 2665//1203 +f 2259//1204 508//1205 2516//1206 +f 4382//1207 2566//1208 5376//1209 +f 3980//1210 2534//1211 3403//1212 +f 3393//1213 4102//1214 2537//1215 +f 2211//1216 2368//1217 2373//1218 +f 2214//1219 2211//1220 1773//1221 +f 2547//1222 2359//1223 2548//1224 +f 406//1225 3803//1225 2929//1225 +f 2069//1226 1908//1227 2373//1228 +f 3852//1229 1634//1229 764//1230 +f 4262//1231 2096//1232 4201//1233 +f 1828//1234 2887//1235 925//1236 +f 814//1237 2559//1238 2729//1239 +f 3268//1240 2567//1241 218//1242 +f 1198//1243 1539//1243 2242//1243 +f 1465//1244 2169//1244 3776//1244 +f 993//1245 4826//1245 2764//1246 +f 2575//1247 1964//1247 1288//1248 +f 2949//1249 2027//1250 91//1251 +f 1982//1252 1168//1252 2433//1252 +f 2286//1253 2586//1254 1131//1255 +f 2787//1256 3145//1256 3756//1256 +f 1981//1257 2431//1258 1730//1259 +f 1485//1260 2587//1261 354//1262 +f 4988//1263 5401//1264 2592//1265 +f 696//1266 679//1267 4450//1268 +f 3393//1269 2601//1269 2313//1269 +f 2602//1270 1291//1271 2522//1272 +f 646//1273 1069//1274 2822//1275 +f 262//1276 2860//1277 2077//1278 +f 4681//1279 2607//1280 721//1279 +f 2448//1281 2316//1282 1874//1282 +f 2448//1283 2307//1283 2460//1284 +f 2985//1285 1606//1286 4263//1287 +f 2620//1288 2454//1289 2622//1290 +f 2620//1291 2470//1292 2454//1293 +f 61//1294 1635//1295 4548//1296 +f 2649//1297 2329//1298 2022//1299 +f 2652//1300 3019//1301 2653//1302 +f 2339//1303 1618//1304 2185//1305 +f 2231//1306 208//1307 2667//1308 +f 1889//1309 2201//1310 2185//1311 +f 2682//1312 2205//1312 2040//1312 +f 2690//1313 2045//1314 2043//1315 +f 3220//1316 2694//1317 2972//1316 +f 2205//1318 2690//1319 2043//1320 +f 4677//1321 1903//1322 2581//1323 +f 1440//1324 4658//1325 4657//1326 +f 2368//1327 2211//1328 2541//1329 +f 2700//1330 2701//1331 2702//1331 +f 4879//1332 2705//1333 5218//1334 +f 2715//1335 2503//1336 4291//1337 +f 2721//1338 2725//1338 2724//1338 +f 2731//1339 2722//1340 2721//1341 +f 2733//1342 2721//1343 2724//1344 +f 1740//1345 2735//1345 2927//1346 +f 2851//1347 962//1348 59//1349 +f 2401//1350 1081//1351 1795//1352 +f 2741//1353 2376//1354 3218//1355 +f 1650//1356 2747//1357 2825//1358 +f 2756//1359 2757//1359 3177//1360 +f 2472//1361 3705//1362 383//1363 +f 2594//1364 1396//1365 210//1366 +f 1515//1367 2296//1368 2433//1367 +f 561//1369 562//1369 2509//1369 +f 661//1370 594//1370 3094//1370 +f 3004//1371 2009//1372 2431//1373 +f 2307//1374 2009//1375 3004//1376 +f 1442//1377 2316//1378 2011//1378 +f 111//1379 118//1380 2311//1379 +f 2093//1381 3831//1382 2364//1383 +f 2588//1384 203//1385 863//1386 +f 2776//1387 154//1387 4632//1387 +f 2411//1388 4325//1389 309//1388 +f 2333//1390 3882//1390 2791//1391 +f 2792//1392 2470//1393 2620//1394 +f 1225//1395 9//1396 831//1397 +f 2797//1398 2479//1399 2320//1400 +f 5375//1401 2801//1402 1059//1403 +f 3512//1404 1483//1405 1556//1406 +f 2323//1407 2494//1408 2477//1409 +f 2808//1410 2379//1411 4392//1412 +f 2479//1413 2806//1414 2489//1415 +f 1776//1416 2815//1416 5236//1417 +f 2819//1418 3255//1419 2645//1420 +f 2329//1421 2819//1422 2645//1423 +f 2824//1424 3846//1425 1499//1426 +f 978//1427 315//1428 1342//1429 +f 2339//1430 2649//1430 2022//1430 +f 3305//1431 1036//1432 1928//1431 +f 626//1433 907//1434 836//1435 +f 2658//1436 2339//1437 2508//1438 +f 2330//1439 3869//1440 2347//1441 +f 634//1442 816//1442 2790//1442 +f 3794//1443 3339//1444 126//1444 +f 2843//1445 2844//1446 3563//1447 +f 2846//1448 2612//1449 5089//1450 +f 1768//1451 1835//1452 2462//1453 +f 850//1454 2852//1455 2853//1454 +f 2690//1456 2201//1457 2045//1458 +f 2205//1459 2682//1459 2686//1459 +f 2693//1460 2205//1461 2686//1461 +f 1649//1462 2862//1463 2863//1464 +f 1987//1465 3371//1466 1272//1467 +f 302//1468 485//1468 3452//1468 +f 2867//1469 3492//1470 456//1471 +f 2695//1472 2682//1473 2692//1474 +f 623//1475 2175//1475 2870//1475 +f 2693//1476 2690//1477 2205//1478 +f 143//1479 947//1479 203//1479 +f 2692//1480 2877//1481 2695//1482 +f 2880//1483 2832//1484 4958//1485 +f 2214//1486 2541//1487 2211//1488 +f 4367//1489 3049//1489 3030//1490 +f 2890//1491 15//1492 4383//1493 +f 2214//1494 2218//1494 2889//1495 +f 3953//1496 702//1496 1031//1496 +f 2218//1497 2386//1498 3304//1499 +f 2904//1500 1779//1501 2070//1502 +f 2911//1503 2417//1504 3788//1505 +f 4212//1506 1020//1507 1285//1508 +f 2927//1509 4061//1510 1882//1511 +f 3752//1512 874//1513 4055//1514 +f 2934//1515 2935//1516 1980//1517 +f 3187//1518 1138//1519 525//1520 +f 2141//1521 2536//1522 1361//1523 +f 423//1524 2370//1524 2422//1525 +f 1794//1526 2945//1527 4668//1528 +f 2946//1529 191//1530 2947//1531 +f 4464//1532 3526//1532 1522//1532 +f 2236//1533 2139//1534 5547//1535 +f 608//1536 5307//1537 1557//1538 +f 4691//1539 3303//1540 987//1541 +f 2731//1542 2721//1543 2951//1544 +f 375//1545 2959//1545 4588//1545 +f 2965//1546 1690//1547 1956//1548 +f 986//1549 619//1550 1093//1551 +f 189//1552 1195//1553 1997//1553 +f 4566//1554 1297//1555 737//1556 +f 1121//1557 1137//1558 1138//1559 +f 2881//1560 2888//1561 2662//1562 +f 1831//1563 3207//1563 1679//1563 +f 2990//1564 1831//1565 1131//1566 +f 4455//1567 313//1568 4468//1569 +f 1981//1570 2123//1571 2431//1572 +f 4710//1573 149//1573 4154//1574 +f 2766//1575 4616//1575 3005//1575 +f 869//1576 868//1577 1156//1578 +f 1431//1579 1534//1580 5686//1581 +f 2316//1582 2769//1583 2011//1584 +f 3016//1585 2409//1586 3017//1587 +f 3004//1588 2454//1589 2307//1590 +f 3023//1591 2448//1592 2460//1593 +f 2579//1594 958//1595 959//1596 +f 1517//1597 3036//1598 1559//1599 +f 2320//1600 2477//1601 3238//1602 +f 2802//1603 3238//1604 2477//1605 +f 3051//1606 2802//1607 2477//1608 +f 3051//1609 2477//1610 2494//1610 +f 4959//1611 2903//1612 480//1613 +f 2489//1614 3054//1615 2494//1616 +f 2790//1617 193//1618 188//1619 +f 3217//1620 548//1621 2453//1622 +f 2330//1623 2645//1624 3449//1624 +f 1658//1625 2024//1625 3071//1625 +f 484//1626 2412//1627 785//1626 +f 1088//1628 4629//1629 3081//1630 +f 2347//1631 3665//1631 1756//1632 +f 3659//1633 3084//1633 3639//1634 +f 2845//1635 2040//1636 1756//1637 +f 2682//1638 2040//1638 2845//1639 +f 2487//1640 606//1640 3495//1640 +f 2682//1641 3087//1641 2692//1641 +f 1239//1642 1833//1642 2084//1643 +f 4147//1644 3484//1645 3095//1646 +f 1123//1647 4161//1647 4951//1647 +f 668//1648 346//1649 3100//1650 +f 7382//1651 3252//1652 1295//1653 +f 4961//1654 4287//1655 4696//1655 +f 2686//1656 2682//1657 2695//1658 +f 2692//1659 3106//1660 2877//1661 +f 968//1662 4235//1663 4234//1664 +f 2368//1665 3119//1666 2373//1667 +f 3509//1668 2368//1669 2541//1670 +f 2298//1671 4034//1671 3669//1671 +f 2889//1672 2541//1673 2214//1674 +f 3125//1675 5396//1676 2726//1677 +f 162//1678 4966//1679 2119//1680 +f 1978//1681 4567//1682 2783//1683 +f 4215//1684 4360//1685 1643//1686 +f 2758//1687 143//1688 3486//1689 +f 2386//1690 1779//1691 2904//1692 +f 2894//1693 3141//1694 3142//1695 +f 3144//1696 2725//1697 2721//1698 +f 3147//1699 2724//1700 2725//1701 +f 4001//1702 1115//1703 3152//1704 +f 2722//1705 2731//1706 3153//1705 +f 1425//1707 164//1708 1268//1708 +f 3945//1709 7111//1710 3155//1709 +f 2731//1711 2940//1712 3153//1713 +f 4821//1714 7322//1714 267//1714 +f 2951//1715 2940//1716 2731//1717 +f 3173//1718 1539//1719 1547//1720 +f 2940//1721 2951//1722 2970//1723 +f 2968//1724 2721//1725 2733//1726 +f 2951//1727 2721//1728 2969//1729 +f 1062//1730 922//1731 3752//1731 +f 2280//1732 2281//1733 4651//1733 +f 4249//1734 4784//1735 3194//1734 +f 4559//1736 3828//1737 4661//1738 +f 2575//1739 1288//1740 1946//1741 +f 2970//1742 2951//1743 3206//1744 +f 431//1745 4327//1746 3208//1747 +f 2433//1748 2286//1749 1982//1750 +f 2286//1751 2433//1752 2586//1753 +f 2586//1754 2990//1755 1131//1756 +f 4618//1757 539//1758 1713//1757 +f 3211//1759 2431//1760 2123//1761 +f 3213//1762 1501//1763 4540//1764 +f 4241//1765 3215//1765 3074//1766 +f 1923//1767 1757//1767 1126//1767 +f 1088//1768 3224//1768 2233//1769 +f 2448//1770 3225//1771 2316//1772 +f 2454//1773 3004//1774 3221//1775 +f 3221//1776 2622//1777 2454//1776 +f 3023//1778 2460//1779 3024//1780 +f 1030//1781 1440//1782 1161//1783 +f 3041//1784 2792//1785 2620//1786 +f 3234//1787 2468//1788 2470//1789 +f 3192//1790 199//1790 791//1791 +f 2792//1792 3234//1793 2470//1794 +f 2936//1795 293//1796 1237//1797 +f 2003//1798 5510//1799 4050//1800 +f 1048//1801 217//1801 2737//1801 +f 3054//1802 2489//1803 2806//1804 +f 2588//1805 863//1805 4286//1806 +f 2042//1807 3254//1807 3835//1807 +f 435//1808 1920//1808 1512//1809 +f 2819//1810 2329//1811 3064//1812 +f 3156//1813 4684//1814 3208//1815 +f 3449//1816 2645//1817 3255//1816 +f 3260//1818 1396//1819 3261//1820 +f 3071//1821 2024//1821 2830//1821 +f 64//1822 1166//1822 4817//1822 +f 3665//1823 2347//1824 3869//1825 +f 2845//1826 1756//1827 3665//1828 +f 1552//1829 1508//1830 2478//1831 +f 2092//1832 4948//1833 4073//1834 +f 2758//1835 947//1836 143//1837 +f 3478//1838 2201//1839 2690//1838 +f 227//1840 3186//1841 3275//1840 +f 2695//1842 2877//1843 2879//1844 +f 4097//1845 2610//1846 3294//1847 +f 2879//1848 3117//1848 2695//1849 +f 4502//1850 2778//1851 5669//1852 +f 4838//1853 3550//1854 4560//1855 +f 1847//1856 3298//1857 1808//1858 +f 2368//1859 3509//1860 3119//1860 +f 3122//1861 2069//1862 2373//1863 +f 2889//1864 2218//1864 3304//1865 +f 2668//1866 1339//1866 414//1866 +f 2904//1867 2070//1868 3306//1869 +f 2386//1870 2904//1871 3304//1872 +f 3144//1873 2721//1874 2722//1873 +f 2441//1875 1686//1875 1654//1876 +f 2018//1877 3618//1878 1317//1879 +f 2724//1880 3333//1881 2733//1882 +f 2733//1883 2966//1884 3357//1885 +f 2721//1886 2968//1886 2969//1887 +f 3061//1888 1279//1889 1714//1890 +f 3357//1891 2968//1892 2733//1892 +f 2968//1893 3357//1893 3363//1894 +f 2825//1895 151//1896 1650//1897 +f 3206//1898 2951//1899 2969//1900 +f 3206//1901 2969//1902 3385//1903 +f 2698//1904 2461//1905 3386//1905 +f 600//1906 5519//1907 928//1908 +f 955//1909 1858//1910 3388//1911 +f 3498//1912 2599//1912 765//1912 +f 3066//1913 3745//1914 1412//1915 +f 2431//1916 3211//1917 3004//1918 +f 2011//1919 3396//1920 2296//1921 +f 3004//1922 3211//1923 3221//1924 +f 477//1925 703//1925 1309//1925 +f 4016//1926 3600//1926 1330//1927 +f 3225//1928 2769//1929 2316//1930 +f 4260//1931 5287//1932 1396//1933 +f 1929//1934 2856//1935 3402//1936 +f 3335//1937 591//1938 2639//1939 +f 3024//1940 2460//1940 2468//1940 +f 4035//1941 813//1942 393//1943 +f 2622//1944 3041//1944 2620//1945 +f 1206//1946 12//1946 61//1946 +f 2633//1947 2799//1947 3022//1948 +f 3238//1949 3415//1949 2320//1950 +f 2221//1951 1894//1952 3753//1951 +f 3415//1953 2797//1953 2320//1953 +f 2802//1954 3421//1955 3238//1956 +f 1955//1957 2000//1958 3672//1959 +f 7316//1960 1477//1960 1387//1961 +f 2494//1962 3058//1963 3051//1964 +f 232//1965 1805//1965 2455//1966 +f 3054//1967 4010//1968 2494//1969 +f 3638//1970 3255//1971 2819//1972 +f 1973//1973 1210//1974 1972//1975 +f 1370//1976 3361//1977 259//1978 +f 17//1979 3274//1980 3450//1981 +f 484//1982 1931//1983 2315//1984 +f 3064//1985 2329//1985 2649//1986 +f 3449//1987 3869//1988 2330//1989 +f 2658//1990 2649//1991 2339//1991 +f 3525//1992 3461//1993 3462//1994 +f 2185//1995 3663//1996 2508//1997 +f 3465//1998 3466//1999 3467//2000 +f 267//2001 1810//2002 4821//2003 +f 3394//2004 3461//2005 5750//2005 +f 4505//2006 182//2007 2424//2007 +f 2682//2008 2845//2009 3087//2010 +f 4783//2011 2421//2012 4268//2013 +f 1134//2014 2139//2015 2140//2016 +f 3087//2017 3272//2018 2692//2019 +f 867//2020 620//2021 3288//2022 +f 3272//2023 3487//2024 2692//2025 +f 3487//2026 3106//2027 2692//2028 +f 940//2029 1912//2029 3298//2030 +f 186//2031 3585//2031 4342//2031 +f 4060//2032 3499//2033 3500//2033 +f 3292//2034 3502//2035 3293//2036 +f 3117//2037 2686//2037 2695//2038 +f 2877//2039 3506//2040 2879//2041 +f 496//2042 2755//2042 1047//2042 +f 2373//2043 3506//2043 3122//2043 +f 3158//2044 5525//2044 2396//2044 +f 6170//2045 3513//2046 174//2047 +f 1432//2048 5371//2049 3290//2050 +f 3528//2051 2070//2052 2069//2053 +f 4592//2054 883//2054 1236//2054 +f 4912//2055 3472//2056 927//2057 +f 931//2058 1935//2058 1107//2059 +f 2538//2060 3521//2060 4957//2060 +f 5476//2061 2148//2062 4521//2063 +f 4068//2064 1006//2064 2964//2064 +f 2724//2065 3147//2066 3538//2067 +f 2603//2068 1113//2069 3494//2070 +f 2940//2071 3547//2072 3153//2073 +f 3333//2074 2724//2074 3542//2074 +f 1020//2075 4212//2076 1879//2077 +f 2733//2078 3333//2079 2966//2080 +f 4355//2081 610//2082 5049//2081 +f 222//2083 2983//2084 3595//2085 +f 1795//2086 1679//2087 3207//2088 +f 3363//2089 2969//2090 2968//2091 +f 705//2092 1762//2092 1215//2092 +f 3206//2093 3581//2094 2970//2093 +f 1521//2095 502//2096 2761//2097 +f 3586//2098 2990//2098 2586//2098 +f 3399//2099 374//2100 1250//2101 +f 2586//2102 2433//2103 3596//2104 +f 5090//2105 3490//2106 924//2105 +f 4995//2107 2083//2108 5139//2108 +f 519//2109 457//2109 1228//2110 +f 4130//2111 3206//2112 3385//2113 +f 203//2114 947//2115 863//2116 +f 434//2117 961//2118 898//2119 +f 2244//2120 370//2121 3607//2122 +f 4864//2123 1617//2124 4425//2125 +f 2769//2126 3225//2127 2011//2127 +f 5196//2128 3612//2129 5031//2130 +f 2448//2131 3023//2132 3225//2133 +f 342//2134 1763//2135 3331//2136 +f 1165//2137 2395//2137 4416//2137 +f 2036//2138 1107//2139 1576//2140 +f 726//2141 2576//2142 4362//2143 +f 3051//2144 3421//2145 2802//2146 +f 3631//2147 3054//2148 2806//2149 +f 3634//2150 1776//2151 2217//2151 +f 2107//2152 2013//2152 1439//2152 +f 5527//2153 762//2154 1864//2155 +f 3058//2156 2494//2157 4294//2158 +f 3124//2159 3641//2159 512//2160 +f 1918//2161 795//2162 1572//2163 +f 3638//2164 3646//2164 3255//2164 +f 3255//2165 3646//2166 3449//2167 +f 2363//2168 4675//2169 182//2170 +f 4072//2171 1877//2172 4295//2173 +f 5515//2174 4396//2174 1045//2174 +f 2661//2175 3459//2175 2038//2175 +f 3663//2176 2185//2177 3666//2178 +f 2201//2179 3666//2179 2185//2180 +f 2646//2181 1333//2182 3668//2183 +f 2250//2184 2572//2185 60//2186 +f 857//2187 3388//2188 5240//2189 +f 3676//2190 1041//2191 2492//2192 +f 3087//2193 4173//2194 3272//2195 +f 3554//2196 3237//2197 750//2198 +f 1848//2199 603//2200 4474//2199 +f 3902//2201 4253//2202 5524//2203 +f 4966//2204 162//2205 4378//2205 +f 2879//2206 3506//2207 3119//2208 +f 2879//2209 3119//2210 3117//2211 +f 3506//2212 2373//2213 3119//2214 +f 3509//2215 3117//2215 3119//2215 +f 2541//2216 2889//2217 3893//2218 +f 1959//2219 3035//2220 3215//2219 +f 1658//2221 4343//2222 2024//2222 +f 5049//2223 610//2224 2382//2223 +f 4117//2225 3713//2226 4886//2227 +f 3481//2228 2463//2229 2509//2230 +f 2521//2231 856//2232 2565//2233 +f 894//2234 5656//2235 5547//2236 +f 2088//2237 2821//2238 4125//2239 +f 2722//2240 3153//2241 3144//2240 +f 1817//2242 211//2242 3723//2243 +f 3874//2244 1261//2244 1053//2244 +f 3542//2245 2724//2246 3538//2245 +f 3727//2247 1646//2248 3177//2249 +f 3749//2250 1249//2251 412//2252 +f 2071//2253 998//2253 1640//2253 +f 3333//2254 3542//2254 3734//2254 +f 2905//2255 1266//2256 3740//2257 +f 2585//2258 2000//2259 1955//2260 +f 5079//2261 2837//2261 1111//2261 +f 4105//2262 499//2262 1707//2262 +f 3737//2263 3748//2264 3557//2265 +f 4039//2266 2156//2266 5542//2267 +f 3333//2268 3734//2269 2966//2270 +f 2270//2271 1417//2272 2384//2273 +f 3636//2274 116//2275 4438//2275 +f 2046//2276 2896//2277 4085//2278 +f 3759//2279 3557//2280 3748//2281 +f 144//2282 3760//2283 831//2284 +f 2//2285 3136//2285 2427//2285 +f 3762//2286 2782//2287 3982//2288 +f 871//2289 2415//2290 3736//2289 +f 326//2291 1591//2292 2341//2293 +f 1383//2294 3814//2295 2865//2296 +f 1044//2297 3772//2298 1145//2298 +f 4568//2299 1253//2300 2899//2301 +f 3773//2302 3207//2302 1831//2302 +f 2123//2303 1964//2304 4108//2305 +f 3385//2306 2969//2306 3363//2306 +f 4745//2307 4817//2308 2713//2309 +f 3430//2310 265//2310 3369//2310 +f 5420//2311 4601//2312 136//2313 +f 3596//2314 3586//2314 2586//2314 +f 2146//2315 7379//2316 7406//2317 +f 2865//2318 2365//2319 1926//2320 +f 1302//2321 616//2322 1055//2323 +f 3206//2324 3799//2325 3581//2326 +f 2433//2327 2296//2328 3596//2329 +f 3799//2330 3206//2331 4130//2332 +f 5726//2333 97//2334 3053//2335 +f 2234//2336 4488//2337 2272//2338 +f 2783//2339 2667//2340 208//2341 +f 2907//2342 1408//2343 2019//2342 +f 2896//2344 1282//2344 4352//2344 +f 5203//2345 1952//2346 856//2347 +f 1110//2348 3140//2348 2449//2349 +f 3808//2350 2622//2350 3221//2350 +f 2622//2351 3808//2352 3615//2353 +f 3615//2354 3041//2355 2622//2356 +f 3834//2357 3835//2357 2749//2357 +f 3041//2358 3833//2359 2792//2360 +f 3833//2361 3234//2362 2792//2361 +f 3836//2363 3234//2363 3833//2363 +f 3837//2364 1091//2364 3838//2365 +f 3840//2366 2467//2366 3974//2367 +f 3843//2368 326//2369 1590//2370 +f 3480//2371 3844//2372 344//2373 +f 4503//2374 746//2374 2795//2374 +f 2666//2375 3192//2376 791//2375 +f 3854//2377 3855//2378 1698//2379 +f 3064//2380 3644//2381 2819//2382 +f 4162//2383 3064//2384 2649//2385 +f 504//2386 5072//2387 110//2388 +f 3450//2389 1664//2390 17//2391 +f 3864//2392 1130//2393 2762//2394 +f 1405//2395 2010//2396 3956//2397 +f 2649//2398 2658//2399 3867//2400 +f 2508//2401 3663//2402 2658//2403 +f 4173//2404 3087//2405 2845//2406 +f 3874//2407 1732//2408 3875//2409 +f 4594//2410 1542//2410 4414//2410 +f 4535//2411 3881//2412 2453//2413 +f 3478//2414 2690//2415 3688//2416 +f 4319//2417 2746//2417 2807//2417 +f 2693//2418 3688//2419 2690//2420 +f 636//2421 2437//2422 4493//2421 +f 2693//2423 2686//2424 3883//2424 +f 65//2425 4158//2426 991//2427 +f 788//2428 546//2429 3460//2429 +f 3894//2430 3895//2431 1090//2432 +f 1350//2433 4122//2434 5660//2435 +f 3304//2436 3893//2437 2889//2436 +f 2152//2438 3932//2439 2754//2440 +f 5224//2441 651//2442 1088//2443 +f 1016//2444 5324//2445 5010//2446 +f 3542//2447 3538//2447 3917//2448 +f 5111//2449 4292//2450 2544//2451 +f 1604//2452 3925//2452 3489//2453 +f 3542//2454 3917//2454 3929//2454 +f 3542//2455 3929//2456 3734//2456 +f 4253//2457 1125//2457 4164//2458 +f 3933//2459 3737//2460 3557//2461 +f 3928//2462 3737//2463 3933//2464 +f 3173//2465 1547//2466 2401//2466 +f 1578//2467 2488//2468 1177//2469 +f 3939//2470 1946//2471 2242//2472 +f 3197//2473 2768//2474 658//2475 +f 4870//2476 4761//2477 568//2478 +f 4217//2479 1795//2480 3207//2481 +f 4726//2482 2760//2483 1626//2484 +f 3948//2485 3357//2485 2966//2485 +f 1291//2486 4965//2487 5329//2487 +f 2062//2488 3950//2489 3465//2490 +f 135//2491 3769//2492 438//2493 +f 3577//2494 70//2495 3956//2496 +f 1267//2497 894//2497 275//2497 +f 503//2498 247//2499 3957//2500 +f 3385//2501 3363//2502 3955//2503 +f 1870//2504 582//2504 1545//2504 +f 3315//2505 138//2505 2254//2505 +f 3945//2506 1273//2507 4287//2506 +f 3596//2508 2296//2508 3965//2508 +f 3211//2509 3967//2510 3221//2511 +f 5424//2512 3681//2513 3047//2514 +f 3396//2515 3225//2516 3973//2517 +f 1833//2518 2915//2519 698//2518 +f 3977//2520 2714//2520 3397//2520 +f 968//2521 536//2522 537//2523 +f 3073//2524 5228//2525 744//2526 +f 4509//2527 3984//2528 378//2527 +f 4132//2529 3615//2530 3808//2531 +f 2106//2532 2858//2533 3203//2534 +f 2066//2535 3346//2536 3188//2537 +f 2068//2538 3053//2539 3987//2540 +f 3615//2541 4132//2542 3820//2543 +f 1793//2544 1078//2545 5458//2546 +f 3202//2547 3798//2548 4295//2549 +f 1229//2550 2720//2551 1675//2552 +f 3615//2553 3990//2554 3041//2555 +f 2468//2556 3832//2557 3024//2558 +f 3832//2559 2468//2560 3234//2561 +f 3044//2562 5143//2563 427//2564 +f 3847//2565 3421//2566 3051//2567 +f 4004//2568 5277//2569 1126//2568 +f 2479//2570 4005//2571 2806//2572 +f 3058//2573 3847//2574 3051//2575 +f 4294//2576 2494//2577 4010//2578 +f 4886//2579 5612//2580 2675//2581 +f 5790//2582 3080//2582 4011//2583 +f 1944//2584 3712//2585 1754//2586 +f 4151//2587 3638//2588 3644//2589 +f 1780//2590 2546//2591 210//2591 +f 4018//2592 7116//2593 3660//2592 +f 3254//2594 4039//2595 2749//2596 +f 3659//2597 4022//2598 1999//2597 +f 3663//2599 3867//2599 2658//2600 +f 3073//2601 428//2602 5228//2603 +f 4757//2604 1357//2604 2456//2604 +f 242//2605 244//2605 3909//2605 +f 2382//2606 718//2607 1705//2608 +f 3272//2609 4033//2610 3487//2611 +f 4127//2612 3901//2612 4043//2613 +f 4057//2614 4413//2615 4494//2616 +f 2025//2617 3400//2618 2570//2617 +f 2877//2619 3884//2619 3506//2619 +f 2686//2620 3117//2621 3883//2622 +f 4425//2623 2984//2624 2985//2625 +f 3883//2626 3117//2627 3509//2628 +f 2541//2629 3893//2630 3509//2631 +f 1185//2632 3407//2633 3537//2634 +f 4122//2635 4104//2636 4264//2637 +f 2633//2638 1142//2639 2799//2640 +f 3306//2641 2070//2642 3528//2643 +f 2874//2644 2371//2645 3682//2646 +f 5732//2647 1014//2647 714//2647 +f 4062//2648 2277//2649 4578//2650 +f 3922//2651 4363//2652 1184//2653 +f 1077//2654 3039//2655 2393//2656 +f 539//2657 4618//2658 3975//2659 +f 3439//2660 4065//2661 4534//2662 +f 3945//2663 3155//2663 1273//2664 +f 2642//2665 4336//2666 4746//2667 +f 3553//2668 1907//2669 2753//2670 +f 443//2671 474//2672 2767//2673 +f 195//2674 2251//2674 662//2674 +f 3734//2675 3929//2675 4214//2675 +f 3465//2676 3467//2677 4461//2677 +f 1203//2678 554//2679 673//2680 +f 4346//2681 1501//2682 3118//2683 +f 4451//2684 3670//2685 4080//2686 +f 3176//2687 1696//2688 4083//2689 +f 3371//2690 295//2691 4548//2690 +f 3778//2692 349//2693 1164//2693 +f 3748//2694 4079//2694 3942//2695 +f 169//2696 126//2696 569//2696 +f 2207//2697 4432//2698 2208//2699 +f 4088//2700 2442//2701 3821//2702 +f 1777//2703 887//2704 764//2705 +f 25//2706 253//2706 321//2707 +f 3848//2708 4091//2709 240//2710 +f 1157//2711 2677//2712 2905//2712 +f 3357//2713 3948//2714 3949//2715 +f 2970//2716 3581//2717 4210//2718 +f 3363//2719 3357//2720 3949//2721 +f 3942//2722 3759//2723 3748//2724 +f 4700//2725 4146//2726 4097//2727 +f 2990//2728 3773//2728 1831//2728 +f 3949//2729 4106//2730 3363//2731 +f 4725//2732 392//2733 4107//2734 +f 3955//2735 3363//2736 4106//2737 +f 3940//2738 1743//2739 590//2740 +f 415//2741 416//2742 3366//2743 +f 1281//2744 1211//2745 2463//2746 +f 3658//2747 1921//2748 80//2747 +f 4112//2749 4246//2749 3799//2749 +f 2990//2750 3586//2751 4109//2752 +f 1015//2753 137//2754 1016//2755 +f 3965//2756 3586//2757 3596//2758 +f 4109//2759 3586//2760 3965//2761 +f 1837//2762 1318//2763 3695//2764 +f 2637//2765 330//2766 329//2767 +f 178//2768 4346//2768 225//2769 +f 2296//2770 3396//2771 3965//2772 +f 3385//2773 3955//2774 4124//2775 +f 2210//2776 3383//2777 1549//2777 +f 3978//2778 3221//2778 3967//2778 +f 2870//2779 2175//2780 4824//2781 +f 2177//2782 4372//2783 5183//2784 +f 3808//2785 3221//2785 3978//2786 +f 4132//2787 3808//2788 3978//2789 +f 4254//2790 4133//2791 4134//2792 +f 3990//2793 3615//2794 3820//2795 +f 3447//2796 1204//2796 4186//2797 +f 2359//2798 695//2799 1771//2800 +f 2558//2801 2359//2802 1771//2803 +f 4282//2804 3238//2805 3421//2806 +f 3534//2807 775//2808 2971//2809 +f 13//2810 3845//2810 3384//2810 +f 4294//2811 4537//2812 3058//2813 +f 874//2814 1777//2815 895//2816 +f 3631//2817 4151//2818 3054//2819 +f 4880//2820 5081//2821 4154//2822 +f 3638//2823 2819//2824 3644//2825 +f 730//2826 2010//2827 2512//2828 +f 3993//2829 4694//2830 3354//2831 +f 2182//2832 449//2832 134//2832 +f 1881//2833 328//2834 1094//2833 +f 3869//2835 3449//2836 3646//2837 +f 2845//2838 3646//2839 4445//2840 +f 3869//2841 3646//2842 2845//2843 +f 2845//2844 3665//2845 3869//2846 +f 5083//2847 858//2847 2226//2848 +f 1698//2849 4747//2850 2464//2851 +f 2216//2852 528//2853 3252//2853 +f 3073//2854 1118//2855 3731//2856 +f 2201//2857 4171//2858 3666//2859 +f 4033//2860 3272//2861 4173//2862 +f 4467//2863 3669//2864 5599//2865 +f 960//2866 3215//2866 4241//2866 +f 5104//2867 4539//2867 992//2868 +f 3106//2869 4042//2869 2877//2869 +f 5021//2870 3203//2871 4236//2872 +f 318//2873 520//2874 4449//2874 +f 3509//2875 4181//2876 3883//2877 +f 3893//2878 4181//2878 3509//2879 +f 3655//2880 4182//2881 3185//2882 +f 3143//2883 2246//2883 793//2883 +f 2715//2884 3880//2884 33//2885 +f 4476//2886 1845//2887 3029//2886 +f 2458//2888 2137//2889 4280//2888 +f 4190//2890 3304//2891 2904//2892 +f 3306//2893 4190//2894 2904//2895 +f 1458//2896 3932//2896 2064//2896 +f 2996//2897 4624//2898 1277//2899 +f 893//2900 1084//2900 4082//2900 +f 3153//2901 3547//2902 4198//2903 +f 1979//2904 3075//2905 1367//2905 +f 5044//2906 3000//2907 949//2907 +f 3809//2908 1220//2909 1445//2910 +f 4073//2911 598//2912 3729//2913 +f 3917//2914 3538//2915 4202//2916 +f 3928//2917 4205//2918 3737//2919 +f 3917//2920 4202//2920 3929//2921 +f 4996//2922 2017//2923 3599//2924 +f 3737//2925 4581//2926 4079//2927 +f 1529//2928 2110//2929 4845//2929 +f 3748//2930 3737//2930 4079//2930 +f 4664//2931 844//2932 1277//2933 +f 3939//2934 1539//2935 3173//2936 +f 4210//2937 2940//2938 2970//2939 +f 729//2940 723//2941 2719//2942 +f 552//2943 3126//2944 1861//2945 +f 2424//2946 2420//2947 4505//2948 +f 1592//2949 5546//2950 1844//2951 +f 5339//2952 2366//2953 2902//2954 +f 1140//2955 3353//2956 3237//2957 +f 1558//2958 577//2959 806//2960 +f 4458//2961 1502//2962 3424//2963 +f 4197//2964 1678//2965 2059//2966 +f 2966//2967 3734//2968 4214//2969 +f 3474//2970 1572//2971 846//2972 +f 2543//2973 4136//2974 768//2975 +f 3575//2976 3355//2977 1410//2978 +f 556//2979 3365//2980 5275//2981 +f 3948//2982 4237//2983 3949//2984 +f 4731//2985 2055//2986 449//2987 +f 4238//2988 2793//2989 3381//2990 +f 4242//2991 3949//2992 4237//2993 +f 1303//2994 4069//2995 269//2996 +f 4030//2997 1818//2998 4240//2999 +f 998//3000 2873//3000 999//3000 +f 4246//3001 3581//3001 3799//3002 +f 4975//3003 4351//3004 2633//3005 +f 2841//3006 2840//3006 4256//3006 +f 4258//3007 958//3008 4259//3009 +f 4106//3010 4124//3010 3955//3011 +f 27//3012 3801//3013 1549//3014 +f 4988//3015 3098//3016 2648//3017 +f 4220//3018 806//3019 577//3020 +f 3303//3021 4691//3022 5118//3022 +f 319//3023 320//3024 3018//3025 +f 3396//3026 2011//3027 3225//3026 +f 3385//3028 4124//3029 4130//3030 +f 4402//3031 1174//3032 1173//3033 +f 806//3034 796//3035 1001//3036 +f 542//3037 2261//3038 1049//3039 +f 2266//3040 3203//3040 2858//3040 +f 4809//3041 3820//3042 4132//3043 +f 1060//3044 1886//3045 78//3045 +f 4277//3046 3990//3047 3820//3048 +f 3041//3049 3990//3050 3833//3051 +f 1718//3052 2133//3053 4781//3054 +f 4280//3055 1859//3056 711//3057 +f 3836//3058 3832//3058 3234//3059 +f 3137//3060 858//3060 4631//3060 +f 3415//3061 3238//3062 4282//3063 +f 880//3064 4194//3065 1101//3066 +f 2797//3067 4005//3068 2479//3069 +f 4291//3070 3301//3071 2715//3070 +f 1852//3072 2065//3073 1297//3074 +f 4010//3075 3054//3076 4151//3077 +f 2203//3078 3940//3078 1852//3079 +f 1583//3080 763//3081 799//3081 +f 1447//3082 4631//3083 1913//3084 +f 1551//3085 4144//3085 4875//3085 +f 4443//3086 3867//3087 3663//3088 +f 3482//3089 4304//3089 3027//3089 +f 493//3090 488//3090 2562//3090 +f 5195//3091 4311//3092 2550//3093 +f 198//3094 312//3094 1377//3094 +f 1989//3095 5213//3096 1595//3097 +f 3821//3098 2632//3099 3603//3099 +f 2693//3100 4315//3101 3688//3102 +f 5831//3103 3660//3104 2034//3105 +f 4322//3106 3506//3106 3884//3106 +f 3366//3107 2051//3108 415//3109 +f 4323//3110 343//3111 7406//3112 +f 2069//3113 3122//3114 4322//3115 +f 4322//3116 4326//3117 2069//3116 +f 4782//3118 4787//3119 3219//3120 +f 3893//3121 3304//3122 4329//3123 +f 2069//3124 4326//3125 4328//3126 +f 2044//3127 30//3128 4028//3128 +f 3528//3129 2069//3130 4328//3131 +f 4414//3132 1542//3133 4681//3132 +f 4594//3134 1801//3135 266//3136 +f 2255//3137 1866//3138 1456//3139 +f 2644//3140 4340//3141 1424//3142 +f 2783//3143 1653//3144 2784//3145 +f 4581//3146 3737//3146 4350//3146 +f 4205//3147 4350//3148 3737//3149 +f 3135//3150 1980//3151 5570//3152 +f 3929//3153 4202//3154 4357//3155 +f 3933//3156 4358//3157 3928//3158 +f 5226//3159 2670//3160 3475//3161 +f 2242//3162 1539//3163 3939//3164 +f 945//3165 883//3165 643//3166 +f 3278//3167 277//3168 2554//3169 +f 4357//3170 4369//3170 3929//3170 +f 1423//3171 7242//3171 643//3171 +f 4364//3172 3557//3173 4216//3174 +f 2403//3175 1440//3176 4373//3177 +f 4079//3178 4374//3179 3942//3180 +f 3759//3181 4216//3182 3557//3183 +f 1867//3184 739//3185 2839//3186 +f 2575//3187 1946//3188 3939//3187 +f 3422//3189 3628//3190 4014//3191 +f 4382//3192 860//3193 4856//3194 +f 18//3195 3846//3196 1796//3195 +f 4317//3197 1603//3197 168//3198 +f 1964//3199 2575//3200 4108//3201 +f 4248//3202 4242//3203 4237//3202 +f 4246//3204 4605//3205 3581//3206 +f 4242//3207 4400//3208 3949//3209 +f 3949//3210 4400//3211 4106//3212 +f 4400//3213 4242//3214 4248//3215 +f 3409//3216 2181//3216 4160//3216 +f 3773//3217 2990//3218 4109//3219 +f 597//3220 4942//3221 2002//3222 +f 3660//3223 2748//3224 2034//3223 +f 4124//3225 4106//3226 4400//3227 +f 4410//3228 3967//3229 3211//3230 +f 1317//3231 4029//3232 981//3233 +f 4407//3234 4408//3235 4409//3236 +f 3967//3237 4266//3238 3978//3238 +f 4875//3239 4954//3239 2351//3239 +f 4266//3240 4420//3241 3978//3242 +f 4273//3243 4130//3244 4124//3244 +f 1466//3245 4792//3246 3170//3247 +f 3791//3248 1712//3249 2764//3250 +f 3013//3251 5690//3252 193//3253 +f 393//3254 4797//3255 2822//3256 +f 3925//3257 2280//3257 3489//3257 +f 3592//3258 547//3259 2723//3260 +f 5393//3261 5027//3261 226//3261 +f 2532//3262 4058//3263 4428//3264 +f 4285//3265 3421//3266 3847//3267 +f 4909//3268 3093//3269 3904//3270 +f 3847//3271 3058//3272 4290//3273 +f 2806//3274 4005//3275 3631//3276 +f 3354//3277 3142//3278 2675//3279 +f 4536//3280 4013//3281 4151//3282 +f 3644//3283 4010//3283 4151//3283 +f 1083//3284 1827//3285 334//3286 +f 9//3287 144//3288 831//3287 +f 3646//3289 3638//3290 4441//3291 +f 4162//3292 2649//3293 3867//3294 +f 4387//3295 5499//3296 3088//3296 +f 368//3297 2661//3298 2038//3299 +f 3663//3300 3666//3301 4443//3302 +f 353//3303 4807//3304 1659//3305 +f 2369//3306 1008//3306 4678//3306 +f 4445//3307 4173//3308 2845//3309 +f 1804//3310 1797//3311 2220//3312 +f 3543//3313 2132//3313 3349//3313 +f 2201//3314 3478//3315 5190//3316 +f 358//3317 2024//3318 3676//3319 +f 3688//3320 4315//3321 3478//3320 +f 2877//3322 4042//3322 3884//3323 +f 4315//3324 2693//3325 3883//3326 +f 2067//3327 3668//3328 1333//3329 +f 4408//3330 1543//3330 3293//3331 +f 4455//3332 4468//3332 4251//3333 +f 4329//3334 4181//3335 3893//3336 +f 1858//3337 98//3337 3180//3337 +f 4669//3338 892//3339 3530//3340 +f 592//3341 1800//3342 3718//3343 +f 3535//3344 5058//3344 4267//3344 +f 4077//3345 3742//3346 1212//3346 +f 3538//3347 3147//3347 4460//3347 +f 4460//3348 4202//3349 3538//3350 +f 3013//3351 1870//3352 2503//3353 +f 3460//3354 6061//3354 1032//3354 +f 4172//3355 3623//3355 1038//3356 +f 4203//3357 4883//3357 957//3357 +f 2474//3358 1944//3359 2583//3360 +f 3672//3361 3375//3362 4770//3363 +f 3270//3364 579//3365 742//3365 +f 1279//3366 424//3367 425//3368 +f 5093//3369 1058//3370 3477//3371 +f 2940//3372 4210//3373 3547//3374 +f 3557//3375 4364//3375 3933//3375 +f 2574//3376 5270//3377 925//3378 +f 2312//3379 4224//3380 563//3381 +f 515//3382 2836//3383 1541//3384 +f 3173//3385 2401//3386 4213//3387 +f 1589//3388 1239//3388 2084//3388 +f 3742//3389 4077//3389 2710//3390 +f 870//3391 1460//3392 2145//3393 +f 1596//3394 1752//3395 5227//3396 +f 2401//3397 1795//3398 4217//3399 +f 2399//3400 4669//3401 2325//3402 +f 4621//3403 804//3403 3248//3404 +f 4490//3405 2092//3406 1336//3407 +f 924//3408 3490//3409 369//3408 +f 4232//3410 4216//3411 3759//3412 +f 1175//3413 4184//3413 1666//3413 +f 6051//3414 724//3414 3703//3415 +f 2966//3416 4214//3417 3948//3417 +f 3942//3418 4495//3419 3759//3419 +f 3759//3420 4495//3421 4393//3420 +f 1157//3422 3740//3423 262//3424 +f 3759//3425 4393//3426 4232//3427 +f 71//3428 5427//3429 2759//3430 +f 1965//3431 4261//3432 3464//3433 +f 2638//3434 3706//3435 4503//3436 +f 4248//3437 4399//3438 4400//3439 +f 4399//3440 4124//3441 4400//3442 +f 4408//3443 2947//3444 191//3444 +f 4410//3445 4266//3446 3967//3447 +f 276//3448 1328//3449 3109//3449 +f 379//3450 1725//3450 2228//3450 +f 3973//3451 3965//3452 3396//3453 +f 4511//3454 4109//3454 3965//3455 +f 1166//3456 3787//3457 1749//3458 +f 4803//3459 4124//3460 4399//3461 +f 994//3462 128//3463 694//3464 +f 2553//3465 1899//3466 2775//3467 +f 4273//3468 4124//3469 4803//3470 +f 2238//3471 330//3472 3372//3473 +f 4595//3474 2152//3475 605//3476 +f 4740//3477 4037//3478 4520//3477 +f 4809//3479 4132//3480 4628//3481 +f 4809//3482 4277//3482 3820//3482 +f 3833//3483 3990//3484 4277//3484 +f 1475//3485 3379//3485 270//3485 +f 5155//3486 2962//3486 4585//3486 +f 2100//3487 772//3488 431//3489 +f 3415//3490 4530//3491 2797//3492 +f 3421//3493 4285//3494 4282//3495 +f 1066//3496 3728//3497 1065//3498 +f 4005//3499 2797//3500 4530//3501 +f 2496//3502 4017//3502 469//3502 +f 34//3503 2276//3504 554//3505 +f 221//3506 1463//3507 3235//3508 +f 1384//3509 3725//3510 4114//3511 +f 862//3512 1230//3513 861//3514 +f 3058//3515 4537//3516 4290//3517 +f 428//3518 3731//3519 1820//3520 +f 3631//3521 4005//3521 4536//3521 +f 4596//3522 3804//3523 181//3524 +f 477//3525 1309//3526 172//3527 +f 3372//3528 1017//3529 4539//3530 +f 4013//3531 3638//3532 4151//3533 +f 4541//3534 3644//3535 3064//3536 +f 3638//3537 4013//3538 4441//3539 +f 3352//3540 2047//3541 839//3542 +f 4543//3543 3064//3544 4162//3545 +f 3661//3546 1244//3547 229//3548 +f 2313//3549 5130//3549 5150//3549 +f 4171//3550 2201//3550 5190//3551 +f 2197//3552 647//3553 5331//3553 +f 3122//3554 3506//3555 4322//3556 +f 1589//3557 3342//3557 279//3558 +f 4326//3559 4555//3560 4553//3561 +f 4553//3562 4456//3562 4326//3562 +f 3345//3563 3231//3564 460//3565 +f 1289//3566 3425//3567 4019//3568 +f 1099//3569 1715//3570 425//3569 +f 4564//3571 4672//3572 4674//3573 +f 4565//3574 4564//3575 4674//3576 +f 4564//3577 4565//3578 4569//3579 +f 1506//3580 2659//3581 2678//3581 +f 4571//3582 4569//3583 4565//3584 +f 4572//3585 4569//3586 4571//3587 +f 4572//3588 4570//3589 4569//3590 +f 2466//3591 170//3592 3491//3593 +f 3541//3594 2766//3595 3005//3594 +f 2657//3596 618//3597 3531//3598 +f 2854//3599 3397//3599 2714//3600 +f 644//3601 286//3602 4646//3603 +f 4581//3604 4350//3604 4582//3605 +f 932//3606 3888//3607 933//3607 +f 7408//3608 4415//3609 2344//3610 +f 783//3611 1399//3611 2058//3612 +f 4079//3613 4581//3613 4589//3614 +f 3055//3615 4158//3616 4009//3617 +f 1719//3618 778//3618 5067//3618 +f 7379//3619 2146//3620 4597//3621 +f 3001//3622 3350//3622 490//3622 +f 4141//3623 1541//3624 733//3625 +f 283//3626 1593//3627 466//3628 +f 4712//3629 4369//3630 4357//3629 +f 3988//3631 2364//3631 864//3632 +f 136//3633 4601//3634 585//3635 +f 4217//3636 3207//3637 4386//3638 +f 603//3639 2112//3640 3420//3641 +f 3942//3642 4374//3643 4495//3642 +f 403//3644 5393//3644 3649//3644 +f 4605//3645 4210//3646 3581//3647 +f 4386//3648 3207//3649 3773//3650 +f 3929//3651 4369//3652 4214//3653 +f 473//3654 1817//3655 3723//3656 +f 1819//3657 2037//3658 3022//3659 +f 3951//3660 1187//3661 4496//3661 +f 1293//3662 5195//3663 2697//3664 +f 730//3665 4156//3666 2010//3667 +f 4609//3668 4393//3669 4495//3670 +f 2435//3671 1740//3672 2506//3672 +f 4108//3673 4611//3673 2123//3673 +f 3128//3674 164//3674 38//3674 +f 4410//3675 3211//3676 2123//3677 +f 3271//3678 4619//3679 3989//3678 +f 1574//3680 1607//3681 1704//3682 +f 4112//3683 3799//3684 4615//3685 +f 4511//3686 4506//3687 4109//3686 +f 4107//3688 3406//3689 4617//3690 +f 1249//3691 3145//3692 3438//3693 +f 7337//3694 4898//3694 1751//3694 +f 1432//3695 7282//3696 2074//3697 +f 1421//3698 3857//3699 906//3700 +f 4284//3701 2354//3702 1155//3703 +f 4886//3704 192//3704 3829//3705 +f 3225//3706 3023//3707 4522//3707 +f 5099//3708 1641//3709 562//3710 +f 3024//3711 4630//3711 3023//3711 +f 1645//3712 5213//3713 5656//3714 +f 3024//3715 3832//3716 4630//3716 +f 4616//3717 3786//3718 3005//3719 +f 3836//3720 3833//3721 4634//3721 +f 4635//3722 4636//3723 3387//3724 +f 4637//3725 4282//3726 4285//3727 +f 1718//3728 4638//3729 1792//3730 +f 1149//3731 3910//3731 1150//3732 +f 4005//3733 4530//3734 4913//3735 +f 3847//3736 4290//3737 4285//3738 +f 135//3739 1942//3740 3769//3741 +f 4536//3742 4151//3743 3631//3743 +f 4294//3744 4010//3745 3644//3745 +f 3644//3746 4541//3747 4294//3748 +f 4647//3749 1358//3750 1677//3750 +f 2257//3751 5262//3752 3842//3751 +f 4541//3753 3064//3753 4543//3753 +f 4573//3754 1667//3754 1199//3754 +f 1957//3755 3482//3755 3027//3756 +f 1034//3757 2336//3757 4437//3757 +f 4492//3758 3751//3758 2427//3758 +f 4033//3759 4173//3760 4650//3759 +f 2397//3761 4381//3762 716//3763 +f 617//3764 34//3765 1678//3766 +f 1745//3767 3437//3768 2145//3769 +f 3941//3770 1816//3771 760//3772 +f 845//3773 652//3773 4007//3774 +f 4660//3775 3883//3776 4181//3777 +f 4456//3778 4553//3779 4760//3780 +f 1955//3781 1743//3782 2203//3783 +f 3286//3784 3590//3784 719//3785 +f 4763//3786 4561//3787 4456//3788 +f 4453//3789 1966//3790 35//3790 +f 4580//3791 3743//3792 5133//3793 +f 4561//3794 4326//3794 4456//3794 +f 3528//3795 4328//3796 3306//3797 +f 4671//3798 2962//3799 3150//3800 +f 4672//3801 4673//3802 4674//3803 +f 4679//3804 4564//3805 4569//3806 +f 2760//3807 4726//3807 1967//3807 +f 3891//3808 7395//3809 4935//3810 +f 2975//3811 1660//3812 2976//3813 +f 2621//3814 771//3814 2491//3814 +f 1662//3815 3149//3816 4784//3817 +f 3536//3818 2174//3819 2229//3820 +f 4582//3821 4693//3822 4581//3823 +f 4398//3824 3228//3824 4333//3824 +f 1683//3825 346//3826 913//3825 +f 4581//3827 4693//3828 4589//3829 +f 4699//3830 4205//3831 3928//3832 +f 1596//3833 2744//3834 625//3835 +f 1740//3836 2863//3837 4833//3838 +f 4374//3839 4079//3839 4589//3839 +f 791//3840 199//3841 1070//3842 +f 492//3843 4663//3844 3502//3845 +f 2560//3846 2246//3847 90//3848 +f 4216//3849 4708//3850 4364//3850 +f 3186//3851 652//3852 845//3853 +f 4591//3854 4712//3854 4357//3854 +f 4603//3855 2575//3856 3939//3857 +f 3962//3858 2294//3859 1701//3860 +f 4108//3861 2575//3862 4603//3861 +f 3043//3863 5279//3864 4979//3865 +f 4216//3866 4232//3867 4713//3868 +f 4216//3869 4713//3870 4714//3871 +f 1579//3872 1840//3873 625//3874 +f 4214//3875 4604//3875 3948//3875 +f 3616//3876 4739//3876 1601//3876 +f 2980//3877 3100//3878 346//3877 +f 735//3879 3183//3880 2376//3881 +f 4723//3882 594//3883 4724//3884 +f 2763//3885 7408//3886 2344//3887 +f 1455//3888 4396//3889 2026//3890 +f 2671//3891 2672//3892 503//3893 +f 933//3894 2116//3895 1727//3896 +f 1243//3897 1087//3897 2076//3898 +f 1758//3899 2869//3900 2524//3901 +f 4320//3902 4863//3903 3632//3904 +f 2360//3905 2000//3906 2585//3907 +f 3799//3908 4130//3909 4615//3909 +f 3427//3910 813//3911 4035//3912 +f 4511//3913 4978//3913 4506//3913 +f 4803//3914 4626//3915 4273//3914 +f 3116//3916 3101//3917 3332//3918 +f 3978//3919 4628//3919 4132//3920 +f 3973//3921 3225//3922 4522//3921 +f 3130//3923 1966//3924 4453//3925 +f 4730//3926 3965//3927 3973//3928 +f 1171//3929 908//3929 362//3929 +f 412//3930 1417//3931 1324//3932 +f 4428//3933 1896//3934 3282//3935 +f 836//3936 1560//3937 4483//3938 +f 4733//3939 4734//3940 4735//3941 +f 4734//3942 4736//3943 4735//3944 +f 3499//3945 2484//3946 3500//3947 +f 335//3948 2627//3949 66//3950 +f 3569//3951 7392//3951 7343//3951 +f 2748//3952 4741//3953 3115//3954 +f 3865//3955 1950//3956 3124//3957 +f 533//3958 5602//3958 3602//3959 +f 1697//3960 5649//3961 411//3962 +f 4743//3963 4536//3964 4005//3965 +f 4537//3966 4294//3967 4830//3968 +f 796//3969 806//3970 4220//3970 +f 2314//3971 1719//3971 877//3972 +f 4052//3973 2187//3973 5399//3974 +f 1698//3975 2319//3976 4747//3977 +f 3867//3978 4543//3979 4162//3980 +f 4837//3981 3646//3982 4441//3983 +f 4749//3984 4443//3985 3666//3986 +f 457//3987 2831//3988 30//3989 +f 5085//3990 5143//3991 2860//3992 +f 4650//3993 4173//3993 4445//3993 +f 3478//3994 4315//3995 4660//3996 +f 3883//3997 4660//3998 4315//3999 +f 1966//4000 393//4001 2822//4002 +f 5064//4003 22//4004 3123//4005 +f 5484//4006 49//4007 4275//4008 +f 4759//4009 4760//4010 4553//4011 +f 4555//4012 4326//4013 4322//4014 +f 4763//4015 4456//4015 4760//4016 +f 4762//4017 4553//4017 4555//4017 +f 1417//4018 3008//4019 2384//4020 +f 4272//4021 1274//4022 2773//4023 +f 4928//4024 3304//4024 4190//4024 +f 4561//4025 4767//4026 4326//4027 +f 4767//4028 4328//4029 4326//4030 +f 1035//4031 6894//4032 6891//4033 +f 2209//4034 1296//4035 4305//4035 +f 4767//4036 3306//4036 4328//4037 +f 3306//4038 4768//4039 4190//4040 +f 712//4041 3559//4042 2857//4043 +f 4672//4044 4769//4044 4848//4045 +f 4614//4046 1372//4047 4332//4047 +f 4672//4048 4848//4049 4673//4050 +f 4564//4051 4679//4052 4672//4051 +f 4674//4053 4673//4054 4565//4055 +f 4854//4056 4679//4056 4570//4057 +f 4570//4058 4679//4059 4569//4060 +f 4773//4061 4202//4061 4460//4062 +f 3914//4063 3056//4064 3661//4065 +f 4693//4066 4776//4067 4775//4068 +f 4582//4069 4776//4070 4693//4071 +f 2790//4072 1281//4073 193//4074 +f 1197//4075 4474//4076 659//4077 +f 3242//4078 3001//4078 4341//4079 +f 7206//4080 4299//4081 4298//4082 +f 461//4083 2292//4084 132//4085 +f 4428//4086 4058//4087 1896//4088 +f 4693//4089 4775//4090 4589//4091 +f 4778//4092 4357//4093 4202//4094 +f 1092//4095 2654//4096 1120//4095 +f 2031//4097 2662//4098 2888//4099 +f 38//4100 4689//4100 4892//4100 +f 2408//4101 1876//4102 1257//4103 +f 4213//4104 2401//4105 4217//4106 +f 1428//4107 48//4108 2066//4109 +f 4785//4110 3783//4110 623//4110 +f 2200//4111 5648//4111 4786//4112 +f 1430//4113 4075//4114 3185//4113 +f 4778//4115 4711//4116 4591//4117 +f 4712//4118 4591//4119 4711//4120 +f 4495//4121 4374//4122 4868//4122 +f 4708//4123 4216//4124 4714//4125 +f 4868//4126 4717//4127 4495//4128 +f 1576//4129 1324//4129 1849//4129 +f 2375//4130 4790//4131 892//4132 +f 4232//4133 4393//4134 4722//4135 +f 1526//4136 259//4136 3312//4136 +f 2782//4137 3762//4137 3770//4137 +f 4237//4138 3948//4139 4796//4140 +f 872//4141 664//4142 1837//4143 +f 4796//4144 4248//4144 4237//4144 +f 485//4145 5372//4146 1514//4147 +f 4399//4148 4248//4149 4796//4150 +f 4611//4151 4410//4152 2123//4153 +f 4800//4154 4246//4155 4112//4154 +f 1571//4156 4801//4157 1918//4158 +f 778//4159 491//4160 5067//4161 +f 3403//4162 3859//4163 3980//4164 +f 1846//4165 5293//4166 4608//4165 +f 264//4167 5431//4168 3369//4168 +f 4805//4169 3978//4170 4420//4171 +f 4479//4172 3210//4172 5731//4172 +f 4628//4173 3978//4174 4804//4175 +f 3230//4176 41//4177 3677//4178 +f 4511//4179 3965//4180 4730//4181 +f 4130//4182 4273//4183 4973//4183 +f 4598//4184 3866//4184 2141//4185 +f 2357//4186 5844//4186 2903//4186 +f 2666//4187 791//4188 1991//4189 +f 3836//4190 4630//4191 3832//4190 +f 3874//4192 1053//4193 1732//4194 +f 4634//4195 4994//4196 3836//4197 +f 4590//4198 3194//4198 2745//4198 +f 3826//4199 189//4199 4200//4199 +f 4737//4200 4734//4201 4733//4202 +f 1799//4203 2402//4203 2734//4203 +f 4816//4204 4736//4205 4734//4206 +f 3501//4207 2350//4208 1780//4209 +f 4817//4210 4087//4211 726//4211 +f 4819//4212 4733//4213 4735//4214 +f 5604//4215 718//4216 2382//4215 +f 4910//4217 4819//4217 4735//4217 +f 1443//4218 324//4218 1226//4218 +f 4910//4219 4735//4219 4736//4219 +f 4282//4220 4820//4221 3415//4222 +f 2870//4223 4824//4224 4224//4223 +f 4910//4225 4005//4226 4913//4225 +f 4005//4227 4910//4227 4742//4227 +f 2071//4228 2513//4229 1513//4228 +f 4388//4230 2875//4230 3803//4231 +f 4743//4232 4005//4233 4742//4234 +f 4742//4235 4827//4236 4743//4237 +f 4004//4238 1126//4239 603//4240 +f 4902//4241 3495//4242 3711//4243 +f 4830//4244 4290//4245 4537//4246 +f 4832//4247 4799//4248 4914//4249 +f 4743//4250 4013//4250 4536//4250 +f 3529//4251 1391//4252 4089//4253 +f 3863//4254 2312//4254 5214//4254 +f 4541//4255 4830//4255 4294//4256 +f 4541//4257 4543//4257 5015//4258 +f 2405//4259 2407//4260 1760//4260 +f 1804//4261 1802//4262 1797//4262 +f 4443//4263 4749//4264 3867//4264 +f 3263//4265 3012//4265 4371//4265 +f 3646//4266 4837//4266 4445//4266 +f 2198//4267 3393//4267 2537//4268 +f 2231//4269 386//4269 2863//4269 +f 4782//4270 3483//4270 4787//4271 +f 3487//4272 4753//4273 3106//4274 +f 4656//4275 3884//4275 4042//4276 +f 2310//4277 3793//4278 2309//4279 +f 2759//4280 5943//4281 71//4280 +f 4925//4282 4760//4283 4759//4284 +f 4843//4285 3502//4286 3292//4287 +f 3828//4288 3829//4288 2684//4288 +f 1510//4289 2795//4289 81//4290 +f 4842//4291 4759//4291 4553//4291 +f 4762//4292 4842//4293 4553//4294 +f 1441//4295 1906//4295 2717//4295 +f 4762//4296 4555//4297 4322//4296 +f 4660//4298 4181//4299 4329//4300 +f 628//4301 2980//4302 1651//4303 +f 4846//4304 1866//4305 2255//4306 +f 4513//4307 544//4307 4744//4307 +f 4847//4308 4561//4308 4763//4309 +f 4928//4310 4329//4311 3304//4312 +f 2187//4313 4825//4314 2736//4315 +f 1680//4316 1934//4317 3131//4318 +f 4673//4319 4848//4320 4849//4321 +f 4769//4322 4672//4323 4936//4324 +f 4850//4325 700//4326 1575//4326 +f 4849//4327 4565//4328 4673//4329 +f 4679//4330 4936//4331 4672//4332 +f 762//4333 878//4334 4359//4335 +f 214//4336 2834//4337 4818//4338 +f 922//4339 2709//4340 741//4339 +f 1312//4341 5202//4342 5114//4343 +f 1814//4344 1692//4345 1691//4345 +f 4857//4346 4854//4346 4570//4346 +f 4572//4347 4857//4348 4570//4349 +f 3977//4350 5122//4351 1308//4352 +f 6442//4353 6355//4353 1224//4353 +f 3140//4354 3503//4354 2449//4354 +f 2959//4355 4081//4356 1345//4357 +f 4202//4358 4773//4359 4859//4360 +f 2531//4361 4286//4361 2778//4362 +f 1693//4363 1900//4364 2481//4365 +f 4358//4366 4699//4367 3928//4368 +f 4778//4369 4591//4370 4357//4371 +f 3126//4372 3127//4373 1822//4374 +f 1934//4375 2159//4376 3434//4377 +f 2351//4378 2773//4379 4864//4378 +f 3475//4380 3743//4380 5226//4381 +f 2708//4382 3071//4383 2634//4384 +f 4358//4385 3933//4385 4364//4385 +f 4865//4386 3173//4387 4213//4388 +f 4374//4389 4589//4390 4868//4391 +f 591//4392 2432//4392 2639//4393 +f 2959//4394 3546//4395 1059//4396 +f 4875//4397 5311//4398 868//4399 +f 4876//4400 2183//4401 682//4402 +f 4712//4403 4711//4404 4877//4405 +f 3265//4406 3413//4407 1056//4408 +f 1886//4409 4959//4409 480//4409 +f 3766//4410 371//4411 1984//4412 +f 3643//4413 2527//4413 4269//4413 +f 4214//4414 4369//4414 4882//4414 +f 4604//4415 4214//4416 4882//4417 +f 4795//4418 4232//4419 4722//4418 +f 4369//4420 4712//4420 4882//4420 +f 850//4421 2850//4422 950//4423 +f 4073//4424 5549//4424 3199//4425 +f 3362//4426 2656//4427 4334//4428 +f 4798//4429 3948//4430 4604//4431 +f 1624//4432 3389//4433 4024//4434 +f 1118//4435 3549//4436 3731//4436 +f 766//4437 287//4438 4887//4439 +f 4801//4440 3474//4441 1918//4442 +f 5074//4443 4410//4444 4611//4445 +f 4662//4446 4685//4447 3263//4448 +f 1693//4449 2322//4449 1900//4450 +f 5412//4451 4756//4452 5419//4452 +f 122//4453 4231//4453 928//4453 +f 418//4454 3068//4455 169//4456 +f 4080//4457 5049//4458 2130//4459 +f 4804//4460 3978//4460 4805//4461 +f 4420//4462 4266//4463 4970//4464 +f 4892//4465 4689//4466 3854//4467 +f 4730//4468 3973//4469 4522//4470 +f 1115//4471 4001//4472 1414//4473 +f 3964//4474 785//4474 2412//4474 +f 3023//4475 4630//4476 4522//4477 +f 3790//4478 567//4479 1783//4479 +f 4277//4480 4809//4481 4894//4482 +f 4987//4483 4896//4484 4905//4485 +f 2366//4486 888//4487 718//4488 +f 1027//4489 2755//4490 4226//4491 +f 2780//4492 107//4493 3698//4494 +f 2364//4495 14//4496 5662//4497 +f 4733//4498 4819//4499 4913//4499 +f 4001//4500 3152//4500 1691//4500 +f 1391//4501 1689//4501 7341//4502 +f 1799//4503 4480//4504 2755//4505 +f 4910//4506 4736//4507 4916//4508 +f 4910//4509 4913//4510 4819//4510 +f 4915//4511 3803//4512 2875//4513 +f 4910//4514 4916//4515 4742//4514 +f 4676//4516 3886//4517 968//4518 +f 965//4519 964//4520 2500//4521 +f 2215//4522 4917//4523 4918//4524 +f 4830//4525 4920//4525 4290//4525 +f 679//4526 3189//4527 4450//4528 +f 4541//4529 5015//4530 4830//4531 +f 4441//4532 4013//4533 4743//4534 +f 1142//4535 4922//4536 2799//4537 +f 4697//4538 4878//4539 1808//4540 +f 4749//4541 4543//4542 3867//4543 +f 1766//4544 4923//4545 1869//4546 +f 4904//4547 356//4548 1738//4549 +f 4171//4550 5186//4550 3666//4550 +f 1617//4551 4864//4552 2773//4553 +f 731//4554 1787//4555 2310//4556 +f 4042//4557 3106//4558 4840//4558 +f 3106//4559 4753//4560 4840//4561 +f 4656//4562 4042//4563 4840//4564 +f 950//4565 2850//4566 410//4567 +f 730//4568 3395//4569 4156//4570 +f 3964//4571 2844//4572 785//4573 +f 3628//4574 3601//4575 5157//4576 +f 5025//4577 4759//4577 4842//4578 +f 1880//4579 4004//4580 1848//4581 +f 1429//4582 408//4583 3577//4584 +f 1392//4585 1911//4586 2345//4587 +f 4760//4588 4926//4588 4763//4588 +f 2838//4589 3932//4590 2060//4591 +f 4911//4592 4929//4593 2146//4594 +f 5211//4595 4931//4595 1039//4596 +f 3521//4597 2538//4598 2788//4599 +f 4935//4600 4283//4601 2072//4602 +f 4473//4603 5338//4604 5206//4605 +f 4848//4606 4934//4607 4849//4608 +f 4934//4609 4848//4609 4769//4609 +f 2855//4610 1383//4611 1927//4610 +f 1546//4612 103//4612 417//4612 +f 4679//4613 4854//4614 5039//4615 +f 4086//4616 3560//4617 513//4618 +f 4939//4619 4854//4620 4857//4621 +f 4572//4622 4571//4623 4941//4624 +f 969//4625 181//4626 759//4627 +f 1165//4628 4030//4629 2703//4630 +f 1605//4631 4249//4632 3194//4632 +f 5047//4633 4198//4633 3547//4633 +f 1263//4634 3325//4635 4943//4636 +f 554//4637 4131//4638 34//4639 +f 4202//4640 4859//4641 4774//4642 +f 4962//4643 3590//4644 3286//4643 +f 4775//4645 4776//4646 4947//4647 +f 4949//4648 5046//4649 4582//4650 +f 916//4651 176//4652 860//4653 +f 3078//4654 6061//4654 1235//4654 +f 155//4655 3613//4655 4422//4655 +f 1720//4656 1420//4657 4560//4657 +f 253//4658 25//4658 4415//4658 +f 3710//4659 1887//4659 1102//4659 +f 3090//4660 315//4660 4493//4661 +f 371//4662 3028//4663 1170//4662 +f 4409//4664 2947//4665 4888//4666 +f 1602//4667 761//4668 4789//4668 +f 822//4669 3317//4670 3995//4671 +f 3548//4672 2066//4673 5005//4674 +f 4711//4675 4778//4675 4873//4675 +f 3356//4676 1301//4677 4946//4678 +f 3766//4679 3792//4680 5499//4681 +f 4484//4682 4485//4683 4408//4684 +f 5132//4685 4386//4685 3773//4685 +f 4717//4686 4609//4687 4495//4688 +f 4713//4689 4232//4690 4795//4691 +f 2430//4692 588//4692 4702//4692 +f 1342//4693 315//4694 574//4695 +f 4882//4696 4884//4697 4604//4698 +f 1109//4699 3250//4699 4531//4700 +f 4798//4701 4604//4702 4884//4703 +f 5141//4704 918//4704 4965//4704 +f 4884//4705 4882//4706 4967//4705 +f 4800//4707 5059//4707 4246//4707 +f 395//4708 3651//4709 4115//4710 +f 4112//4711 4974//4712 4800//4713 +f 4800//4714 4974//4714 4896//4714 +f 4289//4715 12//4715 4281//4716 +f 4439//4717 627//4718 3983//4719 +f 3563//4720 2844//4721 3848//4722 +f 4786//4723 2664//4724 4337//4725 +f 3323//4726 630//4727 4897//4728 +f 4971//4729 4969//4730 4972//4729 +f 4615//4731 4130//4732 4973//4731 +f 38//4733 4892//4734 3128//4733 +f 2997//4735 549//4736 2254//4736 +f 4979//4737 3935//4738 587//4739 +f 603//4740 808//4741 4474//4742 +f 4981//4743 5599//4744 3669//4744 +f 4112//4745 4973//4746 4974//4747 +f 3503//4748 3927//4749 2450//4750 +f 2740//4751 5424//4752 3047//4753 +f 2287//4754 607//4755 590//4756 +f 3430//4757 1176//4758 265//4757 +f 1339//4759 4986//4759 2540//4759 +f 4978//4760 4511//4761 4730//4762 +f 4969//4763 4971//4763 4967//4763 +f 4971//4764 4984//4765 4967//4766 +f 4974//4767 4900//4767 4896//4767 +f 4987//4768 4800//4768 4896//4768 +f 4628//4769 4985//4770 4809//4771 +f 4522//4772 4630//4773 4730//4774 +f 3522//4775 327//4776 4889//4777 +f 1821//4778 3303//4779 5118//4780 +f 619//4781 1461//4782 2016//4783 +f 4971//4784 4990//4784 4984//4785 +f 4991//4786 870//4787 1270//4788 +f 4971//4789 4989//4790 4990//4791 +f 692//4792 4677//4793 4099//4794 +f 2919//4795 919//4796 3248//4797 +f 3833//4798 4901//4799 4634//4799 +f 4974//4800 4992//4801 4900//4802 +f 4989//4803 4997//4804 5000//4804 +f 4990//4805 4989//4805 5000//4806 +f 5002//4807 4990//4807 5000//4807 +f 123//4808 5209//4809 1356//4810 +f 711//4811 2515//4812 847//4811 +f 3218//4813 1321//4813 1029//4814 +f 4900//4815 4992//4815 5003//4815 +f 2474//4816 3319//4817 4446//4818 +f 5000//4819 5001//4820 5004//4821 +f 5003//4822 5006//4823 4900//4824 +f 5361//4825 2144//4825 4066//4825 +f 4900//4826 5006//4827 5007//4828 +f 1723//4829 584//4830 2706//4831 +f 1238//4832 2319//4833 465//4834 +f 4896//4835 5008//4836 4905//4837 +f 4896//4838 4900//4838 5008//4838 +f 1374//4839 1835//4840 1699//4839 +f 4900//4841 5007//4842 5008//4843 +f 5102//4844 5009//4844 1736//4844 +f 530//4845 1546//4845 4651//4845 +f 4734//4846 4737//4847 4908//4848 +f 7242//4849 5034//4850 643//4851 +f 4024//4852 1625//4853 1624//4854 +f 5281//4855 4530//4856 3415//4855 +f 4820//4857 4282//4858 4637//4859 +f 1722//4860 2609//4861 3168//4862 +f 4469//4863 1885//4863 1915//4864 +f 4285//4865 5101//4866 4637//4867 +f 3530//4868 2325//4868 4669//4868 +f 4285//4869 4290//4870 5013//4871 +f 2125//4872 655//4873 4792//4874 +f 620//4875 2095//4875 1849//4875 +f 643//4876 5034//4876 945//4876 +f 890//4877 4366//4877 2901//4877 +f 4411//4878 1395//4879 3476//4878 +f 4441//4880 4743//4881 5016//4882 +f 5017//4883 5015//4884 4543//4883 +f 4543//4885 4749//4885 5017//4886 +f 4441//4887 5185//4888 4837//4887 +f 3740//4889 1266//4890 3974//4891 +f 1469//4892 567//4893 264//4892 +f 4749//4894 3666//4895 5186//4895 +f 3451//4896 4431//4897 2080//4897 +f 4033//4898 4650//4899 3487//4900 +f 756//4901 3544//4902 859//4903 +f 1333//4904 356//4905 4904//4904 +f 4660//4906 5023//4906 3478//4907 +f 4925//4908 4656//4908 4840//4908 +f 4103//4909 1082//4909 742//4909 +f 4656//4910 4925//4910 5025//4910 +f 2663//4911 520//4912 53//4913 +f 5025//4914 3884//4915 4656//4916 +f 4925//4917 4759//4918 5025//4919 +f 34//4920 4131//4921 1678//4922 +f 4842//4923 4322//4923 3884//4924 +f 4760//4925 4925//4926 4926//4927 +f 3763//4928 4051//4929 5030//4930 +f 4322//4931 4842//4932 4762//4933 +f 3979//4934 2243//4935 2351//4936 +f 5196//4937 5031//4938 5032//4939 +f 4239//4940 1236//4940 773//4940 +f 495//4941 2855//4942 1494//4943 +f 782//4944 3694//4945 5105//4946 +f 3679//4947 4932//4948 3678//4949 +f 4768//4950 3306//4951 4767//4952 +f 4744//4953 3360//4953 3687//4953 +f 5038//4954 4934//4954 4769//4955 +f 4849//4956 4934//4957 5037//4958 +f 1209//4959 749//4960 2424//4961 +f 5197//4962 5039//4962 4854//4963 +f 5042//4964 4565//4965 4849//4966 +f 5041//4967 4936//4968 4679//4969 +f 3510//4970 2413//4971 3921//4971 +f 1156//4972 5311//4973 1325//4973 +f 864//4974 2364//4974 1441//4974 +f 5042//4975 4941//4976 4565//4977 +f 1906//4978 1441//4978 2364//4978 +f 4941//4979 4571//4980 4565//4979 +f 1090//4981 943//4982 3148//4983 +f 4383//4984 1368//4985 2890//4986 +f 5402//4987 4198//4987 5047//4987 +f 5046//4988 4947//4989 4776//4990 +f 5046//4991 4776//4992 4582//4993 +f 439//4994 4729//4995 2526//4995 +f 975//4996 1071//4997 4695//4998 +f 3547//4999 4210//5000 5047//5001 +f 4774//5002 4778//5003 4202//5004 +f 395//5005 4115//5006 3457//5007 +f 4589//5008 4775//5009 4952//5008 +f 3323//5010 3294//5011 2380//5010 +f 3173//5012 4865//5013 3939//5014 +f 4358//5015 4364//5015 4708//5015 +f 4589//5016 4952//5017 4868//5018 +f 4778//5019 5051//5020 4873//5021 +f 795//5022 1918//5022 4144//5022 +f 2703//5023 1304//5024 634//5025 +f 230//5026 1355//5027 2501//5028 +f 1062//5029 7286//5030 1112//5031 +f 1076//5032 1810//5033 921//5032 +f 5054//5034 4717//5035 4868//5036 +f 5476//5037 4521//5038 4306//5039 +f 2533//5040 600//5041 599//5042 +f 5060//5043 5132//5044 3773//5045 +f 5559//5046 795//5047 3545//5048 +f 5060//5049 3773//5050 4109//5051 +f 5062//5052 1116//5053 1290//5052 +f 2463//5054 561//5055 2509//5056 +f 1970//5057 4612//5058 5063//5059 +f 4712//5060 5061//5061 4882//5062 +f 2109//5063 1915//5063 4938//5064 +f 4342//5065 1781//5065 5097//5065 +f 4605//5066 4246//5067 5059//5068 +f 886//5069 885//5070 3034//5071 +f 3948//5072 4964//5073 4796//5074 +f 761//5075 2564//5076 200//5077 +f 519//5078 1228//5079 3787//5080 +f 599//5081 4235//5081 1854//5082 +f 3328//5083 468//5084 626//5085 +f 1056//5086 2259//5087 875//5087 +f 1436//5088 3716//5088 7//5088 +f 1263//5089 4834//5090 5068//5091 +f 3604//5092 3232//5093 4381//5092 +f 4855//5094 3165//5095 4335//5096 +f 3728//5097 1066//5098 2197//5099 +f 5142//5100 4399//5100 4796//5100 +f 4399//5101 5142//5102 4803//5103 +f 4345//5104 1205//5105 2688//5106 +f 3460//5107 546//5108 1405//5109 +f 4967//5110 5071//5111 4969//5112 +f 4987//5113 5073//5113 5059//5114 +f 1021//5115 1020//5116 1879//5117 +f 2776//5118 3752//5119 154//5120 +f 5059//5121 4800//5122 4987//5123 +f 5074//5124 4266//5125 4410//5126 +f 5075//5127 4884//5128 4967//5129 +f 4054//5130 1321//5131 2376//5132 +f 4346//5133 3121//5133 4223//5133 +f 723//5134 724//5135 1614//5136 +f 4057//5137 4494//5137 1710//5137 +f 4804//5138 4805//5139 4985//5140 +f 1612//5141 1143//5141 553//5141 +f 4615//5142 4973//5143 4112//5144 +f 2417//5145 3610//5146 402//5146 +f 5722//5147 29//5147 1868//5148 +f 4544//5149 1292//5149 4015//5149 +f 2962//5150 4529//5151 3505//5152 +f 2008//5153 3386//5154 2593//5155 +f 4628//5156 4804//5157 4985//5158 +f 2503//5159 3961//5160 4291//5161 +f 932//5162 1726//5163 1994//5164 +f 4974//5165 4973//5166 5148//5167 +f 5643//5168 2929//5169 3803//5170 +f 4971//5171 4972//5172 4989//5173 +f 1722//5174 4828//5175 5077//5175 +f 1408//5176 3233//5177 2019//5178 +f 377//5179 7203//5180 3256//5180 +f 4669//5181 4159//5182 892//5182 +f 3656//5183 1353//5183 1983//5183 +f 4901//5184 3833//5185 4277//5186 +f 989//5187 1968//5187 1815//5187 +f 4630//5188 3836//5189 4994//5190 +f 2559//5191 1898//5192 967//5193 +f 2167//5194 3812//5195 3380//5196 +f 1601//5197 1473//5198 1355//5199 +f 386//5200 1649//5201 2863//5202 +f 2748//5203 1500//5204 3052//5205 +f 5000//5206 4997//5207 5001//5207 +f 3375//5208 1993//5209 4770//5210 +f 4485//5211 4409//5212 4888//5212 +f 5088//5213 5002//5213 5000//5213 +f 2485//5214 115//5215 1687//5216 +f 5004//5217 5001//5217 5091//5217 +f 4598//5218 1361//5218 389//5218 +f 4115//5219 298//5220 3457//5221 +f 3469//5222 4607//5223 2833//5224 +f 5004//5225 5091//5226 5092//5227 +f 1851//5228 101//5229 1385//5229 +f 1222//5230 3410//5231 1503//5232 +f 2744//5233 774//5233 437//5233 +f 1560//5234 1031//5235 231//5236 +f 4226//5237 4428//5237 3282//5238 +f 587//5239 793//5239 2560//5239 +f 5008//5240 5096//5241 4905//5240 +f 2227//5242 4480//5243 3988//5243 +f 4226//5244 5469//5245 1027//5246 +f 1600//5247 886//5248 3033//5249 +f 718//5250 5604//5251 3708//5252 +f 944//5253 2277//5254 4062//5255 +f 4335//5256 3165//5257 5662//5258 +f 5008//5259 5007//5260 5006//5261 +f 335//5262 2957//5262 2958//5263 +f 5094//5264 56//5265 3104//5266 +f 3244//5267 5057//5268 521//5269 +f 1349//5270 1032//5270 3673//5270 +f 4737//5271 4733//5272 5100//5273 +f 5100//5274 4733//5275 4913//5276 +f 5281//5277 3415//5278 4820//5279 +f 4913//5280 4530//5281 5100//5282 +f 2114//5283 2579//5284 291//5285 +f 290//5286 4313//5287 4642//5288 +f 4916//5289 4827//5289 4742//5290 +f 5013//5291 4290//5292 4920//5292 +f 2104//5293 674//5294 4523//5295 +f 1594//5296 3707//5297 1503//5298 +f 7229//5299 1699//5299 1835//5299 +f 5015//5300 4920//5301 4830//5302 +f 353//5303 2685//5304 3026//5305 +f 2268//5306 2723//5307 1310//5308 +f 3420//5309 808//5310 603//5310 +f 1747//5311 1140//5311 1219//5312 +f 2144//5313 5361//5314 1480//5315 +f 3371//5316 4548//5317 1272//5318 +f 3053//5319 97//5320 800//5321 +f 5748//5322 322//5323 2598//5324 +f 2276//5325 34//5326 337//5327 +f 5330//5328 43//5329 4983//5330 +f 4753//5331 5024//5332 4840//5333 +f 871//5334 3736//5334 1661//5334 +f 4840//5335 5024//5335 4925//5336 +f 5024//5337 5108//5338 4926//5339 +f 3884//5340 5025//5341 4842//5342 +f 1818//5343 644//5344 308//5345 +f 2078//5346 410//5347 1725//5348 +f 4925//5349 5024//5349 4926//5349 +f 4660//5350 4329//5351 5109//5350 +f 3877//5352 3201//5353 5110//5354 +f 3412//5355 4436//5356 2644//5357 +f 4745//5358 2936//5359 64//5360 +f 4329//5361 4928//5362 5109//5363 +f 5112//5364 4847//5365 4763//5366 +f 1244//5367 2131//5368 2238//5369 +f 3735//5370 1327//5370 2605//5370 +f 5397//5371 5037//5372 4934//5373 +f 5397//5374 4934//5374 5038//5375 +f 5115//5376 538//5377 1250//5378 +f 2822//5379 3774//5380 1966//5381 +f 5116//5382 5197//5383 4854//5384 +f 5116//5385 4854//5386 4939//5386 +f 5117//5387 5116//5388 4939//5389 +f 5041//5390 4679//5391 5039//5392 +f 3177//5393 1646//5394 2756//5395 +f 3656//5396 3213//5397 5293//5397 +f 4941//5398 5296//5399 4572//5400 +f 4857//5401 4572//5402 5296//5401 +f 1072//5403 1672//5403 5057//5403 +f 4933//5404 2631//5404 2684//5404 +f 272//5405 1958//5406 271//5407 +f 1463//5408 216//5408 2037//5408 +f 3641//5409 4754//5410 590//5411 +f 4513//5412 4744//5413 3687//5414 +f 3521//5415 4011//5416 3080//5417 +f 5123//5418 360//5418 1568//5419 +f 4775//5420 4947//5421 4952//5422 +f 995//5423 994//5424 2490//5425 +f 5406//5426 4868//5427 4952//5428 +f 5052//5429 4358//5430 4708//5431 +f 4426//5432 3394//5433 693//5434 +f 2407//5435 3718//5436 735//5437 +f 1683//5438 4157//5439 1651//5440 +f 601//5441 4370//5442 2930//5443 +f 1207//5444 5435//5445 3365//5446 +f 3521//5447 3080//5448 4957//5449 +f 4210//5450 4605//5450 5134//5450 +f 5134//5451 4605//5452 5059//5453 +f 3436//5454 4148//5454 1498//5455 +f 4873//5456 4877//5457 4711//5458 +f 5129//5459 4609//5460 4717//5461 +f 4609//5462 5135//5463 5136//5464 +f 1695//5465 2098//5466 2033//5467 +f 4670//5468 3700//5469 661//5470 +f 1938//5471 4718//5472 1289//5471 +f 5144//5473 5071//5474 4882//5475 +f 4882//5476 5071//5477 4967//5478 +f 2118//5479 233//5480 763//5479 +f 5113//5481 390//5482 3115//5483 +f 3215//5484 3035//5485 3074//5486 +f 5145//5487 3948//5488 4798//5489 +f 4964//5490 3948//5490 5145//5491 +f 2822//5492 4797//5493 646//5494 +f 4174//5495 2760//5495 717//5495 +f 3904//5496 3093//5497 2500//5496 +f 1717//5498 1838//5498 3578//5499 +f 688//5500 2174//5501 4306//5502 +f 4969//5503 5316//5504 4972//5503 +f 4407//5505 4484//5506 2947//5507 +f 770//5508 4185//5509 4518//5510 +f 4970//5511 4266//5512 5074//5513 +f 2712//5514 4702//5514 69//5515 +f 4211//5516 1072//5517 3784//5518 +f 5146//5519 4805//5520 4970//5521 +f 4805//5522 4420//5523 4970//5524 +f 5316//5525 4989//5525 4972//5525 +f 2073//5526 5090//5527 924//5528 +f 3524//5529 560//5530 3348//5531 +f 4978//5532 4730//5533 5417//5534 +f 4894//5535 4809//5536 4985//5537 +f 241//5538 588//5538 3904//5538 +f 4974//5539 5148//5540 4992//5541 +f 4901//5542 4277//5543 4894//5543 +f 2341//5544 4094//5545 5403//5546 +f 2867//5547 2274//5547 3492//5547 +f 2933//5548 468//5549 2974//5549 +f 4892//5550 3854//5551 2299//5552 +f 3684//5553 3862//5554 643//5555 +f 2492//5556 2493//5557 3850//5558 +f 5229//5559 5003//5560 4992//5561 +f 4634//5562 5153//5563 4994//5564 +f 5150//5565 525//5566 4491//5567 +f 4990//5568 5002//5569 5084//5569 +f 2084//5570 4008//5571 3262//5570 +f 2352//5572 295//5572 5630//5572 +f 1075//5573 4167//5574 1839//5575 +f 1237//5576 30//5577 2831//5578 +f 5091//5579 5001//5579 5326//5579 +f 1630//5580 3486//5581 3111//5582 +f 2878//5583 608//5584 838//5583 +f 2878//5585 838//5586 38//5587 +f 5092//5588 5091//5589 5239//5590 +f 5160//5591 5238//5592 5161//5592 +f 1232//5593 225//5593 1866//5594 +f 5166//5595 5008//5596 5006//5597 +f 5243//5598 5096//5599 5008//5600 +f 2146//5601 343//5602 2103//5603 +f 5167//5604 5254//5604 5168//5605 +f 1821//5606 1063//5607 3303//5608 +f 4911//5609 2232//5610 4929//5609 +f 647//5611 3575//5612 1410//5613 +f 5260//5614 5256//5614 5171//5614 +f 5168//5615 5170//5616 5171//5617 +f 5260//5618 5176//5619 5175//5620 +f 1349//5621 3107//5622 1032//5621 +f 4425//5623 2985//5623 4038//5623 +f 5176//5624 5260//5625 5171//5626 +f 514//5627 3763//5628 5640//5629 +f 5172//5630 5175//5631 5176//5632 +f 155//5633 2636//5634 1379//5635 +f 5140//5636 873//5636 1633//5636 +f 557//5637 800//5638 2716//5639 +f 5172//5640 5176//5640 5177//5640 +f 5178//5641 5172//5642 5177//5643 +f 1150//5644 4257//5645 4633//5644 +f 4908//5646 5572//5647 4734//5648 +f 2140//5649 1260//5649 1134//5649 +f 85//5650 84//5651 958//5650 +f 7350//5652 1810//5653 1076//5654 +f 5176//5655 5179//5655 5177//5656 +f 4313//5657 221//5658 4642//5659 +f 449//5660 2055//5661 305//5662 +f 5100//5663 4908//5664 4737//5665 +f 1033//5666 3230//5667 3677//5668 +f 4820//5669 4637//5670 5182//5671 +f 2292//5672 2446//5673 2914//5673 +f 5101//5674 4285//5675 5013//5676 +f 4827//5677 5103//5678 5016//5679 +f 4743//5680 4827//5681 5016//5682 +f 2420//5683 4783//5684 4505//5685 +f 3096//5686 1912//5687 171//5688 +f 2974//5689 468//5690 2973//5690 +f 851//5691 4968//5692 2920//5693 +f 4171//5694 5190//5695 5186//5696 +f 4650//5697 5288//5697 3487//5698 +f 3201//5699 4306//5700 2360//5701 +f 310//5702 5332//5703 3269//5704 +f 375//5705 2324//5705 4554//5705 +f 3712//5706 1944//5707 3511//5708 +f 5191//5709 5024//5710 4753//5710 +f 7336//5711 2632//5712 4027//5713 +f 1378//5714 410//5715 3134//5716 +f 885//5717 661//5718 3700//5719 +f 2137//5720 4907//5721 4280//5722 +f 5112//5723 5192//5723 4847//5723 +f 5292//5724 4768//5725 4767//5726 +f 4227//5727 5072//5728 4336//5729 +f 101//5730 1851//5731 2411//5731 +f 1278//5732 3934//5732 2020//5732 +f 5037//5733 5397//5734 5194//5733 +f 3189//5735 817//5736 4806//5737 +f 868//5738 114//5739 3572//5739 +f 5039//5740 5197//5741 5192//5741 +f 1971//5742 2900//5742 833//5743 +f 1212//5744 2883//5744 4439//5744 +f 5117//5745 5201//5746 5116//5747 +f 2989//5748 539//5749 4549//5750 +f 3033//5751 2170//5752 4545//5751 +f 4939//5753 4857//5754 5117//5755 +f 3252//5756 106//5756 1295//5756 +f 5125//5757 5117//5758 4857//5759 +f 4747//5760 803//5761 2582//5762 +f 5296//5763 5125//5764 4857//5765 +f 4959//5766 73//5766 2357//5766 +f 5208//5767 4773//5768 5205//5769 +f 4859//5770 4773//5771 5208//5772 +f 2077//5773 5143//5774 3044//5775 +f 3564//5776 3668//5777 3726//5778 +f 4947//5779 5046//5780 5210//5781 +f 4582//5782 4350//5782 4949//5783 +f 4949//5784 4350//5785 4205//5786 +f 5476//5787 3536//5788 2148//5789 +f 4947//5790 5210//5791 4952//5792 +f 5404//5793 4205//5793 4699//5793 +f 7358//5794 3552//5794 4467//5794 +f 1180//5795 3680//5796 2559//5797 +f 4602//5798 80//5799 2361//5800 +f 4208//5801 5130//5802 2601//5802 +f 4778//5803 4774//5803 5051//5804 +f 1497//5805 797//5806 2626//5807 +f 2659//5808 1506//5808 5045//5808 +f 3987//5809 60//5810 516//5811 +f 1255//5812 1509//5813 81//5814 +f 4071//5815 2754//5816 3672//5817 +f 4683//5818 763//5819 434//5820 +f 26//5821 3801//5822 27//5823 +f 4717//5824 5054//5825 5129//5826 +f 4873//5827 5051//5827 5304//5827 +f 824//5828 7373//5828 4139//5828 +f 1488//5829 200//5830 2564//5831 +f 1937//5832 316//5833 2068//5833 +f 4873//5834 5304//5834 4877//5834 +f 4393//5835 5136//5835 4722//5835 +f 5137//5836 4714//5837 4713//5838 +f 5061//5839 4877//5840 5144//5841 +f 3493//5842 1611//5843 2674//5844 +f 233//5845 2118//5846 471//5847 +f 5220//5848 5137//5849 4713//5850 +f 5061//5851 5144//5852 4882//5853 +f 4964//5854 5142//5854 4796//5854 +f 1444//5855 1554//5856 119//5857 +f 825//5858 1613//5858 219//5859 +f 3905//5860 4379//5861 3779//5862 +f 4884//5863 5075//5864 4798//5865 +f 3243//5866 142//5867 1426//5868 +f 4969//5869 5071//5869 5316//5869 +f 2978//5870 1283//5871 833//5872 +f 5149//5873 4989//5874 5316//5873 +f 3921//5875 2413//5876 2689//5877 +f 5097//5878 2122//5878 4761//5878 +f 5146//5879 4985//5880 4805//5881 +f 860//5882 176//5883 1613//5882 +f 4077//5884 1212//5885 2623//5886 +f 2816//5887 1482//5887 1221//5887 +f 5225//5888 5075//5889 4967//5890 +f 4630//5891 5230//5892 4730//5893 +f 5229//5894 4992//5895 5148//5896 +f 4989//5897 5149//5898 4997//5899 +f 4630//5900 5151//5901 5230//5902 +f 5104//5903 3372//5904 4539//5905 +f 1293//5906 5633//5907 5195//5907 +f 4526//5908 2120//5909 2493//5909 +f 4630//5910 4994//5910 5151//5911 +f 2481//5912 44//5912 1693//5912 +f 4997//5913 5149//5914 5318//5915 +f 540//5916 251//5917 4451//5918 +f 5318//5919 5001//5920 4997//5921 +f 4901//5922 5320//5923 4634//5922 +f 277//5924 4121//5924 5211//5924 +f 2023//5925 4001//5926 1692//5927 +f 5084//5928 4984//5929 4990//5928 +f 5153//5930 4634//5931 5232//5932 +f 4621//5933 5184//5933 179//5933 +f 2982//5934 5216//5935 4060//5936 +f 723//5937 4892//5938 2299//5939 +f 3267//5940 3850//5941 3968//5942 +f 1876//5943 1786//5944 2193//5945 +f 5233//5946 5234//5946 5160//5946 +f 4319//5947 1979//5948 4432//5949 +f 5160//5950 5161//5951 5233//5952 +f 5088//5953 5000//5953 5004//5954 +f 1051//5955 4482//5956 4372//5957 +f 5237//5958 5091//5959 5326//5960 +f 157//5961 392//5962 1694//5963 +f 5238//5964 5160//5964 5235//5964 +f 2910//5965 740//5965 1434//5966 +f 3961//5967 3825//5968 1646//5969 +f 1495//5970 2049//5970 4182//5971 +f 3344//5972 1008//5972 2369//5972 +f 5156//5973 4447//5973 4084//5973 +f 1397//5974 569//5974 1152//5975 +f 5161//5976 5164//5977 5233//5978 +f 5004//5979 5092//5979 5241//5979 +f 2331//5980 772//5981 522//5982 +f 5161//5983 5238//5984 5164//5985 +f 668//5986 246//5987 1530//5988 +f 5524//5989 94//5990 5203//5991 +f 4262//5992 4423//5992 4119//5992 +f 5243//5993 5242//5993 5096//5994 +f 3620//5995 4950//5995 2641//5995 +f 376//5996 4117//5997 2675//5998 +f 5243//5999 5008//6000 5166//6001 +f 536//6002 3886//6003 4245//6004 +f 4396//6005 1455//6005 4502//6005 +f 5246//6006 5249//6007 5247//6008 +f 560//6009 5496//6010 7372//6011 +f 3823//6012 1878//6012 2635//6012 +f 5250//6013 5248//6014 5253//6015 +f 5252//6016 5247//6017 5249//6018 +f 5247//6019 5252//6019 5251//6019 +f 5253//6020 5248//6020 5251//6020 +f 5251//6021 5248//6022 5247//6023 +f 5254//6024 5253//6025 5251//6026 +f 5253//6027 5254//6028 5167//6029 +f 3479//6030 2305//6031 128//6030 +f 5167//6032 5168//6032 5256//6032 +f 5256//6033 5260//6034 5468//6035 +f 3970//6036 361//6037 4514//6038 +f 5168//6039 5254//6039 5259//6039 +f 2667//6040 2783//6040 2784//6040 +f 5175//6041 5263//6041 5260//6041 +f 5258//6042 5264//6043 5257//6044 +f 4563//6045 159//6046 2394//6047 +f 5256//6048 5168//6049 5171//6048 +f 5173//6050 5263//6050 5172//6050 +f 3549//6051 3297//6052 2392//6053 +f 141//6054 4853//6055 4385//6055 +f 5261//6056 5173//6056 5266//6057 +f 5263//6058 5175//6058 5172//6058 +f 1129//6059 2085//6059 1260//6060 +f 4253//6061 3902//6062 1125//6063 +f 2480//6064 2853//6064 467//6065 +f 4523//6066 2435//6067 2151//6067 +f 3391//6068 5768//6069 821//6070 +f 3741//6071 3716//6071 2522//6072 +f 5266//6073 5381//6073 5264//6073 +f 5266//6074 5173//6075 5180//6075 +f 1668//6076 1969//6077 2589//6076 +f 5173//6078 5172//6078 5180//6078 +f 4799//6079 4832//6080 2775//6081 +f 5266//6082 5180//6083 5381//6084 +f 5176//6085 5171//6086 5273//6087 +f 5180//6088 5172//6088 5178//6088 +f 2028//6089 1415//6090 3286//6091 +f 3618//6092 2018//6093 1974//6094 +f 3693//6095 3843//6096 3020//6097 +f 666//6098 2791//6099 3315//6099 +f 2529//6100 4297//6101 3161//6101 +f 5176//6102 5273//6102 5179//6103 +f 5276//6104 5177//6105 5179//6105 +f 2117//6106 507//6107 2271//6108 +f 1614//6109 1825//6110 2416//6111 +f 207//6112 4387//6113 5127//6112 +f 4874//6114 309//6115 4325//6116 +f 1264//6117 1457//6117 1427//6117 +f 3136//6118 1449//6119 1957//6120 +f 557//6121 1058//6122 5093//6121 +f 5101//6123 5182//6124 4637//6125 +f 4764//6126 676//6127 725//6127 +f 5103//6128 4827//6129 4916//6130 +f 5095//6131 1320//6132 1890//6131 +f 5015//6133 5017//6134 4920//6135 +f 5016//6136 5284//6137 4441//6138 +f 4532//6139 342//6140 3331//6141 +f 5285//6142 4441//6143 5284//6144 +f 2510//6145 2791//6146 666//6147 +f 311//6148 4178//6149 2252//6150 +f 4749//6151 5186//6151 5017//6151 +f 3276//6152 2178//6153 992//6154 +f 3107//6155 2194//6156 788//6157 +f 1377//6158 3937//6159 3751//6160 +f 3922//6161 4258//6162 2880//6163 +f 2973//6164 468//6164 3328//6165 +f 447//6166 2288//6167 1186//6168 +f 3193//6169 4577//6170 290//6171 +f 4116//6172 3894//6173 1865//6173 +f 7126//6174 5209//6175 4012//6176 +f 3696//6177 2154//6178 3597//6179 +f 2118//6180 763//6181 4683//6182 +f 75//6183 4082//6184 2475//6183 +f 3675//6185 2178//6185 2770//6185 +f 4928//6186 4190//6187 4768//6188 +f 2464//6189 962//6189 1698//6189 +f 3756//6190 3145//6190 3749//6190 +f 3434//6191 37//6192 1341//6193 +f 1985//6194 5267//6194 2657//6194 +f 5290//6195 5192//6196 5197//6197 +f 670//6198 2660//6198 4954//6198 +f 5037//6199 5194//6200 4849//6201 +f 4771//6202 1945//6202 5344//6202 +f 2998//6203 535//6204 875//6205 +f 1794//6206 1451//6207 3079//6208 +f 3906//6209 2621//6210 2346//6211 +f 1953//6212 4123//6212 1264//6213 +f 5294//6214 5041//6214 5039//6214 +f 3356//6215 3083//6216 1924//6215 +f 5042//6217 5578//6218 4941//6219 +f 3970//6220 4652//6221 361//6221 +f 198//6222 2076//6223 1493//6224 +f 2292//6225 1623//6226 3689//6227 +f 2967//6228 5055//6229 1751//6230 +f 5387//6231 1694//6231 4725//6232 +f 4426//6233 3594//6234 3461//6235 +f 4303//6236 2707//6237 2883//6238 +f 4949//6239 5210//6240 5046//6241 +f 774//6242 3969//6242 437//6243 +f 5489//6244 5047//6245 5409//6246 +f 4040//6247 300//6248 5301//6249 +f 798//6250 1390//6250 3075//6250 +f 5054//6251 4868//6252 5406//6253 +f 3939//6254 4865//6254 5302//6254 +f 4128//6255 3341//6256 2617//6257 +f 2673//6258 7270//6259 7341//6260 +f 1653//6261 2783//6262 3802//6262 +f 4714//6263 5410//6264 4708//6264 +f 3456//6265 3492//6266 2275//6267 +f 3201//6268 688//6269 4306//6270 +f 2196//6271 1014//6272 1941//6273 +f 5135//6274 4609//6275 5129//6276 +f 1481//6277 1140//6278 1747//6279 +f 5220//6280 4713//6281 4795//6282 +f 4712//6283 4877//6284 5061//6285 +f 2158//6286 1718//6286 1792//6286 +f 5313//6287 4109//6288 4506//6289 +f 2851//6290 4338//6290 962//6290 +f 1219//6291 5314//6292 1747//6293 +f 671//6294 3726//6295 3668//6296 +f 5071//6297 5144//6298 5316//6299 +f 5221//6300 3026//6300 1838//6300 +f 4798//6301 5075//6302 5145//6301 +f 5315//6303 4506//6304 4978//6305 +f 2999//6306 1341//6307 4707//6308 +f 5142//6309 4626//6309 4803//6309 +f 5317//6310 4970//6311 5074//6312 +f 397//6313 3038//6314 1170//6315 +f 87//6316 987//6317 4274//6318 +f 5317//6319 5146//6320 4970//6321 +f 572//6322 4153//6322 4466//6323 +f 3167//6324 3038//6325 3037//6325 +f 3414//6326 2864//6327 1910//6328 +f 1760//6329 2137//6330 4738//6331 +f 4680//6332 1047//6333 2227//6334 +f 4967//6335 4984//6336 5225//6335 +f 4984//6337 5084//6338 5225//6339 +f 4901//6340 4894//6341 5320//6342 +f 2114//6343 2099//6344 611//6345 +f 1358//6346 179//6346 1677//6346 +f 5790//6347 4158//6348 837//6349 +f 5396//6350 2035//6351 4077//6352 +f 1859//6353 2137//6354 1760//6355 +f 1928//6356 3229//6357 663//6358 +f 5064//6359 4228//6360 490//6359 +f 219//6361 1613//6362 176//6363 +f 1878//6364 2720//6365 1229//6366 +f 88//6367 44//6368 677//6369 +f 5235//6370 5160//6371 5422//6372 +f 5422//6373 5160//6374 5234//6373 +f 3124//6375 512//6376 187//6377 +f 5163//6378 4921//6378 3970//6379 +f 4078//6380 2159//6381 1934//6380 +f 5084//6382 5002//6382 5088//6382 +f 777//6383 2761//6383 1861//6383 +f 4351//6384 555//6385 3775//6386 +f 4987//6387 4905//6387 5231//6387 +f 4988//6388 4009//6389 3098//6390 +f 5430//6391 5238//6392 5235//6393 +f 5091//6394 5237//6394 5239//6395 +f 5331//6396 4440//6397 904//6398 +f 5336//6399 5238//6400 5430//6401 +f 5233//6402 5164//6403 5334//6403 +f 5092//6404 5239//6404 5335//6405 +f 3040//6406 1753//6407 482//6408 +f 5335//6409 5241//6410 5092//6411 +f 3750//6412 394//6412 3390//6412 +f 3564//6413 622//6413 2646//6414 +f 1274//6415 3830//6415 2984//6415 +f 1473//6416 805//6417 2501//6418 +f 829//6419 102//6420 4890//6421 +f 5333//6422 5342//6423 5343//6424 +f 4201//6425 549//6426 2997//6427 +f 2772//6428 454//6428 4016//6428 +f 5333//6429 5343//6429 5340//6430 +f 484//6431 2315//6432 1177//6433 +f 4935//6434 7395//6435 5346//6436 +f 5244//6437 5340//6438 5343//6439 +f 2807//6440 2518//6440 2848//6441 +f 5350//6442 5244//6442 5343//6443 +f 5244//6444 5350//6445 5349//6446 +f 5352//6447 5350//6447 5353//6447 +f 5349//6448 5350//6448 5352//6448 +f 5354//6449 5349//6450 5352//6451 +f 4317//6452 5141//6453 1603//6454 +f 5355//6455 5447//6456 5356//6455 +f 1011//6457 1270//6458 3129//6459 +f 3753//6460 4556//6460 478//6461 +f 5455//6462 5357//6463 5452//6464 +f 5245//6465 5452//6466 5357//6467 +f 5246//6468 5245//6469 5357//6469 +f 5246//6470 5357//6471 5463//6472 +f 5245//6473 5246//6474 5359//6475 +f 381//6476 3669//6477 2293//6478 +f 5247//6479 5359//6480 5246//6481 +f 5359//6482 5247//6483 5248//6484 +f 5250//6485 5359//6486 5248//6487 +f 5246//6488 5463//6489 5249//6488 +f 2861//6490 464//6491 3334//6492 +f 3839//6493 1924//6494 4682//6494 +f 5362//6495 1796//6495 1951//6495 +f 5254//6496 5251//6497 5252//6498 +f 5254//6499 5252//6499 5363//6499 +f 5257//6500 5364//6501 5258//6502 +f 2900//6503 2978//6504 833//6504 +f 3776//6505 2233//6506 99//6507 +f 5264//6508 5258//6508 5472//6508 +f 5261//6509 5266//6509 5472//6509 +f 5261//6510 5263//6511 5173//6512 +f 1705//6513 718//6514 3010//6514 +f 3404//6515 2651//6516 2665//6517 +f 5168//6518 5259//6519 5374//6520 +f 3593//6521 580//6522 5373//6523 +f 5170//6524 5168//6524 5374//6524 +f 5370//6525 5257//6526 5264//6526 +f 1212//6527 3742//6528 4303//6529 +f 165//6530 3996//6530 1875//6530 +f 5171//6531 5170//6532 5377//6533 +f 2872//6534 657//6535 692//6536 +f 342//6537 171//6538 2171//6539 +f 3183//6540 488//6541 4054//6542 +f 2501//6543 4304//6543 3482//6543 +f 5273//6544 5171//6545 5380//6546 +f 3089//6547 2374//6548 1637//6549 +f 87//6550 4647//6551 4406//6551 +f 2055//6552 4278//6553 3896//6554 +f 1807//6555 3352//6556 839//6557 +f 2024//6558 4790//6559 2830//6560 +f 3623//6561 3249//6562 1193//6563 +f 3214//6564 2357//6565 3544//6566 +f 5178//6567 5177//6568 5276//6567 +f 916//6569 860//6570 917//6571 +f 1757//6572 1923//6572 1968//6573 +f 2369//6574 4389//6575 167//6576 +f 4567//6577 1978//6578 5748//6579 +f 5276//6580 5179//6581 5383//6582 +f 5180//6583 5178//6584 5385//6585 +f 4816//6586 5283//6587 4736//6586 +f 135//6588 4022//6589 1942//6590 +f 3927//6591 2476//6592 2451//6593 +f 5178//6594 5276//6595 5384//6596 +f 5385//6597 5178//6597 5384//6597 +f 3129//6598 2308//6599 2263//6600 +f 2881//6601 4421//6602 1380//6603 +f 1201//6604 3036//6605 1518//6606 +f 5479//6607 5182//6608 5101//6609 +f 4916//6610 4736//6611 5283//6612 +f 5523//6613 3862//6614 4807//6614 +f 4890//6615 1380//6615 4330//6615 +f 5389//6616 4920//6617 5017//6618 +f 2566//6619 5196//6619 5032//6619 +f 291//6620 2426//6620 645//6620 +f 1093//6621 1649//6621 4641//6622 +f 1649//6623 386//6624 4641//6625 +f 1144//6626 4488//6626 1151//6627 +f 1813//6628 3795//6629 5219//6630 +f 2038//6631 3459//6632 4500//6633 +f 5288//6634 4650//6635 4445//6635 +f 4837//6636 5288//6637 4445//6637 +f 5289//6638 4753//6638 3487//6638 +f 5391//6639 5024//6640 5191//6641 +f 2196//6642 2283//6642 2291//6642 +f 5108//6643 5024//6643 5391//6643 +f 4665//6644 1703//6644 1711//6644 +f 4763//6645 4926//6645 5112//6645 +f 4782//6646 3219//6646 4418//6646 +f 5192//6647 5290//6648 4847//6649 +f 5049//6650 4080//6651 4355//6652 +f 5196//6653 4856//6654 3612//6655 +f 5112//6656 5294//6657 5192//6658 +f 4769//6659 4936//6659 5038//6659 +f 4936//6660 5041//6660 5038//6661 +f 5194//6662 5483//6663 4849//6664 +f 2456//6665 2609//6666 1721//6667 +f 5202//6668 1553//6669 5114//6669 +f 5201//6670 5398//6671 5116//6671 +f 6124//6672 846//6673 2948//6674 +f 5117//6675 5125//6676 5201//6677 +f 4119//6678 4423//6679 1499//6678 +f 4360//6680 4215//6681 620//6680 +f 5297//6682 5296//6683 4941//6684 +f 145//6685 5845//6685 4435//6685 +f 1171//6686 4489//6687 4726//6688 +f 5047//6689 5489//6690 5402//6691 +f 5362//6692 1451//6692 2429//6692 +f 2062//6693 4461//6694 3057//6695 +f 4880//6696 463//6697 3029//6698 +f 464//6699 1217//6700 3334//6701 +f 5404//6702 4949//6703 4205//6703 +f 4859//6704 5299//6705 4774//6706 +f 3459//6707 5388//6708 4150//6709 +f 5210//6710 5488//6710 4952//6711 +f 1986//6712 3580//6712 1286//6712 +f 1558//6713 1001//6714 5648//6713 +f 5051//6715 4774//6715 5408//6716 +f 5311//6717 4875//6718 2243//6719 +f 5409//6720 5047//6721 4210//6722 +f 5291//6723 1657//6723 5943//6723 +f 2172//6724 3754//6725 2759//6726 +f 1192//6727 1191//6728 3786//6729 +f 1759//6730 3796//6730 3345//6731 +f 2446//6732 2292//6733 3689//6734 +f 1771//6735 3381//6735 3558//6735 +f 4422//6736 2636//6737 155//6738 +f 5304//6739 5051//6740 5408//6741 +f 3448//6742 637//6743 5545//6744 +f 4208//6745 1741//6746 903//6747 +f 90//6748 4354//6749 2560//6750 +f 1397//6751 3604//6752 2397//6753 +f 4108//6754 4603//6755 5306//6756 +f 5134//6757 5409//6758 4210//6759 +f 2890//6760 384//6760 1229//6761 +f 349//6762 394//6763 505//6762 +f 4520//6764 142//6765 2653//6766 +f 3673//6767 1032//6768 3626//6769 +f 3922//6770 2880//6771 4958//6772 +f 4393//6773 4609//6774 5136//6775 +f 1827//6776 4716//6777 334//6778 +f 2151//6779 1954//6780 4669//6781 +f 5413//6782 4795//6782 4722//6782 +f 68//6783 4622//6784 69//6785 +f 3030//6786 1223//6787 302//6788 +f 912//6789 2963//6789 3074//6790 +f 5313//6791 5060//6792 4109//6792 +f 77//6793 948//6794 2804//6795 +f 1956//6796 3659//6797 3639//6798 +f 5772//6799 2231//6800 5338//6800 +f 5415//6801 5074//6801 4611//6801 +f 2577//6802 4959//6802 4695//6803 +f 610//6804 5604//6805 2382//6806 +f 898//6807 4683//6808 434//6809 +f 7291//6810 7252//6811 1115//6810 +f 4152//6812 4594//6813 725//6814 +f 4273//6815 4626//6815 5720//6815 +f 4273//6816 5720//6817 4973//6818 +f 4047//6819 2244//6820 3607//6821 +f 5184//6822 3470//6823 140//6822 +f 2785//6824 1490//6825 1448//6826 +f 591//6827 4481//6828 2432//6829 +f 5417//6830 4730//6830 5230//6830 +f 2003//6831 4050//6832 2893//6831 +f 644//6833 1818//6834 4030//6834 +f 568//6835 2643//6836 1514//6837 +f 846//6838 4801//6839 795//6840 +f 2008//6841 5094//6842 1995//6843 +f 4987//6844 5231//6845 5073//6844 +f 5058//6846 3245//6846 4720//6846 +f 4994//6847 5321//6848 5151//6848 +f 5320//6849 5232//6850 4634//6851 +f 5509//6852 5153//6853 5232//6854 +f 2587//6855 3032//6856 3405//6857 +f 697//6858 1285//6858 3431//6858 +f 5588//6859 5321//6860 5422//6861 +f 5511//6862 5425//6863 5235//6864 +f 5321//6865 5235//6865 5422//6866 +f 2173//6867 2523//6868 1716//6868 +f 2610//6869 3894//6869 2380//6870 +f 2699//6871 5565//6872 132//6873 +f 1938//6874 1289//6875 160//6876 +f 1321//6877 4054//6878 4218//6879 +f 997//6880 5732//6881 1748//6882 +f 1380//6883 4421//6884 4895//6885 +f 1740//6886 2927//6886 2506//6886 +f 5425//6887 5426//6888 5333//6889 +f 5235//6890 5425//6891 5430//6892 +f 1495//6893 3418//6894 2049//6895 +f 3035//6896 1925//6897 3074//6898 +f 365//6899 3625//6900 3146//6901 +f 4963//6902 2182//6903 4833//6904 +f 4515//6905 5390//6906 1340//6907 +f 4027//6908 2442//6909 5678//6910 +f 518//6911 705//6912 1119//6913 +f 3101//6914 3116//6914 3760//6914 +f 438//6915 3263//6916 4371//6917 +f 5340//6918 5430//6918 5333//6918 +f 938//6919 1196//6920 3812//6921 +f 180//6922 2086//6923 5211//6924 +f 4184//6925 1278//6925 2020//6925 +f 1943//6926 4479//6926 2444//6926 +f 3781//6927 2964//6928 5480//6929 +f 600//6930 2533//6931 5519//6932 +f 1466//6933 3170//6933 4838//6934 +f 5238//6935 5336//6936 5164//6937 +f 1949//6938 901//6938 1419//6938 +f 4930//6939 3610//6940 3070//6940 +f 3468//6941 1940//6942 366//6941 +f 2062//6943 3465//6943 4461//6943 +f 3427//6944 53//6944 2015//6944 +f 3831//6945 4327//6945 2377//6945 +f 5244//6946 5348//6947 5340//6948 +f 5199//6949 7206//6949 4298//6949 +f 1553//6950 5078//6950 5114//6950 +f 5348//6951 5244//6952 5349//6951 +f 801//6953 800//6954 97//6955 +f 68//6956 241//6957 4627//6958 +f 5343//6959 5436//6960 5350//6961 +f 3754//6962 5943//6962 2759//6962 +f 1057//6963 698//6963 2789//6963 +f 5352//6964 5353//6965 5437//6966 +f 1579//6967 659//6968 595//6969 +f 2469//6970 3819//6971 1851//6972 +f 5438//6973 5354//6974 5439//6973 +f 4728//6975 1139//6976 4517//6977 +f 5354//6978 5352//6979 5437//6980 +f 5354//6981 5437//6981 5439//6982 +f 5440//6983 5439//6983 5437//6984 +f 5441//6985 5439//6985 5440//6986 +f 2313//6987 1875//6987 280//6987 +f 1993//6988 1992//6988 709//6988 +f 7252//6989 3691//6990 3152//6989 +f 1844//6991 1301//6991 3356//6991 +f 2660//6992 4395//6993 3392//6992 +f 5446//6994 5445//6994 5444//6994 +f 5444//6995 5442//6996 5443//6997 +f 5444//6998 5443//6999 5447//7000 +f 5443//7001 5448//7002 5447//7003 +f 601//7004 981//7005 4029//7006 +f 5447//7007 5448//7008 5449//7009 +f 5450//7010 5447//7011 5449//7012 +f 5447//7013 5450//7013 5356//7013 +f 2514//7014 3989//7014 3108//7014 +f 5355//7015 5356//7016 5452//7015 +f 5453//7017 5355//7018 5452//7019 +f 551//7020 5596//7021 2349//7021 +f 5451//7022 5543//7023 5457//7024 +f 5356//7025 5450//7026 5455//7027 +f 811//7028 2598//7029 86//7030 +f 5356//7031 5455//7032 5452//7033 +f 737//7034 456//7035 545//7036 +f 4500//7037 1471//7038 355//7039 +f 1771//7040 5456//7041 4344//7042 +f 2783//7043 4567//7044 3802//7043 +f 2298//7045 4467//7046 3552//7045 +f 1948//7047 3551//7048 5215//7049 +f 5452//7050 5245//7051 5359//7052 +f 1556//7053 4815//7053 3512//7054 +f 4139//7055 823//7055 285//7055 +f 2241//7056 1661//7056 46//7057 +f 3654//7058 3009//7058 738//7058 +f 2912//7059 1087//7059 1949//7059 +f 5459//7060 5461//7061 5460//7062 +f 612//7063 307//7064 2933//7065 +f 3619//7066 5328//7067 2576//7068 +f 3359//7069 2332//7070 7398//7071 +f 5463//7072 5357//7072 5360//7072 +f 5464//7073 5462//7073 5461//7073 +f 702//7074 3277//7075 1031//7076 +f 5467//7077 5462//7077 5464//7078 +f 3006//7079 2317//7080 546//7081 +f 3011//7082 166//7083 2950//7084 +f 5211//7085 2086//7086 2087//7087 +f 5465//7088 5364//7089 5365//7090 +f 3582//7091 1849//7092 1324//7092 +f 5462//7093 5467//7094 5471//7095 +f 98//7096 621//7097 551//7098 +f 4982//7099 1594//7100 1503//7101 +f 3360//7102 3635//7103 3085//7104 +f 1493//7105 2972//7106 2694//7107 +f 966//7108 194//7109 1034//7108 +f 5467//7110 5366//7111 5471//7112 +f 1417//7113 830//7114 2390//7114 +f 5167//7115 5256//7116 5468//7117 +f 5263//7118 5468//7119 5260//7119 +f 1602//7120 4789//7121 1850//7122 +f 2498//7123 4377//7124 2771//7124 +f 3597//7125 2154//7126 2475//7127 +f 5257//7128 5365//7128 5364//7129 +f 910//7130 5454//7131 2451//7132 +f 2387//7133 1977//7133 3337//7133 +f 6327//7134 2497//7134 3526//7134 +f 2344//7135 4415//7136 4912//7137 +f 5158//7138 5157//7139 5786//7140 +f 5366//7141 5365//7141 5473//7141 +f 1385//7142 101//7143 3065//7144 +f 5472//7145 5266//7146 5264//7147 +f 5370//7148 5365//7149 5257//7150 +f 5259//7151 5254//7152 5363//7153 +f 5473//7154 5365//7155 5370//7156 +f 5474//7157 5366//7157 5473//7157 +f 5264//7158 5378//7159 5370//7159 +f 5377//7160 5170//7160 5374//7160 +f 5394//7161 3681//7162 5424//7163 +f 5473//7164 5370//7164 5475//7164 +f 5264//7165 5381//7166 5378//7167 +f 5475//7168 5370//7168 5378//7168 +f 3854//7169 1698//7170 4448//7171 +f 5380//7172 5171//7173 5377//7172 +f 5381//7174 5379//7175 5378//7176 +f 3376//7177 2290//7178 5275//7179 +f 4398//7180 3601//7181 3422//7182 +f 964//7183 241//7183 2500//7184 +f 4230//7185 914//7186 4631//7187 +f 3874//7188 3875//7189 1968//7190 +f 1470//7191 5522//7192 851//7193 +f 560//7194 7372//7194 5405//7194 +f 4785//7195 4186//7196 3783//7196 +f 4612//7197 3602//7197 4497//7197 +f 1558//7198 5648//7199 2200//7200 +f 5565//7201 523//7202 1682//7203 +f 5180//7204 5645//7205 5381//7206 +f 836//7207 3328//7208 626//7209 +f 367//7210 4853//7211 5035//7212 +f 2396//7213 2864//7214 2573//7215 +f 5179//7216 5477//7217 5383//7218 +f 1476//7219 5737//7220 1644//7221 +f 4450//7222 3189//7223 4806//7224 +f 2053//7225 449//7226 3916//7227 +f 5562//7228 362//7229 3072//7230 +f 4820//7231 5478//7231 5281//7231 +f 5383//7232 5647//7233 5276//7234 +f 901//7235 3184//7236 1419//7237 +f 2119//7238 4084//7239 162//7240 +f 896//7241 1090//7241 3148//7242 +f 2787//7243 210//7244 3145//7245 +f 125//7246 3999//7247 2177//7248 +f 1984//7249 2598//7250 322//7249 +f 990//7251 1248//7252 2698//7252 +f 2125//7253 3379//7254 482//7254 +f 5285//7255 5185//7256 4441//7257 +f 492//7258 4073//7259 4948//7260 +f 3487//7261 5288//7261 5289//7261 +f 1392//7262 2740//7263 2352//7264 +f 5289//7265 5191//7266 4753//7267 +f 2327//7268 4249//7269 1605//7270 +f 5190//7271 3478//7271 5023//7271 +f 1022//7272 2432//7272 3426//7272 +f 889//7273 1079//7274 407//7275 +f 2528//7276 5534//7277 681//7278 +f 2823//7279 2533//7279 1195//7279 +f 1233//7280 121//7281 3721//7282 +f 4624//7283 503//7283 4076//7283 +f 4118//7284 4658//7285 1030//7286 +f 922//7287 1062//7287 1147//7288 +f 4561//7289 4847//7290 5292//7291 +f 4767//7292 4561//7292 5292//7292 +f 5482//7293 5290//7294 5197//7293 +f 955//7295 3595//7296 1858//7297 +f 5398//7298 5482//7298 5197//7299 +f 5116//7300 5398//7301 5197//7302 +f 5039//7303 5192//7304 5294//7305 +f 3077//7306 912//7307 3074//7307 +f 4580//7308 1919//7308 4196//7308 +f 3185//7309 4075//7310 3908//7311 +f 3230//7312 1033//7313 1338//7314 +f 867//7315 4360//7316 620//7317 +f 1846//7318 3656//7319 5293//7319 +f 5488//7320 5210//7321 4949//7322 +f 1726//7323 2116//7324 1994//7325 +f 3879//7326 7270//7326 2673//7326 +f 5488//7327 5491//7328 4952//7329 +f 3733//7330 591//7331 3335//7332 +f 5493//7333 1189//7334 2751//7334 +f 3671//7335 5540//7336 3096//7337 +f 5406//7338 5495//7339 5054//7338 +f 4603//7340 3939//7341 5306//7342 +f 5302//7343 5306//7343 3939//7343 +f 4708//7344 5410//7344 5407//7344 +f 4117//7345 425//7345 3713//7345 +f 1826//7346 2987//7347 939//7348 +f 5054//7349 5498//7350 5129//7351 +f 2842//7352 3895//7353 4924//7352 +f 4427//7354 1221//7355 2656//7355 +f 5408//7356 5410//7357 5304//7358 +f 923//7359 1262//7359 2138//7359 +f 222//7360 4922//7360 2983//7360 +f 4722//7361 5136//7362 5309//7363 +f 977//7364 3529//7365 183//7366 +f 5410//7367 4714//7368 5137//7369 +f 129//7370 4686//7371 1892//7372 +f 3105//7373 3814//7374 540//7375 +f 6707//7376 3911//7376 228//7376 +f 4506//7377 5315//7377 5313//7378 +f 5316//7379 5144//7379 5500//7379 +f 5142//7380 4964//7381 5503//7382 +f 5095//7383 218//7384 2567//7385 +f 4964//7386 5145//7387 5504//7386 +f 1674//7388 1091//7389 4278//7390 +f 5059//7391 5073//7391 5134//7392 +f 5317//7393 5074//7394 5415//7395 +f 4741//7396 5070//7397 5113//7398 +f 2764//7399 2674//7399 3791//7399 +f 2583//7400 1944//7400 2419//7401 +f 2708//7402 2634//7403 4472//7404 +f 4894//7405 4985//7406 5146//7407 +f 1632//7408 2626//7408 797//7408 +f 1583//7409 3579//7410 3958//7410 +f 732//7411 4678//7412 1141//7413 +f 2935//7414 304//7414 462//7415 +f 2295//7416 273//7416 1342//7417 +f 5321//7418 5588//7419 5151//7420 +f 5230//7421 5151//7421 5588//7421 +f 989//7422 112//7423 1520//7424 +f 5321//7425 4994//7425 5511//7425 +f 1039//7426 277//7427 5211//7428 +f 2364//7429 317//7429 1906//7429 +f 5423//7430 5422//7430 5234//7430 +f 1078//7431 881//7432 4032//7433 +f 1399//7434 783//7435 2661//7436 +f 5563//7437 5206//7438 5338//7439 +f 5509//7440 5511//7441 5153//7442 +f 4994//7443 5153//7444 5511//7445 +f 489//7446 2385//7447 3348//7448 +f 565//7449 336//7449 658//7449 +f 5512//7450 695//7450 3260//7450 +f 5321//7451 5511//7451 5235//7451 +f 1263//7452 5068//7453 5369//7453 +f 252//7454 5524//7455 4253//7456 +f 5511//7457 5509//7457 5425//7457 +f 267//7458 3891//7458 2072//7458 +f 5425//7459 5509//7459 5426//7459 +f 3806//7460 2955//7460 92//7460 +f 3167//7461 5640//7462 4063//7461 +f 5517//7463 5084//7464 5088//7465 +f 387//7466 1746//7467 4019//7468 +f 5430//7469 5425//7470 5333//7471 +f 3583//7472 3110//7473 1686//7474 +f 5333//7475 5426//7476 5432//7477 +f 1796//7478 1914//7479 1829//7480 +f 460//7481 3671//7481 171//7481 +f 3798//7482 3273//7483 4295//7484 +f 3757//7485 2036//7486 2095//7487 +f 5004//7488 5600//7488 5088//7489 +f 5852//7490 5347//7490 3494//7490 +f 5333//7491 5432//7491 5342//7491 +f 5786//7492 3923//7493 5158//7494 +f 5430//7495 5340//7495 5336//7496 +f 5600//7497 5004//7497 5241//7498 +f 4855//7499 4335//7500 4612//7501 +f 5341//7502 5334//7503 5164//7504 +f 2082//7505 58//7506 2719//7507 +f 2825//7508 1465//7509 3741//7509 +f 3573//7510 3250//7511 5454//7512 +f 5286//7513 5522//7514 2256//7515 +f 2551//7516 3809//7517 4477//7518 +f 2311//7519 3552//7520 7291//7521 +f 5241//7522 5335//7523 5433//7524 +f 5526//7525 5164//7525 5336//7525 +f 5526//7526 5341//7527 5164//7528 +f 4247//7529 2484//7529 4301//7529 +f 4875//7530 868//7531 3572//7530 +f 5546//7532 1592//7533 7184//7532 +f 5436//7534 5343//7535 5342//7536 +f 5340//7537 5348//7538 5606//7539 +f 3042//7540 609//7540 1758//7541 +f 395//7542 4168//7543 4524//7544 +f 3446//7545 2614//7546 576//7546 +f 1510//7547 2900//7548 2795//7549 +f 116//7550 3761//7551 4438//7552 +f 5353//7553 5350//7554 5674//7555 +f 67//7556 2763//7556 2344//7556 +f 941//7557 2737//7558 217//7557 +f 2335//7559 3848//7560 2844//7560 +f 2540//7561 2126//7562 4454//7563 +f 5438//7564 5439//7565 5617//7566 +f 4996//7567 3007//7568 2017//7569 +f 5529//7570 5439//7571 5441//7572 +f 2740//7573 3047//7573 61//7573 +f 5532//7574 5529//7575 5441//7576 +f 4188//7577 1054//7578 2094//7579 +f 5440//7580 5533//7581 5441//7580 +f 5530//7582 5531//7583 5442//7584 +f 3632//7585 36//7586 4320//7587 +f 5441//7588 5535//7588 5532//7588 +f 830//7589 1362//7589 3447//7590 +f 4521//7591 2148//7592 3120//7593 +f 5441//7594 5533//7595 5535//7594 +f 5620//7596 5532//7596 5535//7596 +f 5442//7597 5444//7598 5445//7599 +f 2364//7600 3988//7601 2628//7602 +f 1151//7603 3723//7604 1298//7605 +f 2887//7606 332//7607 4074//7608 +f 5442//7609 5537//7610 5443//7611 +f 5538//7612 5535//7613 5536//7614 +f 4228//7615 1706//7615 3714//7615 +f 1828//7616 2300//7617 4620//7616 +f 5444//7618 5447//7619 5446//7620 +f 1902//7621 4295//7622 3273//7623 +f 2475//7624 1084//7625 1593//7626 +f 4493//7627 315//7628 978//7629 +f 5539//7630 5538//7631 5541//7632 +f 2996//7633 1277//7633 844//7633 +f 5443//7634 5537//7634 5448//7634 +f 5446//7635 5447//7636 5355//7637 +f 4933//7638 2204//7639 4211//7640 +f 5541//7641 5538//7641 5451//7642 +f 5622//7643 5355//7643 5453//7644 +f 2317//7645 2512//7646 546//7647 +f 5451//7648 5538//7648 5543//7649 +f 3974//7650 3738//7650 3740//7650 +f 3055//7651 3412//7652 1424//7653 +f 4125//7654 1181//7655 400//7654 +f 2294//7656 5079//7656 1701//7657 +f 5450//7658 5449//7659 5625//7660 +f 5459//7661 5543//7662 5548//7663 +f 1181//7664 2821//7664 3696//7664 +f 5457//7665 5543//7665 5459//7666 +f 5544//7667 5452//7668 5359//7669 +f 3194//7670 4284//7671 2745//7672 +f 5457//7673 5459//7674 5460//7675 +f 4617//7676 3406//7677 4068//7678 +f 5357//7679 5455//7680 5551//7681 +f 4437//7682 4123//7682 773//7682 +f 5457//7683 5460//7684 5552//7685 +f 5162//7686 80//7686 4602//7687 +f 138//7688 1517//7689 2997//7688 +f 2621//7690 3972//7691 2346//7692 +f 5359//7693 5250//7694 5554//7695 +f 5460//7696 5555//7696 5552//7696 +f 4140//7697 2382//7698 1705//7697 +f 5555//7699 5460//7699 5461//7699 +f 624//7700 2599//7700 224//7701 +f 3444//7702 3220//7702 4221//7702 +f 2807//7703 5300//7704 2518//7705 +f 5558//7706 5555//7707 5461//7708 +f 5558//7709 5461//7709 5557//7709 +f 5556//7710 5250//7711 5253//7712 +f 5464//7713 5697//7714 5465//7715 +f 822//7716 4688//7716 3317//7716 +f 5557//7717 5461//7718 5462//7719 +f 5466//7720 5556//7720 5253//7721 +f 5466//7722 5167//7722 5468//7723 +f 586//7724 4794//7725 4719//7726 +f 1399//7727 2661//7728 3429//7729 +f 5466//7730 5253//7730 5167//7730 +f 2297//7731 5657//7732 3805//7733 +f 1857//7734 381//7734 2293//7734 +f 2463//7735 1211//7736 561//7737 +f 5697//7738 5364//7739 5465//7740 +f 821//7741 2098//7741 4832//7741 +f 4986//7742 2668//7743 335//7742 +f 1557//7744 4067//7745 608//7745 +f 5467//7746 5465//7747 5365//7748 +f 5467//7749 5464//7749 5465//7749 +f 3556//7750 1280//7751 4376//7750 +f 5562//7752 2001//7752 3853//7752 +f 4026//7753 4141//7753 2835//7754 +f 5365//7755 5366//7756 5467//7757 +f 5364//7758 5747//7759 5258//7760 +f 5557//7761 5462//7762 5471//7763 +f 5747//7764 5472//7765 5258//7766 +f 432//7767 951//7768 3236//7769 +f 5261//7770 5564//7771 5263//7770 +f 5564//7772 5261//7772 5472//7772 +f 2396//7773 2573//7773 4419//7773 +f 5366//7774 5474//7775 5471//7776 +f 5471//7777 5474//7777 5568//7777 +f 259//7778 1188//7779 3312//7780 +f 5374//7781 5259//7782 5569//7781 +f 4644//7783 3440//7783 1848//7783 +f 2603//7784 3455//7784 1113//7784 +f 5475//7785 5378//7785 5571//7786 +f 4734//7787 5572//7787 4816//7787 +f 264//7788 265//7789 1469//7788 +f 5380//7790 5377//7791 5573//7792 +f 5571//7793 5378//7794 5379//7795 +f 5280//7796 4908//7796 5282//7796 +f 5282//7797 4908//7797 5100//7798 +f 5379//7799 5381//7799 5645//7799 +f 1001//7800 1558//7801 806//7802 +f 4206//7803 1262//7804 5412//7804 +f 5180//7805 5385//7806 5645//7806 +f 5282//7807 5281//7808 5386//7809 +f 1317//7810 981//7811 2697//7812 +f 387//7813 3872//7814 1746//7815 +f 1105//7816 4066//7816 5098//7816 +f 494//7817 2557//7817 3138//7818 +f 4586//7819 3724//7820 2223//7820 +f 5479//7821 5478//7822 4820//7823 +f 3284//7824 3466//7824 3133//7825 +f 232//7826 2455//7827 2202//7828 +f 5479//7829 4820//7830 5182//7831 +f 4081//7832 1868//7832 3719//7832 +f 816//7833 4036//7833 1211//7833 +f 5479//7834 5101//7835 5646//7836 +f 908//7837 3730//7838 362//7838 +f 1994//7839 2116//7840 1388//7841 +f 1313//7842 3214//7843 3544//7844 +f 5185//7845 5577//7845 4837//7845 +f 5576//7846 5186//7847 5190//7848 +f 1264//7849 4437//7850 1457//7849 +f 5107//7851 3402//7852 1393//7853 +f 2650//7854 2651//7855 3451//7856 +f 1569//7857 4049//7858 1492//7859 +f 5711//7860 5112//7861 4926//7862 +f 4371//7863 3012//7864 1744//7863 +f 5397//7865 5481//7866 5194//7867 +f 5292//7868 4847//7869 5290//7869 +f 2805//7870 1122//7871 5382//7872 +f 1557//7873 2840//7874 3722//7875 +f 4849//7876 5483//7877 5042//7878 +f 3805//7879 3683//7880 2504//7881 +f 2546//7882 1990//7883 3438//7882 +f 5487//7884 5201//7885 5125//7886 +f 2155//7887 1104//7888 5782//7889 +f 5578//7890 5297//7891 4941//7892 +f 3621//7893 7254//7894 2892//7895 +f 2264//7896 2360//7897 1162//7898 +f 5402//7899 5489//7900 5713//7901 +f 2504//7902 3683//7903 173//7904 +f 5406//7905 4952//7906 5491//7907 +f 4699//7908 4358//7909 5490//7910 +f 5490//7911 4358//7912 5052//7913 +f 1124//7914 2395//7914 634//7914 +f 4774//7915 5494//7916 5408//7917 +f 4688//7918 4687//7919 1521//7920 +f 4708//7921 5407//7922 5052//7923 +f 3693//7924 20//7925 2186//7924 +f 4386//7926 5809//7927 4217//7928 +f 2224//7929 723//7930 2299//7931 +f 5407//7932 5410//7933 5408//7932 +f 2236//7934 5480//7935 2964//7936 +f 726//7937 4087//7938 581//7938 +f 5134//7939 5582//7940 5409//7941 +f 1544//7942 2394//7943 3960//7944 +f 5498//7945 5135//7946 5129//7947 +f 4611//7948 4108//7948 5306//7948 +f 2164//7949 3402//7950 900//7951 +f 5304//7952 5410//7953 5310//7954 +f 4509//7955 2366//7956 3984//7957 +f 4722//7958 5309//7959 5413//7960 +f 5413//7961 5583//7961 4795//7962 +f 4877//7963 5304//7963 5310//7964 +f 1274//7965 2984//7966 4425//7965 +f 5144//7967 4877//7967 5414//7967 +f 5149//7968 5316//7968 5500//7969 +f 4752//7970 1812//7971 809//7972 +f 4076//7973 503//7974 1277//7975 +f 5149//7976 5500//7977 5318//7978 +f 5146//7979 5586//7980 5508//7981 +f 4057//7982 575//7983 3691//7984 +f 52//7985 3821//7986 3603//7987 +f 4894//7988 5146//7989 5508//7990 +f 2417//7991 2135//7991 3610//7992 +f 1965//7993 1526//7993 4599//7993 +f 4692//7994 4023//7994 3707//7994 +f 5001//7995 5318//7996 5587//7997 +f 5589//7998 5225//7999 5592//8000 +f 630//8001 896//8002 4897//8003 +f 5592//8004 5225//8005 5084//8004 +f 2436//8006 3918//8007 5590//8008 +f 459//8009 3267//8010 3278//8011 +f 5423//8012 5588//8013 5422//8012 +f 1843//8014 1473//8015 1601//8016 +f 5587//8017 5326//8018 5001//8019 +f 4027//8020 5678//8021 47//8022 +f 304//8023 2935//8024 2934//8025 +f 5661//8026 5509//8027 5232//8028 +f 3236//8029 951//8030 2943//8031 +f 3925//8032 3104//8033 4113//8034 +f 5003//8035 5229//8036 5593//8036 +f 785//8037 2843//8037 2153//8037 +f 3809//8038 4002//8038 1220//8038 +f 4036//8039 816//8040 1304//8041 +f 5596//8042 4349//8043 890//8044 +f 702//8045 563//8046 564//8047 +f 182//8048 4675//8048 479//8049 +f 5594//8050 5234//8050 5233//8051 +f 1130//8052 4165//8053 3764//8054 +f 4552//8055 3844//8055 3401//8055 +f 1136//8056 2838//8057 2060//8058 +f 3392//8059 377//8060 1274//8061 +f 85//8062 5598//8062 84//8063 +f 4470//8064 993//8065 2764//8066 +f 5429//8067 5006//8068 5003//8069 +f 3961//8070 1870//8071 1545//8072 +f 4905//8073 5096//8073 5521//8073 +f 5335//8074 5239//8075 5520//8076 +f 3081//8077 3224//8078 1088//8079 +f 1114//8080 1025//8080 175//8080 +f 3260//8081 5403//8082 1771//8083 +f 3081//8084 4629//8084 2488//8084 +f 3829//8085 4195//8085 4267//8085 +f 5601//8086 5241//8086 5433//8086 +f 743//8087 742//8087 579//8087 +f 5166//8088 5006//8089 5429//8090 +f 2157//8091 1792//8092 3347//8093 +f 5336//8094 5340//8095 5606//8096 +f 908//8097 4726//8098 3963//8099 +f 2604//8100 1826//8101 939//8102 +f 3437//8103 114//8104 1755//8105 +f 3181//8106 1069//8107 646//8108 +f 217//8109 1260//8110 2085//8111 +f 5342//8112 5605//8112 5436//8112 +f 5243//8113 5166//8114 5607//8115 +f 2068//8116 3987//8117 2279//8118 +f 5240//8119 4642//8120 3235//8121 +f 1975//8122 2882//8123 1974//8124 +f 5609//8125 5348//8126 5354//8127 +f 5348//8128 5349//8129 5354//8130 +f 3662//8131 1259//8132 2953//8131 +f 3076//8133 1338//8133 4378//8134 +f 5610//8135 5354//8135 5438//8135 +f 3598//8136 83//8137 3115//8138 +f 5353//8139 5616//8140 5437//8141 +f 1407//8142 2300//8142 854//8143 +f 3786//8144 1191//8144 3841//8145 +f 2047//8146 2627//8147 2708//8148 +f 4459//8149 4078//8150 1231//8151 +f 735//8152 3718//8153 1800//8154 +f 5434//8155 4088//8156 2696//8157 +f 835//8158 324//8158 1214//8158 +f 3533//8159 3126//8160 4451//8161 +f 5014//8162 593//8163 5322//8163 +f 782//8164 3838//8164 3694//8165 +f 4440//8166 647//8167 4551//8168 +f 3331//8169 272//8169 3283//8169 +f 2276//8170 673//8170 554//8170 +f 5611//8171 5615//8172 5614//8173 +f 3910//8174 3012//8175 4257//8174 +f 1092//8176 1484//8177 3686//8178 +f 5615//8179 5531//8180 5618//8181 +f 5617//8182 5439//8183 5529//8184 +f 5267//8185 1061//8186 4127//8185 +f 5530//8187 5618//8188 5531//8188 +f 5437//8189 5616//8189 5440//8190 +f 2010//8191 4156//8192 1376//8193 +f 5053//8194 1628//8195 766//8196 +f 3204//8197 3348//8197 1629//8197 +f 840//8198 5550//8199 1735//8200 +f 5445//8201 5530//8201 5442//8201 +f 3858//8202 220//8202 1111//8202 +f 5531//8203 5688//8203 5442//8203 +f 1016//8204 137//8204 4754//8204 +f 5147//8205 3564//8205 3726//8205 +f 3877//8206 688//8207 3201//8208 +f 700//8209 1422//8210 4852//8211 +f 5442//8212 5688//8213 5537//8214 +f 3874//8215 1968//8215 3296//8215 +f 5535//8216 5533//8216 5536//8216 +f 5535//8217 5538//8218 5539//8219 +f 5539//8220 5620//8220 5535//8220 +f 5536//8221 5533//8222 5621//8221 +f 114//8223 868//8224 869//8225 +f 3381//8226 20//8227 3558//8228 +f 2202//8229 2697//8230 232//8231 +f 5202//8232 4178//8233 1553//8233 +f 2521//8234 4789//8234 3485//8235 +f 5536//8236 5621//8237 5538//8238 +f 1948//8239 2117//8240 675//8241 +f 5622//8242 5446//8243 5355//8243 +f 4271//8244 4899//8245 4701//8246 +f 260//8247 1721//8248 1722//8247 +f 2225//8249 5562//8250 3072//8251 +f 2818//8252 1189//8253 1620//8254 +f 2895//8255 4685//8256 5515//8257 +f 3873//8258 2138//8259 865//8260 +f 5538//8261 5621//8262 5543//8262 +f 5303//8263 614//8264 3316//8265 +f 125//8266 4180//8267 3745//8267 +f 5544//8268 5453//8269 5452//8270 +f 1757//8271 1968//8272 989//8273 +f 680//8274 2060//8275 3228//8276 +f 5541//8277 5451//8278 5624//8279 +f 2162//8280 3855//8281 3408//8282 +f 5451//8283 5457//8284 5624//8285 +f 18//8286 11//8286 3067//8286 +f 5551//8287 5455//8287 5450//8287 +f 5457//8288 5552//8289 5624//8290 +f 5357//8291 5551//8292 5360//8293 +f 4638//8294 1418//8294 5626//8294 +f 5608//8295 127//8296 1086//8297 +f 5459//8298 5553//8299 5461//8299 +f 4009//8300 5048//8301 3098//8301 +f 57//8302 4206//8303 355//8302 +f 5553//8304 5697//8304 5464//8304 +f 3716//8305 2505//8306 7//8307 +f 5461//8308 5553//8309 5464//8310 +f 1662//8311 2960//8312 3149//8313 +f 4616//8314 2766//8315 2691//8316 +f 5627//8317 5555//8318 5558//8319 +f 657//8320 2872//8321 21//8322 +f 5111//8323 4988//8323 4292//8324 +f 1767//8325 1384//8325 4544//8326 +f 778//8327 2943//8328 5105//8329 +f 3568//8330 7119//8331 1538//8332 +f 5558//8333 5557//8334 5629//8335 +f 5252//8336 5249//8337 5628//8338 +f 5249//8339 5463//8340 5628//8340 +f 1061//8341 4434//8342 3901//8343 +f 262//8344 2077//8345 789//8346 +f 5747//8347 5564//8348 5472//8349 +f 3329//8350 2222//8351 592//8352 +f 3431//8353 1021//8354 1106//8355 +f 5252//8356 5628//8357 5363//8358 +f 2014//8359 22//8359 5067//8359 +f 5629//8360 5557//8360 5471//8360 +f 5632//8361 5629//8362 5471//8363 +f 4933//8364 2684//8364 3732//8364 +f 4465//8365 1798//8366 602//8367 +f 3946//8368 1703//8368 4665//8368 +f 1884//8369 2337//8370 1344//8371 +f 5473//8372 5568//8373 5474//8373 +f 5473//8374 5475//8375 5636//8376 +f 5572//8377 5637//8377 4816//8377 +f 5572//8378 4908//8379 5638//8378 +f 3309//8380 3181//8381 249//8382 +f 2255//8383 969//8383 759//8383 +f 2576//8384 5328//8385 4362//8386 +f 4619//8387 5660//8388 4281//8389 +f 5641//8390 5571//8391 5379//8392 +f 3431//8393 1106//8393 697//8393 +f 4474//8394 4644//8395 1848//8396 +f 5642//8397 5379//8398 5645//8399 +f 387//8400 5140//8400 1633//8401 +f 5273//8402 5380//8403 5644//8402 +f 852//8404 3370//8404 3383//8404 +f 5273//8405 5644//8406 5179//8405 +f 1325//8407 2243//8408 2115//8409 +f 3297//8410 5199//8411 4298//8412 +f 5477//8413 5179//8413 5644//8413 +f 5479//8414 5646//8415 5478//8416 +f 3284//8417 3133//8418 3899//8419 +f 3217//8420 2453//8421 4976//8422 +f 3575//8423 647//8424 1310//8425 +f 4406//8426 4585//8427 4194//8428 +f 5385//8429 5384//8430 5276//8431 +f 3387//8432 4636//8432 2180//8433 +f 4265//8434 390//8435 3570//8436 +f 5645//8437 5385//8438 5575//8439 +f 5559//8440 4863//8441 4475//8442 +f 2571//8443 239//8443 2866//8444 +f 4920//8445 5389//8446 5013//8447 +f 121//8448 3154//8449 1682//8450 +f 3250//8451 2049//8452 3560//8453 +f 2325//8454 3530//8455 2517//8454 +f 5389//8456 5017//8457 5186//8458 +f 3209//8459 4810//8459 2213//8459 +f 4837//8460 5577//8461 5288//8462 +f 2280//8463 4113//8464 2281//8464 +f 3307//8465 89//8466 489//8467 +f 2284//8468 4638//8469 1718//8470 +f 2113//8471 3491//8471 4424//8471 +f 5712//8472 5294//8473 5112//8472 +f 5651//8474 4928//8475 4768//8476 +f 2978//8477 3703//8478 1283//8477 +f 5397//8479 5652//8480 5481//8481 +f 92//8482 4719//8483 3806//8484 +f 5652//8485 5397//8486 5038//8487 +f 5851//8488 5038//8489 5041//8490 +f 2526//8491 3733//8491 3335//8491 +f 4289//8492 5660//8492 4264//8492 +f 4596//8493 1261//8493 1813//8493 +f 5534//8494 396//8495 1890//8496 +f 5125//8497 5296//8498 5962//8499 +f 5125//8500 5962//8501 5487//8502 +f 4249//8503 2327//8503 3682//8503 +f 2082//8504 2719//8505 2224//8506 +f 1156//8507 1325//8508 5126//8507 +f 5299//8509 4859//8510 5579//8510 +f 3387//8511 429//8511 982//8511 +f 5488//8512 4949//8513 5404//8514 +f 1705//8515 4688//8516 822//8517 +f 3856//8518 1694//8519 5387//8520 +f 4774//8521 5299//8521 5494//8521 +f 5495//8522 5406//8523 5491//8522 +f 2166//8524 3067//8524 3587//8524 +f 4831//8525 1368//8526 4136//8527 +f 5809//8528 4213//8529 4217//8530 +f 1894//8531 2221//8532 1711//8533 +f 1517//8534 1518//8535 3036//8536 +f 4094//8537 1655//8538 5654//8539 +f 5497//8540 4386//8541 5132//8542 +f 4221//8543 4039//8544 5542//8545 +f 5470//8546 2863//8547 1740//8548 +f 2738//8549 1713//8550 3135//8551 +f 3746//8552 712//8553 1620//8554 +f 2245//8555 3683//8556 3805//8557 +f 656//8558 3852//8558 655//8558 +f 959//8559 2269//8560 291//8561 +f 2199//8562 2353//8563 2567//8564 +f 5310//8565 5410//8566 5137//8567 +f 2356//8568 315//8569 3090//8570 +f 5310//8571 5137//8572 5220//8573 +f 92//8574 2955//8575 2712//8574 +f 5415//8576 4611//8577 5584//8576 +f 814//8578 1899//8579 2559//8580 +f 2356//8581 3090//8582 936//8583 +f 475//8584 4404//8584 4012//8584 +f 4127//8585 4043//8586 1491//8585 +f 5415//8587 5585//8588 5317//8588 +f 3821//8589 2569//8590 4088//8591 +f 5145//8592 5075//8592 5504//8592 +f 5659//8593 4978//8593 5416//8593 +f 5586//8594 5146//8595 5317//8596 +f 5585//8597 5586//8597 5317//8598 +f 4978//8599 5417//8600 5416//8600 +f 5456//8601 2594//8602 2793//8603 +f 5393//8604 505//8604 866//8604 +f 3764//8605 733//8606 1541//8605 +f 5229//8607 5720//8608 5593//8609 +f 5232//8610 5320//8611 5661//8612 +f 3400//8613 1389//8614 1905//8615 +f 1783//8616 2549//8616 2445//8617 +f 5592//8618 5084//8619 5514//8620 +f 923//8621 1962//8622 1262//8623 +f 5509//8624 5661//8624 5595//8624 +f 2336//8625 1034//8626 4070//8627 +f 4458//8628 3424//8629 4951//8630 +f 5509//8631 5595//8632 5426//8633 +f 5514//8634 5084//8635 5517//8636 +f 5399//8637 19//8638 5400//8639 +f 5237//8640 5326//8641 5721//8640 +f 2941//8642 2097//8643 1980//8644 +f 5426//8645 5595//8645 5432//8646 +f 5233//8647 5334//8648 5666//8649 +f 5231//8650 4905//8651 5521//8652 +f 2599//8653 3827//8654 4353//8655 +f 5666//8656 5334//8656 5667//8656 +f 5663//8657 5231//8658 5521//8658 +f 5239//8659 5665//8659 5520//8659 +f 5239//8660 5237//8660 5665//8660 +f 4355//8661 4288//8662 2291//8663 +f 5334//8664 5341//8665 5667//8665 +f 2170//8666 1907//8667 486//8668 +f 4254//8669 3919//8669 5372//8669 +f 1913//8670 3878//8671 3137//8670 +f 4022//8672 1956//8673 1942//8674 +f 2360//8675 4306//8675 4521//8675 +f 3919//8676 4446//8676 2439//8676 +f 415//8677 2052//8678 4422//8679 +f 5670//8680 5341//8681 5526//8680 +f 5433//8682 5335//8682 5603//8683 +f 5336//8684 5606//8685 5526//8686 +f 2130//8687 5049//8688 3995//8688 +f 5096//8689 5242//8690 5521//8690 +f 4703//8691 3308//8692 4189//8693 +f 5821//8694 5521//8695 5671//8696 +f 2635//8697 1523//8698 1121//8698 +f 4551//8699 1410//8700 3986//8701 +f 5607//8702 5166//8703 5672//8704 +f 137//8705 590//8706 4754//8707 +f 5674//8708 5350//8709 5436//8709 +f 2779//8710 4041//8711 934//8712 +f 3257//8713 4513//8714 3687//8715 +f 2280//8716 3925//8717 4113//8717 +f 5676//8718 5677//8719 5611//8720 +f 4547//8721 4458//8722 4951//8722 +f 1464//8723 1807//8724 839//8725 +f 5616//8726 5353//8727 5674//8728 +f 5677//8729 5615//8730 5611//8731 +f 5677//8732 5679//8732 5615//8732 +f 342//8733 460//8734 171//8735 +f 5209//8736 7126//8736 1356//8737 +f 5734//8738 5614//8738 5618//8738 +f 4681//8739 4680//8739 2607//8739 +f 5502//8740 2151//8740 2435//8741 +f 5614//8742 5615//8742 5618//8742 +f 5615//8743 5679//8744 5680//8744 +f 5617//8745 5529//8746 5532//8747 +f 1204//8748 1362//8749 1834//8750 +f 2688//8751 5786//8752 4345//8752 +f 1336//8753 4948//8754 4802//8755 +f 5615//8756 5680//8757 5531//8756 +f 106//8758 528//8759 54//8760 +f 5735//8761 5617//8762 5532//8763 +f 5619//8764 5681//8764 5530//8764 +f 4301//8765 5682//8766 5068//8767 +f 5685//8768 5735//8769 5532//8770 +f 5688//8771 5531//8772 5680//8772 +f 5685//8773 5532//8774 5620//8774 +f 5619//8775 5530//8776 5445//8777 +f 5684//8778 5619//8779 5445//8780 +f 604//8781 4779//8782 2597//8783 +f 533//8784 3602//8784 3724//8785 +f 5445//8786 5446//8787 5684//8788 +f 1178//8789 493//8789 842//8789 +f 678//8790 5524//8791 5203//8792 +f 2012//8793 1776//8794 2381//8793 +f 946//8795 5032//8796 2409//8797 +f 2505//8798 1465//8798 99//8798 +f 335//8799 2540//8800 4986//8801 +f 5691//8802 5448//8803 5537//8804 +f 1209//8805 3174//8806 1017//8805 +f 5548//8807 5543//8808 5621//8809 +f 4540//8810 4655//8810 776//8810 +f 5623//8811 5541//8812 5624//8813 +f 5623//8814 5624//8815 5693//8814 +f 2740//8816 61//8817 295//8818 +f 2611//8819 2067//8820 1381//8821 +f 3589//8822 1284//8823 4871//8824 +f 5693//8825 5624//8825 5552//8825 +f 3097//8826 5268//8826 7250//8826 +f 5551//8827 5450//8828 5625//8829 +f 5693//8830 5552//8830 5694//8830 +f 5459//8831 5696//8832 5553//8831 +f 4067//8833 1584//8834 1622//8833 +f 5695//8835 5551//8836 5625//8837 +f 3706//8838 1438//8839 1496//8840 +f 2728//8841 734//8842 655//8843 +f 5360//8844 5551//8845 5742//8844 +f 5554//8846 5250//8847 5556//8848 +f 5255//8849 2777//8849 1063//8850 +f 1095//8851 1202//8852 1648//8853 +f 3510//8854 3921//8855 5181//8855 +f 2524//8856 2834//8857 3042//8858 +f 4663//8859 2946//8860 3502//8861 +f 395//8862 3330//8863 4168//8864 +f 1438//8865 3291//8865 338//8866 +f 5138//8867 2249//8868 2754//8869 +f 2343//8870 2233//8871 3776//8872 +f 2556//8873 4498//8873 547//8874 +f 5466//8875 5468//8875 5793//8876 +f 4417//8877 3985//8878 3143//8879 +f 5053//8880 1238//8881 465//8882 +f 1159//8883 3448//8884 1610//8885 +f 3782//8886 5120//8887 756//8888 +f 5743//8889 1977//8890 4463//8891 +f 5363//8892 5628//8892 5701//8893 +f 4412//8894 4610//8894 1954//8895 +f 5629//8896 5632//8897 5631//8898 +f 2849//8899 3882//8900 2333//8901 +f 5635//8902 5632//8903 5471//8903 +f 5702//8904 5363//8905 5634//8906 +f 5635//8907 5471//8908 5568//8909 +f 5259//8910 5363//8910 5702//8911 +f 1763//8912 1958//8913 3331//8914 +f 5473//8915 5636//8915 5568//8915 +f 1199//8916 3468//8916 4482//8917 +f 5475//8918 5571//8919 5636//8920 +f 660//8921 4880//8921 3171//8921 +f 5639//8922 5377//8923 5374//8924 +f 5573//8925 5377//8925 5639//8926 +f 4940//8927 3979//8928 2351//8929 +f 2563//8930 1768//8930 3032//8931 +f 1097//8932 7082//8932 7235//8932 +f 5379//8933 5642//8934 5641//8935 +f 381//8936 1857//8937 4175//8938 +f 5100//8939 4530//8940 5281//8939 +f 3702//8941 2086//8942 738//8943 +f 2258//8944 2159//8945 1018//8946 +f 3393//8947 2313//8948 280//8949 +f 5386//8950 5478//8950 5646//8950 +f 2027//8951 1551//8952 5189//8952 +f 3713//8953 192//8953 4886//8953 +f 4867//8954 3766//8955 5499//8956 +f 5705//8957 5385//8958 5276//8959 +f 5706//8960 5101//8961 5013//8960 +f 5103//8962 4916//8963 5708//8964 +f 3452//8965 1781//8966 5597//8967 +f 2166//8968 372//8969 3846//8970 +f 2781//8971 3635//8972 708//8973 +f 5284//8974 5016//8974 5103//8974 +f 5284//8975 5753//8976 5285//8976 +f 2514//8977 3271//8978 3989//8979 +f 4310//8980 3707//8981 4727//8980 +f 5186//8982 5576//8983 5389//8984 +f 3171//8985 4154//8986 3172//8987 +f 5285//8988 5710//8988 5185//8989 +f 124//8990 236//8991 917//8992 +f 590//8993 137//8994 4166//8995 +f 5289//8996 5288//8997 5577//8998 +f 3668//8999 2067//8999 2611//9000 +f 4247//9001 3500//9002 2484//9003 +f 3683//9004 2688//9005 173//9006 +f 1725//9007 2850//9008 2228//9009 +f 5108//9010 5711//9011 4926//9012 +f 1235//9013 408//9013 1961//9014 +f 975//9015 1886//9016 1060//9017 +f 800//9018 801//9019 2716//9020 +f 5650//9021 5109//9022 4928//9023 +f 4061//9024 305//9025 1373//9026 +f 5194//9027 5481//9028 5932//9029 +f 949//9030 948//9030 77//9030 +f 5194//9031 5932//9031 5483//9032 +f 5566//9033 7403//9034 1113//9035 +f 5758//9036 5482//9037 5398//9037 +f 5712//9038 5041//9039 5294//9040 +f 3379//9041 2125//9042 4792//9043 +f 2868//9044 4311//9045 5633//9046 +f 654//9047 2256//9048 5597//9049 +f 3110//9050 2090//9051 1511//9052 +f 1856//9053 2262//9054 2358//9055 +f 5579//9056 4859//9056 5208//9056 +f 2302//9057 198//9057 1377//9058 +f 2362//9059 5272//9060 580//9061 +f 2277//9062 2669//9063 1269//9064 +f 207//9065 4163//9066 4387//9067 +f 4386//9068 5497//9069 5809//9070 +f 737//9071 1297//9071 456//9072 +f 1406//9073 686//9074 4507//9075 +f 5498//9076 5054//9077 5715//9078 +f 2326//9079 4143//9079 402//9079 +f 4166//9080 3940//9081 590//9082 +f 2388//9083 859//9083 73//9083 +f 3667//9084 4687//9085 3010//9085 +f 5136//9086 5135//9087 5716//9088 +f 5306//9089 5658//9090 4611//9091 +f 3870//9092 3639//9093 1670//9094 +f 1570//9095 1709//9096 1327//9097 +f 4611//9098 5658//9099 5584//9098 +f 5583//9100 5220//9100 4795//9101 +f 5220//9102 5717//9103 5310//9104 +f 1320//9105 5095//9106 2567//9107 +f 5414//9108 4877//9108 5310//9108 +f 5414//9109 5500//9110 5144//9111 +f 1858//9112 3180//9113 4748//9114 +f 5504//9115 5503//9116 4964//9117 +f 1996//9118 2041//9119 3052//9120 +f 5134//9121 5073//9121 5582//9121 +f 2427//9122 4563//9123 3082//9122 +f 5719//9124 2660//9125 670//9126 +f 2946//9127 3293//9128 3502//9129 +f 2190//9130 1264//9131 1427//9132 +f 1005//9133 2647//9133 2192//9134 +f 5075//9135 5589//9136 5504//9136 +f 4973//9137 5720//9138 5148//9139 +f 5229//9140 5148//9141 5720//9142 +f 3888//9143 932//9143 1727//9144 +f 4894//9145 5508//9145 5320//9146 +f 4114//9147 3534//9147 1036//9147 +f 5230//9148 5423//9149 5417//9150 +f 5230//9151 5588//9152 5423//9153 +f 1659//9154 4312//9154 1953//9154 +f 5320//9155 5508//9156 5661//9157 +f 3522//9158 350//9159 327//9160 +f 5156//9161 1514//9162 1394//9163 +f 5505//9164 3176//9165 4715//9166 +f 4766//9167 2363//9168 4505//9169 +f 4408//9170 191//9171 1543//9172 +f 1986//9173 1286//9173 4146//9173 +f 5326//9174 5587//9174 5721//9174 +f 5513//9175 5073//9176 5231//9177 +f 613//9178 2134//9179 4017//9179 +f 1994//9180 1853//9181 3132//9182 +f 1516//9183 5222//9184 1182//9185 +f 5721//9186 5665//9187 5237//9188 +f 5432//9189 5595//9190 5723//9190 +f 1667//9191 2089//9191 1199//9191 +f 5517//9192 5088//9193 5724//9194 +f 1731//9195 882//9196 1240//9197 +f 5342//9198 5432//9199 5725//9199 +f 4147//9200 3095//9201 3622//9202 +f 5341//9203 5668//9204 5667//9205 +f 74//9206 3352//9207 4956//9208 +f 4631//9209 914//9210 4418//9211 +f 3587//9212 1164//9213 403//9213 +f 5429//9214 5672//9214 5166//9214 +f 357//9215 4517//9215 340//9216 +f 4331//9217 4330//9218 1200//9219 +f 5728//9220 5242//9221 5243//9222 +f 5436//9223 5605//9224 5674//9225 +f 4206//9226 23//9227 4937//9228 +f 4136//9229 2543//9230 1759//9231 +f 5729//9232 5777//9233 5675//9234 +f 5778//9235 5730//9235 5676//9235 +f 5677//9236 5730//9237 5729//9238 +f 7319//9239 7234//9239 3822//9239 +f 3463//9240 4424//9241 2858//9242 +f 5676//9243 5730//9243 5677//9243 +f 5609//9244 5354//9245 5610//9244 +f 5677//9246 5729//9247 5675//9248 +f 5682//9249 1263//9250 5369//9251 +f 3680//9252 3017//9253 5368//9254 +f 5609//9255 5610//9255 5733//9255 +f 4996//9256 3599//9256 2952//9256 +f 2471//9257 930//9258 1049//9259 +f 3466//9260 3465//9261 3133//9262 +f 5319//9263 1014//9263 5732//9264 +f 4039//9265 3616//9266 2156//9267 +f 5919//9268 5610//9269 5438//9268 +f 3727//9270 3177//9271 1453//9272 +f 3445//9273 4009//9273 2592//9273 +f 5919//9274 5438//9275 5617//9276 +f 798//9277 3075//9278 1979//9279 +f 2392//9280 4298//9280 4368//9280 +f 5618//9281 5530//9282 5681//9283 +f 3927//9284 2451//9285 2450//9285 +f 3032//9286 1768//9287 834//9288 +f 4291//9289 3961//9289 3301//9290 +f 5570//9291 462//9292 2428//9293 +f 5440//9294 5687//9294 5533//9294 +f 51//9295 52//9296 1213//9297 +f 2774//9298 5029//9299 4869//9300 +f 2551//9301 4002//9302 3809//9303 +f 2434//9304 1467//9305 2668//9305 +f 1105//9306 2704//9307 5014//9308 +f 4360//9309 2143//9309 1643//9309 +f 1670//9310 3084//9311 1393//9312 +f 5689//9313 5446//9314 5622//9315 +f 1460//9316 870//9317 259//9318 +f 5785//9319 5620//9320 5539//9320 +f 5327//9321 562//9321 561//9321 +f 5785//9322 5539//9322 5692//9322 +f 5539//9323 5541//9324 5692//9323 +f 5692//9325 5541//9325 5623//9326 +f 3374//9327 3605//9328 4137//9329 +f 5453//9330 5544//9331 5622//9332 +f 105//9333 3495//9334 4902//9335 +f 4493//9336 2437//9337 7248//9338 +f 923//9339 2138//9340 3873//9339 +f 3738//9341 262//9342 3740//9343 +f 157//9344 4107//9344 392//9345 +f 5459//9346 5548//9347 5696//9348 +f 5359//9349 5554//9350 5544//9349 +f 3391//9351 320//9352 5768//9353 +f 5553//9354 5696//9354 5697//9355 +f 1722//9356 531//9357 532//9358 +f 3389//9359 2195//9360 2813//9361 +f 3015//9362 3762//9363 1830//9362 +f 4484//9364 4407//9365 4409//9366 +f 1352//9367 4404//9368 475//9369 +f 5360//9370 5742//9371 5463//9372 +f 905//9373 4438//9374 3232//9375 +f 5556//9376 5466//9377 5741//9378 +f 5698//9379 5747//9379 5697//9380 +f 1199//9381 2502//9381 3468//9382 +f 5364//9383 5697//9384 5747//9384 +f 1737//9385 4031//9386 2920//9387 +f 215//9388 4367//9389 5892//9390 +f 1720//9391 1182//9392 1183//9393 +f 5746//9394 5627//9395 5558//9394 +f 5793//9396 5468//9397 5700//9398 +f 5700//9399 5468//9400 5263//9401 +f 5700//9402 5263//9403 5564//9404 +f 72//9405 1672//9406 3475//9405 +f 5558//9407 5629//9407 5746//9407 +f 5746//9408 5629//9408 5631//9408 +f 565//9409 1030//9410 2370//9411 +f 3149//9412 2960//9413 2425//9412 +f 1346//9414 2857//9415 3358//9414 +f 5634//9416 5363//9417 5701//9418 +f 4965//9419 1343//9420 4225//9420 +f 4483//9421 4093//9422 836//9423 +f 3736//9424 760//9425 1661//9426 +f 3921//9427 2689//9428 3856//9429 +f 740//9430 7405//9431 1434//9432 +f 5635//9433 5840//9433 5632//9434 +f 5702//9435 5569//9436 5259//9437 +f 4956//9438 3352//9438 4200//9438 +f 5635//9439 5568//9440 5749//9439 +f 1041//9441 3676//9441 4343//9441 +f 5749//9442 5568//9442 5636//9442 +f 2585//9443 1955//9443 2203//9443 +f 4908//9444 5280//9445 5638//9446 +f 2894//9447 3907//9448 3410//9449 +f 3739//9450 1841//9451 2942//9452 +f 759//9453 1997//9453 2081//9453 +f 329//9454 2238//9454 2046//9454 +f 2681//9455 586//9456 1459//9456 +f 2634//9457 28//9458 5312//9459 +f 5641//9460 5636//9461 5571//9460 +f 5703//9462 5283//9463 4816//9464 +f 4377//9465 527//9465 1102//9465 +f 530//9466 4651//9467 1836//9468 +f 4574//9469 1485//9470 3938//9471 +f 3705//9472 1595//9473 2678//9474 +f 286//9475 4030//9475 1165//9475 +f 5195//9476 1317//9477 2697//9478 +f 4080//9479 3670//9480 4288//9480 +f 68//9481 69//9481 588//9481 +f 3531//9482 3952//9483 840//9484 +f 5386//9485 5646//9486 5706//9487 +f 5647//9488 5383//9488 5477//9489 +f 5276//9490 5647//9490 5752//9491 +f 5706//9492 5646//9493 5101//9494 +f 594//9495 1600//9496 2876//9495 +f 5706//9497 5013//9498 5389//9499 +f 1098//9500 1836//9501 4388//9502 +f 4574//9503 4219//9504 509//9505 +f 3164//9506 1666//9507 2020//9508 +f 4126//9509 2108//9510 7357//9510 +f 5709//9511 5710//9512 5285//9511 +f 3835//9513 2025//9514 2570//9513 +f 5754//9515 5191//9516 5289//9517 +f 6051//9518 3190//9519 3060//9518 +f 1059//9520 3546//9521 972//9522 +f 5023//9523 4660//9524 5109//9525 +f 25//9526 703//9526 3472//9527 +f 2800//9528 2138//9529 57//9530 +f 5023//9531 5109//9532 5650//9531 +f 2805//9533 458//9534 1122//9535 +f 5711//9536 5755//9537 5112//9538 +f 4382//9539 4510//9540 917//9541 +f 2675//9542 4559//9543 4654//9544 +f 5112//9545 5755//9546 5712//9547 +f 5757//9548 5851//9549 5041//9550 +f 5041//9551 5712//9552 5757//9553 +f 5147//9554 3433//9555 1330//9556 +f 5598//9557 1505//9557 84//9557 +f 5398//9558 5759//9559 5758//9560 +f 5201//9561 5759//9562 5398//9561 +f 5376//9563 4510//9563 4382//9563 +f 5296//9564 5297//9564 5962//9565 +f 1166//9566 519//9567 3787//9568 +f 3641//9569 784//9570 512//9571 +f 2149//9572 5219//9573 4176//9574 +f 5208//9575 5205//9576 5807//9577 +f 3829//8085 424//8085 4195//8085 +f 4167//9578 2457//9578 1839//9578 +f 5762//9579 5491//9580 5488//9581 +f 4392//9582 297//9583 3563//9584 +f 2625//9585 2715//9586 4486//9587 +f 408//9588 1998//9589 5507//9588 +f 5809//9590 5763//9590 4213//9591 +f 4213//9592 5763//9593 4865//9594 +f 3516//9595 3391//9596 4832//9597 +f 445//9598 1415//9598 2028//9598 +f 5136//9599 5716//9600 5309//9601 +f 4024//9602 2082//9602 196//9602 +f 2754//9603 2838//9603 3672//9604 +f 4587//9605 2972//9606 1087//9607 +f 2309//9608 4504//9609 50//9609 +f 5658//9610 5816//9611 5584//9612 +f 2565//9613 5183//9614 148//9614 +f 2688//9615 1988//9616 5786//9617 +f 5310//9618 5764//9619 5414//9620 +f 1164//9621 3587//9622 3441//9623 +f 5817//9624 5415//9625 5584//9626 +f 3312//9627 1299//9628 3169//9629 +f 5585//9630 5415//9631 5817//9632 +f 390//9633 5113//9634 3570//9635 +f 4929//9636 2232//9637 7397//9638 +f 812//9639 4715//9640 2564//9639 +f 4296//9641 4100//9642 5//9642 +f 5315//9643 4978//9643 5659//9643 +f 4638//9644 5626//9645 1619//9646 +f 686//9647 1406//9648 379//9648 +f 2361//9649 3463//9650 1671//9651 +f 1119//9652 1033//9653 631//9654 +f 5582//9655 5513//9656 5766//9655 +f 4259//9657 2880//9658 4258//9659 +f 4169//9660 3380//9661 1196//9661 +f 1513//9662 4021//9663 1054//9664 +f 5661//9665 5508//9665 5586//9666 +f 5767//9667 5417//9668 5423//9669 +f 5075//9670 5225//9670 5589//9670 +f 1958//9671 1763//9671 3892//9671 +f 2820//9672 1544//9672 3960//9672 +f 5423//9673 5234//9674 5594//9674 +f 3915//9675 4635//9676 982//9677 +f 2835//9678 1148//9679 3394//9680 +f 879//9681 1101//9682 4286//9683 +f 5003//9684 5593//9685 5769//9686 +f 5663//9687 5513//9688 5231//9687 +f 5003//9689 5769//9690 5428//9689 +f 5405//9691 3569//9692 489//9693 +f 4727//9694 4982//9695 4310//9696 +f 5429//9697 5003//9698 5428//9697 +f 4076//9699 1277//9700 4624//9701 +f 5725//9702 5432//9702 5770//9703 +f 3318//9704 2995//9705 5268//9706 +f 1108//9707 4864//9707 832//9708 +f 2016//9709 1146//9710 3031//9711 +f 3872//9712 1741//9713 1746//9713 +f 1146//9714 449//9714 2182//9714 +f 4923//9715 1766//9716 310//9717 +f 607//9718 784//9719 590//9720 +f 5601//9721 5600//9722 5241//9721 +f 5668//9723 5341//9723 5670//9724 +f 5335//9725 5520//9725 5775//9725 +f 5670//9726 5526//9727 5606//9726 +f 3299//9728 5382//9729 3761//9730 +f 5606//9731 5673//9732 5670//9731 +f 5521//9733 5242//9734 5728//9735 +f 5521//9736 5728//9737 5671//9738 +f 734//9739 1516//9739 3170//9739 +f 5673//9740 5606//9741 5348//9742 +f 3952//9743 564//9744 563//9745 +f 5348//9746 5609//9746 5673//9746 +f 5777//9747 5729//9747 5730//9747 +f 5607//9748 5870//9749 5243//9750 +f 5243//9751 5870//9752 5728//9753 +f 4529//9754 2606//9755 3505//9756 +f 3098//9757 5048//9758 2648//9759 +f 5781//9760 5778//9761 5676//9762 +f 4061//9763 2927//9764 134//9765 +f 278//9766 1002//9766 4586//9766 +f 693//9767 3394//9768 1148//9769 +f 5780//9770 5825//9771 5675//9772 +f 3414//9773 3324//9774 5431//9773 +f 5825//9775 5677//9775 5675//9776 +f 4955//9777 230//9778 1449//9779 +f 1032//9780 3107//9781 4542//9782 +f 499//9783 3105//9784 2761//9785 +f 3909//9786 244//9786 3797//9786 +f 5680//9787 5679//9788 5783//9787 +f 5984//9789 5327//9790 4036//9791 +f 3802//9792 4567//9793 476//9794 +f 3558//9795 3693//9796 3020//9797 +f 3277//9798 3946//9799 4665//9800 +f 5784//9801 5681//9802 5619//9803 +f 5440//9804 5616//9805 5683//9806 +f 5783//9807 5736//9807 5680//9807 +f 5619//9808 5684//9808 5784//9808 +f 1684//9809 2630//9810 2434//9811 +f 5687//9812 5440//9813 5683//9814 +f 3744//9815 4575//9816 3092//9817 +f 5684//9818 5446//9819 5689//9818 +f 1682//9820 4671//9821 3150//9822 +f 3531//9823 840//9824 1735//9824 +f 5621//9825 5533//9826 5687//9827 +f 1805//9828 2697//9828 981//9828 +f 5691//9829 5537//9829 5739//9829 +f 914//9830 4230//9831 4782//9832 +f 3524//9833 3336//9834 2931//9835 +f 5692//9836 5623//9837 5788//9838 +f 5449//9839 5691//9840 5787//9839 +f 5449//9841 5448//9841 5691//9841 +f 247//9842 2672//9843 3268//9844 +f 2227//9845 3988//9846 2289//9845 +f 4887//9847 1238//9848 766//9847 +f 4822//9849 876//9850 4082//9851 +f 1342//9852 574//9853 3497//9854 +f 5789//9855 5625//9856 5449//9857 +f 5228//9858 3406//9859 744//9860 +f 5548//9861 5879//9862 5696//9863 +f 5602//9864 533//9865 3876//9866 +f 5544//9867 5554//9868 5833//9869 +f 4881//9870 5287//9871 4260//9872 +f 5694//9873 5791//9874 5693//9875 +f 1284//9876 689//9876 1863//9876 +f 3827//9877 5262//9878 4353//9877 +f 5104//9879 229//9879 3372//9879 +f 2098//9880 821//9881 2033//9881 +f 3084//9882 1670//9883 3639//9884 +f 1807//9885 1464//9885 2953//9885 +f 5791//9886 5694//9887 5552//9888 +f 5741//9889 5554//9890 5556//9891 +f 5551//9892 5695//9893 5742//9894 +f 5791//9895 5552//9896 5555//9897 +f 1754//9898 2419//9898 1944//9898 +f 4652//9899 1764//9900 361//9901 +f 4335//9902 2886//9903 4612//9902 +f 5555//9904 5627//9905 5792//9906 +f 5466//9907 5881//9908 5741//9908 +f 5463//9909 5742//9909 5744//9909 +f 322//9910 2104//9911 1581//9912 +f 5466//9913 5793//9914 5881//9915 +f 1069//9916 3181//9917 1070//9916 +f 4110//9918 5678//9919 4251//9920 +f 2975//9921 5655//9922 1660//9921 +f 5628//9923 5463//9924 5744//9925 +f 5564//9926 5747//9927 5700//9928 +f 5746//9929 5745//9930 5627//9931 +f 5628//9932 5744//9933 5701//9934 +f 1672//9935 72//9936 521//9936 +f 337//9937 1585//9937 2276//9938 +f 3249//9939 4380//9940 3365//9941 +f 385//9942 3625//9943 4606//9944 +f 3998//9945 666//9946 523//9947 +f 779//9948 2007//9949 1573//9950 +f 1155//9951 1040//9952 5089//9953 +f 2887//9954 2995//9955 3318//9956 +f 1747//9957 5314//9958 4003//9959 +f 4450//9960 682//9960 696//9961 +f 5751//9962 5572//9963 5638//9962 +f 4494//9964 4413//9964 282//9964 +f 5569//9965 5639//9966 5374//9966 +f 5749//9967 5636//9967 5796//9967 +f 3376//9968 5275//9968 4380//9968 +f 3935//9969 5279//9969 1559//9969 +f 5795//9970 5636//9971 5641//9972 +f 4816//9973 5637//9974 5703//9975 +f 577//9976 2321//9977 4316//9976 +f 4309//9978 2072//9979 4283//9980 +f 1811//9981 5561//9982 293//9982 +f 879//9983 1010//9984 880//9985 +f 5280//9986 5282//9986 5797//9986 +f 5798//9987 5704//9987 5380//9987 +f 4817//9988 4960//9989 4087//9990 +f 664//9991 633//9992 5799//9993 +f 5641//9994 5642//9994 5800//9994 +f 4195//9995 424//9995 5801//9995 +f 5644//9996 5380//9997 5704//9998 +f 5800//9999 5642//10000 5645//9999 +f 5276//10001 5752//10002 5705//10003 +f 699//10004 4852//10005 1422//10006 +f 3035//10007 3710//10008 258//10009 +f 322//10010 3792//10010 1984//10010 +f 5709//10011 5285//10011 5753//10012 +f 5389//10013 5576//10014 5803//10015 +f 1584//10016 5020//10016 5139//10016 +f 4139//10017 7373//10017 3879//10017 +f 5577//10018 5185//10019 5710//10020 +f 4191//10021 4466//10022 1339//10023 +f 5391//10024 5191//10025 5754//10026 +f 5576//10027 5190//10027 5023//10028 +f 5804//10029 5108//10030 5391//10031 +f 4362//10032 5193//10033 3417//10034 +f 5804//10035 5711//10035 5108//10036 +f 803//10037 4747//10037 2319//10038 +f 547//10039 4498//10040 3355//10041 +f 2989//10042 388//10043 539//10044 +f 932//10045 4368//10046 1727//10047 +f 5651//10048 5650//10048 4928//10048 +f 5755//10049 5849//10050 5757//10051 +f 4344//10052 2359//10052 2547//10052 +f 3416//10053 3641//10054 5664//10053 +f 5768//10055 807//10056 2033//10057 +f 5290//10058 5482//10059 5292//10060 +f 5292//10061 5482//10062 5756//10061 +f 5042//10063 5483//10064 5806//10065 +f 1375//10066 2511//10067 1827//10068 +f 5653//10069 3580//10070 2926//10071 +f 4552//10072 1657//10073 2757//10073 +f 5297//10074 5578//10075 5760//10076 +f 1611//10077 261//10078 2674//10079 +f 750//10080 2914//10081 5853//10082 +f 2773//10083 1274//10084 1617//10085 +f 5402//10086 5713//10086 5936//10087 +f 4678//10088 732//10089 2369//10090 +f 3936//10091 1282//10091 2896//10091 +f 5488//10092 5404//10093 5761//10094 +f 5488//10095 5761//10096 5762//10095 +f 81//10097 2795//10098 3190//10098 +f 776//10099 710//10100 4540//10099 +f 116//10101 3299//10101 3761//10101 +f 2089//10102 2502//10102 1199//10102 +f 5938//10103 5052//10104 5407//10103 +f 794//10105 2809//10105 3851//10106 +f 5408//10107 5494//10108 5407//10107 +f 5272//10109 4785//10110 623//10111 +f 5132//10112 5714//10113 5497//10114 +f 5811//10115 5054//10116 5495//10117 +f 4865//10118 5763//10119 5302//10119 +f 5060//10120 5714//10121 5132//10122 +f 1049//10123 2472//10124 2471//10124 +f 3316//10125 2328//10125 4321//10126 +f 5813//10127 5498//10128 5715//10129 +f 3280//10130 4481//10131 591//10132 +f 5498//10133 5813//10133 5135//10133 +f 5135//10134 5813//10135 5814//10136 +f 354//10137 4500//10138 355//10138 +f 5814//10139 5716//10140 5135//10141 +f 3170//10142 4792//10142 734//10142 +f 3735//10143 2605//10143 279//10143 +f 5716//10144 5815//10145 5309//10145 +f 1289//10146 4019//10146 42//10147 +f 1593//10148 4402//10148 5056//10149 +f 1037//10150 4624//10151 2996//10152 +f 4932//10153 3284//10154 3285//10155 +f 5815//10156 5583//10157 5413//10157 +f 585//10158 4922//10159 136//10158 +f 152//10160 2441//10161 370//10162 +f 494//10163 1354//10164 2781//10165 +f 1187//10166 1920//10167 435//10166 +f 5500//10168 5414//10169 5764//10170 +f 672//10171 3383//10172 3370//10173 +f 2249//10174 3182//10175 2152//10176 +f 4626//10177 5142//10178 5765//10179 +f 5318//10180 5500//10181 5940//10182 +f 1806//10183 2846//10184 5418//10184 +f 3417//10185 2713//10186 4362//10187 +f 4363//10188 4958//10189 3349//10190 +f 5720//10191 4626//10192 5765//10191 +f 3413//10193 4429//10194 1056//10195 +f 5940//10196 5587//10196 5318//10197 +f 179//10198 4583//10199 1677//10200 +f 4052//10201 2736//10201 5400//10201 +f 3461//10202 3594//10202 3462//10203 +f 1282//10204 3936//10205 842//10206 +f 520//10207 318//10208 2048//10207 +f 2231//10209 2863//10209 208//10209 +f 5661//10210 5586//10211 5595//10212 +f 5423//10213 5594//10214 5767//10215 +f 2780//10216 3698//10216 422//10217 +f 102//10218 2124//10219 5298//10220 +f 5542//10221 3444//10221 4221//10222 +f 881//10223 1078//10224 1334//10225 +f 2887//10226 4074//10227 3514//10228 +f 4401//10229 128//10230 3717//10231 +f 5233//10232 5666//10232 5818//10233 +f 4459//10234 3605//10235 2159//10236 +f 2515//10237 127//10238 5608//10239 +f 1116//10240 4996//10241 2952//10242 +f 5724//10243 5088//10244 5771//10245 +f 5088//10246 5600//10247 5771//10246 +f 4419//10248 2573//7773 2893//10249 +f 870//10250 1188//10251 259//10250 +f 4718//10252 1582//10253 3622//10254 +f 5773//10255 5821//10256 5774//10257 +f 5032//10258 946//10259 344//10260 +f 5866//10261 5773//10261 5777//10261 +f 5603//10262 5335//10262 5775//10262 +f 5821//10263 5671//10264 5774//10265 +f 5777//10266 5822//10267 5866//10268 +f 3842//10269 1969//10270 1668//10269 +f 5278//10271 4150//10272 2002//10273 +f 4092//10274 989//10274 1815//10275 +f 1285//10276 697//10277 975//10278 +f 5773//10279 5774//10280 5777//10281 +f 1994//10282 4391//10283 3731//10284 +f 1155//10285 2354//10285 1535//10285 +f 2172//10286 2759//10287 223//10288 +f 5822//10289 5777//10290 5730//10289 +f 1282//10291 298//10292 4352//10293 +f 7404//10294 7373//10295 824//10296 +f 2778//10297 4502//10298 1455//10299 +f 5774//10300 5671//10300 5823//10300 +f 5774//10301 5823//10301 5777//10301 +f 4016//10302 3148//10303 3600//10304 +f 5777//10305 5823//10305 5780//10305 +f 5675//10306 5777//10307 5780//10308 +f 5824//10309 5778//10310 5781//10311 +f 1107//10312 3749//10313 1576//10314 +f 3311//10315 129//10316 1892//10317 +f 5611//10318 5781//10319 5676//10320 +f 5611//10321 5614//10321 5781//10321 +f 5781//10322 5614//10322 5734//10322 +f 3156//10323 5063//10323 3227//10323 +f 1132//10324 494//10325 4048//10325 +f 5828//10326 5872//10327 5734//10328 +f 1101//10329 2606//10330 3102//10331 +f 1848//10332 4004//10333 603//10334 +f 3367//10335 4788//10336 556//10336 +f 5733//10337 5610//10338 5919//10337 +f 5828//10339 5734//10340 5618//10341 +f 5919//10342 5617//10342 5735//10342 +f 1476//10343 1169//10344 5737//10345 +f 4449//10346 520//10346 2663//10347 +f 2667//10348 2784//10348 5338//10349 +f 4466//10350 4191//10350 1197//10351 +f 5829//10352 5784//10352 5684//10352 +f 4976//10353 3853//10354 2001//10355 +f 3131//10356 5516//10357 1680//10358 +f 240//10359 4091//10360 2808//10361 +f 5829//10362 5684//10363 5689//10364 +f 5685//10365 5620//10366 5785//10366 +f 5688//10367 5680//10368 5736//10369 +f 5373//10370 710//10371 3593//10372 +f 905//10373 3650//10374 3636//10375 +f 2680//10376 2355//10377 4487//10378 +f 5736//10379 5739//10380 5688//10381 +f 1006//10382 3406//10383 5228//10384 +f 1041//10385 4872//10385 3934//10385 +f 1457//10386 2160//10387 3382//10388 +f 5688//10389 5739//10390 5537//10391 +f 2452//10392 1444//10393 119//10394 +f 1955//10395 1742//10396 1743//10397 +f 2359//10398 5131//10399 695//10400 +f 5832//10401 5544//10402 5833//10401 +f 5622//10403 5544//10404 5832//10405 +f 805//10406 4304//10406 2501//10406 +f 5788//10407 5623//10408 5693//10408 +f 4351//10409 3868//10409 3287//10410 +f 426//10411 1990//10412 45//10413 +f 2478//10414 1306//10415 4227//10416 +f 5698//10417 5697//10418 5696//10418 +f 5792//10419 5791//10419 5555//10420 +f 3278//10421 3267//10422 3968//10423 +f 531//10424 5545//10425 532//10424 +f 4092//10426 440//10427 112//10426 +f 2956//10428 1817//10429 473//10430 +f 5792//10431 5627//10432 5745//10433 +f 5519//10434 2533//10434 2823//10434 +f 2931//10435 900//10436 3402//10437 +f 5835//10438 5794//10438 5746//10439 +f 5746//10440 5631//10441 5835//10442 +f 4921//10443 5078//10444 2928//10445 +f 293//10446 2936//10447 4745//10448 +f 5097//10449 2643//10450 2122//10451 +f 3670//10452 4451//10453 251//10453 +f 1598//10454 3263//10455 1690//10456 +f 2726//10457 4077//10457 2623//10457 +f 5411//10458 5602//10458 3876//10459 +f 2010//10460 1376//10461 1429//10462 +f 310//10463 1766//10464 450//10463 +f 4320//10465 4475//10466 4863//10467 +f 5796//10468 5636//10469 5795//10470 +f 388//10471 2989//10472 2458//10471 +f 2903//10473 5844//10474 480//10475 +f 122//10476 928//10476 5519//10476 +f 5797//10477 5282//10478 5386//10479 +f 5527//10480 878//10481 762//10482 +f 4916//10483 5283//10484 5708//10485 +f 4521//10486 3120//10487 2360//10488 +f 5645//10489 5575//10490 5847//10491 +f 1793//10492 3025//10493 762//10494 +f 3599//10495 5021//10496 2303//10496 +f 2897//10497 529//10498 1208//10499 +f 4138//10500 1811//10500 3417//10501 +f 5847//10502 5575//10503 5802//10504 +f 3959//10505 4111//10505 2545//10505 +f 1171//10506 3853//10507 436//10506 +f 3511//10508 5323//10509 3712//10510 +f 1060//10511 2061//10512 4212//10512 +f 4584//10513 274//10514 263//10515 +f 2352//10516 5630//10517 1975//10516 +f 4344//10518 2561//10519 2558//10519 +f 2486//10520 3778//10521 1164//10522 +f 5156//10523 4870//10524 568//10525 +f 5711//10526 5849//10527 5755//10528 +f 3494//10529 1113//10530 5852//10531 +f 1703//10532 1894//10533 1711//10534 +f 1562//10535 1205//10536 5012//10537 +f 5849//10538 5850//10539 5757//10540 +f 5652//10541 5038//10542 5851//10543 +f 5712//10544 5755//10545 5757//10546 +f 1184//10547 4363//10548 5305//10549 +f 3303//10550 4384//10551 987//10552 +f 3314//10553 908//10554 3963//10555 +f 7393//10556 2992//10556 89//10556 +f 4930//10557 5401//10558 402//10559 +f 5854//10560 5482//10561 5758//10562 +f 4476//10563 2157//10564 3347//10563 +f 2983//10565 4922//10566 585//10567 +f 1536//10568 3591//10569 1127//10570 +f 5201//10571 5487//10572 5855//10573 +f 5487//10574 5962//10575 5855//10574 +f 4332//10576 2265//10577 3924//10578 +f 5079//10579 1915//10579 2109//10579 +f 4479//10580 1891//10580 2444//10580 +f 5400//10581 1891//10581 5399//10582 +f 4332//10583 3924//10584 888//10584 +f 4145//10585 897//10586 3025//10587 +f 2151//10588 4096//10589 2739//10588 +f 5762//10590 5808//10591 5491//10592 +f 5808//10593 5495//10594 5491//10595 +f 5494//10596 5299//10597 5902//10596 +f 2851//10598 861//10599 196//10600 +f 2669//10601 1060//10602 1269//10603 +f 1687//10604 115//10605 3063//10606 +f 2533//10607 5392//10608 2555//10609 +f 5858//10610 5489//10611 5409//10611 +f 1560//10612 2549//10613 4483//10613 +f 1184//10614 5305//10615 2866//10616 +f 1722//10617 3168//10618 4828//10619 +f 5306//10620 5302//10621 5812//10620 +f 3132//10622 1477//10623 1252//10624 +f 5743//10625 1326//10626 3887//10627 +f 2741//10628 3218//10628 4999//10629 +f 5716//10630 5814//10631 5815//10631 +f 3895//10632 2842//10632 3564//10632 +f 1257//10633 2884//10634 2408//10635 +f 5815//10636 5413//10637 5309//10638 +f 1130//10639 3376//10639 2762//10639 +f 5816//10640 5817//10640 5584//10640 +f 500//10641 2257//10642 3842//10643 +f 807//10644 3685//10645 4220//10646 +f 194//10647 2050//10648 2404//10649 +f 3810//10650 2843//10651 297//10652 +f 980//10653 4325//10654 3819//10655 +f 3770//10656 4544//10657 4015//10658 +f 5582//10659 5073//10659 5513//10659 +f 5417//10660 5767//10661 5416//10660 +f 3579//10662 1583//10663 5128//10662 +f 5586//10664 5859//10665 5595//10664 +f 3719//10666 1080//10667 1345//10668 +f 2972//10669 1790//10670 3220//10671 +f 5527//10672 2610//10672 878//10672 +f 3729//10673 2092//10674 4073//10675 +f 5721//10676 5587//10677 5861//10678 +f 1435//10679 799//10680 2913//10681 +f 5594//10682 5233//10682 5818//10682 +f 2509//10683 4059//10684 3481//10685 +f 4562//10686 4998//10687 4512//10688 +f 3244//10689 3608//10690 5057//10691 +f 2122//10692 2643//10692 568//10692 +f 3637//10693 854//10693 5270//10693 +f 5432//10694 5723//10695 5770//10696 +f 3689//10697 1623//10698 4583//10699 +f 3842//10700 382//10700 4307//10701 +f 838//10702 3408//10703 4689//10704 +f 2841//10705 3722//10706 2840//10707 +f 1582//10708 1938//10709 160//10710 +f 4337//10711 1558//10712 2200//10713 +f 2423//10714 389//10714 517//10714 +f 5864//10715 5663//10716 5821//10717 +f 2779//10718 934//10719 288//10720 +f 5770//10721 5912//10721 5725//10721 +f 5663//10722 5521//10723 5821//10724 +f 3470//10725 5184//10725 4621//10725 +f 2626//10726 1632//10727 3050//10728 +f 2523//10729 4433//10730 3336//10731 +f 5773//10732 5864//10733 5821//10732 +f 2463//10734 3481//10735 5207//10736 +f 2869//10737 5126//10738 1325//10738 +f 1909//10739 1652//10740 704//10741 +f 5342//10742 5725//10742 5605//10743 +f 2897//10744 3648//10745 529//10745 +f 5775//10746 5520//10746 5867//10746 +f 4995//10747 5139//10748 3527//10749 +f 5778//10750 5868//10751 5822//10752 +f 241//10753 3002//10754 299//10755 +f 68//10756 4627//10756 299//10757 +f 4938//10758 3658//10758 5162//10759 +f 2174//10760 3536//10761 5476//10762 +f 352//10763 92//10764 2800//10764 +f 5433//10765 5603//10766 5915//10767 +f 5915//10768 5601//10768 5433//10769 +f 2190//10770 1427//10770 2350//10770 +f 5822//10771 5730//10772 5778//10773 +f 5672//10774 5870//10775 5607//10776 +f 5868//10777 5778//10777 5824//10778 +f 5671//10779 5728//10780 5823//10781 +f 324//10782 1076//10783 1226//10784 +f 4367//10785 3030//10786 302//10785 +f 1689//10787 1391//10788 823//10789 +f 5728//10790 5870//10791 5823//10792 +f 3293//10793 492//10794 4948//10795 +f 2922//10796 1643//10797 2143//10798 +f 5674//10799 5605//10800 5871//10801 +f 467//10802 2852//10802 1328//10802 +f 5780//10803 5823//10804 5873//10803 +f 5781//10805 5734//10805 5872//10805 +f 1868//10806 4554//10806 5722//10806 +f 3508//10807 1647//10808 1914//10807 +f 2113//10809 4424//10810 3463//10811 +f 2614//10812 1622//10813 1584//10814 +f 373//10815 2871//10815 157//10815 +f 5679//10816 5677//10817 5825//10818 +f 5616//10819 5674//10819 5827//10819 +f 5679//10820 5825//10820 5783//10820 +f 5618//10821 5681//10822 5828//10823 +f 931//10824 1107//10825 2036//10826 +f 4243//10827 4429//10828 4032//10829 +f 2838//10830 1136//10831 1135//10832 +f 5050//10833 2326//10834 3351//10835 +f 3975//10836 2924//10836 2821//10836 +f 5845//10837 818//10837 1528//10837 +f 94//10838 497//10838 4180//10838 +f 1472//10839 576//10840 5040//10841 +f 5735//10842 5685//10843 5874//10844 +f 3887//10845 1326//10846 3062//10847 +f 1082//10848 1083//10849 3515//10850 +f 3726//10851 671//10852 1169//10853 +f 3778//10854 2670//10854 2483//10855 +f 3019//10856 4740//10857 4520//10858 +f 5045//10859 5033//10860 1266//10859 +f 1657//10861 3378//10862 1214//10863 +f 1781//10864 3452//10865 485//10866 +f 5689//10867 5622//10867 5832//10867 +f 3862//10868 1423//10868 643//10868 +f 2703//10869 4030//10870 1304//10871 +f 5548//10872 5621//10873 5687//10874 +f 2563//10875 1173//10876 3695//10877 +f 5449//10878 5787//10879 5789//10880 +f 2304//10881 201//10882 3647//10883 +f 2849//10884 2188//10885 1240//10886 +f 2430//10887 3904//10887 588//10887 +f 375//10888 4554//10888 4081//10888 +f 2681//10889 578//10890 4946//10891 +f 97//10892 4870//10893 801//10894 +f 3454//10895 3103//10896 2530//10897 +f 601//10898 2882//10899 4104//10898 +f 5745//10900 5746//10900 5794//10900 +f 1829//10901 2091//10902 11//10903 +f 3474//10904 846//10905 2580//10906 +f 2295//10907 45//10908 2160//10909 +f 3701//10910 4027//10910 3673//10910 +f 5837//10911 5632//10912 5840//10913 +f 4390//10914 1379//10915 2636//10914 +f 5885//10916 5838//10917 5839//10916 +f 5634//10918 5836//10919 5702//10920 +f 3768//10921 2519//10922 3863//10923 +f 3623//10924 4172//10925 3574//10924 +f 1280//10926 2027//10926 5189//10927 +f 3517//10928 4832//10929 4914//10930 +f 3866//10931 2578//10932 2141//10932 +f 5841//10933 5839//10934 5838//10935 +f 5839//10936 5841//10937 5887//10938 +f 1427//10939 1457//10940 3382//10941 +f 821//10942 5768//10943 2033//10942 +f 5886//10944 5888//10945 5838//10946 +f 5572//10947 5751//10948 5841//10949 +f 5635//10950 5749//10951 5840//10950 +f 4481//10952 2706//10953 2432//10953 +f 5842//10954 5841//10955 5838//10956 +f 5841//10957 5637//10957 5572//10958 +f 4556//10959 2937//10960 478//10961 +f 790//10962 383//10963 2677//10964 +f 4247//10965 5036//10966 1095//10967 +f 4876//10968 2353//10969 2199//10970 +f 4853//10971 2932//10971 1216//10971 +f 1663//10972 3450//10973 4064//10974 +f 1112//10975 2147//10976 1147//10977 +f 3009//10978 4051//10979 4562//10980 +f 5841//10981 5842//10982 5637//10982 +f 3653//10983 2712//10984 3268//10985 +f 3343//10986 1408//10987 2907//10988 +f 5842//10989 5703//10990 5637//10991 +f 4533//10992 2839//10993 2310//10994 +f 987//10995 4384//10996 4375//10997 +f 293//10998 4745//10999 2713//11000 +f 5386//11001 5281//11002 5478//11003 +f 1169//11004 1476//11004 2267//11005 +f 5846//11006 5795//11006 5641//11007 +f 5100//11008 5281//11008 5282//11008 +f 5798//11009 5380//11010 5573//11011 +f 5846//11012 5641//11013 5800//11014 +f 5283//11015 5703//11016 5890//11015 +f 4874//11017 4325//11018 996//11018 +f 263//11019 3669//11020 4034//11021 +f 178//11022 225//11023 1232//11024 +f 5575//11025 5385//11025 5705//11025 +f 5892//11026 3442//11026 3800//11027 +f 3607//11028 2441//11028 1654//11029 +f 5893//11030 5848//11030 5753//11030 +f 1951//11031 3846//11032 2824//11033 +f 5289//11034 5577//11035 5894//11036 +f 5577//11037 5710//11037 5894//11038 +f 268//11039 2738//11040 5570//11041 +f 5289//11042 5894//11043 5754//11044 +f 4716//11045 3063//11046 2811//11047 +f 4352//11048 4115//11049 3021//11050 +f 1491//11051 1703//11052 3946//11053 +f 4368//11054 4299//11054 3888//11054 +f 179//11055 4666//11056 3554//11057 +f 5711//11058 5960//11058 5849//11058 +f 4020//11059 616//11059 5119//11059 +f 5805//11060 5651//11060 4768//11060 +f 5850//11061 5851//11062 5757//11063 +f 2284//11064 3636//11065 3650//11066 +f 5805//11067 5292//11068 5756//11069 +f 4817//11070 1166//11070 4960//11070 +f 4468//11071 1349//11072 4110//11072 +f 2037//11073 1819//11073 1433//11073 +f 1826//11074 1196//11075 2987//11076 +f 5895//11077 5964//11078 5896//11079 +f 2955//11080 2915//11081 5351//11080 +f 5895//11082 5896//11083 5897//11084 +f 5898//11085 5895//11086 5897//11087 +f 7275//11088 1252//11089 7346//11089 +f 5427//11090 71//11091 2514//11092 +f 5897//11093 5896//11094 5899//11095 +f 5898//11096 5897//11097 5899//11098 +f 5898//11099 5899//11100 5900//11101 +f 3597//11102 2475//11102 4525//11102 +f 5901//11103 5900//11104 5899//11105 +f 2264//11106 3201//11107 2360//11108 +f 46//11109 1357//11109 2241//11109 +f 5418//11110 2846//11111 1629//11112 +f 3163//11113 1791//11114 5657//11115 +f 5902//11116 5299//11117 5579//11118 +f 4061//11119 1373//11120 1882//11121 +f 2718//11122 1580//11123 1357//11124 +f 3559//11125 3358//11126 2857//11127 +f 1491//11128 4043//11129 1703//11129 +f 1837//11130 1174//11131 872//11132 +f 4284//11133 1155//11134 2745//11135 +f 3874//11136 3296//11137 1261//11137 +f 2186//11138 4094//11139 2341//11140 +f 5938//11141 5407//11141 5494//11142 +f 3584//11143 838//11144 4067//11145 +f 5858//11146 5713//11147 5489//11148 +f 4790//11149 2024//11149 4750//11149 +f 5054//11150 5811//11151 5904//11152 +f 5054//11153 5904//11154 5715//11155 +f 5169//11156 4463//11157 4462//11158 +f 5812//11159 5905//11160 5658//11161 +f 5812//11162 5658//11162 5306//11162 +f 1745//11163 4376//11163 5188//11164 +f 4023//11165 4692//11166 5486//11167 +f 2037//11168 555//11169 3022//11170 +f 605//11171 2005//11172 4595//11173 +f 1650//11174 3393//11175 280//11176 +f 1481//11177 1747//11177 3490//11178 +f 5906//11179 5583//11179 5815//11180 +f 5608//11181 1086//11182 4999//11183 +f 3080//11184 374//11184 4957//11184 +f 5717//11185 5220//11186 5583//11186 +f 756//11187 859//11188 444//11189 +f 2921//11190 5029//11191 1573//11192 +f 3325//11193 2484//11194 3878//11195 +f 5764//11196 5310//11196 5717//11196 +f 5585//11197 5817//11198 5586//11199 +f 5503//11200 5504//11201 5908//11202 +f 1352//11203 1416//11204 2288//11205 +f 5503//11206 5908//11207 5142//11208 +f 2847//11209 4797//11210 2322//11211 +f 847//11212 2515//11212 2428//11212 +f 4988//11213 2592//11214 4009//11215 +f 4327//11216 431//11217 2377//11218 +f 5764//11219 5940//11220 5500//11221 +f 572//11222 1307//11223 1579//11224 +f 7375//11225 7319//11226 1311//11227 +f 2812//11228 15//11229 1192//11230 +f 2252//11231 442//11232 745//11233 +f 2474//11234 2583//11235 509//11235 +f 1694//11236 2689//11237 157//11238 +f 3477//11239 2572//11240 5093//11241 +f 2713//11242 726//11242 4362//11242 +f 5595//11243 5909//11243 5723//11244 +f 675//11245 1210//11246 3551//11247 +f 3731//11248 3549//11248 1994//11248 +f 1469//11249 4093//11250 4483//11250 +f 5860//11251 5594//11251 5818//11252 +f 4327//11253 3831//11254 2093//11255 +f 1627//11256 4851//11257 2422//11258 +f 5911//11259 5592//11260 5514//11260 +f 142//11261 4520//11262 4421//11261 +f 5910//11263 5513//11264 5663//11265 +f 1156//11266 868//11267 5311//11268 +f 4408//11269 4407//11270 2947//11271 +f 46//11272 1661//11272 760//11272 +f 5910//11273 5663//11274 5863//11274 +f 1596//11275 2891//11276 2744//11277 +f 3118//11278 3121//11278 4346//11278 +f 3160//11279 3420//11280 3262//11281 +f 4718//11282 3622//11283 3095//11284 +f 1885//11285 4764//11285 942//11285 +f 5820//11286 5429//11287 5428//11288 +f 5863//11289 5663//11290 5864//11291 +f 5666//11292 5667//11293 5862//11293 +f 1595//11294 5213//11295 1506//11296 +f 36//11297 4475//11298 4320//11299 +f 5520//11300 5665//11301 5913//11300 +f 2198//11302 44//11302 2601//11303 +f 768//11304 769//11305 3624//11306 +f 856//11307 2552//11308 5590//11309 +f 3472//11310 703//11311 1824//11312 +f 3757//11313 779//11313 2665//11313 +f 5868//11314 5866//11315 5822//11316 +f 5668//11317 5670//11318 5914//11319 +f 5820//11320 5672//11321 5429//11322 +f 1869//11323 1043//11323 1044//11323 +f 5029//11324 3200//11325 1573//11326 +f 5916//11327 5823//11328 5870//11327 +f 514//11329 4640//11330 4998//11330 +f 5981//11331 5673//11332 5609//11333 +f 2244//11334 2176//11335 3288//11336 +f 4927//11337 2253//11338 4766//11339 +f 3266//11340 2561//11340 2547//11341 +f 1678//11342 4131//11343 2059//11344 +f 1922//11345 1733//11345 1299//11345 +f 1420//11346 3611//11347 4560//11347 +f 2524//11348 341//11349 3512//11350 +f 5825//11351 5780//11352 5873//11353 +f 5873//11354 5918//11355 5825//11356 +f 5783//11357 5825//11358 5918//11358 +f 5496//11359 560//11359 7389//11360 +f 3650//11361 3630//11362 2284//11363 +f 5919//11364 5735//11365 5874//11364 +f 5332//11366 4811//11366 4772//11366 +f 5113//11367 3334//11368 1217//11369 +f 229//11370 3914//11371 3661//11372 +f 284//11373 2813//11374 2195//11375 +f 4893//11376 2506//11377 1882//11378 +f 2962//11379 3505//11380 4585//11381 +f 418//11382 5613//11383 4196//11384 +f 5687//11385 5683//11386 5986//11387 +f 4872//11388 1658//11389 3934//11390 +f 5785//11391 6024//11392 5685//11393 +f 558//11394 623//11395 2870//11396 +f 2281//11397 4113//11398 1300//11399 +f 5739//11400 5736//11400 5876//11400 +f 968//11401 537//11402 1511//11403 +f 5692//11404 5877//11404 5785//11405 +f 2365//11406 2865//11407 1372//11408 +f 5549//11409 2947//11409 4683//11409 +f 3383//11410 2210//11411 852//11412 +f 5922//11413 5691//11413 5739//11413 +f 5548//11414 5687//11415 5879//11416 +f 5692//11417 5788//11418 5878//11419 +f 5878//11420 5788//11421 5693//11422 +f 3401//11423 2136//11423 3539//11424 +f 820//11425 2062//11426 3057//11427 +f 941//11428 428//11429 2737//11428 +f 1093//11430 619//11431 4705//11432 +f 4297//11433 5159//11434 2318//11435 +f 606//11436 536//11436 3114//11436 +f 5695//11437 5625//11437 5789//11437 +f 5880//11438 5693//11438 5791//11438 +f 3191//11439 2239//11440 5267//11439 +f 1767//11441 3725//11442 1384//11443 +f 5696//11444 5923//11445 5698//11446 +f 357//11447 3015//11448 4518//11449 +f 5747//11450 5698//11451 5923//11452 +f 1524//11453 4516//11454 3283//11455 +f 2030//11456 817//11457 814//11458 +f 4710//11459 2814//11459 149//11459 +f 517//11460 589//11461 2423//11461 +f 2413//11462 4044//11463 373//11464 +f 3346//11465 5206//11466 3188//11467 +f 5745//11468 5882//11469 5792//11470 +f 5742//11471 5925//11471 5744//11471 +f 1947//11472 1089//11473 4501//11472 +f 5700//11474 5747//11475 6032//11476 +f 2145//11477 1525//11477 870//11477 +f 5223//11478 2911//11479 3609//11480 +f 5951//11481 5835//11482 5632//11483 +f 2126//11484 1880//11485 1848//11484 +f 5835//11486 5631//11487 5632//11488 +f 5884//11489 5634//11490 5701//11491 +f 5634//11492 5884//11493 5836//11494 +f 5951//11495 5632//11496 5927//11497 +f 5928//11498 5885//11499 5839//11500 +f 5927//11501 5632//11501 5837//11501 +f 3043//11502 4979//11503 4668//11503 +f 3772//11504 1669//11504 1145//11504 +f 5838//11505 5885//11506 5886//11507 +f 5839//11508 5887//11508 5952//11508 +f 5840//11509 5954//11510 5837//11511 +f 4789//11512 2552//11512 3485//11512 +f 1160//11513 4007//11513 3279//11514 +f 1316//11515 2545//11516 4111//11517 +f 4919//11518 2607//11519 2289//11520 +f 3045//11521 4127//11522 1491//11523 +f 5841//11524 5751//11525 5887//11526 +f 256//11527 2474//11528 509//11529 +f 3692//11530 5743//11531 4463//11532 +f 137//11533 3609//11533 4166//11534 +f 5569//11535 5702//11536 5929//11536 +f 4062//11537 4578//11538 4335//11539 +f 140//11540 3470//11541 4686//11541 +f 5888//11542 5703//11542 5842//11543 +f 5838//11544 5888//11545 5842//11546 +f 3956//11547 1429//11547 3577//11547 +f 1644//11548 2938//11548 3410//11548 +f 3612//11549 825//11550 3642//11551 +f 3151//11552 3645//11553 4135//11553 +f 2403//11554 1922//11555 4991//11555 +f 973//11556 4602//11557 3471//11557 +f 4645//11558 2161//11559 2213//11559 +f 122//11560 2711//11560 827//11560 +f 42//11561 3992//11561 1900//11561 +f 2788//11562 2538//11563 147//11564 +f 1812//11565 1610//11565 809//11565 +f 5708//11566 5283//11567 5890//11568 +f 5800//11569 5645//11570 5847//11571 +f 2227//11572 2289//11573 2607//11574 +f 3123//11575 1706//11576 5064//11576 +f 40//11577 1639//11578 3068//11579 +f 752//11580 3898//11580 269//11581 +f 3187//11582 5130//11583 4208//11584 +f 3165//11585 4855//11586 5662//11587 +f 177//11588 614//11589 2939//11590 +f 3678//11591 136//11591 1142//11592 +f 2594//11593 4238//11594 3381//11595 +f 2165//11596 4368//11597 3888//11597 +f 5804//11598 5960//11599 5711//11600 +f 2897//11601 1208//11602 2612//11601 +f 5930//11603 5849//11603 5960//11603 +f 5930//11604 5850//11604 5849//11604 +f 3513//11605 5271//11606 4786//11607 +f 5652//11608 6110//11609 5481//11610 +f 5481//11611 6110//11612 5931//11613 +f 5930//11614 5652//11615 5851//11616 +f 5931//11617 5932//11618 5481//11619 +f 4768//11620 5292//11621 5805//11622 +f 5854//11623 5758//11623 5759//11624 +f 1356//11625 1295//11625 206//11626 +f 957//11627 14//11628 2628//11629 +f 6074//11630 5578//11631 5042//11632 +f 5759//11633 5201//11633 5855//11633 +f 2248//11634 4558//11635 2507//11635 +f 5963//11636 5964//11636 5895//11637 +f 2638//11638 2639//11639 3706//11639 +f 929//11640 2730//11641 5368//11642 +f 5301//11643 300//11644 3061//11645 +f 5895//11646 5898//11647 5933//11648 +f 3071//11649 2830//11649 2634//11649 +f 5934//11650 5899//11651 5896//11652 +f 1648//11653 3744//11654 3092//11655 +f 4709//11656 1019//11657 5029//11658 +f 5901//11659 5899//11660 5934//11661 +f 5935//11662 5900//11663 5901//11662 +f 4384//11664 6794//11665 2629//11666 +f 3343//11667 2907//11668 4270//11669 +f 999//11670 4119//11670 4348//11670 +f 5404//11671 5856//11672 5761//11673 +f 4149//11674 1658//11674 3071//11674 +f 242//11675 3548//11676 1653//11675 +f 2447//11677 2718//11677 652//11678 +f 23//11679 5412//11680 1587//11681 +f 1273//11682 3155//11683 113//11682 +f 1221//11684 864//11684 1441//11684 +f 2244//11685 3288//11686 1359//11685 +f 2465//11687 2126//11688 2803//11689 +f 5937//11690 5052//11691 5938//11692 +f 717//11693 1624//11694 4174//11694 +f 1565//11695 258//11695 2899//11695 +f 4383//11696 15//11697 1785//11698 +f 5494//11699 5902//11700 5938//11701 +f 5811//11702 5495//11703 5808//11704 +f 7357//11705 2232//11705 4126//11706 +f 3495//11707 4047//11708 2487//11709 +f 3674//11710 4002//11710 2551//11710 +f 5903//11711 5302//11711 5763//11712 +f 6007//11713 5714//11714 5060//11715 +f 4856//11716 5196//11716 4382//11716 +f 4633//11717 1463//11718 3175//11719 +f 1602//11720 1850//11721 1939//11721 +f 939//11722 938//11723 3613//11724 +f 4433//11725 2523//11726 2173//11727 +f 5814//11728 5906//11729 5815//11730 +f 3661//11731 3056//11732 4100//11733 +f 1330//11734 2772//11735 4016//11736 +f 1201//11737 553//11738 2443//11739 +f 3613//11740 2167//11740 184//11740 +f 4381//11741 1766//11741 716//11741 +f 4750//11742 459//11743 4430//11744 +f 3791//11745 261//11745 1660//11745 +f 6085//11746 5315//11747 5659//11748 +f 5717//11749 5907//11750 5764//11751 +f 3785//11752 336//11753 906//11754 +f 5908//11755 5504//11756 5941//11757 +f 301//11758 1334//11759 3580//11760 +f 687//11761 686//11762 2228//11763 +f 4244//11764 579//11765 3270//11766 +f 5942//11767 5659//11768 5416//11769 +f 5942//11770 5416//11771 5767//11772 +f 357//11773 4518//11774 4728//11775 +f 5720//11776 5765//11777 5593//11778 +f 5767//11779 5594//11780 5860//11780 +f 5595//11781 5859//11781 5909//11781 +f 5513//11782 6089//11783 5766//11784 +f 2130//11785 3789//11786 3533//11787 +f 463//11788 4880//11788 660//11788 +f 4244//11789 332//11790 743//11791 +f 4903//11792 89//11793 2992//11794 +f 849//11795 3995//11796 3317//11797 +f 3395//11798 665//11799 4156//11800 +f 223//11801 1798//11802 2172//11803 +f 79//11804 3443//11805 110//11806 +f 3579//11807 5128//11807 4037//11808 +f 1739//11809 481//11809 2285//11810 +f 5140//11811 3095//11811 2944//11812 +f 5773//11813 5978//11814 5864//11815 +f 5978//11816 5773//11816 5866//11816 +f 5470//11817 1978//11817 2783//11817 +f 5127//11818 707//11819 207//11820 +f 528//11821 2216//11822 3866//11823 +f 1890//11824 2353//11825 5534//11826 +f 3960//11827 1041//11827 1278//11828 +f 3814//11829 2855//11830 251//11829 +f 1859//11831 4907//11832 2137//11833 +f 4616//11834 1192//11835 3786//11836 +f 1866//11837 4846//11838 1232//11837 +f 2696//11839 4371//11840 1744//11839 +f 1444//11841 4187//11842 3480//11842 +f 4790//11843 841//11844 892//11844 +f 3073//11845 3731//11845 428//11845 +f 4870//11846 5156//11847 2119//11847 +f 1969//11848 604//11849 2589//11850 +f 134//11851 305//11851 4061//11851 +f 1731//11852 3353//11853 1608//11854 +f 1499//11855 3846//11856 4119//11857 +f 2835//11858 3125//11859 4026//11860 +f 5603//11861 5945//11862 5915//11863 +f 5917//11864 5605//11865 5869//11866 +f 1630//11867 2248//11868 974//11869 +f 5917//11870 5871//11871 5605//11872 +f 5873//11873 5823//11873 5916//11873 +f 4843//11874 4484//11875 4408//11876 +f 90//11877 2246//11878 1106//11879 +f 1156//11880 5126//11881 1758//11882 +f 3457//11883 2121//11883 3329//11883 +f 287//11884 766//11885 1628//11886 +f 2804//11887 3197//11888 3785//11889 +f 2707//11890 1330//11891 3433//11892 +f 4310//11893 5581//11894 3707//11895 +f 3362//11896 4764//11897 4427//11896 +f 2284//11898 4781//11899 3636//11900 +f 3445//11901 781//11902 3412//11901 +f 37//11903 968//11904 1511//11905 +f 5827//11906 5674//11907 5871//11908 +f 1651//11909 346//11910 1683//11911 +f 1009//11912 270//11912 3969//11912 +f 1583//11913 799//11914 5128//11915 +f 2667//11916 5338//11917 2231//11918 +f 1524//11919 1484//11919 1523//11919 +f 7402//11920 1113//11921 7403//11922 +f 5874//11923 5685//11923 5920//11923 +f 2865//11924 4105//11924 1372//11925 +f 2105//11926 1094//11926 328//11926 +f 527//11927 4377//11928 980//11929 +f 3782//11930 756//11930 444//11930 +f 854//11931 2300//11932 1828//11933 +f 5877//11934 6024//11935 5785//11935 +f 3816//11936 3890//11937 2676//11938 +f 1281//11939 816//11939 1211//11939 +f 4338//11940 2224//11941 4448//11942 +f 5692//11943 5878//11944 5877//11945 +f 3269//11946 4923//11947 310//11948 +f 3439//11949 5120//11949 3782//11950 +f 3715//11951 3334//11952 5113//11953 +f 3223//11954 4677//11955 2581//11955 +f 5878//11956 5693//11957 5949//11958 +f 1720//11959 1183//11960 1419//11961 +f 5880//11962 5949//11962 5693//11962 +f 5696//11963 5879//11964 5923//11963 +f 2577//11965 73//11965 4959//11965 +f 2991//11966 2285//11967 153//11968 +f 805//11969 990//11970 2615//11971 +f 4444//11972 811//11972 810//11972 +f 5792//11973 5880//11974 5791//11975 +f 4698//11976 4752//11977 5077//11978 +f 5700//11979 5926//11979 5793//11979 +f 2030//11980 814//11981 3428//11982 +f 1985//11983 3531//11983 364//11983 +f 5502//11984 2435//11984 2506//11984 +f 3162//11985 413//11986 3930//11987 +f 865//11988 4885//11989 3653//11990 +f 540//11991 1861//11992 2761//11993 +f 2424//11994 749//11994 2420//11994 +f 5701//11995 5744//11995 5883//11995 +f 5884//11996 5701//11997 5883//11998 +f 991//11999 4340//12000 1787//12001 +f 3322//12002 1847//12003 1549//12004 +f 5952//12005 5928//12006 5839//12006 +f 2254//12007 2071//12008 1054//12009 +f 1647//12010 3244//12011 2091//12010 +f 2120//12012 175//12012 3699//12013 +f 5953//12014 5886//12015 5885//12016 +f 2672//12017 2199//12018 3268//12019 +f 194//12020 4070//12021 1034//12020 +f 1014//12022 4179//12023 323//12024 +f 3055//12025 4009//12025 3445//12025 +f 2161//12026 558//12027 2870//12028 +f 5702//12029 5836//12030 5929//12031 +f 5280//12032 5955//12032 5638//12033 +f 3515//12034 334//12035 2810//12036 +f 5569//12037 5929//12037 5639//12038 +f 3160//12039 3262//12040 2994//12041 +f 5888//12042 5956//12042 5703//12042 +f 2409//12043 5031//12044 3017//12045 +f 204//12046 4922//12047 222//12048 +f 603//12049 985//12049 2112//12049 +f 5796//12050 5795//12051 5957//12052 +f 1952//12053 94//12054 4180//12055 +f 3585//12056 186//12056 4945//12056 +f 5706//12057 5797//12058 5386//12059 +f 5831//12060 2034//12061 2977//12060 +f 5477//12062 5644//12063 5958//12062 +f 5802//12064 5575//12064 5705//12064 +f 5891//12065 5706//12065 5389//12065 +f 6038//12066 5891//12067 5389//12068 +f 5708//12069 6071//12069 5103//12069 +f 5223//12070 2991//12071 2135//12072 +f 6038//12073 5389//12074 5803//12075 +f 5848//12076 5709//12077 5753//12078 +f 2859//12079 1033//12080 1119//12079 +f 2764//12081 1712//12082 2110//12081 +f 356//12083 1714//12084 1738//12085 +f 1622//12086 1628//12086 5053//12087 +f 5754//12088 5894//12088 5391//12088 +f 3952//12089 4127//12090 564//12091 +f 458//12092 3721//12092 4772//12092 +f 2714//12093 3977//12094 2371//12094 +f 5960//12095 5804//12096 6072//12097 +f 3661//12098 1778//12099 1244//12100 +f 171//12101 1912//12102 2171//12103 +f 5960//12104 5961//12105 5930//12106 +f 5851//12107 5850//12108 5930//12109 +f 765//12110 4353//12111 4168//12112 +f 1379//12113 96//12114 131//12115 +f 5806//12116 5483//12117 5932//12118 +f 4057//12119 3691//12119 4413//12119 +f 4752//12120 1857//12121 2293//12121 +f 5999//12122 5759//12122 5855//12122 +f 125//12123 5308//12123 1206//12123 +f 3980//12124 1605//12124 4590//12125 +f 258//12126 2225//12127 3035//12128 +f 4050//12129 3364//12130 2893//12131 +f 1803//12132 3671//12133 3231//12134 +f 4727//12135 1504//12136 1503//12137 +f 5964//12138 6077//12139 5965//12140 +f 5933//12141 5963//12142 5895//12143 +f 1652//12144 4937//12144 2102//12144 +f 976//12145 56//12146 770//12145 +f 5896//12147 5964//12147 5965//12147 +f 22//12148 2014//12149 3123//12148 +f 461//12150 3150//12151 1623//12152 +f 5896//12153 5965//12154 5934//12155 +f 5598//12156 3922//12156 1184//12156 +f 2696//12157 1744//12158 4455//12158 +f 5219//12159 3795//12159 2465//12160 +f 5900//12161 5967//12161 5898//12162 +f 1036//8085 6828//8085 1363//8085 +f 4525//12163 283//12163 195//12163 +f 4425//12164 1617//12165 1274//12166 +f 1090//12167 3895//12168 943//12169 +f 5411//12170 3227//12171 5063//12170 +f 1722//12172 1721//12173 2609//12174 +f 5856//12175 5969//12176 5761//12177 +f 5761//12178 5970//12179 5762//12180 +f 674//12181 2435//12182 4523//12181 +f 5971//12183 5808//12184 5762//12185 +f 1998//12186 1386//12187 5507//12188 +f 3480//12189 4337//12190 3844//12189 +f 1386//12191 1998//12192 1561//12192 +f 5497//12193 5714//12193 6005//12193 +f 5714//12194 5972//12195 6005//12196 +f 4131//12197 2282//12197 5560//12197 +f 5713//12198 5858//12199 5973//12199 +f 5763//12200 5809//12201 5857//12202 +f 5060//12203 5974//12204 6007//12204 +f 3411//12205 3402//12206 5107//12207 +f 5812//12208 5302//12209 5903//12210 +f 80//12211 1921//12212 2988//12212 +f 5939//12213 5817//12214 5816//12215 +f 6008//12216 5939//12217 5816//12218 +f 6008//12219 5816//12220 5658//12220 +f 2615//12221 990//12222 103//12223 +f 1655//12224 2341//12225 5403//12226 +f 5975//12227 5060//12228 5313//12227 +f 5814//12229 5813//12230 6011//12231 +f 4780//12232 4065//12233 3782//12234 +f 4096//12235 4746//12235 504//12235 +f 2332//12236 3900//12237 2334//12238 +f 1867//12239 50//12240 3971//12241 +f 1044//12242 716//12243 1869//12244 +f 907//12245 3953//12245 1560//12246 +f 5743//12247 3692//12248 108//12249 +f 6013//12250 6085//12251 5659//12252 +f 5940//12253 5764//12254 5907//12255 +f 4470//12256 2371//12257 3977//12258 +f 5765//12259 5142//12259 5908//12259 +f 1953//12260 715//12260 1659//12260 +f 1736//12261 5009//12262 4053//12263 +f 5860//12264 5942//12265 5767//12266 +f 4578//12267 2223//12267 3724//12267 +f 2271//12268 1180//12268 967//12268 +f 1489//12269 3989//12269 1246//12269 +f 79//12270 4709//12271 5029//12271 +f 3377//12272 4280//12273 711//12274 +f 5589//12275 5592//12275 5977//12276 +f 6089//12277 5513//12278 5910//12279 +f 4649//12280 866//12280 3772//12280 +f 725//12281 721//12281 2816//12282 +f 3222//12283 2891//12283 467//12284 +f 3605//12285 4459//12286 4655//12285 +f 3274//12287 17//12288 327//12289 +f 1017//12290 3276//12291 4539//12292 +f 2917//12293 1145//12293 1397//12293 +f 1228//12294 3964//12295 1749//12296 +f 291//12297 2099//12298 2114//12299 +f 1854//12300 2159//12301 2258//12302 +f 4426//12303 3461//12303 3394//12304 +f 5770//12305 5723//12306 6056//12305 +f 4041//12307 2437//12307 636//12307 +f 3885//12308 1600//12309 594//12310 +f 5863//12311 5864//12312 5978//12313 +f 4850//12314 632//12315 906//12316 +f 2517//12317 3530//12318 3504//12317 +f 5978//12319 5866//12319 5868//12320 +f 5979//12321 5667//12322 5668//12323 +f 4169//12324 609//12324 2383//12324 +f 5725//12325 5912//12326 5980//12325 +f 5520//12327 5913//12328 5865//12329 +f 5869//12330 5605//12331 5725//12331 +f 5600//12332 5601//12333 5944//12334 +f 59//12335 962//12336 2464//12337 +f 5670//12338 5981//12339 5914//12340 +f 5520//12341 5865//12342 5867//12342 +f 3300//12343 1453//12344 3301//12345 +f 2236//12346 2964//12347 2139//12348 +f 2039//12349 3507//12349 757//12350 +f 107//12351 2780//12352 1467//12353 +f 3294//12354 3742//12355 4097//12356 +f 5824//12357 5781//12358 5872//12359 +f 3293//12360 2946//12361 4843//12362 +f 1096//12363 3018//12364 2212//12365 +f 2406//12366 2741//12367 1086//12368 +f 4301//12369 2484//12370 3325//12371 +f 4411//12372 300//12373 130//12374 +f 953//12375 4621//12376 4255//12377 +f 4392//12378 3655//12379 297//12380 +f 1504//12381 1594//12382 4310//12383 +f 5733//12384 5919//12385 5947//12386 +f 1994//12387 3132//12387 4391//12387 +f 1803//12388 3231//12389 650//12390 +f 1299//12391 1897//12392 3169//12393 +f 5683//12394 5616//12395 5948//12395 +f 5212//12396 2742//12397 4977//12396 +f 5736//12398 5783//12398 5921//12398 +f 2529//12399 4517//12399 4297//12400 +f 3458//12401 4339//12401 3483//12402 +f 4919//12403 2289//12404 1482//12405 +f 3428//12406 5984//12407 1818//12407 +f 5920//12408 5685//12409 6024//12408 +f 5921//12410 5875//12411 5736//12412 +f 5876//12413 5736//12414 5875//12415 +f 1290//12416 2354//12416 5062//12416 +f 5270//12417 854//12418 1828//12419 +f 4666//12420 5184//12420 140//12420 +f 5922//12421 5739//12422 5876//12423 +f 388//12424 3135//12425 1713//12426 +f 5787//12427 5691//12428 6029//12429 +f 1205//12430 1550//12430 173//12430 +f 3022//12431 4975//12432 2633//12433 +f 544//12434 5655//12435 3364//12436 +f 4560//12437 1179//12438 4838//12439 +f 5787//12440 6029//12440 5789//12440 +f 4098//12441 3555//12442 4727//12443 +f 2936//12444 5121//12445 64//12446 +f 1586//12447 1454//12448 5480//12449 +f 3796//12450 1759//12451 2543//12452 +f 4843//12453 492//12454 3502//12455 +f 5741//12456 5924//12457 5554//12458 +f 5362//12459 2429//12460 1796//12461 +f 5949//12462 5880//12463 5988//12464 +f 811//12465 86//12466 810//12467 +f 282//12468 7399//12468 5707//12468 +f 2006//12469 631//12470 41//12471 +f 5880//12472 5792//12473 5989//12474 +f 1763//12475 197//12476 3892//12477 +f 2066//12478 3548//12479 1428//12479 +f 5747//12480 5923//12480 5950//12480 +f 5925//12481 5742//12482 5695//12483 +f 333//12484 5540//12485 1803//12486 +f 4254//12487 400//12487 4133//12487 +f 1267//12488 5656//12489 894//12490 +f 5926//12491 5700//12492 6032//12493 +f 5085//12494 2467//12495 5540//12496 +f 1760//12497 624//12498 2405//12499 +f 1733//12500 1897//12501 1299//12502 +f 5794//12503 5835//12504 5991//12505 +f 606//12506 1686//12506 3110//12506 +f 1968//12507 1923//12508 3296//12509 +f 3588//12510 1716//12511 2765//12512 +f 5951//12513 5991//12513 5835//12513 +f 4556//12514 117//12515 615//12516 +f 5928//12517 5992//12518 5885//12519 +f 4545//12520 2876//12521 1600//12522 +f 2475//12523 2154//12524 75//12525 +f 3774//12526 1069//12527 2871//12528 +f 2542//12529 435//12529 361//12530 +f 2812//12531 1192//12532 4616//12533 +f 5887//12534 5993//12535 5952//12536 +f 420//12537 4265//12537 3947//12537 +f 4260//12538 2186//12539 5403//12540 +f 3059//12541 3807//12542 3060//12541 +f 5955//12543 5993//12544 5751//12545 +f 1690//12546 2965//12547 4558//12548 +f 5888//12549 5886//12550 5953//12551 +f 5751//12552 5638//12553 5955//12554 +f 6035//12555 5993//12555 5955//12555 +f 2146//12556 4929//12557 4597//12558 +f 3854//12559 4689//12559 3855//12559 +f 5323//12560 2150//12561 3712//12562 +f 3473//12563 165//12564 1875//12565 +f 5955//12566 5280//12567 5797//12566 +f 1538//12568 2779//12569 5082//12570 +f 5994//12571 5749//12571 5796//12572 +f 3370//12573 4087//12573 4960//12574 +f 1504//12575 3707//12576 1594//12577 +f 3794//12578 411//12579 3339//12580 +f 3561//12581 2413//12582 3510//12582 +f 3412//12583 3055//12584 3445//12585 +f 4188//12586 4772//12586 3721//12586 +f 1850//12587 1012//12587 1940//12587 +f 5737//12588 1169//12589 1185//12590 +f 5891//12591 5797//12592 5706//12593 +f 1169//12594 3407//12594 1185//12595 +f 1823//12596 581//12597 852//12598 +f 3558//12599 20//12600 3693//12601 +f 4203//12602 2061//12603 4546//12604 +f 5657//12605 3413//12606 2245//12607 +f 5647//12608 5477//12608 5958//12609 +f 4814//12610 1734//12611 2260//12612 +f 801//12613 1480//12614 960//12615 +f 5996//12616 5891//12616 6038//12616 +f 5284//12617 5103//12618 6071//12617 +f 6041//12619 5803//12619 5576//12619 +f 1948//12620 5215//12621 3926//12622 +f 1856//12623 2510//12624 2262//12625 +f 1071//12626 3985//12627 4695//12628 +f 5576//12629 5023//12630 5997//12631 +f 5023//12632 5650//12632 5997//12632 +f 356//12633 3903//12634 5301//12635 +f 419//12636 5319//12637 997//12638 +f 4998//12639 4640//12640 4512//12641 +f 231//12642 3277//12643 4665//12644 +f 5854//12645 5759//12646 5999//12647 +f 2006//12648 41//12649 4222//12649 +f 910//12650 2833//12650 1430//12650 +f 4222//12651 2102//12651 2006//12652 +f 5962//12653 5297//12654 5760//12655 +f 1290//12656 4457//12657 1535//12656 +f 5964//12658 5963//12659 6000//12660 +f 3002//12661 241//12662 964//12663 +f 835//12664 7280//12665 324//12666 +f 5933//12667 6001//12668 5963//12669 +f 5933//12670 5898//12671 6002//12672 +f 6003//12673 5934//12673 5965//12673 +f 6002//12674 5898//12675 5967//12676 +f 5056//12677 466//12677 1593//12677 +f 485//12678 2643//12679 1781//12680 +f 5935//12681 5967//12682 5900//12683 +f 3664//12684 3574//12685 4172//12686 +f 6081//12687 5208//12688 5807//12689 +f 5228//12690 428//12691 941//12692 +f 1540//12693 4//12694 3//12695 +f 5761//12696 5969//12697 5970//12698 +f 5971//12699 5762//12700 5970//12701 +f 2458//12702 2097//12703 2941//12704 +f 5497//12705 6005//12706 5809//12707 +f 1931//12708 2505//12709 2315//12709 +f 477//12710 172//12710 5351//12710 +f 7289//12711 4055//12711 874//12711 +f 993//12712 1308//12713 4826//12712 +f 2147//12714 2025//12715 3834//12715 +f 3021//12716 4115//12716 5492//12716 +f 1960//12717 817//12717 2030//12717 +f 727//12718 5570//12718 2428//12718 +f 5325//12719 5028//12720 961//12721 +f 679//12722 3517//12723 3189//12723 +f 1825//12724 4636//12725 281//12726 +f 5974//12727 5060//12728 5975//12729 +f 3083//12730 3356//12730 578//12730 +f 6010//12731 5906//12732 5814//12733 +f 2352//12734 2740//12735 295//12734 +f 5049//12736 822//12736 3995//12737 +f 2384//12738 3438//12738 2270//12739 +f 5313//12740 5315//12741 5975//12742 +f 2754//12743 3932//12744 2838//12745 +f 1787//12746 4340//12746 3793//12746 +f 5766//12747 5858//12748 5582//12749 +f 3609//12750 2911//12750 100//12750 +f 2772//12751 4303//12752 3589//12753 +f 5942//12754 6013//12755 5659//12756 +f 1098//12757 3027//12757 530//12757 +f 1577//12758 4365//12759 733//12760 +f 3384//12761 3270//12762 1985//12763 +f 5940//12764 5861//12765 5587//12764 +f 5976//12766 5593//12767 5765//12768 +f 4433//12769 2173//12770 2303//12769 +f 4690//12771 4007//12771 1786//12771 +f 1302//12772 1089//12772 1947//12772 +f 5723//12773 5909//12774 6015//12774 +f 4695//12775 1886//12776 975//12777 +f 2786//12778 122//12778 827//12778 +f 5593//12779 5976//12779 6014//12779 +f 1635//12780 61//12781 12//12782 +f 5769//12783 5593//12784 6014//12785 +f 5911//12786 5514//12787 6016//12788 +f 3747//12789 1740//12789 2435//12789 +f 5062//12790 4452//12791 220//12792 +f 6016//12793 5514//12794 5517//12795 +f 4706//12796 7398//12797 2332//12798 +f 1074//12799 1275//12800 3469//12801 +f 6014//12802 5428//12802 5769//12802 +f 858//12803 5083//12804 4230//12805 +f 4434//12806 2334//12806 3901//12806 +f 3894//12807 1090//12808 2380//12809 +f 253//12810 7401//12811 321//12812 +f 3178//12813 1248//12814 990//12815 +f 5979//12816 5862//12816 5667//12817 +f 5022//12818 3246//12819 3245//12820 +f 74//12821 4956//12821 3289//12822 +f 314//12823 385//12824 1134//12825 +f 1812//12826 263//12826 274//12827 +f 5725//12828 5980//12829 5869//12828 +f 5771//12830 5600//12830 5944//12831 +f 5868//12832 5824//12833 6018//12834 +f 2098//12835 2775//12836 4832//12837 +f 5670//12838 5673//12838 5981//12838 +f 2430//12839 4702//12840 4229//12840 +f 992//12841 3056//12842 3914//12843 +f 601//12844 4104//12844 4370//12845 +f 2978//12846 1509//12847 1254//12848 +f 1200//12849 5019//12850 1038//12851 +f 1317//12852 5195//12852 2018//12852 +f 5870//12853 5672//12853 5982//12853 +f 5872//12854 6018//12855 5824//12854 +f 5945//12856 5775//12857 5867//12858 +f 5945//12859 5603//12860 5775//12861 +f 634//12862 1304//12863 816//12864 +f 1473//12865 1843//12866 3178//12867 +f 1356//12868 7166//12868 7382//12868 +f 3154//12869 3454//12870 4529//12871 +f 648//12872 497//12872 252//12873 +f 3231//12874 3345//12875 4279//12874 +f 3311//12876 3159//12877 129//12878 +f 6020//12879 5609//12880 5733//12880 +f 1919//12881 40//12882 3068//12882 +f 1419//12883 3184//12883 1420//12883 +f 5699//12884 5946//12885 4299//12886 +f 1594//12887 5581//12888 4310//12889 +f 5983//12890 5828//12891 5681//12892 +f 4551//12893 3986//12893 360//12894 +f 5616//12895 5827//12895 5948//12895 +f 5681//12896 5784//12897 5983//12898 +f 1540//12899 515//12900 1541//12901 +f 3719//12902 1345//12902 4081//12903 +f 5919//12904 5874//12904 6062//12905 +f 3292//12906 4663//12907 492//12908 +f 1382//12909 2516//12910 301//12910 +f 2617//12911 4891//12912 4128//12913 +f 5683//12914 5948//12914 5986//12914 +f 3947//12915 1568//12915 360//12915 +f 6025//12916 6024//12917 5877//12918 +f 5985//12919 5687//12919 5986//12920 +f 6026//12921 5689//12922 5832//12923 +f 2744//12924 437//12925 2189//12926 +f 4193//12927 2826//12928 4398//12929 +f 5327//12930 561//12930 1211//12930 +f 1373//12931 1023//12931 3896//12931 +f 2571//12932 1574//12933 1704//12934 +f 1560//12935 3953//12936 1031//12937 +f 6027//12938 6029//12939 5691//12940 +f 6026//12941 5832//12941 5833//12941 +f 142//12942 4421//12943 2881//12944 +f 613//12945 2786//12946 827//12947 +f 5879//12948 5987//12948 5923//12949 +f 5035//12950 3176//12950 5505//12951 +f 5695//12952 5789//12952 6030//12953 +f 3739//12954 526//12955 464//12956 +f 320//12957 319//12958 3685//12959 +f 1847//12960 3619//12961 1823//12962 +f 2017//12963 3007//12964 3599//12965 +f 5988//12966 5880//12967 5989//12968 +f 172//12969 3904//12969 2430//12969 +f 3324//12970 3369//12971 5431//12970 +f 5950//12972 5923//12973 6031//12974 +f 5881//12975 5793//12975 5926//12975 +f 6032//12976 5747//12976 5950//12977 +f 697//12978 1106//12979 2246//12980 +f 3329//12981 2121//12982 2222//12983 +f 476//12984 4444//12985 3797//12984 +f 5792//12986 5882//12987 5990//12988 +f 5989//12989 5792//12990 5990//12991 +f 6033//12992 5744//12993 5925//12994 +f 5882//12995 5745//12996 5794//12997 +f 1095//12998 4023//12999 4060//13000 +f 4646//13001 3065//13002 101//13003 +f 3614//13004 1830//13005 3762//13006 +f 5107//13007 5344//13007 1945//13008 +f 637//13009 2440//13010 2237//13011 +f 2939//13012 614//13013 832//13014 +f 3237//13015 3353//13015 1731//13015 +f 5992//13016 5953//13017 5885//13018 +f 529//13019 1311//13019 1208//13019 +f 4690//13020 1786//13020 1876//13021 +f 5751//13022 5993//13023 5887//13022 +f 4022//13024 3659//13025 1956//13026 +f 749//13027 2421//13028 2420//13029 +f 5400//13030 2736//13031 4825//13032 +f 3149//13033 2425//13034 441//13035 +f 1570//13036 3735//13037 440//13038 +f 5174//13039 396//13040 3645//13041 +f 1481//13042 3490//13043 238//13044 +f 3976//13045 2637//13046 5102//13047 +f 6070//13048 5888//13049 5953//13050 +f 5840//13051 5749//13052 5994//13053 +f 5956//13054 5888//13054 6070//13054 +f 3335//13055 2639//13055 4814//13055 +f 5703//13056 5956//13057 5890//13058 +f 4508//13059 2680//13060 4487//13061 +f 2664//13062 4899//13063 4271//13064 +f 5891//13065 6037//13066 5797//13067 +f 2003//13068 2893//13069 2573//13070 +f 5722//13071 4554//13072 7142//13073 +f 4339//13074 4787//13075 3483//13076 +f 237//13077 3611//13077 398//13077 +f 1290//13078 2952//13078 2796//13078 +f 5995//13079 5846//13079 5800//13079 +f 4270//13080 1930//13080 2556//13081 +f 5752//13082 5647//13083 5958//13084 +f 2737//13085 3247//13086 1048//13087 +f 1559//13088 1474//13089 1517//13089 +f 4375//13090 2629//13091 2919//13092 +f 1862//13093 3108//13093 1489//13093 +f 751//13094 2504//13095 1550//13096 +f 5069//13097 1220//13097 3121//13097 +f 4772//13098 1122//13099 458//13099 +f 5709//13100 5848//13101 5959//13102 +f 4483//13103 2549//13104 1469//13105 +f 5959//13106 5710//13107 5709//13106 +f 1510//13108 1509//13109 2900//13110 +f 1765//13111 470//13111 882//13112 +f 5804//13113 5391//13114 5894//13115 +f 5083//13116 419//13117 997//13118 +f 3213//13119 4810//13119 1774//13119 +f 5961//13120 5960//13121 6072//13122 +f 222//13123 857//13124 204//13123 +f 4924//13125 3895//13126 545//13127 +f 3863//13128 5214//13129 907//13130 +f 2455//13131 1902//13132 3273//13132 +f 2031//13133 2366//13134 5339//13135 +f 1082//13136 4103//13137 1827//13138 +f 4103//13139 743//13140 828//13141 +f 3765//13142 278//13143 78//13144 +f 4153//13145 572//13146 2189//13146 +f 3093//13147 4909//13147 703//13147 +f 5427//13148 1862//13149 602//13150 +f 5964//13151 6000//13152 6076//13153 +f 984//13154 4000//13154 4155//13154 +f 6077//13155 5964//13156 6076//13157 +f 6078//13158 6000//13159 5963//13160 +f 2144//13161 1762//13161 5098//13161 +f 5224//13162 2591//13163 2590//13164 +f 6043//13165 5901//13166 5934//13167 +f 6044//13168 5935//13168 5901//13169 +f 4867//13170 3028//13170 3766//13170 +f 1945//13171 3411//13171 5107//13172 +f 3389//13173 717//13174 3627//13175 +f 5208//13176 6081//13176 5579//13177 +f 5968//13178 4699//13179 5490//13178 +f 5970//13180 5969//13181 6116//13182 +f 687//13183 2853//13184 2480//13185 +f 2653//13186 3553//13187 2652//13188 +f 474//13189 1897//13190 1733//13191 +f 3996//13192 165//13193 2590//13194 +f 3637//13195 2574//13196 936//13196 +f 5971//13197 6118//13198 5811//13199 +f 1929//13200 4499//13201 974//13202 +f 2668//13203 4986//13204 1339//13204 +f 6007//13205 5972//13206 5714//13207 +f 5808//13208 5971//13209 5811//13210 +f 2439//13211 3319//13212 988//13213 +f 3552//13214 7358//13214 4129//13214 +f 4983//13215 43//13216 1125//13217 +f 992//13218 2178//13218 2582//13218 +f 4081//13219 2959//13220 375//13221 +f 2471//13222 2472//13223 383//13224 +f 3524//13225 3348//13226 1656//13226 +f 1316//13227 4703//13228 1797//13229 +f 1222//13230 1644//13231 3410//13232 +f 5715//13233 5904//13234 6009//13235 +f 4011//13236 4818//13237 5790//13238 +f 5813//13239 5715//13240 6011//13241 +f 6010//13242 5814//13242 6011//13243 +f 4702//13244 588//13245 69//13246 +f 6011//13247 5715//13248 6009//13249 +f 2453//13250 167//13251 2898//13252 +f 2117//13253 5087//13253 506//13254 +f 2909//13255 1022//13256 3426//13257 +f 5858//13258 5409//13259 5582//13260 +f 437//13261 1046//13261 4153//13261 +f 5717//13262 6086//13263 5907//13264 +f 3347//13265 617//13266 4314//13267 +f 8//13268 3177//13269 2757//13270 +f 1353//13271 3118//13271 1983//13272 +f 3897//13273 5613//13274 418//13275 +f 5908//13276 6049//13277 5765//13278 +f 15//13279 2812//13280 1785//13281 +f 5589//13282 5977//13283 5504//13284 +f 5977//13285 5941//13286 5504//13287 +f 2359//13288 3266//13289 2548//13290 +f 695//13291 2341//13292 3260//13293 +f 5765//13294 6049//13295 5976//13296 +f 3394//13297 5396//13298 2835//13299 +f 5909//13300 5859//13301 6084//13302 +f 6084//13303 6050//13304 5909//13305 +f 242//13306 2105//13307 1428//13306 +f 4164//13308 4028//13309 30//13310 +f 336//13311 292//13311 906//13311 +f 5031//13312 3642//13312 5368//13312 +f 2398//13313 2397//13314 716//13315 +f 5977//13316 5592//13317 5911//13318 +f 5910//13319 6054//13320 6089//13321 +f 6053//13322 6014//13323 5976//13324 +f 2952//13325 3588//13326 4177//13327 +f 3545//13328 2949//13329 5559//13330 +f 3224//13331 1578//13332 2233//13333 +f 6052//13334 5860//13334 5818//13334 +f 5721//13335 5861//13336 6123//13336 +f 3198//13337 2237//13337 1247//13337 +f 3919//13338 1287//13339 4446//13340 +f 1836//13341 3982//13342 4199//13343 +f 5517//13344 5724//13345 6016//13346 +f 414//13347 4466//13347 4101//13347 +f 6056//13348 5912//13348 5770//13348 +f 6017//13349 5428//13350 6014//13351 +f 1575//13352 4852//13353 4851//13352 +f 59//13354 2464//13355 4675//13356 +f 5820//13357 5428//13358 6017//13359 +f 344//13360 1554//13360 1444//13361 +f 4412//13362 1954//13363 2151//13362 +f 5978//13364 5868//13365 6018//13366 +f 2065//13367 1369//13368 2867//13367 +f 5668//13369 5914//13370 5979//13370 +f 1457//13371 2336//13372 2160//13373 +f 1025//13374 1114//13374 2929//13374 +f 3285//13375 3899//13375 3944//13375 +f 1036//13376 432//13376 4114//13376 +f 1102//13377 1887//13377 2771//13377 +f 6057//13378 5869//13379 5980//13380 +f 2718//13381 1357//13381 46//13382 +f 5223//13383 5718//13384 4300//13384 +f 6019//13385 5672//13386 6058//13385 +f 5672//13387 5820//13388 6058//13389 +f 3961//13390 3300//13390 3301//13390 +f 1396//13391 5512//13392 3381//13393 +f 2399//13394 2325//13394 1581//13394 +f 204//13395 857//13396 909//13397 +f 2167//13398 3981//13399 184//13398 +f 6019//13400 5982//13401 5672//13402 +f 1087//13403 1493//13404 2076//13405 +f 1972//13406 2033//13407 1973//13406 +f 1861//13408 3126//13408 1822//13408 +f 3361//13409 1460//13410 259//13410 +f 2374//13411 2044//13411 5330//13412 +f 1056//13413 4243//13414 508//13415 +f 6059//13416 5870//13416 5982//13416 +f 5870//13417 6059//13418 5916//13419 +f 4573//13420 1199//13420 4482//13421 +f 4303//13422 3742//13423 1855//13424 +f 6022//13425 5872//13425 5828//13426 +f 6023//13427 5918//13428 5873//13429 +f 4697//13430 1808//13431 3840//13432 +f 5919//13433 6060//13433 5947//13434 +f 5948//13435 5827//13436 6128//13437 +f 2435//13438 674//13439 3747//13440 +f 7317//13441 3539//13442 2136//13443 +f 318//13444 4449//13444 2986//13444 +f 3142//13445 3141//13446 376//13447 +f 973//13448 4938//13449 5162//13450 +f 5784//13451 5829//13451 6063//13451 +f 4342//13452 5597//13453 1781//13454 +f 1437//13455 2608//13456 569//13455 +f 6026//13457 5829//13458 5689//13459 +f 2403//13460 1733//13461 1922//13462 +f 2555//13463 5392//13464 1018//13465 +f 4411//13466 130//13467 5528//13468 +f 388//13469 2941//13470 3135//13471 +f 4606//13472 4613//13473 1371//13474 +f 5879//13475 5687//13476 5985//13477 +f 4123//13478 4239//13478 773//13478 +f 6027//13479 5691//13479 5922//13479 +f 5987//13480 5879//13481 5985//13482 +f 5987//13483 5985//13483 6028//13483 +f 4962//13484 5331//13485 1841//13486 +f 2304//13487 3014//13488 201//13488 +f 6064//13489 5878//13490 5949//13491 +f 1276//13492 916//13493 5207//13494 +f 2914//13495 2188//13496 2358//13495 +f 1623//13497 3150//13498 5155//13499 +f 3052//13500 5070//13501 2748//13502 +f 455//13503 2208//13504 4432//13505 +f 5987//13506 6031//13507 5923//13508 +f 4260//13509 4094//13510 2186//13511 +f 45//13512 1834//13513 446//13514 +f 3670//13515 2855//13516 495//13517 +f 2041//13518 1996//13519 5120//13520 +f 3178//13521 5200//13522 1248//13523 +f 1588//13524 1891//13524 2793//13524 +f 5741//13525 5881//13526 5926//13525 +f 4874//13527 4993//13528 309//13529 +f 552//13530 4451//13531 3126//13532 +f 3935//13533 1559//13534 1052//13535 +f 42//13536 4019//13537 3992//13538 +f 2937//13539 4556//13540 1186//13540 +f 2308//13541 1826//13542 5128//13542 +f 6033//13543 5883//13544 5744//13545 +f 6098//13546 5928//13547 5952//13548 +f 3391//13549 3516//13550 1400//13551 +f 2147//13552 3834//13552 2709//13553 +f 6066//13554 5884//13555 5883//13555 +f 574//13556 2885//13556 3384//13556 +f 2688//13557 1205//13558 173//13559 +f 2195//13560 1079//13560 5738//13561 +f 3914//13562 229//13563 5104//13563 +f 5082//13564 2779//13564 288//13565 +f 249//13566 2142//13567 7344//13568 +f 1392//13569 5424//13570 2740//13571 +f 5480//13572 5387//13573 3781//13574 +f 3439//13575 3782//13576 4065//13577 +f 3183//13578 2121//13579 2562//13580 +f 4353//13581 5262//13582 4524//13583 +f 78//13584 480//13585 4557//13586 +f 5929//13587 5836//13587 6069//13587 +f 5840//13588 5994//13589 5954//13590 +f 6036//13591 5954//13591 5994//13591 +f 5797//13592 6037//13592 5955//13592 +f 2953//13593 4472//13594 3662//13595 +f 402//13596 5401//13597 5111//13598 +f 5796//13599 5957//13599 5994//13600 +f 3700//13601 1907//13602 885//13603 +f 5573//13604 5639//13605 6177//13606 +f 2642//13607 1882//13608 5078//13609 +f 5573//13610 6177//13611 5798//13612 +f 2042//13613 2570//13613 2209//13613 +f 4883//13614 4062//13615 583//13616 +f 1666//13617 3164//13618 2627//13619 +f 3140//13620 1109//13621 3139//13622 +f 1436//13623 4607//13624 2522//13625 +f 1059//13626 2801//13626 2959//13626 +f 6071//13627 5708//13628 5890//13629 +f 2991//13630 3865//13631 1739//13632 +f 2948//13633 795//13634 5559//13635 +f 5753//13636 5284//13637 6071//13638 +f 791//13639 1070//13640 3181//13640 +f 6038//13641 5803//13642 6039//13643 +f 6039//13644 5803//13644 6041//13645 +f 1231//13646 776//13646 4655//13647 +f 302//13648 4254//13649 485//13650 +f 1583//13651 5325//13652 434//13652 +f 2750//13653 365//13654 296//13655 +f 3364//13656 708//13657 4812//13658 +f 11//13659 3587//13659 3067//13660 +f 4754//13661 3416//13662 1016//13663 +f 5997//13664 6041//13665 5576//13665 +f 3440//13666 4644//13667 1197//13668 +f 2609//13669 2456//13670 1580//13671 +f 3775//13672 3868//13673 4351//13672 +f 5930//13674 6110//13675 5652//13676 +f 174//13677 1096//13678 4622//13677 +f 5854//13679 5998//13680 5756//13681 +f 5482//13682 5854//13683 5756//13683 +f 5932//13684 6073//13685 5806//13686 +f 4262//13687 999//13688 2096//13689 +f 4174//13690 1626//13691 2760//13692 +f 1825//13693 6051//13694 3807//13693 +f 3543//13695 3349//13696 3048//13696 +f 5760//13697 6075//13698 5962//13698 +f 590//13699 784//13700 3641//13701 +f 5963//13702 6001//13703 6078//13702 +f 2473//13704 516//13705 60//13706 +f 4598//13707 528//13708 3866//13707 +f 3498//13709 592//13710 3718//13711 +f 936//13712 2574//13713 574//13714 +f 6001//13715 5933//13715 6079//13715 +f 5933//13716 6002//13717 6079//13718 +f 859//13719 2388//13719 444//13719 +f 1804//13720 2163//13720 827//13721 +f 6080//13722 6002//13723 5967//13723 +f 3707//13724 1504//13725 4727//13725 +f 5967//13726 5935//13727 6044//13728 +f 6043//13729 6044//13730 5901//13731 +f 7376//13732 4755//13733 2897//13733 +f 3654//13734 4051//13734 3009//13735 +f 3368//13736 2207//13737 2208//13738 +f 6231//13739 5579//13740 6081//13739 +f 3719//13741 1079//13742 1080//13743 +f 3088//13744 3504//13745 4931//13746 +f 5970//13747 6116//13748 5971//13749 +f 1105//13750 5014//13751 4066//13752 +f 6118//13753 5971//13754 6116//13755 +f 888//13756 3667//13756 718//13756 +f 6269//13757 5809//13758 6005//13759 +f 6005//13760 5972//13761 6082//13762 +f 4175//13763 7027//13764 381//13765 +f 3045//13766 1491//13767 3946//13768 +f 1499//13769 1932//13770 1951//13771 +f 6083//13772 5972//13773 6007//13772 +f 3294//13774 3323//13774 3742//13774 +f 5938//13775 5902//13775 6006//13775 +f 1488//13776 3358//13777 3559//13776 +f 7//13778 2153//13778 3810//13779 +f 4478//13780 163//13781 2664//13782 +f 6046//13783 5939//13784 6008//13783 +f 5904//13785 5811//13786 6119//13787 +f 685//13788 7326//13789 4434//13790 +f 571//13791 2937//13792 2785//13793 +f 3745//13794 5308//13795 125//13796 +f 6046//13797 5817//13798 5939//13799 +f 2378//13800 318//13801 2986//13802 +f 5903//13803 5905//13804 5812//13805 +f 1764//13806 4652//13806 3896//13806 +f 3627//13807 1564//13808 889//13808 +f 2536//13809 2004//13810 1361//13811 +f 5315//13812 6085//13812 5975//13812 +f 6010//13813 6012//13813 5906//13813 +f 5906//13814 6012//13814 6048//13814 +f 5583//13815 5906//13816 6048//13817 +f 6086//13818 5583//13818 6048//13818 +f 5583//13819 6086//13820 5717//13821 +f 1628//13822 1622//13823 3543//13824 +f 6121//13825 5858//13826 5766//13826 +f 5907//13827 6087//13828 5940//13829 +f 5941//13830 6088//13830 5908//13830 +f 5859//13831 5586//13832 6084//13833 +f 6049//13834 5908//13835 6088//13834 +f 1808//13836 3298//13837 1912//13838 +f 2453//13839 2898//13839 4976//13839 +f 6053//13840 5976//13841 6049//13842 +f 4937//13843 4405//13844 2102//13845 +f 6013//13846 5942//13847 5860//13848 +f 6049//13849 6122//13849 6053//13849 +f 1892//13850 1585//13850 2798//13850 +f 4363//13851 1479//13852 5305//13853 +f 6090//13854 5910//13855 5978//13855 +f 6091//13856 6052//13857 5818//13858 +f 6157//13859 6014//13860 6053//13861 +f 5863//13862 5978//13863 5910//13863 +f 1792//13864 2157//13865 2158//13866 +f 5157//13867 4595//13868 4345//13869 +f 748//13870 4647//13870 87//13871 +f 2852//13872 5337//13873 3109//13874 +f 2766//13875 3541//13875 3484//13875 +f 5723//13876 6015//13876 6056//13876 +f 5666//13877 5862//13877 5818//13878 +f 1561//13879 1376//13879 4156//13879 +f 4870//13880 1480//13881 801//13882 +f 5665//13883 5721//13883 6123//13883 +f 241//13884 68//13884 588//13884 +f 6093//13885 6016//13886 5724//13885 +f 875//13887 3923//13888 5786//13889 +f 4007//13890 652//13891 1402//13890 +f 655//13892 3320//13893 2728//13893 +f 1070//13894 199//13895 1069//13896 +f 2837//13897 2109//13898 973//13899 +f 4648//13900 4015//13901 3350//13901 +f 4869//13902 5029//13903 2921//13904 +f 973//13905 2109//13905 4938//13905 +f 2183//13906 2671//13907 1609//13907 +f 5396//13908 4077//13909 2726//13908 +f 6017//13910 6058//13911 5820//13912 +f 4429//13913 4243//13914 1056//13915 +f 4422//13916 4165//13917 348//13916 +f 5981//13918 6094//13919 5914//13920 +f 1138//13921 3823//13921 1121//13921 +f 3837//13922 3838//13923 2542//13924 +f 1238//13925 5053//13926 766//13926 +f 830//13927 3447//13927 2390//13927 +f 3826//13928 2953//13929 4111//13930 +f 522//13931 2100//13932 4684//13933 +f 3516//13934 4832//13935 3517//13936 +f 163//13937 4899//13937 2664//13937 +f 5981//13938 5609//13938 6020//13938 +f 1128//13939 1748//13940 1130//13940 +f 5873//13941 5916//13941 6021//13941 +f 380//13942 2738//13943 2909//13944 +f 5892//13945 2256//13945 3442//13945 +f 1940//13946 3523//13947 1939//13948 +f 659//13949 808//13950 595//13951 +f 4823//13952 699//13953 1422//13952 +f 2698//13954 3386//13954 1604//13955 +f 5626//13956 2961//13956 1619//13957 +f 1008//13958 1411//13959 4678//13960 +f 1591//13961 2186//13962 2341//13963 +f 4965//13964 4225//13964 5329//13964 +f 1553//13965 2478//13965 4336//13965 +f 4549//13966 539//13967 4779//13967 +f 757//13968 4866//13968 2039//13968 +f 3617//13969 582//13970 5207//13971 +f 2245//13972 3805//13973 5657//13974 +f 6062//13975 5874//13976 5920//13977 +f 5783//13978 5918//13979 5921//13980 +f 445//13981 5779//13981 2849//13982 +f 374//13983 837//13984 1250//13985 +f 1980//13986 3135//13987 2941//13988 +f 2505//13989 3716//13990 1465//13991 +f 675//13992 1695//13993 1972//13993 +f 2101//13994 2683//13994 757//13994 +f 1320//13995 2567//13996 2353//13997 +f 2220//13998 1797//13999 4703//14000 +f 3368//14001 2247//14002 2207//14003 +f 6124//14004 5719//14004 846//14004 +f 4815//14005 1556//14006 4292//14007 +f 4035//14008 2584//14009 3427//14008 +f 3007//14010 786//14011 3203//14012 +f 2404//14013 5082//14013 194//14013 +f 3980//14014 3859//14015 1605//14015 +f 2630//14016 237//14016 2434//14016 +f 3823//14017 1138//14018 1809//14018 +f 6031//14019 5987//14020 6028//14021 +f 1745//14022 3361//14023 4376//14024 +f 3460//14025 70//14026 3577//14027 +f 560//14028 1945//14028 4771//14028 +f 2963//14029 2716//14029 4241//14029 +f 4948//14030 1336//14031 4663//14032 +f 939//14033 155//14033 131//14033 +f 4690//14034 2408//14035 2884//14034 +f 1822//14036 3127//14037 255//14038 +f 679//14039 2996//14039 1400//14039 +f 4265//14040 3570//14041 464//14040 +f 6034//14042 5990//14042 5882//14042 +f 6034//14043 5882//14044 5794//14045 +f 6098//14046 5952//14047 6138//14048 +f 5992//14049 5928//14050 6098//14050 +f 6138//14051 5952//14051 6099//14052 +f 335//14053 1666//14053 2627//14053 +f 6099//14054 5952//14055 5993//14056 +f 2097//14057 2458//14057 3377//14058 +f 2345//14059 5424//14060 1392//14061 +f 2033//14062 807//14063 1973//14064 +f 1446//14065 2827//14066 4319//14067 +f 3261//14068 3381//14069 2187//14070 +f 5837//14071 5954//14071 6036//14071 +f 5953//14072 6068//14073 6100//14074 +f 6070//14075 5953//14076 6100//14076 +f 4133//14077 1181//14078 2251//14079 +f 5955//14080 6037//14081 6035//14082 +f 4487//14083 3880//14084 2625//14085 +f 5956//14086 6070//14087 6101//14088 +f 5929//14089 6102//14090 5639//14091 +f 4787//14092 515//14092 3219//14093 +f 952//14094 1385//14095 3065//14096 +f 4725//14097 4107//14097 4617//14097 +f 6101//14098 5890//14099 5956//14100 +f 6104//14101 6037//14102 5891//14103 +f 5995//14104 5795//14105 5846//14106 +f 2646//14107 2230//14107 1333//14108 +f 1075//14109 1074//14109 4167//14109 +f 497//14110 3065//14111 3066//14110 +f 61//14112 125//14113 1206//14113 +f 3488//14114 3151//14114 5358//14114 +f 5644//14115 6142//14115 5958//14115 +f 1489//14116 1246//14117 188//14118 +f 6106//14119 5802//14120 5705//14121 +f 4015//14122 2314//14123 877//14124 +f 1309//14125 4909//14126 172//14127 +f 4667//14128 4356//14128 722//14129 +f 5959//14130 5848//14131 5893//14132 +f 5959//14133 6107//14134 6108//14135 +f 5894//14136 5710//14136 6108//14136 +f 1038//14137 4390//14138 4172//14139 +f 5565//14140 461//14141 132//14140 +f 6040//14142 5804//14142 5894//14142 +f 5278//14143 2002//14144 352//14145 +f 3078//14146 3701//14147 3673//14148 +f 1391//14149 653//14150 3158//14151 +f 5997//14152 5650//14152 6187//14152 +f 5328//14153 1847//14154 1808//14155 +f 6187//14156 5650//14157 5651//14157 +f 6111//14158 5756//14158 5998//14158 +f 5999//14159 5998//14160 5854//14161 +f 6074//14162 5042//14162 5806//14162 +f 1913//14163 3137//14163 1447//14163 +f 2562//14164 2828//14165 842//14166 +f 5578//14167 6074//14168 5760//14169 +f 778//14170 1719//14171 3236//14172 +f 2952//14173 3599//14173 3588//14173 +f 6000//14174 6113//14175 6076//14176 +f 6228//14177 6077//14178 6076//14179 +f 6078//14180 6113//14181 6000//14182 +f 560//14183 5405//14183 489//14183 +f 850//14184 2853//14185 687//14186 +f 1791//14187 3413//14187 5657//14187 +f 3696//14188 2924//14189 2054//14190 +f 5027//14191 1640//14192 226//14193 +f 3550//14194 1516//14195 1720//14195 +f 5967//14196 6044//14196 6080//14196 +f 5934//14197 6042//14198 6043//14199 +f 4758//14200 3912//14201 896//14202 +f 1977//14203 2387//14203 2906//14203 +f 515//14204 55//14205 3219//14206 +f 532//14207 260//14208 1722//14207 +f 879//14209 880//14209 1101//14209 +f 5404//14210 4699//14211 5968//14210 +f 2995//14212 2887//14213 1828//14212 +f 154//14214 3752//14214 1004//14214 +f 1624//14215 1626//14216 4174//14217 +f 6083//14218 6082//14219 5972//14220 +f 4438//14221 3761//14222 4811//14223 +f 5750//14224 3461//14225 3525//14226 +f 1150//14227 4633//14227 4579//14227 +f 1068//14228 3813//14229 3647//14228 +f 5811//14230 6118//14231 6119//14232 +f 5490//14233 5052//14234 6120//14235 +f 1475//14236 3040//14236 482//14236 +f 6120//14237 5052//14238 5937//14239 +f 3174//14240 182//14241 3112//14242 +f 1124//14243 634//14244 2790//14243 +f 1972//14245 1210//14246 675//14247 +f 5974//14248 6083//14249 6007//14248 +f 4479//14250 109//14250 1621//14250 +f 418//14251 169//14251 3897//14251 +f 6200//14252 6008//14253 5658//14254 +f 4331//14255 829//14256 4890//14255 +f 1080//14257 1079//14258 1345//14259 +f 5658//14260 5905//14260 6202//14260 +f 4514//14261 442//14262 2252//14263 +f 4052//14264 5400//14265 20//14264 +f 6047//14266 6084//14266 5817//14267 +f 3811//14268 1142//14269 2633//14270 +f 4272//14271 3392//14272 1274//14273 +f 4365//14274 2051//14275 3366//14276 +f 5586//14277 5817//14278 6084//14279 +f 1774//14280 5293//14281 3213//14282 +f 1372//14283 1707//14284 2265//14284 +f 4446//14285 1287//14285 1013//14286 +f 874//14287 4276//14288 1777//14289 +f 3672//14290 2000//14291 3120//14292 +f 1163//14293 848//14293 1360//14293 +f 5861//14294 5940//14295 6155//14296 +f 6091//14297 6013//14298 5860//14299 +f 3498//14300 765//14301 4168//14302 +f 6049//14303 6088//14304 6122//14305 +f 1267//14306 1645//14307 5656//14308 +f 2923//14309 3362//14310 4334//14310 +f 6054//14311 5910//14312 6090//14311 +f 4153//14313 4101//14313 4466//14313 +f 3301//14314 1453//14315 4508//14316 +f 59//14317 2572//14318 2851//14319 +f 276//14320 1009//14321 3969//14322 +f 4697//14323 275//14324 5193//14325 +f 6122//14326 6157//14327 6053//14327 +f 688//14328 3321//14329 3310//14330 +f 1036//14331 1363//14331 5221//14331 +f 4915//14332 5643//14333 3803//14334 +f 4858//14335 2696//14335 4088//14336 +f 3389//14337 889//14338 407//14339 +f 409//14340 3107//14341 1349//14342 +f 4514//14343 435//14344 442//14344 +f 3217//14345 296//14346 365//14347 +f 5029//14348 1019//14348 3200//14349 +f 6014//14350 6125//14351 6126//14352 +f 5978//14353 6018//14354 6092//14355 +f 2899//14356 3710//14357 4568//14358 +f 96//14359 4421//14360 4520//14361 +f 4334//14362 2717//14363 1921//14364 +f 3687//14365 3943//14366 3257//14367 +f 6017//14368 6014//14369 6126//14370 +f 6017//14371 6126//14372 6058//14373 +f 3540//14374 2651//14374 3404//14374 +f 567//14375 2549//14376 1783//14377 +f 3975//14378 584//14379 2924//14380 +f 3240//14381 2438//14381 653//14381 +f 5470//14382 208//14382 2863//14383 +f 2828//14384 2562//14385 298//14386 +f 2202//14387 3273//14388 3798//14387 +f 1390//14389 325//14390 2337//14391 +f 1578//14392 3081//14393 2488//14393 +f 2602//14394 3697//14395 1291//14396 +f 102//14397 1926//14397 2124//14397 +f 449//14398 2053//14399 4731//14400 +f 6018//14401 5872//14401 6162//14401 +f 528//14402 1883//14402 54//14402 +f 72//14403 3475//14404 2670//14403 +f 5867//14405 6165//14406 5945//14407 +f 1783//14408 487//14408 3790//14409 +f 5917//14410 5869//14410 6057//14410 +f 1755//14411 869//14411 3003//14411 +f 3315//14412 1518//14413 138//14413 +f 4436//14414 3412//14414 680//14415 +f 6021//14416 5916//14417 6059//14418 +f 4287//14419 1667//14419 4573//14419 +f 3115//14420 4741//14420 5113//14420 +f 281//14421 3915//14422 1425//14423 +f 2592//14424 5401//14425 3070//14426 +f 6096//14427 5921//14428 5918//14429 +f 4497//14430 5411//14431 5063//14432 +f 5217//14433 2568//14433 4732//14434 +f 530//14435 3027//14436 4304//14435 +f 4097//14437 3742//14438 2710//14437 +f 5419//14439 1587//14440 5412//14439 +f 3745//14441 4180//14442 1412//14443 +f 2621//14444 1933//14445 317//14446 +f 5876//14447 5875//14448 6130//14449 +f 1151//14450 3409//14451 1144//14450 +f 3732//14452 1569//14453 2204//14454 +f 5985//14455 5986//14456 6131//14457 +f 1634//14458 2079//14458 7359//14458 +f 1387//14459 1388//14460 3888//14461 +f 3486//14462 1630//14463 2758//14464 +f 4907//14465 1859//14466 4280//14467 +f 712//14468 1413//14469 3559//14470 +f 1537//14471 3092//14472 1222//14471 +f 4963//14473 4705//14474 2016//14473 +f 6064//14475 6097//14476 6284//14477 +f 4043//14478 2191//14479 1894//14480 +f 1750//14481 364//14482 963//14483 +f 2427//14484 3136//14484 4563//14484 +f 6064//14485 5949//14486 6097//14487 +f 706//14488 4163//14489 707//14490 +f 3882//14491 3315//14492 2791//14493 +f 6097//14494 5949//14495 5988//14496 +f 5741//14497 6214//14498 5924//14499 +f 1205//14500 2005//14501 5012//14502 +f 5926//14503 6214//14503 5741//14503 +f 1543//14504 191//14504 1050//14504 +f 1559//14505 3036//14506 3062//14507 +f 5269//14508 221//14508 4366//14508 +f 4629//14509 271//14509 3892//14510 +f 5925//14511 5695//14512 6135//14513 +f 6065//14514 5926//14514 6032//14514 +f 1736//14515 4053//14516 1737//14516 +f 3182//14517 5110//14518 4145//14519 +f 1900//14520 1746//14521 2481//14522 +f 4222//14523 704//14523 2102//14524 +f 5794//14525 5991//14525 6034//14525 +f 6138//14526 6137//14527 6098//14528 +f 6033//14529 6385//14529 5883//14529 +f 1800//14530 2222//14531 2121//14532 +f 3743//14533 4580//14534 4196//14535 +f 2117//14536 506//14537 507//14538 +f 3003//14539 1758//14540 609//14540 +f 992//14541 4539//14541 3276//14541 +f 2600//14542 815//14543 1754//14544 +f 6173//14545 6138//14545 6099//14545 +f 3291//14546 1438//14546 3861//14546 +f 5883//14547 6385//14547 6066//14548 +f 6139//14549 5951//14550 5927//14551 +f 6173//14552 6099//14552 6035//14553 +f 6067//14554 6139//14555 5927//14556 +f 6140//14557 5953//14558 5992//14559 +f 6099//14560 5993//14560 6035//14560 +f 3403//14561 1208//14562 3859//14563 +f 6141//14564 6035//14564 6037//14564 +f 3134//14565 1753//14566 1378//14567 +f 2138//14568 4885//14569 865//14570 +f 1928//14571 1512//14572 3305//14573 +f 1847//14574 3322//14575 197//14576 +f 159//14577 1957//14578 3113//14579 +f 195//14580 49//14581 5484//14582 +f 1909//14583 4793//14584 1652//14585 +f 2478//14586 1553//14586 1552//14586 +f 5124//14587 5065//14588 1750//14587 +f 3343//14589 4049//14590 1348//14590 +f 1736//14591 3976//14591 5102//14592 +f 6102//14593 6177//14594 5639//14593 +f 3519//14595 2768//14596 3197//14597 +f 535//14598 1728//14599 3923//14600 +f 5704//14601 5798//14602 6142//14602 +f 6142//14603 5644//14603 5704//14603 +f 4092//14604 1468//14604 440//14604 +f 3171//14605 4880//14606 4154//14606 +f 6071//14607 5890//14608 6143//14607 +f 5752//14609 5958//14610 6144//14611 +f 6038//14612 6224//14613 5996//14614 +f 6143//14615 6145//14616 6071//14617 +f 2605//14618 703//14619 477//14618 +f 1918//14620 3474//14620 4144//14620 +f 2599//14621 4353//14621 765//14621 +f 4081//14622 4554//14623 1868//14624 +f 5893//14625 5753//14626 6146//14627 +f 5710//14628 5959//14629 6108//14630 +f 1170//14631 4063//14632 371//14633 +f 2754//14634 4071//14635 1992//14636 +f 5961//14637 6072//14637 6186//14637 +f 6110//14638 5930//14639 5961//14640 +f 918//14641 4317//14641 88//14642 +f 5932//14643 5931//14643 6148//14644 +f 5150//14645 5130//14646 3187//14647 +f 1427//14648 3382//14649 2350//14650 +f 1258//14651 2568//14652 5217//14653 +f 3888//14654 5699//14655 933//14656 +f 60//14657 3987//14658 2250//14659 +f 4719//14660 1057//14661 3806//14662 +f 5855//14663 5962//14664 6112//14665 +f 122//14666 5519//14667 2711//14667 +f 3387//14668 1496//14668 1438//14669 +f 4817//14670 726//14671 2713//14672 +f 4296//14673 1178//14674 1778//14674 +f 3690//14675 4608//14675 4204//14675 +f 6114//14676 6076//14677 6113//14678 +f 4473//14679 5206//14680 3346//14681 +f 6114//14682 6228//14683 6076//14684 +f 211//14685 467//14686 1532//14687 +f 2923//14688 4334//14688 3658//14688 +f 2008//14689 1995//14690 3386//14691 +f 1619//14692 2961//14692 421//14692 +f 2711//14693 2545//14694 4550//14695 +f 2511//14696 3063//14697 4716//14696 +f 6079//14698 6002//14699 6080//14700 +f 4983//14701 1125//14702 404//14703 +f 6003//14704 6149//14705 5934//14706 +f 3236//14707 2943//14707 778//14707 +f 2145//14708 1755//14709 1525//14710 +f 2184//14711 4278//14712 1091//14713 +f 6150//14714 5043//14715 6117//14716 +f 5969//14717 5856//14718 6152//14719 +f 5080//14720 118//14721 4170//14722 +f 6116//14723 5969//14724 6151//14725 +f 6116//14726 6151//14727 6118//14728 +f 2623//14729 4439//14730 3983//14731 +f 2704//14732 518//14733 593//14733 +f 2139//14734 2964//14735 1129//14736 +f 2444//14737 1891//14737 3423//14737 +f 6201//14738 6200//14739 5658//14740 +f 66//14741 74//14742 3289//14743 +f 6046//14744 6047//14745 5817//14745 +f 1161//14746 763//14747 233//14748 +f 1364//14749 1566//14749 5165//14750 +f 4163//14751 706//14752 4639//14753 +f 2234//14754 2956//14755 4488//14756 +f 2930//14757 1805//14758 3889//14759 +f 369//14760 3159//14761 2400//14762 +f 5904//14763 6153//14764 6009//14763 +f 2865//14765 1926//14766 1383//14767 +f 6010//14768 6011//14768 6203//14768 +f 1367//14769 3075//14770 1548//14771 +f 1913//14772 3325//14773 3878//14774 +f 6154//14775 6012//14776 6010//14777 +f 2562//14778 2121//14779 298//14780 +f 6012//14781 6154//14781 6048//14781 +f 5766//14782 6089//14782 6121//14782 +f 6004//14783 1291//14784 5329//14785 +f 2896//14786 3021//14786 4085//14787 +f 6004//14788 151//14788 3741//14788 +f 33//14789 1798//14789 4465//14789 +f 5940//14790 6087//14791 6155//14792 +f 6156//14793 6088//14794 5941//14793 +f 2269//14795 1519//14796 291//14797 +f 1072//14798 4211//14799 5133//14799 +f 5941//14800 5977//14801 6156//14802 +f 2076//14803 198//14804 3184//14805 +f 1273//14806 113//14807 141//14808 +f 5860//14809 6052//14810 6091//14811 +f 3824//14812 1545//14812 582//14813 +f 2031//14814 2124//14814 2365//14814 +f 1143//14815 5779//14816 445//14816 +f 3709//14817 112//14818 440//14819 +f 3070//14820 3610//14821 2135//14822 +f 4021//14823 3269//14824 2094//14825 +f 3325//14826 1913//14826 4835//14827 +f 3100//14828 3801//14829 26//14830 +f 6092//14831 6090//14832 5978//14833 +f 3120//14834 3375//14835 3672//14836 +f 4548//14837 1635//14838 4289//14838 +f 838//14839 4689//14840 38//14841 +f 1123//14842 350//14842 4161//14843 +f 5217//14844 1176//14844 3430//14844 +f 1237//14845 5121//14845 2936//14845 +f 6125//14846 6014//14846 6157//14847 +f 327//14848 4228//14849 3714//14849 +f 4678//14850 5830//14851 2760//14851 +f 5913//14852 5665//14852 6123//14852 +f 517//14853 1965//14854 266//14855 +f 2808//14856 3647//14857 2700//14858 +f 3959//14859 2545//14860 2711//14861 +f 5912//14862 6056//14863 6158//14864 +f 5724//14865 6163//14865 6093//14865 +f 1365//14866 1075//14867 7321//14868 +f 5980//14869 5912//14869 6158//14869 +f 6163//14870 5724//14870 5771//14871 +f 6126//14872 6160//14873 6058//14874 +f 646//14875 250//14876 3181//14877 +f 4869//14878 3196//14879 2774//14880 +f 4482//14881 3468//14882 148//14882 +f 1710//14883 1327//14884 1709//14885 +f 5944//14886 5601//14887 6095//14888 +f 4471//14889 4982//14890 3555//14891 +f 6164//14892 5867//14893 5865//14894 +f 4310//14895 4982//14896 1504//14897 +f 3566//14898 2960//14898 4045//14898 +f 720//14899 730//14900 2512//14901 +f 5227//14902 1752//14903 2994//14904 +f 1991//14905 5810//14906 7206//14907 +f 4668//14908 752//14909 1794//14908 +f 1967//14910 4726//14911 1141//14910 +f 87//14912 3972//14913 987//14914 +f 416//14915 184//14916 147//14917 +f 5031//14918 2409//14919 5032//14919 +f 316//14920 330//14921 4844//14922 +f 492//14923 3293//14924 4484//14925 +f 4825//14926 20//14926 3381//14927 +f 607//14928 680//14929 481//14930 +f 6127//14931 5871//14932 5917//14932 +f 6020//14933 5733//14933 5947//14934 +f 4533//14935 2310//14936 2309//14937 +f 1084//14938 872//14939 4402//14940 +f 2826//14941 4436//14941 3228//14941 +f 5871//14942 6127//14943 5827//14944 +f 3226//14945 3192//14946 3549//14946 +f 4281//14947 2395//14947 1246//14947 +f 6022//14948 5828//14949 5983//14950 +f 1118//14951 2871//14952 3226//14953 +f 4659//14954 313//14955 1149//14956 +f 6023//14957 6346//14958 6096//14959 +f 4649//14960 5393//14961 866//14960 +f 6063//14962 5983//14962 5784//14963 +f 5918//14964 6023//14965 6096//14966 +f 1907//14967 1426//14968 486//14969 +f 7341//14970 690//14971 1391//14972 +f 90//14973 443//14974 4354//14973 +f 6129//14975 6063//14975 5829//14975 +f 3661//14976 4296//14977 1778//14976 +f 3035//14978 1959//14979 3710//14980 +f 5216//14981 1337//14982 3878//14983 +f 5829//14984 6026//14984 6129//14984 +f 2926//14985 3562//14985 5653//14985 +f 4340//14986 2826//14986 3793//14986 +f 3468//14987 2502//14988 1940//14989 +f 6167//14990 6132//14991 5878//14992 +f 3627//14993 889//14993 3389//14993 +f 3199//14994 5549//14995 4683//14996 +f 5833//14997 6133//14998 6026//14999 +f 5878//15000 6064//15000 6284//15000 +f 6169//15001 5833//15002 5554//15003 +f 6029//15004 6134//15004 5789//15005 +f 1044//15006 1145//15007 2917//15008 +f 5924//15009 6169//15010 5554//15011 +f 2256//15012 5522//15013 3442//15013 +f 2573//15014 3241//15015 2003//15016 +f 5308//15017 286//15018 1165//15019 +f 155//15020 1379//15021 131//15022 +f 6348//15023 5950//15024 6031//15025 +f 5695//15026 6030//15027 6135//15028 +f 4007//15029 4839//15030 845//15031 +f 1927//15032 1494//15032 2855//15033 +f 1275//15034 4965//15035 3435//15036 +f 4341//15037 3001//15037 4228//15038 +f 6136//15039 5990//15040 6034//15041 +f 3131//15042 1366//15043 1323//15044 +f 177//15045 3476//15046 1395//15047 +f 1321//15048 4218//15049 2829//15050 +f 3916//15051 1146//15051 1527//15051 +f 2029//15052 7385//15052 1999//15053 +f 1526//15054 1965//15055 3464//15056 +f 6139//15057 5991//15058 5951//15059 +f 6098//15060 6140//15060 5992//15060 +f 1764//15061 2542//15062 361//15063 +f 3574//15064 3864//15065 2762//15064 +f 611//15066 4259//15066 2114//15066 +f 4223//15067 1220//15067 4002//15067 +f 2321//15068 577//15069 4187//15070 +f 5884//15071 6069//15071 5836//15072 +f 5927//15073 5837//15074 6036//15075 +f 5123//15076 904//15076 360//15077 +f 6174//15078 6036//15079 5994//15080 +f 614//15081 177//15081 2328//15082 +f 6103//15083 5994//15083 5957//15083 +f 2535//15084 3337//15085 1977//15086 +f 789//15087 790//15088 2677//15089 +f 3937//15090 3444//15091 3751//15092 +f 3598//15093 82//15094 83//15095 +f 3637//15096 1407//15097 854//15098 +f 2213//15099 4540//15099 4645//15100 +f 6176//15101 5795//15101 5995//15101 +f 5891//15102 5996//15103 6104//15102 +f 3222//15104 1328//15105 276//15105 +f 6179//15106 6145//15107 6143//15108 +f 4489//15109 1141//15110 4726//15111 +f 4584//15112 5080//15113 4170//15114 +f 2041//15115 3439//15116 4534//15117 +f 3614//15118 3982//15119 1836//15120 +f 3617//15121 2756//15122 3824//15123 +f 5705//15124 5752//15125 6106//15126 +f 6145//15127 6179//15128 6180//15129 +f 5035//15130 1216//15130 3176//15130 +f 6145//15131 6146//15132 6071//15132 +f 6146//15133 5753//15134 6071//15134 +f 2830//15135 4790//15136 2375//15137 +f 2533//15138 599//15139 5392//15140 +f 6039//15141 6182//15142 6038//15143 +f 1523//15144 3086//15145 1524//15146 +f 6184//15147 5959//15148 5893//15149 +f 374//15150 3080//15151 837//15152 +f 17//15153 4228//15154 327//15155 +f 6072//15156 5804//15157 6040//15156 +f 1237//15158 1895//15159 5121//15158 +f 1038//15160 5019//15161 1379//15162 +f 1183//15163 1949//15163 1419//15163 +f 6111//15164 5805//15164 5756//15164 +f 4022//15165 52//15166 1999//15167 +f 4054//15168 2376//15169 3183//15168 +f 270//15170 3379//15171 1466//15172 +f 3249//15173 3365//15173 2301//15173 +f 410//15174 1378//15175 950//15176 +f 6112//15177 5999//15177 5855//15178 +f 6114//15179 6113//15180 6189//15181 +f 912//15182 557//15183 2963//15184 +f 3340//15185 947//15185 4499//15185 +f 6113//15186 6191//15187 6190//15187 +f 3030//15188 3049//15188 2088//15188 +f 3839//15189 3356//15189 1924//15189 +f 4001//15190 1691//15191 1692//15190 +f 728//15192 1029//15193 1028//15194 +f 1581//15195 2151//15195 4669//15196 +f 6079//15197 6192//15198 6001//15199 +f 2828//15200 1282//15201 842//15202 +f 6003//15203 5965//15204 6267//15205 +f 1745//15206 5188//15207 3437//15208 +f 6042//15209 5934//15210 6149//15211 +f 6044//15212 6043//15213 6229//15214 +f 1121//15215 1120//15216 1137//15215 +f 925//15217 3514//15218 2885//15219 +f 2379//15220 3418//15221 1495//15222 +f 5043//15223 5936//15224 6117//15225 +f 2810//15226 4716//15227 2811//15228 +f 6151//15229 6194//15229 6195//15230 +f 3118//15231 1501//15231 1983//15232 +f 6151//15233 6196//15234 6194//15235 +f 1226//15236 1076//15236 921//15237 +f 5713//15238 6117//15239 5936//15240 +f 6118//15241 6151//15242 6195//15243 +f 5969//15244 6196//15245 6151//15246 +f 1508//15247 4178//15248 311//15248 +f 2534//15249 1208//15249 3403//15249 +f 1985//15250 742//15251 3191//15252 +f 1155//15253 5089//15254 2745//15253 +f 903//15255 1138//15256 3187//15257 +f 2414//15258 871//15259 2056//15260 +f 2562//15261 842//15261 493//15261 +f 2908//15262 3578//15262 4881//15262 +f 5857//15263 5809//15264 6269//15265 +f 3266//15266 2547//15267 2548//15268 +f 1282//15269 2828//15270 298//15269 +f 2999//15271 2391//15272 1323//15273 +f 4413//15274 3691//15275 7330//15275 +f 6117//15276 5713//15276 5973//15276 +f 1503//15277 3410//15278 3907//15279 +f 2732//15280 3623//15281 3574//15282 +f 5903//15283 5857//15283 6234//15283 +f 5903//15284 5763//15284 5857//15284 +f 3239//15285 4324//15285 4155//15285 +f 1899//15286 2553//15286 1898//15287 +f 2488//15288 1683//15288 913//15289 +f 1005//15290 780//15291 4000//15292 +f 1980//15293 2097//15294 2934//15295 +f 2984//15296 1097//15297 1507//15297 +f 3669//15298 381//15299 4981//15300 +f 3401//15301 3844//15302 2136//15303 +f 5946//15304 4298//15305 4299//15306 +f 161//15307 1289//15308 53//15309 +f 6203//15310 6011//15311 6009//15312 +f 123//15313 4469//15314 5209//15315 +f 6086//15316 6204//15317 5907//15318 +f 5660//15319 4122//15320 4264//15321 +f 6275//15322 6013//15322 6091//15323 +f 5068//15324 4835//15325 4943//15326 +f 6241//15327 6089//15328 6054//15329 +f 6241//15330 6054//15330 6090//15330 +f 4600//15331 3746//15332 3418//15333 +f 6122//15334 6088//15335 6156//15336 +f 6205//15337 6156//15338 5977//15339 +f 5909//15340 6050//15341 6015//15342 +f 3025//15343 1550//15344 1562//15345 +f 5911//15346 6205//15347 5977//15348 +f 6157//15349 6122//15350 6156//15351 +f 2349//15352 4577//15353 98//15353 +f 6157//15354 6156//15355 6206//15356 +f 5373//15357 580//15358 5272//15358 +f 203//15359 1788//15360 3486//15361 +f 3316//15362 4980//15363 3351//15364 +f 1284//15365 4860//15366 4871//15367 +f 1926//15368 1927//15369 1383//15369 +f 720//15370 1150//15371 4579//15372 +f 680//15373 1136//15374 2060//15375 +f 2803//15376 2126//15377 2958//15378 +f 5515//15379 2595//15379 2895//15379 +f 2159//15380 3605//15380 1018//15380 +f 6208//15381 5862//15382 6501//15383 +f 4462//15384 926//15385 4417//15384 +f 3871//15386 6442//15387 3246//15388 +f 988//15389 4836//15390 3076//15391 +f 1835//15392 1318//15392 7229//15392 +f 4072//15393 1902//15393 657//15393 +f 4452//15394 1111//15395 220//15394 +f 3484//15396 2944//15396 3095//15396 +f 3026//15397 5523//15398 353//15399 +f 2159//15400 1854//15401 3434//15401 +f 5944//15402 6163//15403 5771//15403 +f 4503//15404 2900//15405 2638//15406 +f 363//15407 364//15408 1750//15409 +f 1362//15410 1417//15411 2270//15412 +f 5917//15413 6057//15414 6127//15415 +f 2675//15416 5612//15417 4559//15416 +f 6210//15418 5872//15418 6022//15418 +f 846//15419 5719//15419 670//15419 +f 3767//15420 4791//15421 95//15422 +f 790//15423 789//15424 3044//15425 +f 269//15426 3898//15426 5119//15426 +f 3580//15427 5653//15427 301//15427 +f 1063//15428 3930//15428 5255//15428 +f 5044//15429 949//15430 77//15429 +f 1319//15431 4471//15432 3555//15433 +f 3//15434 3432//15435 55//15436 +f 2164//15437 433//15438 1615//15438 +f 5873//15439 6021//15439 6023//15439 +f 6060//15440 5919//15440 6211//15441 +f 5919//15442 6062//15443 6211//15444 +f 3872//15445 903//15446 1741//15446 +f 4262//15447 2240//15448 4423//15449 +f 5920//15450 6211//15450 6062//15450 +f 3551//15451 1210//15452 5215//15453 +f 6166//15454 5921//15455 6096//15456 +f 906//15457 4471//15458 3785//15459 +f 3975//15460 4779//15461 539//15462 +f 4390//15463 1038//15464 1379//15463 +f 535//15465 2998//15466 4623//15467 +f 4197//15468 995//15469 4314//15469 +f 6024//15470 6025//15471 6377//15472 +f 2023//15473 1468//15474 4092//15475 +f 1911//15476 2352//15477 1462//15478 +f 6025//15479 5877//15479 6132//15479 +f 5877//15480 5878//15481 6132//15482 +f 622//15483 2842//15484 2230//15485 +f 6168//15486 5985//15487 6131//15488 +f 4083//15489 1696//15490 63//15491 +f 1630//15492 974//15493 4499//15492 +f 6133//15494 5833//15495 6169//15496 +f 714//15497 3367//15497 2290//15497 +f 6348//15498 6031//15499 6028//15499 +f 2309//15500 4014//15501 4504//15501 +f 641//15502 1371//15503 2469//15504 +f 2194//15505 546//15505 788//15506 +f 6171//15507 6032//15507 5950//15508 +f 3425//15509 5140//15510 4019//15511 +f 2539//15512 2696//15513 4455//15514 +f 6216//15515 6137//15516 6217//15517 +f 2362//15518 2391//15518 2390//15518 +f 6253//15519 6217//15519 6138//15520 +f 4799//15521 1899//15522 817//15523 +f 6217//15524 6137//15525 6138//15526 +f 6253//15527 6138//15528 6173//15529 +f 1939//15530 812//15531 1602//15532 +f 878//15533 3580//15534 4359//15535 +f 6137//15536 6218//15537 6098//15538 +f 6218//15539 6140//15539 6098//15539 +f 4777//15540 200//15541 1488//15542 +f 2403//15543 4373//15544 1733//15545 +f 6173//15546 6035//15546 6141//15546 +f 6068//15547 5953//15548 6219//15549 +f 5953//15550 6140//15551 6219//15552 +f 5884//15553 6220//15554 6069//15553 +f 6067//15555 5927//15556 6036//15557 +f 5559//15558 2949//15559 91//15560 +f 1242//15561 100//15562 1665//15562 +f 3014//15563 2304//15564 1636//15565 +f 3414//15566 3241//15567 2573//15568 +f 749//15569 1209//15570 1017//15571 +f 356//15572 5301//15573 1714//15574 +f 3843//15575 695//15576 5131//15577 +f 6221//15578 6174//15579 5994//15580 +f 4046//15581 1479//15582 4363//15583 +f 6103//15584 6221//15585 5994//15586 +f 5957//15587 5795//15587 6103//15587 +f 3864//15588 4165//15588 1130//15588 +f 1234//15589 5198//15590 395//15591 +f 5890//15592 6101//15592 6143//15592 +f 3733//15593 3280//15594 591//15595 +f 5097//15596 4761//15597 4342//15598 +f 2089//15599 4385//15600 1401//15601 +f 6176//15602 6175//15603 5795//15604 +f 953//15605 2273//15606 3817//15607 +f 953//15608 3817//15609 1203//15610 +f 2766//15611 4147//15612 2048//15613 +f 6142//15614 5798//15615 6222//15616 +f 5995//15617 5800//15618 6223//15619 +f 300//15620 4040//15621 130//15622 +f 4446//15623 1013//15623 2474//15624 +f 1606//15625 2984//15626 1507//15627 +f 5456//15628 4238//15629 2594//15629 +f 5800//15630 5847//15631 6178//15632 +f 6225//15633 6180//15634 6179//15634 +f 5847//15635 5802//15636 6105//15637 +f 6147//15638 6224//15639 6038//15639 +f 6145//15640 6180//15641 6181//15640 +f 2684//15642 4866//15642 2683//15642 +f 6146//15643 6145//15644 6183//15645 +f 663//15646 2908//15647 4950//15648 +f 4//15649 1540//15650 4141//15651 +f 6183//15652 5893//15652 6146//15652 +f 5240//15653 3388//15654 1858//15655 +f 6182//15656 6039//15657 6185//15658 +f 6041//15659 6185//15660 6039//15659 +f 6109//15661 6185//15662 6041//15663 +f 6109//15664 6041//15665 5997//15666 +f 3947//15667 360//15668 359//15667 +f 6110//15669 6188//15670 5931//15669 +f 6187//15671 5651//15672 5805//15673 +f 6148//15674 5931//15675 6188//15676 +f 6148//15677 6073//15677 5932//15677 +f 4895//15678 4421//15679 96//15680 +f 2236//15681 5656//15682 1567//15682 +f 5337//15683 850//15684 950//15685 +f 5999//15686 6226//15687 5998//15688 +f 6073//15689 6074//15690 5806//15690 +f 6226//15691 5999//15692 6112//15693 +f 2800//15694 92//15695 4885//15694 +f 1045//15696 5081//15697 4880//15698 +f 3322//15699 1549//15700 3801//15701 +f 2679//15702 2355//15703 2680//15703 +f 6077//15704 6228//15705 6297//15706 +f 2276//15707 31//15708 673//15709 +f 2442//15710 2632//15711 3821//15712 +f 3497//15713 1204//15714 1834//15715 +f 115//15716 2810//15717 3063//15716 +f 6078//15718 6191//15719 6113//15720 +f 175//15721 4064//15722 3699//15723 +f 399//15724 1268//15725 2416//15726 +f 398//15727 2794//15728 107//15729 +f 6192//15730 6078//15731 6001//15731 +f 6267//15732 5965//15733 6077//15734 +f 1127//15735 3591//15736 2846//15737 +f 88//15738 4317//15738 2306//15738 +f 6003//15739 6267//15740 6193//15741 +f 6044//15742 6229//15743 6080//15744 +f 3556//15745 1761//15745 91//15745 +f 2778//15746 4710//15746 5669//15747 +f 3534//15748 6230//15748 1103//15748 +f 4394//15749 145//15749 4435//15749 +f 2065//15750 2867//15751 1297//15750 +f 4380//15752 2762//15753 3376//15754 +f 5807//15755 6045//15756 6081//15757 +f 6197//15758 5579//15759 6231//15760 +f 3111//15761 1598//15761 4558//15761 +f 201//15762 200//15763 4777//15762 +f 6232//15764 6005//15764 6082//15765 +f 4430//15766 841//15767 4750//15768 +f 1267//15769 275//15770 2499//15771 +f 5492//15772 4115//15772 3651//15772 +f 4396//15773 4502//15774 5081//15775 +f 3793//15776 4193//15776 2309//15777 +f 2563//15778 1835//15779 1768//15780 +f 4211//15781 2204//15782 954//15783 +f 1492//15784 3592//15784 1919//15785 +f 1143//15786 3887//15787 2443//15788 +f 1893//15789 1346//15789 2818//15789 +f 2897//15790 1450//15791 7376//15791 +f 4099//15792 1350//15793 2872//15794 +f 1567//15795 1989//15796 5480//15797 +f 2891//15798 1596//15799 2181//15800 +f 710//15801 776//15801 5516//15801 +f 2716//15802 960//15803 4241//15804 +f 5905//15805 5903//15806 6235//15806 +f 5322//15807 3302//15808 4066//15809 +f 5973//15810 5858//15811 6121//15812 +f 6236//15813 5973//15814 6121//15815 +f 6084//15816 6047//15817 6238//15818 +f 931//15819 2080//15820 1935//15820 +f 265//15821 1176//15822 1469//15821 +f 4806//15823 817//15824 1960//15825 +f 1912//15826 3096//15827 1808//15828 +f 2988//15829 3491//15829 2113//15830 +f 4264//15831 1272//15832 4289//15831 +f 5907//15833 6204//15834 6087//15835 +f 4845//15836 3682//15837 4470//15837 +f 3853//15838 4389//15839 436//15838 +f 3761//15840 5382//15841 1122//15841 +f 6206//15842 6156//15843 6205//15844 +f 470//15845 4962//15845 1415//15845 +f 2019//15846 5212//15846 4270//15846 +f 6206//15847 6242//15848 6243//15848 +f 4440//15849 4551//15849 904//15849 +f 6205//15850 5911//15850 6244//15850 +f 2198//15851 2537//15852 935//15851 +f 4864//15853 4425//15854 832//15855 +f 6244//15856 5911//15857 6016//15858 +f 3175//15859 1463//15860 221//15861 +f 2803//15862 2958//15863 2957//15864 +f 1770//15865 4038//15865 3091//15865 +f 3164//15866 2020//15866 4149//15866 +f 6125//15867 6157//15867 6246//15867 +f 6123//15868 6245//15868 5913//15868 +f 4810//15869 3213//15869 4540//15870 +f 2820//15871 3960//15872 1278//15873 +f 2301//15874 5435//15874 2278//15874 +f 2609//15875 3755//15876 3168//15877 +f 3838//15878 1674//15879 3694//15880 +f 2626//15881 5152//15882 3660//15883 +f 6161//15884 5979//15885 5914//15886 +f 526//15887 3947//15888 4265//15889 +f 5913//15890 6247//15891 5865//15892 +f 4954//15893 4272//15894 2351//15895 +f 5133//15896 3743//15897 1672//15897 +f 6057//15898 5980//15899 6248//15900 +f 3033//15901 886//15902 3034//15903 +f 6094//15904 6209//15904 5914//15904 +f 4027//15905 47//15906 2727//15907 +f 3303//15908 2777//15909 4384//15910 +f 2107//15911 3771//15912 2743//15913 +f 6058//15914 6160//15915 6341//15914 +f 2810//15916 2811//15917 3063//15918 +f 967//15919 1898//15920 2271//15921 +f 6165//15922 5867//15923 6164//15924 +f 3135//15925 5570//15926 2738//15927 +f 4610//15928 4412//15928 1227//15928 +f 6095//15929 5601//15930 5915//15931 +f 6094//15932 5981//15933 6020//15934 +f 2129//15935 4963//15935 2862//15936 +f 5613//15937 2483//15938 5226//15939 +f 1956//15940 3639//15940 2965//15940 +f 2864//15941 3414//15942 2573//15943 +f 4550//15944 1797//15945 1802//15946 +f 778//15947 5105//15947 491//15948 +f 5827//15949 6127//15950 6250//15951 +f 3507//15952 3608//15953 3508//15954 +f 71//15955 5943//15956 139//15957 +f 2466//15958 4593//15959 511//15960 +f 2613//15961 3394//15962 5750//15961 +f 2841//15963 338//15964 4995//15965 +f 6213//15966 6211//15967 5920//15968 +f 1555//15969 2557//15970 708//15971 +f 2988//15972 4593//15972 3491//15972 +f 3496//15973 4761//15973 4870//15973 +f 764//15974 7359//15975 3966//15975 +f 5875//15976 5921//15976 6166//15977 +f 1359//15978 3288//15979 620//15980 +f 3899//15981 3285//15982 3284//15981 +f 6028//15983 5985//15984 6168//15984 +f 1497//15985 5567//15986 797//15987 +f 3020//15988 1591//15988 4917//15988 +f 1922//15989 1299//15990 1188//15990 +f 1196//15991 3380//15991 3812//15992 +f 6030//15993 5789//15994 6134//15995 +f 570//15996 1790//15997 2972//15998 +f 2219//15999 406//16000 2929//16001 +f 2012//16002 3699//16003 5727//16004 +f 1263//16005 4943//16006 4834//16007 +f 6065//16008 6032//16008 6171//16008 +f 1665//16009 3788//16009 4143//16010 +f 2170//16011 4724//16012 4545//16013 +f 5199//16014 1991//16015 7206//16015 +f 5081//16016 1045//16017 4396//16018 +f 6287//16019 6216//16020 6217//16020 +f 3641//16021 3416//16022 4754//16023 +f 6253//16024 6287//16025 6217//16026 +f 4194//16027 3505//16027 1101//16027 +f 2220//16028 1227//16029 2134//16030 +f 4226//16031 2755//16032 4428//16032 +f 2241//16033 5069//16034 4095//16035 +f 545//16036 456//16037 4924//16038 +f 4640//16039 4639//16040 706//16041 +f 2394//16042 3113//16042 405//16042 +f 3121//16043 3118//16044 2056//16045 +f 6067//16046 6256//16047 6139//16048 +f 1195//16049 2533//16050 2555//16051 +f 6258//16052 6068//16052 6219//16053 +f 1485//16054 354//16055 1909//16056 +f 2844//16057 1228//16058 2335//16059 +f 6259//16060 6068//16061 6257//16062 +f 6068//16063 6258//16064 6257//16065 +f 2512//16066 1405//16067 546//16068 +f 58//16069 284//16070 209//16071 +f 1588//16072 210//16073 3423//16074 +f 1787//16075 3793//16076 2310//16077 +f 1935//16078 3756//16079 1107//16080 +f 1163//16081 1104//16082 2155//16083 +f 6100//16084 6068//16085 6259//16086 +f 6141//16087 6037//16088 6260//16088 +f 52//16089 2569//16090 3821//16090 +f 432//16091 1036//16091 951//16091 +f 5655//16092 4419//16093 2893//16094 +f 6100//16095 6101//16096 6070//16095 +f 1677//16097 1623//16098 5155//16099 +f 6104//16100 6262//16101 6037//16102 +f 6103//16103 5795//16103 6175//16103 +f 2708//16104 839//16105 2047//16106 +f 88//16107 1693//16107 44//16107 +f 991//16108 5115//16109 65//16110 +f 4988//16111 2648//16112 4292//16112 +f 5076//16113 5892//16114 3800//16115 +f 6105//16116 5802//16116 6106//16116 +f 1632//16117 4025//16117 3050//16117 +f 6145//16118 6181//16119 6183//16118 +f 3096//16120 5540//16121 3840//16121 +f 4218//16122 4046//16122 3349//16122 +f 1094//16123 5826//16124 1881//16125 +f 2345//16126 1911//16127 2550//16128 +f 3292//16129 492//16130 4484//16131 +f 1673//16132 3132//16132 1252//16132 +f 6109//16133 5997//16134 6187//16135 +f 4682//16136 1860//16136 3839//16136 +f 6188//16137 6110//16138 5961//16138 +f 1869//16139 716//16140 1766//16140 +f 4185//16141 770//16141 56//16141 +f 5962//16142 6075//16143 6112//16144 +f 3315//16145 1201//16146 1518//16146 +f 4663//16147 1336//16148 1337//16149 +f 6114//16150 6189//16151 6266//16152 +f 454//16153 4758//16154 896//16155 +f 6266//16156 6228//16157 6114//16158 +f 3271//16159 21//16160 4619//16161 +f 5133//16162 954//16163 1492//16164 +f 2524//16165 3042//16166 1758//16165 +f 2179//16167 684//16168 683//16169 +f 6189//16170 6113//16171 6190//16172 +f 1878//16173 384//16174 4831//16175 +f 127//16176 1859//16177 1872//16178 +f 6149//16179 6003//16180 6193//16181 +f 4389//16182 2369//16183 436//16184 +f 2839//16185 739//16185 2393//16185 +f 6268//16186 6042//16186 6149//16187 +f 6043//16188 6042//16189 6229//16190 +f 5807//16191 6115//16191 6045//16191 +f 1167//16192 755//16193 4401//16194 +f 1599//16195 648//16196 4164//16196 +f 3877//16197 3321//16197 688//16198 +f 3484//16199 4147//16200 2766//16201 +f 5143//16202 5085//16203 333//16204 +f 4305//16205 1452//16205 3251//16206 +f 2206//16207 2497//16207 6327//16207 +f 5856//16208 5404//16208 6152//16208 +f 6233//16209 6196//16210 5969//16211 +f 6083//16212 6366//16213 6082//16214 +f 6300//16215 6270//16216 6195//16217 +f 6366//16218 6083//16218 6198//16218 +f 6118//16219 6195//16220 6270//16219 +f 1521//16221 2761//16222 254//16222 +f 6199//16223 6271//16224 6046//16225 +f 1468//16226 1570//16226 440//16227 +f 3251//16228 4739//16229 1085//16230 +f 6272//16231 6117//16232 5973//16233 +f 3753//16234 3635//16234 2781//16235 +f 6008//16236 6199//16236 6046//16236 +f 1454//16237 3856//16238 5387//16239 +f 3825//16240 3961//16240 1545//16241 +f 1570//16242 1468//16243 1814//16244 +f 144//16245 9//16246 5545//16246 +f 5974//16247 6198//16248 6083//16249 +f 6006//16250 5937//16251 5938//16251 +f 5128//16252 799//16253 2308//16254 +f 6200//16255 6273//16256 6008//16255 +f 1243//16257 2076//16258 901//16259 +f 6200//16260 6201//16261 6273//16262 +f 3414//16263 5510//16264 3241//16265 +f 1077//16266 2676//16267 3039//16268 +f 6201//16269 5658//16270 6202//16271 +f 6202//16272 5905//16273 6235//16274 +f 6272//16275 5973//16276 6236//16275 +f 1530//16277 346//16278 668//16277 +f 5904//16279 6119//16280 6237//16281 +f 2997//16282 1474//16283 4201//16284 +f 748//16285 3248//16286 804//16287 +f 6153//16288 6203//16288 6009//16288 +f 6203//16289 6372//16290 6010//16291 +f 6154//16292 6239//16293 6048//16292 +f 6239//16294 6086//16295 6048//16296 +f 6331//16297 6085//16298 6013//16299 +f 6086//16300 6333//16301 6204//16302 +f 6121//16303 6089//16303 6240//16303 +f 3810//16304 4075//16304 1436//16305 +f 1005//16306 3494//16307 2647//16307 +f 5205//16308 2497//16308 2206//16308 +f 1362//16309 2270//16310 426//16311 +f 2967//16312 1751//16313 4822//16314 +f 28//16315 4189//16316 3308//16317 +f 3922//16318 4958//16319 4363//16320 +f 4979//16321 587//16322 949//16323 +f 3535//16324 4195//16324 5776//16324 +f 6207//16325 6015//16325 6276//16325 +f 1205//16326 1562//16327 1550//16326 +f 140//16328 129//16328 4003//16329 +f 1670//16330 2856//16331 3870//16332 +f 80//16333 2988//16334 2361//16335 +f 6206//16336 6205//16336 6242//16336 +f 3479//16337 128//16338 1963//16339 +f 5862//16340 6091//16341 5818//16342 +f 6242//16343 6205//16343 6244//16343 +f 6056//16344 6015//16345 6207//16345 +f 6157//16346 6206//16346 6243//16347 +f 986//16348 1093//16348 4641//16348 +f 4488//16349 2956//16350 473//16350 +f 6246//16351 6157//16352 6243//16351 +f 6092//16353 6018//16354 6305//16353 +f 1621//16355 109//16356 110//16357 +f 6093//16358 6277//16359 6016//16360 +f 369//16361 3490//16362 891//16361 +f 2962//16363 5155//16364 3150//16365 +f 2098//16366 1695//16366 2271//16367 +f 2980//16368 628//16369 3801//16368 +f 5914//16370 6209//16371 6161//16370 +f 2061//16372 4203//16373 1879//16373 +f 693//16374 4365//16374 3366//16374 +f 2787//16375 4431//16375 3423//16376 +f 6058//16377 6341//16378 6019//16378 +f 4782//16379 4230//16380 5501//16380 +f 1549//16381 1847//16382 1823//16383 +f 2187//16384 20//16384 19//16384 +f 515//16385 4787//16385 4339//16385 +f 5982//16386 6019//16387 6278//16386 +f 2637//16388 2046//16389 4085//16390 +f 6095//16391 5915//16392 6249//16393 +f 5872//16394 6210//16395 6162//16396 +f 1819//16397 909//16398 1433//16399 +f 2720//16400 3872//16401 387//16402 +f 3164//16403 3860//16404 2627//16405 +f 3462//16406 3594//16407 147//16408 +f 4704//16409 4211//16410 3784//16411 +f 6128//16412 5827//16413 6250//16414 +f 13//16415 3384//16416 5065//16417 +f 2193//16418 2933//16419 2568//16420 +f 4052//16421 20//16421 4825//16422 +f 4631//16423 5036//16424 1913//16425 +f 6128//16426 6282//16427 5948//16428 +f 1719//16429 5067//16430 877//16429 +f 5948//16431 6282//16431 6212//16431 +f 3111//16432 4558//16433 2248//16434 +f 2841//16435 3527//16436 3722//16437 +f 1189//16438 5493//16439 2032//16440 +f 324//16441 139//16442 1214//16443 +f 6213//16444 5920//16444 6024//16445 +f 4015//16446 1292//16447 2314//16447 +f 6063//16448 6129//16449 6252//16449 +f 134//16450 2927//16451 2735//16452 +f 2287//16453 1742//16454 1135//16455 +f 4387//16456 4163//16457 3028//16458 +f 1421//16459 906//16460 292//16460 +f 3614//16461 3762//16462 3982//16463 +f 2924//16464 584//16465 1723//16466 +f 108//16467 1052//16467 1559//16468 +f 6129//16469 6026//16470 6133//16471 +f 2905//16472 5045//16473 1266//16473 +f 3470//16474 4621//16475 4686//16476 +f 3454//16477 2530//16478 4529//16477 +f 5602//16479 5411//16480 4497//16481 +f 5222//16482 4207//16483 1182//16483 +f 5876//16484 6130//16485 5922//16485 +f 2013//16486 146//16486 1439//16487 +f 4333//16488 2064//16489 2128//16490 +f 1569//16491 1348//16492 4049//16492 +f 5738//16493 1079//16494 1566//16495 +f 6029//16496 6027//16497 6134//16498 +f 277//16499 3278//16499 4121//16499 +f 6168//16500 6348//16501 6028//16502 +f 1346//16503 1893//16503 2857//16504 +f 3025//16505 897//16506 4566//16506 +f 6215//16507 6097//16508 5988//16509 +f 1222//16510 1503//16511 1537//16510 +f 3684//16512 4592//16512 4312//16512 +f 4422//16513 3613//16513 415//16513 +f 6215//16514 5988//16515 6286//16516 +f 6286//16517 5988//16518 5989//16517 +f 6287//16519 6312//16520 6216//16520 +f 6253//16521 6288//16522 6287//16523 +f 1525//16524 1755//16525 3003//16526 +f 6033//16527 5925//16528 6135//16529 +f 176//16530 1276//16531 219//16530 +f 3977//16532 993//16533 4470//16534 +f 482//16535 3379//16536 1475//16535 +f 6216//16537 6353//16538 6254//16539 +f 2071//16540 2254//16541 549//16542 +f 6137//16543 6216//16544 6254//16545 +f 2065//16546 3609//16547 100//16548 +f 3079//16549 5362//16549 1951//16549 +f 4488//16550 1144//16551 2272//16552 +f 1421//16553 292//16554 243//16555 +f 3679//16556 3678//16557 3287//16558 +f 2912//16559 4587//16559 1087//16559 +f 2604//16560 4037//16560 5128//16560 +f 1377//16561 3751//16562 4492//16563 +f 5150//16564 4491//16565 3473//16564 +f 6219//16566 6140//16567 6316//16568 +f 2342//16569 2600//16570 2563//16569 +f 1704//16571 1607//16572 2269//16573 +f 3109//16574 3040//16575 1009//16576 +f 67//16577 3472//16578 1824//16579 +f 6291//16580 6067//16581 6036//16581 +f 3935//16582 793//16582 587//16582 +f 2862//16583 4963//16583 4833//16583 +f 707//16584 3702//16584 4512//16585 +f 4418//16586 5036//16586 4631//16586 +f 2590//16587 165//16587 5224//16587 +f 131//16588 2604//16589 939//16590 +f 3682//16591 4845//16592 4784//16593 +f 3249//16594 2301//16595 2278//16594 +f 1377//16596 312//16597 3937//16598 +f 707//16599 5127//16600 3702//16601 +f 6037//16602 6262//16603 6260//16604 +f 4193//16605 3793//16606 2826//16607 +f 1693//16608 2306//16608 2322//16608 +f 3331//16609 3283//16609 4516//16609 +f 6143//16610 6101//16611 6293//16612 +f 2596//16613 604//16614 2597//16613 +f 5204//16615 153//16616 2285//16617 +f 6293//16618 6179//16619 6143//16620 +f 1680//16621 5516//16621 776//16621 +f 6222//16622 5798//16623 6177//16622 +f 5727//16624 4302//16625 1776//16626 +f 6223//16627 5800//16628 6178//16629 +f 287//16630 1628//16631 3048//16631 +f 6294//16632 6225//16633 6179//16632 +f 6178//16634 5847//16635 6105//16636 +f 1221//16637 1482//16638 864//16639 +f 5064//16640 4015//16641 877//16642 +f 3312//16643 1188//16644 1299//16643 +f 6147//16645 6038//16646 6182//16647 +f 1612//16648 553//16648 3315//16648 +f 1869//16649 5027//16650 1043//16651 +f 6183//16652 6184//16653 5893//16654 +f 844//16655 1400//16656 2996//16655 +f 1542//16657 4058//16657 2532//16657 +f 5894//16658 6108//16658 6263//16658 +f 6040//16659 5894//16660 6263//16661 +f 206//16662 123//16663 1356//16664 +f 6186//16665 6072//16666 6264//16665 +f 3905//16667 863//16668 4379//16669 +f 1055//16670 4020//16671 4654//16672 +f 6188//16673 5961//16674 6186//16675 +f 6296//16676 6188//16677 6264//16678 +f 4786//16679 4478//16680 2664//16681 +f 5805//16682 6265//16683 6187//16684 +f 6226//16685 6111//16685 5998//16685 +f 242//16686 1428//16686 3548//16686 +f 1545//16687 3824//16688 3825//16688 +f 1490//16689 2288//16690 1416//16691 +f 4977//16692 797//16692 1930//16692 +f 424//16693 3829//16693 192//16693 +f 1092//16694 1120//16695 1523//16696 +f 2657//16697 4127//16698 618//16699 +f 6077//16700 6297//16701 6267//16702 +f 3204//16703 1629//16704 3588//16705 +f 6298//16706 6078//16707 6192//16707 +f 3337//16708 4780//16709 444//16710 +f 4966//16711 4378//16711 2859//16711 +f 661//16712 3885//16712 594//16712 +f 4240//16713 4036//16713 1304//16713 +f 4504//16714 3562//16714 3971//16715 +f 6229//16716 6042//16717 6268//16718 +f 249//16719 3181//16720 250//16721 +f 4335//16722 14//16723 583//16724 +f 872//16725 1084//16726 893//16727 +f 959//16728 291//16729 2579//16730 +f 6299//16731 6195//16731 6194//16732 +f 6300//16733 6195//16734 6299//16735 +f 6196//16736 6299//16736 6194//16736 +f 6196//16737 6233//16737 6299//16738 +f 1506//16739 2678//16740 1595//16739 +f 3286//16741 719//16742 5743//16742 +f 6437//16743 6233//16743 5969//16743 +f 6197//16744 5902//16745 5579//16746 +f 1993//16747 3375//16748 3851//16749 +f 4228//16750 3001//16751 490//16752 +f 4059//16753 3011//16754 3481//16755 +f 3962//16756 4293//16757 5782//16758 +f 4645//16759 710//16760 2161//16761 +f 4725//16762 1694//16763 392//16764 +f 1483//16765 2115//16765 1556//16765 +f 412//16766 1324//16767 1576//16767 +f 3977//16768 3397//16769 2910//16770 +f 6199//16771 6008//16772 6273//16773 +f 1663//16774 175//16774 1025//16774 +f 3437//16775 5188//16776 114//16777 +f 6047//16778 6046//16779 6271//16780 +f 4814//16781 2260//16781 3335//16781 +f 601//16782 2930//16783 3889//16783 +f 550//16784 1561//16785 665//16785 +f 898//16786 3633//16787 3700//16788 +f 6119//16789 6118//16790 6270//16789 +f 6119//16791 6270//16792 6237//16793 +f 2393//16794 4700//16795 2710//16796 +f 3053//16797 2068//16798 5726//16799 +f 4512//16800 3009//16801 4562//16802 +f 4360//16803 867//16804 2143//16805 +f 4128//16806 374//16806 3399//16807 +f 4148//16808 3629//16809 2105//16808 +f 2836//16810 3764//16811 1541//16812 +f 1291//16813 3741//16814 2522//16815 +f 6237//16816 6153//16817 5904//16818 +f 850//16819 687//16820 2228//16821 +f 6154//16822 6010//16822 6372//16822 +f 6154//16823 6372//16823 6239//16823 +f 6239//16824 6333//16825 6086//16826 +f 450//16827 5332//16827 310//16827 +f 4354//16828 3519//16829 2560//16830 +f 4516//16831 3345//16832 4532//16833 +f 6087//16834 6204//16835 6304//16836 +f 6240//16837 6089//16837 6241//16837 +f 6331//16838 6013//16839 6275//16840 +f 4783//16841 2420//16842 2421//16843 +f 1863//16844 689//16845 3323//16846 +f 1746//16847 1900//16848 3992//16849 +f 6015//16850 6050//16851 6276//16852 +f 1117//16853 1833//16854 1057//16853 +f 2624//16855 4038//16856 1770//16857 +f 5654//16858 3261//16859 2187//16860 +f 2149//16861 3804//16862 1813//16861 +f 730//16863 720//16863 4579//16863 +f 2999//16864 4707//16865 5154//16866 +f 2583//16867 4574//16867 509//16867 +f 6305//16868 6018//16868 6159//16868 +f 3281//16869 1803//16870 650//16871 +f 2588//16872 4286//16873 2531//16874 +f 1053//16875 2237//16876 1732//16877 +f 6163//16878 6306//16879 6093//16880 +f 7254//16881 3621//16882 855//16883 +f 6159//16884 6018//16884 6162//16884 +f 924//16885 369//16886 2400//16886 +f 2920//16887 4968//16888 3195//16889 +f 3513//16890 4786//16891 1096//16892 +f 2706//16893 584//16894 3426//16895 +f 2444//16896 4431//16896 3451//16897 +f 4209//16898 4918//16899 5131//16900 +f 3195//16901 3976//16901 1736//16901 +f 1241//16902 3341//16903 3399//16902 +f 6019//16904 6341//16905 6278//16906 +f 428//16907 1673//16907 3247//16907 +f 6279//16908 6162//16908 6210//16908 +f 2679//16909 5291//16910 3754//16911 +f 244//16912 242//16913 1653//16914 +f 3455//16915 1769//16916 3240//16915 +f 154//16917 1004//16918 4587//16919 +f 3655//16920 4392//16920 1495//16921 +f 1965//16922 517//16922 4261//16922 +f 2964//16923 1006//16924 2085//16923 +f 4643//16925 4596//16926 181//16927 +f 4161//16928 4889//16928 2743//16928 +f 6280//16929 6020//16930 5947//16931 +f 6281//16932 6021//16933 6059//16934 +f 5719//16935 3606//16935 2660//16935 +f 4573//16936 5633//16937 1293//16938 +f 105//16939 867//16940 3288//16941 +f 3635//16942 478//16943 3085//16942 +f 1797//16944 2545//16945 1316//16946 +f 3716//16947 3741//16947 1465//16947 +f 2510//16948 666//16949 3998//16950 +f 933//16951 1727//16952 1726//16953 +f 6308//16954 6021//16955 6281//16956 +f 6023//16957 6021//16958 6308//16959 +f 1481//16960 1608//16961 3353//16962 +f 86//16963 1984//16964 371//16965 +f 4677//16966 4370//16967 4104//16967 +f 2812//16968 4616//16969 2691//16970 +f 3177//16971 8//16972 1453//16973 +f 3526//16974 2497//16974 1522//16974 +f 3034//16975 1907//16975 3033//16975 +f 472//16976 404//16977 1636//16976 +f 815//16978 1485//16978 4574//16979 +f 1840//16980 1752//16980 625//16980 +f 6131//16981 5986//16981 6310//16982 +f 2313//16983 2601//16984 5130//16985 +f 827//16986 4550//16987 1802//16988 +f 1731//16989 1240//16989 3237//16989 +f 4331//16990 4890//16991 4330//16992 +f 6167//16993 5878//16994 6284//16995 +f 1410//16996 4498//16997 1497//16998 +f 5312//16999 3308//17000 3662//17001 +f 397//17002 1170//17002 3028//17002 +f 5845//9147 1528//9147 4435//9147 +f 627//17003 4439//17004 3744//17005 +f 3623//17006 1193//17007 1200//17008 +f 6313//17009 6287//17009 6288//17009 +f 627//17010 4418//17010 3219//17011 +f 6216//17012 6312//17013 6314//17014 +f 6286//17015 5989//17016 5990//17017 +f 2311//17018 118//17019 2298//17020 +f 6286//17021 5990//17022 6136//17023 +f 2849//17024 1240//17024 1064//17025 +f 6216//17026 6314//17027 6353//17028 +f 3389//17029 1624//17030 717//17031 +f 4846//17032 3374//17033 4137//17034 +f 103//17035 3489//17035 417//17035 +f 4657//17036 4658//17037 658//17036 +f 6253//17038 6173//17039 6289//17040 +f 1903//17041 4677//17042 692//17043 +f 2848//17044 1446//17045 2807//17046 +f 302//17047 3452//17048 5892//17049 +f 6289//17050 6173//17051 6255//17052 +f 2689//17053 1694//17053 3856//17054 +f 4474//17055 1197//17056 4644//17057 +f 761//17058 2552//17058 4789//17058 +f 2151//17059 5502//17059 4096//17060 +f 4889//17061 3714//17061 2743//17061 +f 6140//17062 6218//17062 6290//17062 +f 816//17063 1281//17064 2790//17065 +f 6255//17066 6173//17067 6141//17068 +f 6316//17069 6258//17070 6219//17071 +f 599//17072 2258//17073 1018//17074 +f 1502//17075 5826//17076 1094//17077 +f 792//17078 2390//17079 5154//17080 +f 6066//17081 6317//17082 5884//17083 +f 4667//17084 3898//17085 5044//17086 +f 537//17087 3110//17088 1511//17089 +f 6174//17090 6291//17091 6036//17092 +f 513//17093 3746//17094 1190//17094 +f 6100//17095 6259//17095 6318//17095 +f 4395//17096 7203//17097 377//17098 +f 6100//17099 6293//17100 6101//17101 +f 6102//17102 5929//17103 6261//17104 +f 203//17105 2588//17106 1788//17107 +f 1394//17108 5372//17109 3919//17110 +f 2565//17111 148//17112 1012//17113 +f 3052//17114 1500//17115 5574//17116 +f 5996//17117 6224//17118 6104//17119 +f 3395//17120 730//17120 4579//17120 +f 4977//17121 4025//17122 1632//17122 +f 568//17123 4761//17124 2122//17125 +f 3231//17126 4279//17127 767//17128 +f 3771//17129 2107//17130 1439//17129 +f 6144//17131 5958//17132 6295//17133 +f 2706//17134 3426//17135 2432//17136 +f 6320//17137 6180//17138 6225//17139 +f 6181//17140 6180//17141 6320//17142 +f 6181//17143 6320//17144 6321//17145 +f 3003//17146 869//17147 1156//17146 +f 6264//17148 6072//17149 6040//17150 +f 2263//17151 1435//17151 1011//17152 +f 6188//17153 6186//17154 6264//17155 +f 4585//17156 4406//17157 4647//17158 +f 6296//17159 6322//17160 6188//17161 +f 2739//17162 3443//17162 4412//17162 +f 968//17163 4234//17164 4676//17165 +f 6111//17166 6265//17167 5805//17168 +f 2784//17169 5563//17170 5338//17171 +f 5596//17172 2901//17173 2349//17174 +f 1451//17175 1303//17175 1947//17176 +f 2726//17177 3432//17178 3125//17179 +f 4433//17180 900//17180 3336//17180 +f 6227//17181 5760//17182 6074//17183 +f 3544//17184 2357//17185 73//17186 +f 5560//17187 3717//17188 2059//17188 +f 6228//17189 6266//17190 6324//17191 +f 6189//17192 6360//17193 6266//17194 +f 795//17195 1551//17196 3545//17197 +f 6228//17198 6325//17198 6297//17199 +f 3714//17200 2107//17201 2743//17202 +f 922//17203 741//17204 1004//17205 +f 95//17206 4632//17207 1949//17206 +f 6298//17208 6191//17209 6078//17210 +f 5332//17211 4772//17212 3269//17213 +f 6079//17214 6576//17215 6192//17216 +f 6576//17217 6079//17218 6080//17219 +f 1226//17220 1877//17221 4072//17222 +f 82//17223 5831//17224 2977//17225 +f 3849//17226 6115//17227 2206//17228 +f 2249//17229 667//17230 3182//17229 +f 5138//17231 3851//17232 667//17233 +f 4518//17234 4185//17235 4728//17236 +f 135//17237 52//17238 4022//17238 +f 3930//17239 1063//17240 1821//17239 +f 3904//17241 2500//17241 241//17241 +f 4646//17242 286//17243 212//17244 +f 3774//17245 2822//17245 1069//17246 +f 5969//17247 6152//17247 6437//17247 +f 2445//17248 1132//17249 3453//17250 +f 6368//17251 6366//17252 6198//17253 +f 1015//17254 5010//17255 1042//17256 +f 3115//17257 390//17258 3598//17259 +f 2153//17260 2505//17260 1931//17261 +f 2101//17262 3828//17262 2683//17262 +f 3693//17263 1590//17264 2341//17265 +f 3121//17266 1220//17267 4223//17266 +f 5902//17268 6197//17269 6006//17270 +f 6328//17271 6273//17272 6201//17273 +f 4683//17274 471//17275 2118//17275 +f 627//17276 1202//17277 4418//17278 +f 657//17279 1902//17280 1903//17281 +f 6120//17282 5937//17283 6329//17284 +f 2001//17285 1565//17285 527//17286 +f 4904//17287 1738//17288 1381//17287 +f 5656//17289 2236//17289 5547//17289 +f 3222//17290 2744//17291 2891//17290 +f 1382//17292 2259//17293 2516//17294 +f 6302//17295 6202//17296 6235//17297 +f 4110//17298 47//17298 5678//17298 +f 824//17299 4139//17300 5122//17301 +f 6330//17302 6237//17303 6270//17304 +f 305//17305 2055//17306 1023//17305 +f 2885//17307 4244//17308 3270//17309 +f 4942//17310 2681//17311 1459//17312 +f 1481//17313 3353//17314 1140//17313 +f 6303//17315 5975//17315 6085//17316 +f 4657//17317 4373//17318 1440//17318 +f 6085//17319 6331//17320 6303//17321 +f 6403//17322 6372//17323 6203//17324 +f 1549//17325 1823//17326 2210//17327 +f 325//17328 994//17329 694//17330 +f 2888//17331 1380//17331 5298//17331 +f 4083//17332 1189//17333 2818//17334 +f 3142//17335 376//17336 2675//17336 +f 2172//17337 2355//17338 3754//17339 +f 1659//17340 4807//17340 4312//17340 +f 819//17341 3359//17341 855//17341 +f 3613//17342 3812//17343 2167//17344 +f 204//17345 2799//17346 4922//17345 +f 916//17347 1276//17347 176//17347 +f 6337//17348 5861//17349 6155//17350 +f 6091//17351 6335//17351 6275//17351 +f 3659//17352 1999//17353 7410//17354 +f 6123//17355 5861//17355 6337//17355 +f 4487//17356 2355//17357 2172//17358 +f 4091//17359 3647//17360 2808//17360 +f 875//17361 3265//17362 1056//17363 +f 6336//17364 6090//17365 6092//17366 +f 2526//17367 4729//17368 3733//17369 +f 667//17370 2249//17371 5138//17372 +f 1132//17373 2221//17373 494//17374 +f 6091//17375 5862//17376 6208//17377 +f 1969//17378 920//17378 604//17378 +f 5337//17379 2852//17380 850//17381 +f 2102//17382 4405//17382 1587//17382 +f 6243//17383 6242//17384 6338//17385 +f 6277//17386 6244//17387 6016//17388 +f 6338//17389 6242//17390 6244//17391 +f 1429//17392 1998//17393 408//17394 +f 2174//17395 5476//17396 4306//17397 +f 3123//17398 2013//17399 1706//17400 +f 6247//17401 5913//17402 6245//17401 +f 2331//17403 2491//17404 772//17405 +f 2243//17406 1325//17407 5311//17408 +f 3291//17409 728//17410 1028//17411 +f 6248//17412 5980//17413 6158//17414 +f 6160//17415 6126//17416 6339//17417 +f 4426//17418 3366//17419 3594//17420 +f 6163//17421 5944//17422 6095//17423 +f 4599//17424 1526//17425 3312//17426 +f 2708//17427 3860//17428 3071//17428 +f 3194//17429 441//17430 4284//17431 +f 2914//17432 2446//17433 5853//17434 +f 4858//17435 4371//17436 2696//17437 +f 1993//17438 709//17439 4770//17440 +f 4379//17441 3340//17442 170//17443 +f 6165//17444 6343//17444 5945//17444 +f 5915//17445 5945//17446 6307//17446 +f 5982//17447 6278//17448 6059//17449 +f 6210//17450 6022//17451 6344//17452 +f 1622//17453 2614//17454 3446//17454 +f 3590//17455 2535//17456 719//17457 +f 6250//17458 6127//17459 6376//17460 +f 6344//17461 6022//17462 5983//17463 +f 6345//17464 5947//17465 6060//17466 +f 5328//17467 3619//17468 1847//17469 +f 2855//17470 3814//17470 1383//17470 +f 6346//17471 6023//17471 6308//17471 +f 4472//17472 2634//17473 5312//17474 +f 1941//17475 323//17476 378//17477 +f 1862//17478 2514//17479 3108//17480 +f 6309//17481 6096//17481 6346//17481 +f 6310//17482 5948//17483 6212//17483 +f 5948//17484 6310//17485 5986//17486 +f 6377//17487 6025//17488 6283//17489 +f 255//17490 3789//17491 849//17492 +f 2666//17493 5199//17494 3297//17493 +f 1579//17495 595//17495 1840//17495 +f 23//17496 1587//17497 4405//17498 +f 6025//17499 6132//17500 6283//17501 +f 2927//17502 1882//17503 2506//17504 +f 61//17505 3999//17505 125//17506 +f 1630//17507 3111//17507 2248//17507 +f 5922//17508 6130//17509 6311//17510 +f 4654//17511 4020//17512 722//17513 +f 4245//17514 3886//17515 4231//17516 +f 3228//17517 4436//17518 680//17519 +f 1644//17520 4575//17521 1476//17522 +f 5098//17523 1762//17524 1105//17525 +f 3504//17526 4430//17526 1039//17527 +f 3950//17528 4257//17528 798//17528 +f 6215//17529 6349//17530 6097//17531 +f 2617//17532 3816//17533 2676//17534 +f 658//17535 4658//17536 4118//17537 +f 4153//17538 1046//17539 4101//17539 +f 6352//17540 6065//17541 6171//17542 +f 6312//17543 6350//17544 6351//17545 +f 6287//17546 6313//17547 6312//17548 +f 3566//17549 848//17549 1163//17549 +f 2569//17550 51//17550 4858//17550 +f 2030//17551 3428//17551 309//17551 +f 1232//17552 3605//17553 4655//17553 +f 6312//17554 6351//17555 6314//17556 +f 3413//17557 1791//17558 4429//17559 +f 2694//17560 3220//17561 3444//17562 +f 6351//17563 6353//17564 6314//17565 +f 6135//17566 6354//17567 6033//17566 +f 3244//17568 3508//17568 3608//17568 +f 6253//17569 6289//17570 6288//17571 +f 760//17572 612//17572 2193//17573 +f 4504//17574 3971//17575 50//17576 +f 1648//17577 3092//17578 1537//17579 +f 2126//17580 2465//17581 1880//17582 +f 4893//17583 4746//17583 1409//17584 +f 3000//17585 5044//17585 752//17585 +f 6137//17586 6254//17587 6218//17588 +f 1856//17589 2188//17590 2849//17591 +f 4696//17592 921//17593 267//17594 +f 5853//17595 4583//17596 3554//17597 +f 6290//17598 6218//17599 6254//17600 +f 6255//17601 6141//17602 6482//17603 +f 6316//17604 6140//17605 6290//17606 +f 3240//17607 653//17608 1314//17608 +f 2403//17609 2913//17610 1161//17611 +f 6220//17612 5884//17613 6317//17613 +f 6256//17614 6067//17615 6291//17615 +f 3845//17616 574//17617 3384//17618 +f 2051//17619 2052//17619 415//17619 +f 1311//17620 448//17620 2874//17620 +f 2243//17621 4875//17622 2351//17621 +f 2322//17623 168//17624 3780//17624 +f 3432//17625 2623//17626 3983//17627 +f 6104//17628 6224//17629 6484//17630 +f 3754//17631 2355//17632 2679//17631 +f 3778//17633 2483//17634 349//17635 +f 4587//17636 1004//17636 570//17636 +f 6356//17637 6224//17638 6147//17639 +f 246//17640 2412//17641 484//17642 +f 4701//17643 2136//17644 4271//17645 +f 4501//17646 4661//17647 3571//17647 +f 4303//17648 1855//17649 3589//17650 +f 2094//17651 4772//17652 4188//17651 +f 799//17653 763//17654 2913//17655 +f 1396//17656 2594//17656 695//17657 +f 6357//17658 6184//17659 6183//17660 +f 6393//17661 6182//17662 6185//17661 +f 317//17663 3831//17664 2377//17665 +f 6264//17666 6040//17667 6263//17668 +f 2992//17669 1450//17670 2897//17671 +f 2900//17672 1842//17673 2638//17674 +f 3565//17675 1928//17675 663//17676 +f 6358//17677 6322//17677 6296//17677 +f 2476//17678 910//17679 2451//17680 +f 3888//17681 1727//17682 2116//17683 +f 6111//17684 6226//17685 6359//17686 +f 1796//17687 1829//17688 18//17687 +f 934//17689 636//17690 288//17691 +f 2279//17692 2253//17693 4927//17694 +f 6227//17695 6074//17696 6073//17697 +f 5040//17698 1584//17699 5139//17700 +f 4238//17701 5456//17702 1771//17703 +f 6075//17704 5760//17705 6227//17706 +f 1815//17707 3875//17708 1487//17709 +f 4097//17710 1286//17711 878//17711 +f 3356//17712 4946//17713 578//17712 +f 3499//17714 4060//17715 5216//17716 +f 2789//17717 698//17718 2955//17719 +f 6191//17720 6361//17721 6190//17722 +f 2785//17723 1448//17723 4183//17723 +f 942//17724 4764//17725 3362//17726 +f 4292//17727 2648//17728 4815//17729 +f 6192//17730 6576//17731 6298//17732 +f 6193//17733 6267//17734 6362//17734 +f 5486//17735 5485//17736 6055//17737 +f 6149//17738 6193//17739 6363//17740 +f 6364//17741 6576//17742 6229//17743 +f 6576//17744 6080//17745 6229//17746 +f 6268//17747 6364//17748 6229//17749 +f 3769//17750 3263//17751 438//17752 +f 1127//17753 5089//17754 1040//17755 +f 3016//17756 1554//17757 946//17758 +f 6326//17759 6115//17760 3849//17761 +f 3104//17762 3925//17762 1604//17762 +f 3941//17763 1402//17763 1816//17763 +f 4665//17764 1711//17765 1132//17766 +f 134//17767 449//17767 305//17767 +f 6327//17768 5043//17769 6150//17770 +f 2715//17771 3301//17772 4486//17773 +f 2883//17774 3433//17775 2267//17776 +f 6081//17777 6045//17777 6365//17777 +f 2874//17778 3682//17779 2327//17778 +f 3900//17780 2332//17781 2191//17782 +f 6231//17783 6081//17783 6365//17783 +f 3620//17784 663//17785 4950//17786 +f 6366//17787 6232//17788 6082//17789 +f 341//17790 2524//17791 2869//17792 +f 6299//17793 6367//17794 6300//17793 +f 652//17795 3186//17796 2447//17797 +f 3049//17798 2821//17798 2088//17798 +f 6269//17799 6005//17799 6232//17799 +f 6233//17800 6367//17801 6299//17802 +f 6152//17803 5404//17803 5968//17803 +f 6401//17804 6367//17805 6233//17806 +f 2116//17807 933//17808 1388//17809 +f 6270//17810 6300//17811 6367//17812 +f 1057//17813 2789//17814 3806//17815 +f 4158//17816 5790//17817 5048//17818 +f 6301//17819 6199//17819 6328//17820 +f 6301//17821 6328//17822 6370//17821 +f 5857//17823 6269//17824 6234//17825 +f 391//17826 3042//17827 1784//17828 +f 3145//17829 2546//17830 3438//17829 +f 899//17831 4881//17832 4260//17833 +f 6199//17834 6301//17834 6271//17834 +f 6369//17835 6117//17836 6272//17837 +f 1203//17838 673//17839 953//17840 +f 6202//17841 6328//17842 6201//17843 +f 540//17844 4451//17845 552//17846 +f 5203//17847 1873//17848 678//17849 +f 5395//17850 3151//17851 4756//17852 +f 6270//17853 6401//17853 6330//17853 +f 1176//17854 5217//17855 4732//17856 +f 4546//17857 2061//17858 2669//17859 +f 1365//17860 1275//17861 1074//17862 +f 1401//17863 367//17864 5505//17865 +f 4645//17866 4540//17866 710//17867 +f 2048//17868 3622//17869 1582//17870 +f 1706//17871 4228//17871 5064//17871 +f 1751//17872 4898//17873 876//17874 +f 5279//17875 3935//17876 4979//17877 +f 3408//17878 2319//17879 2162//17878 +f 6203//17880 6153//17881 6332//17881 +f 2960//17882 3566//17883 1163//17884 +f 6239//17885 6372//17886 6374//17887 +f 6374//17888 6333//17889 6239//17890 +f 2979//17891 2967//17892 2924//17893 +f 1479//17894 937//17895 1574//17896 +f 1894//17897 3621//17898 3753//17899 +f 4072//17900 657//17900 3271//17901 +f 707//17902 4512//17903 706//17904 +f 2409//17905 3016//17905 946//17906 +f 983//17907 3834//17908 2749//17909 +f 3648//17910 2897//17911 4755//17910 +f 3769//17912 1690//17913 3263//17914 +f 6304//17915 6334//17916 6087//17917 +f 6334//17918 6155//17919 6087//17918 +f 4608//17920 5293//17921 4204//17922 +f 7359//17923 764//17924 1634//17925 +f 5648//17926 1001//17926 3018//17926 +f 4653//17927 3309//17928 5810//17929 +f 5549//17930 4073//17931 4888//17932 +f 828//17933 332//17934 3097//17935 +f 1667//17936 141//17937 2089//17937 +f 2869//17938 1758//17939 5126//17940 +f 6208//17941 6335//17942 6091//17943 +f 1278//17944 1041//17945 3934//17944 +f 2071//17946 1640//17947 2513//17948 +f 2603//17949 1769//17949 3455//17949 +f 1180//17950 3920//17951 3016//17952 +f 4186//17953 4538//17953 13//17953 +f 131//17954 96//17955 2604//17956 +f 4621//17957 31//17958 4686//17958 +f 5507//17959 621//17960 642//17960 +f 1224//17961 4269//17961 6442//17961 +f 3446//17962 3543//17962 1622//17963 +f 3167//17964 4063//17965 1170//17966 +f 3887//17967 3062//17968 2443//17969 +f 391//17970 3380//17971 4169//17972 +f 6020//17973 6209//17974 6094//17973 +f 2422//17975 4852//17976 699//17977 +f 6164//17978 5865//17978 6247//17979 +f 3065//17980 212//17980 3066//17980 +f 3425//17981 3095//17982 5140//17982 +f 3009//17983 4512//17984 3702//17984 +f 335//17985 1175//17985 1666//17985 +f 3600//17986 943//17987 3564//17988 +f 4635//17989 281//17990 4636//17991 +f 1026//17992 1000//17993 2906//17994 +f 1614//17995 724//17996 6051//17997 +f 3105//17998 540//17998 2761//17998 +f 4766//17999 4505//18000 4783//18001 +f 4337//18002 577//18003 1558//18003 +f 3291//18004 727//18005 728//18006 +f 4860//18007 1863//18008 4897//18009 +f 354//18010 355//18011 4793//18011 +f 3550//18012 1720//18013 4560//18014 +f 333//18015 1803//18016 427//18017 +f 5983//18018 6063//18019 6251//18020 +f 6309//18021 6166//18022 6096//18023 +f 3817//18024 3295//18025 1203//18026 +f 1637//18027 1636//18028 1068//18029 +f 152//18030 3582//18031 3583//18032 +f 141//18033 4385//18034 2089//18034 +f 6130//18035 5875//18035 6166//18035 +f 3085//18036 478//18037 2937//18036 +f 4654//18038 722//18039 3354//18040 +f 3031//18041 4963//18042 2016//18043 +f 3522//18044 4889//18045 4161//18045 +f 1761//18046 3556//18047 1871//18048 +f 3938//18049 704//18050 4222//18051 +f 6169//18052 6347//18053 6133//18054 +f 3525//18055 4891//18055 2617//18056 +f 3346//18057 1528//18058 4006//18059 +f 3664//18060 3864//18060 3574//18060 +f 2895//18061 2595//18061 995//18061 +f 1367//18062 455//18063 1979//18063 +f 3057//18064 2037//18064 216//18064 +f 1581//18065 2104//18066 4523//18066 +f 2241//18067 3116//18068 3332//18069 +f 3002//18070 7224//18071 299//18070 +f 6171//18072 5950//18073 6348//18074 +f 6380//18075 6351//18076 6350//18075 +f 3164//18077 4149//18078 3860//18079 +f 4097//18080 878//18081 2610//18080 +f 3210//18082 4479//18082 1943//18082 +f 2343//18083 3776//18083 2591//18083 +f 6353//18084 6351//18085 6382//18086 +f 97//18087 5726//18088 3496//18088 +f 500//18089 3800//18090 3442//18091 +f 5682//18092 4301//18093 1263//18094 +f 651//18095 1484//18096 3283//18095 +f 6136//18097 6034//18098 6384//18099 +f 495//18100 1901//18101 2291//18102 +f 6034//18103 6315//18103 6384//18103 +f 6034//18104 5991//18104 6315//18104 +f 6033//18105 6172//18106 6385//18107 +f 2090//18108 3110//18109 3583//18110 +f 4944//18111 4844//18112 2372//18113 +f 1243//18114 1949//18115 1087//18114 +f 2518//18116 3099//18116 2848//18117 +f 6315//18118 5991//18118 6139//18118 +f 2679//18119 2680//18120 8//18121 +f 723//18122 729//18123 724//18124 +f 708//18125 3635//18125 4744//18126 +f 3076//18127 162//18128 4084//18129 +f 6257//18130 6423//18131 6388//18132 +f 882//18133 1064//18134 1240//18135 +f 6482//18136 6141//18136 6389//18136 +f 6389//18137 6141//18138 6260//18137 +f 6318//18139 6259//18139 6257//18139 +f 230//18140 2156//18140 1601//18140 +f 538//18141 3816//18142 1241//18143 +f 121//18144 2814//18145 3154//18145 +f 6293//18146 6100//18146 6318//18147 +f 5929//18148 6069//18149 6292//18150 +f 2551//18151 4477//18151 4643//18151 +f 3158//18152 653//18153 5525//18152 +f 2091//18154 1431//18155 5686//18156 +f 3019//18157 4520//18157 2653//18158 +f 170//18159 4424//18160 3491//18160 +f 627//18161 3219//18162 3983//18163 +f 6390//18164 6177//18164 6102//18165 +f 4078//18166 1934//18167 1680//18168 +f 394//18169 2483//18170 3390//18171 +f 5193//18172 4138//18173 3417//18174 +f 6225//18175 6294//18176 6391//18177 +f 2311//18178 1115//18179 111//18179 +f 3241//18180 5510//18180 2003//18181 +f 422//18182 3698//18182 4184//18182 +f 6176//18183 5995//18184 6455//18185 +f 101//18186 2411//18187 4646//18188 +f 4318//18189 951//18189 1036//18189 +f 2267//18190 3433//18190 1169//18191 +f 3458//18192 2619//18193 1748//18194 +f 6321//18195 6392//18195 6181//18195 +f 4263//18196 4195//18196 713//18196 +f 6393//18197 6394//18197 6147//18197 +f 6357//18198 6183//18198 6181//18199 +f 1833//18200 477//18201 2915//18202 +f 396//18203 5174//18204 1890//18205 +f 4921//18206 5114//18206 5078//18206 +f 4032//18207 508//18208 4243//18209 +f 6109//18210 6187//18210 6323//18210 +f 984//18211 1769//18212 2603//18213 +f 6188//18214 6322//18215 6395//18216 +f 6148//18217 6188//18218 6395//18218 +f 6265//18219 6111//18220 6359//18221 +f 2279//18222 4927//18223 4268//18224 +f 209//18225 2195//18226 729//18227 +f 6073//18228 6148//18229 6396//18230 +f 1957//18231 1098//18232 3113//18232 +f 3409//18233 1301//18234 1144//18233 +f 6227//18235 6073//18236 6396//18237 +f 6112//18238 6397//18239 6226//18240 +f 3878//18241 1336//18242 3729//18243 +f 3523//18244 1940//18244 2502//18245 +f 1360//18246 571//18247 4183//18247 +f 5469//18248 4226//18248 3282//18249 +f 2035//18250 4829//18251 2393//18251 +f 6228//18252 6324//18253 6325//18254 +f 2150//18255 5056//18256 1173//18256 +f 2100//18257 3208//18258 4684//18259 +f 799//18260 1435//18261 2263//18262 +f 5066//18263 5550//18264 840//18265 +f 4956//18266 2149//18267 4176//18268 +f 3277//18269 3045//18270 3946//18271 +f 470//18272 445//18273 1064//18272 +f 6462//18274 6268//18275 6149//18276 +f 6462//18277 6364//18278 6268//18279 +f 3962//18280 185//18280 2294//18280 +f 2383//18281 391//18281 4169//18282 +f 1019//18283 3540//18284 3200//18284 +f 3266//18285 2359//18286 2558//18287 +f 254//18288 777//18288 255//18288 +f 6433//18289 6150//18290 6399//18291 +f 6150//18292 6117//18293 6399//18293 +f 3453//18294 4048//18295 2916//18296 +f 1357//18297 4757//18297 2241//18298 +f 3282//18299 443//18300 5469//18301 +f 6369//18302 6399//18303 6117//18304 +f 1945//18305 560//18306 3411//18307 +f 700//18308 4850//18309 699//18310 +f 3830//18311 3256//18312 1097//18313 +f 1260//18314 217//18315 314//18316 +f 6231//18317 6498//18318 6197//18319 +f 5122//18320 2418//18321 1308//18322 +f 3488//18323 5358//18323 1887//18323 +f 6270//18324 6367//18325 6401//18326 +f 2362//18327 3447//18327 4785//18327 +f 2281//18328 1830//18328 3614//18328 +f 2159//18329 4078//18330 4459//18331 +f 3317//18332 3954//18333 849//18333 +f 3319//18334 2474//18334 256//18334 +f 2131//18335 842//18336 3936//18335 +f 6328//18337 6202//18337 6302//18337 +f 619//18338 986//18339 5421//18340 +f 481//18341 187//18342 784//18343 +f 874//18344 3752//18344 2776//18345 +f 2238//18346 2131//18347 3936//18348 +f 4330//18349 1380//18350 4895//18351 +f 1414//18352 2023//18352 3373//18353 +f 425//18354 1715//18355 1279//18356 +f 6371//18357 5974//18358 5975//18359 +f 1843//18360 1601//18360 4739//18361 +f 1751//18362 4729//18363 7337//18364 +f 6371//18365 5975//18365 6402//18365 +f 3855//18366 4689//18366 3408//18366 +f 1072//18367 5133//18367 1672//18367 +f 6372//18368 6373//18368 6374//18368 +f 1375//18369 1827//18370 4103//18371 +f 6332//18372 6403//18373 6203//18374 +f 2452//18375 2321//18376 1444//18377 +f 6333//18378 6404//18379 6204//18378 +f 5009//18380 3021//18381 5492//18380 +f 4223//18382 4002//18382 3674//18383 +f 4508//18384 4486//18385 3301//18386 +f 703//18387 25//18387 3093//18388 +f 640//18389 1557//18390 5307//18391 +f 6405//18392 6275//18393 6335//18394 +f 4801//18395 1571//18396 795//18397 +f 1281//18398 2463//18399 1870//18400 +f 1293//18401 3202//18402 4573//18403 +f 141//18404 2932//18405 4853//18406 +f 1068//18407 3089//18408 1637//18409 +f 217//18410 385//18410 314//18410 +f 998//18411 3649//18412 1640//18412 +f 3628//18413 5157//18414 5158//18415 +f 645//18416 2426//18417 4296//18418 +f 6338//18419 6246//18420 6243//18419 +f 4881//18421 1838//18422 5287//18423 +f 4111//18424 2953//18425 1259//18425 +f 3283//18426 1484//18427 1524//18428 +f 6246//18429 6126//18430 6125//18431 +f 2896//18432 4352//18432 3021//18433 +f 6340//18434 6161//18435 6209//18436 +f 4152//18437 1801//18438 4594//18439 +f 4056//18440 2820//18441 3698//18441 +f 6279//18442 6408//18443 6162//18444 +f 5078//18445 4336//18446 2642//18447 +f 6163//18448 6095//18449 6623//18448 +f 511//18450 317//18451 1933//18452 +f 1849//18453 152//18454 370//18455 +f 953//18456 4255//18457 1782//18457 +f 4915//18458 4341//18458 5643//18458 +f 3179//18459 3521//18459 2788//18460 +f 6210//18461 6409//18462 6279//18463 +f 2229//18464 3375//18465 3120//18466 +f 4047//18467 2176//18468 2244//18469 +f 2363//18470 2473//18471 4675//18472 +f 1245//18473 5069//18474 3332//18475 +f 6376//18476 6127//18476 6342//18476 +f 5915//18477 6307//18478 6249//18477 +f 1690//18479 3769//18480 1956//18480 +f 1620//18481 712//18482 1893//18482 +f 1878//18483 3823//18484 2720//18484 +f 3383//18485 672//18486 27//18487 +f 556//18488 1207//18489 3365//18490 +f 2097//18491 3377//18492 2934//18492 +f 4321//18493 4980//18494 3316//18495 +f 4707//18496 3582//18497 5154//18497 +f 2906//18498 2388//18499 1026//18500 +f 2337//18501 2305//18502 1344//18503 +f 887//18504 4276//18504 4207//18504 +f 6252//18505 6133//18506 6379//18506 +f 777//18507 1861//18507 1822//18507 +f 3626//18508 3078//18508 3673//18508 +f 6132//18509 6167//18510 6378//18509 +f 3670//18511 251//18512 2855//18512 +f 2814//18513 3103//18513 3454//18514 +f 2164//18515 1929//18516 3402//18517 +f 6133//18518 6347//18519 6379//18520 +f 6027//18521 5922//18521 6311//18521 +f 5050//18522 1242//18523 2326//18522 +f 2181//18524 3409//18525 1298//18526 +f 4118//18527 565//18528 658//18529 +f 6313//18530 6412//18531 6350//18532 +f 6214//18533 6414//18534 5924//18533 +f 6349//18535 6413//18536 6097//18536 +f 6477//18537 6380//18538 6415//18539 +f 6350//18540 6415//18541 6380//18540 +f 3591//18542 3419//18543 2846//18542 +f 6313//18544 6350//18545 6312//18546 +f 132//18547 2358//18548 2699//18549 +f 2419//18550 815//18551 4574//18552 +f 3703//18553 1254//18553 1255//18553 +f 731//18554 2310//18555 2839//18556 +f 6416//18557 5926//18558 6065//18559 +f 940//18560 2171//18561 1912//18562 +f 3354//18563 2675//18563 4654//18563 +f 6418//18564 6215//18564 6286//18565 +f 829//18566 4331//18566 1207//18566 +f 6383//18567 6419//18568 6288//18568 +f 6383//18569 6288//18570 6289//18571 +f 5540//18572 2467//18573 3840//18574 +f 6383//18575 6289//18575 6420//18575 +f 6172//18576 6033//18577 6354//18578 +f 5550//18579 5066//18579 4824//18580 +f 6353//18581 6548//18582 6254//18583 +f 4197//18584 4314//18585 1678//18586 +f 2636//18587 4422//18587 348//18587 +f 5431//18588 487//18588 3414//18588 +f 6315//18589 6139//18590 6386//18591 +f 1143//18592 1612//18593 3882//18594 +f 4051//18595 514//18596 4998//18597 +f 6257//18598 6258//18599 6423//18600 +f 5368//18601 2730//18601 3680//18601 +f 3724//18602 2886//18603 4578//18604 +f 4085//18605 3021//18606 5009//18606 +f 1050//18607 4060//18608 4023//18609 +f 2220//18610 4703//18611 3815//18612 +f 2976//18613 977//18614 2975//18615 +f 6260//18616 6262//18616 6389//18617 +f 6261//18618 5929//18619 6292//18619 +f 6221//18620 6103//18620 6319//18620 +f 2322//18621 3657//18622 2847//18623 +f 5367//18624 1394//18625 3919//18626 +f 3844//18627 4271//18628 2136//18629 +f 6356//18630 6484//18631 6224//18632 +f 6426//18633 6142//18634 6222//18635 +f 6142//18636 6426//18636 6456//18637 +f 492//18638 4843//18639 4073//18640 +f 5322//18641 1587//18642 5419//18643 +f 1780//18644 210//18644 3501//18645 +f 4102//18646 1650//18647 151//18648 +f 2105//18649 242//18649 3909//18649 +f 4169//18650 1525//18650 609//18650 +f 6394//18651 6356//18651 6147//18651 +f 1102//18652 2771//18653 4377//18654 +f 6181//18655 6392//18656 6357//18655 +f 6147//18657 6182//18657 6393//18658 +f 2299//18659 3854//18660 4448//18661 +f 6357//18662 5959//18663 6184//18664 +f 1372//18665 2265//18666 4332//18667 +f 6185//18668 6489//18669 6393//18670 +f 881//18671 508//18672 4032//18672 +f 6427//18673 6428//18673 6358//18673 +f 6322//18674 6358//18675 6428//18674 +f 6323//18676 6187//18677 6265//18677 +f 684//18678 2326//18678 683//18679 +f 6395//18680 6322//18681 6428//18682 +f 2593//18683 3386//18683 2461//18683 +f 3762//18684 3015//18685 3212//18686 +f 6397//18687 6075//18687 6227//18688 +f 6112//18689 6075//18689 6397//18689 +f 5212//18690 3643//18690 2742//18691 +f 6360//18692 6494//18693 6266//18694 +f 2767//18695 4657//18695 2768//18696 +f 6429//18697 6190//18698 6361//18699 +f 3099//18700 136//18700 1486//18700 +f 578//18701 2681//18702 4942//18703 +f 6297//18704 6431//18705 6267//18706 +f 1392//18707 2352//18707 1911//18708 +f 1716//18709 3588//18709 2173//18709 +f 6363//18710 6193//18710 6362//18710 +f 3431//18711 1285//18712 1021//18713 +f 2120//18714 4526//18715 1114//18714 +f 2592//18716 649//18717 5204//18718 +f 839//18719 4472//18720 1464//18721 +f 3044//18722 427//18723 2471//18724 +f 4503//18725 2795//18726 2900//18726 +f 2730//18727 2729//18728 2559//18729 +f 3493//18730 823//18731 3529//18732 +f 6115//18733 6326//18734 6432//18735 +f 6398//18736 6327//18737 6150//18738 +f 6365//18739 6045//18740 6115//18741 +f 4146//18742 1867//18743 1986//18744 +f 2379//18745 1413//18746 3418//18747 +f 2157//18748 4476//18749 463//18750 +f 385//18751 4606//18752 1134//18753 +f 6433//18754 6398//18755 6150//18756 +f 6435//18757 6232//18758 6366//18759 +f 3109//18760 1009//18761 276//18762 +f 237//18763 107//18763 1467//18763 +f 6269//18764 6232//18765 6436//18766 +f 1364//18767 498//18767 1971//18768 +f 1736//18769 1737//18770 3195//18771 +f 6434//18772 6231//18772 6365//18772 +f 2326//18773 684//18774 3351//18773 +f 5049//18775 2382//18776 4140//18777 +f 6233//18778 6437//18779 6401//18780 +f 450//18781 4438//18782 5332//18783 +f 6328//18784 6199//18785 6273//18786 +f 66//18787 2957//18788 335//18789 +f 1986//18790 3562//18791 2926//18791 +f 435//18792 1512//18793 442//18794 +f 3658//18795 4334//18796 1921//18797 +f 6329//18798 5490//18799 6120//18800 +f 6006//18801 6197//18802 6498//18803 +f 1781//18804 2643//18805 5097//18806 +f 6497//18807 6330//18808 6401//18808 +f 400//18809 2088//18810 4125//18811 +f 5903//18812 6234//18813 6235//18814 +f 6198//18815 5974//18816 6371//18817 +f 2439//18818 4446//18819 3319//18820 +f 6438//18821 6369//18822 6272//18823 +f 5019//18824 96//18825 1379//18826 +f 6238//18827 6047//18827 6271//18827 +f 1985//18828 2657//18828 3531//18829 +f 1050//18830 4023//18831 5486//18832 +f 1172//18833 3052//18833 2041//18834 +f 4788//18835 1901//18836 495//18837 +f 6330//18838 6468//18839 6237//18840 +f 6240//18841 6236//18842 6121//18843 +f 6274//18844 6084//18844 6238//18844 +f 6153//18845 6237//18846 6468//18845 +f 6332//18847 6153//18847 6468//18847 +f 2700//18848 2379//18849 2808//18850 +f 6403//18851 6440//18852 6372//18853 +f 5776//18854 4195//18854 3913//18854 +f 2438//18855 1910//18855 5525//18855 +f 617//18856 421//18857 2798//18858 +f 2787//18859 3423//18859 210//18859 +f 6304//18860 6204//18861 6404//18861 +f 6331//18862 6275//18863 6441//18862 +f 5274//18864 6355//18865 6442//18864 +f 6084//18866 6274//18867 6050//18868 +f 2931//18869 3411//18869 3524//18869 +f 6240//18870 6241//18870 6336//18871 +f 6241//18872 6090//18872 6336//18872 +f 3763//18873 514//18873 4051//18874 +f 3208//18875 2100//18876 431//18877 +f 3443//18878 4096//18879 504//18880 +f 1214//18881 139//18882 5943//18883 +f 6208//18884 6443//18884 6335//18884 +f 6092//18885 6305//18886 6444//18887 +f 2499//18888 275//18889 4697//18890 +f 36//18891 6124//18891 4475//18891 +f 6245//18892 6123//18892 6445//18892 +f 991//18893 1787//18894 538//18893 +f 6056//18895 6207//18896 6406//18896 +f 5862//18897 5979//18898 6501//18899 +f 6338//18900 6244//18901 6375//18900 +f 436//18902 4489//18903 1171//18904 +f 6375//18905 6244//18906 6277//18907 +f 4120//18908 4765//18909 5174//18910 +f 3338//18911 3186//18912 845//18912 +f 2561//18913 4344//18913 2547//18913 +f 823//18914 2673//18914 1689//18915 +f 6306//18916 6277//18917 6093//18918 +f 582//18919 2463//18920 5207//18921 +f 775//18922 3534//18922 629//18922 +f 6126//18923 6246//18924 6539//18925 +f 3348//18926 3204//18927 2765//18927 +f 4678//18928 1967//18928 1141//18929 +f 1565//18930 2001//18931 5562//18932 +f 581//18933 1823//18934 3619//18935 +f 4448//18936 1698//18937 4338//18938 +f 855//18939 3621//18939 819//18940 +f 6159//18941 6162//18942 6408//18943 +f 2539//18944 4251//18945 1724//18946 +f 4193//18947 4014//18948 2309//18949 +f 3713//18950 424//18951 192//18952 +f 5507//18953 1386//18954 621//18954 +f 687//18955 2480//18956 1817//18957 +f 5528//18958 1395//18959 4411//18958 +f 2596//18960 4367//18961 215//18961 +f 4466//18962 414//18963 1339//18964 +f 6210//18965 6344//18966 6409//18967 +f 554//18968 1203//18969 3295//18970 +f 3323//18971 2380//18972 630//18973 +f 2196//18974 2291//18975 1901//18976 +f 1942//18977 1956//18978 3769//18979 +f 6280//18980 5947//18981 6345//18982 +f 233//18983 2370//18984 1030//18983 +f 2603//18985 1005//18986 984//18987 +f 2421//18988 2279//18989 4268//18990 +f 2314//18991 1292//18992 432//18993 +f 5534//18994 2353//18995 4876//18996 +f 6377//18997 6213//18998 6024//18999 +f 623//19000 1750//19001 2175//19000 +f 757//19002 2683//19003 4866//19004 +f 4366//19005 890//19005 5269//19006 +f 6129//19007 6133//19007 6252//19008 +f 3497//19009 4538//19010 1204//19009 +f 6446//19011 6283//19012 6132//19013 +f 2348//19014 5731//19014 289//19015 +f 2993//19016 2641//19017 4950//19018 +f 2517//19019 3088//19019 5499//19020 +f 3368//19021 3479//19022 1963//19023 +f 4123//19024 1953//19025 4239//19025 +f 6284//19026 6097//19027 6413//19028 +f 4140//19029 822//19030 5049//19031 +f 6350//19032 6412//19033 6415//19033 +f 6477//19034 6448//19034 6380//19034 +f 1873//19035 5203//19036 856//19037 +f 3156//19038 3208//19039 4327//19038 +f 682//19040 1609//19041 696//19042 +f 6380//19043 6448//19044 6449//19045 +f 6450//19046 6313//19046 6288//19046 +f 6352//19047 6416//19048 6065//19049 +f 4720//19050 5580//19051 1408//19051 +f 6351//19052 6380//19052 6417//19053 +f 4149//19054 3934//19055 1658//19056 +f 6349//19057 6215//19058 6418//19059 +f 25//19060 3472//19061 4912//19062 +f 1352//19063 2288//19064 7214//19065 +f 6351//19066 6417//19067 6382//19068 +f 2194//19069 3107//19069 409//19069 +f 3028//19070 371//19071 3766//19070 +f 1344//19072 1548//19073 1884//19074 +f 4067//19075 1557//19076 5020//19077 +f 6382//19078 6548//19078 6353//19078 +f 3576//19079 4091//19079 3848//19079 +f 6289//19080 6255//19081 6482//19082 +f 1093//19083 4705//19084 2129//19085 +f 6290//19086 6480//19086 6316//19087 +f 6139//19088 6256//19089 6386//19088 +f 6421//19090 6387//19091 6316//19092 +f 6387//19093 6258//19094 6316//19095 +f 402//19096 4143//19097 3788//19098 +f 6423//19099 6258//19100 6387//19101 +f 3930//19102 413//19103 5255//19104 +f 2832//19105 287//19106 3048//19107 +f 1993//19108 2754//19109 1992//19110 +f 6257//19111 6388//19112 6318//19113 +f 6291//19114 6174//19114 6424//19114 +f 940//19115 3298//19116 197//19117 +f 2036//19118 1576//19119 2095//19120 +f 4487//19121 4486//19122 4508//19123 +f 6262//19124 6104//19125 6484//19126 +f 4419//19127 3158//19128 2396//19129 +f 6103//19130 6175//19131 6319//19130 +f 1215//19132 2859//19132 1119//19132 +f 6486//19133 6222//19134 6390//19135 +f 5995//19136 6223//19137 6455//19138 +f 940//19139 1763//19140 2171//19141 +f 856//19142 2521//19143 3485//19144 +f 4447//19145 5156//19146 1394//19147 +f 6456//19148 5958//19149 6142//19150 +f 899//19151 1891//19151 4479//19151 +f 2478//19152 4227//19153 4336//19154 +f 1644//19155 1185//19155 2938//19156 +f 6106//19157 5752//19157 6144//19158 +f 6106//19159 6457//19160 6105//19159 +f 6458//19161 6321//19162 6320//19163 +f 1977//19164 1000//19165 4463//19166 +f 2523//19167 3524//19167 1716//19168 +f 1813//19169 3296//19169 3795//19169 +f 5959//19170 6487//19171 6107//19172 +f 3647//19173 201//19174 4777//19175 +f 3941//19176 1786//19176 1402//19177 +f 6459//19178 6263//19179 6108//19180 +f 6461//19181 6185//19182 6109//19181 +f 4923//19183 5027//19183 1869//19183 +f 6460//19184 6427//19185 6358//19186 +f 3680//19187 2730//19188 2559//19189 +f 2643//19190 485//19190 1514//19190 +f 2095//19191 620//19192 3757//19193 +f 2854//19194 2714//19195 2874//19196 +f 382//19197 1700//19197 4307//19197 +f 1414//19198 3373//19199 111//19200 +f 5331//19201 5123//19202 1841//19203 +f 104//19204 7249//19204 1389//19204 +f 2340//19205 3630//19206 3650//19207 +f 2883//19208 1212//19209 4303//19210 +f 6324//19211 6266//19212 6493//19211 +f 5505//19213 351//19214 1401//19215 +f 1052//19216 3692//19217 5169//19218 +f 3527//19219 5020//19219 3722//19219 +f 4167//19220 2476//19221 3927//19222 +f 6429//19223 6189//19224 6190//19225 +f 6430//19226 6297//19227 6325//19226 +f 2501//19228 3482//19229 230//19230 +f 6361//19231 6191//19232 6298//19233 +f 385//19234 548//19234 3146//19234 +f 2377//19235 431//19236 2621//19237 +f 6431//19238 6362//19239 6267//19239 +f 146//19240 3069//19240 1832//19241 +f 4587//19242 570//19243 2972//19244 +f 4621//19245 953//19246 31//19247 +f 2982//19248 3499//19248 5216//19249 +f 1244//19250 3372//19251 229//19252 +f 6363//19253 6462//19254 6149//19255 +f 3588//19256 3419//19256 4177//19256 +f 2240//19257 4262//19258 4201//19258 +f 5303//19259 3316//19260 3351//19261 +f 6432//19262 6327//19262 6398//19262 +f 6432//19263 6326//19263 6327//19263 +f 6463//19264 6115//19264 6432//19265 +f 4676//19266 4234//19267 4235//19268 +f 6464//19269 6432//19269 6398//19269 +f 5328//19270 5193//19270 4362//19270 +f 1847//19271 197//19272 3298//19271 +f 6115//19273 6463//19274 6365//19275 +f 4953//19276 1374//19277 2981//19278 +f 3674//19279 1456//19280 225//19281 +f 3157//19282 672//19283 3370//19284 +f 6435//19285 6436//19286 6232//19287 +f 5527//19288 1864//19289 1865//19290 +f 3253//19291 794//19292 3321//19293 +f 1832//19294 3069//19294 4731//19294 +f 6466//19295 6437//19296 6152//19297 +f 1364//19298 1842//19299 498//19300 +f 3985//19301 2577//19302 4695//19303 +f 3435//19304 4965//19305 1291//19304 +f 6437//19306 6467//19306 6401//19307 +f 2327//19308 3859//19309 2874//19310 +f 2385//19311 1806//19312 3640//19313 +f 6400//19314 6328//19315 6302//19316 +f 6498//19317 6231//19318 6434//19319 +f 3202//19320 4295//19321 1877//19322 +f 4471//19323 5581//19324 4982//19325 +f 1551//19326 4875//19326 3572//19326 +f 2496//19327 2143//19328 4902//19329 +f 5158//19330 3923//19331 1729//19332 +f 337//19333 2798//19333 1585//19333 +f 2510//19334 1856//19335 2333//19336 +f 4385//19337 367//19338 1401//19339 +f 6235//19340 6532//19341 6302//19342 +f 2447//19343 227//19344 1580//19345 +f 4697//19346 3974//19346 1266//19346 +f 5065//19347 363//19348 1750//19349 +f 6006//19350 6439//19351 5937//19352 +f 1809//19353 1138//19354 903//19355 +f 587//19356 2560//19356 948//19356 +f 1652//19357 4793//19358 4206//19359 +f 1873//19360 3918//19361 404//19362 +f 6402//19363 5975//19363 6303//19363 +f 650//19364 3231//19365 767//19366 +f 408//19367 6061//19367 3577//19367 +f 6373//19368 6469//19369 6374//19370 +f 1454//19371 2472//19371 1049//19372 +f 6374//19373 6469//19374 6333//19375 +f 3377//19376 711//19377 2934//19378 +f 5072//19379 504//19380 4746//19381 +f 3406//19382 3073//19383 744//19384 +f 4073//19385 3199//19385 4670//19385 +f 1784//19386 214//19386 2954//19386 +f 93//19387 2220//19388 4159//19389 +f 3440//19390 1339//19390 4454//19390 +f 950//19391 1378//19391 5337//19391 +f 6158//19392 6056//19392 6406//19393 +f 1390//19394 2337//19395 1884//19396 +f 4330//19397 4895//19398 5019//19399 +f 6126//19400 6539//19400 6339//19400 +f 4953//19401 2981//19402 248//19403 +f 6407//19404 6163//19404 6623//19405 +f 6339//19406 6341//19406 6160//19406 +f 5139//19407 5020//19407 3527//19408 +f 4525//19409 1593//19410 283//19411 +f 3629//19412 3424//19413 1094//19414 +f 4554//19415 2324//19416 7142//19417 +f 3182//19418 3253//19419 5110//19420 +f 6472//19421 6281//19421 6059//19422 +f 454//19423 2772//19424 4871//19425 +f 1045//19426 3029//19427 1845//19428 +f 4028//19429 1125//19430 43//19431 +f 2538//19432 3525//19433 3462//19433 +f 6410//19434 6345//19434 6060//19435 +f 6344//19436 5983//19437 6473//19437 +f 1241//19438 3399//19439 1250//19440 +f 6128//19441 6250//19442 6282//19443 +f 6346//19444 6308//19444 6474//19444 +f 126//19445 1437//19445 569//19445 +f 3749//19446 1107//19447 3756//19448 +f 1364//19449 5738//19449 1566//19449 +f 2937//19450 1186//19451 1490//19452 +f 635//19453 3302//19454 3327//19455 +f 2363//19456 4766//19457 2473//19458 +f 792//19459 1417//19459 2390//19460 +f 680//19461 607//19462 1136//19463 +f 3880//19464 4487//19465 2172//19466 +f 6475//19467 6412//19468 6544//19469 +f 4758//19470 454//19470 4871//19470 +f 5308//19471 4416//19471 1206//19471 +f 4300//19472 5718//19473 1042//19474 +f 6412//19475 6475//19476 6415//19477 +f 5633//19478 4311//19479 5195//19480 +f 5924//19481 6476//19482 6169//19483 +f 2093//19484 1970//19485 4327//19484 +f 1793//19486 1550//19487 3025//19488 +f 6415//19489 6475//19490 6477//19491 +f 6413//19492 6411//19493 6284//19492 +f 1933//19494 2466//19494 511//19494 +f 3052//19495 1172//19495 5070//19495 +f 6412//19496 6313//19497 6478//19498 +f 6414//19499 6214//19500 6285//19501 +f 6214//19502 5926//19503 6285//19504 +f 1334//19505 1078//19506 4359//19507 +f 4241//19508 3074//19509 2963//19510 +f 2938//19511 1185//19512 2525//19513 +f 6285//19514 5926//19515 6416//19516 +f 1318//19517 1835//19518 3695//19519 +f 1300//19520 3015//19520 1830//19520 +f 6449//19521 6417//19521 6380//19522 +f 1117//19523 4008//19523 2084//19523 +f 6288//19524 6419//19525 6450//19526 +f 476//19527 1653//19528 3802//19529 +f 6354//19530 6135//19531 6451//19530 +f 4053//19532 4031//19533 1737//19534 +f 230//19535 3482//19536 1957//19535 +f 735//19537 1800//19538 3183//19539 +f 5224//19540 165//19541 3686//19542 +f 3220//19543 4039//19543 4221//19544 +f 4909//19545 3904//19546 172//19545 +f 574//19547 3845//19548 3497//19549 +f 6315//19550 6386//19551 6479//19552 +f 4560//19553 237//19554 1179//19555 +f 6254//19556 6480//19557 6290//19557 +f 6055//19558 190//19559 4484//19560 +f 6066//19561 6385//19562 6317//19563 +f 6422//19564 6386//19564 6256//19564 +f 2997//19565 1517//19566 1474//19566 +f 4135//19567 3645//19568 396//19569 +f 2833//19570 4607//19571 1430//19572 +f 7400//19573 3338//19574 845//19573 +f 6388//19575 6423//19576 6511//19575 +f 4324//19577 3324//19577 1910//19577 +f 3765//19578 78//19578 4557//19579 +f 6482//19580 6389//19581 6513//19582 +f 1244//19583 1778//19584 1178//19585 +f 4557//19586 6836//19587 3765//19587 +f 6424//19588 6256//19589 6291//19590 +f 3141//19591 3313//19592 376//19593 +f 1254//19594 3703//19594 2978//19595 +f 1431//19596 72//19596 1534//19596 +f 5019//19597 1200//19598 4330//19599 +f 6424//19600 6174//19601 6483//19602 +f 4298//19603 933//19604 5699//19605 +f 6293//19606 6318//19606 6454//19606 +f 5207//19607 3481//19608 2950//19609 +f 6389//19610 6262//19611 6484//19611 +f 3501//19612 210//19613 1396//19614 +f 5212//19615 4977//19616 1930//19617 +f 6179//19618 6293//19618 6425//19618 +f 2497//19619 5205//19619 4460//19619 +f 6294//19620 6179//19620 6425//19620 +f 3649//19621 226//19622 1640//19623 +f 6484//19624 6356//19624 6556//19624 +f 5163//19625 5114//19626 4921//19627 +f 3381//19628 5512//19629 2594//19630 +f 6390//19631 6222//19632 6177//19631 +f 248//19633 368//19634 4953//19635 +f 1644//19636 5737//19637 1185//19638 +f 2018//19639 2550//19640 1462//19641 +f 3725//19642 340//19643 2529//19644 +f 593//19645 2102//19646 1587//19647 +f 4435//19648 1335//19648 4394//19648 +f 6106//19649 6144//19650 6457//19650 +f 238//19651 1065//19652 1329//19653 +f 1806//19654 2612//19655 2846//19656 +f 6487//19657 5959//19658 6357//19659 +f 6488//19660 6394//19660 6393//19660 +f 1340//19661 4662//19662 4515//19663 +f 6460//19664 6296//19664 6264//19664 +f 6185//19665 6461//19666 6489//19667 +f 6460//19668 6264//19669 6263//19670 +f 6460//19671 6358//19671 6296//19671 +f 1902//19672 4072//19673 4295//19674 +f 6109//19675 6323//19676 6461//19675 +f 1269//19677 278//19677 4586//19678 +f 3613//19679 184//19680 416//19681 +f 6395//19682 6490//19683 6148//19684 +f 6148//19685 6490//19686 6396//19687 +f 1166//19688 1749//19689 4960//19690 +f 6492//19691 6227//19692 6396//19693 +f 1901//19694 3367//19695 714//19694 +f 2515//19696 711//19697 1859//19696 +f 6494//19698 6493//19699 6266//19700 +f 1848//19701 3440//19702 4454//19703 +f 1872//19704 1859//19705 1760//19706 +f 238//19707 1697//19708 1065//19709 +f 5267//19710 4127//19711 2657//19712 +f 635//19713 3327//19714 2127//19715 +f 1433//19716 1463//19717 2037//19718 +f 1068//19719 3647//19720 4091//19721 +f 6430//19722 6431//19723 6297//19724 +f 4573//19725 3202//19725 4287//19725 +f 4552//19726 3401//19727 3378//19728 +f 1444//19729 2321//19729 4187//19729 +f 2865//19730 3814//19730 4105//19730 +f 4494//19731 5707//19732 67//19733 +f 2239//19734 3515//19735 2810//19736 +f 6526//19737 6463//19738 6432//19739 +f 6433//19740 6464//19741 6398//19742 +f 389//19743 1361//19744 1871//19745 +f 1698//19746 962//19747 4338//19747 +f 6614//19748 6399//19749 6369//19750 +f 4834//19751 4943//19751 4835//19752 +f 165//19753 2654//19754 3686//19755 +f 393//19756 813//19757 4797//19758 +f 4075//19759 3810//19760 3908//19761 +f 1360//19762 1104//19763 1163//19764 +f 1010//19765 879//19766 4286//19767 +f 4161//19768 2743//19768 4547//19768 +f 3882//19769 1612//19770 3315//19771 +f 2486//19772 5686//19772 1534//19773 +f 6235//19774 6531//19775 6532//19776 +f 3621//19777 4556//19778 3753//19779 +f 1755//19780 2145//19781 3437//19782 +f 6006//19783 6498//19784 6439//19785 +f 1138//19786 1137//19787 525//19788 +f 1712//19789 3257//19789 3943//19789 +f 3975//19790 4618//19791 584//19792 +f 985//19793 3342//19793 2112//19794 +f 5640//19795 1498//19796 810//19797 +f 4136//19798 1759//19799 4831//19800 +f 5561//19801 2469//19802 2482//19803 +f 6470//19804 6440//19805 6403//19806 +f 321//19807 3720//19808 2500//19809 +f 2671//19810 2183//19811 2199//19812 +f 3181//19813 3309//19814 4653//19813 +f 6304//19815 6500//19816 6334//19815 +f 933//19817 4298//19818 5946//19819 +f 2291//19820 3670//19821 495//19822 +f 6441//19823 6275//19824 6405//19825 +f 2943//19826 3951//19827 5105//19828 +f 6092//19829 6444//19829 6336//19829 +f 3981//19830 2788//19831 147//19832 +f 2102//19833 593//19833 518//19833 +f 1390//19834 1884//19834 3075//19834 +f 4206//19835 4793//19836 355//19837 +f 4209//19838 5131//19839 3020//19840 +f 3408//19841 5053//19842 465//19843 +f 2613//19844 5750//19845 3991//19846 +f 2252//19847 745//19848 311//19849 +f 3263//19850 4685//19851 3012//19851 +f 3046//19852 612//19852 2415//19852 +f 5979//19853 6161//19853 6501//19853 +f 6246//19854 6338//19855 6539//19856 +f 6247//19857 6245//19857 6502//19857 +f 323//19858 1941//19859 1014//19860 +f 4118//19861 1030//19861 565//19862 +f 6306//19863 6163//19864 6407//19865 +f 1044//19866 2398//19866 716//19867 +f 3908//19868 297//19869 3655//19870 +f 4665//19871 2445//19871 231//19872 +f 4496//19873 782//19874 3951//19875 +f 4063//19876 86//19877 371//19878 +f 1032//19879 4542//19880 3460//19881 +f 182//19882 4505//19883 2363//19884 +f 4781//19885 2284//19886 1718//19887 +f 6127//19888 6057//19888 6342//19888 +f 1695//19889 675//19890 2117//19890 +f 3176//19891 4083//19892 2818//19891 +f 463//19893 4476//19894 3029//19895 +f 3019//19896 3579//19897 4740//19898 +f 3537//19899 1381//19900 1738//19901 +f 2074//19902 3945//19903 5371//19904 +f 4113//19905 976//19905 1300//19905 +f 6674//19906 5945//19906 6343//19906 +f 681//19907 682//19908 2498//19909 +f 3094//19910 594//19911 3264//19910 +f 3133//19912 3704//19913 3899//19914 +f 4638//19915 2284//19916 3630//19916 +f 6410//19917 6060//19918 6211//19919 +f 313//19920 4659//19920 3006//19921 +f 142//19922 2881//19922 2662//19923 +f 3295//19924 4131//19925 554//19926 +f 3892//19927 628//19927 1651//19927 +f 4289//19928 1635//19929 12//19930 +f 404//19931 3918//19932 3014//19933 +f 5200//19934 2593//19935 1248//19936 +f 3143//19937 1071//19938 697//19939 +f 1453//19940 2680//19941 4508//19942 +f 6132//19943 6378//19944 6446//19945 +f 3704//19946 1153//19947 1446//19948 +f 3779//19949 4379//19950 170//19951 +f 183//19952 2975//19953 977//19954 +f 2919//19955 3248//19956 748//19957 +f 239//19958 2571//19959 2269//19960 +f 6379//19961 6347//19961 6447//19961 +f 4621//19962 3248//19963 4255//19964 +f 4911//19965 2146//19966 2103//19967 +f 6167//19968 6284//19969 6411//19970 +f 264//19971 3369//19972 265//19971 +f 3380//19973 3981//19973 2167//19973 +f 4425//19974 2939//19975 832//19976 +f 773//19977 966//19978 4437//19979 +f 287//19980 611//19981 4887//19982 +f 6594//19983 6477//19984 6475//19985 +f 4018//19986 3660//19986 5152//19986 +f 6628//19987 6348//19987 6168//19987 +f 4721//19988 3492//19989 3456//19989 +f 2419//19990 1754//19990 815//19990 +f 2102//19991 518//19992 2006//19993 +f 6476//19994 5924//19995 6414//19996 +f 1841//19997 5123//19998 1568//19999 +f 2804//20000 1319//20001 4356//20002 +f 6313//20003 6450//20004 6478//20005 +f 2998//20006 2259//20006 1382//20006 +f 4893//20007 2642//20008 4746//20007 +f 4465//20009 2715//20010 33//20011 +f 4670//20012 661//20013 598//20014 +f 206//20015 106//20015 54//20015 +f 3852//20016 764//20017 3320//20017 +f 5162//20018 3658//20018 80//20018 +f 3292//20019 4484//20020 4843//20021 +f 4275//20022 49//20022 3511//20023 +f 6449//20024 6508//20025 6417//20026 +f 403//20027 505//20028 5393//20027 +f 6286//20029 6136//20029 6452//20029 +f 6286//20030 6452//20030 6418//20030 +f 1378//20031 3109//20032 5337//20033 +f 2946//20034 4408//20035 4485//20036 +f 1152//20037 1418//20038 2340//20039 +f 3559//20040 2702//20041 2701//20042 +f 1676//20043 2551//20044 4643//20045 +f 3873//20046 865//20047 1708//20048 +f 4126//20049 4911//20050 2008//20051 +f 1409//20052 4096//20052 5502//20052 +f 2996//20053 679//20053 1609//20054 +f 2429//20055 4501//20055 3571//20055 +f 178//20056 1232//20057 4655//20058 +f 5984//20059 4240//20060 1818//20061 +f 2584//20062 4453//20063 2663//20064 +f 3842//20065 3800//20066 500//20067 +f 6480//20068 6421//20068 6316//20068 +f 1853//20069 1994//20069 1477//20070 +f 1774//20071 3209//20072 3768//20073 +f 5031//20074 3612//20074 3642//20074 +f 3463//20075 2858//20076 1671//20077 +f 4585//20078 4647//20079 1677//20078 +f 3800//20080 3842//20081 1668//20082 +f 6511//20083 6512//20083 6388//20084 +f 386//20085 5772//20086 4641//20085 +f 6424//20087 6514//20088 6256//20089 +f 4014//20090 3628//20091 4504//20092 +f 2//20093 3751//20094 3444//20095 +f 3360//20096 3085//20097 3687//20098 +f 2469//20099 5561//20100 1811//20101 +f 5507//20102 642//20102 3518//20102 +f 4836//20103 256//20104 3230//20105 +f 3510//20106 5181//20106 3624//20106 +f 4439//20107 2267//20107 3744//20107 +f 6389//20108 6484//20109 6516//20110 +f 6515//20111 6292//20111 6069//20111 +f 1387//20112 1727//20113 4368//20114 +f 3032//20115 2587//20116 815//20117 +f 1090//20118 630//20119 2380//20119 +f 49//20120 195//20121 283//20122 +f 404//20123 3014//20123 1636//20123 +f 6425//20124 6293//20125 6454//20126 +f 831//20127 3116//20128 4757//20128 +f 5181//20129 1454//20129 1049//20129 +f 6102//20130 6261//20130 6390//20130 +f 525//20131 5150//20132 3187//20133 +f 6425//20134 6729//20135 6294//20135 +f 1546//20136 417//20137 4651//20136 +f 3768//20138 4224//20139 2519//20140 +f 1615//20141 1929//20142 2164//20141 +f 6485//20143 6556//20144 6356//20145 +f 6175//20146 6176//20147 6455//20148 +f 6556//20149 6485//20150 6517//20151 +f 1134//20152 641//20153 2139//20154 +f 5//20155 4100//20156 3056//20156 +f 2465//20157 3795//20158 5277//20159 +f 6320//20160 6225//20160 6519//20160 +f 6518//20161 6517//20161 6485//20161 +f 4954//20162 2660//20163 4272//20164 +f 3339//20165 411//20166 5649//20167 +f 4944//20168 3976//20169 3195//20170 +f 6518//20171 6485//20172 6520//20173 +f 6828//20174 1036//20174 6706//20174 +f 6392//20175 6321//20176 6458//20176 +f 2237//20177 3198//20177 3760//20177 +f 6489//20178 6488//20179 6393//20180 +f 3145//20181 1249//20182 3749//20183 +f 2734//20184 4480//20185 1799//20186 +f 320//20187 3685//20188 5768//20189 +f 6523//20190 6323//20191 6265//20190 +f 3070//20192 649//20193 2592//20192 +f 3676//20194 2024//20195 4343//20196 +f 5078//20197 1553//20198 4336//20199 +f 5591//20200 89//20201 3307//20202 +f 3068//20203 1639//20203 3794//20204 +f 6495//20205 6494//20206 6360//20206 +f 1589//20207 2084//20208 3262//20209 +f 2624//20210 2939//20211 4425//20212 +f 359//20213 420//20213 3947//20213 +f 611//20214 1238//20215 4887//20216 +f 2685//20217 1838//20218 3026//20219 +f 2216//20220 1035//20221 3866//20222 +f 1405//20223 2512//20224 2010//20225 +f 6525//20226 6360//20227 6189//20228 +f 1342//20229 1834//20230 2295//20231 +f 4090//20232 4891//20233 2538//20234 +f 1120//20235 2654//20236 4491//20237 +f 189//20238 4111//20239 3959//20238 +f 538//20240 731//20241 3890//20242 +f 6363//20243 6362//20244 6744//20245 +f 3384//20246 2885//20247 3270//20248 +f 3129//20249 2263//20250 1011//20250 +f 4088//20251 1724//20252 2442//20253 +f 803//20254 1238//20254 2099//20254 +f 629//20255 4297//20256 2318//20257 +f 6465//20258 6365//20259 6463//20260 +f 1866//20261 225//20261 1456//20262 +f 6434//20263 6365//20264 6465//20265 +f 4036//20266 5327//20267 1211//20268 +f 675//20269 3551//20270 1948//20270 +f 6578//20271 6301//20271 6370//20271 +f 4724//20272 2170//20273 4403//20274 +f 4116//20275 545//20276 3895//20277 +f 3969//20278 1046//20279 437//20278 +f 6614//20280 6369//20280 6438//20280 +f 3314//20281 1625//20282 1230//20283 +f 6370//20284 6328//20285 6400//20286 +f 246//20287 484//20288 1530//20289 +f 4365//20290 693//20291 1148//20292 +f 2//20293 3205//20294 3136//20295 +f 1513//20296 3269//20297 4021//20298 +f 3251//20299 1452//20300 1843//20301 +f 6528//20302 6271//20303 6301//20304 +f 6400//20305 6302//20306 6499//20307 +f 2758//20308 4499//20309 947//20310 +f 3902//20311 5524//20312 678//20312 +f 6467//20313 6497//20314 6401//20315 +f 1940//20316 1939//20316 1850//20317 +f 3060//20318 3807//20319 6051//20320 +f 3676//20321 2492//20322 3850//20322 +f 3571//20323 1914//20324 1796//20325 +f 1851//20326 3819//20327 4325//20328 +f 4514//20329 1312//20330 5163//20331 +f 4661//20332 3828//20332 2101//20332 +f 549//20333 2096//20333 2873//20333 +f 4233//20334 1496//20335 2180//20336 +f 3006//20337 720//20338 2317//20339 +f 5937//20340 6439//20341 6329//20342 +f 4071//20343 709//20344 1992//20345 +f 4279//20346 3345//20347 3796//20348 +f 6330//20349 6497//20350 6583//20351 +f 98//20352 551//20353 2349//20354 +f 7117//20355 6236//20356 6240//20355 +f 1716//20357 3524//20357 1656//20357 +f 3276//20358 3174//20359 2178//20360 +f 6440//20361 6470//20362 6373//20363 +f 6372//20364 6440//20365 6373//20366 +f 531//20367 5077//20368 809//20369 +f 6470//20370 6403//20370 6534//20370 +f 5738//20371 833//20371 1283//20371 +f 4975//20372 555//20373 4351//20374 +f 4029//20375 2882//20376 601//20377 +f 6403//20378 6332//20379 6534//20380 +f 4104//20381 4099//20382 4677//20381 +f 4623//20383 2998//20384 5653//20385 +f 116//20386 660//20386 3299//20386 +f 3787//20387 1228//20387 1749//20387 +f 808//20388 3420//20388 3160//20389 +f 2202//20390 1293//20391 2697//20392 +f 4843//20393 2946//20394 4485//20395 +f 6586//20396 6336//20397 6444//20397 +f 4599//20398 1542//20398 1965//20398 +f 2312//20399 563//20400 702//20400 +f 6337//20401 6155//20402 6334//20402 +f 6123//20403 6337//20403 6445//20404 +f 637//20405 1159//20406 2440//20407 +f 5307//20408 2878//20409 5834//20410 +f 1349//20411 2727//20411 4110//20411 +f 235//20412 1393//20413 3084//20414 +f 3311//20415 2798//20416 421//20417 +f 1269//20418 4586//20419 2223//20418 +f 6539//20420 6338//20420 6538//20420 +f 5486//20421 4692//20422 5485//20423 +f 2540//20424 2958//20424 2126//20424 +f 6159//20425 6408//20426 6471//20427 +f 1614//20428 6051//20429 1825//20430 +f 6306//20431 6407//20432 6277//20431 +f 340//20433 3725//20434 1767//20434 +f 6503//20435 6247//20436 6502//20435 +f 4772//20437 2094//20438 3269//20439 +f 4646//20440 308//20441 644//20442 +f 2542//20443 3838//20444 782//20443 +f 4402//20445 1593//20446 1084//20445 +f 6209//20447 6020//20447 6504//20447 +f 600//20448 928//20449 4676//20450 +f 1435//20451 2913//20452 1011//20451 +f 6541//20453 6341//20453 6339//20453 +f 1187//20454 2542//20455 4496//20456 +f 5388//20457 597//20458 4150//20458 +f 3287//20459 3678//20460 3811//20461 +f 2524//20462 3512//20463 2834//20464 +f 888//20465 4687//20466 3667//20467 +f 5287//20468 1838//20469 4192//20470 +f 676//20471 4152//20471 725//20471 +f 1653//20472 5005//20472 2784//20472 +f 6307//20473 5945//20474 6674//20475 +f 1919//20476 3068//20476 4196//20476 +f 2644//20477 1424//20478 3412//20479 +f 2465//20480 2803//20481 4176//20482 +f 5545//20483 9//20483 260//20483 +f 6410//20484 6211//20485 6213//20486 +f 1985//20487 364//20488 3384//20489 +f 6063//20490 6252//20491 6506//20492 +f 5014//20493 2704//20493 593//20493 +f 3732//20494 4267//20495 1569//20496 +f 494//20497 2781//20498 2557//20499 +f 3687//20500 848//20501 3566//20502 +f 2631//20503 4933//20503 4704//20503 +f 1223//20504 2088//20505 400//20506 +f 1488//20507 4715//20508 3358//20509 +f 6544//20510 6596//20510 6594//20510 +f 3553//20511 2817//20512 1907//20513 +f 6544//20514 6594//20515 6475//20514 +f 3969//20516 270//20516 1046//20516 +f 2992//20517 2616//20517 4903//20518 +f 1651//20519 2980//20520 346//20521 +f 6546//20522 6412//20523 6478//20522 +f 6476//20524 6347//20525 6169//20526 +f 3629//20527 1094//20528 2105//20528 +f 2063//20529 4595//20530 3601//20531 +f 3237//20532 140//20533 1219//20532 +f 5345//20534 5984//20535 814//20536 +f 2626//20537 5831//20537 754//20537 +f 6030//20538 6134//20539 6507//20540 +f 6171//20541 6348//20542 6628//20543 +f 372//20544 4348//20545 3846//20546 +f 3419//20547 1629//20547 2846//20548 +f 6382//20549 6417//20549 6508//20549 +f 170//20550 3340//20551 4424//20550 +f 838//20552 3584//20553 5053//20554 +f 4070//20555 273//20556 2295//20557 +f 6452//20558 6136//20559 6384//20559 +f 4189//20560 3815//20561 4703//20562 +f 4201//20563 3043//20563 2240//20564 +f 6254//20565 6548//20566 6480//20567 +f 6289//20568 6482//20569 6547//20570 +f 2685//20571 4192//20572 1838//20573 +f 5029//20574 2774//20575 79//20575 +f 393//20576 1966//20577 3130//20578 +f 6480//20579 6481//20580 6421//20581 +f 6387//20582 6510//20583 6423//20584 +f 6481//20585 6550//20586 6387//20587 +f 6481//20588 6387//20589 6421//20590 +f 3800//20591 1668//20592 5076//20593 +f 2519//20594 2312//20595 3863//20596 +f 1391//20597 1314//20598 653//20599 +f 4748//20600 5240//20601 1858//20602 +f 226//20603 3649//20604 5393//20605 +f 6551//20606 6388//20607 6512//20608 +f 6552//20609 6220//20610 6317//20611 +f 6256//20612 6514//20612 6453//20612 +f 4826//20613 2674//20614 2764//20615 +f 4419//20616 5655//20616 2975//20617 +f 6604//20618 6389//20618 6516//20618 +f 153//20619 649//20619 3070//20620 +f 264//20621 567//20622 3790//20622 +f 6516//20623 6484//20623 6556//20623 +f 1051//20624 4372//20624 2177//20625 +f 5525//20626 1910//20627 2864//20628 +f 3202//20629 4696//20629 4287//20629 +f 3553//20630 2753//20630 3633//20630 +f 3077//20631 3730//20632 908//20633 +f 6557//20634 6556//20634 6517//20635 +f 6294//20636 6729//20637 6391//20638 +f 2282//20639 3817//20640 7383//20640 +f 6455//20641 6319//20642 6175//20643 +f 4274//20644 987//20645 4375//20645 +f 6558//20646 6517//20647 6518//20648 +f 6225//20649 6391//20650 6519//20651 +f 3545//20652 1551//20653 2027//20654 +f 4748//20655 3193//20656 4642//20655 +f 6559//20657 6295//20657 6456//20657 +f 6295//20658 5958//20658 6456//20658 +f 2866//20659 239//20660 1505//20661 +f 6561//20662 6105//20663 6560//20664 +f 6178//20665 6105//20665 6561//20665 +f 6562//20666 6564//20666 6392//20666 +f 6563//20667 6392//20668 6458//20669 +f 2496//20670 3711//20671 3114//20672 +f 6520//20673 6485//20674 6356//20675 +f 6520//20676 6565//20677 6518//20678 +f 2023//20679 4170//20680 3373//20681 +f 6520//20682 6356//20683 6394//20683 +f 275//20684 894//20685 4138//20686 +f 1069//20687 199//20688 3192//20688 +f 6394//20689 6488//20689 6520//20689 +f 6566//20690 6520//20690 6488//20690 +f 6568//20691 6566//20692 6488//20693 +f 6108//20694 6107//20694 6567//20694 +f 910//20695 1430//20696 4182//20697 +f 779//20698 3757//20699 2007//20700 +f 6568//20701 6488//20702 6489//20703 +f 4715//20704 3176//20705 1346//20706 +f 6460//20707 6263//20707 6522//20707 +f 484//20708 785//20709 1931//20710 +f 6569//20711 6489//20712 6461//20713 +f 6460//20714 6570//20715 6427//20716 +f 6395//20717 6428//20718 6571//20719 +f 1514//20720 5372//20721 1394//20722 +f 3675//20723 479//20724 4747//20724 +f 6395//20725 6571//20725 6524//20725 +f 5066//20726 4224//20726 4824//20726 +f 6395//20727 6524//20727 6490//20727 +f 6265//20728 6359//20729 6572//20730 +f 4114//20731 1292//20732 4544//20733 +f 6648//20734 6359//20735 6226//20734 +f 4031//20736 4053//20737 3651//20738 +f 6573//20739 6396//20740 6490//20741 +f 6227//20742 6492//20743 6397//20744 +f 4270//20745 5212//20746 1930//20746 +f 2882//20747 5630//20748 1987//20749 +f 6324//20750 6651//20750 6430//20750 +f 6495//20751 6360//20751 6496//20751 +f 6325//20752 6324//20753 6430//20754 +f 2528//20755 681//20755 2498//20755 +f 443//20756 2767//20756 4354//20756 +f 1389//20757 4126//20758 1905//20759 +f 5387//20760 4617//20761 3781//20760 +f 328//20762 1881//20763 4435//20764 +f 6462//20765 6363//20765 6613//20766 +f 6526//20767 6432//20767 6464//20767 +f 764//20768 3966//20769 895//20770 +f 3400//20771 1296//20771 2570//20772 +f 1974//20773 2018//20773 915//20774 +f 3571//20775 757//20775 1914//20775 +f 320//20776 1400//20777 844//20778 +f 3155//20779 2932//20780 113//20781 +f 5322//20782 4066//20783 5014//20784 +f 1501//20785 4655//20786 4540//20787 +f 6579//20788 6370//20789 6400//20788 +f 6580//20790 6466//20791 6152//20792 +f 575//20793 4057//20794 1710//20795 +f 6527//20796 6366//20796 6368//20797 +f 3400//20798 104//20798 1389//20798 +f 3111//20799 2410//20800 5390//20801 +f 6529//20802 5968//20803 5490//20804 +f 2564//20805 1602//20806 812//20805 +f 6371//20807 6527//20808 6198//20809 +f 6368//20810 6198//20811 6527//20812 +f 3253//20813 3182//20814 667//20815 +f 6498//20816 6434//20817 6581//20818 +f 6532//20819 6499//20820 6302//20821 +f 1334//20822 301//20823 2516//20824 +f 152//20825 1849//20826 3582//20827 +f 6238//20828 6271//20829 6528//20830 +f 6235//20831 6234//20832 6531//20833 +f 1988//20834 3683//20835 2245//20836 +f 6582//20837 6439//20838 6498//20838 +f 742//20839 2239//20839 3191//20839 +f 1161//20840 1440//20840 2403//20840 +f 6468//20841 6330//20842 6583//20843 +f 4955//20844 2156//20844 230//20844 +f 426//20845 45//20845 446//20845 +f 1888//20846 2290//20847 3376//20847 +f 3262//20848 3420//20849 1589//20850 +f 1815//20851 4170//20851 4092//20851 +f 2197//20852 5331//20853 470//20854 +f 3141//20855 2894//20855 2938//20855 +f 6534//20856 6468//20857 6583//20858 +f 2257//20859 500//20860 4524//20859 +f 5361//20861 1959//20862 960//20861 +f 6274//20863 6238//20864 6533//20865 +f 6468//20866 6534//20867 6332//20868 +f 6617//20869 6373//20869 6470//20869 +f 3924//20870 4687//20871 888//20872 +f 3438//20873 2384//20874 3008//20875 +f 1434//20876 7404//20876 824//20876 +f 5278//20877 352//20878 2800//20877 +f 1931//20879 785//20879 2153//20879 +f 6536//20880 6333//20880 6469//20880 +f 4466//20881 1307//20882 572//20882 +f 4668//20883 4979//20884 3000//20885 +f 3604//20886 1152//20887 3650//20887 +f 922//20888 2147//20889 2709//20889 +f 2760//20890 3627//20890 717//20891 +f 6619//20892 6276//20893 6050//20894 +f 6337//20895 6334//20895 6621//20895 +f 6443//20896 6405//20897 6335//20898 +f 4072//20899 1443//20900 1226//20901 +f 3116//20902 2241//20903 4757//20904 +f 2556//20905 547//20906 3592//20906 +f 1663//20907 4064//20907 175//20908 +f 6501//20909 6537//20910 6208//20909 +f 2034//20911 2748//20911 83//20912 +f 6471//20913 6305//20913 6159//20913 +f 3251//20914 1843//20915 4739//20916 +f 5831//20917 2626//20918 3660//20919 +f 260//20920 1225//20921 1721//20922 +f 6502//20923 6245//20923 6445//20923 +f 423//20924 565//20924 2370//20924 +f 6338//20925 6375//20926 6587//20926 +f 4058//20927 4599//20928 1896//20929 +f 6375//20930 6277//20931 6587//20932 +f 6540//20933 6277//20933 6407//20934 +f 2151//20935 2739//20936 4412//20937 +f 3878//20938 2484//20938 5216//20938 +f 3383//20939 27//20940 1549//20941 +f 118//20942 5080//20942 4034//20942 +f 4525//20943 2475//20944 1593//20943 +f 4684//20945 3930//20946 1821//20946 +f 1755//20947 114//20948 869//20948 +f 6247//20949 6503//20949 6164//20949 +f 4512//20950 4640//20950 706//20951 +f 1653//20952 3797//20953 244//20954 +f 6542//20955 6095//20956 6249//20957 +f 6542//20958 6623//20959 6095//20960 +f 2898//20961 167//20962 4389//20962 +f 6059//20963 6278//20963 6588//20963 +f 1865//20964 3894//20965 5527//20966 +f 2039//20967 3784//20967 3507//20967 +f 6308//20968 6281//20968 6589//20968 +f 1744//20969 1149//20970 4455//20971 +f 3710//20972 2127//20973 1887//20973 +f 2953//20974 1464//20974 4472//20975 +f 6346//20976 6474//20976 6309//20976 +f 1563//20977 4403//20978 4179//20977 +f 764//20979 887//20979 5222//20979 +f 4892//20980 1614//20981 3128//20982 +f 4721//20983 4924//20983 456//20983 +f 5026//20984 4576//20984 4195//20984 +f 58//20985 209//20986 2719//20985 +f 3085//20987 2937//20988 571//20989 +f 2953//20990 4200//20991 1807//20990 +f 986//20992 4641//20993 4473//20994 +f 1466//20995 3818//20996 270//20997 +f 3702//20998 738//20999 3009//21000 +f 3195//21001 1737//21002 2920//21003 +f 4961//21004 3290//21005 5371//21004 +f 6311//21006 6130//21006 6595//21007 +f 2762//21008 2732//21008 3574//21008 +f 4957//21009 4128//21010 4090//21011 +f 6168//21012 6131//21012 6545//21012 +f 6379//21013 6447//21014 6598//21015 +f 4953//21016 368//21017 2462//21018 +f 4209//21019 4917//21020 2215//21021 +f 4209//21022 2215//21023 4918//21022 +f 6476//21024 6447//21025 6347//21026 +f 6134//21027 6027//21027 6311//21027 +f 6594//21028 6597//21029 6477//21030 +f 6448//21031 6477//21032 6627//21033 +f 5626//21034 2400//21034 2961//21035 +f 5111//21036 2544//21037 2326//21038 +f 1329//21039 1765//21040 1608//21041 +f 2906//21042 2387//21043 2388//21044 +f 6448//21045 6627//21046 6449//21047 +f 4028//21048 5330//21049 2044//21050 +f 3815//21051 892//21051 4159//21052 +f 2278//21053 1193//21054 3249//21055 +f 4490//21056 4802//21057 2092//21058 +f 1935//21059 2787//21060 3756//21061 +f 1844//21062 3356//21063 1592//21064 +f 1769//21065 4324//21066 3240//21065 +f 35//21067 3774//21068 4044//21069 +f 1586//21070 3705//21071 2472//21072 +f 4395//21073 2660//21073 3606//21073 +f 1303//21074 1302//21075 1947//21076 +f 6135//21077 6507//21077 6601//21078 +f 4654//21079 4559//21080 1055//21081 +f 434//21082 763//21083 1583//21084 +f 3627//21085 2760//21086 5830//21087 +f 3128//21088 1614//21089 2416//21090 +f 6172//21091 6354//21091 6721//21091 +f 2008//21092 2593//21092 1332//21093 +f 2372//21094 4844//21095 2637//21096 +f 2265//21097 1707//21098 502//21099 +f 1611//21100 977//21101 2976//21102 +f 6547//21103 6482//21103 6549//21103 +f 3578//21104 1838//21105 4881//21106 +f 2484//21107 2982//21108 1050//21109 +f 375//21110 4588//21110 2324//21111 +f 6423//21112 6510//21113 6511//21114 +f 6510//21115 6634//21116 6511//21117 +f 352//21118 4719//21119 92//21120 +f 3212//21121 357//21121 340//21122 +f 3136//21123 159//21124 4563//21123 +f 1048//21125 548//21126 385//21127 +f 1117//21128 2994//21128 4008//21128 +f 5181//21129 1049//21130 1936//21131 +f 6515//21132 6069//21133 6220//21133 +f 6604//21134 6516//21135 6554//21136 +f 4458//21137 4547//21138 1502//21139 +f 6292//21140 6515//21140 6555//21141 +f 6516//21142 6556//21143 6554//21144 +f 468//21145 4608//21145 626//21145 +f 5743//21146 108//21147 1326//21148 +f 3350//21149 4015//21149 5064//21149 +f 5369//21150 4835//21150 5682//21151 +f 6557//21152 6517//21153 6558//21154 +f 518//21155 631//21156 2006//21157 +f 881//21158 2516//21159 508//21160 +f 4691//21161 2491//21161 5118//21162 +f 211//21163 1817//21164 2480//21165 +f 1996//21166 3052//21167 5574//21168 +f 3652//21169 2415//21170 2414//21171 +f 6223//21172 6178//21173 6455//21174 +f 740//21175 3822//21175 7405//21175 +f 6456//21176 6426//21177 6606//21178 +f 2785//21179 4183//21180 571//21181 +f 1872//21182 2406//21182 127//21182 +f 6144//21183 6295//21183 6559//21183 +f 4594//21184 4414//21184 725//21184 +f 749//21185 316//21186 1937//21187 +f 6105//21188 6457//21189 6560//21189 +f 2337//21190 325//21191 694//21192 +f 4721//21193 130//21193 4924//21193 +f 2756//21194 124//21195 4510//21196 +f 1650//21197 280//21198 3996//21198 +f 4225//21199 2537//21200 5329//21201 +f 6567//21202 6459//21203 6108//21204 +f 6566//21205 6568//21206 6609//21207 +f 2212//21208 4664//21209 1277//21210 +f 6568//21211 6489//21212 6609//21213 +f 4195//21214 228//21214 3911//21214 +f 6521//21215 6489//21216 6569//21217 +f 4186//21218 13//21218 3783//21218 +f 1883//21219 589//21220 1801//21221 +f 2844//21222 2843//21223 785//21224 +f 3783//21225 5124//21225 623//21225 +f 4305//21226 2640//21227 1452//21227 +f 3613//21228 416//21229 415//21230 +f 4721//21231 3456//21232 5528//21233 +f 1324//21234 792//21234 3582//21234 +f 3880//21235 2715//21236 2625//21237 +f 7200//21238 7111//21238 3945//21238 +f 6428//21239 6427//21240 6610//21240 +f 1121//21241 1523//21241 1120//21242 +f 1929//21243 3870//21243 2856//21243 +f 6490//21244 6524//21244 6573//21245 +f 3069//21246 491//21247 2055//21248 +f 1289//21249 42//21250 2015//21251 +f 1916//21252 56//21252 976//21252 +f 1253//21253 1565//21254 2899//21253 +f 6324//21255 6493//21256 6651//21255 +f 85//21257 4258//21258 3922//21259 +f 3436//21260 3629//21260 4148//21261 +f 6189//21262 6429//21263 6525//21264 +f 1126//21265 1520//21266 985//21266 +f 6430//21267 6575//21268 6431//21269 +f 4462//21270 1000//21271 926//21272 +f 6744//21273 6613//21274 6363//21275 +f 2124//21276 2888//21277 5298//21278 +f 6824//21279 6364//21280 6462//21279 +f 4669//21281 2399//21282 1581//21283 +f 1270//21284 870//21284 4361//21284 +f 5083//21285 5501//21286 4230//21287 +f 651//21288 3686//21289 1484//21290 +f 2954//21291 4011//21291 3179//21291 +f 784//21292 607//21293 481//21294 +f 1851//21295 1385//21296 2482//21297 +f 6656//21298 6269//21299 6436//21300 +f 769//21301 4136//21302 1785//21303 +f 1793//21304 762//21304 1078//21305 +f 6579//21306 6578//21306 6370//21306 +f 1738//21307 1099//21308 376//21309 +f 775//21310 2318//21311 7378//21312 +f 5011//21313 929//21314 3642//21315 +f 416//21316 147//21317 3594//21317 +f 6785//21318 6581//21319 6434//21320 +f 2946//21321 4409//21322 4408//21323 +f 2946//21324 2947//21325 4409//21326 +f 2212//21327 503//21328 3957//21329 +f 335//21330 422//21331 1175//21330 +f 6466//21332 6467//21333 6437//21334 +f 1295//21335 106//21336 206//21335 +f 2663//21337 3427//21338 2584//21339 +f 74//21340 66//21341 2627//21342 +f 6709//21343 6616//21343 6497//21344 +f 5490//21345 6329//21346 6530//21347 +f 2669//21348 2061//21349 1060//21349 +f 1236//21350 966//21350 773//21350 +f 4489//21351 732//21352 1141//21353 +f 6583//21354 6497//21355 6616//21356 +f 1788//21357 2588//21358 2531//21359 +f 3561//21360 2691//21361 2378//21362 +f 271//21363 651//21364 272//21365 +f 4416//21366 5308//21367 1165//21368 +f 2885//21369 3514//21369 4244//21369 +f 219//21370 1276//21370 2950//21371 +f 45//21372 2295//21372 1834//21373 +f 3302//21374 1631//21374 3488//21374 +f 167//21375 2453//21376 3881//21377 +f 2392//21378 932//21379 1994//21380 +f 6402//21381 6303//21382 6585//21383 +f 6617//21384 6470//21384 6534//21384 +f 2085//21385 941//21385 217//21385 +f 2406//21386 1086//21386 127//21386 +f 6979//21387 6274//21388 6533//21388 +f 4004//21389 2465//21390 5277//21390 +f 1903//21391 1902//21392 2455//21391 +f 3986//21393 754//21394 5831//21395 +f 6333//21396 6536//21397 6404//21398 +f 847//21399 304//21400 711//21401 +f 4549//21402 4779//21402 604//21402 +f 4968//21403 3585//21404 4945//21405 +f 7409//21406 4397//21407 5347//21408 +f 6500//21409 6621//21410 6334//21411 +f 4499//21412 1929//21413 3340//21414 +f 6537//21415 6443//21416 6208//21417 +f 2115//21418 3979//21418 1194//21418 +f 3588//21419 2765//21420 3204//21421 +f 4526//21422 2493//21423 2219//21424 +f 2072//21425 1432//21425 3290//21426 +f 6587//21427 6277//21428 6540//21428 +f 1836//21429 4199//21429 2875//21429 +f 3998//21430 2699//21431 2262//21432 +f 4260//21433 2187//21434 2736//21435 +f 3885//21436 885//21437 886//21438 +f 3428//21439 814//21440 5984//21441 +f 1433//21442 857//21443 5240//21444 +f 6504//21445 6020//21446 6280//21445 +f 4206//21447 57//21448 1262//21449 +f 6278//21450 6341//21450 6715//21451 +f 1845//21452 4476//21452 2595//21452 +f 3192//21453 2666//21454 3549//21455 +f 3707//21456 5581//21457 632//21458 +f 6543//21459 6542//21460 6249//21461 +f 6249//21462 6307//21463 6543//21464 +f 4871//21465 4860//21466 4758//21467 +f 6589//21468 6281//21468 6472//21468 +f 3215//21469 960//21470 1959//21471 +f 6473//21472 5983//21473 6251//21474 +f 6251//21475 6063//21476 6505//21475 +f 6213//21477 6377//21478 6591//21479 +f 6506//21480 6505//21481 6063//21480 +f 6212//21482 6894//21482 6310//21482 +f 6591//21483 6377//21483 6283//21484 +f 3971//21485 3562//21486 1986//21487 +f 3589//21488 689//21489 1284//21488 +f 3697//21490 3469//21491 3435//21492 +f 6625//21493 6506//21494 6252//21495 +f 4418//21496 1202//21496 5036//21496 +f 6446//21497 6378//21498 6626//21499 +f 6594//21500 6675//21501 6597//21500 +f 2188//21502 750//21503 1240//21504 +f 1181//21505 3696//21506 662//21507 +f 4888//21508 4073//21509 4485//21510 +f 6131//21511 6593//21512 6545//21511 +f 6546//21513 6544//21514 6412//21515 +f 6545//21516 6628//21517 6168//21518 +f 218//21519 5095//21519 4528//21520 +f 659//21521 1579//21522 1307//21522 +f 708//21523 4744//21524 4812//21525 +f 2396//21526 5525//21527 2864//21528 +f 5113//21529 1217//21530 3570//21531 +f 6477//21532 6597//21533 6627//21532 +f 6599//21534 6681//21535 6450//21536 +f 2229//21537 2174//21538 3310//21539 +f 1868//21540 5165//21541 3719//21542 +f 4966//21543 4870//21544 2119//21545 +f 2988//21546 511//21547 4593//21548 +f 417//21549 3489//21550 2280//21551 +f 307//21552 4608//21552 468//21553 +f 6627//21554 6629//21555 6449//21556 +f 6413//21557 6349//21557 6630//21557 +f 3729//21558 598//21559 3137//21560 +f 6600//21561 6450//21561 6419//21561 +f 6135//21562 6030//21562 6507//21562 +f 5534//21563 2528//21564 396//21565 +f 1717//21566 3229//21567 1838//21568 +f 3987//21569 2253//21570 2279//21571 +f 5147//21572 3600//21572 3564//21572 +f 6451//21573 6135//21574 6601//21575 +f 288//21576 978//21577 273//21578 +f 6631//21579 6382//21580 6508//21581 +f 4810//21582 4540//21583 2213//21584 +f 6289//21585 6684//21585 6420//21585 +f 6548//21586 6382//21587 6631//21588 +f 5150//21589 3473//21590 2313//21591 +f 1657//21592 5291//21593 8//21594 +f 124//21595 3617//21596 236//21597 +f 6385//21598 6172//21599 6721//21600 +f 6482//21601 6603//21601 6549//21601 +f 260//21602 9//21603 1225//21604 +f 6482//21605 6632//21606 6603//21607 +f 6509//21608 6385//21609 6721//21610 +f 6482//21611 6686//21612 6632//21613 +f 1247//21614 4643//21615 4477//21616 +f 5368//21617 3017//21618 5031//21619 +f 6317//21620 6385//21620 6509//21620 +f 5630//21621 2882//21622 1975//21623 +f 6481//21624 6480//21625 6602//21626 +f 168//21627 2322//21627 2306//21628 +f 4257//21629 3950//21630 2062//21631 +f 6686//21632 6482//21633 6513//21634 +f 6511//21635 6689//21636 6512//21637 +f 714//21638 1014//21639 2196//21640 +f 1272//21641 4264//21642 1987//21641 +f 6256//21643 6453//21644 6422//21643 +f 6389//21645 6604//21646 6513//21647 +f 1028//21648 2829//21648 1472//21648 +f 1315//21649 828//21650 3097//21651 +f 5394//21652 5424//21652 2345//21652 +f 667//21653 2809//21654 3253//21655 +f 3693//21656 2341//21657 3843//21658 +f 6483//21659 6174//21660 6221//21661 +f 2224//21662 2299//21663 4448//21664 +f 6557//21665 6554//21666 6556//21667 +f 51//21668 438//21669 4858//21670 +f 786//21671 3471//21672 4602//21673 +f 6292//21674 6636//21674 6261//21674 +f 5682//21675 4835//21676 5068//21677 +f 3710//21678 2899//21679 258//21680 +f 664//21681 872//21682 893//21682 +f 745//21683 1512//21684 1928//21685 +f 6637//21686 6391//21687 6729//21688 +f 1840//21689 3160//21690 1752//21691 +f 6638//21692 6557//21693 6558//21694 +f 1584//21695 4067//21696 5020//21697 +f 4380//21698 2732//21699 2762//21700 +f 3796//21701 2261//21702 542//21703 +f 6486//21704 6390//21705 6605//21706 +f 608//21707 2878//21707 5307//21707 +f 6558//21708 6518//21709 6639//21708 +f 6426//21710 6222//21711 6486//21712 +f 1306//21713 2641//21714 7216//21715 +f 6639//21716 6518//21717 6565//21718 +f 406//21719 2219//21720 4308//21721 +f 1314//21722 7371//21722 3240//21722 +f 1329//21723 3728//21724 1765//21725 +f 5055//21726 2967//21727 2979//21728 +f 6457//21729 6144//21730 6559//21731 +f 988//21732 4084//21733 5367//21734 +f 6520//21735 6641//21736 6565//21737 +f 5056//21738 2150//21739 466//21740 +f 6608//21741 6487//21742 6357//21743 +f 3770//21744 1767//21745 4544//21746 +f 6567//21747 6107//21748 6487//21749 +f 6520//21750 6566//21751 6641//21752 +f 6566//21753 6642//21754 6641//21755 +f 1646//21756 3824//21757 2756//21758 +f 586//21759 1596//21759 5227//21759 +f 4361//21760 1196//21761 1826//21762 +f 6609//21763 6642//21764 6566//21765 +f 3082//21766 4563//21767 1544//21768 +f 1062//21769 1112//21770 1147//21771 +f 6609//21772 6489//21772 6521//21772 +f 7378//21773 7243//21774 2971//21775 +f 6459//21776 6522//21777 6263//21778 +f 4715//21779 812//21780 351//21781 +f 2182//21782 3031//21783 1146//21784 +f 6643//21785 6569//21786 6461//21787 +f 2106//21788 1671//21789 2858//21790 +f 3386//21791 1995//21792 1604//21793 +f 6570//21794 6644//21795 6427//21796 +f 6610//21797 6427//21797 6645//21797 +f 6427//21798 6644//21799 6645//21800 +f 3451//21801 3210//21801 1943//21802 +f 6646//21803 6461//21804 6323//21805 +f 3293//21806 4663//21807 3292//21807 +f 6428//21808 6610//21809 6647//21810 +f 6571//21811 6611//21811 6524//21811 +f 2774//21812 3196//21813 4412//21814 +f 6226//21815 6397//21816 6649//21817 +f 6494//21818 6653//21819 6493//21818 +f 3401//21820 1685//21821 3378//21822 +f 3378//21823 835//21824 1214//21825 +f 6651//21826 6493//21827 6650//21828 +f 3986//21829 5831//21830 82//21829 +f 30//21831 2044//21832 457//21833 +f 1220//21834 1245//21835 3332//21836 +f 6496//21837 6360//21838 6525//21839 +f 112//21840 3709//21841 1520//21842 +f 2829//21843 2132//21844 2057//21845 +f 1489//21846 3108//21846 3989//21847 +f 6429//21848 6361//21849 6612//21850 +f 4588//21851 2959//21852 2801//21853 +f 6612//21854 6361//21855 6298//21856 +f 5369//21857 3325//21858 4835//21859 +f 1748//21860 1888//21861 3376//21862 +f 1083//21863 1082//21864 1827//21865 +f 520//21866 2048//21867 1582//21868 +f 4107//21869 157//21869 1118//21870 +f 4186//21871 4785//21872 3447//21873 +f 6655//21874 6364//21874 6824//21874 +f 6655//21875 6576//21876 6364//21877 +f 72//21878 2670//21879 1534//21878 +f 2209//21880 4305//21881 3251//21880 +f 3657//21882 2142//21883 2847//21882 +f 5183//21884 1952//21885 2177//21886 +f 2955//21887 5351//21888 2430//21888 +f 6435//21889 6366//21890 6527//21891 +f 1121//21892 3823//21892 2635//21892 +f 6658//21893 6301//21894 6578//21895 +f 4823//21896 1422//21897 1421//21898 +f 4264//21899 4104//21899 1987//21899 +f 2527//21900 3643//21900 3233//21900 +f 754//21901 3986//21901 1497//21901 +f 4956//21902 4176//21903 3289//21902 +f 6499//21904 6659//21905 6400//21906 +f 3518//21907 1961//21908 5507//21909 +f 4643//21910 1053//21911 1261//21912 +f 3505//21913 2606//21914 1101//21915 +f 6301//21916 6658//21917 6528//21918 +f 2166//21919 3846//21920 3067//21921 +f 4267//21922 4195//21922 3535//21922 +f 1366//21923 3131//21924 1934//21925 +f 94//21926 5524//21926 252//21927 +f 600//21928 4676//21929 4235//21930 +f 6467//21931 6709//21932 6497//21933 +f 6498//21934 6581//21935 6582//21936 +f 4062//21937 4335//21938 583//21939 +f 2414//21940 1353//21940 3652//21941 +f 1941//21942 378//21943 5604//21944 +f 3602//21945 2886//21946 3724//21946 +f 804//21947 4647//21948 748//21949 +f 455//21950 1367//21951 1548//21952 +f 3672//21953 4770//21954 4071//21955 +f 1052//21956 108//21957 3692//21958 +f 2421//21959 749//21960 1937//21961 +f 6236//21962 7117//21962 6272//21962 +f 819//21963 1894//21964 2191//21965 +f 4524//21966 4168//21966 4353//21967 +f 5662//21968 2093//21968 2364//21969 +f 6584//21970 6329//21970 6439//21970 +f 3219//21971 55//21972 3983//21973 +f 5027//21974 5393//21975 1043//21976 +f 2436//21977 5590//21978 2552//21979 +f 4797//21980 1900//21981 2322//21982 +f 2727//21983 1349//21983 3673//21984 +f 6665//21985 7117//21986 6535//21987 +f 2570//21988 1296//21989 2209//21990 +f 4549//21991 604//21992 920//21993 +f 7117//21994 6240//21995 6535//21996 +f 6619//21997 6274//21998 6979//21999 +f 6585//22000 6303//22001 6331//22002 +f 1316//22003 4111//22003 1259//22003 +f 3469//22004 3697//22004 4607//22005 +f 6585//22006 6331//22006 6620//22007 +f 6536//22008 6469//22008 6618//22008 +f 6535//22009 6240//22009 6666//22009 +f 221//22010 3235//22011 4642//22012 +f 6666//22013 6240//22014 6336//22015 +f 6620//22016 6331//22016 6441//22016 +f 6536//22017 6304//22018 6404//22018 +f 6536//22019 6500//22019 6304//22019 +f 3498//22020 4168//22021 3329//22022 +f 1458//22023 2064//22023 4333//22023 +f 3442//22024 1470//22025 1234//22026 +f 1648//22027 1537//22027 1095//22027 +f 6711//22028 6444//22028 6305//22028 +f 1040//22029 1536//22030 1127//22030 +f 6667//22031 6445//22032 6337//22033 +f 6305//22034 6471//22034 6668//22034 +f 632//22035 4692//22036 3707//22037 +f 4963//22038 3031//22039 2182//22040 +f 2175//22041 1735//22042 4824//22043 +f 6669//22044 6622//22045 6501//22046 +f 963//22047 364//22048 1735//22049 +f 3450//22050 1663//22051 1664//22052 +f 2615//22053 4304//22054 805//22055 +f 4867//22056 5499//22057 4387//22058 +f 4851//22059 4692//22060 1575//22059 +f 6342//22061 6057//22061 6248//22062 +f 4131//22063 5560//22064 2059//22065 +f 173//22066 1550//22067 2504//22068 +f 3987//22069 3053//22070 2250//22071 +f 3053//22072 800//22073 557//22074 +f 3326//22075 3047//22076 3681//22077 +f 2691//22078 2766//22079 2378//22079 +f 2522//22080 3716//22081 1436//22082 +f 2507//22083 2965//22084 3870//22085 +f 6164//22086 6672//22087 6165//22088 +f 1302//22089 269//22090 616//22091 +f 6165//22092 6672//22093 6343//22094 +f 1351//22095 486//22096 4509//22097 +f 920//22098 1969//22099 4307//22100 +f 6543//22101 6307//22102 6674//22103 +f 3039//22104 2676//22105 3890//22105 +f 348//22106 4165//22107 3664//22108 +f 7282//22109 1432//22110 4309//22111 +f 6590//22112 6344//22112 6473//22112 +f 683//22113 2544//22113 2179//22114 +f 6474//22115 6589//22115 6755//22115 +f 684//22116 5303//22117 3351//22118 +f 1387//22119 3888//22120 2116//22121 +f 3653//22122 3268//22123 218//22124 +f 586//22125 2181//22126 1596//22127 +f 6894//22128 6676//22129 6310//22130 +f 2453//22131 548//22132 4535//22133 +f 4991//22134 1922//22135 1188//22136 +f 6677//22137 6675//22137 6594//22137 +f 6677//22138 6594//22139 6596//22140 +f 2568//22141 2974//22142 4732//22143 +f 2745//22144 2612//22145 2534//22146 +f 4938//22147 2923//22148 3658//22149 +f 1459//22150 2002//22150 4942//22150 +f 6679//22151 6596//22152 6544//22153 +f 6598//22154 6625//22155 6379//22156 +f 3648//22157 4755//22158 529//22159 +f 2289//22160 864//22161 1482//22162 +f 6167//22163 6411//22164 6378//22164 +f 2804//22165 4471//22165 1319//22166 +f 3860//22167 2708//22168 2627//22169 +f 2685//22170 353//22171 4192//22172 +f 4853//22173 1216//22174 5035//22175 +f 4528//22176 865//22177 218//22177 +f 4575//22178 1222//22179 3092//22179 +f 901//22180 1949//22181 1243//22182 +f 3954//22183 1521//22184 254//22185 +f 6478//22186 6450//22187 6681//22188 +f 3443//22189 2739//22190 4096//22189 +f 6629//22191 6627//22192 6758//22193 +f 1034//22194 4437//22195 966//22196 +f 454//22197 896//22198 3148//22197 +f 1344//22199 2305//22200 2235//22201 +f 6600//22202 6599//22202 6450//22203 +f 2655//22204 335//22205 2668//22204 +f 732//22206 436//22207 2369//22208 +f 3413//22209 3265//22210 2245//22211 +f 98//22212 4577//22213 3180//22214 +f 1278//22215 4184//22216 2820//22217 +f 1979//22218 455//22218 4432//22218 +f 2229//22219 3310//22220 3851//22221 +f 6684//22222 6289//22222 6547//22222 +f 4144//22223 2580//22224 4954//22225 +f 6603//22226 6632//22227 6549//22228 +f 1088//22229 651//22230 271//22231 +f 6479//22232 6685//22233 6315//22234 +f 6631//22235 6480//22236 6548//22237 +f 579//22238 4244//22239 743//22240 +f 6689//22241 6763//22241 6688//22242 +f 4271//22243 3844//22244 2664//22245 +f 6479//22246 6386//22246 6422//22246 +f 1673//22247 4535//22247 1048//22247 +f 5390//22248 2410//22249 1788//22250 +f 2859//22251 1338//22252 1033//22253 +f 6687//22254 6689//22254 6688//22254 +f 1599//22255 4164//22256 30//22257 +f 6689//22258 6634//22259 6763//22260 +f 4293//22261 3962//22262 1701//22261 +f 6689//22263 6687//22264 6512//22265 +f 3065//22266 497//22267 952//22268 +f 6689//22269 6511//22270 6634//22271 +f 2377//22272 2621//22273 317//22274 +f 5329//22275 2537//22276 4102//22277 +f 2744//22278 2189//22279 625//22280 +f 3892//22281 271//22282 1958//22281 +f 6550//22283 6510//22284 6387//22285 +f 6481//22286 6635//22287 6550//22287 +f 3783//22288 13//22289 5065//22288 +f 6550//22290 6690//22291 6510//22291 +f 2576//22292 726//22292 581//22293 +f 4385//22294 4853//22294 367//22295 +f 6635//22296 6690//22296 6550//22296 +f 102//22297 5298//22297 4890//22297 +f 256//22298 41//22299 3230//22300 +f 613//22301 4017//22301 2786//22301 +f 2684//22302 3829//22302 4267//22302 +f 538//22303 1787//22303 731//22303 +f 4463//22304 5169//22305 3692//22306 +f 5079//22307 2109//22308 2837//22309 +f 1644//22310 1222//22311 4575//22312 +f 6554//22313 6691//22314 6604//22315 +f 6388//22316 6692//22317 6318//22318 +f 3979//22319 4940//22320 1194//22320 +f 6551//22321 6692//22321 6388//22322 +f 1973//22323 4316//22324 2618//22323 +f 6514//22325 6424//22326 6483//22326 +f 4491//22327 1137//22328 1120//22329 +f 6318//22330 6692//22330 6454//22330 +f 6557//22331 6693//22332 6554//22333 +f 4287//22334 5371//22335 3945//22336 +f 5373//22337 2161//22338 710//22339 +f 4709//22340 110//22341 1019//22340 +f 6292//22342 6555//22343 6636//22344 +f 5022//22345 3994//22346 3246//22347 +f 6558//22348 6860//22349 6638//22350 +f 1631//22351 5322//22352 5419//22353 +f 142//22354 2662//22354 2902//22354 +f 1754//22355 3712//22356 2600//22357 +f 3046//22358 307//22359 612//22360 +f 1291//22361 6004//22362 3741//22363 +f 3796//22364 542//22365 767//22366 +f 4155//22367 1331//22367 3239//22367 +f 2957//22368 66//22369 3289//22368 +f 4983//22370 472//22371 5330//22370 +f 6486//22372 6696//22373 6426//22374 +f 1518//22375 1517//22375 138//22375 +f 6519//22376 6458//22377 6320//22378 +f 6561//22379 6455//22380 6178//22381 +f 6392//22382 6564//22383 6640//22384 +f 1462//22385 915//22386 2018//22387 +f 2979//22388 3280//22388 5055//22388 +f 6606//22389 6559//22390 6456//22391 +f 2209//22392 3251//22393 1085//22394 +f 1910//22395 2438//22395 4324//22395 +f 6560//22396 6457//22397 6607//22398 +f 4715//22399 1488//22400 2564//22400 +f 3728//22401 2197//22401 470//22401 +f 3218//22402 728//22402 4999//22402 +f 6565//22403 6641//22404 6698//22405 +f 1094//22406 3424//22406 1502//22406 +f 5319//22407 1563//22407 1014//22407 +f 1162//22408 1297//22409 4566//22410 +f 1049//22411 2261//22412 1936//22413 +f 6567//22414 6735//22415 6459//22414 +f 3050//22416 5152//22417 2626//22418 +f 3655//22419 3185//22420 3908//22420 +f 6700//22421 6522//22422 6459//22423 +f 3393//22424 2198//22425 2601//22424 +f 4147//22426 3622//22427 2048//22426 +f 6776//22428 6460//22429 6522//22428 +f 2991//22430 1739//22431 2285//22432 +f 6701//22433 6521//22434 6569//22435 +f 6702//22436 6701//22437 6569//22438 +f 29//22439 5165//22440 1868//22441 +f 3818//22442 1466//22443 1179//22444 +f 1151//22445 1298//22446 3409//22447 +f 6646//22448 6323//22449 6523//22450 +f 2078//22451 5518//22452 2079//22452 +f 2805//22453 1233//22454 458//22455 +f 2060//22456 1458//22457 3228//22458 +f 1308//22459 2418//22460 4826//22460 +f 4238//22461 1771//22462 3558//22463 +f 6648//22464 6650//22464 6359//22464 +f 6572//22465 6359//22466 6650//22466 +f 6226//22467 6649//22467 6648//22468 +f 1322//22469 1079//22470 889//22471 +f 6574//22472 6396//22473 6573//22474 +f 2141//22475 1361//22475 4598//22476 +f 6650//22477 6493//22478 6652//22479 +f 2190//22480 2350//22481 3501//22482 +f 3456//22483 2275//22484 4321//22485 +f 6327//22486 3849//22486 2206//22486 +f 1700//22487 4549//22487 920//22487 +f 6495//22488 6653//22489 6494//22490 +f 6430//22491 6651//22492 6654//22491 +f 6575//22493 6430//22494 6654//22495 +f 1371//22496 3819//22497 2469//22498 +f 2385//22499 4903//22499 1806//22500 +f 6612//22501 6298//22502 6576//22503 +f 4462//22504 4463//22505 1000//22506 +f 404//22507 472//22508 4983//22509 +f 7169//22510 615//22511 117//22511 +f 6824//22512 6462//22512 6613//22513 +f 6706//22514 6464//22515 6577//22515 +f 6464//22516 6433//22517 6577//22518 +f 1867//22519 4146//22519 4700//22519 +f 6614//22520 6577//22521 6433//22522 +f 6707//22523 6578//22524 6579//22525 +f 6614//22526 6433//22527 6399//22527 +f 6579//22528 6400//22529 6659//22530 +f 2988//22531 2113//22532 3463//22531 +f 1849//22533 370//22534 1359//22535 +f 4344//22536 5843//22537 3020//22538 +f 702//22539 564//22539 3045//22539 +f 6434//22540 6465//22541 6785//22542 +f 1682//22543 461//22544 5565//22545 +f 1655//22546 3260//22547 2341//22548 +f 2121//22549 3457//22549 298//22550 +f 333//22551 427//22552 5143//22553 +f 2836//22554 515//22555 4339//22556 +f 1503//22557 3707//22558 4023//22559 +f 6234//22560 6269//22560 6708//22561 +f 6466//22562 6709//22563 6467//22564 +f 2730//22565 166//22566 3011//22567 +f 3880//22568 2172//22569 33//22570 +f 6581//22571 6661//22572 6582//22573 +f 4195//22574 4576//22574 3091//22574 +f 1108//22575 1194//22576 4940//22577 +f 3012//22578 3910//22579 1744//22580 +f 6584//22581 6439//22581 6582//22581 +f 4063//22582 810//22583 86//22584 +f 3297//22585 4298//22586 2392//22587 +f 61//22588 3047//22588 3999//22588 +f 3690//22589 907//22590 626//22591 +f 4403//22592 1351//22593 4509//22594 +f 6710//22595 6373//22596 6617//22597 +f 6373//22598 6710//22598 6469//22598 +f 4846//22599 759//22600 2081//22599 +f 1461//22601 1527//22602 2016//22603 +f 180//22604 5211//22604 2381//22604 +f 6274//22605 6619//22606 6050//22606 +f 6336//22607 6586//22608 6666//22609 +f 1714//22610 1715//22611 1738//22610 +f 6405//22612 6443//22613 6712//22614 +f 6667//22615 6337//22615 6621//22616 +f 2275//22617 3492//22618 2274//22619 +f 2056//22620 871//22621 5069//22622 +f 1270//22623 1271//22624 3129//22625 +f 3239//22626 3324//22627 4324//22628 +f 1983//22629 1501//22630 3213//22631 +f 29//22632 5722//22632 1734//22632 +f 863//22633 3905//22634 1010//22635 +f 6158//22636 6406//22637 6248//22638 +f 2103//22639 5094//22640 2338//22641 +f 2595//22642 5515//22643 1845//22644 +f 6161//22645 6669//22646 6501//22647 +f 4351//22648 3811//22649 2633//22649 +f 2271//22650 3920//22651 1180//22651 +f 6538//22652 6338//22652 6587//22653 +f 6340//22654 6209//22654 6670//22654 +f 6471//22655 6408//22656 6671//22657 +f 737//22658 545//22659 4116//22658 +f 3133//22660 3465//22660 339//22661 +f 2849//22662 5779//22662 3882//22662 +f 4745//22663 64//22664 4817//22665 +f 285//22666 823//22667 3493//22668 +f 1573//22669 3404//22670 779//22671 +f 6716//22672 6279//22673 6409//22674 +f 6342//22675 6673//22676 6376//22677 +f 6543//22678 6753//22679 6542//22680 +f 4119//22681 999//22681 4262//22681 +f 5035//22682 5505//22682 367//22682 +f 910//22683 4182//22684 3573//22685 +f 3699//22686 4302//22686 5727//22686 +f 1728//22687 3562//22688 4504//22689 +f 3514//22690 4074//22691 4244//22692 +f 6624//22693 6345//22694 6410//22695 +f 5419//22696 4756//22697 1631//22698 +f 459//22699 2554//22700 4430//22701 +f 3348//22702 2385//22703 3640//22702 +f 2565//22704 1850//22705 2521//22706 +f 437//22707 4153//22707 2189//22707 +f 6309//22708 6474//22709 6756//22710 +f 3742//22711 3323//22712 689//22713 +f 1860//22714 4682//22715 3429//22716 +f 262//22717 789//22718 1157//22719 +f 2557//22720 2781//22721 708//22722 +f 6252//22723 6379//22723 6625//22724 +f 4703//22725 1316//22726 3308//22727 +f 2063//22728 2064//22729 2152//22730 +f 5512//22731 3260//22731 1771//22732 +f 6597//22733 6675//22734 6678//22734 +f 1904//22735 725//22736 2816//22737 +f 3223//22738 2930//22739 4370//22740 +f 998//22741 999//22742 3649//22743 +f 702//22744 5214//22745 2312//22746 +f 2416//22747 1825//22748 281//22749 +f 3640//22750 5418//22751 1629//22752 +f 1856//22753 2358//22754 2188//22755 +f 3196//22756 4906//22757 1227//22758 +f 6478//22759 6681//22760 6546//22761 +f 625//22762 1752//22763 1596//22764 +f 6628//22765 6759//22766 6171//22767 +f 6411//22768 6413//22769 6630//22770 +f 6600//22771 6419//22771 6683//22771 +f 6761//22772 6449//22772 6629//22772 +f 4492//22773 3082//22773 4841//22773 +f 6508//22774 6449//22775 6761//22774 +f 1225//22776 2456//22777 1721//22778 +f 462//22779 847//22780 2428//22781 +f 3232//22782 3650//22782 905//22782 +f 6451//22783 6721//22784 6354//22785 +f 2630//22786 1179//22786 237//22787 +f 309//22788 3428//22789 308//22790 +f 6549//22791 6722//22791 6719//22791 +f 2251//22792 195//22792 5484//22792 +f 6719//22793 6547//22794 6549//22795 +f 6384//22796 6315//22796 6685//22797 +f 6602//22798 6480//22798 6631//22798 +f 6509//22799 6721//22800 6633//22799 +f 975//22801 697//22802 1071//22803 +f 3059//22804 4636//22805 3807//22805 +f 3617//22806 124//22806 2756//22806 +f 6634//22807 6723//22808 6763//22809 +f 1701//22810 5079//22811 1111//22812 +f 6690//22813 6634//22813 6510//22813 +f 5011//22814 825//22814 219//22815 +f 2135//22816 2991//22816 153//22817 +f 3187//22818 4208//22819 903//22820 +f 6453//22821 6724//22822 6422//22823 +f 563//22824 4224//22825 5066//22826 +f 1366//22827 1934//22827 3434//22827 +f 6552//22828 6317//22828 6509//22828 +f 6686//22829 6513//22830 6604//22831 +f 85//22832 958//22833 4258//22834 +f 848//22835 3085//22836 571//22837 +f 6220//22838 6552//22838 6515//22839 +f 6693//22840 6691//22840 6554//22840 +f 974//22841 2248//22842 2507//22843 +f 6726//22844 6555//22845 6515//22846 +f 4045//22847 2960//22848 1662//22848 +f 6483//22849 6221//22849 6730//22850 +f 3270//22851 742//22851 1985//22851 +f 6557//22852 6727//22853 6693//22854 +f 750//22855 3237//22855 1240//22855 +f 6728//22856 6483//22857 6730//22858 +f 2416//22859 281//22860 399//22860 +f 3585//22861 4968//22862 5286//22861 +f 6221//22863 6319//22863 6730//22864 +f 6694//22865 6261//22866 6636//22867 +f 6727//22868 6557//22869 6638//22869 +f 2154//22870 2054//22871 75//22872 +f 6261//22873 6694//22874 6390//22875 +f 6390//22876 6694//22877 6605//22878 +f 276//22879 774//22880 2744//22881 +f 783//22882 2058//22882 1924//22883 +f 1287//22884 4254//22884 4134//22884 +f 6455//22885 6732//22885 6810//22885 +f 7378//22886 2318//22887 2075//22888 +f 1731//22889 1765//22890 882//22890 +f 558//22891 2161//22892 5373//22893 +f 6455//22894 6561//22895 6697//22895 +f 2727//22896 47//22897 4110//22898 +f 6392//22899 6563//22899 6562//22899 +f 6639//22900 6565//22900 6698//22901 +f 3972//22902 2491//22903 4691//22904 +f 2609//22905 1580//22906 3755//22907 +f 1178//22908 2426//22909 1519//22910 +f 8//22911 2757//22912 1657//22912 +f 6640//22913 6608//22914 6357//22915 +f 100//22916 2911//22917 1665//22918 +f 7213//22919 5518//22920 2078//22921 +f 2054//22922 2967//22923 4822//22924 +f 1029//22925 728//22926 3218//22927 +f 4791//22928 2776//22929 4632//22930 +f 3191//22931 5267//22932 1985//22933 +f 4288//22934 4355//22935 4080//22936 +f 655//22937 2125//22938 656//22938 +f 2950//22939 3481//22940 3011//22941 +f 6922//22942 6735//22943 6567//22944 +f 6459//22945 6735//22946 6700//22947 +f 6609//22948 6736//22949 6642//22949 +f 6700//22950 6776//22951 6522//22952 +f 1260//22953 314//22954 1134//22955 +f 2380//22956 3294//22956 2610//22957 +f 6521//22958 6701//22958 6609//22958 +f 6701//22959 6702//22960 6703//22961 +f 6701//22962 6703//22963 6737//22964 +f 6569//22965 6643//22965 6702//22966 +f 3281//22967 427//22968 1803//22969 +f 6702//22970 6737//22970 6703//22971 +f 6738//22972 6570//22973 6460//22974 +f 3783//22975 5065//22975 5124//22976 +f 2650//22977 2665//22978 2651//22979 +f 99//22980 1465//22981 3776//22982 +f 4135//22983 396//22984 2771//22985 +f 132//22986 2292//22987 2914//22988 +f 6818//22989 6428//22990 6647//22991 +f 642//22992 621//22993 98//22994 +f 807//22995 4220//22996 4316//22997 +f 6572//22998 6523//22999 6265//23000 +f 1817//23001 686//23002 687//23003 +f 1672//23004 3743//23004 3475//23005 +f 3341//23006 1241//23007 3816//23008 +f 421//23009 617//23010 1619//23011 +f 4524//23012 5262//23013 2257//23012 +f 6573//23014 6524//23015 6611//23016 +f 3006//23017 546//23017 2194//23017 +f 6492//23018 6396//23019 6574//23019 +f 984//23020 4155//23021 1769//23022 +f 3623//23023 1200//23023 1038//23023 +f 3346//23024 48//23025 1528//23026 +f 6650//23027 6648//23028 6651//23027 +f 1386//23029 550//23029 551//23030 +f 6652//23031 6740//23032 6650//23033 +f 1707//23034 499//23035 502//23036 +f 4661//23037 2101//23038 757//23039 +f 6649//23040 6397//23040 6492//23040 +f 1640//23041 5027//23042 2513//23043 +f 6653//23044 6652//23045 6493//23046 +f 2741//23047 735//23048 2376//23049 +f 1026//23050 2388//23051 2577//23052 +f 6653//23053 6495//23054 6742//23055 +f 4245//23056 2496//23057 3114//23058 +f 6496//23059 6742//23060 6495//23060 +f 1682//23061 523//23061 3721//23061 +f 5608//23062 4999//23063 1158//23064 +f 275//23065 4138//23066 5193//23067 +f 4782//23068 4418//23069 914//23069 +f 3643//23070 5212//23071 2019//23072 +f 793//23073 3935//23074 1052//23073 +f 3865//23075 1042//23076 1950//23077 +f 6704//23078 6431//23079 6575//23080 +f 6431//23081 6704//23082 6362//23083 +f 4675//23084 2464//23084 479//23084 +f 6705//23085 6613//23086 6744//23087 +f 594//23088 2876//23088 4724//23088 +f 1051//23089 2868//23090 4482//23091 +f 40//23092 1919//23092 2268//23092 +f 6706//23093 6784//23094 6526//23095 +f 6706//23096 6526//23097 6464//23098 +f 338//23099 3387//23100 1438//23101 +f 537//23102 606//23103 3110//23104 +f 353//23105 1659//23106 4192//23107 +f 4303//23108 2772//23109 2707//23110 +f 6695//23111 6436//23112 6435//23113 +f 6465//23114 6463//23115 6746//23116 +f 6463//23117 6526//23118 6746//23119 +f 6745//23120 6435//23121 6527//23122 +f 3179//23123 4011//23124 3521//23124 +f 881//23125 1334//23126 2516//23127 +f 5562//23128 3853//23128 362//23128 +f 5163//23129 1312//23130 5114//23131 +f 3260//23132 1655//23133 1396//23134 +f 4085//23135 5009//23136 5102//23137 +f 2172//23138 1798//23139 33//23140 +f 4148//23141 2105//23142 1498//23142 +f 2191//23143 3359//23144 819//23143 +f 2716//23145 2963//23146 557//23145 +f 2281//23147 1300//23148 1830//23148 +f 2169//23149 1465//23150 2825//23150 +f 1166//23151 1895//23152 519//23153 +f 6530//23154 6529//23154 5490//23154 +f 148//23155 3468//23156 366//23157 +f 6662//23158 6660//23159 6438//23160 +f 1459//23161 586//23161 4719//23161 +f 6616//23162 6709//23163 6748//23164 +f 1051//23165 2177//23165 3326//23166 +f 1048//23167 3247//23168 1673//23167 +f 2653//23169 3243//23170 3553//23171 +f 6583//23172 6616//23173 6534//23174 +f 1207//23175 4788//23176 543//23177 +f 6617//23178 6534//23179 6750//23180 +f 1799//23181 2755//23181 1027//23181 +f 1128//23182 3458//23182 1748//23182 +f 6536//23183 6621//23184 6500//23185 +f 789//23186 2077//23187 3044//23187 +f 6711//23188 6586//23189 6444//23190 +f 4455//23191 1149//23192 313//23193 +f 7026//23194 6443//23195 6537//23196 +f 4606//23197 3625//23198 365//23199 +f 6501//23200 6622//23201 6537//23202 +f 1021//23203 1879//23204 2402//23205 +f 7089//23206 6668//23206 6471//23207 +f 1057//23208 1833//23209 698//23208 +f 6669//23210 6161//23211 6340//23212 +f 2837//23213 973//23214 3471//23215 +f 4780//23216 3782//23217 444//23218 +f 90//23219 1106//23219 5469//23219 +f 1812//23220 2293//23221 263//23222 +f 6164//23223 6503//23223 6714//23223 +f 1947//23224 4501//23225 2429//23225 +f 3530//23226 4430//23227 3504//23228 +f 6715//23229 6341//23229 6541//23229 +f 5375//23230 3520//23231 76//23232 +f 3089//23233 1068//23234 3576//23235 +f 2637//23236 4844//23237 330//23237 +f 6542//23238 6753//23239 6623//23240 +f 6164//23241 6714//23241 6672//23241 +f 2842//23242 622//23243 3564//23244 +f 4194//23245 880//23246 4406//23247 +f 2226//23248 4724//23249 1563//23250 +f 6472//23251 6059//23252 6588//23253 +f 1135//23254 607//23255 2287//23256 +f 6590//23257 6409//23258 6344//23259 +f 769//23260 1785//23261 2812//23262 +f 6308//23263 6589//23263 6474//23263 +f 529//23264 4755//23265 1311//23266 +f 702//23267 3045//23268 3277//23269 +f 6410//23270 6213//23271 6591//23272 +f 1220//23273 3101//23274 1445//23275 +f 3091//23276 713//23276 4195//23276 +f 1004//23277 3752//23278 922//23279 +f 4029//23280 1317//23281 3618//23282 +f 3651//23283 5198//23284 4031//23285 +f 6166//23286 6309//23286 6592//23286 +f 2381//23287 1776//23287 3634//23287 +f 4663//23288 3293//23289 4948//23290 +f 2528//23291 2498//23291 2771//23291 +f 6130//23292 6166//23293 6592//23294 +f 6675//23295 6717//23296 6678//23296 +f 3584//23297 4067//23298 1622//23299 +f 6678//23300 6717//23300 6795//23300 +f 1126//23301 1757//23302 1520//23303 +f 6310//23304 6676//23305 6593//23306 +f 3007//23307 3203//23308 3599//23309 +f 6597//23310 6678//23310 6795//23310 +f 4534//23311 3715//23312 5070//23313 +f 6593//23314 6131//23315 6310//23315 +f 4089//23316 3158//23317 4419//23316 +f 3321//23318 794//23319 3310//23320 +f 6679//23321 6544//23321 6546//23321 +f 31//23322 2276//23323 1585//23322 +f 3906//23324 1933//23325 2621//23326 +f 2438//23327 3240//23328 4324//23329 +f 3993//23330 722//23331 4356//23332 +f 1844//23333 2272//23333 1144//23334 +f 6597//23335 6718//23335 6627//23336 +f 2673//23337 823//23337 4139//23337 +f 3012//23338 2895//23339 2490//23339 +f 4863//23340 91//23341 1761//23342 +f 3777//23343 1420//23344 3184//23345 +f 2093//23346 5662//23347 4855//23347 +f 6134//23348 6311//23348 6797//23349 +f 1321//23350 3218//23351 2376//23352 +f 1098//23353 4388//23354 3803//23355 +f 3116//23356 831//23357 3760//23358 +f 6171//23359 6759//23360 6352//23359 +f 1035//23361 2578//23362 3866//23363 +f 2671//23364 2199//23365 2672//23364 +f 307//23366 5295//23367 4608//23367 +f 2871//23368 1069//23369 3192//23370 +f 3017//23371 3680//23372 3016//23373 +f 6349//23374 6418//23375 6630//23376 +f 6760//23377 6630//23378 6418//23379 +f 6683//23380 6419//23381 6383//23382 +f 1718//23383 2158//23383 2133//23384 +f 4300//23385 2991//23385 5223//23385 +f 2402//23386 1879//23387 2734//23388 +f 5055//23389 4729//23390 1751//23391 +f 2630//23392 1684//23393 1046//23394 +f 1573//23395 2007//23396 2921//23397 +f 6452//23398 6384//23398 6760//23399 +f 6721//23400 6451//23401 6601//23402 +f 6720//23403 6631//23403 6508//23403 +f 1543//23404 5486//23405 6055//23404 +f 4532//23406 3345//23407 460//23408 +f 5275//23409 3365//23410 4380//23411 +f 3066//23412 1412//23412 497//23412 +f 5421//23413 4006//23414 1528//23414 +f 444//23415 2387//23416 3337//23417 +f 2239//23418 1061//23419 5267//23420 +f 4558//23421 1598//23422 1690//23423 +f 4546//23424 2669//23425 944//23425 +f 3796//23426 767//23427 4279//23428 +f 6688//23429 6852//23430 6687//23431 +f 6602//23432 6631//23432 6764//23432 +f 321//23433 7401//23434 3720//23435 +f 187//23436 1739//23437 3124//23438 +f 3124//23439 1739//23440 3865//23441 +f 2237//23442 1053//23442 1247//23443 +f 5699//23444 4299//23445 4368//23446 +f 6764//23447 6481//23448 6602//23449 +f 4801//23450 1572//23451 3474//23452 +f 322//23453 2517//23454 5499//23455 +f 6766//23456 6635//23457 6481//23458 +f 6422//23459 6724//23459 6479//23459 +f 6686//23460 6604//23461 6765//23462 +f 4788//23463 1494//23464 543//23465 +f 1096//23466 2212//23467 3957//23468 +f 6691//23469 6725//23470 6604//23469 +f 1021//23471 2402//23472 1106//23473 +f 3962//23474 4012//23475 185//23475 +f 815//23476 2587//23476 1485//23476 +f 3358//23477 4715//23477 1346//23477 +f 727//23478 2428//23479 728//23480 +f 4607//23481 2602//23482 2522//23483 +f 2189//23484 572//23484 625//23485 +f 3194//23486 3149//23487 441//23488 +f 2414//23489 2056//23490 1353//23491 +f 67//23492 1824//23493 1327//23494 +f 3708//23495 3984//23496 718//23497 +f 4414//23498 4681//23498 721//23499 +f 528//23500 4598//23501 1883//23502 +f 6860//23503 6558//23503 6639//23503 +f 6767//23504 6605//23505 6694//23506 +f 6810//23507 6319//23508 6455//23509 +f 6860//23510 6639//23511 6768//23510 +f 3768//23512 3863//23513 4204//23514 +f 2757//23515 2756//23515 4510//23515 +f 6698//23516 6768//23516 6639//23516 +f 4700//23517 739//23517 1867//23517 +f 1906//23518 317//23519 511//23520 +f 298//23521 4115//23521 4352//23522 +f 6357//23523 6392//23523 6640//23524 +f 4040//23525 2842//23526 4924//23527 +f 6606//23528 6426//23528 6771//23528 +f 4028//23529 43//23530 5330//23531 +f 928//23532 3886//23533 4676//23534 +f 6606//23535 6771//23535 6699//23535 +f 6773//23536 6561//23537 6560//23538 +f 2910//23539 5122//23539 3977//23540 +f 5154//23541 2390//23542 2391//23543 +f 4579//23544 4349//23545 3395//23544 +f 6607//23546 6457//23547 6734//23548 +f 2256//23549 3452//23550 5597//23551 +f 2400//23552 3159//23552 2961//23552 +f 3745//23553 3066//23553 212//23553 +f 6775//23554 6606//23555 6699//23556 +f 1997//23557 2149//23558 4200//23559 +f 617//23560 1678//23561 4314//23562 +f 538//23563 1241//23564 1250//23565 +f 6777//23566 6736//23567 6609//23568 +f 6777//23569 6609//23569 6701//23569 +f 6701//23570 6737//23570 6777//23571 +f 2111//23572 980//23573 3819//23574 +f 6643//23575 6461//23576 6739//23577 +f 6739//23578 6461//23579 6646//23580 +f 1604//23581 1995//23582 3104//23583 +f 3812//23584 3613//23585 938//23586 +f 4235//23587 968//23588 37//23589 +f 6572//23590 6650//23591 6740//23592 +f 4170//23593 1487//23594 4584//23595 +f 6652//23596 6778//23597 6740//23597 +f 2289//23598 3988//23599 864//23598 +f 6611//23600 6741//23601 6573//23602 +f 3585//23603 5286//23604 654//23605 +f 6651//23606 6648//23607 6649//23608 +f 1563//23609 4179//23610 1014//23611 +f 1586//23612 2472//23612 1454//23612 +f 4533//23613 1867//23614 2839//23615 +f 924//23616 2400//23616 5626//23616 +f 1528//23617 1527//23618 1461//23619 +f 41//23620 509//23621 4219//23622 +f 6651//23623 6743//23624 6654//23625 +f 3264//23626 4723//23627 2226//23628 +f 1697//23629 2268//23630 1310//23631 +f 2945//23632 1932//23632 4142//23632 +f 3637//23633 5270//23633 2574//23634 +f 4453//23635 35//23636 4449//23637 +f 4538//23638 3845//23639 13//23640 +f 3203//23641 2266//23641 4236//23641 +f 6575//23642 6654//23643 6783//23644 +f 1176//23645 4732//23646 2973//23647 +f 743//23648 4103//23648 742//23648 +f 6695//23649 6435//23650 6745//23651 +f 1706//23652 2013//23652 2107//23652 +f 2582//23653 3675//23654 4747//23655 +f 145//23656 4394//23656 3398//23656 +f 1054//23657 2071//23657 1513//23658 +f 6578//23659 6707//23660 6658//23660 +f 4869//23661 2922//23662 3216//23661 +f 473//23663 1151//23664 4488//23665 +f 1188//23666 870//23667 4991//23668 +f 3086//23669 1878//23670 1524//23671 +f 3452//23672 2256//23673 5892//23673 +f 6659//23674 6499//23675 6786//23676 +f 6656//23677 6708//23678 6269//23679 +f 6785//23680 6747//23681 6581//23682 +f 4026//23683 3432//23684 3//23685 +f 2467//23686 5085//23687 2860//23688 +f 6747//23689 6661//23690 6581//23691 +f 4766//23692 4783//23693 4927//23693 +f 6786//23694 6499//23695 6532//23696 +f 3835//23697 2570//23697 2042//23697 +f 1414//23698 4001//23699 2023//23699 +f 4633//23700 820//23701 216//23702 +f 2240//23703 1932//23704 4423//23704 +f 2057//23705 3446//23705 576//23706 +f 6615//23707 6527//23707 6371//23707 +f 6466//23708 6788//23709 6709//23708 +f 3762//23710 3212//23711 3770//23712 +f 1832//23713 4731//23714 5845//23715 +f 5515//23716 4662//23717 1340//23718 +f 2835//23719 5396//23720 3125//23721 +f 320//23722 4664//23723 3018//23724 +f 6662//23725 6438//23725 6272//23725 +f 5050//23726 1369//23726 1242//23726 +f 315//23727 2356//23727 574//23727 +f 1984//23728 3792//23729 3766//23728 +f 1247//23730 4477//23730 3809//23730 +f 2794//23731 4056//23732 3698//23732 +f 6664//23733 6238//23733 6528//23733 +f 4142//23734 4668//23735 2945//23736 +f 1766//23737 4381//23737 3232//23737 +f 6582//23738 6661//23739 6879//23740 +f 2302//23741 1377//23741 2794//23742 +f 6662//23743 6272//23743 7117//23743 +f 6582//23744 6879//23745 6789//23746 +f 3723//23747 211//23748 1298//23749 +f 6329//23750 6584//23751 6663//23752 +f 6582//23753 6789//23754 6584//23755 +f 248//23756 3429//23756 2661//23757 +f 2350//23758 3382//23759 1990//23758 +f 6371//23760 6402//23760 7025//23760 +f 1990//23761 3382//23762 45//23763 +f 238//23764 5649//23765 1697//23766 +f 6616//23767 6749//23768 6534//23769 +f 6749//23770 6750//23770 6534//23770 +f 1927//23771 1926//23772 102//23773 +f 148//23774 366//23775 1012//23776 +f 3826//23777 4200//23777 2953//23777 +f 2042//23778 2209//23778 1085//23779 +f 6405//23780 6620//23781 6441//23782 +f 3252//23783 528//23784 106//23785 +f 5293//23786 1774//23787 4204//23788 +f 4017//23789 2496//23790 1294//23791 +f 2648//23792 5048//23793 2834//23792 +f 3846//23794 18//23794 3067//23794 +f 6667//23795 6621//23796 6833//23797 +f 2514//23798 2495//23798 3271//23798 +f 349//23799 2483//23800 394//23801 +f 6207//23802 6276//23802 6713//23802 +f 1696//23803 3176//23804 1216//23805 +f 6711//23806 6305//23806 6668//23806 +f 1204//23807 4538//23808 4186//23809 +f 19//23810 5399//23811 2187//23812 +f 4833//23813 2182//23814 2735//23815 +f 3264//23816 594//23817 4723//23818 +f 4403//23819 4509//23820 323//23821 +f 5327//23822 5099//23823 562//23824 +f 2469//23825 1851//23826 2482//23827 +f 969//23828 1676//23829 4643//23830 +f 1020//23831 1021//23832 1285//23833 +f 640//23834 5834//23835 982//23835 +f 3896//23836 2184//23837 1764//23837 +f 4102//23838 151//23839 5329//23840 +f 1054//23841 4021//23842 2094//23843 +f 6670//23844 6209//23845 6504//23846 +f 2119//23847 5156//23848 4084//23849 +f 4493//23850 2300//23850 1407//23850 +f 6671//23851 6408//23852 6279//23853 +f 2628//23854 4480//23854 2734//23854 +f 129//23855 140//23856 4686//23857 +f 4387//23858 2087//23858 5127//23858 +f 2114//23859 4259//23860 2579//23861 +f 890//23862 3175//23863 5269//23864 +f 3189//23865 3517//23866 4914//23867 +f 6278//23868 6715//23869 6588//23870 +f 1521//23871 3954//23872 3317//23873 +f 108//23874 1559//23875 1326//23876 +f 3090//23877 1407//23878 3637//23879 +f 2272//23880 1844//23881 5546//23882 +f 5030//23883 4951//23884 3424//23885 +f 5351//23886 2915//23887 477//23888 +f 3595//23889 2983//23890 3518//23889 +f 2983//23891 1961//23892 3518//23893 +f 2677//23894 2678//23895 2905//23894 +f 1269//23896 2223//23896 2277//23896 +f 2804//23897 948//23897 3197//23898 +f 1710//23899 4494//23899 67//23900 +f 2233//23901 1578//23902 2315//23901 +f 6677//23903 6793//23903 6675//23903 +f 6592//23904 6309//23905 6756//23906 +f 6283//23907 6446//23908 6591//23909 +f 6446//23910 6794//23911 6591//23912 +f 6717//23913 6757//23914 6795//23914 +f 841//23915 4430//23916 3530//23915 +f 3609//23917 5718//23918 5223//23919 +f 1246//23920 2790//23920 188//23920 +f 5411//23921 3876//23922 3162//23922 +f 2418//23923 4139//23924 285//23925 +f 6718//23926 6597//23927 6795//23928 +f 4034//23929 5080//23930 4584//23931 +f 1950//23932 5664//23933 3124//23934 +f 6627//23935 6718//23936 6758//23935 +f 3432//23937 2726//23938 2623//23938 +f 6599//23939 6848//23940 6681//23939 +f 5388//23941 2367//23941 597//23941 +f 6849//23942 6476//23943 6414//23943 +f 358//23944 3676//23945 3267//23946 +f 983//23947 2749//23947 1790//23948 +f 645//23949 4296//23950 5//23951 +f 6507//23952 6134//23953 6798//23954 +f 6682//23955 6416//23956 6352//23957 +f 4016//23958 454//23959 3148//23960 +f 6683//23961 6383//23962 6420//23963 +f 5660//23964 4619//23965 21//23966 +f 4580//23967 1492//23968 1919//23969 +f 681//23970 5534//23971 4876//23972 +f 991//23973 538//23973 5115//23974 +f 6760//23975 6418//23975 6452//23975 +f 7319//23976 3822//23976 448//23976 +f 6632//23977 6722//23978 6549//23979 +f 6800//23980 6722//23981 6632//23982 +f 6632//23983 6762//23983 6800//23983 +f 1348//23984 1408//23985 3343//23985 +f 498//23986 2900//23987 1971//23988 +f 1181//23989 4133//23990 400//23990 +f 6801//23991 6632//23992 6686//23993 +f 1556//23994 2115//23994 1194//23994 +f 5570//23995 3861//23996 268//23997 +f 3961//23998 3727//23998 3300//23999 +f 4195//24000 3911//24000 3913//24000 +f 5068//24001 4943//24002 5369//24001 +f 2574//24003 2885//24003 574//24003 +f 1058//24004 912//24005 3477//24006 +f 1891//24007 5400//24008 2793//24009 +f 4424//24010 3340//24010 1615//24010 +f 6686//24011 6765//24012 6801//24013 +f 527//24014 980//24014 2111//24014 +f 3361//24015 1871//24016 3556//24017 +f 3610//24018 4930//24019 402//24020 +f 6764//24021 6766//24021 6481//24021 +f 978//24022 636//24022 4493//24022 +f 4898//24023 7337//24024 5740//24025 +f 6725//24026 6765//24027 6604//24028 +f 2656//24029 1221//24029 1441//24029 +f 6725//24030 6691//24031 6693//24032 +f 336//24033 3785//24034 658//24035 +f 3549//24036 2392//24037 1994//24038 +f 2391//24039 2999//24040 5154//24039 +f 3558//24041 5456//24042 4238//24043 +f 6425//24044 6808//24045 6729//24046 +f 1140//24047 3237//24047 1219//24048 +f 3764//24049 1577//24050 2918//24051 +f 1417//24052 1362//24053 830//24054 +f 1246//24055 3989//24056 4619//24057 +f 2675//24058 4117//24059 4886//24060 +f 1932//24061 1499//24062 4423//24063 +f 4695//24064 4959//24065 1886//24065 +f 135//24066 438//24067 1213//24066 +f 6638//24068 6860//24069 6727//24070 +f 4542//24071 3107//24071 788//24071 +f 5395//24072 923//24073 3873//24074 +f 2771//24075 396//24076 2528//24077 +f 2163//24078 613//24078 827//24078 +f 6809//24079 6319//24080 6810//24081 +f 1047//24082 2755//24083 4480//24084 +f 68//24085 299//24086 174//24087 +f 4690//24088 1876//24088 2408//24089 +f 4666//24090 3237//24090 3554//24090 +f 2859//24091 4378//24091 1338//24091 +f 6694//24092 6811//24093 6767//24094 +f 6605//24095 6696//24096 6486//24097 +f 6770//24098 6605//24098 6915//24098 +f 6455//24099 6697//24099 6732//24099 +f 6563//24100 6917//24101 6562//24102 +f 1774//24103 4810//24104 3209//24104 +f 3795//24105 1923//24105 5277//24105 +f 5844//24106 4557//24107 480//24108 +f 5200//24109 3178//24110 1452//24111 +f 6559//24112 6606//24113 6772//24114 +f 3315//24115 553//24116 1201//24115 +f 6697//24117 6561//24117 6773//24117 +f 6426//24118 6696//24119 6770//24120 +f 3347//24121 1619//24122 617//24123 +f 1444//24124 3480//24125 344//24126 +f 737//24127 4116//24128 1865//24129 +f 5732//24130 2290//24130 1888//24130 +f 3651//24131 395//24132 5198//24133 +f 6815//24134 6698//24134 6641//24134 +f 4606//24135 365//24135 2750//24135 +f 786//24136 2106//24136 3203//24137 +f 6772//24138 6606//24139 6775//24140 +f 6734//24141 6457//24141 6733//24141 +f 518//24142 1119//24143 631//24144 +f 6641//24145 6642//24146 6815//24147 +f 54//24148 1883//24149 1801//24150 +f 6815//24151 6642//24152 6816//24151 +f 6816//24153 6642//24154 6736//24155 +f 722//24156 4020//24156 5119//24156 +f 6817//24157 6777//24158 6737//24159 +f 6776//24160 6738//24161 6460//24162 +f 3026//24163 1363//24164 5523//24165 +f 4379//24166 863//24167 947//24168 +f 5183//24169 4372//24170 148//24171 +f 6643//24172 6739//24173 6702//24174 +f 1411//24175 5830//24176 4678//24177 +f 6737//24178 6702//24179 6739//24180 +f 4073//24181 4843//24181 4485//24181 +f 923//24182 5395//24183 1962//24184 +f 6610//24185 6645//24185 6867//24186 +f 4886//24187 3828//24188 5612//24189 +f 6523//24190 6971//24190 6646//24190 +f 6571//24191 6428//24192 6818//24193 +f 2734//24194 957//24195 2628//24194 +f 2608//24196 5090//24196 2073//24196 +f 3927//24197 2457//24198 4167//24199 +f 4602//24200 2361//24200 2106//24200 +f 1962//24201 4756//24202 5412//24203 +f 6741//24204 6779//24205 6573//24206 +f 6780//24207 6651//24208 6649//24207 +f 2473//24209 59//24210 4675//24211 +f 2549//24212 1560//24213 2445//24214 +f 6780//24215 6743//24216 6651//24217 +f 2993//24218 4479//24218 7216//24218 +f 6654//24219 6821//24220 6782//24221 +f 6783//24222 6822//24223 6575//24224 +f 6782//24225 6783//24225 6654//24226 +f 6704//24227 6575//24228 6822//24229 +f 4520//24230 2604//24230 96//24230 +f 2077//24231 2860//24231 5143//24231 +f 2175//24232 1750//24233 963//24232 +f 4851//24234 5485//24234 4692//24234 +f 796//24235 3685//24236 319//24237 +f 3636//24238 4438//24239 905//24238 +f 2390//24240 3447//24241 2362//24242 +f 4502//24243 5669//24243 5081//24244 +f 3079//24245 2945//24246 1794//24247 +f 6706//24248 6577//24249 6828//24249 +f 3897//24250 1669//24251 3772//24252 +f 6746//24253 6526//24254 6784//24253 +f 1261//24255 3296//24256 1813//24257 +f 1654//24258 4047//24259 3607//24259 +f 6785//24260 6465//24260 6657//24260 +f 3082//24261 1544//24262 4841//24262 +f 427//24263 930//24264 2471//24265 +f 3096//24266 171//24267 3671//24268 +f 1234//24269 4524//24270 500//24271 +f 5565//24272 2699//24273 523//24273 +f 1019//24274 110//24275 2348//24276 +f 2662//24277 2031//24278 5339//24279 +f 87//24280 4274//24281 748//24282 +f 4415//24283 25//24284 4912//24285 +f 3458//24286 1128//24287 4339//24288 +f 3154//24289 2814//24290 3454//24289 +f 6466//24291 6580//24292 6788//24293 +f 5782//24294 4452//24294 5062//24295 +f 6709//24296 6788//24296 6748//24296 +f 5216//24297 191//24298 1337//24299 +f 4535//24300 1673//24301 3881//24302 +f 1493//24303 312//24304 198//24305 +f 886//24306 1600//24307 3885//24308 +f 6615//24309 6371//24310 7025//24311 +f 6530//24312 6329//24313 6663//24314 +f 7343//24315 489//24315 3569//24315 +f 3327//24316 3302//24317 3488//24316 +f 6616//24318 6748//24319 6880//24320 +f 6663//24321 6584//24322 6937//24323 +f 4860//24324 4897//24325 3912//24325 +f 3954//24326 254//24327 255//24328 +f 876//24329 633//24329 893//24330 +f 6616//24331 6880//24332 6830//24332 +f 5431//24333 264//24334 3790//24334 +f 2007//24335 1643//24336 2921//24337 +f 6831//24338 7025//24339 6402//24340 +f 3433//24341 5147//24342 3726//24343 +f 1207//24344 543//24345 102//24346 +f 4567//24347 811//24348 476//24349 +f 672//24350 3157//24351 246//24350 +f 6750//24352 6940//24353 6617//24354 +f 6710//24355 6617//24355 6940//24356 +f 2055//24357 491//24358 4278//24359 +f 5892//24360 5076//24361 215//24362 +f 741//24363 2709//24364 983//24365 +f 6405//24366 7163//24367 6620//24368 +f 2244//24369 1359//24370 370//24371 +f 2558//24372 2561//24373 3266//24374 +f 1757//24375 989//24376 1520//24377 +f 732//24378 4489//24379 436//24380 +f 6406//24381 6207//24382 6713//24383 +f 1419//24384 1420//24385 1720//24386 +f 4296//24387 2426//24388 1178//24389 +f 6836//24390 6669//24391 6340//24392 +f 2334//24393 3900//24394 3901//24394 +f 5643//24395 1025//24395 2929//24395 +f 6836//24396 6340//24397 6670//24398 +f 165//24399 3473//24400 4491//24401 +f 544//24402 4812//24402 4744//24402 +f 2441//24403 3607//24404 370//24404 +f 2411//24405 308//24406 4646//24407 +f 714//24408 2196//24408 1901//24408 +f 6716//24409 6671//24410 6279//24409 +f 3718//24411 224//24412 3498//24411 +f 2372//24413 2637//24414 3976//24413 +f 2942//24415 1841//24416 1568//24417 +f 2590//24418 2591//24419 2747//24420 +f 779//24421 3404//24422 2665//24423 +f 2080//24424 4431//24425 1935//24426 +f 1085//24427 4739//24428 3616//24429 +f 6753//24430 6543//24430 6791//24430 +f 4534//24431 4065//24432 3715//24433 +f 6754//24434 6280//24435 6345//24436 +f 69//24437 4622//24438 247//24438 +f 4531//24439 3250//24440 3560//24441 +f 2305//24442 2337//24443 694//24444 +f 4054//24445 488//24445 3567//24446 +f 6589//24447 6472//24448 6792//24449 +f 3968//24450 3850//24451 5265//24450 +f 4287//24452 4961//24453 5371//24454 +f 690//24455 1314//24456 1391//24457 +f 2361//24458 2988//24459 3463//24458 +f 1565//24460 2225//24461 258//24462 +f 398//24463 2168//24464 2302//24463 +f 385//24465 3146//24466 3625//24467 +f 1771//24468 2594//24469 5512//24470 +f 3142//24471 3354//24472 4694//24472 +f 6282//24473 6894//24473 6212//24473 +f 6890//24474 6757//24474 6892//24474 +f 2395//24475 1124//24476 1246//24477 +f 6757//24478 6890//24479 6842//24480 +f 3070//24481 5401//24482 4930//24483 +f 6892//24484 6757//24485 6717//24486 +f 6893//24487 6717//24488 6793//24489 +f 3495//24490 4808//24491 4047//24492 +f 2857//24493 1893//24494 712//24495 +f 6793//24496 6717//24497 6675//24496 +f 3372//24498 1244//24498 2238//24499 +f 1043//24500 5393//24501 4649//24502 +f 827//24503 2711//24503 4550//24503 +f 1646//24504 3727//24504 3961//24504 +f 3882//24505 5779//24506 1143//24507 +f 5127//24508 2087//24509 2086//24510 +f 4777//24511 2700//24512 3647//24512 +f 2796//24513 2952//24514 3591//24513 +f 6718//24515 6795//24516 6843//24515 +f 4844//24517 4761//24518 316//24519 +f 6595//24520 6130//24521 6845//24521 +f 6626//24522 6378//24523 6846//24524 +f 1173//24525 2600//24526 2150//24527 +f 3309//24528 249//24528 7344//24528 +f 6847//24529 6758//24530 6718//24531 +f 2568//24532 1258//24533 1876//24534 +f 305//24535 1023//24536 1373//24537 +f 6311//24538 6595//24539 6797//24540 +f 4250//24541 4120//24541 3151//24542 +f 6381//24543 2025//24543 2147//24543 +f 644//24544 4030//24545 286//24546 +f 1728//24547 4623//24548 3562//24549 +f 3923//24550 1728//24551 1729//24552 +f 6850//24553 6629//24553 6758//24553 +f 4425//24554 4038//24555 2624//24554 +f 5515//24556 1340//24557 4396//24558 +f 4341//24559 4915//24559 4199//24559 +f 2821//24560 2924//24561 3696//24562 +f 4212//24563 975//24564 1060//24563 +f 6799//24565 6507//24566 6798//24567 +f 6507//24568 6799//24568 6601//24568 +f 2510//24569 2333//24570 2791//24571 +f 6719//24572 6955//24573 6684//24572 +f 6508//24574 6761//24575 6720//24576 +f 6547//24577 6719//24578 6684//24578 +f 1664//24579 4341//24579 4228//24580 +f 5236//24581 1123//24582 3654//24583 +f 459//24584 3278//24584 2554//24585 +f 4721//24586 5528//24587 130//24588 +f 3841//24589 3541//24590 3005//24590 +f 6762//24591 6632//24592 6801//24593 +f 6688//24594 6763//24594 6852//24594 +f 4794//24595 586//24596 5227//24597 +f 4313//24598 290//24599 2901//24600 +f 6764//24601 6631//24601 6853//24601 +f 4361//24602 4169//24602 1196//24602 +f 1264//24603 4123//24603 4437//24603 +f 6854//24604 6723//24604 6855//24605 +f 6856//24606 6723//24607 6634//24608 +f 4137//24609 1232//24610 4846//24611 +f 4203//24612 4546//24613 944//24614 +f 2950//24615 5011//24616 219//24617 +f 1896//24618 443//24619 3282//24620 +f 4247//24621 1095//24622 3500//24623 +f 1226//24624 921//24625 1877//24624 +f 3344//24626 167//24627 1251//24628 +f 6857//24629 6512//24630 6687//24631 +f 4012//24632 5209//24633 185//24634 +f 6552//24635 6509//24636 6904//24635 +f 4697//24637 5193//24638 5328//24639 +f 1149//24640 1150//24641 4659//24642 +f 5528//24643 3456//24644 2328//24645 +f 3043//24646 4142//24646 2240//24647 +f 5506//24648 6828//24648 6834//24648 +f 1247//24649 1053//24650 4643//24651 +f 6515//24652 6552//24653 6806//24654 +f 4281//24655 12//24656 4416//24657 +f 6806//24658 6552//24658 6858//24658 +f 3242//24659 3350//24660 3001//24659 +f 1005//24661 4000//24662 984//24663 +f 1937//24664 2068//24665 2279//24666 +f 182//24667 479//24668 3112//24669 +f 6515//24670 6807//24670 6726//24670 +f 240//24671 4392//24672 3563//24671 +f 605//24673 2152//24674 3182//24675 +f 4427//24676 2816//24677 1221//24678 +f 1194//24679 4292//24679 1556//24679 +f 4831//24680 1759//24681 3345//24682 +f 2817//24683 3553//24684 3243//24685 +f 5549//24686 4888//24687 2947//24688 +f 794//24689 3253//24690 2809//24690 +f 2778//24691 1455//24692 2026//24693 +f 704//24694 1652//24694 2102//24695 +f 6808//24696 6637//24697 6729//24698 +f 6730//24699 6319//24700 6809//24701 +f 1018//24702 3374//24703 2555//24704 +f 1434//24705 824//24706 5122//24707 +f 3669//24708 263//24708 2293//24708 +f 2013//24709 2014//24710 146//24711 +f 1451//24712 1794//24713 4069//24714 +f 3894//24715 4116//24716 3895//24717 +f 6519//24718 6563//24719 6458//24720 +f 680//24721 3412//24721 481//24722 +f 6564//24723 6562//24723 6769//24723 +f 203//24724 3486//24725 143//24726 +f 1842//24727 2639//24728 2638//24729 +f 6810//24730 6732//24731 6861//24732 +f 4932//24733 3285//24734 3099//24735 +f 2091//24736 521//24737 1431//24737 +f 6608//24738 6640//24739 6862//24740 +f 803//24741 2319//24742 1238//24743 +f 1416//24744 1448//24745 1490//24746 +f 6812//24747 6771//24747 6426//24748 +f 2393//24749 739//24750 4700//24751 +f 5198//24752 1234//24752 1470//24752 +f 6968//24753 6487//24754 6608//24755 +f 6770//24756 6812//24757 6426//24758 +f 4387//24759 3088//24760 4931//24761 +f 6772//24762 6733//24763 6559//24764 +f 5633//24765 4573//24766 4482//24767 +f 1725//24768 3166//24769 7213//24770 +f 6457//24771 6559//24772 6733//24773 +f 6814//24774 6560//24775 6607//24776 +f 1167//24777 2247//24778 1963//24779 +f 6773//24780 6560//24781 6774//24782 +f 3032//24783 834//24784 3405//24785 +f 5559//24786 91//24786 4863//24786 +f 2646//24787 622//24787 2230//24787 +f 6734//24788 6864//24789 6607//24790 +f 115//24791 4434//24792 1061//24793 +f 505//24794 403//24795 1164//24795 +f 4212//24796 2061//24797 1879//24798 +f 1249//24799 3438//24799 3008//24799 +f 6817//24800 6737//24801 6866//24802 +f 4396//24803 1340//24803 2026//24804 +f 1634//24805 3852//24806 2079//24805 +f 2220//24807 2163//24808 1804//24809 +f 4610//24810 1227//24811 93//24811 +f 2050//24812 1789//24813 2404//24814 +f 328//24815 1428//24816 2105//24817 +f 3328//24818 836//24819 4093//24819 +f 6611//24820 6571//24821 6820//24822 +f 6740//24823 6778//24823 6572//24824 +f 3587//24825 5686//24826 3441//24827 +f 6780//24828 6649//24829 6868//24830 +f 3426//24831 380//24832 2909//24833 +f 164//24834 3915//24835 2878//24836 +f 995//24837 2490//24838 2895//24839 +f 1841//24840 3739//24841 2861//24841 +f 921//24842 4696//24843 3202//24844 +f 3178//24845 990//24846 1473//24845 +f 6742//24847 6496//24848 6781//24849 +f 3568//24850 1538//24851 2404//24852 +f 7348//24853 168//24854 1603//24855 +f 3584//24856 1622//24856 5053//24857 +f 6496//24858 6869//24859 6781//24860 +f 6869//24861 6496//24862 6525//24863 +f 862//24864 861//24865 3477//24864 +f 149//24866 5382//24867 4154//24868 +f 3329//24869 592//24869 3498//24870 +f 6612//24871 6525//24871 6429//24872 +f 6821//24873 6654//24874 6743//24875 +f 2532//24876 4428//24876 2755//24876 +f 1066//24877 647//24878 2197//24879 +f 326//24880 2341//24881 1590//24882 +f 474//24883 443//24884 1897//24885 +f 6822//24886 6870//24887 6704//24887 +f 2441//24888 152//24889 3583//24890 +f 6821//24891 6871//24891 6782//24891 +f 6871//24892 6821//24893 6872//24894 +f 51//24895 2569//24896 52//24897 +f 6873//24898 6872//24899 6821//24900 +f 3862//24901 3684//24902 4312//24903 +f 6873//24904 6825//24905 6872//24906 +f 6874//24907 6872//24908 6875//24909 +f 5469//24910 1799//24911 1027//24910 +f 6826//24912 6872//24913 6825//24914 +f 6875//24915 6872//24916 6826//24917 +f 5678//24918 2442//24918 1724//24918 +f 6873//24919 6827//24920 6825//24921 +f 6876//24922 6826//24922 6825//24922 +f 1297//24923 1162//24924 1852//24925 +f 6825//24926 6877//24927 6876//24928 +f 6877//24929 6825//24930 6827//24931 +f 2591//24932 5224//24933 2343//24934 +f 1852//24935 4166//24936 2065//24937 +f 4917//24938 5131//24939 4918//24940 +f 6828//24941 6577//24942 6614//24943 +f 6658//24944 6707//24944 228//24944 +f 6878//24945 6465//24946 6746//24946 +f 6659//24947 6707//24948 6579//24949 +f 4450//24950 980//24951 4377//24952 +f 595//24953 808//24954 3160//24955 +f 63//24956 2751//24957 4083//24957 +f 4046//24958 3567//24959 1479//24960 +f 1887//24961 4135//24962 2771//24963 +f 1643//24964 2007//24965 4215//24966 +f 1329//24967 1481//24968 238//24969 +f 6152//24970 5968//24970 6787//24971 +f 4968//24972 851//24973 5286//24974 +f 212//24975 5308//24976 3745//24977 +f 316//24978 3372//24978 330//24979 +f 793//24980 2246//24980 2560//24981 +f 5127//24982 2086//24983 3702//24982 +f 6708//24984 7087//24985 6234//24986 +f 6880//24987 6788//24988 6936//24989 +f 5067//24990 3069//24991 2014//24992 +f 2449//24993 2451//24993 1110//24993 +f 1164//24994 349//24995 505//24996 +f 994//24997 995//24998 3717//24999 +f 1159//25000 274//25001 2440//25002 +f 1160//25003 4839//25003 4007//25004 +f 6937//25005 6584//25006 6789//25007 +f 780//25008 5217//25008 1331//25008 +f 4780//25009 3334//25010 4065//25011 +f 1915//25012 5079//25013 4469//25014 +f 2168//25015 198//25016 2302//25017 +f 2634//25018 2830//25019 2375//25018 +f 5388//25020 783//25020 2367//25020 +f 7355//25021 5966//25021 2075//25022 +f 3868//25023 3467//25024 4932//25025 +f 3347//25026 1792//25027 1619//25028 +f 1875//25029 2313//25030 3473//25031 +f 3226//25032 3549//25032 1118//25033 +f 6832//25034 6619//25035 6979//25036 +f 6469//25037 6710//25038 6751//25039 +f 1331//25040 4000//25041 780//25042 +f 6469//25043 6751//25044 6618//25045 +f 2271//25046 1695//25046 2117//25046 +f 6618//25047 6881//25048 6536//25049 +f 5066//25050 840//25051 3952//25052 +f 6621//25053 6536//25054 6881//25055 +f 3394//25056 2613//25057 5396//25058 +f 948//25059 3519//25059 3197//25059 +f 990//25060 2698//25061 103//25060 +f 441//25062 2155//25063 4284//25062 +f 3169//25064 1896//25065 4599//25066 +f 1205//25067 4345//25068 2005//25069 +f 725//25070 4414//25071 721//25070 +f 3699//25072 4064//25073 4302//25074 +f 560//25075 489//25075 3348//25076 +f 6445//25077 6667//25077 6835//25077 +f 4958//25078 2832//25079 3048//25080 +f 223//25081 2759//25082 5427//25083 +f 2780//25084 422//25084 2655//25084 +f 4417//25085 926//25085 1026//25085 +f 3038//25086 397//25087 4639//25088 +f 2046//25089 2637//25090 329//25091 +f 2065//25092 100//25093 1242//25094 +f 4955//25095 1449//25096 3136//25097 +f 405//25098 2492//25099 1041//25100 +f 3296//25101 1923//25101 3795//25101 +f 2381//25102 5211//25103 4121//25104 +f 6339//25105 6539//25106 6752//25105 +f 4741//25107 2748//25108 5070//25109 +f 326//25110 4917//25111 1591//25112 +f 287//25113 3258//25114 611//25115 +f 3283//25116 272//25117 651//25118 +f 2703//25119 2395//25120 1165//25121 +f 37//25122 3434//25123 1854//25124 +f 4902//25125 3711//25126 2496//25127 +f 6883//25128 6790//25129 6753//25130 +f 1421//25131 243//25132 423//25131 +f 4484//25133 1543//25134 6055//25135 +f 6883//25136 6753//25137 6791//25138 +f 6715//25139 6884//25140 6588//25141 +f 4070//25142 5082//25143 273//25144 +f 6343//25145 6672//25145 6983//25146 +f 70//25147 1405//25148 3956//25149 +f 3835//25150 3254//25150 2749//25150 +f 6543//25151 6674//25152 6791//25153 +f 2079//25154 7327//25155 7359//25156 +f 6838//25157 6674//25157 6343//25157 +f 6791//25158 6674//25159 6946//25160 +f 6946//25161 6674//25161 6838//25161 +f 6838//25162 6343//25163 6885//25163 +f 1501//25164 4346//25164 178//25164 +f 1748//25165 3376//25165 1130//25165 +f 927//25166 67//25167 2344//25168 +f 6839//25169 6250//25170 6376//25171 +f 4878//25172 4697//25173 5328//25174 +f 6946//25175 6838//25176 6840//25177 +f 6946//25178 6840//25178 6886//25179 +f 3235//25180 1433//25180 5240//25180 +f 6840//25181 6838//25181 6885//25181 +f 2351//25182 4272//25183 2773//25184 +f 6887//25185 6886//25185 6840//25186 +f 6792//25187 6755//25188 6589//25189 +f 1801//25190 589//25191 517//25192 +f 6888//25193 6840//25193 6885//25194 +f 6890//25195 6887//25195 6840//25196 +f 3515//25197 2239//25198 1082//25199 +f 6473//25200 6251//25201 6841//25202 +f 6840//25203 6888//25204 6890//25205 +f 6892//25206 6887//25207 6890//25206 +f 6282//25208 6891//25208 6894//25208 +f 4403//25209 1563//25210 4724//25209 +f 5845//25211 146//25212 1832//25213 +f 6887//25214 6892//25214 6893//25215 +f 4883//25216 4203//25216 944//25217 +f 6892//25218 6717//25219 6893//25220 +f 6842//25221 6890//25221 6895//25221 +f 863//25222 1010//25222 4286//25223 +f 4235//25224 599//25225 600//25226 +f 2413//25227 2986//25227 4044//25227 +f 6793//25228 6677//25228 6948//25228 +f 5107//25229 1393//25229 235//25229 +f 6757//25230 6842//25231 6843//25232 +f 5141//25233 7348//25234 1603//25235 +f 482//25236 1753//25237 2125//25238 +f 2849//25239 2333//25240 1856//25241 +f 6795//25242 6757//25242 6843//25242 +f 2148//25243 2229//25244 3120//25245 +f 6794//25246 6446//25247 6626//25248 +f 6843//25249 6896//25250 6718//25251 +f 1915//25252 1885//25253 942//25254 +f 6897//25255 6596//25256 6679//25255 +f 2564//25257 761//25258 1602//25259 +f 4150//25260 597//25260 2002//25260 +f 1348//25261 4720//25262 1408//25263 +f 6848//25264 6599//25264 6600//25265 +f 2935//25266 462//25267 1980//25268 +f 959//25269 84//25270 239//25271 +f 6954//25272 6600//25273 6683//25274 +f 2546//25275 2350//25275 1990//25275 +f 6682//25276 6352//25277 6759//25278 +f 1089//25279 4559//25280 4501//25281 +f 274//25282 1159//25283 1812//25284 +f 4270//25285 2556//25286 3592//25287 +f 2229//25288 3851//25289 3375//25290 +f 6420//25291 6900//25291 6901//25292 +f 6420//25293 6902//25294 6900//25295 +f 6902//25296 6420//25297 6684//25298 +f 3512//25299 2648//25300 2834//25301 +f 3039//25302 3890//25302 731//25302 +f 2015//25303 42//25304 3427//25305 +f 1816//25306 652//25307 2718//25308 +f 7371//25309 4861//25310 3240//25311 +f 4072//25312 3271//25312 1443//25312 +f 6955//25313 6719//25314 6903//25315 +f 4208//25316 44//25317 5086//25318 +f 5523//25319 1423//25320 3862//25319 +f 401//25321 1496//25321 4233//25321 +f 4864//25322 4940//25323 2351//25324 +f 522//25325 4684//25326 1821//25327 +f 3599//25328 2303//25329 2173//25330 +f 6800//25331 6762//25332 6956//25333 +f 6384//25334 6685//25334 6957//25334 +f 7//25335 2505//25336 2153//25336 +f 2562//25337 488//25338 3183//25339 +f 3633//25340 3579//25341 3019//25342 +f 1178//25343 2131//25344 1244//25345 +f 4349//25346 4579//25347 3175//25348 +f 6687//25349 6852//25350 6802//25351 +f 6763//25352 6723//25353 6854//25354 +f 6856//25355 6855//25356 6723//25355 +f 4834//25357 4835//25357 1913//25358 +f 6685//25359 6479//25360 6959//25359 +f 4167//25361 2833//25362 2476//25363 +f 735//25364 2741//25365 2406//25366 +f 856//25367 3485//25368 2552//25369 +f 4340//25370 2644//25371 2826//25372 +f 6857//25373 6687//25374 6802//25373 +f 3786//25375 3841//25376 3005//25376 +f 1605//25377 3859//25377 2327//25377 +f 2360//25378 3120//25379 2000//25380 +f 4080//25381 2130//25382 4451//25383 +f 6766//25384 6804//25385 6635//25386 +f 4086//25387 3931//25388 3560//25389 +f 6905//25390 6634//25390 6690//25390 +f 3650//25391 1152//25392 2340//25393 +f 319//25394 3018//25395 1001//25396 +f 4846//25397 2255//25398 759//25399 +f 6552//25400 6904//25401 7052//25402 +f 6453//25403 6805//25404 6724//25405 +f 1399//25406 3429//25406 2058//25406 +f 2241//25407 3332//25408 5069//25409 +f 6806//25410 6807//25410 6515//25411 +f 6514//25412 6999//25413 6453//25414 +f 6806//25415 6858//25416 6906//25417 +f 1845//25418 5515//25418 1045//25418 +f 6728//25419 6514//25420 6483//25421 +f 6907//25422 6425//25423 6454//25424 +f 798//25425 1979//25426 2827//25427 +f 6859//25428 6693//25429 6727//25430 +f 2068//25431 316//25431 3496//25431 +f 3811//25432 3678//25432 1142//25433 +f 6908//25434 6636//25435 6555//25436 +f 4200//25437 2149//25438 4956//25438 +f 6726//25439 6909//25440 6910//25440 +f 6555//25441 6911//25442 6908//25443 +f 3868//25444 3775//25444 4461//25444 +f 1561//25445 4156//25446 665//25447 +f 6555//25448 6726//25448 6910//25448 +f 5156//25449 568//25450 1514//25451 +f 6555//25452 6910//25453 6911//25454 +f 2304//25455 3647//25456 3813//25457 +f 1316//25458 1259//25459 3662//25460 +f 6916//25461 6809//25461 6810//25461 +f 5387//25462 4725//25462 4617//25463 +f 4471//25464 906//25465 632//25466 +f 2747//25467 1650//25467 3996//25467 +f 6640//25468 6564//25469 6769//25470 +f 6767//25471 6811//25472 6915//25471 +f 6767//25473 6915//25474 6605//25475 +f 2615//25476 103//25477 1546//25478 +f 6916//25479 6810//25479 6861//25480 +f 1976//25481 2943//25482 4318//25481 +f 3185//25483 4182//25484 1430//25485 +f 602//25486 1489//25487 5690//25488 +f 6770//25489 6696//25490 6605//25491 +f 5110//25492 3253//25493 3877//25494 +f 53//25495 1289//25496 2015//25497 +f 6921//25498 6732//25499 6697//25500 +f 3078//25501 3626//25502 6061//25503 +f 180//25504 2217//25504 738//25504 +f 1892//25505 2798//25506 3311//25507 +f 4084//25508 4447//25509 5367//25510 +f 6861//25511 6732//25512 6921//25512 +f 3237//25513 4666//25514 140//25515 +f 3068//25516 126//25517 169//25516 +f 6921//25518 6697//25519 6773//25520 +f 6770//25521 6915//25522 6920//25523 +f 3830//25524 1274//25524 377//25524 +f 6560//25525 6814//25526 6774//25527 +f 1864//25528 4566//25529 737//25530 +f 3006//25531 2194//25532 313//25533 +f 155//25534 939//25535 3613//25536 +f 6774//25537 6863//25538 6773//25539 +f 727//25540 3291//25540 3861//25540 +f 5330//25541 472//25542 2374//25541 +f 6699//25543 6865//25544 6775//25545 +f 4236//25546 4862//25547 4433//25548 +f 6734//25549 6923//25550 6864//25550 +f 1280//25551 5188//25552 4376//25553 +f 311//25554 745//25555 3565//25555 +f 6777//25556 6816//25557 6736//25557 +f 372//25558 403//25559 3649//25560 +f 6737//25561 6739//25562 6866//25563 +f 1234//25564 500//25565 3442//25566 +f 6610//25567 6924//25568 6647//25569 +f 6610//25570 6867//25570 6924//25571 +f 1037//25572 2996//25573 1609//25574 +f 6818//25575 6647//25576 6819//25576 +f 6820//25577 6571//25578 6818//25579 +f 6572//25580 6925//25580 6523//25580 +f 6925//25581 6572//25582 6778//25583 +f 3285//25584 3944//25585 2848//25586 +f 2314//25587 3236//25588 1719//25589 +f 804//25590 179//25590 1358//25590 +f 6926//25591 6653//25592 6869//25593 +f 2115//25594 1483//25595 2869//25596 +f 3886//25597 536//25598 968//25599 +f 2747//25600 2169//25600 2825//25601 +f 961//25602 5028//25603 3958//25604 +f 6362//25605 6704//25606 6823//25606 +f 1937//25607 2279//25608 2421//25609 +f 2511//25610 3097//25611 7250//25612 +f 6782//25613 6928//25614 6783//25613 +f 6928//25615 6822//25616 6783//25617 +f 3433//25618 3726//25619 1169//25620 +f 4370//25621 4677//25621 3223//25621 +f 6705//25622 6974//25623 6613//25624 +f 3156//25625 3227//25626 4684//25627 +f 976//25628 4518//25628 3015//25628 +f 1434//25629 5122//25630 2910//25631 +f 6873//25632 6821//25633 6929//25634 +f 994//25635 325//25636 2490//25637 +f 2694//25638 3444//25638 312//25638 +f 4802//25639 4948//25640 2092//25641 +f 3938//25642 1485//25643 1909//25644 +f 729//25645 2719//25646 209//25647 +f 448//25648 3822//25649 2854//25648 +f 4422//25650 2052//25651 1577//25652 +f 4274//25653 2919//25654 748//25655 +f 957//25656 1879//25657 4203//25658 +f 6873//25659 6929//25660 6931//25660 +f 461//25661 1623//25662 2292//25662 +f 2080//25663 931//25664 2665//25664 +f 6930//25665 6875//25666 6826//25667 +f 3259//25668 855//25669 3359//25670 +f 6930//25671 6826//25672 6876//25673 +f 6873//25674 6931//25674 6827//25674 +f 2531//25675 2778//25675 2026//25675 +f 4707//25676 1511//25677 2090//25678 +f 1885//25679 676//25680 4764//25681 +f 6465//25682 6878//25683 6657//25684 +f 2801//25685 2324//25686 4588//25687 +f 1654//25688 1686//25689 2487//25690 +f 6932//25691 6828//25692 6614//25692 +f 2275//25693 2867//25694 1369//25695 +f 382//25696 5262//25697 3827//25698 +f 7249//25699 2108//25700 1389//25701 +f 4185//25702 1139//25703 4728//25704 +f 6933//25705 6659//25706 6786//25707 +f 6747//25708 6829//25708 6661//25708 +f 2619//25709 997//25710 1748//25711 +f 6532//25712 6934//25713 6786//25714 +f 2515//25715 5608//25716 1158//25717 +f 6787//25718 6580//25718 6152//25719 +f 2813//25720 284//25721 2082//25722 +f 1974//25723 915//25724 1975//25725 +f 4224//25726 2520//25727 2519//25728 +f 2928//25729 4652//25730 3970//25731 +f 5139//25732 1472//25733 5040//25734 +f 2730//25735 1347//25736 5099//25736 +f 2568//25737 1876//25738 2193//25739 +f 4579//25740 4633//25741 3175//25742 +f 2044//25743 2374//25744 3089//25745 +f 4662//25746 1598//25747 4515//25748 +f 2577//25749 2388//25750 73//25749 +f 4158//25751 65//25752 837//25753 +f 4871//25754 2772//25754 3589//25754 +f 5889//20984 1103//20984 6230//20984 +f 2134//25755 2163//25755 2220//25755 +f 6748//25756 6788//25757 6880//25758 +f 1542//25759 2532//25760 496//25761 +f 7022//25762 6937//25762 6879//25763 +f 2815//25764 350//25765 1123//25766 +f 2326//25767 1242//25768 4143//25769 +f 6879//25770 6937//25771 6789//25771 +f 6533//25772 6238//25773 6664//25772 +f 1306//25774 1508//25775 2641//25776 +f 4841//25777 1544//25777 2820//25777 +f 783//25778 3459//25779 2661//25780 +f 6402//25781 6585//25781 6831//25781 +f 4348//25782 372//25783 3649//25782 +f 6616//25784 6830//25785 6749//25786 +f 861//25787 1230//25788 196//25789 +f 6941//25790 6585//25791 6620//25792 +f 3426//25793 584//25794 380//25795 +f 2213//25796 2161//25796 2870//25796 +f 232//25797 2697//25798 1805//25799 +f 2473//25800 60//25801 59//25802 +f 1991//25803 5199//25804 2666//25805 +f 5099//25806 814//25806 2729//25806 +f 1825//25807 3807//25808 4636//25809 +f 6833//25810 6621//25811 6881//25810 +f 2718//25812 46//25813 1816//25813 +f 2505//25814 99//25814 2315//25815 +f 6276//25816 6619//25817 6832//25818 +f 2227//25819 1047//25820 4480//25821 +f 1051//25822 5394//25823 2868//25824 +f 5174//25825 3645//25826 4120//25827 +f 7088//25828 6835//25829 6667//25829 +f 6445//25830 6835//25830 6943//25831 +f 3986//25832 82//25833 3598//25834 +f 4897//25835 896//25836 3912//25837 +f 5045//25838 1506//25839 1645//25840 +f 761//25841 2436//25841 2552//25841 +f 2074//25842 5371//25842 1432//25843 +f 2938//25844 3313//25845 3141//25846 +f 1191//25847 1675//25848 3841//25847 +f 6471//25849 6671//25850 6837//25851 +f 1339//25852 2540//25853 4454//25854 +f 6752//25855 6539//25855 6538//25855 +f 2308//25856 799//25857 2263//25858 +f 539//25859 388//25860 1713//25860 +f 6623//25861 6790//25862 6407//25863 +f 6752//25864 6541//25865 6339//25865 +f 3599//25866 2173//25866 3588//25866 +f 110//25867 2687//25868 1621//25869 +f 2028//25870 3286//25871 3887//25872 +f 3230//25873 1338//25874 4836//25875 +f 6623//25876 6753//25877 6790//25877 +f 6983//25878 6672//25879 6714//25878 +f 1123//25880 5030//25880 3654//25881 +f 263//25882 4034//25883 4584//25883 +f 4406//25884 3972//25885 87//25886 +f 2474//25887 4275//25887 3511//25887 +f 6883//25888 6791//25889 6886//25890 +f 6886//25891 6791//25891 6946//25891 +f 3850//25892 3267//25893 3676//25893 +f 56//25894 1916//25895 3104//25896 +f 112//25897 989//25898 4092//25899 +f 817//25900 3189//25900 4914//25900 +f 2463//25901 582//25902 1870//25901 +f 3711//25903 3495//25904 606//25905 +f 6590//25906 6473//25907 7033//25907 +f 6885//25908 6947//25909 6889//25910 +f 4316//25911 2321//25912 2618//25913 +f 6885//25914 6889//25915 6888//25915 +f 858//25916 3137//25916 3264//25916 +f 2071//25917 549//25918 2873//25919 +f 692//25920 4099//25921 2872//25922 +f 1505//25923 1184//25924 2866//25925 +f 1411//25926 3520//25927 1564//25928 +f 7090//25929 6887//25930 6893//25930 +f 2923//25931 942//25932 3362//25933 +f 6888//25934 6895//25935 6890//25936 +f 2777//25937 3303//25938 1063//25939 +f 2028//25940 1143//25941 445//25942 +f 6893//25943 6793//25944 6948//25945 +f 2331//25946 5118//25946 2491//25947 +f 2913//25948 2403//25948 1011//25948 +f 6895//25949 6896//25950 6842//25951 +f 2016//25952 1527//25953 1146//25954 +f 3448//25955 1159//25956 637//25957 +f 5390//25958 4515//25959 1598//25960 +f 699//25961 423//25962 2422//25963 +f 6842//25964 6896//25965 6843//25966 +f 6844//25967 6718//25968 6896//25969 +f 6592//25970 6845//25970 6130//25970 +f 3010//25971 718//25972 3667//25973 +f 450//25974 3232//25975 4438//25976 +f 1551//25977 3572//25977 5189//25977 +f 6718//25978 6844//25978 6847//25978 +f 4851//25979 1627//25979 5485//25979 +f 6846//25980 6378//25980 6796//25980 +f 6378//25981 6411//25982 6796//25982 +f 1994//25983 1388//25984 1477//25985 +f 2213//25986 2870//25986 3209//25986 +f 3253//25987 3321//25988 3877//25989 +f 6951//25990 6447//25990 6476//25990 +f 6758//25991 6847//25991 6898//25992 +f 6951//25993 6476//25994 6953//25995 +f 6953//25996 6476//25997 6849//25998 +f 6595//25999 6952//25999 6797//26000 +f 6758//26001 6898//26002 6850//26001 +f 1328//26003 2852//26004 3109//26003 +f 352//26005 1459//26005 4719//26006 +f 3974//26007 2467//26007 3738//26007 +f 7093//26008 6414//26009 6285//26010 +f 2091//26011 3244//26012 521//26013 +f 6682//26014 7093//26015 6285//26016 +f 6416//26017 6682//26017 6285//26017 +f 3020//26018 5843//26018 3558//26018 +f 859//26019 3544//26019 73//26019 +f 1993//26020 3851//26021 5138//26022 +f 6761//26023 6629//26024 6850//26025 +f 3730//26026 3074//26027 1925//26028 +f 5743//26029 3887//26030 3286//26030 +f 4903//26031 2616//26032 1806//26033 +f 5300//26034 5420//26035 2518//26036 +f 6956//26037 6719//26037 6722//26037 +f 338//26038 2083//26039 4995//26040 +f 4858//26041 438//26042 4371//26043 +f 6956//26044 6722//26044 6800//26044 +f 1012//26045 366//26046 1940//26047 +f 6633//26048 6721//26048 6958//26048 +f 6851//26049 6631//26050 6720//26051 +f 1578//26052 3224//26053 3081//26054 +f 6993//26055 6852//26056 6763//26057 +f 2941//26058 388//26059 2458//26060 +f 6960//26061 6993//26061 6763//26062 +f 433//26063 2164//26064 4862//26065 +f 6960//26066 6763//26067 6855//26068 +f 3369//26069 3324//26070 3239//26070 +f 6904//26071 6633//26072 6958//26073 +f 952//26074 5561//26075 1385//26076 +f 1206//26077 4416//26078 12//26079 +f 978//26080 1342//26081 273//26082 +f 204//26083 1819//26084 2799//26085 +f 1899//26086 1898//26086 2559//26086 +f 6509//26087 6633//26088 6904//26088 +f 4937//26089 23//26090 4405//26091 +f 3721//26092 458//26093 1233//26094 +f 808//26095 659//26096 4474//26097 +f 6856//26098 6634//26099 6803//26100 +f 4917//26101 4209//26101 3020//26102 +f 2689//26103 2413//26104 157//26105 +f 1096//26106 4786//26107 5648//26107 +f 1088//26108 271//26109 4629//26110 +f 6453//26111 6962//26112 6805//26113 +f 4906//26114 3196//26114 3216//26114 +f 3582//26115 792//26116 5154//26117 +f 6692//26118 7055//26119 6454//26120 +f 5050//26121 3351//26122 2275//26123 +f 6806//26124 6906//26124 6807//26124 +f 6425//26125 6907//26126 6808//26125 +f 630//26127 1090//26128 896//26129 +f 1103//26130 7081//26130 1036//26130 +f 6727//26131 6860//26132 6964//26131 +f 6909//26133 6726//26133 6807//26134 +f 6637//26135 6808//26135 7142//26135 +f 3534//26136 1103//26136 1036//26136 +f 1664//26137 4228//26138 17//26139 +f 6912//26140 7004//26140 6637//26141 +f 3202//26142 1293//26143 3798//26144 +f 6914//26145 6694//26146 6908//26147 +f 1495//26148 4182//26149 3655//26148 +f 6811//26150 6694//26150 6914//26151 +f 4946//26152 1301//26152 3409//26152 +f 4138//26153 2469//26154 1811//26155 +f 509//26156 41//26157 256//26158 +f 1806//26159 2616//26160 2897//26161 +f 1701//26162 1111//26162 4452//26163 +f 6915//26164 6811//26165 6919//26166 +f 3382//26167 2160//26168 45//26169 +f 3477//26170 912//26171 862//26172 +f 3897//26173 3772//26173 3750//26174 +f 6698//26175 6815//26175 6813//26175 +f 1978//26176 5470//26176 674//26176 +f 1164//26177 3441//26177 2486//26177 +f 5376//26178 4552//26179 4510//26180 +f 4687//26181 502//26182 1521//26181 +f 6770//26183 6969//26184 6812//26185 +f 6814//26186 6607//26186 6864//26186 +f 710//26187 5516//26188 3593//26189 +f 6865//26190 6699//26190 6771//26191 +f 6733//26192 6772//26193 6775//26194 +f 4197//26195 2059//26196 3717//26195 +f 648//26197 1599//26198 952//26199 +f 6920//26200 6969//26201 6770//26202 +f 6733//26203 6775//26204 7010//26203 +f 2614//26205 1584//26206 5040//26207 +f 4049//26208 4270//26208 3592//26208 +f 237//26209 398//26210 107//26211 +f 5270//26212 1828//26213 925//26213 +f 6865//26214 7010//26215 6775//26214 +f 4397//26216 1257//26217 2192//26218 +f 2407//26219 2406//26220 1872//26221 +f 2140//26222 1129//26223 1260//26224 +f 467//26225 1328//26226 3222//26227 +f 5515//26228 4685//26228 4662//26228 +f 4408//26229 3293//26230 4843//26231 +f 6971//26232 6866//26233 6739//26234 +f 7015//26235 6819//26236 6647//26237 +f 5093//26238 2250//26239 3053//26240 +f 3121//26241 2056//26241 5069//26241 +f 5118//26242 2331//26243 1821//26242 +f 3797//26244 1653//26245 476//26246 +f 6573//26247 7153//26247 6574//26247 +f 119//26248 5087//26249 2452//26250 +f 6868//26251 6649//26251 6492//26251 +f 564//26252 4127//26252 3045//26252 +f 1726//26253 932//26254 933//26254 +f 3738//26255 2860//26256 262//26257 +f 885//26258 3885//26259 661//26260 +f 6780//26261 6972//26261 6743//26261 +f 6612//26262 6927//26263 6525//26263 +f 6821//26264 6743//26265 6972//26266 +f 3404//26267 3200//26268 3540//26269 +f 6491//26270 874//26271 895//26272 +f 3402//26273 1670//26273 1393//26273 +f 2589//26274 604//26275 2596//26276 +f 353//26277 5523//26277 4807//26277 +f 5087//26278 3926//26278 2452//26278 +f 6744//26279 6362//26280 6823//26281 +f 5892//26282 4367//26283 302//26284 +f 6744//26285 6823//26286 6973//26287 +f 2379//26288 1495//26289 4392//26289 +f 4781//26290 116//26290 3636//26291 +f 6705//26292 6744//26293 6973//26294 +f 6824//26295 6613//26296 6974//26297 +f 6821//26298 6972//26298 6929//26298 +f 6782//26299 6871//26300 6928//26301 +f 3390//26302 3897//26303 3750//26304 +f 6973//26305 6974//26306 6705//26307 +f 1893//26308 2818//26309 1620//26310 +f 4178//26311 1552//26311 1553//26311 +f 4430//26312 2554//26313 277//26314 +f 3664//26315 4390//26316 348//26317 +f 336//26318 423//26319 243//26320 +f 4128//26321 3399//26321 3341//26321 +f 184//26322 3981//26323 147//26324 +f 4479//26325 5731//26325 109//26325 +f 4170//26326 118//26327 3373//26328 +f 5375//26329 76//26330 6913//26331 +f 1580//26332 2718//26333 2447//26334 +f 2838//26335 1742//26335 3672//26335 +f 4547//26336 4951//26337 4161//26338 +f 4168//26339 3330//26340 3329//26341 +f 1015//26342 1016//26343 5010//26344 +f 4442//26345 3633//26346 2652//26347 +f 6436//26348 6695//26349 6355//26350 +f 3701//26351 7336//26351 4027//26351 +f 6977//26352 6745//26353 6527//26354 +f 28//26355 2375//26356 892//26357 +f 2945//26358 1951//26359 1932//26360 +f 7020//26361 6438//26362 6660//26361 +f 5213//26363 1645//26364 1506//26365 +f 2712//26366 2955//26367 4229//26368 +f 142//26369 2902//26369 1426//26369 +f 1451//26370 1947//26370 2429//26371 +f 6829//26372 6879//26372 6661//26372 +f 3870//26373 1929//26374 2507//26375 +f 925//26376 2887//26377 3514//26378 +f 6788//26379 6580//26380 6935//26381 +f 1030//26382 1161//26383 233//26384 +f 3100//26385 2980//26386 3801//26387 +f 2914//26388 2358//26388 132//26388 +f 6935//26389 6936//26390 6788//26391 +f 752//26392 4069//26392 1794//26392 +f 4398//26393 2128//26394 3601//26393 +f 1318//26395 1837//26396 664//26397 +f 4196//26398 3068//26399 418//26398 +f 4128//26400 4891//26401 4090//26402 +f 3835//26403 3834//26404 2025//26405 +f 775//26406 7378//26407 2971//26407 +f 4592//26408 3684//26409 883//26410 +f 944//26411 2669//26411 2277//26411 +f 6830//26412 6880//26413 6978//26414 +f 1963//26415 2247//26416 3368//26416 +f 2596//26417 2597//26418 4367//26419 +f 2767//26420 474//26421 4657//26422 +f 5528//26423 2328//26424 1395//26425 +f 4724//26426 2876//26427 4545//26428 +f 5324//26429 1042//26430 5010//26429 +f 1564//26431 3546//26432 889//26433 +f 807//26434 4316//26435 1973//26436 +f 2795//26437 3060//26437 3190//26437 +f 83//26438 2748//26439 3115//26440 +f 2651//26441 3540//26442 289//26441 +f 4499//26443 2758//26444 1630//26445 +f 664//26446 893//26447 633//26448 +f 925//26449 2885//26450 2574//26449 +f 3823//26451 3872//26451 2720//26451 +f 3742//26452 689//26453 1855//26454 +f 6276//26455 6832//26455 6713//26455 +f 1786//26456 3941//26457 2193//26457 +f 4222//26458 41//26458 4219//26458 +f 2132//26459 4218//26460 3349//26461 +f 6942//26462 6667//26463 6833//26464 +f 3960//26465 2394//26465 405//26465 +f 6882//26466 6537//26466 6622//26466 +f 6502//26467 6445//26468 6943//26469 +f 1641//26470 1347//26471 4059//26472 +f 6502//26473 6943//26473 6981//26473 +f 5072//26474 2687//26474 110//26475 +f 1350//26476 5660//26477 21//26478 +f 5169//26479 4417//26480 1052//26481 +f 6837//26482 7089//26483 6471//26484 +f 3213//26485 3656//26486 1983//26486 +f 4189//26487 892//26488 3815//26489 +f 6540//26490 6407//26491 6945//26490 +f 6381//26492 884//26493 2025//26494 +f 619//26495 2016//26496 4705//26495 +f 3952//26497 618//26498 4127//26498 +f 677//26499 44//26500 2198//26501 +f 5133//26502 1492//26503 4580//26503 +f 1793//26504 5458//26505 1550//26506 +f 302//26507 400//26507 4254//26507 +f 4885//26508 2712//26509 3653//26508 +f 6754//26510 6504//26511 6280//26512 +f 4924//26513 130//26514 4040//26515 +f 4468//26516 4110//26517 4251//26518 +f 3998//26519 2262//26520 2510//26520 +f 3690//26521 3863//26522 907//26521 +f 1302//26523 4559//26524 1089//26525 +f 7251//26526 6409//26527 6590//26527 +f 6345//26528 6624//26529 6754//26530 +f 6885//26531 6343//26531 6983//26532 +f 6885//26533 6983//26534 6947//26535 +f 4622//26536 3957//26537 247//26538 +f 3//26539 55//26539 515//26539 +f 2063//26540 2128//26541 2064//26542 +f 6985//26543 6886//26544 6887//26545 +f 4098//26546 2894//26547 4694//26548 +f 935//26549 2537//26550 4225//26551 +f 6250//26552 6839//26552 6282//26552 +f 4099//26553 4104//26554 1350//26555 +f 1537//26556 1503//26556 1095//26557 +f 6888//26558 6889//26558 6895//26559 +f 6986//26560 6251//26561 6505//26560 +f 6756//26562 6474//26562 6755//26563 +f 6948//26564 6677//26564 6949//26564 +f 1354//26565 494//26566 2221//26567 +f 4559//26568 4661//26569 4501//26569 +f 4829//26570 2035//26571 5396//26572 +f 4431//26573 2787//26573 1935//26574 +f 1664//26575 1025//26575 5643//26576 +f 2650//26577 3451//26577 2080//26577 +f 2354//26578 2155//26578 5062//26578 +f 6988//26579 6596//26579 6897//26580 +f 1215//26581 1762//26582 2144//26582 +f 270//26583 3818//26584 1046//26585 +f 4923//26586 3269//26587 1513//26587 +f 2926//26588 3580//26589 1986//26590 +f 4560//26591 3611//26591 237//26591 +f 722//26592 3993//26593 3354//26594 +f 2862//26595 1649//26596 2129//26597 +f 2723//26598 2268//26599 1919//26600 +f 1782//26601 919//26601 2273//26601 +f 3040//26602 1475//26603 1009//26603 +f 3959//26604 1195//26605 189//26606 +f 1724//26607 4251//26608 5678//26609 +f 4639//26610 4640//26611 3037//26612 +f 5012//26613 605//26614 4145//26613 +f 6796//26615 6411//26616 7130//26617 +f 7172//26618 6759//26619 6628//26620 +f 1345//26621 3546//26622 2959//26623 +f 2589//26624 215//26624 5076//26625 +f 1079//26626 2195//26626 407//26626 +f 4529//26627 2530//26628 2606//26627 +f 4577//26629 2349//26630 290//26631 +f 1433//26632 909//26633 857//26634 +f 6954//26635 6683//26636 6901//26637 +f 5277//26638 1923//26638 1126//26639 +f 3760//26640 144//26641 637//26640 +f 1771//26642 695//26643 2594//26644 +f 6902//26645 6684//26646 6955//26647 +f 3216//26648 3196//26649 4869//26650 +f 4600//26651 1413//26652 712//26651 +f 3011//26653 1347//26654 2730//26655 +f 980//26656 996//26657 4325//26658 +f 4178//26659 1508//26659 1552//26660 +f 6956//26661 6903//26662 6719//26663 +f 1745//26664 2145//26665 1460//26666 +f 6384//26667 6957//26668 6760//26669 +f 3898//26670 4667//26671 5119//26671 +f 6601//26672 6991//26673 6721//26674 +f 1536//26675 4457//26676 3591//26677 +f 4750//26678 2024//26679 358//26679 +f 6956//26680 6762//26681 6992//26682 +f 2765//26683 1656//26683 3348//26683 +f 5655//26684 544//26685 1660//26686 +f 6631//26687 6851//26688 6853//26689 +f 6992//26690 6762//26691 6801//26691 +f 6802//26692 6852//26693 6993//26694 +f 2767//26695 2768//26696 3519//26697 +f 6961//26698 6992//26699 6801//26700 +f 1532//26701 2181//26702 1298//26703 +f 2859//26704 1215//26705 2144//26706 +f 3484//26707 3541//26708 2944//26709 +f 3693//26710 1591//26711 1590//26712 +f 6996//26713 6960//26714 6855//26715 +f 4923//26716 2513//26717 5027//26718 +f 3763//26719 3629//26720 3436//26719 +f 3300//26721 3727//26722 1453//26723 +f 6764//26724 6804//26725 6766//26726 +f 3265//26727 875//26727 1988//26727 +f 6961//26728 6801//26729 6765//26730 +f 6803//26731 6634//26731 6905//26731 +f 768//26732 4136//26733 769//26734 +f 3428//26735 1818//26735 308//26736 +f 354//26737 3405//26737 4500//26737 +f 901//26738 2076//26739 3184//26740 +f 2047//26741 74//26742 2627//26743 +f 6512//26744 6857//26745 6551//26746 +f 602//26747 3013//26748 4465//26749 +f 6905//26750 6690//26751 6635//26752 +f 6635//26753 6804//26754 6998//26755 +f 57//26756 355//26756 1471//26756 +f 6905//26757 6635//26758 6998//26759 +f 6765//26760 6725//26761 6961//26760 +f 7052//26762 6858//26762 6552//26763 +f 3157//26764 3370//26765 4960//26766 +f 6514//26767 6728//26768 6999//26769 +f 873//26770 1675//26770 1633//26770 +f 7000//26771 7001//26772 6858//26773 +f 2981//26774 1374//26775 1699//26776 +f 3763//26777 3436//26778 5640//26779 +f 1691//26780 575//26780 1814//26780 +f 1473//26781 2501//26782 1355//26783 +f 3608//26784 1072//26784 5057//26784 +f 4599//26785 4058//26786 1542//26787 +f 6391//26788 6637//26789 7004//26790 +f 3157//26791 4960//26792 1749//26793 +f 2601//26794 44//26794 4208//26794 +f 6519//26795 6391//26796 7004//26797 +f 6964//26798 6860//26799 6768//26800 +f 6694//26801 6636//26802 6908//26802 +f 3861//26803 1438//26804 3706//26805 +f 7004//26806 6913//26807 6519//26808 +f 2922//26809 2143//26809 469//26809 +f 1959//26810 2127//26811 3710//26811 +f 6965//26812 6809//26812 6916//26812 +f 2804//26813 3785//26814 4471//26815 +f 7005//26816 6911//26817 6910//26818 +f 7006//26819 6862//26820 6769//26821 +f 1330//26822 3600//26823 5147//26823 +f 5057//26824 1672//26825 521//26826 +f 4955//26827 3205//26828 2156//26829 +f 2103//26830 56//26831 5094//26832 +f 1125//26833 1873//26834 404//26835 +f 6966//26836 6916//26837 6861//26836 +f 986//26838 4006//26839 5421//26840 +f 3055//26841 1424//26842 4340//26843 +f 4334//26844 2656//26844 2717//26844 +f 2922//26845 4869//26846 2921//26847 +f 6811//26848 6914//26849 6919//26850 +f 3829//26851 3828//26852 4886//26851 +f 4126//26853 1332//26853 1905//26853 +f 2874//26854 2714//26854 2371//26854 +f 3014//26855 3918//26856 2436//26857 +f 6967//26858 6861//26859 6921//26860 +f 6967//26861 7066//26861 6861//26862 +f 1139//26863 4297//26863 4517//26863 +f 6567//26864 6487//26865 6968//26866 +f 6567//26867 7007//26868 6922//26869 +f 6812//26870 7008//26871 6771//26872 +f 6969//26873 7009//26874 6812//26875 +f 916//26876 917//26877 236//26878 +f 7010//26879 6970//26880 6733//26881 +f 6923//26882 6733//26883 6970//26884 +f 6734//26885 6733//26886 6923//26887 +f 2924//26888 2967//26888 2054//26888 +f 1565//26889 1253//26889 527//26889 +f 1661//26890 2241//26890 871//26890 +f 7067//26891 6815//26892 6816//26893 +f 2511//26894 4716//26895 1827//26896 +f 2639//26897 2432//26898 3706//26899 +f 2546//26900 1780//26901 2350//26902 +f 78//26903 1886//26903 480//26903 +f 4958//26904 3048//26905 3349//26906 +f 5738//26907 1283//26908 729//26909 +f 2617//26910 2676//26911 3991//26912 +f 2892//26913 117//26914 3621//26915 +f 988//26916 3076//26917 4084//26918 +f 6645//26919 7014//26919 6867//26920 +f 6646//26921 6971//26922 6739//26923 +f 6924//26924 7015//26925 6647//26926 +f 4404//26927 7126//26928 4012//26929 +f 1716//26930 1656//26930 2765//26931 +f 6818//26932 6819//26933 7109//26934 +f 6925//26935 6971//26936 6523//26937 +f 1468//26938 2023//26939 1814//26940 +f 428//26941 4391//26942 1673//26942 +f 6778//26943 6652//26944 7152//26945 +f 7152//26946 6653//26947 6926//26948 +f 593//26949 1587//26949 5322//26949 +f 6927//26950 6869//26951 6525//26952 +f 2964//26953 2085//26954 1129//26955 +f 1181//26956 662//26956 2251//26956 +f 6655//26957 6927//26957 6612//26958 +f 6576//26959 6655//26960 6612//26961 +f 1189//26962 4083//26962 2751//26962 +f 695//26963 5512//26964 1396//26965 +f 3312//26966 3169//26967 4599//26968 +f 640//26969 982//26970 2840//26971 +f 3715//26972 5113//26973 5070//26974 +f 464//26975 2861//26976 3739//26977 +f 6824//26978 6974//26979 6655//26980 +f 4037//26981 2604//26981 4520//26981 +f 3537//26982 3313//26983 1185//26984 +f 7079//26985 6871//26986 6874//26987 +f 408//26988 1235//26989 6061//26988 +f 6975//26990 6931//26991 6929//26992 +f 4250//26993 1708//26994 4528//26993 +f 6975//26995 6976//26996 6931//26997 +f 330//26998 2238//26999 329//27000 +f 2948//27001 846//27002 795//27003 +f 6976//27004 6827//27005 6931//27006 +f 6976//27007 7017//27008 6827//27009 +f 6876//27010 6877//27011 7018//27012 +f 6827//27013 7018//27013 6877//27014 +f 7081//27015 6746//27015 6784//27016 +f 3871//27017 4625//27018 5274//27019 +f 2217//27020 180//27021 3634//27022 +f 2704//27023 705//27024 518//27025 +f 6659//27026 6933//27026 6707//27026 +f 6747//27027 6785//27028 7019//27027 +f 3411//27029 560//27029 3524//27029 +f 6614//27030 6438//27031 6932//27031 +f 6932//27032 6438//27033 7020//27032 +f 5740//27034 876//27035 4898//27035 +f 3611//27036 1420//27036 3777//27036 +f 6977//27037 6527//27038 6615//27039 +f 533//27040 3724//27041 4586//27040 +f 5056//27042 4402//27042 1173//27042 +f 2742//27043 4025//27044 4977//27045 +f 2423//27046 4598//27047 389//27048 +f 2346//27049 4406//27049 880//27050 +f 166//27051 5011//27052 2950//27053 +f 7021//27054 6934//27055 6532//27056 +f 6787//27057 5968//27058 6529//27059 +f 2640//27060 5200//27061 1452//27062 +f 1327//27063 3735//27064 1570//27064 +f 7021//27065 6532//27065 6531//27065 +f 6935//27066 7023//27067 6936//27068 +f 846//27069 670//27069 2580//27070 +f 3714//27071 4889//27072 327//27073 +f 4150//27074 4500//27075 3459//27076 +f 7024//27077 6529//27078 6530//27078 +f 4885//27079 92//27079 2712//27079 +f 360//27080 904//27081 4551//27080 +f 6978//27082 6880//27083 7023//27084 +f 6880//27085 6936//27086 7023//27087 +f 1669//27088 569//27089 1397//27090 +f 3587//27091 2091//27092 5686//27093 +f 969//27094 2255//27095 1456//27096 +f 4349//27097 5596//27098 665//27099 +f 6978//27100 6939//27100 6830//27100 +f 3789//27101 255//27102 3127//27103 +f 4361//27104 1525//27105 4169//27106 +f 7247//27107 6750//27108 6749//27109 +f 6940//27110 6750//27111 7247//27112 +f 1330//27113 2707//27114 2772//27115 +f 682//27116 4450//27117 2498//27118 +f 4158//27119 3055//27120 4340//27120 +f 429//27121 3387//27122 338//27123 +f 6618//27124 6751//27125 6980//27126 +f 4874//27127 996//27128 4806//27129 +f 6618//27130 6980//27131 6881//27131 +f 6881//27132 6942//27132 6833//27133 +f 7163//27134 6405//27135 6712//27136 +f 1410//27137 1497//27138 3986//27139 +f 1625//27140 3963//27141 1626//27140 +f 3555//27142 4356//27143 1319//27144 +f 5064//27145 877//27146 22//27147 +f 4261//27148 1871//27149 3464//27148 +f 2032//27150 1190//27151 1189//27152 +f 2344//27153 4912//27154 927//27155 +f 3896//27156 1023//27156 2055//27156 +f 4612//27157 2886//27158 3602//27159 +f 4494//27160 282//27160 5707//27160 +f 6502//27161 6981//27162 6944//27162 +f 3901//27163 4127//27164 1061//27165 +f 6752//27166 6538//27167 7027//27167 +f 6407//27168 6790//27169 6945//27170 +f 5782//27171 4293//27172 4452//27172 +f 5484//27173 4134//27174 2251//27175 +f 1915//27176 942//27176 2923//27176 +f 7029//27177 6715//27178 6541//27179 +f 6714//27180 6503//27181 6983//27182 +f 7251//27183 6716//27184 6409//27185 +f 441//27186 2425//27186 2155//27187 +f 2481//27188 1741//27189 5086//27188 +f 7031//27190 6754//27191 6624//27190 +f 6376//27192 6673//27193 6839//27194 +f 3656//27195 3652//27195 1353//27196 +f 6883//27197 6886//27197 7032//27198 +f 7032//27199 6886//27199 6985//27199 +f 1409//27200 5502//27201 2506//27202 +f 7033//27203 7034//27204 6590//27205 +f 3359//27206 2191//27206 2332//27206 +f 6889//27207 6947//27207 6984//27207 +f 4311//27208 2345//27208 2550//27208 +f 7370//27209 1113//27209 3455//27209 +f 3710//27210 1102//27211 4568//27212 +f 6948//27213 7090//27213 6893//27214 +f 6624//27215 6410//27216 7035//27217 +f 2782//27218 4648//27219 3350//27220 +f 6410//27221 6591//27222 7035//27223 +f 6895//27224 6889//27225 7036//27226 +f 5203//27227 94//27228 1952//27229 +f 119//27230 1554//27231 507//27232 +f 6505//27233 6506//27234 7037//27234 +f 4188//27235 3315//27236 2254//27237 +f 6988//27238 6949//27239 6677//27240 +f 1474//27241 1559//27241 5279//27241 +f 7037//27242 6506//27243 6625//27243 +f 6988//27244 6677//27245 6596//27246 +f 2405//27247 624//27248 224//27249 +f 6592//27250 6756//27251 7038//27251 +f 4633//27252 4257//27253 820//27254 +f 5181//27255 3921//27255 1454//27255 +f 7039//27256 6625//27257 6598//27257 +f 4240//27258 5984//27258 4036//27258 +f 6844//27259 7040//27259 7041//27259 +f 6626//27260 6846//27261 6794//27262 +f 3732//27263 2684//27263 4267//27263 +f 2874//27264 448//27264 2854//27264 +f 5030//27265 3629//27266 3763//27267 +f 7124//27268 6546//27269 6681//27270 +f 6061//27271 3460//27271 3577//27271 +f 1855//27272 689//27273 3589//27274 +f 6952//27275 6595//27276 6845//27277 +f 1951//27278 2824//27279 1499//27280 +f 6797//27281 6952//27282 7042//27281 +f 2982//27283 2484//27283 3499//27284 +f 2836//27285 4339//27285 1128//27285 +f 7170//27286 6849//27287 7093//27288 +f 2812//27289 2691//27290 3624//27291 +f 5327//27292 5345//27293 5099//27294 +f 6600//27295 6954//27296 6848//27297 +f 7093//27298 6849//27299 6414//27299 +f 4026//27300 4//27301 4141//27302 +f 6134//27303 6797//27304 6798//27305 +f 1498//27306 3909//27307 4444//27306 +f 4252//27308 4513//27309 3257//27310 +f 5664//27311 1950//27312 5324//27313 +f 6901//27314 6683//27315 6420//27316 +f 6630//27317 7045//27317 6899//27317 +f 4944//27318 4945//27318 186//27318 +f 6630//27319 6760//27319 7045//27320 +f 1031//27321 3277//27321 231//27321 +f 4602//27322 2106//27322 786//27323 +f 4389//27324 3853//27324 4976//27324 +f 6990//27325 6903//27325 6956//27325 +f 7046//27326 6601//27326 6799//27326 +f 6760//27327 6957//27327 7045//27327 +f 1391//27328 3158//27328 4089//27329 +f 6991//27330 6601//27331 7046//27330 +f 3991//27332 2676//27333 1077//27334 +f 762//27335 4566//27336 1864//27335 +f 514//27337 5640//27337 3167//27337 +f 1627//27338 190//27339 6055//27339 +f 466//27340 2150//27341 283//27342 +f 2880//27343 4259//27344 3258//27345 +f 3779//27346 1933//27347 3905//27348 +f 5403//27349 4094//27350 5654//27351 +f 2353//27352 1890//27352 1320//27353 +f 6993//27354 6960//27355 6995//27356 +f 6996//27357 6995//27358 6960//27359 +f 6855//27360 6763//27361 6854//27362 +f 6996//27363 6855//27363 6856//27364 +f 6802//27365 7050//27366 6857//27367 +f 4943//27368 3325//27369 5369//27370 +f 6764//27371 6853//27372 7051//27373 +f 2947//27374 190//27374 4683//27375 +f 4696//27376 3290//27377 4961//27378 +f 7341//27379 1689//27380 2673//27381 +f 6904//27382 6958//27382 7052//27382 +f 3313//27383 2938//27384 2525//27385 +f 2591//27386 2169//27387 2747//27388 +f 1852//27389 3940//27390 4166//27389 +f 71//27391 139//27392 1443//27393 +f 3289//27394 4176//27395 2957//27396 +f 2134//27397 469//27398 4017//27399 +f 6724//27400 6805//27401 7140//27402 +f 6857//27403 7055//27403 6551//27403 +f 2532//27404 2755//27405 496//27406 +f 4314//27407 2595//27408 4476//27409 +f 2919//27410 4274//27411 4375//27412 +f 6858//27413 7052//27414 7054//27415 +f 562//27416 4059//27417 2509//27417 +f 1529//27418 4470//27419 2764//27420 +f 553//27421 1143//27422 2443//27423 +f 2225//27424 3072//27425 3035//27426 +f 4144//27427 4954//27428 4875//27429 +f 6693//27430 7056//27430 6725//27431 +f 1950//27432 1042//27433 5324//27434 +f 2266//27435 4862//27435 4236//27435 +f 2308//27436 4361//27437 1826//27436 +f 6454//27438 7055//27439 6907//27440 +f 6858//27441 7057//27442 7000//27443 +f 1368//27444 384//27444 2890//27444 +f 3555//27445 4982//27445 4727//27445 +f 6964//27446 6859//27447 6727//27448 +f 7001//27449 6906//27450 6858//27451 +f 6807//27452 6906//27452 6909//27452 +f 1896//27453 1897//27454 443//27455 +f 2012//27456 5727//27457 1776//27458 +f 6963//27459 6728//27460 7058//27461 +f 6730//27462 6809//27463 7002//27464 +f 6909//27465 7003//27466 6910//27467 +f 6809//27468 7060//27469 7002//27468 +f 6809//27470 6965//27471 7060//27472 +f 2701//27473 2700//27474 4777//27475 +f 3549//27476 2666//27477 3297//27477 +f 7003//27478 7059//27479 6910//27480 +f 4822//27481 1751//27482 876//27483 +f 6910//27484 7059//27485 7005//27486 +f 2713//27487 1811//27488 293//27489 +f 6918//27490 6769//27490 6562//27490 +f 5165//27491 29//27491 4814//27491 +f 6519//27492 6913//27493 6563//27492 +f 4319//27494 4432//27495 2746//27496 +f 7062//27497 6768//27498 6698//27499 +f 6698//27500 6813//27501 7062//27502 +f 7389//27503 4771//27504 5344//27504 +f 5019//27505 4895//27506 96//27507 +f 909//27508 1819//27509 204//27510 +f 7065//27511 6915//27511 6919//27512 +f 1440//27513 1030//27514 4658//27515 +f 193//27516 1281//27517 3013//27518 +f 5216//27519 1050//27520 191//27521 +f 916//27522 236//27522 5207//27522 +f 7008//27523 7107//27524 6771//27525 +f 6863//27526 6921//27527 6773//27528 +f 7069//27529 6921//27530 6863//27531 +f 2168//27532 398//27533 3777//27534 +f 4481//27535 3280//27536 2979//27537 +f 6814//27538 6864//27539 7012//27540 +f 6735//27541 6922//27541 7146//27542 +f 1371//27543 4613//27543 3819//27543 +f 6920//27544 7071//27545 6969//27546 +f 7009//27547 7008//27547 6812//27547 +f 7070//27548 6970//27549 7010//27550 +f 1801//27551 517//27552 266//27553 +f 2149//27554 1813//27554 5219//27554 +f 1391//27555 3529//27556 823//27556 +f 6771//27557 7072//27558 6865//27557 +f 2042//27559 1085//27559 3254//27560 +f 6970//27561 7011//27561 6923//27562 +f 6865//27563 7072//27564 7010//27565 +f 7012//27566 6923//27567 7011//27568 +f 6923//27569 7012//27570 6864//27571 +f 7073//27572 6776//27572 6700//27572 +f 4055//27573 1062//27574 3752//27575 +f 6777//27576 6817//27577 6816//27578 +f 7014//27579 6645//27579 6644//27580 +f 3640//27581 1806//27581 5418//27581 +f 3862//27582 4312//27582 4807//27583 +f 5087//27584 1948//27585 3926//27586 +f 7074//27587 6819//27588 7015//27589 +f 5//27590 3056//27591 2582//27592 +f 6925//27593 7075//27594 6971//27593 +f 1924//27595 3083//27596 783//27595 +f 1559//27597 3062//27598 1326//27599 +f 6820//27600 6818//27600 7109//27600 +f 3371//27601 1987//27602 5630//27603 +f 6611//27604 6820//27605 7076//27606 +f 7153//27607 6492//27608 6574//27608 +f 7016//27609 6823//27610 6870//27611 +f 3494//27612 1005//27613 2603//27614 +f 6928//27615 7078//27616 6822//27616 +f 2793//27617 5400//27618 3381//27619 +f 999//27620 2873//27621 2096//27622 +f 5649//27623 238//27624 3339//27625 +f 6871//27626 6872//27627 6874//27628 +f 825//27629 3612//27630 4856//27629 +f 7079//27631 6874//27631 6875//27631 +f 1195//27632 4846//27633 2081//27632 +f 3138//27634 2557//27635 1555//27636 +f 7080//27637 6930//27638 6876//27639 +f 2674//27640 285//27640 3493//27640 +f 4902//27641 2143//27642 867//27643 +f 7018//27644 7080//27644 6876//27645 +f 7017//27646 7018//27647 6827//27647 +f 6442//20984 4269//20984 2527//20984 +f 7081//27648 6878//27649 6746//27650 +f 3858//27651 3471//27651 3007//27651 +f 4444//27652 476//27653 811//27654 +f 3694//27655 1674//27656 491//27655 +f 2591//27657 3776//27658 2169//27659 +f 6656//27660 6436//27661 6355//27662 +f 4175//27663 1857//27664 4698//27663 +f 34//27665 617//27665 2798//27666 +f 4201//27667 2096//27668 549//27668 +f 6528//27669 6658//27669 7082//27669 +f 1099//27670 425//27670 4117//27670 +f 1726//27671 1387//27672 2116//27673 +f 4354//27674 2767//27675 3519//27674 +f 7082//27676 6664//27677 6528//27678 +f 88//27679 2306//27680 1693//27681 +f 4651//27682 417//27683 2280//27684 +f 2829//27685 2057//27686 1472//27687 +f 2459//27688 3852//27689 656//27690 +f 3242//27691 4341//27691 4199//27691 +f 1898//27692 2098//27693 2271//27692 +f 7023//27694 6935//27695 7084//27696 +f 1808//27697 4878//27697 5328//27697 +f 6580//27698 7085//27699 6935//27700 +f 7086//27701 7085//27702 6580//27703 +f 6580//27704 6787//27705 7086//27706 +f 654//27707 4342//27707 3585//27708 +f 1705//27709 3010//27710 4688//27710 +f 3830//27711 1097//27711 2984//27711 +f 2252//27712 4178//27713 5202//27714 +f 7306//27715 7264//27715 1860//27715 +f 4041//27716 2779//27717 1538//27718 +f 2326//27719 2544//27720 683//27721 +f 1575//27722 700//27723 4852//27723 +f 4239//27724 4312//27724 4592//27724 +f 2888//27725 2881//27726 1380//27726 +f 3561//27727 2378//27728 2986//27729 +f 2496//27730 4245//27731 1294//27731 +f 2499//27732 1266//27733 1267//27734 +f 1360//27735 4183//27736 1104//27737 +f 2437//27738 6535//27738 6666//27738 +f 4814//27739 29//27740 1734//27741 +f 6710//27742 6940//27742 6751//27742 +f 3944//27743 3899//27744 3704//27745 +f 281//27746 1425//27747 399//27748 +f 3310//27749 794//27750 3851//27751 +f 2166//27752 403//27752 372//27752 +f 7026//27753 6712//27754 6443//27755 +f 54//27756 1801//27757 4152//27758 +f 955//27759 857//27760 222//27760 +f 6667//27761 6942//27762 7088//27763 +f 2829//27764 1028//27765 1029//27766 +f 7026//27767 6537//27768 6882//27768 +f 419//27769 2226//27770 1563//27769 +f 1414//27771 111//27772 1115//27773 +f 4139//27774 3879//27775 2673//27776 +f 1066//27777 1065//27778 1310//27779 +f 4069//27780 1303//27781 1451//27782 +f 3909//27783 3797//27783 4444//27783 +f 6503//27784 6502//27785 6944//27786 +f 6538//27787 6587//27787 7027//27788 +f 4481//27789 2979//27790 1723//27790 +f 1503//27791 4023//27792 1095//27793 +f 576//27794 2614//27795 5040//27796 +f 1684//27797 2434//27798 2668//27799 +f 394//27800 866//27801 505//27800 +f 4718//27802 1938//27803 1582//27804 +f 6790//27805 6883//27806 7030//27807 +f 3936//27808 2046//27809 2238//27808 +f 2882//27810 3618//27811 1974//27812 +f 3174//27813 2770//27814 2178//27815 +f 1608//27816 1481//27817 1329//27817 +f 126//27818 3339//27819 1437//27820 +f 6472//27821 6588//27821 6884//27821 +f 4183//27822 1448//27822 3962//27823 +f 3278//27824 2012//27824 4121//27824 +f 7251//27825 6590//27826 7034//27827 +f 6473//27828 6841//27829 7033//27830 +f 427//27831 3281//27832 930//27833 +f 6985//27834 6887//27834 7090//27834 +f 4398//27835 4333//27836 2128//27837 +f 614//27838 2328//27838 3316//27839 +f 6891//27840 6282//27841 6839//27841 +f 5690//27842 1489//27843 188//27844 +f 2581//27845 1903//27846 2455//27847 +f 6251//27848 6986//27849 6841//27848 +f 54//27850 676//27850 206//27850 +f 848//27851 571//27852 1360//27853 +f 343//27854 306//27854 2103//27854 +f 6889//27855 6984//27856 7036//27855 +f 2110//27857 1712//27858 3943//27858 +f 2234//27859 4507//27860 2956//27861 +f 3146//27862 548//27863 3217//27864 +f 1137//27865 4491//27866 525//27867 +f 1013//27868 4275//27869 2474//27870 +f 486//27871 1351//27872 2170//27873 +f 6987//27874 6625//27874 7039//27874 +f 2026//27875 5390//27876 1788//27875 +f 918//27877 5141//27877 4317//27877 +f 6844//27878 6896//27878 7040//27878 +f 2261//27879 2543//27879 1936//27879 +f 2807//27880 2746//27881 5300//27882 +f 6845//27883 6592//27884 7038//27885 +f 5376//27886 3844//27886 4552//27886 +f 4003//27887 129//27888 3159//27889 +f 3271//27890 657//27891 21//27892 +f 811//27893 4567//27894 5748//27895 +f 6847//27896 6844//27897 6898//27898 +f 6950//27899 6598//27899 6447//27900 +f 3133//27901 1153//27902 3704//27903 +f 7169//27904 6447//27905 6951//27904 +f 6951//27906 6953//27907 7092//27908 +f 288//27909 636//27909 978//27910 +f 6545//27911 7043//27912 6628//27911 +f 4189//27913 28//27914 892//27915 +f 6796//27916 7130//27917 7168//27918 +f 6411//27919 6630//27920 7130//27921 +f 2870//27922 4224//27923 3209//27924 +f 49//27925 5323//27925 3511//27925 +f 1054//27926 4188//27927 2254//27928 +f 336//27929 565//27930 423//27931 +f 6900//27932 6989//27933 6901//27934 +f 7131//27935 6900//27936 6902//27937 +f 2535//27938 2861//27939 4780//27940 +f 6899//27941 7130//27942 6630//27943 +f 6902//27944 6955//27944 7094//27945 +f 2486//27946 2670//27947 3778//27948 +f 474//27949 4373//27950 4657//27951 +f 5066//27952 3952//27953 563//27954 +f 6903//27955 7094//27956 6955//27957 +f 4019//27958 1746//27958 3992//27958 +f 2923//27959 4938//27959 1915//27959 +f 3347//27960 4314//27961 4476//27962 +f 3015//27963 357//27964 3212//27965 +f 4191//27966 3440//27966 1197//27967 +f 4060//27968 3500//27968 1095//27969 +f 4158//27970 5048//27971 4009//27972 +f 1784//27973 2954//27973 3179//27973 +f 3825//27974 3824//27974 1646//27975 +f 7183//27976 6958//27976 6721//27976 +f 679//27977 1400//27978 3516//27979 +f 4533//27980 2309//27980 50//27981 +f 6957//27982 6685//27982 7048//27982 +f 626//27983 4608//27983 3690//27983 +f 6685//27984 6959//27984 7048//27984 +f 6802//27985 7095//27986 6994//27987 +f 7095//27988 6802//27989 6993//27988 +f 6851//27990 7184//27991 6853//27992 +f 4509//27993 486//27993 1426//27994 +f 2836//27995 1128//27996 1130//27997 +f 1106//27998 2402//27999 1799//28000 +f 4577//28001 3193//28002 3180//28003 +f 3690//28004 4204//28005 3863//28006 +f 4596//28007 4643//28007 1261//28008 +f 522//28009 772//28009 2100//28010 +f 1336//28011 3878//28011 1337//28011 +f 2034//28012 83//28013 2977//28014 +f 6959//28015 6479//28016 7228//28017 +f 7137//28018 6996//28019 6856//28020 +f 2832//28021 3258//28022 287//28023 +f 1914//28024 757//28025 3507//28026 +f 6764//28027 6998//28027 6804//28027 +f 6803//28028 6905//28029 6997//28029 +f 7052//28030 6958//28031 7138//28031 +f 1458//28032 4333//28032 3228//28032 +f 1930//28033 5567//28034 4498//28035 +f 6724//28036 7140//28037 7053//28038 +f 3381//28039 5400//28040 4825//28041 +f 780//28042 2192//28043 1258//28044 +f 4662//28045 3263//28045 1598//28046 +f 5//28047 2582//28048 803//28049 +f 6858//28050 7054//28051 7057//28052 +f 4966//28053 1480//28053 4870//28054 +f 3217//28055 4976//28056 2001//28056 +f 2225//28057 1565//28058 5562//28059 +f 6692//28060 6551//28061 7055//28061 +f 7054//28062 7097//28063 7057//28064 +f 1765//28065 3728//28065 470//28066 +f 3827//28067 1700//28068 382//28067 +f 7098//28069 6728//28070 6963//28071 +f 5722//28072 6808//28073 6907//28074 +f 3718//28075 2405//28075 224//28076 +f 2860//28077 3738//28078 2467//28079 +f 1124//28080 2790//28081 1246//28082 +f 5044//28083 77//28084 4356//28085 +f 7001//28086 7099//28087 6906//28088 +f 6906//28089 7100//28089 6909//28089 +f 6906//28090 7099//28091 7100//28092 +f 6728//28093 6730//28094 7058//28094 +f 2262//28095 2699//28096 2358//28097 +f 1467//28098 2780//28099 2655//28100 +f 7058//28101 6730//28102 7002//28103 +f 99//28104 2233//28104 2315//28104 +f 4229//28105 2955//28106 2430//28107 +f 6909//28108 7100//28109 7003//28110 +f 5403//28111 3381//28112 1771//28113 +f 7062//28114 6964//28115 6768//28116 +f 3193//28117 4748//28118 3180//28119 +f 4157//28120 2488//28121 4629//28122 +f 6911//28123 7101//28124 6908//28125 +f 7190//28126 7101//28127 6911//28128 +f 4424//28129 1615//28130 433//28131 +f 2737//28132 428//28133 3247//28134 +f 7061//28135 6862//28136 7006//28137 +f 6911//28138 7005//28139 7190//28140 +f 6916//28141 7063//28141 6965//28141 +f 364//28142 3531//28142 1735//28143 +f 4723//28144 4724//28145 2226//28144 +f 6918//28146 6562//28147 6917//28148 +f 2503//28149 2715//28150 4465//28151 +f 749//28152 3372//28153 316//28152 +f 7062//28154 6813//28154 7103//28155 +f 6916//28156 6966//28157 7063//28158 +f 3855//28159 2162//28160 1698//28161 +f 6968//28162 6608//28162 7064//28163 +f 7065//28164 6919//28165 6914//28166 +f 6915//28167 7065//28168 7102//28169 +f 6920//28170 6915//28171 7102//28172 +f 6861//28173 7195//28174 6966//28173 +f 1178//28175 842//28175 2131//28175 +f 6861//28176 7066//28177 7195//28178 +f 5072//28179 4746//28180 4336//28181 +f 4259//28182 958//28183 2579//28184 +f 7067//28185 6813//28185 6815//28185 +f 7069//28186 6967//28187 6921//28187 +f 7068//28188 6774//28189 6814//28190 +f 1250//28191 65//28192 5115//28193 +f 7107//28194 7072//28195 6771//28196 +f 7010//28197 7108//28197 7070//28197 +f 1988//28198 2245//28199 3265//28199 +f 637//28200 144//28201 5545//28201 +f 6700//28202 6735//28203 7073//28204 +f 1239//28205 2605//28206 477//28205 +f 5395//28207 3873//28207 1708//28208 +f 1660//28209 261//28210 2976//28210 +f 3022//28211 2799//28212 1819//28213 +f 2297//28214 2504//28215 751//28216 +f 4417//28217 3143//28218 1052//28219 +f 7148//28220 6817//28220 6866//28220 +f 4032//28221 1791//28222 3163//28223 +f 4053//28224 5492//28225 3651//28226 +f 5169//28227 4462//28228 4417//28229 +f 338//28230 4813//28231 429//28232 +f 2776//28233 4276//28234 874//28234 +f 6819//28235 7074//28236 7109//28237 +f 2349//28238 2901//28239 290//28240 +f 7109//28241 7076//28242 6820//28243 +f 2331//28244 522//28245 1821//28246 +f 6611//28247 7076//28248 6741//28249 +f 3975//28250 2821//28251 3049//28252 +f 7152//28253 6652//28254 6653//28255 +f 6742//28256 6781//28257 6653//28258 +f 161//28259 160//28260 1289//28261 +f 2440//28262 1732//28262 2237//28262 +f 7077//28263 6492//28263 7111//28264 +f 6492//28265 7153//28265 7111//28265 +f 6868//28266 6492//28267 7077//28268 +f 6868//28269 7077//28270 6780//28271 +f 4622//28272 68//28273 174//28274 +f 2283//28275 5604//28276 610//28277 +f 5510//28278 487//28279 2916//28280 +f 6972//28281 6780//28281 7077//28282 +f 6869//28283 6927//28284 7155//28285 +f 4165//28286 4422//28287 1577//28288 +f 216//28289 1463//28290 4633//28291 +f 186//28292 4342//28293 4761//28294 +f 2008//28295 4911//28296 2338//28297 +f 6704//28298 6870//28298 6823//28298 +f 7078//28299 6870//28300 6822//28300 +f 3590//28301 2861//28302 2535//28303 +f 6871//28304 7156//28304 6928//28305 +f 3326//28306 3999//28307 3047//28308 +f 1229//28309 1675//28310 1191//28311 +f 1135//28312 1742//28313 2838//28314 +f 6875//28315 6930//28316 7079//28317 +f 4649//28318 3772//28319 1044//28320 +f 3339//28321 3490//28321 5090//28321 +f 829//28322 1207//28322 102//28323 +f 4683//28324 2422//28324 471//28324 +f 977//28325 3493//28325 3529//28326 +f 4105//28327 3814//28328 3105//28329 +f 6785//28330 7113//28330 7019//28330 +f 3733//28331 4729//28332 3280//28333 +f 6933//28334 6786//28335 6934//28335 +f 5748//28336 674//28336 2104//28336 +f 6747//28337 7019//28338 7083//28339 +f 3980//28340 4590//28341 2534//28342 +f 4263//28343 1507//28343 4195//28343 +f 1294//28344 4231//28345 2786//28346 +f 2039//28347 4866//28348 4704//28349 +f 379//28350 1406//28350 3166//28350 +f 6829//28351 7022//28352 6879//28353 +f 3261//28354 5654//28355 1655//28356 +f 6935//28357 7085//28358 7084//28359 +f 3486//28360 1788//28361 2410//28362 +f 3127//28363 3126//28363 3789//28363 +f 1366//28364 3434//28364 1341//28364 +f 6234//28365 7087//28366 6531//28367 +f 3534//6926 4114//6926 3997//6926 +f 7160//28368 6978//28369 7023//28370 +f 3085//28371 848//28371 3687//28371 +f 340//28372 1767//28373 3212//28374 +f 1508//28375 1306//28376 2478//28377 +f 4957//28378 374//28379 4128//28380 +f 6939//28381 6978//28381 7118//28381 +f 5209//28382 4469//28383 185//28384 +f 7341//28385 7340//28386 690//28387 +f 3537//28388 1738//28389 3313//28390 +f 6939//28391 6749//28392 6830//28393 +f 1418//28394 2073//28395 5626//28394 +f 1352//28396 475//28397 1416//28398 +f 2430//28399 5351//28400 172//28401 +f 1885//28402 206//28403 676//28404 +f 4618//28405 380//28406 584//28407 +f 1933//28408 3779//28409 2466//28409 +f 5427//28410 2514//28411 1862//28412 +f 2002//28413 1459//28414 352//28414 +f 18//28415 1829//28415 11//28415 +f 3097//28416 332//28417 3318//28418 +f 1891//28419 1588//28419 3423//28419 +f 7120//28420 6711//28421 6668//28422 +f 7088//28423 7121//28424 6943//28425 +f 4161//28426 350//28426 3522//28426 +f 6835//28427 7088//28428 6943//28428 +f 7121//28429 6981//28430 6943//28431 +f 390//28432 420//28433 3598//28434 +f 4996//28435 3858//28436 3007//28437 +f 2428//28438 1158//28438 728//28438 +f 936//28439 574//28439 2356//28440 +f 3761//28441 1122//28442 4811//28443 +f 2445//28444 3453//28445 1783//28446 +f 5506//28447 1363//28447 6828//28447 +f 6503//28448 6944//28448 6982//28448 +f 537//28449 536//28450 606//28451 +f 187//28452 512//28452 784//28452 +f 6342//28453 6248//28454 7028//28455 +f 201//28456 3014//28457 2436//28458 +f 5542//28459 2156//28459 3205//28459 +f 1567//28460 5480//28461 2236//28462 +f 6673//28463 6342//28464 7028//28465 +f 6983//28466 6503//28466 6982//28466 +f 1200//28467 2278//28468 4331//28469 +f 1599//28470 30//28471 1237//28472 +f 1487//28473 2440//28473 274//28473 +f 6884//28474 6715//28475 7029//28476 +f 1790//28477 2749//28478 4039//28479 +f 3700//28480 2753//28481 1907//28481 +f 7030//28482 6883//28483 7032//28484 +f 5786//28485 5157//28486 4345//28486 +f 1498//28487 2105//28488 3909//28487 +f 910//28489 3573//28490 5454//28491 +f 558//28492 5272//28493 623//28494 +f 2727//28495 3673//28496 4027//28497 +f 756//28498 1313//28499 3544//28500 +f 7090//28501 7032//28501 6985//28501 +f 3818//28502 2630//28502 1046//28502 +f 1410//28503 4551//28504 647//28505 +f 4039//28506 3254//28507 3616//28508 +f 2530//28509 3102//28510 2606//28511 +f 611//28512 3258//28513 4259//28514 +f 2187//28515 3381//28516 5403//28517 +f 3660//28518 1500//28519 2748//28520 +f 2543//28521 768//28522 1936//28523 +f 1169//28524 671//28524 3407//28524 +f 7091//28525 6986//28526 6505//28527 +f 737//28528 1865//28529 1864//28530 +f 351//28531 5505//28532 4715//28533 +f 5157//28534 3601//28535 4595//28536 +f 6895//28537 7036//28538 7040//28537 +f 6896//28539 6895//28539 7040//28539 +f 1971//28540 5738//28541 1364//28541 +f 4297//28542 629//28543 3161//28544 +f 1233//28545 2814//28546 121//28547 +f 4267//28548 4720//28548 1569//28549 +f 2219//28550 2929//28551 4526//28552 +f 5768//28553 3685//28554 807//28555 +f 7040//28556 7123//28557 7041//28558 +f 1139//28559 2103//28559 5159//28559 +f 3868//28560 4932//28560 3679//28560 +f 2322//28561 3780//28561 3657//28561 +f 1837//28562 3695//28563 1174//28564 +f 719//28565 1977//28566 5743//28567 +f 6844//28568 7041//28569 6898//28570 +f 838//28571 608//28572 4067//28571 +f 6950//28573 6447//28573 7169//28573 +f 3857//28574 4850//28574 906//28574 +f 3974//28575 4697//28576 3840//28575 +f 7128//28577 6951//28578 7092//28579 +f 7129//28580 7128//28581 7092//28582 +f 7128//28583 7127//28584 6951//28585 +f 2260//28586 2526//28586 3335//28586 +f 6953//28587 7127//28588 7128//28589 +f 6953//28590 7129//28591 7167//28592 +f 7092//28593 6953//28594 7167//28595 +f 6953//28596 7128//28597 7129//28598 +f 6953//28599 6849//28600 7127//28601 +f 3391//28602 821//28602 4832//28602 +f 2462//28603 368//28604 834//28605 +f 2461//28606 1248//28606 2593//28606 +f 383//28607 790//28608 3044//28609 +f 7044//28610 6848//28611 6954//28612 +f 5012//28613 3025//28614 1562//28615 +f 3355//28616 3575//28617 1310//28617 +f 2871//28618 4044//28618 3774//28619 +f 1006//28620 941//28621 2085//28620 +f 1557//28622 3722//28623 5020//28624 +f 2933//28625 2974//28626 2568//28627 +f 3570//28628 1217//28629 464//28629 +f 7094//28630 7131//28631 6902//28632 +f 4256//28633 430//28634 429//28635 +f 1607//28636 1574//28637 937//28638 +f 2228//28639 2850//28640 850//28641 +f 7094//28642 6903//28643 6990//28644 +f 6799//28645 6798//28645 7132//28645 +f 2783//28646 208//28646 5470//28646 +f 781//28647 2592//28648 5204//28649 +f 6938//20984 5026//20984 4195//20984 +f 507//28650 3920//28650 2271//28650 +f 7045//28651 6957//28651 7223//28651 +f 578//28652 597//28652 3083//28652 +f 5801//20984 6938//20984 4195//20984 +f 3672//28653 1742//28654 1955//28655 +f 1851//28656 4325//28656 2411//28657 +f 7047//28658 6956//28659 6992//28660 +f 6721//28661 6991//28662 7183//28663 +f 7135//28664 6957//28665 7048//28666 +f 721//28667 4919//28668 2816//28668 +f 7134//28669 7047//28670 6992//28671 +f 913//28672 1177//28673 2488//28674 +f 1176//28675 4093//28676 1469//28676 +f 2013//28677 3123//28677 2014//28677 +f 1417//28678 792//28679 1324//28680 +f 7136//28681 7048//28681 6959//28681 +f 5305//28682 1574//28683 2571//28684 +f 2012//28685 3278//28686 3968//28687 +f 3919//28688 4254//28689 1287//28690 +f 1193//28691 2278//28691 1200//28691 +f 7264//28692 6853//28693 7184//28694 +f 5188//28695 1280//28696 5189//28696 +f 6996//28697 7137//28697 6995//28698 +f 160//28699 161//28699 53//28700 +f 1700//28701 4738//28701 4549//28702 +f 3709//28703 3342//28704 985//28705 +f 7137//28706 6856//28707 6803//28706 +f 3178//28708 1843//28709 1452//28710 +f 293//28711 5561//28711 952//28712 +f 7137//28713 6803//28713 6997//28713 +f 7053//28714 6479//28714 6724//28714 +f 7228//28715 6479//28715 7053//28715 +f 7138//28716 6958//28717 7096//28718 +f 2678//28719 2659//28720 2905//28719 +f 5044//28721 4356//28722 4667//28721 +f 7139//28723 6905//28724 6998//28725 +f 1078//28726 762//28726 4359//28726 +f 6962//28727 7140//28728 6805//28729 +f 5131//28730 4917//28731 326//28730 +f 4646//28732 212//28732 3065//28732 +f 6962//28733 6453//28734 6999//28735 +f 7141//28736 6962//28737 6999//28738 +f 4335//28739 4578//28740 2886//28741 +f 6999//28742 6728//28743 7098//28744 +f 4177//28745 3419//28746 3591//28747 +f 3897//28748 169//28749 1669//28750 +f 1176//28751 2973//28752 4093//28753 +f 1232//28754 4137//28755 3605//28756 +f 1254//28757 1509//28758 1255//28759 +f 5657//28760 2297//28760 751//28760 +f 4056//28761 4492//28761 4841//28761 +f 6637//28762 7142//28763 6912//28764 +f 2607//28765 4919//28765 721//28766 +f 6862//28767 6640//28767 6769//28767 +f 7190//28768 7005//28769 7192//28770 +f 6908//28771 7101//28772 6914//28773 +f 7063//28774 7193//28775 6965//28776 +f 5540//28777 3671//28778 1803//28778 +f 1179//28779 1466//28780 4838//28781 +f 7064//28782 6608//28783 6862//28784 +f 2498//28785 4450//28786 4377//28785 +f 6862//28787 7061//28788 7064//28789 +f 7104//28790 7065//28791 6914//28792 +f 5322//28793 1631//28794 3302//28794 +f 2922//28795 469//28795 3216//28796 +f 7102//28797 7065//28798 7144//28799 +f 4442//28800 2652//28801 3553//28802 +f 2137//28803 2989//28804 4738//28805 +f 2894//28806 3142//28807 4694//28808 +f 7007//28809 6567//28810 6968//28810 +f 7071//28811 6920//28812 7102//28813 +f 7067//28814 7103//28815 6813//28814 +f 4705//28816 4963//28817 2129//28817 +f 4252//28818 544//28819 4513//28820 +f 387//28821 4019//28821 5140//28822 +f 7008//28823 7009//28824 7233//28825 +f 7068//28826 6814//28827 7145//28828 +f 6863//28829 6774//28830 7068//28831 +f 4424//28832 433//28832 2858//28833 +f 7071//28834 7233//28835 7009//28836 +f 2858//28837 433//28838 2266//28839 +f 7010//28840 7197//28841 7108//28841 +f 7012//28842 7145//28843 6814//28844 +f 7069//28845 6863//28846 7068//28847 +f 670//28848 4954//28849 2580//28850 +f 7009//28851 6969//28852 7071//28853 +f 7072//28854 7197//28855 7010//28856 +f 5048//28857 5790//28858 4818//28857 +f 7147//28859 7067//28860 7349//28861 +f 7067//28862 6816//28862 7349//28862 +f 6776//28863 7073//28864 6738//28865 +f 2317//28866 720//28866 2512//28866 +f 3805//28867 2504//28868 2297//28869 +f 6570//28870 7149//28871 6644//28872 +f 6971//28873 7151//28874 6866//28875 +f 6867//28876 7150//28877 6924//28878 +f 2063//28879 3601//28880 2128//28881 +f 1467//28882 2655//28883 2668//28884 +f 3350//28885 5064//28886 490//28887 +f 7076//28888 7109//28889 7110//28890 +f 7075//28891 6925//28892 6778//28893 +f 6778//28894 7152//28895 7075//28894 +f 3972//28896 2621//28897 2491//28898 +f 7153//28899 6573//28900 6779//28901 +f 6781//28902 6869//28903 6653//28904 +f 1976//28905 4318//28906 1920//28907 +f 3669//28908 4467//28909 2298//28910 +f 379//28911 3166//28912 1725//28911 +f 475//28913 4012//28913 3962//28913 +f 4302//28914 2815//28914 1776//28914 +f 3249//28915 3623//28915 2732//28915 +f 5325//28916 3958//28917 5028//28917 +f 403//28918 2166//28918 3587//28918 +f 1898//28919 2553//28919 2098//28919 +f 6928//28920 7156//28921 7078//28922 +f 196//28923 2082//28924 2389//28923 +f 7079//28925 7156//28926 6871//28927 +f 7241//28928 7079//28929 6930//28930 +f 3086//28931 1523//28932 2635//28933 +f 7080//28934 7241//28935 6930//28936 +f 7080//28937 7158//28938 7241//28939 +f 4035//28940 393//28941 3130//28940 +f 7158//28942 7080//28943 7018//28944 +f 883//28945 2050//28946 1236//28947 +f 3068//28948 3794//28949 126//28948 +f 2067//28950 4904//28950 1381//28950 +f 5801//28951 7159//28952 6938//28952 +f 597//28953 2367//28954 3083//28955 +f 847//28956 462//28957 304//28958 +f 2641//28959 2993//28959 7216//28959 +f 1965//28960 1542//28961 4527//28962 +f 4308//28963 2219//28964 2492//28965 +f 455//28966 1548//28967 2235//28968 +f 3254//28969 1085//28970 3616//28971 +f 7114//28972 7022//28973 6829//28972 +f 6708//28974 6656//28974 7245//28974 +f 1700//28975 3827//28975 624//28976 +f 1758//28977 3003//28977 1156//28977 +f 4192//28978 715//28979 2190//28980 +f 5470//28981 3747//28982 674//28983 +f 3764//28984 2918//28984 733//28985 +f 5079//28986 2294//28987 185//28988 +f 7084//28989 7160//28990 7023//28991 +f 4528//28992 5095//28993 4765//28993 +f 1470//28994 4031//28995 5198//28996 +f 3682//28997 2371//28997 4470//28997 +f 3857//28998 1421//28999 423//29000 +f 6937//29001 7022//29001 7161//29001 +f 3364//29002 4812//29003 544//29004 +f 4335//29005 5662//29005 14//29006 +f 2764//29007 2110//29007 1529//29007 +f 4034//29008 2298//29009 118//29009 +f 316//29010 4761//29011 3496//29011 +f 4141//29012 1148//29012 2835//29012 +f 3564//29013 943//29014 3895//29015 +f 3467//29016 3466//29017 4932//29018 +f 3662//29019 3308//29020 1316//29019 +f 3860//29021 4149//29022 3071//29023 +f 6620//29024 7163//29025 6941//29026 +f 1362//29027 1204//29027 3447//29027 +f 4823//29028 700//29029 699//29030 +f 1996//29031 5574//29032 4751//29033 +f 4764//29034 1904//29034 4427//29034 +f 6980//29035 6942//29036 6881//29037 +f 2671//29038 4624//29038 1609//29038 +f 3816//29039 538//29039 3890//29040 +f 2364//29041 3831//29042 317//29043 +f 3274//29044 327//29045 2815//29045 +f 4906//29046 2134//29047 1227//29048 +f 1018//29049 5392//29050 599//29050 +f 35//29051 1966//29051 3774//29052 +f 2291//29053 4288//29054 3670//29055 +f 243//29056 292//29057 336//29056 +f 465//29058 2319//29059 3408//29060 +f 2264//29061 897//29062 3201//29063 +f 230//29064 1957//29065 1449//29066 +f 153//29067 5204//29068 649//29069 +f 1858//29070 642//29070 98//29071 +f 36//29072 6248//29073 6406//29074 +f 4337//29075 2200//29076 4786//29077 +f 780//29078 1258//29079 5217//29080 +f 4799//29081 2775//29081 1899//29081 +f 1231//29082 4655//29083 4459//29084 +f 6587//29085 6540//29086 7027//29087 +f 5395//29088 4250//29089 3151//29090 +f 2610//29091 5527//29091 3894//29092 +f 4191//29093 1339//29094 3440//29094 +f 5834//29095 2878//29096 982//29097 +f 1247//29098 3809//29098 1445//29098 +f 2121//29099 3183//29100 1800//29101 +f 4845//29102 1662//29103 4784//29104 +f 1477//29105 1388//29106 1387//29107 +f 1776//29108 5236//29109 2217//29110 +f 2031//29111 2365//29112 4614//29113 +f 4311//29114 5394//29115 2345//29116 +f 641//29117 2469//29118 4138//29119 +f 146//29120 145//29121 1439//29122 +f 5077//29123 531//29124 1722//29125 +f 1604//29126 3489//29127 2698//29128 +f 6755//29129 6792//29130 7164//29131 +f 897//29132 2264//29132 4566//29132 +f 3970//29133 4514//29134 5163//29135 +f 1540//29136 3//29137 515//29138 +f 5338//29139 4473//29140 5772//29141 +f 4111//29142 189//29143 3826//29144 +f 1921//29145 2717//29146 2988//29147 +f 858//29148 3264//29149 2226//29150 +f 358//29151 459//29152 4750//29153 +f 2702//29154 3559//29155 1413//29156 +f 6987//29157 7037//29157 6625//29158 +f 7040//29159 7036//29160 7165//29159 +f 3400//29161 1905//29162 1296//29162 +f 7040//29163 7165//29164 7123//29164 +f 7253//29165 6987//29165 7039//29166 +f 2897//29167 2612//29167 1806//29168 +f 3059//29169 5106//29170 4636//29171 +f 5545//29172 531//29173 1610//29174 +f 6679//29175 6546//29176 7124//29177 +f 7125//29178 6845//29179 7038//29180 +f 7216//29181 4479//29181 1621//29181 +f 6848//29182 7124//29182 6681//29183 +f 6845//29184 7125//29184 6952//29184 +f 6593//29185 7126//29186 6545//29187 +f 1471//29188 4500//29189 4150//29188 +f 7169//29190 6951//29191 7127//29192 +f 1078//29193 4032//29194 3163//29193 +f 948//29195 2560//29195 3519//29195 +f 7129//29196 7127//29197 7167//29198 +f 7127//29199 7129//29200 7092//29200 +f 7092//29201 7169//29202 7127//29203 +f 7169//29204 7092//29205 6849//29206 +f 7092//29207 7167//29208 6849//29209 +f 3377//29210 2458//29211 4280//29212 +f 389//29213 4261//29214 517//29215 +f 182//29216 1209//29217 2424//29218 +f 7044//29219 6954//29220 7173//29220 +f 2252//29221 1312//29222 4514//29221 +f 2921//29223 1643//29224 2922//29225 +f 7174//29226 7093//29227 6682//29228 +f 6759//29229 7214//29230 6682//29230 +f 3166//29231 6850//29232 6898//29233 +f 6798//29234 6797//29235 7042//29236 +f 2251//29237 4134//29237 4133//29237 +f 7175//29238 6954//29239 6901//29239 +f 2370//29240 471//29241 2422//29242 +f 1853//29243 1477//29243 3132//29243 +f 686//29244 379//29245 2228//29246 +f 7179//29247 7177//29248 7176//29249 +f 3906//29250 2346//29251 3905//29252 +f 7133//29253 6761//29253 6850//29253 +f 7180//29254 7178//29254 7177//29254 +f 1350//29255 21//29256 2872//29257 +f 764//29258 895//29259 1777//29259 +f 3634//29260 180//29260 2381//29260 +f 2346//29261 880//29262 1010//29262 +f 7177//29263 7221//29264 7181//29265 +f 7180//29266 7177//29266 7181//29266 +f 715//29267 1264//29268 2190//29268 +f 921//29269 1810//29269 267//29270 +f 6761//29271 7133//29271 6720//29272 +f 6720//29273 7184//29274 6851//29275 +f 1835//29276 1374//29277 2462//29276 +f 7183//29278 6991//29279 7046//29280 +f 731//29281 2839//29281 3039//29281 +f 7183//29282 7046//29283 7182//29284 +f 4836//29285 988//29286 256//29287 +f 3781//29288 4068//29289 2964//29288 +f 1490//29290 1186//29290 2288//29291 +f 6834//29292 6828//29293 7185//29292 +f 1239//29294 279//29295 2605//29296 +f 5372//29297 485//29298 4254//29299 +f 3714//29300 1706//29301 2107//29302 +f 3515//29303 1083//29304 334//29305 +f 6853//29306 7264//29307 7051//29308 +f 7183//29309 7227//29310 7096//29311 +f 6958//29312 7183//29313 7096//29314 +f 3744//29315 2267//29316 4575//29317 +f 2079//29318 3852//29319 2459//29320 +f 2098//29321 2553//29322 2775//29322 +f 2130//29323 3533//29324 4451//29325 +f 4523//29326 2151//29326 1581//29327 +f 5069//29328 1245//29329 1220//29330 +f 7052//29331 7138//29332 7186//29333 +f 3768//29334 3209//29335 4224//29336 +f 7054//29337 7052//29337 7186//29337 +f 6961//29338 6725//29339 5271//29340 +f 7187//29341 7054//29342 7186//29343 +f 1743//29344 1742//29345 2287//29346 +f 328//29347 4435//29348 48//29349 +f 7187//29350 7097//29351 7054//29351 +f 4624//29352 2671//29353 503//29353 +f 6725//29354 7056//29355 5271//29356 +f 61//29357 4548//29358 295//29359 +f 1048//29360 4535//29360 548//29360 +f 7001//29361 7000//29362 7188//29363 +f 7056//29364 6693//29365 6859//29366 +f 2823//29367 3959//29367 2711//29367 +f 7188//29368 7099//29369 7001//29370 +f 1738//29371 376//29372 3313//29373 +f 1629//29374 3348//29375 3640//29376 +f 2198//29377 935//29378 677//29377 +f 3703//29379 724//29380 729//29381 +f 2073//29382 924//29382 5626//29382 +f 3497//29383 3845//29384 4538//29385 +f 5382//29386 3299//29387 3172//29388 +f 2383//29389 609//29390 3042//29391 +f 7191//29392 7101//29393 7190//29394 +f 2359//29395 3020//29396 5131//29397 +f 1327//29398 1710//29399 67//29399 +f 4858//29400 4088//29400 2569//29400 +f 2033//29401 1972//29401 1695//29401 +f 3872//29402 1809//29403 903//29404 +f 4683//29405 898//29406 3199//29407 +f 6965//29408 7193//29409 7060//29410 +f 7059//29411 7192//29412 7005//29413 +f 6563//29414 6913//29414 6917//29415 +f 3512//29416 341//29417 1483//29418 +f 7063//29419 7272//29420 7193//29421 +f 1684//29422 2668//29423 414//29424 +f 6124//29425 2948//29426 4475//29426 +f 682//29427 681//29428 4876//29429 +f 7194//29430 7063//29431 7195//29432 +f 6966//29433 7195//29434 7063//29435 +f 4344//29436 2558//29437 1771//29438 +f 3900//29439 2191//29440 4043//29439 +f 7104//29441 6914//29442 7143//29442 +f 671//29443 3668//29443 2611//29444 +f 7066//29445 7196//29446 7195//29446 +f 4651//29447 2281//29448 3614//29449 +f 128//29450 4401//29450 755//29451 +f 502//29452 499//29453 2761//29452 +f 7069//29454 7276//29455 6967//29455 +f 279//29456 1239//29456 1589//29456 +f 694//29457 128//29458 2305//29459 +f 3008//29460 412//29461 1249//29462 +f 7107//29463 7197//29464 7072//29465 +f 497//29466 648//29466 952//29466 +f 2582//29467 2178//29468 3675//29468 +f 7146//29469 6922//29470 7198//29469 +f 1764//29471 2184//29471 2542//29471 +f 7355//29472 306//29473 4323//29474 +f 6970//29475 7070//29475 7011//29475 +f 2181//29476 1532//29476 2891//29476 +f 6816//29477 6817//29477 7013//29477 +f 7280//29478 6866//29478 7151//29479 +f 307//29480 3046//29480 5295//29480 +f 1006//29481 5228//29481 941//29481 +f 2419//29482 4574//29483 2583//29484 +f 7075//29485 7151//29486 6971//29487 +f 6731//29488 6741//29488 7076//29488 +f 705//29489 2704//29490 1105//29491 +f 1530//29492 1177//29493 913//29493 +f 1103//29494 5889//29494 7083//29494 +f 3601//29495 3628//29496 3422//29496 +f 4120//29497 3645//29498 3151//29499 +f 1797//29500 4550//29501 2545//29502 +f 4720//29503 3245//29504 5580//29505 +f 5889//29506 6230//29506 7201//29506 +f 7202//29507 6927//29508 6655//29509 +f 2183//29510 1609//29510 682//29510 +f 6974//29511 7202//29512 6655//29513 +f 5545//29514 1610//29515 3448//29516 +f 5215//29517 1210//29518 2618//29519 +f 6973//29520 7239//29521 6974//29522 +f 4293//29523 1701//29524 4452//29524 +f 6972//29525 7157//29526 6929//29527 +f 2301//29528 3365//29528 5435//29529 +f 3951//29530 782//29531 5105//29532 +f 6975//29533 7112//29534 6976//29535 +f 6976//29536 7112//29536 7017//29537 +f 7158//29538 7018//29539 7017//29540 +f 320//29541 844//29542 4664//29543 +f 2239//29544 2810//29545 115//29546 +f 900//29547 2931//29548 3336//29549 +f 1385//29550 5561//29551 2482//29552 +f 2789//29553 2955//29553 3806//29553 +f 7113//29554 6785//29554 6657//29554 +f 2761//29555 777//29556 254//29557 +f 606//29558 3114//29558 3711//29558 +f 5563//29559 2784//29559 5005//29559 +f 339//29560 1153//29561 3133//29562 +f 4461//29563 3467//29564 3868//29565 +f 3764//29566 2836//29567 1130//29568 +f 520//29569 160//29570 53//29571 +f 7203//29572 6664//29572 7082//29573 +f 4040//29574 3903//29575 2842//29576 +f 7204//29577 7021//29578 6531//29579 +f 7161//29580 7022//29581 7114//29582 +f 4542//29583 788//29584 3460//29585 +f 7087//29586 7204//29586 6531//29587 +f 7205//29588 7086//29589 6787//29590 +f 1528//29591 3916//29591 1527//29591 +f 7245//29592 7087//29593 6708//29594 +f 5946//29595 3888//29596 7206//29597 +f 167//29598 3344//29599 2369//29599 +f 2707//29600 3433//29601 2883//29600 +f 1178//29602 1519//29602 1607//29602 +f 7118//29603 6978//29604 7160//29605 +f 2728//29606 764//29606 5222//29606 +f 3981//29607 391//29608 2788//29609 +f 3161//29610 3534//29610 3997//29610 +f 1633//29611 1675//29612 2720//29613 +f 7118//29614 7209//29615 6939//29616 +f 2203//29617 1743//29618 3940//29619 +f 5033//29620 5045//29621 1645//29622 +f 3444//29623 5542//29624 2//29625 +f 6665//29626 6535//29627 7119//29628 +f 6832//29629 6979//29630 3606//29631 +f 660//29632 2133//29633 2158//29634 +f 4160//29635 4946//29635 3409//29635 +f 4045//29636 3943//29636 3566//29636 +f 3550//29637 3170//29638 1516//29639 +f 7325//29640 6751//29640 6940//29640 +f 3476//29641 300//29642 4411//29643 +f 2417//29644 2911//29645 5223//29645 +f 1300//29646 976//29647 3015//29647 +f 2840//29648 1557//29649 640//29650 +f 3842//29651 4307//29652 1969//29653 +f 3359//29654 7398//29655 3259//29656 +f 5395//29657 4756//29658 1962//29659 +f 6712//29660 4751//29660 7163//29660 +f 959//29661 239//29662 2269//29663 +f 6666//29664 6586//29665 7248//29666 +f 6586//29667 6711//29668 7248//29669 +f 3705//29670 1586//29670 1989//29670 +f 957//29671 4883//29672 14//29673 +f 1325//29674 2115//29675 2869//29675 +f 7393//29676 89//29677 5591//29678 +f 3425//29679 1289//29680 4718//29681 +f 7081//29682 6706//29682 1036//29682 +f 6406//29683 6713//29683 6124//29684 +f 7210//29685 7121//29685 7088//29685 +f 2619//29686 5083//29687 997//29688 +f 7275//29689 76//29690 3344//29691 +f 4557//29692 6669//29693 6836//29694 +f 3103//29695 2814//29695 4710//29695 +f 6981//29696 7121//29697 7210//29698 +f 499//29699 4105//29700 3105//29701 +f 2917//29702 2398//29702 1044//29702 +f 7027//29703 6540//29703 6945//29704 +f 994//29705 3717//29706 128//29707 +f 2698//29708 1248//29708 2461//29709 +f 4211//29710 954//29710 5133//29710 +f 6790//29711 7287//29712 6945//29711 +f 6982//29713 6553//29713 6983//29714 +f 2187//29715 5403//29716 2186//29717 +f 7287//29718 7030//29718 7211//29719 +f 6671//29720 6716//29721 7251//29722 +f 5421//29723 1528//29724 1461//29725 +f 3156//29726 1970//29727 5063//29728 +f 3374//29729 4846//29730 1195//29731 +f 4828//29732 6472//29733 6884//29734 +f 1363//29735 5506//29735 3532//29735 +f 4453//29736 4035//29737 3130//29738 +f 220//29739 3858//29739 4996//29739 +f 3871//29740 3246//29740 3994//29740 +f 4301//29741 4834//29742 1913//29743 +f 3381//29744 3261//29745 1396//29746 +f 7212//29747 6986//29747 7091//29748 +f 3750//29749 3772//29750 866//29751 +f 7091//29752 6505//29752 7037//29752 +f 2130//29753 849//29753 3789//29753 +f 6756//29754 6755//29755 7122//29756 +f 2375//29757 28//29758 2634//29759 +f 2127//29760 3327//29761 3488//29761 +f 3322//29762 628//29763 3892//29762 +f 4164//29764 1125//29765 4028//29766 +f 3999//29767 3326//29768 2177//29769 +f 1275//29770 3435//29771 3469//29772 +f 1525//29773 3003//29773 609//29773 +f 695//29774 3843//29775 2341//29776 +f 236//29777 3617//29778 5207//29779 +f 7035//29780 6591//29781 6794//29780 +f 6794//29782 2777//29783 7035//29784 +f 1957//29785 3027//29786 1098//29787 +f 733//29788 2918//29789 1577//29790 +f 181//29791 3804//29792 1997//29793 +f 7039//29794 6598//29795 6950//29796 +f 3079//29797 1451//29798 5362//29799 +f 1519//29800 2426//29801 291//29802 +f 5458//29803 3163//29804 751//29804 +f 1428//29805 328//29806 48//29807 +f 1796//29808 3846//29809 1951//29810 +f 734//29811 2728//29812 5222//29813 +f 741//29814 570//29814 1004//29814 +f 4993//29815 1960//29816 2030//29817 +f 6849//29818 7167//29819 7127//29820 +f 7043//29821 6545//29821 7126//29821 +f 3892//29822 1651//29823 4629//29824 +f 2848//29825 3704//29826 1446//29827 +f 7169//29828 6849//29828 7170//29829 +f 3913//29830 7354//29830 5776//29830 +f 7043//29831 7172//29831 6628//29831 +f 3896//29832 4652//29833 1373//29833 +f 4073//29834 4670//29835 598//29835 +f 4207//29836 4276//29837 3767//29838 +f 6898//29839 7171//29840 3166//29841 +f 727//29842 3861//29843 5570//29844 +f 6954//29845 7175//29846 7173//29845 +f 631//29847 1033//29847 3677//29847 +f 4586//29848 1002//29849 7288//29850 +f 1126//29851 985//29852 603//29853 +f 240//29854 3563//29855 3848//29856 +f 4139//29857 2418//29858 5122//29859 +f 6989//29860 7175//29861 6901//29862 +f 4155//29863 4000//29863 1331//29863 +f 7177//29864 7257//29865 7176//29866 +f 7131//29867 6989//29867 6900//29867 +f 7178//29868 7257//29869 7177//29870 +f 7094//29871 7215//29872 7131//29873 +f 2924//29874 1723//29875 2979//29876 +f 6798//29877 7042//29878 7219//29877 +f 2338//29879 4911//29880 2103//29881 +f 6990//29882 7262//29883 7094//29884 +f 4813//29885 338//29886 2841//29887 +f 7178//29888 7180//29888 7217//29888 +f 7221//29889 7177//29890 7179//29891 +f 6990//29892 7222//29893 7262//29894 +f 1013//29895 1287//29896 4134//29897 +f 3198//29898 1247//29899 1445//29900 +f 1621//29901 2687//29902 4227//29903 +f 6990//29904 6956//29905 7222//29906 +f 2521//29907 1850//29908 4789//29909 +f 6977//29910 5018//29910 4269//29910 +f 1639//29911 411//29912 3794//29913 +f 2873//29914 998//29914 2071//29914 +f 1471//29915 5278//29916 2800//29917 +f 758//29918 2884//29919 1257//29920 +f 6720//29921 5546//29922 7184//29923 +f 7224//29924 6956//29925 7047//29926 +f 7223//29927 6957//29928 7225//29929 +f 7225//29930 6957//29931 7135//29932 +f 2328//29933 3456//29934 4321//29935 +f 48//29936 4435//29936 1528//29937 +f 3232//29938 3604//29939 3650//29940 +f 7226//29941 6802//29942 6994//29943 +f 6995//29944 7095//29945 6993//29946 +f 3157//29947 2412//29948 246//29949 +f 750//29950 2188//29951 2914//29952 +f 6802//29953 7226//29954 7050//29955 +f 5300//29956 2207//29956 4347//29956 +f 7134//29957 6992//29958 6961//29959 +f 665//29960 3395//29961 4349//29962 +f 2717//29963 511//29963 2988//29964 +f 3340//29965 1929//29966 1615//29966 +f 7134//29967 6961//29967 6170//29968 +f 3076//29969 4836//29970 1338//29971 +f 1296//29972 2640//29973 4305//29974 +f 248//29975 6998//29976 6764//29977 +f 6170//29978 6961//29979 5271//29980 +f 3633//29981 3958//29982 3579//29983 +f 6997//29984 7229//29984 7137//29984 +f 1839//29985 7321//29986 1075//29987 +f 2629//29988 919//29989 2919//29988 +f 5195//29990 2550//29991 2018//29991 +f 3129//29992 4361//29993 2308//29994 +f 1152//29995 3604//29995 1397//29995 +f 2859//29996 2144//29997 1003//29997 +f 4649//29998 1044//29999 1043//29999 +f 852//30000 2210//30001 1823//30000 +f 4469//30002 123//30003 1885//30004 +f 7230//30005 7140//30006 6962//30007 +f 1161//30008 2913//30009 763//30010 +f 7057//30011 7097//30012 7188//30013 +f 7057//30014 7188//30015 7000//30016 +f 5722//30017 6907//30018 7310//30018 +f 3770//30019 3212//30019 1767//30020 +f 3246//30021 6442//30022 2527//30023 +f 4852//30024 2422//30025 4851//30025 +f 7231//30026 7100//30027 7099//30028 +f 6808//30029 5722//30030 7142//30031 +f 2887//30032 3318//30033 332//30034 +f 377//30035 3256//30036 3830//30036 +f 7189//30037 7100//30037 7231//30038 +f 3369//30039 3239//30040 3430//30041 +f 7100//30042 7189//30043 7003//30044 +f 2440//30045 1487//30046 3875//30047 +f 575//30048 1691//30049 3691//30050 +f 6918//30051 7006//30052 6769//30053 +f 7101//30054 7271//30055 6914//30056 +f 1358//30057 4647//30057 804//30057 +f 1652//30058 4206//30058 4937//30059 +f 2124//30060 1926//30061 2365//30062 +f 1669//30063 1397//30063 1145//30064 +f 4098//30065 3993//30066 3555//30067 +f 3271//30068 2495//30069 1443//30070 +f 883//30071 3684//30071 643//30071 +f 7106//30072 7102//30073 7144//30074 +f 7065//30075 7104//30076 7144//30076 +f 7104//30077 7315//30078 7144//30079 +f 7008//30080 7232//30081 7107//30082 +f 3264//30083 598//30084 3094//30083 +f 3780//30085 7007//30086 6968//30086 +f 2611//30087 3407//30087 671//30087 +f 2240//30088 4142//30088 1932//30089 +f 2539//30090 4455//30091 4251//30092 +f 4439//30093 2623//30094 1212//30093 +f 5580//30095 2527//30095 3233//30095 +f 2999//30096 1366//30096 1341//30097 +f 7066//30098 6967//30099 7196//30100 +f 4678//30101 2760//30102 1967//30103 +f 1997//30104 3804//30105 2149//30106 +f 3913//30107 6934//30107 7354//30107 +f 7103//30108 7067//30109 7147//30110 +f 2567//30111 3268//30112 2199//30113 +f 7071//30114 7102//30115 7106//30116 +f 813//30117 1900//30118 4797//30119 +f 1970//30120 4855//30121 4612//30120 +f 3520//30122 5375//30123 972//30124 +f 7233//30125 7071//30126 7106//30127 +f 2617//30128 5750//30128 3525//30128 +f 1914//30129 1647//30129 1829//30130 +f 4613//30131 4606//30132 3819//30133 +f 2938//30134 2894//30135 3410//30134 +f 7199//30136 7145//30137 7011//30138 +f 3138//30139 4050//30139 2916//30140 +f 7011//30141 7145//30142 7012//30142 +f 4993//30143 4874//30144 4806//30145 +f 1954//30146 4159//30147 4669//30148 +f 1913//30149 4247//30150 4301//30151 +f 2644//30152 4436//30152 2826//30153 +f 2808//30154 4392//30155 240//30156 +f 3042//30157 214//30157 1784//30158 +f 3163//30159 5458//30160 1078//30160 +f 7349//30161 6816//30161 7013//30161 +f 4808//30162 105//30163 3288//30164 +f 210//30165 2546//30166 3145//30167 +f 7238//30168 7149//30169 6738//30170 +f 6570//30171 6738//30171 7149//30172 +f 7014//30173 6644//30174 7149//30175 +f 4267//30176 5058//30177 4720//30177 +f 7281//30178 7110//30179 7109//30180 +f 4253//30181 648//30182 252//30183 +f 3102//30184 2530//30185 3103//30184 +f 3969//30186 774//30187 276//30186 +f 5196//30188 2566//30189 4382//30190 +f 7200//30191 7154//30191 7077//30191 +f 5748//30192 1978//30193 674//30194 +f 3603//30195 2029//30195 52//30195 +f 7077//30196 7154//30196 7157//30196 +f 4883//30197 583//30198 14//30198 +f 6972//30199 7077//30199 7157//30199 +f 2848//30200 3099//30201 3285//30200 +f 7239//30202 7202//30203 6974//30204 +f 1065//30205 1697//30206 1310//30207 +f 1555//30208 708//30209 3364//30210 +f 3735//30211 3342//30212 3709//30212 +f 6870//30213 7078//30214 7016//30213 +f 491//30215 1674//30215 4278//30215 +f 1487//30216 274//30217 4584//30218 +f 6929//30219 7157//30220 6975//30221 +f 813//30222 42//30223 1900//30224 +f 4220//30225 577//30226 4316//30227 +f 4344//30228 3020//30229 2359//30229 +f 2984//30230 1606//30230 2985//30231 +f 5801//30232 5026//30233 6938//30234 +f 7235//30235 6658//30236 228//30236 +f 7020//30237 7242//30238 6932//30239 +f 7082//30240 6658//30241 7235//30242 +f 6829//30243 6747//30243 7083//30243 +f 1310//30244 547//30245 3355//30246 +f 3871//30247 4879//30247 4625//30247 +f 7164//30248 3168//30248 3755//30248 +f 945//30249 6660//30249 6662//30249 +f 798//30250 339//30251 3950//30252 +f 1882//30253 2928//30253 5078//30254 +f 44//30255 2481//30256 5086//30257 +f 7244//30258 7160//30259 7084//30260 +f 7085//30261 7244//30261 7084//30261 +f 7244//30262 7085//30263 7086//30264 +f 2939//30265 1770//30266 177//30267 +f 7246//30268 7086//30269 7205//30270 +f 4297//30271 1139//30272 5159//30273 +f 2602//30274 4607//30274 3697//30275 +f 7160//30276 7244//30276 7207//30277 +f 2915//30278 2955//30279 698//30279 +f 7355//30280 6530//30281 6663//30282 +f 1454//30283 3921//30284 3856//30283 +f 7207//30285 7118//30286 7160//30287 +f 6615//30288 7025//30289 7116//30288 +f 2559//30290 967//30291 1180//30292 +f 5943//30293 3754//30294 5291//30295 +f 1769//30296 3758//30297 4324//30298 +f 7118//30299 7208//30299 7209//30299 +f 4831//30300 384//30301 1368//30300 +f 6749//30302 6939//30303 7209//30304 +f 2204//30305 1569//30306 954//30306 +f 97//30307 3496//30308 4870//30309 +f 6940//30310 7247//30311 7162//30312 +f 7204//30313 7354//30313 6934//30313 +f 1962//30314 5412//30315 1262//30316 +f 2654//30317 1092//30318 3686//30319 +f 2741//30320 4999//30321 1086//30321 +f 7248//30322 2437//30322 6666//30323 +f 460//30324 342//30325 4532//30326 +f 4765//30327 5095//30328 5174//30329 +f 6942//30330 7357//30330 2108//30330 +f 7248//30331 6711//30331 7120//30331 +f 4269//30332 2742//30333 3643//30334 +f 3062//30335 3036//30335 2443//30336 +f 2060//30337 3932//30338 1458//30339 +f 1685//30340 835//30340 3378//30340 +f 289//30341 3210//30342 2651//30343 +f 1744//30344 3910//30345 1149//30346 +f 6670//30347 3765//30348 6836//30349 +f 1725//30350 410//30351 2850//30350 +f 1190//30352 4086//30352 513//30352 +f 2194//30353 409//30354 313//30354 +f 6670//30355 6504//30356 7288//30357 +f 3950//30358 339//30359 3465//30360 +f 7028//30361 6248//30362 36//30363 +f 2020//30364 1666//30365 4184//30366 +f 4818//30367 4011//30368 2954//30369 +f 6541//30370 4698//30371 7029//30372 +f 6982//30373 7286//30374 6553//30375 +f 2572//30376 861//30376 2851//30377 +f 266//30378 1965//30379 4594//30380 +f 6790//30381 7030//30381 7287//30381 +f 2613//30382 4829//30382 5396//30382 +f 7030//30383 7032//30383 7211//30383 +f 5782//30384 4183//30384 3962//30385 +f 2224//30386 4338//30387 2082//30388 +f 1413//30389 2379//30389 2702//30390 +f 1608//30391 1765//30391 1731//30392 +f 3337//30393 2535//30394 4780//30395 +f 2843//30396 3810//30397 2153//30398 +f 40//30399 1697//30400 1639//30400 +f 1167//30401 2207//30402 2247//30401 +f 6472//30403 4828//30404 6792//30405 +f 1875//30406 3996//30406 280//30406 +f 3389//30407 2813//30408 4024//30408 +f 4639//30409 397//30410 4163//30411 +f 4606//30412 1371//30413 1134//30414 +f 4993//30415 2030//30416 309//30417 +f 6984//30418 7165//30419 7036//30420 +f 4681//30421 1542//30422 4680//30422 +f 435//30423 4514//30424 361//30424 +f 4050//30425 1555//30425 3364//30425 +f 4176//30426 5219//30427 2465//30428 +f 368//30429 2038//30429 834//30429 +f 7252//30430 6988//30430 6897//30430 +f 3243//30431 2653//30432 142//30433 +f 1095//30434 5036//30435 1202//30434 +f 7122//30436 7038//30437 6756//30438 +f 4885//30439 2138//30440 2800//30440 +f 4781//30441 2133//30441 116//30442 +f 2274//30443 2867//30444 2275//30445 +f 912//30446 3314//30447 862//30448 +f 6593//30449 6676//30450 7166//30451 +f 2485//30452 1687//30453 7326//30454 +f 2956//30455 686//30456 1817//30457 +f 405//30458 4308//30458 2492//30459 +f 6950//30460 7254//30461 7039//30462 +f 1303//30463 269//30464 1302//30465 +f 562//30466 1641//30467 4059//30468 +f 7171//30469 7041//30469 7213//30469 +f 2844//30470 3964//30471 1228//30470 +f 7168//30472 6846//30472 6796//30473 +f 2925//30474 5411//30475 3162//30476 +f 2203//30477 1162//30478 2585//30479 +f 1242//30480 1369//30480 2065//30480 +f 5390//30481 2026//30481 1340//30481 +f 4608//30482 5295//30483 1846//30484 +f 613//30485 2163//30486 2134//30487 +f 2677//30488 383//30489 2678//30490 +f 6898//30491 7041//30492 7171//30493 +f 1891//30494 2736//30495 5399//30496 +f 5431//30497 3790//30497 487//30497 +f 7214//30498 6759//30499 7172//30498 +f 900//30500 4433//30500 4862//30500 +f 7258//30501 7257//30502 7178//30503 +f 1402//30504 652//30504 1816//30504 +f 4806//30505 1960//30506 4993//30507 +f 759//30508 181//30509 1997//30510 +f 7214//30511 7174//30511 6682//30512 +f 2342//30513 2563//30514 3032//30515 +f 3668//30516 3564//30517 2646//30516 +f 7176//30518 7257//30519 7259//30520 +f 3429//30521 7306//30522 1860//30523 +f 2766//30524 2048//30524 2378//30525 +f 3755//30526 227//30527 3275//30527 +f 4356//30528 3555//30529 3993//30530 +f 4932//30531 1486//30532 3678//30533 +f 7262//30534 7215//30535 7094//30536 +f 1258//30537 1257//30537 1876//30537 +f 7261//30538 7178//30539 7217//30540 +f 894//30541 5547//30541 4138//30541 +f 2991//30542 4300//30543 3865//30544 +f 6798//30545 7219//30546 7132//30547 +f 6899//30548 7045//30549 7220//30550 +f 1125//30551 3902//30552 678//30553 +f 1905//30554 2640//30554 1296//30554 +f 6355//30555 6695//30555 1224//30555 +f 7220//30556 7045//30557 7223//30558 +f 3642//30559 825//30560 5011//30559 +f 7046//30561 6799//30562 7132//30561 +f 577//30563 4337//30564 4187//30565 +f 7224//30566 7222//30567 6956//30568 +f 5303//30569 684//30569 2179//30570 +f 319//30571 1001//30571 796//30571 +f 3268//30572 2712//30573 69//30574 +f 2230//30575 2842//30576 3903//30577 +f 3523//30578 812//30579 1939//30580 +f 7299//30581 7180//30582 7181//30583 +f 2110//30584 3943//30585 4045//30584 +f 7224//30586 7047//30586 7134//30586 +f 3476//30587 3091//30587 4576//30587 +f 729//30588 1283//30588 3703//30589 +f 7263//30590 7183//30591 7182//30592 +f 3765//30593 1002//30594 278//30595 +f 4064//30596 3450//30597 4302//30597 +f 7265//30598 6994//30599 7095//30600 +f 4469//30601 5079//30601 185//30601 +f 49//30602 283//30603 5323//30603 +f 2456//30604 1225//30605 831//30606 +f 7095//30607 6995//30608 7265//30609 +f 311//30610 3565//30611 3620//30612 +f 2757//30613 4510//30614 4552//30613 +f 2640//30615 2593//30616 5200//30617 +f 4348//30618 3649//30619 999//30618 +f 1267//30620 5033//30620 1645//30621 +f 4250//30622 5395//30623 1708//30623 +f 6959//30624 7228//30625 7136//30626 +f 2083//30627 3291//30628 1028//30629 +f 2393//30630 3039//30631 2839//30631 +f 1925//30632 362//30633 3730//30634 +f 1660//30635 4252//30636 3791//30636 +f 7050//30637 7267//30638 6857//30639 +f 7055//30640 6857//30641 7267//30642 +f 3511//30643 1944//30644 2474//30644 +f 3546//30645 1564//30646 3520//30647 +f 3057//30648 4461//30649 555//30650 +f 5287//30651 4192//30651 2190//30651 +f 507//30652 506//30652 119//30652 +f 7138//30653 7096//30654 7268//30655 +f 7138//30656 7268//30657 7186//30658 +f 1473//30659 990//30659 805//30659 +f 3764//30660 4165//30661 1577//30662 +f 7307//30663 7053//30663 7140//30663 +f 7184//30664 1592//30665 3839//30666 +f 2212//30667 3018//30668 4664//30669 +f 165//30670 4491//30671 2654//30672 +f 7141//30673 7230//30674 6962//30675 +f 3143//30676 3985//30677 1071//30678 +f 2001//30679 527//30680 2111//30681 +f 3567//30682 4218//30682 4054//30682 +f 7188//30683 7339//30684 7099//30685 +f 7342//30686 7098//30687 6963//30688 +f 3156//30689 4327//30690 1970//30691 +f 5159//30692 2103//30693 306//30692 +f 5376//30694 344//30695 3844//30696 +f 7269//30697 7058//30698 7002//30699 +f 7189//30700 7059//30701 7003//30702 +f 7002//30703 7060//30704 7269//30703 +f 7270//30705 7190//30706 7192//30706 +f 1729//30707 4504//30708 3628//30709 +f 2049//30710 3573//30710 4182//30710 +f 3314//30711 912//30712 3077//30713 +f 4784//30714 3149//30715 3194//30716 +f 136//30717 4922//30718 1142//30717 +f 7272//30719 7060//30720 7193//30721 +f 495//30722 1494//30723 4788//30724 +f 5664//30725 5324//30726 1016//30727 +f 7185//30728 6834//30728 7273//30728 +f 6977//30729 1224//30729 6745//30730 +f 6913//30731 7275//30732 6917//30733 +f 7143//30734 6914//30734 7271//30734 +f 1526//30735 1370//30736 259//30736 +f 2230//30737 3903//30738 356//30739 +f 440//30740 3735//30740 3709//30740 +f 2223//30741 4578//30741 2277//30741 +f 4397//30742 2647//30742 5347//30742 +f 4648//30743 3770//30744 4015//30745 +f 3897//30746 3390//30747 5613//30748 +f 7316//30749 6918//30750 6917//30751 +f 4710//30752 3102//30753 3103//30754 +f 7106//30755 7144//30756 7274//30757 +f 7064//30758 3657//30758 3780//30758 +f 7289//30759 6553//30760 1062//30759 +f 4272//30761 2660//30762 3392//30763 +f 4638//30764 1619//30765 1792//30766 +f 7108//30767 7197//30767 7277//30768 +f 7108//30769 7277//30770 7234//30771 +f 4473//30772 3346//30772 4006//30773 +f 3822//30774 3397//30775 2854//30776 +f 5523//30777 1363//30778 3532//30779 +f 5382//30780 1233//30780 2805//30780 +f 7278//30781 7068//30782 7145//30783 +f 7069//30784 7279//30784 7276//30785 +f 7007//30786 5819//30786 6922//30787 +f 1508//30788 3620//30789 2641//30789 +f 1673//30790 1251//30791 3881//30792 +f 268//30793 2909//30793 2738//30793 +f 7070//30794 7108//30795 7011//30796 +f 7108//30797 7236//30798 7011//30799 +f 530//30800 4304//30801 1546//30800 +f 1375//30802 3097//30803 2511//30804 +f 7068//30805 7279//30805 7069//30805 +f 3179//30806 2788//30807 391//30808 +f 1516//30809 1182//30809 1720//30809 +f 90//30810 5469//30811 443//30812 +f 7237//30813 6735//30814 7146//30815 +f 5005//30816 2066//30817 3188//30816 +f 321//30818 3093//30818 25//30818 +f 340//30819 4517//30820 2529//30820 +f 6817//30821 7148//30822 7013//30822 +f 3114//30823 536//30824 4245//30823 +f 4219//30825 4574//30826 3938//30826 +f 4856//30827 860//30828 1613//30829 +f 6867//30830 7014//30830 3931//30830 +f 4086//30831 6924//30832 7150//30831 +f 4086//30833 7015//30834 6924//30835 +f 3453//30836 1132//30836 4048//30836 +f 7077//30837 7111//30838 7200//30839 +f 4025//30840 4269//30841 5018//30842 +f 7155//30843 6927//30844 7202//30845 +f 5732//30846 714//30847 2290//30848 +f 2311//30849 7291//30849 1115//30849 +f 3195//30850 4968//30850 4945//30850 +f 677//30851 935//30852 1343//30853 +f 7240//30854 6823//30855 7016//30856 +f 6823//30857 7240//30858 6973//30859 +f 95//30860 1949//30860 1183//30860 +f 187//30861 481//30862 1739//30863 +f 2254//30864 138//30865 2997//30866 +f 6975//30867 7157//30867 7282//30868 +f 7353//30869 7241//30870 7158//30871 +f 2538//30872 4957//30873 4090//30874 +f 326//30875 3843//30876 5131//30877 +f 7017//30878 7283//30879 7158//30880 +f 3911//30881 6933//30882 3913//30883 +f 7235//30884 228//30885 4195//30885 +f 3414//30886 487//30887 5510//30888 +f 6657//30889 6878//30889 1103//30890 +f 1103//30891 6878//30892 7081//30893 +f 3532//30894 1423//30894 5523//30894 +f 6230//30895 2971//30896 5889//30897 +f 745//30898 1928//30899 3565//30900 +f 4048//30901 3138//30902 2916//30903 +f 4478//30904 4786//30904 5271//30904 +f 1077//30905 4829//30906 3991//30907 +f 3140//30908 1110//30908 1109//30908 +f 572//30909 1579//30910 625//30911 +f 7185//30912 6932//30913 7242//30914 +f 1879//30915 957//30916 2734//30917 +f 3576//30918 1068//30919 4091//30920 +f 7185//30921 6828//30922 6932//30923 +f 7243//30924 6829//30925 7083//30926 +f 1601//30927 1355//30928 230//30929 +f 7185//30930 5506//30930 6834//30930 +f 7185//30931 7242//30931 5506//30931 +f 7204//30932 6934//30933 7021//30934 +f 1542//30935 496//30936 4680//30937 +f 511//30938 2717//30939 1906//30939 +f 7113//30940 6657//30941 1103//30942 +f 5274//30943 6442//30944 3871//30945 +f 3758//30946 4155//30946 4324//30946 +f 3588//30947 1629//30948 3419//30949 +f 4050//30950 3138//30951 1555//30952 +f 2266//30953 433//30954 4862//30953 +f 6787//30955 7284//30955 7205//30955 +f 3012//30956 2490//30956 4257//30956 +f 6529//30957 7284//30958 6787//30959 +f 2336//30960 2295//30961 2160//30961 +f 7244//30962 7086//30963 7246//30964 +f 7207//30965 7244//30966 7246//30967 +f 3439//30968 2041//30969 5120//30970 +f 1930//30971 797//30972 5567//30972 +f 4417//30973 1026//30974 3985//30973 +f 883//30975 945//30975 2050//30976 +f 2853//30977 2852//30978 467//30979 +f 6662//30980 7117//30980 1789//30980 +f 4666//30981 179//30982 5184//30983 +f 6533//30984 6664//30985 7115//30986 +f 7207//30987 7208//30987 7118//30987 +f 7208//30988 7207//30988 7285//30988 +f 4283//30989 4935//30990 5346//30989 +f 3591//30991 2952//30992 4177//30993 +f 4095//30994 5069//30995 871//30996 +f 3568//30997 7117//30997 6665//30998 +f 3568//30999 6665//31000 7119//30999 +f 523//31001 4188//31002 3721//31003 +f 488//31004 1607//31005 937//31006 +f 2392//31007 4368//31008 932//31009 +f 2486//31010 3441//31011 5686//31010 +f 3558//31012 5843//31013 5456//31014 +f 1270//31015 4361//31016 1271//31017 +f 7209//31018 7323//31019 6749//31020 +f 3576//31021 3848//31022 2335//31023 +f 6749//31024 7323//31025 7247//31026 +f 1998//31027 1429//31028 1376//31029 +f 4041//31030 7119//31031 6535//31031 +f 2992//31032 2897//31033 2616//31034 +f 740//31035 3397//31036 3822//31037 +f 4779//31038 3975//31038 3049//31038 +f 1258//31039 2192//31040 1257//31041 +f 1426//31042 2817//31043 3243//31043 +f 2933//31044 2193//31045 612//31046 +f 2507//31047 1929//31048 974//31047 +f 4876//31049 2199//31050 2183//31049 +f 6713//31051 6832//31052 5719//31053 +f 6942//31054 2108//31055 7088//31056 +f 818//31057 2053//31057 3916//31058 +f 2600//31059 1173//31060 2563//31059 +f 2908//31061 1717//31062 3578//31063 +f 1127//31064 2846//31065 5089//31064 +f 6668//31066 7089//31067 4620//31066 +f 1749//31068 3964//31069 2412//31070 +f 6944//31071 6981//31072 7286//31073 +f 3898//31074 752//31075 5044//31076 +f 6381//31077 2147//31078 1112//31079 +f 6982//31080 6944//31081 7286//31082 +f 2994//31083 3262//31084 4008//31085 +f 3061//31086 5026//31086 5801//31087 +f 5654//31088 4260//31089 5403//31090 +f 6752//31091 4698//31092 6541//31093 +f 3537//31094 3407//31095 1381//31096 +f 634//31097 2395//31097 2703//31097 +f 2820//31098 4184//31099 3698//31100 +f 5139//31101 2083//31102 1472//31103 +f 3633//31104 898//31105 961//31106 +f 1013//31107 5484//31108 4275//31109 +f 6983//31110 7289//31111 6947//31110 +f 3109//31112 1378//31112 3040//31113 +f 1560//31114 836//31115 907//31116 +f 1394//31117 5367//31117 4447//31118 +f 2364//31119 2628//31120 14//31120 +f 3075//31121 1884//31122 1548//31123 +f 169//31124 569//31125 1669//31126 +f 7290//31127 7032//31127 7090//31127 +f 2417//31128 402//31128 3788//31129 +f 3905//31130 1933//31131 3906//31132 +f 1103//31133 7083//31133 7113//31133 +f 1709//31134 575//31135 1710//31136 +f 7090//31137 6948//31138 6949//31138 +f 3616//31139 1601//31139 2156//31139 +f 110//31140 3443//31141 504//31142 +f 7165//31143 6984//31143 7381//31144 +f 7122//31145 6755//31146 7164//31147 +f 2180//31148 1496//31148 3387//31149 +f 3507//31150 3784//31151 3608//31152 +f 6987//31153 7253//31154 7037//31153 +f 3290//31155 4696//31156 267//31157 +f 3719//31158 1566//31159 1079//31160 +f 1682//31161 3150//31161 461//31161 +f 7328//31162 7253//31162 7039//31162 +f 6897//31163 6679//31164 7124//31165 +f 7039//31166 7254//31167 7328//31168 +f 2960//31169 1163//31170 2425//31169 +f 975//31171 4212//31172 1285//31173 +f 2432//31174 1022//31174 3706//31175 +f 7255//31176 7124//31177 6848//31176 +f 6593//31178 7166//31179 7126//31180 +f 4640//31181 514//31182 3037//31183 +f 1162//31184 2203//31185 1852//31186 +f 7256//31187 6846//31187 7168//31187 +f 3320//31188 764//31189 2728//31190 +f 3565//31191 663//31192 3620//31193 +f 3245//31194 3246//31195 2527//31196 +f 3958//31197 3633//31198 961//31197 +f 7292//31199 6952//31200 7125//31201 +f 7332//31202 7044//31202 7173//31202 +f 1914//31203 3507//31203 3508//31203 +f 214//31204 4818//31205 2954//31206 +f 5435//31207 1207//31208 4331//31209 +f 1740//31210 4833//31211 2735//31212 +f 2823//31213 1195//31214 3959//31215 +f 7175//31216 7293//31217 7173//31218 +f 1768//31219 2462//31220 834//31221 +f 2590//31222 2747//31223 3996//31224 +f 7294//31225 6989//31226 7131//31227 +f 679//31228 3516//31229 3517//31230 +f 4914//31231 4799//31232 817//31233 +f 3796//31234 2543//31234 2261//31235 +f 7215//31236 7294//31237 7131//31238 +f 6850//31239 3166//31240 7133//31241 +f 1581//31242 2325//31243 322//31242 +f 4126//31244 2008//31245 1332//31246 +f 7218//31247 6899//31248 7220//31249 +f 4468//31250 409//31251 1349//31252 +f 1841//31253 3590//31254 4962//31255 +f 7260//31256 7296//31257 7219//31258 +f 7042//31259 7260//31259 7219//31260 +f 2723//31261 547//31261 1310//31261 +f 7179//31262 7176//31263 7335//31263 +f 2078//31264 2079//31265 2459//31265 +f 1668//31266 2589//31266 5076//31266 +f 2600//31267 2342//31268 815//31269 +f 164//31270 2878//31271 38//31272 +f 5036//31273 4247//31274 1913//31275 +f 550//31276 1386//31277 1561//31278 +f 1146//31279 3916//31280 449//31281 +f 360//31282 3986//31283 359//31284 +f 7297//31285 7217//31285 7180//31285 +f 268//31286 3861//31287 1022//31288 +f 7132//31289 7219//31290 7298//31291 +f 6720//31292 7133//31292 5546//31292 +f 4692//31293 632//31294 1575//31295 +f 7046//31296 7132//31297 7182//31297 +f 2231//31298 5772//31298 386//31298 +f 760//31299 1816//31300 46//31301 +f 7301//31302 7182//31303 7367//31304 +f 3531//31305 618//31306 3952//31306 +f 1836//31307 2875//31308 4388//31309 +f 7221//31310 7386//31311 7181//31312 +f 1834//31313 1342//31314 3497//31315 +f 2542//31316 782//31317 4496//31318 +f 489//31319 4519//31319 3307//31319 +f 7299//31320 7181//31321 7302//31321 +f 2258//31322 599//31322 1854//31323 +f 570//31324 983//31325 1790//31326 +f 3997//31327 2529//31328 3161//31329 +f 7263//31330 7303//31331 7183//31332 +f 7227//31333 7183//31334 7303//31335 +f 4383//31336 4136//31336 1368//31336 +f 7048//31337 7304//31337 7135//31337 +f 7266//31338 6994//31339 7265//31340 +f 749//31341 1017//31341 3372//31341 +f 7303//31342 7096//31343 7227//31344 +f 2031//31345 4614//31346 2366//31347 +f 1208//31348 1311//31349 3859//31350 +f 3429//31351 248//31351 6764//31351 +f 885//31352 1907//31353 3034//31354 +f 2275//31355 3351//31356 4980//31357 +f 7053//31358 7307//31359 7228//31360 +f 3541//31361 3841//31361 873//31362 +f 7308//31363 7268//31363 7096//31364 +f 4125//31365 2821//31366 1181//31365 +f 4473//31367 4006//31368 986//31369 +f 6997//31370 6905//31370 7139//31370 +f 5435//31371 4331//31372 2278//31373 +f 3479//31374 3368//31375 2235//31374 +f 7097//31376 7187//31377 7309//31378 +f 663//31379 3229//31380 1717//31381 +f 1628//31382 3543//31383 3048//31384 +f 2958//31385 2540//31385 335//31386 +f 1331//31387 5217//31387 3430//31387 +f 6907//31388 7055//31388 7310//31388 +f 7188//31389 7097//31390 7339//31391 +f 1273//31392 1667//31393 4287//31394 +f 3791//31395 2674//31396 261//31397 +f 4257//31398 1390//31399 798//31398 +f 304//31400 2934//31401 711//31402 +f 7141//31403 6999//31403 7098//31404 +f 7339//31405 7231//31406 7099//31407 +f 2611//31408 1381//31408 3407//31408 +f 397//31409 3028//31410 4163//31411 +f 7058//31412 7342//31413 6963//31414 +f 2770//31415 3174//31416 3112//31417 +f 7311//31418 6964//31419 7062//31420 +f 7004//31421 6912//31422 5375//31423 +f 341//31424 2869//31425 1483//31426 +f 2108//31427 4126//31428 1389//31429 +f 7192//31430 7059//31431 7189//31432 +f 2083//31433 338//31434 3291//31435 +f 7271//31436 7101//31437 7191//31438 +f 7269//31439 7060//31440 7312//31441 +f 7312//31442 7060//31443 7272//31444 +f 6977//31445 4269//31446 1224//31447 +f 7313//31448 7061//31449 7006//31450 +f 4164//31451 648//31451 4253//31451 +f 3249//31452 2732//31452 4380//31452 +f 3864//31453 3664//31454 4165//31455 +f 4701//31456 7062//31457 7103//31458 +f 7400//31459 4839//31459 1160//31459 +f 7314//31460 7063//31461 7194//31462 +f 838//31463 5053//31464 3408//31465 +f 4752//31466 2293//31467 1812//31468 +f 7106//31469 7274//31470 7345//31469 +f 183//31471 4089//31472 4419//31473 +f 2916//31474 4050//31475 5510//31476 +f 7195//31477 7314//31478 7194//31479 +f 7315//31480 7104//31481 7143//31482 +f 7277//31483 7107//31484 7232//31485 +f 6968//31486 7064//31487 3780//31488 +f 7317//31489 4701//31490 7103//31491 +f 1814//31492 2023//31493 1692//31494 +f 7008//31495 7233//31495 7232//31495 +f 5581//31496 1594//31497 4982//31497 +f 1335//31498 1502//31499 4547//31500 +f 7232//31501 7233//31502 7106//31503 +f 7234//31504 7319//31505 7108//31506 +f 4596//31507 1813//31508 3804//31509 +f 4163//31510 207//31511 707//31512 +f 115//31513 1061//31514 2239//31515 +f 7317//31516 7103//31517 7147//31518 +f 7107//31519 7277//31519 7197//31520 +f 1106//31521 1799//31522 5469//31523 +f 7199//31524 7320//31525 7278//31526 +f 4950//31527 4479//31527 2993//31527 +f 705//31528 1105//31529 1762//31530 +f 31//31531 1585//31532 4686//31533 +f 705//31534 1215//31535 1119//31536 +f 810//31537 4063//31538 5640//31539 +f 7068//31540 7278//31541 7279//31542 +f 5//31543 803//31544 2099//31545 +f 2928//31546 1373//31546 4652//31546 +f 4516//31547 1524//31547 4831//31547 +f 7073//31548 6735//31548 7237//31549 +f 2901//31550 4366//31550 4313//31550 +f 7150//31551 6867//31552 3931//31553 +f 1842//31554 2900//31555 498//31556 +f 2752//31557 7074//31557 7015//31558 +f 7377//31559 7152//31560 6926//31561 +f 6779//31562 6741//31563 6731//31564 +f 6869//31565 7322//31566 6926//31567 +f 3205//31568 4955//31568 3136//31568 +f 7322//31569 6869//31570 7155//31571 +f 598//31572 661//31572 3094//31573 +f 420//31574 359//31575 3598//31576 +f 2744//31577 3222//31578 276//31577 +f 7240//31579 7239//31579 6973//31580 +f 7352//31581 7016//31582 7078//31583 +f 586//31584 4160//31584 2181//31584 +f 7156//31585 7079//31586 7241//31587 +f 7156//31588 7241//31589 7353//31590 +f 7112//31591 6975//31592 7282//31593 +f 2804//31594 4356//31595 77//31596 +f 2750//31597 3819//31597 4606//31598 +f 4790//31599 4750//31600 841//31599 +f 7353//31601 7158//31601 7283//31601 +f 7017//31602 7112//31603 7283//31604 +f 34//31605 2798//31606 337//31605 +f 1040//31607 1535//31608 1536//31609 +f 215//31610 2589//31610 2596//31611 +f 4025//31612 2742//31613 4269//31614 +f 5058//31615 5022//31615 3245//31615 +f 1677//31616 5155//31617 4585//31618 +f 3913//31619 6933//31620 6934//31620 +f 796//31621 4220//31622 3685//31623 +f 6656//31624 6355//31624 5274//31625 +f 7114//31626 6829//31627 7243//31626 +f 1991//31628 791//31628 4653//31628 +f 7020//31629 945//31630 5034//31631 +f 1571//31632 1918//31633 1572//31634 +f 4121//31635 2012//31636 2381//31637 +f 7115//31638 6664//31639 7203//31640 +f 6663//31641 6937//31641 7161//31641 +f 3474//31642 2580//31643 4144//31644 +f 1463//31645 1433//31646 3235//31647 +f 7285//31648 7207//31649 7246//31650 +f 4395//31651 6533//31652 7115//31653 +f 3660//31654 7116//31655 7025//31656 +f 540//31657 552//31658 1861//31657 +f 4395//31659 6979//31660 6533//31661 +f 4344//31662 5456//31663 5843//31664 +f 7208//31665 7323//31666 7209//31667 +f 7281//31668 2751//31669 63//31670 +f 1892//31671 4686//31672 1585//31673 +f 5574//31674 6831//31675 6585//31674 +f 5574//31676 6585//31677 6941//31678 +f 7162//31679 7247//31679 7324//31680 +f 7325//31681 6940//31682 7162//31683 +f 7163//31684 5574//31685 6941//31686 +f 4041//31687 6535//31688 2437//31689 +f 908//31690 1171//31690 4726//31691 +f 6942//31692 6980//31693 7357//31694 +f 5630//31695 295//31696 3371//31697 +f 4092//31698 4170//31699 2023//31698 +f 4600//31700 712//31701 3746//31702 +f 1904//31703 2816//31704 4427//31705 +f 2158//31706 463//31707 660//31707 +f 1163//31708 2155//31709 2425//31710 +f 7249//31711 7088//31712 2108//31713 +f 1480//31714 4966//31715 1003//31716 +f 871//31717 2414//31718 2415//31719 +f 7120//31720 6668//31721 4620//31720 +f 5844//31722 6669//31722 4557//31722 +f 6837//31723 6671//31724 5268//31724 +f 2735//31725 2182//31725 134//31725 +f 3994//31726 5058//31726 3535//31727 +f 5427//31728 602//31729 223//31730 +f 4397//31731 758//31732 1257//31733 +f 4188//31734 523//31735 3315//31736 +f 2391//31737 2362//31737 1323//31737 +f 1907//31738 2817//31738 1426//31738 +f 7289//31739 6983//31739 6553//31739 +f 1965//31740 4527//31740 4594//31740 +f 6839//31741 6673//31742 2536//31741 +f 1046//31743 414//31744 4101//31745 +f 4568//31746 527//31747 1253//31748 +f 113//31749 2932//31749 141//31749 +f 6986//31750 7326//31751 6841//31752 +f 575//31753 1709//31754 1570//31755 +f 413//31756 6624//31757 7035//31756 +f 7291//31758 6949//31759 6988//31760 +f 4706//31761 7091//31762 7037//31763 +f 3910//31764 4257//31765 1150//31766 +f 3089//31767 3576//31768 457//31769 +f 605//31770 5012//31770 2005//31770 +f 3872//31771 3823//31772 1809//31772 +f 814//31773 5099//31774 5345//31775 +f 5501//31776 5083//31776 2619//31776 +f 4680//31777 496//31777 1047//31778 +f 629//31779 3534//31779 3161//31780 +f 2520//31781 4224//31782 2312//31783 +f 1820//31784 3731//31784 4391//31785 +f 5094//31786 3104//31786 1995//31787 +f 2928//31788 3970//31789 4921//31790 +f 646//31791 4797//31792 2847//31793 +f 6848//31794 7331//31795 7255//31796 +f 1569//31797 4720//31798 1348//31799 +f 1409//31800 4746//31801 4096//31802 +f 1606//31803 1507//31804 4263//31805 +f 3314//31806 1230//31807 862//31806 +f 7130//31808 7256//31809 7168//31810 +f 581//31811 3619//31812 2576//31812 +f 4932//31813 3099//31814 1486//31815 +f 2019//31816 3233//31816 3643//31817 +f 3911//31818 6707//31819 6933//31820 +f 1396//31821 5287//31822 2190//31823 +f 7361//31824 7173//31825 7293//31826 +f 4281//31827 5660//31828 4289//31829 +f 2578//31830 2536//31831 2141//31832 +f 3850//31833 2493//31834 5265//31835 +f 7258//31836 7178//31837 7261//31838 +f 5748//31839 2104//31840 322//31841 +f 7042//31842 6952//31843 7295//31844 +f 447//31845 7093//31846 7174//31847 +f 6899//31848 7384//31849 7130//31849 +f 7176//31850 7259//31851 7333//31852 +f 248//31853 2981//31854 7139//31855 +f 3682//31856 4784//31857 4249//31856 +f 81//31858 1509//31859 1510//31860 +f 1724//31861 5434//31862 2539//31862 +f 891//31863 1747//31863 369//31863 +f 6706//31864 7081//31865 6784//31866 +f 3639//31867 3870//31868 2965//31869 +f 3013//31870 2503//31870 4465//31870 +f 2073//31871 1418//31872 1152//31873 +f 1662//31874 4845//31874 4045//31874 +f 2950//31875 1276//31875 5207//31875 +f 4265//31876 464//31877 526//31878 +f 3715//31879 4065//31880 3334//31881 +f 4727//31882 3907//31883 4098//31884 +f 1975//31885 915//31886 1462//31887 +f 7221//31888 7179//31889 7335//31888 +f 188//31890 193//31891 5690//31892 +f 7296//31893 7298//31894 7219//31895 +f 3025//31896 5012//31897 4145//31898 +f 7133//31899 2234//31900 5546//31901 +f 7222//31902 7224//31903 7262//31904 +f 1313//31905 756//31906 5120//31907 +f 2612//31908 2745//31909 5089//31910 +f 7367//31911 7132//31912 7298//31913 +f 7334//31914 7223//31915 7225//31916 +f 1535//31917 1040//31918 1155//31919 +f 4659//31920 1150//31920 720//31921 +f 3287//31922 3868//31923 3679//31924 +f 7132//31925 7367//31925 7182//31926 +f 7297//31927 7180//31928 7299//31929 +f 3274//31930 4302//31931 3450//31932 +f 2663//31933 53//31934 3427//31935 +f 7181//31936 7386//31937 7300//31938 +f 1057//31939 4719//31940 4794//31940 +f 7181//31941 7300//31942 7302//31943 +f 3281//31944 650//31945 767//31946 +f 1272//31947 4548//31947 4289//31947 +f 3293//31948 1543//31949 4484//31950 +f 7336//31951 7299//31952 7302//31953 +f 1423//31954 5506//31954 7242//31954 +f 1370//31955 3464//31956 3361//31957 +f 5834//31958 640//31959 5307//31960 +f 7301//31961 7263//31962 7182//31961 +f 3757//31963 620//31964 4215//31964 +f 7134//31965 6170//31966 7224//31967 +f 5050//31968 2275//31968 1369//31969 +f 1785//31970 4136//31971 4383//31971 +f 7337//31972 7226//31973 6994//31974 +f 817//31975 1899//31976 814//31977 +f 7304//31978 7048//31979 7136//31980 +f 5799//31981 7265//31982 6995//31983 +f 7304//31984 7136//31985 7338//31986 +f 7137//31987 7305//31988 6995//31988 +f 2635//31989 1878//31989 3086//31990 +f 7303//31991 7308//31991 7096//31992 +f 7228//31993 7338//31993 7136//31994 +f 7306//31995 6764//31996 7051//31997 +f 7306//31998 3429//31999 6764//32000 +f 2455//32001 3273//32002 2202//32003 +f 5312//32004 28//32004 3308//32004 +f 7309//32005 7187//32006 7186//32007 +f 4107//32008 1118//32009 3406//32010 +f 3151//32011 1631//32012 4756//32013 +f 1055//32014 4559//32014 1302//32014 +f 2241//32015 4095//32016 871//32017 +f 7341//32018 7189//32019 7231//32020 +f 7342//32021 7141//32022 7098//32022 +f 1959//32023 5361//32024 2127//32025 +f 4478//32026 7056//32027 6859//32028 +f 7058//32029 7392//32029 7342//32029 +f 2720//32030 387//32031 1633//32032 +f 6912//32033 7142//32033 2801//32033 +f 7270//32034 7191//32035 7190//32036 +f 3007//32037 3471//32037 786//32037 +f 7270//32038 7192//32039 7189//32039 +f 4752//32040 809//32041 5077//32040 +f 7269//32042 7312//32042 7343//32042 +f 3070//32043 2135//32044 153//32045 +f 1715//32046 1714//32047 1279//32048 +f 738//32049 2086//32050 180//32051 +f 2436//32052 200//32053 201//32054 +f 7144//32055 7315//32056 7374//32056 +f 7144//32057 7374//32058 7274//32057 +f 1583//32059 3958//32060 5325//32061 +f 4701//32062 7311//32063 7062//32062 +f 7314//32064 7272//32064 7063//32065 +f 7061//32066 7344//32067 7064//32068 +f 2175//32069 963//32069 1735//32069 +f 3417//32070 1811//32071 2713//32072 +f 3753//32073 1354//32074 2221//32075 +f 3344//32076 76//32077 1008//32078 +f 2902//32079 2662//32079 5339//32079 +f 7206//32080 6918//32081 7316//32082 +f 3717//32083 5560//32084 4401//32085 +f 6917//32086 7346//32087 7316//32088 +f 7345//32089 7232//32090 7106//32091 +f 3020//32092 1590//32093 1591//32094 +f 5098//32095 4066//32096 2144//32097 +f 1563//32098 5319//32099 419//32098 +f 5026//32100 3061//32101 4576//32102 +f 7196//32103 7347//32104 7195//32105 +f 3019//32106 2652//32107 3633//32108 +f 3245//32109 2527//32109 5580//32110 +f 6967//32111 7276//32112 7196//32113 +f 238//32114 3490//32114 3339//32114 +f 1446//32115 1153//32115 2827//32115 +f 383//32116 3705//32116 2678//32116 +f 7319//32117 7375//32118 7199//32119 +f 7145//32120 7199//32120 7278//32120 +f 102//32121 1494//32122 1927//32123 +f 5188//32124 5189//32124 114//32125 +f 7007//32126 7348//32126 5819//32126 +f 3582//32127 2090//32128 3583//32129 +f 4281//32130 4416//32130 2395//32130 +f 105//32131 4902//32132 867//32133 +f 3595//32134 3518//32135 642//32136 +f 7198//32137 5819//32138 7321//32139 +f 7198//32140 6922//32141 5819//32142 +f 5458//32143 751//32144 1550//32145 +f 1470//32146 2920//32147 4031//32148 +f 7238//32149 6738//32149 7073//32150 +f 551//32151 550//32152 5596//32153 +f 988//32154 5367//32155 2439//32156 +f 2068//32157 3496//32158 5726//32159 +f 7148//32160 6866//32161 7280//32162 +f 7377//32163 7350//32163 7151//32164 +f 2793//32165 210//32166 1588//32167 +f 2032//32168 7015//32169 4086//32170 +f 2752//32171 7109//32171 7074//32171 +f 7377//32172 7151//32173 7075//32174 +f 7377//32175 7075//32176 7152//32176 +f 7281//32177 7109//32177 2752//32178 +f 4668//32179 3000//32180 752//32181 +f 2736//32182 4052//32183 5399//32184 +f 6779//32185 6731//32186 7153//32187 +f 2466//32188 3779//32188 170//32188 +f 2542//32189 2184//32190 3837//32190 +f 2082//32191 2851//32192 2389//32193 +f 969//32194 4643//32195 181//32196 +f 7156//32197 7352//32198 7078//32199 +f 3621//32200 117//32201 4556//32202 +f 4104//32203 2882//32204 1987//32205 +f 5048//32206 4818//32206 2834//32207 +f 2971//32208 7243//32209 7083//32208 +f 1008//32210 76//32211 3520//32210 +f 1657//32212 4552//32213 3378//32214 +f 2475//32215 4082//32216 1084//32217 +f 2204//32218 4933//32219 3732//32220 +f 1361//32221 4863//32222 1761//32221 +f 5830//32223 1564//32223 3627//32224 +f 4932//32225 3466//32226 3284//32227 +f 4332//32228 888//32229 2366//32230 +f 3464//32231 1370//32231 1526//32231 +f 2943//32232 951//32233 4318//32234 +f 2942//32235 526//32236 3739//32237 +f 602//32238 5690//32238 3013//32238 +f 4479//32239 4881//32240 899//32241 +f 6977//32242 6615//32243 6680//32244 +f 3977//32245 1308//32246 993//32246 +f 401//32247 4503//32248 3706//32247 +f 7020//32249 6660//32250 945//32251 +f 4394//32252 3771//32253 3398//32254 +f 2072//32255 3891//32256 4935//32256 +f 3102//32257 4710//32258 2778//32259 +f 6663//32260 7161//32261 7355//32262 +f 4412//32263 3443//32264 2774//32265 +f 2597//32266 4779//32267 3049//32268 +f 1763//32269 940//32269 197//32270 +f 1039//32271 4430//32272 277//32272 +f 1535//32273 2354//32273 1290//32273 +f 7246//32274 7205//32275 7356//32276 +f 306//32277 2075//32278 2318//32279 +f 7285//32280 7246//32281 7356//32282 +f 1789//32283 7117//32283 3568//32283 +f 2014//32284 3069//32285 146//32286 +f 3512//32287 4815//32288 2648//32289 +f 1500//32290 6831//32290 5574//32290 +f 7247//32291 7323//32291 7324//32291 +f 149//32292 1233//32292 5382//32292 +f 7162//32293 7380//32294 7325//32294 +f 7397//32295 6751//32295 7325//32295 +f 7397//32296 7357//32297 6751//32298 +f 6751//32299 7357//32300 6980//32299 +f 2518//32301 5420//32302 3099//32303 +f 2135//32304 2417//32305 5223//32306 +f 4261//32307 389//32308 1871//32309 +f 5327//32310 5984//32311 5345//32311 +f 4122//32312 1350//32313 4104//32314 +f 1627//32315 6055//32315 5485//32315 +f 1576//32316 3749//32317 412//32318 +f 23//32319 4206//32320 5412//32321 +f 1770//32322 3476//32323 177//32324 +f 6882//32325 6622//32326 6669//32327 +f 6882//32328 6669//32329 5844//32330 +f 1770//32331 3091//32332 3476//32333 +f 1535//32334 4457//32335 1536//32336 +f 645//32337 5//32337 2099//32337 +f 354//32338 2587//32338 3405//32338 +f 6981//32339 7210//32340 6381//32341 +f 391//32342 1784//32343 3179//32344 +f 860//32345 4382//32346 917//32347 +f 3972//32348 4691//32349 987//32350 +f 6752//32351 7027//32352 4175//32353 +f 7027//32354 6945//32355 4981//32356 +f 2782//32357 3770//32358 4648//32359 +f 851//32360 2920//32361 1470//32360 +f 5268//32362 6671//32362 7250//32362 +f 4755//32363 7375//32364 1311//32365 +f 6504//32366 6754//32366 7288//32366 +f 1497//32367 4498//32368 5567//32369 +f 4204//32370 1774//32371 3768//32372 +f 1264//32373 715//32374 1953//32375 +f 7251//32376 7250//32377 6671//32378 +f 95//32379 4791//32380 4632//32381 +f 2360//32382 2585//32382 1162//32383 +f 290//32384 4642//32385 3193//32384 +f 3914//32386 5104//32386 992//32387 +f 211//32388 2480//32389 467//32390 +f 5329//32391 151//32392 6004//32393 +f 7032//32394 7290//32394 7211//32394 +f 7289//32395 6984//32396 6947//32397 +f 5005//32398 1653//32399 3548//32400 +f 7326//32401 1687//32402 7034//32403 +f 2063//32404 2152//32404 4595//32405 +f 3896//32406 4278//32407 2184//32408 +f 2948//32409 5559//32410 4475//32411 +f 7290//32412 7090//32413 6949//32414 +f 7290//32415 6949//32416 7291//32417 +f 4301//32418 5068//32419 4834//32420 +f 4077//32421 2035//32422 2710//32423 +f 3687//32424 3566//32425 3943//32426 +f 3322//32427 3892//32428 197//32427 +f 4231//32429 122//32430 2786//32431 +f 7327//32432 7165//32433 7359//32433 +f 95//32434 1182//32435 4207//32435 +f 1543//32436 1050//32437 5486//32438 +f 7316//32439 1387//32440 2165//32441 +f 7328//32442 7037//32443 7253//32444 +f 3422//32445 4014//32446 4193//32447 +f 376//32448 1099//32448 4117//32448 +f 4690//32449 2884//32450 3279//32451 +f 7123//32452 7165//32452 7327//32452 +f 7330//32453 6897//32454 7124//32453 +f 1841//32455 2861//32455 3590//32455 +f 3143//32456 793//32457 1052//32457 +f 2027//32458 1280//32459 91//32460 +f 7213//32461 7041//32461 7123//32461 +f 3013//32462 1281//32463 1870//32464 +f 4307//32465 1700//32465 920//32466 +f 2343//32467 1088//32468 2233//32469 +f 1036//32470 5221//32471 3229//32472 +f 3250//32473 3573//32474 2049//32475 +f 57//32476 1471//32477 2800//32478 +f 5159//32479 306//32480 2318//32481 +f 7331//32482 6848//32483 7044//32482 +f 2111//32484 3819//32485 2750//32486 +f 7332//32487 7331//32488 7044//32489 +f 5063//32490 4612//32491 4497//32492 +f 7354//32493 2705//32494 5776//32495 +f 5224//32496 3686//32497 651//32498 +f 3069//32499 2055//32499 4731//32499 +f 1064//32500 445//32500 2849//32500 +f 5367//32501 3919//32502 2439//32503 +f 7213//32504 3166//32505 7171//32506 +f 2555//32507 3374//32508 1195//32508 +f 3167//32509 3037//32510 514//32511 +f 2515//32512 1859//32513 127//32514 +f 4233//32515 2180//32516 5106//32517 +f 6952//32518 7292//32519 7295//32520 +f 2222//32521 1800//32522 592//32523 +f 7175//32524 6989//32525 7293//32526 +f 3834//32527 983//32528 2709//32528 +f 6899//32529 7218//32530 7384//32531 +f 3720//32532 6989//32533 7294//32534 +f 1684//32535 414//32536 1046//32537 +f 4777//32538 1488//32538 3559//32539 +f 2973//32540 4732//32540 2974//32540 +f 479//32541 3675//32542 3112//32541 +f 3971//32543 1986//32544 1867//32545 +f 7260//32546 7042//32546 7295//32547 +f 4823//32548 1421//32549 700//32550 +f 4821//32551 1810//32552 7350//32553 +f 7294//32554 7215//32555 7365//32556 +f 128//32557 755//32558 1963//32559 +f 1230//32560 4024//32560 196//32560 +f 1541//32561 4141//32562 1540//32563 +f 306//32564 343//32565 4323//32565 +f 457//32566 3576//32566 2335//32566 +f 7261//32567 7217//32568 4347//32569 +f 7296//32570 7260//32571 7366//32571 +f 3628//32572 5158//32573 1729//32574 +f 3436//32575 1498//32575 5640//32576 +f 2235//32577 2305//32577 3479//32577 +f 422//32578 335//32579 2655//32580 +f 3886//32581 928//32582 4231//32583 +f 4437//32584 2336//32584 1457//32584 +f 2907//32585 2019//32585 4270//32586 +f 7298//32587 7296//32588 7409//32588 +f 1894//32589 819//32590 3621//32591 +f 380//32592 1713//32593 2738//32594 +f 4434//32595 115//32595 685//32596 +f 2985//32597 4263//32598 713//32599 +f 2998//32600 1382//32601 5653//32602 +f 7225//32603 7369//32604 7368//32605 +f 1341//32606 1511//32606 4707//32607 +f 1568//32608 3947//32609 526//32610 +f 2487//32611 4047//32612 1654//32613 +f 1191//32614 2890//32614 1229//32614 +f 2659//32615 5045//32616 2905//32617 +f 513//32618 3560//32619 3746//32620 +f 149//32621 2814//32622 1233//32623 +f 4794//32624 1117//32625 1057//32626 +f 2155//32627 5782//32628 5062//32629 +f 4950//32630 4881//32631 4479//32631 +f 368//32632 248//32633 2661//32634 +f 2831//32635 1895//32635 1237//32635 +f 7308//32636 7303//32637 7370//32638 +f 4461//32639 3775//32640 555//32641 +f 398//32642 2302//32643 2794//32643 +f 6994//32644 7266//32645 7337//32645 +f 7226//32646 7337//32647 439//32648 +f 7265//32649 5799//32649 7387//32649 +f 1041//32650 4343//32651 4872//32652 +f 1365//32653 7348//32653 1275//32654 +f 7264//32655 7306//32656 7051//32657 +f 7050//32658 7226//32658 7267//32658 +f 5799//32659 6995//32660 7305//32661 +f 523//32662 2699//32662 3998//32662 +f 7307//32663 7338//32664 7228//32665 +f 4861//32666 7268//32667 7308//32667 +f 7186//32668 7268//32669 4861//32670 +f 7186//32671 4861//32672 7371//32673 +f 4659//32674 720//32675 3006//32676 +f 7309//32677 7186//32678 7371//32679 +f 3342//32680 3735//32680 279//32680 +f 488//32681 493//32682 1607//32682 +f 7229//32683 7305//32684 7137//32685 +f 249//32686 2847//32687 2142//32688 +f 250//32689 2847//32690 249//32691 +f 3741//32692 151//32693 2825//32694 +f 7339//32695 7097//32696 7309//32695 +f 3018//32697 1096//32698 5648//32699 +f 2670//32700 5226//32700 2483//32701 +f 7231//32702 7339//32703 7390//32702 +f 3580//32704 878//32705 1286//32706 +f 3944//32707 3704//32708 2848//32709 +f 7341//32710 7231//32711 7340//32712 +f 973//32713 5162//32714 4602//32715 +f 3706//32716 1022//32717 3861//32718 +f 2379//32719 2700//32720 2702//32719 +f 7342//32721 7372//32722 7141//32722 +f 2826//32723 3228//32724 4398//32725 +f 4593//32726 2466//32726 3491//32726 +f 5021//32727 4236//32728 4433//32727 +f 5227//32729 1117//32730 4794//32729 +f 2651//32731 3210//32732 3451//32733 +f 7392//32734 7058//32735 7269//32736 +f 5236//32737 3654//32737 738//32738 +f 7271//32739 7191//32740 7373//32740 +f 780//32741 1005//32742 2192//32741 +f 877//32743 5067//32744 22//32745 +f 4549//32746 4738//32747 2989//32748 +f 2550//32749 1911//32750 1462//32751 +f 2168//32752 3184//32753 198//32753 +f 7271//32754 7374//32755 7143//32756 +f 2195//32757 5738//32757 729//32758 +f 1111//32759 2837//32760 3858//32759 +f 4029//32761 3618//32761 2882//32761 +f 7275//32762 6913//32763 76//32764 +f 7315//32765 7143//32766 7374//32767 +f 4585//32768 3505//32769 4194//32770 +f 7394//32771 7272//32772 7314//32773 +f 4758//32774 4860//32774 3912//32774 +f 2729//32775 2730//32776 5099//32777 +f 1611//32778 2976//32779 261//32780 +f 2743//32781 4394//32782 1335//32782 +f 5272//32783 558//32784 5373//32785 +f 3520//32786 972//32787 3546//32788 +f 3875//32789 1815//32789 1968//32789 +f 2650//32790 2080//32791 2665//32792 +f 1397//32793 2397//32794 2398//32795 +f 296//32796 3217//32797 2001//32798 +f 7346//32799 6917//32799 7275//32799 +f 478//32800 3635//32801 3753//32801 +f 7314//32802 7195//32803 7347//32804 +f 3199//32805 898//32806 3700//32807 +f 343//32808 2146//32809 7406//32810 +f 3326//32811 3681//32812 1051//32813 +f 7276//32814 7318//32814 7347//32815 +f 4159//32816 1954//32817 93//32816 +f 7375//32818 7320//32819 7199//32820 +f 4187//32821 4337//32822 3480//32821 +f 473//32823 3723//32824 1151//32824 +f 2566//32825 344//32826 5376//32827 +f 2672//32828 247//32829 503//32830 +f 7318//32831 7276//32832 7279//32833 +f 7276//32834 7347//32835 7196//32836 +f 7199//32837 7011//32837 7319//32838 +f 7236//32839 7108//32839 7319//32839 +f 3160//32840 2994//32841 1752//32840 +f 7011//32842 7236//32843 7319//32844 +f 2871//32845 1118//32845 157//32845 +f 7317//32846 7147//32847 7349//32848 +f 7237//32849 7146//32850 7198//32851 +f 429//32852 430//32853 982//32854 +f 7073//32855 7237//32856 7238//32857 +f 2640//32858 1905//32859 1332//32860 +f 7014//32861 524//32862 3931//32863 +f 470//32864 1415//32864 445//32864 +f 2195//32865 3389//32866 407//32867 +f 4534//32868 1172//32869 2041//32870 +f 4270//32871 4049//32871 3343//32872 +f 5707//32873 2763//32874 67//32875 +f 576//32876 1472//32877 2057//32878 +f 7377//32879 6926//32879 7322//32880 +f 804//32881 4621//32882 179//32883 +f 3972//32884 4406//32884 2346//32884 +f 469//32885 4906//32886 3216//32885 +f 3968//32887 3699//32888 2012//32889 +f 4256//32890 2840//32891 430//32892 +f 7157//32893 2074//32894 7282//32895 +f 2961//32896 3159//32897 3311//32898 +f 7352//32899 7156//32900 7353//32901 +f 5946//32902 5699//32903 3888//32904 +f 3046//32905 2415//32905 3652//32905 +f 5421//32906 1461//32907 619//32908 +f 4154//32909 5382//32909 3172//32910 +f 7083//32911 7019//32912 7113//32913 +f 2187//32914 4260//32915 5654//32916 +f 1292//32917 4114//32917 432//32917 +f 930//32918 3281//32919 542//32919 +f 1359//32920 620//32921 1849//32922 +f 251//32923 540//32923 3814//32924 +f 4047//32925 4808//32925 2176//32925 +f 7245//32926 6656//32926 5274//32927 +f 3170//32928 3550//32929 4838//32930 +f 1157//32931 789//32932 2677//32933 +f 1805//32934 2930//32935 2581//32936 +f 7379//32937 7205//32938 7284//32939 +f 1309//32940 703//32941 4909//32940 +f 7024//32942 7284//32943 6529//32944 +f 6530//32945 7355//32946 7024//32947 +f 2124//32948 2031//32948 2888//32949 +f 3495//32950 105//32951 4808//32951 +f 296//32952 2001//32953 2111//32954 +f 2647//32955 4397//32956 2192//32956 +f 7285//32957 7356//32958 7208//32959 +f 2054//32960 4082//32961 75//32962 +f 6831//32963 1500//32964 7025//32963 +f 1500//32965 3660//32966 7025//32967 +f 4497//32968 3602//32969 5602//32970 +f 5279//32971 3043//32971 1474//32971 +f 7324//32972 7380//32973 7162//32974 +f 1766//32975 3232//32975 450//32975 +f 6491//32976 7289//32977 874//32978 +f 1019//32979 289//32979 3540//32979 +f 296//32980 2111//32981 2750//32982 +f 1019//32983 2348//32984 289//32985 +f 1413//32986 4600//32987 3418//32988 +f 2429//32989 3571//32990 1796//32991 +f 2793//32992 2594//32993 210//32994 +f 6712//32995 7026//32996 3214//32997 +f 7210//32998 7088//32999 7249//33000 +f 1577//33001 2052//33002 4365//33003 +f 4493//33004 1407//33005 3090//33005 +f 36//33006 6406//33007 6124//33008 +f 470//33009 1064//33010 882//33011 +f 5268//33012 7089//33013 6837//33014 +f 981//33015 3889//33015 1805//33016 +f 4698//33017 6752//33018 4175//33019 +f 5361//33020 4066//33021 635//33022 +f 3483//33023 4782//33024 5501//33025 +f 7288//33026 6754//33026 7031//33027 +f 3801//33028 628//33028 3322//33028 +f 1873//33029 1125//33030 678//33031 +f 2287//33032 590//33033 1743//33034 +f 3730//33035 3077//33035 3074//33036 +f 4998//33037 4562//33038 4051//33037 +f 4131//33039 3295//33040 2282//33041 +f 1408//33042 5580//33043 3233//33044 +f 4687//33045 3924//33046 502//33047 +f 3016//33048 3920//33049 1554//33050 +f 4185//33051 2103//33051 1139//33052 +f 2117//33053 1948//33054 5087//33055 +f 7326//33056 7033//33057 6841//33058 +f 982//33059 4635//33060 3387//33061 +f 7164//33062 6792//33063 4828//33064 +f 1657//33065 1214//33065 5943//33065 +f 7381//33066 6984//33066 6491//33066 +f 5375//33067 1059//33068 972//33069 +f 2282//33070 3295//33070 3817//33070 +f 3242//33071 2782//33071 3350//33071 +f 6988//33072 7252//33073 7291//33074 +f 4706//33075 7037//33076 3259//33077 +f 2928//33078 1882//33078 1373//33079 +f 7329//33080 7122//33081 7105//33082 +f 3259//33083 7037//33084 7328//33085 +f 7122//33086 7329//33087 7038//33086 +f 6676//33088 7382//33089 7166//33090 +f 1152//33091 569//33092 2073//33093 +f 7038//33094 7360//33095 7125//33095 +f 1858//33096 3595//33097 642//33098 +f 1575//33099 632//33100 4850//33101 +f 2366//33102 4509//33103 2902//33104 +f 5516//33105 3131//33106 3593//33107 +f 3361//33108 1745//33108 1460//33109 +f 4962//33110 470//33110 5331//33110 +f 523//33111 666//33112 3315//33113 +f 7383//33114 7257//33115 7258//33116 +f 104//33117 3400//33118 2025//33119 +f 469//33120 2143//33121 2496//33122 +f 1170//33123 3038//33124 3167//33125 +f 7332//33126 7173//33127 7361//33128 +f 4866//33129 2631//33130 4704//33131 +f 7043//33132 7126//33133 4404//33133 +f 4046//33134 4363//33135 3349//33136 +f 818//33137 3916//33138 1528//33139 +f 3374//33140 1018//33140 3605//33140 +f 273//33141 5082//33142 288//33143 +f 447//33144 615//33145 7170//33146 +f 7384//33147 7362//33147 7130//33147 +f 7333//33148 7259//33148 7384//33149 +f 2220//33150 3815//33150 4159//33151 +f 3175//33152 890//33153 4349//33153 +f 7384//33154 7218//33155 7333//33156 +f 1446//33157 4319//33158 2807//33159 +f 7363//33160 7295//33161 7292//33162 +f 2290//33163 556//33164 5275//33165 +f 4317//33166 168//33166 2306//33166 +f 5213//33167 1989//33167 1567//33167 +f 949//33168 3000//33169 4979//33170 +f 1561//33171 1998//33171 1376//33171 +f 3696//33172 3597//33172 662//33172 +f 7295//33173 7366//33174 7260//33175 +f 7220//33176 7335//33176 7333//33177 +f 2207//33178 7261//33179 4347//33180 +f 742//33181 1082//33182 2239//33183 +f 7220//33184 7333//33184 7218//33185 +f 7333//33186 7335//33187 7176//33188 +f 190//33189 2947//33190 4484//33191 +f 7365//33192 7215//33192 7262//33192 +f 2925//33193 3162//33194 3930//33195 +f 964//33196 7365//33197 7262//33198 +f 4347//33199 7217//33199 7297//33199 +f 964//33200 7262//33200 7224//33201 +f 7334//33202 7220//33203 7223//33204 +f 225//33205 4223//33206 3674//33207 +f 7367//33208 7298//33209 7409//33210 +f 3042//33211 2834//33212 214//33213 +f 7225//33214 7368//33215 7334//33216 +f 3324//33217 3414//33218 1910//33219 +f 4687//33220 4688//33221 3010//33222 +f 4257//33223 2062//33224 820//33225 +f 4427//33226 2656//33227 3362//33228 +f 4454//33229 2126//33229 1848//33230 +f 4094//33231 4260//33232 1655//33233 +f 7386//33234 7221//33235 7335//33236 +f 7386//33237 7335//33238 7385//33239 +f 1973//33240 2618//33241 1210//33242 +f 3560//33243 2049//33243 3746//33243 +f 4444//33244 810//33245 1498//33246 +f 5566//33247 7303//33248 7263//33248 +f 7411//33249 7225//33250 7135//33251 +f 4389//33252 4976//33253 2898//33254 +f 602//33255 1862//33256 1489//33256 +f 2665//33257 2036//33258 3757//33258 +f 3078//33259 7299//33259 3701//33259 +f 3582//33260 4707//33261 2090//33262 +f 3320//33263 655//33264 3852//33265 +f 7387//33266 7266//33267 7265//33268 +f 174//33269 299//33270 6170//33271 +f 1877//33272 921//33273 3202//33274 +f 1524//33275 1878//33276 4831//33277 +f 1582//33278 160//33279 520//33280 +f 439//33281 7267//33281 7226//33281 +f 5799//33282 7305//33283 1318//33284 +f 6997//33285 1699//33285 7229//33286 +f 4223//33287 225//33288 4346//33287 +f 966//33289 1236//33290 2050//33291 +f 2617//33292 3991//33293 5750//33293 +f 919//33294 1782//33295 4255//33296 +f 2945//33297 3079//33298 1951//33299 +f 7340//33300 7231//33300 7390//33300 +f 7372//33301 7230//33302 7141//33303 +f 7372//33304 7342//33305 7391//33306 +f 3798//33307 1293//33307 2202//33307 +f 446//33308 1362//33309 426//33310 +f 3176//33311 2818//33312 1346//33313 +f 7189//33314 7341//33315 7270//33316 +f 6859//33317 6964//33318 7311//33319 +f 7191//33320 3879//33321 7373//33322 +f 2710//33323 2035//33324 2393//33325 +f 1497//33326 2626//33326 754//33326 +f 323//33327 4509//33327 378//33327 +f 7269//33328 7343//33329 7392//33330 +f 6859//33331 7311//33332 163//33333 +f 1390//33334 2490//33335 325//33336 +f 4632//33337 2912//33338 1949//33337 +f 7374//33339 7271//33340 7373//33341 +f 815//33342 2342//33343 3032//33344 +f 2925//33345 3930//33345 3227//33346 +f 7374//33347 7404//33348 7274//33349 +f 5375//33350 6913//33351 7004//33351 +f 4684//33352 3227//33353 3930//33354 +f 4017//33355 1294//33355 2786//33355 +f 1664//33356 1663//33357 1025//33358 +f 873//33359 5140//33360 2944//33361 +f 7272//33362 7394//33363 7312//33364 +f 1377//33365 4492//33365 2794//33365 +f 2946//33366 4663//33366 191//33366 +f 1117//33367 2084//33368 1833//33369 +f 3608//33370 3784//33370 1072//33370 +f 4250//33371 4765//33372 4120//33372 +f 4184//33373 1175//33374 422//33373 +f 2971//33375 6230//33376 3534//33377 +f 2005//33378 4345//33378 4595//33379 +f 7064//33380 7344//33381 3657//33382 +f 5030//33383 3424//33383 3629//33383 +f 7277//33384 7232//33385 3822//33385 +f 1159//33386 1610//33387 1812//33388 +f 7376//33389 7412//33390 7318//33391 +f 5394//33392 4311//33393 2868//33394 +f 4372//33395 4482//33396 148//33397 +f 892//33398 841//33399 3530//33399 +f 4098//33400 3907//33401 2894//33402 +f 3384//33403 364//33404 363//33405 +f 5123//33406 5331//33406 904//33406 +f 7317//33407 2136//33408 4701//33409 +f 1920//33410 1036//33411 3305//33412 +f 1277//33413 503//33414 2212//33415 +f 3635//33416 3360//33417 4744//33418 +f 41//33419 631//33420 3677//33419 +f 646//33421 2847//33422 250//33422 +f 7320//33423 7279//33424 7278//33425 +f 1627//33426 4683//33427 190//33428 +f 2487//33429 1686//33429 606//33429 +f 1353//33430 2056//33431 3118//33432 +f 623//33433 5124//33434 1750//33435 +f 5547//33436 2139//33437 641//33438 +f 7362//33439 2273//33440 919//33441 +f 783//33442 5388//33442 3459//33443 +f 7149//33444 7238//33445 7014//33446 +f 851//33447 5522//33448 5286//33449 +f 4086//33450 7150//33451 3931//33452 +f 1598//33453 3111//33454 5390//33455 +f 1194//33456 1108//33457 2544//33458 +f 7351//33459 7076//33459 63//33459 +f 1275//33460 5141//33460 4965//33460 +f 6731//33461 7076//33462 7351//33463 +f 5612//33464 3828//33464 4559//33465 +f 1216//33466 7153//33467 6731//33468 +f 5121//33469 1166//33470 64//33471 +f 7153//33472 3155//33472 7111//33473 +f 2656//33474 1441//33474 2717//33474 +f 3659//33475 235//33475 3084//33476 +f 7157//33477 7154//33477 2074//33477 +f 3305//33478 1512//33479 1920//33480 +f 2436//33481 761//33482 200//33483 +f 4620//33484 2995//33484 1828//33485 +f 5226//33486 3743//33486 4196//33487 +f 1769//33488 4155//33488 3758//33488 +f 456//33489 3492//33489 4721//33489 +f 3846//33490 4348//33491 4119//33490 +f 5183//33492 2565//33493 1952//33494 +f 3154//33495 4671//33495 1682//33495 +f 1290//33496 1116//33497 2952//33498 +f 4529//33499 4671//33500 3154//33501 +f 5545//33502 260//33503 532//33504 +f 7243//33505 7378//33506 7114//33507 +f 3553//33508 3633//33509 4442//33510 +f 1387//33511 4368//33512 2165//33513 +f 79//33514 110//33515 4709//33516 +f 4056//33517 4841//33518 2820//33518 +f 5776//33519 2705//33519 4879//33519 +f 3427//33520 42//33521 813//33520 +f 3561//33522 2986//33523 2413//33524 +f 1231//33525 1680//33526 776//33527 +f 4829//33528 1077//33528 2393//33529 +f 302//33530 1223//33531 400//33532 +f 5966//33533 7355//33534 7161//33535 +f 945//33536 6662//33537 1789//33537 +f 4018//33538 6615//33539 7116//33540 +f 1871//33541 3361//33542 3464//33541 +f 3598//33543 359//33544 3986//33544 +f 7396//33545 7205//33546 7379//33547 +f 2778//33548 4286//33548 1101//33548 +f 897//33549 4145//33550 5110//33551 +f 420//33552 390//33552 4265//33553 +f 3163//33554 5657//33555 751//33556 +f 5314//33557 140//33558 4003//33559 +f 7323//33560 7208//33560 7356//33560 +f 7323//33561 7356//33562 7407//33563 +f 3198//33564 1445//33565 3101//33566 +f 3606//33567 6979//33568 4395//33569 +f 5211//33570 2087//33571 4931//33572 +f 1600//33573 3033//33574 4545//33575 +f 7323//33576 7407//33577 7324//33578 +f 2270//33579 3438//33580 1990//33581 +f 2440//33582 3875//33582 1732//33582 +f 2696//33583 2539//33584 5434//33585 +f 1313//33586 6712//33586 3214//33586 +f 2300//33587 7248//33588 7120//33589 +f 6124//33590 6713//33591 5719//33590 +f 2127//33592 3488//33593 1887//33594 +f 2170//33595 1351//33596 4403//33597 +f 2906//33598 1000//33598 1977//33598 +f 1574//33599 5305//33600 1479//33601 +f 7286//33602 6981//33603 6381//33602 +f 872//33604 1174//33605 4402//33606 +f 1112//33607 7286//33607 6381//33608 +f 5566//33609 1113//33610 7370//33611 +f 890//33612 2901//33613 5596//33612 +f 5599//33614 4981//33615 6945//33616 +f 4304//33617 2615//33618 1546//33619 +f 4233//33620 5106//33621 746//33622 +f 7358//33623 7287//33624 7211//33625 +f 6673//33626 7028//33627 2536//33628 +f 7031//33629 6624//33630 3876//33631 +f 647//33632 4440//33633 5331//33634 +f 7211//33635 7290//33635 4129//33635 +f 676//33636 54//33637 4152//33638 +f 7034//33639 7033//33639 7326//33639 +f 3197//33640 658//33641 3785//33642 +f 339//33643 2827//33644 1153//33645 +f 4066//33646 3302//33647 635//33646 +f 5633//33648 4482//33648 2868//33649 +f 996//33650 980//33651 4806//33652 +f 3725//33653 3997//33654 4114//33654 +f 413//33655 7035//33656 5255//33657 +f 1447//33658 3137//33659 4631//33659 +f 3838//33660 1091//33661 1674//33662 +f 4419//33663 2975//33664 183//33665 +f 3113//33666 406//33666 405//33666 +f 7164//33667 7105//33668 7122//33669 +f 7359//33670 7165//33670 7381//33670 +f 2933//33671 307//33671 468//33672 +f 4195//33673 1097//33674 7235//33673 +f 1227//33675 2220//33676 93//33677 +f 7330//33678 7252//33678 6897//33679 +f 870//33680 1525//33681 4361//33682 +f 5669//33683 4710//33683 4154//33683 +f 1844//33684 1144//33684 1301//33685 +f 6846//33686 7256//33687 6794//33688 +f 2290//33689 3367//33689 556//33689 +f 5518//33690 7327//33690 2079//33691 +f 660//33692 3172//33692 3299//33693 +f 5480//33694 1989//33695 1586//33696 +f 7038//33697 7400//33698 7360//33699 +f 2892//33700 7254//33701 6950//33702 +f 3131//33703 1323//33704 3593//33705 +f 3817//33706 2273//33707 7257//33708 +f 2050//33709 194//33709 966//33709 +f 4038//33710 713//33711 3091//33712 +f 3137//33713 598//33714 3264//33715 +f 2219//33716 2493//33716 2492//33717 +f 7292//33718 7125//33719 7360//33720 +f 1187//33721 3951//33722 1976//33723 +f 57//33724 2138//33724 1262//33724 +f 7259//33725 7257//33725 7362//33726 +f 5187//33727 7049//33727 7361//33727 +f 2674//33728 4826//33728 2418//33728 +f 7362//33729 7256//33729 7130//33729 +f 7293//33730 3720//33731 7401//33732 +f 7401//33733 7361//33734 7293//33734 +f 4404//33735 7172//33736 7043//33736 +f 5110//33737 3201//33738 897//33739 +f 3490//33740 1747//33741 891//33742 +f 7362//33743 7384//33744 7259//33745 +f 6989//33746 3720//33747 7293//33748 +f 2336//33749 4070//33750 2295//33751 +f 4312//33752 4239//33752 1953//33753 +f 2917//33754 1397//33754 2398//33755 +f 7170//33756 7093//33757 447//33758 +f 4773//33759 4460//33760 5205//33761 +f 734//33762 5222//33763 1516//33764 +f 2288//33765 447//33766 7174//33766 +f 2283//33767 610//33768 4355//33769 +f 3828//33770 2684//33771 2683//33772 +f 4401//33773 7364//33774 7261//33775 +f 7133//33776 3166//33776 1406//33777 +f 4738//33778 1700//33779 624//33780 +f 4361//33781 3129//33782 1271//33783 +f 1096//33784 174//33785 3513//33786 +f 7335//33787 7220//33788 7334//33789 +f 7366//33790 7409//33790 7296//33791 +f 5086//33792 1741//33792 4208//33792 +f 2234//33793 2272//33793 5546//33793 +f 7402//33794 7367//33795 7409//33796 +f 3113//33797 1098//33798 406//33799 +f 81//33800 6051//33801 1255//33802 +f 7334//33803 7368//33804 7335//33805 +f 2362//33806 580//33806 1323//33806 +f 4102//33807 3393//33808 1650//33809 +f 2743//33810 1335//33811 4547//33810 +f 7368//33812 7369//33813 7335//33812 +f 4257//33814 2490//33815 1390//33816 +f 136//33817 3678//33818 1486//33819 +f 7301//33820 7367//33821 7402//33822 +f 7385//33823 7335//33824 7369//33825 +f 7301//33826 7402//33826 7403//33826 +f 3026//33827 5221//33828 1363//33829 +f 3261//33830 1655//33831 5403//33832 +f 2736//33833 1891//33834 899//33835 +f 1660//33836 544//33837 4252//33838 +f 585//33839 7297//33839 7299//33840 +f 446//33841 1834//33842 1362//33843 +f 7263//33844 7301//33845 5566//33846 +f 5566//33847 7370//33847 7303//33847 +f 7411//33848 7135//33848 7304//33849 +f 3533//33850 3789//33851 3126//33852 +f 2632//33853 7302//33853 7300//33854 +f 72//33855 1431//33856 521//33857 +f 3425//33858 4718//33859 3095//33859 +f 3402//33860 3411//33861 2931//33860 +f 7336//33862 7302//33863 2632//33864 +f 3697//33865 3435//33866 1291//33867 +f 2374//33868 1636//33868 1637//33868 +f 1315//33869 4103//33870 828//33871 +f 3562//33872 4623//33873 5653//33873 +f 429//33874 4813//33875 4256//33876 +f 7338//33877 7307//33878 7388//33879 +f 1216//33880 6731//33880 1696//33881 +f 1318//33882 7305//33883 7229//33882 +f 1158//33884 4999//33884 728//33884 +f 746//33885 3060//33886 2795//33886 +f 4343//33887 1658//33888 4872//33887 +f 1595//33889 3705//33890 1989//33891 +f 3144//33892 1522//33892 2725//33893 +f 1649//33894 1093//33895 2129//33896 +f 7389//33897 7307//33898 5496//33899 +f 7140//33900 5496//33901 7307//33902 +f 5496//33903 7140//33904 7230//33905 +f 7339//33906 7309//33907 7390//33907 +f 7230//33908 7372//33909 5496//33910 +f 1655//33911 4260//33912 1396//33913 +f 2110//33914 4045//33914 4845//33915 +f 4218//33916 3567//33917 4046//33918 +f 910//33919 2476//33919 2833//33920 +f 1190//33921 1620//33922 1189//33923 +f 653//33924 2438//33925 5525//33926 +f 7342//33927 7392//33928 7391//33929 +f 2423//33930 589//33931 1883//33932 +f 2456//33933 831//33934 4757//33935 +f 4314//33936 995//33937 2595//33938 +f 3307//33939 4519//33940 7343//33941 +f 4154//33942 5081//33943 5669//33944 +f 4337//33945 2664//33946 3844//33946 +f 1651//33947 4157//33947 4629//33947 +f 7405//33948 7274//33949 7404//33950 +f 7374//33951 7373//33952 7404//33953 +f 1838//33954 3229//33955 5221//33956 +f 4607//33957 4075//33957 1430//33957 +f 7394//33958 5591//33959 7312//33960 +f 5083//33961 2226//33962 419//33961 +f 7274//33963 7405//33963 7345//33963 +f 7394//33964 7314//33964 7393//33964 +f 5174//33965 5095//33966 1890//33967 +f 7313//33968 5810//33968 7061//33968 +f 936//33969 3090//33970 3637//33971 +f 719//33972 2535//33973 1977//33974 +f 3918//33975 1873//33976 5590//33977 +f 56//33978 2103//33978 4185//33978 +f 2046//33979 3936//33980 2896//33981 +f 7345//33982 7405//33982 7232//33982 +f 3822//33983 7232//33983 7405//33983 +f 2986//33984 4449//33985 4044//33986 +f 3572//33987 114//33988 5189//33989 +f 7412//33990 7314//33990 7347//33991 +f 4704//33992 3784//33993 2039//33993 +f 7347//33994 7318//33994 7412//33994 +f 954//33995 1569//33995 1492//33995 +f 7318//33996 7320//33997 7376//33998 +f 4468//33999 313//34000 409//34001 +f 460//34002 3231//34003 3671//34004 +f 383//34005 3044//34006 2471//34007 +f 581//34008 4087//34009 3370//34010 +f 1741//34011 2481//34012 1746//34013 +f 7320//34014 7318//34015 7279//34016 +f 457//34017 519//34018 2831//34019 +f 1412//34020 4180//34021 497//34022 +f 1839//34023 7198//34024 7321//34025 +f 7198//34026 1839//34027 2457//34028 +f 2457//34029 3927//34030 7198//34031 +f 5403//34032 3260//34033 3261//34034 +f 1453//34035 8//34035 2680//34035 +f 7014//34036 7238//34037 3503//34038 +f 7014//34039 3139//34040 524//34041 +f 3059//34042 746//34043 5106//34042 +f 4788//34044 1207//34044 556//34044 +f 771//34045 772//34045 2491//34046 +f 2716//34047 801//34047 960//34047 +f 4142//34048 3043//34049 4668//34050 +f 660//34051 3171//34052 3172//34053 +f 685//34054 115//34055 2485//34056 +f 5499//34057 3792//34058 322//34059 +f 373//34060 4044//34061 2871//34062 +f 4227//34063 7216//34064 1621//34064 +f 3945//34065 7154//34066 7200//34067 +f 2074//34068 7154//34069 3945//34069 +f 26//34070 246//34071 668//34072 +f 3891//34073 7322//34074 7202//34075 +f 7202//34076 7322//34077 7155//34078 +f 7239//34079 3891//34080 7202//34081 +f 7240//34082 7016//34083 7395//34083 +f 7395//34084 7239//34085 7240//34086 +f 2028//34087 3887//34088 1143//34089 +f 7352//34090 7353//34091 5346//34092 +f 1371//34093 641//34094 1134//34095 +f 4802//34096 4490//34097 1336//34098 +f 7283//34099 4283//34100 7353//34099 +f 884//34101 104//34102 2025//34103 +f 5205//34104 2206//34105 5807//34106 +f 858//34107 4230//34108 4631//34109 +f 1888//34110 1748//34111 5732//34112 +f 1502//34113 1335//34114 5826//34114 +f 4183//34115 5782//34116 1104//34115 +f 6051//34117 3703//34117 1255//34118 +f 5402//34119 3526//34119 4464//34120 +f 6745//34121 1224//34122 6695//34123 +f 3423//34124 4431//34125 2444//34126 +f 995//34127 4197//34127 3717//34128 +f 767//34129 542//34130 3281//34131 +f 2538//34132 4891//34132 3525//34132 +f 1307//34133 1197//34133 659//34134 +f 2130//34135 3995//34136 849//34136 +f 3050//34137 5018//34137 6680//34138 +f 7242//34139 7020//34140 5034//34141 +f 4398//34142 3422//34143 4193//34143 +f 7114//34144 7378//34145 7161//34146 +f 2866//34147 5305//34148 2571//34149 +f 624//34150 1760//34151 4738//34152 +f 7087//34153 7354//34153 7204//34154 +f 3355//34155 4498//34156 1410//34157 +f 7406//34158 7379//34159 7284//34160 +f 7284//34161 7024//34162 4323//34163 +f 7356//34164 7205//34164 7396//34164 +f 3641//34165 3124//34166 5664//34167 +f 2584//34168 4035//34169 4453//34170 +f 1273//34171 141//34172 1667//34173 +f 7356//34174 7396//34175 7407//34176 +f 7324//34177 7407//34177 7380//34178 +f 4597//34179 7380//34180 7407//34181 +f 7325//34182 7380//34183 7397//34184 +f 439//34185 7337//34186 4729//34187 +f 284//34188 58//34189 2082//34190 +f 516//34191 4766//34192 2253//34193 +f 3392//34194 4395//34195 377//34195 +f 4671//34196 4529//34197 2962//34198 +f 741//34199 983//34199 570//34199 +f 3239//34200 1331//34200 3430//34200 +f 2674//34201 2418//34202 285//34203 +f 3851//34204 2809//34205 667//34206 +f 3214//34207 7026//34208 6882//34208 +f 2506//34209 4893//34209 1409//34209 +f 104//34210 7210//34210 7249//34210 +f 2816//34211 4919//34212 1482//34213 +f 2829//34214 1029//34215 1321//34216 +f 1954//34217 4610//34218 93//34219 +f 6381//34220 7210//34220 884//34220 +f 5656//34221 5213//34221 1567//34222 +f 4824//34223 1735//34223 5550//34223 +f 873//34224 3841//34225 1675//34225 +f 3279//34226 4007//34227 4690//34228 +f 3960//34229 405//34229 1041//34230 +f 5718//34231 3609//34232 1015//34233 +f 3563//34234 297//34234 2843//34234 +f 3144//34235 4464//34235 1522//34236 +f 4583//34237 179//34238 3554//34239 +f 5077//34240 7029//34240 4698//34240 +f 2374//34241 472//34242 1636//34243 +f 6884//34244 7029//34245 5077//34245 +f 2511//34246 7251//34247 7034//34248 +f 4995//34249 3527//34250 2841//34251 +f 5077//34252 4828//34253 6884//34254 +f 3223//34255 2581//34256 2930//34257 +f 7211//34258 4129//34258 7358//34258 +f 1035//34259 6839//34260 2536//34260 +f 3406//34261 1006//34261 4068//34261 +f 4903//34262 2385//34263 89//34264 +f 391//34265 2383//34265 3042//34266 +f 7289//34267 6491//34268 6984//34268 +f 2253//34269 3987//34269 516//34270 +f 3088//34271 2517//34272 3504//34273 +f 2909//34274 268//34275 1022//34274 +f 2092//34276 3729//34277 1336//34278 +f 7398//34279 4706//34280 3259//34281 +f 7359//34282 7381//34283 3966//34284 +f 3061//34285 1714//34285 5301//34285 +f 6676//34286 6894//34286 7382//34287 +f 4731//34288 818//34288 5845//34288 +f 3339//34289 2608//34289 1437//34289 +f 1826//34290 2604//34290 5128//34291 +f 1846//34292 3652//34292 3656//34292 +f 2362//34293 4785//34294 5272//34295 +f 7328//34296 7254//34297 855//34298 +f 4025//34299 5018//34299 3050//34299 +f 282//34300 7124//34300 7399//34301 +f 5224//34302 1088//34303 2343//34304 +f 1361//34305 1761//34306 1871//34306 +f 6794//34307 7256//34308 2629//34309 +f 2763//34310 7399//34311 7124//34312 +f 2763//34313 7124//34313 7255//34314 +f 3900//34315 4043//34316 3901//34317 +f 4503//34318 401//34319 746//34320 +f 4432//34321 5300//34322 2746//34323 +f 7408//34324 7255//34325 7331//34326 +f 4300//34327 1042//34328 3865//34329 +f 5518//34330 7213//34331 7123//34331 +f 3390//34332 2483//34332 5613//34332 +f 7408//34333 7331//34334 7049//34335 +f 4614//34336 4332//34337 2366//34338 +f 697//34339 2246//34340 3143//34341 +f 4740//34342 3579//34343 4037//34343 +f 3817//34344 7257//34344 7383//34345 +f 5368//34346 3642//34347 929//34348 +f 2829//34349 4218//34349 2132//34349 +f 7362//34350 7257//34351 2273//34352 +f 3314//34353 3077//34354 908//34353 +f 7332//34355 7049//34356 7331//34356 +f 3536//34357 2229//34358 2148//34359 +f 7401//34360 5187//34361 7361//34362 +f 2404//34363 1538//34364 5082//34365 +f 2282//34366 7383//34367 7258//34367 +f 615//34368 7169//34369 7170//34368 +f 7364//34370 7258//34371 7261//34372 +f 3258//34373 2832//34374 2880//34375 +f 2304//34376 3813//34377 1636//34378 +f 7292//34379 7360//34380 7363//34381 +f 4780//34382 2861//34382 3334//34382 +f 3746//34383 1620//34383 1190//34383 +f 4493//34384 7248//34384 2300//34384 +f 3689//34385 4583//34386 2446//34387 +f 7295//34388 758//34389 7366//34390 +f 3720//34391 7294//34392 965//34391 +f 7133//34393 4507//34394 2234//34395 +f 965//34396 7294//34397 7365//34398 +f 2078//34399 1725//34400 7213//34401 +f 1354//34402 3753//34403 2781//34404 +f 5810//34405 1991//34406 4653//34407 +f 3567//34408 488//34409 937//34410 +f 6115//34411 5807//34411 2206//34411 +f 2058//34412 4682//34413 1924//34414 +f 7409//34415 5852//34416 7402//34417 +f 5106//34418 2180//34418 4636//34419 +f 7224//34420 3002//34421 964//34422 +f 5402//34423 5936//34423 3526//34423 +f 2452//34424 3926//34424 5215//34425 +f 690//34426 7340//34427 1314//34428 +f 209//34429 284//34430 2195//34431 +f 4751//34432 1313//34433 1996//34433 +f 3706//34434 1496//34434 401//34434 +f 1268//34435 399//34436 1425//34437 +f 7225//34438 7385//34439 7369//34439 +f 2072//34440 3290//34441 267//34442 +f 7225//34443 7410//34444 7385//34445 +f 4601//34446 7297//34447 585//34446 +f 1551//34448 795//34449 4144//34448 +f 3554//34450 750//34451 5853//34452 +f 4245//34453 4231//34453 1294//34453 +f 7411//34454 7410//34454 7225//34455 +f 7385//34456 2029//34457 7386//34456 +f 2514//34458 71//34459 2495//34460 +f 535//34461 4623//34462 1728//34463 +f 2691//34464 3561//34465 3624//34466 +f 3700//34467 3633//34468 2753//34467 +f 7386//34469 3603//34469 7300//34469 +f 3839//34470 7264//34471 7184//34471 +f 3416//34472 5664//34473 1016//34474 +f 3839//34475 1860//34476 7264//34477 +f 1311//34478 2874//34479 3859//34480 +f 4861//34481 7308//34482 7370//34481 +f 7411//34483 7304//34483 235//34484 +f 907//34485 5214//34485 3953//34485 +f 1494//34486 102//34487 543//34487 +f 7387//34488 7337//34489 7266//34490 +f 1753//34491 656//34491 2125//34491 +f 3597//34492 4525//34492 195//34493 +f 412//34494 3008//34495 1417//34495 +f 457//34496 2335//34496 1228//34496 +f 235//34497 7304//34498 5107//34499 +f 4906//34500 469//34500 2134//34500 +f 1580//34501 2456//34502 1357//34503 +f 3760//34504 3198//34505 3101//34506 +f 3275//34507 7105//34507 3755//34507 +f 3701//34508 7299//34508 7336//34508 +f 7304//34509 7388//34510 5107//34511 +f 7338//34512 7388//34513 7304//34514 +f 4082//34515 876//34516 893//34517 +f 1109//34518 4531//34519 524//34519 +f 481//34520 5204//34521 2285//34522 +f 2366//34523 718//34523 3984//34523 +f 248//34524 7139//34525 6998//34526 +f 2778//34527 1101//34528 3102//34529 +f 1578//34530 1177//34531 2315//34532 +f 2863//34533 2862//34534 4833//34534 +f 1570//34535 1814//34535 575//34536 +f 4752//34537 4698//34538 1857//34539 +f 5830//34540 1411//34541 1564//34542 +f 3288//34543 2176//34544 4808//34544 +f 4923//34545 1513//34546 2513//34545 +f 378//34547 3984//34547 3708//34547 +f 4390//34548 2636//34549 348//34550 +f 768//34551 3624//34552 1936//34553 +f 1760//34554 2407//34555 1872//34556 +f 4988//34557 5111//34558 5401//34559 +f 7191//34560 7270//34561 3879//34562 +f 299//34563 4627//34564 241//34564 +f 2837//34565 3471//34565 3858//34565 +f 487//34566 1783//34567 3453//34568 +f 3810//34569 1436//34570 7//34571 +f 2365//34572 1372//34573 4614//34574 +f 614//34575 5303//34576 2179//34577 +f 3307//34578 7343//34579 5591//34580 +f 163//34581 7311//34581 4899//34581 +f 5591//34582 7343//34582 7312//34582 +f 435//34583 2542//34583 1187//34584 +f 2158//34585 2157//34585 463//34585 +f 1704//34586 2269//34587 2571//34588 +f 7344//34589 7061//34590 5810//34591 +f 1984//34592 86//34593 2598//34594 +f 1450//34595 7393//34596 7412//34596 +f 5810//34597 3309//34598 7344//34599 +f 4098//34600 4694//34601 3993//34602 +f 7412//34603 7393//34604 7314//34605 +f 3657//34606 7344//34607 2142//34608 +f 3401//34609 3539//34610 1685//34611 +f 405//34612 406//34613 4308//34614 +f 7006//34615 6918//34616 7206//34617 +f 7277//34618 3822//34619 7234//34619 +f 4755//34620 7320//34621 7375//34622 +f 4755//34623 7376//34624 7320//34625 +f 981//34626 601//34627 3889//34628 +f 502//34629 3924//34630 2265//34631 +f 1786//34632 4007//34633 1402//34632 +f 4387//34634 4931//34635 2087//34635 +f 4048//34636 494//34637 3138//34638 +f 3617//34639 3824//34639 582//34639 +f 4309//34640 1432//34641 2072//34642 +f 7316//34643 7413//34644 7206//34645 +f 7413//34646 7316//34647 7414//34646 +f 3025//34648 4566//34648 762//34648 +f 1388//34649 5946//34650 7413//34651 +f 7413//34652 7414//34653 1388//34654 +f 1178//34655 1607//34655 493//34656 +f 5819//34657 1365//34658 7321//34659 +f 1114//34660 4526//34661 2929//34662 +f 3927//34663 7237//34664 7198//34665 +f 7238//34666 7237//34667 3503//34667 +f 1961//34668 408//34668 5507//34669 +f 3140//34670 3139//34671 7014//34672 +f 1252//34673 7275//34674 3344//34675 +f 7151//34676 7350//34677 7280//34677 +f 3379//34678 4792//34679 1466//34680 +f 1202//34681 3744//34682 1648//34682 +f 2752//34683 7015//34683 2032//34683 +f 2937//34684 1490//34685 2785//34686 +f 3931//34687 4531//34687 3560//34687 +f 7322//34688 4821//34689 7377//34690 +f 8//34691 5291//34691 2679//34691 +f 7395//34692 3891//34693 7239//34694 +f 1048//34695 385//34695 217//34695 +f 3624//34696 3561//34697 3510//34698 +f 3037//34699 3038//34699 4639//34699 +f 107//34700 2794//34700 3698//34700 +f 5138//34701 2754//34702 1993//34703 +f 7395//34704 7016//34705 5346//34706 +f 7352//34707 5346//34708 7016//34709 +f 5596//34710 550//34710 665//34711 +f 3498//34712 224//34712 2599//34712 +f 3080//34713 5790//34713 837//34713 +f 5456//34714 2793//34715 4238//34716 +f 7112//34717 7282//34718 4309//34719 +f 4845//34720 4470//34721 1529//34722 +f 7112//34723 4309//34724 7283//34725 +f 424//34726 3061//34727 5801//34728 +f 4622//34729 1096//34729 3957//34729 +f 4225//34730 1343//34731 935//34732 +f 3725//34733 2529//34734 3997//34735 +f 3526//34736 5936//34737 5043//34738 +f 4813//34739 2841//34740 4256//34741 +f 3147//34742 2725//34742 2497//34742 +f 1943//34743 2444//34744 3451//34745 +f 421//34746 2961//34747 3311//34746 +f 2174//34748 688//34749 3310//34750 +f 186//34751 4761//34752 4844//34751 +f 3593//34753 1323//34754 580//34755 +f 3147//34756 2497//34757 4460//34758 +f 5090//34759 2608//34760 3339//34760 +f 4575//34761 2267//34762 1476//34763 +f 4039//34764 3220//34765 1790//34766 +f 7354//34767 7087//34767 2705//34768 +f 1925//34769 3035//34770 3072//34771 +f 1035//34772 2216//34772 3252//34772 +f 7203//34773 7082//34774 3256//34775 +f 7245//34776 4879//34777 7087//34778 +f 7087//34779 4879//34780 5218//34781 +f 125//34782 2177//34783 4180//34784 +f 1798//34785 223//34786 602//34787 +f 6680//34788 6615//34789 4018//34790 +f 7406//34791 7284//34792 4323//34793 +f 3903//34794 4040//34795 5301//34796 +f 4657//34797 658//34797 2768//34797 +f 5055//34798 3280//34798 4729//34798 +f 865//34799 3653//34800 218//34801 +f 5786//34802 1988//34803 875//34804 +f 1439//34805 3398//34806 3771//34805 +f 1505//34807 239//34808 84//34809 +f 4801//34810 846//34810 1572//34810 +f 980//34811 4450//34812 4806//34813 +f 3953//34814 5214//34815 702//34816 +f 2840//34817 982//34818 430//34819 +f 2196//34820 1941//34821 2283//34822 +f 7357//34823 7397//34824 2232//34825 +f 6832//34826 3606//34826 5719//34827 +f 668//34828 3100//34829 26//34830 +f 2357//34831 6882//34832 5844//34831 +f 4457//34833 1290//34833 2796//34833 +f 7252//34834 7330//34835 3691//34836 +f 5226//34837 4196//34838 5613//34839 +f 2770//34840 3112//34841 3675//34842 +f 7210//34843 104//34844 884//34845 +f 7120//34846 4620//34846 2300//34846 +f 2815//34847 1123//34848 5236//34849 +f 1209//34850 182//34851 3174//34852 +f 2995//34853 7089//34854 5268//34855 +f 3136//34856 1957//34856 159//34856 +f 3652//34857 1846//34857 5295//34857 +f 5022//34858 5058//34858 3994//34858 +f 3765//34859 6670//34860 1002//34861 +f 1002//34862 6670//34862 7288//34863 +f 1423//34864 3532//34865 5506//34866 +f 1647//34867 3508//34868 3244//34867 +f 7287//34869 5599//34870 6945//34871 +f 4449//34872 2663//34872 4453//34872 +f 3412//34873 781//34873 481//34873 +f 1091//34874 3837//34875 2184//34876 +f 595//34877 3160//34878 1840//34879 +f 1110//34880 5454//34881 3250//34882 +f 1062//34883 4055//34884 7289//34884 +f 723//34885 2224//34886 2719//34887 +f 3876//34888 6624//34888 413//34888 +f 1472//34889 2083//34889 1028//34889 +f 3592//34890 2723//34891 1919//34892 +f 1192//34893 15//34894 2890//34895 +f 6891//34896 6839//34896 1035//34897 +f 4592//34898 1236//34898 4239//34898 +f 6986//34899 4434//34900 7326//34901 +f 4368//34902 4298//34903 5699//34904 +f 3878//34905 3729//34906 3137//34907 +f 1605//34908 3194//34908 4590//34908 +f 1306//34909 7216//34910 4227//34910 +f 2458//34911 2989//34911 2137//34911 +f 7091//34912 4706//34912 7212//34913 +f 4466//34914 1197//34915 1307//34915 +f 1573//34916 3200//34917 3404//34918 +f 5204//34919 481//34920 781//34921 +f 1896//34922 3169//34923 1897//34924 +f 354//34925 4793//34926 1909//34925 +f 4276//34927 4791//34928 3767//34929 +f 5402//34930 4464//34931 4198//34932 +f 5347//34933 2647//34934 3494//34933 +f 3046//34935 3652//34935 5295//34935 +f 2249//34936 2152//34937 2754//34937 +f 855//34938 3259//34939 7328//34939 +f 4697//34940 1266//34941 2499//34942 +f 4413//34943 7330//34944 7124//34945 +f 282//34946 4413//34947 7124//34948 +f 1647//34949 2091//34950 1829//34951 +f 4201//34952 1474//34953 3043//34954 +f 4915//34955 2875//34955 4199//34956 +f 5087//34957 119//34958 506//34959 +f 5518//34960 7123//34960 7327//34960 +f 2312//34961 2519//34962 2520//34963 +f 7038//34964 7329//34965 7400//34966 +f 7408//34967 2763//34968 7255//34969 +f 1880//34970 2465//34971 4004//34972 +f 2314//34973 432//34974 3236//34975 +f 117//34976 6950//34977 7169//34978 +f 2893//34979 3364//34980 5655//34981 +f 2629//34982 4375//34983 4384//34984 +f 1471//34985 4150//34986 5278//34987 +f 5093//34988 2572//34989 2250//34990 +f 7049//34991 7332//34992 7361//34993 +f 4113//34994 3104//34995 1916//34996 +f 4292//34997 1194//34997 2544//34997 +f 357//34998 4728//34999 4517//35000 +f 2282//35001 7258//35002 7364//35001 +f 3757//35003 4215//35004 2007//35005 +f 1297//35006 2867//35007 456//35008 +f 991//35009 4158//35010 4340//35011 +f 6977//35012 6680//35012 5018//35013 +f 4661//35014 757//35015 3571//35016 +f 7363//35017 7360//35018 3279//35018 +f 3526//35019 5043//35020 6327//35021 +f 7214//35022 7172//35023 1352//35024 +f 3174//35025 3276//35026 1017//35027 +f 3217//35028 365//35029 3146//35030 +f 2187//35031 4052//35032 4825//35033 +f 2411//35034 309//35035 308//35036 +f 7363//35037 758//35038 7295//35039 +f 1167//35040 7261//35040 2207//35040 +f 934//35041 4041//35041 636//35041 +f 818//35042 4731//35043 2053//35044 +f 7365//35045 964//35046 965//35047 +f 7409//35048 5347//35049 5852//35050 +f 3210//35051 289//35052 5731//35053 +f 7055//35054 2260//35054 1734//35054 +f 7297//35055 5420//35056 4347//35057 +f 3587//35058 11//35058 2091//35059 +f 1270//35060 1011//35061 4991//35062 +f 7301//35063 7403//35064 5566//35065 +f 3857//35066 423//35067 699//35068 +f 4480//35069 2628//35070 3988//35071 +f 2511//35072 1687//35073 3063//35074 +f 797//35075 4977//35075 1632//35075 +f 7386//35076 2029//35077 3603//35077 +f 299//35078 7224//35079 6170//35080 +f 3493//35081 977//35082 1611//35083 +f 2065//35084 4166//35085 3609//35086 +f 1484//35087 1092//35088 1523//35089 +f 1235//35090 585//35090 7299//35090 +f 4680//35091 2227//35091 2607//35092 +f 3603//35093 2632//35093 7300//35094 +f 1863//35095 4860//35096 1284//35096 +f 7299//35097 3078//35098 1235//35099 +f 7387//35100 5799//35101 633//35100 +f 1157//35102 2905//35103 3740//35102 +f 475//35104 3962//35105 1448//35106 +f 1952//35107 2565//35108 856//35109 +f 3591//35110 4457//35111 2796//35110 +f 2423//35112 1883//35113 4598//35114 +f 1286//35115 4097//35116 4146//35117 +f 7309//35118 7371//35119 1314//35120 +f 7267//35121 439//35122 2526//35122 +f 664//35123 5799//35124 1318//35125 +f 7307//35126 7389//35127 7388//35128 +f 1749//35129 2412//35129 3157//35129 +f 752//35130 269//35131 4069//35130 +f 6997//35132 2981//35132 1699//35133 +f 2133//35134 660//35135 116//35136 +f 798//35137 2827//35138 339//35139 +f 3391//35140 1400//35141 320//35142 +f 5271//35143 3513//35144 6170//35145 +f 3184//35146 2168//35146 3777//35146 +f 7055//35147 7267//35148 2260//35149 +f 4365//35150 2052//35151 2051//35152 +f 6997//35153 7139//35154 2981//35153 +f 3595//35155 955//35155 222//35155 +f 612//35156 3736//35156 2415//35157 +f 475//35158 1448//35159 1416//35160 +f 4879//35161 3535//35162 5776//35163 +f 5722//35164 7310//35165 1734//35166 +f 145//35167 3398//35168 1439//35169 +f 4811//35170 5332//35171 4438//35172 +f 1315//35173 1375//35174 4103//35175 +f 7372//35176 7391//35177 3569//35176 +f 5271//35178 7056//35179 4478//35180 +f 3476//35181 4576//35181 300//35181 +f 4296//35182 3661//35183 4100//35184 +f 4097//35185 2710//35186 4700//35187 +f 3313//35188 2525//35189 1185//35190 +f 31//35191 953//35192 673//35191 +f 3597//35193 195//35194 662//35195 +f 4075//35196 4607//35197 1436//35198 +f 2999//35199 1323//35200 1366//35201 +f 3839//35202 1592//35203 3356//35203 +f 2706//35204 4481//35205 1723//35206 +f 7394//35207 7393//35208 5591//35209 +f 1717//35210 2908//35211 663//35212 +f 7393//35213 1450//35214 2992//35215 +f 1098//35216 530//35216 1836//35216 +f 982//35217 2878//35218 3915//35219 +f 1279//35220 3061//35220 424//35220 +f 4321//35221 2275//35222 4980//35222 +f 2428//35223 2515//35224 1158//35225 +f 7311//35226 4701//35227 4899//35228 +f 4170//35229 1815//35229 1487//35229 +f 1807//35230 4200//35231 3352//35232 +f 7313//35233 7006//35234 7206//35235 +f 2978//35236 2900//35237 1509//35238 +f 7413//35239 7414//35240 7206//35241 +f 7413//35242 5946//35243 7414//35243 +f 5946//35244 7415//35245 7414//35246 +f 7414//35247 7415//35248 1388//35249 +f 7415//35250 2165//35251 1388//35252 +f 1477//35253 7316//35254 7346//35255 +f 781//35256 3445//35256 2592//35256 +f 2054//35257 2154//35258 3696//35259 +f 4783//35260 4268//35261 4927//35260 +f 7348//35262 7007//35262 3780//35262 +f 3780//35263 168//35263 7348//35263 +f 1365//35264 5819//35265 7348//35266 +f 2144//35267 1480//35268 1003//35267 +f 1469//35269 2549//35269 567//35269 +f 3486//35270 2410//35270 3111//35270 +f 2794//35271 4492//35272 4056//35273 +f 3503//35274 7237//35275 3927//35276 +f 7014//35277 3503//35278 3140//35278 +f 7148//35279 1685//35280 7013//35281 +f 4940//35282 4864//35283 1108//35284 +f 3535//35285 4879//35286 3994//35286 +f 1076//35287 7280//35288 7350//35289 +f 1614//35290 4892//35291 723//35292 +f 2752//35293 2751//35294 7281//35293 +f 633//35295 876//35296 5740//35296 +f 7076//35297 7110//35298 63//35299 +f 7110//35300 7281//35301 63//35302 +f 2688//35303 3683//35304 1988//35304 +f 3523//35305 1401//35306 812//35307 +f 5358//35308 3151//35309 4135//35310 +f 2932//35311 7153//35311 1216//35312 +f 3155//35313 7153//35314 2932//35315 +f 267//35316 7322//35316 3891//35316 +f 362//35317 1925//35318 3072//35319 +f 1887//35320 5358//35321 4135//35322 +f 380//35323 4618//35323 1713//35324 +f 109//35325 5731//35326 2348//35326 +f 1087//35327 2972//35327 1493//35327 +f 1195//35328 2081//35329 1997//35330 +f 4850//35331 3857//35332 699//35331 +f 3695//35333 1173//35334 1174//35335 +f 2004//35336 3632//35336 4863//35337 +f 2642//35338 4893//35339 1882//35340 +f 1610//35341 531//35342 809//35343 +f 4642//35344 5240//35345 4748//35346 +f 2459//35347 3134//35347 2078//35347 +f 1108//35348 832//35349 2179//35350 +f 1613//35351 825//35352 4856//35353 +f 5522//35354 1470//35355 3442//35356 +f 5826//35357 4435//35357 1881//35358 +f 2150//35359 2600//35360 3712//35360 +f 1507//35361 1097//35361 4195//35361 +f 394//35362 3750//35362 866//35362 +f 2982//35363 4060//35364 1050//35365 +f 2725//35366 1522//35367 2497//35368 +f 2120//35369 3699//35370 3968//35370 +f 2099//35371 291//35372 645//35371 +f 4086//35373 1190//35374 2032//35375 +f 7161//35376 7378//35377 2075//35378 +f 2405//35379 3718//35380 2407//35381 +f 2944//35382 3541//35383 873//35382 +f 2075//35384 5966//35385 7161//35386 +f 2705//35387 7087//35387 5218//35387 +f 4625//35388 7245//35389 5274//35390 +f 4167//35391 3469//35392 2833//35392 +f 1548//35393 1344//35394 2235//35395 +f 1076//35396 324//35397 7280//35398 +f 3134//35399 410//35400 2078//35401 +f 4379//35402 947//35403 3340//35403 +f 6680//35404 4018//35405 3050//35404 +f 95//35406 1183//35407 1182//35408 +f 3352//35409 74//35410 2047//35411 +f 4323//35412 7024//35413 7355//35414 +f 4395//35415 7115//35416 7203//35417 +f 3611//35418 3777//35419 398//35420 +f 507//35421 1554//35422 3920//35423 +f 4597//35424 7407//35425 7396//35424 +f 1850//35426 2565//35427 1012//35426 +f 7380//35428 4597//35429 7397//35430 +f 3813//35431 1068//35432 1636//35433 +f 2283//35434 4355//35434 2291//35434 +f 5574//35435 7163//35436 4751//35436 +f 2283//35437 1941//35438 5604//35439 +f 508//35440 2259//35441 1056//35442 +f 1534//35443 2670//35444 2486//35445 +f 1239//35446 477//35446 1833//35447 +f 6327//35448 6326//35449 3849//35448 +f 1322//35450 3546//35451 1345//35452 +f 1384//35453 4114//35454 4544//35454 +f 616//35455 4020//35456 1055//35457 +f 4051//35458 3654//35459 5030//35460 +f 5434//35461 1724//35462 4088//35463 +f 1116//35464 5062//35465 220//35466 +f 4620//35467 7089//35468 2995//35469 +f 746//35470 401//35471 4233//35472 +f 1060//35473 78//35474 1269//35475 +f 7027//35476 4981//35476 381//35476 +f 4467//35477 5599//35478 7287//35479 +f 4140//35480 1705//35480 822//35480 +f 7287//35481 7358//35482 4467//35483 +f 5492//35484 4053//35485 5009//35486 +f 2170//35487 3033//35488 1907//35489 +f 7031//35490 533//35491 7288//35492 +f 7250//35493 7251//35494 2511//35495 +f 5454//35496 1110//35497 2451//35497 +f 3982//35498 3242//35499 4199//35500 +f 2823//35501 2711//35502 5519//35503 +f 2089//35504 1401//35505 2502//35506 +f 5604//35507 378//35508 3708//35509 +f 1687//35510 2511//35510 7034//35510 +f 4777//35511 3559//35512 2701//35513 +f 4881//35514 4950//35515 2908//35516 +f 4667//35517 722//35518 5119//35519 +f 1396//35520 2190//35521 3501//35522 +f 3552//35523 4129//35524 7290//35524 +f 2578//35525 1035//35526 2536//35527 +f 3162//35528 3876//35529 413//35530 +f 4240//35531 1304//35531 4030//35532 +f 2334//35533 6986//35534 7212//35535 +f 895//35536 3966//35537 6491//35536 +f 7381//35538 6491//35539 3966//35540 +f 2332//35541 7212//35542 4706//35543 +f 6894//35544 1035//35544 7382//35544 +f 1118//35545 3073//35545 3406//35546 +f 960//35547 1480//35548 5361//35549 +f 769//35550 2812//35551 3624//35552 +f 2777//35553 5255//35554 7035//35553 +f 1976//35555 3951//35556 2943//35557 +f 3338//35558 7105//35558 3275//35558 +f 6794//35559 4384//35559 2777//35559 +f 3338//35560 7329//35560 7105//35560 +f 4302//35561 3274//35561 2815//35561 +f 4726//35562 1626//35563 3963//35564 +f 474//35565 1733//35566 4373//35567 +f 3674//35568 2551//35569 1676//35570 +f 7400//35571 7329//35572 3338//35571 +f 2613//35573 3991//35574 4829//35575 +f 4814//35576 2639//35577 1842//35578 +f 4180//35579 2177//35580 1952//35581 +f 4792//35582 655//35582 734//35582 +f 4378//35583 162//35584 3076//35583 +f 5102//35585 2637//35586 4085//35587 +f 4586//35588 7288//35589 533//35590 +f 919//35591 7256//35592 7362//35593 +f 3022//35594 555//35595 4975//35596 +f 2957//35597 4176//35598 2803//35599 +f 369//35600 4003//35601 3159//35600 +f 1058//35602 557//35603 912//35604 +f 1160//35605 7360//35606 7400//35607 +f 3446//35608 2057//35609 3543//35610 +f 1936//35611 3624//35611 5181//35611 +f 3279//35612 7360//35613 1160//35614 +f 5493//35615 2751//35616 2752//35617 +f 1327//35618 1824//35619 703//35620 +f 5560//35621 2282//35622 7364//35623 +f 2115//35624 2243//35625 3979//35626 +f 3693//35627 2186//35628 1591//35629 +f 3279//35630 2884//35631 7363//35630 +f 4556//35632 615//35633 447//35634 +f 4765//35635 4250//35636 4528//35637 +f 2288//35638 7174//35639 7214//35640 +f 4401//35641 5560//35642 7364//35643 +f 2884//35644 758//35645 7363//35646 +f 1503//35647 3907//35648 4727//35649 +f 3344//35650 1251//35650 1252//35650 +f 4401//35651 7261//35652 1167//35653 +f 7133//35654 1406//35655 4507//35656 +f 3720//35657 965//35658 2500//35659 +f 5265//35660 2120//35661 3968//35662 +f 758//35663 4397//35664 7366//35663 +f 988//35665 3319//35666 256//35667 +f 4509//35668 1426//35669 2902//35670 +f 2810//35671 334//35672 4716//35673 +f 189//35674 1997//35674 4200//35674 +f 4397//35675 7409//35675 7366//35675 +f 1231//35676 4078//35677 1680//35678 +f 3420//35679 2112//35679 1589//35679 +f 3981//35680 3380//35681 391//35681 +f 7402//35682 5852//35683 1113//35684 +f 5300//35685 4347//35686 5420//35687 +f 3336//35688 3524//35689 2523//35690 +f 323//35691 4179//35692 4403//35693 +f 4601//35694 5420//35695 7297//35696 +f 5732//35697 997//35698 5319//35698 +f 2998//35699 875//35700 2259//35701 +f 7410//35702 1999//35702 7385//35702 +f 4814//35703 1842//35703 5165//35703 +f 7411//35704 235//35705 7410//35706 +f 7410//35707 235//35707 3659//35708 +f 7370//35709 3455//35709 3240//35709 +f 4861//35710 7370//35711 3240//35711 +f 1639//35712 1697//35712 411//35712 +f 4788//35713 3367//35714 1901//35715 +f 1456//35716 3674//35717 1676//35718 +f 4074//35719 332//35720 4244//35721 +f 255//35722 849//35723 3954//35724 +f 585//35725 1961//35726 2983//35727 +f 930//35728 542//35728 1049//35729 +f 5740//35730 7337//35731 7387//35732 +f 2445//35733 4665//35734 1132//35735 +f 293//35736 952//35737 1599//35738 +f 633//35739 5740//35739 7387//35739 +f 1235//35740 1961//35740 585//35741 +f 4027//35742 2632//35743 2442//35742 +f 1347//35744 1641//35745 5099//35746 +f 3134//35747 2459//35747 1753//35748 +f 5215//35749 2321//35750 2452//35751 +f 5344//35752 5107//35753 7388//35754 +f 929//35755 166//35755 2730//35756 +f 7389//35757 5344//35757 7388//35757 +f 1916//35758 976//35758 4113//35758 +f 3691//35759 1691//35759 3152//35759 +f 1372//35760 4105//35761 1707//35762 +f 487//35763 3453//35763 2916//35764 +f 1560//35765 231//35766 2445//35767 +f 1314//35768 7390//35769 7309//35770 +f 3600//35771 3148//35771 943//35771 +f 3767//35772 95//35773 4207//35774 +f 4484//35775 4409//35776 4485//35777 +f 3053//35778 557//35779 5093//35780 +f 1501//35781 178//35782 4655//35783 +f 7310//35784 7055//35785 1734//35786 +f 283//35787 2150//35787 5323//35787 +f 4883//35788 944//35789 4062//35790 +f 4962//35791 3286//35792 1415//35793 +f 3569//35794 5405//35795 7372//35795 +f 3843//35796 1590//35797 3020//35798 +f 7392//35799 3569//35800 7391//35800 +f 3429//35801 4682//35802 2058//35803 +f 3060//35804 746//35805 3059//35806 +f 1036//35807 3229//35808 1928//35809 +f 7343//35810 4519//35811 489//35812 +f 2801//35813 7142//35814 2324//35815 +f 5375//35816 6912//35816 2801//35817 +f 1196//35818 938//35819 2987//35820 +f 2582//35821 3056//35822 992//35822 +f 4478//35823 6859//35824 163//35825 +f 1970//35826 2093//35827 4855//35827 +f 7404//35828 1434//35828 7405//35828 +f 4157//35829 1683//35830 2488//35831 +f 2298//35832 3552//35833 2311//35834 +f 2067//35835 1333//35836 4904//35837 +f 2326//35838 402//35839 5111//35839 +f 3328//35840 4093//35841 2973//35842 +f 7412//35843 7376//35844 1450//35845 +f 159//35846 3113//35847 2394//35848 +f 7313//35849 7206//35850 5810//35851 +f 1337//35852 191//35853 4663//35853 +f 1332//35854 2593//35854 2640//35854 +f 3888//35855 4299//35855 7206//35855 +f 1148//35856 4141//35857 733//35858 +f 7415//35859 7206//35860 7414//35861 +f 7415//35862 7414//35863 2165//35864 +f 2165//35865 7414//35866 7316//35865 +f 7206//35867 7415//35868 5946//35869 +f 1388//35870 933//35871 5946//35872 +f 2165//35873 3888//35874 1388//35875 +f 154//35876 4587//35876 2912//35876 +f 852//35877 581//35878 3370//35879 +f 926//35880 1000//35881 1026//35882 +f 3539//35883 7317//35884 7349//35885 +f 5141//35886 1275//35886 7348//35887 +f 3256//35888 7082//35888 1097//35888 +f 7349//35889 7013//35890 1685//35890 +f 7349//35891 1685//35892 3539//35891 +f 775//35893 629//35893 2318//35894 +f 3937//35895 312//35896 3444//35897 +f 140//35898 5314//35899 1219//35900 +f 2449//35901 3503//35902 2450//35903 +f 835//35904 1685//35905 7148//35905 +f 3469//35906 4167//35907 1074//35908 +f 5361//35909 635//35910 2127//35911 +f 3599//35912 3203//35913 5021//35914 +f 7148//35915 7280//35916 835//35917 +f 3931//35918 524//35919 4531//35920 +f 5493//35921 2752//35922 2032//35923 +f 1454//35924 5387//35924 5480//35924 +f 7377//35925 4821//35926 7350//35927 +f 1166//35928 5121//35929 1895//35930 +f 63//35931 1696//35931 6731//35931 +f 7351//35932 63//35932 6731//35932 +f 1697//35933 40//35933 2268//35933 +f 1791//35934 4032//35935 4429//35936 +f 3681//35937 5394//35938 1051//35939 +f 1996//35940 1313//35941 5120//35942 +f 3330//35943 3457//35944 3329//35945 +f 382//35946 3842//35947 5262//35948 +f 3332//35949 3101//35949 1220//35949 +f 3458//35950 3483//35951 2619//35952 +f 5346//35953 7353//35954 4283//35955 +f 3982//35956 2782//35957 3242//35958 +f 3093//35959 321//35960 2500//35961 +f 4283//35962 7283//35963 4309//35964 +f 4198//35965 4464//35966 3153//35967 +f 3186//35968 227//35969 2447//35968 +f 1039//35970 4931//35970 3504//35971 +f 654//35972 5286//35973 2256//35974 +f 2743//35975 3771//35976 4394//35977 +f 2871//35978 3192//35979 3226//35980 +f 1920//35981 4318//35982 1036//35983 +f 416//35984 3594//35985 3366//35986 +f 4464//35987 3144//35988 3153//35988 +f 811//35989 5748//35989 2598//35990 +f 300//35991 4576//35991 3061//35991 +f 2556//35992 1930//35993 4498//35994 +f 1625//35995 4024//35995 1230//35995 +f 7267//35996 2526//35997 2260//35998 +f 2054//35999 4822//36000 4082//36000 +f 7382//36001 1295//36002 1356//36002 +f 428//36003 1820//36003 4391//36003 +f 322//36004 2325//36005 2517//36006 +f 55//36007 3432//36007 3983//36007 +f 4890//36008 5298//36009 1380//36010 +f 1849//36011 2095//36012 1576//36013 +f 5853//36014 2446//36015 4583//36014 +f 627//36016 3744//36017 1202//36018 +f 4625//36019 4879//36019 7245//36020 +f 4018//36021 5152//36022 3050//36023 +f 569//36024 2608//36025 2073//36026 +f 2971//36027 7083//36028 5889//36029 +f 1963//36030 755//36031 1167//36032 +f 3361//36033 3556//36034 4376//36035 +f 4597//36036 7396//36037 7379//36038 +f 5581//36039 4471//36040 632//36041 +f 1538//36042 7119//36043 4041//36043 +f 4597//36044 4929//36045 7397//36046 +f 740//36047 2910//36047 3397//36047 +f 434//36048 5325//36049 961//36050 +f 4617//36051 4068//36052 3781//36052 +f 2851//36053 2082//36054 4338//36055 +f 4319//36056 2827//36056 1979//36057 +f 3011//36058 4059//36059 1347//36060 +f 2//36061 5542//36061 3205//36061 +f 212//36062 286//36063 5308//36064 +f 20//36065 5400//36065 19//36065 +f 3568//36066 2404//36066 1789//36066 +f 4641//36067 5772//36068 4473//36069 +f 157//36070 2413//36070 373//36071 +f 4670//36072 3199//36072 3700//36072 +f 4811//36073 1122//36074 4772//36075 +f 3097//36076 3318//36077 5268//36078 +f 7028//36079 36//36080 3632//36081 +f 2139//36082 1129//36083 2140//36083 +f 2004//36084 7028//36084 3632//36084 +f 6553//36085 7286//36086 1062//36087 +f 1237//36088 293//36089 1599//36090 +f 3961//36091 2503//36092 1870//36091 +f 2004//36093 2536//36093 7028//36093 +f 1263//36094 4301//36095 3325//36096 +f 3029//36097 1045//36097 4880//36097 +f 7031//36098 3876//36099 533//36100 +f 3871//36101 3994//36102 4879//36103 +f 3384//36104 363//36105 5065//36105 +f 406//36106 1098//36107 3803//36106 +f 3788//36108 1665//36109 2911//36110 +f 4651//36111 3614//36112 1836//36113 +f 2985//36114 713//36115 4038//36115 +f 685//36116 2485//36117 7326//36118 +f 887//36119 4207//36120 5222//36121 +f 4049//36122 3592//36122 1492//36122 +f 2895//36123 3012//36124 4685//36124 +f 3736//36125 612//36126 760//36126 +f 7291//36127 3552//36128 7290//36129 +f 7164//36130 4828//36131 3168//36132 +f 4434//36133 6986//36134 2334//36135 +f 2956//36136 4507//36137 686//36136 +f 4862//36138 2164//36138 900//36138 +f 4172//36139 4390//36140 3664//36141 +f 5707//36142 7399//36143 2763//36144 +f 1343//36145 4965//36146 918//36146 +f 7105//36147 7164//36147 3755//36147 +f 2332//36148 2334//36148 7212//36148 +f 3938//36149 4222//36150 4219//36151 +f 455//36152 3368//36153 2208//36152 +f 1802//36154 1804//36154 827//36155 +f 1568//36156 526//36157 2942//36158 +f 953//36159 1782//36160 2273//36161 +f 7252//36162 3152//36163 1115//36162 +f 110//36164 109//36165 2348//36166 +f 976//36167 770//36167 4518//36167 +f 1268//36168 3128//36169 2416//36170 +f 919//36171 2629//36172 7256//36172 +f 297//36173 3908//36174 3810//36175 +f 772//36176 771//36177 431//36178 +f 479//36179 2464//36179 4747//36180 +f 2631//36181 4866//36182 2684//36183 +f 1566//36184 3719//36185 5165//36186 +f 220//36187 4996//36188 1116//36187 +f 3338//36189 3275//36189 3186//36190 +f 7126//36191 7166//36192 1356//36193 +f 3175//36194 221//36195 5269//36194 +f 7400//36196 845//36196 4839//36196 +f 123//36197 206//36198 1885//36199 +f 4071//36200 4770//36201 709//36202 +f 5005//36203 3188//36204 5563//36205 +f 7049//36206 4415//36207 7408//36208 +f 1665//36209 4143//36210 1242//36211 +f 2892//36212 6950//36213 117//36214 +f 4844//36215 4944//36216 186//36215 +f 2625//36217 4486//36218 4487//36219 +f 3477//36220 861//36221 2572//36220 +f 3248//36222 919//36222 4255//36223 +f 384//36224 1878//36225 1229//36226 +f 166//36227 929//36228 5011//36229 +f 306//36230 7355//36231 2075//36232 +f 4415//36233 7049//36234 5187//36235 +f 3680//36236 1180//36237 3016//36238 +f 4897//36239 1863//36240 3323//36241 +f 253//36242 4415//36243 5187//36244 +f 597//36245 578//36246 4942//36247 +f 3746//36248 2049//36249 3418//36248 +f 7401//36250 253//36250 5187//36251 +f 2617//36252 3341//36253 3816//36254 +f 237//36255 1467//36256 2434//36257 +f 7172//36258 4404//36259 1352//36260 diff --git a/tutorial/tracking/render-based/render-based-tutorial-utils.h b/tutorial/tracking/render-based/render-based-tutorial-utils.h new file mode 100644 index 0000000000..4f02a8e1b0 --- /dev/null +++ b/tutorial/tracking/render-based/render-based-tutorial-utils.h @@ -0,0 +1,380 @@ +#ifndef VP_RB_TRACKER_TUTORIAL_HELPER_H +#define VP_RB_TRACKER_TUTORIAL_HELPER_H + +#include +#include +#include +#include + +#include +#include +#include + + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#include + +#include +#include +#include + +#include "pStatClient.h" + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace vpRBTrackerTutorial +{ + +struct BaseArguments +{ + BaseArguments() : trackerConfiguration(""), display(true), debugDisplay(false), enableRenderProfiling(false), maxDepthDisplay(1.f) { } + + void registerArguments(vpJsonArgumentParser &parser) + { + parser + .addArgument("--tracker", trackerConfiguration, false, "Path to the JSON file containing the tracker") + .addArgument("--object", object, false, "Name of the object to track. Used to potentially fetch the init file") + .addArgument("--init-file", initFile, false, "Path to the JSON file containing the 2D/3D correspondences for initialization by click") + .addArgument("--pose", inlineInit, false, "Initial pose of the object in the camera frame.") + .addArgument("--max-depth-display", maxDepthDisplay, false, "Maximum depth value, used to scale the depth display") + .addFlag("--no-display", display, "Disable display windows") + .addFlag("--debug-display", debugDisplay, "Enable additional displays from the renderer") + .addFlag("--profile", enableRenderProfiling, "Enable the use of Pstats to profile rendering times"); + } + + void postProcessArguments() + { + if (trackerConfiguration.empty()) { + throw vpException(vpException::badValue, "No tracker configuration was specified"); + } + if (object.empty()) { + object = vpIoTools::getName(trackerConfiguration); + object.erase(object.end() - 5, object.end()); + } + if (initFile.empty()) { + initFile = vpIoTools::getParent(trackerConfiguration) + vpIoTools::separator + object + ".init"; + } + + if (!display && inlineInit.empty()) { + throw vpException(vpException::badValue, "Cannot disable displays without specifying the initial pose"); + } + if (inlineInit.size() > 0) { + if (inlineInit.size() != 6) { + throw vpException(vpException::dimensionError, "Inline pose initialization expected to have 6 values (tx, ty, tz, tux, tuy, tuz)"); + } + for (unsigned int i = 0; i < 6; ++i) { + std::cout << "inline i = " << inlineInit[i] << std::endl; + } + cMoInit = vpHomogeneousMatrix(inlineInit[0], inlineInit[1], inlineInit[2], inlineInit[3], inlineInit[4], inlineInit[5]); + } + } + + bool hasInlineInit() + { + return !inlineInit.empty(); + } + + std::string trackerConfiguration; + std::string object; + std::string initFile; + std::vector inlineInit; + float maxDepthDisplay; + vpHomogeneousMatrix cMoInit; + bool display; + bool debugDisplay; + bool enableRenderProfiling; +}; + +class vpRBExperimentLogger +{ +public: + vpRBExperimentLogger() : enabled(false), videoEnabled(false), framerate(30) + { } + + void registerArguments(vpJsonArgumentParser &parser) + { + parser + .addFlag("--save", enabled, "Whether to save experiment data") + .addArgument("--save-path", folder, false, "Where to save the experiment log. The folder should not exist.") + .addFlag("--save-video", videoEnabled, "Whether to save the video") + .addArgument("--video-framerate", framerate, false, "Output video framerate"); + + } + + void startLog() + { + if (enabled) { + if (folder.empty()) { + throw vpException(vpException::badValue, "Experiment logging enabled but folder not specified"); + } + vpIoTools::makeDirectory(folder); + if (videoEnabled) { + videoWriter.setFramerate(framerate); + videoWriter.setCodec(cv::VideoWriter::fourcc('P', 'I', 'M', '1')); + videoWriter.setFileName(folder + vpIoTools::separator + "video.mp4"); + } + } + } + + void logFrame(const vpRBTracker &tracker, unsigned int iter, const vpImage &I, const vpImage &IRGB, const vpImage &Idepth, const vpImage &Imask) + { + if (videoEnabled) { + Iout.resize(IRGB.getHeight() * 2, IRGB.getWidth() * 2); + + vpDisplay::getImage(I, IgrayOverlay); + vpDisplay::getImage(IRGB, IColOverlay); + vpDisplay::getImage(Idepth, IdepthOverlay); + vpDisplay::getImage(Imask, ImaskOverlay); +#pragma omp parallel for + for (unsigned int i = 0; i < IRGB.getHeight(); ++i) { + memcpy(Iout[i], IgrayOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); + memcpy(Iout[i] + IRGB.getWidth(), IColOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); + memcpy(Iout[i + IRGB.getHeight()], IdepthOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); + memcpy(Iout[i + IRGB.getHeight()] + IRGB.getWidth(), ImaskOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); + } + + if (iter == 1) { + videoWriter.open(Iout); + } + else { + videoWriter.saveFrame(Iout); + } + } + + nlohmann::json iterLog; + vpHomogeneousMatrix cMo; + tracker.getPose(cMo); + iterLog["cMo"] = cMo; + + log.push_back(iterLog); + + } + + void close() + { + if (videoEnabled) { + videoWriter.close(); + } + std::ofstream f(folder + vpIoTools::separator + "log.json"); + f << log.dump(2) << std::endl; + f.close(); + } + + +private: + bool enabled; + std::string folder; + + vpImage IColOverlay; + vpImage IgrayOverlay; + vpImage IdepthOverlay; + vpImage ImaskOverlay; + vpImage Iout; + + + bool videoEnabled; + unsigned int framerate; + vpVideoWriter videoWriter; + + + nlohmann::json log; + +}; + +class vpRBExperimentPlotter +{ + +public: + + vpRBExperimentPlotter() : enabled(false), plotPose(false), plotPose3d(false), plotDivergenceMetrics(false) { } + + void registerArguments(vpJsonArgumentParser &parser) + { + parser + .addFlag("--plot-pose", plotPose, "Plot the pose of the object in the camera frame") + .addFlag("--plot-position", plotPose3d, "Plot the position of the object in a 3d figure") + .addFlag("--plot-divergence", plotDivergenceMetrics, "Plot the metrics associated to the divergence threshold computation"); + } + + void postProcessArguments(bool displayEnabled) + { + + enabled = plotPose || plotDivergenceMetrics || plotPose3d; + if (enabled && !displayEnabled) { + throw vpException(vpException::badValue, "Tried to plot data, but display is disabled"); + } + + + } + + void init(std::vector> &displays) + { + if (!enabled) { + return; + } + int ypos = 0, xpos = 0; + for (std::shared_ptr &display : displays) { + ypos = std::min(ypos, display->getWindowYPosition()); + xpos = std::max(xpos, display->getWindowXPosition() + static_cast(display->getWidth())); + } + + numPlots = static_cast(plotPose) + static_cast(plotDivergenceMetrics) + static_cast(plotPose3d); + plotter.init(numPlots, 600, 800, xpos, ypos, "Plot"); + unsigned int plotIndex = 0; + if (plotPose) { + plotter.initGraph(plotIndex, 6); + plotter.setTitle(plotIndex, "cMo"); + std::vector legends = { + "tx", "ty", "tz", "tux", "tuy", "tuz" + }; + for (unsigned int i = 0; i < 6; ++i) { + plotter.setLegend(plotIndex, i, legends[i]); + } + plotter.setGraphThickness(plotIndex, 2); + ++plotIndex; + } + if (plotPose3d) { + plotter.initGraph(plotIndex, 1); + plotter.setTitle(plotIndex, "3D object position"); + plotter.setGraphThickness(plotIndex, 2); + ++plotIndex; + } + + if (plotDivergenceMetrics) { + plotter.initGraph(plotIndex, 1); + plotter.initRange(plotIndex, 0.0, 1.0, 0.0, 1.0); + plotter.setTitle(plotIndex, "Divergence"); + ++plotIndex; + } + } + + void plot(const vpRBTracker &tracker, double time) + { + if (!enabled) { + return; + } + unsigned int plotIndex = 0; + if (plotPose) { + vpHomogeneousMatrix cMo; + tracker.getPose(cMo); + plotter.plot(plotIndex, time, vpPoseVector(cMo)); + ++plotIndex; + } + if (plotPose3d) { + vpHomogeneousMatrix cMo; + tracker.getPose(cMo); + vpTranslationVector t = cMo.getTranslationVector(); + plotter.plot(plotIndex, 0, t[0], t[1], t[2]); + ++plotIndex; + } + if (plotDivergenceMetrics) { + const std::shared_ptr driftDetector = tracker.getDriftDetector(); + double metric = driftDetector ? driftDetector->getScore() : 0.0; + plotter.plot(plotIndex, 0, time, metric); + ++plotIndex; + } + } +private: + bool enabled; + bool plotPose; + bool plotPose3d; + + bool plotDivergenceMetrics; + int numPlots; + vpPlot plotter; +}; + + + +std::vector> createDisplays( + vpImage &Id, vpImage &Icol, + vpImage &depthDisplay, vpImage &probaDisplay) +{ + return vpDisplayFactory::makeDisplayGrid( + 2, 2, + 0, 0, + 20, 40, + "Grayscale", Id, + "Color", Icol, + "Depth", depthDisplay, + "Proba mask", probaDisplay + ); +} + +std::vector> createDisplays( + vpImage &Id, vpImage &Icol, vpImage &probaDisplay) +{ + return vpDisplayFactory::makeDisplayGrid( + 1, 3, + 0, 0, + 20, 40, + "Grayscale", Id, + "Color", Icol, + "Proba mask", probaDisplay + ); +} + + +void enableRendererProfiling() +{ + if (PStatClient::is_connected()) { + PStatClient::disconnect(); + } + + std::string host = ""; // Empty = default config var value + int port = -1; // -1 = default config var value + if (!PStatClient::connect(host, port)) { + std::cout << "Could not connect to PStat server." << std::endl; + } + +} + +void displayNormals(const vpImage &normalsImage, vpImage &normalDisplayImage) +{ +#pragma omp parallel for + for (int i = 0; i < normalsImage.getSize(); ++i) { + normalDisplayImage.bitmap[i].R = static_cast((normalsImage.bitmap[i].R + 1.0) * 127.5f); + normalDisplayImage.bitmap[i].G = static_cast((normalsImage.bitmap[i].G + 1.0) * 127.5f); + normalDisplayImage.bitmap[i].B = static_cast((normalsImage.bitmap[i].B + 1.0) * 127.5f); + } + + vpDisplay::display(normalDisplayImage); + vpDisplay::flush(normalDisplayImage); +} + +void displayCanny(const vpImage &cannyRawData, + vpImage &canny, const vpImage &valid) +{ +#pragma omp parallel for + for (int i = 0; i < cannyRawData.getSize(); ++i) { + vpRGBf &px = cannyRawData.bitmap[i]; + canny.bitmap[i] = valid.bitmap[i] * 255; + //canny.bitmap[i] = static_cast(127.5f + 127.5f * atan(px.B)); + } + + vpDisplay::display(canny); + for (unsigned int i = 0; i < canny.getHeight(); i += 4) { + for (unsigned int j = 0; j < canny.getWidth(); j += 4) { + if (!valid[i][j]) continue; + float angle = cannyRawData[i][j].B; + unsigned x = j + 10 * cos(angle); + unsigned y = i + 10 * sin(angle); + vpDisplay::displayArrow(canny, i, j, y, x, vpColor::green); + } + } + vpDisplay::flush(canny); +} +} +#endif +#endif diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp new file mode 100644 index 0000000000..cac60a4444 --- /dev/null +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -0,0 +1,238 @@ +#include +#include + +#ifndef VISP_HAVE_REALSENSE2 + +int main() +{ + std::cerr << "To run this tutorial, recompile ViSP with the Realsense third party library" << std::endl; + return EXIT_SUCCESS; +} + +#else +#include +#include + +#include + +#include "render-based-tutorial-utils.h" + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +struct CmdArguments +{ + CmdArguments() : height(480), width(848), fps(60) + { } + + void registerArguments(vpJsonArgumentParser &parser) + { + parser.addArgument("--height", height, false, "Realsense requested image height") + .addArgument("--width", width, false, "Realsense requested image width") + .addArgument("--fps", fps, false, "Realsense requested framerate"); + } + + unsigned int height, width, fps; +}; +#endif + +void updateDepth(const vpImage &depthRaw, float depthScale, float maxZDisplay, vpImage &depth, vpImage &IdepthDisplay) +{ + depth.resize(depthRaw.getHeight(), depthRaw.getWidth()); +#pragma omp parallel for + for (unsigned int i = 0; i < depthRaw.getSize(); ++i) { + depth.bitmap[i] = depthScale * static_cast(depthRaw.bitmap[i]); + IdepthDisplay.bitmap[i] = depth.bitmap[i] > maxZDisplay ? 0 : static_cast((depth.bitmap[i] / maxZDisplay) * 255.f); + } +} + +int main(int argc, const char **argv) +{ + // Read the command line options + vpRBTrackerTutorial::BaseArguments baseArgs; + CmdArguments realsenseArgs; + vpRBTrackerTutorial::vpRBExperimentLogger logger; + vpRBTrackerTutorial::vpRBExperimentPlotter plotter; + + vpJsonArgumentParser parser( + "Tutorial showing the usage of the Render-Based tracker with a realsense camera", + "--config", "/" + ); + + baseArgs.registerArguments(parser); + realsenseArgs.registerArguments(parser); + logger.registerArguments(parser); + plotter.registerArguments(parser); + + parser.parse(argc, argv); + + baseArgs.postProcessArguments(); + plotter.postProcessArguments(baseArgs.display); + + if (baseArgs.enableRenderProfiling) { + vpRBTrackerTutorial::enableRendererProfiling(); + } + + std::cout << "Loading tracker: " << baseArgs.trackerConfiguration << std::endl; + vpRBTracker tracker; + tracker.loadConfigurationFile(baseArgs.trackerConfiguration); + vpObjectCentricRenderer &renderer = tracker.getRenderer(); + const unsigned int width = realsenseArgs.width, height = realsenseArgs.height; + const unsigned fps = realsenseArgs.fps; + + vpImage Id(height, width); + vpImage Icol(height, width); + vpImage depthRaw(height, width); + vpImage depth(height, width); + vpImage IdepthDisplay(height, width); + vpImage IProbaDisplay(height, width); + vpImage cannyDisplay(height, width); + vpImage InormDisplay(height, width); + + vpRealSense2 realsense; + + std::cout << "Opening realsense with " << width << "x" << height << " @ " << fps << "fps" << std::endl; + rs2::config config; + config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps); + config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps); + rs2::align align_to(RS2_STREAM_COLOR); + try { + realsense.open(config); + } + catch (const vpException &e) { + std::cout << "Caught an exception: " << e.what() << std::endl; + std::cout << "Check if the Realsense camera is connected..." << std::endl; + return EXIT_SUCCESS; + } + + float depthScale = realsense.getDepthScale(); + //camera warmup + for (int i = 0; i < 10; ++i) { + realsense.acquire(Icol); + } + vpImageConvert::convert(Icol, Id); + + vpCameraParameters cam = realsense.getCameraParameters(RS2_STREAM_COLOR, vpCameraParameters::perspectiveProjWithoutDistortion); + tracker.setCameraParameters(cam, height, width); + + std::cout << "Creating displays" << std::endl;; + unsigned int padding = 20; + std::vector> displays, displaysDebug; + + if (baseArgs.display) { + displays = vpRBTrackerTutorial::createDisplays(Id, Icol, IdepthDisplay, IProbaDisplay); + if (baseArgs.debugDisplay) { + displaysDebug = vpDisplayFactory::makeDisplayGrid(1, 2, + 0, 0, + 20, 20, + "Normals in object frame", InormDisplay, + "Depth canny", cannyDisplay + ); + } + plotter.init(displays); + } + + if (baseArgs.display && !baseArgs.hasInlineInit()) { + bool ready = false; + while (!ready) { + realsense.acquire((unsigned char *)Icol.bitmap, (unsigned char *)depthRaw.bitmap, nullptr, nullptr, &align_to); + updateDepth(depthRaw, depthScale, baseArgs.maxDepthDisplay, depth, IdepthDisplay); + vpImageConvert::convert(Icol, Id); + vpDisplay::display(Icol); vpDisplay::display(Id); vpDisplay::display(IdepthDisplay); + vpDisplay::flush(Icol); vpDisplay::flush(Id); vpDisplay::flush(IdepthDisplay); + if (vpDisplay::getClick(Id, false)) { + ready = true; + } + else { + vpTime::wait(1000.0 / fps); + } + } + } + + updateDepth(depthRaw, depthScale, baseArgs.maxDepthDisplay, depth, IdepthDisplay); + + vpHomogeneousMatrix cMo; + + // Manual initialization of the tracker + std::cout << "Starting init" << std::endl; + if (baseArgs.hasInlineInit()) { + tracker.setPose(baseArgs.cMoInit); + } + else if (baseArgs.display) { + + tracker.initClick(Id, baseArgs.initFile, true); + tracker.getPose(cMo); + } + else { + throw vpException(vpException::notImplementedError, "Cannot initalize tracking: no auto init function provided"); + } + + std::cout << "Starting pose: " << vpPoseVector(cMo).t() << std::endl; + + if (baseArgs.display) { + vpDisplay::flush(Id); + } + +//vpRBTrackerFilter &ukfm = tracker.getFilter(); + logger.startLog(); + unsigned int iter = 1; + // Main tracking loop + double expStart = vpTime::measureTimeMs(); + while (true) { + double frameStart = vpTime::measureTimeMs(); + // Acquire images + realsense.acquire((unsigned char *)Icol.bitmap, (unsigned char *)depthRaw.bitmap, nullptr, nullptr, &align_to); + updateDepth(depthRaw, depthScale, baseArgs.maxDepthDisplay, depth, IdepthDisplay); + vpImageConvert::convert(Icol, Id); + + // Pose tracking + double trackingStart = vpTime::measureTimeMs(); + tracker.track(Id, Icol, depth); + double trackingEnd = vpTime::measureTimeMs(); + tracker.getPose(cMo); + double displayStart = vpTime::measureTimeMs(); + if (baseArgs.display) { + if (baseArgs.debugDisplay) { + const vpRBFeatureTrackerInput &lastFrame = tracker.getMostRecentFrame(); + + + vpRBTrackerTutorial::displayCanny(lastFrame.renders.silhouetteCanny, cannyDisplay, lastFrame.renders.isSilhouette); + + } + + vpDisplay::display(IdepthDisplay); + vpDisplay::display(Id); + // vpDisplay::display(Icol); + tracker.display(Id, Icol, IdepthDisplay, vpRBFeatureDisplayType::SIMPLE); + vpDisplay::displayFrame(Icol, cMo, cam, 0.05, vpColor::none, 2); + vpDisplay::displayText(Id, 20, 5, "Right click to exit", vpColor::red); + vpMouseButton::vpMouseButtonType button; + if (vpDisplay::getClick(Id, button, false)) { + if (button == vpMouseButton::button3) { + break; + } + } + tracker.displayMask(IProbaDisplay); + vpDisplay::display(IProbaDisplay); + + vpDisplay::flush(Id); vpDisplay::flush(Icol); + vpDisplay::flush(IdepthDisplay); vpDisplay::flush(IProbaDisplay); + } + + logger.logFrame(tracker, iter, Id, Icol, IdepthDisplay, IProbaDisplay); + const double displayEnd = vpTime::measureTimeMs(); + + // ukfm.filter(cMo, 0.05); + // const vpHomogeneousMatrix cMoFiltered = ukfm.getFilteredPose(); + // vpDisplay::displayFrame(Icol, cMoFiltered, cam, 0.05, vpColor::yellow, 2); + + const double frameEnd = vpTime::measureTimeMs(); + std::cout << "Iter " << iter << ": " << round(frameEnd - frameStart) << "ms" << std::endl; + std::cout << "- Tracking: " << round(trackingEnd - trackingStart) << "ms" << std::endl; + std::cout << "- Display: " << round(displayEnd - displayStart) << "ms" << std::endl; + plotter.plot(tracker, (frameEnd - expStart) / 1000.0); + iter++; + } + + logger.close(); + return EXIT_SUCCESS; +} +#endif diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp new file mode 100644 index 0000000000..9e1e440f09 --- /dev/null +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -0,0 +1,245 @@ + + +#include +#include +#include +#include + +#include +#include + +#include + +#include "render-based-tutorial-utils.h" + + +struct CmdArguments +{ + CmdArguments() : startFrame(0), frameStep(1), stepByStep(false) + { + + } + + void registerArguments(vpJsonArgumentParser &parser) + { + parser + .addArgument("--color", colorSequence, true, "The color sequence (in video reader format, eg., /path/to/I\%04d.png)") + .addArgument("--depth", depthFolder, false, "The depth images associated to the color sequence. Frames should be aligned") + .addArgument("--start", startFrame, false, "The first frame of the sequence") + .addArgument("--step", frameStep, false, "How many frames should be read between calls to the tracker") + .addFlag("--step-by-step", stepByStep, "Go through the sequence interactively, frame by frame"); + } + + void postProcessArguments() + { + if (colorSequence.empty()) { + throw vpException(vpException::badValue, "Input sequence should not be empty"); + } + } + + std::string colorSequence; + std::string depthFolder; + unsigned int startFrame; + unsigned int frameStep; + bool stepByStep; +}; + + +int main(int argc, const char **argv) +{ + vpRBTrackerTutorial::BaseArguments baseArgs; + CmdArguments sequenceArgs; + vpRBTrackerTutorial::vpRBExperimentLogger logger; + vpRBTrackerTutorial::vpRBExperimentPlotter plotter; + + vpJsonArgumentParser parser("Tutorial showing how to use the Render-Based Tracker on an offline sequence", "--config", "/"); + baseArgs.registerArguments(parser); + sequenceArgs.registerArguments(parser); + logger.registerArguments(parser); + plotter.registerArguments(parser); + + parser.parse(argc, argv); + + baseArgs.postProcessArguments(); + sequenceArgs.postProcessArguments(); + plotter.postProcessArguments(baseArgs.display); + + if (baseArgs.enableRenderProfiling) { + vpRBTrackerTutorial::enableRendererProfiling(); + } + + baseArgs.display = true; + // Get the option values + + logger.startLog(); + + // Set tracking and rendering parameters + vpCameraParameters cam; + + std::cout << "Creating tracker" << std::endl; + vpRBTracker tracker; + tracker.loadConfigurationFile(baseArgs.trackerConfiguration); + cam = tracker.getCameraParameters(); + vpObjectCentricRenderer &renderer = tracker.getRenderer(); + + //VideoReader to read images from disk + + vpImage Icol; + vpVideoReader readerRGB; + readerRGB.setFileName(sequenceArgs.colorSequence); + readerRGB.setFirstFrameIndex(sequenceArgs.startFrame); + readerRGB.open(Icol); + readerRGB.acquire(Icol); + + const int width = readerRGB.getWidth(); + const int height = readerRGB.getHeight(); + + vpImage Id(height, width); + vpImage depth(height, width); + vpImage depthDisplay(height, width); + vpImage IProba(height, width); + vpImage IProbaDisplay(height, width); + vpImage IRender(height, width); + vpImage InormDisplay(height, width); + vpImage ICannyDisplay(height, width); + + vpImageConvert::convert(Icol, Id); + + // Main window creation and displaying + + std::vector> displays, debugDisplays; + + if (baseArgs.display) { + displays = vpRBTrackerTutorial::createDisplays(Id, Icol, depthDisplay, IProbaDisplay); + if (baseArgs.debugDisplay) { + debugDisplays = vpDisplayFactory::makeDisplayGrid( + 1, 3, + 0, 0, + 20, 20, + "Normals in object frame", InormDisplay, + "Depth canny", ICannyDisplay, + "Color render", IRender + ); + } + plotter.init(displays); + } + + vpHomogeneousMatrix cMo; + + nlohmann::json result = nlohmann::json::array(); + + // Manual initialization of the tracker + std::cout << "Starting init" << std::endl; + + if (baseArgs.hasInlineInit()) { + tracker.setPose(baseArgs.cMoInit); + } + else if (baseArgs.display) { + tracker.initClick(Id, baseArgs.initFile, true); + } + else { + throw vpException(vpException::notImplementedError, "Cannot initalize tracking: no auto init function provided"); + } + + if (baseArgs.display) { + vpDisplay::flush(Id); + + } + + int im = sequenceArgs.startFrame; + unsigned int iter = 1; + // Main tracking loop + double expStart = vpTime::measureTimeMs(); + + while (true) { + double frameStart = vpTime::measureTimeMs(); + // Acquire images + for (int sp = 0; sp < sequenceArgs.frameStep; sp++) { + + readerRGB.acquire(Icol); + vpImageConvert::convert(Icol, Id); + if (!sequenceArgs.depthFolder.empty()) { + std::stringstream depthName; + depthName << sequenceArgs.depthFolder << "/" << std::setfill('0') << std::setw(6) << im << ".npy"; + visp::cnpy::NpyArray npz_data = visp::cnpy::npy_load(depthName.str()); + vpImage dataArray(npz_data.data(), npz_data.shape[0], npz_data.shape[1], false); + float scale = 9.999999747378752e-05; + depth.resize(dataArray.getHeight(), dataArray.getWidth()); + depthDisplay.resize(dataArray.getHeight(), dataArray.getWidth()); +#pragma omp simd + for (unsigned int i = 0; i < dataArray.getSize(); ++i) { + float value = static_cast(dataArray.bitmap[i]) * scale; + depth.bitmap[i] = value; + depthDisplay.bitmap[i] = value > baseArgs.maxDepthDisplay ? 0.f : static_cast((depth.bitmap[i] / baseArgs.maxDepthDisplay) * 255.f); + } + } + } + + // Pose tracking + double trackingStart = vpTime::measureTimeMs(); + if (depth.getSize() == 0) { + tracker.track(Id, Icol); + } + else { + tracker.track(Id, Icol, depth); + } + std::cout << "Tracking took " << vpTime::measureTimeMs() - trackingStart << "ms" << std::endl; + + if (baseArgs.display) { + if (baseArgs.debugDisplay) { + const vpRBFeatureTrackerInput &lastFrame = tracker.getMostRecentFrame(); + + vpRBTrackerTutorial::displayNormals(lastFrame.renders.normals, InormDisplay); + + vpRBTrackerTutorial::displayCanny(lastFrame.renders.silhouetteCanny, ICannyDisplay, lastFrame.renders.isSilhouette); + if (lastFrame.renders.color.getSize() > 0) { + IRender = lastFrame.renders.color; + vpDisplay::display(IRender); + vpDisplay::flush(IRender); + } + } + + tracker.displayMask(IProbaDisplay); + vpDisplay::display(IProbaDisplay); + vpDisplay::flush(IProbaDisplay); + vpDisplay::display(Id); + // vpDisplay::display(Icol); + tracker.display(Id, Icol, depthDisplay, vpRBFeatureDisplayType::SIMPLE); + vpDisplay::displayFrame(Icol, cMo, cam, 0.05, vpColor::none, 2); + + vpDisplay::flush(Icol); + vpDisplay::flush(Id); + if (depth.getSize() > 0) { + vpDisplay::display(depthDisplay); + vpDisplay::flush(depthDisplay); + } + } + + tracker.getPose(cMo); + result.push_back(cMo); + + logger.logFrame(tracker, iter, Id, Icol, depthDisplay, IProbaDisplay); + + if (sequenceArgs.stepByStep && baseArgs.display) { + vpDisplay::getClick(Id, true); + } + + std::cout << "Iter: " << iter << std::endl; + ++im; + ++iter; + if (im > readerRGB.getLastFrameIndex()) { + break; + } + + double frameEnd = vpTime::measureTimeMs(); + std::cout << "Frame took: " << frameEnd - frameStart << "ms" << std::endl; + plotter.plot(tracker, (frameEnd - expStart) / 1000.0); + + } + + logger.close(); + + return EXIT_SUCCESS; + + +} From 6affb4bc183c610c362151f682cef489c893e195 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 18 Sep 2024 14:06:35 +0200 Subject: [PATCH 002/101] Add guards for openmp usage, add guards for vpRBKltTracker --- .../rbt/include/visp3/rbt/vpRBKltTracker.h | 10 ++++-- .../src/core/vpRBSilhouetteControlPoint.cpp | 32 ++++++++++++++++++- modules/tracker/rbt/src/core/vpRBTracker.cpp | 9 +++++- .../vpRBProbabilistic3DDriftDetector.cpp | 2 ++ .../src/features/vpRBDenseDepthTracker.cpp | 2 ++ .../features/vpRBFeatureTrackerFactory.cpp | 10 +++--- .../rbt/src/features/vpRBKltTracker.cpp | 5 +++ .../src/features/vpRBSilhouetteCCDTracker.cpp | 31 +++++++++++------- .../render-based-tutorial-utils.h | 6 ++++ .../render-based/tutorial-rbt-realsense.cpp | 4 ++- .../render-based/tutorial-rbt-sequence.cpp | 4 ++- 11 files changed, 93 insertions(+), 22 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index f312de9033..43ada59a41 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -37,6 +37,13 @@ #ifndef VP_RB_KLT_TRACKER_H #define VP_RB_KLT_TRACKER_H +#include + +#if (defined(VISP_HAVE_MODULE_KLT) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_HIGHGUI) && defined(HAVE_OPENCV_IMGPROC) && defined(HAVE_OPENCV_VIDEO)) +#define VP_HAVE_RB_KLT_TRACKER +#endif + +#if defined(VP_HAVE_RB_KLT_TRACKER) #include #include #include @@ -45,8 +52,6 @@ #include - - class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker { public: @@ -195,3 +200,4 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker }; #endif +#endif diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 6b20e12341..17643452e1 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -1,4 +1,34 @@ - +/**************************************************************************** + * + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * +*****************************************************************************/ #include #include diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 7668cb65d2..cae1431200 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -361,13 +361,20 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) frame.renders.boundingBox = m_renderer.getBoundingBox(); // Extract data from Panda textures -#pragma omp sections +#ifdef VISP_HAVE_OPENMP +#pragma omp parallel sections +#endif + { +#ifdef VISP_HAVE_OPENMP #pragma omp section +#endif { m_renderer.getRenderer()->getRender(frame.renders.normals, frame.renders.depth, frame.renders.boundingBox, m_imageHeight, m_imageWidth); } +#ifdef VISP_HAVE_OPENMP #pragma omp section +#endif { m_renderer.getRenderer()->getRender(frame.renders.silhouetteCanny, frame.renders.isSilhouette, frame.renders.boundingBox, m_imageHeight, m_imageWidth); // m_renderer.placeRenderInto(m_tempRenders.renders.silhouetteCanny, frame.renders.silhouetteCanny, vpRGBf(0.f)); diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 02eea2ddca..1be086747e 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -50,7 +50,9 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre if (m_points.size() > 0) { // Step 0: project all points +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (vpStored3DSurfaceColorPoint &p : m_points) { p.update(cTo, cprevTo, frame.cam); } diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 87cdcb209c..9b004dadeb 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -125,7 +125,9 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, } double t1 = vpTime::measureTimeMs(); vpRotationMatrix cRo = cMo.getRotationMatrix(); +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { vpDepthPoint &depthPoint = m_depthPoints[i]; depthPoint.update(cMo, cRo); diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp index fddcb8ecb7..debe8fa694 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp @@ -54,14 +54,16 @@ vpRBFeatureTrackerFactory::vpRBFeatureTrackerFactory() p->loadJsonConfiguration(j); return p; }); - registerType("klt", [](const nlohmann::json &j) { - std::shared_ptr p(new vpRBKltTracker()); + registerType("depth", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBDenseDepthTracker()); p->loadJsonConfiguration(j); return p; }); - registerType("depth", [](const nlohmann::json &j) { - std::shared_ptr p(new vpRBDenseDepthTracker()); +#if defined(VP_HAVE_RB_KLT_TRACKER) + registerType("klt", [](const nlohmann::json &j) { + std::shared_ptr p(new vpRBKltTracker()); p->loadJsonConfiguration(j); return p; }); +#endif } diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 8470c3e243..3eea86261e 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -31,6 +31,9 @@ *****************************************************************************/ #include + +#if defined(VP_HAVE_RB_KLT_TRACKER) + #include #include #include @@ -286,3 +289,5 @@ void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage + +#ifdef VISP_HAVE_OPENMP #include +#endif #define VISP_DEBUG_CCD_TRACKER 0 @@ -243,7 +246,9 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &cam, const vpIm void vpRBSilhouetteCCDTracker::updateCCDPoints(const vpHomogeneousMatrix &cMo) { +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (vpRBSilhouetteControlPoint &p : m_controlPoints) { p.updateSilhouettePoint(cMo); } @@ -270,7 +275,9 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, // the second column store the one inside the curve vpMatrix normalized_param = vpMatrix(resolution, 2, 0.0); +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (unsigned int kk = 0; kk < m_controlPoints.size(); kk++) { // temporary points used to store those points in the // normal direction as well as negative normal direction @@ -376,7 +383,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } + } #pragma omp parallel for for (unsigned int i = 0; i < resolution; ++i) { @@ -492,7 +499,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } -} + } void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { @@ -503,7 +510,9 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() m_weighted_error.resize(nerror_ccd, false); m_L.resize(nerror_ccd, 6, false, false); double beforeParallel = vpTime::measureTimeMs(); +#ifdef VISP_HAVE_OPENMP #pragma omp parallel +#endif { // vpMatrix tmp_cov(3, 3); @@ -515,7 +524,9 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() double Lnvp[6]; unsigned int normal_points_number = static_cast(floor(m_ccdParameters.h / m_ccdParameters.delta_h)); +#ifdef VISP_HAVE_OPENMP #pragma omp for +#endif for (unsigned int kk = 0; kk < m_controlPoints.size(); kk++) { const int i = kk; const vpRBSilhouetteControlPoint &p = m_controlPoints[kk]; @@ -610,17 +621,22 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() std::vector localGradients; // Store all the gradients and hessians and then sum them up after the parallel region. This ensures that computation is determinist std::vector localHessians; +#ifdef VISP_HAVE_OPENMP #pragma omp parallel +#endif { vpColVector localGradient(nabla_E.getRows(), 0.0); vpMatrix localHessian(hessian_E.getRows(), hessian_E.getCols(), 0.0); +#ifdef VISP_HAVE_OPENMP #pragma omp single +#endif { localGradients.resize(omp_get_num_threads(), localGradient); localHessians.resize(omp_get_num_threads(), localHessian); } - +#ifdef VISP_HAVE_OPENMP #pragma omp for schedule(static) +#endif for (unsigned int i = 0; i < m_gradients.size(); ++i) { m_gradients[i] *= m_weights[i]; m_hessians[i] *= m_weights[i]; @@ -635,22 +651,13 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() hessian_E += localHessians[i]; } double afterWeight = vpTime::measureTimeMs(); - //std::cout << "Weighting and sum took " << afterWeight - beforeWeightAndSum << std::endl; - - //sigmaF = 0.2*sigmaF + 0.8*computeCovarianceMatrix(m_L,v,error_ccd); - //std::cout << " sigmaF " << sigmaF << std::endl; m_LTL = hessian_E; m_LTR = -nabla_E; - // m_LTL = m_L.AtA(); - // std::cout << m_LTL - hessian_E << std::endl; - // computeJTR(m_L, -m_weighted_error, m_LTR); - vpMatrix hessian_E_inv = hessian_E.inverseByCholesky(); //Sigma_Phi = /*Sigma_Phi +*/ 2*hessian_E_inv; Sigma_Phi = m_ccdParameters.covarianceIterDecreaseFactor * Sigma_Phi + 2 * (1 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; m_cov = Sigma_Phi; - //std::cout << "Rest took: " << vpTime::measureTimeMs() - afterWeight << std::endl; } diff --git a/tutorial/tracking/render-based/render-based-tutorial-utils.h b/tutorial/tracking/render-based/render-based-tutorial-utils.h index 4f02a8e1b0..a65a09348e 100644 --- a/tutorial/tracking/render-based/render-based-tutorial-utils.h +++ b/tutorial/tracking/render-based/render-based-tutorial-utils.h @@ -136,7 +136,9 @@ class vpRBExperimentLogger vpDisplay::getImage(IRGB, IColOverlay); vpDisplay::getImage(Idepth, IdepthOverlay); vpDisplay::getImage(Imask, ImaskOverlay); +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (unsigned int i = 0; i < IRGB.getHeight(); ++i) { memcpy(Iout[i], IgrayOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); memcpy(Iout[i] + IRGB.getWidth(), IColOverlay[i], IRGB.getWidth() * sizeof(vpRGBa)); @@ -342,7 +344,9 @@ void enableRendererProfiling() void displayNormals(const vpImage &normalsImage, vpImage &normalDisplayImage) { +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (int i = 0; i < normalsImage.getSize(); ++i) { normalDisplayImage.bitmap[i].R = static_cast((normalsImage.bitmap[i].R + 1.0) * 127.5f); normalDisplayImage.bitmap[i].G = static_cast((normalsImage.bitmap[i].G + 1.0) * 127.5f); @@ -356,7 +360,9 @@ void displayNormals(const vpImage &normalsImage, vpImage &normal void displayCanny(const vpImage &cannyRawData, vpImage &canny, const vpImage &valid) { +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (int i = 0; i < cannyRawData.getSize(); ++i) { vpRGBf &px = cannyRawData.bitmap[i]; canny.bitmap[i] = valid.bitmap[i] * 255; diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index cac60a4444..c9718ee83c 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -37,7 +37,9 @@ struct CmdArguments void updateDepth(const vpImage &depthRaw, float depthScale, float maxZDisplay, vpImage &depth, vpImage &IdepthDisplay) { depth.resize(depthRaw.getHeight(), depthRaw.getWidth()); +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (unsigned int i = 0; i < depthRaw.getSize(); ++i) { depth.bitmap[i] = depthScale * static_cast(depthRaw.bitmap[i]); IdepthDisplay.bitmap[i] = depth.bitmap[i] > maxZDisplay ? 0 : static_cast((depth.bitmap[i] / maxZDisplay) * 255.f); @@ -53,7 +55,7 @@ int main(int argc, const char **argv) vpRBTrackerTutorial::vpRBExperimentPlotter plotter; vpJsonArgumentParser parser( - "Tutorial showing the usage of the Render-Based tracker with a realsense camera", + "Tutorial showing the usage of the Render-Based tracker with a RealSense camera", "--config", "/" ); diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index 9e1e440f09..0bf6e2fe30 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -166,7 +166,9 @@ int main(int argc, const char **argv) float scale = 9.999999747378752e-05; depth.resize(dataArray.getHeight(), dataArray.getWidth()); depthDisplay.resize(dataArray.getHeight(), dataArray.getWidth()); -#pragma omp simd +#ifdef VISP_HAVE_OPENMP +#pragma omp parallel for +#endif for (unsigned int i = 0; i < dataArray.getSize(); ++i) { float value = static_cast(dataArray.bitmap[i]) * scale; depth.bitmap[i] = value; From aee5e2090d44ca0df8a31edec4ea821fda9aca7e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 18 Sep 2024 16:26:46 +0200 Subject: [PATCH 003/101] Stopped using initClick from vpMbTracker --- .../visp3/rbt/vpRBInitializationHelper.h | 40 +++ .../rbt/vpRBProbabilistic3DDriftDetector.h | 2 +- .../rbt/include/visp3/rbt/vpRBTracker.h | 117 +------ .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 2 +- .../rbt/src/core/vpRBInitializationHelper.cpp | 297 ++++++++++++++++++ modules/tracker/rbt/src/core/vpRBTracker.cpp | 12 + .../src/features/vpRBSilhouetteCCDTracker.cpp | 29 +- .../render-based/tutorial-rbt-sequence.cpp | 3 +- 8 files changed, 380 insertions(+), 122 deletions(-) create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h create mode 100644 modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h new file mode 100644 index 0000000000..cf2e5643ba --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h @@ -0,0 +1,40 @@ +#ifndef VP_RB_INITIALIZATION_HELPER_H +#define VP_RB_INITIALIZATION_HELPER_H + +#include +#include +#include + +#include +#include + +template +class vpImage; + + +class VISP_EXPORT vpRBInitializationHelper +{ +public: + void removeComment(std::ifstream &fileId); + void savePose(const std::string &filename) const; + + vpHomogeneousMatrix getPose() const { return m_cMo; } + + void setCameraParameters(const vpCameraParameters &cam) { m_cam = cam; } + +#ifdef VISP_HAVE_MODULE_GUI + template + void initClick(const vpImage &I, const std::string &initFile, bool displayHelp); + +#endif + +private: + std::string m_poseSavingFileName; + + vpHomogeneousMatrix m_cMo; + vpCameraParameters m_cam; +}; + + + +#endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index 35be763957..959ade9b25 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -1,7 +1,7 @@ /**************************************************************************** * * ViSP, open source Visual Servoing Platform software. - * Copyright (C) 2005 - 2023 by Inria. All rights reserved. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * * This software is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 7409825607..4d85767464 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -41,14 +41,14 @@ #if defined(VISP_HAVE_PANDA3D) -#include - #include #include #include #include #include +#include + class vpObjectMask; class vpRBDriftDetector; @@ -58,74 +58,7 @@ class vpRBDriftDetector; #include #endif -// #include -// class VISP_EXPORT vpRBTrackerFilter -// { -// public: -// vpRBTrackerFilter() : m_initialized(false) -// { -// double opt_stdevP0 = 1e-8; -// double opt_stdevQ = 1e-10; -// double opt_stdevR = 1e-6; -// vpMatrix Id; -// Id.eye(6); -// vpMatrix P0 = Id * opt_stdevP0 * opt_stdevP0; -// vpMatrix Q = Id * opt_stdevQ * opt_stdevQ; -// vpMatrix R = Id * opt_stdevR * opt_stdevR; -// double alphaPred = 0.01; -// vpUnscentedKalmanPose::State X0; -// Id.eye(3); -// vpMatrix R_ukfm = Id * opt_stdevR * opt_stdevR; -// vpUnscentedKalmanPose ukfm(Q, R_ukfm, std::vector(3, alphaPred), X0, P0, -// vpUnscentedKalmanPose::fSE3, vpUnscentedKalmanPose::hSE3, vpUnscentedKalmanPose::phiSE3, -// vpUnscentedKalmanPose::phiinvSE3); -// m_kalman = std::shared_ptr(new vpUnscentedKalmanPose(ukfm)); -// } - -// void filter(const vpHomogeneousMatrix &cMo, double dt) -// { -// if (!m_initialized) { -// m_kalman->setX0(cMo); -// m_cMoPrev = cMo; -// m_initialized = true; -// } -// else { -// std::ios_base::fmtflags f(std::cerr.flags()); - -// vpColVector v = vpExponentialMap::inverse(m_cMoPrev * cMo.inverse(), dt); -// std::cerr << "Kalman v = " << std::setprecision(4) << std::scientific << v.t() << std::endl; -// std::cerr.flags(f); -// m_kalman->filter(v, vpUnscentedKalmanPose::asPositionVector(cMo), dt); -// m_cMoPrev = cMo; -// } -// } - -// void reinit(const vpHomogeneousMatrix &cMo) -// { -// m_kalman->setX0(cMo); -// m_cMoPrev = cMo; -// m_initialized = true; -// } - -// vpHomogeneousMatrix getFilteredPose() -// { -// return m_kalman->getState(); -// } - - - -// private: -// std::shared_ptr m_kalman; -// vpHomogeneousMatrix m_cMoPrev; -// bool m_initialized; - -// }; - - - - - -class VISP_EXPORT vpRBTracker : public vpMbTracker +class VISP_EXPORT vpRBTracker { public: @@ -133,7 +66,6 @@ class VISP_EXPORT vpRBTracker : public vpMbTracker ~vpRBTracker() = default; - void getPose(vpHomogeneousMatrix &cMo) const; void setPose(const vpHomogeneousMatrix &cMo); @@ -159,47 +91,18 @@ class VISP_EXPORT vpRBTracker : public vpMbTracker const std::shared_ptr getDriftDetector() const { return m_driftDetector; } +#ifdef VISP_HAVE_MODULE_GUI + void initClick(const vpImage &I, const std::string &initFile, bool displayHelp); + +#endif - //vpRBTrackerFilter &getFilter() { return m_filter; } + //vpRBTrackerFilter &getFilter() { return m_filter; } #if defined(VISP_HAVE_NLOHMANN_JSON) void loadConfigurationFile(const std::string &filename); void loadConfiguration(const nlohmann::json &j); #endif - virtual void initCircle(const vpPoint &p1, const vpPoint &p2, const vpPoint &p3, double radius, int idFace = 0, - const std::string &name = "") VP_OVERRIDE - { } - virtual void initCylinder(const vpPoint &p1, const vpPoint &p2, double radius, int idFace = 0, - const std::string &name = "") VP_OVERRIDE - { } - virtual void initFaceFromCorners(vpMbtPolygon &polygon) VP_OVERRIDE { } - virtual void initFaceFromLines(vpMbtPolygon &polygon) VP_OVERRIDE { } - virtual vpColVector getError() const VP_OVERRIDE { return vpColVector(); } - virtual vpColVector getRobustWeights() const { return vpColVector(); } - virtual void display(const vpImage &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, - const vpColor &col, unsigned int thickness = 1, bool displayFullModel = false) VP_OVERRIDE - { } - virtual void display(const vpImage &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, - const vpColor &col, unsigned int thickness = 1, bool displayFullModel = false) VP_OVERRIDE - { } - - virtual std::vector > getModelForDisplay(unsigned int width, unsigned int height, - const vpHomogeneousMatrix &cMo, - const vpCameraParameters &cam, - bool displayFullModel = false) - { - return {}; - } - - virtual void init(const vpImage &I) VP_OVERRIDE { } - virtual void resetTracker() VP_OVERRIDE { } - virtual void setPose(const vpImage &I, const vpHomogeneousMatrix &cdMo) VP_OVERRIDE { } - virtual void setPose(const vpImage &I_color, const vpHomogeneousMatrix &cdMo) VP_OVERRIDE { } - virtual void testTracking() VP_OVERRIDE { } - virtual void track(const vpImage &I) VP_OVERRIDE { } - virtual void computeVVSInit() VP_OVERRIDE { } - virtual void computeVVSInteractionMatrixAndResidu() VP_OVERRIDE { } protected: void track(vpRBFeatureTrackerInput &input); @@ -231,9 +134,9 @@ class VISP_EXPORT vpRBTracker : public vpMbTracker std::vector> m_trackers; //! List of trackers - // vpHomogeneousMatrix m_cMo; + vpHomogeneousMatrix m_cMo; vpHomogeneousMatrix m_cMoPrev; - //vpCameraParameters m_cam; + vpCameraParameters m_cam; vpRBFeatureTrackerInput m_currentFrame; vpRBFeatureTrackerInput m_previousFrame; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index 5ccd0d0ad0..a72aa6dab4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -130,7 +130,7 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) out << "Silhouette extraction: " << timer.m_silhouetteExtractionTime << "ms" << std::endl; out << "Trackers: " << std::endl; - for (const std::pair> &vvsIterData : timer.m_trackerVVSIterTimes) { + for (const std::pair> vvsIterData : timer.m_trackerVVSIterTimes) { double featTrackTime = timer.m_trackerFeatureTrackingTime.find(vvsIterData.first)->second; double featExtractionTime = timer.m_trackerFeatureExtractionTime.find(vvsIterData.first)->second; double initVVSTime = timer.m_trackerInitVVSTime.find(vvsIterData.first)->second; diff --git a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp new file mode 100644 index 0000000000..2a26b7ff4d --- /dev/null +++ b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp @@ -0,0 +1,297 @@ +#include + +#include +#include +#include +#include +#include + +#ifdef VISP_HAVE_MODULE_GUI +#include +#endif + + +void vpRBInitializationHelper::removeComment(std::ifstream &fileId) +{ + char c; + + fileId.get(c); + while (!fileId.fail() && (c == '#')) { + fileId.ignore(std::numeric_limits::max(), fileId.widen('\n')); + fileId.get(c); + } + if (fileId.fail()) { + throw(vpException(vpException::ioError, "Reached end of file")); + } + fileId.unget(); +} + +void vpRBInitializationHelper::savePose(const std::string &filename) const +{ + vpPoseVector init_pos; + std::fstream finitpos; + finitpos.open(filename.c_str(), std::ios::out); + + init_pos.build(m_cMo); + finitpos << init_pos; + finitpos.close(); +} + + +#ifdef VISP_HAVE_MODULE_GUI + +template +void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp) +{ + std::cout << "Starting init click!" << std::endl; + vpHomogeneousMatrix last_cMo; + vpPoseVector init_pos; + vpImagePoint ip; + vpMouseButton::vpMouseButtonType button = vpMouseButton::button1; + + std::string ext = ".init"; + std::string str_pose = ""; + size_t pos = initFile.rfind(ext); + + // Load the last poses from files + std::fstream finitpos; + std::ifstream finit; + std::stringstream ss; + std::string poseSavingFilename; + if (poseSavingFilename.empty()) { + if (pos != std::string::npos) + str_pose = initFile.substr(0, pos) + ".0.pos"; + else + str_pose = initFile + ".0.pos"; + + finitpos.open(str_pose.c_str(), std::ios::in); + ss << str_pose; + } + else { + finitpos.open(poseSavingFilename.c_str(), std::ios::in); + ss << poseSavingFilename; + } + if (finitpos.fail()) { + std::cout << "Cannot read " << ss.str() << std::endl << "cMo set to identity" << std::endl; + last_cMo.eye(); + } + else { + for (unsigned int i = 0; i < 6; i += 1) { + finitpos >> init_pos[i]; + } + + finitpos.close(); + last_cMo.build(init_pos); + + std::cout << "Tracker initial pose read from " << ss.str() << ": " << std::endl << last_cMo << std::endl; + + vpDisplay::display(I); + vpDisplay::displayFrame(I, last_cMo, m_cam, 0.05, vpColor::green); + vpDisplay::flush(I); + + + std::cout << "No modification : left click " << std::endl; + std::cout << "Modify initial pose : right click " << std::endl; + + + vpDisplay::displayText(I, 15, 10, "left click to validate, right click to modify initial pose", vpColor::red); + + vpDisplay::flush(I); + + while (!vpDisplay::getClick(I, ip, button)) { + } + + } + + if (!finitpos.fail() && button == vpMouseButton::button1) { + m_cMo = last_cMo; + } + else { + vpDisplay *d_help = nullptr; + + vpDisplay::display(I); + vpDisplay::flush(I); + + + vpPose pose; + + pose.clearPoint(); + + // Clear string stream that previously contained the path to the "object.0.pos" file. + ss.str(std::string()); + + // file parser + // number of points + // X Y Z + // X Y Z + if (pos != std::string::npos) { + ss << initFile; + } + else { + ss << initFile; + ss << ".init"; + } + + std::cout << "Load 3D points from: " << ss.str() << std::endl; +#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) + finit.open(ss.str()); +#else + finit.open(ss.str().c_str()); +#endif + if (finit.fail()) { + std::cout << "Cannot read " << ss.str() << std::endl; + throw vpException(vpException::ioError, "Cannot open model-based tracker init file %s", ss.str().c_str()); + } + +#ifdef VISP_HAVE_MODULE_IO + // Display window creation and initialisation + try { + if (displayHelp) { + const std::string imgExtVec[] = { ".ppm", ".pgm", ".jpg", ".jpeg", ".png" }; + std::string dispF; + bool foundHelpImg = false; + if (pos != std::string::npos) { + for (size_t i = 0; i < 5 && !foundHelpImg; i++) { + dispF = initFile.substr(0, pos) + imgExtVec[i]; + foundHelpImg = vpIoTools::checkFilename(dispF); + } + } + else { + for (size_t i = 0; i < 5 && !foundHelpImg; i++) { + dispF = initFile + imgExtVec[i]; + foundHelpImg = vpIoTools::checkFilename(dispF); + } + } + + if (foundHelpImg) { + std::cout << "Load image to help initialization: " << dispF << std::endl; + + std::shared_ptr d_help = vpDisplayFactory::createDisplay(); + + vpImage Iref; + vpImageIo::read(Iref, dispF); +#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV) + const int winXPos = I.display->getWindowXPosition(); + const int winYPos = I.display->getWindowYPosition(); + unsigned int width = I.getWidth(); + d_help->init(Iref, winXPos + (int)width + 80, winYPos, "Where to initialize..."); + vpDisplay::display(Iref); + vpDisplay::flush(Iref); +#endif + } + } + } + catch (...) { + if (d_help != nullptr) { + delete d_help; + d_help = nullptr; + } + } +#else //#ifdef VISP_HAVE_MODULE_IO + (void)(displayHelp); +#endif //#ifdef VISP_HAVE_MODULE_IO + // skip lines starting with # as comment + removeComment(finit); + + unsigned int n3d; + finit >> n3d; + finit.ignore(256, '\n'); // skip the rest of the line + std::cout << "Number of 3D points " << n3d << std::endl; + if (n3d > 100000) { + throw vpException(vpException::badValue, "In %s file, the number of 3D points exceed the max allowed", + ss.str().c_str()); + } + + std::vector P(n3d); + for (unsigned int i = 0; i < n3d; i++) { + // skip lines starting with # as comment + removeComment(finit); + + vpColVector pt_3d(4, 1.0); + finit >> pt_3d[0]; + finit >> pt_3d[1]; + finit >> pt_3d[2]; + finit.ignore(256, '\n'); // skip the rest of the line + + vpColVector pt_3d_tf = pt_3d; + std::cout << "Point " << i + 1 << " with 3D coordinates: " << pt_3d_tf[0] << " " << pt_3d_tf[1] << " " + << pt_3d_tf[2] << std::endl; + + P[i].setWorldCoordinates(pt_3d_tf[0], pt_3d_tf[1], pt_3d_tf[2]); // (X,Y,Z) + } + + finit.close(); + + bool isWellInit = false; + while (!isWellInit) { + std::vector mem_ip; + for (unsigned int i = 0; i < n3d; i++) { + std::ostringstream text; + text << "Click on point " << i + 1; + + vpDisplay::display(I); + vpDisplay::displayText(I, 15, 10, text.str(), vpColor::red); + for (unsigned int k = 0; k < mem_ip.size(); k++) { + vpDisplay::displayCross(I, mem_ip[k], 10, vpColor::green, 2); + } + vpDisplay::flush(I); + + std::cout << "Click on point " << i + 1 << " "; + double x = 0, y = 0; + + vpDisplay::getClick(I, ip); + mem_ip.push_back(ip); + vpDisplay::flush(I); + + vpPixelMeterConversion::convertPoint(m_cam, ip, x, y); + P[i].set_x(x); + P[i].set_y(y); + + std::cout << "with 2D coordinates: " << ip << std::endl; + + pose.addPoint(P[i]); // and added to the pose computation point list + } + vpDisplay::flush(I); + vpDisplay::display(I); + + + pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, m_cMo); + + vpDisplay::displayText(I, 15, 10, "left click to validate, right click to re initialize object", vpColor::red); + + vpDisplay::flush(I); + + button = vpMouseButton::button1; + while (!vpDisplay::getClick(I, ip, button)) { + } + + if (button == vpMouseButton::button1) { + isWellInit = true; + } + else { + pose.clearPoint(); + vpDisplay::display(I); + vpDisplay::flush(I); + } + + } + vpDisplay::displayFrame(I, m_cMo, m_cam, 0.05, vpColor::red); + + // save the pose into file + if (poseSavingFilename.empty()) + savePose(str_pose); + else + savePose(poseSavingFilename); + + if (d_help != nullptr) { + delete d_help; + d_help = nullptr; + } + } + + std::cout << "cMo : " << std::endl << m_cMo << std::endl; + +} +template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); +template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); +#endif diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index cae1431200..da22298aa2 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -47,6 +47,7 @@ #include #include +#include #define VP_DEBUG_RB_TRACKER 1 @@ -591,3 +592,14 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) } } #endif + +#ifdef VISP_HAVE_MODULE_GUI +void vpRBTracker::initClick(const vpImage &I, const std::string &initFile, bool displayHelp) +{ + vpRBInitializationHelper initializer; + initializer.setCameraParameters(m_cam); + initializer.initClick(I, initFile, displayHelp); + m_cMo = initializer.getPose(); +} + +#endif diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index d2269813d2..3cb0fc8223 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -383,9 +383,10 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } - + } +#ifdef VISP_HAVE_OPENMP #pragma omp parallel for +#endif for (unsigned int i = 0; i < resolution; ++i) { if (!m_controlPoints[i].isValid()) { continue; @@ -499,7 +500,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } - } +} void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { @@ -509,7 +510,6 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() error_ccd.resize(nerror_ccd, false); m_weighted_error.resize(nerror_ccd, false); m_L.resize(nerror_ccd, 6, false, false); - double beforeParallel = vpTime::measureTimeMs(); #ifdef VISP_HAVE_OPENMP #pragma omp parallel #endif @@ -602,14 +602,11 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() } } double afterParallel = vpTime::measureTimeMs(); - //std::cout << "Parallel region took: " << afterParallel - beforeParallel << std::endl; nabla_E = 0.0; hessian_E = 0.0; - double beforeMestimator = vpTime::measureTimeMs(); //m_robust.setMinMedianAbsoluteDeviation(1.0); m_robust.MEstimator(vpRobust::vpRobustEstimatorType::TUKEY, error_ccd, m_weights); - double beforeWeightAndSum = vpTime::measureTimeMs(); for (unsigned int i = 0; i < m_L.getRows(); ++i) { m_weighted_error[i] = error_ccd[i] * m_weights[i]; for (unsigned int j = 0; j < 6; ++j) { @@ -631,8 +628,13 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() #pragma omp single #endif { - localGradients.resize(omp_get_num_threads(), localGradient); - localHessians.resize(omp_get_num_threads(), localHessian); +#ifdef VISP_HAVE_OPENMP + unsigned int threads = omp_get_num_threads(); +#else + unsigned int threads = 1; +#endif + localGradients.resize(threads, localGradient); + localHessians.resize(threads, localHessian); } #ifdef VISP_HAVE_OPENMP #pragma omp for schedule(static) @@ -643,8 +645,13 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() localHessian += m_hessians[i]; localGradient += m_gradients[i]; } - localGradients[omp_get_thread_num()] = localGradient; - localHessians[omp_get_thread_num()] = localHessian; +#ifdef VISP_HAVE_OPENMP + unsigned int currentThread = omp_get_thread_num(); +#else + unsigned int currentThread = 0; +#endif + localGradients[currentThread] = localGradient; + localHessians[currentThread] = localHessian; } for (unsigned int i = 0; i < localGradients.size(); ++i) { nabla_E += localGradients[i]; diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index 0bf6e2fe30..855366f276 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -138,12 +138,11 @@ int main(int argc, const char **argv) tracker.initClick(Id, baseArgs.initFile, true); } else { - throw vpException(vpException::notImplementedError, "Cannot initalize tracking: no auto init function provided"); + throw vpException(vpException::notImplementedError, "Cannot initialize tracking: no auto init function provided"); } if (baseArgs.display) { vpDisplay::flush(Id); - } int im = sequenceArgs.startFrame; From c604448ce76deb7ad444e99c77b89c6ee84ac3ac Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 18 Sep 2024 17:07:47 +0200 Subject: [PATCH 004/101] Working on visp openmp directive --- cmake/templates/vpConfig.h.in | 6 + modules/tracker/rbt/src/core/vpRBTracker.cpp | 2 +- .../src/features/vpRBSilhouetteCCDTracker.cpp | 190 +++++++++--------- 3 files changed, 101 insertions(+), 97 deletions(-) diff --git a/cmake/templates/vpConfig.h.in b/cmake/templates/vpConfig.h.in index efa274b9fc..86fbf9900d 100644 --- a/cmake/templates/vpConfig.h.in +++ b/cmake/templates/vpConfig.h.in @@ -526,6 +526,12 @@ namespace vp = VISP_NAMESPACE_NAME; // Defined if we want to use openmp #cmakedefine VISP_HAVE_OPENMP +#if defined(VISP_HAVE_OPENMP) +// Wrapper around OpenMP pragma clauses that disables them if openMP is disabled. This clause should not appear in headers +#define VISP_OPENMP(clause) \ +_Pragma(omp clause) +#endif + // Defined if nlohmann json parser is found #cmakedefine VISP_HAVE_NLOHMANN_JSON diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index da22298aa2..9860323d42 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -587,7 +587,7 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) nlohmann::json driftSettings = j.at("drift"); m_driftDetector = factory.buildFromJson(driftSettings); if (m_driftDetector == nullptr) { - throw vpException(vpException::badValue, "Cannot instanciate drift detection with the current settings, make sure that the type is registered in the factory"); + throw vpException(vpException::badValue, "Cannot instantiate drift detection with the current settings, make sure that the type is registered in the factory"); } } } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 3cb0fc8223..e5e9a8888a 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -384,122 +384,120 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } -#ifdef VISP_HAVE_OPENMP -#pragma omp parallel for -#endif - for (unsigned int i = 0; i < resolution; ++i) { - if (!m_controlPoints[i].isValid()) { - continue; - } + VISP_OPENMP(parallel for) + for (unsigned int i = 0; i < resolution; ++i) { + if (!m_controlPoints[i].isValid()) { + continue; + } - int k = 0; - // w1 = \sum wp_1, w2 = \sum wp_2 - double w1 = 0.0, w2 = 0.0; + int k = 0; + // w1 = \sum wp_1, w2 = \sum wp_2 + double w1 = 0.0, w2 = 0.0; - // store mean value near the curve - std::array m1 { 0.0, 0.0, 0.0 }, m2 { 0.0, 0.0, 0.0 }; + // store mean value near the curve + std::array m1 { 0.0, 0.0, 0.0 }, m2 { 0.0, 0.0, 0.0 }; - // store the second mean value near the curve - std::array m1_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; - std::array m2_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + // store the second mean value near the curve + std::array m1_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + std::array m2_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; - // compute local statistics + // compute local statistics - // start search the points in the +n direction as well as -n direction - double wp1 = 0.0, wp2 = 0.0; + // start search the points in the +n direction as well as -n direction + double wp1 = 0.0, wp2 = 0.0; - double *vic_ptr = stats.vic[i]; - double *mean_vic_ptr = stats.mean_vic[i]; - double *cov_vic_ptr = stats.cov_vic[i]; - double *pix_ptr = stats.imgPoints[i]; - double *weight_ptr = stats.weight[i]; + double *vic_ptr = stats.vic[i]; + double *mean_vic_ptr = stats.mean_vic[i]; + double *cov_vic_ptr = stats.cov_vic[i]; + double *pix_ptr = stats.imgPoints[i]; + double *weight_ptr = stats.weight[i]; - for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { - wp1 = 0.0, wp2 = 0.0; - int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); - const double *vic_k = vic_ptr + 10 * k; + for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { + wp1 = 0.0, wp2 = 0.0; + int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); + const double *vic_k = vic_ptr + 10 * k; - // wp1 = w(a_{k,l})*w(d_{k,l})*w(d) - wp1 = (vic_k[5] * vic_k[7] / normalized_param[i][0]); + // wp1 = w(a_{k,l})*w(d_{k,l})*w(d) + wp1 = (vic_k[5] * vic_k[7] / normalized_param[i][0]); - // wp2 = w(a_{k,l})*w(d_{k,l})*w(d) - wp2 = (vic_k[6] * vic_k[7] / normalized_param[i][1]); - //w1 = \sum{wp1} - w1 += wp1; + // wp2 = w(a_{k,l})*w(d_{k,l})*w(d) + wp2 = (vic_k[6] * vic_k[7] / normalized_param[i][1]); + //w1 = \sum{wp1} + w1 += wp1; - //w2 = \sum{wp2} - w2 += wp2; + //w2 = \sum{wp2} + w2 += wp2; - // compute the mean value in the vicinity of a point - // m_{ks} = I{k}^{s} = \sum_{l} w_{kls}{I_{kl}} : s = 1 or 2 - const vpRGBa pixelRGBa = I(vic_k[0], vic_k[1]); - double *pixel = pix_ptr + k * 3; - pixel[0] = pixelRGBa.R; - pixel[1] = pixelRGBa.G; - pixel[2] = pixelRGBa.B; + // compute the mean value in the vicinity of a point + // m_{ks} = I{k}^{s} = \sum_{l} w_{kls}{I_{kl}} : s = 1 or 2 + const vpRGBa pixelRGBa = I(vic_k[0], vic_k[1]); + double *pixel = pix_ptr + k * 3; + pixel[0] = pixelRGBa.R; + pixel[1] = pixelRGBa.G; + pixel[2] = pixelRGBa.B; - m1[0] += wp1 * pixel[0]; - m1[1] += wp1 * pixel[1]; - m1[2] += wp1 * pixel[2]; + m1[0] += wp1 * pixel[0]; + m1[1] += wp1 * pixel[1]; + m1[2] += wp1 * pixel[2]; - m2[0] += wp2 * pixel[0]; - m2[1] += wp2 * pixel[1]; - m2[2] += wp2 * pixel[2]; + m2[0] += wp2 * pixel[0]; + m2[1] += wp2 * pixel[1]; + m2[2] += wp2 * pixel[2]; - // compute second order local statistics - // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T - for (unsigned int m = 0; m < 3; ++m) { - for (unsigned int n = 0; n < 3; ++n) { - m1_o2[m * 3 + n] += wp1 * pixel[m] * pixel[n]; - m2_o2[m * 3 + n] += wp2 * pixel[m] * pixel[n]; + // compute second order local statistics + // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + m1_o2[m * 3 + n] += wp1 * pixel[m] * pixel[n]; + m2_o2[m * 3 + n] += wp2 * pixel[m] * pixel[n]; + } } - } - const double *vic_neg = vic_ptr + 10 * negative_normal; - const vpRGBa pixelNegRGBa = I(vic_neg[0], vic_neg[1]); - double *pixelNeg = pix_ptr + negative_normal * 3; - - pixelNeg[0] = pixelNegRGBa.R; - pixelNeg[1] = pixelNegRGBa.G; - pixelNeg[2] = pixelNegRGBa.B; - wp1 = (vic_neg[5] * vic_neg[7] / normalized_param[i][0]); - wp2 = (vic_neg[6] * vic_neg[7] / normalized_param[i][1]); - w1 += wp1; - w2 += wp2; - - m1[0] += wp1 * pixelNeg[0]; - m1[1] += wp1 * pixelNeg[1]; - m1[2] += wp1 * pixelNeg[2]; - - m2[0] += wp2 * pixelNeg[0]; - m2[1] += wp2 * pixelNeg[1]; - m2[2] += wp2 * pixelNeg[2]; - - for (int m = 0; m < 3; ++m) { - for (int n = 0; n < 3; ++n) { - m1_o2[m * 3 + n] += wp1 * pixelNeg[m] * pixelNeg[n]; - m2_o2[m * 3 + n] += wp2 * pixelNeg[m] * pixelNeg[n]; + const double *vic_neg = vic_ptr + 10 * negative_normal; + const vpRGBa pixelNegRGBa = I(vic_neg[0], vic_neg[1]); + double *pixelNeg = pix_ptr + negative_normal * 3; + + pixelNeg[0] = pixelNegRGBa.R; + pixelNeg[1] = pixelNegRGBa.G; + pixelNeg[2] = pixelNegRGBa.B; + wp1 = (vic_neg[5] * vic_neg[7] / normalized_param[i][0]); + wp2 = (vic_neg[6] * vic_neg[7] / normalized_param[i][1]); + w1 += wp1; + w2 += wp2; + + m1[0] += wp1 * pixelNeg[0]; + m1[1] += wp1 * pixelNeg[1]; + m1[2] += wp1 * pixelNeg[2]; + + m2[0] += wp2 * pixelNeg[0]; + m2[1] += wp2 * pixelNeg[1]; + m2[2] += wp2 * pixelNeg[2]; + + for (int m = 0; m < 3; ++m) { + for (int n = 0; n < 3; ++n) { + m1_o2[m * 3 + n] += wp1 * pixelNeg[m] * pixelNeg[n]; + m2_o2[m * 3 + n] += wp2 * pixelNeg[m] * pixelNeg[n]; + } } } - } - mean_vic_ptr[0] = m1[0] / w1; - mean_vic_ptr[1] = m1[1] / w1; - mean_vic_ptr[2] = m1[2] / w1; - - mean_vic_ptr[3] = m2[0] / w2; - mean_vic_ptr[4] = m2[1] / w2; - mean_vic_ptr[5] = m2[2] / w2; - - for (unsigned int m = 0; m < 3; ++m) { - for (unsigned int n = 0; n < 3; ++n) { - cov_vic_ptr[m * 3 + n] = m1_o2[m * 3 + n] / w1 - m1[m] * m1[n] / (w1 * w1); - cov_vic_ptr[9 + m * 3 + n] = m2_o2[m * 3 + n] / w2 - m2[m] * m2[n] / (w2 * w2); + mean_vic_ptr[0] = m1[0] / w1; + mean_vic_ptr[1] = m1[1] / w1; + mean_vic_ptr[2] = m1[2] / w1; + + mean_vic_ptr[3] = m2[0] / w2; + mean_vic_ptr[4] = m2[1] / w2; + mean_vic_ptr[5] = m2[2] / w2; + + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + cov_vic_ptr[m * 3 + n] = m1_o2[m * 3 + n] / w1 - m1[m] * m1[n] / (w1 * w1); + cov_vic_ptr[9 + m * 3 + n] = m2_o2[m * 3 + n] / w2 - m2[m] * m2[n] / (w2 * w2); + } + cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; + cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; } - cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; - cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; - } - } + } } void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() From c5ffc86f747472e41a6d3cf9329a7c7b87985095 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 12:30:39 +0200 Subject: [PATCH 005/101] Make copy and move assignment operators default for vpRGBa and vpRGBf to remove warning about classes not being trivially copyable with memcpy --- modules/core/include/visp3/core/vpRGBa.h | 6 +++--- modules/core/include/visp3/core/vpRGBf.h | 4 ++-- modules/core/src/image/vpRGBa.cpp | 26 ------------------------ modules/core/src/image/vpRGBf.cpp | 24 ---------------------- 4 files changed, 5 insertions(+), 55 deletions(-) diff --git a/modules/core/include/visp3/core/vpRGBa.h b/modules/core/include/visp3/core/vpRGBa.h index 2cba895692..e025ac0b3f 100644 --- a/modules/core/include/visp3/core/vpRGBa.h +++ b/modules/core/include/visp3/core/vpRGBa.h @@ -123,7 +123,7 @@ class VISP_EXPORT vpRGBa /*! Copy constructor. */ - inline vpRGBa(const vpRGBa &v) : R(v.R), G(v.G), B(v.B), A(v.A) { } + inline vpRGBa(const vpRGBa &v) = default; /*! Create a RGBa value from a 4 dimension column vector. @@ -143,9 +143,9 @@ class VISP_EXPORT vpRGBa vpRGBa &operator=(const unsigned char &v); vpRGBa &operator=(const unsigned int &v); vpRGBa &operator=(const int &v); - vpRGBa &operator=(const vpRGBa &v); + vpRGBa &operator=(const vpRGBa &v) = default; #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) - vpRGBa &operator=(const vpRGBa &&v); + vpRGBa &operator=(vpRGBa &&v) = default; #endif vpRGBa &operator=(const vpColVector &v); bool operator==(const vpRGBa &v) const; diff --git a/modules/core/include/visp3/core/vpRGBf.h b/modules/core/include/visp3/core/vpRGBf.h index f420b16964..6945081fe4 100644 --- a/modules/core/include/visp3/core/vpRGBf.h +++ b/modules/core/include/visp3/core/vpRGBf.h @@ -116,9 +116,9 @@ class VISP_EXPORT vpRGBf vpRGBf &operator=(float v); vpRGBf &operator=(int v); - vpRGBf &operator=(const vpRGBf &v); + vpRGBf &operator=(const vpRGBf &v) = default; #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) - vpRGBf &operator=(const vpRGBf &&v); + vpRGBf &operator=(vpRGBf &&v) = default; #endif vpRGBf &operator=(const vpColVector &v); bool operator==(const vpRGBf &v) const; diff --git a/modules/core/src/image/vpRGBa.cpp b/modules/core/src/image/vpRGBa.cpp index 1a894a2de3..51eae74dc1 100644 --- a/modules/core/src/image/vpRGBa.cpp +++ b/modules/core/src/image/vpRGBa.cpp @@ -86,32 +86,6 @@ vpRGBa &vpRGBa::operator=(const int &v) return *this; } -/*! - Copy operator. -*/ -vpRGBa &vpRGBa::operator=(const vpRGBa &v) -{ - this->R = v.R; - this->G = v.G; - this->B = v.B; - this->A = v.A; - return *this; -} - -#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) -/*! - Move operator. -*/ -vpRGBa &vpRGBa::operator=(const vpRGBa &&v) -{ - this->R = std::move(v.R); - this->G = std::move(v.G); - this->B = std::move(v.B); - this->A = std::move(v.A); - return *this; -} -#endif - /*! Cast a vpColVector in a vpRGBa diff --git a/modules/core/src/image/vpRGBf.cpp b/modules/core/src/image/vpRGBf.cpp index b178397686..c722e6b9f2 100644 --- a/modules/core/src/image/vpRGBf.cpp +++ b/modules/core/src/image/vpRGBf.cpp @@ -69,30 +69,6 @@ vpRGBf &vpRGBf::operator=(int v) return *this; } -/*! - Copy operator. -*/ -vpRGBf &vpRGBf::operator=(const vpRGBf &v) -{ - this->R = v.R; - this->G = v.G; - this->B = v.B; - return *this; -} - -#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) -/*! - Move operator. -*/ -vpRGBf &vpRGBf::operator=(const vpRGBf &&v) -{ - this->R = std::move(v.R); - this->G = std::move(v.G); - this->B = std::move(v.B); - return *this; -} -#endif - /*! Cast a vpColVector in a vpRGBf From dd16fdcf41fc683821fa19fdc8f521bdd85ba3d3 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 12:32:01 +0200 Subject: [PATCH 006/101] Removed pragma omp macro as it cannot be reliably used and messes with indentation --- cmake/templates/vpConfig.h.in | 5 ----- 1 file changed, 5 deletions(-) diff --git a/cmake/templates/vpConfig.h.in b/cmake/templates/vpConfig.h.in index 86fbf9900d..38e1edfbca 100644 --- a/cmake/templates/vpConfig.h.in +++ b/cmake/templates/vpConfig.h.in @@ -526,11 +526,6 @@ namespace vp = VISP_NAMESPACE_NAME; // Defined if we want to use openmp #cmakedefine VISP_HAVE_OPENMP -#if defined(VISP_HAVE_OPENMP) -// Wrapper around OpenMP pragma clauses that disables them if openMP is disabled. This clause should not appear in headers -#define VISP_OPENMP(clause) \ -_Pragma(omp clause) -#endif // Defined if nlohmann json parser is found #cmakedefine VISP_HAVE_NLOHMANN_JSON From 25635f9d7c19a27f9341686755e239f9c81cb3df Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 12:32:33 +0200 Subject: [PATCH 007/101] Fix most warnings from the initial commit --- modules/tracker/rbt/CMakeLists.txt | 2 +- .../include/visp3/rbt/vpRBDenseDepthTracker.h | 14 +- .../include/visp3/rbt/vpRBFeatureTracker.h | 1 - .../rbt/include/visp3/rbt/vpRBKltTracker.h | 11 +- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 15 +- .../visp3/rbt/vpRBSilhouetteControlPoint.h | 4 +- .../visp3/rbt/vpRBSilhouetteMeTracker.h | 9 +- .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 2 +- .../src/core/vpRBSilhouetteControlPoint.cpp | 18 +- ...vpRBSilhouettePointsExtractionSettings.cpp | 4 +- modules/tracker/rbt/src/core/vpRBTracker.cpp | 4 +- .../vpRBProbabilistic3DDriftDetector.cpp | 39 ++-- .../src/features/vpRBDenseDepthTracker.cpp | 16 +- .../rbt/src/features/vpRBFeatureTracker.cpp | 4 +- .../rbt/src/features/vpRBKltTracker.cpp | 61 ++--- .../src/features/vpRBSilhouetteCCDTracker.cpp | 215 +++++++++--------- .../src/features/vpRBSilhouetteMeTracker.cpp | 34 +-- .../tracker/rbt/src/mask/vpColorHistogram.cpp | 3 +- 18 files changed, 205 insertions(+), 251 deletions(-) diff --git a/modules/tracker/rbt/CMakeLists.txt b/modules/tracker/rbt/CMakeLists.txt index f2fe8306e7..0eaf25f726 100644 --- a/modules/tracker/rbt/CMakeLists.txt +++ b/modules/tracker/rbt/CMakeLists.txt @@ -53,7 +53,7 @@ if(WITH_SIMDLIB) list(APPEND opt_libs_private ${SIMDLIB_LIBRARIES}) endif() -vp_add_module(rbt visp_mbt visp_vision visp_core visp_me visp_visual_features visp_ar OPTIONAL visp_klt visp_gui PRIVATE_OPTIONAL ${opt_libs_private}) +vp_add_module(rbt visp_vision visp_core visp_me visp_visual_features visp_ar OPTIONAL visp_klt visp_gui PRIVATE_OPTIONAL ${opt_libs_private}) vp_glob_module_sources() vp_module_include_directories(${opt_incs}) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 3550bab78a..927d6f21bc 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -39,24 +39,16 @@ #define VP_RB_DENSE_DEPTH_TRACKER_H #include -#include -#include -#include #include #include -#include -#include #include #include -#include -#include +#include #include -#include -#include + // #if defined(VISP_HAVE_SIMDLIB) // #include // #endif -#include #include #include @@ -116,9 +108,7 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker inline void error(vpColVector &e, unsigned i) const { - double D = -((cameraNormal[0] * oP.get_X()) + (cameraNormal[1] * oP.get_Y()) + (cameraNormal[2] * oP.get_Z())); - double projNormal = cameraNormal[0] * currentPoint[0] + cameraNormal[1] * currentPoint[1] + cameraNormal[2] * currentPoint[2]; e[i] = D + projNormal; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 938cc5be81..4bf4d13968 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -45,7 +45,6 @@ #include #include - #include #include diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index 43ada59a41..d614fe21a8 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -57,7 +57,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker public: vpRBKltTracker(); - bool requiresRGB() const VP_OVERRIDE { return false; } bool requiresDepth() const VP_OVERRIDE { return false; } @@ -68,7 +67,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker void onTrackingIterEnd() VP_OVERRIDE { } - void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; @@ -112,9 +110,9 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker inline double rotationDifferenceToInitial(const vpHomogeneousMatrix &oMc) { const vpHomogeneousMatrix cinitTc = cTo0 * oMc; - return cinitTc.getThetaUVector().getTheta(); } + inline double normalDotProd(const vpHomogeneousMatrix &cMo) { vpColVector cameraNormal = cMo.getRotationMatrix() * normal; @@ -136,12 +134,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker e[i * 2 + 1] = oX.get_y() - currentPos.get_v(); } - inline double weight(const vpHomogeneousMatrix &cMo) - { - //return static_cast(validAndInlierCount) / static_cast(validCount); - return 1.0; - } - inline double distance(const vpTrackedKltPoint &other) const { const double d = sqrt(std::pow(oX.get_oX() - other.oX.get_oX(), 2) + @@ -150,7 +142,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker return d; } - inline void interaction(vpMatrix &L, unsigned i) const { double x = oX.get_x(), y = oX.get_y(); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 995a47c586..03afb312b9 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -106,7 +106,6 @@ class VISP_EXPORT vpCCDParameters * maximum decrease of the covariance within one iteration step. Between 0 and 1 * If c2 is too high, the covariance declines slowly. Hence, a small number of iterations is * necessary. If c2 is too small, the CCD algorithm may converge to a wrong solution. - * * it is recommended to leave this value fixed */ double covarianceIterDecreaseFactor; @@ -115,14 +114,12 @@ class VISP_EXPORT vpCCDParameters * Length of the line along the normal (and the opposite direction). To subsample the line, set delta_h > 1. * Number of pixels used is computed as 2 * floor(h/delta_h). If you expect large motions, set a large value. * If you want to reduce computation time, decrease this value or increase delta_h - * Recommended value: above 4 - * + * Recommended value: 4 or above (this is dependent on image resolution) */ int h; /** * \brief Sample step when computing statistics and errors. * Increase this value to decrease computation time, at the risk of obtaining inacurrate statistics. - * */ int delta_h; /** @@ -145,7 +142,7 @@ inline void from_json(const nlohmann::json &j, vpCCDParameters &ccdParameters) ccdParameters.phi_dim = j.value("phi_dim", ccdParameters.phi_dim); if (j.contains("gamma")) { nlohmann::json gammaj = j["gamma"]; - if (!j.is_array() || !j.size() != 4) { + if (!j.is_array() || j.size() != 4) { throw vpException(vpException::ioError, "CCD parameters: tried to read gamma values from something that is not a 4-sized float array"); } ccdParameters.gamma_1 = gammaj[0]; @@ -179,10 +176,6 @@ class VISP_EXPORT vpCCDStatistics }; -/** - * \brief A base class for all features that can be used and tracker in the vpRenderBasedTracker - * - */ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker { public: @@ -224,11 +217,11 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker double getVVSTrackerWeight() const VP_OVERRIDE { return m_userVvsWeight / (10 * error_ccd.size()); } void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; - void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE { } + void trackFeatures(const vpRBFeatureTrackerInput & /*frame*/, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix & /*cMo*/) VP_OVERRIDE { } void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; - void updateCovariance(const double lambda) VP_OVERRIDE { } + void updateCovariance(const double /*lambda*/) VP_OVERRIDE { } void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index 495a65b344..9921fc4540 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -166,8 +166,8 @@ class VISP_EXPORT vpRBSilhouetteControlPoint void trackMultipleHypotheses(const vpImage &I); void initInteractionMatrixError(); - void computeInteractionMatrixError(const vpHomogeneousMatrix &cMo, const vpImage &I); - void computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, const vpImage &I); + void computeInteractionMatrixError(const vpHomogeneousMatrix &cMo); + void computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo); private: void sample(const vpImage &) { } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 06305ea189..1e6034d14d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -39,14 +39,13 @@ #include #include -#include #include class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker { public: - vpRBSilhouetteMeTracker() : vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), m_singlePointConvergedThresholdPixels(3), m_minMaskConfidence(0.f), m_useMask(false) { } + vpRBSilhouetteMeTracker() : vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), m_singlePointConvergedThresholdPixels(3), m_useMask(false), m_minMaskConfidence(0.f) { } bool requiresRGB() const VP_OVERRIDE { return false; } @@ -68,8 +67,6 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker */ void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; - void clusterIntoLines(); - void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; @@ -98,9 +95,9 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker std::vector m_controlPoints; vpMe m_me; //! Moving edge settings unsigned int m_numCandidates; //! Number of best candidates kept when finding correspondence points - double m_singlePointConvergedThresholdPixels; //! Whether a single Control point is considered as converged - double m_globalVVSConvergenceThreshold; //! Percentage of control points that should have converged to consider VVS as successful vpRobust m_robust; //! M-Estimator to filter outliers + double m_globalVVSConvergenceThreshold; //! Percentage of control points that should have converged to consider VVS as successful + double m_singlePointConvergedThresholdPixels; //! Whether a single Control point is considered as converged bool m_useMask; float m_minMaskConfidence; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index a72aa6dab4..c81309f8f9 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -130,7 +130,7 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) out << "Silhouette extraction: " << timer.m_silhouetteExtractionTime << "ms" << std::endl; out << "Trackers: " << std::endl; - for (const std::pair> vvsIterData : timer.m_trackerVVSIterTimes) { + for (const std::pair> &vvsIterData : timer.m_trackerVVSIterTimes) { double featTrackTime = timer.m_trackerFeatureTrackingTime.find(vvsIterData.first)->second; double featExtractionTime = timer.m_trackerFeatureExtractionTime.find(vvsIterData.first)->second; double initVVSTime = timer.m_trackerInitVVSTime.find(vvsIterData.first)->second; diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 17643452e1..0709388754 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -165,8 +165,8 @@ void vpRBSilhouetteControlPoint::track(const vpImage &I) s.track(I, me, false); } } - catch (vpTrackingException) { - vpERROR_TRACE("catch exception "); + catch (vpTrackingException &) { + vpERROR_TRACE("caught a tracking exception, ignoring me point..."); s.setState(vpMeSite::THRESHOLD); } } @@ -178,12 +178,12 @@ void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImage &/*I*/) +vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMatrix &cMo) { line.changeFrame(cMo); @@ -496,7 +492,7 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMat } void -vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, const vpImage &/*I*/) +vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo) { line.changeFrame(cMo); diff --git a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp index 9a653269ae..1e3b6f028e 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp @@ -84,7 +84,7 @@ std::vector> vpSilhouettePointsExtractionS } if (m_preferPreviousPoints) { for (const vpRBSilhouettePoint &p: previousPoints) { - double x, y; + double x = 0.0, y = 0.0; vpPixelMeterConversion::convertPoint(cam, p.j, p.i, x, y); vpColVector cpX({ x * p.Z, y * p.Z, p.Z, 1.0 }); vpColVector cX = cTcp * cpX; @@ -100,7 +100,7 @@ std::vector> vpSilhouettePointsExtractionS } } } - if (m_maxNumPoints > 0 && finalCandidates.size() >= m_maxNumPoints) { + if (m_maxNumPoints > 0 && finalCandidates.size() >= static_cast(m_maxNumPoints)) { return finalCandidates; } diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 9860323d42..b3e11b93b3 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -52,8 +52,7 @@ #define VP_DEBUG_RB_TRACKER 1 -vpRBTracker::vpRBTracker() : m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_imageHeight(480), m_imageWidth(640), -m_firstIteration(true), m_renderer(m_rendererSettings), m_trackers(0) +vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_renderer(m_rendererSettings), m_imageHeight(480), m_imageWidth(640) { m_rendererSettings.setClippingDistance(0.01, 1.0); const std::shared_ptr geometryRenderer = std::make_shared( @@ -283,7 +282,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) error += (weight * tracker->getWeightedError()).sumSquare(); //std::cout << "Error = " << (weight * tracker->getWeightedError()).sumSquare() << std::endl; } - } if (numFeatures >= 6) { diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 1be086747e..c2f4fd4aec 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -33,22 +33,20 @@ #include #include - -#include #include #include +#include + #if defined(VISP_HAVE_NLOHMANN_JSON) #include #endif void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) { - const vpTranslationVector t = cprevTo.inverse().getTranslationVector(); if (m_points.size() > 0) { - // Step 0: project all points #ifdef VISP_HAVE_OPENMP #pragma omp parallel for @@ -62,10 +60,10 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre for (vpStored3DSurfaceColorPoint &p : m_points) { p.visible = true; if ( - p.projPrevPx[0] < 2 || p.projPrevPx[0] >= frame.IRGB.getWidth() - 2 - || p.projPrevPx[1] < 2 || p.projPrevPx[1] >= frame.IRGB.getHeight() - 2 - || p.projCurrPx[0] < 2 || p.projCurrPx[0] >= frame.IRGB.getWidth() - 2 - || p.projCurrPx[1] < 2 || p.projCurrPx[1] >= frame.IRGB.getHeight() - 2) { + p.projPrevPx[0] < 2 || static_cast(p.projPrevPx[0]) >= frame.IRGB.getWidth() - 2 + || p.projPrevPx[1] < 2 || static_cast(p.projPrevPx[1]) >= frame.IRGB.getHeight() - 2 + || p.projCurrPx[0] < 2 || static_cast(p.projCurrPx[0]) >= frame.IRGB.getWidth() - 2 + || p.projCurrPx[1] < 2 || static_cast(p.projCurrPx[1]) >= frame.IRGB.getHeight() - 2) { p.visible = false; // Point is outside of either current or previous image, ignore it continue; } @@ -109,18 +107,17 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre } } - if (visiblePoints.size() > 0) { - // Compute sample weight - double maxTrace = 0.0; - - for (vpStored3DSurfaceColorPoint *p : visiblePoints) { - double trace = p->stats.trace(); - if (trace > maxTrace) { - maxTrace = trace; - } - } - maxTrace = std::max(maxTrace, 80.0); + // // Compute sample weight + // double maxTrace = 0.0; + + // for (vpStored3DSurfaceColorPoint *p : visiblePoints) { + // double trace = p->stats.trace(); + // if (trace > maxTrace) { + // maxTrace = trace; + // } + // } + // maxTrace = std::max(maxTrace, 80.0); double weightSum = 0.0; m_score = 0.0; for (vpStored3DSurfaceColorPoint *p : visiblePoints) { @@ -183,8 +180,8 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre for (unsigned int i = frame.renders.boundingBox.getTop(); i < frame.renders.boundingBox.getBottom(); i += 2) { for (unsigned int j = frame.renders.boundingBox.getLeft(); j < frame.renders.boundingBox.getRight(); j += 2) { - double u = j, v = i; - double x, y; + double u = static_cast(j), v = static_cast(i); + double x = 0.0, y = 0.0; double Z = frame.renders.depth[i][j]; if (Z > 0.f) { vpPixelMeterConversion::convertPoint(frame.cam, u, v, x, y); diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 9b004dadeb..27651d32cf 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -54,7 +54,7 @@ void fastProjection(const vpHomogeneousMatrix &oTc, double X, double Y, double Z p.set_oW(1.0); } -void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &cMo) { double t1 = vpTime::measureTimeMs(); const vpImage &depthMap = frame.depth; @@ -62,7 +62,7 @@ void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame vpRect bb = frame.renders.boundingBox; vpHomogeneousMatrix oMc = cMo.inverse(); vpRotationMatrix cRo = cMo.getRotationMatrix(); - bool useMask = m_useMask && frame.mask.getSize() > 0; + bool useMask = m_useMask && frame.hasMask(); m_depthPoints.clear(); m_depthPoints.reserve(static_cast(bb.getArea() / (m_step * m_step * 2))); vpDepthPoint point; @@ -75,7 +75,7 @@ void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame if (useMask && frame.mask[i][j] < m_minMaskConfidence) { continue; } - double x, y; + double x = 0.0, y = 0.0; vpPixelMeterConversion::convertPoint(frame.cam, j, i, x, y); //vpColVector objectNormal({ frame.renders.normals[i][j].R, frame.renders.normals[i][j].G, frame.renders.normals[i][j].B }); point.objectNormal[0] = frame.renders.normals[i][j].R; @@ -114,7 +114,7 @@ void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame } -void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, const vpHomogeneousMatrix &cMo, unsigned int /*iteration*/) { if (m_numFeatures == 0) { m_LTL = 0; @@ -123,7 +123,6 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, m_weights = 1.0; m_weighted_error = 0.0; } - double t1 = vpTime::measureTimeMs(); vpRotationMatrix cRo = cMo.getRotationMatrix(); #ifdef VISP_HAVE_OPENMP #pragma omp parallel for @@ -135,9 +134,8 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, depthPoint.interaction(m_L, i); } -//m_weights = 0.0; -//m_robust.setMinMedianAbsoluteDeviation(1e-3); - t1 = vpTime::measureTimeMs(); + //m_weights = 0.0; + //m_robust.setMinMedianAbsoluteDeviation(1e-3); m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { m_weighted_error[i] = m_error[i] * m_weights[i]; @@ -151,7 +149,7 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, m_vvsConverged = false; } -void vpRBDenseDepthTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType /*type*/) const { // for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { // const vpDepthPoint &p = m_depthPoints[i]; diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp index 6b01904cc9..0791df50c5 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -43,8 +43,6 @@ vpRBFeatureTracker::vpRBFeatureTracker() m_vvsConverged = false; } - - void vpRBFeatureTracker::updateCovariance(const double lambda) { vpMatrix D; @@ -72,7 +70,7 @@ void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVect ssum += interaction[j][i] * error[j]; } JTR[i] = ssum; -} + } #endif } diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 3eea86261e..fe21735fe2 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -56,11 +56,11 @@ const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 5e-3)) { return; } - double x, y; vpRBKltTracker::vpTrackedKltPoint p; p.cTo0 = cMo; vpRGBf normalRGB = frame.renders.normals[uv][uu]; p.normal = vpColVector({ normalRGB.R, normalRGB.G, normalRGB.B }); + double x = 0.0, y = 0.0; vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); vpColVector oC({ x * Z, y * Z, Z, 1.0 }); vpColVector oX = oMc * oC; @@ -79,18 +79,19 @@ vpRBKltTracker::vpRBKltTracker() : } -void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) { m_Iprev = m_I; vpImageConvert::convert(frame.I, m_I); const vpHomogeneousMatrix oMc = cMo.inverse(); if (m_maxErrorOutliersPixels > 0.0) { - double distanceThresholdPxSquare = vpMath::sqr(m_maxErrorOutliersPixels); + const double distanceThresholdPxSquare = vpMath::sqr(m_maxErrorOutliersPixels); + const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); // Detect outliers - for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { - long id; - float u, v; - double x, y; + for (unsigned int i = 0; i < nbFeatures; ++i) { + long id = 0; + float u = 0.f, v = 0.f; + m_klt.getFeature(i, id, u, v); if (m_points.find(id) != m_points.end()) { unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); @@ -101,17 +102,18 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const float Z = frame.renders.depth[uv][uu]; if (Z > 0.f) { vpTrackedKltPoint &p = m_points[id]; + double x = 0.0, y = 0.0; vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); vpColVector oXn = oMc * vpColVector({ x * Z, y * Z, Z, 1.0 }); oXn /= oXn[3]; p.update(cMo); double x1 = p.oX.get_x(), y1 = p.oX.get_y(); - double u1, v1; + double u1 = 0.0, v1 = 0.0; vpMeterPixelConversion::convertPoint(frame.cam, x1, y1, u1, v1); double distancePx = vpMath::sqr(u1 - u) + vpMath::sqr(v1 - v); vpColVector oX = p.oX.get_oP(); - if (distancePx > m_maxErrorOutliersPixels) { + if (distancePx > distanceThresholdPxSquare) { m_points.erase(id); m_klt.suppressFeature(i); } @@ -122,9 +124,8 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const cv::Mat mask = cv::Mat::zeros(m_I.rows, m_I.cols, CV_8U); vpRect bb = frame.renders.boundingBox; - double timeBeforeMask = vpTime::measureTimeMs(); - for (unsigned int i = bb.getTop(); i < bb.getBottom(); ++i) { - for (unsigned int j = bb.getLeft(); j < bb.getRight(); ++j) { + for (unsigned int i = static_cast(bb.getTop()); i < static_cast(bb.getBottom()); ++i) { + for (unsigned int j = static_cast(bb.getLeft()); j < static_cast(bb.getRight()); ++j) { mask.at(i, j) = (frame.renders.depth[i][j] > 0.f) * 255; } } @@ -133,8 +134,9 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const // Consider that there are not enough points: reinit KLT tracking if (m_points.size() < m_numPointsReinit) { m_klt.initTracking(m_Iprev, mask); + const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); m_points.clear(); - for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + for (unsigned int i = 0; i < nbFeatures; ++i) { long id; float u, v; m_klt.getFeature(i, id, u, v); @@ -151,14 +153,15 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const kltTemp.setBlockSize(m_klt.getBlockSize()); kltTemp.setPyramidLevels(m_klt.getPyramidLevels()); kltTemp.initTracking(m_Iprev, mask); - - for (unsigned int i = 0; i < kltTemp.getNbFeatures(); ++i) { + const unsigned int nbFeaturesTemp = static_cast(kltTemp.getNbFeatures()); + const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); + for (unsigned int i = 0; i < nbFeaturesTemp; ++i) { double threshold = vpMath::sqr(m_newPointsDistanceThreshold); // distance threshold, in squared pixels double tooClose = false; float u, v; long id; kltTemp.getFeature(i, id, u, v); - for (unsigned int j = 0; j < m_klt.getNbFeatures(); ++j) { + for (unsigned int j = 0; j < nbFeatures; ++j) { float uj, vj; long idj; m_klt.getFeature(j, idj, uj, vj); @@ -182,7 +185,8 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const else { m_klt.initTracking(m_I, mask); m_points.clear(); - for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { + const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); + for (unsigned int i = 0; i < nbFeatures; ++i) { long id; float u, v; m_klt.getFeature(i, id, u, v); @@ -191,18 +195,19 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const } } -void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &cMo) { - if (m_klt.getNbFeatures() > 0) { + const unsigned int nbKltFeatures = static_cast(m_klt.getNbFeatures()); + if (nbKltFeatures > 0) { m_klt.track(m_I); } std::map newPoints; const vpHomogeneousMatrix oMc = cMo.inverse(); - for (unsigned int i = 0; i < m_klt.getNbFeatures(); ++i) { - long id; - float u, v; - double x, y; + for (unsigned int i = 0; i < nbKltFeatures; ++i) { + long id = 0; + float u = 0.f, v = 0.f; + double x = 0.0, y = 0.0; m_klt.getFeature(i, id, u, v); unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { @@ -234,7 +239,7 @@ void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const v m_numFeatures = m_points.size() * 2; } -void vpRBKltTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBKltTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix & /*cMo*/) { if (m_numFeatures < m_numPointsReinit * 2) { m_numFeatures = 0; @@ -249,7 +254,7 @@ void vpRBKltTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFea m_error = 0; } -void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, const vpHomogeneousMatrix &cMo, unsigned int /*iteration*/) { if (m_numFeatures < m_numPointsReinit * 2) { m_LTL = 0; @@ -281,10 +286,10 @@ void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const } -void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType /*type*/) const { - for (const std::pair &p : m_points) { - double u, v; + for (const std::pair &p : m_points) { + double u = 0.0, v = 0.0; vpMeterPixelConversion::convertPoint(cam, p.second.currentPos.get_j(), p.second.currentPos.get_i(), u, v); vpDisplay::displayPoint(I, v, u, vpColor::red, 2); } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index e5e9a8888a..fcd52665d0 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -31,6 +31,7 @@ * *****************************************************************************/ +#include #include #ifdef VISP_HAVE_OPENMP @@ -85,12 +86,8 @@ template class FastMat33 vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1) { } -void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) { - const unsigned rows = frame.I.getRows(), cols = frame.I.getCols(); - float sceneSize = frame.renders.zFar - frame.renders.zNear; - - m_controlPoints.clear(); //m_controlPoints.reserve(frame.silhouettePoints.size()); const vpHomogeneousMatrix oMc = cMo.inverse(); @@ -111,7 +108,7 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr -void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix & /*cMo*/) { // Reinit all variables Sigma_Phi = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); @@ -158,7 +155,6 @@ void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &fra tol += abs(oldPoints[i * 2 + 1] - m_controlPoints[i].icpoint.get_v()); } tol /= m_controlPoints.size(); - double t1 = vpTime::measureTimeMs(); computeLocalStatistics(frame.IRGB, m_stats); computeErrorAndInteractionMatrix(); // Update interaction matrix, and gauss newton left and right side terms @@ -170,7 +166,7 @@ void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &fra -void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, const vpImage &IRGB, const vpImage &/*depth*/, const vpRBFeatureDisplayType type) const { unsigned normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); unsigned nerror_per_point = 2 * normal_points_number * 3; @@ -190,7 +186,7 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &cam, const vpIm double maxPointError = 0.0; for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { double sum = 0.0; - for (unsigned j = 0; j < nerror_per_point; ++j) { + for (unsigned int j = 0; j < nerror_per_point; ++j) { sum += error_ccd[i * nerror_per_point + j]; } if (sum > maxPointError) { @@ -220,7 +216,7 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &cam, const vpIm vpColVector weightPerPoint(m_controlPoints.size()); for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { double sum = 0.0; - for (unsigned j = 0; j < nerror_per_point; ++j) { + for (unsigned int j = 0; j < nerror_per_point; ++j) { sum += m_weights[i * nerror_per_point + j]; } @@ -297,7 +293,6 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, continue; } double *nv_ptr = stats.nv[kk]; - double *weight_ptr = stats.weight[kk]; nv_ptr[0] = p.nxs; nv_ptr[1] = p.nys; #if VISP_DEBUG_CCD_TRACKER @@ -384,120 +379,121 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } - VISP_OPENMP(parallel for) - for (unsigned int i = 0; i < resolution; ++i) { - if (!m_controlPoints[i].isValid()) { - continue; - } - - int k = 0; - // w1 = \sum wp_1, w2 = \sum wp_2 - double w1 = 0.0, w2 = 0.0; +#ifdef VISP_HAVE_OPENMP +#pragma omp parallel for +#endif + for (unsigned int i = 0; i < resolution; ++i) { + if (!m_controlPoints[i].isValid()) { + continue; + } - // store mean value near the curve - std::array m1 { 0.0, 0.0, 0.0 }, m2 { 0.0, 0.0, 0.0 }; + int k = 0; + // w1 = \sum wp_1, w2 = \sum wp_2 + double w1 = 0.0, w2 = 0.0; - // store the second mean value near the curve - std::array m1_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; - std::array m2_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + // store mean value near the curve + std::array m1 { 0.0, 0.0, 0.0 }, m2 { 0.0, 0.0, 0.0 }; - // compute local statistics + // store the second mean value near the curve + std::array m1_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; + std::array m2_o2 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; - // start search the points in the +n direction as well as -n direction - double wp1 = 0.0, wp2 = 0.0; + // compute local statistics - double *vic_ptr = stats.vic[i]; - double *mean_vic_ptr = stats.mean_vic[i]; - double *cov_vic_ptr = stats.cov_vic[i]; - double *pix_ptr = stats.imgPoints[i]; - double *weight_ptr = stats.weight[i]; + // start search the points in the +n direction as well as -n direction + double wp1 = 0.0, wp2 = 0.0; - for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { - wp1 = 0.0, wp2 = 0.0; - int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); - const double *vic_k = vic_ptr + 10 * k; + double *vic_ptr = stats.vic[i]; + double *mean_vic_ptr = stats.mean_vic[i]; + double *cov_vic_ptr = stats.cov_vic[i]; + double *pix_ptr = stats.imgPoints[i]; - // wp1 = w(a_{k,l})*w(d_{k,l})*w(d) - wp1 = (vic_k[5] * vic_k[7] / normalized_param[i][0]); + for (int j = m_ccdParameters.delta_h; j <= m_ccdParameters.h; j += m_ccdParameters.delta_h, k++) { + wp1 = 0.0, wp2 = 0.0; + int negative_normal = k + (int)floor(m_ccdParameters.h / m_ccdParameters.delta_h); + const double *vic_k = vic_ptr + 10 * k; - // wp2 = w(a_{k,l})*w(d_{k,l})*w(d) - wp2 = (vic_k[6] * vic_k[7] / normalized_param[i][1]); - //w1 = \sum{wp1} - w1 += wp1; + // wp1 = w(a_{k,l})*w(d_{k,l})*w(d) + wp1 = (vic_k[5] * vic_k[7] / normalized_param[i][0]); - //w2 = \sum{wp2} - w2 += wp2; + // wp2 = w(a_{k,l})*w(d_{k,l})*w(d) + wp2 = (vic_k[6] * vic_k[7] / normalized_param[i][1]); + //w1 = \sum{wp1} + w1 += wp1; - // compute the mean value in the vicinity of a point - // m_{ks} = I{k}^{s} = \sum_{l} w_{kls}{I_{kl}} : s = 1 or 2 - const vpRGBa pixelRGBa = I(vic_k[0], vic_k[1]); - double *pixel = pix_ptr + k * 3; - pixel[0] = pixelRGBa.R; - pixel[1] = pixelRGBa.G; - pixel[2] = pixelRGBa.B; + //w2 = \sum{wp2} + w2 += wp2; - m1[0] += wp1 * pixel[0]; - m1[1] += wp1 * pixel[1]; - m1[2] += wp1 * pixel[2]; + // compute the mean value in the vicinity of a point + // m_{ks} = I{k}^{s} = \sum_{l} w_{kls}{I_{kl}} : s = 1 or 2 + const vpRGBa pixelRGBa = I(vic_k[0], vic_k[1]); + double *pixel = pix_ptr + k * 3; + pixel[0] = pixelRGBa.R; + pixel[1] = pixelRGBa.G; + pixel[2] = pixelRGBa.B; - m2[0] += wp2 * pixel[0]; - m2[1] += wp2 * pixel[1]; - m2[2] += wp2 * pixel[2]; + m1[0] += wp1 * pixel[0]; + m1[1] += wp1 * pixel[1]; + m1[2] += wp1 * pixel[2]; + m2[0] += wp2 * pixel[0]; + m2[1] += wp2 * pixel[1]; + m2[2] += wp2 * pixel[2]; - // compute second order local statistics - // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T - for (unsigned int m = 0; m < 3; ++m) { - for (unsigned int n = 0; n < 3; ++n) { - m1_o2[m * 3 + n] += wp1 * pixel[m] * pixel[n]; - m2_o2[m * 3 + n] += wp2 * pixel[m] * pixel[n]; - } - } - const double *vic_neg = vic_ptr + 10 * negative_normal; - const vpRGBa pixelNegRGBa = I(vic_neg[0], vic_neg[1]); - double *pixelNeg = pix_ptr + negative_normal * 3; - - pixelNeg[0] = pixelNegRGBa.R; - pixelNeg[1] = pixelNegRGBa.G; - pixelNeg[2] = pixelNegRGBa.B; - wp1 = (vic_neg[5] * vic_neg[7] / normalized_param[i][0]); - wp2 = (vic_neg[6] * vic_neg[7] / normalized_param[i][1]); - w1 += wp1; - w2 += wp2; - - m1[0] += wp1 * pixelNeg[0]; - m1[1] += wp1 * pixelNeg[1]; - m1[2] += wp1 * pixelNeg[2]; - - m2[0] += wp2 * pixelNeg[0]; - m2[1] += wp2 * pixelNeg[1]; - m2[2] += wp2 * pixelNeg[2]; - for (int m = 0; m < 3; ++m) { - for (int n = 0; n < 3; ++n) { - m1_o2[m * 3 + n] += wp1 * pixelNeg[m] * pixelNeg[n]; - m2_o2[m * 3 + n] += wp2 * pixelNeg[m] * pixelNeg[n]; - } + // compute second order local statistics + // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + m1_o2[m * 3 + n] += wp1 * pixel[m] * pixel[n]; + m2_o2[m * 3 + n] += wp2 * pixel[m] * pixel[n]; } } - mean_vic_ptr[0] = m1[0] / w1; - mean_vic_ptr[1] = m1[1] / w1; - mean_vic_ptr[2] = m1[2] / w1; - - mean_vic_ptr[3] = m2[0] / w2; - mean_vic_ptr[4] = m2[1] / w2; - mean_vic_ptr[5] = m2[2] / w2; + const double *vic_neg = vic_ptr + 10 * negative_normal; + const vpRGBa pixelNegRGBa = I(vic_neg[0], vic_neg[1]); + double *pixelNeg = pix_ptr + negative_normal * 3; + + pixelNeg[0] = pixelNegRGBa.R; + pixelNeg[1] = pixelNegRGBa.G; + pixelNeg[2] = pixelNegRGBa.B; + wp1 = (vic_neg[5] * vic_neg[7] / normalized_param[i][0]); + wp2 = (vic_neg[6] * vic_neg[7] / normalized_param[i][1]); + w1 += wp1; + w2 += wp2; + + m1[0] += wp1 * pixelNeg[0]; + m1[1] += wp1 * pixelNeg[1]; + m1[2] += wp1 * pixelNeg[2]; + + m2[0] += wp2 * pixelNeg[0]; + m2[1] += wp2 * pixelNeg[1]; + m2[2] += wp2 * pixelNeg[2]; for (unsigned int m = 0; m < 3; ++m) { for (unsigned int n = 0; n < 3; ++n) { - cov_vic_ptr[m * 3 + n] = m1_o2[m * 3 + n] / w1 - m1[m] * m1[n] / (w1 * w1); - cov_vic_ptr[9 + m * 3 + n] = m2_o2[m * 3 + n] / w2 - m2[m] * m2[n] / (w2 * w2); + m1_o2[m * 3 + n] += wp1 * pixelNeg[m] * pixelNeg[n]; + m2_o2[m * 3 + n] += wp2 * pixelNeg[m] * pixelNeg[n]; } - cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; - cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; } - } + mean_vic_ptr[0] = m1[0] / w1; + mean_vic_ptr[1] = m1[1] / w1; + mean_vic_ptr[2] = m1[2] / w1; + + mean_vic_ptr[3] = m2[0] / w2; + mean_vic_ptr[4] = m2[1] / w2; + mean_vic_ptr[5] = m2[2] / w2; + + for (unsigned int m = 0; m < 3; ++m) { + for (unsigned int n = 0; n < 3; ++n) { + cov_vic_ptr[m * 3 + n] = m1_o2[m * 3 + n] / w1 - m1[m] * m1[n] / (w1 * w1); + cov_vic_ptr[9 + m * 3 + n] = m2_o2[m * 3 + n] / w2 - m2[m] * m2[n] / (w2 * w2); + } + cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; + cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; + } + + } } void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() @@ -530,8 +526,8 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() const vpRBSilhouetteControlPoint &p = m_controlPoints[kk]; if (!p.isValid()) { - for (int j = 0; j < 2 * normal_points_number; ++j) { - for (int m = 0; m < 3; ++m) { + for (unsigned int j = 0; j < 2 * normal_points_number; ++j) { + for (unsigned int m = 0; m < 3; ++m) { error_ccd[i * 2 * normal_points_number * 3 + j * 3 + m] = 0.0; } } @@ -543,7 +539,6 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() const double *mean_vic_ptr = m_stats.mean_vic[i]; const double *cov_vic_ptr = m_stats.cov_vic[i]; const double *pix_ptr = m_stats.imgPoints[i]; - const double *weight_ptr = m_stats.weight[i]; const double *mean_vic_ptr_prev = m_prevStats.mean_vic[i]; const double *cov_vic_ptr_prev = m_prevStats.cov_vic[i]; @@ -557,7 +552,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() Lnvp[5] = (nv_ptr[0] * p.ys - nv_ptr[1] * p.xs); - for (int j = 0; j < 2 * normal_points_number; ++j) { + for (unsigned int j = 0; j < 2 * normal_points_number; ++j) { const double *vic_j = vic_ptr + 10 * j; const double *pix_j = pix_ptr + j * 3; const double errf = vic_j[4]; @@ -599,7 +594,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() } } } - double afterParallel = vpTime::measureTimeMs(); + nabla_E = 0.0; hessian_E = 0.0; //m_robust.setMinMedianAbsoluteDeviation(1.0); @@ -612,9 +607,8 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() } } - - - std::vector localGradients; // Store all the gradients and hessians and then sum them up after the parallel region. This ensures that computation is determinist + // Store all the gradients and hessians and then sum them up after the parallel region. This ensures that computation is determinist + std::vector localGradients; std::vector localHessians; #ifdef VISP_HAVE_OPENMP #pragma omp parallel @@ -655,7 +649,6 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() nabla_E += localGradients[i]; hessian_E += localHessians[i]; } - double afterWeight = vpTime::measureTimeMs(); m_LTL = hessian_E; m_LTR = -nabla_E; diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 79b37a3498..1ae845860a 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -85,7 +85,7 @@ void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &fra } -void vpRBSilhouetteMeTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteMeTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) { if (m_numCandidates <= 1) { for (vpRBSilhouetteControlPoint &p: m_controlPoints) { @@ -99,7 +99,7 @@ void vpRBSilhouetteMeTracker::trackFeatures(const vpRBFeatureTrackerInput &frame } } -void vpRBSilhouetteMeTracker::initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteMeTracker::initVVS(const vpRBFeatureTrackerInput & /*frame*/, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix & /*cMo*/) { if (m_numFeatures == 0) { return; @@ -118,7 +118,7 @@ void vpRBSilhouetteMeTracker::initVVS(const vpRBFeatureTrackerInput &frame, cons m_error.resize(m_numFeatures, false); } -void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) +void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int /*iteration*/) { vpColVector factor(m_numFeatures, 1.0); const double threshold = m_singlePointConvergedThresholdPixels / frame.cam.get_px(); //Transformation limite pixel en limite metre. @@ -130,10 +130,10 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram vpRBSilhouetteControlPoint &p = m_controlPoints[k]; //p.update(cMo); if (m_numCandidates <= 1) { - p.computeInteractionMatrixError(cMo, frame.I); + p.computeInteractionMatrixError(cMo); } else { - p.computeInteractionMatrixErrorMH(cMo, frame.I); + p.computeInteractionMatrixErrorMH(cMo); } @@ -164,12 +164,12 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram const double percentageConverged = (double)count / (double)countValidSites; if (percentageConverged < m_globalVVSConvergenceThreshold) { m_vvsConverged = false; - } + } else { m_vvsConverged = true; } -} + } m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); @@ -200,7 +200,7 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram } -void vpRBSilhouetteMeTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const +void vpRBSilhouetteMeTracker::display(const vpCameraParameters &/*cam*/, const vpImage &I, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType type) const { if (type == vpRBFeatureDisplayType::SIMPLE) { @@ -213,15 +213,15 @@ void vpRBSilhouetteMeTracker::display(const vpCameraParameters &cam, const vpIma // vpDisplay::displayPoint(I, p.icpoint, vpColor::red, 2); } - vpColor cs[6] = { - vpColor::red, - vpColor::blue, - vpColor::green, - vpColor::purple, - vpColor::cyan, - vpColor::darkGreen - - }; + // vpColor cs[6] = { + // vpColor::red, + // vpColor::blue, + // vpColor::green, + // vpColor::purple, + // vpColor::cyan, + // vpColor::darkGreen + + // }; // unsigned colorIndex = 0; // for (const vpTrackedSilhouetteLine &line: m_lines) { // if (line.getPoints().size() > 10) { diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index 929a2212aa..77a7c8edbc 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -55,7 +55,6 @@ void vpColorHistogram::Builder::build(vpColorHistogram &histogram) vpColorHistogram::vpColorHistogram() : m_N(0), m_numPixels(0) { } - vpColorHistogram::vpColorHistogram(unsigned int N) { setBinNumber(N); @@ -187,7 +186,7 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons std::vector countsIn(bins, 0), countsOut(bins, 0); unsigned binSize = 256 / insideMask.m_N; - unsigned int pixels = 0; + #pragma omp parallel { std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); From 635acf8ae22528afd3c162e73728cd8cd7704039 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 15:09:14 +0200 Subject: [PATCH 008/101] Added C++17 checks to ensure that vpRGBa and vpRGBf are trivially copyable/assignable --- modules/core/include/visp3/core/vpRGBa.h | 12 ++++++++++++ modules/core/include/visp3/core/vpRGBf.h | 16 +++++++++++++++- 2 files changed, 27 insertions(+), 1 deletion(-) diff --git a/modules/core/include/visp3/core/vpRGBa.h b/modules/core/include/visp3/core/vpRGBa.h index e025ac0b3f..21dba9884e 100644 --- a/modules/core/include/visp3/core/vpRGBa.h +++ b/modules/core/include/visp3/core/vpRGBa.h @@ -45,6 +45,11 @@ #include #include +#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +#include +#endif + + BEGIN_VISP_NAMESPACE /*! \class vpRGBa @@ -171,5 +176,12 @@ class VISP_EXPORT vpRGBa friend VISP_EXPORT vpRGBa operator*(const double &x, const vpRGBa &rgb); }; + +#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +static_assert(std::is_trivially_assignable_v); +static_assert(std::is_trivially_copyable_v); +#endif + + END_VISP_NAMESPACE #endif diff --git a/modules/core/include/visp3/core/vpRGBf.h b/modules/core/include/visp3/core/vpRGBf.h index 6945081fe4..401ad92566 100644 --- a/modules/core/include/visp3/core/vpRGBf.h +++ b/modules/core/include/visp3/core/vpRGBf.h @@ -43,6 +43,10 @@ #include #include +#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17) +#include +#endif + BEGIN_VISP_NAMESPACE /*! @@ -103,7 +107,7 @@ class VISP_EXPORT vpRGBf /*! Copy constructor. */ - inline vpRGBf(const vpRGBf &v) : R(v.R), G(v.G), B(v.B) { } + inline vpRGBf(const vpRGBf &v) = default; /*! Create a RGB value from a 3 dimensional column vector. @@ -144,5 +148,15 @@ class VISP_EXPORT vpRGBf friend VISP_EXPORT vpRGBf operator*(double x, const vpRGBf &rgb); friend VISP_EXPORT vpRGBf operator*(float x, const vpRGBf &rgb); }; + +#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +static_assert(std::is_trivially_assignable_v); +static_assert(std::is_trivially_copyable_v); +#endif + + END_VISP_NAMESPACE + + + #endif From 9e5c1b72adbd62a9c67e63a7807f0df567931f51 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 15:10:12 +0200 Subject: [PATCH 009/101] Moved klt parameters json serialization to vpKltOpencv, working on better integrating mask in klt tracker --- .../klt/include/visp3/klt/vpKltOpencv.h | 40 +++++++++++++++++++ .../render-based/data/sequence1/dragon.json | 25 +++++------- 2 files changed, 50 insertions(+), 15 deletions(-) diff --git a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h index 98bb462da4..e9350725f5 100644 --- a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h +++ b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h @@ -52,6 +52,11 @@ #include #include +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + + BEGIN_VISP_NAMESPACE /*! * \class vpKltOpencv @@ -383,6 +388,12 @@ class VISP_EXPORT vpKltOpencv */ void suppressFeature(const int &index); +#ifdef VISP_HAVE_NLOHMANN_JSON + + friend void to_json(nlohmann::json &j, const vpKltOpencv &array); + friend void from_json(const nlohmann::json &j, vpKltOpencv &array); +#endif + protected: cv::Mat m_gray; //!< Gray image cv::Mat m_prevGray; //!< Previous gray image @@ -401,6 +412,35 @@ class VISP_EXPORT vpKltOpencv long m_next_points_id; //!< Id for the newt keypoint bool m_initial_guess; //!< true when initial guess is provided }; + +#ifdef VISP_HAVE_NLOHMANN_JSON +inline void to_json(nlohmann::json &j, const vpKltOpencv &klt) +{ + j = nlohmann::json { + {"maxFeatures", klt.getMaxFeatures()}, + {"windowSize", klt.getWindowSize()}, + {"quality", klt.getQuality()}, + {"minDistance", klt.getMinDistance()}, + {"useHarris", klt.m_useHarrisDetector}, + {"harris", klt.getHarrisFreeParameter()}, + {"blockSize", klt.getBlockSize()}, + {"pyramidLevels", klt.getPyramidLevels()} + }; +} + +inline void from_json(const nlohmann::json &j, vpKltOpencv &klt) +{ + klt.setMaxFeatures(j.value("maxFeatures", 10000)); + klt.setWindowSize(j.value("windowSize", 5)); + klt.setQuality(j.value("quality", 0.01)); + klt.setMinDistance(j.value("minDistance", 5)); + klt.setUseHarris(j.value("useHarris", true)); + klt.setHarrisFreeParameter(j.value("harris", 0.01)); + klt.setBlockSize(j.value("blockSize", 3)); + klt.setPyramidLevels(j.value("pyramidLevels", 3)); +} +#endif + END_VISP_NAMESPACE #endif #endif diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json index 600a84b7a5..3a0fcd0ec8 100644 --- a/tutorial/tracking/render-based/data/sequence1/dragon.json +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -24,7 +24,7 @@ }, "sampling" : { "samplingRate": 1, - "numPoints": 512 + "numPoints": 128 } }, @@ -37,7 +37,7 @@ }, "drift": { "type": "probabilistic", - "colorUpdateRate": 0.3, + "colorUpdateRate": 0.1, "initialColorSigma": 15.0, "depthSigma": 0.01, "filteringMaxDistance": 0.001, @@ -51,27 +51,22 @@ "useMask": true, "minMaskConfidence": 0.7 }, - { - "type": "silhouetteColor", - "weight": 0.01, - "ccd": { - "h": 8, - "delta_h": 1 - } - }, + { "type": "klt", "weight": 0.1, + "useMask": true, + "minMaskConfidence": 0.5, "maxReprojectionErrorPixels": 5.0, - "newPointsMinPixelDistance": 2, + "newPointsMinPixelDistance": 4, "minimumNumPoints": 20, - "blockSize": 3, + "blockSize": 5, + "useHarris": true, "harris": 0.05, - "maskBorder": 5, - "maxFeatures": 200, + "maxFeatures": 500, "minDistance": 5.0, "pyramidLevels": 3, - "quality": 0.1, + "quality": 0.05, "windowSize": 5 } ] From f14d375b2c9decf5758ce5d258bf67caaa4f445e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 16:28:55 +0200 Subject: [PATCH 010/101] Group classes in doxygen, settings for klt tracker~ --- doc/mainpage.dox.in | 63 +++++++++++ .../include/visp3/mbt/vpMbGenericTracker.h | 19 +--- .../include/visp3/rbt/vpColorHistogramMask.h | 5 + .../visp3/rbt/vpObjectCentricRenderer.h | 5 + .../rbt/include/visp3/rbt/vpObjectMask.h | 5 + .../include/visp3/rbt/vpObjectMaskFactory.h | 6 + .../include/visp3/rbt/vpPanda3DDepthFilters.h | 8 +- .../include/visp3/rbt/vpRBDenseDepthTracker.h | 4 +- .../rbt/include/visp3/rbt/vpRBDriftDetector.h | 1 + .../visp3/rbt/vpRBDriftDetectorFactory.h | 5 + .../include/visp3/rbt/vpRBFeatureTracker.h | 41 +++---- .../visp3/rbt/vpRBFeatureTrackerFactory.h | 5 + .../visp3/rbt/vpRBFeatureTrackerInput.h | 11 ++ .../visp3/rbt/vpRBInitializationHelper.h | 5 + .../rbt/include/visp3/rbt/vpRBKltTracker.h | 106 +++++++++++++++--- .../rbt/vpRBProbabilistic3DDriftDetector.h | 4 +- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 6 +- .../visp3/rbt/vpRBSilhouetteControlPoint.h | 5 + .../visp3/rbt/vpRBSilhouetteMeTracker.h | 5 + .../include/visp3/rbt/vpRBSilhouettePoint.h | 4 + .../vpRBSilhouettePointsExtractionSettings.h | 5 + .../rbt/include/visp3/rbt/vpRBTracker.h | 5 + .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 5 + .../rbt/src/features/vpRBKltTracker.cpp | 22 +++- .../src/rendering/vpPanda3DDepthFilters.cpp | 2 - .../render-based/data/sequence1/dragon.json | 10 +- 26 files changed, 294 insertions(+), 68 deletions(-) diff --git a/doc/mainpage.dox.in b/doc/mainpage.dox.in index 87ecb769f8..c68d1f5959 100644 --- a/doc/mainpage.dox.in +++ b/doc/mainpage.dox.in @@ -526,6 +526,69 @@ in different ways. This will motivate us to continue the efforts. \defgroup group_mbt_xml_parser XML parsers XML parsers dedicated to model-based trackers. */ + + +/******************************************* + * Module rbt + *******************************************/ +/*! + \ingroup module_tracker + \defgroup module_rbt RBT: Render-Based Tracker module + Render-Based Tracker module +*/ + +/*! + \ingroup module_rbt + \defgroup group_rbt_core Core Render-Based Tracking functionalities + + This group contains the core classes that make Render-Based tracking work. The main interface for Render-Based tracking is vpRBTracker. +*/ + +/*! + \ingroup module_rbt + \defgroup group_rbt_trackers Trackable features + + These classes represent features that can be tracked by the render-based tracker. All trackable features should inherit from vpRBFeatureTracker + +*/ + +/*! + \ingroup module_rbt + \defgroup group_rbt_mask Object segmentation + + These classes allow to perform object segmentaiton from rendering information. This segmentation may be used downstream by feature trackers to filter features. + */ + +/*! + \ingroup module_rbt + \defgroup group_rbt_drift Drift and divergence detection + + These classes allow to detect tracking drift. +*/ + +/*! + \ingroup module_rbt + \defgroup group_rbt_rendering Rendering + + This group contains additional rendering utilities. +*/ + +/*! + \ingroup module_mbt + \defgroup group_mbt_features Features + Model-based trackers features. +*/ +/*! + \ingroup module_mbt + \defgroup group_mbt_faces Faces management + Faces management including visibility. +*/ +/*! + \ingroup module_mbt + \defgroup group_mbt_xml_parser XML parsers + XML parsers dedicated to model-based trackers. +*/ + /******************************************* * Module robot *******************************************/ diff --git a/modules/tracker/mbt/include/visp3/mbt/vpMbGenericTracker.h b/modules/tracker/mbt/include/visp3/mbt/vpMbGenericTracker.h index 02ce70db04..22a6609d37 100644 --- a/modules/tracker/mbt/include/visp3/mbt/vpMbGenericTracker.h +++ b/modules/tracker/mbt/include/visp3/mbt/vpMbGenericTracker.h @@ -923,15 +923,7 @@ inline void to_json(nlohmann::json &j, const vpMbGenericTracker::TrackerWrapper //KLT tracker settings #if defined(VISP_HAVE_MODULE_KLT) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC) && defined(HAVE_OPENCV_VIDEO) if (t.m_trackerType & vpMbGenericTracker::KLT_TRACKER) { - nlohmann::json klt = nlohmann::json { - {"maxFeatures", t.tracker.getMaxFeatures()}, - {"windowSize", t.tracker.getWindowSize()}, - {"quality", t.tracker.getQuality()}, - {"minDistance", t.tracker.getMinDistance()}, - {"harris", t.tracker.getHarrisFreeParameter()}, - {"blockSize", t.tracker.getBlockSize()}, - {"pyramidLevels", t.tracker.getPyramidLevels()} - }; + nlohmann::json klt = t.tracker; klt["maskBorder"] = t.maskBorder; j["klt"] = klt; } @@ -1034,14 +1026,7 @@ inline void from_json(const nlohmann::json &j, vpMbGenericTracker::TrackerWrappe #if defined(VISP_HAVE_MODULE_KLT) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_IMGPROC) && defined(HAVE_OPENCV_VIDEO) if (t.m_trackerType & vpMbGenericTracker::KLT_TRACKER) { const nlohmann::json klt = j.at("klt"); - auto &ktrack = t.tracker; - ktrack.setMaxFeatures(klt.value("maxFeatures", 10000)); - ktrack.setWindowSize(klt.value("windowSize", 5)); - ktrack.setQuality(klt.value("quality", 0.01)); - ktrack.setMinDistance(klt.value("minDistance", 5)); - ktrack.setHarrisFreeParameter(klt.value("harris", 0.01)); - ktrack.setBlockSize(klt.value("blockSize", 3)); - ktrack.setPyramidLevels(klt.value("pyramidLevels", 3)); + t.tracker = klt; t.setMaskBorder(klt.value("maskBorder", t.maskBorder)); t.faces.getMbScanLineRenderer().setMaskBorder(t.maskBorder); } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 98374620a7..540189ad1a 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -51,6 +51,11 @@ class vpRBFeatureTrackerInput; +/** + * \brief A color histogram based segmentation algorithm. + * + * \ingroup group_rbt_mask + */ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h index b5b4962d4f..5be25703e7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h @@ -45,6 +45,11 @@ #include #include +/*! + + \brief Single object focused renderer + \ingroup group_rbt_rendering +*/ class VISP_EXPORT vpObjectCentricRenderer : public vpPanda3DRendererSet { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h index e97c4bcfab..8ef0592dbf 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -48,6 +48,11 @@ class vpRBFeatureTrackerInput; #include #endif +/** + * \brief + * + * \ingroup group_rbt_mask + */ class VISP_EXPORT vpObjectMask { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h index a718afa2fe..b7c3ecc5c2 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h @@ -41,6 +41,12 @@ #include #include +/** + * \brief A factory that can be used to create Object segmentation algorithms from JSON data. + * + * \ingroup group_rbt_mask + * + */ class VISP_EXPORT vpObjectMaskFactory : public vpDynamicFactory { private: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h index 7bbfde383a..5471683c22 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -46,10 +46,8 @@ /** * - * \ingroup group_ar_renderer_panda3d_filters - * \brief Class that implements a gaussian filter on a grayscale image. - * The grayscale image should be contained in the blue channel of the image. - * + * \ingroup group_rbt_rendering + * \brief */ class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter { @@ -63,7 +61,7 @@ class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter }; /** - * \ingroup group_ar_renderer_panda3d_filters + * \ingroup group_rbt_rendering * \brief Implementation of canny filtering, using Sobel kernels. * * The results of the canny are filtered based on a threshold value (defined between 0 and 255), checking whether there is enough gradient information. diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 927d6f21bc..6786d08d0e 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -61,7 +61,9 @@ /** - * @brief A base class for all features that can be used and tracker in the vpRenderBasedTracker + * @brief A tracker based on dense depth point-plane alignement + * + * \ingroup group_rbt_trackers * */ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h index 1d08fa789e..bf8ddaac36 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -57,6 +57,7 @@ template class vpImage; * - Call vpRBDriftDetector::update to update the drift detection parameters. * - use vpRBDriftDetector::hasDiverged to detect the drift, or vpRBDriftDetector::getScore to use the estimated tracking reliability. * + * \ingroup group_rbt_drift */ class VISP_EXPORT vpRBDriftDetector { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h index b522655cf3..7d25f49bfb 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h @@ -41,6 +41,11 @@ #include #include +/** + * \brief A factory that can be used to instanciate drift detection algorithms from JSON data. + * + * \ingroup group_rbt_drift + */ class VISP_EXPORT vpRBDriftDetectorFactory : public vpDynamicFactory { private: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 4bf4d13968..49a9762df1 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -61,7 +61,9 @@ enum vpRBFeatureDisplayType /** - * @brief A base class for all features that can be used and tracked in the vpRBTracker + * \brief A base class for all features that can be used and tracked in the vpRBTracker + * + * \ingroup group_rbt_trackers */ class VISP_EXPORT vpRBFeatureTracker { @@ -70,13 +72,13 @@ class VISP_EXPORT vpRBFeatureTracker vpRBFeatureTracker(); /** - * @brief Return the type of feature that is used by this tracker + * \brief Return the type of feature that is used by this tracker * - * @return vpRBFeatureType + * \return vpRBFeatureType */ /** - * @brief Get the number of features used to compute the pose update + * \brief Get the number of features used to compute the pose update * */ unsigned getNumFeatures() const { return m_numFeatures; } @@ -87,21 +89,21 @@ class VISP_EXPORT vpRBFeatureTracker */ /** - * @brief Whether this tracker requires RGB image to extract features + * \brief Whether this tracker requires RGB image to extract features * - * @return true if the tracker requires an RGB image - * @return false otherwise + * \return true if the tracker requires an RGB image + * \return false otherwise */ virtual bool requiresRGB() const = 0; /** - * @brief Whether this tracker requires depth image to extract features + * \brief Whether this tracker requires depth image to extract features * */ virtual bool requiresDepth() const = 0; /** - * @brief Whether this tracker requires Silhouette candidates + * \brief Whether this tracker requires Silhouette candidates */ virtual bool requiresSilhouetteCandidates() const = 0; /** @@ -113,26 +115,27 @@ class VISP_EXPORT vpRBFeatureTracker * \name Core Tracking methods * @{ */ + /** - * @brief Method called when starting a tracking iteration + * \brief Method called when starting a tracking iteration * */ virtual void onTrackingIterStart() = 0; /** - * @brief Method called after the tracking iteration has finished + * \brief Method called after the tracking iteration has finished * */ virtual void onTrackingIterEnd() = 0; /** - * @brief Extract features from the frame data and the current pose estimate + * \brief Extract features from the frame data and the current pose estimate * */ virtual void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) = 0; /** - * @brief Track the features + * \brief Track the features */ virtual void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) = 0; @@ -156,9 +159,9 @@ class VISP_EXPORT vpRBFeatureTracker */ const vpMatrix &getCovariance() const { return m_cov; } /** - * @brief Update the covariance matrix + * \brief Update the covariance matrix * - * @param lambda the visual servoing gain + * \param lambda the visual servoing gain */ virtual void updateCovariance(const double lambda); /** @@ -171,7 +174,7 @@ class VISP_EXPORT vpRBFeatureTracker bool vvsHasConverged() const { return m_vvsConverged; } /** - * @brief Get the importance of this tracker in the optimization step. + * \brief Get the importance of this tracker in the optimization step. * The default computation is the following: * \f$ \sqrt{w / N} \f$, where \f$ w\f$ is the weight defined by setTrackerWeight, and \f$ N \f$ is the number of features. */ @@ -179,17 +182,17 @@ class VISP_EXPORT vpRBFeatureTracker void setTrackerWeight(double weight) { m_userVvsWeight = weight; } /** - * @brief Get the leftside term of the Gauss-Newton optimization term + * \brief Get the leftside term of the Gauss-Newton optimization term */ const vpMatrix &getLTL() const { return m_LTL; } /** - * @brief Get the rightside term of the Gauss-Newton optimization term + * \brief Get the rightside term of the Gauss-Newton optimization term */ const vpColVector &getLTR() const { return m_LTR; } /** - * @brief Get a weighted version of the error vector. + * \brief Get a weighted version of the error vector. * This should not include the userVVSWeight, but may include reweighting to remove outliers, occlusions, etc. */ const vpColVector &getWeightedError() const { return m_weighted_error; } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index 653b286e06..59cb4aa8d3 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -41,6 +41,11 @@ #include #include +/** + * \brief A factory to instantiate feature trackers from JSON data + * + * \ingroup group_rbt_trackers + */ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory { private: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h index 6be4dbb8a0..87bce7bd23 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h @@ -44,6 +44,11 @@ #include +/** + * \brief Render data storage + * + * \ingroup group_rbt_core + */ struct VISP_EXPORT vpRBRenderData { vpImage normals; //! Image containing the per-pixel normal vector (RGB, in object space) @@ -94,6 +99,12 @@ struct VISP_EXPORT vpRBRenderData }; +/** + * \brief All the data related to a single tracking frame. + * This contains both the input data (from a real camera/outside source) and renders from Panda. + * + * \ingroup group_rbt_core + */ class VISP_EXPORT vpRBFeatureTrackerInput { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h index cf2e5643ba..d339bfa824 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h @@ -12,6 +12,11 @@ template class vpImage; +/** + * \brief A set of utilities to perform initialization. + * + * \group core + */ class VISP_EXPORT vpRBInitializationHelper { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index d614fe21a8..7e4b7234e3 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -52,6 +52,11 @@ #include +/** + * \brief KLT-Based features + * + * \ingroup group_rbt_trackers + */ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker { public: @@ -78,34 +83,102 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + /** + * \name Settings + * @{ + */ + + /** + * \brief Get the minimum acceptable number of points that should be tracked. If KLT tracking has less than this number of points + * The KLT tracking will be fully reinitialized. + */ + unsigned int getMinimumNumberOfPoints() const { return m_numPointsReinit; } + void setMinimumNumberOfPoints(unsigned int points) { m_numPointsReinit = points; } + + /** + * \brief Get the minimum distance that a candidate point should have to every other tracked point if it should be added. + * + * During tracking, KLT points are frequently sampled. This settings used to ensure that multiple klt points do not track the same 3D points + */ + double getMinimumDistanceNewPoints() const { return m_newPointsDistanceThreshold; } + void setMinimumDistanceNewPoints(double distance) { m_newPointsDistanceThreshold = distance; } + + /** + * \brief Return the number of pixels in the image border where points should not be tracked. + * Points that are near image borders are likely to be lost in the future. + */ + unsigned int getFilteringBorderSize() const { return m_border; } + void setFilteringBorderSize(unsigned int border) { m_border = border; } + + /** + * \brief Get the maximum reprojection error, in pixels, for a point to be considered as outlier. + * This reprojection error is computed between the tracked klt position in the image and the reprojection of the associated 3D point. + * If a point goes above this threshold, it is removed from tracking + * + * \return double + */ + double getFilteringMaxReprojectionError() const { return m_maxErrorOutliersPixels; } + void setFilteringMaxReprojectionError(double maxError) { m_maxErrorOutliersPixels = maxError; } + + /** + * \brief Returns whether the tracking algorithm should filter out points that are unlikely to be on the object according to the mask. + * If the mask is not computed beforehand, then it has no effect + */ + bool shouldUseMask() const { return m_useMask; } + void setShouldUseMask(bool useMask) { m_useMask = useMask; } + + /** + * \brief Returns the minimum mask confidence that a pixel should have if it should be kept during tracking. + * + * This value is between 0 and 1 + */ + float getMinimumMaskConfidence() const { return m_minMaskConfidence; } + void setMinimumMaskConfidence(float confidence) + { + if (confidence > 1.f || confidence < 0.f) { + throw vpException(vpException::badValue, "Mask confidence should be between 0 and 1"); + } + m_minMaskConfidence = confidence; + } + + /** + * \brief Get the underlying KLT tracker. Use this to read its settings. + */ + const vpKltOpencv &getKltTracker() const { return m_klt; } + /** + * \brief Get the underlying KLT tracker. Use this to modify its settings. + * + * \warning Only modify its tracking settings, not its state. + */ + vpKltOpencv &getKltTracker() { return m_klt; } + #if defined(VISP_HAVE_NLOHMANN_JSON) virtual void loadJsonConfiguration(const nlohmann::json &j) { vpRBFeatureTracker::loadJsonConfiguration(j); - m_klt.setMaxFeatures(j.value("maxFeatures", 10000)); - m_klt.setWindowSize(j.value("windowSize", 5)); - m_klt.setQuality(j.value("quality", 0.01)); - m_klt.setMinDistance(j.value("minDistance", 5)); - m_klt.setHarrisFreeParameter(j.value("harris", 0.01)); - m_klt.setBlockSize(j.value("blockSize", 3)); - m_klt.setPyramidLevels(j.value("pyramidLevels", 3)); - - m_numPointsReinit = j.value("minimumNumPoints", m_numPointsReinit); - m_newPointsDistanceThreshold = j.value("newPointsMinPixelDistance", m_newPointsDistanceThreshold); - m_maxErrorOutliersPixels = j.value("maxReprojectionErrorPixels", m_maxErrorOutliersPixels); + m_klt = j; + setMinimumNumberOfPoints(j.value("minimumNumPoints", m_numPointsReinit)); + setMinimumDistanceNewPoints(j.value("newPointsMinPixelDistance", m_newPointsDistanceThreshold)); + setFilteringMaxReprojectionError(j.value("maxReprojectionErrorPixels", m_maxErrorOutliersPixels)); + setShouldUseMask(j.value("useMask", m_useMask)); + setMinimumMaskConfidence(j.value("minMaskConfidence", m_minMaskConfidence)); } #endif + /** + * @} + * + */ struct vpTrackedKltPoint { public: - vpHomogeneousMatrix cTo0; - vpPoint oX; - vpColVector normal; - vpImagePoint currentPos; + vpHomogeneousMatrix cTo0; //! Initial pose of the object in the camera frame, acquired when the tracked point was first constructed + vpPoint oX; //! Tracked 3D point + vpColVector normal; //! Surface normal at this point, in the object frame + vpImagePoint currentPos; //! Current image coordinates, in normalized image coordinates inline double rotationDifferenceToInitial(const vpHomogeneousMatrix &oMc) { @@ -189,6 +262,9 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker std::map m_points; + bool m_useMask; + float m_minMaskConfidence; + }; #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index 959ade9b25..31d2216de4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -53,6 +53,8 @@ template class vpImage; /** + * \ingroup group_rbt_drift + * * \brief Algorithm that uses tracks object surface points in order to estimate the probability that tracking is successful. * * Given a set of surface points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$, each point \f$\mathbf{X}_i\f$ being associated to: @@ -232,8 +234,6 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector * @{ */ - - /** * \brief Get the minimum distance criterion (in meters) that is used * when trying to add new points to track for the drift detection. diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 03afb312b9..a36945a3ab 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -172,10 +172,14 @@ class VISP_EXPORT vpCCDStatistics imgPoints.resize(resolution, 2 * 3 * normalPointsNumber, false, false); weight.resize(resolution, 2 * normalPointsNumber, false, false); } - }; +/** + * \brief Tracking based on the Contracting Curve Density algorithm. + * + * \ingroup group_rbt_trackers + */ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index 9921fc4540..bdb26cd8c7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -50,6 +50,11 @@ #include #include +/*! + \brief Trackable silhouette point representation + + \ingroup group_rbt_core +*/ class VISP_EXPORT vpRBSilhouetteControlPoint { private: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 1e6034d14d..a5b1cd92f7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -41,6 +41,11 @@ #include #include +/** + * \brief Moving edge feature tracking from depth-extracted object contours + * + * \ingroup group_rbt_trackers + */ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h index a7fd44c01e..90eb143d44 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h @@ -40,6 +40,10 @@ #include #include +/*! + \brief Silhouette point simple candidate representation. + \ingroup group_rbt_core +*/ class VISP_EXPORT vpRBSilhouettePoint { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index 6e3d99ffdd..e95307f4b8 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -53,6 +53,11 @@ class vpRBSilhouettePoint; + +/*! + \brief Silhouette point extraction settings + \ingroup group_rbt_core +*/ class VISP_EXPORT vpSilhouettePointsExtractionSettings { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 4d85767464..4c8663494c 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -58,6 +58,11 @@ class vpRBDriftDetector; #include #endif +/** + * \brief + * + * \ingroup group_rbt_core + */ class VISP_EXPORT vpRBTracker { public: diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index c81309f8f9..a5738a9920 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -45,6 +45,11 @@ #include #endif +/*! + \brief Information storage for render based tracking process. + + \ingroup group_rbt_core +*/ class VISP_EXPORT vpRBTrackerLogger { public: diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index fe21735fe2..b520269636 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -52,8 +52,9 @@ const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { return; } + float Z = frame.renders.depth[uv][uu]; - if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 5e-3)) { + if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 1e-1)) { return; } vpRBKltTracker::vpTrackedKltPoint p; @@ -73,12 +74,11 @@ const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) vpRBKltTracker::vpRBKltTracker() : vpRBFeatureTracker(), m_numPointsReinit(20), m_newPointsDistanceThreshold(5.0), m_border(5), - m_maxErrorOutliersPixels(10.0) + m_maxErrorOutliersPixels(10.0), m_useMask(false), m_minMaskConfidence(0.0) { } - void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) { m_Iprev = m_I; @@ -197,24 +197,36 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &cMo) { - const unsigned int nbKltFeatures = static_cast(m_klt.getNbFeatures()); + unsigned int nbKltFeatures = static_cast(m_klt.getNbFeatures()); if (nbKltFeatures > 0) { m_klt.track(m_I); } std::map newPoints; const vpHomogeneousMatrix oMc = cMo.inverse(); + bool testMask = m_useMask && frame.hasMask(); + nbKltFeatures = static_cast(m_klt.getNbFeatures()); + for (unsigned int i = 0; i < nbKltFeatures; ++i) { long id = 0; float u = 0.f, v = 0.f; double x = 0.0, y = 0.0; m_klt.getFeature(i, id, u, v); unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); + // Filter points that are too close to image borders and cannot be reliably tracked if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { continue; } + float Z = frame.renders.depth[uv][uu]; + if (Z <= 0.f) { + continue; + } + + if (testMask && frame.mask[uv][uu] < m_minMaskConfidence) { + continue; + } - if (frame.mask.getSize() > 0 && frame.mask[uv][uu] > 0.5 && m_points.find(id) != m_points.end()) { + if (m_points.find(id) != m_points.end()) { vpTrackedKltPoint &p = m_points[id]; if (p.rotationDifferenceToInitial(oMc) > vpMath::rad(45.0) && p.normalDotProd(cMo) < cos(vpMath::rad(70))) { continue; diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index 3b79f0e741..5af637e813 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -227,8 +227,6 @@ void vpPanda3DDepthCannyFilter::getRender(vpImage &I, vpImage(std::max(0.0, bb.getTop())); const unsigned left = static_cast(std::max(0.0, bb.getLeft())); - const unsigned bottom = static_cast(std::min(static_cast(h), bb.getBottom())); - const unsigned right = static_cast(std::min(static_cast(w), bb.getRight())); const unsigned numComponents = m_texture->get_num_components(); const unsigned rowIncrement = m_renderParameters.getImageWidth() * numComponents; // we ask for only 8 bits image, but we may get an rgb image diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json index 3a0fcd0ec8..3602503ad7 100644 --- a/tutorial/tracking/render-based/data/sequence1/dragon.json +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -51,6 +51,14 @@ "useMask": true, "minMaskConfidence": 0.7 }, + { + "type": "silhouetteColor", + "weight": 0.01, + "ccd": { + "h": 8, + "delta_h": 1 + } + }, { "type": "klt", @@ -66,7 +74,7 @@ "maxFeatures": 500, "minDistance": 5.0, "pyramidLevels": 3, - "quality": 0.05, + "quality": 0.01, "windowSize": 5 } ] From 90e288f44bebb8af12c23fea399d70965124a616 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 16:57:55 +0200 Subject: [PATCH 011/101] Update panda3D install documentation --- doc/tutorial/rendering/tutorial-panda3d.dox | 35 +++++++++++++++++++-- 1 file changed, 33 insertions(+), 2 deletions(-) diff --git a/doc/tutorial/rendering/tutorial-panda3d.dox b/doc/tutorial/rendering/tutorial-panda3d.dox index 66ab3a0941..d56b3ebc05 100644 --- a/doc/tutorial/rendering/tutorial-panda3d.dox +++ b/doc/tutorial/rendering/tutorial-panda3d.dox @@ -30,6 +30,14 @@ vpPanda3DBaseRenderer, which implements basic functions for a panda renderer. \section tutorial-panda3d-install Panda3D installation \subsection tutorial-panda3d-install-ubuntu Installation on Ubuntu +- It is recommended to install the assimp package before installing Panda3D. This will allow you to load .obj files, which are a common and easily exportable format. + Without it, you will be restricted to .bam files, which is a panda specific format. To convert to a .bam file, see \ref tutorial-panda3d-file-conversion. + + To install assimp, run: + \code{.sh} + $ sudo apt install libassimp-dev + \endcode + - Installer are available for Ubuntu browsing the [download](https://www.panda3d.org/download/) page. - Hereafter you will find the instructions to build and install Panda3D from source on Ubuntu 22.04 @@ -38,7 +46,7 @@ vpPanda3DBaseRenderer, which implements basic functions for a panda renderer. $ cd $VISP_WS/3rdparty/panda3d $ git clone https://github.com/panda3d/panda3d $ cd panda3d - $ python3 makepanda/makepanda.py --everything --installer --no-egl --no-gles --no-gles2 --no-opencv + $ python3 makepanda/makepanda.py --everything --installer --no-opencv --threads `nproc` \endcode At this point you can either: 1. install the produced Debian package (recommended) with @@ -90,6 +98,14 @@ vpPanda3DBaseRenderer, which implements basic functions for a panda renderer. - Hereafter you will find the instructions to build Panda3D from source on macOS. + - It is recommended to install the assimp package before installing Panda3D. This will allow you to load .obj files, which are a common and easily exportable format. + Without it, you will be restricted to .bam files, which is a panda specific format. To convert to a .bam file, see \ref tutorial-panda3d-file-conversion. + + To install assimp, run: + \code{.sh} + $ brew install assimp + \endcode + - On macOS, you will need to download a set of precompiled third-party packages in order to compile Panda3D. Navigate to PandaED [download page](https://www.panda3d.org/download/), select the lastest SDK (in our case SDK 1.10.14), and under ` Source Code` section, download @@ -113,7 +129,7 @@ vpPanda3DBaseRenderer, which implements basic functions for a panda renderer. \endcode - Build Panda3D from source \code{.sh} - $ python3 makepanda/makepanda.py --everything --installer --no-egl --no-gles --no-gles2 --no-opencv --no-python --threads $(sysctl -n hw.logicalcpu) + $ python3 makepanda/makepanda.py --everything --installer --no-opencv --no-python --threads $(sysctl -n hw.logicalcpu) \endcode - At this point you can either @@ -165,6 +181,21 @@ vpPanda3DBaseRenderer, which implements basic functions for a panda renderer. - Installer are available for Windows browsing the [download](https://www.panda3d.org/download/) page. +\section tutorial-panda3d-file-conversion Converting a mesh to Panda's file format + +If you did not install assimp before installing Panda, you are fairly restricted in what mesh format you can load with Panda. + +Panda's recommended format is .bam, a binary format specific to the engine itself. +If you have Python, you can easily convert your model to a .bam file by doing the following: + +1. Installing the panda3D-gltf package: `pip install panda3d-gltf` +2. From your favorite 3D modelling software export your model to GLTF (available in blender) +3. Running the converter tool: + \code{.sh} + $ gltf2bam source.gltf output.bam + \endcode +4. If you encounter issues, check the tool's settings with `gltf2bam -h` + \section tutorial-panda3d-usage Using Panda3D for rendering An example that shows how to exploit Panda3D in ViSP to render a color image with support for textures and lighting, a From 61856bf6d5db453b23860527536b7f7e3cecbe8e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 17:57:40 +0200 Subject: [PATCH 012/101] Add namespace guards so that compiling with namespace is supported --- .../src/panda3d-simulator/vpPanda3DRendererSet.cpp | 2 ++ .../rbt/include/visp3/rbt/vpColorHistogram.h | 4 ++++ .../rbt/include/visp3/rbt/vpColorHistogramMask.h | 8 ++++---- .../rbt/include/visp3/rbt/vpDynamicFactory.h | 2 ++ .../include/visp3/rbt/vpObjectCentricRenderer.h | 5 +++-- .../tracker/rbt/include/visp3/rbt/vpObjectMask.h | 14 +++++++++----- .../rbt/include/visp3/rbt/vpObjectMaskFactory.h | 11 ++++++----- .../rbt/include/visp3/rbt/vpPanda3DDepthFilters.h | 5 +++-- .../rbt/include/visp3/rbt/vpRBDenseDepthTracker.h | 9 +++------ .../rbt/include/visp3/rbt/vpRBDriftDetector.h | 8 ++++++-- .../include/visp3/rbt/vpRBDriftDetectorFactory.h | 9 ++++----- .../rbt/include/visp3/rbt/vpRBFeatureTracker.h | 7 +++---- .../include/visp3/rbt/vpRBFeatureTrackerFactory.h | 5 +++-- .../include/visp3/rbt/vpRBFeatureTrackerInput.h | 7 ++++++- .../include/visp3/rbt/vpRBInitializationHelper.h | 11 +++++------ .../tracker/rbt/include/visp3/rbt/vpRBKltTracker.h | 7 ++++++- .../visp3/rbt/vpRBProbabilistic3DDriftDetector.h | 11 +++++------ .../include/visp3/rbt/vpRBSilhouetteCCDTracker.h | 6 +++--- .../include/visp3/rbt/vpRBSilhouetteControlPoint.h | 3 +++ .../include/visp3/rbt/vpRBSilhouetteMeTracker.h | 7 +++---- .../rbt/include/visp3/rbt/vpRBSilhouettePoint.h | 2 ++ .../rbt/vpRBSilhouettePointsExtractionSettings.h | 6 +++++- .../tracker/rbt/include/visp3/rbt/vpRBTracker.h | 12 +++++++++--- .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 8 +++++++- .../rbt/src/core/vpRBInitializationHelper.cpp | 3 +++ .../rbt/src/core/vpRBSilhouetteControlPoint.cpp | 4 ++++ .../vpRBSilhouettePointsExtractionSettings.cpp | 4 ++++ modules/tracker/rbt/src/core/vpRBTracker.cpp | 3 +++ .../rbt/src/drift/vpRBDriftDetectorFactory.cpp | 3 +++ .../src/drift/vpRBProbabilistic3DDriftDetector.cpp | 4 ++++ .../rbt/src/features/vpRBDenseDepthTracker.cpp | 4 ++++ .../rbt/src/features/vpRBFeatureTracker.cpp | 5 ++++- .../rbt/src/features/vpRBFeatureTrackerFactory.cpp | 3 +++ .../tracker/rbt/src/features/vpRBKltTracker.cpp | 4 ++++ .../rbt/src/features/vpRBSilhouetteCCDTracker.cpp | 4 ++++ .../rbt/src/features/vpRBSilhouetteMeTracker.cpp | 8 +++++++- modules/tracker/rbt/src/mask/vpColorHistogram.cpp | 4 ++++ .../tracker/rbt/src/mask/vpColorHistogramMask.cpp | 12 ++++++++---- modules/tracker/rbt/src/mask/vpObjectMask.cpp | 4 ++++ .../tracker/rbt/src/mask/vpObjectMaskFactory.cpp | 4 ++++ .../rbt/src/rendering/vpObjectCentricRenderer.cpp | 5 +++++ .../rbt/src/rendering/vpPanda3DDepthFilters.cpp | 5 ++++- .../render-based/render-based-tutorial-utils.h | 4 ++++ .../render-based/tutorial-rbt-realsense.cpp | 6 ++++-- .../render-based/tutorial-rbt-sequence.cpp | 6 +++++- 45 files changed, 195 insertions(+), 73 deletions(-) diff --git a/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp b/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp index a59b481812..4cfa2c35f0 100644 --- a/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp +++ b/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp @@ -194,6 +194,8 @@ void vpPanda3DRendererSet::enableSharedDepthBuffer(vpPanda3DBaseRenderer &source } } +END_VISP_NAMESPACE + #elif !defined(VISP_BUILD_SHARED_LIBS) // Work around to avoid warning: libvisp_ar.a(vpPanda3DRendererSet.cpp.o) has no symbols void dummy_vpPanda3DRendererSet() { }; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index 7029a14b4d..114625c7e7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -43,6 +43,9 @@ #include + +BEGIN_VISP_NAMESPACE + template class vpImage; @@ -108,6 +111,7 @@ class VISP_EXPORT vpColorHistogram std::vector m_probas; unsigned int m_numPixels; }; +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 540189ad1a..0919c555b1 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -47,15 +47,14 @@ #include #endif - +BEGIN_VISP_NAMESPACE class vpRBFeatureTrackerInput; /** * \brief A color histogram based segmentation algorithm. - * * \ingroup group_rbt_mask - */ +*/ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask { public: @@ -113,8 +112,8 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask void loadJsonConfiguration(const nlohmann::json &json) VP_OVERRIDE; #endif - private: + vpColorHistogram m_histObject, m_histBackground, m_histObjectFrame, m_histBackgroundFrame; float m_depthErrorTolerance; float m_objectUpdateRate, m_backgroundUpdateRate; @@ -124,5 +123,6 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index 31a088d1a8..ac17b9cf47 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -47,6 +47,7 @@ #include #include +BEGIN_VISP_NAMESPACE template class VISP_EXPORT vpDynamicFactory { @@ -89,5 +90,6 @@ class VISP_EXPORT vpDynamicFactory #endif }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h index 5be25703e7..bff891b1aa 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h @@ -45,8 +45,9 @@ #include #include -/*! +BEGIN_VISP_NAMESPACE +/*! \brief Single object focused renderer \ingroup group_rbt_rendering */ @@ -119,6 +120,6 @@ class VISP_EXPORT vpObjectCentricRenderer : public vpPanda3DRendererSet vpPanda3DRenderParameters m_subRenderParams; }; - +END_VISP_NAMESPACE #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h index 8ef0592dbf..75ff6f1b86 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -39,20 +39,23 @@ #include -template -class vpImage; - -class vpRBFeatureTrackerInput; #if defined(VISP_HAVE_NLOHMANN_JSON) #include #endif +BEGIN_VISP_NAMESPACE + +template +class vpImage; + +class vpRBFeatureTrackerInput; + /** * \brief * * \ingroup group_rbt_mask - */ +*/ class VISP_EXPORT vpObjectMask { public: @@ -68,6 +71,7 @@ class VISP_EXPORT vpObjectMask }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h index b7c3ecc5c2..cd954ca357 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h @@ -41,12 +41,12 @@ #include #include +BEGIN_VISP_NAMESPACE /** - * \brief A factory that can be used to create Object segmentation algorithms from JSON data. - * - * \ingroup group_rbt_mask - * - */ +*\brief A factory that can be used to create Object segmentation algorithms from JSON data. +* +*\ingroup group_rbt_mask +*/ class VISP_EXPORT vpObjectMaskFactory : public vpDynamicFactory { private: @@ -59,5 +59,6 @@ class VISP_EXPORT vpObjectMaskFactory : public vpDynamicFactory return factory; } }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h index 5471683c22..574346bbc4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -44,11 +44,12 @@ #include #include +BEGIN_VISP_NAMESPACE /** * * \ingroup group_rbt_rendering * \brief - */ +*/ class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter { public: @@ -87,7 +88,7 @@ class VISP_EXPORT vpPanda3DDepthCannyFilter : public vpPanda3DPostProcessFilter static const char *FRAGMENT_SHADER; float m_edgeThreshold; }; - +END_VISP_NAMESPACE #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 6786d08d0e..4cb09d158c 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -59,13 +59,13 @@ #include #endif - +BEGIN_VISP_NAMESPACE /** * @brief A tracker based on dense depth point-plane alignement * * \ingroup group_rbt_trackers * - */ +*/ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker { public: @@ -162,9 +162,6 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker }; - - - - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h index bf8ddaac36..f02710bea4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -43,12 +43,14 @@ #include #endif + +BEGIN_VISP_NAMESPACE + class vpRBFeatureTrackerInput; class vpHomogeneousMatrix; class vpRGBa; template class vpImage; - /** * \brief Base interface for algorithms that should detect tracking drift for the render-based tracker. * @@ -58,7 +60,7 @@ template class vpImage; * - use vpRBDriftDetector::hasDiverged to detect the drift, or vpRBDriftDetector::getScore to use the estimated tracking reliability. * * \ingroup group_rbt_drift - */ +*/ class VISP_EXPORT vpRBDriftDetector { public: @@ -105,4 +107,6 @@ class VISP_EXPORT vpRBDriftDetector }; +END_VISP_NAMESPACE + #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h index 7d25f49bfb..e4e3c05a95 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h @@ -41,11 +41,13 @@ #include #include +BEGIN_VISP_NAMESPACE + /** * \brief A factory that can be used to instanciate drift detection algorithms from JSON data. * * \ingroup group_rbt_drift - */ +*/ class VISP_EXPORT vpRBDriftDetectorFactory : public vpDynamicFactory { private: @@ -58,8 +60,5 @@ class VISP_EXPORT vpRBDriftDetectorFactory : public vpDynamicFactory #include +BEGIN_VISP_NAMESPACE /** * \brief A factory to instantiate feature trackers from JSON data * * \ingroup group_rbt_trackers - */ +*/ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory { private: @@ -58,5 +59,5 @@ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory +BEGIN_VISP_NAMESPACE + + /** * \brief Render data storage * * \ingroup group_rbt_core - */ +*/ struct VISP_EXPORT vpRBRenderData { vpImage normals; //! Image containing the per-pixel normal vector (RGB, in object space) @@ -153,4 +156,6 @@ class VISP_EXPORT vpRBFeatureTrackerInput *this = std::move(other); } }; + +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h index d339bfa824..6516f74216 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBInitializationHelper.h @@ -8,15 +8,16 @@ #include #include + +BEGIN_VISP_NAMESPACE template class vpImage; - /** * \brief A set of utilities to perform initialization. * - * \group core - */ + * \ingroup group_rbt_core +*/ class VISP_EXPORT vpRBInitializationHelper { public: @@ -39,7 +40,5 @@ class VISP_EXPORT vpRBInitializationHelper vpHomogeneousMatrix m_cMo; vpCameraParameters m_cam; }; - - - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index 7e4b7234e3..bbcd041869 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -52,11 +52,14 @@ #include + +BEGIN_VISP_NAMESPACE + /** * \brief KLT-Based features * * \ingroup group_rbt_trackers - */ +*/ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker { public: @@ -266,5 +269,7 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker float m_minMaskConfidence; }; + +END_VISP_NAMESPACE #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index 31d2216de4..ab5acd3a81 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -49,8 +49,10 @@ #include -template class vpImage; +BEGIN_VISP_NAMESPACE + +template class vpImage; /** * \ingroup group_rbt_drift @@ -89,7 +91,7 @@ template class vpImage; * * Every time update is called, the set of points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$ may grow larger: If a new candidate point is visible and is far enough from points already in the set, it is added to it. * - */ +*/ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector { @@ -331,9 +333,6 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector * End settings */ - - - private: double m_colorUpdateRate; double m_initialColorSigma; @@ -346,5 +345,5 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector std::vector m_points; }; - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index a36945a3ab..d072b7378d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -61,6 +61,8 @@ #include #endif +BEGIN_VISP_NAMESPACE + class VISP_EXPORT vpCCDParameters { public: @@ -269,9 +271,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. }; - - - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index bdb26cd8c7..0d2ef46914 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -50,6 +50,8 @@ #include #include +BEGIN_VISP_NAMESPACE + /*! \brief Trackable silhouette point representation @@ -181,5 +183,6 @@ class VISP_EXPORT vpRBSilhouetteControlPoint }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index a5b1cd92f7..85ebaeceda 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -41,11 +41,12 @@ #include #include +BEGIN_VISP_NAMESPACE /** * \brief Moving edge feature tracking from depth-extracted object contours * * \ingroup group_rbt_trackers - */ +*/ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker { public: @@ -107,8 +108,6 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker float m_minMaskConfidence; }; - - - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h index 90eb143d44..44fb271894 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h @@ -40,6 +40,7 @@ #include #include +BEGIN_VISP_NAMESPACE /*! \brief Silhouette point simple candidate representation. \ingroup group_rbt_core @@ -57,5 +58,6 @@ class VISP_EXPORT vpRBSilhouettePoint { } }; +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index e95307f4b8..5e1540a4fa 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -51,9 +51,10 @@ #include #endif -class vpRBSilhouettePoint; +BEGIN_VISP_NAMESPACE +class vpRBSilhouettePoint; /*! \brief Silhouette point extraction settings \ingroup group_rbt_core @@ -137,5 +138,8 @@ inline void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSetti } #endif +END_VISP_NAMESPACE + + #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 4c8663494c..b620b89709 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -49,8 +49,6 @@ #include -class vpObjectMask; -class vpRBDriftDetector; #include @@ -58,11 +56,16 @@ class vpRBDriftDetector; #include #endif +BEGIN_VISP_NAMESPACE + +class vpObjectMask; +class vpRBDriftDetector; + /** * \brief * * \ingroup group_rbt_core - */ +*/ class VISP_EXPORT vpRBTracker { public: @@ -172,5 +175,8 @@ class VISP_EXPORT vpRBTracker }; +END_VISP_NAMESPACE + + #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index a5738a9920..47f8d8e910 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -45,11 +45,17 @@ #include #endif +BEGIN_VISP_NAMESPACE /*! \brief Information storage for render based tracking process. \ingroup group_rbt_core */ + +class vpRBTrackerLogger; + +std::ostream &operator<<(std::ostream &s, const vpRBTrackerLogger &I); + class VISP_EXPORT vpRBTrackerLogger { public: @@ -156,5 +162,5 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) return out; } - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp index 2a26b7ff4d..1c88b5af4e 100644 --- a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp +++ b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp @@ -10,6 +10,7 @@ #include #endif +BEGIN_VISP_NAMESPACE void vpRBInitializationHelper::removeComment(std::ifstream &fileId) { @@ -295,3 +296,5 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); #endif + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 0709388754..32002ce403 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -37,6 +37,8 @@ #define VISP_DEBUG_RB_CONTROL_POINT 1 +BEGIN_VISP_NAMESPACE + void vpRBSilhouetteControlPoint::init() { m_valid = false; @@ -561,3 +563,5 @@ bool vpRBSilhouetteControlPoint::isLineDegenerate() const d = a*a + b*b; return d <= 1e-7; } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp index 1e3b6f028e..b3f69c2279 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp @@ -42,6 +42,8 @@ #include #include +BEGIN_VISP_NAMESPACE + vpSilhouettePointsExtractionSettings::vpSilhouettePointsExtractionSettings() { m_depthThreshold = 0.1; @@ -129,3 +131,5 @@ std::vector> vpSilhouettePointsExtractionS } return finalCandidates; } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index b3e11b93b3..9f080f8860 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -51,6 +51,7 @@ #define VP_DEBUG_RB_TRACKER 1 +BEGIN_VISP_NAMESPACE vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_renderer(m_rendererSettings), m_imageHeight(480), m_imageWidth(640) { @@ -601,3 +602,5 @@ void vpRBTracker::initClick(const vpImage &I, const std::string & } #endif + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp index eedcc8f781..4a41ce3fb0 100644 --- a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp +++ b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp @@ -32,6 +32,7 @@ #include #include +BEGIN_VISP_NAMESPACE vpRBDriftDetectorFactory::vpRBDriftDetectorFactory() { @@ -45,3 +46,5 @@ vpRBDriftDetectorFactory::vpRBDriftDetectorFactory() return p; }); } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index c2f4fd4aec..9e60668df4 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -42,6 +42,8 @@ #include #endif +BEGIN_VISP_NAMESPACE + void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) { const vpTranslationVector t = cprevTo.inverse().getTranslationVector(); @@ -245,3 +247,5 @@ void vpRBProbabilistic3DDriftDetector::loadJsonConfiguration(const nlohmann::jso setMinDistForNew3DPoints(j.value("minDistanceNewPoints", m_minDist3DNewPoint)); } #endif + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 27651d32cf..39557185bb 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -33,6 +33,8 @@ #include #include +BEGIN_VISP_NAMESPACE + void fastRotationMatmul(const vpRotationMatrix &cRo, const vpRGBf &v, vpColVector &res) { res.resize(3, false); @@ -158,3 +160,5 @@ void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpI // } } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp index 0791df50c5..a93e814356 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -36,6 +36,8 @@ #include #endif +BEGIN_VISP_NAMESPACE + vpRBFeatureTracker::vpRBFeatureTracker() { m_numFeatures = 0; @@ -51,7 +53,6 @@ void vpRBFeatureTracker::updateCovariance(const double lambda) m_cov = computeCovarianceMatrix(m_L, -v, lambda * m_error, D); } - void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR) { if (interaction.getRows() != error.getRows() || interaction.getCols() != 6) { @@ -79,3 +80,5 @@ vpMatrix vpRBFeatureTracker::computeCovarianceMatrix(const vpMatrix &A, const vp double sigma2 = (((W * b).t()) * W * b)/((double)b.getRows()); return (A.t() * W * A).pseudoInverse(b.getRows() * std::numeric_limits::epsilon()) * sigma2; } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp index debe8fa694..92eeba5238 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp @@ -37,6 +37,7 @@ #include #include +BEGIN_VISP_NAMESPACE vpRBFeatureTrackerFactory::vpRBFeatureTrackerFactory() { @@ -67,3 +68,5 @@ vpRBFeatureTrackerFactory::vpRBFeatureTrackerFactory() }); #endif } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index b520269636..88ab420d89 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -39,6 +39,8 @@ #include #include +BEGIN_VISP_NAMESPACE + inline bool isTooCloseToBorder(unsigned int i, unsigned int j, unsigned int h, unsigned w, unsigned int border) { return i < border || j < border || i >(h - border) || j >(w - border); @@ -308,3 +310,5 @@ void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage class FastMat33 { public: @@ -659,3 +661,5 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() m_cov = Sigma_Phi; } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 1ae845860a..04c6941eb2 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -34,9 +34,13 @@ #define VISP_DEBUG_ME_TRACKER 0 + +BEGIN_VISP_NAMESPACE + + /** * @brief Extract the geometric features from the list of collected silhouette points - */ +*/ void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) { m_controlPoints.clear(); @@ -274,3 +278,5 @@ void vpRBSilhouetteMeTracker::display(const vpCameraParameters &/*cam*/, const v throw vpException(vpException::notImplementedError, "Display not implemented for unknown type"); } } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index 77a7c8edbc..b1ddff5087 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -35,6 +35,8 @@ #include #include +BEGIN_VISP_NAMESPACE + void vpColorHistogram::Builder::build(vpColorHistogram &histogram) { if (histogram.getBinNumber() != m_N) { @@ -259,3 +261,5 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons outsideMask.build(countsOut); } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index 73a89242be..e3ef3ba6ab 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -38,6 +38,8 @@ #include #endif +BEGIN_VISP_NAMESPACE + vpColorHistogramMask::vpColorHistogramMask() { } void vpColorHistogramMask::updateMask( @@ -60,15 +62,15 @@ void vpColorHistogramMask::updateMask( const vpImage &renderDepth = frame.renders.depth; const vpImage &depth = previousFrame.depth.getSize() == 0 ? frame.depth : previousFrame.depth; if (depth.getSize() > 0 && m_depthErrorTolerance > 0.f) { - for (unsigned int i = top; i <= bottom; ++i) { - for (unsigned int j = left; j <= right; ++j) { + for (unsigned int i = top; i <= static_cast(bottom); ++i) { + for (unsigned int j = left; j <= static_cast(right); ++j) { m_mask[i][j] = renderDepth[i][j] > 0.f && fabs(renderDepth[i][j] - depth[i][j]) <= m_depthErrorTolerance; } } } else { - for (unsigned int i = top; i <= bottom; ++i) { - for (unsigned int j = left; j <= right; ++j) { + for (unsigned int i = top; i <= static_cast(bottom); ++i) { + for (unsigned int j = left; j <= static_cast(right); ++j) { m_mask[i][j] = renderDepth[i][j] > 0.f; } } @@ -127,3 +129,5 @@ void vpColorHistogramMask::loadJsonConfiguration(const nlohmann::json &json) m_depthErrorTolerance = json.at("maxDepthError"); } #endif + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/mask/vpObjectMask.cpp b/modules/tracker/rbt/src/mask/vpObjectMask.cpp index 1bcc8bd83a..9df639c876 100644 --- a/modules/tracker/rbt/src/mask/vpObjectMask.cpp +++ b/modules/tracker/rbt/src/mask/vpObjectMask.cpp @@ -34,6 +34,8 @@ #include +BEGIN_VISP_NAMESPACE + void vpObjectMask::display(const vpImage &mask, vpImage &Imask) const { if (mask.getSize() != Imask.getSize()) { @@ -46,3 +48,5 @@ void vpObjectMask::display(const vpImage &mask, vpImage &I } } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp index 89806eca83..6c4d4af712 100644 --- a/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp +++ b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp @@ -33,6 +33,8 @@ #include #include +BEGIN_VISP_NAMESPACE + vpObjectMaskFactory::vpObjectMaskFactory() { setJsonKeyFinder([](const nlohmann::json &j) -> std::string { @@ -45,3 +47,5 @@ vpObjectMaskFactory::vpObjectMaskFactory() return p; }); } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp index 9c9d54923b..0c5492be25 100644 --- a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp +++ b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp @@ -37,6 +37,9 @@ #include "boundingSphere.h" #include "boundingBox.h" #include "load_prc_file.h" + +BEGIN_VISP_NAMESPACE + vpObjectCentricRenderer::vpObjectCentricRenderer(const vpPanda3DRenderParameters &renderParameters) : vpPanda3DRendererSet(renderParameters), m_enableCrop(true), m_shouldComputeBBPoints(true) { m_renderParameters = renderParameters; @@ -189,3 +192,5 @@ vpRect vpObjectCentricRenderer::computeBoundingBox() } return vpRect(vpImagePoint(minv, minu), vpImagePoint(maxv, maxu)); } + +END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index 5af637e813..9ade57dd31 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -34,6 +34,9 @@ #if defined(VISP_HAVE_PANDA3D) +BEGIN_VISP_NAMESPACE + + const char *vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER = R"shader( #version 330 @@ -248,6 +251,6 @@ void vpPanda3DDepthCannyFilter::getRender(vpImage &I, vpImage #include +#ifdef ENABLE_VISP_NAMESPACE +using namespace VISP_NAMESPACE_NAME; +#endif + #ifndef VISP_HAVE_REALSENSE2 int main() @@ -76,7 +80,6 @@ int main(int argc, const char **argv) std::cout << "Loading tracker: " << baseArgs.trackerConfiguration << std::endl; vpRBTracker tracker; tracker.loadConfigurationFile(baseArgs.trackerConfiguration); - vpObjectCentricRenderer &renderer = tracker.getRenderer(); const unsigned int width = realsenseArgs.width, height = realsenseArgs.height; const unsigned fps = realsenseArgs.fps; @@ -116,7 +119,6 @@ int main(int argc, const char **argv) tracker.setCameraParameters(cam, height, width); std::cout << "Creating displays" << std::endl;; - unsigned int padding = 20; std::vector> displays, displaysDebug; if (baseArgs.display) { diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index 855366f276..9d950f7e5c 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -10,9 +10,14 @@ #include +#ifdef ENABLE_VISP_NAMESPACE +using namespace VISP_NAMESPACE_NAME; +#endif + #include "render-based-tutorial-utils.h" + struct CmdArguments { CmdArguments() : startFrame(0), frameStep(1), stepByStep(false) @@ -80,7 +85,6 @@ int main(int argc, const char **argv) vpRBTracker tracker; tracker.loadConfigurationFile(baseArgs.trackerConfiguration); cam = tracker.getCameraParameters(); - vpObjectCentricRenderer &renderer = tracker.getRenderer(); //VideoReader to read images from disk From 1ca277f4d99b40aeb9425a8ae03a9f44372449c7 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 18:18:19 +0200 Subject: [PATCH 013/101] Try to fix include guards for trivially copyable in vprgba/vprgbf --- modules/core/include/visp3/core/vpRGBa.h | 4 ++-- modules/core/include/visp3/core/vpRGBf.h | 4 ++-- .../rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h | 2 -- 3 files changed, 4 insertions(+), 6 deletions(-) diff --git a/modules/core/include/visp3/core/vpRGBa.h b/modules/core/include/visp3/core/vpRGBa.h index 21dba9884e..5d70e4cee2 100644 --- a/modules/core/include/visp3/core/vpRGBa.h +++ b/modules/core/include/visp3/core/vpRGBa.h @@ -45,7 +45,7 @@ #include #include -#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +#if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) #include #endif @@ -177,7 +177,7 @@ class VISP_EXPORT vpRGBa friend VISP_EXPORT vpRGBa operator*(const double &x, const vpRGBa &rgb); }; -#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +#if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) static_assert(std::is_trivially_assignable_v); static_assert(std::is_trivially_copyable_v); #endif diff --git a/modules/core/include/visp3/core/vpRGBf.h b/modules/core/include/visp3/core/vpRGBf.h index 401ad92566..67a35372c5 100644 --- a/modules/core/include/visp3/core/vpRGBf.h +++ b/modules/core/include/visp3/core/vpRGBf.h @@ -43,7 +43,7 @@ #include #include -#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17) +#if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) #include #endif @@ -149,7 +149,7 @@ class VISP_EXPORT vpRGBf friend VISP_EXPORT vpRGBf operator*(float x, const vpRGBf &rgb); }; -#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_98) +#if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) static_assert(std::is_trivially_assignable_v); static_assert(std::is_trivially_copyable_v); #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index ab5acd3a81..53cd98e2b5 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -118,8 +118,6 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector computeStddev(); } - - /** * \brief Update the color distribution with a new sample c. * From bf8b14c563728b01aada9d802b2a7266b5b12aad Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 22:53:06 +0200 Subject: [PATCH 014/101] Fix serialization issue with klt tracker --- modules/tracker/klt/include/visp3/klt/vpKltOpencv.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h index e9350725f5..f2346be825 100644 --- a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h +++ b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h @@ -434,7 +434,7 @@ inline void from_json(const nlohmann::json &j, vpKltOpencv &klt) klt.setWindowSize(j.value("windowSize", 5)); klt.setQuality(j.value("quality", 0.01)); klt.setMinDistance(j.value("minDistance", 5)); - klt.setUseHarris(j.value("useHarris", true)); + klt.setUseHarris(j.value("useHarris", 1)); klt.setHarrisFreeParameter(j.value("harris", 0.01)); klt.setBlockSize(j.value("blockSize", 3)); klt.setPyramidLevels(j.value("pyramidLevels", 3)); From f8308a032b090912c4379069cdfe2f0e1e4cb3f3 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 19 Sep 2024 23:58:25 +0200 Subject: [PATCH 015/101] More settings getters and setters --- .../include/visp3/rbt/vpRBDenseDepthTracker.h | 40 +++++- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 15 +- .../rbt/include/visp3/rbt/vpRBTracker.h | 128 +++++++++++++----- modules/tracker/rbt/src/core/vpRBTracker.cpp | 8 +- .../src/features/vpRBSilhouetteCCDTracker.cpp | 2 + 5 files changed, 146 insertions(+), 47 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 4cb09d158c..9914ceedc9 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -77,8 +77,46 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker bool requiresSilhouetteCandidates() const VP_OVERRIDE { return false; } /** - * @brief Method called when starting a tracking iteration + * \name Settings + * @{ + */ + unsigned int getStep() const { return m_step; } + void setStep(unsigned int step) + { + if (step == 0) { + throw vpException(vpException::badValue, "Step should be greater than 0"); + } + m_step = step; + } + + /** + * \brief Returns whether the tracking algorithm should filter out points that are unlikely to be on the object according to the mask. + * If the mask is not computed beforehand, then it has no effect + */ + bool shouldUseMask() const { return m_useMask; } + void setShouldUseMask(bool useMask) { m_useMask = useMask; } + + /** + * \brief Returns the minimum mask confidence that a pixel linked to depth point should have if it should be kept during tracking. * + * This value is between 0 and 1 + */ + float getMinimumMaskConfidence() const { return m_minMaskConfidence; } + void setMinimumMaskConfidence(float confidence) + { + if (confidence > 1.f || confidence < 0.f) { + throw vpException(vpException::badValue, "Mask confidence should be between 0 and 1"); + } + m_minMaskConfidence = confidence; + } + + /** + * \name Settings + * @} + */ + + /** + * @brief Method called when starting a tracking iteration */ void onTrackingIterStart() VP_OVERRIDE { } void onTrackingIterEnd() VP_OVERRIDE { } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index d072b7378d..16399a3802 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -188,14 +188,16 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker vpRBSilhouetteCCDTracker(); - bool requiresRGB() const VP_OVERRIDE { return true; } - bool requiresDepth() const VP_OVERRIDE { return false; } - bool requiresSilhouetteCandidates() const VP_OVERRIDE { return true; } + /** + * \name Settings + * @{ + */ void setCCDParameters(const vpCCDParameters ¶meters) { m_ccdParameters = parameters; } + vpCCDParameters getCCDParameters() const { return m_ccdParameters; } //void computeMask(const vpImage &render, vpCCDStatistics &stats); /** @@ -212,11 +214,11 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker * @param factor the new temporal smoothing factor. Should be greater than 0 */ void setTemporalSmoothingFactor(double factor) { m_temporalSmoothingFac = factor; } - /** - * \brief Method called when starting a tracking iteration - * + * @} */ + + void onTrackingIterStart() VP_OVERRIDE { } void onTrackingIterEnd() VP_OVERRIDE { } @@ -265,7 +267,6 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker double m_vvsConvergenceThreshold; double tol; vpColVector error_ccd; - vpColVector weighted_error_ccd; std::vector m_gradients; std::vector m_hessians; double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index b620b89709..ff3dd64f00 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -74,51 +74,123 @@ class VISP_EXPORT vpRBTracker ~vpRBTracker() = default; + /** + * \name Information retrieval + * @{ + */ void getPose(vpHomogeneousMatrix &cMo) const; void setPose(const vpHomogeneousMatrix &cMo); + vpObjectCentricRenderer &getRenderer(); + const vpRBFeatureTrackerInput &getMostRecentFrame() const { return m_currentFrame; } + const vpRBTrackerLogger &getLogger() const { return m_logger; } - vpCameraParameters getCameraParameters() const; - void setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w); - void setSilhouetteExtractionParameters(const vpSilhouettePointsExtractionSettings &settings); - - void reset(); + /** + * @} + */ + /** + * \name Settings + * @{ + */ + void addTracker(std::shared_ptr tracker); void loadObjectModel(const std::string &file); - void track(const vpImage &I); - void track(const vpImage &I, const vpImage &IRGB); - void track(const vpImage &I, const vpImage &IRGB, const vpImage &depth); + vpCameraParameters getCameraParameters() const; + void setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w); - void addTracker(std::shared_ptr tracker); + vpSilhouettePointsExtractionSettings getSilhouetteExtractionParameters() const + { + return m_depthSilhouetteSettings; + } - void displayMask(vpImage &Imask) const; - void display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type); + void setSilhouetteExtractionParameters(const vpSilhouettePointsExtractionSettings &settings); - vpObjectCentricRenderer &getRenderer(); - const vpRBFeatureTrackerInput &getMostRecentFrame() const { return m_currentFrame; } + double getOptimizationGain() const { return m_lambda; } + void setOptimizationGain(double lambda) + { + if (lambda < 0.0) { + throw vpException(vpException::badValue, "Optimization gain should be greater to zero"); + } + m_lambda = lambda; + } + unsigned int getMaxOptimizationIters() const { return m_vvsIterations; } + void setMaxOptimizationIters(unsigned int iters) { m_vvsIterations = iters; } - const std::shared_ptr getDriftDetector() const { return m_driftDetector; } + double getOptimizationInitialMu() const { return m_muInit; } + void setOptimizationInitialMu(double mu) + { + if (mu < 0.0) { + throw vpException(vpException::badValue, "Optimization gain should be greater to zero"); + } + m_muInit = mu; + } -#ifdef VISP_HAVE_MODULE_GUI - void initClick(const vpImage &I, const std::string &initFile, bool displayHelp); + double getOptimizationMuIterFactor() const { return m_muIterFactor; } + void setOptimizationMuIterFactor(double factor) + { + if (factor < 0.0) { + throw vpException(vpException::badValue, "Optimization gain should be greater to zero"); + } + m_muIterFactor = factor; + } -#endif + std::shared_ptr getDriftDetector() const { return m_driftDetector; } + void setDriftDetector(const std::shared_ptr &detector) + { + m_driftDetector = detector; + } - //vpRBTrackerFilter &getFilter() { return m_filter; } + std::shared_ptr getObjectSegmentationMethod() const { return m_mask; } + void setObjectSegmentationMethod(const std::shared_ptr &mask) + { + m_mask = mask; + } #if defined(VISP_HAVE_NLOHMANN_JSON) void loadConfigurationFile(const std::string &filename); void loadConfiguration(const nlohmann::json &j); #endif + /** + * @} + */ + + void reset(); + + /** + * \name Tracking + * @{ + */ + void track(const vpImage &I); + void track(const vpImage &I, const vpImage &IRGB); + void track(const vpImage &I, const vpImage &IRGB, const vpImage &depth); + /** + * @} + */ + + /** + * \name Display + * @{ + */ + void displayMask(vpImage &Imask) const; + void display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type); + /** + * @} + */ + +#ifdef VISP_HAVE_MODULE_GUI + void initClick(const vpImage &I, const std::string &initFile, bool displayHelp); +#endif + protected: void track(vpRBFeatureTrackerInput &input); void updateRender(vpRBFeatureTrackerInput &frame); - - std::vector extractSilhouettePoints(const vpImage &Inorm, const vpImage &Idepth, - const vpImage &Ior, const vpImage &Ivalid, const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp); + std::vector extractSilhouettePoints( + const vpImage &Inorm, const vpImage &Idepth, + const vpImage &Ior, const vpImage &Ivalid, + const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp); vpMatrix getCovariance() { @@ -137,18 +209,16 @@ class VISP_EXPORT vpRBTracker } } - bool m_firstIteration; //! Whether this is the first iteration std::vector> m_trackers; //! List of trackers - vpHomogeneousMatrix m_cMo; - vpHomogeneousMatrix m_cMoPrev; - vpCameraParameters m_cam; - vpRBFeatureTrackerInput m_currentFrame; vpRBFeatureTrackerInput m_previousFrame; + vpHomogeneousMatrix m_cMo; + vpHomogeneousMatrix m_cMoPrev; + vpCameraParameters m_cam; double m_lambda; //! VVS gain unsigned m_vvsIterations; //! Max number of VVS iterations @@ -156,23 +226,17 @@ class VISP_EXPORT vpRBTracker double m_muIterFactor; //! Factor with which to multiply mu at every iteration during VVS. vpSilhouettePointsExtractionSettings m_depthSilhouetteSettings; - vpPanda3DRenderParameters m_rendererSettings; vpObjectCentricRenderer m_renderer; - //vpRenderer m_renderer; unsigned m_imageHeight, m_imageWidth; //! Color and render image dimensions vpRBTrackerLogger m_logger; std::shared_ptr m_mask; - std::shared_ptr m_driftDetector; // vpRBTrackerFilter m_filter; - - vpRBFeatureTrackerInput m_tempRenders; - }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 9f080f8860..db981e9fe9 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -69,9 +69,8 @@ vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0 //m_renderer.addSubRenderer(std::make_shared(false)); m_renderer.setRenderParameters(m_rendererSettings); - //m_renderer.initFramework(); - m_driftDetector = nullptr; + m_driftDetector = nullptr; } void vpRBTracker::getPose(vpHomogeneousMatrix &cMo) const @@ -103,7 +102,6 @@ void vpRBTracker::setSilhouetteExtractionParameters(const vpSilhouettePointsExtr m_depthSilhouetteSettings = settings; } - void vpRBTracker::reset() { m_firstIteration = true; @@ -202,8 +200,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setSilhouetteTime(m_logger.endTimer()); - - for (std::shared_ptr &tracker : m_trackers) { tracker->onTrackingIterStart(); } @@ -377,8 +373,6 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) #endif { m_renderer.getRenderer()->getRender(frame.renders.silhouetteCanny, frame.renders.isSilhouette, frame.renders.boundingBox, m_imageHeight, m_imageWidth); - // m_renderer.placeRenderInto(m_tempRenders.renders.silhouetteCanny, frame.renders.silhouetteCanny, vpRGBf(0.f)); - // m_renderer.placeRenderInto(m_tempRenders.renders.isSilhouette, frame.renders.isSilhouette, (unsigned char)(0)); } // #pragma omp section // { diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 1551aedb2e..9ad0386f72 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -85,6 +85,8 @@ template class FastMat33 + + vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1) { } From 2c12e9c6a2c624ef5341b5d86cd1f420f158942f Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 13:17:51 +0200 Subject: [PATCH 016/101] Fix build issues, compiling with Python bindings on --- modules/python/config/rbt.json | 31 +++++++++++ .../include/visp3/rbt/vpColorHistogramMask.h | 1 - .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 2 - .../src/core/vpRBSilhouetteControlPoint.cpp | 54 ++++--------------- .../src/features/vpRBSilhouetteCCDTracker.cpp | 4 -- 5 files changed, 41 insertions(+), 51 deletions(-) create mode 100644 modules/python/config/rbt.json diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json new file mode 100644 index 0000000000..eb1680fa79 --- /dev/null +++ b/modules/python/config/rbt.json @@ -0,0 +1,31 @@ +{ + "ignored_headers": [], + "ignored_classes": [], + "user_defined_headers": [], + "classes": { + "vpDynamicFactory": { + "specializations": [ + { + "python_name": "DynamicFactoryTracker", + "arguments": [ + "vpRBFeatureTracker" + ] + }, + { + "python_name": "DynamicFactoryMask", + "arguments": [ + "vpObjectMask" + ] + }, + { + "python_name": "DynamicFactoryDrift", + "arguments": [ + "vpRBDriftDetector" + ] + } + ] + } + }, + "enums": {}, + "config_includes": [] +} diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 0919c555b1..71e40bd3f3 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -59,7 +59,6 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask { public: vpColorHistogramMask(); - vpColorHistogramMask(unsigned int N); void updateMask(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 16399a3802..02ca0f189a 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -273,6 +273,4 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker }; END_VISP_NAMESPACE - - #endif diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 32002ce403..9fe41b14fb 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -132,9 +132,6 @@ vpRBSilhouetteControlPoint &vpRBSilhouetteControlPoint::operator=(const vpRBSilh return *this; } - - - int vpRBSilhouetteControlPoint::outOfImage(int i, int j, int half, int rows, int cols) const { return (!((i> half+2) && @@ -174,7 +171,6 @@ void vpRBSilhouetteControlPoint::track(const vpImage &I) } } - void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImage &I) { // If element hasn't been suppressed @@ -190,8 +186,6 @@ void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImageget_px(); @@ -384,48 +367,33 @@ vpRBSilhouetteControlPoint::updateSilhouettePoint(const vpHomogeneousMatrix &cMo } } - void vpRBSilhouetteControlPoint::initControlPoint(const vpImage &I, double cvlt) { double delta = theta; s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, cvlt, sign); if (me != nullptr) { const double marginRatio = me->getThresholdMarginRatio(); - double convolution = s.convolution(I, me); + const double convolution = s.convolution(I, me); s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, convolution, sign); - double contrastThreshold = fabs(convolution) * marginRatio; + const double contrastThreshold = fabs(convolution) * marginRatio; s.setContrastThreshold(contrastThreshold, *me); } } - void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) { - int k = 0, k1 = 0, k2 = 0; + unsigned int k = 0; int range = 4; double c = cos(theta); double s = sin(theta); for (int n = -range; n <= range; n++) { unsigned int ii = static_cast(round(icpoint.get_i() + s * n)); unsigned int jj = static_cast(round(icpoint.get_j() + c * n)); - int isBg = static_cast(I[ii][jj] == 0.f); + unsigned int isBg = static_cast(I[ii][jj] == 0.f); k += isBg; - k1 += isBg && n < 0; - k2 += isBg && n > 0; - } - if (k > 2) { - isSilhouette = true; - // if (k1 > k2) { - // invnormal = true; - // theta = -theta; - // nxs = -nxs; - // nys = -nys; - // } - // else { - // invnormal = false; - // } } + isSilhouette = k > 2; } /*! @@ -518,13 +486,12 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousM const double yc = cam->get_v0(); const vpMatrix &H = featureline.interaction(); double xmin, ymin; - double errormin = 2.0; + double errormin = std::numeric_limits::max(); - const int n_hyp = m_numCandidates; const std::vector &cs = m_candidates; xmin = (s.m_j - xc) * mx; ymin = (s.m_i - yc) * my; - for (unsigned int l = 0; l < (unsigned)n_hyp; l++) //for each candidate of P + for (unsigned int l = 0; l < m_numCandidates; l++) //for each candidate of P { const vpMeSite &Pk = cs[l]; @@ -557,9 +524,8 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousM bool vpRBSilhouetteControlPoint::isLineDegenerate() const { double a, b, d; - a = line.cP[4]*line.cP[3] - line.cP[0]*line.cP[7]; - b = line.cP[5]*line.cP[3] - line.cP[1]*line.cP[7]; - //c = line.cP[6]*line.cP[3] - line.cP[2]*line.cP[7]; + a = line.cP[4] * line.cP[3] - line.cP[0] * line.cP[7]; + b = line.cP[5] * line.cP[3] - line.cP[1] * line.cP[7]; d = a*a + b*b; return d <= 1e-7; } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 9ad0386f72..dac7de37d6 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -83,10 +83,6 @@ template class FastMat33 } }; - - - - vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1) { } From b2fb0a00353cd8ba78fd60280a432e780861936e Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 15:23:07 +0200 Subject: [PATCH 017/101] Fix warning: field 'enableRenderProfiling' will be initialized after field 'maxDepthDisplay' --- tutorial/tracking/render-based/render-based-tutorial-utils.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tutorial/tracking/render-based/render-based-tutorial-utils.h b/tutorial/tracking/render-based/render-based-tutorial-utils.h index eac7979378..c5aa324f5d 100644 --- a/tutorial/tracking/render-based/render-based-tutorial-utils.h +++ b/tutorial/tracking/render-based/render-based-tutorial-utils.h @@ -42,7 +42,7 @@ using namespace VISP_NAMESPACE_NAME; struct BaseArguments { - BaseArguments() : trackerConfiguration(""), display(true), debugDisplay(false), enableRenderProfiling(false), maxDepthDisplay(1.f) { } + BaseArguments() : trackerConfiguration(""), maxDepthDisplay(1.f), display(true), debugDisplay(false), enableRenderProfiling(false) { } void registerArguments(vpJsonArgumentParser &parser) { From be51bd2c8c45dcf2b8b3ef022ee36405b34fed77 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 15:43:16 +0200 Subject: [PATCH 018/101] Fix warnings: unused variable and comparison of integers of different signs --- .../src/rendering/vpObjectCentricRenderer.cpp | 3 --- .../render-based-tutorial-utils.h | 19 +++---------------- .../render-based/tutorial-rbt-realsense.cpp | 3 +-- .../render-based/tutorial-rbt-sequence.cpp | 10 ++-------- 4 files changed, 6 insertions(+), 29 deletions(-) diff --git a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp index 0c5492be25..775adfd72e 100644 --- a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp +++ b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp @@ -82,7 +82,6 @@ void vpObjectCentricRenderer::beforeFrameRendered() for (std::shared_ptr &subrenderer : m_subRenderers) { subrenderer->setRenderParameters(subParams); } - } } @@ -98,14 +97,12 @@ void vpObjectCentricRenderer::computeBoundingBox3DPoints() } m_bb3DPoints.clear(); LPoint3 minP, maxP; - double t1 = vpTime::measureTimeMs(); object.calc_tight_bounds(minP, maxP); const BoundingBox box(minP, maxP); for (unsigned int i = 0; i < 8; ++i) { const LPoint3 p = box.get_point(i); m_bb3DPoints.push_back(vpColVector({ p.get_x(), -p.get_z(), p.get_y(), 1.0 })); - } } diff --git a/tutorial/tracking/render-based/render-based-tutorial-utils.h b/tutorial/tracking/render-based/render-based-tutorial-utils.h index c5aa324f5d..adcc697653 100644 --- a/tutorial/tracking/render-based/render-based-tutorial-utils.h +++ b/tutorial/tracking/render-based/render-based-tutorial-utils.h @@ -164,7 +164,6 @@ class vpRBExperimentLogger iterLog["cMo"] = cMo; log.push_back(iterLog); - } void close() @@ -177,7 +176,6 @@ class vpRBExperimentLogger f.close(); } - private: bool enabled; std::string folder; @@ -188,19 +186,15 @@ class vpRBExperimentLogger vpImage ImaskOverlay; vpImage Iout; - bool videoEnabled; unsigned int framerate; vpVideoWriter videoWriter; - nlohmann::json log; - }; class vpRBExperimentPlotter { - public: vpRBExperimentPlotter() : enabled(false), plotPose(false), plotPose3d(false), plotDivergenceMetrics(false) { } @@ -215,13 +209,10 @@ class vpRBExperimentPlotter void postProcessArguments(bool displayEnabled) { - enabled = plotPose || plotDivergenceMetrics || plotPose3d; if (enabled && !displayEnabled) { throw vpException(vpException::badValue, "Tried to plot data, but display is disabled"); } - - } void init(std::vector> &displays) @@ -301,8 +292,6 @@ class vpRBExperimentPlotter vpPlot plotter; }; - - std::vector> createDisplays( vpImage &Id, vpImage &Icol, vpImage &depthDisplay, vpImage &probaDisplay) @@ -331,7 +320,6 @@ std::vector> createDisplays( ); } - void enableRendererProfiling() { if (PStatClient::is_connected()) { @@ -343,7 +331,6 @@ void enableRendererProfiling() if (!PStatClient::connect(host, port)) { std::cout << "Could not connect to PStat server." << std::endl; } - } void displayNormals(const vpImage &normalsImage, vpImage &normalDisplayImage) @@ -351,7 +338,7 @@ void displayNormals(const vpImage &normalsImage, vpImage &normal #ifdef VISP_HAVE_OPENMP #pragma omp parallel for #endif - for (int i = 0; i < normalsImage.getSize(); ++i) { + for (unsigned int i = 0; i < normalsImage.getSize(); ++i) { normalDisplayImage.bitmap[i].R = static_cast((normalsImage.bitmap[i].R + 1.0) * 127.5f); normalDisplayImage.bitmap[i].G = static_cast((normalsImage.bitmap[i].G + 1.0) * 127.5f); normalDisplayImage.bitmap[i].B = static_cast((normalsImage.bitmap[i].B + 1.0) * 127.5f); @@ -367,8 +354,8 @@ void displayCanny(const vpImage &cannyRawData, #ifdef VISP_HAVE_OPENMP #pragma omp parallel for #endif - for (int i = 0; i < cannyRawData.getSize(); ++i) { - vpRGBf &px = cannyRawData.bitmap[i]; + for (unsigned int i = 0; i < cannyRawData.getSize(); ++i) { + //vpRGBf &px = cannyRawData.bitmap[i]; canny.bitmap[i] = valid.bitmap[i] * 255; //canny.bitmap[i] = static_cast(127.5f + 127.5f * atan(px.B)); } diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index 0ef099127a..403b76d373 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -1,3 +1,4 @@ +//! \example tutorial-rbt-realsense.cpp #include #include @@ -197,9 +198,7 @@ int main(int argc, const char **argv) if (baseArgs.debugDisplay) { const vpRBFeatureTrackerInput &lastFrame = tracker.getMostRecentFrame(); - vpRBTrackerTutorial::displayCanny(lastFrame.renders.silhouetteCanny, cannyDisplay, lastFrame.renders.isSilhouette); - } vpDisplay::display(IdepthDisplay); diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index 9d950f7e5c..cc4e7853be 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -1,5 +1,4 @@ - - +//! \example tutorial-rbt-sequence.cpp #include #include #include @@ -16,8 +15,6 @@ using namespace VISP_NAMESPACE_NAME; #include "render-based-tutorial-utils.h" - - struct CmdArguments { CmdArguments() : startFrame(0), frameStep(1), stepByStep(false) @@ -49,7 +46,6 @@ struct CmdArguments bool stepByStep; }; - int main(int argc, const char **argv) { vpRBTrackerTutorial::BaseArguments baseArgs; @@ -157,7 +153,7 @@ int main(int argc, const char **argv) while (true) { double frameStart = vpTime::measureTimeMs(); // Acquire images - for (int sp = 0; sp < sequenceArgs.frameStep; sp++) { + for (unsigned int sp = 0; sp < sequenceArgs.frameStep; ++sp) { readerRGB.acquire(Icol); vpImageConvert::convert(Icol, Id); @@ -245,6 +241,4 @@ int main(int argc, const char **argv) logger.close(); return EXIT_SUCCESS; - - } From 87f4958c9207a5ad8a8d7a7ee695e6274237f17a Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 15:46:34 +0200 Subject: [PATCH 019/101] Fix warning: delete called on non-final 'vpColorHistogramMask' that has virtual functions but non-virtual destructor --- modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 71e40bd3f3..d1beb1a3b1 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -59,6 +59,7 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask { public: vpColorHistogramMask(); + virtual ~vpColorHistogramMask() = default; void updateMask(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, @@ -112,14 +113,12 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask #endif private: - vpColorHistogram m_histObject, m_histBackground, m_histObjectFrame, m_histBackgroundFrame; float m_depthErrorTolerance; float m_objectUpdateRate, m_backgroundUpdateRate; vpImage m_mask; vpImage m_probaObject, m_probaBackground; - }; END_VISP_NAMESPACE From af259d66a8f1b30dcb587ca81887a41c10aa83a0 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 15:53:30 +0200 Subject: [PATCH 020/101] Fix warning: 'loadJsonConfiguration' overrides a member function but is not marked 'override' --- .../tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h | 3 ++- modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h | 3 +-- .../rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h | 4 +--- .../tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h | 2 +- 5 files changed, 7 insertions(+), 11 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 9914ceedc9..ba153375ff 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -154,6 +154,7 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker e[i] = D + projNormal; //e[i] = f.get_LogZoverZstar(); } + inline void interaction(vpMatrix &L, unsigned i) { const double X = currentPoint[0], Y = currentPoint[1], Z = currentPoint[2]; @@ -180,7 +181,7 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker }; #if defined(VISP_HAVE_NLOHMANN_JSON) - virtual void loadJsonConfiguration(const nlohmann::json &j) + virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); m_step = j.value("step", m_step); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index da6b090020..3307e4b9b7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -110,7 +110,6 @@ class VISP_EXPORT vpRBFeatureTracker * @} */ - /** * \name Core Tracking methods * @{ @@ -182,12 +181,12 @@ class VISP_EXPORT vpRBFeatureTracker void setTrackerWeight(double weight) { m_userVvsWeight = weight; } /** - * \brief Get the leftside term of the Gauss-Newton optimization term + * \brief Get the left side term of the Gauss-Newton optimization term */ const vpMatrix &getLTL() const { return m_LTL; } /** - * \brief Get the rightside term of the Gauss-Newton optimization term + * \brief Get the right side term of the Gauss-Newton optimization term */ const vpColVector &getLTR() const { return m_LTR; } @@ -197,7 +196,6 @@ class VISP_EXPORT vpRBFeatureTracker */ const vpColVector &getWeightedError() const { return m_weighted_error; } - #if defined(VISP_HAVE_NLOHMANN_JSON) virtual void loadJsonConfiguration(const nlohmann::json &j) { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index bbcd041869..12237f11da 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -85,7 +85,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; - /** * \name Settings * @{ @@ -156,7 +155,7 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker vpKltOpencv &getKltTracker() { return m_klt; } #if defined(VISP_HAVE_NLOHMANN_JSON) - virtual void loadJsonConfiguration(const nlohmann::json &j) + virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 02ca0f189a..2c6a955566 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -176,7 +176,6 @@ class VISP_EXPORT vpCCDStatistics } }; - /** * \brief Tracking based on the Contracting Curve Density algorithm. * @@ -218,7 +217,6 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker * @} */ - void onTrackingIterStart() VP_OVERRIDE { } void onTrackingIterEnd() VP_OVERRIDE { } @@ -234,7 +232,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; #if defined(VISP_HAVE_NLOHMANN_JSON) - virtual void loadJsonConfiguration(const nlohmann::json &j) + virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); m_vvsConvergenceThreshold = j.value("convergenceThreshold", m_vvsConvergenceThreshold); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 85ebaeceda..1baef762e8 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -82,7 +82,7 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; #if defined(VISP_HAVE_NLOHMANN_JSON) - virtual void loadJsonConfiguration(const nlohmann::json &j) + virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); m_numCandidates = j.value("numCandidates", m_numCandidates); From 50ab251fe8da04ccde07e90b430e34c505546776 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 15:54:41 +0200 Subject: [PATCH 021/101] Fix warning: private field 'm_normalAcceptanceThresholdDeg' is not used --- modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h | 7 ------- 1 file changed, 7 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index 12237f11da..1f44376cdb 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -255,13 +255,6 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker double m_maxErrorOutliersPixels; //! Max 3D reprojection error before a point is considered an outlier and rejected from tracking. In meters - /*! - * Reject points where the render normals's dot product - * with the inverse camera vector is above this angle threshold. - * Helps removing uncertain keypoints or keypoints that may disappear in the next frame. - */ - double m_normalAcceptanceThresholdDeg; - std::map m_points; bool m_useMask; From 3938d71162db7052e304916fe81cb5346b571ee2 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 16:02:59 +0200 Subject: [PATCH 022/101] Fix warning: delete called on non-final 'vpRBDenseDepthTracker, vpRBFeatureTrackerFactory, vpRBKltTracker, vpRBSilhouetteCCDTracker, vpRBSilhouetteMeTracker' that has virtual functions but non-virtual destructor --- .../tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h | 5 +++-- .../rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h | 1 + modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h | 3 ++- .../rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h | 1 + .../rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h | 7 ++++++- 5 files changed, 13 insertions(+), 4 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index ba153375ff..e222459505 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -72,6 +72,8 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker vpRBDenseDepthTracker() : vpRBFeatureTracker(), m_step(2), m_useMask(false), m_minMaskConfidence(0.f) { } + virtual ~vpRBDenseDepthTracker() = default; + bool requiresRGB() const VP_OVERRIDE { return false; } bool requiresDepth() const VP_OVERRIDE { return true; } bool requiresSilhouetteCandidates() const VP_OVERRIDE { return false; } @@ -198,9 +200,8 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker unsigned int m_step; bool m_useMask; float m_minMaskConfidence; - - }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index a357581a3f..2d75f65750 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -51,6 +51,7 @@ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory &points, diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 2c6a955566..e68869186d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -186,6 +186,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker public: vpRBSilhouetteCCDTracker(); + virtual ~vpRBSilhouetteCCDTracker() = default; bool requiresRGB() const VP_OVERRIDE { return true; } bool requiresDepth() const VP_OVERRIDE { return false; } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 1baef762e8..d555d7c9ca 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -51,7 +51,12 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker { public: - vpRBSilhouetteMeTracker() : vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), m_singlePointConvergedThresholdPixels(3), m_useMask(false), m_minMaskConfidence(0.f) { } + vpRBSilhouetteMeTracker() : + vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), + m_singlePointConvergedThresholdPixels(3), m_useMask(false), m_minMaskConfidence(0.f) + { } + + virtual ~vpRBSilhouetteMeTracker() = default; bool requiresRGB() const VP_OVERRIDE { return false; } From f2e907b8f426c34de75d7df30cc8322135121c33 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 16:10:44 +0200 Subject: [PATCH 023/101] Update with new headers --- modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h | 6 ++---- .../rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h | 6 ++---- .../rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h | 6 ++---- .../include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h | 6 ++---- .../rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h | 6 ++---- .../rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h | 6 ++---- .../tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h | 6 ++---- .../visp3/rbt/vpRBSilhouettePointsExtractionSettings.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h | 6 ++---- modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h | 6 ++---- modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp | 6 ++---- .../rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp | 6 ++---- modules/tracker/rbt/src/core/vpRBTracker.cpp | 6 ++---- modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp | 6 ++---- .../rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp | 6 ++---- modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp | 6 ++---- modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp | 6 ++---- .../tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp | 6 ++---- modules/tracker/rbt/src/features/vpRBKltTracker.cpp | 6 ++---- .../tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp | 6 ++---- .../tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp | 6 ++---- modules/tracker/rbt/src/mask/vpColorHistogram.cpp | 6 ++---- modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp | 6 ++---- modules/tracker/rbt/src/mask/vpObjectMask.cpp | 6 ++---- modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp | 6 ++---- .../tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp | 6 ++---- modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp | 6 ++---- 39 files changed, 78 insertions(+), 156 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index 114625c7e7..92ed08d20e 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpColorHistogram.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index d1beb1a3b1..99e07f3866 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpColorHistogramMask.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index ac17b9cf47..abf961dade 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpDynamicFactory.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h index bff891b1aa..b1525de595 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpObjectCentricRenderer.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h index 75ff6f1b86..2258b39f31 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpObjectMask.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h index cd954ca357..61d78ab834 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpObjectMaskFactory.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h index 574346bbc4..bde78f018b 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpPanda3DDepthFilters.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index e222459505..be8d43ece2 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBDenseDepthTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h index f02710bea4..b7673357c6 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBDriftDetector.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h index e4e3c05a95..2d4c5de638 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBDriftDetectorFactory.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 3307e4b9b7..4409ae7998 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBFeatureTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index 2d75f65750..320db68570 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBFeatureTrackerFactory.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h index ce1943e046..a78caed41a 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBFeatureTrackerInput.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index b2b0fec7dc..ad0103e186 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBKltTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index 53cd98e2b5..fc9a717b39 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBProbabilistic3DDriftDetector.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index e68869186d..195ebaadf4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBSilhouetteCCDTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index 0d2ef46914..be80d2487f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBSilhouetteControlPoint.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index d555d7c9ca..b7f068b4ea 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBSilhouetteMeTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h index 44fb271894..7933b2ae16 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBSilhouettePoint.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index 5e1540a4fa..834f3064db 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBSilhouettePointsExtractionSettings.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index ff3dd64f00..0b546426cd 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBTracker.h diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index 47f8d8e910..b4ca76cdd7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ /*! \file vpRBTrackerLogger.h diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 9fe41b14fb..9b3795cc58 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include #include diff --git a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp index b3f69c2279..afdb5aa528 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp @@ -1,6 +1,5 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -28,8 +27,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index db981e9fe9..0a67ab1c9c 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp index 4a41ce3fb0..c98330ad1d 100644 --- a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp +++ b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include #include diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 9e60668df4..6f8142b9c3 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 39557185bb..06ad78b0d7 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include #include diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp index a93e814356..70f55d9db1 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp index 92eeba5238..7729bd8028 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTrackerFactory.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 88ab420d89..c1eefc7508 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index dac7de37d6..0e986abad1 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -1,6 +1,5 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -28,8 +27,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include #include diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 04c6941eb2..4efd06f1ea 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index b1ddff5087..48e0304b38 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index e3ef3ba6ab..cbb4ba5772 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/mask/vpObjectMask.cpp b/modules/tracker/rbt/src/mask/vpObjectMask.cpp index 9df639c876..4c720a4b72 100644 --- a/modules/tracker/rbt/src/mask/vpObjectMask.cpp +++ b/modules/tracker/rbt/src/mask/vpObjectMask.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp index 6c4d4af712..2dc1b28545 100644 --- a/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp +++ b/modules/tracker/rbt/src/mask/vpObjectMaskFactory.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include #include diff --git a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp index 775adfd72e..57e5f6de44 100644 --- a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp +++ b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index 9ade57dd31..ac9f64c5f4 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -1,5 +1,4 @@ -/**************************************************************************** - * +/* * ViSP, open source Visual Servoing Platform software. * Copyright (C) 2005 - 2024 by Inria. All rights reserved. * @@ -27,8 +26,7 @@ * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. - * -*****************************************************************************/ + */ #include From 718ffa35dadfa0b203abddba0abd386d9946f04b Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 16:35:48 +0200 Subject: [PATCH 024/101] Covariance computation initial pass --- .../include/visp3/rbt/vpRBFeatureTracker.h | 12 +++---- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 5 ++- .../rbt/include/visp3/rbt/vpRBTracker.h | 7 ++-- modules/tracker/rbt/src/core/vpRBTracker.cpp | 24 +++++++++++++ .../src/features/vpRBDenseDepthTracker.cpp | 7 ++-- .../rbt/src/features/vpRBFeatureTracker.cpp | 10 +++--- .../rbt/src/features/vpRBKltTracker.cpp | 4 ++- .../src/features/vpRBSilhouetteCCDTracker.cpp | 3 +- .../src/features/vpRBSilhouetteMeTracker.cpp | 5 +-- .../render-based-tutorial-utils.h | 35 ++++++++++++++++--- .../render-based/tutorial-rbt-realsense.cpp | 2 ++ 11 files changed, 83 insertions(+), 31 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index da6b090020..a5e7cbe347 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -157,7 +157,7 @@ class VISP_EXPORT vpRBFeatureTracker * * The updateCovariance method should have been called before */ - const vpMatrix &getCovariance() const { return m_cov; } + virtual const vpMatrix getCovariance() const { return m_cov; } /** * \brief Update the covariance matrix * @@ -182,14 +182,14 @@ class VISP_EXPORT vpRBFeatureTracker void setTrackerWeight(double weight) { m_userVvsWeight = weight; } /** - * \brief Get the leftside term of the Gauss-Newton optimization term + * \brief Get the left-side term of the Gauss-Newton optimization term */ - const vpMatrix &getLTL() const { return m_LTL; } + virtual vpMatrix getLTL() const { return m_LTL; } /** - * \brief Get the rightside term of the Gauss-Newton optimization term + * \brief Get the right-side term of the Gauss-Newton optimization term */ - const vpColVector &getLTR() const { return m_LTR; } + virtual vpColVector getLTR() const { return m_LTR; } /** * \brief Get a weighted version of the error vector. @@ -208,7 +208,7 @@ class VISP_EXPORT vpRBFeatureTracker protected: static void computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR); - static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector & /*x*/, const vpColVector &b, const vpMatrix &W); + static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector &b, const vpMatrix &W); vpMatrix m_L; //! Error jacobian (In VS terms, the interaction matrix) vpMatrix m_LTL; //! Left side of the Gauss newton minimization diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 02ca0f189a..463cda23f7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -229,7 +229,10 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; - void updateCovariance(const double /*lambda*/) VP_OVERRIDE { } + void updateCovariance(const double /*lambda*/) VP_OVERRIDE + { + m_cov = Sigma_Phi; + } void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index ff3dd64f00..60cd3d0b6f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -84,6 +84,8 @@ class VISP_EXPORT vpRBTracker const vpRBFeatureTrackerInput &getMostRecentFrame() const { return m_currentFrame; } const vpRBTrackerLogger &getLogger() const { return m_logger; } + vpMatrix getCovariance() const; + /** * @} */ @@ -192,11 +194,6 @@ class VISP_EXPORT vpRBTracker const vpImage &Ior, const vpImage &Ivalid, const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp); - vpMatrix getCovariance() - { - throw vpException(vpException::notImplementedError); - } - template void checkDimensionsOrThrow(const vpImage &I, const std::string &imgType) const { diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index db981e9fe9..2dbfc336b5 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -85,6 +85,30 @@ void vpRBTracker::setPose(const vpHomogeneousMatrix &cMo) m_renderer.setCameraPose(cMo.inverse()); } +vpMatrix vpRBTracker::getCovariance() const +{ + vpMatrix sumInvs(6, 6, 0.0); + double sumWeights = 0.0; + for (const std::shared_ptr &tracker: m_trackers) { + if (tracker->getNumFeatures() == 0) { + continue; + } + tracker->updateCovariance(m_lambda); + vpMatrix trackerCov = tracker->getCovariance(); + std::cout << "TRACKER COV = " << std::endl << trackerCov << std::endl << std::endl; + double trackerWeight = tracker->getVVSTrackerWeight(); + if (trackerCov.getRows() != 6 || trackerCov.getCols() != 6) { + throw vpException(vpException::dimensionError, + "Expected tracker pose covariance to have dimensions 6x6, but got %dx%d", + trackerCov.getRows(), trackerCov.getCols()); + } + + sumInvs += (trackerWeight * trackerCov.pseudoInverse()); + sumWeights += trackerWeight; + } + return sumWeights * sumInvs.pseudoInverse(); +} + vpCameraParameters vpRBTracker::getCameraParameters() const { return m_cam; } void vpRBTracker::setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w) diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 39557185bb..f2486f1eab 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -108,12 +108,12 @@ void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame m_weighted_error.resize(m_depthPoints.size(), false); m_L.resize(m_depthPoints.size(), 6, false, false); m_numFeatures = m_L.getRows(); + m_cov.resize(6, 6, false, false); + m_covWeightDiag.resize(m_depthPoints.size(), false); } else { m_numFeatures = 0; } - std::cout << "Depth extraction took: " << vpTime::measureTimeMs() - t1 << std::endl; - } void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, const vpHomogeneousMatrix &cMo, unsigned int /*iteration*/) @@ -124,6 +124,8 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram m_error = 0; m_weights = 1.0; m_weighted_error = 0.0; + m_cov = 0.0; + m_covWeightDiag = 0.0; } vpRotationMatrix cRo = cMo.getRotationMatrix(); #ifdef VISP_HAVE_OPENMP @@ -141,6 +143,7 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { m_weighted_error[i] = m_error[i] * m_weights[i]; + m_covWeightDiag[i] = m_weights[i] * m_weights[i]; for (unsigned int dof = 0; dof < 6; ++dof) { m_L[i][dof] *= m_weights[i]; } diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp index a93e814356..d07379d2a6 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -49,8 +49,7 @@ void vpRBFeatureTracker::updateCovariance(const double lambda) { vpMatrix D; D.diag(m_covWeightDiag); - vpColVector v; - m_cov = computeCovarianceMatrix(m_L, -v, lambda * m_error, D); + m_cov = computeCovarianceMatrix(m_L, lambda * m_error, D); } void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR) @@ -75,10 +74,11 @@ void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVect #endif } -vpMatrix vpRBFeatureTracker::computeCovarianceMatrix(const vpMatrix &A, const vpColVector & /*x*/, const vpColVector &b, const vpMatrix &W) +vpMatrix vpRBFeatureTracker::computeCovarianceMatrix(const vpMatrix &DJ, const vpColVector &e, const vpMatrix &covDiag) { - double sigma2 = (((W * b).t()) * W * b)/((double)b.getRows()); - return (A.t() * W * A).pseudoInverse(b.getRows() * std::numeric_limits::epsilon()) * sigma2; + const vpColVector covDiagE = covDiag * e; + double sigma2 = (covDiagE.t() * covDiag * e) / ((double)e.getRows()); + return (DJ.t() * covDiag * DJ).pseudoInverse() * sigma2; } END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 88ab420d89..170e82d59d 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -265,6 +265,8 @@ void vpRBKltTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpR m_weights.resize(m_numFeatures, false); m_LTL.resize(6, 6, false, false); m_LTR.resize(6, false); + m_cov.resize(6, 6, false, false); + m_covWeightDiag.resize(m_numFeatures, false); m_error = 0; } @@ -289,6 +291,7 @@ void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, co m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); for (unsigned int i = 0; i < m_error.getRows(); ++i) { m_weighted_error[i] = m_error[i] * m_weights[i]; + m_covWeightDiag[i] = m_weights[i] * m_weights[i]; for (unsigned int dof = 0; dof < 6; ++dof) { m_L[i][dof] *= m_weights[i]; } @@ -296,7 +299,6 @@ void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, co m_LTL = m_L.AtA(); computeJTR(m_L, m_weighted_error, m_LTR); - //std::cout << "m_LTL klt = " << m_LTL << std::endl; } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index dac7de37d6..2f4c196afc 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -655,9 +655,8 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() vpMatrix hessian_E_inv = hessian_E.inverseByCholesky(); //Sigma_Phi = /*Sigma_Phi +*/ 2*hessian_E_inv; - Sigma_Phi = m_ccdParameters.covarianceIterDecreaseFactor * Sigma_Phi + 2 * (1 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; + Sigma_Phi = m_ccdParameters.covarianceIterDecreaseFactor * Sigma_Phi + 2.0 * (1.0 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; - m_cov = Sigma_Phi; } END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 04c6941eb2..b072871a84 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -182,11 +182,8 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram const double eri = m_error[i]; m_covWeightDiag[i] = wi * wi; m_weighted_error[i] = wi * eri; - } - - for (unsigned int i = 0; i < m_error.size(); i++) { for (unsigned int j = 0; j < 6; j++) { - m_L[i][j] = m_weights[i] * m_L[i][j]; + m_L[i][j] = wi * m_L[i][j]; } } diff --git a/tutorial/tracking/render-based/render-based-tutorial-utils.h b/tutorial/tracking/render-based/render-based-tutorial-utils.h index eac7979378..a6bcd27ae7 100644 --- a/tutorial/tracking/render-based/render-based-tutorial-utils.h +++ b/tutorial/tracking/render-based/render-based-tutorial-utils.h @@ -203,20 +203,22 @@ class vpRBExperimentPlotter public: - vpRBExperimentPlotter() : enabled(false), plotPose(false), plotPose3d(false), plotDivergenceMetrics(false) { } + vpRBExperimentPlotter() : enabled(false), plotPose(false), plotPose3d(false), plotDivergenceMetrics(false), plotCovariance(false) { } void registerArguments(vpJsonArgumentParser &parser) { parser .addFlag("--plot-pose", plotPose, "Plot the pose of the object in the camera frame") .addFlag("--plot-position", plotPose3d, "Plot the position of the object in a 3d figure") - .addFlag("--plot-divergence", plotDivergenceMetrics, "Plot the metrics associated to the divergence threshold computation"); + .addFlag("--plot-divergence", plotDivergenceMetrics, "Plot the metrics associated to the divergence threshold computation") + .addFlag("--plot-cov", plotCovariance, "Plot the pose covariance trace for each feature"); + } void postProcessArguments(bool displayEnabled) { - enabled = plotPose || plotDivergenceMetrics || plotPose3d; + enabled = plotPose || plotDivergenceMetrics || plotPose3d || plotCovariance; if (enabled && !displayEnabled) { throw vpException(vpException::badValue, "Tried to plot data, but display is disabled"); } @@ -235,7 +237,7 @@ class vpRBExperimentPlotter xpos = std::max(xpos, display->getWindowXPosition() + static_cast(display->getWidth())); } - numPlots = static_cast(plotPose) + static_cast(plotDivergenceMetrics) + static_cast(plotPose3d); + numPlots = static_cast(plotPose) + static_cast(plotDivergenceMetrics) + static_cast(plotPose3d) + static_cast(plotCovariance); plotter.init(numPlots, 600, 800, xpos, ypos, "Plot"); unsigned int plotIndex = 0; if (plotPose) { @@ -263,6 +265,14 @@ class vpRBExperimentPlotter plotter.setTitle(plotIndex, "Divergence"); ++plotIndex; } + if (plotCovariance) { + plotter.initGraph(plotIndex, 2); + plotter.setLegend(plotIndex, 0, "Translation trace standard deviation (cm)"); + plotter.setLegend(plotIndex, 1, "Rotation trace standard deviation (deg)"); + + plotter.setTitle(plotIndex, "Covariance"); + ++plotIndex; + } } void plot(const vpRBTracker &tracker, double time) @@ -290,13 +300,28 @@ class vpRBExperimentPlotter plotter.plot(plotIndex, 0, time, metric); ++plotIndex; } + if (plotCovariance) { + vpMatrix cov = tracker.getCovariance(); + double traceTranslation = 0.0, traceRotation = 0.0; + for (unsigned int i = 0; i < 3; ++i) { + traceTranslation += cov[i][i]; + traceRotation += cov[i + 3][i + 3]; + } + traceTranslation = sqrt(traceTranslation) * 100; + traceRotation = vpMath::deg(sqrt(traceRotation)); + + plotter.plot(plotIndex, 0, time, traceTranslation); + plotter.plot(plotIndex, 1, time, traceRotation); + + ++plotIndex; + } } private: bool enabled; bool plotPose; bool plotPose3d; - bool plotDivergenceMetrics; + bool plotCovariance; int numPlots; vpPlot plotter; }; diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index 0ef099127a..949789cfc5 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -192,6 +192,8 @@ int main(int argc, const char **argv) tracker.track(Id, Icol, depth); double trackingEnd = vpTime::measureTimeMs(); tracker.getPose(cMo); + + std::cout << tracker.getCovariance() << std::endl; double displayStart = vpTime::measureTimeMs(); if (baseArgs.display) { if (baseArgs.debugDisplay) { From 682190e6a25e91873431a7a864584f72b3f83492 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 16:49:44 +0200 Subject: [PATCH 025/101] Remove prints related to covariance --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 1 - tutorial/tracking/render-based/tutorial-rbt-realsense.cpp | 2 -- 2 files changed, 3 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 2dbfc336b5..8b9ec2e849 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -95,7 +95,6 @@ vpMatrix vpRBTracker::getCovariance() const } tracker->updateCovariance(m_lambda); vpMatrix trackerCov = tracker->getCovariance(); - std::cout << "TRACKER COV = " << std::endl << trackerCov << std::endl << std::endl; double trackerWeight = tracker->getVVSTrackerWeight(); if (trackerCov.getRows() != 6 || trackerCov.getCols() != 6) { throw vpException(vpException::dimensionError, diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index 949789cfc5..0ef099127a 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -192,8 +192,6 @@ int main(int argc, const char **argv) tracker.track(Id, Icol, depth); double trackingEnd = vpTime::measureTimeMs(); tracker.getPose(cMo); - - std::cout << tracker.getCovariance() << std::endl; double displayStart = vpTime::measureTimeMs(); if (baseArgs.display) { if (baseArgs.debugDisplay) { From a8bc61f0af6a44132c5b6f5bb51506223f147983 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 17:05:08 +0200 Subject: [PATCH 026/101] Introduce plane initialization from a point and the normal of the plane --- modules/core/include/visp3/core/vpPlane.h | 16 +- modules/core/src/tools/geometry/vpPlane.cpp | 141 +++++++++++++----- .../src/core/vpRBSilhouetteControlPoint.cpp | 21 +-- 3 files changed, 116 insertions(+), 62 deletions(-) diff --git a/modules/core/include/visp3/core/vpPlane.h b/modules/core/include/visp3/core/vpPlane.h index d57f03039a..df0a8ab5cb 100644 --- a/modules/core/include/visp3/core/vpPlane.h +++ b/modules/core/include/visp3/core/vpPlane.h @@ -48,10 +48,9 @@ BEGIN_VISP_NAMESPACE \brief This class defines the container for a plane geometrical structure. - A plane is given by the equation \f$Ax + By + Cz + D = 0\f$ where - (x,y,z) are the coordinates of a point and where \f$[A,B,C]^T\f$ is a normal + A plane is given by the equation \f$A*X + B*Y + C*Z + D = 0\f$ where + (X,Y,Z) are the coordinates of a point and where \f$[A,B,C]^T\f$ is the normal vector of the plane. - */ class VISP_EXPORT vpPlane { @@ -66,14 +65,15 @@ class VISP_EXPORT vpPlane vpPlane(); vpPlane(const vpPlane &P); vpPlane(double A, double B, double C, double D); - vpPlane(const vpPoint &P, const vpColVector &n, vpPlaneFrame frame = camera_frame); + vpPlane(const vpPoint &P, const vpColVector &normal, vpPlaneFrame frame = camera_frame); vpPlane(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlaneFrame frame = camera_frame); double computeZ(double x, double y) const; - void init(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlaneFrame frame = camera_frame); - void init(const vpColVector &P, const vpColVector &n); - void init(const vpPlane &P); + vpPlane &init(const vpPoint &P, const vpColVector &normal, vpPlaneFrame frame = camera_frame); + vpPlane &init(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlaneFrame frame = camera_frame); + vpPlane &init(const vpColVector &P, const vpColVector &n); + vpPlane &init(const vpPlane &P); // SET the parameter /*! Set plane parameter A. */ @@ -157,7 +157,7 @@ class VISP_EXPORT vpPlane friend VISP_EXPORT std::ostream &operator<<(std::ostream &os, const vpPlane &p); // Operation with Plane - void projectionPointOnPlan(const vpPoint &P, vpPoint &Pproj) const; + void projectionPointOnPlan(const vpPoint &P, vpPoint &Pproj, vpPlaneFrame frame = camera_frame) const; double rayIntersection(const vpPoint &M0, const vpPoint &M1, vpColVector &H) const; diff --git a/modules/core/src/tools/geometry/vpPlane.cpp b/modules/core/src/tools/geometry/vpPlane.cpp index d2fdf7805e..9ed44bda0a 100644 --- a/modules/core/src/tools/geometry/vpPlane.cpp +++ b/modules/core/src/tools/geometry/vpPlane.cpp @@ -29,8 +29,7 @@ * * Description: * Plane geometrical structure. - * -*****************************************************************************/ + */ /*! \file vpPlane.cpp @@ -64,8 +63,8 @@ vpPlane::vpPlane() : A(0), B(0), C(0), D(0) { } /*! Plane constructor from A, B, C, D parameters. - A plane is given by the equation \f$Ax + By + Cz + D = 0\f$ where - (x,y,z) are the coordinates of a point and \f$[A,B,C]^T\f$ is the normal + A plane is given by the equation \f$A*X + B*Y + C*Z + D = 0\f$ where + (X,Y,Z) are the coordinates of a point and \f$[A,B,C]^T\f$ is the normal vector of the plane. \param a, b, c, d : Parameters of the plane. @@ -85,33 +84,34 @@ vpPlane::vpPlane(const vpPlane &P) : A(0), B(0), C(0), D(0) } /*! + Plane constructor from a point \e P on the plane and the \e normal to the plane. - Plane constructor from a point \e P on the plane and the normal - \e n to the plane. - - A plane is given by the equation \f$Ax + By + Cz + D = 0\f$ where - (x,y,z) are the coordinates of a point and \f$[A,B,C]^T\f$ is the normal + A plane is given by the equation \f$A*X + B*Y + C*Z + D = 0\f$ where + (X,Y,Z) are the coordinates of a point and \f$[A,B,C]^T\f$ is the normal vector of the plane. - \param P : A point with coordinates (x,y,z) on the plane. The \e frame - parameter indicates if the coordinates of this points that are used are - expressed in the camera of object frame. + \param P : A point with coordinates (X,Y,Z) on the plane. The \e frame + parameter indicates if the coordinates of this point are + expressed in the camera or object frame. - \param n : The normal to the plane. + \param normal : The normal to the plane. \param frame: Indicates if the plane should be initialized from the point P coordinates expressed in the camera or object frame. - + - When expressed in the camera frame we get the coordinates of the point using + (`P.get_X()`, `P.get_Y()`, `P.get_Z()`). + - When expressed in the object frame we get the coordinates of the point using + (`P.get_oX()`, `P.get_oY()`, `P.get_oZ()`). */ -vpPlane::vpPlane(const vpPoint &P, const vpColVector &n, vpPlaneFrame frame) : A(0), B(0), C(0), D(0) +vpPlane::vpPlane(const vpPoint &P, const vpColVector &normal, vpPlaneFrame frame) : A(0), B(0), C(0), D(0) { const unsigned int index_0 = 0; const unsigned int index_1 = 1; const unsigned int index_2 = 2; // Equation of the plane is given by: - A = n[index_0]; - B = n[index_1]; - C = n[index_2]; + A = normal[index_0]; + B = normal[index_1]; + C = normal[index_2]; if (frame == vpPlane::camera_frame) { D = -((A * P.get_X()) + (B * P.get_Y()) + (C * P.get_Z())); @@ -126,12 +126,52 @@ vpPlane::vpPlane(const vpPoint &P, const vpColVector &n, vpPlaneFrame frame) : A \param P : Plane used as initializer. */ -void vpPlane::init(const vpPlane &P) +vpPlane &vpPlane::init(const vpPlane &P) { setA(P.getA()); setB(P.getB()); setC(P.getC()); setD(P.getD()); + + return *this; +} + +/*! + Initialize the plane from a point \e P on the plane and the \e normal to the plane. + + \param P : A point with coordinates (X,Y,Z) on the plane. The \e frame + parameter indicates if the coordinates of this point are + expressed in the camera or object frame. + + \param normal : The normal to the plane. + + \param frame: Indicates if the plane should be initialized from the point P + coordinates expressed in the camera (X, Y, Z) or object frame (oX, oY, oZ). + - When expressed in the camera frame we get the coordinates of the point using + (`P.get_X()`, `P.get_Y()`, `P.get_Z()`). + - When expressed in the object frame we get the coordinates of the point using + (`P.get_oX()`, `P.get_oY()`, `P.get_oZ()`). + + \sa vpPlane(const vpPoint&, const vpColVector &) +*/ +vpPlane &vpPlane::init(const vpPoint &P, const vpColVector &normal, vpPlaneFrame frame) +{ + const unsigned int index_0 = 0; + const unsigned int index_1 = 1; + const unsigned int index_2 = 2; + // Equation of the plane is given by: + A = normal[index_0]; + B = normal[index_1]; + C = normal[index_2]; + + if (frame == vpPlane::camera_frame) { + D = -((A * P.get_X()) + (B * P.get_Y()) + (C * P.get_Z())); + } + else { + D = -((A * P.get_oX()) + (B * P.get_oY()) + (C * P.get_oZ())); + } + + return *this; } /*! @@ -141,21 +181,23 @@ void vpPlane::init(const vpPlane &P) \param P : A point with coordinates (x,y,z) on the plane. The size of the vector should be 3, with P[0]=x, with P[1]=y, with P[2]=z. - \param n : The normal to the plane. + \param normal : The normal to the plane. \sa vpPlane(const vpPoint&, const vpColVector &) */ -void vpPlane::init(const vpColVector &P, const vpColVector &n) +vpPlane &vpPlane::init(const vpColVector &P, const vpColVector &normal) { const unsigned int index_0 = 0; const unsigned int index_1 = 1; const unsigned int index_2 = 2; // Equation of the plane is given by: - A = n[index_0]; - B = n[index_1]; - C = n[index_2]; + A = normal[index_0]; + B = normal[index_1]; + C = normal[index_2]; D = -((A * P[0]) + (B * P[1]) + (C * P[index_2])); + + return *this; } /*! @@ -169,7 +211,7 @@ void vpPlane::init(const vpColVector &P, const vpColVector &n) coordinates expressed in the camera or object frame. */ -void vpPlane::init(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlaneFrame frame) +vpPlane &vpPlane::init(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlaneFrame frame) { vpColVector a(3); vpColVector b(3); @@ -218,6 +260,8 @@ void vpPlane::init(const vpPoint &P, const vpPoint &Q, const vpPoint &R, vpPlane B /= norm; C /= norm; D /= norm; + + return *this; } /*! @@ -250,7 +294,7 @@ double vpPlane::computeZ(double x, double y) const /*! Return the normal to the plane. - A plane is given by the equation \f$Ax + By + Cz + D = 0\f$ where + A plane is given by the equation \f$A*X + B*Y + C*Z + D = 0\f$ where (x,y,z) is a point of R^3 and (A,B,C) are the coordinates of the normal. \sa getNormal(vpColVector &n) @@ -271,8 +315,8 @@ vpColVector vpPlane::getNormal() const /*! Return the normal to the plane. - A plane is given by the equation \f$Ax + By + Cz + D = 0\f$ where - (x,y,z) are the coordinates of a point and \f$[A,B,C]^T\f$ is normal + A plane is given by the equation \f$A*X + B*Y + C*Z + D = 0\f$ where + (X,Y,Z) are the coordinates of a point and \f$[A,B,C]^T\f$ is the normal vector of the plane. \sa getNormal() @@ -292,24 +336,43 @@ void vpPlane::getNormal(vpColVector &n) const /*! Compute the coordinates of the projection of a point on the plane. - \param P : point to be projected on the plane - \param Pproj : result of the projection (pproj belongs to the plane) + \param[in] P : Point to be projected on the plane. + \param[out] Pproj : Projected point. + \param[in] frame : Indicates if the point P coordinates are expressed in the camera or object frame. + - When expressed in the camera frame we get the coordinates of the point using + (`P.get_X()`, `P.get_Y()`, `P.get_Z()`). + - When expressed in the object frame we get the coordinates of the point using + (`P.get_oX()`, `P.get_oY()`, `P.get_oZ()`). */ -void vpPlane::projectionPointOnPlan(const vpPoint &P, vpPoint &Pproj) const +void vpPlane::projectionPointOnPlan(const vpPoint &P, vpPoint &Pproj, vpPlaneFrame frame) const { double x0, y0, z0; double rho; - x0 = P.get_X() / P.get_W(); - y0 = P.get_Y() / P.get_W(); - z0 = P.get_Z() / P.get_W(); + if (frame == vpPlane::camera_frame) { + x0 = P.get_X() / P.get_W(); + y0 = P.get_Y() / P.get_W(); + z0 = P.get_Z() / P.get_W(); - rho = -((A * x0) + (B * y0) + (C * z0) + D) / ((A * A) + (B * B) + (C * C)); + rho = -((A * x0) + (B * y0) + (C * z0) + D) / ((A * A) + (B * B) + (C * C)); - Pproj.set_X(x0 + (A * rho)); - Pproj.set_Y(y0 + (B * rho)); - Pproj.set_Z(z0 + (C * rho)); - Pproj.set_W(1); + Pproj.set_X(x0 + (A * rho)); + Pproj.set_Y(y0 + (B * rho)); + Pproj.set_Z(z0 + (C * rho)); + Pproj.set_W(1); + } + else { + x0 = P.get_oX() / P.get_oW(); + y0 = P.get_oY() / P.get_oW(); + z0 = P.get_oZ() / P.get_oW(); + + rho = -((A * x0) + (B * y0) + (C * z0) + D) / ((A * A) + (B * B) + (C * C)); + + Pproj.set_oX(x0 + (A * rho)); + Pproj.set_oY(y0 + (B * rho)); + Pproj.set_oZ(z0 + (C * rho)); + Pproj.set_oW(1); + } } double vpPlane::rayIntersection(const vpPoint &M0, const vpPoint &M1, vpColVector &H) const diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 9b3795cc58..b1bd2d5aed 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -187,23 +187,14 @@ void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImage 1e-2) { @@ -240,7 +230,8 @@ vpRBSilhouetteControlPoint::buildPLine(const vpHomogeneousMatrix &oMc) } void -vpRBSilhouetteControlPoint::buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) +vpRBSilhouetteControlPoint::buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, + const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) { vpRotationMatrix R; cMo.extract(R); From 4c856247b49c736f8b594da00902f25e8c9b3381 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 20 Sep 2024 17:17:12 +0200 Subject: [PATCH 027/101] Fix doxygen warnings and clean code --- .../rbt/vpRBProbabilistic3DDriftDetector.h | 16 +++++---------- .../visp3/rbt/vpRBSilhouetteControlPoint.h | 20 ++----------------- .../src/core/vpRBSilhouetteControlPoint.cpp | 6 +----- 3 files changed, 8 insertions(+), 34 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h index fc9a717b39..db2743d3ae 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBProbabilistic3DDriftDetector.h @@ -40,14 +40,10 @@ #include #include - #include - #include - - BEGIN_VISP_NAMESPACE template class vpImage; @@ -57,12 +53,12 @@ template class vpImage; * * \brief Algorithm that uses tracks object surface points in order to estimate the probability that tracking is successful. * - * Given a set of surface points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$, each point \f$\mathbf{X}_i\f$ being associated to: + * Given a set of surface points \f$ \mathbf{X}_0, ..., \mathbf{X}_N\f$, each point \f$\mathbf{X}_i\f$ being associated to: * * - a color distribution \f$\mathcal{N}(\mathbf{\bar c_i}, \mathbf{\Sigma_{c_i}^2})\f$, * - its distance to the camera being \f$Z_i\f$, * - its projection in the current color and depth images \f$\mathbf{I_c}, \mathbf{I_Z}\f$ having coordinates \f$u_i, v_i\f$. - * - its visibility V(\mathbf{X_i}), which is 1 if \f$u_i, v_i\f$ lie in the image, + * - its visibility \f$V(\mathbf{X_i})\f$, which is 1 if \f$u_i, v_i\f$ lie in the image, * \f$Z_i\f$ is close to the rendered depth value * and the normal at the surface marks the point as visible from the camera's point of view. * @@ -79,7 +75,6 @@ template class vpImage; * \end{aligned} * \f] * - * * if the depth is unavailable, then we set \f$p(\mathbf{I_Z}(u_i, v_i) | \mathcal{N}(Z_i, \sigma_Z^2)) = 1\f$ * * Here, the color distribution is estimated online for each point separately using exponential moving average/variance techniques. @@ -87,9 +82,9 @@ template class vpImage; * * For the depth, \f$\sigma_Z\f$ is a fixed parameter to be tweaked by the user. * - * Every time update is called, the set of points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$ may grow larger: If a new candidate point is visible and is far enough from points already in the set, it is added to it. - * -*/ + * Every time update() is called, the set of points \f$ \mathbf{X}_0, ..., \mathbf{X}_N, \f$ may grow larger. + * If a new candidate point is visible and is far enough from points already in the set, it is added to it. + */ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector { @@ -211,7 +206,6 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector public: - vpRBProbabilistic3DDriftDetector() : m_colorUpdateRate(0.2), m_initialColorSigma(25.0), m_depthSigma(0.04), m_maxError3D(0.001), m_minDist3DNewPoint(0.003) { } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index be80d2487f..b593058f04 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -74,31 +74,19 @@ class VISP_EXPORT vpRBSilhouetteControlPoint bool m_valid; - public: const vpCameraParameters *cam; - //int imin, imax; - //int jmin, jmax; - //double expecteddensity; - // the image point vpImagePoint icpoint; - // the 3D point vpPoint cpoint; vpPoint cpointo; - //! The moving edge container associated to the control point - //vpMbtMeLine *meline; - //! The 3D line associated to the control point - //vpLine *line; - - //! Normale to surface where the control point lies + //! Normal to surface where the control point lies vpColVector norm; vpColVector normw; - //! Gradient profile associated to the control Points double error; @@ -110,7 +98,6 @@ class VISP_EXPORT vpRBSilhouetteControlPoint bool isSilhouette; bool invnormal; - public: void init(); @@ -141,7 +128,6 @@ class VISP_EXPORT vpRBSilhouetteControlPoint const vpLine &getLine() const { return line; } double getTheta() const { return theta; } - void setMovingEdge(vpMe *_me) { me = _me; } void setCameraParameters(const vpCameraParameters *_cam) { cam = _cam; } @@ -177,10 +163,8 @@ class VISP_EXPORT vpRBSilhouetteControlPoint private: void sample(const vpImage &) { } bool isLineDegenerate() const; - - - }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index b1bd2d5aed..41f11628f5 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -386,12 +386,8 @@ void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) } /*! - Construct a list of vpMeSite moving edges at a particular sampling - step between the two extremities of the line. - - \param I : Image in which the line appears. + Initialize the interaction matrix and the error to 0. */ - void vpRBSilhouetteControlPoint::initInteractionMatrixError() { From c6201abda78206e3bb42e3f418b76cb4102bf2cd Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 17:32:36 +0200 Subject: [PATCH 028/101] setup vs code for json formatting --- .vscode/settings.json | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.vscode/settings.json b/.vscode/settings.json index c01e3cc45a..8aad28afc7 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -201,4 +201,7 @@ {"column": 120, "color": "#ffcc00"} ], "C_Cpp.default.compilerPath": "/usr/bin/g++", + "[json]": { + "editor.defaultFormatter": "vscode.json-language-features" + }, } From 74879296d765a6b3674bc613a1bbdcec705ee6e0 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 17:50:58 +0200 Subject: [PATCH 029/101] cleanup ccd tracker --- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 12 +++-- .../src/features/vpRBSilhouetteCCDTracker.cpp | 44 +++++++++---------- 2 files changed, 27 insertions(+), 29 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 602b566049..3dc4f9e95d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -219,7 +219,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker void onTrackingIterStart() VP_OVERRIDE { } void onTrackingIterEnd() VP_OVERRIDE { } - double getVVSTrackerWeight() const VP_OVERRIDE { return m_userVvsWeight / (10 * error_ccd.size()); } + double getVVSTrackerWeight() const VP_OVERRIDE { return m_userVvsWeight / (10 * m_error.size()); } void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE; void trackFeatures(const vpRBFeatureTrackerInput & /*frame*/, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix & /*cMo*/) VP_OVERRIDE { } @@ -228,7 +228,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; void updateCovariance(const double /*lambda*/) VP_OVERRIDE { - m_cov = Sigma_Phi; + m_cov = m_sigma; } void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; @@ -253,20 +253,18 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker vpCCDParameters m_ccdParameters; std::vector m_controlPoints; //! Silhouette points where to compute CCD statistics - vpImage m_silhouette; vpRobust m_robust; vpCCDStatistics m_stats; vpCCDStatistics m_prevStats; - vpMatrix Sigma_Phi; + vpMatrix m_sigma; - vpColVector nabla_E; //! Sum of local gradients - vpMatrix hessian_E; //! Sum of local hessians + vpColVector m_gradient; //! Sum of local gradients + vpMatrix m_hessian; //! Sum of local hessians double m_vvsConvergenceThreshold; double tol; - vpColVector error_ccd; std::vector m_gradients; std::vector m_hessians; double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index a884fb07c5..39e9dd0ea1 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -109,7 +109,7 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix & /*cMo*/) { // Reinit all variables - Sigma_Phi = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); + m_sigma = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); m_cov.resize(6, 6); tol = 0.0; m_vvsConverged = false; @@ -121,10 +121,10 @@ void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, m_stats.reinit(resolution, normal_points_number); m_prevStats.reinit(resolution, normal_points_number); - nabla_E = vpMatrix(m_ccdParameters.phi_dim, 1, 0.0); - hessian_E = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); - m_gradients.resize(m_controlPoints.size() * 2 * normal_points_number, vpColVector(nabla_E.getRows())); - m_hessians.resize(m_controlPoints.size() * 2 * normal_points_number, vpMatrix(hessian_E.getRows(), hessian_E.getCols())); + m_gradient = vpMatrix(m_ccdParameters.phi_dim, 1, 0.0); + m_hessian = vpMatrix(m_ccdParameters.phi_dim, m_ccdParameters.phi_dim, 0.0); + m_gradients.resize(m_controlPoints.size() * 2 * normal_points_number, vpColVector(m_gradient.getRows())); + m_hessians.resize(m_controlPoints.size() * 2 * normal_points_number, vpMatrix(m_hessian.getRows(), m_hessian.getCols())); //m_weights.resize(nerror_ccd); @@ -185,7 +185,7 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { double sum = 0.0; for (unsigned int j = 0; j < nerror_per_point; ++j) { - sum += error_ccd[i * nerror_per_point + j]; + sum += m_error[i * nerror_per_point + j]; } if (sum > maxPointError) { maxPointError = sum; @@ -499,7 +499,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() const int npointsccd = m_controlPoints.size(); const int normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); const int nerror_ccd = 2 * normal_points_number * 3 * npointsccd; - error_ccd.resize(nerror_ccd, false); + m_error.resize(nerror_ccd, false); m_weighted_error.resize(nerror_ccd, false); m_L.resize(nerror_ccd, 6, false, false); #ifdef VISP_HAVE_OPENMP @@ -526,7 +526,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() if (!p.isValid()) { for (unsigned int j = 0; j < 2 * normal_points_number; ++j) { for (unsigned int m = 0; m < 3; ++m) { - error_ccd[i * 2 * normal_points_number * 3 + j * 3 + m] = 0.0; + m_error[i * 2 * normal_points_number * 3 + j * 3 + m] = 0.0; } } continue; @@ -555,7 +555,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() const double *pix_j = pix_ptr + j * 3; const double errf = vic_j[4]; const double smooth2 = m_temporalSmoothingFac * m_temporalSmoothingFac; - double *error_ccd_j = error_ccd.data + i * 2 * normal_points_number * 3 + j * 3; + double *error_ccd_j = m_error.data + i * 2 * normal_points_number * 3 + j * 3; for (unsigned n = 0; n < 9; ++n) { //double *tmp_cov_ptr = tmp_cov[m]; @@ -593,13 +593,13 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() } } - nabla_E = 0.0; - hessian_E = 0.0; + m_gradient = 0.0; + m_hessian = 0.0; //m_robust.setMinMedianAbsoluteDeviation(1.0); - m_robust.MEstimator(vpRobust::vpRobustEstimatorType::TUKEY, error_ccd, m_weights); + m_robust.MEstimator(vpRobust::vpRobustEstimatorType::TUKEY, m_error, m_weights); for (unsigned int i = 0; i < m_L.getRows(); ++i) { - m_weighted_error[i] = error_ccd[i] * m_weights[i]; + m_weighted_error[i] = m_error[i] * m_weights[i]; for (unsigned int j = 0; j < 6; ++j) { m_L[i][j] *= m_weights[i]; } @@ -612,8 +612,8 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() #pragma omp parallel #endif { - vpColVector localGradient(nabla_E.getRows(), 0.0); - vpMatrix localHessian(hessian_E.getRows(), hessian_E.getCols(), 0.0); + vpColVector localGradient(m_gradient.getRows(), 0.0); + vpMatrix localHessian(m_hessian.getRows(), m_hessian.getCols(), 0.0); #ifdef VISP_HAVE_OPENMP #pragma omp single #endif @@ -644,16 +644,16 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() localHessians[currentThread] = localHessian; } for (unsigned int i = 0; i < localGradients.size(); ++i) { - nabla_E += localGradients[i]; - hessian_E += localHessians[i]; + m_gradient += localGradients[i]; + m_hessian += localHessians[i]; } - m_LTL = hessian_E; - m_LTR = -nabla_E; + m_LTL = m_hessian; + m_LTR = -m_gradient; - vpMatrix hessian_E_inv = hessian_E.inverseByCholesky(); - //Sigma_Phi = /*Sigma_Phi +*/ 2*hessian_E_inv; - Sigma_Phi = m_ccdParameters.covarianceIterDecreaseFactor * Sigma_Phi + 2.0 * (1.0 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; + vpMatrix hessian_E_inv = m_hessian.inverseByCholesky(); + //m_sigma = /*m_sigma +*/ 2*hessian_E_inv; + m_sigma = m_ccdParameters.covarianceIterDecreaseFactor * m_sigma + 2.0 * (1.0 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; } From dab15b82211754e744ce066c1fbb4065ff48db94 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 18:40:14 +0200 Subject: [PATCH 030/101] cleanup silhouette point --- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 8 +- .../visp3/rbt/vpRBSilhouetteControlPoint.h | 49 +++--- .../src/core/vpRBSilhouetteControlPoint.cpp | 140 +++++++++--------- .../src/features/vpRBSilhouetteCCDTracker.cpp | 7 +- .../src/features/vpRBSilhouetteMeTracker.cpp | 18 +-- 5 files changed, 102 insertions(+), 120 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 3dc4f9e95d..db48267f13 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -247,7 +247,6 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker protected: void updateCCDPoints(const vpHomogeneousMatrix &cMo); void computeLocalStatistics(const vpImage &I, vpCCDStatistics &stats); - void computeErrorAndInteractionMatrix(); vpCCDParameters m_ccdParameters; @@ -260,15 +259,14 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker vpMatrix m_sigma; - vpColVector m_gradient; //! Sum of local gradients - vpMatrix m_hessian; //! Sum of local hessians - double m_vvsConvergenceThreshold; double tol; + std::vector m_gradients; std::vector m_hessians; + vpColVector m_gradient; //! Sum of local gradients + vpMatrix m_hessian; //! Sum of local hessians double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. - }; END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index b593058f04..ebbd2f917f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -69,13 +69,19 @@ class VISP_EXPORT vpRBSilhouetteControlPoint std::vector m_candidates; unsigned int m_numCandidates; - vpMe *me; + const vpMe *m_me; vpMeSite s; + //! Normal to surface where the control point lies + vpColVector norm; + vpColVector normw; + bool m_valid; + bool m_isSilhouette; + + const vpCameraParameters *m_cam; public: - const vpCameraParameters *cam; vpImagePoint icpoint; @@ -83,20 +89,8 @@ class VISP_EXPORT vpRBSilhouetteControlPoint vpPoint cpoint; vpPoint cpointo; - //! Normal to surface where the control point lies - vpColVector norm; - vpColVector normw; - - //! Gradient profile associated to the control Points - - double error; - - vpColVector L; - double xs, ys, nxs, nys, Zs; - bool isSilhouette; - bool invnormal; public: @@ -118,25 +112,22 @@ class VISP_EXPORT vpRBSilhouetteControlPoint void setValid(bool valid) { m_valid = valid; } bool isValid() const { return m_valid; } - int outOfImage(int i, int j, int half, int rows, int cols) const; - int outOfImage(const vpImagePoint &iP, int half, int rows, int cols) const; + + const vpCameraParameters &getCameraParameters() const { return *m_cam; } bool siteIsValid() const { return s.getState() == vpMeSite::NO_SUPPRESSION; } const vpMeSite &getSite() const { return s; } vpMeSite &getSite() { return s; } const vpFeatureLine &getFeatureLine() const { return featureline; } const vpLine &getLine() const { return line; } double getTheta() const { return theta; } - - void setMovingEdge(vpMe *_me) { me = _me; } - void setCameraParameters(const vpCameraParameters *_cam) { cam = _cam; } + bool isSilhouette() const { return m_isSilhouette; } void initControlPoint(const vpImage &I, double cvlt); void detectSilhouette(const vpImage &I); - void buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc); - void buildSilhouettePoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc); - void buildPlane(const vpPoint &pointn, const vpColVector &normal, vpPlane &plane); - void buildPLine(const vpHomogeneousMatrix &oMc); + void buildPoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc, const vpCameraParameters &cam, const vpMe &me); + void buildSilhouettePoint(int n, int m, const double &Z, double orient, const vpColVector &normo, const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc, const vpCameraParameters &cam); + void update(const vpHomogeneousMatrix &_cMo); void updateSilhouettePoint(const vpHomogeneousMatrix &_cMo); @@ -156,13 +147,17 @@ class VISP_EXPORT vpRBSilhouetteControlPoint */ void trackMultipleHypotheses(const vpImage &I); - void initInteractionMatrixError(); - void computeInteractionMatrixError(const vpHomogeneousMatrix &cMo); - void computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo); + void computeMeInteractionMatrixError(const vpHomogeneousMatrix &cMo, unsigned int i, vpMatrix &L, vpColVector &e); + void computeMeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, unsigned int i, vpMatrix &L, vpColVector &e); private: - void sample(const vpImage &) { } bool isLineDegenerate() const; + + int outOfImage(int i, int j, int half, int rows, int cols) const; + int outOfImage(const vpImagePoint &iP, int half, int rows, int cols) const; + void buildPlane(const vpPoint &pointn, const vpColVector &normal, vpPlane &plane); + void buildPLine(const vpHomogeneousMatrix &oMc); + }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 41f11628f5..7d3404f31d 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -45,15 +45,13 @@ void vpRBSilhouetteControlPoint::init() vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint() { init(); - me = nullptr; - m_numCandidates = 3; + m_me = nullptr; + m_numCandidates = 1; m_candidates.resize(1); sign = 1; - norm.resize(3); theta = 0; - isSilhouette = false; - invnormal = false; + m_isSilhouette = false; m_valid = true; } @@ -65,24 +63,21 @@ vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint(const vpRBSilhouetteContr vpRBSilhouetteControlPoint &vpRBSilhouetteControlPoint::operator=(const vpRBSilhouetteControlPoint &meTracker) { - me = meTracker.me; + m_me = meTracker.m_me; s = meTracker.s; m_numCandidates = meTracker.m_numCandidates; - cam = meTracker.cam; + m_cam = meTracker.m_cam; icpoint = meTracker.icpoint; cpoint = meTracker.cpoint; cpointo = meTracker.cpointo; norm = meTracker.norm; normw = meTracker.normw; - error = meTracker.error; - L = meTracker.L; xs = meTracker.xs; ys = meTracker.ys; nxs = meTracker.nxs; nys = meTracker.nys; Zs = meTracker.Zs; - isSilhouette = meTracker.isSilhouette; - invnormal = meTracker.invnormal; + m_isSilhouette = meTracker.m_isSilhouette; rho = meTracker.rho; theta = meTracker.theta; thetaInit = meTracker.thetaInit; @@ -101,25 +96,22 @@ vpRBSilhouetteControlPoint::vpRBSilhouetteControlPoint(const vpRBSilhouetteContr vpRBSilhouetteControlPoint &vpRBSilhouetteControlPoint::operator=(const vpRBSilhouetteControlPoint &&meTracker) { - me = std::move(meTracker.me); + m_me = std::move(meTracker.m_me); s = std::move(meTracker.s); thetaInit = std::move(meTracker.thetaInit); m_numCandidates = std::move(meTracker.m_numCandidates); - cam = std::move(meTracker.cam); + m_cam = std::move(meTracker.m_cam); icpoint = std::move(meTracker.icpoint); cpoint = std::move(meTracker.cpoint); cpointo = std::move(meTracker.cpointo); norm = std::move(meTracker.norm); normw = std::move(meTracker.normw); - error = std::move(meTracker.error); - L = std::move(meTracker.L); xs = std::move(meTracker.xs); ys = std::move(meTracker.ys); nxs = std::move(meTracker.nxs); nys = std::move(meTracker.nys); Zs = std::move(meTracker.Zs); - isSilhouette = std::move(meTracker.isSilhouette); - invnormal = std::move(meTracker.invnormal); + m_isSilhouette = std::move(meTracker.m_isSilhouette); rho = std::move(meTracker.rho); theta = std::move(meTracker.theta); delta = std::move(meTracker.delta); @@ -156,10 +148,10 @@ void vpRBSilhouetteControlPoint::track(const vpImage &I) if (s.getState() == vpMeSite::NO_SUPPRESSION) { try { if (s.m_convlt == 0) { - s.track(I, me, false); + s.track(I, m_me, false); } else { - s.track(I, me, false); + s.track(I, m_me, false); } } catch (vpTrackingException &) { @@ -175,7 +167,7 @@ void vpRBSilhouetteControlPoint::trackMultipleHypotheses(const vpImageget_px(); - double py = cam->get_py(); - int jc = cam->get_u0(); - int ic = cam->get_v0(); + double px = m_cam->get_px(); + double py = m_cam->get_py(); + int jc = m_cam->get_u0(); + int ic = m_cam->get_v0(); icpoint.set_i(n); icpoint.set_j(m); double x, y; @@ -260,16 +255,17 @@ vpRBSilhouetteControlPoint::buildPoint(int n, int m, const double &Z, double ori void vpRBSilhouetteControlPoint::buildSilhouettePoint(int n, int m, const double &Z, double orient, const vpColVector &normo, - const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) + const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc, const vpCameraParameters &cam) { + m_cam = &cam; vpRotationMatrix R; cMo.extract(R); theta = orient; thetaInit = theta; - double px = cam->get_px(); - double py = cam->get_py(); - int jc = cam->get_u0(); - int ic = cam->get_v0(); + double px = m_cam->get_px(); + double py = m_cam->get_py(); + int jc = m_cam->get_u0(); + int ic = m_cam->get_v0(); icpoint.set_i(n); icpoint.set_j(m); xs = (m-jc)/px; @@ -281,11 +277,11 @@ vpRBSilhouetteControlPoint::buildSilhouettePoint(int n, int m, const double &Z, double x, y; x = (m-jc)/px; y = (n-ic)/py; - cpoint.setWorldCoordinates(x*Z, y*Z, Z); + cpoint.setWorldCoordinates(x * Z, y * Z, Z); cpoint.changeFrame(oMc); cpointo.setWorldCoordinates(cpoint.get_X(), cpoint.get_Y(), cpoint.get_Z()); normw = normo; - norm = R*normo; + norm = R * normo; buildPLine(oMc); #if VISP_DEBUG_RB_CONTROL_POINT if (std::isnan(line.getTheta())) { @@ -302,10 +298,10 @@ vpRBSilhouetteControlPoint::update(const vpHomogeneousMatrix &_cMo) { cpointo.changeFrame(_cMo); cpointo.projection(); - double px = cam->get_px(); - double py = cam->get_py(); - double uc = cam->get_u0(); - double vc = cam->get_v0(); + double px = m_cam->get_px(); + double py = m_cam->get_py(); + double uc = m_cam->get_u0(); + double vc = m_cam->get_v0(); double u, v; v = py*cpointo.get_y()+vc; u = px*cpointo.get_x()+uc; @@ -317,10 +313,10 @@ vpRBSilhouetteControlPoint::updateSilhouettePoint(const vpHomogeneousMatrix &cMo { cpointo.changeFrame(cMo); cpointo.projection(); - const double px = cam->get_px(); - const double py = cam->get_py(); - const double uc = cam->get_u0(); - const double vc = cam->get_v0(); + const double px = m_cam->get_px(); + const double py = m_cam->get_py(); + const double uc = m_cam->get_u0(); + const double vc = m_cam->get_v0(); const double v = py * cpointo.get_y() + vc; const double u = px * cpointo.get_x() + uc; icpoint.set_uv(u, v); @@ -360,12 +356,12 @@ void vpRBSilhouetteControlPoint::initControlPoint(const vpImage & { double delta = theta; s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, cvlt, sign); - if (me != nullptr) { - const double marginRatio = me->getThresholdMarginRatio(); - const double convolution = s.convolution(I, me); + if (m_me != nullptr) { + const double marginRatio = m_me->getThresholdMarginRatio(); + const double convolution = s.convolution(I, m_me); s.init((double)icpoint.get_i(), (double)icpoint.get_j(), delta, convolution, sign); const double contrastThreshold = fabs(convolution) * marginRatio; - s.setContrastThreshold(contrastThreshold, *me); + s.setContrastThreshold(contrastThreshold, *m_me); } } @@ -382,24 +378,15 @@ void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) unsigned int isBg = static_cast(I[ii][jj] == 0.f); k += isBg; } - isSilhouette = k > 2; + m_isSilhouette = k > 2; } -/*! - Initialize the interaction matrix and the error to 0. -*/ -void -vpRBSilhouetteControlPoint::initInteractionMatrixError() -{ - L.resize(6, false); - error = 0; -} /*! Compute the interaction matrix and the error vector corresponding to the line. */ void -vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMatrix &cMo) +vpRBSilhouetteControlPoint::computeMeInteractionMatrixError(const vpHomogeneousMatrix &cMo, unsigned int i, vpMatrix &L, vpColVector &e) { line.changeFrame(cMo); @@ -421,10 +408,10 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMat double co = cos(theta0); double si = sin(theta0); - double mx = 1.0/cam->get_px(); - double my = 1.0/cam->get_py(); - double xc = cam->get_u0(); - double yc = cam->get_v0(); + double mx = 1.0 / m_cam->get_px(); + double my = 1.0 / m_cam->get_py(); + double xc = m_cam->get_u0(); + double yc = m_cam->get_v0(); vpMatrix H; H = featureline.interaction(); @@ -439,15 +426,22 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixError(const vpHomogeneousMat double *Ltheta = H[1]; // Calculate interaction matrix for a distance for (unsigned int k = 0; k < 6; k++) { - L[k] = (Lrho[k] + alpha*Ltheta[k]); + L[i][k] = (Lrho[k] + alpha*Ltheta[k]); } - error = rho0 - (x*co + y*si); + e[i] = rho0 - (x*co + y*si); m_valid = true; } + else { + m_valid = false; + e[i] = 0; + for (unsigned int k = 0; k < 6; k++) { + L[i][k] = 0.0; + } + } } void -vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo) +vpRBSilhouetteControlPoint::computeMeInteractionMatrixErrorMH(const vpHomogeneousMatrix &cMo, unsigned int i, vpMatrix &L, vpColVector &e) { line.changeFrame(cMo); @@ -458,17 +452,19 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousM vpFeatureBuilder::create(featureline, line); const double rho0 = featureline.getRho(); const double theta0 = featureline.getTheta(); +#if VISP_DEBUG_RB_CONTROL_POINT if (std::isnan(theta0)) { - throw; + throw vpException(vpException::fatalError, "Got nan theta in computeInteractionMatrixMH"); } +#endif const double co = cos(theta0); const double si = sin(theta0); - const double mx = 1.0/cam->get_px(); - const double my = 1.0/cam->get_py(); - const double xc = cam->get_u0(); - const double yc = cam->get_v0(); + const double mx = 1.0 / m_cam->get_px(); + const double my = 1.0 / m_cam->get_py(); + const double xc = m_cam->get_u0(); + const double yc = m_cam->get_v0(); const vpMatrix &H = featureline.interaction(); double xmin, ymin; double errormin = std::numeric_limits::max(); @@ -493,14 +489,20 @@ vpRBSilhouetteControlPoint::computeInteractionMatrixErrorMH(const vpHomogeneousM } } if (m_valid) { - error = rho0 - (xmin * co + ymin * si); + e[i] = rho0 - (xmin * co + ymin * si); const double alpha = xmin * si - ymin * co; const double *Lrho = H[0]; const double *Ltheta = H[1]; // Calculate interaction matrix for a distance for (unsigned int k = 0; k < 6; k++) { - L[k] = (Lrho[k] + alpha * Ltheta[k]); + L[i][k] = (Lrho[k] + alpha * Ltheta[k]); + } + } + else { + e[i] = 0; + for (unsigned int k = 0; k < 6; k++) { + L[i][k] = 0.0; } } } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 39e9dd0ea1..d1cbdb5fea 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -95,10 +95,9 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr int ii = sp.i, jj = sp.j; vpRBSilhouetteControlPoint pccd; - pccd.setCameraParameters(&frame.cam); - pccd.buildSilhouettePoint(ii, jj, sp.Z, sp.orientation, sp.normal, cMo, oMc); + pccd.buildSilhouettePoint(ii, jj, sp.Z, sp.orientation, sp.normal, cMo, oMc, frame.cam); pccd.detectSilhouette(frame.renders.depth); - if (pccd.isSilhouette && !std::isnan(sp.orientation) && pccd.isValid()) { + if (pccd.isSilhouette() && !std::isnan(sp.orientation) && pccd.isValid()) { m_controlPoints.push_back(std::move(pccd)); } } @@ -540,7 +539,7 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() const double *mean_vic_ptr_prev = m_prevStats.mean_vic[i]; const double *cov_vic_ptr_prev = m_prevStats.cov_vic[i]; - const vpCameraParameters &cam = *p.cam; + const vpCameraParameters &cam = p.getCameraParameters(); Lnvp[0] = (-nv_ptr[0] / p.Zs); Lnvp[1] = (-nv_ptr[1] / p.Zs); diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 7833e7228c..6be651021c 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -68,9 +68,7 @@ void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &fra } vpRBSilhouetteControlPoint p; - p.setCameraParameters(&frame.cam); - p.setMovingEdge(&m_me); - p.buildPoint((int)sp.i, (int)sp.j, sp.Z, sp.orientation, sp.normal, cMo, oMc); + p.buildPoint((int)sp.i, (int)sp.j, sp.Z, sp.orientation, sp.normal, cMo, oMc, frame.cam, m_me); if (previousFrame.I.getSize() == frame.I.getSize()) { p.initControlPoint(previousFrame.I, 0); } @@ -107,10 +105,6 @@ void vpRBSilhouetteMeTracker::initVVS(const vpRBFeatureTrackerInput & /*frame*/, return; } - for (unsigned int k = 0; k < m_controlPoints.size(); k++) { - m_controlPoints[k].initInteractionMatrixError(); - } - m_weighted_error.resize(m_numFeatures, false); m_weights.resize(m_numFeatures, false); m_weights = 0; @@ -132,15 +126,12 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram vpRBSilhouetteControlPoint &p = m_controlPoints[k]; //p.update(cMo); if (m_numCandidates <= 1) { - p.computeInteractionMatrixError(cMo); + p.computeMeInteractionMatrixError(cMo, k, m_L, m_error); } else { - p.computeInteractionMatrixErrorMH(cMo); + p.computeMeInteractionMatrixErrorMH(cMo, k, m_L, m_error); } - - m_error[k] = p.error; //On remplit la matrice d'erreur - m_weights[k] = 1; if (!p.siteIsValid() || !p.isValid()) { factor[k] = 0.0; @@ -153,9 +144,6 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram if (m_error[k] <= threshold) { ++count; } - for (unsigned int j = 0; j < 6; j++) { - m_L[k][j] = p.L[j]; - } } } From 161d97e2151ab1896755897cda983d49ef50059d Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 20 Sep 2024 18:54:57 +0200 Subject: [PATCH 031/101] mestimator setting for silhouetteMe --- .../tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h | 3 ++- modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index b7f068b4ea..580fbf92c6 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -50,7 +50,7 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker public: vpRBSilhouetteMeTracker() : - vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_globalVVSConvergenceThreshold(1.0), + vpRBFeatureTracker(), m_me(), m_numCandidates(1), m_robustMadMin(1.0), m_globalVVSConvergenceThreshold(1.0), m_singlePointConvergedThresholdPixels(3), m_useMask(false), m_minMaskConfidence(0.f) { } @@ -105,6 +105,7 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker vpMe m_me; //! Moving edge settings unsigned int m_numCandidates; //! Number of best candidates kept when finding correspondence points vpRobust m_robust; //! M-Estimator to filter outliers + double m_robustMadMin; double m_globalVVSConvergenceThreshold; //! Percentage of control points that should have converged to consider VVS as successful double m_singlePointConvergedThresholdPixels; //! Whether a single Control point is considered as converged bool m_useMask; diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 6be651021c..b49b57f8bd 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -81,7 +81,7 @@ void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &fra } m_numFeatures = m_controlPoints.size(); - m_robust.setMinMedianAbsoluteDeviation(std::max(m_singlePointConvergedThresholdPixels * 0.5, 1.0) / frame.cam.get_px()); + m_robust.setMinMedianAbsoluteDeviation(m_robustMadMin / frame.cam.get_px()); } From 57793f327cd73c1fc6e7fd58dbde6eb51b729b55 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 23 Sep 2024 15:02:27 +0200 Subject: [PATCH 032/101] Cleanup klt tracker --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 11 ++- .../rbt/src/features/vpRBKltTracker.cpp | 86 ++++++++++--------- 2 files changed, 55 insertions(+), 42 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 7c9b525166..519643f3c0 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -231,8 +231,9 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) try { tracker->extractFeatures(input, m_previousFrame, m_cMo); } - catch (vpException &) { + catch (vpException &e) { std::cerr << "Tracker " << id << " raised an exception in extractFeatures" << std::endl; + throw e; } m_logger.setTrackerFeatureExtractionTime(id, m_logger.endTimer()); id += 1; @@ -240,7 +241,13 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) id = 0; for (std::shared_ptr &tracker : m_trackers) { m_logger.startTimer(); - tracker->trackFeatures(input, m_previousFrame, m_cMo); + try { + tracker->trackFeatures(input, m_previousFrame, m_cMo); + } + catch (vpException &e) { + std::cerr << "Tracker " << id << " raised an exception in trackFeatures" << std::endl; + throw e; + } m_logger.setTrackerFeatureTrackingTime(id, m_logger.endTimer()); id += 1; } diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 736ecd3f5f..7a8ebb54af 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -44,9 +44,11 @@ inline bool isTooCloseToBorder(unsigned int i, unsigned int j, unsigned int h, u return i < border || j < border || i >(h - border) || j >(w - border); } -inline void vpRBKltTracker::tryAddNewPoint(const vpRBFeatureTrackerInput &frame, std::map &points, -long id, const float u, const float v, -const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) +inline void vpRBKltTracker::tryAddNewPoint( + const vpRBFeatureTrackerInput &frame, + std::map &points, + long id, const float u, const float v, + const vpHomogeneousMatrix &cMo, const vpHomogeneousMatrix &oMc) { unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { @@ -87,39 +89,45 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const if (m_maxErrorOutliersPixels > 0.0) { const double distanceThresholdPxSquare = vpMath::sqr(m_maxErrorOutliersPixels); const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); + std::vector kltIndicesToRemove; // Detect outliers for (unsigned int i = 0; i < nbFeatures; ++i) { long id = 0; float u = 0.f, v = 0.f; - m_klt.getFeature(i, id, u, v); - if (m_points.find(id) != m_points.end()) { - unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); - if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { - return; - } + if (m_points.find(id) == m_points.end()) { + continue; + } + unsigned int uu = static_cast(round(u)), uv = static_cast(round(v)); + if (isTooCloseToBorder(uv, uu, frame.renders.depth.getRows(), frame.renders.depth.getCols(), m_border)) { + continue; + } + const float Z = frame.renders.depth[uv][uu]; + if (Z <= 0.f) { + continue; + } - float Z = frame.renders.depth[uv][uu]; - if (Z > 0.f) { - vpTrackedKltPoint &p = m_points[id]; - double x = 0.0, y = 0.0; - vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); - vpColVector oXn = oMc * vpColVector({ x * Z, y * Z, Z, 1.0 }); - oXn /= oXn[3]; - p.update(cMo); - double x1 = p.oX.get_x(), y1 = p.oX.get_y(); - double u1 = 0.0, v1 = 0.0; - vpMeterPixelConversion::convertPoint(frame.cam, x1, y1, u1, v1); - double distancePx = vpMath::sqr(u1 - u) + vpMath::sqr(v1 - v); - - vpColVector oX = p.oX.get_oP(); - if (distancePx > distanceThresholdPxSquare) { - m_points.erase(id); - m_klt.suppressFeature(i); - } - } + vpTrackedKltPoint &p = m_points[id]; + double x = 0.0, y = 0.0; + vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); + vpColVector oXn = oMc * vpColVector({ x * Z, y * Z, Z, 1.0 }); + oXn /= oXn[3]; + p.update(cMo); + double x1 = p.oX.get_x(), y1 = p.oX.get_y(); + double u1 = 0.0, v1 = 0.0; + vpMeterPixelConversion::convertPoint(frame.cam, x1, y1, u1, v1); + double distancePx = vpMath::sqr(u1 - u) + vpMath::sqr(v1 - v); + + vpColVector oX = p.oX.get_oP(); + if (distancePx > distanceThresholdPxSquare) { + m_points.erase(id); + kltIndicesToRemove.push_back(i); } } + // Remove tracking from klt: iterate in reverse order to invalidate iterator i (shifting in the klt list) + for (int i = static_cast(kltIndicesToRemove.size()) - 1; i >= 0; --i) { + m_klt.suppressFeature(kltIndicesToRemove[i]); + } } cv::Mat mask = cv::Mat::zeros(m_I.rows, m_I.cols, CV_8U); @@ -152,6 +160,7 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const kltTemp.setHarrisFreeParameter(m_klt.getHarrisFreeParameter()); kltTemp.setBlockSize(m_klt.getBlockSize()); kltTemp.setPyramidLevels(m_klt.getPyramidLevels()); + kltTemp.initTracking(m_Iprev, mask); const unsigned int nbFeaturesTemp = static_cast(kltTemp.getNbFeatures()); const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); @@ -178,7 +187,6 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const const std::vector &ids = m_klt.getFeaturesId(); id = ids[ids.size() - 1]; tryAddNewPoint(frame, m_points, id, u, v, cMo, oMc); - } } } @@ -206,7 +214,7 @@ void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const v bool testMask = m_useMask && frame.hasMask(); nbKltFeatures = static_cast(m_klt.getNbFeatures()); - + std::vector kltIndicesToRemove; for (unsigned int i = 0; i < nbKltFeatures; ++i) { long id = 0; float u = 0.f, v = 0.f; @@ -235,16 +243,14 @@ void vpRBKltTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const v p.currentPos = vpImagePoint(y, x); newPoints[id] = p; } - // float Z = frame.renders.depth[uv][uu]; - // if (Z > 0.f && m_points.find(id) != m_points.end()) { - // vpTrackedKltPoint &p = m_points[id]; - // if (p.rotationDifferenceToInitial(oMc) > vpMath::rad(30.0)) { - // continue; - // } - // vpPixelMeterConversion::convertPoint(frame.cam, static_cast(u), static_cast(v), x, y); - // p.currentPos = vpImagePoint(y, x); - // newPoints[id] = p; - // } + else { + kltIndicesToRemove.push_back(i); + } + } + + // Remove tracking from klt: iterate in reverse order to invalidate iterator i (shifting in the klt list) + for (int i = static_cast(kltIndicesToRemove.size()) - 1; i >= 0; --i) { + m_klt.suppressFeature(kltIndicesToRemove[i]); } m_points = newPoints; From 52267a9b3845bd8279fae44bdcdf958f7d80f3cd Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 23 Sep 2024 17:01:32 +0200 Subject: [PATCH 033/101] Fix virtual destructor being private, non const argument in vpColorHistogram --- modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h | 2 +- .../tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h | 2 +- modules/tracker/rbt/src/mask/vpColorHistogram.cpp | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index 92ed08d20e..ad51c29b91 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -87,7 +87,7 @@ class VISP_EXPORT vpColorHistogram void build(const vpImage &image, const vpImage &mask); - void build(std::vector &counts); + void build(const std::vector &counts); void merge(const vpColorHistogram &other, float alpha); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index 320db68570..094c99a08f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -49,9 +49,9 @@ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory &image, const vpImage & } } -void vpColorHistogram::build(std::vector &counts) +void vpColorHistogram::build(const std::vector &counts) { if (m_probas.size() != counts.size()) { throw vpException(vpException::dimensionError, "Number of bins are not the same"); From c6b4f4a8f6ebefb9530f3f2a3a3f280c3ffa1f77 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 23 Sep 2024 17:02:00 +0200 Subject: [PATCH 034/101] Python bindings: rbt config, enable parallel LTO when supported by compiler --- modules/python/bindings/CMakeLists.txt | 29 ++- modules/python/config/rbt.json | 262 +++++++++++++++++++++++++ 2 files changed, 290 insertions(+), 1 deletion(-) diff --git a/modules/python/bindings/CMakeLists.txt b/modules/python/bindings/CMakeLists.txt index 9f62524a58..55864de695 100644 --- a/modules/python/bindings/CMakeLists.txt +++ b/modules/python/bindings/CMakeLists.txt @@ -38,15 +38,42 @@ set_source_files_properties(${python_bindings_cpp_src} PROPERTIES GENERATED TRUE pybind11_add_module(_visp ${python_bindings_cpp_src}) + + + # Place library in build/modules/python/bindings dir so that it doesn't pollute lib dir # This .so file is not treated the same as the others and we shouldn't link against it when compiling in C++ # when installing the python module, pip will look into this subfolder for .so files to copy into the site-packages file(MAKE_DIRECTORY "${bindings_gen_location}/src") +get_target_property(PYTHON_CXX_FLAGS _visp COMPILE_OPTIONS) +get_target_property( PYTHON_LINKER_FLAGS _visp LINK_OPTIONS) + + +set_target_properties(_visp PROPERTIES COMPILE_FLAGS ${PYTHON_CXX_FLAGS}) +if(PYTHON_CXX_FLAGS STREQUAL "PYTHON_CXX_FLAGS-NOTFOUND") + SET(PYTHON_CXX_FLAGS "") # Set to empty string +else() + SET(PYTHON_CXX_FLAGS "${PYTHON_CXX_FLAGS} ") # A space to cleanly separate from existing content +endif() +if(PYTHON_LINKER_FLAGS STREQUAL "PYTHON_LINKER_FLAGS-NOTFOUND") +SET(PYTHON_LINKER_FLAGS "") # Set to empty string +else() +SET(PYTHON_LINKER_FLAGS "${PYTHON_LINKER_FLAGS} ") # A space to cleanly separate from existing content +endif() +CHECK_CXX_COMPILER_FLAG("-flto=auto" COMPILER_SUPPORTS_FLTOAUTO) +if(COMPILER_SUPPORTS_FLTOAUTO) + SET(PYTHON_CXX_FLAGS "${PYTHON_CXX_FLAGS} -flto=auto") + SET(PYTHON_LINKER_FLAGS "${PYTHON_LINKER_FLAGS} -flto=auto") +endif() + +set_target_properties(_visp PROPERTIES COMPILE_FLAGS ${PYTHON_CXX_FLAGS}) +set_target_properties(_visp PROPERTIES LINK_FLAGS ${PYTHON_LINKER_FLAGS}) + + set_target_properties(_visp PROPERTIES LIBRARY_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}" RUNTIME_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}" - ) # With MSVC, the compiled pyd file is placed in a Release/Debug folder set(build_configs "NONE" "RELEASE" "DEBUG" "RELEASEWITHDEBINFO" "RELWITHDEBINFO") diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index eb1680fa79..46480c17c0 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -23,6 +23,268 @@ "vpRBDriftDetector" ] } + ], + "acknowledge_pointer_or_ref_fields": [ + "std::map(const nlohmann::json&)>>", + "std::function" + ] + }, + "vpRBTracker": { + "methods": [ + { + "static": false, + "signature": "const vpRBFeatureTrackerInput& getMostRecentFrame()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "const vpRBTrackerLogger& getLogger()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "vpObjectCentricRenderer& getRenderer()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpRBRenderData": { + "methods": [ + { + "static": false, + "signature": " vpRBRenderData(vpRBRenderData&&)", + "ignore": true + }, + { + "static": false, + "signature": "vpRBRenderData& operator=(vpRBRenderData&&)", + "ignore": true + } + ] + }, + "vpRBFeatureTrackerInput": { + "methods": [ + { + "static": false, + "signature": " vpRBFeatureTrackerInput(vpRBFeatureTrackerInput&&)", + "ignore": true + }, + { + "static": false, + "signature": "vpRBFeatureTrackerInput& operator=(vpRBFeatureTrackerInput&&)", + "ignore": true + } + ] + }, + "vpRBFeatureTracker": { + "methods": [ + { + "static": false, + "signature": "const vpColVector& getWeightedError()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpRBSilhouetteControlPoint": { + "acknowledge_pointer_or_ref_fields": [ + "const vpMe*", + "const vpCameraParameters*" + ], + "methods": [ + { + "static": false, + "signature": " vpRBSilhouetteControlPoint(const vpRBSilhouetteControlPoint&&)", + "ignore": true + }, + { + "static": false, + "signature": "vpRBSilhouetteControlPoint& operator=(const vpRBSilhouetteControlPoint&&)", + "ignore": true + }, + { + "static": false, + "signature": "const vpLine& getLine()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "const vpFeatureLine& getFeatureLine()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "vpMeSite& getSite()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "const vpMeSite& getSite()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "const vpCameraParameters& getCameraParameters()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpRBKltTracker": { + "methods": [ + { + "static": false, + "signature": "vpKltOpencv& getKltTracker()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + }, + { + "static": false, + "signature": "const vpKltOpencv& getKltTracker()", + "ignore": true + } + ] + }, + "vpRBDriftDetectorFactory": { + "methods": [ + { + "static": true, + "signature": "vpRBDriftDetectorFactory& getFactory()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpObjectMaskFactory": { + "methods": [ + { + "static": true, + "signature": "vpObjectMaskFactory& getFactory()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpRBFeatureTrackerFactory": { + "methods": [ + { + "static": true, + "signature": "vpRBFeatureTrackerFactory& getFactory()", + "return_policy": "reference", + "keep_alive": [ + [ + 1, + 0 + ] + ], + "returns_ref_ok": true + } + ] + }, + "vpObjectCentricRenderer": { + "methods": [ + { + "static": false, + "signature": "void computeClipping(float&, float&)", + "use_default_param_policy": false, + "param_is_input": [ + false, + false + ], + "param_is_output": [ + true, + true + ] + } + ] + }, + "vpPanda3DDepthGaussianBlur": { + "acknowledge_pointer_or_ref_fields": [ + "const char*" + ] + }, + "vpPanda3DDepthCannyFilter": { + "acknowledge_pointer_or_ref_fields": [ + "const char*" ] } }, From 8192170a7886d2a56435a56475707b924de7550d Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 23 Sep 2024 17:25:52 +0200 Subject: [PATCH 035/101] Trampoline class for feature tracker, initial version --- modules/python/bindings/include/rbt.hpp | 43 +++++ .../bindings/include/rbt/feature_tracker.hpp | 151 ++++++++++++++++++ modules/python/config/rbt.json | 6 +- modules/python/examples/realsense-rbt.py | 0 .../include/visp3/rbt/vpRBFeatureTracker.h | 7 +- 5 files changed, 205 insertions(+), 2 deletions(-) create mode 100644 modules/python/bindings/include/rbt.hpp create mode 100644 modules/python/bindings/include/rbt/feature_tracker.hpp create mode 100644 modules/python/examples/realsense-rbt.py diff --git a/modules/python/bindings/include/rbt.hpp b/modules/python/bindings/include/rbt.hpp new file mode 100644 index 0000000000..a3c1b127a2 --- /dev/null +++ b/modules/python/bindings/include/rbt.hpp @@ -0,0 +1,43 @@ +/* + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * + * Description: + * Python bindings. + */ + + +#ifndef VISP_PYTHON_RBT_HPP +#define VISP_PYTHON_RBT_HPP + +#include "rbt/feature_tracker.hpp" + + + + +#endif diff --git a/modules/python/bindings/include/rbt/feature_tracker.hpp b/modules/python/bindings/include/rbt/feature_tracker.hpp new file mode 100644 index 0000000000..b7880e3947 --- /dev/null +++ b/modules/python/bindings/include/rbt/feature_tracker.hpp @@ -0,0 +1,151 @@ + +#ifndef VISP_PYTHON_RBT_FEATURE_TRACKER_HPP +#define VISP_PYTHON_RBT_FEATURE_TRACKER_HPP + +#include +#include + + +class TrampolineRBFeatureTracker : public vpRBFeatureTracker +{ +public: + using vpRBFeatureTracker::vpRBFeatureTracker; + + TrampolineRBFeatureTracker() : vpRBFeatureTracker() { } + + + virtual bool requiresRGB() const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + bool, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + requiresRGB, /* Name of function in C++ (must match Python name) */ + ); + } + virtual bool requiresDepth() const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + bool, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + requiresDepth /* Name of function in C++ (must match Python name) */ + ); + } + virtual bool requiresSilhouetteCandidates() const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + bool, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + requiresSilhouetteCandidates /* Name of function in C++ (must match Python name) */ + ); + } + virtual void onTrackingIterStart() VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + onTrackingIterStart /* Name of function in C++ (must match Python name) */ + ); + } + virtual void onTrackingIterEnd() VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + onTrackingIterEnd /* Name of function in C++ (must match Python name) */ + ); + } + virtual void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) + VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + extractFeatures, /* Name of function in C++ (must match Python name) */ + frame, previousFrame, cMo + ); + } + virtual void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) + VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + trackFeatures, /* Name of function in C++ (must match Python name) */ + frame, previousFrame, cMo + ); + } + virtual void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + initVVS, /* Name of function in C++ (must match Python name) */ + frame, previousFrame, cMo + ); + } + virtual void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + computeVVSIter, /* Name of function in C++ (must match Python name) */ + frame, cMo, iteration + ); + } + virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + display, /* Name of function in C++ (must match Python name) */ + cam, I, IRGB, depth, type + ); + } + virtual const vpMatrix getCovariance() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + vpMatrix, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + getCovariance /* Name of function in C++ (must match Python name) */ + + ); + } + virtual void updateCovariance(const double lambda) VP_OVERRIDE + { + PYBIND11_OVERRIDE( + void, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + updateCovariance, /* Name of function in C++ (must match Python name) */ + lambda + ); + } + virtual double getVVSTrackerWeight() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + double, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + getVVSTrackerWeight /* Name of function in C++ (must match Python name) */ + ); + } + virtual vpMatrix getLTL() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + vpMatrix, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + getLTL + ); + } + virtual vpColVector getLTR() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + vpColVector, /* Return type */ + vpRBFeatureTracker, /* Parent class */ + getLTR /* Name of function in C++ (must match Python name) */ + ); + } + +}; + + + +#endif diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index 46480c17c0..08efe92ceb 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -1,7 +1,9 @@ { "ignored_headers": [], "ignored_classes": [], - "user_defined_headers": [], + "user_defined_headers": [ + "rbt.hpp" + ], "classes": { "vpDynamicFactory": { "specializations": [ @@ -98,6 +100,8 @@ ] }, "vpRBFeatureTracker": { + "trampoline": "TrampolineRBFeatureTracker", + "use_publicist": true, "methods": [ { "static": false, diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 3ff030027e..9e972da634 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -143,7 +143,12 @@ class VISP_EXPORT vpRBFeatureTracker * @} */ - virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const = 0; + virtual void display( + const vpCameraParameters &cam, + const vpImage &I, + const vpImage &IRGB, + const vpImage &depth, + const vpRBFeatureDisplayType type) const = 0; /** * \name Covariance computation From b09b6f1cba06e589ca4506aa5d169ee3309ce98e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 23 Sep 2024 17:55:57 +0200 Subject: [PATCH 036/101] working on python example --- modules/python/examples/realsense-rbt.py | 190 +++++++++++++++++++++++ 1 file changed, 190 insertions(+) diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py index e69de29bb2..f64f459eaf 100644 --- a/modules/python/examples/realsense-rbt.py +++ b/modules/python/examples/realsense-rbt.py @@ -0,0 +1,190 @@ +############################################################################# +# +# ViSP, open source Visual Servoing Platform software. +# Copyright (C) 2005 - 2023 by Inria. All rights reserved. +# +# This software is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# See the file LICENSE.txt at the root directory of this source +# distribution for additional information about the GNU GPL. +# +# For using ViSP with software that can not be combined with the GNU +# GPL, please contact Inria about acquiring a ViSP Professional +# Edition License. +# +# See https://visp.inria.fr for more information. +# +# This software was developed at: +# Inria Rennes - Bretagne Atlantique +# Campus Universitaire de Beaulieu +# 35042 Rennes Cedex +# France +# +# If you have questions regarding the use of this file, please contact +# Inria at visp@inria.fr +# +# This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE +# WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. +# +# Description: +# ViSP Python bindings example +# +############################################################################# + +import argparse +from dataclasses import dataclass +from pathlib import Path +from typing import List, Optional, Tuple +import numpy as np +import time +import faulthandler +faulthandler.enable() + + +from visp.core import CameraParameters, HomogeneousMatrix +from visp.core import Color, Display, ImageConvert +from visp.core import ImageGray, ImageUInt16, ImageRGBa, ImageFloat +from visp.io import ImageIo +from visp.rbt import RBTracker +from visp.display_utils import get_display +import pyrealsense2 as rs + + +try: + import cv2 +except: + print('Could not import opencv-python! make sure that it is installed as it is required') + import sys + sys.exit(1) + +import matplotlib.pyplot as plt + + + + +@dataclass +class FrameData: + I: ImageGray + IRGB: ImageRGBa + I_depth: Optional[ImageFloat] + + +def read_data(depth_scale: Optional[float], IRGB: ImageRGBa, I: ImageGray, pipe: rs.pipeline): + use_depth = depth_scale is not None + iteration = 1 + while True: + frames = pipe.wait_for_frames() + I_np = np.asanyarray(frames.get_color_frame().as_frame().get_data()) + I_np = np.concatenate((I_np, np.ones_like(I_np[..., 0:1], dtype=np.uint8)), axis=-1) + IRGB.resize(I_np.shape[0], I_np.shape[1]) + I_rgba_ref = IRGB.numpy() + I_rgba_ref[...] = I_np + ImageConvert.convert(IRGB, I, 0) + I_depth_float = None + if use_depth: + I_depth_raw = np.asanyarray(frames.get_depth_frame().as_frame().get_data()) + I_depth_float = I_depth_raw.astype(np.float32) * depth_scale + iteration += 1 + yield FrameData(I, IRGB, ImageFloat(I_depth_float)) + + +def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: + intr = profile.as_video_stream_profile().get_intrinsics() # Downcast to video_stream_profile and fetch intrinsics + return CameraParameters(intr.fx, intr.fy, intr.ppx, intr.ppy), intr.height, intr.width + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--tracker', type=str, required=True, + help='Path to the json file containing the tracker configuration.') + + + args = parser.parse_args() + tracker_path = args.tracker + assert Path(tracker_path).exists(), 'Tracker file not found' + + + # Initialize realsense2 + pipe = rs.pipeline() + config = rs.config() + config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 60) + config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 60) + + cfg = pipe.start(config) + depth_scale = cfg.get_device().first_depth_sensor().get_depth_scale() + + + tracker = RBTracker() + + tracker.loadConfigurationFile(tracker_path) + + + cam_color, color_height, color_width = cam_from_rs_profile(cfg.get_stream(rs.stream.color)) + cam_depth, depth_height, depth_width = cam_from_rs_profile(cfg.get_stream(rs.stream.depth)) + + + # Camera intrinsics + + print('Color intrinsics:', cam_color) + print('Depth intrinsics:', cam_depth) + I = ImageGray() + IRGB = ImageRGBa() + I_depth_display = ImageGray() + data_generator = read_data(depth_scale, IRGB, I, pipe) + frame_data = next(data_generator) # Get first frame for init + + # Initialize displays + dI = get_display() + dI.init(I, 0, 0, 'Color image') + + I_depth = ImageGray() + dDepth = get_display() + + ImageConvert.createDepthHistogram(frame_data.I_depth, I_depth) + dDepth.init(I_depth, I.getWidth(), 0, 'Depth') + + for frame in data_generator: + Display.display(I) + Display.displayText(I, 50, 0, 'Click to initialize tracking', Color.red) + Display.flush(I) + event = Display.getClick(I, blocking=False) + if event: + break + + tracker.initClick(I, str(mbt_model.init_file)) + start_time = time.time() + for frame_data in data_generator: + if frame_data.I_depth is not None: + ImageConvert.createDepthHistogram(frame_data.I_depth, I_depth) + + Display.display(I) + if not args.disable_depth: + Display.display(I_depth) + + if args.disable_depth: + tracker.track(I=I) + else: + pc = frame_data.point_cloud + image_dict = { + 'Camera1': I + } + t = time.time() + tracker.track(image_dict, {'Camera2': pc.reshape(depth_height, depth_width, 3)}) + cMo = HomogeneousMatrix() + tracker.getPose(cMo) + + Display.displayFrame(I, cMo, cam_color, 0.05, Color.none, 2) + tracker.display(I, cMo, cam_color, Color.red, 2) + Display.flush(I) + if not args.disable_depth: + Display.flush(I_depth) + + if args.step_by_step: + Display.getKeyboardEvent(I, blocking=True) + else: + event = Display.getClick(I, blocking=False) + if event: + break + end_time = time.time() + print(f'total time = {end_time - start_time}s') From 8cbee82dc0438f0d7c0ad450db9da4f356cfac4c Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 24 Sep 2024 13:19:56 +0200 Subject: [PATCH 037/101] Setup testing rbt module, testing basic configuration/user api --- modules/tracker/rbt/CMakeLists.txt | 10 + .../include/visp3/rbt/vpRBDenseDepthTracker.h | 6 +- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 13 +- .../visp3/rbt/vpRBSilhouetteMeTracker.h | 79 ++- .../rbt/include/visp3/rbt/vpRBTracker.h | 21 +- modules/tracker/rbt/src/core/vpRBTracker.cpp | 98 +-- .../src/features/vpRBSilhouetteCCDTracker.cpp | 6 +- modules/tracker/rbt/test/testRBT.cpp | 569 ++++++++++++++++++ script/make-coverage-report.sh | 2 +- .../render-based/tutorial-rbt-realsense.cpp | 1 + .../render-based/tutorial-rbt-sequence.cpp | 2 +- 11 files changed, 750 insertions(+), 57 deletions(-) create mode 100644 modules/tracker/rbt/test/testRBT.cpp mode change 100644 => 100755 script/make-coverage-report.sh diff --git a/modules/tracker/rbt/CMakeLists.txt b/modules/tracker/rbt/CMakeLists.txt index 0eaf25f726..bb1851c748 100644 --- a/modules/tracker/rbt/CMakeLists.txt +++ b/modules/tracker/rbt/CMakeLists.txt @@ -53,6 +53,12 @@ if(WITH_SIMDLIB) list(APPEND opt_libs_private ${SIMDLIB_LIBRARIES}) endif() +if(WITH_CATCH2) + # catch2 is private + include_directories(${CATCH2_INCLUDE_DIRS}) +endif() + + vp_add_module(rbt visp_vision visp_core visp_me visp_visual_features visp_ar OPTIONAL visp_klt visp_gui PRIVATE_OPTIONAL ${opt_libs_private}) vp_glob_module_sources() @@ -60,3 +66,7 @@ vp_module_include_directories(${opt_incs}) vp_create_module(${opt_libs}) vp_add_tests(DEPENDS_ON visp_core visp_gui visp_io) + +if(VISP_DATASET_FOUND) + +endif() diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index be8d43ece2..91aa59e4fb 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -184,9 +184,9 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); - m_step = j.value("step", m_step); - m_useMask = j.value("useMask", m_useMask); - m_minMaskConfidence = j.value("minMaskConfidence", m_minMaskConfidence); + setStep(j.value("step", m_step)); + setShouldUseMask(j.value("useMask", m_useMask)); + setMinimumMaskConfidence(j.value("minMaskConfidence", m_minMaskConfidence)); } #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index db48267f13..1564f1d5b5 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -142,7 +142,7 @@ inline void from_json(const nlohmann::json &j, vpCCDParameters &ccdParameters) ccdParameters.phi_dim = j.value("phi_dim", ccdParameters.phi_dim); if (j.contains("gamma")) { nlohmann::json gammaj = j["gamma"]; - if (!j.is_array() || j.size() != 4) { + if (!gammaj.is_array() || gammaj.size() != 4) { throw vpException(vpException::ioError, "CCD parameters: tried to read gamma values from something that is not a 4-sized float array"); } ccdParameters.gamma_1 = gammaj[0]; @@ -211,7 +211,14 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker * * @param factor the new temporal smoothing factor. Should be greater than 0 */ - void setTemporalSmoothingFactor(double factor) { m_temporalSmoothingFac = factor; } + void setTemporalSmoothingFactor(double factor) + { + if (factor < 0.0) { + throw vpException(vpException::badValue, "Temporal smoothing factor should be equal to or greater than 0"); + } + m_temporalSmoothingFac = factor; + + } /** * @} */ @@ -238,7 +245,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker { vpRBFeatureTracker::loadJsonConfiguration(j); m_vvsConvergenceThreshold = j.value("convergenceThreshold", m_vvsConvergenceThreshold); - m_temporalSmoothingFac = j.value("temporalSmoothing", m_temporalSmoothingFac); + setTemporalSmoothingFactor(j.value("temporalSmoothing", m_temporalSmoothingFac)); m_ccdParameters = j.value("ccd", m_ccdParameters); } diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 580fbf92c6..44c41d331e 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -84,21 +84,90 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + /** + * \name Settings + * @{ + */ + const vpMe &getMe() const { return m_me; } + vpMe &getMe() { return m_me; } + + unsigned int getNumCandidates() const { return m_numCandidates; } + void setNumCandidates(unsigned int candidates) + { + if (candidates == 0) { + throw vpException(vpException::badValue, "Cannot set a number of candidates equal to zero"); + } + m_numCandidates = candidates; + } + + double getMinRobustThreshold() const { return m_robustMadMin; } + void setMinRobustThreshold(double threshold) + { + if (threshold < 0) { + throw vpException(vpException::badValue, "Robust M estimator min threshold should be greater or equal to 0."); + } + m_robustMadMin = threshold; + } + + /** + * \brief Returns whether the tracking algorithm should filter out points that are unlikely to be on the object according to the mask. + * If the mask is not computed beforehand, then it has no effect + */ + bool shouldUseMask() const { return m_useMask; } + void setShouldUseMask(bool useMask) { m_useMask = useMask; } + + /** + * \brief Returns the minimum mask confidence that a pixel linked to depth point should have if it should be kept during tracking. + * + * This value is between 0 and 1 + */ + float getMinimumMaskConfidence() const { return m_minMaskConfidence; } + void setMinimumMaskConfidence(float confidence) + { + if (confidence > 1.f || confidence < 0.f) { + throw vpException(vpException::badValue, "Mask confidence should be between 0 and 1"); + } + m_minMaskConfidence = confidence; + } + + double getSinglePointConvergenceThreshold() const { return m_singlePointConvergedThresholdPixels; } + void setSinglePointConvergenceThreshold(double threshold) + { + if (threshold < 0.0) { + throw vpException(vpException::badValue, "Convergence threshold should be null or positive"); + } + m_singlePointConvergedThresholdPixels = threshold; + } + + double getGlobalConvergenceMinimumRatio() const { return m_globalVVSConvergenceThreshold; } + void setGlobalConvergenceMinimumRatio(double threshold) + { + if (threshold < 0.0 || threshold > 1.0) { + throw vpException(vpException::badValue, "Minimum converged ratio be between 0 and 1"); + } + m_globalVVSConvergenceThreshold = threshold; + } + #if defined(VISP_HAVE_NLOHMANN_JSON) virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); - m_numCandidates = j.value("numCandidates", m_numCandidates); - m_singlePointConvergedThresholdPixels = j.value("convergencePixelThreshold", m_singlePointConvergedThresholdPixels); - m_globalVVSConvergenceThreshold = j.value("convergenceRatio", m_globalVVSConvergenceThreshold); + setNumCandidates(j.value("numCandidates", m_numCandidates)); + setSinglePointConvergenceThreshold(j.value("convergencePixelThreshold", m_singlePointConvergedThresholdPixels)); + setGlobalConvergenceMinimumRatio(j.value("convergenceRatio", m_globalVVSConvergenceThreshold)); m_me = j.value("movingEdge", m_me); - m_useMask = j.value("useMask", m_useMask); - m_minMaskConfidence = j.value("minMaskConfidence", m_minMaskConfidence); + setShouldUseMask(j.value("useMask", m_useMask)); + setMinimumMaskConfidence(j.value("minMaskConfidence", m_minMaskConfidence)); // m_me.setThresholdMarginRatio(-1.0); // m_me.setMinThreshold(-1.0); } #endif + /** + * \name Settings + * @} + */ + private: std::vector m_controlPoints; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index ed66edc3db..26176f6099 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -93,11 +93,15 @@ class VISP_EXPORT vpRBTracker * @{ */ void addTracker(std::shared_ptr tracker); - void loadObjectModel(const std::string &file); + void setupRenderer(const std::string &file); + void setModelPath(const std::string &path); vpCameraParameters getCameraParameters() const; void setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w); + unsigned int getImageWidth() const { return m_imageWidth; } + unsigned int getImageHeight() const { return m_imageHeight; } + vpSilhouettePointsExtractionSettings getSilhouetteExtractionParameters() const { return m_depthSilhouetteSettings; @@ -114,13 +118,19 @@ class VISP_EXPORT vpRBTracker m_lambda = lambda; } unsigned int getMaxOptimizationIters() const { return m_vvsIterations; } - void setMaxOptimizationIters(unsigned int iters) { m_vvsIterations = iters; } + void setMaxOptimizationIters(unsigned int iters) + { + if (iters == 0) { + throw vpException(vpException::badValue, "Max number of iterations must be greater than zero"); + } + m_vvsIterations = iters; + } double getOptimizationInitialMu() const { return m_muInit; } void setOptimizationInitialMu(double mu) { if (mu < 0.0) { - throw vpException(vpException::badValue, "Optimization gain should be greater to zero"); + throw vpException(vpException::badValue, "Optimization gain should be greater or equal to zero"); } m_muInit = mu; } @@ -129,7 +139,7 @@ class VISP_EXPORT vpRBTracker void setOptimizationMuIterFactor(double factor) { if (factor < 0.0) { - throw vpException(vpException::badValue, "Optimization gain should be greater to zero"); + throw vpException(vpException::badValue, "Optimization gain should be greater or equal to zero"); } m_muIterFactor = factor; } @@ -157,10 +167,12 @@ class VISP_EXPORT vpRBTracker void reset(); + /** * \name Tracking * @{ */ + void startTracking(); void track(const vpImage &I); void track(const vpImage &I, const vpImage &IRGB); void track(const vpImage &I, const vpImage &IRGB, const vpImage &depth); @@ -211,6 +223,7 @@ class VISP_EXPORT vpRBTracker vpRBFeatureTrackerInput m_currentFrame; vpRBFeatureTrackerInput m_previousFrame; + std::string m_modelPath; vpHomogeneousMatrix m_cMo; vpHomogeneousMatrix m_cMoPrev; vpCameraParameters m_cam; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 519643f3c0..9277a47127 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -35,16 +35,15 @@ #endif #include +#include #include #include #include -#include #include #include #include - #include #define VP_DEBUG_RB_TRACKER 1 @@ -57,18 +56,13 @@ vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0 const std::shared_ptr geometryRenderer = std::make_shared( vpPanda3DGeometryRenderer::vpRenderType::OBJECT_NORMALS); - //geometryRenderer->setRenderOrder(-1000); m_renderer.addSubRenderer(geometryRenderer); - // std::shared_ptr blur = std::make_shared( - // "depthBlur", geometryRenderer, true); - // m_renderer.addSubRenderer(blur); - m_renderer.addSubRenderer(std::make_shared( - "depthCanny", geometryRenderer, true, 0.0)); - //m_renderer.addSubRenderer(std::make_shared(false)); + m_renderer.setRenderParameters(m_rendererSettings); m_driftDetector = nullptr; + m_mask = nullptr; } void vpRBTracker::getPose(vpHomogeneousMatrix &cMo) const @@ -110,6 +104,16 @@ vpCameraParameters vpRBTracker::getCameraParameters() const { return m_cam; } void vpRBTracker::setCameraParameters(const vpCameraParameters &cam, unsigned h, unsigned w) { + if (cam.get_projModel() != vpCameraParameters::vpCameraParametersProjType::perspectiveProjWithoutDistortion) { + throw vpException(vpException::badValue, + "Camera model cannot have distortion. Undistort images before tracking and use the undistorted camera model"); + } + if (h == 0 || w == 0) { + throw vpException( + vpException::badValue, + "Image dimensions must be greater than 0" + ); + } m_cam = cam; m_imageHeight = h; m_imageWidth = w; @@ -128,13 +132,29 @@ void vpRBTracker::reset() m_firstIteration = true; } -void vpRBTracker::loadObjectModel(const std::string &file) +void vpRBTracker::setModelPath(const std::string &path) +{ + m_modelPath = path; +} + +void vpRBTracker::setupRenderer(const std::string &file) { + if (!vpIoTools::checkFilename(file)) { + throw vpException("3D model file %s could not be found", file.c_str()); + } + bool requiresSilhouetteShader = false; + for (std::shared_ptr &tracker: m_trackers) { + if (tracker->requiresSilhouetteCandidates()) { + requiresSilhouetteShader = true; + break; + } + } + if (requiresSilhouetteShader) { + m_renderer.addSubRenderer(std::make_shared( + "depthCanny", geometryRenderer, true, 0.0)); + } m_renderer.initFramework(); - //m_renderer.enableSharedDepthBuffer(*m_renderer.getRenderer()); m_renderer.addLight(vpPanda3DAmbientLight("ambient", vpRGBf(0.4f))); - //m_renderer.addLight(vpPanda3DDirectionalLight("dir", vpRGBf(1.f), vpColVector({ 0.0, -0.0, 1.0 }))); - //m_renderer.addLight(vpPanda3DPointLight("point", vpRGBf(8.f), vpColVector({ 0.0, 0.1, 0.1 }), vpColVector({ 1.0, 0.0, 0.0 }))); m_renderer.addNodeToScene(m_renderer.loadObject("object", file)); m_renderer.setFocusedObject("object"); } @@ -169,6 +189,11 @@ void vpRBTracker::track(const vpImage &I, const vpImage & track(frameInput); } +void vpRBTracker::startTracking() +{ + setupRenderer(m_modelPath); +} + void vpRBTracker::track(const vpImage &I, const vpImage &IRGB, const vpImage &depth) { checkDimensionsOrThrow(I, "grayscale"); @@ -477,6 +502,9 @@ std::vector vpRBTracker::extractSilhouettePoints( void vpRBTracker::addTracker(std::shared_ptr tracker) { + if (tracker == nullptr) { + throw vpException(vpException::badValue, "Adding tracker: tracker cannot be null"); + } m_trackers.push_back(tracker); } @@ -554,43 +582,36 @@ void vpRBTracker::loadConfigurationFile(const std::string &filename) } void vpRBTracker::loadConfiguration(const nlohmann::json &j) { - std::cout << "Loading configuration file" << std::endl; m_firstIteration = true; - nlohmann::json cameraSettings = j.at("camera"); + const nlohmann::json cameraSettings = j.at("camera"); m_cam = cameraSettings.at("intrinsics"); m_imageHeight = cameraSettings.value("height", m_imageHeight); m_imageWidth = cameraSettings.value("width", m_imageWidth); - m_rendererSettings.setCameraIntrinsics(m_cam); - m_rendererSettings.setImageResolution(m_imageHeight, m_imageWidth); - m_renderer.setRenderParameters(m_rendererSettings); + setCameraParameters(m_cam, m_imageHeight, m_imageWidth); - std::cout << "Loading object" << std::endl; if (j.contains("model")) { - loadObjectModel(j.at("model")); + setModelPath(j.at("model")); } - //TODO: Clear Panda3D renderer list? - std::cout << "Loading vvs settings" << std::endl; - nlohmann::json vvsSettings = j.at("vvs"); - m_vvsIterations = vvsSettings.value("maxIterations", m_vvsIterations); - m_lambda = vvsSettings.value("gain", m_lambda); - m_muInit = vvsSettings.value("mu", m_muInit); - m_muIterFactor = vvsSettings.value("muIterFactor", m_muIterFactor); - + const nlohmann::json vvsSettings = j.at("vvs"); + m_vvsIterations = setMaxOptimizationIters(vvsSettings.value("maxIterations", m_vvsIterations)); + m_lambda = setOptimizationGain(vvsSettings.value("gain", m_lambda)); + m_muInit = setOptimizationInitialMu(vvsSettings.value("mu", m_muInit)); + m_muIterFactor = setOptimizationMuIterFactor(vvsSettings.value("muIterFactor", m_muIterFactor)); - - std::cout << "Loading silhouette extraction settings" << std::endl; m_depthSilhouetteSettings = j.at("silhouetteExtractionSettings"); - - std::cout << "Loading the different trackers" << std::endl;; m_trackers.clear(); nlohmann::json features = j.at("features"); vpRBFeatureTrackerFactory &featureFactory = vpRBFeatureTrackerFactory::getFactory(); for (const nlohmann::json &trackerSettings: features) { std::shared_ptr tracker = featureFactory.buildFromJson(trackerSettings); if (tracker == nullptr) { - throw vpException(vpException::badValue, "Cannot instanciate subtracker with the current settings, make sure that the type is registered. Settings: %s", trackerSettings.dump(2).c_str()); + throw vpException( + vpException::badValue, + "Cannot instantiate subtracker with the current settings, make sure that the type is registered. Settings: %s", + trackerSettings.dump(2).c_str() + ); } m_trackers.push_back(tracker); } @@ -600,7 +621,10 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) nlohmann::json maskSettings = j.at("mask"); m_mask = maskFactory.buildFromJson(maskSettings); if (m_mask == nullptr) { - throw vpException(vpException::badValue, "Cannot instanciate object mask with the current settings, make sure that the type is registered. Settings: %s", maskSettings.dump(2).c_str()); + throw vpException( + vpException::badValue, + "Cannot instantiate object mask with the current settings, make sure that the type is registered. Settings: %s", + maskSettings.dump(2).c_str()); } } if (j.contains("drift")) { @@ -608,7 +632,10 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) nlohmann::json driftSettings = j.at("drift"); m_driftDetector = factory.buildFromJson(driftSettings); if (m_driftDetector == nullptr) { - throw vpException(vpException::badValue, "Cannot instantiate drift detection with the current settings, make sure that the type is registered in the factory"); + throw vpException( + vpException::badValue, + "Cannot instantiate drift detection with the current settings, make sure that the type is registered in the factory" + ); } } } @@ -622,7 +649,6 @@ void vpRBTracker::initClick(const vpImage &I, const std::string & initializer.initClick(I, initFile, displayHelp); m_cMo = initializer.getPose(); } - #endif END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index d1cbdb5fea..b044f6524d 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -161,8 +161,6 @@ void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &fra } } - - void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, const vpImage &IRGB, const vpImage &/*depth*/, const vpRBFeatureDisplayType type) const { unsigned normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); @@ -375,7 +373,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } + } #ifdef VISP_HAVE_OPENMP #pragma omp parallel for #endif @@ -491,7 +489,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } -} + } void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { diff --git a/modules/tracker/rbt/test/testRBT.cpp b/modules/tracker/rbt/test/testRBT.cpp new file mode 100644 index 0000000000..cdbc169292 --- /dev/null +++ b/modules/tracker/rbt/test/testRBT.cpp @@ -0,0 +1,569 @@ +/* + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * + * Description: + * Test vpMbGenericTracker JSON parse / save. + */ + +/*! + \file testMbtJsonSettings.cpp + + Test test saving and parsing JSON configuration for vpMbGenericTracker +*/ + +#include +#include + +#include +#include +#include +#include + + + +#if defined(VISP_HAVE_CATCH2) + +#if defined(VISP_HAVE_NLOHMANN_JSON) +#include +#endif + +#define CATCH_CONFIG_RUNNER +#include + +SCENARIO("Instanciating a silhouette me tracker", "[rbt]") +{ + GIVEN("A base me tracker") + { + vpRBSilhouetteMeTracker tracker; + WHEN("Changing mask parameters") + { + THEN("Enabling mask is seen") + { + bool useMaskDefault = tracker.shouldUseMask(); + tracker.setShouldUseMask(!useMaskDefault); + REQUIRE(useMaskDefault != tracker.shouldUseMask()); + } + THEN("Changing mask min confidence with a correct value is Ok") + { + tracker.setMinimumMaskConfidence(0.0); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.0); + tracker.setMinimumMaskConfidence(1.0); + REQUIRE(tracker.getMinimumMaskConfidence() == 1.0); + tracker.setMinimumMaskConfidence(0.5); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.5); + } + THEN("Setting incorrect mask confidence value fails") + { + REQUIRE_THROWS(tracker.setMinimumMaskConfidence(-1.0)); + } + } + WHEN("Changing robust threshold") + { + THEN("Setting correct value works") + { + tracker.setMinRobustThreshold(0.5); + REQUIRE(tracker.getMinRobustThreshold() == 0.5); + } + THEN("Setting negative value throws") + { + REQUIRE_THROWS(tracker.setMinRobustThreshold(-0.5)); + } + } + WHEN("Changing number of candidates") + { + THEN("Setting correct value works") + { + tracker.setNumCandidates(3); + REQUIRE(tracker.getNumCandidates() == 3); + } + THEN("Setting incorrect value throws") + { + REQUIRE_THROWS(tracker.setNumCandidates(0)); + } + } + WHEN("Changing convergence settings") + { + THEN("Setting correct single point value works") + { + tracker.setSinglePointConvergenceThreshold(1.0); + REQUIRE(tracker.getSinglePointConvergenceThreshold() == 1.0); + } + THEN("Setting incorrect single point value throws") + { + REQUIRE_THROWS(tracker.setSinglePointConvergenceThreshold(-1.0)); + } + THEN("Setting correct global value works") + { + tracker.setGlobalConvergenceMinimumRatio(0.0); + REQUIRE(tracker.getGlobalConvergenceMinimumRatio() == 0.0); + tracker.setGlobalConvergenceMinimumRatio(1.0); + REQUIRE(tracker.getGlobalConvergenceMinimumRatio() == 1.0); + tracker.setGlobalConvergenceMinimumRatio(0.5); + REQUIRE(tracker.getGlobalConvergenceMinimumRatio() == 0.5); + } + } +#if defined(VISP_HAVE_NLOHMANN_JSON) + WHEN("defining JSON parameters") + { + + nlohmann::json j = { + {"type", "silhouetteMe"}, + { "numCandidates", 1 }, + { "weight", 0.5 }, + { "convergencePixelThreshold", 0.5 }, + { "convergenceRatio", 0.99}, + { "useMask", true}, + { "minMaskConfidence", 0.5}, + { "movingEdge", { + {"maskSign", 0}, + {"maskSize" , 5}, + {"minSampleStep" , 4.0}, + {"mu" , {0.5, 0.5}}, + {"nMask" , 90}, + {"ntotalSample" , 0}, + {"pointsToTrack" , 200}, + {"range" , 5}, + {"sampleStep" , 4.0}, + {"strip" , 2}, + {"thresholdType" , "normalized"}, + {"threshold" , 20.0} + }} + }; + THEN("Loading correct settings works") + { + tracker.loadJsonConfiguration(j); + REQUIRE(tracker.getNumCandidates() == 1); + REQUIRE(tracker.shouldUseMask() == true); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.5); + REQUIRE(tracker.getMe().getMaskNumber() == 90); + REQUIRE(tracker.getMe().getThreshold() == 20.0); + } + THEN("Setting incorrect candidate number throws") + { + j["numCandidates"] = 0; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + THEN("Setting incorrect mask confidence throws") + { + j["minMaskConfidence"] = 5.0; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + THEN("Setting incorrect single point convergence vlaue confidence throws") + { + j["convergencePixelThreshold"] = -1.0; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + THEN("Setting incorrect global convergence vlaue confidence throws") + { + j["convergenceRatio"] = 2.0; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + } + } +#endif +} + +SCENARIO("Instanciating a silhouette CCD tracker", "[rbt]") +{ + vpRBSilhouetteCCDTracker tracker; + WHEN("Setting smoothing factor") + { + THEN("Setting value above 0 works") + { + tracker.setTemporalSmoothingFactor(0.5); + REQUIRE(tracker.getTemporalSmoothingFactor() == 0.5); + } + THEN("Setting value below 0 throws") + { + REQUIRE_THROWS(tracker.setTemporalSmoothingFactor(-2.0)); + } + } + WHEN("Updating CCD parameters") + { + vpCCDParameters ccd = tracker.getCCDParameters(); + ccd.h += 4; + ccd.delta_h += 2; + tracker.setCCDParameters(ccd); + THEN("Changes are propagated to tracker") + { + REQUIRE(tracker.getCCDParameters().h == ccd.h); + REQUIRE(tracker.getCCDParameters().delta_h == ccd.delta_h); + } + + } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + WHEN("Defining associated json") + { + nlohmann::json j = { + {"type", "silhouetteCCD"}, + {"weight", 0.01}, + {"temporalSmoothing", 0.1}, + {"convergenceThreshold", 0.1}, + {"ccd", { + {"h", 64}, + {"delta_h", 16}, + {"gamma", { 0.1, 0.2, 0.3, 0.4 } } + }} + }; + THEN("Loading correct json works") + { + tracker.loadJsonConfiguration(j); + REQUIRE(tracker.getTemporalSmoothingFactor() == 0.1); + vpCCDParameters ccd = tracker.getCCDParameters(); + REQUIRE(ccd.h == 64); + REQUIRE(ccd.delta_h == 16); + REQUIRE((ccd.gamma_1 == 0.1 && ccd.gamma_2 == 0.2 && ccd.gamma_3 == 0.3 && ccd.gamma_4 == 0.4)); + } + THEN("Loading invalid temporal smoothing factor throws") + { + j["temporalSmoothing"] = -3.14; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + THEN("Loading invalid ccd gamma throws") + { + j["ccd"]["gamma"] = -3.14; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + } +#endif +} + +#if defined(VP_HAVE_RB_KLT_TRACKER) +SCENARIO("Instanciating KLT tracker") +{ + vpRBKltTracker tracker; + WHEN("Modifying basic settings") + { + tracker.setFilteringBorderSize(2); + tracker.setFilteringMaxReprojectionError(0.024); + tracker.setMinimumDistanceNewPoints(0.005); + tracker.setMinimumNumberOfPoints(20); + tracker.setShouldUseMask(true); + tracker.setMinimumMaskConfidence(0.5); + THEN("Every change is visible") + { + REQUIRE(tracker.getFilteringBorderSize() == 2); + REQUIRE(tracker.getFilteringMaxReprojectionError() == 0.024); + REQUIRE(tracker.getMinimumDistanceNewPoints() == 0.005); + REQUIRE(tracker.getMinimumNumberOfPoints() == 20); + REQUIRE(tracker.shouldUseMask()); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.5); + } + THEN("Setting incorrect Mask confidence throws") + { + REQUIRE_THROWS(tracker.setMinimumMaskConfidence(-1.0)); + } + } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + WHEN("Defining associated json") + { + + nlohmann::json j = { + {"type", "klt"}, + {"weight", 0.01}, + {"minimumNumPoints", 25}, + {"newPointsMinPixelDistance", 5}, + {"maxReprojectionErrorPixels", 0.01}, + {"useMask", true}, + {"minMaskConfidence", 0.1}, + { "windowSize", 7 }, + { "quality", 0.01 }, + { "maxFeatures", 500 } + }; + THEN("Loading correct json works") + { + tracker.loadJsonConfiguration(j); + REQUIRE(tracker.getMinimumNumberOfPoints() == 25); + REQUIRE(tracker.getMinimumDistanceNewPoints() == 5); + REQUIRE(tracker.getFilteringMaxReprojectionError() == 0.01); + REQUIRE(tracker.shouldUseMask() == true); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.1f); + REQUIRE(tracker.getKltTracker().getWindowSize() == 7); + REQUIRE(tracker.getKltTracker().getQuality() == 0.01); + REQUIRE(tracker.getKltTracker().getMaxFeatures() == 500); + } + THEN("Loading invalid mask confidence throws") + { + j["minMaskConfidence"] = -3.14; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + } +#endif +} +#endif + +SCENARIO("Instanciating depth tracker", "[rbt]") +{ + vpRBDenseDepthTracker tracker; + WHEN("Setting steps") + { + THEN("Setting positive value works") + { + tracker.setStep(4); + REQUIRE(tracker.getStep() == 4); + } + THEN("Setting 0 step is invalid") + { + REQUIRE_THROWS(tracker.setStep(0)); + } + } + WHEN("Setting confidence") + { + THEN("Setting incorrect mask confidence value") + { + REQUIRE_THROWS(tracker.setMinimumMaskConfidence(-1.0)); + } + THEN("Setting correct mask confidence value") + { + tracker.setMinimumMaskConfidence(0.8); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.8f); + } + THEN("Toggling mask works") + { + tracker.setShouldUseMask(true); + REQUIRE(tracker.shouldUseMask()); + } + } +#if defined(VISP_HAVE_NLOHMANN_JSON) + WHEN("Defining associated json") + { + + nlohmann::json j = { + {"type", "klt"}, + {"weight", 0.01}, + {"step", 16}, + {"useMask", true}, + {"minMaskConfidence", 0.1} + }; + THEN("Loading correct json works") + { + tracker.loadJsonConfiguration(j); + REQUIRE(tracker.getStep() == 16); + REQUIRE(tracker.shouldUseMask()); + REQUIRE(tracker.getMinimumMaskConfidence() == 0.1f); + } + THEN("Loading invalid mask confidence throws") + { + j["minMaskConfidence"] = -3.14; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + THEN("Loading invalid step throws") + { + j["step"] = 0; + REQUIRE_THROWS(tracker.loadJsonConfiguration(j)); + } + } +#endif +} + +SCENARIO("Instanciating a render-based tracker", "[rbt]") +{ + vpRBTracker tracker; + + WHEN("Setting optimization parameters") + { + THEN("Max num iter cannot be zero") + { + REQUIRE_THROWS(tracker.setMaxOptimizationIters(0)); + } + THEN("Setting num iter is ok") + { + tracker.setMaxOptimizationIters(10); + REQUIRE(tracker.getMaxOptimizationIters() == 10); + } + THEN("Gain cannot be negative") + { + REQUIRE_THROWS(tracker.setOptimizationGain(-0.5)); + } + THEN("Positive gain is ok") + { + tracker.setOptimizationGain(0.5); + REQUIRE(tracker.getOptimizationGain() == 0.5); + } + THEN("Initial mu cannot be negative") + { + REQUIRE_THROWS(tracker.setOptimizationInitialMu(-0.5)); + } + THEN("Initial mu can be zero (gauss newton)") + { + tracker.setOptimizationInitialMu(0.0); + REQUIRE(tracker.getOptimizationInitialMu() == 0.0); + } + THEN("Initial mu can be above zero") + { + tracker.setOptimizationInitialMu(0.1); + REQUIRE(tracker.getOptimizationInitialMu() == 0.1); + } + + THEN("Mu factor cannot be negative") + { + REQUIRE_THROWS(tracker.setOptimizationMuIterFactor(-0.5)); + } + THEN("Mu factor can be zero") + { + tracker.setOptimizationMuIterFactor(0.0); + REQUIRE(tracker.getOptimizationMuIterFactor() == 0.0); + } + THEN("Mu factor can be positive") + { + tracker.setOptimizationMuIterFactor(0.1); + REQUIRE(tracker.getOptimizationMuIterFactor() == 0.1); + } + + + } + + WHEN("Setting camera parameters and resolution") + { + unsigned int h = 480, w = 640; + vpCameraParameters cam(600, 600, 320, 240); + THEN("Image height cannot be zero") + { + REQUIRE_THROWS(tracker.setCameraParameters(cam, 0, w)); + } + THEN("Image width cannot be zero") + { + REQUIRE_THROWS(tracker.setCameraParameters(cam, h, 0)); + } + THEN("Camera model cannot have distortion") + { + cam.initPersProjWithDistortion(600, 600, 320, 240, 0.01, 0.01); + REQUIRE_THROWS(tracker.setCameraParameters(cam, h, w)); + } + THEN("Loading with perspective model with no distortion and correct resolution is ok") + { + tracker.setCameraParameters(cam, h, w); + REQUIRE(tracker.getCameraParameters() == cam); + REQUIRE(tracker.getImageHeight() == h); + REQUIRE(tracker.getImageWidth() == w); + } + } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + WHEN("Loading JSON configuration") + { + const std::string jsonLiteral = R"JSON({ + "camera": { + "intrinsics": { + "model": "perspectiveWithoutDistortion", + "px" : 302.573, + "py" : 302.396, + "u0" : 162.776, + "v0" : 122.475 + }, + "height": 240, + "width" : 320 + }, + "vvs": { + "gain": 1.0, + "maxIterations" : 10 + }, + "model" : "/home/sfelton/Downloads/sinatrack-data/data/cutting_guide/cutting_guide.obj", + "silhouetteExtractionSettings" : { + "threshold": { + "type": "relative", + "value" : 0.1 + }, + "sampling" : { + "type": "fixed", + "numPoints" : 400 + } + }, + "features": { + "silhouetteGeometry": { + "weight" : 0.5, + "numCandidates" : 3, + "convergencePixelThreshold" : 3, + "convergenceRatio" : 0.99, + "movingEdge" : { + "maskSign": 0, + "maskSize" : 5, + "minSampleStep" : 4.0, + "mu" : [ + 0.5, + 0.5 + ] , + "nMask" : 90, + "ntotalSample" : 0, + "pointsToTrack" : 200, + "range" : 5, + "sampleStep" : 4.0, + "strip" : 2, + "thresholdType" : "normalized", + "threshold" : 20.0 + } + }, + "silhouetteColor" : { + "weight" : 0.5, + "convergenceThreshold" : 0.1, + "temporalSmoothing" : 0.1, + "ccd" : { + "h": 4, + "delta_h" : 1 + } + } + } + })JSON"; + nlohmann::json j = nlohmann::json::parse(jsonLiteral); + THEN("Loading configuration with trackers and a 3D model works") + { + tracker.loadConfiguration(j); + REQUIRE(...); + } + THEN("Loading configuration without model also works") + { + j.erase("model"); + tracker.loadConfiguration(j); + REQUIRE(...); + } + } +#endif + +} + + +int main(int argc, char *argv[]) +{ + Catch::Session session; // There must be exactly one instance + session.applyCommandLine(argc, argv); + + int numFailed = session.run(); + return numFailed; +} + +#else + +int main() +{ + return EXIT_SUCCESS; +} + +#endif diff --git a/script/make-coverage-report.sh b/script/make-coverage-report.sh old mode 100644 new mode 100755 index c74d476d7a..9d19d10e46 --- a/script/make-coverage-report.sh +++ b/script/make-coverage-report.sh @@ -18,7 +18,7 @@ fi cd $build_dir lcov --zerocounters --directory . -cmake $source_dir -DBUILD_COVERAGE=ON -DBUILD_DEPRECATED_FUNCTIONS=OFF +cmake $source_dir -DBUILD_COVERAGE=ON -DBUILD_DEPRECATED_FUNCTIONS=OFF -DCMAKE_BUILD_TYPE=Debug cmake --build . --target all -j$(nproc) cmake --build . --target test -j$(nproc) lcov --directory . --capture --output-file visp-coverage.info diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index 403b76d373..f0aa875c3f 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -81,6 +81,7 @@ int main(int argc, const char **argv) std::cout << "Loading tracker: " << baseArgs.trackerConfiguration << std::endl; vpRBTracker tracker; tracker.loadConfigurationFile(baseArgs.trackerConfiguration); + tracker.startTracking(); const unsigned int width = realsenseArgs.width, height = realsenseArgs.height; const unsigned fps = realsenseArgs.fps; diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index cc4e7853be..23f376353f 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -77,9 +77,9 @@ int main(int argc, const char **argv) // Set tracking and rendering parameters vpCameraParameters cam; - std::cout << "Creating tracker" << std::endl; vpRBTracker tracker; tracker.loadConfigurationFile(baseArgs.trackerConfiguration); + tracker.startTracking(); cam = tracker.getCameraParameters(); //VideoReader to read images from disk From da11d4d1c504fd4933b26e0aca04c9b8411ae986 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 24 Sep 2024 14:19:24 +0200 Subject: [PATCH 038/101] Realsense example works in Python --- modules/python/examples/realsense-rbt.py | 81 +++++++++++--------- modules/tracker/rbt/src/core/vpRBTracker.cpp | 27 ++++--- 2 files changed, 57 insertions(+), 51 deletions(-) diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py index f64f459eaf..c5355ac34c 100644 --- a/modules/python/examples/realsense-rbt.py +++ b/modules/python/examples/realsense-rbt.py @@ -47,7 +47,7 @@ from visp.core import Color, Display, ImageConvert from visp.core import ImageGray, ImageUInt16, ImageRGBa, ImageFloat from visp.io import ImageIo -from visp.rbt import RBTracker +from visp.rbt import RBTracker, RBFeatureDisplayType from visp.display_utils import get_display import pyrealsense2 as rs @@ -74,8 +74,10 @@ class FrameData: def read_data(depth_scale: Optional[float], IRGB: ImageRGBa, I: ImageGray, pipe: rs.pipeline): use_depth = depth_scale is not None iteration = 1 + align_to = rs.align(rs.stream.color) while True: frames = pipe.wait_for_frames() + frames = align_to.process(frames) I_np = np.asanyarray(frames.get_color_frame().as_frame().get_data()) I_np = np.concatenate((I_np, np.ones_like(I_np[..., 0:1], dtype=np.uint8)), axis=-1) IRGB.resize(I_np.shape[0], I_np.shape[1]) @@ -98,18 +100,21 @@ def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: parser = argparse.ArgumentParser() parser.add_argument('--tracker', type=str, required=True, help='Path to the json file containing the tracker configuration.') - + parser.add_argument('--model', type=str, required=False, + help='Path to the .obj/.bam file describing the CAD model.') args = parser.parse_args() - tracker_path = args.tracker + tracker_path: str = args.tracker assert Path(tracker_path).exists(), 'Tracker file not found' - + model_path = args.model + if model_path is not None: + assert Path(model_path).exists(), '3D CAD model file not found' # Initialize realsense2 pipe = rs.pipeline() config = rs.config() - config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 60) - config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 60) + config.enable_stream(rs.stream.depth, 848, 480, rs.format.z16, 60) + config.enable_stream(rs.stream.color, 848, 480, rs.format.rgb8, 60) cfg = pipe.start(config) depth_scale = cfg.get_device().first_depth_sensor().get_depth_scale() @@ -118,16 +123,16 @@ def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: tracker = RBTracker() tracker.loadConfigurationFile(tracker_path) - + if model_path is not None: + tracker.setModelPath(model_path) cam_color, color_height, color_width = cam_from_rs_profile(cfg.get_stream(rs.stream.color)) - cam_depth, depth_height, depth_width = cam_from_rs_profile(cfg.get_stream(rs.stream.depth)) + tracker.setCameraParameters(cam_color, color_height, color_width) # Camera intrinsics print('Color intrinsics:', cam_color) - print('Depth intrinsics:', cam_depth) I = ImageGray() IRGB = ImageRGBa() I_depth_display = ImageGray() @@ -138,53 +143,55 @@ def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: dI = get_display() dI.init(I, 0, 0, 'Color image') + dRGB = get_display() + dRGB.init(IRGB, I.getWidth(), 0, 'Color image') + I_depth = ImageGray() dDepth = get_display() ImageConvert.createDepthHistogram(frame_data.I_depth, I_depth) - dDepth.init(I_depth, I.getWidth(), 0, 'Depth') + dDepth.init(I_depth, I.getWidth() * 2, 0, 'Depth') for frame in data_generator: Display.display(I) Display.displayText(I, 50, 0, 'Click to initialize tracking', Color.red) Display.flush(I) + Display.display(IRGB) + Display.flush(IRGB) event = Display.getClick(I, blocking=False) if event: break - - tracker.initClick(I, str(mbt_model.init_file)) + tracker.startTracking() + tracker.initClick(I, tracker_path.replace('.json', '.init'), True) start_time = time.time() for frame_data in data_generator: if frame_data.I_depth is not None: - ImageConvert.createDepthHistogram(frame_data.I_depth, I_depth) + I_depth_np = I_depth.numpy() + I_depth_np[...] = ((np.minimum(frame_data.I_depth, 0.5) / 0.5) * 255.0).astype(np.uint8) - Display.display(I) - if not args.disable_depth: - Display.display(I_depth) - - if args.disable_depth: - tracker.track(I=I) - else: - pc = frame_data.point_cloud - image_dict = { - 'Camera1': I - } - t = time.time() - tracker.track(image_dict, {'Camera2': pc.reshape(depth_height, depth_width, 3)}) + displayed = [I, IRGB, I_depth] + + for display_image in displayed: + Display.display(display_image) + Display.displayText(I, 50, 0, 'Click to stop tracking', Color.red) + + # if args.disable_depth: + # tracker.track(I=I, IRGB=IRGB) + # else: + tracker.track(I=frame.I, IRGB=frame_data.IRGB, depth=frame_data.I_depth) cMo = HomogeneousMatrix() tracker.getPose(cMo) + tracker.display(I, IRGB, I_depth, RBFeatureDisplayType.SIMPLE) Display.displayFrame(I, cMo, cam_color, 0.05, Color.none, 2) - tracker.display(I, cMo, cam_color, Color.red, 2) - Display.flush(I) - if not args.disable_depth: - Display.flush(I_depth) - - if args.step_by_step: - Display.getKeyboardEvent(I, blocking=True) - else: - event = Display.getClick(I, blocking=False) - if event: - break + + for display_image in displayed: + Display.flush(display_image) + + + + event = Display.getClick(I, blocking=False) + if event: + break end_time = time.time() print(f'total time = {end_time - start_time}s') diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 9277a47127..cbe2e7d719 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -53,12 +53,6 @@ BEGIN_VISP_NAMESPACE vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_renderer(m_rendererSettings), m_imageHeight(480), m_imageWidth(640) { m_rendererSettings.setClippingDistance(0.01, 1.0); - const std::shared_ptr geometryRenderer = std::make_shared( - vpPanda3DGeometryRenderer::vpRenderType::OBJECT_NORMALS); - - m_renderer.addSubRenderer(geometryRenderer); - - m_renderer.setRenderParameters(m_rendererSettings); m_driftDetector = nullptr; @@ -140,8 +134,13 @@ void vpRBTracker::setModelPath(const std::string &path) void vpRBTracker::setupRenderer(const std::string &file) { if (!vpIoTools::checkFilename(file)) { - throw vpException("3D model file %s could not be found", file.c_str()); + throw vpException(vpException::badValue, "3D model file %s could not be found", file.c_str()); } + + const std::shared_ptr geometryRenderer = std::make_shared( + vpPanda3DGeometryRenderer::vpRenderType::OBJECT_NORMALS); + m_renderer.addSubRenderer(geometryRenderer); + bool requiresSilhouetteShader = false; for (std::shared_ptr &tracker: m_trackers) { if (tracker->requiresSilhouetteCandidates()) { @@ -594,15 +593,15 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) } const nlohmann::json vvsSettings = j.at("vvs"); - m_vvsIterations = setMaxOptimizationIters(vvsSettings.value("maxIterations", m_vvsIterations)); - m_lambda = setOptimizationGain(vvsSettings.value("gain", m_lambda)); - m_muInit = setOptimizationInitialMu(vvsSettings.value("mu", m_muInit)); - m_muIterFactor = setOptimizationMuIterFactor(vvsSettings.value("muIterFactor", m_muIterFactor)); + setMaxOptimizationIters(vvsSettings.value("maxIterations", m_vvsIterations)); + setOptimizationGain(vvsSettings.value("gain", m_lambda)); + setOptimizationInitialMu(vvsSettings.value("mu", m_muInit)); + setOptimizationMuIterFactor(vvsSettings.value("muIterFactor", m_muIterFactor)); m_depthSilhouetteSettings = j.at("silhouetteExtractionSettings"); m_trackers.clear(); - nlohmann::json features = j.at("features"); + const nlohmann::json features = j.at("features"); vpRBFeatureTrackerFactory &featureFactory = vpRBFeatureTrackerFactory::getFactory(); for (const nlohmann::json &trackerSettings: features) { std::shared_ptr tracker = featureFactory.buildFromJson(trackerSettings); @@ -618,7 +617,7 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) if (j.contains("mask")) { vpObjectMaskFactory &maskFactory = vpObjectMaskFactory::getFactory(); - nlohmann::json maskSettings = j.at("mask"); + const nlohmann::json maskSettings = j.at("mask"); m_mask = maskFactory.buildFromJson(maskSettings); if (m_mask == nullptr) { throw vpException( @@ -629,7 +628,7 @@ void vpRBTracker::loadConfiguration(const nlohmann::json &j) } if (j.contains("drift")) { vpRBDriftDetectorFactory &factory = vpRBDriftDetectorFactory::getFactory(); - nlohmann::json driftSettings = j.at("drift"); + const nlohmann::json driftSettings = j.at("drift"); m_driftDetector = factory.buildFromJson(driftSettings); if (m_driftDetector == nullptr) { throw vpException( From dff31fdc09640fefec6dd591446ec7a9c70d6531 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 24 Sep 2024 14:56:18 +0200 Subject: [PATCH 039/101] Fix lto optimization generating cmake errors --- modules/python/bindings/CMakeLists.txt | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/modules/python/bindings/CMakeLists.txt b/modules/python/bindings/CMakeLists.txt index 55864de695..cd525fd570 100644 --- a/modules/python/bindings/CMakeLists.txt +++ b/modules/python/bindings/CMakeLists.txt @@ -49,17 +49,15 @@ file(MAKE_DIRECTORY "${bindings_gen_location}/src") get_target_property(PYTHON_CXX_FLAGS _visp COMPILE_OPTIONS) get_target_property( PYTHON_LINKER_FLAGS _visp LINK_OPTIONS) - -set_target_properties(_visp PROPERTIES COMPILE_FLAGS ${PYTHON_CXX_FLAGS}) if(PYTHON_CXX_FLAGS STREQUAL "PYTHON_CXX_FLAGS-NOTFOUND") SET(PYTHON_CXX_FLAGS "") # Set to empty string else() - SET(PYTHON_CXX_FLAGS "${PYTHON_CXX_FLAGS} ") # A space to cleanly separate from existing content + SET(PYTHON_CXX_FLAGS "${PYTHON_CXX_FLAGS}") endif() if(PYTHON_LINKER_FLAGS STREQUAL "PYTHON_LINKER_FLAGS-NOTFOUND") -SET(PYTHON_LINKER_FLAGS "") # Set to empty string + SET(PYTHON_LINKER_FLAGS "") # Set to empty string else() -SET(PYTHON_LINKER_FLAGS "${PYTHON_LINKER_FLAGS} ") # A space to cleanly separate from existing content + SET(PYTHON_LINKER_FLAGS "${PYTHON_LINKER_FLAGS}") endif() CHECK_CXX_COMPILER_FLAG("-flto=auto" COMPILER_SUPPORTS_FLTOAUTO) if(COMPILER_SUPPORTS_FLTOAUTO) @@ -67,9 +65,10 @@ if(COMPILER_SUPPORTS_FLTOAUTO) SET(PYTHON_LINKER_FLAGS "${PYTHON_LINKER_FLAGS} -flto=auto") endif() -set_target_properties(_visp PROPERTIES COMPILE_FLAGS ${PYTHON_CXX_FLAGS}) -set_target_properties(_visp PROPERTIES LINK_FLAGS ${PYTHON_LINKER_FLAGS}) - +if(NOT PYTHON_CXX_FLAGS STREQUAL "") + set_target_properties(_visp PROPERTIES COMPILE_FLAGS ${PYTHON_CXX_FLAGS}) + set_target_properties(_visp PROPERTIES LINK_FLAGS ${PYTHON_LINKER_FLAGS}) +endif() set_target_properties(_visp PROPERTIES LIBRARY_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}" From 4dfd6f3934831fa8629c415feb0b31b506b6d6d9 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 24 Sep 2024 17:17:43 +0200 Subject: [PATCH 040/101] Fixed trampoline class to avoid copying frames, fixed rendering extraction potential segfault --- .../bindings/include/rbt/feature_tracker.hpp | 98 ++++++++++--------- modules/python/examples/realsense-mbt.py | 2 +- modules/python/examples/realsense-rbt.py | 39 +++++++- .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 15 ++- modules/tracker/rbt/src/core/vpRBTracker.cpp | 39 +++++--- 5 files changed, 133 insertions(+), 60 deletions(-) diff --git a/modules/python/bindings/include/rbt/feature_tracker.hpp b/modules/python/bindings/include/rbt/feature_tracker.hpp index b7880e3947..a4397e6022 100644 --- a/modules/python/bindings/include/rbt/feature_tracker.hpp +++ b/modules/python/bindings/include/rbt/feature_tracker.hpp @@ -27,88 +27,94 @@ class TrampolineRBFeatureTracker : public vpRBFeatureTracker PYBIND11_OVERRIDE_PURE( bool, /* Return type */ vpRBFeatureTracker, /* Parent class */ - requiresDepth /* Name of function in C++ (must match Python name) */ - ); + requiresDepth, /* Name of function in C++ (must match Python name) */ + ); } virtual bool requiresSilhouetteCandidates() const VP_OVERRIDE { PYBIND11_OVERRIDE_PURE( bool, /* Return type */ vpRBFeatureTracker, /* Parent class */ - requiresSilhouetteCandidates /* Name of function in C++ (must match Python name) */ - ); + requiresSilhouetteCandidates, /* Name of function in C++ (must match Python name) */ + ); } virtual void onTrackingIterStart() VP_OVERRIDE { PYBIND11_OVERRIDE_PURE( void, /* Return type */ vpRBFeatureTracker, /* Parent class */ - onTrackingIterStart /* Name of function in C++ (must match Python name) */ - ); + onTrackingIterStart, /* Name of function in C++ (must match Python name) */ + ); } virtual void onTrackingIterEnd() VP_OVERRIDE { PYBIND11_OVERRIDE_PURE( void, /* Return type */ vpRBFeatureTracker, /* Parent class */ - onTrackingIterEnd /* Name of function in C++ (must match Python name) */ - ); + onTrackingIterEnd, /* Name of function in C++ (must match Python name) */ + ); } virtual void extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE { - PYBIND11_OVERRIDE_PURE( - void, /* Return type */ - vpRBFeatureTracker, /* Parent class */ - extractFeatures, /* Name of function in C++ (must match Python name) */ - frame, previousFrame, cMo - ); + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "extractFeatures"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, &previousFrame, cMo); + } } virtual void trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE { - PYBIND11_OVERRIDE_PURE( - void, /* Return type */ - vpRBFeatureTracker, /* Parent class */ - trackFeatures, /* Name of function in C++ (must match Python name) */ - frame, previousFrame, cMo - ); + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "trackFeatures"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, &previousFrame, cMo); + } } + virtual void initVVS(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) VP_OVERRIDE { - PYBIND11_OVERRIDE_PURE( - void, /* Return type */ - vpRBFeatureTracker, /* Parent class */ - initVVS, /* Name of function in C++ (must match Python name) */ - frame, previousFrame, cMo - ); + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "initVVS"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, &previousFrame, cMo); + } } virtual void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE { - PYBIND11_OVERRIDE_PURE( - void, /* Return type */ - vpRBFeatureTracker, /* Parent class */ - computeVVSIter, /* Name of function in C++ (must match Python name) */ - frame, cMo, iteration - ); + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "computeVVSIter"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, cMo, iteration); + } } virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE { - PYBIND11_OVERRIDE_PURE( - void, /* Return type */ - vpRBFeatureTracker, /* Parent class */ - display, /* Name of function in C++ (must match Python name) */ - cam, I, IRGB, depth, type - ); + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "computeVVSIter"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(cam, &I, &IRGB, &depth, type); + } } virtual const vpMatrix getCovariance() const VP_OVERRIDE { PYBIND11_OVERRIDE( vpMatrix, /* Return type */ vpRBFeatureTracker, /* Parent class */ - getCovariance /* Name of function in C++ (must match Python name) */ + getCovariance, /* Name of function in C++ (must match Python name) */ - ); + ); } virtual void updateCovariance(const double lambda) VP_OVERRIDE { @@ -124,24 +130,24 @@ class TrampolineRBFeatureTracker : public vpRBFeatureTracker PYBIND11_OVERRIDE( double, /* Return type */ vpRBFeatureTracker, /* Parent class */ - getVVSTrackerWeight /* Name of function in C++ (must match Python name) */ - ); + getVVSTrackerWeight, /* Name of function in C++ (must match Python name) */ + ); } virtual vpMatrix getLTL() const VP_OVERRIDE { PYBIND11_OVERRIDE( vpMatrix, /* Return type */ vpRBFeatureTracker, /* Parent class */ - getLTL - ); + getLTL, + ); } virtual vpColVector getLTR() const VP_OVERRIDE { PYBIND11_OVERRIDE( vpColVector, /* Return type */ vpRBFeatureTracker, /* Parent class */ - getLTR /* Name of function in C++ (must match Python name) */ - ); + getLTR, /* Name of function in C++ (must match Python name) */ + ); } }; diff --git a/modules/python/examples/realsense-mbt.py b/modules/python/examples/realsense-mbt.py index d222f62ff8..9f0a582fb7 100644 --- a/modules/python/examples/realsense-mbt.py +++ b/modules/python/examples/realsense-mbt.py @@ -195,7 +195,7 @@ def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: tracker.initClick(I, str(mbt_model.init_file)) start_time = time.time() for frame_data in data_generator: - if frame_data.I_depth is not None: + if I_depth is not None: ImageConvert.createDepthHistogram(frame_data.I_depth, I_depth) Display.display(I) diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py index c5355ac34c..ee52055090 100644 --- a/modules/python/examples/realsense-rbt.py +++ b/modules/python/examples/realsense-rbt.py @@ -47,7 +47,7 @@ from visp.core import Color, Display, ImageConvert from visp.core import ImageGray, ImageUInt16, ImageRGBa, ImageFloat from visp.io import ImageIo -from visp.rbt import RBTracker, RBFeatureDisplayType +from visp.rbt import RBTracker, RBFeatureDisplayType, RBFeatureTracker, RBFeatureTrackerInput from visp.display_utils import get_display import pyrealsense2 as rs @@ -61,8 +61,42 @@ import matplotlib.pyplot as plt +class PyBaseFeatureTracker(RBFeatureTracker): + def __init__(self): + RBFeatureTracker.__init__(self) + def requiresRGB(self) -> bool: + return False + def requiresDepth(self) -> bool: + return False + def requiresSilhouetteCandidates(self) -> bool: + return False + def onTrackingIterStart(self): + self.cov.resize(6, 6) + self.LTL.resize(6, 6) + self.LTR.resize(6) + self.numFeatures = 0 + + def extractFeatures(self, frame: RBFeatureTrackerInput, previousFrame: RBFeatureTrackerInput, cMo: HomogeneousMatrix): + + pass + + def trackFeatures(self, frame: RBFeatureTrackerInput, previousFrame: RBFeatureTrackerInput, cMo: HomogeneousMatrix): + pass + + def initVVS(self, frame: RBFeatureTrackerInput, previousFrame: RBFeatureTrackerInput, cMo: HomogeneousMatrix): + print('INITVVS Was called') + pass + + def computeVVSIter(self, frame: RBFeatureTrackerInput, cMo: HomogeneousMatrix, iteration: int): + pass + + def onTrackingIterEnd(self): + pass + + def display(self, cam: CameraParameters, I: ImageGray, IRGB: ImageRGBa, I_depth: ImageGray, type: RBFeatureDisplayType): + pass @dataclass class FrameData: @@ -126,6 +160,9 @@ def cam_from_rs_profile(profile) -> Tuple[CameraParameters, int, int]: if model_path is not None: tracker.setModelPath(model_path) + custom_feature = PyBaseFeatureTracker() + tracker.addTracker(custom_feature) + cam_color, color_height, color_width = cam_from_rs_profile(cfg.get_stream(rs.stream.color)) tracker.setCameraParameters(cam_color, color_height, color_width) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index b4ca76cdd7..ee0461c84d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -61,7 +61,9 @@ class VISP_EXPORT vpRBTrackerLogger { m_renderTime = 0.0; m_silhouetteExtractionTime = 0.0; + m_trackerIterStartTime.clear(); m_trackerFeatureExtractionTime.clear(); + m_trackerFeatureTrackingTime.clear(); m_trackerVVSIterTimes.clear(); } @@ -94,6 +96,11 @@ class VISP_EXPORT vpRBTrackerLogger insertTrackerTime(m_trackerVVSIterTimes, id, elapsed); } + void setTrackerIterStartTime(int id, double elapsed) + { + m_trackerIterStartTime[id] = elapsed; + } + void setTrackerFeatureExtractionTime(int id, double elapsed) { m_trackerFeatureExtractionTime[id] = elapsed; @@ -121,7 +128,11 @@ class VISP_EXPORT vpRBTrackerLogger double m_maskTime; double m_driftTime; std::map> m_trackerVVSIterTimes; + + std::map m_trackerIterStartTime; + std::map m_trackerFeatureExtractionTime; + std::map m_trackerFeatureTrackingTime; std::map m_trackerInitVVSTime; std::map m_trackerNumFeatures; @@ -140,6 +151,7 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) out << "Trackers: " << std::endl; for (const std::pair> &vvsIterData : timer.m_trackerVVSIterTimes) { + double trackingStartTime = timer.m_trackerIterStartTime.find(vvsIterData.first)->second; double featTrackTime = timer.m_trackerFeatureTrackingTime.find(vvsIterData.first)->second; double featExtractionTime = timer.m_trackerFeatureExtractionTime.find(vvsIterData.first)->second; double initVVSTime = timer.m_trackerInitVVSTime.find(vvsIterData.first)->second; @@ -149,8 +161,9 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) ttVVSIter += v; } out << "\t" << vvsIterData.first << std::endl; - out << "\t" << "\t" << "Feature tracking: " << featTrackTime << "ms" << std::endl; + out << "\t" << "\t" << "Tracking initialization: " << trackingStartTime << "ms" << std::endl; out << "\t" << "\t" << "Feature extraction: " << featExtractionTime << "ms" << std::endl; + out << "\t" << "\t" << "Feature tracking: " << featTrackTime << "ms" << std::endl; out << "\t" << "\t" << "VVS init: " << initVVSTime << "ms" << std::endl; out << "\t" << "\t" << "VVS: " << ttVVSIter << "ms (" << vpMath::getMean(vvsIterData.second) << "ms" << "+-" << vpMath::getStdev(vvsIterData.second) << "ms)" << std::endl; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index cbe2e7d719..ecb343b905 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -245,11 +245,14 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setSilhouetteTime(m_logger.endTimer()); + int id = 0; for (std::shared_ptr &tracker : m_trackers) { + m_logger.startTimer(); tracker->onTrackingIterStart(); + m_logger.setTrackerIterStartTime(id, m_logger.endTimer()); + id += 1; } - - int id = 0; + id = 0; for (std::shared_ptr &tracker : m_trackers) { m_logger.startTimer(); try { @@ -394,13 +397,17 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) m_rendererSettings.setClippingDistance(frame.renders.zNear, frame.renders.zFar); m_renderer.setRenderParameters(m_rendererSettings); - // For silhouette extraction, update depth difference threshold - double thresholdValue = m_depthSilhouetteSettings.getThreshold(); - if (m_depthSilhouetteSettings.thresholdIsRelative()) { - m_renderer.getRenderer()->setEdgeThreshold((frame.renders.zFar - frame.renders.zNear) * thresholdValue); - } - else { - m_renderer.getRenderer()->setEdgeThreshold(thresholdValue); + bool shouldRenderSilhouette = m_renderer.getRenderer() != nullptr; + if (shouldRenderSilhouette) { + // For silhouette extraction, update depth difference threshold + double thresholdValue = m_depthSilhouetteSettings.getThreshold(); + if (m_depthSilhouetteSettings.thresholdIsRelative()) { + m_renderer.getRenderer()->setEdgeThreshold((frame.renders.zFar - frame.renders.zNear) * thresholdValue); + } + else { + m_renderer.getRenderer()->setEdgeThreshold(thresholdValue); + } + } // Call Panda renderer @@ -418,13 +425,23 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) #pragma omp section #endif { - m_renderer.getRenderer()->getRender(frame.renders.normals, frame.renders.depth, frame.renders.boundingBox, m_imageHeight, m_imageWidth); + m_renderer.getRenderer()->getRender( + frame.renders.normals, + frame.renders.depth, + frame.renders.boundingBox, + m_imageHeight, m_imageWidth); } #ifdef VISP_HAVE_OPENMP #pragma omp section #endif { - m_renderer.getRenderer()->getRender(frame.renders.silhouetteCanny, frame.renders.isSilhouette, frame.renders.boundingBox, m_imageHeight, m_imageWidth); + if (shouldRenderSilhouette) { + m_renderer.getRenderer()->getRender( + frame.renders.silhouetteCanny, + frame.renders.isSilhouette, + frame.renders.boundingBox, + m_imageHeight, m_imageWidth); + } } // #pragma omp section // { From d4ecd40f7baaa7e31d82746304e995ea7c214b8f Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 24 Sep 2024 18:08:02 +0200 Subject: [PATCH 041/101] Fix display having wrong override name --- modules/python/bindings/CMakeLists.txt | 3 --- modules/python/bindings/include/rbt/feature_tracker.hpp | 2 +- 2 files changed, 1 insertion(+), 4 deletions(-) diff --git a/modules/python/bindings/CMakeLists.txt b/modules/python/bindings/CMakeLists.txt index cd525fd570..370c9883b0 100644 --- a/modules/python/bindings/CMakeLists.txt +++ b/modules/python/bindings/CMakeLists.txt @@ -38,9 +38,6 @@ set_source_files_properties(${python_bindings_cpp_src} PROPERTIES GENERATED TRUE pybind11_add_module(_visp ${python_bindings_cpp_src}) - - - # Place library in build/modules/python/bindings dir so that it doesn't pollute lib dir # This .so file is not treated the same as the others and we shouldn't link against it when compiling in C++ # when installing the python module, pip will look into this subfolder for .so files to copy into the site-packages diff --git a/modules/python/bindings/include/rbt/feature_tracker.hpp b/modules/python/bindings/include/rbt/feature_tracker.hpp index a4397e6022..c2b2f76252 100644 --- a/modules/python/bindings/include/rbt/feature_tracker.hpp +++ b/modules/python/bindings/include/rbt/feature_tracker.hpp @@ -101,7 +101,7 @@ class TrampolineRBFeatureTracker : public vpRBFeatureTracker { pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. // Try to look up the overridden method on the Python side. - pybind11::function override = pybind11::get_override(this, "computeVVSIter"); + pybind11::function override = pybind11::get_override(this, "display"); if (override) { // method is found // Pybind seems to copy the frames, so we pass the pointers override(cam, &I, &IRGB, &depth, type); From 86681cff232cfb33f2d413f3d4345151ed1a365a Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 25 Sep 2024 00:35:54 +0200 Subject: [PATCH 042/101] more testing of json serialization --- .../vpRBSilhouettePointsExtractionSettings.h | 14 +- .../rbt/include/visp3/rbt/vpRBTracker.h | 1 + modules/tracker/rbt/test/testRBT.cpp | 129 ++++++++++++++++-- 3 files changed, 126 insertions(+), 18 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index 834f3064db..469f6e0cf9 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -93,12 +93,17 @@ class VISP_EXPORT vpSilhouettePointsExtractionSettings ~vpSilhouettePointsExtractionSettings() = default; const vpSilhouettePointsExtractionSettings &operator=(const vpSilhouettePointsExtractionSettings &rend); - void setThreshold(double lambda) { m_depthThreshold = lambda; } double getThreshold() const { return m_depthThreshold; } - void setThresholdIsRelative(bool isRelative) { m_thresholdIsRelative = isRelative; } + void setThreshold(double lambda) { m_depthThreshold = lambda; } bool thresholdIsRelative() const { return m_thresholdIsRelative; } + void setThresholdIsRelative(bool isRelative) { m_thresholdIsRelative = isRelative; } + bool preferPreviousPoints() const { return m_preferPreviousPoints; } + void setPreferPreviousPoints(bool prefer) { m_preferPreviousPoints = prefer; } + + int getMaxCandidates() const { return m_maxNumPoints; } void setMaxCandidates(int maxCandidates) { m_maxNumPoints = maxCandidates; } + unsigned int getSampleStep() const { return m_sampleStep; } void setSampleStep(unsigned int a) { if (m_sampleStep == 0) { @@ -125,13 +130,12 @@ inline void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSetti nlohmann::json thresholdSettings = j.at("threshold"); std::string thresholdType = thresholdSettings.at("type"); settings.m_thresholdIsRelative = thresholdType == "relative"; - settings.m_preferPreviousPoints = thresholdSettings.at("reusePreviousPoints"); - settings.m_depthThreshold = thresholdSettings.at("value"); nlohmann::json samplingSettings = j.at("sampling"); + settings.m_preferPreviousPoints = samplingSettings.at("reusePreviousPoints"); settings.m_maxNumPoints = samplingSettings.at("numPoints"); - settings.m_sampleStep = samplingSettings.at("samplingRate"); + settings.setSampleStep(samplingSettings.at("samplingRate")); } #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 26176f6099..c71c05202a 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -94,6 +94,7 @@ class VISP_EXPORT vpRBTracker */ void addTracker(std::shared_ptr tracker); void setupRenderer(const std::string &file); + std::string getModelPath() const { return m_modelPath; } void setModelPath(const std::string &path); vpCameraParameters getCameraParameters() const; diff --git a/modules/tracker/rbt/test/testRBT.cpp b/modules/tracker/rbt/test/testRBT.cpp index cdbc169292..7a14a97c18 100644 --- a/modules/tracker/rbt/test/testRBT.cpp +++ b/modules/tracker/rbt/test/testRBT.cpp @@ -56,6 +56,52 @@ #define CATCH_CONFIG_RUNNER #include +const char *objCube = R"obj( +o Cube +v -0.050000 -0.050000 0.050000 +v -0.050000 0.050000 0.050000 +v -0.050000 -0.050000 -0.050000 +v -0.050000 0.050000 -0.050000 +v 0.050000 -0.050000 0.050000 +v 0.050000 0.050000 0.050000 +v 0.050000 -0.050000 -0.050000 +v 0.050000 0.050000 -0.050000 +vn -1.0000 -0.0000 -0.0000 +vn -0.0000 -0.0000 -1.0000 +vn 1.0000 -0.0000 -0.0000 +vn -0.0000 -0.0000 1.0000 +vn -0.0000 -1.0000 -0.0000 +vn -0.0000 1.0000 -0.0000 +vt 0.375000 0.000000 +vt 0.375000 1.000000 +vt 0.125000 0.750000 +vt 0.625000 0.000000 +vt 0.625000 1.000000 +vt 0.875000 0.750000 +vt 0.125000 0.500000 +vt 0.375000 0.250000 +vt 0.625000 0.250000 +vt 0.875000 0.500000 +vt 0.375000 0.750000 +vt 0.625000 0.750000 +vt 0.375000 0.500000 +vt 0.625000 0.500000 +s 0 +f 2/4/1 3/8/1 1/1/1 +f 4/9/2 7/13/2 3/8/2 +f 8/14/3 5/11/3 7/13/3 +f 6/12/4 1/2/4 5/11/4 +f 7/13/5 1/3/5 3/7/5 +f 4/10/6 6/12/6 8/14/6 +f 2/4/1 4/9/1 3/8/1 +f 4/9/2 8/14/2 7/13/2 +f 8/14/3 6/12/3 5/11/3 +f 6/12/4 2/5/4 1/2/4 +f 7/13/5 5/11/5 1/3/5 +f 4/10/6 2/6/6 6/12/6 +)obj"; + + SCENARIO("Instanciating a silhouette me tracker", "[rbt]") { GIVEN("A base me tracker") @@ -484,9 +530,11 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") }, "vvs": { "gain": 1.0, - "maxIterations" : 10 + "maxIterations" : 10, + "mu": 0.5, + "muIterFactor": 0.1 }, - "model" : "/home/sfelton/Downloads/sinatrack-data/data/cutting_guide/cutting_guide.obj", + "model" : "path/to/model.obj", "silhouetteExtractionSettings" : { "threshold": { "type": "relative", @@ -494,11 +542,14 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") }, "sampling" : { "type": "fixed", - "numPoints" : 400 + "samplingRate": 2, + "numPoints" : 128, + "reusePreviousPoints": true } }, - "features": { - "silhouetteGeometry": { + "features": [ + { + "type": "silhouetteMe", "weight" : 0.5, "numCandidates" : 3, "convergencePixelThreshold" : 3, @@ -521,28 +572,80 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") "threshold" : 20.0 } }, - "silhouetteColor" : { + { + "type": "silhouetteColor", "weight" : 0.5, "convergenceThreshold" : 0.1, "temporalSmoothing" : 0.1, "ccd" : { - "h": 4, - "delta_h" : 1 + "h": 4, + "delta_h" : 1 + } } - } - } + ] })JSON"; + const auto verifyBase = [&tracker]() { + REQUIRE((tracker.getImageHeight() == 240 && tracker.getImageWidth() == 320)); + REQUIRE((tracker.getOptimizationGain() == 1.0 && tracker.getMaxOptimizationIters() == 10)); + vpSilhouettePointsExtractionSettings silset = tracker.getSilhouetteExtractionParameters(); + REQUIRE((silset.thresholdIsRelative() && silset.getThreshold() == 0.1)); + REQUIRE((silset.getSampleStep() == 2 && silset.getMaxCandidates() == 128)); + REQUIRE((silset.preferPreviousPoints())); + + REQUIRE((tracker.getOptimizationGain() == 1.0 && tracker.getMaxOptimizationIters() == 10)); + REQUIRE((tracker.getOptimizationInitialMu() == 0.5 && tracker.getOptimizationMuIterFactor() == 0.1)); + + }; nlohmann::json j = nlohmann::json::parse(jsonLiteral); - THEN("Loading configuration with trackers and a 3D model works") + THEN("Loading configuration with trackers") { tracker.loadConfiguration(j); - REQUIRE(...); + verifyBase(); + REQUIRE(tracker.getModelPath() == "path/to/model.obj"); + AND_THEN("Initializing tracking fails since object does not exist") + { + REQUIRE_THROWS(tracker.startTracking()); + } } THEN("Loading configuration without model also works") { j.erase("model"); tracker.loadConfiguration(j); - REQUIRE(...); + verifyBase(); + REQUIRE(tracker.getModelPath() == ""); + AND_THEN("Initializing tracking fails since path is not specified") + { + REQUIRE_THROWS(tracker.startTracking()); + } + } + THEN("Loading configuration with real 3D model also works") + { + const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_rbt_obj"); + const std::string objFile = vpIoTools::createFilePath(tempDir, "cube.obj"); + std::ofstream f(objFile); + f << objCube; + f.close(); + j["model"] = objFile; + tracker.loadConfiguration(j); + verifyBase(); + REQUIRE(tracker.getModelPath() == objFile); + AND_THEN("Initializing tracker works") + { + REQUIRE_NOTHROW(tracker.startTracking()); + } + } + } + + WHEN("Adding trackers") + { + THEN("Adding nullptr is not allowed") + { + REQUIRE_THROWS(tracker.addTracker(nullptr)); + } + THEN("Adding a tracker works") + { + auto ccdTracker = std::make_shared(); + tracker.addTracker(ccdTracker); } } #endif From ba06f4bdce1f6a18962cfde4990fabeca7d1a2ab Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 25 Sep 2024 18:03:04 +0200 Subject: [PATCH 043/101] Optimize klt by introducing roi --- modules/python/examples/realsense-rbt.py | 2 +- .../tracker/rbt/src/features/vpRBKltTracker.cpp | 14 ++++++++++---- 2 files changed, 11 insertions(+), 5 deletions(-) diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py index ee52055090..87903bbae0 100644 --- a/modules/python/examples/realsense-rbt.py +++ b/modules/python/examples/realsense-rbt.py @@ -79,7 +79,7 @@ def onTrackingIterStart(self): self.numFeatures = 0 def extractFeatures(self, frame: RBFeatureTrackerInput, previousFrame: RBFeatureTrackerInput, cMo: HomogeneousMatrix): - + print(frame) pass def trackFeatures(self, frame: RBFeatureTrackerInput, previousFrame: RBFeatureTrackerInput, cMo: HomogeneousMatrix): diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 7a8ebb54af..be0575c32a 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -56,7 +56,7 @@ inline void vpRBKltTracker::tryAddNewPoint( } float Z = frame.renders.depth[uv][uu]; - if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 1e-1)) { + if (Z <= 0.f || (frame.hasDepth() && frame.depth[uv][uu] > 0.f && fabs(frame.depth[uv][uu] - Z) > 5e-3)) { return; } vpRBKltTracker::vpTrackedKltPoint p; @@ -131,16 +131,20 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const } cv::Mat mask = cv::Mat::zeros(m_I.rows, m_I.cols, CV_8U); - vpRect bb = frame.renders.boundingBox; + const vpRect bb = frame.renders.boundingBox; for (unsigned int i = static_cast(bb.getTop()); i < static_cast(bb.getBottom()); ++i) { for (unsigned int j = static_cast(bb.getLeft()); j < static_cast(bb.getRight()); ++j) { mask.at(i, j) = (frame.renders.depth[i][j] > 0.f) * 255; } } + cv::Rect roi(bb.getLeft(), bb.getTop(), bb.getWidth(), bb.getHeight()); + cv::Mat maskRoi = mask(roi); + if (m_Iprev.rows > 0) { // Consider that there are not enough points: reinit KLT tracking if (m_points.size() < m_numPointsReinit) { + cv::Mat IprevRoi = m_Iprev(roi); m_klt.initTracking(m_Iprev, mask); const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); m_points.clear(); @@ -160,8 +164,7 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const kltTemp.setHarrisFreeParameter(m_klt.getHarrisFreeParameter()); kltTemp.setBlockSize(m_klt.getBlockSize()); kltTemp.setPyramidLevels(m_klt.getPyramidLevels()); - - kltTemp.initTracking(m_Iprev, mask); + kltTemp.initTracking(m_Iprev(roi), maskRoi); const unsigned int nbFeaturesTemp = static_cast(kltTemp.getNbFeatures()); const unsigned int nbFeatures = static_cast(m_klt.getNbFeatures()); for (unsigned int i = 0; i < nbFeaturesTemp; ++i) { @@ -170,6 +173,9 @@ void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const float u, v; long id; kltTemp.getFeature(i, id, u, v); + // Realign features from bounding box coordinates to image coordinates + u += bb.getLeft(); + v += bb.getTop(); for (unsigned int j = 0; j < nbFeatures; ++j) { float uj, vj; long idj; From 027ca12028fff8cae9401044d9faaccd0ec169c8 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 26 Sep 2024 13:02:49 +0200 Subject: [PATCH 044/101] working on testing rbt on synthetic sequences, there is an issue with panda3d --- modules/tracker/rbt/test/testRBT.cpp | 59 +++++++++++++++++++++++++-- modules/tracker/rbt/test/test_utils.h | 57 ++++++++++++++++++++++++++ 2 files changed, 113 insertions(+), 3 deletions(-) create mode 100644 modules/tracker/rbt/test/test_utils.h diff --git a/modules/tracker/rbt/test/testRBT.cpp b/modules/tracker/rbt/test/testRBT.cpp index 7a14a97c18..9be1eaf88d 100644 --- a/modules/tracker/rbt/test/testRBT.cpp +++ b/modules/tracker/rbt/test/testRBT.cpp @@ -37,7 +37,14 @@ Test test saving and parsing JSON configuration for vpMbGenericTracker */ +#include + + + +#if defined(VISP_HAVE_CATCH2) + #include +#include #include #include @@ -45,9 +52,7 @@ #include #include - - -#if defined(VISP_HAVE_CATCH2) +#include "test_utils.h" #if defined(VISP_HAVE_NLOHMANN_JSON) #include @@ -649,6 +654,54 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") } } #endif +} + +SCENARIO("Running tracker on static synthetic sequences", "[rbt]") +{ + vpRBTracker tracker; + unsigned int h = 240, w = 320; + vpCameraParameters cam(300, 300, 160, 120); + vpPanda3DRenderParameters renderParams(cam, h, w, 0.01, 1.0); + + const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_rbt_obj"); + const std::string objFile = vpIoTools::createFilePath(tempDir, "cube.obj"); + std::ofstream f(objFile); + f << objCube; + f.close(); + + const auto setupScene = [&objFile](vpPanda3DRendererSet &renderer) { + renderer.addNodeToScene(renderer.loadObject("object", objFile)); + renderer.addLight(vpPanda3DAmbientLight("ambient", vpRGBf(1.f))); + }; + const unsigned int n = 100; + std::vector cTw; + std::vector oTw; + for (unsigned int i = 0; i < n; ++i) { + oTw.push_back(vpHomogeneousMatrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)); + cTw.push_back(vpHomogeneousMatrix(0.0, 0.0, 0.3, 0.0, 0.0, 0.0)); + + } + + + TrajectoryData traj1 = generateTrajectory(renderParams, setupScene, cTw, oTw); + + tracker.addTracker(std::make_shared()); + tracker.setModelPath(objFile); + tracker.startTracking(); + + tracker.setPose(traj1.cTo[0]); + vpImage I; + std::cout << "Running tracker" << std::endl; + for (unsigned int i = 0; i < traj1.cTo.size(); ++i) { + vpImageConvert::convert(traj1.rgb[i], I); + tracker.track(I, traj1.rgb[i], traj1.depth[i]); + vpHomogeneousMatrix tracker_cTo; + tracker.getPose(tracker_cTo); + vpHomogeneousMatrix cdTc = traj1.cTo[i] * tracker_cTo.inverse(); + double errorT = cdTc.getTranslationVector().frobeniusNorm(); + double errorR = cdTc.getThetaUVector().getTheta(); + REQUIRE((errorT < 0.005 && errorR < vpMath::rad(0.5))); + } } diff --git a/modules/tracker/rbt/test/test_utils.h b/modules/tracker/rbt/test/test_utils.h new file mode 100644 index 0000000000..6a7fbf42ab --- /dev/null +++ b/modules/tracker/rbt/test/test_utils.h @@ -0,0 +1,57 @@ +#ifndef VP_RB_TEST_UTILS_H +#define VP_RB_TEST_UTILS_H + +#include +#include +#include + +#include + +struct TrajectoryData +{ + std::vector> rgb; + std::vector> depth; + std::vector cTo; +}; + +TrajectoryData generateTrajectory(const vpPanda3DRenderParameters &renderingParams, const std::function &makeScene, std::vector &cTw, std::vector &oTw) +{ + vpPanda3DRendererSet renderer(renderingParams); + auto rgbRenderer = std::make_shared(true); + renderer.addSubRenderer(rgbRenderer); + renderer.addSubRenderer(std::make_shared(vpPanda3DGeometryRenderer::OBJECT_NORMALS)); + renderer.initFramework(); + makeScene(renderer); + + if (cTw.size() != oTw.size()) { + throw vpException(vpException::dimensionError, "Number of poses don't match"); + } + TrajectoryData res; + res.rgb.resize(cTw.size()); + res.depth.resize(cTw.size()); + res.cTo.resize(cTw.size()); + + for (unsigned int i = 0; i < cTw.size(); ++i) { + res.rgb[i].resize(renderingParams.getImageHeight(), renderingParams.getImageWidth()); + res.depth[i].resize(renderingParams.getImageHeight(), renderingParams.getImageWidth()); + renderer.setNodePose("object", oTw[i].inverse()); + renderer.setCameraPose(cTw[i].inverse()); + + float nearV, farV; + rgbRenderer->computeNearAndFarPlanesFromNode("object", nearV, farV, true); + vpPanda3DRenderParameters renderingParamsFrame = renderingParams; + renderingParamsFrame.setClippingDistance(nearV, farV); + renderer.setRenderParameters(renderingParamsFrame); + // update clip + renderer.renderFrame(); + renderer.getRenderer()->getRender(res.rgb[i]); + renderer.getRenderer()->getRender(res.depth[i]); + res.cTo[i] = cTw[i] * oTw[i].inverse(); + } + return res; +} + + + + +#endif From 60d9a409c7343bf0469b4ee32d2e1a40c0ff921c Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 27 Sep 2024 17:42:29 +0200 Subject: [PATCH 045/101] Some more cleanup for python --- .../rbt/include/visp3/rbt/vpRBFeatureTracker.h | 6 +++--- .../rbt/src/core/vpRBInitializationHelper.cpp | 15 ++++++++++----- .../rbt/src/features/vpRBDenseDepthTracker.cpp | 1 - 3 files changed, 13 insertions(+), 9 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 9e972da634..26a79a27e3 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -206,18 +206,18 @@ class VISP_EXPORT vpRBFeatureTracker } #endif -protected: - static void computeJTR(const vpMatrix &interaction, const vpColVector &error, vpColVector &JTR); static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector &b, const vpMatrix &W); +protected: + + vpMatrix m_L; //! Error jacobian (In VS terms, the interaction matrix) vpMatrix m_LTL; //! Left side of the Gauss newton minimization vpColVector m_LTR; //! Right side of the Gauss Newton minimization vpMatrix m_cov; //! Covariance matrix vpColVector m_covWeightDiag; - vpColVector m_error; //! Raw VS Error vector vpColVector m_weighted_error; //! Weighted VS error vpColVector m_weights; //! Error weights diff --git a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp index 1c88b5af4e..db97d5ddf0 100644 --- a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp +++ b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp @@ -113,7 +113,6 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string vpDisplay::display(I); vpDisplay::flush(I); - vpPose pose; pose.clearPoint(); @@ -255,8 +254,16 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string vpDisplay::flush(I); vpDisplay::display(I); - - pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, m_cMo); + std::cout << "Before optim: " << m_cam << std::endl; + if (!pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, m_cMo)) { + std::cout << "Pose computation from points failed!" << std::endl; + for (unsigned int i = 0; i < n3d; ++i) { + std::cout << "Point " << i << ": " << std::endl; + std::cout << " 3D: " << pose.getPoints()[i].get_oP().t() << std::endl; + std::cout << "2D: " << pose.getPoints()[i].get_x() << ", " << pose.getPoints()[i].get_y() << std::endl; + } + } + std::cout << "POSE after optim: " << m_cMo << std::endl; vpDisplay::displayText(I, 15, 10, "left click to validate, right click to re initialize object", vpColor::red); @@ -290,8 +297,6 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string } } - std::cout << "cMo : " << std::endl << m_cMo << std::endl; - } template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); template void vpRBInitializationHelper::initClick(const vpImage &I, const std::string &initFile, bool displayHelp); diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index bfb71cfd5d..ed816317e2 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -56,7 +56,6 @@ void fastProjection(const vpHomogeneousMatrix &oTc, double X, double Y, double Z void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &cMo) { - double t1 = vpTime::measureTimeMs(); const vpImage &depthMap = frame.depth; const vpImage &renderDepth = frame.renders.depth; vpRect bb = frame.renders.boundingBox; From 26469c7286966c9d3265f6958c71c6349d9d0ee6 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 1 Oct 2024 17:16:05 +0200 Subject: [PATCH 046/101] Fixed python members export to Python bindings --- modules/python/examples/realsense-rbt.py | 7 -- .../generator/visp_python_bindgen/header.py | 6 +- .../render-based/data/sequence1/dragon.0.pos | 12 +-- .../render-based/data/sequence1/dragon.json | 90 ++++++++----------- 4 files changed, 46 insertions(+), 69 deletions(-) mode change 100755 => 100644 tutorial/tracking/render-based/data/sequence1/dragon.0.pos diff --git a/modules/python/examples/realsense-rbt.py b/modules/python/examples/realsense-rbt.py index 87903bbae0..be5a301ee4 100644 --- a/modules/python/examples/realsense-rbt.py +++ b/modules/python/examples/realsense-rbt.py @@ -52,13 +52,6 @@ import pyrealsense2 as rs -try: - import cv2 -except: - print('Could not import opencv-python! make sure that it is installed as it is required') - import sys - sys.exit(1) - import matplotlib.pyplot as plt class PyBaseFeatureTracker(RBFeatureTracker): diff --git a/modules/python/generator/visp_python_bindgen/header.py b/modules/python/generator/visp_python_bindgen/header.py index b0617e07ae..ddec90be2b 100644 --- a/modules/python/generator/visp_python_bindgen/header.py +++ b/modules/python/generator/visp_python_bindgen/header.py @@ -531,7 +531,11 @@ def add_method_doc_to_pyargs(method: types.Method, py_arg_strs: List[str]) -> Li continue field_type = get_type(field.type, owner_specs, header_env.mapping) - field_name_python = field.name.lstrip('m_') + field_name_python = field.name + prefix_member = 'm_' + if field_name_python.startswith(prefix_member): + field_name_python = field_name_python[len(prefix_member):] + logging.info(f'Found field in class/struct {name_cpp}: {field_type} {field.name}') def_str = 'def_' diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.0.pos b/tutorial/tracking/render-based/data/sequence1/dragon.0.pos old mode 100755 new mode 100644 index 1f8b41994b..04e1697184 --- a/tutorial/tracking/render-based/data/sequence1/dragon.0.pos +++ b/tutorial/tracking/render-based/data/sequence1/dragon.0.pos @@ -1,6 +1,6 @@ -0.03385069791 -0.009459969456 -0.1522304652 --2.625824241 --0.03646930969 -0.601980212 \ No newline at end of file +-0.005349535388 +-0.01516976067 +0.2050684923 +-2.690336518 +-0.02316506528 +0.06402556549 \ No newline at end of file diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json index 3602503ad7..7808f7c326 100644 --- a/tutorial/tracking/render-based/data/sequence1/dragon.json +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -15,67 +15,47 @@ "maxIterations": 10 }, "model": "data/sequence1/dragon.obj", - - "silhouetteExtractionSettings" : { + "silhouetteExtractionSettings": { "threshold": { "type": "relative", - "value": 0.1, - "reusePreviousPoints": true + "value": 0.1 }, - "sampling" : { + "sampling": { "samplingRate": 1, - "numPoints": 128 + "numPoints": 256, + "reusePreviousPoints": true } }, - -"mask": { - "type": "histogram", - "bins": 32, - "objectUpdateRate": 0.1, - "backgroundUpdateRate": 0.1, - "maxDepthError": 0.01 -}, -"drift": { - "type": "probabilistic", - "colorUpdateRate": 0.1, - "initialColorSigma": 15.0, - "depthSigma": 0.01, - "filteringMaxDistance": 0.001, - "minDistanceNewPoints": 0.005 -}, -"features": [ - { - "type": "depth", - "weight": 0.1, - "step": 8, - "useMask": true, - "minMaskConfidence": 0.7 + "mask": { + "type": "histogram", + "bins": 32, + "objectUpdateRate": 0.1, + "backgroundUpdateRate": 0.1, + "maxDepthError": 0.01 }, - { - "type": "silhouetteColor", - "weight": 0.01, - "ccd": { - "h": 8, - "delta_h": 1 - } + "drift": { + "type": "probabilistic", + "colorUpdateRate": 0.1, + "initialColorSigma": 15.0, + "depthSigma": 0.01, + "filteringMaxDistance": 0.001, + "minDistanceNewPoints": 0.005 }, - - { - "type": "klt", - "weight": 0.1, - "useMask": true, - "minMaskConfidence": 0.5, - "maxReprojectionErrorPixels": 5.0, - "newPointsMinPixelDistance": 4, - "minimumNumPoints": 20, - "blockSize": 5, - "useHarris": true, - "harris": 0.05, - "maxFeatures": 500, - "minDistance": 5.0, - "pyramidLevels": 3, - "quality": 0.01, - "windowSize": 5 - } -] + "features": [ + { + "type": "depth", + "weight": 0.1, + "step": 8, + "useMask": true, + "minMaskConfidence": 0.7 + }, + { + "type": "silhouetteColor", + "weight": 0.01, + "ccd": { + "h": 8, + "delta_h": 1 + } + } + ] } From 8d9c56a2ad120a947a770252175ca52d33278b49 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 1 Oct 2024 17:54:55 +0200 Subject: [PATCH 047/101] Fixed indexing issue in python bindings, Silhouette ccd tracker inversion issue protection --- .../python/bindings/include/core/images.hpp | 11 +++++++++- .../src/features/vpRBSilhouetteCCDTracker.cpp | 20 +++++++++++++------ 2 files changed, 24 insertions(+), 7 deletions(-) diff --git a/modules/python/bindings/include/core/images.hpp b/modules/python/bindings/include/core/images.hpp index 3588fe1e6f..d976b193d0 100644 --- a/modules/python/bindings/include/core/images.hpp +++ b/modules/python/bindings/include/core/images.hpp @@ -57,7 +57,7 @@ void define_get_item_2d_image(py::class_, std::shared_ptr> { pyClass.def("__getitem__", [](const vpImage &self, std::pair pair) -> T { int i = pair.first, j = pair.second; - const int rows = (int)self.getHeight(), cols = (int)self.getRows(); + const int rows = (int)self.getRows(), cols = (int)self.getCols(); if (i >= rows || j >= cols || i < -rows || j < -cols) { std::stringstream ss; ss << "Invalid indexing into a 2D image: got indices " << shape_to_string({ i, j }) @@ -92,6 +92,14 @@ void define_get_item_2d_image(py::class_, std::shared_ptr> return (py::cast(self).template cast >())[tuple].template cast>(); }, py::keep_alive<0, 1>()); } +/* + * Image 2D indexing + */ +template +void define_set_item_2d_image(py::class_, std::shared_ptr>> &pyClass) +{ + +} /* * vpImage @@ -121,6 +129,7 @@ Construct an image by **copying** a 2D numpy array. )doc", py::arg("np_array")); define_get_item_2d_image(pyImage); + define_set_item_2d_image(pyImage); pyImage.def("__repr__", [](const vpImage &self) -> std::string { std::stringstream ss; diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index b044f6524d..c2059185dd 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -94,8 +94,12 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr // std::cout << sp.j << ", " << sp.i << std::endl; int ii = sp.i, jj = sp.j; + if (ii < 4 || jj < 4 || static_cast(ii) > frame.I.getHeight() - 4 || static_cast(jj) > frame.I.getWidth() - 4) { + continue; + } vpRBSilhouetteControlPoint pccd; pccd.buildSilhouettePoint(ii, jj, sp.Z, sp.orientation, sp.normal, cMo, oMc, frame.cam); + pccd.detectSilhouette(frame.renders.depth); if (pccd.isSilhouette() && !std::isnan(sp.orientation) && pccd.isValid()) { m_controlPoints.push_back(std::move(pccd)); @@ -373,7 +377,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } + } #ifdef VISP_HAVE_OPENMP #pragma omp parallel for #endif @@ -489,7 +493,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, } } - } +} void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { @@ -647,10 +651,14 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() m_LTL = m_hessian; m_LTR = -m_gradient; - - vpMatrix hessian_E_inv = m_hessian.inverseByCholesky(); - //m_sigma = /*m_sigma +*/ 2*hessian_E_inv; - m_sigma = m_ccdParameters.covarianceIterDecreaseFactor * m_sigma + 2.0 * (1.0 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; + try { + vpMatrix hessian_E_inv = m_hessian.inverseByCholesky(); + //m_sigma = /*m_sigma +*/ 2*hessian_E_inv; + m_sigma = m_ccdParameters.covarianceIterDecreaseFactor * m_sigma + 2.0 * (1.0 - m_ccdParameters.covarianceIterDecreaseFactor) * hessian_E_inv; + } + catch (vpException &e) { + std::cerr << "Inversion issues in CCD tracker" << std::endl; + } } From 45044a221ca327de45031b812944ec706fffcfe9 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 2 Oct 2024 19:03:49 +0200 Subject: [PATCH 048/101] working on numpy indexing for images (setitem) --- .../python/bindings/include/core/images.hpp | 196 +++++++++++++++++- 1 file changed, 191 insertions(+), 5 deletions(-) diff --git a/modules/python/bindings/include/core/images.hpp b/modules/python/bindings/include/core/images.hpp index d976b193d0..7cf892179a 100644 --- a/modules/python/bindings/include/core/images.hpp +++ b/modules/python/bindings/include/core/images.hpp @@ -92,18 +92,200 @@ void define_get_item_2d_image(py::class_, std::shared_ptr> return (py::cast(self).template cast >())[tuple].template cast>(); }, py::keep_alive<0, 1>()); } + +std::tuple solveSliceIndices(py::slice slice, unsigned int size) +{ + + py::handle start = slice.attr("start"), end = slice.attr("stop"), step = slice.attr("step"); + + int startI = 0, endI = size, stepI = 1; + if (!start.is(py::none())) { + startI = py::cast(start); + if (startI < 0) { + startI = size + startI; + } + + if (startI >= size) { + throw std::runtime_error("Invalid slice indexing out of array"); + } + } + + if (!end.is(py::none())) { + endI = py::cast(end); + if (endI < 0) { + endI = size + endI; + } + + if (endI >= size) { + throw std::runtime_error("Invalid slice indexing out of array"); + } + } + + if (!step.is(py::none())) { + stepI = py::cast(step); + if (stepI <= 0) { + throw std::runtime_error("Slice indexing: negative or zero step not supported!"); + } + } + + if (endI < startI) { + throw std::runtime_error("Slice indexing: end index is lower than start index"); + } + + int count; + + if (stepI > endI - startI) { + count = 1; + } + else { + count = (endI - startI) / stepI; + int endS = startI + t * stepI; + count = endS <= endI ? t : t - 1; + } + + return std::make_tuple(startI, endI, stepI, count); +} + /* * Image 2D indexing */ template -void define_set_item_2d_image(py::class_, std::shared_ptr>> &pyClass) +void define_set_item_2d_image(py::class_, std::shared_ptr>> &pyClass, unsigned int componentsPerPixel) { + pyClass.def("__setitem__", [](vpImage &self, std::pair pair, const T &value) { + int i = pair.first, j = pair.second; + const int rows = (int)self.getRows(), cols = (int)self.getCols(); + if (i >= rows || j >= cols || i < -rows || j < -cols) { + std::stringstream ss; + ss << "Invalid indexing into a 2D image: got indices " << shape_to_string({ i, j }) + << " but image has dimensions " << shape_to_string({ rows, cols }); + throw std::runtime_error(ss.str()); + } + if (i < 0) { + i = rows + i; + } + if (j < 0) { + j = cols + j; + } + self[i][j] = value; + }); + pyClass.def("__setitem__", [](vpImage &self, int i, const T &value) { + const int rows = (int)self.getRows(); + if (i >= rows || i < -rows) { + std::stringstream ss; + ss << "Invalid indexing into a 2D image: got indices (" << i << ", :)" + << " but image has dimensions " << shape_to_string({ rows, self.getCols() }); + throw std::runtime_error(ss.str()); + } + if (i < 0) { + i = rows + i; + } + T *row = self[i]; + for (int j = 0; j < self.getCols(); ++j) { + row[j] = value; + } + }); + pyClass.def("__setitem__", [](vpImage &self, py::slice slice, const T &value) { + int rowStart, rowEnd, rowStep; + std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(slice, self.getRows()); + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + for (int j = 0; j < self.getCols(); ++j) { + row[j] = value; + } + } + }); + pyClass.def("__setitem__", [](vpImage &self, std::tuple slices, const T &value) { + py::slice sliceRows, sliceCols; + int rowStart, rowEnd, rowStep; + int colStart, colEnd, colStep; + std::tie(sliceRows, sliceCols) = slices; + std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(sliceRows, self.getRows()); + std::tie(colStart, colEnd, colStep) = solveSliceIndices(sliceCols, self.getCols()); + + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + for (unsigned int j = colStart; j < colEnd; j += colStep) { + row[j] = value; + } + } + }); + + if (componentsPerPixel == 1) { + pyClass.def("__setitem__", [](vpImage &self, py::slice sliceRows, py::array &values) { + int rowStart, rowEnd, rowStep; + std::tie(sliceRows, sliceCols) = slices; + std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(sliceRows, self.getRows()); + + py::buffer_info values_info = values.request(); + + // Copy the array into each row (same values in each row) + if (values_info.ndim == 1) { + if (values_info.shape[0] != self.getCols()) { + throw std::runtime_error("Number of image columns and NumPy array dimension do not match"); + } + + const NpRep *value_ptr = static_cast(valuesInfo.ptr); + + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + unsigned int k = 0; + for (unsigned int j = colStart; j < colEnd; j += colStep) { + row[j] = value_ptr[k++]; + } + } + } + // 2D array to 2D array + else if (values_info.ndim == 2) { + unsigned int numAssignedRows = 0; + if (values_info.shape[0] != numAssignedRows || values_info.shape[1] != self.getCols()) { + throw std::runtime_error("Indexing into 2D image: NumPy array has wrong size"); + } + const NpRep *value_ptr = static_cast(valuesInfo.ptr); + + unsigned int k = 0; + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + for (unsigned int j = colStart; j < colEnd; j += colStep) { + row[j] = value_ptr[k++]; + } + } + + } + else { + throw std::runtime_error("Cannot write into 2D raw type image with multidimensional NumPy array that has more than 2 dimensions"); + } + }); + + } + + // Handle vprgba/vprgbf + if (componentsPerPixel > 1) { + // pyClass.def("__setitem__", [](vpImage &self, std::tuple slices, const T &value) { + // py::slice sliceRows, sliceCols; + // int rowStart, rowEnd, rowStep; + // int colStart, colEnd, colStep; + // std::tie(sliceRows, sliceCols) = slices; + // std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(sliceRows, self.getRows()); + // std::tie(colStart, colEnd, colStep) = solveSliceIndices(sliceCols, self.getCols()); + + // for (int i = rowStart; i < rowEnd; i += rowStep) { + // T *row = self[i]; + // for (unsigned int j = colStart; j < colEnd; j += colStep) { + // row[j] = value; + // } + // } + // }); + + + } } -/* - * vpImage - */ + + /* + * vpImage + */ template typename std::enable_if::value, void>::type bindings_vpImage(py::class_, std::shared_ptr>> &pyImage) @@ -129,7 +311,7 @@ Construct an image by **copying** a 2D numpy array. )doc", py::arg("np_array")); define_get_item_2d_image(pyImage); - define_set_item_2d_image(pyImage); + define_set_item_2d_image(pyImage, 1); pyImage.def("__repr__", [](const vpImage &self) -> std::string { std::stringstream ss; @@ -175,6 +357,8 @@ where the 4 denotes the red, green, blue and alpha components of the image. )doc", py::arg("np_array")); define_get_item_2d_image(pyImage); + define_set_item_2d_image(pyImage, sizeof(T) / sizeof(NpRep)); + pyImage.def("__repr__", [](const vpImage &self) -> std::string { std::stringstream ss; @@ -219,7 +403,9 @@ where the 3 denotes the red, green and blue components of the image. :param np_array: The numpy array to copy. )doc", py::arg("np_array")); + define_get_item_2d_image(pyImage); + define_set_item_2d_image(pyImage, sizeof(T) / sizeof(NpRep)); pyImage.def("__repr__", [](const vpImage &self) -> std::string { std::stringstream ss; From 004f626b0482fe533fd357d149e9e06aa5cfe373 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 3 Oct 2024 15:28:20 +0200 Subject: [PATCH 049/101] Testing basic setitem --- .../python/bindings/include/core/images.hpp | 61 +++++++++----- modules/python/test/test_numpy_image.py | 80 +++++++++++++++++++ 2 files changed, 123 insertions(+), 18 deletions(-) diff --git a/modules/python/bindings/include/core/images.hpp b/modules/python/bindings/include/core/images.hpp index 7cf892179a..b81c662a0b 100644 --- a/modules/python/bindings/include/core/images.hpp +++ b/modules/python/bindings/include/core/images.hpp @@ -138,9 +138,9 @@ std::tuple solveSliceIndices(py::slice slice, unsigned int s count = 1; } else { - count = (endI - startI) / stepI; + int t = (endI - startI) / stepI; int endS = startI + t * stepI; - count = endS <= endI ? t : t - 1; + count = (endS == endI) ? t : t + 1; } return std::make_tuple(startI, endI, stepI, count); @@ -187,7 +187,7 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> }); pyClass.def("__setitem__", [](vpImage &self, py::slice slice, const T &value) { int rowStart, rowEnd, rowStep; - std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(slice, self.getRows()); + std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(slice, self.getRows()); for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; for (int j = 0; j < self.getCols(); ++j) { @@ -200,8 +200,8 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> int rowStart, rowEnd, rowStep; int colStart, colEnd, colStep; std::tie(sliceRows, sliceCols) = slices; - std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(sliceRows, self.getRows()); - std::tie(colStart, colEnd, colStep) = solveSliceIndices(sliceCols, self.getCols()); + std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(sliceRows, self.getRows()); + std::tie(colStart, colEnd, colStep, std::ignore) = solveSliceIndices(sliceCols, self.getCols()); for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; @@ -213,16 +213,42 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> if (componentsPerPixel == 1) { - pyClass.def("__setitem__", [](vpImage &self, py::slice sliceRows, py::array &values) { - int rowStart, rowEnd, rowStep; - std::tie(sliceRows, sliceCols) = slices; - std::tie(rowStart, rowEnd, rowStep) = solveSliceIndices(sliceRows, self.getRows()); + pyClass.def("__setitem__", [](vpImage &self, int row, py::array_t &values) { + if (row < 0) { + row = self.getRows() + row; + } - py::buffer_info values_info = values.request(); + if (row > self.getRows()) { + throw std::runtime_error("Invalid row index when assigning to image"); + } // Copy the array into each row (same values in each row) - if (values_info.ndim == 1) { - if (values_info.shape[0] != self.getCols()) { + py::buffer_info valuesInfo = values.request(); + if (valuesInfo.ndim == 1) { + if (valuesInfo.shape[0] != self.getCols()) { + throw std::runtime_error("Number of image columns and NumPy array dimension do not match"); + } + + const NpRep *value_ptr = static_cast(valuesInfo.ptr); + + T *row_ptr = self[row]; + for (unsigned int j = 0; j < self.getCols(); ++j) { + row_ptr[j] = value_ptr[j]; + } + } + else { + throw std::runtime_error("Cannot write into image row with a multidimensional array"); + } + }); + pyClass.def("__setitem__", [](vpImage &self, py::slice sliceRows, py::array_t &values) { + int rowStart, rowEnd, rowStep, numRows; + std::tie(rowStart, rowEnd, rowStep, numRows) = solveSliceIndices(sliceRows, self.getRows()); + + py::buffer_info valuesInfo = values.request(); + + // Copy the array into each row (same values in each row) + if (valuesInfo.ndim == 1) { + if (valuesInfo.shape[0] != self.getCols()) { throw std::runtime_error("Number of image columns and NumPy array dimension do not match"); } @@ -231,15 +257,14 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; unsigned int k = 0; - for (unsigned int j = colStart; j < colEnd; j += colStep) { + for (unsigned int j = 0; j < self.getCols(); ++j) { row[j] = value_ptr[k++]; } } } // 2D array to 2D array - else if (values_info.ndim == 2) { - unsigned int numAssignedRows = 0; - if (values_info.shape[0] != numAssignedRows || values_info.shape[1] != self.getCols()) { + else if (valuesInfo.ndim == 2) { + if (valuesInfo.shape[0] != numRows || valuesInfo.shape[1] != self.getCols()) { throw std::runtime_error("Indexing into 2D image: NumPy array has wrong size"); } const NpRep *value_ptr = static_cast(valuesInfo.ptr); @@ -247,11 +272,11 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> unsigned int k = 0; for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; - for (unsigned int j = colStart; j < colEnd; j += colStep) { + + for (unsigned int j = 0; j < self.getCols(); j++) { row[j] = value_ptr[k++]; } } - } else { throw std::runtime_error("Cannot write into 2D raw type image with multidimensional NumPy array that has more than 2 dimensions"); diff --git a/modules/python/test/test_numpy_image.py b/modules/python/test/test_numpy_image.py index 3dc2eff451..5c5fba449b 100644 --- a/modules/python/test/test_numpy_image.py +++ b/modules/python/test/test_numpy_image.py @@ -114,3 +114,83 @@ def test_np_array_replace_value(): vp_image[-vp_image.getHeight() - 1] with pytest.raises(RuntimeError): vp_image[0, -vp_image.getWidth() - 1] + + +def test_setitem_with_single_value(): + for test_dict in get_data_dicts(): + vp_image = test_dict['instance'] + # 2D indexing (basic) + vp_image[0, 0] = test_dict['base_value'] + assert vp_image[0, 0] == test_dict['base_value'] + vp_image[0, 0] = test_dict['value'] + assert vp_image[0, 0] == test_dict['value'] + + # Replace a row + vp_image[1] = test_dict['value'] + for i in range(vp_image.getCols()): + assert vp_image[1, i] == test_dict['value'] + + + # Replace a row + vp_image[:] = test_dict['value'] + for i in range(vp_image.getRows()): + for j in range(vp_image.getCols()): + assert vp_image[i, j] == test_dict['value'] + + # Replace rows with a slice + vp_image[:] = test_dict['base_value'] + vp_image[::2] = test_dict['value'] + for i in range(vp_image.getRows()): + v = test_dict['base_value'] if i % 2 == 1 else test_dict['value'] + for j in range(vp_image.getCols()): + assert vp_image[i, j] == v + + vp_image[:] = test_dict['base_value'] + vp_image[2:-2:2] = test_dict['value'] + for i in range(vp_image.getRows()): + v = test_dict['base_value'] if i % 2 == 1 or i >= vp_image.getRows() - 2 or i < 2 else test_dict['value'] + for j in range(vp_image.getCols()): + assert vp_image[i, j] == v + + vp_image[:, :] = test_dict['base_value'] + for i in range(vp_image.getRows()): + for j in range(vp_image.getCols()): + assert vp_image[i, j] == test_dict['base_value'] + + # Indexing with two slices + vp_image[2:-2:2, 3:-3] = test_dict['value'] + for i in range(vp_image.getRows()): + is_v = i >= 2 and i % 2 == 0 and i < vp_image.getRows() - 2 + for j in range(vp_image.getCols()): + is_vj = is_v and j >= 3 and j < vp_image.getCols() - 3 + v = test_dict['value'] if is_vj else test_dict['base_value'] + assert vp_image[i, j] == v + + + + # Negative step not supported + with pytest.raises(RuntimeError): + vp_image[::-1] = test_dict['value'] + with pytest.raises(RuntimeError): + vp_image[:, ::-1] = test_dict['value'] + + # Wrong start and end values + with pytest.raises(RuntimeError): + vp_image[2:1] = test_dict['value'] + with pytest.raises(RuntimeError): + vp_image[:, 3:2] = test_dict['value'] + + +def test_setitem_with_numpy_raw_image(): + h, w = 30, 20 + I = ImageGray(h, w, 0) + single_row = np.ones((w, ), dtype=np.uint8) * 255 + + I[2] = single_row + assert not np.any(np.equal(I.numpy()[list(set(range(h)) - {2})], single_row)) + assert np.all(np.equal(I.numpy()[2], single_row)) + + I[:] = 0 + I[1:-2] = single_row + assert np.all(np.equal(I.numpy()[list(set(range(h)) - {0, h - 2, h - 1})], single_row)) + assert np.all(np.equal(I.numpy()[[0, h - 2, h - 1]], 0)) From 51771ff4ae0f379fa1d7e92a7ec70cad88d52d42 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 3 Oct 2024 17:47:13 +0200 Subject: [PATCH 050/101] Indexing for arrays --- .../python/bindings/include/core/arrays.hpp | 146 ++++++++++++++++++ .../python/bindings/include/core/images.hpp | 61 +------- .../python/bindings/include/core/utils.hpp | 54 +++++++ modules/python/test/test_numpy_array.py | 100 ++++++++++++ 4 files changed, 304 insertions(+), 57 deletions(-) diff --git a/modules/python/bindings/include/core/arrays.hpp b/modules/python/bindings/include/core/arrays.hpp index 44c4b38603..d86214cfcd 100644 --- a/modules/python/bindings/include/core/arrays.hpp +++ b/modules/python/bindings/include/core/arrays.hpp @@ -206,6 +206,149 @@ void define_get_item_1d_array(PyClass &pyClass) }, py::keep_alive<0, 1>()); } + + + +/* + * Image 2D indexing + */ +template +void define_set_item_2d_array(PyClass &pyClass) +{ + pyClass.def("__setitem__", [](Class &self, std::pair pair, const T &value) { + int i = pair.first, j = pair.second; + const int rows = (int)self.getRows(), cols = (int)self.getCols(); + if (i >= rows || j >= cols || i < -rows || j < -cols) { + std::stringstream ss; + ss << "Invalid indexing into a 2D array: got indices " << shape_to_string({ i, j }) + << " but image has dimensions " << shape_to_string({ rows, cols }); + throw std::runtime_error(ss.str()); + } + if (i < 0) { + i = rows + i; + } + if (j < 0) { + j = cols + j; + } + self[i][j] = value; + }); + pyClass.def("__setitem__", [](Class &self, int i, const T &value) { + const int rows = (int)self.getRows(); + if (i >= rows || i < -rows) { + std::stringstream ss; + ss << "Invalid indexing into a 2D array: got indices (" << i << ", :)" + << " but image has dimensions " << shape_to_string({ rows, self.getCols() }); + throw std::runtime_error(ss.str()); + } + if (i < 0) { + i = rows + i; + } + T *row = self[i]; + for (unsigned int j = 0; j < self.getCols(); ++j) { + row[j] = value; + } + }); + pyClass.def("__setitem__", [](Class &self, py::slice slice, const T &value) { + int rowStart, rowEnd, rowStep; + std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(slice, self.getRows()); + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + for (unsigned int j = 0; j < self.getCols(); ++j) { + row[j] = value; + } + } + }); + pyClass.def("__setitem__", [](Class &self, std::tuple slices, const T &value) { + py::slice sliceRows, sliceCols; + int rowStart, rowEnd, rowStep; + int colStart, colEnd, colStep; + std::tie(sliceRows, sliceCols) = slices; + std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(sliceRows, self.getRows()); + std::tie(colStart, colEnd, colStep, std::ignore) = solveSliceIndices(sliceCols, self.getCols()); + + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + for (int j = colStart; j < colEnd; j += colStep) { + row[j] = value; + } + } + }); + + + pyClass.def("__setitem__", [](Class &self, int row, py::array_t &values) { + if (row < 0) { + row = self.getRows() + row; + } + + if (row > static_cast(self.getRows())) { + throw std::runtime_error("Invalid row index when assigning to image"); + } + + // Copy the array into each row (same values in each row) + py::buffer_info valuesInfo = values.request(); + if (valuesInfo.ndim == 1) { + if (valuesInfo.shape[0] != self.getCols()) { + throw std::runtime_error("Number of image columns and NumPy array dimension do not match"); + } + + const T *value_ptr = static_cast(valuesInfo.ptr); + + T *row_ptr = self[row]; + for (unsigned int j = 0; j < self.getCols(); ++j) { + row_ptr[j] = value_ptr[j]; + } + } + else { + throw std::runtime_error("Cannot write into image row with a multidimensional array"); + } + }); + pyClass.def("__setitem__", [](Class &self, py::slice sliceRows, py::array_t &values) { + int rowStart, rowEnd, rowStep, numRows; + std::tie(rowStart, rowEnd, rowStep, numRows) = solveSliceIndices(sliceRows, self.getRows()); + + py::buffer_info valuesInfo = values.request(); + + // Copy the array into each row (same values in each row) + if (valuesInfo.ndim == 1) { + if (valuesInfo.shape[0] != self.getCols()) { + throw std::runtime_error("Number of image columns and NumPy array dimension do not match"); + } + + const T *value_ptr = static_cast(valuesInfo.ptr); + + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + unsigned int k = 0; + for (unsigned int j = 0; j < self.getCols(); ++j) { + row[j] = value_ptr[k++]; + } + } + } + // 2D array to 2D array + else if (valuesInfo.ndim == 2) { + if (valuesInfo.shape[0] != numRows || valuesInfo.shape[1] != self.getCols()) { + throw std::runtime_error("Indexing into 2D image: NumPy array has wrong size"); + } + const T *value_ptr = static_cast(valuesInfo.ptr); + + unsigned int k = 0; + for (int i = rowStart; i < rowEnd; i += rowStep) { + T *row = self[i]; + + for (unsigned int j = 0; j < self.getCols(); j++) { + row[j] = value_ptr[k++]; + } + } + } + else { + throw std::runtime_error("Cannot write into 2D raw type image with multidimensional NumPy array that has more than 2 dimensions"); + } + }); + + +} + + const char *numpy_fn_doc_writable = R"doc( Numpy view of the underlying array data. This numpy view can be used to directly modify the array. @@ -240,6 +383,8 @@ Construct a 2D ViSP array by **copying** a 2D numpy array. )doc", py::arg("np_array")); define_get_item_2d_array, std::shared_ptr>>, vpArray2D, T>(pyArray2D); + define_set_item_2d_array, std::shared_ptr>>, vpArray2D, T>(pyArray2D); + } void bindings_vpMatrix(py::class_, vpArray2D> &pyMatrix) @@ -269,6 +414,7 @@ Construct a matrix by **copying** a 2D numpy array. add_cpp_print_helper(pyMatrix, &vpMatrix::cppPrint); define_get_item_2d_array, vpArray2D>, vpMatrix, double>(pyMatrix); + define_set_item_2d_array, vpArray2D>, vpMatrix, double>(pyMatrix); } diff --git a/modules/python/bindings/include/core/images.hpp b/modules/python/bindings/include/core/images.hpp index b81c662a0b..c526e070a3 100644 --- a/modules/python/bindings/include/core/images.hpp +++ b/modules/python/bindings/include/core/images.hpp @@ -93,59 +93,6 @@ void define_get_item_2d_image(py::class_, std::shared_ptr> }, py::keep_alive<0, 1>()); } -std::tuple solveSliceIndices(py::slice slice, unsigned int size) -{ - - py::handle start = slice.attr("start"), end = slice.attr("stop"), step = slice.attr("step"); - - int startI = 0, endI = size, stepI = 1; - if (!start.is(py::none())) { - startI = py::cast(start); - if (startI < 0) { - startI = size + startI; - } - - if (startI >= size) { - throw std::runtime_error("Invalid slice indexing out of array"); - } - } - - if (!end.is(py::none())) { - endI = py::cast(end); - if (endI < 0) { - endI = size + endI; - } - - if (endI >= size) { - throw std::runtime_error("Invalid slice indexing out of array"); - } - } - - if (!step.is(py::none())) { - stepI = py::cast(step); - if (stepI <= 0) { - throw std::runtime_error("Slice indexing: negative or zero step not supported!"); - } - } - - if (endI < startI) { - throw std::runtime_error("Slice indexing: end index is lower than start index"); - } - - int count; - - if (stepI > endI - startI) { - count = 1; - } - else { - int t = (endI - startI) / stepI; - int endS = startI + t * stepI; - count = (endS == endI) ? t : t + 1; - } - - return std::make_tuple(startI, endI, stepI, count); -} - /* * Image 2D indexing */ @@ -181,7 +128,7 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> i = rows + i; } T *row = self[i]; - for (int j = 0; j < self.getCols(); ++j) { + for (unsigned int j = 0; j < self.getCols(); ++j) { row[j] = value; } }); @@ -190,7 +137,7 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(slice, self.getRows()); for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; - for (int j = 0; j < self.getCols(); ++j) { + for (unsigned int j = 0; j < self.getCols(); ++j) { row[j] = value; } } @@ -205,7 +152,7 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> for (int i = rowStart; i < rowEnd; i += rowStep) { T *row = self[i]; - for (unsigned int j = colStart; j < colEnd; j += colStep) { + for (int j = colStart; j < colEnd; j += colStep) { row[j] = value; } } @@ -218,7 +165,7 @@ void define_set_item_2d_image(py::class_, std::shared_ptr> row = self.getRows() + row; } - if (row > self.getRows()) { + if (row > static_cast(self.getRows())) { throw std::runtime_error("Invalid row index when assigning to image"); } diff --git a/modules/python/bindings/include/core/utils.hpp b/modules/python/bindings/include/core/utils.hpp index 11fcea004e..a64faf7682 100644 --- a/modules/python/bindings/include/core/utils.hpp +++ b/modules/python/bindings/include/core/utils.hpp @@ -135,4 +135,58 @@ void copy_data_from_np(np_array_cf src, Item *dest) } +std::tuple solveSliceIndices(py::slice slice, unsigned int size) +{ + + py::handle start = slice.attr("start"), end = slice.attr("stop"), step = slice.attr("step"); + + int startI = 0, endI = size, stepI = 1; + if (!start.is(py::none())) { + startI = py::cast(start); + if (startI < 0) { + startI = size + startI; + } + + if (startI >= static_cast(size)) { + throw std::runtime_error("Invalid slice indexing out of array"); + } + } + + if (!end.is(py::none())) { + endI = py::cast(end); + if (endI < 0) { + endI = size + endI; + } + + if (endI >= static_cast(size)) { + throw std::runtime_error("Invalid slice indexing out of array"); + } + } + + if (!step.is(py::none())) { + stepI = py::cast(step); + if (stepI <= 0) { + throw std::runtime_error("Slice indexing: negative or zero step not supported!"); + } + } + + if (endI < startI) { + throw std::runtime_error("Slice indexing: end index is lower than start index"); + } + + int count; + + if (stepI > endI - startI) { + count = 1; + } + else { + int t = (endI - startI) / stepI; + int endS = startI + t * stepI; + count = (endS == endI) ? t : t + 1; + } + + return std::make_tuple(startI, endI, stepI, count); +} + + #endif diff --git a/modules/python/test/test_numpy_array.py b/modules/python/test/test_numpy_array.py index 9ca1113c26..e763ab07af 100644 --- a/modules/python/test/test_numpy_array.py +++ b/modules/python/test/test_numpy_array.py @@ -131,3 +131,103 @@ def test_index_tuple_not_copy(): for i in range(2): for j in range(2): assert a[i, j] == 0.0 + +def test_setitem_2D_array(): + h,w = 50, 50 + a = ArrayDouble2D(h, w, 5) + + # 2D indexing (basic) + a[0, 0] = 5 + assert a[0, 0] == 5 + a[0, 0] = 20 + assert a[0, 0] == 20 + + # Replace a row + a[1] = 20 + for i in range(a.getCols()): + assert a[1, i] == 20 + + + # Replace a row + a[:] = 20 + for i in range(a.getRows()): + for j in range(a.getCols()): + assert a[i, j] == 20 + + # Replace rows with a slice + a[:] = 5 + a[::2] = 20 + for i in range(a.getRows()): + v = 5 if i % 2 == 1 else 20 + for j in range(a.getCols()): + assert a[i, j] == v + + a[:] = 5 + a[2:-2:2] = 20 + for i in range(a.getRows()): + v = 5 if i % 2 == 1 or i >= a.getRows() - 2 or i < 2 else 20 + for j in range(a.getCols()): + assert a[i, j] == v + + a[:, :] = 5 + for i in range(a.getRows()): + for j in range(a.getCols()): + assert a[i, j] == 5 + + # Indexing with two slices + a[2:-2:2, 3:-3] = 20 + for i in range(a.getRows()): + is_v = i >= 2 and i % 2 == 0 and i < a.getRows() - 2 + for j in range(a.getCols()): + is_vj = is_v and j >= 3 and j < a.getCols() - 3 + v = 20 if is_vj else 5 + assert a[i, j] == v + + + + # Negative step not supported + with pytest.raises(RuntimeError): + a[::-1] = 20 + with pytest.raises(RuntimeError): + a[:, ::-1] = 20 + + # Wrong start and end values + with pytest.raises(RuntimeError): + a[2:1] = 20 + with pytest.raises(RuntimeError): + a[:, 3:2] = 20 + + + a = ArrayDouble2D(h, w, 0.0) + single_row = np.ones((w, ), dtype=np.double) * 20 + + a[2] = single_row + assert not np.any(np.equal(a.numpy()[list(set(range(h)) - {2})], single_row)) + assert np.all(np.equal(a.numpy()[2], single_row)) + + a[:] = 0 + a[1:-2] = single_row + assert np.all(np.equal(a.numpy()[list(set(range(h)) - {0, h - 2, h - 1})], single_row)) + assert np.all(np.equal(a.numpy()[[0, h - 2, h - 1]], 0)) + + multi_rows = np.asarray([[i * w + j for j in range(w)] for i in range(h - 5)]) + + a[:-5] = multi_rows + assert np.all(np.equal(a.numpy()[:-5], multi_rows)) + + + + +# def test_setitem_with_numpy_raw_image(): +# h, w = 30, 20 +# I = ImageGray(h, w, 0) +# single_row = np.ones((w, ), dtype=np.uint8) * 255 + +# I[2] = single_row +# assert not np.any(np.equal(I.numpy()[list(set(range(h)) - {2})], single_row)) +# assert np.all(np.equal(I.numpy()[2], single_row)) + +# I[:] = 0 +# I[1:-2] = single_row +# assert np.all(np.equal(I.numpy()[list(set(range(h)) - {0, h - 2, h - 1})], single_row)) +# assert np.all(np.equal(I.numpy()[[0, h - 2, h - 1]], 0)) From 56fd3fd2701e33a919c26fbede793a5738d1d6be Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 3 Oct 2024 17:48:19 +0200 Subject: [PATCH 051/101] remove commented test --- modules/python/test/test_numpy_array.py | 17 ----------------- 1 file changed, 17 deletions(-) diff --git a/modules/python/test/test_numpy_array.py b/modules/python/test/test_numpy_array.py index e763ab07af..b0b4c1daef 100644 --- a/modules/python/test/test_numpy_array.py +++ b/modules/python/test/test_numpy_array.py @@ -214,20 +214,3 @@ def test_setitem_2D_array(): a[:-5] = multi_rows assert np.all(np.equal(a.numpy()[:-5], multi_rows)) - - - - -# def test_setitem_with_numpy_raw_image(): -# h, w = 30, 20 -# I = ImageGray(h, w, 0) -# single_row = np.ones((w, ), dtype=np.uint8) * 255 - -# I[2] = single_row -# assert not np.any(np.equal(I.numpy()[list(set(range(h)) - {2})], single_row)) -# assert np.all(np.equal(I.numpy()[2], single_row)) - -# I[:] = 0 -# I[1:-2] = single_row -# assert np.all(np.equal(I.numpy()[list(set(range(h)) - {0, h - 2, h - 1})], single_row)) -# assert np.all(np.equal(I.numpy()[[0, h - 2, h - 1]], 0)) From 5b2bfe597c24522297ea54d7f6ae429c837d002e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 3 Oct 2024 18:11:14 +0200 Subject: [PATCH 052/101] 1D indexing for vectors --- .../python/bindings/include/core/arrays.hpp | 56 ++++++++++++++++++- 1 file changed, 54 insertions(+), 2 deletions(-) diff --git a/modules/python/bindings/include/core/arrays.hpp b/modules/python/bindings/include/core/arrays.hpp index d86214cfcd..9280c199c0 100644 --- a/modules/python/bindings/include/core/arrays.hpp +++ b/modules/python/bindings/include/core/arrays.hpp @@ -209,6 +209,56 @@ void define_get_item_1d_array(PyClass &pyClass) + +template +void define_set_item_1d_array(PyClass &pyClass) +{ + pyClass.def("__setitem__", [](Class &self, int i, const T value) { + const int rows = (int)self.getRows(); + if (i >= rows || i < -rows) { + std::stringstream ss; + ss << "Invalid indexing into a 2D array: got indices (" << i << ", :)" + << " but image has dimensions " << shape_to_string({ rows, self.getCols() }); + throw std::runtime_error(ss.str()); + } + if (i < 0) { + i = rows + i; + } + self[i] = value; + }); + pyClass.def("__setitem__", [](Class &self, py::slice slice, const T value) { + int rowStart, rowEnd, rowStep; + std::tie(rowStart, rowEnd, rowStep, std::ignore) = solveSliceIndices(slice, self.getRows()); + for (int i = rowStart; i < rowEnd; i += rowStep) { + self[i] = value; + } + }); + + pyClass.def("__setitem__", [](Class &self, py::slice sliceRows, py::array_t &values) { + int rowStart, rowEnd, rowStep, numRows; + std::tie(rowStart, rowEnd, rowStep, numRows) = solveSliceIndices(sliceRows, self.getRows()); + + py::buffer_info valuesInfo = values.request(); + + // Copy the array into each row (same values in each row) + if (valuesInfo.ndim == 1) { + + if (valuesInfo.shape[0] != numRows) { + throw std::runtime_error("Number of indexed elements and numpy array size do not match"); + } + const T *value_ptr = static_cast(valuesInfo.ptr); + + unsigned int k = 0; + for (int i = rowStart; i < rowEnd; i += rowStep) { + self[i] = value_ptr[k++]; + } + } + else { + throw std::runtime_error("Cannot write into 1D raw type array with multidimensional NumPy array"); + } + }); +} + /* * Image 2D indexing */ @@ -344,8 +394,6 @@ void define_set_item_2d_array(PyClass &pyClass) throw std::runtime_error("Cannot write into 2D raw type image with multidimensional NumPy array that has more than 2 dimensions"); } }); - - } @@ -496,6 +544,7 @@ Construct a Translation vector by **copying** a 1D numpy array of size 3. )doc", py::arg("np_array")); define_get_item_1d_array, vpArray2D>, vpTranslationVector, double>(pyTranslationVector); + define_set_item_1d_array, vpArray2D>, vpTranslationVector, double>(pyTranslationVector); } @@ -520,6 +569,7 @@ Construct a column vector by **copying** a 1D numpy array. )doc", py::arg("np_array")); define_get_item_1d_array, vpArray2D>, vpColVector, double>(pyColVector); + define_set_item_1d_array, vpArray2D>, vpColVector, double>(pyColVector); add_print_helper(pyColVector, &vpColVector::csvPrint, "strCsv", csv_str_help); add_print_helper(pyColVector, &vpColVector::maplePrint, "strMaple", maple_str_help); @@ -547,6 +597,8 @@ Construct a row vector by **copying** a 1D numpy array. )doc", py::arg("np_array")); define_get_item_1d_array, vpArray2D>, vpRowVector, double>(pyRowVector); + define_set_item_1d_array, vpArray2D>, vpRowVector, double>(pyRowVector); + add_print_helper(pyRowVector, &vpRowVector::csvPrint, "strCsv", csv_str_help); add_print_helper(pyRowVector, &vpRowVector::maplePrint, "strMaple", maple_str_help); add_print_helper(pyRowVector, &vpRowVector::matlabPrint, "strMatlab", matlab_str_help); From a77bc7962c6961e7e0dd946a045530561fb8e448 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 09:34:08 +0200 Subject: [PATCH 053/101] Revert changes --- cmake/templates/vpConfig.h.in | 1 - 1 file changed, 1 deletion(-) diff --git a/cmake/templates/vpConfig.h.in b/cmake/templates/vpConfig.h.in index a8fa6b98f4..dd4643bae9 100644 --- a/cmake/templates/vpConfig.h.in +++ b/cmake/templates/vpConfig.h.in @@ -524,7 +524,6 @@ namespace vp = VISP_NAMESPACE_NAME; // Defined if we want to use openmp #cmakedefine VISP_HAVE_OPENMP - // Defined if nlohmann json parser is found #cmakedefine VISP_HAVE_NLOHMANN_JSON From be6ad2fea7d1efa508afc299bec8077506cc6d66 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 09:34:41 +0200 Subject: [PATCH 054/101] Rename rbt test with catch prefix --- .../rbt/test/{testRBT.cpp => catchRBT.cpp} | 27 +++++-------------- 1 file changed, 7 insertions(+), 20 deletions(-) rename modules/tracker/rbt/test/{testRBT.cpp => catchRBT.cpp} (98%) diff --git a/modules/tracker/rbt/test/testRBT.cpp b/modules/tracker/rbt/test/catchRBT.cpp similarity index 98% rename from modules/tracker/rbt/test/testRBT.cpp rename to modules/tracker/rbt/test/catchRBT.cpp index 9be1eaf88d..2d203c78b7 100644 --- a/modules/tracker/rbt/test/testRBT.cpp +++ b/modules/tracker/rbt/test/catchRBT.cpp @@ -39,8 +39,6 @@ #include - - #if defined(VISP_HAVE_CATCH2) #include @@ -106,8 +104,7 @@ f 7/13/5 5/11/5 1/3/5 f 4/10/6 2/6/6 6/12/6 )obj"; - -SCENARIO("Instanciating a silhouette me tracker", "[rbt]") +SCENARIO("Instantiating a silhouette me tracker", "[rbt]") { GIVEN("A base me tracker") { @@ -182,7 +179,6 @@ SCENARIO("Instanciating a silhouette me tracker", "[rbt]") #if defined(VISP_HAVE_NLOHMANN_JSON) WHEN("defining JSON parameters") { - nlohmann::json j = { {"type", "silhouetteMe"}, { "numCandidates", 1 }, @@ -240,7 +236,7 @@ SCENARIO("Instanciating a silhouette me tracker", "[rbt]") #endif } -SCENARIO("Instanciating a silhouette CCD tracker", "[rbt]") +SCENARIO("Instantiating a silhouette CCD tracker", "[rbt]") { vpRBSilhouetteCCDTracker tracker; WHEN("Setting smoothing factor") @@ -307,7 +303,7 @@ SCENARIO("Instanciating a silhouette CCD tracker", "[rbt]") } #if defined(VP_HAVE_RB_KLT_TRACKER) -SCENARIO("Instanciating KLT tracker") +SCENARIO("Instantiating KLT tracker") { vpRBKltTracker tracker; WHEN("Modifying basic settings") @@ -336,7 +332,6 @@ SCENARIO("Instanciating KLT tracker") #if defined(VISP_HAVE_NLOHMANN_JSON) WHEN("Defining associated json") { - nlohmann::json j = { {"type", "klt"}, {"weight", 0.01}, @@ -371,7 +366,7 @@ SCENARIO("Instanciating KLT tracker") } #endif -SCENARIO("Instanciating depth tracker", "[rbt]") +SCENARIO("Instantiating depth tracker", "[rbt]") { vpRBDenseDepthTracker tracker; WHEN("Setting steps") @@ -406,7 +401,6 @@ SCENARIO("Instanciating depth tracker", "[rbt]") #if defined(VISP_HAVE_NLOHMANN_JSON) WHEN("Defining associated json") { - nlohmann::json j = { {"type", "klt"}, {"weight", 0.01}, @@ -435,7 +429,7 @@ SCENARIO("Instanciating depth tracker", "[rbt]") #endif } -SCENARIO("Instanciating a render-based tracker", "[rbt]") +SCENARIO("Instantiating a render-based tracker", "[rbt]") { vpRBTracker tracker; @@ -488,8 +482,6 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") tracker.setOptimizationMuIterFactor(0.1); REQUIRE(tracker.getOptimizationMuIterFactor() == 0.1); } - - } WHEN("Setting camera parameters and resolution") @@ -599,8 +591,7 @@ SCENARIO("Instanciating a render-based tracker", "[rbt]") REQUIRE((tracker.getOptimizationGain() == 1.0 && tracker.getMaxOptimizationIters() == 10)); REQUIRE((tracker.getOptimizationInitialMu() == 0.5 && tracker.getOptimizationMuIterFactor() == 0.1)); - - }; + }; nlohmann::json j = nlohmann::json::parse(jsonLiteral); THEN("Loading configuration with trackers") { @@ -672,17 +663,15 @@ SCENARIO("Running tracker on static synthetic sequences", "[rbt]") const auto setupScene = [&objFile](vpPanda3DRendererSet &renderer) { renderer.addNodeToScene(renderer.loadObject("object", objFile)); renderer.addLight(vpPanda3DAmbientLight("ambient", vpRGBf(1.f))); - }; + }; const unsigned int n = 100; std::vector cTw; std::vector oTw; for (unsigned int i = 0; i < n; ++i) { oTw.push_back(vpHomogeneousMatrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)); cTw.push_back(vpHomogeneousMatrix(0.0, 0.0, 0.3, 0.0, 0.0, 0.0)); - } - TrajectoryData traj1 = generateTrajectory(renderParams, setupScene, cTw, oTw); tracker.addTracker(std::make_shared()); @@ -702,10 +691,8 @@ SCENARIO("Running tracker on static synthetic sequences", "[rbt]") double errorR = cdTc.getThetaUVector().getTheta(); REQUIRE((errorT < 0.005 && errorR < vpMath::rad(0.5))); } - } - int main(int argc, char *argv[]) { Catch::Session session; // There must be exactly one instance From c4bf9c47f0664030222718ddcb1d6be87ace46cb Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:03:15 +0200 Subject: [PATCH 055/101] Link catch2 only to the tests --- modules/tracker/rbt/CMakeLists.txt | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/modules/tracker/rbt/CMakeLists.txt b/modules/tracker/rbt/CMakeLists.txt index bb1851c748..174fd255db 100644 --- a/modules/tracker/rbt/CMakeLists.txt +++ b/modules/tracker/rbt/CMakeLists.txt @@ -53,19 +53,22 @@ if(WITH_SIMDLIB) list(APPEND opt_libs_private ${SIMDLIB_LIBRARIES}) endif() -if(WITH_CATCH2) - # catch2 is private - include_directories(${CATCH2_INCLUDE_DIRS}) -endif() - - vp_add_module(rbt visp_vision visp_core visp_me visp_visual_features visp_ar OPTIONAL visp_klt visp_gui PRIVATE_OPTIONAL ${opt_libs_private}) vp_glob_module_sources() vp_module_include_directories(${opt_incs}) vp_create_module(${opt_libs}) -vp_add_tests(DEPENDS_ON visp_core visp_gui visp_io) +set(opt_test_incs "") +set(opt_test_libs "") + +if(WITH_CATCH2) + # catch2 is private + list(APPEND opt_test_incs ${CATCH2_INCLUDE_DIRS}) + list(APPEND opt_test_libs ${CATCH2_LIBRARIES}) +endif() + +vp_add_tests(DEPENDS_ON visp_core visp_gui visp_io PRIVATE_INCLUDE_DIRS ${opt_test_incs} PRIVATE_LIBRARIES ${opt_test_libs}) if(VISP_DATASET_FOUND) From 32a571c82970aa96f735442bb9a26c9d39a93a43 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:04:29 +0200 Subject: [PATCH 056/101] Link dnn module to nlohman json 3rd party --- modules/tracker/dnn/CMakeLists.txt | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/modules/tracker/dnn/CMakeLists.txt b/modules/tracker/dnn/CMakeLists.txt index fea2368b87..bede158701 100644 --- a/modules/tracker/dnn/CMakeLists.txt +++ b/modules/tracker/dnn/CMakeLists.txt @@ -34,8 +34,11 @@ ############################################################################# if(USE_NLOHMANN_JSON) + get_target_property(_inc_dirs "nlohmann_json::nlohmann_json" INTERFACE_INCLUDE_DIRECTORIES) + list(APPEND opt_incs ${_inc_dirs}) + vp_add_module(dnn_tracker visp_core) vp_glob_module_sources() - vp_module_include_directories() + vp_module_include_directories(${opt_incs}) vp_create_module() endif() From 62a372fdb485a06e153301b6a432b2bc114abf2c Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:04:49 +0200 Subject: [PATCH 057/101] Remove empty lines --- modules/core/include/visp3/core/vpRGBa.h | 1 - modules/core/include/visp3/core/vpRGBf.h | 3 --- .../klt/include/visp3/klt/vpKltOpencv.h | 2 -- .../rbt/include/visp3/rbt/vpColorHistogram.h | 8 +------ .../include/visp3/rbt/vpColorHistogramMask.h | 1 - .../rbt/include/visp3/rbt/vpDynamicFactory.h | 4 +--- .../visp3/rbt/vpObjectCentricRenderer.h | 4 ++-- .../rbt/include/visp3/rbt/vpObjectMask.h | 6 +---- .../include/visp3/rbt/vpObjectMaskFactory.h | 1 + .../include/visp3/rbt/vpPanda3DDepthFilters.h | 5 ++-- .../include/visp3/rbt/vpRBDenseDepthTracker.h | 7 ++---- .../rbt/include/visp3/rbt/vpRBDriftDetector.h | 2 +- .../visp3/rbt/vpRBDriftDetectorFactory.h | 2 ++ .../include/visp3/rbt/vpRBFeatureTracker.h | 2 +- .../visp3/rbt/vpRBFeatureTrackerFactory.h | 2 ++ .../visp3/rbt/vpRBFeatureTrackerInput.h | 5 +++- .../visp3/rbt/vpRBInitializationHelper.h | 2 ++ .../rbt/include/visp3/rbt/vpRBKltTracker.h | 2 +- .../rbt/vpRBProbabilistic3DDriftDetector.h | 5 ++-- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 2 ++ .../visp3/rbt/vpRBSilhouetteControlPoint.h | 1 - .../visp3/rbt/vpRBSilhouetteMeTracker.h | 2 +- .../include/visp3/rbt/vpRBSilhouettePoint.h | 1 + .../vpRBSilhouettePointsExtractionSettings.h | 4 ---- .../rbt/include/visp3/rbt/vpRBTracker.h | 2 -- .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 2 +- .../rbt/src/core/vpRBInitializationHelper.cpp | 3 +-- .../src/core/vpRBSilhouetteControlPoint.cpp | 2 -- ...vpRBSilhouettePointsExtractionSettings.cpp | 1 - modules/tracker/rbt/src/core/vpRBTracker.cpp | 1 - .../src/drift/vpRBDriftDetectorFactory.cpp | 1 + .../vpRBProbabilistic3DDriftDetector.cpp | 24 ++++++++++--------- .../src/features/vpRBDenseDepthTracker.cpp | 6 ++--- .../rbt/src/features/vpRBKltTracker.cpp | 9 ++++--- .../src/features/vpRBSilhouetteCCDTracker.cpp | 18 ++++---------- .../src/features/vpRBSilhouetteMeTracker.cpp | 9 +++---- .../tracker/rbt/src/mask/vpColorHistogram.cpp | 5 ---- .../rbt/src/mask/vpColorHistogramMask.cpp | 11 +++------ .../src/rendering/vpObjectCentricRenderer.cpp | 4 ++-- .../src/rendering/vpPanda3DDepthFilters.cpp | 1 - modules/tracker/rbt/test/test_utils.h | 7 +++--- 41 files changed, 68 insertions(+), 112 deletions(-) diff --git a/modules/core/include/visp3/core/vpRGBa.h b/modules/core/include/visp3/core/vpRGBa.h index 5d70e4cee2..d62a1002cf 100644 --- a/modules/core/include/visp3/core/vpRGBa.h +++ b/modules/core/include/visp3/core/vpRGBa.h @@ -182,6 +182,5 @@ static_assert(std::is_trivially_assignable_v); static_assert(std::is_trivially_copyable_v); #endif - END_VISP_NAMESPACE #endif diff --git a/modules/core/include/visp3/core/vpRGBf.h b/modules/core/include/visp3/core/vpRGBf.h index 67a35372c5..adb100b89a 100644 --- a/modules/core/include/visp3/core/vpRGBf.h +++ b/modules/core/include/visp3/core/vpRGBf.h @@ -154,9 +154,6 @@ static_assert(std::is_trivially_assignable_v); static_assert(std::is_trivially_copyable_v); #endif - END_VISP_NAMESPACE - - #endif diff --git a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h index f2346be825..03109c3ba9 100644 --- a/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h +++ b/modules/tracker/klt/include/visp3/klt/vpKltOpencv.h @@ -56,7 +56,6 @@ #include #endif - BEGIN_VISP_NAMESPACE /*! * \class vpKltOpencv @@ -389,7 +388,6 @@ class VISP_EXPORT vpKltOpencv void suppressFeature(const int &index); #ifdef VISP_HAVE_NLOHMANN_JSON - friend void to_json(nlohmann::json &j, const vpKltOpencv &array); friend void from_json(const nlohmann::json &j, vpKltOpencv &array); #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index ad51c29b91..ff32d54400 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -40,18 +40,13 @@ #include - - BEGIN_VISP_NAMESPACE template class vpImage; - class vpRGBa; - class vpRect; - class VISP_EXPORT vpColorHistogram { public: @@ -109,8 +104,7 @@ class VISP_EXPORT vpColorHistogram std::vector m_probas; unsigned int m_numPixels; }; -END_VISP_NAMESPACE - +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 99e07f3866..d431f393b4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -63,7 +63,6 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask const vpRBFeatureTrackerInput &previousFrame, vpImage &mask) VP_OVERRIDE; - /** * \name Histogram settings * @{ diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index abf961dade..ca5be21148 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -75,19 +75,17 @@ class VISP_EXPORT vpDynamicFactory { m_keyFinder = finderFn; } - #endif protected: vpDynamicFactory() = default; - #if defined(VISP_HAVE_NLOHMANN_JSON) std::map(const nlohmann::json &)>> m_jsonBuilders; std::function m_keyFinder; //! Function to retrieve the key from a json object #endif - }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h index b1525de595..58fc13f18b 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectCentricRenderer.h @@ -83,7 +83,6 @@ class VISP_EXPORT vpObjectCentricRenderer : public vpPanda3DRendererSet vpRect computeBoundingBox(); - template void placeRenderInto(const vpImage &render, vpImage &target, const T &clearValue) { @@ -116,8 +115,9 @@ class VISP_EXPORT vpObjectCentricRenderer : public vpPanda3DRendererSet std::vector m_bb3DPoints; bool m_shouldComputeBBPoints; vpPanda3DRenderParameters m_subRenderParams; - }; + END_VISP_NAMESPACE + #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h index 2258b39f31..a9821997f7 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -37,7 +37,6 @@ #include - #if defined(VISP_HAVE_NLOHMANN_JSON) #include #endif @@ -46,7 +45,6 @@ BEGIN_VISP_NAMESPACE template class vpImage; - class vpRBFeatureTrackerInput; /** @@ -66,10 +64,8 @@ class VISP_EXPORT vpObjectMask #if defined(VISP_HAVE_NLOHMANN_JSON) virtual void loadJsonConfiguration(const nlohmann::json &j) = 0; #endif - - }; -END_VISP_NAMESPACE +END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h index 61d78ab834..67321f3652 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMaskFactory.h @@ -57,6 +57,7 @@ class VISP_EXPORT vpObjectMaskFactory : public vpDynamicFactory return factory; } }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h index bde78f018b..a0def96ea2 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -65,8 +65,8 @@ class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter * * The results of the canny are filtered based on a threshold value (defined between 0 and 255), checking whether there is enough gradient information. * The output of this image is a floating RGB image containing: - * - In the red channel, the value of the convolution with the sobel horizontal kernel - * - In the green channel, the value of the convolution with the sobel vertical kernel + * - In the red channel, the value of the convolution with the Sobel horizontal kernel + * - In the green channel, the value of the convolution with the Sobel vertical kernel * - In the blue channel, the angle (in radians) of the edge normal. */ class VISP_EXPORT vpPanda3DDepthCannyFilter : public vpPanda3DPostProcessFilter @@ -86,6 +86,7 @@ class VISP_EXPORT vpPanda3DDepthCannyFilter : public vpPanda3DPostProcessFilter static const char *FRAGMENT_SHADER; float m_edgeThreshold; }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 91aa59e4fb..b3f0c39735 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -59,7 +59,7 @@ BEGIN_VISP_NAMESPACE /** - * @brief A tracker based on dense depth point-plane alignement + * @brief A tracker based on dense depth point-plane alignment. * * \ingroup group_rbt_trackers * @@ -132,11 +132,8 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker struct vpDepthPoint { - vpDepthPoint() : currentPoint(3), cameraNormal(3), objectNormal(3) - { - - } + { } inline void update(const vpHomogeneousMatrix &cMo, const vpRotationMatrix &cRo) { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h index b7673357c6..82f7f75d97 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -86,7 +86,7 @@ class VISP_EXPORT vpRBDriftDetector virtual double getScore() const = 0; /** - * \brief Returns whether the tracking has diverged and should be reinitialised. + * \brief Returns whether the tracking has diverged and should be reinitialized. * This function should be called after update. * */ diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h index 2d4c5de638..4b3c933582 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetectorFactory.h @@ -58,5 +58,7 @@ class VISP_EXPORT vpRBDriftDetectorFactory : public vpDynamicFactory class vpImage; */ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector { - private: struct vpStored3DSurfaceColorPoint @@ -317,7 +316,6 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector void loadJsonConfiguration(const nlohmann::json &) VP_OVERRIDE; #endif - /** * @} * End settings @@ -333,7 +331,8 @@ class VISP_EXPORT vpRBProbabilistic3DDriftDetector : public vpRBDriftDetector double m_score; std::vector m_points; - }; + END_VISP_NAMESPACE + #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 1564f1d5b5..4068d81ff5 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -275,5 +275,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker vpMatrix m_hessian; //! Sum of local hessians double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. }; + END_VISP_NAMESPACE + #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h index ebbd2f917f..9e1a18f173 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteControlPoint.h @@ -91,7 +91,6 @@ class VISP_EXPORT vpRBSilhouetteControlPoint double xs, ys, nxs, nys, Zs; - public: void init(); diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index 44c41d331e..a44437d2d4 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -179,8 +179,8 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker double m_singlePointConvergedThresholdPixels; //! Whether a single Control point is considered as converged bool m_useMask; float m_minMaskConfidence; - }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h index 7933b2ae16..e0a697261f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePoint.h @@ -56,6 +56,7 @@ class VISP_EXPORT vpRBSilhouettePoint { } }; + END_VISP_NAMESPACE #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index 469f6e0cf9..a90faeee13 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -69,7 +69,6 @@ class VISP_EXPORT vpSilhouettePointsExtractionSettings bool m_thresholdIsRelative; bool m_preferPreviousPoints; - void sampleWithoutReplacement(unsigned int count, unsigned int vectorSize, std::vector &indices, vpUniRand &random) const { count = std::min(count, vectorSize); @@ -117,7 +116,6 @@ class VISP_EXPORT vpSilhouettePointsExtractionSettings const vpCameraParameters &cam, const vpHomogeneousMatrix &cTcp, const std::vector &previousPoints, long randomSeed = 41) const; - #if defined(VISP_HAVE_NLOHMANN_JSON) inline friend void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSettings &settings); #endif @@ -136,12 +134,10 @@ inline void from_json(const nlohmann::json &j, vpSilhouettePointsExtractionSetti settings.m_preferPreviousPoints = samplingSettings.at("reusePreviousPoints"); settings.m_maxNumPoints = samplingSettings.at("numPoints"); settings.setSampleStep(samplingSettings.at("samplingRate")); - } #endif END_VISP_NAMESPACE - #endif #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index c71c05202a..53de5aeb49 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -47,7 +47,6 @@ #include - #include #if defined(VISP_HAVE_NLOHMANN_JSON) @@ -168,7 +167,6 @@ class VISP_EXPORT vpRBTracker void reset(); - /** * \name Tracking * @{ diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index ee0461c84d..e20e004440 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -83,7 +83,6 @@ class VISP_EXPORT vpRBTrackerLogger void setSilhouetteTime(double elapsed) { m_silhouetteExtractionTime = elapsed; } void setMaskTime(double elapsed) { m_maskTime = elapsed; } - void insertTrackerTime(std::map> &map, int id, double elapsed) { if (map.find(id) == map.end()) { @@ -174,4 +173,5 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) } END_VISP_NAMESPACE + #endif diff --git a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp index db97d5ddf0..dde3a79ee1 100644 --- a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp +++ b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp @@ -38,7 +38,6 @@ void vpRBInitializationHelper::savePose(const std::string &filename) const finitpos.close(); } - #ifdef VISP_HAVE_MODULE_GUI template @@ -100,8 +99,8 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string vpDisplay::flush(I); while (!vpDisplay::getClick(I, ip, button)) { + vpTime::sleepMs(10); } - } if (!finitpos.fail() && button == vpMouseButton::button1) { diff --git a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp index 7d3404f31d..f946d89b06 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouetteControlPoint.cpp @@ -367,7 +367,6 @@ void vpRBSilhouetteControlPoint::initControlPoint(const vpImage & void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) { - unsigned int k = 0; int range = 4; double c = cos(theta); @@ -381,7 +380,6 @@ void vpRBSilhouetteControlPoint::detectSilhouette(const vpImage &I) m_isSilhouette = k > 2; } - /*! Compute the interaction matrix and the error vector corresponding to the line. */ diff --git a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp index afdb5aa528..21d07af113 100644 --- a/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp +++ b/modules/tracker/rbt/src/core/vpRBSilhouettePointsExtractionSettings.cpp @@ -96,7 +96,6 @@ std::vector> vpSilhouettePointsExtractionS if (validSilhouette[nv][nu] > 0 && fabs((renderDepth[nv][nu] / p.Z) - 1.0) < 0.01) { finalCandidates.push_back(std::make_pair(nv, nu)); } - } } } diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index ecb343b905..3060f17940 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -407,7 +407,6 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) else { m_renderer.getRenderer()->setEdgeThreshold(thresholdValue); } - } // Call Panda renderer diff --git a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp index c98330ad1d..392008cf89 100644 --- a/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp +++ b/modules/tracker/rbt/src/drift/vpRBDriftDetectorFactory.cpp @@ -30,6 +30,7 @@ #include #include + BEGIN_VISP_NAMESPACE vpRBDriftDetectorFactory::vpRBDriftDetectorFactory() diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 6f8142b9c3..1a9d211d58 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -42,7 +42,9 @@ BEGIN_VISP_NAMESPACE -void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) +void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, + const vpRBFeatureTrackerInput &frame, + const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) { const vpTranslationVector t = cprevTo.inverse().getTranslationVector(); @@ -108,16 +110,16 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre } if (visiblePoints.size() > 0) { - // // Compute sample weight - // double maxTrace = 0.0; - - // for (vpStored3DSurfaceColorPoint *p : visiblePoints) { - // double trace = p->stats.trace(); - // if (trace > maxTrace) { - // maxTrace = trace; - // } - // } - // maxTrace = std::max(maxTrace, 80.0); + // // Compute sample weight + // double maxTrace = 0.0; + + // for (vpStored3DSurfaceColorPoint *p : visiblePoints) { + // double trace = p->stats.trace(); + // if (trace > maxTrace) { + // maxTrace = trace; + // } + // } + // maxTrace = std::max(maxTrace, 80.0); double weightSum = 0.0; m_score = 0.0; for (vpStored3DSurfaceColorPoint *p : visiblePoints) { diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index ed816317e2..06e8af69ce 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -43,10 +43,8 @@ void fastRotationMatmul(const vpRotationMatrix &cRo, const vpRGBf &v, vpColVecto res[2] = R[6] * r + R[7] * g + R[8] * b; } - void fastProjection(const vpHomogeneousMatrix &oTc, double X, double Y, double Z, vpPoint &p) { - const double *T = oTc.data; p.set_oX(T[0] * X + T[1] * Y + T[2] * Z + T[3]); p.set_oY(T[4] * X + T[5] * Y + T[6] * Z + T[7]); @@ -151,7 +149,9 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram m_vvsConverged = false; } -void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType /*type*/) const +void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, + const vpImage &/*IRGB*/, const vpImage &/*depth*/, + const vpRBFeatureDisplayType /*type*/) const { // for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { // const vpDepthPoint &p = m_depthPoints[i]; diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index be0575c32a..4f68172573 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -77,9 +77,7 @@ inline void vpRBKltTracker::tryAddNewPoint( vpRBKltTracker::vpRBKltTracker() : vpRBFeatureTracker(), m_numPointsReinit(20), m_newPointsDistanceThreshold(5.0), m_border(5), m_maxErrorOutliersPixels(10.0), m_useMask(false), m_minMaskConfidence(0.0) -{ - -} +{ } void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) { @@ -311,8 +309,9 @@ void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, co computeJTR(m_L, m_weighted_error, m_LTR); } - -void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType /*type*/) const +void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, + const vpImage &/*IRGB*/, const vpImage &/*depth*/, + const vpRBFeatureDisplayType /*type*/) const { for (const std::pair &p : m_points) { double u = 0.0, v = 0.0; diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index c2059185dd..0eb3486cec 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -67,7 +67,6 @@ template class FastMat33 minv[6] = (data[3] * data[7] - data[6] * data[4]) * invdet; minv[7] = (data[6] * data[1] - data[0] * data[7]) * invdet; minv[8] = (data[0] * data[4] - data[3] * data[1]) * invdet; - } static void multiply(const vpMatrix &A, const FastMat33 &B, vpMatrix &C) @@ -107,8 +106,6 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr } } - - void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix & /*cMo*/) { // Reinit all variables @@ -129,7 +126,6 @@ void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, m_gradients.resize(m_controlPoints.size() * 2 * normal_points_number, vpColVector(m_gradient.getRows())); m_hessians.resize(m_controlPoints.size() * 2 * normal_points_number, vpMatrix(m_hessian.getRows(), m_hessian.getCols())); - //m_weights.resize(nerror_ccd); m_weights.resize(m_numFeatures, false); // m_weights = 1; @@ -165,7 +161,9 @@ void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &fra } } -void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, const vpImage &IRGB, const vpImage &/*depth*/, const vpRBFeatureDisplayType type) const +void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, + const vpImage &IRGB, const vpImage &/*depth*/, + const vpRBFeatureDisplayType type) const { unsigned normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); unsigned nerror_per_point = 2 * normal_points_number * 3; @@ -249,10 +247,6 @@ void vpRBSilhouetteCCDTracker::updateCCDPoints(const vpHomogeneousMatrix &cMo) } } - - - - void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vpCCDStatistics &stats) { @@ -376,8 +370,8 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vic_ptr[10 * negative_normal + 9] = exp(-dist2[0] * dist2[0] / (2 * sigma * sigma)) / (sqrt(2 * CV_PI) * sigma); normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } + #ifdef VISP_HAVE_OPENMP #pragma omp parallel for #endif @@ -439,7 +433,6 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, m2[1] += wp2 * pixel[1]; m2[2] += wp2 * pixel[2]; - // compute second order local statistics // m_{k,s} = \sum_{l} w_{kls} I_{kl}*I_{kl}^T for (unsigned int m = 0; m < 3; ++m) { @@ -491,7 +484,6 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, cov_vic_ptr[m * 3 + m] += m_ccdParameters.kappa; cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; } - } } @@ -507,7 +499,6 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() #pragma omp parallel #endif { - // vpMatrix tmp_cov(3, 3); // vpMatrix tmp_cov_inv(3, 3); FastMat33 tmp_cov, tmp_cov_inv; @@ -589,7 +580,6 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() //vpMatrix::mult2Matrices(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_pixel_diff, m_gradients[i * 2 * normal_points_number + j]); vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_jacobian.t(), m_hessians[i * 2 * normal_points_number + j]); - } } } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index b49b57f8bd..175503f5a9 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -32,10 +32,8 @@ #define VISP_DEBUG_ME_TRACKER 0 - BEGIN_VISP_NAMESPACE - /** * @brief Extract the geometric features from the list of collected silhouette points */ @@ -84,7 +82,6 @@ void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &fra m_robust.setMinMedianAbsoluteDeviation(m_robustMadMin / frame.cam.get_px()); } - void vpRBSilhouetteMeTracker::trackFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) { if (m_numCandidates <= 1) { @@ -158,7 +155,6 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram else { m_vvsConverged = true; } - } m_robust.MEstimator(vpRobust::TUKEY, m_error, m_weights); @@ -184,10 +180,11 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram } } #endif - } -void vpRBSilhouetteMeTracker::display(const vpCameraParameters &/*cam*/, const vpImage &I, const vpImage &/*IRGB*/, const vpImage &/*depth*/, const vpRBFeatureDisplayType type) const +void vpRBSilhouetteMeTracker::display(const vpCameraParameters &/*cam*/, const vpImage &I, + const vpImage &/*IRGB*/, const vpImage &/*depth*/, + const vpRBFeatureDisplayType type) const { if (type == vpRBFeatureDisplayType::SIMPLE) { diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index b992614092..261a2f3ab7 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -49,7 +49,6 @@ void vpColorHistogram::Builder::build(vpColorHistogram &histogram) histogram.m_probas[i] = static_cast(m_counts[i]) / countFloat; } histogram.m_numPixels = count; - } vpColorHistogram::vpColorHistogram() : m_N(0), m_numPixels(0) @@ -154,7 +153,6 @@ double vpColorHistogram::kl(const vpColorHistogram &other) const double vpColorHistogram::jsd(const vpColorHistogram &other) const { - vpColorHistogram mixture(m_N); for (unsigned int i = 0; i < m_probas.size(); ++i) { @@ -175,7 +173,6 @@ double vpColorHistogram::hellinger(const vpColorHistogram &other) const return sqrt(1.0 - bcoeff); } - void vpColorHistogram::computeSplitHistograms(const vpImage &image, const vpImage &mask, vpColorHistogram &insideMask, vpColorHistogram &outsideMask) { if (insideMask.m_N != outsideMask.m_N) { @@ -206,7 +203,6 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons } insideMask.build(countsIn); outsideMask.build(countsOut); - } void vpColorHistogram::computeSplitHistograms(const vpImage &image, const vpImage &mask, const vpRect &bbInside, vpColorHistogram &insideMask, vpColorHistogram &outsideMask) @@ -223,7 +219,6 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons const unsigned int beforeBBStart = static_cast(bbInside.getTop()) * image.getWidth() + static_cast(bbInside.getLeft()); const unsigned int afterBBEnd = static_cast(bbInside.getBottom()) * image.getWidth() + static_cast(bbInside.getRight()); - //#pragma omp parallel { std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index cbb4ba5772..cf6689aaf8 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -40,10 +40,9 @@ BEGIN_VISP_NAMESPACE vpColorHistogramMask::vpColorHistogramMask() { } -void vpColorHistogramMask::updateMask( - const vpRBFeatureTrackerInput &frame, - const vpRBFeatureTrackerInput &previousFrame, - vpImage &mask) +void vpColorHistogramMask::updateMask(const vpRBFeatureTrackerInput &frame, + const vpRBFeatureTrackerInput &previousFrame, + vpImage &mask) { // Prefer the last frame: // we have updated the render to match the pose so we should get better object and background histogram separation. @@ -111,13 +110,9 @@ void vpColorHistogramMask::updateMask( else { mask.bitmap[i] = 0.f; } - - } - } - #if defined(VISP_HAVE_NLOHMANN_JSON) void vpColorHistogramMask::loadJsonConfiguration(const nlohmann::json &json) { diff --git a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp index 57e5f6de44..69aa79b88b 100644 --- a/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp +++ b/modules/tracker/rbt/src/rendering/vpObjectCentricRenderer.cpp @@ -38,7 +38,8 @@ BEGIN_VISP_NAMESPACE -vpObjectCentricRenderer::vpObjectCentricRenderer(const vpPanda3DRenderParameters &renderParameters) : vpPanda3DRendererSet(renderParameters), m_enableCrop(true), m_shouldComputeBBPoints(true) +vpObjectCentricRenderer::vpObjectCentricRenderer(const vpPanda3DRenderParameters &renderParameters) + : vpPanda3DRendererSet(renderParameters), m_enableCrop(true), m_shouldComputeBBPoints(true) { m_renderParameters = renderParameters; load_prc_file_data("", "textures-power-2 none\n" @@ -66,7 +67,6 @@ void vpObjectCentricRenderer::beforeFrameRendered() m_bb.setBottom(std::min(m_bb.getBottom() + delta, (double)m_renderParameters.getImageHeight())); m_bb.setRight(std::min(m_bb.getRight() + delta, (double)m_renderParameters.getImageWidth())); - if (m_enableCrop) { vpPanda3DRenderParameters subParams = m_renderParameters; diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index ac9f64c5f4..6833d83043 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -34,7 +34,6 @@ BEGIN_VISP_NAMESPACE - const char *vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER = R"shader( #version 330 diff --git a/modules/tracker/rbt/test/test_utils.h b/modules/tracker/rbt/test/test_utils.h index 6a7fbf42ab..aea610ecca 100644 --- a/modules/tracker/rbt/test/test_utils.h +++ b/modules/tracker/rbt/test/test_utils.h @@ -14,7 +14,9 @@ struct TrajectoryData std::vector cTo; }; -TrajectoryData generateTrajectory(const vpPanda3DRenderParameters &renderingParams, const std::function &makeScene, std::vector &cTw, std::vector &oTw) +TrajectoryData generateTrajectory(const vpPanda3DRenderParameters &renderingParams, + const std::function &makeScene, + std::vector &cTw, std::vector &oTw) { vpPanda3DRendererSet renderer(renderingParams); auto rgbRenderer = std::make_shared(true); @@ -51,7 +53,4 @@ TrajectoryData generateTrajectory(const vpPanda3DRenderParameters &renderingPara return res; } - - - #endif From 01230002d09bfd8c7fd2a29a01497ec6e7940eed Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:21:17 +0200 Subject: [PATCH 058/101] Make shaders as std::string instead of char * --- .../visp3/ar/vpPanda3DPostProcessFilter.h | 4 ++- .../include/visp3/ar/vpPanda3DRGBRenderer.h | 4 +-- .../vpPanda3DPostProcessFilter.cpp | 29 +++++++++---------- .../vpPanda3DRGBRenderer.cpp | 8 ++--- 4 files changed, 23 insertions(+), 22 deletions(-) diff --git a/modules/ar/include/visp3/ar/vpPanda3DPostProcessFilter.h b/modules/ar/include/visp3/ar/vpPanda3DPostProcessFilter.h index 079e4e96a4..8b93212288 100644 --- a/modules/ar/include/visp3/ar/vpPanda3DPostProcessFilter.h +++ b/modules/ar/include/visp3/ar/vpPanda3DPostProcessFilter.h @@ -99,8 +99,10 @@ class VISP_EXPORT vpPanda3DPostProcessFilter : public vpPanda3DBaseRenderer PointerTo m_texture; PointerTo m_buffer; - static const char *FILTER_VERTEX_SHADER; + static const std::string FILTER_VERTEX_SHADER; }; + END_VISP_NAMESPACE + #endif #endif diff --git a/modules/ar/include/visp3/ar/vpPanda3DRGBRenderer.h b/modules/ar/include/visp3/ar/vpPanda3DRGBRenderer.h index cadb5c021e..9b872a2294 100644 --- a/modules/ar/include/visp3/ar/vpPanda3DRGBRenderer.h +++ b/modules/ar/include/visp3/ar/vpPanda3DRGBRenderer.h @@ -109,8 +109,8 @@ class VISP_EXPORT vpPanda3DRGBRenderer : public vpPanda3DBaseRenderer, public vp bool m_showSpeculars; PointerTo m_colorTexture; PointerTo m_colorBuffer; - static const char *COOK_TORRANCE_VERT; - static const char *COOK_TORRANCE_FRAG; + static const std::string COOK_TORRANCE_VERT; + static const std::string COOK_TORRANCE_FRAG; NodePath m_backgroundImage; PointerTo m_display2d; diff --git a/modules/ar/src/panda3d-simulator/vpPanda3DPostProcessFilter.cpp b/modules/ar/src/panda3d-simulator/vpPanda3DPostProcessFilter.cpp index 0a123b51f5..39ee9cd9bc 100644 --- a/modules/ar/src/panda3d-simulator/vpPanda3DPostProcessFilter.cpp +++ b/modules/ar/src/panda3d-simulator/vpPanda3DPostProcessFilter.cpp @@ -35,19 +35,18 @@ #include BEGIN_VISP_NAMESPACE -const char *vpPanda3DPostProcessFilter::FILTER_VERTEX_SHADER = R"shader( -#version 330 -in vec4 p3d_Vertex; -uniform mat4 p3d_ModelViewProjectionMatrix; -in vec2 p3d_MultiTexCoord0; -out vec2 texcoords; - -void main() -{ - gl_Position = p3d_ModelViewProjectionMatrix * p3d_Vertex; - texcoords = p3d_MultiTexCoord0; -} -)shader"; +const std::string vpPanda3DPostProcessFilter::FILTER_VERTEX_SHADER = +"#version 330\n" +"in vec4 p3d_Vertex;\n" +"uniform mat4 p3d_ModelViewProjectionMatrix;\n" +"in vec2 p3d_MultiTexCoord0;\n" +"out vec2 texcoords;\n" + +"void main()\n" +"{\n" +" gl_Position = p3d_ModelViewProjectionMatrix * p3d_Vertex;\n" +" texcoords = p3d_MultiTexCoord0;\n" +"}\n"; void vpPanda3DPostProcessFilter::setupScene() { @@ -62,8 +61,8 @@ void vpPanda3DPostProcessFilter::setupScene() "Cannot add a postprocess filter to a renderer that does not define getMainOutputBuffer()"); } m_shader = Shader::make(Shader::ShaderLanguage::SL_GLSL, - FILTER_VERTEX_SHADER, - m_fragmentShader); + FILTER_VERTEX_SHADER, + m_fragmentShader); m_renderRoot.set_shader(m_shader); m_renderRoot.set_shader_input("dp", LVector2f(1.0 / buffer->get_texture()->get_x_size(), 1.0 / buffer->get_texture()->get_y_size())); m_renderRoot.set_texture(buffer->get_texture()); diff --git a/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp b/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp index 954a644ceb..448e0a4d57 100644 --- a/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp +++ b/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp @@ -37,7 +37,7 @@ #include "texturePool.h" BEGIN_VISP_NAMESPACE -const char *vpPanda3DRGBRenderer::COOK_TORRANCE_VERT = +const std::string vpPanda3DRGBRenderer::COOK_TORRANCE_VERT = "#version 330\n" "in vec3 p3d_Normal;\n" "in vec4 p3d_Vertex;\n" @@ -76,7 +76,7 @@ const char *vpPanda3DRGBRenderer::COOK_TORRANCE_VERT = " F0 = computeF0(p3d_Material.refractiveIndex, p3d_Material.metallic, p3d_Material.baseColor.xyz);\n" "}\n"; -const char *vpPanda3DRGBRenderer::COOK_TORRANCE_FRAG = +const std::string vpPanda3DRGBRenderer::COOK_TORRANCE_FRAG = "// Version 330, specified when generating shader\n" "#define M_PI 3.1415926535897932384626433832795\n" "in vec3 oNormal;\n" @@ -200,8 +200,8 @@ void vpPanda3DRGBRenderer::addNodeToScene(const NodePath &object) } PT(Shader) shader = Shader::make(Shader::ShaderLanguage::SL_GLSL, - COOK_TORRANCE_VERT, - makeFragmentShader(hasTexture, m_showSpeculars)); + COOK_TORRANCE_VERT, + makeFragmentShader(hasTexture, m_showSpeculars)); objectInScene.set_shader(shader); From f47dabe647fdd34b175838151971de68fefec23d Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:22:43 +0200 Subject: [PATCH 059/101] Fix wrong catch2 header --- modules/tracker/rbt/test/catchRBT.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/tracker/rbt/test/catchRBT.cpp b/modules/tracker/rbt/test/catchRBT.cpp index 2d203c78b7..6b048c7bb7 100644 --- a/modules/tracker/rbt/test/catchRBT.cpp +++ b/modules/tracker/rbt/test/catchRBT.cpp @@ -57,7 +57,7 @@ #endif #define CATCH_CONFIG_RUNNER -#include +#include const char *objCube = R"obj( o Cube From 9d199e9faf8f498001f0292399f6bfdd2c34d0b0 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 4 Oct 2024 10:29:22 +0200 Subject: [PATCH 060/101] Create object using std::string --- modules/tracker/rbt/test/catchRBT.cpp | 87 +++++++++++++-------------- 1 file changed, 43 insertions(+), 44 deletions(-) diff --git a/modules/tracker/rbt/test/catchRBT.cpp b/modules/tracker/rbt/test/catchRBT.cpp index 6b048c7bb7..1ec84ab754 100644 --- a/modules/tracker/rbt/test/catchRBT.cpp +++ b/modules/tracker/rbt/test/catchRBT.cpp @@ -59,50 +59,49 @@ #define CATCH_CONFIG_RUNNER #include -const char *objCube = R"obj( -o Cube -v -0.050000 -0.050000 0.050000 -v -0.050000 0.050000 0.050000 -v -0.050000 -0.050000 -0.050000 -v -0.050000 0.050000 -0.050000 -v 0.050000 -0.050000 0.050000 -v 0.050000 0.050000 0.050000 -v 0.050000 -0.050000 -0.050000 -v 0.050000 0.050000 -0.050000 -vn -1.0000 -0.0000 -0.0000 -vn -0.0000 -0.0000 -1.0000 -vn 1.0000 -0.0000 -0.0000 -vn -0.0000 -0.0000 1.0000 -vn -0.0000 -1.0000 -0.0000 -vn -0.0000 1.0000 -0.0000 -vt 0.375000 0.000000 -vt 0.375000 1.000000 -vt 0.125000 0.750000 -vt 0.625000 0.000000 -vt 0.625000 1.000000 -vt 0.875000 0.750000 -vt 0.125000 0.500000 -vt 0.375000 0.250000 -vt 0.625000 0.250000 -vt 0.875000 0.500000 -vt 0.375000 0.750000 -vt 0.625000 0.750000 -vt 0.375000 0.500000 -vt 0.625000 0.500000 -s 0 -f 2/4/1 3/8/1 1/1/1 -f 4/9/2 7/13/2 3/8/2 -f 8/14/3 5/11/3 7/13/3 -f 6/12/4 1/2/4 5/11/4 -f 7/13/5 1/3/5 3/7/5 -f 4/10/6 6/12/6 8/14/6 -f 2/4/1 4/9/1 3/8/1 -f 4/9/2 8/14/2 7/13/2 -f 8/14/3 6/12/3 5/11/3 -f 6/12/4 2/5/4 1/2/4 -f 7/13/5 5/11/5 1/3/5 -f 4/10/6 2/6/6 6/12/6 -)obj"; +const std::string objCube = +"o Cube\n" +"v -0.050000 -0.050000 0.050000\n" +"v -0.050000 0.050000 0.050000\n" +"v -0.050000 -0.050000 -0.050000\n" +"v -0.050000 0.050000 -0.050000\n" +"v 0.050000 -0.050000 0.050000\n" +"v 0.050000 0.050000 0.050000\n" +"v 0.050000 -0.050000 -0.050000\n" +"v 0.050000 0.050000 -0.050000\n" +"vn -1.0000 -0.0000 -0.0000\n" +"vn -0.0000 -0.0000 -1.0000\n" +"vn 1.0000 -0.0000 -0.0000\n" +"vn -0.0000 -0.0000 1.0000\n" +"vn -0.0000 -1.0000 -0.0000\n" +"vn -0.0000 1.0000 -0.0000\n" +"vt 0.375000 0.000000\n" +"vt 0.375000 1.000000\n" +"vt 0.125000 0.750000\n" +"vt 0.625000 0.000000\n" +"vt 0.625000 1.000000\n" +"vt 0.875000 0.750000\n" +"vt 0.125000 0.500000\n" +"vt 0.375000 0.250000\n" +"vt 0.625000 0.250000\n" +"vt 0.875000 0.500000\n" +"vt 0.375000 0.750000\n" +"vt 0.625000 0.750000\n" +"vt 0.375000 0.500000\n" +"vt 0.625000 0.500000\n" +"s 0\n" +"f 2/4/1 3/8/1 1/1/1\n" +"f 4/9/2 7/13/2 3/8/2\n" +"f 8/14/3 5/11/3 7/13/3\n" +"f 6/12/4 1/2/4 5/11/4\n" +"f 7/13/5 1/3/5 3/7/5\n" +"f 4/10/6 6/12/6 8/14/6\n" +"f 2/4/1 4/9/1 3/8/1\n" +"f 4/9/2 8/14/2 7/13/2\n" +"f 8/14/3 6/12/3 5/11/3\n" +"f 6/12/4 2/5/4 1/2/4\n" +"f 7/13/5 5/11/5 1/3/5\n" +"f 4/10/6 2/6/6 6/12/6\n"; SCENARIO("Instantiating a silhouette me tracker", "[rbt]") { From 2b4106bf017ffd2dae0c63afb23513763d9083d4 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 4 Oct 2024 16:00:38 +0200 Subject: [PATCH 061/101] Fix wrong indexing exception --- modules/python/bindings/include/core/utils.hpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/python/bindings/include/core/utils.hpp b/modules/python/bindings/include/core/utils.hpp index a64faf7682..baf24cea97 100644 --- a/modules/python/bindings/include/core/utils.hpp +++ b/modules/python/bindings/include/core/utils.hpp @@ -158,7 +158,7 @@ std::tuple solveSliceIndices(py::slice slice, unsigned int s endI = size + endI; } - if (endI >= static_cast(size)) { + if (endI > static_cast(size)) { throw std::runtime_error("Invalid slice indexing out of array"); } } From 8d0a4f25b60a8ee51d73fa1d5db6768bcc7053d5 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 4 Oct 2024 16:57:57 +0200 Subject: [PATCH 062/101] Update border in ccd tracker --- modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 0eb3486cec..13dd062128 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -93,7 +93,7 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr // std::cout << sp.j << ", " << sp.i << std::endl; int ii = sp.i, jj = sp.j; - if (ii < 4 || jj < 4 || static_cast(ii) > frame.I.getHeight() - 4 || static_cast(jj) > frame.I.getWidth() - 4) { + if (ii <= 4 || jj <= 4 || static_cast(ii) >= frame.I.getHeight() - 4 || static_cast(jj) >= frame.I.getWidth() - 4) { continue; } vpRBSilhouetteControlPoint pccd; From ce8630945a7eb34371e982fa0aedc4e5535a02cf Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 8 Oct 2024 12:45:16 +0200 Subject: [PATCH 063/101] Setup trampoline class for visual odometry interface --- modules/python/bindings/include/rbt.hpp | 2 + modules/python/bindings/include/rbt/vo.hpp | 49 +++++++++++++++++++ modules/python/config/rbt.json | 4 ++ .../include/visp3/rbt/vpRBVisualOdometry.h | 18 +++++++ 4 files changed, 73 insertions(+) create mode 100644 modules/python/bindings/include/rbt/vo.hpp create mode 100644 modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h diff --git a/modules/python/bindings/include/rbt.hpp b/modules/python/bindings/include/rbt.hpp index a3c1b127a2..b918ec0826 100644 --- a/modules/python/bindings/include/rbt.hpp +++ b/modules/python/bindings/include/rbt.hpp @@ -36,6 +36,8 @@ #define VISP_PYTHON_RBT_HPP #include "rbt/feature_tracker.hpp" +#include "rbt/vo.hpp" + diff --git a/modules/python/bindings/include/rbt/vo.hpp b/modules/python/bindings/include/rbt/vo.hpp new file mode 100644 index 0000000000..50462b1fea --- /dev/null +++ b/modules/python/bindings/include/rbt/vo.hpp @@ -0,0 +1,49 @@ + +#ifndef VISP_PYTHON_RBT_VO_HPP +#define VISP_PYTHON_RBT_VO_HPP + +#include +#include + + +class TrampolineRBVisualOdometry : public vpRBVisualOdometry +{ +public: + using vpRBVisualOdometry::vpRBVisualOdometry; + + TrampolineRBVisualOdometry() : vpRBVisualOdometry() { } + + virtual void compute(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame) VP_OVERRIDE + { + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "compute"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, &previousFrame); + } + } + + virtual vpHomogeneousMatrix getCameraMotion() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + vpHomogeneousMatrix, /* Return type */ + vpRBVisualOdometry, /* Parent class */ + getCameraMotion, /* Name of function in C++ (must match Python name) */ + + ); + } + virtual vpHomogeneousMatrix getCameraPose() const VP_OVERRIDE + { + PYBIND11_OVERRIDE( + vpHomogeneousMatrix, /* Return type */ + vpRBVisualOdometry, /* Parent class */ + getCameraPose, /* Name of function in C++ (must match Python name) */ + + ); + } +}; + + + +#endif diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index 08efe92ceb..1c595e35d6 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -264,6 +264,10 @@ } ] }, + "vpRBVisualOdometry": { + "trampoline": "TrampolineRBVisualOdometry", + "use_publicist": true + }, "vpObjectCentricRenderer": { "methods": [ { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h b/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h new file mode 100644 index 0000000000..9a89021331 --- /dev/null +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h @@ -0,0 +1,18 @@ +#ifndef VP_RB_VISUAL_ODOMETRY_H +#define VP_RB_VISUAL_ODOMETRY_H + +#include + +class vpRBFeatureTrackerInput; +class vpHomogeneousMatrix; + +class VISP_EXPORT vpRBVisualOdometry +{ +public: + virtual void compute(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame) = 0; + virtual vpHomogeneousMatrix getCameraMotion() const = 0; + virtual vpHomogeneousMatrix getCameraPose() const = 0; +}; + + +#endif From 4b3a38a8de37b8ea814c0aa1b15d03659c00152c Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 8 Oct 2024 15:01:56 +0200 Subject: [PATCH 064/101] Change base settings for dragon, init image --- .../render-based/data/sequence1/dragon.json | 21 ++++++++++++++++-- .../render-based/data/sequence1/dragon.png | Bin 0 -> 527970 bytes 2 files changed, 19 insertions(+), 2 deletions(-) create mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.png diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json index 7808f7c326..7906f3ebf3 100644 --- a/tutorial/tracking/render-based/data/sequence1/dragon.json +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -21,8 +21,8 @@ "value": 0.1 }, "sampling": { - "samplingRate": 1, - "numPoints": 256, + "samplingRate": 2, + "numPoints": 128, "reusePreviousPoints": true } }, @@ -56,6 +56,23 @@ "h": 8, "delta_h": 1 } + }, + { + "type": "klt", + "weight": 0.1, + "useMask": true, + "minMaskConfidence": 0.5, + "maxReprojectionErrorPixels": 5.0, + "newPointsMinPixelDistance": 4, + "minimumNumPoints": 20, + "blockSize": 5, + "useHarris": true, + "harris": 0.05, + "maxFeatures": 500, + "minDistance": 5.0, + "pyramidLevels": 3, + "quality": 0.01, + "windowSize": 5 } ] } diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.png b/tutorial/tracking/render-based/data/sequence1/dragon.png new file mode 100644 index 0000000000000000000000000000000000000000..06d12c78e586f9dd70bd78b5fd6ed2705df6f491 GIT binary patch literal 527970 zcmeFYbx@p7(=NQYySoGr?kw(3&;*AC7I$}d3j~70;u_rD0|_1o5L^;mgZsDnJzn2i zb?U7;=f7unDfXV}zNY)?p4pwgXJgdW41< z_@$opd~V93)B3GCiQ-jVZAf8(y-9?ijIaEvn0x^@DvErtTnMQ-h`nW1evz!EPHJ9&-5~ z@4{`QrPURsrT^g&)Qy~gWKo4d3G!hRt&$RL@+0c4qypd%*%IJ93x0uAIf1?hXZs~u zRudgFdt#_vfB*a8%CNY`8qAtd>RXttqmAM{TKZ=W=BDWLjW(*&6Va137^$kSyp0?% z)*WCAO+~JB69TweWSVGBOYHPaJxEG1ugJ)PsK0-A+&Sy1TTmiQvnh8UBQB%vYF)HI z^mg{!+zT<6@Q>h+w>jPe`DnP}u0}3*32t9NAy#tn_Lg~qQmkpdy8EEF{JdK>TjiDe zsT@BI-wHXo%vWN}w=)KT+VX2z-Ew!BG7v!AB@lFUqh~5p%xI+_6tP~Sx6?;U zlB!_k5)tO|B|RTEg3dY(8U^|G86r|7Ug8{r;$cFJ@>iRVPtBJdA%JJA4W-k2J2unn zluOHZag;D&%YDNh@3gLi$0$s1E7-{zUftQC4%40m%B`m&MLLE|XDu68QI%myq;)8* z1CXNnyki;`MAs;ej*r)Qa-RbMx8<%YK-ak`XySR>Kod+?RRw77O3OGrqFgOi(s zo0|X;c5<+^#nV* zzxsCw3-f>KJA1g=|K*N_IS1Gt>;M&YgO1AeA4AG3s;d7};|~Q^HV)2zX+g>U4@q|$ z%YTveAGZDJ`OBSuHw3EwPu%~I{)g{>2}7k+Re>^2<{p2{Q<{WCt$!pYpm0{GWk zK5lMvJ{}=HHjn_fB^xgnSdb0G3F2WBw6GKebDM+AKp@V4gHm*Ka|bz^ga1H5!P#w~ zI0Ae^7W_h-d~9HDeqJ_S&>sjcE;BYuUUQIzAit#`6!qUA-niO8vl3+g?^gYRvVcPI z2$~BD3h_V<5fp?%@pJLBf%q&e*!YDkxdhC4ECq!?ynjJim;>dUTpd8raN0P4tiT-3 zj#htl{2?4DsjetW%gz2b!~begw+FdfLKQ@5RcstRy#FPtZQ}seatHlklS_bGkVl9c z`r_i|6XNCmm(W|Vs~a>E|6p=)vh(o&)$=DTK&UfNVnKiM6bkTHJJc7Tv@00o?&PZN zU+s8^{xE z@t2)YtiN@cTZ0^}z|hs>@9FxFcANhp6?iRqdBK8~oNNMo(9rSnfGpXBxCB7ZNLmPj zEV#_L_`rW7@1N*yPL}RoAXl)Y6_iIPSJ3qQiz{lTzXHYlpSE~ega1SUN*Eg#C)+;> z%VmUuNe4W3I8{{{!7>Yih=)?@PD)G{~BGW|JqK09iiWXyr7#U zfuRs8=tc|COj%wA@bc%G-(8jhZ9#EX&~pO-(D45J!2q&yh@p*0?ux3iNPDQr=)yca zz3$2Y05w2SMpD~*>8RT%g;mj&!gEEGyGs0IrJYB(5zZ8G3?a=BVEHq}f;KSkImcR# zhjgMCNi>=_2EQ-D)2ru1-s>G$uI;dY^%ZTE-?JnUI=|oPaZTlT{F$?O;G|1OcX#vp z(}|aNKzEO^Np0=I!r|f7)xGaOE{RMnpL!pCh5x5MsOYZ+yZ+06N&mZY?-@(;TmP4* zn_91}e@Fb6%+|-IE;Gy9i?Ai7JfUh-v)@+>r;|3q|bSXkvR*zFf*wsYOV_OZSU^GAtpY{Z)|D z_tR2rZ8GQc(`i#qEn-rAEeT{9_YKQRl0JAs#AG28tq`!@*)QLyDe)KbxI4(H4GaLA z%eHEx2!jk(zHaNT&gWAp`eUTwDMIu3^7#pn@GpI#`l< zcp)2ErTRs!noI^hz2%{~3GurNMEe5xw5#`&Wx#`tqusoYMH~9zO1z3>Xy{b_(j4vK zsrVvM;Ku3fwC91((a{lRNkYZj8@N3?2-k9O6SQDRfW}&5pwka)LM3Hgy;;F>-LYLk zs%>D>D)%m7!}2`mQFsUV>UtM-``K`J7yb7ktLEcUX{$qX;zM=ydiplcW=~J8$vApa z?d;=f1j2Z{5m|EiO4IS}EaW*n3L+K~?c7S1fgE&0 zw7%7O+B0Z%Zq~Q4JVH~F8TTPq^iN!}8C!+f*;nFT1@jFf#GoK3#de509F$0rHgT z`YR8Q=$gHlww}7?OZxDO!wct9>U>S4>mM(%ol->u*$3(o{VA?_+V9*7cBX==&pXcp z9}+^M{mAX7DY1%E&%0jbRXUvKJUzU>XL!Ry&zmp;9F%p_$AT zjH`%0q=Oxt;$aSbOU5K7eo^}<8a$$(ca3v?z8mfD@axCu&JE8++sc&O(E~$o(ClE= z!Nc-Vgqz<{P@*Uubu{wZ3-8&Q$<@G@46K*Z(QezRz!p`j)VfnRaBrgR($vhL9^s)Q z=)6m6;r{+ z0j7Awh$@TLj4w=xdb~u*zMmQ!I{k<;sG`Ak`YtX2TPXRyvF`0t<0~;2 z5v+(2JFb@pvpfNOoz#YW>}h>zI}CwVfqcunpyjP~2!aZ{nRGQqs3BUY{_C{pL7$0A zR0j-(5x0;)Dd?+C`C^ckuv_Pa+AO#fP`QIdo?-&9fIl+7 z+KED{2#KNL#HVGgN11#;5bt>*aS{{0!>~o<3e7P6h*yj~KX6-h8kjI8_JEEB5!>v2 zTzH9fu(O`PQ-P&*(L5Vacetf`d3SMTk+i|2Ts0G+O|22m&dZx^X&CU z#MVQMadfA3R`2`EJ(xZ!;wI))vS`z4;`O#Ofn;G7*D5k-cND`b>q0YU5X2Hlx2S|3kLC3?P^Kn$-8waU^CQTt< z`p$~$#ar{{9;{B5&UUGKNA@?n84=#UDX-picWi5K?{|9H;y9lWSl?J(Wdm&Zi;dh= zyb{VV*8EE2Qn(*vO&5!JD`_1`dT3eONpw3F>gBW^`W=myyB7;uQ7kXhdLt7L!`6ee zD;*zU%G&n2HA*^HaXP*ag_o-zJs-NbwE$Fte_g|4Oqb8^M4`BeONfwY*5R6l|FRUK z!?#|341Y|*L*$Dc3N==-4<}L9yYK%PV?@YjNf6AKnR&~F7K_Y6TImBjRdVSuGLBtf z+=t9l94(HNFeR|=f=Qu4PFr-Aq7be6^yGW)fNndHfiLKfCC(o+yCf+YH3*94+YU1uqJ za^tN>JhZYMJi-iHDGOsmNi?3ngTj+Mf|7^pkKugk99aQ}^cBFo>DvCteNQ@U&e2C~ zO=<<_Cxtl;V@YGCP(WFGkuwgVv#jG%d7{Ka{wA`s`~e{hE{=cr)c?eC2O)w)0e&3* zS9B2{>NAtbZ;kp22tsDB1&sW;Na_~J1J7$sawfKT+gPb{5!*2A8~>5f5aNu_?WcW| zWRme41sOOR6-2~=a-`II=RWN5c()bm>pXJxSe3iRsF!TXT(ykz#_^V$+B%Zdy7uDY zRNcY6(~YnqA@W#7E)X7ZjVTNQLTUwke2oiNGHQ7AI{2`e&uc*cw@2;K>48A`m8pPn zba?E8yExTdt++P&D6`}k^IWp{&%k0!3UyvB>KY{8u%rV7PBcN5R4vwYk=6uQYV&-Q z>2Zk0vne?P9g!NYgu4Ec$FIDZk!2e1aMOGgCjlP!@-*aEKXd#=NI zAh7cuAt%)%<~UN!_z0yhs~v>u!B@?17uU$!LWr8KrR1YC>z!dZ!V5K`ixAKDtdz_- zu&eHc8ZtwFgak0i+66}9$Vb_9cap%Qqj>b@XKrEW{wS)*8-uC6-cM=W#uAK(1Did7YQBJ~wej=-IX~+cmTTsB zcCcQ?lZf;(2}p42x%=$IB*5CrxYE-;5=A8*OyPJzT?zk6N*0bt60`w%K6}}EYyv&p z!SudBp4sL-A_PEkw2}xCe5qS7AEK$bF@Ki&!OOuPSchQ82ED`0;KwJh*OLL`@=>Iv zk{OnU7B+`GN=goh!laa+RWS7dLs_;sKLrwE6Dy-!8WJRsjy^t2ki{~?!qI9(zW7vO zq<0s_6d{Zcr^H3fRGKZs+MJ*UAp%{Tdr*=F7L-fqCnY$);Tk2?al*JHJXqaxb;CHGn zs>UgN7XSOQb2wZh?($IcUJhmVAQcedmu8=S3HuQC`x^w3Xp)F0ujwxAU?E*lsqR-- z5q0huenccwS{GhhtvYoiss_KsCdA;BFR>ud3DRX3B6r0XwfFe@E@cWnh`h=1LrH~h zS+x-ev_YtLsA-c1 zD9AIW@-z1f9O}rTNnj-tPNGh!knTi;N?x0Om7_sBIOPGbUSg*7CA&GGz77;?1P;QA zcuh8+QvIGl%1(N&PwWQ#Zu`ajD+W~?<71aACqEO8b;!s#@gU3gC&akXyX-&BE&2tVPxq`}*7Csh69 z>4DWK;^c3s@*t!zfj6K92sHxM$2+C(0(83F4k@INl7(#HET!2rSmmOo%^*G*yr=zg z8qKK)5h3~*)K1~lKr7&|3`X$h{ID3AJOgZIB}(s7M045ikr46c@R1Suy`IgNhixj! zH*bvH;az3UO}QobW{gR$`>Ko|Ik`x6u+TqkeAMtIB#I6f0`~0)Sbq$aLf`g$oBJp+F9_vIiXO4)LJ)hp4$vQ2Zm{)RK|M+@4!jGA?Psmp}!jF^?$K4 zw2fG)xqVuHqNI)Nekj9U%NvGUY_avcl!4GaB^2^Q~ojHwp z{)yy`|Jq*!{=UGvUT?RE&Dw?pJH0$wl;%1-v1q&LD6p1eQ39P++Z1mgW3;+J_8}cJ zMhOmN7i)xJ7Hkct9AoT^Zz^-^-o616f6tz9w`G2XW#fYp(kE16CXyY9{PxWyA1u7r z&pictm13y`Kdu~MPxdsq-$jySuLGWdUm5VOBKvreAm`+~<+c+v6xw{)XxgODx7&XH zcRxheR(d68W0wVP7NMS>(@eJ>A^TYMp*8m?KLrv6XF8j?l9n-md15gsS4-i(v-cK} zqh%BmBGUmQe+;}IaIV#G9xK@JiRtvq)xCSa9~XV$jpZw6_cd&p)fyQvlrtc=jL-`1 zZw)$U3%tl)--uiGTUlQXtCp%Rz~@L}-I94B*F0_dz31)|Vk-}T>BC*n4(mA>O?`FL z;F~n)$i;;)cN-(LXp+#UEOa!;%0NiS>(K$34dS_m|5#^3?ml1f3grh{ z3L~l{3G)yq=8}acT;VKltZ3-Y7BkyzzG`k|~nE8P*1UrNGXBNwPw)l76%C9X+C`=;KiW(_|lI zRAbV_&A62M74eiZ$y5w%9~=&84#<=jC=;lr`xbQG-qT}wv^p-q7n~e%?{P!iKZ8>y zw7FA7%Mfcid7&xCYO9qauSrUQeVECQCqeGA>N}8gho-lqjDuBo`?Pr=Uhpn=iAf~e zZ8g-9)Tdm}glO9;K-BrCQ0AhY)hA~OvvZB)F}}pOCK2;csn-CG&`OL-wFQT|yuB&+ zxfM7Zdf}vO0^W1@ay_@N)>CC|yYbiqxY`XO5%lHlsz#NCz~D37n-coLfx`Szp2XoF z)B|n9TbFWV32J;{N5ROT6v;bJfI!?n0KpRp#Wu%DCwPgJuC{h7X`OynBC{`tmFRtT z9z;MCgHV6`7xRq}K;Gq)^t3)zw<7v!radV3^i~LHkOnBIS3|D^y!0KaGrIywT zk?bBUwqEpzI*E1g3iuXO{jRx$1SKUylc^l%cG@?7tV3 zt~(W;%Td}y>03++3)>ITbtD!SeU5(F4tkinMQ^>mzX?KV__>8v&N)qt9fIgZIu zJ{&eq&H-Q_Utb2szhvW!Y_=o(31d|xoxnhJ8fy}Wgo z1`L!!KIN&mDz|i9QU}l?&{=m>^W`%;{tEBCzkhdovV3~B?DPx^CEm94BB_XMLMo~z z+>pTcF?83;_6H^f7QoOb$jYMbU`nP4xv3JH0snf%c9Wio!`jk6sPaLum2Y^I7?qV;C zF1MlX=NwlnhjWS5DnIp#8VVtExuQ0=+A*V^Eh)p?IJR0Pkjs(5l?8Q4p zvM}tfM3PS#UMBYhQ3UiNj+>_jsRA`I;=NiL?)lS_s#l z@+nBC>g*Clc~w5aaOjRQNnmCHRVsSXk%1LWxz}Q*eS}%Bl&fttE6OH47GxG866h*7%YzLk*I6Z&&dZ}l~)qK;6;Ro9Qqa!RyG z#D+Hw-aIQJ*v2+I+y}5c3w?YFur0&HbkMQGz(+9h?7ETlEBnT$@vP#0<87iS>CDCx zS6gNzDt79D1cGUl913ZiGtLG|+Zw$MI;%9r#g1aHk@c62>y{HeeZ|zI!#d7XM)1%R z#>Vtr@_b$K)yw+;BSf+ii_k6zq|R<|a1bu={u#-Tov4XQJXEJ1teiSF_ZgBDxTTi; zJ8e}*Vyi&MEX_K^W!I3Wz7?gL?7fjRon@?m)5&?ZNl-#%W5S-&WiHJ`e?y+a26!M;WG9_to zCZs8g`+-STY=NGMs`6eYBBLHaYV;{g`$UYzb9aWO(%ZW-tlJAnP+z)Ns0ZliAu&6f zOeBY@TfI7v`#8iAR%9mDEeE=La(3+Yf%SL4t zaVjFT@B=SFqG@OBRyIe=@-@_e94%^AHMwd4~R?nPV)wj*Brh5 zt?Pkt9P8cvPfuiJ+gV#OaY2@@bz_3J9|--r(`tkX6Zg3E38y55JrX?_BI6yF^E-<| zB1ASXSF}uz`cOu3YH>%6i8eXV^s9B_omq|~WTQXV;x*l!if9-_?$Dk%C3rUt+&w8C z+cw|3y*=zuX_CowW5do+8rt@zj8t1UbM<94+RqRHWx*z@4C8#~jBxpxK5=v5Z=@IQ zV>P?IL_2nASo%{VS1nt%2mYXP2f^#P8#iGq&c+?J7MJP0on)0Au;7<_KE+iiHExg4 zW=KM!g6(jJgmAyOa%D|X<=ZZ74IU_?9!6M}q*>?Rt-saZHM)ZQ0vwB7Fd~QgnP(r2 z86R!ZWW|Mka|Km{K+Uz#y)~Nsg%16Z>UP699S#N0h{qI1^H{rS2Iwppv? zSjY$mX(||=|B2kt3iTOZS*<{l+q1E-#vwlE?weuf4gQ~?B z=oW=L9CAZPS*;6AJ+%leVWNdo`o^ihix(*=?;T>tWnofcU}LzW%q2@~k4cHTh~OQz>beuLWUKsqP}qq7fOiaL#gqdvUgpM+wP0 zyV!=ic7V&=dYU@b@Dj)u)JhmKsH+0~4CIxmaA{l22__nVh(89uTtZ%6JwNrnm^i zQhAe2w1f)B!HtWK{Or0+OOl-m@0=^p@KoB_B6DZjjLbwq?2zt2*dT$bR zg`if3M|Ul*m;q;ca-?@Ui7_GRw=-7;gI;d?-eg~GA%(#q;QgGw1{KG%VV_0@9x;t3 zn8=EhL`jcYVh^LMalnwgIwz-(@M6ldDE+n3f(2=xA`LJ4lC}s@?t}~X7o&H(fkhP7 ziTh07_dQ)UCJ~Z4k6qrAt>%XsX{!*Y@{WjTA-!S(yBpy?(Gk`S(^wK-0uNShj=ui9 z$WYaJydn8jx%Z)c6vNjX$v1wWdd%3_n!G+C^B(Ah>A$Cpic})K-D9wTL&F>)_3pFi zTq=JGni@UpWlX&s5*pe;>(GFS=A~(D!vI1Bx)r6cL=h|X-hZ40$k_8I z6;oj5Oq5Yy4q3WT=3Ro*^+cdlIB45a|H*Wl^X*-ZrrHU^VyI^Aj4ZD*K8KjNa2l~u z^4+tZx)q}8<>D|Ax~gi}p>f|#^6@Y+RqU&D__O|DbwMVFVmw*rpV1YE&L|<*YFxva z$+;#wTdQ*wvxV=t0;4YBf4H+~pZ3lH;Sm#^B-W{ALWC8xT=&U#lDlN+S-W&RU{tAs-G7s37W>6Ix2YNFg-_i4&NDjBUZ-JKL^@8 zKVGM@{G2k)=rjc)IX2}-44P%-5#ZFZhheVZD>Vxc{_ZV}6`ibwhhMp>y$f_ewOK>qSVCzJV{dk~5s`6N}acJ)@8`G}(QnP_g%yiuA&MI2kg;=hqQ*W`(?1G&=dgv9PZa|=g%)!LC-{w z&+E@{(7XDdVI85n9R^bUa__C?)9sCH!FzgMBL;M1)PuK!snq(9$-%$m7MO^q;oiU7 z*iYPA8Apt}?nxq&Hza4n{@{$&5N3cZPd|l=8H6LjhS@CHj^9+r@lLj_k&}hR8?5bE zUJVNJ9+=&Jm8V}rRHj{HlbPj?nwuK{KXK4M91B;Wv_RM$khJeAgH?m(Pv}-U^S;x!K>xGl}d)PxC&$s3Md+`0w zzt@5~LL~nb!q$3&*0DIy7DVz;LuV#ky%-}l zk-a38PMYG)?$wicJ)2s+>sc)Y$wbJ?eywu_%UDrdecWB{20uQ-qH1u_ zeV11)`5N5IPGjPPq1SZwF~Di@YuXPbp-US{0s_LM62AhXJZxA5K!~DqEy#3w-|{of z0B zu6}*NU9hCNAa$brP_`eer+cNJT6d%1UO*0kp?X#70nY}NU z5Iv(562`A&%3WDmhrrug)S0W_tXR50{j_)qkH?ZsNq^ zXxU$`6X=mXAc|k0S5+}n-5=iE-u4Z~yTzOVkJ=2sCn8P#*9}U zXFqpFWTaT#y>>s7W(wVzJ|GdlSC zH;kW0`YDC?_EzLw)Q7am9(H0$6*bDwQ#s-_kX)y+8X}wCi(nmf%zIOrmpv*g?`R*A zYA18v)iuT5Bzl)2WL+nYG)m2JJD$S?TNii~+mPtlom8rXZ-sN0-I@{C(;;xURT9?3 zvF-WO+F6j$PmXl&A`H4w%Z*td;>**=2~N%kR&?unepdW6#-#p9$a@(W_CV_hqS@UEUAjm%}QJ{o0ja-+(`G;IYjnFgZ)xN|4Ay_2w6q0sQs?gyLVKB&XY za7GIe{0h@pB{fa=)=x{sk&H5r-MhoS&5-5#ph+O1WvfMJuC$z0tv`ej9&FpL@79z7 zrsF{ww`^$7+SuPmw;br45|_uj#FVom(9UJ}zOi7(hTS5Ow<52;ZCq&A^MSB&p_>e* zSeBEsM_ynu=R@O9{6X?N#a7%`PEQ{=%kgU?lWENlUfzh{vaoN-ep_k4v~Yt@y?v5c z35ZSFIC;iEeUSA3G36~HzNu*By`UhWd7o3kIlez-z({6r>?n;qm+nW6a>(vX`-YtV z1I4cr=UtcL&;f>A+%J3r8_qorhaHSM$I*Gh?YiVS?~r0tnFM&OX;|(0zoNyq$;qc} zxno;SZw-fidY!gR))d8q9^ZQ76*AvheN9M)gRDf>Sd`)%i%0L3XK43XQ6AJvzB`*h zMm7D#XR1NU+od&+Gl2Shsz@T`;^k>6R+wB#JqI;PeHQM0blkC!DhjG}8aTR6STq|; zLEs|4zL8&jtsV|Yj5y+< zTu*3V?Z(}s5gYTW!K2eT-bbAoSjN10WC@Qq`f+N+=4X#*TEi`*F)Tbkpg2#q*iJIz zu1{t3g0oiK;g`;nJ@%$rZf?H|n)}nn2Oxph)CYsvKrwxL8Kn+_6{Bfb#b#3$T^0E0 z+cQU^+}&tBYtZyM4<57XMkSyB{bjiL%lRA7`)c)q=Vv-z)SeTe9a&yC&(6qsx?OC~ zEPa7NlDQt8sD8xGFW%~A$J0W-a^_umNW)=bpUK&igcxW#axPBG_JY*EOZSeXfM9mc zac4xEzi1oWyvx9VR#WWziD zwXRqtRfYN-6edT8u5EGXt%?WY;++r>H_B)?8bh=a{^<5vv0MGps2{qgv%)LxU~+pU zo>FF!0-3;)b00m}smq$XJ3`lMG&^EB5~7RLlZQV2n^wr_9V`ccYaNBA5myt!|s)RyR%Wuv(KG?7)*!EnLX{e zIS_uVzI(9wv@a!w7)HeLEW})+G8kU^)1Q6n3VLAfqj49W7DV9tgeI-kS05cZM=Bd~ z($a{x@&c?j>B3Z*4)zfmj|`Oo2>;UKG)5X1442B~Dv5pX^< zHW}%&ilV7m>r~DsT|WLTkE8_&r`erMn|x8V<7_Nj7hCXbMlY-(`qQV5VoNhZtNzRaeasG5@p^bLwRsp5mqzip-%4dd}UqQqxnEjYa)|ht4iktZ(L!E zXU1z<(WGVGw)x~rr6rsc5hhiPF3nx-*Z5Vek|e?%2op^6t{wX)NzfCW^$xeU?w^k* zFbH9x-@zngZtr#>>VtA7qtp3t{ja6RK8GvNVt9pQMGNYbe1SEU{NyDWvXh!tTv>L?R*4iJHq;ig=W;{`qwr$GKy7 z|N8TZ*X`p3N*RLnvJdVI<~vr@o93UN3_N5MNrF$pxPKsWe?&I>Cg~5bA8c_jr_^`X zUFmELg5v*_c>hQ_xl{PnM+Q2^F2;tReNCk zG*%so-<7`;X&<_w7AJ`|w_YrJEzL%D0hrX6^wRHa98+ZBo|p5tM78ZXc*3kDUCY8P zPZL9Rt?ivZwzSm%g6M6AI}3yAg=RFdPSxS0rNQIL+~*J`Go_x|)o%B1S%wp-nL8VT z5gc+-XM34P91wKC-X>LS3KdMWzOR2T9WP!vbt@XcigH4-Gh4E_wRhY;t*?A)tjP zMqFErrX4}GO&QltPUEE~^)<|yB9|w8khSg+0#Rpr?BymC%Lu!+ouj7=`e1UFkE+o% zrsXljAj!S(Xr(MB(uB$_bXfWHt5teT;YVY0YQ{0;Dc5fa@*(t@ZEq7AmsVZeOs3MV zbCu+OZBz;@GMZEMG`+|Z1z3MfOgr(PUK)RU?`Ei9376(USv)3v;l4_dvnvCB^pu04 zkcbee;-1u60D5he@E~F5Yfif~p4mkgd@{0nf70aTeNxJV&dRq^5XNmu>{jo7z{)&< zh&Sk#{r#e`5PzHq$=M;+kCbPPF1FaD!SFP(Tm}?18K7poK+o5k4qaU*FCAxzL%)=( zkQ9sIMkWm(&s63_!ed`?UL;{5(ka4GyvRwsu)hDn#`M*0A=Rg5*Br^8Dp`o0XW^;= zUqMU!^|j<_Gn1Lnq`mla6Pz~Y$`FK4?&2&%I3xF+Q`3+?LzUz{rh$uAe?ty+CZ|=L z`&GCVij0g-ol`brrG1iup|Z26f#6i;P`bl?Aw|6nI(D|>;3r=+yOp5$20Pb7I_ zqW4|7&hY0k1MyQ%Cv^p&<<>7qYu%T*9g@~R3A)@Jl>9VAgi$fe<^yiec*I2ghq61p z!m5NEHd62nD?24(gjDUPC>EByIpvbiXe}$?L(T5;F9p{@dFEle_;6*VRvs4MJ+92 zhSOMVICLd$iqiGBX0PkX1HQ0=v<~BzUR0i#TXr0o#^Z-k)hU=sJ#);re2jO=?RQ96 zkgNvvg8B!qeF*Egq5HYWt8xzzN0u4Suutd4bE6;fum~CdO3oWW@#AUz5DCS2`VQKq z-Tbz*Rft?NaSnqcyP4fNeCuHXVL3lOOU(@Gv6|kHfH&FbC;kJ^?CySDZaqp~lF&Yi*n6|VbpaR zogjThGovIPQDNv&%ZEi-h$L!qg-6q<^Gtl17S#31+7k2jC00PcsWyB+G}oLo32_R$ zPT-QjQ&%ThiYfr-R~4d9#g?>FD+x@pzTIhizj%sd_K{R6qkz|qA>vRCrJ3*37JDVL zVcEtPD~+yYL`VPcd|N1e5*)XCnaQ7%QNJ^@5Qb@R#X|IiQ&QVl)$qI(mYq5eJZVnk ztInSuo-viy_$~J>LLg~lq%m}$ah)UWg39E*vjUzu%;9K?54K3GF3yeMK(Xx!VTUQB zbvo7pt7>JAv}||yUNY1s&!Zhxx8rHn-_i9oN_&Z>gKn+uWMA{2HGfjthV2m5k6%>f zQ+>(j!%8T6Dr}ecypKW%+|Rwr+?o$*E&j5fN>nn*`8##xy{c7X>b9vtqFUJJu1>w| z92Cn*ze79W{*nBbDFBCAytGwIpRu!4&VIV2%?{H^ysyYy=_(!LRMci+9B4~AUWde5 zV&aKX!jE*|vdfgD$fQG>0%n*F9dZkBY~>`eq2?uv_`*Q|ED>T3oGIRTxY&cs`F{MH zEmwi>)D1AYZ%Aqte(4B&NZKhz{Y);V3~1j=&KvWAG=|2K3kVl{2lFz}yF1}H{q}i> zB=~JShBt>A>>l;h#yrwY?!HK91jJ0s5-?^0<_6YQb+pIVH5T?AMc5$|>CbBP?dnp{ zY5j`zWnCNHAVyZD-+hB=`gOPPj-<2B)TyR-9w3E^v$^y9=Z690*S%%gk{s5XuHW?s zee48RS4}(NL%Z8rP*P7E9q7(4q-^HfqnBGGH)8^9@o=lzohd6gVPu2fYNR1F5L4dB zd!@%<#^U$0pslT}ZP$wyI1shMwG@XEv!GWBM=S5DgdxKcd3nP8CTOsw3A9@}+r|<% zZSU=ep19@r$Tl>G7!|!yq){0Jc=c#fN`H3FkJil~_twydw9L>q@K4y2I{boTng4AJ za(xd1`wz4w7LY_!59cdM*(wjoPyc{#{a zH7nkdw%tA3j>BJbQ7Dw`m$L^g?+g)6?va%Casazx)850-gF+IOowQHKMw~E5$9%J? z5yJBJaQkesHC=D(=3)Wap~gr~x+b*l*FiR1LpN^c}pFZc7(pe{tX$@OBi4BVTU$8kkojSh`^)NDun`dbQ z$VNqbqkGQf8@JTxtU!N%k&f8RU^LF2js~sceroCIt72=K=XjTw zXlTAzetpYFV zqa|`I?5ziC$^RaJznuZZ_aiNM0Z3ujUQp}>y9>|M6utwLV29H=Z`3b05D zsEq~s)$nC~I^wIii?v#v^`R*6NjFtHnEhBYW@+qxdN~<>aKgL1N4wLON*Wv-DSO4` zC}I*-WQ|shx0(4AG*744pKa5#z`*|G<;HEx>Dl4NgR$%c!E*O+`6fcMPS=Om0@uxB zKGhg959*mQ2k(*Kv}dFd-=cGfflIBkR7tsB;-$i+LLQX;*;8gqrjN1 zaq;Mqj~5^aWrHh7481SjP^;-Pq@AA?yx#}JDJUs;Hy+^ja3wkXw%JPU^9tfw#@xUs zE<)ozT9BFf)McgUWVT(tBq6?IuX04D2H~5X;x-Jn>H@yX*tg^^ud!2w-)P&>b;cMT z&6Dr9l14>f2Kj15e=66?H*!>iZVAE|mn4yFl9^x_iQ<|O=LkNAWP|%V*r{sxp`$jBRdRDI1@ELN4qJqU_TEDNRj25?D!l!i#e}8}k4lURA4jo%O zbFM&WlTIj$Md}FEznJz$QFUEOy1Cgo=hxtecB6vM(`<6lejB!NFDwUvYu=#jjxx1y3%lfW1mnBZ z3iHfTuF)W7%q#NDl7S7)ds8)s3xCEkuW}NVZ*6o*dbp2g=P)V=H(p+xc5P2bludA0 zSnm@pK1&Q1H>jUEJ|&?Gq{myaUAWhY8$eJUg&Sr zS;-wVS`7iMe93jpm?E~FcmiT6q{Und8a0+GQ*@9ZoR2LiR%q>Oe`X3EPk^J7r1A8%R9^n| z156#rj<$Jc$eJ4Ah`()flWQ7{As0DK`fs9k{fxZ#MYE0lwMO} z0hsy>V~r-iDI|vDbzqgX_Y?5#6E)^V!p`O<9^WDIfP#RehA3fS=lmK7wji7T{{z23 zK)>V|1dVv_TA9e3DYbQePGo-O22Dq6ckbOjbX#vC##)BUq(u(iTI;UW+GCOL*Bb(8 z6(HO>CtJSHUH?-dYCYB_bg8g3K)^sk@_C zPfkmBa>*o2o8oj55c$ll)@rAJw6VX`+vxF$<+R(JL=Ytd5WD_g-chj)JjD6?x8Rv&b?^uTrm35+Mh1OBk`dpLl0+n>U zMDhDPIqn5Lr>mv<0AOZ;TF}{oHtOKY=q~kc6OJx(M?2eg>}=bZHe zjH08f*1{-Zd1j}a2a(3m!Q^V$baL5Z&kQ4;(RI6c-CisrX1dy-?mZudYTb!zDhh>$ zA6K}e&Bf6*z;dmlF$rf_Lm!|x5OlfHYqSnh9b-41X;H4P>l$dvBB>{PlOt(@MQ&rS zhu4y)wyO@pbJl~3)9byZcW6E>Jo@lPB+1o z!I$r;hGDjn<`Z3W2yvsQS#%lCn*;P11q=1LYX|Uya$Y1I5^scFw-?+TqhY22v|5{+ zeQ6D<+R!^Cy*7a|3xN2t*eKY;1y#*nsI$YQAoiQc0+FR(Lz;k9l4(rEH0y_s^U0{i z%&wTRS>g<>-EO~y)GFel)^5mg{k?JzGjkv0TKC%HFZ)c6Xc&d_Yp1sM#pnRj#aufW z9h?KC)L0Oq?hQ4%s|iSH%&#If>}~h`DXBk3 zSh_cqr9@Hfre^rlCb0v#W^1OwF4U?r>cLxZ)_xsr%83 z001BWNklFZ#C=&tg5NyS zI?})lSsl3+FfNyi7g*KlH|x4$EuJ)&u=hQMgA$wKu?Y6&$g`FewiGOjU|Ga%uZ2(y zUCgH%9AwsT`2n~YYTI3?OA-RiI)EdJP5~|0sw2epyuqTAlU(MT<%GvrtQ=h4S{1F& zQ}TmKrs0z=-1H)d7cV&0NQ_%|a$62F19~fdI`C#H2}f(zc+6huGYF=Do3llfF%6Mr zaFcFPuC=1%0nuCN#S@ZRz4+S=?|*!ccYpmgE|&|03z!$kzB{Tdr$cg-6pNmig~rV% z)N>D5yhu>7Vir>ouqjqsaJdXCW~Vqk;eK7A`wo;9hKBX_CdB?a5*+Cjo6W1eNIf z$T_*WUJOeJ9aR-v7&kXJ`0L;PE4+RCw%c~ztb*-q-DIO5U~%6yx=RAXDJb+_D7!J(Q}ImikliH>Y8(+`*X>ys<#M@znNSkU zuo^bN5<_RBmwa`5A@1afqAq=Vm~3?ikFkA`X`7)Y;H1^15AlI5Qd_tT$$=o7rrb()w^^ zrh`{UcYjSvSn9NV-OxeXLTsJhX`#hnc&xT&o$*m6X8>t0@RGum0Nq^dq_)Q<=Rl{@ z#u$@5=x=PDlI@gojq}oNvzxZ)G)Z?8K6Ij|PUdWxPSaXVZHow_PTHjd6+0=LHfYbS zX&-3M5*?>3yu*2|O~YV$avG&@T`+A}*0sl%)H;p-*fYQ+fh3FhQ_PHo3ktbQqpG4M zJ0RxenNW9m)0AS+5S5iieG~vqb0u?LR%b0u_hF7bSqN(6M9y+CY}u&}{XA)C)WIla z@m#EpnSHHgC$hnqv2PUy#TIeB)g#R_*F~+)IB|`+|YSc%1u)+uBS`4nugVOfh`F&aW3c-xyaC7Q}hFvBRVGXK4F9yh|3uA!c z7@(MKPM&Nr^WeW+EFEB8VwuKu$AT*4p>AwB8jHY2N0Ih%@Fu%R#3VW&iv;iYRnyl zOn0XYV6G3*@awPLc9{%rpRIj0;3IY-+hj4 z`vKdwL9loM6LSnK=Hsxr>)%oe-hS}~zWnu9IGs*dMWC0b-lG2O?hfaN2b`nuFpA_t z7Cb#ZqB7y*$B)n!8iGVXwRN7icSP&p=!b2qRfWcym)+OMcW=JLci(-7zx?cT+}_?o z;1t@D^VFi7l3mh1NLajJYHjZWAe**6;PL!)#$GEL6dyi(#D|9m?E8-QKfL!C74dF) zv*7Ob9&c`MJgzW%VYjTq>RTkHv6lnIVY^)L@c0pX4ucKgA$4QfJxH!Mi=e8$Sh%Rx zptw+X@zV*}Ur4aZ8Z%smfeXjb)1(bJKrWNbzwb*((9@KjQEvvs@2+{ANNTq$cEE_q zDHTM0+XUspXWp2mPC|QJ&%x3MfafX!?lGks6L{jO(V^qe2s%BG!}``;6lcp_Pl}#9 zY%!sWpgT3L9TD?^DAKd2LV!WbHmMlsMn5+A3UdOpH3>ZIOLOLr`F zXReHEDF&a7(DQnke0XmEx-1U-)6mc`UuiVVrdg2TusIhI6gJn>_q%p9)SyHjsk!JH zL}EJ356f+TptemWQM2hncQZ_j>CmRx5;Jiu3cLXRY|`?k83fIacX?LCxx-4`=&7~l z-k8~Z&H<`6z($%36#RUl1G6V>x&fcfGsXvmjdv7$IoQ31u8VXG-p&P=nmK=(d@S&L zC(b6<%<){x^v{LFCERrnJ92cuq!FQ6`$Z53HFC0Uu5;YWnsYi@3~)WH%L!2E^fj8E zb6%&joKB~cYoc0%JvFdZY)P+9P^x-tXtW>V;vNM`->1`<)Epl%ci_!p=xoIPT;Ij( z!eFFTcgtkyV|OkT%?5QhUeg-V1$7{``I;#avl?wjt+5RaKk;x}wyHrPyz2aigrko* zv7u3dplj1S_ffPk(s3}Vg;b7EoAps2B@gIrKZDIFD<~lvje%Vy2cE_(fo$9Lfoa)6 z$kurV$7pwU(Ox{{*4!vUfnJPx!Q?k+Gj=yECA|6KgsdWMokTZ8CYFAM8#($EHU7UK`2Xs zZvHS;)n_R6!K|Jnr3k&%9jd^I1r3BPyx;o9S@{|$Oj@4Gbj!bUIg2| zb(BZV^;e!e5!Q7Ls?h>w#%&_$yU(9#6h%ZCR*y;DKy>0#b2JuE7)o^eWrD78QgK1k zhVOrTk9Y6h;kFbkrC<#g!@YSD&<;8c?gMRSA-c~@^6z5Z-g;N%o5W88t9{r%!~+kGgIXU zRW&!yDv%I?0M%WU6^FaI9`F6$1&`-5lrpNaZ?Y`^pfy+R@BAIKe~?Fk2lI>RQt;&$ zU*LcEhkwNJc*H?#M{ARRZ`lJ-MYdw1)a8>VaGK(^G<^8*0Uw?&sI{Op!4E(Dh!TZI z$|j*WuXz3H6@LA5+psm4Nbr;}9S-h|*ywpm3JHS+0jUC78>INuRGR}e$U?C@EoUoG zraajs*fGdaFvNqcx{)}%o8zXSmm3_um(*b{rB;{b+3%V1WcON3%xmjeL8WZpH*}-< zM1C7nvhOF+4i6jQu^f}(6p}s~CU89XW&GSGpr~!&+wk+M2lFjO3vV>VQK~cIhsP=3 ztUdE&2-#4Hggh|5VxIT1RV!31m|7+p>Hs@aM27e8xlIFE+3uwz{ktRHJhSAOd8G~h zU_cEIaPD-=2w=6J!|t~=@~i!G^B{%vjeA2Sx{=`2JsY-JNl;=>fTLZ=aWw5D(yzPt zcOwi%*zWZtzI{&5JY7vXT*_(?^xT<#y(R9_+WwxriLL{!Zlq3Hp|`;wBHxK;8azXS z)=F<^0{3r?yqfGf`2=40lLLlmY-kuQr>@nbPkIhT8d&23k?x@p5n!4e9%ko46PE%i zhU+vhKQ*vtiwC!8-480gV`m;Mn$tm$3A~AwwrHK6Fxa` zKvS3IZ4Gv8LKMK%Or~2Y2*g2K2^=7$!NbPh9Q8y^GS)y2SvwD(yTiXYxxJ>D41Qh9CQ04pznbdDHjvdC zJ7hXG-vFPpZ6liEaC3v(n=5KrP@Cyxe|UPrhf;7_4klgld;;)( zwa>7Vy0u}erizvr%8ZjEFu5w$s^CVDQZe6{DRo^Nl4MZk?$xrbPKLB%8!YvrtX4#( zXmjbbxEH{Rsx+iRYcKRh?W@2tV-y6f)iPBawoyv!=I!hhvx)2?k<~7kq>PjpS1sO1 z$S@Jm9%RVRaJPvkf3W)ICS-t9He51g8z&~Sx+7aY>*1L=G0TR*$zl1;CPxrthiofWBiLkmIcxTccjpikmkIT`BZNl z*R|k!y=?gSYq3K$ydZ(!j)25!f3|RFxPi)LFS(*+!?!vG5@1~4U%)f<0${mZp|^J+ z9Pr}yV1Ara!i!h0@$`7M$#4V2KkL^oUgEPiuT6S}igmqOQA_r`NqNHeKmLTL^Aj%1 zYA^v|tfk_o<$`rBSX{Oflbk@lG`^9Lb@}Mgqk0om2%)N)L`TWONw{kA`c#_5%IGhYx)d_S3@?uGb4vnlViiPMA>F zidT2{_`Bcy9qw;#t&mTId73OBGbKM*ZJL>qJ1%9*8o6GtIA1QvJ>t%rXcf!2Da8jw zA&E4j`*g^5;G=#l^YWx}PnY=%{u9~cDP($ZX^K`_&)TTckmqTeGFL#8dgfC28un5b zgqPzJTZc~kVeSE!tZ_&R0|EfTF2AG) z&C*^%Q9t1$>X{vmkRQo|R@Qpa96!J3!1y#esb`Wp9@{famc6pLZ*7gL_ zeUK~%z8w0IFD*8g+G{rY$lDe*OZP9ZneJP&v%F)_867V@07`q4k1eVgIa4=_E1C_b z0v-ZubUCh%Ve=S`W61ON+uFe1?{VwB>1}~%PMhi?{yjdWMASZPWG3HYn^mHUg1a=? z@2l7%1isxjOGL8w7SXoxvFkH!8;K6IB8Pbq8XIuN6f)c9a>Sr(2i~zuvuNl08l|o+ zC)DsuHbEoVWv8)HZ`O0>!Q&`<382_Uq4ptEP=durE;js}IBikPLw?;#V$d*bK4HJJ zcamww7-a)Ivr>1u%_Rpik4WGgguc6tm*T|(>oD`ax!P#sxY>EsevPKiY6m;GWU9dB9 z^?ED@3!(sO14NO{nPtxiw?J^eXBtvYUTX|_lfqEqjyvx#nWQ~OtuOt3lV_XrIM+A1 zZw@(%s-Q?kl8V&qFKpha%`TZ~g9Jci3nH|SnR*eTjI00q@4mxN@4v;Xm#^^hJN!m>GY`6z_z@B(e zthzZlWgh-KcB$jt1RZJaG1>MTLVYD6wLwY1`GCWeF~KmfnJihm#U_U*M@<`Hg=13e z1g#npxoH~E$7vu{`Q%NKuW4J4C2Oi!*MfPT(WqfQP0(t@x=abA)agqZvlY;JKo@KH zIHV^&$M27W$5zS-X$JCSp0jl=Xsf|C5?hwk_56gJn;VoWeZuqh-8)>)XY-%P<_jSr zWcNsbO~N;ce@{VUO4j7|gUct^0@u2Z93)YoG|WgSED)`rt4-dC73a%>hwsm5-(+pIBDk07ip^*3fkIX?1bWfJyLLtN5^-aXFuHW;>_~7?NjHF`z+uT5#6t_;DY zGut*{T}uxmOp*BBv=?^KG)+@>08aJoykFm7v}R3KB(O^p-(dNJfT=?ycCs(#ofKy$ z)fJ!a4@<*9kc&Uq%(G#+?4lN8&Fu0XA7B--XMtb~G}OqIVn=6_H82Xb&}q-h3yLH6 ziDc_0ea9Go^mcwYra1;GFvwkbL?XO_lvw2g~@A=()5Sf8p0b=Ta{U zBl{%?X#2*gK@;yb1zV1X?7W|7!|+Az95C1dIsp$p;Wv7kx(C6@b=p4Zx!Poio@PQ3 zrmDNbZ5tZ-{g4>LTl=Umlimp0`*{EUoqO*K9OKpB$xI{H=@S#@Q z*6@LS*s5LH4W?ait2lBx4co#n-M8lVqI;Bj6Yeo3sS^eH86B{r2<+b2a@>0Ww2BV! zmF@d&O?%Fs3_}5vPOD39(VMTJ$;B2}0g$9l_Z^9t;kA?WtkLm!izMDO_$EhOV%VV; z4lC0Z8cPKw-a?T5TIC+^VCR-yFebIMt$o-%-22!}6_XM4!k~+`LCG^x6=mo1w%8Zi z%M*vqxzZ3NJZ#IiK~X4pd^;)8c$Kb9>J8yI%!$=%Y`pxso|;pP=Y!`hZn<7OoST3H zUs{kGeKCgY!yU6WdjuzA6DdK zL!XGjL8ohr`H%axy1Ja+uGh)^YB~HwoKdTQ{XXI;qqfo;cx%WRl&r1m_YiF%#xhWX z;eUUZVv@=Dh1ry4%|2s|_<^S8VakUI%0PLtqUNLtL=&djgJ!F}Sf12#QEbv$r6T7H z4C&ZL9n?c~o2P218P18B(U@*PcY|DB7G10C25%x_pms|M;EBXIe6Y8cC;b zp$VqR40sb|eE!Af`26)N{L6p-&uCKYL-IlsI!^~-U8fbIbaze7&I$3&%Twr+fmSCN1J0NXK5+}-r z1%($RNwDa$g|v!gP?RQkx)j{b8TT(qz6e|hZ`3ZB%(46tZ+aImz7e~o^W(sJ-!In~Rm`>m+ zb@f!plM>rDfSPpkWlEMy&}ws;s>xM1+_Ylysg^w`)He?k@`3Tk@BV;exxvqW{tE+| z91eK>I^n~I4|w(JGrWBH3c?LQ!?KhfEX>TP*M=W|`Uy|hE0$%!>Ui3x>lsgvk68I& z63j3GC$`)fviHhq0s}Z4jK(+x&fIA`k*gL3O%p*nOqTPI&62#fVhs%`T3eigxzQn` z&~4JXpQn_9Wm)k4@dH}3q<2*tpoj|IUawF94=s$TW-y&=!sGRfFJFIw-~8q`czO2{ zr55Bw$P+t)b<3X`0}!ootDOpD-VT!jH}Y$sYoIoX9Y-<63EZSl_>)iTAn1+H^Bf}v zxk1!JSYrbpk~!bX5EVN&n@7cZn1l~TchG=XwUsivu}Oz~ zk_a`7g0rlPP1?!O$I3=Kl`bhXHkg_24Par>$kgEv_JSpPBs3kQFwcU_>jSg8`6-!QfH=%rNe<%BA!L&J`)}RDntHPqg>Vc&tyv|M z*6?__TBx>fBV?5ChVys@P1%@nWteBr=?O~QCtlCEWwo5<;hOf^ zsGlePIX3(SZ_G2vXuk(|^BBdpXZJo-cOJEP4{4BahC*mZWrOZEIsH0FGQcoKLY<-d zlLFMppe?=0P*bN29;|KSl0f430CR`18M%yx+{GTs=(Up3%!1y>YD26T7}EfNNzCq5 z0hspCiawMg_5rcqw{2?##c8GECTGO<$34vsBGTczi>*0J+sQJ?<-JLx@ky5Z6FHYj zx{fty$F)^oblB$|4db{ei@d=c!>R;tD0tTZo}BR9=wnHBoVQlv9K5lyoW#m@-mL%{ zwpf6`!n1Fgi^?wB@OcD6ci5xY|9lM&2kBL@EwETW%Qk zl*;D;)bQ`4=NzUjz;{%jjMqlrFg5o~NNJF4GMdyTH~TfTS~2N_0}@uTFNNosZs%aqS2Dr!<`*dT5W=~mc{%Dad5l-ur3)l zhm61Z@@M$^>z@I0!SRsrPygw+D7AK)%ksrXcbu3S$9($Po3IC9(ope96=WwC2esq zuow7sIordTHVt&G3OXdr(-DLfFJHa@G2?o<;O*mzOcwA)lps0z#w`t-Ch7QFBfsub zsZ|wu3aMSg@i=3eUfb4UF=-dAfR=`{6#LAZ`!!;!5L2C;P3kpUw$^+)Am?mByaPu4 zx|}iP3GfMBkito8 zTL~SW&435c)_ldLXY+_#qn|uW4Lw5(dx=z!5TKqgJ<^(Da-TdeF$z!ec$U%zN?zZd40%rUF;vD>7w9rr4ry8% z&HwubI%txuN^d?bQUF7Km(Pb}Ym`Q4Mk~!WXW^Y;`b5C(wjGPu0qUQV75%i!+4JTd z`@rzHKf_~bjhqu!-M1EADxi>2*BN3b8dec)r001BWNkl^eF+;uJF$1E#mdD3Oynp|IzxkV=n5bs9O_U}we;0x(8eeyn+7J^1X#1QpL~G) zM&Zp^+@)`nobEU1aKrP|p&ce&VAJYs9xN~3FXs#NmE)tqC`&OUt=}Les8XchA-8BG zQw8R9nx;*L;Riurz#E!xNHUJo0d+d!@$nJJUMRD9Fb?9T?`)sbffEil2i(1Uwc$6X z31C901&tcSRZLvB=c{eYt_7lsLuQnxGw98W zE`_wuu|UL%*HTtIzQ5qZhYvVEExV19)Y1zVqJ-PSgi;GCTdvpPbi_Q(9!Nd+jahYx zjObQq5!q&PnrzCy$vo`(5%>2nF?1%J>w+gvXh?P+CkEGI1BGS}caer#8yW~@UGd>s zaJ??L%vSg>Y!9uL85Kt5tb<1a)$WJ?;`6WZkN@uPad+?snok~`G7C;d=~~ywBeL_O zdH^J;p+uz=Qez46&5xExz^F;Ge5lVoDoiMw1jCe%5K z!|)NX`|~D$=;{ztkb}-(-)*&RH=1^7UZ+)w4PzQb(BVEzR=hA_3dzUbD+w`_c03Sk zt2R(-ie)Ldme#f2;)9!aLHli6$T01Ui2&SZ@~@cc<->H29 zeg3J;CfU55&Z&;giWRi6;hVcUhw%Kz4)-q8{dL0j>3M=_S_&! zo091xvZ3W5wvbe}uo~$GSr{ZxtQLB$$>oVd0U2a1QSDS1e!lGsZ*Y8Gj9ml>r}WGV z7Sy{i&C4et3qhMxzt?;4ZQK`KW4U?$IHm3tX5IWkqjxB@N&$=MLl=jA38Ci!?HgK? z@@g%}DTk$N!<`d0$*6>tgSy0P%-xOqdM7u1mbcbmK3w70LU<$m%)Aw6X{YnWwTHh% zh}>_NG9~ah43Nz)mzd4NI^@0CHrvRbcGkI9)CYc%ZP{2m+^mJl#bvVLVV$NK33h*^ z@JO@!reXl&c=j%FRr5Kfj@h@@#FVx{hG%lB1K2FL%(lFd$%pC<0_iX;H>VQ8&vG8_ z14rP;hW_p_xfJ|>g%=!rD_FImmTI6bSX>S_MiHy^?S5`P2vZ0J)MPu~lE(rt{Qeyk z7R?6MX?6m1@hx`~JIkDgom1Y1bG{fFueYFDquO&ld%amhV(Gp|X^s_-G+12tUK2R=xNp0kL)BO)7wCH_fOj zXtmk}>L^K7#~stAx~L4S>ly#_FaHVUvfzLEpZ`5xy?lxP=HLI)EB@ z?VoXQO`ni+ZM~&YO}vbo~-atL$X`u2=@@+R?CL_j!2Exq;R;OsK{38IpEWVDkyCU`w)Imt~WBEi2Y_br01RAQ@WUF7@|| zeO~Q8ITGQ^ul@?Z{Kc2Jy}7|!AFWW~EpK2c3*Ntfk9Y6h;qm>G75LMkOIOGd?(uz2 zoYAs^I3pj9xH+9bH#g57NUgsvV(!H($HR(aD(EZqkajeH)8r2wpw57D!;_d#$xy!l z2R2{qKw6f?zy|K$dAD4#tP3uA@_aWd?ymK^P1xNGt|G{2`1O}R$AAA1{}!jy39>%g z_dMsVAcmoyMJk$#e`gIjPu<&CbhW_aqF74BbzN)_QmLOAoEQ%uF1We9!QK5!)Uvvi zk$k#mZcz5g<%ZLiPOgN%FL=^@Y;LugWLBtJ`aEqJ9hB3)Fz~?%yUb8o(N=3}Jj2+U zF3+ss#3nnbM$zm!OHH;vL)0<5rX*=wA%U&AElshm7p!IVKR?Jw)O9*n^g*k5SFTnG~CG;)QWpLHc4WhrfcCw7~@ z=Dvg8j15z7+g3Tv(T9v7^&6oZNVehBDt4~cts4nY5&QGS&e51&3<2O?fX7Zw2aj&^ z#%qKo^l08qbdpmvW(=qFQ-Sqz2lDfC% zx5EHz(9~kX>h+>!cjXQWQ?*(p0%r9Y?8VM8Qx*iGK4jX~APP7W^6H;U&=LDk9$Qvb z+jr?U7&6#I%**1rD4xgp9PvMk6-q}=Hjoqrs=d!lj69G%Q$)WEpC^gQoLToCOQF5z zv9)Fc{(166fZG#VbHb@hO3Ai5!W-?Az5Zb`2v!?@ejkz@XAj6#%!zwUh-!jlw!F;N za5>wVoHe7N;o6!ty}WI(JEb$ci7Pg5Z}bF!1x zA4t+X7ljF0Ou|4e6Hy|hDO>K0syB5Tz`lw2M$8}x;`-0d*AK+5V=9>~TM5YuoJ0z# z6(nL*A#EsaHIIlVB#W=HU%YsM>5#49%7c+QnPiOE&2(%B^@u;-LS{3d5%5VqiL(NA zxnA+ZpZ;XOF1E^S&6ARI2C?~+Omk~8KXz)EC2?=>NjaMV-4WfJ(T^RE&YkWQ6Oxp& zt^JApfy>>bN@^Ra=`dqi7jVv)4hIyeINjY~K1{g1yF;3i$y1U8-N=ludrFoMAsWhN89IE2Y%UAgOzxy?Q z{x{#?aCDys*+aB@Zy;E%SA6&olsHRbRSnvt<94x`nuE@Fm?qHSXmp@t_cCadb@DI? zW2egTt`OAG*VD5%wEw+v*f&;O(a^3Hi=#t}0@r21xl~jT*4A(##-fV1(r^W^fUP)p z-(gc1<`6?bIMfU@#V=odh5z=y`bWGz9gJWYxbEbeK8Tq}JzJ}ZU|kDpU2MD6Dnta! zx}vNVtu|b)7c8YhVCwAhEicQ{qi|oUr zIPjU-CZeR<^uGf~2GZR)F{2Hi-F#c17z&a|x@W`jH}>qOL?+8(({0;^%wDg=flnNk zX|$$TTSHU9`Furdie*_*#I{r7d0-K28#T66_k1+z9ugy+>OhI3{y79-t299kh(V_x zVfZYbKfFE;(8bWeHE$x+{h&>ah^lVa5okwJDx{sY532YU1N2r`2PDJdf;ni|NKNd0Emdpd=2i<0ga7gNIscAxuuJ9Tm3sBzmAf> z-t2?W?R~hth=u^th@A+}5F6<#wlJ}=?EWhevkio2K?fXh$b4J^%8_42{1JwJ6P<0? z^RNbR^G}?%XIMW!*(FIK+fCGS6UjY+o4UgGE+QjkdHi#v}*|O2(;`~N1}~?WJ)f(bv+J6tZ>@4Tx_q#vK`~cEquUTmiBpVYqnUi^CV6ciH!Xa|9 z6kSEoD8i4a`+_;m6O5cy`UwT2>g*00SzU*crX1~JTdJZF>zO&i#+Gb0MBZ*W8M zM?U=X&~_C_HBVNR>Wd6PK-8NwBuy4OlNdMigv8l0yl8_(LH#V?SST>E*HJbEBYU3u zR#=&knq82M)oH9YMCs>zB5?M8A?_!pP07Jl6G5~~0C(3_S7wFel#!VEKYa1CuloVC zmV)9KX3jIxG=WkwS{PgT!YO&+$TSxufr4H76AC|WIO zwE(Ip%K~i)q(Rw>4p$4(Wi((v&3h$5>uny%gTFkVU-cXxMS$DJ!TpE}tW ztz`6>xL5+0I%>O9PZ@1GG>RjjxxSO_Iyug>O#u>tQtAhq zRbm27*`}0f29y1LLDgboME656rQ{8quh0qop)^j@vcKj$CGcs2vf^}e!tLEH4yS|N zzFuf>N+_-1a=l=!1us&5rC8BXTMry%amtZy({vR#4}($9 zE2K2sDC5h|KF7cNH^0KKfAzPxy-R4i0#x9H4Lg+M`|t-_Sy!y2glq+}S;abH(ScKF5Fen_uJ2%X_qP21Afpz@$hy z^z(L3wPs$Mr7V`;R0>4wY*8qdQgFFi7;b#G=j+7=7@l<%ITW#B&B>&`=(yD8TXODO zoLY)Yj0WG5dtj66* zuPUq5KHcm_F z^JMVpYQ-pLqmMz=k=5dAq{!-#-Ebk%K5I?L8fr};rE9(MGC4Dw@?^{+^NnBg!EE5~ zMGZ$T(2tt=_C{ft4)xFa`lmkEX=P^VBixDshmr$9~u|RGLfY zwSaT#8BHy08xkHse~9=qFr|ce4764^@Qe@GTcok?(jBc9<;<8kd7TPODch!&*x+os zoe7pBDE_j&9%r`C-+fj(bI(QdX23J-Tv(xOH6I&AH)005okSGuIju5yN5`f~)$Si5 zAO|fC0O}-=oIpo|0<2}hTrzmd9*||Lwkm32lDbb-?@f#7F1Lw2*QYl`bA}XHZpKRc zWMno%$?0?gXmy{(1fFJOtwxCp{JoN|b6s}US)Mliyg=}O{mXB0Iwkz<>!0Bt|Ls3u zJzw!pzxx)M4*=tPsU>904*@dPGa>l#SJL+I^ZEisK z?FuvUVM19w_(}yx*467`2fP*q>*fpFqSjdvj~>fmzjoHBHZgEIBZ2y2Kjq&nLQJ~2T&_d!$0BdAXxHQ7XHzL}Ar z$T_C|;muf3)#PH=>(%5TYqcyZG0k^`&&F!IxYy1C(fSP7@+Z7#F}%BCo@SFual&U` zzQq0gJ-&E#hu5!Pf!hU5u284S#RT&4vf{@df5fsZc=P6S9F7xmn(^w@XQ)+iz1sIE znRf>3&0~S?`xA9(BQ`o*Ok2%g=+`0zsRvuIUF2qzO`D%`+K|$_z(NoIWp+a`;gWLq z7#THBh6$n#k`6Z~yf{oK-std@x|uhD@c8(MdnEk*U;iz>di@G*UBC*@(-_Rgs#t2l zb-AEco1lqS)KYP+>n1Jof@@h8G!V|0CtS;l>-CEC4!FI!#of(u+s=*hC?b0hbYnTN zwqm>OapLUg+2-qd^U=5&*&iB=$jeEc#AUuP?US@kPT|3XvK6JVE!*T3TcOb0ydKv@ zbE&M!Jh#BpIsjBE933tdXRT;#S!1;|Fq=9bWRoRCV!%ji@<1*K9YsOX;!*Pu9b$Y*_^O8`%Y^}wnED5=P>R3WR6QtHYm-U zdN_PY=!o%2>0(T<`*XQ&#$JIv~%_Yiq7&o*fsjj(TD+onAmJXpcPv_>Xo3LJ+H%zN`or9C$0JNpcn}?a@%TwIXbwLZl_^uMcxo^v`_;e&@`h}^YnKG z44K+0eqVFT1??bWz|rOY^K7qoZON<-YStXVmXp$9_rb@FyENSrnSXj zIOgg%JcoI3#!rtA_+S3F|A_zb?j`O%oAJwE{Q}>XU#jq0#Lov`I+qg+i$X=gS52H1(#a)QVOs*0pZA zV&Q}GLX5hUMxfQ@IJ6Ph1i<8Y=xYQ@rU~;rLvzF3?H%UKn5P*xP7(b4{tn0E5s3t~ zu25<&{j<;ayi~k<`wsv5hwrg03vN#nj<=R&MLFU2_JH&GfLe=%BKrYRO0z&#%KiHt zgAvxeh($3~gH=Y=_)LqP#at(rgQ+?4CWRL{UpS&j!J~V>KWHgxi0`fm_8K}xql73 zQ6gazZamv|*jB|n6x8$?!EmHzbN_Ga)9gLWC}G2Bi+@(zIkcg3HyUl)$pv?GKGA34 zsM_VY;!-J&6(zjs?m<)6VPpwAi@ z9t!#G`pgwb86L|aW|AL0x6h&xs%}4Doe~!LZDan{))>fMz8wuj*e3jSC4~GM9|0|% zL8eWTWr^cZiEwS|{<+=eI6Piz{$Y70=k51l$dUbE?t#T#;Ll`5a~8`LQ@_rnxedj! z=GN1f5Sg;Coau08D zNgg8h!5g>uc||HRPhF0kGox0)QdVWx+gWB+R|h zui8+n<*NWD<2XN^t=sMNDf{R1G=Z3rGhumnGU-dsXw79bJ}3dq%LOmR|UHV zPK5CL-~S%p|8TaA*ED0gyN9NP_e;ZFGpSH11^4&&Xbm`@pPaHLj@E9QUq&{ZrfnQ- z`=hluRWSA7ziuXO%?|=>88Wm@CHp2rEQhE1Iyb@&nHki^jTdjGWmof&HwKjKz~=$Z z5}VJ%;b0FaQQTZBzWL^_@w3}ope!ib`bs<}%aO88tDrW|5^6>RyIxm3Je~3G{d+u# z`OjLi2Y8(_q?kkwhq>QUM2sSe%XNXCueeV}6SU%yD*yl>07*naRQ$2N!`i-Nxm60!l}Ub!*rr$gerQCfs!&cyGh;rTa6BH-nl-ki zR0FcWwD(D@&}DCsYVjb!-fB`eSi-AH_Ctor5 zT(Av>VS6pbfM^e@rHh}NS`lTh)wVX_l>@eL#u}Yk6aej6qY~F%b`ZO&ZC-J@|lDn1_rpM#|Wt6cTr2c6`pM=lAZ3by08i9JNH9 z7TWI%53vr9tDS`&=fI}0p%%mDxCX=LReHAL&MTHvr|OAs(r5%?2$0h@c!+bC`>@wG zv*H|q4EBLk{2cN*LEBvmec>tP0d9!wqBRhQz_>4bE1 zz~OMf`NI_g#pR*s+ZPOu}NpUiy`83Z+(om#;TSdCqW{0Jr$u=QxDJEXzc?Bke zYY-?CGSB$-+dty=Zi0&9&8ye={*Qk`b>n`P1X_WwfBo0EUa$D>Pv7D0#T|I&UXcXx;5-3?~<8};l*;y$TE_A4zbD3h57rS?hj zIQg(cEG7Yh%X$TC#{K<0UftQMwPL|qY|?x=pMld2PNy5wJ7hQJ?E1-QMr!JQV|-QHrN29>qzcvY>Ts#WmQPjB(^zI%^XuV3Mm?S6cDcZ0SrIM;@Go>5x`HAa0FF2|F>KPIq|?wZ|uoL!O?xePT9 z2Hvg@LVqyJKxPuHy|5J5D@XV@_g;RG!3O>oa1Fj6izz>wA{s?$$`ei(YlMIG_0Mqs z;tshASfv}H=XrLMZ9{`K$$t7hA@EvvO_93Pk|KXaw(v_eQMS|itWj=M zQN=#L^Ywz_UI&?vc=h?0c=grixVbsukn^6@HkprNT`k!B>4*1te0%^_!^*FZPiU>- z=s0_o>V|6Rge_*vY71W?sakNdsuMC5Ad|pO%sxTg zFECp^nya(=*uaKQFlbDG=lns`ruEPL=pApPtkQfo3 z(UCvetnV|%bnopF`Dkh%e}|!^W&87tJ&jHF5<_9}xQrRL#1?CUb(2`BV0)ht?3<`Z zRfwDWH*X5Mq$UOmG)OgRz!S$t|GBgcoFJ^8x1-=B_FNzZ+cQ z3~l*KzL{3^G!6Vj-k<=`XQwQDhIZ2%txNho9X1ru{!-&Q{3!&;nu&ARL`d zv>zD6;?F3=iWYf^+-+Ajq}L5&Z9`D)_i6GCEi>ES+tlgF+jTAOk?WqO=Jg7HIx{W% z=B;uwKVsZlyoD7(*Fl`_(O1q)kEo&9{w;-2y9%0Y)eVUXNSc|t})Db$0Wi&#VoB120u zNEs7vLsIt5QsM+*tCJ7j^!*y z?!GNXd-l(}OhAF>y*lNW#`-!Zk1?=;PZ{XT$pfw<|Fn7Tlr18{KPz4NmF?$E*05wd z9FBRy{B%Yu7hJ9d%W^>;Fnm=i&QE8wwe;zus)CCLb&;{;m4^%hPMD@mE7+FOZ!ArO ziDzV35Ny6V0CR>gY@*B)I14y?P^Op{WF-m3&h9|j(})DfGpZ=Amle}IT*jylYf@`t~LnG6{l!!FW2K@pL}p z_4*2LKK~r~5V;-N4dNiXNtlz#Ca~|uDTR^Lr7CV_s&$2kHN%+XM%xSK zoMznL-y>!9z}no4b6XYLihh-91A>rYy0nxHbEsba0)TSo)ZR2Uz@Wq44rQQ7i+KkGcwc>=IE^~@W4o9wt`7gxjZ()KT z3qPhUfjoIBF}H>sE^AkxsPpjJf@!S%XeDHR{yKjPiG;_2}b4=9*k zoG{&-jMn4cFD>Rni>4Rs6LmlEBfV%*1xf)Zqg+>Tvp=&w*dXNLdPSZlBWSwRP+IH7 zYHbzF2}PD|z>+gcDY%qkNYzpRWvuH8kl=JYLP|l(3AcySPU>u1(%K8&X_`=r?f?jh z89dE4oNAsN&s!*FNCer5h-)kMaH!(L7n8lt^Ni{K6{dN{wG@;`aYB>%;%-i-uIFwr zKjYo~J@P!`@rNJq?!yPX|NeWlCbmsJ9&vLx;&eLUa5(hq({kdZPkss9y*DS92~hyd zP`kOf4S8=+-bsdf(Ox61b}Zy|mxH7}-3@=D(GESE2)fJn5ZVtUC>l$#O@@ETlQpY53FoVEoN8|cDXdH?EA|Y@mA9UIwhf<_(eRx;ME441av<-puMj*U; zR-d%pwrbZD2IPRZf>q$GrW4jLr(1^z;0Gr1$O!fd7i5U))7-Wdq@z*>huRGMe z+-?6F12*Z~SS$QD5^N8;4bP=};w<~l0=z%vxjXV?!M1(#Y5#xXWWJ`^;#s0b6Q@1L z?{6Mc0dWZ_Fi3yxUg!mVvY|W2`2t`i@d%UvSp?BM#3Ev80Dz{04OiHHZdH?1W;Horn%Q$R zyL!z5hLR+kIV}4P>cxF#+`fE)5ARk`PN=ou{rP>Tf7D`cpstG* zoZ*pR>zrrJNGT)V&sdfPhr_|;RPM(lnuH1uAvTY2=nnw>Or30^8sm z)QXn1+7_Z%?(PmVwESOk}R!&G(lPg^N=W=Y)dxP8KU;ttn2Cxkl~SgCXoV62P}1gF4YJi z$un4z>#QArC`me9DH@}=8I3CE2;pJEJU*OKpBmZfKl`TP{r7Ki{cy(T-+Y0)yStz~ zn#{2oo4?hHWm$2)JoW-OgSw0%y7d0gDg~M|ga~UD{6F9R9zXy3OQ;G~DQHCCDS-(n zQtC-aO={&){wE2b%9nzP9p$N~bzC23bFxL&VNRXjXA z;L-%=WyQP86TpO5pZ^u+dBW=Qx7S{nRG0CdFK3*e&c20+P$TIwlZ!WeOmKXwiJ&gm z1&IqFkC<}C-RahSVD^63a@|30q*u-4V3|^ zggG&;*DHSf@kf03-FJBRV2%4+J;veb;)Sae15_^HA&;)U>n=J+dJIk8`}i8 z=J1#bYKlBfSX)7@6$hW%3T(S6AFU=mPlWT3?UFVilNWg@48UG7spkf^kUO!Fx~zDN zXH4q(DkAk+VQ+PMGn_WHeX>Swe9yeJN*6D(r`I1{+hO++s)Ic$SL()oGxXYg6-oGVK1D~jb|Gz#p1h+6xWj`Vr>=oYXZ5^M381_2q#*BcG!CQV}|r)mui zK?<1`AgzFC+M1x&x_2$*vJV^B-=S`$pURywnU{W`<*hCKSkO*jf9zNY% zvgHL0fsr)#p!DV$f7;ZqQ|aE6r646 zh`m0Q>etH_2pyS2qf`wpu_m#GDc~d4M4KljQNpYiLMJR^Sdp>YR6Ul#5#A~J_arFQ zAT3D`J-?CMhfcKlv}k|}rIav(p;aN=Ja)z9^PFw--*gveV?(@6@~fDvv2V?NsD#p1 zO#VD)&$PP@+J4;OrZYD8W8^*m?Gz&tlBZ9xg*blR?? zT5IkO%j>*-&w4va9w$ zUM85|9s#1W0Yr|1D<(~*#W#u6&FN$&>ec9U7C6~D1uJ_JeRdNvO%tX=#&mmwqo=pjfCewNo;m8)mrI$0{ zIN?znYZJDHhJ;Hgc=PHNzW%GPu$Hsy5hq;g8K=_$U;gY1fD;a<8+`RwU*WgE{Vo3a zpZ^)Z`1vm|P1)AZWTZ99Y`XcDoPcB(Z1Ra%Vn$9GH7&@;3|XtMMoq(Ce0wCNb-+`6 zfkdWXWll&O^dD~)2KtT&`ewl7#Nu?QPgp6{LL^ZukQKF&lT-xP>ji)K*KaL|lUgsx zqW)lqFVyBVxnaUXO?GM$WnX`0!lD&3V1@152i)J^LmHtKf^vqi+GZkU21Fsre_#- zr{hHCg}9s`Q?}e3_kgh@$n6;6P9=mxGcxCapu@JBcln}uTI^?J*!44cV|}U>cgKv+ z?(R&=kV8*w81yCuwb~G+lxh;Z$FoVvp04#Os4~;lri1d zxpQ-S1by+wK?;JWw~u)D?k!4frelvn*_&_G*(UzULsKWhMHLSZ@Aq^nY+?9@Gd_c5h93)`v%6FJdz@NOpBl)>sfT@1(`-*IUp44YXoXMcW`TSlM%X zOvcI2;TPTr#g8W1=(8aSW0ybcv*&Gmeg?a;0yZd&Q^!f82fq>lxwy0|+4G&8ayzO> zIytPP%+b9xit_*R^=40UBuSdzr>bV|5s?Rw0II61r%(3G?u_itkldk=A|xO7U*`jb z4-|^*19vICoTKaNIshaRc|?S}nW^zX)y&-!)vTB9s_p_35$G{ruzDr+y;>X}rh`8BGY`-r+1#RqQOC7oWRuZ9NQ8|LR?LA&QH_Qf)h zEc+@@briUEuUf4Yse8<~gN0CmNXtD~AttZ$!G3N~iDI5r8e~HQ6sO4!lQ;X-01dOW zEp_Pw3{`KiQiTR`*aAD{C}+MntUQ(`jjOOsPOTO5%C=LLaB?XwSGEB5VkGKO zs7pQ@oleB+&L|O_jG~vxY8>iN7Z2jC1<8LeL!j6G3|rX!qBO9(Zt(BAODXJrVzI%8 zYf*|88<}&oDKJ+97UVP`5TU}iM`{OCQY&(mwgz$H0auroc=75rhGD?P%{7V^>@IdL zkC-76+#s)rmpdy&v{5($K76>t?dcw6o-sc@^&dD6g7FZ#F-;X6mpBA*FN;k~6#R)n zv#%8)xEl6&ef1K@BDlW3#E(Bdf)296uiIt00?0S_MOhOpfZ=B$l5&)c8~%Fry)$Mq;g@#ktll{4lt;TJEi z5ch(Lio^bZr}GCyM_?0?VQP7WA+2UiY&hQ~qs$5}4Lw2~62gKf_kX|mN?g22Zltp2 z4eSZwK51>Ch}BV@QDQgn+jDFeS}hs75OGnhpno}zczyi><5@e*q}JlkugNdZ=d(*% zGEOI>9?psI`1FX64^K!rAwWSXW4e6=jR~2^AO&PaWW3m8zu#lH+CzN1^Z4|LMGE`D!PUHf!N^ZJ&DiaBphMV5aq{VeV@f!Z zB7}(Xu){cx{!WH&D(}84B!BK?IoDh+a=18Hag$5W2U%b&TZvPPdTdR6={dM9tYew> zE*>zGz7?`5Woujv%8)w^3w;_~7TQ~<^2`G({) zxeaNo=%!KIdRo;6Q?$_9v}(^XH2Ihp^rp$eaXMRch)d0jOAOTubQ0Rci7W<`vT3gL zFVGJcsV^%y}8LST5VbtrN6Ta ztb%jGya!bqFo+uV-nWw$1JXPvWlN@fCKGJ`-15ZG(d*@eQb7BxcCO@@l{&T9 z09_VK9U>zU<223Q-23~X!3XL7Tn&WkQ6(%4A7?=X7zU%xPHDo)>ptOCZQ8c9mB4Dy zuhu{Y|J*__aK=CZwOT)7inG%5@>tm$@`}=s{Ap(>O$RPMasBj#jWHrHFsG$CYFb&T*5EZyPvi9G zX~rl4yuZNT{PkbshdlL7H-MYz&9jSglla^; zwmI1(sd=KJ1!MYv51k6LQLUIzDyCfL$8aK+R5i8-zhs5DHLp!N>xfC$LrwfK8s}1S$om+dJH9 zw(}s^1rsTF0qv4YmtNMw$kPdr={<&5ub^eZ`E&+V^XG)h*oT0d>nq!A`Gr+rUZ6Ix z7$kZT=-BXv+pcO2WKKvqgAW&YdVIvk+dD)2*90yFLlB@OAejFMg|QnVh)t?GaKJpL z{#-{fWVWWWNqSl)lgnG-`EL8m0b>-DtdPKv43j-_+W1d2W!&H2b`_-F1Fpl>g;JKW__05R5qK*jtX~axt&wm2UD#8S6v5O6G}>{wHbE@v!2mm+5LfB*m>07*naRO7e1AdqL~`ILXNfoB^)vY&CyLtJ}K zgOju1l3i{ajprM)1uh`fVHPV1Wm;`O0P2mgqHVxd`G_uOtPaoc(4&>Nu6mE}68?Vn zyF|^Ujjh&FtxzA-lvR;vK$u3Pm*$0b(uYW_b=9rL}aJkgEA# ztf91Ra;eS7`z)i$sh-521|%~P*f;Iwf#JUCDOCG;WgF=Q-`*N&5eB=bsrq1M?T3sp zf=MyY36vTanoNN<=dBk~f^SG|=s6-IP=t~xcoIq<$Pj=k_IV_?HbnM;vqKSDuA4Gr zh&yO833zr3O{;_E>b}a75IDAw)V>+iQaoNF_`Q=cC;N4ZR)pt+76M91AT>{~a#^BG z97hgV5KLF@_MhFB}_IlAtNZx$(%ZHt~)beo_+l5nobVEsESzVAlypenpXnNa@pzh{- zpQ3^-HD1V@JJagge-;-{H_6fx9H>#7lB`z*6AfsT212WYAUD^bUX)3OFZJJ^37fzEZ8KTqS1AbsiyQsQO z*b(n)Q;eF`%%E&CvUIvz8q{Lh9!(lWo-EBA5L^OQ0mS{-pUFdvU>OlcJE(Iu$yLp+ z8+P+%lZNH#jKjqN0~TDmRL0eCVV<7ZrGVMUaY)v5ozjF{5^_7}$b3QVK!*%{gGa<* zFX*Ea#i;!!i9=d~OF?VTa3W%ter2DW5_sidTs$om!JoO$4;Q$(d4&uA^X%a({ATFS z=1nPc#?!+CvQH!r7kiB3fW!XMHW98PuI}M#KTn!x%=2uL#(BnE6b}y%xczu%u?3#{ zG)>8gj%N>z){Ugh;~P<)p78MgJs1J%SrZwA>;>Ty?6cvEJ%(Yxcy)!#o0pIwLaSn^ zCQVFJLYdAOgVFK=1{>hS2=)!u=dWLYfB8%7_B#M}kr1pwZq&k-r`9m}(k9om-Bhfl zYq@0Pl)4Ng<@(zo@cvU$Dzk83=&b^d7?ywp8=uRRUx%hzc?HK*U@!sM^L^ zQ|=+OB8zDr0P=*6XK!>UWxI%*N37>dIoL%iuT1ZZ+~NUTTd%c(R85hw`hF_HW~0{& zbZ~#S*N_ErDK2>-mAnD!IWdjir*%8kuRpit@PdIBLg*$l4CtOVtj@n)$d+o)-)!N| zIcM8Cc_1j$0@Y|R23a?mM1AY2pcOE}Jt$2MNj+K#nX1QDz{7dB)Yw!Df)}dl^j#ZN zkq4OCzc4p#`s#CG&$oelii8|)qZO%{>%CykwaJP+yRd2FgpmC^3(_*N3I;VXZYfO$ z&z|d|9r#dd1)?F{TW8f9@6s-5-UPq)JH}~%{iEgOe!#QF)nG3R%%geCYOR<&Uy92T zHmX{dhNF?($g<+#h-Vi2Y{WMx0uQ@Yu_i`qizQlehx{{U2vlsKz^VYr0$VA%rAAVt zt8tec*ENoQV=Hi<7H{R{ZTfGLGF>(8>kT|DUU-jhsH$LfZ!c}3T+bm}441#P8dj^v zMR)+Y|2)D5nL^eLJf>tHzpRYV#vfpp7I_0%L$67o!Urv8}=s+ZA93 zT;41M7Fc62oMJ`x}7RgPM+siT>5E{o$N52p$1g0nAq^=hH8%)qF(3E{c&a1oA29P3tUOH%~rrH$+A{OGFOLkQYfb;!5Zf`$ey0Z-r zXFr^>8E<9J26u3|&hEt}Zf;)T`sFL@$Osr#q^E|zu3%b`Yxlb%Dc z(frF2Y^Z9|l^7$)i!rWd7EPYHlbV?nz9Qa5O!EmBhl9Z!3L($Mpcx8`L9mMfuRr^> z2U>F1)aRV6@$-$FIf)4fnfg(R6ivd_Rp{-QO{nu)rve>vzKy)_<>xj9gcwq5CMrQXcr+qN#lJ4 z5o2rx8O)?vvkeZK3 zeR_oiTIImhzHJ((85f5Oe1Q=%7f6}02f%rGj;qs+$~=LI@WmHjU^wh>*dLZ+R&1l) zr?6D}7IuA^Dg!Cyh5A(+$0EF=pKv}|sBun~BbQRb>2!j!Wp7cC9tha5!xqT6 zp32*MISd1Khbx2_JC3#Hvw5I~%TLIiO~%&>a3TT?_Gc6p><g^(J8~ zZ5oE>n~T{mngCYCejGayZWjY;E}%H}XLAT)b55{NChg3OOVDwb26>YNmw5O@xNS(g zWQzo8od^FrS}5M7TceO;?{1C>M;5>IDhTX~y-%0d)`$*tYL{O0#b`2OHG* zJ6E&1zfu=DP?zA?kVR|7=#umH+_WbBc>37ymFkcXV!|%&tr6qxui1*25M!654}&$4 zr_&J}1NQs9%VQWSO%hbWmHNO-HT!wL6nz`17M6T8YB@Ar#=`wMYfTidhClFWx~{4+ z_Lzv~^|At=pfxYpb}v?2bVH2M2&ArR(H0ZXwp6^%VAJm1(7L>LMo4OpgQ7$XQwm@MOlv}Gy zdrVc5`~A8cuxrm*`&>HD z8?1nvM?|(I%23L;=~-qa)P-oDbMew|>Om!{cb!CF3;53WfNSP&o^uu9uZEdD-P zWw;4qwdjw*){Uql{{Gv!-GatzQ};aEgtnjEh7gJXF<6-Ii$q&sEPH+yJS?@{!2l18 zu}Ln^mUGl3#JM*C)q}~=mkg$Wa=L3(2or|g&NgE{XzjtR)%=^8EuMtkBN<%6$5Iia zAjSiZ$0N>OH^|I4@+h&#n_W>5#hO)NcVX_DsuX{S~U9;WC>>H-HU;WrI zsZ||w4F;E%HVnwPOytIkJ$4rdRH2@k)TRe4rf=7#Pn4xo25HxiHsh~UKa7H4x8FfR zK!{?2xWxiE14W}t@ql?&l(TImiZXJey7ofW z?*)g$-lkZcgRdwxW4GJm<;@Mg`|dk@xV^=fzdS65SFKQOQ-k7~Z40H9m0q2hF$Td@ zvf)dsB9QsU5|dHos{K0T=-}2&A@I_WxWu5*KYmWHZZsg-B*-@$Z>>NL=wW$|;kTmg zTpSbE@RFln#*^m&Sb;>rzr5MP2YN$Vl80FYKd9;^kS!&_?d?bNFvZ}&4VZ)v1(Rc- z%RE7bp-a7(=~-~3T?9?T-J~6@V6Oh+)<$fro<~%GaUAga`qGT%^Bu-<1jD7GCE?-z z-lY~96sy4}n$|kdC(W!Cnl|k(Xb_E7$eUz}*lAM5k)>ktkV4wcxjol|TP{lRwZ2bB zJwHO$NZQsY_-0U8z>zU@S%*0JYCyfZ!QI&l+Lj&R_-cYIYiwdO<;vn0=|!2-zxs11 zVgrDA_|0lieHUiLp%DcB(eB!i#(hIX75gD}H0{N( z$Hn0dBoK1Sn5G22xWHTziYj*1HgKg}`E$CGZvp+@83x;ewO_XeH!U|fi<_czG8z?K z?0Vp0+sLMDrgX#Ao5{FsQ>UD8JRVVI$GW$iPM;jtV*mVneCmbmFbuf3yacP_>HZ@= z-oA&r(fP37BMt*N8ZDJV=rYAkZk|7Tyb2md4@F)YPlSef`-0M>|g?jVGrIZZUi{Lo?8EKl3giwlkhiJ7KVzCXT zth{1NK9m(`4G7TXfJ8`6JEKxpbVTF;V{(pQ^ zYhqySzFm7>7aC%9kP&i3jRJi zmAGAJQW;SK#@Wj;_2Hhh`UBk?nevKO>6F!V*s>Pw61B>9zIG2fnum9(Y?{~BX|J;()TJVe>6Aa!mb;uOXQOhp z1oq;R9E~18S3W)jn+5yXrkM$48e8E}(xE*7+@DPh0gV=f89egudi6rraC zsb0XT;^W5;xW2vyqFAGWMf={2%_6ekYkftr07&R(^C23o?dJLdmzS4d9+Bo5(8;$O zz+v~YW31a`x)rylIe8=D#be5=1a&~dfIt56kGOsJh;bb8yI=nX`~4nqU@(GhteVaN zfUHPKEzl8eEVZ10+Rg4Q{hWy)F8O&n8-}^K9IDI-$CJxy=NUO!LCC>Y=(A&X<8ZJ> zaqswMvP))1F4gn*xNVx2i_)43Y8w=Af2>w{?FQE<#h@tX3E}nuxKLo+<8XC_S69}s z*1BZ85Ss>ELO`go7sczG9b22*ASQ$rfysa4VMUu#KS!FR)F_3^<)!PqHgY*jttJ~N z1yu`5$_{O?30sqkG#Zj+AFU=)yvSJX2Z~ER2bRH6^QoX1^-9`=n$Ue54BBj^cqQrW zG&D7zRIQd1RdVho>loLvFzo;tBkPqF^=jqyh&~P0vPc!_nOR@zB2{Ty5|{0;2XPk1 z0Shs9yFISQy-E3^m=Yl?W|;xcW*Wp~(2e*cqZqJ)fYbTBqJXjIin)K4smtAJmmw`O z7Z$Nhx%TIDk12EL+t8NyZvP*n4jw3C7%q^bNnSYymn7PK_W1Y&IgGxAW5j6j8ErEI zQj`+=8J?YmSo#MpBXeGzQab6tpR8Ghb($P#UGx4Q4ki?dpn zjqu|2SZIB@$9Y&@Rm-VLnQ(e4t9#m;;TY^Q9c`l;Lv(ViIML6yR7LUr{X5K0k3P5) zm%M3*aTv3;w#gmD;8XAk_TJT^7Gm#zz78{LXz#i{Ppt_e(}g)mK$d|Iu*tq#q;3ng zy)^{gU*mz~?C(XpH-NgzE7NE6JF(r6f9@N6IJQBv@VhsxHdoc<_yY0wb2<0OY=Xqjuj83>#0|pgVh9Ltw&$HOJ(x_)Vk0;`o-EC z)|NTr|6DT2k(NaZ;szj5Q0C&6m)Lcj*69IhGV^!Ri~=jfxS)sOZ4Rd5azD15k(@pJ z*LBD-Mh_%Qfcs3&=QBba4PQ)laEV_A#V2zMlGYA9sSAd(;dQA60TZKg0S{)7&9xwC zGH(wQKtvr1<~gB`?E)J;#L+&}xR3qw9|ps0TCrfBoIid2BfkCi-q+wKeEaR6adB~p zzxvf1?DuSWNV}$*1SZq z@AGszK|~Oj2?&mlPq_X1C!Ee_ygmUpzx^HFeEub_uC72j`}Sm!SO^Ocy!Zqo1X&qb z#q)?PiM-_~wL-d6s8*BmoYyJwWpzmw1K0S?rCJfvl34@*nhm<4C7aAqx50(ndj~gv z*JTUT8jR){GLPFfIFngWqi!_#s*6-ii(Q->zk*iFX!9^n5k__9cEDio?+_i(5f}Y7 z8K_4+bB4*%tBcySyMqRbT|B7RNQLn;gfp(TRcIbF5k?3ERWsr4cEJO^Z7Z}tj7$6k z0Hq8WM(o0XySon#*opo71b{Kv-%DVe)3lK+w{JiYfA(jz?U@m-+Sasv7^=kzH4%f@ z04UWpJd|xfqZtw^xH>>02r~8l0XH|-F8>KDKZ-pg!8rXteph6^ z9%<1R%$;uAesa(MbsTaF0A3{aC<(N3a4tVn+r02ISWxW}vnJi`n@oRqg9KE~E)=he z+)))({oUmSJy*IEwpvWg8q(m(f)O5vSJyrl+W!1XOT>a|bsD1kVS;p7JyxR4 z7W}%lG6eOyqYb$l`~{})$bFL+Fso;4vc<+UxvDx&J?9FcvQaK<@aH{je4#aJDo|Ry zm|99#(=ZE4sGUY@&t2JgquTF7F@lHSjVyUUvpQg`c9;i=#Z0iDn+IZ?^Vyo&Ts-&7 z@aaJUmAbh+Tbq;K_;N&?Br)g_U$WG!@!3SOdUttMT4qZq=3u#vKFh+g5ld4 zjIc?rt_%qgFF$*Q*Kgk7;>88xI4t=;QLw+ffJ(ys{XM?=(^vS-Z+?TD>nk7w)y?-U zWKBEG#!$gEFS!A=z%bqbXm(Y$0zw9vAR-LyKL_((-2Co0xcTfAe%g@b7@QU#BjfLWW^Sy1T#zxu_O z`1+e~@bUHzFJ9a%R5E|~+QF6_Y@oFwl{2QYD0%v%&l9{03Yt-ZIWB8d%&0Cs2_e{7 zGUcY{gU%k0P$+^pphzy(D@@{g@tA_Pi7+S3zQZWo89v&X>%{Sj*7=Ycl z!yo?e2i(1XkEh26l=&rYu3uocf8m$#>5Ql25vS7$ zxj0_k;pMB^zj-XPk}`o{mQxA0Bafe1do$ zLuT`)X%Guhm4-)^9zNZM8OP%jj(3kJIb$!uvKCHfcHMvRCsaBwrNHzG>?(jp=N;y@k0?849|ouM1%LH^~o`x3y?Y-=#|FU`?R_{m48S9f& zmw7a^yt0A=nPj2X9z0BHWVyORcG{+^_V@skn)kE=^L^y7fNR#lO>< zmKY}61KohlVEvq7nVj%f@%75&PciqLIr?fj0PCWX_b%UKaX$M zo=@c=TmN7#Wpgf9whckbXH3(%%l(8y2Rdw|9zdUHHt$OiF|%+n=`0*t098Z|&}?4O z;9I-HZvPCy4eSp)mli70JogMf`_2l+Am9*@Dx=N?r}6}mfZfG~ZT>|OgY?`U4cuWa zU6xZ^=1uFS!hj=48Ko#n^92#3#u4#?alPL`#DF&8FxqAp)$`Ddz!x0?MP7U@!Pr)S zefHUFTwPt@t8e~nw7ukLc+Ah5+|JzVpO1QQYb)H%>*JfUM@iV9pp7RYFj@Q_BuvMD;478>ei zFvSAN0Ow+x4*y;&xMT30s$q(mT0tITp{z(nH$PKTjI_UJ;*K|ezR_yHm-XO)xORk7kMh}D;^(v2;s13tLYXWrTtPt#QrJyh1DkjJHO9^~RE`nD^F$a%(kP&$*a~Nkp7$5NzPb1Rh76 z+z;Ct+muqTwa8GtPMHQc2s9h$t9|}$K)MS9=9Vp%mqDiu(Cz1H-tGSDd(GUad0G^c zlbogd;efE_`cth)X-3L3_J`e4j0kmc?EdnAOefIE&b#~jdyFx-N!lrL?17oww9dIt zlI+28lU3^s$+k#2TLV;3At7K7Gr1ygpOnTB@#5w+PScEZyzk9e)7?KW)@!w*{^=>< zhwuJuCbm>CofAHLagE9qr=0Qd@ebG5SI}G*jgKE-xmLV*@d6j`Z*e?6L52Yr7Z;YC zTosj@%)tZB0^=aQd;$OfAOJ~3K~(DM0=KtE^G39U?shSj?L>uRu$-qRp{UXSx9liI z-#+*OoS|lz^a7)qXhl4u!>2oeT!zqTG2GGRZ8KpK7B<~>hi3TqUNYv{q%7_G5{^hs zilqzjr-7_DEBY4j=@-@U>5RjE#(syD)FD7Z2C`z#Gw$!t2p88tjL@1<+q9Q!F93QD zfFnR@B_C?UAUnie-sI-uS{V;dN2Hr800A}6J^uv0X4a}uVn^wg6?GAv-m+-LBi_CH zfb*$h7zqF4KmH?Lzj}p_uV3Sj|MkD(_TxwVs#IJLZnSR_H20EB=YqFy-{SxJKmQ+m z{P+TK4VI^s4Cd)4@M_* z`cbX`PZLVH$MJN+&OtTyTPU2veSV1HdA-VF`jjX70>WfhNWHe#Q_4 zU*6o{AO8OD@z=ll!lVS#2{Ce?D5_L&uO14EWvsg}sHBjzHBZE22^NdRBV~B{p!3;2req}`*LZ>gbK;K^MWNR*Dv}qsGWS5moo|<8w z#Wq57NnSV$XeDu3`zh+rkhN&_=LrtbsHzAt;3{5r;$z#8^htGHzUM(=_vkgRM#)zA z1`jq=DjrXe!2-lEt{OTsIfECUO7u-2SH&0tRF`K$M6AgeBT_1OdVGRH5lMk;4Sz~z zJeSd>d}>5l3f%oj&7;wv4kFSeCS?*(DJaQgP?;2A7s0#GeN%q>bf8B2Jet(6Nq{UI z)Vw%0+$x}IG~M6-H^0Wi!vntm=0~WyUu?A*XtdXs;rEyRO4VenHnlH(h}H}GXa9Z` zLxXc~aHt2-HrbYHhLnbR)(vQh>+*f*YKu}=h534&RC4Y80Idd$KX;C;;UUdK(+8^0 z-qSuL;I-guDKz`<-|*vYcv75N*9H}9AGxE~?e|bS6MHjHU21HDSW^RNqx96;$*7wR znm1=H&>n3N<#IzNULYh5#m$0HS_7rN4WqshCL#p&;jZ7y?e~@98%ZBbFAcKx=5F0M ziCXO>72T^;eOMqOxZIoNBs$%0Pf~(@BFVBz?l^seXGIpwrC`YR z*%yxu3c=r{YG8>`0}5s+I|Y{mat5Fo5(LT?x4_%3FH2PkeQL(V4;!t*QxV#_URo+n2K z#K2H@v(+?PsA~xJ2%78NOs`F1E-c-+XD!9A-$-Oo^#1Old z-;A@;i@3#;W&Hd`QcI3Pu4=ep8KtlE3kW~HyTj$>MQ>aelWKLphc)l*j2B1B3bqrj z^9=m-)<|2Qz4-#4fB6N5I6%gT*B@^2!*}1}U;p&4*p0t4Of*&O#~tQ5<6r*eU+~ZW z^gVw1=^d&9FJ4^Z_3M}BcL;*Zt4p7Li^=pl&Bx#xb|B6EzS&DZ4j1_0?JfTF&7U0u z@BW(TTe4)DX3lod)-J73pM?5$K)e{Oc9HC zDW-^8se4P-TcRG!9LFUqXw{%>r7BnzZ;Y&^=LYF&JEK@|x=WZctqLTg=f$wdk5sjr z$P1ch$#d}}0Cjb4hLyyzK_AwcS*3RRkmZlqMkk1EbVHTyl~7j*tb->(vc)wwlA@w- z7ea_#3DAZ$LcxEntwf20aX9QTO%q6gi`}7bfz&4k7EGA|v5Q_+4O?C6W&_r~??$?7 z-*?q&a&5KqSwb*r2Y?V__f;&PDVq+z$z+)kgLF?&n^3lkJoxZNQvt)X%YtoAjnKS2 zPdtdDk5{3sVDJzTLhR`FUMyF;`}V_t{Xo!U-&blun4q5HW@o-lrIpw{VBDpv$qPgl zYn+1!P=GQeg=X%jjCRb5imqlwjW>Y3;my1g!yn1nitHU+ky?u*m zIw7Tm*n-oYoK~Sg0V31_$=N7`k2)czgyd6TmpA}*d+$kaK(O&hb5|!gj=EIflf=PK z|1u(&Y=Hu61%tS+*c+=Vv_fVt2=ERW(7I7ftOHfojd&yekr#1z27PGnUZHFz^=w6} zxEEvHL=r8*#HE;5jKVT-w7r#if|`dIfqQ0_ZNu`CFIIE|uW4TEbsnYmugRMO_YW?c zDwDn%PCp@ch}AQ~Y$a2z_^&;evZ-elLhG{a)2iJ|Prk9QEeKlN&qoUwB}hOF=8cS= z<;fZD0X29{plJ0a5keS|RC-u;Meb6{>c@vG*|}Nxi+K;r52pp zWR}dsG?RK1P*Y$4g$im}6byFH8O5(kBRE@wDPlEIE~e0#$+p2!T%tTL3NQ%)q&D;~ zYI5N{4~S9l=-{KwYQE>%ru?x3dX&Gy{xy;4C`FzMn0g#vk=-44>Q?N$qqV}$B} zJf|g6BdbwY3xULjinXEhnS9W1LxXlE7i3T*?0CSOX3V*4QS`KJ>@=G{&V2F(DlH3@ zdg!@5KHe~Kv?&XDN^d!x@zb~8;xG=_y?lWwPc|`7n;_+LcDY2xJSY74(~s7O?DvKM zK8ywrXqy08JRm`&!QWN~!D`Lgficc*P8$svd z#U+LhI~*S#@$UUk_~q*_a6V7wDewzF1VPHuZZ6hW@ zAma|28j72JQia|m1r8?JYY!$Fx_uY-esLuW3l;_!!(3`AIOYeOo*q%y3V>YgvkC42 zU?Qj7F)j{=-aL)tXu+m~Nz__ls*Y(50!SpBiXuOqAf)~xm!52$QUbL=THjI;EmEaM z8Qbl4c>Deq_m3y2FfMLhp^{~tR03|^yuwdEy~W%2clbjl9C(K~4tRJv;eY?%{ttZj z=XYRY+`N2+fB0|zJ-+)u z`~457DhOd%Nn*Dt^X$|)$TGpKwSqHzP~e^jziicm?Wn;hJf(eqWN4XiT?N1S?eFjp zfAa^tdGi`9#dCjb;=^PGdYgbDK)fbHOxCn5PMkkB=ZlFU}iY zotZl9;kmaZP|NS}{HbA^bI}e^T2{Qzwpw-be)T4f7s8#o8CkXT&wU*#*e1GdJM+BZ z5+8sF2XK^r7L;5N99Ch!MzHTkTmHxM941{f`wn-pfI=Wp+!SkVvMgAp{t7Y(gcm_6 zrS4=XoRI6t`BuSVNP0F--(qTwLPm>2cZc1;2na`UixYkyH>nG2P`g_-bEYJRT zVTO`yLiyBSyO9GjcV;o#D$ZLWMlXb3m|s zP~{b=(WKSHjM5ug?Y_DVz{I7!6ig;Al|U45$~L?(!T$;{V%1Us7e2_d+RmTCB!%9E`@D_2#Pi&+?R-y5>h*-m3rhwQ}r+d z1B{GX*}ZE{tNPW9X_8z*-y#mPDp1%NiE}^a_FpbFSE8UE)uR_p@)8i4}e)Tnu z53e!aTr2^w{?|B0pj_aoJc7j;^9<~EBSPGD(`=i}t+B7fjcm3+^VfyWb4eE*Zwe@` zuC8!#vBRs^H~8{bzrfwy9j3cGum}byZf`%}?)^K{|L5r1Q0v&K+S<3UASofA3&ya+ z<#oZ$XE(@C3IFt`f5w*t+}zxN2R1H!nQU!Z8Q0g>xVyW<`Ely2+%lUcyfRQrfJEu} zdoqkD^W5{G+JHXCZIF!t<*6rCKoEFbs$w z3^C$*w?~YjpYu_?=xNWVW`m4GvF}#%Di_9d#91@$j}uOF0rP;v;Tq?pDCgwA_a&}x zUgNv(zQaF%^F99daE-g4Zt;Kr=l_g<`R8}|{EL_PcYpi0`2FvHkBiH(5mp3%KE+4Jh zf4xnE;Ta-L%9cCD(wp}Ss_Fg`?11A=W3Ja?6pL3j6e550D+TD$BR~g3WNwRFE8=( z@)8g4@9^R7LyyV`VjjusIAEG4uqreskXGzHP_{Y+Q~Y~1$xQNmz!mD+oALElxJmM! zi#F|kGN{lJjLJ*iA-0>Jc44lYF7`&veC%~YYi#n!R;00SG+6=$VJMaUc~K=FbP80q zTdr1|N;O!IYBpdIne?bpY}YWP_O>^G8@qR0eK<%)RM_SQw!u!Roif*O^t{P?Yc-l} zb!w-5x|D9V?c2oJ2Ta_4v{l2k&Q9~^L>!nvR;R6I`<+6pTKlGmxKTq_bqZM!DiJR^ zcVMprX_N03yKm4o!Y$m`nkIM@h&AZd<#vGp39)bUR{6OoYUJ9){!A7^np4jQEd--t z5_nIyTV`4GUq^Sur0coXPNgGMKbx;1NLx z<6%H#!Q;a{j>kuY-GJ-sYg8e`Vdy3-=^h*IA$&^`H@b=LFJ}(uMmh!0U=a%V{PWK- z4Fl$sP)8Q=WrU-9tq z4)J1V5(b|PpXLd9n!wd$H*as>bv${SxN=IMq&OT7W+Y}t454c&jhx~*=v+}*0Dl3P z#b5F^v|-OnT50>eac$FVW-%OU)9<>Jsy;WHZyHfQTv}4SXC!EKZD+O%t~$Crz@!|F z7ME+moSpvEg7{pX*v7U11cDI4@aDnVi(&KJL5bjgF~RAo{f@1J#VTQ z35c=TNVE$o*F{3Kkw%lTnH_N#i(T3=2&qgaG2=6ZY)5 z$%B1VZIiI``b3?|J8LGbFc&++|FZ}I>B)7N--objhWe~;VSJAC=YOZ?CO z@jv3l0unX&tGc=Jr*2d#Q*XS|A629?ss_e z>fo0!5Ll2_6LjxlHy!~hZPJtd-LUWR@%)72@d@WAL!?t7#9$zZi^GM{z|{PWF$Tm{ z;BGG{T{BLrt#z#xyS;Szu0-(w#U?q;i*JR-0jC0IF}?Z1ZEN@$ELsq=$|r zt>PwEA8=@a=G?snjmjjlNcC#TfD9dDEG|C)FCMC3wQQF>lb{DaQiEK0u8pp}k!{k= z+%c`yI@M3|T})COd!v<7GT#w#r-71hwrxU99f{tYS50aYl$Jp>wahE-xanE}6`*9( z-CNX8`%bMcG=Hp_hg&vQ*O{wjjWq9rRNHPhPfe~%kSVPSyZ&dcRzx)g0LXKgRuaNB zeQL=;%RQ*Kl+wLn?JTy>NKh4s(e?EzeTYXrj|-jbY8w=_dxvc!t0|k=-W#{s8%5!W zDgmh&oTp0d0i8t&C7YC-AgIC!Ua;+UJEVEWA)5aovq=}HJY$|SWZ>RVtf`44(WItS z%nQM_(;I)zvr}M07V2(1^J~0%{R$~1+}}UiIm3$Gez4NG0GKLDP6(r505G@nLV}t1 zy=Kl`s#$wMO`gxkEbd_}J^zIeP@xM+btT^t{|TL_Z)fGRP~R4uy74VG1ThPw$vYjS zprv+@lX*VTJvdETNh=KaI-6%MGlY;cbD>UFxXC zGm!jql;))}Ibw7PX-Ys&wk@~2q}Vo%#j=H()kT)Oz(52Q6Dm&adu-lAhxgQeHzkwg zDua|ktpShRhh^eq!WadS3Z{9&$>nadH<6@<-WRui6o00R2M!N3fU6=WvF5Gii#eT< z*f8-y38_}F>@npDN8cJ252X&4PYz9fK8VGH1doTI77awe7y?oPk|v*%n?e9==S{61 zOe^fr7xMx$?C+UEAL0+bl+g|p$(DQQgW{eb9!$nvhn+6;P-oOlk3r80X)MI-(=H7=K8g#h<(1*h8xDydOTJR9y|nsF`_`(OcW znu_bqOUJVpxCWXR!+6W!fcp&^9q)OsZ3MBpGC{hQx{%Xp6dYyAt17u~5}MCVRw&!B zLb!^btZ|6=`0l~NdJEy>-4kYiKXw9_kq&0b*mC20q(T{!4N3NN51!ZgjeDiQy~fA|mh`@i`;LX41zez984P3$Z3 z^@Km?X_aqfRsZoc;r_!%l#-#z)7ur;QG|?(A7_ja)z|RtLSo)Z%#_iy%i6ZF75tm2 zW-SQJojyk~8db2iLQ8wY(xhvKYWAXCO%hW|lbkzE$2}qy#kVigpQTdB5X`dVeQf-j zWO54t;8c49D$Urul3wd7=cM_Qn7B(S8fkAW_g&|C`AgzquGSp0NFVU@O&e+Vh6M+g zkfD?oqL3qBIyuY#KUTPhtrWDMKUSo=-?vLuLbTynDRnCW^nyZKW7c3LMD8*0AXWfD zV)t|@12t8!Q>xTIpXl)e)?6=!^ooTp*lAt->84fu&$#4fnqQzjhf*you8|Lkr8f=W z0EbX@SxT)=Msr`N$d^FVaLF(1W+v?6!Yk)oh7-8%?gVBJI=Y@lOJ zk>GVy2sWVSN-MvmN#o4>YJlhsOPyLaJ2lInlLx)BE$9WrC;F8jEr`%o2gWZ zJ@04wL|)Yj%a&xUzCB|m2#VoR>!+K$x}p~@Q|{HuyR4>Zp1?i3JV=5UFwxi7j!)&> zXgKyc7*vA6Ez2lc@i9nnO}rv$_53P^M019R7NF`EeDq(xLy_Hs0n#4y*|rJ`zS2>a zR990$tW52-H$cUMKh>w&#DI*x&K0qVnPXnyzh&M%v#;O_nC9iTsS1hk~ySActlBnA;173>%k9(|9{vIv|vaw2}v^~XU=7J zuT_;1;fILGtm=Ja3IfUDIeT}nRh1c+@B4k>kF$_3N^h3}O%v-5RJfwAV)7)3ZTamG zvSk1OAOJ~3K~xTwIhsrJTmh^n&kYwQl^HM8VCH!Kq_}y<|N3wLE&lnx_!oHUsU1#= zP2j;9tuOqjd0yyA%Zzu@@HPgc?9vvC(mzmzt_hglqYRR73hSjx2D7!#r{=SlZeswT32g$%9)mHwuio zX2V{M9iKfuc79PqE|&%RWx~oKQ$6P+{TP)pbnZOma~B*xr!Pn_)9J#UUJsTBTgBzO-?=@F0u&@EJU^z8P zNs+Qs=2uTYBRn<&MH>@P%41@%<`jnVxD(e|QX!Nhy^TKnGElKRXGq>j%6*Z_T5mw( z@aL7sG^d>7IHor$JQVR~>}>x(3Ji`WsW$u;#YTj{ANdZ+X;>CncmjgV0fRuzA_u7v zo?F9GXkVq;^2J9S7VpAtIq0GoG=BQwHSS0bFM}d#2hXj)w74IR30jt?C2@2xd_@$v#@3i-1ha8>l$WYQL3muiGO(ZcEJ*mCezoAu)@ z=$~I~p)9!H?=UqyZMVcKKcGYL)Fnw`8MDFhc}dPLHM8F$AQzzLmn-Jk4j{9Yh$sfG zMCc!$aKGP|e^~)P6aynjW(8w8ZTWid=y?W~yiQYMPr0Gg%>3cptU0f(uA5`{JD(>- z76H8geKrdK<52;o)wz+X5;lfnui6@ znPMYo3mAd3Br`e=9LIr&?_d!0R#3enuUARk2mTex0HsV z#|)A^hgDC)8#%}#@}L?v7l8;}Hoz=`je@jENniDpI=&_@Tqw>wWK&x?Tyi6L3rL2U z;m9G7n1YT0dfu@07V!gqpp(HsIG_RM0*AVbM{M-7)~+}S7QnKJ6aijHz=QG75$Bf1 zP*3wzcXJ$v&4zd0K_{$>nav!g%JuRLP7Y$VPimw&LnQoJJ_3Sb`R5fywguHK{^j-( z0d?Q}{HM6RJVh$E8O9^czZM6qcpzlS!yoYRr$5EVk00@m-+qVR{qA@8&;RlNL6=|S z<4?YT?g!A~f?^Is_Y7o&=7eQwP(=iG9ATt($J?h@+&{en06u;C9>;NDzkkBp+Z*(F zg8Oqz3VZ)#n<0_osut|MGN;(o7ROG7qwoHxwFw@&+Hakhj8QEBE}_0 z8aiyxAX?90R33PT;N{shpC7O)AW3tAT;|r?R8%rL5N6zxsFX=skdgq6i}NtefXu)S zH^IB`!3vBkNfBKrWm1#L)JSvTT9ZZvRFS_z-^g=P!kCk&_+$Li92RH*6x03;G=Ojz zI;&BP7X>q0Bo3%3G{F+nI$3fsCC9BNB}~G+{TK>E99p;A4Ie&!h~PUtvO$T1_3eJg zci(-7-~RUR@!fad;nTOTxZmF}yc&ca5*-0{H;5rTgH)ay&pebK(zz^XXYPoNNJwWu zM{2&!CYF3|2IixjWv0Y4xIKW!W5=`H@YjF+*Z9kS_9y6D2iX9NF|%OifYo&r;+ms~g(C|U!Mzu+c=OgpsO43>zoinYf2$dpR zW^AQgt8mr1388G9HFpPQAw@F<_Tz}Domv)~j4ms4NTi|3@>~iSRJnB3kiZkI+)k1( zUWHVds)uG?$2Bjdif&Q`=ftoYJI?2raw~goekslJbZ+2ggM8jZ@yTl?(*SJBmkrV+ zy2;6#nnm$@IL4VkskyF)0p-tRc}eZqb2_d8z3 z(}eLDF+P6$2pt2*ZG(LCPa@#=IMBBZw_BfQv1YzkY>uAb9=3v@hV5}4BesC>q(O&t?#&b;9+3yRt%+gm z5qGTzMvTh-kl=|4)sXO>Z3khb)Yv?79+x7>r$@{Eh&TnW^Kwz@`X+d~3p4|RHSGsx zv9tk2Ev!kx3zb&pl_Jpa44JjSe#FotzI&R3&X`)yLFazZr>fB3^6k|R$L8v(`4FYK0w zup#9hb&(*EgI=rUH1|62v_&q3Y6RTwLviD{cm)GK#$07@Tbq+V_cUAAiqP$pKu=JO zbtn>}>GuKI8eVQs_)hn!k0v6}bAFLY@;L|YF&F)2UHr~rj$}`-MHPl)O*#az+GQp{ z_fsL{KY~tOO+`#lvLH#`|0r{z&xC}jzmJ7ad|uo#LqrYK2}qKRX-s3QKs_JKsw1?w z6zuyMQkOoukReG1HKrcd%Ev)**;Zg&N|eNxA@zOn!c6cZ_U^o0P4JddmP8KG;%sr$E<2V3QSYFjI;ckCkTqyxFh{a-H8>00K(hH8&qAmx4wvi~CArS2gGe z^4;6pYYre{3i;A*`MmKNCjcKd(cUFX3v_H?ql+fld*pmnV{pcq6A?y9K!0p&Lt&CH zS;6Hw5Bwog$sI*Zrj|1isAGB;WsC@AWXx-|Hk7c7#M+P3OibWR89@S~rndh?KmJDanE$*ccPN4gkj(*@yy^n{vu` zwWPo$3$LamGKJ`~?_f5SIe;QR52WyJBgaWyvkQf-nh9YBlVTwLE+PhsTADE#=VonD zsW>O54jqo(8>H1cvZv?8l2RF-VhDvFO5%Lue9q||E`Mauggdaw3U<_ygD_^W1b*3x zBIYBXAy0o?On?XMIC5ZC12Kh<15X@MITi-xM*8K}=5r`X=&Rv}s?81G<8jPJ@OJwd z#&O{3>69CpQ6J+_jG>TQOUkNTH>25z?)#1=0tRCo2Zj#xlppoP@z-rmqChE{QBM94Uc4ORbJsYza0PdRc z4a@-!8M&?O@oY&+>GGXs@oY>-yw3^qA?~2c9K$JxielhY-qvT|(xVlF$#E#QP4Gk= zI1)RM$|Q$kXNRhQjPc>=3($xfZRbE;YZBzfP^fCe!B_xRdhc+J;U~-^Oqe40s=Q|9 z6`gPkBxI{17IN_N)1Q36ci(-7@9YjjgeAv4lQ{CK`|^&i0Z+&TBb$kdFiL_<>5U*j zwvPU=2`UODS)8@y?X{!}T6zA`gIi}3TM%+J@1YOLW%ps%+_DYMt@&{EYtm z0q&F&fY6d_uEGJ}`QsCAw;Mjnb56lxGF+G9hcCatum9rD@t^+gKjHVk|2_Wi|L`~X z%fI|f+}aI*W7i|3a})uO-@k^rdyEI(-tHKWJ*jhhP_gWQTgdP_6WWMF=T^BgbekoT z79A!Jj$zT!!b@waIrR~|$cDxtt*hy>yMZ(wNVb?tz85icIf?FlP>hh5f`Fn2?WH zb=Ks@T91bFvoK%BDS;0>eA0F5#ZyGmc)1L()8i_%w~&KzOfZZo*P0Dbf~PM;9|x#+ z@NFeabL*#sW}nkHMKy9f3rd>i>w5VqR;o1(z|s^um7juU)=E(SJS7DVI?BTpaxSJa z=f0cVX3~0jy=!p%Pz5Bk&-=c|=aG8md0-geM?A0Sgu@iyzkY}B{?oVE-(K;<4?p13 zr#(!)&JcNm$Q2-WW$vB(b0(P+VDW5AjV?571 zeQVML;@jN9mdCA#h3~0V<;_x@!&X<;NnmjF`gv6tX1FI{BaGp8Xkj4Q1{kL-wx~K>?@dn=t7fK?%)ol4x{xj^N?@+nzgo9pn|Y(4y{=O_T?*Z{kY$a(2K zLm*>dSzgTAI<^~QjAI60&*FbXA<0hAW2B#e=G2*!9(Q{ZY|hvpBfv2%v5m_Z5lwlc zG{NombO|y>MpXDXV3|uaKOY(}Hr&#a)et_u%JnPRY{~A+!*UCW1xOV}J2<81?7$`w zThUv1m`cjmTAycBd7ak43)pUL4!Z2vFK%wLJ!}W4fp#Uy85&SbG3Bt662LSZXs!SYjuCLFhER`G=H|9_sKy{+SU|F-XO{u;3L1{u@Thxj z4)F+sS6#pcwBGQ15C#TzWKgqY*gLg63$_WPDGwgsI)=wULcJ73d1qDp!qy<?>#~bc%pYZ?wm;Z==^5xfH5xhR$@cs8c;E|rF@4x>(CTvrZ z7THC!0OFVcKXJV9ZI3VP!*foDkRGDf1N_91%03i_8TNh013D*>E69@ZWZUH7Px+8J zERQf@#`Dt?)N%vGIBA!0@qp~d9s6TPYk}boatiW8zT@pv1g9Q3xl$c)4g#C8<-vei zL=9bGnTO=0Krx9dwQ`&$MWOj1`w^3JZtc<}ou}B9r$w1Oe>PQ5Z^+zd)Oyq=mNWi) znbVJWQS#z0Eocx-qM)jVtpYQPN_4rX64hK%9z8;n+dPa#a*`g+^U7XhLXl>$F!K)Y4ZT$blJp)VD zh%)m6PxrW_o_EJDKYoS({onsP{OOr{vNnMAi;tnet}!&( zkJ$L_N8+YCS`$3=+uSs{mQEkjJ2Ur9k^!IQXl7GXV9e8ytYgG`c}}dX%ZNEP zBzeJF%8$<>nMG2=ob>Y4w=?ma+`VsRF53&I75M0yo2WA)T$09ViEx!u(^np#@Hg+IGdlfnTfnAj`KWy8c}rM;uV;3LZTQ@WwATMZL68l zDDsfOk7y<5WQ>vF=_&mcX>$w9SPgyU)TkN;G+xcbUf1BO;43~x5)&)K$Ko@fk~(hj z3=|bstElSJ(=`V-W(lzvQwA2EV~+ujM5b4e92ewZ=zz5J)Ono`^-RR~p#|Y!27BP? zLsFh3OiOIK7v8(1r8470Lh?G`6u(~;pk^5tA>j+E0Zwe5YbZrCW~01ACCQY`WKuWW zk|0No(Hi5(K}h}cD{ML&oO<5#nU<}`2C5(-2K3J94NkDfI3N7?1TnpS)24Wl3;=JD3~#cAJWf zQWsdp9h8jysfW~RxA@&4g4Um-X*~{r1-I=3w*E9R{Q&U#=?%v*us;m{@DG0v)$n;8 z6obJ{HgxLv;`YVNDr&N!y$Fte12v9DEVpMeWxv42jP8Qx+YJqEz8{{5?#JU1X!R!O z<=xJ0Mak!dqfwPc*pD6hIAB;(L?FVK)fLdJ<6O}oK~1xOq-`nj>Lt<3G#Afk93j|o+4 z!Z1(o8Im19F*I247zwyYi_3bm*rtzrD5In$WwbtjY9YBD0PlwV1U{?!XSjlnIKKxM z)PyouiD&j{No$@d=pE&+hQMZikk=&@VdTf~FpX}(%vU-lV7BKBPn?}>L3@`2)*mfWjIMz z$l{-yf4>?0^mEikrZykOyg&tJ5!5Cg6B6br&zL`BnY>Ho^P`Z9C7BE<0I$yy9N-Db zLzm;yIseY}??iDH&#Bso!}~-Eb9WrJ!ysU#00h*QgMtJDH^|mg`V%=@^*foL8q}IR z_cjZ}kbzXzO-N4HYs+IY{S&mGkE%#N{US{S3wN=@ow0gxid4>S8nW;pr)Yk&$L^Sz7ip zF4vN3SIrL#U%Ywl8W&y;J|OE1g<(opOX@L_LKb15ONtYIq%|>}SmPWUn4Ee_+uq>h=;bdq%jRKyMj{MGkNd37Ur9+(-qqzjmJ^|}&Y|9OqF>LZ zN23+7R-B}?917ifG+DmLd&HPc@d_n&G+r6xbEGu&mTH{ZWDXsOG@XG)hAxh$ z4^N=n1mf$jB2*f{pa0n(<8fDf|HJqA{&C>H{+IuP``ZBDcuFFr1}&-BQMYO57-Qgv zw^yhR2sJ#*29YiNCKD51gOKOkRv=qsUgo*kDDD(Rpt~6@Pq@qX_;7|6kMb4gwq2xQvklOY@*byw*R07ce^z2Ng#F~b(#WhNuW^?& z4K~56?a_d?*w(72nJLD!i;|hk^i} zx2ng$iJ9=ypYek!Fb{@@4aQcygr+fuhJMPpo+8UD20&4x$Gzi zQVu4%pb-&%@yCCJ+wBGtiCiJXB&@X3hLw6fT>)-5-0^sO%-j@+yJrJty&uaE)2FU@Ug6uPE;?Z9wQQwnXx5ZW@=DB)1Z5% zmnZFxV~bM{k>@2Q67LC(AmH^TGaQW^cs&N_7@6l{bMmQGpeOxG71;U{wrxY}9fS2V zd0Z7y?vZ;G=2e^u90HURAM101&Dofo>2g7NT6qwdKBd)3hXm$KyIDVr;A&!iZ!A6| zGNZ{|M*GTjh#aPzWa^^sovC3Htl&WnVu=gRl#<$1WlSYm(@Z*_g$pwVhxfqCL_Bn& zG;08KK#RXKH{xZWyWl)`{MsBN7y5I45JWdU5gy6+Ar=@ft z3U}2VM)7k|0!&)cH05N7xAOayMD1kAbhr6_fNWlt=AO9VE0W(b!z83^3V~zakNCO2 z{~;v6S@hhVdNfQeyi$ZHro?4lq5+XPG6y7N5^YYKJp%wkR!fcN<{}XMdzftrAX^m2 z%0DUC3@5Fq3h(nKhznDEdTwkc$xAlnEq!a(LBq^FAxSgo@ma=<>WE94d2N(Ew#k|o ziTRRQxdoN(JV1CqxKMj13C?$|ngBf&_c(by&pxQxq?Ttf&Ecw=1%iMYW0++lm*LE( zp1YwS6*dvx?yF^*lSiQ-bhVJ2&GScadA`=rM*_%@5^(MkKB>w($@jRm7*c5lK^ESe z%%Hl!boHH2$U`+OMIz(4!BUJDg+pSe%XiSZ!HDNseGV3%o4?jB(p?`h{SSou8fuEK z&xw5HQ?+cC3g}Sx=*%V*UK?o+c@9u{W$_Gki90nW|1~(_i8cphqRzv^c+CtWrun?H zG<0B+8Dmr0R?Z=>O-)?^YjEljjO+$wpLt$P6#r~OA@29L_3unyl$^YaG{amED@a7U zGy?^+so|N8JtU2JuFoPj>#{S1r1fibhN)p$0&^41zDSe>H}L{tv?*V#fo$FTp?)DW zj)7&66%{rDP+%Gx!mmF*z{lv za{$+bKZ486f&yH6_@df^1g#Y*E&g9K&O1BdK5%^T;RXIlXE-dgVAlhg3HBxc03ZNK zL_t)$?zoe{)H6PXW{|q&1Gq7wIY!9LJGU4<6_h6fR0~gU??P+`M!Y))JZ~MQibD;< zL#B!o{3;}uq1*`Xl7o%0v0%Vq9G+7(of~^&itu)eA&e#EbH=?CjKNAhn9|sME(Vfb zEjdU^iGBFoMoN*_JM4((b5jR_G1}V9umBr1>}nY5Gn(Y=g)Y??_5;VU<2CPLL-@!Z z95pKo!P!!Y;q%_9XS{>(vTYb{IP?f$x%pS^mqFqr;$~`1JY;FyZld;O%%oHB8+1xBHxkJH?6?G_F4o z3x*kN>=8;uEt8n*&`7CMZhW@hR`Rx{Mo|Zt3`{Xu8Tn$G#R~=mRmsh9_n_TOjJe0O zg*kH$l7gbCo#&H(g66aar&TVd_O&|y?u@VG2Deu{yo`8l7C(8aMY3~ixZQ5(&$l=* z5-WM%A2U7q>{HN@g(!z#hlE0Jo70DaQH1BkXI_e*0va1+!6N1%ef2C@ZjdZwA>nQ>93D2aO# z6Dp)kBuB@dUN9zl7p$0x;l8$QYC3alT*7NtMcUjdm}1o0Ii(`?yw6OAn((TEoiiMD zEc#)_Di862vR=-)57HWZkrYx(L5YIjFb=ysX&E%mLDdIQOl5y_J|43 zKmX}3@UQ;rukiB^A27y&TO&N*8n}M$G`ZVYQam@q{r<@Ovk00kFaY-`qI?>@C4-!U z&NYiMwz&0r+yMV!J^k8`HffXg~;+l?>8qDly7jsWNLc4FhF3ALGW;F&&CsL72I%LdX?=jAFO`4og6X z&LH98wq%V=v%wHfk`{84%IAwWLxG7d(&+M(aSmhFATP|xbxD^Li%(D!uJ=8qRB)RO zxhDzCPq}Hm$HaG>=yX)gWa@IOXclP@;cP}YAx9-WZt>2WNA$=^+8)*cN}m)b+@gv{ zn`a~W8fMg=FXFR#iNSzRiI&SUfA^=hn%6Au=MXACyK>#zsjzM}*(S|rfAJ__>zU~5zTkOSdJXlv;<77 zT&(a+66blz*)-HyaN6>gT<`t8Kyk^0%Hhy?KiALCS&$#c0k8T92KNPOs`qu@!w+YY zO&%i8#|{Fy;g^5>NBD35?Z1L-WWcc}@h@@bC7ZRlb45Z5%U;ueoA8ww8fB0!1E7qk zppdpv4pCX+`IH$%WGNvAesX(Wf1W#@A1J zYg`7!_57{)1evXprB62~Zh@qy#?V0lA#uZ~vnb;d!gCurrA&;$4znXXhura;RM>!u z8CbHmYSFwM7EKQXQ<`1xg(5zGJA4ji0^~v|dCbozGl`fSU+68!wiZpxAccDj108_v z16$u#%|ecCYdFT9Qs?j&)mEC58oXs?s^kHLNua``Wj%`|3ns0wvcw9mWE?}C-g?G! zgoja;r&lXzhB;h}lLVZ2a5B3Lax5k4)x^rYx1({_aX@i^y+L}9ZJoPg;D~8aX3^~T zd*ChKc6|HoxAS1S-{0Ww_%t3cv)D$tPZ~%BMo9+5#lz5B!@&+cjw#1uRy;jD#ldY3 zX@nXkFvnCTC}eb*$S5KsgO5EDfpsNYPjsz2K%qUKX4#X>r?N7@i((>~U=1qW`w_o` zhiuLh15D~mD^HGt2CO^U9v-YgF?oT-r0M1PIW~7hF{!`Zrukb(kY4WhI|dA{F~ON; zZ^VSzOyP-Xs{-GusVyl>(hQ3hmrp;~7o8~@20M|vu1&;c8c#ka6ti)Cp9M1yWJaTG zOt7RZoQIjIO(c1J&Xn+ldFj-~apKvtaJ_}b+@z*JlH{-WnKZ+4EAhoCNLsCAD>*r< z-@!Z!sw~La^Jhg6u`01wp%ENwo^-CrZLlI3`kH{XCZNQ)kD(JkUM6ER18ui=q^sNn zwZ6886aj0<32OZFHgVA_U*^=jRbiDA-@-h%5#EDCYig&T6$)%2)f=k7rw9K0PyP)5 z%fI@Uf%n!OA9}~O5m<6U+mh%gm1E&J#xb)>g4)INc_-!w2WEz*WHv$$YfF%@1d3sR znL&C^xGD%S8zDz%&TG=^u2DGbIYkyqFC@=~R765we;hd89{BY7isOg-l;Lp1e#d~O zMH4sw{k#Ah@$}gh*4wgR?7f4wZ5D`}K$(I?xTpR;feymU%Y=7@LZp{3^Sw#@dm;_4 z16%9U!_>HCO%T$*`F*D6^V}eDPSWeIHS#o=%aq_2Cg0rRqGFj)m-kIYG})X)qzreQ zh+*Xa&0wV|fo0HO6g~qqrMjM;3$trhiK&5m`78TpTkY~|A%l;r5t(W26BkZk?w3M( zdN^|{dM>)FX~HBYg{kG-uu;oxb4yvEHspgDg-M;Y2m+jNJkRIBA@>eD_K>YwWKLxS zBV3T%r~G*;-GNuC6$?kfm?&LtLG?6MxMDU2bjsdBqT?%4K{Zk4+-KlpHB;vx-}%`% z=Jx2kp{lqCPW*5Y^vd`hzzCU=;yDl^&Ub=vB+;y>bw!t(QpCj06VnC9&b67e)p(j6 z;7K=)z~0tEV#O)x9wQC+xs{O|6o`ap%am585w*D`k2`eC2Cg+Z`3Exx&~!p{kl$(W zNIIxc*dTCjcOt~p=2qw2B##Uw9vZ~2Xf{J?>bzu4B?%5sZjwrEOut`~JTEe!R)`XR z&g-MbEY8X;}NYmW- z%ksgMPZ~+`46kI=L(ExhXM-ILu7Sa+2~OE2c!qg<7Q{5-vkqjq;$z2Ev=C&kjXG)>+?z)4Q3Z zx5FGAxgk}ZAfa<4LYomSl|N<|RaHZLR-PfQm4s6P*g_Th9p1s?FsMb-6B1R1LSY1S ziku=Phj}Oyx<>%^=|L_@X_T{bLsBG3gxn!^`T#jlist1&}6Q)1uh4z+Yxk7)^rI zBG-j>-XX06d(xyd3ZGk#$yj-SN}9tGXwDUVoh#QtP`u#{y6Yt~B`AU&t=+I~F*#~asa=*Rt`Cn@{p%ibro9rx{kjREG_Wb-(&S9J z%3M9fa{EZKUgeh*TK246Jx}D{H%&hlk~s0X`R9?ICeN@r8O7XQa5S|!Y2=eAbdr%n?Y+7Lye}`M%~MmeS7YRggHGhUOtc6%uF| zBQE@lgyP-CO^_s?Y}6J`yQa}AQzo`9K683zp4J3k2kJH?1aWx?M~JQ=pcpoEt;s8s zrNT!~o-iZK%QOngwZWW*e{yW!E0`Mo>Yx5I{N^{m!B4tl>x?J9p|>85MMN5c65Ag> zivd-|J~WZ1QMf<#ZDPxX8Q7`_qN~)30gOcdnx15C8qH7!3xXQPaeVg7M>wCK0v{dj zA(asky#4TsAHM${x{tU>GzzNc?G||~H8D=lQBBIK(I;CZyPzm$!Ic-RLQftKi6@~5 zgo!(bU1eY;m7DL66W-4sJaP3m^qE5@vaRQ@w~3PN{Wi7k3(0+bck4T!KDi`0c@7HN z2^l>Ub1-twRa&}u%%+KG71eQ}SwdB)di#qMZ+e^*bF#XmLn{iP$(9?cDD;YW=kI>c zvxm{FNLOb$pyifOQvQ`^(#dlxt>tsU7cawmv_2(Zg@~8Ta{7r1NXYba||!!BH6Rt&SKaMxo<7ES}9*IU-e~BIDC0P^E2G~Hhp}P*T?~U z(J{gkLirrqQ5@(w{jXdgoVJN9bn-9L98~a$%2vO}v=7wpgtMg}eNs8l17BkU))u=Z zbS1p%=Xq&&+F0WW9_e6>BN*C!%tA|^&xkh+x2oulUA@X_oFbaBWdFz7Wn1!9Qs z1mG~>k!Q;J^M9{GxhRO}JYXjb4T>v!09Xph;^r}oCJQeu1(B}_rIlku9UwsO1l6TF zU}B76b8zCsAd2U>S*koZL*328KWq)MwW#mBayU~Zz>ZsI*bs~(4T^TiDFuU|qHg*hXYDWnd*nh4J1b07*RNxD#JGo^*Zs+r)!$B+1S z-@!aU9;xX<(Fpe5(R;(w^DP5!Gcc14E!*uT4K5K3EL*PHAEn6(8i>-!O$jb9Xg^Ca z-kIO+0mX&>eW1-iVOYI1nTr zBaCriFyqjO3cuZMXq8Kp#7iUu#3k}y<*!o+|VFxyU5lmsIvSD<%z1oK#0LTd=5?elCB6}rrR~0 zEyA5A0Wzq5$C49PsdVxn)yCCbF1|i@pU@LE3#lfhpN?rZZmrR06WlXm-R2^TlEQW_ zs^fXn(*_sd8;pD!$-soR*XxxzGj4KkpG-gCi;F zos!=XrR4VAHI^p&2C@ZXS(3>m0Wys(N^N(YdjPy&RO$4+So(G@4 zx{&qF0fR

)H1^n}?Gxs%o0v0){d2{UC~Z;e4;hxv`ot$)Iy5MoX#J8FnFO^M0vr zlGaBq({mZ$-3XA0cDjHb(0Ww#SBRdR}G8!F6cd(XujvDhrbR{d+Rk zn6Pm=*ATS;W!4zD$aMxr4o0XPSrI4T8cj~fy5iip;f4nu;rITLXC+iagd?AkmL5?B z=ho}w9Zz5R`)A8abyb@wCG-pe9;btWt8qb`zved2g>6WXjost3Z7r?cHtDNo1EQfQ zqLN}K#$wE~J)>$g-b1durrhiV%`ZdQd&jmb1`gaAh0KULlnIZqgC%&s1QLW5}3wkC_QR^|jl)i0I_YS%H#K@6t3C znw_S;2wb71>}nIi7zZ>rPveJsNP#pqA=@oh--BaXx!XSVwUT;EngNLbQFs9SL69C@ zs%FsXa00xClqO|Vm63A{O(IbX#ABJHbEV6)CNaYC?}lNrBXu(~m{Fv`?ZDQbaFeGn z<|a*N>mTs^{DR(jrhm6gqL*aqGeyT8B#(}-zxpbuF&3*zHHCN~qaA8M!^(gt(>O9f z)A9kF#_0@S1CRywsi1Pgxnl8Ars62h&fcw%Ao=u^oDW{A$wNK^b$*xh?fv#jOLtr_ zhWEgaq{QL6H(N3p>W~RP%gqw4|9MJ-&XOYIWjfbod{zx2T%x4rr5^>QFM1hbn&RaJ z%0gyR#;7LHp?z*u2BrAKWZ-yRe+OOFIRd>m_=6`PFu^Ul&oqR6P45Q>r{fL2D4 zl~I3fPPHcHZyxCE@89s7fA(wq>;K_b`1-4_@N98_3ky0?8~)#K+@Rsu~b2y=T+y^Bsz1UPF^gWo-?NP-d#-e>=B$T3_;K5=PY9l3S{LXaSmb5 zTa%Jcx!d%4O_0S&8fcT99&z&%;!^9H3PhFlR>X$3gIhH6l8u{Z61%h(8FUn0P$N$5 z7AJ-oGrJ2(baV^(9lsyP6p>EX+iVr;%RKSeYb%S8WfrZAaw6DbAYhsvHj+75ImaZF z%(!3`n{;qq#^Ob;21 z$b&#dVcv90SP0}aeLnpT8PK~h_?VlCXjW+YpE$i`&IZSI%eMR<3k)Gi&XPn!*C3$= zo#3?@I8$OL8L)hhYI7T78e5LY4Wo;Pu6`%YtiF~J2PItm>Xo(GylgpaqlANKtYf@3czQT~3E?r`NR{jG#A=JcxoN{4jfRp zI(8p1yzy+nEwhX$7as*7>HtVEM#ywWLb4{+QAbbCySFxku}QBX=TavGR-EHvFtf{aur47l z&bzHbw`2{r@23ooFnuY9pQt`0J7G6(w;LJ+Z*Q--9|NQh(2=<)64+Cx@(D3i5A?$5 zBEu3rrjiU`c)$tF9s8pagEckaf#q!(m{ zNnJv^^ww5!G|RVCFX_sp$=?w<6|~qS^7Kwz*V9V|B@-hV5(%2C?P_hz9jwUjCkZx5 z03uwm!F6Ja3y34!O|p<%Tb>LNRh`*9lypzGx)4^F=~)7Fo^%T%8b1 zsFcBkxxvzyQtCw+69#jU$kB=|PySw9L9QdHDppA1<6x=na3loohMi$ zy;E6av@|hqSzL({w${-(8n_BvJ!gMWkJ(t9XLj*e6p_kLv^2|UnU%~VDRn$UK{W$` zJ$*ZQv8kc8ZOSJL6K`Rg%Cdb; z{oPjs=rh>b7unDG$1(FK$wvA5_#OPg&5{hqxgD?kw$#$AFSNO>pO0w4EzYz?%jbO@ z3f0JKg5$CYsAj^lsXO)^Y6sjqL~fVKCyywghxi34&vSEW8D6V!wTY#!`!Bo#Ycy`K z&(sHV3#yCESI>pH<+dmrPpterJ_Rxx$Js6%64~;y*7GCjse<8x=x?PKpe5C+#vZn0 zm-Wu+2>gFU7WDYe)ULT=xk2Of;S^~syh(j3V=9;Btdu!RJSBL?XwDf=FaVA1Pi;4r$`yNufTj#m`j16`?o85r} z>+ZIA0kH21etL@U+Z=#U2T4NtYBBGdnwCwMrcgw zjH}~D4HyFnT7e0NjO}s6htZOFRh^Cx9#a-zOTYr$B1U->`yt#BtSNU-zreI z@Q&@}8Bfo^_VEM82npiWw;7NrOs9{NX91=|Gc!dXhk-2UCC-7yIwY{n`+m$R>Xej7 z4`NQz{t9?e6FN9&8v8Yn_Q#|lNLawkQK2;fo)cJ#gTL{Z62fy}Ur}(*L4@agkn^Qn zg~g;qQ7FLK10#OltV|(s9GPEb`TV=s zlsE>xZ<*2kTv(@6we4|8w%p=u5d7k&zr)aK_f z#+aTZx@~B!p|u-Y+Y(H0mG0DqPKakbq%v`->TygDW9jAheFs~^{p}88o95?*3g&t6 z>R8BPahde0Mh#6`nxjMWerw?$;V)}@$cu9{rCD*&hOa3L2CIU4Z8B?vUgCB; zp@J>9d~OE0on?IyN^B$ZhjLKG`T0`|X{eclo6JpuI42gk3e*!#Et@#@2pp$|3=q|c zV^^~9%}|8(7Wt|+b^$Y>lydn=)?^pl_X_#WzrW5$Jw+Ov@byT)MG37-vO;Ic7$ot> zdMa%ALMHXXS*y-%=Gn8g5V#C(^dm6{i=Gwd4=w-_YVnM*E||rSc>pRP)G9b}j6CDk z+VdC@<_%jz4eosv&>Yk9c$QjT_3=y^2;4WYBE!vlPTVt#h8WHZs}Y@AAlgTk9OzoQ(m6iz%ONCwX{o!C>=A#>PKKTmHhGxyf_+%HfGxeQUJ zH<_<=&GpZ(JSG{Qc=QpzJk919p{~#x8c8WVEJ?Quu+kdAWkznpEAOhclwQVQhtn%v z`DBe4u9g&5j_pK#PDe&VnCU$4DyQ%w+2oKanQG>$t&O9!HiK8scUfxkdl#SqX!FE!O2_53C-|?r}%Nqe6CPBac-6tBxS`b&>Y+;MFYp2 zD0mC#jU{-Xm)t#vBFa9)X=lFNDXH8u=V!*daMXQKe-Tvtv>6ZBx+8{7&m=flV7da= zRa1N;0TDSmU}ES;QZTXLAhRx~sMFf*207yHotbTny(>8Y03ZNKL_t(WQ@L=KY~O9n zc#1{>3`e6j8!Y0GZEqg_{ei;Nhy2!i!^4j74mUwVKz0<7jmqiil!wlYW z$daObfJ0RhYKHUgFjUjqzo0WWVn7<+z!)0DLu6hmPk>NJ)Nj8eKUfGgb(p5!wF%41tfk~=PAF6V zooHFgDLUmtUJtHUpk+={Iq|(lD>!Y~b;`dcsFIr+PPLKerX?C6SDkd4ke=`)V7bwv zXvMV?Ka+%C&i8>afa7@N-}^oclxHK+TKWzsh%o^)3GHkhl$QT~m!y4-B~Kb-tmm=d z0yU{KiwRsEg5nsiU}RC}=gl8q5X9|lL@(Od+YzgAA^h<#{}})B&wq_y{pwfPC^j?x z55EV?27=5(gcuX)O__7_`ucjoUVr3{=i4*z{EXfp25(-P8)c7l|#_T#jdV80TL_pg*L{6D2Cs~<0Cz!;NUX`*| zi*0CB(z*RQ3FU|>q&nGTB$8zX?s{xacq$6Ub+FR1Xt$Jb@iJ`3pPwaw)0({Irm-Zr z<|nVj$@f3gZI%p9bpWyws@T5Q-9 zh3#DvxQQFb^0HOq;zXaJ-qjT2zURH(As(fH`P~*}lzZ(iw$ngAqj`+QAZJW}wF^=i?y8hXm;D~jPw%*~slsfhE7M$h% z_HQ5IDSF;+N%6V{g;rEa+!H<{93B4CnZS2}q%8 z{42{aeM2^4xFVPh&Ur9tJ}z?Wi$cZ&HUObB>@}LcQ-Eq%LUQ9QZK1MxWewH$*AS`@ zQNv5?@JHTrpr{!TcNjU|4R7CtXup%(b<6FPdv;ap?^Dy|AxBt|trdshAq_r)KN=Ce-Uy*RK%2v1KNj=Rr>C!`@MjYCZIp%La4 z)U}b40$)kem7mfA^Lubf8tk<}pi^3Q`IQ_`K{0PWQvWkIDG zFwA+e%S=zN%}vp}O3Qtfs1!MAJ~(}g%}f@6F*)NUZ9Dr`cuk6>(aK{=40Dqf86BRQ zaf^_)qP*#8bGz-T#F2kqgdE<9I}4 zH3IVSy!9kM#)R3p!eZNOIHso~FOOl-DCu#8B=R^SaBdt~2*-PI><3<7@9FJ{FukA| z(#pQ6g2v)M+xjg%K1DK%VydJ%1#95W>8r{OPa3X8uA5BrMcwlB!#NZ*7CCNGu(Bx7 zY-G$s4r%+CP1ur{q=#${H4uK4^m@VKT`!o8%av$UhqhZ>*pjUsCoCnRaRQS+F=6;Xo1vZg_J-pAdl4zDI20=~|QY#*GZmb0a9fi8?m-$Bx z#0o_$x7$fov1D~WCLatiM{I*bGAKX`KXTo}ZdGXMMc!2?YJDf`uAixMi=jd)C@izO z6#64sUb$(L2zTxXilvYETpBt^B>pVP@1g(`1~i=T>se1Mn86ib!Knn{>9_0&2+Hp# zArIj(%kL+~_7Ui;2bel2>%EQSv?V8?8sn3s`g~sgSf1I)?6K*WV=879d{}PtmZIk@ zo%7SgzZ&bg)iS?;N9<%VfaS(Ho4@&=r&s+V{WG5%RkKvza7Y=yx_!j=_wRySH$85t zoDsVC0w-LlMx!0f3}eP?&(eA|49zKutg}a5h_e4x%jwxtxE0sM>;-4OrAoV5o!yxf>+XeIFvht7PylJ*4kF+ZF9-pb=H#PbY`hRMQUES3}T!W45(j4*kf zQD6mhZu$X+7lz#DIyojOflMSbbf(GnM>YrOX?(tIA)gxQO*%C2s&(ObcudH1E}B#9 z_l1G($%SumxE*68I#=hUyfwkFFd}*$d_}JDoE$m#Sm(*fjJT@PTx*_?-jqd98SdG$ zIi%EJTNo5e%9q$x$%m7eCzv6o!%0hm2GVi}wk$kCFMXQwm_hSr+A zi2r@RNF-{r!95G$oTfMGv#>cI7_EhF{vd_)4n9YXS1fd}(FnK5+2{JK{ z3G@YQq5CCl*3-=@lCl7c=J{}i>ym!C0?J2NN>jd7-lI9iJ~c@t9SV=2=jWiSm?6#$ z8(~wzuYdi|@z;O(SNQqQe~zauVG`qr-;WqiPO&IFNw0<-DU-{eK?7&~{CvyYqS)|q z`l~oPRJdFbx0Q=lf6l%?W`5Xko1P_&AsfbVgybp@Pywg>ilV40Nw+Qyx@00bOBiy6 z1*%6-bTY34O#*eE7r&kMQ=S)L5t=M?L|c{$Y;`=Bu^5<8=9FpZ z!()P&xlxpn0xiwKt1(+18~X1=CooIW=NwHs26zr$WCku{=Dl5IMV}XB>vOb#_PE2# zJCz$nIiDGpvP5Hy^a-8)wKJ%j0HN*DM6Boy{3sE1dIk!xLMyt1EuK$lu_-TDz*L!V z=I~w4f6M0NJ*qfERTFG6gOlqV%=>fW6_{!k5~#VwtGh9Km)2y;`q`p^wcOS%@0I3Y zl4ldc%xK(F;Sz*W%^)IawaNP&P(uG5+1RP_rk34s!^#m21AVArG7d`N^jphit8dWEggKg)`1)Rf- zgsun$wagvIVZcyK+$|gf3g>9fnFTlWxIe{bMxY)e1`SLQF!p1QJfCc`)koBVd8S0} z)b(B!&=tbr5%TI3!xbNi*rrnNw9lx(#Q7eX=K#wBBBt@@Z|FGu2o(g!=1ns!cMCjp z45Jbp!BYy0xvj4Tq^|oCkn!nxilA#>on`R5OhEi8}t_exiw`Rv+6tHzlWbq0a7yl*MbR0{gxW8g5uPV3GO=u*%V zKkx>&@W@9^GeVx9{yiP(BeXbo&|)yomQfwlpiWB)uK~3hX;+9LGSG8C%c+=ZwB&JwB;ez^5q#Gumorjs_`TxjC>rnJLqavm3DIuIvqF631aG&PGwmz1Un1{BA!!;TCKeHfmfp3;!-a1W^w zwmwNZl-;8xf;7U(a9J0RlpHWKc1sLzLM=*PACkF~kAX7fc2cHrrDAzZC$!d*2H-@) zDO2*oDGU6F%W#w?l0uiRL5&Wm26N;mRhU}hA6YsS<1+QBoDo4=m{y{|A-Z4WOw5@- zK?JpJV%pHn_X;SlQ!uWoDAOBhW{x%cIIeW9-O{|O9W~#6QpHJLG zVpHM_V~s72E?s~4w%XL46I5%W- z3lQZ-$R^Y9%y}N!ym&N=jPY3*s+(ijSiTmf@S`xpwQ#$Eh?NoVpkn|3*m}1n%aY_e zZ@EXrJ}0xP`Z9x_8O#+l0VIY1MG~SY5aQKnCX<;=KTt1v(O;1sB$H$!DL?`#n1SE` z-80=?-F3-x*%9Hc2X~K%oz;Mi&853KGf(av;g_|(WkpPDuAi4N(T)PJwSL$2n=ijyvGkPTXrjL%a0G{q0OOPA?ol4gctnZF|^3DR0jzZH&*^WNq4X_-%O! z)CEn5LTob*+X$CUqRdSbaSSVch(|Q;A@xaekgQZqddXbeMDNdpzgf7OQG zZ9o>Ei3(xc5_aq+wF-cN7sH7y_QA~iGGIL|A_3UOKOuWfuxHjbJ?g#E1QzMDtyXfm zEwS1_DjC3qdmdXtyJtMW*td4%US$msR=4kgTt(2tzVDILN;uQyvR7Oljm2ORF9H9^Ad`$ zW{nj`hF~RRCAg)|&R^d|MLofsK<*XWo7Hp-0(klr$@4C^l))f0u0BMIT)XhW+2D!6 z&+_VcY@C?sAh|51KwAg8m_*T=VS=I+lLi(g1J^jLt$XZ{!5au?Ra7YMp6l1*&N!LR zmSf@Jb)R^If*6erN-kAR?&FK$OY(6mk*UR`S;N$#kaypUayIFihaTD_H(NS#?@*t7 zZ;sK_(V!3#vaN)fZ6zoj9pWRs32&AyL#;F@4d2{rAY4m9m(_X;Wntvl{BCpR+_ zdRsjKlg4KLo)zI)-1p*A!SN8=txJQ@;{mzq7hR`846}<@hg2u|syTUHNzkj5=8K}* z0p@X;XmWp%)BjE`FQ}r2%}h%)u(Z_!+=l3aChZ6w{zsIMvu}{Rk%}of`Lsp+k}}-$ z#AS}d=#Wn_SMejge8IuaL!i%9tNS;sK?@!~kC021m|De(dc8z=ATI|k$JeN~ap`D% zN9_r<8GbTtjPr|a{=FR@Tq*~N+NzN*YDoG{eVN4CYL_JZ7~K%5u74Mik(;HAfuU4& z*``h$`@v-1J1E)nqwFi^kUu7J!)_ZmaLY$>Ls?`kSh$L;P8PjzkF?zo$Z9|&!OCQXp^zAi3`BI0v4h~Oi1BvQk&-4 z1;Qi8r7gO2kf4c}FH!73?xfgzMfITu^M=dqf~VUBPw$`bCp}x)?DrMs((w4Gqe#=X;ETyHv7X(auBm6XO-ow}k4b3q;9-(c3%> z35wncXD)|OW9jBYA(wfXOp&31$6hIsJ|*uyDbAYgd~nmTots9cqalYi0^NkEWDi%I zN%P`?qReD65^*08WFTPS^{Y|zx(|N(AZ*3EDPlo{vd9E&;L|?vFC6kMqLk`0*Fu)2 z$)FVu1z8I7Xe44I-kM;oMS^fPV=Y|1Lt-Q+A9jqukLohCSJ66vSb_4 zp}=IGCjLQr%Xw^XKJaAel!YG<>x15g>0wse@~xXFM))`#;jRu<@dl$1d^5tPV(^Vt zB7-y3Rwqeu~_HI)35eKrIm!veluWie=C2^y@_#G79x0I|Y8UeVGc?6oW zYA=lAXCFWpm>f6ggfcS!7FY}vtPD;r+E3XAXZ|zffIipD>X)`OL&JiPT9 z(mPcYGgzZ4&@4^yppfW3VAT{uRg-#^b`wSXq`~}9;*wWL1A)eK}XSK zG-z_fx09)xnk=2VHQ?|epo)T%57Ruil#?1UdFK1@(bV7L0=CfG?w5zKpreoHPk8z#4hh!14HInm9ug;zbbJ0} z8iye^c|nA6y&aWg~l_ zeU))OpK*HFtdZUCs83HesdofzK5zK!d!L%rPRtNqZ&y4$U7%HvGa=`K)9HlbpVOP$ z*T^ZM#E@Y@r;d?HE!@}7V8p4(8d3p zZG^hV9juZqr8Okh|BMFMMbZ5G?T|xga>xUlQ-ON#1AtI#4S_tUlw+n)XurdB>rJ-y z>7VJ+mx0g{Fzld@gV#&v7MWd6HnV*KRB4hB^Tzp>MaS&gv(;#xNe5Xlk3wu6n1$44 zND-wCjr!aI^MF&B*U;Y4!ZC!g-xt9Ptlke_zps*Bo(iX#W+91Zk5 zHhtd}p16V~SR*?kjUr%~r_Cfgr`fh@O=d>%>8wlWBS?Bk32n>Mdmlv|6NCKo(*?*Q zA|uo_q+`uDt4t0T;bSA(U14ET%HxEc6C=qS+Obn)&7Y)BK~D$YT1IiO0}jEl92npw zRN4RzYl!>wSWhTk_*>GV2AHV$HL4@>-2%wM;a#(*)##&|d<$wAYXi{aAu+7Ap_IG~ zEz^*e4r!|AZ6&qANm52bA9X>OIouh3AUO^K(pE;n+|@mhv_Pv6-}lrG=cH)bMy6NJ zmMh2yFa{5gPObBq+4tQx@sdqu)on|{ied4H97_B7aFDaFjXMQioyZ5g{&`E}(y@DP zb!M?ehE89uWttFX@NzGeI0$w5vImaq&m z8fV~u(D0pEhK-e^)ib)##y+K$|O12dmo5z`>nRgkwfkm9k>6wB$B;B5lr8;S{zSW9G zc^v?y_@f-_g&vvmxg29$UMMf8D(trqv_3cl} z$$et>6lO}}#U@CsGG^X`5;AANB|^1(Mu5)AV@#D~!Tm;X-Jx(=rE7@}rqO7ma?qSK zIR!`#^s+dJDKn%RF4h8-8R!jN8(MF;^y*Ltptd^UAB(gh=ZxY92BmzE;8B<1qwr)U zZx{r<30P)OnH_j-T)x{@#$;*8O8ue>T;$d92V&NQ7YUhH(LrWgiV#s~5Aa+TYVW1^((1z3b%y0JvN)xLt3!_Zw6c<>3L} ze)ASzef2HA{`xgufBg+A8h-r!AK;$=%s?~0|I_~(Kls59tO05rr#N`oWRWT7k&zJ% zM}QSX$uY5I_zXM3Gzthc&j69pob=XFr7hkC0c9(2B9o;%(x1cMacd|ae~ca7Wj)ap zWN(ldwRZDP1u03*&`rJtXthqSklL%)Mq%oH2&QK_B}*pAvW@+~bD?%2!5dv|)`W=5 ztJN=bVN(MPe~(iQqtGNDu#62?w*xIMe_8OlRhpGtuIpzXF09|A0I>DUME_|@nilG#{V!#@}xz%sIP5938eu@fO-%WBf0(8^xt{i_RD=;HQ zg99o6pzd}2nYbTk4&3JdoIWJBHo%=*tZ4k_Js=>ljYte!qaKgJ(2($@JVIx~V?2fi zex|6JLV`U*umwydg%qm~X^*G}yC;kw(rDn>l@|dITD`U;@Uz#30trUI^zIInO>Wp% z$?7t2U?0F4++gM>k;5FK=~?mgEZF zJc?j68BNKyZD>>-mgL@?HB*SDx+Z{BaFs*^@Cv6ceIx z-`plwzleMQ&v>Q>wk;uHKr2?+Fe|2t$M2-|pOM}3+LPVk8SMFVa}aEvBJ;z6$Oe2EB&$bwNB#lNtXsp14)UhQUVC#i1tJgupO` zibPIkpME3GM)aHUFFN8aR294#L6G(_(Xz^yO+C?>&{c5ud!a3Z&@><`?(_2JQ$0{v zwVAh?h=7|t=&5X8cx2?9aXOvG^vq-rJf`=Y(g&FpD=BP6Lq~Db*r(6lTm>ity7u$?^GZtpF zcE9;csUx_w);1o5V9UyG@o{A_Ed!iCAG9}$16g_ z(b*excZ!{_R9OLOK!#;m-CDIqE}!hrPF$ZoAYHLHS;$cCk7)`{n+M5y)7xgzr81=& zL(ULyc*uUtG?CPiu8{TuF^NJMjUG}h%#ka3eYL@a*>8R{lL zSD+a_-p#-FUS0O+4}ar1fetNb?7~&Y1}qAYt!&o#as<}--`+4Lr6T?kjzBaWA*9SP zska6yp*x+(zShQGAg7Gvo;7uvn{-)lv}Rmam(hd?-!?Mh7;pEW6??C=B((Ux#5DL^ z6}S5n_-<50E%stp0;F|({`p_yv(LVd7pIJO@803n_K1%kUg5zT399z>FK^!C_Vx*- zWROn0{=Bs4puLXwde8>D7bF{_-tV~fhO%wgyAkmAo5>pX+ZDI#4Gp%r{^nPoJAq`Gz;E^_kiYeygXW05-)-pBx}v3qleM~-xQ05Xk? z7*5kKw`L1zN+1#J*E>qt#$Pv}gip{kWI$z!I>>&`+IuQ~XQ(Ln84<;vKOWnUs3R;0 zooDPtpUnjIhU~IubQyPEC@~NLuc9MY(I~%XE5fNeBp@;gWk@lf6Bm2$gFF}00$yM( zfNlEi&m_lmr};c9Ax8oad100UiqTzKv=r6rMq$~QJqK>Y#wVpbpO2wfnfIk?M^&%g ziiHnLx8bG=4N%D{v89Oa;G-Xf3D}pUyRUE0BGn8DW_b<^Rr`AK})BHJ` zliM7$;l9k~1B9Z}p5fR-8+fs}#iETnT%`N+ce)joGoILl-BA#F_VRIVQ{mpe|8UljX|>qx_9j0#VRwtr)2N@79`x}L&3{eiaXOvw;(H(A@$m(=a>C=| zBThME+X`O2dS!^tEurLseBL|=HsN$S4f0J$B}yrWP`9)dZ~{)JgfnGOe&MUvDdAwY z17$T`Lm5w(Cw%d%&vE+b1^(Ut`hViLfBG~0?O*;re)5x_;N`1FTSd~{Qqr}~Ntnx6 zdT*%JHd_0>`@dVkdA-`EEO4*)yWx~Cmm6}8e6jN6BCg>NJFgh zL3pACi<*QnpVa*~-8LQFF3&xRoV1~}JL=7Iru?81S>;9+(3^7_QifV9dX2+tvxCB? z$CE&p2G+Qf>9{#$2W*?D$hArimN5OTE;$GSX|@JVIxVi^8h=J;rk_v2<8bXC0u~lI zNMc4kNK!1vggqaGt4~$4Pa0i|-XjNzF)-82?C4^4nxTa{s{hUtEH8pUwn_nTs};>9 zjO=v6#AK`P+JMMOQAXloxi)EDEHPn9OA*8)&tZB`T2i}|9CMjVY&H9koIwPc3rb-$ zYLME|^K7^%@sMKt_2*yUCqMrMK7RGmW%L{qlsw8Tb1g=!!RQ-i)BUZ{NMe`==*-`OP~#T`p+aQE0=T z{Nq2y-}}SAhch#@Hn2~dvzs{+Z!S-TH|F+Cv8F}NV%{$m8P8I!?SmYTXi6-0!01fU zfct%iundG~?;Y)Og-FMK^#H~WynOKzV8Xrbv!K=vmV`tKl?G`csq~=Fb2iy>oy|%Y zYaTgyW|_zcIYo7-E?bdo(l(4tmM-(HD0$|MMWG{oW`c}H7v^0!KpwoQYCipgo2}tS zY!wXHMXfTz>~{2R2M(!68h*Huhu#eN8{q}t9w(9K2KU22H$v&tsjr1dL{LoGyC5r zeCC*UGYZj=GfN*sqd7rk*pk7%zd{+U-`z(#!fovAU^w|xhi8iNW>Q15 zM)Q(J2Hx;TWoveGnj4gqvwLdiy&X-T6@~6M+;^9Y_8A(ibSRP||0tfZ*b+YXXT=~& z#=U0Ss1%zn_u3hX-ldxU^Q{y`IH*}lPvmJ%!pHA4f?q`hwe2%k3xayBU}5YnAOJEqu4=?H(dCSCOg{UT7!4R8Pl4}i;N)9>X8Z0?kTlf-7TE1)grmW;ShLvpI6#j&%#=+D zB^`s-qeftCK78rlox}8h{4f8rJzSe@l1e$*h6xE}+pujJ=kpoc!wIL;34A`|@$mr< zFCXym@BpHOZQGDfXD~A!A70v}&Iu`JR5&EyAs@80A&i@Q%6W> z>NHT*A?bMW;srkX=p|~c`1b49CgIUFw3j@r&Zg+_JOcCL8Nh@_=9Rx7+4Q<`-xN*; zbO`PHK;N1RSUic_@WX+f44(#r$tG>3q%o;b-+-|Qg!}kklJv&-SGbX1-IJ`-@bc~_fPL! zJxwTJ{L4T2r}%?E{5|y6aeKPr@x`O*n70#7?%9Y&pTs6wM&)wG+_I^O5I?35CAG|w@k!{-qVT1=Ij60#SrLS%BK2$D_7 zHxTjx=3G3dS7R#^kq|yG(r!{xrtE$KMxqQQ8&m}_#q#nLnr!k2#mHVE$1V#WK_<*T zXi7(bL~F;Qm`ZWkB|tfvS+=v4bxfIKu*Mnz&h6mUSqt|eoeYUAx=o>5LC$&5^5Q(D zuH!jinuXyyA*SwU!6J$L5EnlELm_A8LuOZmqB`V24qoyHJY zhDUB@xrK+E7Ky57dAZWU7LP^(4v3YTxM#yVvL=&1n-1Y19-E&4-^7NDh)_h(m{DQd z4LIFd)KpN_-^HR12V$3)`MH?VRA^X)g&xrL(Km3LN`nNN!Rnzl;S4}Nystud>Qx`*k6Y!fkY^Nm*Y+VJLfJp=*< zrGqjby8M?fUf{)x7lRV>`1lGhU%bG}#|NCxXYk7tUcPvV)8mF*GB(e5Q8(J|$r`eK zZ@648C}MIzkoXT{AI|Um;&<@tUw?tW{F}ePpZ>+a#rGdR!jFIaV|?=c@1v9rH;$Yq z8Jgal^B`KieEHHEzR2A(n&X zTqd=N4*{b*CL%%K6P-ro;oW{IQg!&avahSg+8_IH&C70T!`Yu90~6_irOPWiC4dk0*5_9Pqh!T zZIy1yQ)DM6LT8hlr2=(UEW+8AXLkgum zaNA2W#8c9!qHf&pmi-pRfEloC%cwLqXLF*;W9r;HM*dCj9xxnWAl2b*W8u+o#6({_ zlgny2EAC0tbcN{*=GJG>jM#LK=MS?GiqGFXys|{&>Y!zX_d^%|X2_Rp6A_J#$<3XQl;CA+23D&dN*<)c(HI5^abWmO+8TGJy>E6-*#OF*Q#SO| z;p;p28Ap6V0|V&KXpQQD?FWgjTF#Jq&7f*BFf2eBjQ7bmQ6UNTjR~ij!xfFqh$(Pb zSt7=!1f-06a|v>i5v<%rKw83l~nrOgxL{a;PF2GYE#K$Fn^SIil3J}tw4iF zZRfJluLT*5st)B!M#SyONOq`o1b_#W?2z{tQfiM+3A<0pCOyB^D>`*FvLM<`J;KCo zEXgIAv;_0!%uw2ZeYatlJxyk*$k}TI0?3}*oGma~0!pD)tA<~8C1ghI1n$0ajexzT zw*J&)L1YnR%5FmJt_E+Ock|8LcX<8g?KBMbFHBlM2_}k#lQ49fh(?zh)4h19cQ33;*~SE$IidKZfjKB24Y`zQ zwiiXo87XJu;5+0Yr46NIY>#IoPPq4qZQH=bLO65D1KXWT!He^0eN5cdA4c1Xc@cfHb?RQtTNPWgS}S_*sMWSv zd)@t?)2z_G8HT>cYO@=GvEJX|e!pX{7kvBex47=r4vub@@~xQ%Mu<_$W({u2XjSm* zUw`Q`NiUjxY64C^7*I6wwC3(Fp|F#62$$=16wc}7($Vx`DtJ5(QE(71TP$z5Qa%q! zRM%(<*N{5PrJzyB^@*8}ya6vBa?ZeZLdTBO9BeS;AGQmNVCIlyaL8ZSU@E#X9!@XN zt{qReyIr{1zV9yL=aZs3Qdis5>vj=b?z>APtsoR>xbJtDoLWvp>m6^d7klnl&|1ZH zzvFUw!rlFHm-`)0@1G1b0QYbp;dg)ZGyL%%|5y0wPk#heYs9v);mnN3(-}pMv@7gDpla#gAv6mfHnujn7knG(QF}e?P0(F8kzi2Z1BB4HOd@U8!3j=ahHN zMBm8Y7)=9gXvIYKyWwRDEan*+bVD(@3AubooK7Vmqy^y{lj`2PNp7G($~NKkVnckJ zNObg34WzXbHq#PbYcxSeYx9i95D%qlK3P?rq}VmOApZV{-B7VHP_|r(CG0n-py?17 za*TvvC^gVB7!;2Z!GI|w+n{-oQET&1dw-S|(xyiKnJ$6AYF<%U$Z1UcL1vLa2K~{t zbu`Y3u>~ABe*R!va1BB;Cf`M5nz1f*QhcET?Ekcf3%VKe4uPbqwaGAuGNkf7D8MKqpI z8tWJX$`S0w~WyrDF>&B%n5B@RF0uDs5odogWghCxw#LQ$8%9W0#0(y1(BAmzxow^@ArNWAOGO{czAd) zVvb92m=hi!A56ofQ?iE7_5Zuh;5UWfR&So8v{^C1g4^|icbB(^ zUtDV)=ZCYQhr1w`GSjn((A5g2+x3Rps%_zDq8;09H!4`ROLN-{#?iX1Jj=G3*>T$} zT#kT`KmOR{FezDRsfYP(+h%&rtr*E_v&-k<)uR{vrj_2dZA_-Zo5gAy5mNUisTD%K z%RqYvMJ_(a@NuYPmu7Y`7{8W8@BL@7E7_C%X|gzW!62+&!e51|auLAgsvnvJHpCHLhxW*yz+L7wLn zg~2NLY2gn^OVG0CSENyxb*QEV9zY|WVVztCA#GBxz8kB}3(oss_VoaAA^&;3p={br zPd_$zb5a-?KGn~-$eWw~5hH>zF{)Po{`$C|m>HR}NoW0BX$lLJ#w_%hdCG~yOSQl% zp3}`J^Wr8y8vJFMPWSE*1vqlsAwcB5tzmqRVq|2pq(O!ozK3UdT672!<{2P-XzFw! z_lqN^=k%Ef=)OG?wkdw=0wG07X_D_8<16a)zjad*-q$EZlgX;W*}59$MGOMK#8Bk{ zTbR)!df3isv-)E+=l=WX9?(icPPU!$)8wZ9$TW)KS!40AU;EjM8g5y6fiZBgkWY)# zbh+O2ZmgfbR&|WNy-Pzv88kN>sbbMwW%ni9e|DKECHKsjY`e8O<`3*r@pkVY1SOOE zo2O)P$t2Tf7;|N`F6j3g?w31SGubXBYg+6obePgKM47)Uo;}eq(0KlTk-Jpce1hGh zBO0m&utR`$#KVg_Jk(--Gp6JF$ZGDk&1G(vfQxyiUGm1HXWPzY zp3sQ3G1c*Py;&L((`5tYuqkV7Y1uxDXW-iN$DKweN#3LnoIYjqZ|gDqySq24sKK_v zOBH8;`4rXA@V>!K&-`J}2U$_$akA$smx8?8&~Eow3b1%+xCcVRw~^IUHBeU|>2cq? z*5c#q`VgEmL&@m3kmlKC>^X244I5wzFmu-TqYsg%Z6Y?k9cuFMMdd(Uz2>#7KifRg zY?y>2xfx@EFoPB&7|#N3b16m@Ykf?fT{t=LyXu8Cxh7JnS?H58I5G>m%t^hk_(TjQ zAgb6^Oxp8K@XgnAH7i}v6nJ=iK%#5~5(9tw=YIzM^XBY)qx{7M-kRkXY^fX$oM;ec zV4S#q-oX{c3a^whO3CBU&6#o9Hc+ub;C!}C!#IeV;(R`jj3OfQ@rV}+VR}tlK}reN z>yzoj@3xT(-M>B9JD%RYGfGxUczAd)FO(>9DWh4j_gpql)d&A{WaXfg^6M$t==cjok%nD_`3tutCF`1gPHmw3Uz4}bVWJh&;ku%lGH z(a4mr_X-ej-LJT{ioG}7@4I<;_A9Q}D|%zRdGiKu9XhZl!oF8jwu`+<5bOkd69^Kn z_m2Pkv!CG)|L_m-w}0{@oK7cbzeDeLFo10<$eadobIqlqFrQL@DEera!{1kHGb*3h zcF#7RKG0z+5MqN|B|J=odu_P(hFTjg_Z{DS^BRBo>tEyP=>q12^ZAS?5xn{K4ZeEw z4liE5z(?nkJ@0ZEs zKd^QDyonRo>6OwucJTp=wi#$UiYNo-Fz>s}EhUq#dVsO84H#H0lcno?1_nxa zg)OXHZgKioG*m8`N}f_5RJub<#Vx&_EG02pTzRtj|0;Jp4_YP zj~_{=V$W9fm=4kp!&~H4e$#d?M5-otOa00bqL&+!H`+ZUYC15Ch zG|1*5_bf^=6~O9MB!q&;no#D1#A4y(a}u>=Qu#Y;4v&EqHwB#gw3`hELkiDTT}mzk zYSg8ILgl55z3vO0)xE21zXubWerIr~>phdAqaA|VO!LWyKQ**|vV;?MAj?s+$SNkF zN{%_L4N8Qb!l>sHNa(~~`a_yHfm9$+(+;O4`y>C32t)}m1@&DY-B!x^QN@%Kc*sUmp!@+HpaGiqzN-|u+w_=s~c$>4jr8|Ijf_)u$t zEXT&0Mq6zrSmsu%71_U@75y#;dx+-Fe%^=22V5^#q@0Fi%NjUqrq1UxYOTm@c{E?Y zevPlb`U-D;^DXZC9d&n!NbfkkIN{70iPBhgceSZR>lLJm2QTy*TLY)seRYkwnTP_M zZHg<40TA9maP!QWG@%hjH8kD$o;=(!LMm&6bRMvPAZled8B7Pf8z?7GHHn}) zB`>oP?#QS7QpFMNYl{7Hf#qa*Ai0kazt%gFQ*R`hOzo-O@aD}Mv~S=pi8+ICA5*@jIM zIwvIA@yj3o9sGCy>`%;d*6*nM)l9L8u@R7^V>@kjAQi(l2ku`O!$%|TOR_D7y{FfD z$MtprZyEQtWA{zi?RK+^Dw%I_he;`~_d8O`*n7qGdc~J--r@D@*ZB7Gg!fMu2q%>D zgH4*5ajDjrb*Xs$2$)!WkcBtZn@y0c3iJdIGr|=;F3bY=q^*H@HYUEyW$1C z90QdxE9(W+;uXm`1c z53(HJj%J?2HH(NnfKfdNytZl{CQ$LWHvBO- zNL`W-dcG?Mj@di~>|hS^uOW*!YMOwTcm?Lee~&Z5rm!)2jG)Qv4G2cVrTV-WB&2M) zO(Td1viO2*31qPr&+gG=KRYQ~)C0ld3xeiEuH?wcsDnwzWYjRi{SbOP&w4R*y#G5K zMw8Uc?cMz^D@AW@0AdTVqWV9~n_{Gl5y-3B$0l(EMUKDblDC{3wN2k~7ays0(TIgC z&Nv9Rji%zC8PT8-hUwp~mD!L)aUC+f_&PDXwLh0lqW7#36&So{Z1}^(?(#QsbovTf z7+#t6vwF5kTyy=xx5b!bwJvQ0oUTRp_-ta+hX`<0A6V-_;u)c|lMsf1wazJxT$>dw z-+iDnnitQe4B6A=dPQq>f?N(;F}v5Spp{??*almzabNQa*R0&+^C_W1oqjKZ>j@H&)OQN(1?lFiF5?#D~aMkH3F==DUlMe{q5mo5Kc zlRuX25eDqTHnKatbI^5M$4lRlk%d{GY>6Oj15A6r?K2Vg2KHuZnBtKw4Qc#NLS`D^ z4}*r;EFh^h&D{ya;(3r8**m@tOaMAW8inVtk0s7rb80g+0=uux;1EW+=4arWoYGJ? zWKPKHYff7sdPW7rQK{>TN1hPRP(MhA(KzHEE?E%ocw2iOJ&37=_lc5vL0~T?J~%9g zti-XX-3d5dEFf}ifFe&o)#VA1&K-@MKLqNRqXk{|q4^AHQv^0{=Z6opy@TKTY|>_d zdC3c{HV(>K=kyne(G<8}ZcBWSj>bv8`NkTO@HY5*yet_i=ks}NSK=TK&2?hS>)BF9 zt8Hu)n3ElZn@wFc*+r3Z8k&0ZT$P2yLk1J@pF2DtDJRPca>|{_0Jd?krepz@De-6) zV=J&dnBVKX74+8d7k~EWs82V%eEAU`ddKB*Lu(Bs7tgQp0*MkzDnK%tn<+jW;VT_Q z6lFU>TZOi6Yg8w*Y{?Ru*NZDJ6402OrJM(zbAJB*%&%LV`L zFa86*`prl9^pj8V(Pom(b20fC09-E@s8i!Ewc~QR;PcmC8(w{{*xL>%C+tYrIRQxM zNl;yz9oqybkgLh&{^4)`9sG-b{x9(9ivnqP$bLui_b`(|QZgmLC8oNNyy9Ime~w-3 zHU&IpwACuO?@wb=`*geF>GEU;Zr*G&RW`Ky4VQ~~@BZqGFKkoh(%PMXblSkVfKswe z)v~puw1KjP_w4|_ZANo^Tkk0Cj)%l}_39;xT0v8M&=DIUxIgU0`HX$vvG29}ry%s^=Z9W3L?-s3}4)SDx}UG_B$y)$UEHZcRXzr(p3 z%}r~w3$ul(+EfT5!Jfoq4b3QY>Vuo4$+so3ak9ds_cn)03)OOFiX68853sDL zHBEWqc-Gk)hv_%!BZ!vVcQj4lUB$Oj_A@1KEXmK~7=R=vY|RE**P;ADf|y;B6q3K} z8~#qbs*^xMI@%YxVtmi7RwU#(g*1}K;Rc)$WlEo7kY$~=ZGMdIA*4R$@c(`vAnexp{_>CxejPuI=#HRczW8jC^=dh>G%(bhd+7XKpzLfr1OXflx#J)Q%B;2+(TXJ-7o9F z=~^LJ=A_2?{KvpU%))FrILW_{!PD3Iavxstbktx=Os~m1N@-(b6q?I8+=vL&5aLp04=j^=rJnUr_fQdq_WuHS$zk7UYty)(wmi8@{;s0vB5|qeggQtN7+t z(ciuS`=$D_oQJ^RchqU3=cKgh7g5GU#bido?HSq#I#Ap^%63YRxKxhxYp@c##~~nlz@ZP!grA+WGhkK^uKW4^E4w-TS+>wB!)l)2 zB0k7b4{L@yo8`4G~p&p{ZD znpZWYfzjUJzL}7U@IVvWx#q}uFBW?5s6IU>VrzhC<`D%xKBa6Ri8?n)DVd*c4N#qf zPKR$K8qHzv_<+E;QVBzz7tgEF)~f$`8PnZ>=?qyEbHqp;8tmh>?oDj+5cSpv#D+Op z(dZIuB1S6qtlb^mzMAo)xKXhouCV#ilynJN&Yt7rzqjR{5cg3zPa z15S%nk)ufdu&P3r2Gx!&73|l$fk!;d-tJ=?;x+_jP!3x{EP=f0i2H-wbBTqp23-df z1z;P%WjjOAbv~2m%f=1!eRJ93>e-Xty#dTlSxdto&54lIwn6s%+V70r8zdnIZVgll zhzu;1)WVWUO>!7p4)R<_WjcJGLFrS^860PUz-t4ba0W4u{dZlZ`oM%;mN#o*Rcn}w z_@*__EqRYDs|Dp9(o5k6g9p1r9M2m3XOiY|e>k)%dkl^}mj>}lIXNuOJmDG}Po`x9 zmwfwofCD2lqcy_51j)t_KvfL>pfdOOe3W#iOfWfy51+hA-Te-KP{vj^d)GXp%sR+E z22`r-6$AM zD>|Q%>fdi1fTzt4zQ-4j_^sdiEqwCHM>w5Mpq%jIpZye7%$WW3^n~m6iv4!S^>Q7U z^!IPxnG8S)b>Fe24cZh{%qR1h%?#A{X1{+wV2J%9Wrc`oIN5ZA0D?L2{}10b!;V}Btr3RoE;V>LA<@c`L;G189C(W1f?nl1EZmn z4m8ssr<{k>uXM#m8K+Zt1s=x4{;rB^^{qp-$#_F^l)Zfp>64e}t>G#a4FHp%7l37k zQicRfM3B+(ieBNr{GH#$KmN!65HC_kdwN1iibO#6O=Cy_7@jrc|K55%YTP5O8|IB^ zzGZ5vs3Lf}-SPhYd)!;a{eH)nZ@$GBUwnb5+YS3(ad8UdMHvD!pXZ#RTgXK0xz3z? zOQ>FCdZ;E=Q@c^NI3{zE=b{2ijJ>xJ7W(e`9=L|rvI8R6zJ84#eDngJeDWSY`Rupw z^3_WS8g8|sOEXvmyzz`5zjdT!&qr;|WnESTTJtogq{qA}GCu`dw#2$&P!c4azLF8r zml(a;e{V^V3s6a*lp!uJJdlcfXdp|2-&9bgO*4B>*tOY2F%dGmG>?GRO>)65P1&2+ zdnbaD^l-lFcNoEgJ_$r}JVDvb@}i#YVVf9M+Z;!+o!t8q7b_>WV(Xc|iDAWwIF!hW z@ce<~1I_(_V-u6yYiL6NSq$enF>0&mT?b9f&PMvq^Lo?z|43rf@*ZjlzXKr_Odi86^3A1=?MokpIeVaX{O+&UEAj%WFz;yddev~{ zRoj9_x0=GX=Y0%Z;JJooPwB@DooBV?;G4Vrp2-w8N$uww3J$T~QC98Ir5PyAgL)XC zmx#A0RBfx&b>s+ASKL{Q^sHet40@sV|X1T(ZZ4aPbiM zgEUolIQt1B>u9{(3G+OJ!2FW zOr|Lea#xshi3l8Beu^ovSSYBP***fsh+I!BGng#7ew~w(WaM~xNS~6O?h~n!Plm!4 zd$^KM*CHQaJb1LoD`IVXko;ljm&2@qnkze4`&pw?mZndnU>$@AS*9-P*#nbyIy!qx^ynp{5A`PupyuH44 zDxE(I+M&`R-5M44!m(9>K=4pbIOh{Wgq%_yTQw@i@TcN(75|;z%oea?jD@m*q+y$RP4Rt{eH!z-SK|E<8MCy z9RJ}z{*^tq4-cpiw3L99kXg~Yohy~pvUQjpy25r)d%))hvfG#<3tO_iZ)8?^iWRKp zzY&okZyky05L5ua`Sv}&{Pqc7ef14~`$s>*rysq-!{Z|oI%;?G{eHzcZ--4o$+%gdvIwsYd_dC-X3E@5vkGmR8gdRZyAsZZ& zza`5JBLk>=eKP-Ca@B}DBMVyCd$VG8D`=hP`{>)U)_@#Sdj*m*1T^H^Ht?)Nbz-P; zYoa=tdWDb%0K<^s{(bR;ZVV`f7oR3gC%=Py;FtU}^k-L=XoGY(-;Q+Ic!oL~ZIsyZ z#@@bt!tHiP%Go{6F7aHv?-4|gZVI2a1T?P-i`WzdW?Xu=Sdiuz?+<_-R;P7wDVNBU zqEQ}09HQ9>Om&S7&qO;|WI&wOrjMCX$j{3Wgle1Cdv7@91eO^xE?vxX{havs4B7si zJb6%YC2uH}=a1YwDosqzP6a#d3uzEgE*9V5=krY(N&=cxc9r`kcWD%wT_g0xl4e(7@1YbdqSsAo642MY&A72Pv zLTRm_&~Y*Ppy+TZi%+hmMc8CD`)+wF_gV-3F!GyTym*1rc0wr`4-b#l=|4W;bb0`k zt-)eC1P!C)gV7W)Vjv+M;1pd~}s zpYWgl(|^MKa)Gj7?+v9_=zWJsgI2=rW`3`yr}v)YVTS9R3qJX+kMSveGI01YY47`v zckkZecDv!}@`QJ9pK!TcaJ}4dxn6L8dcyT~GoVGcb@jvJBR>1=he#>m-tK6<**`C- zOAl=F46*fWW=5xuoB@&o$p+bA0a~)lHJ>(YWdn*`O80sn6rL`E*6ucJP#j4_PGK@0 zmTQg4yn93hDn_=VZr;8K7FP1YH5n;rb18=Sq)^1u(Q^#MJ4gx`gxV^e?uNO4Q9ee_ z38z$0Q#Pq1GfsIkFWWay;MVXlHvFT1_>b`S|JG0O`1r!05{}HzR&6;6j*xPK=J{T9 zD5O<;zQi(ZdSpX5xu}yJl=rIG_lhfQqx9zbgunUXbNu_i{sM2`zC|ymIUP&cFAO71 zRUuEpa$UZUqs6_Ms>{1eQR=SKzm6m>A4JEh4Dtk`NtpA=S@X+<{lZh1)qM5-iZB1a zzraVQ6F&RwGyLeszhzQ9iqFJ1r8)U?4#)eOhcI)(z10DS7=>KOtCmUWilk;1-}<%> zrkR;BCahgMSZ(61qCo4TN$N}RCleMRhm7~Sxh%}!JOu4_K1dh$ONQcrps)>WVp=3y z?D>8s-(jC1YRInnnR$1K6tHtA4P@>b);k7PVutrf35Wt*x|lCaZJItdAi!x9k>6URc! zQ;%-&4U@oVVXpMZ9&&5A-s*pb4m7eAO>Up_B7t8Ch8k)Q8@REfttW-dw#*}oPJqpu z{*)G9Q2;$Wa5H%hV&It9zt6tkJ|s&aWebH#8qMOQDbjophL2jsB-nQLI|xMS@H=Do zQ%nz#g^@??lm$*}Wq-CAoFce7%?4um>_qwj2*TbpN%wk1$jl;3lSb4RPvS}^)I;-R z-YfTyB+DnXyK>qWM)NuDc8iuMUicoiE=-5P&eQFJTdkm8md%3)jFQRd<1vpcK5W{;!Jm&NhX<|=8xBl%toe>we?uH zNC^!N2m-{#-Ky%WnGqg(aQBGFQ^n>BH{hb`oXiMczVG)DQUP+B5VB?f(%@xzm;1W# zof&Wfgq#av(r+P&_W`I4RY@6z%%d-`$OZG(&j6KxgreJ|qWOrWdbBk9VMah9#^7qA z?o3q)vU=SmW&NJpVP{`hP=ZG`JZH2*nmtVzK&(7^AW^R&EDfGO7b(vOi%y$5%r-2O z*9lUW@Q13C7Y(BFsV>M2uZTfG-qP8cpx2QpjXQ7he=J0SuWEgq30MAGA`SsLATAk@GAIpTG`r zh0SII;uDrzlK=o907*naRDxG8U*YEV7FSnWgi-%@j%y4<#CBX`pimL2vzew9N2-_K zFbp~sl48G8!MF-wcF#sM!>am6hA`;*o!Sej=6!u=i3l%Vyg)|5*Z=x2I8R5Uv_;AT z#-Q6Dm~nnC?O>VH8RM|V;c&!(c3N0=2i`cUss85W9bS*0>SjX?$d3x7*>g zKjZQ75g+a!wDHKmJY|#AFy@>Li*8gb(Pwa=(X`9~t1)7l4?1ZHQ6&?$hF`DOSglrO zD%IR9olqul&IqH@+=@*Wa}6xb)dRz%8zts|GH})26OrzR6ReOgwLlY@L8ONzfe^$a zNx8P-)l?e@=PcNrPDloB`SAW8*EiQnhFf1_9JYG+A10JJ<968KuRi}0|LLo*@XKHR z5?48)q%#P?o(Vz>jA)77jy$bOSi*uFIhiCc+a~ZdpLHM+0?y|dyENf+I^oO(A3lD> z@4ovU-+lKT-W9=SvjM_r7;z^I*?VufAh0QH2~-icIcamCLBKXFl4T+71#PM1PVT1t z!4CD(aHu`=y3jexA^q+9oCyQR!~sNi|q#UdBS=V zahy&dflB`b6$CPlBSO(eG=RWG>ISc$5~q~0U5!=3EH=USEywws%rvZCr;r0;ZV>=| zUP_%}L+Y86vviUW#pkbXuk=Ecf+QKj1<~?ELeXps4q_&Ds>GurdIq~(O#&J5jFFR@ ztqBrBXHurReJG`Y4N8@&2pHOYdOPfe&}E3J`e^`>uuuiKug*6%Mase>Rdj7-LksEd zky7Q!f%Ll?%Ge}drvHZk6q+O}CEd)pTn{WAIKYN>?9*(G6Ns#Vjk*;z$t7_`qBlTO z%ciQuVa|@K0n5`Y7A_TKqr=4TR4y4UlWtisvw3taNYvh^%WNl~7*WwI8|Hp3R2G>; z3m_C3emh15>R6yKyg;>3Sef8Y@xDb+L^MFLnVY=Lm81w(JGhzey&mODhSnuBY=Ybi>=?IAj@GH~A)#brS1B|g81a@~eNn6v(K za?Th%9w+MXeqes$f3AQEc3VgD3%d2+7Y`h?PIXU{=P`L@Tq%?R^$brrHCTlRipQFO zAOltDqI5FY61Y0Vgv_fWz$Ajg!Mu=c;0Yb%85P4y2w6l207bzn)l$Q?4$*(U{j)-- zcL3#5;Tj>@_E-yVRn{=o=$|3A=9CJdkOl72sGmz*p5@UzQ(Q!c+Y}mrLLZro#>=;k&*O#DH~ z^#c|QvUBWTLw?%#WPE!-y*>flNitH`+_aSCmP~9f4|f}HTgO{J?>G?C{CcW(=_aDx z8kP0;&^0aB1uPjVS1x2dJ+(@wGXa51EmVBnNtdf>DptkWin|yF+B`T>Oao3nEwC`x zq(9%DCmfDDhzQ=idDFZxMT3FY+Z)6<;O6EQpMLr&UcdSjUw!oz*6WRWT5Qtl1=uiz zr+R;DT$xaFJyxq#$IVv?l|N_xGsYMY0`S@ApWy4?7yR*uKjPi{H@LmM#m)8#FJ8RB z`u0ZutcwQvd_HT&76ZrWTs;v06m5CZOCSyw`fCk!7zkI}E3B_qc=g#!Fe|NZnkLLC z;dGpEfBzAu{Sk-50sGSq=kpoUtdzCv@PVxV{9wa{A#6~Rn!e{eqht+Byjp3VRqD*V zh15l;G(ka546zKb9J8UCGav<{SQw!-m{~|Efk6+F5F@ZsuSKz3m6WnVDWbm2Waj-s z1);PIpco@2$~YcR*v|=x)o(>i*v5cZ2 z9F7Oz@r3Pmi!0KJs?*-sCq;DOtFud0SLG`Ic1f@aRB=uThjd1o6HYSYn9g|nu*2_v z|2zEt!w19|5H}knVlZXZF=ts6vRPCH8a*%?7kM7hkivg~%G7TM{QalSw{ZC`^oMp| zgj9^SZ$E}$oBND+y9d0#zXuUvyINtrSz{9lwpUm9a%fgX!cu%rXmI4E$)J5NO!;yvW<@NnVOKw$uR;%g9P9 zv+F<{y?m!654Ua4oy*Fk!-B)I=2}*f=Pz*!&MrOhNBtzRO6hWyf%h`uC5pY`sw!2~ z{Zf9PDdb3%B6>euz#z)fx52jEQYno>JgVHZ8#ea2P|taFS#)zngEyn*MaA;>?wbzX zevb8gej*L(@|INkVH+#heJ#47Bir5tFv2kC`D0Svp>TsCae$Da*3BE_guGJPM$Kni zdGYQA+w$aYGgS~B6jF1@@Z^2y368Z65&jEO)UbHZeUjwORq?^K4OAW;9v1JT$9IUq zT}o+nWXT1ETSM!Os)oQ@J{uJy7^=)USwuj^)0;|zt1}k!DxbGwZl>p7Z%&g zT&0HXyVv0^)oViES%1EQg^VNUT_xGR3-WMS>U@A6Kk(G2CXZqHU?NWn|gU6C3roALjYbH;xhIoIwU=Yr{z$)=6GwhQa-J zk$|MdoI~;Su!~1*u>A(LG>-84lKmTX^5C7xe zA(ezMlqHSJQ=~hLt70?5lWkzX38_<2YO7}0B>DP!i!Xlu1-|>!cX;>XPx$fsA8LcW z8CH1p`ZcyMZg6*Zhr3q_gPvZqR(UK=t3F6Qm!c%9FOx8Gi88gQpBhjT^<7B zI^y;14Sx3J=k?`5CLH#A9HtY_=QAE29`Nqndz>GRDp^P~=4q<V zCtEy7Uw(zVyF07~ zKQJdqSz#bSj6=;`izRncY_3vQL@jn^lQ?Q2KUc}z%sR{N(m|DHe3;nF(^`u_9AIy zf)&$Qmd#R?(kb*ofo4I;ncb9KEEzromGSU`45x*nbacRm9(LMaZr%lHn*LUlM13kO zlctb1>6}9~HtV2IkcvVV*revUBZLK*AFYHZ&!68r>P^t%tprQ1FZAy|=Zojv@a|e5 zEK$|SWYtb)zPo6rO$a5y-suzU5<7%~25p z!6>i?%%I64df3!Cety-#yU8A<8v-!ZdfJC>t$r0CD0W;u<{pd0njs{D6$PYXQsKb{ z?B0lwAZ7J!dIMTa)Fw3_snzEkHFKz#l%H$fs`*&!^Dj#*c=jA6#t=w@WMRsT$e>AU zu?ZS=<8L%uxO%MlanjX?=yE6nLL7kkVn}J8(HydEc}IgZ*ivK_AV@l}>ZG1J;3ze^ zCYq9tOVH+!HP=fig#|gQj8{t0hUvM3P#=o!0xlX`J#UpZ;$X+EbtZToT z=fTSWUn7rK@W?Tx2g`VNQ1V7T2j&k2KVktK(A3f?&dx z3iBMvXo-d8zfe@Qv~?0#b~LKt`Eo_RFd^H-UMh7aw?@-02oxYlSTqC|h!2aKBSh-Z<6(M4iNzx}D$>7Z~Wvi58juTD?&IpZlqXO);_-6kmS% zC4TzpE&kho`)BYt>J&Qb#^;Cc|BUJT?`xxWwcX-+uVS|3w-g}rwG6K4MY_8eLNg+ zJRWg4Pntt93wDo>I6Ur=MRC_`=HJ4EC;{8erWUdzCwu-ggstH+8RPzNXsG<8(>e+x zco+;#9IAYk2422zVg`Nl1B|2x!DBk(Je`rxisR0f{5TFHR;v}RS1P@mKkjk0+2DWs z`+vkQfB8$ix_zOW4Q8x2YXoGawPiw{j~HXD6XiZ;KsT^%Ds9+le^#d~IL|YR6%Z$D zq>g#Q;dI1)KI8u5J-+?(TfBMmBhq?16`sM~Vs})wO6|P3c+Jbiv=M%;-U>pYx1T76gP(+#8S+e@yf`*`Goy>HT zMbYV}6y4Zn-PR3*N@tLg79doRN=ANnuFNyw6r zW(I}$LWVQEx@#a0X(;?WrgJBg#1Dpb2(uZgN&rC6fYR$r{yq77uwo< znxzXo?Li0rzh%;yFbmg4(+l${rK&6_cHT*mI?U@~7aC;C3)FoBClzq)y(2-T=|rFq zP=anD3TybSgBe`99s(;J_8IPl-ff}#OfL?4GvUX$%>FXVpGm9I6VjHAo+~!q$&nOfG{<4Cawz+rWhiC4%{)P_!Y;DOJBPhfpbWE#Jp-*0SDPtJSJD z4`Oi*A{iW)TTm%3X$njEn3Sb;g2^@~Wsy%Pl(i|RfRqHs!`aT_M)~v1qe>ffju)W= zYcwyYOP71=L<sg$$)FGhy^>t&y z6tEE`Nl!sEU(2>SmamNndml(aD3a9UC$ii^mrnV^mF%1_j+U>9B?Z&#d&bh6UjKL7 zWRvI*Q%FgwBauC;%jY;7A&>C^Wcq$Q&F%81apmQ zfo^~(+Cwti;f|uxI<9Ymk}O0!NACFiD$i5OiCDLgGx8%iVr17>9LdB>f3#9mq(IyaLdqU;Rn;!lme+M~% zI#V8?bgr1)Z_>lVfW{^ zhHnSH`Sy~_i^1Qo|0Wa zVbI1x^x~?AoE@N7*IRu0*=taAx|{yq=d;2I_U|9?{{1_AyuZghO*o&=I8NspGRjuC zjO!7{(+PvYJFYWfI(~2FYtN1dAdU#U29LTSb4i3tVPf#-HFk%MV0S+2^LL(fqbVjt zHFNXT?MrMn8{Dq7nOlb|{N3OE9sd3ozs7dELCAtY1>+E~j+y}$V!*TmcrKRAPBr1Y zc>@fySqzdA^s`Q^xbSmInCFBkWK7efu!>S}K*9bz;dlS`-|_tqKOo-RA;mRLQjowZ z-Rr0D1f+Q~*`)_32SxEpS>&^oqJW7IL;d@?^E)o-SM+2MpxXLnDB{z<&!sdvZBD$r z$EAb8_~3zznZ+gv1`5s$ECw#bn!22|Vn6V<2K*W);*=+IR?j=MDR@=3D z4=qI0;S1a02E(A}*>N1P38VRcbW(XT`W?A3n+bDDh?8I#NAtb~4dE^shjYT?;|F~I z;~P9aJ}N{e1jO}-5F*y=Erwyh^=6CLuU_Mm7gtsssceZn7iWli*5zV>rMht$4JYe{ z@Oa^|c}^|RJX}dVCnW=Re+94^uBCcVi5W<#%6rg33X1zF{rk$%B^Uh55$A6vstO4Mf`oS95+$OgIeRdO@jujb&rQOy*Vp6a=EFajtVJ8veY7cBEi4~ zC+Ie3tWdM8TWtq#zy@}~|9e;rQIJ)x8Yr|7*23Tj%=2v2KXo)QGh)$A&I$n&GG_Ds zu~^t{2_Ta~lVy;xDPWjG+az1;0GIZxL<;u3K$RT!u4xTqjdPG{v+&O^uv%u=ymO^w zh>O1#R9NY`om9N`7g@n$p^#=v+BQt(#zBMOJ1SY2k6>d?`Hdh++m&Wy_UalKzU$T zqv0)!58pl&quhy6t1_r2*^B6ObR5^nd9sa7Q7x?T=zR*{*j1+=)#(x&*{M=ymeM@7 z3AL}ViK!-jS3Rs#x1JDB9Pq$TF7r~B6Q5)W%r0G1I!^&4>e|$UP9Wl7q5x`De4 zT&2jh+17!TUi5_-Kl{bcu|FO0aksRzA;#>Ea;fVx=~a~+>GOK!s)cf zkAHqse}?sDgVkzX;ET)|WCQR;=23Q*>D*@PI7 zrxQ-|c`*r&!=NCI?Hyjfeu1y>6-v@6(eZdtc)?-9@o>a$|A6E1h~wdel$3UNnr27_ zHtP)@KAh|2Jq!bGudgtUBfz>kS4*Q*?XOSeRqXroN)6%J_z z@AP|qwYtJDe)c&c3&ucrar46R8cNL(J3Kxh?+$9_hZ1{WFcSAmh)s}l7Mv$Vf@i~n zGZBtC;dnaXC==#s#!QUI#~prnyvHB^_(!~XeAL2w3@BW1&N|)9e&KpkINJu*u{Bv7pm1qROE_lx(D=f{=#pou}Fj1Rm8oa&2 z$-G6O0BcswKA9<43J?t0JewD0ng#pm0Y80swCBUk^h-=|#0nt>tk-MY+}z-1t9fPP zX28o=FENgBfpw0C2+v%s*#+k5jNS2s4l@Na8Q8;YNtj>baZ!M0E5bh13w9+Pbnh`|HWt8gKWJ) zVph5sS73!rz*(o@>h14hLeN6j>wRzU08%zJgi^73IgZ)YTVX~m_9OU)#DYXeiduW{ zP;;zw<0jAIoG;&R>CT8AiW5oC+nx@${4)$wpB3nXZZi#TUXLer5F(gGN!UG1sw#u{h83vjc-7nm@zL2$3N8bJ2<9oNG|OUePDZQWcqhcAy%Oc%P(KIHo)e?W z>X6Ha^_dDN47!OU#eWyOce4Ov2#`dW91Oz&2#T`LDPu+4ZFad11)>inLPRz%E3rb< zQc7mSVUPoLkTK6H(`IWxi#2CeT@eUF&_QK#1sc?|l!*{n?{IIxt5-h>Zr@ds3kV zaI=ykHQs|74jw8A%w@I>JJ*4l*rH&FLyd4KQXm7FUdiYK{yW%)&;xSaj+V_gPL36S zdO+I6J~bStqdg_*LFI=g3iQG0>52O+02NYzR=|~o}}y(w%*%AIqNTK z#gT{E`Q-r*gsb6>T&t8Ur3T&g0eYUt(qpr04nc)$q=qLIQ8Qmgck%HPStF6Z=p9P7 zhLpBTGv%xjIMxY5Mgd9Epu4k94Xm-KH&IvhtuhV<8F`p`+MvUJKH8@h$M_5VjPDCB(SwLcR4wW;(rvJ&u7zk zYvGd8jCH)m)$JW-$_N-BvwDa={p>YBg2Uq@t~VRSlFq3fI>*NyrfEV1x5u$ zb#vqs&9i|uM6_`{S)q578T->2561)Eym^Cf-@e7ik00^qS?%iqiB!rGn1LwBbFS|V ziazr`xY5EEmF}jgcjkxi&jZ#-l%}HwHCY6#0L!95fnjlZ(w}V2(-vbefx8 zOd)zCf%yOlxPN@W{o?^K4j8US>~g_oyQ=!`VTgd}_nr=C{PfdLIP4GAoU09Y#CjbS zU?2q)qiwb_&gV1Gg+L$n2mJ8%Egt^s|Aqhcx4*^p^|j_eohQT!II)en`KJn~7L4cy zLToS%F)|QI!O%5JAXe&=G~a>BQA#CxddO?VREJO{LYhMrAVD`F0pUV^-E9f&86Ac} z2Lq(<(!fzelifVs!66h&oh){zQBD=tP0q}Lngi)cL+^vCES7ff@+~O!ih`nm!TQ+| zQ&nP=f{LK_dRFGV^q@MFi5oRgy`5TUFw+8wuF@JUd|CtQ|GCuXyii#L=ax{O^$jsM z?^^FcX`gupdvLsYuo}s-N#&N_Dp*){2UCdjR0i2)KgnO%Uit=92Q;?JGKs5(oh!_T zq5?fq$_q-KWAepABxre09bm~K=ZzLULE^tcOe96~RJ)a9*|24Iz1u>b%d z07*naRNX>pN{J#FI{NA?2RT=}!D5@7m6BX@o$UE5#ozH(8cPwvk`zlFWTXAOel|K4Qk#y9 zh$(9<213yBph^DnGaIH>LtFfWQSW@}DA482L<+fBO8{6P983wv6)qR-({Ng^!!A77 zxUk;G0?~RVmrA=9?F{uZ?hl9ThoJqSV=*M5yk@(xSWS5{qmY`49e1r8fOc?l-D)M~jc1K{#_-UCTk~`_5Fer&0GzA!hFd$ab zbA4I8U>pLN6kokstuU@v3V#?!E!-}WrClm_o+eDwgdzoZuV2|FCxgfEL~`V>Va>oO zR_t{RYi(3;DYGaQlUhyk*-(*1uv%^Kw}1N^OotQx@P|K`#GgpP=?rzn5zgc0u-c(9d zD52$EIIh-)01^VEFha2GlS0hx$3O!DBHq7$Yu}AYxK<;02-a}x#D*dxLyfGF z7>CCl9!{E<6e3}_+e7AL!O5aI2*qe;hT;^-n5G#BD!rSMf-$C?k>&(h516J2k9o%L zzy1c_{Q1v#I6dGDOKTrhGBicstR|$Qc_4~PFSSvuKEysy&kx`7?-a)n<-3 zlgf)d5L@LA1(PHcBE+k!TFgiWCJ-_Q?Cy8?-~W&Q6aVm!|A4>x#ithPI-9v!i;R?V z4Y5`Gm11+9brbbSCAEVQIcDLW`!U4`MFN2*P$h zr%I5OQXsVf@gQfZ^e&}~g*tI{(wW~orIco3Cp_5>l=7UvPpYiT(c|ikDiu!9XlpH3 zi&=dt`I%LXHV|4va3I7;$k`_m-1(1bQGkYSDqf}H24C>|x6fVb^C+K?5p9bUO0XQ7 zVvVUagh?gz`pOGt3wVx~XOVwrb$hAX#89aEaQgwSu#pmbKMG1!gA7LNOF1p2f*g$w zhnjok-kHl|lLOc1zIspR33JjR-|lhO8dNslp-~yD3WuZ7+w{9nUhhc@K81)?3oS%g z9K7Q4v_Z+0!dj+MnsFeAdii)knsif? z2YrDf94DJp4kNiDX_?tL^F3)z3p+OAk@$h-&71h7*CZlS)=hV`&_Zf*Ha$3`Bh#Ty zshq4+CnlE-6Z}xL>5pK663#}&VGp*IM%wXIYtPnj37`La%?T+TvRzW=L(u|X@wJRR z&xpz7G%lO40w9Lb4ov;Cb4u85uCU!~)GV44;xK@M$$nTvWC7hocsGAOo%J(2=oV(Z zy2Z=eJIs=;8L-LFqM$6M5l8F5JI%Kn<`oyoX5O@kid;+(yGBUN?Ud5c6Vk7))A_gPUMYgKp1PoiO+X-X)9s%R=Vj*WyASC?Uden(=V@s4Lv0 z;fv7*0pn)C)%7)Ay?lvRuV3Tl`WEZ8%Kl;ux(T2F4vp%in>1MAS1?=Sv@D_y;Gq8; zwoNOKjH_{r+m|?0=63*v@G7gYbz(@!qpj+jFW? z$%dmP?2iXbP$Js?biyzUc>C@iyWI}|`lmnP+c$s2j1`7>g|zbeSD%NBW&}k+J#X|~ zk_v}mFR~;rNN9Bd5ESj|ft#9d;ob)Q&n`J$P#|eJJfSWg#WBna>Ke(ydr*=NYy3Hw zEi4b5>U6phB-`Pmsr~w6T%|$p$(Z1%dR!L$u)EU}Y|k7Jiv=zt`aCehRtbh`5T#h48yS{1NZ( zKjK$keTAEi=D5t+B_j=Q8;3!qfwtAwQ0-{4YV&+#!u(ABA8dQ%czKtQ4JK{T%e$9o zS#gC{fksPP(&xjY?wuOy@!g1z#w!9rJ+EdoFdp1C^Vv%j|=vhiet@SNZ@2ygaQK?tN zWfN5{fEqnnu;0MBv{xHW9ZqQNZqg;A`pvf8^Lsk511iO&5n2#O4z|59iDsZyCzMhZ zW4UDA3YzM~z*)6f>LDclOvexv7hW_rf_dnkr(}(%5 zkhC<}_XAw;vI!3{EVIE3Jivi5@KA%LQxU{KKrkJPKQ~>@W;QrQ@ccE~XasN_h>gRD zM?N7TYdGnYOr;Wy04vqgUY{Ar!awEbZ;>u~rug&1ItUbiMr~p;We8;uN0aEPI;h4T zaJQ-Pz*qr>xH5WXHV+gkJ>4XE(`qYp8YW%I0CD&YM%PmH`C8$u?~umFmjeqIQT{9aC(Rr41t6 zuvaP(lBy=dv(!w=JDY^jHqBJ5ma-6lfeAARvu}5a5x|CJr`pg7;du#sq`GzNm0NKL z$fBOc7y`0rtwvT`MYc?{lq)oZDl}-WN~~TQsvar(%zdE{nyi$pd72D)ADha-rE|J^ zB_d2vs!laU7p`CCCH}i&zYAfBw!u@~FVTg^#TpF@jY2W3AxO7g7Z;LvZDSMA5`BGa zmyWF=QPi9(7OdvQ4BLas#c4RI7jFhoolew=SD_|1E3V}wP~9x(A?wNKm-^#e1Q~+t z53-;JGm{ zFuwZrUt@nd+J1SuX>uQk*p$Yn%59rurf$OkN7k*J#AXidwdal_&hI|p{kspyzx)5dq;QIxn>(ylE4P_OLaP)FdZ$N_x=I< z{T}xp-s5ysiQnOH!0vd|e@>oJGTBd4FhGmt{c*zM<0Ix5cL)PRbed}OxAWAmLUuN~Ouz9Ln$;oWnN7Zs0#aHiv7@V4yo~@r^ z3=JaHq0!rRy&K~4^0Qlc{#e7+se~+xS#9)Lt@KV)#YAfmGZg*;0CSpg+MRLUPe9Pg zf1YQ9vW$q--S^e8;Z2IewhZz97wSY|wQaDGJong8l|X8Aiw<4p4unN)0ml}}v!EGTGvv8UPDfHMP|ImsWSv#% z9o4)%FKK2mX{Qe*EC-62k&|xBU`zs_AVq>uMzjG#j;zhB0X+uKRn5iYsns84c~mG3 zn4u9R!3MEygXqtzDN07E1hP``i&eMaV@SyFv`M?YYzjZGMkI3q~X;Vdt= zZel)B27#lU2LRHb!(G@wHzwO;4N?8GrjjZ_n|cN>;~`S6T!z^2&;p)=hDL=_wXjmL z(FMfPJC;q0+!rWK>*+5X*_5-#w6Ya0j-C{-`br9eI8+p=8(e+T?2{P{wJu(XfI_HS zCdmR?N1GO~K9pg35ng65IW34O=v2axwVs!N4p;2dzUNHfy@6OK(#2hg` z{oITI>M)|i5b!sD^H(_U_xPuO`X@~D$^O5xn5??Tj6$fJoKi9dipxvelRd1_b4)aM z$aj~f=;R_BZK#8ikZOx*7~AtrKwO3T^W5Km006wnrCx4cIE~|g?d?_rf?wQWv)N+3 zQR!qDS4x2-s!|Rj#yp#rIe4Z*1~M>ppMfJti5TNJAPxi8cWaC{D}4I1PcV!lDCp=%(XN`it7+pSS0H4eMUlCd-*Q;03()*2|^bW3S8v!3A9wwVnl zUaVNib{M1EC@r@XT;Vf%X&SYpUR`Z5 z#KELBdU?;QfOij%I-GzK8B{9-%317Zt>6fwEffpxB%3Jaob>lEPxAsV@4`hmr``W8 zPpTR02Y+vZ%C)m3Q+6~jl6$$lur1Q=-(uThW<_qhk^@OQ+l*Y##%vOuI;oe2@zxBZ zTsKE4&Gxg8_4}`i1UJ0cHjO#dGh*2+>RHqyocm3(6ALT8+vsu(`#h4?Lut-+v(@{j zb4m-+T^;z*G9-DLW<--a5|jCRtU+Qd8fLCU*7AfBETuH>uxJx~Jf4x}j2K7Td`LyY z`|s^uNA+~^!Upjq%d1N9^smupK52a;y@%brQs$Y9cK^7v+~Z+fqF#qXF3IbL6;0J! zo(!R;iHtA<0>at8asB04pZWbe2`iTpwfty!}CGxhqC zMizLOE=BCboVsWoRGP%iCL&CL^wSl zbYgpn1!p3p9$#!16NoW^skcDE1s=C< zxm%bbsA;#eWDpDH%$m+$yqoVqU0qeEqLj`8!Bq(yWW{#00A;Zacv4T-%nLzV|a3I|3GT zCt+4YaBdUd%Rj3)jKK>X3U%^b{VO5Vjnd^*wW5XxeLsk!HiB7)P{9Xz6^kB_=ecIb zHJ_;J(^|76VD3Z2n`f(-?2jx+86IX_C8~lsoiWgWk~BX~y$4MWCwLnEUb^THzaL6! zo{|uHKe2nQG*FYQ`7MiPq{+7$?4@Pj)U&-;zSwGEPIL7p)U!Tl2&h;C6b-Fj;Tu6~ zi9)4qn7e1AHfc5bq)CCw#U`qsv=aGwMzu-j;NPh=$hFx+J)iuuBWf`hq4TZv;3es# zT;aK9)_$bgu-Jx67ugwM9AH);m2(=DKxK4))KQhYdX75mz5ni7a|Q!2@Y3r;q0hkX0$R)B`{P;VEOF3K zZp{S>rfL#rh=3%tfZFHiisJDxwk?zV6uyQwTyZN$ur0RRTdIdQ5LV-WAp*MCRS%vhcNEdcs4EQ!xpnQAdM)#2ON`n+Y51(0oVI4=s!D2 z0);{Alr&f9h8QlKu-xeCd$ZADEeRw8!9vdCK%gR+O9mCAN!pzoL&TJm#db7BT}DBP zWbirbD@@W$wRcgidC7w42WAYRy>vM@8ipmWyZO;Io1Sd#R1-I5X+R`5-E?12P-!M* zn_P+IqExoNh|XC=bBVH;2Dt!i1vo|DP1=_gs220Ygt=${p?AW480{ix%O^$T6B%nL zs8r&R6wwu9cL})}8MMp|fc0y|rcyg4-7gl?Y?R zl+G1mQFX}DO~<>>@3IMXOm1%kRtTULiaBMSl9Cp@9ufyT45oR)?aNpAPyg_bSglt0 z`s=Up?(KWb^Nb;`?0Z)%YST(%F=dyi-=j(|Lo)*+b*6jzi#YVEvv2$oJ3#!x@$b`c zlgqeDFvtFq*E)(C|nSsP5(R#4)cW5EI6G`cswZe?zvZaCK$KdmDrm z5v1xZU_=qi#Ul&aE|uCS1e_lB*xf%UeesxZ_w5h(kH7j7Uw!ozC?E89U@xMrur-&W zZ<@W~5Tt6PRzrJI>0ZFIQr^0u@pryE&q`40TqSUEz$!+~ZZoN835;yp0?C?lr-*T~ z3p(3ILHp9+_fc1u1R~5v)Z(Ht7mYP2Aj+l(Q4oYYk>i=?RPby7eZP6~?bvfUL+-z- z0ib9bFhSPh%eIrxNwwLtn+OYVlhf`hp{#mIY0&^wm_*X3jG_C&`jA-n?e_FshgdL? znzKVhuv{@R&!Pvl7S`G#_$Gu(Evyi^Hu60fin!euwGoi!AIhm^>-FA4>V9_?EsVVh zaL5%|PEGSn>KRpn4pWAve5@P0zF7(}YKEAdeeR)b4G29M6#Im~h&CmGL-hy_18Xkc zG;33DG{kHkr^1T5KAk3nFn|zj>y<48TIxBiP02-|>=QDxHP9$esK`z;E9{L>K|iS| z4(jkmI|RfbEWEDaLZV%RU`vC4SVpsc7al2KzBLd*L}Sz;BXGbl44NmEWIAo@ zx(f(8<#H)WsJvh9aM9GH48^)%quyn<2Sn5$Sik3NhF?pD26UpxW`?XGn}JMQE0r?k zCcPea=?L2Pu-PG(tYDo}MSE6CyXQp|0fHWKJZOQj-Ck>6(0a2l1-hA82nge#9vV?% zi%7=7y(s51PNyRZTbQX)O!}323;`%AIjgDcF(Af>)oO$FdIMak9Py_=ztQc-W(8)Q z{!aT-eTj$(oAnxGg<9zSN~xt^yGAv-xzQSmNRCgXsu8vmQP;FtG3@8_882{Qr`~v~fIpK7iYN19% zmhc@AOTrWj=AZ$EAI~be8!Pl=R&(-1*za~Y9M3rH_jrH5!)~|3J~E_S>!i;L4Q&J! zJAL=+1rCQJKEC^?M4JgUGbUwVri82OD{RIAvtiA%U7C>sN;F?$m+Rt2Z6>P4s63(I z1sn4CfoYR3gSxsaZnvG~@mLp(5s2 zs})|ozQs7`5N1vZLzmUk>-cjm2oyb^GH^bh@wj_zId{z9^@!d1g#Y_re~-7jBmU#x ze1+9&1*8)|grqAGj8XGYxX{8}J{xkKO)ld1LB-tq@FKTBTyGGGxNaJ2P^Eb?eaqxi z`~)@aQ(Z6qwOjjVZ8e`>7HTlFdV@UZhw#G*sX!3dhg;xoL?Z1>mm5e`1MlSSBS zUNlZ@dd5wMFgP>xOH%XKy#dVgPN;6?DLq-2u1K_|=|zCCpQoSbcNYha#ciq`>97HLJ6oxvQv=_%TP5I{n0 zKujtJ)G$weLcwH?mF_CtVAoO49tO=F7-TVY11;4F28*c!luETkH|1}hX)Se3)@M0$ z6+DxTo+f(EbA2?54(kju<4u`wIZIwjmZOEV_MVMZi2D7BS_>#^?qwlHnss<~JRWsJ zXz#6%M$QBdou5l>6Dq04BA~QAms06*C5uV=MF&1kt?Y(azQOWgVXaL~Myx|#M)BuO z`i7ejxYVY%7=e!1GTYqz%~t!`uMj{;_PoY0V3JZZ4T+M$GKvjD?7Npzhwi@l3KkfT z0wj_4J9LA4Na$O1irYI*t;$<$ya}#(i z7}*+&T$>($Q7Lzm-C*l#cF2Kh3;hCcETrb8P+f2tWpoo6w43B$`6Ifz<1*{o zu`I*wf+I2QaE>%CI_i`s1e>z=qix~>kpzYsbX~IGxd(+U5Z5R{oJyTqR8k+@R z6)G8AU$3y;Zm_!A=u{{d@St4$Z~ycie*FH=>UjvIPL1a@*L(m?@m6`xmtTH~&p!JM zx3{;5tD#QY`+}>{aLg-8F6eD*WE ze*FrF0k2=ZLR^m+hY^Ee=4()%FeIgJny0tJoF*-p?0du23K$vZebB(&>8ujEIU&YD zFSeU2Y+l{rm!EtBzP(0~g54qE?YpjBNlkrkF z=%U#pzKL?#=QHvQjtrifB*qQd{f1MEeIP?8(VW@BZX3iv1FWq;vfxlgqa!&jPXoU# z+%JZzr`LQPm26S4^8%r6CjsDiI^)BK4-kXwY_Al%UrItsUQ9Gvna42@bfOx#H8zS7 z7rcG<2Fwwke*P)$?(S-iO(_M_;e?NQ!q-3kfX_ew95<|+SC|yFnt?5|B}lC#fuz{r zl8Z^r3pk8R=uA|Prb;vU$%fL;1}23MiEV9ts{}_g8@bM`6p&n&4c9`l!VBqLGc`-y za7qO$nHK}g?P-NP*oL53ew5!6e!eW4)=sANL?Ukz$9ir%r7sz6wL@(CzgHQa`N)(~ zSX#7!7s=gw;}V!qn#@S!Hnf?pIDT?TmTgOl4$umBnQFFqMPX|ILfxLj^81hp!6eC= zua)7P3%%oYip}=>xax&NKu)&ZvsyiH^B0Heb<6-|NY+9&bEz0)Eodigs!F!a&7ehY zzBKul1@uD=?ok6oZ7`t)r-p`?&>HzdK+@l=gDhx9Bw2opzHcrovjA;RHe{E#3kY!; z9}=S~Tasl)vYt0NopC%KRDx@N%`{DVW|CVf)c>J_rgry*IMnCeG3|?D)s#!@P=lfa zkSw{@sbEZUTYmIGR0aR#IyaFcLe zoYTQK-)yq~*nC{EzIX*zP&Ycqv+FpUK=dm+L683qD5O${oV=N`v~j0S`J~=8zopSM zmVmvs;${FTO?6r+BFN6BcMWI7bL&G(Q1ezX9A4^*qAKg_>20OvtksQ(HwZcBhQUr+ z;3mU0Mq5N=%8N^o?Ghe0TU=dj5kf?a0Wq#@ZM~$S=zlM&$U)0&IG@i*DFNq<)9C~e zZP3_rGjhWj0|jivp=ea8JSr?=vsod;h!}=S)KNpGJ{aRLBBg{Ew=WD$dqRv6abN@v z5Y`6m@NmF>zsJW9_xSeP?=Udo?(Pm>{rpS(>es)<&D|~5>os6a(JT#u(9F)IZg}c* z8h6vW9isy%cb&Fai878M#CxXg5)Ya(CLTL`Wx;( z6C-ucG;^@`s7+u?5uME0b9y|U@%7i=;OnoysZ*)dYK7~oYpkv|7{?Lo^%}RgxA^q# z4%_V&R^w;~x#j6lhp0{o7#Jarh>;O*w~(y)Pt9Dc&GUBLVi-pZSL)585b>MvTMKPW zNaqs{hXeNe1NQqJ9(EIM@9**Ou+uQqJl9ET7D1ZNx zr7lQxG#ZL|xRAlDESy04zH%@LthR5pVONS)u`pz=8=zvuB*h8WASxUW2YlS^5IA5Y z!p+T%$|GE|N)G7AD48!N$Obm>8!GFR{LPymv0AP0v!DG8o6TCA5|e8Oj<~(r==(oU z`2NEOe70KS?!_I3tVQ;0O?DBeFUyHkj0$e?pTCz#^`9+Se#DYm$P2iU*n6Rry%yXV zY%(uSU$tgWkdca17)3S|vjYmA49Lt|(Qi21V|E$ldf7NNI^gqnbp=#N^Vv9=wR9n5 zwMpup>tNYfWL`+gO?IZueW{I!d-@tA#1>G6EGRs*fM5p`M1F=!NNtN38r{!xnnVOy z=IRsbp+B{$GjB6OFaoI-_DIW#JP8(FsGeM?MIt=`6f6w+;(A~#h`}+a&y9KLa-g!! zT-XK|xeoHG(7}h#*)}amCL`5`HU(<3JEFQ#UHGR0S5!5zZ~S;MH0tGzrD)9+C{)_0 zzt^7Cl%S1;2Ac*D1)NS(r5Z{m1ovx#YLf?h_5^D45Z~t8b|^+hN~tMyJeSDcL5Jlq z6H?MlIc7$PrgTXrd$(Z}SLHzG<0}j@a|>j$`w3Qq3x=f;DR@viof% zgNk4ld5ByoHc`ynW%y2vMt3vH87G|{%3v7hVsawRo#aCK_TZM< z9cMRN(L$E6xZG;cR!izF;i<<&SMbSD(x~!=ViUd?L&X!r8T5uBOjbBM#xNDB=uAgz zR)d>l$gvn^JsHp6UMhq|0Y*kcOX-A-Oca=Az6q z@}wqfp7lZsE>4_Px=02((CuKT!F$6nAcTOcSGRQ|#eIGZ>(|4PYJS9adyW6;fBB!m z9I)R%;CMReO1K)^HIL=6Kj7iv0Utkp!2SIr{`}@0e*Eb@{`q&m$E#Pb@wb2bAMo>^ z{{q+7*WeYKge5&OQ#Q|2eil#bQYL{w&Sz{kYh10b@X6~>@cHMT;^W7UIPUg19*;Pr zGft-y&Uwb}@v&;TeQP>I^NLu?eX+?O71wktMQa#_#l`5-mkN`Rw#_V-?GueaMnpy< z%Zp8$%Es7P$cuo$`n>xlA~x))KOZ3)v?3@hLnOl$t12;*nlUuQVG%Z%Qo-A|?~#7e z3u9$;#mMTJ8pnuFKKTT%U%$egHBrMbV6;Yi@RanR-i;g?+x573XQc>EWx_Nk(EYI@ z(1{4cdV?4PhV_7#x1Zwkaa7YgZ;{fBhY$C7e0;>m_wVrW!v{R5OzbbX;!^|2as}lm1$G9wMV7z(z1}V>Y`TPPR3Db0_(2rp9RNq=L z)OYaB?hS5b#z$vQv0e>Ibre|oJ8EKl5PP?y%XX~r%Lyd3$Smpy4>b?3=tNW43TG-+ z;`(3`X@RLOp;7F#es@B4pOXCq(xm9FB&b8jns?J>>sayT7;$;TpR|nYkOnc-XizTlUPuU$=DRK9h2&lH^E!mdWBgOqw2QPG6~jgJW+7Gc7i5JshI= z1C+$%Jf1;SU*EzAVbpsvs6vFy=h6R}vPhNpJ-}I4l3)8wgKbW%Zmva^7xz7^pobUq z_ry#_mn?Q~>lmySq#gyQMtZ4M0E)rxgHS1=Qx=RdfFc1YTS0CE0B))ZkzA!ygeD7g z_>$Gys_p^TjIBPJq29?xMVogMZm({Dtikj0VBkax#RPjJ>cu^2p4%}79q>?KUeZbJ z?kq+X=AuMlwy@j2jxXkAi!mS)L*~@I;||6ti_d|B`CRf`-$j3iycy|Z212n7t`FUH zQ=oM;1KBB$tXq?iS(~@4a?onJ?rMtK5ZHiBT+V3UMIgqEyc{qaEY0U0)YTJ_7!gpI z&7i^G$)0yM-;}>Qx#nP%+Tc~vYqeq6HXAA>EQ~7cWXVRGRdTgx_#h%jvmJP2Z{MN8 zfdXSGi8G}c8QcR$(s1(S#*{G#V;@T0NcUsyI0W^f6+KHrVx$UoX-a^?`Yth!=-Ihc zzc874!!PS9$&;+!8luLrCusQCoXdjf(yUDjo9Tpaqs$qyw6t z0KV4mCNKT~t4>^&q&}gAiB0PB+t z_WM2d`+H2&glXPmo>c?7Jy~P3-Qeu(6ep+e@b2wf>~=fsc6a#tk9YX)&)?wu{2VV| zzQkYs;tQN#TwwEbQ(we7n>QWt;_?;^2^~uFtFa--bt0t~@;Huo{`@)0<%Mp((gC-( zcXfg-#|X(Qun^cUWpM8X!!bnUhrb#PP;N45zzX*(Zdk6E32`h6V{a737pKPZO@M z|9~&Q{JqNM;$WL7rT1-DBc48ehG&=O)!PAla^d|32D(fScM&3;I-CV6!H89hO zN;0cg>vng8goNFEz}=Wc- z7qwn6Y;tWeDNwM@gHKeG$&yk^xV^o_YPC^n83|IJK;rLFRIL{PIEExR4IA zV*m)1qS_#!XidT%8$mW+<$yUEskwL_RrekV*=DWb_O0@+V1^9Q%@u%R3aG*wJdQMD z9L8!f2o~i*hMjlVP_%fNWQ~zi_XhKfMd1fHbdd}mMwEkC6al*2)2QD`pc)~ z^WoLazfLPbq&5-FOS7J#!c}rr6>$i4Bge(OUuiag4eOm;xO%#ogW>Ai-R%pVU>hgo zjQBs3ilAs`%J%S8lYF2~>d?JirD+ih6N*iFnpyRTQp9K`J9|Lqs4PzWf9fNNL7ATbS%&swTmbOFe+xvoV(Q*6TVE6AzCSU5!6IzrI+*_1Pg$=hhz2)M?!PQFBRlTl{L5-zn@GIsneg_4-u$Nj7paY zb6l_|*w!dnGCa3jqQXG70+j6MgymK>-IGsT^biVrI3RBaUlujF|l<<5(MyL!NQSDya$3 z_i~ytcKiEII;P0{RHTA5T-!bj0o&7!N=vOsNUWObyD4F}+hKomgWH>1$ULdG-m-Ui zh`OyS7PK4;(QT4is`5;0e2H|b%8yIzyoh`(g2B%sea9@Z9C7i_v~$q6%a(2TNXpM+ zMP)UbC#nhM&3w<0pjkIw72-gsgvdTPUjMsey}7=>eAJ9M z3DEs)wGj!yXmj*n^AtPUsBhyux2hk+2%4N;7|JKCg}ZLqAP*(0BC;TwF8^MW9Oazr zUstaW3aDhTQMr6$P(TafRZ6L1%k2+h=cQT?3fY$FFJwp^zkjW^Xag%TFakiJAt0qx z2dwq|N38Ed{dtT2XQSCIWqn>}^*$2jr~^ap{kaCnT5Rwhh6w9tnHFALC;WM4l6yju z;g{)1`tAQWO$qZX6>l#FDe$_3$Z54pOm<0j1BT|=qVn)ub?ICt^QE|V$DmL?kT-s_ zHYR~B%S#ZtxKJfC>j24zH`Tt-lMRh(sb`wh`YCjljl#ill-wgO2sS8l%4uPRodhBr zSP&y&H9PEwDy1|hso!rA+psz8#i*+85%fl~`g@K&H@19WJ1?@;b(_E_n6d9R=VX=v zA$^Ag89{U@K*geA+^g@D!q|Byr9}kfk{}jx>tKr*qXiNdP_&3YlRUb>NLW=}!K9&) zw1FWK1a99E0pKuzF{_8o;1EQNY=h98v;JA^Z08V>^HeRzF%DJE>!H&+7%GU77jT(W z48oDiLh1)HN~%L2bQ%yA8bc?`)Vu*Rr>hk0aSSs$lX3NJ^mM$iqy|^Xl1o8IHS|5j zsQ?(!nvjx<9iUuSYi@F7`*r%9ByCQ#t3?-jn37J|dmS+48Knf2B#3dSL1o#p8A2R! za7PqG)RdAnY#Ii(vyGB(we){?BVwuA`e+5iV6>t+6^xq| zh7z&ep5V#FNj?0;rl~n+%qc1E*Iy{#c$w79gMc}kRA8R*(T5-5SO3TVhShe&B)Z|E z;?xu+tF)~P;q3e=PM(}0=Y;)Sv@yHiA9(}er`dmIis#gB6U z<$}Y0Ha}Fx{d|wRY=8j|L|kc>gg3ceG zDRxi=1Xh#tJd6lZuwI`a#v336c>6-kxWC`yx4-=oQ8e^=I32NBZxF^2!#LvX*%LfF ze~C@_M4yj&#{F)G_wV0hnkF3fGp??#a7antfT`55PWMgp9t?jN>jiyemM>l7OjGGH~_hq`I-0#=JAQNt|h24_C(G2h)|8wYHMK?`>G5L%H?d^?kJ z-PmSHm4+&Yp}oJ!xVhfplNZko7@(hpi-@h1L`=A_F2&n;}vi@k&P{P_lqjn+JH#3VZ8YA_9h zkBLLyG~>>pYo^@}1x$mYGu1(FLAit2W~8!b`4u&7hY z%|?AlCuiqatya1fno}42XA-1fjf52*(=^qW|8O{9-W~M6-zZrIwsD|b+ND(r$TF8& zsGWuB4FfjoHJBqdn=MYZr)n-PSwlMQf^#U`VfBf>O=h9 z-~AmB2=}`?3w)z)dPrSjy8sFvG@21(90lVz;&ihG0KB}s#GGcl|M3c6fBiLn_~8e< zfBznbIpOPXzsG<6`5Qcc{%d^tlUMlSi!bo({3${RSQ%k285NAWM4X%jfl4(2`{a;0 zV9F7@X*LN)1oMb#I$*z_Ar!GXIROp_q*;lLA_XF5Jj@A@q=;QRB&PeFekEheIZ8=W z=!Y0J0Cv4bh*~IejCIqa8tisSYwuH9Xk#b$W8ylEq^>Yp1}fXeL6!(&-`Fh8>YY5y zrZ)v*N!0=JNFnbN?7kqHWbR-WieW9p6`tT11_hOJlIYOmHqUr}bq~CIYny{my;ZOlumQ)a0m{e!gA0VcBM#7KCcs6?ue3I%)oJe-0@W0 zFTH@ESx&_^7ugc-?IKiJUZ~OrF1BR|D*c-GJM8y+i#*t94oiqtj;9nWuDJFl-C_mr zVBF1neD%%OxZLmX;^{M- zoSs1DgT6P0`W-o{#I9kHsvIv%saWA!X_+R8bKBU0y`W%(xRi#ur;JLm0$f_o%_B`o zeKy=LlM6y5NXkmsj1l65F)J2)Gv=t~WADvlP=W`IkUgh8YP@>?4C>&XvDyTdMm2PQ zPw*i@)~)Dco9sTY*0+y2C;f;MOfoJSfziDWdNz8NQ0acH+=}?%Sz)F)$>y8Tgn49x zOEpTZZGN2cXM+)cX2lWE-SE_ZubdJ%=s-DV)SrVpI#~Z_UHZcGXRD2RHPxF`%+8FI z5=06{8yNUG5Q?-$I%NoZrkkAw16OIZOVIo?j;j0-D)_ zbse+-w8qO~d0?I;A*sG7_ogbeBb&sxpkbo8Dp1sGB^AQLT);u=?GPBD2%IUTmWPDE zL#YIMsyxMnLa)z)e$;uMiR4KP9YlDWQ3y-XD2tfhG z7|Y4_sZF2!kd&&kTpWT@x(|x#q%B%uJy_@O|9b{?9pU4&8SXISj~)6%gh9OXwTmbc z<}|m0!MacXxjg?wSgK|h0OGC!`xk!>M}9hP_heXOv)w|X=QX&Fne`C&{1%teM580g zta&kq35UZ0`7mReCqx9~oLa(pIWB<0GTX&a=P|Mp&YnKg&nfbeK~^4Y_@-&n^z|5! zT_(f&bLX6D(YW95@%;P+e)9R}c>dyrQRM7`8<*ePXpKyx>QSQvbq{4JjpOf=uEXJg z-R&K||NeViU*F>0yZ89v?T?j!cVRxKFTVI|TwXrIX1f6oj5*CUPodwWNGEm3$#Vr1 zYwDQwJSE)U-{J1+rkcm^@9!{6MoJ0Ot$JT(qp!`9>%Z?4PAv{{Ee2cW&C-v=fiVn0 zB`o&2QzQ&SQ@e(7SZ)b;NxpIk)Dn%|4zOg>zj~4SWnFqnN82>{g_A`KOtwu%uc<$N zuPZXxKWC%L_yy;U5;~HhUq-cH_EmN+waBVdF)K#0zzr*#r zD;y4oI*E^&I|^lYPEnJx_@B?4SR!tC`aU4==yOEp9dW61n-KF6MX&tDX>;Ew`=uM9 zQmqy125z-l>EzLxrUo~$!fa01@Ar83;~SJxusJzZZzk*W$o5P-rOc^^T;N{Dgcz&S+u3!oQ zmu?2z2zvl=`)DSc>KPhzBP2OjDqY?DxTnHE6iw2Z ztGv#Mbb+~fxx^`~t?81SF^1uRf8bbN=I3SzQ76$IlHA|pO2I43`<{mYVhuA@?^|4) zCoIc2hQ9=+=s&k14iCQXe&gi#)MGNaag3PLjKL&f3tyA_emm#@5hJC!4KxZZzdt)? z>T_H=kVVRf13!=x`p@g=?4iT2NBcgK1<4~UYoC;IJFB@hQL7La?>*4qP&s8)Qsg!u z^MAjm{`pWdgt$P^`<;<2RMekiRVL68-Ir`|Mv$Db7p*I1+cy03KmQuvfB!vD+zS`# z*{RJR%j{~-Bq}4E?B|;$A;eg*^9-vGvej=>vH>So8K+tq zVnv|qc_9lKVkf~^oUirS3+AP!=Icv2>4I1U_ac~c!sH>~fic7ZD^V%);PRbH+G>)n~hHB(&SQVeLo8+LAvD5 zgC4LFwtJ3DouxI+-8^Hz-y@Ihy%>hUq~_|KAL5{}kfPgLHu|LJYev@uE6oTC$(_HP zHOby2Vm{$;&2z{;!Schc<<)2x`}pPV1$My0@F=#Gw^$Oj|7-fQq!v8qzi*{c=?XN9 zfIacqzHk;byYs*uo{@3+@&%Yw2Y-5cQV$pyA~pwB;vbFzCq+M__qSKr?d}l@Be>k~D1>epAQs@; zG{^heIHr_AnQ-ys5|q*ZAGlTm12>FLC+o9AA9#1wQ`C zr;07!tZF8U(HC?QkqLo-xYF-X^M|s9Wn`Z7O^9ix45@n|jf^+>)5;^GV%i zm5DHO>GFYe@(9aZN-3duBSb)9CALXTo)?s;zs^9>8a#7}kQTTNOK#fh;Cf}#B9l&; zn!cMnA+EawOV?S)G3ho0y0z0^KLoD68-=q3UH2D(q=YO7a29L|W1xVb8&HwC+E*_`t%IXF3)QN zv)}D-eRqr3uU}*T_D;X&JnP{aT6RPM!3+^KtlB+D-oRCfBoWx8ZJO7GZmSjSLg?P{ zYIvoFVU{jP&{5}I&}tl_Ns|LYW~{~)PF5SNR;&8+jN_=m&-DzR5#xX%u5f*QiwwfJ zTH*Qg=Lj((hvs`oX-2S%j)NA_jx-)PVxFd&FXzCMQo5|GTo8u=+mkIaOui-zj~op# zsGi>772eq7EC844i_*`5s@EfMKq!Q7fA}6Zx7WD5yub&Sml#(gWVZK}fGi2oloD>x zXCFL}7;#dckHYE)P|%-wHduXTwJ=B4Y#a)8U{H%6ei+t%JUBe|zAfM#DcOJ^REeER zx0hKtHK6(EE^vvUkV&4b_$mf;Dr5y)*2!y@X23sgR(lz})1?UZGy2_p)HomC_bx*Z z%#fhZif6FFS^SLrRN3_nfroY%wUJ3|kGZVxC3U=4+}GfM~i?szO!tSPL`0*liPf#{!~SsP1%K@co(*cx+} znB|-+ahdu!5mpZpazTztp~|Hoxd+h$>xofjqa7BD;9)JyV=*{F=phVkTWORc{YDnB ziAUt%rAg*1Sj35&xeYp*bxX{}o`W>&8Am`4IslG-4jPywdVOG2*kDr3QrbqYA5e%m zl!QPA(sEGOY8Y@+X072-kSW#Rb&aY~*jXupc{coi4e(v&BeF$Kq;hmt*3F$RH)J4C zV2d45`JUvgXdhmN&{w)Fpk7|vQnMv7XwIVg|0NYfB7)5MC;`4rxtG%$TXEYAt_Jjp zN*ii~g#}@8(U-}!p#wrS!D@FJ9@Y8>w8;~gkf8@pB%M|!D_q)v7#>hgNCbffCDFK^ zIx;pVTMVP-#GE}lwN<@B57yh27W;&SbVf>oOt~J)^PG`$!tVAKDW@8oI@{rsMIeV6 zQTrSeQ3G*^T%|WTXC>N&0pnJ^QD>)Tb^zyE9Q&bMCmSg*WL*uDnjtnh$ypDpY${wg zdqxZhL|Cs@czJ$~`Q`@Yeuq0V;3eehD`6tgs4w_n+D@MeB1H4@goOdUP{ZW1X=qCn z_xb_Mc=6Fkc>dvs*zfju_wKFA_1?U}_4PHrd;11&{_z?g{QfI^{*%w~>F1x}$&)7t zs{v_F8tB^TzR6BNj;yFrX3OfamHKLhjp6YZg-PN1`OWie(l>3a=h@JrMy66fSi;@? zJ?5-FvBUii_jmW0t-&lw;S-0$0rNB=Pe~iKw9^aAip^Ql(s(;jH755)+zisjc`!`; zpvBTA4wzhyZtqb)MJ(|VKVgz3>ej;a$nq6HrAcs%`d5o2p>7jGH6ubwu8m(mWh&MT zQCDDSu&kkdrBR6hs6^7)KBP{e5Q1JPg@K&3UV#?NKA>UCry)aPOC@hM@=>3#UME;l zQRuz_PxFM=-@nG|?_VQC^|5U>Yiv$WuwJk6;_@6HfA|4dfV;bU+}`f-_RSmY?{=8x z3DfRSHy1FUm7jHL(3L9PsFV0?60ib@YskeLEr%#@g>RsDZ@4V8V~|MKEDfV3oNLxv zz_{9Advbzjr%y1B12&s2h9Nd-6`S-%X2r;d0r%4$*LOEKe|~}IAAX=-NYkp#^MuW2 zL`o_V;XpW9uj<4wPYD~_8o4Yv*R2X8MV*qLY`0jiHy|oVY1aG>E}a+1{i>-B8Pyn^ zD>#L^A)3qhW@{?1Zf^1B{d@fQ{SWx$lTYyS@`awsNi&5q3R0fyfP;Su(|h-!ZdzAx2f^&b$vby%R|9(CLMB$1$y`14Kd3? zG4f?GrGUzLQ_aQerTa_|{kcBSS%9uepYf)$F0t@#w+;YQ6(h+0Yw2g6%M3_BDd9nb zzR0`kAPDa1s&`3I9}QJsxT-Ofn!DFb8j41XwN1I2@2oi#5NAk92ubf9DN16iUe2!3 zk2d(~eNct1aVi4jSwTu2Zn^~|>*u(RqYgI;nzs&Y!z{LEqoCI%CR3S&=+BM?k&9IC zjeovgYL_+ z_X`Psp9%=f16bxZe8{5k91Gc1$W=rjMlRX%;H<%S|DoguG+2_3-`c_7f==^n<7CgW z$!EpvbagArK|vXvAJ7AqMG733R@Dk+si-2(05wVPu%_C)Dy5PwC#zV4tG+;=fdtaX z2R-ZUY)$6BWEtz zaD+q7l=K6$$xar_XMj%9qh}%->Q?FJMSkDDPn zkuic&w%>zoBNlAh%z?4r?QuBVtNd%XH@vl*FO#llJBflnbTP(S=z|19)Zcp?N1U$D z)C;p2&FtUI`y!f%E=FHbzQ0rryC1Y7x`8V8BBz`y*4B$*2hnz4(MXRgVfH1^Z3rSynatJs*-Qda7 z&+y5skMZu^JACuaH+cQ}HSX{4@#gj#Z~o>h^$xiE2!q$w&Hfm);N;3}Y}_SXp?Ga;NhzVh4Z~>MrFAmJf4#d#nF`Qcu*) z%`Nu(9ZE{pz)rZmy~CX53L?nX3{R79wK7t%;K-D*-`#@-lde=ewM{|`8J^o#>VAR5 zuz*cig{1`$^MeK_cL!-3m{?GxQNZ+{JHi2rQv(Q0T{?U=b#+(#f*HtCi-ihU;fA?) za#%fIm{D>7A5_*NvrWNF{#OEO-jD0>dr6l!WmO^*yTK2&mCRs)z24x90C#tLTwh;T z!p>^7!fHL>^yCC5C#QJw(4vl=zo}rtz@NYS z2DiI=WDriDJ?rxIs20pVV8|l104OV|e{a2B>-j6qb9i%mgDGXaeE9Lo!TFQq+M=z%=k9>dPlS3pBR2!yMfTkOC319B?3xV*q-J=%c88ViQ7* zTBzr!e&=H0(Z}y{Ao>fE)0Qjae?R4n;P!#;7xVZNR~wKGEqdx=Uo$yvm`TZ*q5pGQ zHk6y3-Q_N(gQ|2+gRA91g9xMGY0xjLABbDQ zug^zWhKP4(=HuSIQU|xD|I|pD!kw43beQH+Jw|~EvrHWn2Te^-bOso7`g@Fxo9H}V0dZL%NO3W~}P2LO}`l6n1wfIp2!SZ2?pPL1`VXBu;SRMvkbcYV2ahm zUpyeU6y>LPL0VHXvluCj%n_z_)d`0XjJmC%fX#M`Ax15tEhM+Nf6!i@R5HMXIVDSi z){Rr167FtqA;dTw4w^wAIvMn-fqzci9lnlzj;to>fi>3#5jfeNm?S1BO(aX*RK(~- zl@@rZ9balVg&M>q&2<{3=F<>B_e3Mh>?4=GS&v^d)IbOVYft#Bf zyng)}-+%LGTwPt^&HEqmkN@94;F~|az%PIKw|M@^hx#IMw_zY|kb}_VVxBx-igcHj zA4sA7l?5ml6g4SIY0Lhu=nmYH>c`OV_nXZc&(5Fdcag;oz?SEdazdUCRS&P5r&<5| z{(${%4-u8a%+rLsyL%i=N_a?nqm}IuVnEufCr(70tZ9EtQ_86*$%= zQ>^Lq6bbiWq?`~r*3H7;e@1ZEo6Lm4rx>sgcuz3Sb2b*D$!yXh~@6r@7|*n zV7=bp+37P3?Vb zw$1Qn(jyi6rpSvpS@cz0b0$KJc>44yhPc5z&v^Cur}*TPkC8c~S$oPfyRV-EOejp4!i;-lJ)rkW#LjCYM^zvwEGf zc?@>D9f%00CubH;tI{wM!Dh43EszZ=L+lj`v%;J* ze)qfI;p?xz#uq>RE1W-jrW4#!?80`40%I06`-bdIv}K}naTi1ciEYCzP>NEi27R_> zK)SPZv<+QS{B4n%U$pq%O@bxa25{2kICLZl^9IW0kdI}Gd86e4$XsReDw}p-lY5uE zSuHl0sPxB_7r+q`pHEt#y{6BbBpOTUx^EwHCq0b@I?LL$C(Adfz9XoAph_dN`P8U| z$}@9=I+PaE&iWk9HG?Bs&$&|iPD224C3=h>T&AS_#Y`W-{O@Ahn z(3>=^xKu5d8i;M$xNdq*HET`8&ax`KE;fWRHOtX?$s8W19|}N$YAqMs&@aW_U6T~T zV=govg8>9#P#JK@Dyto0)BsaakP$4n+4ZX-G+}cE^l&Z(A4+7S|Uuv{R76p^|bJWMTm8^{h8whCOftKa4hK*gI^j>Xz z2IiXU`C#iB2{WWFEoy!%l?o_R29ZX7kOVt_?HRN{<{DL#HO>J73=03(^dm9vF_lHe zTSa@jx6L;0?sX;#$hP^g|j@6rfZRjT!45zx-ILIPl<5baQw}+yzhp9F@jYq5(&XA1-EgMOman*Po*j zZS)O5*l`B#(o^I4vLIF<=VZ2_i)ud|$qvVVnO|>gUCn+A5##C3$`UMH@cK67W zHb*pz7PNJ$l}(dR73ZktZuM3Vy+)~%ZtAUS6sijj5nKS|n!Df!sb6fq1#HG$4)uCyeT9Ee4Eb(dro%;`|2PwqGI z#tWrjIvkKmrw?DDe?AHkCFo~xaej^`PoChj&pyNZ z_wVtiFTcXuckl4SkKg0(|LYZg{?~tvSFc`S{q$62Y+=xecA!ToV(rj8(x4L-6Qurd z)dMHijjHB9lq2b(%VF$=EbY>$mv~@=Fd#?-oop6fIydL`q$RPJ+$DjUKcaAs-Tl38 z4wK;S_7-`XF-vxZfe=g!OvF_4Red%a=K0PBRX7+OWkwY?cUd2o+mn1@#Op&o?l+# z{KX|MsF}2{uCDO?>+i9@((U3j?R7BZaSKLhW0OC+$HCMJ3#f_@wB(V1Mcq1NoL!vZ z^yCzh1D;=gfKNaDROy}!Y&V;R22bNQ}w5`O_Bcj=QOKS%LWPapTEUsbAo5jE_JYD+ZR}n zu5Wcyo@&8WNLlxMU@kCNcazu^3P?fBra}(}bR|iLJMVKH31pO5-P-B7<-^>nF7VA9k!InU zH!kN~DQ~{H^IS1D!gMSIDU7M8?_VNya!~#26o9cbPY(kq`6#%UT?t{NTogT{3N1h_ z9tBadzTK|r@SzD5v~2l&3=%;}S-L4ZNs3c6vG=+L23aL{?E3L_ZYGfAyrsy2*C%Ah3c>?i&zXmL7YSfp2e`@K8>$(9&W{Vzq)K4<+2#9&WmiOxB9XN z{rZgMUpu#ACOOL_U?Yb#9IqYzrcHd)Xm)7(ugEYvcDpaw%y-75+qh82b(;>pPg zLJZifH;baKN%*W-b}Xa47$r|?#i|eW zx4w8cpdg~~09am!N-APaR_^7Xk)uwCm~nb~ij$KQTwXlKH{X1Vx8MDMtE(&g%fJ5` zUw-umeEi`{eDd+fc>c-9Sglr=E%22dLG9K70NbRl3qWkLl+a{tCJU_z?|~N}64$`5 zLTot7UUtRW2mwp^xJWkb2G^r-;z?tsHV2Lu6JWnVQ%f^js>M1?#od`@<@`L?MV zbEUNZ-n~byk+E@&4a5uvDt30-JalAzxZ2} zBvt!=b900D@899(=2rbz9>~qy8c>60JkaOag`H_xz(zz|US8t-;yI>iMqG_}{^180 zHY<#4^=tN8|6W>DQO!Lei-Au*`y3y9@B#kxr$6ETerK>9-GuJ$@A2Jt-{JrHZ~qO? zo}J^roEp$ znEVz6^E6@Pb#35_6mXdljriw74i1bo&#h_DfGS+=Z}FSo{0CmVc!7^U{=lBW0!Y#U zPf?S(KHutl$S}FNHMCqMg89)+L!r)RMyQlNy~nbiH$idlBA#e(gGb9^DbPzir;IEu z*j5ADW0fT9ubUqo{PdE(=3C=V{h`~b7$Zoe7T^sdE;ZD#C)QOkLTQ`NzA?<%ejl}^ z)IS%9YAlG@F+pmit7vYgo*jp;vdL@~-Z9_M+L<1Xh9nu9?^3LpLM3*Sow4@4h)IJh z0Due+4=@jv@>q)HCA#MgP0Hg#C|95`t1Psq^i~RBaBrANqaJ}tls@dYK5x>n+=9hB zEut_Vg7UVfAY@`&ZaDdFGsk|v-%Owj= z(>2>bXvASoInsx5*4unx2@~$inPu z0p)%qu10aq7jVuyEFY#ck3qMBOm;!BXUY{NI}K5TFXMKDaU79X?T}7IbV3tD%NKxN z0v?RU0OmB|cG@XkIw!qUg_ZnbjbfRSsc!A(E2cBATPt83MwEe(a>8~s;^g#HGn=+s zrA5v2(lf)wG_qZ~xwYPY$cSjcFpEy)!P?Y0;@FGDk_9OXWS$m)j%;$QVbISYxC#9j zJ!~jP$>rgTW|xwtPX~QaV*p~T6rp0dJ26DW&ifRM_7=vKZdj6LSvliBT4Cl|YM*Fv zO}bb4p>JDG&(846U!LRo<175}4}ZYBckgg}dy7AQ^Bw;5-D^DikKf~qFTTLbPd~(F zv%y5k3Lxrmt&Q^NzOrU&ln&q8Qp%AWA8OtkLZ=5WRwQusEii?Jw?vz=w(Z~;fSeXv zk2;O#&wM@mX(tB z6YlRO91a466~w?LT!Ow2y2h@}kxz{JqJxPa#iqL?sD1~+Rhsu$ZjFDgIcFR2*hSjC zH!;NOEo0Fs?Dh3Ee)!=BM2c9iH`t!6ad~lxXV0GD;_?E2ML$u9#MOJedHV+UclX%s z_mCt;f_jLYJ(dCW@Af!uadv*La1)NWxV*&aiAjH1H=-PMXi-GKMw@Dg+zhHd8XI1f zf^oCPPk#1O++E$^>go!a3dV83$!d$g{o7yR{rk80&2N5#fBp5pA{`h>EyP_qCE135 z)&TS)8Ui77h-Q(DGN|EL6(M?m=9IJmVU=J9<{HCcwE==Zb5I}9zzi|pk4L425b6N) zFF_LeZIDXELNy=7qg*D36>wZ4rp1DD`@vDou5n^oGB3+fuG<3wZnxR*pKFl>;(#Fr zHMBjfK z(iK%esB|`Uu^xgbTAWiTnC%%z$PgO<6t-q5m%3EyrR(S$CmY^*PG|OL26iP9kc$Sc z*FkHSS?U9sIw9G>nVQ zV&sS<2_<+ytq$G`^w(gJoqhTpMa#eP<|yb)qYk=ViQ(rH4?#aK+b}U}&6B5MfU-er zI@?%FclKlmDCl<(tWU|g7&bjui-QlZqCeOngw_Rio)4Wwlp25t56lv6+lmnhlq!*J z;)jLA#RDICFV!1Po=nVyoIK&#C_U2wo9zbc^$MHy8Za~a_C)pdu4R=YDp<|45f7^q z%p%y^jIEpv`%PNXBHjE-5DqsLa@9n`in6I z$Ircfj-8EZr>A)O!E>B{_!4e{DtL%k(No?$hN-m|y1*_ExFF*JYt8s(FDDJU{2#X0KkHMN9eb=8{Twrx_g1g&0+}+>dZofx}5vQk5 z@n8PS|B1V64XFP5kAK1+fBy$uUR>alSFiB$<4>?&tw54-cXy4F1l!fx0&}HqRUOwq zOH$*$d*^IOFp0{jN+b{x5J&a$*-(nZfHcqcjyQOuNnSlrydv#`UW|wP9e({Ezs1GL zDL()Fb8JpeDjh6CeFLhHFane}=`1Mps4`NY>tG8Nd$s3zww#gBoe`zc0BaUf^AkJq z&8O!|KyxGgQ4`V);rg7QUh?GwA;}p%4!4hF^DRK2<_+z=O&kaFGnA?%P@^9q)X;9O92pU*O+c!-Yg7jp4v`?~exA_$Rf`Q(ZeAJ3 zU@O+%+F{Q}E3AlN;Yt9k(F&q-Mc=wm68{m zb?(#${gB6fapZ{X5RNuntii~({h+Lan$k58eLhz{BuGv;?Dm-M_d0dYxi(rd<@&u4 z0n+32spX`#@4JD5*c3=Ua7=l5A2J8bC^{&s0E<#3h=E%65&8jW_dL3{lCo4Upx7Ws z4ChV6Xq+OhjSZ;VTp=LZb}SU#5_|rXd%@V`W~$hkk*66EYEN+32bZO~#5dSI=DL3# zVa=6OB%4Q#Tg}vaqlzyo^sGpv%LGb{l2b?A96+MOoZxD}t_cfH&#jxLer{Y$9@u1h z*=plNVw*#y*yb*3qxA&}!zC`D*$A>j&?SliR=^&kvE0CNY0sIHqqQF>n9GEL1|Tq^ z!yF17Su$F%d<>xu#Io1wCUw;BUH^AgeX&9xJkeO(*FojM#C4&grdWgi`U#ffJcZoP zq$^VfLkvYrwl?y@P=OEn2ii>sH5ps*;Kn*TajF+=vdl&(GDNZ$m{N>xHWwU3aDQ`) z{eF*erk-)si`HWg}|ekH-^OKJ(! z-Gqocr~$=@5F)}bDn8Vj8exD!Ko|yy2!?UQ5Mz~X@er*+iWL^&hgl=!F@R{BC_?k) z6GG$;qfCgySfzs7?Fmj!o?v_S6o=g{Zg21K`kO!F=Jp0RSMTwU|L=drC!f8-=b!%s zXO|aP#R0RV2V|XNb96rm_Qr<;RsS2D=wg0@UOWF-!QS4d;{u+$DN`Rf*Zy8ZvWJeq z#EXk|K}n0Kl8{Efl9q#JllF$r%|_Pp_qByPG7}1sk`Ff)Nb8iZ?(lY6PA_B2G9%5p zrMkPnQ}5I~c_2G!% z%isPRZg2Os(0=GuqeTYGW03{N)A!z+(kNtE36x1{KE+X2yo7C70h&APX@AJq@6!m2 z)0FVT4{vIC?8W6%JbCg2FF*be7jweAn{j=8jknkDFikUZN}AP`3`$Ww!;H&|=Qufe zqF|6Q;-goe;K`FGx@oozlLyrzP?bnhFgYzVf}QvNyf6oUw5oSt97n`w5htf7$XUsd zQ=TzP!g{^JuYUDQ{OWIhiLZYD75?z`AMp?W{U1U9_>cJcU;i90UwnXX{`_Y!6VA^s zusvBXycxk11~}Npqv)CDgRRlMH5@S0T=U@$IU}rAD02plBXXW}voRmb) z$iirUyuQZuZ+?yE=a+c-;Y*yJJkiZ6qY|;)>$lj5*e}~RPh_&&EK=_qFJ{czi{Q^h zeSdPz)YE5$Ya_4-c_;VjHOg5wKk5QoM@#%}j{;vd`!5coj0)N{5@1bkq zQ9tv-KkMPVMHWOk_vGcA5aY0rW=nR8mU^7pbekej%eNj?;2 z&x<3I6ep=aFNzMRQkouYtNV?G2ba3+uNL_|T!v5^#|%AZ9hjm2zU5w)f?$IYn2cB~ zUrtRaD(!ZO@ndISAuW8a2w%co4K4)9ctSL#vffu$@u;9_Ewq`)7S z1cswP^X6?aDjT$rN7uk*hY$HZSLgxsX(?4LP1S@_<6Np&(KFdZeZxYc`9lUVVYWbQ z4EjEsS1?1=PljcXaN!2x=)d!-kO_PQgei5vBc*_&N>&Hb%tUeTl-VST<%Nb2bWmw^ zV)8n}NQ?+%;njo5hV`=zf}`jbl{wBRn4sBP8ePJ55LxMoS#zoMyRoe?2XGv~MbD1x zX91z2`auNFDorf0`9<}KYkjp2YYYT>-vZm`*IFb<%8|}sOoO)BU%=(}z7F;{@wi-_=O|%QgFAA~) zH-rHJ8on9*vLz)V$pU5&Z3W)a>WSFQa1C!6EhIODP}7fN7*Ik%T&?SbcD-KLMu>>8 z-mDcL2@PgdilIKZAq?6ebJL9ahN*_ondHEW%6_%1zeY4ag9f#ooNn>#$rC)kO!(-- z5Ao*h8@zw>4&Q(GJ^t{AKjGVNU*q%7KEp>Je~h!sXA4?fN=c_Y+)T>a1SF6(_kjJ1d;Mpxryj6{W- zfU7LQ_58ueT!8}$i%IQfgm6|j_QJsZw8Icr`1}_?!_R*CbG&);25(;ffUmy#1ODxQ z{5$sh9mX-@>H0)f1AX3$UC={}bwHA>S&%H4i9ksq2#(R8XU$PcDWQxON<9UW7&Y{N zP6^EZJVu2ZSusY@KIdV;A!YpAZ+?S+`^|6gzyGg)hYvse5bLO3s$_wQl4m`Wx@o;{ ztbCi%OU-6$&?FdF;Ha<+^@0~#Lb^Bvtk)w_n)Nf4wyi0m zwBp?P%6IpB#9@V!Evm$*gi2-8&qo_u{e4D`I+(WnH2sK0CC#N+fUE;oGv9wySwC}p)5NCOC|Uoe`-JKO!QbtzG>I+ZI8w?)}>nU>i$anPpI! z9gc`mNsK8QM55Hm2-{t$L`s$Wdjkg>Sh&ZK1Q;w-wmcGM?G!_=Ib1zMso7iVK!khQ ztZyF&piFfkBJ+d*Qvpw=u3ON&4}2yh1dfP7iIsB5bzz|QvQqyl434CNLv&Eh_FSkJpR?ARoK4miJjl80 zQBs1K=r8 z_rqe9>&fMrbgJkVj3z-B4P_0Q(j8*NSTrLhlCLaL4WB4o%DJfSpP_j3Kx&_d$?Aej zRD=-2h;gmbjnN8g-yDGh)|+*m1g*z4h^b}-1*oQf9LE}1%fWu17_8wd2s{|)K6ESD zHeG7cr)ESaR#_xln5lw@1*r(un>Aj&dW8=@c!>```551R`!&A)`fL2#zx@lo`or(> zlUF~%=bwL$;dHG~5IdN4g209?O@RHi>!{Oy#$h^ug{^Un7!87^|M=HmKus(;ZMS4r5DmEmT8ALnkdDmm=9@I2T*L8(y9q^iiKhlS1__ z+9QK`PY(05QSA9Hon%QG_oIG4inZ6`OEPe`yRZ3QjL>QLZ4(>}Yun|wJbn5UAAIlu zR;yLrT=ibEhnKGn#GKgYG9D);dM1_-*v*z+2n8E#4Z2;Plj89c%}9Ah4g)SPFY&?4 zm-y?y`31iF&p+eu|Nifh4hQ_pzy34+uTTDOg);cP;T!%E)%cH$%#7e$!h=q&iJ}gY z@{IL3VA>xL2E}CW_j@o$q&cCaj4?zUrkxHegch6n2SKQ2K;F-KUjF9G-{Jco-{A9C zpWwxd7l=}nhUP)S{;nRG)g7i0NZ)yH1hNNdixUl{QmQ>^C?($!v`lhzQ6Fn+f1f&MF_s|Zp0Ap|Hko5CSK{~0mKp&^> zY-TYTJ)2oSEe2-3;UI&8^b$t0&)v6d#8hJ#vYo;8EH1~=KB}nf{?F;uFIPQ;U}3AS zM!=F5OCc;8Bu2ZNrb)2d?W~@eY#Zf4!+Ame^@hXuQ^(I^mApChCMwyikZ$X;0eKY0 zvGmlqIZ1;_b%w{*Z&P8&R8T^yjd?cNx@5tM2hA3;0^bjG$tnS70|K}N(~IQ-+j10r zvOvjVIze~hf z0k9gyzZcO)Qi?&?I%QbyJZeOWkQb+2SLH-O(2#~ z=Oei^j_Zd9CJYp@Uazq}(Y%qc8Nnf7w&F9pM6om@b|VGp-xo_vDi*?)a;lozX+D@~ z-T@C{2vQ4cWI~~Wl&nxBZ4h;%q+6EFdadhwQIj4^!%qqwyG{!JC4@_Xw;70Se zsL#SDDY_yhjBx z3rZaa_uedn=?Z-N;f+Ys-amhSiL@SUA$a9~IE#LwcxXU)|kYn$fHEu;rYSN{;j~p@ZfN7d=`s@i_zI=}J ziwlgyu*m4)&JRdOxl=ybt$&{%7C1V*3ROb6n9z>{Hjy#Ph|TE<^1*V#a#4s55!UN9 z-n{(*Cnp>H;_v|UETxWitANPA>$$hJ>t9r#U1CpaL0An&4^&*WP zWv2OO^&lfnMrn-HV8kJ~q6zel>aIPra*d3L>wa7h=Nxyxk=cS7j9_i0 z?{EM1|HYsG`JbytsG0hw4CfMZ*0ahka`>`MU>^{Z;Nine232twFrChUz*t}bAM_sZ zBCpITDmaCT$0=uOWVr#ukg$qN^ivu7++1Jd^UpuW`T03c4v%rLzc0CBoXe&e9;3{! zoHx<$GVydYmgpg5M2;#|ZoG|LHU82I=ul353pP#lt|@HWBH305bay&k(BiBi63$5& zsVYN)f`Cl@VfPz1cO5Cfr9G?0a%LwaFTI1S(!u1+RaQ5mc&Qh<$eoExpfULFv|WBy zzE=k5nuf`IHTP{|s<$+wMq65*WaDGh0?r!FO`_es(m377mIlac?Ud_)(vgEpQJT}- zctj$XrihVCVD4xr(@5>>?`hk&+@PO%6mpt%TY{_`K(3)>CIy9hn@o1eh;YthSVydu z1L8V?iDbBz^s^IF@c}0ms$=3B;h^}m}8mg-P>^3-;?NLHd zHA2h;CIJMv0y>hRepp8FSLx)s^b0;` zk^doRlgd(KY1D(Gs){i9T4JLhQ;F#aWMH}^KqGWz_-A$^0O-6cIdn2$pi)wpY1EO)HozAz%l7szy!V*Tb|qhiWHW-0OLuGr zcJBi?#qz+!K}_R<{$5~lb0dL^%y3BpLH$BxL#6oi+C&&8l5CTqg?#QLC#I9B()Mgi zJV`;kNw+LHDNrCqnX=~b|Ata{vQo`#5(WrPH))!%d1!bTka8;ge-9~w%LJ0MBHUe- zB@tm_8yqiEH;OWWF-n;!y{K%t?4l9bNNI4GWW&@?RFm#Y-iK3dYK#$E^KDG0Q@G$2 zLGFu&-8@M?c=XdrnJ~)NQ952?bPbU%dqK+v(iJ%|GI?Z@%ky3{EV;57*bJPNGtQMM zpLu*T#DqPY&GGc<438f_!uk0*zWMT7oW6U9^Yb&jefzr52Fv#fQZy8rmeS6a%LP`e z72;~G1-QJvJG=Y%`Okiar%#{al!xn*>4|$_+PvZ;L8l`H&Z_KG> zl4)`RF}2oADZX=AmrGS;OET$9BUy_zOYQfxz}|LJYg^JX7#UG{>d#PQxtd3o!R0+^ z42~5bbB~9}2VbagHd$uoLRvFv8>fuNk00ad;}10JC?ci=9@a=nd{c|XqJUj)F0Pa^ zIpF&03fI>Q3`4|v5P-!ht;$A1Hot2Pc2yaovU}J8JfKKZQN(@vdb1XlT=U(Cs_eo@ zm^o(&vqlZzOnM!TC&ory)I6Y2@x(+Pz3&l1z`UQslgG}^4vvnG(RZC}pvj{n4^lZ^ zD+@FUY`eX%^Rv8{*^e>$IHV_0aH3gE|~8s zho%i*s1A>s0a!{x-)eL7Hhq$80~Lv32DH$J{ynI?v~H*s3={~wj-w(l=IYZX-3CZ8 zOQrFKQrv<*KgiU)2C;!)QAMX?9FCnh6)bw9jcg-*P-B!chaF+D65vluTVxVxHOL_o zuuf6#Dsmgc8M0t1ZNBS3i8PZ-hI53N>id(*oum_g2s%B~Kr|u1QN7!WkH`lZWT#ZU zgs9S1;UcKFPZbU}pL6Y9MGbk?5>Qo2<{@`b@#L_4#@5=Xu#+KE(0a?H=bmkgq(!+C zm`HgR2^-IJ5~?36V92&BHb}MxLN=3feuM%qa%Gbv&2Uw4SrcMWCW*P^by@vl4ViuR zgYWdYssj^&gN3r$%o+_sqfNfte;5q@!WdJ$RXei;d znf8)sD}JQLA8v{nBMTEmq7ALFGiOlnvI$O-;pR6sX9b_{WKj`}7BM2XF^?rbTF^7q ziGdNwZ1pys&CyRKq!nN(y!8k3-YN1{C*X=Z&bq3T33>#P*SwNj+%A_O=Om!>cA-Ut zn#H4#LfW(CqJ7?xP<&AAKHEQi{A1&O2$n6rWQSv4Ks4dK>L8@*N>T>3h?@1=4>YY=heei@72ZS)e@$o~<=i9hA zzrfl13%ox&!`0PQx#U9EVQXtDo5g95t*tFgCY=;SIbyL`;Pmtq@7|r_^!yC(-@nJ3 z)7NQ?vRBJHso}*AC zBO_12$nQidl|rG$6**tCar8<&EV37!{5sUcd7IMJteCMh$Wqa3zJ*(6J5b zY`_*ah1W)4)3@cwfl=u{E@wn!bQBOYON}x^21R0yCGtS$L`tE7ghYg+W*Wq!q`*>u+om*8bWYo;u=%^Ot0;h-Uz9+^EdIh;Ith>xCrh`p^HILeq!dIaAW z6Zlvj$pwoq^3ZOCzpvXdxsVf3^3BGDYjdeE;Lrm(BP5Y#xw%I_pTb3l>)RWwRx5N} zhvb}OFu9D2n`=DT-NT?olSv@UguanadCkmAF{1aAV&)cNBG8%XoDzH=Fs#;?&1Oh_ z0Ik>HxJHy1Fo*Fu(P#|?b#eL4VozjP#3^)jnnfp{KLQe z6Algz@Zkqf(Dl7EN_qjy^Pj8iva!^W=9eV}5Kt1YVH}1MtsoLF^#VB2D_C3J0x~uw zb|oM(SA4(2c#|R?78zydh6veiNqIwBO6C3!MLOJAw=ZEowECSH;;5uK?}rp zw(wt$()driqC%lAh*7>7c3FcjMYF({<&2EwL0+wIaej4ytdStB**ZiX7Rl-YA+joz z8d+v(q;=Ejit<9<_g+6A(Q>xDQ&hE(VW~8@QXi0RMK~}9SN*E(du-w9PzqvE+Mov1 z+G}n~p6uj(FbJBiH|s`6apsu}PLfCWnt>izKj$gS;=l!ID3KiomVj1rbs*^&cYsBe z;K-m7>>ZmSCXI$}Ug?KPsjYT}`(|4bTn2lGwQb-u=-5$xcI6&Z%BK#_Guil)RmQG) zocjHPlSq)k4TYM=s^o|%m3u^z2O_#|Qjz=Ffd__%uSziUcE(ga!`>GUT=8+c5b-{l6%v%(#wN ztZEKYOi88N*+M3T5vLSRT-*-~@8+<@lrJ?UCYBGd^Z4F*l`4-HWjb1{s z#vNV0&W#N8mWO1T@esWDC3NG_HWZSbQj0&Mz|?82ngPibJv{)-=UbT1xA5@cV_aTd z;`HJ@ZWp)ZQrzC2V>X*%)^`XYfU^|H?=P=#bA62=GUhuwn9Qem{P+=WZWeg^_ATDO zdyjwp;!Aw_uV3Q7{q1jY^xz>54-c?)u#1C(LmV9);^_Do)6m!V5q0Zg6D>2--}fI* zselj+lS-~_;!Q%PYi^sC>+5gZMmYIhgZk|3X0)}r<7P#kbQ&J~9r;#^05)wssFmfY zx?|(wvS*UZWZK^&XKCbZL`ak+bkL#k4$*jvX61h)u}i21^&v@+w$YWS3z%B&5Ezq! zL~Xohk?%~~MarcaR>M#-t4zLmbA64Qt83((vA9{_W^sc!L@aI>NNbUN3I#JE#*87_ z=UQz+8E|_3I1OTTL#hXUDQE$gJM@zY=G#*o9UbC>4<6&up1Cg{O|w3#IXoDIq69S|!;CL`Il+tW%Qj%eDzJnzc&13YdV(-C(gTNIU{( zWW}nt;ij#p41GIj)NQt7i3e~BErI-Exw$bMvTjZC$g`Gp08pS0b`GnR!}7*jD3;t? zv3T&D^9YcT>a5;jZX~Amev0o}h@>&+8i33V#V)6fAtj0$N$%9H_>3ViF(2YNfKL7_mme?Q)5@6wgakyte2N8BV95K|esj>xRX3C0D=- zwGaX(eu}OO=w?E<6EiM}{6)7Pb(&?2y}gaA({r$s!19YTk^99I z;rs-B-{aAvNBH^Ae~w@L;@{%o!$+!f=23=*OuP7gISe#A#f__lQ4>-!q+Idp_+qSf zZ7(BmjRtp{v0=i^bzoxCaO5(pZpe7KY#%nWU@RKIA>Zp$BEntI1)9mWk}5f8`0R>= zp*3n}Uz5%YwB;VjnfWB3k}V5BcaG|sTkC3#qH(W`eYG?X1P*&2X? znG2>h#weSrlrRht%VCAv+okvcRx7NR0!tW{HP>o+yA=E`$+o%cd(3Cs*x%pBY0;pSYxs^#lQdcFY#A@^;h`qKmHw@bGW>`!E8DQb)k?z z4bScf2%+`uRS8MZKbz7ZgsM&&Yst3@@H_xLKwZWV2c$H>Cx>0Xj}(P`Y8!`ieT{$q zhkwEASFaGr;iC_qVtZ=~%jL3eOs(h(L4Yq}9K~Y2#&3W3Pk8+9AwK!|6YOkl71)a5 zdF6BEDpuQ)>l@et6@n~A`AW`J4^%6awCOTg;ccj61)GSho6Bdmko;68ZPJ$5$a%9$ zzvLXzO#r(xe36EJoI6$;CB0Weq5=m1=#IZ?bNl2pS4+IG1Wpm0lH7-m%ErtEiA-=B z)|)K?B-Ze7q4B1TGm^E~rqOvTbX^&ONSJx`quAXmia!6NkrA6YS0nFI5?Yxr8?45c z23M)7vTo4#u-(FN@p6i6&lQO-rz)dn)ln7rLzdxbDxEr&4N1u!Q#`r+Z{1j1II5G^ zWHltL*J}jVS84DN5#tJ%m*;XW`yhiDZwT{@?0u0D#u)WIGfN$n!DuH1;8qY4t@5@!f?3@Q&tRN-luv+C&J%VJpViNTh^t45HRB1d(PIBA>HijH}s%EE-;k$Kdig9wMW6y#(ZHPqWMeA|f)^ zkl@khJ60*Ta}uY*HdxT%QA!Nwk~U0Pb;gd$bj>_2LR*r;y4%{ud^X2AF99FQ>JiD_ zbW{IIqZC5bk=jAESS+w!MZ^@r!yp?5C;0$80ISsir=4`ijkiOm0D(G8gItoyOa74W zr6cq%U~9gGt-T!tCBDcnEixX{WSU{md@P&|XfZz66J)wMte29Lq`4rQ#?i=mocm(* zyOgw8OJ()TDOU-dnpZ>8E0kO#cOZB*!kL~sDo`VN0)-BpSJ@o&btp~a1YH;4;3Xtd zJNte*L+Ao}GEBK--}L(aO5%0^CMv;mq?qt(G#_mnymspr2N3L{34&^Gu+FVC$Tbv2 z^GM00OA^*?0+2ScLpCXK95uIvHZC@}YQ*Q7WtG90%{y#w&#;qrkn;n{3%WeT`qdi8 z$459kJis~)I6XbX^B3Ra?CcD$-o3$#*RK%%g)p1VK||EbT^g6(_vms51VS8E_~Dyx z@$SV-y!hsi_@Dpdf5hWYpTYYM2~xm?0#dAU`S+W7 zF@WVU=rH7tNxHta>7Kk6yU_0QFjOxTl}r7;e}A7r+OGEU{Alxo=8~%0NcA}x;?%Mz zT0d56M9*W8NV}mDf1+1;i`y`-iWb}&xUu&_wkK<(;!Oz%mF8#XhZiZ$#7(f}cWX|J z76ex8mS8}=Ts?9vILb5c(RSK`k*|~e)oO*T-&>l!TmmIquSWa&6Xnr>Xfm0UfbNt8 z1Dp~gr$GwzD5>c&3Os>WHRyRgl8U*|i7&60fm#SMC4KtgGyG5g%YVdQ|6l(Z7Z(?B zOt`+j!Twt08QDCcwl&BlYqLzzjXGtxUdb8l@5F7-36m7ygAn#s zs}|ySM239zXr;Q|#~UVYOPx*^?3w0Ew)TO?c~hp~)0s0=#|u7N@6Y zc=q@SKK|qrkw|4mj%xbXP2wix%cE}2jpEi4uRIiak8#XLR%yIQI>({c^>axD{@?(_ zAr?swO4dv&zmGiUDBHfoET9)ikaP*_f<{=J-$o!|oO zd`qtSx7g+4MJX|uN`7OE35;eol4f2TrN%48x>0e~gtF6mkIEpijrSm*iwslvbSjA~ z4Xj7h-;tEk*5)#yAjmCM4%cf>`zW%i0)HM9v--z(El8PZ{(NI=t~4WMJ=#%EXcQ@FK~k zD?5Fz${i%DJT^adPT-VfDDP_ynuCXA5hwi`0&U}LczTC5N0mj^fO&GJK;m-J%2FX$ zm5b);*=*iXE~+K+9xk&+837z49OQ0>WR!-yxARaw0G&V?gd`?;IjM0I z22UQ{Y@$E2D`?`jxbvFtQB7c6^|>4QDBk;GAYUhu3=VlMp^2)QuOzSPT`-Jy&K0>D zQ<9%0tCxi9cEIVx-sohlVbSPTUC@gj`T^7+T|seWCV4E57ldHB2!piZ)t zx-gLmOn^%1P>j>I?j+}sdtbm4MtF1N3I$J^>YCX=uA*a02pv%|r;aX5qp0L@(N@=^ z9$uv@1E-pGat|;{Cqu+}%LnaU(u(($|Sc`1N+u?}>yOsQ({UG{^C}1>?E!sE^Y+@zY+>zVAf5FfjxvSSvG=whra7D+1bPX!9KQkckuBipJ4y! z0M0p_zdy&{{LSCs%WuBNWHP~%Cr|M3;X^!laE!-~A7f`{Tc721xo6DF7e(4JtZ;dGg)hJO3NK!~#LG9QGN^J6KmRvB$Nu&}B;O|lC0DsSjlC2Sjs8Bj6XT4|kImM0 z&RJfb6;PwbNjFLMym3k(+xAm#=ucd?zE(vJa()&mJU0~PA&x(b_IWjmoj1;rRB`Mss0Wlr8E-b!D1#=)O*RviGqg6N74qOW@}^pdQPNFCd*&Ej zv7+Gb|6Q256ug@O=@k`UqaTVYWJ3-p-fv$w134EsLV10;5{a!28JXfY?uz#HNQn`A zFVB;0qHR#+q;XzH2`at3SmKK>zQEUCJ;!7+K_anal!0+hBM3*1QR_CK4&?cc_pJSA zb`NB(8`VK&XvvFxp=^-MU&pSzkD@g44GpbkYuVT9^?_dx%MyoD&gjeIcF@Ddbh|Dbl+3SE6UyT1JLfYn-p8 z=3fzyAySHW79PGB zR&$h%(emo5q#qBqMao&WD>;ML`f#S9U}GIQIBftzPUw6v)h!bHH^yLe~rJBr|;1iF{5!7|u`SgJGC( z-^tgRb>#yPx=;_0P99WrP^lf2W~uqcl8HpV;5Azvsv}<#qDf7Va#8BTAAGrJ{6qsP zd8mgZAbuL=Cf&YXK3oD~$K7QYbvNF~+3S=b8Cgj^ea->Y z*KCH&mZgwIR!bQ9D%!)M&10Ze&em+}Y*k$@xJ-rMrV(=EjE#*=R4G0hZ%iQ&sUOZa z{x&n_ZhC3%YZUKmBrA2Tl?74x9YOxiMz0XfkYP+Rd434NSCSkxG6vSL$)u7iqB<$B z6fujK5sL>l=PQ8|IwvHZbjHY_mWdK_k$FnCFb%hmr59 zG#XkEI_D5VS3XZM4G8e?>gtKMIaE())UfZa6PN=U3L`n)k|>?E#c`+R_sK3JVkqha z`!h}~Mmn%$44lvfp+;tnE3wT)c^)%H&4V-YVblf`v4E#)!%CweqlLN3*(Te&j=W?w zxm23*wjl0U$a);A9K1q2a*4x1s(0HcXkKjxEWu!sQRx8oGI*h8s3!yHT>OFKW?Amp zz>-l)w}oRn>Daby+qTi^*tTukwr$($*tXNj zsqY`-T<*H48l!gA+V5Ix&S%mk4J0y4`*%uiDA(AjtiE!c4F*QNuIs>?38+{y1|k@> zCsI~=h*pRiBMp#@|(N-?87AvP435j$y9oTYVvj63=o?T zP%%`WXJI}+T|YOR{EoHy)31)K0$SlTA$O2H8CXU;Y>l+Gf?JlDvx$I33aa-zDc+M9 zsK3c#j@3gycX%gyWB52^3Lt!=%~YGkl47e9LDO~8-!{f1b`Qr)zB3(e$5hFgABGq@ z<8j9mtIw2?`uX8a3+%o1y1KgZ=T1oPfY01MIqI}Y<+P|Dz-(4xcA~m0w%3Gjl+qp> z>@=t&Ta)6pZMb#sest>VE5-)R{6{QjRoG_%P=}a`DXfkR?z0xNR~e z+7Lo6?ZMTTt~~$Hw-h`u%fDjW-4tF+(B}pgDvQ!vBPwsBdOdh19+7a9$5|~Eq_CLS z?o9|#TBt~y(&Ugm?sqBfRK=Gf+O%|=uJ$9pTv298GnT~(m0?ZV(T((;0%Hm7Edm-d zE_DtW77vu1ffiEM6BYO?DA(DGad^*73>Jn21@IWZh4uY-UE$;J0rU@DpOEfvcSHd5 z-8bKV&O6<1ANWb&a9ULBG-Tm2!dO~(EZjz!JN)pfU%j6nG~FNj;P|}m{uTs&;R2sc zeqmt>_(on{I*3KOyo}dk^vaycqrZy;Dt1V2FRcJ+?JG0p5(Q}bE{CUC*Vz|6PSk#J zj@WXbW?ncrbz&jboErDFT(IB0IrFLhsuFIb=p&}K2zEiktizc|-W%wdc0;CtJ8BBZ z9B7ONFsdH#HmJfg$pTojyc`k^FW_{rGYcqoYV`Z_tFSS-QZ%)MN6bTSo5LH}@wL!o zE%|aqSlUGDxuB;F0Vf@8n%mvpq_^^hr_i}5y$*hVp3XSZJa0)&B z#3_n2a22E0G$H7=J;1`XQqO`{x*;5*LfcL4H*U{<-k2TEp7I!@+Foi8Q6iF`;WIkb z@FeIwf53vim5+4a3RX)2?T-ym6_MH+k4auU%bp=s6-t-QV8i8`V$X`<{~ZH=iX6$OGNYDk zVgGkr#9=2kV2`(xm$0l@l_O*|UQ#jP@*lZRK&2C5Ju@d^muhkF$Ym-EHwvf3O(oc_ z*FIdbwiL@SE|*{jun;a{BULOyaX?LnHB`!KMp9*qsHe7plTVJ?fkx)hs#SIg^7QZA zEpw4EsrhXtG1+Arjf)7|mm&6kn_G4$WIXld?96<0vDXq&;y$Y@Vq3d%4MW;2MzI+U&UK1fwCzq9=xX-V#o`yR0Io2zM3$<;4PPkXykzqn$y zjb9P#Pz=@N!s_wE2d+w_uGz=04G`26;?Y<{;ic-`k`3bmSD*$*R8(>5t+85CzQw3Y z9*j0b``sv=Xr+S7zXXy@37+qEFhCu4U#Yp^gh`%=vrIwA{}n^{4V;_D!x;Z<6>Y73 zI!f@SGyLq;Kn&q6ZhWwXJs^)x=~gyB+P_@pAcJtM)ztA}sAR47bR0*h5pT+?$be90 zdrUhGr?H$vX4|EZ;cl<`nFhhsiFSN$#1tAK%33Kg z)UkEEZ5|hXoh8Gf6u);>#osAgU4d&#H>vAL*pAzM2-{S?)G5UKyAsIsWmUdS~0DC0v(0(jQ z<47Aviy;eR7-}(S^(+y&llqr-jk;z}*Z({R1ikO*w{x@coW}fl`vZrlSGNRv3qxa^ zyxfBWsbJg+JO%om>!K+sN5e%xBM+ZAYV*8kp0l+ogAc9|OG{4P&np@LxFXx^?9QQU zL#k%TCENGb?iYjtzjrVIG=|pI)di&&28dPvS_8cL^M?2nZt(9yjHu$p29!tR24+*GSMUaRMO-&?2 zSw@t>OXcu;e_Uu#R%zA=4YZ#Tz|yC0PcFGfSk#}akYZVzUyToK|(ovu%V@nG`@S_yNqv4)+?0`623 zIBT&IGrVhjea~l8H?XVkxlAln1NRLYbDUn;c{=>bacwGr+7Z}dW>=R<*aczWk(*Nx zQugy8Fyi=R!OHlB=C=y~&jlV+`9S)z3lo++*A2tgnH+w!+Tg#A?@dLcp^B;;)khO6 zf5;dyTS7HWm}a%HY2YK%0GP&;6ywwxtSVWiX5dZzebSoOBf`tJ*y>&`7LMy#71EPIZQm!2yH>%v782Cn#Wt^h@_7h_4NrH0_E>JA_Tb{ zf1bRh7-2!H)!KOhE;3VPqWPlJ*T?fXWp2@B$>Z7z9d1VLtPay(Wg*Mrs_=B zfWp$+gJ2`3d3@R3Q}pu2j9C_h0O>Yd;-yyc^r}B~CRp+`9@>YZAbH2jc^hm8(!+*z zj@lWIGM!Z+x4k#-;*tg@DYjdmwonKWNde8}*D4{=5U_e5GPwKhcEVtaf1NlA*mf$o z-gD|*KLpLSS|vr&Ov6znS0WQp9BPD2YWG>F3KNs$k?zn?@WUG=5=6Aq!JRl zFbSw$(|dc@^_|U;)f;@yiDX=?w}&Z#y)eMY9dHbr%jFxI`@X_h|M>RuejQoUtb=^& zU7ATxi->-N`ry;3`o;f!rjnhV{h!N)Q$PTc}kBe{$A^C5bnH z!MXvUqd0eldC=dZ^i+XkN}Z~C?i@dAw~dMvEyFDB!2IBd%IL~XE1l0*rP!2(2bNq} zs<1&rOXBrJESE+X_w=L=Upv4t6hHfoOI(piG}{9GXJJ(gqT*J72iP)M{O=J4_HlNsjR;vh6D4@H*%1bs$qTsAp@5!gFA2LId%e7$n=a*YN-A_8>pVh_vbBbAD|(WHqH z)68Zkqz^p*JZ40UP8l(R+T{$0EKteQZLat3?uc^vKA|pMhCiEFzV3zqfTOrwz=q;G z{Ma$ZuJ;XL*XNn%vN3yakh7K=LhL7ZzaqN)$Gn}ay&hUk!1nYp;`H8qNl+qqwf+N2^p8Hxsu^cj-t_dPIltI z%LeM~$C-$?6Z{r)>UKR#ufBJ1lNBQh_Yzl9S>2{G?-D2^%*xH04)q>8#!GxH+fHf} z;%!t?#+2*j%B6AGtp%YJ*l<^8(=vySq+8>=zl|v^mIqX!jIv`^+^f2G@1B3#no9G+ zF7hgK zQ7tT3Hq1VBSR6G18>a#*(PY_$`CR8uS3C)TA>OjA>i1aFX2ixG`NGMES{8$?KHRud zpzx@fMZ`r(1TmEj(S#vn7pvbx?TwRNaeBS$s^DYQPzeZS+d#42L>WG zTlnC*o^*Z`W}*qzDt3)(4@AUwz>0ERWGysy)u1b10z280X}in@g-p0}t_H3mMM2ti zLt#CW5^!EUw^Em7FD{oIQqE}qcp!{}E4SB_fX5XmDJ1P2B$0JJPT%rT+np$Y){24j*w3U`KV>U;NuFLFeMJi(W9WT zFn{WSd>609AkF4*FTniZA0I7)9hsH{gNAAf(-Qd&uXBNILQQ2f^{MTz(?kQW)mOlQ zUsm<`fUFo@$s(1RA=iNm1O|x(#IXS?A8CAR-8JIkn64Q(p-Vqddl=D8b8A9#k3ufu zV|VlbPZn3g=fB&-Cn7DlhKzvlYTxV^ek~Q&1Xvj7^@WjyRaL>#+72(-dwWL@6`|fC z-Ose`f&@({peQ?@k*jRan_k^a-<>U>PM5NHza&B1*4o*-xCAXNsnDibRVxo8*6AOP zTyjADNUm>hkL(wrejQN=3``V-{dakD!%m*0FP9+PE~V5@zL?C+iD>3EVExb>$k6?W z-GT#e)qaB=IFpA9d1=+{^^DN>GeltT;Tk()3_J$? zSVQOiv;fe>Gx!F?@%sY0Hs!ChD$?=CY76Z9bZSX`*g8#6G5Ex!M5HHU+(-^)3yMil zc;9HM)Kir}Lg=P*Gy>lTmKQmRpk*ITAw`!VBFr zRw?+2B2MFpa~|^(U4RLkafWJ);^hdOQn{;uy)_S0P%tt+eQ?}26f-gAQ$_=mg2}hE zkRji*F^~ce`si@v8;59F>ec=sHKtYL_TBSfAV#nsab0o=!K3SeWT`Gz$P5dUK_3-SQPV@@w#Ag<{xneX-TLtoc|<^Tj0$%JzmU!$aB z?zm}^5Rqd25lsVcHQV{ho_E8`A6`jrM|!G6)TDG|B5x->6_o9mbW|%D%AQw(HExf3 zjiVxauHj3K>Gs9X=VPI=8PHjssC8n4vzn>eP7RzTqdt_MwH#jpjh-f8epic1ojT2yYP zaHOD6R3NF;NH+5U(*DyRO!mIiUCu*59byQg5aXcS{W(#Lf%yjGdxUa*w&LxeDRpj9 z?NW4+BAm4-@EuArXO8SZc70!;#@dR%sq8af_T!l_B*wB;v5K2AbTYD;w1afVo6uhf z@502-=6FJe4$w#^I?_7ibBa^}267o}Id(1zHpVyx!cEq5L!q(l8K^XyY6C{su-s9F}Q$y#ta63tQjW7_#Q3+iEw}C&{W$ zPb;^yzJ=9omfG+s?!6b6BtuMSA=)Vxad@|IjcAoaMUqBxW-B=1fi(C-smi7?zS7M= zmmN`ZA5Ob;C^WOHBv<;%u6K0gRFzDSP!31JWw>hDb?!$ufmc}*Hfgc=yC|*7cc)Mz zvU-EtQKT|fk#6tq90W|WZ0BbGW9VK^vF+pm3=M8&08FkK zl4x>6OHWK3{~M6sLz&-yXI4Yz3`0!P_zoY4MCBPELys-ApCLu|1SQa6nObpZv^suy z=$4Yjb?lg?+u;0U7Lw88%x8olMnmRvz~kdTO7?%gbWDyaaDdsop*yC%Lu>Er3HNqx z=kOfW(tofy?bDch$eDZO#X9u*n(oS0hCUz2>4SMcHWS6Jw`y7)Y7#Jd2AafT>P$!` zDG9b^r*RW|iO!~Y=miHM#whxJeuf9=vqPV;9k?+pceP2w&_qiI!GvDSsV@5dU0CV% z_VovajdAjGi?79$=w>K-57%^XSH6lU}h+Y5x6Jq-FIf5OAK_uh*_2$h^?AzC?DNO zf@~2aj}wh<-Zcb5WZPQdZ4!UiVpL?u&D^SU+;vWzvc8b&h?wcnmc>T$?pVb9K_3h! z)=2@rxSU48zl;!92djvAL-0NrJ8P=R&Zu~)G3Ae*nddHL{mBZ{(fHdVfeV`#nklU)o%Qm%ft?^ti2q-L+({BCOY z@)DhTfd!Jlr6^!0R2eCnp zz$H^;hMITm7}1Ok6S_qIo~+p|b|l1~9L7e2MqC0F>!`=1AzQhyhbv=P;)F2KoW>s= z=|dp7mJH1A3)pHcaIMcyC;Ix%HBO}Sc9H6TaDB!hggin6f zBT3B#pFV2==y9oy`ho17n)+9sf64E5r%tqdoE$jzk5qBAd%q(1eO*{7t`WWYU+381 z5)k~?{!&m-aPt1eFg8?tH$O8IDYOR%t^1pj8{X^bWZb#I`3p)2x>OwrRPuSl1N1g) zYQ((Libd}P{zpNFcfFbBa(Hg=^r{J2W$@qxLZi%rlaFWQ{8HsVXbwjk4HJ18=bwJl z$Wx|Efc(wIh&|5)AQP47+DZppV1u0KI0e7U7T5a*GM*zxITP(XdYa8Z7m0UXz(Ta) z0j-CQZjH8DJ3~BsB7{>BBOEMf)uPne+1k6d^dBGps-0s9(RcGAfm+eAj7<&7wv>0c z?|tRu-W)5Eh`YZu_yGv)#_sfI9{~7pJ}WZf0vm5-?I{m}Upw(ttfQea!X!3|y*Z|I z8}ElbW2U`iyCf_hy)-|w?BD2ZdqSFz*hbj(ZtWB(17kvmD5Am*y7c#7ue%2fKMxG| zRR%vOc|I>#Cy-qLUz_EQGF>p2rAcmm^d&Q&9ke>`I%`pSmc{m1Ni1^5*|0pUYei8ixZLKx5fUY<1Vq4Ye~U`eCfvX zZCh`0X9Odb9#1$5Z4(@2m{B>Gu$)OI9#Mhvt@xru%Bal;-tl)*fY$UPW3yX@APXSn ztbYfCC#(s>0LNv#J2_K2jD(A+5I#xslH$*-8^yN`=noomMb*e}toC{wn-BJaU-DsS zYLU80eWdK7QF`0Oqlx z2g4?D&1=_ovcwEi@mSzmP-VjhE zrrjFl=^ktDre+DHn_fz4N|-7kxKsUODjHe8YeCP|(Rp5OrP-CA!z*qlKTB6$IZbdDG}nu$~k~% z3!j9^%=TzLNruc7lD_+mXsV?pKAc`J4=M}=h>i|dG9{noI%+{9ztm-WW&YPTjYh)1 zkPc+VTv8n|9jQq>*&xWBV3$=4q}kc!bVl)uU@HU~m+MK0y!cK?{rtkxSiMu??(7qx zX`}TkH^fr3(qBgx*4YH4K>>$YF-O!1=N_@$M?$+9~NT z<*69yuU`zgm)Q#w0V90j`ncqT5kE13VQzdMwz1dSeAA~+R|M9FcXvohQW~U&R7|#ZBP91%8!WW8w)S2< zfOiZs!v*9_Hmnj8dL?A)8qn3ZzvDCX`O(M65fc2q=$3qYL9};w4u+KYuagbQ8aH23 zpH-A)wwQ>dnrUb$xbh|anYaw5jH_RIMgIE`dOOCEq`4)$lZHjQh&AfGI%E+xAO?_z z4H5KxBFy#u!?)Y*9hnJXMY5zToh?_9^kp4?AI+{ql8sfem4q6itbXDoBpc==kx}+c~ zjbpL7m@RcmXSjVeyC@~}ON!CJnVXOqtYMVxjZ_)!g8OQ^t^Rcn3UERLlL(V=e|keM zUCLnHlLI&&Usmrq3@S-sZUIfEdv6=x(IfJXt}k6DnOc|1>#gm5i1%7 zD<|S6pQcdx`*+;joI8sc6-h1D*stu?i}!1fsB}xE+v^eA?*R}O@IYASkdX0P1UX4o zOC~o$nr4tPnvEHwA+lM_}FC0jo++f>5+%>_zY-#@^KEqm`i2=(gb#&{eg;ZCZUL6&59+MROh3XnV7+4aql>D5~!JSlN*_`^j=xvMOdJ@TwCv_CeAx=TZho393run42NX=&ieeO*1<9=& zq*LY1J6!CUscBs45*9)U+Z5f0&6D(D8bGrBQMSy?%Hp%KWw7E|K{mLqA{SOiw}kvO zQ@$$vj}i%A_k^Cyl&1c!uEPVPXHiHjGf533T|XZ&jTA!XwklQjyHJygzrRP;HQ(wk zix4~F@`<=dpa`Z%Mx-<10ZS~zhT#_JMA8Jh>Fgrub_t;KKMJI+W29LW%EquWP7rOw z7bxp6DZYoBVHu_FS=FX4DR+s8hdkb>)}i+zXkv%cg3i!7MvC|~o8V4*Y%0xGTd1bT zg%}vdU`Umk$5m-uh)D7bRb>29f{q>n2=xVnp3^3vz-mo5u($@JxnVGG|h3KFO z)N-RGnKX0WDFXe)`|dNDS?qvcok?y{a{~w#-;2gP9=sDnwNC%NGS8uT#{V?KL?u+o zFUjO*|5fi=CklmKoyqG=jU(e~R@}Z|ZT_;Q}*|k-TpHFPC2#>f`O7{fiV<74FxS^YmnepF%C2#tO zcvVhkzHj%rrytkz9s}Uq!-N>n*;>n-F3YzTi)7E}T)5kGcEpC<1NqvLE5i)ce!%&7=;GGqt|Tlk~h7mbHT?_T_@y_h*wKp7^#2Jza$Z3^D) zt|;QOPe2EBW#w)_W>jjyK_$t4m4M%VyK5i~lnp>jT8f-dE&XQSfQ4(KD!o3whSB(j zh{{TN^YIpR6^`ZNaXNrxDwSU_~`uzM{-_A1O&l*so4;XZHpiPshwp9lRvj&gf zy%My+%W#$pWMiz2mtBDMD9W#wIP4r;TtY6l$Y$y32X=kR7-8;3@dVt%#{f}Ldz#qg zJ^%2W^|L4`@?+8~!Q_{b{vxGfM`W=tTORT;KAoQJIlQo`!dmD$YwXH+^%jR?^kvT> zR2{?Y^7_T@{=0E=fB#CEpS*h9R3I zK?`db*1@qVUlc`;=x{H+h1+vXiV|Td&34&p*vV)9HQBMmi)=71klwIlR zwm2_k)QCSTKyO4NPA*Ta$R?L!wZ2Ie9nAc%F=JfJUes1ddIZa)s37Zw6n!e`5)c!^ zC2;b{$sboT`3DA;(*q;y3`wOP{%ZH%kGt*!&Zwx;^x@q~!fj4M%tW0NVA(94=Ws%g z>?bT#aGnNE@qrgNJ`BxWvdr*TUHCq0pz?tTV!0TR8j~P*k`x^Qri=c)4B*lp*Uy7( zUqDHuND1-)SyZ_eW{vKQZ0xLhE}@=DD`WxpvEuJb)@dk*%%;c${mB2oK~xg#dtfW#Z5hKez=BpPMXh{A+FV z4HaOmv9+}oJhFFk3dzc%aVN01uMbh+|AuyTb8B#_4?84Dn4URdan8YLhlEI>xP!`) z4`AHRG_rC-^g=`!7(xZqG1{~?&7H|+&lc^JnLkj!fDUl??}NfHLxBNypa1fNcY1wd zz)hPRUtZt=P3_1n0N*8K6#4EQ+f#%Gs0#agZ%~K?{KGr@0fJC^oO&d!>GrA3E@n`-el z)HFs~y=*~Cp$b^Ds(uniitepz#827`ZP~jDN)Msn51)nx+%qCbY|Hu}+jLlP<&s=} z8drA7@vB+D1^^+>-nky~7PM5KY-D!---g$-o_M=q^R#^K7Cn@FS6)6W-bW81@JuCI z{gg~`5AaYuKGrZiz6lnC8ba!A{uWu~Kn%YH7FeAH_qoU7D<0sc08nfp&)mkHE#Rhu zrp#4umObgpcL44NivA}_27T*x91}W25q#hJprFenL8e!<_Jx`>Oczn{@_2^o&Xpzv z1Cf`gwAsU!N*TN_2#Ap)qNY7Q6GFI<@7l@-x&Y!OZPvoK%3-i`EPpi&RC9$#}K0FFd~5V8J}OS>O#fb?~gxOA?EfP06c^URXNE zc}=bKgDUydhxW6N8wKni)G&lpi>X3*TA&r|gT{9fszJR8J16C=l1^m%fcWTHX?))C z6E&JAo(K7&Ax{etj(4xw&(fR3lgZNyK1BHv+iTZNp<+J|IPm%pVva4!RYlb@_Cl91z2keEg@0=9u8c|UR2Y8=)EvbXFO2%&)njNgip`B!Rm zqz_tv0Jx@W?YO_CkQ?>~IP_dJkx;)rX~B&XssaW zUv7PPGBPVK2c)g<&liCXj86$2_-9KaCRsb0$bzFVA8Fo@ehwDErxoIYFXq$G4z*-< zS6zB%bThNKzPJJ=$a>hsR;J=3$Siv?WdbxA+_m!q?n!SqTN0=DGwoyeViAisY!y_z(q8XtMDbbhqG^7eN+ zRc83=rP#$9#gq#rH?Ro>VQ@twazs%Ic{PJf#MDVG?nDfGND)xL>~lfDJi=)c8_w1X zzX~zULADBv;Soq>K*Y5EBpwhpLaJ+MsI6Ul*=_H`dDRgi{`}OnyzrM%Nh<=2vQ=H= zdfo6_z5U$&K#*WWkxZ!k9=1&)aQ>rhYUvgs4I1b z7wpFOW2>7r=iurZc^GE5XZ3nxWasMNr2q&kV31F0)IxoDn5ygl#CN;d0SD@S`4E|| zyFQrB>2klho-?{NG@wj}sI@_sjcYkK{a2rbR8H6{^;a``-y8%rYWto4WjldT9US+L zXz%Mm8p(PPFh!$JqdDo*2@1LlOTV6VaBzrNS|ccQ<175F@4ai{;u?880e$0lPv*Q} z!k%+*whGVtdDY~;wUrBSo8X&&@&Gjb;Y+Der>2i&qmV9!8X`=B^VTf4CJ3c;sL-zK zZLy73g)H6ja*>*JsqNf-!$o0;_ak#Z$g{b;6E}QK8vq*t0!N-N_8jjc+|5o;2w-bo zXeS=w4aNAIG-HQFO}6~EcK)%jr2EVfsPLU813GTDXUnK#$MEq33;??cgmHSRS*zY5 z)dI|n)!L|VtZVI2XiHka+m2E_GvhS{0h9X5-eMb%EMlBxMHfVgx^>qa=+3~oHkde4 z`HIr}XCYqfkh9s-IL8!ItH8X`Db<qUJPWMgQs`omcsUbUx1)xfyfVg|Ef=^7}sS?Q(csxB7@uVcE~S_8i||CZRU z^KT1O*;LeEq*E4mQ;@+?<#~^ROPvk$c-S+_g&S&ncv4xwu z99)RH35qeBP|IpVhorPU2}XjcJ51$Gl#n2TtCAUGI2?13kgU^VbIdv2-|%&61qBg7 zmiSb5kM)a9iz?deyJ)w`%!kHsRccSM`Otn59lVdvO1 zFl9MMTQ9-yR403mDe&6!DQ3E*a0xe?houw^Nijd(I5O=)*Is@|>%rH~p&ZDq* z<&+Iky*yKR7g8>sY*U?xQkiv_KO*`#KXAJE4_4q<0hzq}EXM01t1wfgM|#SMeKHSj z>Xd^k9+;>su*@x*qd~k((7$nc*2Elam-AMXk7uKea+3P7M9qZ{aB&|t7qAtc^#_2| zS;gtNz*bC4pIqQ)X_1xBf-&(;3nwy_XSRr4URAO@D!6E)=hIt8AK)6QM#~~+A_x`v zPsQ?Z)?Jvfa$8Z@3WemZ{E$1XA7{9oSn4e}h(nB6@TRbxtz>iq)jBINYgLc+nJV_} zU2pkh_uN5FO?Shs%ouYa5khNDKl$@5Bdv=5G*mO@jQ_@`bR-Z$4j<$UB1$i{T$E>_ zJJd%OrTW#MC`OP$-PF_+Rq9|LgO`pcN*oVG?c_#@SKBn=5jjH)m0(=D=Rh=tqnKcb zAA#c>l|slHXdQ*Ktg2h=9SNX3IHV|N`Xd?zouuWsJ69V2MhmpS9B2{~EM-Nv(px1x z_jO64k|Y-ig@X;72+Ryk(Bm<30v?kj!(fYr^hpJn(ck!33sVY{E#+!0A6QyLLjwvI zMYS7;MAUYhqTgzqJWwAmWs=I!IAhcj_l&Mf@hEjb*5$FD=T}O)aVU7H^pG+z60q!&$%63SU_g1Kw>SC{nMZe zd8ht$NeSup@8>cb_8)JL#nTXsSn;JNEkhl%qpycY#PKmm8DRCn$Da@}39hoJu9vI+ z+$%xw{*O&EU9K!$Z+B?+2I1uMGkvzSy|pW@r-yIa&HVQkMArsim($S>G%1^QHgm4C$8A!5Wa;u#z=Ub_)s@E@MZ!lm_mJcFp!+X~5QZlr%B z)UR99THbKML&9vh44zEJFDguhdlTky zqmAMb&RL}?2-?_(?^UD|Pd)7|TOd9*_dU2{mWJ6lDlbN}HP+SU-#0Rqe@jA_6M#dY zwh}Z*3Ljm!oj{S^a1AO?VlrWH8y-HgRI9SROxPLTkx0Jtem)KM-rnTAw+!AGbN#+O zG7hl6F#In2hVxF=#(ckvyxB(?MfFU$Al3Z3W{M4yMseEE$$>3FCoE7&>1cgQ5z5A2 z4!EH&I`PRppZHFH=rm}a_&D~Xj!~FItI^YVH+1Qb4^Bb}X?a-Xg8l{J@&0^0u5V;K z@F(iVe{GZ+Kd5BIP;Lprc8cSO>{=j&yOfad_!Zb!s)rlog#tJKS`q~R=fNnJSv z6(LJ2U(%?5Ibr2TrN%?+NlzB{^t?)^B{xI4LLiq|yRh@fXWOJ=l0PsR#{(}9Lii>C}Nkn3IbFxk2k zdc+_WzB+Ch6z^4akf8Caz3dN8rg*JBW)cZwThIn)oX-==Qgz;pIYe6i&|1T`n{lt4 zA>rjUhSF@oRjE&fP}ZmJl z;p7rBDB#{YjCz;UZa&#(lHc%5JCNQF?<~~vp5}>*X);gFk7JF}j}!_#zFeeJw|{-Y z-2%ePY(EJEE(T|_>VxSIoE&-zb}7s!nU2X#WUZ4%k#5CQd&sSkYjq&CEDJP4Ngv;2 zJ}Ap%R-FLEWhyFDxjzARm@VVAgvW246Wuyqzphs8 zd&;8>#->%ZkKIaUhfUEM7G12Faa8dx;-iT@G^30@KShQNo)LC9q#Nbj$ZAh8y$ru8 z@8S>&@s1v^i)jZn0p8t6A3a%Xj7{2X2zsPU4yTXn~xG^^M){L%u*2`c1YK~jo-rky6 z@Jp~{?N4AW?E|3JwA$UTJ+~vUx4wukudm2uR9g>-@uE#w)MMksbuz7`aa+g>7yYZ} z_!DBbO4UU@w+nP@|5XqGQ+IZ5?*8nX1W*fg>1ykBY4_KzQqjc-ajV-Yp^v8nDDaZR z8+#K02I>j;CGSOBMcd}_y{NPbTS+Y# znEIMa^{sYY!U|k@%)_wjh)_FbPN40_+>T_4%n%-?4}e1f%zjA_S)U9C-)lW$5GS$?Zn0oc-7o~akuQ*1y zjJ<~zTmsg)$e*!Uz6;8swlS?X4yQNpe|wxTmRctOW9o{c>Y6GOkhfWC_CfRtl$o?p zOGe~G9`0dgzU4WU^UM)7287j%^@1798J7r9x28sMW#1dz#rIXuW#a&TTEKijIEvP# zWI5DQ2SRCkUbMI-luhrfqaayII$VTMvn*kRlmtFXMkK4l5hwLDcZe?n*mOnqa=Szp z;h%oxJ8?l_?7&_p@N`QW7CTg@ZMU~?spaGA9BR*AL#%b^yo9U$zl&3Yf%~j6#(>>d z;fluA*(ec&xfv$V2Q0VVIqju(vM)Ar0mh}u7LRI)=c3cJhtobA$Ms?1b6oVRqEjuu*=mPnLtTEz4+wzlLPq6+i#RId_;mK=F9d1<8qdD~ zW87sOC1X7p`)RgiW-xQ(0#K|;xv;7yUr&b1k9~|>!w%g8Ru|l<1;)Dz6qUaxd+k~G zdzzNFF@I;0`hkeLQ%08xZ@H^!^Bi&`M;HDi!)wV-9K)5BS~{BCVyE_2uU!h^Rk|4Q zrOXOVE9YS|r;l?rUGQ;HZBJ0+M!H>y0L2XLDDQ}abkG+_s`#l+5~K3-E@ed4G%@uee`4Wr6B&HZ|**K=57y84zq)P@LDjYWaj*BT8%?U9Z9(g zujDXV)Ln6DJc?o_%8CNP|BsE1d}$&0fTKP}VSIJYG^%uRc&0iJIAzYTUOb%E0E!<0 zW{gN%AE7roJvwrT2_}p#gK$-QVKz9XLT#xzI=!Z&ykK}_-gD;0^zs?S!omVz#MXVP zPKDZOl1ap^w%O|6M4uW#p@>resCPrQHxPDS08QJ?_T1sw8B)cs@5WbVOYBp;4B#|v zoYKzrD&)Km!U;J`+SJbHOXLO`1!-vC6{8N_y^AkgK&l(3&lmaZ>}ns4ltW2O5wv#!8Pm`>7Il&EF8O!&jCU-L+l}$<3IEOC-k9_1nGloRrY2m4 z*vaA$vAU5JbNamyZ5^G4&J!OC0J;@bfsT9TT^i-%xA6vpr^CZhr~Sk(%srdhP-6_Y zl7i#dK-O~~o@RU4q@H4KL!nu>-Qp@6({GTAS2OYPCf#B2-i4W1u?~js1A&2&5pWdb z?*oG`gg3-K9G}|-w(Gsi&&mjmJ(KRb<=iFisHrAEbbOvK3Pu{n+k6;*FviXgFh7L~ zg$2GvJJ(&G-}4m1zTaEk_f6h9kk1zh!N1U~62G^ExL-i!+^3C?s%DWxF?Qn?5|c5Z zyYo*gY3;;=*qAund0EB;yt0yKpT@Vny7d1sJ}5D~`?QTabct&=_?Vn8t^FA@Wbdw) z6!u?gbkbRe<#N!v&WMS*ObDYZ3vb8W=GaZA_HQVftj_chRVX+?51O~ z(|`_bP%*8h9)FUuN()klq-7=kS@fi{w*P+cQ2~V|8XYJerO2S4fPg2r0aC4IyB^~l z8TG=xy}n3m&dnbxy5xB}=&g8V z&r)Mc2dj|iM`j~6|K*trC;-5|OY>S9Ktg0o34J)yE&)9udRHUhb&x zkH4csJ6XuqB~9uC^(kzl`N(Y3cb*YSC7NrF;jqOjD}-c`b79CRgX0;VN-ZJE|J(t$ z{;B=r8O;Qdrjcg73Is~PTgb}I@2spCaUzA_Ym?4uCt^^iS@OXvO^{zj83PhwrQ6f+ z5FiKd);kM_LoSh0zLW3JBxF?T#}C*}=E!TYkfvE3VzV}7XikP!%grN~IUy_vHp{ZB zWMsE+#R(&e4QV!$2{Hq?8wJGlX^=#6U{D7pT5l6{NjQG~?Vs_vPjZ>Uo&o2A~cRb5XgWL~87W0Z1USfkS*b=aNg* zuUd52{#TUWSdE`qvC~=xD^jya!@>D8k~vQ3kMC@MyFEZ>W)U_^12P)voOa5R_jEz6 zh)}iJchl!AHk1~jFueYzuU!gKv2h_%!AFf>eUO}{%b88ayLhdhfUIY31}qSh3xI`! zRWz=iR1B$4D%m_0EahQyQS=g`8VP#TL~Y#ftdqmAr+lLP(5`%96fZ)?-_Ng3$Xd+O`g=86d26rFC+I^p|y=Ta` z<+5*s|5SDVZv6!K-v$s5K5DW$H2)7qLAkzfng)%0uIt4LU;gr!@SDH(uP~d<@oT^R zoA~qi_3@AXeAYp2dtQ1OTgm!*a&m^Ryz~-YdG!@Mc=QHdy>}0HZ{Nlz(h!(ZRvsbu_a|C*_e7N4fEed`CL#B)(%UIamQ*-@&hXc;Dml2~$(ivGK^&=@~-s z=zBJ0^6NGB_xJJccfDOSV3em`b>mb|#TW=k`MgNt=2lNV>b+D`$7V(># zY2MakDpl=RxhA0ZJvwi2a&n5_|JQ#|T;@WAcgXdgHhkN(%NdjmX+Y`q7zUL46o=0) zq%0ALBibm}A8ByLCM)MJIX=T{S3O}A4ZsZ)S3e?xSIrm|edBn|Xl#2YPG^eWYZu|0oFM*0&Gk=F(zv!@-zATKrLA`;zsC<#N2q!?OVycxDaND zhs5pJ(&#(qFgK0p)%qMZ&P)oH?eu<)$vSE> znVMOcR9u%ghT|Xf`RMtj>tUVPklm2shUr_s^;-wFmHKO~8^W4F61Nt2bzz+(U7Z6a z`;0nvU5Aty{psY-lORALGScRx5%LfkUE&M?Q-wxrm}rV=@cnZEBn3-d0BI9oNgSdq zcink&+6GPIkZcluX%T6*Z38Q#JL|;$+p=CEMqUV33gkw94=@?!9@zFO0zfwZofB$M zl7weQdNgOijO82`?y|w`v1t2PgXH2nBujnl_?uqHTPo1ss=}&(e z{U?7HLV0Cc`-}mU(9hS=_7FP?b zR!elND{jnE#I0Mm@XXCyI5<4awqcqtXCe(~S;YaB*S(8FK(Rja>U}WQ+GW?UlnoNA zrYB|Q1`spFr3N{*X{D-YF;vV3woR0@0InGo3T_N^4kJ42w)1;D{Y{k{o3=r!wHZt$ zK%4BDDv-7YYBz1M3vGJLoY0183`W)s6GmncD#{<|y+mu42m{J!sAy(|l4&xasC3_e za$m#{5iDn0E*5Ltf9*AV?sH#dQNK)Xf-7LFYHG%yRSqAosB1yY2e`qZtO?9HMI)_C z5I~(q4NpB`8cgO5jT(HZ0SA*;p0I`(L}KF5Bjs2PCt9iP(@v9PILg^xCSdhcEK2TO z?>#PUUotzTadp_o$_V2+72 z03y2BakP;E+u|74lyIq9oai>icHc+byo#%~~HbQgj(RqmM2(>|9vbGpaP{W@87}K4GWA|EL6}$%s zY!NS?LF^OyzQ_LlA+BB9!#m&gO}KymKJMMShsP(!c=-4cUi|zY;qc%9&ph)CZr{F% z`OXg7S%bE1U>Zi2g75MeIwcO|EV`M^K)vGpB0qm9)F>9=I-yubXuL&|5kHZIms}!B zq53`sjx6RoEeuV>-DXUQ9Dde{rsqj6im^g&jIBYk$aInbrYZI@luTxS=`YHEoM? z=-1gdrLhsmB1@x!Lh?5BVu?b1fRStr`Tu0LHg?zg02>l6e(MW3{nwwxbE^(F4sO6j zrh+Z8f@xgImC@j5wO;~Lq5{~JjKHp;ec$7aHy+~N%lGh^-~WA_o*v`y@Ce`YUEhgY zw{Br?x{KA5OPoG_6EDB~GG2T29-cfo!`10IoOPJ(&hhNqp2i2hL3ZVj83b;^PlGn{a$%NzDj;z>&JIm7qquyaf->fDrgOR7WQzaDJ`lJnxF))2Z z@*c@jE~eCdYvW!JTA5Bxf@mD|j;1ON!&O=k-Set6Ou-|H_94V5nMW}F_Zwzm zN`0qfB#gIA)bxQGVKDf_Id#}F0XN2Em%Cw;&ap@_L^#{hdG6XML ze8?WsAn%|$d}UaXWQ8?NlfLDHAKrS=#Okm!RnVJN|8*%^JKv-CJtLek=EEvft|%b{ zwjY*778Qk%iIO7KQMiOD#yko)up7ln{lF|#w99`taV-ahK~ehRA8(xn$Z=sRHj&ye zS=$V?4l!VN_ZlXah2bVJWr$i0wqX#c0H=6 zAW4lNRHr2LwJ{aI61`>dz=f6DaLLk3aT{NJD~DGCA>V4UG;WfHf^?EbiH4dB6Z55~ zV%KfdtBlmrP$Z&gRyG+yL1>gxrw2$7jRILKY2ZU!)3GpIMT+SyM8tJr8app`+dPtQ z8`iF^Rx6yGoZ#f~n>ao`#>K@2LI`MEi}}tD_V#wMzrT;!{u~E~2iTeIVK$$mk>X1c zms)hK`>14zglylvfpSXW=(ixc);hlAWL*tyJjGl=CNcE|LlV3?b{nfFm$l{mkSk7^ z8W}^#?{6cwY4prpMNO$W&YPc29850tdn$)rFH}9x$WqR3Dh_jLD{?#*v5!N1?Led( zYc21_RHl2Sm299_`x6gL9GAM``K>&+C&~Gn`b1;`noPKl6dmu94~$Kt9ax7>v-+8 z*ATiM*N?8_+O=IAUB8a23wB5Bx*m@oKjti~6ftovX7f3&A06STr=G&iyEpOl(@*2t zwH;}^JIUz?XxbL;{$u<{|J{G{4K+!h_{h&8RpS5QfiVPL#?8`S`FFk_-~FB6iKp(| z9^3~P7Z>>5&wK{|$1nX-{f!>c)e3Xh;QI9=+_`%j`}_N_>Uvgz9`&7|mfxfS z=G9(EgG`{&Jrc@&twpy|$?APrrW)Jb2gl87rg4tUQ9@VHWFkAr3f#8u^v+f)wVpZZ zPFZW!wlN0^RV!{xa>u3(HPBaohB`sm_KQYmLeXHA#!lDU*!-c+57TpEOwFxzO*Q>g z-Trbdk%oF@B#DQBL5KlY%QZp>SS~u;yLS(dUOQo+o49#g<@~LoyI{`4(;OZj1}=ex z0$PGlz4yfiJ<;IaEqf;o#s4BbuwiruYvCV^2BO)|jay$(NrZ6VRp0k9-a)~oy&2VgJ(7?2b-~{ZqL};Y0t+mO<7&M|uR;{Lj zffs$x=bU&3=-{CBCQsVhwkhi&aQzV*lbvq${7{OfW-N~H%-XyrMZ)500S_?|p_H8o zYj;SSh?!;~4S;Z~c~hZCL<|w43^>$)08+T#ng*k6Yph$V|0wI7TiRzHlfuqpR+<6Q`bMG z1vQw>rYznv2Daq_z*CtB)ov|K(_%86qDefpXHuyP3?A$FOA;7wgiuW^=bt>ak%^JT|D*F z9rzH?EtYum0!f z7cS}!Xf|>-A|i(x${||oZiX2jaqzlDnv}TfPF#@On37}iB&ldTVy-h&ikvzwddIBM*al$8I;YB7I)_<< z|92A>Z`^x;mp=LHc<}k($G4!ten<#$jmx;i1Dx|Y^UimpdB+_*nG)8Lciy%wqGR{0 z%Qw$(e0+>Aed$a1+N-bP;_MQO#R3Qk&p!Jsu0M4fmMmWST9O_YE~mzx1)cmxDs< zfK7eSnkA&?-e36ehwnEzADF0sigp`#wykQ+(tXegOdR zkAL}>@jc)5UD)5-%QVY|q_9Dug7I{b&^8UCP|;ygfrlwKGBFvr`2^Mz7K;V^e1_fY z2e`bv#O38BCX)#k%LUdA!L26fuNJs}{0MKn@esFe-NNlVH*s)qh^BEuiARo>Q0h@k z3C03_^b#np4y_n90x4^P>vMs&IIOY>P_4V9DmO*;sIx=Ys~9yf20`-=Q{1K| zDED~ivmsAyl#;3NAaI_1lm?OpF&G;lW(@{Oe8|`sW^g7&lbZtw0K=mDqVcRPw=FSv z)-BgKd3*vNJl94>CwE-HhYC!LDIuv|P0deqf+X}joivU0X_TW<8ac-`>qzXX&5%i9 zdM_nP%v37f-(_8;Y~rFiVed7_*-BiqKnV>4&l^R!t5hF7l05;Rn&OA~H zlD5*2Ib+eAApjVOnOsIdRtKJXWs^M#RL-EbWIIK&=(-gUd1d8>NE%faZDFMNC|P)x z*;D{r;I-P3a$ln4s3{w(O!ah>!sn6XWcG=-p|~72Qzv%$sOrp^>%%C_wIs$qAiYOZ zcF#^6$OhkcSoJ+mm|pnMx3fSq^aKC?V5$^laq9{~t?Bwc+danKXFE;+@PahCUZ_2Z z{QjCT!krynHHvPP+Bi^G~a=8d`N+8EW-Eg)tGvU0JTjT{(7;A_!g&57Tj!EFiX zD;KSS_r;a4b|$MQ6Gjeas>IARaBe~o$H&4C9`Mg;JZ15NT$}n5t8dg=zp^Pj4rO8@ zc~O~)=KaXkv6z*F7@4o_IfPc%j8ena>oqPG7g(-VSgw~iIX%VI1tZFctPg}ZW2sw> zbp+=u8qv{FBbvJDjNLBhQ_OefxHg|-XFktHCi#L@S1>gXk)PFvu+d-)raV4woh)YR zR-JVPz$rRCAWf9wor;1+ha055+ET&jv zjZ>Uri6xG44KF z^C!5xxIn+S#Kpx078jSi?tH+(!2xdGI>fD8wbrC(W*Kp8UYh!LaXkWF*ike zZVk;N3KBe?`qby}@aK=&a$3>i7()ItHC<4oI%h5^5MT^qZkUGqpS99)I5C$3n{^Cn zV-mMb+cY-67*2L*Lt9A|8%IqGY6F*X#7AxFQsOo?nH~CCn!lxYi#~@zGgc1y=DSB*1;8*5I0dROQR51$(LIlDLkAoWB!7 zH#pmk8i&a5A*6x*c*?G?(%9ySy)Q;uvD7RvAe)b=Hhgd{#-SO7PC9GGO$NUtSX=Bgk55Y-lhIWtVA>tH=g2zAbr0 z#u&K7^@UERva6!HLBe9aUgIpVhBCE7DTWmnzZMpT2yGhb#Z?0|G3+iJJ1=oT>~6c( zdfpa0eEoTiF`$MA4-OiQQ);m&RLfeMsOweDAhKqus&Qioh-?($n{S9!;$STm5EEpOFO}BMfm0IotU0 zH|;zZcGR=IB9Yi5Bjub2?z9b33)SOf(FWfj#rq*%8BqL2=ATBqs;(o`0 zlSECX6q4jk@xdWFre?-w4YuLLbZ0Q1?_~a|22(n?oYO>>;PmSa$=Hz*<=6;iFYAmb zqrloIQ6&u55J5%78rQ%F4=c@UFhx9B2hi4TLwX4qLmM=LVewBDuNiOIEGeo|7H%1d zri1|}o+u4Oka?;U5=>?9O0=mI>ggPK>_ifX`$|=m@dWrWrUe<&WVC1LK(6n^Mbm!OInw3msn^yE=q+s3$lP%zGXhaMV-=o(yn4i6HsvE(r%` zt30gHAyqd>Bn>r1(T!|kvlW#i&J3>ZChdM%j->kP{6xD95(QR2s+63+gV0Chi&wS#az&(BqcQMBy zrdZ(|SGZ)v9KiSeyFZAxzy0m_;N{)qXC+K@1 z_DQA}5lu6Ju`OIP!}XiDaP#I(99=)ajq5jX^Uf{o@9%Stg=pH;5P*ws21cx$MfYF) zEY8o*@gF?(ZRmTC@A;p9_D`)_`mw+9H}Q$T|FJ4ivM?3$bJD?6h&VVnsDdJSDryBu zjiX*`GN0kQzw$jNJ85nY)7)Kf^%CvL-bGB8V=w1j3jirp_ zI@gFhr^jy7U^buN+QAOlKUtPfvED|DF=e5WPmsX-eL}H zmqOab5+qD4D-1Cp8qwBNu6;%)y2b#8pXne^#;}GW87X{G;x5W$xWr~?Q#7XGZKLOH z%hwwk1;y$ZEB$F)=vy2o3F2)g7)wj~P7#TX2J3$Lu zO9Y4;bBdz%PW-H*X!9b)tb<1iNPg7VXTz+VxD1#ibzN!NnHFgfq!AArQ^~ZI*`vTP zjNv-8m&TEbeLWd9D`Vh*BXA^Wx@iXHD7DE@(e`tr>e4xOFyKqVqTDX#`mns`bUrsMiQNCTfKfnsA%jYPbNOrKf< z?<1m@d%l`dM`eH1(E~A7`tx!R2FoF}HU%JhP_l)Ilpi)x%TAd(FfZWL)hvokLr3=j(B9&9{t+n+ZMK z^z{=Zq1L#(r5*8>diIk*;d+G zo))#PMVckdcIUWx=XRb9s)-7lDKO%^TrLqKuaDJgg|6p6ySzH%Ah~sq)uO}2`2}8m zJBZ&B!>pIjmW{p7@GH3YktSsV{Di`&#H^}stL9?GQXnJx3Ruwd%MwLS<6ky`X z(>6pIsPmglWtxJotL2jwk--UFlYkk36<@CjQ!0)n+KPsaHHZAXm|lDREZ|pu<<}7& zzlx{OVg`$VB@FXHu*MQcIDnZ<@zt-rhJXIjr}4E{zlN`!pRgVRysvj>b1YXY#J)pg z3G>+=_V)I$e{_I@g998~zk$QUL+tJC;o7xpn2LRVrdf(bf2a!Vlmb%~Q^Y*7Lsav} zC!n)4gg3r~Hy%91pY_*|{^U>L7eDqfUS=fOQ--pMPbyP${@j5D_Nfrzfd zM5btW`0x&It@)K^iE9hWn!sFKLJg3Lus?*_90D7zorM7+#h_*aLA6XIOH$2|hUZ9j zF(nqVM>&Hij$I%(Std#~Q(z`l1_ufN8pqjtum(Pb5}vE3TLNT9mq5gEA^9FAvoY<9 zhRJzq)KrH6^JGr6&{61DCS^^TDa)_aJPkL*rWv{lqB7hHA!HkDs{p1pxVaYLiCK^d zP*69y#174abs{}P960nwq4cqlND@kPUr7OCNN;&BgN&A^a1xheZ6lLHx#xopHTW#^*?2`9@obAI znoZU9$CMDQYTQz;3u<6jKclE%qpsyFyEEBEdaSq9vw^i-Lz5)UWwQXRP#H~1NH%Ti zH1qys`A3kcm!2JtH-bm+IqzY;UZaVuPv}?6tiw_5Lx?eph=Xu*S=?GIekpMg-N^-M zbw42t5~tbjL<$KRku&9v^Nf;9q9L#_me4jX^TCM-j`)L7TkYN5-Te0~(rZ}bA&aMN zTOR964w6q1^Z6W&Omj!!BErBLS>=qEM?2b8ogpyz&a5*q(tsjL8%xYsUFN zBs}~&G?fuj3xcPZ1@Bt;=_HY?Me;qOG=q(E++@h1S{J)nmr*q+oWdOnVK^VKv1(G& zfPcS@TCvS8e5-J`;@NQRJ?tFru}hlm2T027LLCzYP0(UqLv2gzv^b$Dijf6DixRCn<`^l%`#C22+e1YmfD{<+UCkALswx z-Pz3z^ti_+GF6knEQ2sG+!6hRP}70{Co29=GCe1Ovr}B0p5o%-0)T$zyzzN8*T(t=euJYeQ%Q{KLB~iFcU_>z)Tknh>?aad1+`) zp=^&}LS_IYagD7%52I6xBx~M;%xX~+9ZHqbj)$tFe0CpiTLy75M zAy2l-dyN8)60Aftgqp1rJ%A`d!~&4|USbl`VA^DgOf8!TfQaip6A{TEBEpdYIRZr* zO_b!^sHbs6l^Za@3)n{ql~h9ND{)UnW-V|gqLJ((o}g|5cFypCBK83(M6|-_GHU)N zKZ7=7*%eSI#E{%5G7gB~oKyLEob(e$BtT8$V1h;L`V5%FnBZ)oAtnqRoQ)aB3Pqk4 z8)VD+1PtO61{8V2(?Mm#1q23cgo0@tyAj7EGK!uj@YFPH`p{o3(DyzspssT9@qtI0 zDJFQ?v|f_0A<59n^*50X415(t#|>F3onZnCuF1+s&X&$F1Xx%^#~Cd~tOhL@5kq3H zdCeIDS+vfl5?G%f4LS*zpCMJo4w=tBGP0_{kuYU3Kr=ew9q4fYR@ zaQmsd1N3!qdCt_U%LUHQ&++)p6P%pBi8tSP1Zy3p(sfox8Yx{RmTWiA*WM zHbp<@Ljb(bg3gqI5q1SifUJ$Qp*dp|Y*etuN{lUsHb$28MhcuHpUt+(O}2%#CPyP! zDcn^k3oFR0{8^Is$(p))FPN-X6gQHB%4a>xFfWT*huC|>5D=mt1brL%99*WI3P~z* z2@)#GAdDhzOp65>B-4P%qLF{Me|&{kKKnVm^r`;~cMx$66WqWa2tBTFg%!?`5V4Xn z{>{d~9^S_Fw;wW0OTYcw*y$hO@8asurAhj+pZY2M;>Z5JK$KB}AT3kv z5?`{`8lET-<)4SLIgQX)s$!(;di-H!F@AJ(D2;}bbAy8;$ClH@zP1Vwl}1UwZ__jb zciEH@Q_qb-Sod(QVfrxuYb9_os;PrR?^y>nnN1O5#EqwJqplyole;)GO-Rsn|w-Us6DbkG(wrKwGEl38%COuv4K#{f}lb% zvu@K3Ql68k?AWtzNUhJ)@U?wV3c54{2wNw%`S(!K2g5L)Vn8*He6QBIL3$3Diki*f zaZTl;(H$E{O=NvWmPWCjx5t=RI|_|pFu6IaHDYXtA@K@k?DjXxEwn{TrZ(0gM1+`x ze$RU2lwt-nEm5%*k13laQ`l(6MG#>Oc7rC7SN zv#os3(Uc*1lQmApm~3jM_5o(&vmH+UQl+a8lBZPHLNOWHqoHVioRe&@04GgIAIEf5 z1+tm?r}w5$41%;;R|#N7L0v3Or5$H8v%nW9vvJ%g<^vqrqrUN6vLskEFwt<`6%#zA z0i(l8eQq0WN~kqeEm>G#yx&MZhaSB&BkFw2W+&XhJ3F*QSDHGXmzF^+q3R z`JAb1W4>R5x+GSOWJ+qzL>sXuDYC<%#;oWhJQ*>!GYn2LKoVg3C~ky=5K<0kHtLes zEfxduqZXN&wgN8n1GoT%i$j5*Ps6as?Bv21z2*}It4YQ@xpBtkF};HYtYw!uJ4E=M zZF0jzmTkjb;}FF*T#Ftn*4`kt2X~DFk^w z_m*giC9t&?wz@=&D>lT5xYH$TVXOs3ZC;SSUv_V?Ln}>CIV`Q==Fd=q>Q=Xn*~jA0 z;W%FOTBDHGutoE*O_)9w+GlOXHVugsx-fOnajXy)17isgWGnZJvXHZ->Xty+Txi57 zR5)>ea~9BGU1^wt8HJt203&Ws#nM*_l~L|geUWHUrHyWq#OQpfhw_=F7}@PeT$EH> zm8lPL7?R12v#YF3S?kxffStAQo>33AS?64qWyMujwAAM&(on~C*51IF)kYSF_dOTX zjT`8@oUGkuI>XKR4(uI1ik8a-E-o(d=;1>=K7NelVu{Pg4{`tD>-dAuzKB^n#r5k) zc>1}w;l_>YxVC!@lgR{)1qcz;=!BI~D8AqV`hcOyf(AM!AO*g-HAf~14Yy_u_-dM+ zsU1QIB5Op0fQtH7Ec#RBe55#_mqJUq)=qOgS}`u^0!&kaVQnIzeTds+(#C%nJg5z_ zvwXo?Su+j+c4CoYGoTLzp?6v`2*f~*QbOvGPPLECN%x^a?|WQcu?V<7J;D9^_wn4T zSNOsgzJRB3jvY)ehXG-Y1ul`$!^0yX;T&_kWAA-v{=*N!T8q=$b3U7zHb1MjZDCu7 zrfFc?Sw2&O_e}3KF;filew9ls#Rv-v7ZcjH#qN@)7wzlkI6FJVmwxpR@XE`tVA8#e z9XR}*Z=hNFU-1qc{qzsw$3ODF{E7coDJyy&sa_>W@vY#~c#2G-$?;-tq|f4O_g>A0 z5AS&HIXrv!E-1xZd1!&W>9kiSqs*j;FcJ+h&_EEuR(FEt0lEpBHl#+*ZE2>JQaWko zXktX@*8Kg}Jf)t_S{z*8$7*#G%jFWMk5BRD$qBB`pWuzNCpbPnLEApS;kA9-xqAou zyEBFq|Y?Qp2njUC`I0Bi1rpU#)Pe3#di}e~^ z2ykF|1A@$s#O-qcatcM<5C%;y#E`OlUh1ICMnFC#q|oPBm6QUa#9OH5igIm}M$8+T z652GJBA5b76z9prwa3>VK^Gdn01*6Mdp4HP?7|pwqh_rb#29VB>_%|%hQ7^;hE7}s zYnG3zfPSUrIMLW;7hHJ`9T;3!8*)+?$5^IKhD>&A%nrkWEyl@Nae>2tp<$DN#753c zWk*=UEG7$fijLfD2T62{5Vu83Vuis#1c2Hi9sH6YC<7S*ecHu;KbX1U`QTWz(ER8Ap`ft}3dgEKJB z0VHBM$!XEl@QIz~1==(Y(Nqp~#$@Uo7oKf4YiL|kthpP9`OXYo*X6%&+cvu!sb#ip z34oK0!LA|68X4uQ3l{QwQ;uux0H*dV&QVT9uPOw-E=#aSBusckW@x{=&ZJc*A zE*^D6KW=*JME9{y>FbGB2gQWl%skp?nqaotx9S2fbV8rkO;nAW7LS?hCSLa-U&_ zG)$S)s9TfLYxpdU=mjA>?-%;u&~-gb-?J;+dd;q7%PXvwD>1r>@CaGoQJde?IdQCs zWZLdDJ7seIo13!BVN9GG;U*LQ_pZ$p#r1lPuJ5q8T41#}N7r?%Nn0&()p=Z8T;R=P zc2%4`ImhAQA&%Yz=bE9h<$1Y4~ zZJt=NYh^<0J0wd|9J4_HPt!R3(^-qD1TOCR2K}nX^zj|#l$pe5gpr9Wyw`kUQ%tI=x&t4W35G0>R9Vw1Ht>Afe}_` zXC0|dp3J1pzz?~IYm;jLI7ez{X9w5!Z{X?W0?W%woSvQHkeshdxvhlt1LFmya2aF=E2}~7TLkp* z9E*_h*VcDleILd`zqKYeVkW3okUt-%rZ!R51Ut|0nW|btV~~VNqv5e*ovt=X$%o?V zo8;_SWhVnR**sn?>_pE;&{ z&xcTgs&&fY4C^Jm;KjLSv77-&fwM*lOj9iMMg~MER<#swh`cTpkOvH~7Mh_)HW@at3_s`B+Vr=tikv4?( zj$ny*Fd35fO9gZb9Y4E*U6*$cMb*wpbb|qG&XrOC zC4x0pnl=(md0^lmAxlVLlH@RjE{l7!C@dxPy(C`CEX&7L-f-SaQne*m4VsKzxW6_x z>{h5r#sW_4iw#%<(X^UXV)=bq#~+{-H#kR_PG?LBR9i-;0kMw1h6uKqWP9(nZ89Hy z($1ihVe6bA>ymigI8bB6^^OZxrS@5iDzK1>RkqPEx#H$WA`;#Zc9KCt6gL-SN}dlM zBpci*zY?SHQ$ij~4=H1IKxrsk)gpdZAN_69qhjsNdJH0qzVGvB-`Zk@IvgNTcHq+k zCpU(5m|!e!ew+5GW@MX6vh`$Alb9Bu&C(#ScVI9PM%KUuvCWeT4D+KxD2+~x5s5on z^wDP;2@#40M;&^6e9Oixgpe;l9R-^z;8u&EB3V^CUbz@ef{{^rRBDxqdMy`7-ZL*o zjWIL;E@xK=eW7WZjGWYsnId(yOPq4~HAq)K7vJ|-_8ge0w1jTeaWf`Js|`HDzHxXR zw{P46g2(;)_wnY*F;=S;o(O84yk{gFtWQ8QV=$s=(Y7sI(`37SZY)cpw#FL_T;M_+ zG(ODrH<==0oo1kM^E7dyRn$q37RG}7b{%WDdTB)Z!23@3LT>C6n|xRqfjSB1)|?S5 zZeIxDEsYy$N+AhVvBU@%Ze|tGkO`OC0IQB6z+_ZCgaE{z(PZDDZCZ9XY+GET3GQ4! zz=xmyCIGt??E%&#d_VN?<0aCOs5mH(;24I zY1RByLfypXD8%;&Ye)@G_ILXL-+8##PVwZ)6TJ4Bui(pH{t}wAb1ZO$2|CO$!+{vC zSTy*Xc;g#xeE#WA{rA{;+jDpg9{=#?ejb1AKmVDp`|tniPyTg$;^Y6InyMq~&9d#g zF)Us;wP;=oCEiaVc>M0CKaJn}H@^=6c;9na|{Ub`RE2TN7x3v_dx8J5)%U^)&ViV_dTv19Adp*!-NDoaoF42 z#oo~YZr{3%uIuo|gNHafJHz7Q60g2?ALjn+I6OSSts93pI5@;~w-F5l7sJ6C#7wa^ znKqrG0v~l#8jFa%axnEi2%u8g<(x=m>0!n!al8;-hz1h`F=tH*9)O7MVzDvi>ms;PXlrl3TA+R2aFqoVp zmZpz?R(3*+A!XBo~dO7P-5pm7i1bGK))6GW|l!%WQSNDXmTS@RA|`V z2lOUnqa@ajs*5z!81qC(CZ8$4SC06hn5h*Tbzn5RPV&r<9WO7;$2~4JO=Hn)s%G%$_S!D;)X=Z8! zk+iTZq>p^2IFh&}NW+wRXG?K5DHs)pSc053?H(w!04A!M~76zVpW~6$wjX(?b?1-dG;!P z)h4Pu7Y*Mlm$yS@evyg*KkpY)HC!mRS41laatvE($AjeV->`#<3IS_Z9%XXUgMueuZGC`LR>xN?ttWd9vNtqU+ zm$C1Ac(0C8F;54&zN_{TU!GAW)(jj?(Y8!8p0!Lf-f11?vpM#5=a|oTu(L9_y1c~A zKYWOONR7(~S181kFSiN!&7r4L)Ed7*dCVr!vWq zCghY2Ba-f2xb5PY2a+Fv*hM2R6(o> zki0w?LWo?@*=Ug*Q&F7go!Z$12noyO5;n0#{NCOkyzg;%bclmjNI76Ds zn(7_#7OtF|1+4DJTKkxt=V<6I7*b8g+svEF6zAX>NFy`I>BP8J{@EI7RG&z&$ zm)rErDFvbZj|`z`7=G-10GtIx!;~Z-895)Staoc0s7-E6DMPtU(_}4JFbOGogd|dr zWaas$-0(u4qqUUJ6P={$^ezdb#V0mxpeR~jGJtb1zG`4lQ@m;50-MbhP_)-%sOaKh zqy}b+97PszyOjr}gnr8TSSH#`1uVdL%+8hnKWXpwYuR$0_kA_0=3JM(cJIFTxiraR z!#Kj&001BWNkl7Mib6+r1Y3gclA|cGBPVw979bDFpOF_ikYdR|Y*|Kx z_$5zDU_^)&0f`0J7VKCSMUjUT56|iQZQs{zR@KPE7^AA@TB~UVIf6i*X7}E^*P5$p zT)yx3SzJhr8e!l7c8t(U^|k*QE1Y3xpuh5s7Ba#amLXA=0 ztI2Fri~{A#67#@Lem)119Hu;E?cijBnuCyJk|9r{G5cMatQNLgh;DRt;NZ8iv^IyC*HoQD|4> zy-tks=x5nIRNC*;P6~@@+Bu}m040%@FvdS0nJJu0-bj0RB|T_~#x$bLjHC^S6;>tz zv%ol673yvo^#F}2H9w~uM#1E!&3omEfS^(%2i&;PH*gce-Me?2LP2S9+d(%uTfv!g zHDBf|zKY3YQY3iPg#ub(W^A`>DfqMzku-Z>wnLlEP@aR75@Os6sV6hGO8Ojzh@exu zVY7xO@kdJDnwaBf(<2-m9Um?_G$XC?A%1Et|Yw_k%SdFDYy_e0cHM7>Z zRbn3(I1IC_|Lto#YO$$`TlE;7E0%i}w73Y@OKG54{pi!*!}mP+01xA|NSL?VEfNi7a_5OKOA->KdrkHO#n)n5ew{AYjTZ~UH zd;gpN>c7Tk-hVifDx1VJbG;uc-AX5*%^A3RhVOcwc1e--EX#Xx;hZFg&if8-;F9f^ zbCUbX>s=-MY0Uf_F(ynV9%;Kp#~zc(1k9L?N)ZlKeFNt(=&&by*)GJmmG`)jdP{Q^ijUR%Ae*qnN;YfGx28uGz*R2i zX5RH}ONPV&sUDXCT0Cp9_ToI2#e3UyQI*oSTXp2IPuxSEZFn7wk<-tcY@z$E7x)Sb zv@B2%1(#ENIe<+Xilo1dn-BkTllo z6zl6q4#YI_1$t>YtL#5FwW1R_qrheelo{lu;j=AK!GDvz2ex4hqR`VpH^53C$^r_h168*JlSv~gb}%59-x(le84g-7a?FFMxGX5%yy=;+9X4RrUMI*FRDJ*< z8oI9Q_$bUZI5FCYS0*2X9pj;HR=nFw1_potQqz`98{qP2%VSzwgDZ5?2^=|ep)Vc| zA_9|Fo_<%za6|+@@gq-?ryz}!ldxAi^LpPEoTwN!rE{0B@5`ZW0cN$asE4_1fyS2- zyn-5B*bB+*x=w?9n`{&sH%o1*edsC?D4-3aZ6AGJ>P}pbAy4;oR?% z@kT!vHLGku%$n`i$oo-Bc?e#LJh;No_idaunxH||g^s9h)`T+NYL49fx+2qarATTw z3~j?_n>{glj^%r$&}|UvR>+GNEgkfPwZFghAXxxskxqCwk|x^EWWKoe{c_}rd2<9l zFn>eS$eDDdMONo_az}17fp&SP=t_p?Oa*fvQ!0~dL)P2M-K2 zv;1D{Ol$4=r?DKi6nJ@`tl0kkDoy2)w6ILl$rTDu``q`ztMpMrG*xf0A(KY<;zLX^ z!4GTXobm3PC9aoCoc=GrjYp3jem1`IgD77+<2=y40T5RkFL3R_$uDf~BsaSDge z;4^stOFxPC-g_6%zHkiZ9M%(kzap?)E^+nsPx1Ki6U485f=|vq!3=9;FeX?cAYdV- zD`p@>445EbfrVu9LFjZs8OtgQNpcBci--u13@h6rGF}0A5APy;>CfT2zx%tf`o8bP z_4N{$GkLuRs`)YYx%#Vr{XhR>HDJH~KmO{DPpJ+tL>gTG{pIUd`0xJaFW}LW#{hu8 z{#Sn1ZqBE;|KI_RkLL(J z)X$;%D7`i`cCNJqm-hJ-9JEspXC7^;O@YCFEXx~#BSu+f zjjXM?OC2|vR67Gli?V3{-QFKNXW@51L$1O;a!MnwaZ7(IU!Q!be^SmhhQZ}g{o)(N z#G$*teFn4U=?p^z(*)<|=lJsPe}v1+OZe$j2Rpe)SoxrjSf4@5H9{VF1O;E7cT^~q zHk+Fwm~_)4QnEN2=(e)|ws|&4j@QAVL3x7jM|qEFr}-#S{pQ|w4b`_$8F#@YmVX2{ z`s_^{3GtRC&vdN=I%Wxw?}}7V28EPsqbLI#LKmc=WQA3=_0EQXVHmJvk-lf!pr}XI zp7SnC4d^WvLI)_t{npQLfG#pPA;zdykz78vPHVum+6A2RDh;HaK~&s3 zKg1)Rs?<|){s6FzNxaJ0+uK{P=FAzBR@cxg5NmZITq; zUC|_ zd@0PR!K7A12vnbQ6Oi^Mc&s+0ml=jnje!>lmDVH008K;)3l4O1UfcNmJb1O z5SmSJ-NC$~7~^OIRKk#*N%&l$k)V+=l#Sehsp@zFEbo`)71*T84mm4E>cOgiA0r$k z9u*j4BrY9T(T^Kb`~4}|>!2_cEnwc(7?q2;3G8d%&*ZpBJX1;_)IVdJ2fG-HQL~ZS zwR-$u8528y);w{t)yyNQPwN*W^5B%l8%I5;?0GTJNzK8+-bK>_C+xNCbu(F>7aniT zLI{Yu4);p98qurl{X!}S<)LYOI}MgiTRxbRRi588ZnSm_73$>s41-L|+c<#sy-p^< z+i8r-_f@^V4PIh7_vAA%C6dqB*(J8a0BjI#n^KgP53D_mb+VHh^ZIb(jk zf^!bvzY4g0>lQZu{C5!$5bz2;dU#0i@B6ro4jnpVoZ%FNHHJngw$}f@M!*a+T;mo3 zJT5U2gDo<)*uvow83{*N>!2rMh8ZRZU@&?WoJ`;`!2}6g(aM7n5ru>bV8BosBWaoj z{XSA$%XfgPR0_w^+exTb`f)FaFCvUeok<{?1|P za`VsYH*fF@zw}G^#>XE60RF?D{we&#kNz0?ep1hi#CwJH+oV+~WrT2;PFm5sytA3Y z;lWC|1NJ>L_8DqDp9Uu|J-^Y_N|9>0HA#cahlsUGa5FP_7;trUh2`ZH&d$zoarPQl zS64_|*)YsIj|cbfV{tskd_Koq;Z8RAq8(W^QP8t1mBvv1&RRh6KJBfg;~50z(C6Cz zx0FPVDiZCq*9;vho<}hNZa)~C8rrICPU?0zD}Af=wOQWAXfrrI%qeB&gCrzjw!%`=s5da%!5LG0>@%?z49X8eh@|FPHb+vC6LO&agqf z+usV36C8QnhBkMb-P5irHOPB(S-hr}Q@SKkTSR1ZLC)b20*HmqY!X)U98*@$cygn` zpM9=}iARhP7kMiUlPx+R_0i0WYOB+Mo8tyD2Hlq<<1vmII2(OKnL)Z5L zEec&-G;H&D)9s=(h*<_Qv3JFKB8``8tT`S*?}_bpix?wZsGhBya;bl!!bEHq?>adz zn4~sXZHE$I??VuZcDpssMmgp(HyPCvCY`1rxwFY(t7n<1OJtrTgx_HpG`MzWTI!); zQR?G~O6chNu5@0b-%pk?6alZDGf~kf`$^CMT*8c~>b|`fzQ6OBOlKu`C@bc;pUw2c zB|ax64|u{fOdIK(hgYeekf^BSB-y0F5Wl4U9|?G+;%A@((l;w$9oLKqBkEW&YC&K* zCzWw@qe+WMvFm|ef@JmJ_gTAN7q#Kki_}AS`NT?DsVGvAP29!6=$fEhmn;<4sDvdk zSY%)-XU)kj5cQN%tJ}B6vBBTkN>yLmAr1wt-X3@cY;ZfdO{7LT=bhq{8qyvtcL^oI zdS5TD&l&sCdfch^gg^)33~Z)ry(roX=-W+q4`o&DWgn4B=bXJ)W7=T(xmjHCoX43$ zZR6`%$w$p}CpF=jd1sp0PQmT>wg*Lis}|m-Xtw@VdZQH*n(4-)NnQ)_aQjAPPowa~ zLrq~TKdf?`jNbmNz0XMqZVuAqxC-i)0fK7slllVf8Rh1Cq4Dx%rQ#ieb`;4X_9aqf zW2;S@N#rJ40JdrN?Vs(H=1645Z<1^(M5LGyvOprXn}qA-5>MV-iphQu_{4g7j_a!{ zY+gRca=C~ z=+L9bOMHrihy|#;t`P|n022Tw@bE~;cn${RUEIfj2v}e)0z4*|VUCQ94pDOROeUpT z{e*}O24roFf(U=GK}1A?2MHXZiE$mkh{`WIhsSN)!^1!S1K=;bgIApvYD!qL0b6Fp z_qzrv;|ah1tABS~nDc?HdUGD^NtX4+dGqECe(`VrN^O>Y>ZkA%KlWqdfphZrGDuJT zXyk*c0{gs#aQOTgZ#J+a?d5}80Xs+E_WcU{#bPR&frXG}WpnL)U!^cEAP14?hcFSE zl*-84(D<`m;yaQG8+2w4+*3KUyY@iLmVe`$j_6%39?aVb;i(olOw4EB6Z^Dw3@9$`Or{+z6(T zq3Rsn_6Y;qf%R^)X234W&Y((ZWSvp(RNC{DduXN)5fBr6*Nb8RMkj5gVh*6jROJZh zeUL55kl(o_CT!^7#D~ZxJlQd>ttp=G$ z$jAD3aXE>R%(+JP=tdq&$$=GH1E*NvOXTIJPFj0NbPEfhLi|;(hBIp588w~102NfT zSb|ei$uw&7Ts(T|%o@D6S8oFmDYkq3zq5;&PN#*&)UH++(*d(cZ(l@`1zZAdAKbkF2U z;Jv2DlhabXd?WoimFlE8Oz#OEx>+QSXg$L>bzP*b%#DYuK=C{Qhc;h==U8YjD?^!M2$%S_lc z7l%iZoI}N5Eo^hqc9);U$Bn+jg9i_= zSWGdU3A{w|gSN zI6!!!uxZ>8YtD8cet7J@}DvTtkexvMKBV~$~Ch)igJ|z_ba~4^b zY{U))o4a-%Q5yEB+d<23v%_QvDkV6pG|)EO2vh(Q(q9bCU_yMEwT|=B@Tsp`{C)z8 zNXR1NFHkl=8eFuscxrr+n{_N3L%@MuLdpzwL2>h`K*T~_bstzk`#RkrPhjebe69WP zmmthQn9XK|24yM$k};Ne zECaE;GG~&DHhZioCTv5@l`mBNiMc*#WX5Ww=4aQ56KD9KP#H`lIFK3J?G~?Jzs93S zkFa|A8n0i!#daaddQqdnXH=oSa~Ke2n?g9Pa1@v-upe#T3WK z$2gj5OoGzDh<%;h=8QX64zFLn!sFliXE=ZUG49|LCkVL4Mw9{i84Bn`27!zXR#@Qz z2@x~&NXUp1+1n(CN#QjwUZb^S31N+lj9zvsx`&FG6oK7P{&o4?g&T@52&6p7>gbH3UpKD{WHF<7vO% zGwr0=5syB5yE19}bFW{&!7u);U&hzIF3r-<{^g&+PyX1CjxO9ozRNx2Z6S90=ELhs zE{GMjt#r;cRH>GXR-sG#XWnj;)&>ZhN6{b1e+%9t8Nxh-;;|7ZkwfMR=1D2SO#>zq z55x@LPmr_V|I>CrKcC{pjT?C9oh?>Z(lA}TIm5-p1y;)|eDtkvq3Z~X#R4~Ga~#d* zSS;q4OeS!FinMGbX>2@PS-nH;W~bdki<8mtfr8&a|D&aFuftOTspM6SoPivA(ZDLGox3MrNw!qOe2*{R=`LmZM^jn7*dmIXn!9F z=)msJ)|*vpB>SvMgXcjAzQ)rOnISYHgf*(BkseA62*LMVfmLK=q&&d0E5ilLoZ=`7 zp7!(3QR<~^xko#jb!l34xUF8LT4xX(lMMe;)zbS64Sd(k#85HluHe7BGL#fpiZ6lN zaY!Th7Lh{F^hHlmfI9-BlJnCgfu;Er;bf(V#2L;gq85m&sn@LejIezR>B2XvY@g(Sm%GC{ugvm`#REI9#jj! zaLpFvP$tE}u-P41NinVRj$EchlV=V1WnGhVA={PAhY<9ltx((8Y=cDpSq zQP^)gNJuy=-Kf;2`iw{zvM*TK(xeo+T7%zpQc60ef(He%HYt8=4&D`8EB3s;FX97; zLmV}B#V=L}=3Kl;SxGW&qr6vmpn49a;m&XMYqUR$6`HAe)>z# zRTD9npK(7J()&>H@^&N&Ue}dopzyB}1|NIH=;6e+wh(VI{;K1n7;RfcIVTObaHn@Vr z8VM1~szLxMh#{4~dj>a@#-zR?r8Mey5zo;8OJD&8#W=<{KSv`XaVmOj~><2oiYwe=jxy$H^mbl@XWX} zpff5aTvaq=P9;lZw<&8e*wj6%Kfpr8lirgKF#=@LX~#-BRVkTI zaLfoFC3K#=#PsV>_=r(3vG?`RKK z*9y*Q)5v>G(|DjL9#-h)!MpJ=wH^8xop)5MWrHUQbG@ImFu<^DsX1nGs_|;sCKSM+}*foiz1<2Y6QNjdyU-a+qvV@3e7HV|V1N6c5oc zvm-Gol1w)cJi5k@G@sn4=2EzV?e?UUyI%gY^Iegy8Ln5R3-bNE7XJ2NS{9~%k^lf8 z07*naRL)83C6WhRKM=mI>&ui~rua0LRoMcoG%p)D zOIO=A>1@aCuH;cr30Wh>hqo)^a;Uwfkx+`X7R7bFpL5a+P%gQxlEc6Z(hsw2+%#7~ z4V9wf#ZG2K*3e-Z5ybXk40&%WwR>pW0hF34fBiYfw7}g0XVjeS1o9Er3&ZfINDK<3 zzy(`#s|G%eGmKg)T>DRG0_aM!(-3pWH-8suDQjsDc+fUk-glB#{cZ9!yh<3eYr^Sr zotRT;S~2oAji;Bsk(X4$q2aT?U5IhL)DQojgHVM~^Ez6iv^*PmufVX^q)dZtpu#lr zsFjIo`MJhTwq2%svQZ6BJR~iY3r~wpl^rlpizxkf`<#QQkU7(4z-F_-vu987t#5sd zr!QXO`LpM^eDg{+0=;a=-+lL8Jb3T`@7%eC+qZ7v_Wj$K&1Ueu_%ex|=B;hPO5@2x z1Thd-Nu@W8t*bd6DQBdp(gSUnZf`m~d-@a~{n|gmdi5F!=eP+1FsMAP&DltpBH#oI zOp&lcf}iz6O=_74vU-bN3rXItHR@lIBZ`!>S| zI=IyuZ~PnSU(5he3C^xG(=jCB5M;+T_;TNda_;SJZcI|+RDm%J186!yOdd3m-Q#Av z!tMKausB}e*4?}K+;@C{^Ye3@K7WDp^K-1OuJHK9D%#!>aqRL8TtIs9RiF4jL7pc?}vX$JWgN}cHW+$0HP72Fm zNFW51yd~Y{bwQ-w5or&SBF*%+D15Bmf%7{^e4&=g>s*6|$K-bz93o5cpG(e=fTdU) z%*{py*0z~438z6cY*^+g zti#ougb>P_AH+E#WO+S%^}MqeTL5JedjK5R5jv`9@0cQx-N1D>XJZzV+0=H_W=zdgZO=Q%MX!;&aPv`C+Vsbp@QT++QgsYVX5;yVvNKqkgOe%7|_7bCHN|JHTQEM=)4TTgd!Hen9^qp2v z+Cw0VfSqkj$qmV6uAAAk+_{)9&E&^~LasA{jNv^qctioRRi)F$+NMK?8YwH@D>c!rWvtJ=V}k)B#t?&5(ks*o@FTg-VRnKMa(9ZvSO#*#@3 z#q&A=9cr^){C4|=PtwK(qsudk33I1FGI{MDPPaTK?Q8ExjZ;!DpKX}RVL#Ai3pa33CowR(s`k=H>n z3P+fthX*jA2V*X&cSuN>V2Tyi`X@4K;+nx5lK8R^wYf?v%}WXecY@T{|I5w05&>)h z1a#P91_t9Agd-ebHG3ET!H@h1mS4Pw+3j1nyp?elBQ~@J&%^Hx-B zlnnLa6ti=ZX{>rWQcQb=Yl>+Ux_)+kK5CYJ{;&MU_~F0wmqr_^L(kixMy7=*?RuGP zXmzN$Ivmo<|Js2^^m2lX5aOgA1|=Hyuf5K!FvzxBdE!+b&s>3h*;N=)EZG|9%Pg$k7m ziM8l*RaLOtEVTn8sZD64R>%ch!y|cU3zTWGx7(R#D(7*qZ7xG8JHwNz zV8)^E4#SYZ?6F)e!CpS?_V>?DGU|fqaC$Zq980pb)?S zCf%fXep5`^2qz?0bCqn6X7cJ5!!1^fpqpjcqm$-dNieud1L4*8tCFpTqP%;z5GfQb zHxh9tRJ>uR6vh-~(m~;zAR3n2@PN*X_=;o|$GC4C6$I<6z$a027RpW1X zkjQw? zXr*~l_&V+MO@biZzcs!i8C=#W(1@6l1xu@RKx)3Pj<`!B+`<)#j@#4zCPmGa23oM@ zq)et-Gigr6Yvio>vPO<~E>F_$?Ff;Rta-@+Iq2mQi}bTyk7EzdDveKQ8WL-yf)C>j z6Sqx8yWOjorsm}$Q*MyGV(DkH+>+fKl)Uq`x%nP$&wErPe+N8u1-sik8+0K2u}TK> zo~O>WKoL8$x?WA8O3wr#`;0*^@~hPr%jF8!uU_KCix=3OUE=cc60fc=@$%J6oG)c_ z(kqef{deBQ2cP=@H}9O_;lqcxb^Ao6!m?@0DdBo~rHyLi-Qp}Jdac%`Llny0TIFwp zZisUStO4e(V5$KiB$=q*Ib%F}^bLIa4}S|c@dk6O>^cCDu)$VG2Zr@_c!2wu>Y;Lq z*LtDI#c_=dk~Th0130B^Qkk)q7X*@wI1o126l$SsHcDB)uMApd>Poteo8cxtUg#xu ze1y+@@r(HEho49P`Oo9xDC6-kV3nj<&%4cc&@C_RZ(d5KpLctbx}q|mPU)KlW-t$G z9!sGb&(bgbas@p6wg2?5;75MwhxWGpt=DA~3t&HgOeH+}ZJVZDIo+-d`S1|H?P2j- zj}mJR%dUL7g&2_cMXI)ocdnl^x3^iAL6&Y1>|7+-+ysOji4vD4hKS%Tkd$;r2x6c9jI-sf2u)OCr z^*i}T?NG^iH}YJz9!wCxsRpEH^=#PZp!Mmt@*`G2fvGf@Q{%&~U;=@&YV)H7r&BDp zC#mP6U`P>jR{OOuaH#hd~+|l}uZ+OYFrT zLt{jJp|Iv8n}7ngQd@z3PaEEqL2eX#gve24(-#`R7vQzPuU@*87_lk9ZPO%wZ?67C zm*Ks9c3iHMSu(E@3rxdhD)tGZD^rr-T22g(N&xh}=4!D}@3K>Uy$(UV4$nDTEw4mB zjm7X$fDS>W)D%^sswyznn$~I&1ifL@)0mPxCq^oES=0&9&arHOh^l^}Y)~G7d<;42 zAj@izgy=BFkSG0Y1Ya6R`#TFPMCyx}2gIC8NO*8!eSpbs8cQ5COSit#RKg;W>ryc#oo(3x1(>Xw6)s3as8NV4K{ z?R)PU-&^y$Y+k5%m1H|%2WOHX;Ut*F%&b!Z&26&s$BN>lh}IIoSvZ06eRO4 z%(N#(o}jTs_5n3d3ii}KaP2C0Cmi-b22v{ccBd20qz7}*@WP~~O_8LfoCVd{$o*_p zy<0?#P1?NElydPUwRE}`;a%ijdg*v_jUq^Krv+!+N{0kvBIR&WE2 zq<-b|#?%;^sbIgUtA2~o>+9&Cr>I&=i8pHWDUcY{WPhLL5 zqeqW$e!0Q*^)=FVgOoES!x}_{esP4wVu70v@8Ry|+#z%~99PA~&wi6x>oGQpDB!I)x-1?GtAX}Z7#ZbG(?gEmD` zM-mI%z%{N-bODA#he?Bg@Q8?5VXJs?9r~2rE}?_NmHM6-NAU2tI=+V={OO;@=lsp?FjGy056_D$FKi`e^B6Bg?=iSW|7bB4iS@OgB_IWR?1k;^4Y3E(kL6^Y@Q&U=-W9n z2{WNoY7yTbFJ#EDQOVwN4eEOIvk6Z4Hjb7z@$Lto!TMZsp4M+J@#gdtXBXFaeR=_; zEoSo>?%%(IyLa!P?*sZU0ld6s1ILPdh7Bo2wk^#~6|9+=GXtQeu_|XSIhoQkAIx~$ z^{gE_hXt79%egrg?2q5~y?cq=hz#07iewr%M#hhPAm)2P8_O{sG=Wf>Fk?NWt(;@) z%vcXmWVkG&6!GTTYpW`f67+t+@5&h|X^5=d7tRT`9&St!RJv}b7#X0dECg(k%l#=N zQ{4!H3tFD_{zT5Dc^-5NMOMF1&BtoLe;H7^q-4H0@&Q^CkdplGhy3A(VoH(?Fvufk zU`igr2Lw}g9@kxNIB`Z`;QZ8s)Gy&m*fxUzQZ*-9{#% z;bpByob#jY=x9i5U)vxtMisSCX_MEQ1kl-LJYu^YFyvhF>vADzS`17D;K^Ah3LYt; z)x#8~y?A$YV-x1HGBpzFUtOVkACMrPBH!z;lQcWFaq4;xN0L^|EQNI6^@W_*nQk$7 z^*B+HN~J78RiuTZ_f#ZktwFZUSRx-pvt1rIKQf+|;49az{5&#bdJ%~JwE%*#6i}oO z-n!S3bcxD=0_Q-%%QmMuT-y*f(j;VWSZ-iMHG12Gb+mQhDi!21$>Hi%(hq*n_oIA> zMyPU>z`Y{g@Kpxp;7d*hC2LaB&g<%Ts665?5GKDH73uA3Q2+_vkE)PrXm*8mHTH

9CF)4w=-p|A8lah37?7UZb^nR5gn)#Ck zm0WQCwy5%~o7FN+3x01BODe~+jerH-GBao}-Mi(#DVBRXV70oy)AKiY@%#lYu2$le zc>M}*-n;=VS0WARwUL{gU~zI2w@+^1?%lh%cRa_@(E^LxC%AR%Ci=xup#@o?y4=_<^<2jbgYq;m9xVpZ=!+wg3?FAO_xHCV( z+43be*eHW8BY<%e(2&`#Oad3^^f8QJywQebfJesE^!6ZZA+ptbI6;RFa}01;q0>vw z>GrV0L>s3Bk4`s5;!U8^6lEkt4U`pm##T>^tZb|eGH&B0dYs@j-e8LpbeQ5#{p63s zefS+Xza!7_+Hdr8>Vatmv5WvOZmgLXs+kUvOr1-4M8nMbnPb!HqY3XeiHNHJ9WGQf zZ8{QRvmQpx5&-<~|Hp6P|LZ?L`!hd18mzo+vvepA?ocDOZ-yoeF_trDv}ILkxHlOC z7|!JalPTK->^Eq;gO5W$xA~Z?S!$ao+sr$lV5ME-TXC)fc@(cm&KVSXWX_l$-@tmk zf^*{ao6e6g3=y08F-~sZ0l$~ATCMQ<#dBOQudzBi#d5X6$DcmNw;nygWYS@=SYWZ3 zDY?kun%CDhaVGJ?0RrESKdKF~Zb3KY3{>@p zr+w7;!Dc!)&nvh{|Lt6=6j>@$e{MHc7V65R_oM-FlFIj7fqAetFPqH@aTqY@d&cAt zS#x%{8MIj~p>QnD6`Ik~l-U7EVOT^SSqt1ua)w)8Q7UA;Q~;*VOBQA;wI>RrtiNb; zUIR}x@ga7Ho6kF?giad))&ZXDT!C^hE0jyWH&TMjBruO4!Nf+9i*IRuxrr)BnH9v! zB26PDU1osU!;#;Ew-jHT*LyJoOayjLyrD_L-4S#Hrs(yEB$gKEg&b!fr_4Z1Sfw~7 z?B+@q73G&8fS^B99tL3wK(>ia>5jP!GI^w^DAa5lT05~_WIa@I0daT$Gz(w=-^} z`F$ZFW#m1m>m^?)^s-$txr0jOCjCSkC}~&>10Em^lOaf6=@pIgethv@x zI{M%xr%QS{S0-qJx)x1!ZhbwY341D=sq$GMr|8)xz%h>-E%8YCvAMQEv<5$x-iVO6kl5W^`^Hr;l;;TH13RE!3AiI3+-7NH=v*Gr1U~0o=;#f3=M`J$-{` zZ(ib?-~1S#yn2MIt81Lb6*ijkf_=$GHFgeZ2GF9UR}jkK^NG zO#2R#$pl_gymOASnbKlmYZqCTReoRzukBPbzc}0AdU*|e{0d+F=p$VHtB-K8yucBb z*kFSx0z5osh`0el-g+zm^dNlT9^f%fafLNPfn;Yv(u*JnJ)F)_2TU;mV}k(^Tb0K3 zie{MM1U))ZOgaI?$#zr%idUO~th!GhPS@%*Ij3qWDD@n4HYIc%G z55}r&mk6>^d*I$fym5@n^Cez^@$di84dpYE#sIDI6tD3zRja1=yQv+$c6eA?dJpO5Kl9JO77#K z&1H=MLD}@T0ih&z0G6g8ri3npCbO%qGED|K0ygOYvEAJGW^f?HvrvLyiK>54JTY~P zm)RAmIvF)sYa~ykfuaJ!@$75HlqnmG&zYt6Aj{!#LFx!~ZhFf|wEM@^I&Qa#l?Ga( zM%F2gwkhTxk5)hil|_==XROM{0Mhe9yssIg)Ml{M*dj?3H9*&RDTl0K4NkyQ znKFEk^xjM|EM_vllZ3*i#Nwy*0qAv0;~XN5vGeR09>Nzec`;>(e7v01snqQv4ODD6 z7$MXYZ(BrwI&6ml>p`I)R=a2UZ1jC!$dzSi?LG34w0^c>h65)FTW@QKOek{55xo)# z+wB%x*1@XN?9MEkXRme34E5L0SY$~5owT?coO+n1)2YhXq<~<(Xo41l=5gwSY>7aU zqhuQ>`|lx&`Mdyh$|QavWYBsyL7T7%K`eeHrZjLaqk_It{M>|NPJ)xb>; z>}XsyVY0X;OEbfopG0nFa$gOzUKGV{loOSA{5=BoV8AUB#P^LHSrmt?s@&P#w z9r!hjejaWzA}q|7oe>7bOz()`?1s(t5*`;k77)#Qxa}gHzG8XJTSC~sq8A0C%&JLN|Mq3WF<17TU)xY`# zU-`;cF#Y;VTwgCSaSn^41ui!cj~_q5)3n59*x>4JhvVa8+ z$xYn7dj|{ewScnlN%{Q5n6O$c;T&t=ozbXLfz5ayFk3P>2h1M^Tp5ND}IT5q#LD!({n$f zgF>ZswdfR?uY*aB_T{>g+ffU)*86Aw-HL#g{AqWDNx5xzJGXFs zy~MEI;PlNYPR~xUTCK3ztnlgcXL$1D3A(Ps@qC6GH*Vn0t(#aJ9TnF_H#o0# zg)6w|uIpq|w)6RLx>bfMEGX+ngt!jh9l`lrVlb)~%E2iZChEt~XDa@@oJ8zLBxiNb zSpsOa;UrhRfHoYF*WZ=6kJd{_X%O}-eTRFvZB#h z3;F;8dQn;>7GIL#)e(RpZZRmXKbqvXS301WNF`*#ON@^rUubtjlz}DhM5>4a3@YK% zpD_cT#vZk8ir5U>(g!$~N*&(DDU?lDq483Y3>W{Nb4@7pSfyl*ll(g{3|TT1QyOj7 z`d)DQArrhKWG9WD*Uc4^BJVR5B~}~;|*R2{^!fL&O>h4%awSvR%!aOGxnWAoN(OXDO?|&*{aM)dS@;S7VDP zg@a}_2@J#|gS6=aG9oVU3ReJ5aDsp1-}`DKRApkoY{hV5pa^qJ*;fZugZ-M}s+-Cint!JwBP$7?l zbBVqUYW+YXST^rj00wR<6Z*-dlL1X;^nJh@En`X2Amm3w{GC{^a9=S z5#IaYbBHP8^wlezpP%94R2r!Bt1FycUgDEaKEZT4#k=?KW3f2G@qCWZ6EYFHE?^k8 zvgvLy-ez=X`RoWpKPO_RGMzN zKip1(J02yp5_NJiNEI?!nYzjS$TswHc2P^nClO*wx&?_<;%1veu3_a|@*>-zrw;sF z-t)EC^DXbatG-F*B5iZJamWz-HY_H@)sTDhW!pl@HbdqQkAvj#NKU0M1J=yBHZ)Ga z07N92KdyO`JfX{BOu@@aQnb&VHCJqzQ@I4N%013yt7blEBpz)#CAhHt!UHPF_B zM1BWGPPKuGiAC1vc;v12_W5Uw!e==miSZSF-c)fR}&oqkLxLG-1sV&Ik39tIsVbt+h-+q#mY8kgZPgL8Jqd4#9hP zmE3hCzM)QKZUN#w3btlfZ*RfTsLarB8A~Igmm;05xnh-* zp$Si&OeTl7Fr4Atc#~ugQ~U6eGbx@c^p9%N7}IcASA(8HrEp|LC+M%&OIMCka!xY^ zw1LP_?QC-yw;%|v#JuDxu|#s9(w>puygegng*8x#8;6Y(f65Lfx19pXWX2VPoO~TB zlc}uIGC6EhX+#a;VN#S@5Qz5K44?AepcF6FOnkUWv#(iywtdZa2-4)o7`5?D<@NWv zYLyLDg(&!jP*il_BVQSp*DomIv^K2D>4z%^_deQIo6$@<84?*?)-8ry1Obd#B%XjT zIVpRMaaPih%S|>>DCpor8=#!B<`#*lD)>ecuw7vQzCc007zQ{UIQaRb9G*S|!N4}z z2==T87xp&>zS0~!lAIh)TMX+BUcElWo7bSdVVlXu?1 z?RP(mm?AEoKf`9T!JSV|an09wsN0acm|~7Ou5pg1SC0`uIKc^4S6f_NeTsB?jrlOg zjSnB9&x|L1MBZ+Z^tIgTq^%&G6`Wxqk|M>cbivyQIQ`@~KKgsVfv4a4CcdB%uLCY{ z8y-g>%s@!kVhX}BJR*Q8JR%Z;&a5N0m|&vWMfTih^l;c>z(fo40APa)Jl9Q-Lq^a< zOG6$*#d)q#=({416ItpCSEFA~+6r^w;VA*pE?)iBRN(fc--T7GC*CS)z~uQDFqDQZ z!J*T?d%!V1UcScSJKja^QWFQjO(3EbEIO^WU}sk|oGRoTB_;lC+mRBUt_7^djR@V* zAY&{ys%x9B@^w=Q&D=#S?{5ZN0UNy);6VEu7#mo~|Bz(MabQz$Xh2ou;LZ0Esg%Hx z+AOpdnp3Erh8cHn&w?{tFzag%0x0hyqN~Eg3QoDtYw_HYFbpPSHCww~8oi!+CyNBJ zW@pK!F=Ki(7jQ)qBJU6fbipIQBgO&K$uTyYjmW&?fIGMEVYAs_d3k};volmVRlr@~>3^q!h!Ut?)ARDTr1zQ{7&Txq< z-IZN)@76nJ;8cCOJJ0}&p|IlDd@x1+P2+&%EL~Ue&h9=x`QTDhIW%fCK|?WI6*dM9vL0 zu)e-+hM3tnOlf2H9eF>h2U)*X91=J}hx;mjWhx*Mqxq(sL;~mBo@yhdL4M5uO+0~R z8i~wO^8oEU3KfKt)yM9MB*zm#48XA6%IC%r9BWXy#^=yrO}G#WCERvQCiFp+Rt^G* zFdGL^kVQahlq^xkK`~m5=SFszx?T3;GjGuMk;bYk)}|$)@d~j?`KzbFlm?qLsE5`T z3BGu{^GGT=&KcdLjO`Es4&|N*K8SQtVH1*}I*7k9>M$&eL>)}k0#m$N$^np~)0g0? z5CVuirjsd14@nR6AVDW*z8rWac?dy59OWUE$&KMh9U1LNyg9awO3k#b#UD$8ant=4 z+_)QQ)w|Av2uLYb{jdx0L8LxjJNc{+MxZh3I7;POay*c7p$irEe36;8;iOqX6i|Yh z(`}JVEQ6mc5VRf@TS<~8sN~T$ zX;(rB?+}NK-iL-YDq8fcTO&}@U>+!Ftl2U7+}jGC+$5h{vmnpVVZ1bJy0m305jjMT zGR-kVpI*c@_|NHf#*JRLa$yI(7`R1mYl1tcV*d5s%jKD4xv&}>Q<^T4&1Sg&&inY>2Or?h{X4jG=QfVIX^|+}a}#62)v&>4v%#>HX4?01AZ@n^ z!!Y1-xx|YXFYxq_zK+wgGtjFGY`0r{{z6{+n-^=m>pgr9m`o<CB9qB7-Rhcdi9rq5q`>B+*lEo}A*h{@4Ev^KbnD?qi1Aay23Vm}7!~hyca{_Z5b4 zj;Nok9sv?lxg-dL(K|;h-EZmCmR-%~3#G-h_A??u$7Vz*fe zqvFRj{B{1zV63r~j3YghR!qDOgp%dedMy7w;I#Ht@6iU;6sI}aOkX*3c=FDMF0=P#HRdn}g!?Ppr zPR%B&EuPzHAS6d(Fmz zC?K0ewR2_5m0Sh_W3f0!+9XVPio70#Iysx+_PzVqZns!2mpFfOiWn2FFHdp$<`nDe zCEl#IcyqZz=9idugj=_6;r8vDn9t`3okfiZa3IHe){7z_j-fve60)1LurpM*zVAMm zm(?J+uFxEJ@9ffCHuo82Dos)WAE;b4D<#)8%8oK9H6RdSPm)*a4pJzA0(3;)EuVK9 zSYu?g=_c0gBCBu9l?{(5eyT5Nbk{pSk|A0oOXgTY@0kHtJUgxqYjYMj0XdP0kpnv+ zKC%+xY65mYwY+_|ou!~AfhvOC|Hm2;!rH_2Q|xjZYw5D!qF zS|XeqY2dp~SNpkov{G9nbY2=U^~`xUPJsS)$?JA`+d4gXUGwXul@)T5S?N8Zo>V-o z9PZTha*=W>l1SNTdI3B%VaQeiRD>xPgRJ+qHEd-s`uCtvwD9G1PzA-yXD{*VfA81u z`~ULy0095}-~L;eA06q+JRs8+ z#f=*`@bLC6Y_|j6d-)7q7chyda^OG64*=c>00UbjWK5OKHrGOYqG;`im6q{9#9H*) z05S%65N=|HH5gC7{G0fvU;Zla<9{CC^F7~#)dMkoZaP;I;Al!P#wOZfnD*d z)(w+WMZhlZ`r8prYZFDfbrwlAXKQ*;GFpi0nM&m|$mP$<&%eJc6#Z+mXS){;{hday zyGnoZ0eYM-e&0N5rff^Ldta7;p_9^Tt*u(`Ox#l;1#m)AHuJHztw0*_z3z>`-m;eEiO>oJ?pFh82%c(K5I zKGgy@BWHO&$diJKs?;{P3{tfNc|VfZ6H$}r#0}nl*B{r&?smM&yCg%YgJ^G1K(>K$ zhy81^DU)+h-hU~22QBD_^+xVi4T~omEMz6kxwcURGBr6-DUUqV|1V>2_G?>qo%j7_ zvvza3+uv$f9a~Wp$ykP(NTMSMFpxMF;szEB`@!#d2=X@sc?c39ehTuG#6a{CBo2Zo zg5tzL5E&LM!L%*Q6h#(UrdX`1TUEC^&F)_mB~_zDOYn z%RPFCVYmmKsm-*uG3{I_x)h6e!;E zlr#PAAReQ#_9P+LmUC~8N&vRQ`A;N@nHUZVb;?RLHfrgi7LhU;&~+#0jGxcM2y10h zgtz)Z$QyIURr%e_&lI-cs-d&su8U?qd#SRWa|#@gE!Jz^5kaJBcvq)4Epcps5NH8~ z8Fiz|&r3;iN@P?kPjAu!9rb9KMlV^W2a=i7jw&P03JXf)0amGdjf|xE{-O+vVM6O@ zK?_LWR{UDv!MTy?6O<{{G)*yV*7eV$H!xp&kNHmPTpe3u{p?kBwV;T7k9``=@? zOKk6Ca!dqWCyKmCJaQgmq$74=JlEIP?0@_b=i3A4WEL3aSnhJFB|}yxS5Op!rz7DN zy&c&RNc3c8EU>^SbGB@l)A5LVobs4Gd#({!LL#AtrrF^7N zN|QNrEJ%5sQkf>^wkIk)!mwl}9yJx{1w}sWg+n=d?F{t5BVOm7x4+55hYz{FGPuK> z(8=1kn`yQdwGU|)s2Gq71umtgaIvbz*RL)^?{d|1IsNL({z1o&FMo9oV`_uq~_~e$zB__UFl@aM5+B* zE*qtJS)o(bYi55c_MDL9er+aJQ_#>TKWg&3jXs+rpY1Jaw)NUf%!E+P;t;JI*plLc zrE@OWYGXW$g(JksefNM6B4NMd>@?#aJYuz4v)d_EbGzZ@=7y{1FIlZtthQS&S1X7z zsau}Rxp(&-ckf6;$am5#M)MP66as3%V3NvT8>mApg||*9T&sMT1mRY2PcscKq{CV~ ztR+J+R4bu*O{?5rKo0RBP#HCS_^PU2do(iBM{Y7hytN#`(wr!f{~dw z3Mk9PldN>zU{SKIo*%T~kK);D9;N~zQnnZ?=SvS^PS3qD1or#A zHYeol?$oyx6k%Sp2EKNF4r@DZE#yg zQ^ay6>|?JJqd~c5b)B`@>2oCeoy*d!Dar?9Y@OEUk)&7)InBFFoe*0?JV?RREtbL| z&#_8vI^Rj9T7pBp6cm0os~bu6ELm5zffZ40N?4d3vWJIXePjhz#a3SHiED2FnSnKDjugW1HNJ!)5d8 zI$z~#?NrOw#Xzf7FTq)@tSUFA`W*9!qB1Ossj2L9Eq;c@kP-HBOxgjPa?LCf-K}Xt zN6m;XC>_xJf9|A&9@ndGYClj^MF*(Xo=KmOtW&bPn)ZRRI4 zW;2l-^dS)UnXnJM{_2~2^Dq1YAHDcC0+z^knJ?!Wq7zVL+sta-)@R=|!!{k^B@FtLiE(85f0-@sDvFmbY zb;?&v`BgSwI<=*{T{7wnBf9If3tr{YW*pVgUi0aDX(v>s;m7;hWX+`1WXNa$e1Up6 zFWvK*)kg3f(#&g4Q{c{Q&P9mq_Xk1(74=Mt3394ZrV_o9bH;?ElCnH{KI=WJe&tGYD}{2* zw>)Rg+DdDiszYv1l~gj7H8l*V$vu^bt)d4bC`_Ahuo~J z4XlR3+2m;&lE`C?c)FaE=4~i`bE_Fr-j6cAtT(ktas`If_w07ND*0=3)nbVHn$l>p z#*%HWp~~(06-p?!l8l|!2}v9Y!}{9?VjqMe2pBY;$Rv3UjUkfaG}Zx2Zb*XdxvmB} zn?bslQDUksK#Kr=P8WZ$@b2I(f3LcA}hW7o8h&9By^A^!vNU<1-k1)zEHau{Yk;Y^3QX)NW3xIatRS zZ{_N=cGg(LJaqv;87pTYuC2%oM zBtvo>mW695SVl)tr-wVI-inl!yi>eVq7AQsz&d%GV#v$kt1FVzY{(&MM{8KPH|sV3 z+yC+p`G5ZJe+%L1oc zN2*>Pnj+y2Jv(;%!T*(z$`pao3Oe@{Tij-bJIp+XBp(&jLDwrn`zgv=gKPlBd!DM5>wR!BUWikGgg zPO+BES+mwGB}UVqBE36hM#i#cN7;soyw0ens8cj~0TOrm6(W+5GHG5NO_^=QPYeaq zhHL)x(|?S^v3Y+WrUghm~-sa9<`&I7Uzehh;`CT#-WOo|EXj7`**I{2s zN7vqC>q)y#w6fwDqXrI}5e2WBjGJzK8(w_}~f7IZjWPoSmKW`YW$+c7Dd( zh$klJR7qm8=cpvisJ|(h(PT;Fr>UN`hW(e(er^+l6e~ojWP3@&Rrf>hAn0f8#78aE z);5&0_4wx6psYS5E7G+Zu4>EVl6sHToJT7uaydzXSAbi^<5%*WT8VDSNVH9{<(wN} zE?TgKkgJlyc~5^hQ1!A(C2`uY%_N0LpuxH@YiNHdXAYWuR3o}mu3q^nn{%$&zYDC! z>RCglb=D1%-%{X5q4Z^x4(GMjcb1t>a-5N$WxP%foj^+rPSh!i*Uv_P4n~^|1-=vr zWUCX^EI-?KT`g!^YH&*ZK#WciZ@iopqR@1Wf?ITpAmz-iKhUR8GnI^Y;_1o*E?lfN znPe^A3~?)^pbur5s7e}}#dk-7Y+}9U661oD9$^3gAOJ~3K~xclW|&Bp$!(D%Mm-tF zUa6+qU@zLx=BOm=Mi8%E_Hj6CIkCo!(ETL>#S~>xs@_azCEsh>fbalaH&+d*t#TEi ziTS!=IsI=Xqo<7Xq@$4WuB*KKINE^5sO`2>C>tVJtJ+mNzygZdw3yRc0-m)1>1f!S zobz-spKMkw-DT9Rtlg|$!3fjEe5?UK7BD9!P&KH9LgVnn9BPihNKx4GUY^)Nq`v9u`K>Bc1HO(mk)d@C!VNc`H@j1v-DCCe!tZ~FDO{1ivK zUcx_c&Wt=z$LLee$?w#4w^PoI8RO)O6lMgVp!_#2=4%GTePCnN-OpvBp=;=hT;>+{UH8S2Q&fHc>>XVP2@Z10WKi~)7|2_c!?yvnCfBWzL z9scY8^1o^?Qhn{&tmE0IpYUhj`yTuLN{en?@cT?UWOCT>r7wMn^NS_l{qA?`%k(i3 z(m*e?(q@!AjGT!%akJfEK7Pu2y<+ZXq!@Ys{rBa*=`)>~adxuc@#DuVd&f=QbH{Z= z95?%GES@h#D~?@iAcXIyekdyGyMfl($Q0%$npQ{Mfj{}*5X z)>m0B7QA<1Ng)xO(#JFhVv#MU-IDFUevgm;$-m)M_AD@T1XeudyeVhOp9U{apx_Hk z17pb5za&(=o^_SpaZ55cbe!W6ncYwn%I2|B@6>U`3+gXAC=Prmwo=oQDa;`$!bB@S zQyE^;D;iX?*J}|LM$Sn+Gyr$>H|tnw+33h*Hc!?(dGdt!A2@#VH-D40iAUFlX=BW0 zksc;9c!OH`-t_rz{gcwnNw?PcI&D9)M73E)Q>j#&D_7TwJcjNJY6dqHxal*x*ai49 z>cqynehCalVLPgNXgwR=i9#ditWA)73y?Ey9JVrLtM8{wbyAaKHC!u^Ip#`XB_)y7cOK^*ZoenR#L4*?edyWizo$omhp#+lx7o5;Z`f>ZSg$v1R@dydJ678* zSF1H2ee?yOGmYYvrTlnHduYZOZ%rg)uBgV@`%Noi(SYh_|vvdEg}Riyr~ z@3-tiPttW%AZ*G%Em@%{Vbvy3R5_haf31^AXqN;pBwl(8NtHxdr*Sp6QUGw)2@E1+ zksy}qht-{tsdOwNMlQ}tFLn|W+tFY^J4fYMyy5x=7 zl3Yu&nxC4>`8R0x=!~F#F`*(Rg=FOsRn;|QmrNk1@$||WD+SZ6>xBQ_6f9-pAkzVX zIaK10P6dX}fV(AIDAc{AAz{`zd^b~5yJ(G#_u~!4S)E3uN~#c9lukBs6w@muBf^cf z(kUqwjHZJ!q`Q~Hr7SFrJTwJCJL*<9BhvQYkLk!;89~w6#t>>!I8i!ECTZd0#%9^^ zMpN>YydqPhh-$2@f|y&CuM>|>MT)1}MNAr@VpGM%j@ROWR!AO--znUo_?=oJUW|Fv zfox?SS*!e3{$d*~vQzqEO0jBTQ#N?(6zpL~M8#6bm5im5ZeNaaDQCK}7-B|UtTQ>YkHqup@tycD|G9xeKEmd|ZK)GMt^CDd6rD;j-yIf(uEM?d1f z_|N`xg33Go`fvR${{8>(ui(3m58i*jJ#|Vq$wZ8q^OK+agqJU0GIM?)Kmwb%2Pb67 zd-w0NJM1~cUb5A4Ltk_m*I6-Irk1`1Km6ejSuPe_UR~iV9Qp&fhuLzDO&xE(^(J5c z%Fpn**FVR(CUrmg?cd{ibwfv>$KaV^u>`gvnJtn}T_mG2*_I<|8tm9|pL;4Xi=$#` zdKNaoBVfgcJpJ9@=jZ>z&$C~=iM5vfSqBMr4$>iUKR7=8;g9(CfA>F;dCFZC`^`xT zm?$|u3{pYAN$_+Am0{ZrL#H6Xa_xg45CgbjjdW_;D*km z6KGO}M_4;*yjd%z^nwMS;+duJ2vxFk%adj82nt~u`CXOvnSl^yDzbMd*lIYqBAScu zwBB(h-E~*V0UNamnK4;{+@p`UuEW`kFAdM=v7LO5Vb{|w=MWORon*yrcRSXrYx>Z$dhwjA zt1H50%i(a~!;e4V!;e4VwDUZC_>eny&$)Z|E(^O54~>l?sWg%WDfcPEL^X~nuJw9W zrOW_@sMjV99-m>~mH$=>Bb@q>jkKjgj3en|c8<^|Zf*qJQoKKwad@=&sswMJG`^*r ztwIb!lylVQeK0+e?_x^dm^ zUb=e2wGuuV!4BAOSIpLE&}1>e9x-zl5?;x(8V(Z2Cs$q9HIp{eY_3MNs^U2dxt~BK z{LmFKLm_M#($OneBt{(pYYKKYgwU&LUhe5s-+Lh&F?z_$_m>BoqRX#`7%Cm81)jY2 z`seuiH^0Fj|BHXgfBc{RC;Y`<{6#?`hcNAt*G2nqIPmVf?_rH2%@$D3n`^_&@ZdB~Q{s1UHtRK`pW_6r3heCIpA z$EV-oDq+tO2!Ri%pe47qpP@O|ep5Z^nWdORib7Bi6r3lSxkNb&8~;&qMq5W-@&;xBe`+ z@OOBVE1v6IsjoPT0E)Qy|NoC|{@>O#DbLS*^Q-hWDlI>^wfU{}Nj`I#3^+gWW|$#g zXgJ@?pRF+j-Rw&+bMZ-*EB9G}+*3JSrC&LBJUDz31Z}1=LEY?+nfXglr!=b4@jR#I zcPNU3`ge&+%epmnDAz(ex5nl=p{wtaA-At>fQ=_^GIz{Q{jGTdrf|7V?q%I(bihc{ z38Kofm>j%gk!ej~AL`*5UBi6*cP$gKLa!^{x3<7&|6C5FGJSH`&XS_!+RVCz9Qa+v z`LfF7Z(@9KCA1q&C>9Ug{WGjpHVVl+)q()NYiahcWVQOOQB^;!DZ#3 z9+S?KlN_Yup=Y<-Xnco42=o9NZPYxdiKI2B@iVLhN@@c-sfT5lriKuOuva|fS?WZY zxMWp1iEw$QUT-s#Vq;bd;bFhFYEvLXu9<83GXX16Cu%Y%@Q{_@tih$8Zpi0EC2WP9 zsne~J>6!HWE5iXA52O}G#>$x{g0osgWTg-5^XaV}CMz0KQr5|k#h5HoVO72t`Z{DuDG|*$M@)jFqg*dDj2V(0B4A1}m0JLh zbv3~-<%G{>>>Ep>uCPa@*#=wp8xy3Bn>s7d2aBPzUi6aMsd3JZ$aLkyD0=^tGg!@_ zV33s!WV~D#+T^Vmw=AO$|FCHmZL`&?7R?-J_9$n_X-H9zA=VqtcCO+qB|AZL9+Gq* z>V~0{Z=0xD2eR1oQfO7ONUWZzoHazw6dosH>Q&9KaZ(%@MXYy)nij(7;NAYYO3l0y zP(%Y!gT`tIm*&FEoM5z%nU+hjklK#pkq%%xGVW_AZP7>@?HUzrb2*6)`ADgeYK^t^ zrUv_!P2O8KLdTkhIMvb+2Mxci9a(E{Z=mgano4D+62W4YG)9c>A?V@DnGs2>od88j zCI!u6E(MYAIu3_}bYhfRRql%lXP_x2?eG(1+|Or28WdPU9B|?-0AjwF^LPH<-{U{} zn}3tH-g$c@Z=Ik3^?QO~y8D3dI-)V^+3SVkQ*&s%7-SQiEl)Hz!82caocHW@p*9kX zHQ4M}bPH_fNeK=qlmR+j=Qvx;IX^q+*Z(E$%6e*H6}aK&Su<8Cl-IM3F}_L$ zH5(*NjQi8+flPYSE$GE`;$GI2Q1>rgH|qw*(aCySv|7y>OeI@RJqdN9qvr6@TIP$X zTIRmiS(ScG_b- zI2?Mec00^&&!;cfy#K*R+<)+Z#}Dpu_wHT1m&S3nj@V4BLqUTV|8e6xYxiMWqg0|c z&a@lvat#5cY4((RtL6}5FjhXV-EK!#DPIX}k2VcHmqtn!n}Xk{Y(9~jj7n1v|K$wn z)hD~qW+!F62$7VB819s)@;s5C%G=8sa_F(n4NdCN0a~UNWrSjluem#J(x5fkgGq#8 z@@)p(di%Vz62JkSK1_mgBR8uJ%^V@6dPcL^kYmq$wj52tt7U+3Q@}Jq#k<{(KE;}G z)^!~=%33B9AXnoK`k3l8uJfJdi<+8mYOEQ_kOPLzZeJll-dU`7mqY!h$U#jqHk6g zp_l^BisZ=Po1ofWrv_qnl<<~9pe)%HgBI6iBL~xzutBoDT0c^ONyx!GO*Z+i7HpN$ zQo3K0Vy8?&#v5MJET8f5u{8)!iw_u6*a{clRREk4yCVu6C zuNv}3j%vLfWF1P7EPC-WVQT4xg_2mhNoBFO*3ySi^Q77$uDqv5k00^i;RAgQUpv@S zLwHt{taX+L4*1;>UKH`n5*Eu;kVYckJy1HV!*=T3m z;$27Ab$IW=N&!|5y$+F>;^386Um@qj^JmY9IWX&H7Bq_A`9v_x^y0t)e@t zvN1D}c$IL~4#yb}ls?z7X2%ZA2x;VT?ig{Z`SXm#3|Jt^;dj-~vr~$l)!^1SkwA~v zRjm|6xslKnDO*P;&6uK3XU1H!lM*{DUN+)ULE+TF)zJfIELd{Fj-c;Hrczdc3{zR2 z0q${!D=u*jv96uWeU_)GOqCLuyWFE=j%UUdS41V|iEC?L{Y`!Xp|D5hnnjXmnn~YE z3*N_H`5M3QSN;PwGs8Xva1!3&vGDpuC0$pNw!O{RJ+ zj=^vWK3WcZX7Kvh34%SOThn+qk!F9E&sC_Uu}T|L^$7Ese$?V&n!cauI-ZosRtQx? zZeO~E9-mU+4xyJEI7yzb2fntDtQknz>A^Ht$N@(taMSBh2xy&36P@?i=5>;FbaPKu z<%5s{ox1mn$3E{YP}*Jwmf_B zlBb_OXFi{E=WNN{dv|$w?~c$#mGC<1wkYY%iD74S-?bjQR`NJBW^FAfQq%cJO`|$X zN-KRI3EHSV?1S!w(%31m5My$kDh+fz$r!ZG>ApI?<}oEgPNGaOmXKQSmF6&6H&Vbz zP`n_gYnGQ0>xK+lQ~iGG09s|RS)e@P&3DzKTpGg8IzkKr;6lM9CGU+~GdM+}KZH{k zRa6X7=#ZVmXi-{JB{r0}8rkDq=j#3~nWFmq=()0ZCd+eCXmwftdo&`Ii$(x1-Z-4G z)p`=F?wIxZjhppG^OrD?oxvF|Q}Jx+Q)D0Z0-ey`ul$ZUgY_P#;k$Bf92zSTQD|i+ z_s*d|$mf=TI1;l=-j|C7Y@TN&dZnwv^JG z27$UzJUhMC#oHF@B+_@Cgz+{?ty+-hB;mJNC3!^)X%y!jYbSj`IhI4?^g%FsVTWYn zmIySa-;I%tb^tMyQJHaCT*Nw(OMs1o#7VmNLj5Y{!8F>$a(#U>I)tN>grU!BY!VWT z%HCqg81JN$Ny1w{7=WA3pYu{wxQVRI)f-poMYXFo+!)r_!MkLJkhej;Am8t_%9bvR z9T1~+{7y|vmYZ1u%wmY3q_i|a;g+9Ow6kH9y)o{VwA%WVGTz%tUTJA|(@nVDI75ha zbZu>!B{$v9)bzg#Mpy)=TD;i-J}^?AqJujC0lY%V?+x8jeGFnRmXT>8%yu zf&?l%B@PKyuEktq2vA`5u!@vGcBzeC&}aMsdm%Vn*{|A^t`)iuj*$>RQk{>wdw{=jN0 zbf_|^byo65Z0D2=*mwbB!f1CO64@L!Jb&?w{%~NiSgR)Z!#_#fmTT3QJ~00(*MSIAz6}!^BU-5lLPdfOFDW? zbu$gWzh-DvPt|x@dTbI@iXV;e=7a@H=0M^l&)Kmf6Pn*$zQ+R#onFmGkciupyzlGC;`;iUtNlwpegA#t zU;aFAyzvHmJ@6UpX~R?p&yF^>h|LtZoxlvPt6UFy4e+2G0SnDIyElM~fz}M*l+jHLfFuIC#|(__-Snz`ny; z%WO7dz1h&6d+x-@ZY@)$o7END?S{>@6j1$c%gxOV&z@cK^yy3fEs@i+GalZ%%fp8c zIa@CA-Vu$}s13&`Oe%}fsiD{W z!|6nG_&JhyXzHZLBF%1MR$qJpjx^t6(kMi^m3FoT)SxVZ{?LP0;$fIHy{+URlBGbO zb#poI-J(mHx)*rw=x^495J?K3@(7+>WWyG3yjoi<`~9A<@9Xnl0B)^B(L0rz9x{C& ziRpm%vdU7Yymtd4ve6t{3|S{eg>F*}rQZ2lm~iJDp;wQJ*TnLi#v8B_+Om$!N*eR+DTGwI zv6zVSXK1=hg`Q(wOst0Ch7hp1p)N%^UZtF{#@~Viw8`%6^9uFSS^NjQiy9vrAgjZ~x0xa@H)cq1f?ceiqwhKL8^w!5hcbn(GW2lFv;@c|n!Sq>^x9kQ)YfY}! zu98|Sy)!}zNYAM?d`zQB6DWw+buDBW{<=bX!z zmt^C3_VSYTdc*noIS(G(=LbLd0iQg3DxH1B0ocyrx=y8qnb5~dG%7@*^4@;({!f@? zIoK^03o$BZ!+bs`9S%finLoHs-*wELVVRcntZqvro5T2lUjMgZ$Bs{Up+T-rXDg;6 zvfJ-#{Xb?@qRV%j;5p+yTQ*#CjaR67r!v7AUK5tG{^@W_IA|+$BC+HYgJr{|!X47c zt3)kWdMufq4X1QU<-_+N+lpvMooN~%ii>d{lg-ZLza=SE{3VA$p<|KtY zT=E=;qo-HA_)J4>!>G{8z+INi5M1~bJ0gi*WqFyu)^zRp)U`_h-_x{k%#aQ5+v zHy#R=ELib=#Ftk*fA)+I-u(&J*VoKqFVc>k1c!dSl!E=?#U0*!{6^iVV+v}BcGV-0 z$z)x}$b;nhvn0vwo>V)=^*)|-#Z4xLP`#++;Sh-)JS}ec{zi&Brnbu8COer7tMZ|3 zRC(uXeo1Kr2`mSN8fn=&q+`~#IGU)Fax*5n+M@B7J#{FkhED33K&UA8ESUVRHh^w> zVW-M~kvEo7{Mmt0*4!}1UPp4ZJl31q8P0m`Z9TA-29i-YP_9Z8rwRw52}0)wn(1vI zPXi!wgGAjpcYG>kC9=auGn%S-X8Jk#3d*wG4BzQAYB?vS#OdJzV+@~UR9&>tjhDmbR7n-6a=fe=>sjGnWXr%~f zn+GX2l2WG!F@&8$Zo-uOLpPOjzCri}(Ee-X*PN($zs9u@Y z=Qcc(VjpOtRE)Qg;V})#!lFIYjYof$B(NV} z9DSWLC?3`7>BpMkYpbl2T+PUZ!Wcqdc=YBwy!YOFtV6~yCverEuW8t1L*eu1{CO=-#BVdB$Kg4!M)0nY%}<38 zOr>pCJmrKFATigH%Tl}mSzsY)S~@yrDw308$#cdDb2?sd#esuN8YkDUlwlo90+EBt z5_|oBr!z8{TFK_UBeTGB#vHF~Ln*AH{%#RZSF^K9p>PWPi0|Qk@QGZ9@BS;6EP2Kj zfE__$AFyMmGR8SOy;fTs&Ukijobce@173gUZKAUpbZ%;H4NVyNK=m|Z;#a%g9JQcnSm};>2h)CC{6DYy+ z(daqic7|4pY4pUVn5qPOm|hL*VN0qlf${CSS>A7%ETqXA-Fm*#5p_hFz7^?SZmv@~ zFxt}L_FAquU5mZNcAlsQ`ICz?LI})aM@o^4(=#qEE;#fD4u=Els}(n^8xDtq5cpPW zZmw^*+U|I{z2xI3FE~9t*VA z>`EHJu5zUdCz2M5lRPVi@MSqa40%%6;U4vF4A8)usxBExM9bMONYl0_(WgjoavpZh z>+g~4nZWx_v2rEPE!X>Lh}Ov*4hMF-U7d_L>v4xnXB@usA`PD{==%eQ7zG4qhY7j0 zPNs#$gBA_hI>{I74>;!p>QMOwwoYCK-?*$3!O3)LyWbI$O!E)@fz@Fx&zH+J>(m;n zj##RfQGh0e0_qwsnHfothx3jWTq)@pbL@S!P6>8F&a6>sc(xFTb&W0owXKS(wLnCY z)Gh821W{M=w3~#7*`Dvg4I-)PZv)So5&@<|&RffJ(xt$$4Y=v@Ein0;4 zs~UdnAXT$t$w^KF@{cUjlS~+$WK6?*FZ7l%ZEZsD$!P>XNKrRWn+g415Rt~z<4^Hc zIcr3=SB#g&>zGxhMbb5Nc;o9eDN>1X5mb<>GBU0PYeUTg8ZB})N<>G7Ayi0&Kr37w z(?&J*yAn#5#+%|8x?w)ETheN8s`lJUu@O>KN#LP&=2A@J{jmlU8XwXTjId0(RBx&X z$k8a(w$nc(bWbW|nY|@BV95PoNFj)sFUOkIP$YYUq;rtvjEkJqz#Po2v94|Dk6H*v z#(3XjChF1&m)}D`DW#({-arPARXGs0fD`L1q3=g{)pp`KJq*45_S>XB@P~i+hdg`s zQZhvn+&Mkx#4p+Hc6|8pN8Ee#fY;x6l~-PQov;5p-{6n_=#L0tPuIBtPuv_N%KcnC z4>2WNg5_dK=Vvw7%+2P^oMkqj<7WWNKs3J&+jZQ1<8^L+_%4SG(6QizJ^MP>=$gq! z@xugA@fs|dvt-Vmt0P>AEDaKsJqNl9Zb*!g;o?zpnxjNR^UEWdpM1w9 zS6JYLISV=#WOnS>X`#>-a83&$0f-C0dj<+zA9L=UvPI80r&mz95`sf*Ri0( zkT_^?ZaEjs^?w~Fh!TCvo=`CsBJ*=}TH@_U%vta@kBCH0S#r%a8*V7cQm32{IcR9E z93WETo)RJJC36fbo^Zg>V-$z(SkiIIj0NX9S#w<+YqjB$Cv>GE*%SY#J+4Bi`;#V$a{4xziLd58oz#x zi%^_!Ho1}JOS8pxR&rUAKn$Fr$V9{Mq%tPkQ5Y0f5o*5Sgul3>r~bHaW{%9+!XQ(kqi z5q1ZzuCD0!2R7>s>+377uCCbJtXRju&Bsr1PoLAx;bghw;k|p@yMGUi$kL)Vva)(U zD)c1f@%^vTwz3DAn5xM>rbx(%uA9{?%fVCYha;Lc8B-odZM)KRw?j6ULN7<&!&b(2 zyZJjnp<0-L(}rd$rhRR!m&RvQ=_(=AMs*tkU79Qvrs5oZ2sO{k8=WQV^JcVgaj6Y< zl?kr5Ugfw0r7svuHnxIRO0%NI?BGYwZ31j3;j@VWKOXdY_bIa4ZE6F@JBzUyx134w zgd0VyNUV&-nhxj0k7td+b`oqGV+1E8-54S>>q#lIoXrP#lr`f?o=zksU+TbmyW+av z(;p6)EQ$f=i~<}|l^%iwOj~2>h_+IPnOLQJh(bf=9Yq#%R!F z40YjdB^o0Xuk5D!bAr64ksKHu3>3oR0N0q{U5|km%0a{!r&5pc&rNwe4Kzi=pH)`j zB)C_mS0$t{j|vj2i_So}8~daN-&Lv^PA&K%5Y*s1kbh9R9a-Q4Aw-PTAYt2d3QNFj zBS{!MM+#BMjJ#q4m2iB&9{Y@s6`lp$G1cyug}fY|zyxt0o!@r{lUAu_ujuHZuZ1zIbST)mQl97r#h~i9i11Kauwu zBF3v!FvWUUGn%JhTu0dN@P5Jldk-bo1UNl8VX;^+pU-jLv*tr%Jwrsc|aUkhDM+Dco3Ior%&rSnw z?{J5wJjG%;=Ujt%6A)CgxTGg=V5joDOv8-RGRktwk_#?4<1XHIu*md>1BsrTGW*oi zv*QJO=FC}s^Q-*Iuly?J*M5%8ZpS9{q=wc?GI+1KG7PzH87qi)EkLRyP1n|B6`W-U zPH$Tr6v-PZdn=yYku)SFIZ(BSdy}+dJRA<4xt;Sid`lWpwyc$@x6Mg9y;y-;s2|1Z z=M-ZQpi**Go>ENV!`h{vfM)t+Gx(=$q85#{S(b8DQaC-B8ukB}W}?>829plzQjmjk z=RHJm>qQMSofbXidRC>vw3urOKx@jOG1m!Ji)0_BimfuM*@w!I%9)WQ+fEACoMR1r zZwb1$0sc(^QV}({eI8-`ij+h#csFa`Raz}moHd;e8TCn4cEz<0a$x8Fp$Rvbpi9xQ9HMTaMNkQaxZI_<`D=uNi1C_A&;;Lmq!AMwFo1m#m zLrwL250M`e8$&Jn^yekPk(c|g%MSX2j6qSnA>6rI!C{op%7}Up?UFP}o=X|_< zE=`lp4{-}dLNu}&VsGLQaV-t3f*i`ZJ`2VgY|t~aoig>jf+*LC!27^}KhVLBd3BpEgZ>BL){ z8tqGnXRS=jgeXnWk(G>=M+*t;CJb2VY$@>8TW@i4a>Du9IiEgx$|s+ELf9YZ7E59lX}|{`d_c;H`>#FVOJDdR zXJ_a9_{Z<_>8H;K{SfG9-GF0FDbe?PoO8VP=4;ZOJVZ`U&p5w(m#*uW&1PI&Twrow zak9jno^k$#H+b^BA9LX^co;f`cbBB^Jd(W?Ur4MLSP4v=>odIJ3WufB$wvGs6DFG1 zOZrN-g1vJios&brh7}hqN@VuP*OQOH6)bSgB~Bp;3+CKqE)4^s67*j26dDN7Cl-9r@eMu0r&5vi4c^lIVoh8H;zeQn*U)QrR5K>-I4zsA=Lg@&Yv~)Gn0r8S_K} zUK($CC~VpSsQRZS1lF8#om^OBiLvB69WR!QHN$}_F=XPzsQHRi$$zYC?(HevQCe%$ zkd#Jp98I5SBqwNk%@S#vN64%obRg4+aOUQ3oo9L(|Z?kFQ!c2_n4TOFBhbT z57_N?tX6AoRyP2=eDQ+K%?-QVmS|_sQZ+A_wI53?inY`6P)!b&DREW6LlgJ z&Nz6&oMnBz(LBDv%PiKG0oIT-Ts6cnG)i3|Q@W94t`tHA4rUBh<`%V(PGKA$GX-%> zClGSB5Jidax*F;}ifb`K5-bzX5wgBHM}-h>O)?Ah_So-(NgBv&AjLXGlSWA9&?h1# z{zi_;Mdf30xU2ybC00du9GflPG;&%!FRyniqMn_sw{)Gr9lYrjgD>yr>cw+W6ex70 zcs$9LnR<}RdpsNtLJ6#aw0hq4UZ%5}&$Qp~+3dGmUthD%TWP>|5+4+EXkci%XFAQR zN`n`ys>D=!Y<<&=Zh&98f@bu(L^C?u7T;*+2C1?HAG``Hc^PsISZU9GSo7@YJ#1s=Gu}6RJ{_NuZDNQ^~pk-jG(tI8EMH&t#c zl|#uNNe%rt>GsKHm~V{>OLriptYp6yJY1#-wsufbY6E_Cs!-&Es>4evcT9b#Y3k0( zIJIPfQxP7B3=^S;thP_1!HnG^@YOVX5MGbxnHXIS6{-ujvYWt~-M zgFuooLt*F|a!eT`OXV+{RY}WsxyiF)oG($pA1TH9Pzz|H;qvQ)(Rz4n^{YkII+yus z>8>?}wl1VGXR=9?iBqn+_hW~X(n&6$l%ZREEZkQE@(Q3ppMga2Ht2OzZEMz?Fp=On z?QrEaoMxoZs}$n zCl{wYc<_M5Vu7`mv$HdHyA6K6AS@kU`%AyXcmCO*@@WXXbu**mj6EwnzCr{_&#~9V za#m!I+5X404|eB&~15MuKnaegq$_3)~IAIE5#?@DwM1iH*-272}i(U z>Bt23cr1r1=uNjsdsg4EA6h*s!jppMk{b-388ggB5USkiObB7zQS#Zvl4F?i? zrQI0}bDVmrRK{Bi8$*X@t{$wO9cy6Df<0S(WFjYA5OHMg@Pe1@S+mw4-co#)>u9ko z>6q0yoWL)3ya4q{$)~s_Gvk^op0VH!zQEW2?%&{@&%eX_Czj26#~w@Py_nNYzQse# zGWrH18+1aZHCgrO)(!bGN2SIpxyfnP=wR3BpZaTx z6DQ{+o-mcrjAg}TJ%bo~DU~OUq1ud#X~@uMCIM0R@#^{2qNc3Dbq}KH($`o9MJsDW zgPT0nAq2el3U7+!5NmV?N=%F?%ESkwpN(X^80X|p%(+g!>K*2)_I#K#SyLIAG8`Eu zgvK=JFvfr+=RM@%>%{-%tL)slIWYyS2BO9ouy~wK1hejWi-pH0&uIu;+}{)WKp%SU zKYGY!vlgo4i%T}^HM`B44?nr&qYppf?ChLJ_wR9fdW!Fg=c8><%d-+vfL1wUw#J#M?p-g7I#M!vc*8xJZve!nEOfq*p*VosAPA742Qv7B+JQqSuw4(`kwk^>*ztiB~+F)00voKAH|E@Vxs^r=hDQVKzb*SV{tt@)ZOloaODs!yIrA(!T zN}%%KMY9?ulv5(rK~Jv=qaw-cTs6U2>*_?>yKdCEOGaMM7d)hP=CG}i$~3I@!JM0| zqz`-NN8P3J28fxErEB5+pvx5WwxSW8tJzO7;?K9nc`aq7rMjdvrmR@S(6(RKcEPNd zjGR{gT0&aeu+`RJS{|OPU6>q`qQuRpE9OfsQ@Y(rDU&myn@~L~&O6m+E2u&{XKkj$ zK=QLAs!aR-N)eo*JZzFEUV`2V38~1#Vl6C^l@3p*I$tToG|%XWH|ewFX*p;59BP-_ zY7W;J{$c8LN{T7fHP`E@g|PG0qi_q?Yl|Z+k&I|&P0Yuom_#fkn&FHy87Y@mP7&g56e*1`> z57zCRi^Nenh`#fj%sResan4(xf1CYg$8NXdu-yxJ%Q;?NUh=1Z`lmeq^cl;u6HZP} zczEvtcg`-@ZueYYU(@&U^__LhW;0G^3;GbaetFHToAJ3f-{6fm-VmabV%xjUPmjtZoi;_CE7;qms2T7~3}NF{?ta+{pLJgvL$^kzhl1c1U#%Q$AvI?I_9JtS8JPyMd z9?uomL?jn%$Cgh>?AWm(DfnU7*PQylTy-%edbaGboNyvj^(JepxWN(!_C%H}`GtFb zkzf9$U*?1RuR?F>4~MFyFSdcmn3`1@Tq13;HRrF&?{b;`o6!M&3`!V3XU_R5CCPSN zVHbsi$c+?;Q>3|G4_$e@&ee{#!XRSGqbW_AKoPuAwS!t5L$mKp|9|v86wh6a_M_>H zxurm$iRu`-|J3ix#Xq8lNUw+f6jR;X#nc_@L9)o{hvKMt|4Ik6-qn00!2)MYoAIZA zpHu#+9+&AJEl{6v^Q;uKt@K?ERzuOX588Z+Q)rUHI~b%z)>=#+7v08|iFeschkdpU z#4T{B(p9&1>~-z@j6jsY@vegoT#S%Zu9p;{91STLWaiSd zuPmr4K0>5Tb&j`uoYiHQ{95DpdKRPN8&Y(@y>5b5>( z`w_1Cm<;_`lQ9K-#=KlBR|>Wi>H%4`jboZ+W6wwpQoh6hppAxl?g|6)yT}gP!29+* zNEUb$S_F?2D@}G|o12sTAWwifq;! zUS8kSSdl*VH6kU};BPZhwNyn?Bf+cZm1WmaU>fbL)q?oPPRJ5TH(~w6h=Xc3POhyV|iysn!2Soeo+pm|_YQ*I3MB6|buFz8HgaluFlcvS1YydDYC8>6IP26|N!FSjCYK zL?<2pr=e3N`>U&TL923@5Vi1(d9;Dbp-j4t1%*z&z3A7mwdQjSVR?u<xSt^cV&yE8<&p9w-ja3>hWy$9;C}=-J_MY}x8-EdY4N6;Ah~IB|EJae~tXC!?T=AfgOsxg#NGa8Lg6cIY^d`L)F$KEL zk7x__SYc7)7?Nht4IRenS8BBIpOx3+yg*ebUXY1IxJ*`RoPjpjMop_pXsp#vXf6i~ z1-DEk*vA@C(|z}tpLlwZwVFXP$}gNuN7{9{m3Eik#ry8o*B%RrEz_934^>@JCQUgF z**@9i5hc*!YIao!akLjuRW5N1ywNy{lHZ4M+MsQyX2$DbxAA^4fOc{YGPR6KF3SR| zDE{Ta^I9Zp(!9$PH1!l<(8|+W&unSDq5<~aSo$1D2;9d-QFr8&G2U=EK<5^igZRMb zr!$y)+^i$##KrylJlgL$Y&Kk7U2*m78JCxrY_@w=&tBl4C+71xr)M3rSw}bX)z`A$ z@7b>dA@tzHyJS_iS|sU0m^5_)(>6+5s6-85{r^aNvuDY&>%8yVYwvwB^JdMUgZple9dAD28b{Ogltc9BfDU#r_BM<`;*b{NM<`S`nf+hDa$wAvzce z*{~oXf*^*5h@Jp+p}Py+UGuFw<-M8b?77a*IM8A z`@~X^i5O%cO$SL7mAx?{lPOeWokl9;qfDht4}D=35ETeWP6=IzurRR33SOF@L$XvF zn0=u)yx*xrWeB)}>Y)2rB>cu$mRjamdB`Q(Fa~sqr>fTRM960TSrcQ01n1z51FExH z@nL4blEZp&?&&Z903ZNKL_t)&#_{&@@=Mgr5)+0 zO||NJf0a(0>66=I>N)ZHKqe#IG0Purst&craQ+VmpvkmCQkR{vB{4cDt}HqIISsQr zVo&H{j5*My$c%gHEA6s~#|ZD7(Dib^QE8x|V=FHsWl?#pxNBh|Pb*lSMp8vXIvj*7 zi%w6o8IsKk&5Wq>{0NR#iv%Lpfm$PEoLnYq+io|BhG4@2O zad%B$vldI`nFyhH{$P8ICJCP0T9(x4Vyzl^4a}=Y*@g0yws-cFo`@>=&xp)bp(i6+g);=K&>;&H z-JnInB`&0d$r~ZFw!AkI$s9`upWq4BnBg2P%Pr8sp#kBN3-m%UWW2e`)+}<#iqayc z!@5Wwd#_e11+W8fi4Ol3-$Z!h4mxyr^U*$b_ZQf;8J*|Ml3Y)RB>q4f3r1)*765{g z#s&4o5e?TWJs9~il}}}|tdra!OrVyanUZ0YlPRDYGx9z3@|^_ZOsU+*>%=hU#SAdq zH3jc!LAN;%r}1i}*8*v419N1WC&`gY$Qx3!+Jm&M(Aze-+vY1R=5K2_c%FKYR4u>b z29|iBD1fZ%38Vm$NyGJ4yr(fMIEfG=%f~g4R~z9u@uAyR5Rj*4=7F>2LsihWe10%yvpGXbIW?&q?1tBVSiojM8Iw)}rFmz;MGQF_nDm`zpaCr$mgnan=P-3v zGI$^ozA3`a9E<$}+_>>9PEJm6cES^<<>?8|FD~);?3g`Bf_J72OePcT&UWQ<&xP7% z!1;u{2l14WbPrO>6YSP|CK~ZPW%dV}lm_RCon^UlO)YV z%p>fy6J?V67m>GmzQ=yFUOF1ey`!Ph{Cr4b#3Y0mkxXPrhn%Gv)4*AWiTITYlma}E zDCav_ry>FezNUne<#~C|W_AMSyiD><*~4S#O5T?i;?@!}Sv1orOfzNpl}y?a0ZBYc ztB`Sgc7mg$C!F^NBVKjl$!RrFG6Gh^2%6GoWA-?9V|qA-da46DIV0O)(?NzB$ybUl zGG)T%EVo6YHLAnwzm5!&1#+e`U`Vl-gIcmZjeF!xccMrNIRcash1pP)ZbD;?me0!* zRl~`2-jPh008Y_0)GuN>9q1o&8djL~2NzQ5+@z318^{G0sDV z@RFWmLgSla?jl1QqkBu1wam_m+$@TAx%an_YVM6pO!DZ#CE98rjwbg>>@p4=W(9B} zJQ?CKo_vN)b(k<&#)YzJa6T0qk_)P{gyHrJE6MlfKNE~KxYMH4ddWF4b96rAx9MHpn^+ES12jso28<5fRW`OJ|o_ul=2|CTyeBXLi_mM zHiOq=WsK}(p^7mecc~aS>--b%9NMlcT@15L(wH{or{jZAPKihDMvG(Z7E!@1n-SI? zNU)8Ujvz3*c?0w547YCGVtxF{3C_;W$}=&YPI2YR72LRS16QtG$Ifg9>nu9a*7F9C z%Qb~cXN@fz$})G@J>19sk9`uWd++1Py<>Pd%rQg6r9dnCNkSHJ*A!F95aP_BDE=I~ zfqlVKQR5_scB@SwnYdIeAAuY61ytVRi{ed;BX1i{!+;(^R|uG6hD%&<#zQ6HTVe%^ zlk#2|UOGV%YM&L1#RELS95bBDdn`mFbTBZu#HsvOSIWj%A=%TY@H5r>welV#2tnS> zJscMTV27^!U;Q=5lqpVfWsq`?!z! z3perV-~4%eU;=_?!%c{6s@4}@)?1+%)`$EU^Y-VVI>gm$dqTB$Nft_3>nrc5cFR+h z`x9dr$%lKwrT$%cW~ui~q}&HYM#(kFGL=@(Rj$@HBc7~0$bPN;QbH56rcApnEPIDY zr}e!tJEaUnF>9-wT%Z#oZYJK-CVq zo}IS)r%|X}7!z_ebBL+~y+S8MeZ&)vgz4@KCNj9dEq1V8uR&l;wh0kU(_lKAVz$`9 zVt)_Mk-^Ey6FfOO!ujbLPEXHpesYY<^%^rNYA=>6X$-`{0X3_HV|?aHROrd+M?RY z#W(ErzRIlL$puvAW%`_ohlYd*mxZsI4WSJkx|B;$y^}y(2ZFaA5bo(zI&n5`>Q8(7H?utrAo894}XM$C?bj+Bx=GRp63gKsaz>ksrsyk|N}uisCI zvGD1&!=ZAopw~`_YuWIal{KES+(nkc4B;1YZ8hs@B*m+X<87M!x>y>&-c);v^zhUL zK5R^U>3-?PSkRMl7~K|HXo_(+6*OvpofW%UQGX=3Q5WICRMhlG(M%dHkU&C|QLQ!0 zQyBLR;_kRg?W5*;REhKYy#*IB2;0<-;`nf(L@4%1^-3kBHj$8llDtvgfCyxJZ=o>; zSFT@!A%o|1s+Wd`DDNjQ#$df(BgBAE9U|+_SFh`r=NTd^^d8HcaC~)&_45Z<-s7B~ zYnY3ui|K4hHqr=Sg*7@XU@(#4dM@&18hM$vPlRfDAF7~Q-N;QL^-*Oq-(D>7^|h6t zkLkTJys4utRG`^EeXP=O|ds_@dUzr-37%@L6@EEVRU zgkToacV95I0A9o`$)$RP0N^UF!NB4NIK%$*CVu|ce;M7gGhD_X24N*dngO<>Y^ah8 z$UK{B6W6K3mg`@8oJhbj-n$|n9W+cNQ>ZitM^l*bZ&bDfq2bkQLVwsah(b!u35DR7^Coh6e8^FPVB2;@X7!__g5&VfS{^u7 zKWxja(mlaB-+z9o2L@U)eu{?7Le*O7eZJBjiMbd@i26C3Goa)pqD27un7mIPYMy z_?|7XPe_AVDI;5@=w^X^bV$kI^z;-V1o4=;(r`uQhHes|L>By>w;t2oIjck#Q@($v z4uJ?ptP#oa^KPS@(Lk`yVX-sE{`Kp4?)evR_oI(+_x+D>(Ow`Y&S6c7)e;5fA>_dz z4X<)96w~k+YLf@+%G1x*oMXkGv4EY_OK)P?O{}%Zl;I3dpOc(FRT-8EJbf(>nB2!! zyiUpJ2#o({Y78^o!K22m3&rGFCNt!Od%h)4DDtt! zYUr0qAj2PmCH{WH@X%^e73l?~;h5h!q5TYEqC~bIXR7;&w6jLI1 zCNoL{L`L@(De(c;c{k{$m5olim?@@$(5wR=dm^IgG317ggfRpdS8d?cNis`{vq_sp zk=$%tWSZ3LNJn0_Iv+_T9g5U0NbeGuX!-zH(^F{F=Tu-Al~EYf%lS0=o2cKQQ;H?9 ztS{aw-$5Qun_^1xc}OQrJ{!%7(S=_p88yaK4_B!=^ynsD4oazizqRpo46U%4i=wUz zr7Pr&P^3&Qn?s%J6_jKpCi{|hjw}I)3@_2!v3MK0OWtT~f6cV$OF4-*EDtr>rk6=( zYtW^DkN@l!;BH+99lnNt^Ob*tE0;@ncq}jn!D5MH37BQC%ws&pbzDb_H7qPXh8J)j z_i>39?ypcR)p9#3(lnI0i5~i!k)*GV%+n%kiW#Pup+hT^Au}l0Qk4&-g+~L2LtK;j zSp=cM1dWt22?-8oxZr#-NvEo1g%Q9S9cGwIx#!_9#RZm#ql_q16^0EwI&?DaGMHk9 zC6*u|*NIzGCPgU!izAPh&W_kaNX1KrDyb<~pO?OtfDRW}mg2F2!yXp6a(#in{Y$@u zcV4)Ov&&0RYM6Xh6*YD7{WO@2QY}@MrgS+&{7j6CB`pA+cF0%Sr+(jBdNz(XD3hm@ z;GG*3Dj1Pf)sIt8thOC0>IqqGf>!BoNFpbjL5VBJfzhNfqfe5F2w zT|Gcm>;^R8+400FrE-7JpwTGzgTX+CshH^kOBfaPF~>qsW~p7Orh$DtO%@_>A-AO= z=afuldZdszoe_E+sOPp<;JB~g$kiT^Xu!L$|~C6+2?Ie)~_nVxtpZ?&neA?A6QzF0i3R_NM68W+?LF1SHvibskI zP+mhj8T^o18o=>4MltYK08tk5aH~&fL%VE?aeZt=P2xGJ$IyfEJelHBuQk#{gsx@C zLKclKr+{Y!8C7JJ_lSQZO0EVO+S+OBJ8o38`l=z-AkGr}SF)EjH_Wo3h#@kHEQ3Z6 zhoXOE*h=wv#FY5rr(C|?dzSB{YJ=*!t{e!MBE)C-T+#nFy)q)>Q*wto{;Ho}Zz$^B z8B8q(i+UYqs~d%p45-9Jzmfc{Twn2+=?&Q%Ax%G_wEg0v-$TQBw{4nrM>fX5<5Q}F z2`g_{$V@Ilw@FIk&fV~5D2*v)!FEgH{ZIx-1Il93$);r;aR`x(=4hK!+8&LSLJ~;Zyh+ZsT3FJe-* zfN2AqNuO|ngb5~CBjOB8@htTlm4gwHAc`l-!{Y#llCH$mJ0{m9c#+kGr^pzSYWRz! z#>sytDZ=vL^-@*fH2{urBoGJ#kBkp-2QAL=w?6ahxY2q%S|-d}gEcvH>z2c)<(`Wv zzzUVM6eH*{zOHRZXAX|+8!}^9 zMO`4p7&rFfVH1p=y3T9k%jDtYW;_`*)taK~{|_s~O!2>9SS(w&k*zrP84ZiHIBeEc zg;O88?xY}2j#rLj@%H1ib;dXAjiHK z*qsJ&Eojy9ni~ShJGe=M^?Hp23qOtc*rz^&AN=44IDc@&XO+Y<&&GB_hvS1SV&o={ z$z`A6f+dKpKxFhW_rCS|IUvTR=a@H&*V-el&B2`Vh9`S`M%(81i>CTBx#?4dkuS;u zX-2C=G>gO)QSN2O>#D|^aISPj$iVXa9IMqOd}B+*hy#CCjX*qXHgIq-&JR%fum&Mz zoL^pWqum(LWP-`mb3v;4+9raU85R?6B)Lh0rfJYL9+Sxgovex38u;0ShYdu?1_jDy z#T#cTJ4~ao1v0@rc;+g8>dMdJ;}2iL>#x6o;|CA8;pz=5i%c%Vh?FC940PQh;RNXQ zk|0`BD|_VpLserV=L9&*exfK@W(r%7^Gm%0k|lJh6)2m~H+>%@l5-Rkd19`uu`oU% z!~ow4WzQu!cWUsitaGM^zYT09X*4Adp{L{}2@X|#Dvz)$Ub*c9u~ZIL-}M`Y#*ush z(uXAQVXf;rOo{zORx&VJ0W4@hpm&PL4lET*M#9v1p(&&pvWPhjI&xO?n{w;}Wd{f8 zR2lr`^_oh0mlIQ|hgLU{2*so7#w5mA zDe_pxWj71a(FQR{#J1I9ZVa*;$px-RCBkCmzip{Qz zv?9@h2M~Jhf6OpsWn79reO`*Bnjlqt1SxV}Q6fYWL5@bBMb!y$oZS>sV8bbBYw_7n z0f#1Cm196=4Xlr4EqNxMjK-8UwECvl%+wDTxg#Zo3!BvqY_`Retev2cdSF8_l}9eJ zhJfaCoJH-7r_c<_f`!Tt4p?BN(42>T#RFoj1WUZI2)E-{fw$OC+U zUF>3k8P0KDCL7}(a2^~#Oj(GvzzAqD!4)a4ETYKCXbb#7zgJrvIb4)@fr1C|EY+pO zRa_C09G6hGc#$%eID-M;;Y19Frxq?};$LlXLn-Oc-~$}t=qtaEkK;uw zzx!kO+~+=r_Hc@v9X<>^DY)6Sz^OT2R0|pmZvF}dlHDSALv0ow z9oV=S>g7iK*GY(_fiv33!sOITy2Y52`g4!(H8~A1 zzvBb57Kn8NsyAqJlP`kh?ND=d=6%m%Dx zestALODPHr!EMN))qB+M%i}yg?qYNPRF=7@9negBP){yoS3TIIs)*L}Mn5Hr1L@#6 zsv_sq?>n`ODaI1SY{`L)MX0>HDaC=`do0x)+|#j|fEa^d`MrAIFy%KTP_~#(_V~V7 zcT59rTlPHpCCC!|dfgN}dYfoE0t?L`qiH1!?g@GvKg^VrN zOrH_W;z^P*O4WYqCJpB-5d$XH7i%n6mt4eHSBfvMF407Vnrw{YVi$6*B|;>ijV;2= zm-}Kin<0=sM|^+G_ja(DFOVCCEvbbh8iPy2`?EC;X3~^Nu)c3?7;!^072l4vJRR;r z5Mn4pCni&mPwamJH*YdP-@#BGrPWJPU} zgkESk7c@(=S8&aBE|yBL*Iiqf5>CE(l#Y%|yr#HjA`un|WF07(5~OUvSaJ)Nnuf}g zs2~!Z-jiTUt$I@vtL7X4YmE7yfBrxIPeuQn0piYuvySO)19Z5glZ1$N-66Lbvu4JJ z)x>7Yf!WsdBRS^?7nc|K;DaCF&2RrDZol(A{NTO!@ZjD(EYDV0%;zx9!8u##J?foe zUcb2R3_}f&GBfH8$--%6;ZqqK6`i&f=@;~{Xe3}zFIrB8pHG$w9@fB&M!6$XYY8&z zb8|E>QM-pdYRGj`di$v@U6M(T@za@yPU{0!uOhBs0Dh;pv<+$M?ND+#Hv zr{fXz=D;NKuhI!oS(US;TW6h&H7kTQt7ExyqMGbt0F=d)oMZE0uCtJGFK5U`x*!5v z5JHjuj~`6V;evSE^dZ%SL}3}0M^X&du&%t;nr=1h;KiZrPC#?k5t88?0S?6D4ofz~ zU2x5V@iK9WkvIQJ%7+ocG$o!e=>4cZxcb1;FG@m9Br^=$O9}t%pZwGE`hWTF{0iSo znsY#ABWPI<31kesES^-gFv(CA7HNtniVr@jO}4!rTci^jjI6#f_3H4ml}eDP%+MhN z0LjnM+?IgJ-W;@C((#|=D-4oM0Vjk4V=#JDKRaA?3OLtOUEFhzq|LCtVM zvqnINGn^xpA|n)voT;Qk^|Y*}_sLNmN#uiZ1bfh5%+hm`pA^NjB~(dtNbZup~?-}|d3I`aO#HEt& zw5_>TLe53~Ktla95RZlW9zzy&0e{9O>rZ?-7(%6iv-n5XK~}%XK{Gr8s>WoWM|ODh||kUtlJKdaMWyiWHs-_R@QxAyzk}S0}16$ z@%_09Zl)d%U^e}43Q*dZ;F6Lv(}wr1^zF!UVaK|=5=l;3?r1ag?G^Z#6=jTd<$mOb z4B`BIiHq|k8sES*9?mf;ym5?oCud>F!g8ft%0Ygvkk~XUB-E43l}nW?*>&MvBw#aq#-Q zmKDQLxhGXZS;DmIfr?BtZDyd4S||pawa~c5t}^urOb6o8Yl0;)E{1CW z03ZNKL_t(vrenM?kpLmYe?$F9Q`@D6%!Yow$nvTXTmBl&2g;HSKrA5>`By2j1e=|< zba%A_k_tP%F9x^KpcsQl#f0aLeBQX$FjVuJpa23R&eTOf1N5>l`-@Odm`P=`1-z=sL*MQ;hbtyfuv_t^Hxm z)n2odxBD;BrnI3x=2PXv()Y(5y;O?((uF2d`KfqXrXjlx2?k#%m?r1GSQV{znf4h| zAR!h;B)>Y@;f6!!2rwC+`8)psKHN_@`n@kBBV&pO0DvXdxPrq%ojk`mFKDuoDqZdt zp2HE2aD*j%zkF;2-RfG*g0xPukO zWU+vUgGYxT0l|4N!BWtL7C5o|^b*a9491G5dZQ_SN2QpW$aiz_xWuK<2Xnzg)cfF$ z{Qs$BK|Or`&v5+y|AW2nei5Jl@gK+DFZ~3Z_juq^p;zj<$+S#cWL@=vRq02b`Yy9h z>bHUk#P?HsoNA~8r36a`JCUiEz7t6`McFS?IoLYqu)k)Al0Usf+qO8Jb-1#(hm(ee z9@^Al+BBdp6_a*M5uKHFHq#IF`qVix4pd&phD1HH^gKpR#Hw?T`U6Zqb=F1=)Ay>$ z5&9+_%URF|$7=VvNBV80d8U*QVjt!{Ud#H)N*u^{hTf$u z0s^t`h4+C}CRJ&qmKonGIyuw044pJ>BLk{*R24~m9+!ejsviD`9B&}7unWIoAtq|q8Q1lLd=Nsmd+WFj3_ilHsuX;Eq=ZunnZfWPNWm^=ibQ~S2_K(gyGRMk2pO(m%zKasK|;RDOp$%3 zLTO6F4RxH8V%ZlZVSph7&g;@^s+w>;=qq#r;G>P(ycjZt3YAh6P=~`m_=De*_icqt$@dJ2{LYBcG-*+j`g^71l8DU2 z8JQ4hS6jvv2|+ryA|rv~%2T0{Db>;tmFF;5A;b0apar~=2g$L?xXlJ_4tO#ly!yBP zCO(K$+`01uT>0t^+=+KE!xJ3i0t+NGB7Gw%T$rZU!HbjT8C*fcCE99(tm$}p)VR{A zSVY1xj)i*XF~bxI35S?tg_Zc0dILE|6Q2$V9#hP*Ck0XlVIuiRj89nOVnEj-iGGbG zr^r-)M?wrtlCy-;Sg9;?8?t!`=5@!`aCf@vFc3 zt9a}a%N?yuq)o4hH)Sd+S0{>}M{+_~bztCZ!3bir$Mwn%UVZgd*j+{h<1FCz_us^$H$KGud-o9^KIVdHZt+Wh`pKV`VrjY|IESc|)rQ3MZ20|YzEUA+ z$-#rRG-7HadoA^h`F0}CIJvzN)4I>)h(?X7dEX5V?x+AdA)xA zD&a2oW*!&KwwFYW&K&IBN^-u~ELcGh-!21^W;+wC+78ZpxW=ICI(X;db|yf~xV*eT zTnFqN?BVd*b)21@;q>7X96dQgce+IEBD{_8&X-(D2%ICOgiHhnQ=k^9QXq9%&kJU7 zR^r<#%PEM9T$Qw|gsK#ng4d2Q0#4Qy@pe0Dcp?Wlvf>>}99JOsw{-*)85m(yT_l0I zA#;=ae0hO(y+%OdiHsvOlSzr$D9@jeag8Hb-=K3&@{dS7K`6QgB7&dsA1wT=_@H9o zcF$}!?bTAw4YS@T54=u9wy3Cd;+q8DpR*GASn6-(du{W8=~>ho`CcyL$3FiGo_pq5 z+`fGqufO&^oSvQ{uemTGhazPyJM5N6%_5g)m+xsi&@(up(yyfLnCs%IK#EppDF$W{QA`Wi3yVCsXkNd_<>gmPZUCdrT>b5xBsVV|5H{1Fy*v2iCtm_NK1gOO8=@Cv zw-f>qeHbE%KAAtP3SF9m6b!MiP>Zg0xDmyq!K<>?)CO1CfSh&xCW1Ji;AQQUN##t5 zi=9FW(+x>wUnXt2ainWknI$PF(FnV;VQvdEEEAh-ft=wzRdk(P{649e!kHnbDd=5b z_=J&U>Xf6PA^Sr`f@D!yix|SNFd-Ur+W7NJf|X}!VT`Hon4k|MHYOL}lFi&b$zc38 zrHq^dQ)#T@tDb@^44XwHbN5NY4r>GMFc&IHaR_-RGcgiYC$A|*)`1HpXWV(#1n!(U zye_6F6B$!7osi+}(JhXxr|+&?R<(BT5-I0nIC2Nq!?Hg>bH z=>IHZiB*9W9LvA+Tc%SO2$VHoH{)Hr2ZF_QT!n?j3^TOo(7+=iqLcDY{f}ChcuXbr zC@=@gy^CJ73V1gAckpqxBZb|?^(oVEU%TkEt(5=x9 zWU0giC=E|1`(?tKL_$I;Urfj`W2yn5p_2xd$8<8o&Ycsy`R1GW?w@@dj~_k8p*2{B zC6*?@e)Be7`TS4dJ8!>@d*8c*Go0ay6n`@*=;?%T=b!y6?4||gJ3ENf;k)1c4(`78 z7S7MlFhRhxH*R9Ra7b6K;+g;aZ{Ygj72KVz`8n0;iZoa1oSPgIf*hbE@B#r+@JL}u z8f8(%Gz=zk6_Kqjl#0LAq<(TEIe@*3zYnZOMFHKm=9E22*Xy0 z#kPD;vqfrFUz;pBjU|*`aNX>6mh~rM7{5_k?xN7JnGc#m>(hgI&I!&s?95$JPgp0C zKg*LSKixxEM@;84EDrW?&|X7$?m3*Ep5o}E2e^0t9=hcPEu6BC5< z5BC#}C5h#8QQSJzd>;q*Q!20q@wAzzt76 z;PA!`eDV{o;I-FY!<{=H;N;{4CUT)1%q2E(&_9BB*~4rIG=kI=IEdaaT`bChm@<$$ zUgs5l26=`vp-W8MQ^gSg&cBp;ZV-nfK7P02!9i%$7nk__ZuvaMYl<`?i70>SXa5?W z937!CY*w43v1#05I-A0h#opdtxlooIh%B7-_`<8NV(-~QEkH0nLBU%!ss#V(qrVdIx2csIezpM4qEZd^wf0-|NJc(fzrY8n;|nrPg!^37KH zf=cq3({H6y&RGuL`={nGjSryZh8@cZG%qJI(tAuz8cXuVJ}B=zVhm;S)ijNa#M)mVGa6tcCf6s-$&`XDgwSfv~`I@Oy#Ev9hRCSWfn)lc7D;Y(lo z64w9x&v1YPT*VWtutI|%fv+tVSYQth=U5_D1&J7ig zCXB%r@B?q^6F7J{G?_c>j;SgpV#i#3$u*@@R2_6J*SUT6l(th+TLP zEcUUB>*hMv`3xW7E+Pn5a0P2jvBnx}WUR4 z0hgbB767pF+=z)GvXp1iz!-yW!shKKK9mWiF$T%?g^*5126<2+ZFr1oIa$5W)xK8U zuawSK%=Z!%BiB`A}VjpAvDIi5T^!o!CT@#N7%ESF0(0@?D!emE!h z2IW4gBF0#}GpaJmd3^4Q<#SPaI1RF~Hp#7IZBcDNrlHQdUR~k(f`!QO_Z1&c&OBiY z#-a-y&ej)b+qSoc7{c!EE{w65&ljMEud$mnyibDZoHewgX&Ov+7JPrpz8b-WDxcrD zIpDn;X*RgOotSA5C7u9U|5tfDeg-QRnwLM?@>U=4asaIWm{ijmg|&fG0< zc6NrlAAE>!eB&E<`2Kx_*fELG7$n<@!-1*3L=LS z+r#x+&v6y23#riZE-o+d;K2jzUAuyq8CXk(kfr;5&KO~mQxC+b7MIZwZ z5=j~{NM0{-IBy&-jB!MU8s4aKWUM_drYdqO7ljUO+Sth`y!Sup#$>D+Y*N`&#@ebQ zrVGNR=DXieG;2!b5SmmULdTK`n;CkXXsd2qWqr0wp5!D}HGBkXR zkc&pUzo&aPN`E}oj&dx2mQxRc;Jg}fuuutKmj$B_j5Lz_6+__8<)}mbTfg@A@bB{L zcmMJ4503Tq_2`JN_oIcyji3H;eCJ<$6HnST2o4PnvBm>WV8#ObRwgg955{5Ty~=pw4#EuV-xc8Y{FSu4B9`Z#70O&c6`~3fkw@OFx{yoQ4Bs6S|DsIl)YQDG)s-QtBls!4%uUb1MgnH5#;tXt9US{zpHL@bXJ|e6eIjxd;fH zvjY=;4^v4Sl(?9LRA%}@L49>5XY6%^v<`UurN6*yuf2vB&K-`Ak8$f0&%)ojg|GdK z{}+$(2n$@|hF~-f;qe5=$T-IW7W>%890BJz$1c3!+jl{^#Y21qpu++U4q>sx60;%~ zF(5R!f;}7@9OCHl5zcWN85yVV9O3_d=MAj=Rm^5H9J_$7ZTUJmhh{Oy;lTmu)*)W} z_=~vqGoQw4wZf^_skIw5Cr0@~;;AUH6i+DvV#o!6pg!WKQ3q>}(zpmHzzI1d_k|o! z_|3Q=i3&gA&CeQsT2)4=`-i>g^H>{%v9}bqkUmpv1G=w>nzPE zp$TS5&NamQN;b8*yf(B`X>?eX1}15NWstM_I)-r) zJbe)JiqQj5M~5}3StO=ru27r)5 z!LOGyf_koU22Ca`=d^?XU>$japDDvk2s=9q%yLFEoxvDBFYfN{B3p~;bPB73gNET_ z(F80O3#_{q&U>UtQtUa9_h@Dl#F!8e3#f`cNW%t?{#_0g$xkNbP2+iwmb0^UPDrJw zKwBe3yEHnT8RmN-0gfD^je~O#yVZ z!6RP9Nt6brD>k20k(l+rQx$EH0YuA_EXt!bD2g9KMP75WIu9}O zLEIc6nj&XrvLo-StEnn9WnbnB2@Po&Zgn~)qWr=uFUvy58%mS=D$je51{SmFjE&UR z!c0AyrhyggYl<1ZX>jA#vv}v7cW~$XKj1D<$3JB18yp^9!Ik|z)_h7JRyO?w<_@z% z;~RYDl~-`(>Q$^v;L2SeBuhnpk*dR~c8bcvp!i6|CJOXHb*mwy0mR{HspWd()(ccU zO@T>+O=A4umn3mPOy-o!1Ssc>#!rz_MAz}_n@FL?*&|eNvw9O->$c+Bw@rykb?tZq zi79QoM=IS6Gmt5aHRJ|Xx-+!lquOSW-S+48pVjDBeMnQ~FEiEHxc+zB-fK#!bSxaG zN9x+4!I}eR*}D|Y=zgL4=bAE+8+Qiv-#F7>XH7JB&X$5nWe=s0mj4d9mxrV(xE7Ho zM^5gKg69@|xpq9%lTdFWISoA+mFn{wNzWn7cqy6*0zyiClcmyZ&N1pfvSXfNtbH0vUbO^YI58+^N z6VKoo_Y6`>csIR^6%ux_z*StwV?4$q+`|qg*uh-KDF%_pkDyuAA@yvhy^U zJdJ~Kk!e7+t%-u$AO>Sp`*+;p``1hb-g4lNyAj9GBlDlZ_9tI1KwTrep8Nxa5`3XD1<^KNZaVUtk9s1 zeTZ`Z_4Qtz;^_OxzNrVpETQfC88dS#^>H7%XOlx0y3GuvQ66K?l1r$5C5;0(TjI&_ z6C8bT7Y`pk#Om}Em#Y;>Ax|mtghe0&wIapv$yQ!Z>_7jSZmB98X|_^1lNp z?RZ3%WWuT~6R_g_ugoucK{S%qMd=#{!i3e1XMchO1YvA_vZ2 zKx8gpCLl)Xa9TF5wcQHuz5hNIySqH{42kj1LUut=u6`~LjIGS%nj2H6G-q)@8mY=t z)~>Uaf0z59)j=q)NZ(970YPtWgv!&jATZL`?(;nqkWgey)rOu@R}RzM5mAtZ6Zs3l zm{@W%dVO!VF}f^Mq?89(PnJ{Il2f7!APw?IlnBRk7)5=u^inspSTv`qp{|Q8eL!Oj zmCtCiaMG!w<^uExT04--MUh?9-I5Txq5r>9cFq)nVVxDjG#}?e z2q5Q*ao5xZv*p)RZy>Q0SX87Ox(I6FR60j7mj_cv;WW~kXK-QUtc6M9V@n1$bJ(pG z-=BN6RuwM6eej4Gwf`;%WB_|H;qc@Qa_v<Q}m`~3B04D@2^MQC(G)M&2_A+^Ji!UP+<^`g0GC+f1e0=)b(mp}fE6ZiIL9gWF_Xz& zzysXD8cWPTaL8z2FaUumrh6Ko!RzKv9ZOJ4^a{1Kx-YZg33aEkwhVN7 z=r!o~)G*wCqN3tuFDlcZB(V)N3?f%JQAF&EBgX&nepRUuYL9P!NbDO(siI_!eL!_I ziZ-H(#JOrj*^OeV2TCQ0c_``xQ-^Ir`+gs+?Z{qvl1r*0Bze1fF!o@1IfAGTXw8O zQuU6dA~n~2v}t^4Xf?SRyq}d>^Q1`8=5h}A=hogYa(s#N(L_B0a001BWNklC*AYYx#&&ur7<&I{yGGoSlXLzEhEjzhvr-@zDJ~bhQT7#ydI3+&D62G)?{B5% zA8bN)5Q?l^hV+O9kZR0VY@1T>w zz$d3CI6gkcYRMh~8-Ur)4z69hhP}N#3H6JxSr3pM&d--fiH+>A%#WY#9q`TI=lJZ) zpT*VZZt&q5u}oK3i`i?Uom^-I3Jg-ZW0J#I1$c<5(B4c5E88@?4mM?x!fgwYODUC( z{ib$13=X<=_iQ{Vuqw67bw+_Lo*kyFh@2~hp*+sm4UdZ1l02VA-9+thl+S^N#2#cC zOlmB+_#)}>)RP)5kj5KT?-3e?{S7qenF}bDh?SsP(H`sP-nOlDf@nYw?4=))SCsMy zSxZAR?Z`uxBSS1W@OG1E*Asbi1+KurKV&PkeCgEW{#t86wQXLg zE)%0(61+iR^xpTxJwpXP!J7YA?t$O>um77LJ^lIP-{sMEB`%~`isdy# z@EUsudw2ma;Kl#-e?ra~cb;L1N6>5@ZTwVuEjee{IGj8`W2U%w?=J5A@xR97qsK7o zCBFE@FXA(w`vP*xc=X0w_>({R6I{jnm}7xYVHXea5Dp0*4QANE2~Je8js(IXuAl+o zKJLS#6Cg(mC-TF90Kj3283-1~I1vJ%#})9t)*<2m2Uy`!@E80keuNJN^wHoDhtOoJ zC|BKM0Skxedf`RMzIPqeP18{5n zdfmLMW!vh#Gx$lfE3+4>sR&yPy9>(|2Blw25Bm#cVxRL#&&x5Q5< z6Wx>|sACCf&Iw%?(6%j0M;{*Hqq}!;ae9vP^E0%^7wAIAlN4h>;AW|lLMU~ez%S(b z>V77k>L5^nd}H04Q8o;4yfx7?_2_%rm5l~Wv%GgK3K z@2l|KSk52y{ZuBBj;XrFxIrVQG*=Z~0W)Z<>SVF&I(YAEmHp5&SmJfkh8lx$%@v;gVz?#9?T$MdmA_~;=WRero zSL7YR=3LUINk>tUJKmNET?$AMXppg9CroU{@yQyeZHEv#tk-LFT__9M)vGsf{rYt* zW^=}pgR$J17#@(d3r;L<35ao@@1V6NV zz<1S1R88<)453VL44J}MC&MzCv0Oo?2+k04%#1)5m_U&(StgU@7=(04uwJyZ0}4+r z(}=pL(WyYJXlYt9t5(@?{whzfh=BqOf{268nbODf^G9~&_~(6JXd-i-NXl`eJJv7e zu}H~)Jdj((T-oP|Uz{Ps`2tG)CR=Vye&F(8bILhNaBmt=Q5YYbt4d86-hX1X)k6CTVu_+afB2qDO(!K6ZM{`4Z+)txn)6A6h3LHy-G+hl19qE zA>P~~l5|rfl2s*dWt2T!xavYkeSErj)&+UpG5SCM;CJxf|JrZ<&?4qHfA#O-_y6Sg zup8M3+qC={_;tsVFEaQK|A+q;|9^k|-XHyri1lehI#4gj$yv0q#RVi)d=Hph{}|j$ zFCrO2bDLoW9nJx8zE2(VnX1AmmvT?Dhw`WZ$XmTYxta()P2Ps56hN{1?`@N+{FFi} zRULS2@k`Ymel3R5==-NZ0h3T;(d|f%mqq{^j^WLM$>94l*PhI+59h zD9Qmp4bq%4fTes&N0{QXf9*3k+h1+QMhs{2|`qi)E?RUP8IZkkZEZ(A1M6{R)ld#1JNZeFBjhq5lBf-Lp zFOCY-0wUeZ!Wsku)@bCuYhZARGbBVz;jlu4!weQ2+}ol938~N^p~D3x*uex7oMVj+ z9U4rq#3>#v?+KLS3|^oc`#8W70RiVQkMH2a$8Tf#PJ@qNaDfFJJnS!i0YCFIKaKRc zo4jA!R1V52ao2`Z*M;FBy;|4$wa^X&xiLK07tccKt(7HvWuyu)3g;PXEAS&Jq0rlm>>xz@@?3MFX%QVl*zo2YfNvggUy zW-=V3VU!wY28&vOF&LF2if@Se;MfcUOe{b3i7;F2z;qU~{RIxMUBj(Ue-g3naCUZv z_1OhZj!$s^gO3DTy+Q~9F(-taVZ4OfCiZ_T;3@)KL?o9$qCcY&Sx z9DY9K>pS5FteZ@w*bVT$DMf9T*Uz4$O&ChChh!Q^)l1X2Q&qAE%}wIR5o^y!NZZm;pr)vt+9E&kJ%$eOyy(n2bwyrJkJ zVmaX&5nW8!yLO15y8g4cb@O?A^PAtqhwr?L<@q@#hJ%YcnJOids>X6ZReoAQry=15 zQUWtLs~0VwTqi9^HRdL#3}gFnY7?{2@Z>xzKCPU^!eayEXeeGw&V@BuCQQ$N`o*#+ zktI+kK!F6z=W`q!F0jA9kExd%DH`0ndk^=Y9LeIyn^)6J@zN(=f=P@+^tyH z_kOe}rwsz0j!>;-iJvhf@-hjZm7k>tR8tX#+I4_)mLFtiS))2CkN^noktaFYNgJ9U z**q8!2eJp%;9Ez9gjYYXIxXr#HyT?v8`BMv8>yBblugSHeI!aFEE}Lo3PKufcCn(d z^fEkKEi6o5NdhXc<+W=Epx;RBR?T?5agV2f+eYO2FxMJ+eI0ro6#k%k=k1$!A0lWR zRgj3j%UE7-C21wQDWOxjMM|MJcoG%uxpQ_fg*34W;!U~gRGFR@RV{o2YM#6wJAj(> zUEbgPuYUbU9{B(1-~V55es%^tKF4qT!T<5^To8TbcYYTsCY&`u*9BaN|75wR+{&RdTwU}cEmw19H zrkG%c_whbvLiM{Qg~<}9XwhMcTtF1{#1SxXLdaWVT_7A&kd%<>DYIxWDe(9tKZoQ~ z@iGxIAnag<8RmG5BV1rvKED}eAj~kq1eaK22XkD(btFW55AWgx$8z7Y2W*Nd9A@G% z)7-A9WW;w3M5vKblr5@HZ4+9e~NKS5ihWx90yY<-KT1=QoWYeq3A<}2n`OO z#lm2QLGHD@sa}J}#K7^SFB(xSq^D;(YA%)*LeAPE=^y{w{t%oB2y6VkYcFa*+{l0A za|?~UOe}3zkBjb81-_)`C7C$Y>XMXXu52w#6zIe{vS;yPiId}FESF1!5O8s}#A>yI zAr6m^mu;E)c;8^QzhK(ptik^NK5WwzaF=fyz_KhYSGh&nTo0iqZT6JGQDF1vzSqxv zd_E~&EZU?ikF5~3?_Hn2n%a~`F(LKOw=l(%XAJRqrXuH#*XLaF6gU0kEPV~7G1q$z zd%wBDxU@Mv_T|Nla+V>o@X4a|BtkHi?u8{@B4mLwbt5upZhs|pPuH-kQ|X5QI-@b zl4(hZ5+k&&$dE)sRP0D{3=07gAV?4($x9Fj36O^%Z$aXh#1~N_6p9xakz>G?5?K~a z>P}K5hcmnl$+>W*d#2BQpS{+qsyx*9)vC4j?im8=L6hC5_t|Idb*cKk?|(DdHo2z~ z^e98+#iHAFfx4>lg-kAQE+a_3U5!FoqfqViHRYo1sw$f-C{;j<%*NHD3#m4Yxfqu; z`;qW)Iu)2K>SGS6O#)cdfzOTX!gW#5`CncDCqB$JB)1~3$>Tw?8G1izAe}&^R5s^Q zj52%jf)R2k~dfxy1)Q|Ju zeEoO7qekI>;t94`u>0<}^UO2P@M>Iges;#qA9{uxH*RozVClM^RUK)Xno9z~dsflp zfk7#{Lp&RIUWQyIO9r4BY)?)A7(sM5F z)5^a!@_k7gGY4s4EMuEjozHjD_^fiEZZ-ORiF{T`Q&8HZE8-P0<*_`@2+XM2=7^e_ zzz&hfXAigd4}S6|dF6di(snH;JM&af2o=jYN8j~%y;DxUQg#+?n#x{(`GV)Z^d-LZ zEB}O!miMqtM~5X)iS>N?dpfWCY-6xoaxPjeMb`Yr>ukmGFp7)e)I7w98=?`4p5|0p z`L`JrEiDc6{4-j*eBQj6VAM3(OL4)1JKW`)e3NhST0X7{OT|pWfgLR!0mF(Fu)tur zAh2S^>%cC%eE%=}5>LPLX+C>>g|n8`LNx+57bH2jyc{T2n@wc$fJXMorfHJZJARGQ zmj+g%DX86efD_HyU@Te2hqXb97Byv^RGeQHoaNxjT9?;L zCp7c6yBg8Hwek*AP4Xn`svN?VMm*C(IMe;*eZ5JImY$<%#`|xnd(M>bJUmXtp)cHM z6-iS^;gNAwsV!Emi5*jGaM%;Cw%@-KgZ`k|9MXDpQhuj#njAQZKVFzGBCx(Ovy_P_B;>vRfD9A zxO5(+md}ln3~2g3=e}8Ek}-w6kMDazG}%CAihk$#6s5#lYvbcj+#4K6oMq-}wzs#b zoy`y8YPF(kTh7nV@vFdmF;C)kXSs3X1_uX+1BbGYEar2z=ZpM6H%-HQ(a_Wlwn`Hb z+oT)t^7N924U>2;*cHRqS@%S zldKy>8>IHvMJn{P*j|TWV}6}ZgVa?|ABa*jFha^oQK2AmQ-_wZTalni<@ee3&`JHX zt6ZLxl+9F`k)c+f&Q+81qtLZqTQD>rPPzDsKzX02eA6Usop|PjzgXzhXrbH~t%wH4 zeDFAAGEFwS)X=meP2QAlr|+Q~vn}#S%IjM4^}DVch1BItkO{K*oghu$$*+IF7G7M? z-~dlxMNLCPy?2L${e2F9=)K&#caN(ZGeQWw-t=s5Z{zGjj;Bt@pBsYes;c6Rtw7th z84Xxj^ONuXNmf7gmuZ@Y&)gRK{rN04M0qXKp+YJKYnL=_+b5pW(^FP|{3T+HY<=cA z{^;v}!~rMlv%|hL5>`}R23QHMX)rX*<#Q(O+kEZnZElR+q|r1J(+rb+5%u5oIx@1a zSDSUU(FnQ0ayetm<2mApS9m2~&mfIdEd|7tI1>gcG41HNWXUBR4nxm^K;WFay#I&) zeVV`agEURU{kx8??KqQ>tDjXlr)OI58i`}r)G(EUr4T~aLJvj!BQy{N6?c=1-c;vM z?j^Y~Dkk9iZ&ONP*8W64(n^(jiV%_xx~}Ur$5ur+htJ5`XI8XgaCIBBMs_khE1Q;4 z%tsMYUe|TrFUsMczGwO8UiL9x>_b{$Pa7svAP}X~T4~F_Nn4^dhBi#2hNHN~Wn&o4 zv|+NN=5igODe8pMMNx}c39NO}IBA`x`YC0qbir>N8s~d!vfgQPSvH#K&)vwKPcx(f z<6KK?)UDC4p+{5nbnV_`vqk^l&Q{iOcC4if1J%Em0YgUb%viTQ)n3II#7%n40@C}> zj>4bEb(H>F{<w{@ivuSN<^5!e`?ZoWFVJ7I=1X=E+ZknmyPuAxUMZ+YsKpT^VVO`g$8R*i(Xl!KG zEa;XUjhoTcp04xk9UOA&)@`bJg1hxbnKg4ByL*?N-9z^F_NW&%O;h8l1lya~ryM5N z(zPuQUwwn~Hj*tC_F=J~I>cBrOxaS-l+A&x zzMrCTX@MAvko}`+R%&7HCfN|hCXuo@#^*|HQxh#<90(ny`FENRwc-BCe`4&m^7IuR zoJPL&txxkjbFP>t1Y>uHAOGKL zoX=TqLFfZFF9Xkh>T?`_?lS=Fv*g<^!tLwt=KAhFS4W4$muey&OHCz6M~i2VJ$58O z)H0_N%j_tY`1lx8ZKt2-{b*oet(5{X-P70l zZ64l#$S42zk8yc%$=%oPbHx?#0*6?RaLfpF61f`+4cKt~B8HwFb~)y9q+i>VYh`ka zLq?1o)r96brNX51iaqqEv-1_V9U*CS z`)cCYDg(o5+(0RC*R_080Xf|xr*5mmF_i_O9&eE?q*;x0II2GV zOM8(4E69|stC2~R5$9YTz>b{wCLzORR+bJa%Ij}TDqyU2q5&?NR%1YsHLV4Fp9ZT8 z!_hW)#>}(f`&6uAOibBZ&gPt@wVEl&7{Xcl?22sgG1UaM4xEW2?Uo*kVK^Vw*>Uq) zG!f3$45Fc=w@;=7s(lv?QPH3}Yl&tUwE79vzeG_tQBp_d8hYm#WswN8Nxrp~=#oJ? zP>lu(V{;ReHFpHV^l>w$7+jC)$S|TR4(CATUMYKHs_5Fe3^7k5N5(Qbh!=!TkwVKL zF~Jz3B3(i`HnC0!(^F5pEps2OBnO8Om{)U-t_dZtuIc)o)6-K2M~nTrOF)XX2yY({~*YAD;5!i!ahN^AyM@7e1HIu7dv(WWrj&%SQ(dH`*eDuo$M50Py{G(H09>g>4K9YR39ui zY-C!@Z<>H@>WoJa{8}cI&5e)dPH8~bh-W-OUlcJ4K8!RirJiOJU96;&>D0^=le1}# zl8Xbfr0}{gO++THD3xf+N-fVOSbB})J>l|}&V?>#aD)*gU22e~6HG;PbV8=@S#p3i zwAL1lRe7z-X-~-~FBjUWLtbuWc^RDNd3wlnZsP4uSoWjX1trChvB%$pYX;ave#;c;n z;#hLYEpG9EO9GyE{MDb}o$q`nU$}gO_dN3q?(;A4p*X*m~@2wN1zPVfk|DP6E&PQ?i)LVc@-oD8uq=mk*; zMYH8F%%lObz)C`0td9nYzv)x4419(sG8uvgCp&_TWi-6xU2EHsLRE&7=bEaXW>uaw@u?KnvXA zHrw?RywbhQ7x3Ji-Q>Oh2s`PJ;()%6qmJk%w{w8pFiajAO8fq&pylD z>MrjvfmgbhIpdpD;)1xv7EUN?iH_KC#<>s|HMKoio}Y7?wOw(e9&K3H2lv4gwi^Ts zESqL0?bVPEr|&W}N7M6F{_PPoM3SQ0s9IcoA|%-G_9IdfJ* z(YwHL$&zEX*ku><@BAgc=X<_~s~>uj)oMlGB$k1-)u`aqwKN~sB(N<{v;!M8P-|un zg$tMW1D#CQz%KM72e5U$lV&|tbX}L-y$scaZYGm;`a<`bsD|Y_8GMloDT6Nkd)d@^ zA2Mn*Vk4*_gB|Z(E)GnJ5@9MEsB$k^(;&GqMY43YD^Z@(m9W@;a_uof?L-?gMK?B? z8Rb29MAh6}&kW7*Kne6F( z@^rZo8r4rqNteE$5zUb|YEb4fFrk2eB2^}32;_m!ChcH8w~?%MQlu^o#T~|3jhr#@ zoliZP#kJ|fRy0k+Q%^o6l%qahAZ;kLQ3$~&>?!>g+$=jRtAF@A04!kH8YG;!&v z=BW@}T`q|svY2ggba*IQl@x0jV_?2}o$q@3X{vcDv|Qup`i^J^_YQ4P618dwWGip{ z%qNa%nx7y;nhbD!^t#Iu3TIc z-I~(n#&kNHxwY20+%Tyv_h7p|dGPv>Zvt1j9$}v~001BWNkl3fmhyG)g5T>Lt8QA6VUxeDBk-O+J6QsFubgBO?VLa3bRL5>{v3&`_?~ zy^Dsfqyd&ctB+w6Vr#kR6zZ31!reDAHi~lvh|NEch#tU!Ys*0obl0aa= z2@AGZa>^wa#RNV~^f_@-cvo37lNQG0Xw~NYqtrmXj%CIScpE?Vz8~YupZYgE$Mf8g zV9`eOd^2fYc3E(p>zweAGtP1@Q(Yh~c7*WMx#3a4zv_i*Y2#L`Xt3lqLY@NW zT;yR*EGTg4wH+OvUOuIlvQ6;?J1Ly2HDsuq*_o`ONdjq6+RX zXTgiyV7uDF{>>lYeeZi8U)*2nG$0LJV$wAzhyEH{TwI*<+5hez^V0dt{3XtKk|%)I zc$L>Ma*k6IzC|sK!7dH^?9;O3ArA$uk41A++RASx!4+35rIBkVuW{7uvB!cvJju-}y`STXE6#xxE56P?-~Y__ z^Z0-J!Q@)DT@R`)JEmWk1xHz+rooOd5acsc&IQP4OW4 zUNB>`iPH9c+K^3YYh}Zv`*&hF*{qq*5&~_U?D#VWqq$unn|V!57)sWW!A+Pso0%6S z#d1uoHft0`)xYV!oCZK*JWvbL{yO41Y2t`$`lr%nKARW#alND8 z7h^v%Q(;4lP8uYK&6LC5Z=@AY4JOnSYvCGVj68Vd0iXKRr}*aAUtqahvQV_ITFK8S z-1Mv&7+Nv)0aZ-3UT;ml@5(hwZ;MI>(`s8^4hmFDS4w(vjUJ`$_Tskb4ApElqf&Pk zIRW#nZEoDSk%L=Rbf|GoNH-TvpLfF$6N+?la>C`=S$?36HFzslrPfl{HI;ERvxcfp z%}E!pIJ$PktXar~mIlKn9n$65DW}H|IlOg~uImVW$R{+}{vi-`HHaHyvSqfDEE+A) z5)_|Ykx&>i)^uH;t+)aDQPzN@f7>+8P@`vK(%04BJ$RERDZ%^f53k!`b`K2cYn5^7 z98M;7Zf!9M;?C!W8(zNFMHOLIbatb!euPP`agn>_<5j<_6-E=Y* zaV`a;MM?S&N^=Wcg2ruva*Z|Awoc7|4$h03nLN0_^uFNAr`PtuXM1~V6QWV_)l+y| z!SU9Ci%dkVNrA~JcQAs3+BCGj183>F^!}Bzx#9hLKlk&0VV%F|8t z+y7nW^ErRmw)A$~dg(r(1B-dxu>GLpcmJQ?A)J4K$C$B?=Ykh;ELmXk^@T{wm8{P_ z7j%HnjWNZ&SYkPEWfdO^bWgv-PR_^VQ%HjwGL_Lx6j5m{W1UHW#$?;#1h;Y4OtVc^W*9bLOX4Y+>jltYn=IMs0bS6yXEq#ac_ul%e6^ z)0$Upq|yzpd;=zHjKNfCKP`=Q1}$=---x2Ejsa_usZh3@kAvG)@O}fjl|n2>#ibaF zr2vvZZNH`+QAzur z$~tLqQXGvw`IP4@KO0qIiwX77IJqxL`u41)F=nG-ki(4PRE)DZI690NI?|M8By3n= zl*yRtV;ML^vS#0eX_Fk+M7Y^BE8pWTBY?wwqSV=t85m1{g>#NO_wMliqxbXTSHHoZ z{K+5l;HCTYod<8JTupH8U=9)h9sZhP^>z8niE=nH%_uZ$Hr>x5ruc^#;;;s3pAvhb zkq81KWO8HDJX>hL?#7K9zdWyGLLDmzaQpE)%;)oDPGFM2O+Al{0q=xQ8-h4wq=#c( zIZls{2{Fx3Q-+tz{K-nE_E8erC4lwt#u2l{93MT#symHP>r84q+IGckw!j)o-*-eG zh?>+J64KOlZPFBlRDeeU-uLvqd`)0}f>5_YDpUih0SJYLWbK%) zkabid)=VM1ae&0LO?Z{wQ;**c6EsCW6@|0Y^X{uX9np-qD(haZc@$>|a zx#WUwgtky9VPbx5YR5v+Fog{?HeF8^EV#{0_Ss{P1Gd=VfIa5otk%=B$3Cru^9DRE zkw9Q2Kd+w@@N;0FT`WD7iS)8=8>#!Itb%;ZZfIr_)qY%5>w2qG>)g~E(ayN^l*Zr_Q$q_t zeTuD&AY#b*NX9^PiKgsB8sersRfknJ@7HNvk237EslY7lnpLM8Bhe4Fi~e@bNKku_ z8J`@JNjjxylI}QV78MjujpK+Rlaq~zQoNc!S!s!FdLLYxj0e%ZBK49o5t3!KYRTeg zKPa2CR5+0f!w>{Jmwm822Lt-z(z%MFEmFFmP5X5qq-$+0(a5nI{kNDW^T_oJ5@ee? zZqex(EuurV*>R%FiAbGglqQy5o3jOV2(R|qwidd%Sggps7bPb$H$bk!Sci{E!-X7k zv}qWMwTZqTd8EcjO}=uWt&W4LiL!$Wp2@|#GJ?#gW=hRpNRp5!*IkZT>#bPSf2BEB zzRtEd|K)lgp?0Z&vM9BG{XSVU+!zgx<#{ygnyS>4j-O{Us((X1kE!u1EX-}m^oq2r zj=E{Me&ZHTz4M*S<~671r}S4n#MH3Z=!!bmNDQ07NrQ<}?xL=JX+R$Y<%`NFvNE73 zz#n7N;5kaJYKXEj86!EEfoNmW0-8v)7I$!P@XK>5Vjr-JnkSxml6p4F1w0a>N))m0 z83oUgLc)ix>{kPVP|)jt*vdLVig4|V61N2$(W&Q zR}c;JS;Mkh()Y;#!b|hf_kBhmbkbr?%5!LapI_6p9llN9M^v$>JXf+6n!HiS&02`> zQeRu88{LPYz>o&wO3G{Sx7;`9Pa%PK7s91c19?vLCB4!S@CRiJp za-?akrE*oed5a*vOuLheo2Wletiz2fomNsZt(AsECl1!SNpLJ_(+QEGeU9uB7gb(eihd1!--?LRZk*t$o1N;>j5btq4vjNnd{JSX%L~~0LLzQU#xhRA zQPT;YQXev?|tTvBf zVq=?*`R{)4JJT!u!(aap|Ma7uc+=N>7d zZFB#NU*e3&j$k))EEN@VYL+Z>Lt-~lxrQdmjEdCM4Aq%FXPGglV}&C!!->~fz~PyT z=bbIIJJa9#^S7Cc4#|&ljw;k%I*b~GO6(N^mVNd)U{CC~TPctS#fy{TSPR;I(j3*| zXr{lm*=C)UF&<;ajQhNiQ5`j=FbwW^iay-rfOF2V z^x1!{Wl77W5Vd+Sy@;Z>iDH0Z1aWGl=@_FavA}4OrMAtDfwnE$EQASqXNf%Eg3E8b z!PXCaFST(z*cG=nd7di~O>cS2>f(Y={xAQ8%l37iqGg8}hD$nHX_n*2%dg6`H$~LV zs8Kc>D36;OCPuHd;`><1`RQ`Qr206MbxXCJ2SZI=G&ENJ*GU5%M?c3-5T-2_)XeZX zMtB`*ifhL?G@Q`CHQLH37Y2@3S7Zr&dT+X=n^fTOw3r-JfoDWqFKKRCS~Eb}DeRCUA}zz`81j;ijRK z9R`bWFfU37y_2@n7m;MyAq+Ag{L*8yYhppgQc18<3$jR?RU<=4lWV|KSJ?b{LQD;$HfT`|Cu|zV`{-o|n;IM4hmEzE zC?gcDouWnrNCT8Byf`*5ndr>ZUc9bDQ^YAd_$tz2Vs8GN)IY|6Rann!W8~!G9KY;R<5Y?JZ%*}z*?@;Q3casm6+<9(pJYN@J7q|TX0dFT0>16=y=QrG$>sS4ec#b{9lcM8Qr~u?n-m|Z^oB8M zGmiol69OUgdMwVQiCBK1iqNj~5ZLry(sYI1%fg&2gPp6Sa33Qh!3<4BgzTKA4^Elc zknA5#hTVx4YsOT(azc`iRZeMD6+vg#6b+cki<@q2Mkq09dJzXyETbKEgK$)aN;ciR zwvq&OBCd9Fu7(MWDH`*X(N#<a$EbCqOc^`$MZAWkualw@96nWE~(F$hj$ zIsJ+QrBCUz+N8x|QT@bkeDp1wrGNB){VK*7e)?xWz|VZ(XZX#Jy?NvG8z21`Kk>JI znkyTz^M-5hdIxt`JAC2mFR~ravD5@EsHj*lqoyI!OVcsXlgz|XF44zo-o_pFnbWgm zN4&luWVMkKv+Ej5gQdX{=*5(K&?r^eMGkrW&^Rqvu*(j6Y|*l!&NM2dD0b|yEoz~f z8QUz_<&u_)83$bBfNRWYIOjq{_6;?4$_$cC*cXUFl)~C#si@guml`LIevvKa+~FoW zY;olFS;lkDIL>ATJ8W~rHO@Gb>>V$SOw6_re&nF%xW<7L$sIi%mt4@Y$}OEQ^gAi2 zH$AJ}NOKlMl@>=x$C%1!Mo6AT2VkjbaniaBjomh9obq6C#5?maol9df*K>A-xa7>8Afc`oTIhLuwwePut7&QXFwNykrAToH@-J>S?K2a3!`Oo0_FZ+18uvk{9V|>E!yCxM*th zYF_6xUiq^JEY3UTx2|y`%vfzZ=sKbl^IijFZ!`bv_i-b}0m{&1| zQXxZ0b){2=lXck2C25K7v)0guK26*Ok4K=&*UPyxE+KjtGoV*R!$cvE2)!WD z#um2Lg{^d5;bX|hqt~Jm`GiU+l+rGubqJBl4jOHBH4Ji}L?bm1<^3B+DCCr8SpGQ} z@;NDw%}sKr2D(?O4^^A3@`RCuz?$stNP)f>V+l6>EFU~p*h=Lylz*d5q|LBsHj0Vb z@Y*Dou)?02G=l@s5XY{1CSlvD=}9$O%(nWmVCKYvrfh^EHaPlasxBh6$xNKI2n9S< z)o^s}8c#j>6x+Kytgc#4FV5+%pmGb06}xm{{16$Nq3LH)7LXlly7Hhp3`mrdx?hJZ zF%EK*;hwa)mUVl3d%tY0<>=ZG2iJ}`zc}aN@iAT3vRLdwOtg=tsd@ReZ*#R;VSEaD zwLTToP33R`&qZec& z!SS?}~^Iebc`UGX`Nps@bVQh9as;m?5cAKbS z47_X`872|(&{cwh>4ZoTxU$h1Z!8MSD(pR;L~RNN%$tz2BkJ71RgP43Q%slaV3#cd zPglChS(|U-5uEDmXkwzK4RP%uvZK;s>S{OUg(p-?k-X$ymyW%zt8^`N0n>?!6o#Si z^9JB*n<;O($Qg3wa%#7VXQLgaB2L{3oduINrgX0k`4Kr7Fi$INrXEfaC}(v_n9fCA zH3{W2gTqQGgbqIBhda?z({+>)*+`4!rHLLlY~+n4(L<^s-^wK2m=ijJ4l;6s2mHq$ z{M+9Vy7aR@_rX-&O0n|Of9nJM=Epw%rr-0ikAH%n`QQhz=PR1|oV({0_g{a=)x$3n zF*sVb#AF~9d@Yumo)z0{%aq=)QRJ?(&w@r&OjjBCutc2r(itL^{M}J=oomuaDb^F# zkfpk4pcGx&Nc0~kpWjQ16!LMV zub;8U6@l}^o4o5i@8Z=(CqpPt8sy`}k|@16y<~n28)dV2LBs z20L;-Os(EJie%PWjA;r}iPSVy9C0Xjb1klpMr_rMd`3sjEPpMEBVyWNteg`^D1Npt z{$@5bLWy$Oir&nQCZd~3*W<6pLethw%qjHu4*PgIPWB)?T znD*BmK^u&!CkF=%Fa%?g##x#XZ34>kk(z|zz4X0f z96v#sk}u+T69=Ti39TKWIN1r6d}KIc2HniCH=B&ymd}ALio{L2tE@#Tnx)dc&ctC* zVj=^=s8;HVmLRMV9WckuI;h-iTQlgBtW5?9(yU+yQ<3t#8EIfl!PsG>QBHQ?&bp#O z8usyW-=1o_%0aS`>tn^-#7=@|wE&TXkrCoFG9<8r$wFRloDOTXR*X2~WCBe_G)E&nw@E|j(!`1o*P0A7%2bp4+olGys@w#j92iciR;oq?nakkAcrnW7Hk)xd ztZ{iQ?tGgXC+E0%`zH5p-)4Jzi;LqkR?8(Wip5iuVPx^SM%S&lKNS&nq9H8v@vM;s zyasv4K`uzv&Ztqc76<+MX|NQfxPqw3% z9kY5a_Rwiz^geA7bzQSPTd=&iq-#4u-&5B$_wL=}`t@t6X{jw|=ck;U9%HOw*36P? zj9yTo7bVR}$f(PzYw3K8HI{a@q7NN?*V1+^ZM(v^ExzmUzNhO_(-it-5}_BxnKXr} ztfMxLYCdKA3hCr_-793}C8oD+;*`m9cRw%@p zxy~l#@8l_!G06=^J(pxRN*hF)IN8czq>koN5Ok@WuIWv$G{6#F zD)n1Y8Uj+(8`gti}OnBb~EsZF-A(0XH zI+{Uapt>l7qDDUFS=oYDTrSqu3=Iy%5w$Ut4V;mU)(Tf%>_11Lc4lbW39&$v1`e_h zLk>^=H{rpDFrJE4&hm+myfwP?tH1HlTEtmB4%$Wg(9k!Vy)tJ=fx4uOG9SfuNJXI;6WGnk?|nbIdz$1Hn@12r(ee^_tythIO(M;h&1V-V4j zAQDD8wWRm*xn|Sf)|!HHDCb-6F;nFxItB=;#g=oBtlq2C*c50`t|NrjXRR4>mty(M zrae5>KOxijG&d*^GQ$Z)qFkcEnMszC6|=AyNwsTv-#9@rjSO>?)@F))%+Zj+jHv%1 z214iuM$F`z=s7EOSLvMSZ!v_Bdxn_Y19$iKxbyg3Zr-}VRd>bJ>5{hXq*h9l_B7;R zr2A*u2tCk}9p_yNkge;QZ@ush z?%uu2*7X!DSX)QzJs15I$HymZ&9>5mKg(12n4_4-sH7Gb4%!E}ybELMtMeV|-rv*s#0o0az3 zl^Jn8r}m3k>!U7=fsE3bXcEUVd4?w*uo3-$88!iZ56vQq5lm&WL4qw7lEyV@0%!_@ zOfxv-#h``*V@q_kcZ_b`X=ey19A_1cGL(#^4QX2DNs~u4Qpnt3Y2tFCc}Rs@Rp`F@ zu9s{wlN|@MtyW>RicigAuyK+PBH~4z4*8h5#`>9*51rhQ{CG-~HEx!=s_FWb*2V zanul5q1TZcHP)K6ka573G>}VC3?N^>!V$5&%z~f#$)Cc$?FO%%o-(%!X2$UFcm9Y^ zed<%({rY_@j+Sq6Cz~vjKRwcnPVaKN!5rbuD0!x!gif1|MmM(t6ZCTCtK57q*k+px zR;*YONp$WV7IOcun6bd&@IucU(x6fy*GM*5z*8~93kA=ND2`*r)uU*5rJ;!1&}5Zg zYiQ^&IA+qAbu0uad#!zyPksEi_<vINO zERcq-Z41{qpELBvdu3u(STS`{>)@a{FlHPhp-q#G#hx3rDX{W=Ro32=!>hH=B`B1u zTr&Ex$-KuJJGgdbglu4ihu z6y{7Bx*I}}#@OWRW+fBNGt?t~!!_0cwBCQQuv(wKE}2Sosrh$qZCE+}Gixq{rTdCWcCBPoB=P4!py} zB{LMRk|8_fDZ9!N3pe9|-IUBs{3s`N_?$zX90mAU`Xu3b{OwP1aPtN)eeGL(<};t= z_~rYoRx5(*1O)Kw*U1hJ$u5c~LEMa}4o$Vh5i#87W7JV}vQNJA3BLW{6_#(DV`dem za#XXlfUj07w)_s=RZDFvD&vTq$3~OF;#`%pXQF5-dIGMg**(~kizrhSXIS+u-+cL- zGf2Gk3LO#VhRUSdq*Dvbyeq^Z<_mLv#>A_Vd~^W(m}mKBdE#_NGd8$e#U$ zb}65K4P4Hg^fW=$roOyJz4z3$9UO90kZgwRkV>rMbyBIh56%qA5@Vvy5#I7w@B7^N z58-+tThUr)`Orr`{FY7Af6uD``~$YK4L3#DC&kv4=voaO?Z`pRWR${i#Z@jURTgf9 zPN$lYj+UOtIS<*&!M95>mLBY#)wwMF*X2U$Cj3yTwKm@7&YBkC3jo3YQIjQH44%&3SOS6b<^Tp|Gp$JXHL!AXz6&JC@yvt z6*ck3A(gB6zQ6YUY(Mi1_uC~`p=0N&;@Lm@94~(OV;q@%-iGBqudyWt9Oa0qXGQaf z#>YQGqhvN9Fcomb0mmGV@}ewo#1Xsf62v?~6SP9M$&Um&_BgA(WY}0W<_wbnQg9D6E<#1IR_NW0*)Zk7jd~yJaTg$9*&eC;VA?i;$m|z(Oak8G5 zLhsS%a+0@~`A%tX(8kCYx)fuE7FY%N16yHet9ANbA`<1k=_;4aE3BJlQ?1kEVn_~p z(;`|MC66B=M1%9{nASctkzrs!m@vvs3X;?0^V**@k=oRGFQx->#(IP%&gNK=WUf$X zT}DoNW<%aj%=L^8r4to>s7Z!q!565O8z%n+LKlhw;d-u9ayP5Q3T~du55R1Ga z>nwI^hb=4^t>+$Px1MURP|(lD%}{VMY~GM9H9lA4D3ttKXL5a@ESbU5+-6i(t@5?E zu;SJym#Q!d8Sd?btXK%iOe!}=1+7wZiB$9C>>z6>bB`4D%Lt#;992GlotT12EmQ>V z`iZrFY5Jg_b6TTjGY{)n^&MUCxUCsaefPV#cJB_K|Lo`Z@|VBN>9>#Z9W-+tymsq! z({_9(J}5z$x68+-tl^&B6J} z39r5O8Yd^GY;W(dx83FmiFb}#97>d;)RRmA435gxEN1hBMA@WiaT4IV2EFG3IXN_; zAzuveTz2@dNw;MR{-YM1-jpffb^|ANc=$r_;%Z_xPCPOM%^>_wpH-5G!%!Awnt_ia zN0PMyIS$aWH<1{6lBIp>%GI!BNQ0a@wiZulfM^PTyY>tub zvh9$_W6&h#O&Q|#x zhLAD}j7<-PnM&E+Fo}v*j@LTeBr_?BgJjY{N#eU5>~?+ch1YBH-xWns3(SNlrpAY8 zN2VRAnN8=ps)yj{yt%8pCNVFTZ?+MvJ+(>=iHs1n9H;# zoifIeIYE$#(Kd5dtmIvjCTe(1U_~pGwOFWfk}B(hA#2D^3eyqSUJBkpB{aAk4nBV- zyY>a(Qd*Zr2wNS!G=EmInL;k8{M{D~)XTh1pkj|bK|0n8?b1GcI*pFm z40vcv{KSU)0fxVE>))gLz+c81%WDT|J?~U=c(6;;G@NWjUR^Hfy=VJq5C7Fy`NQA( zm%N8lZp8(2diHU-Z7!V?+0gvF)!iOP1|w0%hB5KGJeQq!By(Mr_4fc^{L8jMOZcb0w|5!HjGkRPW?A(DUM( zpiFV1kH=F`GFk~S5U7QMUgdqnnyMI@$@-N7gHq78 zOX!kwHsub+!DTo2KIxOJ%jOHF*jw}U^BNXA73WLCCc=4}i_Rc}rZ}Rtl|~N9QI?UD z*t&_4PSA(%EgLE;5hO|>_r4Q{G@&^cMR)ppUl?5s8B$rxCAGseJamLcMKx}MXq`NR zPK+!3s0o{DqEr2nTy-CXjj}TS-AtvV33reFvdt%){y8B z&=%pn*5D-1D};1Bsn8vV*Y^?xtT(+5`&7eR${dU_ba6n}yvhh*#E#L(=^?IVVwJDg z#3bro--osPLrqMk4dy1d!ZDguNJBz8rr=^O@JoG`V=ycMsOvhRWRj1X^T_P@X9kljoOa~FIHY3Bc8oZ}7!?lZr?mP-B%8J{e*ZNG1B#KT|tiRP*WRME% z9q#g1e(Xni;_XlI>}Nm6H@@)#?MW*cU($cbz&YyRCYw}*OxLuw%xe-#Dap9RdZey!!3ec=hF1 zXxkQJBDJ;jeamb%qitI%69}EdQR74qXk3kRHCu}XRh|AnieR#FHB@QR<-Jc$fh&cY zZb*yHu4aa4ZK4*416~lmYvrokD{RWC7{r8j(qx#tU@J-zC;ZEC2_tz)R($$~E^6Naj)MvYDp z#61eKedHpc)Ip^#*-9QvHLZvvM?AIk)a)ha)Z%j-Y#TeD9qdxB!dP?~#jn5b(|NX& z#zT=VeSoqfU`&mtk$^NGyX0a7dBPH794)xzWHB{kme>W!yr2+Jx=|AQXp)6A$7;7) z7@Bll$9MWG4W>fAM_l3Zq^a=H57V<>`}JStKl%^fylMK+Spo2WND*2KN&pJ=_5=^4nRj%UUXP;;O+9`)vJg;*irVeETV6zr& zI74H{5p3}*92tk+-X2iVE;B|ek zGTha~G*k; zY~S}o_L8-ejH6_C-F4ki=!$KAvYK9Jg!tZPqo;(Fq^7eH#!RB@`BC#=3Y5SK+XFwK zI$;#dI;QcPA}=xTd6MUshkZHYk5PE44$7UlDQm4Ubz>V1=r$GVF^sIA^VbTaf*{5) zw%kK==1%}j3qIxitOA{e=eRa={szRjt#H# zA!Zb*M5or|Boj@P-kWQN9tAS%^Zg~ekSQIA#YxvktgVS5U29Lo`yLzM-jk1W=gv*O z@|CafwJ&~=Z@lmg{CS^1ol2ZG^XDF@r54F?^AT?(pjn)m^L26oZxWR^4G+{EJW$0L z`MrPnyMz$f+S{V3Yi{1Y!^7vF=XiNW`?|-^YK{&Mxp(g#&p!JsXYCmmmls^Wc0DI1 zk1PobSB;@iblHc$SuE&#PgSK8JD)d%&?ReK8>wy0SHAKU9=!A#U7xIoo4O{rNL|fn znue;Xs6v}M&xr68)5A2I*DU69=JR>xw>syj>srL{O%~ldm*n8X0^$aU-42wfv|!2N zQdjAQuqhechSPR1gI^}nlT;4}b7qTHjkZsP6xx3C(h5e+%MQNDCq`+hff*IUa zoXy?-z_%7uOuW2pEL>?O#RUdzVceh#hO-tI&1h<8ZB5^G(v*hLgP{&EYW1pV|oceMOu;$Bf*{&**ZO4ZtzTg(&9+7WF+9!WW*@FcFqn>I zeTap%M0%~w{)IvAV>KFCashNWc14+Gvo(AtN}@^-MLpI^Ow0QM_lpxFhwvs%R7vgI z^zXJ9!MRM`>u|s)fA{0ezInpV(fir0DlU)Gx)g1b26$O-B-F7DT;S~L8iwF;GtuuR z-Rz)QDw`#BBK5>%;$+lRKs2Y~ZWV&h1+Nx<);gR`*5-rz-a4gBo2aq{x7O0fPz-d^ zfGb)?L8ntAhMZSfuu`TP>5Z;*A?DBSDu-`F4ldVV)EFXtNW)$eY%ca<84az5P||=5 zY>0^QWXC;c#3UgULB5_rAWw4XGo)*q1oEkY3KNI5umMFeCTU1CM@e%ZjfsQkYO3Xq zsR^!Z>7J)KhKw{Ys%_Ugq11p)SrkKK>xD78VZc4oQmI?6H2pCohe%@zn|r%<4V{<= zbir@D&ZXOL*)X|mlgPTIxgd+VVp^gdd#_*38{32-P5cet9-q zu)V!Q)69v{uvqM{T6J{2XR)=#;o%|1S{92recyA{E~%TEyZ7$W%xi*49b-Uq5jN#A z2p83)0{!gloW4s`n)$3@XK#zTuDQHi@~szM za;@17iGejZ!KBSfTvn{X$3BO`Me)jtMqK`4nk?#PvIe@Y9bB|bNQHhe*-6k+2m9b-PYZxpjQ-ZXoOnZ-!35=eg z{;Ep4qP|y}@D~agre-*Vl`FD7y+4i?U8=jWJmSKF!>+ z*h~Xd7smAeezbw+WcOe)rABk8bONe21lARKSyGH#ixnUI8$ZFjfByyEd*%2;&fc_n z`ZZSk8Y})GXZ&xx#(%+0(V|owa=?rx7s^BIaynnzVgP*fy1Hm5#+wyVvt(E@<65xV4yX?@>icZDm zhN!gT?sH7uxM4|IN&^bk7iD^(UP}}8!U#N!@|4E!8$=h=74$8?X7;dNkWT|(dtk{t zS+9TZk8AqSeq zjm__RR??J~_9)A3ZGX0aSVzw9?G%TeBc{waxFG`02p7-f#=%umSq}_2&B2mQ6mkDKm z(?GP;9hGag3h;9-p%%vC;F_J#iYC$rpED6-Mu2Q~D$7`+(ECPusf>UzAU2PX1C(LQ z37H~eohFL=qaD{WYx=JuXuS;D-J}ajjE975#E^7yYX7YHIx1oC!H;Vy2_AK>l3}yS z16oD3g62kvW1E${Mvb;fIZ{sC7gK1nn%jHXN1c8~DICH?=aiW(c3r<`?cma;kt(G# z;btvW@fvH2=0gVbN(BuegB8(`_vz#wSzO~v;t8TOph9!C5y=oG1=Gfu{ex9k1W}M5 zEAkDoFe)s&wU)w~wZ+HEfW15%4T)Aq%$!K8xnh+%>m@^vN(bIRA3TfgEp9*l7?0h4 zjH|0FPS4M|TD4eLVe1CB>aj|}330ezZ5osqVIx@~4pm0th2)q8OGzegdwYAoe6WAW zVzJ1uun&RV-Cg#N4%k0D;Hq75esPX*mV={1Zr;Ad&D*z_Et)iGiXmG(8=DqTT|^S+ zS*D;N;*4c)cb9oHV_w(n@9uHu)=d_R883bFMZWswuk!l+hg7yEbjb$#==MHOe%Djn zxP3E))`p%KBc1$vq`|tHy}dp5_xF>|Lz3d_y2e#jLkjXV%t|roWO1=YfR(8%uBlUD zD(_D22!)8IAqj0D(g|N{3J}<_7-{*{>q+uE?AoES{B_F~GVkZU&HU%4H7f|KEM#-7b z*EvZsFMaw|V^ngS)dVC3DB9#oIHJbI(T0_$erlCoye63>*c^VQ+_WeO*R^w*+L&}= z!@{AtVkV|dJo*%vm+AGA(_jj_^sJ>R?lT+GW-@h`s$7+<>*cy4iSQcMM+n0NPfd(mKp-l(bWm_ch(Y7mUXkmvhc?QNsURMp+{jxT)Xv$#L~3SD=>&k=b) zmY>4#&v_(cTsr5Al(iACe!bASLEehPhl0lIeo1+xe@FEnn$5>G9yx1A^1>G(%wi~Bt2(9S8 z7A$aBdePv#PQz`U;K`r=o5a0_;~kfZ5o2;_W;BDftm!?ox?%S0OZ>sV_~h61CBY4Z{_eoMs$QgK9%I z>j=__iyIhSwi|EhSaC%!mhdy`oFNr5ARf-cz zDsQ6s+SG8Rdn>i~uRMH6|KbVPe&oH>5!$*^MY_85@J;cahtPFYeVoQy#`NC4k zaTc*GxQjs1iLMCMTWScpnD2yWvc`AVm*XhwXVc(Pe?kyjZ?l1t?VMW^sZaO!^5;w~ z*EN3zOrbv})7*>^Dw4CKi=p*Eroov+#g8T-3>XbW_jy1W)mA)b6{SYNILBb+XGVq- zWdox+swsOu*Dh)!9>rQ)ufqg5$_25WC&@dUT7Q>KLm3ut%5YHwM(d3@%p4O5CNXKW z7R4mjTW8&{e-}T?_wsZ&o6s^V4N?w;jS{M=e@-Z7j782@jF?G;w3p#y3gzU^SeKczHg=|)6or(~8?IjBx7sbP?>R{X}UBV$8-H0ZUa`ZXhAv?@u_ zdUMod>!3ny$?c$F(|Sx}NORz`QMX`mOxD^&qIF6+hn|-pAWa&U7!LOLx%r>sQgJ3B<{=;P3N`4E}S zW`q!V`Q?{cE|+X=?eebg`Yx*4Wp@^DMEl`~OrZhlNG@r%&~A92grkQ?`y5?6z*}zh*m8MsnY1Rxu)kk%?b;Fh`}_30 z&nVE~>z}N+|9{fn^w+ZNJn#FhVefPAxkJrkS9h_+Q4&c@wg80^!AM4c=z~Klk{l#P zY$S>d=Su=OfC5-B1b@ySkidv3OG08>wj)YHoH$aVn5HNx5@|{#n{1Lj&r?<1y3-l< z8uH?@;+@={aSFOIv2F!?1MfJ)C zqo%heT(yx;ZPNHQAr!5|tW4uXs~dEyGhK<6371pwg0W}+?kbsxY0M31{96EB-%liW z?E|KrdbMG`&J+(<#$`chmQcCG*-Q}UM!dKLvB`!AYe+*JWd|6dNGPx5OJ{zaZ~)BNVv7JAb6A1frL-?8OvjwEqujVTJ$vjhu+nB~Ho=BZy+mc} zlj$a#ir7f)&>ca?iWP>a{*BVs1a_El%1Y&gbB;M-4eWD~D_rH6qsDb)@odrK6%Vnj zp`*tfPyAZ8vI5gFe*gd=07*naQ~^h@L6{tYsd>MxqRtO6%?hW;6~vtzkJ#qd$Hv=a z&-t^>Fx-HI?{2Zfij`u&MGW|m%%?v5gRHLa@?fzb*qM0v249c(~%= zcfLY@@G2KD7}iAcL{4YkWmD8P0`^_xcP;3n062VucLzA-Sg#{XPgnhC1+bnexnEL{ zc}>iURrDA!x{>lYmg;Xv)dQF5aa`vXk-&Y9Dj&~I&>HBLNxpti;QavywOQhv)+74)%l7PZjEspvq}bKRWJ!4#2WU)-z4ClhaF;$u z{TXsyjA{X}u99CzO027ZAo=$Q7OHaT7$>G))5KrY=coEnaJn7P%`AYQX#p9t2IZQj zei`X}^52bLINK^oDx0d(lx;RG1DAmgmm(bnR#f*eXtkU1-!E{dIy zlQwLle9e{(j$_Qo+<;Tkb zE>)kEKq}lLK3P;RR`oCyXh?35;&r$%?tUk7HpfWaZKQ|J^|i(-gU^E8FR!N%_DZw9 znSa&R@6Nfg20TN%bZ2C!br_A*H)U{??C8HtAx@M*If^PR$3*sWk4PrUXS8mdY_-J1 zlo-PF9w^OIj#iBGqqL(@ATQ2CTFQe3njH} z#5K-4ZIW}X6~w4+#&A8OSZ8B0F|JuG7OYk)h=%)bzr*G0m*oQ*d;TR34i1?6Ej8&GZr{1X%_nc_jW$%TNXnU`hsP`y3tTs6 zcXyBL*Ke@9yF5qiRS*o9f@;brVKZDO^kS zX?$HygHltBNAS-?h$SN>iYWO;;X1jTSwngx}cKblz7VR6FTu(Dtd)r;c;*EsL>}^xP7VHvz!4AWRkY`oy0&1YIBG!vmpmog zY;^KQ(feNLZ>}kBOOvx^XmH>nGi?ju+-#20BP3aAEIK(p7%qCDXGwTJZ93{UNWv{syb(zQAooe2gK|se%u97q8B{75?ph zqVN=3e0^Zej9HWKM3u>-R?O%ZEPuI$aJRGNNEIAmF6!crV5%y^ zC!QojN@W8VCUsCUQOI?P(R&>d&gnG}Y`qrhFl{66sa)q`FK9h@h8V|VUlHB;Y}22O zt#``N6J7FEZQas}yi^<5a&AVvxd(G%0z(F-!0%~*vs zID@5Qu?SUz7)`21DM;94D`v6WY71*!-e{b7f?j$3WnO>%b<9zscQe9iV0(L;CqDQ- zu3o*$aau5hi0v%v^_mY(K0KbFmP| zRGXM&a!_bH)@xpqZTS67P}qp^&U8-Z#brtn%8fkA#gLkEN4zqjxsgFmVVnXMI6?Da z?UcMH(~)sfl5=1P0&3$#QvPBSuu*_=eN_G2+%3)Xjz&&vo~fJ-FA7 z`2FAhZ7zTLDNZ=$E(U6dac=Us#@CQHny2$TRgZ#wP&Z6djQX4{9G=LMo?d^7=F#c! zLI4c8w(cVP3^kWZfDi?HpDOSpD7+z)S#nBJDW1b|k9&20>Tt~H39RbhSVEtriC^RE zRXDzv7BrG3UOh{iaPS`8IOXrsfNp-@HkrsF{{Dh3?=gEzeAf|z0tQru9vKOzMJZ8) z9#vlF9XUmY6oeO^N2i=~B7I-4*Q7k?^L=2JBv!!>89QW{8DdTx4{JJO$XR94H3UBM z=lS(t{8vBwo|>wn$S`Ki%&YlHd2AH0R@5VT+BgM;zgVksT~qw8vgJ2e@$e{aybSrg zbBz%`3zgV9@f20>?|5IxZW_L8o57-0I$O$V>ZxvqtL+t2;2XsQJ7S^pm~T{U1(cAW zR89RtlN|?^69tByqUkG9EyaxnO^0*k!QIf%Qiu>n;;vJ_q%lVJ#9G^t&Nd2pV}Mw< zWqE{1P2delhQ@{7mg-=21VTs?H6=7!JN{XWDzY|4>MUc)A=D2bVp4O52dPK$K>yWr8TWbB@bxQkFie)3Ujyi1Jl=8I$>P;VC>+Rdj zK&yG8P0+R658_DKj$u+0W}6vOASbwW=Qek)UFXVEPw~vxp5nFFUT3u!==vUSv}rrz z!J9Uc-g&X2B$edFsME(v6Wq8N6xC2# zoc{iE&ppRGZ@fj$nR)a$W4QMCEpFbp0p76+OIB$u%>3oR$>|9;diuWS{qKK*ix)4k zwX;(()1~o|6YA=QDO;tyIV&qrJL0yDu0w17kEju=)Qrv0t(5S!p>pJyHN@3bv2KiO z!53N$)Jyq{1~jR^!Kql*m5?}{WTZx0QJS^B>-EE%D{Zdi3>dFu#-ztvf1WoZ9muKP z*6Iew=*nLvKtbLQaYI^{YL-F^11JH-auc7fYn}6>$E(O3k|SkmLi%RIQ*_Y)L(UU} zs&71F=XtmQtR8=v07)~}S;vr~_=yxZk7~dRF48I*wM>v~qo1DKOuZ$CJfX~0^lOv? zOKw_T=|-G;GcJ;hHpfC99)rpw{5a9b5e98)()0n7QSZe2G9Tpoxbo4vyc1U<#Y+jJ(?M(GI`t{wv*9cM z+yBYxl~;I@o_icMo13w5JTJ?Nb6_6%Jv2!A&Hyo6nl|xt=#dV9WEk)OT%NQJM;S24<0K=&Up- zzDS#@9KLwi%d@;J3!+NUeAm^QWD}TCvEEkRXIsy>i4{T`kn*~`H+AR^u|lGZ)@hPi zRzj5XNNZNPzCNhMx07>iY6@R98LB#_McLb|@gt^qpY24%Y+dV>A76X1lEhf^O2j6T zQzZ>n&$$+%#u&02eRG>R2%CPt^J)%>Rlqo|=*Od{GnlV%6 z>eZ{fvRsmE;NHWx>2l)w_3Joa$SiWOD%O##0cAow3A&S>%{o@A6;FNjDNavLnUxSx z?|JO@V_d#|nHYoU!4nK=AjHV&vCOQlUB1Na+qc=;-Ppe# zYu=8n(yXzG%PHZyPBoQrx@Odylxy&yp%kkc@>+aIn566atPO%Y)9n|@mZ>n2JXtYj zT^Y+MY*NpwDQ`?4uG+6ny>*T?$Hy22H0LpO+GUZ1q-;bM=Uu%BWqqF}H-iucyzlDq z9EP9}14Bxdlw=y1%gtzzpC46!fCkfG_50}ue!fUs>axU86 z@`O*C%}_F~Y*LC~%JoKKfvo4g=0sUL$_krxdeIfTij6ab94EL~`R`O4Nd@}IdcD2* z*j#re^@dd>aKxH1mGX#&&5XGa#u{867sJz=meCuv9IUEMFWV>$a4d#OZ_4?N(}$rg zsQRaTM zZ}N`ExXlr7RAadyws`~~d|DWX3Yd1<90}}s&}n}0pg5I4WzAi(%>>@oNxjiof6o@4 zM5^8+@T>?JJiA=rloK9ufM>}bds=Wy64Ewv5=(XBWNm5&43z))MfvzsV6!pAsne&8d-D?1z=9ukw1 zt#E40mC5wnbiDS$YaD+2Dekb3XTfE9R-7n$Teg9A0(zKkm)O{{m~(!=nKdfut<#2e zz^SMZ-3)ci=rI-7-P3D8tXw66gc$TpS^d6V8>2W9+c5OnkPmv^JI!ixWQ`_vHSx({ zIU#V&5(n(Dt3l4CQ8N0#&YW_j?=><5Rv5O}V$Hx>8`#`5Qch9)=Yb&1Bbv;74moeL zX>tVSz;|B!LoWW4$jv)H!>;dmZo7a8v<5JC1Arj+pOOpXlVPj#aQ}qmazQ#-F`Lck zZ(L!q8d!7*n=RgS_*u`zdzn|i^&HRtvwy|?`}deFkMVd8X0Y?Idwk$;{}g?49OS6J zX^DF<#!X&>3_0bQ^2?w7B?;mF+4tT!{qkpjY0{0C9G={SncwO`EjFJ6G$Q zsygXv9qWw~Nq((WQr&LEBn?j?_LbK)Mv>T2d1M^U3c0WNlB6z@QCB&}t_iy>gxi?n zne!5xhN%60uSoHja>cQLV{Q~g>e zM2L}{YnS=xwaeVP_84FL>Q{O3ThFmLJ;g1p5cSNmN*>D~zQAlSay;Gs{{BCh&-Zxs zl~-9D9<#GGr?U<;*vSAFFJEH0Sa5oH3^{XY?-IMad-70;^0ALGlZ+m?LS`vVQ#N?( z28dxWVBt|HBSW{7<7K87)sxbwNRl?1vi!HF}MELQrH~UNM^TJ<{LVIyrC+t*78rOYqxx11oo74dcSn`A&Y{$~3azwkt-vc(|NU z?NB+ypawgoG?0~OXqK7H z?QGQ}B!*M(eNB|NN*@e54zx-ntW+<>dz)-9IZ5c9qAIN!eH7%fk{^w<<2u;lI)xgi zF#$cdc@vZ1$DpQECEgfq%1Z-YP^9I-(WIeI9+c-~K~!CRvr#l5aQWs9+zW5=+$%4$ zbG*RPbD161L5Ce0J|=NFlk)2&r$ z-+DSOa*=J_NX2u~qcn58<|*ZKd?}nGp*yeOHJrsp`!kK_`4ly?(Tv57zdvDF6IpVd zAN|yi^X3zKEMs8lO$CR@r6QZ<%L~ib{^-k?=f24$=IpaT_S%bzur5tg3u@SGn9R9b zCvyh+QJROI4oAlpPQ7W;%%n=fE7*!aCTLh~IsQSf#v)9Vb7(3KeAU#@PQO>0uHrXZ zX@l%_CuZnLWDYs1So0lrFl6Rzvyf<5Z5AVirC1>39W%BS;U1bTq*LZz-Z*0MoTljA zXnC7{C^q(Lu*0kCmw4vw6F&6B_i%iv$7V>@PE7Odq`Hu30rv1beCIyD_doqpzVxsE z4R3$pOPqZBC7yipeO$(qjbn~yZ|yjG^=)4N-0$(_-}-Ib!{^xzfeUn8V1_e>gI8YT z`VW7cx$imlS{Uj8$-A!7LdAQjp_+_ajGz9gpXPJF@wxBXEd9za{o`|010^uG#5GK$ zT?MhM&$NPGreK$IRuZZ_Cvwy7*Cwp_@0PAxX=)8#TIA*F%=X4;jK-PizBTWf6Lba& z(8#ySP?Z*((GdMalBeQmGsTjZpkC+Pi1^M^nbvuEm4);=)+Hk)wjBqQxQq~DmB|Tk zq!WvS#@r+|_t&k=<}ql(atpk|WF?iV5~&4M88Zed%kNXOD$fuX%VscVyti=9_@^|@ ztsi;w^V(i-Y2zGMiD+qxR2f9dmAGpgy5xAC#=lRcC@ROBHn+}MZ5YR|&Ct}hPN}?F zBQlU3@hdap26AzF4M0+!>aF+EP3LTfBuz4+yGMo#*^#_M-I48$C{a_I^; zZr|eCjq5Dq!0GXV)evw)q_aIXM6n%t1%4%sqRB}bCgUB4hYvY9Iu%py-X19qB3sLl zOlH2b!^z?ltYN;rEyZ{cQ|4MHM>R_!j~@UrB3eRN^VCyMadLXf%xy!03zx3)z2E;a zX4{tKYDu=ji$6M9aR154XezqX=EJbjB$=uqkEQ&#o~%AE(PIm` zv{PfDga)UI3O9yH7E;-q6ohukuL4O^$25~HQ)CLd-79n#mG^!e zJ#_m3Z&&I9`LMO=HQLN~-d8l|i0{t=A#o1djb`!^Bpg%Lz{nD+YHL_(!IbBXyK!ma zN7~~^x-1htH|yD3B)<0ivs^w1tbq#}@)^p2>Fr0G22`9BEEI9Gl zM1gWn!JkxCwZ|?V&oQTT%D{^ils)>9ESVWIZg7<=Tw$(xPc+gtk>Oonk6qRboU#NA zLDP>cMvH26`;dqVQiv5(kTo-EON;H|Rmz&66j`z6gcFvWR@q@ZX9G}>-&4ue*<-PJ zTsF%G!!$F=HGdX2Hc@#3KR7GpiW|+?poBbo`}=wF2R_DY`$_guWumPUKc{k~*-Q8M z!vFPu^Z4>17ujOYsp2SBO`esRG>PZQ#m2_SoY^dyjgn%EnNkofUXOOF?xFHMfq^xi zl9^<+p|=$Qg32jF^@W)lG#eW)o71L9qzWyqA*kRZ2u=6mm_|gmf{y+KO zdFO>cVxCs)li9}7W0+xyDKl_Nym5uQw;toDiz)-n*c`DAoXwb&Fj?rHCPjfuq$qGJ z1Hb;8zxiDorr-F@-{do&{%f@ni&d^a0X7!?s`JE*e#ykSfM4C2m z<(ccf7aIy=vpo5_s2iLrWq0+%W{p*Pxv9#KSYZa*2)GhOQh4d(U0BPIno*Py*jR}f zD$Ib=NS6AgMynVz)(vSq&P9=;lc$>F9mi`n#~74_(AD-cep5W$Vw^W|?EuD3>$ZZXM z#-7zZ2Bp@G3D83D$i~)5d?btH%xd7NHWC__BaKDg=!o+O(U68MR|B0f;Cxs0vnfTK z>s4nfO-(3My2kSu%cCq?I;Fx$h@gC^(*~lv^}Q4Vjr{zn`LDn!3hkr>pS9fn_V0~q zFfHcK^Kuo25JqjWHf^P`NayILH&^rZXDK4qBuFZ!GkP;jj9a@j#ERW4fr%-c&BJJa zO!dDt50K4JzXE;8$q-fM=Y0vNjpI7FNFw9t70SspnrW(xwMbaYBuNaNj5356^<1eT z+FG)1MW=o!Lk@|MB7JFiLy*_6AP!Q{$5fD?RdN5t#5zhm+Uw;!q^RJbC5qtEhabm3 zb%XHIDJSumQv!1?(9_p)u9OoUhDhQ?ULp|KV~ZKRHWcX8{H(WTv#1MX9&)6zDN_q! zgPE}QjFz#UZ3bY?iolYAOjn6|PEp)jnyj?qNE@nw#EN51SSU_=8?V_zu1V2J3Is4% z)~ssrI%7sua-P*TWvK5bH#YtAJtyZCxpo75kQzTvu1+}4c#X`4tS)^Q;@oD|(Wa#D z6vHl;cUDC=*=3D9`{Zx*HE*k& z*-mrNzKKJG`sSrGMI-Q0<-}kIvf51CW zzsOZGj>HZFYgQb;{Z;2C|l>BSjg=TGs@fD{(fb zOjm+Al`xk&GtKi$QmjUz-XN_$k2H*2CGM#}21=J@M(SQ6l95%qZmr5enKpH$0u14M zAN=?}M_+tx+;i<)NkKprMt@e;tz-zHN*_zj)MllP8}4zbkVvd!VjVO6&K5uPBcI^O zdmrK(U;Y!Gf9^TLgF~q$O~4td)hA_jY3^)o5mw9km^@uA*^YDkVDP4&ba;K&v3PjM zgSXydHALQg^K~v?x{B|-U?GhsOJz*eo}Q zL?Y(MdL0;sfvZ=pbLrA0{Cu04_oDH4xvqL0B9BTr>BVoW&!b|*lTKco*+52)AF|D) zXp`ijnQhq~|p1tG;qm`xku^+>U>8^Q)1Z|=4Z93oZ7@q^C8G7<9sJlgGR9B7 ztGI$Kt=kBd3`D(wnCvIk^Q0Td64=(lK_(Y?R?};i_jX=rV3~xZoN&HmRWLq4y_IZ- zf+V-&2fjc(fU>50Iu&s|BBKfs$?;rO9{17%IEV zDvhwh@l+2jrpytr5r*N+`BFS9VaYU64(aTDp!&% zjueEgk~+SNLA|}@mvXkqIE4rowE*{Y%vq|3XwEhr7g+E>4fmE6YhLFKE^!f$*Q}*O zEmX(Sbfw|AQPI&sx1S>pJQ4Ig$%bQFw*<147%E0!gj#H7AjRrpI}0(`EMoVV6GAyyyww#P}fseu+1FB_ZEYD8wbQGzy1JTtIT zPNLUlM_SAgUT-D>ID@M($d*oNdh+wF`jXb1>YlP3*FeucGiJcRl0_Bw4SKe+?iwZa zrN`=qG;fF#%lnD?Cth7zQA2UxOH;Hd-81KUoFt-o-}dYzi&;myY~&SbzK-}wTX|Wc zONJSa*S_`)51)UH_hY%rWiD_;Y^8d-U&&$A-Ke^id-2#1inoHs&N zgoN#+W-v*%j3`0Rsd8r1qcs6Dsc&dDn@!;cj{sG`7;Q58#n1Y=CYW+#Wk6YcS_TI7 z`r9mehSsBY2Ee3EV2C4K*E!iR7O+UUHX$oHx}j7WlmzOuac%D-W@HiQuweq@sG+=C z6Qz;V*HY&!W6*LtuqXoBtGJeMwA;^^Rzl%xpm z`<|#6NSnlr7|nn&9m|x+T}Nj+P8Ta)dF2)EzVB|mxQ&%9(EWS&c<%Y}! z)uu^fP=E-fnaIvGlYGO7Mc=q!?TBwoIqQ7cV7=hJ3l==3FiEa1L1VRpcGI+FgU8r0 z#4HvlfwN8XFwWbPO25kXC&gSR7|vJ*qd7@woQzd!0#*%-shafa2j57eX|y497;K)- zyt~db42se;B7+m`bgc5sO{!}&v1*>>?>CjEQyxAQv^>s2FH{l)+C%$5QQ0uh3!_xHdC)c`72FS z4l3U0m_jA;XjY6-8X&8{k%?R(jn|+>Z(cFuovm2eF)z$EI8)J#$JHnu%Ih&GN0_aLJJx?R}lRd2OaVhCTK)P&8FX$~(NpwuZ9iM!F_D zthGWZaxJPirBCffXPa%TBDlrNk|tArv(eB*Ms#?m(ygAJdmK*Wcdn5o?l9L}r!~78 z{rWbCoT#^@-8_X!1pDV;9s?>Fh9gaCx zvF9|ODpe;;Y1;C8Zj>I?v~K>s$1o$adh>|>ttGp6F0x!MaWiSYvj%*Z$#R)^??gz4 zCp`0oKW1ySAh94bV@pRRUWXpCaa839S@*V%i|pyPR`!B3{pXv%`vso+-9O@}PsA8G zh!6DDE*KbC64`hA#91#26u(8+b^P~l{pp{1)0VT@fZ;UtLEe;?*=iye5Yb3K%gsRT zyqrFXv53vHYKqx6NU&~v^9PcdNXkZi z+>AJDH?56I19g_@n$BsQXnfJ?8+Oy?X|q|_RLKYpR!EjI6i!uPliP4xBin{TYm6~Z zw$|3PwgflzyPwlQwxO+)=F6HoeBG=GQbYNR1@W$*V83C#7=Z@4O8BCJ6UsKl7=zF1 zQPb^MORGL(&u9Z?bsN_P-Inur9v!g+G&}1UqTDx&#L>|V0Lmseq^9;bdpBv%Zv}6q zRB3zXZ4=9;)7dc(w3Yu&VKdY3D}xEEU^elN$%0^=)_Cjq;P-xj8&|Jz>*bet;cHLx z=9_QgP}!vqxC<99{DZx{Jz|iY7v~(?+dJ&;?THpSqbhCHq#MgHthx8#K6#J}tDkwU zT)9k012IN=?>TtzfNwwZj1V@GCx*oJi&waO>C(ukN{Pkkg5^4}y}iq&Yqy!t_hj8> z49<)H$SAwtIHTr%a9uIe$;q(lFS5>6uT0rol&MVdw~VH^F_WPE`cyTq-2_`$K3zqA z)`BNeN>~TpTZ}h^6lKL(iuRbQNzNAHowafUHzh#Ls2S2KjxuS7>&A5CG9Jj|dn=57 zCZ3k*1mv4Yg)f*(wL!ko~EzDl?MtO5-`rf6#}eHD_*mu3+)4t4*V8 zz!2adebovcqu7a+0~!HXc@C2cZ#KO()#Gf*LGc)h7#JLS#{1+pfTxz`%VDuxj!j zSg>LV#QN$|Q(CUHc(simBsW{F*lfN;ibpN|gZ|k7924{vZgI-0HcM@zQqbmYh^Vh6 zk!R3%Fm9r3O-(nzf>RDT(Yzl)SYPIvO1yd{xp@W>!#O@A9zo&bUHmUc^z3t$kN#)> zDfZGHukQ|I2ZI+6Y7PguPK9$ugJB`ER_sDwvGZM>sK%y&&H6iXww*fBOqC5<^|Hlg$0W`+UnO{nKx9^v zl(K$3D&x$}#xAME6Gfc6CY{V_dnpZ*WyV5facoHKipQ>O;u3*XlQ71HEHgg>2=S=n z-^v~zvckU{*#9fv%dY8oxMze;*SYHLfy^u>=6%oOi=KC$d6C!u-!CX3afKt&lR4o? zn^S4VY~3CvRwQ=W!Qs^{7WGIO2G*SNfHjAN_<)ojGGmS57|)6w936>yHke_BT`x(? zfxmb1?4L`T_#40VoBT(g`7{{A$>}LCy!awt`tq0gy)S-|-}#;2;n#ot*ZJyKzs9rA zKFh(u0btnLnb&)Mq0`w?td-_L5312YVhKCVIg#D8mT75o5?ap06H)+9bs$#rm&9;i zgGLi05P)g!PXQcQg}0OqYIz2>4WBexoM`|zVG(DPA=y@6lKk1!J98d*XfnVnlCC0W z(-&Q{B+Jh+W4@w6>Lr0Tj3KJdjmnH7voFu?7}J^KzS-Q4d81|uPO_t_qttKC`}+JX zb!gOD&sg!~XS8uOO=xnq6NpCPI2Bkz3&SXNKnzLzRMt*LbYq<`dc#J-9IC#`)st8@ zMlBn_HlDKbebPkBP{4X8y1JCA|4RH$vDtQIvXf;<%u($hrfzJr8SCw8-m4ou-7Z?H z4JFswQO8_5{LkudOF3!nrjl`!H2_)e-a`uP?_K29C6^J)2#14{sb5I_rzBbRW9_ik`F(OiE!{HOVGVLcxfs=Hy6YB0it2_;BOQh!j_?r8O3t9VSVl zu`NWQq~tDVCn?rK2x-JNH57CsB6=b?vZ1tn}wVc#(DYs zvNU#1Cl$el`nrk?4?6~=)xbDAoqRa&CE>h=+~zvbDGfmNfaNT5xN?JTyh6r!SzXu7 zl1zq1Tzi}t7c*J69(uz_YR)rdI&Z3*!8XOVDGgBys03H0@+LLjv2i-F86-Pu*JVQ% zQ^Hz-i^P=bjX7*c99t+wD+?_*B&XR2!8{aymDpb6Yy5v+QDCqT2H(xYzjZp)v zv7_bxlXBkd213@3+n#EaP17l=5c1UDrF)Bde|4D@GjA*xTz>zP%s%}|{@@S(fM;L5 z&lN5+W6%vpV22*h4v{0AZWoG#s3yg$IHySJ9Md3GgUEZc$~$FCV71X2h$L2Zo8;8z zWI5)TQ%?2wjY_86q$w)0uec#fnlU2-$5miRZOsIkK4Y61hbrUSWsXz&*#QSiPK(Uh z=7dxA#0Vv5iy2Sw7!P^C0S6*0BCySzOYE~l;2qvk5}{y65bi@d#DinP;OY;t4HS-JtbKNJ6Tb`&posntS*MQ@4EL;`brP@%9 zvCBe#bc*^2x?M^n-H}iwn6bXUeRfIefr`}&~Dn%~2gsgM?TNqptrzvc4(ah)Igu^(gmYR57RESGC$vl)BQ5hBcA zJmR%izr)d=zR1&0e~XScxrWCv(32E~G2+|DA%eV`3(UF7MUHj&agj>|0;eqKNNfQ; z2}4i_Mq*p{ftEp^i%XUB!GFUW{6&7b?gb?Vu?u;ku z%;rFcs-}r{p7^NC_c{S6m2F2sf|q(M#(2hyR+^z0qtu>^#~@`Hg6C8U__fxRPKJrz zP3;yrj^i?uwBBhM6BehwrZjxdIe`}} zf4N@DCeK+N+~!!Dx1^gQ=LEI0nGIEHphEwx5iZtNk5fv8swlRPWTu00qfJq%0Zkgu zr8ADGlF)K~axUs2y~fgLIk47}qbS}^;sTotI~OnU!$0~d-hTXh_{LM;;H?*45Uolf zxL7M1&|x8f1#{c5UaztJ+1uvTt5>;y?><9bvs^AYIXPi_Z^mMA%uCO|$m;Zz&d(Ua znv2)3v$MO+Itop1AhBAmI6Yo-@zNFUJaM-k1n->|gbr&u=?A=^q_Y*#!>pmuw5!C@ zB|EH!%xbWgVm)kUtA^ORF@RLign|)_F<={VUU{TjXKIm~OE8}^Y92kizMZacg~MNQ zjaleCMzh&Bi(Z-wLbg*9 zPi}KOe{At1~J=~2Gm(COS1%tO6Gvd!LS`6JV?-1HgTp~IB$HUjLAFb7+&J1wxrx_@8Y?#R80=>{?HZ}6N&`2z***Qjh(Yohi zj7;Ymbgdm%^3%_kX(pOyZ>TBC5NWMw^~Znw-(&UoRo?y||0Qp%4*8&NjUuOPv4>;M zHW%@nvS6vw8}X5BGv`!I^%uFweePFhiEB!_aVs>+<3cso$BEY^HHZbHAcsOw{4)Oj3ERNHpp8a+f{@=cGX@F|tYXzghy{N?Vo=-{d}-Djr>`H^``0 zZJTY~`m9O>scyV{y+%uLaRHzdC)JqmIKuFqQW~?qA4gv|pdQCs|L)>dN~|k2Pg-d+ z@j01yIlu2!mf8NADH-y)Fa9APzi^YiCw~Z+B75C7M-PuU{^Mu(|Nig~@y~vn1*hzC zKu^!E?qaPbqZuMsxX2-^x(Qq};6WpyFEFrT&61v;Z5(g&fHg~ISUNrDL17xx(BV|Q zX_?4>%LD$RzkdGbfBwwxeb19ma`V zPu#6Tux!R>Q~?Az^m%Ixp*#n2k>ooKHkBG7Hj@AI?#-j8n3@M!WJ~SWCYv_kN)5`~ z*fUo_eO|eeQJJa?OBx+ze3oa7W>&=*$wqxp20~1A=~0vl<)X_Q&-PMRY(i<1~okPv39clr0unzub-Fm`%r1LRWN?QCszJ8EN*gvc>V<5dxFYnvD@|=VFDRlvO#+b9hQx8Khs1x9 z>)x58a zTGGh4T8$}9AQA>sSCOrevuuoFN`$!9{G_4*7So?l1*ek&$GC!);@Q@<>`-u>*5C@b zAdCLBda{}XYoaY}116BOsDnNnlZkd{CBsVR&*$RT*0qb*R2Hv^J-*ZNnUarS?p)k1;BG+!FnzcJoimmp&l`WPl zQ>P7DUoKj2l>DRWg{TkgA`{GILZs&2VvcoQ!}^poSoGad$$+MOj<$OSGDkaG-1^HO z=kDJy{K=pE3G1)C%zYkk3D4V{vd12CE^y3>M6V7L3H-FWGbtH3?Nh=u4NPPcvn|D! zl$x?x5Cn9m&4uMe{VO~4?6c3Cyu+YH=Uwh{!k}%=S|{Cs6HYkhJ|52z;JHL%PG`3v z9kR_nC%_xL!CXBuYnE8nDhArF$xu>WN*dLQbj>;czwRSkqB-m=^1+Dve*N zPNl4*y|RT0lXGVDm5fOIdy6V$%tU2WkR_wB)*S2A%QdE(%dKR3pWXX&zb~N8?hZ&y4eIBsS zK6~tOkClodQ3s%mW-?ni9Djoszw3MZ)qnU8`CEVI@4Tnu@QF`+f=_<(liay;hrPYM zamy27xmxnA?|hqo{?Gm?Z@u*vAq0N)mw$!-?&p7=`S!L#iP9O!QEcKYtQ-G6@r1-j zkkqtUafuxBlvuW*csL(m>&RO^-2=M%E#F{=7x0$7Mm zv0J^)Sy@W98Kiq1E@qO=D%0;o=~6N@7(mdGh<2(#2L(jaPWQsPUT8M7>* zLL5p%lrUgjqx?aU-DC96q=~45d&zc8LmUaIr4BLWeI?B#EtU}(xH@McNv&>dp=C~; zyRv_Za*Eyu^FSlh8$ta$9P$LO*pt^$LNO;-yhi+TKsC*Q~AYgaKzyic#b z_A0{==uFQr3|zc)fh(7<5LnkUu?hpnixvBO`#k>m-MSLB&R3F$(aD7^2g5XBqSlHk zzw1<&nAtKV_$}8$(io#S&8&rfmJeIbIM+`OuGJexHlfOroR=+CncT;cU0@}Iw|I+W zlOqM0(=Aojbha#2v^*HrYsqGEP9AXWjU$b#=r)I`d_cQ~6yrNjvLlHm$1KRjDr*}r z1lOb?w=@-;{9~deq@iNaU8fgN$m5ML%j&sIN7~?8f)MwdccdXs*1c{10U<~@YBf4f zXPb#~lOH!YF$T>hzjSIGs)HLqfvU zJTwZSP;zxg#P@k7%Xac2Qc9hUq;)Nv3f{ZD$+vR6vVkmM6&OS^Hyo6&5)yzb_&K{CTiu{Kw%~FH=o!DIdbJgcj&_* zE^o1Oa?0X6&v3wsEtbrg6WHa1WA=2TW7PXGXRGc`X7u`JrZL%1Aq%-SOje~=0&^%+ z`#r8RW5%3QmMpl$9y4a#fC^St=o1v7ds4G?v zP1`(%hJ@Ej)HpY+cYJgW-=%O)T5!J!e6;^K{a^hdUJe5*XX(3M?#UrkN#Hh~)B8uP zIbhD5Q;vy5y2i6(&iy&(2lU#FCdoCevsH1L_}9eY(pRx#!my^Vh;Nj5x32AGVSpC5 z&`NRMzP6@;1uJIE2#OXNSZElot>nE9%b?is4yW6xtWs1t+p)<^GP>R?M^L}ftj_>1Gk$H88}5V=6+ z-t*t!Lx1ukSZn#$|NPe=yu>a2+-@;wqd0z2i-&DS&%SPTUES^pYQCq_L^H#jJv~N) zo~e&HAX9sn=A@H{U({~{m$$VVhVmF8Iz(-~P+L0gk;4YVJP_2bYo zS;bQur>N{{b2Q0WEdO>>bH8o8Hg$NX`8e6iFfdl?U7i~4t>WlZW;enfbm$wKoJli2 z!wbE(RWQ`rr_>na28K|!SaB-NE6t2PgK`}}PyNwjv!*tTJbIW5Y@oa+J9%!Vjc0ol z6_~YkD`D+8K#w}~O=irZ61;iI6w<6FCm;o1yg+&ML!}gP*4F{A41u+&Ena6O5|)8x zZCadMCvD>#V>+{OOJ#t(u|dlkO=GiyA>wd`usj}%k=hq3bit3qJgp6C2Ch=1V@!33 zRDIm08KyhELubx-+|L72jMkQhPMwSY$<~KX&ZEbz4zQi8$oH|nO_O?g6$h-%5?s4; z@gffo4tRL)0T#H>Z*%9?ZDI-n5AbTZH{*&mrbvndvsq7X9B;k(7H_})7T$QwI&pdb zA{Vb*mf}r2y(K|6c<+`W5Og2c45wtCRz10s_q@$8_cvk}hFc_-eRRAzCmY7=Ec zWJg`Q6^Wm~7MwnnN7I~jPH$dvb_}CD(JE8|L-jpbE0h(BkyW&6FWi=2sb8 zLgf_gsRq!3FO{2{txyJ&&4z)n$UI%$0M_6(CqLJ#sn3{kJzE1h^>|t9WXcdr+O@4D zn*u`^Ck#`~uUGP2OK2&Oip|Yf`>-^|l7)}ZG#hEs{FLUU1h5S?b3ub+HNe;^ghYbt zGJ|fO>ZB}YubRiCUCI4&XiK)n`(*}HAf1@33T>o*k|- zXHLgHNxeriyo#AJr>yYmR~nHJ;?3GpzE;AqAhKc?%MPz$c!$I>GuG@fU>TUv({seY z0mlR!GcIvL;1I__So6>s-pQxD&f6SomegZ6-p`vSCmd-Cj4@kWm|ex?8LJ%lBc5WV z+lK{_Q{9W55U|Y2%y@_+4EDA<5$U=F2CEdTF-c@0LEwz98O#PV~ZrZ2?`&QQy8vw4Y4 z&QNKkN*)svKV7f>p;-4$StD%+{ltceS4%uUUbjUGdnqP;ZSu-MK*nn`7A*De*Nnd^ z!?ZPBEb03g>Mp6td8vSsP|tfh2lTMnPMbdiY{OJENzVngdHC#`eC;d$mV@*iE|J+~ ziD$rS^Vl`i!1B+wHbk;%lUL}gl+re$!l=h!tqo?-MyjtN)g7HSwgq@$_*@fE{cc;O zpZ?5e`03C56gg-9o%h`AAS!JNK?sf|MU^C%`Z=k@ zKMO^h1l|b6+LRhW&x2KEjWx~xn~^_S&cA8ST?scWzgP3C^!I3TKV`dRr!hhGSQYYK z8&sUDudLK9d1FXkC}(v!p%QK(9~~dFWh~ZMZd|#BiPG^|)zW6Ae`N&sO-`hB!1~P5 z{X-tS`3^JR6NZ8P-3wg1c8%am@^WUmSTYQW3l}eN?Z!=<^@KQRCXtxmY}V$&L~V$I zeCV4AhIo_=CT5(`riKkHwbJcU8o;7R?6a%ruInckV42Pr|4-*Tz|xhCjdd!?3r#Sr z)h58=a*{Q>UU(C^mKWZ=NS#K_BxVfUnryx7n28`bP@zwaBpKNr;7aqFh&Job$+{7f zhNk?yQO2m*9*UvQU3vz0*C;@K$} z_G~KYd^#~mXoicajmj|O$qc#>f6D6{wau~uubW5;@4ubMO*eNrq^40)*=24dK+WW# zZEj`2H6qJfgm{5PP|~{7wCRxJWC+@TT4zbR1*^2AvRzV2OpRhKQVsHCyb3Nn_7818V|%SOPoU_cNc*d1GhI@$oS@$FcL|hi@~4fonN&s#2_n40KOi;qdT~ zgWZnVtY_)r__!k-%C)z%z0L8hJ-+hho80JbaBKg4eDmHnS*~8eVp(!Z00jt`hL9&k z>I2@cH*VX=#5Spbb1kTsS_;|??~Wz0#f%-rDrXD}7OYrIP#SYg$^;dXfyW`j-QZF7Ma>fkhx)j;P-f`ymJ1?`(z#eP1)K644FziZI)tKQp@hO=~YP1vI&YW$GHZO9l zmwL2h%M>a`B-bWyY(G2Q=#`wL6{}{mW*7)8IjruRc9UAZrudcy28BVm8uvUR#Z85r zpXV2QH{gfiY!24uIch_O=QtJ|aBuN83l>~b$KHr{muALpKuXZ8S%uCC#~!Mpm*9DI#X zA!!Wb@N^>*qDr{Ra4y9v^(zCwNRe}=GiN-K@y-yV)B}+`*+xmjWh7q2$@llx)~J)s z?OFTpm{NsEIco_~MnT@#TJXQy-(izHKaCF2&tB^)2~z-B2_3e^kXoNjwhe&|tS!er zPU2^hNp)k>LJZo$cUzm3?{%uw$SOY^hCyU_Rkfm-oOZhDvreI7Ic$I((!>{KE9i^* zy4$Vc5M)#2y{ppCwvH(EkTgn8B$oB{XQ@MNc`bTuRM`?!)?*`|$GX*PWs*vPl$as~ z;G}UISga{FH$FBa8DV7$J4T=+Otf{ISd|pj@{uawEm5%kQ>%!HC>lMD_kTr>7ZUZ< z+n3}S9@D^jy{sUE-HZETK&z8O3B$@(JN_*Gg<-j3l@f2f`KA=qc=mTLaP8*xD&G@a zd4g!Tdi5H8-xES&wHmONx*j`2K(ZFodD#vb136)=pEMUmmslqcH7GCWMQo;poqi}w z=bO}5Rf5x^Db{9#>pU^HA208TGE@**tSb^?MR^pZTrkleSa*(sp*=;(rZ7UC>6cgD>2(2p#J%+cLp2*4FGW`8uk+q1Dc|57F`3H1vHxLM7t=&)K{FT$Wtt zeNU~bea?CB-P1jNnd!Na!>c5Uq#%=&WQmd~LJkBAfdEkmf*{ECoBn|$-xDAo6XcVG zBuErlfRoq(0y{D+!8SpKvPDw#49VflkkieXzIVUZbK6y`@?ou2RePV)VZ^xMb;}W43MyhRhEisgTWsD()D$}wnp*<9uI_Xsf^Amb4ZaDWqJoMH#N2$k>M2xWGQ9VTxN{ z`%N4j9ih7wFkj5!CKH6N!}5a%IDUEze{qIc&N%(y2Y7INj3;{zAOGCn!gDtcvAeg2 zwCfQ2h{fqKR;v|WS_FLO+uz39nB(RvFJk}lOL+YF4V>Uuvto23(&D6gU51D3HYca` z;q0NqKK9XJi3==>w5~K+RNh5OJ$oK6=_F%?h=}|604uBz^=nsHE1sb4P@3XVWOdsP z$ovdHOB+!8vCE&w>goYbS1YV?hVR0_8{r&b)-!f?cM$HpkBc9?gPU-eUCPparLfDbf|n{hO=0gS)*%6lF+G*zz_Vu z-?V+Yv<v9q&-_m*>M2723T!eGs|hU-uJkL^tZ8M>Z3 zLI`;D@L~Ddqf3`c9#Bh$6_Ss397*&3yjP%38cME=e(PwMqtgc9y5Yo%JT*`w-8Y=y zppF%}J!ahR+U(CG)SU9bAoPX<{9tRb;M(7*X}5==&#^k(_)Erb4mnSi^yv z1|g4gdfdSO)%wm8^I&?`X7#XoiQ4J$aFV2FOs~2!je1EwXu%j3c*!JkrY>Xii`!I$fKhthwvbl2pBa50HKSC*6%xDBG`BO3K`l&%7aMO- zEKm!%PTtG;CFNKKY^`Facq_NSHws=oXRyWwjXh^BW%!`fpZ@lQJ5&5ocrkGrgx3Gt5z>Wh6eT%t_v_;u>SFynW{!X6muZLr9K{ zJuMWLq!UJ3T=prJNgHBDAcD)JsK=y*QYZny0i*}+So}^lMQg{Brc)i8=vrx7jA?^N z5+fv2prPlaHJ1*S(Q0fYZVL%Gmy7_DwOMD_61~gMOLAkAW@6bWe6aa}gfx}qz8Z84 zT+Ljt3?|a+>q$2p_3FszHi0z7I!3jO2il6`q|(W&NLX!K)qq$d{upAE`_k#k%q4Bd zq>+ZlbP%~kv_RhkS!htZDz;HLy>GcGkUde^INF(l>E9DaogS(mP$(4I+0^&z6tL1< z>r$XOr>K5e{Bn?uV8QacAEY(-xjm#yd+54=!&h!$pA#;x94=j4;NAc0pX2eP$LO8} zT2tWgUh7_#ahfBJ0VL1JIUpQd#$+v5FU)nZhDjPVQf;g_@FIZ03{me)eX4<^yR5Ys%OPUgIZ zx%OHP<^rPbn}WeNlD0G`G!uFR1&XAmsN7b3aFOGA73tN&%OT?ei$QR4dw+0KJcVW| zwvT;vX06d|fi%0RrN> z$9$^5oUY2kiN=S(XaAGdvQFkk4KkiIJ$Uc{fAQykUcTqGS6?knG?QqLeG_AOK2y8* znw-farC6p_Z6Rg*rWFd#4}G-R>r?_fC@h}!NhjUkQ*3B>>~ue-XF?Wy+gwwK*05MY z-KQLZv|;ZU=wm|mLHtHB4jRMb9Hf>OC{qR+C@-95?iiTKeyg@g)#qj-KTh6WkbdBnaU7?OFns*8_E3u9dl=R!Bgr(bfstS|jVrIg z^2RKtwU6aIYSBQ}u&nW_)J=W_rd+}Cvt0OR1Iy^ zMVf+FQk!fh9Nt35x0T)w3NYXqg3!fbe z8%=i345u9^*LG~QSt0&5)_YgHQclhOZMIfBQ9~nn6gjVSDN_hY5lG~)%D_1>s0)~P zjM>$z_~d{1J2*W(1&-&qa^(v4dWRSz-ulx{2#I zuH)(R0T=TX&RkZLt=ugfu1zW04ZEU*h~Olxu@A+w^O_1;)^O;!otE(phXqK8KN9*>!$Wd1&x3bpyd5^ulU97+J9=`L={EO3NPr0rscGo0)DG#X+q-XDfThbejp zraL!3b6X(sv!;9g85BdOl}4{QWVw`)t#^wwX4>|ET&|lRea@jEeo`qQxy;_6VZQb1 z9^)K4*hSK^wns)(_MsKG85vV}eCzBRNdN1P@Wr3|BKH2BU%_ND!9y(3bsg58%Q=LR zk+Q=d{^1`Mgt7M?QR5&=hpDgPdR0M&X=#n8u~eti#R&EgjHP1&6ia&k*qNC<%Tx1RpJQr34S^)3rNfi=7^4hAe7C> z)_Iv0s4rt1MpN{=qNUG@(dI0Lfzt<*IDp{GWT6XGNg7R1s2Rr0_2?X_7FsT{`B+*8 zeVbdrI@+bK8xY^x!*1XATCCI~h7SU$NUkNawcjt5arv{za?f`1ko3Kx%^NQdc|S0H zTK1D8S6-)cgwRRR6#F>X5bgd*NdXa5rGtj$w4%v->&y^XGo-vuoIDZW+aOp1hzrWP z7D~0)Zb$H~M39KVoDs9!Urwca8A{HbJpyW#$>72#U?i`%D!lbxh@pW6B5T} zfiUD{K-6$FDD*+5mQv*A%<}i_wvODpE(|(jwX>*2YSxfr?bS-w7=v?^{0>qrJCD$` zj>|~g?ro>0&dfZ_!fNCQM!0G3VP@?nDbcbP=WH!{dDcUx(h~+KB0FF~z&iI>Od0Ol z9`fN1E|}5nICR|vSAOdYxXf~m9?TbTfe>!Jfaiik58#|uNHd@}znXSp*I@N0kRGnp zd{2zrIq_ZT=pO*~*Bu_-zK1vdkAIBWbc!R)@Q=U#r|up9 zdh|HK8CF=~F;3tCEDJTyHBq)Gfx~U7#Lt+F^Z@2K!T}C&?TbHy_or(_)5s_D_{n{D znLQr7a|iGIv;P}Y5S~|8*LV_vpJJkcMt;^xx}17p+7Q-y-CfCCG910rpRz*23Ks|} z_7c|%Y#S{R*C^t$q=iz(y77Iv;ynTuWpXw23DK5o>IXE?wy>_!nxPCc=qJWo01J{e z6t#$qSb>^?lm~^WQ`ko;AQ3n6&tc0H^jSsIcp~Z5oi)KkJ$q5*byX2yNDHr5xx)l2 ztTv{FmdE4~N+wz@jV-52CTG6DIv7Ezl!nTwczsqGjnjNL`TIE@<6nLE&(Ytzjh)?H zy#0}VeBp~a_#TkB703l8Q4;wl%C1Fv?n6Jxnt;_>6hc;}sW@b~}Ze?#o$ z5c_+-|NHpzuYW~79)^l0In;3#(3+Q*n9=K5%bT~xU`q}o6m)~0#tRll_+Wk}}V9h;NyiykDGYZvh&&%bWRBKE-iEWEFqiL73T&`!0R<4*6B)gQH zHZJ5WfO7j8*-*UYMusFJq?ju7A%uXVqoZB#T7;wJoFS8b2 ztSfWLzEJJ3?=;NIKFmPKBs4$KbOv-?s9N%N(Xp+OtBH&l>i>}H*Tdiy!;X`0IxLmO zvI(OgGQ;O4O3_A>Xu3+S1m^~rkCc4X3b$2%Oi?yv4csLXdQ&l!rfL*)dQ(*+@oBnef|ER!dltZ9I)Nh!!xnWik#vB(3g!($Vz;JrvR z70yv4hfp+WqoJ0uv>qgB=sA)}sAec7>DmzmWFF=h45&={tOQ4LpLrU1o2c_@pcGG2 z+VXh|0kWYhI=9&o9Md5YM1tr&vLmd0M(ley&HaiLumErp7xL&4BOM6RTEG>tND8DV zaz#5YvN45lnBmh^f~8<%Wrf|#gf0ZcAK$~j`lo+}$@yI@&k2NuM%7LVWI+yWn?`t6 zdY1{i1gl&p3oqjep2sCM=2u_N0d_G%huh~r#vR;&gTqg755M@S-vo~KapS=Q{MoyI zf;)JpfFbssaFouHXt1&T!TU+p4yFEVXN{P)r*D03ZNKL_t(h@#D!- z`*oqn?!+EkQP~+2b+gpi0-GD9!n=z_dS}<5*U6rADTB)PQd0B-I4 z)IW30|38E<)MUZj5DC-3Ki2BXi~-NuUZSCwyqujVZ^08DzvfbEaIX01YluOJ){KyG>J}lAz$d%DNoZE+YHp=4WWn+H&Cs^t_%IYax{Su9$YQ<7$*B%I<=TBqeK6D9ArG4reRj{KM)!^rA4@+M1ca*cRg5V4KA z#g|lzAS-|r+~D(857x$hU^>|pr~{G-gQycGzb(p!F29WU6LR%SCX_ah2*q z5%lvI8YI>G#Nri_q9+YN9lqpsu@+`Z3e)M3X{b5XvA0c9Oxntko9jt%8f4q%#iYz7 zTg)=fZ1J#yybEEl;boT3Gnp?>aj&^41hc|EOgn4^XL*mIQ^b9JPT9MX55_5?&vL*@ zln0u4l>0}UB`kSc0W|1V+U;*$uIZZb)*Jr@$N$S;V3ISgp~FKwR6}|T>ozoXZagWq zXre*~g8~QSyKi70FXJYn<}%fEk&Fc{@B{n}0y;d8t9T8s;SnBT{ony6PwwG+_rD9E z$F%WJ1pqzP$e5OJ+dK%Wt!0^4xBwUYz~&*?N{z?pu!|#{y|{;C?s1VBP!f_!eiJ9q zDx#ZC(Z78c?$KjB2af|VIz=x$t5Cwo`$Nw-q_< z45QM{eDiK=VYYdV`9pk5+aM5a=@+rY6drq+;Rr`K#Um9PqPhQ_avDWc7@D7HZ;NeWyCdGchKCw5W|bjWU;BEb_}LiKXI7%i8DwIz)6hJ(^-~cMl)?h0kE`g{wGm zii6iiFRKEjm4AgGc7j4N`zbt5U;VA$!ppC`iv5Gb#!n++Ng|PKF&d9+*hnZ^^bH40#8L*U=79WH)UEjBoR1;y{nxygB?XPn#oM!`0~rhA1-^l76BZTnWc-j`5bH}q$hvykRDN@IIF zzI$-SvFsy-WjVM4wt&J3q_Lcuc%GU)1ha6opsW%2!TiW(L9i*M$o-qbfO2tZTC;c4 zvm^zb4>V}JSMWof$ZZRRZ9iu#M4knFAd-fc#mCT=dlg=Ma)Zp2krGDS4MX3n!8?kd zPYbQKa59=-K{4y~0|+kK?eBHcm`Zb6?k#zC*jei_>dhMDX6Ba7pLKI3S3n1g^EoCY zVWqRK!|u+$_?y-d$PRJ2!j;RHvA=()@Ps_jG!{&8qfNDg19D9qF%w-*qQCBFM=!d* zk(4W15lOJhF~LteJ(tRIOI}9G*;Nmc5254+u?CNkja`)vPTGlaEWw^exicbOMp9Fq zO?Y@91+>mjk*1M(T6{BUvBPTudExRSJEVky?Y5%LIl-hC%1xj_2v>%XS)yVv$sjdN zqO_qTts`KRk+w5bF_v5ksN^y_9}rVQWWl9&XpDnV4Y^bg0-;^_ShGhQ6{%n7IxPfk zG3UV)&K{`Xy&%sE_7p`6TtEZO!^er?yAH@b+K@dv@DICcvOsax2upI6>?iF8+3fYR z@+8K5YRG?Ng@|_pubKQgw2N5Nva64(F3wg!o6K}P8EmIPt#MVRQtD44ONrwRDZ_Yk z;l$f?u}<)_yIwolJ`aaP%^(7G%Ph6n{^CZID|zMBn8`qA5(!6nr1{8Tn`U&Pew@x%YPv z(c>xBSYf_(>gv^F<#qBC^&Yh{$iwmsgQC(|U#rCPjwPLvxJ4R59MNHC@HrX`p3CPq z#R@Adu!kG3zKR!r`)}d$<;&%>GuO=CICr?S77HJn9e zmbY z^B@MLoF|+0eT+$Ivk}KXw^h2dIQQ}4dQ2cL=g#68ulufdqEfKQMwQ~}%A?UOWD}ew zXNt2l%d=99r7&&^(@_?rSx|D$;J())#|dC<0FbIOL!;mh{8;2PFOosj4LrDI%4Bj& zyB;c`&M^q&9(ea@g7!3RSP`%Jm!m+oqjEON?XjZYL!|dIfrAKg9AA%Nk*6 zdB{#`z}jK&JobHo$^-y7U(9iM zcvvc1;m-R(hd>V58O!AYtJ4cm%ILx__9pvql+nkPl2bBfJ2Tw4enUo#sV^{x3^y9T znI>1d6E-R)D0b62*4|4-63NJ#81P-ECPT(LXG}m4IjJA{mMTJ$5^tC#ZGz^#E4zmU z#IbdjR6|+4k=%;RfcLp{vqZum5>Y10-OfmsDdB)jTx5gXNUf6nz3GTc2Q4?! z&{}-PluEY2K#G|*_2|}#%PDCyg9iS&fmBa39a?!wJ!r@x&xtL5K@j|9Qx!U;&~dbD zW`(RSkmgkkDIiDS2jBQ>?5&_NxCtEsIsi!zcv%n6g8S~^k(B-wFu??e*vA7rC=;eh zQ#kEoh6~I~i0l)b4i3`2{@)pV^U?i;IafBnRagKc)Vu^E{;RHay5)nN- zI&@{qSZA3@>3yyoBzvp}5B9$UB zOVgJ#LO_{-n2%!YsR4kUogIAbYhSBtmdbut%M~6ydW7%2@h1NFfA9|wW5l2S$=}Bh z-+BxG(SPzEqw6N4D2`qa(~9dO(QP%g%)p=20;Xh7%w^Ivq@Pw&**Kim6Uo_3l^KN; zOf{1*s|?PF!DT-tS^uG+DnJ@kV++90j!>sk1Nk`WA)S2nY7Gmj`n+4%Zrul5bLI$x z-`jOTVr`nUj8{lhOtvporBmxyBa(>%J5$~y>6!WX}wy)b7*OV?9#IY`abh zb8rK>qbV2bWSI?arVUrSma*^4HI(8lA-G`?Bk8gV^DqgT<8ltoIRWNtS05W?19|Cn z%obM3;$!8?1!yOVq@-aY(<18GG1bq4K!|RHNzW+qd3#Ny`A;Ixb7hENF*X?(MZ55Z zRJCIEYe6UXd&XokL3TmT-WDWm_iiTxg4{1X!p1 z`_if0M>iHD$+cY#!>Ds^vMb6I2^FzQ4%wx0kCq^1@;o#x z^Uya}fhAQcCIm~AO`&wXm02esHIeJ{fHB7OOHP+~~kVybu$7=}aFvkTV z7Fc7ALmXm(CC)L&Ra`}E3MdIUjb(C@lrzQ~GCRQ+9OKc(LD|k@PXX*;7eD(Ozm4oY z9`692dh}Z4n`Fm+_Rb2R*yG#(@Xv9&_yDiK16Zq2ZjGRK%~;67&+x@y1W0fLNf#IV z^hA;1QVXji#3{t0QWbeiVX46xgV*z{f-GyHiE)ybU}D7Hqw7MEs0ZKGNfKAJg6m{zo~?1ZC3DZ{WsW3o z@8->$c=6VY__@!12LHo<_uu1#_dme5{`y<^vw!mc;J1J0@0I4BYbE8(nEEL7wR))eLt!yF=MrO3{d{sgQj!Llo$FGA{;s|nX>xj#bhtvpUZ+T zX99K@gvGWq*Ou~Y_lEbr6ja-!djqc*4I9nHt}#${&>%<3JAtFf`Oh`Mx&%%r)*2eT zW(+Bg8a`}vL-I<*PI+TWm$hh%s>p(K#V@5MY6(GZraLX1!x&aHT6~Hm(?2_j&zJ`7 zaKSqooSn<_;{+~cVs~ff*5LJA-wD9X1|umV#fa5vf&2IG;z#d&fcbm@>L!>>IwUxp zoE&4_uS5y3(h2%>IxUne((XT*qB`f&!GE$i#c@B!1S0+ECIRFf$Qv}kV=|dwHk%a_ zwxFLih1hV8>cipnO1)DaE<1q`XxF!2FX4SxEaiVIis6&A`8@R1RC8Yh|%|Hc+mGUnwRmVdOI59W76rNCy&r| zNIJ51C67ucS;=thq;Lo-UjyevTbcC9Rn`a2f`725OZM}>ne1i`lTE^$z;&!JsG;L+}GqB`o2fkbptw!be%F{*_bq_ z4;iev6s+DDQevMUWlV@J*{F0?NaJl{X2EwcZO9PFxuSNINs}M>u2g%jCPmVO?-ptS zFD6N&6PA0_aVav|V$2F9lR2^nvdblzo3vw@6oXG52wJ=k7Cp`)6LFFQky*#zY65oD z0zn9t-si{-WQt=Qv=N%BZrQM?T<)EAQ!@FVy?6UN@BQHG0u!)`2p4NCpFGBO?BX2f z#p%P1H0uC+m?Gd93rrgv^%_x0V1$q31zf=u^f+(+ z7*B8;0Ps3q#4TLI0&_Ub;jxE+BlKW=fDhmyu>ea=)VaW_knCjYMNOyPHAea&tN_iV zBeKIjib)2Q!%-g09eh(*FqVVEbI?E4G#M?3TmyYDu(o+zEY#K#mkd}Pl_)nvhqq-X zkETr~u6?Qp_)|==j{`(4B(7r*$2bP#DLQ4x2_zvGG=oivXdurU7A&E;j$T=E*fLdW zaUQN*5h*fLQ&7d`zSvg0ZVRk+qsbCA@1WmJB-cK1QWl?0p1gkk2@z|o^#3C~kLPiQbIfspIp&ySffZH&_Hl^kaBK}wYbXZx8*;M~CTDhGPnIOq$cs#DLZ0DHWzKHv4a2QuOMwVU|&{{8;| z|LuSCUjqRC(Lel0_}jns>k8NsTn9T+_<-!gF6d|NLMe{Q!8wnRDH#gRO2{U8V;<6i zH}K@H1lP9KhcT$BVx{eUv-&wwkw}?EKtM?i@WIYMBOuW>iCx=}G%%R#i+OPHc3ctL zT!?cf)piPn*lbF-Y7%NJ5;l>OJt63S*VWRb3;0&krKwFdQ_zU;*ra0i?AT)@y~Bxb6e<@qPRTItV5RJ zz6+gTa*hK}on&tsYsiFyu<7yQfE{jl?Nd>LI@qaUi0J$^Th(kPfu}nc82Br z40rC_!Rez%ST2`Xub1La>?TUPH2Nc#3|AsT$h}UOMiURpq}_Szw#y4&UM%2}9C9X; z3HJ78YSNYuXVOhY+UG2Us#d58S*8)xl>CB0!a{0SkVxx^3W(`=IN2nLM|q}#N15w)TF5sOq20Y@Rg#{EZpMh zlEZ%p9x1JrQs~N9cEI&l*<_Ks1y}qw=2t7S!v;c8@(HX%s>M{91_qB_@#hqVT)N+5F$5Y7fousn&;W^Nv}tP(qNK|ZgXYtC7&{zM5r zmduOZwC@U<@TviIS^Q|(CV3=Xp2VrhFF6VBTk;gBY_P?kX=K3^K{+Uqs2?VAKg&ze z$YRTa-FzNIen9N2n?@@K)V~Xa)F*wNa&Lq_0i{%pEng1nDvBH5KiXY-G5?1K+ zNa!)aOabOIOfbg^7dXQli$ZeafmDoj65r{pA`ObAab8evCQAo6#3z6CH<9=E@MxBi zx*!`BEKg1?-WkZThaC(qul}rYxt7cSs_!S2LO5?N<^*17V6O_O5>xuYc@yT)cJ&@`M#h z6YADo#*cpVBiwuQU*ZHyO!PPJ>Z{+?!@e&dit1%TBVU6S;F3f~U<@;>+OONi1ap;J z#xhH*V1?We^7_G%8_hvySR{=nioDFyeO_^6;eRXhuJ$P^*2L}i0GD9g!Y!6Ne4Z&-( zV?XvBwTESsD(5ZPP(FkrbFzKilma=6I%p7fOK#wwwI*Zx`>g>dPze>% z0&Q`$jb>Nw^Ty=g7Bo%^5j(RO4!n5BRiOc|>W@^*dgrKQ{+Op7BzqcC(jq76=g5dL zmZB-@UNqj*<+|3{{V--F4T_~(eG2iOdscLg87+^e+;v&^+D{j{S zAO^^1mFC41%L69`K(E(GsX*l5j5I@Dr8r#h;zfh2p{9|u zjl#<3NrQ*nW0;mL>DYcyP*ZC^R;rQ9(hE0_nE*#@L6qZM;)viURkx0|qauBL>!yv( z$TVP84L2xGTNc6xP$vx;iOEq?cWm4*#?-WquEBnldoR^c#H{t;bXss z+aJA#pPZdx?V*O-ydf8|)h0NP^!ONyyN|Go*}!o$7L2uCpiMu_Cal^fE#1J&)Kb=b zDF~ewOO^*@Qzr{I6`ZzqxSOdLZzFTeaU9)9!^ZqMg9 znR4SYN=P%tUq1Z_0`{kI!9wYw~kEnV)aK2ze>NoV2HG$=WPmN3I+D^S>(kk>k$wOjw=%ohBFR`+M ze8_P6>DlvSQY(*6VGdlpe!1`h<&`avu!E`QEd}(rKt{j<5y!Z|iuUmQ%eQdsJ=Q59 zM(JV;AYnMoj%|ibb3hy)B+cs$2Y79aaZVbXJ_O}VeTP?HeGNbU@s9ui^NYFtGC1#x zx*^74k<;clwkCR8X<6|)Sr^^` zkyDWbZcIPO4+=GD+;IcZFd|*9jn+&xB|>G_t%}1YMrfitTCDm27LmpF!7N#g83acG zF|A7`8#$$nItO^csgnyup_4NgYefq`VBYj5o%5xfm+j1E?HWWSjI9Y6efP9Tsk6U`BT% zCx>nq2wpb@PO`Z79LvPaxllVEQWYZhQRsEqBj>18xICb()CWllX;M#%6-zYM?2gmI z^}x>!^4kixcF`{5WNx}i+OcY(7`7P2?8@X!Hm*3>;Jjv2wSWOzq}xBY&zR$SWDayv z5T_B9M?YUud4?z)Yy#wvn{YKD&B=t!PADSjByf&;?`mO5X0*gJ_0Z$jVWD(^q%%=A z3Rh9%R)m-P-;Fvu*+OiM^4RO2XLvWvxZqJpU@c}EsuZ~`l0yOl;IbaMH2hbJ8#$l| zhBcMRGI=kuJQf+Jxdq9~eV$S*z>`*bV6Q30H1r;TkvV}o!p&E1;f=J!5~~dvTT2U@ z0GMNmNdrv|NSI-YUChcs{SnUaFXCUJL%=0m#!b9{Gn^o(w!jjaE=q4;G`gvO?noaDN`pZ#=-kp{{*F+nUS9cWgQj58#U3a7CLN_ybMBD!cr45 z64vMk#iC3D>js%H#G1DgyD`Zw19%7^fbiT$zKk0;ZsPIJ+{D|91)jz;U;^+YRC<+j zc>4SV2fy$MT-@Hr>#w|w=O;Ijm@&Ki2zm8HgN5_P{WT7WjZN|En_Mq#Evf`kxQabu znJjGsHMqu$#iQTztjXV|cWGEGB`sgZL_}90;2sCq#S-)4trDJN)Tt8{>$fYi$ePFG zbh=jWcloKS5^6iu$r7;EMngu%0S@8eaf%L4F~@`beH=eG#YLBqNR$zs!MowOH0Fxq|JKZ;9 zk+hZRz!pymt0diTd*+))niYfX8Ds1#%3KvHnKXuxhf=Zel*IOHDcoGif!vVbIo7Ed zZ6(@qGZC@<+EgiRlgt|CNGLvF8_jv=8*)o+jQ4#k4F>N#T&4mIs}jFh)F+munNzON zFB4svLc`T!X{_=XHt|)yh&+%iR!=x8$jG@34_HwOwRB|~%GI;pyC4HRu-=z$Fg)O< z2^w^wNXm&a$Zl~?H(w=?rE6}4YwCg?Ry~iv} zuv)Ef=goI;=guA6yLSgqo<7CuVj<^*iNmyW=q?`!QCjbxp+ar5l_zis$d2xWI^477 za4F7RCQQqu=;&TYv#xA3PP0q<#R_TFV>+E;r|UG~%E-%v>0}4H2m5kp$*JT8cxs3H z^#e~VM6}>#94HDVw9RSO zRI3ZFoeN{=S3i%>;&ZW#hBiE{-i&JEbwExG&I$b@VltVO1nVjZ8xlxtbe~uXtI1?i zrin=dVeR=zoKz~A6v$!4qCLbx7L_b{QtbiTH~tvbj*G}I^Ty;sf=qjT06SfHQS{;7 zS%SGM!LPP(uFBH9`2Ve79S>fn|M+lNH#QktmNQymA<5Y6J&)}+j6b(7jLT$Yt1}aNoo(lfl zI(N=@VCRtf)o`3nM!OWhQc?|bd!Lab0Y5bVJ(ymQM`}{n<-p-e1_TWNGqHKroOTy8 za@MqV?}{feC(FNR4n2BmbXgYhDKn0yQ%t)F;%bUDmIJbx8_~gB;}-HD?CPOyjte}G z=Wz*F@jZMG5e_|iEb#%Z;4;o}qOv~dcT~Ai8;-h*9US61=2+qwPw@m7OYq6+9fn0fTOhSlqu3A% z+d_gzleoLs!IwY!Wjy|+kKu#G68HHGewV<(iyy)$V=CEt)J5!n>;+tX{YAu>aR2cd z@4WL4`qlT~;P9*dXYp=&7YXwL-ra90*jyt^9OfytpoH9z=C*zQ<`4@t^l>y9%3D4! zD)PGFzGgAO+(0ab_njclXPBZxhb5rpRTayjMA$l=wGF`!6HH*?wMl1iD@@cccz`2! z3CR0{-vLV|JX}dkx=mLo!LPulb9yf>vhQ)lOR&P zBYcfy$c+@Zl|)%S6I=~=we{`v^ccs-$L0F$AMA^qTnT0|u5^N<0E)CO>+{&>(jG|d zJOt#jo{s%2R=9aDrKL!fhh7*i2W#2S#m?YH3Xinm<8e*!s7bJ$?)im`tml}qv44

%q-$82vG zDXrxJ@?Hvp903=K29;qqc57>eE)u$MIe=JY78LZMp(0T$@-CGV*ND${9FmKCsAL#Xx%q6Ntv6-D-!pNORRs0r(;0Z$d5$;^tUuNvu`w@b;|xLj;6I4I%km%P;SVPxI@g1u^+n321 zsYg%x_@y91V+hXe^e~nC+NM#QC6{5l@s*Gw7y6G$1`Wg_`3nrkRp#dbL^sr1mucd9 z0Y?ry>x9X~VfJ)^fBp5ZBdpdq!UXGvPDUHWk}R54vS*|=-*Z!wwR9u!0Qur+y9Q)rkYNLLPW! z_OPoHB-h};T|-KfnTi!#Nu`YS>+|5dY<@K^G{nxb5b^ zF0jrXQ{O2RCWB%w&%F@KfIcOxyu7!woN(opmvR4_-x5s0Y!_EAZs7yGg()gdJZ&vl zs00oBXV3;|3kbsAkCYL9AUe#?m>?rIArfBMeHB-}@&z0o9%A>(6@2%*e}miq;#;y#t_3Ku*mJmb z>lSuDx{p_1c@?{#{}dv#Lacb;w~)h~fQ~5JUga7|yxTCoZ+dQO&RqPoj8&bh&!HTJEH0TXRrpu_NB-(t(%miQC%ms2TZ?OJiQ zN2r>?Y37yen_-k;M5Cv%`jZAljs96m720HbYx{nZ-Tzv+l?V>Y#cFL5qrhN0)7cr4 zTo7X80F_OufYJLqkt)W_JD;}7FHP0c%J*{I{H(~;^~0C^L-FG~^HrDkTVI=o6v2<%<1iFsI_@5G7WHp|u$i(Hrbu+kxy{;Im20ZJeCWHV) zmOx*KVYHh~)ihcOidG;or>%6LoMl8_yLF@lASyx0o%163Z1LX%gDscEt^ISKol*#8 z^EEh0-^W6M(OnQBkV+p}!*InHLe71TbaYn3TqoxEPmRBQ1oh_ZV{ql1MBs5uxuRt{wMCae?># z>0jf$@BAfRP&5B?xT@i+iw%Tx&6SZ(x=cdk*uKOX0UlkF`Gp5#jZ^HXfG?L&S&3NK z!#);RAfZ_1n;A71WR5^jV1bW z!Nq2Ieq4g&=VcW0_AE=L+RoDpeD|B*#4RN3gW-@$@hC#756}47%rMGZkK$4c)%2*` zOhvfZwrjbWL0BUrD$u|VWIdX>4j1b=NP!@aE;?M_y^f3dF3vFD_zeA^D9ZXeQ<1s( zGLcIgg^FwGq@|#$Q1vlbBX9LAZ2}*LUN3I^N^VP03@kC%)UP!hrb>70mFk#^_soMZ zhvX=-f+Rw5F^NyK#|%p>(OtWVPk-e%aQx|8SOGZeCb;?XuOdEw3Gcr9E~c1ZwO--s zCtt#ApZXN8-`GKn2~VS#y*ZTeL4o`TVmb-g)mQ4KNYRG}-?OtboS&cL+O=yVYMvHe zs*qqOYoG(+_U+sFqd)qia&3P1cYhbVySvi3GfySSXBiu8xsXjoT1p1NqONrC3nlJZ zMeRto6@nM#1Lpye&T&R^xj?wA=xZBx1z^w=Z`>3v_3K>uotzjHyh!vtm;K+)Ok}x- zTU9x3Am_LDS{i{YIiW;4Swk-Var3q#i^r(E4{|kc%92%TOU(P%&XI;+`u+m1AVIA=oYBp4Isk25lcdzHe_u>&%Ew=&S<)I>XT9|Qgwh! z(L|$y6$XPULymfnc&Y^BHt&dZARFU1z8UMrx8}=~7>;B*V2RFV`pcOI6N2g=$mRR3W0AOi zutF-V6rVDoYNt-b@S#JZ7oEeh%@3&BIz z{(*-{HlnU{pJJQ2;2qM+-anydz)v(YD)nW7=fpCdB7i2+F_R9F8zL`R3Q3#%$wQwc z_}GxBS^ZRn(kF`))3C$BP75g21$QNfOF$bLlKEx#Q$`ecTuxCykg@kWr<5SM~0!pZlG%nyq0SuXn$E0EPsQX&OZ!` z>Z-tJobP3+a)p#NJlx4Vhs}ha zGq{)Mxm#s?@BjTaF5?2b0N%#CSk9NmAN;q@=MpNao6C%mMmTU+)^jT`Lv!~g{Qv)F zi~(;k=tg>@CbMb>69i23nV2Af(4#LBzN`YuGlk<%@ev$dx`BAH!jt|n_OK|)N*)1^ zk+99mBC!GVCY(+m8U|J8qiFMa7t`26QTj~8y-#N|tu(ar4pQjy0$eR6^~ z-uN#5=l}74D%b6W7hb?G{n9Tr>t;}CJA;#u+(HP*AbF~^F-9yz-D@hK%W+%A@7*IUgO*3#j32OI`w$W)5IkzQ%T&xOpS{?KDNfT+tpA{t*R+~qS zzp{Us5~c*aa|wKHRY-l`*Idlzfb5D#Q}d-<{oTXoPF<8LCv%+ulI$FSEdUKWC)(7{ z;1BYeb5R~``kb%^RgtlScR>e1uBy7sd!93b z_a1Oj4)dC9Olo-RLMQT>&g1a%CF~sR6>Vc=>2FP^Qy^ub<|WCfArE;_M;+yQc$Pzk zBWe=0<-@iItJBe*p} z4xn|E#CB73{sqR-jMWo!fhYK;P-^wZFs!L>KqAbItdT33&t;i>X?Mp5FH=O~VOP)Y zNi84&AohJJ%7YK3xT@1lLX5dkh-~By#|29syf0XCX6=MJfu|r7m}mo)>P@>HI^9^) zKvL1UFd`A!vyQ<=QT{$j+f)ii=?oIk zHMkT@H4A9?k1wywVTOPM9N-K+&NQLYA&~2mwp2%r=B1qC>rD;m#Iu}_Wq3kjuG&Mqc7n4@BAu)5BSLs z-@}{V{3~2quN9^u(#!K3SMi0fd(ih9G@g6zIZP%K%;$4_ z{|7(7@zbY+>+{mfFXKP`&;K**9_)$W*T{7&(mf*52CX($W7M^o2A&q#e^d#f&86Tc z#k*{BWpWbIjab*}BI{C^f)!89&3Z|MsEz0LI<*IUU!>3&$~1Uc$UWhW~+loUM_ntEgg2y?A0b@ zJC(|6A?P%F(Hf7LELO-3(DdH?exzjJ3?M1pSaUUpleSa}xpKO4GWCyz@GNUHWrtZe zLzo3T`0;&w>s#N#+dudLmdjjG6hn!Xp#Eq7NQ3Fh*UCuo)sciA4XI%jdsElb3@tVqG6?G zy48+gnHYXzL3Ir8fy9#gjRdU}B-G#=IaPlO7>>L!<_+C0h#UFLp!Bws zK@>oW?{4v?)*+H$Th*vK2@f-KrFFVU?`#nwHr)Ko<^^Ge(7DIJT(~ zzf~gK%$Y}{dfku)IUv-aPOISm1 z*?4Iqt&vrF{mH`k)d%n6HZE}wciN6YZ}7t$H%P}@rrtE^$_qA1!V&_HuY=nwbwod~ zYM7+Gs!rGI6v46){jKF=@w;C_F=NJW|EvE2XL-U4J%DESK!R3Kl~7l#r|sc2VTcsm zDHEPOd4d-|{|R;|AeU*v-8*FvP|_g9OPi*qQxH3$jt2J<1K45bF}(H021svs@7Ta5 za3t5$BMIfT15w@t^~nC3CQRNO39fKh{j3FyD+nH>-@)(vkN+J${nlfsC_Xt)IQ_%l z#^KYa*zfmn4hi1-@Baw(x4(@iDA3arD7jotjr6J$+@s{RgQf;7s=k?KV$|^KuzjZ? zzfR3#;Vwn8A(aMM)i*bH@7%>7{^7sGpZ(c?TzxJ-{pnA?@*en~|JVNofA~j#gu8d| zHdRTxhg2}llTE?hW7YGY$YT!#%Dj5!R&ftlPAFQNb(c9gc+0&@wKShhz_A)wDz+9b z{}x{Rgo28;3M}>JC8AA;IZ8AO&R;9LE#N!%e!>I{wM_uFqP~1dv1_> zlTvb(Pu`FNYoqCH;aI&X>AoAQ`%0q&5+!>UdR||01WkVi4#QuTwh3HiGA(k1Zy&u? z_WUQWTW{FvWjg_D>2%xi7kCO`001BWNkl>RG_-mFAOIUxn~ ziW2hq`8nQw=k2xvv`)}GEd&K;Zn)}leT8?w`&}GJaCY`3mZczPd%#v%K$`p^=Qk6Z zk7WHtuP>k~Vj5!q(!mK?jiID4V*?1sfC;%2eXc$CO z3!)=tgbGTOP?m~3B~VI8Vg)QsV`!XvEl4~M$R;Vtle$$s)jWdHfx6Y!6BD z8?{EG6B7hcBm4Qv)<MY05^zsY|2H1w^71U0XU(Ye?njIxna#tXJ95~z@A9@U4XC!dPjy50#usJ}}K<;zd5-~`-q+(U*h3V8~8SO#UCg=V-wmA+PzuB9x zp^Y$;rq%bHGNB%%1wW5lJXPs{iD-H=8}&{+^sua{PdvyO+k=`2lOLeJ{J~GaM7RgW z9tC+Ief47gfQo|qc!;}rfRFJpfGcDGC;shE?qA|2MdBu0vaL}8BjXNEk)W87@irdg z3fHI*EVyhB9?PlOBe|UHDW14a+5~*3nD7{H<2lZ7z_JP%osnFi6>bnKIL>g{2yfxZ zS)d?#h~0P1yHt1VnPbvo7W#Fz#>&nI!Nup#@Gd6YL2jD|!4Z(^D}U+63lwIfA9x5 zy!947pRJL3`1}7A-cA|wQcz04+1VLtDL8%a+xRRKDrYEZ8}7h2*p;m4ZUfiB_d&#- zm{FVDJTS-Vf$=sRaL-5U{9KYZ_%|LryoZ1DZ~iy@>wo<};q%Ww$44K1gr`rR;)^f7 zaOu#3ciw&*?|%L3`1*VA;v3)iCcgFUZ{xw;d;UE3*BjP?@KGUINI>lkNSNuXXDE&m zDjAd;D-e(mbHn*(wZcd%Ue^ltOca+i8{A*3NtevS>u{*y87()+$J#$@m&!$!-nhwG zx!^=sq2-b9DEQ$abUDEe4a;7}N&12$>nP zQQ!h|T}lD9?Ub|(z*1}9IOhRC=AL?PAgY^dwH8P};M&J#5ji(yiFu9ECKy;&GQ49_ zVrq?GqvdfY0d}j%kQJ4B=3`ZDPzN3w-f{aFR+t)FPQU(`sG--RX}8!9!aUEArQ)YQ z{VCr6$=~9mk3K?L_NJP0@3CaNUnLFKY)YWTdItLn3BvZBaygy=CAK=D6niF{q_Q9- z#x&;^m}|=dZSXh&TE9_5aaamw2y$$1A}7H<0Q-Rr!?-NSdBQip`AzJ0J7iKke((s- z&%SIMCKb!rwxX%8L@R)4iUQ9%*HJ5)hRMlTsEI0)(`rgB$S}{tPkjikYff~d z&R0eQrF(mNGBY(-#fT{#F{cWfG^I@Ihd{RMA4;i_>$dWM2CS$uKp~DPGG-vGE2)F< zhO(qaUW^AD6E#BFh=C_vhr_n(HoM2q0|_NIG5)$!qIN%;%qpW+*KP|yyvD>vmRa%~ zqzB-}U#AQ6`I-v&pl* zYEU{udJ{QQk%va+Bb0-^p8d1ujs~UX^pF;cYDH`UV}jrs=g3HS2lqhk3L?D50f#mp z%$S?(=ppXn3NL-oQ}7NRV+P|2SGbE42n0`X*6!C6oZu2yxJJP#7&C5RLdLmopt5g? z7zs~s?$SJ;%wfWW8A}X60NlY{+`1f#LQ5z@8@Xv(TxWK`$kS!kl zAKNVbCgLJ*Hk-JCt``FX^1W;f>Bhav;z7H2zw-^8&*nK2HTo!I0W&b)KEZVVTga-o zR{u6R#G7$u0b@uhohMLY)ao#Sl>D4O&SmKzj)2wno{t|t#^cA2 z@q54bd#g~_3f&O(s!P|Uo%=?^Wsouw>y0Xvc)l39a&5*ReL~xe!x1u-JStuu^53EqCrrYSI7b&oF@U+Y#n-3Fa(iU;w5?^Xie{+l5jp7I2w zp5jIsgW74`RIIl$+7wVDIo3c8x{;ZQ!2tlv&Ju4(y;&ON`qZTsKBSdRCRJU(7p2vf zN7VpFsP+uh+`sdNafhznpE{i|ip+A!1= zOM|5)ws#`t)9$ZnoyWD??NF{OKKkH8{O~XT3cvpK2as}wc{d@?9*wh<29^QHYlY$< zvI<$8?nv5}9*NlBm$qy!(PH#mvMruS!8A=?!zxfZray6l?7UXn)SGB(BDRJJK+`ks z_j@QAPA{h!RVq$yo#4H%e;vEs4)w60PKvL6?QJZ}-liN?S6_;j3gU!l4423O%Ip_| z^c#K%B5gMy>I&;QCrdH6KBA%$z-clfoUcBpQkz7VA|5&?t*}nR6hd8UXW^jSsBSYQ zKR`D)Ue8a`#frz~$MG#j^HXU*$Rg}&ESOcRcj>N5rw)D?ahmZEP;uj&aBKKzSc@VW zyPVplrYuW`Bk=HGu{Dcz{Bf~Ywag>W%p%TibX^?L>EWx{r44KkrBoeu!P&uhF^P~P zV8wX&GjsC`nItZzWY!2T%Ysq{TAJu;Qx*9O4Lj~e){rr_!arAuo3oD>CS$CS$e?TFxHRce8WF}=w- zVOfgFO_x47&BV|mZL^pCArWC~f(#6eyBQ&^ao5mahfGt4hP>K6Lw@i{tw?N}1^B@k zYkBt0Ied4PJC--nOR-q22&MPylCO{0@E_Prv&$e7@h~+DDa&YCbw2Xb3t&xD!z;(&2!4M|kkk zB+`$*toX$*et|DP`!U`IV@CC6oQCU+Jx=#HKv6ag3a^HyHkivEa%^yq;#)OsQpDIu zjoz}~wDpTWHx2(TXpnS6qXZly$r+3pC$0U}8~;wH{q3xw;$%RNC88oYp(aN=M<6V( zl_?QtLHmj~!)(vJG+iXKzJ@kXucT_yIWb*~gz5^O?YKP#U%RB$fba<(gby zbCD?-wA)xX)@pf)694hv{wY5C@FQFdEgt9welw_tDPTES&DfjF}*61G?#nR~$-LO-l3v3VRMd$lfLr!(g$`XZ-jI^AK) zJBSEQPG+Q(@Ydaj*zM*a4}frMcMFdmJ;JkR&+I}sBLtZ2(5!V}zqgewVL6ywA;Z^0 zL#S3X5afJ(CB`%bYCN?!XF6T;GjKA!S3$+B8AQ1ioOW2%)|s}4fP^H?JR7Wb*cDj} zTio=!aIivZx(G!D3ZvEq#M-9c7>Yhc#WYPw%~V#K#ud;u32Xm8;1^;=j5-Fnx_qv! zM@2EEzGmhjxHpprS`JgEkWvy+$C-#CvpczxP2-kDFiq^}(v1!`{u>G{H(Tef3d+37 z9f(Gz6=G?9SPNvecINDd#5AM$%?<*TT~eV|F3Doxhvd0K;i*}u0>oh9HW3n4_qp{A znE7JVG4&4UC2NGDL9Nn_&9ziaQ*NXcN?mFIRl`ds6?{CSHgW-2f6i>+t z>mo28ju^Ilos(kIzx(+XKKt}D9L~P%B4iuxiyjpr4SnXJ#C^v#zEqi zt~YK*j#M3hzxk|PIztLjT;DadP6fgZquTUX&&aGjut;V4kVCd8y#8U!F!(P znu@2x!T`9jP%1#=6M&y3(#NqMx z*V;Tm(&||98kq+_tok5bu{Y1JlP=62{X%!VGs!Q zu(Tls;J^n}WS-3DEDDCAIDPNBlE?b!QR7={9fFm$L42ZNPdS0Te!}p3lx)b50pMhJ z3y&T>1f5JS&+{)&{GcGgz7}L(^C|)Rvf$30dpJ9LX*falVuOP2;WRvA&@>J3IT zld<-V362b&5Ow~2${AHkqY_$1f=%4^)%{=W*!W?MzDPw*2}@i+EvLd{ktz{}J2{Hc z-~!C+9Hwz16%qz!0%~2Ybz8=g_6-VAa%xcDG_l{*p*X*iMs4<4V=GnM|pZb8I8#NJAyhBIvmtqg>E7uCi85VyW=1pU7UCimPW&p!gE^kU_Y{gsC+E zIv}qV|KEO*OZ#lARQnRTpn84%3FC?SA79-9&yrU;BDwhdD$)nt8aaTu%Iz&e7Z^eDUOMxSX6 z?m`YO;mJj#k8#R_?>O#}O(e_Ew3^Jz{HRT7K(g}CL@da9_|{bn3AshG+$0<1jWmqn zuSotZ9b#@m3LnF{21E#G)aK`f+;UsTbdsI4jYgw-j*V4fr_$-xHM07-qeY~7)EsnW z%{g_CZdD7WO;+TD9VEU7O}?c>_aoI!3_>)Br7kTxByyU@ZP}W7tK%f4!MwtQrG&NO zOn@m*ID7gW@4x>({_;Qlh1FBCw>pWdKTGU$jPI$aG@w)vblJ}ZBEm$B!*VcYK~7z* zR%$yBmu11!z9(RwGg3~tzP5pqvWuTpk-hG$-uMeDYE|sg1fDw0QkG&Hrr-VD-@$jk z`(3=gy2P_*&v15eZeL_|6eT8;TrD0*84XoVc=*<1Jb(TSrBp0r27iK6W>VMxl~RFX z!L#H6oT7s2ddhj8R}<$pH4-a~lY021+LuHizwZ>xZfX~k18Vj!e5sh{$w@C>Jc|Hn zYG7a_GZhKhTF%UmT~61HamfowGq#p^ZA>fuW=v|A_-E>eD8)fuJXn_2so`2Y3n?xD zIGuyLR8O3h&pE9$!J}VkJEa*LP6JMq_U8@wFtt3M$buSwrqqh+6C2S2kmW>3U2N;2 z;<5yLbXTDplcl$zbPNG`hJ#JMJm5H4Awt!Oas-sRv_RdyY4o)A;s>dFp2A|&4p52k zR!<>Mw0f|ml7#!TdmPbUiICA3SZ01m(Y6ps$Tx9}JrXQn|0}#m>r*M5h3dUTigJ|zzR~4^H9$fs}IDfff3|Bf}Y}h z30ru8$!Pd@NU44G3>(}g(2;+xUC-4wzM-Tctgz}@rz;GG_6;>+O&u%58f8`$1nxs-8WB( zP^lt`PxB|Ett7U`EeW;U9wXQRC<4m4oAiB}pNK5r4uD1u!hou*)ul-7rl?0|)T;e; zQBLN;s%v5lGx=o5yNuUA3DHtczGgk?731t znN#!ou(FwcqhO-Gv0&dMEXAe?u~AEdgpOl+SKK7HF}ezgH(v>9&MmWvBREist(;vG z%dEbEb!nhjgEQsXSH*qi%)TXp0-V&tk`2wGRok?)X>f}nH%Fv=I3AM!d!cS}R8fb# zgilUZ6PkKvasxShJr=?=1jGzDDN5~g@oM1)g~x*O_6LS{BLSh&LH?Ld>^lF1N(jH!=DL$K2gIjtH(-!fIG!L&u2gU8Lsge z?wINuyVk@U7s_vH+<4RM#ru61?_k0Km$=02?brmy9($M9Rj_|s7&b|^H%tDCbU=&8 z%kP2~Y1^jtXA};$GY}r-M>yjJ*I6LdAR}!QOxon9r4+yiCE{B9+ZPqYf@xoHqJk4t z?C}C;__CoX$hSi?Cg09f-yyCyIa{G(Y<7}k?05cOCjci%Sg`nR?$GFa(S(JYDRprn zMo9S9bH+C`QA6UM%T)D^A;e?jHzC7Hs5D&H)TF0y6a)b1^#KoW-@z}va4K3YSH+8* z(Noh3Rp$$~Ou^WkI4B@8W7cqi>foBxo>?hn0~gUy#QIjzrr&)V-?m)-E|;O%2|pB5 zM&&XzNFH{%n9P5@(Me6^FrLTldF>KrLpcky*x)HLb>e(yr4?>EJloqX#t7Bg7W&-0 zp$?_;A-B5+y2p9|DVc1kgA%Nn)TT(-hU(f`Q&#?-2uqLH2pS*)Te)PFik$M%rbo1T zFS52c5Sf3qZM{;jn}l!#n?SPXY@%bI(HIoJ0$khxqKN-Lal+wn@P=%i;TXyhb&2n| z;co+Ljv6+C=X0a@MUXA0K6LE$n|tQafe1DP%H~gRkfimNE^4qvN(*8iLyddfjlXw~ zvr)2h+RjT)yi?%Te2V>kkH7z$pW)yB$)DifK~pOkEUeYjS%YIb6aHX$5LnJ>0^vl>P)EwMH?K z{p=vYm2yCuP4Wc>vh)9AMMmDmS9JV%U_Bo^euVRjSG|yAoBFX})lCPUk*5rZ1+p3p zV9W^$c^rFTORGaO4sogjL8VDUrC(IZR_*L7HV`n;WDmThHad@}Sn%x-UH%XIF`&K8X$>9NG4iKUEY10s#j@TY4FymM|wYjr4>@2xi z)MP;119a1n0$!@o`lzG3iTdk_d=BPhn%83b_0X`7o4T?T2)j=yLIp{^q1s?Uh3!5h zAage9ob*GPCt67^O&&Mdfpwr z789uOPRUYC(#Z@JljSgZ+Po$^2+6MjG5J#q0(9SE@~yAWKK#G!?<+L(JuteiWhbz~ z#oLD+E}viF@XIf-ySQp(vDAW3*9@QX90I`v+@Q6ux*^^2<>d% zrHsdT{7=7!&**@f#UGe}EOx%vT2ae_X_(CBl=1L2@bmZI$31+CcX5gt#Xqy zI?GDFM>jO?eE{K-phi?2n`lGmFW1+Qs{>e0kn)6m>aSeYXtW(I-2*?Pq20hbJ7ITd zDvk%X;dLxQ5bmT}7_cX5kgdmLDWyrxgK9bsG1+4i0zA+%<|>fV?09IaQ!L{qJi|P+ z`D;Z;YZRHhLFgh#Q=X88jt5m&6?G{`vgYxh+p{|UuVdAzYRfz#B7-w;trLo1{@GVi7Rhz!4%FUs?FF-S0!KmhvI==4X`%`MmEsY#5+bD&;BH`rZ1XnLF@#la3pYVe} z{VVL|9Yn6Z*4%?sAZ-I@_fFVfhzN%|L^K3>w}vl0mN9+vSX=&+wEkjNuX7U`Xsl>$ zGF$b5eOZd5^*iXLDnN(Y&W@B4reu;^$~L|OIaO>az&y?Ei^!A*+RB>!4mJ~HN{roZ zhdX!g;>C*>mTM!{0TxFRvjpwPHdmSjBA$By>mW-@rJmHi)Wrc2Ru^WDMzT-ph9@0TwaHJA1w$SnwW2Q4MfFZN+arzr;WM=x;#hud%~|Q=H&ycfN`9*T2Lw zycmr4{ee-j;L0D%2UL85&#?orL&n>X%RPF7EXE6|1<#Re`*f+@(z+%{To1XZRQ={#jTE zuJiWfgWtn_hNyC|9RKDa55;SC@ zg59;<>!)Xz$WzAK$>lUnnUn>UJA znMbj?;^A|zU(qzlYX700^))x)YBZsB^LdY(!vhY(1~#vxhfNU#!31EBOYG0CaBKG# zuCA|5AjIqvu7v#<9P)J;PN^0?zK)B%`Xu zRG%GIB@IC=P3jBv zf6G$5NUv)jcxyZySiZ7+=x_J z-Jk4!BBN|9!O~fA;NTkouNlgWAMc zmSSj}Y}uNL6Arwfc&}hzg`Hr*Xeg*il(F-;0a0(V$q_q^C|4A;+qtRLa(DUxWa5UD z60`(r&@Ya|g2xXY;c$74!{GqV*)@&Hke5zZTgX=7q;?_mG|<>;1xSvj<_t4dPNg)(JT$yC7DfUiN_l z(!dETGbKqYw5x=4F}KI#h{PPX6r}`>&nL@aBkS6MFziu`Pm@YFSj|#T8pqRjag>d^5YMZD&L3h|~;Np0JDGLm7&Sf@gT<@+!N|Zes?6@ET{>V~-15`DSFoOT0otM#8ib)`|bD zD_j}fs%^LG8=Io7A4uNNsPrbogBkAM!j+q4HBi9l*;ut&kv94F^>7coes+fammlLD z0C$jE?iAh7fNZ6K^u{ek_vpybAk3{zRNu-J-;tCiEh{a72<|p>^RGkI$L6HGVY9S_ zKD+|(4&K7q?FrYZq9*g2R?jnwDKT6|MCvdWpJ?B{6r7)*OSKNPa78g zIHyQ|<96pJ_(BBKio+Z-5*8G1zwN4=uyZ$F!G+@>XxKFN&rXg;W%Lz|TU=jPxb}95 z+h?i20T^N7&Z$WTx7TiO3a|0(*B|0kz707DF6siJ$(l1&BQ@qUGzrvlY|?;X9-}vMTV|VMVqn;I*u|y604>H6&w`5YJ>me?AhE*B`R-{jN3%-asW}q%@(F{i+s7 zDMQ(w7ioZt)PpodjYkx9rGuIrRho2aXgs{Zh@y8{N`pTI-L`Kt%-dpplxJ3H&k+nY zLHNakIGbQzAl9DYC*uCQVQAPqH8GTNwan@cRp-ENvowWruDPf*Z z@#4!D_>=$RkMZ=wk8yG`Lvlea(ttEko3mrytAovmvJFeC!?9}AY!+9OQv&CV!=XUE zzEBmwSp`gC5pq8@8#!AJ)wBA-d&M}^ic$r;-44VH4u_==0>c(FndI@H4s@$_ZyffE zK_4OuMnzE%d(f0N)0!TPwf@3v`fTPe#-qoN@!6-Jb{UYyrpmKg?3;j)G(&rk>1e=B z$3YjS!73d@U|WgO=x`zcRckEL&I30=9XgSy<>?d^WTHlaOYY&=UQd)6i`0Rf5*Y;A z4mhAVsKCCwG|ir4BoMW!LEkWyriYJY=PVeZXD`E{-cuSf@QrR~>wTC%M1*L2^B`3>sLg(?@ zDP^9WoDx(Swe|^;dTtPM@-WpdL4=cC3RMW%7IAVzf8gZB*T7PNG#DcxvCi%qYh^2{ z18dsoL5q=#RBTh0Gp{B?LB@)$i3}9EHPvRFqtMBAYd_Igv6NcI6L11mg9U2QVLCm@rinrkou+URr=MstrCY%sBN% z&NqnS+dX32JjEnKEo4yg4@5rhcRvd*gX@Y6J&C!k)mS3g3ob<9T>AWP=MkNW(X1z63*}% zX=pGO99-fwfd)JLmZqjRz#eY$Eiu-qQWcClxP@|>vET2p2)AviX~*4D;lqO6^@4ex zK|gIs0?nDO53Yk0vG^`ysDz&!&|&$Z3-VtxoNig}t)KX`(} zix&`_r{rVD*HX8!+nGXK3VYmS0Cb?%LP;up8N9y z>BPZO(mbl$tp+DXUCQuGUY{9TTHR=5Pbrxvt4m7bY2JfEY{vSF$YTR8H9v@0>%+3JDj z5|u7_PF<;+fX)cm)h4;Onj;4B9$Y}V0fg#Mlf?HkO29|2clR0{2g#P&eK?f*XKzh& z?jEbSKiJ++MMX{~e~SxFp*CRGG2C^mTWf=Ot?qNb|C4*9M`|4p*N!z$wq@GBkB|iR z=iEA|whyhOeO5*}?wjqc|7@*(F$K~nc{F^!wqebb((2le%rWuJQW`QnQFR6UQ1n4S z*c^Jaheh7Bdr%397%89N<=IR8`#<@2_~rY*z=L};O4%FqY2tXy*t3oZRcn_{QnE-8 z5v1zdKC&QL46?^sifxNok=*|+wLfX>n)7=lF_5_t0wLLI1+{vwP=y@!nCA?h64G8A z5JPsYv2MT~f~EN8Ee;d)?)Uus9QPmY3?m&==^$|Uh9g443?rP{mv?ge)R_6z?6zFc zR>MlJ3r01sMa@X3M$B7$)jCa+`8#UGterpXFEvPX)MY-Yb0 zOzM}Q=3mLw*3z~n_P@sqQ8VBVo+)yar!)Qurehwb=~1j#iGy)!^0K7nDPoBPVnZ{d z_LY7uLs*trR!?jgGP2!xOejVDd+_gqEqiL3G7g6W>M&7jL@W;;g9m-t)X0r{{)o@) zxi#>NgMs|h8wEzrHzP?$TxlKh7E~0~VHy1};1x`SSz1m|&S^+YXAe`hDdn6pm`$>y zLJhtVjZPg1G@*YriJ6fJTaJX6#6mu{Bj1*K4wNjt)Z*kR&><0Y=tvx{c9Yg2cZ^!H zbkLMkx-`%{Y{_u*rM3o|n2nBz_8d3)sdRc^OoMFD)Y)l-1aT-t;6F_^+kHQw*Ipft zsyHl5djOM5PBfC~9mzUQSGUu{ZGqCa(Zi-LS%YQoYe>EK&xZ*uEEi%JcsVjJn?xlf zJ9Rl&8Abr5*(4@Qfz*omAlMxQbnzOGcRPH4eg{|2pW~(e3a2-S*r?IH)|lrp7l%NO z54S%zx7n5A6oeTQ5+)Sii3HzFK$wxRM{SKn&jBi{?L)yardi(rd!QS9K|$-=L+}nB z;6(yTg43C#f5yJiBe6T}&L!~VgO9L#{yy$PaR-EqYfR2NOPdf_8a7UE^1lR45WWi; z|95=435t`J?i2qnnlh8cW)PMJaH#%!)W8O#ER5ek?bG4&-2=Ey?_qgx3zsMW+x^}$ zO;-O!5X)?!aQ_mxx;n@87oXuSCcK5axW;vRE%D8#jR$Crd)LioP;YEFEu5AxIg{|< z;0rWDU2!VoallY-6+=2i$ z^s;!C7JrVkh$IJ9MZj%J40V5Zkp-HwZ{$5xd?}cx6O?6X=cLg`4NL)-t(ga#)>OPY zZUgM)k1{=V*wIKki{YU8S9_t$g673x9^dCM#B(EjN{mE6DIuAzAU4mmZDgcL*9->7 ztJg4Ye`10uqOG1B{ZRJ&DBjc=6}Ht4-nf)n>~$&+{_*(Pz5q~N`QG~XN&`HiY+xAn zvxsCx$BeiXX4wq!s1Y5v*UTDwPOUKyWF3@Xba{x-#1!g!y_;R zfadi8phkR&uKygW9@TEm3Nf5ebwdXn8@b(XhmU{#IsWYb`7`|LXa9ivC%3@m0!b>E zjW`@qzpy7%GHEL1Wc1!P^e~TT;}f`CbT0?@4zgJdLYB!G&g}8?w`)V{f+`iF3A}F|0>UC<%Y@X=lv0X)7vsI}*9f!ApZEK{H6l^Sco3+tV9Jvrw`*-opD-RWnNBcL zw^@Kk_a5Nv>H-qR z%##&~t~=N8K1sne?JVzu92?ApO0uTNC8zokyesu=05_zIRx_VdvCqKGZ%_}r^T1Et z6p}qfnO8{6{%4F9sKpK-s%QuAG|$aII(n{*6y$kLya5ml5`#W@OAT1JT5HeGie?r53}lxYMwi{o4aXuv#S%HglF>nZ4nv2hAn zXiPd^0YX&Q{tQbXbebE18z8V&b}{u z9RcZBN@=?MT1xW(Nv+uL_rs=*nn~5t$KyT@UtmU++O|%O`L=1IqCiM7H6*(ZLW*cW z2T#9t-&g!Hs-A0`#U%?u?c7<)0m-jdy|~8NXJ6o*y5MVXzk}WDJ$_dH4yO=IUM`MO zE)OYag}oK5snNVTu`E0zrEOls+a^I^$=UZLy`?xo9=0VIGL>eZ5Eh@pm#>rv;wv`+ z{nx?UyrN>$x@r%{#jhiKASreSD@ysJr?~rikGnXo%j29Ffu&mlL9f0)l)1uLoK`JO;A)nM$BgGBi5cI5@WPR&Rlb;j5 zf3=4B78YE!SI7QMW+-0c3_ttPkMZEY{e9@$cfGlA<-!mcJ~jd&Gg|>2;;ahE^C*|9 zCdG<8Blsj6Y2AF~>_f*|S9H9wnD2$PfTwKRKRvV}cTTfCcN{_+nH zru06TEY)j^Y6IA5nym${1x31_q{*X+psC}`Yn9c;$H=C3CJDj3w|Ty=m`25{MKgj*uB;Kr2|98o=n@oB~P2vaXfv_p@3iLJ7rkJ^@Ih>H-vPT=bNU1~9 zADcb20isB?87}ME;y?l|?p0%TZ;cUcqi)aHzW=gcIw(VJD6C?e(pt*uxf<7!)b;aL z<#;F&0nYL3cD{=j&tKsG{@?!{KKbNR+_^Kmc-XTziE&u2+mF7LU0vcqzEg0uZK7FmDb z)xAdyw&~{HA4+q_N7?~t8<0bgGDMBn6%ATk2nx)z1PF%$GJkn=*uyMFU%|to_-#h=`q|YXA%Q^Xgt0$_H2jD7z5-H~l)TK1CQYntu zWyU;gXCt?0l%+;?RQR?GC5t0^k_`*`M$kfX6ST<63>_53@jJ>XL2dw|wBH*L`SJa+ zXO_WN=aF+Y;!$H_Z=Z2pOYGRFHMZh+D92F2(TKclxf)gyTBBXt1FF^vWwvy8-xSxE z7bs`1u;2`j_&cE2FKx^0N8+}y<-r)=H%+x6k!LSF6HeOpgFK9uT(rl&dn!111H^6T zV<>3C^#(E#{tia+9SgU7A>6Pb(Xa5oYzy%T3A7Y&si4CG)M}X-(jR7bUhi>!{tD+$ zevMO{;%hj?o%X)SvNBeU5^c)ye_T`7TLEe?8+Fih@#d5KldP@DN?@={(X{=ZeGZ*_ zDT9wmH=mVkiuzXo?%^K3ybaX4hsqAbgei5eU^S$fO=P`rxOX8CIbiwK=eUo8TPV1~ z6TJW80^d9R9xkpv!h*7DfN1z+wp%#fNbzpk&W)4j>=L``a10%qM$4$G{<}SQtvlv) zC58LPG~()IPk|!0F#`F|ySZT+8^WLh5+WQA)Y|qaBn#D6 zl*jOMJ17nR(fIS1Wm)-Ux+;MOim^kx{DQBw`U0XEbJ(QVin6gnU9 z+E%6_spkeo)Qt&3tg#>-D7M>xS$lSIVh0nsT>{Y{r8b}jtpN*m4Vn~9HkpGFG{^CFUXMFkPGu%2o1@UE5FqrIglZ)uvnix=a?{Q>y@#-^X zwzG@GhcuO=7N(Kdq4TU!@;pgi}(t4!f&PNaB z+P-5jwahG=fV-^1ON~5CT}xfo0keU!S8^i;wMNN;ZM%PJe6Zw{P=?PjCZZAIm=gDc z*Ef9a{i*<=KUb5f7TC5)T&f|}3X<-HlqNqFsc2lwy@cX5t$mths$#|{j_ZQMsi z!KEAI(R@nw&$rwK#7A^DZJU-b=Ia~UjW;z-$LTKS5y}vpT$==lE-R+t9=dg~4Y2vZ zxBvhk07*naRNwtCuCaXi61Pz?VebX^gzTFEZb?SRlE9lbB{#it0%P_@kf4}7?laCLF*x;1s|G&Tw({9Pi*EKF8CB1Lrq1w)_@lq#F$!8p?a37aP;JAt z6}?atlrxwTsu;d~^azI+%e+G-#WuedW05j|KX4Qtc%le*)MX+7wo6^@v+T+R$_JUbzoeL+&4tsqBO5 zY04<2w#`z@r$U$btvCh4ArY#a+3ATt{EHvqumAGLxbq-8Y{5M8@Ii9HVz!CdRcLC@ zbE&ojNa{laPB@gVP^r-{vMF9N`*p@Pl%BkfYeO>MFjJ0=9J}AG15rebBVakGlQmAY z!_*XL-@o~~3NZQS+y*gX4U;OlHc&CA3A^164<9^eUQ z4WYFFK@N`19wctI!EjBza!Z!x*aE3x9@8j=iU$x8h!k0q`KXlq(CY_a_{f;3X*O3T zT5pn|)ermF@}!1VFCq<~VGSfTjWsi4zu((Nf<2E3wt>pbtr@k(OS@EwlS{(vq7TWN z9R%dBm)kUf*l0I~qwiT*IVaDyk~T$44$ZLjb!r>D@%JF;$>2WG;LV{}hYT)=O?Crf zFoyI7wlcnRVKZnFI~6H5tYP+bzyV9&3=)R>aG3VlM9O8Q!!RRhFDBvv(sCSzaK@Gm z6^*DjOnK^FI`u6@0s!vg4hV!91$*pqJ>)787#Dbr;_|xG%>Er8(fuUR22+D~%OEhL4b(wz zD6ns8uI>VOiBIwP$=AUtVLyA(#MT(!KdX50;tA^ObKFD42^a;}C=i_C3e%=N(;JzB zZ~n!D6wS7GscjT^kb9wdl1ewtLovJWrJ%Ne>FS?M-zo()@2e$w(J<@*On3*&-CL+r z+W1=n*_^s|UIi!DCXKoH@Dnhuk#Xg@Z3`HT9SAS+B?_(vfW>N@xY{V`uu_6Ew&|q4&sLXD12444YWg&wkl|S zU=&mJRg>U3mnL42)ixq0D;VvW8klbOXOlGS_!dN<4STK-uLD+!8DI#s^`D#U%BjA6 zE33gNhWHLsUL=^*&bCnfnFptz#rYE3M1`(0m8h@GOa)<-BP?Xk$cV4eLFyTU!4|6` zwRw=Y>K);(#!{$BylMrj44|*E!Qy^ylQrs6rNxT?j9S$Hci15WD#LS8u~K=EM~*nF z#v?-fQ(RmfK?EsQ2SxT#EC^!Q7@@HsUY!%1{A?ZIO{gX(J>?Vp7*j&x z?AluL*VT=G)su&JJYi0gN!YwuA>ZW^*@_L-?XhhlL@U!H(=hLJ?~~G6gdnk+75fr+ z%3YeIyn65E!B~zC|Gu_2@0gOhBr85qX|u~QBrQc~YMB3}n7GGtrRtE^V4Hn0JZ>q# z$?U;gb3^K;JheulWmh?xQlUpF;f){{)WSeTy5=-6(B1qgK=D<&IAsL{V)KlNSdKtY z1Vt(|G3F_QHDSNsgURS(7_y!~Kyv89K5E##oo+JY)su25WjWdyL<7~}97Fb3 z%T-}^YFRg9#uV7TQ(GvPrGWgbx|>h&(MKQR>cw-McrjM?3r=u?*SK<88#SAJ8t&rw zy)e3)rzznf9$>}}PwG>gBI6p@cz`>&zy-d*mza=o&l{x$d#Ae{n#?Z^Zk@DgJ|dUN zxmZm~#a~hA{w66L`G)C$1)qHW1AHIf$2aMYpHqa7KKTf*@fs({xQ`R4&-pV9^Bs-N zO&gjw$+~E>Q`-JY{;6^cpcUVcRO~$!Nugd~S8o6eUQwO;w?Kw1OWy=y6O4M(YdwIl zKry}d7%x?^q&|6NB9NMTftJyFKzMLXc>44yCcMP#qBLp{i_Yk)+tASsJY@WA^oCvG z=W_k`(P$|DTn6sq)lYQcpi4_c-?q~(@}=sxN+znSGoaOQQJTijwvTux7=zB zoGvYG1+~fd)Fu29K&qZR+NDm_EftBIeT41TS4@W02Q99%8WP83Ic&1R%^BBQLHKKXi zi`6~JtOrWHo^9}nknaa5Vep$pSZgCFPm>2KOMg$^&~b$O)-ENV=NV5weTu*S>%T_I z2c#(jSzWbKy#X#p<2^{T&cr}0<%C+Oolj*cNXh+j)nv8gfzHZat5pxWclcX$#I;uY z-V$T-+7Ge}^_R!?pgJs$fHZYrTJ|BO(>5ob+KDJqz-e0dbL^75Z-4Jw1{r{xwnKX6 zlU!*73!i)p!iUhq2cnprL77s*-Me@3^yyRZlzal6nkhXJ$-C#l9sn5$T$5|oZFLCu zsT38=DS_0;aFh~|a?6N71~6HnzuWCFaWr+aV6_W5dC}KA z9pOdatl&q$LVGU`pg@kz!nEE<9Lfz3RBDX>hNd2M%f2}nZ{}#0RP06y2^D)z(faT+ zB901~R4!91R#~hV1zBcQ6zz?w<5$cbf9B)u5j9 z5D&fLy57V$N&v(IX}i=z))P|S3e~;cH&e(%O6c09O9dieK!$`S(zd-fP+xk6( z7cN%$;cX&jJ4Az;GfY^C7;-SbBB_CDaJk^s7iU;-1#^n+@Zg*8f`#8rric8okUPF*PA;+j}(IR9_o~cvX zHlhs0ZCw%2z8YR|+>oq)fA;^MQSdqb9`x}Y?65-x@DO|KFgLhBQ0Ej0sb%KqZ*(Lb z10L+0*kR{QiZzYdH$?1YK^L90Kw1;orM6A6Od)MixeFE-b;ak|Jvzl(hc~_2_`TNv zCd@e8%2*By3fnc$PH^H4`RTN>QAdCMIqKDO+-;K0(%vVzzvmwA;Tq?|S*~v+2l7T> z$t!3EVYd;j)lCyf-cm(An0jM>jr|}jy*cpstEGSmw{Z&@4?U3i6;5%Ahfuu2E1a~M ze!cM;z@{OKt*W38ZW0pqn^zP~R0gnrae-V3%k=`fGyBgF)UrVRzPHR8t38T}Q!?#Y zJr?t$l4X?nR+rRuAku{Ym$5f%vL(5$^w!?)5hpY6Py*t6N4jMdJVxAb_g6RduJlnRz1Ix9edK?jCuvfTEQF;2rV|5#f7S>swM=q`B^yekQLZ$vp?2%kB4R5yLA`@SOZn-oev%%gD|9Q zA?XrSjJt*t^#qlkAWXcx)f&vYo>tEwFj$t(}di9kMXe2ggQPy~SEM zj*ZBe+2zB_kY%=^Rzf6&o*}e_w|?}KC)R7R?AEAX zE#_Ib^UtG2YXA8GDw|OCy6g~Bu`z2y6}b5-kR;%u%NGpFDTk!Nedxv?2!FJQ{oAnd z7N1v29G_bz!oKZ570qEja&+glImGvD05@nUu0vwC`Hk2nUV6XHvXL;!H%v4riiea=NK@vJN$6+m_kmv@5|Z3eODzPH zx-0E)kk7DbluK1#fl75fhi%-n>itKx%NLoKVe?!2)|CmX5sn}g_qTUw$hg8w5E_<` zp5ytuPmtcRr>@1eC%(s!K`}BiR@(&JV8L5_gB1lCj0d~}VaIRq&-gLEzztqt#{(Yl zfNKbDaAkgy`>Aj)vAxnQ!XEoN4CyxQQQ=8bvD^#X^aLp2_|J7Tg&Pm-K9G~OHq&?9vRRFhW_%S}kmnh(q62rhc71rx*en-!C;N7?1q1=Ck6%C6uN@=40 zsbqM=!=EI#8>MPv-WLaCqy=Qef$8J>D`?p8egJ|f>61YQr*BVgkZ_Q8(jdjtCifXu zT;VHJJi`mT`245HDdW>O4X^J09xL8oB;v{Uc(WEP5xlFU$Sd5VOy8k|q!4)ZZ-2m# z04xS$3dxKYwpLJ;vZ)1nh&S<^#x_Xj689i@2cmny>t2is9n83-SGOz!gvT2Psh0UD z8gN{8ELf(^(wKwf+UOgyg{ncrd%lt ztT72e$9-b!WAk_ql!sNpSafoy&%`;Sk`4`nG+e$DYhQdVjvZ`oUJAN`k#M||Mp-125VvvpV4YT zt7r4*Dc!VeoBG-p9r~ADi;cxL`W4kaKdYs88XCRc9Hyo!u;jyTnzz5bo^gejLezE< z8s?3Ye?P_Q!`#UtUFPM1QBmxPXBarC!Vsfu z>pE*dxB+#qCV$ed@WqRdaC`esUsw|`8WwgZK?e=wlzN9wj5bJhJZN*_goQGe)lAfC zH9|^^bzRhOpDkFd(oj$*gE&|_S-%IJV9)CTx`sbVm$ru~n){yOuAQkrT9Soq!(8sa8 zG09p|AB%g4v>Bj2(XTyB*z*{=COUWRtIQ9~lyuVIcuDr=N`EZ&>J&PAeV*{$^!suw zvg74f5BM{Jp5|!j^)=l{Rc{zF&9#quTB}MVGUB3pZDInETmmvoR5>9zRAVxv_UqVF z>09v-HJRjeF(LFuwYk39en!>lAstYtihN&;^izYv$VmfcE9v&C)E!G+g3d%nWAY7^ zKO7gE%xo6AILcfu%Ja}O(DE{XGvLi7qJeKskkg_Mb(^wv(p?Xbbp8G)MGWjXEH+G< zekP89^(mXvn2hYGn&f8ewTfryBmCuG{w2Qp`@g|A?_T4_pMH!_-+hMf@D(xy%OIU1 zbixr^;aefN!3`FO$?U3?wdy5Vk?;+^#%_|a#Ttg^xW;C%=VXQ8ZiT60pdCT3DK`?R zagL;;O9d&OFz6p8QS^jlDw(jYpdukzt5o3WK@HmhdHpyHmM^>pryV6Eqp9it-Qm`n z0snU~6hNIe3%*t202~-j-vBuszoEZ(KR^SXYUsw#uK?JvqFp`5nVl5Ihl#p{vb*%; z4{!1C&DZ$UHa9B2qrr*LfBtKHH{sKt+Q>cL(2>RUI?kSkSl-Kju1*ZnS zmzEztB?tbvq^=!lp)wc3D!b#Jd&dnTn{7x2il4(P8reV;5UxQ&6F02Ku#Sh}GRHu* zik=M)%hBh!!IlQ!aw#>M7v>{G#|F32Xu7PPQFa4ZWCm3l8mBbWf(J>yy)=vEzrQj_>`iH)8H*Cdz1LQPKD?BGVPVS8oQ8yMhwvI`JWtGn zdxSOAy4h2_6WUav&wX3dIuM0hM{_4maA3Sf7wl12sFaKYZla!hF+i1mZ~I<`;dmcj zk6S%g8}X9unyFFWs6jZ@tr5{jSCMC(-FZK>$^e29CEp_uxxCbf-;cA z2CXkMGRLnkkswX`8OezHwHY^C3JpaIK3ARO1;WiL~s)DILzuw#&7 zIZy%w6l;YjKtMl>mSE1E|!Z*!7f=Q^sEQsR3J-W!8ohD?N`I zWVg*LB@GWI46+eEOqaR@rWP>_ui%r9KgRD-@#|mzBNA@$^}qcNKl+P5$2FdXVLk=u zVe~6y+b*|`fJW0PwhePqqP*NjeFe2OMFZkAH;?PU1hgak}Hx_aS#&5clvEt))WeaNs) zdMsaDk#WM85In~Z@X3GrU-9+2;MKLti$4D1Im&NdV1NH5@<9T6+>6q%v2tLCd)LY# zU+nnL6$m@tq=TgH`xewz9!b?F4|P=!kJmH2 z*y}IV)|`4~Qlm){=92W@DClrmYm06rIPt2l17g;SG^rH2!sYQ6!o$-&M7JL5NQX^m z(}fE_j)uA^wT*1E*cQab*Xs+8nr2o>u%ESqQoNA*6!;H*wzkUUfdCS`l=0)LfRj}<^ zqb5^>lv;GqI}At1*d5+wf|*payU+kap+rDde_l4Zss4;)FqdxaD5O6tb9c4sz&dN) zy6s59z~C8wxPQR9vB`Qp$T_RuujxIVNmWp_if)*=<>5x}L0ZN9NxC|%fu_dMvomz@ z^MnV;R|`IQ`4R5#?xRzV2Ux8-?I7j0i*S%W;z88(&158Go1P~SuJWRoY-Xf2n}n`o zo6}(CRFq(X5CchRdtTtH(T#(=r*szDXl-LTb$kC5^E_HX#}yC31@^Ov}~Mv_I-CqDOn8QHq$Yr4ie|q^VJw^NiYsVt*({V=v?$u4KQ<-}4g9Mvei@NC#Z( zPiPCeV7J|p%J6FZ{Suy~Hodp>?WDJ?AyYlpWnWhAlEm7dR?S}(0FW?j!kg_BjF0SxQoxQSaUmWCEI}x zc&W*==xy8~qap+8$N1G>|26*U(`Tqs@$g))iu>nRkRN=6?R^5UqTznJHu-zJQesW| zVvdxvk@7BG$BL`C!>ix?8$SE@e-)DL-QYkzfMO(YW>pSIC%c9G3Zx$gzHYGt zd#qcF5rT>4#<1sJ&C+;pq!*Wh7X=-S!x(vF*)aBH8+~y$W_7OA5&!@o07*naRG~S) zsuY=q_Ws??UM8NlV>&==;hT$*iu9PC$OSbFyKf{jaVUg3S*}L(N=C;0{T=@K*Z&AW zkQckQb3$T5HOm7UTa---vLgVLhYg$(N*igH9xh7}9NeJlDS6nn!9jlwDiPFeTF6bj z_Q^(i-V2r`BQFc82(GTK)Z@SFP||w?wtBB^8f5PXa<{5DqMoZ#rm30=&9UMr6^RIq z7rRh=lJA{ZK1^+7F!u=>tNFg6hqZA^3W;b9&!6Am;o)v@vD%k+yr@|qtVmzg6(?l# zC8ca+JWjZ|y283@!<1E%7lCvs>GmnH8Z%qdL#a{Mz!R&)YMgo`lK@h3jc@l?wOR&Q zo=tVgZjvSzYD=*x&(fkoHsOm%ot%0)^ zi$SU~LW@73Q{t(~9N`b+ds4|C#Y5dXIh8rsHCl`41dJU=$@-l+6~59qahG>`hGNhcf_R`t!MMUIRwO^_Ut()0n9j8lKSA1ch;*t9v_&RcA(l5JN- zWRm-hjTro}Hi=2##G^TCv7zc`%50$327VtPCkdRA#t?)KS{~E-TI#EP>MMVrHu?P^ zBA}|*k7NFKGe0X}r-5?@YK3gIXPU5HZ;gS4l-~39?|*}T{O|uAi%I7a7QDkd{Py?% zhF|{p7vS3kH@Lx1@hN_df3{+{3yJJFM!|+FELaR4&DbDlmQ5p34DJx@*sy|7z_>v+ z6aK^GTN!Ci&9)UA_CPjYDsYcQGye%vFCL0^8VcH8oHrzEL@M?OPQ^%?I+*(DiER!Y ze%>td>WWj9Aj-KOo-Q`@!?qVW!lm-q~KE2i!K zF}o~*a9S2DU%kWaAHKrR4LRi7M;xekeDIP{NHE9jq~rH8gGP8D3c8m`1}yj`a6}!x zqt33I;Si%FuO1|M{#~B6^}stk!-^IBAAX51f3V_p+L70UnsrlicU8fkeT>_G5j;nJ z^0Q~mVZAL-c_PsfY$y%xRoN9VC0w&+7}@SpUpM(CRo0)nCgK zPTl>;lTXv&Sla&?2AZs49JWa^cveS0c^T@8xHhO7trby=HOpG_%|=thtqmsaGmM{? zrn;&Pz^@o44r-k`PzL=qj)1ROir*e#-|IL4I!t^#Pm7MM6F`4>OOT# z1&c}O8>1A>3X)bk*VOOl>~vuYc$wa(mZi$*Fgd1>PP>P3^x5fxMgMiU)v_cknX#9L zfqo}A-)cRR)})l=D?9m#)u+DgdjA*83(MBHH#^(N%ycN00gxUaE@K+;7`Un4Oe3y9 zCoX+MWZnE}#V0@f0lxnFYn!B4hLEZEICDsaoQ$%1aIBf-5^LwUEIGPJCL{0pVaQ5P zQwTy1iG)k0n5{r{y>FA*OX0F1TPbS6*QRdY*TZha^GUs333j2IXGsjnEreDzQG=3E z#~d)xB*M4aFqP7PyoB?)Xqc{3ZR9a=u5SbthZtz)oF`ApxL&VPEl;Sn2Hz;Zp zH}3S%ET%iP4a{N}K1oF~dY$aWLiM~jkvN1@{cyJ*m zKy1K@CZY!|v)+KYH^BS8hg38Uex!+X z1HUz(?)cmP<3HoomtWy8@Eou48U<%8Ap91;!!O&P;|4EqWv!6JW+O%8u-HWWgp-x$ zTbS#cVZSLNR5|2FXH=}nD7JgL!3*5s1K3~+qg{S<20aA`7!CRuyg>LK&(7>wIyN>Q z&nuQ~RPFEV1^8HKj}$*Xcys89V%|!$M~wi2fyWT!pb@q}bCXH$_}yTip6RlD)^CwrdDBobWRU1lK?NOFVz}9QXgz&+w)e$Vw>8 z;ZeL>7SP8Zq2PoK`HAo6V6s14cP%!N1$20iHSP+=f{N|i_s9TaQ40CL>rfrazXRIBrcsmE$qb)~o=&C7a8c5|+Qnk?ZseAIm z(Dtd-Y6?;xceZVqZwq)J^fG(8zY z0o)t!-Zp(78a}Ip-X4@KV$xx2=1!**QdU{(wryQ)V}pAIWmSmKM7woJnAcC|haG?a z_x}*y!U%`90cNRPVW5h&29gqX7Ge9$h8k3rL{=*jqq#MsR;)ZzrFmhCw$ZwxO0#Gm zYeK7TmeC0Nxu8@H9$t8f2cXx5+DJ*?xN<`wmkt88Y>;Zh@e{y{g^pA~dAPH)kz{Ob zV;0JsH3XDeP-Zw~`ghs{-_kV`|69eJ^vgxfp-i$HY0+m+C_mY~gZjmULp&RzZot zl+1uQW4(yDsQw{Q=dPhWG&)Api@sC2;ey9#dTvaWGsRO%Lonw$D!Mc)KW zh{;nk>5iHOX)=}~5o$4fw>OwDQ>;r!n@SsF((E`&3#yaW;z2>xrFIpG^#EEpcMY&? zk)hR!hp5@s6PkhH#^4D3i*4Z8fV63)ULZz<(*Z$(HYOx(*4Sg%#12%+l=MNHc!_+g zDiS{?BzZ*}i^XKAs>Sw(MP&_& z`IN!fAl(3K2fA4Jo!>8Q@I)QW))D?&s=+qYNX+8GCcWlfaKdkY^IP!iTYSWER;(t!lW3}@ypTh4AWsm-_>XvX()R!lXlP=R`HT1oN7Pfz86UhVbl9-q;9*Il z&&=8;u}?cAgjtx&(aD^Y@3JtGLpWx$&-rghq$FlAG*2cDR9vyC6WX9X8g}lx_tb*$L+(u?;R8|Qe9Ircz}71YMDSv zV-w)#VB+4aI4;}=fxdZAGHQx&^Ja>RF_Va@HYb#OZjGApQ_slaPU%(fR0{8tn7j+_ z^KBApmJv@rp7EmsqGtuo+bbdU{f0!*-s@g=EXxA6_b1k@>h@yHLF=DwDJ243N9mgS zerg{AgF}_mV#{dv?-^V^t;Pyw3SyXh6yk>sPpH z7{(ud_j~;2*Z+#VC_2bLlj=&WYEApqV(%p)UQJ2k*R?g%R(~O}N&3n(ycJgEk`&Fu z6eKK^u+`nRN9wK57JOWbUYDK)R;59Ru+?3c8Cm6$kaM5XZO4&R}rj%w@!VBAnlak(4#K@ULqUMENtnpI6 zcxxC;MIjRQP^ltOBq|D>4FzpERkdQP^^u>ei9km7KhtD#lOV@cUFDKCA%qrb=P6A7 zUE+8QRqFw9IUpQFgnip)P4K8eHpHNl_ttgQV%QE6J#-2-DFH8lQOg>o!$HE+W&rl! zYo*f`P+?V)jxmC_olT!;9Hjl+IGtm;@yMc z4T?WBwQ1?TqVW*+V8Na-VBxC%{g!HmOPg$xHW8fFdnET~dx)EaqzGtXbD1dNXDnLW zlJuuQGCzYl!C;j|DQQ>p4=fj&1`2YUz{|7&nj8++&Y`9*Z z;msy^z=n_U2~IaJAP)~8lDjx6wS5fR0B$L^(#jfUnKm*C(*n(!c zLdtx*$7Y+8HU)^%Bk3K7uV}j~(7P6a$RIY-&p_-jr@+YSxW zrHw`c;~J~^R9u**rF+3<8@hA6R`-E97+^C{z>ErKYhOI-wmrFl85@aPdp+gT6YdfN zxy5APrGgW5U~hQ!+u!3Q9&ic}cK`gI+U%vnc0~@210HRdXp&6&YoQ^u_^J0+4~=3& z&+%#(8r$PfZb*1%*X8|>U*hHmpW@Y`l*|G*n`4S@u0%-d2|zYaS+;jsA8p!>8!Z*H zURyA6GOFJ)0U)|pPCt>oo^ki)1J?98_O^rlTs~}vSh~`o7J)2tV{?g+_kGPxKtlFC z8mRGnaWC>%{ClH7)Z;Mp&&jk&@IrjweM_K!UlWBEq`ZQt_H(XX9%$&f=$;quggqyf zdS;!S?X^9oz6D{AyEIFtnjouCAs}4deEKG@0Nl@GA5Qz(fMAoC z6J^W5oPiRp_6FeSm70dsay$S`#+*p40YdGv#W{!xF9JyTQz`kwx?Z5s3j4}Y6 z>>9WIirQroq*T;hqsM8@uDBaUg8AU(1M05#IWgnVqII-PL+{Kg1* zjO%qV&c6C%a!zQrnq6E6I9Fi4Ho;~27Px5fip(x6%J`KwynDE$%BQr{;Njp+;iLh!P16NCF>e5D5M>L(8dadTTYdv{eeIiKgYa1Vm`kXvfr-Bq)lC@83;w z$&<9RHJw5U&!jviM#>4982etZZ<|UL5`)D2Z`M3ACoG(?P=?%Z8d_I@?e-q;+6VlQ zeu$sbFYvm(#&f*DwpCp7Gi*}u3g2Qi#|Z_*fgr}RV~d_GCYi}rur5&j_8FQ{;X$ut zo2Ro;)jENXt>m9`c*Hz8c!H`%gKz2BG^HnD5A#NX4l+4h03$r*wZUPl!Nc!;YU{Na zWsr<9sIPYqni~!K2o5h81+HC;8%G1$p~UW~g~#dAc4=%F)Vl=y0zbp+s|;ZcH=l}S z_j4qbZpiC*XdmwI%!G^dM>Z#X0q*d0gEY53jt|$(-x%-uc%$@v|BQ`Nz0fd?KQY?~ z;1wEveDwv=U;GH)>^sh@(zmd(;dcA>M64*)^KLPgqQw1h+&~^1MYjFi4PJn7g^YwN z8!V{Qb!_y-q>2UQ%`KKv(6$|NO`$+(V%aHZ{s`#sq3)D-%C8`c#VCRn{YZPp2n7m0y3M6U+VR0ICR~v4d%wBj` zIX!hBmCFBY*z1JGlmd}HUVABLl^qJE2p#A^+W=a_5ghU3lO3DF{Z1Qf$(393u z3A+7kRj;*$d5}C3GNEs}m`zp(lzr=UN=gcdapo7>7>y8~?1qX`cZgXf)@4zwcoaTO zChtm2R&3&|HipDwcaWiZ70##+pKYMnAw`C7{8?yS1^h41vV!c}N z?B)hnH_yOCxLQwG(~8s0GWi;$HC$bt^r36bK~4!(R93{C^$>PkVH)wHZhkbcm6<-7 zfmT}30z=M~F5kdPo10biWW_yMWnIkckK z_q@Rwn%&50*mny@oBe5f=>}Fl7!`qLgq;+`7ipLv0*b_}k$WZ9{CRS>W<(LFRWu~X zX4xi*tq5*dR-FP_5^DE^S!i;tc(hrs-V9hSi~G^sJn z7&djg}}0^1GV+sUaalkiixJ>jm3xl8FV2 zNv-737AV`cq(z(MJD3E7WDWp15rRNZG=j(PO`eeB zjlbVLn{O<5cf0u*EezZamEO@~F&9^uSP_}~Bk|K*Ow6kX=^3*)Ub<8F?qcq8}{J&p> zA03SN0YvhKr>f_=lj{0F%g^!A50VBN!f~^Lq_siFXOq?t+qTUzJR|cZ=CDX0mZUVp zbE*Q3bbHj5Ayc0eJ}=l5UeAaiYKr^KY7k#JLd|tJ2vh?%sZX7%!YarHg=0QYKTlKN zMq2nQa|*Iy$Rh{fgZjR$fR`58L#OPs8e3gMj`b0 z3k;)=1*bEvy`e}2x&A8U^aP) zR?k?LD~nN)fOQanWVKVv329MAfLI0;Q5!Jl2x;iDEXaA82*IsY3xzh~qI4pzKUEce zQSCEqy*@Em11An^je~q@sWzM~D7B(&y0AIjsI{P!qT57i(O@2TyE!dUcM!8fAF|z? z)wGwEtsa41)IAAC!SJH0)(T1tZrY&l!hr-|QjUy-QY*4C`x9AXBn@aiCr3yx zw$l*0wSz;j&Z-k44QSx+JQCmUTOUxpDidMyC zZh6wSx73EFMe*`v4Z|4J%ZBQdDvuf%y^K68O&jKJ&XjpFYGz8dbowegL<%x_9+TlS zBX_8Vd{hSnc3)0Su;5%fij~Z>CFbqY-^TEO-BC_C9u{Ij!d@&fcb7{ooo1Lg83J4r zwOM#BKtxR5Kme=!GG0gO2h1)4sbP8;-{bd1TU{&;$LomGfm@L00sKrdxnxa6$8TNVJbLV^Ryyi#bP@VZK0Hwmt*Fi zkgVBi!=8j3w}6yL@x!WFJ? zhY#`lj>UNz#9TGZ{yAJ*bwGqS+b6ZyCsh-5dYrkN+$ExQ$Jcu)uS!fhcm^OZUf}Hs zz-iUr(-Z`hPPq>%0AwLN+}&ftTWfQBKrMgI_i*%b@qrLGH(VZlE7m%;Xr%n7?T6-? zFG4`L7qoxE7D}(P6%7q8uMZVa0Q~XP4xW#+>9`##Vk#KL{`w&rz1;7a#zWmpJz!&HLgzIL=@Y;Zc$Q8QO z?8JadAA{4*ZuAj(z2g6SG`de)Cw6bDMN1qAiw<>gnLiST+|9v8uJ#x|DIX%bS4V3U zJn}kE#Wi)$w4YZgwm>a%B?S$jigX%s7!BfuMBzn`;di1(QnGOX=I>#W2wPY>4J18} zsUSPxj&k{N8@4P z{z~iL?N${+_<)reSC*%gsD`w?lAtBSus00bJ&DbjhQ|+ip~4DGs=f`=;=kHBN+?5Q z53(ZJBIHCskpedB2q(=31CnhK(*!Hqjk-M2C*A&{4X(n^HgURd>2?jkpe+op#y+4P z2<#^PVgL>@HHtRpqSQdA0Ag15RA7Ro)v{qPs(z7lfSa&BxqTa_;Fx64iKZJSUC-$% zOg%wK51C>f6U(7Vo~Dex(iPHxTVK0MC1j%!iOIwmDS}L$tFJf0ye?;EeEP{JSl89e zS_$jb3F~@=l#-=BYsQUIEG$2Xx(rJnggKOcv5hgaKG?fm0Hx>})w2W))-X=6s5vQz zyPsva*_jL&&>A*dIl`JvKp_>GQmm)FLv!Dd)T)5OU01xs91l8wxH8g2=+pO>l~mId zH|`HD$BM_gbO<*S0@9kX@5NA}>X7pOFILD%v8mGw)(QnXM4YAroBj^fHCmPa&}wEn zWiq|%ERjedN6XRNdNatJune9dY7Lpy@1{8#DR}vQkh|VmpnyBJmw~W7LEq&nesYlx%|Qe{U(G z1z2ei8Vt0pLM);{5vPpZ9=?;5g_mBmw2t*xD1{L<6Hl6Z4wS7y63wSW$X1uc)@~-hCAG$210uYnOwmZ;0ni!w+j-dr?wbFyBj;J?zy2yn2f|odda)bL?P?~D>TT)kVAbIW6yxtk#yn2llW%4dvrrfrjjU;H2agw?Xds(;>(02*{G*#6WBIdR;LVj0pOyu6pp*$W zg(Hz6Noqo+h7GFVU@YV0>O$aWGo<5tXOcuH7f4o6{kLa#5;V8 z&(CMw+V18lNH*{(-uxhx1Q;aR)dD^<&61&U@D~Kq;k=9OfI)UbN^Zp1$RwbY0Pc7V0&m0_;a?&j%3_un_5mr)a_Q9f zvb9QFsBFzp;(T%N=khl%#zUG{>*N_z-&R*hl=9futBRELy`RJD$)q-TCL|E*fg&Gtae$a)Q854 zlGd!`>sr)zG{MFgkXo!^HGo&K8ZleV3z{0*7)D45sL7g>()p5YNSQV4w^SXNlk`6q zIi#ktss@Qjx&^IGKv`>H9jLI4^~&tkw`#yl-WhBUhn98X6f!h3nfoRp463!udB&T| zyE$&KqLFm#0wu((DdSwKVLSE3UfV+PiE z@Y>*`HL#=MnRNr#x`y4BO}bMlJ2)lmb^!YIlCznf&Clgh3r-rktXfip^g$(^DW<%h z5>LtU1uz_PM)FC_;RP9Gm=5cxbw>u{;}KE4IIv{|Aj=y%5^ zsW&$xVT}fv+EW05_PwONqc3HY^%d+EdP@dkZ`J~4Y?inqaBOzAvR$wM*ig;kwAgk# z;f!;T1bcQ-f{rC>F!pc=tHl#^ydA(92{+eY;15^2PeamXpY1Wnk^5oKi*v!-SFi9( z+aY3T3FwjZamI_&BZ6Iv&(ilaeFG=~XaIocxWO%MA3++v4-tO+PRG~K21tfV8*dOFLctn7}Vs*CA&;36qD9wBxJ01 z)hnIy0UvBsfC;#-KV?;q(|y6Zti3@YryEkpi$>{}Z(p1i=NlVjjt0qLMn}n%Pr-dK z=Kh&6s5S9og?G6qrG35%iDGYYp7>+c=zGZ<8c`t0A2IP7fWP;K3Sj`0)z*FIIf86+S$|$uw@>+>h ztW9e5D{F_J=WI1@6z3| z&O?4wB8t!fVu}3GA{!d7Dx(*MXF;}BA)ANtGDr**(i$qOB=VdJc9K{|IIICp5$b8p zQCE%Xo71vrJt58f(0THl71^!UO|j9HT2&&P5*|VxX^*LM4Ooc+vlQwhu#B#>=+>|a zb}8Brx(B<|U@K74$aw#`yOekUwI*mOYi6ei)^!c)b`!PdB$wo+wCYo9v9)it4MKBC znxV#%<+AvcH+7j6bLs`!h4r~ljF}T&zI=&SuU?^^8?N#R%o#6VevFSl{uIxi-GG;j z)9Li6NX*L;@*n>hqv?_JDIT1$8kRQPEX{&;5$1i>J9bH$KLB``L}@TBqZ!uPi+gTl zOnvEwMNpXBYc&dAGp()Z!eJXAv3!ZdM)~tRBxbOvHhD}c4^6Z|2$;3m5IF{>rD+4k zoUqG2O<|_O+aFZm{_qvCsUsai_gWCvMk$v|9Ckxq21U-Kk-jym!$EVD)ai;}vD0!e z+A3`k*zF;emX4W~W`B2`^B)K+O0n;oIHa61gzyrplp`fZGXfAXq19pIX3{us>^N~W zqT#jiO>He$S`M^1q+ypD8zpVPI1XiR+A3L-PK4BK<2K|bz%ZgDO@nTsSbZ%T*fIrZ zIvga=8?SK^S4%yl<>>>dVKlbtYs!Z0_xJ1OO18k=JWvyL0@UR$o?0)|XVPPcbC|3x zjIa&*^h}rz^kZIHvx8x640+h`yMOo>+?6}SDv&if9*wGA8#**1z3_DaK{5vp8Q3A& z#J+{J$QS(zfVc+@BFC@mJ1aK7RJ;CWyE=}BPus2>LOhPW zl1#EdT=4ApKb!q~g&$(OTF{KF>I1(vOwe_3pxe@V`x*&*KnE^u^Y{rG9N}>$m2ca| zyDB4FNU%4Pi#56_h8^t*@6xEk~Gef|Z$k~7j(LJiMliR_rX zPxz4mY2DhSc<$ z+bpB)2%>UHuLn>!$2uoAXanrtcZ%Hh$lE)fMLL<6Nm5P>ov;t*+@+WfvcY5GjKrQ7 zvquq~QdT8}>_K@Gk4d0xc{T~8Qfr(u&v&;covqHa9!UC;Jy`hGmm&(#wiG<>WJ<1BP~oWr#Cq7r)^ltM?)&>$D| zMzf4^J8yKT%k_LhDr7izCXEA$-;9*!FdIDQY)bRMW*cNjldv@4x zl1wby8k%{C!RlFKHYuFghLjY=E}X*KKMxDEfvcq&tV!<|ww=Y=lE(H}EKJxW*43z- z_8C_9xch(iYtiaTgKcoqA*$zCu`r}qmej7#h}<#~xw=O)#TsOyD<{^h%u>4#PBWSe z>r<JE@_4j;csKX9upulbrEa#nwatRm*3(3 z_6{F?@&#_LZ}917pW{bA`W%!Q6@=$E&#^2E_Wc}M-(|_6V;09PHZ9sH%@2Y!P{PjJ z8M67*MRl~*wjSKP1sg z8J0R-0!vE6gr!B3)FoN|AZNW|q6n^aPNlB3Oj_vcbk!RjP%M>>4_BqUP-HskO}9kz zQA!OQbz`8m8qkWI*Dg~dE%dVmmg%I(6?>MzY#TcorfB1avX%l)jFgvYBc+&dLL>8$ zk;)8vR#uxxJ&@WTJ^(l;oxmj;jIhmc;wp*o?`1agYBQ2qC8geUFcEms5IJv_rbD>c zv@>;jA3)l~4V$Pai&bxd-5Vuuj50_1c_V;V^-xu*D7#Xl5)ZHtM(B%Ux+ue;DK14( zxg1R5IQf>Kn_wbV$!C*CWU1Ivq%>XUtz9ncM}++NERlUPI#KPR&a8&Zecu!fUk53w zZSB|!nf>l9-hA~6scaB@h_s}H6^vqD8o~;~jy<*sHvX{yTQ-wC8)Be>u_9wZGaBBA z=T1oY7&qoc@&o#0ay!Bq50NhB(X1XAdpK9!Y-f(Wb9O&JuxeMnMAOgcTbK5>9xDm)P(DcZch4{OA7m z4(sO`d9iG~>L3FdHee3$phs{c$_N-htD=L>!*gkT2Dw_Ilx@mj8skzTL#;`#FJNKn zBe*HLYetKqYrFVNY{jH(tkd{BG#FI`nREDrC?N)F5md{*rQ!)bG&d#`l5dyJ`6kXc z_UfHYI*eork71%Vz5ZtBcM}Sdn8QJuDL|U3LHuX*+Okc+u5mMy0%LE_f6MGqwGg6+ z?ozk`V#NB)E>gmaJ}PXy4)rr{9H>)+$^si(mJoo_M-w6Et6DUT_ud%!u@sg5F7Myt zyRW}S{q}b#d%^Q|hqYE@+$*8BY$i>A01JcCZj`$jgReZw76iVK8VW4K(+dCMUL?D| znna@%gGp{kzDZ1sZQJ$9+!{!X%xvre3D}!b=oEG!@%^diPJnD7(k8hNdgNktoe0*< zpv~fmk`8;><4SDMifXY6$3rhA8$?^!Y%-5$6M#5?B(znmoKUJQRFZl&iS^ppT0PVs zspnGKV#ow^Q`5b$o)MLFF+oY?qAqrhE*mscy!sSHyS!#P9g2xZjbco_QfXQP`v=@a z1FFt<8-D-Q@A2Vw$LVy97cW1>=U;q*XV0GD*|TTJ>&fJ6jGPzbB^e$(58Iv^ocwW3 z>l=v_L3AACH{X7^COC*)!wuCtXFlZL7$%dut~E5sRg^kstHR6!-`!aHikS3lq}dGF zC1n*Ol!Yu;hs^6D(&A)HiDo2vV^9;zG*HPNjSsV3AGW9s&9-36vS=~hbOS)p@Y1r? zxMiCNb}BLH%2}n2?f5WhEj9y`O`d2EQ8BsY0t%U19q^AX3-rmaZwr0Z-6mR}fY>-= zyr`71niQfjm{g0}S{)3jo|mB*`cn7sJ;iluKn6Fbc8zrI2QUxUia&^&mce85z)cUZ za=1}lQdTPhJ!>@1w&i3$w@sUw)Dl{0sJj4-kj<|pJW2#};7uPD0MgOz z)8x*ZL6_DR-KbPgP`4tmqD|(`krH*>3hO|khObUUG(fR6G_Fc_^ws^)P^l-Xn%2He z@(#cLsAvKF=G$-a>Z>pD5_eXVDjxhA&#^=BfE_n@2F9(4$>yRsfw9`A1cQ%;EE}k| z1a0~q4|tEHtWYcXcP!@8xWbAvHr!#;us;CRC~#gX&ho0u#UsK#|HpyT>3cR(&Deep z@MiRYa+gAli8uZ;)3lrNz*0FJ?GlYavaMb*C_4`jirxNB_R!(O`yq2xNw|NyyHK9k zyfgqGz<7pdxV=hXUchUP=R)`;2e8P}80}neE3a*z_;_P<3qcc@LCvGFsM;WPDX z2?uxteed^wS&}zH7Z`*EI~Z^90Q%^sxc=GC@Krvey;Oe)#>Qg6IghldoXmi2=M-rwHobz?=U(-z4# zUKWstMhZ_NbhQC7VX;A9u~1Sr523Jg317}0XfUX2m1x~x@ zKMNUN>nevXy=z827W;f*1J)VfFxGof`%(+P)KSV8S%=WNYT9fmwioiaIu zgH%D@-r&THBzItHSjui$f}3q3ciYyh7YPm+5tH~)SCxS0yNq1|+8SW=TrY?{&k9Bs zq-M>Y*S1o1h!B^%ZdC|MHFnUOkUis*)+ItRe3w>}n1rtCmgV62GU{g1H`Zeu6uRR+ zX)k)4(Frpv1|7U$$)b6{wNBf0S8i#Ipi)^Mj0x$2CVbBBZQ`zCih)E`g&b2uURE#> zw!NTL0rAqGZq3GDcCBTl%QzR`UI_Pz5g=hS^bDfZJc~$aI>%7dQ5L1C*Mc{1UgLZ| zqX^^q%a8E$pZ^>``N=Qv^5sihKYxaGU65AIZX(0NIpw0&GHoE}uwrIT6M;qx!V=_} zCJmH^lx|`*qqUv|G;i8euRLWTp_+tm&=uQ;#z}dq8|J{6OVUm~wZ27&qR{c9Ls;&( z8CtS#(2kf;m0;Bf^i7G?*hgdWK6mZ=K1vFbQD+`!QM7}HMWmwGdt7M+wQMvxL;U)| z6&sN@b@EYEv&zskV^y1`oHOLS$AqG_h9r4f=l6+Fha70w-;5U>Wrm|6wKaXP=S&!r zq(eez8s;Vf&N<|ctr0ks_yMS(!r^$IXtDW!hk?sZpb`+&ZG;(#H*Fy@#b0Dqd?u3aovDI{)k*hn2qZVHHnV8JQ6 zC-X7(;Op2QjrjX2c=hTPfDPAJY$tfxC+3o|qdf1@_s};>IKVb~lj&PRIY=P+34lX? zpYo`|pu=_iPk4pT@gw~3Kl}=B9v*OBI6O4IQ6dY1j%UCiX=>c1#sF}&WPJ1X4S+3R zCzl$=qo+%tM8;&>+kyuy7S4Q!b42wX^P`#p{NKNQXX+8_k21xX64%Wnsq3EO)+)BW z;&eJ`b3+7a#frKbscX^-5-)L<9Jl6PfJznp0y9m@nF!-UkC)in4z@g-HUy??{n6`} z(UTc|D>Luta5e>MoGh+I3q9Ssw?Q819+!w75jDrF^st4WyH>HHorY~ednAujlCS(fvC+Jq!}Wi6gMr#OQ~3-AukK$yLWi=<_+ZAFV$;X-ys1=@NsJEa8@+xVVAbVeQtm_KOY8Bb`4Q1cKO$V}m-f6#JxOcnf z^;*{rtn50NNv#k64if?i3?LdTT$GWTzQHiC4+XOZMmhgpR!y?n@y6zeemRYZ@SoVD{F;!AFejelrN?A#Spt)`5VhDsN4%#k-W=1e_c4=}^%c|o|Aw1xEqC)ks({t@8%oi!sr`r*IFeM+dS z%1Ov_Ieg2{Rt+Un9-Js)dw-9UfhibA4ESXl9^-L9aR2r3UG@J|D|fjdvus1dq`%KG z^mMT~l-QlN$(sf&xWc{dQ9u26e~!OhcGLv4lm=LeKu9;f+_-Pc&D`#j*<@Z{kfHS- z6at>GJo-eA8#M`uA`IOjmW`#M&wbNLQ~Ff@97MNJw;$qpNcHjgM?M_1DYCP8a!NB5 z&GLaB{hKGuSo?I#yDQ*EN^9k)(nqbF$ng0{bl zc571JyvKL%-(&mwcgQK>1|PH`l6N}nHt*VMi``HJkwXw17-m)x@qwm|fKu?|^tz^` z78#?srR20eQNWV<@7$wLO|z~FA>bZ~7`61XzSYM*ywNLM#Wp)bSg%tOy)I%_^+@&2 zSJB_A!Lfp}vMF+4i1?0$Ag)AdMUO)(k7|TLmTtny$8hUhp_vL9Ah^Xw$>M z4VPuFSeF$a?myt|+c%NFa((jxpMU-Ze*Vi};S zCIh#Qtz>_WRvVw`8e}4zq1MQ7VB>g?1^2ND@djhJP}SBXZc>*8j+>v6PUj8kG2qr8 zssO+%qmdKM5~}R6iuDI!VBw~jDoRQL^ zzNKNCrCYvom=to*lj^oDaqr*XI=c^yhJ2KGf312nU1lP#`=)*6<)Op~h2ajOK~+t$~+>WHASP->_uD zn?HON(#5~{;#YWiZurO7{}?_Z!j3z0#egB6wFDpxv4t2NH}?zBD+#WO(jZ6CC>Qxia_#tQD%L*wM3+JRmm#$T-;sCz%Y- zeNpq6=(u6>|NR{ZpW+j|xyj+B0C(g(S1WjJKtgt%rftLfH{ar8b03X~T$g2Lmz!69 za`V)wg<^5QWO7I+8_Fchdn`}8B>zhnUWah@KPfTTY+=JM`Ds&rq$Oa(qUUMZka) zDsSh>d+eWsgMD^UB4%QS7*&~S1DmhgrR)CVElDCI;$gC%8W=g`MAoT*o(6+IKjAB%mFxHB|@AwMk@2BBKc@jhB-`B5FfQ z7F`t0o%s@**9Y{-avx1SQc4taOxhtYOM=)+GFvgP{8L6_pHw5J3@%w~ATTfbK(p@H zy%x#oF5{Y))ssLXu^ukvK;b$B$)U8+l{!s@sG(S+qTZ_%`AFII;fDuXw$FIqH3%#w zw+xen9lC!5J@i~4L8}OZwZEsHZzVxa8?l~V?1zLdt#L?-J-kY3kzW-DsRi`KbfyTh z`Hd7M{$M8kH6#wMCl(Qvg4o4eO113-BN=V3wk|g@=`

l29BTMDyHN--CcThq-aI z4tcXw_8sz|SnU6wvNwIU*52pjeeYEjP=%Q!NQxR6-I7Cg+tH5jS4TMfXZdgI zkM4F)vPD^vHBl4@k^l-dzMFZ@-u|$Mb29IJ1#~GC1Zu(^GEeSdt=}q(ZLe5NMi4t) zlk6;rfY@cZ%}s|jTE)?#ZMTUfv8f-^zFD}Kyd6Ao+2mHkrk?zomFeKmsb@U=eOpB{ z9Al#WF_0Qz6>&YXZ;8b2F_B1*_hZ=`JS`@Nih)9bWrv*4=hX3%Pv=u4rWT@yYQI)b z3rOJ7!r@=qwr#gUDL!-%=}8-mVZ$gwboby_?GqSdZ0E{(#rgGXy#DR)@buYJd~$k* zyHZg~!#&<)f)WE*aYg`1s|R|@#INg6yufRmZ~~!W$+*!7Rc$y;jYG5uHix%Tc1e2N z8&6(Rr|c0t zHdodl=_JjIe5%=pvpUpZ^Lcr@()c($e<$fO5?e6*=t71Tf4;eoZoy~3={=lpObx+H zoeIl|2pR*iZm52o8#-1O0qTW>Za8Y>0_i?CP~`v)iFjVl=FhI3n%kAp zmu4yR0VdRX16B9wdK^TlmLn%yn`G@JH&6Rbhh!dJ)SuG(?re-gQhLvUtcoHruc3;F zLNtLw*fmbaI-yM6b!RUD4`i1_mWK#({9*12d0X6zMVHN7F5a!ebB@EAD%w!#zwDp1A93EnZw%Ro2E*Z4N4%ZN&Nfe;t|(6PWvV65$OZD<20`rG-*KH9b&(TpAwjE* zdKlwuSe6BSI~!-B*p@^5+yPY&`wH8$j1DsRJfxHuZo8>1-{#fxZ}H~!J=S%_X}QIR zAAX7-|M*Av_~Vc9;SWB+&CLzEYXP^dLC6ZFT5BS)OJNJO4YQx?VigTHH_KE!*_+uy zvJ-xvW&ECXo3f5*Oc#cv$$wunj}z6J0lG7jKZ@9E1+aL-N35uINkef;$zlTHO^(oJ z$Z83vgBhRW(BbJ}V6W2)7@zo?TQ(h%B7x?}@s>LtfU#o3y#pTLqBPD}T*vTw3l%^Fy^@Xe zu4d_7vb=q4F=z1(kiVzc3~c_IqG4FPO^Ntf$!%5OA*ydY zn>R~xX!P7=>7p&kjm$BlD#>I=ikg29{K?07C4zn$1glGl=l~wX=IPbf-{7>{h+LPz z?Y%-H?6@4hn;}Dt>xi-uGACTi&Dz6K%Y7rF4{VvPfiD_P`2ElR6n}9;XobK_Y^E2( z{>I?Y$(b7GiH=F@T(pu$VF(1zKKvN3eETTxxF-4VYk^kLM8r40_B6MRH5=eP{Nz*% zXi_K~l@aPlVyG1}b9U6&M%ig{=4ll6dq{kSx_3=AN!9|*{Gc;Dq)$1GG0@(@k^Fftu;+O7=TSSKy)KZQ z&)A;JWl+R+!RR*F+_t_`bpQsMng@s#1)GBtcC^|lXg0D3XRllmV^uTr$bNmm2123@ zM?i1u3fUw{#8KPqqaORUz4%-VGOu}kj2aAZQJGurA+lE#-2qMb$to3&~ zEG5!I)i=cfEYovTJlD&q!(xO(W;TX}$Hnw6&`J;;gVYYmkb9Ys^{1#o98?wxpu9e+ z4cv?S{Q{t1v_(UJt4@R6@HUIM&w60SV~bX+5%jigOSn}I`0M1M7s-56*;;z9!>2?{ zll0Od6{SO!aViUVu~1&K2_S-N?FHI)i7^kJj+3eL+cWO(SFG!bx2t)ZKKk@CeDcXB zc=pi;c=qfAJb7}LvO5v+>>|SHblORkYy(m=*Qd3%lPp=`Zc~kUB63YXOGMb(mT1j@ zL(J2MD9$jgY180*xN(A*76EXxeQJ;pHsAgT z_7is2i`O6Cq_`N&l<5{ul)<{5Tr}JnKpH! z%NNx&>d%wAg{yBB;Q0pIm>ANfM!gfP>=ge@C)Ddq@tGf}^AsbluiLtyDZq7_%~P0$ z_nSO>zv3jJz?xf=o(=3IJ&fc4gFt-0>pW=kJs10L5}`GnwC*Ldn2tfuHSx24@Na8= zKD89^;*&@6>3jFBX*3kGJe3KjlO@Zu$Y_*^&^?fNzHcfs;0KcSX|pI85{_t^2tZ*J z-3JH;32&Alh7^?rX&#PTCvb&y3z?fYZex=)5s(V8uy%jY{ZE$4vEWui`X&@|a=I{P! z+VD0ha>L7EP1XquZoM5@aK?r=c0IWQ0pYc+czVOf>U~&g!>9P& zt$AuYtQn|fqLiwF9gH)IqmIgq*DqgP@g2p+=rW+T?EaVhf7vCDG;N7A|8HbcX}-^E z8^VXAe&3gr*8u$C)1QOyPIf=>fc_9EN)03b{>+)5n`QEiMix(8Y0Gl*6fMR>iC6`= z(n!w2N(+SE+z%K#-FEfbP_*+sw(}X40zA-MQn=VzS=on{>IB+-`kcsvm+X$}UqzpEqHH1UqlIEN9TJr#iuTRAM+g{(NEG z(cEJ21XT-m*Jfx7mu>ge3;M|I@mP=8s1RsUX;VV2^0i4Uw`ff2Cpc7WDrm|YoYg5q zp(AN+*wt@5eYQc|D|--CK!S49H~oA3p7|MMBwM7E-3a=wN}BNNPK7di0cCKOB(%g7x?*J2u zZ%hgms0f-%z!pTNW6*>t2cGu5N2Zi}tR0pRBAc*QG_@1GZ8RZ@)b9uJ>sZE?E;Fvk zYIyQzcem?FW8kYJd^zRXWX~cM^A4$dxk}-^sz8Uerc1mxYuI>F#cbPVzDq73TKsdC zo#M!-!@%YXhf>&@sje;o)l`8Mc>WhFxJycst4;bHLU5!QPKU(HmoKqy)+lYg;O6EA zKl#0%;Kx7yF`j<-438c^HnB!;_QAIml?qPFg5nov^>k$EIAAvW&UAjENj(4pX1!u@ z#P_;7b*tKes-m7WtS%|C75XeWC{xW|VEI0jTJJ%g8-GMSM2ifK%s8wY^lRk0GL~AwrR-4FX^L%jz*fhWj$bsdmbkgL5P74@`Oxl89hx=hi<@9G zXDGl4M5v1~{JV5Z-06nbjH#HJU?r)CwyrnX7sE+@q+{yUC5cB&m$@JLusbB2s{=Gl zGN>+3^rkExo@$4s;k&VWsD|{x*5I1D?j3}}*W%*v19Ziyo-#jdHZ6{6CugW|skUO5 z)FgYDt@7@Hm(t~~*-XrNC9&~M3Z({Fs_xR*=XRq;C|JO#SUp3?3PtwqjR}p~fgHBEFzFHA!(%+g87mkCXM6)dy#3NNz<*ajt3L4S zvYYU8+VML^Y;VPa)f1qW-S4(GQGlu3kH*iWd4$EAv4A;90t#jyPWLe1YZ!3dd3LJr zWEhIGe|mb6^&}Tkya=g%4|?|@-c}3Q1Q(#xlmc0^%@^ko11QS4Kfl7_d!RYMn6CPS zCak}23NaDy;xp(FZ!8%hW+}Nf+kb!kfz8ZA4KqF9T?**KSKoe(ryo4K7$Oe%!ST$p z^T;3x;q@@*M0E&(ssOEEOi!=3@q7h5GJH$w8%p#2EhsqQ4zD0s9mujD6!^BQZ&+Ww zg0==$**&vOj%N@Wp`L`g7)(XuXYmVOH&j1!D8LJJ0fBJKM;7y=2zT^}SaD4*naZiP zgQHY0gTqw?ZSyS3`1ZA<`(})bscfR()2=89YMP|iT~dw~P>5)BcV1c_6bEH(H-x+* z7auVb*hvxto&+HOIi!Knpkb0qN%(-ao-!*iqxX*HzLYfMhaUuck9yh)YH^i_W8dA+ zeXIwMl)MC+i0r&-F@&Gr-|_E4pZ!e&l4kitFJFMR23lWP(X4N5=2~0&X)f*uw(ThE zPym(5V`|yt@^WFtx;$h&10XZiVZ1BowKgS0HVi0TI_n3Y1YG%bT2||GaG-!irK&@l~hqzHJ*S70;v8eBB*ZBW?FiFZSlU z#>E#t4befSS$o6%{XO2kwc?mc#nTTy!-pS#hR;9$93OoAk;5D80fn}r)*IJr+KW(j z+_BT$3Rmc6MysHuh-i{8X0qDFDqb%GN=3wRqOp#yC~6r@-90Dv1n1phMwx2tI6<=T zSZlQG&zQ8q>cn}P5)Xs|8f(XEW?{XQ+ho(iK8ai`|DgAlSrf&JW7R>$0Y)xE=sLs1 zmQxqcdP>x_=N?q|70pt{87n$BF(MsQowOE{a;LOat=_aXPd~>lFKIs5W{s)I^?27T zFwB)~*%&RiMB!-(2u3078pxeTDddUH{a;G8JR&vCZ;9k)5tDg@>9LE`m8NYR(a;P# zDUmWe&;GfGKHsMhak%x~rj6QI2b&~d@|5PFBZhS!@&3Mkw!6E7o<*2OX8mW{^usENpA*giGJULUvvP*@Ky> zT29u^m*g7?EM(77?Yk|aefRZp0zK*I8!JBe>?8c>?iv2+m%ju(`89s{^pAkQxx@e4 z{>lkxk)X8UE#BZGe2iE4*8N2%pM1Yg3Es&YrtU(bkkpN7IzzB{0n}V_CBAJM_kZ=a zq@&?Ep5qZ7L7;e!Z}A$hQ5*|V-Ss1fW@|n-`a2q_J*|xn-3DcDxaNO;>woUqhrf?+yMXHAjZtx; zmjh_H?34jPLSxx*e)}2?Z*lS*l$h-vnXmD``naO6E2=;DYVlxn_q1mCDANv1koe*YvRh;)S|(6O z&xjQ36lntP$ZnXJLm=P6#o1KJo>K*(S~2O7ZNMjQMZqregbq^oQmV;)4$efK{H_6i z7|oI2*ZoS%>X9#z*JL5-HQGqP5>Xl|~&?qib_L%OI(W|+iK5Lw+2je&&U3;^HXqpd5JH?L7d zu&ggpRl(Gpg1GvoP|^xu8^=&b_+T_(8@{;+un^N|%%S30kd#)3mJMD!>xV>hT$d$N zL@L=CNg8Emm-G!mFy^-zHm!)31Y^H-9bjwpK$S zQU;~cHjVB-i|;?SMr05-24#@6*#*Y)&ujq>onu#r^-*6e%QCLNJ~q5<+pulsH4Kkf z3_I+7cQBj0_ogmT^<_X4Y#6ZxX)n>q)E;jJV65wk`+F;p?jAqIr=NX_AAI&1KK$?_ zl)Fb*YK7KO>@_zi&Ie6XWJWM-g@i(ag6QYne{Vv$#AHC{ncd|AcpC6hE_bLCqZ(NVp`w=HBXi7p0N zU_W(R(bcrar4H11muABiBGj^g*$x^af>497VD;@_sY`0p)te=n@aS-PdYlOXFG-!g zvR&H#y^jaZ39U7(h0rQP7RJ-3Pw|$%a5v5BzLE`!h8Or2Pw_rJ!YB9&UpuxsHUpZH zHA%?9k_@;r&hBEeSOIeIKtsdkO7S*r1DZ4S2!xk-iC^Q_xWye9z+>FyMnybOwoL{2 zyMPYw@-Fpht5FhZfG9yNBgB74&s?OAlQ)2pTO%1+G2Q@-W=eLnv^d8i&1r55qHSIe zz8uZ}N;FJ7Nd)&az4<-90OKQki1T~5IG@iJyvUqTpbj$GZ1K^lBgP|`@k9mBU%Z51 z#eyYq7Dq`LUu{zK06EZ|C&{GU(R}uFVCfawo?emX$?os^ejc{rpV~n8XH#4YdkNOn;Ta%8eH2`RBclk=IA1E3y~wPOT_jxCbc5;Fi|_7VlXbdDdnrf#8$tXr7TCS`&= z(0t5|Nj#5d34F)`<5`!qInmq{*|VTz3#7o3`AeZuDDGXg2VB7)zaU zs8khN3+hs_lm$w6@D;|{ygB1_U zll0=`w$gv^vMe@bi)*BN{zZ+A3+*;t;{f;V%7idQR|uQ0B?fMiW>89+P9aLuWUVe+ zY-V=lFeYN3_Z1$eqSHi{YMO$)H_j7zjKl~*VO$(UJQIUaZXyk- z$))%vNV5qGZ=Q?Jhe>Xv@u&9kRY1EVdb@NqgT^!D`9x zrj;J0WgvPjBf>mxf&Mq_sXZW#{xgLKgL2?9Bk1kg9TVeHJ&bsh;Rhqbn-ddO5j=kX zDb~}1<@N@6?=j@-;MkSiBy2e28~hG8c!D3{hj@-}@ER}h*bBhTTn`X5RCgWOV=xNf z?u`Ju*T<~v>$E}O+@FS!Ey7EU+j+tX4UBu-XJK5hI6y&n5D0xo<8<8M^a)l#`3fRX zx1%_;VeIyNk`Bh(17^J@G=g`pNhT>?-vJu1+bqTBuwZd$#^p|{XQGgNPp|>7;TDhT z5Ah`_aC@=`bg^@^6gIy}VG!3W9ztRfKHdBKd&BxV+#>de{D2hh_-gbD8&0Q9-N=#} zuCIRBFwqsy5=|bo`M>#nHg${@_rH6NTmA(1Z{GsFI_}p8N}jbgo0H=i%^nlNiHkM_ zGz(B(t@zdd^Edccxg+}iKa8-*4h!MjarV6Su3z6S5H`I16ro|S7fF9D#bQZjiPl^k z*HSF7w}h1U6G|$V|%CRngMkFF81{*S%cf8BEb6*%XB` zh&``Ve0j?bByK+NXP35yN;NDMRP{vwMsjOIxNy-ds7H8NGG$7B1z&S`)*9%FOuox6e(xcq;hl!%y+qPks-deDVq2 zd-gs~rxQ@ITajfmkN|{+-d5Z_y36A3c=P4NUA(&$^+e@v+CmD1G;*z{5I;bwqbRKl zRNpIR;xr-ghhqiLdjgB7UDs{82&bm(h%U`$X?nkiCU5d?Toj{I!x#^0(qg*H9^rSI z4F>%4JFenSW$|g&pt+@2<;ssPqn&4$OwArK6@hYf^fnJ-nS%<9I5d8~w`Q~?$FUgP zpzS1hB(B)k4%t?0YTh=$NN5(gS9gc=vMiuLNVgFds5=v}lh-Pv&|Y>iy{(kxF|+48 zg=EM<7eOB?>g<4~(=QRNar$@JF%Lyn2PoF%)kG}pK-{9|YYXVohr@R?>j60mL;1O=|65o1> zrk<4(sY*54T^F^PO`X!QLrJ0=lBP?^F!^e-ng^$**OuMb_t}6DDb;)f|%X}ogS{!%mvxVS-#eM~H5T96| z(C+VgfA`)n-QWjUpFBc8MN%n&O7YYMYn}{}vgFj6sHRJd1nBGLQ*C+Y)`qT%#>OUZ zevQR9Of=y_=FjT$9ufus03ZNKL_t*O>5_vliKj;Lns4cNEy&^Xxdrg*{3TB3KZdOK z$#&_GWAJGAVMsKR1fUksbfy)y_z+Uy`4?Ye+g{`3dq2IP;62p9v0wM6iGIlWxwORj zkLG&ZgZ^JCHq;8@R`>Ah!aPad?Yy-D+=FU!KTIek3cWRlG0g0er3T?a?FuQl4R+W` zTs8gG$L+kXl5@uK4$jLtw*?pIZ)FDY6;o+$#f!sROo_|HxJ`kts%;1sY?&-IRunYw5+e~zrVc#siNu|yIzV9w4Lr( zBhwILL7Ce)nDk4fk2^hK1aW^v{p6pKH?>fYK$uTKRZuY{Ow^Nk?Wy^C*J!2-ux%aP zND`>c@IVa)O|!<|S)Y|ay@04eyVnNpwQkkpg5;>m+WU}`BcP0kVNkd3n6FJ9*k;b9 zm7owC^-cx_I#fQ)1o7<0crDMr`U)>zyvX~fEN1^%w{^ea1Ka~?AiKPu4!-NyYzB%P z)tX*XxLmdY?whKriYFg_gdcqN1AOp} zK0XLpe6l}pbNY-P9kdrdgtO*UNfm2sx(Y$v^D}VGl<%87898JK3Tp;S;a!0~AG~(> z6~C}(N2Hn8)I^q|tt#lNNv2{FHfQG4S|=259AZP#H;2{5gCY>^+cq8^u|2WPLCwax zb<1c_?x;)25Z8HPw3EN-KvgSy=8NMq$4VXhfrR~1k8Lb(UC7R5(-1jgFb^r|jHRa0gd-mf4}h z*lCg*%8l8OQEt#(u|Nrtk)%D@1p3@Iyj{;&q~T{j`~y7wqT!eLC2sRo2%h6>yun*M z!eeK5QN}6s-Sl7F=Mu2&o&-0|2FQ)3S9d7vk*(1CvmW+AIHU*6&ymu)Ka%j6>(4xN4g55(toYzPW~vm@4ZC(|Q; z@Aj#mr-n%n4Z)!8*_Pt&(~ogq3yL>Pi%$Z{B_x_>Wccj-{_*>zoV)Ar_o1^7%OC0L zugDch!-j6ODlgdk^zF$58^Rg(K=1SfU2YcVt>PmvUf~-oukXR4SVHo9yX>|gR2d@+ z(`c70j1rBN0wjdm1+@cjzj}@v0EBjRGxpGr6Hb2hy|!TnZcxDx6s&lYa>Z-#67oIU z>Cvr2oT_^Wnmsm|eIpHYva^?Z$-z^cy_*98tl%~8W`?24fI`5}suC)VfSt6>#hQ30 zo!8E)nhk>m{{~Qqp`=%z-TS7g*mb~FlVDx_?5NT>700%;)~>d!;c z;=UV(5SxdIC^z#tw`bbb3@L~7LD1MT9-Hupaxle3gV}3T>{+uZpluA<8^kODy-$q~ zprzWAjLpiB+qn`=xa>%jbCVsLTRURiC+O7OO4TzKdy*<=ynYU;b$~>|a?!iw&}3Gx zMK)xq#qsYQD|#xZ@;>YeVXrB@PK!Eb&U~t+&@1CWK-QCq{9zb0jP);k2B_bS99>vX4nr2^^z+PD^A;9CDjfkWu!5dE|G*?~4OBSF6R8GMR}<0fTyIk^z^KX1Yv9Xjf zxE*)6!DGCK=lB{G#l1x02#D|BAYI$a?B#krw_7KV-;E8Bd8meCD1Z;T`+L~qYWu;5 zqtl<+H=OMt)uZVlbjFI4eyy z*ZA;*5Ae&)=&_gxbC$(L(Rg)=*WkOhL5!QXD(V;An^odh#J1jO3I? zyJPxQ_y^qe;-?AD+v+mv2D)3uHZ_$fLuTnC|HKwA^|X^~Wi}7{#>%^F8*)h&z!~M> zmV*c?-$YWuaKvTD^JQb$KaMvUZd$w{x^nH zw#DM9KG>;Yr009T%%1e#FhB&&+_zJ^x?v2Akn zbu>ovwkozwB7*I_TH!k(!qdmp1nAZ*sfXcGHxgSuZ&%AxqIPe7ayi=;h%96|&y6@* z$c8W!-%s;FF8gySKD&HB>FUS^%dSWN4wQGkwBQQh(2!nJPxUD?tI)L1rpO`NRg@;H z^g(-k#zX-#8P7uXz-#FOsYh~c+z0!5ny&1^i4CGwN=(X zCVR@KObB}vci1{=JYHkNmWX@yJgfQho7HcnR-hp9?OY1_x>@Zyeb(Z+QI&{LAKl=r z9TEu1gETEXDbT(*2NE4Lhmz>?kdxW!vitOE6iX%NR^#UqRNFO8X#l)1qmem8Z<^lu&@xS8;j4b;3T zQXS^(eag9;S$p`qY~E~zd7vfjzeVi%HSthkjHcbS!XZ10hnW3$nopnV-s8r82jn$s zpF5!%%|$GOO0BYibo;!TZ*$s|!4%hQ>)r6Mi_6%&0Ber;CN2q8;9PzCq)99TK?q73k-nO}eDeuZy0=AkxDb)ibv2PMeyb{2&sh=7F4v^5M(F2!!BzJ-zkOE9mailtVR&= zoZ}?ZcO(z|-84&)ulUmV@bCTN&)e4QcmMo1_(}aAaOxG>Hqhy0uPGu3$RzMomfiDv zmXoV{Mo*!b^3Gb1+4WOoKljpF`XG zauj_66S!x^tlAffi~Ouyf?Zwujr0z4-Z2>@?8DmD8qgzv)Pr>$a1_rr%V3JUBNF$5-wz*#FG*atk}fzp&F zl0*0V^gYI{W72tXh={14*E$Bl>TsvrUUoL0kQxAustv_!FId;j{a3((f>pNNHc-@R z1=ZP~oXW_=^ALb`_8iSJ8jyJ)-@INy492@>WEE=?qyH-tQCL;LYQs`x+lE(%RcXWl zG3_>TbN$}kw}h#6vuxI$OOfio-lPqyPU|Ck$Q&Z!Dl->rMgAW?-kUBUBqWg_cKE+T!0 ziEbu9`iLSg$Ru>?yf=lo&}_fDmqS5WU4*0#h7g=_148it+xT08)5fUi*b-4;*YT}q z6m1uqitmz0>6OB|PwuEa%3Bj2J_p;Lu{qj8c6mbN9+lZ^CA&tH{5|hC2z>D#^uf#~ zE3l1E_4yC}4Clv>AUDOr^UBB+i(qYDs>wHId8%jz8}1}f_;34hEthG2PmC!;=+Gq6 z_x!sDuP=6g*T2X4=jYe30NC&wJpYHk!;_!=8AJrH?p7oFnkAhfKO`^w) z8zC%B@K3M*8h3sj&+kVb+>RanO_as7ksH}Z2mR1MhtJ7k1gKUlw|5SSAW(PZ3EYV3 z5=U!AA@vW;cWlslvth7#!eq)>9P&G2LURvvaW5J? z+_Xb?)L!xJUo@K_F%VSqhDlZ%*sZS(_CNy)VU3c>`C`kKf$CyQgkY#xE$<{!U%A>_ z^R?gvWT$A&*l8L7#3&S%WHGC7GFj@_}PaS?>%c+n-yC6c} zrWG`sxssW&xw>51LHnwl8-QW-<_xL|t-0YSEt|)!CN>>Ed5|UPSkH#`wQx>Idh5H5 z$vhPblO&N%KtT~+XJ7Uv=4F{Po@VLYQ41U^>ur*?h0JWfUFjEEONc}E?3_n7N36L?31O8&-J@gq9NX0TOyjEDEa?NV0=&b| zBL^AZZvp&S{d4^8#~IK{PJK=?>1e)CUX;t|exbS1g#`}`=r#T0bB#LH}mcsHuJ5b*fK{suR9@8$FN zNIXl0!g2!GpcMuM7(US$>PF45aJ6Tv|Jo?{_x|R{ff>(l-JR?68EQu=rF1OdNLf>~ z%_RypcrMvgIwU8QNG=6Z70b7qnv!^3Gexh*p!d*B&08dR9mAv$E(S*efjqJSOb{Zl zM`VcD2*-Tm)=aaO9kFh1-r}DF{BZQy#6ZJ>Nd3B_ZCBF`gMT!Sn_U+jJGvdkAUt3f zn?k!|!FK_))&w_cDLFSKgOUEoZ4u;3qm$#KPhLRRZZ%TrLp@|o$L8z?3v#uxMiSXC zvH_*QJ`za}bk@evd`3X90|>ZyQ|Is_n!Q2uz+1-XsY^c$LXC*W?px&okP=viOjV4&El@nmi^QplJiTtt;nTcPjeDB~9z;ygSdu_@`Doe7!1NnnL?_=b zO_=r}XO(G_S*!VPLB5e!^6XcF5`h;+Z|A+YFNng@FYF=FFl}w~&9CLk#z4jD`T(z{C|OxR{adIxG58;wK2SQyq@@225o28$IJ=kvB(Epr{=sF|C?gcg$l zFGvSiV31JewCR%YJ+B*qDWU6wRi|BpzDcKt}FlPpv~pOpeyg>@Qsb+EAATl}h?gEbwo$Vw}e& zPUav`b?q^k{#}ciWQrWnrv6#2n?ob2Te;bc*!TC6zNpB9nx%O{KI=}XgKsOR4P-R8 zO31v8d~n&R2QGnj7t|7YOA1*xzY%$VxcB`wjmeDSM14O!$(*QYKw4tJGjxpx659X- zuau?4ftU>UYfE#$tkGr9@Yj35n`6oIkXCi`SDJZp|bTdr0`^~WV6w*-2hf3VmpuedSRe@& zZvgH+xb}qNjR+ukn}M(kx^HO+gw>%Sp15^&gYl45k9Hd-;EXNbH&3tIXnN$Wprcw- zs5cUrZg6W4?n$Dj6C8pbXqJwR5e}P@`S-pB<1GYFAN?`tr=Q{t3*^M$n;TFmSSCEK zHA#C^E^!7SjMc zCn+%+qS4GdBS6O}f(!ZP#^j8p09Aoa02H=hVa{cpz4jy|)}7~Qe3x#CiO->FK4_FF zpH%a3v~bPqOb&JUe1go7wc_W3`oJ1DCE;m>d1SO@beiRc6(8{C^Wbn6#CNc@&1*id z{}xV#oyPD-tZuH+`5JE0F1C=x6fXOlG)$930F_+^Kui>RV3BFwJc5o0o{O??rQOKezv`pt(g{w%NugCSIb`WOVl7Hc<76eSB_g@4e}28=5f5 zX>2??mb&aDQKPYy9o{h-wH;h623D!xxNPCRHp;ftXj- znpjMd)rp!!-Esv`JXgZ8?@WZc)ZOH*6rOPYnvx7p)ZO_R=I@`yR^_oVn@!IQH3O}} zn)51Ih-L0rNM;IO6dfje2tg4X7v7Kx3jd7GZS{%O(9PFUQBH*O*{)*|MK6qcTF~FS z!3V$pW7J>1!Y^L@0xzHcBOc>1euAfXiVpy6Sh1!zL$TuI*SWfVpRr_{WKGY>0yQUo zPM;!fF$y0?7#1ncy#-@EsOOdTHD7%nL8x!Xq2usPV>+I4#3aw``G^UkMPyj&>x+$(4cBr zWmG9m$0C~tZ1Ya;Q+R;Ct5uMA_R&Z9@>d1z0TQ8J0UKZvG13E(w%0J^M{gHD&`8Rz zdHwzy!^`jA!inEU!xvxvB_6%`9Cc&7er#)g^)8vUKwUvSU%gMYVtcdU7ys_x0eFrl z7N7m#Chi(ALwBDmrGztnSM_^Jb{k4f=z~CPW2}mE7c8|JHW~`{4WUl?NdoNf)bj=; z4C4{8AOQ-Pp0(uk(ilJ%f5r}fEbZiY$4wIw@SuB4_Jq-{wO(xe$2M!kd$5eruK8vP zNExCXtV2>6O^4(rVUYibfTb2}oB2VOrKa>yeE5n9qEnc6F1aE3a>RQ!c^%8bzKtZ$ zyAh8<@M(ScTcv@^?DH~jRVZtyM{X1x2~N48vw9DsF%tVwwooPMpbhLnd0xak#ZcX_#Zyh<0he7KFI+kmjRJp9^|L_9yz zHc)e2?UGXO8yJR#=ll-XW!t$bLP`ApVsh7hU_jLy61TX@g>$;GxMk&L&*-! z!p!N956OHlK6z=~U(}d($Nw79Y#$hB7v#Wc_hwf^IW$4+h`?H^Ww{j13tLpi;myTw zQpu-JtQK=K;oc!4>%uD$SocA1^MiUmOv8}O9!6(djy~ltbT9C2a?mj_lI#~kND5;e z7#lXru^B;Vw&E@3n^Db2S8pp$rxTQczR49Gamhw5q+2V_IGs)?rD9#TK_6+|WpyP( zRIMQP8-MoB_~b2Qaw3AxY8C|4-HJD+N%`8y4^sx#-f(ksV|9H{<-CDZRw%O{xQgCZ zPaCJarZaqvN7GmwV;azdAv4rWx>i_IM?3xPy4r&#h>Ia-O`?}WL1rmidZ4<1U29#Kf$kg4{CwrY(w5)n9|0t15Kg#7#R|a}_$^LYaK=5J;wczsyv5t8u(R}`DCQQNQre|^ zVhFzg03ZNKL_t(2SWvN{IU+oyQ<`KbIEk*fq)pMmI8Efa5tw?$d1}GPjr$R>+q}Ud zm+Rd?P_g07`rS$cG(@Q)IjznvE^lfE*OxZbb}l&jzedC6`>0koE5< z_;o5*&QRRqC-~?O{uTbJ5V)Sei%qvBGRVrlwIC@wnNK$LJ{6a(gOqUY9Zx^_5MMf0 zAq={ha#jzTiLp$Nz%I_!U0FqYQjL((oSo@fdd~C^`8LNgjJ+-ZJ)i z?*gO=xdH&EM~}eE2~;iHtq1LP3WhH{{2a{-{mgTtpo3ESCX{`M=7dl2VBPsV6IBE5 z6wjfVR4vD|^SJGq;Sd2cnxAP$4^OBsX1U*yCMVLI&gb8+2luMOuC}eYLV_kGkf{X} z9W2HCP9c#anli0s3AOG#*Ku`8KpS*4m13rFD4CC^IZ(x@WZ2PxYd!d;<5>j9+j~YL z8ZxuTWQQI=>k=~6o&)Fn?7HNnwvs)IL-E2IxlR84wQgBXZ9}OQi{s1}ul?As*P>+_ z92a!IW2=8&MztF#m*Nz!AoGH(7D0NpDry-g-a`Y2xekcnc#5H>NAh&{Y#|zFudl2o zW_$ic)@VeJG_Pm6dF8t7YoQrVW}BsMHEumw?IQNtEnjf}PK-1usbC?GZwROx!E5pe zJ@#!TI?P7mS!y0? zGY!KIp$aO+sVC8pbvIe^K5wW}Hc8PD=A@l*2yEjl{?~3d2>ArVQmY4YT;erhz7d9m zp!fM;5i3HwKqqtmd|)04g1Ju43;*(v4S0l3gc){oUtyOlk?b_WM;&XdbB`<2oyV%r z#j}0J0r?m{p2ZrGW+aj2R8fg-3r2*aUAlPg5=2o$_9j-)Z)%O&!qpi2Y6ls*lNhJZ zF35G(uyab{TH73SF@E2&EQWn=8_H7sHP~jVsMAhh2SkL=ra`oO?$08bbZwiuBWj*@ z2Mg7KGiR4+WKlm+YI4h|V;W?z6703@(o+Jfvz$bHC(*hM8nakAv3=hgXpq! zj%INF5eecURf+Fx+crSN9;nTkJv)4@x&(0ZEt%wW5i!~H!!k0v5ctj}z~b6vEtox) z@m+_9aL(k4M!wbxQqBNdfq+F(l+dPl168%HK^NfZ`*`p3&+#v}{}r!aRdlQn5I(}E z0D$*!hxhOV4d3DoUQg6GIA*(g;b*N9dqc#|j4LM6oSK4$;E^<}leCZU7`HBXYtwEj zCh9U_&DFPDnj4GN{Z4{{Ga9O&Ozl8plXpnL=)q0XK&g|9>}>m0lU5eZOz}dtqIwZA zyL{%xM>Dopu6TF!stjxVc!>oB!jJy^&+)Y?^wvB}e7ksI4Xy=VZ}PZKHB%(?OZlG?`l@{@O$VAAY-4uL=S#G*JOhaHF=9)onL(Q z3w+iJo_+EsSl1P634^wUhmx;n-e1|y>RY$Y3YNL)8eogMt8Q14PgzMCivjy=Efy)R$M1|z~e;hd1OC#Zfn+mIp`sivN4ktuYRtR zH*yT~CiVzl7Ke9C1LhL-m~`~kQ=O5j8ByD)gkL9~S1Mo;aDQuFHoWnhYUDyOlk3kZ z;Zfm#4=X@O?NZSZ$`5s9jt|JYY}tSo=AA@N;Cz3;{nf(Fp(dN0@$4uB?IsbD-qDK_CP=&w*gr*@+OJ3WY*>3rD6wMGqf;#a zvi!#~Z~up`P#w`_4q`Ptc=)|3t_dXIhf6_ow7q!!OkRg=UO!Vcnqs-) z7Zb4nUFtf>mtr-~&FN;hv_N6(LYqYT$cPb5^x%ACj~mtsTbqFFgI+1~c4C?`G>zN3 zy41?FlT@m8pyGPsDO{_lA+X7h+f|ztYD_yw!?@AMh1L58J{5;2@Py<<((nS;9fw&Y zf@dKdjYX((-J}^*H!Hd?o0dV#A&|=n?cj8(SRp%r+?=hQ$4(Jw7ZT*E>+71fmVAx zwUk7s&i=Xh+-hAiM{7pc)>?hCxw-axuP3&qPjP#Do6|i2Sn7fGf~{M@yetcP zP=$N|(R*{FY)mrk*V<-V%1ULIrG-iEBYv&dy5uz(6WbFp&g+_uUeL2UMj?&L$xj$a;z%3WdHzKH3@0+ra1qN3FTC+#Vdp#z5jdo+ZTVEg3RR|00>-Z zdhmdUj2`fj9e=JI{_db(F8(X+f!$$js@iw>nF<6a0C!mN_uu{}Jp0=xc=qfWUb+vK zZwj~zs%*Huy~U4z)A2Wd^B4H)xBmejqvCV{gU37lS$P(t4f!KF3U1u#7uQXNxXABv z%c%JdpMCTcoou)zo}q(MJ*bsXC$+}xLr%GF4ASE7Z(`HzrC?bWBddB5uj;a59#SY^ zgsR(_RClo%a|1Mcb7P2_(1TJg;xck*Hu+_vF^iv{;Y<4lrVq4?Pya!d0T>NoEd^Yw z*Anh|tqc0PIx!F6YFe(gHJ5SuK-V`caEM0Mc_lI~F}&;^2%8c?uc1^Fo!k!5U0zt& z<#;i#vtl%12tJTxwP)R?1E3WRGSmix_WVCz+-x(=S3;uKVmN8%^kTa$EKa?Rz*>UQ zg=4G3ux(j143$h4rtWp(>YyVJtW`8HRe(Gz(LY0(q+D@@^AztP2Sw7@p7qK1B|B@$ zEXfZ5a6pg0OTAEdeXKUwR`aY87nI64ofaq?6h+iz{>?0&wxl~;qUyuukbowf#Q%fc z{eFclFq&Z3zttPOTa4HsdH4ir0zM7tBv5=?s9nItJX3u_#S;NSuJod){Uk3p3#F3%w8P!aO`TWeoox|LgzuzvmmAw<-OY9+F{mE@1;qkK1*Gvl7p+iZMA7Rl}A0 zA!{pcO)X|gv|8vh7k82-! z-9)oA4N(;Ib-+V=r6ND+5iic$fsv!T4;C=znBxg~{ zLe)N3AT*skhP!n`?Uee5`h>Mke0cYJjypL1p6VOO_Q2*YKHqJU04jig z`RYr2a=ydehflG*?O0Io7!~jR>IJ^}#oy!pFaIlEzWGOdf-~-*D89oyZorQ3jVGy| z=4V!?&x2gPij;GD2t`63La0h$Y$C|9e`^f$E;lh_AUE3xX8P*F=A*`1yInPH8LT+XPXlM@Epk6x4ms@aJCwe#j>Gy>*M`5XBbxM?M;w zw}$FjIoY_7d%SG&m(on?!mjSj>A{wzw_h9>`ULEVWIYz=cmz(z z*&pVy?$?C|7($NsS!|6OB2TK6f+vq34|KiP=k_@plb}SM#wF{Ty2I>A^R=j%_hJnm zSxf0naqJ#v%9ee+5t7EtHY;<+cuds>@=~VNwd{^I9zfzgnN_*$MdClmpLVD<-NP;kI#+iKF1%9(u-0|fGn2QA_- z32%tjJ|%BkqgjegR!Xg7h213$p-hB28Fph}(IW4wi{*bfyrq*hPIe$5A5P-IfpPuL z-&bs=W|Gg*6Bp)XH~@g=v~mKt7Ta#p2%J6=HnR}lx?|0q=;aCU+BTbJ`DU|Hcq+vV z(hETs#^ay<5YPVbr?~&S-$J2y3gE1Q$6)uzoimWucd`DM8~&l@^ZX4Bi;L@k6}LEH z!Oo&4jSEo4hDZf{b8wL-K_6ifg7tC_#csp9VAk8sN$;$D7*6HdDg&bujjdbR1< zZ=5doO4stU_{zU`$VG539hxRNeD2r&{)G`{oB<(9bB1G=Nom36obM**g26E^l&9~+= z$!%Gd-1N-n**tif>w{3JTp!fZPWrc_d+`XcS5YYSd`2Ay&V6d0Y8}||T8f9S2LfA1 zamhBUJSumF@(^Z1N@0N+e1e{2gz#G;X>f?Q})k&Ko}?&5R^)vxvpiFJ>J{5r4bh~>aP7Maa8ZH zgIx>)HUemw2WgSx{8s_8KDEF5)$7+u-<~Oj@#X?{)*TPbuAs^ema3rv#m(MrJ7*EE zBWlSWmMYLb6Y|Q1sgc<(&ZN?KE)uJ6BDCXlS^&6#afd%16gOT9;45}vhI+E^d_!B| zXC^@=BmD6a>DNAaaoMQC!wyTaRVx=4L`ni4n317w)p4JxX{Kq~UWygIfiP7=OBX5- z5+~EhjZO5bMY9qW5lOmdMy)MPIk< z>6yyl=6mxIo|T}AtZOrXgnA&P5M&D14U=^Ssm8X94Y6qttey`8=6#bnzt+}z29~kY z{}LtaH|T(K*fomYQPjz6UD2I-SnHD8r{3F6i#|6=wJrlu=|Q!#jAA}KvJflmq@R#1 zm^prK_^nYLH*`LHSaUO~#bg$iuZ5k*h=_81-&;%XU8b9dd@YI*_o&T;N`r*ibzi)3 zYU&fZNDiMg$`(r9ce?+0h(!T#4Oh<0c^%Gc`8b`K3owNbDm*j9SIBD*8j?vA!A4eW zX!bDcBe{E7{NcPcY}*FvW;QLJ5Pn|;fB4`3Yy9%B{sk{yynufDEnaW;=y-{;ReYEX zNMsU|9koWedy_4W`@*337T@CJ%~bU^Vl+c@BVya88yEBejMX1SfeSZ)MDZ}(!ItBk zQjTn%GHpJ37NrXmihFd+B=LgvyZlTKZ9vwP(sh5oD{gRu7x*?C0ZOsnkq9SPJTr9_T-3?(P6f`Kl*9JYa|LEv5 zjx$iM{MorlnV%{1Kz0sBkLSwb+fw`K`J9xrKiGg+k|GygE^$y%LK@W0PNx5#ws-rr zEW6UYzA@%p`<#fpIy3Fe%4(Ng-F0m!py2_;15f-9{FNZ_fYjmvBzS9eSA&WYZLq4# z;O?~3=}V?FBFff*YDscl2D($p-#sOg&EEIT8;vH->X7k30x5gAu%ea?SNHF>X3CJl z1=8HYIm~bsM%+m)Cb6@Vcar<5 zPB{2J4RVG=tRQH2fh+g=${V%bLq+2#`joyoaKbav*lW_Py%niaTFyIfs?=3iY-uo{ zT0MZ?J|9A{WnwX!2Ma^@>AYb)d2i%axiFO22!0tj50@vp@`Kry1L_N*Dcaq>S6P1! z>9S!X@lcMfPQ&b#y&CqGQVY-z?7inX!XO8_c}TD?eY#Wf*c)R^AdBwzXuvwSxS!Yu z$)@VrP{~Op>xRMKh+;|6()wc3w+>BLS_T|l?CI(uyU7>qTH?6Dqv$uhG(Ub&Y4;T| zL)=K%TQ?s1Wt*sT9fhkQ61$*@;O_1Yb=#buZWpdm&(dp``7m7?WLl4ITS4!HQY58f z#5Upg&<_v#9aEE}o+Vba=f%8nF(Qde6sv2D=dM;`12rAKw_7x%p*1FE$=#1krSRVH z+Krb|plmwf?uT8VE|(DBiKeDDZX3qVXoQR1Y`dDHqSVc%GhuM7guYAaOl=Z3nQomN zBRU;aCvZl{IinFyIDy}8B8~uM&q#3Hsi=arLA3y)*m(YVM^4h>daiX_wp)G5cL2dW zX8u0Q6Wh1hOH*qxrSueLyciy*zYm|3<$XwcQU-o}1k=vYhtS+|N&-wa!AVP;o0S3e z~x)wI1~rN zWbx5EDtVK<$Aqru=FDWv9*Vea_~`S`(f{MW#LJ)l6n8Iy`u=wLJNnI}|B3?@7YGEKH!SxcTywuN0~HQ5JYd5%xq%4xc!tg6a1|Q_hr! z;ojIW%N`cZiuXSG5Wo8(+j#$tT1xR=2YR5lY$U!rFoE*=(MLZwFY=!7hMlE;cZgu- zXnr0bc!dh!d-*xjHEiV#8_SM{i{A?Y&}Wx+HjlaQdHqM8m@aHV8z2Dhz5g-f z{?3LuMbW84sQ7tMJ$hmCbGS_0q)P-5Qy&O zcRV~itg^V-dm?LA()|5w;J9Z@N~4y~Juby1Wac&ITCzbQ8cm+K=f;LrLx$dZx5yKZ ziim*Q+W_`ekrST4**=g^0iD`^wzaO!DUIG|gF!d+Pg24$U@Id#vy{d6OCBWLrCBay zyuQ<*Hy{o%aFfaM5gw>0c5lE|mN$dm4{RdXm{EK{X9HN1@P$;%K2sXC01spf`@mAz z@YxW1pGj#M296s$sybP&+{BL58Oo8{C_IZaHy zMQng>I9l^-4hdJVyis7Q71EFK-n+Ui0;0*KY3bK&9m?Z5lS2r7o~ue--elpL~;AxDQavD&dKSSwIzS$Gt1ZfoJT zAF{u3T6G^Rfw*y+=Mx0#kIA(B7F;GvS13~f&He$02gjs3lBv^$Ez#aKN}7dOB0r}I zOhO4t0g=H6QlhmF;))f9V;z^7FH^Xi87CzT;avu4jvNX>g>pkPA8xF6A&~%^W7cDm zZPG4=_VG}g3(?rFu+p?)Xc_)%!Cn2PsX1Ch@xx=*F4rk|b_9MJjZQtdcP8v`6w)rI zI$ZJ;7iFo%F`l|mfdWGC7&;Xg(k$~p*@d~aijD>nfr{Wz#pSY1hJ8t(M&vF<6J&Wi zZCTll)hkU0{S@TZPt+RHNg`%~7AvZ4b*ie4R4?|h^2~~8U^3^yw^ZhNYLoYCvyjAg z_|F+;*z5Jk2QV>k@rSHP%fx#7zPwB!Erf88-GWRwQz1LKcWnyC9nDh9ZSHuVx=+wL zR633m^~nMtDX*jXJ}HH#pk9*+?Ec@oOCkVTwo0?^_tEUJQtf`z@OS|t?i-5`)>;hf zDUx_oq7mq4IOrX%HPp#RSW5w^A=IgQu>ghfD}2MP)U#n!$7>9k zh&}no1)t;NfBdKTf}0_7$;nM#L}CN#UCGT-nSz^>kaxK( zP5W6!94_YKN&taCNbuPoevV)NO~EU4e1LP1ufCRwclIuw|NT?22jJ;|;W;!_PM_7- zc=00J!xK#tKjJ;&o1Z=slki$8;;l51Pv4_}d;k!w@a(VSX@l05@7gCyUO|Om!v~-J z!2E0XHP7~#ywBTsjltbXE^m;fn9gI_G%3`B>3RA0Gjw65D-J1}{r7-Hob&pYQ1;Wc z_^9kIHUvF327*Eb+73`L={b{aUqAp=TCV%Z>x<_LXHv96awu&Bq*^R5vpLwPpS-Lw ztPM4YPPEh9;&=x|Y$^yQFG5@j2P$?h`xk`-FCc40$v{k9GY_mw#7Pk9wxPLQz~V^` z5G%CDK-?fN%^S|5;pYi5pA9RU!!m-h#(M{M#a#iab|0jAj0j-~mK71umU^49nWEwC zLN~uw@p{*jYHz%3DH(Ivgh4O_d=oHB=@p+X98YaBi>`sMv(L+*2rEZGS+k}MOgmGB z9)KKT(HIP9)8RW3!O={uq+EPpdRB{AT~S?r*)Nv4TEzamIB1aBx1pYgM2;EH4N)=0 z47z3wsH)(~sThg|jyOImxSvSSJEIEarf)`&6O-9BU;(tun_bIlzHu9@_q0MpCR5Z# z(UXK{v9)H)4qKJFam;0Em4;j@!U~mL*5Dt=TxgmuxDRhetQh+Uf$hDg-n3uw001BW zNklDii_e?*EheHPLm6`{1PNwFJp^!(Y0=)sfq14NQ1z#uAJdqJ& z6F9P^OcG#InJ&i!&?wmI;B1NK5U6_CFG6cO`z>PHHvf!?O2jU&3_n;KTIY}ghMy>s z&Hcl*jqEgS%Tia*2YQ4yb2hM|PKzPSuqeiWg?Q%F{8`0dqcLx6o>s6O!;3fc6F zg|YX2(9Yt_aLspo-Xly}Q7WT)@GwcoaoA9#_l8oev2WeMBPw_}uDGz`gFpNfUsuA; zR=VBcIU2t4+@zT7OD4t8WM_{_*##RexcDZ*euw9H2N!Jk2H*J3NNzkQS6mnG&qy=c zu|rS+he=#~GXsycRriKaN|}0=)`Yv9?MBXxr){lhj(kJAHh8x?vKo&RKv`WbGQBDwtup>O>{TB2bc4`JH``P1QweC4!Lq<7% zuR@$w7psFDuT8vcs+6tNJX;-z)qKyL(VD$Zk{NnpGzXOer2>T4$cfb5^!r&mM#d&< zL2nTzj;Z#b3_y;c-mn01v1kKf&5;Uogez+fw3*o(YtH7LoW>*6@#6YoscE+Dl7rrk zX7{(h552pD56G=#Ej(BNIY>sL{qvrUA$t6a)*CiupA=a4O=4t_0>xIGL8z-C%L-5| zRJky3&8W^OFy~;_y>z2=>;TLIj`|dw6(&k%aEr zNi(Hfa%QL^oQ^5WsZY!`eT~fQDO3Nv1qstWz2?tH@T%<_1|covepe`-;|KWc`+tI; zp+hglq(T0_QY+~G;`dz?VkNh%b=#nx!#1YwMm{5$kAnyvv{{m-X5Ld9C z;@^Gsm463*tqkw6|Nj&e;=49Wc#E&3NAruG-U`w5-}yWIKJ*&T8%|)83xGRpnbT!u z^#Q?wisHBuLcxY3uhVm*O*sO%)aST={~bKE9ZDuaDy5{SHdQMp55#C#+`W~angP?W zsd0Eqc!_6_!-=(^;gemqr?*g=88;qM@iQ$oC)IT=q^Z=!NKZ1n$g`|1njm(P=n=}3 zQgYjq*;FUld`PteoR9--rt}QWQv5FV{Ep{DHcDP|m0BIhFf#I5@2A(=b30s00h)Nz z+7_R?fe|>HsT`ED0b9h?LDJ=hoD8>iAcym`$RkC>Vqe@W#16Ya?_l5DjV(`qbTeJl zo&@3zRwNeG@UF-7GoF1DE8xs3h@pAqc`zT)FE{|Ldyq7{WYsbJ-S0>A{*5Rp*78b;ZUy_7>;lp z*ObZHzrUY`^Tlxey)C~}wd=|zf+~iFWMN-X9hROOQEnt?YF?Z4Cpe*O4TX~>BZ*^MALTBXe=Z6*L+;GR52!9EV#BkbxW!i z@EixkqjWfFet3DfAejV}3R{|ZW_AcbCXb9sYVmxUh0;_CP;UK3(X1X1*SyB&Em0n% z1d{@)J%k&%)8(`c%t@+mg;XMxPMoIbxos*bOH5G?Gq`Lv1QE|OQG>gPXJSw{Ut>JD z5obnM&w8=~YhyOkxIf@_FUEiPU;H!lpZyHqeDMV?TgQ)%JNyWLf*1G_U*XrdWV2MW zNS*gH-{Jvxc!hUSy^NAc0@qT6_NLN##|{GF0(fD$J7w<37}fAGSxeU3KUA>ck~uaR zu2U^ zY~kDhhV+b|*bEJC&MLg4w`hporp=0&;2pb5!Mv}XfRioy4fhuy6K>_s8v zvtr6m8D8V!OusHm=378U;@rT)6WI%7meQcZCT5L;3N4yTZ*SZfj$rUa+ zY_YZ2y(jatN|7|nVF{W&ZVKrQb=xLujEzYmgw|9t;;48^F8(l+QpLTofh9Zg)#1gf-Vm&i;$0f1^Y zYCc*<^iq<<7TObbrzqPaU?7=qaF6= ziqq)qLBqonrS>3;O;sGaA_IS(a0+JhI22)70u?30{AAW~i{^VC9;tcq7nu6pgZRWV znnHGwz8PL8RA*mKY?k6ZjzHRc(DLSTMW8inULyx8a&kPe7i@4LWHKeO#F`hYOe=dPJC^`ta;6d z2;Tdn&+zfHf?xgg=lJsB0q_6f8xR=JQ1L$A!vnre=)yaA4#FM2#@EWFfI;J{0Kgzw=4ypJoc_!3_xoMOg!3oKCf z9b8aQ@PMm-?~*2Z$~_OeobTyP59qa%u1%EU>AWa<&7V8}RlP-*6zS=NHnAzMrzYOCdI1~< zfWsxH@BP7N(089h$sjDK!%aAEIut&@61bm{a`PVbK@4P~<`7leI>xixp9LB6?sEAd z!?C-i)(T9NyU0{J=O=|^IU1)lyLW$fvlVtK_B^(;e+10a1dO^d!Sg64Z9`;V(^~h} zbla?yT9-ihP>7uUF;7YG=bxQTRT~Xt0eNn&UyY~j3U$TN+t{2l^$=|oZ z0ix>g&B_d=n4i%T0kHLsemxBSq>9!ABn|iX_aN^6-0`~6o5qMrfChNU8%Z>5bwlOz zAaw;_nHt2UgA1B{?X&FKr3^A+GJlTMUSnXdT~7Dg4DOhJ#*k3PGQoo8CzTXU%mBxc z%OTScmK>B|l6&C+5h*!L9s^K#9m#A>yuHWaq4Mv0tRSg=g7M_JK_283pJ#KQJ;vai z9R6hWtNMHC(Lx;gXcfKNK)xME)*=@E>&-D0R5EnBsGvC@DJ?yvqN)w@kB1#}xl94+ zx-2+MO*V&l`bFJzKnBPu1LGpWqc~y7TqgT^yL*oDXN#@gV^W>Io!+30ux)xZpSdG@>@4RFkyKCpR8a=Bcv_XE8(?EP>OpKl1OdDe=u z--EY4tWt|%GJP6kg}h_w>tl2x_H9$kDM4spgKQL&1Kvtb5MmV@56Ea%X8=M3B8#wJ z1AQ_0#?*}`>DiJMz`*son{Q`%zedKFs7$cDv>((%6wGMZ z0NIo`4>;TFLym?rokx+47M_-D-u<;+%9e5u3;iV=`wmwH=KX90DaMP^@X;Ut7=QfV ze1I1(Ux5GlU*pR!zeNA~H`vi}j|;B2;);e3aF44cF=Xo}j`9v;`#xrAH%9%Znx$w! z>`~pZLr^B9g5rRn;}`f6U*b!=i+3R2>Qr3(?=HTLfgk>ZM#nk(X8;E_6qoId2DYC( zDR1L(Ifs}&R_t4@RFwBU3qm2>OBn}^35j5meXzE1x5IvUJxL};L4e6 zq%g^vkk}--_$MO{z~>;r^3*(0swQ%?(~mT&kN?@(-mW`T*+{>+s<9?qJin*Z;x*0~ z5YNwoAc)51BK10I?}Av^|q^udrurCPq8%YvN<(bojp2j+a5MnZ~$H2-BiM@>;Q4 zrHzfLv{OB%iLp23<<&m7kotM!wfP3EDBN0b!M2TUowX%2d$fVsUZf0F2xrQ8|`HMUuW z%VdU!r%AvQ-_<+x4q?t_ZEFp7JktTGL6_zx|k(2XOEMp2z5>d73Ln#$hipk;v&#fbWC~$}a z|G0+o#@|QIm0f_LQ{HY+sPos^2FVJM-o=WWjZu8sM_qBaF}2k2(a6mdOUY8d;{xmx z!deG0imG)^;hWk@Mz zI7CqWWT804rjMvVgm8U$m_ zvy|%hj{?3CX5J(nQ8-=)2$>=RYLMq!hr>x&rtCVUg8H}Fz(SI`1kk%cX$W9Q0zJg72o0k4F~RF#keFEVzxd%2;t)2S0{3wo;ELrvEIC7mXrTRu>+vGq1I~A54A$Wn^ucSccxvINC%aRYxt+Z zO4;(cM2f`Fk_S9XmwYy59K#U#8Fp(XoK!{R^#WW_raI;d6*|6;kMREYKfzTxgzG{_l%QE@Ul_*izCxW1xfd{vuF4;Fex02!sf|nVj%XI!b`te-GK1!!~nKH zTFP~6%49GTtA7U6Q?xk0# zSwe^)hvaZPa|L~K1OZAHTtFT#zzG$I%^0Uila}jDeZbU$((J*&+_v*RS#WJGm2v}W}6wq1O>%}^3=G|3A`Su&^+7u{_t z5Z;$amJY2dO&4{T*FsYrL7v1FwXYMU_zY(6$?Qj=X=9fp98ojP!veWxA5qCIN?Dp3 zP8_Q@VUrJK{`^#%HG)%u$7S0*Q=+Hm%f8MI6jsemk=;BNaN42RHu4EMr`JomSc9)7 z8$0$L6cak~0x2G>WZ6K2y4a?|%QV{|`I|SIA}t@<+qR|DuT5}_k>RigH;eQ%nRn?Z z3`2TOIMJj5sVw1(Mcw@A4`#0H2i9TRJ@@v2fGwym(m`rczFICrLw+2#Nvw5B6p!2| z160HYw1CYYR5qU&t`9#V9n(8$=wv~F=!OknibkT;wdYpLAs_8HEVP+y2vEr+mv!3C zF%ihGsr+onJWLlguS?gyOp8;y%#4j0RQz*rvvaxJLAv0$BQzrX9bfU=Pu{`Zi%)TV zQSl94p@4C5fI>@f0!=;~^+;NBerWeL=k2!&QDXK{LrjJB?N@gQ8g_h(-{1nqhxkF< zRsMAw1dNWC?q})=Ux)^YvjyTDJiV>-3JG(d+(<<^rPKdL9BK1lU0J@n!J|7KUcJJ* z@4dI=kHmJB*(g*)_s^EQ#gtppx?NJ8K;&k9F}fmrn{I`*6GbC1vKcso#5Wyn<;^|S z)CkTYw(I*=mPTSgL-Y|@>OZ_$db^F%Q%Li-*&^y&HA?WTslt~KP_=Ncj1zaQ!N!JNcvsoC9y6P zy@=VEK}ukg5g&Tkpil`?$u}OhG3w|xWaY3hNP6Kx1SQGP)bJ8zX3wGvG&@5P8zPd} z(t}+>2v>4&koVY#a0OEi5D_>~?6Fx=S_V!$(Q(d5dLp*mFfw^q40#`u@Wpi*lF^Jm z@#}83k1*MIEDk)8W=%x2?Vh^EK^S(Gs5r*pquS36HwOwCdaWey@7&6YFKsMheH zM_#0@3?0|5DqF@wNeU=} zW@b$^0%2Z@LuhXFT5lr|{WL?VE!*U|UPcpZKKjkUp-h z>Gkz#t2fr=28XDdP3~s`9MmC}xu+FbWAKg4`USqc~`- z`6j7?+@xv~GaH12?3bDIfxXp>`2uM*T-Qp53id4+RW^U6zrXGKAK?4jU*P>8zQm`` z?(v)d`G3RDzy3Ks0;8g$V)q7wr<|l>QZEN+M;j9Vq;JtE&4_JzV(PDWJlE$H1XujR zG2$i={2YIRihFcCU`APsD6%uMEJeThm}$U@PI9dPKLPgqmfkaOvR3nD^k(p*+ZYmFynjoq#gqvY z`IAjXMvagpY0U1&nm#0>-NNO1bMcJf!x7(gdnOf&`C6nm$lg3LeMqO&>!sK*G;gXy z&KEL3dq04_+cQ?D;bP%}PM*&+4R&Yg+WD?xvFkVLhgv8L{W3|+My-7715-8GsVPu& z@m{gmR&r1pOs&(R6Q>CLh4*Zp&q9N@3;3L!>QqeQFw*;#IV z$HQ}sr3vq}ZiCLWzLZcqJVYmdpSZMcyoV<9oi|DGdC1KKNV4vkJw~&oz_{<^s3e*o zKn8?jvhiK!V0qnWzD1+59^4>gu?X<~z#68I))6JqOmpfzI#pr@de3I%I1by~_&S*g zOF?hbk0B>h3aTEmcmhfytv5$ax8p$ft-8 zy?yjy5N6Ka(Wk?}I#PR$l}j4jdzVK|kVcQQIrAY3?G|dfZ5y^)(Rzo-p1u*)mPY#O z8saFZ+w93;cFGr{_aSfUy&1)&S;0}NZC8SlHXEPER>9tnep+wlR>dD<>{&zmJ`ThA zM(wV}ReyM>uPDg1G+&{iYkO&Lox>7H4AOQS=oNO1v=O^PE7Eg;tm z|BF+B+nA zB^w66@i#_qhWZZEaZJ!Q-aukSe{V5`lo6unlTrz6cpS>54Bh@|lXkgW93?NgrBqSu zZS{A>A==J`WeiaI7(Uqf!4u3vLB+utB<3**`Jv37u#(Mc$SsREVaH+T1C+3Bcha;Hjq)YklMJ+@7X{46wiP78J<5_&dP@$euUrstG~weZ~iU5 z!4>!DxL`wZ@>d0+q2U#-K2^ufc0&IFg{nRwhkDAK-=@ERfa3qb-{BK{g6DXK!#!9P z1)t$Fe1mWBEnY0rxIwdfJ5iUWT#&F~gJ8eOVbWzI*0aDqH-!w~SHJuve*F0#8OTB? z;UD52NOdYxY!9r^>M7+c6Gm3z{MJFKJ4=h-(Sog3Jbwwi`1V`S^#MeTk6(2B6TAy? z*avxYM{l{EDc&AcX#R6Fh_QLW={1bWB)tX`Ug>e&HKYJ_)?%~z(%$q&0%qC41Hj*dA06Sfb+BXCirc$w( z3JEh!z7w@lO6_a4FoZ7RlAw~$&&40DiaJZ`h`=82(b|!L>Rp;qB@1#B7WdWsJ!dt^ zo4^oS2%YTuZZa|@WAoG;ZqcQmq+6~A$OfaEWXlctasD62;mM+(r$&0Nl4nd!_E=P{O4H2h0EU7NWfC$=G~ znz6RllAD_tq7JYJfh#9;z|ObnHG5o3?v})H`^5%<8+k5bi{%f)8aE_@|UIY^22#Et~KT&i|%5bENa2JN~KK`@!V3bPelrtw>(VKL1YKOEs6lt^@rRl7>J1MCzS zmlLXqZlaDg&b781PuDCNT?lDo>S7y(=H|mNn}uAhb(`ocL?f5gF>~Tjd+Vmxb@+lh zoPfn81`4NtM6Qk*9t#v3-+^mEYw)#Vd=}HBIIxW*OV&ajwmyX*_ALa#h(wOpj6#6R z$f1G&e5vbv&@Zmy8yg{+R`g=DBX#)lBu$J1yH1m@Fi1utSgYf*Jxnn3CQd}3xJGI% z=wfonjf>5B{e93Lo5mxzM{zJR^G%LWfi>dlX3XkMJ5$LF28on&0CH$%F&P@)8bOM~ zlZKaOHrZMlb^!+*q{)!wm1@}y@tPauG)j~_w}DXWoe}VSi`u3}MkS1=zS?)gdpr}` zapZej-BZ-s2#^k)d%QM)aU8Y;$9{Cw2MAB)WIhrDQq|te- z!Q=06Z9di{G6or~h7+nh{0VdC#L#gR)&PM zKj^H-L^KnO9Jo-iuv2?8C(GkK%<~E`k0EME4CmtStomua59+LY%(Gy}*lJ}U_?(3~ zsZ!2CyMYZ4EPF%+1f47b!qZ1gp|m-Ys(cP`UA)CQ2C6avEfxy~4G&LBv_s-u-9P)P zqjZN^9o=MUtpi@WRsuE-uYEV=5Ueh-SeUh0^vAtP1D9(5nQVt?qyw@ zOaY-5EbB%qqc*x+$0qb)s!YP2YI=%hF-LEsVYxa4Ke{M2LsU}M4haD7TegIVg`sPWx#`}(06a1x903n__^7|9O}gt}9f3}_C0$ZU z)RS6516?Q!!&&>osIh-tzS(-M>FY35CY4!3SKlfCo(j?N*5djZz zo_}n!Dcj^Zq~m5&r7We~2&tr;qTrfBUy6 z{Ttk&!U5{JK|pR6{$c)*ev&$sNf-YnU(LB7W|v2aXFPp~kI>N3@XCdgEsH-MY@(C5 zL|*&-b&*RvzP->#Wo75aPx0-m7XaS#iTuc3YPm5oyt{2jYfgWA??88tN*51U_p`BE zM&9KLyz|bxIR4Gg@xTA|Uqiq72?`kRq2Xg}sMzrmzrjm%-xBI;8-=qUX?S?z|GFn+ zSrsE7bX=F5s@Hvv{6rHyK37fem^|`z`WDi@*KL>H+_;U#_ultQj1BAwjmB-P_!_^5 zK(YH(!eR1;u3m>|Bph1u{trKcymybC1X7Xbmr!#Vuw|_D04WsU*|TSOc<7lEGzxFq z;Mh?tQ*ikppT^)OpgJg=8;;@|0Bt~$zks>Hig<{*xmYCiUi+lXu51a(IuCE>4N37v zPI!G5MYKjV5FzOsll$UQWqa0#{G45emm4^;Z3Q!%8YV-~%etvkN`*j(IhY zy&DPc&IgUuZ7^7T1Gads6EYMV$w5uFfuVw<0QKiiQ1_6VGe^~fd`S?}=fi#U)-4Wr zqNc>ut_f3P7(>9fI%MZHmtrcP06h_*1W<#U(Wj}PF!HmuMFfB<5IJzY3XUDPx(u~7 zoB#G=sPK3_TH+ewQ^Tu?^RLyUk|G_=CHW#D<<#Zn)zwOUd*hX`}sGpN2(13$$@ z#Di7~p|?5kejP;H`!r6nfRgAmIGCXyou_Ozuknt=0xacJ((Lw$)le(|xlu`Wq77*%X^Qrj2EtVY++SI7=u$Ra5b@lX2#v!9a`^(>(-8Kt9CZTR7*@btrH%udV#U;dv2#nDX3JeiII*%Mim;wM+0bd z>6Wza_c{BJVD{~`IYVnUe|qp@5P{ltcY`nj)U@wTG2^KijpAJ1^83uivYfU7$S6;Sv0 zrJtZ;cr+%dmB_d+V*sG4xaWdrrQ)NnI{yA|eu97dFa9|cg74#M%@+kUv~kYo_2xshUN>WjpFMz zmh<) zr*SHluh*;B96bxB2#nVzS-1gxL@G?rg4X(&f;YS4tN~!(3P_Ss&r-GVSh5^O60e!u zgQ+UM`LaPLb^CLgN(+y^D1(9)(JRr|C4t|)pB6mZ7t?=_$$z)_6q$UvDQ|aQU=1Iq zOU_en&8BEk(MN0yK9nr0B_W=>8yB#e$ElKKZ3Pvz#?PPLZ_aM4I91PN{W8HDiUOkc zyYk_Umxw705b+&iHV?Hektyn24o@pmUEfKqC zpMmg9`W6%2^0s&u$&x~weIIsTHkH_RjjfqDKxu9$#|`SIK=|NEZ@fIC=}=Tx_&nb( zI1a_bR?)9J`o7!Q&43m_=^oeXj>d$8r)FMaP(>L>vr6z+n43DKHkzp*l48m^dhDFz zsApW6q>EQD3zdmR>=~Qk=;(^-TPBOsk;N-FhQv0w)n?Mxa;d|I=Q&NbiDZ9{Yu>Ny z`U671hNd$=yg;Q^r-ntas1aZyg*uw0Eo*d?`2w##DeN7~7HGzJ&)zcG{TeH&@yzX87g}t_aX1xbR4$3jo~K{bO?TZf8HU^8 zH)NnSdmbnyE8Q{`~CXJhl)*vk|xC{r@AzP1c?~bJ1PN6u;`jFz@BQN+;SWFgOZ=;^{v|$fX`ZC8?c7+rnT$rKMk#Wc z7=(Llz9VWkn}gSp?DWZPff34nhu@rnPVHKW%%mv8^$}^-tw&3r^v|rGC%8my4qT;d z-0tu1Z6ZkwabKS}ph11pt3KV`JP*P;lWJxw>9Q+4!yNe3F!0nk5JphCaRCoh6cleo6;FlxzIn4WwpXJida8+z z2mSoJmnS~M@`!KlvCY%)D;0-_@N~UsN>MM^@PLO2>#^bRbTT?M$dd1|l^ukFD;OW& ze}cPDKf>=HUZH7$fo5xZBdCnRo;H)Ji|e{5fJbV9;V5*%Z(B^o>~WZ3K!uTBZ7bvy zXadw~&pua(h+@GTn>UnE%a#Ka@iTL-M*`n%-aFg8OB9F%yABx;-}o$%DsV4tGcbj8 zJ97({1XWbujCJVpT%4b=(Ks~e8TWFA6U@z$)l8P_W4Te$T$?YnLmi#%SvnJ0wy&_)tJQJH!c*z4_fZY`TbB?ebA*8 zC^1Mi-#@S{;IO1c>d0#{IU<8E6>YCZguJ^4KU{(1fa(mf{W(&mW+|kL>(II+1cZoi=%|Nux(-{Ar(>9rg9fi*`+CBOXN?xM&9x1l zEv%YJ!7A9;{dXcjH8Oay`~Vzc9>@~U88uIpI944Y$*Z;4#RW|dN$-yRE}lSKZl!94 ztoXEPw*^U}n`dP%{t}z*6ZGzrWev%YdkZYvzz&8ulnV2*0Z?CiiYkiZh2iq0u9J#e zT}w$7MD0dP8;44K-w4q>OSp^%V-3;na<2KXkqAu-38TN3rdEiQ!XVxj17C1zEuq@e zuxqhNK;eU>^P~>rsI@HeGZGKN^}sG7 zljt$8rC{sbGO=O;=N>dTk{iuEG<_h<)p6TasPjs13qxS>45BIA^f(UmV>Mql$YFp#pdB&79@T8is+)g~|^ zRw(#{Cf>`sRTTBWyJ_=iczrLod4w58KG!ToxqJ3JCu6DrQ}JLu$M}*xkkZQ*LDQm3 z5m0mtO8U{z$%ZvVgrgm3O$=jSO}eX&x0Pl{YU+x8lJ6-Or~upjGwl0r_+iJ^-{0Ti z(|__K=vRM}cilEUxF7TU$Rk^%^WV=HZn3n(TBuL za3BIm-HVyX@yG1{k;4{cbsN&@6`u7cIK5bq{;>fDk&oh_=61! zGzEo#qI5xF!S##Z;D7z^{|Ee7zry!$=NrM@TiJMx1!c^=mta~seSWhn4ktYx_e9lSe}sMmAuXg7hL?R zP;Ud9XM#m=as|NxfDarfxZuDmZzpwW#N*27E>9Lz{P-{b9Q|?!ZGu`alP`@t%EVq} z>jx?o+|_|vX{CdUT|?3Zg>1uAToM@&bK6#$z?N6NDTwtNOLMfwPLTbrX8;%=a0(p7JkvQ`K=b+jV-U(en zUFw6V@hp*)b=#!h2hk^K`aF<4V#j!Ozs*24$ISlh(73#~C+4>5VuqIdm_lhyxL)#_&x#V

Jz5pIb zaCE|w0Vx)*l1N9Pph(Md&WUf3GsiTEle{!gl+&Cs zoDar=C9VX0GT$~E8mIxFs+m}Eaj8D19mAXFZOH#G9#PT7q}~vL_@Y2qQWi_9IHXy_ z)C=&kT|Fd~&<@GdmWj~Ww4%+WcJtIeE?l_BWUCtvH8M-kCqn*}6r-+gR`eAw^^{nI zHzyCX39}s&ZM&FFzSH+U@Ud?YNr^|Ypv!CkzV)}aH9Vv7a> z`{F;p_c?QdQHnjVv{-{EDnLJQDVyO})h00HuZbp%bgfQY?DB|oVmw45yjCY{`4$r= zC;U~Hn*@kM!)7tc~?>Mq4^Y;P3WxLomEFXG)ojJBNalS;Tn>AIrsnKYpjZhhRNKm8v z&2%L8AW;jR_Q1pLO}stvGo+b3eD8YQC#kGSJfs_HT*c%V8*fRpL@9RPbq8m#1?6#W zp#1?zUT})o2E)U$RV`li$%(Le!mf)-TFSBf(0<( zFlI+3BN_c12r2(AI&wl7p0Jh^W{QK>Lx>?8p(z2f1`?e8KO(_yt72#rpsVdx`@? zFlVwynHr|Y99H9f^9=i`F^=S*S(3?11Jt4T7T=;z(nNiO^zFPcie^Ml+d1~ORHoe( z<8l1Ao;H~J8sFJjHpwnCtWXH9PQ&BeObQeiY~U2>RXpGU4ZB|_A^t22{vzJb!(ZER zxySP#e~K^U3f!|Jwmmzn+90+tXuUfHSM7DqCU+W;iTGb@4ZK|(P&MeYl!FM5cOU?cDv#$@ z(>69kOHixBaLTO&iYMc|ndQsyDS18ByIB;7kb|x+9gVF(4PcN3zr*}eO6kvDYK#OD z*z1`?>fu9B)tJ;S8GUAGC>0my+ zE|%R@yeoyT+4pRh`|Y@7C*8{?R$%Qy? z0xQ|U+gz%k2uxDp7BB4GS&r*;@1xQkg7xz_q{FqI0Aw4HINw4vZ zVZPT<;Wm@TBqhi1-!k31t#=f04DBef2z?c3-v6DPUiDd-8~$N?8(mmw%9XgF~35L)rcyOo^#0+%>{pE?!zvph~;BjbxUsQBw>P;Veg zmbxW(3gcnQDMKsXP_3RG@)pSgOhdTWPaBq?l2)5Gx)<^AjEv0GPX;vR?R7Y%P&G(NP*1MQ#g{lA2ltK2jf!U|$hhG^7 zfGZww#p9UxxAU~o6gZiV#cV{>Ux#G$>*L$Yu_@AItTCGzE4OOl{w!k8d?rO zyT1?YSzXny>+WAOuHE8;h6{G=`1nu%7~7{G;TjWt0?MTt-O6+AKo)<{T1UOBHZ;+d z$~!+}B0$@oaXkS~>2tjy!ikegV_4OvX}(MBRhFC?RYGgx8DY1>Ki%xvAf24_*e$QG z@00Xuq*qhfCaXgA<>n>f|!MIKLrqf?Xe57_3<3P}h{{edM#(L}XImXa@Rj zj{8?xvHkn8y9!}j0@>3mOyUFbL0^rA%)D6`(mMB5M}1hBaikR6exGxrF<%GKq%E5q z>FF+vFB4Vpthj+I9*C0aThtrDgcC&#>;sKfmH+@C07*naRL>$O`9b8h+oRFQ>W%7R zv0{XBBLug#2+xj? znr?L(ugt&qPJG>DC{OmQz; zs8kBuPQEo)C3*Y^dxXkHoY_nHJ2L0{8-qI(Tb77)$BKJlXvJ_}3Yzc%iC?@i1*>2j zWb}_FlgUzhdegdEZcr&!U@5`7U|YupZZMmr*qG=frHaro8D_0$j!^ifz*_tpZj29{ z=OLy6&UD{xTP0!B)X5+d`+^tm{frAQYXPsow$*HSMrw2OLzxm;9(vsjn=L$&p<9Qx z<^kt|ZQJ}{wZkU8A9r^?iD4(6cz~!*lBQS-PrpYtw=y;*QQU-ZW0N;oq>JnaiAfOUhMb4IU;GC2+%k)Q=#VBU zHxyb?s`F}~)cU9)cRWA{TP+@wQdeFaPj1cgl$qg@Mw872(JHQ?X|>)puTN32A%3yzl(shgQ-^>(Wr?v( z1$)m1E8rF-@!2ynyX5aoH(>73#?csOEQb1!-l!v?Y1?k@C(ht%IC8#2oc!4LE3VS< z%b))}-p6I~Dy^O}@*Nl@qT%eh;z!;`jTv&bO{1yd(QZxKEEJ1FkF1wQ;0bG}YO@rKwPAn49t6d!U1>On9D5Z!;HxN@&3 z_yj-1_y6<%6kk_GFC{U`cK(`AxkJz!rIO$b4vH=NakztOt5Bt+tE!kkW(%sDs$sq3 ze3|7we%4yZy+sd@`)VYvPv45lBe{FynJ^de4weu)QNTuV-&zM%248G2oLeCk$2Chj z>C_`kD4GI}+`u+j0%UqG)aj@pWv>~4Tephh8=cOY6MF^BbGulioumqTJu@&U>aqw; z5BgYh$yoKkPv&CJT9@8aVT1ByQ|DW(sMln?U*_ksVz_udjw--)gUW7FHgO-6-@xoc zR5==IcX^t7WFx4$TcMMXppbTD{p!k?@HE??QL%-GHX1<0#sv8sm2S;hiH&%dF(A#1 z#Ch(jx1q7!2B=yc*rv#$pZFHkp}rB>I4F~Z3PII|LUv6*zXRlzod*5lwTBKRhC2e2lv!rNJyJja2 zZ>}=PRE?Sy*iR)ZTFo0(KvYIyqqf-@5;Va^7fY~)NrKd=PO7%Dy_D*qay|_q+sGs$ zdG`aM+k7s9IyHhC9fS}KTBVYCQr)LwqgkRwPfQ+wJAeqQUOEl(eQeQ+H;@EFLu!+} z5o{~un+`I~vA-?Z&`@tE(8M**o0!-*scU+ZAct;~5w;wIN(8F*diP`Z&8AJoHb1c0 zH(tbD}N=5lYoIW;T?8OS^hXM7qOV zwCl}lskPdcv)e>_s}`J@srC-NAcw7lp1rx&JfIe4{%rQJ)NUqmU*{LG*U@EwF^CxV z4D^Qw{Gb2&UqkT{n`5}=B3T~UNIWH#lZl3>04}JgsJP&QhKAqc!96U59fue2R;FT+ zf9Zl)C@GoKg`W3Ru8utNyQvq-ceuj?b}t0l^qtt-hUSH^DwT(Nvb= zLEh^&Is!SFR~g6xJ*fp~0Mmgkf_pGtee*2{udv~84-nmK{^s_EQXDx2-n!t7PrI6S z3SI3jej^C-`=z_|{ z8;b$wiE}e1y(Bi!DMp6C;pePGj0e>G2~Klm1^V8=TeY0NPA9JqM$Vkem*=FM+#xhL!1=Eg5nf+n{+PGJ8-vt4WcWbNJKTcMKvN5xUC*_dGXZ zkwYaie80rzr7dbjCP+q;=>NSa4MHAylP)?9rQOrx(G(RWpZPQ8GmB*bdJ9>k=dr1s z?X5Kf(?>{cDG9LZ7?e!%PDoTy)wz*P40xqJMAz8JNj9u`W>9fR0Ma8a*zNs@@K+x! zv*#Q#b&J7?LAG{(pKaA0QqHhJ4{weE8tyCk>*AaGEF|*lX>i&mR?ZC>`9P5!Y$8s< zoqHzng;4moY9W7~xDV+f`22^ApZ?D7R0C`UG)n<4HmGp2ZERl7ay$};M@?Kn5TQo~ zl&!+X*NF28YS0SfdY_;pJOvY%@g%eQ8A(7kc8BFDF}zWR!Lf>NCciA!*thFLLO%kM zRcg&Aq*)_uAVo}|JNN$gHI7DSFxi~55;(ofrTSFgr?~#OY(0){F|&B7Y1n%8@XB%p zd|R|_8!B(m2E2TDKrJ;r6IQ?rnp&WR{?b94?itlYZM9%3}Edy$hH%WtBt{ z7!q*VQtCxS1_*JgTRa^4^dMsP&jIE+k}jFel?BfNt*~bN@C!8z{MHPPlE9jtu@blE zsY2T*2$&3IE@Ibcz$r$?17*;wyC%`Q5p^!8S(pVxqdFaOXumB0Hq4e?2p3c*<&CYU zbR$VhH+y{$1w{qCm9^0==G$Q3yc({y+QhB5OnfipG+^+D{QMe2q9{in|89~q+Izw{ zj+Qh$Vzx$vL#ENQS+e3q^RrMc=Z?Zg&gj+bypH-~5nsUHII_PK~$mq%Fo1H_?q~Pa2 z|2cm3@c*J35(hdJpsVzaPVy(c0WxS(giLz(5)UqMI`Du8JYYvf!Jb~A@qMeqtP40Z zmFA3~xnY_gygF?>9{YXbuPZuse4XBtfX9ows>B(9Smq|q0 zX`iI&Rl*JM<0I^v{YY*Ft6yo9trMo-1~>k(HPp7`tJfQB$5R`oL9gQ}fR?64 zYh2$I7ndS-Pf{ZHDQRvT4OY=z_GwbS0~J?vTt5B-eE+Zh0zZ3xhwJqU*$9WKX_OW1a;8@i*PXR~)apCnx6iW_;}5~X=LbVpxf9Fe)3=B zKgoV}MALS(ahot<<8Xv&E-erUNhOu4>RdAO+k34!{V*?U?K~-Aiy$PG&dK~Pd#^n& zWBkUDh+D*kvL58!2mg{wso8UQEF%r+Ef0_Mn||?runTlF+ay)bb7j)`}E+TRwX=;4bttH$S2WIRbwav$2qaE-I8t{Wu)^q_UCHg3PM7P0M_iG?8 zRCPHRX=XCb=Le_EE(Ihu0Ay?KGtaE|Y>?(TX*u|RY#`16)@s|!w!gxA&#!RBukfh= zXtuR!i%SpHGOTR)L*D37*0BXsEzay9{VaZ{XiPDNfiIjv3=EJ97}v} z#T#qyD^lR?vU?^)mjuVM6f%p8Y!-aC>(Lbs!rr z#d?-PsJ7~I#=V;hljuesT1zG24bsQz`BawN-W28hd$HA#Zbe%q%h_Pz!=WcWA?dz- zsczz`OpaT&Alxk6U9!|wATGZ-5X$@@0S{O~c$prq&sD{cqta2znuXfP<(YU;ajg|$hLw(_EOJmQr9(y?2fu%DgI|1&05&Xx5D<%PjyAx zcWZzF?E4voZJTF$a>@6bc>&N2xQmCdh4o4{aE1M5c7veIT6LGlNi=Xy0*ck|7AC_| zL8YRTA-$;(%38r(Y_sLl!zO~(n%!SSSzt63bZMaO@7I4%cl^C-%OJo~D=M$3RIxV$ zlf(n3Fk>lpSj20NYlo=i15rvxS*)P9Cfaf0?&TWyTz@02epwcq=uH_S=*X-j(GGBN zA`z0JY35yksiNr!mxd~+n^buCUrbKJ#c;-=cNwr7-%Y9BAaqH6|5_M-^H=`~1%gW~ z5S$?p)NE#kSmx(BR{9&ot)ilWybZH+#y4l_9n!-tBs@>#R{I9KPrEb6=B)^MB93@V zqmPi-e)cBJb{U(AWBfIUe~vr}&){1FdEoYuZ1!dx!n}oh3s3!8=qS7(f?jqqgSU_s zkhx`Gb*!(XRAt{cj}ai;V8vhj$Nw7@XI$Yj>3KYPa2{)%BA}Zlh=WejG=2o<{SajF zk2Om4s37xAqFwQCnZZ*#9G^ZNwl_0A{NZ~ej4UboIh)4n`>gKGVQhs0jJ~_@R8wdf zKx9Ww`@7x!T8p1!W#(dMs<)o%LQZq)UE;(4;#=6BEV$PlQgQI|4DLch_3ioMPXngn z=0Nhm^Ey0s28TuS=!<^_n7u~x6Q_f+afN%W4tRT}B=wq) z$d@6axxJ3s-}0zzdC=8INMmAdHLu47u$Zb!qRv|Fy4>6DIZQr4D%GQ4Y~a1$Z=gmH zK6)N2SI=RJ+!@C?ckjGFMw1e9YTjT#y{J949 zRBa>DY_by}Rn?2M7N3LbbveUc=Z1k(f-_Hw084sib`H~=5Iqq`L=~((5899dnx0Y* z+TiiwQLg+85x@g!3;^62WvO;`r?C(Z%&B4=e-89C4?2vmB=tcOb<33NASihEqG|m?b6b#L`nxl zcyUB(_b@b7HchgdFhQn=wrPc(5agl7h53L7kJqqmd#=9sZe~{&qrQdiTDJ|o+rxH~ zj#3F!OJ;oJ<}Yqk*vcKnr$;8#wFv z?Li~m1|+2zDl@d`VV17d5bXQDL*1tXu1ToFLzx5-I$7Xkr3Je*?9HSNCGP{uS$wAv z17L6l4~twz6D-^l{XDjak^R(vCT2GzcQHUXQFStsT6(%~zD(mkd=*Uo!0C#Kkc zq_T_*p!vFBX5Vkv8MoE~RyL`gDE718zv>&&v*0J+|1qxo*msuYB!!}+kUd7KBRrO+ z#NG}Wt<6$`T5fOHrBKaF(%4qrW5ZKiC5?{9NCAvfHb_YEoHb=u%dz=|3 zhdiQ(yQBpxRuFbHheU(~u3&*>wlsIJG~cQd(K2x1p%mhR*##3q#YUMJFJ_&-<5A>y9Y(`Ez_Mm{#5Z zd>l7AeE1ooQKCum8DdNOdH08FYR>R_xGM}PVl?x8k|ok~&AtgDu~&JGOPsNrZv#N} z3@sVD zCZ--~V@QE88wrBx$lhxa9 zcSs+z{!tqo0wy685QM6ET3H9Z&=ZG=3Kp)|V|*owCXA-+`8<}v6J}Wv$@s>M2~ssb zY#C%`Rc{DAJeZjd@P?UYhhk^Di617g1G)OATDH*Kcf@vTZ2KrxTcYyDGkY}cocR_e zPY%2houK8RU;ATZJC>=?VgSexeOPZJ5drR9;V?J_W6ck3aqx+)qiz zEvUz50h7Ukrt3dR)8YV$xDH&-XYx}&6s>S;wsq+?iCI?jG(^G3Q*qQ|JJJURS!w#v z3%TBy^Fv9g9hqE;K>kAT#->6=Z51b$xUC)8;o7zeX~v9cew!x7Hi^_kMt6weKD!(a zzticITc|`o$8;lt=X5;KLk_m@dxnK_tZ3a3If{OH<53z$ddnH1gBez|JC2?5MquCA zkRQI<8>lSPmpsBoXS8S%15-BF(@ZDSU4GDqR}GSrI}$d3ly3)m_}2nYzFULBF1NC< zH#%ffh5yDVgO1mBv}x1kVU#?9119)DG*SLD83un4Us1>PLcYl>)k-4~E2yn0r-OUa zo+qCF1Cu89eK+H{gA2sTbHyj3O+Bxxbe95jPhIa&RxB}rQoo^^Nhvk*i>4czrcAQ% z*%TCOl5z#E2MVJ2eK6z_@xb@IB<+w6tkpJVv@2FEkV5F%Etktd8X}Sn&mc&`zYiyF z`Ttgy#pRD-wzP-FvMjbCb7^UAu3XwSSBe2~p$EGDGRd#F6e|Kanm#kt1}&?fci(Qw z0ohyQ9Eyn)P2qZKQdM^8XyIa7X6a~q6apnFJH!NDoZ1<=U~2F6^B?>jUi|3Cxb)pa z_f1Q2(OU5~;7z>4D1v(ewUH)xIK$1zYz>hU6iwcdEH{4g3*6!o7vsE`_FKocr#_&k zb*H%XEOPM%9N`1BR=5}-lY%Z5xD$}3#SLoS@ArrkWkj?_ZqOF;p9ZddvBzRqs+x$ z1wlMSxjP2j!^eGtc=XLtPMF~hnqY(++lZm!9vjYhj{odmeharxFL3u_a}2aek>Z&i zuf4E&+@wn?M%V|0)i>GA&)0-JAW-x6+@{J7jgb+mO~{Q%DIQHBb`MLl;Z|V=O|c&4 z!Q3GZi{S{2^%|(Po?hed+=z(h3JrN&G&0h~H%>MTVh2$LOi5@2v?pF%DFG0b3W}5Z zC^irNER3jyc_nqOK)U%d8I3~s+iOtwviHIFk78p(^wt$Po>0% zv%?hPPzdax>hXgu)g*hVNeyl9Qk+@ON6AfKY{fkZDfzPxh6Gsz&5=4;z~$s)4rnVt z@7Y9{8Qi8emC7XhlGLI`Q69yE1$|B7iR8F$40C8a)R$#}k{nF_GSM-uNTkU-QvE%X zZ+|9Jvow(7I-!cKZ>VmlWY3O}-m!!PK?U2^4h>RXOx2-Dxoa&H5s0SLxk!^@M=$ z1u%uw4aR0;ve4LO4Sdr+=1j%?e*Pdb)2iXk%gM}|t=nf*YQf2ydg9^_#ZWxjgwrxV z2-*!>UzWurC3^$9;>SPwA=>#K;+X0Lrg-~A4+>VwR%mtfa=4y22P2U@WD={@3&ed2 zRwdk{x#TO%@*~^koIq*KeZhjo1%1sukN3U-qMZ8AjaPd_-u3^r=zrK|nDtktcTX1sZciS`@X23%7ysdZ{kQlP z{1|WHgn|Zk$>Qv#5$uNzOo-hcO5^ar@AFV@Cl5SB{Kz&5k9dq2k72*ZzK2l`uOfsf zwq+b)we;Zi1+1bbe1!bH_runcrxv~X)neDd?)xJ0e5&Ht^cm_Krl92+fTX5Cu;%tE zuq5o!wxhv2WxU2t6em=!NW8Cwg5+Tn^&vRF1}Hkz(Y6%^9iLBg6)r0|Nn62KJc3Uu>(E6bzVMA4uZwd-BL z*-TodU%)AB+fr6nzVxHoAos?_o)K`#VXcm|_q$xtJyVIN=GPkmnqV8^(2CX^Zs8jw z_JIIX((z2P?xZ-K;a!?d)D&X`E|#s7#7mmIlO0LUBf=Oc`|oG}T_-vM zN4cnshBP4{lLaN}Y!*T9JAV4{PZL*@PhFKkW>rVY`|EAG*m&1-@%zp+i4bEPWon<(R=lOT$bf|?WcLT4|#Nh8b9ciRax zG7=2KJPzB`A0G};$p$oYf~K`^7W3+#k88BobxB#2NQdm*s6*aRNV7>yVQXqg6}sC^ z9?kT8-KZZ7L1SCIV3Or{lVK8c*rDQ4`7no%^D?DoH7Gtc8z2R-O=21xfl{quZBDb} z2{Uh+Z6t`o@R!Hn<@fyOS^xkb07*naRMr}H-)wc+vS|?asu7Rm_SpI^0ip20LG_Tw zt-BXMG-aQ)E_p2_T`y7fNB_a*FqN73WDpiZghl`JKTC_fn~2!$w(?&+7 zeMQL${RyXZ9Id$UdHnA2pTm(9OtRur{^ChY)-H?#UJ~d%%6D;NzC||f$!-%=?EcCO z)=)kCv_lT8HhaAn?n4oXpS6!8uK7{#4NW_;KwobztiiOE3Aa|uwz8w*Exdz%s<=}N zuH;hD*@{iAC1ntcONYYyHlH7nyY_?c{xul4xWS4!#C80B`57`h0Ml+xe{SRS@Y5U3 zlKzY)sr=0UPSaL~roMdoFT|w#;L8uhv1 znWE1qi$JO z%?CLOao;|InVQ={1I+-%0kZn_|*E~GMXD|&h zb>TtzV`j_vnP3+YgqzPFRr6VrXC5j!d9V9MMjrX@kuZdyQ&$>jclB+Tc7NLVYdHAb zO33%)wT%cIBA~d>`^yIOhD9%&T1zP*jlr!HDzQU8 z2+O(xcXyuqCsyax3KsWBH9_$~H>+nKhFnIRGNEEkl4&VD_1Vo+v&?4U>iWsS<>xXw z!N|QCQyNZq0$PWVPfdbn?;9IMhX}i-eRw{^eJCQ$n~V;K6~{O$)$cPZFfYJwVuCKO3+L$$+CA<)7o({@d@WdoH{APNY?De;>o5rBaJd_~`5 zgU6U2NNN)fH&3c4YAM)VGC3RnOg_^9Vyw%WCcD68OH(IaQ6AjU!6(krGr^9Nitb*v zI4oLj0wYY-zUSHOD=x{i=B;o6dEOGK9;T4dSQv)X=}Lt3vTfVQ@GyBmb$MJvZw(7C zhk)PMpoTioLK$sh@sQ4>B51z8&Q$suax`_F^C*7nQi0|hu-2@>Va2kpU|xpl*7G8E zA8JG%lWD4r2s2M>m<*Z{ejlogT1z%RTiYHyoaZU5$)*zjUuqJKmWsA!p%q45j8&oMw7vN8?9mZf~nga&$~ucf+~c#FoA1YJLbW z34qwP4WE7dF&G^eE)xpR(Ach+o9F_UIN^ldOJ4DUbTG-}fkbRU#hU-i1r$3PF0kMp z_X$bZlaglty26diw`@}W3W5*t0d^F8hR+=x0pGS%P)4Z6E~BIS_KI@X)e=`-9@&=Z zBVxmcZXKO))p{`d>VeSr8Vw&Uzkt^#LN98fWPE)7vthmETJYd$HfQRpOM>FUTs!5^q8>Fe>)4V}3*dVI5VfCqq%V4_esOtQCVjzW?#wcr1;jd8q~(mz=#A%!rt`Y(eT4e z&$Gt@SA*J$T2gXOlb1xg^AcT}etlYd%W1~}rZOt9tCUng!j@%OdN!z4 z6}{2a5HmWPpDW~RR$Fz;;qjGL?*c7O-}Nny$Tm(ho)@CYmO^mv&0 zpILaE+pQ@&Uf`pzyo(KrKl#faVZF8I?Clj2Xp+zhqGOHZ-nChhhlxz9lf8nvAb3{R zkecjW%cR_jCe2^3iu+%4+l!O|9&4v=f#z@trF*Di;JnF(=IPwz2>KYFwl1J~OKLm7PoNlYW(HcCQ!x>@FvFPZ`LqcF~5|WraN@={xB^QRw*VtHeHL!ljUx)XKDddD=27( zQ}AAOGcP>zs<)ni2rlqO)h2-<-!k%^H*b9+sl^7$ji!;yu{Xbd(p%w@wl*GQwHEBH zr4dzVJV0uxAg->j?z#P{M`DR`e;^ycr&gY*lG7PbcHm@-x*WV-g}mG-2-z& zwilp?)@-85#8B6$i<5|!Vgrg&E0$%!rkiPs{bj}H)LTc>AvYlb7P0_o#_+b~dv@qV zsRgxEl+db2V-J%)E<9&V+4gy<^{}msfeKI9T{vR3icOKFD;g1svP*KkXz;^J#HOUn zaufBM&aY4li7pPdUq2nGq1Zzqc8H~@tIN=F?{lEFwSibTl zoQwGL!17^4eWU7XkI33#I)RIkONj|PM-z7pfGuS_0}-L5YEmEbT$db-n8XW*^Nt@t zqM|^pG#W|uhzC2v+F`&(2oIK>88H}Bi2-8J;ChD1zadNV=#=8f<9N;le!6!_LY`sE z>%pWRg}fE>gi;o7ekdEzgD<$&^l^)74ot%nY@dhMQHB6#K$yQ7&B5vdJNxrlDtLe~ z@dl~{&YY889A0UqBV3|)8_IzR%WBU9?9GDdTbSWYYR4Krw4;IpwW7Gvg%+R)C$#Lm z-QjeqK(~GR3=KJC3z2aWe`IrHk~eb5i-eZ%P%o((I6~E%C8rRZ6!A!SWKt(hyYD}h zDo0F_!C)wDLqZWoJd{`LQAMg^EZJf{Y4R;pYvy6cRI5m4oq5()p}cSE98}qwc_)O1 zrjnUZs3zrt9CK-zEs}nS-kNv&pVdWy=O?RA;hgPh>3pUsY@|q zItgkGLWZQ5A+X^KSDQvKId#o^3gQ8+A@M<1Y|zb?9!bb1%us5E-SKcs8jep+ z2CCk3xS}ccDb~J=V_5BLsujNVEK}1sS-HtZI6-iuPD!IvwXJ|(-E*^?^%{QYhLe@)%{p<)t3vF+-v59n!J@?khPQR*9_ z%5y%Juff;Vrb^zZnIBF4kaZ+`cp0dpQ#T5nI!uJ@Gnr|b4J~ukR0NFy-Oo9M=+b?& zW-`xR8>Dwszk&C=JDj{62P~jbCy|?^C&>!Z9h)~H1oUJ zP%z%bg6gcgk@dsV_GzFTx;v&;tk|#}3jT_UOI*6YX2&))L;(|*bazPx+BQ_|5PYG2 zgo}6IMk{8jXSR$MuEnLy6(|+!GJp`~-}C!L3W^r+Zszg&@{DUo4UjhzGU3GMZPz0M z*PjD|$Isn5JuDgegMWS$L6Yx;M$~Qdtz7j@p`c@*K5I^2Q8{?7;#)f79t|5-EN?i= zs$Y>tt}E#?Q@;{B6elO)MWZ$7eAYm1*u7zJt^a|(C>h*)i+fyxz_>xfE1bO%6Rg-F z_zVkv=NsQa{lp)dE&v>nDlYA=@Iend%!mFB<%suu7a&!aMJ=vr&$<%*hY+EmN~>ooB@=~R3xRhmB| zRP2gy7}U0HJ~*`v@V?6f>aQyxiVrno?cqL~2s$0B6d85HG|*PECYM~LAeGTK^AD*E zX;>u&%7WenyAHXzl*JmYuow{Iyf^T2X#v4%Ta0B{Y=9frb+c?gv!ieh5Lky7irj0h zO+b-XNMrBJWSd*%@C=z!L!pRhs2b3v5`+JTezQ5Ar6ZPcuAqW1L-Po4O^tU90! z!k9kOGZa0KC1|`5D4Nyok=YjMVaSH=) z=&Q&X{aL)Q=-O>kuVOdD-XP6BU(#t!{@}u!HKXF|NhAFMTua{IqCoe9h>BrX_I=O0 z^`Q=1CvS^MxlCtF8Xyft;br7Yi9a+ZI-98yhAeDM93o%I%W*gFMe`jJDlzn3qy*)8p@XU6;&8 ziaCmT4($5sdqelBkV2uYAMpKfuU1ztsC;9!`05@_97AN!NBE$8(kcvN$`*u9w`DDH8Oj*f~oPOm(7S{AxixL)D|T;Un+m$y)^ zu5o^Lf#vxVTz>El%FQMEWyP5lSMNT@^AEoSmIZe^qqjSBoILfZq(h1i;jD0n)RH8? zd0WI2U_vrIs`*Do*%;aDFD^^8(*GVS8h{VJ@g3k|#b-||>S+aEp0KP7N?lQF#j-B8 zEia32Wrs{jebc3?c-kuN@9y!pfBb)-?HymjC4dUSi^CR>ANlwBj(rTK@bk7w^a$;a zANk*O+SkmYI`ftdPn&pyy1R684wfAfy4mrB$pr^2(5bD7&D8j=D1(J5*^Ui@dzbR9 zjs(Jj&bZv#B~|3eud*(N$A}xN7=8(^~L*^&#{@ik(X<;Mk!iJ?r6EkVOhE;)W>IiYAPwjHGq!EB^FkV06I`zbrmEBp(n@j|Nq31byDBuGN z9?wU3EljB&J=7JN-Y2}_JuCcXfbIO5A?tF^8ao)`WIbpeT=C!2mF4pXgO9{@Xakjt z6XEUmzKBo%;RRmEj+1n3WwF;D*JCt~ZkJH6^E7CKOi(rtH(Vx1sv{>;{S&Jkksf>;?8_H6kd-vYM{bXEiP(fq$7NO0x6s)U3h}zyfqsu79 zTq%KT=3!!+=Jc(8FJ^S7|bmH#QWKtBY%jz46 zpxoK@NgZ!!Df4x8wJDIQO&WAc29NDP3z?w>$=S+zU?+F&ATXMTvWDR_Lt}TFM6=k> zTDYRt1%<4Wj?g)q(psSyMXkx}+JQF5Trx~nvx)H|O@Ss>1{Q=)SPv`IL0IEsgC^=* z3$YYtUec&*w7M>?%tx2Xa^8MpvSw2dv@dvqwt&)p<-xR z@$~1U3ZlARm?z(vX68omfMuDyP(84y7}(X=IIeZ^jg?QrEy2{US8?E4J$C|M{Ju2>faNl$55cNmFn zvTEY{Tkl~1?k_Jca6X^2u_q;nANU<6#gqtAEQIyy66cpMvHFIh*&k@@a27lYulQMw(VH^5 zH$6;vuno3FjU*&N^X+7aLVLEi^F}FP3_h+w zcOPy95nDrVG{>iS3V?8)vbxBj5zVh}#}D8M-pZ|G;6h&F4twsV3eGs=$5`>}AN~g3 z`@MgTPg}!Y6j#dQntcJYITET zd__pM*=fAONV`C&R038Lg|M~>X5`VxcyeiB_rX%FWn>MeHKL@{+Y~7V)iMaiZs#Zl$rWUNSlK2oFT+TF zO>;;ae)L0-=LAb2CiJc4KR2br?&ph1y@hP6A6{vf4A`~n^18cwyPBx7$I=wr{>1LS z6!U2nn@DQwDZP@Z;R~ESm4dDXl^3^u(1;v~Yh#4IxXi5`hpEwkkW<-0s_&ac6SRzi zUdxD)w&zh#!mcTtJgNpmYL?AFh7?aUKYyL2Xo5RJ`1%M##7+TMWXkljJX_Zw5Na__ z3IJtCZ)ZHcdWvuVvm1Q&XRmOEVpX7ZK`#U9@$h%5II^FSbpkdUBPX?)Zif=AHJ)Fuk*Uk=xrMrjS}EFooBkqIS}o>>Ly-C@|e zjs%bv}?stc7g@#c07Zn@TC*YHfZG|CpOANqL%*71yBBkh|L%WR4@KR!e>Qc83sJD>6fkW%UCs&g?BEcPWkZB(et>teRH?2t55j#&64AROn@NA z=~T=*Yw_>Xx}cEX1d2PhcXCwaW7C$q{M6u<3tu+aJbeQyLZhce?S09aeVfUR)lSyl;d>h(rgCri%tm5NMov{ACHa9{I9kQF) zUl-;^wU*of_1<#AxD+?q?k$m?%;Xz68-d2QY}W9H6wdBtSYCmXno2RbVnAWGzN7EW z8WQ5X-c%)}hTW%;W82e*RM5;RcCS91^ae6@O0O5OybP#^b2`LhSr)Lk{KgJ03yo$< z=_jcd626fterBjkSkj2xE&rsr1o7iP`*VEu`g1%%!-@->GN99t&m|}SlAam!n5^zG z@oA+~$7Vv>@CVtR>It6U3OCrX;~wXUniu{f!6n|uJ5S!m%Xcnu{qzPG@4b!F^))u9 zMbTOex%W+CF;#J-hKaFw9^Tn{pb_iqv9fCbHg>mJ|39KZPrkk5b)&q-sXj} zU`6#$!@NgUbW?&J%rRi{j2~mg*Wdmo+D9LtaYeseJa%Hi&CL_k%hjfo4Aj;0Y=FbP zq^jV(p=~?PpT9&|3Vz{>UqpFw!n5;&=kLCc^Na7N0CG+TLN+!uNf09?>hT@ZV_v1l z{&#&8Bfj|afDijcbr?uA(2q&|;&qQx*fNh6ltg_m{%1|xW(bjxRT_1%=4MdyXL8~# zA|`jm>J40Xh(z~>t!6t<-mG1CII_ARuY23o6WUJr6qjJ!;O*c34u1K!zl9%Ob=*;h zdd8MX=^c?@7}Yn6T5QlK8Q?zhWf&gPgqX}bo;m%`-NIhgL#5dou6mGG+j(-jxJbD> zxjIJuxfu0FGy!2vP_I`aP9lA-G&W@}emHo2a|7eUFcCqMh~CfxY+kqKw8!eq`LOGzPB?Df=$10&zVonds(2@nrXHV#pXa}|3rQ&eXtc6!=H;7rqj;rfy zK+YBd?4Kd24O&@tRHxoSbwHPVxJt!COyjxB>Vd)Hm~DUm)DK>!60sKDiLolK$kK#~ zk=o`g-DZ;;g&D`s#%q=0ek9W4hFKpRR4PWto5Qm?H=yHVRd1eK@3^_Dc>erdeDKcSkh$q$o?ZiI+%DuPU#oT#e*YN}iRGZe3s!f*$GOwT$4x3G1kl?*z>$4tY+~ zkPIRlB9M8=s$({8OM6M-w`#<5GwJJj+8ByVW1_W`!K zkYyIB-%^~obKTom<$FV9515f5R7x?KhDrhsR0+#cP4<{3*p6M=0fy1x4V3S>OD*|5 z<<`wZ5#chB!=tugTuU7f@(Jk~*I{?+TPfygu)LxIE%2NRxT$tEW3eVSDY~pn<#~?}Bw%u&|}n zFVe9r1)uyse}hjx{S+5CW5EShbl)SjH251voL#>wwKS=sp#oKWmC6UQQD>>{vYL z)<|P}ZX(oy&o7{O|KfeTczy|RfjqqgFAGo^>uCj@D(Y#mfbl}0bwRl}LDzz}zVanp z^b7px#cT9-#)gUu5DHd@3;6XuxwGEFGhE>cSGdH21sh&xI+XYZ!T=Q&4IO9Hl;~M7 zYQ+x4&6989Yyb3D@sn!>uNCWC&#|6PC~HMs7CVF8Y-{(sUrQP&W|#KvmRokggzG0y z@b2|B-hS_0{8D*_w(a=oCw~EjxKxebi1g(H&YS(c*8_?0v8_{x>KMQcu5gWObnM=i z47p802~Z&r>@IRs-}r1PW(<&rX8T;GINCbN`oy!0mTbbT4J%m&z%#fwWt`#8uxqkn z@f@z^4!npJHW{e>j(cp5Hy;7II~p!=;iH0{|0hn*+x&Ok;)GiWKE@OL`geW@@BaR8 z;#Cp6td`x_#k~*_*u4}`Dd2@|gOr;iWT78tsfcIJ%rv%{csF@iXT?Wsq|KvXIXgl= zG^_<%+r5GD->G9jcF0Jau!#B3=X0?Xlxk-t2(FTGx}^-lU=HADZnYJqGM3Xi#UFUA z!qgZQVn-%Zsx0Ph6w-#^GA$ZsX#jITG&NpB-flxX%JA^4ZNl&EpM4CUYF+F-m*QdW zdXS}w%f5pW8ySkxJf<^GqH#CH#YmPJ|2d&yZA(g=h+ylRdlmhf@Vbt?=+|a2q|)s= z-|k-E>CCnLErCidG#F6 zZyLV$;|&BgRewb9Y|M`@FC&o6@ z2PK`7dB7mwgd!XL83;q(jalRCKWjGyg@oLaY-rY-S&G=Pd$mnqJE(9u5$nu_Y12!KvLH3L7T24F|BD>=;?aS@3FkLPcB@4uHh!-!q zNjx(~C>;aLR#ZXEjGm2xPtqgvr_>5mw)YCnX}vg@LIKpEsztK5PszzIQjJ2fn(s-y z;1Kt4s22Y&?E$yhez#o`DdX1 zn#ds$4EIL46oV95*yV;N9&8gDJe%5R&L??k;B3c)&hEF++CuC=mDVB68clMXW~~+H z`+JjR2A!)^tfi(D0f^13P5fW*%a7?XKFOO2+b}`nYqADJFL~Enf`^CCSN@PoIs^u zSx;cFWncM$A-&~RSyXHgv)c=Jv(J zY{g$2(ghS-F`jlfeQJB?&}h-Y`$XtQ;pP|d;eY!Fc>C*L#mB2)V*<*_ULzN8e60{+ z-+-&1Lvc>p7QHz7c?6Nia4Uv{v-c+`aW*WHl;O^i4HC_dZ?4YgZES3G_=J;hq%AkKL73#K~1_}NdNush6hY3rAozRfdL%|86~Cn=YeWr$^`7v zGg&nWs!pHl-Q!5aC2B6Igy2DJj6<`~r`$>fy1_AIxB9cF1GD5cu5K=|YIE;T2NecK zZdYr5|7c3)N*3zm8%&+B_AbC?v3iTu2iC~HZ<22uls9ota-jp{A>rhdi?j#6CEGN% zt~tyN5BS_{v4;R>Elg#yS4@rBv{)y{nTNNB3D`yP?8yb5UOmH4fAR{gcbr79RojwD z_>Rf>psEIj^Uook>5(Bh53n)iQLzMt&_9nDs3`e%NvDtmmw1=aP-hOU``7ax=Rrb@ zn%Qbali&--eGoKN3vgzyp918zwLQ-W0H9qREAIH)4C{npsH4EK5NN|;&$&t?;M3k{ zgu{04w3oX2P46^{Ko!Rp!?#r<+_HEVDoJUxa9TQ$VMf4h2NlYYFF3M0raAM0%IqYd zNRjsSzBnn(A`@o4^w6wYfM+>m73}+-G{HEm=EhKcGA2BD@evrO(m=~%WEUAzv05#I zLR6CY1CSHRZ2AoaxGZUa6i=8|B8YBBEvuTJ3odnlcJ$Wm=N%?pw!JxQ>l{U%`C44C z^?i7OYQgDra^H??e!DewMG4Y2^C?gt`4dhkIcTm|)5wc-hvz6V!42&6qz8atvcf+N zf?Hvn`_mV+_I5$GdTk84eMZD za@uB)hm&OjY+F(!V^Yb*^tKUb8+i2i+}CxT9-wO1tJ94Z4~9OuzPIg$i6#-qj=ZN; z=KIyQLy4F5yox!%F@P6|0VToSdIrv>Y@iy9gF5o}aAAn!^kXv`-(htrWo5>~_PN7} zH&Hqkvf`@m%^N|spgE!xdturbNJ#tq(5K?l)LL?b3uQ=GpSlv7I?7xPMJo{u$u4`~ z0wKm1zx*LifAybm@v>p}l%<}HQUzg8xg4N46Qpj92%!j*%y87DAa;Dv>i z17O^Ma7Mv1e2UMopy7lQE;2|Kj(UgZb2Sg1wd;UU(^Gl!Z%6$>Z-UUkgd5$iX6lya z&|zd{vBSe-17{gvI=QeEglpX33K!_;*s$kziNM(1bBm8PvJw1zjzN(A4yk;)rq{bz?aICL%5-q*?Iz7h*zbBR*oL*)bK9Rnkx& zq;LIz&h~9Fmw{)WyvMomjV-d6T(cH70$qGgivgE5&k$-&EE_T6P1I$Ev>QdYF5pE# zbe9k#6ax2(`@0QS*EVDwX2TfF^=X*N2btg;xY~Rm&ng+`Vw6QqZ=Jf=`v7zB0zR&H z@r_AA@!F_O-CvPBOdJ@1QB%_FzBJte)>m2X?Td5(G=Dd{ERtlyg7kBhKFA0isbl`YLZ zOuzRB|D_e_zFlHp-_~VG?@{=REC`H}jsZSqyV#1Z5?J~JimL#sU)}4(` zxw>K8s?l~%^Q4Gn}?5%wfP}e zfWvp<8)KgYr6E)(y(2R=H4Z?KP4xo4(S6cYYQeg!;8L+|JNo8;<(QQDYEXQI%wk)t zz(2B6g-Wf~#ISjBs1$IinfoR2|J@%}C|K%ZQ%W9kHeNU<37Br;#MMXs6NP`Ni=7onkYI<0L4jQX;6! z0ts!e|DKujXZJ@r*wMwYnBgZTr&h*BX{j}3bYZfj@b;Brt9P}BYHtQ@sLSFbYIBr! z={{Mr_hr{xOo{!l5jd5xPd)*4U4Qd%M*G*r>EvF=k#B}VN%3sHg{;LA_u-+>$V`jBsh8aCYEIlh1! zR4jN8PrOuZo^up=MDzdxAQRJ!JekQPB0-+Jz>3>MLj;BH3JT!K2VaAV;O=D2J1(p^ zySTZ=;u&2x*VjJ9H_0WjHB+5TlJM+FAle#Mlt$mYr!o1wpamtH1fL@WD5J33qQ_fz}GWIiXyvpmhN)40XR*M}&2=-H%Hh zL@5z8H3}lBnZcj+f~8cv{o`Bw?|<~~ae+^8GwolZkx})u%;4Apuul)fozy5XTeuK|ncYNY1gND_Gn1m~w zu;3z_xX3$NP$3S0XbxL2n0-j9e65;-VzD#LpcAvgyLHz z!H$MAR@_1GV_aatyLkG~{{_DG+uz3i(HHTm0DDpT0uoEwV26#^3m8CDF>qL9Byl*QyYM37f5SP>he2K6r@ho^ZdKsgM@2a z`pBlEa(qq%Y%7!j6cpIZ+nX|`=17Xk8;%J&pQPbj1=#tj{{JRpqT&DGAv>IF6LP6H z{G6{;()Wq3dH&??TP1TTO+Gh#%X4E&t_DI6qF?wuOvRxQ0u*BjKKi~e;qfVK8fw{0 zLI&NT!YEz+TDF0YI8-S7TGj;E{VATwrc{7#u$X>6du7*rpxjW(ikllNylW6^n{Bq( zX>V@8@$CsEt!~sBl%6K=*hJgJgW|8+^N{DT1}EU@_!Sg&O`KB1)24VRrN$;I;7jVy z67|gvkLZD<54vo9rpC=Oy-?dEY%FF%K3XzT6qJFRn+5MYdl#Sm=mlPiViBN~)%^BM zE{AkQmX1xmW>z6h+tm2HR{s#a7;+nl`iEl?A_O6OhN_O7uek5xa~Zxoh89z|g=SI7 z6HP}I87My^aw9pB0$ltskP#vs5<_O7 z15JT;wh1*w$KG9*;Mz_RLA&1`3MVk3_W_@w-rlDeiyqX&!zb;Be z(P@$>LryR>&XhhX(_nieo#}UWm`DCg1U`x?$Umdz5=bIKJ*_VHYaTH`84Noz%>WUX z0tUsb0^5RJDi(=9TwHOI=yVb7z!#V$W<&5HqRq11^3di)`I8PS3oTp zx`zpW&xO!$Y*+XGx4(gZ`pzZ(;lKZ%@F_mW4c6RvW&D80@|vgVJoPq@QtZ&K{%e1cn)>ucay#V>vPoA?mFhR;9$41fP;e~ItE`aa&q zB`ONexI=?&jN|uhIAg;(5%oc-jfUuq{g9{yZ+4CW%JI|8FWWo`DjH%Au4-s!z1gi55JN<&!-Hz$-~4tR(qz* z_r}{F$=w^!q8*iijqcI+j(472;kUkdgWLb>6aj;`8I7f+^@4qiRwQ69ZUu0HbN5WC!j>DVMX~h_ zxU)KQX+DBp$Tm#>^7sCAHUc9H2$P?MbLvz4LWgKRY(&TQgbQOSgSIknZp5JttsSQ# z@fk-@6it~fy*~)8nzlbNSpsZYUdZsY>bWYmzUGw52}$NF1chVdBY5h(ckB=YRz#yw zt4(WTV-vx)u~r=Kb7(jd*?ma&HrmR3Xe&F>!>8|(xeW3kS=r6XesCA}aK&mRKcm>z zxg;k=Lkl^QxWuiPe=;Hyh`GKN1g5{ z-Hftkvr>OB`1MSjp=|NrnZvVWSz}yFW?_hGW(dTlSf}eROv_7MM*fuyL@lvxq~coa zG12tN3>U^iCH+=*E&%JgqWHAZ?t$?@kY=yDa>*vNRGaQ@+h(#0&uq|%o)@r&;yF#D+I`-y+Vp*T@9?`Mp#~|6|a@?-dDejo9iq5)enAv z^Y$5lOJ}dG>BHglZrK@lhTx2j*Dll(ED#WWih_b0{PK7H4c`5w4{`VY6O@}PoY#V~ zuBg{npru0Hv((uTyxmbwqLE*te$FwLbw%kmBs;Z+B7%26+3+WS^glyh|25vj6WpZl zM-!e6m$%7OcI)ID9SpcRQr4xtSbeX=3FI#BFk%N;z#Bxn8kPx`!0x*n3jCL-`1*Ta z$BVZvZ1DDl=Xm!1d-&q7e1x~Z{1wP8@WYoc!4Pby-Y_lc2Mg7KI;g_7LLIlbon$b` zHmjmKa%9BOj&_m!E)WMqbdUUv*xL&6yrw%a&Hz5a6`tZly!Tt*#z)`!OhZ@ww4{#;lJ>RLdHZM(}de8%y-3q{1Tocv7pJuVyUVB{W-K?A#l z7zd2PFn%8(5feOWR+L!7#Oa$>m{&D$D?P|yk$E%KJux)y5?lWTrK|~gh)qvq&1gQS zN3eZl<*7^FY*LTh%yZZY9Dht1^8){8Lt3x1SH^3yRKoBG;0Z6dc~mLAl3~rj!^|bj z-fqf`CZ!MDn?Mh24T}O4PEqE3_Jn#sWqgWU3@8Lgx|a$ci`TZKcF3&Eq z>1+3a`Wbs`KHMX)bhN!=(T3}bYY=Vr-1OWZ>`v1o2a0)3#RALj>9&O==YEsxCW(F1 ziBP5(l!_xaN?k?bs-B?U#dQjKpRG0o)~Yx{SIFJ@FhN#h70Z3O96?1iu<;vzo)%T0Fl`E_6JrF zKbxX%b?I$vKGA6`{X|B-6%SISikg&MZJ!m=$iv1pHrZ_QND{C0<9dpXY@q{bP=)QD ztR9jZ(1+jsSAXEixe;Kd>BoQvNyfCcwGOTYt#|Bw(5r|Dr`3v020^r=M>=y4*ucoi zv1yJ6d`{E(47<|dy$IS$Y8U-b?7b!BjZ49K-<*u$2Z2+-N~t#GaXliukhBZ70z%Z3C z-*+P7#vL+mX62kU4=xwRvOIOm?()!W$+)|vmH_ty;vEU8h5CgD1SPlMp&K4~LSmAU zctEzGg)9(_g?Mlyz(d)ly6ke{%DOq+yhB8s^X>!clKVx z|Nr|7xK?x#ba9Vc@6hg_SsXZm(AGZM|8;O8Y#pwJb5(O=PJ;U7q9T z2fHxJjjbJmd*^rX;FX8i-v0>SdH>IF|71>)iVYnNm#8l3YHqow+-h9o=wdGgc`^`C zCZEheL73?3fE5K-xPssS#)9r9d_}>AhG!_a#C@z^ejB|gt`6=2S{8#ol!9fod?PD} zoJPh5h1hxrh#^ifYL&1R!lzz;4Y+>?-~YYu;{$D|zBO9C{pjw#GV_1MH9D?ckVaq} z!MMT^PjDAM_@y7kgP;0g+#DFo8?T^VT;OzIXk}nsfa2ThN$1R55>OIeP%}?r{sk^ydlhee{&Tqd z)|+_zohSJIb_2o@f-}ce)D#Q$#I_sAfv4YV$PYsdBclkKqHQybJ@<$fG^`-pcw_t= zj1Tb~kFemfyoGmu?x*q2kN*(b=U>P3^Ma=pI2M9bd#uQ@AC}?pi zRxufKrRoy-P_PV{Oes#xlo7WZg;(4~U3*G&=kQGOD1q*Pg8(Bb1kDMoO>Ileg>X1q z(WOC@b`;ahQ7R$pjhUkthyH!{@N$+1FQr&<7H52@ zCEQ1m=N>0FbQIMhd#Mo((p?O!=X(&5UnKij3c>(i5lzTOMB{2rji@O_DwmJO*8%_l zAOJ~3K~yQL$bN0SHbEvHIgoC#@O;P!s*jkJlx7hi&4!EQ76IA%j$+6Wjgp^i|GoMK zC19a~o72gp*B~69e2AA`dKpD;oB-^Ns%-Xi#y>}dG!5Gc6&`Sh+wwM*^gj_ea|vz0 zYxNEVO?X-cy>7OhY1+|GH@I_oAFsbs@#wv4+<5#=6@@JRvrb;~pkBttNp$3Vsmlu^$UR<% zB0fkA_!XLsinN2sRc8LW?vU!?iF9&dFcfk_8(@flpiuIl%p=TJADx|@W%Nr(^D8rW z;fx$AMD&fn_OpK-tv76~zmU;mKV$@{9Y?OaD5N*Q{YI5-(o8zmz#$XT3B?%)LG@gj zJyv=M3*rSP|NG3tq42cm^a9w2Ub;;pNQcKLR?W<2(%07ay!zna^9YZPLenNdv`YnV zz9CqOXI&WQ8cQ|I_2Qd^z;jRi%E)Yw>5DesVw5ac<9n#Za-ZBllDgQqShx_Fs!Ise z$ztXW3VPhYh?d-jjqp;(tcqe;*6A}e=TR9(w8qpZ4rR~L31s);4{RyE>W@iR&`YF& z3wag}xjYU-)<%{_9xGz<*Gjt)1dFds*MsX&{V>kSOXBWJHpBsEVB)=>ZQ}07C5g~m zFU1M~CfD&I-^1CXB;<`iPJ2Ad$uqrX#HBU#_ItMO?|1sj;&rm%G~0;5@!gV1_VKeG zmNh9w;r9?R+2!yrDf%XED)z8gPnC~GzxXC|kfOYx2rpJGnbEXuTYBWIpCx_HCWbKZ`WhSHF}i1`%EZ)PvRvMe}r6nRi=V(7wawPz_2{c0q>O~!ee?|Rhv-;vk+25?M_1oUEWSZf z7l$<$ef23AF($d1e7ps#Z#16c8Vbe@6nAhBN8cO>3a)WN!$Z9B#%FMR;{mW1$mMFy z_FA!?o#Fn2`&Kj;A3y{Jl;P10PG*E{3zv0;060Q%`P!>^=kuS()uH0_-U*NThJu0{ zR4l&jg8y8bOF?eXaYVzPfl+ZEpZ(dN$GboBH9UR!4*FR|J6q5h*!)b{v>Wk^2k{i% zfCENfjRMk0tG+$g4z7&D<0F3m|N32g{M)~S6&3f;QBmA4W&*T^o-DlhSx1AaldoV* z)M@fB4Z)t`8aKX)v8Q))Dx6U$tG6>N#J4>;p-(q}Z3?fUc%!`z{^IKZDXz{Ihyoki zCW0@|aqsn4@#(L88E3D)isO45zIVKK$i$f!a0d@brhImgdo?(KVr=XKd(jhi!T!(i zWT${fFs`xS1ja{L@dS$Jcp0z0@nyXGGhfG>Kl($^cRq#Zhl1fh($o85 zf9=^Ec0a>|$XiPtL-nBePIAFe7pP0z1PThic|1Gn0jc?#hxgW09ctDrNITlEcS360 zPA11Z*IWn! z1Z=Y5;y`%g&DTKBKE|VK!K#8*DyaM2E)x48-@c88J?`+aS>mieEJrI$SWYwz0!ny~ zeK5kQJQ?Wm+1H5Nh8A@9QP0G_2&Qk{2emx>lx3-zUkUd>2gR?Gdc*WHKW~SR<1^KF z!sM^CisP3Fs9gM6HVs8+|KJ5^Ty{poqIi~U=G8+&CpKYW`=GYIIoHr8=@H!d}2I7&_ZN3g*#BnWmQ=xZnHc zjSuI+F=Tm~9q_U&8ICFVZHofn~zWF6IXXtH|?Py@N_Y?$GKTEj%p z7KgTAttORFgwH1YPGYE0iG!3g4Lmj?(U1jwE7s)N#}+c+Aps=_2m2QxpX5hu0b`+Puwzb`A*nSQp^q?Sr=H7ae z8F`x45s`hMx&@wMzV84#0F%Mi~*IAdXNE^QN}YVQvP zY@v($3VX^QBM?}$=Oi#z``flz@P}oWlO9NNCQ=KED60@8T&0>(&6AC0ninc!ncR zxXF^-oIjffl_Hysj*;-*b4Io}dfH0xiZd`4Z0<+-2n4}`PksJh#;c!x8`~=vxcBfS z$ek7CP*Il^hr_|PP0(zRXe~hXqPY;X5;`lICmHavfR_cQe!@nIvsWJAt*?F&@BY9S zaD92e@o~qan}&vl8!R}X;R=dpXn2l}$2h|Qui^YFU%?Om%+KKAkN*&^4~!?P0%t2) zG2cqBYLk7kO-4wn1DJB$n)zKB;9AkdHihs_RB0Uy#__u!;19m}2e|m~28x3F=}+p@ z9)%OD#>w=v#Kc`werM)s!+`@QmlHn5Ii8{51Dv7b9$x_#B@1x7Rw;cQ5Hgu)|d)K znc_^Mz>!p_UPkVX9tXR_Qg9S-{# zFwOUmro@VO9?sk3wRxkJIaEy327S~H^REpF_AHg3l?`*)cTo8_ph!8s)p4i-&U;qp1Vi1~CDI|qZcHeW@FVt%ugBV#uSbUfW(Y#wt zZLoPwX7`Z7yuH=46=mB@nXsMQJ99+q4HpN^z*@^&9He75OP-w$DyhQT5KU1GMu4d| znDFb?NI7v(=Z)!5T+t_Hkxe@g<_V$!qX%;FP;Y~)B^+h;ZUP4;rPrpx5PogH9yTw)n^SXLMAX4S@JyE1#OE;^t0$cY6YhnM; zaLVPv6j+xvFOJ?fFnf}CG=d~xE&2M3A69jmd~aKWh#eI6g}jI_CPe^!K!U%kXEkYO z#gV4g75fLVR{PW6n*>9+DU_Y^S0q^X_NnS8aYMcZ0Hbx!II>?5exo4LB{F-dSiFea zw#}r4NhZ-;J;$UDzF{$fpJr;bHk$(r*(PGChbeEX?Xtp(>(RRi&^CKE7&u7>^|2Oa z52%IbX3X2qlN(I!AZKr)6;(~T)*O%Ded@)FeMZFf?Pj7JhZZ{?{CGS%h@+uY3!`nl z=kpgC6TLU{Z`5^<0`2Pg7cDo1Gxl_N<~cc{q5z5DP;4TuAuo)e+bkXuv4c&HS!~o& zP1>ojDUzGv=L`I{i8}H*IKv(7Ij|Agh-n>66WBbT8pCPmsB+VQlT z?h+~FWVb*Un^d*UV zSdQkBdG!)s{u@7q^~Zk{j~{;o{q~>X>C>lp{_Q`-haY{2QWR&01K#-R7x0BId;#)l zgI_#e7&pXdg)B>s39SHSIp8Fd*>{%ixVMpru+{~oFt)AlydF_rKh_&;7X`-$7dSsZ z$NeXQr_Y~4@dOPGcW{m)jsQ+LV3~jiOGe1rHm_pC5u1C@B6DiNigTP9U<4HxxQinS zHUKZzw{hd1zGE%8Tq>S@@IId583a#3ARHXCt_fKf484!=KF+qD&wmWyx^!r>Tr&&W z299ThSAO7gc_GgV=vXu zuGKd-%~b?0(XNa`U0tQJ?K~M=EHWxjY`S;IU9j2s^4x|2}=N6~;6I7SoppB+Xnp7c7 z^8Hc@$m0)UpflGqQSZzdQ9JsoOVcT@$Oi zdG3-LP$3jDQ9p9R%T3zsa0{Xr3w`DSL@re11rm0fI8mUMv0*G3l#MBn7%w!^aA}@J z*obeH7=;FI9~kwZfKaPNXtwUL>k3o^cKZsan-hNU-M4VwpWvVTnfZ%0T5K2|F$`2) zlA5|P$BoM*37jHN*c;ZUAp=Sx4lXP;*(&7WrV)N-2Eq{}6-`tYYVG70&)G;mJV$d*KyQ|X6k&^rMNT>3bO@>J z_L&NC1F0kptapL7?nZaVrT32N1h?LsVZ4cxvZRxbXAby6B1Xl~tYM62_6ubcxgs4B zP=MwerNS;(>IvUap9l$g;xrLhZ7NuNvr~KztDeYf8fwF-sx~iV>?8;*>M$qrt%sEI z>&`hB@&1=ua8_57p|uX2dWNx{sJo|#91aS!)+cy_6@0`5UJJDOdfxx!(6CNKz*;Qd z!JdPLO*b6KCi5azICtMPtYty(_B`4Y#9;^IUZ=`F33DhybDew8xDqEAfiaI{V4m`s}2WA)3_p)>i}jV-T94GrI3iLkYirPX^+ zC`S-5&5TSaWWK-N$7Cpm7@4brF})?93fqJW=}R)eh&O^{kp#@eny|j@GDDaPh}9^4 zs@VMdtVF0D>e!`Eq0?T_bi3S3gunWE1~;EJ55B}=$Yyj+2`K>pZ${~KDT&$245T2U zIC+uw<_~`j4}ai`xcTb0@P~i+hv?t@Ha@<(#_~8eNrvJ+Oi`fhr~n1w8IJC?x#N;A z!8L#i_fi2KwQAp=HCBSN*WbY#pZgrH-+T$e1$^fY^z0l(8dw#Fi!+pE!6pV_5w&LhzEai7mwv*obV{; z>jBqYQE&#}DL%v-rxVVX70*ae>Hxk=n*;^Uc%x}jnNDjC+Y>zxorX zwc`0p2i)A;*nYGKm@4?}4C`t`pXR9FS{L-zPz!z*tbzO11x^Z7CSVA{?U6l-fUO^JUd(C;WFhw z*4?fFpz+#9gJ^YqKv-@8TV_Z`d~W9aFV;QoKWggqF!|7+#Lp6uG3rq&_G~h_B)CRi zrztebRJYd5E0D3VG09nh_6T%xls9>tu}~IiG3hq#uXrwtPi!J&%!}9Cp`|8=+ON}O zO6jgta{YOG?KUT87cPcI7YnFlm`AF6itr1>oHz(VVpqn&B_7a)@UV4jZ!+++@J`+Z zUz6Iw9U-ym2u_=3L0vi+sTuw)t!qt!Tx1Y&D)5&|O%s!N8EjfcZloYLLg zM&j8kt|i52JR|vB(2Z6kzJ-$w(p!4Mg3}*Q_qL6Vplw}sH^B;o<}SR>5Axmwtwj-Q z6UC)2U?o&yG%+kJEd`}o4$3CmZbKLFi#};pjX=YYWbqHlf=#bau@T=D=H!qA+q8Q& zMQ z^B~-=*mU!ugCtUZpk+reTQsi}nZI6uY;8m9HjN$!v(bDaEUvYY5mKss-z!)2E*Z4T z(iHFJzVja5d+$9w|LzAk9*^kHHr(7?WBd4NX5d%==!z99&hNgAd-v|) zm528rUGV7Je~d@ZAK?xPu3R|Q(Q%>+eEG{?#>21wh`kOM1$QnlvALv-i<|4u7N3$8 zXz!lH9#SHos3y$7&A8PzjyKKxSm27fcy?JknWTjjTkE(MI};C==WZgl1L*p+p=~F$ zVgrFq7%0`kARQjlRIEVs%#V@NC1dzPZt|6})us8IE`+UjoNC4AzxGueK6^rM4ejtP zJo?~|adx_krB=LuRIt2>JGJ7y>-TWN1x`4jc%ID(y#tI_>2DWpZ-gK2k$?6 zgmyaO-o1OkMtJh^$9Vqy8SdP<#Dg~<;?A85Tvx%%FTI4bw_d@$d-w2sVUy_{3V3C# zZFnlVFvN+s#Rowh=1llljU1Ht{@jH9lHlv{?*);r1V=z}rL1oD(fl|vJ(XE<9HP0P z2WW-`V9O{HtB)c=r7-WHJE4Y&0d&?n1kh4a`I2Y4>?yjj@hMz^!s#Q52B-M;K%`^a zwrQg;>4n-W0ER+g4iasxxox1J`4BROp{0bEi=oYm_f0mJzYl3$4B~Rw>_vMFRz($P z5i6l-kpdA`E}&vDAYGderA;QKt(jbWahMg^=1W!4>wuD>+8v_Apt_(Q4$!lM4Jx-4 zR0ucM*LZM$0ktVlw2*sN0Nremh~BM1oC0SdimvW;)4tnC?Q@e{UfIXL&qfRQ#Er;8 zoDB>6bC3bCjuYR+G4xy@(R?OJRwlAF?Vfdeym;JyNJ_kAooaXW9DC-M-MfX1lo~)0 zBF0iWmI4S}qn$dw^qJ4%ygbKmee)S^0MwHWKexgtS|PdR-78Uw|BTtZ)BgXty(!aA zkl&TUVT)c*j}I>OB_Oh$d+m1185#h){Ic~Y^qI$3^$SYCDWDrWLULJtml8v zOQg+Hi}J#TZeA(h4iYR*xY|htrVnuOMu*gF@cCfJw6PLIIj1#qHpcu%Y($6#=!1w* z){?nDNi_5fE^Ay&zl!eISkZ*GuUv78--kvP!tS~8=apT?s1#B+o7U7)^N@@cZy$th__Lq`)ga?ElQ>d*!9&4EZm--d*CS=>0D9xS%s2L+qUd1C7{ zib@+=EQ^`7DbVr$uxlaIvZ7xdEo;jQ6sEFA0mrnr#k1l5s56s%_d`tIAfckdq7 zi!*Cbo<7I7zV$6U{my&1zP`rRu5oqs9It)hU3~6qUjx1UDsFCWaNbSq(6)}VvvZuN zgAUgCwBFE3K!tOVu(_n5`2;Vwm50TPvYvyKTB{L5OR+drwovNUJ>HZR!ak&MSFFBV2Or?2H(tTT#f9P6RdI3}qYYLzTtjei_b#XwT=j;nd+y)EdsvnQ?fHh+ z9-d>-f)Cz*A6Jil#~Y;v^|HT!@!dcCHeSE~3fA=u%qE!(P53oS{~+}$)QxVplh?SXRGnTI zIYuJLtRq#0u+40o9R19-tx?GuNJXr%Dr+h>axe%a@;W5Q_ym8IU9VmfNVjHhsv)Xx zTaAj^jp7DHDTG5Q*i`b4P~Xn#$^D_r3gL!&SipS)ogL7x+;*@4Pmj-V_awOVoUjtq z!EXNRsshf!Ctov%k-TN-Os z+boF(g^fH2;gJVm4U#tsy?Kh4pmni>i+KVoG{-JC)3Q2c4IQ~*;K{=g2upx=xkd3X zFqdKM@_!!}K%69)fa5t%5Ow?Oq_*q+{DG`f?7|Y`uFp zqdi;2sd}w#c4>ti4vb|ES8Q&I_VviK0w+`$`LVIbc(R9LKO@cqR9g zyx6#&dP7+koYR7GZ8g8~Do`rOX2z9xScOL!-@MDsj(bhYT3xU=Zr$d3R1#8= zz4pne73*(gfc^**93GEsWk977@!T)aU3&#mnah{Pd5$fy+O7jz4o&a!H%+n+L@% z-2>S?7>sp>``-#@-OIYjiDHNsMIF8DD_N5x*#|SSRcyPn2j)ki-FtU#_1K~in?$SD znv<9LgG(-@A|f1*M>n(Esy?%5nooN2kSab|Gwzb8VqI!(h)$;yL^k{Nj@mBp94I0$ zx=Vg&m<#Gs{ClQ-ZqW{rz5hU~jwESoggQXtsB8OhY3C$HnN}P*$v+-tXOJ7~Q`+G! zBZ!W;q*sVi3+Jy%9T`LFhHQ1J7ZcJ@o0!h%z^hOAHpgOD#=2JXO&m8Un!g@2rJKt% zW#g1dY@Wi+Ogj%5u}#EIeFMWbDD0td?YK?yM_b_rZ80_(Ge&$yd#Wm~k4Mw~QyH5) zml^>Uq&B~z{3wdDtOkQY zM`OidH8Z?ald6INX0==~>G^pTzi&>xxhb1614f5y7*ag!Rur`|jym+*aa(s0R3;l9 zZEDRp0b5s~pKR){uIpFFzdCqhsS8ee@~Mq8K2i1|xO|1pw!JH-e71yqxLE8!ueLDgA{lJF1FJ9__PkhVYk-i%8-N&~iAOB_ z`ZxX){L(l6?f>6q=ikJ40RaC#F7f2~6BK6r!hiJd{)IP5|J|?t$DU1Bpk168)`2Bx ztJWwr*fSQAQ(=3}wHDj9Ye!S#I+6!gcc)ltw;*9=GBm#0rd}GLWOr`Snj3oq(^xKE zi!CwJPI_a}2M&-B0WT|c9+lFl$ zfU1x~OAtqAPZ99|alvY_?($V4!s>(9?)93wbRF&!T^8FC3t=bCo6qjnx@}m9AP&mW z)_ofnQ78=QJta)x)!DW_WoX(ki))!S9Xv43;U$rVO4jf+oIInGoLh%yS~Qhcn5_K=s2NLh0v83>`}QB zn&(}HWOSqhtjQyALld(gKBh$e!qe~9yy@FQP)3wOTx z4FAXfE7=4wI?e`7KEU+ld2h=Jd2|BUbZ@1J&rqmGTI*ha^G=a6Hk#JAh0|CYk@u3AU2wlhM{`|%gzs2csFvpLf9tkg6??$;;T$fLI#iZI)JrQ z&*ZTNhdm!cdxuINUq?m&mikDb%SgHAGV*G26**aJro2gR4 zY?2h!k&6{3Rr9#p_*P?uWt>U#VLBsMUMHR%yX9Pe#iLlaN#XY|4_WI2vaRb~tH zhUGi)x}Yu#nwlR8mCb)ZidIY(s7&ZV%48d)bO<_mUe5UfEESyySEmzDsu6vOGd;*K z;`aFotb3U0i$g1>cncd=kU#rN4Q`lYTt^-Z70$~)5Ws0TcfV9u_1rSk*IP*FBySSQ zsi=rRiv@p1IJ3!a4Bu}P(rJ?HUdzaCi?GLd=9R*aX^mG`3qnSz=5;C744l-wa6$~J zjLz0Dsc#~c8B`0(VTDF<7rGc4(GsN=|GYHM))F*QNCEzhpZ}ZqFMsnl{<)3M|BR>j zFFyKx{OAAsZ~lcErT_LH{3HC`pZi7I{(zJ5n_-}lQ&i2{5{GiF7D#Ohi0(C8PkeV! zAj22XJh~xhr-38yt|$QQ0Sci)5Vp;rZLr0MqLztPibWvUIp8U56YhE@*v98{lRn!) zc8ZWtv_u{XvDFSBGD4llQK(M1c#5;t^NMQmk2z%+Y6*;KFrV10#pD5GM3Kx@>7RrDl^Tp6~mz(V*@7FndX?l?} zY*nnej7Bln4~(&e@>r4)U<-G{4~0wQH<|p@nsEumPlg?vC4yWbRDv??-~>-VbCO+y zwreN~UVHT}?j7#o$p=qy62X}Wwo-El?TrA6XSYHvHJ)S4k?kHFj4Bb3|#lEiAIwBX2hr}ScXR5I&LF^1$I4T39@auT@t@=M={%NB^h6r z*`;-MDUz>vBXhuHa2` zPx{elA3W#!@!juNctiOQw9MtEVLc1_GzrekUb3nrBbd%2;vB?sst4$0rZ93Gc zHGZ%KPQBU)AAK|Zt*GFz9#G48pTwy{AwQTmI$U`7da`dM;nJSExHRE(N;zGiTbUVr z=386Ugo9)@ljjcDw02GTRBztoIFJR?1P+tTEuMEKLmJmo(ER6-KEk8T&tt1}%VZKr zVCnri&+VuK7&g`n5S=$(ky{niI@x@(Qz!|UBIYmTQa~>4J zhTLYCFhkfT(`iq{hFk9_W${g$ zc@p@rpr6#y>)oDH_aD?+aT8O)l{_drGG&U%3&H58lQj=CfFixeaK`ZFTS!r0&BCc| zXiVt?DK0S%oNQTY4hXtffowje1%wSj&tU&+la{`O0M>+Ohdeo2wHw{3s$Cec&1y71 zfq0JT_6|+&96HVc-{mIJrnfoHFVFp>A;ky|8c7cIYFRvIi_tjbQ(hReqH6;c0)~uf30&$Np z$E3SbO8tn&@G>dBpbWp=8}P|IpWQzXL0v5-j}_0@d(r7)Uu)|pJFokkT{F&cAkKNb zaR1NVn-OJUUcDgG>1N1P<~`j_{AaDGIoWG?%!jP4Ewh8vDt8s3wlV%c2ZTpU#LKc!Ar!&NM@16#v=;x zQfPEO7)$+qQ<|DJdqykoz2)puZ1MfQH*R_hX^%e#%Uw!Dqabslboza5sEL7o_u*Lt zFfZshEP&E85C~uV%-eWy=ZJsu+aKTq0B1KQQ@mPj(Af)nO=N?!C8(~O4<4$ihD_1v zYygH0*ghfCY{*AL#e!Y7S`6oG^Q++UqK~Y1WXu2xW6S(Zj)sxG@e@Dwb)RBcx^jvZ zT{aRcK5L-*E(LmCkV^Dl?_rb*A>GfdLp~QxWJVXnVy?nf9VW4Mq@CZzxcGn`1IC zFZ9W>pbFW+UOeB5y^u~*X#Sp7DAc9e^xd}u>Ctj|O%QbKAgsBe>Yfh~y5$}RJKMI; z3Tu1v%bbrC>r3~F1Tr&<=$IhIb|s||pw#D@cSdruXG^HzCEBF>;g*lCKfE$M{A0UV z%VIJCFXlh=Xg*-;c6OhPl?wE&&>(lfIUPW1G^cxJKO^* z-Z0hNK&A)DFW`94O0B51VqF${u3WlmiSz}fF1hWB%@Z6)-F?;1uI*Qhki3*3#AiV@ zy<-MfSV2G@Y+Wpmi)%$)7nG%9Sy!V?Mk>4@Q^{?z>{#Kl7^&$Nsy{;)J?qCN)x5|5 z7ZaRy&!UNmPvLkUdv2sFJMLQtmbdzQnfV}7dUC> zh2%10>&@QBYRzY78!R2WZP?0E5^llE;yGIEvI+9b%r*{Giuvk%@M6 zSaRTz`A3?KSSg%IhSEJwfZ@Xco*q$*b~h!@@j z-pP%-G=H7_94!_W-Dw#0;g?~Yp2Q=*Ha2W#RHfXEIseH53uy#NliI!2+(+f6F8lqx z7>~^?i14p{{TJ|S|I`2QFVryo-M{fmR>bQt$ty_~O`;v~Eu<8zu6}v>`J|R!&p{e= z4_lAsPRArW8iNQr7PWw7b$?oz)kVa^*4dSmwi%^T{MY%Giy230m{U@UhpESQDI}RrA@r|ez3&?@8$+4E2e2Q~QWh=@`Z0J_5j7 zykRaSw^$>HmR~56cLdwsb1P>xLUFXV4W-iO>p-wTqQ_=vCny})f{F>lT;@J zI=&`6!3RK74%NJo0^lCj;zb&K+im_Nby>T3FumKrY@p$FfHh_&CluIbDHK$qis}^5 zhcBO-DnObIsT82HfMlDz?mCP>9)xNeyOCMR;c<$M<|IV~%riX#e7z}&8k=->kYuR$ zPHIZDdyZZNaJj^v0|D-zL-iPIb?GCs)wN_B6`Jf!g^g*!{ymns*D?OeF2^I^7HRyt zYR{!ehqfcO-f^}n-hKNml;?ePE92ykbc27C> z54=YDc04FFR*J2kOwSk(ZY3v&$@qFnnWKTA)ba4d#LhIT_8>CTKug|Y%oC6%&KD5J zGJX~-@Q}@m$+Y}XX7*KIOtEQqLAPeGi3l%Vd;>7>hW_g#UqQQn$n7GJ3yI*9N;heP zbk`tcl5-l^dKO>iJu+!oY$aq0@9IW`*flJ@n^~<+vL@*r>w56u-JYh}Iu}ab?GGKS zeLo=qjDtM>eFUunbEW`%-R}~*F8T8n!@uN&$jE{|E!ydjd0KhH4)NH8^={3khm=|o zp&6#Px`Yigd2Xh^s83^D3q&1PJ@@KisL zq8K=B+wfC0myX?P@`Ly%Jpd5AYdFHNYrnQ9IjM;8W)k%yR-TJyOLZ85t9H>6hCWVxI&FJhOe1im-$ zu}~}8!q2FfqYQ>uqH8n10%13*3+WnM(jeXCzac}5XRf-$maTar&ss5$j+xToTk*QC zSeA+{iiu*ynaQ^-thuQXF$XZl^zNJcq)sY0ia|$ct!L`EsLtt1~1fo%W;5VkJpUf_4{%GJ`m?f+YRGceudAopXz zXjI+1G6UeqXiypGeqP%1X$^z)4z1Rh$&_7)d}gZ;E;Nz9Tw){S+k&8w7M>s>w98(a zhq7_D&vLKZ|KE@?+qS{ZZ@(+2|KA!f2VZ#s8~If+@SB5Ix7JdnF)}8{9YW!mtuAMk z*h-4i2+OEF-CMl(aCd}>+8hSWY+bR_r00-u%a}B1YQVly>$UM!4;0O;Y>SPS(Dq5%9s*dRs@28onCedQrZL)&eHz5>vf7GS!Bq6=o@4GAuRLnmR@9P+#4A_FY z7eYPLNhbjizZ5Lb6k9H5iDRe=;Uw zTnMHdvO-!5rP(xKDu#9~R^Y)T#+z(tqBuQoIMnLs|LWAZ$eOYPy=mZr(D zfLU|mlus^}pHeEix}4WHK&bXUhEVCQRg`@r&F6qOYG0s>L%EpN`ZOu z9FnBsxc9;(33W_-i%u!78xQIsL&>(u-M0&aVi^R^y|gufA&!wx@{tz}tmLv%e`Z~q z8qd1=G<)HS#SzCZdTJ#b4~S&AdfZ=@1!6^J7YlXns%HH4jcM=8&j)Abdb?yecuTLS<-k3FtxwJ?QqD zVj4okuQj@!oij`!8MDu&*i`~`dFHY%zFq7&bZgBddzH*nX3sswCWJL3C?e}Inx*-i zoHt0!pCDG_{RS%TQDDpSG{@4-2z$|>p_&g``)Hsz3$SG;3oic8tx3Xk<}-}JtJ1l!11`m)BSf9XIf}#9+Vq(dtm~S7 zs7QQ^xRj8Q&s4#>ELQiaVhKsO=Nrad9}>)&Y{xUCC`fbUcSERe5Rn`1NABa!h~}xM zEW4so#kQRg<*A)P)#7OYw3`!@3WVM3BvwyiS*%ewEGPiZk9V+b9V!)Efsda($N3$` z!Q)|Mv09m0_h&!CWPnL1K7hm*9Rs)3omd6&?535sVB^7_Zd(b z1Lj*nxcRy3*2r=pP&Z|fxLkS+)o=YAzQCwn3aG0Ilv_%&?OW*iJT08m{j|Lt0LUgN z^<=Y}{v0fXFTDFH+&{m;KmFaOc>e^Pjz?5fJY6OZB%6m=V`E6w9*9g?11yS-?Ny?bsaH*bg)3TAvFiV$p zh))xO@6SH{jj1NcI>y9p6XDdzscZi8vrWpQ8Bw3AG7SloMB`A6pcguC)daEY`10b?a{K7iQYz#CSFu&zD~@#^LFjReQPlvg!El!ZNHbvvBH>d2a+A6m`saF zeY+*MoP+Md053F(P<9z(pA()ZQd*5^yZ^URc>PHL03ZNKL_t(_S)t8{Y4C%FJ$-p5 z7uf;1C1oX>b#G#L%1sKXj|%07Cn#I84VhycK#K?62CB2GeLtmA`dZX8o#OKmrgqsn zs2eS8ppV(S6NNLV)?}o`eqV1DYF$PMYZR!sg$|v+-+__U zq|YTT)#Y)82pzIF{}Nf4VACuf_XW&I0`C}^Oi>K1%Q~{x+gY=p*rc? zLx(I*fg>U>(0E_$yK!1Xfj;>!dti?!Wk`h$Dx%VI03Z^$RspN*Jd;^?lI&8)Zd#QC%*Pg)T8V zddkfrbTpwTYQe*?c~!BqNd3T71=!_VnF4w8M!H8JvE|d0#MKWp{UG76KMnH_@TQhHHe4qYY8b-?+EZ>qx12$8*%7L*-!`3%c*rZz61`QPhIHF7;8DNy zL3wnuIG{MVRIc|is1fP7-bV9n%^vLoDt)uY_Tc28X+E>IZNyhtlV0pOb6M!Z)rU9T zV;=%vTtUrVPp23FC}Vk51X6O1^v5|n)Y>ldrCjNqGqX^-*6t@5EGFPTf^9enG$bKHhlw zfb$=D7r*m6e}Zp46>K=+T2`+oO&!u5Qj^b#H$(+?UloUy5y7)lU7{H=BA!baeT1DW z9qgVqNoBR=OZlk;Qa|rp+Fg`DPL{U6x0mG`Kk--onq}+oUb709f{{zQBH>wFM%9~T zx>WZGg@K;q(sIo&IomKd0->P}p`~N2Sv7n;qH*w89I}Jy3^8YmLl+-1toLgT!9PMJeO=!6#7I zV%ixK;kekUuY9v$XU>Z@JW8r$QW+JH2O}2O;1~B+giY9^Utr?b@3EIMU(^E2F z&24oF*)@%Hw<@HaFhn|3^Ld+d!K@MViIYJVv6SjkFwIMiGLfC#w_%Ow`T4o$ zs@eC@RgI)s2)w#a&d&|I7~Lb~#kqNnD7_&z8a}YdbqazSoPbGG(7O&~EMX_T z<~+ACd8SHkZ{pAJg6043l3rDHo9XJq@SMXE9--KF7L2pl&Mu7n zn8H}9ZB1E+yf)-rR**MzRj0JU&mw!h|LcGJ>wl?+>6d@uZ%!fTnmL6kl71;+aw#F4 zDCU`LE{zem97^{-2WzrQ-isbDl+Sq(A;S-{3nFJjL~D4xru#ymHb`>+t3Y!jGfU#4 zX}9MFDD@0nmMlEUlQ|6zM(G)iuVrHO=RpBR{Qsb^Q>yw;DxCMel{?e7W-Q4Y8v%t&xhq@S?sm-I>M|EB{v-G z1IW1d?D9npzm{5dQrqz&*j6NHj|JvuWra1G{vjl?b5L4r4mCZNTo~K&e-bhm)@?f%`2~p=T|3Oo)wgO1`{i@=kE|ovEc)I%@zJRa-@IA%&V&#;;isbmW$?W zc&bxoQb?8ym5FjZLgeSbWlFkn8Fmw8_fYwrRXBEb{_kZ+?wf1CAuIfZTs6YZBh2Ap zVylw^B${4V9r*Rc{zsZHo^-Z@9SC#LuZt)=Xt{NtDqy?0)3J%-{Gc zKlSx2Y}n1OVb@_HU}wWj7i5aZTdQ0A~`7b6l*2jEg%-x{mNV)|F{u&yxMTZW0aNew&s zN?Zm(uM4C7@G6mY;vv-n5-S>oFhsLxgujp4d$w)l2Ro@iv_ZRPVo@}unwaA;@o-DN zc!=h$TrQsV&4Gw71gc@YZuzOKyzD$^fvk+eOC^eI$)ATN-&(#tYR@hy4dk&7sII-I z?6M5odR8ZV8QPe}#IHZ2SZc*uEoz`i%fW_i^xQ~Zcs%0)r*Ti3(~v2KC%`|urRGF5 zAO&5G`X{PRjxxDt?=4@?DE8v(vo|+4r;~Y|ww4}2G3<_iF0IK>2UUdhI194$P}nv- z20r53ASyN$CY1>$YsEr!{C4Y`HT$(BT6Tj;N5f~*L!A`Uo45_L0RJvM|v20IvZrc?q~9x$DtaC$>)$_{lupQiL5 z;hR!&8Q}gIYpso@dPgs%j4FwtAiEUI&S)>hi#<;eNtt94=LvQfdgU0!Y~aIHqxj|Y zFU?I>Y*Zsp@iydQeD+4LXuxR5J$|ad*1ChN${3LNxhs=rJba86{Hu0GHS+_*y&O4+ zE*?`rBPJz|n*jAB=pu5V+-DO7N!l@T=<7sHv3uF>OZr4WLw6v6od9`mQkf`v%I}_gUfplK})=Q;VH zwJwW&{@5T-Tow=)+u)P=j|$bK0AWC$zuB=53^+q_L&2j%(pjS57neTA!bL$2xd_iI zdyGx>CQVbCKXB+~yC{B!l-+`1&X1fMCy7i`rAhk7nUTfrkBxxc_`EHLCE-EjSaWs! zdpllZy;$(}n|DB`j;GHXx^%2v(P;&Pa|0J1c=iUSbdv`b9~esvdUYtyY`7koml*k; zY=q^?Hb@ki?p@Nnf2oky3GDQ5MO`b(#l^)pe(cBpDj2}lH}u}D2yUBAm3l`zZ8#lI zDdSQ%kd|tfQslRUP|&tc7A(pjtfg94*Tr;@zFxB?ffAh^%@B(d$1vnzCS#M7R)}g& zOM2@$$ppnZc5GN;tv_UZa}cW)VzCM0IsgX}g;A~f;5DCw#@7qVOKNT1%d(cm%(=H# z>;c7($?evfOCd)JLKJyJ8$C%5Wk3|D6f>f`NnWD4>~qsd*_>GeH-HK<(QudvTepD0 zK)X^cj`AK^2_A3Z52R22k~TtEYaMMWsk85G>g%AkX?v!50FWD)qnYi}y_l!nZY#{e zVf3FTe`)%kqf{7>Q+I~OXp%^g8&y@C#;)t)6G+Z2M@*`rp0w`yA~D&FqK}f^G^Cv3 z2W+gXIVbVsAgjx=lgf=SImNmjcDZK%A8YRt>)V!{cYR~bx&Hf{Q+4a*vaickwi7vx zgy00*BoPfdG;oXpG(eDsyXk^xAklOWK?6Zr&_juMC?-LGWf=u}Gyw6CkQ_%~1&Cd^ zY?teO@7a5;Ime(ezA@%p`;=*|Nm>vIUe8l`*ysja%-|@G%b=$D-CdK zt^8t(VE4*co0(-@IrNk*r$LAiZb6>OO{&crR(O(@lK3Y?X!G|L&tNXO{eCqu_9#+N zFpFsX&+FoM(b!yA1uJJLwAqZ{UwSKpqS&htx&E5zj|I$e&xcVZm z=fHid1rr*P`Giot2i#IERCOooj5x~^%NBRGw9cWX;}PTZ@ck1K)sN$VYoKc@2dN9h z6gq;`F?`~9>hXb)64VbCS3Yo_Y)W{Mx=ozZ>L5x~cbb!BdK{K(a8RbJT$f5Corw=c zAjsPy%a9yYK8ja}#XV!mEk~fEE?y~je_R-1G1=?d!~E;9eK9B=2{@SZ13c$0L1>$c zZornQFaNVlFt$C*Bj{wuR*bHOLd)=9I%b==G)%_L6;6p)uBJ`BR=T1L9G-EIsSAzo z@%Kvy&D|Z(<3bzpJ?4bRFJ8)r+zMqi+=6oVRPX%jdTVfkCW6rSpag1{OWn=anNwAV zBlXgA%v&-#Y?Ce+3-+E;#gM1WF@Q14Y^q!*Yx#ahn7t)@U2##xi#BGYhxh!QYz3D^ z9t`@TY{MDg+`8iN z^uTyIi?Wz!$O4`;_~A97kK%m=SK4_pX&!hw0uS#^@%;P@y-??Qkj}VSnL$ppoRnuM z-_g)}!+0JyX;PZ$(^D1$qJiEI27<=zD;l3^b`UuQ!d}kALK_n!K%=A(j;XZDTYg};p zd_q03Hq=ul{z3dtp{w&O?Y%Z0&e#CMz?>X7vB_^uK9Eb_3aX>y8W-%mFcH5)dxVEH zq*aU^P{q^J!LxS+aHVo^93yv1(=ah8-HN~F`TYrW4rbJfb{l`q^})|K#)W~%VVSks z91)s*9O&(V@q8As_8M0VcADN)3JH4&`DLf)QJC4rMxA)z7#0xW&-KV~!yyMAk6!SP zY-U7#Nvt-1k|fDd9AloWK^nuv8*Ik&m|^uHOw?OgcNTW7w>4Dk=Q+Kc%2#=zI(@us$HH}9qyk>Rn8XhpUg+rX;MG_?_7;ecEjs}_x`f!q2!lxSuYz_8npCoC78TgF-P)Nau% z%yyx@QQ)J2A6zeR5?;|C_`kmSE&TB>KhXLCw~N4`mr^fA<2~CK>CLyuu|BUSeK zIkwb;&npbwJuZQjIxHo1a{=_|c=vd!gX4a%TU}sAV{FhTY*9C+18rTNHs@lmH?0D9 z2NRf2i1US-dzb3C#>)q~U@;AbdTtTKspE`^a5Op-+JK`UWpD+qX}?EKJNgb#T7t07DI*8Vay7aSzasVmg4W%E%l zq-1sE%ISnns4Lpzs8GcEyv3mp<>fIdxV%+};QD+sh%FnJpu?=mb0VZ|EE3yJaj6hp z78^d525M5vOt$HX!hLWmW|W5<<$udOgQFj4a2B!58%gR?H5pnHw)AAGG7HO`c{V8O z&*SYo2C0pkNnA7Bmkm;D4UZNL?|GgfA=vS-KG8|9nRCKhLu(IaNO)Zwvf)UN2SaRM z5f}4!>+LmpFbPM@NJu07m@o;{aMJtIpO$3BdY>AzfVjN{gN4ToJS$j0b!o8yk(H%( zp63enG+A^ZNjzwP1+wvfJSd->PU2pK2w!GU7@m$NsI)-yXLy|6n~6g^OlB}1Sb&Ty z{z?*Q=+f3^$l^lE%rj^4AMa{-mmY7QLfhURXt#VY6iu`p9gQ1s$At98&8OfXEaw^* z)LPLaQ=L-{sySS(-kBAe3|yCQTdZ0BvMjL76UehJk#PlKD=_eF1!8CL<3Xf2tj=CH z$Hc`+ z5#qfNBB>A9j611q=f}~XZeX7BN})q+Ml?ixkaedmXo^DTjJin>1UMCRX7nwGzFea zVb?Q0+uz_X{KH?xSAGxpU;ekRx; znwoaoavxBj1Lc~1O-2NQ9zIf45DqVL3-yO1`PVoc7oh838Oqnq9g_~UTrdmNa;6}N z*8AP#H!0)EyruNQsRrV8~(eQN$gIf(M4gJvr z8*WP`cYp7r*~q}ngy=Y;vCaO}5zk-dK-oyi4F7qIBM5kn-y$4xlak+2dSOy3D>V3L zzErklvO-9#UCB+5=|snl=_v zzbHu3GYJ7M%9oX%T2X^``av>djDd{qnbn1o1&`^ZKuJk$m){Wh<$vv8{s*#Q`kVjt zZ{VN%#b3hl^k86O=E7-(_BQ5{^+zwDhwjtYY8(Z|->=cLm%gzGZ?@9+n>(}}kvBzO zuNi}(H>q3s&t%aAy}~0`=Gmg=(i=w~#}oqyAlQKl6OPW@rVND6_rV#>TE$()1F-2n zcov`MRluB*OY>faM6Qa7m-iz)n1h3dyA(C0&$`PJUxAcV743+II)g}aV?I58&&=_H zG)}?q82|JV7adJsNv-MqDWFm*WbSgz45NlG381p5pJrR$Qrw5-<3h%j%$vbppj0Nr zzuyt%+H_?$j!D&ylx$Ws3gdZ~OHwCWEk`>Bgy$It)Z!)i3^tlaz-*n@p#Mo0 z;6^;4Q#>2vU0skK=w4GRL(n_AKB}HFq4YWNdFhdqtk~AOuJje7Zq(&l)yzlZ2%|MY z!vwrxj`ukF17G>#fp!A#Uj|-m;H?`>8XAJioc=}8fINr@1~>lV;j`6LI7s+W^Ulef zNFZ`romo=gu=WrVa|eCd{9VmvY?yNL&a-W4DYF>1#x>XYU^}v!3B#PeNl7wSqCp}O zoLMM=#x#qZ5)W_N2j;)MX%JUZ^7NK?Jm*y!YEN@mYKO%#KDCOrqp#-6Og_l%Ftfl= zRs(Rv_AGy=wtPPy;9+n0Yr7w;+xBkXQa!e5OHSWjBb#rVDAywQrTijfNpmyxX?4Yw z_D$)7@IgqKQ5sVZ3AN@mt^hA&Aec9(h1oo%mAMtDz(!R_B7AM2F^fc6hw%3TCmeyu zRc<8Xd0ENs;k_~Ah3~?NK}?9J8J?aJ-^vy8)Y20J4cBFBS_do~ryOYgh=Ao+IMZA1 z34LD9Ou0D*#+;CuX4ou_dQI^XVf^%@m{-Ufhh3R39Uh78IgDo`COj7h4~-r(6~)mG zK)sr!{X)zF17@SPK(=??M91}&!Ry?6e;iP9%k5@D27hE499 z&N*gDbjoL;`FzK-nevRsgv%ymoG}S+N{lWl zBr)EFhBt5C@?DQCGi&jk9sHa!hdV&o001BWNkl^r|Hq(2EukB1zB5ygG&y zHeu7NiYw=1DcxYR4PHt|kLZdzJ&EN#-@nvmK(#RfAdhscnSV@SOSU|K?w7h# z&W+xgIO{GynJp%_%}Pm`d)!UpA-}pTveQhsd66`taL57sfzja+?*xJ0xE$<~W?B*D?8IEVXLB*GZaclB_*Z{P9gu)wv z1g$m7&)f3!5vCFiJO_#TDCuU)O}ed3dq^wec?o%G`DdPa@)*9 z5}xntA{JVK1DpfzTTT$SmSdnAn}!wxN0-|cWQ?mecB1jm$_&Q38*@NKxXR=ZTKWCW znM##y$eSux!Z{Ok@fAnp9>7y@FAo9X` z(Qb6PDTD`YTeXGl{!pHqu#AQk#2Xd^ey)^`Yc|D<`U$C4)Z^+43!b);Y&7#fSN-91 z$Be}=8@GYLoJn1lo7_H1D-M!5STSZWB?!a@>BR_ZR6G;(^Cx(NfU?S+wP@rrzp2~c zqVO4A3^-o!?$Pj%eD16G>2H4v|I=@O8{eJ|;hpvA6V+8zQssrwrNigS(3@DX5qr(< zzOpKJ^-iOtdQQ?G`R+Sqqzy-GnEuSq|3Y~@+zkgc_x!qGa}Z1H^mYXHuSxiR3QwB! zCeKY&8ti=;+DRFUTnDR%`z9~ah40R3uaQ`yO)JTH-#8_Db9l%NzyPeAEK~y#Uq5Ae z_s(~CNHRz(E@;EZ$s@f7{c(i+291}s-z1A^eym)heH&z<>+agng|a4*Al6WCtUaa( zN{P?f+AUy3O?p(fCN~X<40>f#W5(PJHe44Q%_z8zl2j$yxv|+Pt!vT2lE!8=Y19lF z6RF8zI~H-siT+MqXloruZy4jM2?TEFO8|4mGb76!Ynw#Dvaw8NC8BugN2^A1t(Cn} zxvybyfVK{2P-<>tET`Hn3b%Z*Vlm(~zA z9pwQpBDkh8cZAs&EwalRC;dLt47(AKj-#~WDeDpzGLheL)ZoC(ibkmDC z9KGIQ-&WbVeYm|F=PYb(geeAOLZ%V%PU2&4+|Z31<;~UknaeF0bv<+I`|igP`9?4p z28*p0N$+MDY}#$hQcAkf^Ld@bnj3?h4QMUiNkZ|ha!q)N^1?#; z)Udx-UWQn7W|eWPF*8!3UQr_~X5I*1;U}cO!!4c(->8EwxJEQvlh1Ah#8}lT&Yi3c=t!I z4PU-L!a6_*9Et%%Ku#*ALi>iVM%7!&K}y`cRspIQ0Uc1p5KP6nyYua?nEajW-t_rG zs<+nI$Y9CAUTxl9XHBMMykb(C(r}*v#v8DNpG8to8@DS98kAlYuRy{WCgyjr3S_71 zsj}t}o9W13C6ofd@p!@<6PG#KoH$Rz0|W2gegv^+QsKC%pbQbDi#iK=^Q+`(afapC zH0mNPxEFV_mUo-eSIWVK&H6sHNfAn6`Hp1mhYx@+yMk%of+ntizf*UQWIWfaZW5mN zX1P^FG;G|Ksvu%B1km0|!c2s`Kp20MB;AD3f%R1GH8de-0MsYcC%OU+C(H&ude`vP zpZp4*|LEKJ{$*rv1I-<0((q`95Tl|h6)p)B;h;V@T?s#uNxP0uw1h!G(c_>fifp6g zI75Bw5A7|cdxxRMzZRBwBF-7wRrA8>$`N78T2=sPLL6nES zFL*%f<$p`snw`{;%UE6wBZr?CZ)-w?rD)sCwHxDGL#=#w7)d_=KCMD&ZTsGahes&0nb6lX)zafZL}^M98?-Lv zYmnlWn=kO<-Q+aJmHB>oH*kaD5#kt|y%q<`b{XpCznSL+X_3(G3dqqa2Pm3}88SKX z3fC>%=yA{lP0Hnrm5g%8kXtH&P_6-bUm`p%KD!o~3uEHKWMFcH=y_wnFyS&Yw_n4{ zb9WrafRGSe&G4~sK3DN7lkYi`gZwm12o`_@oiBXIQ1rO>pI2ZbtZ zrM1{v0We%;sx`9+#oe^)`7^8ZqKTy$J^eyx00AOhO*U9DJ{q zd_Mf53+|%rQ8{3XP8c4(06#e7kRQ_4X`MxL&W+%-g0ip6Zp~z75TfXz%%W)>6U!sg zdyk+`*J=n%1DMj~zNBiy!;^+kjU170p^^mI?9q%&BT1-rsEVAL%9`wZdQT0rL}v zc0_!^9D|ux(bP={q<4bp*Y|>g6|8~GYZ7VU^?lhK>iyX6xss)q8p~d(udI{^V-8Bc z4cI)z%7k0d;0?q=Bw-9e#G5SIl>^3VrYFG=-D5E)C)5Ja6)FPY&;7ZN@h86fz;FKM z@8EZ@P)(djNZhOfMK#XMi8zmp;F&#_F*m)9L9`$x)y*O!%zqe&CzK%V&6_vB^0Pnp zk8b%I0!)zkzf46Ic1&Fof0~j;NK9K{E2v}l{`DY~4|8<8OooYxtdW*|NbJ~;9 z#*U?+jfxzGlB@H@dq)ModIl}MR6jsQ4=TJ!dhFJHks!$#}(#(Pb_ce z3UbrH=i${FnxJxXupOYnWcSdFTje~g0|&JY7?fwER=u^xzb}fmr>Dn8U?aswZc5Uc z)C_9;@hW#E4>1)j=}s0Sz4u5}-@E|Gq-0rJmAIgcA)swR2 ziA%LElRTuD7uG}z5$@CQa-O98^$!kk5yf%znvi9d&e|U6c8KUoI=6+Voi#bs8}>av z8|7-c9Y+)~x95m@|1k=K`)Eg?sEN(3En0?CCPgrPNpr^J+EDo`nUFrmtOi%;)sv=+ zRzynUE-iWxzn`?c+g69@?V4J1S_)s%yF?rBhWpzDD{-sT(C0t*oI&4A$V6@0T5K!# zCbPF*q)5wT`V7t8fb)}x*32ME4gMtB_U^L^$!F#)RnA*f;T4)(&kAtMbIIV=qj%CD zS3qd|eA}dz89>u40)~4-GvOKL>+mkf27~ml@47)zo}fnyZM}tmD!zMX;oOSm=^ooW-TV=c-!53fSxw6v16ft!oRY>w+x$gKpXAab4$!YzmEt1(5Q(K+4O4FmHeH(a64z42{y)rI&r^k1+k^Lr? zAF*nKc-Cxdsxse3s1ESF8@1J45rCS`JTQV8Ho0WJ?@HR{j?WgPkIJ{7kJ(vN76qoh zRoqPk#l~OQ>A{)T#bz|r0@rzl9|i-To&%qM_k`9Ta2+sFGv!LD3vpwc}|%fPXOAH8xXWxP;J!V)O~pda8tr8>oeZB$#V-vFFze4X*3C= zY`Dcg+*s8%MiyQ?d}p*8SkNyXwu00L|%!Qx*^t+DU?0d3(grDI>CJktDB;!L9T|WoV~!llDU% zsyw(Qje5gzy<8-hgfaWb)N5uzgy9iu6J!Qyj{ek(8VL7ldNL0~>Ookhz|3tZ*;ShL zx1ir#h2}xCQ0+^Wa0fRyuJfvctEt|}f$kXRV50bhjfpu7MgwT$i=G$s3cnQQE1*og zUE_PJi~@=`b8C~iNLje`)?eiZti!jpj^j{5BCch0RjJQya^k(bVR6AUmvSR&lXx~X zsdJo+3XRm%8&|Q|+sY-|r3to-x@kfT2uP%_-=^Vg_Bttey&thHq+CVm5eXngFKJfs3IX@w1-SiRbt4*;vTR{GcQwWwa?FjbbUE18jLzGtL`^ zYDa-QLIGe_{(?m6r$IL_d4W`88ku1kvf7xHMs)z6S#WER0i-FpiiWx^MSvNL(iLtz z=DItgj3}#>}>}Cq@0zL z`)X+Tyoxadw6y|kqz5C4N2{UEoj{0^IOctuo|G`d14nP@$58_!XDGX94)JWuYFYy_ zE2z){=D0=XUP^po=tksz0dBltB&~j*EVfz|!B&|>fwj+JOcv(}hDpFlPU_RcAln^n zb+;zCg=i9OH+4w?Wk|z1`aul3d@x)nFIkcf z_Q;B)#Rhas%99eG>GJ2ro#PnSg`>xL`}8<)UIPzlI4{HVr{BlB&wc?S&jcE92*BsQ zU9n9!ZqZXGoRohl37yxb$2Z)5K^!=co&240AlRHh0)nYpPs#G~5{oaEK@5_yd{CJY zhExzRABr4qab`5743%Ju%$r z@?mh^!440p+?aS`uy?l;AAkI#_|j)DeDs;m;(OnDhKb`z07IOiCQ(PkR(D~>kfgd)jz`2~5 zq;|gw#iYvU9sQkBm3*-U2y;H^bJb{YDpgaHoH&_(kj|bHu_YaxQ7pFyn#!WxIBN2{ z|5^EafS!Vo5Ad*d!TEA=OCpsD?zU$tmmP6 z9G#w!D8O1*`kqFZ0cBAQQ)_x0k6WIG$L*1n}M-LBEG;d6KPpT6q zfQgjfb;7x!(#l53%*5{bB%ieWchfiiM&H8?gCe=ebjuxSgZC{^D{PQ|J zL`GSPU<0g%(Y3S#uN1kK>B_@2~A<8Wh586h*hUHd`IUm~bI36`&&!4lm z&W%D07DQLm8x4bViY7&d3S<3a$s&DW$3amdBbYP&Z9+-uRgDj~OAM}VvI-QH<$ue@!gzs+wnYabsW6_c@Zh!H z<7dswZ!bD5Oud%=D~mAU+}d5|#VzBOA9TwfThf&ZdEPvjX1+;TW5D(F^q@~}mY*&? z7TKiN;HP!;#{=z9B#&tyqIiNhCMAQsFwG{ZYJK@PUxha2J!R%KoDxdL3l777hVU+t zCS|NSjwrsy91z@NBf72t)X3-x8Fu=UV)zyBi)Y9thk)t(+Jo7HBDjKvq{xJ(lX6sSFc^mZZRyj_ME%ddzyi zH{EbN4j9S5)1%ES{n9?-9~%W3W;*#2rfO5Y2*)|cEYiw3C?+x^$^6-b+fR1Ot9iM$t{OA|H zfFF5t;t#)hRuFTC<7FohO6`NIu2-{AdkL33or7`A?9W%h zniB_So{{sLaAF=E)K2nHNE9uY_0y@>t_LE!IP=;(9j)WhkDBKCHmPp= zMM4x`vyACB4aS2zvukp~Ic?tbv;iLI5Os`sl@YkSJX-QmC{<71Ycu)Yqm1IOtIt`7A~|kxgnm@!(_PYq7%z372S^8 z#1?`GIehQ{<^>2or(Ifn--xUlXGmXR)wx;RJq1E9M-(ZRLEN#`+1~Pf>KoG`tM6vk z^b1v3q#iye#MxYqG3sA769-MC>}2yV4M#iTo!BO{C3{HXiw7pYwa|6gGxC8_ zLL(n!fT1Xg#_WW9Xl{ImPfu@H1Z#Z9H06f;ZyCU=NNk<51YZ|63;E}l7hGdtOr9k) zf`GQ+c7@!jF*Ap<*U3Y8*x)-V(B4aCxhASHCF_q~ja0m2yr|PG%uD%bA%}W? zf39~#w9x*}t@P1@&J!2BL(I5k>P3-@muNLgzR`#vf%eZA+$h)c+^{3zBUYZAn2dK) zFTLcHO3&IDBTV*fP3)IU*=|A1`7S{sbK_#p3R2$LnMGHT0J4A$SfSl1g{>2?wGDZ=kIz1`;8?51CFY89sPk$7b=^azdrHQ0Yl^ z2hQtcQ7EM#ah|7|(I<|ZSJ)H(U$VfZ1bA(vFX(}L;?pm#tH5(ACf#xU!liiWWq+7kLznu(=E0<(~U%&cp&Nv&7N z5n~{6P&#bGim>Tf4`{=?cW*=DO$wr%Cw}n#Pte-H=RW@>h&{tBJTL-{axpjbB9xWU zbHt5b+iD_`4oV`ZY^W1_p}t|d`Rsy2`;Zq3*3*G4gY3gx&!knm2emFxWd!E%UoHzb zFDk(0>z#;c9(v#o;+$aUr{%x{9{yE{p;vSYRbfq5E zDO+i}qi1N0a}^XhN#Bu-lbKY_N!gR4{Uv)pgSaFS!YXA(ZzPw=E1KADvh*TH zEt$#F z*M*Oe5p>Eo67d>ewG>iUH4Bt@-mdeEf}66a-Wt6zak1@ome9s~?1{Wssd2ovp4RK_fyq4l&+wPQMQ)A+9W3s`FWbTkLM5AEz<02{N3m;>)hN?8|mtsr-IVb9=?Pe zAO)x_!jGFrQPJ2$WDsE%oY@r3!Kt%oHF~m{+H*rK^uqui8`$2L6nv9VyU`=iQ}&E) zxVN48^iV3Fxy+bahIC~v$!h8fNYNXfHdw`&6J3`NZ$U7;ib*#sWO@!@%CEPTMQual zDm`8fx%m>^Ek;u5gSA7o%T~FlqSQ0^@-N6?a!y0hV!x=%& zRz8p3N|<#1i~EWWw7xKXvg=z`%OH(`3$s2_-ku3vcs~G&LMSD@OX!6Zdo{B zan?R5-BYYV2%G`Ai1#BUePsopBo%!A<1^09oP3bkmEkC6+b`dbc>5IF81; z+E17OAAk9C`1s==$IExWg->2CJp2NV2V_hPj0hnY4i#F2w5Jqu`d}s%pFzf7fM*k0 zN=(@>{pmmR^SoPv;8KMlU)Ce_eYxi2#plLOF+UKMg>Cf(0iZ%AiKdX06inbcuQG)~ zK0Ji(bRU#KT>zkKO=}ZCP}t`*t8Y>zXQ#QmQ7O}4BeMm*WjI{RNi`>PN#;o)MuG%v z3-jG4uQ^?I51N$0FfC*n!LVOGuUv&&0TFy{WipIavZJ7PC1o(^rK{k zNzzM0u9?w8veu`Ket@YzN(2oq>cLkc4T zZ3l)qOjuaUJ$P{U8tj<)wR!S;j>R^`w49LBD>*%|_hVeOc}m&e4ax6oBAJA>^!Nxv z{t^eAA-v8@a(N0@p_+uky(rkF9oclp_kb#Nax-chG@(b;A6oTBq%I4@*0q|k$-@7d zgK{z&(D~=3>`5WF%%avSvR;J}BEo>C?@1J~F} z)50^$cUu`MiX_v{g%D2ZZf=i`ey~wnGS3>0weT&bwDm@L%OFmlb)N6%_{|rz4T3U@ zOXg;$E3u-pQcs0nX0S!7x&UV=O37R&1?c>kkOP~7;+W85-^@9@+yMWfv zGeo`?3R38F@%8)07AiJmlUuWv^2BqX-^`6>kOdQ6=f;{AclS zIWrwyN@_F96c`gp;{}t%JmYl0DRA8yYu>W1a|0$7*(D%gLIr!hBWxE#x#qCu{mrxh&&`K8?*}1j2@nI2P1eG{a1CxMw2~!xi5|D&VVc7(yA{ou5TDzvl!PW#NTtItYI{0}Zm!9` zwEFWOXn3@SORrU=*rKN?i>I7o!vf#@x%EYkW1=4+?aPT_P2U*?T+i7>Z;;ou+ z5sgL(0keoq4C>tTJmvQ%5}Qr2l{@2X05Z!ju)HA=QIZ9Hz!LdEr7>)o&W-5qk~jEjFN}~z{|Mqc|M!Rs)j|c zC8ygEr*B@hJX3rl*!F`Pk}I|r-Z=Q!1KGEnIL-(mVmJ81;Cs>zg{g$cLzWcCeBPzX zsyO&gN3=q0UMGWmhlc_FGRA=@H-H|+T~OBpOI>$-i$=g$i0(-7lu6$HJ%I<&GzGb` z$h@k+2!GG8aaZsN8$Lq9;2!U#0CI4MGFSH5sy*V~m}7?LsW;5Aq~x!IhkJozW&i=w z+8`3=?G{jvj8e!mT~|Q3h@vH&ODKtNj^pitBZJS~;eJ9$rkqXjWE1oG2l(U%KS0yB z`1Iuk-}r;?;A>y|8qD4U5FFA8;|X6^JQoq05gJow(#f(qq_@Zu^pb-Y4%Q|NV%)5< z@lxMv#Dp*HNO1a2;;+BO`$Rl>VlW;rr&`^Z@tJkN;!iTLa-%S1G}=5FZYV2I^LRWcTTC{7cu166ku_y9 zZf-ivuNwhq9S&03?)->S_LDDv@=NV*~ zpom>AarBPsJXfmxC6*fsL+ozg&X&t@4l0~3ort$rR>8^n{m}m(3I&a<-J-g~xb*1{R)m3}eQp;y4a^a-yM* zoC!yhC=#wsi#;&WZIRWoVGoo4D&~Qe_t735!>ph$`90+CWP&Q1CjmUWB&yya4!n(x zX=mmXd=_DG|DWr+BD)I)y9_e@miGW^K$X8z-)GkdubeCdXbeakyGi&b#TURuNOqb$ z@8Nng?XLluY(bAa>m`U)dtOOC?<$IRv^p~)PcGhNksv{e-}8SggLj*RuVe!n%sEO9 zpWdVReM6orUAftu_&dM#cW=#7d2ti7zHQ&~t}^<3>*rvz)aZxPEq0-o?Ch$|aFOQ} z9}qiBk}LwvfNc>xkI46%*U17*D?@P4Kgl?c+A??qUH9G#*wM8C5^}exPWfemI#%|g zyCIL*P>8TNE?~ec!dh-)B)?PDFuymjv9sHt*0w=x-nIL^nW~h0&vOWppR*EJbBMrQ zBcOae6M}yt*OA#p8jV$#ARo7;)o9tAkfYbIGHJG%kvJJ= zl0|RO@2rLvO1c`^4``$)&MhRoJk%y=?O1qfwHjo(d3n;ckqSt%Zw|IH_fj7zy^Zhn zy5b&d^aUBuhsUGiJTK-H8XBd^@!OJIq zh~dDufAAeVzWoWl@`ZPpW8lS~0cq&;&t_r2#_6Qtk*sU#)u^C_;>sj41d*Oi{;ykn zU!kh9ySx$$r+$BDX2rGSM$kQg3cbZZ(zp7;Sojp_u|P4s@>9cKH*dCqRfF7{r6kH* zTFK_xLOJgxn%Wq3aaSo!n5bRZ-62Cr|bh96dCy(d&fq^N8aeW^mia-4mAK@oI z>-gR8D1Q6@`~=tg_pz~mdK2{8hm@x*hXp|$4DP{Wv>M9iYu0N+Gh?Nvn|{cZ1i3nx zM?Ap3g*n~A&z8Bcrm0Lv&*?{A5W^>=9U=4JOCs&A5mtV%1x?rsEfW16j|UI>tpHXp z&(L0YzW$nz+fJ<_%#jia~kh{rL&`gDW69LK;agmera%kfw)fg_VX!E;17$e`7rl zArX@mXy;cHlGiKg0XLW{P%g8eV$d+n*N{U5Xa{^w%*$>Cw_PXmc6xb)#x9dmE&5tE zM^*e$Qgs303F$qg3^qd+vjx+M3R(~By;+d<(qxXgJ?ka;7*&LyKG%U;re6i7;pG}p zlx)C*C{!p@IRw-6HV`nS`L#8anrNHG?J)tJQ&$~^u@(O=8vinj`sJYH6^JuU82mi0 zngTWr^X$I8OgiV|?GyCq5E47%Ih?g^H4hZ~4zP&8%P2T?D73{{cpMF?Y;p~hw8m!> z+kn`3T-Sx+BMRtkyPc@+TX>}BKnFO_QN^`rY?3aXfBgtr;jjU7h0#lPJdSDrsm-hW znbh?g?m?Cftv;XpU0ZHH#BcA33x`UXIh4{a@tf4QJsr1A&EWLg{Ep7u10bhc6$;3P z$5*4aOSWoTM=!;~J+}{HD5lMjENKMzN+G2uT9*pPtk7(a{H$nry(IEsre37M?|%OW z`1k&!|KNjrZg9&H??yv!g3)ZF)y3cozCOn+;-8+LVly*F(MdDTKoQct<=>QQ0CFIP z7R8v+ix3Fq=&%!ae4Quy(Q2Zd8+ZxLS_K)8IY^_l@YQN4P2$d{$7PHNZ1<%qDH-^_ z?cktm7~vZnuuQ^nG9KWljKCeN!n-4BiF-~PK_ceuW-G{NB^!wS%*tWk9%#Fobk@j{>tu9#W8y8@7j*N&`sMPO0`WZmOzgV;ynN=OP4Z%z#s5@VmjTAG7gHn--X zJkp6RN+X*OZk&9UG9hb+07vS@s5xo28bNHzrJ@A{q`;6cF#xwrt zOKy-I{;grKy!1m7Q%&tKj5ATPd}&)p z#u?})Q>aAe40R1*e`p=IsZ5!3H3x`HNslXUggXiAp) zIW4u2436!Tn`zOkvIvaNA`RW{k?*8jXCA$C6E#2ZVx@sGz7ZkHl-O_*!^Vt)GjfEi z@Z85i$`~6(_a)g&_^zbMzH0?g&OFcxR3TvXS6EcvG{8|9&=@`}#p!k7#01eR^jRB))BLvBz3pQ9-fX2E#;|85vF}0y$8pM{C zJ};@ri~_`$<~b-`Yoh5ErCg!hDTl$9&9qO@uj>l(8i2m~yz z%@?j!NOv)hrqN$D`$@n`BHf;KrW<*3pYV?B3J;$foH+wp1iMyf@;yK|sBR2M=4Y1X z_8O}2;I}cE%Ow>Uw`=0(G(5k5p=r4l^=w?xtOVhz-vX&4<$eYzK!RG=TQHL5m>B1Y z>*d6JF@jpGrmt?B+#v(#W*mU+(U~z7OKZD{nTQTJ$(ga?=XeMw?;Ka*SP3~XgK;~ZR``;mf214S3bYZ zq@UmaR?G=yH`=v=$188i7=oMyTxNo_@ULPnY3=UG+3yBtv%Gt|@~rA$zK5rhpxr`+ zD@>aHn0>f{TM)U_1U(6}W!P@ai6i09IJJ)FjpRiBO9@BGz-O4?Z~Pbk8UD_1|F8Iy zKl3N>&2N9Jeu97c7k`Q0!OBQX_=#`lTW=j*qe(FL+90HycyAce_h=-|xvT+S=oQnVwO3jksmL>gMI|&4)lZCQeyWK9gC4DFG*4%h5p>XZ5vGeH@$;Q%Od6}f^4QC$l2(#c)%uKm`*4)+Fcb{4sEJ)8GC~bF@=l|grM2)dIlVIE zEyQQkW%-EtnHXhrb2@yEXoTEh9u&Ljg71Ip5AgZVe-UpF!JH125%n#9FZi-cU@1)b zpELfVf{vAUR|fM+5qvfCJ%#WA(#o7QVm^y;d!_oo@86S ze~2@=j^c%>J?B;0@cmwJYV2bbYlXwTNe@z=UQI-pz4vfQ)u39zbM3vblUaym12D(n z`cQA%q}&=6T}Jgr(c3TLY>JvH8sfuANgG|{On(neX+K&ey$f-{!b^1eqL5_KV}<1{ zI0`Q+2A)b>=;OS~pczE2j>qF*()Hlw6naYcC{(9Y6W;`AismaIS0oalAIBpIQcWrK z*g`zZ;&BhdgKg+z-&>!8W)qcd;ojzY`B&O=U{$RV;HSK`0TPVON)Bu^bjPHI{U&@NL;ALRrmSOkk9gi0Dv250j*y<=k(yJ9k#zQ-|jPX=VPY+jY5qHv| zwpNs&C=5dTo#D$}IjQD0DziJ>9oNgbBzUUmsyGO|C^AxReu?4?{k_)&xg7`dumY}O zMa9}c5gH+dJHEG&r6Qb|`SR>=+i|eDn={}B8G!rd&C{0j?zi(No~yu4OV<_tnuJY~ z{?Y@JfQsA%W&X&V5mwlb_})A-yfW-F&pBT~r5Q4vgM~E&h#?Pe#PG{du9*#N4sK+p zf%4o;$zGzfi_FC$d-{l}pE$R^f^%F!XLF;}D1Pn?K^|k^A{O1*kfd}?S=8(k!XGv{ zUr72bzlG1pUI4A;KQp`R=7&o9V&f&XBwnpB;zAr&{QkxQPHVFt$JBNoWGn$<``%lF zOH#!^A6mj`W(`DgK$dC=O<2da0r>D4W}JnSCCXTYEW9(YcrRjeqgUGt^YA=KNLmW| zqgtWlMI+@P?!Wz?|401lul?r$fWPv~zl{IpzyI&*JNjpS@h=i6WGiGeQN9QxwUAt= zE$`15L>h2w9HqjUxlvC)5NcA&jX^7lYA7JAJfT+p3gulG!?8DSp31!Ma9raGIlLRg zSEbP7`MKwNo&m|VA!N7XSiqBP#D!UhVM4dOZu$P{?Pmx&pAl3Pq2(#vix>|CO;Q%- zdWTn~q&fe65;?JN9k+q;$a6LuQs*5(k=M#Hqg;*yrwlmGys&@~QXbo+u-w{O5O<3T zCbhv(54g^rE4Zkx#s>CYJn!4JPM}7r5OM&Oo6^Q$+zbzoyFKNJ43p*g*yvlCGn6x- zI^Ym)E6f{nf+X?wSb(ctCLZUapv#i~=N800yk}tS02IJ;JU^*eK#Tidt_$Zi05g30 za^Xim_Zip}s9YiQn*;^oC7Mu0{9U}Niqi*Xa3i-9~-vw8EG47XfJ!D_Rz2Krh- zZ1<+*0~y{t}f&&5xVp!$)p>jOK3M-t!6Kq*<>V)s_ zo2ZtXXx0su@CUY(ljpQyA_0@J@QV7iE6_3oW}a}r@a_rt+E081AGJ@Q*75xQj2HlO zSnte@HIn;qC-`c}k-5%}RjD+ANDot97OkB0H2R&w#}x+Y#+;j?3*G2HGkIxoP_`^Q zNPwd0-d=f~+zcjCh3XyOyrpbgUXD5S3$jQUju$XOp-_*FN#Qn0Jlp+M3PJD3YU)l~ zN%WI65$9y>@|FK!>1pAY*y5|7fn_S%6ZrRbD9-CFJfuxSJC4Z1&?L^$wAeHjLS~^v zXstB-E#c|uQSk&V5%b3u{2Y^76#&Kt--fn)`E;6?kk)(pqePbkjYL zH2=FrKx}Kb0#PSj~Pr6uy!7+y&P;D|bYsg~Wtf^emWr?>FB;ZwKW(>!17P zGj9qOQQO`OZN);igE;N^I0-8oT%jr?3#Fb zTEnFTOFWJTu5po&=P>?ky*)U^UGK^30PfsqtY{NWM;OBZq>5S7D zC?)fN#x?L_S5Vd{gTuDP-3y}Cp77PF0l>IA{2d)wmCn542(IL2V+HC-6hree+TCMZZTakAogm@XkPFh zZ7l{y835ZFp$ES54w;>o>Wyel6eD3-_95(|O9TX4kq+bM3}178ChL8SSR^kxqPb&^ zfr$09f+KX9&d=6iO*+kPz^jB!zYf6 zC`bvmDTKb>48x5h!?<1a+hD8iT<11wvWd!?VWa7p&BBUb^Qv;blTiFx6_qty4#^{S zB);!Utl%lFQReCKJ@wWwK7EOz|LH(i;CjB`&2aQ5ynCnk2h_8SB z>-eqTIq}Ju(DxI^@qj&;d8)en<-Gs<5*`W;B0(qDTe&XJ4ztU_tRd7YG$j%#Wf;_* z$JijZ=l}p907*naR2SXj1CS{C)k7K*Qi8^IP?of(JP*2=(c(ibYS*TtoNV-RWs`>5 z*ZC)s(WTm8WzZ$Bpuo|Gi{J1RPUl74Ma3-ooqBaBq@pib-#STVkFcfuNn^1~Dm* znx?EE0yJ|2@cjJz0bs_=pvNOj;vzV&bD3ku4A=~})IKNyQp2P?X^v4T^d`XYfrHXD zXV7p*d^UIpx@iF%rYIMYF^B=KP3q9A;9D0`BYXk3yrGd2WfBhaOi07J)%3QNCVoB7 zv!>TBfzN%~HW}x67D=pWGyy|a&|-vGhF-p*5$Zs{YYsh*C-dSAc3q)J;7}V9fSTSqu9p*+&vkEcu-H5x41@VW34%}# z8b(r)Utzp=KZ<#5ZpNGtdfOAcP)d)-qu>z3Er2zf?|2`?n5{?y=g=r?iQ~w>Cjy+M zQ#$3D$?5fTxkRCD#vC(^=O7>~ev<@Gi(zGddJ}*cI|HU-1Kt|?q3C1c0fY7f-+p-y zH^(RMKgHMo;E(Vpf9lJ4d3k{f^PxNjH^Nlr1RPav-_4W1&W;=m4W84@wazh70OPuO zOI7btIe0B|R?1oFrL;5!YcwUTAUH8RkjjA+jA^W$H_kN@OH`2FAi2L6ZN{yxN?A@d#F9nVKdB`>N&w6z6&$ccCA#`hOPyy4M~ zIAaV&K!V;Ag>{oZz(T4fH13-_=D8BS4`u}6wJc}Lhp0j}lhuY`bOYUDp_M z&ii@4Rclpst?sJo?%35GLJl+`h};D7vb8t#7^W^W68GV{=`< zD)lCIb;=B>GcNVdw-Ol?+YFWBvql-{Ig-rD z2-oG_J_1ALSsS`b{WDA|pHF7J_-~mVv*FD-il})_pN_E?_j^;dOEf5A1@`+jH%D*b z3?#ng$NRyZ^Hw5+8RHl$sx&AKcQumn}X z^~}wLC(^g(&rkW*=7sYV7}A%Ok{_*UWFmgEVa6L$s;CE{J_49PM0h@*5V3_5gOZ&NLAOxpA+4flw+<9p}!Mn(esjCn9q-zf-bHB(0QH(7jhUx z!~Qmx(Oute=38w8Yw#39yua|5{v!Ujzxsay0RFXq`A_3pKmHT=avL5jFNhC5Xaq%0 z9n4XZ-u!25fP=h0i4$Qz>NA{EK)h`ov%nE-8x!}4xFnK;j>bj3Y(axP?YupA*#zgd zZ#5MgWNORZ+Xq)&BFtlpX#jxZc!|$&RwLvaAt}k64+>&)BI!2{iWrGEL}K91c#Ol( z!-%gqlLnWWm8v)NbKWH!L&~p$Q0@6yY5~Xz{QkP97D%f#hO`E)m=NFo5YsITHXE#K zUPZk`NM;>&;Yy)Z$H)x~kcF6NZb7-uud2Z|%zJ&8v5gQ_91>fLEhJaOCA>bk+bE&T z4u3FU#-Dd-Ku5R(K~*JI40TCy`XrZ1BQf;|Ss&GV*Vr2ek+q#NVh9MGJ9_iMq{@Zk zcmdA|xm+F9jtBbV1)u)-ckub=pF`!ukKVuH*MIYO@$GMa8+tusP#^b;<++mI5vsAt z?~{Xa>)nzx zZlx%~;-Iay?3Sa%jf3{bEAJ$Kwxrc;^gk~c?+5PkDgbldX)6i)@J6aF>f81mXA14u zo`KvBaBC}jsaDT@BUsH6o+Xl+f1jE(P!yVG z29m^gHk>LER2g_&3mIHUE?6iqw+fB$-$cE;1jq~U`FeU&uoDNFOY*ZLe<_LtZVXYE zds)*hq|!YcWAvK*Q*TgQE+dEy0TF7-ogkRZc1WpJP8?H$lxM=3O@7ObVH)s5JFoZY z{^$dv4?LgG_!(PdGKDd@r`*dYts$K!$5*H=GJVK6-Xa|*iQbxDCVWRtl?L^U*N zWSuJb+c$fyNQ`^K*h1pwh1tY;x&)QkbG#}ui4={ga){FC?M>4K2`^sXF1M7lCZ@h7 zv-xvJ+DH#dqR+~F+IvmIfM+|sZNSq|FVpAReT)c&wOfvkPn2^Lyqc{k6OaA?&~U{d z!yq5rSD9PqSmdSa&wR7=W(ih6YMr~Z04J_#m&%38fn5dwU*}bbb(gtL$TL3Y=3CzD zx*+QC2>1QP#=WS@bX}V zkW_d(tD}@t9#x^dtph4SPPDp1lQt-lS%p4?>)Ty7dcRG=_vnxu(T&)^OmozF_Cyou zwUh8yx{`#%qM_n#h$U$73?~>bKV%YsH!n&KbgD58pa8MgQm04_BNOK1WU|=YOArC! zLr7^$u9hL}9!&2tyc`Hl_QCCxv%nON*gm77-8RwC8nmV~R6>eg!<7i);kN$XJWF~6 zl&_|9E%2`C${Ev;TZ!Sir1F$TH^J2{>XlTeU6({i z@iQK=qykz2E$Xj_0U6uF`{%fhy3za@b3d&&q@4h@v#6q@DX5^e>Ir= z8&OcD$@=dH(l1rA9Xy3<7!Xa=gBzeKFaSnc<#V)3}CSGDJj} zs5OcL(VyGX?ppF)Mv~3*4b>|XgGYJF#B^=;h~i*e=vf|p;aF9DlPLnC{wBX`yYM4p zrMyXvz2H&-n{OtP7%Acx+$$@ZdO|xodq&CD1f)-*kB$!avz!VCxx@q(03K}=(N9!1 zO?W^`;Emb7si`cX)^2%cDFwKuqN5jaGO^0Nb&PkON0bs_r>xP1O`KfA{kGiZBr8G~&Cc6h_V++(__H|@MkAH;C;Vo_w)a6m*L z=7rbVE+pDpY75=lz?GZ9C732jGo8d#ut*(fCqkZ^$8#2c9z*+>Qns1Uh z=(mVkV$c1uG}os*Ha^=H>vGvh0f{;XfDz6Q2|8g$YV6y6X7`6{fFj;1j&_xT!H4O6 z3~%htYu%MW!^~j&7K7rw*~)-eYJLZn^h*TSoRAn~@NoH~UWRuce}wb>d;iX!Cywy~ zGasye{Pl0*i!Z)_@hAA+@BI)jqv7S{9Yo#((U__kI*-_-+-(gOejN%Z3x_YB;&=C0 z6{ks48wjzUOIq7PgCiu@MaPR_CC7WuF&s&+A`;wWavLCKgOdXUQrR}IYbmmxrxuE+ zH!81|5UqQlw55$km)u`(xujO-(t@OI%Yk4jWQe_R26)HsmmdGDr-`BB)(RhZ0Kx{v ziPnIJCC$^Dw66`qAN|8Wji39u2fp|H@8Ore|B5f4is3a?G&RaM`GIZHHnQPHMKM3b zli(Y8;Dmn@HKvYiblmduG$y&B?7$o%4hLUCZ-9Z!(q~0^ljg z8`wR`p205kP)x2|p_F;0uSi7D;HzJ3`9+>!ziV%|KWCfN?wH!;$8f@1nO7w?IjQaM z1Hy7I-s1Z?uM-b`)M39*R8#AUWZy5JDrcPPBGlj1Hhx z@uWIk^2a_owD1nS)#!SHb`$_Iog5g%!j)mLJ#W2j7<(_+$KcvjRt)1D2)I725XMO5~qS;n!v85N?>A4x~i}}#=rsK zsZaOx+J~n4q^`jRU{?(^2n(~$Z}0LnlyfTyTge+?%kvW+MKAj_8Ta^KysKa;SnT^ae!kpa)$pchgw+^WYDsTOC9?dHHh=t!PQH~Uh{z_lodxi z@cR0?)kwW+rmVs8cQQ3_czcY4kjFk8;n?(7kgsCG zOFfr{JGhU;Ex`NbZDPJrAK$ zy5nIeV_i~4;!;E-kYKHm^Vt-u-zz0Q6w}+JBpG=j<*asxLtHw&k&I;TofeX2SB5uW z+`1oN=D1Ad_17lkf_M2|m~DIhE;FVhv2uLI#JY_9J-!1&d0-?CwOqlQ8SIige32`%q0-w$)G9b|hmZ6g(`ak>^7*CH@Uap$PN>G`CzLi-#dI{#~|J&p7@Bqju zYei33INa8%Aps_2x+mz-4>#R%dXc=4+GV=e6lfGH`&O&Y8xjcIz`A(DsLM0A!{;eg zP!y6s5ViguHO#3vj*jCvssWrbYZ)@9;)yGojRpZ>L?hkNL+a!2Wr9q4_vdmp#&zkP zUS&SX&EfIB6`tZ};T}%-Rz3}x>q*w=#9S8D{$)%l&XQVm_oOs z*T!Yah4b=l>KNSvB&T4Sgxrh+;Tw%2dCFvk*sByRGK03WspU-uyEf$h!FKBCG(gm$ za@HNcw#yp{(%j?AF+6G99X_xHI=>AIuA!eUf5<*~lBT)#4wus{b$z*@y%w9c|cVP-rycjzh`g5dZj9+ zbI_ZTLf=05kk>tse4|cg@N{cjq-2YzD2UgMt$D3w(Ogmb1S88!OJT#ed-L&lptp{9 z&1H?93}1ucI2!1s>>{}>^T#5g7Mt=Y2BOp{yni9n1(nCj&yEC=M9q{zHZcve31lVOW?{^KcZ)j(0D}ET)i|10r`bC*95c`$hqj+U-_>pg!3R9s9fj zVctTDp|OhfSIje}-r!67h`a#_xnQKakG^SpX9aZiE%lz^t7{7bbdO2elHs)*IViV6 z=Xu6zd@DG})#nZDu#ISj`~bbstyjb11gNng!yW6rr%{*AHwt|T58dwR+6%#4_d5j< zVDZaRXeGQ$pi#4NzLD}o>eAaYG7!&BHi;8XcR~-W{|6)F+BcJlz*-kZY;;+g0% zElxSz2L%qn09(Qz4;tm+UK&!^_%{oSTfSwj%B2aZtskm-8{~> z%^L%~aXn{EB5N_F|51-pkA@&)B-r6IBn%$zdF0V?Jzqh6VDgtZKKTf}e+%djObFh8 z`5xc}>uiVp+@QpUyTb&I6f(#0M zvp}V~*qBw|S zc`$U^{~Qj@FK!dRoLcRk9BAk@`NQC@r5#<#*>mdF{cZpS#`1r}|1Ffr(f|M;07*na zRMiZXi;Jl-Fy-8|xD7~2SOpaN7s0i@?lm!L#6WLofxDgOTo*-5;~FRkA~E@N6G7!a zaf`rHTapir!<5-^-#J-T6^9R~OJ;lnD3xxl?1v!lm~LPCx+byjqg!#DM2W-rtB%tk}2DDeaPJ~ijzxfXr%S~*bA|2l^|`0p-Z zX6=#r;gmqv;bybO>>DCA&+UTvS9=DzC<9yFlM%?wAY7%PdYAa@6GDq%+r2Q_b-J=? z&y{`Ca2UlDxmD{dbK;=;+T-|DeXB#Vj-(b6mocf(l3NY zg#ymdNmYftp7mVi)KMjHuv^Hqn!35W-jR-8SrPu6%;yE>C3SuDV;ShLUDv*4L3CPF zAXxZloJQEkDBppI)KoVMlazQQF+UnL+nvOHo_l=Gh`jT*2MPF>3lRF)*u8<4xi%Q-BU!Q(^2hCSb{*>x?qoAqbb; z{F{}PC05ia-^{-Wz|||hiwyo2|E#wOEZ7wmDgCky`@hTC=JboWwHUUDAS182jfjTg z8mtiU+F)5w@wTDkUWhv0-ro_K9@1H3b6uamz-gKP>3{X-@#X6)M(_B=fAUYoc6@Ek z1ZzvVw*OQi$>pQG=FPX1TeUp@Tr#d`)(g|@xrPK%hG;%7oAj3lh~!SG-K1iz52ulx zXCzp<=S0=B&d3z>x@7AV@?$2(HQlU_$YMcf?|w5lH)vyxlaNVetmp7VYc#4FAcxlb zf>Lex^7O0{(N}s}Ey!iN)R2_x4%`d&J;q@7#AbX;MhxslbOIp0lA;&S)C`zF;;CEx zyj-5Z<(YJ^Ys-5opd)Qli13K|EMXDb#@YuYj&|OMT^3V$fdxU2%jQ7&TrdSu(-kHy zWc4YdR|QN0H&4w^^2h_qJTDEuU4#uDaoc1h*mpTb_sq z=mu3!v}6yU25gcDjY8GigUI)2w#OnDq{7VQKD%`AjvZckB`L{bGRKK0HdEbzZINf- zMX?un9i9uL^9>Cy!e|AC)(C733h~Z(u1hqz_lsPo8+D7zi0s(m5qS_O`qq>S9St*s z;5ae|l%Pbut|Y>YMx(tc@F_ZW3)#~y0o(~&xuN3GP$~;19LHnP_6*?GF;!u52aF`* zy><6vQR%FGOTe@y-g(#%_xm;k4irhRgMYSMhjCsuGYEB#O`RYbl{>>F(bl&*b8K99Jw77D140^Dv9m9dky;Nn4;lZ zl#)F=Pi&nZ?#=Tle9D9pT;t7IG@#KWv_2xJ^QgOE-?;7>Sk(l|RfU)X0`3_`U-hpk z>QM;Hnk{8#>G0KmWgul#BJ#J7HY+aSp;$M8PA^pO{_4{fhXpK;M^buY^3BTwOWPfnF(Gv~6hRmD4((X`q?*>$yK_jS z!ym|go?;{BDo2jgHi*qT=}!9#$x-uyc$Z0M2IBgix4_q^rNF2=hS}>05A;QC!uFxk z7{`iah_kM>!#5CPWu~bpS~O0^UOSH3mM)*K7tX_nj z#k-Hcj&D-O_4)7Ov(G-qZ~WE|@!g;OS&*IUb5gkFCB7rt;6|}tFR`Ihnz?-T)RV#- za)7pgW4di(G&Z@!No5_?n5*TsnW`bV5vRe6a+|@q(G=zLv}(cCz$LbQ4Xw2B$?Sk2FLqX_HVaOY>k{m zmZq8FU@j>u)NrIpslmhMxW(l>^#dL4%>*ANuA@0Jw)T2xw??ValID50*6Iu6(txk^ z_Y7G^ni!$!e<2*4QlnO$r8F1kB-S!nJ~CD^@8B)IIuB4lHY0ei2}+s8Y-vl))a$RD zQ?VAL1(v5C%zI*FJ!bElkL8^KNr>&iIVSlbc8mZdO1n5ZRaAXChf7MRAx&JEsUxEv?L zjcCeJdKz zpE;4wHRzGq0dM-45=k3UyTm2OL=$0*PdQlm-DnGkQ~!QT24ad64QL#JeJ+8>-&3P8 zZ`>=9JHZC#?p?HYpe4a+yNpwQIMbw?bVQ|kclSnF;If1UZ`N}YdZ`D5`W6Tks7H~n zpsMJjWAsO1qHmk(@QCSGm|@*;?-Ml+m_~>HeyJvC7%)+YO;~uv(n|0Myv7NjM0G!j}-{)d^U0E+erE9G{vc_K*~m`q$Avx5q~?UxPUTF zH57|XpVJ${#Aw4ju<=qWau<_tf7D!~4^T;MM(@zpaK?ayG$9RKlg8sXNk6yG=3U5(ve{+y=^N3{lVl+EM& z4#M)eGgmwi`{qoh`UD#kKbIT$m2iU$jnSY=m}G#gd&2Sd3slrX3f`!>1eW}J(c6HC zk;))TnKiUFyvE*i?Vryzui7viV}KgtI?sY2eD62DkAMF^`Huhq|M1WMgZN{AFv=NJhT{IS-cyzH7z_CI)OpQW>EJ@I&WZvJw(1Sm$XwOuQHp!x5Pt*R8wcW z-zMm9Ijr5|9}b(kk=OqP}TSi^b>R(z@p4Le+o}aTTOnbyLI0{Eo)( z=O70Kdqj-sfpC{^h(% znd7;sxD7TF%23Z+N%s9L9|>b&dgFESts;}%*a7RE@#a=GscU17Trb_05uQzz#?ory%Dc>Q=IKSGgFX;e~x6q^20`z^Uk~!b@c(TXd}W z@J=^rG0Jzk&dLkXdU+^(AZ7|!TSj)ZJK`~4AYP{Al(%K5VaZ0U-46f!YgF#RwppN* z@hk{C(+uhzNJxl6lltbs*(E2L7+x>_mMUCYZ}}UDAQ}U@!Dz1uBu()LXBW?UWe}5Eb%!&wEnU$_wDgJ(*EF@O1q>$H6PQF6#Py zn4mg?kh7*SD>yASdD~XXL_x9j%x`FcIo6hP2Z)GjH4OP;tw~;Z;9_&Hed9BPT_1$IO(*C^phA2QPF<_C}diaIahaZ460K3$iN%o7*vtL{%{}Khn zH80F-;tU)O-MSl!`AGd#OYaZ}wgI_MiEi|wY~&Z`Ut=f*|h z%g^Q1XKi887zZD9KIHkT>cZfwDL-iQNU6B&)+BD;hPgI zU)a87ELxHm^b`_Zjpuj~tZc(*Q<=+qV_fQuYI!h1GCOs8u@clY7H>9X8s>bzq%FEo zv{S@Q@#c+8-buZ8IM`8(n3x7+Q{M=BL*SmQ-g|6rXoFsCgwNZC?Yad%PSv%gi;cG{ zAPBG1H+YErzvufW{^S4L^OpX=PyH1B(O>vSoKj_ud(H@n$K!$52-3aDmU_oVCh?(O zdn;FWdAVL%8`CU^L=-w`ZI|9`h5^NSK5<2!SE?EI!1MZRTX!;C=C-f}`~{`VfOwF0 zZmXFXr<^w=cb)Y*7k;>{$$S3a4Dv3Cq*!TN5>L z`a3noaA`9#LyT%j=bq8FpfPaicuK%4qjI~?9Fgr_)6pNeEXZwHMCxi{B?ylBd`Une zyfIfC$ALx;>`8K1vrxpOA}5p!?QnmY@oG{j@+UJ(=N3O=UO%w2W@Fn)eEKu=j4y}kzdb7}?7 z?%UZ^g0$Xnv4@do8+N>SZ8G)Y_jB(sQT*6Xe+OUM#23H&InF8gfBxF{@ZIlz7bAy= zLBFM_1rw&!L~pSUHqB|qn!(%=*%9B9U>2C9HC~D6A*ZN%m(tD|!qgkHCT4L5B1nuKu_CFCet%D_Er{tcgO zrViCii`}39{d#)d!{nr$%_8O9{XX`UlWK@NJY)v>$$;LD;Qjl?AipQKMg*xUn?7aO zR7lZ{;-zwhg|Bp};fkCW5-+~IppW8}R}rDmY8r_M+_{pJEhg`7{`KEs9EY!EXOOtk z_Y~e5|7SU(U1Y+hy7NvQTb;Q2lom;3c5zPfHbM{6N>C>@=#-jN^=(q+&kkyiUW#!XAR6d>J^$zR8nBt>o04tV(pz_8j!b`s z15V=GxWqR17?|(}GBcN{#DuZ7!=BATDj3YM@w!v%Jg>~BzkG2$H#rd>W1#oL31KSb z)hQ4PJG{jwZE?YK8kns@bN#}6(pJ1IDO=UDnVerD}7YtKg=PIPvo5nl(J1&uGkh!6GCEz1N(} zeH=tTM|`XmMh4 z5RQgw$QUGWM7k=HUps@~nNxj=XQTCAIP^VU=DJSwKD;rL3s;7PTF{f(0&^ZzT+8gp zP}M|(l-O}@&1Ft+)IaBW;y8|?4{|hBZ>eqhswDiTytb)kX;czzgsgCk0glgQ&k<55 z;#7ezQwp{~b@u0~I5zcCv-{XhR-^KCr4h+Gk-}*Kff*=0y zhY%C|@^AkTfAA+?Tv0JUFN!h&7|Io_o|$F-4D^s4g-XI)hQ>Xmd~qfx;Wf_nj@;aO zbFpZiT=k3pnXRlKW{MWuQi?$Z8b!k%p8q)aJ9j@TYy@%HZgutET(yYq@F8prAg~70 z7SNHGe#G$Qtf9C>$goBeUr-r~K`YI8lf42aXy)^?MXZgiOYfkE4ynvDf-*vM%L3*EjK;S{EK z-%9j?L--^!HM4aYv_;;bJQQRzP{(SSV+DN0M3q1_>8`}%)LDw&wmq${EtE-2C^vJv zo9z;25L>X29T+V%ZUwfspqKTA*O;hy&=zmfhjPQ9#h(e%f=49EH4E6>mQ}$k29?B~ z^VU2$qMH(L90!A6vTZY*t|@D3M)%3D$OQ2~i~pYlwM@xe9@Y-e@Q56T#ES2i-5A|3 z;&={JJwUIvN@kFG!kQCyQu30&i+ktwZe9+*kezn(y7{^1O}D7w{p*)CnX;Gyri`!m zQ8@<|iSVg&wRz$Be1<8KK(@A4rUVL;xx+goa!dq-ln*%+BiFT4jlbyfht&<36!Ja=8!ro+cZKWYUuDcQ{oZw1^a-bWM* z?DReAKK06^_S+Oa8#oE%bbPk{JNg!7Y{lj-v6AzO;(H?Sgqs|4Zp~Fp{ihVd-^kGW zQF!g^a>8ByJ)eE~B}jpnmzR>rHft67+9KF_m&6TjP$NjUD&SSUDCOn@10n;`OF)eC zob@?ZCQeMe+vx7c6TyUnBX_Hr)B1SO@<%lI0Lu&luJ6=i1KeP#S0un&3yDs{>#M9G zNs;a>q^m9o^yXLN=XZGt$RL+Gl6Qv^g_NAtFpi*CUQ&(!I-jYUOUv9CZf-+NOxO>p8)bpQn(*Ka?MDP{xCd_T zn;E^!wJQidwyk?Tmv`KR`qqUk@};bNHu44qp6Zynfis9A^O3R9Fa^}_HAXhJ?&aV& z>KC~Y0mtx0#rE+^>P8d|EvV6;Jd_%TOYoAYQyC^SuS zUO;9EvQ?ev*^mylL16Ej1ywOrD%2tlCEjI@0ZeY#bSv~PopJv*=y`4A+BM|XiBPxL z=6%sP)189jIcP5Zmh;tpyy3~W^xVc!47?4$n-AC}@&rfV*FEOts!gJAm>nR|;`~RS zcsw5X%=er&ELk){LIhbqwx~o<5@$S#u@+O z=e0LFDGj9!fWV-P5J>W_yB{m|!2t<=?{ks(=-$u}hx6%e78Eb_QbNw&4sdUvmxgP; zk7sv*W%jzjJ}@}N{X=^NxN zhbnVnW%`{qV&Kj_^1dPlg5klnZ~Z-WKm{v5iC@TUf>`tNPQ1(RpCe!kj>w)<080Gk zYGPCzb(!H}%XCRM4^Nu+4Bp`~x7b8%6HJSVOyeT&r5A{r8&yr0hH`Hblf31d7Amt{ zl9VW>yWWZVAvDbcd^N-7;`>Z`RsPwv*-kG+l1O+nt%;RfjHm^!QMSSv=xDx1j_sbn zB|O+a1NNfC585Qo>5|TEEAx~A&Dj1lYbE*Fi8LvNNuWR*%j-~Uc?o`=ZFEKT6!cT2 zvN> zVIJg^h?rtNU)@s^#bz}eNh9h5WIhx~J$Y@W_WY{mxen(kbx~%1i>mu+bi+RPwtNlw z8Kf*WX;MbMt!XqsXlsL&nEiN{diT7Dq|mhRua((4dN&&K zmje@Wn+9Ijwq;qr-Sf%=d{uHy>tPIx%J9h=A}tKPjbi91`)A&K-{kmR0yr&*F^Y z22g{NPjtTuAX2aZb)Uli*X@Or$%-Us+@Nwr+{Geqy{&yJEHj5=+wYopBqhXyJX*l& zy|@o(n0iU+-So*7K3`4IjLa&v8r1A)_MIr(V;EYhmge=B*$U95*w7}XJ)tVD)(x^D z``|gV;>tsJx%X^Dy)$ytqmkzm9$dpL@~+o2L6o~m<>ejpdIby^ zo!wuQ!_)A|=J~Z~x*^34Dr?J44KH;-Du%oUxknSM=UumFEC$2mzf1YxV#_S~9*|ol zn8>B!MBpPpDCp5-_mD&0&&{I^uk~XMn&)Qlq+nBADjW@K56N-No*Y!H;xG)NS}c?j zBnRh|yW{xeLgi&4xgES^d?`RsjK&T^As=M9vaN*&DpY6bVfv~AxeSxc9|ZG}qSAzu zf{|-fpOE=VZH$}(EIul8L+ga=JOK)6-&{E3G>c}(Y1o3e;^MZT4OP-F6UdfSPrd@u zM9fumzs(hBoGJH?=+>ZanLEA9^D(h<3|jjA++WQ%U$g%T)F-tecnA*+zUzBk$wN$|bAN2+?u zm{Bt{#JadGnvdv(W>KVGZ#F4WkY-{3R#R3>j28wjH{n9Rs);F2a@QQWrNe5J22p3w4Rh5z-Xh!Fq)AOJ~3K~ziOQjDBD zwulIz2=BzveCWY50AWH4 zs*^_xaL!lb-WT*oe;-WLzr}-%G46&1& zGypCd^uW;ujDh#>Pj6DmF}|(EJKIA_@-)8;$zdA)r%a4KaEv2pRnsL?D!5{^!a?oI zi}_NCAWfh>2IP4~W0xj#)TS|;pq;3S3`|$wzQa(@TY6DdS8+4?1Ap@8|AE?g>`iMG zK!I~s^Y`lY^%eia|MZvZnf{0V#Lw4oa`YCYwga*gPN?pk3X0&6Fn zF$=UzLh}}Vky3D9L}WC>+A6lKwxg2D<{89*-)UJ&nV=CniyqFW#8{mQB{Kxs{E?C1z;hWzpEw6x{+= zlh=9ywp=8=oU3n?rhKj!`ZjSQU+M0-Ar?B=7KT7mpM)fqd;d9$oRb|YQ(=e;uO3)v zH;bdbMBfO;^c4JoVZ0_(y@7N|^xS0JZ=13GGA!(M6t#0s5PU;Ygc)}EjeB|=3XvLd ze?JCPfXAb4z=?HXq#-vaJ*|fXL7c?aHu>Z&NLW@@P;?Wn*^dXk0zJt<5|aheNYf{8PC}a^;aOVLx6A+;+-l>wq#%Bozdx^AB6mKEV@&!D;pOFBk$^7qBG^B{ly-4RzY;2u-i<=I$A;uQ&o?jztLEQ5J{=I?_4$O%T>bl& zb|+-!l-{?X5!Oh)nUdIA&nTqQ;Jd$j%2q{2B36qG72|~~klWlF8o7M7hcAvNul#H^ zv@t^38W~%WdS0|8GFKIdfUT7zg@=ndGVnUJ=;t{xdiTOxDHI9K_i$kZ_E2RlJhOlP zx&aCh;m8I?3(RzQ3~JltzL7btXm-XyDV-q^ZyXIPRS}>XliO&VPCK2t*gJp@v#ap# zZxsm=ehi%xESYcTmqZrCM?1=grV$nji_O(msI<}RuFZl#Lu%#QR;TuT{gY4d&;Qf^ zES^P2#f>y(^L}0&ZQuvL`-5A<^w0d`{}jf%lpo8MX{Aw|ia-CPl|yyujI5s#SyC;& zzin_R8d)c;Bxa4B9_YRR0mTLdeQgmONHQvS=Zc&{BOh4oL9;VG!|k3$ggmQ)^qARa z9C0G120aDy@NHpcT%~{dyw38%-mv1)O{(OE*C}QD9q1->y#X^gYZj#_ytD>;D|bkp zd>Fyr-8yDKP-Nz?!ac1R(VVJN4n-_H*B}5r&U$Y`jw8Heaz-Q7G4(2v z<+Z^`c0aF%tW_yMI9c;N;~9Pg=`hZ#W>kZ7$=u1z{JCbmC%HX$e@T!BMT$Jk@jKd- z8mw{9irvmY>%VXHt4k0)15bz?hOliqS2*j6!bAACRn?bXac7rDu}l#LHiu}axr|FM zb02JT>8Y?luM;gcJm`$Cee!k4dzV{3KKcmXV8(m^pMUllR6fVA{pJtwhd%vU_y>Q4 z&JI)Zck@JJzfY4It>hbV%OSNfrp+SZXkk%=-f;=0!?S&4>$#^)HluH7OyMZ|}0l@ju6 zQKvO7a_HuCgmoV=h#2E0bK5tRx%u@CNBAmpV8jkVs2BxihX=&vzhnPf^G)q}p79+e zF*K)ZUYU*K5r@AQBiD7+=Cz7pTuv>DEkKJ*q6DOz*Q-mxqL6BxVVB*)m9xPiY7mHr zD4K6ddj$4ApEC%Y4!21}eG=xTYe%9mUBx)DhhDZe!i(UtJ!Io;tu*Z%5?q0}+(Z4W zO7ptJlz6{H)f^!`&4&lZUSgT$uqd}oeu>XGUqTcU(qX^%c+2P6vwbRPEg=*kd(LJe z8|(bvQZfWHP;4r4TH2^V*$M_T4Y2T$P7N3fOTb_}kj zY#&(HxjH(~1o}Ed64oMjNzwbj#1)%nsbYSbV$g`Y4yzfK<1ma>yo1R z=4Y4-VGb`T$8$-&Vafzqc(M-PNvQb7cV3D%4u@B~2gb`gOanT99dtY}yW+FYKEq%C z_20yIzVjXY*m#GjYd16=FDthQh)v(hWlM@M*Zq@V?xgb0z>cSsFl{w45R3bq)M86V zTWGay>Y{d|E&j=hP$UN)%_bSTT@pnG z1>Ge=ins5=B^ytOwD5`q0WJRgEUH^0kXU7%6on}>SWH&vU&upM)#V?pVf0=)_mm-) zcZ}BLxQJow*xnZ!9()_cN=>-3;0wJv_4PUUqsjhq!zcFVdDgbpo87~I4_h?AY?9`j zCA~cO*l?*H2uLC2D@mxuR8_oj>}_}^g1F9@``Rw)>8SFgiTP(`k+a}=IE|Vki=**R zG<{?L4!C(jxOzB3OX$>b9>KrVOak2U1Nhwifo?J&f%`*_2M$6igG0?jgi%E;XjMXnO7$h=K$RiSs76 z!ms)okqcDYX*0uhY7{I|9!jNX%tdhpDM-bD!#BE}7!tob#ec6{6I*HV`|o=kFGZwM zx^G^HM)(K?siv_F3%lpR+^4)P8YV8#L*}|sXwR9uKl1{xH8>z!Z{f?t{;ck2vc{l; ztks3tnr8)pEF^4FXKfBk_Gzt4uFU-kijoQ^p=-Unv7v7b7C8JC1+Jet>0#+b{}K`C zdE)As1s7Z3+S)If+fHkIOKxQDa79YITWm1?Fu3+SUyDNP!+?+^W5`Ci&ka_d=wtxcVz=k5)#N}f_3pS1O6X=b> z2jlrX<9rcF3xxp>Sb$GjV4&r^U@0Z0h8E3*#`CyBLGK9k{cPIllm%D_>9!h`uWYBf z>INFR=UZt>;JNjPe)NqUn%4p?<3kkHe2YpcSbB4a$R5!G5cEo9w3UaK>+fkeCA?nd zgSru$ru=J?!nc$-zV&o}u+);Ieq() z#A5CT+L2^fhdCH^bQ?I#ha;bVc7Z$L_}Vu>r{et&e;?ofozL<0pZ?UzY_S=$2)Zr5 zTu}6wBk!$+-zo{fxHnECAVVI!zCb6QT)@B-FsP`2y>d&rl-8u6)3J`HyepY?IdT!ct9K` zri)JL-#wMW!gI}1>Zj#ovI>ltE_k0L5 zLu47;(Y)||3`dRT^lJvy#6mP_v5iZ)!k*#en~^In*fe@7(EAGNYxjw@W*}xDSWWfj z5uwgL1r3h_rItDa29*lMPtDil8G`E@s<{=79thexR|x0&S-fb@^y_NKc4?O>u5(tA z?CVR^Hjc>YXelMwbGZs(ZFggHd0|9A0VzlwuOz*(^wka17PYVCi54cznQ#JH%~C-e z!sN<`&{p*epeQ<`_2*V$5(jX8ClnX5smlT2O9>Cbj0@i}%MljbxN;+QIqa?}_H^qV zPtNszdN}G>Q`+zpjxkmv0d?O6kF_a@Cech`Bb!4n3Z_IOk*IvpTS2-@MSE+WQ;{LU zDsPB6TpI48xyAFhg9UmJZCY<2ZY4MJ+>FCLW#TfSiVkQlk%XzsEu-KbQCJM_%QNu? zHw>Wg^iyU?G~&4-!Bbu=G*4B`82&a8hAcWFA}c+0K92@-y-94vYOA7gxAUa zWG>V0$KevC>xzJ2D=aTF)sRHtAO(S;kKs6VGn{(DSYz7h#ljVhu)uH}Tn$8qOt;OC zNio^)SXnH@UO2ggQ9m$T6A?yx6wS{wmv*4dg-3X93$GtVlaP5q*x3IaKDF|uyipd+ z>ni%916X1+0tY}bx00ONhK^2fQ8v2ni9i)ltFetbA^dFasoR=|#wF)O@8}d#_Mo^G zj#?y!pAyBlp>^L%I`I}asW?J9Y)KSscR8|11lZDtaRiP_zu%)>mU2Tk5}7w|Jv@N| zimgmG+bO}GmwT0Z>ri%|=H7#q^9bsxjjk&)IPdaG>UWQadLs>&D~?dc zP1CAzyyjN-mz8Ypf^vX~audb0P}(6w&AindXk`ADd!)zOl){JeMeg15RWtu@Mr}eN z#e-hUv&n$+ibY8U6>GqoES}3oC4pU=EQid^IsM+KVRv6(tr5zNP#P(Fwi-CJ0_>Dm zgtu*nasgU{O3^prx)ww7#$L0NIwg-IkTj(}x9M62rm2*~k*L?UrMKpq`)h>pvLH&K!)75gypMKnWuMTWeaFXO_aoClqrqUfO+hsuQdN^5f%v?BqY(fB}V(R z;^u92T4EdiLaA(pt%Zc6FWOjJlN=3-PW`jzEU9Ty!$^JFpA#4g?_1`-WWJ4=zwEi4 z$t_Sm8)jUaJJU^qkXWr{M!CX&$tirTsfqaXAN(Q!rr)3%OzTVwMVlO zliB_Isvu!n8^X+>ndTdu=ExolqmZKoM1x|J9kRp55(5&Ksyu>LAD9deEuL`(CEUjX56b~PsG!&I zjubvu{bKYXAmp02NQxN)8eG1SQvyWJnj*h@c>xjddR|2fbuUie^7H!g?g41kyzrLA zL$Q5~VO1e}tspvTUZANcgk@d4oZcqEyO$R{pU)^JSFrCI;>_^j1yxQqppBVh=Hut? zf!IZy8E;ogUqzS8cWsRBfRUW;CMG>4K1YXM7sfICo>9Yjoi){05^sWa!7LI5J*Nch zW`-Zk?=ucOokgz6{=V$@ni=28j$7VP4qYbPi`pZH#p1cm0`T>ku?azVmphK(`7RPM z8++lF;ht_dXB;C5lT!C+&+IUnaj)&MC|27NZau!cd6%R`9djHDl9O^jj?5q921FL0 z#kM15ei_M;iW*bjD4ShS<+{t6w$Bd|&xLN%xR9?0Dbei^4qKY@iUG-t7=T`d>l9s* z?AWU1MoF*fHRPK-HI1!N4urg!2=Eu%_HMXEAgvoM$!yoNYMK_bUjMu^5H+OD&Co^* z3x(A%EQg}EVME*l+!#2co>5-_%-GuJ#;mh%#7sT6QZ>A@>hy<1xVMekDmr7hM}Yd4 zj>+pH<&M$Sm0Aj%47~do__5;!-~Wx@!1a5Izw!Ow#vl0Rz^9*n3Y#ay6g>ip&8~`w zajCO7q$yKK;(2W$ix!&!5lL#a55{^xnX$H0seB_~1*EGuFwOFQri2Q`{ThDGRvCa%FQghHYH-tKDcI@19O^CiYITn* z3aMRhNBw+EbQ`K!oDrDrPZo_Frpy`{VX{Iam!-v&5}j^&1--3s$(*jVO^%ZfPi7j` zp~wttE~rS8Ht}6HFy#bk-$Df)V`vhSrOpxhSNlIFFEuxVAyCf{10N%{7y1TTka|`x zG6X)Y;4R3|b1?Y-W9#j9ElH9qJu`Fn*eA32HzQEG6$YGcHoK)~LU}5QwBGTdf+RlLF@Ir2!7j z!rOIAY~1sE$zazwFwr{?U^dc>67{#$onL_A zto>1NGNkw8#>>9zl-PC|BTY7m;t!mP7x|+%blrdghw-mN`%Px+aoU zrHk4WpG(4$Zc6mK9(iu0nk8}Aj`Pw$FEx=X&kpsc$3U?CiaGJTf}-e4#_00x{+^Hw zc%c%-ES1xB61tqR61+DMH^B|k@+EKFU+TJj+xcSxEJ6d&;LxrD$;HAaAd&kpW5CC$}>V?~-WA>OQ61XZoVwws}djWkounQwI)mkg(LcS|d+S$SF3oU$hTZD_EagC`MjZ}l0_RG-q% zP1amXpF~ZnVzk$N%dDWSYUp(q`C9T`??+8y_DQ;4Qnn3{s=OtF5|)e0w^DM1>mJMr zC-K`OGOCmDgKQ-Ks*dTRxSvG$d zu5ln;!&dE(U}rHuW!5H+-AGBG?07y0S${$4)rm;CzMuQI>iGQR$e=nDDe*I(rS`Tzb+*7z#_ z%hxNj+FDu$)T2n$rrEGkNt5?NPfDcSXbxK5<7}cm5e8w~3rp`@0A%*uQ8IZxQM)<9`ttnYc!AbIW~{MuO%;^DMNVQQHhP?a zf6GDN0lz(^wkYK16l?pw0Yj2;WA^eK^fEbAtq??o%cLooWs$L?tJ9 zghb>&w;psGlkr%|ySt2WW$;$%{uvN#JL}?oKPQpLg+pF{Z!KwNc*$xi&*F4kwW)j% z-l(S*6YYjow{M?<7EgGSPe90enntY(XiC;nDka$TNJ$49;1ZNP66P@-I&pk=M7b|_ zS@*2pcOBD>Dq(}$`{^Q_$s6a^?WW_AUvr7>@Z!z znq1eb4(RmC0dv|c)4b6PxA2WHSA7@ktvb4RA!t0yPqKDj|j4%*GUl z2^zlTD^1Osy8HEgNq=>@EImp2oJbX9pRXIf7a`3_iR9xN;r(i-@Wj& z?%$=4E_NlRmrZ3}q$yFmeMz)EQ1O*gnb+$j+J|&ek?(IYYjP_G9SKaiZwwW}uyvU* z{N{zUe3c=Y(z7W2)E;!0?)N`8=>brrORN9@AOJ~3K~x#@Zsg7Kthw)ZA)(bX9Cn6( zn)u}=djefNMymk8r2ini(c}Qks0_Ul2r+Y@p)=QyE^FpFvUp}QU#Mly z3XQqidS=;07KM~+)wcZbVG^&Lzx&8$1)+?NE!4sU*IbVcxD*V+T0G^Eo@z^7Ig~K? zV*_$3VN*H|a?%lyO%LT6bjpB9Vy`_i6Ue$|FfF8FDF?~{(~K;bI9$3R5n*FngD*|! z0t;dm+h$vGc;5*_Na|<;JJcb`a+QDh`~M{W{r~!JIh^`_=li7T9gTK2E1UD}iF!J~;ny7SmSd-l9^&RE+XTUG7ojp`a3=CiUkO7I@@`>LGFah{% zUayb3w>dPVBsm8PmoyvV0coEDzT<(Y68I2Fl z)!ex6Et&w7Ldm0Qt8B$Hiz)x!ge2IDZd~U}V@6G@g0}ZoKHRPbBB?z>!k6TB>fCCw znKR4iiog%=nq!&Px-^OU4EJ_)RF)MtCsi}St89)fnqgxSQm~nbkoU~9xGTNmd0s0# z;&I2rt8+H@9k}+ihQVJB1rmqYcSlZ_<3oH9kZ?ME>!A`;cEh z{!Q91zsPU@)8+sEfB%Qvf3Nb7|M-uxBA>5I-?M#br;8^b_jZI>N~y(U7fLQQ0IPZc|+LFUbO-HIsm^M#1s7-qJW33Q8FR z=(16|u8|$QJ@vVqe5KTFfdInp6J(}?KcBLgr2SYk@kq1dSr9kt(Dp*NToYiawK@-m zF*+nXUJ@+>kj2n_H*3-@@yg|51D%93oczyZZ&)gWz#w}_&lWFYfuGB?m&fHaS{o+L z9UG}!O-mJGCRpLi)AKRf$bW{K_(m#E+6tNL!U>K#{R#2dsGSGRHtYGrE5HUkNqyO@ zP0s)^HLZ0z|I9u*NLIQ%0QfmuZ`CZtfrSkZ#1TX#qSK?WDOT95to4Zq6Oi-l2C7#< zh@!@F70=w*1vII&oW_kY@cmgG5G%5Z>!XWUZks|Wb!bJ*%fDt8S-pvx$eOpj@9*+n zGaEF#H-ha}YbihKM*!nJZ^448p2gSoQ5)Efzn2B#6p4_p<0V(`a*ZLqnKXD4gFXi| z($@3c6-}SRuRs5SxCIr_jaE(>$lBgU$X^(!ThEIrLWlRIEeNy@mHqo-NWtgvG{v*% zH5jI~Wgb)-_#pw)L<0vKl@NUXdGWU1q>Y|oe()J^kg$&5Nz}y`CsFx~t-0jB@7(mQ zJ)~$h;Kg+KiUL$mBC``PBdwK*m-5y;52emsBjOq8-O!`ysAvWO;mmWI>RBj#TpuYb zj!ZQlkV&UU4jxsLk^&_qF#V#5nl@w_rF3?Ih9Jl7gG05g*zl-va zljRopz9&dZ`TJPQGdCpgxvfVdX13Gh*MxkRY1-v+=SMh0R$1j|lZbpri3d3@U z;}|&g)+)4KbT@gew=MS3En!y{T!4S%d2Iz8NHaMfF$76_Ha82~PEzEo3ee-8taEoq zFmUr(&nTXu1`kvYfqjoc>t2omUG$!zvMJ+5XlVxW z0P!grA#E4{Sc<{vf!#muVXAhx;o#=Bo(Gr2YG`6fvARMTraI+x?S=NgfuE{Qb97RU;cm_l(*J4(-yclivx!9kQ)0xv{j$ zkzrd6UR;e3w}xRvWW)5wKmDIS zU{mW0HUv+a9YqNWznNyV`dk?_OCJb|Lr1nqi#!auDe<|0e9XI@FBu9~uA^gCSaqq_+?{sfSUN z+mzMC(AAncX0ewO%$3uQBc~$5rL~b#MKQ=LbDWip89r0p-$nDJ z(tY%#8O=M{mEDnj&s_B$V zPGj?8+@*6 zn!DH@zMv}^mXyYnvi73bGbp%3wE8^%0wK#;oU`aPYz^meSt;m}i6HldAn_11YM^q8 z*QR2Ofx>ki(1Acus$s*oj`7+qk{S^I`L~}mxCHX7qA#&P?JTrQ!63(ZdiXGBzVqQK zjTs)vn#o3LSelmSz27fv5?RpqK4gsa>7~B|^04EK>p+ArhIgXSHqCdJuP872&yta9 zn2PopH5oR1hI3At-*1s{x%xL|`%FR|8h5W+jYq4L8(u8nMvf)Zg(d9$CHd%9y7 z3{u$h9Sl<$uaUr^-s*W}VkqgNhV$LKFE9?t_cQ7|n zjETvE<7y)TSu3C}Ks?5BqSo>~(*%i!W{{|0`&W(65io25AF$_uPx(K%pKEaJIjF8d z27ODC9#f6{JWWje_WV9q)bpm0AJV^SYI0%IEwVCndW>w2Kt*QwG0$3`Ic)8C7G~wm z#ZwN6;r4}ygI0}Vd?KncUMDly*89#dZb|8!S;Dv0{g&x2SG(k%BLDH{Kg-|!{r@W6 zrp%?%Y~fiz9Z1SD;$_4aJfJyYR1i`Xn;=m<$B%m7Dq2SOYypFXQG?b(fxA@vN8P>n z{`fuey)3ngw(^YX0XX?wC+=YgYVoQ~TRzM5;;xArSPoKWP@5srFx1xV?;})>1!4Ys z@@`RVIh!HO7>fqJcOKX<{qrCGRMS5NY#?+?%t|_g!`&gTV_;-E(y{4nGQQl9J+NzU z9VT80dC$9`5`Bzg)#o*>HB*_9268`|9~J`Ith#IBFQeG$yRdFY>Rs3_;F+tUIfj+% zx^Tz}NG=<-*pN}h=7Po0ij+c?#sxGbUM$?Y)faC2AjnHUKdblsE_p*!lh;Qc`VQ(8 zX>z)9W5Pm(h5l|-l5*0=5MO!8O-Klw#4HBwsysBR`5e6QIf7%4pNDHyeLw+P$}{W4 zqoL62g*i=|Pg&$4IjWoy-EgDkOIE3~TtkIMBnk@WX{Csoc&tmlN2 zpoR<~y%FZ8Rge~Kyr9xF_$1@VhHKRFtn{!)jCHVh878x@7s7ZN9h~LnPkB*$5T;&f?27UcV z2yB>ET2oB!9b289LB!1@|GQC}shnyQRZpo{PUR7-Yalh&DNSV4_iKz@n6hXWNkXLI;-=4V%fN63^e*Ey z3SL4r!nySo5qZ5nQetddCY}w~D&L$R=THMyog3>|c}iq}E1%_nj7`+KZSF-dap z2(}{w&!9TsM$6EYZs-k*7Ol&?JOUs@>DEHaHHMh<3^ApoUnz5f^e}I}Y_=ufKfq9o z!?MmZ+ffKbc_RJDyR+8h8Y7!w*#nJGNy(4x-;e&oiO-K)+iJ?O3AUDilF-0kg1bN8 zzjdexL^Hl&u3KUP(jv%*L#_~mrE936pNp(i0F=a3^5^V59QKsC%8? zo1+Oa)LNBc2+ABALCWwHVd!dB6T?ke)Fb?t&*)ae@GetI&9DJ?knb|cJ)0k{%(w+= zt%2gXVH(_y(|f(9KWMxS(o4l1#y_`)Jx-yrBoUDPZ&xs3}d@n4izD7uSP*tUSEEa z*Q<%PCinZ6@As6S|NSrW>-Q!9`S1QlM23jn;sBY69&+my(%S`SmO(z-G1$jDA{pP) z+t`f~qJb2RGP95r!?@7MAY8o1p{%?2_Dof`SE`~#5Z_RBAaYKbi6!xA`>A`d1Z7hM z*awf{C>zA}ST?YkYt7IUYW*A}SvNrHIBY)wSxUv0(W`Y!_&npwA<6rfKLLjcU99FR zHl;(WMq%fcg#l0v7lAcHA!a*-Q;?~F3!@WLyY32ub)eK9LA2aokoM-=EPCdgD1OfT zaPok5rD;FPqryM4CV^N_zUN&ZL`2fdlrL;);O7q;nKR&yla$A1PIF?K6PKK5J3dQo zy5&Vq9rj^5CEgUlm$7`C&V{S$AHNSiFuYHC@4}9i`3q}Jc)_AH;CZO$zt3Rw3(&ec zy$27PQyde5lIlusr zK%@ds>wsh~hz-jvi)9h|x-K*VT9Z_l^zgNo@=14>d(CWE6_fk=_lDHY(fWpQctP9q z5HLk^wPWEa2f40GF6%V`&wD2SoY6-%#ZKBCn83=!;DY)JeI8R{N831 zETzo`!8zG3|xbrwIHs&+-DkUR%nW>;je7xQaGNnNI6H&G?`XMrp~>1X`2% zo`tb5@QkOQt05b0&ReW$d5%ItwB_b|QTvVefpY2yPY+UW5|iIwdbqen>el4yqXyko z&`GN^o`2RkxT?G(1fg1MGH;Rz_ryF7sgC0Pacow&wW7aA@&1`*f$|-w@;D0Al=@mp zjswZ_4iFCqer(J*g;#{Rb|pF0Yr?ENc;Va0cVx@Y3};U79lo6bx|{7_M9YGm0|ce! zCU$e+zEad;3K)js-bE%HpQYaA>K#AF&gE%#81q|8sd3x#N;ygxr_8S9RzzDCOR={6 zuA^xW*_lLqcN2(#=B4$LOQr{N)$o-=$b~IZ#yQxI;DEw~q41@5kK^vs{WGMDEVcv* z?@D0P*gEj1!JwZ-zzrxD*evZ@EPrsyQe(aE1o?gb*;B#iY zMj&r13@GdR)&Vo%&x=jCcn$x`A6?Nk4O{w^jf3RY&Tzh_@5-^Ik5a>o>nh?O1HXH3 zGCsbfvg-8`agkr&Q{KP+Dqnv3Pcp6ya4}8bfpHs&rr%fkhsAPWp*5^0?K$hd#>SL# zM+|!MUAL0v3BVEXIAoqG6cUeYLTrsq_VOhaK3c;yo(Ip(Qr0=zUZSx3;3ckSRX*8* z_%E#U)1SGq$r{iaJgBO4@cF9AL)~968gAZ|-w$dk1=?OT8>avA&wnV^y|&!;gdh(C z0cCn@1BMyaeke9&2aTPb;Qqgl%mQ4TIT^JlMGwtW9RD}vLw_wdgOaGnq;*YXJ*CNB z0UXHbP);!>$W?mOeoVLx>&yiMtq9ZRIVoBtyL%icf92<2Yt^JAr)`+R zcf*C=pK?8qy1-2A$8b!wTx>~7$r37&ml6xZ)<7Qw0Z=^qCCk-hRberGysP0QtUC2`8@Tm2fQ{-J4Z<&n^Y7)sTszL!7aye==1Y_k^@tQ zG*Eb^Zo8N4Pg_oz>Uo6>gsb*&e_oKiRY6y%TgdDf*muf`C`IE2uaA)j^>XohZCM_v zJbYeSHkE6xV^i0pjqTx4RT;e{Y(>&It<>R%qhU{qnM6KUVUFp1wulW=O-?F31f;K& z#+VqUwUC);N`n?QQx1>_H-nDm&OEnT4PHg2V1A}Y7Gy;d^PagLIR#{MBo(pJY6!s1 z1B)L=DB^r)286b~t~caRsBM{!U?bgoOC&uC>CqWqX;47p<9E=-AguQ zrl5?5yj~Z!V2YeMpjLZIRo1u6h|-2_A8HlDg&H%&T9=ZnifUC8Z#Kce*s*E_Ox4BKt z#;H}tV${Fi4w#ccT~Zq;NRjoEoL|t06I5jFDb3xKGu@&0;j+}F4cp$8DBF@1^Zl$D{KqOE5Gg_SjZz7AS2?~?3u zP=B-0kW_$$=H0;3sXRuaIB)j0m>EYW?5yf#dX7alnp+_WR4KTGwmfGR2GLpnNDT~v zcL4^oR2*@GSY8YK#dB6QiM*qAG-)9|XGRtw$517=W_$<@5g(yPz^`##o2suV@G$+; zKmP$CsgRUZsHoHfXUeX>Nz+ex517bSw{KR7_JIRMU^vc)ar>3*(B&2$6BDx5+7G^} z^PtEHO)o>L;zrMPbRrf5msUiGjV2RPokO{SsVJe8&`wqgygaCLd1?x>C~AfM67_wIbyl`5k~%2$_R>HnfpO2)PjCch9^)M;|h- zEL1Y!G`COmlRczKpR=3RlJ|Y1p~z;yD(5LLCW(~msAaJ)2$3|bwkgBe(h}VW;iF-C zn5`v=R!tE&wkD{GB3HX|g>0wSj5_pIO)n>&ua6gk*u02~9$t;e0~#QlMCe~hqt;K- z5RrMmGXWjN+rGGubuZ*0iVbG01OiaYubcqtR^akQ=m2%}mfMTo8;Z>g(o26r9zyfJ zD{MCp0Hmd@c;u{gNCQ`_!g+5Sm=!6Jm-vD=AylRH0n%O`JVv<&F45&I>h?9+XtL&%d!__&dLG979Jirb#YQW+qBIt%d1)*PN&)$pGpRzoXT#(xgDIB> z@`zf6$p-ND4wLVDxwO&CmsIDWQCc_gT{H>Vl41jPIi-+KFV0#^e*N}a6(a0f8N_Vb zWQC{93R_eMh0@o;6uH+HfF2z_Blmr8Y8cG$hAFQ~ZmNKiBs;CKofsd?<#@8oR&X|=8 zKsdGl3mTw?=}~Y=ozK1?JI0-qUbS{K;`wg&He}v!S$E3omhUErc|07Ltiv0{fA6*n z02Jh_ym0w@|2F`rwm`k%-_0Pj*aO|;|K>SM6~X5`E^GSO{Hi9ffi$~3`vSGl z5wPwkYL)&JHjnw7FOTwU8zpq71eeY7C;C0lS<3uU-nK)Id9US`zln|nZR9{WH=pkQ z1F^W?qu!x-fDD&oIzJ@FpA(%fJ0kvHn%Qel&4!qIye+N&}&>M=wdK1{<4{K59<0 zvfQCDmTa&Y*HTSP(H~C4tvBgK;9QB773>lF$rtgF#Xp*{1NMJ zf8_SCgKzldi}ZzQL$biInMYt)ouqFHRcL-wXM z$vi_seXR^L!#etY-)YXZBgAz1Ha^yLtW_4$H8R&nXs8vzq={59AW$j8FzCqXdBG(| z(vG0;wU!>Nlx!R_v2NvIE{Ee!-CqE8z@3tlvvR+0yP_if}mJ68rdtK_9a ze~*;^DjrhPgb$=dB4!qY)0ukS9~-dvlzX6E(udO$A&V76(IU$%+H_C8CLs97Hn$FO z<~2|rs9D5k*y@l0IZzTqx!p*Ki!}foICbosmbfqx&NC@0|Aoa>2U+o6vx-bZh8H0% zXG1-adBln77z5}8a!cEGj*4L`4Bfk<=?=Bh z#Cy186!r#Fn%c*J;suGyXlhW~gSB|Ycw)uJ# zy4iRgKnQHf38#2aKqC%fSpIoz+KTeoTjhb39|c6OuzVl;#U=?GUp9{Vd2<~#a1_lU zOcGlgzyMp>K+iw}&|{y?R@(n;DoM}+NfFON203;R_f`coDB~lvyuvN zeac1cXf~vp{KPr?<9G4c0k{Oc1m$C&Yy`~I%V!e}HinGtj^g&P$ayl$6D=4(N{IMOK$8JZwmc=z16b?y7((`L z1}bfozmLJ_smkbbzh@4eQd1{a8=`H<`};5Q=bwL(?n}P@^mk%*r;I-)WRn3!PKa2m zJjix{ARO6w0!h4!z^9}lvFiK~oPPvNHOrq(;AvB9qS&nM`hE{82$4wTOrFyUA94Bh z>U;3q_NmH>8-2j0ZW}gxUYoM`t2wDyT~(7yiwbKKI{+<7h~AMU=>gASJwCWn1gu;4 zhN(WFGZ)3TbZ&zV;1AK1yjXAb;EKwzevV^OV^A(`bF+twIVSm-I#2>(pJZ`?mpDG5 zP3@qxrF0@{O2Wxu7GMnqB^OiCZUHZbReS;D1tOYngy|9uQs}`On5fGOD&GXZ3{Z zM(OU{w45v%HayG>GRtkn)qDEBW*Vdy{`^tFR=sXYT^e85=Z2_Uo z=d6!@5b~l1G$%bzu%T7!0=5%qMtI_H*u7c zR%|@7iq0CPne=g?h*5Ez;{hV<|E%tE|3k#3oNRk-op3?^E)XH&9#11b*l@L5>W zgLQuXS?ua=@K^fQI{XgPGs11P4r~r^1zvgCFYsX4*Yqq*X!X^s&H*S&-A!rlW$@L2_SSPH>n9{vEGVi zDG}0a6m2vW86EP^m3V%A!Y;J89b{VD?^fHMLX*nQXDM=*o`KB*X{to16WEh2IFd4b87k1u(b!!PaYPML4&sv*CEeC?CWdf&nRz|23?1w#uUqsM=~ z3q&dM?K$gJC^;xcCD}2L9+d`~VBj8fD0ajc;elF#G|^8%uA`-#b!Qi9$vBnwKcZrC zv*i_=0;gd{e~DFn7m;xRREnH3>J>}El5R*jU@Gb`OmVMgfw2m-B<7jb#E+VT-bepb z0DpcL^DM|l*^w7VkdhtV=QC1(O)?_`_JHUqB`X++HEEG|_C05kDuXgpejYiTq?*B^ z0mhOIaL4Au8i~cattRNOn=y(*3pinv zl#}QTXiJ^BLAy&dDK)gzrpqTx;x>@RL5{JS6!FEKa}{d)TtzZ<+kK_1@1*x(Oy(Yi zN4Mj5Jg0j4iB3luPx_O#Y(Ri4?T}+`&(h9QX|2oaHFj7io`dqC;qMhiwl_#wG9Zk! zx^}@g!F($Er06$_Z5C$!(CP82&CaJRsB`nRNi934gT`YkOuKDD9_1969<3wKiN^oh zLTLsX9LtJB_Q8WCvSKTzJ2?i84tZ;q@;;UE-E4dE%nCl^$hQ*32FL-HfWIk3k&}Z=E626~+XoL& zi!5YZFX`iwd%D~{GsqiRcGFii<0LcXWOO$z<8>9fog^?p#vZ>zjJ za4$+2Ge3~2F{f7}_Q0>Z%L=XS2A{{BH?{NMIDDC)grye`#6u6c?>7J-`yBNG&q&>C zNfO)z6C2B&$rP3I#LJxjo>T$kJ5oeK{yF$u8Qku=B#?Jx&1Cvru@0%gfHI+5WYk~9VLPyzHNZYa+mi?8L(DelK07koNwVA zH0dCC$wo*cq*T!81}3kZ%+EP%gW0+jq$S_&BY^(!6(uz2N?PZfXhaW*q%@EK^S^g` z@rXTNzBiMjSy4^74N5Pl)MlB$pud(87>z;ah9F|u_ud%gm8R*RUDEbr^}1*I*`885 zN8XLYC_x&f^}e?oZBrYU@5llx^uO1ZhH}kNE7_ES8YiD*jXf8s&frQ6|01I3)cdIZU%Lq}!0!m%o)?zI~Hrm;CnIf5`ay_cEG`OHzgX7?x+i zw@LVSKn)h8mXNNZ@e6F%8M;jw_wrdP7&8-F8J^r{M$I@n@khjsWPox7HB(mnDK?@u zJ+aj+tF}OKWjXVnkTyK!C+7s>k+OZj76#V7I|Md=>834-9kxw+Ostn9 zw2cx8k>@t2Lv}?97tO3Jbc`!KK}guq$sWjgIb$A9@I8;He zZl~gg%>jKJWt!7Zl%9A<;F_jHEq!B|IY4qAdG`$@CDjHqvKIAZ%ZZ3u)ROacYvKpx zq{HJAvZaQpp>5SX@W7_zhkIA&$eBl9l6}OMJ#r z6m{g0r0H?OR8BK#haBvbYo^b@i@MX8?{eto9iBV><&hz*;qjm*xrg|~B~@XmLsYCL zP$XP&`bafJPBL0;F*qPF%Wdjf4!YS9%o3Y8zq-=Eeg_F8G*O4`b%~u6h)3j_EHBb^i$oYJUOd#{` zd*&s3y~-nbUDrd$Unb-G7LCZzS~d2&kZ8e39V?r*-Xz2-P+A`Vp68^nfe#@HehVDxf>}FQ1|j z{D;C4-&TS>=1d$p0xFxS!~%OG@=mEB^`@22*Lns)2M0!gxY)62;B$E2>j)Iz@>)_X z*Yxrb1O{pwVVwiK(b^-^>TE6=(uxfOp=rDPuECdO}2Q zPf7CkJ0~0e{_9&*mbBO3h{P>nUDWgKVR(JU4KUz()m?q&t7bC?|JvG(tc{V>Rcr9? z!{ZEChGEF}Y+=G)rgQ#%-fwgGG3Q!va$wvyu4x^ZeXY$=G)}RU#|q3jsYYwLq7Npvr_X@f z8Fq{2ptd0>(G3Pu;BLdEh$=*$#?0IdiKxsKZOB^aM>_8(q+|U?$u>LuP)m=gO)@*R{jhvi;O~3)-omuIWuM&=Zt#u<1)7Ag~VJT!S9j}nit87 z*%CY3D6x>+8>J#ErEip7Q2QK*ydscsFz2enf|8FuMoIx@k`KG(bfUNZWb0FM2MQ38 z^5S`5XB?T;4OcLGL=fb-isaH!JWp)CYPbLm{)y+Fn3T5O zW!2PBbLy;Hwm7UoFn?rOwJcy(tTK#O=0yvHz&fTz`3!4VVbhy75NejZ-|w8{!_XYm za0sO=`S+$nzs&>2^8Zh>avPa6&lNp41S#ihVwU*Z(R&$+J)$;CRe;b#+0eKnkv{zf zoT_rNBIa>A8JR-$szJaT$?jl{q++)mcY4fMdJ z2E;xQ=7RTjEs&><^QpE`%mc&cK*}e50x1$$C{#u6wGwsj>Hq9)z%#gu=#wHy>D>95 zsct!%p@}HafNsx7VYBgv_ug|tje$)^t`9>kFG6b~i=5nCw#TIRhrnUWXLDR5f4?`q zBKb`B%XZ$7M$!I0`iB^b#E0LmJOq#y>+{@I6VYxJ8^G^@Syz-9R?NYQ3ffF*?JB96 zp~x3u?v`Yx5KPB`O@*hSG{GUQC%Fb$kGgC_+&wJ}C z*BICu&c{ZEiJGBX4lcm@QwmNGG0!FzVXj`->WB0c^v$e%(k+ev36 zoT0YW6;S{%3Oy6Y-ShCIjw`pWvbH$gveDz2x3Td}KCTy}(OUAw9mill45z10Ox*W2 zuOA-V-g^ZXyF18-`yLi-_b9_22=89Yi;|nUnY}#RqmS}alMY9cZumq-TsE49A#mQM zQfh;9Xt53%YD(DsK^D%zh#|0jH@};VDW!ff03l8pBY)?FPJl3n%~xItt7v|SH*b$2 zn-(Nuf3H`^@KAT-~AVx`=hT z-`_;rC4c_&U*!7w5Aqr+VlVOaJtHCL$kmj$=bz2m6aydnCA*=HO^DfJYf51^EdXmK zMGp`o>sIHcfUqa1vv(8Qs*!xYCnv4$%mtOA2a{&aAzAgJASjn|z?_yh(6F(M3f+z9 zLEmf|mQr-7m znoLfS$@`}_YGT?{{*|MkE(sN0=5yt1$SiO?{M?FFkZ$2KktcC%r2>8zH9h1P_`c&v z%0}@7=i?!(YgPO@G@f-ZGed(fBzzeS>+sMh>6A5;(JH{g4*WBi21veW1Ad#v->dYs zCSS%&8jP|h^J7nTXUPN>CJgkDg{1lX{M-tw3~$ha7I}$?wvKgeBtQTr%{PjCN)dO? z%@eJjC{n9u=+u1E?Z$xDbGp-7Pq~q5O>R#ao*irWt|p@m8Q7>v+s`CFzmt+e!>Psw znS9=&nlK``Weebn1#EwSl*mB2h6Z){ zLf@9Ud|ylYb?x_q-Xzgyjsh|z5_GXQSEN)@GPSqcY4#5O9?B+{+f^yAgK38xFr^Tc zB98aEHi?x5VQ9!?6NcE7f<%~&V4fHAo}gZi^4y(X!}NmL4^%;J(98HNky}}UIA}&! zhqR7bcLm+*T}7)Oa-K6E<19QTXor1toL^qSz6%>0$F_EfS7Fz5d)#(V?VfClhphWf z+1Q$CgobqSoHUn5i07b(eE;@sdtfXlucKd(f1?lzf;KF}Q{Mm{G>*1#^4LzJ&!2Nu zYy;s7+IGWAL$R;Doo4k$lXq>m^@x7JG`2{dj$Rt{t)hZTZhdoWG$s2k-HL=r8P6D3 zNq)9Tn-}qht91A%9L-s0$f~a&^X^c5IX6GDH&&F}iZvP63mG$BckRX(P^hXmwIW>KHJR>VZ%?x=!`Fjhb=iwm@+aPAjRDsRku>xCx zh;Mpi#^G~qJ6~z7RVemsKm~bF^vPJsh|ahH`pKT8S%=>_<;o#07HRl5$qX>oLCpQq zqnJz(Mi%w~@C%aSp@`H6Ol0R+V%UpGJk6w@L+(_tye940Nk)0J! znR#uKLG`56a+4OL8tTtET$v4)ARSrw>>5=oYe&3bqa!L?;S{JD%BRn)$z2DfOtqCV zXJJqwnp?SRWQLm~K=}3LLnKVzOXSin|Nig4in+`6`df*(MQn({)0yWRf`=im4B1wX z`Y27y!x}g#xIqpTG1iGVyYkO&btkQfU}J2W7wDQQsGHeLIn^;yYyeIYVkP)YR+OTu z>K6nZH))$j;(^fbteGV;*N}Ivid0UiuyM~YzpSTqE8MDZ=GMu2$||Qz`{}2j{`H@J z_xt=%Tz0zgT$K^RVqG*;H4Kf)=yI>gKfXLtEK*pI$6>m)_MDMh*HbT@kfe7rHGiL}zm^>$4{Ijm> zg6UFgD#z(ni7arz>FM>-!`$lrkYru2tG+w?)NGsqe7<)2IwfO^sn|sy3U~u@;zlgC zwy2Gp`zmQCG3%-+TNu67l*vphsa=leihzzskR!0D%$OM69+z4c+?18MXm1Ii5P4jp zs!hhYAQ!nad+e(OMPvG=ut@`Oo3`AmwTK!Zv5@Fi8f>o`_SSh98oy z!{EQx635)4k0h?mH#~p%_w#q<6zYboZKLvuQQw|G%0J6v5L&|!ffSd65QAy-zE}FA zFkqmjJ+O7}0F_v4@KiADTI%=D9Ia8CwRQjy3cx`+kbzER?Z6YK&&%-L8Khv8ot%HM zaaw4;GFG4$@|T`7>*)ijWwz8BRK(Lb4l5*-IB2#G@TB=o{@WOe{pQbxYzP?YBdww}c8pE942Pd=rg(nbOpLVPO=P82+Y zsDc6H@{r4?L>*EfHw1{Q%$fIqwIMb@M3tEyVCEk-s%^IC_5m;9aE&>7Xfhg#>$Pq% zWHC{qy6ImCjF$AE2i|AiQ@$2p3|-nVv7V5cxhCq7tsV)Yr?HV@5Or@2aHUOQOuu6` zesOq6B65(PTRJUDBnJ%4ay)e)%@x+bvAvZOg)9aHbQsI+~@~~x-fSRxal@q$$H&_k0XZjk$&` zgV@DX{N9lz4kd-Vi_i2m|INo28P_G_^+mofm0$kjXIV1j>!s4h7YV<`wTb&XYiox; zkfE*|m^Z$+*ue4yBoKrR;?W>8?+HB%JW$R;3B&kofGLUAL;A*WV3Jnl$U_p;nMq~b z81m5*@K(bPY`-@2hLlQrxA(Ipf;)!WchyphQ5Y*2I!BQ#qol|1F#YM-$sZFUYbHhm zD`az=#eRLnE!YB%V_zJ^nZIX*ij#3v@}L zgd?_u%RPTaC;B-2hm0U56H9GcM1mn|$3xuUWqJky!(=`IUSQE7n+hYK^%dbn_n+6W z`7@2`-VMRPnLog!ZcNcYo_UQ|5tvj2KkE^UCZv@(u$P-$^k2+MkTw|W^K1pcgu1ztFgft z5|I=~m}-|tZBn`V>McV*XSlrQlzGDh3{z=fW9KZw3#Dv3*cSz4HtesQT)|t=pxY;i zfrr|2qveNGZ|7EsL{ghtuT<>?|G}Cl^5KnIX!fIIn<)<+y`yQ=YP!$M%OsnOris4w zSQrjL+6CFgdQVKJv=GQC-O)l_t7T(K*~^+!1RklY53$hlspZB1nZ=>oKn}z4yzkV3 zal=<>@QGs0-&@7B*LOj9$SE!5CbDDmPOnrfmo+m?mYa-(U0B8jgxA^1bCVZ62NaAm z7-PrH%IGPm@Y3hhDQ1-D6wNq#3`$)hQx9}X%Thi#R0c5NP0qLlOlD8 zi3Vg=9Ytp!t%`xnC5lG~sEsBcA0H*XuNq0e#ll>+C!)2j zz-YkYM~KXO<+(MvIT`8Kz_wRFISfeIwBzr2$a~J5?=`9Obi4*Aa4wUSS8X!-m4F@V z>6O+dE~~cZ=_lI*f^!fNwN-&cskb6tHqcDzDOGr0Gwj^q>&b!DWWH2U#I|(LKq+Jc zc+vxnxMplD7LoUld^sshIJYk$JD|6j7OI_hGTr?#kyR!3@Phf#$T1(ZLs`)jp3lQ4 zbpox{TF4X4;yR%onJf2RxN}?54y9qLkI$Lsw3$|HLK2V9h=DGH7<`G^LY@91Zua(; zE^{a=3ys^j^^}IChlx=KQMKb9272N|Rc~|eKF}>u;7zg$j{&2^6!8CAJVR$vA&o;VFFB{~W+!)}y9HIkVKTk0A*R4ZMpDEaWF`iGB@G6hp6v#SFoYeb z)*h2FGm$Zxym}sr>f3LkLWvmh)a}RAa9{#uFN_Ak$@Dr0AXR#GhG1e@0%d28LCq>Q+0EpXyyC@1G=5O#Fc3|;uG;rEmZJ`!6weNYC#3~3c;r9Q?oLMYHT9@nf zDmgIkfy_t3^wRR2-SYC--%;t{bDB+*GBN%hJ7-QK8yw29>AOq6P!qd)$&if$7D%Ga zOs=cT^%}KBcVRx?)2GSJe;-Y(cWIEfIGQEL=5=BFpfGEZ16dpV&>!fCY}P)9iV8NK%Arr>ch$^_#x_?huc1F}Xhn9SuOw}?1{hPzk$#b@4sB9Do(U^B;#SS06w*!Wj&; zb*Mb@lIq`i)Y1^?7v*{TRr9@06~s%_E>TTSlJ+63y)r*iR7}0+>LrpKmhE3%W2 z8WMYjX;>dCsA2uei7AoDC#JPS>c}l#@%Q}`l|+1BxJTv^Ct3tMP-^1r@awr!Y|H0W{K%)BOsm=aB_xF8%79;?d;lFgyg7;>hO zt6k02aqB(N)hnM#O5GZBr7Tg{`R_Sps5t>O+4%-JnNK}E5C4u(%nXv&+ORkQ87OY< zIaAt*sg@aF6F3|e8fHiGyZiRLQ4Wy}Rg~$Q9@f)0tCqDbDd#&%@1wFeL- zB9iVG`TjKBTkSEnyo31R^Bmxx@qXV`7{`Ip=jU>6cY1GC#8pld^Vn>AtN1zQ09Y%S zxs1WK2Q-znb2PROnVqLpgtWiTFiL7JTx8u0e~c=Kthd7Qo9@ZCKypf7m9`zcnI`E5 z85kshm`X0spR43`=;s^s<|ZcHdTrnfV)4nOKhPM}R*OF?C%((e2yDF}qa&$XDk=N& zk_1Izu35y-GAUbSW-uQRQ>EJE)5m%SC>w}kM0e{HY#c!ToU1nJ`FS?cNWbW4LtGNH zF@3>XG4d{fC!^s)58NX@pN&LLY4grV7z*fmXp9tF(?)Po&qBF11F3D4-0b~+W4i}1 z2qw*TlHVkoyy;VJNQHYJ6@4+r1qmFbMe>lVu9bJs_A14W=nxhZ#9;^Iz4^R2z0Q#5 zoRakuDgPNCoz1V*;Dil~X)Ea*^XN*ig92{!6EQ!tvP4Dfn10YBKorymKb#kp@e-ogsE`ifw!6Q$o|Q}YOL&}K4T17H}ut>KlAnEoevb|LK(Kx=eo!+GV~0YxoG zgpEC=iKKJdkzeWVGH;jO24W*1m2;_DEQf44%xtZT-wT^MHo*QML30bnJTrl#f}1g_ki)>1Xm zMw9DndYU{`MtjM(Df07QewMd4`G+r;m|i05yWA_)KT;W_nsh!6SyqUeW79=Y7=}d^ zYeN4I!sb_c<2cOZkiv8a0iQz_aeuyAB#9Erk~A$j9{{UoC`90KKZh^PPSU5;&;yrW zWl||F;{1;jzSa&fP+io5{6^+Aef|3NU;p_Je@a;r9%el@2zvZMpC>|llLNG+Z^BT6 zrzs#&u?84~?La?HDCeAo2`q^p8?TlJF|>M#@D1I?H;g6Etq?PY>=Eo)=Hi-=X7S3x ztr|CM$tX4C1;xWx7CiuvoZ#X-dH*|TtrhZ^2YdxE*2%~};J74WPRQ`OXiqs%zea^n(pXy!uX<)NjE*hk z1j)sU^jDWQa;VUdO_uL@4m7ThE6GP1wGmCqVHUs*6RfiI0`<-Br zlr={ok2x?f<+eN}81$N?d}$(_xj%|D61e2pZij5$eg>vmc{(|;;MwS!(|T(ILn#vE zvI)CJ!-g>72^FlZCLh-&qlt`WkV<99<`_MTXm z@lH(0D@jpokdGG)4OreShdm@-%+nG{PfmvfaLvL*2cRWqP&B34YMV$G*!rIsaSuF; z2%>y6PAGqFkzJE^`L+`!3NlpnAHmL@w9aCaAr5(c~-_mq8t4U)^ zKck;_3n%F!Kh$wbLDkH&7T|*loR6c?lh%re+XvYNWVe2wX=N9JlMkcG7#E~46T$sUup zhelUYy1>hxFC({H#77#690^C-xfS)T4x3Z+2<>I&GiXgsSm3QsL7b07a6DitUb2)5 zdc{kXlccCEK!k%DVvltBx*SDo({&!Q&Gyt-RmvB&aIgi^lm*i(VW5{lCZth8WTpag z7BYgCfWVhc%7E;QO=z>dRagi9wBe9iYvF}R2}^G#0kV|gzXN5LG*$VyUO4EHt5i7a zsO?)8phuH^WHNP5B)HuCgeGscLyL*hWf4U$i{G;XkNILZOu?I|#7wDA5&uf^5xZE! z4f}FoOC2x-RLX%l*E0HpTMv=+V#^>ARqW(hjU= zAJ?(LM2h^J2}8i;N^rdJht@?315B=)RwQcWuXxceEA`F9bKH8M|`$zkXkhB=d1U5VRNS&ib9VIFQiRL z&I^?9>F7I0?6>#3-iO@UVRMJZTU8VJUZK%LM!&=mkjTP$<N=T}YJgGKV?bYVrVeK#IR?V}?o@rX_0FbhB_WsR2hEg?m62aa|WA z&(DJ1bbCVgh7tK%`25q%of2hjEhnF9vLr9;f(&p_1Ztubu`Yi<;>u42L`3GYB{}T| zB^DWZ45dV)N~v7q935Nf+r1=zNegAZ;r7C+7(8Qn#?1R@=pmC%e^<())|@{Can|6@ zx?JOx!@ud9dWr(lV^eLjQLxI?3S`18WUvH+#pRgL@;uLgQ^WJUQN~d7%IKrEyn=iB z3|OxMTOEU_J+Np^%Z5(bzFB%;=_TuUm!^2p*gTG);tEbr^u5Y64~C@Q04>tm&UJct zeML((b7tv?Z3PIQ)utv_8+i|rZmOFO{K$o>KONgx#~s2uSU{9R&~`hJ}qyLrPkAZeAk123$N}D%%kX1udVniceS( zTyj&nkh#I$iMYmQjn5=~Nd^yz`}~2-IUr5%h!zpsp8E3~>C$tnP?>>GuMM|o zN+lJ~F@ORp=PGu+oSXms_c`RO2m{ar`Q6|5Ob=MUQqf}_axs;U*Hw3V(F8#+O*Kw> z5ViM|=6-b1F~sLBzurqeLS^)yL~Tk~mj)?s1lki@NsWvJN!t=>{8=|$GOBrxW7{e< z$gOt^+tti#;>L6nrUn1E;!dGrXy?MoV*$b(I4%fG;f=&IVXU9%vyvUnke)tz`LcFp zY6SBU>-^`ytcD#ep%4G`$3GS+#IY(47~td}mc{YE4O^AdmqR1vIXTIPTOJALC*_1v zmNO|_LJuQ243F;6FlVKlE8--wF|pVVSqvwV<#k|=5HcNdq0kYGIy0Y0cmPSQ*H2o@ zDd%doleTxI-?i*Qn6R(SfvIi^pgo-63o zTgwB1!FywL`TFrC4>{ixHd8uZ^RL&qZ4vO9?gDso+GLz%ETXzlwtXtvjDarB&8oZS` zb_f4z`PTe~hwKI(S1<*=muRTmL~mObleM|9G*7pZ=l~iK3Np^b_Sulnu^vN}vq&bv zsrN31@ZXfCc;Y%y5D|O6j-roL$^rO9s?NNMCp|XXxp^VQhB;-BG+9eoDy3iVI|**N zx|D?t$%%|lqjxq9>(J)+(GRH2LSBlM?{KXpt}5?)mSmFN7!EuZ@VR;*wR59$%WuE^ zma;AD*ch9!(0oPYj~rqWq@@PnVxAg={3n>amJLeeDCOwVGtgX-Hi=?@8SwkC-avi zgEa*?DH{ZWDP)6u8GoNq6IHDdp&gW?q1dd=i0=T-BUoDtpo82yJ>*oqXTt)_enJtn z2$=MIP#eEwZ#)`^PYen@6&Q2P3K8XBqOF>cld8u?NMaWn5=nDp0l*+(HoYb5B3J~? zQ|qk^)utOKuCfO+{H_%D@CBMCvl#uTBlzxd({v6G&Dswn$JX+!WWBj%V~1~|3bT}! zri77qj!Ga5IYi5!#X;0oRY1~t&>*wv8o)$bMRB;xA$32!mr$Lsp~nWD^3e_3fgg~0 zl}F@8o-v@`_KXl{%E0j`6FOyu=kvI02E-vK!5t>rdgcm6PX3p#^s5-Q2u;QMK;x+; zyUvY&N7TUc`QK`W4H_vKFlvVzXGAu+hylS+*(DytysSNZD}m%kg;wt^VGMn%LIeYj z8r&c893i{lC77wu@4EeX5m8ciewLLNh_G}&v(fsf0$)pN>*cr8`W_As8o$|wJS7pi z#wZ#kQTj!{^aL;|YaPq`MJ+>D7ra>nF{zr|YllsYz zNzTimMsA)?#nQPvVcwZ9WU=9lX=t!kxGV*jL6fxS2sGxlGDu%;$SM=t-x=W@AU<;T zKv~O=?%K-o-uSy=GDH=R%;b63Y%5 zU+?)69+HwOK8a4Gv{9Lm+#b5}wKn4XTrr0205ykMKBx5v$~+Rn7s50vbnL*p3do6B zyn@h!ZA3?&hyk&g+{|pecUDY1Xn@VE!jOw1qbk-?c0-Rq)1LCU;_>@7Qy&{S;kIEq zOq!53z+Sy1+Eti43(gWs5cB8ZZoRH=L#nXw(XWBpJN7 zMB8>guaLgp?{`hh;+(9mJwV9%71-R!Jc(FY)O=}|bZs!Hdb(JYIWY7gwhBh9ysJ<0 zK>puq&=g1h4h3*<#rMAPtx1AA5?|18IcSgzO^R1AX8twCmA|8JEIqT4!dGp$mZ#C% zJ!<{WV&G~+USkMU_h|+vG{Um+rx&Y_+-A=^WvZ}mVz97(KK>5*UJq<}fQR(O#U}A^l_Y7LC;mAzMW(N0$Xr!rI2o13G(Y0zob6{kon6=|P*Mrgouu1(q zYby{=A{7hA0A`y+LFR6p1r_C1{4@W5w%%?@lH^9x1z=_#S=F3*g}s>NlAL+TecE$# zNCQ74=il|cI(c6oPz+C)XJZB#p zKQ(ys6cfVyui^Pa2X4pq-XVorvJ>pv5%|gbY2aQN4iSb%4^IpFo)k%w+Yx{hAAJSrnBo7W-ps=7sx*c9?=EOla zls8*oqjW%5gdQo`{Fdx(K?nqR;B1`bAj6G5wmIFl{FEOyl`Lyzvr1n!rEmAT(Togi zN@QntVUrpm71^L@eCeNaKm#ZTWAHSCh%2@OzMk#p+Hn!6jg3;UddbbWW#XehD5JyTxvN$IMO!tr32B01d+uk{|vA1m%*aP@D0AW}8 zqj`Sh`;Y@>ZagS=ZUeMEVK3d7fJwR_w4}`F8J_wQU7~9I#>F862>9o*Q`{ zr4+Z}I;r65V`F2Ia0p5S7iz5`(sI*;fL$rc{U%^W0H`rn(I3r5`cu<@D@`?}@)hD96cA4Su`8T1{#i`{m`?47Ob{|K2Hi4$;$jFT*|g>Q z_cdB(G%U}rQ^xyRH9s>%+&zIGoP8q`gEE1+aw2k4)0oU`-DLFq++%KPQNzU7&jP14 z$T}LPIcOk7<-TWX{(($B*rp1u*Q&!05E znsC62cC+czJ;|f=PvCu=Y+8}_P26;u>$y^H4LMvQKJT2SD}zx53EX??pGyP~gG$n~ z2~Nza5s%t}@_RN+WUXP7QvL!(Lt`?op1O8~lqML%j-ML|>c^xfG?K_E_K^C zAA?9|Y@|g)4Ek|bmu3S+x{Fhia0KfO$N(1Xo#`<y)J1Z zLy*t>uHO2?9L{`_j~_2-J>^Y8@{Y$Z=J(UvP!EX)Z%U*A{GKz51`xMCK0c~>rxZi6 zZ5asl?p@?+O@93N2@l~!K%YHwDU=iDwI#z;M1n)+atb~)eB2Rh9j00(2rh9sg zcAgF!YX(+w`YNwtdL0ew?c8o%+;k!k^8DP^TIuhEH`ZzZ z;v3vzDG5IPKE3Y=^ys5>@H`8*j4%qZE_TFe0KYz%FCJ z=$X@GJ&CS5tWwc(HUjfC!8m=#E+`6`I4<7NUqH~yvC#}^VRH2=<=2S@tZn67cMV;M zDc=AB2SxBzU+WwQocBXwv9~IvVT1L+MlzVrmb9?!pj;$=|h6EmPxLjMRwMxoW4gDdZJp=piL4?5q1K9mEamWQ=Jijx8K5tr zUW8FO>BGooaIpg{^c=z%>BL9lK6dC`FD!p(NbcVA~do_Zo_i z<=e)vWCw{Gn>WBt9AU16{BSE=UMjQPA_MW>TFcPtBSX#T4TlOxA&;(_G@cFn#PG2* z`;YWl5>A7m23e;$F!#+9^Znazzsd4M&HwiwpE+RbKT^J^T{PYZAWsmLSd@=nEzh~A zjeSbuL|YA~*FDiFVt6^HjMMsp#(0q+OUkbLM!I(uwO(qEU3bv`xT8X72eEW*W!#Wy zMc1(2*)%@%5Jn8Yl=uI>-|%|3%C}r06*8QZy#M%zbV+u)0?nz`q+JaYhn5!&zB$Qh zdXVY(*E8_1jQFI3=xN++zo13g5l8HT#gMfkpzqjGs29afPJlvGZow|v9P4qdL!mnR zkYnn}+>V?YSv^47e(=*^-+E#lkI+3mrj5O~2fv>WVMnv_ojjKJN@k+W_e$ie?hlvK zJd<3dvpBfd+SHyqJwCo%UgHu=@pAzIikgPcYd;hb_BIAWF`2x+eHNqlN?7McCBh$6 z#qyGwZpj0ShGqvH2xK)F|CQb}lEh5PG;dAwL4zj7THf^ZHq4pDq)3u&Aovyum!^^v z$%bq8ke7Ny2FZDnAe9=?I0AgJjZu{hZ|-dyOYs2D?4nUyO2H;#%T9IQBaZ7Al7f6F zML{xJUAK_i*`6ddkk}gV%~A_joq+E9r^{$T%b)9C085H6xKd6i9*{P7 z8QLB}tZcUOy?u+Ucu+gZursw&F#_=8Ni?zO{{!)mCd(7`j2K0;-T7krJ+ z2_`egOrLNZE6=FzX|aPYXM*B#=aSVx@mmgz)}PmsyJn^oa)*$6lYWGK-45#*WI_tp z_5|Bw2ah*x*sk05BZ8bMC#*=LsBd}pr37_~!}o{bMm#r2fvpAKUwVZoudII;fv^I( zmtg~XQ>J)Kj43BvYaN5U2Cp+r>AF=W2@Sa_DB9qYd(vKZ14gLFmh?55Giu0Tq}JAn zlGo|zDNoe{@L)v^hKCehwQQoOdTEk*`rx^#)Wa%asVLu3@k}{ozey4bZN>vo|TxLNl3UT7Sey za3I!X*AZ1)L8^PdQ!ek3RK2V{Kw5KKfEV^{3zlR ztmmLLa|d0<^-2<}cKP~x%k5n*Q|aTUSlr@bqRo$-DJ@yFFUxfXwoJKc%1tTdlvzsX z001BWNkl$qLhuPu~JN!-p>qDNN>)B`3V9~Q<(J6lycpf5S12f zQX8b4iV28eMXOCxO^|p4!{1@_TobZ6915@3ORnqn(EaWZwLE?jVj*4al3ZfB%zHkNo2rt2o}QotgJH8Z8lrbkFz2e(d`gF|+K%x;A`Z3Fi-e1G`GPF3 z?a;XM0SKwst7pDVN-4VZ*HyU5oB(KT19Li)58GzYnzxPyE(0^~djdo3g|-Fu2)}aW zu17=DT1plK#ms%*qR661NydKv&#WB5^&Es*=q@D4=y%DYb$^Ybyn`@fxPH*2A@J4^ zp|Ii>_q#L*)={+LUTF$aQ&)Ix4wSs9tZxr)7U%*00;OR551XX+O=?s{t?7Zj&%^z` zr%XKDLjys1+zI(CiG`<7)MdEaL}zt zUzu878=MsG%ncMyD{-lE08lz8OO%wZxu|R|4)uFoydSsWA5ya!sc z5y}TRqP86L9l4hjl2c|j(ApcC#{BH&yz?Auc~9gf8wu^Q)8ZFHNiz^2x1pZRaRrl8 zis*ab7RLyCtp#a`*6^WWV&v&CAo95M;KS%QcRYcf#mvN=>D=zH6gGF7=jR%M~NP7j!DIWmDY^iE=tQ*>O3 z*g@Q-y<&VuO1erRqVzbPhI|e)~nwN-tzTYK%qGE+0p`BY37@R>O#o$)U#;&)H zfMn)(rLUT4)am`&MgKfZ?d7vAO@b7KZ5!6(Szt4ljvxg&A_7#)PqpDNE*=v~1bsI7 zs^z!bk}rGQbM^TgL$Tfm2DN^`Ab8QGl$e7{gr=6claLHcBE0rv07z^NbiVz3#=kWlsA%< z=3A>fWmZA;U7&e|Z+vD0*+^SF=yeNIb&H%XH{?(do0?6>*8iUYj*miAo_;UZ_goSC z1JEFqHS&7BkP(1?ha{3Car!jfTRUzd5o8Nw5E*LB%miW}v6dmB01Y|C^ukvXcW##G zVM;U%1v8rxuKop^GL9G@6M#bwsk$3*lG|Jys8KC5B?E64P@;uu{hp3-$Yn|{faymT zS4*gwBkr2`Sl&!$VOzvOOyadQnQO||ytBw6$xkY$wWNzpQ%2IPiL8wc@4&p$x7AxO z_<-7$an^l?PvTxK%h^!o=kT8Rx+2n$?kx(0`2wc4P}w=f%W2~d);*`X5qs*MNNVO} z&^jVV7 z$4&J2Yr>!jpYJcy?srUqBm`q3uy;$4wj}TMx*+wLHGO44cJ(1$drBJTto)g?;AG|$ za~=3|z50di?T{ua@2@w`;f8^Q6mcs*ORqsvI|7jtQR|}E;D)NqzQ$PTP0LAQR>T zIW}pM&l_xh%?g}kq3REx0VLTi<+Ir^uVY%C9)fXQ`K$?j_~8VbRWV|Z(-+c|6Xp0N zs62~3DW4A!@nc-a>vQA@ZP3CgQ>Xtm3r(v6fLp!_ux#mjr6hLwdIqiIy~u%6L!AM$ zJET?HcnwmlB~&L?JhG^`^{Hukd084{w;%u-JV2z2ieLyK4~0eIdGozpiv&imO#y?N z4H<`q?KUZVxRA>eeT{2RpXED*01Yp;99PRsLCRV0`#u^YEl&ku94iZjBSs_doBN)! zmP^MuNa`Jn{fbptfZH6K>fQ!|k3-x9AQMUH(dny#Bq^UwG@&1%+h*9f=C#Rfx%)<+ z^BSb*h@1X}t+X{jd*&@`O-MDR8d}F>o6_6X^V!im$j9#`F;Rj_VigIpV}h|QIk2>5dHf^(nJno1v5+aNO1^We>i zae|Zb&-!tzwekz02*n#td7fb#!Gl?90uyM&rl5S!p93H6S+7?h?rA`#v8zn6sa56{ zt(r_snG*%Qb0Ye6{a@7-iDqBv2t2NP<2&A3;tfvs+ccpeP*dSkM^z+Mkf zk@8SrVa^9E3qWqN_+YBwWj5j_6_|S8IrYoyzbC;G2lzPvD4N|!Sr8}b^l{~DvXWV( zR0M|hh2-waxB)3g08rVB#r;<$9@-B1@4n}yiYulybkj-mBaIw0ukk&Fx(-O!Dvf2JTo7nei@EoRj;W58q}xWSt?_0tXwn<^0|` z@Ua7Do99Bf$awV{DDl282uf=?Z56AAkLPxx>7$}II2ENzgS%>zR$Fxum3iOUK*6)Q z)+~u_z?*soHu60rb!*O5*IHm>&_++qek?ToYm+(;{|IHm5riD=u;_yDFeH@s5INnn(S4RVYCtq{dJhS=p+8Ed%MFB7RXtlv@mY!k@%>iIhTowMVj+g~V zM`K4gtUIZ%DVfg#e!NEIwi%kz3?jz4Ig+>)2=yi;DDl@z-uG8ETM?@|`jj1`Zo!~R zvE8C)P_4;0w*87mjN7#wyrjgeiD8SA!?F3Em1&oC27}{MW-gJyuF1w4;0)t6c1Yku z@miqVLQ$KQ)`1!>O(aNYyiS;}H4Mg2jlD9+8 zQ_`H0R#KGd3&dx@h>%h`S-r2U$a6b~fmTVmD1Ecq#AfVBD@fFLWOiU9n<^qH@06h^ zZ+OO&EL$E%47QfIyhfM%e#`AQHXYbZlSqw?wnRn&m`l|T<-3B9&c3NT`WO_I>vH$qa*(mfI|M=0izR^8Wg_|H46Tg@|TRo`&L8MJSWh`P1hFx8;P8*#l-UrYmk> zsV$VANz=XO8vc;*A}U=P z!iF&=kt4_CSZ{{~@UoTW;8PR$N~2ION8-O3Ic$!xA$o z&&`$(Ju^(0;~;Dl@r&2o)zb6#M$jjxWxiY-#b7o&=|Q>xP>_||2w}zzffS%ZVjGM@ z;Fu!fzL_X^RT%!eQS+vHtocx zpZ+GP0hH8h27cPIz*z{_e7#;UzcZ8;lE-W0O@Ob#yow@FK~nbP^#ZL+N+Kf?a$Q$8 z${rI)%E8~4&%L+{F_-rfir4c z9kSGZkV{Pjl1i3Ts`ULK>&z!i?4!a_=e^1+*ZTH3`B5AQaM%oPR0A?sJ7l7(lmHPN z3|)I0X8YPB;fn(cO5^R31Bb#F{^uo*4V_iUxD*^JK}CAxtaSheP6!Gy&gmHgWM$p; zJfK86V;;_eC#oq|6}jK<9ICn_*jlntIvUO#){K3YVE_>bQ#Z*BsoD-}BsM>mgatmk z!}E4DpRN3fq?QG|J4dWY-+sXTds~7>Dyd6)MamyT=*lrP>=-O^vqWE9gSVK^L_dap z_1yApUtsWTUQ=1$#U0x=5PSQ5k{Id9#s^e@lpS5bz-X@;E4T9rEfUY?hlVD(FJ!|R zVt=-|nV={e5h$e9VZhfI8{oJPBzB&rB^+U4Q&u1@ZL)l!;g^bIIM0dixt#^gk^pR{ zmt3=mrfth7@B7Y8B}l^^ijB!RIn@H52Ug(`8q8H3>VHi+z>=X z&n!L2t@o@^!z!MJ=b|)4%n{_BE6*}7*abW0RI~9K^VrcI)hl2SreYEecE=!1c-4KB zF#%9IG|Qp4A&2Qd{`L>h;q1|&vb#-vlqcC<(M3EA*reNC*QfwC zH7j}54pKyDFABgyA+rE#8@7<|RVHv30c9a*lFg3?NGnnFA7cO+l908eXYxx};SONa zlAKsm$m?L%%}W9&KEGc6^qu zUg_^rQ`$|1B7KVzIW1j!N>3fwQd1p8^FAPto)#b1j+SDEeDv;51~}Sct59BBVD-hdD^# z1A1qgS!|l41FhOemjUt)5A}5fwB|5@QV@blMjl|$WjLiOho|Vet^*ltwXHFPjWYRr z`V_^~R+^REu)K}mXn1Az?Kw@l*A(p=*{h~vA9=9f^D93uAe$Y71+hKtWQb;Zu0~2K zA-yBC;p6oKlShR&ZozolMa;z4tl}_0?;@twV^xF4hi6S}WoLIa+;<`><_aWvHrHW^ zzkbhKrY}f2Q~noom8XzjyP%nUOA)wjCEe})e&-NET(0X?6eng4rB_jay2iPHhaRuP z+#nt}ULc&g!C`>&32iVGV-6q89*VV+%yfVT!Z$fAA`l`d?aMPOEOW8!5nSCF zL&7r_o@YvnNzbJGp4&&kwN{ifkVw-w7Qwmy&?E;k{CAF95 zl)s)wc*ZY}L;13UnAymjP0|@r!0e(tQuA79fGIUo_)C}%nZpt5xfO1s)p;EUNMPq- zS$)qf0qk{e^q!Jb7LF%Khyxj6u4Z`xnd@aBn1-~`_q8doHPB-io z^kvZvONk>d@9Y?|dCW#Le=am%@Vh1@)Pcc{M~xFWTYQCR-{+)@KQag(IZ|OIojZM7 z+hg4F`JsEGtEMs}>lS7}Ri5WHAa%nq1oi=sl&U!>b8Tb>WYF7#&xr%J8URDl5t`>r z>x8 zvgwRGEu7$t?DJBABqJN9zy9s-8&7GQM&Y`$329LiNHg1#CQP{NM%UCNx2vc8iz=g% zI_!o)K(piYw>%)a3+hwW^6;w=7uqtYY8MP!if1hePgT&t*QBbVqodQNDR?1(c2A0^ zam}2DJV@^%Y&|Cp8FZGqd4`g;Zy&y@NK&rGsn@#+%BWET|AnR*|*_0!J`JDQv=D9sh zsn}kYbc?3wgMh_{(k8`8HL};ZuzFsV_RSn3%IdyfGg=ZEEol?|01Xly>RHuVdGSh{ zOTU}i0|(z*;x_sJiMwU)SL$;W*zIhDmM={GP;lZ#7ltD8pTX?j@$k5=glG8jx;9Kf z7(Aw=d~i2NDSa*E1Lah?8Kz&Ly48Cn_VhH-6p3qdB3RBaykKE*0v@selc&xaTfri* zNltvjH-T!q-}9kpM_z+t*uv1-W+F{CYLyR%d(PSha3b1(W&is8l>7abug|Zd3uP^V z>Ar3=x53lVRI5QYGZ~Vf6Cds*5jDu_&b%<1rAe5~?Zh_cW}e6@so|UxUND7hGS8)Z z?agvcGI?EN17MIXyQlPW-fs+|C`syQ0$^^Yf6qANf{Zl})im!?>VdzvqnXmmxjPWA z@G6?>k@miuUOa??M>|`J-+0J#UpjO+`&IZY}gGI||4Hhe*0=e?qzC?JZQj!LFaS^1n{7P$u zC`g_C>NR-dR>DkW-Hv+{6v`u@9bV|XdKnbjcN29scxs47sOKA?C{^Hj74UZWbGAol z)7~WHprq|kS6``^2=^R%=u;jWA%%eVd*Qxqm4_F21{(6v7!b;)d?K^4LB5*zh}AV- zO}OaJ3p%Fk0s@`2%v$2v8}L7qCg_NEXrR9Ziu#7S#*Pr(^m5rAjCwp8pwlPX`zVQ= zRm6oJ)LK2ri~jKQRIX1vAy$rznnek=JS_tbn3e3{55R3u^VRU@fIS`em{ukf^TG(% zi1H$zTXkkZ<{;FH6u7V1C`qHD$tsT|vWOCcpWD641T@AFES#yZA|NC@uTg3zpTT4*WLMS{j>`nIoyh5h4o|*o}U{9-_q114jEi@^X zzB3?MA1m@k8DosxHx)0j81V=O1^(^CbV4=aq^=xW20ij~TI*sxL*^O|fBvG3g%9A}sNmK*JYF5a zopwkUDSb-+hsttpd+@rJBTvI2L0FI_jJmnznv8)s8ZBU{G3BDXsmLrLz`yTf?F_6P z*u)4zf75T#Hi$$vIWlFIJ&URvP>Gh4ISRN~^sPX4N?6G}xY><^f+LWTURP@U9XR#c z1{RskkLzUT84!WJ;Rs$HAc0RPwczo9Z)_h5;{(t(`^J6pznr9}j=RZx-#HB7d#i$G zLd)O74cD4^?@oY8jRtsx)CC_pp3}tyKIVg)56+yp4{SI0;N*-TAe#CNLEVyxC1xFR z&Xme7&7X(c6{W|*Oup_n@<;MPkBLRZIy> zXgmU#JtlE(@OT;u%RnZV*9MAb8>yq*y8BAnAEnGJ+$2Ok`jy^LC^Cu`XpBy171SO$ z6H)@kthPKW8CJSTHp6o>=%EOyW`Glmh>(8u;+}9`(OWOKv^YuE)0Q~*a8Xe z$CSFE6v8#CB#9}{a}_m6qdcUW%02JmjcUbIA#$P+@rSnn=V3O!0 zZitwLgbSn2V+L?`O3BO~4N-UwNd}tXP{QZ73JqE0MffFo!R6KiG z9PF&JQQk>PY@>pvwT9LF`W&n%WUAH_*CeyU7?h(mP(7PYO7H5-J}8Xo3sdR+lHNhz z#o*jVE5Mb*543pLw7;KFDxS?)3bDmPs18@Q0Y!|K>>ALBd@Xyh&Zez&n z$0h&YfBzqGad}6R)|N=S#Kc9cOM_ymsc!jbi1ZGKjzWftrp_#CTPB7K$Z%<6Kpqz$ z?B)C9GYVjGo}*&ev`?>505QdUp3+yy_cA@4D>t*CfbAhWFy=m?3ZS~l3xbuDynp;1 zQ^Hm^X|vn_

xjW|w}6)cNKGPdd#RwzVQVW=@J3fEkjS`9chy=Il5meyoRTdm8khI==b)=M~@U`$@9M^?ygFFgJdH7ijE8K$wH3p`*3!U!FiGD55 zQ81(TW)WbX^PT; z0K^8MvK3B*Cor$nRi7C!?!L)I2zpx}wUs9bQwK+*z#zMGrF~A#vq;LuL@~uCJNyxltbL`s01AWa4U(vFH9Xjt zET09hpx>&@t!+Ov8yoT7j$lJ%ZDGPpiI5aotHb>1$o9}9eCR5gX zO6S%B9yO)NFNB9KP?!XX>V*I{WbJUW2N@S(7hBe`4!^>4X(lr=001BWNklkw$oKcd>)`m1O@tJ-XuiP|$khZw0_LV_@i{^QLjzIK>?t-OE`&ar|THBLT zZv57Ac;T!X^^HUhY)WTIv$Z6KiIol6+gZb=mh_jLz=FQ{2>G>5A{3SPx^cZ)!7d6w zbI4Rv!qG}X-8+%{@CB+%*p?ylp-t%#8<2t#G$g{Kp*H-SC7&{t#;{=Bkq`7|YUDlN zxoIuDuI-^8`~c}g(#Q6JgCj@KGW}5dEc60&IORI5Kd==_?;>e+`}|q(fn}Tpygf=K zy;4!18v!H01)nQuik+dse9uJ6JH+jUno1v6J+nj7?@2nDp&=qIF$bo3|1|)7ILz8o z;(XsmAC)nveC>W>xue47S(TBDc@l4%Zor422;|w4d3AjK0|UQ~;Yh}Dm}F+0;%mJ| zXOC1W6BCoxFEj&aez6fCz0oO0M9_Rg=2E_&@-Ngmdn-ntW|Tb8Fi6|s^33v8-1|IR z`xr$tCauj(v+zc%(0j|Xo=xoGOFiYV+5E(j_e1)yRm0k7u2$_MvVe)^&#%M*Xi4JnmDS+w(>wYr8|1)v9p z2YKGwVXa7_q1QP>k66aHY-)35hlz;xo&nvEj}xc;0Xe;(zKH{LmOe?qX}E!fewijVh>4 zR16pz#=TL_#;WN+hGN^pE;UixlHnpM0z{^=z3xTv4xAYn)GCH2YdV5!|LgDh;ajD( zBKS&v$!a;Z&6FQ-0_r%#L$=mbVQP;<$2>g`Q0pD^4`d23yw?zzd93a{l6I2#!JYea zdUqBGY^1wUYfu4zn2xRW&Wt9A3zHKsyD&I>LD?t)FWt5-w_~C?R~A_J`_lC4Bh3wE|&yJV{%7nz|m6L=s_K(l=6cm@)yMxj4{>ADy*=D)+}9f5`9u z{6ntSmH6%>zpA8#D=8)<|MZU`V%RolRC04L9o)A+j8Zigq7nH%uC)*61)^0#5z<7z z0||G2NdqdgkFh7gX4ypJx_E#x4*yuhQ_s#+=WRsZlFQ1Zp&zC98p+m_?7+I#<{OiC zYrWo&q^Y8N>Pp2Fx6&IkJWk`^}Vj^$|?TniA}|J(KqKi zV&!?xB6LSu4h-2rlk0hrtUL}t-fDOjThPEhwJ#%gZ0n`ELLTk2*EqVI= zP9RFjvf|rW9U%e_AO~#J416x*kn*jSKC6JdWj79f00!ijETG&Tn|!^$ zFrbVbnht53;Q7z3LghCGVkF@m_q8f+WW`M1ikbK^rS`xky6xgw;mhJ?S+Omf^UeYj zL)pxZlDZf99$8OchzCQv4=;~u4o2sCMUcR**GEb4_r17*ND1oz z{snk=$|WgHJ_F-BDX+c&%V>}0&K`cSRkF*H{SigpT851-$jnf5bE6rE^w4fcjvt0D z^a$EB7pnKGR3@q_>pcrTaSk(Ssi2&Hoj!5oGCC-V4N3!U$5MrYVKZU`D2bPd@^07n zu?>t76>N*We0jZhu>lYVz&ou;)ETu{{`1Kto8V;|#IHmxoq!nf`yp_3ZfiTppwygd6cQz@Ewz!+BLhB`9J7!{PSx z=gD5>n9;OVR%dCrRh#R!23x!aSuXE(yPJ%X20 zS^|oXr!Kh-t-Ph)d!c%ZK82t`J;MHSDldg;T`+S8U@ycOpVyTgRIA(oTQz;(JqzDM z6*rNuAv$2=TPI#=~YD`P3FY6dxXT4q7RKR z5*Bf9JT?b89hqAJw3lOIeqBTQ=+db>KXRl*M092IIr^(Mso#B?=Y~lURM;t@s0nhE zM}Z6R<&fZM7XBU7L*Y~oU#qnyU0Nc7QLLMF+ym(udf)G3`Y+W;H`^H)5lOh>^x2r< zMMOKMt9&jnJ1dxpG!o=NgmndKn@NXG-6ExzN?fyLk$R29{%7H^F$#D;?>UcL zvJEpa&(EKEa{8S%Xo_r;j3Q||l0G)`Gek6w=t0ipM&7AR;kJyVzmr5;03$y@03mT> zxMtgD+Ufa;G~@d8$Gvu4m%Kpkb2Nj@(rem4W;;Vmd!0qxd~VNX6lkEX!9yKkjkxg4 zXX0R4G~Z83eL1+bj!;+k@RZ)Ta3?q_^5;LJ8Bc4SE78_Fo~DX7=3?Jz^LT z(4U)r<6VQ*y91!Z>8tX0f;<|a9jr+dSZsP!1)D-W>;Px>o;6Ef6TEtx((F*=>`-&F z4Sxv?+jviwWUIgmJePK6sF(usklWGavxv+29;P~|DZKnnQkGWjv*RD&;atdIS~wq9 zlvmnBAGV3iP|9agYdsqRZAEXS7wvrBp0wM9a}b)55@JRultS#rx#rxAN)7HEASyO6 znXT1Pr*%;qGMCEIE^AHsa!Yz%e~Bz0FjP? z-&$VM>bxDlu?<=dQ3UdAwOsgAfH^#_Y`_R(Gi-k2^v)ZhJ2{|Ex@P{I-7e`V$+CK| z`Drj@cxTb!77n7+ohF`meS65;Lk{(?CZ}98S79?+tvMNpC_s8MY%a~oghJ$mXM|NQ zOrx(yvRFR7IFv|`+QffWo`rcoCL<-&f$_UbhAQ@fNspV%dDlUy+T^-E#0sN~CgpnV z3;EUSed&r!3EQjkmZwHG7GLWb#9D?>Hc^hX{{S{~$ps^RM9A0YXUV}#a$=VF?MzLN z3BuJevFNWM!_I7viNN91$o1aj$H!F?J@~>i!ywpn;Jppxw(#KcS;U>?F47xxyO=yO zW!!eUw=tw|jLhHRWb%;PB_BV%0%|6%E@7TUl()(U5sxa$*ceFDJ&BA!NO3ln(zcXQ zb!8x_>LK5-dKguJCW%q*lE5~V(1k)vq}h-eE;B@Qy4sz>+s)+l^F!Y6&+<_*Ncr}+G$DQHx!I0b&ne_Ft>pbu z=<#E+osXv`Yv!5K2Rw7oV5>tuYm5XK1w}|-3pS&o64S+7>YFFB;PQ}9>7RJ=1Y~B& zV`h^eaF-M@CBj*sxk)saS5!gYpQ#^F1Gr9m&uedK7Bq$?Lc+vsh}sgFE`iTq@%?Tz z^7%rvWY+Wv*pbV!=Biu_)mG9iJveIl>xl~TYJBGPajzH584 z)|A_KBkhYm)!SfJ*RT> zv0u+xcYSZxS2+~Th=HYk)E0RU#tc{B z8IJs$JO(DHx$XE2=6xrm3H4c0iyJHkEr0)Bpw$lfnqT{8Se8H=)E|2@6gU%I?m5LY zYnt)V<^6sak?KZ0qZUO)T+8J;ByA+x^6%}4W}pH=%Q^ZgQxQW;z zH92bvHrmd`$|ggL8ug;l|Q+hdJN~wsn0Y^ zDXZ+Zm^%~7k0ztxIk52gG-=|Int_byh*}J^tBdO`{<);TKE(PZU7Gy<$L}KVOTNCo z@Prv8(V2&u(!f@%g5H{N@@MdT(Q6)1E1B+W%I}bo zh>$4(vaW8)EEW!~Du!VihdOy3#0Fg*xscWx8p?#Vg}E%546gk40%c#MpjkRvzCpIJ`FN_=MW!k9;6vGUt6~0glPR%qO9Usa&s@ zv@2Kjfd}%#Y)uSiP%;GEyzzB!H0kI=);()7NesLADO23nb<+Ns9}-=ulD-Hgg@Ax($P*tyYS9?71nQnD)b`)siI=T8{KDP<#e<@Ndy z?M?3Gd&8~Vq#_^2S9z66aUF?P?$|7mXwM z$pXf-=LDX9!YOjYj~0-;w$>`#cN9ew_YHiud_K*Y*Aa(1hM`z(@+pyqq5jndC~QfQ zOmD61fIX(WV3SUX)ozFY42YHIE#F7b)#wi?ufqY+i8AWv({8RMKI0%XVGFD#))mnY zFf1!2Q6~3%i+bK~-SAxH7SU7Mr-q4tg(*knW2-TgHYGrge{QYGid(Fud@a2wuSd2} z!1u^4?0HU;y4tNHQ!Yg?X~d_u4QJ^uluc}WAxYzNND$6`)&`XAG>(l;ULw-Uqz zaGUAJ){~GCfgE)VkY#6XL@KvSlCnj&f|MLicKy&SxA8k|>`($|ZT2Wf&ITU&Lh!7# zk(2d&?;VN^5KR#n903`3Pq0-Ebl>Hvv6d3T#Neldt@QbLmY+p?LnKB*QnbR07Y2&I(i1a&xR9G-KZ0`3^T6R zdOV!&dFQ4D6Wc66XH8@oT$-OTlju>TPCqc=deDlr{x@YrhC{tqGsvPZRyLV5q>AX4 zB*MI#hV3osq`}>pkI}5&r?sZE1&qEi=LrUFcNvhnR)K;CCcPvzVS!Z1Ebq-VXW^PF zH(65u%>&VzKBScI_Zt+uO#qu~g0f?BjV?ZC8G#KF0l|d5EzF}^? z@+-_VrEO*+%ftyPfRC$#l1PGCYlr89Va6!4(_O*6YuS_nTj%Sx7G`z zy^11-%r-S?kjct{ESpYIPLAPgH83*-q+Sw7_ks(R-YJ)r~d z`IhBV`1Ft16s?X2aD?Yn8e8|!$RWmgJ~+?4eDJ+K2E4fWUa1BGGGhmcTW&r?Mc(sH z-(_nE(P7U7XbONIqi6V{8YjL>3{zA0eb1-ALXQpjHilD5)ogsc_D-dVRCD{@uOB3@PNS-WPSF?P8z5KvLE zkhZ5vLslOt+MG-Iy3GEpwt2JyB$Y>p(e?SJGLzX#n z@U;;9-L!47RZ#Jg=ga~$!H!_!y^)HoGO2q6wZ>snQ54)E3aXq`4K@b+Mfg1VXWKU! zydpETp&{>mU?3dQ`z5b&$@TG@{PFuA@^xoDBmG0VrngBnWJxNawDnRYiJ63gdAepJE$Wm-0GS!!KowZgLtq+={ zR^o9rM6GR#6{f6gYz&hMCQ6qnu!vsrFTE9`kAgYKVN_0Yc&|6>JE2WYMSNwk*LMgV z^B$Ij%oPs`AU9SG85b;UgZmrPQdSuP;V7c%6VagO)QWg-H_(;9V2h^D$E@C4uXhZ&y$9x1>vS>=p z@?oB&DHK0%uY!KaK%+hH8%f?F<|6A}W#BuD;`6hAy!&s1$9chY$8 zUBaYv?*?-w6Q=p#NdE_qy}ooAV*h6f`;XAcabWVkXt6 zA>~|4?n5Zc`+ir}h$3wEg3)s>2Fj(+rzly-hsf}`B1_}uw=;(>tn z{osduXQ1hNzrT_iru%*Ig-90hPl=0Es?#`#PfXHYg|!f{9;D&tH<{`lil?jqT3{IIos#t?r$dQKSA z6O+Z;ec!ps3di-Ywbk;XD$VWJnRf-PW)_-l|Df!wnt7*mfy0r+G<%&J+)ff3+rpl?s5CBfylITqKiOok!Uy zWo-jlS8bNE+40zC#EOXxO3N@#lE|RMI2&U>o~tPVwtA)}u6`>kE@H_mBsVqzxplc- z7iz5iEIT1WCtm%8Z7I%l4KH6I^W;MIdsLfI)s$h9NJp3s?ys9(Q*PncdenB>w0;JI zA`Va| z*P+5VJ<`U^56dABJ?H|UkRSE{H9M3w@y#v+k}4e2O|v#}VMNXX90lRwY!*2v16U); zu`Sir!$jMVP?H}YKjmwQe7Vb)n+#hb{UxR@u1%We^1vh;B@>hIvrkX=#oc5dqrsS*gTJ7b`0+!MjTx=De&VVWKVKVl6j46?*0ycU)c<>O4&lOsPl; zpGnrZ@nK`~t}wOX7Y6A^kiZ8^_j0rOyvHW<(*-n z-(k+I?~U~(4d2pjQ`xXlV-Vvi5}7>E;vynn@J0+ru?sY`+QJm6mBw}5UR$?zT{|GL zyk?k^s+6}y>&DLmc8W{*+*>+Z^>ED1PQIts2c!p%$y?r-kc?I~RjI(CuQiOA)=JGT zSKpy9FM=XSnL?4w{1$5|MO*HL1zo-=Kx$f(lbqByQP1?}uNifqXn6fR`+87$zu$#1 z4NFa{Mr3A$qsb%1OV_a)CXsN8-z#O4$PFP~Z24Uc*o-Cf>y62g$ehT~Fv~%>s(9>- zfqQ<5_6#u1O^ZqIcz`ZUFY5r-olPYoT_8o#%v}&7{t}+z5Srec@}+JP*np4BcYeJZg5l z*9ay}ilfS$f#NP6)T-9xQD8G?XM2IB%&&F){yIP!`{!ST4bTH?mJ)c4lb#C|FYEPhpQ}^xW=VuhfXLCHgByZ z;gB9QK9uhpXP(iUmHC2(!kyW7O=(cZHVe-v#ULg;Av)X?pU=BBv6*X{SooFCwe-{Y z_FT*i5D#k^6Y1jyC-^YB1_X_HF~}8l!La$K-pfIcpO~N z5=ohnNSBBkuQg0PfI3!poI5@CYrKN)8b+D?+{N-e5BTkf*%5Np0O;q-{y@Pl@%yKYh->?w^EP&~6n=(_cTQpWR)XZ)X4|{nGF!=VLQw(PN+60(xnrh;R(Ji(Egwn4d}icx)MUP) zkicMTM#vKSCcRhy?Ykljd1DsO&zOk)uDKnaYsvil#Cg_IHW>#!_%i55Cx*Km-X!$R zfBPwNzs2m9c6Eu553!G*^8fxnx7_!X|GqEj(dFOdg*xwsm+-yiiKY_wSN^@3kh8sf zLGEh#>@X3LS&hz_i}~soyhex{fO2c9Z_LG@ zO7i{_`3Ru#gLS@9+*;aAnm(T=CQNo7NY9S?b6HsEF&Sz_tO|&!bNYrASS5}>wap}+ zD5k)?;Tc9M2THs1#hd(se?3>rJQU}=OD9~~=8(q(g)|$cl~)Q)NNHj#xB!~#ZQNc5 znFXlSLz^z;56N&b!=FpfPQHdQhV*NI?zKPc0Jax`%G`2v+=y7kQa8*7c)VWHnpNfv zk>85xx`ARtuUc;Xw7B)-b!D(IiipYx876IvD$258H*8QGfpJ^9*1O3VS8l05-wM)N z90bBnddDuqMG!v9(HK$SeyvJy4+AG?1+Hpuf!pZ7qpb*T{+DYvk*Lw_(kN zhOOr$8{dG1&SKtCQ*7G2GN}^tx<3PM9tzW3xi4OMO%2myh9mdJRd`1>QqRfY%0v8y zX5S9nYff{arEZqQCEM3N6UR9fJ0S^dmPlm`m6|egg1qy=;(;4>cQoD1#c)WO<|d1w zsTkTTbHOnM?C{3qrY+wGUo-tE_>3p~4|&jK5%A;VL#{q5GfabWh^Y529w=Xgb8F&N z=^1R=WUZ~~HtQ(~KInkw^fi;jb26@#uaX`@@Z>j68@`W)>=ABWuWQH{myFRj)|Eqr zK!d7#BH1G+Zlk4a@-?oM-C;}F+jv|rVQk-{vUZqR(oByHmnUVh1Cc9Fg5Q?^dPzeR zUnhNTXi8!i8ksYsnd>0}?|~qj=L`9O9*-PdQ^sEGEYD>AV9o|uxO(4wM0 zo3Z=XhT{lZt)i0S7fN#Qyv}CZQ1eK!vbc*1%pe! z{Y(}2-do=5joB^&zn}n{y^7q0TQ|Wi%#+0cfYMxn3!9Rw6LzEKHl%GO`rdjM;hAz>^4pJ}qSj=&%5((L>y@9IeTeB2=_94O zEfr}_^CO{gp!12)-`6XvsUf_*IqnB|Tv%5|P98`u2%V2jD5+V zcq>0!X88#ud4KyG9%gL^MaFJ~7+6tA-_+Yo^2} ziWq{)@3C@g&}`cQ4hXOtNx~?`er%+8k?^?bY0vB#BF1;F!Jcd}_|w6JH%Jsaq=%IF ziDVGxxk42^ao~2CO}#=PU2-k`@w!s4&l7n;#sNGmWf>{0OXz||PGcxNNoiK!hXJO5 ze(?2!8#zl&KFyD_f^NNh8B8l@@UA1PDkLz`OY_}*Pg(0m5jREK-hM3!xo1k9_%$+v zX6H_I82yu!v{&@x@AEljX3`}M;67cV!rRtkYjDZ}5;$mOl)Rwr4}cTaEvbKwjj47(z2Xf*t5E?M`Tl2aH}#Wq3F*Aj*PTYE2hm%*^f>*AhwdE1!T(5l%aG3s01LZztd z15?U-%4;o#i4uuU%osZ!GHKWc3Cz&cX_Gd_@pHz5;8W5|JvN)DGu-2#FlkZXMjx3$ zWQu^|g(8n+vAHKc(5TOqLDL#X?i##mW(kQg$%b0+eTt%V;I~Wa_mGWlyf~-c+0o@E znv=q)ydMvj_xqOne#`r7X1Iz-PjL)~`|Wo28lc_3`5e zJV0BPxPW$E5i*hYG_m;##6M)=kWI-dEO&5Za&uY zetl%KxXXlZQMCdQvJKJK!C%H!*#j3rnKBw4oyNeM+(pOnMlQ^7hQX zy3^ykfGTN+3~mP+TfLvG2X;Z%y-1SNIw z-?ZM3h6Tek&xUQ%KgI@78C;*A=hZS-sH4G5D&K@$X^AvRKjINn;t{EmK-2{TuP2_{ z^t?V|DF96>IUnu;da8Hxmo)<$M91qpo8uF0PqHY7>LF1olz0HZvT?B1a&V~f7+^GG z=A-QR8eI201p`Gp&lD<`+%rap89|Q7n(LJq?t5X_t$R^G|ND~ymsW?Ab7DatOK!h+ zg{EvcGrNpUH_!PHAmcf_w;Y1U@=|q`G&~fZFPzP&gGthM+&_XL?5bFVT(*4t_EYY; z#KtA&Chujk-XSXn{>UW}Q&J#oB8t33Px@*OL~{@q&S;7RaVS7VhHO&-fihYX50x3Y z^jSgwRyI$jnGY2+w}?47X+<>DusSCk_eS{67Zqy=uKn9TP@O_6T2wDKFIq*3(>&WO zCwk(QbughJ&g_i*0ILZB-Z-l-mG^xkq;?lbYH_M6>LGM)W;g{p5xj+AhRKx|NadcC zziMYPXl#ic`SxSvgYJ~YWPl)2?S{s4W<@iT%aAM$pO?YoWh(L-*Fz`1 zR&KUpVOjvlM6)K^^UqHdp9@k(Q-i!rY9g9bY_ExDgje1bsW5BJD){qoz|YsV^d~|d zfw!lx>6z!S4T}KXs@GIRpaPUPOQ}C7KL14vcst=Jw1BWJP z!JxHO6Ilor7ORIcA2^(3_BLc(9sU^j!92>-#cTv_7+KKj0e}#ID;Q?H4?k#_L*(`G zk%j0=>fe3e@_x_9WYP^2ZP_3Jk$j+M!R5$iK#t5pUKZakN>`@?OrZ%4ff^u-qb6#3 zAG@GA;o*1;I`X=H=Oz!+sWY?2-4j#K?Q}@xOZjwJHwcf+acRgP!B&e+L@X~ewc=W) zC&5IYG7%VN<*wOzO1V9Mx6F556V75jyaEw7=2-y5$e(L1m#@!vPCoJZ zu9>D`!PG3X$|#YEBpd=-Knm6Zt!+_WYdf}q1r7&5n>GZZAG`%2iULY1e0<@oWjJhk zCpaL(X7-$niqU`59v;V??ez3M2ATv8If4>meNs11obPumZ4n|pp+m9YZ-Kv-V1fJo zlsWIpJECv#lmp)HDf14=h&x=9i%N+7Y#O|_pmxZnWfmEc1wS_hNlrs#1U6$5XxL_y zcWAVZ*RIHcbMa7IBN_U-Je!b;-OwE{E<#!OEH7Ppe)C+VG@2V}hctFh7uRe=_-9s7 z{~)E}APgq2t@#K!76exhYY(Ldw-S60H~ionNVaM&2^=a&M%$Bq!mO@7M8$K94?OXNF)F!@&3l?sWOtYOIdgd1;X}1Zc|KqRywvA`M?bTCvLTK= zU_d~!BVWrrH1|CS%W5|C2OtiofYY0q`E*7p}yi-)6yqH5^4^ftduUQO}Hae z46*5<6et4}(zRH$bwr)h3IABY7~}%s8n2T7&cg#`gmKVM#*k}fvep*0i?tzY9orhK zr~@hnR5X^j69{^Y771J5ikkR%(v94K1d&vSW6(%)+(R{XDj`+ME^JRED4 zf?0N>=1?*j`#gwNtU45lwv}Jj^!p(dz9(|oWhc6_4~0}iW%*r`j0Jg;b9)22-ZpA| z3-RlF%AU1JAe1aX_ldeNqKfrQoPSPyqza`hv{${h+)nvJhH#1is(=+0QLp09Pg5oi zyh0#js>^?mE9o+D&jtF)1U#VCL*BpT&{V^R28y(~_xrsY6?{~VX=N2$*a+=hAsExq zT!hb}(NS{gkviTRVSVTOnE5{;Yu;OSWIGT*BvzX?IWhEcFFQI|R25~1?vpMTaA=ziaY3ziUB_k=tr3afwS zx-2{_`MFP7iJ)tG=j5wn(mdylrZUoF0Z&i{aPH0Z*L>$ag$Bbz$#aToHL>l9;=!vEmT+Vx66U#Kl%6LFsmTkEAu{1IjSYG3=}m z7DA%|5v#S~IE>r|0%q&(Fh%lv7%Z2CalcpXI9os*)nnJXYfXy)MnJWJHj}QEK-t@(11f8h1WU{vuB*^m8U!iE9!1u16hl2| zr?{fk1~xJcC#=x(*$OP77sQiX211g-iyYBSP8Z=^8x9xyw+78dcbu~7N!gIRLnIwi z?gR`<-l3gR6|4r>NH3Djt47CeDt_=Z_bI_fMibK^j5s7k0M?rBKY|H~8)tHM)Fi_(I-DF`1W$In80cMw)*7hG z1h+G!P1ac>*uErI1cVb)=^oU0qfyi3JB>D*(1<~@bz_TY;43DS+^Fia@Is31B_^^W zp(o~}i=uFED+-AVdF%U|Nm__Gpl!hn4FOTp`_=@Hi*?h<7#!KOqBL1>#7j1^pc;E+ z5EP8WiLJxV4vBMF35UkACh0l@$H=zV9bONkjaPVW8{}UZ(>~}CeETfdi1|3k9ztSb zLU8!m=E-Y<7sl*dGXdR*AI+z|pyIxrJQnR_1S(!0=;L=o{JSLFsQtLJ& zz~JhK=9uU4L055@A`f+WvN^oCF#AZN6EZq#2m?~5(8N-x&bDln5OYkuHn7n*i_h=%1g45#tlCIEGf_#! zDSJZ~QRv6yYvEJoU)2WueaJqs>zqm8wSy+!x{m;C@PO4Dq>oS>C%|S7yB9rqgExIaM%|a1TmdT4c(~O z>`V)Ypq?KF@w`dw84ZLq0J+0v3pfKEk$`*E(y7bmvk(Bjb&B9h6UAgzITzE5lHblol}FBuHX?z4nzmlG>JO5 z(CRx*)iWzb2d^~1J&GVP2T&|oOsfbfr=)OHoBfEc69I2-H`D5pAhU7J7A1I*D758_ zshiL7IyoiWYc&Fq5(#;;{Z^obiu-rMaU4dzf#~3&<~Zy8dCP%l|h7c;LG zw4iHuKOY5hs?g=j%Xjo{MY^QAUx&>lBoeSRa3$?BmWg@KVhv}yBqI>H9j8@$6+xj) zkPP95QqGv^pswT8nchGG7Y+113DIBtCtt+ln1=^RG4A5;z0J#tKHZxDfERj zAxV=i4M0_ih*C;uy~Y1K9JGTW)KN^khm*~#6N9J1sSDn_mRC-SCP-(o!hrjM7qB!Y ztK5U!LIike_eqqum|ohU$sRF!CY%>ik(4tU7_Ghx&8FiBISofIki#ACcU;ugb>=rQ z(s>R-EbHP?CyR#^3YKz0CfJ(wD4r7$5(D@99XC0~oW6~AD2#F>QLaDgq#hZnVZ}|0 zMKes6SVgW2Zbsx`Ki3+-gq~?=L{0ajOC02K+RU%U^qeKSQpDYKkR+he_wO(2&jzc` zV~$3txR~ux(OuwSDS~6 zv*`>R=NW8W(NxW88i>7U>LkR#)|Ihm-ZQU4qGH?ugV^;ynP z7XLC|pXc;L15Pj;Lw@{_rs3Zq2sq%AScWJOw5ziCgTorfvrVtuarxZ#??)c8KzFA1 zo|d1*;)`N5=W-pMx6dIwX^GAB`&egWUT-Q)gT<>C`@rU_J>ZL<9(e!!y~$=$?01U! zl>3EihYigld9_AMcX|>H9?wCBNbV$ly*#^kUIWULUo)k~J_}WEhc!1~U2L?3-RCz5141&hWV~621d0uPK5!uVixYG&}pGyW;CT1VJY;>Wi-p zk_7pmXSnNLh0JJP)m26?gfR?bYcj+8AW+KUNsN`JyCEq4r?nr?53kn8&#HMH{jkW> z`M0pIKKQKDZkxWAzPswxzxCS87 z>JRfZk_PNJmRlCDS-W#GV%8jY|Aht~<8}1=)@Luv%!ccyj*c(HwX;kY(a#TIIQph literal 0 HcmV?d00001 From 5aef23938432e3480852bf84d35e7aa3e1777c8f Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 8 Oct 2024 18:01:51 +0200 Subject: [PATCH 065/101] Add VO pointer and call to RBT main class --- modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h | 9 +++++++++ modules/tracker/rbt/src/core/vpRBTracker.cpp | 10 ++++++++++ 2 files changed, 19 insertions(+) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 53de5aeb49..33a0f66884 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -57,6 +57,7 @@ BEGIN_VISP_NAMESPACE class vpObjectMask; class vpRBDriftDetector; +class vpRBVisualOdometry; /** * \brief @@ -156,6 +157,12 @@ class VISP_EXPORT vpRBTracker m_mask = mask; } + std::shared_ptr getOdometryMethod() const { return m_odometry; } + void setOdometryMethod(const std::shared_ptr &odometry) + { + m_odometry = odometry; + } + #if defined(VISP_HAVE_NLOHMANN_JSON) void loadConfigurationFile(const std::string &filename); void loadConfiguration(const nlohmann::json &j); @@ -242,6 +249,8 @@ class VISP_EXPORT vpRBTracker std::shared_ptr m_mask; std::shared_ptr m_driftDetector; + std::shared_ptr m_odometry; + // vpRBTrackerFilter m_filter; }; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 3060f17940..b4ab7decab 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -44,6 +44,7 @@ #include #include #include +#include #include #define VP_DEBUG_RB_TRACKER 1 @@ -57,6 +58,7 @@ vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0 m_driftDetector = nullptr; m_mask = nullptr; + m_odometry = nullptr; } void vpRBTracker::getPose(vpHomogeneousMatrix &cMo) const @@ -213,12 +215,20 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_logger.startTimer(); updateRender(input); m_logger.setRenderTime(m_logger.endTimer()); + if (m_firstIteration) { m_firstIteration = false; m_previousFrame.I = input.I; m_previousFrame.IRGB = input.IRGB; } + if (m_odometry) { + m_odometry->compute(input, m_previousFrame); + vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); + m_cMo = cnTc * m_cMo; + updateRender(input); + } + m_logger.startTimer(); if (m_mask) { m_mask->updateMask(input, m_previousFrame, input.mask); From 8c2f96621ed0f1f2c50778680adc4e9b43c50653 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 11 Oct 2024 13:21:05 +0200 Subject: [PATCH 066/101] Fix VO trampoline class --- modules/python/bindings/include/rbt/vo.hpp | 4 ++-- modules/python/config/rbt.json | 3 +-- .../rbt/include/visp3/rbt/vpRBVisualOdometry.h | 1 + modules/tracker/rbt/src/core/vpRBTracker.cpp | 17 +++++++++++------ .../tracker/rbt/src/vo/vpRBVisualOdometry.cpp | 3 +++ 5 files changed, 18 insertions(+), 10 deletions(-) create mode 100644 modules/tracker/rbt/src/vo/vpRBVisualOdometry.cpp diff --git a/modules/python/bindings/include/rbt/vo.hpp b/modules/python/bindings/include/rbt/vo.hpp index 50462b1fea..cbe915be6f 100644 --- a/modules/python/bindings/include/rbt/vo.hpp +++ b/modules/python/bindings/include/rbt/vo.hpp @@ -26,7 +26,7 @@ class TrampolineRBVisualOdometry : public vpRBVisualOdometry virtual vpHomogeneousMatrix getCameraMotion() const VP_OVERRIDE { - PYBIND11_OVERRIDE( + PYBIND11_OVERRIDE_PURE( vpHomogeneousMatrix, /* Return type */ vpRBVisualOdometry, /* Parent class */ getCameraMotion, /* Name of function in C++ (must match Python name) */ @@ -35,7 +35,7 @@ class TrampolineRBVisualOdometry : public vpRBVisualOdometry } virtual vpHomogeneousMatrix getCameraPose() const VP_OVERRIDE { - PYBIND11_OVERRIDE( + PYBIND11_OVERRIDE_PURE( vpHomogeneousMatrix, /* Return type */ vpRBVisualOdometry, /* Parent class */ getCameraPose, /* Name of function in C++ (must match Python name) */ diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index 1c595e35d6..de5ff591aa 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -265,8 +265,7 @@ ] }, "vpRBVisualOdometry": { - "trampoline": "TrampolineRBVisualOdometry", - "use_publicist": true + "trampoline": "TrampolineRBVisualOdometry" }, "vpObjectCentricRenderer": { "methods": [ diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h b/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h index 9a89021331..37493a9802 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBVisualOdometry.h @@ -9,6 +9,7 @@ class vpHomogeneousMatrix; class VISP_EXPORT vpRBVisualOdometry { public: + vpRBVisualOdometry(); virtual void compute(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame) = 0; virtual vpHomogeneousMatrix getCameraMotion() const = 0; virtual vpHomogeneousMatrix getCameraPose() const = 0; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index b4ab7decab..7bc0bcda5b 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -222,12 +222,7 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_previousFrame.IRGB = input.IRGB; } - if (m_odometry) { - m_odometry->compute(input, m_previousFrame); - vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); - m_cMo = cnTc * m_cMo; - updateRender(input); - } + m_logger.startTimer(); if (m_mask) { @@ -235,6 +230,12 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setMaskTime(m_logger.endTimer()); + if (m_odometry) { + m_odometry->compute(input, m_previousFrame); + vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); + m_cMo = cnTc * m_cMo; + updateRender(input); + } bool requiresSilhouetteCandidates = false; for (std::shared_ptr &tracker : m_trackers) { @@ -244,6 +245,8 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } } + + m_logger.startTimer(); if (requiresSilhouetteCandidates) { const vpHomogeneousMatrix cTcp = m_cMo * m_cMoPrev.inverse(); @@ -255,6 +258,8 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setSilhouetteTime(m_logger.endTimer()); + + int id = 0; for (std::shared_ptr &tracker : m_trackers) { m_logger.startTimer(); diff --git a/modules/tracker/rbt/src/vo/vpRBVisualOdometry.cpp b/modules/tracker/rbt/src/vo/vpRBVisualOdometry.cpp new file mode 100644 index 0000000000..f13befe401 --- /dev/null +++ b/modules/tracker/rbt/src/vo/vpRBVisualOdometry.cpp @@ -0,0 +1,3 @@ +#include + +vpRBVisualOdometry::vpRBVisualOdometry() { } From 80261edac84b5b04aca7304e8fc8a833eff016ef Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 11 Oct 2024 17:01:32 +0200 Subject: [PATCH 067/101] Debugging odometry usage, logging times --- .../rbt/include/visp3/rbt/vpRBTrackerLogger.h | 14 ++++++++++++-- modules/tracker/rbt/src/core/vpRBTracker.cpp | 6 ++---- 2 files changed, 14 insertions(+), 6 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index e20e004440..83219d1753 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -61,6 +61,9 @@ class VISP_EXPORT vpRBTrackerLogger { m_renderTime = 0.0; m_silhouetteExtractionTime = 0.0; + m_odometryTime = 0.0; + m_driftTime = 0.0; + m_trackerIterStartTime.clear(); m_trackerFeatureExtractionTime.clear(); @@ -120,12 +123,18 @@ class VISP_EXPORT vpRBTrackerLogger m_driftTime = elapsed; } + void setOdometryTime(double elapsed) + { + m_odometryTime = elapsed; + } + private: double m_startTime; double m_renderTime; double m_silhouetteExtractionTime; double m_maskTime; double m_driftTime; + double m_odometryTime; std::map> m_trackerVVSIterTimes; std::map m_trackerIterStartTime; @@ -140,12 +149,13 @@ class VISP_EXPORT vpRBTrackerLogger std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) { - ssize_t ss = out.precision(); + auto flags = out.flags(); out << std::setprecision(2) << std::fixed; out << "====================================================" << std::endl; out << "Render: " << timer.m_renderTime << "ms" << std::endl; out << "Mask: " << timer.m_maskTime << "ms" << std::endl; out << "Drift: " << timer.m_driftTime << "ms" << std::endl; + out << "Odometry: " << timer.m_odometryTime << "ms" << std::endl; out << "Silhouette extraction: " << timer.m_silhouetteExtractionTime << "ms" << std::endl; out << "Trackers: " << std::endl; @@ -168,7 +178,7 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) << "+-" << vpMath::getStdev(vvsIterData.second) << "ms)" << std::endl; } out << "====================================================" << std::endl; - out << std::setprecision(ss); + out.flags(flags); return out; } diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 7bc0bcda5b..47c0e17e4e 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -231,10 +231,12 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_logger.setMaskTime(m_logger.endTimer()); if (m_odometry) { + m_logger.startTimer(); m_odometry->compute(input, m_previousFrame); vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); m_cMo = cnTc * m_cMo; updateRender(input); + m_logger.setOdometryTime(m_logger.endTimer()); } bool requiresSilhouetteCandidates = false; @@ -245,8 +247,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } } - - m_logger.startTimer(); if (requiresSilhouetteCandidates) { const vpHomogeneousMatrix cTcp = m_cMo * m_cMoPrev.inverse(); @@ -258,8 +258,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setSilhouetteTime(m_logger.endTimer()); - - int id = 0; for (std::shared_ptr &tracker : m_trackers) { m_logger.startTimer(); From ff763b8ad0d6dd93401e145c9d634d7ee20677b2 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 14 Oct 2024 18:02:04 +0200 Subject: [PATCH 068/101] Move call to odometry --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 47c0e17e4e..c846fe1b86 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -230,14 +230,7 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) } m_logger.setMaskTime(m_logger.endTimer()); - if (m_odometry) { - m_logger.startTimer(); - m_odometry->compute(input, m_previousFrame); - vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); - m_cMo = cnTc * m_cMo; - updateRender(input); - m_logger.setOdometryTime(m_logger.endTimer()); - } + bool requiresSilhouetteCandidates = false; for (std::shared_ptr &tracker : m_trackers) { @@ -292,6 +285,15 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) id += 1; } + if (m_odometry) { + m_logger.startTimer(); + m_odometry->compute(input, m_previousFrame); + vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); + m_cMo = cnTc * m_cMo; + std::cout << "Odometry camera cnTc = " << vpPoseVector(cnTc).t() << std::endl; + m_logger.setOdometryTime(m_logger.endTimer()); + } + id = 0; for (std::shared_ptr &tracker : m_trackers) { From d7c674fbc13d6a84388bbcd2762c314ce2108069 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Tue, 15 Oct 2024 09:15:58 +0200 Subject: [PATCH 069/101] Revert changes related to buildFrom() --- modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp index dde3a79ee1..e15798f37b 100644 --- a/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp +++ b/modules/tracker/rbt/src/core/vpRBInitializationHelper.cpp @@ -33,7 +33,7 @@ void vpRBInitializationHelper::savePose(const std::string &filename) const std::fstream finitpos; finitpos.open(filename.c_str(), std::ios::out); - init_pos.build(m_cMo); + init_pos.buildFrom(m_cMo); finitpos << init_pos; finitpos.close(); } @@ -81,7 +81,7 @@ void vpRBInitializationHelper::initClick(const vpImage &I, const std::string } finitpos.close(); - last_cMo.build(init_pos); + last_cMo.buildFrom(init_pos); std::cout << "Tracker initial pose read from " << ss.str() << ": " << std::endl << last_cMo << std::endl; From dc306ad6bd0c07c3ee4fb351c1d470080d1fdba6 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Tue, 15 Oct 2024 09:16:13 +0200 Subject: [PATCH 070/101] Add missing visp_sensor module --- tutorial/CMakeLists.txt | 2 +- tutorial/tracking/render-based/CMakeLists.txt | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/tutorial/CMakeLists.txt b/tutorial/CMakeLists.txt index c4b5dbf39f..1761ae5878 100644 --- a/tutorial/CMakeLists.txt +++ b/tutorial/CMakeLists.txt @@ -68,7 +68,7 @@ visp_add_subdirectory(tracking/model-based/old/edges REQUIRED_DEPS visp_co visp_add_subdirectory(tracking/model-based/old/generic REQUIRED_DEPS visp_core visp_mbt visp_io visp_gui) visp_add_subdirectory(tracking/model-based/old/hybrid REQUIRED_DEPS visp_core visp_mbt visp_klt visp_io visp_gui) visp_add_subdirectory(tracking/model-based/old/keypoint REQUIRED_DEPS visp_core visp_mbt visp_klt visp_io visp_gui) -visp_add_subdirectory(tracking/render-based REQUIRED_DEPS visp_core visp_rbt visp_io visp_gui) +visp_add_subdirectory(tracking/render-based REQUIRED_DEPS visp_core visp_rbt visp_io visp_gui visp_sensor) visp_add_subdirectory(tracking/template-tracker REQUIRED_DEPS visp_core visp_tt visp_io visp_gui) visp_add_subdirectory(tracking/moving-edges REQUIRED_DEPS visp_core visp_me visp_io visp_gui visp_sensor) diff --git a/tutorial/tracking/render-based/CMakeLists.txt b/tutorial/tracking/render-based/CMakeLists.txt index 2e8c94e4bf..71016ba5df 100644 --- a/tutorial/tracking/render-based/CMakeLists.txt +++ b/tutorial/tracking/render-based/CMakeLists.txt @@ -2,7 +2,7 @@ cmake_minimum_required(VERSION 3.5) project(tutorial-render-based-tracking) -find_package(VISP REQUIRED visp_core visp_rbt visp_io visp_gui) +find_package(VISP REQUIRED visp_core visp_rbt visp_io visp_gui visp_sensor) # set the list of source files set(tutorial_cpp From 656d4c9d85f4a71f24b10f7eb0d28f3713bf0f51 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 15 Oct 2024 13:43:19 +0200 Subject: [PATCH 071/101] Add missing trampolines --- modules/python/bindings/include/rbt.hpp | 3 + modules/python/bindings/include/rbt/drift.hpp | 67 +++++++++++++++++++ modules/python/bindings/include/rbt/mask.hpp | 50 ++++++++++++++ modules/python/config/rbt.json | 6 ++ 4 files changed, 126 insertions(+) create mode 100644 modules/python/bindings/include/rbt/drift.hpp create mode 100644 modules/python/bindings/include/rbt/mask.hpp diff --git a/modules/python/bindings/include/rbt.hpp b/modules/python/bindings/include/rbt.hpp index b918ec0826..293729d423 100644 --- a/modules/python/bindings/include/rbt.hpp +++ b/modules/python/bindings/include/rbt.hpp @@ -37,6 +37,9 @@ #include "rbt/feature_tracker.hpp" #include "rbt/vo.hpp" +#include "rbt/drift.hpp" +#include "rbt/mask.hpp" + diff --git a/modules/python/bindings/include/rbt/drift.hpp b/modules/python/bindings/include/rbt/drift.hpp new file mode 100644 index 0000000000..e478b3e5ff --- /dev/null +++ b/modules/python/bindings/include/rbt/drift.hpp @@ -0,0 +1,67 @@ + +#ifndef VISP_PYTHON_RBT_DRIFT_HPP +#define VISP_PYTHON_RBT_DRIFT_HPP + +#include +#include + + +class TrampolineRBDriftDetector : public vpRBDriftDetector +{ +public: + using vpRBDriftDetector::vpRBDriftDetector; + + TrampolineRBDriftDetector() : vpRBDriftDetector() { } + + virtual void update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) + { + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "update"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&previousFrame, &frame, &cTo, &cprevTo); + } + } + + virtual double getScore() const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + double, /* Return type */ + vpRBDriftDetector, /* Parent class */ + getScore, /* Name of function in C++ (must match Python name) */ + ); + } + + virtual bool hasDiverged() const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + double, /* Return type */ + vpRBDriftDetector, /* Parent class */ + hasDiverged, /* Name of function in C++ (must match Python name) */ + ); + } + + virtual void display(const vpImage &I) VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpRBDriftDetector, /* Parent class */ + display, /* Name of function in C++ (must match Python name) */ + I + ); + } + + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &) VP_OVERRIDE + { + + } +#endif + +}; + + + +#endif diff --git a/modules/python/bindings/include/rbt/mask.hpp b/modules/python/bindings/include/rbt/mask.hpp new file mode 100644 index 0000000000..0499c3b19c --- /dev/null +++ b/modules/python/bindings/include/rbt/mask.hpp @@ -0,0 +1,50 @@ + +#ifndef VISP_PYTHON_RBT_MASK_HPP +#define VISP_PYTHON_RBT_MASK_HPP + +#include +#include +#include + + +class TrampolineObjectMask : public vpObjectMask +{ +public: + using vpObjectMask::vpObjectMask; + + TrampolineObjectMask() : vpObjectMask() { } + + virtual void updateMask(const vpRBFeatureTrackerInput &frame, + const vpRBFeatureTrackerInput &previousFrame, + vpImage &mask) VP_OVERRIDE + { + pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. + // Try to look up the overridden method on the Python side. + pybind11::function override = pybind11::get_override(this, "updateMask"); + if (override) { // method is found + // Pybind seems to copy the frames, so we pass the pointers + override(&frame, &previousFrame, &mask); + } + } + + virtual void display(const vpImage &mask, vpImage &Imask) const VP_OVERRIDE + { + PYBIND11_OVERRIDE_PURE( + void, /* Return type */ + vpObjectMask, /* Parent class */ + display, /* Name of function in C++ (must match Python name) */ + mask, Imask + ); + } + +#if defined(VISP_HAVE_NLOHMANN_JSON) + virtual void loadJsonConfiguration(const nlohmann::json &) VP_OVERRIDE + { + + } +#endif +}; + + + +#endif diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index de5ff591aa..fb024e4adc 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -267,6 +267,12 @@ "vpRBVisualOdometry": { "trampoline": "TrampolineRBVisualOdometry" }, + "vpRBDriftDetector": { + "trampoline": "TrampolineRBDriftDetector" + }, + "vpObjectMask": { + "trampoline": "TrampolineObjectMask" + }, "vpObjectCentricRenderer": { "methods": [ { From 52dbbb038392e06b76fe4996a1e1706228721a79 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 15 Oct 2024 16:00:00 +0200 Subject: [PATCH 072/101] re enable rendering after call to odometry --- modules/python/bindings/include/rbt/mask.hpp | 1 - modules/tracker/rbt/src/core/vpRBTracker.cpp | 7 ++++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/modules/python/bindings/include/rbt/mask.hpp b/modules/python/bindings/include/rbt/mask.hpp index 0499c3b19c..944fc78d7d 100644 --- a/modules/python/bindings/include/rbt/mask.hpp +++ b/modules/python/bindings/include/rbt/mask.hpp @@ -22,7 +22,6 @@ class TrampolineObjectMask : public vpObjectMask // Try to look up the overridden method on the Python side. pybind11::function override = pybind11::get_override(this, "updateMask"); if (override) { // method is found - // Pybind seems to copy the frames, so we pass the pointers override(&frame, &previousFrame, &mask); } } diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index c846fe1b86..e483ff87a3 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -291,6 +291,7 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); m_cMo = cnTc * m_cMo; std::cout << "Odometry camera cnTc = " << vpPoseVector(cnTc).t() << std::endl; + updateRender(input); m_logger.setOdometryTime(m_logger.endTimer()); } @@ -380,9 +381,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) tracker->onTrackingIterEnd(); } //m_cMo = m_kalman.filter(m_cMo, 1.0 / 20.0); -#if VP_DEBUG_RB_TRACKER - std::cout << m_logger << std::endl; -#endif if (m_currentFrame.I.getSize() == 0) { m_currentFrame = input; m_previousFrame = input; @@ -396,6 +394,9 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_driftDetector->update(m_previousFrame, m_currentFrame, m_cMo, m_cMoPrev); } m_logger.setDriftDetectionTime(m_logger.endTimer()); +#if VP_DEBUG_RB_TRACKER + std::cout << m_logger << std::endl; +#endif } void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) From d7e577a698c03851afc2084a93a9c9ed4f70e132 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 15 Oct 2024 17:16:47 +0200 Subject: [PATCH 073/101] remove debug print --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 1 - 1 file changed, 1 deletion(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index e483ff87a3..8b22cf5d23 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -290,7 +290,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_odometry->compute(input, m_previousFrame); vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); m_cMo = cnTc * m_cMo; - std::cout << "Odometry camera cnTc = " << vpPoseVector(cnTc).t() << std::endl; updateRender(input); m_logger.setOdometryTime(m_logger.endTimer()); } From c1cf355087940a79ff32fa176e57a6010c7e7954 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Wed, 16 Oct 2024 11:31:22 +0200 Subject: [PATCH 074/101] =?UTF-8?q?Fix=20warning:=20=E2=80=98void*=20memse?= =?UTF-8?q?t(void*,=20int,=20size=5Ft)=E2=80=99=20clearing=20an=20object?= =?UTF-8?q?=20of=20non-trivial=20type=20=E2=80=98class=20vpRGBf=E2=80=99;?= =?UTF-8?q?=20use=20assignment=20or=20value-initialization=20instead=20[-W?= =?UTF-8?q?class-memaccess]=20=20=20225=20|=20=20=20memset(I.bitmap,=200,?= =?UTF-8?q?=20I.getSize()=20*=20sizeof(vpRGBf));=20=20=20=20=20=20=20|=20?= =?UTF-8?q?=20=20~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index 6833d83043..9620c1bc2d 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -221,8 +221,7 @@ void vpPanda3DDepthCannyFilter::getRender(vpImage &I, vpImage(std::max(0.0, bb.getTop())); From 87ba32db590a556f5bb3a8e13eb553197493840a Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Wed, 16 Oct 2024 15:14:59 +0200 Subject: [PATCH 075/101] Restore default ostream precision --- modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h | 2 ++ 1 file changed, 2 insertions(+) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index 83219d1753..1d444c3faa 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -149,6 +149,7 @@ class VISP_EXPORT vpRBTrackerLogger std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) { + const auto default_precision { out.precision() }; auto flags = out.flags(); out << std::setprecision(2) << std::fixed; out << "====================================================" << std::endl; @@ -179,6 +180,7 @@ std::ostream &operator<<(std::ostream &out, const vpRBTrackerLogger &timer) } out << "====================================================" << std::endl; out.flags(flags); + out << std::setprecision(default_precision); // restore defaults return out; } From 600bfd23772a9a96ff7f5b47b9784e6ca1691ce7 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Wed, 16 Oct 2024 15:15:19 +0200 Subject: [PATCH 076/101] Fix comment alignment --- modules/vision/src/key-point/vpKeyPoint.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/vision/src/key-point/vpKeyPoint.cpp b/modules/vision/src/key-point/vpKeyPoint.cpp index e49545002c..011c9294a6 100644 --- a/modules/vision/src/key-point/vpKeyPoint.cpp +++ b/modules/vision/src/key-point/vpKeyPoint.cpp @@ -3776,7 +3776,7 @@ void vpKeyPoint::saveLearningData(const std::string &filename, bool binaryMode, int class_id = m_trainKeyPoints[i_].class_id; vpIoTools::writeBinaryValueLE(file, class_id); -// Write image_id + // Write image_id #ifdef VISP_HAVE_MODULE_IO std::map::const_iterator it_findImgId = m_mapOfImageId.find(m_trainKeyPoints[i_].class_id); int image_id = (saveTrainingImages && it_findImgId != m_mapOfImageId.end()) ? it_findImgId->second : -1; From 02b4911ae6e62f675744f11895b6a481aae9f5fd Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Wed, 16 Oct 2024 16:00:01 +0200 Subject: [PATCH 077/101] Introduce getter/setter/json serialization to handle a verbose mode --- .../rbt/include/visp3/rbt/vpRBTracker.h | 19 ++++++++++ modules/tracker/rbt/src/core/vpRBTracker.cpp | 36 ++++++++++--------- .../render-based/data/sequence1/dragon.json | 3 ++ 3 files changed, 42 insertions(+), 16 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 33a0f66884..c70cfc523f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -163,6 +163,24 @@ class VISP_EXPORT vpRBTracker m_odometry = odometry; } + /*! + * Get verbosity mode. + * \return true when verbosity is enabled, false otherwise. + */ + bool getVerbose() + { + return m_verbose; + } + + /*! + * Enable/disable verbosity mode. + * \param verbose : When true verbose mode is enabled. When false verbosity is disabled. + */ + void setVerbose(bool verbose) + { + m_verbose = verbose; + } + #if defined(VISP_HAVE_NLOHMANN_JSON) void loadConfigurationFile(const std::string &filename); void loadConfiguration(const nlohmann::json &j); @@ -246,6 +264,7 @@ class VISP_EXPORT vpRBTracker unsigned m_imageHeight, m_imageWidth; //! Color and render image dimensions vpRBTrackerLogger m_logger; + bool m_verbose; std::shared_ptr m_mask; std::shared_ptr m_driftDetector; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 8b22cf5d23..ef7705852c 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -47,11 +47,11 @@ #include #include -#define VP_DEBUG_RB_TRACKER 1 - BEGIN_VISP_NAMESPACE -vpRBTracker::vpRBTracker() : m_firstIteration(true), m_trackers(0), m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), m_renderer(m_rendererSettings), m_imageHeight(480), m_imageWidth(640) +vpRBTracker::vpRBTracker() : + m_firstIteration(true), m_trackers(0), m_lambda(1.0), m_vvsIterations(10), m_muInit(0.0), m_muIterFactor(0.5), + m_renderer(m_rendererSettings), m_imageHeight(480), m_imageWidth(640), m_verbose(false) { m_rendererSettings.setClippingDistance(0.01, 1.0); m_renderer.setRenderParameters(m_rendererSettings); @@ -393,9 +393,9 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_driftDetector->update(m_previousFrame, m_currentFrame, m_cMo, m_cMoPrev); } m_logger.setDriftDetectionTime(m_logger.endTimer()); -#if VP_DEBUG_RB_TRACKER - std::cout << m_logger << std::endl; -#endif + if (m_verbose) { + std::cout << m_logger << std::endl; + } } void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) @@ -457,12 +457,12 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) m_imageHeight, m_imageWidth); } } -// #pragma omp section -// { -// vpImage renders.color; -// m_renderer.getRenderer()->getRender(renders.color); -// m_renderer.placeRendernto(renders.color, frame.renders.color, vpRGBa(0)); -// } + // #pragma omp section + // { + // vpImage renders.color; + // m_renderer.getRenderer()->getRender(renders.color); + // m_renderer.placeRendernto(renders.color, frame.renders.color, vpRGBa(0)); + // } } } @@ -496,11 +496,11 @@ std::vector vpRBTracker::extractSilhouettePoints( // double nx = cos(theta); // double ny = sin(theta); // const double Zn = Idepth[static_cast(round(n + ny * 1))][static_cast(round(m + nx * 2))]; -#if VP_DEBUG_RB_TRACKER - if (fabs(theta) > M_PI + 1e-6) { - throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); + if (m_verbose) { + if (fabs(theta) > M_PI + 1e-6) { + throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); + } } -#endif points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // if (Zn > 0) { // theta = -theta; @@ -610,9 +610,13 @@ void vpRBTracker::loadConfigurationFile(const std::string &filename) loadConfiguration(settings); jsonFile.close(); } + void vpRBTracker::loadConfiguration(const nlohmann::json &j) { m_firstIteration = true; + const nlohmann::json verboseSettings = j.at("verbose"); + m_verbose = verboseSettings.value("enabled", m_verbose); + const nlohmann::json cameraSettings = j.at("camera"); m_cam = cameraSettings.at("intrinsics"); m_imageHeight = cameraSettings.value("height", m_imageHeight); diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.json b/tutorial/tracking/render-based/data/sequence1/dragon.json index 7906f3ebf3..e6278460af 100644 --- a/tutorial/tracking/render-based/data/sequence1/dragon.json +++ b/tutorial/tracking/render-based/data/sequence1/dragon.json @@ -1,4 +1,7 @@ { + "verbose": { + "enabled": true + }, "camera": { "intrinsics": { "model": "perspectiveWithoutDistortion", From 87f23e3e9fd42e482130cefb7560b4e67de5d726 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 23 Oct 2024 18:22:36 +0200 Subject: [PATCH 078/101] Fix weighting to reflect what's in Antoine's thesis --- .../tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h | 4 ++-- modules/tracker/rbt/src/core/vpRBTracker.cpp | 8 ++++---- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 7151a5137c..dbaa4338b1 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -178,9 +178,9 @@ class VISP_EXPORT vpRBFeatureTracker /** * \brief Get the importance of this tracker in the optimization step. * The default computation is the following: - * \f$ \sqrt{w / N} \f$, where \f$ w\f$ is the weight defined by setTrackerWeight, and \f$ N \f$ is the number of features. + * \f$ w / N \f$, where \f$ w\f$ is the weight defined by setTrackerWeight, and \f$ N \f$ is the number of features. */ - virtual double getVVSTrackerWeight() const { return sqrt(m_userVvsWeight / m_numFeatures); } + virtual double getVVSTrackerWeight() const { return m_userVvsWeight / m_numFeatures; } void setTrackerWeight(double weight) { m_userVvsWeight = weight; } /** diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index ef7705852c..bb322fc672 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -496,11 +496,11 @@ std::vector vpRBTracker::extractSilhouettePoints( // double nx = cos(theta); // double ny = sin(theta); // const double Zn = Idepth[static_cast(round(n + ny * 1))][static_cast(round(m + nx * 2))]; - if (m_verbose) { - if (fabs(theta) > M_PI + 1e-6) { - throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); - } +#if defined(VISP_DEBUG_RB_TRACKER) + if (fabs(theta) > M_PI + 1e-6) { + throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); } +#endif points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // if (Zn > 0) { // theta = -theta; From 1b9e49d8ab8ce9abb809221eb34abe43c561a904 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 29 Oct 2024 14:52:23 +0100 Subject: [PATCH 079/101] add early return in dense depth tracker --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 2 ++ modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp | 1 + 2 files changed, 3 insertions(+) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index bb322fc672..d4fde95550 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -405,6 +405,8 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) // Update clipping distances frame.renders.normals.resize(m_imageHeight, m_imageWidth); frame.renders.silhouetteCanny.resize(m_imageHeight, m_imageWidth); + frame.renders.isSilhouette.resize(m_imageHeight, m_imageWidth); + float clipNear, clipFar; m_renderer.computeClipping(clipNear, clipFar); frame.renders.zNear = std::max(0.001f, clipNear); diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 06e8af69ce..aae37ca5af 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -121,6 +121,7 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram m_weighted_error = 0.0; m_cov = 0.0; m_covWeightDiag = 0.0; + return; } vpRotationMatrix cRo = cMo.getRotationMatrix(); #ifdef VISP_HAVE_OPENMP From 890bc282c4046d077fafb2c2dfc0976a49606dfc Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 30 Oct 2024 15:07:34 +0100 Subject: [PATCH 080/101] Add mask filtering for CCD tracking --- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 29 ++++++++++++++ .../src/features/vpRBDenseDepthTracker.cpp | 14 +++---- .../src/features/vpRBSilhouetteCCDTracker.cpp | 40 +++++++++++++++++-- 3 files changed, 73 insertions(+), 10 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 4068d81ff5..4b7c9fe48f 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -219,6 +219,26 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker m_temporalSmoothingFac = factor; } + + /** + * \brief Returns whether the tracking algorithm should filter out points that are unlikely to be on the object according to the mask. + * If the mask is not computed beforehand, then it has no effect + */ + bool shouldUseMask() const { return m_useMask; } + void setShouldUseMask(bool useMask) { m_useMask = useMask; } + + /** + * \brief Returns the minimum mask gradient required for a silhouette point to be considered + * + * This value is between 0 and 1 + */ + float getMinimumMaskConfidence() const { return m_minMaskConfidence; } + void setMinimumMaskConfidence(float confidence) + { + + m_minMaskConfidence = confidence; + } + /** * @} */ @@ -244,8 +264,12 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE { vpRBFeatureTracker::loadJsonConfiguration(j); + m_vvsConvergenceThreshold = j.value("convergenceThreshold", m_vvsConvergenceThreshold); setTemporalSmoothingFactor(j.value("temporalSmoothing", m_temporalSmoothingFac)); + setShouldUseMask(j.value("useMask", m_useMask)); + setMinimumMaskConfidence(j.value("minMaskConfidence", m_minMaskConfidence)); + m_ccdParameters = j.value("ccd", m_ccdParameters); } @@ -255,6 +279,8 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker void updateCCDPoints(const vpHomogeneousMatrix &cMo); void computeLocalStatistics(const vpImage &I, vpCCDStatistics &stats); void computeErrorAndInteractionMatrix(); + double computeMaskGradient(const vpImage &mask, const vpRBSilhouetteControlPoint &pccd) const; + vpCCDParameters m_ccdParameters; @@ -269,6 +295,9 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker double m_vvsConvergenceThreshold; double tol; + bool m_useMask; + double m_minMaskConfidence; + std::vector m_gradients; std::vector m_hessians; vpColVector m_gradient; //! Sum of local gradients diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index aae37ca5af..67b0617190 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -30,7 +30,7 @@ #include #include - +#include BEGIN_VISP_NAMESPACE void fastRotationMatmul(const vpRotationMatrix &cRo, const vpRGBf &v, vpColVector &res) @@ -151,14 +151,14 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram } void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, - const vpImage &/*IRGB*/, const vpImage &/*depth*/, + const vpImage &/*IRGB*/, const vpImage &depth, const vpRBFeatureDisplayType /*type*/) const { - // for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { - // const vpDepthPoint &p = m_depthPoints[i]; - // vpColor c(0, static_cast(m_weights[i] * 255), 0); - // vpDisplay::displayPoint(depth, p.pixelPos, c, 2); - // } + for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { + const vpDepthPoint &p = m_depthPoints[i]; + vpColor c(0, static_cast(m_weights[i] * 255), 0); + vpDisplay::displayPoint(depth, p.pixelPos, c, 2); + } } diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 13dd062128..457792efd0 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -80,7 +80,7 @@ template class FastMat33 } }; -vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1) +vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1), m_useMask(false), m_minMaskConfidence(0.0) { } void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) @@ -100,10 +100,44 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr pccd.buildSilhouettePoint(ii, jj, sp.Z, sp.orientation, sp.normal, cMo, oMc, frame.cam); pccd.detectSilhouette(frame.renders.depth); - if (pccd.isSilhouette() && !std::isnan(sp.orientation) && pccd.isValid()) { - m_controlPoints.push_back(std::move(pccd)); + if (!pccd.isSilhouette() || std::isnan(sp.orientation) || !pccd.isValid()) { + continue; + } + + if (frame.hasMask() && m_useMask) { + double maskGradValue = computeMaskGradient(frame.mask, pccd); + if (maskGradValue < m_minMaskConfidence) { + continue; + } + } + m_controlPoints.push_back(std::move(pccd)); + + } +} + +double vpRBSilhouetteCCDTracker::computeMaskGradient(const vpImage &mask, const vpRBSilhouetteControlPoint &pccd) const +{ + + std::vector maskValues(m_ccdParameters.h * 2 + 1); + double c = cos(pccd.getTheta()); + double s = sin(pccd.getTheta()); + int index = 0; + for (int n = -m_ccdParameters.h + 1; n < m_ccdParameters.h; ++n) { + unsigned int ii = static_cast(round(pccd.icpoint.get_i() + s * n)); + unsigned int jj = static_cast(round(pccd.icpoint.get_j() + c * n)); + maskValues[index] = mask[ii][jj]; + ++index; + } + + double maxGrad = 0.0; + + for (unsigned i = 1; i < maskValues.size() - 1; ++i) { + double grad = abs(maskValues[i + 1] - maskValues[i - 1]); + if (grad > maxGrad) { + maxGrad = grad; } } + return maxGrad; } void vpRBSilhouetteCCDTracker::initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix & /*cMo*/) From d15369de428280135942e261594ecad9c1bb5b23 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 30 Oct 2024 17:32:13 +0100 Subject: [PATCH 081/101] update histogram mask computation, per feature display toggling in settings --- .../rbt/include/visp3/rbt/vpColorHistogram.h | 13 +++++- .../include/visp3/rbt/vpRBFeatureTracker.h | 17 ++++++++ .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 6 +-- modules/tracker/rbt/src/core/vpRBTracker.cpp | 6 ++- .../rbt/src/features/vpRBFeatureTracker.cpp | 3 +- .../tracker/rbt/src/mask/vpColorHistogram.cpp | 40 +++++++------------ .../rbt/src/mask/vpColorHistogramMask.cpp | 26 +++++------- 7 files changed, 62 insertions(+), 49 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index ff32d54400..d2e1bc9668 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -47,6 +47,8 @@ class vpImage; class vpRGBa; class vpRect; + + class VISP_EXPORT vpColorHistogram { public: @@ -88,7 +90,15 @@ class VISP_EXPORT vpColorHistogram void computeProbas(const vpImage &image, vpImage &proba) const; - double probability(const vpRGBa &color) const; + inline unsigned int colorToIndex(const vpRGBa &p) const + { + return (p.R / m_binSize) * (m_N * m_N) + (p.G / m_binSize) * m_N + (p.B / m_binSize); + } + + inline double probability(const vpRGBa &color) const + { + return m_probas[colorToIndex(color)]; + } double kl(const vpColorHistogram &other) const; @@ -101,6 +111,7 @@ class VISP_EXPORT vpColorHistogram private: unsigned int m_N; + unsigned int m_binSize; std::vector m_probas; unsigned int m_numPixels; }; diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index dbaa4338b1..3888b6bb7e 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -143,6 +143,14 @@ class VISP_EXPORT vpRBFeatureTracker * @} */ + /** + * \name Display + * @{ + */ + + bool featuresShouldBeDisplayed() const { return m_enableDisplay; } + void setFeaturesShouldBeDisplayed(bool enableDisplay) { m_enableDisplay = enableDisplay; } + virtual void display( const vpCameraParameters &cam, const vpImage &I, @@ -150,6 +158,11 @@ class VISP_EXPORT vpRBFeatureTracker const vpImage &depth, const vpRBFeatureDisplayType type) const = 0; + /** + * @} + */ + + /** * \name Covariance computation * @{ @@ -203,6 +216,7 @@ class VISP_EXPORT vpRBFeatureTracker virtual void loadJsonConfiguration(const nlohmann::json &j) { m_userVvsWeight = j.at("weight"); + m_enableDisplay = j.value("display", m_enableDisplay); } #endif @@ -227,6 +241,9 @@ class VISP_EXPORT vpRBFeatureTracker double m_userVvsWeight; //! User-defined weight for this specific type of feature bool m_vvsConverged; //! Whether VVS has converged, should be updated every VVS iteration + + bool m_enableDisplay; //! Whether the tracked features should be displayed. + }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 4b7c9fe48f..1f2371fe8d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -295,14 +295,14 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker double m_vvsConvergenceThreshold; double tol; - bool m_useMask; - double m_minMaskConfidence; - std::vector m_gradients; std::vector m_hessians; vpColVector m_gradient; //! Sum of local gradients vpMatrix m_hessian; //! Sum of local hessians double m_temporalSmoothingFac; //! Smoothing factor used to integrate data from the previous frame. + + bool m_useMask; + double m_minMaskConfidence; }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index d4fde95550..386e8bb0ff 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -575,7 +575,9 @@ void vpRBTracker::display(const vpImage &I, const vpImage vpDisplay::display(IRGB); for (std::shared_ptr &tracker : m_trackers) { - tracker->display(m_currentFrame.cam, I, IRGB, depth, type); + if (tracker->featuresShouldBeDisplayed()) { + tracker->display(m_currentFrame.cam, I, IRGB, depth, type); + } } if (m_driftDetector) { @@ -595,7 +597,7 @@ void vpRBTracker::loadConfigurationFile(const std::string &filename) { std::ifstream jsonFile(filename); if (!jsonFile.good()) { - throw vpException(vpException::ioError, "Could not read from settings file " + filename + " to initialise the vpMbGenericTracker"); + throw vpException(vpException::ioError, "Could not read from settings file " + filename + " to initialize the RBTracker"); } nlohmann::json settings; try { diff --git a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp index 4d485413f9..ed73e4d3f1 100644 --- a/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBFeatureTracker.cpp @@ -41,6 +41,7 @@ vpRBFeatureTracker::vpRBFeatureTracker() m_numFeatures = 0; m_userVvsWeight = 1.0; m_vvsConverged = false; + m_enableDisplay = true; } void vpRBFeatureTracker::updateCovariance(const double lambda) @@ -68,7 +69,7 @@ void vpRBFeatureTracker::computeJTR(const vpMatrix &interaction, const vpColVect ssum += interaction[j][i] * error[j]; } JTR[i] = ssum; - } +} #endif } diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index 261a2f3ab7..db1b975647 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -51,7 +51,7 @@ void vpColorHistogram::Builder::build(vpColorHistogram &histogram) histogram.m_numPixels = count; } -vpColorHistogram::vpColorHistogram() : m_N(0), m_numPixels(0) +vpColorHistogram::vpColorHistogram() : m_N(0), m_binSize(0), m_numPixels(0) { } vpColorHistogram::vpColorHistogram(unsigned int N) @@ -65,24 +65,21 @@ void vpColorHistogram::setBinNumber(unsigned int N) throw vpException(vpException::badValue, "The number of bins per component should be a power of 2 (below or equal to 128)"); } m_N = N; + m_binSize = 256 / m_N; m_numPixels = 0; m_probas = std::vector(N * N * N, 0.f); } -inline unsigned int colorToIndex(const vpRGBa &p, unsigned int N, unsigned int binSize) -{ - return (p.R / binSize) * (N * N) + (p.G / binSize) * N + (p.B / binSize); -} + void vpColorHistogram::build(const vpImage &image, const vpImage &mask) { std::vector histo(m_N * m_N * m_N, 0); m_probas.resize(m_N * m_N * m_N); - unsigned binSize = 256 / m_N; unsigned int pixels = 0; for (unsigned int i = 0; i < image.getSize(); ++i) { if (mask.bitmap[i]) { - unsigned int index = colorToIndex(image.bitmap[i], m_N, binSize); + unsigned int index = colorToIndex(image.bitmap[i]); ++histo[index]; ++pixels; } @@ -125,17 +122,12 @@ void vpColorHistogram::computeProbas(const vpImage &image, vpImage &image, cons unsigned int bins = insideMask.m_probas.size(); std::vector countsIn(bins, 0), countsOut(bins, 0); - unsigned binSize = 256 / insideMask.m_N; #pragma omp parallel { std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); #pragma omp for schedule(static, 1024) for (unsigned int i = 0; i < image.getSize(); ++i) { - unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + unsigned int index = insideMask.colorToIndex(image.bitmap[i]); localCountsIn[index] += mask.bitmap[i] > 0; localCountsOut[index] += mask.bitmap[i] == 0; } @@ -214,35 +205,34 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons const unsigned int bins = insideMask.m_probas.size(); std::vector countsIn(bins, 0), countsOut(bins, 0); - const unsigned binSize = 256 / insideMask.m_N; const unsigned int beforeBBStart = static_cast(bbInside.getTop()) * image.getWidth() + static_cast(bbInside.getLeft()); const unsigned int afterBBEnd = static_cast(bbInside.getBottom()) * image.getWidth() + static_cast(bbInside.getRight()); -//#pragma omp parallel +#pragma omp parallel { std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); -//#pragma omp for schedule(static, 64) +#pragma omp for schedule(static, 64) for (unsigned int i = 0; i < beforeBBStart; ++i) { - const unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + const unsigned int index = insideMask.colorToIndex(image.bitmap[i]); ++localCountsOut[index]; } -//#pragma omp for schedule(static, 64) +#pragma omp for schedule(static, 64) for (unsigned int i = afterBBEnd; i < image.getSize(); ++i) { - const unsigned int index = colorToIndex(image.bitmap[i], insideMask.m_N, binSize); + const unsigned int index = insideMask.colorToIndex(image.bitmap[i]); ++localCountsOut[index]; } -//#pragma omp for schedule(static, 64) +#pragma omp for schedule(static, 64) for (unsigned int i = static_cast(bbInside.getTop()); i < static_cast(round(bbInside.getBottom())); ++i) { for (unsigned int j = static_cast(bbInside.getLeft()); j < static_cast(round(bbInside.getRight())); ++j) { const unsigned int bitmapIndex = i * image.getWidth() + j; - const unsigned int index = colorToIndex(image.bitmap[bitmapIndex], insideMask.m_N, binSize); + const unsigned int index = insideMask.colorToIndex(image.bitmap[bitmapIndex]); const bool pixelInMask = mask.bitmap[bitmapIndex] > 0; localCountsIn[index] += static_cast(pixelInMask); localCountsOut[index] += static_cast(!pixelInMask); } } -//#pragma omp critical +#pragma omp critical { for (unsigned int i = 0; i < bins; ++i) { countsIn[i] += localCountsIn[i]; diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index cf6689aaf8..c83aa00acb 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -72,45 +72,37 @@ void vpColorHistogramMask::updateMask(const vpRBFeatureTrackerInput &frame, } } } - vpColorHistogram::computeSplitHistograms(rgb, m_mask, renderBB, m_histObjectFrame, m_histBackgroundFrame); + + const float pObject = static_cast(m_histObjectFrame.getNumPixels()) / static_cast(m_mask.getSize()); const float pBackground = 1.f - pObject; -#pragma omp sections { -#pragma omp section { if (pObject != 0.f) { m_histObject.merge(m_histObjectFrame, m_objectUpdateRate); } - m_histObject.computeProbas(frame.IRGB, m_probaObject); + // m_histObject.computeProbas(frame.IRGB, m_probaObject); } -#pragma omp section { if (pBackground != 0.f) { m_histBackground.merge(m_histBackgroundFrame, m_backgroundUpdateRate); } - m_histBackground.computeProbas(frame.IRGB, m_probaBackground); + // m_histBackground.computeProbas(frame.IRGB, m_probaBackground); } } - mask.resize(height, width); #pragma omp parallel for for (unsigned int i = 0; i < mask.getSize(); ++i) { - float denom = (pObject * m_probaObject.bitmap[i] + pBackground * m_probaBackground.bitmap[i]); + float poPix = m_histObject.probability(frame.IRGB.bitmap[i]); + float pbPix = m_histBackground.probability(frame.IRGB.bitmap[i]); - // float value = (objectSegmentation.bitmap[i] * (IProba.bitmap[i] / denom) + (1.f - objectSegmentation.bitmap[i]) * (IProbaBg.bitmap[i] / denom)); - //float value = (objectSegmentation.bitmap[i] * (IProba.bitmap[i] / denom)) + ((1.f - objectSegmentation.bitmap[i]) * (IProbaBg.bitmap[i] / denom)); - //float pb = static_cast(denom > 0.f) * (m_probaBackground.bitmap[i] / denom); - if (denom > 0.f) { - mask.bitmap[i] = std::max(0.f, std::min(1.f, (m_probaObject.bitmap[i] / denom))); - } - else { - mask.bitmap[i] = 0.f; - } + float denom = (pObject * poPix + pBackground * pbPix); + mask.bitmap[i] = (denom > 0.f) * std::max(0.f, std::min(1.f, (poPix / denom))); } + } #if defined(VISP_HAVE_NLOHMANN_JSON) From 5f27e958759c3127980d1f8594fe9f2b591d804f Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Thu, 31 Oct 2024 16:59:41 +0100 Subject: [PATCH 082/101] Improve histogram mask, compute only on bb if asked --- .../rbt/include/visp3/rbt/vpColorHistogram.h | 2 + .../include/visp3/rbt/vpColorHistogramMask.h | 8 +++ .../src/features/vpRBSilhouetteCCDTracker.cpp | 2 +- .../tracker/rbt/src/mask/vpColorHistogram.cpp | 25 ++++++++-- .../rbt/src/mask/vpColorHistogramMask.cpp | 49 ++++++++++++++----- 5 files changed, 71 insertions(+), 15 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h index d2e1bc9668..a390b5ad0d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogram.h @@ -89,6 +89,8 @@ class VISP_EXPORT vpColorHistogram void merge(const vpColorHistogram &other, float alpha); void computeProbas(const vpImage &image, vpImage &proba) const; + void computeProbas(const vpImage &image, vpImage &proba, const vpRect &bb) const; + inline unsigned int colorToIndex(const vpRGBa &p) const { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index d431f393b4..6240c7c74b 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -101,6 +101,12 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask } m_backgroundUpdateRate = updateRate; } + + bool isComputedOnlyOnBoundingBox() const { return m_computeOnBBOnly; } + void setComputeOnlyOnBoundingBox(bool bbOnly) + { + m_computeOnBBOnly = bbOnly; + } /** * @} */ @@ -116,6 +122,8 @@ class VISP_EXPORT vpColorHistogramMask : public vpObjectMask vpImage m_mask; vpImage m_probaObject, m_probaBackground; + + bool m_computeOnBBOnly; }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 457792efd0..4b56e4eed1 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -93,7 +93,7 @@ void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &fr // std::cout << sp.j << ", " << sp.i << std::endl; int ii = sp.i, jj = sp.j; - if (ii <= 4 || jj <= 4 || static_cast(ii) >= frame.I.getHeight() - 4 || static_cast(jj) >= frame.I.getWidth() - 4) { + if (ii <= m_ccdParameters.h || jj <= m_ccdParameters.h || static_cast(ii) >= frame.I.getHeight() - m_ccdParameters.h || static_cast(jj) >= frame.I.getWidth() - m_ccdParameters.h) { continue; } vpRBSilhouetteControlPoint pccd; diff --git a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp index db1b975647..2fe9294451 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogram.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogram.cpp @@ -128,6 +128,25 @@ void vpColorHistogram::computeProbas(const vpImage &image, vpImage &image, vpImage &proba, const vpRect &bb) const +{ + proba.resize(image.getHeight(), image.getWidth(), 0.f); + const int h = static_cast(image.getHeight()), w = static_cast(image.getWidth()); + const int top = static_cast(bb.getTop()); + const int left = static_cast(bb.getLeft()); + const int bottom = std::min(h- 1, static_cast(bb.getBottom())); + const int right = std::min(w - 1, static_cast(bb.getRight())); +#pragma omp parallel for + for (unsigned int i = top; i <= static_cast(bottom); ++i) { + const vpRGBa *colorRow = image[i]; + float *probaRow = proba[i]; + for (unsigned int j = left; j <= static_cast(right); ++j) { + probaRow[j] = m_probas[colorToIndex(colorRow[j])]; + } + } +} + + double vpColorHistogram::kl(const vpColorHistogram &other) const { @@ -175,16 +194,16 @@ void vpColorHistogram::computeSplitHistograms(const vpImage &image, cons std::vector countsIn(bins, 0), countsOut(bins, 0); -#pragma omp parallel +//#pragma omp parallel { std::vectorlocalCountsIn(bins, 0), localCountsOut(bins, 0); -#pragma omp for schedule(static, 1024) +//#pragma omp for schedule(static, 1024) for (unsigned int i = 0; i < image.getSize(); ++i) { unsigned int index = insideMask.colorToIndex(image.bitmap[i]); localCountsIn[index] += mask.bitmap[i] > 0; localCountsOut[index] += mask.bitmap[i] == 0; } -#pragma omp critical +//#pragma omp critical { for (unsigned int i = 0; i < bins; ++i) { countsIn[i] += localCountsIn[i]; diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index c83aa00acb..3b131de267 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -38,7 +38,7 @@ BEGIN_VISP_NAMESPACE -vpColorHistogramMask::vpColorHistogramMask() { } +vpColorHistogramMask::vpColorHistogramMask() : m_computeOnBBOnly(false) { } void vpColorHistogramMask::updateMask(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, @@ -74,8 +74,6 @@ void vpColorHistogramMask::updateMask(const vpRBFeatureTrackerInput &frame, } vpColorHistogram::computeSplitHistograms(rgb, m_mask, renderBB, m_histObjectFrame, m_histBackgroundFrame); - - const float pObject = static_cast(m_histObjectFrame.getNumPixels()) / static_cast(m_mask.getSize()); const float pBackground = 1.f - pObject; { @@ -83,24 +81,52 @@ void vpColorHistogramMask::updateMask(const vpRBFeatureTrackerInput &frame, if (pObject != 0.f) { m_histObject.merge(m_histObjectFrame, m_objectUpdateRate); } - // m_histObject.computeProbas(frame.IRGB, m_probaObject); + if (m_computeOnBBOnly) { + m_histObject.computeProbas(frame.IRGB, m_probaObject, frame.renders.boundingBox); + } + else { + m_histObject.computeProbas(frame.IRGB, m_probaObject); + } } { if (pBackground != 0.f) { m_histBackground.merge(m_histBackgroundFrame, m_backgroundUpdateRate); } - // m_histBackground.computeProbas(frame.IRGB, m_probaBackground); + if (m_computeOnBBOnly) { + m_histBackground.computeProbas(frame.IRGB, m_probaBackground, frame.renders.boundingBox); + } + else { + m_histBackground.computeProbas(frame.IRGB, m_probaBackground); + } } } - mask.resize(height, width); + if (m_computeOnBBOnly) { + mask.resize(height, width, 0.f); #pragma omp parallel for - for (unsigned int i = 0; i < mask.getSize(); ++i) { - float poPix = m_histObject.probability(frame.IRGB.bitmap[i]); - float pbPix = m_histBackground.probability(frame.IRGB.bitmap[i]); + for (unsigned int i = top; i <= static_cast(bottom); ++i) { + for (unsigned int j = left; j <= static_cast(right); ++j) { + const float poPix = m_probaObject[i][j]; + const float pbPix = m_probaBackground[i][j]; + + float denom = (pObject * poPix + pBackground * pbPix); + mask[i][j] = (denom > 0.f) * std::max(0.f, std::min(1.f, (poPix / denom))); + m_mask[i][j] = renderDepth[i][j] > 0.f && fabs(renderDepth[i][j] - depth[i][j]) <= m_depthErrorTolerance; + } + } + } + else { + mask.resize(height, width); + for (unsigned int i = 0; i < mask.getSize(); ++i) { + // float poPix = m_histObject.probability(frame.IRGB.bitmap[i]); + // float pbPix = m_histBackground.probability(frame.IRGB.bitmap[i]); + const float poPix = m_probaObject.bitmap[i]; + const float pbPix = m_probaBackground.bitmap[i]; + + float denom = (pObject * poPix + pBackground * pbPix); + mask.bitmap[i] = (denom > 0.f) * std::max(0.f, std::min(1.f, (poPix / denom))); + } - float denom = (pObject * poPix + pBackground * pbPix); - mask.bitmap[i] = (denom > 0.f) * std::max(0.f, std::min(1.f, (poPix / denom))); } } @@ -112,6 +138,7 @@ void vpColorHistogramMask::loadJsonConfiguration(const nlohmann::json &json) m_backgroundUpdateRate = json.at("backgroundUpdateRate"); m_objectUpdateRate = json.at("objectUpdateRate"); m_depthErrorTolerance = json.at("maxDepthError"); + m_computeOnBBOnly = json.value("computeOnlyOnBoundingBox", m_computeOnBBOnly); } #endif From 16769e1802c9d8f10ea23f4606e56ead6d0f9cd1 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Sun, 3 Nov 2024 16:21:58 +0100 Subject: [PATCH 083/101] Use std::string instead of char * to create shaders --- .../include/visp3/rbt/vpPanda3DDepthFilters.h | 4 +- .../src/rendering/vpPanda3DDepthFilters.cpp | 204 +++++++++--------- 2 files changed, 102 insertions(+), 106 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h index a0def96ea2..a707e9467c 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpPanda3DDepthFilters.h @@ -56,7 +56,7 @@ class VISP_EXPORT vpPanda3DDepthGaussianBlur : public vpPanda3DPostProcessFilter void getRender(vpImage &I) const; private: - static const char *FRAGMENT_SHADER; + static const std::string FRAGMENT_SHADER; }; /** @@ -83,7 +83,7 @@ class VISP_EXPORT vpPanda3DDepthCannyFilter : public vpPanda3DPostProcessFilter void setupScene() VP_OVERRIDE; private: - static const char *FRAGMENT_SHADER; + static const std::string FRAGMENT_SHADER; float m_edgeThreshold; }; diff --git a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp index 9620c1bc2d..38c08294db 100644 --- a/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp +++ b/modules/tracker/rbt/src/rendering/vpPanda3DDepthFilters.cpp @@ -34,42 +34,42 @@ BEGIN_VISP_NAMESPACE -const char *vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER = R"shader( -#version 330 - -in vec2 texcoords; - -uniform sampler2D p3d_Texture0; -uniform vec2 dp; // 1 divided by number of pixels - -const float kernel[25] = float[25]( - 2, 4, 5, 4, 2, - 4, 9, 12, 9, 4, - 5, 12, 15, 12, 5, - 4, 9, 12, 9, 4, - 2, 4, 5, 4, 2 -); -const float normalize = 1 / 159.0; - -vec2 offset[25] = vec2[25]( - vec2(-2*dp.x,-2*dp.y), vec2(-dp.x,-2*dp.y), vec2(0,-2*dp.y), vec2(dp.x,-2*dp.y), vec2(2*dp.x,-2*dp.y), - vec2(-2*dp.x,-dp.y), vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y), vec2(2*dp.x,-dp.y), - vec2(-2*dp.x,0.0), vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0), vec2(2*dp.x,0.0), - vec2(-2*dp.x, dp.y), vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y), vec2(2*dp.x, dp.y), - vec2(-2*dp.x, 2*dp.y), vec2(-dp.x, 2*dp.y), vec2(0.0, 2*dp.y), vec2(dp.x, 2*dp.y), vec2(2*dp.x, 2*dp.y) -); - -out vec4 p3d_FragData; - -void main() { - float v = 0.f; - - for(int i = 0; i < 25; ++i) { - v += kernel[i] * texture(p3d_Texture0, texcoords + offset[i]).a; - } - p3d_FragData.a = v * normalize; -} -)shader"; +const std::string vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER = +"#version 330\n" +"\n" +"in vec2 texcoords;\n" +"\n" +"uniform sampler2D p3d_Texture0;\n" +"uniform vec2 dp; // 1 divided by number of pixels\n" +"\n" +"const float kernel[25] = float[25](\n" +" 2, 4, 5, 4, 2,\n" +" 4, 9, 12, 9, 4,\n" +" 5, 12, 15, 12, 5,\n" +" 4, 9, 12, 9, 4,\n" +" 2, 4, 5, 4, 2\n" +");\n" +"const float normalize = 1 / 159.0;\n" +"\n" +"vec2 offset[25] = vec2[25](\n" +" vec2(-2*dp.x,-2*dp.y), vec2(-dp.x,-2*dp.y), vec2(0,-2*dp.y), vec2(dp.x,-2*dp.y), vec2(2*dp.x,-2*dp.y),\n" +" vec2(-2*dp.x,-dp.y), vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y), vec2(2*dp.x,-dp.y),\n" +" vec2(-2*dp.x,0.0), vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0), vec2(2*dp.x,0.0),\n" +" vec2(-2*dp.x, dp.y), vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y), vec2(2*dp.x, dp.y),\n" +" vec2(-2*dp.x, 2*dp.y), vec2(-dp.x, 2*dp.y), vec2(0.0, 2*dp.y), vec2(dp.x, 2*dp.y), vec2(2*dp.x, 2*dp.y)\n" +");\n" +"\n" +"out vec4 p3d_FragData;\n" +"\n" +"void main() {\n" +" float v = 0.f;\n" +"\n" +" for(int i = 0; i < 25; ++i) {\n" +" v += kernel[i] * texture(p3d_Texture0, texcoords + offset[i]).a;\n" +" }\n" +" p3d_FragData.a = v * normalize;\n" +"}\n" +")\n"; vpPanda3DDepthGaussianBlur::vpPanda3DDepthGaussianBlur(const std::string &name, std::shared_ptr inputRenderer, bool isOutput) : vpPanda3DPostProcessFilter(name, inputRenderer, isOutput, vpPanda3DDepthGaussianBlur::FRAGMENT_SHADER) @@ -89,74 +89,70 @@ void vpPanda3DDepthGaussianBlur::getRender(vpImage &I) const vpPanda3DPostProcessFilter::getRenderBasic(I); } -const char *vpPanda3DDepthCannyFilter::FRAGMENT_SHADER = R"shader( -#version 330 - -in vec2 texcoords; - -uniform sampler2D p3d_Texture0; -uniform vec2 dp; // 1 divided by number of pixels -uniform float edgeThreshold; - - -const float kernel[9] = float[9]( - 0.0, 1.0, 0.0, - 1.0,-4.0, 1.0, - 0.0, 1.0, 0.0 -); - -const float kernel_h[9] = float[9]( - -1.0, 0.0, 1.0, - -2.0, 0.0, 2.0, - -1.0, 0.0, 1.0 -); - -const float kernel_v[9] = float[9]( - -1.0, -2.0, -1.0, - 0.0, 0.0, 0.0, - 1.0, 2.0, 1.0 -); - -vec2 offset[9] = vec2[9]( - vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y), - vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0), - vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y) -); - -float textureValues[9]; - - -out vec4 p3d_FragData; - -void main() { - if(texture(p3d_Texture0, texcoords).a == 0) { - p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f); - } else { - - float sum = 0.f; - for(int i = 0; i < 9; ++i) { - float pix = texture(p3d_Texture0, texcoords + offset[i]).a; - pix = (pix < 1e-5f ? 1000.f: pix); - textureValues[i] = pix; - sum += pix * kernel[i]; - } - if(abs(sum) > edgeThreshold) { - float sum_h = 0.f; - float sum_v = 0.f; - for(int i = 0; i < 9; ++i) { - float pix = textureValues[i]; - sum_h += pix * kernel_h[i]; - sum_v += pix * kernel_v[i]; - } - float norm = sqrt(sum_v * sum_v + sum_h * sum_h); - vec2 orientationAndValid = (sum_h != 0.f) ? vec2(atan(sum_v, -sum_h), 1.f) : vec2(0.f, 0.f); - p3d_FragData.bgra = vec4(sum_h, sum_v, orientationAndValid.x, orientationAndValid.y); - } else { - p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f); - } - } -} -)shader"; +const std::string vpPanda3DDepthCannyFilter::FRAGMENT_SHADER = +"#version 330\n" +"\n" +"in vec2 texcoords;\n" +"\n" +"uniform sampler2D p3d_Texture0;\n" +"uniform vec2 dp; // 1 divided by number of pixels\n" +"uniform float edgeThreshold;\n" +"\n" +"const float kernel[9] = float[9](\n" +" 0.0, 1.0, 0.0,\n" +" 1.0,-4.0, 1.0,\n" +" 0.0, 1.0, 0.0\n" +");\n" +"\n" +"const float kernel_h[9] = float[9](\n" +" -1.0, 0.0, 1.0,\n" +" -2.0, 0.0, 2.0,\n" +" -1.0, 0.0, 1.0\n" +");\n" +"\n" +"const float kernel_v[9] = float[9](\n" +" -1.0, -2.0, -1.0,\n" +" 0.0, 0.0, 0.0,\n" +" 1.0, 2.0, 1.0\n" +");\n" +"\n" +"vec2 offset[9] = vec2[9](\n" +" vec2(-dp.x, -dp.y), vec2(0.0, -dp.y), vec2(dp.x, -dp.y),\n" +" vec2(-dp.x, 0.0), vec2(0.0, 0.0), vec2(dp.x, 0.0),\n" +" vec2(-dp.x, dp.y), vec2(0.0, dp.y), vec2(dp.x, dp.y)\n" +");\n" +"\n" +"float textureValues[9];\n" +"\n" +"out vec4 p3d_FragData;\n" +"\n" +"void main() {\n" +" if(texture(p3d_Texture0, texcoords).a == 0) {\n" +" p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f);\n" +" } else {\n" +" float sum = 0.f;\n" +" for(int i = 0; i < 9; ++i) {\n" +" float pix = texture(p3d_Texture0, texcoords + offset[i]).a;\n" +" pix = (pix < 1e-5f ? 1000.f: pix);\n" +" textureValues[i] = pix;\n" +" sum += pix * kernel[i];\n" +" }\n" +" if(abs(sum) > edgeThreshold) {\n" +" float sum_h = 0.f;\n" +" float sum_v = 0.f;\n" +" for(int i = 0; i < 9; ++i) {\n" +" float pix = textureValues[i];\n" +" sum_h += pix * kernel_h[i];\n" +" sum_v += pix * kernel_v[i];\n" +" }\n" +" float norm = sqrt(sum_v * sum_v + sum_h * sum_h);\n" +" vec2 orientationAndValid = (sum_h != 0.f) ? vec2(atan(sum_v, -sum_h), 1.f) : vec2(0.f, 0.f);\n" +" p3d_FragData.bgra = vec4(sum_h, sum_v, orientationAndValid.x, orientationAndValid.y);\n" +" } else {\n" +" p3d_FragData = vec4(0.f, 0.f, 0.f, 0.f);\n" +" }\n" +" }\n" +"}\n"; vpPanda3DDepthCannyFilter::vpPanda3DDepthCannyFilter(const std::string &name, std::shared_ptr inputRenderer, bool isOutput, float edgeThreshold) : vpPanda3DPostProcessFilter(name, inputRenderer, isOutput, vpPanda3DDepthCannyFilter::FRAGMENT_SHADER), m_edgeThreshold(edgeThreshold) From 193dcc3873c87c9397562cea641fd709efa5aec2 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Sun, 3 Nov 2024 16:22:54 +0100 Subject: [PATCH 084/101] Introduce VISP_NLOHMANN_JSON macro to include json headers --- modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h | 4 ++-- modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h | 2 +- .../tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h | 2 +- .../visp3/rbt/vpRBSilhouettePointsExtractionSettings.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h | 2 +- modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h | 2 +- modules/tracker/rbt/src/core/vpRBTracker.cpp | 2 +- .../rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp | 2 +- modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp | 2 +- modules/tracker/rbt/test/catchRBT.cpp | 2 +- 14 files changed, 15 insertions(+), 15 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h index 6240c7c74b..84b46088db 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpColorHistogramMask.h @@ -41,8 +41,8 @@ #include #include -#if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#ifdef VISP_HAVE_NLOHMANN_JSON +#include VISP_NLOHMANN_JSON(json_fwd.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index ca5be21148..56d8f2cab6 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -39,7 +39,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif #include diff --git a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h index a9821997f7..c0dc0ad757 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpObjectMask.h @@ -38,7 +38,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json_fwd.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index b3f0c39735..39238ea161 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -54,7 +54,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h index 82f7f75d97..949744c8cd 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDriftDetector.h @@ -38,7 +38,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json_fwd.hpp) #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 3888b6bb7e..838e98ee74 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -47,7 +47,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif enum vpRBFeatureDisplayType diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index 1f2371fe8d..c9aa9384bf 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -56,7 +56,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h index a90faeee13..50a8a2976d 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouettePointsExtractionSettings.h @@ -46,7 +46,7 @@ #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index c70cfc523f..d24d74a461 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -50,7 +50,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json_fwd.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h index 1d444c3faa..44f5c60e12 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTrackerLogger.h @@ -40,7 +40,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 386e8bb0ff..9ef6f42f81 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -31,7 +31,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif #include diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 1a9d211d58..258f2562c2 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -37,7 +37,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp index 3b131de267..a77d0aad46 100644 --- a/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp +++ b/modules/tracker/rbt/src/mask/vpColorHistogramMask.cpp @@ -33,7 +33,7 @@ #include #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif BEGIN_VISP_NAMESPACE diff --git a/modules/tracker/rbt/test/catchRBT.cpp b/modules/tracker/rbt/test/catchRBT.cpp index 1ec84ab754..fd3f65632e 100644 --- a/modules/tracker/rbt/test/catchRBT.cpp +++ b/modules/tracker/rbt/test/catchRBT.cpp @@ -53,7 +53,7 @@ #include "test_utils.h" #if defined(VISP_HAVE_NLOHMANN_JSON) -#include +#include VISP_NLOHMANN_JSON(json.hpp) #endif #define CATCH_CONFIG_RUNNER From 01a5a206f592af0f273a415333c58ff37cfbedab Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 6 Nov 2024 17:13:44 +0100 Subject: [PATCH 085/101] Optimize ccd tracker --- .../src/features/vpRBSilhouetteCCDTracker.cpp | 86 ++++++++++++++++--- 1 file changed, 75 insertions(+), 11 deletions(-) diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 4b56e4eed1..2525471fe2 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -80,6 +80,69 @@ template class FastMat33 } }; +template class FastMat63 +{ +public: + std::array data; + + FastMat63() { } + + inline T operator[](const size_t i) const { return data[i]; } + + inline T &operator[](const size_t i) { return data[i]; } + + static void multiply(const FastMat63 &A, const FastMat33 &B, FastMat63 &C) + { + + for (unsigned int i = 0; i < 6; ++i) { + const T *d = &A.data[i * 3]; + T *c = &C.data[i * 3]; + c[0] = d[0] * B.data[0] + d[1] * B.data[3] + d[2] * B.data[6]; + c[1] = d[0] * B.data[1] + d[1] * B.data[4] + d[2] * B.data[7]; + c[2] = d[0] * B.data[2] + d[1] * B.data[5] + d[2] * B.data[8]; + } + } + + static void multiplyBTranspose(const FastMat63 &A, const FastMat63 &B, vpMatrix &C) + { + C.resize(6, 6, false, false); + for (unsigned int i = 0; i < 6; ++i) { + const double *a = &A.data[i * 3]; + const double *b = &B.data[i * 3]; + double *c = C[i]; + + c[0] = a[0] * B[0] + a[1] * B[1] + a[2] * B[2]; + c[1] = a[0] * B[3] + a[1] * B[4] + a[2] * B[5]; + c[2] = a[0] * B[6] + a[1] * B[7] + a[2] * B[8]; + + c[3] = a[0] * B[9] + a[1] * B[10] + a[2] * B[11]; + c[4] = a[0] * B[12] + a[1] * B[13] + a[2] * B[14]; + c[5] = a[0] * B[15] + a[1] * B[16] + a[2] * B[17]; + + } + } +}; + +template class FastVec3 +{ +public: + std::array data; + + inline T operator[](const size_t i) const { return data[i]; } + inline T &operator[](const size_t i) { return data[i]; } + + static void multiply(const FastMat63 &A, const FastVec3 &B, vpColVector &C) + { + C[0] = A[0] * B[0] + A[1] * B[1] + A[2] * B[2]; + C[1] = A[3] * B[0] + A[4] * B[1] + A[5] * B[2]; + C[2] = A[6] * B[0] + A[7] * B[1] + A[8] * B[2]; + C[3] = A[9] * B[0] + A[10] * B[1] + A[11] * B[2]; + C[4] = A[12] * B[0] + A[13] * B[1] + A[14] * B[2]; + C[5] = A[15] * B[0] + A[16] * B[1] + A[17] * B[2]; + } + +}; + vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1), m_useMask(false), m_minMaskConfidence(0.0) { } @@ -404,7 +467,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vic_ptr[10 * negative_normal + 9] = exp(-dist2[0] * dist2[0] / (2 * sigma * sigma)) / (sqrt(2 * CV_PI) * sigma); normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } + } #ifdef VISP_HAVE_OPENMP #pragma omp parallel for @@ -519,7 +582,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; } } -} + } void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { @@ -536,9 +599,9 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() // vpMatrix tmp_cov(3, 3); // vpMatrix tmp_cov_inv(3, 3); FastMat33 tmp_cov, tmp_cov_inv; - vpMatrix tmp_jacobian(m_ccdParameters.phi_dim, 3); - vpMatrix tmp_jacobian_x_tmp_cov_inv(tmp_jacobian.getRows(), 3); - vpColVector tmp_pixel_diff(3); + FastMat63 tmp_jacobian; + FastMat63 tmp_jacobian_x_tmp_cov_inv; + FastVec3 tmp_pixel_diff; double Lnvp[6]; unsigned int normal_points_number = static_cast(floor(m_ccdParameters.h / m_ccdParameters.delta_h)); @@ -595,25 +658,26 @@ void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() for (int m = 0; m < 3; ++m) { double err = (pix_j[m] - errf * mean_vic_ptr[m] - (1.0 - errf) * mean_vic_ptr[m + 3]) + m_temporalSmoothingFac * (pix_j[m] - errf * mean_vic_ptr_prev[m] - (1.0 - errf) * mean_vic_ptr_prev[m + 3]); - tmp_pixel_diff[m] = err; //error_ccd[i*2*normal_points_number*3 + j*3 + m] = img(vic_ptr[10*j+0], vic_ptr[10*j+1])[m]- errf * mean_vic_ptr[m]- (1-errf)* mean_vic_ptr[m+3]; + tmp_pixel_diff[m] = err; error_ccd_j[m] = err; } //compute jacobian matrix //memset(tmp_jacobian.data, 0, 3 * m_ccdParameters.phi_dim * sizeof(double)); - for (int n = 0; n < 3; ++n) { + for (unsigned int n = 0; n < 3; ++n) { const double f = -cam.get_px() * (vic_j[9] * (mean_vic_ptr[n] - mean_vic_ptr[n + 3])); const double facPrev = -cam.get_px() * m_temporalSmoothingFac * (vic_j[9] * (mean_vic_ptr_prev[n] - mean_vic_ptr_prev[n + 3])); for (unsigned int dof = 0; dof < 6; ++dof) { - tmp_jacobian[dof][n] = f * Lnvp[dof] + facPrev * Lnvp[dof]; + tmp_jacobian.data[dof * 3 + n] = f * Lnvp[dof] + facPrev * Lnvp[dof]; } } - FastMat33::multiply(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); + FastMat63::multiply(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); //vpMatrix::mult2Matrices(tmp_jacobian, tmp_cov_inv, tmp_jacobian_x_tmp_cov_inv); - vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_pixel_diff, m_gradients[i * 2 * normal_points_number + j]); - vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_jacobian.t(), m_hessians[i * 2 * normal_points_number + j]); + FastVec3::multiply(tmp_jacobian_x_tmp_cov_inv, tmp_pixel_diff, m_gradients[i * 2 * normal_points_number + j]); + FastMat63::multiplyBTranspose(tmp_jacobian_x_tmp_cov_inv, tmp_jacobian, m_hessians[i * 2 * normal_points_number + j]); + // vpMatrix::mult2Matrices(tmp_jacobian_x_tmp_cov_inv, tmp_jacobian.t(), m_hessians[i * 2 * normal_points_number + j]); } } } From 9ce4c50759d255867771bcaa9bc126f4f7f48538 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Thu, 7 Nov 2024 13:54:17 +0100 Subject: [PATCH 086/101] Remove empty lines --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 5 ----- 1 file changed, 5 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 9ef6f42f81..8c1b9d668e 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -222,16 +222,12 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_previousFrame.IRGB = input.IRGB; } - - m_logger.startTimer(); if (m_mask) { m_mask->updateMask(input, m_previousFrame, input.mask); } m_logger.setMaskTime(m_logger.endTimer()); - - bool requiresSilhouetteCandidates = false; for (std::shared_ptr &tracker : m_trackers) { if (tracker->requiresSilhouetteCandidates()) { @@ -294,7 +290,6 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) m_logger.setOdometryTime(m_logger.endTimer()); } - id = 0; for (std::shared_ptr &tracker : m_trackers) { m_logger.startTimer(); From 6352ee962d913d0ffdbaa8a2d55e9d6b923b1407 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Thu, 7 Nov 2024 13:54:36 +0100 Subject: [PATCH 087/101] Remove unused var --- modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp | 2 -- 1 file changed, 2 deletions(-) diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 2525471fe2..453c7f056a 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -108,7 +108,6 @@ template class FastMat63 C.resize(6, 6, false, false); for (unsigned int i = 0; i < 6; ++i) { const double *a = &A.data[i * 3]; - const double *b = &B.data[i * 3]; double *c = C[i]; c[0] = a[0] * B[0] + a[1] * B[1] + a[2] * B[2]; @@ -118,7 +117,6 @@ template class FastMat63 c[3] = a[0] * B[9] + a[1] * B[10] + a[2] * B[11]; c[4] = a[0] * B[12] + a[1] * B[13] + a[2] * B[14]; c[5] = a[0] * B[15] + a[1] * B[16] + a[2] * B[17]; - } } }; From ae34fcde9942fb034d820ccea841cbc6808c8c99 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 12 Nov 2024 18:07:57 +0100 Subject: [PATCH 088/101] Adding raw string parsing in factories for Python side clients, still some issues when trying to store Python lambdas --- modules/python/config/rbt.json | 30 ++++++++----------- .../rbt/include/visp3/rbt/vpDynamicFactory.h | 18 ++++++++++- 2 files changed, 29 insertions(+), 19 deletions(-) diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index fb024e4adc..2e32af4ce1 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -26,6 +26,18 @@ ] } ], + "methods": [ + { + "static": false, + "signature": "void registerTypeRaw(const std::string&, const std::function(const std::string &)>)", + "keep_alive": [ + [ + 1, + 3 + ] + ] + } + ], "acknowledge_pointer_or_ref_fields": [ "std::map(const nlohmann::json&)>>", "std::function" @@ -222,12 +234,6 @@ "static": true, "signature": "vpRBDriftDetectorFactory& getFactory()", "return_policy": "reference", - "keep_alive": [ - [ - 1, - 0 - ] - ], "returns_ref_ok": true } ] @@ -238,12 +244,6 @@ "static": true, "signature": "vpObjectMaskFactory& getFactory()", "return_policy": "reference", - "keep_alive": [ - [ - 1, - 0 - ] - ], "returns_ref_ok": true } ] @@ -254,12 +254,6 @@ "static": true, "signature": "vpRBFeatureTrackerFactory& getFactory()", "return_policy": "reference", - "keep_alive": [ - [ - 1, - 0 - ] - ], "returns_ref_ok": true } ] diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index 56d8f2cab6..52404f3ccf 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -53,12 +53,23 @@ class VISP_EXPORT vpDynamicFactory #if defined(VISP_HAVE_NLOHMANN_JSON) void registerType(const std::string &key, const std::function(const nlohmann::json &)> &function) { - if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { + if (m_jsonBuilders.find(key) != m_jsonBuilders.end() || m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { throw vpException(vpException::badValue, "Type %s was already registered in the factory", key.c_str()); } m_jsonBuilders[key] = function; } + void registerTypeRaw(const std::string &key, const std::function(const std::string &)> function) + { + if (m_jsonBuilders.find(key) != m_jsonBuilders.end() || m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { + throw vpException(vpException::badValue, "Type %s was already registered in the factory", key.c_str()); + } + std::cout << "IN REGISTERING RAW TYPE" << std::endl; + m_jsonRawBuilders[key] = function; + std::cout << "IN REGISTERING RAW TYPE END" << std::endl; + + } + std::shared_ptr buildFromJson(const nlohmann::json &j) { const std::string key = m_keyFinder(j); @@ -66,6 +77,9 @@ class VISP_EXPORT vpDynamicFactory if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { return m_jsonBuilders[key](j); } + else if (m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { + return m_jsonRawBuilders[key](j.dump()); + } else { return nullptr; } @@ -82,6 +96,8 @@ class VISP_EXPORT vpDynamicFactory #if defined(VISP_HAVE_NLOHMANN_JSON) std::map(const nlohmann::json &)>> m_jsonBuilders; + std::map(const std::string &)>> m_jsonRawBuilders; + std::function m_keyFinder; //! Function to retrieve the key from a json object #endif }; From ca6638cef22ba8480aa11639410fb40452b4c254 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Tue, 12 Nov 2024 18:29:28 +0100 Subject: [PATCH 089/101] Fix vpPanda3DRGBRenderer::setBackgroundImage() removing BGRA conversion no more needed --- modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp b/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp index 448e0a4d57..6330941acf 100644 --- a/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp +++ b/modules/ar/src/panda3d-simulator/vpPanda3DRGBRenderer.cpp @@ -245,12 +245,7 @@ void vpPanda3DRGBRenderer::setBackgroundImage(const vpImage &background) for (unsigned int i = 0; i < background.getHeight(); ++i) { const vpRGBa *srcRow = background[background.getHeight() - (i + 1)]; unsigned char *destRow = data + i * background.getWidth() * 4; - for (unsigned int j = 0; j < background.getWidth(); ++j) { - destRow[j * 4] = srcRow[j].B; - destRow[j * 4 + 1] = srcRow[j].G; - destRow[j * 4 + 2] = srcRow[j].R; - destRow[j * 4 + 3] = srcRow[j].A; - } + memcpy(destRow, srcRow, background.getWidth() * 4); } } From ef3380f93f19f90d8ad68f3b0e7b5c9d34af3105 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 13 Nov 2024 17:38:54 +0100 Subject: [PATCH 090/101] Some progress on factory usage in python --- modules/python/config/rbt.json | 8 +--- .../rbt/include/visp3/rbt/vpDynamicFactory.h | 42 +++++++++++++++---- .../visp3/rbt/vpRBFeatureTrackerFactory.h | 1 + .../features/vpRBFeatureTrackerFactory.cpp | 1 + 4 files changed, 38 insertions(+), 14 deletions(-) diff --git a/modules/python/config/rbt.json b/modules/python/config/rbt.json index 2e32af4ce1..4fa9495e8e 100644 --- a/modules/python/config/rbt.json +++ b/modules/python/config/rbt.json @@ -29,13 +29,7 @@ "methods": [ { "static": false, - "signature": "void registerTypeRaw(const std::string&, const std::function(const std::string &)>)", - "keep_alive": [ - [ - 1, - 3 - ] - ] + "signature": "void registerTypeRaw(const std::string&, const std::function(const std::string&)>&)" } ], "acknowledge_pointer_or_ref_fields": [ diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index 52404f3ccf..f4cc4df5eb 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -59,13 +59,23 @@ class VISP_EXPORT vpDynamicFactory m_jsonBuilders[key] = function; } - void registerTypeRaw(const std::string &key, const std::function(const std::string &)> function) + void registerTypeRaw(const std::string &key, const std::function(const std::string &)> &function) { if (m_jsonBuilders.find(key) != m_jsonBuilders.end() || m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { throw vpException(vpException::badValue, "Type %s was already registered in the factory", key.c_str()); } std::cout << "IN REGISTERING RAW TYPE" << std::endl; - m_jsonRawBuilders[key] = function; + std::cout << "Key is " << key << std::endl; + + // m_jsonRawBuilders.insert({ key, function }); + // m_jsonRawBuilders[key] = [](const std::string &s) -> std::shared_ptr { + m_raw = [](const std::string &s) -> std::shared_ptr { + std::cout << "IN CPP LAMBDA, before calling python fn" << std::endl; + return nullptr; + // return function(s); + }; + std::cout << "in register: THIS is " << (void *)(this) << std::endl; + std::cout << "IN REGISTERING RAW TYPE END" << std::endl; } @@ -77,12 +87,25 @@ class VISP_EXPORT vpDynamicFactory if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { return m_jsonBuilders[key](j); } - else if (m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { - return m_jsonRawBuilders[key](j.dump()); - } else { - return nullptr; + std::cout << "in call: THIS is " << (void *)(this) << std::endl; + + std::cout << "CALLING RAW METHOD!" << std::endl; + std::string rawRep = j.dump(); + std::cout << rawRep << std::endl; + std::cout << (void *)(&m_raw) << std::endl; + std::shared_ptr res = m_raw(rawRep); + std::cout << "After RAW METHOD!" << std::endl; + return res; } + + // else if (m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { + // std::cout << "Before accessing map" << std::endl; + // return m_jsonRawBuilders[key](j.dump()); + // } + // else { + // return nullptr; + // } } void setJsonKeyFinder(const std::function &finderFn) @@ -92,11 +115,16 @@ class VISP_EXPORT vpDynamicFactory #endif protected: - vpDynamicFactory() = default; + + vpDynamicFactory() + { + std::cout << "in constructor: THIS is " << (void *)(this) << std::endl; + } #if defined(VISP_HAVE_NLOHMANN_JSON) std::map(const nlohmann::json &)>> m_jsonBuilders; std::map(const std::string &)>> m_jsonRawBuilders; + std::function(const std::string &)> m_raw; std::function m_keyFinder; //! Function to retrieve the key from a json object #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index b646704815..c77c0c3a06 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -55,6 +55,7 @@ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory std::string { return j.at("type"); }); From 8b4ed729910a32b6dd7dc6de9ad17d9fa1f64a0e Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 15 Nov 2024 16:19:08 +0100 Subject: [PATCH 091/101] Fixed segfault issue by adding virtual destructor --- .../rbt/include/visp3/rbt/vpDynamicFactory.h | 46 +++++-------------- .../visp3/rbt/vpRBFeatureTrackerFactory.h | 2 +- .../rbt/include/visp3/rbt/vpRBTracker.h | 2 + .../features/vpRBFeatureTrackerFactory.cpp | 1 - 4 files changed, 14 insertions(+), 37 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h index f4cc4df5eb..6a5dae8669 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpDynamicFactory.h @@ -59,24 +59,14 @@ class VISP_EXPORT vpDynamicFactory m_jsonBuilders[key] = function; } - void registerTypeRaw(const std::string &key, const std::function(const std::string &)> &function) + void registerTypeRaw(const std::string &key, const std::function(const std::string &)> function) { if (m_jsonBuilders.find(key) != m_jsonBuilders.end() || m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { throw vpException(vpException::badValue, "Type %s was already registered in the factory", key.c_str()); } - std::cout << "IN REGISTERING RAW TYPE" << std::endl; - std::cout << "Key is " << key << std::endl; - // m_jsonRawBuilders.insert({ key, function }); + m_jsonRawBuilders.insert({ key, function }); // m_jsonRawBuilders[key] = [](const std::string &s) -> std::shared_ptr { - m_raw = [](const std::string &s) -> std::shared_ptr { - std::cout << "IN CPP LAMBDA, before calling python fn" << std::endl; - return nullptr; - // return function(s); - }; - std::cout << "in register: THIS is " << (void *)(this) << std::endl; - - std::cout << "IN REGISTERING RAW TYPE END" << std::endl; } @@ -87,44 +77,30 @@ class VISP_EXPORT vpDynamicFactory if (m_jsonBuilders.find(key) != m_jsonBuilders.end()) { return m_jsonBuilders[key](j); } + + else if (m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { + return m_jsonRawBuilders[key](j.dump()); + } else { - std::cout << "in call: THIS is " << (void *)(this) << std::endl; - - std::cout << "CALLING RAW METHOD!" << std::endl; - std::string rawRep = j.dump(); - std::cout << rawRep << std::endl; - std::cout << (void *)(&m_raw) << std::endl; - std::shared_ptr res = m_raw(rawRep); - std::cout << "After RAW METHOD!" << std::endl; - return res; + return nullptr; } - - // else if (m_jsonRawBuilders.find(key) != m_jsonRawBuilders.end()) { - // std::cout << "Before accessing map" << std::endl; - // return m_jsonRawBuilders[key](j.dump()); - // } - // else { - // return nullptr; - // } } + void setJsonKeyFinder(const std::function &finderFn) { m_keyFinder = finderFn; } #endif -protected: + virtual ~vpDynamicFactory() { } - vpDynamicFactory() - { - std::cout << "in constructor: THIS is " << (void *)(this) << std::endl; - } +protected: + vpDynamicFactory() = default; #if defined(VISP_HAVE_NLOHMANN_JSON) std::map(const nlohmann::json &)>> m_jsonBuilders; std::map(const std::string &)>> m_jsonRawBuilders; - std::function(const std::string &)> m_raw; std::function m_keyFinder; //! Function to retrieve the key from a json object #endif diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h index c77c0c3a06..7e4cc59f50 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerFactory.h @@ -55,9 +55,9 @@ class VISP_EXPORT vpRBFeatureTrackerFactory : public vpDynamicFactory std::string { return j.at("type"); }); From a5e69732cb558fafbb0a5b059959994ed33c4932 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Fri, 15 Nov 2024 18:37:02 +0100 Subject: [PATCH 092/101] Update vpPanda3DRendererSet class - introduce a default constructor - update class main doc --- .../ar/include/visp3/ar/vpPanda3DRendererSet.h | 16 ++++++++++++---- .../panda3d-simulator/vpPanda3DRendererSet.cpp | 7 +++++++ tutorial/ar/tutorial-panda3d-renderer.cpp | 2 +- 3 files changed, 20 insertions(+), 5 deletions(-) diff --git a/modules/ar/include/visp3/ar/vpPanda3DRendererSet.h b/modules/ar/include/visp3/ar/vpPanda3DRendererSet.h index 49098952cf..d64ad49424 100644 --- a/modules/ar/include/visp3/ar/vpPanda3DRendererSet.h +++ b/modules/ar/include/visp3/ar/vpPanda3DRendererSet.h @@ -44,7 +44,8 @@ BEGIN_VISP_NAMESPACE /** * \ingroup group_ar_renderer_panda3d * - * @brief Class that rendering multiple datatypes, in a single pass. A RendererSet contains multiple subrenderers, all inheriting from vpPanda3DBaseRenderer. + * @brief Class that renders multiple datatypes, in a single pass. + * A renderer set contains multiple subrenderers, all inheriting from vpPanda3DBaseRenderer. * The renderer set synchronizes all scene properties for the different subrenderers. This includes: * * The camera properties (intrinsics, resolution) and extrinsics * * The pose and properties of every object in the scene @@ -53,13 +54,20 @@ BEGIN_VISP_NAMESPACE * The overall usage workflow is the following: * 1. Create vpPanda3DRendererSet instance * 2. Create the subrenderers (e.g, vpPanda3DGeometryRenderer) - * 3. Add the subrenderers to the set with addSubRenderer - * 4. Call renderFrame() on the rendererSet. Each subrenderer now has its output computed and ready to be retrieved - * 5. Retrieve relevant outputs in ViSP format with something similar to `rendererSet.getRenderer("MyRendererName").getRender(I)` where RendererType is the relevant subclass of vpPanda3DBaseRenderer and "MyRendererName" its name (see vpPanda3DBaseRenderer::getName) + * 3. Add the subrenderers to the set with addSubRenderer() + * 4. Call renderFrame() on the renderer set. Each subrenderer now has its output computed and ready + * to be retrieved + * 5. Retrieve relevant outputs in ViSP format with something similar to + * \code + * rendererSet.getRenderer("MyRendererName").getRender(I) + * \endcode + * where `RendererType` is the relevant subclass of vpPanda3DBaseRenderer and `"MyRendererName"` + * its name (see vpPanda3DBaseRenderer::getName()) */ class VISP_EXPORT vpPanda3DRendererSet : public vpPanda3DBaseRenderer, public vpPanda3DLightable { public: + vpPanda3DRendererSet(); vpPanda3DRendererSet(const vpPanda3DRenderParameters &renderParameters); virtual ~vpPanda3DRendererSet() = default; diff --git a/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp b/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp index 576c9bf5f3..e50d7293e7 100644 --- a/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp +++ b/modules/ar/src/panda3d-simulator/vpPanda3DRendererSet.cpp @@ -35,6 +35,13 @@ #include "load_prc_file.h" BEGIN_VISP_NAMESPACE +vpPanda3DRendererSet::vpPanda3DRendererSet() : vpPanda3DBaseRenderer("set") +{ + load_prc_file_data("", "textures-power-2 none"); + load_prc_file_data("", "gl-version 3 2"); + load_prc_file_data("", "no-singular-invert"); +} + vpPanda3DRendererSet::vpPanda3DRendererSet(const vpPanda3DRenderParameters &renderParameters) : vpPanda3DBaseRenderer("set") { m_renderParameters = renderParameters; diff --git a/tutorial/ar/tutorial-panda3d-renderer.cpp b/tutorial/ar/tutorial-panda3d-renderer.cpp index 617938e784..6cdb70564c 100644 --- a/tutorial/ar/tutorial-panda3d-renderer.cpp +++ b/tutorial/ar/tutorial-panda3d-renderer.cpp @@ -160,7 +160,7 @@ int main(int argc, const char **argv) double factor = 1.0; vpPanda3DRenderParameters renderParams(vpCameraParameters(600 * factor, 600 * factor, 320 * factor, 240 * factor), int(480 * factor), int(640 * factor), 0.01, 10.0); unsigned h = renderParams.getImageHeight(), w = renderParams.getImageWidth(); - vpPanda3DRendererSet renderer(renderParams); + vpPanda3DRendererSet renderer; renderer.setRenderParameters(renderParams); renderer.setVerticalSyncEnabled(false); renderer.setAbortOnPandaError(true); From df9feee7cefe35d87861b213cf82e6164dd975dc Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 19 Nov 2024 14:10:29 +0100 Subject: [PATCH 093/101] Allow for the usage of computePose on the Python side --- modules/python/bindings/include/vision.hpp | 56 ++++++++++++++++++++++ modules/python/config/vision.json | 19 ++++++-- 2 files changed, 70 insertions(+), 5 deletions(-) create mode 100644 modules/python/bindings/include/vision.hpp diff --git a/modules/python/bindings/include/vision.hpp b/modules/python/bindings/include/vision.hpp new file mode 100644 index 0000000000..eaef9011bf --- /dev/null +++ b/modules/python/bindings/include/vision.hpp @@ -0,0 +1,56 @@ +/* + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * + * Description: + * Python bindings. + */ + + +#ifndef VISP_PYTHON_VISION_HPP +#define VISP_PYTHON_VISION_HPP + + +#include +#include +#include +#include +#include + +namespace py = pybind11; + +void bindings_vpPose(py::class_> &pyPose) +{ + pyPose.def("computePose", + [](vpPose &self, vpPose::vpPoseMethodType method, vpHomogeneousMatrix &cMo) -> bool { + return self.computePose(method, cMo); + }); +} + + +#endif diff --git a/modules/python/config/vision.json b/modules/python/config/vision.json index 80aaea98bc..acae54766e 100644 --- a/modules/python/config/vision.json +++ b/modules/python/config/vision.json @@ -1,9 +1,15 @@ { - "ignored_headers": ["vpPoseException.h", "vpCalibrationException.h", "vpPoseFeatures.h"], + "ignored_headers": [ + "vpPoseException.h", + "vpCalibrationException.h", + "vpPoseFeatures.h" + ], + "user_defined_headers": [ + "vision.hpp" + ], "classes": { - "vpHomography" : { - "methods": - [ + "vpHomography": { + "methods": [ { "static": true, "signature": "void computeDisplacement(const vpHomography &, const vpColVector &, vpRotationMatrix &, vpTranslationVector &, vpColVector &)", @@ -20,6 +26,9 @@ "custom_name": "computeHomographyDisplacement" } ] + }, + "vpPose": { + "additional_bindings": "bindings_vpPose" } } -} \ No newline at end of file +} From 4a88af869fc0e70314bfd93917d2a82a38980dba Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 19 Nov 2024 15:19:10 +0100 Subject: [PATCH 094/101] Introduce display helpers for python to display multiple points and lines --- modules/python/bindings/include/core.hpp | 2 + .../python/bindings/include/core/display.hpp | 104 ++++ modules/python/config/core.json | 560 ++++++++++++++---- 3 files changed, 563 insertions(+), 103 deletions(-) create mode 100644 modules/python/bindings/include/core/display.hpp diff --git a/modules/python/bindings/include/core.hpp b/modules/python/bindings/include/core.hpp index 67963a3619..6b8fe10c7a 100644 --- a/modules/python/bindings/include/core.hpp +++ b/modules/python/bindings/include/core.hpp @@ -39,6 +39,8 @@ #include "core/images.hpp" #include "core/pixel_meter.hpp" #include "core/image_conversions.hpp" +#include "core/display.hpp" + #endif diff --git a/modules/python/bindings/include/core/display.hpp b/modules/python/bindings/include/core/display.hpp new file mode 100644 index 0000000000..a9f7ceab1a --- /dev/null +++ b/modules/python/bindings/include/core/display.hpp @@ -0,0 +1,104 @@ +/* + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * + * Description: + * Python bindings. + */ + +#ifndef VISP_PYTHON_CORE_DISPLAY_HPP +#define VISP_PYTHON_CORE_DISPLAY_HPP + +#include +#include +#include + +#include +#include + +namespace py = pybind11; + +void bindings_vpDisplay(py::class_> &pyDisplay) +{ + + pyDisplay.def_static("displayCrosses", + [](const vpImage &I, + const py::array_t &is, + const py::array_t &js, + unsigned int size, const vpColor &color, unsigned int thickness = 1) { + + py::buffer_info bufi = is.request(), bufj = js.request(); + if (bufi.ndim != bufj.ndim || bufi.shape != bufj.shape) { + std::stringstream ss; + ss << "is and js must have the same number of dimensions and same number of elements, but got is = " << shape_to_string(bufi.shape); + ss << "and js = " << shape_to_string(bufj.shape); + throw std::runtime_error(ss.str()); + } + + const int *i_ptr = static_cast(bufi.ptr); + const int *j_ptr = static_cast(bufj.ptr); + + for (py::ssize_t i = 0; i < bufi.size; ++i) { + vpDisplay::displayCross(I, i_ptr[i], j_ptr[i], size, color, thickness); + } + + }); + + pyDisplay.def_static("displayLines", + [](const vpImage &I, + const py::array_t &is1, + const py::array_t &js1, + const py::array_t &is2, + const py::array_t &js2, + const vpColor &color, unsigned int thickness = 1, bool segment = true) { + + py::buffer_info bufi1 = is1.request(), bufj1 = js1.request(); + py::buffer_info bufi2 = is2.request(), bufj2 = js2.request(); + + if (bufi1.shape != bufj1.shape || bufi1.shape != bufi2.shape || bufi1.shape != bufj2.shape) { + std::stringstream ss; + ss << "In display lines: numpy arrays must have same dimensions!"; + throw std::runtime_error(ss.str()); + } + + const int *i1_ptr = static_cast(bufi1.ptr); + const int *j1_ptr = static_cast(bufj1.ptr); + + const int *i2_ptr = static_cast(bufi2.ptr); + const int *j2_ptr = static_cast(bufj2.ptr); + + + for (py::ssize_t i = 0; i < bufi1.size; ++i) { + vpDisplay::displayLine(I, i1_ptr[i], j1_ptr[i], i2_ptr[i], j2_ptr[i], color, thickness, segment); + } + + }); + +} + +#endif diff --git a/modules/python/config/core.json b/modules/python/config/core.json index f52116f0dd..3ca4110ba2 100644 --- a/modules/python/config/core.json +++ b/modules/python/config/core.json @@ -1,12 +1,29 @@ { - "ignored_headers": ["vpGEMM.h", "vpDebug.h", "vpEndian.h"], - "ignored_classes": ["vpException", "vpImageException", "vpTrackingException", - "vpFrameGrabberException", "vpIoException", - "vpDisplayException", "vpMatrixException"], - "user_defined_headers": ["core.hpp"], - "config_includes": ["core_image.json", "core_math.json"], + "ignored_headers": [ + "vpGEMM.h", + "vpDebug.h", + "vpEndian.h" + ], + "ignored_classes": [ + "vpException", + "vpImageException", + "vpTrackingException", + "vpFrameGrabberException", + "vpIoException", + "vpDisplayException", + "vpMatrixException" + ], + "user_defined_headers": [ + "core.hpp" + ], + "config_includes": [ + "core_image.json", + "core_math.json" + ], "header_additional_dependencies": { - "vpUKSigmaDrawerMerwe.h": ["vpUnscentedKalman.h"] + "vpUKSigmaDrawerMerwe.h": [ + "vpUnscentedKalman.h" + ] }, "enums": { "vpMunkres::STEP_T": { @@ -95,7 +112,9 @@ ], "classes": { "vpIoTools": { - "ignored_attributes": ["separator"], + "ignored_attributes": [ + "separator" + ], "methods": [ { "signature": "void readBinaryValueLE(std::ifstream&, int16_t&)", @@ -131,70 +150,118 @@ "static": true, "signature": "void getUserName(std::string&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": true, "signature": "void getVersion(const std::string&, unsigned int&, unsigned int&, unsigned int&)", "use_default_param_policy": false, - "param_is_input": [true, false, false, false], - "param_is_output": [false, true, true, true] + "param_is_input": [ + true, + false, + false, + false + ], + "param_is_output": [ + false, + true, + true, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, float&)", "custom_name": "readConfigVarFloat", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, double&)", "custom_name": "readConfigVarDouble", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, unsigned int&)", "custom_name": "readConfigVarUnsigned", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, int&)", "custom_name": "readConfigVarInt", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, bool&)", "custom_name": "readConfigVarBoolean", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "bool readConfigVar(const std::string&, std::string&)", "custom_name": "readConfigVarString", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] } ] }, - "vpPolygon": { - "methods": - [ + "methods": [ { "static": true, "signature": "bool isInside(const std::vector&, const double&, const double&, const vpPolygon::PointInPolygonMethod&)", @@ -208,61 +275,121 @@ "static": true, "signature": "void getClippedPolygon(const std::vector&, std::vector&, const vpHomogeneousMatrix&, const unsigned int&, const vpCameraParameters&, const double&, const double&)", "use_default_param_policy": false, - "param_is_input": [true, false, true, true, true, true, true], - "param_is_output": [false, true, false, false, false, false, false] + "param_is_input": [ + true, + false, + true, + true, + true, + true, + true + ], + "param_is_output": [ + false, + true, + false, + false, + false, + false, + false + ] }, { "static": false, "signature": "void getPolygonClipped(std::vector&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": false, "signature": "void getPolygonClipped(std::vector>&)", "custom_name": "getPolygonClippedWithInfo", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": false, "signature": "void getRoiClipped(const vpCameraParameters&, std::vector>&, const vpHomogeneousMatrix&)", "use_default_param_policy": false, - "param_is_input": [true, false, true], - "param_is_output": [false, true, false] + "param_is_input": [ + true, + false, + true + ], + "param_is_output": [ + false, + true, + false + ] }, { "static": false, "signature": "void getRoiClipped(const vpCameraParameters&, std::vector>&)", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": false, "signature": "void getRoiClipped(const vpCameraParameters&, std::vector&, const vpHomogeneousMatrix&)", "use_default_param_policy": false, - "param_is_input": [true, false, true], - "param_is_output": [false, true, false] + "param_is_input": [ + true, + false, + true + ], + "param_is_output": [ + false, + true, + false + ] }, { "static": false, "signature": "void getRoiClipped(const vpCameraParameters&, std::vector&)", "use_default_param_policy": false, - "param_is_input": [true, false], - "param_is_output": [false, true] + "param_is_input": [ + true, + false + ], + "param_is_output": [ + false, + true + ] }, { "static": true, "signature": "void getMinMaxRoi(const std::vector&, int&, int&, int&, int&)", "use_default_param_policy": false, "param_is_input": [ - true, false, false, false, false + true, + false, + false, + false, + false ], "param_is_output": [ - false, true, true, true, true + false, + true, + true, + true, + true ] } ] @@ -277,8 +404,7 @@ ] }, "vpPoint": { - "methods": - [ + "methods": [ { "static": false, "ignore": true, @@ -289,7 +415,6 @@ "ignore": true, "signature": "void getWorldCoordinates(double&, double&, double&)" } - ] }, "vpRect": { @@ -298,14 +423,19 @@ "static": false, "signature": "void getCenter(double&, double&)", "use_default_param_policy": false, - "param_is_input": [false,false], - "param_is_output": [true, true] + "param_is_input": [ + false, + false + ], + "param_is_output": [ + true, + true + ] } ] }, "vpBSpline": { - "methods": - [ + "methods": [ { "static": true, "signature": "unsigned int findSpan(double, unsigned int, const std::vector &)", @@ -331,21 +461,28 @@ "static": false, "signature": "void get_knots(std::list&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": false, "signature": "void get_controlPoints(std::list&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] } ] }, "vpQuadProg": { - "methods": - [ + "methods": [ { "static": true, "signature": "bool solveQPe(const vpMatrix &, const vpColVector &, vpMatrix, vpColVector, vpColVector &, const double &)", @@ -358,17 +495,17 @@ { "static": true, "signature": "void convertToOpenCV(const std::vector&, std::vector&, bool)", - "ignore" :true + "ignore": true }, { "static": true, "signature": "void convertToOpenCV(const std::vector&, std::vector&, bool)", - "ignore" :true + "ignore": true }, { "static": true, "signature": "void convertToOpenCV(const std::vector&, std::vector&)", - "ignore" :true + "ignore": true }, { "static": true, @@ -413,8 +550,8 @@ ] }, "vpDisplay": { - "methods": - [ + "additional_bindings": "bindings_vpDisplay", + "methods": [ { "static": true, "signature": "unsigned int getDownScalingFactor(const vpImage &)", @@ -527,29 +664,85 @@ "static": true, "signature": "void convertEllipse(const vpCameraParameters&, const vpImagePoint&, double, double, double, double&, double&, double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true, true, true, true, true, false, false, false, false, false], - "param_is_output": [false, false, false, false, false, true, true, true, true, true] + "param_is_input": [ + true, + true, + true, + true, + true, + false, + false, + false, + false, + false + ], + "param_is_output": [ + false, + false, + false, + false, + false, + true, + true, + true, + true, + true + ] }, { "static": true, "signature": "void convertLine(const vpCameraParameters&, const double&, const double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,true,false,false], - "param_is_output": [false,false,false,true,true] + "param_is_input": [ + true, + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + false, + true, + true + ] }, { "static": true, "signature": "void convertPoint(const vpCameraParameters&, const double&, const double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,true,false,false], - "param_is_output": [false,false,false,true,true] + "param_is_input": [ + true, + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + false, + true, + true + ] }, { "static": true, "signature": "void convertPoint(const vpCameraParameters&, const vpImagePoint&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,false,false], - "param_is_output": [false,false,true,true] + "param_is_input": [ + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + true, + true + ] }, { "static": true, @@ -572,7 +765,6 @@ "ignore": true } ] - }, "vpMeterPixelConversion": { "additional_bindings": "bindings_vpMeterPixelConversion", @@ -581,50 +773,126 @@ "static": true, "signature": "void convertEllipse(const vpCameraParameters&, const vpImagePoint&, double, double, double, double&, double&, double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true, true, true, true, true, false, false, false, false, false], - "param_is_output": [false, false, false, false, false, true, true, true, true, true] + "param_is_input": [ + true, + true, + true, + true, + true, + false, + false, + false, + false, + false + ], + "param_is_output": [ + false, + false, + false, + false, + false, + true, + true, + true, + true, + true + ] }, { "static": true, "signature": "void convertEllipse(const vpCameraParameters&, const vpSphere&, vpImagePoint&, double&, double&, double&)", "use_default_param_policy": false, "param_is_input": [ - true, true, true, false, false, false + true, + true, + true, + false, + false, + false ], "param_is_output": [ - false, false, false, true, true, true + false, + false, + false, + true, + true, + true ] }, { "static": true, "signature": "void convertLine(const vpCameraParameters&, const double&, const double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,true,false,false], - "param_is_output": [false,false,false,true,true] + "param_is_input": [ + true, + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + false, + true, + true + ] }, { "static": true, "signature": "void convertPoint(const vpCameraParameters&, const double&, const double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,true,false,false], - "param_is_output": [false,false,false,true,true] + "param_is_input": [ + true, + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + false, + true, + true + ] }, { "static": true, "signature": "void convertPoint(const vpCameraParameters&, const vpImagePoint&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true,true,false,false], - "param_is_output": [false,false,true,true] + "param_is_input": [ + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + true, + true + ] }, { "static": true, "signature": "void convertEllipse(const vpCameraParameters&, const vpCircle&, vpImagePoint&, double&, double&, double&)", "use_default_param_policy": false, "param_is_input": [ - true, true, true, true, true, true + true, + true, + true, + true, + true, + true ], "param_is_output": [ - false, false, false, true, true, true + false, + false, + false, + true, + true, + true ] }, { @@ -632,10 +900,28 @@ "signature": "void convertEllipse(const vpCameraParameters&, double, double, double, double, double, vpImagePoint&, double&, double&, double&)", "use_default_param_policy": false, "param_is_input": [ - true, true, true, true, true, true, true, false, false, false + true, + true, + true, + true, + true, + true, + true, + false, + false, + false ], "param_is_output": [ - false, false, false, false, false, false, false, true, true, true + false, + false, + false, + false, + false, + false, + false, + true, + true, + true ] }, { @@ -681,8 +967,22 @@ "static": true, "signature": "void computeIntersectionPoint(const vpCircle&, const vpCameraParameters&, const double&, const double&, double&, double&)", "use_default_param_policy": false, - "param_is_input": [true, true, true, true, false, false], - "param_is_output": [false, false, false, false, true, true] + "param_is_input": [ + true, + true, + true, + true, + false, + false + ], + "param_is_output": [ + false, + false, + false, + false, + true, + true + ] } ] }, @@ -692,14 +992,18 @@ "static": true, "signature": "double derivativeFilterX(const vpImage&, unsigned int, unsigned int)", "specializations": [ - ["TypeFilterable"] + [ + "TypeFilterable" + ] ] }, { "static": true, "signature": "double derivativeFilterY(const vpImage&, unsigned int, unsigned int)", "specializations": [ - ["TypeFilterable"] + [ + "TypeFilterable" + ] ] } ] @@ -709,32 +1013,56 @@ { "static": true, "signature": "void dilatation(vpImage&, const int&)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] }, { "static": true, "signature": "void erosion(vpImage&, Type, Type, vpImageMorphology::vpConnexityType)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] }, { "static": true, "signature": "void erosion(vpImage&, const vpImageMorphology::vpConnexityType&)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] }, { "static": true, "signature": "void dilatation(vpImage&, Type, Type, vpImageMorphology::vpConnexityType)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] }, { "static": true, "signature": "void dilatation(vpImage&, const vpImageMorphology::vpConnexityType&)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] }, { "static": true, "signature": "void erosion(vpImage&, const int&)", - "specializations": [["TypeErodableDilatable"]] + "specializations": [ + [ + "TypeErodableDilatable" + ] + ] } ] }, @@ -800,15 +1128,29 @@ "static": false, "signature": "int receive(std::string&, std::string&, int)", "use_default_param_policy": false, - "param_is_input": [false, false, true], - "param_is_output": [true, true, false] + "param_is_input": [ + false, + false, + true + ], + "param_is_output": [ + true, + true, + false + ] }, { "static": false, "signature": "int receive(std::string&, int)", "use_default_param_policy": false, - "param_is_input": [false, true], - "param_is_output": [true, false] + "param_is_input": [ + false, + true + ], + "param_is_output": [ + true, + false + ] } ] }, @@ -817,7 +1159,11 @@ { "static": true, "signature": "std::vector shuffleVector(const std::vector&)", - "specializations": [["TypePythonScalar"]] + "specializations": [ + [ + "TypePythonScalar" + ] + ] } ] }, @@ -827,15 +1173,23 @@ "static": false, "signature": "unsigned getPeaks(std::list&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": false, "signature": "unsigned getValey(std::list&)", "use_default_param_policy": false, - "param_is_input": [false], - "param_is_output": [true] + "param_is_input": [ + false + ], + "param_is_output": [ + true + ] }, { "static": false, From e8c6ee6ddcc38f3144466e5c4ca7deb58d1b5ae5 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 20 Nov 2024 17:18:20 +0100 Subject: [PATCH 095/101] April detection wrapper method for python bindings --- modules/python/bindings/include/detection.hpp | 61 +++++++++++++++++++ modules/python/config/detection.json | 14 ++++- 2 files changed, 73 insertions(+), 2 deletions(-) create mode 100644 modules/python/bindings/include/detection.hpp diff --git a/modules/python/bindings/include/detection.hpp b/modules/python/bindings/include/detection.hpp new file mode 100644 index 0000000000..2678193257 --- /dev/null +++ b/modules/python/bindings/include/detection.hpp @@ -0,0 +1,61 @@ +/* + * ViSP, open source Visual Servoing Platform software. + * Copyright (C) 2005 - 2024 by Inria. All rights reserved. + * + * This software is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * See the file LICENSE.txt at the root directory of this source + * distribution for additional information about the GNU GPL. + * + * For using ViSP with software that can not be combined with the GNU + * GPL, please contact Inria about acquiring a ViSP Professional + * Edition License. + * + * See https://visp.inria.fr for more information. + * + * This software was developed at: + * Inria Rennes - Bretagne Atlantique + * Campus Universitaire de Beaulieu + * 35042 Rennes Cedex + * France + * + * If you have questions regarding the use of this file, please contact + * Inria at visp@inria.fr + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + * + * Description: + * Python bindings. + */ + + +#ifndef VISP_PYTHON_DETECTION_HPP +#define VISP_PYTHON_DETECTION_HPP + +#include + +#include +#include +#include + + +#include +#include + +namespace py = pybind11; + +void bindings_vpDetectorAprilTag(py::class_, vpDetectorBase> &pyAprilTag) +{ + pyAprilTag.def("detect", + [](vpDetectorAprilTag &self, const vpImage &I, double tagSize, const vpCameraParameters &cam) -> std::tuple> { + std::vector cMos; + bool detected = self.detect(I, tagSize, cam, cMos); + return std::make_tuple(detected, cMos); + }); +} + + +#endif diff --git a/modules/python/config/detection.json b/modules/python/config/detection.json index 78946149cf..10e869f257 100644 --- a/modules/python/config/detection.json +++ b/modules/python/config/detection.json @@ -1,3 +1,13 @@ { - "required_headers": ["visp3/core/vpPoint.h"] -} \ No newline at end of file + "required_headers": [ + "visp3/core/vpPoint.h" + ], + "user_defined_headers": [ + "detection.hpp" + ], + "classes": { + "vpDetectorAprilTag": { + "additional_bindings": "bindings_vpDetectorAprilTag" + } + } +} From f7c0ce8d93eb657becefd118500b1d5cd184af4b Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Mon, 25 Nov 2024 17:25:43 +0100 Subject: [PATCH 096/101] Add bindings for computePlanarObjectPoseFromRGBD --- modules/python/bindings/include/vision.hpp | 12 ++++++++++++ modules/python/config/vision.json | 10 +++++++++- 2 files changed, 21 insertions(+), 1 deletion(-) diff --git a/modules/python/bindings/include/vision.hpp b/modules/python/bindings/include/vision.hpp index eaef9011bf..a18078554a 100644 --- a/modules/python/bindings/include/vision.hpp +++ b/modules/python/bindings/include/vision.hpp @@ -50,6 +50,18 @@ void bindings_vpPose(py::class_> &pyPose) [](vpPose &self, vpPose::vpPoseMethodType method, vpHomogeneousMatrix &cMo) -> bool { return self.computePose(method, cMo); }); + + pyPose.def_static("computePlanarObjectPoseFromRGBD", + [](const vpImage &depthMap, const std::vector &corners, + const vpCameraParameters &colorIntrinsics, + const std::vector &point3d) -> std::tuple { + double confidence = 0.0; + vpHomogeneousMatrix cMo; + bool valid = vpPose::computePlanarObjectPoseFromRGBD(depthMap, corners, colorIntrinsics, point3d, cMo, &confidence); + return std::make_tuple(valid, cMo, confidence); + }); + + } diff --git a/modules/python/config/vision.json b/modules/python/config/vision.json index acae54766e..a620749033 100644 --- a/modules/python/config/vision.json +++ b/modules/python/config/vision.json @@ -28,7 +28,15 @@ ] }, "vpPose": { - "additional_bindings": "bindings_vpPose" + "additional_bindings": "bindings_vpPose", + "methods": [ + { + "static": true, + "signature": "bool computePlanarObjectPoseFromRGBD(const vpImage&, const std::vector&, const vpCameraParameters&, const std::vector&, vpHomogeneousMatrix&, double*)", + "ignore": true, + "custom_implem": true + } + ] } } } From 8dde5ea9cddda921c0b01a3d34247b3d16d01098 Mon Sep 17 00:00:00 2001 From: Fabien Spindler Date: Thu, 5 Dec 2024 16:28:07 +0100 Subject: [PATCH 097/101] Bump cmake min version to 3.10 --- modules/java/android_sdk/libcxx_helper/CMakeLists.txt | 2 +- modules/sensor/include/visp3/sensor/vpRealSense.h | 2 +- modules/sensor/include/visp3/sensor/vpRealSense2.h | 2 +- tutorial/tracking/render-based/CMakeLists.txt | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/modules/java/android_sdk/libcxx_helper/CMakeLists.txt b/modules/java/android_sdk/libcxx_helper/CMakeLists.txt index caec127adc..2b4c404fc3 100644 --- a/modules/java/android_sdk/libcxx_helper/CMakeLists.txt +++ b/modules/java/android_sdk/libcxx_helper/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 3.6) +cmake_minimum_required(VERSION 3.10) # dummy target to bring libc++_shared.so into packages add_library(visp_jni_shared STATIC dummy.cpp) diff --git a/modules/sensor/include/visp3/sensor/vpRealSense.h b/modules/sensor/include/visp3/sensor/vpRealSense.h index a040b9d508..4c8f6e3cb3 100644 --- a/modules/sensor/include/visp3/sensor/vpRealSense.h +++ b/modules/sensor/include/visp3/sensor/vpRealSense.h @@ -79,7 +79,7 @@ BEGIN_VISP_NAMESPACE file that allows to build sample-realsense.cpp that uses vpRealSense class. \code project(sample) - cmake_minimum_required(VERSION 3.5) + cmake_minimum_required(VERSION 3.10) find_package(VISP REQUIRED) include_directories(${VISP_INCLUDE_DIRS}) diff --git a/modules/sensor/include/visp3/sensor/vpRealSense2.h b/modules/sensor/include/visp3/sensor/vpRealSense2.h index 16c61e6972..2949093345 100644 --- a/modules/sensor/include/visp3/sensor/vpRealSense2.h +++ b/modules/sensor/include/visp3/sensor/vpRealSense2.h @@ -79,7 +79,7 @@ BEGIN_VISP_NAMESPACE uses vpRealSense2 class. \code - cmake_minimum_required(VERSION 3.5) + 10) project(sample) diff --git a/tutorial/tracking/render-based/CMakeLists.txt b/tutorial/tracking/render-based/CMakeLists.txt index 71016ba5df..6debb62258 100644 --- a/tutorial/tracking/render-based/CMakeLists.txt +++ b/tutorial/tracking/render-based/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 3.5) +cmake_minimum_required(VERSION 3.10) project(tutorial-render-based-tracking) From 9a5d92d792f73a9e978cebc9b29f0dc2633f9294 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Fri, 13 Dec 2024 16:06:04 +0100 Subject: [PATCH 098/101] Introduce cMo in render data --- .../tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h | 3 +++ modules/tracker/rbt/src/core/vpRBTracker.cpp | 6 ++++-- 2 files changed, 7 insertions(+), 2 deletions(-) diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h index 64bf105c28..43e25e4a0a 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTrackerInput.h @@ -59,6 +59,7 @@ struct VISP_EXPORT vpRBRenderData vpImage isSilhouette; //! Binary image indicating whether a given pixel is part of the silhouette double zNear, zFar; // clipping values vpRect boundingBox; + vpHomogeneousMatrix cMo; //! Pose of the object in the camera frame for which the renders were generated. vpRBRenderData() : zNear(0.0), zFar(0.0), boundingBox() { } @@ -82,6 +83,7 @@ struct VISP_EXPORT vpRBRenderData zNear = o.zNear; zFar = o.zFar; boundingBox = o.boundingBox; + cMo = o.cMo; return *this; } @@ -95,6 +97,7 @@ struct VISP_EXPORT vpRBRenderData zNear = std::move(o.zNear); zFar = std::move(o.zFar); boundingBox = std::move(o.boundingBox); + cMo = std::move(o.cMo); return *this; } }; diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index 8c1b9d668e..c159d27921 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -397,6 +397,8 @@ void vpRBTracker::updateRender(vpRBFeatureTrackerInput &frame) { m_renderer.setCameraPose(m_cMo.inverse()); + frame.renders.cMo = m_cMo; + // Update clipping distances frame.renders.normals.resize(m_imageHeight, m_imageWidth); frame.renders.silhouetteCanny.resize(m_imageHeight, m_imageWidth); @@ -496,7 +498,7 @@ std::vector vpRBTracker::extractSilhouettePoints( #if defined(VISP_DEBUG_RB_TRACKER) if (fabs(theta) > M_PI + 1e-6) { throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); - } + } #endif points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // if (Zn > 0) { @@ -521,8 +523,8 @@ std::vector vpRBTracker::extractSilhouettePoints( // if (noNeighbor) { // points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // } - } } +} return points; } From 24c4ffd6fa9fe6081c2ba1cfa7c972d66ba560d6 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 17 Dec 2024 15:55:12 +0100 Subject: [PATCH 099/101] Harmonize usage of render cMo instead of previous_cMo variable --- modules/tracker/rbt/src/core/vpRBTracker.cpp | 53 ++++++++----------- .../vpRBProbabilistic3DDriftDetector.cpp | 12 +++-- .../src/features/vpRBDenseDepthTracker.cpp | 3 +- .../rbt/src/features/vpRBKltTracker.cpp | 3 +- .../src/features/vpRBSilhouetteCCDTracker.cpp | 9 ++-- .../src/features/vpRBSilhouetteMeTracker.cpp | 3 +- 6 files changed, 40 insertions(+), 43 deletions(-) diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index c159d27921..f70cb421dd 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -245,7 +245,25 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) throw vpException(vpException::badValue, "Could not extract silhouette from depth canny: Object may not be in image"); } } - m_logger.setSilhouetteTime(m_logger.endTimer()); + + if (m_odometry) { + m_logger.startTimer(); + m_odometry->compute(input, m_previousFrame); + vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); + m_cMo = cnTc * m_cMo; + updateRender(input); + m_logger.setOdometryTime(m_logger.endTimer()); + } + + if (requiresSilhouetteCandidates) { + const vpHomogeneousMatrix cTcp = m_cMo * m_cMoPrev.inverse(); + input.silhouettePoints = extractSilhouettePoints(input.renders.normals, input.renders.depth, + input.renders.silhouetteCanny, input.renders.isSilhouette, input.cam, cTcp); + if (input.silhouettePoints.size() == 0) { + throw vpException(vpException::badValue, "Could not extract silhouette from depth canny: Object may not be in image"); + } + } + int id = 0; for (std::shared_ptr &tracker : m_trackers) { @@ -281,14 +299,7 @@ void vpRBTracker::track(vpRBFeatureTrackerInput &input) id += 1; } - if (m_odometry) { - m_logger.startTimer(); - m_odometry->compute(input, m_previousFrame); - vpHomogeneousMatrix cnTc = m_odometry->getCameraMotion(); - m_cMo = cnTc * m_cMo; - updateRender(input); - m_logger.setOdometryTime(m_logger.endTimer()); - } + id = 0; for (std::shared_ptr &tracker : m_trackers) { @@ -498,7 +509,7 @@ std::vector vpRBTracker::extractSilhouettePoints( #if defined(VISP_DEBUG_RB_TRACKER) if (fabs(theta) > M_PI + 1e-6) { throw vpException(vpException::badValue, "Theta expected to be in -Pi, Pi range but was not"); - } + } #endif points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // if (Zn > 0) { @@ -523,8 +534,8 @@ std::vector vpRBTracker::extractSilhouettePoints( // if (noNeighbor) { // points.push_back(vpRBSilhouettePoint(n, m, norm, theta, Z)); // } + } } -} return points; } @@ -550,26 +561,6 @@ void vpRBTracker::display(const vpImage &I, const vpImage return; } - // vpRect bb = m_currentFrame.boundingBox; - // unsigned int bottom = bb.getBottom(); - // for (unsigned int i = bb.getTop(); i < bottom; ++i) { - // unsigned int linear_index = i * IRGB.getWidth() + static_cast(bb.getLeft()); - // unsigned int stop = linear_index + static_cast(bb.getWidth()); - // while (linear_index < stop) { - // const vpRGBf &normal = m_currentFrame.renders.normals.bitmap[linear_index]; - // if (normal.R == 0.f && normal.G == 0.f && normal.B == 0.f) { - // ++linear_index; - // continue; - // } - // const vpRGBa rgb = IRGB.bitmap[linear_index]; - // const float blendFactor = 0.5; - // const vpRGBf rgbF = vpRGBf(static_cast(rgb.R), static_cast(rgb.G), static_cast(rgb.B)); - // vpRGBf blendF = ((normal + vpRGBf(1.f)) * 127.5f) * blendFactor + rgbF * (1.f - blendFactor); - // IRGB.bitmap[linear_index] = vpRGBa(static_cast(blendF.R), static_cast(blendF.G), static_cast(blendF.B)); - // ++linear_index; - // } - // } - vpDisplay::display(IRGB); for (std::shared_ptr &tracker : m_trackers) { if (tracker->featuresShouldBeDisplayed()) { diff --git a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp index 258f2562c2..65cb50fae5 100644 --- a/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp +++ b/modules/tracker/rbt/src/drift/vpRBProbabilistic3DDriftDetector.cpp @@ -44,8 +44,9 @@ BEGIN_VISP_NAMESPACE void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &previousFrame, const vpRBFeatureTrackerInput &frame, - const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &cprevTo) + const vpHomogeneousMatrix &cTo, const vpHomogeneousMatrix &/*cprevTo*/) { + const vpHomogeneousMatrix &cprevTo = frame.renders.cMo; const vpTranslationVector t = cprevTo.inverse().getTranslationVector(); if (m_points.size() > 0) { @@ -83,18 +84,19 @@ void vpRBProbabilistic3DDriftDetector::update(const vpRBFeatureTrackerInput &pre vpRGBf normalObject = frame.renders.normals[p.projPrevPx[1]][p.projPrevPx[0]]; - vpColVector vector({ t[0] - p.X[0], t[1] - p.X[1], t[2] - p.X[2] }); + vpColVector cameraRay({ t[0] - p.X[0], t[1] - p.X[1], t[2] - p.X[2] }); - vector.normalize(); - double angle = acos(vpColVector::dotProd(vpColVector({ normalObject.R, normalObject.G, normalObject.B }).normalize(), vector)); + cameraRay.normalize(); + double angle = acos(vpColVector::dotProd(vpColVector({ normalObject.R, normalObject.G, normalObject.B }).normalize(), cameraRay)); if (angle > vpMath::rad(75)) { p.visible = false; continue; } + // Filter points that are too close to the silhouette edges if (frame.silhouettePoints.size() > 0) { for (const vpRBSilhouettePoint &sp: frame.silhouettePoints) { - if (std::pow(static_cast(sp.i) - p.projPrevPx[1], 2) + std::pow(static_cast(sp.j) - p.projPrevPx[0], 2) < vpMath::sqr(5)) { + if (std::pow(static_cast(sp.i) - p.projPrevPx[1], 2) + std::pow(static_cast(sp.j) - p.projPrevPx[0], 2) < vpMath::sqr(3)) { p.visible = false; break; } diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index 67b0617190..ecfee46fce 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -52,11 +52,12 @@ void fastProjection(const vpHomogeneousMatrix &oTc, double X, double Y, double Z p.set_oW(1.0); } -void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &cMo) +void vpRBDenseDepthTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) { const vpImage &depthMap = frame.depth; const vpImage &renderDepth = frame.renders.depth; vpRect bb = frame.renders.boundingBox; + const vpHomogeneousMatrix &cMo = frame.renders.cMo; vpHomogeneousMatrix oMc = cMo.inverse(); vpRotationMatrix cRo = cMo.getRotationMatrix(); bool useMask = m_useMask && frame.hasMask(); diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index 4f68172573..b86a206027 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -79,10 +79,11 @@ vpRBKltTracker::vpRBKltTracker() : m_maxErrorOutliersPixels(10.0), m_useMask(false), m_minMaskConfidence(0.0) { } -void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) +void vpRBKltTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) { m_Iprev = m_I; vpImageConvert::convert(frame.I, m_I); + const vpHomogeneousMatrix &cMo = frame.renders.cMo; const vpHomogeneousMatrix oMc = cMo.inverse(); if (m_maxErrorOutliersPixels > 0.0) { const double distanceThresholdPxSquare = vpMath::sqr(m_maxErrorOutliersPixels); diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 453c7f056a..1729a3fe4d 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -144,10 +144,11 @@ template class FastVec3 vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1), m_useMask(false), m_minMaskConfidence(0.0) { } -void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) { m_controlPoints.clear(); //m_controlPoints.reserve(frame.silhouettePoints.size()); + const vpHomogeneousMatrix cMo = frame.renders.cMo; const vpHomogeneousMatrix oMc = cMo.inverse(); for (const vpRBSilhouettePoint &sp : frame.silhouettePoints) { // std::cout << m_ccdParameters.h << std::endl; @@ -386,7 +387,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, #if VISP_DEBUG_CCD_TRACKER if (std::isnan(nv_ptr[0]) || std::isnan(nv_ptr[1])) { throw vpException(vpException::fatalError, "x: %f, theta = %f", p.xs, p.getTheta()); - } + } #endif int k = 0; @@ -465,7 +466,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vic_ptr[10 * negative_normal + 9] = exp(-dist2[0] * dist2[0] / (2 * sigma * sigma)) / (sqrt(2 * CV_PI) * sigma); normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } - } +} #ifdef VISP_HAVE_OPENMP #pragma omp parallel for @@ -580,7 +581,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, cov_vic_ptr[9 + m * 3 + m] += m_ccdParameters.kappa; } } - } +} void vpRBSilhouetteCCDTracker::computeErrorAndInteractionMatrix() { diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index 175503f5a9..e9872a95c3 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -37,10 +37,11 @@ BEGIN_VISP_NAMESPACE /** * @brief Extract the geometric features from the list of collected silhouette points */ -void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &cMo) +void vpRBSilhouetteMeTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput &previousFrame, const vpHomogeneousMatrix &/*cMo*/) { m_controlPoints.clear(); m_controlPoints.reserve(frame.silhouettePoints.size()); + const vpHomogeneousMatrix &cMo = frame.renders.cMo; const vpHomogeneousMatrix oMc = cMo.inverse(); vpColVector oC = oMc.getRotationMatrix() * vpColVector({ 0.0, 0.0, -1.0 }); for (const vpRBSilhouettePoint &sp: frame.silhouettePoints) { From b9e0dd15dc5e32f84f97a482b4cc2853b6fb7569 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Tue, 17 Dec 2024 17:55:12 +0100 Subject: [PATCH 100/101] Replace .obj dragon with .bam model --- .../render-based/data/sequence1/dragon.bam | Bin 0 -> 1878919 bytes .../render-based/data/sequence1/dragon.mtl | 12 - .../render-based/data/sequence1/dragon.obj | 58578 ---------------- 3 files changed, 58590 deletions(-) create mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.bam delete mode 100755 tutorial/tracking/render-based/data/sequence1/dragon.mtl delete mode 100644 tutorial/tracking/render-based/data/sequence1/dragon.obj diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.bam b/tutorial/tracking/render-based/data/sequence1/dragon.bam new file mode 100644 index 0000000000000000000000000000000000000000..f6b10b02ce17c4aaf709112918fe23f858f905e3 GIT binary patch literal 1878919 zcma&vcR-Hc<3Ikpsi7jJsV$Y1NbA1tb4Zd@nv&8|3M~ySga}dg&L*pnk?Ov#bF7T) z>`gY=D}>+e^?rYUzw_z5KIi-MhnE+R`+4Ry?sJ{{E+c+|NKHdoBoZl$>_u`Ssq9ap za*?XYKRqEaB{)4jTdwT?{9l0VujHI%{}&jSmJs*%|K$6Nj6|XN8Howund7tL;!_fX z6UQZHCZ>%|9Gsq$mMz~;r13xhT~0xy{-3`Y5kDbuY_>>Iq$&EJFOt2alPDlA^>3W4 zMoOZPv59Gk@*)M9{rl^W?AJek_|I>D#sB+jwCqpv8)QWUC#EGNW`<2**yO~7|5=!vtH@mRpMPMqL$1F_UY2b9H+_$+!l9XQX<6gaGgJRh0SdB8$cYU8 z{(FV2{{Ja`$hdK`7G}v_{I}xbzyIhgb6TRT?6@@9s}o`pGUJlc)BcyH$;lGsWW(~G zUp{|dUL;Zx4NXi>{qIO9|KGE^{O8sGr<3GlU8^E;{F@alr}$5noSUetXmEN){)n`{ zgP8cAagp^)C)r5LiPS`Lax(r;(>BOn`*-~Q{_6bC?;8L7?jrkLexjV_KY1e)GqV%( zyyCLsWXY;@4K@D;YW?#%k%;^I$~ZZVe_k1yIX*5eDJ3yWF5Z*tJ9B)zT)eD){~3h;{zdhFwA%*)Qn{Qt84X{Dk_Th#4u4gUVpk^S+X>WD_C36BpKDysD|u|ScNoUfy@=)NkNiX* zUk$|z-5QzBgy+zsA1Sz-$xfyVb8V4?OS14M@8zIlxp|?Q!aM~tZb_6o_W%K0F~uAn zJ2i&NBb`^78^$Xvq1niJOxLY+09F_J!LFuf1Xj5#+CHJJdZXao1BJ}IDcSc>=bwqt z=~{(^l{aeVQ8d0F1%5p>nQ}r4;*NG-$;~&<=8g>t!NZ4%U_sJss$WRAE4~LV-Z>0@ zEHk0nLAv=yzmbww6zp}QjajahdmggRO@SIOS2D}h=O>_tnyJuu@oJ`fq1ywMh_hg< z(tOH=FXcH6z2%&(V=DL1dMZ{5(*uSlOSz8yN4k-H!*TmwIe03`3$ffPuMqs$TLh0q z)BQ*0O;7HDcWfI59jkg!{nzcOm9RD1h6|Z+hz}a%E%B?Ehc0?e#vRKgU5{7+47&aY z#Le$)7QJ1Rf(?dlWV+-z9CG=bf=zRkj^ns1DvbP$J35GGRw{Dyc8_x<%jueonXgtBlGn9KZ3HWE;zZ9 zBIQo1brFm?6Y+{fb-~K66fAr`5G&^zQ2j@`>&N#2HM0Qh|L`kSKhm9+`~o4Vs@V32 z12gYkN)PzjzB@kuLYe6fOt*xsSCp{V{4SK+etD6!<84GX#3x^yiZ^ysWadRSs!B?-^YGBfY^D=CkCUtzS%mi| zxiZUbU6(G&KROxPD$>U}SwF789@O@lf`677QF&gQt@(A55SAXcJRgN zbgF)&%Xhhn<{OWN$z_1)RAwV&Ix`sdPru7_wh_u`ZOnKWlX;5i>JQ7I)TK%AV8SKJ zHFVw0y&JlRUw`!`*LANm-nqsGZ(TK;>HJ??V&QNbdKaV*J02foUhY$Qyyeg^e71_d zKOkMwcvtbnowv}@+9YP4Lv4#BWRUDQH=~bpGS7Sb3rT_HdvwArmYMgk=TfjmcAQHu z(8sy|Xj93~_!2I3)^ct@d4mx0XbRjVmZSQGbfM3#ikn^YpjLhX(^;*u1v~l{!bSU< zsCh-^MeZ00w!O-O9yV7b9s8Md7jXnAj?IGw#c!xQop&R7xMr!i?uL?3()VSg*- z$*%{{qxt3h+70PU_f)$KJ(ylBG3Y``) z9XC1+2j(9{JD(n*<_np();F{tT+zHKmEteq&X+tE}kRDmqMjiA~~y6M~tNl0@hR!OGc|B|jA zs)J)AGTDpPC2SuI1p>(iPNsm&_}WtOL>WW!GqUfZ1Nwc)a*-%Re*eA-->} zB0PJ)2YAhik=$_1pxR41JGpmY%>_-kpvsZy77nt7JxdkgQjt2-&A8wSMe|Ky_uX{A zkmYI&_lMiA?Lncxeo*~Ky3>=AVA^t9P+oh6a>4P(c*R&T7u%(o!viLuDV2|qhf6f< zc>I#Cw{=hS-q->kIyH#tYBukZs!P5i<4pR#lg#@*GgCU*unj4{i(%$%S@%F}T|Kkj#4@7lx+ZUxf0i z=<6HlBq45+s(VM!{ktj5a$~C0!Ed#%LJ(g_xs2!<&M>ly|1ta=*L_!i9QN)dN`Fbu z7t&dW^}*=w6Et)OecdA6!qNKp^+pkHD>uU($Cq^0hVAI%ouSx7fxd2$F4Jiza!U2U z?+?)D4btiTcYQBkf-MA7RT_g`A^5nU!o4_-Yh-BcI@DqP0G6#gPL zpGo)4eF2EuI10+CzGAxgl&2tndmNm2P@n0X&|p~o#0vVqs-f1`$a39}dcy&Z>M-AJ z3o~zSmtnBzr8<0gav9Sdnic>JKXr!(Z}+0EgQdf|3g?v7xCNs+3Bier`F98W;DVj> zc#tln@rT4T9zuz6FKQl;uFI^Q;Msza(Czm<)N#I$uFUfw5RXlV?{8UA=V#KXSnI+; z4<&H9^)6jUB8=h`}*h#GhB5!=Ld?yAuB61yt5wYbvvJG2kCk`+jBm7 zhozA}is)(E_`WO;c20?*`h|1_yOs&XeWt;xxTDOxdebVg z!Ji_C)-=|49A7do-sFuWXHS1<+S;Glj=T?+pmzQU_@)=VZgx#qNl5CcBdy-Ifp1uA zi5K)y!+X6tQ+cFYTH1=L0z|lU1ic_w;1&{?Y)n-!g~kVlA>kmAe*{x(;VLOP5WcijR>@Tgq<75nKfnrg=*S z?xydDxF$zQb)lj(BWHt$_(-5IYW@T)o^=*`%`qoHnn4kt(4%}J-o{bxa zE7f-}^R$X@fJ;sxc&`3Yru(tv4OqG{68Cx@$8>f*jN$IRZaDJycFLuO%AUK7spivf zpXYk49xPQ4E5d09ms00H(se!G88kNJ2{v~1f-t_;HdfZx_n#0o`xeg-?=CEQWnms2*QOeR^ZjbLTbK{uF*{@g!GdK zSvRIIo$2D~l1)-iXgRJY(}itW0wM62<^-r|#yFhXAe znZZXB3U#$C!EhOhPO0i%v(QP+La4V3r5 zy3b6Y_4O50xum0 z6LgWq&na+uKA`gKdYcMz_G`t0eHEYGScvWo9g2J2=|-J5NH+vWqfJYP;^U*bGhM5W zE{a&$8($yh!F2nIRnf|XP&}zljp?%cZWcCft3sN+=<6j}zjqhEaPG#vac@sR<#BiF zxKpBPes0@ouI8pT&KvK98`qT4| zbZOnEN~c8^VU>b~)Nx6=v7>yX7ekA1=z02jNxHit4PacKkB?lSk2m)RE|Pft=VFg> zYq*-Av2a{vH40MOK+RLq{oIiNPtJBmBb%-;-H)VkaP{L}DB{=!rsGpn;aur7Wb&b$ z=>ozs;m-q!sIN{c<(>|f@)J%da=KsU@-O|%(NpgLyz`+F?0CG9?(p+4!Bpved|hu`&3ZDl0l;1~Rvj{})bZ>}}Ash);z9HOs-WM1ERZEVnAw*R0>o0(^N z@(sEmRe@h_Ix}5g=`9rbVKs0q9Zfk=#toj=dMVyC`8N;cH=_4^G_mvk8qLSU1_DX_gKy>3Q2@0YP~z3wsKd5T__ zBAsFGIH(P_qi~?Re5)=40ov=9CkDJ<0;U(Aa}I&S%oC|K1y)GB<5sTiqF2x+yJw3y8 z4Lj_xp06D&>sQ5esk5)6cgYFxZLvMmRhDsR_re5tVsbO(Mn1Kbcq`U4xQjONEj311 zEu#k>JVituzodJm&;`Hus78}}3}U($cdrV!=ZJB=n?2JV*y09q-4RN%rq@f>jNZiO ziPv*BTnp!ZMHd|(>IY9(>B5fVLApA}T5giLA22vauk({`+L8vzm!F})ERen~kk01V z7fEoA9Mm{OpC?JTR-M3OSv?&LiEWv4|g12(xoo0kz6>o8#r0f z_r;`hx&J`2^7L%vIg4KBB3-|U`@y}HA~<-3FSFct`X|8R_Fa-UGbd86^tP3xU(Klo zhx3{I+OZs7x48;j52W8OkS=0^BVNyM1P6f)Gw+Oz8TP6e3LOp4QP(Xp?}+j@q;xL^ zKK$fQU5`k&^_YM*Ygxm=z3r%SPsv$Grk46jJv_2_y?Gf}$=(eZ_gGGyH%J%jkcL%@ zW=qcOtz)_@?TI+(S~}35x`pYK+Q#BBm0N`7kf%&HDVD<_WmVwiXu6-t`h{dW;`@g- zf)@kmekR>-e>*%(p(irjM8AI{-Pg04`1G7IA(;0k}57K02o!E|ng^tNFc9GIC?%-Sex2!F%#&cv1Vw0f`wr8+A0vAn z>SG5ds%~Psm?GJ8o;WdlRqe@i)>Dn~-4z_1puLRgM%Qa#@64f)TTid6^wm7h8NFG? zRlY9fSo{7-XP(dl&Gg8EQC~|z$MGedg-%z=l$0cB)AKgdX~lL2)0bqx2Ho{cm-l!w zkf0bCtU%vSdetfkH>)1j3%xFJGkG7JyZ5y)(u96LNV=!5#rQhZp&R$ z{HY~PNJ*ftzoh#XVT$*=rwIqnv)y@ZQ!MdqLQ@CyVU`>J?JDY4yAG{Vi)6Z2r%#~0 zTSfT%Ao_S)A6>*ZznUrztDesbZxwLTrr-QV37tneSLK%|x3OG!3&&FBlFsthLp0&C zCv+(MOpP1qhG$+v6K6``h;J&)yo=@-mG1ZkK5zGBx?JU0RQ_!UJQ+^!YrZ@}O=ugJ zDlWcS#e4boM(ZA(6U_DK=LV!xU%guBHgX{!Eh)ks=QHWv8ut}apH4u1-qQCGq}$)J zi@(smP8jb%=Y2zJf~V#u@#^JO`~sm0`DvN~-EFBW($C9CH+9f= zNs8-EiJI$FW?s2hBzQT?3?3CA)18c}2Bk40pswK;)UjX4a%bzc1C@0a&@D`#nTMsy zaD|UKY;x45oMVl;;Hjg?jVRv1pWnLx&01oBo1+FYory|2IK9;Z28Ph(l6mO=XSvt= zXu+*IO<>Y``Z`VK8GN>f{kCjDJ9X*%9Mav9Lb$K632iV`q1w^UV=`}YV7b`KN?Fj_ zCNIqE9ta0M(P6q7O@0!K|79OHnfKGqU(z(K6{y$H`@%^#8a$LVwvL0gC$3TBOFCi1 zLa=XY49qS(M;+&+d;Yxw3_b(l{Sowi6X`CD+YIJ9Cd2%PWz4)+<<4-x`<^iJ%Mzw* z9zG0CcFh9O^7Q)EnyCjkz1_R``aQR}`Yq2Trxo9$K3?>`FVf{OK37D#RXwkO%1`aW zs4hvcVs=)dtI9?BT`C8~SS>y4NyK2wa`cbQ;O_NU7!!l1ruE_mJ%< zR(ilyR4ha{H_-35NayHSA=!SS9Nq3pyQoed`PNJ3+=D?M`ICBa!v1%5@K9&^xd!RR zcV92rV-N_FPj{o*K|1X;U$A-N6@XWbWjYI`)nL!3{y@)^et${kburiqI$3ex=41N0 zaR0gNdD?t!&M@jAcl*RtG~-Dwytb;1>p1^Nmm8IXoOAPF#`#93i?2*Z(;nr*!OyNz z&$q}tV|bHab-NXq-KEbjq|Prq0+j6Bcx8_-*69nQ(;RPrp{NSduBHY%sRLSG<~7p&yeoq#NFU!s_Yqw zhdJyxzN8yJvMV%;a)FA2>E}nJ!+(asu+lE@OG_@Zeov={!3`Sf@K@R?Y95ez-m-lK zNc{k~)A=>NMvT%|{kFX>q0`#i>7GF^2>-PGVJ{>D{^_m6Cp{HUe( zPm(Taiz5D0*o=C})AyaEd#5=Kh4Iz=fp@vo`G9nFhqTbcDe~CDFM@JhnHvA_!gu!- zy2`?q5nF}$Z-(7Pc^ag6#8=*q;oJ{0=8Vy!?ir!&#}e!lC`zdxE-H1 zbNbc~!TbABa9rUG>i8htytsCttrZF14m4-Fwck2J>0%eCVsxMBe#C0Q&Cf8`fezfLaYD=XuhE6M4GxJ1i20_cJLKN>|#B?c2zVOd2GxST2e!oSQ z+h`O5C(N@zLBG_fJa@azymwOoH?aS2@fwqhl1{uG1nnHtO&%i$etHaoai^@9F4i&~ z6mPf%G#}B|bF$o#BMySybIqXLefqwbbOWE?0Bz&Sz!`n|x=*_MWskwd8GAw21A5(7 zwLng|`XH%cd(a$yly(vLvC9;B?$3rDujiy&bdCqBRZpPuYonNMh`#_D4xT`@OV}>E zpcy1yx-SeqK)+8B9wOe!HbvSs;W)oaT7Xk@FL9po{?t4r-Tj@Z_^3%F=)G($>evp_ zojN}ezxyc_iVhxSI+Lwq@dy10s9#GH(+TzAcy55PL}{ujH4n&gQ%45l{Z`JBw5jyI zP49wd+_dY?T=9!iu6^inWPkr0$OsLi@<>pcQ2`b<(esLQtLv8``vZ5t;7_BO zd6O^oM_bJcfPqyu)77>Zp|8730DO`~x$ehbald!oZJ6XTid!V%VDyz%B)9GtHEyIk z9^((UbWTOm2c2QZaU&gSPJ~C)AED>{-%? z)E*qr%7^i7=9K%H|AHGgDMq{uZkFZ-$D)}x$0<{5Qk<^h#i z66@F^Smknu>OV5?q`_jz0QVy3|4D&a?hk(*FrmH>mZ3*XrxoJ@0-hJby{q;~JC57V zOWH!Rj=9HWr%HaB{XI1BwkNJU@QoS|(%t=KiN=1D?Y~z!PqmkH>ldv8QRWqb#>y;e z-jlBH4>OoHV=kE5POtxw?vh?O{ADc$fa10%o4^SFt)Zb$;t*&Y54a8wkY)2738 z4&`!ilJx`BdoJBCWVzLXG7SG9#=SPs&)-P*D#QvFh5}q|GLTtrvFb3GK0^bqI!X6S zy4w)Jy55<49Ce2GzU+?6H<-XXt*fX!(*0Rvg1hDqfwjfDpyRwJT|)O8NJsM`c+f`Q zKa=j1?-itgFM-0@fz)+@boNHG1h3mu;EqdOndLs*vq<9T5e*$z{G{43b+eaXG}4wk zd+{7UYtd_Tf94a^GL>HcBb~494YWt^B3Su>ZU^a>I9x&dZC7s3hFTkg7 zBz(1!-Zw|OgLS{a+wQ}mX17CBKa;LjQxOh)6aniyofbOI1JWJL=mfh?^@4-_>zR3B z8w{ZL$)QkLi~gPtYg;{um%T#Pn{=8 z_x|@rlpNI=9nH;Px~{Ihk=Gd={Ndqnri*-WRp>NsFA7&lXF84fn?U2j9Q0guBIUjg zuoA+v4WvaY-tdA}I38TDhGT5cQr9=qogXq1-y84)9oCyd^)u;`82dI!H!-#s7EOX! z(Xy4g4wBBU-y6i~xXHEyE8>pxfOI2H&p~mKv3PYeeSIUHf^!gRZwthG1L^l$TXJ4< zjfPRuiRJtG=3Ssp1daXHgSo}@d4qHV#eHG4jvMTE^B8r! zMLf91t++8m9HWxWot)_cY{VHrWea^jPP(Mra!?ZeTC&oV?KB)QP=B%l*g4SsLgvK{ zzYW^No#4vvVya(AXFv86$emCHzH8I%CEe^!dN5>V4cM}S9yhJQVO*x>v4*zagE%Mo z@pwl3LhuVzQ0G6=C1oY!ORsl;h5cqRU3pU!9$4H4&R^GNy1j)Vxa`;q&~+-kZxMnBHJmsuoyzmuoy$K>n=Ve9kjV36 z779j3ra=6wE7NV?GgG=LHyfJ0UCDIUdzVPUWAdT=qA^T&@t_*GJ|rJL$rCf(rTV$x zjafDv+E0_|GEdJ36+?4ik5~Jsc~7=iSFHm0Ps@Z~0?$%zWd10A_Q+zcWWYjh)Dk6F zdaMPE+D^|a(utSKK3A@Bky}truXmE}#gxv_=1mzG_-q(8?@3p0p$$#VXGvC<1~FaU zA0wDG_%!&jurKA5#@Fz6lkbVMs@wSiy{`!)22F!ecScg@XVSHAy)B*Q;tJE6=<^ln z8t*horiTPVP1$EkI-bW#cOmJDRAu{+a1iPmIFD z56u=n+jgSHqy9lHXI|#X@zZ{bRgdQ2DW&^_9T{_}Jks6kn}xT&YZhvL();E}_and$ zyEWON2ktt|a%TZ=d~R+AT9!!fk0A4ojuqn(PvmjevS-ZtEllf!iz96D>>XQ~?&0~5 zsO+5vUeV2ws$X_g8!zhAlN-EtGw=8Eqpn)BBsq`fczp0TZ4i!?!2t_L5F|ei7*UIsty!UPJZE)QJI- z7d__HZyULuk6AYtwYs>XU#Xc?{YdxncQN{9=8d#RvfT^CVl<)76IpL%J3Fsdi3)JS zXTx2X1@z~rcGwyTcE*0< zbK|vzUv;OEi>)@kv6C*BbiP)VXzcgCSi_rs4nevDJrz)3<33a`Pe0!x-O3~F62)gj z@C9E}s=cIJ;xF490p6g}*Yvu)Tw4&AeQuxFMExvx@{Tu>YMe#leTlH+`Hys)49z5| z3oNlsjTh5hce4jKpWozd22WwSv$FkWcYf+4N8gc5XJW4dZIA9iPd@_6oj$aH2NAc$ zd()rs8tYv_m*eiRQx`j?>+Q4_NG3bOyEax#XVZEFII5(=?hEPX;$*o&<;TFffE1{< zkN(^?>DK%@1-^}%2!(H+)OEpWHRg<_58?9cx`{vJ=HP<3Tu@l44?2zq>1-R5v8Xgm zIFWXRI(|vF(kTp2y1fhawrOFyFK+=Zjrf5~*FR@EooO6CI7$g$x46f2@k9ILfP419 ze-TW#ZmHNsEe~vWp+Emdx(n+A@sj~Ou$b@^bQ}-T^|$oLziULWO0|;dhEMju z;{GMzYZvat_NUi6^avrB6 z@x;mUIA~2WHUCJL-Z=!1n%o7;$@LdHwwH9aw!?8~i2*K7ZD!`lV}LJyvBY2J0;*rg zync(_vEf}SJak9Z-EBtb+xaY56g`KT7c%gT(DQK?3Cl!ju*b54O!qQnieQ$R z2fNp&QO-R@Rq|`sQZX-18#K4;|k+0G?g$eiokSx7rHcp>xFmYE6-+$|arh z)H{g3+{9B%E-I?msf`|zP*Tt?hBjH8qdj;t6xyUPv@)LGakS7_*8fi+^tTAN$F>(>mcctw|0Yi z`$s_cr-!KXJ?Ub;xI=>g2iP_TGxK7NePDH@5&Y=Yjak2b{(f-Fay^*v@d=e@skN66 z5I<|!XWLC!Z__ReU98~|p)n12Jl;t6`oc0{;)#`l;d-_!xK+$w-5Vttv5J1qMCSRu z>MM30EfSVLpxrXvRIYWflK6Df1n%&*aro!=y^_o$w@}CWk#6dp1iap3tz@A&eZ3@I zk7E$8?Y$Z$hUii4C7oA>8$Pn&3YxfFlj%a<_QbhXi$VEYXQnHv)Wc`vCZHxfgy}T8 zcfm%+Gg0hl`hGX1rwR8V(qCG2c7u3GCI_#cRKlwU-lgUN>26FN4~te5fU_C&_wbSK zquNBsA1mXp)HE^kPWexSljf8Q3DZw9-8#h-Xyq^uBsni+y6Foupn1M*&8~qy50Uk| z7Mcy!-pxf-Rh^i59=r134x{d9-a<&Z)s6im@BGy{n=(bQQJRY6O6&JOTM1ig)s6Bf0e4V&SJZGg8T}Q?w*Oy)^$c5+e0cH-5`a zkU3y1-d*oO%|Fs98T5e~tzvwA-E``@Kst$z19Tqhfk*DGW4Z^IeBp?lI=JL1J@3i9 zHre$}EW5sK`=)8iG+qG?pWX4cS@iws z|8V`3;k307+^!B~=FKxvgBnG~*w2+-FDCP94|j)tlg5LFIrRQ)(oIpbgdR#IlJf2J zzKlm>j&nI$)qKQ&GaT!C&`390f1LD$?0e8oout19jdU%d&7k*lAG|wNg_?h)J0Sbs zP_zH#dqYWQe6llKw>J!L+VFwvI3A??*3%runD)nmMb*^&Tlv{UqN{gUJZeU$`1qe` zcu>!!f>~KGHLpmQ*fS63JvIc2GdnpjWFmBBTwB1qyObO80k_zdB9x5RPbr8 z6?J@AZm#CcUM;OVa@j(<%`G0k>bVD`|I2d?(pjZM;@kE|!Lx-2sQx3}=Jt`ePT>I9 zT6vY}*4+re2l-CWa7i)K`M3~L*w^}lzC7R(1>2mvb2Q!_f z!p#@vQ^z^!f_FKBZ)Q{AmV}ekb4k*LZ+Qk3?!-gY<@c%MoOI^`K7p1~(XdaOBItO2 zAsra14E6oOVR2I@s$cH*7$`C3pNV}(jpR<>><^#CyhVr4(AR0wW$MSl)9#JvdOCfd zNV+Y}sjy7L1-WX9B~>?xFk4q@ zn5@8mdW2B(x;pUw!DuRvbe;zakoDn(!n^WZrpvpTg07uAf%ctEV7g5g%!Sy+7DDgU z^!gB4Zm7iqU^&holwHhV=54D~fXkMB=Fd-zWV-7;jiKMq9?-MoH`UK%xeeitux^b$ z%3J0_<*n6nk%+Y1>J_z1#h;!|2hJs9u=Z1W-G_9)*O!6JmI&M<=LuCV>8@AY0d+R< zxY&rEFQj|2SO+>O4Z%Y2TxMQtizO_M@Wfohdr8Oh0hu=>t}oR3(;El%oloU0)nCnJ zzLMuQcD~3Z_=aQ67=#WCJi~PIX@Ah;*kvF^KZxo-GOum+T{N&$4Z4vW#&q{48KY}m zdgHeV9!yu-bEL3McFZZu(d$xVxpP|2bL(cf;<~tgRGx5Z59eCq#wn)hb2q9I@P$_) z5|zzQP{;lwo$C-k9J|2|P4K0!AEZ+W^TwKi=}0??-XB4_@443a@}F7A@Hl<{Lc0D_ z^swC8I})vVez;@(Oihg>CJ!^jeO+FOL*^IZieJs#&&Vih9*}PE(J6TI9U~Af`*}L7 zyz<+Hc%H@<;Zc?q)h}dT#MoS{hH?Z2jpiSE%y%EQd^Nm0}bOQZ-&7@oA8VctDeHUy;)A@6_>2I`cMfh+_n9r2WHPl^JD4vM`Ygi zQ{!dpr|M|kniI^t>60cwtse8x?ajlOPDd{rt{UWq2JXqF+|@s3l1Oz!>B;@k{OEI8 z_*vdUQ1SoOwv8onTShj(?L+d7R1WiuzVDr^XCUBEFa0N z-{Ad&u#cQ2Ja0?y7a+?Oe4O!+yaCYZfjK>2eh!yRH6Jc@I33BW)NBKr?d)+~JiU)% z1>x2mI165W4abu=)=~8%-Rq`HV3{x;UkJNKeV&PQ1G8>|nz(KHJ}*FzBbI}qGbT{i1=5uVbpo;Va!^T+zHcJk+T}qYX}JL~+CbkokE3)_%Z!FigZ6`n!|gcYQSK{V5%KE2J1>}dTDbak(kqP zh{AC0MlN=SJav8{9ojt_SKm6$-EX7!^ONq>njjq5IY~G*Seuy_s2_j}CuvLCm(lOv z$h?gG&UikzLO49enaUfz)|h`Ax~t)B7kT0GqX9s>mlh5Qpg)g8x{=}Y!0c-g_$Q$E z$&hZ0(GqauwjOpmOs@lz?slmPJeHV-E;-Qq)=B5)ZUx^4YT_Ot^uA5KroNIz`KR1> zygn(;P~y?rhA@2T?PY4-ldjrtF1m8t6(_E+qQ;kWv;PF4+eb%Zo00VQ*OAWkVsEtn z&KS%sf6pxU>T!AW$v+BPX16n)r~D57Tksg%G+)H5U;E?fz`AiwY{P%K&(UiEI-HEkNr7A~)@b#nG%)DOil@d9ZTzq!_6l#3QyiLmtz(ct)Sf}nQ(>+wn z04A#(@ZwQU%yJu}3V^C}Z=8YpGu_6v51@Hw9M&#rrtT-b=Nn2^hH6L;emWv8ly}3E zJ{iLYH?~v#Lb@7HSKQ`f0_6=WnJxo-m7X3jLH6@V>3$~jmh!5gP?`&`292ijjEC6s z@`sulHrm#R8&)9{wjdZLG|BcID*E{_^Cm|w2a|1w;>v7IraRwt7qA5Yn;+Dn zT=(J%j?)O_Dkdaze|Gl6)+1eEMfxr3{*-ilRd1Yb;R>HB4x{E3=^}wX9=G2gChfaT zt;dpXx=~mB;C3+F+;1V%MIZl&e)by;%YVdyj>i$1=d$k=a@rIFKW*s6bbh`y=*^ro zShn;5^*%tueG|VyW3w3TR2Le%*@30Kyy3SbW8AS^(v_v#1Eu^>*l0oTt0!IH+_|7; z#RH)ADUz92a_1nhTQM5u3&*K`Ci5OkkAr#I7r?xCq0BsC=slpL@EnL*hBDpo7axG? zZwcHT|A{L1{Xt7fp6Oxnblc$iD~UnaGw3m>_LDN*j?TlepM@OkdUy}hd1ad8-xt(i ztR=m_ge><>k{;H&?FyZx>~hBrev1BF>ko&m)1caGEqlJ%bZ#dFIu+T^=(@7g6vxe_@9#(5fjw_VYUE&t;K$vunG-5i^It2-kU3 zdr6l+Qw-IV%0ZePeLer6;mBcCUc4-`jyo{X1HW_C!?_=8K*#e2>8ku~@ZtLd@#fuO zRR57qE9VUAt~e08cc<5fNLRWx7ikwo;=Ze2Q0*Yyhi#M5>5x3UB}jpKA5S`C_b7Bd zH5%9Z(d)LVul0p44~y%qEboc^uTH_yHYURAdU`)0=^Q`-z8X6a<@Y^7l}oxyx|w)P zMx|iswux#7>3Y9N!_DgsBRH{!>OazHDNew3D^!K>`}F-E>3ohR;jD?7X#R3~|8r~U z9OGY%({X)96eFx*O%g=&8yXkcS(mii?!kW*z!K630srHi2 z>ZubJm1)Com+v#3^+_k3eXbj9e|(4O`pMS4f33MA(fpTn@8GL@IHQM^yj<{I?py0C zA@F1mI5&&_zIxJymRJeeJvk`yqxb!jZrCv`;f);!jYhFuLGuZZJ|}LWs(tkLk&$_h zzAq#pTJO;=5DPmVZ=_oyG=rc1YG|c&9MeS&yaEzs-`6Zwqsx`gQWpG7%*FG@Kjo*6 ze2;SXm2uDi#8G*qQ;*z?a@4m-CcT}+be-4xAy13B;7$tLttqoZ7i;Rk%T{`QjV#y2 zKm`RxXu&I^gP7%lUJZhZ^L0t%oT*GV@!dgT*kA>?aXr0WN0u9KbCkfx`~lx{$5442 zk5zK!$vb&9r<KC$H565OO zKd3)+&DN#z0vb&P8$0YVX!$LET4FhB3owwZs-@dYx|Oo_y8JKgCEbHRJ%P{U6KLMQ z{G6KFvDbLp!#%m>&zAGQFRqnLTRR2T9@D1AjdadeRlttYFxcf6{r-b=+cXM5HOPaO zJ{PF>d89Kb+zl=_q(K8KHDFDIW;isz{grYW@;9W5hhzxiAek}&}6C;=|adIv^rBVzmOAV>(K3VQ4n`v-s=Pco?8vXe)(y88>26KmR z6{hbFpzcdnzV9LQj-Memn7ftv^Lj~_*cgq}%ZK8M82b4%>AW?2prgMg;#97dYA@-+ zb|r#7ViDFAjl><#Yot4|E**G|S3;M!(d(zA8{L`&YyF0!kjWTy%&UCVM>x`MCYB$m zCiHC>ij=OMN0my6RJo)()5`?ii`B(94C&|Rq~rS-pz`nCaB!4AGwG$VkJ62V%0?TASV@+uT zy?@+!VO2vxWSNJ$!Zm)>D?eb`m<8W@q)_8ax-}IUpqF0~{4nz{(+xj#8{CVFff*|@ zsc|FoPAa_xD>lT#!s{8-@j<$eoxgw=T}DDL!+BKRKJEZNu*Ab{(90(N^olIpZQ?p` z(6SrXalVjl-^6sh@_03P7Jh*`j!1W5b|Ur(c?6t445zL$q*Hu3hBVmRlRC=-J9Uj{D z!7-uN5MN*fJN66d0*~tB+n?R=vJ3mEekPrxL<>LJ?S*@C8<_6ps;6j<{8nVJK8#uJ z;g3&Hx%)^gm2P6@9lv=GMFs@mH!ChsZlUKuNzYpr+~@COxd}0o;9FfU;r`_vOm`k- z!Z}Y)389GIcSz<9o0$bopM8*w`nZ^x_oH|+Y+g4R)EBi;^MK6ze6#@0e#3!i?QKlQ z+Q;ZNvWrBty|24f|4q`B>s{fksSYs6Nr$Q*=`^yu;hJ3ru%Uw9Z$Y~4(|w@sdK1{E zDMaWvUr1Lq#}Dq9qYa(@aLjU7^$UVIJ+CE4|!4;)euw~v%X5P&fF9?@^1>Tl7n67DvFLVs+2K#;qXS&CJK~Vhg zEx355is`=kguMJ<_>Vy)JVnokMZZ9R<8FI)=(4opoCP_MF%W zf6$r5bT3wE<9Xd}@#RfzsN;B$d3{!#LXG9gxMjT|Gq2zC!^m!MDqd3bkea903a?8O zH#kV;Y-aQA%~4Q2=NWjGpF-u4uFQ7~^x63egja?z-PnK_XwX^%_E_#?x?rPJ=dFUz?pvS+ov{XYYh zPc~E@>2mImz~61Uz#UFKP{;8goxx4nQe}}n3@>t^+CjQoL-g_e7C-n>VGVWslI}tI z7nG+J1?Q(ZGwWx#xE1N@#KAA0-%xo+!u&jbq|a#RulF< zOS#`gSHzkxPI5Q8hT_Ujaxhj>K=ljh()S1AUgO??!YX>bm~_)khTtWE>ac45E@s~E z5@-DRRu@=u>^9T=3UR;&ZT9f@>P1X08y-kb@oTN4h8PexX?EJH6tEsetSvf*?U!RJI0UTv{r_5YZi;K z$um=UY)mQBy`SxY4;Yxi#q#v$T*x!4$2!;oO==~)>4jkn8XT}W`PcBQ%8dGr5_Cp{+r!$pDy0{DDarLD$pwE-b)cp(T zwkL<-0VV(p|srgN3egaOnOz(DA%Rx(#J|xcl}& zP$jaQa-yL+!q(h)u4rsI@AUo(P^*-{t0|qRc|bZ1d)eo~R*Zl;JiQNqbb5sf@Qv(y zT~2)~r}~d{A8skaWDiX^GQgTy?kqcP*r;v*JE_y_FJzvh#19_OxCPRu(a$+Glz@e%1c#zKWbOiQoegulfEuq>=y3v!u z@T#Y$1UD1ScP#8F7?th=HNb;o&IG zt&x$OyrmtJ1>ynWJ&M*0j?wk*&+CjRlBSf%qK@={0 zx{W$t{Xcx&d0bA>rBX<=$yV37=8Z~=Y;9UpDv^Ycy<{s(mMkTNlC6?8 zw45^&*=1ipBuiBGkR?lg*Zp|>{+PS@-t+(S@tQev=A7%CIWu$7uHys`h>!h&&%U_K z)NhJTjnH?OyU<2IOfb7@Aw10-4r#t@yU=c1pNXhAZyxC~s5{dSXji>I1wHSSKxPvo zuFJzdu*CQho_qc-*Og2TgybndafM+t*GX|faR2=)9ACu#9?|vt?K2g$hNj}GkiFcz zpKs!!(GGNlA*g^g(_LrhxKIf?MAY zXg92#A4(AxL85vureD!6=0p|RuM-2Ay|tM3qusOiuTdYxeduujdmp0R@p&rHv+eYbLa)u)c__47JaRD16(^xH zeGC^N5Dw+1XI_{k~Xz5s4 z$FjBJzw%hQ(fGY`>B17GT-s^;wLqRFerU2LyN-%>^G=tdHhx#+rowb?-oI&P;N8g@ zH@_Xub#E2xtlA#)!n;)w*X>?22zJcaBh^mq&vgy&#z4EUeCg2xcHVX1hTmfG%k#3N zJ;%gBm6mwtCVK%6u=|SBZbI^BNfms=0EZ={b-$;bU4Db)9DhW(=)rfZN57Ef#cmN+ zP2sz5UWsUqmpjb7(urGc&F56KxWE+*g4y=~^O)|EamY~NL80k9JGY4~H_>5$$eyX2`=T zhk{mIZ?0Qds)oi`8^bpZ53WlaZGv{^Tfx&*b|2PB_ZV+brsnv^*PF=vT+BU*B0; z9Li^l>h)vT!e?(_KoT0ck7E^b*MT>ktW*I#DG8EE%d42KlM(|E_md~V*w*KtsIat*E} ztGRAYP&`z*9m5yOFP62gU+s+jLR?;(vgfD#%AOYn5#xb{D5)F!zDm1OZN`&p?N6eG zYwt1VgLWpS0iu2LeM!atiZ|nAP%hmC5B~`n+!M@u*T-O+C zLx_hp#A@a;ZtnG)VovxOA=+c35Ft|~7GZty#}M|piFRrSlJQLod$i>19On9&DXYyz_#Ignb zbP9uR$JLneA==g5(S*f{|KJ*3!v4AqQSKD zp``ZG_?FSK&$AATiGJzWXZUV>Ati=64%*H0PQ{_WFurm>it8NP8eyUTd^~zO`#VkN zb*sse>}2U;3rgnZ4c%WTzO>sdU9n+Zhivb%@lhIr$KY8p*?4`hGO>AZP1ThTqu7&0zx7dLP2?L73eLb1+2kNvJo z=ebm>K&Fxd$*)ub-f{TV=s?qRZ?bXWL~gmE*#ls37ZoCt*zcEgxj{K2q1d|v8LPq0 zN1|Piy`!Q3o9{T?_Xtz&qSPniQOZJg9G!MGMOI{o<43vGFvRpL+MNxo!q{>*dZn1}!7F$5sH?b7 z#wJv_JDhQw9;^_BmSWjwpGI+1eJ5mVy#PW+j%1F5c0rXvNTvA?(zwZvC(>^HuMBkK zLtofG#Fkrbz49$|_NW!4>Gt5d-}pP)KBhhNR%ZWij4rq0b9)$b$R9TPY+>$K-yE;>XmW>n959vT=sx=Tq7}sxc$ge?|~@t!CzTpLYLF z>yf-f2QuLp``k&poLD8Ys#J@#+-CQ?rrrGY=di>1v1G(bHt(=wjBq7IS$H3iE)2Jx zOIG(Ken7jyg=5LKrFyUsl`zjkwCkEVij;OYggCcB zTsNc2orJGZ%y+Cj%DB?@9i{L*6JdPiO7Y;j5Zs`hiblVVht~a`c5WB@<86mWBH&>xh%XqZ+8{hTamnM(eY>iIeUd%1G&~q;es2+*FMX}>yHjlmJ6=gckotMoM z?@!Jb-;7O!wb%MG?M%A`1{&zc^)av_vmX&G(82!w4`QA1Gr4*BRhsx~&wLzd z#diiXmGR5E0r=|Ug-qVov17&WD|}^B>Q;+!VFhUI?<{2AJc;YV&tFHG9@^lqBjdVx zYJbqYOf&JzoiMJu5&aKI9}x7_dC8nNx_O`pOwuy=Uj) z(Jp#OEc6WcD)(B-zW>th-PYL1k+ zySc9JoD-@NBVb@d4cF}|oQ%eV$3o_Qc77sV?nCog$S=?by1!6i`aSK2>FR^N$p_R! z@yyY>U(v3tZ(k_?tON#{?YVB3p(Fg7cnj?bV(+KTTfOAEVLi%w_gF4Y2-}I;EE`D% zC8?3t<E0 zC6GP6$%gUQFt2{i5x(H0`3p~3&wiJjd7+@Z!OqsX#a>kk^0JY4czRyioWZ_d(k|!M zTr~dVY;^i}Jku_;D{Q=gPNsd8SDD6go#VHc=$us_GF!JB*PY(!3$OHtq74t&=j`?? z2T2{unq;5bW{PD-Z?H=5y=a3fyDo-y?ge%Da?>GnXM!KJZa>-`vYCZ{HF}_w!*jT9 zgma-d!TS(0J2Q*xG|uLT>K?@?VLkhM)WM~V7%7y=axy;4UjES{QBmz7;u||pm3GrA z>u{T{ogsT1JO6-o`sY(|c>NVr8_n*QK|9l!Ks@bJFX%pr-N&DH-$$xr#s4P2$fN8y zFzx=RMM~C#UBU2w%*&9W|!FjfD{>l)+c&r6pGIcJdO{kEFxhAoIEiBr;WOSV7PjT<$EgmpiS-6ejx zIT3y&xq}XQ_j)mNzuK*qE2RIsRz7H1t#JDC4Qv`vf;C5uXZkbkDsNxGeZ=Fq>0uDp zP5URuf9-V0ixp$I?(eD*z##z6IlUVheozKv|sfQG}WSk(cFA{xy zqoi-6lR?$Ujd}l|UFn@|;?M3asDncoVeSW1p3D2`a--WWAal0lx=mxFQNWi7(9XNd zoHx4MHcQ{5=Dnt{X)b%6Z*$d^bS9Vx$G)WsL&E&Y=ULjYtnMu{FOqiMy8Drv`?SHM zJNv#xyX4T3q-M1d{8m}Z^aI-YT6mD#$GgLcyKA@(Zkv%F-}=FVtrt-1_M`I-U(h1D zFPuR;@ebDwT9$$1_Rj|2I%Tf24&REKDrUo@|5O;~Rd-l6{dI=SzQwCNb;nR4`C206 z=$qr#^`o8Eq>IA8M+?ABeIL9Y!R{MH=MCw%4~73X3$FKA$Miqi`Ay45 zVWIKxe%V>3ofkbDE!qZFIG;{6kW{bL<6Q;iSTtbg!_lr`Z7J?Fu^exo8N&2a+D&h; z#wVUe6LAeY&QH581^RgZ#Yv=O%709|yc~a4ST($@;IewMP`uv;j{lMod-cc6cnR$m z-FJcxHWsAWYb7_&$KDN0jXRT=u%%q5s@V5_0&A2%TP;k>0;YkZq6I??SXIjZ`A8#ag6abzkOu z(C*U6)#8(}G5D_MLatlpwjLRuIfqkzv%lwb-kGj%ky1`)^0?HR$s15-EcXarR^C!G zP1JedEf2q*1TJwunB%2g-#1H;>FhvofBu5 z@d51f2JHs@?FV;rbCQa>7`2?8|ofx_Z9rQMDXJn+d47Wj1phbe_eXb;xso zJ?hw-@9IN0A)nGzNx3$G$vbEGM~rmuCS0CwEBhx{lFmZbOvVEAYT*ZHO_lJ5I0fPFZgaVL$ON~>kW8KM2jnmvb9})@CM<3(d-p-6uH*%BkHb-Hn*9Fllwmb3N>ITp6 z8gSjmGy|ghx-H1onL+Dzq4U}w?}+E$x{N{(vg3}l+q_%}?+ky0)GkMJ^L*`AOY#2} zgJ)Z|o$0(jeN&~8cN1Yh zSwiKI$GG+J(ypWKdSqg5fpU+r*E#Lh3hPlw!2wCbj{SZ~ySGF4q9dJc(ZXjlnEGW8 z(G_)u<&`ZD5yVD~ad5o46iK&VGsjE2=6&Pf@3OC`O~O8|OSwG``oMSeF^1i@g3gP6 z=K}?nU(taOcD#vpTB9Rj+S(OJ{CjVJJuVfwZs5;o zPLT`2DiR0Y1eb9E?hP7g6*%8x#ga0 z>I#+XJYmEjEhf)ICJ9aI2gQ?T?hBdAvE0yPCT_aK&by{v-dta_L~|#eYBz(quhDLQ zkG-hjng_Xj6#u7rL-CEZ_3_eqHYe_&%)oZ|s>JS#NIUy>cTw-Qf2DxV zQ@DBg*T16jrh#Na8auw5a$Z+L(r?+2Ia-oU(i?0FyOP%Rquq{n%Ahsd7IwU3 z$75+{(BA+CJ(7dWtbjQmw0p6=H~c#H1P%8z<(3<1Vh4Fs^3dqFy}9n!hr!@?HXT_U zW50LP<;vdsz=j?BP}Y}^O#Oz=Fc5cq+v@C?oFhbqrHnG zKsbSz_eR2hEeL`=e(b&O#NtQ(KHP=?o5}05*Bb>ox3NV=4m8p++n}h(s|ZO9i=m-&8TU9 zI5+R>YeTtLrV8j?4rbganU0hj*1f!|<7M&4l2f>(<6uxf0}uZAa`W`P^rbas&1lnH_Bgg&!NR$-orRd2{mZML29WVxm0|xeH|9F0 zU4i67zB*_^cmr@NRE1%_5y~#U@z1 zn)XfhF!H-N$MFFEQqTc}zU=o}+WAh}g|&6H;l|Dpr1f=4JO3vK#eEUM@N=;$*Lf~@ zR4(@(47SDnx$ef4yYk}Xu^{!;W8AF=UBo}DR+hKFipzgFtwRwxfzU?tEoxmq+TqhLcw5TatDnfqjd z`bFV{ZH+8@&dG8^{2tHx8cIA7V#=jmeUykh1x6CL$y>N?P2@VfHf6L<#+kM%epikw4-Ia);e<=B+Zp0if?N%%5 zw@y*N{{N$Xvf8&gz!K-rKurImU6%<6CZ4h+34zYIb^lv2_KK)ERA2bEIYlhG=!<6@Hz8BDvFqt* zXL-;Ud-&NB^q(W}^4cXJeBVn`?3c>UZ=&RUI_u2lB- zjn1nNi9vr~Mu^?K+4(fI`+00Lnj4&h46d=ylWmU{3fjH)ilcR}2`jh66Zw%;VcxwX zO#9Jpif=4wt1lwGCM&Lcc{768O2^P~%Y9s@`0qPHx}U@<@;_Ynvec2ZIrjz|G-xsX zfUck42pck7^)+tFH(*?B-hNSRxF^eadsZA1=t*WKbR^pz&PT1!FYUDJ+T)6&i;>S> zw%^lk*h>@VJ>3Vwuy>06tS@^*n8iY2O+>To|9oeo-8E$&;geS-TC^vQ>v|qtF5eV1 z3_kwp#kh=RS;F0tFq!5fPr*9n3Eq2n1iZWQo@qbYZFYEqgD#JNz%sr|+NIcACE*Bi zITpq(*Y4609C*YFijTG7y5KJBaebIG+&jsxE28V?*k>jFGQtTC-e>2*)9!s^GLG^L zfEL9jajn}qc$AGeGt#`=qu&HsN$5c0+36#$e8bLXpxu-Gy%qntv|2iLYAACYv@>pF zL?)bTMoNw5T<3ILjkF1PEH(Zf&vipaJ;MDvM}g@c#61q%AT_)_d@6*_zQnjUi9Ljg znsV7@wM4N;Q!m^nYcceFcwB1TF0@PN*%|-45eF})pXBDH6kZX-&QFC)R93%|M8hs^ujf$R2$ zZrXuA3`Qmd+>6hXKEm7}vOEoO6_~yDV~ylK3OMH#sl2 z13$g}T$fU4LCoIt0-uxY^+xAKM(UEVe`Dd3b_Z@Aul?vekNh<3sW{&DC;rFrIvy0% zywzntC)CPj=)J^Y{*xdy_Y!k|c}BStXKL`8exXqGVi{9E+U>5Y#HNAa@aP7=+{{x; zvEGh(Fh+^}Zm<6-K$PWMmUn2-m73-)M@^?^fnNzbkB4?^BDNx@f779FO$<{%+P!x? zf_DBH4l4b$nf^z+NZ+&QXo@#99s9)1yBGW(tuKv)8)l=K=W#l(IrKehdm<9_C;4+- zr*D5zc10+h_&bj|A9P-At{wDW-xCHEvg389B6>;BbK5&_Yo96({PP0OGzufn(qmEU z`zh^Sta*felcPz!zdF~Q`t=a^z+uE|&2pw)=)8uqT%7T7CeahRaPvH$ZNhbEGMSF^ znY?_xU&4bC3BvUQy9CpvhUBct5NPRghU?yK)+fT@{?Ps21FkFnSBq;lj)C-L?DtT* z+|q5;*l^G|Fl(;l=8@P#_=j@{486wAucPyR?99fOe0@Qy`U^L2=Cuf{VK*JVcF$&< zarRfy7M{yG92r$!9N&j{6!wLms|vZ!W}zzC^sfWdMX}Febl%z#sw6zP0~naH^R#F; z_IDHBqS*VzAcFm#N4w7HPjJY70YWda;}*1gx;YEirw4-l)R)}jm^Hu?7j7L5%QJMC z>vvtDg*2?8qfnsTQ3_i8TT1$NPHy>%-M@r(Wlg8V0|~~`Ka$MN`*=1)u3WH5ivGQX z>n0`{q4IG{P~%s2UIAThamaEMbac7YLv21c&v@=l^yB#o@lhLgKJcWGR?_6*DniAL z4wC6qTXOVQ8rpH+hRLIy%hY~kwDmf4{}Q`yjCR$Rui>Q6`NI1v{Boap{g&K*os&QK zAMH%%)&Dsy>N=T7f&ZhO^)B6ZRvqOeiysk8X zl3DCH4eeg!4~OKt%5#MA@cMs>G_LD-k=h&xy1%*fkTk%`L&#Ev7K%mv;3PBk&Eq zHZV4heNUm?_^M|4=~QoWvyy%Oqus45nds2+FkC0F-^FRSTKztXAKphaxX7+MzC1`- zS`;S;Zf#zO#Vf{PrEqodd#3oF-Rgasb}cn(I6nI;3d>>F_t38Y;@h$>E@4ou(!#Ve z?M6LMlea|1g87@PT=yk#7&@_iGQ4wU*Mre{!$!EH5uakAaLjQguU%}d*x}ekS=EX& zu^Q)5s>4= zj_=ZWAw5@PB^3|2x}JUipk4Zt1$f}yILL|0z^%_4?P^=(xIEYg?tIl`>bK)YshF&_ zK~S5UCfu(yCHrN|uu@$e%x~n0ujaP#I;%b>Z+F3b|fZ$2b5IV$uH=x}CJ$E>yQ;M#gXbY|T z740Ir1c5A~7G>*i<(B)wX9B!7K8W6%u-9+q7%QnFKwnn8T}`s{^hPIU4Im*dwoE^u zUE6gbXjp$caxjMNf3ypHwglbHvLR|34%|GgBpt9n>OxHR9KfxQm(JV0O$S0R1BqJC zKJR|MVl2%L8z|ekKTkaH^8p^Ws2OFexH9F^uH^1eToSPus-<QPd27tUU@8Ki za}iAa*17nK10vGO&1N;0Rn!`Q#k%2Sz_N6vztHZ>J5tH_u$Lzvss0?UIAqY_7Yyt{HVr z&ypI?u)pVYxxddTLAAfVwDQjcCeNZuP5KgGC$n)X60av&W7jQJ(p|H~r1kOAZpY!C zxZ=TFyh4+`Khv&%b{CvCVLsltobN8h>*8MhA4x6h?0W^BH$5>+>aV{^ybA1lMfi=* z!qBZ9hWw7p6ICpJ;D>M80F(`4j)Qi1O9Qsdw1lc>CS14j(><*GpAsyqAI5c$vIDS8 z8V2@D*>OF(+`QiExcdeHRaROFEe`@D;pbvCpc+$Iif zF^PxzgY5bR+GWbBQ2Y5)Aa}DdbA8b6`00=6$q{WZIbzSPU*?zZNNr?$$oWcSOcv$2_5xK-8?HEHY*h#4X`9;W7+#I?JSa#n-1TL+a#N_om+w8pWua2|6UV(6QkrSx3Gzkyf?VaMVMFwpg+6WpugM%_CubQ;L*zkewI4 zd~jmq#PEG{-*fvZ*rJZBqdFhzqKZ1u|tzyRiXqRNbB=UySrV^qndTwAyer!tv}%@yi}JJi~N8 z^j8_cv>)w4>xkUieI^Xqa+K@V7+#krWi5eT^L{Y%WazxhwS&>to)h55jwWvX?iQ^= zCt((}7>(n)aczsyxF8j%y~e(8(d7<({t_*2s{o7~y{OuPKOi_jM%8(3G%KHt-B|KxpW z<+7JZ3Ju_v`{Ln#wCwCBG<=Q^*TKjOX#44DkotKc^F4qr_ow}3q!Kg@dc#1ja~xBH ze2u~&%V_~~KIpuN(2r-!Mx{3rK@{lR;=Ah?06?#zrV;6zQxZ*N38Uiyhg|EVnE3TnSak) zV*NA&a_aSPc(H+fKcd~Jkehf%K_S|Hj-78yJDYbo*!W)%Jbms3Ei{@ElM&COunQ(kmdl`6KF%kCUemAsw zn#LCR>#6aOc&shsu9&RVOlPs5;CKGlkaI z5uImftxER)HUOp0d>7h7l?49n2nm;aaPxYN|A)Q(wxS&KaaYDR`E#8^ zhcXR(dfyexb%bT(5z+Qs$0FZ<9 z{f0w=Tlzt9ta7z5?CnI7VAV^$zl$^Ixk3A+(zr~&F zj4nQNo>=l9o_2By<4VsAkW|95oHyt$5R>dj5OMoo>~rY~Q$N}@<_IJ#<3Id%ry4i! zT7w~h9-~Omtai-r2c7rTsVzBOFC&w?zT%dfwE8WUCPWdnZH7#qwbN$t!}D-q?O91! z?Hvd;A%;@d9qhV0+WmeU3dhbB;YB0LnR02@$uk`Cj~&JG1t+-ffZ;@#|KtE}bMG|Q z9lSIZx}4C$yLO!CI{hvQkTq-w9(shGU+nzyx43gvSb1ph4dJn3ub`ASd$17c#+(n@ znT*#WtMu1mhmet6R{$zxwMHerGuoBwYUe+~3ns0_XeK+~kuLXm+CzLTW<9=b%Xf#L z+`_Lrwk6+EhH=Z?lCc9Hc=HTDd=kjG6E_pets>N9S<%Mj9~3hH-Uqx^yn}4Pt$$}| z=Y8LgoP9*lUgJAlw|;;Rc|1%7@@KK{Gj!hgvpQtDY#8J|WWQ_BE;r;i-rd_39=hD) zmiuVW8{E#S7tFoajkG?Fmr7$rJ^x&pd`OLG-7^PeTh0N???%k;0_}1?=A+jSqcOo^pvoaxxM{Wce8FJsa1O!E*_KQ{pxrI`L+Qu^7r2|xJ|FyFZpK>SlOpeN zfi*X;^H)ho+Tjguq$}4I?pcG9rX;|=W9)bI|l&b0EI7JJZgz%bHVw<|w|M zrgmq~+w}HU@@u;V;k@QKS&m^Ba^r|Ibagq-^efsa$8W?z3;IG*J9a#qcCu%^rM>F{ zAlHRmH$l56nOd?7&Er9T7W+M(cGcHc3*Ae+;q(5k%=xVwG+3NB&p{X^uM+BJ_alK* z^YKjEK1@5)E^dew34c(64@~B}BU5$Bbc6Z0vf7KA=lJP1UV3^O+V?Sn>pcDTBU4(<*gGsMV-%);^3u=9x)9z8%AX2^V zJMvi?$(&!>O?u---cMJ2>pp|I?*IJ%km7}$zCqaJDYHs~59=VKW{*DEg#3XKBTW>ws zxN9J!+uUXHexM3b?dD}Ci|GyP z1iz2TT-RgCs`85;Hw$%5tVZ6Lj@1q1OGBc3n1kL0`!P z=_ht!%B9`2v*Y1L)(RBSoqcblo&KO;nArFXJuYY8S83<^JOrja&qVbL*zqCS9T+7kgwN^{ZCkIg1^)rCne3 z5)|WN2~q+(f0B0Nhm@dw+HXv`b8>LuN6dFv>rQaetyT^vj7 z+(gBHf!_!J|6LK)H;cArhlK5 z8@Au#6tp!C&( zg*oWei%h(&1N*y5=ix*L_>^Ib^}vzI^H+IQZollJv+mX%V)6Vn@}+Zp(V|!EanR0Z z{!e+zhhU`LldT`^7FTPd(U1DUE5&!}*7ptCtzO(4C4b+KYFEwRI_1Nk(55k+;PjEc zT$doVAg|P!=-LBz{E99&>1QXX9cGBMVn%WETrMf*WDM#C1{2ut0hhH6L{q)6@_ov0 z%X1fpqwGOZ5GUSb`U~w=jbDfQ1aYjb>;sI0bMi2iTA;PXHe&FmHo$*bCs z*5{XY30m4ndtfkpv*f$tzPTv>?@TZ^GsL{SJvIlCs_S&HsblxyqszTF{yb8TjDgwx zZMk`cRew>5b!Q0uX2Cs<1Ns`E{LuzRC-RRYPUsHbCwaiU=q=3i5M962j%F|>+8v4) zx-+i!{Cgqrg0Ij4rpY{C1i(duA9#!|yT2&y4zCFW!-Q{mTX*&WpH0yV<6)?lO!kj`8^mvE9=d5-;p1jU3hBH_8#o>%Uj#Q^4S{?mz{X8 zBPNfO@UhbF@VK`Fw7x!QC+k`(rT19^x3&#t?gzB3}yaVfX2!UH0Ncl2`Xl`WMo`oHyFN9zBoD z@G`^K7ffQ>k9O-KW{|3J#dyRQc3&&n8NCl7QAY^YJHw9e(ysVg2vHtcfrlO8yGv`v zlb>H|G3k)atzVZyKXT3D8Fn6boN=`mip1DAMZ)vq$AWKBmXK@&Ai1&QQnb6&%Tr$T zLmj@aWyeKnml3~8UaHtyrr*;}{nI!3ra5h3^r>L3YaV8d&e=}@hk?!9+6kn8n-;8)u*O`uRS|{K)bTv z3Fz*sc#xl4#LXMkYbi=WhEToLh3WUrCdSg*T@k{6LvqE>>*u0v$?>r5IGabi=_8k- znO=slEQO!fcUT%yEu8~pD|DIq(Rrit)*=6QZ&4c`cHIf>b`2;&)84&7fiCRt0_`@R zu2X!v3vfssN_u$M}kmaZl-Ki^?{zp6B|Fll3{3w&V zbS$^LX)kO)HXe!^*2!O=V~>M&N9qG1#rTh`-8XgSIA~|_I~>B&9njh2dZvD~tICRi zb!TnG#4n$@?y%xNeiZ+agU-1==Q@-#18#-imoH6c?=N(@2@m3-`FWDiC5CNh=h*I2 zrOZJvnfy^S@{A?cKThFk1;d$gX{YAwO@22T!VI&6%zd189^cf-g=M~=vwSEwum9EA zcyQiMsbAxKrk&}$Eu&pg?tLAoJUNhiTU$EePE&VvWorg zx9?n~xT2$@U|f7%R);s@IcELfufH8>eI3!R<<%s-c7y{sZRb06*9X${+@2r{9>&dk za%-lvbAdleI zufuU;d451F46?t@%^UV{mppR46+9~dZr-e`}EfRk9~S+_e(MVw6|jZ>8}4V|CDy_)6Pppif`v5pG7gp zLAze(I-%i{;>doZ)7<*$xcR}D`VzE!&SS2d84(NZw2mO-o)b{(^Glaos@UWGN4FSU z*m8)uA3QxjSUzLc*0Q17ua?F)Tf*}kM9h@>GkLT-9Bl_)q0Z##`Kw~;FIvx}!H7o|-J_DKhdDy-cj~}&`m8!oKX6+Dh(K94-Q|uMf z`gmy6y&^g?8E(TkvMr0T7taj>8#QDNFw@EGf6hzbFiiGbhi3E3m;+8>S!7&TmLJ z(sSu{v~0b=b^j^m8Lj+(%rm0%vRze3&gXO3W*j>%Ks%T016Vb0y>R@0tmmwSHRWZ; zHkJLK|F3{A=Y_ey7LwVqAL5%Rx|HjtkBlWN`iN+VTOY1- z`Zb=|muiqdt`nJdq061NYAhMQtZcIM=bSI&8lQ{8 z{6~qxOGka-j#?ne9cU+C^CzFYf1}M(5^jCppq+~PC=z)|1s*wV=Q@2m zFVf*rJ-YUYoex6iT{d(jPwLxABLgg%`c*jemrrzBB?2 zAXm{d^H_Lj#6FMHPAj(!n7x!il;Z#FS|2a%a+=NH_DwhVP;#8PAJA_21$*!@a)K|D za+u%!8>#i;!k-(2=gL=w4@VNoZw(FP>c;-RJ?(ho#k8|LIiHx=c0-fjjAr@)?Tp9G zBhfd_u->;Qu5*Z=O^jFPNlV@KFz$KceQ~W*C)wmw#Xec5(weiQOY3fTf>DpzaXmUO(4kILPnv-SKUu)!t@^u0RF9l3ds`SU`sid~ zSH(WAXR_J%bK1={Ux&>;#K9t+RHh%$&Pgv7s})WJl*zt#)9%z!YrNq}9B8gM!p(C` z-zZs=L>Q{2$90~{8RhA-5}>Dk7ULG~DlHdA9Fqkcej>onJmgx?9)7KNgVz0-c8%s2 zP*J-xXyWZ4t{ZOm7NKQr;qhJe`#zl~_G&^atQ*j^%Awpm+3gmj)!7E34Yas!{3<>0 z@h?I8JJ{#7Pp|XE#bzUAp7S%s)NhCI!i%@j<5TQ$&~9FmEnYBCL-8Kv$COLE@LB!v zuOXUHc)^$J=8x3IEjtTQ_%?RDn9i$<9E8581*7mrcAW_A?3N5iAM3-BvO3?nx`rW` za$at5jGdQ3$}+^JO*XQxpErtQmnoCPj-BA?Cky5{XlL=?a~yknIM^<3LaqA??H(O_ zfKPt(g>jXb>u#76yynmk^yMHs|CG)%bGOA??KI$AAbUP&XTPx@-shwVWtHst2pVug z=%H>Yw6wV;6uaEOTff+V*Dqt{cxksO_bh&YLIx*`I&fW!t+lWK8j+cHB-gz)o{7TS zT|^Ti*l~WkTyaG<>Wc$W-2Um@ycOC-$Y!XQQ1vFB>*i!%MhO{NsKtGkg%yO*DViuit&zbX!AVw`xc#deZ^V)bMr_DC105PGwqx| z7UJt)C6u-=lqt9WgP!t+$6uX?9Lp3mgVWISmB*#c{_Oraw5x<{bb9QOa(sCXH*Zc_ zUoh(b9@jqA=eqOCj^J+e1zQefpA+eFo8JzFqkFasn+CD_*mUygDIfX4QT9d55T0q6 zqjrl|3ePVkGUd|l^}=ZMF~JS3*pR?=HeqRKddYEVvLD+nbl%pz*U-qT!DwFGByQe{ zG$nBE)fE|N2XkHI_ulX*VACu8~@V=H7<;V6`nPWTX6b>7&v&9toF1hx~6E8jeoY|gKv)3D4?v{W??7G7ewRL6ZgV3&h z(iz<8(@MpEq0iu!+wkT%Zr5Ug>{H?xN3Mj)f)?$Q9V5Mk!XbCjW&6p{5MjWyAMGl( zb%f74{4+?#yjw{F%-x_}CQ&IJ?3E)hXP( zSvEZ(poa^jo$zJah0ar%HykulOd+}waq~3S?1j?ucFq zH}Rxhg$NP$xs!GiH}94j9OLBAue0OIv@5Xik-utLf?_h+-#6NQk6SL+8gx_sTQT>m z^?ieOegEXkZ6ikFgZ~zColK)%-hOm{^mF8@0;F~W8%3NcgtQM-XOLaXiMfq(0-N?)L2c>Q+ z+2?H9mHKVP#vLvr?Ze^RymlitVc*RbD78JiPMyxH+Lw;Ie(8y>x8pnOVH>5r8Y)tN zoLy&gCs{5(e4?|g>e@runZ+8AspCV=c4Wt|Xg5^P1m4>XAgA5VFxMsRP9}5*-CK^N z_m`7g=X-Q8WJ0lgjwjNt462aXxk&JO#g6CDZft@&bXnpGQ&1^t-7d5{xuYw5yy6Za z+5@<5*l$OuyRWL)bND;=IF7o8DE9FBjkX1vF?l^Zo65r%EEC#qpDfIM8-Uj?p9c0R z`Ai<|bekHbMz4vmCh!y2jgv)4J{=ao@BQ<*Zv0VIWO!WhUAJ19>y~{ShL&}j0UgKW zGVb#4c2Xb3IysveFU3qd4V)9K3o1e5nEMOu;yx8io-S=6cQ-rFl6KbCJ*28{R*GBex?Q=P@mmWO^0}mJ^kj{zB&kE7n;LtsR4>?fJ#c+wsbWJU3NAwPUoo zd68P)q>pcEnb{5_u4}19WM}9{X;V{g#(DVE3rDg%g`v9UGTwR@+Kt{B3|HDV;sGI3 znDarqw?z}-h1i6n+Og}RX=kEX$5I~qM)H5iu4AE{cZaF)(sV_6$SwB!7VTCA#Q}WZ ziUX6_@6#vndvS5nsPaFZ>dL3?8bS6t6k}x_HPX7D($4?QK+@)<2Dy^)mN{P9joM~G zYOYMh3pCkzBeW9*W3v3hC%iP>f?KYUOK0-w&U$>SVmRXpW4lQexLfIWIXF6D0$?i${asC@9?I`h=& z_;2-j+$6H&wshX+t?hBNPcdHIh8@SOJ-bYNh=a;8?kG4r_rQ(!yOFtV-I;cw-L@~C z@a*Cdp~^iRiR?47Bd2v>TIm1nal!f=B_|ezenm z9fMB>Y?ja4&3@OQ-7<9*eCCNQa@1SIEmv9XsdRpcKAL!WG2^oDbdsw541~Ws-ihO` zM3A3NYj9HY1?K)oyW5X{;MJK!$-C>XxbAiHE39iWgzPiZ;FfE(tQLQ&@FAUE6m#h&qsAN@pzcd{ZDz+4yO~)_`W+9-4o_+;Rfy9` z;QBV`PwEM#T-v$kP9+gPs!#>VXU36er+LnUMA>zK*<(_;c{fZ9Nv9}NxF4*{90#5E z{Fp8=)oMY)X7)XK&D~7k+PO0ly>F1+lthbh*r&qJ0yy{Mdu>61QM?vRloc}2V4OYXJhm)9gp6Gsg_@9|41%$V)Lrn&l2}u$rU!$UKZ@%je-Sp=Aac(?7St~joT9iUPTr{ zEMk9;{x657LGVd}ihH#%&qK7^>9hzet|{ZSs2|f`XlK54F^q`%BL7>^k#XHj`bh7m zY;X?!`bHcy%#F-`8;D-jb!FOxb_G)h679fr6uq@4*S$F1kt|&1joR6IbKTQJ2XLdg z9gHz#pL6JPmu=ts|1oyw@mxLeqxh9X2vH(SsfbFUtnYJX%9d;?B1%Fe$(CKxzDSDp zP1#yiTFLvoXDk(^sI*YpOPlshtNZ>w9``;TbIs?@@Av=n@p{dfGiS~@b7tnCwbHq8 z8#-*5@#I(ULh+S4Fr`C8xszK>BvIx^?Cee?3FDkCBtgyw$Z8|q4oH{xHJ7(KZUR@{ z0L*yq+ZuR<#krt!F#Vm5jJNgJHV`S@L!$SWvCMdrdKLk{8cW!8bqLc%`)R?MvWEC? z)i>(=+I-67>fgLL9}(AsD=xRkQHxb!!TE!z`~8S?VRvk?v05M4tIq?bOZYq*x6B;? z@!58!>;Fp`haGW-H^cTa-Ro)vyy4U|cy_B3)5Qk##K#_c!t$NlDR=ps9=|_!!TDL| zwsRdVz-Ad58ZZLL#LO*ws&a-7R@R=^c+DiJ=aZEH`$wj8>aiTQ~x!RUl_}!|* zAV;XB>VAomU!5vR}L#=vxek|!sx42`iPns}F_9N9_k#5~# zNBr-RE_{J_X88g)+T-8%6<~#(gz3CvdA$DYbFfG(!>pJ0mxf~*Zvc0GwWZ>neAinN z<+M%m{P-G$3|RuYw-?f-XBD8GHw*YZ{ps;t(zW`Ekfvw>3Oe^6{Q;48 z&d2kTK?ZmD18eE~jDh+<$=7R^mBA)A1kDf2QS)Hwbv}dc|48Q*I1g=KyO;mElYUMl z-P9Y`Bo{TF2>!e2?v8gyery@Sh2bL8+rWRWGD_JkkR@tvdyJUGAjHN4go~+R?4`Yru&AsAtld z+$})?_pc&8l^!P~UEuj#q|tjT5}M~T%eSpZ5{lPS##zvV>2x;DL_KBO5T8AV=?qV; zlx(rcLM#4be%Pf)?tw=?rP zO8;AsQ!pJ`jS->l*T`du>eXYw{9^d*9xE#Gsxy&><$yp0+ZbIlD(fqwV za7LCF9Pn@x(|OGOiey~<;Lyb7On1cm33{sP3pJ|g=OHrhx*ZRZ+4C^C-zkeaZ={RJ z5~Evl1EKzn6U@9%hHgR|RpOv_U-~{s#%n&m6cwEah2v7``}zE{+LGm_E+V&n`vjva zjp&R;4U*HN$1O-#`oI6Px930pvqw5n?}^}${z2rfzmPh=r0Y`22UpW|;J;829BtNt2IobvdwV9G&U$-b zxqS!!U=KUqmCiZ9_nRN+y2FlVUS9#a#;F0%o>9!aE8E7w9?I|dBs7k4Uq%m-R2AH| zZ8%XPxcs__!ae8UlJA*Rdm-JloE+47KM^}@-dy4cwo4V7+hjdM47T7Fxrl0sXN@-%C`z_zyGTw}xbL$EPH4 z{q7YB9!uh(-jyP%e5C6+ZH!oHODg=<9?Eos=dKVvos|mv@1MtX%VXrg6X|zOXE|B6 z``_O=)&Ju=Cs{t%U9rGHIydKI=OwECNT4~kbdo?*IYKE~MUkSZ)bMURh@@xtZQapTeQowd3z=`41GYs%>Rw8g(y!h)TSoZF=+ zuFAd%&7T<#@nR#YUP!0qx(3BPO@s+*r>Wy0UC)9vV2qAFMHu2i@z1jMw4Ogc@gs z!#+mz`5>L~%3@>}5f4Yqwxzz;l1_g}G0MIc2gk_dQRjnntn>RctxMRG<7=l;e^l53 zdg1;F4tQ()CF*!dH)Pyvx)nDsqSDp}h>!E4?)zlC@h^{|N~4~*HP4lD z*IEGYeM(jgckB{ATz$mfIKts4)gzhi`K1A%Qq~(=_f}@Q@)PD@_QdhH#nFuEX5Bjp z>b$)0z+LaD<0Z?t)>;piuN{H+-F?DzY13@s#}(55DkKkO=7otK@Nd%_GH582gOsdgVEKz_RQX7!GhZF< zD6oV-8gDYomttcg9h~H;#T`gO1GT!*unsw)kOs zqsZ_becs4;b?c09vUm+rv#?^u3mR>NvtF-8Cdb+C>zl#&?uT%(|4aJ2B$+ooXb^7G z7>=f^(DSa{B5e6i|2-m$$Md)xhoP{Kzby`!wjOlvH%MpqcM?pS*b8?qr03z0u4kz$ zG#f07uPveX6(Zd!6a|N@FF{IS9?ZOBbz)$RVIETYO|PSWb)(pBrQBF9f6!qrv_<+I zqH7Fjd31_u2c-Mwxe$(=zKS;+N{`o(Zfr{&jIX@TpWL#K8L#?XBDA=^9GUfaMD>4U zywK`o7_#V{r1bh+>Uc?~>YENLcF3UYUh0&qUaHI=>R2hBV{aphF2m>nAC5f-)6Y$$ zD}QVZFWuF^U-<9Lc>F*csBG8=zu*0o=^mvxLOU@xHu@A(r`;3IXQ!=RgKIt^q+u@G^rZ6L!9!Dabs&+e4O!J3bDI2KrRTduRmYxdc z(wBI1L4gqe>@tBi1&gV?q!Y5#@rq||aB|@!s{Tm#c4R*scYPZCHYkUB4<+5`4R6ry zqe1ZAsu9fcZ8dy_u1uK&;W)M{2kq#}0)ObfnLgenpZiFZv%iR3@1N%y^S$tMO92dx zd_mM_}@txSlZ_R)6L)NfQ!_Q0hv?E)cGajWi2qrGusBh`gwPm@$P*v#1H=U zfo^4esCWj*j?Y+V$;p1tV*-wLdbR&YT38J$oKVy6w!2xBo{v9Mz@* zKF)tg^#>pA4fw^y7It!to4Nn_o_A3CJ@5B_e9t4@!LG-W?W1cY=9B1k6Qr}gu@Z!N z48{_59(S)7(p`|QTda_-Ta^6Ax<%3z>>4HAAF~6+HPh=BUmxapnSOEM!{_|H!Z*c?EQ!;y|v&!l^7bOmks;RvTn*B^Ip&!l_4Sb|2Vy1~|+KbYlegs`M&XZW`pY~{{d))>XKI0;J6cnDNhkBv4>n2n@az|5OywnA$(IGt zO+E+(1Qs*hnUE;hpp%V;x2$8jvC^@%m{JwA@J|VKACw!aCvmkL&V6xzFDQA(V>wrK zbgtJHDjw;4og#5nzjJ8AMti2~{4R^ddRDk?%U7n0^gfOz7TV*+{JvEEk$D4u6eE=v z6R`3*`uUl3etQ?8O?JB_6Q0xa1WDI?B^n)mdt0(-DeWxMT7{RoDxz;&?h84~3((Z# z&p4arc&dD)s~sJPBId4+gv=XsFs)9ez-g(ssW^FOfN*Xm>3 z$~Q(JYb8A&Pub~F2?PLhA`dAh@mh$wgkPuFpilw_~97%v*9&5_lBNFwsE$R zB>zZ%(Sjq#ge8^`&$K)&X>K>B;*l=8&JM?Hr~$`v*zv4(UE*>-PlX2q==~zec z!p(&x$m1-190MGc_;a&YRbD^3P?WS#K=BIE(9COPW%v5~zg&ka@*WWdH4Ewa)TE2u ztBb7Gr@&#Y9MvC??qFL8KfyE;>W^Q@v+@pEox|sC$bdHOU#RCvGTzC{*M#OY z!%U#&R(jrR*6qIh{&h3$2G#Wypp7bw+wTpR{z#(E2kDd-4S@I8PJ#LPR@C_*-SP`V z;T$7J7$T31E7P~&6i+&WfTA?Knxp4$kk0)?4S4h{62Ehz-#8dT9qWkzZ%W; zI(LEFDAGXLPi8~8#~+!lXWu`P!N1(#)A)f@J0;^SK5|-;5FP*v4$|u(NY`*6k016p z7Jb;ov)lV3i{5Y=arIfw$l|2!x(LMg+0 z!RI?2n0bAir=#jKntZfn8q+Ce4@b9`^@Eyuo|K!VbxVl+`AIZ9VxxF|&S^Bq$q_1) z((j?9D;$@Ew%P^2x)bkE_x4A+9IeU7T>4!+Dve&hK)OHeE@=MB$L__e@>`Cx@W+U}HPP+Xgdtoon0Ju}Dkm?Ue zcQCaFUKltFjx3E}x~O;GQP}e!*mtc5S1s z96-f;bZDv2*<5j6roO=T-^{f%Dh&)Ha2*ca#c+T#yX7@noyXpnsz5d9&Gp)U0;p-n@iSAY^@4D-IIfXqy zWMZBpXfKXO8>MTqT29DO^+LK(!z;pweVMSu+nLHsx=VLnaPg^`(Eio}rhDR6#EYIT zfzy20@f@5=_#Ekf&7F$!sPaWR&l38{S#YL5YPs*{o}(n`ewJgq22kyabn?|=%^ z@Y7oatB%s^j!BpI;wVsCsRw&(vtq_Gv%|pg$u{6PntdFj?eBqauJSPT6Ft9^%xgOP z0VqEs4>QDeRNm>lJfE<~ymJ2H{hZg&9?DLt9wbbA~JANc3-N$BHi4zrT`2}#qCyuneMss zJK)` z)idc_5;LH2f(nv#pvTu<1ZHvl+xCftz|Ug!-QT#pk%gf36g`eaI-?{--spQRm?hoc zp!;=Bx>A#GyoudDU^_dG=@#_(1LmL11G5%RW4f_9J>VwY?ci|o6sDWt*%Lk(zZuA# zX1k8Qvd~#?H@H>jLB)F*pT&K1loMaftP&pmQ$fMgkAQ>K^!hi_{aIEe8NB8W(6E?? zyVncpWDhTv#JOw%A6L@*f{|{4e4NBkbQ_GF7{QD;!2gEO?_LS0(TS(rxCL7Ti}EyX z|*Q|E(p{grO< zB_Y!NeazX;Kl%pf_ZdLj&AplNW_YxLeab%2q`Vw;Z-1kg9p>Q3Lcu`c23PEngo_mu z!5e{o4kO*KEwMNxA%~lAiQdngbi2+6R1m5Xst!pUC}zy-zLR9@13>zISX<{R;iyT35wna}b? z1KLvIfF}u5KTgK$=<`O>m8l2$6O&-~dL|u|(U1iDbMWO*Q>KfFZWi>fCc-{T=;PhE z@Hpr4u23kGzs1e|Er(|Xdceavo2la<-Png+sC?A~n9_%yZ$Y}OmA+_VODfdOqsPri zcUOAemP^l@;(wes(!Dr+Rp`~42y4gC$6*t3fxG#AJ*N}!kPF@;3p+tM*dTq!>|TGQ z8|0w@qnewL)kRCD`*_v|e%87NGA7gQo{Z<7I19cTv>5oDenzzy(p@?i4L7_!fkb}K zC9LwfSjIxf$6mT1!sQJzdEpEwbYd18b;=PaYzGnx1PQG1v>%@A9Q`bhQcw z=)lnpz`BgS?~`uc)Aih!F2klvwXsuo%GcQP80ZMH|=;~*7UeU5D z;2cp09s_zGIWq4~-#Uocc*zW^d~)(b`S$vroY}7=(JifM z*kaXru)zE&bzPFq*xVC8JNg0q)30PY6R{hvUhx$q?M6&DBzP=7@unGMCDHeDGVkUV zJ^Uim0`3|ursAp0$HJXyDO{0sp9}x9%6Pz;@$hdgz0VWr&;Ug|H*yqwb+#u}FQilJ z>WSYO><8$cJJVfs>47I~GKX19Wtr~O&7;!weh9>G3uL-?ZJUwf*B3x@5q;ho%7#g< z9htyYmdZ&kNdHe4UE&L(*3$FLNtYWHfe&?M^T$s&gYMS{>C(2%z?&ZZ0MVQ2`P8I4 zX61ns(hB&7v-Efg>7K@!;qUS;;QAg5$jU4KVpOBb&dE6og3Rdo@?<=))gS97mjZ=YdYz4K)p&`f|6V(t4aig|0R;o?4zZx|uo?+Zy~~##<79PU3Yq z7B^-dV!8t|ha|m6#^RnFJr8ft2TNXSN1~|8PeEMia~W)%Yyek9kD{&*(pjQw;BtTg zJlL0BFGRY`KF#37G%e^>NUtX$UHV5wIN7lWY`VeD`*_?C*e~QW*n3i+Sv~`&A#mUE zw;;s8fN~n+`}0rBhKina?&j)uTVS`6j}p^2AfWC zB)txZ%!`{Rak`X_qGUI(&&7oLvHJU1-?=xgPpPa)yyrYksis|(;q-*g~1-Gy0 z;-FEqyI?+C@=&KkG$7)f;4IyTK;fq@+LpG6Dj(@Sm{fzNF{MbQogP0W-3FNkFu!zz zWS4&=Gv1S04S3|W2$i3v>)9phso-^TkKHks^+H5*A#gviQ_}RA9;YE)+OnTu9lt~J zTRa-b_K2pXqUL(&cIQgRue0D5i*Z6TDi5mh32z-Ml`6y|OF*D%${B z)jv|#CFxwBiExwX9uLtP$jUq6xQ_J9j0@`yZCKSaC8Pj=#e8AhUr zJVSBC5FV!`E5l_o>#6!9U00j|_IW-OUSCYVACYeLD{cHp$sQhCy^I;}7wm`ge|x~S zQ^qk}?g}M5^%{UL3okI;{kY%g!dOQbq;!kvmacw{#O6kDU$YKXf1$;-VmtMDoO0m_ zZq}V#(6-AL=E>3PB}u0iwjE@7hrzc`4^w$bXScB)?D6^sw4I!pc|RVz4H8m)V0yZQ z883T6C(t-n2s(Dq{U4dvee*x?Ch8`r+(VD^lg`vn7EW?*1ywyDRlZ4MjQE!cn?$~s zmU0pG);MmA1#YeMrJgrPmwLqvFWYH@2QHgS-G50Jc4!RV+RF@IT(*QdUeXCNGPq%5 zAl~Kuo9o`cknWk!E%f_M1n#9D%XDuqHKCa==Hrr6n0Xwm?+|2OkL;yrtx6;Y)rHLC zxZG0}ZQhoSoqBar^-{k5GWS@1Fei!%UJZA{~-*wV$&X^9hV*6m98hTz3 z>GT!{!rFg-(N*1TeE0ezot@Kc7-jbxdAqaSlAb}Z!R#mMy@6gwA3pwpa4F%6$Zly5 z$s|QjJfh|+n5uDxsu$8djI+f4J{=$>SAlAOqzj!e4jF&B{W4GUpg7F9X zJ&JVjZ%@4O=_AP^lK^JCA!Q|K){P$g1x@;Wnv6HgZZ|sgbdB)$HT@icI?K7dn?)km zz=d3;+CHKAq6%Cc?L*}y-RXfbeEuZq_h0#7rmM#~pzqr-XlhS?|0UzuPqzo&jUh1X zU<=g_NatB~4yb(=gVF6XnRyo)`~jY#w_p;-Q||BRqg+XbhS70rnQt_czk5N>qVO;~n7p&-D8d=^Uywpw_g>&}2TnewB2ucaMdx zUS@D_U@TQWZlsTJVQ+)oVi&PE#6%6+eH{hACD7}WNw>4v4ECuT2}2&!3S$Z z;q<&T(zz~~g}*O;1#sMaDlh4x6Q|vcnT1r$slWv`(JKou;4Vo4XV7lb~&Ny>) z5_+tt$#j2x>~R0(%h68hIAHhlM&_MgtB3Q;_JWHWY?)5(o;GfpDUY-pCNtgXj1Dx( z7lNE`ft34c*HdD@d$GtyKVE!gMF2i9Cki|s{DG=J(hX1c#P1VsgYv>VOjqz|2$osS z0p)c1J(P@>FnkDJIYR(54d~}E((S6&z>bQ|ASs0&M~eS@ovVMeOR)T0$=yuUgzqdh zvHwnbz7*+x958}r&l^xotRYn|q>KGy1cyB8i$Bfj#dL8K$H3ezuTft?o#_@Xn*lF= z`i|b#)9sYZ`>%NcJh}4{da3=Bx-LoQ5*7>n$R|ZZ;;AqZ z{5#(dlvmUJAL)KA-wyWJRfAncbExAW-EYNuU@w+P)+W&7O{DW2KNkK@C<4QqMlj<& zHMW3>nxguTVYcv%!dkHACGCc9>k>TYTXH`lR}0QJ z#gZWR6G$sK26n$LNq0@BGdH_&f?~x0yOYmJk$M?tm69*9{~f#PGq|J zdHeXOaeC7Eoi0p=ZA$={`3@*f@MgN4`io#|g$kUl$5F0l*eh;vsx3F;&{0udTLG~6 z6N#T@C4%ntLb@++4gj~S^KcJC`uhy&b~N{eog-aw-}cqactaf*!b>WqDCNXas(&Hl zWgUu#JMOPVWjW@QLwk3KB$J~=yVmp*B%bThuk>gb`i$N$l5}~Oe@NQP(qP>@BW67Q z)fb7u=X7{3o}OPq#@l$QM3U|p0~03G^ZrSvIBJpP%Zi2Y;x>VqH-6&^;e1*eRC_dy z=@v(B<<<03Vd=#n%Bj{^O7>^yaqngy6QV7b;0WtC!h}O_sOJOHSr^CR=XZC4k8y^~ zcr$NDVF6B{^O z20wHxnep!Jki`!d-vN*J(&JoBVO?D9^{L{^cZ&t=r4GJ@xR2o}-zbJ7KeYrnA@d8+VIZ$qa0Cu&2b zs}-PWiXG){J}wY;-?rmwUeN6Lo!%PT_0^*e$;uz3%7B%qy|{4sv#Qz_KA{nDM?YR)(ugYCu{AV8(L{90S8F zO}ViP=yjE3`JRVczztVqCBq`=dXanhknvpe z6x@WSPNL@(knYWharjn&GOAuQ4tH-aq_Z4kh`sMC;nF60Jdt!2@tW9T-w3>9#usM! zIv4yycBN)G{sjG9h>T~px(_^~o&!=|((QnB$>S|xjh;HF96X*nADRB+Bucg;xEo)N z34H@Cahcb6SZ_!7f28XiXo`=w9S6c-`uU1<_q7f1`>Th*9~1idnRKF;df2|y1y1;t zOWhYp$LddmYt*@fuQNn@avQ|kqvP^PordH>Nx1*9>Ac zBA{O78KxT&(+N_9X|VnCHtPBy^A0{Q3tR8nL!EI~m~K~>D)buR1tm+gneMghKo}{w z!#-o5Q{|JLbA!{foXuSyxzp~z0O_|6>6|{>U#V34BVEd~QMloV8GLS^#dKk6r_f<@ zZx}R?o)<*M8`W_n?L>mS7y@hmqOqL zZk>XW=t{(3?#;Yd$+6{`@WsP?>V1ZE%U*2}7Tl1oqn|7<>3*G)&ga}V;3uB|Z%m@+ zCz9^jm^;8DCIVj2qSq~wZd2V|utvHTL%q73dXG9>d|vnx+KYQx{$4n&aZqpy34mkM z<*0fgowM>=?!$WvX!L=;50b9t{uO?yw-;2|O}{siu5n&7e-j>}MtRAl&2uFkiJ4Sh(yjM+!l?$Oa`}(gPPuRt-@c-;a@Hlbi;5i0KUF;} zR=h~NSF6RG@qoXg$IEtCM(vt~W1PECbQ-;XJLv+pIb+F81AJrXU+Oy|=~msb!Fx?j za2=isy0>T2Jq|jDOpIdi3iG4X^+CF4w~nHafGAwC7*g@}pBpUM`O}%RytF}R>)MNU zg=eFtk@I2qyrfIa+l6rUA@p4_jOhY9bJ2^*B}iUz9@D*CmWY1DtN?FM(C^b^-pTW# zk(P-9*tS238ShijFuv#aAN-8h8Iqi8XrT?P;bI!9xo2bUqaS-6q2+@wR6UbUZhA42-{S>E`ahWN zblVQpc5Nm+J@YoxJ$XI?9o?A(Q_KCCPH)y$iEmpXe0GvvzZF_%$~RRm;rwA7cX4fr z;E)y%XFjIqfs(GN(@OjK>DKyiX9_*9!0cn4P$=_D>snB^T8>cxyJ@Ka(zfMZ5TKoji2tMc?;H zC-V&PS5#xr&bnk~-jvXrpx96m9lQ}vx#KpnJn(pDxAaxn`LL07VEutGc;JvP=-y6A z*Lw3h$U7Yh^M-jd-7|-eV9y>W=(y!R)3taj!-?|l@aMy2On2+pP-vEI00SGJG2L_3 zk+26ahQFtrW4ir@BcVHQ3?qBct}I@i>sZ++691{^dfkf0$AnG5Uqu~tuNTrO6^G-Y z*IPlvloQl*BI$tNXc<#yiO+t9OhyV`zcm2oy@E===cEX zc&CJZE+O+;{H?EaH=YU??$MyG57OCG_5is`*07@o{rpF|?>_+;5Hkn5E70vUIkJ}P z_jxaO@Vpn77yJkv86O5$q?A+bg>(_VZD{esaJaujpXq)EC!^rNC>Z^C2URa*JWU}I zJyKZ+b#iwyophIPWc75hbUyWQX5KM#&heEW)8NAwIEf<=u=;ARB)+~*-?-DBHp5LAKY;F_D8yNsv8izr-fS|Okle2o3&7W zTq(-z5zTa>^AO6xE9k*^dc2s-YdX>a>R$Sebad(K&DA)Mb1e0?tH^mN`W!wSUu+oz zD@UI~-H(HG|MS1-aOwY|Z~VvqqDj}hQvv5)o(7}qotW`ncFE$j@%GU9T?5ly8vPVq z_M8iMmefgD<$GQD5LMU(!u(=-K0jH$x_~;gC^Q_NYIC9T4qd-b&^*~GUGlk3@Oz2* z{JafFXrbSaNY`hk8R&YXjb~k+L|wn6bE}&I%6<>T`7_uqMq?Xr^;Cd(GCeL&#(Vg@ z4mc+cfgbxuGxPpb@PZF&{(yBG>Hd$5ckJdISi2Vjxqv62dp#Rv{T9L#UW**m{|Kf9 z{ZNiVCb$n0sdh@bZFv9~pGLypgmk8R|8x?V7O@vxT0pmZGTztgF~Av%L1Jb&GhRdC z3gGN1LPI;^neKnq>u&yktk*4Cr6-we-(~k~#RH*us|ZUb8bYn~Sya7{ZqfGsz*jK? zR`nTA^;e{OlH>q3OUHqSb;K~^*`_Cfh0d|C#3F;~yq25-Zg&>Kq8$2vxMbdYXKTTw zlP>Un!Y^h#d-a>(^7?Tw+GYUk-VWs6kKlvPFXQf=Kf=Ar&;=((EP@*=>3I~SliPP0 z_}!cjJ8PP$dLdo7a;tQ$xDWIbS5oC8ox9#+aIj6f58p2Od5v_teken6t`+R1^N<-& zHq{tLHI0UHHAg5nbgLS#GW|$p1>7Lo+O-duc8!Im*GEwGLb{21CE&7yHcUH3Ki`us z$Xpld?c0b3pQPtglg{S84IK7XAL>op!z`bz^qv(q?TBRf$-|Tjcs7V1v#de%Tv>*5 za!kjsGdp;HFJ09A{F3hFf<&CTQ#uxQitbNISLB_D58Y4!lAugxyz8T5@!=g;d6(md znNDX&EZ*GM$on*~o#;&r{?z6Nj{D>=`WwBzmUO3#pP=>Q z3PId3KdOAB)341&@pqzt+bjCMMY=m>B9yPtdH(!i`aVdybNS#N@?^`cSi@c2Xo(_khfp%28BHf^xVibL99y}93Umv7f?=k_sIpzR;Ug=TCOS%!6 zB6Ool8@2*^oiOQkZ_o$Nt}KRu5kIN#Or*O$bOackwHQ9!xsd4s2d)OT;%InwDZTEF zj2EQ-2>dFV4ShB&q}t0u-#jiU;dZ4$Wrb{efS_J$#`JEbw!nM zmoyFV)hbKa`*{KA-tUr5X!wDC90Kd@Lz%8^crp4EHXr)0TS2+m_sxaAZ2{s#GC3mCS)Taa^Eb$IE=Jvt zmvmmY+_9PLBQ(#Xnd!0yxZud+&(Nzs((!?A`<|2W@`G$~*79LE#C8?a-IczBwxwF( zr!jPYPsZD^Bp<~;^v4@Uv{Lcxhm8?poJ3-U>|jy0w0!fW<$L`fEjp^_mdOX#fy*R$#Qu*KLFosj>9%8 z!0z=&IxihH_;}VBJmvfcz;ZLCYrrG@d*f}Nm6`FZmXC+I(z$CR%-C*AwhcVwbP8$B z(`LpSVrUP~Z0n6xCtYNg?`^gN{B>e2IuNNz#oK+QoSQ4&C)k>v=QN+#;BV<_cow=! zonO)oiLt;lYI-L)g;I4epXpH=$BjMq2&4SKdO7(29dP|rDJy!{_*(M&!J zn>R#I$4feg(M zzdAv&3)?N%@6E44n5_5rgSSR?Q0I+|_xzM9URC1<^q$i7Lb^F4Rq?j%{-9_meY~U#f6^Pb zfA9sFEz_v-xu);n+S?4dQHp1|wMWL`GU+>j-qGPq*C1<*GQxawK!(pA+e$8z{?Yo1BEG+8w>O$*T0>xJGVDoI`6Ap@~fo^tPEWMyI*glTQw)w z4hQyz1~2LFWu%KKyJ^=p^#o8@9m|Y2y3kyd(MJq|JfoTJLjUu@gr zuHFP5sHEppljT#bYvA+e<$|E0^mu2>ISDt|v^S@`q(nSuP$mwDh~mfCrBLsKq^oa9 z$I9y-@V*=9?^dLncs~`}{m?_cp?cJHM7pOD;dtZGMsNihGu=_iH2l@P4-9?Lq`(U&Zw5Sqk{H|Uig zpC-M(*$$xZZ)7~9ep|qfQadbnk)F>$x>Ys(q4R~aXlbg5%In>tFM0h;o%^}1Q&|2@ z7uN(Ap`JZ#VfT6=UFLBmeD~yM^!^R~9gK80`zqkGe=0=gtuvVMY$T`9w|?s-p$;)j zSBkCBUY-8f6w~AKWZtSLW(f4vz&UDT3FHrH;AQaLO$aMNj+tKm;5!`|;36yKSX2reh>nE~U91JsSJ)ER`2XR`&K~2Z+*$&ie~)9v z)37oE+8yyQcU>0fUVmiXnEq}+EJ=kqU#qG9ige|m0w`xj!%=^xP_9628>e;KfIEJq zg}dMDBKoRtgD%(1gWdCz?z&DP(pb=dPA{Fsbn*{!(NyWXdBK0o6C~p$ywyYbI;xWN zy2Z?R(N?B!;f0}RJ?1Iro2k#N|AYF1y^5f35WBe@Rjsn(Ea?9?$KHw7;;t) zx};BHy15Sm;dzrxG{Nlw)9sEAhXaotL0ra0ri*+X1B)w;gU(l5sCG)0FEAw$T0hAK zI@jp`MH@XiCbVxe7F|@mB?M#+#fCeY`D=X~srEuTVRbWlUMXEq7e1Zos{JESf@B-7 zxhI9`mgd``xXpGbF@T;wMCL8p)G66N&67V{m%)subfJ^;x9*LGmC~->Yyj`_eFAsy z0pQw}%)n(KC49azy}usmnr^z_f0UDR+d3~hQtsI1}iq`^vBYJ#e=Q9U>2nw{Fn7vI{vEnN_6B_}p zy7=Sn?U{6g%s!wwk+%e`2_a0Ucpac9HF~rF(=%(Fdd)dRwUD=<<=SuXYD|nBf2-@6h)_(go^YMV5h@ zU<#f`m5+3I!3osY+YrUPi(s>(!B}~#lNI`N}Fx)MBUFX=`yT`VQv$IcDw2CDWp4~KL`uq z4$x7V-p^=ka)17V;u(=)y#u#-vllM43P#&~>Gx#PB`g|*KiYpsF0DhU`Xk+~v5NSy z-(ST0(c`S=|VaU;mkx1e|_i7bo;M3!Rfw3@c=vezc*yO zN2k4^@&hF-l2u^F>)qE6ZmUzodD6A=-H&5Osz0x_xy!bvS*TE%Vb8~vWI#>nd@`16 zm(G8YoJoO(9kZEk!x>kw%h?HD?XN?fUovl0#Tu}z)e0`TNzczF-I~K$Aot2RXta** zCrS7B&QO@rYXq$NbQ7_T!}{uQ*m}ka9tzw*xgp!HaY22SauZg6wext>ABWZVf@<^V zewTC?oYe7CP7CT?QKOERbc&t%sPg-6P`85qPC~k6lSiQ9*E;Z189jbQx_)h{;6;Ki zsEwlgNz!HPJqq6ACSY-l?(d&VzsdbLug(>86$^Pf4^hk5MaX;UZ0a~j_i6oAbW7hA zA=5CXi_YANyq%x%=gbx{ox$*}sJZzcKmP{Z|B-nWrv;#Sca+iQee`%8>7orLqT^Nj zB$<2YdLiANfof>vmrdyKLpra_rp}7{iZ?_uOIt-FPcD*(md8OawS!c9Azf(CX+US} zKv>*Je-9sd$+` zinyoh#e!gRfV&ipP<25B=4I@u;~?E(>wI)tCk|iskq6zcBhuyD9g@6Xwg?}dOn)yU z-LAU+AmQI)yjD!_<3&2-jl)5ka~l42Pm#*&V4}cZEc6n`v~Lqi%VWU~WoNjjkRE>~ zok`tZ;NSDP&|LZfwR^pgj28kv z0`AP41-sVSQRjnnt9^RHPqXdeiJT^;W9?f(#(R894_Tu@xt0FLCtq}Xy@{U=}ry&3s$snaQ&jUl-m$`U7Wj2MP$12zVLs_=lCDxBc1n+ z2rz191T;TL?^{8-?LN!E-{Xtm^26q!dwU_>|KIX$SSAbad~t=Q-{^jbjQ4HyAh_j| z2yR`spE};gb-AJ;Hu<7@FBegK?GSK(&SE$q~F zi#{yaBKjC?B1(957@Q7@gDxeXsd%JwUULNWpBM)}-~7XL88QfDoLdMlZ|$JweUb6< zHk-l&%WdI$-9J=4lWt$FIZPjI4gcluq3UmfM-4arr55Kfay7U5+X#5J;4W`E1ya`~ z=>`klur>RWU?lwx*S-CbPQ}RwPI*}YmM^+TwHMMIxa|Y81AiccylkpHlP>aj7|hn( zfg*ekGTnsvDR98@2s9`AFjX(5M@qSvi-m&KtP)P9vOg%2-am#8x2Nibbb0%S1K&w$ zIJ$zqe~>OnItJo>E)Ltq+fwBt-7~j7@KY#<-S*JqVWiubp(tHT;)mxInJ|yTF;4^^ zoam2rcb}!|nT+@71%O3Aq|cmX!IXX^(u0cA@ms=&*q7&fGw9U-CryneltX`Z9zsb_`w2l;X z3K6C}w;~`<_&K_fAGFvI`s}6mWg=Z?iY(Y)5igy`vxUk_xwQuuFJ`Pz31-1G8b zT>IE~IBrW3*j^M!wP(_8u3H3`xa|R3r;itRzkW%##Xk+k4XT$c*W&@p?XO9L<4t*x zaI}azUNWBI&ot;$_)cQ$GK?9|%rqUkEm$ED_SiAqsblF7mKlN1n)H6~WZqMsGvMs= z4<%9UK8Cz_VW z4Uw*&)(Hd8I(p~i8r`}rl^%e_95jRW0b-Vbf2^Gx5zFGMD=W;vDjb9#AB#9-7aUX{g{%ov~Oo_%qXWzWsx$e7~Tf zp?0`?J0RojOF(G(-Uxiuj(*Q0-ErI>T>rZm7k#4dtE9V!u7mjM0r=SBam>7fCrj^_ zu^b+qNZ&6Dwx^0d3-+Swg9+TW`Vnw;tszuZuLIqWgLI!C*~1Izi}sCez~W((u2`iqw;7}y&1ECH?eLg75s z5~lmRvISIc-6({7q`zO1@j&QEI9tO2)-S)tjQ2F$2D-l+3HxMDV7fI2U7^L&3XoC! zhv{OvTw%icIF!(&O7$CL`BtX+!6(1_zyVP`sQaq*IWvjutNkL=-)97^Dt~NTa+F{3 zoZb(abUkEzv0uhM$z2U4s@;?B(&ap~`u1KvHj(~*PP!?{>(I5kcY(Q>{tiL9^zX+d z(L2Q8tJy*-Z~CKRv2FxkIneN+kp09FK}SCvw4w)9FQhwdx=V8RP#oT|w3w=A(wSEo zOHxio;M?K1n9gfjIe*~vbbLX&Uw-%NmyDMkz7!-og<{Ly^n6j$UHeuBQdSPZsKSC7 zFKWVRkm?qSKi#Frn>J^i6w*IGwL@mJg$Z};@o4G1phJIpQ1wT;Xu%3^e60lkT0KVH zkArlt@F+Z2{V=HiX~K-R^P(Ppa<3LVwlQP6j8R(H?3Om1`ycx|l6k$34aEJOw4m_- zy8V?HzZEG=D6}0jWhgh}tpoJ)y92a+eo^O*bXOk)L#x`ipt8M=dcGpvYUjDo>9hwp zcC?8Z&-GC<9QtMg2%cz6xw+R)R*tif;i}%qa@KpNArWwe1Mkz{O-a`>V*uJ|=MT@0 zr{`0X&hWGq*x(lgd;WMuoj200`Cp9Pc~nnN;6MHr?MaKYXfH*ZcIkCrGZIOqg(yWz zA*CHDEs{c%HHs)(*6c-fUo&J)vW6(xcd~?#<@@@a^ZTANpXU9Y^ZWmCo^$WqxpVKG zJ9n=A9dKML8Y%>jWV*VfJHXT^8m?V6f_B}CBB|qEoUWOKC?R~W=umSs{BidQ)2-a; zC7KeL0L^^rnC_pQK(zd$4LrDro(C08lxthC1q=)t3%e@l=XlcHiFgG{R(}P?kLmZn zq)XEK0K8m6!8L9g)lNxgQYQDST^#V*M7kxa;ru;krwK)`zjcbqhU? zPP#Yk1;C@>1W1#k-+z$q(EDrPl1VI#o;IEDdtQ>R^u7#~J?{s>D*8T~bYY>|uqnPD z%t_K`?#J$=NO*4cYoKnSL>;%g#Xa1o+o^Q{6^2}Ck_DQ$F&)m{qRVtIuNWg&yTwrV zIlXQundd3KFZkX#53V_0#mo!JZ3eFtW8jIY^!&-MCpATS-TL*l-V1oQ&@y!Uq%|H^ zYYqF>AL(jy;?c81=h5j)(M*?U@Ky9IWGZgDD9v;Z?TdKPt6*G~qrh})q%H}ssf-58 zj53&RvXT~9dUYfi_==u4Lhi?<3u}Ph>Zc94#}-g|CRy%6^RI;s-(St)hsXqi9`Twe zUzN^N^-Q|zOSwSaBOKezp~u5WcRFr8i0n?pa^HNIdD^+_s^^R0#3 z%^y3oTi{t@&fofW5FH=q3svB-6EY%)Dq;g(Fghm((kuO zx2HS{#ruzk{!i%ltE9tzuSNYA%!T1EnyC6C-IZfYMU90?aQl!$OsAclBWmuM3A6Uo z-}{ky4#HK!kl{0+MEDOX?`_(5?v;M0pnXFwcjC$cq`E{6EZRtaA4<94Yq`Ar^?+h zWgWMqNUQF3@KHgT>0W1;VZP25UYvHE>1OvvV zbQ(u~i!?j!p+}T6(_P)YS@^+y9Vo%{cMfE^^-UW=#2aULOwo+W`?FS6lzd4_{3DiC z{FtvQ_|YZ@TzcmPwZEhrBzS`sjPSzCPu)j-j|b^IUcW?@_r0)Y2iuh@zeF1fqw)T` z^nb|7yfcxLPajpI;e&>9ZYPyJac2 z1Ip{MS81? zh4V7fDQ78J&W}-kF3>M8=I^GYA%W~ho)4$*H%J%rV30sce4fV-roT5JozE#V;hSt@ zcxJjMvs~Z*Zylg*|FI4bnI}@CVgSNjG7#Nc;wi;-^sUk8~Xm?a*06bts)Pf$6j!B4O3b1Y~|CjpiY}=< zf5HPV9IXw}p=|27k?xJQ8-D&x7kbOm&v~Rfr)h~(pALf;WREiQSmRA(-tT8xIDLpV z)c8%$Zz5go+;8ZW*(4absf<~!zG??rlI0AghtT5@oo}9T1yg2l>yJS0lk{%jARhnQ z>$)HGJwHhIJwyk_h}Xiq|EiGb-jzal#9#=H(lns9kIeHn^@L`@#`vW7VyfMf?$gfk zFnNdqesqKGUr6Wf;SHzW`GP9%Tx4$FPdpVy=F8$Go|V*dRKDrghN=tN-0$cDE(f0B zt~X~xukFxoU7D$Kkp>|4*I8?ZYaOb$qc*~bqv z%e6s@Q1y*HZ2SC~s%J9qK!O1j6+S)EMx{MQh87!HENyy@qopEfTWdh89jrPGVK zwkeWut@!+SxR4&FA>HB4ig4IS2WSvZZy)Juf(Jtn1Ak$inh)+szXn;UTQx`cQ$7d91*Dm>*mwX0i;u#I1lbJ zIS781js|_}k92cA6Jc+2DQa#X%PhD4;9~LI@exSUOPy+eFSZ^Dewo^k!-@1iigJPMk z+sYD-+v5ORH>{xQh0H4t6aNpg#~G$cU8K%S(kU&U1lL850^dH$G0Pp4Ga2Sjwg#~) zWGSb*shl4__O{@$u99HgdJY!0Si$D^dZ?x z@HCCSe<7Wkd@9;tqlCPK^m7X7dZdHUfepjJ@w;s2-sOs}d0T?1mh^K9nKygU8d2Ei zx7-hp9Oix;Fk2z&H|QXDDuQ;u6x6tNaih80{hB%1feUcIH`1UhX&H6CkuKC|BEDgz z4xg9gQT0r^@6z6wd!h#q*;!HTigY@8qjA}UE^ub7Dne3L)!-1M6| zzNG6`@I#5-D^bz#WNJT1H}+tgC`lt8|4y!B=G9%B3}oIniGB}EXXY7c$wA4p7HIMe z`n}&4lUUB-R-=GZkL7+XoQX>##dCAtKc&hg-R%D17+akMy~gx&59zLbnvVA(b%J5Cs^U5M(qcg_qpB{M?~HbCVGx!x_wsGc#M)dnEi@&{U6=qChV}{Bu;nN z8%B(PiDNY29;YkR{*rF^cnFo3UIC-(==%-Qy$p|mpSp$Md+ix!-W2h>(1p?3Aa5Dl zDH<+FejA*)^vWcrJCofAp3B9cxux`XV`Sc{LzlqEu1NHvBbu4#+S&o!ho0mjUeNE8 z$-MI6&%w;xBm90{y4>o6hZ~lFIdzp!D(ge8M&dm8TJT4GJ5_(A%Pk4PK4mY!j!Js| zGwE&*3Bhp%m0)ZJ{d`2a6OV#$!5IuHHj5=F7L7cFHP$KTdQcdF;SUUZ=S^+*-^qRY_|uGyHa6WLpD_}qzkb20t)jMK`l2m zrt9&q6qgwft=uOt-5TGAV1mX(I3yl3-Q%7QAZyD+=(mIZE~Zm@CHG)$t-!GabE!vz zu!>_pXq6WP`u5|bi>YzLtGuOQ%>7qP_qV_af4#2?mp49Ox-%1O@lXjHn7wW-)76ZZ zz93`RyvsR!az*x+?Mdz<+B2=rstu4XSpn1)m35 zz#)GH(D4=keUC5c#{F}HlFM!2tmg-WESGEH2kZ0|VM*O$W?pA_5KKAJ54xYH`wgqO z0^a6gIk!5rohvF0Zm6@=!cApEio%&LV9itT$XFT|ByyBHdatz3$ZrPs?DJu6!R$iR zF+u|RWYf*)L*9sS3h=n^}T&CJH z>Gltw3htcngbI?{xNkckU8==JFwij=Uio*HnHS=66&P+6h{qKBGxPZAZ$RtI0GK3E zOXX$fjuRG09Iiidv6NqS=?IdU*vQFDr|+9c$69ZMbhgj)kn(6xBomTCZ6E2zG+b-= zu4|7!+;e5Rqx#C=_bMB#_nLOvrh7R9_hH;L?|WSLhi=>>FjJNJrrPAf5i<0{WIyBmz@B5yAxo#;b~^x^9CRI#8MY-cg_{|t!FZ?vSSK7`BNU|d(rC# z9A4)lTDY@C5ErtZS95)XtkrjdY{|*gaUn2{C_FU=3J%<%+5zca*@*w|J3bQ1bkpDWkk0TzxiGLZ z6+UmEzf&SzM&4!Nm2DaD@0bzHazE{G1zE*&U~T&arV9@b1qJ6*;q~V;m~PShNb$dG z=fjYQF_as%SfxJsS%ILf-Law9O$|dCKWO~Of$7%eDdE5tApV~hJs*?IJ3jC!Dq9x{ zca11w<~ck}K{w{jf!_@1ewWPKamWB|)JTH)Y8A}9*%A6E=362R(5a-{i_DAMw4W=u zt5eH3)8l1e_cZYs`DXfi2-5jW?+0TaPJ#-l^f)HzmVJ_eMKhdWQ|dR+x80LYIz$&H zT$G0$)ml`$Ctc`VeRy`OCVW^V$8;)(4dJLK{otxCnv{FnK3G&OUIqMYRbsjw1E#>k z$1ejAL$|AWLmu&sdB5v7N0DyFkgrDQOoIbje3u^QZ#r_4TQ)793!V0mdmko=U!8ah zLM-X)FX<{qen3`r%fRJNA=Lho?(COVbS8f}2&|{?6G^x8O#m|Q^hY*U3z&I}+uTL- zE-e?in$zzWG+*xHCl^a{j*2Vz%#wPM$h;rRRiMmUEvSEOATuu$sY3HqH4fSh zPQ<0a&vA_$Yx^`#Tm}1!L!o-h0qT0WRc}A#lKw7%bh!pT zKyzaf^eZf8=6&s44DwYHVXag?(`f;{MXprjjkaU@(HYJ(b2)8`TCB+VgQy$_(7i|O;1bVa+p z#Lt#Th4BmZVc+9Hy4_Ew!B2SNFR5AEI-D z6`J)Z|f2C!u*usI)sAdO6Yaf-a2M&owyh%NhBO9MXC&+}S@9Sg+sU;B*5 zlFk^{3lzF?aItDV)xVJLf9g;9|51OW>m4Z%?sf&>tzQRF_54nGi0JRy0D=CFJ^aAl zR;0h86_gwMQ|*9s1wl>d%l0Y2&X#_EM7ozt&NV!|qXDD-1~Bthzy#r)**n07EP9-V z%xmkG0=JVM0@cj_cn@ZLliyOH!~J~M%6DiSDnaq8d8L=*j;2#9S_pA4pIjB>us>_ zQ+8fl-eeGYXA(|Lqpz1_-X)tVaB+nvUQnUPEO+0*Dq!O~24AkE#}f<3q&JjX53N7Q zcXEx_E`w>m{)!e)oJ$>F(#_v-4|qB_3A5hP>o}0k(EbCcUZ;mb7tLVi&C&l2!Y}Cw zpOwF8=jM9AM^E|FVW3_vVO96gj4ws4@aZ#F?Wg6L;0Kb*104)^VcNEaLN1Ej@;LxUSvsBtsWE%KI! zihIqWdOm%8NjI#&K1}ZH2V27F`;G5|hKiCu59L0?)BJ%-b&xamBA7jFF13B6Ypq@m zPQYaNS2qy#-4D{q&KH63FaN;FgXy4HdYlUl6lgw-3eqPVql)98S>pVPu|mgFV=xt_6499Z%)?SXm3xL+1%%c2|hM zeUih6(t>d2UKgsrBAu(pUX*`20k1fw&vb!zAt<#;!;XLH>ol47$4C*HCpcoOdtFpJ zAf1zz4m{YVfUADd<0_=9-RJ=i%H9#;ex}s%CEfB=FL=9084GkaGRv*mI1N^dYEgCr zJwCK}`9)rSoFu2y_=%t7y$v1E><>qkds5|+uGnFps4P$iN_P1$-93%H{Fs@c&~7o^ zKa+XDG^rtdoCK6Aq}O2~ou~3U?qin&H2>(rEH`4#VPR*oC4AH%y?iQeLQ5HCQ zqcfE!v)M?rJ$8_fgdJ2s?>d{b{ z1g2}xoF+U|xmINOC!2DcYkoHLxQ%Z(^Jid#^_Otmy5~OV*_KJ2m!$jP>x3;l4PbBO zai*KRzy^0$NyGS3dY(C%moilyZw~c`=${NTZ_`Ru{9{)jG?Tqeja!g;%dEE}bRYuy z9ByFd{n}}PQYXYg*`!mHbMc)fsB*kee`HSq@7n2zL-*eTr4<9I`Xk+k_jXv{@dTLh zg#KQGbjcIN^9g}?eHEy}%*&I}$Huub5Vq0%E}3UruYtEA1bkK8n0bkB)p6+h^FYUz zo}Z|uGC(xkIG7t;w3HtZdIcO&krnw%#lgPk8|hv;4S^cR+~Jn8d(`nD-J!TJXtS~l ztQinV)idd`<|M%Tlh2AoRwn_g+{la+xOG}NXj*cay1yFdtt@ha$nEI-w)%^bX}Ig= zV=n&^J)T24$7{*>`mu1}`+hOCeWW{aC<$}2(I7*MzE33GLa%6S=@|rm|7>CAJD&y z%@$!}J=^{N&HL!i;bD2h(XqSq_zPLCI&j1q`Zt7X@96tK(kXXX9I*E*xu>MAZxF*3}#XB}?^jlRbUiA|1ExJdh5F#k!Y!sCGrV z=c;!>^PoA{WZVs=lQ{Gn)ZPoj@q_zQ?fHM@?d%8FMEhY6xAjzeA)SlY1UTT%VI(8h zOXZb(y}%_s?#~&Nt>88^j76s^zJrCWp;Wz)?y{#Hx|aJAwE9LcooV4Yk@UuA;IuS7 zen95AZSCdog)d-;dn7aOw#R`&&V=cwWW; z>w(O?srz<-S1~E#|IVc`^BfkR0N(HC!Wb}-nb-AK7cSHBfya*JGV}CL42JFZ$HS)^ z8z^@w!Cq+h_KM()(xbY;3G%{=%SOUq4)k*^>2$a46Z&2p4I`S&sN+F8`zMEltDXnJ zugjE~E__Kgkn41W{f=2O-Iw+QVC9TqQ2mt^)A{)~f=_?6q4G7le<8Q8KBx(lj5mh) z3G6%<)B>7Ajp4rj^!8OOdd9g(Oybt38*;v%c7cQbQFyw>e(Jm=-I*hwfJj3d&(^bm zeXnn%%V?8?r@px2yCw8EI_duBd*?ag@139i$M?>pW39VDx|!nj6rgxLh425do&xEl z&&R-(MrT2gj}z5SI}JYaR)Z4-4`T}WwPsS_>%2jr)^IVkzoh##SQ-3G+9Z7aJd^2; zObh})mresiedaUW&|jwTdA2t?E?y(JZ#|RcZeQsFwG zTcmCxd&!4F+W|35H{oPGT66S)kiR;Q>6XM5A;0ToXjv^i4o8-IWWivR-d!cEwxa8W zbTjKDz}lC_u;!2lvs|5`VL-z|3*H&w&2*O!E(DkLl;O4E^!)5jr`LRS!nB4p8O8j+ zfbAf1l^s|emq_K2uJ>vcu$DS6jJ%S>be?EG5D2abXPdEIu5~k*{m2#?eA8p*_5b(` zJepz!tG%?D&c)#^h+LxwoyXAcb#<)8|GPU=bKJN6{V$jL6|HrT0m}lWGF{{yT{Pi%6x@5KgF4^Hyy9YB)Sgxilujlx^THO} z3ZFWagWs!DDL1J=TUga`QgAImi)*q;!Ye;F3#ZrYr^+SWoTrI+#D`!oDvy4@O1hfJ zIe7Q92PkV=e_`KxAzg=u7Pg!2ho2nl$8;XXYIvXb1UymJo!Y($kv|1_YpuA=pDu7c z26M2b#yL=DMaW#y4u>Gii=YcgRx)KHrdx+6K_`$H_bc@w(!l#OsRN{KvZDq;sBc z4cC9qK=-m7nB|_y6TsKC1MweRLmf9V@7}%9Q1)dnii>Td+$V32yZPIr;g?<+msFdB zySM?ug^#7Ec2Bzc9qIVzmziL!MiRAdBk9&Bq~j-MFZsC#qCwyDjdWYZ{||7!XbwJZ z&tp365vll7RvxG-bf#Qy^>Oa?R4>l!=6Oy}<+Sj~9ssR;hQYq&lFmu)fpCuV5Aaw> zkIR!zqa+ms%oq*FsSjr6{hAsA=Pj>CcD|RH+gDr=1x1^0pasgolv7+YKy;{Gjk9a& zC(_Sb&G(-6h2MASQ0;(p<*tC6wW=SV{4V3S8_Ala=^s_DbQ)+6x6rL%B2&Nn7*&lwq z>kJEOA2HpplxZ;Pz)K)IBAMxe9U`Iore{Fi)Q0Jj+@oQ(%{8FdGl_Cu6L#0z9lksA zkz5t8{q(T#>57}cq?o>sC7t|XIlyNLVeZ+X)cHobq+7P2XV+dZ`SpLieGJ?VFD?oRNfLX3>^aN;nRtts(t)cRq>Z-Z-YfibHIiK(LD|ie( zzG*P@ZK0p1N%v{G4aQ!UFjip)Rez)t7Fghd=>llJW;E0JW-4Ik?UUdv18b%`HB$l~ z%9suve2&%kZKq_pZoyAc*Rz@MR0Ms0;Ok*7x}|x!zT2*w&-gS2OTJJPkMZ84*2^GW z{K`pKYKSUsJnYYO_X8ZU!kM>dX+Qcop3L(zRKmuOH1R7bU8;W}ou$JE#0_-CHs$>& zr}6nL|98So!Hty?q9ZB`(Ul2{;M973QQvwY-A)*T8mkw;&ZX75N`qm5SZk$*M)^;s`duP+_g>(<5uLlMm zsjxQn4|6|UR?5Kg5uvcOU4yxOReG{;Wb0%&ve%Mo_hh*z{u;r>Mhrvlf*z+P-JOl%ci0Dp=#4u_AC8fmvm!dU!vnyw}twe^mhrQn>=PW(g5dCOC3A!Zxs|hH*7*T^y&A08Ir#I z-U}-Q|5jD;Up{{azt+uwkwaEf$BlG33x9x7lY*doZ4p&3q=Peuz_xRGaDBiVrn_?4 z7Uq;0z@vfm`ZQ!7=N$+Ojx>Wuw)FQ*v+)>y+@4&4vs)FPG|&c_*G_=-y6V*VMmkfO zlOj#~MR2rNEa=j@103^=~*z?u_GNGai;5!bXes(=(srp+U}s& zp&}h0{{y_67z8(5qU)J-x+P{%|G5Vo+M!6bzt~SP+;Qc7f?vL;xZY4TyljLW-eXL! z8$de!nqCyRWj}JZ@}ugHba|F{(c=%}v3%J}s{Tkf%JR2x^))N(W=>y!JB<^$PJ;%) zZu17NdQUGJa&kY~Vo8@vI)P^Zs`QdVDh2d+C!}*4?T7X?eHE!bVY@%^zl3_)O(=Q_ zJ#I$k-L?BIY`$cLy{+l}m>FZpWi>Bo@cpnl|h9h;JQKy^yZ5F$wA|@Dtw9 zI>dB#o6=zMiF#o}|5Tn-{^O*+-yQFyv@21*;E$IPoJF~#~%=OSeV zj_J1e48rFx7a?taG}9g5G7#UDdnR(s^P^nsh!^~8<$ZN;Cn)ll6~eIh?H>)k*>t^- zZrvJ=xs^`z zcm!Flq3&OF?S8tjaJ(0_Ch*$kMX!m5%6bi z3}D~=C7qmvJl>M)53^=wGV^l3X^Ezb|2;fpSsF9%Q0Z~u^1}{r(RXL2yVGV1I^+~! z*M&)xyI*pU8(x#ko$bELt<5#WO_H84W(>XF1L<7U2jg$Q$HTX}^mjm{oBg{#?pzT7 z=RUNd+5zbl8XluTkG!GLZF-!BbVt)3BRMTUSXF+Nnb+l)iwp)v!#{vt4`BEGwSv4A zf`-M)C49jW3;d}0HF$fBJ}*fJXPaTkbvr>!IXx~#I+I{Myg_F#$U9EI4<+3XpC9O5 z#8)t&Oo02g7c0Lj+?lotK25uolTB^~c7p`yq76N-igZ4czXBQ4EYYsH5!CS|-M*s% z@ZP?D_+IKVs{N79D{m51x|0QlP!)Oe$)VNHnC^A0jFwEdZZ+rH+4MIE%m=8G-(clGd4>woxk~N z;OH^|EWb&=kFw32+%UjLiu>~9HW!!Ojn3cVpl0GXs$NKUy|o-&GeF=#6n%b>u3dK- z>UY%y4sfKu`y}0nA|uh@%Q^7!wIHtV@g?2Ct%rpRdKSP$6?%OO(w%p`Cp?zNK|LM% zy*TN@eog{slQZD?bsEfackLVm!=H}D+a9Md>*aH@E|e{@haWdIfxi1u?(4uWGbs=p zN!iPHn4c7tJ1v5LWa#Gr(!G6>CVDw29*(UP*L9!og-91O+YA_1WI_dehY{tE$OOw=$74?s_k(e3=S2-&#ZMFX_${Ul&gIl7Rmkgzzr)O(6b1ODDa`O30xr1Nj@a}T~cy)Ok zRWGCqIWPki6feRmmGt~X(%pozFsUdQZ`~nDZ6E1=zBhueQd`iURhCqLMY{Dx<}j<& z9uKqI&de)WWdZ+9kj25`wY&SaD>Bb2Ogx7+s9R+5js8A>bm3pGRa~ai%}szGxGWt(BzOGwFW0 z`{H!R%b@w?TV}aNMPab#+89(M_)66unOEu)0hJbi7L`r-$js~hJrfq+y^8$i()DuO zx|*9)w4ERG>NsB$r*mQZ=5a~97{43y--u8yHh*YPY8570RV94GB!x*xTH zc>a|NG$-^s)5!-r;cAy|Fjhj2YA@vW1$`NY!{o*562GVCQIKx?>VJseH40k(YX^PX zAL%-HMfByxOt|ONQ_5+K$`@QI*dvg5SvNBM;6c8(Fb66d%%bi$NEhasCY-b>9VU$k zqxP3{BNfgGx2k5rVZS~y^ODXPfd>(pFd!|7>Nm(d`>6*&%J^hh`mLAhuSl0Afj~}e zJZvs`FX&q@q$|8}2`F!kh0AhknA`Vi;Z?Bu&RjUqZ3pG{?Hb7^?7UlFu710r_xb=R zt?vqLLT*y^OgiqYCv+ID1T$TCFofKS9FX1;Ve}xW3^vC;r9GR{>$7i-SqyF4sXsuR+H_3;}?4VnyAo)Q&Y7T%)X?=cW<`n?c|DBc1fkIv^Pz3rp79G2MhE&%tKtS#a2?Y`G|B67n|cG>%S<@ksenjUG%ia!1CP`tiE73VWaD~o0<*~$I`g;Dl zsegm7s8g_gh%|S?aWvNZQVf>Y45HdI>E`h!I4t=9i14My!$_wWVS=l!Yy!vrxG?kN zB3`3|KGraD3H`p2%@a`XT!L4C!K?OG565DjZut&(9{^QdJrFdGKveQV6MfCY|wl3uqbm z986WGuY;sZ47G;K51asg+vsv1x|cQt*x#QU$((4o<_CSBLpqU91E|ypfo13EaU|01Js|=vQ-WdZktV7?CEdch zUm(rc9rka2#B{0yCE$)N?z@}3~S z9Tmbk-=nGaLOKuGhiI#t78uh)&l@4#@rO|;^~!c((v?NbJcY@lQAc2jX!_m^rkh}W zP?-BuQ&ieTe+RBF)xjl*=iZ#*HQYAbcZN4I9P!Xw+0=bI>7I$_N=dG_!z=rbW;z{v zA=GrW#<{oDsOL~J@9o$z@b^?R{B!3P>iL&+HE%uP0#jpbRno+C-E(HZDLp@s&PW$# zxu;EL!N<S~YfbDg{AIOOaMdB7 z3wP@f9*Yjb$wGR59qHodjsi`+wpekk6Low^x7@N2O#D3*w=Q&Ky86#+LBshJ{OP7T zbNjAF4TcY+$KoOhdR~>Wud7gb^K!QrvP=2F9}`f}nniH8c_>vcq}$pu4xQ-EfQJ+$ zgnh3^q&v9R8m$P(grD#GQuoiK13FU3dt(|Lygw4K^0bsL@#`!XLXE$xm@Y@^2rt)@ z4ab}~&fGqu{V~Gkk{oC-a~3uKzVTcW7uGHiSSKzML`XZLaVnW`UD;Bqos#a7(I8ag zlm&}Qlc@V~(yh~-C0bXX1?%5`r?!uDzQ6N?iG_=yccufizoa|!I32twPlS`-Gu1*M(*P0>D9yN>jLR!t-XU@yF|k3Dti2xbZ!H$png(wpt6HK zbNg_^el#UuF8qtqDYs;`x=5`pL2z@~AwJWy5JjJVjs^sWQu{%=?*kX0!R>nZ-;GgB zS5{~#Uhn_0=xPVu-;;Sts|?ZOTS9z9jsD(%bk>$3{K;j}-23hvX1VWn>++f_WYB_^ zET&uiPau3A^#Zx9qpySIV+M)#M9dJpShJ7cK70)dunfamxt&z~k*=d^K6>0=AI~{T z*9+;kwHhGPdqP~RMei@^>ccOH)|Tw!`<b5VR2eSd$&A9E*n+6b1U zs0e;UN#GCZ(_zr1^VB?U(*56g+_nEPkDGMu|Ju>?>9b(|@RwA7O1jR#5|mapA7KjbOyhw}cTA0qSG4eij8uEp^5S|?`S|Lw0f{zrdB=DpYMkI?)qXfg67)sOd^ zBPBXl4B8&OlTFDN%d=_8xBD{aAoNLs-2Q~ zk3V#RW&3(TwT3&>CB1$M3Kz@5{$EEjUGKzKKxg?^(C;PPPIK*@MAP4y2`pOI^Euk2VKP#@Ss@neOeuE$Bh_a2%^kw`VfX z%IT13oURZ48>~z1Z`nat(URwhf(?14JohmaFaFzx68KW8T+%sMy5a^!8NBq{JEprD zV2%3^aKja{%1o#4G!(CUHw;(x)-s)r)mbz|QXlW#O|RQXZXb8P5(OAY<1bad%>9)W z{}cYGtR1fSLaz%;=KVfgik92i;Z{Goo;4<_iV`Bm2;#Tz=luqKLekTH@%CJLei-T2 z%(;e^M0w)m5kIN@C7u1(a+ErMBCf8Y=b?~pLi}3fK5;v8&WWM+mvk)-YtYy6Vc1fN z?w?7w&8+|pSHWm>EB!n}x)!SiXy|P{Ty=*&KS-B#n-l(<_X3S7rmr7?%|hX)-koj@ zkJs}BgA>u!)r(;E->Fo8MYKa=TB_e59qay&bT4{mfy<$Ra7q6!2LMz4`y9(e`5J}m%`<7QKNq^qykkM=AP3QI;MGu;>O z6cn5rE&3HmKTnf+lG7)n?y-Y}Sx)r*73uhHZ?s_2Ffejb8da{VCgT2nDCRbPcjsa+ zWMJu}S|KQNrH(J@hW%TFWks#RT^E9w4jP5wkB;JZ4AuoqCwwsl-zb)VPMDpS=`aZo zviu1O3^sti_v7UDEtD|Bv9SYT>@x|-a-4-Rwyqfhg9gy!NQ0*;iOjA~7DTkC)F)g{ z#`-V9!E7yhy*bjc*4-jq$FD@ZRdpvQTr-fW7t&Q(y5pQ>mxL)M^f(;p-fS0QlUXZ- zCT8?}IMSuxcfhKvtH3r>Q>q=bt>Z+-N(x+izwP|KS@UpX%y}?T&Xs!3Bi&$yd3f`g z(I9c(A!i@{RT^12o<8~2PyM=ylKsu?G zaC|C43#?lHiCHf0KOL_xH3S<<>Fd!;!}VMqtmK2>QO+>?Bnn<1kHhhIsvjraG2hkb zY<)ZysnGLeNEa!!w7$`E5$@cP4*IrJ(gk0u6qt+G3xD;AUN1b%Y$-P&K!;lzah>z% zIgdWv9D%Z%=1}dPbU);FqBF_O;&<}Xm=3PlhQ7!wLlz5TnNBY@4Sim?8a0ngV7hNB zszmc$15r~$I@5WJ*U7gjjz#TViAc^xWZ}h0)`-qzjSt!=E*Oft82o^MiC7 z8^_}Vxr%U)$0laE7iGud{3Zi@UUM+hX}H?svs3qi4JXZT-*z>`WF4nm9><;jd4`MV zd4TrD+QO89+Dte9!6wx3Arw{xJ)p`Z^Hz)hQ@GAz4m>P-pXs8W*n_AQufU71GpKTB z4+!UOCPy_iOP=M&Ev`Uy)*FFc%^aqSU9<(AGv5hZTw73t=(YpTAwOZy^u~f zHytlL?1KE06hYtPMmp^c^YPx$Iq3fL(M;FU6pp)J^`g(t=cwmeGOy7)3|EFp;f3+^ z|3iUmw;xwB>F!p&s`U|$P8Ka4DQ-|}QQCL{}} zx6$Laq*H#C24%`efv?XjsB(qZy9KfNTkDTLG2=EhL_*HN5lD}D%yjEPG^{>60i3&j zo#~Eu&xKQ0HVI!Hr01iP2G+1H3VfZJNQpy)+4tM%S5Zr)9av-ZbPs?3N=^^Hq@lRzU`iLrQd5r?^M)9 zJ-4zc_d0MKzbVIB{EOo&oc@~zG}81hh?-4*UqQNyA9f=HXIbdk!glNZ)*&g`U0}~D z`npQy@%|PlYpXX*Z5qVfzVF|q_}?#V;iV7scN1h@Yx-EB?KL|ns&l3Cbd~f(f444m zTikMtzgRX5Zy){*8O^8XzmP6O#Tfr}>;&?IhTy*SOuEWo@e(Uhu~=p`{hpI_e=Ht@ zs^4BX#{V&5<$d@61u}O*Y!mo`>11W4;9I@^ApbD^y#ZP7>5Idl;;v$(c9$M6QQdru z!x9yIY~nFaz@I}Z-m`Gxi5RM#lJ3W6Q}pmg9QLZLVY*e8ja-Y758ioXFm*i0Ja|1= zxP3wv-m9TV?Jwy*YZQSz@qcQzO>t$GEAwjuC_d(fH=Q@2jvJXbpg<9>kO{`WB`v9b zvaz3@(CKhg{imj_ZcS=DIx)r+U+}k~_Jefe#dG1#Tpx%>xA`z#PFbtSWb_f#PnBL@ zkIc&{xzsQs#0y(ZGi2ta=IRPhHGASslEzGT#`LD}mHRlnr^JAAoRpf#<%c78bHqM= zQqV-)@8v#}qu50q57Oz(1$bh>A7TDbdfbe3Asc%{^=+|G$EuN?_hTcsBGwP)P1VAE z&kr)sU2Z-2AjyH6TS-h8lu-eCUtUCaB*U4`O71j>@i2p;`8G`FxLp!{Y4d~!FJWpw zB)g1+MjtZ;kIR%e2mTN0D)z)*%`a2!lyq88expmV6Y$iWgG{HJwiM0Db;r-6bYb6m zA@hcWPD1Z9-SN7CbbBG)f!VU);owC$Fn2Pu+|Bvw;%`V7;JdQ)^VT$J8SX`XDtGJF zT`qKt_~DQ&l4ow4r5jPSZyqB{aQxVAL)i3eu8Ek{)Ds|J*eYBx|>KAHCLqK zUfp79KS($KXSe8Omo;89j=p}7uHulE;MDC@tS3=U<;_d~#Z69&=8XJTb4{AoSU$TQ z+%3?hwvTix47<>B@!ZpsDS?=w#)dEZL_`ymedi-E{)-d5b31>I#dYp5es|9bgS>SPj^mqyBMkg3U zPw{`!TQcbP0i?Tq+ymOmY2cfmOQ`K5o%`OgFmtms9uiFVLmn!w!h17=8?xp4@%s`@ zMIn<+MB_{8`Ff<)K_cYTXhpkW z@Gwipxto6&LKR&kQcUq==J6{{q1lA}qAfS*{_6B_72&k8*_^R&GdFDT zBGHr`GoaL%9;%&^?tE7}zidzfJhP{P>At+V!0+gv0H?lVyG?C%LXG?GFk{mY*!TF7 z<$C7HgPv~yrYc)7ogGjFR)Pq)!IJ*YhRh3ItOP#30+9P=&de*4@dl2A{9)n6{*((| zvbDiYW@Urz8EHPmeKF2gy)OE3!kjukNOx*z1m5d)1xUFUGu?)PVR-1uXW)J5a;A%T zr-qGV1|j*c^!!t@+=P2dxUn3fHmN||x1LGYus9FRlG2BhTp;Bp-tgcZ9VEDdPJPZN z;DvCivI!ioGluCV50?k6#{kRVN1W~B=g4aa>7nh)^J_&Y-XOCrY&A_!yYQ6Br%;* zw-tUd*a$`hHZ$E2Q!9Kw-WXnZOwVs}{e7Rm*4iTYlA|bUzR`l}^|WDchyzv6q|1Ze zXvw!+FmQGX)2+#LMBnxp!XjC^zasORwc(xp|;7V#5Xz-zTwX1O1K z_={#AYX>_!>2XJ+cayjm6SBBmJn_GcSlibSrVLJd`-3O} zJuXk?eaP1W&p$6f4qMp!>*sF_mR%@7qxYp!<<1$0xxx-5E^^LTZot*Yz+;C4E_$wt z`)(iUG7lwFB%@HO2$?AEDYknfJDLBwYB< z1Yer8jOjkSgYeoVHTr?cx>?3Dp-WBb!P+{aCymt=$o@v+J{-R=G zL%l?y`^bTLS=b=mo`2ojpUNYh@Lvp$C?AjHch)mqMOYM0gC*$iry8cKJ2?g4oZE^# zcb#Oqhf{*Ex%UKQutRkNN4&WF6!@EKE^~Dnz&yEO807@CDY=Vc|Edc zf!~^MqKN-kSCY&#&%Q7IcTXUCe}TTwZdqy~is{kgy1)G5&#zmAPnrdZ6!jB9-+qI1 zga3%v6)#)|oNVq;<7T9rvCF6>dlhRI*hUpafKp2<8HqvPo0<&~n! zD0k1~<+U9&76qAi3S?gY;V+ET#52v0Atz^!>F#E#VwF2lpgETw z*CX@vSJ;5nwZ}wb0~a&%7Pw@APua(je$pJK^BcAX^t{|4@M@y33mYs4KdGLdoFVOG*5O(MBTs-mPz$KD$w`I*mmfB!!p zuh-1%?C$LB?5v9eZ@lgZ2Pmig6e#VYpI6Cvu}3FD1?DO!DH%w`Q+V`%8}j0zpnYML zFn;4H6e<2jYVdJc+`k`?u4CI`w52rxmblXML!|Q^;*PvmxWnq>^z#N;7J7BL+z zc}M3h(`(|2?zsvlpMJ)S&s&cqKb}V2U+C*8>GWYfirv2y^|18$M!E?~W6-Ns7G1fN zPPGf^*6N#~Ir*(fWlR*Wt2t(j`p&cOLV zr2D7di7eMyz^NJP^zk6##V0Z-vtR*i?^uth<3_j@zD8)vX*cL$ro$WWWr!r0b72wm zGo|Mv$nsq;vlWa#q4a(uQG1SY`|n#Y zN5Ng@u>UBOI0O@a^Mu%ghGA5#wjWeaD`Q`uArt-pUgL z;hJ&NVQDqJzVob%jc|HVaa|f1z{#Eq##(p1flv7dDlh2{JNRMY!D^tj^%bu>aKQ&_ z4;~Didg6JVRhKKCa9$Sbzc1%?CVsBCC$t#|)xYz);B6D}@PCKEW^F~>zgv1maXT5Wz-c8? zF}n;-9gpOVH!<~)Xy>LUoJcj7a!z^MxmoEJ%y{RU%v;G&(a^|nsMz%#^sg`JiuXv1 zD(hn5oH0*%-Jj{d1@#s)p_0BVXzk7Xu{&>G!5&-cIMsV6Ckelqr0}oA-jm zO;BGH0M&+GqTG%d72JWA&|0^>Ib4r=G+vrh1S)q{p#J3}opxFz4z3r0MQ;muomFfQ z=H`_H@T7s)U3Z*`&+LB)oK_#>b<@6iw zv1iN;puGAgZ@dh>33!P}5j*Uo$CL4#9ur#hQE*NDBJ*228;9P0Ci*&y{(m>=UgyT) z)~V~ka6NilN4nG5!B{f26HMMkf6qxeqieIU$GtX?8%wW0CEa^pdwhHR7-(BS@5@fQ ziwfpAs>lIOn4b*#_k(SlM-Pu*K=heyq_SCZs-{BIvrBw{Ny zjv!sS6K2~tUb%e2BvyXeR zW)~A#^x^katXVTTB1>utUYd~j1JFl}b48VJ{z0hh^DXJc1JjF@V@%Px1;CbF#D&C`X z4G~j4ikX+(#%36!F5}^z$X@&WvdmXgmA^A@4(A|LY6sR^F^;Cmm^ICC_G4t~N|V^eW3xJXg}r zrMZZ|;Gs^niY>8C+IH&%=@Kmw^SSnmZN#OH!lC zN4mtC@!-}PE4b>DEw3wk=LxnWM;I?0#p~9e4FHV-U3k2Sey$+%4&A&6Tw)xd*I!dA z-qLcZ+EgnmX1d>crp>_=Zuw&dyWi3KB#_SR;3(KpGYVeZL5~ke_sGNno;A>hNg1`& z`9Zow^|?^)=XhYDO0Pp9U2?zz*mKzh%$43m#T!@uiMg|UwSa5OV9>-UWZSm}tZJW+ z`}b$kts6N44R6-~>Ax~~-Gm-xH0^gBcX>K}oh0KuuxRHTW=n$6cllkhTqe_V(HG2H zo5`D3;Qol2tdhv4EuqK7_f)zB56z62dmryIcY+eJm-ru!YI@pKyO3^b#5{bpuO5WW zeoftHNOv@UCYBo`D|+BDm?|IXw$BK}%T=$Udx`bDc@@h&u%etQG!VH{E;MR9^JBY~ zP(mw}*)$*ve|&hF6V%)Ax(UvUaf8lClsc2)b<-;2@u%1ZpyL@v%@dM&muJqwS65s@ zg$Bx8*>{Bd;dQohZ+*LH`c8sf3jg2Pn1kZzl)2MjqQiPw&ypSMW2dUyt>YMaz`OTzn#@!-7hDq{YVF2&qL?RWWQyJxr#&##e)UI^#xr03ztyfr_nM7I{D!U>D`^Im-&!8T-vK`*VJRQYBv zIn6wFmS&c(a%Mgor-JHufJdCCpBG3s@9IrZR#AiOJ_SDg% z2>Sdr<`MaLiTdmyPBB2;yp=htuTO{BVqsJOS-UM(l|I| z8Y~@7pKqi)^!gvFSw0SqAKFTtN2DuXo{qX#90F1?@w|Bj*He&c?=P?^aR#p&soWu4 zE0lplYcZ%2{)wA{UEJvJKlU9`7I{Uq3P#Q;X1E9O zSde!Hl&^87@{;acV=!JZ;SabrvxOSJkZyHT0FGC|;2YP-8?SwYAI_ALg)0;VyzY5| z7v9t&1;fT|rku3*E#V8#Jv9+gd%52)x1p8dG4F?U^tg$1yJb(a4i^Kkg#1wIc#v+) zqe@`Bcm$5RX~XMUEUn=Q#U^wxmmUw1@qV24hf&U<$kl>AZYpwHg$1weowM@}aDAaN zpiR8yv2Y;0-hy<|T_!+uGy{!5i>UIE?r(Af*cNVwGc4$F9qGJoy#P9n9iaZ98*jY) zxfakvYCh0fVaMxAE>42+ZxQfOmZsc`xV@ZPWt%_(DAo-$9|~WE&w#qdan$&Vbc=s$ z!#v%oa9-N zK6ygzL`}Fmo&Jxk=C1La)-i!_=0POz_42~KZCz+j2}b>|FQiKeb;ea2jj%v!C9fM& zVu&kb4RA^b{e37I@4SZ){dIN6v483J2Bcf&Re|iE+v7nMy10M&#w(oRkoX$ELH`gl z`wRrtfeXa{3En`Jk93wztAP961Sm6telJeCOS^7?nbTe2TfraRc=K`}gY1#f@NbtP zud_Cmf+w42LB%^)sD41^4HqcGBnKlnD3BgMkMb|(_CG0Qe3T9{DjkvF^}Y-^yJ;-d z4@d`7Hv`Tz1xkjF0R7vKbQgK*OFD95>7tkLDiRZ`Lf;MmDOxG*mDAJ-cvKB z;Dx$b@UR=*E@V7rf&$bUH4#?cIZEaIH2enlXN8|2xKm!_#~c$0pQtj~+Vp%0>D)uL zMMoUfV6J%c!2az*x^xLiQPX1;xT%SrZzrAZsZ=&={zEY7#~j{xtrsiVskQo$edxyP zM#lHBIg0*ZXZ~Vdw{PQ8@XAtx4JuEk+=$`YBFX3b<(HIU|N4?H za^)brAx;G!4;;bkJjXpj$+7F%nB%d$ZtlOwDCu<(@Lm$c>)O67N1k>gv56b~yh@hu zOvW6mmd{aQGr=ob{X^!at z?=lj=?&4s|)eJS_^44Yv{*C#{b##@0k0~ioI*8uag>=jNE`lC)Kgf7Lp!yZ*wpTTP zTN{Jmm_~YDo^)z;^6;>NJCqauBfEe9BOQJx57~>B&@`f#H*ZM00UYqa1eVNuNV&D; zBe*p?G6V~DUE++4Ao3Ub!b1&1sCFUU>;tT*QEvfk3q8gg&(!JxyF5Ho{Jz48ss|ab zt6T*p(w@%`z zg|I8c8>$UC4_1GrpD#(bIV2Ereg)u<)qAQRknTWfB>b@O4Nw{Tks3dfZu!|cP||)k zh}pZ7H{Mg51+X(A5vZed%Iztd%)XB@bTJeqa;^`%B4tkvt>C}3vfKV+6{@6^fTT1shB^*1s z&t)ikkdw+=1P0u3g|iCi=Q7fjjoblZ_eaB1EhngYkS;HL7);mpgYV_(eVs`+U0ENt zj-CQJ&VxEHNq5}I7P^d7g9oDSQ+fBSYhvKvA>0(XS58a%16fY-4zNAT>H>!*8<+W)|IKyIx$gn^gR9iLB<;_ zzNXbmZ4o|6450c!pUi84^{30Vch?nhS~oRtWotLMr9Be&?=Pgg`&$jqYIqC|ZL{We z(i@cViTLZlTD*TUUp#4}9@PAH03286!0WDV>O|Kz8N-(y^z$28z6H{C$mRSS@Ki*P zvq`sh;Bj>Dy8?V}F@ef^XQ%2(TZ z-uk^M@aVMdz`mM(-$*)#nuT!9)^%XPOa-bx+y1)C)L87~w%OG)SKLDBH0jg|0yO((C*YL13YCrnVw9eUhE#w)%x5575b1?e5>qn@WpXZSS%IviMo zP(nRoG_X0T)9 zXqfp@i|Ws$J2mz@GBhvk;i-RdqH`t0pH+bFhq9k}yJofagsp562?a6RO z?{X$Ui@slyd6o3i;g^`3T#)8UD&Ci-8sy{)jI5Jim4{&_S>u&v4!5gPWq4I(5)bR*+HmU8p*Dd&XBaV?jngks; zZ31o@@l-t0WtFDDJJSw=HkC=#eU)@x8&aXU+$LbT!-m)0`H}@Cx?gd!#`J!wEwe{( zZ#qlrjI~Y*{L1XHsplxT>p>z_KGKa|V~-0%N5S1WNxV+d&vsq=PNts&NH=&TLi)?6L)-bSyyZK6={WL=w1bly==a?= z^K+R=it&Q4Ru`G!nSt0B-2^$!b)bL0BHfoyGqAgTJ&2UL&g+VH1>j%D9{|4@HN5WV zA%8r7yc9fF>Cfw=!~AjUjC#-lJ~Wf1sKn9LjR$l7V_wx55PHyh~r7cy^Z!g#QKN({T>S0-<~eb0P>Rj3*}C7N~$ zqTyW0cqifc@4q?SY-jkhI|x0mGo{*vbOBKwaCwLc>pxG2*Oj{X!@8zkr{89ZyzXRt z5LA%dg0}B@j{3JVnfK1oAh_n4Bx)HlfHz+9w=mcestVex-c#|G=4d!i*qtS4j>;Bx z>U5$nk7mNDN*j4yLUKNO{VWyMJ~&KWC&_q$pHh(L{5f!%9Q_{?(peNGA&s~s7#u>c zvm~92`2Ft<@xQy7q4c_I((Re3i_*T%htf6&sCsk{UB>`lB?e!wWL9MFM;qt3!Ncd} zVE=X|ok7)BG`-yo-khk&>ng*u(c-Rj_$iPc*OBouf>V*5cn&k=)@5q^M>_X4i_pOz z>9FY?z5h7rX8j34FMY?sQ9Jah@~!kW6iFRAA~643!JXASfPAle8CA}_}bl*L`GlTw&!quUG>d&Nm zvuq@5wm?n1_dfkTg>*M3k7w64OW@0G!MyQqNSK1BfrD^RTL9&%`ZjXQkAyIFr*)X9 z!oQ;QKZ$Ve_A07fNOvu5D)@MHCfv85ZfDZ9rv-w|7bDX@?@Mo9ch$@Uj@~&QhDIKx#`k2r*mbt>*%${X(l@29FQlv5ZVM|5 zt>7#ZH!80lF6O3)Rxll>(wWO?o6)$CgW%+C`h6McmY0u5`^LQl8?)&3SEO6@`I>0g zunM4-JfAuqq}$0XWfpuWWhV}&-w%@R=kv#GP0sh!f27a5<|I;Mhk3t>nIQFKNCEW^ZNjz(|4itnAr|L_( z7u&m0$tY#mYB!44t+i=KVQ0U9sb}bU6*Au1?m?(}h4?4DM?$H1uC>>hm$kdOEhA4e z4?n&UtzTG;=Gi6jy2h#b+*6;q=)OC>{+^6Cd2xgA$n~}8@7y%rcuzAn0ELwokoMmQ zUbiDz9fmupV~;%wysqbn3AAp%iRLHM^J^A;pMoqHfUh?WEI6kAOi}3`Du5U#RnlbiLlK(C)9UFZ@OtXXT06Ry(VPiOiGm<2Ot z2sf@+&m^DC#UB|(HtmHZb^Rk>03nbF57tk0s#N4iZ(IXFNnj6L_`60dvEw*)W# zQpttSv8CFNjQ3&G5^U=_3DmmXqmCQtw0tsg)t%|!`dkCvdek1wz<<9+0v*+4>OZn% zyw{?5Tw~Gzj+Msn=KZ!-5_fLU!|nGpsq+Z*iT@F~dVs)vMjn@^;f9~){y`Vr>3J2> z$<1)Uw^u3SeS_~%{h4%jotk)n(KMX#Q=Osp|ph8m#uSM%Cu9 zvIOut^N%Uu*CYtPebM7}lCv^FTn`IfuhZjBGVlC-J3;sASy1}OGpe0)bZ;?lg8KxV z-a}#Na1%K2qY?U(M34VSXD|Lg`xwPhprcek^#js@cmQjQjd9~*7pk2}7jqRrhe~7I zafCiUNOy3_cxYK{fTv!h=S4{u6h8riJ`Lb+W=NIKrr|p$;pgC#XZBV&ST-8}mfI#e zQA@91Bi#byVBFX{2pOl-<4Mw;`8OMHFHHsc4)i`4q_Yk1#a&bL!2XJXyyY9(?0^sE zM}mSs=DaRRyuZ%lX)U6zm-P6Q%)9Qh5-w5S$MlN7W9@&v|0Ag)ivB#8Sw203i|t55 zz3*l+E5vild@iIk73ExE*p-0a#gxmkN(N2rfb5;X=Y!M73gdnVG!Ty_zey&DZjX4CzdbluhxBI~x> zV9=d7+`nB&2Rk=|pzA?E%Yh!BlCC>p5Cki&z{6Pjxd)uwz{ptb<6Oc{FqfWMVB3SH zxCqhDJ)~nBO>xcELiAS2hAJQF&OS209-fV&TgN8xy4cnsc*>2PD1C@KuiJ9%6?z*H ziA&Y#_Yh=W)%?@wS3x3PzK2y8e-_>C7DXO?fO+xaTpiySFM1%2lruU2SgUb^Edt zVbgXMaLccf*S)h$hq14&F(oJRDA(#bfw53b5!Q^66fQ=dFjQ_P;GWU*Af%Js9{}yy z?ch<$C*F9&W(C5WpaS5_(CaP8ct%U-!H!fr5E5{THy+kgmd9HL(fEZ0ekj6bOXZ`DSy-=BVNBwe1Y8IZZQ7$!uI=8bnVz#Mps*R01%E#`Hl zZRq^Ll@gKJ{3*XZFYG?(1VXmm=Gu!elnBJrac&)tySRPZL@{(@c+X#5# z#9=V(Mg_0CUpp6u+U^pS-MGu^evgcU-BFPq{|u~5px055?sttj zoU-QvI-)~ACzDQB(+<9Vv<+R8Hlg}6>7IKz!#>6HNU2MOa?P1`E;szD>oR&&DRTn0)#bFlIdYwCEAE+)tkdisfo0HpcN3d+eF>aNI2U`{a;Jy>| zd=BZ1RMT1MeoLI+*pwb ze+cP$8Zz&O&J)bHJ?XGy)iU0Ay{5WAIco`=b)|)R?k3|IR~3Obx#G1C6V0i3PEWot zmWkNq1-npC;k60WuZe)C+%JOu$Cq@M-AaJbiU{~XfgW#=E-kJB++icIERdPK~o+YSGmHV+Xs2$Nm-f04LKIjfT7oU{4NgSZuZ3rR{vPZ4aCFI z=q>BeNc)Abe|<^!CQcsAI~f6MwdwcRq}%j)1+Wr78$I4b&mWL(Vu=vEs5y(){G833 z_r$+nVD&sbuDdCe*FBl82G`e)g6{DjsCFUq#+{o8Uo7oJiA)#ef-P;?R|zRhuFEXu zal9wE*pUQpf7^-rw+rbCbyk7((J^q$vU9v{MDaf`r7;9vm0Cr84?)H|3zgu>^69YT z@n?=NudVF}cx1mLw0yINH}8w^kuXP+fm^f#D3`TQLwL+Cf*F~Ani*jE0+lTCf!PLh zzbBnC4o8iP^`O?!@znK&bSYO{xb`ssh6h^kx}ZaE1v_`;Ktrtu)cH%sYdo&XJ`nGh zwoyNk*G&xdU=0^1!JH*ERDGFcLChEfdBLQUOPMm;9K7huI_~S0PgFe8c`sRjyRF>O zSjjcK@g$4q;GW2fNIGFWud|=wiyzLG9r`N()WnNIlA!uzOg zGk?5eQfl}{tUvM1NZ8K zsCcAXI`1r!&#wTYv-Eo*(jA_$9mTK8LOMGVc;jiB=b;)mXZYa(Jq{z|9eo*&?)EyM z^i`?6@n(GdAzF2B9l8)muj3)(y|*3D{m!;Q8pE=9-#~Ux^#!(<6+sJ-2 zq~mFNS%^l&O%OcV*2SqlNy0BJ%E6@3^!t6%<;|amLzWyy-y@?z|9X(FY(oS-T7^-? z@2$LU^}8w9en%N9j2=YQgN*mE-X3307z?d0|6}>`X2faXxIppvzBiuAEA&woO$%j( z$)4*4TPDTfBldyl-`q1)|0CU)#8|xO+$I!Vbd1*(H$~tDXO5z_Y301`drctTbaN2) z&3;4OkI1}wCf+!`=Q`T<;~8%}i8@z2;Da*0;Sr+l?>p&(#WWP?rYOZ&c-V^`c>L zVvr%smXzUj_LVB|VwEDy?$n^%un-}qbHJ9-{c)GE{uhr{hqa+EF7$H%>7w7;qloJV z!Q{du-gw)>Mj+o;dBFEO{oF&wlNfGVw|4nS;F3*WCrOtcT+Bvl+yy=Vaok8ZP4XFA zU1A5C7iLoBo8-NSi56xulO{Z1PBpF&eeBxIGI#0w4CxZoxCT-~7dR&8F_oE-tes?wq8+8^q=OP23y_bPC4Q6RLR@dfnnSES25 zRRYEqOo3nL4W{xMUDsw`c$+&*L`T*6FV(~|hB(2182WjObTW@r@yT{)D11%NN04sO z1|_U~&k3IGyiT2$q$>&^h6gWjfpfjCQZCS1lU@3Lm*djUk+oOHMq_{RyO~ce2E5ME zc{-jGEe8#X_?@u82d^BW48MPFqV5Z1UfnfHcr0XL%LDqkhjj0kDdD3pouI`ny1u02 zt8dmG6=u!+JjUtNBPMf$COY>8z%w=`)Nv!-W0hu>8$KK+wbK2Mbko&;vcU?*V97Q5 z{2*QLb43t;lZ9q~OnLL>#l8f>f~7z&DVTB{;l`|2@pgeitv}NlqKaQMO~vxJ$5Q>2 zbn_)7aOkEG{A2zfY8?vc{L25K0XJshlrB@=cs5g;kjaO+IO9<=Z@jPHZlGD>fB#CI zT~5X8_MReam0M6(^{$y|E*t=dM;&FeF3|HTr0Z}V2#ZGBpkNqCwF~L)w8_D5Q%14H zOX&4sqCH%QPSL7!{-;c<6pSK0Vmu-Kz*G;liydAa5B8jd- z;TO38#<6oYp6@D&D{sY6*CEn{4-CSMV+LXE_Zz5nMx-0J%^CYP8)Mg%nN&NIZc(uf z4!hxibt>t7nX2csGbgM(m^+5*OjrCeApbTJuPM4h#UtI{GoQg+RZYBBi|)^)3oBKC z-4P5d`A)yzB3*8~0(`Q=6??Yr=FR)zWi0%;=>&MFxQ5s1SIvdb%FhF{CG`523u>>K zY7;Lef4dyhwR0`In&M`#wrc^5Of=p|P ze3kegD_=sfF{ImtbT%`OfRF6~`0ulqp#O0r-Ov+qaF6((nzyFkqRuzcX^v%~nv*3? zy{AOow@CL`aw7b3Xe1uKT8h`{J4}LY3C4K7@lI;~H0R1^PQqH@%vFbz-24}Vadn#; zZW&KMmyvGN_0K5ygd?t4HxT!)FX_O=PiSkp8#a-lzjGj6?&!D3b=!Jl`#xq7n; zNW#ty>ebNS0gkOol)9)AJ>yOTH(Cw$E4sGe;;;{e^TT>TaUqZ%d$a?igNY z+3=RrDb0fak_~y?K~Tz#YR!i0(j+OTS}$PtSm_FaGNhO-Qyzf}ea8N`AafuhJ1l)|p_b=UJ5F7H;KK1}|i4mZdShq2IVD?b&ek7%A#_kghgt88cV6 zj6L`t`+||~hj`up?EhokKj{uPe`Hm5+rofuTi(2G5ys%F5D3KoDa@qY^6 zcJRlu&Rq7~gA#dJY#ucDK>I`$EJehJ*K0RE3yt#1e zqcxnr@-8rH#w1{DG9UIoe@PcNu?(bS&H&pk(DPxW```Jnq5sEx80l8pb%DuSbl{^*c=H}uIUXpi7k}TAbdBowWW1}}{K1~M zaA-S;UcZ}`s~|dR5+VHDq9m9S9gFoZZ9?}DeSId~rI09m#cDg!`9{yfk#4o&WV|)$ z0UB}TGwRL9WWZ-Y#EJ*Rc@i;UCXX#q@&j{`$xAi>op&s z9qU&ESV^}t={~NzgNnj5Ir$rLR6CPy&3s>Ur_~27RZr!0Tgw-M3zxdkk+Jmno{aZ3 ze-#LS-wf)zLU`jn&lm{%)}8|oH&5nuN1zHs(sz*XyglW%EH+|v=CVxVsr!t5)_zpq z5D%PH5_p~85D(C=YW@*^tu)@ zUVCx?Y`@fjX13Dn3Z_=q3C;85nf#Pj%*wn-^mdmc4z@6-+J$run-6gkKcjHPf9!`s zy6u;r)or`=j4SWR<&C%NgojJHYB<*0)qZ(+ge{vCpmIkUuY+oCFked-4*xuY z*XeHehB8A3z&$SXygXUHtOLIAtfd5WsiD7%7Fno@MtWZt6znJ$s0kP0LZw3Ren2!e z&p^7-igWR(73Cmv&kE50dP=%+HL=*I`6-yRdouMrO}dXur{h~o4}+3hpQ!qhF5sRU z{wDhbB#Yit?%KUQ4BEVxi@tY&c`(@!KQzBDDt4yVg_BP8ya9H6+9(<#v88>wXb{hq0g8@5%Ih3F&TlOvP~zZ*bCS!>RLw zbh{!v@JH*VEdIvtYD8o3t0sH=WdyyRkc?M&(GmxHF*t8#3fsRPHjhnMlg;x44HtGY zS5+OrlLG=QKirIJKhlAV-r$}DgTrpq>pMwT{VNa{1bN}OP4c|)o}9V~Vy*^>zgMHz zHIwmPZ<2t(MhpCu4Wi;HIytizb4-~<@5%*#tBb+8^`0=NLXy|rd|VB34!XfNnS*%U zGP{wmuiFrAvu&pO3z@g^q$w2r(t~ruTPY_gf0K!`7{io!Y-HkAO~#uRs^IL!^z#hq z9PEtnx`}$YDTbbBAl=2-9+WmM82{=q=FQs|xeb|i*MPmRBB}b4@rDc%vFC9P9)41h zy1$XmdbBEN3{Aje4CwtMNLToMEx5Cx1N_aI#hdrh^(SDsAQaDa&85yaC-3zxmzdoG ziEFKOkuQ>vm3Ti2bx2=#{~z~LAHB3qgO``ZQtd*z>4WvrPN!rzQ+pq;6GrQzTjG5y znoSSzy7dRt(R1fC@&8T|cwI)!JyEG&4s5tFm1<|Qd^1DmGp43XVD@=eDqiiH%iOr- z>jdXg&TuEh>);y3FK0&mpx4KeE?N2%@`(N}NP0kje?+>@w^eA!Un5|>l3t%fy0D`@ zsG`;wbUCF{$Cq>?=d2N}ouv-7v%GlSmx6E>+%tn8K0;pixMeFF_goboO7^DQ>6KpW zv-XvBwI7yoha)Dz^tvkUvw<Ty7U5C~!v!|}7q>D?+ zg)i^sGfAp>)bZUZH9!;^nP11w`po5h@W#1a<=i)x9w(BnE#Dn`^xZ}`)_kDKM>tUA?xr2BDew9r7u0`HFl zyzX^$0o#r*paLbjU+D}v&78fqi@TXr%3N3>fSqSmaWAHyLrIt34&d8gBXHZ62&%rM z%Y8Tj9uE4ACU!jHb?Z%L!oa70(UpNyDR*z?8}7=(R>6jKM>)@zo#^|wG?bk_o2oDA z5`)@N)x-+%_X~c!ZvMGvXoBoQ^lvsjpGd|l8FdS_tZ_$6l5(3aP{@g|NBf#PdEC^&tZa$8L7xSNF=1)(~cqFb&nM7pmh!mV=* zsrr)cZPiFHAWRGPiKg(n#U^IZPB0E;uUk)D|Hyb{@#gTtItW+mj-%WnSWxHxC8uup zr#GCQrU6LH)kdbx^u8aY8|{<^ZYK=~CzDdC@{!Ky-g@9}XAP80Q+Qpf_Xe=R-4Wk2 zr|%17yk8pILGThA+*?h5-$S}nFKz*JZy2)JMt_fZZ`4p>@w%gRC!ck2R#nSci<~7m zx`BS5N4oa~3V>5zj1^b;Q2m*75mu@oLsbi#-lh8~=`>XhK%loavTUK-nRIeKo58Xj zt34Q)D459Lp?y09MDw~{upKYh-F-g~|y#ctp=wbH^hBw}sK?i`Fn+|UGrk@*6_Uf}g zrbY{s_Ztd5hE*U_`w-kBi>ULBbnBlUMW-JGV9$&fyl&0EgUB(#AIn6&<8{d?tI&$< zQ2cc7LtY1SX0g{7%)rykhQj{WA+mgfZ_fkm`@HaZ3w{@Bv5^98uG@=ebNfP zX3xUT^XT{883#;78~pPH&KfH@yWRB&`r3gR&*}Abr2BQZ7VS~l1nLT+sJx_W46i{x zcq91P$?qP2O+lIGhoCtV(s<+b4D?6GwwilC8onLqCr+@o&xKH|FYy}< z)2IKhLFTRZn2it2mc$Dak5Tt6((Pa4i$`3M$Bv72sJusRM{~1(l?zH+S8xhHKBB*( zLQ($y2-v^Aq>~tZ7A<}w3zsaL$m=FquRxtedg#RXMZE6#A_)}p&l}!AO1y5#kY1+t z!C-jQX(r{4e;LQlnv^H_>DDDkm^K0aEtSBnU+#nc^&p+jjsWOBL>8N09>nY3SBJti z>p!Ej#ag^h?Y{WmR-K`!W+%O06`5DUD-)i%9DszYN~w8P(wV%@gxY$pNa49Vb$m+~ zToe=*iRu<+2Qi-hk?_&m5HPWqt}p3+dPKuRuimiRL+R^1>DbLN(A9J`P;EU!)t7YB ze#F7wmovfs3x|2#@_qB6b51q0t@RYIn|CJ#cC}(Q^y@Cl)sOhg6wj3tNS#{21nY{& zenNYk8jn!_<4d}Y=e6OUIS%-87(MSpx=PQHaOKGw^v}Z*^Ti8ungnm^TtwNkq$uYg zYsZBJ+6pg;RtP6g{KS;FCc^Z?n5qZq4$mnEY4dDh1~8!dGwFtyT0v)1M<~%Xj5l8D zBqt~np#pF1qSujqyY*7I!Er1zdCw+BXJH4p=geq`UBD5VQ||!*wsD=fg-B zo;Vyf$9c1lB&JgBLb?YhEMZlJ6nLvZk6%ca@Xba1AC5%uEuS9mlFk%B*u3F5^I4Pr zuH5WXL*15!jV`aw+~s~RzXj&C9RqE%f~a;TU6I~nU?+Z-cbGYt*Lj|40j&{XFu5>= zIv!-a4L`mEn|}e&znXrIBHhk^J;3@&HTWGcjmrBuL`O8wUz3@&^amHNI2eyjIw_dh zOke*<*VZ`@ml=uoTsrujDj(_Er;DHUH%-9PYvpoBtcI8TVD+J$s$vetspcZ$)k{d0NaJ?q;5lxK} z1}f*I!8P+lUN@|x7QCN*1#JIF_bak|{^fO`+5(tbnHKRdiZ7hqoSPNozssv0`+#j6NP@yioCX{=*JWg-<#M^2Q4gx8ECa`|13D z+Amo{51t)10UFlLp!##c?`D^ZlSOs*PmeQ0@|>YpXg9NrwWjitPW6g2+!8bzU8otw z>*B40;f=+YIL!r;ysr9D2uzV0kD?0SQ{`)VZY;XgYEqZ|_%|nz7>`YKj-p4AO1S^= zC7t&KTU>Rb3pMJ=@j9(9L$I->I^Nl)#p_(P_M+tAttcMQ$BoQ;^=ya8%v}yESklik zQhhrGFV*(Cs5<8|pT`8kahrdEPepN5eMvW7J_uSL{0VN%ap!e*K~d0dPd->&LXQu~ zcx|C`;fJ4dKSHKJl;`o2KAlnbiZ*kc^X ztnr}wU-i;`OhvXcGpKGXb9@@WlBaBd|1|o&F6oYm-x0^Fd=}3Y{-)|nI^ioD?DkI! zXbrZd`W5NSu?1%AdO*GUFka`la3tPdX9%_{(eH(9^A9m*yC5@nvl+93nTR7pZ-U1s z>G!{+8+6hFkFw|i&qvdFN%v==2|h7kC5pL1f8R*DNOAe#UPBYmGwVUeWV3q+8KA6)nHiE}9JJ`xfb*6`7*e zX-eqbJAQY!LLI3a%OQ=cnXvzPPR4t`K^1XBRnfUE{4O>?5_P?{Lnofld8Nw`(;llS zn0ZlISS>XImmL-V?|7;qb-s}~@ELm3L6%Khkw7{z3Ncv*GWH8ocq84m2ax z^jPR%d5;>ek@0echtX-PWEeZAkIH+St72rVqZ#*#R_2G)el$Z<0$4gPpxTdgsp2(r zHTf2(#EzcdAYK0b_2BH^3?!*Ye{V`UkZX2Xwe%~X9!x8)@VnwX$%IJm&0KS<36e z$~<9p?hzpGJ%G1-$9rePB+EW<^@BF(-%rWBZs(I=fX{wls34%+vpWgG@D;0tx)UBU zeBY~)&L%_#?l{qi#v4JZe55;XE)QGP8j#O!0k1nfMiU;8Ux2(G(*F-7<2@T@2nVcv ziYk4LdE@zo8p9KhS@do`;B}E!*6`DINqj^}iq}n7aD?IWOi+}<7|Io{UnG=U=TkTE z$yIJ@pbDICrXXrE^W}B(we?}&EmwRmT8cUzWW0>)rm*F13o?k;=Z`0zx80a{6^-}M z<#ji1XT!5HSJ-8-r>OpHn5E7}9{FAu{ot6;4|EH!*~dfm@Xr^7x6`ZcL1I=+()&`&F?Q5ryzMIcIGPPh3|QEbnspBa@ipkar5*{1tTc;h8Lxz9aI&j*P|=Hc*DHFX<+{vPJuEWq>_qi+J<$9S<@d-|;Z}@RJ+&^qrGb z=`~@CYBb&-uuXJr^=qo1k}g{!7?-|I1&T%;yiWS9KCasqCj8hrnW_gFPbx+mD_|ou zM}eMqB;8|oC2Y23BI}tjor-5PY!~N$s8?`*@he8YQC(Cc8UXiY(cf*8E;H{eH|c;h zTsDQC|0A8W<}S|kpfpUL#_u-2zg-itEt&cJGZ*$hkH~nP-|x7DIj><$#QVAScW=LO z+%8)cX6x<_&Q0ze^Xa1vH2Fl2+e!CxTm{>jI0{N#WvO-{9s7GSFfkPWb8Lq>uM@dO zfE4d{pxiB(*AYQbX4l|CND zZkppLTsnT3vj!{_SzQXjO9uP_{o9XpXH6G~RvZn&3tj2^AnAbeY_9zI9K7g7GjBZR z;RJS8PCOpdbCcIePEBO>n`hv{xFOW>CG+BjEud8VP1760GTwNli;96|b_g!MMbF=p z@$yn?L6zG~oU#8p6>qbjA$vm4iqWipz)1WX0I#gy4pwB)`+ktl=XJ9U%$0ek5lQDtaO~q`)&GEePhL5y@d*lzXGq%y=STkoYcEa1ob(^2A zV8SOaPfZ94*$n~ z(xj6U@Bi#7(}(N}3#j8!x2l4qR`ZmVH)O(PA<0xblkxIC)BvxvB>1z_n%4!Kt_PFt6QGn` zIn^#?JkjYdU{OLitW`&p8=*c?)aGN&lpbv044m$xMbGa5wdFpze>;<|tD=Cl67MNA zrtlY4U(zY0A7`7(E^!m2a(Uy4u6dmCwn>mcAYOn+ItL!rOW#?*9`|T_kW~2=I*OzpkXRZ>RACv`8R+;cRpQ#1xS|$`G zZ>HOYjQ6bbJnISOL*~Fq-gslhD|hpM`oi!ex?RY4tHPYXd&^)rChj|RJU;J#%o#3~ zV|KSza8EPVBh9y;fKu-as$EF;bJ#>w^!Xv!U>U{hwrd%oPxqyu%0PNu3mNa9(N58g z;TCXt8hxK8U5l45$nA@RM(L+`>#=8;KM>uFgJ?Iuv;G?iJjCCIUOB>2@%9b5#hiF# z$$Xxx#~k@_p1q#A5ZkXSURG5xA_c6*SNMCn#Iz0M3LihDEAo)Nv!-%$8WN{!9woS{1|V zPH$)e8YMCCRlso2|M-&ewyx;`UVp=2!KWr_y-MR#Db7E1xvGY$JxP*)Hdq+Ou9v%CcyDBM)2E(5+*CJ0HMb8_v~cefVyZH6R`rc)N)ijkCif9^yk&W_}509#GgjM>97929gFd|yJpUnSj^sUEO09WVw@ba?Y#cZ-8{yL7?f-506$Q#@QO44Kp6 z;_Psq%hy;6y7ZIbT2U&m`{aET)avNM?tDioFBxyh`MW@{b1r-|vXtu2q^rMT4mV+4 zsK5L%m3OaIv9R7jn>qevD^omDfXA$S1b$@5;{N9^>GXa&=; z^dc4E=SDwXm;a+qIKHP9M0|+lbx%YE?6c{1aO`b6UN_a}H9Jer5V~tk;&mOfR)X;d zM!>%<0?N6^u4Vjp?&f^$h0G$~qv)`uF0ziG-$Rh@uB;K-+T)Agmec1i>6A>J*^KVZ ztd%-Fzd^d$2@>GvF;A=;r4IY|mm3Z%nZU=pxlw_&%=cF**!S61q^&-X>Q|(bZ??c* zC8qddLlv)kzU~#Oo)?Mb_ABwa{d12Z(=)ngK_J~OWM1Kj1SJ1Igxz^uO~L;#@FJCj zh?FHusc2VH-E(KGQEA^4+81e&7A-)EM-xZdgpubl{I@h12=*FyY7!f;)Dj(@)_BxJcyoiEn zwMY5x{eX098(V}yM$4fEq}S1s&SYd)m7G%&)QzOq$&gO29CE!cuYhhHTGV}TewmuM zm#SG+j&?sj$^4-}x=4MiBSm41JVjF+!3dH1a-vFhou zqs(}rmN9U~@GauWo;#VY#y=j)M3;$I&Wfkpi25GFk&|+w9kUy_^?P;jEYoSA%*~QI ze@VATM;q_0v<9`4=y^ZV<=q&GH^fE?*A~<3Ur4vtc_a>9v`83H$9B1kpQ0Lh$@fV2 z`ZLS7ZPj@+Eu=SaT(ywtCiFXvI`&rz5v%CyT0o*S*A;ca^2zxP{GDgF(225X@RETP z)elIgUcCt|s0@aQhV=X|>H3Q@(bJb+@Sfc(>Ufauew`O84jc!k{F=nftF*l@iaqNC zx8;3i#(OupO6al59|p8GQSPYP6p?R7pk?0eJ>2~RQ(<)0bg=QUI@Nxp%Q-y@KHOa_ zt_+~(B}q46vm?ykmkWB|`3t(Azoh&0XfCw4kqf$ZH89;rS$}v!KAd|stA*)qx<|kf zdX?hO<0~n5(_}5zylM~cHRuetiGPKj1^DAfM)ZAuAN`bIrvvIRO{r`ZBH*t(sbT57Hf$z>+ zz^~i%{MONPV}$WmhN7eUig?-m?P!(cdY>lmMU{_q^@%m;U70&5)C^*}w}rJ;vImsm z_%TjQ*Tblq3-5G-Mh*j+PCZcseD2HPSx@Na53+puSsmby$!o4pxDPYlfYSc3uaOsO zI7>h0k@2o97y}2dJ&5v<2{WGGQv=w3y$O{!)9dDjKOZLC2-#qHY}j}Xu3d_cxR?m( zPtB=*O1hyd6LH)LGvpAZ0J@(?q%&EQfOmG3ilmF;nDN?jVsUX{2pYbADl=Z=-57iz z#Za6PvxDh|D97OKk#B`VU$;_uXGz}4O1v_*s<~aCkNxR_tH4Qc@*q7=Lb{%<&Un9@ zHQ3i%o@!^({eCnH7v8D?b_ze3c@OWIjE`Hkf&D)8{5~1)!7UT)XjTT6s;X0Ycfd`2 z`;1VLV|$(D(>iC^*eL~PC#<2`g>*76g5cNuYrsox2GhMc7YxrIegZ6i4xp|>WV|}} zF!)rI4ba(j%y<`uN5eG@d%)Cvm#OO{882jc9Gsev4T}6;bKU!ud~7nGn32z2TKtHc zf8r$QF}Mtk%JzmVS9GBg>>XwSV(*4BU0hNf@UhvAcAlBbbS_I?f;Xdj;?wc;zUO55 z+~1kQw%7B)>M=UZc(D(rK;3ik$j50I<+O8D#5R0crPP;H%T*iqp)~70$Y)Cw)8$0& z2XBurK}ucp|4uTV-Q{oK>siUV`m=`2c#C?f!z{)3;Lrh0rn@$NEG!DH5}p}MWx5_Q zme6ybF`7_Dk0+AlQ$OGX4_dVevjSSFel_t<9j_9n&S95yUO8QiE}c-~)iy1q@{&%s z*;6c&b_+b%Pxk}TU3@JIBBq2x$C(w(yehBNKyh#gte2~0y7pcc#%o!mT#Oe*CEfy?ix)uIp*2i5eB=jk zHE$j~@OK_n4>I1MUE`tD04?}Zi$~qhH_~N%v4BHd4dA-1n3?w-oB?w#^@Txu_cP-i z+3O2`t9%490dkZpn>JW@-glqK(fc5Gpyv{N@vJU*G0~5z2kFF5qw)7o>w#SfJ)c54 zzJ4JVtu6ycGcB0$)PA_(WJ>|KzNhzVA>(CrO7Z*Pe;1#@sa%M_l00{7u_zTE4i2tocjGm z8LRE7b|GD>&Lg03L<-;EG@0p^D}4Za3Oi8JFu-&tjr8CFFb~*Hoyc?%qb1J^`s=vI z4{0~Oz>!00`z%Y%^Z8R{@#u%WGkmX4zZXrqs57?c4mS&`Y7e3Ek}hNV6QSw30~~vo z{$EVG`LO#YC~?@8^|;Q9byXuWyS-Kb#9o zGo)bm{!BW(;p>2LupNlLP2Vp`m!f?HI3oxRg@Md?yE})$59aDn)8h|yJs{)lc`*UT zrkO#N1(DSCk95`{ws3G!HPEvEOvO8}W`cO2#@fnD+~=xOUoL{&uVIqC%T@{9>r1+W z*5hEr??LdY(^tfDEk7ne&BbOgEMXBAt{P0z+FS>=Y7)sjyHrAvbym6O!_(gYV!xq-ESjTFzmjl zqOAjr{q6{LboNm7Af43PP7rKh1^bPwWjaM@1|2pT!Rj#jK1jyXH?W0$J!PSO=5A)Z z{=@8H#2d+c@)b3vd$Z9Au1=SRb>r7kuKnx?@z^U1Io~-J+}w}f&@`*5(8rk`PbA$3 zt41{KhA|BJt4y8eq?0k&k3teGpmXPNraN_AjDoKP!*3?^xHlQ^#(fQRZDA0+_wFuL zkB7#?#Xr8raEo_2aD8Rf@hs5Hc4Reg9EkGG6VxYv@^wF&t+%l&S~m*5qG8 zH#*heFIW0Go^+S56`-h?zaEgTc*qR+cUf=jwDcsEcfH;Hs$HMwRL=am zlaD{T54?Jji*l7hVE1^WtAj?+O8p+%AE-*@C0%8#G5i@~fNHHxnDILMTf*_L?+AY% z>$BZyR~RwR8)azI>n+HWuX4~w&i-Ob)o@t@&ReopZ|=AP)HQ)# zPffb&(0TB0e*s+|Oz#szI_YyEkW2m{G#%6LcQru2XT$V9^t^`F?xDh#M`o2~FJ(CU)k)aEXc!WX^rOm0x*u6_*tH>F zI3h(~cS&c|FB*RfRVR8Fi4kaiqF^#jr! zlas^sA$rg#m;RrWl_X7>{1QU^~|P&SbpR2O)AgdRI6#D2d8z>v5S=U7gDx zJzK)vk6MSE19u{)?V(irk?yIzHJa#d$3Od(#B`mHEz#K4T*-bEQB0SjH5h$p*@JSE z*lzFACZRT_1ci^M=PStasU=^nGCY`tbR(Bgd7V~cerKdyRmIBl{K0Y$te`Sntg(t- z_eHwN?#}qzZd38lW%Rf_=>|=mh1K__0KG44_jB}TR6Y3%zdeP1PA22kgZIdKRT|pR z!;4uDS9i%buaT$tz(o2vIcISje`($Y(Ym13RZD>(E}qp3D(&e(#UtJ6sBw7KQC--U zPOmEHkfnJL~xxsYR;8<>_OYv zaDFxY|Hb~#VDXlksLJPU+bS#m=X0BiHWt{$O0gL|9|0hXTnK%HyeQOS_ z>T9U$B0n^CETH>}?_lj+RV&Y;I8k#OBT$vx!iZ0N0#$YuI~mYrL7RN5c+q z)}}9h-D<^jQUgjsS&=4=@HJpMrG9t7Dl! z1Gr!JVaEH?J`O}cE4bd4em)}O6<*N;XCqwUihn#WWb;q?Kfk&}Rf{+APbYBP_DX5| z>)1Tl{rHkj{zrzmaj-PbS-^JoW^crgf8(_MA)R!A zA3WqYM0{W<+r9G&hAwHIV(ro=%y^f6gg|L&1yJisk4MatHsmgw>=pI;bc@STiU8L< zC400MZ=uFjNH_cLG9Xhr9T=;`P{)^amMcoZxa386&B%$=^@?<6PX<7byA48Fks~wS zszamU>LChXf6_FjYuKm>%U{al_1vq|m3e$P- z8~`s{J`kSWrrVD!pSAyJxZhg=96m|6pH<;tLCIFc1?e2;n@u5VtS|z@a_RLTq#L(f z1u4zK!g-Zs-2M7Oy5r#m;=!ZFz;?wMOt%T|1G2v_ql91dx^OaH^q|kcGhreM?@Qm0 zNN2J~8n!;Lf<@JsIzQG{w^n&Y58{Td@!{g8oZ~#MEr&Tj&Qbl8bT@tv1oIOXLu!bTkAYQ}`XxTlS5_w$EXZ>0!2Y}BRBqk~FMxMZn`mfwxNxW7#w z5Fcy?M!0 zaJ+)VxnY<;5kQr%_mgbi?yUzm=WaQtZ#^D{kLZPbL>zTrAl->&GoZ%$L8vqZqjlyLo z{ix$XI)Cf{pGn4~eypJ9w@AnO9?-h8ANaYv2iLiOGxtL(8IQL+CO&4TPPHHD#s@9M z3Q?2M?JrxY@jBAgl_ueBeK~N;-~`ovq?>y#9uK>e0_t^bsdZnZOO~FGZA`uc`ET_6 z8|mVnI^a$nC0JlQf@;6x7k+WEZe^DE@@j5olq&SPaRRmI(&PN3%RDm--r7}&I5!Kb zzmTp`eFXH`v=hx+%Z_K~G8Rr9TY(hE((?vnJl4MAq&qOj0e%bVLg^>+ne~la;0;4V z5|PyT$CQiCsO9WVYKhV|%;D^mj6leIJ@`q5e(omS`UM9-;K4w+XfmCbbV|Wj!O6>m zVc!ONy#VRv4V(#|>Z-$<$j?Ie>zeoLNy5AHX`+>;`TVH2UU-h$L$vf-9#s$0J#(Lf zH>D<^eNEq(?(#2f48D)UV~?C+y4gX$P~pU$*xk*P>IY=r=A^f%wblqbzExtn`H!!m z-AhMeog;KV*qLe}luyYO?G4+*JBxzwMah4T;s5yGL^`kUUfB2Z1JtveZWq!`T{H(T zHA_Gz3+Z+t-84OO+()(-F6j6`wF~L$t*)Xw-|isYkIqzmx9ag+*Q@WMnOB!`KP&X% znfD?*Gwwch-5_0R+*J6^d?@PGF`5}q?T!mvZbA<~)8(Ox3UN1_z zHzjVcMnMKIcbx&c_dn8|dKCcwoYh5pUOb@Mg>=4F!BEEb3Gz5jucKIHwq7*s!4A>; zkprr3PoK<1-$;f=zv+1)(z!Jt@wY9KwW>)OR9@0e>wQtYQ)wAA?fgQWN2Kf3BLL_; zPJpw{?V_&Fq??m^1N6EV3azj2qvAPBnTS2yrK>^%bNPL7@%Yjm4U~F+HdQ{-3Adba z)5su{8c&aRlJ2nh2deiUg2M;V;~=Cftox31WQSnYY_{9s#e;zkg;lfr(Bti7yhGom z;G~81;)IO3RR1I0j)30q?cy@@MV@{SHyWSdOAQBbaW0ws%(zb8+HNr1c+&xP?^mRY z7oPDCDtp5($32+ti%y9+%+?3$hW@1bDH$*3VG%HvuLgs~^tc)6^3+~}xkW)xJU@iG z|B|l$W*bNw+Xj9WNtbLp2}bjQpxlXG zmrJ_k5n>2`SA(_2^mqyB?3%6NKCT5E@TBLHNq0^1p8t8td;W$0c+Y=Abvl=@YJFA9 z^l73>-WP{fnFvp{zf=90bXNJE*yNiE3J8^^`U~k|hq~dq6-Pk!MS8xGbTdx7V7X=P z;A;+jevnSJ-Wd3JqH-jO78%rEKymo|4%?KiK76+hhctH^BSD^BTsV->&RLq*yj`h9WI#XcWh zb!bUVMeSd<>zTKuBC}L%@%O*Dtef>`12(2ww*ME$+SiXP-{fg`CXK2~srb))NB8rb zbWaygH1E1xVE*6Shi|tnz5hS^1d{QN$$5#Em|YP?{g?LpXnRGJJ#$%=<9~6Jd%232 z*$juW&Nj??_{V$|t6$cI6Z}O?mv`l_xa^T0{4tciZjklZ(=-WuS*Z!xZ+i3XADu-b0`vIP^dZ7MkqwNId;_!l@gQCP?&ILAO%xpWHHEsrk*>%3 z)8K==GyE9xmb&gn+E;RIT?;t#+)tvP9*glz?LDCSycE-E)ka{yvS3iZgx-IHjECET z@ZN>GpzYT!X1sICVjR0>99)-5k4us9jzpW{d0vBH!=gLPc*=^Zm@m_U6%|2Lh3>fKBR%3PnIls;Z{EzDYAaMjlZ{0U-%Rf1&8cAfx6e@f4S%v zod2{isOUq_o09I~mV4rUl?iZ9ttT^{!xwq5RFKRurEg|B@#zsDUppRtn@W#M6`X&- zhaQ~8y>*S?TCVlP1-5gc-y!<_(EsILyhd-v1j5&Od#L|^q?4O;3vE|k071qNrmHpF zja+^Q!hi*ZR6WReO^xeOup&9Ix?`xz;y{JjINdo4@#E7Ey;^hBMm3vh{W zgDM~Cj_kWB>{*|L)xMiC-Fc&WZg0;J+{c`LJ}2X8>86WqzJ*{P=>}#zZa@SOc_rY% z$@F{~8BeXD1UTG4K?>z^q&!^WjkZx8@4ba%{F4+h7992H(H%T04 zF`rA8vEY96DFEsIfv`&X0Ml`jynd3rBma??jA!#dd3*ksypIM*!MEFH!n_7{`K~_d z4~6y4&~@2q>UfZOpIGR_(LK#!qOS(C9_bqlVd`>Ic%sFe>15=L;ABTr_;WN z##eyffu?Ye79!~CbW#&EN@>00HJsxVpg-o}lh8JG_On`6xv0puzw{Sp`5MUMt zdmg3dXGr&BaEx$#P8h_xw3}phoAa;uX1QeiFs|ibJa9O*1db_qPu*uor(oOw-b5~d z3y;@Q&#Rjg-+P^l+Qk9v=06w}WYq)Tth zLfeOrz~^p=nR)rgE@{n|M>1984np6 zBgcWtcxvrzs(g#SHF8THIdiJVVz}THrdUgqFP<7gk3at}r!y07YfAy1bCsF#>Xbd8 zc7p=kaGTo)U ziSWP~d4#+sGTqVIM0m1P5k*fjpqx3smbd)5Rix$KTd03{9pOn`pj6EYcRw#l*SF~s z($$fI3$xhHF!Cs>n-l@lh8rSQJl=CNGWBqRyUqVH-NjwC!qxl9fawAXl6whhS7LAsQ;j*{BLD>B%-}6i$)7{pahN5em zkZ6fF)2$gh3JrZd1jPSJWV$JB1Ce!CD1X^`8PkEFQsK`}S3Gl;BGU!?%@z#D55`?Z z4ouhaJQdWhyMU@9>3yBab}7Ao8GIDKMRT?6sdy))L-<|!36__VzlfR_hlq2pt_6!8 z#xb3v{s(c%sy@Kx-BPCW5ZQn=9gjhs3%$<{nfKyEJ5c?lMx2#Fw=?O!J;Y$!0}<#r zw1Alx>D~l(^B#dLce?$S>{J(5-yP3g&HN}Dr5lV3A})hDM)dy;(!sX5_{luUd+#aq z^9<=^Ud+W(K^wqd1GaPg>5LC1XM?rNeo^NU8L#xEE&j6j1Zb$G&o|QTSJ1@nH-CU@ z^VO(!d9kdSGdLa1eM>#f>5UqSPtTbFuS>a6c}b^L{t6jJ1;E>>@2UUoq`RH>1nH#& z!5aMw)c+jP73{u_q|1GwaFL$xA)U(=9wohtfHNl@rJkpa{J)7x)l#{89(T9}ADnRh zyj)PEMcY1Z>FnTc@uq|9RjyI3}U)~!Xv2n zJTLg-2)z!J%o`-mK)b)jL7PGQsdgq^<@^Qc`^b2>VJN*`%F7^)zuzM9tWhw~Uv;=yF(DP+vycc`Yfy?t~cwws%GhRsl zU0~hmD0pqoFwp%zL&j@PxCo@u!{O(oD^x!q-9Awt=w9LurPDuC|6{kHU;L4C(%hmE z`F!Hf8z}gpHM*=8M4ca`i?&#bCa#+dGM2s-Icr=e$b>`F!4|< z<))e6;p;U-RehR@`7zJ$pjmg+(W;@rOt-VP3fWvbDX5I5@0Vn}MVe<&yX57pibeGN zAnCw<4U{tM2Iw>lVdh=U^+C475x6iWjB=+Yws7YT6`Jb?xpF)2DZq_a6(QI~Kd+MR zr0GytoofSM-mIst8>HKE$r!F`oCM#GokX1Do z*F^O{(mA9pgb~U-N?E2!^=HzxI>y8Gi_69PBx?}5_ve<`134*QMRQI%OO$482e187 zhH~46Q+Y|}km3YSOi_X&vv*XxkgoHxGt4z^1>XnK|6@s~-ZvbsQpyCCsvDVkb+e+N z#=$kf;kZB3DYrzygol#voLzCDoK*Q>L8IQW>SWO$QSCH10@8|iwl5#!4jwDH6pYRq^C zKTgD(dm7-l2Nq0MHp2urPM(Nwo~~rpH)*jER{ms&Bb39aczSM1;={WwtK_SFM2F?; zK#MlO*|Bo4dwoe~ceo!M>DnJp=%D9?NT;N&3zIU`ar@0Wz=~%p%!ge)tC3dSKBil= z(htsDcnTd=JxDp#!6U^xKOYknCQsx1T?gT&23uUDGlA(Y$VuV1ne*}b$5K?kC*ys% zatqCU6N-yUFm=5r-I(uo$SOJ*>s-Ce%o~)U55yXY_>I{}$_1vHh$|EvC3EMo+@Rgn z0$R5WH;uhY9beMf@Rq`WN6WGQ<-=4xNN4ib8{~hA!$qk^%)I8I-@)^VbFs-6Yo_ZT z(*p*pd*Ho`#7wtwl^oPcbitO&R+J0ct|#Va*o*pPWO4azN08R^#n@kE9o5dHyDW7G z$&^LnD0RC1NVoM>wa|0@GQ6&)nrc7NnXj1)hG@s*wRg>#<%7I8Slt?jcdew`PhRQ( z_x)oozvcSLssDw;AG_WsB70_pao4M6t}Ooz(%MpE@9-SwFVgb;oy zd^ts%S&zKp_1qby`EYqJdVNU`^Zvr0$=K$<|Y&>=SBi*(yNEo^f(;po(YL!-S0zToxUwI-o*SgabIC5dASN&KT@E!K> z^ay(ViY(vprg5N`g%(tirq>IQ?&mOLU==U~e$Kb1@_yRbTPO*;U+ENglRu-mO&oA| zGMt%8mydKclJW_X@|FCfe55=3W(3e&p#xhAIA-293(4Gmm@RBrFqm?pwcj}Z5eF=X z?pwskWcq_+YPUeJE;hjqF9QX;q$#&`QGcPbw61dh$B+D>CMB%C zt1n)VK+nICPP^wBbawJ@G`7|TckfrETV%Eq?a8=<&N<9uy3f+usJ5jCe%k55bj`&Z z#ZB$%c>bfAl&jvTAar1-s_h!hd`X=W-gdSxei1|0gLG#{OJTjkX4qJk9xox?cI_sl z_udj8i0Hx0`=9#mm(=&dKk7@yo3LX#TJc*3w`#dj@p5iV=EHtYtTL#V7gXB@!dcIk zinV$<8QW!Gp!xg}(< zf4$npX}l(wbuI~ZFCXcu<|=}-HVz;_l)!Y3p^D(QWWKDmG>++xuO0%7&cz|m-E6nB zbtEWS_g(x%YAG{bBDx6H6{Mq)|M)HiS&xD3S3z*|Z{%Q0Uw28jA?GFNW0eAmBj!Gn)-Lg#zhVvWAHnB~*XdxxUmO~xapd}q3B^E+sfZZGWG z1)25GDZ7Dg^q0o-+NLqxhmFSQm0}e#9nrYFFWM(8J@LhqpCFCe1(oj zx<5ZRqYb$e1&`bGcpd2qJdKg<@9}!bZc$BpsLAe^t{(! zz$#yCpFju}>sIYQ_@3!z%O}CjH9^7+U02EpLwa*Tsbi}OZ^(1E%)BLEzSctuYG0U6 zq23Rsnr47!9aorc&elM<;h`9XDAVH`WL{|p$sQugJ3#LZhnVsFdoF-;nm2-|ZTp$7 zIXDL1Nn9%^UZD5Wf8(vd9WoVFJ#=Z9b@!RYvV&I9_h;W1w!*EF)Hq$*RzsN zbJAis{WQ-z3_Qw=H_-} zZ5+^2$Pw1xrmv@@(_Fa_Xl}YIs9vMjd64e#*R3F0w-_DU6iD@Z(zy)W0mi#e2O3(7 zn9kIz2rO9T4*H@n%Dr4YOsM^CAv*m#n43Fn1s)?=No(%6jT(<2UF?XZSn&!3*^k|r z&h=&je&gT+HmojVx{bZU@%u4rxmY#2Ka+WfW(DEIsrG#6j+fN&C0$I|JpB028ZdLl zGsH9S4L^CAw zOOL$4_9JY!YeoPzb3ZP&Iq;5I-+@ZbI6h}Dh_(MgIUgqtA+PzUD5bT(AXrbv?_7tX zW0~~xFX{3(TjHWMkA+7=^>O$5k}kE_7|S>$gB9c0E@y=z9xO8uSUz!P#tU+l##;>g zqrLywFOAIW|Nbs_T=EY8U?+N>iFCE6=8IEgvW58H%b9tX)vN?z_fv%rD)jy;^V9!w znxj^6E2f^|ZhGHCzZ(`v-s^qHb#E8ax$Y=Ij|?N=f^a43c#v*mnq*zLWh^|NM1L=u zbmGUUDDPD)e6+t0=$`kUP6bygO5t8}PdIO*y+}$%3Y?s4J|oeP1Bs{gA)MHDBE;n2lk(+@mqz{H11e$apTZ z9`jx-2kHBCQH@C~<)R}t^U-51xy|1&cklI2z6sBPN>cRr2I)4hFaS+^17V^`J=M;n z>zHx~$W2m%_R~bnyxAQHL=^Rcjh@q)Zrqbza9FJ(G?cu1(*5|hH5v)0ZE{3X{`~}f z9VdLg&vTGFnSLH5U6IB#+;!qFSkX{N^*_=L&mDm6HmeDdUi5iMy770tQKx7>s!0jQ ztnzhcR|<thOpc4XNH# zyO8eT3oZC~7l$|9oJ1Wr(y_h+L%Lq$T;LVY-dI>;#*F7?6bMgsR3NSUS(F=Weu*D# zRKl6;Xy9sQ@+j!28JvAsm8u8n6x+&BSC$Q2bdTQuo^;Y04(QxeRoGX5CNo~q+i$}4 zL}h5&%Yo@mAKWgqXNJQm(&w1cSvZw4`4roKH)-@h5PZK20S$-F5~?4eHM zRiUnw9k0gM4b~6y0(PrjlVo&9UJy zF!~f28m-NY7dbKl#=k(on)7Ft@4eR|7<_OpK>68JysVhzoL_(QsxyxtaYlO_@mjY& z;@;|Xe<5AKH7)$y)kgg2`V^|akgj*$U_97(1Da?ujp-J{!MJrx2AaEszJHMM$_fYK zmK=G|uQz?3ldiM4Cr;}9Rv1#?$;^9h$Olxju1dIO>QA`}-yTAZtr_R2n8jHRToUB8Nc*oAX}Q(jb3$AfgySUpqFy$REOK6e*oDf+{!Qv;ZJ1B%Ph zUU3A>hONwaFF*nM6CDjV-k43DM`ZaLH4D(!pitsrWo%De_TQx}G7^2?}rj#|UT znuo-eQcHGK6y(R_sm0+SAgG=yAL)|HA8$jOFR%)J|biZ#$WB1%WK)WTK8Sk*M z2d;~60k&H7dxm7ZGG|r1Th|B)>& z5EKFKj|_k%+zn>DDVk{@qC66AKE9k8&v)Q6&~?BYdaRFNI{RNepzAev$giQ-$-LZ< z&zC&jS@oZN9QNkD6W-WwK{5_8)OC_{Rui@gRnxPP?1xyU^Rjp4~mC&OC_ zF6GP7@&bC?jLbV)0SfcJu0^Il>E}GsvG$K3UC8sfrBeU*m%=Px$ic0aDrc-khyJn8 z1R0ODKf}zoh1~SBzbwnMXYfHoL}-U!5Y(AK?*~A-!gI!Gw#;O>!AFBCAL;VOeB(bx z&4%}0sWIKO^)jN2Rxw<=Uzh0u+bqN#o{M1i=+jg`9aXxAzZ%yiT5&RmFItrXR_}<1 z+pdkIt_P&^wc7~BZgqw)BkAis=^_K`KwsHlxZyLs?;Gj*7Y~IO^v6Jt#cfo-CtYji zaJa)>532vY$8_UQIKxLP`bzdQm!+JkUL&{f&sEEux~ z3VwZYw=LM7l9=Jn#mcB=Oec^g0F7 z^^2N~f7BMB858LBAQQW!gv^uut4vaU@+(%yW4{^EAi)0;)elHFZDl-;n)O!DeYX&G zuP^BiiG#82bbuc1q|YPLJyr<9rIK?f_eMT59;;o*c%vlkk|$}GE&phjhN~C383}_# zSquB~H;0*HOFd&~@itl9y&j~?J2W1T%Ql7wudJnx8|g;;_=}c(@q~Gb8ccV^sU5v4 znFozsRhSNr`GQPcz2QNf@l4nM=NlB5;|o)B^eOkDb&xRq_3En59izDQrQUd^c^B$8 z@I2L@Nw;#8Gd>%jh!Z65m2__x(#aLrW3}tb_-Fqvs{Kf}IN1nmKQqK3X7qY_(!owm zY&3ZqUU=SzikC7HRUT~jsamc#mEY28jH@>5K(kVMe;U%&Dv!oFr>4S9y7YSlq{b`J(ch}GX?m@W)yW_CF9Kq%t7Bi*}_Oq`urtb z&ZsrWzIqjHNSV`}LOS-Sz zBK+szYB2j*B9)hPtbK4v$JcZCYKk5_>taY9U()@UV~VfbF@RgY&Y<$jd#>cA*SJ*a z{Ol>JmR}31hX>+Kru2P=bfuSyz?)rx`03+apnHEN-G;AcK~3B&d~P?r-hy=AN4h}p z7IVB^v4a_J$1o-67hsJ49DU1lqbDfAkP>6Od&L{3laj2j+_Sd{`REL%T>GV4TyG~2 z(W6&3d}@e2dN?Zq=IARj-JC76(9pMuFmMk2ooX^(FR3fS{>CM+e0ef6UUc#xfiGSG zT|V^|y0 zsE_17yDRjtyh-(Y(y8-KC>`%$5g#_B54U#i zT7Lf32vF}E3j_K?sy`1Tobi@i;3bxawqjdmyg{F;LACEF*nU!v>D2na1YeE>!J#qq zzNTc}5A`3xz?HsmrduznpOWt6={8_KwGC+gWB*gzR8ygIOQdK_NgpA&ITnM<_Mq&j zI~9*~;TrBZFj)bvb}FU%J?VVC?XZiI3+lbNKkj}Wk#45eG;Dk7FZfeK|Boe|@%Itf z<@X^}JYo_v-U!KjXt-oPG~yrgp{JG1ger9pkyLM4q2IHmc(nfr5EfEJokyg5)D(*| zUfYAzZFIYkZh@vd28jw#CZBE>(kX=4;XwxXBx_3>seVN|qdapw^SB%wvEnt;9rQE7 zk47891#=uI7hSF`{y4BNH_KC3G}2G<-MQwwAae=*J_PA9-;BWHBPKwbSyfa&Al=*I zS4jV|9$a!xg*qOjOHsd%%%+$?sY~>FYSOKhjX?M3=s>*;`uLLW^gxInwgVVgq(SA) zdH06*>$96v0M(q)iDay!FAr3Qou!U1>D;d*;Ei>QfbPY2)c;-5X_m(0;ReG%P?J5? z&ZHX>ABW}jr-FxmbC~XIt3OtF{}GHjpGoawL&j5W_rc5dNzUJ>d(?f9bc%9wa4MFD zWBp92ysu3Rc~QVZQSH}Xy!ch6`1-r$(5_`66_0cVy_LbZ7Y@+mwi4COq${kB1%GN6*->JI^Zf*57J!_Jr$}ocG-LF?n z7^p2xf)7i0s{fJkULTzabg#w2iz|JY@mx>k18zttgiF|Yhc&(hH5m@DmnEj+$yjXW z`!=SDzK5Ql&cr+ddhy=QwsOsq9^KO)Olv@{NWPtOMB)8A74{%CwH zSEi^Sy6(Q4Uvl?3H&+}6pDv}x|46rbd%c*$32=}hJ^w+vGFcrk{cAY~E(7b<64JY0{mk zGr(I98o=HB8fH8{r^Be>{31A8f&R_~8L!98cEKSu5$@VPl^JivWXYQ0@@25E-Er!; z4ZZw?zjWu1C?M)CztSKVg)8ZBCo1T97t$q8$w9M}_o1%$A=LRxx@e7bRI0EObuC)R zbY*>f&}OcM+ax41-OEi5NGZBQ7%tH7yV#1Zan<8;x%SuhMTXVx*yz>U{8}&g?n^4uy)m7Rd!!D52HRIKo#OIoc)d}7xM}!7rYkHI z<4?^h@Ws6XrYk6t^gl-(IQK5y|H%3-e`tUsj~c*@Np$~Pb@UFm{n>hc)c50@_a#jf zn^l6Gz3KI9q+@-@m~?OYHwjKrC8$D=-ZzDG52lp^)wXuD#b!3{e!VB%iAWVV0jgm2 zZT*z>(bY8GT!rdS}?k`FBXN!Q1NW$%5pw|{-Rj5jH=&I2^^oF1g$0C z2IyWs(%o+=1Uvpl!M*0EsPm05o>V_2-N5+{c%#`J5bAlK=`vh7JZ?*!mN#U&vxDB$5zJkT0L{QHJ|8pxukpb zN2qc=wgWWC)7MkdIk}`)Em^*a8~%eG&&%DWs#jI2Xxu;MiOG0#6pA_NrYevu!f@s0nyk7(b~pIdS2EH_EAPrbYEO(c@1#|cUIYo`hRT40C`q-Ie4 zk90O6COF*L49AVsrmhF1%k?wB6~<*krXpQm(*1PH6Mn4Rg@UB$^%kyWW`d0Aa8cx8 zS;0Z_e0~Uy0K+cR&*!AuKVb<@YFdh(FKDC6N4o#_9KZS>&+(*_O}E1XmboCTM~_>O zZsW;mxLMqSQv6?1?YHuPnGpEthNY&Xl;AC?#}nNVU{??Nx<MK8E=9V}UjF!N{5xcEsDs;1t}4zBZ}@o^ z3~r*wEl9VyaSCq!dn^mzaM;TK}6-uhDHwAC}WYy%UWy~s~!+H5)h2j)L|pGNlC z?Y#ezMYwxCNN1e40sX!|1bBRmW;##*Xk;`XQ26GUz;xHA*`l?c9=sP-dplu^NEuH&h^q?2!I12^Mj z@in8<2Nzuo9mkjw#J0ve6>8P{mAkO zuR8(in2%2-oT2Lbyt0;G4)Q7s2U+l14;`?}_wVA^nFFcgM!EwTwz#dmQm|P`kF%0) z(rGJPv~>_zsyu=juW6)YzgI3-(A-47&rZfu9W)X@3cW9$bb;R2ige2>hvRdv4~pwN zt*N|q$(;D8$ez1vIGg)BT_3*cm;}{rG^q9?-QJCc@Pp(#4Hq7oGhJ7x4SY0M87gJY zVY;{sU+87<9(Wjx0p0s4nKx^25UkaH1x8JnMfHP5wM~3#*?Mj@sN;NwVPJh>5Khss zfZgMf?l_c!wnuI8sHhWEUeYzCD#GBG5a&b*Om}UxJFMpWBcnZX%)DotJfP;WP_&~r zJx@&Ly{Qrfe|+#m&vi1Xyhg4=1kbYRRkKo6xJ{oEa0%yuB6i)P+J$uQrbgkkl-1~9 zTPW(@E~Fb(=8dZ+bfH>BdOZl~de}H)Ulm2XB#K@~@mr;Y6TMi;UHTEgsmjIRw|nl3 zGxltw@{+E8a0H&>^G$rr@eI=eS${l1l?PkTZe_aC-gEKh(AOX{FpcS~p19+b%~CLK zpc~U!wzy#Di(i2Bz&(^ZB5f=lb>p)|-NzODvy1Oh<6uwtX$8G5h;&xBpQ9(YgW$yn z%G7ZqokH;mWQ4=vkVSf+`*9=P)oNK(QJVmlyrHkpq&t2xm=8=(guPt@nehUOuY&Pi z3t`NuWU73-6eo)HCa7Ef%nIk_YTlz7B~SP)m##1As&<_~Y3IV>pPh6)NM~-}1MS`z z53?ToQRO3@%+qqAr~6VUdtR66-dw``xbaKih(7C>F1A-+egrT1ew2AV(}g&m6}tvT z!1SK<`jVKy+dOA0vP9Cl{M;G`>^tp;_~u;t{y{o3$$jCdCzf3X zD3e~tL%QnhLNscYtoX{O#nknlbY*4*XvM{;ARse>>84feK;s{;=>fWD8XM4mSR#ZO+5iY}-F7S)-wP`fCu6>c}_t_bUYw+K~FHk(qwN$M`IZJk;Us<74KOkM+ zP-~R;!;X*plf-lmRS$rc$QT>$9L#iUD+fXO(`D#Vs)*@2wKU+$k}t@xgkERP*Pi6U zoXkaQ_HW^Lv>GDS`i1brTlzjjx?LB_h5q5o;jYp&>iClGb`;=Cx2%Btf*_`A`8Z0f zE7@aN)OeKYr)0ces=a~H*=YD=AH9x|bdi(Pf%KSo*w@B`iYJ%k%$?cqC~AJNin9($ zz=gW;Xc|~Z&C`*tlS{yLHHpaWdlb`cH(Z2cT-|}=8M=IAy!xCF{B_?&WVD4oFG*LT zJr|E0=m~1)v@+}QE!+j4w?8Bp*U{tcWW3pPoN#!+YIO5JPpZGz4<9I8m~X&++WeAl zi!jHfSPeioec1gvM7s7N<1t@623mO6Q0E8fT=nWiF5F*G)J(5$BArfTj<}FP|Z@R;bnc%vfQ z^&RyQC3;w4#mFbr@gU==>7GYprAOdH1;$i6lTPPo9#S$i!WK^BD91}V@n3h`u2lVd zTBPSb497oPftKq|VY)~4rRd9&qo8NK57QN+D0FP$S=2Brgz3&BD%yZbl$=uR`wIP$Kc=xkjR)w8fTIK3|s_JK`GhW|P2i$yXsCcBi z|J?zbNY*&{c*rna*>ENNy><$oas4pUMWfz0(^DC%6wuG1WZszP@6nc7`f#((AgUhY z=2mdqC%zZ$zcYthk*g2A(@4#;lTP1c0`$=sjhk+sq{>IS{>c-dy3S}Ems`wq zJ6j;!vvLepn+2K9UU>#|oUDRpgwX2`$h=FPgJHkkPf(5nJr5SHZp{7Z9K{_9zRfjz zr=!=UZRq=EH`x8ULAuJyAL7BPy4ds!z26Aw+;^*hw4)Kob?g#mykU2Tg5@5I(d-NK zeV>eXNx=|&`z(#G7|mhETfT4=_`J*sKY!Dc>E7@A2$U^%B54o0z85lbxPD)iMTH;i z`SmLL==`}@xM}MD;p@J`di?$e@Rt@PA|(xJ4`ozZulqg+X^3d4v@~d_R5Xc5GP5fy zGZ~SQRj>O#CuC)0yb-c@WXlS_*XO#vzw0``j^FwJaXp{socrAC+~=G-6LfAD(#3CR z7fNT0g|8m;qwGTFWNSjvY!toukO!q5xzT`=GF4Wo@&vf?7%E7L`=`e2Ned@V{%-h3yC&)}mgZHO> zWI7Gp2p$IPtMRoMz$x-#lYnaB&+dk?l z__eVMSSowIW7T6$@MAF7q7dvK7|wJTW?Djj#Q_K`<0u#T%9-CaeWuh~ue(rX<^lBY z8RGv=(BFGVcm9tEPEWDN(|+i|&gCPWkLf+IbxRbkYmA_d8|ifX`@sUa->5vmh#Aj2 z&lGBhh^X?)K&IXTftywmYdni`gM86-A?o;kV zkp5kQ*Xt=!?MJ$TmcDR)s3&gGqR&gx&2lh-m%`tp2MzRl6zP6R$3y3fD%jm}7Il8~ z=zW}<5FW@Gx7Ewm#NOqn4Eqiq^YngDr0Zd-3L9g6V8I@G9R}%4M%uzNYt?bd+3!^Q zk{kT}K4r{!pd|x(-B^jPZJ_rZB;(DOWW%7u`{L9^ z>CAX$;n~p7*9vKQc~dTLUW4HGwt*Y9ZWDL7L=N8dp9mx4EK%qFOuFs0a?ss<3_SFV z9?vFS=1yJsB7P8DdhiA_?}%Ua@cB(87gTcD>Mup&sqJ#`pInz^XHaV(8W+ri(Fd0tXdc zP%qiP4?EW*aP=c0Oifoh`si|DlKe_OD`bu+_mHkH=}Inq7lo%oCETTkR>@zRZunt> zExfBNk2}|wbT7~fG-H4b{5^sGj!im^hfYYPUN$DHN6+IXUCY%}aqWy?h^BX=^3F9* zs59{FE*TrtB+X55!iqK8(69zm*B8>gnQMWQWb0zyDbn*ANo(C*Cmj7#}zB$qv4~V`tOs>cwKirL@O3}!&{Pjl8~q8FG}PtWrp^B&JD176W5LC~fsDqir=K_awvu-MiB3{Aw2;==6{ETd@IhqT`zmiCjub?e#7_@PE>guxR~0s{fHLeykE!x@rc` z#`K_$2kD;Zenhq|9x!xTGc%sG!3oqWDgdro_JHZ;%&kE_jS=v*&M~G7&0mK;z6yfB z576Uv>nE?2c6B@H8gZvVP(67KNY*95X0u&Xe<5AnRN22t^t(Wf-VU&Hzam}s87nyX zi~)q1cL2-%YI1}>8;e1CsVOs_>eVnfEJ_aM2Hm0FlgYeBhB45@r zcEw6b&5I&ob%s2s*`N&$n9QQ`lJ1~?Aoy7j4lKve^M*+`?@%xpJJAtHd(q=pq_g4I zg2^Wb^FJ@JMfTt8`8DEDTl#)Z=1qKS4?)aZUhS|w6)$SL zrWm7SC`rqC}ffIGyNcX)t8OKz0aFQze{z1B5&nM%mlZ|}-`iE4!vSYo(khpZo z?$Ume-+I$=%D_r+=4C$hy@z!ATGMeN*arN4E2;XDZri6c{4HxA_`I23w@A80enW77Cfa~rN6tl*HxeE+i+H>3y#7r?r#w{T^)2jZlqhXM1q5J zPNQ9J^gLD4oqcVJwRXGV)m^_(?LxYHyG*fhNMD>_@q<}DbqjsGCFC-i{dEx4|Hycz zj(XUou^BlB(Cft?+0=0h29M#av}?J&)3=}nhN&>*xgC|4bhf@~VDskL(73v^u5-JP zZqM$OV4-Z!Tzg%5e3EpToGM(m!UwLfna9rCEfn@IXyiAF^tdt^PfH~X)@r@wOYG#S zb|IZ%zv-|lT@?(ONWY(xPWgK#EH~8Wr>&;vd5p_l%(a#DlU^xN7ViCd&U-JD0;_EL z`a(K`747_Ug)LxKbUIZ&(*2BA1l#deklUEXbOwb#!NpY_V2gn>(2rn}>@iEq9e4dd>$QRfF4&vio=kT3fmvwQ!+ z%y>#U3ZRF%C-loUV7f0xJeZvp1TD+xen94xbHQMnY9O3)=O$G?gTEU%ucKL#wVTFq z3tN|=Ng1xNzJlIAhje-Rg~-y)1?IPy;LiP?bWV9Y#c@8#Fmri5)t^aMZZtx;Qf7y~ z^vGkzo7Y?f)@Ll`;@)O4ozaChFw3wIeSQ=|IsdqK!k=YAU3H4OShlGLF4lx7)oMJ` zeI4=|!C6mG^m%utyS(czx)QNS9C0^}>89u2Kn^}_;wt!$@m->PMtNsY)w3PwabW~A zUQv>|v}IBQx|T$bzmWAU56I*%y}5xVEl!}~1wQy8oa*=C~Fz0F}o&e&&=}q*$zoe@e9*zGy=mEC$ zc|e^U#?5G!IK~rG*D*ergUopGTx~TD=N+I%UA$>8GjZ1Jdo? zF-d$D9R;hOeWA*?=aRYjx?-!u?AuR4bxb$B-TVva@U)}ylFqSm6`CQ->y&wl%1b(a z<_U4}q-*@;P4u`5=`N;6ib1mSslQ>D&;R*T-tulRRN1Y}EZ?#9;Q&?#!XMG}^)Eo_ z1m|s*!HxQ_PLgsd3x9ne+Y8sKhuFEDNoTrc1kOy;glq3?rrM8mBL~}H{U8IF*7XK; zT_YWQtclf6yTR#Bt10(ndK`BYIZ9?m@8iz*j>9*MlTqt8MCB#j!Lza0!QUJ8+IOAl zR_~3)SC9B0X#m^t17h&0&mkz;;1)C90C#`fWEX=(*}90%?MIgHw2A|^yS@_5`bqa^ z(z$OPjIY#eL9^X0sdy(wxCzfj8gMUy+&J0qRKfV`zA$=VcicHI>D=<8z@u9Ma7F;V zu9tMp-xq`O%qj4b=Mn07kZ#De5^yzJ0=p*B^EXIW{Om0Vnrj8ux6l*1^HEP0!mi1s=*hpr56HIJj*j5OVVjP*S7a9!5TwVg|YHcXz<5R{t#r5JU zQk=Mb33e6qzl6S+A-aY?)vzRvN_-@>2(ui-kK2Ksv9NR(RV044!;2gPqS`(!K89A5Xih3p=nJ(`moe!xo$M;elcF z`wSUxeAyw?HQNII)u7+=NSByB9ZfUo0MFxsn0Yg-hN3)&-q0@DhjOhYPyAKJHv!(s_;01W$aogU21IOgGce7?i2YL-UY{OsD8N226N)8-(V^ zFkRK40FWY^i*)&GAk)cR-vb-^I!M^+k>V2PdIdVBTaNKx)eKOwO=?*wNv=6+MdX0*=3HIR&ABvJs&xdp0`EcAm>7fuaz6;fUr0dgd zFrLw(4~A9J*KyM6TIu84Bbtz1>>y^m&&j%Yb3i*Xy<^ODRwk0bSQ|N*M*ArS+wPM{G2AO|Ik;uw0%3c6%c_F z^v+SomvoXoN4u`|0@tq_YVB3{>BmV3TZJX8Bas8o>2R z?)ddNTdI7{3aYO9Ha8^5JC`f#cmpg8qhU$=J?gogbXPO_z#E50K(B2ZnDHWOEMUzR z3EbJ0W4gj47I5NW2#dSZ`)!hWtya0f5C08@6}=`h%hz5w8M^B{0@Woglv^CG%Q>76 z=Nv08a#|}UVdww81I-ia)cuWgFQdb;=Z+X&$fNHcq=PrY@T8Y9{G$}QzmV>%Lm>9O zr-0W)PNLd{bbqh<;hoVM*m5h~E~K0EcO3pXMFo%jJ)apbBGD30eP@Xm->aou<)Bny z$Hq!YhPQ%foGmZ*)Afbp9?|oQNf*>OmLH(*4UPBfHPN&2Hytc!5x#&QrB_P z-4Tkw_Ul>jPMR8Z+(?)Ceh2uuKMf{edjG3O+eEHUPz?9z&o9@+dEt1@_W-bCVH@gP zKGHq)3B&Et1>p5j`nxmfWb0t@?0p9CQNw#?yvrS$xOhw~+NUs@Y8Nt|no4gR6rlq> zUTQGin-kAb>$6A{{+u4qA>%p8Z9#tDHUjs8IA*-F?WHKpC7!D&%b?u4ork&lZC6gb z5swRPd&i4CCqlS(l@-&~)cEl4VNV!#E`aH{!`XaIv^+EnqrbzFdH1a732gW}z+?J3 zn{;{}TA;6v6m$<`yDkn{;N?yw=pvg_-MJr-@zmx%0+sSTVHW2=xwmh6i+i9w*DraG z@ButQ~2{#C*?O=-qR#kwtzwh0sBvIU2|q1@q5^!y>xO)Or|&)IVs{H&z+ z=_Q@-foeW&?lrJuWdiKn&ZN_idB>;9_N&+V9l&&IPX~c<`*s1{7b#3?+>BQU(&tVUJT-bGNJyIRn&EebW>XDz^V4J z(AA6nK0~@acIQEGs3(*T{l(0S->5_Wv<=)NB46F zq&eJ!LV>exX%Z*L&xYQ`7peOj=~f*)ASPAjLW_^SR9@2Ec(9`G=-+&(aM@YXxqPI% zRk0H!^-F>U@rlfMw)%CTHDoN*c=MHN7c$z%3o6eipYQ;v?1tRKGNBDTMA~{Wx)qu`%=e)bQbF?ftzeE z2dkHNnR(y--@e@*|Jb*?Bj}b;+|69to~I$&HWi{Hjb3Px_H?RUNcZ7aIvTd?jBKx> z$xQd4E)9jPJB_|vV!MUcr=nhtr%?3FDa?4~SE7);Y{co9LKf3~wTnOnWj4sbf$iFR zj7IP4eUZ^3dOgH&Lrp#$-f>+f*}|z`^T6KruTk)IdR`Fe&Tq8C<9B`#2es1oRnl4c z%KqP7)D8FRHkPUf>C{a*CP=NLEr8qVYfv`seVevdlc9v&bqe@)dpm+Wz_XpdW=yf8b8?(e7H~Te%H9vdf&i#~hC(oJV zh$JPbVxrD;axUihN8UmZy^tOsBI7lM8RDEBvw*TQV8)BQq=E15y2Kl;pr4<~cmqtk z;Rl6I;*%D7yq$CrBNVX3(skgg(KssaM*cbH*Jdv{xcaNBSA8^ZwsRKLOt7c=0qG7; z*985(J#U40pW9kNXn7m2=oP2)@nwh^*x3^N4h_3r5JsK&p|7gzW-P zdcXm$kI_qQ`g|kf>0gt%BN(L~qQ^H#=eEfYdU?8tsGv9O+)qh&?P37jSA9-wFIT5r z@`5g+_WnLxU&qCQ^4yVN)R}esw@ovdZu0IZ(7k5}aJV~z=~B$LgZe8|Kw}#{?~u$J zeV_?E-=G104T`7Y&9>F%*Sn<5@ z#)?hOF|R6I&_PY`I= zxqSW(GG9dl#|(NN6d5mMwGu2o^#p|Ma%INTJkkw%^wL1wW>a zFPV4tpI-3I$s*peoNm7lva!o7lbez!-Q>jm2C1O$RVmoFkRA^s-NU*AV50m9aK@Y- zS0SCtyn5iCa89wJT zI-1_Mf^_b;Wa~p`T;^{p(c?aov~5J2v5O>@zvaYtN^|h(5s!s4HS|8cq)U34iCfa9 zfJ2)tLFeAEy{;hp9haAM*DrgQ(lc~DxB^gJjsZ(O7fF70Co zN2PXwoy%u;_LIQHACdghIV?O}GzY1S{=?6}iRqK&JDaIi9u>C(@S;q`+6 zJaK|vcS6QnW}^bGXAXn9vVY34%2&L`00a%~38jVfJP$Hny!=A&asMc&~J{S$1&^sy~>FkPP z#0k!$pj?v)RS(j|_rkj=?iXUI^ z05=NE}e!6=W_#Nz*m3p(;JjK)L~LS?Jp*H9RzsUA|n6aM`@g z7PK}yimFFj0LS}`3zYV%Unab$s^CYXFg)rQy*`w5u5DUi;ctKZr+as*ok{0;XaG1r zJPy0I(CfuXXQt!_zE#BGFKP|c@g-gO-9zAEzW(_7r}DJOc2w@7Cw7T z-#i zcqNjLDWk_lN%!a1KG62igYUnUo)<*A{gQW}E%*&6s~kbq}OiU7)@xtrx zfX8lr=-Sa}rkmsN2=HFJ1c$!#^C_8k@Qi2RlXSmeE&K0w=i^H{{ezk?unUK_*N>r` z&8!3=sK89J_SSak`Wr)Fw{zAo<`KQm4(VPkw1WxB-$6}R71%j1=`w%Y!G$BNpx4-? zfaQ7zIKaJewlHe!M5gPn4B+52+1?t-PnmA2wFlIj{SY*tX{B7iIAcEG^D+rgFyo9p z`e2`jvU}24JEm(Hpn}gi_~I`+XENQHU4N0{xrta8(9gwWUhT&n=-gBvJTbqD8PDje z4_ciOhX;#in9jqcD@y!49=AsJqK*fdchlV7;B|Q>b`a_La6z$~xvP5SoZa?nZm8ch zJSMP~-(o?JXOm7|u*aA8Yyu@4O{soGIx~4ooPP2ldYfs$bjqy{P%pcQaD(v%)VaTq z@fu{$LDRN;;vU{iq2j%5iR7MYVM+heb6o6+bWpFDjdFgbQSCyydFPbjvuqty;}yho zjk5cK`kvh=?;~Kk`8&oWv*(dMb+OS%oF&hSL#J+%Fi z8Z&Q+=OlP~_A6vK)|HBP)j(UU?^`O_ns;1swkiWBXP1H@UXfJ!NcZx18vYQm7yR_0 z*X5H=T_*v*hgBfyC_T@JbU&`eFd@&UmbpF=M{sKe^P z9PZo?NcZ8+D^Y*uZ;&>hzK)Y_ti>tuk8E9j#Xr{NldhbP7QOxQVMNX-cKOUN3cBY_ zU~1(kX8G(_C-GnZy1^PH`urgCUXj}jE}Qm+X>aK9oIcl-gu;u5Tq|@+B@snYIHCRtGZnRF$| zp$3=R-&-G?)n{hD>I_9rL```$sGk%^4fBz^z*3A#8 z>l&F??_@R{(B++2bddhfK)&V{?uMBjclhEVZX=wAC%M(}r!wg01JYS3TH@r2he&ZY zecvbDkvEFiZ-g9rmrRc z*>J(9>r}gtZg5Qm8b5Y8^sg|a@@m!{6aF+-)~SEIB3!yL1K)4o2*!iR;uQ>z1T=;9sV(*;u;D=xBz{SqFCDlh5hKhmiT4Th7y%fm;(^!1N)T6GiQ;hA0FjBZL)zariL z>QN=D$Jc7Q9=D2@ai8ax32B?FxT7M6Z!Y!*>QQFY@gUvDE)twC`?t&MA`7N_^JXaC za&j_Q{Ez>UlJUS53w&ZtDQfLy$BZ|qLkpWnj^`Kk7|(QZEvne7aUIH59Zk8R+t*8F zi&3S==E(`6{i1Ny9=B-MfkL)}2p)n7c_1L2BilS4!;DqryOotaLNt}`b;N(yZ%FUiNU)sxV zh_vBlvvjU=0QSo{45a&>QuQER>?vQoTdOO)kT;d-inn>-w=s9Xp=b2CC>ihXDA|4h zk`_?k_<zM+knPRp9(woQ__vy8-d=pA4Pr6CotV-M}PFY|4;EwX%5p>pXi284BLZz%~P3f z)x{h^;s_-=kLF;lw1pBTLX9H^qlSxJ}a z(;s-A$^<7u=;wCQnSUM&!VWd^1&ecW=k_Dr=Q|jbHA}#cUG#m6bYHri1)I*f0@Xx% zegx?X4W5CcL5X1d4tl=D-QWztYhJYkw=NX)zbfFB-Q~rz&h$7x>3V#9hm=vNxM)i> zbv#Jtr2HCXpII)xgRx9^;nF?yPU?@U2C(Bjop20|Jk<^6t#V_=t6frzJlguhgv%1j zExz%9dv71dJyyu#j#|gz!?UDl;qFYT-;>V0mlOWwX@_^e$fBOtNVj>iHl85ogH1c= z^--i-{vt!vIcdpxEX>E9`vK{ure5NeN)95kchi`zv_K9vo(RMJjqftcce-OFywJ2B zCH|o2k!?N`D=qWCA_=QM!{v7W1C$P{z~rt&sP-dWf8XvDx%l2nDleCSQm%r8@!LgC>){u`(=Xzx==X5L)?h~&vUA5Xca8foN zwyVU4a#8Jy;gy1x&UQQD@@ zAYv=M&oSv1JXJy+J>0;5y>prIbS@o~#3@=pr!FIz&h+eBPOdr;=02g@h0NP@?Er{1 zdJLj70;zaQdgzLY?kN(_TU&*;dNVAqWrerzK7~48H%M1L>k8U4;S|!coPb&G&uxA5 zMfOhZrFo1Q@4<=TpoifuWMNEy{~+^*?41H^C33j0To9G_itk76%KGLy;Ns4u^Bip3 z{}%bz|EBr@=|)w1!I!-i@tu1InJyv92L|S*pwJuLsrDn|mDB~mscP>~7N+|>>8@u_ zg73FGpdn9QG4skLCcxWaj;M9wDW*H;G8InS8;K@q((C9oPj*AU2+ZmSxV1OB%S$}4M4+99p`+cug_mMZsrcl-Iw(L%yE6U<{*XVerSo5t}p2> zT~t8sANHWVuJk-w(p|mrQq>a8%hh5QRnl6 zbPbMw`5|68aPy2HrqevN5~Qw6gR>JyQT>37r)Mu)N5Xl*q7ZsMKk0HFD8L6!zVKoC z5-Q&Ix9fyy8fA6P!!$+1Ay8B~b3qz#oPKU1oudAH;l=g{zO;<(ezp#g*o4Z7B@fwd z(IQKI>4o5oWrF*33wtHjeH2V7+>Dv7QB=MpN9&mwv zUL#%B+_`+;C?mYT4}Co#T}sso9^CGaZNGX_{e^UD+0Xb}G4|MTvIE-{9RU;n_Qfx) zTqq~^zQO5y@#@+w(x*aXuPo3Ss0U1^)7K5sJ*t!f2mU2c0KUw4M;=`U___wNSxdi% zlJREbD#7Q)@4z4hdYqMXN+S(n>{(ZUT1QfOXLNK(54);KG7DD=Kh+ihlZ5Udxh4a4 zzOIpOLH2IorIAqEAln;^0-0Np)7Ojjg(FX~aG2txw9FrC(XH~3$`1#!#- z6Q&zEBN{rWn256u)6bn`Jzn`F!58Hl!1tN+sPm}%%)7#wQ(oNgDNdXrP{Zp#jE0vN z%H~m?9}6Q*a=FFPKP3NK|3bQv*A%dVR~UR2P4D|bI@QhZkpGe}*!xx_GhW{tn^D-4 z>5vA>by8S~M(eUAr;?L)*7oLd!k$yu&4YBsaWth4a<6DDGQBINq}6J4kxho2oDA0`5$}`;*k*bgT7L zJCm*@c{qOi%n+9R2w}#1TqnVQ?G2!3LJ8B2O&)?Hd+EWta(aA{%p3Z~1kW4g3?oJ_ zrs6rOsR|vjHWKNgufltUK(Kh_}lXHB}I`oaIxPe1RH@y6DU=iUDVz(a3(Fyn37zwY^K3E5jgx}Y#rSg(4u0tI^ zSmX;6@7prn_05maoaf#!xVf3>MoS$~s_i6b@$)s)foVI$@k{*RxQbp>Jt|UPavugP zb)Aq9#(kG$BH!{@IN{(qDjw;U^YN&nPXu(l{DSF>-n|vKzL){auG8x#$ao5&U-^(i z2@F~>kXgR@8R=kH#{^j2_?wv**A{>Qx!&+?1l>=U{F%vR@14czFT2joyf+bS3(JMw z)HYMsA<|{NDFPR=gJG>7eV-mKo9S}xQbPLIEkuBf?Coa&MfjULIK89F`Rlde}#Z}IJcd??&k zW4eurJw>;ge0ca&SEkb+vV)KEngfkDS5Yq9tDiVZI?DBL$8Vu1{ehU(5`)idq3;W% zi?3=Dqt1-OpAYoGo$En54ed3eMrAf`IGaOV?@5;#HB_t{o`tOkE@8T~-HpPJAvw6c zCYR}qbKSVPcUsWA4{^-$jkg;OG6vj2W?f^MPT^!3xVNGwws`GMxtR|2Lh;w`+<=t( zT;A~oXwTfP(BzK~?A$K@9~b9`G~(;Q;@Ehmt4}sU(Wj4r8Ap@rKS6Mb+I6U->D>|SqPCeBPADB}hcC)0%Ur0Avw*!6OtA-pk!g1&N zk}k@m75xmZMIS!V^KMADbmapyP+bMTxI?dxC*9i2`+~{-m!gx~9A@68!}9#&6}DiS zbsp1=o}vhL?69eOeP=f1cIsS``nm;h4~}o-RxCUXw%v4rM^fqMSkjf>Z34e{+yKvZ z(c>?qQ@{BY#D0^9Mn?3w3hBmL^n}hM9pSH8cc^|(I=#!Lvb`8J3)r(fg5+E_BaCJld%WKvQ~sBk2qbWzXSJJ3-osCsg@JH|>Bg zzHN~Ryo0+k%eN}i2Nzw#!2Vzx6>oQ4KQYp0aox&6>73Lw4_oFBlI^|qff|n>-F(fN zxb}A_k}Dcc{U?NU_;e;da3&vBO_OKl4K<&EA16kmux+uRbH69!IVjA)eGVj`<_(cd zmw(3-pDgQzzwV^pe-Ep=bM^5i+&ZHs?)DZdWc_>|iug7IcFs#W|1Yb=y_uVl2Bx3a zNC(C{ii4L=MJ?}gnDGk3l*N!jLnPbKm+5-QIq^3#Es=CM+r3(#3u<%Hk@x9LX1uw- z1_9IW@>s!!e!f!7XcROWdP|7>7rt_qKWA~b=IrBy zG#xz6$Qe%Oj#Kp@U4m?VPgq(k6qH|4&z+#MSTSo zzN9rI|kC@5u`i((FkX{8GtQ;Bbo6c?he5H zC-es+2hsCD$#`}iy4diIi#WV}3>9z2ykmmpJSA?WW_{h?TUtPGXf`}!8cy|R(y{&< zM7m>F3W250R48h0VaCgl{pV-D>_0#G|M<@j8P7hu23&fR2=52_Q}L3+0B5=8ugd}7 zy@L9hJ1D)@6@K8m;m-Y!bmty5p(R0sU|bh{rVELRM2!oK;kRo%)6HCYR($?91Qsk( zV!E!j2gH)!!SLxG70NYKy9w*Qx44X*a!=}aZ4}hp)DAX;-KNer(nZV}19ia$p!Od< zu17k**?w?O%|@VnoW5?5uD5R>yby32^yzYq%IkDwFn_MLP%^8rifdCF4vGe5<4d2M znJzqL5_tYB6MsHGgz2vNd;xKuVc64cG}Beq>cWBV#^60l5~1_)CCj(+?l8Fcmo=^o zqTee>r}kF@PdFOjK*hDpyjz{TpxFp@{M?=Xu0h5#>gf$vm;XdvE{n`~8>Yv>zWetg zel|V7MEz_zw;b)P3vNL|l1jR0Cbg|$oy}H5c!$O$xM$O3K752)*`oZB$_W>T@!}cBp*Mg=o-6L;xFi83zD6)!U zy5d?bu+dry&if}(?pbBH@Yc|co0oz(3-e$+EoKASvFrtPJVkm+$jKO}I`W1!zq1V&*N*(t#PNQ^49hdYmvSd9-AyZIU#0 zak0?$b_mwDuK|&dji`8}D=V`K&_VF@|Gn$n4@kHALx^(2 zrjrvucv3JLmP(KRk@2oc%7MXzq2S31`a37-*6>%sl)wQHxY6Svq&wU9888nRC|lpC z!z`a*)dlWfrUlP_HliGeywBM-yK{?9ui;jhJV(dGJ79DyJsv?i`zMZh7)ki|;C2Pw|A4}9;i^u)Z z(CC+fz0a8ewL$x->oe(;!4#a+zgeuFa-Zo+2FBtwI9luoZDqQJlX~OI(bj1GULWds zka_pzy+xmo6!9*xbIn0b#n|2eJ444d8E_GtMcMETUuIGc`+xkP48~)!Nm&5z) zxv3`WxW|qbaP@CX*#1Ujx+`l&K;5JiaAFtzUQ5Q?JY*6~xHSuSJfx2==}z`cfC=|T zfCLFWFO78j|4V|8bOwXLZFIYk?wDT+G{{@P-|9`*1IPt%8rMfir2Z?p1@Sp}nt3)_ zcsz-^|B`MJ$ib73=Az$5sZ3Y;J`*R%6(c2U4eI%TjJH)W1Lt2@g;YmfrN*yFH!^(& ze$rzdYMXF~>AI~*!xrCmBOiwol+*I;&U++QO58tA;pUiF;h{m-P!B8mIhJ(gsW#}f zy6ison0rYHhX3QgrDVMS zW_iJ0{xzUsi2`Kh^-%VPFjE80@u&AEB;#!e9}lhX)`AaBZG~ei$Nks#h3Nz7 z>m=zi=AK2Dv{j&D-U#Y?O1e#;0VVELfttJ7uBzKIbh5t(+~z{RSNL{wx<6&ajU6foij_GXsCBTVRb^O~;*Qxd+#yq4bE>xTSsa%q2~DGY9P$0JX6gNARbm`-k-I|kv+ zpuy@3(|KD;@S@pzaF8)QUQFiIT;zaj((ZxkQVpsbKz_<+c@8b6ai<CC!}25!^rp~6!7{g-rcl`8P10N|YXCT6^=aR9yxR=}5{ z?@{L)8E?YRKscmQ4Iez)L|yMmS9~KBzMSy|8ISd4#ydYd4~BGG$A>=EX1e|F@}SDy z2C>2a85tHOypGR{h{xGb0|Q1gNjEwAvpw2neZLW=stz%9-Wr`pL4+% z6%{1P+X1zCN^$?6;YkNN_|dZB8N4i~&&nV@R(MQF^`f++{b zQ~i&0Uww4>?GmS|JsWbh{ca@uuBo z!Lzb|Z+6a0x9z+h1b6adq3IpWbbo*B1b+x|2kyXCI2Ty=gd%|HvEPbCQ>(Ls19<*7+z+YeHQ+ewbnerVCuC7OdpGa5hYhx2# z0AC#1$#g3fmGGdSL!jbf`gxp;XA4_Vz1eWc>(kFUq{BPbpr5bDL$%xTxO06;SN7gg z3?3c|UqsX2lS#L-RbAA0sIaz^85Cj+RXJ)OE9kZzzh zkAJQ)hg;(usCFUUNqJYi;nT=JGodAE^MX*Pq`y6VDd!`@SQNf$D}0&dl?fK9Cp zOqX%h9xiV+fsVFYm~K?8JCr7C!6yL)OgDC;FVtUB3TB-C%XEJBq0phrBhdZOYNji{ z9|oK6l>!CXcv9zfUOd%AEcnn+cVOjrp+;Q|k7?J!BRcv~{f~6Ec5R63&l}XursoS(RD2RL@T58zRUx!rZ9_9{H1Wc8di<1h zKLgQLhsLzQ}9X{)U@99t*?eyrc!}Uz8@^U7(wSHUEev; zsNNw>+~Y>?J4m{x?qkrRwk!}hl>YufI<@-)(c|N`X!!>EI~eH>ueTPxvxC7V)tOX% zNte3LSp4#GApwdwEnq&xPh8u$%%fh}e9^~G$F5nrElMe--` z7MEP`4VWHM1jXCv_fXR5N&Wy8vp;-gTNvzo{*o^IS0A{#R0TA~`!JoVu0HgbYKE z9R|t8cFcIj&CMSB3)8?JY0I(3M{L>z|5=vApz#yF$6KE>H9tzFY|N? z-2Y<^C@!V z9*#Qr=+1hu^5rn<{2-kqpch`z|2Qzd!86^##xfK>?+`G%8q0Lw+XImQi6Su2m0l-I z=DlKSi^?t!g`<`1sd%poDy7RZ;v`p}T1yf`obe&Y9`Nn`|EP8$T~S|0yeGCFY&I8| z?&cOtoT*_5Cyb=mjgj%3leDpJq%Ca2^!hE*eYkN0Juh>CJ%4n^osTc+4%|GC26Pz@ ztMVUF<;yU%=Gy&xNh+S4l8)W000&ICRqKGJANT~<<7A*-^5jCx+zIYud)5TS%@*`$!~ z^ZnnsbzYzI`~82vJESkD=3cfOnUT-AbzrMZsXRng6L}eN?-k#9m zP&L~D8{BH7u8+^pD$Cnf`f+zt_jC7tY~ZbKM8k%MHB>#5Zqwc>um$?VD$k2d7kys~ z9-K4*x_+R~DI(*wEHr~B&y0bCF7%?xLAsk6q0psZI~Zquo=O+zZ{vDBzhtj+o)=c? z=ZF@*qv7+b^nILkz7PKiu`zD2{bhgZIw##~t!|P&UwEjr*O=+X*ze%?SNOo8z0{fR zp-Um}b7lnGT?iIp|qM^dmWLe1#`oc^!jG$LRf?q?>cd17Ave0>*8>N!1JK z(tEn$B`0P7CrPCLZ%R7(E3P<6?k-r?L7#U+x z4f`W$f5eO(*}H!dg#p-X>J?`x#kH0Ggb-0Cz4g>1sT$iap2f;+e9_{qv+=Fc%~b& zL|#a;?+ZN5+3`B|81t`|->e9}Opo`;{MEOc@V{`ew6v0TpUZlP1;>1)FEVGho$oLK1R~z zSTE&crWoK6x=vL6k?!uMY(D1IARPJDnQ|T97fOqU4&i)_J-8@6Pki=l7dWhGDRmu@ zjy0c6x|MJ3aH8T!SoWHp&n8`7u`SNuAqT7U=y`t9Ib^;?)6b8F3xm{{9vKRYkt(AmM!%6}0`WA$;OVKaWVK-jolt*USbAzhhzNeowmRPZXgL zHxLroWsyU6DFZt8~^7yYgJ>NvS|NZwB%l`Yi@IU_hN;?0ze<1%r5Dxfxj;d$U z1zu5wql!3uNBJHzf2{w$`W57HX6tk$K2NQ=c-Lk$EGPiZ|GWitZa31^$2~@pLMOPk zTMN@!R3AeD$0owEQhMErjQ42!PShehQ>}6?{Xd|%wo`)lJ4LST{XJpcJX>Dl021(F z`uRb+Sii~OcSsMo(}>>ZK{~lLvEZJ?8;~0uMD=^pC06YK*`gfW^no4E%={1#mq)-E zZ#PrzLBits- zyRW0?hsgZJ$6P_FyNBUvW9V~~)_+_pJS~mo9IeZ^<_bG-^05k9usE4Ymvp+l9Kf(D zMWi~B?d~2(0M7rmbFJqVG2=znZ3Ih8wMEU4`Alc(Iugd}Dx**d$8_r90r1C~f#R_Q zRi?91355oVC8&SbvsAlP9lRhM4<0MMa3@db8aD(_{@e=;-#V6xM>_e-uaO4uN9XR- z^XR0*VU4^|-|zg!V*0xn(m6>?fZ0tm*?Sn<<(L6*OSKZcIyj5UUvR4&cVUvNwDDJO zF7>i(_U`>7@nX6W)1jOQc&_}LIMV(RRWD>bJ#jW{Zz>T&{?hkJ(wzv2gS#W{@vr4i zG2`)l=0e|9$NBR|PEhWnwFAHC!aBQzPrC(mF%TZo`v{_DrJ~N)FX`NEqv781!=+bC z=y4wDo`uB2YumPhh(s%9yn?C(c-noN=WNUxU zqehL(l$v7=hvD$(GJ2dxIv;goys_^HIKhXW4e1CkEN|$t&apBn7b_-Z^xs2%yT5NGf@fFECB}?47zmV~c zywt-Ek&~n+-qY{9q^o!BiH$amMa@*)w8arj zm}F0tmvnij7U1TBWWcA;{fczY+h^f1%O8Ts*T<;;RFlrf#~1q#mV=s3@l-iTm-W;K z1KEFlH~fsEoXOWZVey8`l7+9Ha$OX*ATJ#rj5La;+Lv^LFJ>dXsIy?)S9)ENbb*Q^ zrGF=T@vVpGaSG{x^f~u<`vg$jCzVRqdry&2uvCGwig+a?%l_^1V*d!}bAq1tCY_;W z0RRiE;bWtr%y>VZ9RyO}P}qEzUXLQ85X^+&qs$2DNDSqyyqjidSj z>DDG)1KzIoaGt&fl|R?&aeRl*p^7;@wg>|)KB0{0dqQ7_8Mt%*Bi*v<)w z=t=Kea%jCR+oK@g^o9}-dCZ=mt_7Hv^cR z9{Bt&68yVN@3$abrp*p8Ww1M(Ez;|pq_e6y0!D2zg|Wu;cz;z!Z*hH)t2EziC8zmz z2EOio2fbP!0y_6o($&lU=T$oBF8Z1=hv`0#oP^!8`s33{cc}Xn8P9y53od`Dg{P!M zG2=x53BEDb4Cg5uG2@lGjloVz=C~tQlZrR$p@d&nmRAvdcCg^oPZvE|uox~oo=(Lh zUB#K_;#lJ}7-Kkw=|(=Q5zXt8px(Y*X1aHcN;y!w1O}xlqR#b9rd#tejK98QI`r)S ziy3bQvH;K96JYuM^-LG+oDPonh=8L{(EC}-+wvu~h1V)pirK=6U=w_L)nTwoYJ@xI zk91*+4Y6_28}O}i0Mj);?T@#mHUsa95lqL|_Qe6!Kf#!R!uXZj@W$I8_)v z{iLMkjE3m;VK*8RHy4)d7*6#A(s>T^;{OavfgUfXFx`6Dxfz2M0!!(iujBjfdr z=mxh(sKBiG^!&&Bw+txWf*w-5GKl!wB| z6s8+m?uFz1TEO=`^!#6RN| z`ZVd(wWR$1a!;&RLyuQUx50D<@G3(ck10vf( z@ZI-!m~QpuwP5hkSy;7a3DZ@ZUzPondouQ)RLgV)j`xAu)Y%=imQEK#ufB~Q0w$i z`24vk)BTB>2p{#Kr5Bt)w%CL)q+fYa9y^eJ5-#qcY2RlH8P6yS#q&pTm5ySa2c^`dx zp9kp%A0CUJ*lObJu7{|4Y3SK5T@W-};{0o;FsXPcC~Ap^-TWh%&ie2tAX%yf{Z`QX z>&STf5|v@d_^Hr;W^bxrk?vH7K1|gg1!on~=N^%6Ml}ydTIs;HX!?DZbV?3M(A&Qd zl-^oR&2z2suM{fwb(P3D^b|FEnxWw_FF>Vb81CF(NVl+9x4cyv+GvM%d^!ga)k{y zE4Z4s<;efK9L~Jt!gOJ4_M`S?I>6gyF4O(*9ChFS;~aG|-J;L(vj0$Ki6D@!Khm9* z)nCj1QGaD$?Rd>IX7nzru5c`#(2*(xDxr@u41X(2xJvS5LY}k)!d9fXAp$rUsQi(z$OP zf}5^Hp+#!+eT{SiHxMtYlFjjM974r=YPnJ3r=4FB$*twy8~DHtCRh1`J?L>B>Aslz zLZ{?B(Ro>S*ty+ECyWS(8~1JJM}B-mT_2=-TsIRwwCE*Xu5MR3!ILPhM*^cC7-vZUzbfxk~y5%>Aqm>IH;fC^?R6Ub!L(5-rcAX>i z>=?|9SNyC9yq`M)wyB#kU3_2znAzI_cIhHVxeW~_e5$Lrq}sQb8#25r9GhT;-(UEM zI`==)H5ms&^CcGO>IgZ^a#wPLAiQ=4EjoFQ8P9oBD9pD0foxS(srN)O-BZURU|x?L z6fo~7Gv3C6WY}ulgKM-8XSz%0l3_-DJr^%dr(E|VH-)HmN>a35-BN~w0B79Gw z*KtVq0K7pi%T}Qc3R9_iA>Ey(8z}EcDEgHh&U7!mwxIL(?}CQ@N+25RjH33TymDw4sslgTcg^fBj`}_ymk*f;d^R{!>5|SmXCAiq zxXbHTuV=cCPp0DBr>{ZW3VNS38E?$S0DP;lkPqzEg=!Dd9a%FJ$3H0q?R~76?)TAt zxMtln5UfnUpB_`s5MpkaOT8McB%UA7fkSC7I5S5ccD{~CciDO<)R2?M+xluVozr!D zxJ02JUcK`uV8z?=U>f}RuMJIC)?>OmakBk-MQ>4QgAU~?fA`~OE<7ixE=%BYocE)< zTjFu`mCw|BEa}D-W}v&>qp`NImuffCIqrKYet0_z>uB9!x}NQUVvT1S&iF^4FGa?i z7+1yr>Xw3k4;W9yGdRA3>-IiUI#^H;wtH%0d+3}D{r~+DPQRnSQzFaT zAUi)S^h2}Y5<`Ed^zivuzFDtDvXMV0X;>Euzk(Vt>hK0CUDCan7!KQt_XD5Q159_O zY7Sg9X&-QfW0}q`CJ`zwfMCphy1Zn%>pd32@X3P!_m^JRAl<4@$*?#PfR*!}Q`hf; z_dUcHt1BdLoXsV>^b)aupJK4_W;%5rCmoOr#b+M1g0OGtxIbQpS^nc?yf=5T=P5SevYi>v@eX|25{>+x57aDsje%^ccQ5|Sg#Ti>>YvJpfi$Uk-5$Q^;hT!fK2jQ!}?0A3o8KLbLeekQ_^mCew zSNAm%#8&C!m9k&XveGSb83WCm24dIo^mj32yyU8BaC6#tgfhNSV~ah4N%K^N3|R2R@dsoEn{yW zjk1wcc}bU_X9!CtsNkg`-6$8nVu$qC)KBHF!=7_vJAUv1A$NuK8fi>d^KcQ!9l4J$ zT)dF!yw~J_Z^g}`QWd@LhD^61zZm#EInBraqxY|o?!wI);Md+Erc91vraOPn10We? z%`bU3i*leQi0e7NH@9lXIZjo&44vHi2k14@`;kbOTRTl^vw9dP-?JEZZa30(Ul}Tq z4DA6;-?HOOA~-y)xCGN!NRDA251IFpjGENnLNGs|rd1YSzX$9$8WCOS(fB z_kd5zG5Ckwd}h2E4aK12(JX9pcMa3!_pAkl8)o3?QDIECy2=O!cpBo?AVj&4tbWo^ zy?c`Cm*rfaWK(!{?;|AV)SoH`>Du3#!cjr*QN^5IOc%LsEPUiP5u6b9m~OAs3HDnO zjcfwx{lH|ppvVo5aa;~=_NVU~Dw+p{riI73&uMj>W$r*AJF5eRz&5J9r1L8<0!ywB zfJIB3sr-@dW#&>aP-_Mp?0%IQ?}En_5PZ-8{_IV!&yewa`YFL#S1e(12t5x%I<3h{ zF!3-CD{>xF>F)7^{P)i;6^hmS1@J^0sBCt?6P69do$m*v3;$&a2Dw{fXl=oCLvBuj ztxO-pkk~_hXm95X%YIoc*_n^RJNAI#V zLWY%qR~A#Soh?01CSBd7QqWc31H1pndL!vP5_MsRNgtf}T!qTt1t$monQZxkm5jBAwmiiO^Vfu7>KfZq$8^blHI^u>Zgsagi?1bX{dj61XkYX+TrpZo z-LFXJVt)qJ*G$8Q{s>HW#Q89KGb0`wkKRXJ=VUyefIL*`ITcG%8>x69trvt9u>ssz z+a}KOS^-j8`3HIL@q(T2FQn6J$wA>=t?=#ZhD_(T&JHCUe~vtFhB6($=dvglat##~ z(&INWU9+L*1ii;yv2lkVGoIPit%C4V4SR0&r=0$Xvz*PT899fx%JpCR0}bTIDi0;zf?-THOo;N#JK(4uC2X1e!hc|e8A zKj`M8VrIOp){*eV&IS}%v6Siu!*2iJ#+EhMpX+8P(KXEmnYm$5YxE`1xxA!1Qn?58 zxj7Sh{M*ZPf8Ue<>pe5!hhsaL&i?j4&@EE}_nrR0bVpD0ggO#O812kX7jEqZTi=a> zx1#9x@tUAx+}XLC1S3?yX?+dlzq=)&`4i~xNk|uEZvl1(M@X-l(&Kp2?Rk6}OtWYa zi)8Rf-MJL04an{yM;Lk;@-WYTRsG5}tb-6MUv^k>G~7iI##Hl(1>Iin~SI(4Kl zJLYz|eVDR%;MY(wtJMeXu}EP$^Y>AF|E67N!G}bq)44ku?AOu2D*m2K7hXFCypCLo zqQjGzZdUSXpfh!Vm}Wkg=`uqx!p*27%1_-gVS)U6aAel>Bi^p=if?GaZCGfsy~y?b@L_= zCOaeZnc+&rO85KXT5!9@9!p<#W0qsWkGmjpusxnRx;xW#&mIeZr3}C`&e7|fO?6hn z$;sLFzZ%|2+^=im^>eTDY8$<&c%*abt%lDejS)j$`7>Qr@*A`)el{4iF^K8phvuUd z{9o>L2i;%DbkDEIKuK}BVC{iG*gmgv#@ct{tJWCQD8eL;?b5;K2& z)4ZTlpS2>tT8nbZ#c#NYElaqYTPJgxDG4xMzd^V;_aN2(NQZC&9PrjdFq(XT>GI_g zq4kC)Vd>0b%ANSVkDJ-kyP{W84$DB8a^8rn<>V#Zs(Zy&lf zBmkz{KViD#&AX9VWHgM3$Y8p%zX|BVhIm-OEumbhL`S@>TW|mU`a15SLK;?A3K6w~ zUsBI4()E>n*S&r~1m82&1$6EQq+7f^7@N;8K&oS|Go9P!sd&zPf%h7&2wCxd{+x`D zPKx2bjMrqk(S8%KRbm>tWYmXpd2cf+YI`24_#}1+S>k%}dPN%6h}=Y7AEc9eyIBa& zOUFuq^!FO1YkM8T-#D=VAK0{#Dlh5WhB*S2DGqpJodGj{wRQb9RiaI29GUSVLzVDlg%{$<34u(P zZvP&2U$#sr2nc7o3pVeOyI}{i+Q>1Tb;$!%F>I0STWb3G(PNqcA6KF-(JovkEq0iM zzr}Tfxn65f=k_4oo$Yq`x}Fi#Snk7gHRpezBf7(3%8h1gT+l5T;uD>}A)C|t9YXS#R0 zOhjRc2Go#FVY;)MTZ9?1F>ufu*_=d;8w?qe%w>hON&a_!E}3qEN)8Vrt>L!{Ys&Ro z*IqF(P?VT&I?FxSCHr5;o?)==@O$d|ARXVP507`Zh0lt%GF{w&5wJqn0J?9XzvCn0 zvDU#z*H_62P8W(mY8pMyO1h2v-JtrIwk);h1r2kv*W- zKS+1g$rgW$>c$UTVoB8>={gENqP3U%gDRWpOy}#e9)*C1C_IbB&j~W4eGa*Ey z##8TMr0ass;NgD#V0}Y9RWGD_x6%qOGF69PJ?Z*et~QZxHl1hR*egvizG4nyhfail zZqn~fr2ACj2EJ$bz=PwJsd^^ey6y>Jc)(IMQ_WP>^p8-+av5_`he)C_k zU)vlg6;4p?M!KM+aOeI^y1rK`z-rA{`1z$GGv0{rm0-93c=$Y3k&3tY z&_Hoe>RtQuy}F6+3;SR>>tXoXy*4Ty>E4EQ$BOwq@%~Tr_>FX>gNu>#Hw*mFZ5T6M zEvNJ1j-m5$c=B3ix?9ix;gw!Zz&9t-<0CR%zONj}D4&I;zi%<))n1jI`|`sXA3Lc- zW`~pw>#^fJp_^^ZNCS;GrE7ID)y5moo zuH%h5_P^~2TXK#t-33==JYt$AtkI#@b;**;qNj#7KG_ zJ2C3DF!t0Cu59^g3EY^1_WDOcm*3~8{E;qh@-#H>bqI7m@SN$4mez|sI_AJ}yUUm^ z((jyj=f^@A6)=bC-p4K$^%EDtKIL&tcTXi*Gz(Y+N9?BesTMDtFAU5|t!T=-YG3?* zJ+SXJ4?h3)jk=$bu4U?9(0FSa-1lZt#*;_Fkn8uU z@g*7Wjx-hyo{qtYZ}flI2FhKqZ|lEMvIAe2hRo2wVgJ0~7j;dlUPzafs)S!p8xQL( zE;8MZC2vs1cYo+ovx(_qcdkW}Ls9ULP{4FruQ!X==D{bu z^O*4>`E;>Twzt!|ou0R_J<(qbUmeBe|4kRPlFp+SdsOiD$>U(>b|YQT#9~ycB!`oh zxij6>zuVA}Q`ga^d%;Y%bbcm^P1MACU0s-NZQ4Sl@ms<-7%XDCu-6Mv*AD^QideQ2 z=I;<1W&f~9tw^Whm0npXY?bZXj6zw$koqPRE&DH-St>m*K)SVW>d@fJQ{VwxdjBNp zaM(RG)FTqUETPxMN%zX(HcCk6;iw+;Iy>oFKORIk=6S-^Hmy`YAl=0ctB}Q&d9YH2 zK0ndpf|ZE6ZkPDG9TuLP4a7Ug9p-<2qxT<>F0Q*Dp544#gza5%=l(*vf96j3(-uX% zMUNhTkgjFhSZq|)hAbfcTp*oW#BWqQS`qvC(&JUqO@DF~?Ml_dMu$w8`K#)20@=52 zMT$?uDd#Wt7B9=4mwag1$W3fY#9pt~gZue9pmTXiC)|(5k`<@H;Ve6*YpM^z4<`Ht z{l`6^?x$qDZs`+o>DOZLWEK7XN4gDL$6?iovtapjy1$U_x9M2CKW`tHQBLnaCEbKJ zTRciVA3XBaqppvJOWpZzyA-%%Mxor>GE4l}xQd%@Y)jQ2=`2DmaZ;5YKX5YJ+2~th zy=y)B5e015JbNe(4ZXsx(;v@Fcd@90n-l!_J_0?TP38|g=!0K|1Aze~7zsj_RkRo9*Ba zQCTpWs@TDFhn7adTeFK09=Vw+2N`dymV(A9b;5)oHL&_8)YXD;oR^>HJaacGRVIj#+)PngbhpCn^M z)hiib@Y02p+mo@3E1Zxke1jF-KAj|7IAaqUK8YSjk#0){hjn`21zQ8?aT)1KKiS|u zqkBMw6ZKR-Af40owdic%9`x@&&QT)W&}T77quBzTFrwFgyT$QhV@4Nlc?c3_iiY^O z;|FwEw?9>0(&aAE$I6$Lu;D%WJ6zJ`0e!r=%7t6Ei*8@it*#z`ol3IA+h&uP={hU+ z!}(W|Q2T}POlQ3CB~mZ15QiS1=i5VXJ`gSs>cvUpiv`E#iBjji)1j9+Jzgc{QHn!6-lR<>Aqd%1A^W~!8Z@-?_4c5*z#C)tmJbKV@|GJ1=ZRu!Af&hP~!#C znJ#GJ0}uLO_X>I*m~=)5dVoH2=Hr5oOQ`!0>2ed2LALB{fj!HwF`dCfdH8-@0Pa?3 z#&nr!Dsa^{u@ru-;=KGsR7Vfmjb66s4(NbwA%-~R)@hX%u5f+{JRJii zEazwKjnf00z_n70ST4M798PiR19Nw;W;!RWi74%FFW&Mxz2A(?-!FLwbaQbeI$1f7 zS&r8?%EgA!QOMkae!eN?lnN=)yCmG2!sdWZA?o+wkS`?Q$4?~?9rx(%4n5(wsfX6H|##1ZJUO$TyH zw5xvQ&3`=bui_@~5gsqy2)^t%ieMvW=%SF&7PYD+L z((l=%Gdgw;M4TEX9DX#L8SnNoN0>Z79VTX#QvH;Sx6{T8PC4=z^tGVZdr0@>)*{#= zZU`FC!;*@(_-wNmQT0N)=*nc^w_^&-uA|=%NavogRd#;jJQ&@!o|@+; zot5le{DaA% zGBuvo=JL78hd)&)sPqt)Up|9|={ABL)$~3$(tYi|3KbnG0_~ObJ_XWMat)Y$n{J(KRI;{d4T>IQwr8&ds%bn=Fi zVAEht_|+|z8Sm2;H&}E|6LvTErd(zJk$jT33HNJr4QKUbDEv9r4ve>>*Ck0eq04ai z^WI)Q?AlnW{zzxyW&8fA&z<1ml!D?U+%Jq=%FYdKHD>2)k%=PO&2Txy94%DXCQ}4T^Go28D zvkj*MZu4c-xnGg)VgEqn19~;2K0ZS;4r6!`->2hQ0Rj{~U3Y{UEqT#hK|6e*vs8wV7|#Ho~3DOU9FWTH%!k zO@PuGdOSnA+HMxOLc<(dpGjt>`$WqeNB*79M-8!OrfZp%gwS_uV7HWhzfzhhFXlzX z*`s$#V%f!+*!CnwZENWHd(s74PQ+D5)UbBP7Ak+F%l3D{c9->muI&ISf24Dg?L+e1 zx`#J!8Od~!KBMph*;(&+rxnwAJ+;JJtW>a3-#=9TLKYZ^vxmpo-`Cn9>~XciZfi%% z{_(e*>DCR?$3x^Kc)80uraQU)9jgB6itp^BzXv1JJ@Kg)#d(L~Pao5n@rF)6gLLpT z9IZmnXOr;*-A_rEB+ z@LUI4QaA|Cj@F^BOETWkukTP~rWag!;50Mdi4BctNTfdORzUA(AmeEta7STVX2E;& z=yS_R7hl{aezgjQHtOwEx=q*n@DFEgm1?`5=0>df49+b_sN|y?RSwem*{Z^?|8Aq7 z&Gi0B(#ic)g*#+>06so4V8#oc+zZzCSI4(@()CBi+vPR{z8)`|+gr#k$BYnb=uj=9 zWAEtu?zExXrH(PDCEK2zmYCbiVOupP=y{%gPLodE?Klc~=O;Ul@gY@zr1Rf#5Fy$B zNJD;oV>*@R`%u}c!LUJzUSA;NZ4e{Soa7LA^wKkCJi)U!QhXZ?`+Cv$NiyD{#7c2$ zR3!XZQcuNu?o%h!74GKR6Pvi!l1B7rQZIPHa1`u({gUpAvw$KF+d#L2^m`cT#?Cl_ zt^->*Qe^-$o{#HlH15kS5cGwfZztnTz3PgF@3;(hrAIR3W&Qako=nt&^=h7!do-w) zOUZNPyxy(jQevvWHoZ`&J8U!PTwc;y-q3||jpooswTkIZe$|7*XaU^!w_v6_=I2nj zR`C)jKR<%$+DDthXY(KMI-BVC95R2GKR|fqt_IBRPS5|5ZbQmgxYGU@nqsHHOt;%> zXBc#9BRcvY{}(6YT^a5H$Cl)x#+~%KDd}=Nyr7q|BAlhOo>_n6W&euFoPJI0a#fwm zpPKhw&aGuUH}&XxPWsRsPy1+xPX*rPI=36?l=~E-$K!S2t3U~6IoBk8q}bn*E3942 zbUkI?@B5fK!LX(MsdA9%jvrtO#eR?Yyh6I&NY~))1?8F*VB&JRUaV4_#k@QduC?y6 z5Evec4Gcb@R8E~rmvkOE60AA>5{e$DN!1_eobK4+4YKFf;}6?V=XxPsxc?wLVDAK2 z`MEbU-Jb=$@r-6gSieM{N>@o;L)2P7oEwvTTlh0A3I7V1k1YzE#FCU7ymAz@)Ga_$ScoQDpv-eAM8gEwb~D zfB94Kh&RyLbJpDD9nJ(`!O4zqau3Z05I^}NajS!BTO1OCq_qps9KKSM?KV&$L zzRpQkXTsros|!)KA$`9m-C)@_y}pIVQDstJX1di$CU}1OK_qWP-zUj<-*y;bhw`In z_eXlaE$JRQ8ev#?4o!(+$J-pHgwJ-pCSKVWNagQYmA1I;+6nuZ;|je%fqM@^gK1`w#d%KS?)9kef`!IcfNi}w=~Tk zMttawLiQ*#-N#jd@Y5v)*jlMfU2jG5y~UBLS@xD|_6s8v8_?vZj(Af|E7L7A9W3_K zOUGNE=27qWWW3+G+d#_U0`b&;)F0_~KhsI1FHmnUd6?oyzmEr;pDOf{)8WJ&cR8Ci zhUmr4iE!jadcQpBd>Vg?c5-g;Sqyz$l1}OGc)q>L0_tA0rTRVT-o$L;?Hj{j?Wm7b ze<9sb-vMBs-Xz%b2Rna}$zGtz)dk)@N;?%L1HRy(3m5cUk+al^#IH_NfzwVtRC|!F zxZ6}-`tT{y!`i|SXTD|+-E^?NuP$^liTQ~i~PY@S)dmBIA9 z85wWonl&iJ-v#bnP4A~3y7Y_CQEA7WSe_+p_`ZrCGSm=$FsA2YNq22lA@7x-3l*E_ z`E1fXz1knN&t44cJ)?5YVNs6I^-&S`*QN?g{WB0RTx&tqGwD|3_k|(Lobjep-pqJefBM4y z2OaUKTdSCEqpYkel)A{y4W;`FnQmpa39QghMT@78V&*U5rz1Sa{YKx<)8k7r-uX+O z@Z7O3_|n-_X8zU<4}ks+9q6*+B+9iN+3z;3?A`pXrS!O{oMrTOKo=w%J%*8ePqQ8APA=MdmNLeiZJxt{ChbGK8u>(mhPJ z#Jf`RfyX*S%B7v|$uBj1C7GP+#@*BLz!@8~_`%tIneLOPJ#Nkt_@H)Eri(vmjn{Hp z#IwQlIG#-RfBQDe{*Qf|r2F4~Os)T8KPKry`{`kqi>myuP!}qH+Ll`U;Bb1KIob|?76rPRSwdZQzhC+B$qK5-Gg=cmMs*WK+n_?9yVYsB_py8izL!lVt(_`(JSrmMSU z2_4^!!tDaRkBltGQzHOhgd1andVgx4(KahfVg3H4!sw+hxTY8r(cxluj5qkg&h<<> zt-rSC4Bly1bo|Hu9MT=Q?#LZnaatPEPLJP6SM^2@G=8F$m9#tE~UKy(1ToyLE%!>sUQ19KP~;7PSF=?3Xo;+VJnU}gC&rmGQ#;i6-IbCLjt|3^YQKP{2|CnuNjg@&kZxtDBQE)J9n=LX zQtd{%&7;TQ#JAmG{Gmo>IR;u=;_%{rFn7dlrjtKB5RVHU2-|kZQR&`mS<3l&oRp;Q z_Ts))nBi$*xB0nFcDQr9k?w%82_E0A7l?e#c7c&S@NJ7d;_jL$%y_R&|DiS6yZKFB zf|+i`#uCJ@9fu6x#xmU+*UbprTa13^vfaVwq3BMV4O+O0-j5Wxe-~G3XC^5w_X-z`J6md-pjVg}eH}4zo6< z`_cSRjMG{GUj{5=y8HL@g)x1+V3S&Js{Z6U@`S|D&0KQKBkpM*3~DcHVb&^Lx2_mJscHSmMgf(EkKMbFpO z2kjPyw{GP=q`csAk)?PxVLSNHPS5+0Zg1B->C@aR_GAC!K2ExmgOA(sT1Dmmb-yQ_ z#^Q2r@PkQU+^rOCvb+ii!C$aT**m(0!G zD7?Ql7)>!;1Z}TDs-Kc>_NYqnZ`2%ka0tDwOS+b`nf%$gi(%Sl9cH}m#s(neS~wgr zkskMqnxriXg?}X525E|OUDVJg7fYzIU^MPrf27-Qk}eKEH4tjwa%H+YKQ%CHnhnee zqQ}2vyr=0~L2l{=Fl!K*9M z%40dg!i^2WhyLwIL)jBwtu3MIk92XB4QO!XINWvocc!~yKNk(_6^*L`4}#A5Bjfcm z&Jpi!)IPT`?C{+Buo-gBnUep2Pok**igox7qBTb2&ThfhDE(!Djrl<(dzgWIWGz-b5V04M?S6*YfsVZgQSx;3WH}HSBukJzfk>8Gpf|C?+gd&#K+~_jDLDCZ+JLb zkq=?#`zh)EdK$swaqH2S`Sku>(rL@i3q35kBJS8~&Wv~a0EA(74@8d~L#Ffm;{@lO z+Jtt8)AdZI8}-H)o_y1YkIO(yx`UWeuV}zU6FwgKW$qBm=Q_uYa#QOzC|85 z93B9V%yMPMvzRj)%v?7R&Wf5qIbDg!+56^m13)k*7%jo7L;HdSS!<~I7t&p~Sd8DT z*8zQt_fyvq>B3y5;JrW&W<{=~`XA}kgP$VVmn_g^R~g^A|B=qK%OaE!6$>Skw^8vP zw~E}N-~#SNiYK?;YB5gq(g6q4>HLvSyE+BmU3P}|inpciSETcjPsU$2-s7zg(CbH} zi+(u{Z_DlrZ_i)KjQ2G5DH=UG0*;SALzS0|cR=F_`t~srDoFGwXY{q4Qw$y~Db~~A zX5T18mD>`b2-Yy2r_%z|I%N?YSEbH$H@n{w3woqNvlwHl9AvsCji<#kALqj(W%N1; z>8=lt6CW;5hvOgar}`D?*1zd38Xri92VV4M=5N;gO@d)ZthIbz83cvZOQROA$ zUG8Imub&?cRhsuO)$sr0xk|bNFSCI$UkkSNpxc*pPsVkD4VDtH9Qsi8Lb?fC zA*^V-2+k|g-_g&to4`*#aIE6d2X#SV*k5q)Y%si{x0UM8q%(e_2w}`r=<}e6>E?v% z!X;{>VQlqDsy)bf`-5jg!}y7yHdAD}Jd-6b-(@0Sr>?Gr(0 z*!F1@7r$FkoHS`DvYFTy*w-cF&i6Ia$%fPXnl}nC?bKAJ(+8LMNsg^xWL*f;J(3&& z+J8zwV_O*0{amC1S59>VDSC0Wd zI*W6CRm)Xd`(Urfia0lfzK@eGD9Q-Od^EzDkISj{Al(a~gU7krW3m5!)VZEXr?F0Ec`3-p4>zxqRfkq~M9g)s-aS+yc^%ra!{(`!WNH^xr z6x{Si1-`^iRK1XH$scbVeeDm}@t7V@lWx%e3KcR z$x13MX(>%bw5L)TS&1StGm^bRQ9ZBgoKPZ!>=hxSWM$9a^Zotn{5r4C`Tu@zH zTR) zb6awzVA=N3sQ%9Ys{KgUy2BJ}G#o|ZH}v~P(w*69h!1X11HH-}n0fai<#6wrmxZ}I z{VBI7)SYjZ59Z{|F8;smlleckk91Yiat}+(mH&@&Nw?J15W8nLijN$dz${nR!4OaL zn$3&6>3O+i-m9|%aH;cNU^|{3A19q*nHs*=8w(R#JelQM|LlV|$?gTKZ_>|s***yp z&3z^{qlca259T$4aSitP)U!Ug`*B1%3rT-iI%_USU+&0sLp6uM=9`o8Krj0IOy>Eo z91nLd8i+&d>E|QTd2E~v2j{klf7t6Y%YAiW0et_ym-u*F5YD3N`qU> zPB8Q8s;fauLNrugV+mO0zKVJQyp?9dp0c&n{d3FD0M02kSM>CC8Rxh*5%0W`iZ(m= zQhB6ft;0gPsi&f`?qYQ$mcFm+zI~*-s1b>84xNwMzage8zYvbccsV2WBh5_LaKRs| z_Fad9E1yv=&&5PIJu^ads{dX-d0mY7ula89a77~3Ur4v;sVqSGkHO!R2&VJa_5sIt zH42ye()ST$o>N@~(1eYkRL`H8_n=uG4jefgtxli8bTc&+pwoF1Bno4@9)p$PjB~xg zu^9S&_w9~z5?3R?8eQu$K0k61NShpvZKeNo?Y`eg*IHH%%;NR&w-$OljC7Yydc*2> zLFlAyPsqwU(8nJ}-aIOp{p-baH5UV6Z`lsCWf9oCM|6{#F(wQ!Oi6&j13Ie<6`%cn*+tr3Dw?F2mSJ3^LbZ=TFpxP^M z(D4j*-oDf3sG;ctdQclg)wlPFp`xmV8$^pr=14|yE78U0DbTcHA9bHYy6Vtaq%bcQ zu8yL|BSZ4<0Qem%%NYuSwk*-t77p%uEfWR)8=|qhVT+oGuu+K&Vrn7uq&uzGq z4pl%L)18QZ!nu#ngk9nZOgB-pR{U^X3fz)RuiIUCV!XIEZ$h=zv`zf#wY<=pb`bbXpfiIqIJ1N)UpOt=5K3sBXQ&c`avV7g_mHUky!_o6iSWTtyMD;{3nya_}l zj;88MZr`^01Xww3v*6IRhjOm_hj2^N1G)TR*SRY2Z0|Sw)-TZylyM zrImjEAf4@-!|3$h0l45k{k%ZB=Nao!zl}0zxCK2gW4y{|4u`~XI&&&S`O_j{rGJ1p z>eXYa9;B=L5(Rto=nbxVUuC*MA;~arRuss*{U7)DM7dg@Qs4&HJhb0o33VKi<;uyV zLY2fd=o4DWcRxNzxAR*jG=J0=yq(*^%*##BhUt&)3A2jsQTGwR=OG{PYg3Kc`bu76 zuZ|NG&2jnZE~>tyi@oy!z1lk#_blv5^()d9zrBhY%R#cQ}L?->R9PxD(K$M zqRL=kp+Q=X}adU*1!A+N3yc+u0qwcJNp9$oB}^ zX5-Fuy+UrFx9+_#xCfc8Ztfvr^Vrd#)F_kbnvFLLDPxYJ9VYQi=akihPqfzt?iN{; zvx)5~3`$bv+}&IFFI~w&TJr zcAFboe*&TJtx;6FknY{xF({=%Rs8BYy+25|ni~Q}gdOCHZ_(dHldk@vJ{WGel-u0M zc5Mr0gLlc3!P2$#_2`)FFmXhdEcd754i~LA7@nFq0{xifNVOm7ESrYFfV1Z4hT}x0 z``>z1KmL#Ps>nQTWpntWN)@d%pvRF&ckj+fXlA@lJWQE>jwjv8Ar{bkTA8?TGkx76 zU7d$5obq=|&9T$;dv?+-+%^_^=N6zb(}z*@y%iGA4^A9i^Ym&(&9`rBfSmL{63uJr z|45MTt@J+V7^T-Hm_*e00kp;4t5sy8e>RdS(>Esfla6w`nN$_8a@2FS%*3wknUxX z7La+e5PrHai&?Jm>HhH4;BYkIFS{P2tFquexgO%y#q@s=+O{5(EZDn}JD*t38P6Jq z6yFEHYU%up?)4>I-#-r}Q}VOn!?63*_K|LtyMg%quWWcWc@NVSBzcQv%-ms(^#75p za+T_pfUQ{ue5z{7+`e(o2Le6iQ1~#GUXL+!t4Ofb8psuGlJM?;^w6ezQar z8%gJ|Ydm)8e1w+qznFRJ%LWJodP3Y_Mt?_7=0)I{pyJwO{NWvae30(x@T1aqJ(jpU zg+A}fc%8JjHJ{8?njYnLczeQaIxXN*?OAI3NO!1L0Q|H6F|Z!LiRsSU2gB`~GeLX< z{e38zciJ-s8ZTTXzNH~B^9;N*;Th@k(JW2_bnh=@UQAjh>{DTlqW7$(jw90bFw24g z{+b|ep{&q7Z<1#vcg-_8*lW|U& z8eI6Hn5r-7mP@}w3~-Q#{_i@e`jRg3`!M`*t|l~kCqwmT(%sQ9!2iw|!S9xjn0eo; ztI+j@tw1@IzW)R2xHl*jl{`-_Fy@Ol-LHuH=KnH-FV~NNVaN7Td5I2&!lJpu zL>*!G`H>al@cRBEVYUwaUX66cyKJ!b^);aX3nSS5yg|CQcgnc#qBl(R-ASFtN!NZe z5_GL{0MDzEnR$5@CxP|j7#KYJA2UzQq8V8Gj)vJWT2$UeMS;r=9?Gfd7<0o4-l0b} zo6x^y^!pFeMK?_XzjtL|^Zj{LJCknL?mggAS0o-hYXjBJr0X}d6+A}Pc*_nos{fJh z^3NWy^Wkv3_J}gmc`fS?qs6B9VbVutxe{RrJZd!_pV;e8xi4$Yh0EE?MWLO?_?@5n zA{5<#;#KET<&sYCzz6aAn=yFz!Bfn<=XZaI7f+7C>R0LYC&|2w4>s^i&^4qro?hpK zbo-iY;g!|0xL4s9X1Su`KzMq=G4ymrE#)$Y*oc3w*jJC_gYmOXJy=W@nS{3hD~)&|kfp=7xRXZwJN zkzWN3NhUL|#7+|qH17$UXAWh$phuc;O`qSO{`!BMcYOv+bZ=^K<};pitKCM#uNq5W2-OCRJ9J3XF*O05l)^DS8{IoDH` z+dAh4x78pTH|7|l(qeiZBk9(}Z$TCNt>BH#Cb;|gg>=vQ=OV|JNSvL1f?4jje+EGR zLJ%HT{E6vCeN6+KggJP2_EDz0vGp0~(KZ{IJJ9ccf0gG+w64l>f1fmS4l6gKdq1tD zYxUCgAl6}Sb6IQ zsKfYxG!(ao{ywTf|nZZb{XHbR}(uuy)3IFs^zy)18_y3$ESvM`)7! zO7(mGVP8RO@lY&mBNiPR zOl=?OVjJ~AilHg4Zldo?NcW{U7o7H%!KE{&Q+dt#<-FVnENXhB$Y*(Gp(T^1!js?W z`*zYz+rgoCX)f@(0)4!Z&a2q~g$7Fhm9&d~z9gMac8+lQTNunb*p9mQKho)EX$xn6 zr@^FvOr|?!s4aNSn*-lmz0GuKea3;(Wl?b1+j`0cWaV+9;6i?zTsfy6>`D!wIbZkM+{Xy!H+&yzguT$oo7Bcdsw$ykk$Gb?I|p$~k&Gf^?ZrmZ8p} z$?#2@4q)ZQP3{S={&a)CZx&I`JYHXXTJw5M`<#LNt4p(R_4dQybyF2pU(z*Y1mL+g zH$n6OdcF$j6!oUz-7+`9_<=3VykT8au%E^guui#+={^N&W34%c@W=TdOxK~&2kSp} zhZZ{mn9lmcJ9K2~NSInBJ%+oD^Oxma<@@={b4wlH^X;KYlKm58;N|=vrps?TCf>4W z1iW#I9(N@3-fM+|>M0$d(It?X_jG?an9!#aOgS)<=?cn^fTSsoVv}R>OjrK#9dHfp z0Q=^Rr`)3O7hK2%SI*B`meW;U2Q1zuz+f*Es{Kg!{%kGSsyP?#bG2Z)TCX-F@cpocw4UxG|A(j#}Enf{aI^ zfqpBw=)o~~($R9TDSZ&rDN4uNA4c8+=QLfY@e(qxXi_+yx&Jj#4X6JnLOQ!yGw{a* z6}b3iyQF)4NvCY(jjt?Gf!7_%sp~4~GFLd`_dWIl(-b+Xok@3G`oHaSDQ7^fzY^u{ zeQe~HPu(g4*Hr`uBWLu!#}aUHHa#Dhbb&Ju3F3u1oWj5ys$Y?AOT}zqLfuvH@drKr zLb_{97J-g~GUC!BY0SJknQMW!|00kb6vK2|?F&J5?*tH}PtWtX)?<+H#41{{bVCcT zF+ml39GHa1a674fKswyqf;y!C;vUJ z-TT2zO;zDU_&@vL<+WTcAB9`;4huok=;u|^Etx(WyB)YI-0Sz4+CI{Gx(8$LR&8)? z%{!*+8SR3bhl)Y4nkLm>$h_Z=^l>`6CwRI{X1dlLdU#r<7I2HD-JJv5IplNH{{FP% ze9vJvs5~nOULE&=Y8TQuJigDXmUzJa5?!G;R z>Q`i*=llloddoS`>e3D7_GzZ{1eHoAP|J#*&oy?<63!v8U$vvl6Ygi3^gY19v4Z54 z0@Z$`Gf?-!e+~}^Eegs^_n}JzZc$$GWDZb8OVa5mRr0PzQP*0O@oaG_h{716X^Ko(Dj> z+|9};*=8y{>NSws9~G9?V(zw+sLWi+&nW>YFoE-_`gQyL0rl=Q#S`abl3rO7;@wlDZKHwB+p%ck-!IuGTWl#)aZ6L;{a z#2ck(7{V|Mx?hpbtKA&co|^^-C~HvdLONb=fnaVL120cR%yOs4s0*Ue&d?jt&qrjQ zk}=OW^fG`0-qFvsr1Mmr2X@{{g8;m1=3|;SL|T%1nqLU z$#m)~2jL|H7NN-B4w#jfeCrg_%smY1nuD2cvD-0Z^TYA@xQsr(|&=$83KPdX0V9TAoGXp10_d$V1vQ!@Fii$k&VcSr&*++@# zCJ%PS50?(aPm_Ut_x(ZUwWsj^t1ph}sHOU!X?T%+bag?^xI_2(-p}g6fNxQ_WC;EJ z8|iEfbYWv-6`GCd^B?Ile8)mLpMJPbzmaMe(%rR>h8q$-iQ#hkd75;!C5iCBw2i># zBt3uan5~X5#XVdUV{w3YTNR1LJzLPrB6|J{>6UySgFie_frt9Gg6{1{Ize6;U+PhX zLf6vIJ)~P*e;0KYH3}K^k<@-8-E)&X zXD-wA9k2v!MfIrbUl`?TW#)5bN@whKZ((jtKm?u=xB=|hMZbq2UC-ZP_<{7=*7iD| zst4&ryf;2$hyYZk->;HRa@8Gw4tNb#j^(Mmj?FtIJFXY-nU^2(`AX*EDOJ<(eCdA} zy0;7Iw$^elq}%!7w^$-wxAEP}JZ8DZu`9qP3l43bnaC`+?6E#<$S}su zg%1#G`>wBdh4!G8+b9fR=0V$77*-OEa$VO`d3!Jrn9<{Xqu1@rM zjdZRxbKuC$PGCOZnR!u>iO|9SviMlZcBad;ONQ3ZmLflMU8Y-pAO*fqTZ-lkc~2cj zNoVpH;Ux2$NJ&Sa<3-cM585d1?!1X zOqZ}A11ZY#$dsqQXSxycPg1ls<^QcW+$5udmmRJJ3RQsWSERc*QW1ykUji~u((CGy zF3Cd{hkhIawbs$c8|f5!??>;wtzqDXVa#&5=yf$e{H~4r@*nFQlX;eBmQ^nd9&G>T zKirsgW`f=QA>y+No^#xb>1Jo0kZdo$3=E$~ zGhOPFDZtZM6DLMpjd0HVpXVpS|zd*XWb6Gg;{R44o z_73WJBVEDc1gt2m1$%wz`!&+pz6-+bE_GH8ip)FL-_VmdOj=Ze*FwU z4F{$R(`(pHaee@roZ!aC_ou(ZCG&t}8tVLBgv@uuQT>HjqokQ%rw&91x zFE?rl_utX?VGgrj@#BIwii##x@=sP~BZaAdxtu%n_$2AtwuPbJN9XW zza(#==xo^;-t49hzB<00D}~djJkq_+4L~`jF1&*l-Oi*NndXjkRkn%iKG5w#x-v8k zz341LCw9{Nmvk5Y-4JXSRDriM>2YAvvD#1d=1q<(vf?7{ zGsv>Q7cTY2lWu%xy0@OAu-u>CShss$9}Ju8R;RZ+5^1 zeN36|foByrcbp;4ah=3;|GO@D{U6r_vRtzX)4}+v-^gpKbbPeidpgo>4M_mHJ^Nty z>28!Oi+ja+pV)4HIejbdo&kWRML3-FmVU2Gx?}wyFft2=kq_B!h;|I{@|X=HT+dPc zfXq|M%mx#SJ)z$+Ip+4MEf7Gw$5{AbsW#JfG`t4+$`)|KAPuGyjZ%eHUSna(HTrs~ z6gpTuFU&yFs36O4ZVSimXC46qp+8j*(#6jVz-mslpkE0+kB4;2%-nFcjykM;WW~%o zddUQZEKh=Ncp1~R9KIvGldhFuy^Q{jfGjuG!a;o8GY9@mjSzS5FH5b~@W(Q5iMk#Z z^OFkmz=_`R@QPC~U^)1B4_Nm!9u7`iL{>uf=WP?D;S_ z`SlNG-aA1J?r^YzYjfJDb|LegU3Y?e)3u1oyl^?jSqnZu}#Q-C4FB)y33L%*ndY8 za*m?MV~?L7A(TORkxj3Ud~V!49F(~ieGZEN-S->m4z3Bs2Tx#h{5L)CfpnvsC*u>B z{D5N%{d`F}V^>?O-e)6_UrXP&lg>WM1|JM71bBlH?7n^cXGP(Zc%a0i@k)*TF(2Hy z;1&YME2wrRoqyppY-_HFd+w#bcOjjTkr+>q&OPM$fz!YZ3ihnJ&gLBg?m`=Y}33zY? zLVu_Jlrsd+_z^*SMAsu^1(*#%`ZagAJpH!0!8(%*%Ugj=ReGz+#2JR6iwMhqoynbU+nWouua%lkTeY z-rg`k3|A-9-#L&@bGsg1bIl1Fn0HY32fWNnKGANw=+)eR{3vPrU6!_A=6|#w>3lMV zitx28!X=Y_qWTNz4#~K{oV90= zz3p$Ndp#o@UM@O{7RuA}8OXdH(J@f+ARB%7ww9R}I4}+d7_3KHT7i`F`8!N3{xFx@ znq0VTk(1 zM#0>6dR&imshb~2l6U&T5x?p8Go;(Bl5Afb?hh@j>GR~U`XiG16V3J}j<i;$!sjLAqP|17Z6Q5gfd37u7CP zLeEP+6|LpRACf+|+WbVz>SLCG@-yZ%SNC*8>U)d1N1Ks7Pm)cJsPfs;FdWN%-5F`PahkdAdexb`qt^7uy< zmpe|vB|TL`Q|H@)om1)OP|}_1FE7mO{0*w+)ARmGw{q4SeplOj@TfO^9VFc-PepM{ z;1GCygcDU?(wVD|7C-rV0<>J9pMOagq2DNW_;CWfJQYjjJ$0(&l2^EL=Yq~~W*&XO zjvZOh{djRr_v46ksJswpN6dgv73uY=NLL_#8Z6eG1Gk0Eq51*onxy}2`FIYadFOjT zR=HlSQ{e%*e`x=%DrVlo0#A7Nw4G41k)BsTmU}uQ5{_QJ7irsUr26xNt@1+OH>OmNJp5bbe0o-|^J;k5}blf@%!HKl8gSCWAq-2H0bP z1JkYX*aRHs&j-gmVwmn@O_0Ko^B3>N)CyXA@@}lEjUg zvyFqc&d|9y3z+Scj@fk^2O%Bnzec2Uz2N~juT%#c*0A&L`OScX#{@{%e3fOE8)F^{ zC*N2uG;<%R`tC4DyI&($dF4*i~!%=>7O0r$O-MZSGTQuW{; z8w&YNa-s*ta>7*W0eJcWBmDExN2*-X)&J{>#aqT;jqmh$BI&eV-bCqJ=iniaXH)G$ zy1iR=qK?2hIHt9LS+2(bSD-j=3_d??6z<-BWS)g-ASlzfz@0JHOqUZ|2joL7F^;C^ z1r?YK5_WegampY22;n6H%GezM>|&#+JkmWpoC%GScl<^?~IlF9I;9 zj@lo3W$SrY^DUydryKZm)$;BS9Fz&&xS z;~d|%p*6`7&{x%lI`5M1FK9*&%;&;(OEae1_jV1s=wSz6KN*U<*O$!0ZqJ0UJ7F+4 zlRh7iZbzaj^fY#cR-baH2Z>o_bqQQmu)i+9ym?kkCS<0Ef0et`B2zf`4}^A&CwH}>t7)B*eju2bWo#?$j{$-Eu*VnO*w0jLa1q52Ey9HZBRA@8PP zw`sko{!BWx)Th8D^f_3rvTh?}+tG4nL`&4!2h{at?m^>Rb_8`AF=NM|}x2adAVhjNzm{7KTSHXRJd z=jy_N`~Fe;gLLuDgJHAPM-Y`kAD8iJJ^2T#>uNeGKJ!WstL%pvrQvni^!otPg=qB= zZ^=l<3*RPD<&y5;+DP%289Dgw?XlE(gLHk}%EXG_QZWBy1v9Uyp$Q}$pNZ{UN}2Ax z%scSy(^Oo1^D5KjuaJY~((jpKuF~&QUeBrJD_4eai`oOYQq`-dhs#{pu>Cx>e@WMM z_6jO$ngh4|eZzEv{+vTk1EZnKS2@uAJW1xIZ_h*frl-QMR`03tMAEJ9lZP6kQlX68 z2c|pLnvS?3>F_~6eQNtww6B+R?5+@9X}!hu=+h4N7x#p^*T+%)o^&CapTWA(uR-et z`gw+QJ{9UvulO~nPqbj>J=Y!vw+|Tx3;MQD?Ly|A{WA=nt{e)#?0Cd<)0UgTJR^DN zyj`9ux4)$s*Yw`NiOigXX=-rx_d zO@)7q>GuYtYjtxI-59zMmf6zp=}4E}&xzYOI~%Gjp#RH5I<+UU+`q_d_$iBiUq-q) z%3H)MCQ1J%w{$R7j}zzaO9EO;YHG2!{rr|$cx_%Okfhc!UH$tYyxVyjn3_Y6|B-oD z3cawxmP*jJi=Jmrx>*t{JSbu)9M+${ZjsJtm>GT;V*t-Ty+mzaMtnZ^d-_DtgxoCt zSAj2zoR|ScTX#_7FQf}yT*s$aWWlicTFkul7VE`MpHg6)%PP?Q_$BjHo76x*g$y_( z%ZQn$y{rISbd86FJEl>28jITb`;lSXbjdEx{ahL@u2=-R;$5lZoOB!Z&BLEftATuq zHZw1!#U1}JRfGGj=y{Q3p0=M6_8dA9>bP1^=MB>B_Rzs04_)D;yITaRU3PcyKY#jj z+rI4KM$FE{O7RY;_5DVU<-E_Q;g^ROfymWvRDCmuyzS=`u(7Tg*!r)KsxRpr_Rqt$ z`qf}+KHV;)J9Rf4*Q_W3$!Rzj zi{kVya`LzptxyWa*Ix&s?(IT4k^U64`g}J60hv3*J^!y0Y8JJ7g z3p#rMwS5B2yzL*yLT$50=*0UzlpDOcfqydEnLAV=!~HW?!cXRmgb(ED`xnxcKI@5n zAC7}BL~p42lFs1#IaIS{1}qj`VY-*7043?0!#^|V_nc&&in?^2r%6-b!(4j)2I>C3 zh(LLcR&d-FI`6O27JjqW`*Bab)P=%ybMd6?su9AN4Ci4!Dnhs*xq-zm;p~v}2XLoHQh_^iqRD9|A zyYtoz6dI58=UnQS@tcF5qU$Ie9REx|hmx+R*HiQ_B@%QtvR&ncL8wpbS#jJ$dR;3r zufP5R-qAi7XkK4H^*_>?#NFrS3(mmcZU*IAK0)!5P1fA^GB@t@{a|R7^9^KpjiAnJ zq)T2I0{ut52EL={@7_tbrr&JnWceI4sX0;SKhmu;ON1(W_JI7|!A!R)Hx)K7PX&)p zeP?c8G0K2yzr?^KV>jj8;&sHA-v&tX8eRC+I7xi+QWn&iN6&93-Cm<;5ZdMsXSUPh zW~75@4}rH@1YG=W0CilF?(VA3V3}Po{5tayRbSGLDwBiXT6|z`G`&7G=^n-y!VDJ( zKWrIAl^e38hxpFtaU#7Nvb>_wcwm#C3_EAeWxB67GJ*B$G&n1o9^WAIoZg-RJ$A*y zS93&EJChEreg;gY&W5ncj;e2*kD2(QdNim1;xw1>Ng0}MwT07_>HA&MjjZnvJ^BoS zEx+mY>qr-wI0(MVF^3sz?}F~jo$pu? zzG8M77=P7d<^|juhtC>b0QCjza;KY`;B@EXpsmZCnb+8}7}eK}2a#{%m~PRF4D`|B zfpGjpD$_0g!a81X-rr4&l!c)si8eC=}Z?CB_~AwEa#J(awrGdxAMMsY&aR^ zdT!78eE^#dfQIu#OjlBO95h`Ig2o%Gsr^Cb^!|r zk0SFXWh+A&opa!)guXBN-};?Foufso^1ku&dS+wSgs1$&@bA>|MmpttDLDSiY>?nF zoT>-u9zBZ1fddYMDSq^PIMT7^!;$WyQz#yE)e%hSe9SDj-#lBaJf{f6HPZ9kJYuc* z^Ft~{L$!Kv)q`ds@s%QQriOm+OuCYGCnV!n3{)4>@3Bc&HQE{-Q2zuRhXvv8=MB<@ z`IreV^HpJI!*r%=Z+OcOy(J4zbS)M(6i0rP_~l^HpZymYVbE?;!en4bt6QE1;HtMp$F&2&$iwuI#xi`t0w4;|J2` z4bt_{(Gs`5T!2OLGnw008e$9;3LLQ2wHE67(Kl$UxX|}lwcp)X32!{dJ3h^Y)h^?TX1vx7s=mzW#auC2vt; zx`K~!aBgvn0E!M$?!~CP+=ZE|`GGn$+@3`f;CI;u^d^QL-zDAHe$u&36-Ic5bqV!6 zNV=Fi5%A_tV>Iv4ZP2~_NLL`l!5@#0qOozOsQq!jW|2f|xeRxa8_A7X!{MG#BB-q`j6bRsDM&RAl@%nRJ0hYns` z18&#T&#Ppf%9USS{YMe}v}YuB{iwO!!VmP+;C98y+8em5plzLLusG72DwlNrkgZE$V4_%YrB2$MYOn3cY09@W8iyri*$5qHYjgP^ws!$Uso_fp73$==bT)&6n zp(6S?C-Z{rBjGfoivqTLz|3=MjfDl{O2iBAonpF8Gvc8fUm*@nr{_C5D~^(Ato7rT zgcouSajLk*suzs@V@UM_(z)h*MYqo_2IiN2m~N%09=(+}gR_6o=W#M`^Sp3WwI~jh zc+&lpbkCE@1dqUjAm?;Ev)p5O135d3anN6&-`C#k(&1jeUMz{9e@c|?Iu9OSwN~(7 zegSm9Zjr7aG681l)$k39^m7^MKEx!zxw+@~q}vCXdGBW=LzB*xD071X(-r1QzoVBN z~-ubkTEc#`W5M}O?`{gppegrW0;ehuDo<{kfmpZ4M2YbwJN|olG=94H3gEZ5Q13}d_u%++4BF)3 z^1)N-b|&)nj-7^2ZE6NqL+Eu#$volh6#OUX2{67-e@{X>A4`2~P;UzVq}@i{j}Ouv zi~EC&e1l;A%5v&?aPXTj{@-+UiT)sY`}YH0f>mqxqic=cuzMcqQY)OHW@;4(Tk@N# zFX^8Ca)u9oC!jSK>3Mymlb3OaCm$=|6s0B1yis>O;EoR;&^n_dOc$pf0bd?!0(wp} zD7VmT4xd!hOR}qPqkWCDE!^YMfpVWIQ1vC9)in=T*ykhKXiS$&Iyl)IKDO!tr(27e z<+8T#+ipYQSm5QFl+x$Y^)G$!L5-j2M*Ko5k91LgC*V8>4eYXnp6^4tmAmzDz|z0S zFnbVHU((eX^usH?hvM8A`g}mT7fCWWa!?Sy9x{RISEOs4@DiOgwZQS;>3PzO@Gp9P80oe*x1x0~c7g@7eVKV^`fg;>xJ#U+pGdi~f@d|0Tzu@iejng1pDTbn z>0;xH$Nk+eX!w%+q{79=NVl0)uAv5MM{8D}M;ER} zP}}!oqmB5-lf|NqvH6^S&}XnuJQH6mrO)@IYfF-alZN=>ojzh}zmaZjPwD#UCc4;b z`@)-}hGh|M9&Qxqbip-pcR)_}+?iZZi_$ zuT!&;rDhCO?z3I}h2Kj*iiR9I&O1(cgT7@4Ax@PZUnAY7$GU>8)lK1G0=*6f=_-R? ziVrDsX#8LLJtFBA-|PiK7Csl>8?%twzoh%zB@dkbO8;fIlI^r|M4;z*Ke4)dCNnSH zDH7Zr<%!H*CNbR+$x<-$Ndfv*KA-6}o!ki2&b<=9)u!|Q^lRYz6huh&o-X3cT$Z7> z`sLzxo9Xd((gpwa61$A|L2;wIL5-4|aZVe~bwaWghbRE9Rr!%p(%QrAMdK7iMk7nxqjdk?GR3}(3F1knxPltizCLAo9h91i)>3}W->?>HiJBes_ZlTj=MbkQb_4Ug1Dd$hQwQ&(iw9>ZvYJ z^V=$_T}bz0{6IL+*%fZ-8cL1tl5Wc6A#h}WN0`<7Gqrz7SF7L*bB?LOr6#G&axV{e zhWgTfttiinXF78m7nmrg22Y=yPq_>eJ3(~IgfseF&Hosvi!B~a!Uv~~Wx54|Chp~X z3w(DRP4#;+&s+L`;tL_6;FDtr(`g(yfa18ma6{}w%GoWw#oe<|;}jY;W*iEu1)qitF6FAWJ-{UvF&R@r~Laq#Jl*7@qP# z5BH0I&2)QY*YzQ3tp+nMEN_`1QX5xrr31AX2g%QbOLfkEaL zp#4EK>fSCdeuVMO$17_5-pffAd@lojcf(=4`Ch7A(tW5BK=#Bacw0S)=`#K7U{Oyq zXgq{oACAo1S~?zHt?vb`Q!Y_?(OT2_uUoomEcGANSiUX;&u)jqbCc-pBVE}c0j!5n za9%FGeWV*Se*|2kWdK*qy2>oqxzz!N9aMqB%}SxmpE(&TIKZQQpag{Eh5~Le}RjxE!ve&VQu4 z_iCMBc3~kLe@cy+r|7m;n7=y}sutv;?){m}Yf#J=?(9p2$!pkdVrv$!Qk(;y{0pYq zh0J@@H4{vg&w##O!>MscVd5}hoB`aYXA~E-`%X>hSldYWOkS7i=G;AtVt0z*XX!uRyZ5V>qi4BkJpp&I zMM|Bwhp0isB=S>|;I-gZb@$!G%gK z+k;U0pJ7Sub07?e}G1=B>%h+Y{vj*U6ND z-us?W`;E-I`_cz~T2u8 z2w0cHG2ON>uI5tGanO+y&vfa5rQ#6n8{qq8dVGT{xAkHONZ4>4to;y1B=KKvCH&2FsS$;Gw)KXEq?Ag3_fuxVmcGU5qRDAe(=})Pn4?- z9?HMUGm}*98X+3?BOL3GU5wfg}yCG)zPhT^HeP4KUe^t>C= z<tLqpcR{j;*uEsy_Jf0S)>4?diwicGH=<^c{rP^ zK_iQ_sQqSrsqTajvQ2p=!m$%&*JB)gb!k!IcI@_hjIBeGnG+1oQbP>ai@zk%& z(XwN-yHa_RPs#U}tcq{us}iONx^GHB&k%Z?nsk-3)`*th-wAR?CsF;BbSI|ff=gEZ zpmj1m{!F_1whB<=)(ae!{xhrl@jp_|}6s1$5nNVgy9 zI;WlLn`U3y;VUXMq2&A35{ z^SC0j(_CrqU1-akUf9vyh3WRBtwUFne9`VSdfq>o=NK7?)+_5vud8(Xk>r1+eyF9Ui#>MxHwC;aGGRLBkQ1mnZ4P`aUGKenI}f=$TpYABM3k#;%RSOpz!%1N z;I6$HfaPW#{D(d?_+u9XQ>HWg)rgW%D85in&-WqAJ#(iBb@_(ikCFAvyg_#B5qBjR zXRFZTdSu?0SD~n5X)4}wQ;*8a8#bGl`E$>1v+zt*ZS4&9Dn16AJwmDWBOU)_Hu&mc z4V6>r^{Pns*{BJ83Vi@_eB7CNFDgHPbw*<$^ps<|JOu^lT51e8*VEUdUcZlXca(OD zbZtVps{BIk$;%N?DIZXIq}$kM0!X_W2A50d`zF!_9DWRXyG{Vjo9K2S-8}nGAS1zC zI5&mue4hORr*S*jktSwtpYwPx`0te>ko!rmyA|_MR*2i-DH*9(!q;pYhVw`E#>Xcq zQ+cG@7&{c7=`jHFZ-1ih{h4$sX?nQg-ei2rT9xS>FX><%=|9GWgQKW%Ju**kbbmb1 z(glYuFl6R^$8V9NqYRFjB%0%g;eaumQbmt9 zk$JE6ZQ+1Seb{?PDOK+GiowE1yDZKkbus@Z__840WB@;ROoH9pg>+??V#G^)vw`W# zG^Pvh&;s6%QlLUZB2^DEZ}l4)cz0U>OrJs5mvlX)|6Mf`>B6YuK2*7hF#_i|oa5~8 zH*j5BMq`%R>)agfD3yqWUxGN>9#36ZQn-Ak9ZimmL*} z5)5Wxqfhks--4#aeAnJ04w@a}jtw6U$Grc`{rO2h$CK_~k%jc#f<3MptV*>r>Bfb{ z!HTuV!JSoSm`+hX0k++X0Zl3yR6WQ%Za@OmD+okCN90odg>?2K(_zQV7*JYR#w^#S zDFePgWrK#_M?&}W0ht$@l?fj|w*Y+_iYZsQ(Nb7cXJ0ijvXgIgcEMG58u?zS^t@rx zVUMxcrman|oMlP%KhhoRZ-Kw(W3+yTKGWr2HOIP6(r*p5;;H(Qc|D?4@um(BtT;=Z zYCqDQnWBO_E;{3v8OtbF>#N7@n61UVXg|xT+k4{Aa_ZPx^Bz?$>F!=~#nWf>#WRLR zG4s}3nuPn$9fI>qw3x0jbP~4hI}E$7+s-U^``8h9>ISgR|}t&{*!z5ym?f)q%-Wgi|k^ephm}9YJZSU2x~x1=VwFV@pNY1TVHvUdnFxK zIXN+1{n^KYZF2^^<7>`zrmK_qq=E%-S#>z&4qeOPq8BKOdUyGAzaB$evsVl1588>k z_ZQOTdRXJtAp_t7!$zhH)E$n~9u|X)I!nyT^Di{Ss)Yz>%{F7Y#HEUOb)y4xcdciZ zs~FxBCy$N>(RI_QyrxrTLT!RW^|-|6e8KdwIQ?#$kUx_?50P%zKnpxF93#hB^m&MM zZAQKD8_ny;&)tDKUy<%m#vb%|qAqN&vST_E-xBn4;t{a#X*kmzpT8B&6b8YG@9FU& zvfQ!jH=-2>WMJ_$4=QirpRwZH@E7(zOJum9PHn(jxZ(qcwV19jUkALJ5Q~>79;W&g znU}j}0T`PShHtLF%ygyoCqTdkf9(9Wk?BT`y$j}jorr(N|6sZ^nToKuuNOw@^zlY+ zpUnzQs5jUFw+|>~=0(Ko!LK(*5EA76JKkJa)AnEqV^c&1}#P{N@1jZ`_ayE{tL9iB@2Bw2;sW! z9)Ho>JI7GfC{M2Yq~8U4wOm0LBb>NS$4njSv=kuj-5{>(>}C$0Q{UzIG@yJOy@Jm^1B1yZRlw&?KEixUx>4>&~t`g!01T zpvf?R>pFVgMf)wM!6xVbab2ahPYk_>Ms1A(jX?&e{eGjjZ>x$5jGY_^1~ywop0ke8 z1}8gT&^>d7aXl6(ic@b4m6_S5%Kv5NN~uOF;H{m#sVv~jDL{YyKwfO7QfOdK3} z`hal@la<8p@18hLyfjbNGdPtjIFKVfUci25f_A?)M3HhE4>Wl$d;dbaV=+_7RliMW z)U{%!zO=iSIf+=WiAUcJo48H~S(9!Cx1`$dZJ6@`otOT}f=uq9g17H>;JUo$eMw%7 zfbOI_Gw#~%OY+p5EJN>d@q*ZSBE3XwXMrh`~5+0-$my< zT&0>soF1^_v9w$IWDH($)t2b0S~C5h%bJz)?6&*U?lyZR!DHOO{g65&-q^!zAMF<3 z34xtjndpPr3$80(6AnkEA5hDS&Ro~!ejGSygrK0VMO>$-IvYZt?L=CtW0>=mN$Nzw zTr85Ti^~#RFJQXI7b`Hr&WbT)}Xi7~nH;>pRkg?AvpgpDRIw(5tc%OJ8 z)?wuL;1)OU_q-`&b3}Kv_X9g_M(4G>4<(nh&!Z7v*><5F8W>Dw;ECvW)EB0{CyPzR z7&`@__ZkH;VApI?xOE#k)5l)gzF*Pqqsk1T@Ld6K@ji=q4%;}9vJ~aE`STlm*K9=Q zm`Ffu9uJQtw}mOdyHx~*fRZ@cKxod z!#9tc!oNES*HO@U4`wZq)}PgYE%kofyw2HG(&Pu9(e#XPuB$h- zLZc_B!_sp0xsfjSOXWqR-K__dO|@t8Rs~EJM%{c?=J>9^up-5eWS2FfZJXKgUE0MT z@*)=(JV9>x?0R6@9XlW)BaZ7q?YX^7zoK0uaU?B0dP8Xt+fQj{C^(Q03wuJ%uu>+k za7Kr(3BHmYNn2+~YpuR=Ajm&|NBo`KpV;;=$xP`hsenvg>kbXMCU& zx$x{c+BA@zZ=_w?(ZAS!xD9yT>Ok5bm$Ym9!kx5No(&ArwdJ~EZB?YbhqP@UyB>tj zD?7Fp)hhfz3lI2n^ZGk)MBTMMpw?9ZjDr!&2pxhG-flGV^M*`|_;{2VICD zoz5<1>PtIsrK4CeZ3gLo-Lh7Xh8 zDfAQ)Pk)je>7_5?*8xy^MU~mVwA+f6#GE@}P_~R6SE1dU$Q)q^@r2s#dfdEn4;k9s zZ6a*GSjp6v&O2~gMD_uJaPRn4uG_cm64Kh{1@$-Txo+aPCuoVcd{)FXWG& z+?14*KNCKUT!&RmYSDAV-e=Qp*28#ww_Fv)wY}5SzF*NUBK57f$)oL^jmqg<_u=z6 znac-1>6`uRb26RhDtjqB$#+9VJ=y0J+O6DjSb9Y^MvAX4V9LFrSRr3NXl>c)V{7Eb z4g+xd(oK@w)frrOqOw9fI@1V!IKh@n=Ls+Uq@QgJvF8SUo=JZvv~*yUba7XH-iiue z)XSx()FO&~j(Q%yuhig0ADM>lSo!uYfy8Xg6J+mkklDYqyLi`~WL&$7rknoYy3FlP zq~L8csyN8@D>`p(S0`duSb?6JvBweZDjk8miNA=F71()V+I>GF5a*;@Xs`i4Z}nL{ zvQj|{oEB-5_Wkd8m-WJw+lM7*SJw!O%-qOxkFKCH?-1g-P9*|)xJDIr>fYqKybg}! zPM=1E2P-lCg)a9`pW)Kp!hLxABk*?vWrd%N2m9BS+9Pj&R;)` zC^^+|^Y&^OqM(ga$&0cl+`M7aGf?vhL?TNJnd6Nvcl(=O&}@Z>?P_*Dpo8RPacA}i z?L4QuW5o2H+ZD-o?+K+ZSwq8Vwt#0FkKiPJsok3$SXt6T|#TKNfZoYKdICeft?Wcz5YHcnnH~!%GK4u!(d2BVV zD`C%*v@;EvN}R1X;^3cWn0BFE(7gyUVAetWaqVHQOZpT>_85J@dEP^~&hVlWc{cJ3 zt{cFr2%#zBjQr&AN}Tdd9lSKz`qIueZar39KLst%X0IQ#8-A@(JawWK zwajMc8)>(G@eMKY$Zqtym|gdO{Lu^9{^Kj;FQZh%epx5+q&|q4onW84X{Qz&hkHHn zk#@O}!t?{$MGtEdgYu^lje+cSfp*ti5~S*{R-)Yp=W_E@PNXA?vxsC>u-64TZ}QUR zNWJ57aqvSnFJ@g**&tIz!SC@EVUNOkG|DuFNECOX_SZMs&29U>-942U;T*05CdW20_ZxH`DZhlaUe5^V^{$`d$mysh(KT{j^m-U!Y=b70E-Vq_v-t`;SSC;XOg z{c#$fG|!R0-p$VY(Qfafl{mL_fjD~GT&6$Mu2yvvzT;yFldrPl=(L-DWtfoH_Fud! z%EP#MQzG@@`0zo}tf;Y!8<$loTVG%+t9_p&s}37O3?KeOn#JrmFzp5^O3A*iDll8+ z4%05QGgj$MIvI_Ht|84#KcL+NPXVX8gu%(5?DdUyk8BNulv}f*s>60}xyOC=q_ulz z!qR|qj6)$gLdFbRAz+?NczSdVwwu=^v zk(VZW9i;P&!y?4APAgGt4SW5dUEUxw)T6RcRKJ+cEw`@_jzR{EMQ?Vp+xNYzfmHvk zTG^ac7iEjw(#RDpN7P^UA+tYd=Z9w!h1Tt8YYV%sigu&h#;5hB$dH9-#I!T*zU_`7 zKOU|^>wdBKyR=)?G=V&CY(n`*)^YQ0>-vy!uR1_T0^bdFawkR7f5_C6FnN!Tcazmj zTp`;YaznUnsSdeauVbxk>^vClZkp@DQnMudy>=vX9MR6V!2)U@zr!kbyK&v*ebzAT zUIXqhLY?b^$yoU27>k46X>py7vIhiwi^YrPuWCFf=jK?ZaCFzrXXdCODC`6(wQrhap|uI@?OJg1|jw0`7PZn@Li{`XWq zZ!P+upTNy~cs`Q+tUrOyiR+lWvkz({zlWs>M0hIvniWTWI$Gds+u8ee+U;%bK_0mF zC08#flJ@OFyMY#&*!W5G`)Lr#>L=y8-&Ja;#yJfam9f`fI`6~MUg-6gx!7te-~F1=58b|$jlUMn zX39;;=_uXbCtP^(D_gjA(vs{<>jn|wZ<%(Xo$F{#a@GT1cgV7Z@&jK?Ls?c3oBSY{+u*zvK`k+R=a@H&C9qUt`pb&8sQ4r4X1EH zC_7F~m-{<#60C6Ohetj7%bYi8H@`L#?jJS7k8iQ#)c*5(NdFAa73_xZ6b{XE$NtuH z;rOgTX8+ReerIzWWS$ID!JF&4J#7-ZeV+&TWD?i;g`W_Azg+-zXO)=ySi0P=nrp>@ zMQz_8@4btg_w`bLIUc+aZpZEA=G|?34|3?=bm;%FlIsj73_^$2rNgNmMT|S=7$ASX zDnYpVc!lt9_dogD#mS(5c@eXHv=fnF~?D`=(?_FBG z6harkpx!H)=OfxJ5G_%-Z3gtvy~cIp!q2086BqdOk3H|wc@t*cM=4_*VOAnL9yUB| zm+bG9^^Ttdl|-9VQLHaEL9g@J`#;)6#Wl)v9KDIyuP1Yy)2>hy!M z1#W=uoM-m$a4PShjsrMs8w$s}9OSy8Hyz;LJS}jHX6K#hyyFd0P)|_>!{6+6i*{SG zoM3QGf0(kQA8LPord^26Xm~o<5U$SrB(`_y9UVojQ6|EC`|a{xve>qNOUh9ERQ5j- zw0n6jk}Nc-LHo`OV2%&k#SIH5=>>VHcw-f_eYCSreu_117Nh;cLV>q^T_4G@s@Yt0 z@qHB6?OsrV*WVt8Zck)V^QQE?9E{xovzKHNPQT7iH#8(u-(;a9 z1G?N5vzqX@<2~VTwK>zDX;;?t9%t)%piXnx~)l?#4KQytR4O=UQlW83{nQl; zmdz$QhuCrr9PbE;m)so&u0AS1wXi3G^=hzp$9Se5|CdX5MZ>STg4R+4uFHK8h%~z^ zfyOF-u8U0FflA*Akad||e?^zO{ZApP$TET+N$h+X?M5e`LZ95;q6sH_x#dm@Ifwc> zDnM)o`+fkOxB195)Rf&B%I>oLVEnx-xpLRZ!smU1g~m(A(Mw}D=y*VdDVKHwzh6YV z14qKkboRNMb{A6qLvh2E!KB8Tn`aZD2_BbTqmq$UTo-Ar0~wzh(2os68FwqUr?_{y zpRi}$FL~vaTlnf*ODG(o5ABZ++MPdJgcbJK+E>4e6f@|mEnDZK)xAu?= zzP;ZM$gWTIQqDReWLa7qu3Lf_~FH=6;QK zYobjd$mTDSOzTeC_XFAm?i~t)mYG8NId(poc2y(op~}|`RKKw6N@;gk?gM7kQ&INa zE=;+2&tv(UJHv#*+h55?Uh9b-*t&tkZ9}HMw0p7K81)Vq4jp>4>+fmjcws$KJeCNy zOWE%v&~DqL0<_oG3mOL~aLYAFxP)#Vj{|$RRHmKjyj;gh6dD)@#>9qkUyH}fgDebX z^*QB|!SQ_vXk=osyED@+w0ktB6FK}=kGKr!!*!!`f8)@Gfn;Wl7S|o!e;Joub|;sg zG&B94E_aBu?HV|C4C(#rFV`*dI)-hZ*%IYr?Dd1rd)GG+Z(n~7e>8|@wr}9^Ou5p| z_mWAeN<#8DL*#W~E-IPG&M(leXXhhm$7p33IMSV)x74l-y>o9xmo>+7-N$bAC_8UD zT2K(mbvjGlprYmiRO2~;>sCa5M_+ns!3AQ$b@k?ouu$+uzxT6wzu(8nT}+mgWiC^4 zJpU&TxpbQY`}(l=SF~Hw_O8Kb!5YHP9YF1mbK2$X9}Cu*=g|B@cK(-k;_(gn zz1qahOHK>~P*a6}rxlofPv_b8ii8;%)hIoG0+ZKwU9w!iaC})~!DdMxjrZuswh$QA zBb4hh9%+Erl0jfHy%o2wFP+zY`yf!zHiOq@?6@uMZY_3!wBG8Fkb8ogw`r&k%qo10 zE=*vb&*{9Dp0hy(cA)1o7cuRUu;QugTR~5m!u4TgY3f7B`TN7+{E9@TT-x3EIGB9x z+!vngxyE%HbG68?y}n?ge3x6UXI%&K&@dP}_PxP%MR@`~v^o+h=H20zJ7DVoY~U0J z)6cT&+q7%V?V$5f*^YHzNDigxM z?P`^@{qaHPjX$aaJJ$xbm21v*>C5%t?X6DWt;=4I=)4(Q-ygIaGwPQ3wxLqYm^q*8zMnrTWW6&(%d;{Vr*~gVde>E5*774$(r1_|mGzlY)%GS4@Gqe62i>`1+pk8lsGl%aq}L`8HATl zNx;q$_I_xXl8$JU=_Z^?QV=cD|A;pOwc%}q4^uAfvSs^4R22#F|Kq-DdVL?ewg)VgDvO$bWK&>x>n~!q+S<=&O~&brY?8ppSMj znmy?w<5ni?iD}v(S+b}|zVW*asj5x^}r@#wI0h9TM2NnyMykByDC2hHQc1eAfo#N- z7~$90NGN*MAl(r5oa=o4#K4TzW#YlV)m-N~e>%Kq`)8Yr!cDGIel{HfwTne#?`vFl zK4S)$p6G_Yjz7V5e-yZ&5v*!&_s-?9bmE}zVG?~ZrDD}xTAlz|D1bC%T# z9v->!#4jfWkKIN<5(KikE}PjOv_q-`!0(Pak%Y3(DYSc#IS`!Zj35ucjpycljkSg6 zRzt{uPl)M%be?@TS5PlDB@?W6Fz0*Pudu%%3P!{(2%5KFmfx)3k_uj62hQv^%1A2sODNa`A9?uG?(&997MIiOnbT^CE*Z zK}Fh!yv=6ESwHK}k$>BqEosSkEi>u79m$FlA%1Qjru}Hwn63a0vjRYMT?p3&qpo0h zG61r(KQQe~=k-6)6(WE7!^-?>ru}G#m9_rg??Q-a|8dJTygm%N-WmjxAFblLxvf@^ z<2(??c&=bvVy>#=9i{Vz)bZ*Jj?J)V&8kbMrI-Hl0kxMhn6qzqJL>S5gaLS7L)UY1JM$bVaYmG*{w zJU@aRKcL-q4`ZZovruk-mfgR!TXTH}TI4t!`KGehH`>J{6rnw;71GmniQMfgMRMde zaX()CB8+iwYd^}gme)&^M%4%V+t-G3nHX%FMNk-xU0e|N^=KbbSR?riZkv@$Xen@6+jhv@C|^(jDe^Gu*) zjukf#o1JQFKSfymjJ>|mc^CI-K~GgPSd`b1$-6VEv-q-ckxWJQM!w5YfppwrN8CHH zg*5`1?7K zQyS)st8+anpK0@1(j_}pcI``*w8NS-u)Jc=Y#;4--@T;W1GhLdsmDAx_pT2&&%&b| zO)iOp!d|sv`})#(cA2$ky!}M@ZhC;pb1m&79jCKcV)AO8(66!W`(dv8u;FX=d75^D zo;Ut?6620-@7}d9mv+7zcFWy@r;>bw_uO)CUJaM_J1~e$9LJ7l(|O~kXGvd9h#`j( z?s4<(WgeHFQN4^K)!FBBIxp(+H)(74kt9#vk6RCUf)SdPaZt#+lfk%-m(|4h0hVPi zvUkcmeHU?p-E*wEmt7A+yOWJOu{qHoqjcGIL9}z$U59fPuElT0$8yV^Snq>W=d?gl|3(M3I(1_92kkHw|t8Xrx}O9ykG45R?1hqiwzUKg^3###P?>N z=rNfGDIaW@?W5hHx#37#XCBC=59Yesp+`_guLDS{nH?Xe^SXmIlWh-M=ztm;@?rGU1)bHXB+xhI~#V#7ctLewEN(H1f^U^fFhcbQcQWZ4u({UqWW~fiT6HohPQ9JoGKP*Wd$*3TK(^ zqur$A-QZ288;lFf<+`jp-C)F6H~3FsIoDNWNkHvM9(p#+i0LnMxj7r0Ve66^XmKHX zzM|c@DZb$TqYm{xcAi^q$6=G2QnS&OPTcKueoBE zrCmm1I{vyy6>hy9$JB#%=-?>4taB9X(WvH@YrOn{bhff7e5iHi<~3!nLY>EEqWaJo zT(={14T8!fq~7-4Y5V&Udi&nau0q$HIzx4!6XPn+tdzIxzbJu)&*iVr4Mn>e{3KqI6=0|ef@c-_hX}WFyOEA+z?d#juX_!#cUrpE|trF(!mg7X% zHTcl=DNH?R*KuGDepA$pop(>*I$f)DT&#T;Ywrr@x~Sa)@ub>CSp66KoJ^NH!1$(Y z=eym4`d4-wiFRwA3_+chI+B@Y6Pa?A{#}+YovSUI`s|+kpyCVMtB-z635yMyC# zzzijL@_9VhHA(EnE>|;=@uFnLB`i82d#T-B*wQ>(xY$~bKlG0W;M37C_JD&P;!y^9B#`M;nY&;r9CL+`QWR zn~-LCFpN-oz?=`XR~!|-_%0BtcU}_aW=;J&W|Y2SXdvnu#4CVn0PkL-sq?$jGS>C5hUk_(t%^|O0GYZ_1#r%(yb~kSKBB2k5kWXIhyd>=g4em*vRSh90 zJ3M2KU)nX9YLgqUt;xu)PZ)=1M$7$HM94Pes|yG8UgO)P!%3DeyN;H2@84aohC>JRR3!>$jbopE<#tn;jGP4M4Q%>JO==C9rGtm09mTAzIm$Vl>$ z&MIA9_A7Or+-KJyblb$ANUORqd9=&XD?&3Cjv{YQsdC+c!$ru_b0n$Utg2 zaC^sKvfQLM(+^q(OGSIN)e`T7rSixGcjERs2CsBv=c8yh{)Zu%d}R@y{fb=&MZ1id z-AME7EVMpn6tq7sX}7wu0e@V#Mmp=#RIWRj=_4J#y8@Nj$8%kSb*6N|98H)S@5gn+ z9}Y*MbJgMbF(0l|IIa<-*G6O_KOucVsnv782inGo+X0bD8r!?Z&mOBhzeKNA~T1tRth{tG4g;tvXzd zu7NpIU)oKKm`Zv|?xM+>?ECh#`}p4k67Q`-?wNe%ZeJN^{TlHsm!-QlJ5D>_S@gGe zM&({vXz%h_Ogq!A^2$w#N(s@0nSi#@Vw&1IBnW+cu z!c!+eajgaVo~_K3TQlN>Ft{mOSoESsFyGSlp4DDU*m7?&bDYzzdx#O)*!Dj({i7e4 z^9Jp_5)H`!Jd_v=(*pbeRuKud`&_3A;q0;>u*9 z_VsR(H+ zVJce>I%)l_xk+g4T+C}Az!EqZ+K(>$_C#0SGQDuC7{usF7-kY1(;Y@<` zv1u@zOl8Nf=)B7-uS-wHNZ|Qm3nuSwOpfr=HBM0cjRpTc`9iNjp%_api|hKc!t**Wu`z#vAm^Fq~Vi!~Uh{!ay6aF&oHr!AtXyhn+2Sk1^xAs{yAF z*`omSH?a3t^!7#Swte$_*kS41#q4|q?Uw$2fFh(5U~B;U{(_ZEK@7E5lRfNNC||0g zNJhR2!Aj5Bc`(|2Yx|$k-8<#ti=s%T9<+1)uMYS4+7rKR`=)REenmS;u`xbAilF%K z)45Jjty%1&v=wa~!k)+JybtHUiA&quGYRYNcONRfP%uddS*9iQ%$g>yhzkObaQ3`Q zyFYz8iKB0Z!J_qlnEpb$L{Tm`(h7s1)W2M}^6g$^m=Ouriwd~TaFPt2(3uGKvP!NS zbM-3fzb62cuCU|JS1!n9x(Dw$cGLYL?+IIwvt=B78@Lp;-ygIayYV=xaE^rTA)C4G zvkyl7TI1mGtLMyhhR*v`UyY`l#DYpy81uYEyD@%^=(3q2968_!yzR?4@)4N_S%Tdl z9j@E*uoEa>^a8YE1=D_WDwBmoZ=KS#NBTnDc^C3$k|xBr?B}{A*B#0FUwSZRc@fwB zpa1u~|Nr@a4_)rE`Gbga?GX5vpU=(9HS9zdn~eee#fQ1BCA1^KFTKEV@n)_&HBN!x zMJ`aI#*Viu=7M->w_Gy2a;5xjQ3?s}ULaK}jzaDC2kneTyAaRwt!VS;TCRH?-HmAd z%tBMuJJ(1MG9aqLfPc)`MRq7Zf^)elf*( z+mRs9w5VjZk9Lnb?!lw;yTN{nEi&uOP*`2klHw~D!M+3O(fCc*(+;yju3E@bB~X{VFnk2j4ROiGIFNc(<8 zyZ=sg#@98T$rtRK&vnwX5z^7xvvI6@3fG<5HVo|y$dmaE%-}j_=by+~Q%X)gYr^ff zFXD@(_*6;m=!o(XRFID795fJ^bR88lS)vPEr!*1^W|4>k{O(;xTI9pK15V!JY)a=?aB=o^qXbqCWZH ztPho)Ish-v*H)MO=V=6SlR9!;x4&8>u~RGRTx-sC|JB~a$kG^8z)x35)`Z+pS_a{!u38MaT2nFtLB|a`})#ui2EsQd~iBU zyFH2Nf3z!Hd<_3{NQ9RkrZdmov@`mBK={uh8cv;f%*~sjyiPi^-xL^V|B>q)RZ3BI z(oE3qGmJUj=yEmdWGLfjG{h|oWnG1lCYh2?o;Oj~ zy&-TZn4O=domznr43Lh7i^Df_^Iq4uKVcj-5xOU9S6R zsrjGIkhz?lw;EcMC2#GRD!lVOCHRz8Ve#TAsiz`4en7i34>sbbRtJ!zo}J&KU8mb? zvG=`R5Le~I)R%U_52j%ge|7kfIgabJvyzZye7@i=OX0dtt!q#RrQYIae|DUPF1PXB zFI1a!0Db%F#m(!R-UZ4I?L`N2*mb4b_0|d9$Euc;fxz&Zg&s|dsj|{U8nHumW$NHd_kF+ri#4VQGGlsH3R&2W-{j&+Lf7~X#08he3+81$ZQ|& zUb-(qJrbN?SY97yf6y+?3xyv|?DzU;H!RcuHg~gyl;TsU{rOZe|CHc3eUIZU zjpt>4)n26JVrNJ{yoA|4+7(&3k%dpy;K83luKVmil8E_zU{?+M{t=xgGqNKq&zQo4 z-YdCzAszaXrbDi9INF%&;tTZ2;B8~zuMT@&qswj0QXyX3{9sDsU?$IE)K}s8;7o_5 z*P?`_BO^g0rvW$ja$?Stw8M9zpuFn~{KmRTXy4AX%Uu-<+J9u&bhrt(Ts^Cq&?Tn~ z2d(VO^eZ}Vu^7Zc#nl~X0 zT<2V1>PtI`vp2$}vtZWeG}OMnv@497fgTu5g;TpC znhaj?p-j8b<+{Dvf#h1Vz^CCJH}BG+di2+I9PD#r&o6fz?g>-IY!r%5E|XMPmqupY^PB7${JFL)T*C~9_ z*e*+%zg#}trcUnO#{=As_J;Yno0)c@olT)9%s0E=HW{kNoL^{{Z9NnG*T>?KQ`Rx{ zrJdf#SrBP;R)k+$8Mk5CD0y+hW=ZIm_42>hjl`HI5nwa?Gt&=fw|JAT7?=?U!SAkc zUBadrXhxnFxb|SbcTMNnwfzG@)gTo7rn2oqyOtaU$gLU)*-zQ;$I@=!dqaRS7YK-O zVYctk={Q;J6*Zx3-Ya3kzp>b9dIFIPo4Br%&mMWipQ)tmXd~A>y85(i`HiRY!*AI2 zIdr)vw2B=oA2gKJ{Np>%yWb?YTd}NLE8ndf`$aJ55hxnw^4(QeU9^5tEHNp?+hb{pX5$=_d1-l))ad^Q71p*Mqz#MX3ht++uXSjpKlr}HaN56?X+8%l!mKc%W&$2 zC~lsR?S)|_)2thepOjeQRa@C{pUdBe2nrp<5`~t&vQxQs5WcS`tTV4* z+K+a}tel~`N(0=Uo#46y@7&=`?~ahT<_yFm6K38DT(mie$rfFQF(uMz{b@u(<w#(a z{=PG+a)rFo+J!n_e6egt1ae~Qh-vesj zF0^~GV68B>VGua1L|k{kR3E|PC@`6GmuVL|Z($!76nbR}EV|9smv-U*B_a0-5_r6y z-5=8XH)Og&N|FR+EMM9`6P0vLgr(2eSKmv$2mtU=F4o57$n z?0g07CP@#XC#D84W2rsx@~)Yy09xY*uA_%D?Lz079MuFd$rr}meaK&st*YWC0mz&aBj1u<5z9DBnNJu(dCc0TGj=A)Uy4B&Kot#x>H8tdQpAPUE_m2M@80>Q+>}U=r6QPu+pd+>fBLI(EHY{*Z@4A&wNB zZXI-V)ZTzMO$>x{pWZV2jdpg`GO_4L3%W8rl(g@sw6mYTLp-%;u=xLb;rBaAeUaz zMCB*@T|YYSRe=($j`Sj~j_h+(!(m6cquCzE>JeI^cFuX}lIjc+^^-l`XcvC8NxCXM zo!p4*f!gn1+IeRH>R%d1z~wmCWu47K%XZHpw#(Rdq4T6!7t!WPv83@+6=CN=dr9J_Cyt+;=V6yQ$>5=LhRLIyo!@MHcXcvciIQ>M@Z4ee z(7SXfmRU3Vjn4a^tB%Q>`C#nOz>L#;dD&B(x?V$;U7RBXnaw6IrbpnAJyV(Xqg|y^ z+qd-B#NeH~!niKQXa*@*vlx%>!G2$b&Kq+u0#j`f>UB`b@NcWOkcx~upZn<~X zMYOGHzJsS+o58sGyA`FMkJdPx*wa~3H~BLv*ysiqR;;lxI6#R;tm!Q)2{ap`p&>3--aTZ%&2?r`%1QSPPVbbGq$Tc>G z_=L&1E_e1KH2lRBa;M}n*LgXvLr*O9jg1?OB}Kopx$eOW4e%{+BZ_CYaot%hEvRn$ zXL-tuAm%utx9{+17YP1y35Db@&m{iETe$A~ zVg)?OXC7I!pWSbCxrRNP#QF`>h#{)M?fXmO*+O}4z-EbuGjxbS|h$Rmt6-> zyG0Ib@WMP5;nFU49*1_ns;1-cS<0lc&X?IAv`h9-$N#n+Mq!)Tb+5Ej3(-Vq{4(*% zn+$H=_%U`UyE+IR`_68k)jk6WN?q>wNi#?u9AZym&#A!g^{<$Aq22FUwxo;VTh#Jf zh1tKf(-^Nu;!2dD!AYO%w7WE5CpQmxU38mUZuR(kc++huXsNLC&UCpm2OYv=A9%yA z^FNq8uSO5~NBtub)dU@}ICzin&oc>LpE|^K+pYYim(0>2S=*26-c5=}Ql%NN&6-`m zMwhE`UmXs%&F!jMvBxFteq0{{-o13;OELQ$$h6T$;l52exY6K$2s^|N)m*;i9_v=585d;e3Wfi?**@h^v$RG$h05rlFsF$@@XR>qqjDbxA1qppgJ&FsECagKCJeHE3w*Q{XTYloOVspV6gUD zjei+EW$Hn@w2)9Z=v;|aL-%mq^ADl0akd6_?fHZ2K01fNaPRkc`!3+RMu*7|oK=U7 zSI2VQ_;V4kH1s@vbYTtGRknSc~;MvP`*#b zEjKj4M4o1`5cU|c|AVCSo~*;tinFQUJKd9;7qwp%?Y9jFyt{Jmt#1Z{y3*yP2D%#k{JT}Uv0Qf()|JM(-aN+ zq9!oU0auqOi$v$W;||AL!lrr&nSU*}ZQYs?{{}*wvToN z2Li~>8?9(mVKmnrJ=FtMyvTrL?@3I5q4UOM_JXsQ!*Q?G>^kYs$W|JdpeC3V7YQo& zeBsU9OmX~WZKl7_&f|qYxP4hEcQMl7x^JHY;nrCNvC&0^>)zE&hFP8J!~n;ysC|E? z%l&dJ5}v5p;D9Rj{7k#w(bHh-s{wf8g=%iz4Z9flCN;&a8tgnQo#)^j1OHZS6R%XW z`I&ZV%f3rpFAoO)013C;>{30Xer+tQ z`5)^dmyT=_s;vVgwX1u}HtF~Yk0KVp!QgtPpVF?s##-r0hlP-xsmOJ=mv=()(Q~16 z>0+k7bl%WGcIe#Obg-;GCTriXXxGVSJ&Jyw2;J`6F?pl%3k0988zpmF#tTR9W+VMS z%LT)a>^vgvf)Cdr6;Bs*dvgS7UoP$DocoAQcFn@MjT5=fP5g>>oHG}L2k`Um1^q@_ zl?udysbNgsTJ_cPFw@nNl@rP(s#g8M%q$<}U$o`A$R9(&S#uy7-Hq?o_Zkf<2SU(q zOZGmNF4yLE2u$djiMkGbf!ntW?J6=S!^sXMDEsz7uIqe14xBVXP-xd8#?>4?EwAde zxa`ok8S>MPiR98(OJvn;E7!g1nMgdWhN1Ufd^f6hB-tO6kG5|;#?8~8H-!Y3i)ilK zHC*R+&Vfu4&q{9>v*XHiJr;PH6F;9kWVO(m*>C3eu>5D#L&?oBxjbovDyga8hCjb_ z=enm&N@VudoGq~=-YD?_k2~3NY4`GXG_hM!izd7|#*|CD=OGiwp*{+*p;IE$|7e%=&xOP} z8p0~&(Ojom+xA_$zcbhAhjny@5puq^tz!R>^kbo&GXG|`v!r2FW3g`b(JnR<%d10 zUS|S5cOh=x*)$)dk>(ETXY^#8LP-zln~L7DNm5h!p74=K-8==Nh8QsYfOc1x6XX#V z2f5`);Pm%gcj#K%x9Z=9NpEgYW%e(fC+J0i z&9J_rZ1XE_-u2ixFkQPHoy*JMI=k>hNR)@mdK;bKy1`?Uz}`Ov-5bx2H?<7X5!1e| zlW0xS5pyq|LYE3kv9}F7Z%R9JNhR7!MA0fXmb7m_+RYgA2N^ru!XKR7xNe7m6}(Ay zlAcYs=en#MJ5ag1No>w!=V1$Pca`p*F+=dapCSYfGbR?rm(bUO!Au_Qy4C5DJEzW~ zinnaJv`g!xMi#vwXvJQ3zLs{s3_251JQCK7FU9TKg?6!}PjPriU+BNdl)HUeFLq;7 zQ$O%M$*#|-8>%i9f`*rs>ue|;xobVL*f|FdDa>d3J?+XBkDzx;;-PY*gy}D|`@5+V z?Cv-L46>ZK?$GzX&|xgVu6ZF`cmJp{3|rX`LaW(+PnQdQ2faM zpVRh_=d0}e;B1R+vh5#Lgpd&)!gM2VQc}_xOrI}e_6O}6ca0!MTNS|4;XBvqy|O3g zTRMPj$v3Wxo_q&)^bLl~MZ37Jo>bySg~{+TYBSfpvRI05^_~LRSK0Huc`t3pi1)sN zUQM;|l+4>~B_U&uZ;((YAB7|dvVBz{Z!54G>7wEK2B8dl1>;7(!eb29A?htGoK zqie;TCA+zKkTDCccHSW+k-NA~z3u-8UhgucF8$bX^gHebVtv3nNxtzvxtY2@zHBug z-}jvb?dw51vB(cM>SkgkQ@-1gWQXqs?+|m1)46%tPL^oR`jcXXKi_rGnvb?*oWfSK zqq%u!rk0>C)l-nc@EFF;x}z>uYK;(7#_W^p;~(OVPqC2JaGvQewEJniK?oh=1r6Ek z^A_zAvQMGi*5N=J4sr9&>OVoNTx}tDx+ZDg&U9XIMcbU!+=B)e>70+x9PB$!}ApzO*a#H6XozXpnyU*>NP=1^YxJ{jpBycyZe~u-$jXX{R7r zgogCrEKY5m$GC3lqTKw?8i~*UL)d-CbN$7S0yi=m%1qNLLW&UO^ZuNZ%Fd>UP(rp4 zA*)nMrD>Fkrk3{L^M0RGluFvAy|nkz61kuIc>M0;ajx^d=l=hEyv}^Dv)+CB2#K?6 zkb!6|SmI5u8z$Y?%8ls!{NJFYuMbr(q&qv|m$*FK51cNT&vf55=YhgSGGg;R>1-!G z*R;p~<6P5yYmf3eVa1}Dw<^LH+ZwcUz*>+MN|%Fl70P>1z^~=tOHve-F6q8V%X?8; z-qQalFX^(R=e>TFp7(n7KhAq4-A=t~VRnxnV0m*WGu_LZl_ig)XFw}9W-y)g&;8ue zk*k5shIy2`s_}wz&Gh2*`d_nqYdQ`VUS0$A%ng`sk(N6&OpgEs8hx2Arei8x;jRQ0 zU!l)+A=6blF%!xcYKu>|(9d(y9oCx#tKeJV<;^$Lbws*z8qv@NL`e3Xp}z+=6zPi9 zR{BeJt@7o6MW+;6;hAO8D%cO75chB(U9{zTcCs zPNAn*XR|xFwmp*>Z~EHl;`U!Jg;nx7Om}08ImljWiN1`d_qmekTAMe6+z0oB8Ka_^ z@&2s)0y-ND#rOPXQm*2Iiui|%zvS?uW&CGhCAd@WC;hkiFRK5MuE(Su;4w~u0~fxc z+Lv^j>vx09hthSvkJFg(T!w!IlWtFik8O*XZi$~9{2DS59$a;ma*IOjJ-d>3SY4jPhr? z#&_#b%G#G;-+%1KejFt)_S}}wReY}E#+M#Jp`+tr>NZuXyret$q7sdcjDfQw@|bSe z%dP0{&?IQ+Gl=Q-ttv%Z7S4rl&FJ|uGTqfnR-y#ERJcF$BX!>(ovmszvMNl1`Kz+2 zbPvgz))fYyt+jo(n@@hx3m&c*jW7243%XyIq#LTG0@WHcux!xVOvW2MaSl9xHxHC9-OntC!p}swPI)rY?MaWnyfz#l+_Q)g zo%Y)!YI>N3H<{al$uqmC@jB9-+Lw;cjGPbpUtCY+k97a~&B5E^_W^Wd5mkSrn{qu0 zH+*dY_w=)v@iL!B;xjxa&TV}_m6wcH*fj%-bu~blKK&gz}4KiMzu5x6Gr@^k( zFPQP<;S%(8vlo2o(*t+EF3EU1erp7i zUCHq8Ao_cHY-T0DYx_CT0!ul;(|4}$bv*}vrkhduBi&)MrQ#&jIq>wt+f@EYxBJdp z@kX=R&}`3BrrT1u7>wmpp!?EcOtN{9&oxwgkPbiS4fjdUO1scT*E8wBnm+JY>q_wDo(oma zqzi6Rg-^>|;Ptba%yfHd41w=7FMwx77R-3o9z$THQXo(coJ2YQd-|O56m4!+aT8~& z9)^#v`-$dhjHT}5qxHJ3fV0Y>FOmBVqdxmu16XkK{)XA`P zz&X_YIwzgYf=-k=Z3g_{ageGP(!Kh%iJSf}8-96D-zNuUDGO82n{Z(riQMi3gK(>j zD;!{A4nep=8A4EltiBPtk-hV{KTUNXQDM+6S=Ii8`d9<`lLmd;!CpxlGY zhJsC(9@jrcRp{j*onN1`0+ik#MO|;Co3}{;N7gvRu12jF zP_M$^&SQE$g-kd8@gSgQkptYm(ff|0WzX^IJ!H6LOHWAu5?CUf8axszWr?YDN%t?I zNcbTA*VO3-dfyo7>K~4hbi5bAj5~C_knWmNI1p*igGZK%seVs7lY@ES%d~Vj?m;Zo z4@kF?laALpCc%OqNmRVHbJo0V=R%QhbQAxH50ai^?E#-j&yMPTy^+pf7(_l2Z@8nG zo~I*S=G^guztvp$qhk-%Ur0CZ80JmiWy4Q4GL-9bn;^b^07(867xBrDwn_F%=MKaJ zEvfb(UC7hVWNo!l+PqJo`{#Q~ z{~1lcZ;DC_`E+nqg7rvF!=Yx>$Qj(*zX?1bRaeHPwE@lpx zkTVINlF;9^WV|kmXy6%Wi-Vuh?_s0^w*~Ms&swb?P-%hm$nXXLf z4s_3YFz|6nWX7|wT7WX0-ht{<)0u8)A30RHW0}x4Et_)VGj?%xTl$H%8TaNKbXw6% zpV{z2?s=hm{gLkc^z$esJQ5yx=uBNlq^su+pd}>%u;-^6Os5jN5v>i3fJ^0fGu>aO zJmkMS4Q})~!_1$|%ez8?MjCt-u#g#V*|V#{$zECT-QtlB*9g2WFtB?*ghlNOvc{9xOp8QQAbheM#pV zstu>uodMn{^mjbz+@|S5UkwLv#%3ZjUHv&D;j&+$;^Zp&KQ&~$w>LcCn}QIqUPRBs zT8f+bbBnIqIbojv>30n2>;B<~&QHYM`xWV|%T}SzJKA9Chh(M;sEI{#my5Zv{pooU zGTy^su}E)PyZD4TJIbCTw%HJReH{n%tLgU=(rH#m_qnPW!RJOiGhRTKIV?;z0hi^+GV|9F-~i>;sK5jF zs+jRgT7sdObp5HqAo}_Ce3p(7a_zn7`s~I0)7+=%%Hc>*APIrp+l_Qjf=;0a(lrX+ zZ^D^wevgw#zkCHqDWIP-WV~PUerWGH6L6#@jT!G&!+7NM+!Wj%NY5LP@v?pnMqpCC zc+OpVUL$;mg1FA2psuasiRf0ifP(TO;6y$HbT2RI&R%y10cjJVT7V9fKhkM0%Ln_P zrNKQqTd4aL=^S@ggJBML!8@}6X1vZ+b2#~sHk^3!E;E0k2afPUkGG)m@ngzWt?eVc zh+1XmP`rh&j&eaJujU}b5%haD>0(6A=-@7Zlym6y-lX%o*~+0^>D=rmxww1%kxu%5 zWo}yK2sCCc{k=fC!!Jz5ie=4p4;$%t8)1&*T2i20;@X}3tD)uM#p##9kfZdx5a|N7 zYQ(eVUk4M{)9VjNH}1I-xIJGCr=F$XH%O=c*&etT_5?#@GpKeWoxj^wuvNPWZ1$c( zxpuEi$?7Q0+QgyTcyUx9(!M=bxc{1tM>-|%g}lS&5U%|5J|ZH=cq$UavvJWqSX|ttu0~acHLK1{f&p zGc%O_vveS=IY+P0Cf$w|D}bEIEVwqhp1QA*uKx&a=-poo!&dHMx|TV{F!~>aEy*jX z?=mu;{j7513Oa?F@I5n^e1 z=f9-OTX=gppZmH$ceLRimwv#9n?F_`@-1}xk}l2Om&^I#4<9V1-w#N)Wy5XpRufYg z8BV`%kS+)P5}>XlZ`!4C0@0JJFqn+T=n4#45HVY_;^Uef|#{62&iAVVYt=YkN zoj(2DNID~f8V_sq8*b@>Bu0OXps?-~UKwb@vfy@j8o6GKW#8v9OHmvCp%ErQNKP# zeBu~2l`%7bz@!bb_5j<%iMxkP@IdL`OmVTYH`p}(g| zXS{1N3jfjrCyu7q0g&$cu@gd2VGOYDT~WLp-Z$4A_F3m)*S(*T&f#Yh%DrX-;W2ugfpleAhtZn6IWS+B9w#K7g63|N zF~}1h_o2rbNO$h`Vx+5=3eP{I_W_aa<{lu9v5A6%a_&>l56f2#ob#uZ{1%5p-2Njg zP(t!1q_#2|cP}sLwpns$mVGJ8l}%zg=dK<=zibpfXEC1XKCQhAu=^O?uuhBV+A^Mi zq~9W3KA67$E!|Zn`TnO&^d&MwN14dzv1{%zj_POZ<;=r&es>9(}q5 zaxTt-{NfZUf25l*rx_Igi-rnM*HZUW(p_263A|0+V9}prR6ihHQMMAixnMFpWn9a2 zahwkPIolbgMXY0{yF^V7dPX?GV;N4A(;0I`^tf|?XzJ0PoNm1>Oi3|^HRgZC-TNQu zUgl1OMY+0gT`ZvTM>-wlNzf}$4=VOIVY-~@j_`)t0Qg%ri0M8qbcRng2g4P{^n4VV zF81?+#m2p$&Ut#j0qNvk`M`n)?|}Qlz07nUD9(Zj{5x$UMpVBi)OA79%^1N_wqre`_^n-OEA7+vj46 z_r4yAAI+ujf24E#Xn;*zb@86?w^Tg)X9_~tX?f0m+B3ec<}G@&;4P{vq335vx7yDQ zg(-7oy&Ji0eq2HTGx2?8Ks2_>Zo%~p4yuK>h!0<#LESKlQbXL0y zfLx>uUhm;cIhierby0>dM6W0A;ucib=(9_esH_a?n$y6E6Y*y^_%oqM;A>7M1q zL7}1ueO$JTauY+^d6!H_$@Acgyq?-b@L_{Ftb1fd)gS4OtIq&OWJbaASZk*1zd9bI z9~lhiNx!SR_h&L*&o!x_fwP4k|3)yKsd5IWXtahRj=p}$cp7_hK|ql;y#C09il=i= zk;^R6vD%@mniy^9yi*xiR=H|A3t8%2d5^Vr0(OSyS%^%x10V$?Ur;oNat`! z58qs*ikFP1%R#zcU3XBV?{w@^yqPKo>F#!|MxjAdadI5JZj*GOKRl7PQV`C+{GAyu zC2pw@UpE&I)Za-t)%lnBQI`}X!+PK0_sTy*p9jhCo4!U+?Mu3@q&W04tq1h_Lfi7-qUP{ZhesqX@A7(_E&rHz@!mjR9b~7u#Kb zehetZDF8)d`n!A3mA-9g_UAm&mJN8w<{eZu3s+o1dPK{~Bbez<9THM;SP92A%EgK;qiU{hfLGalF?2OpN_g6zXS zOt;rb4Vv~zLsvJsFx`ua(GdT2k^VE)nsR#SQG8&f7Pm{zgqykfk2t1r44hj;&%cpw z(v&pd7b$`@X2Y2A&g!fL(Gw=YQ|IaLRWjb8whf?pkqA!l8_JA#WHjMWc z%_xHDe!o)?{{1Wxc2A<`-|(gZ+;77{+y&ojT$$}b6zH9VSB22)UP2zWS<59hLgV1bxT#9t14g>L{ZDZk0XGE2QblNdm z*x=(t=$EjXnXaeg8Cta<2oC93%8Ykt|3!4LDiXR?*)ij}9NK|;9*u$tv8$Nz+Rj&^ z?07P*Kc1-J{HadxW(K`ZhIA*Qf1uaHrT^nADW}pUoxbry zbTD%)4A!OhW0TI}Xbl<^7X&)bUn+3t;(JdVSLn!$9uO*Cff5pS?K40Wo;1MWi@w99>@0 z`5Di|V>%a#uf~6+(j{H4+7z69-gU}t zP|@NRob%!SRiEdcE6l?gQ3{|gqk!oaXNKa>N`HWcjyBaEWV|_H!FctQaIs#FEOmb& z-P%@wFCMxKL<8t?0n(ib6l1dww?KWW5_RAGc6b+mJ?5)OW5qIFcZn~$Z8{l$#e=DI zN!RB8K~Pnhf_Ecrru%hjtDqlu0;SEM-^a;#hu&gw)s2-X`D!XN-XnbrQ1@UUzI@e* zay~OBON@i^xQ4wFZs|cKA?j_&< z)9+2Bd--J$_|aE-*73~OR6ihHv~3XBwapG5PoT#qNq0$lM#8CgK5%nYI~DJOhni4h za;$FHw0+#n>PWn9$Q1O};T-5*Ued`l2Vjp0Ymw>!dVGU)R}KB}59xP+R|owaKsx7Y zAG{j8M)`$@nCT`Q_QE@pccBl_^!EZ8FYl`-&e@uQR_{`x+Lv@?nQpj2I({|iT^lo9 zgk16MUT0BI&UeaT9^+&oF4mNn<;J)~)$wQ`7 zXtu&?7k!1|)AV~g8LwRaBU<|IuV7FcM)gzD$y!w-TbEEQDx&u-E>Q*I68|OjKwmR&IQ^O# z(>4DifpE3nCt&5A#f=M`bczwxV06!4g35V%y(sDWHysDc-XDeRjCf|ef!~e;e?KJL8oQMkpo@66_s&aC4M z%tqmk!-?X`uk=0}(y3fG!#lWa@m?#A8Ba-h1b&?;2MssT?@eSpt<+)Iz~u}0Fk%QZ zo}<+_w5_5_ymmW%eUS0gxo2p?+TQSU4L#0Jx`894|FZG265rkuO{J@Kv7Vot?#v}= zKj6|{wxBv!3#=4EKi^1KbMFFrA0fi$OZ&p^_YKlby0i)PSlofUtGt-*g4kS`U>k#r z7hMLdc=}$Y{4wdjEAFqK#*Ei8yjE<#+Y=vnuR%Hf;Bo%^-U(cC$xTki+FStAbZh@3 zUD6GIP$dcU`-yJEhB4#y?TVEI>itHsA48eW`}--enKXa(AK3Zx3f%xYjGVAeI$h6X z{yv1X0Ds$|Xof)qm2TW4UBP;xzn$-{JN&)+C_HmzDGL2TpMOQVVRNTp7k_zJpf!qW z57HrLBm9)hMSQC*GhIc=b2OviCGg6n*ROT7ui)$KS98fDZg7XMM@TLiXyd}I9#lNi z#iTyw_8cCFmsU(+x`&as#k))<;nxd?FpSj^Fmv1_SlWvo*CXS}X2^rbwysb) zpT6IduI7K%y&n9Jb+4p5-d+Ueo6Ukp>*;l`MmL6wM_e=(Z5{QDlg;ZThFQPC?LG8$ zPP%u;27~7Qz94>HI@SM3ceH*ixUq2z{90qlbSJi60&hl}!!K#{JSQ2i$-4_QRcr%HX@@?IVU)muWC@oIlJq56B_@Lpad({+q*Kw2C9VcvyHOxJXz7QMe30n4=V zD7QMU2jBFlh%YU_%b$O5hW%UBv7F&Yrkf?Bjn~}kkA(mg-2J&l#!EOW{a4J{Nx0YK zHfFruhgPFv>qKlkI0UfbX`RhO?(>uJk&kXn2b|;4bI%woI$BM+YJC}g$kigg=f>N- z&F$65QzsGM92d%ThSGJSEq3wv@09|kJ8&%zg{CFr<=^Q1k?95oEd;r@&Y}HZXHor+ zbjB&`!H1f5v|*7C(>=4Q2HWPeqZRk)=SMq8=G(I#)FsJSh;C{a!0}F2Fz+^9FQi*& zHXI)OB!gScHK}w-XA&|7hNl~2$(ItUUP!ms(FWe`dWQsMdfb9^4$XEjTW$a@+6ZMcM;*a2@QJPhRbJ9vU33QhUh4)! z@Hb{WT)PZi{wiHB)hS`RgU{w8k?wr>MnjKT-k*PlpvD1N@alk{OsDR6R_Np08!id= zr|M13><3TU3qnD2s zQSD2{>t7p$wTk7inOZb6UfH)m{Mc;4bZ<8@-oCGaIP&cyw8*cNYB$oYR`bPg z5>)Z$HcNpOZ{r$woU%|IFLgDg;?3KlE3VYpWY@=Qhh)`ffBf{#XHd3(E!DoH3rKRq z7pL@wIcJtJU8sv2PD||#yA+o*UH&*{Y}K<1j5>mu?ra|g{ON}U3|}Hc^#d}0a_K)% ztaLx(OAmTnfOMnaJ9OG`0u&FSpC2EV1#n5Hn``;TXwGkcFz$KtH)vR`LFJEhzW4m` zf!N+K$)ucW57K!zxMK$`Rd_y|-j_hStJUMM`As9(-zJHfZfBzzo+CRB4*zJ%bot-( zagKBz;!F*FF4Lvd{$jJjQzD_+$CQcGPuwu|;3pzO+En%QTT6 z{w^HzJGKc4CG@-`>5eE(!ok~B@b(4!srneMjZKX+5?EN_SgRoPMf zl#KT}^C!xGZH_Ow)9a*<90mOPvFk+AH&{NgI0*F_+XH3_r+lglDyJN%r{Y>XCdkhurOvHcV z`tjZCk4$$=W)0dHm4vm1*;3^o-78OJ;riqpTz`pPCrG->2b{zwHpk%azL%K!`#hpf zoOOFPc5HY`xp$$R{H(-0iRs9m!i+y6jLiOUdn-m!{fcz^HoitG70oDU@D!$VJ9i&V zJ5eB9d=SZW4`%lh27kJUwwj zb8;%}#$MXNqc{#Y%t(Z~R`j?E=~Ni|S4mglu@$7ZT?8tDGhp|AK)U7!PeG0OYjEv9 z{`*BbA9Y>$aFjFTc~|OwPr65jR?rM+!9T$_srDt^g~rM7KpO&EdMZ%)^Yt(gTQ1vD zr`Y2dSGRB%__Oc@Iul2~50Nft{(Dd|_A}byX;0NN=`I}o10DqjvbkD-L*deD$g>Oo{Mvvs+SsvN^aAqRIa-3QLgyXR9rSe30C(|pyH9vBV;7r z)-ejomeTX=q&poa9TQaxg0&a*sCp({xt4UEdlE3Bi+LArH$`tWWJ2d@@nGTpm55LOQz0gs6OQ1wT~ zbNLQu*uA5HS&k1@*)Tp?1LQ83rP8e|aTgytkvu-xK8w%L zQU<>+d%}e!YE-`>-GB{C!Ohz?@Z2LqrVIUC1b*(df{UVznJzzR6WAHn07m77GTqS) ziZJ&lgg6^@Ssb>q(Q0M8Oe@PPM{@7`YYY)Y9xa%4>Evq;9{2D;+hY{25 z?db}!3)tM|x1#m6roywIw}XOu9BX9)KHz;JUZg zRQ@K6QRcr*DCA{>UhpU0Uq?l|BC&K%m})oD%_}~MmYtf7BUUbFx(izmqw7<{u&2&G z)VpPV?)hy!)BUnti8@v0;(Ny&nCbT08->RBB;%elVySqW$E%A6{xFcJ z+wI{-_L>YF0?vqbOw7XF^GCX4Sh_xTvK*+XNnyI(Q#XN}VlB|sXD-ui>-8EW%sMRm z3=L;G-&G&LrtRm&o27eQS^4|aq6{@&g@~KqOrxCp>mfo?#1^}K@ z(3raak#4O*9JV(o;^GE2QuR!_{LiuYo8d;}QlH6m(+@@9@Z2RRL~@+zOy@`7;A=ko zzh|wKEBC%DNz*Lid(VB(KU#4Z?F|USz?kk=q^q4@jn*heVz1+LzapJNT~E-Z;)IT& z`BeRpZqrU*P{mJ0O}kQ=&PP%NR$Bf+hDr3iM)Hv7{5H2|BDaCR_$?bI;M9GW!Ha_m zR6Np!_OroqWe>p#o4!mJ#a%<+{eoa@z&6yqzmV~c6uKabIRd;4N;rUf(In})jZ$Lkkh$zV@dO$IQX?vy~`^V%4gB&O#f z$aG~cI|vVs#6n}2MrQu<&5gzTpO1zEcGKVI`d|}(r67b;oTbTWJv=VHG1nKKUPSjl z(sd4#1-U!yp{WO5&!l@@=mu7v2!Q2xI;i}St}tpnQ2ea`Zwzy%>VJNe3~(Y4c`$P3XU+*R2aHRuOyOHjxTP)sQ z-H4nn6baqSLAn*T(OAc9C+aF(#Ecg_#ucC2-xCk`SHg5(J#4UDq(p@zk z0P~FIqPDw}nQrO~2H>m4_bSt;m zW2?j4LER8~o|tqwKkTsD;G-aVY=5d8&3z7W0S(#Qf=`fB%t^=cd*Z={k_S{jAf4lq zIe5T;QjmU`{%$0lMuk0gs@e|b4X5)*y63;_FdBXotTbomZ@^9)>?J)ney71dc?W)dkto9+KH6j`BCL1ow3g#h#F_0?Im=-B3-TYd`CU)QWRT4e^-!h zc(f<{C#**PDe_dhTYk$6XA8sXQWO{SZWcSmS$%?p@a7z*+i`FXIF`O$c%DX|pF_sW zpCW)cJEiMNrDu$Gzi*IkrgR)}XSM-&H7APcLX4Y%-w*>Z39w!L>FeN+?PH5P;|!}@EM+}m3Eyf4zF z&9H1whap#R;OVm&7Vs$NL<_n`y)D{A0w`>cW3tn$^DySMaI3tMBm1RfR4X z*Ay@g4;kMV>bKltx;AYaY&vZqeCN(HUGa1iJZwih010ZCm9CD74%YR04|e(wW4f;k z9-%QuMnX?Gh;p8iF@l|_UbM;W5Wfxu;-jPXiD$p@u|b@f|QlGK1+>>)WAYuD$WagLMAl2Os9wuCK34 z7v=LO)st}PXzBmxqv?Hjr2Ex>HqOf_2Zze&c_z{&eDK5`FDt+$lYdnEl5T&PE9U0S z7W?VZ>tjimAvoZYPbPo2g!w(GbV>KQArYnx zXce&QUZy+wI19@7j79l_uhZjjM7oa#E`Uc&RDjaoyVUcIOjjJS08TX=hIVv$Qtm>g zCg&(!du7d?XTG?pF9woDF^zK<_go-6OXhsK57FWOa=0f214KXC?Y7e;2vx(Jm?bBc~eQIKHvc zgBy@lgIYvM&}J^ZPJwj$cv*B!HXCLhJs|F0FQjw)SuBpxm<8+d==EHrJ7hfwo-c8Q zFR$EY#(U^y4*vy9*LdEi#|g=J{m+eo1Mb_x&8p+5_T5zBEG}H#Hoi44h`*d1hDOHB zgU24y=YEjxb=Yzt*ChmAFZ)aN1JZq1&GVr?*|6XaJx)lv`h}AvyWmVXaSFXpgmkG# zY$P{-WkGkDvCMQ+r$4D%_1hO#Ebj-qw}*vGKkmwg3EZ(*o;zg`gh%d_g}N5ksd^@z zLoa|Y3{-#$Gw)K@CFxRkn&L*C{_xM%_e__$_b(c(?*r%jqQ{%acmpE;q8C*@aOx_0 zeM$WyRZhvzmYcZ!ICsLr0}HdBinWH);}N9u)dqN%ssb!^q02$KCdYC3M|5xTknAzk zbxFD%drWcJxc=~$H(g%R{oC{j6*Ue7=WOVC2-0c&eTJS&J^}y9lc{uHy`0Vs;$MkO zDx0{in@y1Ag?!}wH-&0n(sjBgC3}<-qtf9X{ z$#|Uw#$dzgK~Sa8i5YMIro*6D$`pA15`BLmyS#l2WCZOMUN#`<46;>a#L2shy^_`^q8EFTP#t5MP zB)z|abcvr`;E(k-Kv++I4{nK963)kri)ws`d2{lh`_tX$y3)G z>B3&rqMQ9=@zY#=rbB2gs>)4l`>XSrE;3RT8A}$4%964vw{6f+ad43b_hHgN?%~rQJjHnxFq-&~>Q|(L z&CXb`iwC1UG??+;NY~WcDYk$DwZF`GRlSB|zbijL(+ql_2$}BA`|r_!yJMj&P-dpf zCA~rZ<0rw6#g7p9RgZq(Al-p`_2Szo0xA~K?LoS}P5EHe*10hFUjQ@R zfY&R)nC7{#dV?*~oyjZ)g+)=YecKMETQ+k&7~d5SM?RiIxudNU#n*;h6kSWJ7rA?- zLzOTc5P8Fw>3lzBz@=>fC}=#R?pI_y8IMeO{G30MEZI%1yCL1k=b13k-T^6&cBSrD zq|=VhlCH@ZhYtRZWIFC>78F|iA=qH{}vvXbAtNUl9#ax+O9{lZtKLZU9k95mY}Voz>AK9GJ)0-Kk3{@NY{+W{Q$-nmQekVbf}jPZrQ#S#QXoC`XA}i z0~~QJFP%s9JVCke^8rE zmwdt%F8w{HMo8!Pzz^n**dy+>vk%qpNe34s!$zgeVl;azRSum>Z{F;9e{R-sYpx_%8E8q@ z{RerDp!y5x+O#0>xZwq7jijGPq+^}`N4l^N8^G}eA}9$NN~QZYNl{4ETQAanUBf>$ z8HGAGe-j>OWinkq_mL>5x>*pk>Gf-5Jj)yX(4b{^gbRxF_a*7f_q-A8l4`g{=Nx9b zhNjO1uXSrVlR0dsHvFcr?OQUpViVh)cw8h5EFFfN2D9_$rx+#dGPxwY_GQN_EV2-S zuErp<&-8Z%S>CHJHN+3^YKq(Tq1PWj_$cNIb)Az=hu4HQPd%VvMI+OFys8K9 znLEK7d#}}YzrT?2X0=ck@I`X!yZuQl8oISPhN31m8dXAZ{48p3ghy(m|? z?Ka*IM*asS*{uiGtnpN4nHuOVN>Dn@~q$4AVuvoq?YHJ&uAJ<}e+8 z=7%C9j8N3aG^X2j)CZ|snxbdYf6uY<7v(R9-n_I%2OeZl?q}!?e%G{J+y}>UE>ArY zAH3eoR~yss?W7Cu;ee|z>0p;(gQIt#6l*f6RG_IgHt*OG4U5e0l?z$4^l&*ARn zAlW&yx?X7Mpx4ooE_|UZ_EE4#ITm#ONcX9}0Nt3PhhK2){C%!TLkkyaqoh^ysPg{0 zuOL(xToa9`UC2iXieTT-rQ(;?^msPuu0R9uaOg6S?n;lNlTI#S0*LFiS=_!alj<*| zi+MB===3iUzuUrgPLIRDrf<{0fxGN<%bTwPkM(L`n+|=wsV~~c`;>08J2Xs9SoA4e z{IV?s>`Td@>V3pi6 zBO8C|8HNF3X1vPBJJED!M>tA@-d9P+8yTSrI+{{pf-Aiak949n2Y{aAb})4VU5?f7 z48)q}mU5Mjo4Ap0P6>xUEP%HXWT^WF>4tV46m~jhL*=<&gzonP(m6L<@=xBU!;arM z%y=PvTSc2J=fnFK=zT?GJn!X0z#)Sa*m{qC&XDfVK?r(}$b?gr=;t8mR`657{7IQ` zYHbNMZ%?{mB^N>1&1h&Qdy8t{t;x?gE7+ofxB6-oqLc>#!K=dqn zeW%_IE%8F%X`Ds41Lsr=@x#dFAib6TJ}2FFFEKXMnGe((^{9Fwo#oG=IL^-!1|&$R z{E=>O-5}g7DFlH=6PWS*7oSD?N`v4mA1lf&GPDqs;dVQNv{-)pqRA-YYY%)?`VXY; z{giYuowlg>L?P%iGnwgpD!arpr2pfyTs@EJf=h;io-M=SuSbyS>(0-5`(*+zK12z_x7Yjv^F-ceLJNEe=3fX)V(AfIjY_X6qMmZT%_W<4J< zV?Hz9==%Zao8b$D_J=UtwjcILck?6kbL&i|TXtINZahLw8`w@p?}Jb$J-1sOYct~+ zmYD;D2jVv$oS4q-yeByHR~uIZ(C+$uMFDQrkhuGv zdwSk4{^e>uXHyk-K6o7$YL^Qd`z1qbpQ)(({eW~88dX60uT+?3IDqN;Meha*cJXl6 zLow3@2CG1M>AC`#^@Qm**Yt;rmU_VQ5NzJU#x+yRu=3vZVxkFM|M7l9XJcVv~6O>d%3&}2o8zR=CC8>_P_YeEidpC zS(~;?@Wv9c;*T6S?X*8t&!oFxa$1~Olmoklcu@Hx-Ki@Rz>>mL*l;l#b*~rFz0{Zq zS}Zf*yE%)P>HfT)1uWmB!;qMfOs9HgH;`L67b?d3Qf|)VTl|dqGdTCR_qoPYOFXl+ z1p#wkCSBN`HR$;SE9_fEKhHh;s|q!LS4&iLS8)YZ&iKwd4IDp%eqSS<=R^^{ zB_53{&yAqkmvsH#j={&58sZDRs;GJ)ot*J7oc?JdJ~I6qGhU>JGCsA^4+rlwX2u)o z+XLUXbHk&%wo`69yvW6ej1_5qZjdB@8inUXj)V0E{ZRM*N4k@jM&V2I$H6!kRi+bZ z-a&&uN5O3o{!}^0cqw0wBK;|G&~$64k^;+@V!#D?#y-ptg z>8b(p9Wft{y9B9tr0ayMgl${Xp!?a9$=0b|%pKYa4Fm^UkryMeY-B@WxITkrRr9V+`y- z_jsgRpjw5@e+NSOdo4_-+iw{f?kEeD)O@JxoQ#JKDWm*F7I31Nem^B$igB~>xa~0* z)-!?`@3O%NV77b#{8=7PweN`EYxv*Rr6QRNI<&1tq9^`;xBQum@Zl8wg7mwo>^cT~~t< z^q4aNCI{W3`rn;5qXo^MhFrOP1OHQY3o!WHDn531F7BQ#=??6v0X^1Pa~YLMOn1!j z82B-+2h_RY#B{MeAAx4squk@W^mizk?v4pBz}k^kF!CY&eOdI_m$SU!CK|V@oV)uy z1<&5&gHHCCO|=K<6ys9xn-OJbbkkv~{z%tjO%fjUz8Y-+^tp|sbFz-bmFMMq_w8<61z1C%uIOuc{#W)d`51#(?*6hBT=QcN=cSv$ z+lNO}?MAvE0oM53_0h2On*&u|(mh)B1Eu#1hD8b1p!@Yky6CjGs4#L8w4eHp8PCG+ zK1$l-1glrEUFqUV)To^T6TVHYW2I~PFb9Qr|9Xq* zW7om+fn{(9(}}11%Kho{3sskh365wC`+tm9@ z?&&hlQ7GUm&sKAfY(sI-_5o-|<0qr>8=d!j{{m4fv213b2Uik5!Hpv<>!K_%jkI*(oMllsNszb z)YwCh!-W(eF2Biw)4MuTv|;CboUE6G>aq-}dM4f1^m#aIW;)2)HGrx=(%oMkg@+t$ zL49XbQvIHE+sFB1yW+hl#IY51uRqfL?{kUcrRNgA{Eu^qN%w!w8&-;^&l~>qTUof3 z9VUA7T}N`jeKww{R=i<4x4^5wc}FmuIk|%A`mXp0 zYBHw4NTah%SG`>qHgir;<#`F!ugLt#4mE>s$D6?0rF*G(YqECoB?F&`40j*rC--s# z@#RS{E`Al$Ii_WT84J^(jq+P6T{7N?_AKyGBN4v8Lcf=gt|BrIteKe(E4IZ_*Bj|x z-^>Fi{FC65M@h{5MY=8obIsGCZ`=%KJgvkIu-!`pl{>yr@xbc=+-|dpT=k+8T-iQT ztZvpHPK=}Xv5@ZWzrX01x)1EArSJEot59i0u4g}i6pr4HO}gZs%aP4ZHQ3VNNcCsZ zy}vaGOMfIwbQ|Ht9O^eI9qHm4dohwFAZ3l;y;>LmQ_ZQO5P#6u3uh`)~y-TV3 zBi-MxmawA82G1>_>zQ=?3~RXJmo;9Um&=UzO5GPeN$ZJMpSGd$XY#(8D_)_(X+~X@ ztS-EUmV1iemk;#1D$-5*+DquMZ#H~T_>yX0(%pIE1^#^)0)wI^QT0bUn}^15R6kSj zX19px-YS^GpgVuT3AtWOmlHn`R`eeL-WV7#-JvEIIL>!5u$0i>)01YK3O{`PI75#E zyt=g)x4UiKv81NFt;nS+XQ;N@!1t_K-I160g^tDI}$RMQKlq z_OwgC*XNw?@0|IX_h-KUKhAURojZ4%J2N+TF+FdVEcaf^Wyuy~1mlm=?f%ZXk;1=( zd!iq4CnXnUCg63?2Vt}4hq&(TlyuL#46vK}YP8eZnc6Z=~mWvUvreMff; zkQkT5a%;8radQui02@Cf!s=(4RQ-{z3U37q>?5J#aQZ$&I)3CHU~niFu9-5PnU_&^ z4V=9;0#+t#GPiHd=$~Lf`9AP&n=jMlN&lVliS2zxE|M$)@bS6v4Q5G zd%Gu{tRw{u%LvBnw$slWq-!^B7aVS9;2>Xm9X`_S@yiev-(QUHq|o>CEs{3zV^vr2 z?wT7CKgDVA>DTMXZX^BNL^}Ch!O%-OkA7hV-3~~%vFBWsptow7+H1RqxmZ>ZYy8IgTuOL~I9;ZOMjBtP6pr{rk*w2IAk1y#G?~edO_w<9GH~KQ2 zb50HjS!Mx;TaRG6wy=DlV8}zW8Xcxns;dKuw(2m;+ktZZ-R4OSS0#%^JzOPG{`LXM zq5>iNKgMs6&Oz=CO1ZF3_y8lAc|+7!pktYX(Oi!trZd+HL-PiBz}q7c1$sY7x9jFybSWf9xW9@XPeVE%k69?t)eAg`W9Nlx%s`_0kDR(d_wSN&9ZQ+p2N-Ta!ebC04LSyDJ?Qu8``7vi!CMlB~T{mxDIXw>UjXldO z_Z@eIA9n0G=z0@}yI-HlykpH9LGzX=uvq;AGtYT_1K8o)1+?7h=ZLyvwG#CpWlrTn zvE;qA5_sXT5N0(dP zdOt{a;^8FFxHb{~N}S6q*QtLBNVqZ`mffevL6LcX`}_9WXkQYlNXAgB#HO5 zOSt^DP^_7h2Rshm1l`*y>Hd5U#;*_apv$R)>5fcy!DK; zc;EVw+|#eA_`$6y2#T)@EO)SA0si^32u&zfpxPgqColcC?!UyVs4!ENdhR4$KZi(M zy1oKwwC6DM?wt?CiE^FDefT-*eSysLKRp3!ogIJ;m(l(Fq}wk2pJu}U@;^=ObG^Bc zDh*EV*nQ4Vy5{s@MISu#g&ftcNcUVL6@5)PgR*)?Gu?wXrzPpti}3tcj@15=d7m8o zoG&UR;6JDLGo9^$T=2Va4(|1w9!IfpTb`ujfeQDtR*@UzSPgu<{sM0mdVMp}N%RmX z$kl;o1bV&(>GEcEfX^EJVGX9gBa*IQS1))|)&Tr%o=VjV>2@yb4_|8?;uU}&(?tzY zgRN6v10QR8UKW{WZleW{NsjQ}et1)PxgifEy8IjGk4@_&rtNF^zeP_Zo!<0w4(SH3 z9S3*|Ghi2#0=u6dq?>FK3`*J*IVTl*zA5Q;r2GO;MsE`;5k20Ubbo4O;N!_QLRM!8 zv)q1J{o&%bspzkC-9Fa#nZ8qp^3pjcr&T6WPI+0H-1rqC5+NZLZWPhu zJV8`h&2Qj5{VZrMQ)b)jQib;<^^sOM6Ic+1=?n!4mtR0M= z838Rjys3UJ(xsWUgD*ML;S#&?%!m9try0D~E(elGt z_G<7z!E)+4NxF5G6R_3$$9$0q-Ooij=r#@y&(ekS?CJSJq&wZu6TABifj`qY=608 zCcNSXr!9etFVo-E$UMW(4t)5u`LL(eX=Yw<(q`Ub_gq+3Q^#~0?iTZ(o@Byg2M_AG zX~g3J!T`MjaoNT<GR#o*AJAJ4c{srtjL61u#-ANaH_`bFs$mr4IrAYTO(+L)B zdj{fwJat}@Zt=-UQ0JF7*m#;AFGaf0OEckV-Dq&-&TZ8Fc<}2T`FpKLM5B-8Rqd00 z*BJI!6E3_>f7c*gpzS44XKw&~a_RRs(y{7=ba9`J;F`BxpuU2>FOY6!Z+m#Xvk_PX z(BHR6XT8Y@?k#u*8jb1t)7f`MymLw)F6LY?H!1oSvX%b-?RM^Ns$NL9rlA2f$jpF4 zgXwwEq+5h5(XN6}_^7^|nfJnC2(U|A1S`+nrP?W(S0U#C+N0B8*!uTO7d9*hT!{#Q z6$@LL<#JjD;Ps1Oxcc)wri+_b1cFMV;hpP+lsn$iT*c)c5`F)EfZN-o4;K%1gqNDP zg6{2#bfsDz@DeHohBNw7*L%|Wob-m1rEA~+7=MnL_quQbjCg$u6z*xI1i z8F1HufmHpGuJ%rXAgo*fReR9uQIIakat%M&Cmq@k_h#l5mihs=(SzXYGh?akn{Z)> zuw&_U(R!1UlHYTqz~&*7(DN6GY?reFq}HrQ?h?8mgv=Yav>Xh)CM(>ph-c>UD#t?IYcU-`BY&SvjcPJBXQA5ZZ%}z1tg>4rIGi3#0kb zzm;Iyh{?>nJ@axv@s%5(b9_7I-d zrbE9J`aCDyGj{`!w;}^(>yM%8nRF{YxPWB?;-K2Zz07jQ6~zPBf)x1aXFZkYwtpih z|JaU`iJQdDF!sm&HGhGQwVSCt(ruT%zz=R40&Aw{GTrBu&iJI3KHS)oZl`44kll`W zlJExjM)bzr+Y9O32Rh*SpFe=OQUBo!{~NTdVdM`+jl7L z9b*P7Heq@{2zUCIDt-1-1)_H+oF_k-$SZ+^Fv*#p2@tG zTD|d%XX^NM) zbMJV#X5~e6QM%q@_jW)!`B7tFTEAmx^q+oAXDQ&N32aC3B<9o;iu=P!kraEnRzN_x{$%wVI z50T1owo_>k3j}yJc_rO_!QL^ zMl$o3DlY`-X$e5Ri+*luz4ecK=_w=nayC}7xqThLd*?&PiNVzICEb1L{{;6QkA+QR zmQ(G8bf&EhpkSxJbY8+WX5O@%UhqbaI}H0lU;oHFs453Pe4PsKEc!~dd(utpQh{0@ z$H1135~|!CcHc#7E@^X7ms&Yn6prmrzeQU51ymmCK8*Fk`!Snm12mq`CrI4(8sV3wOBrz6``rHXrL)of28wsn*p#>8tiGehT0F( z1-3+iH5CbP^NC1iUdN8z(tmoy!(oSYnXWPG6wob+gK0y~3f=2@_JU*8gI+{&y#|$X z^JN2oH%x~k-3^)Uc*7FlwkQ$qR&l1vCG)oOn?cvnD41-rAF#@O;N}hY^cw_|PpMOG zfXZfx!pqQ^C%ZHFzqwwb=Jk#1+p0^w~w2VGL=?@^>Xy734n*<}NRI4A0Q zKsuA!ReXl(Y&dKAU21X>d1v>vfu*hCu(-38s%J7!SyK+`bxHeJ zN0&35o2%4~n+hF8^mo{=+jRuvL#ABce+ML^-mXGATLRD$^99uQk#4+xqu{ULje9j~ zFV)C?~`c@P&_1q?{6HQSmozfF2{l|DX z>#+vH>d0NrGm?uX`LX`^MapL2X-SWNA)WGY4zJlW2;09pK(%|)DNeG(DcR;Y*@B+$ zN4m8p`q)rLgtI)?F!KURGtj*WC1{Vv9P0Qcwjjxa^;x1Z877jP3-^s{nkrtC+2dV9t~Xm5Enc_$phTqq7S>b zKhj;CuLN};L0llv&(EZr?mq}R1y8^h6W&tKKjm*2I5f8t$&qPm5bC_;h+5(vUWHs_W;zhaTuSQC8o=g(K;oBwg1Fg`|Gvi^k zwi;D0q;tSnGDO7y9(hTxlSMk$?@(yNg!Ry5^K=5 zeHJ|K#?D(Q{WoV#o)X-#ei&7MWZvqly`kDmCAhep9zRLCzUTVEvxns2s5oOPFFLYJ zyxl%ql33U*sopUO@Gi?GSM$=D?u1`9NFT(Z!mtFU^ED{|l~)IW)&}}|N|x*2WC52s z_k|DJWte&Ojjr(gEhG5GdK=a5$-HL<(th+(ZFq7TJs*s83%2^eMVS}4j&oX6xf?%h z77zI+%dM}x$64)872oJchH+hM5p}*1uFztI^Wiy*VX8LW&r0S!nxDZd?)-|Wyz@Q%{gQN!6+1z~`fz;s z{7L5iMv96-#j&Y)lg}fn+*8}K#ObGcbDE=?xn~FN3n81LVcRnL`y1(Wzn^lx7P}Z; zJ>Q=y_y2O1v-#O;7Q?}BWSDNk$u0ahb5Cr%n0`MZ^WseY@R#0X;MjHNsp|phZj4+H zp7&6|b!UC3<3YMr+joMRb>aBt1G@f5XQd+n|Kck_!CCtLM!L)%*MUQ17;ZX4uPa2l z(la-~`?xTC%4`|)cogq`5B~gUMb^ljxgTND|5i+Yc?4P945jKhM6AP)eV!ufc~Xsg ze`*lEf6p5CIMhOwOFBb44V>R#jibNP?S*ujyI-PcNjNV0@r^pqNmunk9&PrW^C4K)iNH3LIFxlIhCN@8GvRO@y!a z)8iA1(#DBXuRar16x4E!`*OkO_o4XYK>EH#x*tZD!JFBB*w2aWlbQ|kMXUwU@W1?4ejL-uH<`lSD+FQkcffRm(yZW_eJx1F zgTCIA>tF9_gm%yJDSxC18WL3TC;?yOwy- zS6etGWC1hp(_T~j$J-jN{8G$xrSkH4X}Bdc-bv4QA-C_`MKd%>x_(JcpgOgEm959c zZLjL9&(@iUn=j486GF~_pq{&^a!FV5DG=YOZvgLLCDWZ5HyL-Rwt-QKrA+tQ#UEFk zz7KMX&M}>DfEV_-^$)yzTg7x)T^z1c?E@_oZ!w+1#*sLsza=y{5=A+cm$rQB{t735 z>&=qEH$t#z$QIywm%g8qPVD1{t2ZA5ov!qJ2-3MWxZ{U&`@;)HTbSkcjUSHJzSo17 zht)IPuCgI`@68b~dK-N_$a1TbTF{He22ircmud%*DsqD1;11^j4TmM$fGi%E z(B+cOblWSm;MHiX>(W7OAL$;aUqefSJg|Wq{XL3wIxR=h3zr_a*JpbCIO*CZuR_Tk z2<^EW!Q79RwM$X-rfb5ec?+4&{;3JNB1uN?6q1>)uu~It98W=8=F`qD?9f`e?gO!|KGQRg<;k_)NrBlF%&wS-P*PXUJ= zLz(V;e@9sIcq5Q_8Zuq$6Cap$CKCJ$RHj^npE zbZM7u@UlWjJZRZ0>baA2<^J+`SYiOyuCoW-ucxGw|8oeva$SIL?#W@6+htdV9#_QS z&m#s?d160Pp(Jx+wdng7NmYhF9`4W|x0D4?d8FfIT(F7mL3A%%m8uugwfNd$#dB}b z3Rxwl8?mMWT^<#KhvTW#c|_*zYt=-XY5=yMMIT?%CGu)~rQR5Pv6Ob_dJmTjy=El( zc72m%McF>0aCvi8tR$-VW1q0O})U>Y1uwJXxy(isBr_ZL9rkTKJ(OdSUOCi3uf zo*`8)WZsx@=Fq>F1Dt&%gy|l|+rWSdM_9Eln>x?QyulY;Vex$HZDU9hf!|I!;<6tkI>Pb4aK4J^{|MJtM$hMbv)0ofajjwkmTz@={euN_dOf z=2jv5rioPjk?zxnS7>RO7{x2m_f^v6ZFqz%`pM(AW@ly|H%A+N`{R$RMT$%p^lKn` z|8N#|>7?f`kma7iJ&{;E8E31|4ei&wjch8zVE6k1 z>0Zlr@MBBNvHMJV-lAWZF2Boa2-kV)38!@CKA4jt2c}d-QhB5+AEN?&Vv4}Ropk>J z>85|}4`(bX1oi9On0Y^MS;0##8~JDz5!3b884mNNmGBpKI8pA@%wOVw1=*7FY40Vr zIR}vVS0wKBgnmLs4dZ8Sn*Xo{)4ykKKW_(>w*CJiM@nUpFhIY z>8fyhD1E;qo$P&C!8PdyIC>-oci%qJy>>sx_u1AHCOisax(>TqeysE#PU?3;DK}KM zha}-oj-+QyPeISK5G5PU#bZGhwI8H=Yqb_>&YF#9-QCM{Th2~G;zMzGTq)fzMdsaF zsQ|XG?}gWWqUXPnE}tI>+TXUJz<=~OWYYEUng^!blE+uC((4rIN_tC5=DIqkyjm}j z)maH5cPN3S$C9XaPr6w?22g2ZA9!UMJ&v1nKW{>Ke8&>-SWb_b_gZj)F%@m#XWSR6 z{>Z!&nXa(+)JsA}kP$QQ$~N)=qhzfRdNKnxJ{-U-H@aaZZ`c_F zzxKS!bgX$IW$BN^A9J%L3a@(zD}|BZPFWiou1G&OkuK%kT+ku?-ZQ0wZZD)Wxq1-X zSpN#?ef6h~2kF|*)`5ZJZzA<}wj1+F0iJTX&T9x$n0Yh$sKPmWB)rbvNtD~6)mFV? zlXTwV*;?+?x7{dS6pqi#p}$9w&U$B)*x>6D_)xi!>)sAX*T&xk`<>jd(Zt_WJH0Y< z4Y#sRLp*xXOi_~dWPEGMA+VwL8Fk!9ciY<^f2%(UOo!3^%A_m&<%63X41wqC0l542 zk#4-$9iL4o2PV1n^Zn_Dr;_ZxJGhLt{TvKU!UwKtfPzwby;stmTI7!}zHtXLmdjJ+ zk}ki-3m;mh2uoe*?=GZ!_-+Iq_^}R{E!Sb@4R9QR&rd4@n@`j4t2&;w;!TOGBz_&e zgtv$5z;w5p2!5j573o~1?W*d3X;-A{IbI76|KkH?N35dyeMqMjW&op|UEqZ}C+hf; z&bl=Xy5<^yxhu7pZgq4f)Ved7cRhQFy6=O+w-T<}i#zSJlsj-U8gFWz3id9SP)r8%di*G6o_XgNqywA5`FZZtaU=6$S4hj7+X&V!q3`FU z)7&}-#T*WSv$J1OC6WGrW zWV*6-a?mR83is$I1BM+Z3P~ z)yZ_nwMO8rnajEP*BxQ^{U!6Nmp?*_`z{A(?WQxGD5DZxbDRJQLt`j6c6|p|J*l<2 zDbkLsUwsP%4>QN#PYhwYyMImK?>UoDL^a)iK<4!{vVtG`WTCmmHq5+Qu|IU_{Q*VP z(9f}C-bJT5F#b>|3L9{gs=p15szQ`&ndq?2QOTgG=IEl!Q(^CeblkoENH@9P4ng;V zEmHPf#B}Qx!qC45=HcIF55B6Q-%3ET$L(*s8R?%M3MaippFML%xhWEg^6slfG_el7H{tVp)A}j-#dEDSs#5+0) zXSM165;AZ5jeaO1auF!mMSqVX-G<@+gv!9xAn{ldRqlvu9o#5Bi)(RG;FeE_f`e@y zgX+|4)P0b2w%6vsPP=*#^zrbm>1A z!2!+6Kz`&S>V8S)^<0_(ZS^$}99+cQzU4`o(B7{_c>MM@_5AnlM>FSo>znhyMUO;= zl__BJiG{G<^EH)6x)=4!fy2spIAd!JwI8JG`nwV+w8g`n`-7S8;;75u)U~NFy0e<; zZr^$WiY&w69|^tw5LxbSwbx)pY$zQ6(3{FT?e|qObk4!*lKrp5uS`Sm6nA;FczP%5 ze*Tg!QdYX22Pj0JR6jD^+?^hH&xq5gm$Dqy{>Z#=XANw2ZY}D#JcjAYkEmn!rA9W-Zs^c5H6q9$X8@rWtS1(g|Cr<4d|1_yuz649DXE zJzt1)l}8SuVy!uNLUSxtFQiMi+lm%Q*DP(+qn~p~_u%eAv~t-QG(;nsxgS0+#~`z$ zL_BhB8nfJ9PaV(()g*kyCzW!_KlXDlNvGnTp^l#U0?YyDnyJpH2ICn3|XfRz%Rxon+o5Fc$`&!r<)CE~;Eb zy?#QEIT_+vk}_`9q48MhrVK8ZEvD*)bTO00;|VL&@L$>CRK1W+N!JU%&+dbxt#&f= zwyx)JpymKP`}i5AyZ_1#7g}25xVHh6o4a6$5YsPP^fPFHpfzGN-rPeQO*%{;57L!Z zIOCSCR$=!Cdj1ya(h5f4#9_aX;V1gMB;DuQ2GnVxh7XrGQpb&SzPHz)F*{?0v~v1B zO}a@XQ&H8w1H!54Y0SJ+CcTjFh2yBIXB_34!F5TKL$1wyA#vxJZgf~cB$iag}R@(py_c|7cXUXm{I_!y|?XM#(ca;f_V=?sHr!}&kPf#zg^YR{yrvR@1{ z?~mn+jp_02`pSPLuV!g;cGeFhYYR`H8^^|@>#OHb+ef;T-%04in_oi2wuMY*4dx*e zj~rp^(p08f?lTMZkaz))*>ry~S#HL$Vd&viU4CCs1~U(ImI*ul)S|;1=Th#B`XtF7 zJ>{yfudhV%`CUTRP&KGrLw}Da-O4sEA#46t5aUQc?~-ovqE^YE;Ud_3sWt9?d`WlY z(`nJ0h|%!F6MCK(>Dm`W^IID7KwL9@o|A6HxN+bBXazmT%w(1;JdOlEd~Ko9LVEi` zRt^>HdWLhwt!0w%ak=P{!Zi5!2tDqQbkH*g4ZrFJi;4$Q<&sX{XPWSF(;T>fZ=}vk z(oMO3SyEkV1T7D_G4tA3`R!$5?{n9kx_Glg>!j3cs^!1I1D5OgA&o z1eiK}o%b1mj zvEMfIaKK5X+o>Oqokr#ZOK(?ZxiOPx;deqd%FPo~?p@Z>>dyRdPPnm?^R^xcdOi<> zLxv+&uBs z!G);mDgC}hx>03zcwDF%UOYCNnK#(X9Bs+J`dpw7==% zXmuWc$Xrjk&2dk-HGVdtm#0#=yB04b_Q5@Y)lIq|lXRY5_c`wYvHZeCOQ_>UI;Gs} ze63G!sL+dk9w*%zjX%6iRbTknHh`J8Vct5>P~XmP8$v&?k$KKbz5@T0BS2e${?4?| zm*=-TP7^B!^^+`^JsUhucg4fbX;bGp=?b+FXpghQRc$&xREYCI0*OmJO>8utYW$( z?{MV(Ar+RF7E)6wF=X;A;~Zl;?YY>Jj;Cc@UsE2(m~*7f453~jh$rRTX< zTAsKN4uN*g&Qu=h-i{uNzfAav)(@lC<0hTmXa_uTvN78A%Zh3*r2Cd_ix*^y(B5$R z`a(KWI21pc58hi5HAfdfOS{UGxatW{vI*O$TeS@iP|>E3;@gz4g9B&$k~+XOw|N}K`@h;Dl3 zN>2C%fS=1lfT=hAUPii0=cN~yP4>V_nSLK6-KP9_P#pz9wGBJ3uto{~C{X~N1L^Pa zWZq8ccfX>z-NN%Q`aVs%*XD~b9yfl0;QPTgTBUgQ_jytx<6YFlSM*q5G zm~Nq>2HrM#3d)}8$#fP+RI&WF3=nja?V7Vyuua)QbmjUuX5R6N7iiE>E4b@D{rp1i z$J8bFW`q|r&!esc_41H|%ccJt?S6e(5~?WZYUy(GgN{j@vIn7GpAVuTOX4ug z1zs=(eNM&U?1S|BTx8xiLsxjA@;ln%-b$TEq_fKMgE4Pq(Yo9HnC0?){bAog8PqYJ zc4|#K*%+`CUqMKOyN7_fEodbY=>fu4>G@^>v>3_Sjf3c`E%L zV7t*&lJKETBr|ysCx68gZ7(#2t5)+=9_fls%b_JHUT~AIHq-V0w}H=|F%shQBbm}5Np+9W~VYbcgi90R+zdos^?%2#Kt(Sz}LXZk!Morgg*Fj;mGXsw;Y z%p2)-86?e;6L4?#_T|LH!CccC;j9|Hj{h%NL%~8cikrG}jbxd0U2$`Lc~Fx#k1CgR z?bDNyX6y>E^W=P{o2FukS|5w~m#&ML?rft0pDX{9*Lb^_a-Wx75-0npbAOJ+a;2Zo zabFuVVM6#h>b_4p`4?@xqf;h)u1&8yL%Lvx9MBRH0uxr#*B8>c$Q6L!AA;e=yZ5N` zTv1hGTb!Bb0CmcKP~W>r_gu*u?~+)n|S$f|q4>ofs-DNh^bo4%#*2SV z-6GkPI~c#d?2cddQK7bvbhFfS@Qe}8c$-xz)9Fjst0xqcs2ztoLEMt3~SkL+^TU^)7v$ljT-KR04%-;Xv;{ z=BH#TYx7N`Hj3hp$#XgnGx3GWO8)oe_f-2MUAk;K-dn1H92V$+wv4)eRC$&4oK%YS`Iutz60n+E?~NhEDfOR z8HaA`($CpsUet+Iz~V}fP*B8nmPPLX^x2L!OrA`Y+u>Kwb>{TsZp^K7PHp>u1_s#U z*Q4c_ZtSW{D6iB6yO)(}uUuddyeaCT3cjZ$qD370s zzdfv{T*a2&Jl|7Ol)HMEL|mK?%04B*L1$J_<8w$?ziB5(KQJF+S!=4@lkV*5E}+=Q z7iOQ_&U9vuD)8GLf2gy0A=U25ytGC`n5FLq_Z>#m^?A8N6}NYCBp1+6!c_$ihKr9Y z!SCl(sCp({&(Tw1s7xpt-tm{J7t(Ei8VnEK+#u*R)BUHUyWcn)t~9#}#(#am+`bp1 zV_{s`VIWDiVwSu2VGJvbO^ zqlewq@~Lu3cV+N6Sep488J`lE?oV_S-1&SMnpSg->28dg4f|!8pnknCGTns93GnZ! zNMt=QmU7C+cwtQENbXHut>mG#9zJ@>4S!B|U^=xm2hhW@%5cIwSE?P5d2JC&NN1!M zoIjQBzam|}K@aq8ev@U<;J z?*~(1qI@sx7(wp`>0Z5xf(uUEN44+HGxL;032@4(WYjR4?q?&GY)u zd@=nVPr3n`;c&ZuEm(3okJ`S{tVYSJgURBeGDk_Ed>G#A!=Ym9mrQqjhc|AzAQmo$ zYvJz4gUl-#Vu_D$<%Jx5`aPL+tZ^u$+h$>mXDAm4&$H?8*smf?_%VxCiuEfk#af-^ z$ij9y9%+t1_w6Iy>VJEY!@K}2AJNWq`&Y!E8!#59G;d=%d-p(z+{A=ETe9Y0mDWbet-Q9Bdu{nvG&;C}8}+jsP4M)_t+Mp}h;&iMI{1Zs zmGBzv0P1=`y1yQM;FzBSa6yV5b$mxgEaK$Gyb;}ae1Y@-SdI=%@Wv1R(*1v=6Q1Ss zr&cb+E8k>M`$0PGKiS}V$pT#P(39!bNyjNb<7BKbzk)iC$h;>Af$1I5*e_;0Gw*qy z*B~Z;5}ve~?iV2QrbPY&Mu$Ui=^uK%b#Qxm+Cz`bgLhqc@Ja@gK@(J`uhjzcpY8XCjECy&A0jKl3o= z|1a|}$h_4!4$cqS4MwVnsJz4#XSmCD(Olr2ouXBxX}E9XOt4i_OVuCgVy`U3-yW?3 zv1ZCtyC>c0xe@sF=LcZv9~0EQU6D@1)e_I(^kCA!+e}wH!UC_C&db{S?I6<`*(>1h znt@Q~#VTt1#*FAIgxHvIWs^@yBK%@OmOp@&h5A&xC!ImiNg!_)2D5w)Q{|HGUBw#^ zlpY9|m9J&G0mH4}kL(!X=ywsb+zD&^;I8ko=wdy6UnR@cd+7)770aO2%h}Gzdm3DO zXD{e4(@bsOaw`SF{N+2*t*e+bSm27sS(SsW50t2OPr6adAy(q|f!D6|cMa0Xyfwk~ zfBV3MvwfI()ynEPYx8n&WjDRP3Yix-MiKX}S_uZ;r2A<|*QqXpbymy3TlpiYazk2r z3Jdps5@nyL=Tt&$@Z8Q5AnuMK)4kp>2=8us4aWPKGu?bgRs6zF5!!0g^S8)y!+aHS zef>%hBb_VP{rn)EzOoE{w@3!66|?uFwe<}$J>Lu3opYk{w3Kamv;7I;J4Rc@+B!<` z&Cl`ppxivry+-5$Ogu#lygDC1{=DL%#d|o;7&D*~ddpM$}aG z|F6ThgRE-r`yP83;=X6+O3d|- za`rDcwEfIhtYA>XF@z5B_r=LW@Ve^=7=}>jl{%IE~NRMZ_^QZ6e(;isi+&@lC zcW1pE2yL^%ws-0NT}|nnqLAw<+?vf2&TeZ4_RlKf9X1RA-OmrwxydBp;FPgI@e{oc zIO(cKPQnF>s`$~oCh9yV-OpM#oH&07F4?cnEVpvKKJHVTCmh-B0lRNsh580g-(t0R zp3+~jG4MzD_$m>dplU-OpXE*|}jEPk0`gX8_FdM4eQxAjPV>v&x6`-(cgq^mw& zkLF$U#Gbc*Fx}QK15mWPXZ2y$i;*=0Ct8b8D*pNGFP&ijV(PfZ-a2)bS-<_}^hzPTLSZ)4#>c z+qHHO)+lp<3c>3rw?}oNlhMQNqQ0H`xIRxz;EI1*(8l2-(+$-d1|#|ngZpGIFx|No z4p2?a0P;5qnJ(a-2p(K1{qOaP%}nPl{V#lg^uO@G{^P&!%;6?g7lbq)z&R@Jj@~wCum#ll4xAStrfnQ9hc1pU=@yCF@C=#zbwh?u2 z_oUmj<2ZnOBd~RQA=CY}zW{E8zofD#sVl>|+kLTyg#|Oud$cutxW^e!QOKvx z^N?8sg)o_1(fXJpl3_{hh?nV)jwI3RRFdvTf;mdt@kFS7m`=49(%HoA5E5qFB9TA6 zz6$B05^^Pa9{a^tztQ9VNvCY*Ey-31=c+qsS5muGw77h_SpN4)&SsDo)PlbQ~4G%*JLOIstznq6l)pEogZL;5LUm?{087IsmAV2B<)W6SPPC1p#AKae2AtJx;!IA@?mjOM)xiHg>e(oe)gb@Oy(Jy%faJMra}!rdVP?=N8U<&z2$^>^GVpxqA&C= zcLUwqJ?Z*d+2V87X`;uCkj}qNdVD=h;czqhxsG&gZhE+) zRSlLORiw^0d56*b{`O1NotYitMoWwwW6px(EkR6Y_OJqdo7n?a`+6~*dSW^9wZg#tiE~e1)ibyvnY#5eV0C7*Fchr4>bgTCc#z8B(kWnT(&-c70 ze$e5F^RJzxwokue7Z>55ClRkG@Gh*dKKX~<_=Xar0bXcl206(fe)3+QQP-* z{t<5U7dcMGaRm2unKwFa--IG&hvV-1OS%)u%BVAIJ&HC?WI9>d%YsRT7&+dh``5@k zivw3BM~$zbyGQA9k)%`6PX=3J0Um~iFw6bf-UtfUo<$|^>G6(%0dZXX`AM8Sr=8|IsPUGSVG$>mU zEc!&xGbG(#-E_3S(E}`Wq}u`M-uasH58_V<|8COzLAuRvzw^aImJ0j!ET;B@bi4a1 zf|+~Ift`og`*B7T1}=W|0*!m={kR{qUh*o|UF@c}Su_V904CdK;fi-VsPlt#J*FK3 z%fmykix&N!M>><|O~BhU0w38(KR=Uh@3Y^aNaBn$XLK;jo$sIwwWVu@Ufe)GKa+Vy zI{o3yh!ME!a2u5u=3^-GlpGN)Jr(DSK6Z)5*r&lKI&)C>^PF_gFJSK2mW9wuIfv=K zmZb7B1!*wfD46Lgau4z^>oTCHiz3t6{?-TcLNlP9IG(z$k=u7|b1uj;SP0ubc?hii zm|#~2(!=J#CjEM+;!e?80Q|*s*BkeZxE2U$pD_j(q z?)&G(AYQP-vA^i|RWeVqe-&uIFdJu>ms0gYI<;v@fCi(aCa66~j4Eiwms$kMY^08-8LKNVGD8SC)#X za;w5M1*f$IA_XONAyB%$6#8G*mm(c&eJRrIpT41by5lSUYY2V)BVE~c4!kygkNiJO z$KC6hbZdvY0Pi|g@EFtg8PY|SoCLoPRH0=~?7V&B8o-h5Xc5rgL%m2}Y~%_|)T% zR68Z}t}1nbF;5au)3wRWye&(0Va~cU=-$JTl#86@z+1LtJ4e(PNv8YXM84rs@TY|i zRW9jj8Uj&)MhZ;z(qp-TgM{zYco-6X%f?2yJ>|sKj#s5k$#^c_hZgNV`Salf{sffs61H@>1%$L4%-9e@Zd9~!& zyi!TZylV7(wjCBL=u!1YI-8DQ^tb9DT5CB)?Ybd5Cn=yIgs{KMV1Yq%3B+qjZk*HhO8;{6P@q-ne4So%Lnr2Ac}fOi^R zL$RTNI=-ZPVA2Z@j~Ix*Inm?NNVjN04;&Hs3CTt{G4m#=enOY!#pvUs@l3aU%u6Ku zpcpkt=>C!!;Z5Qg#~jH-?Sm5Q-YSAdYC4{G$d{^T(m8Dj18$vT@z%ZcI6=~#sow)q z4ok;Bw|+z2&m+<;)94HJiwyDG93|Y{J>$Pf^q!3u|4=_9>FZdA4316Y|Ls`7bUk-$ zMNburdA-B*^^eTkG0GT?Rg;D1=h5%oq}vl^h@95`0eK*pS+1GuOJQr{XK?EF49X4d z+AKN$dpoCXwT!FUWPuv*JOaOx=za^*eUn!Np9Tg&{q;SVc}bm0z<)##^sr<*`CLOV z@0S>i-Ag|=k>!?ubpp1a1@Nux?K2wg59I0~TyAbaZQm64aLzrvN_6#}m|Ht}FgD6} zz*Cme*CEomYTie__r35sMf!b^bbT~_^PyIkkf(nP?A~5Tci*OyZ@g%My)5bHXVQ&` z+XCK?)4?jze`T`rX8FGbX@3K7-I_gAdnWT1jC=>a^$o|T?N3ned8D&BZ3i-io~ti@95_X&jAS;@P}w{2zVGvrlu8N_Sq<4qT4su-qAA*;si7(3eeXF9 z?UYJsZz>wJl-AGppWoyBoX_|E{(nARuY1Nl_ug~Py_a^AhEIX4jJLS?82fyl*JUGj z{d$n|`kAMAw~yJ_f0H4Y2TPdtpq)qA4PoMP5BO%FFY5MJKIEhJdx5>FmZ(!4BhNkb z?F2`B+4}=Juh#s|s8nSzXxji2@A~F^&c*b%q^R%=7buG(MsH5y_P>)c^+&t=J$%U? zC3y&zrZDwKyNFDCa_PPX)YLu{b*IO)?=OCZ(cdO_=-3bFct>C_zWR9s9`ZUu)O|hC z4PSqeLP|WenEpb?yVX*`!}CR?TY3p|pS}2-8sFr%k{{Vn!yg*E8h5gfBez@G>m}{Z zz8-<=TN25Bg#k=?X=kROgG)~&5dA^yelFVi6s$!57VDEzEX=52eg+hi^N@6VHYark?3|JN;MVaLYI{ zPLtj5NV|1gM`Fici6p%%`#pdkjXk6#_C=Lbr%#cD>gs`t*En$6QO(?6(N62_FgVj- z0R0EE^MthPvcnzf7Z}3S8SMWIY3IFTHiUdH7JPDxnex)^>dZvA9c_;N0!J~<#m<&H z*$^p{(;DjRuM`BlTQNHPm0e$@-G`Lv&}r>jY5k8T(Ri0GN5bLERmgVPeo?olG#aL9 z+oFXkf~X^^^PtTt0R_Yi7j7O?R zlE>EvaFMSPiTj0z(tm>^amW5ly8}i6o2g z9Z~-Dh$%0f_lnR@__llzIoV6foJUQoExA|P(`0fQPn=^SqhL<*Dzrz7z3$WQ&%_ug z$*+=TI$dV+(k{#-7PjkcLW8cb^-Mdpe{&(M{hJ2w)m%m68LUWx!y6uR-@45cbz<#y z9kuaNtrE%MAUR>u-3jR1cq>?LZpVxpw7aq9D7u`6Wt>4Hqb{Lmh`m3h zow4g3G-%afRI)cfG;j9fdUWT&AM`I2F)qnyTc!D_gOWMuG`HWTH>{ui3B5Z!5IXih z+STps4cdjqP?Vikz z8?;M2>;W2Mzo4w>GfewtM1!8~(|fwhFk{Nds7-XTy}2c1O;a;(|zd*yY2n zchhdq*gp7WavDq=k;#nDv^!S+LddmDhm{+Lin{zyDQL%WTd)CkU7U`WoV)}Lo#z6Z z(%9$UNc(QW&a3|_r@xYMpT0~W{N7~Tt4N6{FYS)yjV19*t8i)I7pDGb*YBJ&DIPE2 z1kawL@g8Q{l68aRh=DKr{^hNWPi4(Nm+=?U@AB`iwn{y`uHaRE?EO9MIuFf6;g>Gp zmp`X7d1==@bOn;L=J4&1Iil|Lr%lM*N)H88Cy2Tib_Y;VR2$BIz|LdRd0l*K(MRbQ z;pA8LK9P2x)(wQBHcNbYFnd4bvcW}Kldr=CJGDsG>~)8(VSQon^JZq;rQN@NUhpvQ z2YRw%5AJyW((Z8DRM44m88tm#BkCN_#z9udZge(qIO8;%(`4nNI&)6@?{MUF9MSkY z9W}&k7IizDqsfov!T8Qlj5;149j}@c-(hzuD)Ww!($(}XN zhxx8-dFi~nPi~Sftnh>6L+tl~X}9rCiF9_$d^q92?z^U4UE%|&`fLuS4lpBP<<0yZ zk6w&j06X5QiI(GOh9itsU(d(Rwq^P$o%h7yaCoiv5M8wW#EdV!9Io=NU-mfXWask7 z@|py>cVp2y>trS#?Mg4-6^xq)ql0}@MV)imQ=~pn9nURe=e_B8-`8{kN5~dVWdt$t zzFq7uB=5?WJT6ifR>gRb(j~o!*$(#oU)lu)x{&9~df||{14+kvrd{aLF*20C+kf^pbIreD!{U35ahqvjwg zf5D5oF+Nj4ZTnNkT_)$Hnk6^HE1*SN4uv!O?cP_6 zDC)A33i0e|@$j|Cn5kzvo_3@vj^Y-AQP(ldI7z#k89TUupad8heo!=?R{Nae2!j-` zYn#Zp{>j?XaZXbz<=VzN9bOns5V?gE7UnR|@w9Vu^dY^&yF)`+KhbzAa=gfRRZSQV zcbRg~@eEYT@Dqnw;O@Lz)GaTU2%mc|f)|_Ch&ubHpSX*I(qXgoqqJjxrt>=W*()7b zlnT~vCQLbuPO9*!50~-&_K*2XP3FY+r6%cQ{6W-3h4mx5Unvodf9&%<9q)gh_ubo{ z_dEZ`^FHm&9&3|l-^P${(IA>vBVUUgQ1K*&+3Y^^Whwh)aT;0N%LmW6Ke}r%3JZdi zqfb!BdZFFe&o)>=mJG&PT}9o?7Zx}z#1*)EM$Gw3$6K3xUkGad_u+^C12b*cRnz&OB@oUUS@Q|NeH zN_UujX*>xm4Hk{3lWYN}iymURQTj|jpyL&TCA^Jn#J8d~MO~@!6gctQ13ws1&*YsI z7Q&tScGQ_Zm{AOunO_ ziX7zB(*I^2~G%|LOfnR6K1QT5ZDKm(cEWiX3dY?*@M^Ulom)`qBU*&bdPTBz8WB zj%RVw6WT^#Vfk`)ot<{)c29@5rdLsGaw_gPj??b?op3mmScyVTEo7YByd&HTjS-T{ z^@+Tya{GR>7pV~3ua>#)(=P3;ObC~z!s0#VOnGUy{oH9meP%jrKgr(j(ys8qCZX4_ zRM1NqC>n41{iQ;T(<12i+={vG)A4dAOZdi(i(ujG2*yqFGLb#*WnQ`SuA<=MKM8y2 z$Kc`Z|F!8@f3(}YSBl5nbRY%KEkqrBHpH>Ndy^-f+(lih>0@DHoCh)erYGu_JijTd z+crQl@kl!3DsL~B{0VyMtiN~#m)HKl9emyxdT3r^>W_AYgZ*Ls;a@1>KmPwqy9t&4 zU~zc~T4(rKG~U_8?axI~E74aC!nn1*U%B`XlVnT1S8?0>ZTwsszI z^3F#G9%eGv1={tzIh#D1co1zF#(oc(cK+5nB;%?jY54k-X*b&070HqD=YomftVPWI zGwq&jtH*=*>EyxC?~E(DX(-$Mu@h%Os=3dJa-{p5VKAi|yN`l)N)A7pu=a19RWa>B$17T44#THD!<7YkOuWmk2AtmA ze%#oqyWAi3ekgxJ0MUEgNz|zYW}-lTVPXHj?H!g3V&IZ!y3zd+PY-u)gu@3#$C z2D1Be=;M3l_!X^>^de5X*!4HsozDD<7DsGE3K_nlc{fyahn1t&;>L7#KAVoWdx$z5 z4;)R@{;g*E!9Vna8$8TU;udvDX0m&Ubj#F5FzEARzGM5+j%>}7cKMbL{%8D{>kRFB zZ_+{)WvL*S_JTP-X!reADzbf>2%#}%qVdSdL+G(~0@T&t7CpZ6J?>NBJ5bc62Zh1K?~Ul>(;DXdrOUzjML}>{1xiYt%*0cA zrYb~l*5o|z?BheT(uvn7O@73i2TXg=Zd9Zrx%;jcS#psr2korYwaJ8qMnr9?0_oVV zXcy&cgAGodkaiiED(V*4DB&GZkI|q>SAND@a^55D=>i>)+eGZ=!ErzLeC2Utl z9;-VO_s;>$eFW{g?Z`v}GCyPe>;8;8_P3JfP5M@5#GK=6C1c4bREUg@bYaF_+BvTt zLy|TwL^^BPd0^UUxsE0VyA~t!Pd!BAVX!5kog&fxcuP^|om-4Arc0%pUD^G`bY9;{ z#rOrDEZyxO?wlk1@Vh2$sl7e>J&((9nVZqthnpTA&#hnS2F+9DNo^^+&PhA|nlHRe zZ^c;~vzdNCySt@+a7|u;yvZ0T>SU=QaHQK`JgfaX+8z5T9k0)*P`K;-3vc_dNz}!Z zghRH@W*qIipUHcw{e#b&*X(g#FFC|3omh=e=u8AS{|9%>OS{;2L-8$x5a3-}M4kU$ zJ3Lv*rhR>j-FHLBtJ!o|*rRI;?uA2{en305J70L8W@o68vHiunv!PJ>CWdQj&f|5u ztVQXo9pV1s0ZcsFJ^Zr?J&dyjoi&3+UDT2NsC(Q5SoVM&U+8$FO&+1!?{vZFKmKq3 z^7#<{-oXssc;;W8OTCXL9tNEcqNmni~6y z##`aH1!XTHyU|YXvjaIa^)bp# zP!n}l_Z&#|rzRBc$i9b5$19iGk#p`>Q82LcDzqED*o1uAuo-n#V&`)@Rc__iS(uc)r`@DCpQIJ@?BJ^o`+lQPCJ{6jv`IevE8?4ug_6X5x@hU^W~SX}w@xF3 z9N1}y=H#&R8?^I1-#6m`jw z@3DcbSs2=L8sic-c9C8WOR6l0i;|oib)Fv*kPc^qUoqz;?Iw$6sGvhPu zx`nNgW~^NZiYe^AdfJV5IEVaVXMpMrc3(a1p2}*`fV?R%K`)az&-E7@3Zqsd$w{vk z-haq0L7~SeFl{x0j{Sgkd)4MkPo0|%mx|c^gtU8Ar-F8vn#1gI?0N<5)&-77D^en$ zdHDs=<6D3PWNAGJMq8VT9^dx+XOU54`(^83H^xm({>AUSq9VCGRatO&JDgYL zxikHgb{`%GlJ(Etptz+OqHg#`KjQhl3+x$gEb4;%Mw5QIM#vfUV)_-GSGH72I{hn@ z-g;vy>YBFNl2b~Tkgl3|yj|Cg$+nOS$lPTJ6HlSIm|JhNfO|gRF?Y579%sn$Ms$BL z``kmj^Cc^B>0}dF6lurQGwl>#4aK`x&xbc#r!wtJJBv4iu!Bi1YDr}G_0jIRVlSMf zwhFZ^oGY3)?f!5f?9vKh*q}v>OWR({Z!*l~H01KQ!@F!qW1pAO;pXi92JQNrTM+pZ z@zSCe2~&TxTaq<^gc#=`7aj3<^X$H0?rkBO?(8EPPjS>|JixP18r%MF^N!~womYQA z10J_=HM)9%-3OIpdY>DqVaOF+?=IWjKMY=1yv2Shh0HiayOeQ}FyZ=beBlH;4$;m! zJPN#aOHtb4Gfcmy-IqxTFuZXa{v6az)H$AQ|2BwH9~4(SMbxSFO@hmD@+cxHfN>XR z&gCNaHA$@1qPY*%X6Gjy!?F9N(ecW!_9VXxD#c zInr{LgSwc!|23_T3;- zCPOz|hBMA$#AVr+;uZXv0%c)x!fdHxeKxW_FkjT^tXzd0f2{LML+ZFICB>D<_U7+2y9t!ZI{{ftz&E8+p&g-`V1fH$J52mv1M!TmYO`zw? z@7UR}CsQwzyL6U%nW|U3Qr^g^D=I*=-2t4sp3O_U%K>^|dZVQMuTRdR@yL$eF!I1Y z>>cGK>Tb36hqYumcG)QI=8iT2_qy-+l96~hewCZRsO{(QzCOmHd7qAVf;RQDxJM%! zPmgpG#+2QVTuVI4-ZTBV*DTLDYTpI&>xH^8G_UBCZ?a#4h7(k*WXp&3}ibu z>TolD59N*oo1!aKQ=q!|9TSgsgKl0!d*UZU)qHk6g?3`=R$2?Xm~ONRiuh zv}H^Th{c;WR~Jp5rv*dw*zY9J@$OF_gp7~1pzk#yqVY_n*~rzW32h(6&WoBD=5zln zW4X*oo_jfDA{iO>2)W$jnRcUH#C;&KrixIDZ;8742s1Lf*#h3~-y-U+kNto%?@ou3 z3EIqh9-Vho_xJe2hhgyTQ)gz}pxyM=hj@RCCCt@g=ObwM@SA`yUQvQ${n+uDcE9uT zu-*GW2+4ZLlw;kjPkhP95gcdb#dYdefa5jh!jPIerW~~EuAPfr>*m0}yw2kB3RCdN zeTlH()-vWkhmJR8#XRiuG!cAm=8L+T&o_j5Ym#Af`*$ci_CGqF#idrs`@@Ui;XM!L zJeTV~k#{agl|oR}FYPQmY;i7HZ(Az&Q z;PjX+2kp$8bm98rkuXp>f+;WUw71&Aeyzc9+C5*?d0PX_%o_;inwFyO;W;k|5}MK0 zn}-=^qAiiGjv2#M?i|3KQ~ZTOjD~}I@-tEQu!kJH$#;kRd+hTY9ZylI{Q$k};eEEf zXuK|SC%~G8nh>NVFY4}|_JaKl&B(BZEl2x5%K2VVTRDSKnOx2gC$!M>A^QA^{mu#P z#J+PvySeK$z~+!8$W^fKIW()dNF!`VNUAcbB{QR3A#AxEnezM&>UjRrZrdj}7Oc>|w?$+P&6Jf~Fts-+Oh;W#)ltr+p_Gg5HMW^35xmaY$j< zZLasl48G^`b6j_MS5$r56HV*N?r);q-uku3TzVVjsf9AvRoc0{eS_pyUF5t5%@B1P z3_C$`cBD}Kn|*JLj`w7Q5t0(ZMw zhIamrgc))EO#h?ZzRV}6{_YI;n!>)PNjsaP1EI!!Ab4K8D;lp@(+QlmS;0}|Vy1oR zc(?MMp!}Q$v`oIj#LLJp;dZ4Rmt2=l;ndV_A(!{&q}Hl0>Dd2h_hHp%WU=2w7-rAT zQ`7F^j5gF~XQ5C&EmSm~(IRCSoz#c83)-Ttr@9bf4G~kM`Wf!~Ok&ZX@>R323EC!oA(twWbMmx+Vo@l?{UGE?o zuWLauf6ns&GA&CGb&sYM@&?fo9g$`izK$c(9X4&I_dQ6 z5qg}<_7~c9m)nR}oHd5cW%f+_X52d*rHFg zgjY{t%0as`Ub({K<(Kd$CH6azv|Huh6G~RA2{VRxi^khgIvA|)J;YfH4Mp9XuXfzXs@j%pk{x$uZ_&f`=Cm#LQ|hc|Q+GzY1|6Ad|-*~qTv(e9bV8WQgvKqscL^Mth1 zeq;+@Z>>ac8%#*Yagufl9~@!$^>yfKNqLH;B8DpM4;wY7ZKJ<|EU- zLzim`)_Rtbu=$O=Z}@xsTy_PWp5wu^8|_>Z^6}-qUEoUEI8o=(vKG&o@eG};2^4kt z>rJuk-g4yliJfnv^V;QT;SyaAy6!O%jVIMt#@>_Fp*D~`f9ZIBpACe*lT2VN&)!GS zZb)4-H(hLEqOhfvxZ!sMl$rY=W3uYE^GVP8dE=4A=VNNh#h_ldjm z==S;jLGs|XkKM0A=M7tCNJ4f#L5I$>H1lgeV6b~CJ&y2gY z^ZH~@0&7&^^{5x9WBt)iLuO1AbWO<4(sN9CX*aR;23~UMES_uX$Fv9SuI0PneKS&_ zAvBx0-=JN_?wdl-AG5%J0DFIrtw(UrTK7r9-(TQVJRjnhQQ_p|z~9VxO1t7Ub@;pL zbh3AvFH;WM1-#6|a~vbdm8-i%-JzUO_`Q4>=w0R(}phM5hp!x{IR6x6rdm zFuIjS>hU9{-NFVMa|Jp(E40mu`7vo9arh5)ux+qp>X~*YvmW5)%g(UITt(C!`df>+ zDmfV3!mdlw@s>=vi47-N!Xt}5qVYZ`l;Te+&T##rj;Q;R<%4&f9uDiC889y4>Lvb1 zCXw8=%IDL93b@NwBhc>QsnD^X((dHz$<1v74brn=yH#ELs9cbM{SnRhYHD`bz4cFjQ^WZjlJ)Z3Vy$E4lc2@-O0OdUGp&mJG`Qf$5p z-QLE4`Jb~){n2jhkT`TJ5J6O~k!U$i4myFB4xS1Rvko!wJdRa!W}B_KYcu9@^LOi! zH^rk#-|aT2W4+MMap`QF@WO-iKd8p!rQP`_Q?Mj0iJ1Ab-{qv;RkIW5%CmTq>->Wm zCuuh-XAsn{w;@Us*zZ=*&L`6iu13idjY@X^IPKgPg+NxwFi zx59UbIQgk=uwd(pHzKf;*IE4nNkf6b1&w5xP@i7#h8!@&iknSMn(jVJ5T7 zemR?QYiDiYP@1je#j@P5lZRr*pPaxIeE~u?1QW$d){p}Ua)H5Bg_Q(o!5)$BF zFK?z_Z7u97q%I!Bb$V;d4V|DvVAdG0EpZifGuNw=ziY-rwgwV)RU1^vUVA@~HJxFe z2kE@)q}@obtCQeiW2~riZ~lVai~?XuNUCVwfa0?_I%Ot&y|jR7-$PzQ1uOS9=M~3S z^Piy$@#ry@l&9`y;?XYQP7^*EF^crfdLrt~$2H-aJpp9!pDa&&1+_VSa9#!y~a-KCNpE4Uj= z3%HNHj>dR})w7*UKc(Z@URH!#XMG|5zANfDuF>woZ(Z2@*b|B^T14aN23dedhJO3| zs}DuvU41wV^0p6zP6sl@-N>@H&WkJGOCjRH!svLGk_ zV}By;dWIZDu0z8~9>1QcKiYjueumc~@CzexgN6yey!k zm3^+DU0pXVLhgIPvC2H=J#gB|MRg;ni-PaPnd_oCe- z*ziUJzlu{5bve)4-+&aXam~0dOkTeIpYXL^x>lZE6VHDi;6$pD@1cI{+5bn;?&ll_ zqTKl%`rXFPN6>EAQ#%q^d>d`v#s2q(c0<(ql3po_kaAa-=?An^^U)`7dJ-Xs$TMdBm7Cn{zp6E z`eDiDNEdken7wbOou>Rc?)Kv$Fg3_UJl?Z#^xexAx-VeoPw99ySMtz-%uw9G%@U0_ zc;Y$qr$hmYt=&Z3>(XYl-q;bqn|*IquJCE4O7JAE&37#q_H2)ECbk$AoM4~hX;-kS z7w2T<1pb0Glb3cyyN;uhZXsZs%6@-{cH2n>${D=_1v#<%cxWeY)d@<6On{4f*!6ST z1>aPFCl%wMt$ZspUe#8aNM*J0GP_Mn`Q3w($n;SuxL%X}t`O~(Er})RTqU;Hs4W`r z%qkCZB0`BQ|IV%_)A1CV#t?fqWpXv1okybG_rj4R^o1%>^=H=uXcw~Eh1}bpf=!mQ z=kGaAQ@TO@xMbN|4^F3hUm~%p#cq1+{1ELl`t>18+-~Bn(QH4ZUGd=K^=>VG{iQF^j1`+U+lX#`PSL3SN5b{1ELFVgXgpPibHLEoIt`c2oZD zLnr^thG+Yai8>4411QiY0Xn5E6Ll|qi&6iu*-+PVhH;a)KGH!-Jtf&DHzZxL28pQy z@+$rq>R2zddz-FEK34Z9JBxZS?MAyF=I;30cL}+WIY`v4w6qY;Ii!#UmcF8SJChRW zYNc@UAdCI((X3@%_{gqOnUPCLrGZKNd)rF~qAPpmG3`b>(`utJmL&LrbPY!C`j1w~yG*<(*l@=O^ZIZK=LE z-_4AaonoK!XxD8;y>!l?G;(xr7pDGbm*x2bN!$Ntt#IcPQ(oH5T-pbODW|bdJ^LL8 z+V$Nr81kpOkcr{@n0`gOP76(8HAaLS)?(b@W;x-(@QJc*!e@R&Mk1L#x<6MwqBnu89jpUe`m^5&q~l#$-JgUh-jV*4cLT9VBTvfE<(Ynri<-Bc z+kQNoUuu=ZebrDTk=p{usafoN9qo4QZo}P{2aO(%0Y)iUin zw39pk)hWk$>n%;eNX`tqJqjmV*VZucXcvD)5C0hGOU~-E^Dng9GEWQ7HV!BKp4W-S ztNNxVe9E3n{MT+5b-TW8lSU<`k}2b?MBVp~XQa(H(@3R)JnGnP^zp4Yor6{u%p;B~ zZ!+WLiL-iq|Fr($%tJCquuQy2eQ-K6zm?d_xH3LE3qMMZm-bI zJw2H5igs7FsgnWo4IwkXo2XO!_!_US4uR0TFs5GUcrAO5Nj1^}!7!J7kCb+rRVSpL zivnTv64nim?<|~-$dpO)-|}C(+z>8Sbtc8FlbPeA-7w*hP4CkY!0iwF-6Prs=JiD?_XfiEC+z-C+IcKqj((aL!_Y&HqInyp<|5_(QZPN&Thx{0 z=AnUqOd$0)``!ti*S*tjH0hiJ+`P_~V{wC`aCmZLW%K9ZvQMGO5iZfIhcffOJwp^G;0f-fvt11;(iW$%_hCC%oZx19YG!2mv)bHe97ng zCW7v0cKwoevs1muij@7hHSU{eyk{4kN$R{oSVzs2>G!3&Jm1N*u`=<)dOkOI0LdKJ z14XSGF6z>?a`7DX%c$=36j2wWyB^z}8;AB?vW{Bb?I?~r!nsT2+U z-Tp4bu}IOpyY6@+qk+2Z--~14C;4#isVwu8vSdl!2R`J zGVOTV9cbkSV^~+ouDj5#bS6e_-(z9buop~!rrpQaH&FDz_Vv80q0D?v_C_rs?3X;( zb6*L6duFzD!~q*fPjzIh*TMz0(<@Pb6&SJYeJY1v>&Ue-@Zq+V5;qrRmu2p~Mx2yLh&y#r+`M?%B zjt8{sEYlNi3;k>8| za(XT-ObCR1nVp#9n>c?D_oZ$nFS(k@y*zpl{ZV|6qqBUNenmSUlXED_ERaaE*y}Xy zRQ6avT5b?7X|fZICl$H=(($%=y217}>+u&K_WXF`bBS*rp~ER@KjPKX`lDMBHZY|t z`@SFT#usiy={YmOsq1W}{%AMGtq3I!8xL`&a!mcvPWxRk+P^s*E|qT*jd$}*71Eg; z4Jt}HqApDcAf=c_*j)3nOx(?v@h-Oj?u#Tp=qRM0DC`4yOnOE zrM;zP7?sTujd$nFK}6KwW3+_rr*ymvcIVJa^FY#+#P-wLp}NAsKWbd*j&J;4v(CiZ z`7KsB;>^?^?cUqhq@*1 zpTlQ;T}0#ke6C3Be^lWOr(H$ezV>?d`d{jq&g)~_io3jaAw3tp7Ck-}<$4@uJdF6O zD>HfBD^!Kz;VRsOUd8_SS6b)XZjD4?{cIodgx35VyVcSn0q+`FQUG4P4SXO6* zx*v%Xb>=ELc)6QC*}aNg->2iPoT7x|=RHEv)iXrnsVMzMM+^GHfB-$lW#!)Ddp&8C z?Dov%k6fIHXC3cLqVn1HpxuuPt~f*6fc%=qt~b)oo2%e=Pq8FA{u1a|FSKj1-o-y3 zV?{ds$Nv^-7h($B<`Q}G{3QGS5$#I9TcP#0Z1HK^B+9FysJRIJK4^$tPs|f_pI-7P>BD)fTo)kfG8bM!ulg>*x=PbU zUES#(;1iLK4fc*^+-jB1LXb)~*%tW^e9>P-Ce~HrPMg^E3fg7wd4+H3C}Ynmb{&Ft zuV$>1z9#4J+V<~AbnJh$n;)ZsW-Rf;6XlacUAF)!s(8N(qgCv6CT_zuSxxE+zWV!q zUbl4$+I`)feEy`(l$Ul_IY_xrgKInvz#C7HA15bfTaZ68a= z?nOg~v*Qr$dQ4UzH5FF{Xi00L(EyNK!XA+a%LAYaorsE})Op|W=lT2(SeoS5$ z%@_PZ590h?UX|AfolI=y-H~_tFD4%C`tiP`d59m{psv957ut1QG?r8^zk>SQV%NoK z_r&-we%d8j8hk87G+wjjM{I4Diym1|Vq9{DnGmd^T^U>dn!n!Dik!?N_@cT6-LWL!cNtSJwCi_Afh4!D%}j6Ki`TK9Y4>Wb9Es>1Lhej;W$v?ScS!RM&N^&K zHaqtejhDRa7=GauOFG|W-|HwIx1GQG>xE?g_80t(P0P@-JQEmw-j0b!yUy{~&~q1O zP_}8jBV#WP;x4ey0d%}qmUobHw+QgCVxI%nH4K&Rz8b}?%3jH-HyVM)GdFnm z`h&D%{n0M8*$ArcjD$&LCq&(Z3TxOj&}BSq=y>5{M}k>Z`y9e&OQt<&_tJhG zEPbH_WqBKzen7hmuL8iW^Ltd#KEEec4i)JXn11v%a{oJyaTX!>xb;eb9Nw{r`>bbA zb{G^%o2%LVAha8o`iOIxHXcrU>5`6lY4^%-iuBUvxe)o8-FHa4oC;ewFswT<(s(a= ze7(vXpgz1enci|*)LCA3fS>dANqApD)D?~x26Ml4hQ*p6MP0-Yci7Up7)=gh&kwpB zJ9ovw=j=7O`gj`dSTF01`*Pcyqh!sE8zh;tI2gHAku0lt%;cqAo6kI0-ntThAWEXH zrgc8tDxWX?wsw`Md%GzS)*DnvFHV`uxCN&zrFZf(INL{Sxsl;3(GIczWZVBS?-kMR zc*u72;!GTyLKaxE|2E{X3PO z$!x!;-PlQ1@R1(|(QY@G^EYMKWLe{q8C-hf7H)@J7`bt>8qK$iVe-<>rTx2VPi+(- z=FdQ;-_vf~*DBmi$qcTm4G?vGX0O7ljwJx@J6tsH`Te1SQ)WCY+ia9>osrTQ7AKMRuBR|>iLeS2!aVAX5&v8ZuRFPQE>f+JU-C5o-=x&|F@W^fPT zTU-jM_VGp?`!nsF<)%rOv?Y`Ki`n}j+Lc}`Kno6e6YnSAnB&tuU?<%-eRpM72W39M zULv(Pmkc{^1~GYQXJc%Q+S<>{!k0Os?oh)b)S?;=`it1{l#aKt-$A6<{>`Jtv+R5h z?Vf8_q3Xt1DBPFHj0d#Sgh%LDQZQ^Ak}X=^!nd~YYSBQX0q!fbi5q{0#S-a3RD%8Fz>I@uKW1Tkl-}| z9^6{b)HCgB996*VbZ3|oU!RiOS>O(%<`}|2j||2w)_Trs z7LMVn56$Nuuey&%_*_G`{^P$Hv`d^j6K`7)3_{);rafr){=!6D{yhkkH?sHHv|AGB zfsGWCfE>^jjpuy5UWh)C0OyK#iaKdVj&Nd!KHO3q$BYMb-je7M(%W0QfM3jH#tppt zlFyqvjmuNdY=8gvGd>>h0QHX^De7h}c!#qhM!<+kjm+`U@d|4n;zPymprj-2;+EXU zhhndxoJC%uc`MbC(0z&o6qGGR-JLEYq+c&|fq)5Yc|)ojWZyJb@b3m3<>PE5LXV9@ z$=)99x(4l%J+E>x{`w@Qo~>uvsqKF#ZMiK^_B01F$49#%xB&e;>P=SMVaGMvnb{vl zzLgdD@gnxQjCPUVyF#xi{mF$7>^uYQ?kU*7+qs!|UU&9-L_3%E`3U>=`3SxLn2-27 zt|xDv7wp`4vWs94d`<8v%Ea#-7ck|eT^E~yLa$a|Y-*Dt>Sp%nCLFT7kDKcwMV+=n zv^4(WPQ1Kj4&%Pr70NpO_TlVmi?|Z2l{m#m3U|h`*K^wS4~fE0+Mg}6){490yuU)I zUmRp;lrsIEj`#L_jWEGuCh(sHQCIMEJxVK>1nB(-QJ0W(9u0Ws1iykbMa$cA;(5=$`-W_P$ip^$M<(7Wg?Qd9EuDABc*U9g+lHq%G~rVb?7mXkeV=q#m^aXX zxC|K$9mjFnIX*WP`km-bwrv%Ur^xjc;uV_s(o^g_D;+QK{Ey1K{$nK@|Kq(K+6_4V zp)#RWq4M?r$MyU(th`^NR^@-aFGRfq-u4b-Bv{PF713jAH3-=D?F#UjbT!k9E7&a6tWDiB%U5N&G)VY9n1-rkAj&~r` z7+i1lfulp;iN;&w>I}1In83d|PN-x1YRHrY|Mjk1t9=9CU11&mxlj@AIge-h0qyEM zSKwzKTG8EQY(Jpg)^cym1u4P&r#_?^Q6U3W?P}dw|>)r z_=7$$@hM{3gLZ~3?QWjxaT{#1mPF{ji1fI!j+@>a+7@*3@ndWh^H-bqY zpFil(m|+8yPS=a(O}J`A z27WaMy^;%}c`L4VBTes}A;s-B<4y*h=3VaFOFoCG3-jv_;E1cMkX|}_ouS=jm1v=_ zk2$oQ<(P4jb_rM@h+TK7I`^~kvCnYl&PV?78;Xx2lQA=(UN@hq7urem%8+SF4D{LHEb2!1T|rIq zkr1-pUerx+d5c0_JA=hGc0HcXJJ{?8nwb0!Ez|<&IKI%X@`)n6J7oqz2f8rM^obHT zcmG^&{J%TgBbVM}g_|?EJeYm1rQPFvO|sX@gfve1fjj1`wAe^%iwGo*a6JKHybN?0qL4Z@bDWl+)@$q%r!U z@%|h*fv)YYzz3bg<85~Og#t&`U||IN{6Xi{9QOxZh*KeZzOv5&&kNJ}NkKWB4|jme zj)}yxd#Qr+PEV%4&~DF*y{IwX1lm+BM4i}oPUv`V@Do(s1h7b7PBh-7G}Gl z9|Myhb!1=WJfa<`Bk1*1e>j-Le(xqL^Mb7VMZI$>ft(r!e(QyB^h> z(6RM;=KzM7cBDkMZ(22py2jWlj4jk&{~t_3j5` zmGf03()A5|s(xln6jBkBeitwCnHJmK<(E~H~Q;)nH;zWI1ilC7%8b$*gg-fS+D`WZJd>q4|k zQAi=%_v&DW1S2Ld?JVjONuKE=X?9BlQ!lg|w7`>GF@B1}w%-zU8l!Z{ioo$id3+b9 z{^)qy?rV@nr%`i1?@sBLoo|;dRz~t%BP0tCpsj%xBv^#Vu3a-SS;P+ju zWy(vtqkE&lrMygP)c?AuyYC$bCYJWR**hZY@+ZxLO2gaIcm5|u-GtT>$e2C{0Mw5XhYuAs}YHX;F14J!Fd$_GW`1+~wiC%RVgg{O)cr+QZ+ZGOJcIdb(u ze*TMc+$TN+3ZvQe0NQD6jK|BCCxPPU0A?Jb-DVPiUuh=7>l1x($No$^qv9y(wM~m4 zYg)KW%uVsgM9n9!qm47!@0ZZ=#`ji*?^fP$smh$mJ1cj9bdO#DceqfU8+W$}uXy1A zm3GR^`9{0eS#NPD8UYucH;KmE_c<4Ly=Ma%G3K!6Z;;dd&@o9v-Eq;Uir#GpZ577@Bd|fh;~H>_6VgCwz2EFw3`t>nz+|T;cRCu=K4XqA^D?7 zyY^EZMMHiMY*(k}9^1|GT868z6Pin?Ks?n%E`_J)_Y$1tw7p@?61 zqL8~^y_{1uvDs4fI3J|;p6&OvlYHoo zjI9G+GaSH_dX>#rgGES#tCr2%6TBwie>WB?tafWVQBUu;I)I9`5f9s zd(`sZ-!6h~f6AEa4DFsT61dfy7eL+bm7;mIr3a;@Bn>_kc4b`e0rHZmx}_4M>qZjY z`8W7(jf-IZ;6``<;GeqMx6kI~#KHdHgVRs(Y z(-ZiQKS`vtpp+Js7F#8RdfnHI&`x_wk#=d*rcKFO2&L>qvL$5KcJGX>q>vDWvSgP% zJNdmn=X`$W%(r=e=llQTJm=2bx!cU#d!f!Kz;r1~>%m&vzA(|1UhjS7xr%U^3$+Tm z+)KD%-7XxvAB2w_roZn=@64|00LQ|oNt zwr7~yKGNBCDZyz!r^3dU^!N+u;(rf@TrPxha{HKh@vn!%J+k_+#^yWI-N@31{r~Df z>_*pPyo(PPtXL^}_F^;Vkrao2{M-iu4xOQnbJAU%6OE(#BVcdi%yh>!qp;A1fXBU? zOgB+E5_deR0rhz&na*crIG%Z<86?cTO&v$%_8C7g!7ho#ASiw$wSVUv6}XbQPF$+f zX|67J4+OlR3qhsNbOV2zY7)b_nUFhslwSXoV!%$H3UC!t2Wd0^D= zc&hzK_i0o-I=Da;bi7%_bS3I0X!7r5P`inKKY+~pvii~3oW0ej|7TpG=l&p_m#Mwz zR@?q#ev5P??Iquo@t6vXT zVzUSaUTLEGJ?Wf>^??HlJ9iVZ{F%W?{h{|8>E@M3B5sx@ zFRPtO?Kjemip>}Jx@6(qqa{rD{y~87NWK6yH?qrJxvN9GJ*C9z%K|!YgSn2_{ODBC z(o$@x@*@LB_r53ouxCBB-$=LSdj@`^(J8j;L!T!}_emiYABbE4#^(=b=JgsHj}N~n z1Q*qAG2QOpaaixuE+C!ooO0tcw8dkT+7LP9v-3c6R>zHnrRxD0zI0|NE z?_;`U=VP#zb|IJ?L4OyKELUo=6TWUG4{aOPQ2mN@4!|Dov-k(@{Kxm!FQ2@`<=i(A zbvcaW_Ju4GYL;ZeS(1OM^gPZ<_ubPQoRUd`>)R($<&v)J^kT`!<`%*6g=$Q<=;9WT z+9whE+tUAyB=hWK+QHqNP?%A1j%vTEHa*_5ZaDX>Dui?V)(JeukA%N1>Gjm4+YqS( zJ$4#HWv-ptKGNB=42N?y2f|*bdgGq$Lb}nNhH%_`HF#Zxp6?;uk0B=TN(=%}pp^!EzRT9kA8`RlB{I2_|;HT(tju@2Bk^3Gq+ zdXVmSsf(aE8^TQ+>2gW;dZ#X^(RGDrof0!|*P)Rh>z_OPvxgqfA@fRP#(+7`{Gs;A zPHKOUPJZcQaIlvWOycNu^|k$!#D7X1MGv(LxH69^;GAR*$9o&wRq09Ad8>`YXXerC zw8*^2cMgJemnHZ1pXu+&k?zyUQtV6kofmnI2*l=pmx~*tKT+*RI-5&=*wY|H*qbHI%yVgR$37Yd zg{P6n#s%lsV6f%tbLRE|+vzx8qX}#*`pa}``yq~8aU2|S zP+`_%kN0GJzWfJxTSn(4Y8nX-U8Jl=zwhQfWUX;|-^1u+0G&s=9G_EYMWQc?JFL8sgdR&jp`~AiUW!^7Cq2HpId3xmo#YTElvHxBp z%B@3NxftZYl|0Pk22WDQ2g+x{q2nG<_s^vJWT%Fw2G4|}_R`;XB;DzgO1MpV0!(*! z1bUudNLTf^0hJrggDa-e@8ggT46H}BcV@%r8j@3;iEeVGZpcfDe|ZTIVd_2?iNp|gT=Uu(Zs-(Ikc?>9h7ke+;3TqXS) zy`D$E$4t6uEBk@qUA=MJEBZZL(pjrT0i{oUaj4)5d$u3x&iXZg0}AVbg=PTLh5S~4 z{zf~%xEXd#r#@ZSr0PrpxYnO`O!X5Wtbc@FHO5QC~OFWeG6|h^Nz?50qrY7VOnc5(;ZJW0J$Zh zP@ccVbgO2Xf;9<2@Qr&r(|Ngx!GqXYa7I2o9zoW(sS<$;FFfGhmb+A*ZkwJE8}vzZ z{qt{LBTw?*<}<6&YRNk}J=>3TtDRJF-LR9W^#9?ut$dDduFD2LH~KR3#-t4vFPu>e zLhnX0U5sA_NZx!3i5JXgy0gLMpx=!kplu#bxwSF#x$3w3MBgr-;dE`>apSlk#23jj zUC_V@IP85Mdi9E){~+@Yx$5A$O_Q*5-hQf`N#}2*j!P0};EI3?)cKTje|%N&ib-Q} zvEEB&UfNtayxUP7UD)r*tjFmc_fS%|15TEGPUV#@<9Ijw2yUZ#3fFFUNt}5v1I}wc zO+BZO&ilRzD4LKCO^WKM^E2sgc4vVBQ~lu|(LL0&Uy*Kw;t#O9!xZj(B9B>ahnWJ* zTVw#&Ksly6rmYPZ830(VL_c4~2JEja0=>AqXUn;CJsD`|GZU9z-cGd(=^m_AfG3eN z*2$g2bYAU>@XO;FcztRB)17v7gd?A*;(ckBOb6CF!4>nAaq6lNru!1?3@`Enuzr>o z<<|XsTb1G{%k5OU%H4^7BrcY$Y0dxrhw1FM^aK3Q1YBpC!*uh_w}MogC~V!4&U8w# zgW&DP$yh%0GSh8cItH40K0=zu)T#bFw)k$<@z1@v?31-z5`KvqYhB^{Jr$^De<7WA z^CPi#{T%$h&tIxs(lu=u0|(eWLd|>Wa+TX{Men|>7J2#|tJeEdVc-^_WDsJ*|N0&X38woG2qR`?LccNhsN<5{ zzFwoAayOOVYV_MuMgC(a_3# zJCzr1X~Z8W@fD4^`$FU_`i&ZfLong#Y-;;RrFI{$56kqhM;zG zG&3)^;UGHiTqjQ9W0`Jqsy{NVC;)yH^m-7o+@OOF==H)aATD7cl?O!){0{t9RI4v1 zp!z^m9UcllkFBBFg>y$JzA6Wd8LtYzf11X0CrdX0_4-E8 zzm;AeOO|W>=MK2?vmac`aa7(D!)Mj@GxS9;Qs5g#$U%_j0jJrSQ}rd?=hI3sI>HSG zgwyjlr2EH>gFy10!;R(iI2`HPhFicV`ASf%@sKL_vRpauI%E|$_Sy=rYoRK>BUwYK zv}+ty57OmUDBvk&6JW-TXUx1=uD$Sp9CN6%lpg;h^BfgFqPG=4fKDsje(~!1{HQ(J z+{NO#T=B?x;I-r)Z0S6nDwlMwlLEodOUdx!xL?$L1nGopYd~5;D9lVe!^}(T?gaV) zBVmCIJuXV-#ho1vVXz7`FQMmko93H}9g}=TH%4CMzBG@4c+VhsYu#JW^ZG%$6a09n zV%`o6vXvprJzwhyL(lesyL{}Jd7IuYgm;gYfpaf6QTKmjxt|^4;9XG)m>3&LWqLq`rR&Ps>0T*T^L$^;)sXWp-_{D>rzc)d;Io1j=O3f9{$Z@3VA?>JHJ??!U?q5VB7n3Z7bt5K27lW^;XFHQl zQ|l-C@Wc|@UHHLtqKUVVx|s*O`<$M)BJ<*IoJPt8K`<|R7c=i&%~3Qt#RslxxJ|j) z7H6s#U6~+yIii-A{~QILO;`Xko6A7YdXUbiBo92YGlHYePN4b~>D*sz2hcbXCTISk z{(nij&-#af(+F)Cy@pikDKC7mYzQQ~S4 zbBG>yBwevW8u$H@8;D#>uZtv|^Ui9q#rtgFc4`r`+yyBUK}?@m(0DMB>3Y9&1@`-@ zflUZKeoB@*X7L7)@Z^oSQ(t0OUpkEjZwi8o6X||RI#xd=-K!h@ zKlTcAV5gy~#@)$l8itKgxE z1=HQ%)*H8{-vy5gA?1FKZshH?-c+gz`TRo#V>H%(ohb1?z8g=vv5Cz>>x>cL^-y}f z0O=0bT@p^j3oV?A^727E`4Yw(`9{%6gp;SfwNoa^9GrxVlFK#Jem&#efoSry1}Oxi5D-t z3#Nai*Wm^DmGX%fE{ejDtgzyOEt(`33O#$>p!z-O8YZ@gs|FduUG?<(KhkYAR|T0( z*MY%*tp6k3whd#z_(V_GV%(2v7t$4Xl!5MMPk3bkz21j(?d@m4;2pm3X~`vKJ)TH+ zfitS3;qJ);sd8^zo>5)=t-Pvjd=uX?tA<hJmo>_En@>^2O$3M4>Bk_zmNf zfp~}lSSdpvm!$jSS_&+GZUZuZLYR4TkDLZ27ahUT84*lpz5P0voIU^=f3ae^?tNzP zGad@>S~pVlCAZJ}+)S8x9SJF!YE+(!@v7<(*=?2k)AOs3sm{g+9@K$NspnA7b|KwG z8!sF!{{pm)Ily#Q2W@d)Kr4Xv-ZNd&Y#W@={|Shf>twq1E;hJp;zM9{^dr+rd0J!f zr$KOaIQ@PAS&tvBCV0YMS!iBG&pTJU8jCY@`d6>Gxs-QLjKdwP&kO&??4!yh9S-%z z%XPnk1fQi$*AQohHOh;C_2dz_XFHR5azTptaQ>g_--0L8?Y}6XVkILuZS*M0h0ho& zNXg%>)VdbPIa;OTZ8t`tn$Drr^8)GCNd9@Va;+&Up8l5WxqYPjrEx|Rzi=z*ysd>%iInb)yv7+O&3%$;sc zXSx9=RZ#NHI^chZp4TADJys}%3SwJ;>LvO*t)b9Yc+dY8H8d6TT4x?{e~S@F&Y;Jo zNZ0?)d$F4ABnZ;SQvHQ=^#jsDpTpkp-hBG`jdUjKSAf`Y!9v_W`ua<{7mmk3~Is)btOGOSFjs={^26i#m7%UExNJLM|U&Rsg+uxUbmuP?k0L% zl-$0xYpl?r+fmTv|KXH>`w8#%1;Ja3>GNs9g#)6p++9|QWx^o7lxH^JYphnUXOQ}QgcX)cIUqTl-@^PIjefZa7|VE4rX%)Co!@i3-37L4_o z$8_VPQ{l67M!U4-@$T0L>-r;v-o-qHFw_uowD>i zHtF=X*CEfDSAcE={aqK*^(!qwgKtW~uB;i%a+iEBKue;YgAMsUOlLkm9i`d50VNgm zJnYO@eFeE}7w)Uq4?Zke33WPTz~lr?q38Z3orkR2`yY2wbgKgltZS*>=t9d`Tv4wV4vNT zpugykCVhWEx^p@nu;R~K^ybbXDo^oOI+s6ldG)4O#UeG+nRv|7A`mf;zAqu&x<^j< z;L$xm;XlSjNw`|ISy=4L1LHh^f(RabhIXe41+mv+NLgMx#DYuV3%Eoc+BHCYQK?r z*LBW-yEA0q*Xwqa)4wcv1!r{M>T4cbIbV~-xIuL~Ff4DP?sG_YtSA*X$^?V>eW}!a z4(Tkd67Zp=D?k~v06mW*(kU(s#s$)E!Jkc6n0cSw+_8haGMu8uQ^(Q%XQO%3#_d*1 zn+FS<IZ0bL-qDsp&Z1kv|Ivcumi{kWQ=qy?9l&WS^uDrrK|_&M=`pSdaUk_v2>)Td>;M zP26^q?pLHkO~v5Tn{IS`oio)BNcUYp;Hi!&tly)@be~4t2mMQ>@V$-ndvavnrJ@dy zgeJoIE9v#cqaDqjzk9n{ zD0CQ&`D^rgAJVy6R`78Frg+ON`Z`ED&wO9;&+pHL^}UzCp8c70yK)DBEho+k<3s8D zUD646&A@;a%bhmnCb_ln>y?$dbD|(Ft0wA znde*D7sL*^B~A{cw~x##t9uJRsLq2Cf5uSd`kUx+&n9YcudHrx76SutdBHd2JII1M zE=hOuO(3UxIT`OOT*}OAs^}8SJ|2Z*jp_YH=4mABf)@@x*!q(+RbSF6`7Q?vX>M5K zBfXAnRbVrB@5BmzTkK&@nnSPOC7r(a2JwzZ=J-9N*8z|&H0-Wex!nXu z{G$6a>F#Q_h>b(c@tG|XanF85I*Y5RASEvVAF86~XGo{`=q#`u{u32=%%Jj;XP)K< zOyNYTV>a<0r)#6?HVy=?r28M~P8_`>R4-fu+D9#-+L?4OS9*w>tSYRQmeAv|q^mhQ z73A{sK$R>zFLJs+7$13AEPI09zP6~L;-|8F)kE9$)j%&6e?NT`{0pGp+aX;wj=^*K z6avj!dOZl~P-_IP&8h}_7Z0P(FQl7ty9T*!oCRgH=ye688$7QPdB*#}!X?#Io@wR~ zLG?^8ZuG4c{GZkx=*2955WOv$YG=|NSm%dc4#)yCpVP-V>DKJGM2=0Pz(6g!{YZCs zy&me*?G1{*CNaw`uhm2fPcDcTKA^|{$h;8?Te)b#5$N7aqw+Mq>I=38LT=7O%W9829Y=q?>Ri3GKad4Q&VvVmh0;CgG3X6XY8e!gTw+*MaD(qj0yoIn$-K zZUeHG9Im)R-xoK}*A-@M^%ou7-(Q%rIRQVgc0qAA(bWDW-P#Bze0If9Ji0K8y5AsO zSh5UWtM zXU{swCDmLKb!s2ydUrLW*5LO@`5b*eNxHnM8svH_2OVBd&ufs*ZfG`oJkuEK?4swR zNH=xSeqm?s16~-MN!5dN#-@?t%;~bYJeh7k(#6hLC%!KiBbNQXgqb(r=eYR0sx;mi z;>UDN<9h+C?_q*|4n40MCOt%O{UUE!I;)7gU6+n4)$U8~Q$JAGOVU+1r{d6pyZjEN z`Jm_VK|0p|tVx$VC>(e1xriLzh?sfyCGL15c!`#;KEZUc6|VUCtb^!z$XB*w{2zOH z5LbP`TbgV8afchIZ;JI@ok3?5Js(fH?226|U@8L2f%Nz!>26I}iOg^6!)v4Hc>~h@ z9lBn8CP@KrcJiY3FX_g;=?63m=i%66AE^40?w!0kcwavkpBvW2bSGag2cC5caoF%h zOgDIIKDekEiWiw5XS&Rs1gILl10_k(-@m^C%*0ZUE>GI8^s;*J{@uX1+Y)Z+rA^hB zbO{wTz_Q5=&N+WRPP`WuW$J>mdekB@~ zn9EoAy+y1JkBeC^qdR~Kc*MCe!ZAS6fW@#2PFZYo;;u`?oI-7ovl+4>a<^p$1*%y0$ z?}K}`GwCLbFA%T#YN zoU!jw`u?7DOSTk?eZPibMb%bjUR}2VD3i=}{@n79a>~mVRXL31s*&te{_R^2eA?jz z*l_tN(RgJdcCy&bY#gS}#$TB`)pd7hb9`Q04ntsenv zP8Kkoa&Kk4ZeoA<+)Z>4s}x$tMBIb9*vk?vVBLKD}i;uCu&Gu=3w6X==B zMC|=ii|K3)9Fe?>6s{}trd<3_$^RF$Qmn#nB~-`fjDt@jet-&@zOd)^kuJmB7LJO3 z1cnN40LvX5Xa`FaD?!64dK`(&yR+CHs<@v9m)EjgjKNIU@FE|42#{rNpK7=Zbbe6@ zz7^8zxc}|b7E8naqA72eS~W_(*K+OSTXCiNOzOHtx)h0f%HI_mKcv6wLb{FRi!gV8 z18~mxOuc7AI@RCaI37vC;lWd={!BV8Q*YdP;v@LbLcgyzpyV1SYo;ga0u7?9fR*B; zHH%?ECjFi@>FN^hi%(l-z+DIF|J{-9&GdMX6rBu%S2a-2Tco>FwH$?3C84Oy@lZXY`tUHB13wF{Y-`Y8jJeQ6i|{9Hk~ z_G#*T!cxoXo0m$g@_q#4QtM?1UA=&M9!I46DDR5@mc2kRZ^Ss{xo{*2&mF zS&=?fF6m0MD#XXn0r=fwB-1HvP5>_Rrb63+noJkqWd+N^Zh{v!1DLLFkQEF~7QpMu zL6qwpe4hJ^Hd}eSALH9z&k^)(9pLdT^z$$2J~O_vL%KEAqpQ75T;a^W^nDKLBBgvl z)gT#In&XLk_Gi*Pmrnv3yZXSWEH|dZU$cOLk|SL5eE`$hCKm#&ZyZ#v)Sz7OnSES9 zMLZWYeHS-&ND5y3OAuG}ji8Pr((Sa3!>^WDgQQXGnJz^?7W)sJ3|h}@Wx8o`^RP|O zCs1b6i|OPh%*MWBrQqpYGs-QzVj}o2+bGJFyk{17Hy=4YE)+*6BvSPy-HLBzLj1OB z@O3P`K8$ofza6WVEouOUPa>FkwQE0$hcravk1eN}+vmMu4ssd*6YOpiDr_%>ITjhhE{fcyVCF{auL$kmjMf&(9UCRwa zylG2+xE#tsR$k6cWo&*^0NNYrdAhZIZgXR7MpgBaImOQ!ss=2w6ySqWcdGqJ*Rrz! zTnRb_o_WyY_oSO3T?P(MssLl-{h4_qiyJ`EhQ3g_2~w^;>Ht?#4!A83i@89#RJ_97 z74&)bROne>(zzd5h#w3)3YIlDQRhk0RjpcxRn#klsh7&A{Y$!n&KNvuLjsy~p1vO< z-R#6jY};@Jp#x4!sX^yTzcJkbB?oL+dl4l||Dv3l zcXV}>!mKJ2>0*AmOasz=7J)NOx~Tg^(!u$&(a2^C;r`21s$Y>VJ3pPjFE@vq`I#P< zBAsvdG_l9;B&?OV67<|}q&t}VPHeM40l)j>L6ti`=Q+3T-Zrk?U5;xzegT-FD0uj- zG1bnbi*2t5dx}Efc#$vFE~Gn?_Yqii1;X&^P-;C5=^`Hd1g5`SVQ&k1eKzSbfH`d2 zFd2%MeWlu&bPawJVSVgaSbMN9wS764w{yQPuI6=)FXQyejqr_YT6kaRbEdm9MG;?@ zzKbeszDy7O7LIQyVX7}G)D?~<!+q%fLb};X zeej|}A8cU$iK;K@j<5fP)@<~}ravsGen7g?H4f;oW*WYeP{PdX*g6Usf;4<%K7Bt< z=2gxu5#%c)@Xp`#e}n9YoZ!@}(>arer@2Ept|)I|C>(w1D%CEeTdR6Ph&Yf6H9xpA z-R+_7)$%C|p~b&5On2)9=KLE%p_}&;rW@m(1PThBVNt*S)On5EKHOXd#Ipin?yQ|u zo<+aa+<{(kqL*iHb8E!2u;1Tnz;GC5x|$PSxc>wJES7Czx&ofVQThF$p%i`pLYAwb zY>qFl{sc6o6sUTP7@}g;RcTsP?<*?=zJCbzCX56beI(DBJ^rUeI+JHQ@E_L+&O7Kc z-HP-%@TJl@bh(vY=S${EKUxGWgR_CP;%Tb?dF&r4Ua2;tDmCm9cRh9pEUz=hT9F@7 z&+Q}KhhCH5&!5uRPo7@iNjjH&F&wdG5N_-~!OWAj2JrQ&f!HeMB-2S=e}vl)55$gb zN0`p~kPS@V+8Y~sW2WmI>HrT7>5Gly4lvy<9YAIhVptZK<&~iIH?nt_q7j)2#ec^CcF#Uc!=?01K3f4Oe;nDzW zX1Pl7PpwAFg+Sxu^mp#aynpd$#nWOvpwVhYW?n%Tb1dnF<&veR(aid}@U{9m z)U&>%o1M80eR?$u{{4@BN;_<#}wEx z+mE?@dk!8G68xH;P=l5;53sxO!w0ECOYNkhUKDfGTpY)M&#V$fp=b{+m9@F#0NwUxLA>%pOGK$C+_l5s|u=&;3wqef?u<4 zRPU}_MCFlAOJ*Nf_Nh?3{!tv$X}|ss@>iaGuLXEIOW-7j$Tx*R^Vg1#=0&UUN~ ze7bl$a8g%hmV4hm1|B?DjEp}_ruN6+hHbq6s2Hwhu>&WXtAors(&6J?%ckWrVTYCS$u}eW7;dGtjeN zk#0!9cnpoqVD2~=kZLk79`mWCM(e60;EfszX)iriiIi5)0o@0$~6Z}Do=ohsY*;& zP&o9VistAKeEUEhRWE-Ejw-Z?%vBzz$cc?tlO=)?B*1Fi^@;Z85 z2I&@cy+AW=*<+J8Y*!avgBpH#<0a1Ya|M~#pBK~;IjgNLOLz+PwnC^ep<^Gkd%XRvXb-83-`ii;OY|&2CZ_+hp-jTC*xTQ%2 z=PaSeMajI4lJ88^do4k}#%k30?`EemfBK6B7dpLzbJygsZo(eqFm))??Y(A&`))Xn zxCHuqO6HkcSYflar%1twUiUz{LzY9aw#8(@z8C$TFzK!YDdA50KKQ^_1LpS4dvQkS zSbCJV{zR`&jJUgye>E(f%X@Q{)BV^NyMAf{26x3&9_h-?wV(;1dqZICc{(r3?;r2h8*pZgYxsuwd&I7B+EC`P zJ(WkgP2odfv)5`{;h9+GTr;MDzMRA za*y?}nYwQx^W-aQK*?=I*r7nrGfggX;b!;@<=T}hxvOpJxJ#h*NXDNZ2UfRFLfR#ot=dZivFC8+ve#}=MB>h;By*RwPVhhvhRVbm6l5fE5w%9?r(%@3=>8-IGv}xojZ_gLsx%wVV{u@a3KhibF zY!Y95_6x)W`7>SYaDQm#^%@lzJ2A_>ygmdj@V|@VEJiWiuYL>Rg9nSy_|Mst`}Wnd zdVBti>QmeRKJ}&!HcI>nhWpU#1xR>mvn#m1=w%-RiI<_faz{e2*yrX>EM{{6{?-dyxj1)_)PXka75pN z>F)fVfe(82hUIhV`7$!kURR9&$qa;duhH*EExh-=`sb;1exu6`ewybdaNzGRR1oJ* z^*_=*8D9d5!+)W5t?ndJ_)8i3jxeqP1;mS>`k^6AK z%=`F358j=Zk1}i~Gu`_<1GwjxDXKH3w{Pi_4V9}Clev-McQ~bb4S4ID6YO^?i`u`W z3obH%-42@Yna2lezmcxG!V#AKRflCerI>C&mIu@kZv$$dyD0Z6>P?mM!IhlVuU4*V z{%O$mI0`0Y3}(8PpXY$QX$*Wa^bl1KGVe@HGuSCT0p9Z(M71C3Rxg!-)?0jG!LdN0 z=W#^3%Q3QWcKSbHzIZG%&$UqlioQ6(yX)z8Ci9A#3}91lO=!EEZs$22b(}}p2rkb= zmh(RF9zD2ah9A_>+yd$saN8cX;bh~8zZJ0>#z!Ry`F*d zCikc6OXfvr8~}$8*kNyPdYrX7^8zH3mxNmGRYhmXdAzv<^e($&Tv5Kl5p#v!frcsA+m=Y0lS z!UOS?)7QA3?VLG#ybz!@UzD_1LD*cRjb}QPpsAkp^EByn_o(1g_Ctju9`t$|(rMQD zqdvBKQB@{=pF=ucR|oBmQN=nc^!wtZYwuP^8$JxeXG3RF?VR}P5ucbalG|UCD_Zw0 z4Q+7@gPSxeQP294u2b^9mD^i?2=nN5`lMT0uv8er2PgWCL_oTq7BjT9O zJahziLoosVI8a2nxVYC`iVi1otypR0cs@{UbYL+Y96lcOtOx1(JzgLlJ}n*Yg$7Kg zUV2I#ZJYt;7k;D8Lu6ibZXS4iB>^5Tq1P3V?#Si6K2g!K*6Nq;OZj1b&3t6R9q_*GvvA>M7Z z-G)UnlBpRT&=K#=blJw*5G-7cMq1L>UouZU-vGY6ZHl@_(AQPcWuKn`@4tx`7Qa@f z%Dw(oNw|_^#yQB}<+lZ-*OsQyB_N3#=fm)$y%*N5FyJCkldCm^>2BVi6Q zVwUTAa|KEsvIt)6MXy_TPPXT~zAdcw(mu_73r@qwqNj<6tfa?n{|^_Rilee$@T6rUTn%yerR)f)%eUDe*L~oyfdMO@2t0`_8aN$+lOP}{#b5^ z(LH8fMzk+Z3OxdRFI+=C&qHLMTcc$DT2~qGFQ@BEy7`aB;Y*K-z^80_yo7Xjq)qXH zVS9n}PI`QUbWy`KF=u#K@LeOhzw5CsWB-tP&gs$!ZjKEvT65|wS~4RB{~CXaY8TS2 zUt5OCgJbcKS(BMge7&D=dioOl{d@=0wdg;szI@URJKr71+`ers72KI!i?Qq+5w$0A6g2XXeTNcnf&Bc~IsX{T-m3 zjZM|JyZTlS(mTU1T4M^^c`NMV5iIoV2c)}t$`AH$m&Q4-0Ml(>KNpVp_7^!N=P{ja zWg0v&WRrNMjx}PHyL-eExN&rXpz!VvGf%E{2~2j{FDyMm|IeDNhgE$hTy6ZUx?l8g zDsQQ*RK?>bi#X?l4P2S17qpw?2Y0wUV!Bnwdc!qS+~J{9=~O+)yo#MNa8iaZlx_~LgN z=q&g!-F*LEpl_T$>@|KG(`^_w6@(U=!NlhAOt>0W;5Tvm9I{`B$9Mqgo&sv>>|^x#xXF#cMq^qqOYs37L60j?2PArOy9<>4N!s`Ub(3U62f!7P|;E76l+?I61+H|4vo9Xb#b^1Aqbc**!z)N>W!04?N%yKzDGnij7 z84fn5-!~=mPMw~4%sX#90|tKW3(dCVQ*OydBfj*|2$9Y8Exd`JKbmRt z30SuHQs)=a-R$&4Q`HP$wh=vVMY@COh)-A4gBdSunRyu@55 zSUbfN8Wg-`)+1!~TTr!b6dXF8o^OmvG~iXfzO&l9HILWiABeAYO@!i4bh)H+(f%Wz zKEN72H8iB^LApRmxxA!Y_5Vk?+DSIAO4>C`6peh{HI03HFy+OI_S}#P} zmo2K#X71-(qK0AVs9v!5BX#OLNjll}1M%^Qt6=P?$xLUhtbnJL90mTm^n5p&cV}8B zGX1(A9Ny`{%&YrbiRAGMV0PY>>4MYuqw48T!1tr{xY<;(F?TVs#;R%6R{ovLS@c29 z3SO&Kqw+{+d?gEA-yaUW>*@70q#Np%fd+!P@P^Z4)bo5ry5pNX(Xw`H=)6LQS?)gL zzDQ?-7~VTOg6ZB!mQZM2^n;>dy_jx6?iK#lM^#h(k90#yej~FF{_s`nM^VrA zBi&`mcfgfI{?N@!j+r+`tpkQq z`@ou6?$l95s0)NcYw0}7{TWioWth5iwuef%Xa6EG7cK~k51&Up>r1+qjRN}I zN{3OdHhrM5uD32XzxD~g^=2Uccwr5?^Sg#>7t(#6>xp68a$q*0o9SjOnvC6VXn?&l zOkmIUBl8L$u0uJ?m2l!0JEl9-7>`a2^uX`4=yiBx-i-^V#LpUUh_{^0pz^ApC<}vX zw73WP5BTx(((!?HeZeV}+f=_IUAtsFEK4#T=Kde!VWj(aBM{Gfwgwr#rQ45mKP2sU z|IKosYeKgl>AaSW!7E)<@DS6_R6CPy#Ig?b;k-K@^yCcF8B6}dw{-qY{KxJg<<$PB zR^Jz`ud3TGE!3_Pqo_s;Jo>2#)n70ufq2g>}|Wc%)c^nK!9% zk8sa69Xo6qihA}JGH*#l93S4Cfr|#oP;TiKDap%8MOER|eT2OS#K>M!k3Em+dXP?S zxGrk`qlpJg*-_g^y4W>)gk$#U*f)vZKGMAzu|ZI&T7oaQmxl)j(bqT9^_T%_xnM)cKZ7pWS;x;BWR}W40zi>ikSz_Ek~{zGvKw6{GBQy7SEIT)n z>Q`jmkx{-VLOKfHEIGg|_otVIIBC{2+$H%pSB=59|jd7ht$v$(SlvX`zfbHQbw`z82cO~0Swwyvc*y7;yff*Z{FVjAxdu4Q#2WWJ z-bnXqq9bT|DLIb34p7Gt=?=DU1lNsxu+l90{XEiTO%uWT18VrE*9q#p(S3Fx-!(jg zd%yNRr(8A+{~G)dbm-9io^)5Z0oc#<0$3VB&kvH$Q*ytHRsg86oNi~*{p@uJEwUd6 zd+#4k?T=10fU{i?!%2O-%4zI&!`i2mv3l}#>VAlHrmviFK~`VO5wi z{*zoZKlKrixka>HKj6xN)6=31Z2rBQ2`^{=+`Q`lS-tYJez2(55#dc^lPQg9< zJ?VmfnSzM+Y^3-mp6Svbcz~joS;)IMk?CfdCV|u2R&pwf*ya9PuLE82chK98ex4?` zPhrF`XwmTu^gUp}EO&j@XqZsg3x@sbPr3j3{&+6P67>sc1Xt7jKnRXxy4o=UNF8qk|C*0tI?F9jLC_a%*lR02e@<@S z@E6~}{!Nl`y#wQ@ym3b-^RE@N_}Rwq`1aKT`g~*o9&m9ibsUlIWk@CZxGM^4uK!LQ z=cK#lbPBz8io*Gc^!O?1)+~2G=l_ObnZV1;ax-%Kh*c*~#b-9s^(FII_f4dmVCeuF z-lXBqYxI57;HEyjr9lQ?z5gR`d?-RtJdRQAJNo)TI`l*q94s`zWA*9l2kHKXnSptS zvr%3reH@Wa^+^)=nzM?#zkohINay+X25v{I`#69~d>E37s!+FhDgc0vvQ0@F% zMO`@Oc1QI2r5d+GCK_v;t_1nwR_eKebVFta;X?|=KwO4t0uZ%f(%DLm9v6cRg z1L+QZ^TkFRzk$R1rZMwcG-l(6>%IZ^r9o6Zp6xQ_-AAqBd$)e#z173oeg7VHe?aCPcX0%Q#2rfB z&vZVG8^OAfJ~+aQzK?jbdX#vIb=PF8u}gTlsR_8HZ3`IV*huX+()p-Lo>7)*fR4)r zR6CQdV@Moc*S`QfP^Z_Mk#4hlIM%9a1pN=SQ|ANHS#_)83-4{AcVr~9T=AA)h&P)9 zXD+c94_of ze?N@Ovsohfzl%#XYF^|=<%Q`D5+3(g6WJ~}!F5cE#&5clK^RB(1JVV1gyK4rd%|_i zHmaRTC+|5AJ87r`vxN6dr?=V@pIbOm(05aWJ#MVGNb`boo$m&5t6{F5fSrqSnRu&!1wUc7p-xxqYOYK7BEM zo!Ke&an)kF(!gY_uqH|97_^k>4)#mN*T-lh82HUVdrnMaGy23-$-XAd8S=^Z4a2O zMvudhPVYb+s*%)paT8r%(rvoB3a!wa0=I_H^}R7UnD0A(yQpvXH$JernVaLD2@O?p zsD4VinX~(YuI(96Cy*YOBHi_4hG4&BU9)bE4|RPbo$}`i!1tIfjQdIVQ_>mU`VOpR z-C=yoPO6YS--#xz-bT;LjT! zoNXbZwvTj&w-kY-o1^jeuF*`l<@Z~VFk=AT`+{C~Nan4&+8b`$Z-Q4@$};nu$`znS zhC06eksgQ3emz)NJ8EN9x#}|BXssMxR{*fu&w8r9q$_E)Lw~R8<1zp7UJ>b9odB{p zlZxN*pQ(OII_T0Rba~Cj6YA;tBhp>km%y99^~M*|1y-6QeA!#k%Y33eNrnXaWc z9yUT3@XVcF|2O*4Za%{+j0^DX#EPm1=`81+7N?|oK|cvXY@fi|fzIEOP@+RFH^6Gv}k|b5lXj{YyHvK?yiN=7n(Z^JZpV z>6SSB?Z*z}w67o2y|4_$7oyIh-m+_%?(`Htye&!^YebY%{XVy27q@g`99Oxdn(KGG z6HVw2f`&PRspk~Zbw$5L|3+Ct*(bfJ{!BWXrB~4(+ejEO@HjKip;s+(y$}g!7uYhl zZ`Qp8v~ctyn4Lji2g!1m956?>P14}6GJ3t}7F&J(q_P+HDmax(+1~=TZZLsqPwDwa z(iKcnfGPF{a9*?=RbSFczZwW{f7OIeTJ(Gr>5lx;f`MWHuNl(c-zD9%6NWH(nE>`~ zr{|+c*Ez-rrqyKw-<1=Y+gG#40`|XM1gw|pQEu>uS-ek@uc$sWoEL23K(|pc>>B-y zy8e<*(=iE5k^F0Ck`2#vH!D|zce;ttZk!_3PszOax*V|6ZV}XZbAp+7Vf!VZsuKwn zZErDMMbHb7vLFQJ7SjJ+C(GR;{|Z>^hro+TWqi-$mvnAleu8~<{&3kh`ag=>%s=w_ zZBw}Cv7LNUWFW}AoB~VS%fvnNNLSSm2v5 zbNoMmrE}b={Y&Oqtf~QdrIFC7HI-^V(#7T1gB>-x@b$XU%)G-dpMt3ovan9digIB# zOSpg?9Tf)x%lS>mVo^wrB7FA6iRq>kjYpl5wSNr}^nEOu_vMxu@}Kn!T>a$B%rlDl zEY#iT0@C&L^FEoUc>4?Q{?Q8FtTv_cTtA$!l&X)P)IGM3u&yW{D2Z&~%SIKZn?ImH z(x1KIxtnjOeoy8-SaKDl{tAN{u@k8MOS;vs`#_bl(Qx(w`u>V^LWd44b?gKdHuUom z=^_*C;Iz#f!6#WI*t1`ePH%oJ)C=6sl~x>QZeQfnMR1>GHVA5=zgN2Z?F)YOF%?b_ zN_oE-H__H4RbYBQjA}p94R_vx4DLJ@cWERroq@q-bmw-rIHHLjXC?ElT%U&inB4;* zgMyiPn>B``54UCDpx*R25}9XH^GEQxt^j){dQf?mg+ICWi$g_H$LcN58^}t&puGqt z?Osl`AL&@{Uy{zmsQ|#IvG9p7k(tMO|B}qRf9od5KOGD=4)!U(%!%GC~*<}05Jsg}}qtDGCHiTgWDg{A}O_hw1=L{R~smps4y(i(+& z_EXZu<=#ayVIdIZj$yjz8oSZlvH)0glpePr^ZKvmP|UUv_{ELB&nDfVY-3bn9|>i0 z%c*kt2a1AQT8e1jg`>PwU>@o_WjC6%GMwr!q?==tBOJ!V(YK-LOt-_$OjzC&f!=(e z=MBibQ%_6z#y^F^0@F-pUS7Qh@7mS}ov6=Xx_%*?*e>Kbs?Q6d+|%MQg6f99R@#+a z{D*%TSZ42IzGgaoA4a;Jy*zQ_!b-5c58baw7aBSd&y3y#@Md~`nsi|)7PwwH5Bz_8 z-FIA%-~Tv%Dk=@4w535*8q(17y3R>bC>j)PR7#}KE|pnP_Le=89ieeu=O8m#*(yYK zqKq>8KL7aqZnyL9yng5Z`|WY&waz)$ITzOtf?fLy>C#k+kXs)sct(w$XD6M1nHw@w z83N;X((`_#yLpR8_1DcHEOn&P-JoMF%zd{)7@Y8!)6se_DnCrdsd*99^+CFq!w!jI zzA3oHEr#k>q|5trP+a;v6NmWl)bpHlZw{FA5AI~(+m^b_c)yQC@Sm<`;GOd|neN*} zBk<2618;tuN4@8e=|1Z>0vMck!FH_%%zA-__8{@83x0Kk?LMyH!J}oVIM1saRe#p) z212iSdBVW9N8FWh_CRva1>Y^9^|~Zob746OGF)t#Yg4J*k>cXUWIh)-WmY8Un6n54?X@zy6y@iz|m3{ z{HK$?jvh`v!u@Jm%Dv9t%emSN#5$^O@P$C1cSpL<-3@ThD`Q~X*Pc{+kZ#76Z|LBG zAm|$C%yb9;@4N(y|2Qv!jCYH14#MIw7JTTx#}&7G?h@WRyR$LPnOX%+-GTzB^`p{B;ruf}(92L)h zwTf7{<&4wrr#&l{EnA35{J4 zAqU*N9{@)zqQ?_S7r$*Q_&q!UE-R6v#-&K7^Yb(K6dnxgj*bUi^A{76UO7`kL9(#@ zrf~iC7%{%x9li}VpvpnI>}m)$`)I-5nq!$x@l-r822pVFMf!b`j298L7|hxq3Jp`~ zdLdoawkKf9Bney^tpHi&@ThnS9z=w}!&B!o%R8?37ck2&7)qQym@a0G44j?k0Z*tM zVmi%_vhc}{@z8S|?XFzuD_l~~6VjUQaL%g-f=7}JoW#@fOr*2P=fJE@sW^REC-q)J zI(@S1|Y{z!+ElCY86eK$363UL3fV>)bogR7Z=On^Y46M zr+XSRUa{Xbl(Bv`lvOvPp6A!NvBG}SJYkp7H4cBQK*oFk-ljx9&q)XUPa(5Uaai4c z4RyVdEd&|Nl7W zf{e#Hzk+ndeMiEP+ok&`DbVL|kZ!>tXLzvG7#g(?1YP@;EnX%Brmf+|G@apQjJJSK zswDWp)GDfo#4^?KhVA{Kbh$c>~Mo9OdFduyD}Z8Jr538 z9gKdNEu~zm`Qpku6MJxHdew8r{htUg(hXtLayRP!N4o3p_X_KNhvT{<@0ju0m(6w3 z>pcxS9BOB}8-suIH<~i=B8w`jACT#;TBHy1!!z(%;~b`|f1(C=-BG~0_v!aAGM;kA zbQr(*Ei!88jk>lk>GJ2q!1GU!qK$@OluIkPCbZmIBAIpPp^(}u1T7k#Bj!ZV=jV~m z=zD*(ZmcpIR+UE8GwD7Qs3WALj?S%PJKfK{(O}Cy=tU#jSyx$z_pk00LdvtKba!4f z7UR498=0w@F4+EQL~%Ny_|+QvyMlDpd3(@&>HR9iOp9t?(*1b81(mmWVXtxBnCWI% ztw6g{l5oVmc89w;!41kT045)0y2k^i}_r;KO$fz@CKf zOg9nf;~5t&ihBps@26z`Vzv9=wt|hw@5>n6_5N~0&Wz7i`Qmsx;00Gd^Eyzfkw@F! zL{s%bx;T$su+ncfde3_?-PYj-Q2kUN5Gy@Lg_Ul9cW1b`ZWc1#Ae{&4vM(5!?w5{9 zaLF-_@21+DazDzR3L8gca(#O~=W;DZ;(tj!(ECmF|H-5~6=;i`{ndxRc7=~Rn8&LKyO{VMha1fq*^ozLeB;8NRbZ0%6$9~Z_(8waljFG^Zg)hKL2 z8qIF7uJAwBZxHbU2jwCexv}s@K_A?;eaU#Ohf~nk$8+HPN%VRP(y1RFi?+NEfx{~3 zc{ zKkgFjE?S{O&tssgKz|RCZYvHE?~ND-3yZ%bqkzaF~4;_ z>>ay@nZNUH-rQc83jdCp#dOUwhP=|3c(}gq2-7K?90)1~dc&xdy{U5WdLDeMQvb?{ znx?|ar6>4|r@Hvrn{lvfKOo(kBWL;Zqjd0=o*qos|IIJHEk+N2wWpuIWV}LSJFp_n z7LR#E?-O%F&qR#19Vof;Twd%c{f~X`szF#&p^Yjp>6U8uz|&r8;A0Yc{D5>nvgEK; zNP~EJTmV%sq`T57i}|f1uv$k4Gu@eQl91}n8uTuB1~Xo>VXgRnKqI<8o1X9axn=;r z-0wxjVXxDiq9sJ5i1>qxk#D_;AX2rV~#c055`PfGQXTiaEw6X>>eRs!pVl;gbNNMsrM$*`OM736YhJ8(X(rq&Lb}! z_ffVJxfVw%e`LJjH`1{6T0=1L*FS+Px z=~T9V2HT&F#d4N+nDJb8$iS$g0DRz{9OdRlDRP;~W}N3{%<1_g;fE?q&`L#2UFW1* zKE@p{9@~M!^=qi>mvlqUI^g<3E9}+(2Qywqi49)a%^4Lo+feOB#=Fta5+4kg;J1A( znen!t9f-YC`(P`cexD@ctw}FMQA>RBgHn1tk#uK!_@YITLAakh{hTIUo`o!&Hq{C5 zbf^C-_t|rss~g)*lD%^jS9)a=SkNN@>UYcMyY>Up4Vt(QOp@-8{%+o0s-8*r%JLzY zAbp>_r*(@Ok0qV+(*|&SYy=Dw=>G^vH&*T$c(^hW#+IF>>X~#^ALQVxia>bu-9Bcz z%Zv?S`us64I{gB(yup3l;WP6A@cP^qD&0Y<%PQ4DU`1=%XF*5#6Ifz26a!aHs=tuV zF;XAm7gktx{1vL-lWzZG2nWUX#_ESlnQlmtJ54-8bVo|t14-LM zBglkT0j12*9XKvU&|RC!6~_0@&H zG%*WiPmiSfDe3l9|KVjSlHr_T)0y%5S}KB7$CBaHq9Dp8&Zw-64%k03*tmyythQCW zvZE1wke;p8^?pFQ+KMPHJ8>lTo@>o?g{z-(^LiTLL=88lyMNY-cb|DloVqcS=}KHi z@E80VQID;WOlSG%B^Yiu6hBqgrCiM8r^1_<+fMG|%Y{qbwQ*;~C+?l@1g0y?Z$t*# zyZNha^mhdrFITMrofxeN23OPdN4hU3icsXqByoB8JZ8EzOIM-R^>$+Q&P1k*+AW4cu8;h~^{M_xx=%m+@Ek8ieBa~?GakR$4SxtS#DR@Jsrx+{ zPv>GYdeIhw8%6-owY;Re94ersuo=>wqSrH>%B-`<#Uu{z>2;JEA1C7}6(2`4Nat5&r1Ptd|1rNxx*CTx9MR?_R;c+>^+&p;ib;5eqAf6y zr>}F;RaE=qFYkYVm|xkcV@TcU@Kwp7=&XDnxGe_eB>)vp!-T^9}(G+Lly>n9K zG^bIO3&#H7GgLLOyZgNV# z*m5ul#w?@V#)_YuR?8}ABV)7N?+&4UwO`+dAC+xh+ z)gHbnIkq>Ai}h0zHC&XTK|4LZM!M5Wt_w^3m0^&qKknL}NoSwAOIZC`6^8jvX1XlP zIKE$xHlU|Ho#_f{dVsWZbny+yqT) z^vdQ9I2JyQ=_Y+K6^##F0%Hv4Fx~g5{lq7!%Fy&KU4LY{{ylC8d&88W++VhH+AcjH z?s6L#G>Wd5-9JmXq_o9?j?Z@PP{tu(d8Az&f1Vy6B3g9n=?rT%^Lb^QbiDL1}CQ+#${eDWi9tyws z?Lo0P#P1As-yq$fTLa*XH>zmNCVCuh`N?>}UjMK}ZQN;Le`G9pWDpKdarE^;I>*pF zaAIU4RMxmlefN;=dg?mRo+dp%ejEK=OS-Awc7V+)^Wm~?518@pe3yYXcl@FHR33D_ zj>veDa#h&qXb&qYpHlTgx=P*&9-ciEHu;aF;uZhITzQ`y?u+6*?xplU^}&gcfWzkD zRJ)PxTz3Q5u&5l2eM^t$kgjcp5j^Iy1BC6cW5&}83x*Z}8K7r}bf51o@6TjBrTNit z;b435iPr%6D}uFPAe>w>(+8|q;>uo&e3KzHdZ_h z+CI|jBS@z;IRZyY&vc!Atps!}2k9#R%)l2N5#YY&GhM=wDOeZ$0Gs!wFx})7e>~^I zXAroUUe9kGr7Sp~&EMw{6#&rFWZq}!{SZC=u^t|Q-^_@pL(+h#P@t-Gp8}*%;zaJ%2aQ`Pgamt`K%>3C6 z^}^rUucQ6%>3Y#`?aQCKw7#<2@%LrbU%!Bqa_O0*C5EtTdyr19zd5wpG5{+-s-@b4 zbb-0na6*$2R_jY&m!zwfp9nv|a%BJJ3p3uMtjX}B>RZ%NUc_|13#LQ3vjn{yc7Sp} zyawI;da+=95Bj-4IvMHzt)n*V1oJg=sd^?|`^ouud#~-lW#%=e z+kQ6!H?6D%X}S)mYdw?kj-+_te5eHLFXu5`ppOT3bX9_x+g32$swOua(a-}b=FNy-=$dHk))2F`!QatjUt`uLW@H0Nc-7kaCJ@2t-mqM@m zB3)^lA6)&x3vH0jt8}dw(rq!4u7S_560YR3-NnZtaH``dbT_9Nu;P{I&4B7g%f-0z zPn7$m`d(O&HH=F!5G8ge(~ySWOlbbMjH(yXIi%>Ke$@-$)*N~qm~&gQE4zOMDg}FMLsq&I; z+$vc(>5dDG!_`c8%~lx>*Y$?nJ^FtQGTycf9cX0g3jeCkV8*+C+5{dQU<^A)KVdrb z))rQ~>cf|(&rwd!?yX={s?SZWy}{j8dxcb5l;Hh`c2vJ2T~Z)Ml7l92kES`(CHsr0 zm6LuaD_JnzQs2|4-(zREdyy*B^>IFh){J(Bqj%Bsl4Smd_cBKYZNAWCYcDEZ*}7aI z$mbv@t0!>#8w!xQpChz;W`w);d(t_Vsi6Aoh472~5^7wJbi?&uiVGgifI(?*5G$T; z|83&$Zds6*;i&r`8BgW^&bt%-G4rE`v$>Zhc;rqu$}*89SS%|%S-VcHvx zbg_qj(w{J0-LO7zWvn)g+oMKZZ)Cc!ubRLRr_*4Pqb1YXE8D`C@^!#ymVfuDZcduiVj`>2!OLZpgujaMrgUXp{AEW<2fk zP`EGmsrYjK52m{#MnMY`MRYFl7SjQP+0bNH7%HecL^+wP0ADV4h7lzKh*3-G9Gy^!wyW^>$Z=>WawjAJ_OZn{`UVLa5kRLisCji0E6 zlMhaSZq{|w^-HGPGNnHr6+8hdt*EEst$I0M_^Y>CVn4%Nc)v6UsJ)&KH5bzRg_G{r zy7M5jM>sUgq~8-s_c5gkbjz6of27gpjgc;(wi(R+J_8PDQly>>FWd$SY2|^Ew;{iU zLH*+Zicf@Fx(}w>jdY(sCIBUwMELa#y-zvmQd$=StrTx)HoXUReUMK5bPXt86$sUC z9;VujbPj)Nfc~#2xM+(KGk-ghUW2+gd#GbZKUc|kn#WY2f4^}ssIh=bSEjo*U#oOn za_55q=a1uX-$Yl`-*pqy1x<^>tr1Vrwm@a7ACU1TnNGzPFK(giA@qA9>Eyak#4(l) zNHO~kGhM5neQ-(m1UwLoqTKPet=xsrON6m03%O0>RI&Huhsd$Pfoc!Z{aql76*3`z za%vFMEqyctaoxJ(nsRy^lZ@BfU>qMk_#Ap!L63`)?(>>({!i^M{=m_NRJy~vSyWav z%5ged9_TjIL66G67g2-x-dCEXEgSzs%~;_>_`z;bQPnxH5y1}7L{rV})!XWI{* zf)519G1Cor9uIQNM`AR5FtZ%HLh^uQPcSYIt7oRGle-R->PO;Rw)DPHWO@7V*$3R7 z1Yp_72UNT#-m+qfu{k$zf0HC|e|M~%=MBNlHK=R7kWNFXJI>AWhL*$syS?q0FnX>CohU@qH$e4o4Eb=TSf%bl>vLZ%AZc)sdrs(s0L z!EcSx+@CXXhwM#ex@*Uoh`R=4;Z0c^sQU&P?~myVaPZGq9PLHVuafSmoIJepfyYy2 z?=#cga&;)&acULPt)<7GAG_V399 zFu|%+<=Cf)l;q_)rTK`{$9mkyHr6-ZXZZ&-NCPVK99QINS81737}>T{NB%u>3+;> z1FemN#0xwiQtv&yCB``sxJu3(GRy8@*|$ zM8yq$a@2xduOl+vsu#iNu1OSJ6^y9WLLW9mI$kFDd4CRJ3wppII8|gH&Lw!mD_vqy8G$=Lb@%JcA%tz@43W93z+e^ zJ;o?ow+8&OiekDexkjk$*l%#amVR#{(;c!?3)TO01}@q3esiRoZmWc*d=r7WIXxdg zZ{VHEDg08w{d|#dD@hIx&5#A_H%_J6jdTglsxY*N9z1uc57Xt^>%oRbGZ>xvlxklx z-q^!)VM*q05cbfKa$_$R3oGUraOYQCmn@(27PR<580`6zYG2YVSpNz9S>Oq+?JhCh z>7o{pxyv2y`$NxPlJR=j`~^;bwV>`=L#o|K=Qz#+wrdQ9FBZ_>AITFMxCei%Ik#b} zxZ?v}qwrf#z|d)Q|0CVm0ad8+aSa$0M!y%6F2?Hux?fuee9nYX`6JzcG9#26^cg(g zLEm3U_t>;Is@kRiU2@pz)?QUbm-frR4(XmFU9WR8USQ-0$&Hh@z?l*B|0KSXP5A1M z9g=sZ3KE@i4;;S!8?al0sCFaW#odFjT-g_}`xw2Rfpo=B^l|XQ;c)x#N@l!MQ<~7t ztrqa)ss2LO z%csx5t2YKy`6J^k`n?6k>dus|7v0Zvvut@l|s{e7y`StMOSHwK8h?!_C1o6N5 zkG^`i+gN(sjC3`pY{BkSTYTm-{a+>Nw8p0c(@iJQsLxTbYk5hh{jUaOACJI0hx<_V zLb``G&0s;dX?TTCf2K23)qqAVTG(wEJ?@zQ`G+v=;sS|Tc~7yVcsO3(b_Lv&)uGy# zbcyDc(sO0nK%Zf~nQq&yK{#&CWzaZs2-D#}W1KO>1nwR|uLmL1z4$B%8TAZ<3P0Iy z$`u<_vDq1pDxt@VTZ+F(8uyrTS{*ky&l$7v&Y$PO@S(4%_aV~B{ho=h=T(6@ZJtzr zA>Bs*DR`m!RrDzKJkwoQ^1)Y(q-P~*7&-VI5sB zq*HzF0yT~);CHF?e{H0zSR4;6WLAQRcYaj5@{Pt~#oz6cFt1<2)%T~-w#i$B6}#i8 z>z8zsWzUJ7U+?g9_bz0*X?>dbmG`H>mnV8M-Q+_D!Oew1;G*=bfv)!rGTn^w3eYj2 z7btqlcDD|`1l~WT|Gcam%#5dgPY=r7H05j5##8RIs*JcaX`tj-@Nwbb(rna}drRDu zkc7MDk93O8en|Jk6w#t*8q@u=9)==Tw25`;Y*%%45V}#9h*T63neo1@lJ3W&{8)^Y z&!AjDkOBWK@2KQt$p@$S?pe4XX`L7u>r34aNLS#PiTB8D<&Qd5@LkJGx-hqN9Qd%7 z|Ef3$vD|Fwe#Eis$NKEc0L3D8`cM{%iKiO3+dLK%)nMq z0W|eH$8?418F=5D?_y`rJEq%rDMh-DEDmTlzN5aU$#iqQlkw4W&fG7prBuC;&Ln6) zc2+S3Uu{=WuEM64yA?K8vU`}04a&ZV3A1r@=tOo`98Z zeN`&(+YtxbzS8&mIj8D4&di>>qw!KA>|2SHdL-Z@G%CS3o3SbXssJ>N*W zj`LMuolgX|oJT)DNViR`7VKIz1BcC;PL*TGs1HJdqiV(e)4j!e`&99#7>H&Wcv1HQ z(z!LN;2XJa=)p*~YmL2(>i_OT)0TuV<87ATk1l++65ouP&vf6$PDd|~#fx@ssZ4ic ztSeGYEv{syZPB?54iujjN88fxLkrfb zi^G2`sxU6QBRn{~7VUGr4Z@N`sd%JY#@`gx#213c4!ZtGxB1cPN^|#Nz-3|vGv1Ak zp&%0uh8uqIOs6)|8uVYO3Foh+_X{G^ZO<@({oc5O5*-&Rp3FE)LB`#QGkOxr+1~93 zt82G{Yg1it*M3hr);Uh3i#8qxgLgwPdxkwT-h%;laPG_9;Eyu>T}H-Jv~z&%qr$YV`HvgsE3)PQka-uifUPt$P()HeGf*zbqgL8NPp{^s+-5>o+3>z8( zZw&cGT}S=84-{i2i%u8k%ZuiJv~bLaK^UEEWx53s%DA;q4IlcTN0oz&H(9p_wtB6B zmpahNb;XP?_2soO5ZYJc3R_aV~B7@QYXO%w5!*(<4Xl;w}% z?s{5rYd)OeY!_(rN>_RCY18@ZE>y_z0ZCSB-=4WMdVt2k{K+x^_O8%zw7N4960ZZja!mig5=}xYXMaf?hc$<|eOm|ml4%&0vAIhGg=het~ z8)WLlmZe@WZ$>|6Jj)ryeE0!3U<&B_E*Y}|x!q2Zil)E;5C zd7Eqo;Utq<;HWHq7`B1Kx zN0A`gJ%$@lGoAa=mWw|B35T6i>F+_(^^YHbM!n2{MM+Dj`v&QL{M18Nw9?^itsi{X z_9b0FNuGFndL~TJEMvOH0rv&t>&b9sTNYK%X;trpxk~a}xzHhahXD}u@x0J2nZ6H^ z?%bhhu==7MY8yz83;d6pwFD@QlAwj(==X8b9WcoUHSd1&yKNJwdM4dWum^+=n8sgP zOUKh`u@hGe{wY~mcuBZ&r$&5|0PuO~UNK$kk91CJH;6yOjBsTy`oBQZ#eginr}X^V z;JFfJJgqhZpt<-wGOwM*bbP)s_`p}8uUfP_H>amKIeKcv*4M3qLzx6U(YC;)JLvUI zq-&n$FQ%U8j{UrYsdP#A^NEJgwt6K>^q`*~q;tA8tkO`=9PgS1nDIL0*YK}yUqpj@ z)Bm}W@%|0u!NteBkoOvTy;Rf88CnCWD1yW_{p20*>q6I8l)+>dkq3OU?4nWbFTvKe^CrPn}Bw;Of+l5X|C z>G*|%0IcvvrgQo-3Hw%k2HpGaWV*qoqw($z6Ud!Sr0SVWw;7DWDOm&IYxgnCc$F_8 zo|`)aUeH}d#j8=e%oUE>#q~d9&&_dh#ZOW+q3b02enqG>_v`O37QUo*pC`2cOuwcnF&L+feO;yDL`Ap@y$WIL;IhYuQa zr`A_;ItwOa>0||3KlnBkk94iT6A#^Z3;hmw&2%wyUGcb1BW#{oNYx7&&-#=D_StQP zd3$@bQ`e&I&!kiRCL(Z49?BVvX1btDX=p-; zJNRr!zqga|v>$EZZfqz32RrEJKIvxt_`y$JnI#V0L$7-!o%~%J@NwZ=5Ys`g7qDMu zDsrPnNQSB(5|WoW;bQNLAgW!BDhKJ}`<_J(;0xICX(H1t{r0*tDXJg5EFH)1+P-8w z8JVlxHcekRX;5FLo3n8Z?|1tVik(NVry=8oH_L#p-y48@Fuku8=_*=F!L!ioz~w*o z^9}bg6MuK;OL{vM2^aqX>~1;~m#;ZQ^;6Q#ZBxZj%eAn<)qYetNEa=wzmd}V+w~vy zM>@6r(*F^5hvFsGZ>fGyy47iS#blE)xTh_>UWIg(?W_3#*^khyWpw?K?){99;AQet zG;F#%RgS71ySWIJ{@kr0kGKl&#r(-lOOROO!nsm#q*MmNdrILt_nap(8D))v<3@@W-MULszURc11 z(>@{d$9*XmjpfC~UYU}?$~{GgNzy&*4JU}xH)i3k^+LMm%Wv>ccNYjkNhZ_T)tP{0 z4coxkZ2CK%jQ8WJ1Qv_e5x%U#jHhyAH2mYPf*xzr{e_IzVd4g_XnYiLG(Da(BB6(P zG;ObBgOi+iDNGfdmEQ!04yC^rNOz&l1h~B42JS4R%R#zT@g>&SndLiSv>12abyY%5DcgS=qGC5$b%6QnVoxU!~ zcnTRiz@KhBOgXI0jCaCB1f9FRVf>CJW;qrNeg!xucX*)S73Bg-)Wk~VVU-IPR|^4H z0gp1cg$7Iju5_#`wDC({d{BQd)1AmXgU+crfST_yOn10; z4;uN|9UMFs%XIF|ThRQVJ)%lF{r*RmBVf@+WZO?&>^w}*yU5%7@q=F+s4(M(2@z#4 z(J9Md++4BTR&s;N-r zCEfRAdw8#|6@96o|0^QhADhwA=R$AXu$5jU)NCW^0FmDaNU|(~MrvMY>HB zK7qg2r(+Hur{c-^{}hft-c^yGi7ErsBCsTRgE(!&YpR|}=WiN}9o6Jf%d9_4_dwAP z7bTox_sBc-rn9q{rLiuKk%zcSEoao-)t`we%iKxizv1qQcA9lD8hmg?*u&hvc@V@B>Te^(th#pZm5TYx51@iM2m7o~p+? z^em_VIK8LKYZRTtZ5pw+qTj1Zp|HC(+B^9d`20DLibuNqZ37V>e+Vp&pvPlL_u`)_ zn(lWP6kTAuy`x*jQ_}VF9?$9bT{7OEMdw9>oQI&_aQZuMQppugBX1Pf?c?II>R0}_ ztd9(g*guBq_oRCs?1zu&c7yAC#4}yq^T`03ieA(Wx7Xy%(2!gYv?m&1?4r=lqZ^#IrZtzhM%LjY_1R=cF5y zsR5g_y`Wx!Ju}_zH#MMv^o+gtc`lTjcjBBdP}JrO5>^Y}C+P4U#&OW&>>1GYIZe7L zCr|NbJ;LDM>Gb{^q)Tj30cHMa@IV+nUQ9Z>dLz(FKN+?Rq4)bD-I=U|VAlI7u;oAg zUm)F*<%}mJY>fEGk7cV2wo2U)zRNQWV{H;bJ2TKAjBT@zBmCU>inFLsgh5{n>bb18T_oZ zX82nepsruieTzH5d$}24&j5N{k93iBU-`f4uDC#;$A?JwO}jUkC|whzs=u2A8SnTD}5`=#==E2mv;H^%rYu+hmV_%&^+LK; z+rnY>Jv~m_mtHqQy5%+zP69i5Azk}sdg*-Siz-U z8pvgb%Si57XW}P4H}iexA*%n8PC+#t7goD~wOi=#TGA~QlJI5QR1k3Q88hCU!*SSZ zbS98SNo9K~)>g*0opH_@5TmP~hlfd=mWN)`t1AINlvd<>9Lm>btmI;YIa-?uC^ zwEylkpjaGDxjU`t+{KV@lAiOcIqyHmP~~_JT-@1>>5NCM6MHV&i86)xOlOp7$2*!1 zLE2;J{E_Ke^?Jj9(dmvw%OGaF=o8=gL?vaMuQQqHYD~I=GPzcCe?=J68Jw1mb1meg z<6QTteh_{;Pp}!0ElFFYBvzg6f!+UTg6kdhcNytIOa7uh?@VBkxd!gq9;C~?bps`? z{|#<>yD?pD`z17dNHj zeW>RQ>Cle^yrppoxErTP-8V@0Qa%9>tM@_0G2vAGk#2?b9|wnr`#|8AQf9g`Yvb{- zkB86(K(AjT<8|B|hK~mB1zekO-79oBgvbTe)Q zb$23}PNDLt!1sFs63$04-7-B{KJ=Ij%==B>U&#D**r)N`YIUHSJ3aqPI@@kJy!~Yz zc*=q8Mz)pnLzne|uY34X`5WwHC|D0xkjU*&77uQJ2}0jF;J@LDOlN-b5AgU9guj?6 zQP&$8@4U+dxbewxRIc%x>CzIT;N9S%Ag|;))46<$hVAbSK;+R&lVhWA}CWV*1t2~b8+6VKP7 z*LRZXzOIXaG8%W0Pcuiw^BvcDL#(NY!4jt^AiBE=JV#ZTbyC&{3 z7=&wk(El5d@m9WY5$B&CkLSMBrPBSn*ifvsStHqX>7X#FULCuA31lRJJkxj!?1Ulk{!xbbM5X*U!-ZYmn)tERP3eu04^%8v6Z@bc1L91ll%DoFplXN_T9fsc^(7Tj;m`hY-Ha z5hYtER1~@s6u>yOAy^YYy)VN8m$NcFg>F zdmRHG9AdHm3RBRv-_Lh(5}RZcxXqc@gu=#N=-& zbPaRPCnZMN1;lOon78?I# z0p)7S5clNhaL!ZnvEU>HN{gu z)AQJ*d+vP}l?|VZap_6EYkT~U^Lbs_^Slp!dZ91u>N@nbgy3-E~g6CKKHikVbPp$(Ll{vE{B6vb@f0In;IK7X@J;11W_j1=OoFHVm0;{Nb;{k| zeU>YJGmlf>D{`j}902NCv*F3KSxnbgQUMG@JmHbc^!zUwFMO*bY&vHFpM@Gy^-Q{h zH=?12X8xY+oeytAFYwwogGzUOaz*8V-RYJ4&wQ;c zm>-4TM7F?5)1|kKzye3;Zxi*=d6-GK*T(1fGFrdI38d^V~(k0!X zsrE3e<|aBdp&xZ!l1`ovgBBIb(W8m?nDLNz7&NNQLzzGCFr8Lv49w4x{#Ueh4|Sh3 z!nKmozWS9HM!0kPzj(qSQ958$nmUy~(q%MEf!C5(@SV#Pm`?ulRJbztha~yEJk!na z34;%&`0)SQI;e7x>5g3)2W85Sary40Oy^$^2m7uVB#c|gcGK=i_l_8Qo_GI1?}Je> zT;yPm4L3IHfFy2h6#lsJAu7?_P2FEeSD71u+bSDTT|Htt>*5(WsG|ur)zi;QGG6uC zvuJ_YT&&Emg%r8o}bDphKJkaT-i97nPd@pwrK{ohVxKz-%Fl10J*XBqMR zZv~k1=r$jD+MjAS(m_2HxP8(#U}53Tbgq7CFzD-f{$j8X)5UJkgw^9F!d701DhHWv z_X*n2>bEESYQ3Ctrl*F8*&fA`Sz(>RdFdYIQwzF--^))?{e^U{D?{<)yKi~uPtOyR zPV?ee949@)B4-Nyyd<65@i935kP(aunM&=8NV@f76tSi4H}KYdI8`sCyQ1HSIunyn z;Zl11igb1j)5OWMr@<}aH>$j~an-`}z)h0sZW==2T@`#kZxGDod*ZJ5ankiERlzC| zMlf_R{T)C${zWM|=FkH^>_N|Sl1>J1LhGKm!F|hBndv^N;LxQ657?wg&vTOTT;CX? zU%@UgYbQMqn`ZCFRc@VExwK4Iom4%O@tz-_3~%Uf0Cfw#QtnqvH|_`wl2{sf3D%FD(LLpO=$=ile<9t-Wlrd7 z%^Y~NlAa$VUGn#rVoT9N7}mCfx(|`AY4|R2cxfd3oB0fN?FXcDs=LEypIZo(kJ07DGRJ@#=%iO$Aqq)7dhdKT8in#Wy7o2#7UI#@wz0pt5Yp>~W>hAz% zyt+qMkbf^f7`C^X>F!*d1~i3KXrJIujc1eT_B8JV!8<3xH#h0)oOG=vec-rU1E@H? z7u8=#H#FD~T9mrMv>usMx^J*0FE_!XV&(x=!9S^md-*U6#&{l}?rWr*w|gTvXW|Qc zI?>~uq&sST3BcF0;r;!KseVAZ1nIisk#~Jy@TtdC{gLkA*gEhwD;SPwruPvcUHg4U zxbL1eOy7BeiZ?EKsMxb8iMyAzQK;JU7Ok+J0YCk1r}9TSbZj~L`~gCoM1RMVE@aqt zF}TbVx~9?Zv7{Sc?!~+Pn*>jOr0+wdd$+rU-`05xU%WO5J%`P^-Y{z^9!;x!F4O zAbBlv^ogP3kuJNyNPI6nujAYk`n(R(C9BDc>Ng_9zlmAQcoVm(2z^IA75#EEnXdU< z6L)QT3it6DJDx@EJI;T%DYBWD!HielSOENlb`-RjzTU`k)JxA3x%~fgo(SnGE=`o~ zX%&k;U7+8?NcVI06ew4rj0!IHpz`NYF`3uu>?3*qW{)t!<`8O+cZdF`6`1a&;vv*< zu>lmk@n<@Vn)iZUQ3mXcH=?c>nV~GW?e1>Coh+gy|et^#V5VH|QNm?;}FSn}72K zIF{-Qt1`=}{ugQAz;ba56H6^%)W$-v$ijkZH`3X<`arJ$S)_BJH`6`26b{d2d=t~RG*b0U z#=B-^>T+4kt3*jlZkFWf>!Q;+Z4UnJn7}igJ5FVG#Y@ zb0(~h*k_3iXXEr-7#@~^i}K~cQMG$i`;x9LMEZX~!(w1H;vdz%r1MC0#8Yl*gT0=^ zVAuXfy1r^=SoVYwe4b3tvy%=vo=0UXqM`d1dftz8o;#PI~tTo1mE6y)f6HPS^(*RE}a z(tFl^`ngZK*aNz7@s@)qCUPV*-3$wTn3TO8MJ;inoOgyXZ}KZfGHCA;?({`FP`k|r zwjQUy<4G6$Bp)>A)`5ZJgQ<2SUD>W1;GLxv{G6o6bk_dTe?Lmzf-wmul=IJ15Dw-l zaW~#RJBqWfjDm`>ehEE+Op8M>}CpXoOF=%O*chxj=|Gng*r@+VQb`%Q7y zPqx$Z(-*B@6gq9WokhiSe>6bc60oHF^z22#h(C>Ju1+X!ToXg}E7Bc2@C>b(5rMxy z|3zJIr2De|F?zWm64#AaV8)y5e+}8*vBBS0>M--C9k3OJJ@LZV-05|U4-$Pj%bJ}P zN;>6&ORs8lanDr%JL&fW(z&PaLgf}4fb|)A{RZhWvO{2{}EcD zHUq!fNdGrMI&S$U_{@cV4ec{U#H)9N!MF02A|oaC{B5Hi>epW6^;qV_WsBC@%!FVZiwm`ZtKfNNrLkP zu8-(!MC|i&ol*7T0~A z-+i9B=6mP<|9alDoH_fPITDA@k@ycbM1J1%d60CCixhBEtufwNOuu&~-I0AVSj3&* z9?#08jxVH>-~0xZiJ>^zmR>)Rbop~8BeVRGII5j~K1sR{qsO4OUlLrl$dnqVq>E4J z4lK2jaci9~HBS2&&J>0#MoIoSw@be*lY!&s`oUgVK}=^nR2`z9mhkgT`uRASchyY` z{_f)qTLS#4ej%Oy5=$6=iifur((~_0SJT16Ar}4Mytchm{SKKvk(9qolbrmeA@Cus zV(_U{C_CAd8ZV??v1kJn~EFe6^lyzQGgFwf{(0@w5Up$h`o*YkjD3U$l{Iq|U` zpL5#1^IKdarki%upI;T_hwFx`FkNEIE&kKwF*qxO-Y>~=^@ijDmp&tK(oFEoLC$S0J%g}(kvc%dWC4w}!cGFdEqElNbuxxrk?{A8+J(!D*u zOE@ssn*Uf%Utf`~rPQDQojnqcRT|99JJTzOe=~9{9J7OdPeSHJ`Of9vsw@H-tCN^{ zwSzQZldb_QE26iDLj;oQv@hfC7a{IN^gtBwDiGT2`a_LB(%pC`Cr;r10{5xGxa+tg z-QFfeJ}qMa)b35+SCG!TZZdzxegf=&t}ipM!Xy+74W9#Rq`R2)Q@CCWzBP@8=iL5L zPSIwc)GI%Yv;1%C$IpNzI+R_%Z8L5GlMZVbeo>d1H-5uE@L|qvP+2&Na=x+Gx!pe}N+uqVNK@VZ zA~UCH@aioss$WQVzu`Ojvp5Lqf1{6Uq^quYh^8)xfKAVDQRgGljWwB!l$NK!e%(({ z$6eCpzl##nOw&8R*QMwGkxn6}oNGI~2rA#WOyx;sRK-sV=Q;Oq%M=Pa|I^Uk`JaXx z|M8y&(gh@Ffk#K2K=x~TKPR1`*am=C zR1i8oEQ`wPem7ed zuLt+~U@rGlCLLRN9p(>v^{4uUbals4@dXPGSQydsj7YcCc^;m9F$;XZkV1_=(tW=b ziSzQO0=!9JI=Oxk*dzEM=quku9iPd(gw~$;*2jskY=<2)&tI=QE{vWEL8>C%-bQud zi~mw*-T6A=ptvQdyG{&V^>#a*N4T{Xi;&-+ILtTG*TuUCm!d8~J|?O7_`qk>{zkft z7CYEScQBT0UdOE8evf&u^k@Nk(8HZszxBt`pl{}IG|hqje!obn!uy>ntlaFiNceMk z2-FVJfXC|T_mZR=uoA+8@ee_AYd75WxJJ5jj-%j-Wol5h@&Hvo(kX450Q)M*!Yk$l zOlR6Y3D!qG0E^=3_XeMroD<9wCQFSKG{pEm3s8{s5=w9hr|L(#Uut8~m#T@#D3^ZD zPda-wRb}HYLCfy^4tet(Df>& zbAN1w6?-T``%-!wkmZIgG{SPvjp5qNSIj)$weOLhg(<@rwKjI*{CoSI-9N?( z1ur@LYyKmY=U8{}v*QE1%evM~3bzeE`eoum>TJ(9E%sV!07aC{fjMKyE z`z_L?1dc{G|Hxw%OJ8QWGTI}M_NiRpK9hcqzP4(ZxVrOO+z;iQYoL0`;Z5}t9Q$AO zBV0!A2P6iC;ci>BspAWoSFW`S9kX}FQ$zow9YkL7oipOGo%8XR)Aau9+Vh!U;5mqU z=kZzi@pL;Mt1}S}yG?($NV>*to*-*S=UnBLVbt~|UG%|Hy1edZz!HNfxIHuquw1y#D{y_EHdOJnWY+J2Q3p7+YckBcxty8DnukZ$ zZ~E?Jm_1|yK$m2wyeX@5x#z08B>uOraX(u8@MhC05dWi^>Bg1$;zSJ*#P_?!bpH-b z!44967`S2z)AdvzhA-rP1$r_)seU2rr|W5rzsOj@kRtjzf^?oT26*8~OZadb{au2d zv|0MoIa`q5c!e8bcN(0Di^4g_XHoSdUBjVzaMgAecHB+RTPNL!oLAuE@CkUpvWv{T z&=J;f>bag+($dOwft#m6w}ItoM0b(t{@KoiDU0u+aUIE&^Ya@b${Ve6wt#bmUz23O z&3j8w$twE#nRK-ZIbh{H6IkO!?{B1AuyHdO+hh*kD-Wf%8|gY6wV{pHAguM|C$oM> z4%)*%x<8P%1$`a__PTtfPLSl-?oFJI=?l~Vi$Sf?RNQrcBV8t5k8I8NqAAT0Ojmtl zH99si7RWrKpCgfZeupNY#YG66tf${gO0)}wct?G%-}OhF%E#+sY?}#G)o`Wyg>(u# z&j^Y86`6`;zWnl>@#! zXBf1&)Ir@Jks5)xYsi7Ggdn z96Vj{sXlv9d3XBzDAHY8mLS%7xxuj!#;|L-q|3|H(ftk z>g)_={ZcReLFn8 z#zg!&j_zkNPcYaGUg%T;g_N1hyqU5Cp>AInFgXb_ox@NM=+IvVpX&T=VAt_SmfJhX z1I~|bMdw~rQ_jrYg`2m|Sjsie;nLD}?d6Lpl~H?J&a-i9Rx_@Me2IK4uiazjr~;GTM1tkj(D!`+yd zgzNi6f`VObR69tQrZ5}->>Q)(yA?9?@-C0S??qGSTQ-mB*0meq`>76a`D%Jzi~8jy zXPei{IRBNr5ay+h2XWWpVV2z-Dvxw2(WPLiRUEWz-bVEw={6f32d4XNV6B!3HC{;f ze4iB9^Y4Hhpy%O{?vcV5kXRH7cV{i2zE2_DjVuNDr|=7C|LMpqca5DIoH^GAKG-5d zwfDlx4(aTfxx(VAi`+Py9q42AJZ!OR2-EE--7lv2CF6_Q(Mxb=^1-D&BvMW*oMc{cp>xF-3{iA zvNNI9xEDq=->c0E~mcxEQ&e#x1WZRie`uZV&sl512R=`6jsfGhK7z&8!_b4Su?U9AK; z>T_Vz8#!j4`HzcW*VNJQWtto{?#aBAt98Kag)E#~=*o0Q8y^F=KX%Yst2fgrC3k>f zyL-X${mhvz)J_8~`tlaEZnU9XxM2!+dyF>6UERVRteA+`&DDUa3iNt-q|@2#h0pfa zhI8B;sr`s_?;1EI!PSkmYW=`3Y?L845S;>-;BS^>`ROFojzY(k79SSqw?%DI)_N{inm_USp|# zAzgc=0z{Xmz)hN?nEetkTnpYY@P@&%fy}&pDVFf|Ssp&SPtVgbnfXj;QC(emR9#PS z4V;KaAK5Fmj-#Iwl1}}%3!dqaiV_FuQ{#_xcETY1bY}uG9YfF0CY}9k9en>lwXpQz zcxE2_+YRTvd?qe54`jM!HQlh@mR2$RMF8d2p)x`2H-sxVd`0rtTBVn4$;?ZWZq?+cyQ+SbD(sG{!atx?zJ2T*K6j0KSf~=jY^vJtI zf~>4ER#Dmkre=<%`j2#5ZKNo)+bMCg6FpCwbTK`o$XxlhsQGvfGjI3AJ?Kqh2KZu6 zfB#12ZMv}wnLs5jKslb7cjLlNq;dywZ@k%#+dU91(Yp@XZRqDT@|W|t%ahF{(KeC7 zH)Sg%xsU)q4_pYk9*0QxGA2$A;f=Clz{Wc`);`ZPxQ1-xk8y zaVwZ^?8p85A){pYJv)}^lGf#ck6!cPuGwCc`*|Gj8(V)lS7`-EJRbzZ;yu3*x1fY- z2kACD&47-NTTs&-`oFoP)0`dw%f>xMZC~mCUy?3uL;|#ZxeWOaq5tbfx{tk*VZelR zq&9mCb=^t2S0>3&&m;i(ocbqr-EMw0I{Zb&zs?02lO$snEWqP0>;c2SzNYd>*Sane z|8l7ZJB+$h=OfaM{N;g1-ZOyn5dA-9(v9=87vvi%NW_!=5LOQu`6mjSCk{$b|j*75w@2^r9k@5!v6tleTh8@v z8ceQ(HhW{x!vDwqF~LYUUz;sN)??1o)CncF#o~a4CDiuqPq={I2SueG;n=wLHPe;2 z&JlO}CE%m4=yhkvywu$m{MB3O_{Cs7X5OT>2wv$*Ixh90=kJ=CcNa`=W(ii6XSkqfgbcs#a7S0Q2QI{?&R(l^Zk=?>hIZ9 zJ4mPTDMqyOPrzFr)BQraRbz+nLpu9qhc4YO%Pn3=mjz`D+}yL={=Y$B(6bcWKcIm+ z|B_C(ydLcDe7_p(L%&}o-KDF>(CXDFTx&spCqgx#d(t(htwwHt%20H3IMem)lZy_m zTZ|0c>Gu_6p7TBpw0>1A%JZU+_oP!@c1s+39HIq!smyZ2-fb3bLhp+=UuQ7g>5>(q z+EFFc+mLoo;`GITAqynojhft^Qz`g*bPb1mW>VvdbPe7qxOCGiUiYadwLM7pP%{>{ zg`NeogC0@inRIIhMc~WW8^pEJ&#y>lFl<2*;@}kAwZs)-&sud?bGQS`%8k?_}oX>+|^FqMlG?D%~$+-rh%6I806vO3J!X?I2x8 zoDrV#+8EwUr|0W^@%tc|lVKsb9GN6Eecq2gDh5EUF#5WQbf)dwP}Q-x&iOeCR69r~ ztE7fB3OfG-DBHwzyXz{&pG!iaYwLTad#~jqPRLDxCEJ6Uu6Fh<;n3Pd_}6p=<-9k` zbC*7tN#53_3o7O-kZW@w)Ez|k3+ar1m?HCnG-&yN{!WB+VG8}w*&B19eBvo)xkhEG z=={MMaQ8L(dXmg*e=|XJ&Psu$3NxrY7v6-=UH$!RlgdHv6Ox5HZJr^oa6pX%(rJ2| zz;%8AFZOa_=FMsauqxaPZwyggzgq}FP(Fz+BN~m^_uHI2ya5kGxZt zYw?kX&9=I-&z#c!;vVdKW zFQgk&oq+-k24E2Yrh|EQ$Z6hiJmvlnrnBn2-fdo=FB<;G^)6Yi!6{SVy1<(c7)f96 zlCBZE0GKtNANwEQ3zd!67LShZ&8;8bLu|Y2gF193K;!Q{seU0{&u;R9i)=95^x+>h z{zw;GQONDgjDY!To-&>7aA)A_91ZIeDws|;WEIf=BmjfOVO0GNEfs{|by-qr=lWZN zUc5tMlOLLSXFAo-q^oP+i`M(5qtu(TnNFr-J6e+e82vjFz;pwnpYlzUfAA~z(%XY9 z_h(%M&F;SiS=B-9zX8Pl0@zhu*d4<#r&{+_Ef)+ zE~xb^>ft{Vp8i9h&q;Ub(IOP@lY}Fdt)`9}q*FDV!B-c=!{~3@sO?5N*ZqF5-y#(_ zKk^W@p6ZapuKblRv!yLbX#)4v9xQDL!OkJis65hrQ%wOOBWK|1$VW^USG5G}o)nC` z4XtOopy2I5cF8#Gn9-f;KeF682MYo29fSv`++yb4=D&hJyJlkfkL6VV?ea|Gsw@ge z#LvCU-MJWoUCIi;#*dYt>+ywjGDrOJ%5%d-wR%Nr{E^PMw+~i4Y!03&((_MAH*x1g zZ2Mb@?_t=7nHTwOG_F0e99WF*%XF<9obbx~O<=vJEYqFdr-7T-D*-iS`g^s=vr9OS z!V2esPW4>;`4H@}uK=WVlT!Ucy7m6PxLWxENc%?5TO!>IEg!sTlR0qsk9oPIL(z8l z!~GRtxUM2gVDxVlK>HQb@z4?||2*@I?oV73)}u1?pF%xjBV$XA{Xg{Lljr23h3J7pL1 z&)Q}|$K6kvZf>(1c=T*MboK5{)$h~nLayrHK(77tQ0}TRzyoFu1M@Zw!d=Hb>GDzs z;nPLN;6P9My%p)ktVf;S0m+~%bLsDZNT;q`hLTRL6}SAEOO<>1nk+9}HbTP9T`IL* z(g$oVPlHn`U+`V)M>ng`)+g6Bb+nV>i!&HYfd<<@!Cm3Cd1|!Hp`DneO`F4p8|m z2!1p>!0Z=OJ$Wcy7yxs&(EWFH*AQ{aLNm#=9$7+MMhvxA25&Aleba|;OK##?i(93ohGw;pJjX=qmhvw(?m`+oE54a?C zfLHF&`(^&%r<`zqsZeqIFn1_j0Ti~)!+-tuqORMQbaq!$K+?LIcwglmrn@)o45)bf z3pshx@6XA+{E7ka_DBxDjm}}_ZCy7AzF+2w8?WY2=Pfet!D4ebGGPRM^xcQb`@VWG z7rgn1Bx>wAPFYAoX6e)Ly6ufj7d&k?8hvyIzVwg2KPU4nBoWAFP%uVcUNZBxH%&v= z!-H|r68iZmnOCqXT?~GZf%E3Sr`k)pQ;*I`7DRT=ja;6@EVuh?fq%PvAvV;f?^lw)DD>b6ZCy z<+jUi6@uihNqRo2k;-pQ0Po*)J_oU!MQvZw9m`tw&q69u2o zT*}PL^Q{B<<+I_nTVB-oBlBKr-vR-nX2TJ;f|+i7*kf?`aRe+bj-cH2o7W}gM$yua zJa0}-(+`GgIHMT}@>IW&?u>pQyt_#gDL;~7I$ggRFi&AJANJ%I=(^p=yg%(x@I_y# zxaHRkrrYW{4>}APhq9VCGhJHe|3pIO8w-zf$|(2Du|s;GVw5E3OM&og`g+iRR6LZ% z|K+>Zk96kikAR-z=R>nuOQ`-MT}XZz(9-mQ;qWc9+_Ha$FwM{wMirevta7z~+ra*b z^6+3{H>#h>avQy3VB?N$;AiR*X1SP;hb7@fAZ8)G9>v<$-uw##ZSH}G7dL#RKXx?Q z%kTe9-}jI%dH*Eb|HdqFjhzPW+78l9)b_?{aT@&Jjap2%NNFSYrOTi zHS`FkkK?3Uy3PtO^LK!OGGm!}eVp`BpHW`0#W7A zz#op?q(t@0KGhl0jiar(l!Ra|>%9|>m$QJU-#Jiuq?0?Ug%h>C;H&Jz)VL?zyuY*1 z3N#h&N@-{2s`@wRy1$X`<1B1k%;q*cWxW~7JS#Iv&&nPNW3%-73M&%87{!{8* zvP#--?^vNSdnVl1?}XU*>sKm|bW?mop~Ki^V2eyO)7Af(1tpKyf*l8sFr7|C6fFLj z38GFOqMS?HEKaU(y5xanB-b}R6hE2Y2jF}3^(5&|4xWYwXas;-|F5WPKa=kJoXPmS z_kMBMZ8d5fknVux5IkB%14O)YV!A`}eQ{016g0_=p6^KJjfz#n9W}c}7R`gjG=&7oksHlIU2iQs zEyV~;G<^1|fV!V1T~2E`lCEw5;iZ$Ac>z=NkWGLR+}Zhmysqsf z^9oNzi%V2qf_@Tu9o(lCc6@qZsB=JAp5R*Th9AeM!z%;n`3$5RY;A)FNczKg9r`^n z={_0v#AXV9@a=qE>UxND4hwFfd!2J5pEv1J+n02TE5{(NH5J|t>)^V!mvk3~SfgVu z>9F~qGv$u_e!_We36^XgXfFIMNk+LIiO^cTgE}9P4u|-oZjPz&?B;IFyelmO(1V(E z=xSC@ZC^6)?Tdb5hIuC36S9Ho7t*cvf6uQeOoEzzQB=Q>Zl|0A;BRF>xo2j~`W^q$ z3v@(fz-1{rDHr~$$T?tGv34}S}%%1z9BAh;el%7uIFM9}khQ>NeLIud(xyXI$B*6I#|hlh{C{8DeK z9i)34V+$|bbi~@3(R7vxd>N4nzQhtb2C^WhG!ET(h15RdGGJNG4v?o|EAJcW5r#T7NF zaPRFQpzHV}-8iKWoX*2c=&Dyj9oI+~Z7<=i&Zoegb<>!6F-MQ_?{>yRZ>23v2cjQ? zs)QhT@h|-!G2FCDI<2h1`A?FJ_;z~}@0bz>hw9VwGDvr4qz@RM90`rDV5(n87t=8r zKt2`rts6v*7t#d|N(DJ?6JXK~`u>P?#v=;A7vmUMnYx^6FX=?-F>t{r9PX&5pGS~R zqFoLwQlp{%dS@yx_1PEd1x2Ws5BHdxjJ~+N=B5Y`(&#R;x+14Aw=PuB8-+roo z*_(a}KSWUyko=I_Hc}5K+S!6rh3?e#5b4%deL+1>HUOOJ#&kd9zMyT#Lcr9W>C)+dKgL{r}`|UL#ajgl{ zVMh;W*|r?azN*f2xe7thu(u4*UVC zYj=0uKge?JBgVmmKR>{~XiV+rq$~HG2M^az1NV;8>srlSeu*nuZO(0!_TYB!?3^$6 z)dn9grtgzUce%Ji9BgihaSMmL){k_XE*uxbBQ5Z%3p~>m$BqNhoogfYN#9DfgUsvs zEDKot8IN^`_n`WPbYC5If$1Gyo%6Wqc@JMQ{iUttavXS4$F*k|VAr36amtNn)c!#_ z>nSpLufzw(bv`HR+FsIqR@;WQY#9dEFCR>`mvlQ`e&84Hn2YayI7YRXbnf!M_!XKy zIH_HYYA@*~1PlX<>Z5Q`=s9Lyj+-YK0%zmdc4wLHmR2$d-(drX@3CQ)D|jb^H_|9v z6G=b!A?vsLTLy@%h{5XS+nD9bJ&=K^UzG4=k={QxrkaU1*HgJ$;u_&`4-NcpEr63x zpP=$ccTS@l{%Pe44M&BbuG@`t|L1?HpZ?>2siYhHuLwP{4}?38-Dj3NY}`&19uNh0 zN9HqKdeI4fcjtdl-~7jaP_JC^1Hb-=(p2d}X5OM%+kx(i3jn6fV7kvO#i0Gj4nFZ^9MfgzegoOZ28p+a z)9*Pe6wh!|SELF<8Ta%6BcrthQ3ybrm9VR)wzqzm=efzuOYaC#M8Khia3>%c#DZ;*K1oN6!W_(j8^eB@vp_LF{p zPP&U@M#J(2`DkYd{hlP{h&5;U+n-xyew#aJp@{k57vS?JC)jm=Bb`}WDe~K*gR5S! z-I&uws5U(stWul9%==Ze9tmkOXtqT>(>)wxj&?VmLf0GV>ld_nc(j-1Qo8yJH1t zEuiPGk#0g^9~izw3YvyEQ{`^XRTeG24dfI^qKFp|H52ow|-Co!4P?eD0qQ zbnDTV=`2>u;xSo4aCV9v)0H}ZLva}sVT$r$>iA5S``DxeeVa8KPF=B#a_1W^3a^?f zxhzROr*8^G&j-1nI3f{u9rvU=hj#<6Z4(&XonAM9bkQD%z`l3kFeQB}bzCFe*WZ_c zQ-L8=zd#??NLL)(+W8-`4iMjseh*8!@OC>G|3m>ExzfTc*J+a%Ji6&A@F=}WxzM9_ zyxfdol3y?VrP;&Ig00i-p^=w9)i0!5u6qZdN!n0u=TN2_lJgL(xugfrzqMpK=a)TT zKW|z1^B&vv3b%k`OuvG7`#w~j^DITN--%z6u=h)aH-~%k-cvk4@GE*=IO)zWx8=X| zu>}L_(_q(eK)QdiE?`!V9ei6UJI}stH`sDv7SL#+k5^>g`{Fvl>-7fbhS1-+7Q3$& zuBEQwMitj^u~s9o-UBy~wSt}xN4iR-X1?uNEan!TqQ*Vx{#eVv_MPMK*7~DNH)mN- zSoaL##pxpDe3UDNglHMb>Dmp#y`2Wg$cP6!GU)p<(jDyfNi=Kq1kgH#>Sxj&@x3QH zIt>Q5P3i4Hx|%~5#3T6wz}wDs|GREC()BI%;w$z3a)9ALZ3 zZX>~goLPK=3|+4EyLTKva4h%dz#oaiwOl@0B_6&r-a+keqx>5_fs5Gj50y_+_%zOn1V_1~-p4 z0PAucnXcGlF#c>`fy^>3m~M#90IZm&$PW(jV7f$21N^?Ic<58(gdA$kr{9@9ju2aE7?;aC^R?^>dl1}A^h`1YyP;tO0s(xzsIs}z7OC+Bx zw@UxUh2d95o57n)WmNr0XPgs=2gJ_-+P&!SiAiUY2 zzoFXue>qPztm1qhHN6^6l}ow+a{&NM2 z9T?4YQOXCz?wwB~zQ4LcwZr>J6lbxjO`>!=n_FwM5F>*X;C9h{>O4)l6yrHKqZ|Q! zy<1F|*)0a&G`kF<6#nCTY@*yry@K(d-&J75gni8V)iqDYdwQG$_n)&}td}1)PM3$v zlO33Od(KS4^4*(3ce8^`=c70Q4}RGlK7K{dk4WmK#H;w2ak-=7IQ6%~uuaYokltcT zZ4c6ArJCSrk{WJR@6k+`F6wozP3_0`6X^N(WZnd^AFc`i&d)eBo|)GY+6#~EB?n4! zCNbTU^~(5iur}~nGKJ}G-;~40x^eu^f%JHueOgDnxWbS-_vn)_PJa%*acYz}Dc~aL zdj23?x#KwewSN_IQvJzvRWnE8)K`gU=pQ}E%1bnTiu~jJFseVu%yXZ22VMUL@dbZ+ zzC2mKDvP~H`LzrFazKMwZsVOf=*PwTV%hd2%Jt5vk{lG)NUFkooO?Hwf|8{9&}Vuc zwI7jgkqiQh&cwp%O`oX$m6Oi**%k0|OEmnm_%t(b=ujp2F~J{3^mXRD_8*xyz^V@% zw0sQ2`xa9DN4oVJtl++-PB2^l50&SuRVZzrQ{ueqSN}@I1OB*g?i;Y#o1Vu*x;6Gb zxPGKOJRFydy4H_$%Ge!;-2Dt@7}Yb~(rO7_oYV@o?W5;ilX(@hJLhYf%EHn6nyI|R z&U1o`%Pz^ui`~U*<~c&FOFWG6Eu#8`bbHhE`J0{V(WZSaX1XIm(fpf&bhs4jG0PPv zi82i zZt}zJS@iLbbYEYVqp>$)aBQ^>)eh2y?X4A)cLIF9$qaYhzN9N^2^aIXx!^D*w!1c| zf{Su8!HdSz$5S#-p(vAobSNeL0%rgw=4S$p` zL?xTXGV`AL+ryscMD*{QF6Bzp zD$^NGE*I-FTS5NkV5Y0N`a>w2VFd;cO=r3rzyPGVyyC1I*zUU4GGHEy#3PgF_Yh=z z)5mnq6LeaF(hS-4OZol_e4%iMHM2XAYq z#}(;THaUYJkLg(UC4K*^+iNCwZKM*{>{`YpOk9fY{`d_J_owgkNSFJuKf2Vq4TKBx zsrr#_yKR4DX!QYrVf1%Tq)W-jlpKCw42R{=@5M>ylDa`+rmY5FH`Dh4q@?Fnuj z383=!CTfep_?q**ONWJ{12fT*o;uj7C;j}7bitLo#6^b{U{eG;Z!)8PWL`$^Zg48@EQ;J6+d@WyFl*!8$UI_*xk?{{A)+iw8Vjq&=4g0^eI#yRFpCzCk=`Bxd!l(Dj%Sewias^ML7*)Yr zwq9ep?>%B*)%i8Tof9=ohsVdjRaI-n(@W|51+v_GQ|80HMytVUJ3nS#;QTnabi@VW z^JV%uSF^2-z<)>*6u>3nb675bvvlxm_mR~0C7oQiU7%dX7$;A2V7l6%lVJB_4J?0! zXS$v;7_?RQ#H+_crqjqf2PRF(LH7oRG2N)_Yk*(>4@u^_G2Pp@dhlI~F;*P?jq1M_ z+w+CEL9ZqJ>rX=Kem4*(>j-rW=<^KeLRCG$C`%`JZZ$n0j&wm60)Rr>AD~<}6?fe~ zNEa~wDDa#;7yAB{LoD|?;(X`a@j39uym;z9l+3#jSPi;)#6XwvT zY2O5DKU>1RBk1>`q`Q0T53ulYgZB+?Q2kd}pwF**x}2*t%HbS(bO=4GQlZ}caZKm> z__c7mS1LRh5x{gW-HgD>W$AF4p(}NtLY7;Q)43*{Z5q5Zr-td?w*`Q{fyr=U5WPOS z=>rMBGE#{XqE>JRWyZnGwdKgs@ek-aUPu=g7zX2(9zkgx^m}5`{XP&5uP?VpQ)})p z^KNdL1v3gRh_{Rzn9gZr6zo{LUA%IGomYH27OqfrL|=#QW9IqKjDrTHqs9AI4=`OV zS^#rjUlDx}JuiI7_7cIt+m*9EdyOl~-vk_W#$dAyHR`xQx*NR@0doMbQCT0Ri@$Rp z991$vn#!}7ZoKs;pzW|3X$Sc+U3fq*sLbo(_u1-9$CnO- zZt~*qu;El*g%jlV_unPCy}68gtPqBE6knn5ehO3`>7snhaDKfDzW>UXdR|95xgYn? z2nZKyx0qI)W^wDMQG+3wI!psXeu|lj1Sp*Zb=>Gtcd6(O>#W<~W_`BVN z>KD@KMF7#TIvpNAMXv{t{`I(UIR3O``<(NFM~o_d_HQd%EKhG=(ka{bz;B;zN1xw% zP~(7f?guZT@m|Ncl<{+z?v{NrS`#-yG|@?BI{5panASHJ95|amxk8;rA^YS;=K%%{ z!qBAkD0Wh|`1foA>^fdZm+vi$_ILgR{rAfZrW0$Pi1m7Pl8VLjbAB>!XZbzxSe-IB z>YC2X(^e=GU!ChEUVp^Si~hVrZhAn_$CoON|{FW z3+d(szD6fT9Yq=+CNo{fuR65-*lICy^lYZ9*mwaMLKVKxf6QMa%dPo_QQW4XTnk$vYWRM%sn-#d`I&yMOuFbE`_MYm4ZM6(998bF&{6z)mBPyC zbQ9sdVs}*VelUD80l==~g>+^+Ux?SW0-)h(`h7C#E|?wXK<77;Gt=nnKhj-(6T)Bb zeDCM2L$AL^y3~Px!I`tuVR6o8>i9ysoEka!J}D52Yv}JzMn9_-bk`2xZh5a34DNOZ zJ>2KOd$#m96up6M!ZHtU5=u; z@91$)I{p|!g+ni+kzeTXN4mZLPNL}nZIYe$=TYN|bO(1#L?IhYfRTiLZ$LWv!(-6$ zFNL6dDgB&vPpdtD`@u4))ILi{4_S#;S&zd;%T=gyN%yw2gddBh;n8PgnQqc)Ll6!k zu+m$4o<5oP+h7K`wtWmXb?e8>8+{`lj65BNwNBCVk;pv#l?%c1n$dW3jTV*HI;J~s zHZz{P_dACxF1Nxb<2B)`neVCXOS(Jy%6RL-b`U>eC^Ij(Y!5nX;13_U(d!Met~#NZOnU-vaqo-zrh?60K8GwFs~ zzd|)d(t-Kby|3<%lr9V7#;Y$5`P_Hn;~f&!$xYmd2aF zBfj);gUpLIP=-;tIZpRVj-LJJ$`JUabu; zD&3^|nRFh<2I0?@BVh80G^SJRZh*tb>O(nq8LEC{Udp99WO-sF+~guhxtpV{1=aJ5 z1qc3}u-JJ!Y5~zW5$00mlCJ0R0Cd0S99+3+FVnp&`OfuUYJe9X8p|wKf0#UvN4nzW zIrO|QvfMUb2R_kn6#k((h{|&xbwYSL^awXFXTQB@bJG+=Q$A z;sp9ShjhnuZBXsPKj3z7AnrPzNw@FwD*i#Q$zaUu6s9}ACL2tMc?zzs4x-%kvPQx3 zah@B$MyE}lHS93jwtDV*W7GIB`+~byfN#n=IPOBYrIjww8Xekcoks8mW%bObp z&6eeYk}34MB%~9^MM3TJks#LVG?kavu#Ky+*dvk8c*VKNIpYgPjo^$aeP2epp|zG+ zc}Y(gV%5RSQ}ofnOX4qsoLP2MzmR$F=4#@F-&J7W?eu(Q(q$aITv;61!};TXtY=O- z({jbidn=DQ{rwNOMN-X4(jvI2&-Zfnhpk~#;#XuYLmziZrV|SJ$spUbf;uA#Iqw^n94SusdxA zD0B>ibA&pkleVbCwnIMf&`F*;Pm_5qnqy(2g`YroRpEs}Z7C1c^yiOTqn73~K24;I_&6(qCM-v}YgBeBW5 zOK9a_C#qc1MLh=i^SKE0Yn>sre~>QlyE(S`;tV4r1~Kyr15I$NVmWdtwqoXOaIQxi ze(Hhk?%_-qcGU#cXYCRWdv$CvuafcL<)J9PpL2 zP2ks4`ud7=SC(7h9c9bG`>!@s{YdvrMHlbrT)*k0oh#G*3b>0TtERyUDZSmuymgOm zq5}`D;3bJZGfzEnAySWvgM04BP}@U0@T+9FM~JlIuN8OfKnT3K!b*rKr}tmd4c;9F zn^!&%m;I&ZTafPM&j_ei{y~gyyvrPF%?ddK&Z=}x)WZsIHxiG8v9)El9NoL+l z-FXnLJi(X5pJ2KLSLeg%WwD&*nIlYBVv+Tg6_+zz-`>NqS+f9ie$&rO$UM_jC0w!MI{5sNzMoF= zpTKA4C`-?bA16#HcnBUOdE(6xFR6BrZqJO5VC?r9*fC$9svqg@O_hb?4Lz{$ASpA? zy;cd9*!klNA*$54dg8Z2zYa97}$~Ecdd`ER51_1MeflsPRJPiE4q^ zQLP?yvoEBaxs4(JvUH6^W^q#@nf!~xBlA1w3iQ2A)sM`RcDBQ| zvmK@X(GJqZtP966er2GkB9B>ae$PPsLA4&Na-rKHv?_~Zi`twEZd7wiPI}XNLABiltVZ1gjZqr7M)}G8fpSXT_YuaFNqMmkJ^3HN5x8yi=m4?b2-!t&p;j-vY zl_&K+g>*%a(y&%x1FteqgW4XX8~Hc|JGUAjzc2%)lie4D9s6{kBa_bYUHh5LTU_9d zt9^~|z|-BRadqhS96@zLlAx^gNw7Pnibs}D!B=Z$GhOw5C0teKj^B9F$2BtVs1JRxH zSD8?cUSF#QCA%i#uG@`tyYJ+nMOHGfx`}>{PP*{#GH`+YJzjYw{XV%DdLq3xT3@2} zMp4w6XeG`)7XUgM>E|@0Td`y$5Eo|w{lyEY`jIaAVhWg2I2o?HPrtV!o&DMO;M0K7 z(7EIt)z4@C7h(4u&(#+{4m=qlq(t^ecFA7v`#wjCtRky~WTnU!MNy$eX)jHql%|Gw z-+PXxri!A0wv=`%nm^y)U+3$5e)sqP^YJ?KuCs3YM|Sz>6@r(RS48h(rr|xAdBFUd zIF&BxJRWJ`IWsh%?VLfpZq!*#ti5>@OflavU7~IDywiNlM|f zOa6dE%jtE^WW4yj{rOKV0KdjhvDx5{r0K@E0UCX?lVveg< z4u_i)-%<5Py1q6ktiuL@y&ZIaA)R;bcXa>4GBEZ=5S2gDm7I8iriY5bDbs|!?&sVC zC|ckK{eR2yx-m`3t=1HfGJl^K6?zoLU*LOAeWd z72WHB((YPb7pFWGTTB}cYu8&)?zZkI&Og?WG5B?W&3CgyfBr_|DGTZQ5a|-QU&6|T z33$-9)4cI4hOPqRRzwPQqv`!+WIXR9>%g+<>B5r81yuWzZum28SP-Uw1Z!O>cVVLh z=U!{gY-SfQ`*ern6SsY!>y}|);B`s5VYLd_pYeyT&+4e>8|nV;Dn~BSsj%48hMLbK zovPN(-cz+ghJ&*}A?$ZB(^?x0Nld2&DTn>1?f6q3U@;=x(k})ide7d(A~gna*%+ z4!@IG>4(}3)gYeaM#WotNlPd@w!H4kn*B`hNfoT93ut7y1NT1Kt@(Pp13}WH{Sb;QqcO70H5CU zm~x8EBU$e|vUT~URf3r>UGcdKCxPd?Ayhd?_u{}L{P_1~(EfKguluNFjBBSVK>k8~&RDngN(Kh!n3<1p}gn>tCE{TGzQ+BWpEA-VH~ ze$WP2j;HtCk?wSdcgYm%yrqls=tuwt~q)T{rRp9H~84` zy7O1dP~gJRaO)@=%5{e8vFG>avLD@lvCID2qgcyK9I%AG-bgp`o(g(2X(D#8(t`ur zgLFbuhTX-^#O=NGJPzre?p_Wqtp0-TUz^Sw?^}Prvh43yM*q>T$asJL90BhqC*ZS5 zbbq;m6c~v!qnNeH_n1!~x1tNjyztLO^z}=+Ck>uxQh6F)WSmU38|hYbyP(}!X?V5% zB3`G!o?(6JvT^Hc2VSSSp?FJ^;J{$*!xkjJh^{qg+s z^f_6i%iA#&SHuQkuM6~eC+XH@KS24FG5E(saX?)kM7l!?T2S@NSZrdmlzQLT64AgO zxah(xRK3S|h22CY0k6?J;7wg0q}zADEdXp9uS zpZI?{dsRF?U4TDG((9^7chzMWzEbaw{U)uZ%4;y=B(w5UAv2?P1Cwq%5kLPn1|BcS zp!xynCfvYh?52fAUio6?CdC7Rs+xyT|^)R?&1ik;9bh^KLkp21) zD0au0>Ic_4F|*BS5OYMTTjafZE>_Ss0X?~YpNVoZ(F&=%= z98|>hzuOJ?J}2EGDRulSW+HqbpTZk2JEQ>BI?jZf)#&#PGTx{3U0h2^ALy=}#hdOJ zrjV_;G9D%=I#I54$$7>&>6746agS)#ZDSn&+8hj-PnUyqe^X4+{j4O^=}3P^k?w!; zcfUV>Z~h~Hq^q|-2)cHi;s$poQ~8q{tHvqxpBGtps*-(?KL>A8=|Gys^!Oj?T00G} zuf7Qm|8}0LXVTTl%3({zb4Y0wJzhe(^vl_(eez^%@K}jAf5D5iP)~C_j`(wyH{Guz zmC=lCX1KNgyxD>MrMRM;={fmD5SL@mh?Xuye@y+*YcKkZ%3~H}Fid4S8LN;B{YAFMu-^HE3)9-UPmQ zy^&@R4W2DjJRqc;X^E#u-)#ufQLn=&y9)6P`*?6#n%?J1y3#@h?~$AjPTt~oiboxA z@RmU^Nu!7AFJ!!?{&PUD{SbqOMPGT{>bUpl)k-_~xRf3zB;%b}^9D84*utB0WbnXx znODiOU*6Z&{ZMOR{f&+ALeJyi)mM7{gLG#YZCo+;3~()@*DaB5XV(_=P{suqzfYp- znRKU(6VT3d3E2M9kJo9g9)|L7C4hHxGI-rbfjuXEZ7CSNER%BAb_ELSTeWJIh)a$4c~;?f`Ro%y3ltHVDQrLqwX2ST3LSmm@~$zwPFXV+`nZ*W=VCA?Upj(SKepy|0{ftsh6hxS0kxrS%)t9;Az{ zvw_g32VM9jN#!plQjR+muE&&y1~M~z4Dh}M&QRjCG*!=}J9tzbKezLQmX$5kdl>0P z4jF+@{FnxhdRkNOb)+j64#jHMgW%7%@l-vNt~a0^^$eN=rBZkErh7#GG0L4A19dmh z=jM^|W*j5|uyve>DhH5#$8dNNbMFgaN^Lx$_Nyd=i;EJ&G=;4L+yzXA@TsU>b4sKJ^ zU0(OgU>^Lmtb%(QdYjiZWu(A^!`s-(Jo@{bEQbnCfl>=R*e%m5sd#NoBbm?BBLqEr zdqtB+>T_91xv*koFx4KUb5NfI?ulo^6Gm24dyp6tKX z^$Xr~-?7PHNoyvoY&gN|v>NV$A4_B5+iBk@*An-W?bR+2U3>DIRTN)@12-g~3C`uz zxw@qL8s&{go+(FqQ|R$i(s7&>)=oFT_T{^&dM4e&nYtM7aKSq-(eo}nKmW3are%l( z6MwJ=gmbXhB!C{3(D!H3-CGxp1C$t4zlA>kigZdL-uU3Uax^ZME(ht#&I+-Lnh~CD zs7IB9bYlZ`aqVswEO(c`94o~~;)x|bxKdO@wTIj6^GxNI35@Zp6K9QTJyu-Onc#p~os6 zC=)^NcL{xSospk3mC0&3&NShn`1T%u81{T9l`iR4^_Qc%#s|h6q02$Kx_C+abiW3i zI-TA}Ksuf7U&yU(7BukqNcCsZtx$b|Vu!@Qx93B+f%Qx}^+gS6uv{Qq_xl=Ej&(D? zGmZB~2+EQdGJ7tKK(0IHvHJs-Q13aUb2-t%+_^bl_#iu%*PZ!sTZrr=VYfmsuPfUT z3EsKf20gk_yl#q89c;j`3d&AcUCktOx((Umn$&fWa zvz)C^ea2kr(g7V`9C2kZ-LFWeuW19`o^!#meL8SpdywwBhaF&=UGUwL{LW-w1xP49 zjaFZs%^UBH%2lv9(+uA))#G(axBh|B9}m%ey$O_C&mD1G{X>J<*nWjMve^s91Sw*f zDbZkHIY<{hb1M9PQyy~(fxPbS-l;J3!*?W@evH?>zYznk@4bzV)?4s8pc4X~%qqo;A-m6oDW`SkY@>0~bTGBfO@kp7V+yzy-8s)QT8 zy-@I#NNqs|9D7cZibuK)H7cl6d@)>f z<`VUsCfz;J6*hcdF3jKK%Ijtse-jAK=D@(cH+l27_pu_lAe{yGxEt{1?{Zl&cr+y$ z-msZM^@F{!>O$k>5dvqfSa9IV5?r|EkuX1dH)QMqlx%Xq+?YPzcwnY3JlNreZ_UXU4y->ip5!1OSlvDZ zXUZ(6;${7nWyikAV?PD8G9HRo!Tot=c;+ekxlg)Jc`v{^8y~E){x9>Hy&W{px3wjlQ!dLD;#^`7!*f(Amt!{YJ4{E;r`$!6~Hr>)%Ey*a$@(|y3X zgn_nF177 zxIm@J+Ejlbo#c>1Kr^-#?3*@&*FEZAQ+2p1f$g|NU*}}JFYguL_%uIg(D;(-2c&yq z;s{4pn861oCR9HqUFFwcXm42$dUnwB*v(tzxOc4z%=K4;x!>)NfV0-E1;Zt!sdP!# z{AvVFUw;X>SUK{#-nfq_GTaKT2Sa(C&*2utx^w_L9dBM|vV1Rk_|6s%S)xZdR>TNj z9y{VxFIFbFwR|M}t>TJzk6T6c7t(RVwcti`8+_fnhSy#Ft`84PcERtze4_d(881`L z6|O8EiT_&hr|a1|3znAkA||z*H{Mv=a40SD15GTcqMWkRPB!gZv*7AqH<2zZ1bSx{ zz>F#MIt9{|Mc0E@tm(n;7q0F(S?z_h-DRR1Gg zb$0)T=lgSD#icpC=_(8x3MJBmV5w9ruj^Ks40E6A!m8sdsrRde@F5$0Xl~vAoNI8L zIe>=Pdvd>Troe&aCEeYB{r?LL`OZ1Zr1HAG{`1jmT}9S%B>g=|#+#k1i=w-%kkv!_ zyOwk_{EF&6Ub3z0`H%AoURB5l1M2cc+w+$R0!uJ@?lA{%ub4yCGwG(M?gpwO0XChX zN|l3j9*r8XD@YdCup@b$wt)i->^~cwzfHNy`Gc7>%}gdd zsg3zKUlLg#OvByw>v)}-QzK_{Vi6v$;=$`S9T_F4ZBE0QgLd({btOxMIgwJ>!8@2L zFPXnZ=pra8Ux{?~M)JCBiECi{<3H$)H$AVWB+s!9>B=(_P-EjT$TF!i4Ep zsCZ-Z{xO;>oa#dBrI_5#8qWT54h%Y@L*0i+hnKi;x~FpC*#r&hx+I)T1kGMae# z<&S9TdV1X^>Bdfag)SvJW4$*&sQmSITxb9Nyu`>os$gFKI#Z{wKMh_kQ=a(Ks4=7)Tqz(U54QL^5~ z)eoBrwQ5zU{!F^~x$jw*UGebo@dn;_QP-oGDj#Rq`5*rkB;z@Ap2DKc*>HFVy^e=; zq4SRmdx9gN>4y(gx))?+xNBMm1iIy;>)L)M;q8j0ps;u(uj~8kg9o)pKy$@ayzX9^ z53X?h2R8i2cnO(q)S6txiYxH^_GTxw{M}*?v1K{8|y1WY3*O;TCEOz9qi%j48 z5lC_WcaRzo1_$1+NEf2Ag$oS(3vd*_lM@dRa!KvLIe89mya`J-3$vpSgP4=ayzbYa z3E=3qsi0DhUe875Z{^owaMz;=%#fKy#rx;2!r3;MGWX4ounA==P}rvc6goZy4=gX~ z?)|nyo8Ls@F;(<_MAFG;sGyufnCnzt%o{Js>?Vigy>QS?HD1T${}NUwB;d{WPgB<~ znXc^U51?SaEsB(-zq?5nd0z%HYtN!lnG>mW-CaF}f(N&p4sBe?MsN~niGMcSQm6n1 z)(h!&#)zSWvkT!LOL}~qbi2c^aQC#+U|i02-gy40Zk*4TZ0NepoYy%Fbpq9m5pezb z4qoTeND-?MAab5>RKu6FcRMXpuzD(ZO^jC!17 zsQM$F>&V^c{SJ{(Y(*-s`zTd_PB?lXO&NX{6qJg_8lGf|4=?16Cl?)oR=Fl~BU~5p zx;>4vku?~LYQ!^m-QlT|(5*#lQK<@jeURm?vl-2O_P@e}*V5x= ztAd?*-EvDUn5SuhyVU6QTx7h^Yw&;e^y1|B(^NTb>#K4ZI*9^r)6Gol{wzEsbDOX+ z)P>h6^tXdmvl;ki7QySho~GhyoohksP7PiMx6H&X&YbY4zBpB0GJg-d{jgeCyl_;Y zBCnGYcf_u*cYqWA^g4juUMrY0W@DMFo@<$%1>RUpb`-o|^^s~f(j`tDk2O@Cps`&D z^_@aGyPIS1FJAyJUUx(T+n03OOZBkQbr*PRAzd$|d$wK^r}Xbz{P&g~?iyqRKJ@n%=^8f4K$XE$v8Vnrs$NLf`brI^0RgtUOTRxe$7Q+rS>hu7#%rvx!9LE| zSOFG)^QZa&>Ha=be5B!P<=XK-kH?jY20~ov0l-KPRsR_^4 zO29$Y^g4Yqe+$MB26aPxV3H*LT}C?A-VF34c)`hYlzG#&|LzUEPTRv%m+AZ^-;rkI zTI`t>+;v81;)#bG)r8ew&8dD*IyWVEtUXx=+P!h&broamv9`E0+#A$IUFT#xLuiPf zBtdvMj$Xe;x~OI~+}St@0>jxyG`c%54J6jr!A1Af|11)1-ceH61wlo|C>a#!bx?63bIOW(& zkW`b(>oh(%;;O@iT$cKHJn;TP=Fh266Q?VDViv@E^17RmD!6ydHQ=v9?<@CA8qRh6 z{w`qjP6~FPnS*s-w1d_Tf9f11(sdfm#(95xz=!WEsQVD<67RU-){&3F`Pz3>c}eGK z1n`8@-9Ht1MYewFl`=SlQqr4{ccA|9_8x{gia63&-J|%liMda*m!?BVBm55*}4+ zf)g9)@d(m&U6#XTT8>ykvV}@_+ZStY#>lshufu+^|F%Zqu?j7y)C7Wo`6J!z=t!&> z{2Kl8pyzu?_vnZ@zW>q|I~rK<#w)t6iXDc#9i{R|x`Wj>(cJxk&}7U7UZ>apj&0pG zANp$2@5N-i>T4rW=3yax*=_^})-&l`#fKxW6z2bq0S5gaL7Y+)~g2%qo`}avFTcQM(w=ITRx%B!W(iNDpmGAFx%29ybg{^>#+Lw~1VfA+JJQaZs~6)UV6NWZs}Zp%|OC=n*WXM^eYancosje+aT%~?4( z2@kw}NoOOG2Jy%up`PAus-KeX=luon-lyqkxwL?4Ur)JhOit5i!M4&8c9vTz@?Dex z#p~&Ho1_!hw?!wGguz>m^m`cTqD;?n&TBJZ#farp{z!K@ETAs!b1EF3u%FkxcX%Rj zIF|!U)adn{WW0lIlNl?IMX3*b3o~>FMx@G`$a!jJH;u-Tr?VXX`@Q zJ*8B-Qa!3{a@q<;^Uon>{)9SkGA0aKn4IKwcXyr#zb!)G7$74?_Vv#TVCE@)r@7*-U>Da2o>|6G@p}CoS!ekyM_;cuf@Qc1Ir_$eBkMzX-3+D+ zRUD}TW25|eol4JAlpdu8f_A3!x*?nYa`}cMpuzI$yM8qbM(OCF4?bml^%r z3HfbHgtor>sOyq+O~apyRu$zy}{{UN7T~ zmwrSI?0c65{T545@qWq-XA*9kF+U!(GFHESbEey*;O+G3a9}-?&i~*Zp{KSX%)d;p z^Cg|!yW_%H0aj2DY{wh##A8Vyd0`j08$+*yBI8|sVGbtzl!hja^!OU-zCBt2mV1YA z8Jp?(t^ehg_JHP$P2hMAy$;mvbQN+Bw>Ei{U<$j~!>@s>Df^;K(ZvovJRp4*{Jx@ZqZxfME_0@yGbZH9o{o&7>?uY(0sw!jW!y(=} zlvA4ho|z$c!71icV1Ak)RP;2^J12W!;{&Nj-`p-2m`HyoAf`7dhElyd% zE;BvObk5q1CR|LyImu(G`XgPP{A%>Wx^0m=$+>430(Ujij-}~eV zbNuI0HbDOjbN9RyEE#nQEsUbq6O!&roGpB6WsZ$L05Gr|q|+>Mfiq8EK|7=A`DD`B zD@}y*rwwqR)o!X@NLOGz5l(ttjih7f_iWPT-|1ifd{Z1RQ$tk#O8aDmIS=ydiq7s6 z{H-ejNje#@`hWvAP{!*f*A9jyzCXY&75X_y#yjy%0fr{}!Q9jI zego3&&~Sv;@0&q!8Tvd+#Wh>&*5ru<7QV%TNzQYS>HKKel75xy2c(M~>y9RVTnL*I z2J<>=<;z^-_$(+rjs89&<3(?rQ7epH2!$n?yz$1K-N~3FEQU36OnBX#s|7;6-~DH6 z48BFVzxRAaH>&fP)u}HSmAxZHbF_vEj{nDcWzv0|wa&32XO`2?|Bow8nhG2v`p2BQ z`saoQoHs|t^FDhY>=WcBEJM{J> z{9dmD#LklEb-BA#af;_KFf-bd*Oj#^<7iboymD*&e;*5C_04KWj_+3`HQ+iwU`gD>$BR3mKi<(&J#j;U0r(r+Uzn} z@G&u+*KN^EKvO3T1sAr{@27PEOGFP-_Xt#jV+482mGSg&Gq`a$JugJMW!3e_cEv1c zYCw;Nk?#607J*b}Xw*rsFD9K#=5gd8IUR0Dr{6b77yP#hF)i`Xpv|4SE=eb78i|}c z}8S^WvMX7h!Fk^Dx0<+G?UxsmB+}yyq_g-}fx^aZ5fV4t7t^j`^lOoE<2C*9Q=E!_I;0@r6sUq_@%P*cR8 z*KR?9pIoW-Af3~acPK~hGp8>X!Ry-nuA;WDchS^0e!Pykv=8}ei{mc`yeW6Su$fu2 zek&tBK9PCBJrZ6EPK3wz)BhmB!`<)PYC8>hf^>s_aAz?O9y?{OskIbLUl%a6?dq=oQp_Pi)$Eb4A z3blgoSM`|D!xQnws14x5_#`y2pOUWeK|GFISq2t6MDe)PRs4)l8t>AopS;@FZI_)H>w4j<|E>-VB%OGB}{v?f&!(!~kN z(D!9ivC8$oyzcm)4QME*jNe4k^K@jq!>c{eA&o42FRhZg|8+dS$$GD=5`eAZ?C{g_ zcxd!!7;Y#_T}Pz*lX(S6%MF323MTM6F}xLRc<2VpR?z!|$#}P#3ejm#H)uGN9=9N! zip45aB<2neucOzsNU5l>&apX8<*6#1PXD@y`BqujXE}Xd3+Wu(7BfaOW?{YZKU6)F zuH}t290pbK{bzJPAf4YIYgndhgqs8D=Yo=$F89j+kU%9(iQBu$32!TC7x zenjXXxfV4U@;imar-c^X-;uO#I8_cZUfY@#puuMrZu6qwPe~^kQwhvuesIGYl6d2V zMqCADx8~w*XGJvd`X%F;PWlUaH>V=@Vjyq47mGFFr@d!U`C}Vi*PCq$H7)_{ze|A{ zH#>LzFYA3!=#+G;jSai^oQ)jv4D__bz=8QAU2pUw_Uf#Mpy?RBu7GsI%i@JK8>{>O z5kapPAl(zscH!D#H-L5cJStt?1X-bM{kghbcW(+x&Fa9^H5gr=Gn3b)?EMVxXun0# zz4UqpGT#53&rtdQIG=%Z31%~)c_9W7&LZl1Bc1B(5cohl5ABqA#p{Iq|6<-VemOe( z`X%KoTt+iGZfq^n6=i*V@!^t6kf&m)~xRU~?*_?4+z zMejEt9TeJei*{c{1{30W(=Ca5Dby>xDC~Az!t2UA=7DMZR|{*(=y?b--B~u9!9|bH z-0X2_RJ;S5$FU^_gP5pQ?aa7H6ELFx>|`%j`g@;r1>8LMZ9kEmp=A~pE4}H?!)V(cfMe+O_PC7KGO4VWV#ZA=K`Hg zp={|i{&dgp-v|tX_ko&Q^!gw&Hd1mF74gSOeZ`xI?8|n&c?FpJKx}zq&8jzqk~*ZS#gt zjt#~G`!ne(N-hJ%lBw|Jt(S<;eP4eUJnjMT+A@0mDH$(#N*mZK7XVFaYIx(-*%?5s zm!sjnm5?vL zfRLg7AY(x$LsU%wODQ74Fk@G59B)9#Sjrp??XSgY{bS1AAHgf_?=N@3f{=z70>}+cX$d0-d{-9raJ^T*!bd}iY#8I zA@LXWCA#5U&#Syn_1SOK5H|$}=k~8v7%)#lraM=hMHM#!v0W8?jymaTTQ;Gd>9g_I zIhT3kq5l6+9uUmJ9s#d;onpW=q%uApi)86_=485p#=+?Br2cDY<8Lb7(NP~oIrhug zU-Qe@L?2l+Y-~PieM#TfNT+YJRM;FX4MOdfQ2m8;LA|Si$+wLN_{Z})v`hj%P9F>& zY@fmF#BCMem@gXe&`U*LrwcS-$8$M&_}vJ~Ep?ygc;s%m(^SVXtXzq68#Yfk%Ny^_W_|qPqYQLjErH<@nXEqQ$Ky8tHk(et4_$2K?>dQKB{c&4+V!<_NZ@{3@p9zAYBx}GBpo{(|} zjMd_I>vbHl*2)%eZv$NpGM+<+HJ*8>32fg>k9(7D=Qj(y$MO`I@<5NO7t(bu)5YhX z{00&Ndc2)<6=$@u-eD8iGL-(FCS7xk7Vb%7;LE4<`vK`fKkP@MF$Qqna4RZ*=atI^ zQ)f;Sbe?r#Cl)?==WXHEtAq`0s<58`Nx>5 zXVP_TIwV}>nTZXb(a$5&EjCjHe&S*H(ObGbk~WMMW=pSN0wRtw5y~n+d{`#@8ZwKj z7t;N?3Bg)}EGSfHq{cBx_dt0Q=uVyuGYjbF5$SBBFM`nr1K_;k+q~(nD7ywOH_d}X zXE*bvd$;)kuyhZAk1&01ZOtkb;k4q>f<@>l5#8P-~Yc8)_m$Fwl#$heDcUKOt)A?u%P9^L_iMQzSCNh8b1NMX2Q3c$i z$W$uczM;c~m9DZ*>vEqmH6PX^_h|{B!#R=H&Hlas$@zx^NhAJv|9n!BO`|fn`jW0c zGTkX-cGrr6wsFngbiI)7+QB4Y+|-%=jy$Ud#O~q3bVf{^kDvgN+xc zJ!xU@_JtzZjVrjuIdnYIRsHlt)AlMNFl8ZCFQjXEWW+g7ImCXhqsu|Minrq2x1T52 zQ;oE%>Ch5#14uPd|c-&^Zz3QNBo;&suoBe4ZL5yqd{!0XO0m%zAd8vHjoi*jd2{$k(u<=1%| z58_Zn4oun5P05~84bF);A?OS<3Q@%ZY& zD@ZE3kg8|Wy{U@BCr*q|qAM3mf|UY%(4w&%)0dqlIbn+^P0B|7Qy`#exwzC;L04 zs|Vty+{0k~#phH#lTN$dAA1!AfqglWcwjk5cX5(`|2srAkg|Ni8&B`7FFp`64V(|gLjjQA$Fw{je_ed0|zP@^3WAch>Uozfaxma8nbP-rC^yZDX`kESE+SY#_MRPc>%Q(<~&P2Tre0h>S zXM#+3g~Cw0BP#$pu=Mpty3wki(H!sDu&k9n*JXmA7Pma#M^KUy$TaWG#o>BA?0I`f zs=TC|y&@O?>$K-Imm5?4lyvsDvam*@9$0(fH*dT$mH8M8Rx+or)9-6!yiE&3u^%n~ z8|l!Kvd)c-@SrZQK@iI#!mV&xJ^KN@HHM zrHFL%TA1sjg7NnYKB%DTCl!x$=7YTPWDlddPnGJ_^OAI;21DHN(_OgwHa!kUI;pDB zI6k8S&0A^B8}H|FahxU7$&Kp&AK<`t3oV|{Y#L=H`0EnDPQI{#n|Wn1+*G4Tm4kHS z_TOU7H)ccs*8*O5#3U5>i)Z!kEqAQrOE>22IuNor9oqk-+m}o?A?6tPQ8^DbiN{ju z{#<9xsk=xq`)^)mCtlP6jw|btW;4BShjicf>4OS~i%4IM-_0wq0N@NpcLxhNi?R>Q8=~@X!yZIh-`j;slw&y;pJ`Yg!M>>nXugG@Saa1Aj z;dLRkhfrR82#kDwjW^w{C_5x~y8qo}EKJY2Imd)KB4*BAJPEm(aYc1iYO>{Y2wxo&@?us$P=C?4RDrWe}sz>Za zAG-cXr~a=871tg|nq5<={E_ZkJj2MEdS{&Pr{n9HhH_w@zqu z&Id2ML4VJX?orrA(EfS~j-E-+SCDR8|Nn7}UbZ8ZtFBbK{xdeS{&%km9NgSQo%jyW z510o>Dn(MyLDD@=ZUWI?!r`@`JgUEt&dTF4c=K!yEZsq$e^0u1w{_v8@spvd=uYjx z_9b1>H%GWLKp&>`@6YFR`6di}y2=1f>h-0Z#l|s0KkcfzIj^nQmDO>0an?<6$4Q3T zzfZdRL%pzKu?ln>G@9zqq`UBLGL8~H0Z)4Ad05g#_sL?VZXdYs)=b`b0uu=w*grQ@ zDpN|e2N|#Q*Aet!b~4;OC7*iFA>F4ZX{azH1GY?(;!StGy#^OxkPatb-cGp$^-qlS z^o7jtLt~ldVh?EQAcJpxrr!@p_odte9`lvK_x|HOf^<6!JmFuduV}+?di@&do?e{= z*A%uPxpV1YU_T%o-~V+Lu#%t+!A7&#i(_{wa1irrnRx6h>)yHly zX}Uq8{vQea-9ICb{G5+B?vhXG5v`5E*Z;iv`}$AOS27 z+wnU6pP$j(N+XC@Qz40Xu&S3yriot?+}U}h2rCFzo~jA-N#00@ZeJ#)`=^mTpqs8&L5P> z{Ie@yM0T?Hw67UFcbXnoCf)asgYnss`@o-0Z>s)CS9!e)8B8~UWye%`U6y(~ic0tf zthUkn1ITz=X01a*#C+i>6LH>n^I<+(cSs!0nmLVf2XbuKBU|MK@&8t{UX>StpGG|N zv2LR78>D+Rq7eXPdALYN00&-2q+8X0evWZWG?Y)*4}}r`nB7_u%+{pz|((Mu(pBy4~{1u$r}j&k`DWozd3u@N$DXj0&dT6XjwJgieVT zj6-L&U{8S=zEi9THPYyLE7F;-*1|_l4u-WzjcO0l^%#u8l}DZ6B6a$F71B9Ql*PJ0 z3+i|(@y2uP+kk$^8o^f9n%A9-FGgqPn8Bj{Gjj*FFPU!Mnl&hEx;rdgIgE0>y$=M9 zpH4fCT%gB{ZJ7ue#TKC4On<+TE+gCxmQPZJEixfgdyvj#ts9J}mxa}bD|p?GGc#cB zeGa_adXd)&pGCm3bKPL)nFi`PNT&N(DiS8LZ^60j+mu`NP>=nq`P(UZ*$_@U^akfw zx*WZ;&!FmsbgLJg;;Nr70~sa!?(>a>+{VqWz~oF8Z@i)geXjFw0Ft!icTr9D;Psqk zC@zZr-Xino^86TZ{}C=!vr6VoH@WsCC|{w4r;fAbb;D&=kkwTv}b$=$^uKL9|e54}MI=Pj)K1erFG7UE^+XwcEou|g- zNoPJh6`vK%MCpy$R6iiyn#@G3@a`1yRH>)Zt?K?Q`u%8)=+n+~bV5O8{u!cUsh1cY%{r03A+#rWpbw_L@*TS1FgbR^pZxlYG zeVKBl2VO!y-|j!^}GcD+cK&4CEc+^6?AU_=B}$O z=5>PM-C+KfKJ-$T{{AK7CFt3}>TyL(+e7+(FzeI_fuUWoz_}%~PI7P*Fm782-RpNz z?M6CB$8xavK??L?V6}t*@*T=!l zYtQh;JF)mC!1w0CLBsY_E_B@mcHE2QOqN*@6FFZQuPwL-(ht(>P)JwxQ3fyCZU)Qt z)9;<6yX-E8o!48!HB0IDKhk|G>q729CU82U-#bayJpCE!sT~T%R?*)9q*F7xgEshD z3-9lt$Mr}zOmhj!%pU?~iRkf-Cqr(ExXLA>nul^7 zc^|z%X}r#||G!4xi^Sm6eVcimwMYivuu{TmH?*jJPp13(br*W#J`TDX(CeT`xAgT6 z6m#AcirdidLlI--xwIAq(QW+#_RxC;{BM^P7HfV52Hx*USE8L40 zDwfPdy^XUVU%Vxc*Py2@3$S$&eI6N^ZkO0Hl&NilV^vLg;~g!rMxq#dy#2{o%8g>Q zxr7pRM)2qdTjrID3xp$(m&0bN9HeWKm&SX3pA%R_+ngy+C9}7;pX(`c9%r&8s;Sm&EH_d<)T{hqWMe481P=*&@VD)r=L)@bzbs{mOut zRWS5)dqDL+(wTNufxcobs8vW`Z=`ciZU=&cL*N_iga@`S>4FlTfaznz;qFi&ue+h< z0HL^P{~31EsQhV1m~x6^KM7v;4dYa67T_?)Lh!J0Ep?wHoyD7Iywd&^_;F}D^}lk` zxvh=BJu#obWLtXvmvj^7jm1+O6yD~Ok!V#Jx5avLh;Dr z<-AU5rx^T^v=+$f)8!!J)va-Ys||{gkDM-*KhpUb`$FOA9Y`?aAJwl&cR+O}To)&X zWo{1TbvfRVP)2MEsG9yC<=r|`7-xB0pcuE5`RMbCtL~1)Uls4t@d($Y(8g+<55fz^ z(%&EDgtNPHNocH@g;jsL@W$I9Y!i-)3c!aTy^fZQ=e^Y)sNc`RmO5vsen7gfVjIBJ z^Qm~>yAizU>U+z>;PgPezr>z;@2qVK7LHapSod>gDBB+Y0E`noLn}{t!h!b<(%m%g z0E=$U!W)+-0zMbtArCtxmmu#YUcB*+jv5b7S!JVP&&Tt+$AQ7nH1-Pm(SN?*z;vIU z-CMWeVmR|t;~3*A)Z=c1GY}3NN5v!E?|Tgb;f@@5p!7cV9!9!{I~9etvAJ-)QxdOp zE?O&$dl(1nj??S2$#|rP z_;Wd{mg2}LZt4^)xtIvPRXqfWFX{csq^nm;1819_f+5Xecwjw~ZnEY{;CFC7D7i70 z*Ii%s0;m)o2bZ4u^E&mcH{g8pGVnQSCgtKIma*{`gGF+ul(>ao^3WyS*>H>pef^Sd zTX!5f)fWM?d-jKN@lsuDt11&z1!6Xd--e_6QnSFJ!vDAC`f<<0(*c&2(O; zA9)Oz44McZs>)O8`tGpd9Hi_7dLwtTu90JL!Y@aB)JKkrN4ncu#(49${{J}`*YLU} zJ35itbqoBkgWl&r##26V2c^bE;rvxIc;lrP-A0DdQP|ckjMqusszv2-Ay{N9;&msP zW2kY}MEqzDeV<%%yPdftHIWh5_GhF;RybVe9&lZxOw}LhOv~S)TkG`Tki|N@?&c90 z*uHulC^<*pugG{?$IHS~Mr*;z-TW@Z$qK$7Jpz=f*}#GQg^YKkA_Y!ExyWBR3=DMF zKsz(d)0uH-3Sgcdjl^pT-wVa&bW-(4I@Ml?#paZvLHkEi>5^`(o;424kVDL3dVH63 zc@GC;@lWpfpl|=Y%7Fb*q#LCo3)h@40*C79dLdoe?`g2{q9TscK0!U-NO!;}0j5n^ ziu}8adFzD>N`V?G%Md7~$N9;4VvEyY&EaEgPd$B(4e5j>3*lw$m%=@Y^!!`L+MP_- z^i(Fu{sE)k^&CAv90ij^oz!!IbfYR)A-n$n-W-ph*9DQTCf@_?ySotTKNqLUOS(ZX z>`+EzVD zg4$kvteQ`+mm-~-h8*nboq{W*=JUpLy5$PT`;W$M<9<@(dSpED#oM{d^zs6Pe+GejQKO-l%S2xHXw4{aYyL>MLURhQE4yw0Dvo>xvJdI+ zWHQ~{s4!4%s0br1ys3Cy;u@Ts{WPXWLX!It<_*@>XTX1ZY|y~_3+d|Zri1HU3*a|D zCtfFAyQBY{gh{YKX*lMKckR0*TyaMn-e{uFlOfX$Ya0T^j}C^ME$#FdnhHIP-wOs! z*KjhG9*Wnx`@#tu1E~Cwu7f#%jt1z!@qYAoJn1wNrG;1W9pO(a3#uHXlV4LQ>}zm= z)eZFbAn6Pb_5WXds{x#~!kLPX(@j@xEV#T#U^)vm`Vr*4w780X^l3HVI_ z*v_0D&mrBEIp4vReFs2u7=3+^&Ntx~_-I)J8vW_~k?xD=53sG0!F474`O}(X1o6I6 zxL4vcb-yCx&CZ?-ZL>FkMT3X&mbW4?8D8|*!E7%+PQ@E?YX`fu=8a&(mOZRNpDx(s zn+;`6+of?=PeDEt+zsCcHB-7tLWW3|~ zKfzX0TUeh(k5iNGJ*NowI$Ofx+*j0fG~HWCnEl;WbRz$Xlj+}2pz4Sg?yjZx#gIY{#>HX}ayBF^SPjHsVRAfT62kDO2hQS-3t|0VhAJrcJhp@Yj%HoL|h7W>- zC@PXlx0Ij=$hFseDJfAv0i~5PQBnaB3=mNPyIU~9!h&nB856q@6${10LQzpMU+#0> z=bU+%-@VWOpYxra+1c6Isihs4KLM;04r64^&O6giR2K(|71sDj;bXyg3rEj_0pEv9 zpWmIwxC)mqk_D!-`6h1#>Ef_5G+VLr+_FpTJRR*|`c8zF_JEHT>^Y>gJ1|m$TrV2J zu-k)3*Y=clv-bA{%QM5F?)whrzR_;VDlNF?HwvC273RH9yC82J7%Vdq#O4bH-L(WG zNEzY|vEPRYrfcCd9G2}ghF_+mnEues6OsJcqQ2Z3tq0tt*I&fiSFB-RD7#*TcFGH6 zka438WNW%I^@Vord-|guGyK8#k(Qvdj|f6#F}@(z`9HC)$2;PC70tb-4W)zG zc{tV4@}p_o{bLuU4nYqgm~FLMFx?Ny_T0g1`4Bmh{oghnFS909y!}KTX!)`G0%<2o8Gt%2 z=Ym0@J(I3cziv{ES5qbTHl5*L`1s-Je*LA&^*Kzvr`;N9Pb_!EPkP*aj-YEz>L*>~ z_5$7h&d$5g@fyV&xxp$Ik<5mvg7I|r>4+6~%R_=Rf^mT?xYce$8Z<4E(L zp3*6C?EWp<$z2^y(5U<9Zv83L^*N{AnpOVfq=h=9H2X32ly*uZ{D?=Z2cK)AFL-?l zAulm^KaK<+`oh!~I$q22z4)H~6w+`znMpV0DJOn0rpVQPvxn&D8xt5d#)FK%$NtBY zcB#qspxkOrh&Q`_l6Ec^y@2aH6QaK=yRM3MOB`ci&yR0-OhYA;589#lB=|V=AwIfs z4^#hW_cuBXcF1qX){{#Zmw9C;H+S_Ek#?jfceV4p$fuKCVSY6`uR%M%Px(0BFAOXO zbui^eyBgaH>4o9bpyb3UL3i=>2VT5>D$JH%5Oj9WxA2SAg5Xmxc07zuH>kx&ym01t zuz2^CiKin&xI`5 zm_StZK?ZewE^~f0@%(_JqR6QS_?&$OSh=hKIS*yutF(*V8-y!sOwn5xc0CR443zva zj_EvaJx4g+cX=6c|LJBh(UD!}OUIjjD@Gi1+7hn)10s|U#o>y`Gh-+$jCT-p_WpY4 z{-ECATpYx>zb`b!OI;d7Kc?Gp$#yAZr{s#b?ijmon|9WEDdgtdz*!Y-|P1~FOX zg)bGZVd@nfuVwZOQc$-~Tz>PQpo<hl<%QgLA=ZWcf&u@j2=;APZ)j~Mlij_g6(rE%-7p5$DKfX@u zPqvKthE47pGcK>VgsXr0L8Sdy!kr0|Aqf{T`u)ZSy4DxkrTZMkyB{ybeY+KPR;=zQKABQs|Y@xruRLHF*VD>5DsDRl^$&A8RauW@}$ zzKZ0vj!A5~=|RCtA2ReFyHA*Qq3ZUqewHIy;>Patr`@VX2Z(txm?$>eG3^HJv^&?B zU#>JI>W)L0dP+N&EO+?4&4|qJGg#1FN%x04DZ0esMGxk^b*cHaXf-!W^6HQi*ZyW4 z_~`r=CAKLtHcq|w{`C@@%HF9@VoOgx%PEM{K2|0c=};IGI=fg9Z$Q8NACDL(kJgnvE!Yz z3o}AE+qftHyO^ynwDX#8jXy0Ek@0UVnR21sm1E1%$9o2NrAZp&E_?Kn%2+)-zD=50 zd!=9w@%10fzrNIqxxcgnxmjdYKr>e_DHL?#f0M}gO@3H$N3EdCt_mX}9T}|4E0V6y zd0BCbsHx42%PP6YIZR9@$8Q`&r(Cs}c(e;|9!)N$-A5(?Y(JKEdfWYpk+wQG-eCK& zv~&8|gP6?^f&QbrA))It|EWllX9t4st6awAI9(C`FdLP#k zbb1+MVAcv%^rL}Yhm!oNg7cUMk1!()A3eJ_<;3x6rk~)?NQhJOFN-?HQJp! zum~Ry9|(C9*?G0P-(Osh^z0$ByE~MRjB+MZPAbFCmF)Q&v@^{yA;G_t!FDq{?@T+5 z&hz@5JJ0LG|8ZU)?cVoQAiuLm!I?=*ndgXhGu!s!Z?^(L!P&Z1We7ax~P`o6T17HOI@&j;7xAeH+XdYR_ZYAbe1|u0 z1wnUuP%0Eon1XNJ$YJuEWwDrlkhop6Y`UT}f8I)57#R#R`?2fNXtyVM9)Am^!_WAw zOuDpNwsf-i`MO-Ny*)rMUB!?Fu|_v<$nD2|U()fcOcY?yuW_(ezLI$^H~VhnuNS`( zMQZQiFC`cuhk)5Id=NVyKs&5B0!6Gzfqn~0nd_sSNz+sGqh~xME@$TrXm=#(H&-#P8 zG<>cF*KMb&RL?nw$ixjrY4DzD*J$@Y>zZT!mvzmwn`fIz9?O=XK>vM$@f_mqNP)vr zH18%mpG?OSTGvdwT??#Psq0RRzCT4vdWsmg(etll+n>+FZl=!@ zg%x$~n>bn^y;uE(srR&NIuc4OCvQa2L*EIyrKd-b@z?axmK*H26dkYf?r@@@egv(3 z$@Wia*SgD#)Z4E{i`)7N=A-#CM?SuhLy9#68P~8biT{wgfS>aG61U`iE!Of3CuyI~ zGWnogtmhGY<>L&Z^m;Wj9!5L+Yy0qSw^VZ9@v@-n8@?7#YKb9kPL~AJ-Mg*x+h|`l z(S7F5xU{2v#nDSXyRJ0f$`yJ)#0hhIlW}Qmf0uTvCY0df`O4(DQUFsfv|Fnq#-p~J z#%;sc^_{eHDcHn4J<@}0(iw0bjF?I_XBI9NymTuZ|uYqCGpc^ z3d4>#Wbo$l8gP0Q!2TQTJS^?{D{6zs4+K-jY+%x*o!0CAa7x7(T+w$y=Y7crdWWdN znb)m?uExR>+)7p9?ZZ8c+mqK*{8OgJ_2{4tT;hg(DC2E+5_Z#4Xpx^Qkarzv-Kb{>wrQ^*Xr~}fnex%nNRl#_!S4^Q)L4lM$W8IzhPZH;(Y)Q)n z8%h1NQRD(qClZxsOn;4bL+bhy+uK0`-67rbNZ3QvjfSk3U>UScK>G|sri5G zBc&bs|M!s||Brp7v|Ha|fTzq!BImx{VD8)5y<)NIvaKT1STD}h%?Qc@4akAE52)+= zh<2047{g8fVZySQ~p>$j@Uaz}DAY)D|&OfCLLg_y4@PXKo^5p4% z>;tFMb$#d$HV)cExmiUp-He$baJuR<4%)s((4}clfb+x7<2y6h^{jNdpBpB?xQ!C5 zox7Ha7htX-p1$L5?bnY|$>lP27&E(bZBt1ibFL8WTo&ko4DkV%{_Hwc+65&Jgv@sc zju>xY>M8BMn)`vShd$V!-OIe+Xm`me7>e}OK-$8dD@41YPr{-5g6@EgvYC2MyF+qu zuv_sX5={wWu5aw29h_F!K~LMlm558c{>e=8+HwgxA5+TIXWFfbnL#3z51@Hj*O~fEyC1ufiJ4U- zYTCXLcde(id#yN))Hu|2juZA}`Z=_ld2%c{K1^3^l+Vr|(av>=AIVxd2Wgh|Vd^RE z)IEHO{?@t3<|Er5H!(GpmWVXDZ};V;H+8Z}(#y$G#kvHh9?;ILJe?%vZA8nDJ2B-) zyZ#SnkmCH!sHJ(JV7%ISlZYsLsn|2>wxG+{7(rwdBG6aeFM{smgK@;B)dgj}`6uXV zj7O4Zm$!?j-(c5${a^WTaw7(r3NTjn8WZpBn^Jzo;vJmM_otj~Hw|nM9000S8caQ< z-CN~;c*cG)q_tZJy70MuaY+aVR~NJE9qD*G!Sx>SNaIXd%UI!sh^mLMxUF^xW^SDvG>gGqCPh&YvYv=cwD-GKBltc z(6=3e_Qa62Eq`6{w17zAGD29U1tXs5g5HA^G3`C=Tqb|Oy|hCJI=hW2XWH#Pbpl&-{?pnt zM~88`%OCI~)2+A(=2y5tyYA%5#NJS+V8%R`w43bw0h`a$g42)Kc~jb1q&>n1Mk#^u za#z84nh6qI*RczM5qmx>9Z%^0Gqjt(;s|bba)TXf*!B0c`<-%6YPJ)>o*FhEZ(%Ms zduy|3h&kr=wvEI`mbXhSo@Fulpxq&t)#6cEGs$Uhw!cO@ZOxzJDBDZeZw%Z1(N1%o zG15zR7pKo+*GJH9>PuI&^=-KH(toUvpxu_t)oAUY0YoN2ESL}7U$4>Mt-&NWKeRq8aM|S#x$V?E&p9mvz2(3&UXh z$U3H-q}};~?nJL_04xd7VeSX*Zb;?HbI0LuUIq)MJD>Z7kMxQK*$pq5b42KPI^+&c zu$cg#Hcw{a)n2z1YpJG*{6q&i<)i%}`tu0VO@?FIQ`)(m9STS7tck3498-R@`?h#I zXa=_90TxP3KbCe|=468Rxuqy>OeymnKs$6I8v<56;P9PTCLaphcz%)6-x`nm;ry$} zXtLx?BoZxZ5pG-Ty|X+d`~Kg4$kmv4b7wr(IrvB^eV`f(GZa z?ZKpV_Po}T1-#n1TJCCE9oEE%y!gVN!$-Sc%H9~;hY?#_IVK;p^D!TWGdq$=cxE|s zKWO*Hc#rhGVggzE^o5|iu%<{_YvW92DY5Mk9dF}fXMTR~sbq4^WhS1C?koQ6bpug= zTW{$zy%E^x)=cCwG@Z!@?e?ATjUU-RL(}iX3Az*Ot)$+w#-dF<*zRp-TrRGj7XUS8ivjujJIT=-RQ0k-&THMU`K#psw*~x9a#r zkOpi-w+hw?y3dCv!$*a|$l8Eir$EQ^cS?o$#mOjQ+AP6%W>->S>z~KshI3m4oknFk zm@R7%$5*dpTgA_`G^F_IwEZswRT*^i7pv z<{TZk=A-Evjt=5jH ze71+0!RdldHr|R<|Fwga^fxHeb0Z0J-2(qyRYvB)3u6wh-It2;co-$90uOzhWv;Wxhdt=Zn)EkM@~zE ztChEy_Xq9bZdKq9)+wMo@h9{Cpxx5>voU@%3pOX&3&vXx$2seoJa9I?AQVy(ln!uDF?E<6^ zvCq&bV&0=f&=u>{;YSUKWPWAaaXQ`+wR2d_D3Q2pOc9KitTYVk|4Js-8EiXF$15^( z!S{OR5ZfoMO!?97PrwvuL}&(y__3Nv_lvAGx6Ug}^f%3#$HR;HE8p^=$0<$bzb&-W z87C3nR?C9G`)odFr^(lg3##Y9`lbWS_0evAHw)D5P&y=ED?nZEFYQuWL@2{?7F?go z3Ff0wc?8-d&4z_mXPA0G$6I!$1~pBe0*80oGwJTmxxig$o6T*r?Ju&<4;-CRD%w`BWq5s&?@p^VQCSLWO=V#ygC>-yhI{EfdzH?5LUC%|w^EOi> z#$nnJbCVrsrCsA9RdQ~12;|+{&GfTf4;|(XUZ2dRpAO-EEX*Ly=U1ZsI~Owdmv&rw zJaMaSLRv>On0(Mq8XZm!AH0r~(+{Ao^?-Ie7KM`e3O(R&3R~}KH`>LQEZ*NakF%~` zFkV9SYpk6*9u76L>lo>HC$GK4-GTVQl-CPoaQ2rn|wTpRc) z9>utf#~$KlBO8f-mLi`zX%c#p<4G(|^=IDGv^yc{{Bcj`d7JO+*>MZn^}2Eit;tLv zLq3jY%8zz7^PZwxDmQVf^GLyTSL-N3yVE$*+OLLr&gpp8x$dy?u{?f1}%4zEFbLbNp%d@r4|$at(rKzKc=U`a(Mg&J1Gh>d?Jq>~loBV|T2e zENvH(6kCH(y!=Hr@N%{lD4g2KqK`=}os|lHq3rh&?et%B zNOqeKw41ZzaI~8?BNpYwPlWMP*m*131DK1aKZ{)*bP^|%ckH@F4%_weDU2y!BGi=cyIf85bIr(7SLBIw3H z^}sV1q?2dcvjm;wx-+iT&LAakW(m52;VO9B;T-bj5Idhj=cA;0p;YB$D#>%HVB+Nt zyv4P}Ea!Y>ric{AjV8w$exoe1T+oeI_9p?BA5o6URYBJ?&y$qc_lD)V!s+hXB_}Z``trdpP73xmU9k)*fGBZ)9rR39#_5|2wUzrG3@~zFW>L8INn1HNk`dnz4xY$ zQoqGNU8j_$@;OtqN!FLyVx-RYOK5lIuohWmwL-jfqOgUy{Ok;otH`cv9fERlzzaBpIOYXsx%Opbs|g%#Mk^ogLmxiHq3(~jQ514ppTX!ihS1Gb=?k)LV;!dWn??5VR*mP+(`n(I_LocHXv)J_|w97O# zBn!szDAI@>FQ(nS8~w?eJd(R`Hi{J6?M17S&N1aeyI9jPq>pw7`dYG5&_$PdklzoLpvF}y=nM>< ziR*(_R5GYLlMg!G+dXy3I|Xwj-sLUme(LronY-MP^Lp0xI2s^%oh8rN7Tx1qWHLz1 z09(8#XD)Mnw6k#TPbP#bkk9Sx`-pb&U;p6iw>M!G8Mc2wJC8Bbx$hvFPa1L!@CLQqcLc;xLn(p99_+x!$QXkT_q7et_>vj z&-MeM>+9(thyI;TCVu)y1oPp(P6^3vi6!LNM?tq^k~Wg#qe-^US3&pH(+qiH^ZUxFL9brUPR^>DdT8g?lOJoKup3^V*H&=CkAS z!4Z9>d)J$DH}A?z6?&QCTaB8i&*N<7IilTzReyQ=$Q#I`b+VvScOS&{pOPlI_A6h| z8KJY{0FUp;>TZmn6Z&qXukTIfLDWO7S$wCF{cb$uTqruUu~^hH-i4dqrUSb6UeF_T zB2#{}t8{b)tYHofs)>TGb}t7RV~qeTa|B&-=W*OMGS)EKF@kx1>2wQoJs@Ph0mRKg zg7LDSdBAVd`9Haid4g^s^6vc3(}r#>5rVFNQRiOHx*jm1xm1gwNF;EHoyVq~sa!E0csGNrtNkeL+P=_k$k18%j(ir;?47`r zAMFIkv#IMFJ$x`WgwFpF6fD6)>0WqQgz)}2awv@5Z?FOAL$I#UE) zMzFqg$>v-#%f?7B-NxY}^!b(|S@(R5V7v)UcJSlM8+`mN+y66O7c7>qj;VbUwTzd) zISAU13?oa5+5dvluC96rNb4L)-fb!Ke9$hgw--2j_ac5Bdzkx6yQvx@L9yr^&R03d zxWPId{KBvmuFDM$@z36$$9>8lV{tayf1zDk-vhYjge>`V)1N69+R5eY!1>yz@acB8 zy{Fxcw{!7d|LaoKNizlGE$f+p6@#{jJ1%Akx{U)Pv2Vv1Y5ocJ{YIzTHaZk9_&8Sj zRh}J3r=8f-1FQdACH=dHbtb06#G_TBxtYfExgHUgP-QBD_zA8|InypCcsM+f7(@LH zJLdk6+{U7Vw`RZ{M|Qsu?VdGcpnIKXsefOr30>O*+NE!pk5*nv z0gWZ>`IFC~OjR8ww^6us?}jOy4Z%Y*M4iv^V>>x-c20T$p)1s*Nh#m?K)>H1ELCGI(GD4|rAi5EB4UF@-ThwJd?W&G+j-*NxI?SEid2S}?UW8pnzn2dqA5;4E<&#CrnvAhl`icNCrO%V$l}s=hU7Nbh99cukgfr2F@sL_K_j zU10er{+X#cSn(cAynFpF^7|8~aQgYrxkQ(xc#!8Nyd`%sbba1v*O4;}YaV`vFJB)o z=yFchNp0P(;9C{K@pAN=YVR2imhAtR&&11(-^_(&m~dL*mE7e~)5++SHDWLOW2o!( z(N1WeChfYvZNhy!|F^iocmwl%&<@h(V$xp(hvygzUY~5xP@MK|1ho8Q$8**0 zwIpuVQ#lRiTrySH8vnW2pLyPBS8JL}%<}EUgGHXqVa% zN7lZ*i9^4~2)cHiF+@MU5Aj$wnCUms@dgeYK|&VlkOj%?{#tkM_mUa810)*#9`Grz zo}h}*aH814j%U;E&2e9_NmV1N^hN@Te%|`{#nStJ-$rPnf(lg#)Mt znw8NI>m2y=!$QzCb{t14cAfvH>%Utt-3lvNSm+iBJ^=?X0AL$t%-mZn*_!w z#2@6Xp7M*^RLZ_TXlJ=$jQFnaUf0w;!fu*Z4Dy_MPONY!i%C~krJdis!CKVU z>?uFJ@*GCjig~5c(*)g>&U0{E8`Z?FhU`2d9nXHS)%GTGt4>p4Ts0aJ3dLr zi*PprvrFDE>FENd-$}c%MZxgKZM_EM?15QV0fN!4=ta}_H#P!I&f#hl(_Q)k8)Ga>X9vnHluST z!OHR9*K^|3A!PJ9Yjjl7%Dcg z>j~-WdsnqalG;)<^&ShQa{+W}(aO~|F=KAP(J3k%5rP?X5M)5B*-b6cbuYGv? zoj}NV*e)2a+;9)BTELvL{T`%UNnM3>w$}{E@H@<;s~M`n zJEW%bU*_%PFAa;uXD;l;H9x07*Y<^W4qqej-i*5?Vvb3D}fqk%c=_~3kY{N-P! zHn(T)5s~HeyPT87GW>T|Ux@iMoQX%fZm;i4Z+9OA*KWHAx>65M)L?x8+e_H;qvP$E z{~ftrX+}F&yEE~Y&TZ$5S9@@o3tRY6)#cpq99L)v8YJk-4R>>+qrySkR8i2C9n?g% zXgJ)tpfBiZ*2kf`+ANUWwV&xH(${D9XeG+plL8wnhM}(Y>QLu1leO8$_0(oX>Fp<( zGVwoJjxA@f;~TVF);Nhg^0|sjOk0`n zH`=`^5R+oV?c&#Ot%y)Q+HN`!D<1_StNEMBM^ySF?s$`uXzb52ey*tky8U7r+%`Ne z=+dtvlx`XiO$v>I&PXd6jR{JG@d0dmMW@?2m5#bq1i{@h_IsLk-(9bxq~u`uV^hzh z>pOT2Kj4K)GT_wxlEnePfESByZ3D-v{7 zx;~I{-w=%AikN;Foo@Y)0Fa-c4Uzs!n0iXP-_mHf|Kuks9B_$o=d)i(KA7b5?bmnn zGCr!EXOHVbpM!mv=Yw{Tr3ni!426_=bxb~J_h#q-7}e4fj6SjbMA}tc9{?kUTf^}w z4+P`+b@ora9&3Y*-(Nu&uyzo5?=XdJ;p~33#vFUj;o(T`$43cgJ;w(dyy95e1wn^3yZ(T7EA+OBhc4;|^6o)`@y3lbMvpUliWhIn6?A7GrlEtK=OcyP zWxrG8hd-*VDjmQ*h=0xn-2NiE^#@D({b9#9Xm`uMjZ@VaE7dO+b}!z@!+qVXU9 zfuZBY$~wScbKhupUH#a!bw<24|)+@o0CDm=mMEHgMAOsG#dT@}|^Ib)L&B9dE*8V-rZ|;h#)9M7wF>7xC{q4kYkD{xeUz_Mkc}UNe>O z2jT_emA0Ho|L;W)p3V&w}w*AN?Zz*tsWm{%JWTUawqz>Gjuh zUB75v=l|k~d%Np>j~DVJqkw&bg5MXHgbph@PPW7}u?`gSZ;Ac3>{5qEdCzR<3F-%6Z3-czb^jU9K)`R&Nd=#`0X z)Hm>UbCOW5dp5kAuECTu?e=XgMtKu6p!`rbCLgpjGv9`^Ow*y_yb1HZq+RH)qo{!k zgbw(GyS~q9ch>$Px_M<3l+C;$=w>h0fj2k1Ly-0W(luV|yZ!uS)p?RXmy7wL@_Z8d z6!Y=s9!!2|H`sR)iHR7@ZMM9}!=jc3%hWlJmxrEYo#3@zg7(TxeH0-k%K1Ob~|{>I#;N=c(aj#Dx;E&PF4~ z$%LLi!FAIXy&w2n;%_M;#d8LLo$*#CUD{<&awhWCnqW{(1YOb0Aw6=`q-k8WC-esU7ruyMfPaNF1eAQ{KZ|+<;@GiA(Ioq z7x7VHLrrk({eSXb?&RD&#ICt7aury=)r>CHnGpkMFT7TAY z=^|UmoY#vOcJE-~(eB06Sn%J{j_-|Q_s7$2vDPFwJE>N@;~V>(Lc2#7CPBOXH6&j0 zQrfkgX*cN0REYUngH3j+2wq>mU1`wf9*E``yZ$&Np}_+R1=h-$ctvd6d%pHj?!%z$;X4>I?Ib_1{@K2wzgExWG@IUFBUfQtq}Kt^MmL=)T38lBT&B9baoL=2W<>`9t{A&UeZ`@l&R}Gt9T$Q+rYaswudo0O@vt>*<)9$FhKMZWvAQd_6xD@RS zBSwMV^k4AD# zK4^Di*F9-Kax7@|{3_^5GZvxw(wXoxu*0=$eWv3LUAh_V{+9}I8y_>**LxeDbckeR<^t_B`MLP%io5vx*jPbV`&<)WcB{cBceCU2bi57jxX2liY;P_wLcTnNT|}o_T(0cX_lW4lSGsQ|luHoqnIy z((8?xAi7yB=p2UW@Xz|^LhvEB-JsKT)_5g$jLd;TVEYHO^S`Qr%GBn-m+u-(J)qry z`I}L7^$eKcXUo*TH~ZA2y$Th%@(NpSbXgR+J@FuFyiS;W&~Ep)2x7kc8``_mQ_!7} zhLD@yzmQ$eg@WliM~9GJMgP!JpSgnWTn!@q3XGuJiD*Ihv&@AYC^Lbdv*h7jCidU)tU5JYUrFdy>?6$s8hded8t5(eE8)C?|?t$6Z=G zNII_HQBjp!HUHebAIUWBBVOvnt_Pvrlc~jcchfx-AYteCY4ULfyMj!c*>ybI4)w1wYy2pBnh?hQxvv0je?p+#Z!l92 zXqQxN0p-;I*E_B;^?-H*mk)!shC#5uZ@8da-6tB-C125;Ri=XJZXY)Z>bV-!rV}CP za(Ab}&5_$tb3ZTUIj65Ldub;0=~ISmzp(3{-I_i44Yu{Q@00h6F8>K8=ck$@yZD|= zIn%E8aWx(_X+Lu9Jmb4-y`o)#ngc$1JQf~pZDI03yBoZ_G~-7Uv>jsCGw45Y9M$yv*#6OYnuXqxkBre8w4!9CN6 zmTLr_tDB3umNV^SZl#hlcdSwLjAeo@d|E1bT$GPe949d4LdOf)J(c8J)u4S5T7vOh zL(E7|6HoB(KbWcaE*=K8&#N=I0+|O~QA&5PGkAs++FYS)K4^Drn*zMK{09ZK*$cXA zO?_y&iBRTNw*NxMn|Q_)b`BT-xzj%~`JkP)7{QE%@5I@s*>linr=>p{K3iN8hxO?r zczwMVjsbn~I;8peE0b=MzmoL$1y4@4W&vO0{!5w>xeibHkMnqF=lP{ZTD0j5PAg~o zIkZ!lu$W80+p*SzH0Jtfr?YY*nz&*wYM;-p8=>8gtO|60UK`rmeY9Y_LhW7Xv{ozP zp0Lj9$7xa6wuK_y$5$l&EnlRDpJ&7IGzF&q(N1(@wRnbMHk`_e6?7B*|BCIG&w)Op z(wO#uj`s)ppsMH`@Y|rr+z;9fdj#lcdJaSsu-^f+>l3&K)jOoZipoMJ-F;8>#UeK^X`m^WE(#|_!1^)731WXTS*I!jk zEaR?b{}KHiR>zIAQo)~|P)({QyQ{Xx^{XdQCPo}sV}sX)34>NoAU{GaSt;; zL%U(hi_pAnsl-~@PcYs$v!$rbE|dJb!qz`J-r$96(0BhNay6!ciPx*=U}?|w@!V$D z)%>reaU^hRJnB(;OVCYnjwa%Uzi8#Pbxb{=DWvQVXX1=y>+uE~Aed z6ClNb?bkh0E9cW9OI&LLmh$Z>5#&YEeiVF|J?D;gYUP21FZ_!hUEj>yU)ojd@F5@K z^`LKP8*_cMoA_ifIrC&2YAZ5j+I!j^h_NJ%Y7X#I%8uvI?w3<<;_Left$A(7#2XUr zBsN{tyLPqgE?y%mf-KG{MuSeX>zimNHVY+xbpx@Ij6Bo6(C(yeC~@Dh1TFvcjj0E; zQ#?PKIA|r}$l~sT@nY@*8TzSCTv=ry=n{v^6Wgox_^XYZpxY~M$9Lki$TW3!e>{DC z3FtY#a#x2uv0>M*1w7uzRlCPK+DUE);2lppQN{ga6n%9P&NFBNoeBd3zMYeCo?Dg~WQ!UUqR`#m~xu#u^! zt*`fTe_KPj=+%W>@VabLa(Dt7bmcvhU)n`?%pxlnC!p3`Hovr!G5>-)`bU7_`3b0N zyFt4FI+yY4JK<0<^RS>h9fV{jaWXU+Hlsw%y5YLqBj%+0VqIT|=M@IXuq; zniLxZow~ydY?m+&Y+tk2N5`A!P=zn89tZJ1+4)A=JzBpRx27k;`58L})BPO20k4cr zgy7G+7*`(WFP2&2Q4?3;!=H~_EZyoI17M9vBR z;j4TooLk7$d)k@J_mb>}3E&m*MKImEvuemOG#1jm*zY4c-rmAtC{{iN26toId)iIX zEkMm4ZOG}}Sm>JH=SN40pFTTRQ>W>}Z`h)S-ucCXdj^{>?fw-ELrdSyfV*4RbZPfD zSP24K$HKzZ%b4<`-Q{ErxVQ5YdYwN|@cO#zYr)x59ms5_DbtPzcm#=`F7~MLzdnj@ zo2Q0m`o@BK9-9x^{q?p&^G|9*>0Ey%UD|D|jX?L$%tm!R*zY&meeYX#D?5%!yW-7@kn@r!sOobhQ_i&OUcVQ)AHOLM(PsDY(eA0_ELx;? z9WDOIt_RVO^p-Y$dsSn$o8L@9_cSmGRSh*I^5;Z?ZoF(2dfuu)$~OB5y5RDoDEglk znQzR_i)+5O6?^H))~dG@i{zVv@oPSU^qIkqThOlUx;5VRB$`}W_=#y>Xt&$4MVfgy zf|Ngzg|6)Z?OwKAmyY}pNxG%WFs@9yo@+ZCB0BJ-FR!nqN}6|sfZAtg<~gU`=x(j} zXHqQG=<6`oN4stnS-9ADCfN7+$Go>_w>kNv)O%F5n@3ND~Hl>N@5 z-HCv{usPicN_yUA%7u0fCWGLBr86w=(O1wNKjjH;noVK4`eCMA=y#v| z$;5l&VJ|i8Rp4r6rYN;?dx-m8)FLC-*fI5)cJ`-y@W3zE@Y25tf^K2SDXGh(}P%B5n-Ql>A&;$W;xTO|FdfLgg*D znR20BbWjdyyE7U^EjMK90qyKYW|RA^?&#xo_WUN=9qat>P4=g^sQZ{p%>R06w|!3- z*>UX;@+zOmLo;Cos6xhJ`GIo6@?aJR- zLZ3^PU{QRMsRy)^EEo!RYp)|?8Fi*Tpk2>OPx$Dm0w=|6f1Gw}zK?>C0Vh#Z3A>Kl zVA2Ne;qV(G1H=1VaGwceL3j;H+_#0fKH7QJ1`)aF59q~8HeK3j>I^4C$EkpH$v(k& z9>0c>Z$>TXje|UsUpn5MD}zYBV=pL8{wx@8`_+CVz)cZm#TW?2dp*4$nfXNpv^KKm z5FEYsgMa$rt?0CRIUn9{Hhw?F4Q>MMgGmd*p-M{^Ng(w0rRLD!;MY8dQ29 zgL!^wH>$CTQ{RS>TOK>_M?1Z_GsUV$hC=dzA%gLg8(PI$3eLdgvg@V7SF}jZJEig# zN8j-^H{PHG^;YaNkUd|Dc3X)i+)7mkiE$q$UE2LC(T8C29m)CV3p$G`OStjV0(OM( zxNAE^$5V8%0w)z`SZ2!3chk-?)f&iMSqOa6Loi)_qa#d~42G}cI+*v?6*&-ZR@9Od zoc!aN}wdwf&;B$CfV}hXD?m8JsVx39ZeRkf3j`zan3CcUR z1y^{F6O8vO<0+C?y@`*xvg=iLM%77bKRv0fx_pigPAC^I!L!Mdi{{L8L_6OhE0N;Q zsU*s_khveU^O&;Q zw^MGoTC2R|eYX0EZI0(a#T{QJAGF)Le-83)NQZ{aLj_&nykW&7t>(&FL}nr$2{UbCvWCf{ITPtPX?oj)3ZTm9NWL59d|VlE$bYAHW|;3 zKhv(d<}_L?nFe34Su)Qr?KZ8whI!mdfC`?4OUh=NXSK?)TX29I%;{;uHpeZ&yzD?Tu*=*)Hr{n#3j(LSg zvq7netc zAbf*e*Fw9j;2o&`@eZUXVf&r53tfBxO$=9oS5}Cr_q22W-GDB1C_(2cHO56-=!(-f z_K_rve=2eJ$|1LuT~XH3`%FEcUCopG}5)WC6ySC%B8@F{5`SYw4HUHcq=t?ig zlg09n(Wyc$LHE#f6nU!B7e4%A*WJ+RYJG4fuX^f1;@#bX@ecbt6CE#o0A+R@F3vxP zuh}?*-(K>JA7rdcG8}x#y9IKnYkp~$QL9EY6Fte6s&#_Sa(^$9S`$K4Jf<+^Ovmef zst%X;up`wzY(I>4M*cNeX6H0w8Tp-Q*J!uG=m_2vGL8I*w-CHO(W-6OS$i*xoak(1qnqNBI7V%4T`fMBw zZ(;j6v^$dY8_9-=K>sVdpKhUTZ|U36jUwmwC%G4$>(So+orNZGE1B}6-I9^9#N@md z`nZn${-E9UEkWePP#zgic_|n#ciIRtx0@K1_GZ72=y>U~JxRJ=6*8#r$IZNU-uIAH#*3tTb}-jRyIHdppvQ$!k{Ha^Q`+T~szXbE zH}YA2hhV(E>OAK>A0X%KjsXZj+&EzXSsqdV`d0Qt3Kn1?P~;``|42G(Oa2V zZ&na=xm7V>wBZxJd4(NsIuWcQzF2wB_3B-zySoXU$>MBsWNlY+#-vI^BbNouMYx4r+#}Gx??6?KEGwc1Rx{ zJ{rx$b0Y;@50kH=pUIcFQS$etlan9gb1v+9Z`#El{3@QQ(vvLhAHvi>+MR@MXtF{Z z)}0$G=oa@_gidcxB~xA5^%itIM}c(|v;$pbm~F03qEq!q*Y-tCtsm!Yc**q!TFrYE zx8R#4rk($f7k0Ow+`tEpdBRyc8Nqlj{_Mx0zf{4_lKl>)(_M3OIaWHE1Y;c8_a*Ii zS}0=uQZd{+W+|AijWLlbU5|uzWm(3x#yUt!)@4f$=o;|F`^1Dl)f?>gu-~h+d-BzR z%rCVB8_7!Cwftz8eN&&9XLKOracud~E@r46alY;jy{9G!##7EXD3Q2KhQ7MD1)Z9z zqIh3y1VAXe4#59+oTP7D5~uFJjoT~}Pp(&AL;oLP_Z`nw^gj;Vh@ym4XxN*`miN8q zP^gd*p@D3Ptn6qQ6)7n#O;Oq@D&F^fPP?=aX=v|KskD=RK99%u`*@tM)9-%%e?DHX zd&XVoo^x)BX$%#QbgKaG?BFu77z+m!{`{Z;H#nnQ<3+<7K(MMH8k6!0H3V zfG^(Z2e(l5l|Xn?o1V8s=G6?{kEDzfpiiR;u_oIu@-+hVjWDTT_@1>cvXm`0a z)3k9L=N;n12DpxftCiiT{z5u-5DPvUTfwc{%y?a(M&CCky&(AIXbW%Nl~QZL$VcID z!l@cwcTuYh47_3hrzV>7=G8WN0`htSpxpradt zEmV7ujya?cGphvfr6j}a*zcC`tVkPr+w9KYL>+H?Lv5$izmC>F(ITebpa=ho3P5N8fwH{{4@1r)GaZcZ{pSworN= zDCy*@U!r>r)u1byzTT70XXRS7A!7xnACkPCK(T=7m;OpUJ zUU$B4ewN?oVzweXgL0O>_n45_nanhU#muh25bZp#xMi}A&Pk1V0 zKG$?2gtc6g40ouP^TvDW8VVPTxe3(LBdB&G^ClZFfOkHe0HGJFsr$5t!Chv5Xeje} zS3Yy!tAm*s>;bcV=;I^Z>XJD4Qfv)!U%iMrKGOYf-q`<=cgL&+FrEuS3O~xIa**+W zaw?pBcNNfio=v@1TplVRRQvc{aDU+i#;CLia5YhQiuPVA9_hNCm4b)5(KvDxJu?rI^Jtbj}MV<=hVBva=AZltfIdM47>k;S^UX~`SIPC zsg7{O-%m85w150hm~=OKb?~7ZgYk|(^t@Nn)hN9~Y0;W+@*Q=m|B+6I?Yq7t$l$7) zQ&jztZia3g{Jmuf@~>ON>%L_q!uI4P$mnDc!SWB;q)DzSn<+H>b^zBv;8mx@749ildj#M`aS8^&g(%kNdY)SZ93|IUXspnTn9Sh z6NVFdjd_nRqTv9tnG=GaoIk)DPkB!{lHq*u$bt`)OHA6&r5xJKXcXr$ITa_+s+z^X zC52u`Pdd@ny@;D9!7aF#NVPBN(kA4i@0;R5a&tVdn-ZLaTsj+BmBch&r=ZTDB~NYx zU2l5*KA9IiFJd2joDTlJpy!vQh(@zwfkOMo4=U_mN(5jDp%^UqO+RmtZndR9u3Y&M zB>bk=@saK^bif_UhCz)z)l@x`Zp^g_ctGMPnC`rf*L_{7hRyFxf|Ea6@wyScBk-fDkBk=+o7e|%5nCEdXMc697{ z6gIS4LiKyn)vh>$#6AC@13puz_9dO-a69zTJPqSO2j0B1!ktBiD_n7oGQBSZ882}+ z%h`%%Vf3B;&N=w;aQ27kQfB(y#r0ejhX9MfU!FikMbw#Ax z{-Kc-RJuZ`uu+gN-jKVpz|>+c{AB%}H*d9!EAUeGghl87u`fGOj^MU!VBXGYus2JB z$~$MODqEJE&#cSgc*{$=zU?{K@)H?QKGK~!KGOYGyTWceo`|d#|yD5y<4HFK4k{67y z_Lo7tZu7S&*qD0}&2}G09bcLKDA66yYJu_MKb*=TDSX>W27KR2mzQ*Fqu-(Eqm7_^ zp&ON#bRXu`BIUg&*_oLOc-^GLji|Bj8_4BF?z~QHr7W^v{}U`|okO`Ee2X*4z9L}b z)^X0ss=$23G;q3|{{Bn4Z+?qFSY$1?Q8t}7-XydXoEBfpd2iv52PR$vQcv%SR1D|w z#xw2vZguYb3O2^C@7q*>&~U3 ztU!ONeM#pL5{CspML=%gH0rubx`DrA@%73xz~*i>H9v=RGDl+YrY1#XFovG@MY`hg zF}OSCB6u?F4fQ-kx|1FA@J)$E&^q%TulrsYjo%!;1@?TuMU7i@9l0Wu*YOitPA=mT z=f^^;(i$-L3_ZR}y8UW#@W3+!YD+_@yrfINnGT~XyutPt?|5Cr;tcq7-AoYqp8hUQ z#*+|bz=QS9z{!AKzuz3xB3N~PR)bNjBeQ(@R2bk=2$bK^*KyL7ce}&l_EF%?0(!ii zbg9Wc@Q;BjX#U5#C(_|H5m3cyIZ(P+NA)Yx`8Fp(tErfs(@T#t43Zeiym+oA^eyWa zq)v~3JG(c7<(ugD9@53yCBkI}BCbsK0F{??<-y5tUe+p6;uHS7&&<-`uQgesg!xN( zgwZldIuN!3E&&tv;q-_QqY-x=8J6TtKE^khjVBD(X zT(;5%Hhy*nT;MXB%1gT6idw+xel(nM=sd4eatZ*eXC}hb(R6vqc)>}jU`BTeeB>j? zdweq$q@m8k8BnUph;m=oPh!8m(-7W@Tf_M**)RP2*%rIY(DOV!QMjyozHuG2}a(aixYy~v!f}uw)HHh^u<~D+f&4yuL#3|N9Li! z(pRZ^A)TY&bo_Oj6+1dxkvHCaZx&B+x{hLF>3L*iys0*d7>_c+tBbpN^KLyOhgXT) zV5QFwc-{VauhHOz1t{R>Oy1*rnpJ{^j(ETnE~e{wzHt#VGsJ?)S1M(|B2CORO@!;c zM}z+TfOI+oN8@MWuCVtj=qfv=5J@21%_pi^!LbucCe#J5B_>Rc-eKMLkL-5vIPPEJKFp8T} z3S_27Q0+^)t%LTVfbWIiV?q?KyCO4Bq&D3IemXrj_)6!@nj;vwFuW8-5O0!@cYn1vQklU_A33_3u}t`(-o+YA+oN+xPzEbwwRx zV2tS}@Hk0}IzBR<(V4L@-0TfVUZlh8<`rncmfvbn+pm*1@3dwU_#Ovu1B%#ptJtCz$>f#a6v)c7vx=E`K?-Hu-1 zsMa&;K25rH?-pRA)yc^AG(A2Q%Tm|d?@qbv-DgCiKrTKPvL+^ia)z>C6`||39 zLBAHm{{4@PR}gjx$Qfc_p&H2Rl5gDy?)Ps2lT-A2BN=bhl@CBxWt08WWcq!dbhoE# zKo@PBZDAHe(8zc{(mTQ0gZGe~JH3vIbXBGb(5cx3oK^Cq@+KA7aUr`Gatc$VL=`I1 z*!8hG-a2hKuM=Nbiqh;aqlQnxyzZ}0K6>1 zvxG@}zn7gfn(n7$yn%&UAoiyaOx_j48*jkwbYLUa#$M{A`-`^oDZ%j1(Sjv)j|JAl zl%UFAS2*a3Cw09d-5V!e_;=_exW>wdy6%$BKvxguY;}Z^GW)3ac+%w?>cgvV1h8Z% z_=}Mjp^fSr*>8l0~_BK@CDDSz~+8+-FSj z%@qxs4qmbQ@sH~+>A2Rf?7Ple+&=jn*#Ejqy7~9h0m!OgEpq5_F4D=!w}bMZ6WPOp zXeypca3kZqWH7_Tv3TzCMXwKs!=srmc-@Yq4cy=^GdT1$ zy*`wTXSmx7sEr;AKe|k!`d{(f8=QL9AmM=QXN+OmDirvk7QO7I*ME?%P~8AUt+
H+=a=`;ty_)B5_A z$Jq&g|BG{&)MBe~b4mSw_A%|>9%Q^Vo?`aW<*Vxdbw4LvQDvFE&&jERz5mENQ)U3$ zJW{*n@}%)aev*v@{-QO>HJCQZfpCV{}Qk4ZtjG4?SmTr{1^8kx*5z05yzbu zCsO4l^BPn>0JE)n(U+|byv`}=BXBq@g~J_fC})?`BN!8-#O(3A%cxX_;zor|l<{r@ zb$uaSj?){oaK=P@bqGD*mUKPYX{cn~3FI}9zAun2u(lAGmc(E*d?R%pZE3D&npZN+ z&j2BlzAyk8WMn{(AzP^9Bb|AfCzAi00Z$gJ=XJ)ivth~iPS(a$oT?Wx-u_21Ft70( z*uL;FZ#?zyDe%v((QM}ydVbjIvRqDW(-N*C?;ayxE{mfymGH}vW2wBPYYTdY%pD@| zsJ|bm@nX`o@2p3oCq&`#mh-9WF6l~*YEk|{L%h+N-midkzuha)r>oKU2_QEn=H?glh z>I8qdWAgO)3mGrQI{{AVsb%*S?dOfRDmE1ko0-oV>?@$0#Q0R<#m|Mz=`(j2^&WfV zvvC2m_S(toEEk;@9bKLc9j;uX`U@Fv-Q#?Lg-!&V=}Pa*M7sRd$HAn#v9L3jo;OT7 zzW=z7*ls9t7#J-mO8>-J9=68r+2$}{v>51rJtbXOs4CtavH25Ful=Kdyb3w0iIk96c zOncvXG`{aVlKjVcL^_3;8&UM@APj99srDsZ%K!BH#sBE{q?0&0481wC2tPekB8Saw^V?ZxiAZmfzGd~tg{x-6x~>uU6U z;D#nGH1s7sUOZpUlc~M4s3Ef|ia8jYh9^oyfwc#IQT>l}MI*!Td$)@~t6~Y&uSoY~ zUNF9_{2kOS*~lC3$0ZY7^4k{PcQodW_vxD^Zb`R>!Ie8G7jx$xXR9PGe1GX6ci37H ziwsTh_HcUKn{+w#a+n!ngN4uNac|OTh{<4mo_bX2R=UHMby_E;V#yOeC*+zgmb6ZmbbW8Pn_X$-E^#LbQIuP0^RD^mmd^ zU%m-Ft+TkHt6P~5m$l)b=1U0tV_zoHjj%9<`-DUA?cqN_|LX?no{gCVQ$hezIjsiy z+<>ClaD&Q8WbZ8EjrTizPT#)7w&+enH|3gLHgi!k_A=k|TbQ<*o2W~E9votCM)g0^ z-O{N6W5V6xZO5q)wH>_i5+4qO?{g=@`1M;U zx5TZJdz&U|@Qk?4tvo)BJ7ZA^#8Q%|yrdg_;0Lo!t_aL=q~~3eZgZ?Ji$1o1k}>rB z4btVVoX@r&JO=a^#`ET_yj{mWzdZ~(q1)q82U9wWg+h!}mY4Y@SmyGv8sEQvpO2F1MdYw&PT1A7(`;Ybh zg}b@GUroUbZZC*_8b{R&>9Vq?fZ=cMpzG1}I56qPa6=Nb6E<+2dr{mHA5}41)lr@Md@5$iTNq)R;K%_3S zz%LG8y@jd%N9Nsp=M`(1;DEnQr=Jf<*C1I6wTJW*00mn!dl0d7lO!L<7WpaI^Xw-grsd zmZ9@29kGWuJrA^JK@$_w?8w-uZ(>xs?;t~$84yXIK>hm*>9|XENa@84sCB%Z*Il@_ z9o>3w0AE{}QT>XHmo#rHDzRL|#yQa6D@fNEFb>Y&p#TTRexk}tx~lz=Q2tQ?+7Nq` z*ERP2FKCUDIvBd*B;|Z7W0|>sJ5L2=+Ay961vtuXEPS=Sj4Chb4p$4X-4RuI=hSXq zmw4SCf9_I+4g2=+x)C*|xc%37c+EPQ*WHOX!hxSm;oR`eyw2^lHXbq64n{!wd+3EJ zgG3J3mT?AmPBYOCr|o;54xL&^zgLh>(rFal;x3IRd{L$PGwIx!S|s|TW|iq+!@?b4sk$Xq4$}D@RlyU_%m%OjI`g`>B?J4~ z)&>N5(ffCj@nm5E3etCgVosxZ<8>H0iR@-gf<=Anr25w%885MKT*5C3!kfMH_fXQw z|Juv^82gk>3(4V)cT!Ot{Ajrd;%nwn?(^{;&i$xQgO`?+X#MsqEajTZUTGUowHxW4 zN@n3TzlMU#QF6R)>*5T2x`IXAdwSfAjOQ1ZhC5c+g3SsH)xM;gG%EoQ^)6t;1|H&d zo&|HUw75DLd5&JMLB_Me0_dDD6kh**i7H2l#8^??$w1MwljlOLB0p87}=dF{jH)S{yDKYTyK6+f4bS<^A$ZPda5c-dK@T9Zy+%EE0c7Z29 zYry{figa&FWWmd16F5MOp7(HLryJ9qx0KN|7c%3%USpLi%Yo6#B&xrV?t=X+aO7_| zd}T(D|B-I)wNP+1E(|t5y-u|o=}O!yfXAdvpt+g;o=iH8jr)PylF3l(;XvNw3o1GY ze!X!AJM!pxjAXn|I-Nl3vm1Q`PGpvpnIYrB^M+cD=wa*6c!bJDG5ib2%=Jt8SHdfp-F z>}FPgbz-Jq)_wZ_YQ=g7nWS_FrhD66CRMK(jM;DOCmtT)$+~{=vs=+e2LY@B3M7rukf4KSQ06b)$ zGIgGl&bDujf34RWlsMRp*QwqKg>c|)w4Iy6>mDu(hf7wpqj)zX$~oLO=8AwCvn;ZO zQS5C&OSaAjPv3=5^+&p6r<&1;w+~p~G4%I%(yjAYizKCYgFQu2yz$;ebPD6Io5IOb zbUl;t4sI0#&tGc7orfk-@lH(6WA?X>68MREbF~BWn31JHu;dm!jzqdE%gorKwoJIW zcQREkq;u)q%kI}qhhGZfc%4>VB=~(Y4leDX_s=2YY4q)*rII%j${%>h8*kO(!yxtS zJSabsUeA8Y!&+4FM2cBF^cZKBnS=E!?=X@<^#379H`zJ|@451hd%xl>^_)mL#lG{= zT*C>uzN6o}N%#1I0J|7yv-4`lQSCuG`x~Qh)sdB=9foea&U}svJ{gpZ67rpBXI$B! z^|wr@eC9MG=QJ8#7}Jb=KA7^l^bKloxo;DiXlTOgihrs@ciAwsXcy#llKuwpk3}(3 z&9dZm!Bv(pvh5`jx0B;_!=&AyUv~^zx=?{~Os6>8@om0vtioQdL;nx6WyuWaGe{2i zzps)`XWwd|s^AP)3{c{Ab!8=>K3QkgLLOV zbZ~hi7r@h1Lf*Vj_nzm1hAn{G+xXq=TY8*@$zmvHv75>}{Ky=}AUweSV`Cn3F(VPf zaZ{1xQ2KqEbQ;x>SWNaPJHL)zpF+Cni{@a-SAW3vA@sav(q;E}GU~9)Zs=ts< z?JUIGj5nk3f9&V6X~7@Pfw^6OyRL^zb(@br9KVSCx(li6BH}9ga9@w-(4yGQO#_Lx2 zT}Gwr=0joCXlnienRkZZ0=m?EK|*HgzwI=d}%pj_w)bo4jfzNB+0o(lsfe??s_efwqgTVFd~p^HmR z-XeHl`-fZKqKF=rJHhh1>eTg$bivP7FndBDfSN1x_eRp~N-AVrP!+0O4Ez0Gn9A>)_VcpfvR>IBMfSxdM|3?4tYu4Hp#ma|;6o^zFlP z6X~h*JHG#Uk@0G?W_5g4+?;Jia%@!{l|Da5zhnd0IjCU@ZdN4zbIt9^uoh{$xVR4b~03ZkZzshF>o?K z3?^Qp|C2fQ@>t2>00w&(Of%{r|Jp>uAIPfTV9$pQ8sfJMJCF!2n z=)=-K2Jl;_h&S)L-A2&%oDsYjPCt*6@gnjB@Kj4N*kVcFw@BAj<_If~#R1RlW2ocn zx$&rB?fi+1drJ`$t+NN2Pj-Rg|M(v+>0F}2P*Zd~aP^_buSj<*xl-ggXCGL6f*!vj zop|mcaMWWr$lXBKGwH_8J_^)at3ir7UC*T3bf+GqPqThGXYQ`gxahq0QQCbm9ms-0Vr!AL*Khc7f2PlkuaUx2X0dUDMevkTb>x>ljH> z@g^H9h{CspG7pF4a4K1n@cl7Qc({G(^XUF$!9Axa^<@e0$Epy9l&peE@ub^bOs-en@ME#;mL ztY(UXO;FW>1_R1vs)gS<4=%YZ$-MFX;R?Nmw0?G zsfstRbz=s|D4C1*HndXi{#6}TA|#jTxx13ty+R#zE=-4*p}$vzoHI6&#$C0lRlc@j90mZGu+YbSRsV$?KjvYl5QOMX*3)B6WQx z%b~r=5LA!Pf+a_<@H*Em31HHOH2CqyMas1)yk%bhQ4!Rg%IB8oNQ2hrv9MKx{=QGT zViN(+Iy z26$IIwDX+J>y9X#0J)xX;Lk%1yiWhYWw2qJ57b?EgV&AS_Zl?X1i=Nb-60n;hdVM=5Hzy2V9oG3oJw0wl=6!sA4?uMQE6dXBS1lj4GXuYw3(C!lxQ}`b0%m^-l>fbkDhKH_uePy! zY;vGxK{$0@lFrKC0BCl{!UyZ==Sk8H&Ikjy+ZMt_)9CvQ=^_lX!33*hxZQpd@9`bd z5rMxuy>_HyU}u%PwJDd+`Wf_h^ML45^cXAdCL~ zLB_lE%oo083OS20LwV!LJPd?Aev46s-~r$}zT2;YVYH}26gTuUGH zg!us{;@-y9KyYLv)t^bX$$`ajf%8F@tQM~uTc(BAAKMQq=F;!AWIU1Xd*puH22L%Y zpPNXxAZt1rs_P1uiVf$@J9YaA^wwx5d^S~ra$#}@nb;SB%HA!K3+o^}Z;o1nQUy)8WECesDdI#i{>Hpr4&g0AHzJI#Sg7PSYY7f%c9DR$- zcLl@l9s0cPQR^$jM9qZ`;HK!SWP!9U|jNw<^KR7~_S4Dlh4*CLICd6C!Zjm9fO*L#xMy!v5C{(q+^s!b>xA(5SsrcwJLG_<5Wa-M&QLA(B(!o27DC^$q<#*tWQniIw&i^k%wpp+7@KL!K^x#*gc$c%-Y! zu3|=XEQZzVI+*_TN4lfE1Hi$SY&gqRi`Ts_7z*yBWW&wtxA8jO=W(JOi`Qm@ukNXE z<_Y@0OXTsby0H|TGno$qG|PF*%lkY|U?MQtzR64?QT?V4%Z1TQ`jR6Vh!<-NN2Vx4^sV^bY12> zsB*}3xH_L62PPdZ{*AVlOozJ;l~Uy(U8HOi`WW|~b%N2nd1aI)qj;@6QA}wjuZui6 z3dOJXgf}lL@VaS83I!W@!B4jIdy2+~zl^RxURc;Wn7Md0AH0Z|h|7!U=ReYA>FL2U z!P0onPkJ1fbPsOm!&3*gqp8!z!~Xq`bUAJ|aQC_EC~~e6uT$5Z2c+U^nM>+ zSCI1!ZFy>jL#EU3Wn{cD9SvyUQ3w2NGX1_qx>5sWw0npdKHNp$e@XYQK@NG%mcntn z{Hf!cTmjg9TTPio((=rR)8pW}vT;xlUqba$(hVrHfO+!z&@FW%udCQ(0ap*xhb{j6 z&VCGp&yVWByr<)M<2`Mj1Cy3_fQo$j`#yPmZu>)F{iVks&Swl2uRHLYaMQ8DjMIaO z%;@XuMW*{h;IzjdcwNgL6VaX-p-^)Yzw^qQ!nDtbge|ik@y5IMXBY@fPlQuvZ02<% zI@LhyqAchYNk7+-<#-mr0@Zbsp_myx51w=jVz+=$;7DaEgpS`c?3fa>K_0uVj)mqeHisG zFX?ver~!uu2SST1A+KvYcM?daX+XEZ^mq;#ucB{1^TGyqIN&G!ylb~XjWu%2VIqc} zW7-Pq+2Rx9ph>wsb^ZH4F5(KCx!D!gE}*|7lCJw)A@ILAwr>w(`ni*I5Bv6)@9f)O zKH(qx%ag7o;2iMW=L^%;Hc{H-z+BuciNzOL`lFqleKu7w0fy}$L%o{|O zse;iv(s<)}v}OaT<4$1wNcwv`8Lw=S4xBhn20Kom@0X-|7Cr$Mu2si!GW5C=n=uZ| zj_TclSt}cu`%+<8ZQwKX(NBtM57ON=zK06qBJjS)J=F6M>9*awf!4T0;vi=u-gske z859$liJLPo@y4t4FA;5ujX>N#_KmvzUP?4cc?grRhY`FMGr_l-Ea8%E3Do&Uy5AM* zxOKZ4G*_U%FOaTB^aS-v`NQ%5_%9Uc_M1OJPv!lf(i!@{eWXLlLbN765ZW9+LLJ}E zLv{5Y6P7h($F^|C1q;EYcc+lurAVs3kZ!u&2B2`}C0g3%&+E=M3&E$G4B+DE_0wd$ zeJ8JgfHE&IdO`$myn&}XfyUr*C|5a{a);b1n4$IFOi(z>SlCa(YfoPVLyGBfB+}*k zLR>3j1g(ZGrrwW8x2|vgZoSDz@axWRs{Tl)Tx5^CW{rc{Y4rbCNcS<{9v@fLfNLe_ zabVJ2+iQnAGWz~Gv5+3mA>FGUb3F8=5{!C(kN5b_95Tip8sCA875$t|#;eaAh9`e; zgBzSCQ}JY{{ozIgj%2n>JHy1=DdOkTWue8WzWF2l=5vwmvi3I=Gs_OvD$)B8knUjn z8x(h55^A5O-^)mMExWJZ%Z-M)d+GH!q-*VMLU+3KpwdHa-s7uxFGd5ly1|VGvXqLzmkqN^=J8U(ckI#zv^#Arp^zB?)+)O10=77lVV|U!uyO_*ck0_$eD7xf288_Kce7`yz$u%n*h?qq=gDtPhTM;t2?CoFqeNos|A?Nh6oYDGW>e)QUDD%qqMkE< zK+(EDUiTqk6%ZJP!oo#oseVPqt2m?tmz=VP##1<6*Q~1ye=7FvOHxJ8mse0!5E+)Z zGU{19oYGSTbeqYByYXnMUy*L&mc633tKo26>k}$3>6A>TirT&V_Ca&0=XH}8wSv-E zPx$yr8?Wp6^bIW8CZ=ZKymtd{q7!BFflMd8o{5ZCSksKI3Ldfz|5(pNI?dV! zw8{A%>vE!lJ zfHQ2*fVcCNc=PIioB|_9Nx<%O`u{0pJYy?Q=xDPY?5p_;`nLz^3L-qAr|cQz{Ko#s-rw5(ied2Xz zdzG-SXc8=YNPq7k^PX8Y0OQx*P;5#j>R&IU)1G@7g{_?r&kt4S_}u@_(|`GodHRV< z$BIP9Y6U~I#YBAn=^|Zuq78a5dz)ybRu)yyq#LL|23@N70eoi9;dRo1vgq7~pCF-) z-$e`_*Y}Ts8d11Ef8OFpt3k}itAdc$6yCgZzw7}bx7on%B)u+`EJyyq2GD9P3+CRZ zoyFKH?smmt!T0UWT(g*$$mGvr)Uup@|0P}OjePb+y)qcEgMObTT|(1-w#3y9758RP z0*)knZ}mLS!`14PV_& zkH?a3OkoOme8mZGxT4G(uVkzY9DT12wQ4$1ZsE1(+|D~)6ONnLadoSnAbr)H?B&nl zyzc6k(@1MU27;IPUEh{CNF^;5UGtCNjklt*8r24*iY87-{gm5U=y? z4nqgkwzF@pq*IQYIgYtwJ(F>LB4if6AB@%XMq(2QdVG>}k;YAE@R2UI(v<%GLAv8R zcB0>X{~#*Ra^uZAK6^4!ew!=WQcQm*A>-|<-p#Pft5Aal{X9v!PsUmR50ztAZCk{f zSFw677zf4iu~YPWMb5#i+{UdZn42b7nBkiwapn{!X!GJcbv-4Wyk#$XTH*;8o}#bg zq;v1ALxHPZ;qaTiyzzcdUX2>M7Q(WuBh>wfj5j0E3dz@GLhV|5KU&gdNo*1QSs4p+ zdoXX_OU9c-dzu!&$gEn*y*>unVdZ}XUW3a8if5dmv7;o6xQkK$^OtlfYF_Zi&L1GB zu#(q3{2c@<*~4J)T>3jP8Bd~UF8t|y8HgWR%^UBTYZ&~wrxN&PRZ}kfi6eLEWfJ$m zubzvX_X}C{{Rb<_cqR2;LDKE-n+N>IYd+qlwVG-V(nTa9blpB0YZXl8&AadFR@Bq? zZj`-jJ@wp9#=A0V33_N0jW4b}M8%Ur?o4MbJA(gv?~DnYn@2-IvY>FT34w;{^KonT%(NHiM6e@%Z@)dR-Cee7^4h#sfVt zHW!Ee`!nf=-LC{ug_E)GS{Yt9^ndnMll;fNYGl0R>b|`Mcg)0!Z|Ub)(j~o7g|=HA zvA#+kZ@rYaIKsfci~9b)vgHZnbvcQTG~KKSW& zXCT}`?_WZ?`Y+~K=F@plm_C}i?vn1{4s-lr%u{xf3H?2kba^Yaaggo?;4qSQzGtR0 zTiSQn7bwec+f>#9X+L*3ZsZ`UJxKS+OA5|;We)#7`UCp6FX_y_OTqogI`GI0dER(k zx-#%nswzYR`a3%r?|jNAxW&K;`Z|a5=Jglpz~oWd@PsA(U5$*l{iz-_e5nE7PoUi- z#R=>LEoEj&Z;GH|_7O0~%?=(a8b!4S=@vdX29{O0K#O#G9wX`Mm9B$$ks)+_LC+f| zop!Z8tdLNL?P2$+eoDF-j)u_vydpH$_{HmXez1gFIuv2q;Cqz&VNoSWe|x0<=%vL> zf=(DL+O>uC|3UAgM7q~CQE>7WOXmDRy8cL4>k|#-xhRmUN53bNZhA%%%zBsr3fzLJ z_9b1XNg9lNcA43ID390KMP|LZyPqJ{f#F!T?HP4H zBHejZYQujZP$au2NLr`LL zB7SOE&RdSmKc(z`Lv6e{n*NSR#+#F~7+lPY#~P;=Q}NW-j%C@<*}@Z}Cvs}#k~lWP z31-YYkNO`U>E`9+Fk(tEaHUZbuY2{qoSD^|4exjMQ1wE_`}~n*MXuR!`I#ZS@oEky zu}PP*q0^L)yzwlIV!+kcGvW99pQv~S`dy4ymRNm#Lj||>cO^KNrw&IX($`7SrOi18 zvW(t@-u=k@0*P3qbRI-eim2~Ed>4Bjdc6VBeBW1yI|F5`ni~NMN_S@>{L_OTm^aK zoxW^+*+y<=uLXU@$@!oWQ2jjbr0fQOSsCa(K`fRnozy09oXUq)KDT11^ zUi*Lj-;Z>Wg;NA78(-LO`p5rvNLN=m8g#Kf;8!v|4nn$^^hTiHGZ4u=iRL{%ujzk* z==nA7RX5G`=oa$0G&q^Dwn@eB+NH?;xksX3U;Y zz%1inte{dzo#&+6o_7m;SDuOW66o*t>#O59i>C(!fm+)*jg11<=|>Q(OZ`Qim!x}c zt^mHLWWg0#f7t&0o^R``5_No}dwKdjz;z)|CFKBB&!p3zZ3=T;$HRsz z^g76ZIA2cHC!MPw+{(?pDvi0)nfPPcerjBlboHBlqLo*?u=l1N)bWwdRpu`8GL6Ez zgXsG?>GVm zf?T$!CNLgnUN}aT*EQ<{H_2_^>gId>k!ng(@@9|xIn2NNegZt)@ z(a*7DyfgRB(YH+w(CIL}PKk6y!*+{)3bSD7OnoY^$=5T?Ncg6~coD}vYgA@6FSdfS zPw4SF(v9CZ8)Ro#!gf_tsvnT<{1+imd^sIVwx#3g16@{fZ8qZ`;KyixW6`RMk#MWv zGIe~Uvj#dyv?L1puDZhOY`<$Gv-AjfYA?OsnT%(lB#8|A=F9(QE^YsQKspV*PoiNS zbK#z;UA%d#3Z#H|O%_};NRrn%JeUq*?=OJ!2Ga9r$-KkjmV$k6lHjd1j#ND7OANcs zS)aKtdt0#7N*Dh6rUlnq((7DF_or4Lj`*ntodf9iEz*6xFb=*f=$oIjxr8_Gk++u6 zq)ic~nb7@|jQ9JPGu-Ma3BPn=-gv6{lc8?OSU7(I{k%)YtJU>_H%fj0ha7sGkaTI-OouE zv*j)F7K;W31LyF%r=MP+N5_@}|9Jkqni;!M^=gbRKM&%KSJSZ;DL!3~G}`ESWR6cZ z3EijK26B-iVz+h;sJ!wtud6FG z!t>|bz>44yUMIEJ0C&l&!&T$%^17Et)Ui#*1K_!r{w_ow-@3h*kx<+d&fNc)iZ^Gh zANQ`;RS?*o%gL`z1YO#F&wi)r{ozP=&O8su_VrVn3P807=|b0>1AjH!^AmT~o?JJg{j8D_2FYcOhNO$55>K{vA+Wx||vxC!PC`VBE9o zJMe95q2_au&S;Pa9;xvQ=$9R&jxXqlgs65?o&8QbNm1R|aBO!BBdMZnUKbQ#f!~Iz z0{3!D+`pd5cwLHGq9OBi@Z|6G`zqn@kHB8 zfvv|8Bs+q3&R>@aZ&_prro59A{O@_R?;qz8=@k0*ewiO;+_%qSCsi+`TYh&i)^_oR z@(=BK-N)8e^kQS*eD9z1Iu-}y$mN?8#qOK^a(&*<;9>ve~SN)P1=tL9$gCPqo( zQF+60Ti;&2{o9RnY205__Hh`l8mq_aB5gk+w}C?Rp_P8WB;$QweG8SY*T*1=Kkwta z&B!okJU+^(^5!koK917Tej?j8cgnF{9Sq107mS&iEBx_gI?7(20guYmP}dF8X?(Ci z-tHMt;@NPj-AI@BDq57Kw+QCT)9a^6_sUpZWTux5(?`?qJ*4|F$&)FYn*+a|drny9Bzuv92{o;7nnIbp~_3T-DQ$kY^D>uzKDJlgRf^p zkJ#_LDPR zW_Vwd1#fu=i`&9AUnKBOReIh(8Bcl+fLc+*u-M!h-gx2<9N`rcJ-pFn9d&#UEOkU) z>5j~q%9C70hL&mSw`_7wxF_Af3bmX^_7%8tMw@_jA&X3>^)$ zuP=h7<4mb`Bi*+=b8sOh5!QyT<;`mZHUj_XU?`?Q&*Qc%zA5ycn9eOWxXsCL@&;4t zmvZW>GGYJg2I)ew2f)Ll)xdy-{=6=((+Jia7z`T^i1WJAzWagfmSoYY>-6_QGVdMd z8E}171X!8CA8%^TEU0p*7knD74*Hkl&(3qqu${{oucSW$zWsMeH^d_fA861 zBi($70BmZmz)1zu`v#D1Q|WXpydVQ_Su<3-k?ujS2OhOe4kma^<8@%rH2n0;0O;>R zuY)`mrOUl|ke1|i-KLS7bIu(DI2dQ|Z1CNK}1MTkkXy8a*S9ozMntt6H*AE;= zwJ#a3&0{ReyPtt8I>%D+8n1K+9R=}RNar0+{E!;-%y5Dyx6|V^q`U2@13Q*XgdL@A z)cHZWzs34+G{eG;YqWUtN+lY@(q)5TyguEp$ard(Cc)jewc+`|O>F;uMLHq!g)gOK zVY9>#z~@e_m<7X^^#U13x}SFRv@uDR!x^ziRl8p?7Vtuo4L-82fXYj{iVxPXG29Xd zxi98*qs&=2!p;OQys1dl9~tlDh)M8Ci7pOr5vQC|*kL9~l4XWoyUL8S^+9HpufdYL zfmA;ro!!=X?8U)dp!-b-ulw7*gN=}IhAlvg*9{wbiak&Tps5=@zn#pRpdAFwX1qb` z_1&oUAf4i^P?$aRHVSN;!t16nVGyopM)Nf1Q0~i~Vs7K3iNay+;*8($Queb)GIssG z1@-R-q&xWN5Ib*hIPNKa&g%}vw6JyR={VFmg4azvyaCL`iP(P!eg2YpMUvaW*dx05 zb0WQe6X_O3v;y!<69-+R@0X-o>)H*59SOvL8q|4@Z`=n}__xUt_e!6m+4}_l#G! zCm5GTw;SoCi*F!Y51>LXJ7?q7eTlbdz~J)D++zY2AE%dzZ%D~jKpjE`z3@RmbrtSl0sOdOT0%Ihwr zpJC&UW#ao0wv;pdV#X?7(i9%KxQRPia#l3hhQS6c##A{-_j8&U`*N8#e)Mb@uhX{* z0#{QfD(oUV5@*3u;3^Corf zs<{>8Jwzvpo{I)6ZWkp z2D<*pc(Xe?fU%7s%q<+t8*k}7HP||4D2gj{rre!RSGdbZ{F!TIix|0Oy(m`N5}GZM zK1N@_U(w`lo zn$$3=z?V}pC;~UiglJO}T@KPc3NHtK8<#LP&y%U+Bi;G@JK)0UCrIu9T@KPsyD0|+ z^@~tVksB4y`b4hq;u=Xomg5!fK+`55lWPP{lqK-GW`|y|ZlnZ!p<~7CVoD_7{FQF- zh+;KWe`Mb2FC?MYZdW+gk>4$Cw}CUC7lW58b$IiBoH+%KyPOXORw_`=W%d$ocljPc z^mrN3&&3DOVXHVOGun)5H_~;gtV88~-tb%SUtV{$UL3va+t=@k{CDd65gE_!_bTpy zb29WAzk{k5(oNqunw3mRg4V{nDHraS$GD5P*_Wm6^+GyD%_h;wOgE@!La)mr z-Sf={MK>)iV12#~Z#mY6PY?}_ONPmfTdBPEV+JxInn_IWs%y-x;U>5~bPS$p($4F? znf87EZ5oTm%F*)_$avnbG;#7QfZaTUc;m&#UP2EyM`Mfmqd@=mAmcHCr;wFa9FEkc z=RcF~$bzw8$J1IpO*p=0tNpL<_ZTCa9`LJc40~=Z{XL#^hklvB&wCe( zv}GCU{2<+yf!6Tk0%NfMKK))nI*0Tr@bVS~VAZ#$2jB6{U*ZqVlm2q>3%%~7?AtNn zQIiuB45K%58?sljw^#T8_hs^2#qz^ zg@)(H;{NqVI;*!3fs9C`cyS@G(^6MM+vktKp-S{~1Q{>lYJ;eEZ!}tAoz5FCWuyxm z*V%ydB3bvG3c zgV59S;Jv&^UMI@A3H&ek!e7TRuN(hxEOcu%gJM6-j9;+wd8^4`4LdY70WUWZJ&NV~Hl0>2;D%nYtlwFH9ZAhh3 zNm5E_u{&o*dugG4)uw1)wQtXL|6ad8<}u%Up8wyk&zzYvXU;Zf&hYW5`eGclKS;L= zYr?DZ20(r=y{-`HV3GxNzbFmochT!k`_}1*T^GuW`cF70dN9NRU&%DauSTz=>Os0* z-}~cXA0du)u3|d3pBBP-k2Gw2%a7?o?&}L(qto%Uf6kN}_(Y-ccfux7+wz9SV*{R| zt@%N4&**iiXMZ8x+WWUrgiRPUJPDYtsc;=i;*+34tvu5i+#ZCcx+KD`BRiOGNr@(U z=(rGC_|Ku7lsJsP`+{p)yknJP_|$lDzy(Jy_d zJ01=>IS*}YQK9k)Rit@GhzGxKoGg?0yy6P10 zMPc-F(UR5M`Pl{|IHL&{xp_ycz~=`ca726qRS(idO*#WwhD?N`8atWpiS9-4BtHQ9 zsM6yznOC^v1#nRJf;$hkGV_{8eFbZaykV^&{hhkyvYWiSbg!m>Ed~61uV0P(f3-Wc z{Kt19q)X^JEz2y4JP#?Ds zJ-$z0hmqwDh-(Ehj~!63)1D6LZg} z39?tRn0f0yN&`Mh6KpV|*Eu2cSnK$cuIg|!7RC}S*tn!djz^TNfIp!&K39(&K7$}6aP&&T`Pa&6pK zk>}}Q=-B0C_|i8L^{fZ!ZpRv+dA%3HvA(fP_dHP-b)8OvpAN5Ny6b!&bfAAK+@%Sb zZnE=R!K5Pz@=rD}o$0V^LhIoKD6LS*bT5S^g0GMQ6TM<6SH9~$AC^0hYf;<69ZvDX zp&L$ste5osV$wB9JK&ScHQ~e00yFQR-cYu;klvJJ55#k$E3BzCn3fp|Jb&8|t|p=^|E_AY-j0xV$yFv1i`C)Cb(TUS3?m z)WMwHH*cU69gXWld8%B}#f)15RDR6Hr=!m@UEHY;AVFgwKCM0!vdTT)A`R7kJK)yM zADDTjJ7nOdebexYHaVti?$U<)i(K#vyBx$ScWdn+D1F=w&-v9zwI5ku2jxjHQZnaN zNooXD?iu%y;MGZH5XdD(R)8Da>j`g02bW@Ja z09?L1HVL8MGm*~qN)m9X3By{)&r$7CZhnXVnRJNDsMyNgnURjSJ-0`j)-0y36G?ac z{33jJ?jq!zypHMoPX^))!yCeYt@3ogC(4zb?uG|WGDoWh|Htt`xK{?_@WCSn`2GnU zW<5gnEpS4p9Nzpui7GdwZGdopo15rVKp8*cYcVoiElIcTJ7inPq9GF|FUa~Qwpk+A(D$8_eBe@yi|7lQ_`8pd`@ zqv3(Nn`l7QN9wxRK6;9H0iM~Yu-A%DNw$Z}KYc_B)pD@saYQ;_nX%CAs|uE>Eu-3n zbkC!`;nlJA==X`wOy|4U7dAVs5ek;6Gt0Fe76q@?mVzqvLT289Q8Cc{tPud}r$Eno zxZmj|G@a|sUA_O1pUw5g{}d$uUkLccbm_CdAq(CaM_zr#bieJ)|QzPY$j>aeFiW zXhSFJikgh)UO$9-whQV0y}pL3d}iS*y%sZF+Pm}U*n#Qz$;Jw%TQ}KK@5M>?H#rUIq)x*( zrqJ&ZN%u)R|Mfke)f|^ z_|4}`&~tx~PKEml0-vek!hCaT|B|k3u09-K;|7Z*YumH(zO);|2j~6AAC;twK+m>HB1|+|OI$VBFjjC}mt5wSP5Z zpK{ADJ8&gec_)LInXuvGccfBd&vdU2&4N$(ZWPwLKhw=Kjev{$UqnhdzSRCD%N4@s z!0mSnkxQ zlVR!0Z<2p9Z(`;>ITH+v?e>Fk+cQj;Fe?ro__+btHqp;*$#SI)=EF(%b^_IYXT&}G zRnyx;{DyTeMH)>!zvH4sljd6y9DmCSv)r4yNlr&iMnSV@l4t!r)<-AvHtt_8UKZ;D zA3vh!p^$FNoH1b6XUY4<=ew!>Mmmv;4?qp`;rtJ2RJ)MQrEvHP{8?)INY}Ah7ylYL3hoW4XF6-URcPKsF|3+sKRzbBp9)bZe7zhPkX40@do z(tXJP08H~%iC+ZJ^KD6Iez_0)R$V8ya|~c^Uu~BL{5oZtV5sgxx%UqDxYQDFPCV)k z2eV}G?;j)K^&t9rEa?)KUqUPMjNp3*dK@R+;}_@A(H%zcC9q(YTe-Lqy{no4Lo&KS z&*O;9)0TYKU0*gv@_$YZDsS=DdwlVXP;SPd8{FNG)3I6wMrkF-s65h5T`?7#$UQ@Q zdlxgE%-WIo+umEqt7QPQ+>D!6*j1|?E&i#+bpNV{;Jj-Fcx2iOX1O~h>%$rDG{End zzNFmPZZ)x?5aL+vx}SSL_CD%ZrGlg8(BIFH?qN#}+B?b$R~wt)p6yIJTlEmW@BGuK zIdl%wwbyNN%kwKHBiWpwuvV5h? zg>+&qDX_R93OD^~MLp|5I&W!Jknq(VuQ;sBEcdl?E^z(hjBkh1^AE_pKkEBHyv1a! z9{7e??yXZtKySl|*!%HU${jYe6W?y=)l^pA)f6hP2ZIJ1z=sR|Qu~*5fm3WCS2Ykd z6xzd{^(9??m=_GFKL?z=-!b#>**K^kvJIH+%wTTcn0|>c_<$iXqvhm)|bOoMy*dmBF@I06q`{s`68_=^mTU z!dDyDfe|}esQQvlW~K^$Ir9$q7)!Sw>GoddQQyR5VDf@~{!F@IgXf`=RuAyyF#X(? zbTifkp|z3g#hVw=^At!2N-Fqf@BLs{-8^dlp8WckA7CPGyk1+vFAw>O+Fl<-%O?0x z{h4%9r#GU4+);w+9eN%B>E;hDKqC*&ZsG%znR)Y%jzq5>Hll6%u}oJv@2k-DaVz+2 zJD=%B9{ntoH*WU5`Dpq* z1nCaC8N&A)$3mSu^mjX?OZ(&stqhG|Ou%ER|BS$m zfLx>->bZTS+ZL0IeX8U@Hd?}TdnPC2@~g^#pP9{cb?OPY_VR4-yM}%~PL^AC-5;M8 z31D;94QAerfqraztGh2xBq6*&ShO1&vd*^ z3(DM<4|2<9GF@w4IU4VwAU^YU9@C+jWvJlu7;rs1o^sXTCpZ0=Y?GavDR*|&H86ds zIsS5V5bW75r1Llb2CiKnfxoPzpCge@W{4I1&?^VU?HSI@TWvZ9?%1k;3mobDOET~A zn3?c=(+V_X6n$Kh4*AZ6M%PxOtRHQlXFYoVdcxO_n<%=Y_k;_0wF&JH5Q9HviPZLy zZt0{#B>N?i+whlu??<|#k;!Pn26<2|`FAs`T=T&bnl7I66W`mP&2)K12gRqGJjLh& z{oa%;x2m#3EH$FWsWygolQ-9LF~b76yQfcat#(#0a8Wc-PdNrX?<>^--@2hywT}l5DjWW ztF}&~Tz8sMQ*l^Idmx^=!=fZLoo z;IMBz(+xd$5-2bFhSKkNG98F}4f5V?1LGU%`^Ha?%*8({r-`6nHkaBm9531GfVGx{ zQ`c*xyRgX`Tj&nQef_gg&;Ca`r|wGBksgmdy1g)La+8L{3&-o)ejDPJmId*nZjj9dU4uEBgFGKJ2*~6-$#)y;g|<# zm}3jQ3T$xC`jYN?x+3f-0}xxcQS~L=&VvxD_AhEm$}TmC!da?e|vt5PTWagx@m#?(1@>B0KJM{A*GB5kMH-B1Wl$;NW*|N53^-x(hwti=Fhu%1>oD`OFSZ zTBqJg-+GTz$A8QVBHh0Ew?q$~bc%lb$GjlYEjx4@yvkDm(T()|5$X15Si(!iDyYAX z6IBn=J-KBC^JeFXQ?)s@C?T=>bNBHV(@viWQQkS7xS6QTY5f)uSi+U z^L?AS>Rq)+Q!X0I4~(YrNXNf8fOye7oHnzCy00KzMafIy`hire_tb@%*ZW+Ckjy3E zqLkxIxBY^*u<~;nHmDm*x$6xkkTlB;6>(KzwU$2}oY^kXf#+28SaXzk+wE-IVkC)>jzaYbpQUXcc$VP3VbG6PyfIOs-Kds;+15sg=8H9aVSUaU(y|1^H`XC=?`*Q zFPTHs<9!P0w11p+YIvT7Puvrz^Ev6xejf@dYzE^I`7X@70{x{xePRU8ZfT_YDVcXA zYdsh#Jq3TV_(ZuBZ7sn#*pa(X{FXmG{}Z~@FcUgt)7P=2%O3dwby~VZ)ps|Ud216# zBeXpR`nm8-cO+>zO57a`wM6uDbh6x*kbH6EsB{=MaWs|Zq@g8_RG%n1>s-VEMQ!YL zj~B0K_rg8*2kGvCCrGbvDNr||uMbFfuCM@UE9^zH|3otLo(-KXzP#HUM@*vcYsoy9 zv1Q^}!GrKxFZ#Z_Gg4Iu6zsTEzvujSEpyydH5hU;E>QI)-OgBVv@$jx`tRM%bgXtJ z^R!nOpy2T{pqcAOW?r9vd1AARhR|k~8`V$AJpFS8VtMU!=sC}k$}FOLN9h=T*`fyEO~N#>qG;bqzD`Tyef|sb&!# z`5*shBJ+mrY2nkXQt;8&smwe@$@_pT$@_q`|9Brj=CR%fEK)1yCLB-U^8cOUL<4lO zfy{U~A%lJ&Pr4y5o}#A*!eByECv{&zx?$ND&=~hPc)k5FHU5##F=`3YQ45FA;RID* z(xpF3LX(FjL&ahfrb|1jgdRW4fVKC^sPT`?Q`7t@oOt2@H;uQZjyKXZuec^;%*=!r z#$9CA_uRt`jWv>M$sd;-L_PaeWan_PM!!j%;@_iOO!_Ez_vsZ7@|&IqMLJ{2n!0tn zuY!nss#L!xon$FrI4)o@823`2>9%~E2m^HM!HjkE`wueD?6f~j4|E6iLGsMJa;+&a zS*{T5Tu$fJgA?5A>Uge6yNX+qr~?a+E5Ubr>Gyu5Yn*NXGmrFzUz_RgQ%HB?%pln3 zmK-!#L%-)F-R`O}Q2ap?9erj*)q`{*`|)t%=1gF^F_j41t z{MG{Qb)fq*=@dObgS-nfV8|Ca(6gVCPW}CFkmWWG?lHZ>+&bY<_QHY)~Rrp0q+7rby3ABi#(&80=MDhK409qssli+|6k0<9`VmxxAx} zOVUmL8;*~KycSQhZD;1yjvk1s&-_Mxlj(K$$-FtCYFN{{TwMLf7x!#G(tY3F8~5EL zhZnA)=WUX%xK#vWvy|bLP3Nfn(fx24Kdo*DXQNckC0m6;+p-Se2d$`jkZ#AgaH#V4 zGKh}yXF4ZI-+Mhh9+c+M<0P3^pOp@$-?RbW7t`MiOhTvE%)swo(ff^b3ITVVR3+ED&s7n#+``%R;CFihE_}9?YL|f) zOPmI|4C9{Oui*||O@zao^3eT!7ixcyPDo9HAEhGD5sx6IoA6=*JZ$QZL`x?zow)x( z`1#fnw72LXRS&XU9lvyFyG;ryC#o^?P)<60EsQ{K*W^-p!P$;tpTnV?&9XUMEmVb7 z2mN5l-4E39OS*f0CeTTlgRch%pq~AnbiE}1;HWef!LU##YWqm1V=x286?_IuKGO5% zNH=YM1U#?W0aoPga_U*G;)A}zw9mTS`G12rxe^ClvtS4e+DNa@Ksvv64Q#GG9v+ny zQ`<+nIr%F1&-#flw?CljOSFNeTXWevW-ZOX&_4SE? z8k0Jy{ZV>WQz*UK+L)MmMHKfa1xIR!qsMRPbzDgo_%#uSL=>S-lZH^`l1}t_E(Vcx zXzBPWX1VjdV(^2NQ<0-p4KvTd*BrGP$LF`MM>28jdX{ueH6~_ zc!FMCp}&74U8UQ7!P&$Mf1IYx%sXLuSGc*t3r~4Akm)RLRC4Y2qVT1QcTmrECd*Ad zWGBuGc!GqY2r93+Rhj>CJ+Nuk=xnFEa}#mKoHb~a;}j~7bZ>m3u%~J*I?FF$x-w4= z2Ne#+p>^|^E+WSkFZAk*jZ$7RooSQ>)*Axwf(!k)p7s5|w(o@kHdd(>w#*D<*7w*i zdAwUgj8Cq)OO3a{*kb?2kebeO`TRTifu^J)R4BQ^)Ogo(B96xWV^*=zc}I z!tK++#v&)!Jdd7-Oghuq1t9)|AN;fEC)IwWOOLn&eytTjX~TZh{vh4*L$YwSvme}d zjGk{sy5IW@;OtvYu%>Y%v)n;Tjo_~=4%#NAQOmc2uZ|-=@@nxXTURA0dq}x!djn_)`ht5lACp$`6xDc_JM-In0JhKpe$#TTE)eNaT z()Hb$gr;tofwfQ2*MFpQY70W6G|aG(wIegHtJogY-A%yv-qP29WM0?GWU%d=0hTPC z$ISb#R{}ERLU6#T7OI`eJok6|!Q4VOY}C+;%FAiBHAf$5*zWBxL({W&DTzwhxNhHPQLJsDt$jg zx+{k9XtS9a9CvIqRW9iw`a^W}J%BpLhcI2v*kG~6)d_Iv7kb#ITkvbX)uAsZetMPDJ^2o8ebo-aW5>as<1Xo9GoGM6eRN^| zfniMdL8lE}e`X3p9}i)=ML`&G<;Ji?%Yy0lM+#`0i!p4Lv1GdR_f6HaG-oXD-ujhX>fKkihn9jyu3Ekcv2R%J`rt7?WS_rdF zgQ1!9dyz0q?7wRPEW{jVVEet~rL8AY7=oD7(`Vi;BK(Xm6s-pUG1J6p%`okwHw zoXkt$nxQP!Pe~WCIS{+a`~u3!Q$WxCOFD=8$@ubZ1^9RnJ)e+t%WVAcm%)<%Z7Z#& z#$D2lkn_SjHfcg-2YTKd>DKIY!4_&mVAa-v)b`aryvKi$(%>$3-Qt|oJJ4gJzA*Xl zC~6!cU5eyZH$|GHK z`)9Q2;t^yg>%(*gZ}TPJ>e}MAOY}M-WS*V=TC~iq7?~`l>r1)`8yu0i>M0s^WfoQL ziz`mzykS$h@C#G9>1`^o_hvsBWl~Lz8>AayYY5ACjfR$;#nkaZx;U{3v^L~mpk!U? zp8cM5Q^Z#A*T2!wZU+4vj&$9RCG(`iz5zWc3##9fZo#TqaJuyi5NJJ^>d&O>lNbT5 zbUVO!m_j{2T_rr{D*B}I*LAD7&4#ytse(41qh&+2AL(TFo4~&*V{m;=4%L37yR� zbXnkl?|$~9+J$tVVn@NpBdzh!cYvw~>B28M!-O_dtbCz?S?=!jV_;6&5Zt+!{$CrJ z=h8e5{<uZ);(?EK;6cudY8TSA4Q&+j>m}DsevZpm3ytuKsaCED$3I9F9dH&!k?!5pj(#lR37PaW4&`d^b8$X!kww^qXlx);+eyIcQIUbOCBS)8`H!>rz=4kqR z)2lwch2A?F&KSgc*0nN!C0(&UE5gHgI&c z1AMDnY3`-{6Lxiv~TS~neeWC+hsg>ZOfFz8t>=}gUs!r2d9U}m@(eH}~W^-FSt z+YV^M#$x(GoJ$LzicZ@S9P6 zn0aT8*C21({`jRFeO*H4vHsKg#Xw5AJj+qpDgr z^zZ-Sg1_xWN-^e=Z(Zjy^W4(5p+C#}p%0n!nC_d`8q}pb0(JS*^WcYB^%kEVKfQ6x zs=XX{FalhQ9wfxMr{bRdlysNJM}z3E?R<+9+uhn-0ov8~ptHgB`yMi{a?)L({l^cq z*3#c4kS;u10p2_L7~S3C#N0l9^$=+6T_J318%w!4b0u^7mfaG~lDFl?-<<|@`lLZ& z$V2LQBVDmn4rm;k3>T?Mp`PtRI{m{dK;iWTu)#-$={|4$4KzHbL(8i=)Nw@S>9#7t zaqFkT)jU0qf^@C&{otVclVLv(tSRa z3#OjchjyOy^#f0S)^(VUDljY{84FFq$=isk;wN!s0-Jwgl;QXR4AX-D0 zo5>Fo?2WgG#O2+*`Y{pSKhzD}?V$gAO}ZbwwD7iIX^>({|9_fvqpS0g-KYf+FQNY* zPrAd6bA?{|M22u-{-)oQ2IGKnOC^Z49c7`L=)%H>+AWnOynjlD-lH~ zo#2KoQp3k{Jn+q4snqdHx=yR7NcGta{4G0#+P|dJ+j1Ly?>8G8K>E2Y=@j$b(3sz; zxX+Si>NqEzePj{HG@6BzBx{NE9IrNYpW*(7{}%DF@0(&9iUt3=A0WA82GxF~lryxJ$Y%?iHY;@vvaNBavC|0m=W{Vd)U0GLN3OPUhJ^ zFoQNK=Adhzh|25y87Xp|ksvbI+Lt%^z7=J?jD>dnmQ(FQx^s40(0GG+&|KM==}xxT zBB`NiaKI?~e|%(KZ;K@1^Rjq&W;6Y~j&!d=a`>sKX)xp)eH}YN!=5v08!56`xP&jb zy8@+FM#Hgrd#UXsU3%1g;b(UyylK8l=-CfQCz4w$Sngd24Ytwiq>}FU%5(fu6ax+C z(%)Z_?&R_?QS*=tcxuoH=JrMR-6~$`ngORT)1%yyO^12w9mhDsfc2dGR3C6(GXj?H zp`TNe?)j8UAWX7$w&581Ki{NNP*Z|cf2^Q%tTfeMNVh`O5c)*8!|GIbs{IzYMsskp zm^;y3$2klfAl`JO6{xhvPLnW7_J1jOJ_R65i7|LFzx=Qe}Zs#vBQm!=J5n=6Ep z(HTs)&fFAeoG%mloo1K&^zBS=XpJX`K1i=~a-@+HM_+3fb>^pW72n-qzLy*>3_lKf z_AAn@x;!3gUzNeGtp}LSnLmBrC*3nMS-6<<0YCS#UGI@Ypqc4bP;`0}wLi!_ z`# zfq9X`VdwBf%H1$a<2|(8oi@ky6V~KCL>B!Napzt7JWaZwz6$8hk~BQ)Kh_N(-J(M> zXx_m9EM-p5Lm^#1yF2{N&Ci6DK3P=%Bb{u)LSR_*Ui3COg>vmfKR3;oznGW*SIp%q zycQR#CE~CP`>6Vou08qz$ot-a(pJ**RY+I+=PeM4CSlVlhnaapRDXgm4s|G5@M3P? zS`80)cGo*}a{LWuUX-B+ocHQ2(s@g}Z@09CpATF($AVnmWx`{W8yOCK-_4-tTwDd|#k7o+2gZlSV>nM{}OH5U!gR01zc>F?gjJm4@C;Vzjb(+55}N=u<`1FH=VZB$)+s=4nKS4g<&S%|GwCK@9}PQ?C2%%I zBbiQr!DN_PpbWm>px+a_WfbsT+xBunrUIv-|5R9Tdo~P8>!j*SI$h0e!Y`?8*eT6X z^&s7dtq832jDr)s<(PR#8`NRgBu_ZFK9q8^?BDR8c8}#$dzEl{10(UX33tGXtoP!c z?Ls=!MN@E8&<*hI4n4n^bb-1GxHxty1Zj$Zl{a}{0}8qp4L1b%G2O+}wP>Lz9y*`? zz}&u}iIwQEO)Sg`3TNgi4lhHEE%V^xz6DesGLPra9hc=avo*O>{ojZ^;0MrW@GPny zkZ#_ZAL1M5N5F-v>FWd1Ic=>336ef|`HMRjKOkM1j6P24CB}!A((93t&Z4mqwW`Kp)Zc(= zXVMj>R-^P=@%Yk@=TtkB?sJGNJSgXjYnQL1^0=~P{P&c6(Jf_H{>$GLVo`7^{Jf98 z?0ri6AbK$$_VXLgbQ+R%Prb9|!!N${cb{b5&w^%GfUhiKe8N0<{#|KEUgprBN^yGtHA z#n8`@NEctTlW#YA2%NXl&s9jbgc}Y9ub2R5t)#DGJM*%*OXZ9C`SUh$l?R$pig7%4 z<=0a4OGvj~G6&#d=p=li^fk4ANf#~JgT5}Ah_zb>njIo~S}M4c|zj-ye~A+HK}2 zX>=M6c}aiY7+h$>tM5@3RZo5?T5`TW{(a_>cxwJ6>Np}@h>I*XTT=wOjV3Z(o6;}j z;|9U~cl7=s^L~|;qlmZX#4)Go=Ov^IKVF6|YTpxg-eWsy<83HM{D-Ugn?!A&hih-a zy4^;k^H^TkV_Ax34SR~hpG;x8q7ZvzeDnn}noF;9N9LW4F5)K~+=VXMu*;2J@QBNQ z;w>~6W;4s}SfCGehiKx2R|-rwZsia-u2mkJtm@BneVaw__L&RF_i{hV4Okf@ehLpZ zrsak4cK`o>wEh0$KiZ@-|Jx4iF3-Rjmh^oT>F#!Z15!&B@M&Fod?sCKz%=-A?O8PT zN*&ejNq5gE-<$TV>E>Id7m`tPQ&5_RbemV}T zXcyN2HEO?+?vP44POlmRI!v9I+xMV-3Z9}Z1NR;o$IM&($RC3p(s2FP7^X|V?uUE# z?gb}}aHia|#%zA>h(%ml*ix?Mk_fDp9}YF{)BS*S+l&u`!*VrT%RzcvBi+bxX8@F} z{TFnFJ`a*^{kt0=C;vAn-9$g9CY}EJUT{%KoS2WCO7%ZQvrD(X&-~?Hx5QHpnp=tw?^@q9FfpvjA$LEw^HhWk zi0*Q3Fk{{w)U#bkm$mpf@@@%%F9*`^2T5miZ#jxE3xlgO==VLO^N#UEn+qqx?mT5` z|K47n%h&6l5_Jr}&3EXmM&=Wxp+#?cUOnl)O;$qnbBDwF0D2x7>6R~W5UcD*eDlF< z*t5Q*6E&rRXPPoFJ9#qGm6c|Ify0&H@DO^wD4FNhbP$XQih~!o)9+JAmmv8cN?)%S zxTco|)elIQn0yI1z*yLDDMnz`<7(w)@L4Jrre6-D+?^p=+@hdt-ad5=H^*2q?p;vD zN>?9H{eW~0GD>){i7!4@L(i8dozXa1>?-+R*Sk~Gsr^g3_8-sDkB^%L*N^o3Y0_CAGx@TwV#__2Kv(^)KZ z#&VkJsQQ>5RSz;x=B_gS9kEXMdVDg|Da}^K{R)0J{TArwIb@#yt$t|Ubb0JhLf6-M zTsGH#=*p&-KTq?eW0#{9w>6>oKjxQ^ZiBHi8q%f=PIl4HJ4x4a!U>H~e+qUzr=K5? z4i_7uw4D9m_AL6nIO!f(t015717M`Uc2m~h6t?8l137PcyeIRz_h$$R9);jT4*gz; zbZdiR1-FegVD(FOxpOUzK+$h=C^wpZPOXqt5B=oRM7r{P}x+deA_4FNJ6{=j)*(8KQw|Or>v;zGef^?G?&W1l?Z;JiuUQov`>4px9gip2@ zfNi&~QteE-V}~MP%f6vt-)8##k#^Furj(c49P_2R`Q#5@fvsng*jR~vo=v)ep+6*j zeva5fi|sZ_+NDd&E8s|`9M6=4e%~NH&3Vmr+j+e zA-R3_7OT+Dj9k7iqTfT1u2tRw-OCsXM!ZO&%AGsu7bpEXk$XGsDu*35pj!>jP7qWl;>(AY19Mk;e~@m^X;ZAT*i(GqstYr(rd$nwC{O~* zz3A)WVeN9_!Ygr&m6Mi>25hiIZ?2`osjnAP*QcaA>~@Mb3(SH|!5vJOTU8J2aSV() zH->5#GS5u674R{kFr`-}(^aP303~~7LLJkkl*>#x$R&VKPLHucSOEy*f=y@D7uUGdG6!dTp zczucY9dtLwGz880WS2m6|>gG?3cBJY{x>+l-v0~R~L4T)jd(_(PujjL$yrR7vTNEdV@0*7Uk`rptg;4^c80@( z;k1*}FZ%zs@5##3-1+r}LV;xas{7E}M>?eUm7gU9!Ub~l_L0ti%|DT+Ss;uz?nTv? zba~GEzyMoqc+XA5bZIZEKv-P}-1EAD>Q`jmNvVsVd20aF>~orOHMVv9o=UeS^OjiN zb4(&GxMT&2-fcxa_Xp_;YUA+*?MF)G#!1q66@g3jcl$%hiF39G2aaz+p z^3uKZ@sW)@h`ckB+8?9~)zraZb=knhdJNOaHVwquTegCA>jBf9eB6fKJhy_|%=MUV zQ%wyzaN;cRYn;Y(xhKbj5DE;skzWu>mJYD-Ba1T@hJ@*Ic z#u5e>#EHkfFRSS=glm?!L^miR( z-pGJfq$eK>E%S=0@18cTGZX@zC~_{Ht9h4Mk5RAQ;b7EzdR`joWc?naf60;HZ429V z%GaTT8EYlqYlKtnOy+&t5s$QhBDh>l-w%@R%^eFAev%g#j7?|eWhu&`#{1U5RxOR` zCO&x}l$#9zeJ-){62nczPD8(mhyTZaZ?+Ae-}K>W10S=59uM+e?>F^(rr7kY-!)$Q-CuFIm1VE4z2+WwR5qHVm{Ng#96~x z*PL+PjA-Wey{z?smh;pwSHBST+`nYGHQT2{Q_*=;S$%-%iq?fd^RIu9=b}7jxj`rA zLdVNTQTDj=R6Pb6+lrPiT`jVjn#MI&aB#s?BM8mXsP-eBY}XiA%MXO_-!5UgpL@qb zD=mF^!p4i~)L*(mq@@Xqj??26S?-a@@v!BpI`rJ+OXW3B(iZm@FXwW#mU9mI+mH|$ z4xObcQO|ZJonzosG&esECa6>}UG#BpBrc4Csu|5pS2x20Wk~)X&?yRJx{@D5k?GJy z@Jgr;(_N`BMqWqK;HkC0sr^gVV@}#n;lh9rXf*dHGw-0wY~hzu3LMaH5z|RK{o=3H zrokyYCotWZ`_K4mDrvAHavJ5fm~=KJ6(sZ7N=Nu$$-n5^zKw!T&Syc-{Xx3pQdUq` z+7gbl+0JxUdu*V^c4N5Jm407K=GE`_hl?Fg0Dj$7=Jri4oDHkT=K+}tfpYeT{_$Gn zMI!E;te|vA8I-)=1p1oKr^Y|h8IAA-udHmKr5k;}Pr6}O)&i-$LqK*lJFhre^3BO# zD{$v7{hox(d-dWu@IU$o%nbz0?Q<@E0SXp=0af5Snp(TcX$;DHl6&*+?&$nxsG#@+w%-?YlfZTytb zIL^Xs1(z#ckM2tOLcfu+R6R(iW1NHL?w5sOGwFGFq#L(nop5Z2Hf)ujz|8x6niH1I z62W_l^mQ?rr?un-uN6KU{wjP&^()eqr;ioi+OGhA&Z6h_IaquZ**Oj3rny|^Myw0O z50#aK6Rz}p71DJFOvMZA&!IKm^ms+O>k(7%)lLEZU3i(=KGGfPGYNlta{;})beris zc2=M&-B|4WG@j`;X%wIdeW&1*hwqs#S$Uw6byWp~}W8*%-Va#}kb$Xr#&|-MQnEwIi1Q5kzMdseV8@hr?6w>(m+(J8az0>Q&uv!`0P-o8++Ih4}pH@g1s5#7Ih!s zCwYw%z2A9~@1ZyZ+bi>^P&dy z#gVxda7vUEGf$@ZGa9?j00b3>Fx}?H4@mBuF?eW7U!RiYVx_aF&j>lFRy3B%OTMWg ztSLPr!ts^7?Sa?m^_Ko9Y!>}Ihji;bUZUOAA;`Wry?vxptXs!>y*||B_9dHHuION= z__`v8BL1W@-JG*SL5AvXVJn}`bPfHj!QKR3(6yx9-4i;(?4_qf`{o_yrE5CH;|w@t zEBR);=Xg)LI7zu#|4X@~8}Miu@Kw%3FU#gI^A_4x0t3Cp!rgWBd_6MnXxky+>fT2< zyoYujuKffH?F!MZPw)8J6*5>M-50cf3xGZALAn;l*C^g<3I98gJ|B^;_o*l7!KYoI zGjb|3FJRsibWXBXxX*=|OlP<6Hfl6UY1(ETO*wV9^PFn&NG_Gn%q=jtH9w0 z^teX4Bi(lJ{Ui(U_@fO~?kYDErw`%#L{iqqjyX4WA(iwf*lRTX-j8%<{5lj|odjEd z%2Vx3x`E*kJ<3@CYi#IooOJb{HPK{8$+%`Vhnd&({;z0^eJXsc8_RSxxv?BKG#%ES zq383HHgG>=bPDq!UCvuC>`}f8WEILW-KRz`Y%-)C42=K5+`eOV?l{fw z6d3&A57RxZ8;A2^4uN<1y{K}<^<7Q7?C0}e&bIPvJ@w(v(p9KcvX+0(@rrasvV-9) zg92ph;=pt}R83&<&)MkXSP|20yfFce+Lk1&x;&8Ss#ScTwAl>s^Hm?FyBs+gPMbCd z81b@9moq*9y2V8R?*wVe<>d#7ok!oVf0q)-T%VP6bED0HLY*djmOY-Cr!;9gSk#&h z=1bG_`pCS8;oE`7mc^X?vm|ET(%b!@(TxoBbGaAO^`2q@S16`}iY8m8^HH~fC$-bj z?iciUAAHG#&+e1Pw_dx!%cmOQ$2S!5jqd)qXMZ6bUpoMg`Z59k_1C2ODd{#2zkwz{ zzl=hq=;u1hSf#fvbNi-G$rdinO~6Njk5PG+I@;oj zuf9zW*N@^SxQWH9yffjl?7mF*Nhe9X>U<`A-SM8f-XQa4pIR*bdm{-}?kHmBnF|;! zm@yTeEI!9{&Yt%{wm~?oIHb*VD^t5cu%$l~2hr#0%4>4s!>O+ui!Qfw1(N4Lr*Tm10#-Jmy>i`R%QxAFNdKA15%mgR>uwy zq@tIiA+r}T-GzM#;@F8nXwd;W&*GSkuxf0FPT^$|Id<(RiF6 zk|q9fkL~u28;x&%c`nS38P3exC_4aG&g%kapVIFK$#T6W?nCdsTf>jqLz#Iee7B)( z4Z2Y8J3a1_d6%z<(Sr--l8GqvIIejjfbUK#5sjF*ly@Dz40UZaK$R{FsB%d+uTT%Y za#(|AInv`5>5}gL;JR)oN&Zg~$jp;7=fVDzTBP-II@3K@y96F=m4&Sd^!y0x^Go=a zw0ftEANNF`?_#j!jtKnN7ma(4SEMu4J`3ayI|0q8D5i7QxdIL++ymzVe3i5m3QHHdQ6PJ+L?<=|XT zSElQ%`2g}wMnmUG^mPfDm-b!(?yfe4KhM(JN4l$0itzkFQ+T17?K18u!->nxp>Yg- z{X*t>5BG%~hwg)A9v7%_?eSrG@vFwgO&`+AMI#q9qb+?RacE5x(~T`tfsyIf_*>=& z(6b+qd7f8v;maw#aV?u}P0_lHmB)6b(p}}(kV#q6c>4$!hXBxdDo;%vpOoCoi`E|Y1>ovc-!!V zdu$oPZR-r=ZYL_jx6X=n!j`!w(DfsEOm|Q6@1CSx+r{F4^!LAHJuYNs zz<^#w;%Oc9^Tfc4ZqZ1uf~GB&hxmOT`{CA*LjeEBcQ&MJ>F$G*4pssWTYB6eUGg|7 zydcjB#(ksT=aDWnL$VH#>l5(3atiKw9FeZ>f(I%XEQTG*CX|y}>*VmEdV0f21x2B~ z%2Ei-UaGmPnco*78i zbbbTwOdd?RIL~9e)ca1ymshUwh6j^y(Z^yCxbc^$XS2& z67cMeuE;TNGwPW~y4{9>c*3(Q=)qX}{UGT^+zi0&aZ^yN34Py9x=8~j;Hm3%@cjwN z)PGh;$6GBy-^=G?hY)wFT}Y>DXeczU%*KTYV(Pk`bX{%JxXzkv{O%jQF2t%Ez4;x1 z3B04sH~#4_1z@_t7)M*VQ2l^(B^Tx3t7daN@+Cdbmvk$0MX)+s6L(ZpQSD5+lP@R3 z5rby}{UG{$PP(5zXTvP179qsHiW01Vt2;P$VU65wNgZOf0ae-5CQ5K@?j-LTv0# zUVhIx?>X}@_cQ;0&UbcZXKQwLHZ+HFx&8@!Om;NCL;5TKdgw`RRCxGd<6PbOv4J!sjKkaNxCzRQr)m{Cu&nWcfUN`qet7liOhj?%&D68AHxc z{ea91^;itvrp&?#7W6m+>EwR@0<%9(!g1z}c8$Y|&6-qwNf%sMj&@$zj1vFR*I&|AD;!3V z)!R`_TrAbENLLrR2Yo!6h;x37W|sSAW+=LEwgYThmB7q9n-qcu1=b<;*X(kWSJw(I zqJH?pg$c|&)5HRhad;0pQ%XOtlJyv$egS9}jKdoh`qXb0K5W08YG=}I zTv-Fo-M-D~>d^E0NO#a936_>^My(2NRGxYM#{aXf_h z+6cTR`YH;Uu1D2_bYrgT;GGSt_`DUKOqaDr5gXqr=OYT}`&}~6sze@dP>c|b%c0+Q zOQc)!aAk7M^GXe&>r)ZPzBUJrK4M4Jmvk#))&qy`1Ze(b2Gf1g-3U}3#KOMok1^fa z;4<*+@^qNjM!!EI%k`dI2_6lNfPH%A&hiSH#r)Qn_7MTH{ z|5;6@D^U)H$4_1bU`8#qKNj!%U30J{ogceSLP(Fg4mN%%0@1qBu=jo=-3;$n;BNn; z+>l#SnQpwK5}a(i6%288XSyXzHQ})dzVOzqe$@9fWVvt8jDvTj4WaW`HNe`wCH}5Z zakC-JcJ-zD%cWzRxb3edaVof(OW5Uw63cB+)4eom`$$(*XN-c3)`O2r<}jVR`(Six zNC8-unZk6(Z(J7^+GL=B{`5FCS?>M5+k|WLPK$kAa+!H)@^?7ovrCvcG>_?qgl35= zM_mIlPiImtwycCpDjdztJO7AN{Ie6C)R6$`j&yxVH=^AO9b9RH{@kJ4k946@y6CpK zvas@U&)lG^<6+d$Om0QYPtpI@5g^^DoK3vOq}ixifgYD9UCQx0+;6Sjf`F#XTtkoZlkNjlf}NLV(W8aPO~zdQyv-x`{aKH zBd{uU{E{v_Bnl3k)bswMz@Oq7{2OBBec!enT?q<;ip`&x&eUZ& zQeX22oHe8GPiKOO;z$dV>hLl4{NQ&>de-vrht>KrR6R(yb(JK1x@0BTHjI8QBVBcY zBP=jpjr{u2*Fn-b?(>1iPFJAY(>_!6AYHEUbeN#E2i&>0o^nSxb1qzYSG7d-xXMMV zgW%iW%|OMt3iNJ2(z&%q!ZQUQz#U!4bY(sFO!CtU!0v+wneOxOS+H*41`z!)pXq?i zJh&x)4v0JGM7bFfTHI!{f+~M^Ytfl^KJd1)65Qeu!*nN71E8&^3S6K3k~)saJk=YK z@a=;S;O=+8%v(Kg27C}u0E*u1Wja=U$#TbkO@=nt^MPJb5S6!S;zi#6z)g|nnm@eo zFBQrAW$M!Go{Q_&|?XE^1%7S&Hlcm4+lta7s;ZsnGM75q<4?tB1U`wwFBt)?4)~Gz74DqE8=bT z9@P1nbSJ+b1-@T>xFv6snNF!^;@^y&6{6Sw;wTq9+mM$yc-L+#XU1zrjDX$?wP11t zJ+4f;I#(}fIZ+jk`Wiy*H`0BO4}d3|tAKFp8PhHD34oP_RbZSJ+pP!+fJXP;fh843 znR&nV1we^KpMli8eN2}>a3(B!umD_4*h9I8vsJ}sCzV#OnQmUQ)UN`~H%Wwc7JI4w zN4f^-GOq8gbhtQ;evTsDO}t+mx^q5Un`Vl7_h-^+DeC~4ocU1Y>LX^kjgsqt6h9A! zcBe6&&24?SCltcA(UX|<-7<7IeEZZ1o{cf1?%R#;sfa<~lIrBP(&{13BB6aq9xSU} zMU_js7hm^@-|d+XFF4ZmC0$MCI#7IY9t;l8Wac$&lYy2$CO`){`aIdR@)CDL!G*hL zet`RA84XTc%!HcuQ>gJP(q&X!2Dz=1A$+@@Y8TS|>(YULZ(732oAf#u|Cb9lfG%g; z;Bk*^X1QH;!Ek$!HGr-3`{e9WS;7DQ2gm3JX<<~J3yMiH!3DD%sq-4?PJXjR6{laK zq`8xs?%9TYyz)hJy!JdjuYk{1;OkEMekdsF z94BFTxkjgFox5=73j029z<;hIN4meu7dupOvmE|w9XZk|*!VdPFm&MSf78!-q*EH` z4>nes;Qf;wsOuK#hAI?*{kxR$%t-orsUs4&F4r~OkZY}+%dKI!PlYiYmr_Ty3+Z0W zxrxNzhwx__jd7XP1ic1>xs z+o|hc{pUZv|0Nx3e~@mrQ30^qri@i0=yoC9&!PLl0IZE|uG90wNGJcY4*c0*j5pmF z#;nIU;}+n&Km&gmWJx*aT?WFSW_K?A^l?7r%Ll=fyCzQmNx!!zUEre4{652f;F%@; zeIw~!-so9_sLw$#>c<@1`}{(>%=|9UU7`mQQw*5S_JAc6Pum0jZ5d8E+jF|Y)n;Fj zx%@tUzMdp#%u^S)UCm)SgV;onW+H>StJ9dSKJO=R59s6+lIZg|S+1>#3bZW_M=g`b zGxHXn>RH>u0YG8;6x6$2$h^ev>2U3GFQn#+ss4PVd<(y^V;Oh%Zwq(!s3z2X^OTPn z;tPA{kRhQO!g@o2*DA5?v3%dO&nN-X5t+UmL6Ki?tit{A*UW;S)*BAw=pJt+Lz z4D8uPzh5O?`MY3bwj>oVIya74uGH~?=+*gb+;Oasx*ysXc%Ps0yi+vzsjOg9tBTLb z1wbupOX_}ubOY4};+Xoe(0m{Lyh=J9sS@;dhc6uTu$$UG(uHR)M)9#d-?eGe-`S9^ zPLzR8Ri{InUn{Bh^L_A&SDI(c2?Lk&ZG)E~A8!l1e&A?ozmaYUd@Oibm!T}vB&G{F zi3RC>k}z}*J+G9^GtCl&JG)nae#xoKyqCqJ1pg1ukYai))8$)6@LJD0(5tj*On3eF z3-IgtO|ao5{T)I7_T-um>5>j_-ksyy*E|IS+#12Nwe)dLx=kBhp`ZOT@n8`>u0lH4 z6#=zuC1A{&2h{!`oq^sIsOxYMTsu;TdLQScTXQKB8v9C#qx7RFS2<8s;HyeR`$NC* zR~po@)!Yr@k>}|12I(|T%V1^yzQA&G2-SY13!2u2p440er{~h&Ly+!lP&>NS6aY3h zPG;tvU34Ga^h&DHwwu9pd!DXFSCU#m|C{tU@aIY=LE2M=Ym~mm8-F*#lG~l}q|M)` z=P1%WK4^puLN)P>;XkSNBi*vO@_6K#3AncBU*Em=2kDlqd4rxT>O>tmE|}#~|1Cv# zA6`LDKVq0pVVELnxT}s6_t5>1EO)7HlTh6C3GKc~U$@3Q*W-4oW^s;wXSqrBlW?eL zAV~T9g{lYXhLwlon_>1~?OD2ANGEeO7|)H+K+_Fnsd|u3di`4DussZEPDo-ptP_cv zcIly{M*2EU=1shAjNa^21Kq9kx&bxr*SRk{rMR1(s~mU#==rxnL3Hg9dfbt8 zpB0s0#}!rl%Y87leWcqpbr76%&l2nB-lh68>6BWM;FJVcq-{fgkMnuFr0{h1jGB+# zulR_c0PFOvK^F`AQ~i{5zS_F@>yd{4{Y!`Gstt~!Yaj;S_;zm~ zK+p3fT}h>q_|*DFWc!eQFHX9}7qrC+&L+6Dd@OVODmV89efCa7vj6CLUu53*hf9H1 zhc=$~0#JEY1LTDmqint_sg6tUS*HWL8RE4IoM7+%M>?h8RUrH8L_9X(6Lq|iPQv6K zxYhPTNUfm9Pf0g@t0JtN>xjmt1u)AEm9>Jto4XO1AWgac-`4V~fqA^y@$;Oh>m7Rh zJ_hT5n?)U$q~ofr(bae9`0f`Qsve{hbEDBuiDW#mke5@yrx-awW!;? z2`uQ@#TnD-`+L&qj#7XH)z^?*GN9U-bk0rv;SmpI9QQ<<>7qGPsA8;&&EI{a+L_Ed zre_b=>GZ|L#T`rs`-q`hXJ4G#*vNExF%j_gh{Z_#M<>$-ER28&qZT1=C3+ma+eZ@pj_)IU{Fa5qzAC^rSBc6aoq5l<*o)I`kk-!oRR1HL-?C^dEvW~zF1}>uP1bk9 z=%BUu&|&(0H<{->ON52;e}dOMb83H(?)DW&Y_!}BHFU7^q;&Q0nbDhs(gW^PUZ#{H zx1i0G^DwXE4tS^G8tcXAsW}#UpEpSNb@l|TDt!q>eYru^mvoJmzId8qn|P|eI%efH zjdaGAWre8KMuX`d``Tj}2LXDpJJZxE7%XG`1*P-<-Q{mDjam;eB>?=Smfoafi(_89! zq3?W2@qMY2qLCeGoXO(n$mO~xi2O{ChmkI?{27}6^$8z#oSvsjy8hp;q3uihf`kfs z{we8-4;)4=rv`vOo9TI*q(jbAk@c??U|A=9pG~^Pe)?!(t0pM zbvx*GCi9kOZx;%djEAw+gP3{S5Bh`dO=770W+>%?B~^roxoTY6_(7axqy;vgDuPAz zcd33wy2)XtI4PWieK)C5^(CD|jXK_G>ji%`a-es=CtY%y6b^NYgicN!)PGeUm>uPd zOV5ey;x_YA^IxFJ)0D8(cx%`@k93~{I?<}RFOgCveLqe*gF1h-OVSkUs?g*7qzel* zLOLl%*ysUdmix$aQT3RqyF{b^V;r5#vpd)ybdAdweBROX*COX#;ilWi@#}*HPC8Eu zzuKt?FTJOqXGrH5`3LPfBMnPCt*GrI-TStB6#D57P*tYy6G>;Vn#)D#EfZe`cQfkAWymvS;k{Z6wnj z)!isa%=`xeC(-XeYQu+d=xQIXxaBfe6O)QH59pzZf%B+-O1jqdJo@Ij1}Wa4=TVUE z?XR7vkIgyoZVf%|L%NmcGSR_7x6!BydVVbFKJVEq-lV-2?7u*NAAeh`wx(Q9s>Z%S zzGmq^4%ZIo3oR6ysN<4!p~r17_+$?Ki|FeD>7q17Vt8vbGzw2<=6SbB;)l8sP*T4^ z=zUz0d9LF*lrb&}R{nTH2X4`zI)UZ#K~b> zIqgQe+y@P9A~%>N`ro{pHBCprp4?=py_TMLL%PsI7r?33nNVu$d#az3uGm5z%4CGX z{rV0}SI-TGuYJbDghv0RzO>>e=oVw6wYgnOyTnjPIAGqN0F_O2c8s0k5iM5Q{IhU^!3Ko zH|hDdq?`M|6{TARV+G4T%yJ(dxgv}%u*FFi>H88g@5;vILbZh*PM5c0=6$Hs6GU^9 zu)NG^>NqF!tk#_7yI(aqsg6S+4Dq z^kI~$bk=VW8N~#{D)3|jRUEBh&yfnRiq-$C4 zhHQrikKS-PD1GA^(ec_Okl`fYGwbsYRPOP*P7nUpF#CF2cO^vu`ly+6pjj~c_F z@jnr?ZldRzldkaUXt>S94nB|AF0k@8ONgN9(h*Qe;t17WWKWG2g>>x_jSU=7Gxdia z>a9O`zACK`y!*bB6mJ|G=zx4Yk(w$9KMvB{|uoD-Cd+%S;fo3%zyJ0MLU1Y>` zIl2qL?4K_{jY0&|NnQ7bt??4bx>%EPQwGWMp=0+rd=wS&3tr2>cly$B#4dWhInqg- z(1$7|ePM#W3hZ4E(%tH71`{5M;nkFLRQr*xxy%V_pMMVCt)s__NmtPGKcxv-MzBcX zB$WrkE_03BM{v2jHMwCI-lF}RH=&Ya6RG-=PQmVo;G!>ui)PX7N4nCl=f!ndDcH7f zBh{}+H{|6O(3y~g#{@y9`@U;0X!sO|mE+bk-Po8GuqDME^_fD?w+Ib%;Zt%#IQ~c& zH}YW@7-I1Sm`#9GeMz^t{|~V9=}5S(oxU$2-Oj=NpsJM-+_k?iGw-9I3eop1Kr4D2 z({&ylPITAwlM&7KX){1agB`jXBo=q0!^ ztPea|>d17WS#Q9acUysHH9by9<|);@1s_^0;I}ganR$jW-$3~B13(l>kN=T*sUN-p zYtI_7k^E$4p1;ixFl6d0;4=s^ohaxh`1od)SWcUr7n}DR#41z(-4J@-SK^){T``!HLE&&c>OU_s1zpe7?*CHmcC`OUS%*xnlA4Cu$I;`B8Zu(K5o{ z2}m^NL?6K~1YOM%o>V`jPPkFDUB zTlwJSb5o|vz3vRd?MlSUj??dtl9carlSX9lOCE3Io-H*;H%HFEL9Lfi@BKkKlkbWM zHHq;lQxmFO(pgTMEhtLcwLjt2zO>#~!s z{z|cU!Mi{_{kbx8`wm#uiS1IH@cVOgJCk`cmK+C94@|`?o^7GpnG8R6rc(QjbTc=+;CD=!0_Sg|=izmgyyUs0 z+oJ6sw%4@BcOt79x;@`)(EXlt8fzY-i2WR#bVY`$FX>u}H=`G8LgA=*`oAco+hd)E zHaLdEE9GygdXR3Sf+zA>>aWAH!S25F>ZX{TSvXpgD(2EqNb8e4E z+dP!vqqp>Z30bben)O0+&wq#-BI)frcWfHx@07zGF0JAGWKM}iBaedp{gSEuM!M<$ z>czjqwt?5{=Q3T~tZ<+&ISm?UU!(RLnb#F?65Kc}0qa+LG4sZ2KLBE@iEzS{3M%hS zl)BhOExkJ0F3<63PCORjTcA68C3W9Ux{lkokyYgqezz=rJ|NxTSG!T{Nkz1EVKTKp zNVoOvUCw_>9vrZIG4*^&y3T+PoQ6p*%xQkhbl|EyH2%>CKFKv_mRt2#2j&{Q1gOM_ zazPuea|Zj8_{niwxLVVGsH07cwKVDLFX_6&ojH%AA5r09`npQGYg(tp^RIqGt!DK6 zd(u_qE&~gKqOhjReQLjvu3ua}xqD`+LjE|8Gmm}C?`s-_52bDa!Hej5 zmZS@Pdlz-~{|M&4cB9&bbTdw#K{@9x1E-oWrYlOeLwH*}3~-{?e=Glqf%h!NZ-$Z6!GX5|iMM8d z=bt}g*F)oh2Jq-~0IyzTPpq8%>1BL)RUs2>W%x3N4OrG*8;=Q`5V_K|M=v1Alm z*dKO&_GUVTUz1S%dPBIiUd(h?GAE(gcMYIzCSbbI{njW7|Xl)>*lw3*Ak5AhYf4zzv4AL@7`-PL}haNzv8 zNb>~!K819Or-x&OLRT@Cb%MS73+cw@97o1U0a&W+4YS-;!}p@u^L=smn}1AK{&y`> z6x8vnDfIj+vfMLKStxJRVGucrzP^#Jt8-hCxTkANg9;6$sk$~L`iolQgOPDS(HWvG>TaK(^YM8G0@Kk*B zv=6EYqQ^JLat|0y!ROmUQIzsMDoqpxeoR2r=**{#|2wF)rNA4fa&h^tO@JaA`go^>2*2DyzPY| zys=9UhDH}K^Qz0OaGt*%jN+TAd7xyT?tXLp%E%7h^YEndE`NE?7nm4xEr}O7f3t7s z!Zds6C?P=|m!xx9(T?gBhrsRoO_^><&srm!caMiBUbchY?MLQW%o0$ooe_MYV8P7W znQ{=JmLS-&_7yYlj)FOAXbFT;l?qf|#ohDVEB!)lO585I=kFAJJLbwxyi7m_C7Q3*s(3(l%EIud03HI5A~0w z!1ZGgoM=aX*Kw-r2{-Gk88-+I6^TCDLCZ&$SXZu<8gD1vnV$Q;)S(7AX~Q+@KM16I zxg{LlSNVVp9H*n+`X{Oh&iqULG1ce$iHCF25B&SVO&UeV)lq=V7p;pf4g;`{?z%)F}mDsA+0H|f51SwQ)# zdy$Ho8MS?+`^7`JDx?mj50huQZ-&nBO2s#{(Y1wHkA8~+;h#m)=wh=HGw-rx7_?U1 z10I2gRNkMC7u@*7c*oBAE>XL79gx2f0;31h_YtHsRDB6NlB3{}L-hC4qT1XrJN zg@-PdfZoS1>Dp~g;i@!q*gf_b(|z4;2IYnigOBgBw@+W$61E&PgzbkbsJy`v5`38F z7}4f1IbmMrDdBX-LXfsCjcPyAmCVc(qVKx`rxWzNQqsx!j}Vg1hXILKnasR9d$YtV z?|MSRll1s0nYUqfI9S&j4U@h-qV^l<)C)6#)ZQStzGogs?{>bpvyf}uk;CU}F6E+5 zJVQycTZF%Vr!rkj;SGd~E75`RAxw9DW-XF5OcT$0HH+z-N-L4`tox{Z5ItXj+`gYZ z|Id^9v;uuLo=N51aoxoY@A((i)@6IR0bmY3cgzV~ny`{;7t(z&NX9Q*?ZL{@O-!f% zeHQjg7KB%~>3Q{Jp6S6r{C6t`$?xg?LAnz!#^WK5mr+N+Yi7AB@}Ai4-UT$F|1ZiJ z4KWZT?6fKy*EjQhRZMWks#kpOkFl`#{w1B><+tcYjXeDNz=r8mvv;5dr=vapzMjf- zcEuae@=^)7(T9HToIl_`x9Xlhw|>KJPVtfvE}u9W%4|D8)q`~XYo&3ugDW(DOy3ui z&PM4yx~b#-!LKo)ckh%NeG-@$L-z(J>Lu-g=L6 zYD=ZX(#methNoM(=+$|`xr(Vs>OcOINxA_W^(vL`Z4&l-=TYrUI@W(ONf+ij84O*p z2g#0`&CGi&z6pF%B=LgF^z$#7cXLwWGe{Wb%P z%dMz(Azj4Gagh6^2_~8tQu~c`@9I6_YQLqRqq0BKMaFr-HM!c@;&XrMK9S5@P?idx z=OqZ=>x-!ETm8vc;6-9l*D878QgG3eqdCRT?7j>HvZxF%E8&|m*=;d%YEoTVRDdzNtqspDJ&Mx|Rn`iNe->zpP z8nf^zXQ#Iw*@7vYqFgHMecm7)c1uNJdt^Yp7rlNv>HccZLVqfB_j|& zu&w^`AK&|td8_>-9A&o^RsH)9_kMwvc<`-bq7PH$xC)spyx^Dy`r@Szde?(=KNQpP z!mHXy{Y4nHe@SQjJPDt87y>fptYW%X&u3vf;}Kwk>?x+p@X*8_p}ttYpPab&_KoQ* z;N_JLh!U^&5!!uciqCG%hAY+%q4G!<4%)<*y5gW|?Omp8h}#45EoZ>2wv~WY?j>be z=p`8jXEqa6R{)petF`RXH)_}ET=;8RMEtB~%M zbP$f1wYAl`{Urn_i>B9O}0rLP4Jo1Jl)$d8S$ifJgy_3LCE!CLr zv)33{YWW5QzLR4*83{jlvPBN3_g%!?KC4E5xJL0K+A!=W<<=}$9!B+!cX5O^fzmZoL02=qhn67`; zab#)t3aID@Qf~fwd-0cL{*I-t)uOtFrNE#i9;Md2kGi+ zP5|-2Fx;}Yj+u9>Pz}CRbj6e1@|iBBuMS*nZG*2(q@O>?at%Xtq2CK@?DqE*l~+4# z2fyUQ1JS4#<3;@&$H5J=`oZY96R7ubPP%Ij9&qMcUAR*eK^^C$Yqj@=Ih+DqI%YL9 z@9V1=`03akQ1U5;>0Cd>!Hj#&p#0EC>iY$<+=dbH(4nzsJeFQdQy zv+xeXRn&Q$bSF&_^6vi`xx0>sta4k|6`*UuX*gEr1@)et%yTO;KyAgd@Yr~|zmRT9 z%mP7wb|#KnI*HkS?=?*XGv5fjcz++}_Pu1x#$f)iGUQS-qWOef4c2DUGs4mLN??_J1pXZNoLq2Ug|`3u`snl=G1 z-yLX7T?AEbjQq12s4=dlcI(QT@1LTu;>L$y$hB;${YY1JHW;6tBnjQF`7vFgWgy;U zc^mv4P{(xprw_y>etz(ahAh*iwY@~^JVwBECiHs}a{FBRZ$(v9m-W^0P^R67I=_(arPM7@ z>eh3t=S4G}ZqNU{$F%uEkSKdJ2_^G?i`$CE$S1N@M_4w7!#Rb8}Sb{m*mlgupl zxI~e-+bB`I?t3oNHCamn>+f-bVIlq9ELrZ+eTl&7$ZBvPGLg#r5~9n;^qa@eUtPu5 z47kW`($vE38a_-nZq_yNzlAyY8-I;z7cx)%>mzZ?e zGB04kT~MkOhM&wnNcF$N;n|#as|HssUBV?daX9_%FxW@Q7WCe~r0d8qz|u|QU`@af zrfXlLjpy`rgWa!9nXV&46RT|=1*^B-WxD5Do#^_+062U%eLqQVpNsiZl(^R$ZVbLn zs&J`s7t+u&$zQ)%+3pd`h2d=X1)czpd+tYLL+@@9F(mZWup2E>tc%Vu$kb6bn zH<5V*+T*e2v}@q<(A&&%|2Ln1V9$L1AOA6*pUfNE>46J+=JW46LC@z8&5z}u{hq_$ z-*}E+9QG4Ue&mRiHh!h*LAu9v?PyKU80MSnPsP3a0qJ~P_MtJahGC;tdY%I5qIWo; z8x=!wg%gCVyerEr(eyJ;Sapd3Mz~k~GnaE^kppTq> zYV^!E@AY3n(v7p(4fGBtz!kwhOgFOgBJf(|0K=;XVpiVgV|PJn<^-5MpB^tJ%UwIZ z1^B22LZbxCEZ2LuGISU>2L72(zXx*)(-SXTlV0=kQXN;C-T-oR9Ps)s`a1{GWrW@U zu+1KKzGk~{3sY!|A^ueAOr1~3JjoU(SZ6T|Z*p75bSEx&LYwn_v5y4(-2|DJ7Uc!c zKI&Qbati%^_00RB!r00_j!q%%y!$RUteiClU3fQ`>d&O>P;taLR`-NHS4J?MkE1PK z61@Yt*BLV1FDVlYe!S!rrRn)$WVx+p2jJX=<3azC^z#A!(`Uu%FdvrmI4S&{dy!sMeB6IU_B7G2-pHFMGN~Q~ShWxj&b{-5Yd0Nawx7 z8(S!pgG2-RJv-_8)ac+(Wm53XN_rjz>B{01aEhi5)Cg3?y^r&@wR+;|H)3ku1xN5Z z66WDitGN3Bg%nhS^q>h;eG`s8-or~telyrZ8ig{pU+1_9v@)3_ziR5guAW6 zv3B}Cku0~cBonSnkVlhe(f8w|>$;H%KW*-Zyhn|s%C#51@lX6Fi{_M^;9K)^k(}p0 zF7IAC)qbQiPoIKh6@&QQd+GP=q`Ue$9K~A%3h6xC^&LAA8I*?zBV_6K`($2+=?L_9 z$0wn6KHJ${G(y|gj^f|}`u>W{vpn=ta7-@aE_=|=gNn%};us6vn%k?IIT=3%XcRmP z<%#^Len7fq-!$M}(*|U`$eQV*gT}%SKjYDyMY>GKee;0oUk2fETZU8njVyP^Z*Tba zv?d<1^`p3VeMOaICB@v%!UbHDcL=^SM-rY?cSXJPNEhkr zgg4C7hdEDOn9l1B#2witu=@K->bybb*-zEM!wz}Em~{HTmZTHn{~`FZXMNk!A5?uw z=X2{P>KZZ$7Q0JQ^?lf4Cbk&RAiOr>H|5Ut3FB9<-5@%_ zzvdU~+~rCF^5C=dLh3jooyEt#Aa+L%{4!u4HI7cY)#pZlV;@GsO|zZ z_t{dgU>`j$KsqyLD>U!@Z%`8%&dfVvvrt?XCyVVp!kBJfgfbZ1Aclcb^!Nc;uH&TL z;C|1$x|aF&%)B!fE`rXJ%aQW-DNLuB)&Va1E&xIby?+NOCGjD1=JF{K?Y!aI-AG2+ z3a4iqQ+cElU)zkBht9rSxd(#>8kCz#F9!$F1~%skgNY2oAn4g9*19^dd%T*R+U z9Z=&k{Jco?Y^}K6HwEYY+DaWqr29N-F4$ZPvE)o$+`FHW&b(*?SQ9uGul=pa%yTQ- z*z@<4IXG~a2Gg0W+6La=bH_iL6q)4$wUN-;-4VN$R|>tiFV$zTkbnE3gYAUtyzx?5 z9F?GoCr!|&+K+Tqnn%$z7iZzu^<<_~kz0(s2O8rC(R9Be^LFko6jUlwz!kX+W?odJ z9B`><5_iXBGu^BMZs4g*GxE6*L%HDjBl-5PvqTpgUh=CotHs&Ja^d+92dZ62r#NpE zIB{V<+#yA;zec*xD~o}|`T*$j{2z5bC7p$AEx4%`1QmVmGTq6sSHapycbKk6UuVcX z{6-0iFIvFiG4y%-tZFrP#>bR6!vaE zGH+CaIqti#AB-8%&CGk^rG+0BUIwpX>E{`>uS106xqC&Nr9anrEemfxV*uPA{-ydU z>H2Y*c=FtlApP7B)O-6#w^KP0e+*d*Vq%k+?(3sj`0}E?K+SL}(>)$N1NWKO1o~|i zsQpWpYd$FypD{=U3T5cF==mz7`}|`9E~wiNqR&33+Bxk~3D-wi zksH<7#QC^&qx^{VAlH~)$ANTJ64gj;Q5`V<97641()npmK{f~G2)+)POn34{J@;gj z9oF`y*Hb0)J|+bN{bvL4?s#uzp84@@VCWb{d{#_f-)0ytc1*riT=S&q2zTY&2sqp5 z9D1{revd;swaX5$ID7=UP-#Y$OFGG65EhjJG-du!rdv=p7XA=DK()S-Ot<5g8+2$c zMnw_IOcymY7}~$|LtlL8`5WZ+owz>(9KN9-nQt`uz*}sS#Zoq| zc;HET+>CUZR*#XNn>YUOp_%IUq_a-AgkqjcV9`5Q-1~SVU9Qz0nS zH2g&?(mhVQ^m~K2(=y(U5=9ygA8fp!rtAP%SCmZEmvpM%yx<=bWw=Z~gXt`6y8lrJG|HIGr9kP8@g-+Y*XQ={ztmHxsu|UJ>$U7 zf7A1BNN4e>N^H7R1wNMvWad3DaRosg<6%<30H!-u6$Pfhje_56+L`r@TA~iWMV<$u z4|Y^u{*oo!;ET2*UzouEULAtsoU@>4>rQH2A<~t^6pJ5xOodk7E2wfw=l15H_>e&c z{JboI={$#VV3_=T7^+PFkATc`ea``NiTSW$dLeavBVAF?{|M50{zstvAO9m*ZelMK zto|Vi`&7Z_l>*##*9>zPeW~YU(n$#-Jk7~S{EesI_mED0jXoaKA&t!s((_(P_o-V4 zr}R<9BTn?C_6O;zOb6lH_fyc&y)Kj+(_~hoBr}Wi5K6cd$HT}%oD63SrPn_tUEae2 z6j?S0!og!v@ADAp<|ao8ALb^(oNp(Y?g6I;l-i=9o#iX0OOl=dykQo!aW$m&8(D75 z#a!@XP6}LW%Q5qQnH&Kp{zgN2r!vaTzV=VFF*ZkZbm*;`;*5V{(=|EJcGq00T+;o8 zD&W|pEa3IdDQy8obJ!YDr&}e!c8`6E-J_7d5mlxN4 z5K;Y#bkC-Zfps1+)y^gKeJAPiqkLe8#$`U~>>y^|5ab81x=rQptyHI7hZHyG+jNoc zMHBv}-BTf=GzWf++d=I&EyBG!X(*^9=D|Ig5p??z&b#F@AIxRLewHJs{zB&EOjyhh zTAKk+&YZ_|TA?-K+XFM8-@}OKyyoXsg4!5G}>vp`E zk9l{NyMLyFd-^CBC%c%`XvLqW>PtFvtz10%YPoparsK@KMZ;6^&oB?pFkl^34>Iq| z)MV^nvkz_iLO)lK4rnOitKlxNz@?5&qWA2)4&stTN^q^DIBB~ywdsup3h%BBCUo5=Mbe0+q`L_86@aZ!8 zI3n|oKt*uDFBuk??O|@89;g9tR#$+4_6Xd&UC6xqmj*z&yYhHzhaS}~CU!mdEISu+ zVcVASDOm&Xg_~knedH`vF6lfZ-y*3s$za|MdYq7Sm8x%0n!?wO6E23J>#J&nXp6yGV^K@ zjtV#>5v~){?IOD`h%bL;TO%<@R25@&1BA&c;BgUR>UbmF%B%-K@BAwM^QY-dcRJn- zA~gf36yE@P_bW2*vju>^hu=ew8f2JxUhQMyltW5TxP6AoYdBiXEl711spyEgO|Rv_ z%Ir+|-qxOK7t(#75CTq0r@@s^?3ixk^!eb4S1Od>Ophy*dBb-s00%9D;aRJn%)Eci zt3ZM{7(UYdNV&N^-=NjiA95VN?jiro(^K5{OcpHr=mC1SAL+h?d=FI=SJd%A zx@ks##jxi)!>v8%eOBHN`*^V2VFp}fMYl7V_xVH)7<4lQo_lA@+`enB3qkGK6!^e& zH05x=$6Rv5M9%e29=G{PE|T_1$HULj|H~rX!H!_K(NGb-U3`#wP9dH2{wWYmx&@By zn8GYq)-Dk`oH+|3HkDHCLgt06ngb8}bO_aVb}{pSW*T&VSOi9Q_N))uYhEOom$oYt z>R*;e+k)x#GwEN*Uq88++g*K%i%y*b=Iq$SrSSAPKk2qilZQH6_JYnW^f(vk4r=k#*D7t(ndZ4@d|4s7b6=T(ueYyEWqWM)8@?16}tH~D}fv`#RE{(I@~p2)o2 zoui;!vptO4M1QYKI>p1|p=9C#pczPy*PV?$$A5oN#dWura+h)+f(CiK8$ljFZZ@wnJA_ytdAa-V1H) zsRGFz;=uN)JlJ~?ITp>vz55mEjyLS&Os^>5!7B8)Bk6MeJ;C~(f5|PCq38dRZhP5u z&^*19pFNJAmqxl7`iDWA+Ftb8glHzXn+0WN_ zT7x}*Cc&fpJ8FNB?rn4ca9WuHf4rW>bVt`N012DZVY`$*)y`yIzE(b%5uOG&*3D$P zIL9?$_=d6YP{tr;J(6OZK!4ddxayq_bNfCPeg+*!JYjRhRi?|?{0rQ%u!V++^m-$= zUk(>^%}YcHmZkhi`9Wyk)>wSI@FA5)x;*!X!W5;1o_|wRG2Q;U4KC_y4-KZ*B_Z9SJEu|C=CP=B`%KvTcq84#gXQRWUpG|X zH;d^azwbwV0x~L!G%6aN=1#svnSfR)f9^ z=UV;XAxnBbTkjc(=y;(oh2sdgsa((n^#%xy2Mu~C9*XVO_MX#=xf2IIay`h&iw8Z@s6^;K&ZneXb>;-vut*1A9c|0ZJLG)^m_!T`<~k%X-PpXx;8CHX=%@R1 zrWdsdgTz_k=sJ$)8I%apl&fYv9MbhT}tCpP6oS z{$CU}Xf$pplBLQe^ClToqS_)i{OE=>)5#RMBlm|Pc$Ej;U&y@Vln!C-`eP`^oNhnT zxhn>W7dlzPQQl*i<$mq5gR-HcalYXKaqr`Z%xkTIu=cGH9=uzZ*)G?!U0~=g6&$az z4Y2ZNYq~+H83wqxF_Y?7WVyM;Ua+ZY2o6+EpqzWpx7b@}wpR104&1cQ+x9hQNfUh2n#|>E{&EUHUZ{2BnP#=F47C^>rSpAkKV+3R(` z&M7+~BN`;5kc=c{mli248HpB2d8;%O?$$0WLJ?rtV+z`nKOo199V`V89c4eY->PFwvRE z@x1?rb6l5(5gvBl5*MD^L)8cA_NxxWlRSNJ^wYCceUMIh)*BQhnuAZx+DPStbUHCF zP3sJ!A)^`qM|`FG7t$@7n2zj%U16Bg0P6lF-StI-;IMV(u+a1g zRW78P^2`7xOZ)~$M-F7h`*?o}Y>`!iLEGqgp>?9q{EA_xYs&dzev9dTv^IDMH{$y; zDjw;g3-_SavNas=q2FIf7o)ucp`$^y{G2#uyr@6pk!~>t5w8|Aos|4H(J1KxP+-8m zKAGYo(f51Dz<@pUbNavc5+cP~QO(ua8GLxSE^unzF0#0h1pBrt(q(m~g4?BIQRiv; zyMlB_2NZyKdpodDCz=`W&B6;{)J+YT_j@waJ@|DKOyBW9)OCX%mnYM;t{4dK2Hz7d zTIS7+cer{eTvMV1Z@(E%IXT%b-o#z8Hh!|A=y1SKWO76b%lVq(zU4x?FNUuWOnQO> z8|Zakq_dX3ic;Jqv5nA<883HM1FHNm7Y#FA#B^grdhRiRzAxzaE7Dz?uwIz7D*~n*K1Y?y|Kob(LE5S*kdwBc z(v>(PA-a&Twboc!Ry43T5l_id0tfsQsQM+{$W4hD@TO>%EM3l|%MD$Lf3#bGC;`3R zhjjn(^RauN3aAjDmEZS%BVBNzJ4P4&q93O8JSXWw{rK~Zmdlys7bxxAHFRdA3+3>0DUp|Wzq7CT5B^p61F*L27pNFIjp=UcJqDrorwHRq z>HD0F*Anmo=4xC*tyDSA?>G22?vBor7*X&KRADCN?xv?-8Wqr^Vu?+qt0fL^E}Nkgio>8Gaq1 z24?-D$4f}JFewIaO+F`*lrE;)3+d3J*?8@^FJRf6)l4U|bSj=YI0>Dtq4zmV-BT$D zD3GyUwQ3_@@j(syFMS5SRp?UXOuGL22V&zVx^UAt`n#KSsJlN_|1CbpFieFRugUfu znigja{Y~iiFfv}`(c36w)C16_L$}kDHl^I6K~uSg^a5_VQZ#OOC&_z^IzyEU={`s( z;nwA*Fy`7rsvVH7aNHI&yTuF6?xy#hknYGZ1JrY48GL(>K37uy$amiO{dz&uL@AL} zpe7F1(1M)lJ?i>Mckjpwq$9Neo*UZ1bVm*si+1u!uxf%f(?#HPu2gnD+@mT<)d!jG ztMDvPQlbHp%jowo(!s))V8@Ct;Fvjm|LP4&=C?iBQoVHW48e$qW^nLi7(CR_Ks}HC zA2;?5Xw3J6<-LAXeUL8a?NF$4VkR_weww=9NY`sCgvf0YTs)zT>HIz~f&2X~fprb^ zcMloQs5$~ZjKIL}=?-Q-eyhg9fv^ZXj!L7_U23zr+Fjr$FdbV^yD>=`zwot#cMa)r zWzy}N)q|!x>q6IDRjS@dml*pJX?&XvV;kvlIMR(Ye2LcFo&%5lq~A+OS99PYTASt! zC(WeWAL#}QBG8rMKxi?D{{Hwdc};C`Pe1P4;@jM8Zk2d%d>iNUcqdhUqzkTz#C7gL zAbThM93)+Isy1$VY>gM%I#cbQbjfHoxFK%>r{6Y!eV@OiTPL{`n7gik=l3d7?T>Vs z3Xi~p4^KhGA4e))%YoOmhLwI+a`}3Ksi%E$&Wv3kGp3EYKGK~X>WK5eDlqE8Kjv|W zcyWJhaLG3wSoqN6LlG}L`2H=MIhpHa+{yd-=>BzIc+$6x$_MGR)wPj%ObE<7-^6rV zy8np6Zri|_e>JH5lJP!?_o>Tu#6k1Mjm&rr3BJ5^R3!BB!c6zoQjLE)G8uXwr`Ms7 z>5e+>24ci#o=RVp6onuk9D zYgH_9>wJ1Y1nGR=he3xQW5I>mdS*P!rbvkEQ$hKn%}i(XBmoYzD&Rto%%|Mgm71a; zb1UwA$r*lG_Ht2X+(W)(*(&P!K|14U4nmj0ji}jf1=9u0P=cHH)}#Di0;U_CJqfl; zMgv(_dfv)e^Clm4P>FjqVOPyg@w%b41uNk?w{Xr33rc2kDIU{o&me`e^E? zcg%PL+XCTQ(+u$N$0eqFTq6F5cGfr1x{|w07bE^R@l}ay!innieMw&5q4XFybxsOU zZm0L>op4d%|JwE!Wag`g)^$~ZNft{WdNLXH%`fRT-+vE0hq=SQUB{^FBi*=rpTXOy zesJF^dOa8EUiH(0if3%$0koa!$4Pg7l^3)O90aSE4`ZgA#|6U$mD7Op@7qi_)H4DW zX_SM<`8G^<<4z=uKAs95=+pfWd3_$@e&|2T-CXiPx*w|id6wJZFVCI(-DTBcn2I}P z@`P$Jh{`YNc6?01>-;5AZmJ74zDBwmN22k#P1BI$nLH{Vq`Q>shZoN7MfPLp{bi)H z?6kxl6Lj&iYaYyaPI{)eqGTjC6W_vp+l$-;4Sr~D0za&%lpE40iCZf)Vy+%y{b8KBI@}-@vmf z0n^^%ZtV}WK1Ac-bqA?-MY=0@YQT97GyMA1NM^i%?Gs>HiVgnJ zvQflJH?m_Y^y4Su#&Ps|8ZzCr>Q1m_z7oEdv6*>&tM59&z)lscV(me>$=7s+&paGz z77r}ucTBUwm-c0Vo$u-YWs&Z+lrnyAU4fR5rpHf7_c>^e&{2HW$^QNH`cu+P3AY6E zry_Jmn|?1L9m*U9RWcj+HG&ybIg<|BkApfHCqP7&G38o6&gHj#2;frPJ-MX&8^Bk4 zf9N^w4plCsdw;6~{E#+DDTK2Ya3xz}=7OaY8a({iI&t zeq0IK$kF4Nq01#Pd6hnC|&*1YD{D@J0UurZXP&6X-acK{I)}e#vx)c`HB| zG8h?ndouG8I?f3$ecg@Jx?8DqFAN+YnyZv6NUFHV?JG3LL#K`h)-Ck73h8e67~&;g zD*^7H#}7!CwO0o_nc9NW-qx`1eNH;h$=dk9`RU-bDcw(!ZtNmed?rX6$UJvu#(S@z zf}d<#16udlGhKlDKz#AidJuMz?stc2T;-Q^UH-rSYcsUSMLU~0kgZ8S2T3P)ZYye- zeg-`I9!#Z6y0^Y@sHLz!D4)K9=?3igK(_+Uf%Sp(d@>pDT*P=3SXTvNPc31_%WP^p z8@zR`^>^_an7;Kv#+zz;(_-AM)zuObtC^1VpE$`}1JP1Gmc##T<+n(<;^wlGAbtIJ z&^KMujZ<^PbEk}hTPLre-g8K|?U@<2Q80xs`&Uup2c(-;@)}w7j{zo&eW`qqZglx` zq&+_aM2FJPRnpz>-HSR+=RuF7^!qsJCb;cEC+CI10e;)5{MIRCaXmvJ_qXm2=kTo_ zy}N0FRyES~OS+!$m1vdGX7tsAUQbQBwyVx)$2L>+xs7gDq#Is48p(Pnif%R1=aG?4 z_2X5M`pkG_D8G^_zvnt_Tur$T7jga?mvMR+e!tNMPMw=W<(G6TBc<_|^~Ui0-#<(T zQ~TlHKa63^JPBsHmZv|Xzv6lJ+ARZ^@jCa^ppFABaOC#SOn1m-AIcGgLH@&5%5esm zYq#ppr7Eo9e1B@gv)*@vb}sbujdZ~Wji9E*Zb79NeQp`)M&9&-Q8PdCPq)+WVWbP` z42F70y!P-{JL-EM4Y5`gRvcK#jZY5dtmAr7_G}aQv4Gw;LArfs|Du$=V_;Y~J-<)7 z^L|&*jCdoc>O{ZSk?zu!60|hU32xA*$FoT%++KkAkcH4j;y-3S-2Gfp(}7TE=1Q*@ zaC)?e|E+&SF!y*i?`QiIM*?}7l(d~9}ONx(QdQ7 zE{_#Bfq8<0NV5Wf&cGx%HCBdtzbBpIohlFlmO$wZ^f=A`YH->;!`g6sUCFPE6*1^h@Hy@^^FZ zTslzKSTp?bIo)rNu6Qy=vn5C4JOlbWfOHy{YmiS{C?1zZk4KPh$;tz07mveLL#XFD>6FI0p@^!Pm`j$Y+8^nPrkEgXvJB^EY+|On)90aR#j9jI zWD-4IlAHURUvc)5U{v-xKCn>+{EBw)}v)Rw@~ecbe{@Cu!f5Z z8W4Sv>CSHs#9{I+=u%E3)2X-2!CIa>(7g@MneN3dCv5v`C|)ymG1I*%;&9yeA^1T@ z71PaqX@XB07~o%*XEEKz9wR&>Z30$O*iSio`}cyjjgtj(5!Ql;$-`i3wj+%Gy`1TG zWb4CH@qceNs{f|iDH-ouy%F3z$pWrxDx~@~(mD28L&44X);MDvbV_ zbg%z2Mn5f<;fXnP|4h2ovTua8#EQfN@O;nsq&rdM=Rei68?s91p@4 zQuH_t=@t#U1O}v*qJ3TTxGnO=0dTTO-8YD%>uwj|Zcwb;Wj7Y!U9 z@`LaDUeZdqT*cW?{o+8ZnOVVfw=x#M?x^SJpsO8Kzhu0N??d4auNL&D5mWU`x;f^N zutonM`hLwGv99mDc{F^`Q-&_h7{GLr{>kvPNE2R-Qwa znvuA4?IvpcfJ}FI<#Dtj)B{@|cthpm_VCZV@B04S$pf4DBSi(md7I6U$Rvrn&q>!6 za9b$k%@9sYWIFdFvjLxE4$_tB?|3raj-5+EO$Y=vhV*<2=?ogqg1;upz_nilmF|_; zm;CMTUj!@TxA19_1wuPtGqlWt&Ijo{)q?<+&51^Y(&q@1j&*&c^C~R@D;jT!lr-r1 zDAL{5CO4dy_G@p)E%gQxOPD z8|ia8NM}6R3{;BOG>mNGsrn_I(Gnq0+u#V-12x>YeT zH0Ffh5ue&x%&7-i!|L!URJoAO;i@XQV`dMnZ;oNQ3nw%{sD%;yW@gHCTO+1{_Zvgt znbZcV9gyiF@&661K83^N&`PGWj`jkDu>r6>@B!0Z-8l;sE)IYuc5IjLUI2>oBH&=_ zrF6U?1#X$~^_r|rhxz_lL-5h?Mqo6F9KP@IP=v zgWg9)#`7E_i>1qs1Bc@d%y`n8-_V^`k`UIIGu`yc9u)dk3I6G%&j}>cJtuxfD^B_d zawpj`<4t(piuA>OOkpQI&pFKZHs{|ll-m{_QR`9Q569d8MCtb1sQ#36i^c{+#io~N znD0KO6P#ZG;p|Z$Q!@bdy+6o!L*^#JrJ}rApLgDrdvm##b1B)zt*rOsYPC|ZR@QLP zrA|NhNjJwZ86V#`3ha7PLiMMl(-Z&Sz;#=da3!>4rn|;vHs0wk2~%6>_b@Wvw+BAh zCtCuZ{XUBs&-%R=_N;pcB!}!_x+L*`*n-6WVbgeKN4efTGC~)ZnOxeqByP5$2G%=u z5qvx_nQ8~5OMEl}a|f%y%-0r7H&djFFD?8e3^?M#bjdzSc>BP9z^lN6>9qPkN7F1X zf;Gi%luMoI!%dl9C>S4hiBt3)f{pGuVLKED`nDI+8P3lKYqSDzQ3t(FpLC&KuR+qE zS-5`lKC1jkH|Vbg93pieslFQoS?T_?TL1^Gd5KV%HFbS_r89T`o=43P>5W`UL@?eg z{|0<~eTiBxMY^MZ1M!oz9`JWoJar$Du6pPK+<5l`c(YHI$_MH8mHFU9*Z%;Ul2E3z zyy=A>zm$Q`u>;dtIe6lt5z5e@nP*<#m{IPy%t8sq*G{0~6--p+#-{;p>CBs)?^YZ9 zLB9uR2fhS-%b9djOfB%QC$g|*Dcc>kRmH!4I>AL7oSE?|&1Lc6<&QyDrxjJdWV(j} z_aczH1n3T;-?K?~cgb|Lq-Y9kn?;ZRy*FILnb@r4X1dmK>1y-9;kgM=CW$_Gnsio& z)`JVWrqFaEy*`3;30YZS^|%=EI(=KJoJqHGct$>vC)ap8iYVauXZs zyVk=`TeM}mhv3kt7kr8KJ+wqg9mqN_q{@$UpI1u4mS2P6_cIfi?nZ|U{55teoa9CC z>m}nQ?-&4=+!I3Wo!6=QB^??!5vFL#fY+UnO1FOM1%Ca{YOcRy9hWj|3p&-k9F}f5 zMzv?som`YJT5>%KPFQz}N|$t{Qkw)f_N;KSeLe($n8ctNB*UgJyp2}*b+g_5161-NxnR;)i`X%FS8kC8y zgsy-R((jqh?DqzA_}WtV^7A}qy4^|(k>r7uP-;58Ke_4YZeAf#P7r9biLXWC*M` zXye~=1+elWy?=&u+pq$D9^nY*6z5XulJ3TxkH|YG0B)4_qJ@&1Z2C+Yna zr0dOFCK@nj37lfYc8*C8YTHh%fHr3`nCZT-D5$m7TnQu6*E3z0c)x~(c)v#FKlW=> zS!)XyAITH6FBn)mCwe?~Y8?nO#w+5!_Xp|T)(ytz_D_R{I!mZ@NoSh<0_g`D!?|nO z@ft5YLknt6;E#_A%ydVNDo0=LI>H!3`aBsj-2`V2?I^Z^3CUxb@f0^(qM`;PxZ8`K zuO;Ixsx9Mf8@*uN8G8P=;h1HO@zD)6;T8J)9PvBxwz@{(ulj{57t%faCf>JraxEBi zkY1-iI`d##e0Jx3fHS``;|R6lNVmGD1}qu27>YjA@6V)DJ3ALH8Pfw!9#5jmnRE~Qm%^UH zJdnT8gmPti>Y^&|kAj`O@}i8*W02&dEPyU7qw+zz-XIBK(HIV<$LKR%VsAK@d~GDW z4C(O$GTvMZ@xJoxF5x4uAS#~A*90#3?*Q&s*aR7t-abj78pE1z?3}DKj54 z7LGv=ZC--~y7W38GM=thjOg@238?**o{u8kx4&_G_oa6L>(J#lLUs**u{?uof0f4h zU&#ephYkpjT%+45>9pQffE}h)+~w1BK1e6GTn6UdxX!7cr`H*g&S>iZcw|L{aIE^`m+ztuzjVz3JN)Q&wL!9qUq5<*z_^^_6J-?fJO3^)UdM!r zN4nG%gD@}7%j0?4On1NFC(28E3*6=inNID(8YD5!1KVnN)%JUt zF7AXsUKluBTOmx zq^BRh$Z;8OuhqzF)tv{47U{@IJ(%fK=UxRaQGe00_4ImgGTy6i<6*wT4wPzZ$&Bao zS_@Y92BC=|0?KtJT<7f)E^x2^+r}+%Ig5I??*nQd==+>>`c&ouPyU_%+!H-hVQJ=@L)w2QTO4fI%9eOt*H% zHy|Y?0sr))$H!avCZ0R`PB1P06Q5~ZCMxhygHk>8{sq!a(p*}b<|iH}oK(b&7p35i{py2~|hV4b_&ga1P^aV_}pkXsIj>!Sz*M&1( z|MCa5Id>0m8$YaKx)LiL;qVvzz?P%*`akmeRC7E)-cdE6yJsa8@1U=o$YhUst(t2$ zKkIoFist?xvo>ekH@~D?YQ7uo&$x-s&!nIGq>~eWr`jg;$BCcmePg8iEYl>qDxMoG z{YF2hNvE=QIDbEV6WZiLp9es?N=F4@KwdL?*uI#Vj}G?%VDL(B^r&Av(}|!EjC!^g zJ>48dx!U?kqIgpW?(~-(`~_8cyf$GHX!`8|`<5T+dO8oHQ6I0NL(6=b?&HesDD6u+ ze|>Qr(`9w8Lz8#sq4l2hx=k`&^vMTVPJb`Fl^oBE=NznyCcTpcUl-8pJji$t-mMd# z#g>V_zoxIRI%6GoPX3Qz>vwlfx7`m%EIAB>x9Rmwr1Ouq!8WxAK*kLEyN7hzp+fw; z`WcYEEP?x$GwD9o7-0Xv8^S0DE2f*Ftd2LOP6X46==n=Bp2?&ESU4(IG}?!LPbA%j zX}#ioHv5F{`q9sY3-xjQQPTr8_pf9KtfXIq*J~EwTUYd{evNd#clBUD0}jKBNz``* z>B>BfVCF_0e6B4Q^eq?CHLnqW!;e&eQ5)%TN77wsa)wQZhGG9vQDtf6!{2)~QU9mLRJjb@*i-xGb0}|X-@)IRsRcV$+rW+; ztyH;?PFSW5caIms3D-23@wU7-fLX__;Z|owX1sl?4dKXAOITQ$PPtP%&vU#_B4;}0 ziNIr%C;oM70KBcvQR$Ly*bg@xyk7y@Cc83Si?$GN5&!2$Z>A*ZTfbyHAK4Mu_4GtI z?d=DqTcUpvNv~f3)d$k+F^?q9>8G7e2^Q5#8;f-;2LGM)BVh(`#k!4Cg+6Xha`1j-dgw=TY%Umy%YCz>8m~ z-iUslldeih1HHdJ3b#u;GULVl{VST}wh?t_EoVAC6v0PVJVYfhgmTWe_VEfTqqunQ zPJyLjCFr~w0lr)fW4i0EFMw45gih0cpuX*%jOP&b3M^|&19wB{av|NZS$}}Kj2b+h zIG&kqVvaKGxATaw)xeYK^qhvk`nDIq*J29Oz0=iz`uzq&txqzPi%omPnSIk0NLH`q zSBvNJTAoF~mT^^7eo5yctpj!)i-RFKiqQxq?-WSmLz_y7)&8_N@=neJa$!!s-gNzh^SjMOfs-1&Ak)<-QO4~9vB>rT{T@cTQ%98Wru%Vd^(AL2-J0+3Ii=V0xRMdM zf}VZ8@NsMx$~>Avl?&-)HwQxJ=^DbHvp+Chy+;W2N}eb5Y3pPR0f?}sXyy~ZP;Y!soSQ^kq#UovP#}(mfFL$W8dkF4ZZ=@Uc=9Tch&O&&# z>Jc+urNI%9_k9Vxp5VfC`NdseM|%()Z}^aUUXtm`P5%V8HTpyUFVcW@eT|LE&}yU? z)GIfq%H@WZEPwUCNdDNVmq2D5GH^zI+@b z3jy8!NT)i*84su!fL#XUp}yrux({yV*m|E4j_bNd)d%U!he_jdOH-`>jP7?yS2o8J zNhUhs0d}fXyCPjgg%IhsxZ+u*^gIda8nefXHZIq~@;&tUX_aCz7m%7|d8wZk@A$+A z-}_iJ$(n&4oKIlHvm5j(}(wDB&m8M-M6<=IJ?0L&Ix$Mj5qz51)5nG2~Vq(GTpuR zy6Eq$5VY;d*I>_>Q9PIaU5z|f7y(MZs8Vx07{-a!S!C$_8&7bNTtJ_>%g(`NC z-z2iNrr#4uH^*iuF3`+De1$F54oKJ8EsyiI{}K&b=*4tF-&)bosv?v>kpA8$LMcNw%H5*aoOuFX&3UF+P7hE*IlNqmBUImU-cZaR!Zp`c3 zU8N0wAA>MVuZfBm>vgPFV_k90o0jAJ$q-%9nCdVrux$l>^Fg|XLl3xMhg4i#+r^C6 zxvWIETa<(gJ0>#Yd54|^OJ)S)>?8S1_g1wQ94v~&BV_3H#oMDt3j@XX?o^GZg7WY< z+|eQplq%Awawc8psHJ%Hq-Noq`-hos(S~T;`SY;wdhs!)3;*tmr#NSUqI7ybnM}8& zWfs0D5P_W3R%Sfc9#4EJeH-Y%;}_F4Y;nh_j_u$_1U>$|T4ybPCoG0rADY5Fv}+Je z-4YK^*Davpkxp0{Bdj@_3cViE>z_$CCR`I(Y@Z1Wbm`|2>3Xv`pwu%3hCZj~=}70d zsSS)1|K~R2B>mhf-93`;J{`tO#L0+6`@=*tZuo#Lj}vg;c1pT}F^Bj~Ny9*%Foo&1 z?JEX1)(nJ`wCL|QGG6}dT5z|194v34zf(xJ`H=|Rlo=1pUK&v8%3ZDFkM5V}B(99N z-1}7#SfUsRx6$j;NQa*+273ev&|}7$n!foZ-7n8{V3ZOJUw2`ueo3cu<}BdL{NS`e z`uiv_=S;1%NvA+Hp@jp-cY_b@Zb;HQis~mx_xx2cNG_6x3I+818|fUsRRRwuDY*JG z{ry3@`h~B7m#-AO{*U#xq>F5mg!hX_XzzlAy4^mhsw@2|2Zd@0m~ zRgImXZ#kDHIdZ}ELe9bK47cI*E|IV75O_7ngQ{QBjTtdan0>q%C^ysN=%lN3QWJWV z3Bi)!BxXEU!9L-ltwUk9z@6zXbSwi$*IU5Zx3!thYgQ&mNF5I1vgmoqtyLq0bEJH& z-@BDqYp)K$7suQMyR0vZ`j!jn=7WWJ#=N^gW6gM~{gF;Sa}2g^vxT=c&6rO0uL{2M z#1g(U<(cmMhQaufu@DYduBM!?Zx*Mb7FKJX_LTd$Q3Z30x1f3x`n`m7G2(q_A9rRT z-xYSSZ+=O4rlARq^ErzK%$Ut|)7*@C%`Fnu<9^fgQDnTu_48|E6K`7W{m1!Sq)Rz^ zspdfFKD=t<&&Yf- zv;O@*(#=e(J7K#ghl5wW{WpSpBbbbMCISdV5>0=6}`4m?s;o_n%d+`TCFYd$`L&_}ECm zZ9cM(Ydbd!R?Kn)4;S>O+8^mQs`ZURZSfw+ z%ini^dCxI3UdN$DF!xxUsO`ahrh8Qx0u|eqf#cVzna*lj80_7$TXeapg>vWRO@*zc z@iisiYinb*d|}Cg0KJ99B#GR52n4K*VmEmcHI&j0bJ^fVrBb)b|4E_Rj2w-(4_+Bei}|^-H=TtDYgLuXCZXY8KNy z$i0C^|K|di{&~!Fe^wnr#qYh~0=rjCH(>c8G+lWyY_CqEoZH6)e$X`=jx(CbB{Vhz zoyU?e>L2?5IFU17bx6BzZaA75}f-F^K1eW`f7vBbjdSTp`}-8V|Oe8OL-= zT}F6Hx*kaWN|y_nu6(c&=5xmg1KsI$P^6phJpn6(E(Qr3t(obrOVh&jCRezlgXn$2 z-Ust}i?eZjn?f6R>qieVc^ing^^c(LBhq<$v?Ikk{qXxe5cX{^qzij_3w=8_8sF@q z$HPdswevdqINurnx9Kg_?nxIi_7sBRe~q%qUkF)x*U{{VbLAtLSB~gM@3iLW&!E{3eoN$uEBIvgH3F=#KWW0$td0;bR z77X}BKi^0s-e_Lu#cuHpR@r28}sT5h7(!;#nLuzxaobYL-*e1e$qJhJ5wDp~@a z{_(w_e14#)BR-zj*SXGx$vzfUwEjVlH~LZSk96zfR)`AUyP(H&=yg1#(+Qs=v>v>( z_G&Txeos1$``SQWpn**{($90!4ZM{E?vC0nOirNJn~}~y=Qfzs(Ir}68$#t{!u3r4 z*}HT>+l(FjmrP|W|6dC-d1%gbgT>?2xfQ>7)v5G2D;Y1as2^Une+WD;q~8xnw{!0s z^!#fjveBgH5lLrsu>+|Wc%s!>fz0dMu8L7l{x`7T82uej#(Q|82+56*;zXNbnembm zErp{8pGWq$=>58zw1M5eXoynhwJok_Dl|cnG-|xYowD17w?yR z7CA4$(@q{?x_y&u(O|7* z*n7KdyqO!*_Fi>w`@9s~r|5A4-M!vU*gz+8%hmR?r^IS6{{4@#9AD!!ZNw z+Zqn~#v|Q~Iv?0HTncY#UDMucj1DpT#bxofPj)!2huaOf8I z_|h(bQ)S@_%^6hxLOKJPr{MkpML1YQ&vTMazvmTj3wj8S#?bRtq#NPf4ZfJ(04bZN zGt-smm4p{J=YVwyGnsCpjS@VZQ~+%MF>Xty%Rg0y*7m!=!GrX87#R4LD;cb6-RwAv z8=_Rq%^e;J2P)I^AEeVApCwFI3WDuNx>4WuN4l%NUxoWq1@Ok!$(ZGCSF8coVx1uf zQ)If`;yt8W8{{D@)L^<17meWXdlqo5vL$sNmCb(0RV4WEr-Zefm-H4i?ehlVlmL4D zF6o}gm+{8d5@2di3RNGZOYOgc-yofXRGuzpx-0fMLW#{sKwQ~Urt3L14J`9=1B+x= zFkMma3$SUzRnC9xLdsoMTFvhtm%#IORooK$Ds)UG3@48aqw0-x8pk(_>~_z_k)h;r&<%4=-%qB-^ADh|42q8NJ#=$YurbpDOX=zFj^xZ_OE zTaodQ%VXX|&{Uu_N7t(i!BlqN zwOPl6UyP#hf{~R}Ig{?l_YENL#8T{f$&cywS?&WpKmD-AohwZDbns#DBg+A&of*Kq zzSLoLz}7DmpT6h_`nD_b`rP)^1H;}Wc=GvKR6kBSgT+JPgVpYM#og`HeZKL`Q%=ce zAzx)t&3V0y=GTAOiO_TUz9gNCjCh}`Un8e9hQ5zTckaelP}TARg^1VG^vwt9OeXY$ z^K3#z7k|+23l0y*@u~k&?>S_= zRb>FbZJUJq*SS&WBatrcf&lBU(G=F6(P!rO$=~tVMkNCk8PMZ2qgS5hWv;yyT>r3* zf91LbJ$G=!hab`7?WFT+bVtix>tOE*R#dvA%QDwOwNYC5R3|-7L%Q3cy`oivo$%2V zdYu;O%Cc^WQvc}T2luV%beqa*Z}bLMpWnNW|NLYp+EDI{-)*Arx6y=y2kp=b=h^sT zsw6X>%ki^9nLKZtU`e+tGTzr`vY@4FEozdYpO>Ut{pun(kzt0rzo;_P&3<7AN|FUS7^ zHgDE5<5|p~g%#3!!DdJLoE@vThxxE&_XLk0ZRa`f7sxP70sru(-xEp4YJa3F-s6Q9 zYujP{3!|v=BVBxrJ2LsGgI&hb?UZzu?bFcM+)iX8{wH|f{)%)5wcd)F2D#vk=Z90S zCq;r!92+I@`*>O)tk%Z6bT5HrBk1Q5=`fgxbu!Yykk#~ghoo!v9gE|OlYopRz_+`I}#J)2MUYor@D`Y!MMauxi0E|==pNLOxQY^f9x58t}3q}m_pO3L%N{t?OW z>1JJ~`x!hMY}ZYKsVCl3&p|StO=LPyv0DM}C2nFmm+VX+r?CR&L^?3tQQJZ=GA#-o ze>k0aedgQi!1h(*f1H-yq{da2{unP>9lfMF`f)EmO0oz|anDA}?CAXvq${flME82f zpqh2`K1k9X-1b6r*hU`zHl+7olJ1N1K486H4I9O9R68JDRD2_-R2hUP-4jx7^p-l# z=AflO(awYOS1bmpg$tp|^#fG7kghDD0W80$0^4txG2<1scLFcFh480Ph8geS@`pe; zN(vqiU|-*+F_ut5auWQk??J`Wx;dU79TLjTO})n*oS}oYp2vf!`R1_ieMvg$@8fZ| zxDB3hrRM`kclYTyyy4?$5H*=zzd<_dqOthv^!s4lXl-V?$Brvvo7NBD)indAtI!so z_u6p|C~gHz=V>m7cbr}W3Xah0W6vJH%R5eYY5ZetMh^^jyW5z2zs)^@xj1ix;NT1tC#`}>VkH7Xz05zZK zab=l+xx9+o62V7JTYi1|O5kI^67G91qWU4y75?}Ej4%1aG$Fkok#vcFdciy2`S8wU z2VviOBi*xLN%-GwKlmkd57pnV3wg_38NQ7hH^7|xHFgqQx!wxC+e)7YO1j0n4B;_D zJ*YjBo(Ch{==nm}pgsw%TXmPZKGL<>%!f70&H#D-6jdLjYgrNqjk{j}i#kQ7yYX7Q zZ|B58a7c8Na(U%fYi+_fuKq_3S9Gr#{3&h$&koV+*GOlRaSwc$TL;3P)9dR<7Z>&d z9J9O&em-)-ed~jC<65=g+_5LY2@?aRYpc+Ml}Dw)D@FP{fQ2MOIgOB8(1k`^g39ShbQCVd+Gj^bXoQ$Liv1iTrtdq8E^8oN}-~4H2!pj-givK zYmSWog{~8DhbNs6(m5`V1G_Jc!4YPVnQnDU8OYCcz%kAA_k!h)(W2j~de$?)m-D-X z9L`T4jz9I5p}zG&x=Axlu*}v;I8t#f)46ZZ#WTfcmi5aSN?jir&vVNb^t~evJLhuL z`vK|JPdhDixE_wTzPLoCo1JyC_Hf>C4$1B0`pd3GTh_Y6&(r%;>5|U(TL`cIWEbDl zy^87j*Oh{CTSmgac65F0x+AL9{h`cV(b>k`O)o|hG-t!fCiMIQ>850)p}azO=(w7` zKGNMtQ9(byCyV#0Po??;(naXc0ydfnaA?pqrkfUc5ZpHz3Bw++^Kmgv5?bCH36r8m zQ{_UYt6x44I*&7k=Mq0q^^v)!pYW3ED8ZNqmi)yXMIf;(8lIP?=X*%^;CMaQtQ7%s z3df21wm;IH&G-uj4seI*Cw4Q_4Or0+CcFDUH~$$-_b7Hae4I5M4mfK>xm3=XZyprS zJ5HH1LDN4iBpC(zdJXnZFpk!sJR%lf+)os^z|^E>HwK)P6aMWiH( z!x{GU{0HfNIyZ>w3(RoyF=N=b{E()g_VHIKPABR%H?V669{EHM%2{>;mU|yif%4v~ z;QV#;dodaB{USM_p1%Nh-+IT4H?&L(*lN$l$%)d;>-%zhDL7|jg}3R^-*05PyGBlh z*UQx4vNKs!y^(H}cph0LvH&fWNTco#jY93(Ycm%J_7pdB!x!~~LzAw8-Vplzlyt2B z1(HtAW*7{#SOyx-I#T&1o%#CFaQT;b5b%{AMrV}(!=>bCw==GDN+g3gc7S9O{(6cBRlzb&QjvD?~n7oE;mr# z3Kd{*F9i2(&!ih=bpsu_vq_|7xtQtdeu@9NKS3V5uehsruNru3Hc?Z5=l@=RS9TaTC&Z4~1{n4P&}^k1(`Q ze17cT1}UZsaWFzEg5ThR*F4y_-pF+QZ1#aw!DHabm6nuycJr}d^(LEY>urXd|0`Sg z_T+8wYT!>Qzobh~pAP3ZWP;&u6`1iVle}QFmNRf4Bg=G0E9by4DFmvM>X_-S{;~k7 zJ~jd>8(uJ7izpDP_ZkB;`$tT7(_7J-_q8h|@4ot`TULey=^t%UUC)R;!ujuau(j931 z0^Gk#!oqPDRJyyf>uS?}NAl9w%eX_Xdw`sLG+w;g67|h5={&0sfi^x8%S|?By7Q^6 zp!!}IUO%dYx-ZFi!qMWh`nL6;BtY*ABwgq@Cm8d(8>w}(owdY5ILZAndbH;?)jyY? zy2p)ZisSFnvAO5XVL}LVBsCGrV zPoKhmk_MZxZ$0myfHE;F8)PZacv^GC4;wDWu9#DB1g=lyOTV!nrw zE?ay)U`xhOTy14fT_5Q}#Qp9TalhO8kM}jwZT@@!)pZ2nuMzYHb-(Z8PWYBrUj}UdrD;n2vVIN5TboBXxbGyRf%ObUtFc@sno^@ATW z3YqTceF?Z`q5v+v^M>jCj+wy08#+M2?!nack?BVJyTQSJ17ZK_6`=2ZPP*f6aj^cU z0f=Y|XQr$Fd?id+H39y2;PSRQKS&4l_ z;=KkZ!??cJN4ifltZ@693?To8p4TAV;i2bHf9ptS8+wlFhe$Uh!~#ilB)|dqkBF77 zb%CcaI>?~nk?z9!V8J=fWLP(r{*EHu z+t_IC#KKglJnktoUX*=>@MT*n6o#2FUD#kha9BDKR?6y8^+Bdvue%jwMK6a%vQ1RH zK-G)<=mDLAyl>z5FC$7(Zn-jyFtnlCAL-@^ijd(D1$cZv{Tw8ndTAVbG~5Uf}#g4{9sdPyF~x}6#ZUDy4R%}kZPPi?%8{r>eomY@h(U7=;nMJ+WMR6 zbZ;ybIpTR(S%d!W9#^j|iYibR42n9!`>Q(RiStZQ(H>RYw;hnqX}b8Rj3;HH(>HaP zZq+GktmS(F;4^eTPR8q2X5RMGUDzR^UC@(@pPZ(##bI{Z1&*og`o5(oWc*=?@7t*y|Z4iCA6ALYOWiwsXmrBv~<#Etvc_z~}Bo5?XoC$-2X0$Qg zqpSxtx2}7^;zlK^y^z=EGtydk$#WqDL0!yv;idwi{)Gg%r`eb3dY&B>o;eT;eg4w# zS7f>#gU<@*MnuB+2i44Y+3O6!fIl%%=57|{g1x4STH@5Wy$`PP%X`)%wRe}%>o0*+ zdm&wF<}J~Qj~`Ls^#x3)*Ycn6;L{8IUMYIqmW((3#slHx%m6giJf0bE^~O)ayV=9} zNqVW2d+BQ_GF~)-d-|!7?>2uREZG@=ZdlOqNLRJ?lQ8*GR-u#au}mi={_dIF`ADeO8pCu8Chh~-*Kdk~dA6%Kd=yA$n{o;JmQwK! zyKk)hdRKyz?BC99OwYE?`@H~b{9}HQbPJ6nxvYxE=-uT-%y?&vlZ7EYpHTUR0H!OB zC>Dmzw8yYzJnY+Fk?GE>tP-vc^1^1hicEJK%mKb%jA76-dOn$qr!_MOtQ7zA?$Emd z%y{L?w*tRMvbdwph3RZ89)Zm#o`U|;^tl>jy0=w(!R7v5!u%ccneohG!r>={3Z!c4 zkNTF&!tCwbnAG*w?H~Jd$q{l`^vV;u=hNRuq#H4%Kb|puI-D3<&WyLyw;yhN>;|j0 z<}uynd6!Xaa0onc--+q=I#!^_t#hDVzZS|}_8uzixe~%z9iPofoPt<(VJ6u3Y9#KP zU((G~)W@1GUBEq3h3N))PQVAk7X!`B^gIa}@9Tg{*eJR{fY6tqZ7c$=d zM^(VydI>B)Gns0Cr2BT|Gk8AL51QRFrQ$uDHc~ie<^}7fs-2vvU@+Ee?h!>+((~t} z(`{428|&_i9)9zn+7;>0(_iR1x{Hn`(BCPftIT#qZ>);Yw+T_qcv=!1imj}xmMu+U zy3*c9qHTJ0A|uBX%8hZ&74f{!a})H^tFnf2P2)ivK~BBr-aN#)8$9H%Q+S>_vlvS7y4=h{onJ4K4m;K+_b;;pXb<+E_Q37Wzfr#f1W2px{ypK!HB%) z*7^Ua57Lbd+XM34%2C0?V5VUg-}l(dar|Ge(XMBy>%jRN`hW-jaIRd7sW3Jh6JuY)Ju^1(yl^W`c~ z)H#GomvnXpV_+420e0kQF|N^SSf;|M_^$ndQtm zXSOqGu5dfMKjm64K9%ad*ODIla8YP99R+n1B)Df$1oeC)of?jYn_nM8!H4VkuJ;G& z1`djc7HJL=x7IA``9``_X)?^P%jaue*)iP}rxa+uY7OTmoj|$2+uXVO!kd+UwJJEx zz*zh?I0fw1o=ufA=?2<_?Eo3=oDV#S7b}6mZ?PpGCD7ucN#)dYqMXPhBv2 z@nsy32UHm+!E#Wb9ms>F0^wPTUt1U=+)mHu8OM0h8yhA9bYIh6+YB>Q}IZ*s>e$dCKiZxpXl`)q+8$l zALxRz>)`vjY0P-qJue}XBiF%BH#erc7=9kT(~sxlUPmz9_?B{XxN#5Y*-VeG6)SHN zvd!$d`8P#wb|nH&56HvhFnidw{7AQBkUTt=t^}`U4QIM;HS)0JixRxBe;Ct!>HKfx z$`REd`3zvXm*YplvazOI@k;u+N?xD-a|c*_<1D8%)qslEtTRL`kkjUln8}Et7D?Er zFhm@}&87Nh(lr+);xCCa#C?v@OxN&x5sppI1qxekQO{K}p3JocxE2)xzxyMoctZwT zi{C9rN>E6e5Sy-vSFOtDPpojE@&U4h$uhHwcNw?*@3K-k@9bXbLoGL%k4JqsgtP@<|fl>54HtBN4<$|O+9-aSl zXhU7wJ?Y-L{RD@m`@=B3ND0fO)+)kz5=(gVGQEz6jCc9CGW?Kj20iw_rP6(tuOg%b z1q=AlUcvdzN`8K!0+1Th&kxegz}JA2**2jhh5oK3otb0+Y`m!i?f%g3&!qF5s}D<0 zYQgt2==FM}D}8JLRj($2RzLc_B;D{oQ{j+^7C!f&2GtJMg!&7&0+Xcy-3`UttGDqr zbEDzuJo@}%(&;U#;qO!j!{&t#sPZEnU$!0`&kTj#;`cJ0TI(m^GSCa2{T0G=_KDxY z=bfGB6E2y-bj}U~;MN9PxTlm}H)m3~m-{--R+3_nBlJY8?RSZ$rAow{BO&OLh=w0P`cx~xl@SSipNrp`S>)f*Xa^%Hem_|yhoxFKb_DD^jJ(=b2S zoZ!fGR~J+wt#EI+JD-jhJTOOiwDohcT5qJ=p{~d;^xVb`Y+A~6xWO2VShx=C7Gjysx~Tvxv^oTo zJc5}{?RNoa8_>CjZx-8q9kUIrK2-u%?xI~}k48?T-HuyU{;q0FL0{Z+tv%%aZlmgh zbf1h@qtb8}Xw|(Jb$z58xv3tksI!36O|+O!E}}PdT4M!`b)He_w!fV$+#Kd9seY;; zZaDt1DkH8Z%(wBR;*rkp|IG*d`H%Sk(j|<%$&XrR4RaQZX2z?r`p271PJ}xbxihbi zHE%$syK_)3IPU5Jm%pLkBS>c-I!rh*=A^J((G-sOHWHSO zru!GtjUO}-nrJCQqb+oQMY@E@sW3sSKg_*0fVw|O=j-7I#bfJ0+A4beDe0b{4uB7z zZ3WA|BdYvJ7yUjE260J1`ClW`_1+u=!(ui7*QFxm?CM`z+fCkGIc#$`Q9rN)c$M!1 z5})a?>-|f*`xC!|V^d!PEggE_1nFuzzf(4z83~t&J(%(ILt~&p;8yO?nWI$s8LaZ* zRL_@740o1skIZ86tk_~Sf5{fA-zA-)TmuBK~sZ;UI!{?~y+nY_t zxxRf?+6FZb6Z(GUacQ(JeEnkul`iSFxf$b<5F^+Z)B9IRH~6C_uKLpX-_k9+nDI<{ zsbZDM5}0LLO}X^fio%OaVFE6f3ai%L<1gNm#W8QasD6WVFTU>pZj1gR{yO~~Pr4tg zkAXQVRfzNTWyaIFA_9fW2hi94eoWUGcnxeY^T$qd>rmHrPo`V7;}(e1^u#@8l``F0 zi3yaLo8iTu|0ABOpP=CX(dMAoTlABcN6R9T@!98wbUecS6eK`;))=pNWKHLTaJKS` z!Ie)3B$~StneKGo?Lgr{EWTb)Mcqf~M7(C%GvNBbGSvIvf0Q5LvUKF&@zLgJ|4DZ$ zU7ce_;wlR>?)8gPLYB)$G;UQ8XwRhQLrM2GyHPCMQv|F|(d%SLx4$4t#OBRHV>107 zK{~hnlX%^oYmu#eJoEZAMqTHlT^1j_gV}4&nse&u)+WtuQXS{$8G*zO*X5LI!e@=?@C&}S-J#ARc6VmEOlS{=ef*E{yNVuAu4CdI;b>i~^uzrop{57K!O{7sHC&sj zU(&rQw#Kz9b+O#9oy>TurN2;OcmX=mhprDY-roCl;LG(PP(OAAGhMax2B06b5iGp! z$8#{?focb&JJ)!J)7J>a=UeYH zU0zu_Z!#+kPhUg7*OBquhp*=AzlP$|9k-bA6z2#8`cH;~?+5~}=&n={6j;gbp(Y;83sA%ygf3uIE#B?ISLlN4HZl-XB|UIDg)H zG;z=)Dqg_z7lJ|gLhf+KL9WJo3BFX?8>#-F_c@Sm&GZC(__Q7OQ;XhLM7pXTi?DA( z5dgERseK}(^Nd`G@2*}77LN_2>Wy?swli_<2X*xE96j&yzuW>hJoEH9u;KMxX1pCL z);PpY11{c5e^*q6pWwpz6z=2uYHr3@J>;)$0`E?25#zDSCglhV%a8d=SzN zdwor;?3|<1vARsXZ;)=PNfqesI~7`9qvxYYmp)$|>Q~$W#+l~K>vR023o|V$L6j`p ztxCq-R0qugj}Y( zsQ|Fcz!C84sTb6JNyaGCR-;F?M6(VMg>OlOm)4f~ilqG@IH``-p{L$UJ1Imy5Cs|EL`m8jBsJ*Zht z&u@{=I{FMMJ)Q%&S8Vs7`)RcCSQfatY#w!eWV}8v!q5r#JU)IWJh|tP+A#`L zs3ueK7MH&ko(!MFx!g+R`gmI5zQa}E-_dmcN4m96P3Wj^2+SEWjA~b;Q*VnvkvTqa z-L6)qyE(xbx%Nzi;p;Uiw^Kh>@O_*r4f7o)?q9BsFRB^9%NE^n*Z!1r(fZ2R?TjvL zf7^%Yl#eV!)t~)frfoAbU4Duo3cl|F*EzD&mAkN&cbgRrv)VKN-}sV`9IHGrA!|D5YG`u{lBg-n-qu8W?;oo_g#B-yiamvDGNH-1Y-3N&b> z-w#Mv5~~FsOpk$s4e9YU(q*4~0$j7);6TSp>OLpk*byV)uMaY?u8$IxU()UC>khBG z^@iFv)=~GRW0*N#G%C|ZU9CzwYw`$~rPv>uS+-N@lJ0yn5AV;Z2UC~Q@28}DyulUD z$k+x3{E?;F73tOw@rIhuw}Haq+st&^I={;&>}}$GZGJM{`+vT0c+@#w-Gl939SesA zeTzZn-xMm|q+9YrVREGKI;vgZ{u~0&CpsbPng}W%q&s-+H5fANJ+d1zf$0jc27I2Z z4x_dEGF{E@nK15b0H{}yW4gk@b7958I`QxGmsCDhm#vbn^wzKHer~sL;NKvihj=_-5hxbDwe_=E%kPO? z%5=*FHx5YjVV~>t`y?69M{_nm#%>_IH^+$?Z&$%Be%Aom6MFCD-sK4VOnw;^FgM z)OQr=Qr;%uc`b|hKNsooE7I-kWru$pl7T0>(eG=dyQkh0H&%GSA1fbF>E@&5*}W`u-+~_BC7m@aLHU34kl(WqD!-)jyx1FQJWIxvqtvPPOu8waSzyVq zIBaKfl6ieUs}cD5B^39V=0e@S(H*|R{0DP|^=dzbqnUkhdihK|^yM`w9_hT(dSlBZ zcRc)EAEtA+kikuBeef~c!+h6%jg0qd$R`x?8RDRi@2LEeuGX{!Y1Gfh_*EJ+A47NU zK-ni^@UKzY%y^pi*$C}kj8C7s!Mr~1YG3Ziy+r&+J%&oRZ@_OM_0~q|{?v=y4tqIV z{HYq5%%In^l1}0KJ~Vazdaj^@o?jrH%+(#J@>MF3ctud{g>)M(Z9`W}A0xl#bC_=L zp@pbu`D7G#a1ql*9@Y@@*Op5s|HuEui*66FJyU(B^7iaWLY1Zm?l$lNP_{Whl{4wq zd~(ExAFcqldsT7Qc0jtZb0^}{`451&u7erx&K?do#a#uh!xfqFZt2FBz}3PaSv>9szUgL#g|NbQjwi!Oze0VM%Kc)gO>@>E|$pR$ADR3V9qN4iM?rl_PY1!9GCs@_Of zKB-19nv({R4}Cro=?p&P@KKpdV8OUA%y=i{T)}~`39xD&Js(BJbFk_B-<@YLTwT1E z8V4brf15Hq5bp+q!dj?y`XFtZ@aKBCaC@1Y7%Ry`8Nv0){gXdcexwU@4nd*Hxya@q zJs(fH)WRT?UgC{f*3#!-kZ#4)-{Lwe4dgL_Zl|PcGWaTHYVJb4=h5x-OpCJcTzRh0 z@>E8gc~l9C=Nw?%+uhWCM7pq3ec*!W6X4z0qfFO*!5A3YxgJyY#V4wq$#{EeCcvkk z^r26LI@PX7XF0(E{@QNVtGMI_ET+`s={+J?Z~5jhuFpbEufjO)V591Kuye z(Y1d?`JzVZyNq-$&z9hqUfn>|h80vkNay`M0XIBw<*NxpfIHoi2m=&c8(E zmvlOhmSFz}-N5==bbd*vd@u=T>jnbHm-IPpr1Q6o#)iFKh`9yFsrEv;(5Sii;*0wr zR)ZcdCf(e4AAGXcEO6>D{a!~p-oqRJ;L^e9(ic>^-x4l!?mhZ&`xAyr)>d9Y>K*;C zOO_?<+V7H1zU(5Z*k_2N{^Nfgr0cKM&QCvVitiWMFyqy-`L#7W^;mKq4`EaCb>pmAn`h4Y7RwPmVBBwTcOLCZk+cMzG!+HOw#Hlc5U}$x*H;K;bwNW^Yo+bRbyXg9<-*@t%RuO)x!8601*$$sXBK+` zL`|8C%MNT|I{VQlK}=0F-ZW=DRUc$LEmJAjv@Hs6Ol7-1rQWcmy&K*(5K!%zj5lP1 zFZ6HwgJ9VPrh7QnANrTRL;h#=nECKrl?;`JaA@Hz`hR@7Z~BVyyBj6iMn{Dw#v$T` ztjl7|%rxBf{ve%$p{^L)aYK9;&33_;28kv|uZtmz*iLQnN^WPbv;4l>Y&Y~lf8PGJ zI$yhgDf9XoZp(wmbD#75E$R6|#n1+>{aFz=wC8XxXvP6_``iNPs`#ENXVN*hbw^L% zr^4y-N2qo{x{nq&#FC07@ZIw=X1q}Wr}(Om$?(w&`kW#%UYwi-@Qp}tD z>|G?b$I3wcHXo*2ygN`l*gp$Ayb;HAQJTx78h?fYP)gSuneNYd$N8_PmZEvj;+gRr zlC?qivj@bYaqM{6#=}7W`n_VG^YnKLcjuWPS2&s5-nW7)xjYvK9WO`Lx9NU^bOly^ zcR; z229=^4t>(!Q`bj2_h}7a&Y;dYxR5nWck+2R7oeC_^#8{e#>FH zmtzf~>ap=~N9WIVSn&==c*9X^--8V*fmFQc@AbmCN3*$I&lYj6%I}aQ)dl`dJxA z?4z#lN`ba?czsVUWXLtnxmp1q!-KHvFnWJC>3a6Oj@&F}LQ%es8E@g5!$=`}4ou&F zgX!i>I)KIujD)#uQ<-k5=6C*Y4>#rK|US1|qE!}ZtUHlFt8Dt6a#9f|??$LizYLnVDq2kF%2`Qs(7KftHa z1E}^#x@vznY!`kRtueSpl?&<8PtU+l*7e1=o;6bKg>-KAFX%9vj^ESUB6{UaLOk&96F!w@4crD;89^J*LS%eS9@tMidjAxW|%5a z|65-_z}$bc^gf(4w^waOp&PK819(gS#W|zH^}KYO;N z!f78+*Zcg|8b{vL`n~P_8~MT;&u<7RYr*wpL#cSA+fwossd#F_whlw4yEncX-R(OG z&TXOBwUF`7XH}uyo&VTK|6NXvbCFJGwk#??l?dmKqvtP4w@+h|xchSov|LJ$%XioA zC!WrU72I$GC##r<_Po@`XT3StwOmNobm@s$-Sh`d$ns&j`<3zH@@N-i?3T=Q7s}cN zb36wR?5@Cc%QlY&{;0ROQ8|@zd67Q6OvuhNwg>%%zSj)k*+0YJRBihCLAnWbL!ow! z73?!In`#H7n>b}8ys#h%G$Q)kJkm|;HyYMyr=a3j^m;SW1sOZQy}4UKt`5D9hjf#i zJRyIv7G0}8P2HEI3v!BvE+==RB{!|9eDq2)6}KcNa%-RE3nN=Cai-!}=;?ck8V4rb z8Ez-)HYW^PEz70SC7t{e12koy2due5uNNiVtjcM;!{3?kSer8L+O9~~Qgn>p-m(~e zpHIJs$*nXJHy%^tdfv|w!o&&`o4*2ty3*?fNSAu3487{93?7?BQ|*OxJ1jj=dG$v= zDj|{S=KQorj~CekP5*eNJG5dX%D*xkcsypudzw4~4ZSN1%KYj3#UjCA@Zt$@2t47gmhm?~$|$z5;;j=esC_+CCtceQ0Y(Ag#h`5|FU z*LO4qiY=Rf@u)z`UAuIh>$znNC-Zx-^jlLsxFlLYG*pY}U`$VVYq=48phM3mlkpVe zdP9{gE69I+O0|2^$v+qkx5;S3IsfrKNxDS;aq#H)eozKpV#XU~4`I`WOQ5!je!h)4 z(ZbD+b>VXN=W@-O`gldO9(>dLJr$31_dmQxiYhj6Lu@yyTu7&C`2xwFxC_PvPGP!T zHZ^F^od)3SIh*Ms)K8(iPiDj4>Gb+ZGTomycc5h#Q~0dW^n4!a(!S>-?}zun?}uK@ zba%!kp`UuPutSv|XE<_ZkANEzg=Tb)Gwl3NtLl+ReE;<8KMx$eM7T{UB zyC`R?CM!BG3ldDe)o>Z>1#nO+1o?la`!&*KuJ{5*+Zy71+qGcV{`7yj&OJp7gETRC zO0Rn$-MtI)@I^r?>i1zfGoD&@Z|MHV7KJ6uV7kkF%pn*14{i6M-*?G$t#il0#wdB* zyPf_Yn&)a4u72SPP9^6CH}>sHab{5-@6?z^rAs=gw-PwxG!4v^(ETpy-Zblh))im) zAF?UTct6|6gYPbrAWG0-y3ON{gRjmqaAlJd<<^;-NGt3^xN6_iTwKUHbbp)-oSH_j zt0$eFVE{^u(}g{>$K$T`OS(grstC@s0*4&w`6$vE-yb6U7!Tn7i6fcuMyguyk2{Wm zN3{zmw{dJf_iS#f5h?AmVJ<`E`H)Rm`}aiK;#5 z=PDVmrr?#h-F^+4qC}5ll5WoBi()g9qTV;@eEgl+UF4QJbD`Zo2p4;Hh%;h6VNOnW z*tH#y?({wbQRY|z?3TTh>L*F(lV8GZ_Vt9T4SF);&F&Zg=4YhB5kV=`xBwZ?U{WBM zaxD=qNj%7Ou@Qk_+4)4c&y5}*H&BG4=ZPMisdcsRv0*rlHh+uc`qAsTNVn(NQ~;mlxc_Dv4=2~(%?OS;N`gK&#>KODD}-Ums#6)^+win3-@INXF8@5D|8 zTv{{>FZ*Xe_4j1Fve%!{2&F)rue6-{&NEf-CYoj}5>_n}xv3k@gGkv(?2ta2DreGV zGWvVc6@>JIAuFciy<2m|uI-9+6}xocoS{y5M$|)Qx~zUYqx&iDo_0F-=&cj?J!3I` za$zIT+>=42OS;vvi*R`P9e&r@%~bi3PN%;&zB;u9^mfi*y2rCUvGS!WpnJ*@>i!_( zZT@77C8JM(iDNaW`X$}*EmnB8b`Q8a>OC{wmYzegailtQYnGwnB`eS5#Ws1#i|1Pf zlZMyAz|vIsFUEk1N4g?VDi}Xl0<+?~G2Maxx36f(f9xwF<2eo00%BkcJa=s;GhX4L z5HQU@9BwM1&$Tj=sE8S+FD2XOFBcX$y%!Tc>w$+_^mCPTMyjg(>!8Wt?=$+lhjdzA z=KR3!=0M>-J6^g*ChyJLfOjTrH*#+#ACzYdPF-U=zsxiI&O_FG@^SiogS@_tM!Ufp z=c%B0ZWL9&6AYS#YYOwEacWluyUue-W_6xRlK3Czl92B3b%4WBKAO3O?*B;l#qBwI zebO9PHL5VvJ?69qEN#06RA%`z-QB8e&|KCIKK-7}bdOE*LEB7S_@sw~>40?=xZJZA zgnXRCbpLZs$B_TyoDMR-c>_bB#^a;BY4-??J`5-QX#&^gKBArsJz z!T}Byn8ADp8>XA+{SYkd)(Yw#I5J)QjZeT@1;EPj^gK!Yv=iKq?^20fQ8ZV4@)Yo@ zkb>N=-c&r&ZEF1mG9SJHdm?$J`+2t;wCGdAk1eCe1;}_S!(8FHi@(u{EBjE_`-pVs z-P~Z@jb7l{HG1EB_n#W#@L@56eSHCW4fK31>EzVMVB@RS*!j^mYMhmHDzn;9v^WQ!oVAw9?-VaB{#Lf8ROaWv zGcFfCgU@G_aGx`yVb^jYooARl?0s?sjxMC%V@VgdU?_Y)9IX*W- z8@_g<$Kgm&lD^RC zjvbs{S;lnnr-s1vLVM^Wr$qHvWIQQv3lBz&fKT0RsCdok7lk|Bb-5_Bjlx$K9sc`} z1cCBP3xvryN3knz;>4uP8|qM`93MW#DnB?WcIoT1)5dfyWn@AB|! zaBzG$JW;4b#rrxyoj3n0Ry7+fmHIgi0x>Bm@Imf9>iI#s+^t(dM^+4!E-+%o+ncQp zpQTQR^K1R2UGq!Ed)H?;1RdkyvRX5$y^u~?Fcn5dtHBlabUPs3{U@GKB~2dI%t@x| zH`l0hzg@;kP9`TtqTVAOe^a#pt-Lpt57J#raK~!4A2Z&8lZ%t* z_MZ^JICl?t>*z(ME7^Vl^xf_XTN+!KuIRfaY`y9L&khP6RrTcT%aPe>Hd5Nm>Z{gGiKfI)eSN3RoQV&S1`cUT|8U>AcpML6;T-tg1$@-yq|`EL*5qGzKMZ9l?wTJJ0C7wo41U zbnKwo3mI?DA%Eyl`Av-G>E}M_Do%w%Z7~!boJT+Ro6@Di+1oR0XFXLDw=R7vyg9Lf zzhSo&cWuw4yHw%MeeS;%=-V%5x;Cq|{2$*-+=)5tc&pXk@kS#sC@ZGNmC1Bf>i{rm ze93RUPmiPDe)fvXeH9|~8g!D|d1a~4-u@9eHwRMXOuB->x52O;+Biy+eqSS<&YF*) zTa^(WJBJ=`BHhvI4v^o}ibg8hG1D!r?g5QFPN1w=lbCK?r31Wtr#m+BMpQcx&({c% zR>!&AOF3NL5C!bzkS}hLokP_J=_WqSMBm=}fnks7adgtPABjilD>P9|4n00jIyI>s z(#p61^u~oU)BW?r3VFDcq8*#)?>xN0! zU~9l__V3_t3{GQS-_NLG(BiiVD9X|K$lvi-C{wWFZeK6t-dwZAibsdS@7hsReUR?b zg-7VOhZn3ly^-m@7*(QmSHs{RTQ{crS9c0+w~2yEYM-e7xy0m%@NZ~eiDO5duwnH~ z9A91x&?R~vn{*D=PI%LZVzBp252{>9_uJe8msETM=E-cArDl%p=Y@m9*`t{86m&*m z?_hnXTYyp5{)J4}PgV(Q?ivXf2FOtHWYy1bE)GH5oW1`f3$8|C=d=)Dny`tAN4i<{ z;W%$qGzi#P!gPC^X5;RjzrdTDOPDSo#|;m^(hDBf<(TeMcNbiLRSs5-*vfR>J2?Do z*9iDdr5os4E=6Op@Feg1nGZ^Lg>A12(A{1WfYG}Jkmb_<%s{@k2BTNg=<^QAc!Srf zpyb9V@Gc~t8PDuslep$oy{Nfx3Df=ixLs6y#{ti~^ms9u?w50A+{!n@z`B+6`mh8j zBd$;}lhiMj6W4o8#**5>V34&A)ecDKJI5S<3epBsw_7k>2ONcs=eC2%gH@RB?Ri5y z&+P(G?%bc%wVcUxr$jFY|18goH3@V-M7rFO*&y!ZKGAy&-JgQO|C8 z>xI6^YPBcqS|6kqByi<-o$V_88E5$6d-f{=JxoSSsIqN;DN*`=4J@g;{6DHF& zcY1mTrkt|*_y6M>PdnId{PDT+$A7pl4?Q^LtX0zW!)v(bD?)MR15?o}>MqqEkgjZL z2tK{lg+qrQG2L`CKfL{pJE~j$lIixW^2K7#TC`wqGt(7D`Qq>S2e}@;^n4k4ecf)2 z$2Sv;(dt+=s+>tT@+`y|tL4ynk6}!=x&vVMyYIxvXTvF1*~^gc7uHvDSbL8&y1P6+ z{@o0MEc*FDI^O;-`aO<^4L@F?uI-9+N4s?(*+Ii#a4${Fat({C(Gja@aEL3t51fqm zbYZJl^m8JdVQ9dNr}pBhXreI=?mcS8bW7hTiI46(!Jn-ID0h0;TIrem71D#Z1`6*+ z2H?r#F9Ex8^tw&bRV?+!I%l7OR`U$1Tu2uo=Z&L^pM(77)l7G--UJJO%wfZ#g-q9G zcp0_rp9R}L(fdxwbVpyQLWMK@pvH50Jv!+g+!%rGCOE?}vGjb;zYRv*aW^}TA8>+` zHC>19G^@f@mGr)H()pj(>3k=i25;2T>w!s^HCP@&i|H_I3_X8Dx*eVS&xdvHKX3bw z{pY09{xcu6oLb8Z#fen?lCHbbB4ECH9Gr1=IMZ$LTL*4T)&v?k^tu}}zbS&`^CH1L zVmEhsrVF0gl!^kadsFd9_jQ^xj?3+b`@FNK>X&pDa#L`F&N5UiLzfHbTy*ZEp&FJr zO`a}i(izR&gNE%1!iP-DnCZ@R-Hk?XkHiCCc~UO=EH4VIW5kbX?)91^R@eHCLi$`9iV&3^F^?pyfs$q_T#iCSf zn>vD-4@;l9AYp7Ih9Sk2+uz5M|Mxgi`rG!Ww4`$^F+cx{(Ac>Tu4}(Wy2Sa~u%FBy zl*7~GAf%hxIbU(wT||lZM>6Bx^coF^^I9lilNHmQt#E-nkgQbgCze>iqcmvkmdFL}q? z)#whOe70shakgl+Bg`!gBOIBq_WkH0D2y-mNjlkQM^0Z1Bo6dlZ+$Gkr8mwn-a zqAYa#H$Bd<%Kif<6Ya{)>wj3H|8WAm(PoIX8v0S=-lU6;afFAb>*8-Z^m%int7~4 z-Cok;z@+=(l?~cd7elGd59)p+T{>3`^3F;@_<#W1wLaqF9&jc`_MGIKC-SpuLThjy1kIj zx_AM;wP_`geM`^BlWyuQBc$=w8XG|2aEAt@#F2Ig@S=*DSGLbp!bf zp3jW8VCYwV@{@9KbrM}~WV~VTvq7Q!Vz}~O2UQ=x7jEF*&507uOAEPWoIn2QuZ2|4 z((6S@cY4EM+^`dY1pU!eK1kQrIfqlfSq04TqxTz-&bx;OR#>$HJe1lq8YopiqUtfU6F3g91o1$5lZTFk?B5M8jWpj`as>_cBZ>A{Q(Lea0~^+&ZhEVpywo1 zIAw8nI>+VL-p~LydoF=%^EIjdo^;yjg`ncZ0vI;M6m=~Z(%oBg4s7GRVXJxt(>=>S z2TBe_zrpvVn_cb?MU@uXWP?G1lrSix}~^nNb}APeuij+FRZ28GwELNgTbw-0oWq^HC1n< zn`?dr%;}+sCwlW#y^(HIO@BCl{{;MP0lhAgbg`oWJT>e#x^hXL8Sni}UzlI`7qX30%Sq#@#TT}H$x@nW*(YKk2aN-5}JRZ^w*VRD3$1Z`r z)80wbV6KzvGZ&s*w?i`fpmR7oM16LFm z!vTRM)cX+Wf+Amlq|!hbQK3bZ3+e7YZUbi*+~#f$noE^4>DKLZh1C}|V96~*=Ji$R z`$6ri2Z7w-&i!)rQ=#9GByMfs4~dM-GDybLPxFWUOGlv9&2N}4nhSuu$s@76{3GS! zae(lC@=nRUGqPeuSqAuVBOWfRqSsZC&SXFd=$#P*HJ`On?SOPmo9+RxnLhBoMh-LG zgkitHUv+;tdT*YjYktXiOKKJ2Jc%W|bGelnuk4>LG}jvoyPYqm+^&~DIQPQ}lAP=m zPG`*uQ1P%DIfc)~UDGAq!Q>0T@bybnujI;fk8j@xE4E(XH$S20A;@^OCp2N*vB6kk zE6a>$sG$ujsx9%4P=r|5=WlHfFAuCiOFZS6@vevZ!E-iA$oJ|4DxQ(jW9~+9HkaK$ zhD-k_53~Ho!pn=kQsqawUM{_%$2%LiQTYzj4fGk*`CpIzF!3C{FN=&f^oAZR{b&pm z^XTt4(oNSJ4?En>gS24!JAibbmbgIQmlr$#m-T{qeUsv6z*~Rz0~tAbJxKA*;}XAn zy(Hm=vBICNig^5+5in;EUCyLyocIBak28mU7QLzZAf5Q86rJei32!FfqUwWmaf^4M z&<~by^%8w%Jk7RkX!7xe(5O+K8E?ZzTeSLWBz(L3Ak(c|Yl}*6M8awLZ0BjbOYBh| z3^#9hM8y-1F6IVojumvCZRMg?567kwd%kJZc-XZ)lde`W7=?8HQ`5zybNyzQ{*QF> znHl1CuPSu6nckm5x&Z^_IXRuD;A>kj70*9S-~tYD+)dk7$-OZPaL11WsM}UK&^2As zIra*`Z`?ki>8ektew=jgmrC&RJKb=K>r1L!NY^jI6!-KRft60~WxDPG|B&jK;duUI zRc1cUTs({ZEuM|Pm0zLaA+sY~RAxBm1+6)q-~{|jdjY8Tr2lh4y2asPcvHw`kT+rr zGoF8aAl?l(fWpP+m`;7P6YksG3NAO_U^;Cbd;H^}qIhoBP~5dX$m`R{w8bC1OgsNC zd5wA=k*@Xk7_9uV9}InWkD2b&i(_!;#m;jQp53P$UaP_%PmAEj$wzUmN~So#^Cf7W zPtTK(E=67mFMo=`x;^xKE$P0-|3iV^7Vt@aH!8oR%RK)V$rX2=2RfI2-zD9?q(?{+ zJ{TJAG^FCiCoA#S^)}inHU5)2ZTJFSf1C*eR?+K0NT;-@KfJ$Y8r-0S<<0w3G!!eYw<)O#IyeFI)O z!!<@)aOS}0eAjkGx~=9j;9^5H`0)5{D&1!9#oX+ud$yD9YPntK0&&Z>EudCK3cAK4 z-KOX6SO=U1SIp?|JkqV@-Ldzd24JLznemPvosIMSL=ez&mFe>4%*OS-?tql`(@ZBt zv#^mi0$Y@BGF?gVEd1E~Ecl*vgXt{yPQw@PzXAuQ(eJTjevfUj!9D6ffD9*Ds$VPj zI>Obi2jYR7Vn($; z(tR8sk0vZmfX-?snQq>=MJQ%t0^E7Nis|&%2Jxu}QsC_lbE@9RbdB{R_`#D>Vba|p zOt&zvAGp?@3O|(jQt8GGImg}DGEQ=DG2|QvrGl$=aWEr_E@#rEUe5uGoZX?t=Z{o< zkS=@H9#9WFp{Hsy(~ZCP5FD924|)jn`w$s#vfLwZJ2M!@o;f9UZC9kr)U}2(vc|C8 zbOx1f&W2l(aYf6yolhQcO`Yc$wU01CFS1TD-Ta+1u=24@z~19G(`7|oL6uISQ1g#E z)7?;Ah6XBT0QF*e{EECjsAYk!-}wdh&GDk{w>xG>gxIs|xSZ$9xmz`QxKxtPJNi0O z&kxd-ckbO%-Y^y}G^N*Xkgi4lBieKGJ2-cdW5yeL=@ha%vJ~u#3Sqi!kD9* zMz7x`(>)WPi+;uz1FOsQ_%rE_>#ssG&I>?cGri9Df4N`dJO4BF3`o4`@%xy1y(-Do z30zvxBQCXbElqM(H*~8XJzq<@-T=U3Gu!wT=ZvWOAl>r1NpSpgM-&-I@1G`}m#!NO zTXm6t)2A;p-q#zmpu^Dv{N6GprqizUgS*$<6Q9M>`w~vaIPx1cWuzHS`a-2eILdgn zonO6(KA(nkj~*W4s~ZMjg}+m%bV--<@D$%_rGp16J2PEN%62gBrij9h()B^cd${#3 zFn_IyF3A|-2u<=A?ri(kN2|a_;C5;xYl+&!~&c~}Z+h#QT36-7wm4Q|O zJn*-Yx_?RcIzS2@mqo!j74$qT>9pr|gO6vs!=4wNneoQ`RDoMRPk@i!(ccwhyu3dB zVbXR8muK&0#=C2!2~CwILQ};xOcys>6K*V>0;jB`=Sj$Pb$V*S3Ew;agEey-70-O_ zP;R@{Z}OaS+ojuZe+)>eKlFy$>^;_%Q~~e6R+z9-ql{wg(g8{s9_j?RrSL-k(kg z$>~L$?$YO6{nXLoACoWO77C!+AL*X+Bc=TdBf0kPOPP+f9+Qlhq<_?ASO1dA|5~?6 zI@Y>P(j|>OCee+YW~2BY>pMvo@xhU=`PdUK*g&7V@V{I^6`$H?HZYo&#LVx?jbC|P zZ&?^{fqo7?+&G4Nt*go%Mird7?@Q!Yex0|`p~neHXEoeRY}r|lk{u#&*Y-!cH7Qr)vid#`wWM(zi7asrgo<5XEXwODe1$qUDuedBhU&e={y9g+xk%TL8iOP zoriAk>HzOfKaWV)UN{l@sMUd}^WB;8T;5E9MchZQ$MZ6EeMbh5<=f5=;?|rClN?>- z&ELN}wey?=Evo!T_cAh?7q(A?eUs?%2+|#07Q>JF>kLgkYBS>r?Kk*w^POR@5p3tt zup2aGPKEOO>2U!v-Tq-mLC$n*xNkYV?w@pCua1Mj(n-)Kst5D>a&xYMvNizmdfGM5 zJD+iw9X{u2B1JFRDIB2aaw9>Hd@9{f)huP9wDh=;%ej{H61$dL!c% z->CutUV+e&+s<@V-nwu}xf1L+tHMmT?tvbB*CYq!6ZyW#PPLB%3%O>Yg--D#nZW)X=wg=$@H|TM1qx44ZLik87 ztyGR%EP2KMS!Rc4^24b5CEbyZy5w3E?>Hw}evs3CkO3ZEj)dxb7FBPgTQ^w>a9|kp_j6;qnr)51!_5J{ zk^Eu0C0{;)9lO2Z_}Q*Z7jCHxRrrZ8X72%}%a2orMPnwyFj?AZq{j*=LBYbU;=4k? zHUJvO46tQ^{u8`B9+ViNa$3jJ$1~(h56Q1Z~AQxv7yisio zb)S+wx zNp~}(0L=6Whs*ENMkJ0+-Z=evRpi+!xZ{ z$)ro>UZV&NU*xLki@UZz(q%>M5dXNEBfnWGOlL7qPaOL6x_EYB8q*ycs4HHrz9H^f zK)Xjlnxa#Ei>-I{6QNLc8UOf4FtjRuM3o=u;y0^NS=s7t%eAp9u1LE`|ng z7ck>Z==}fhlxLmqi7xc~8yW9Fr5^};=Lf$@pEBc}o^cZlZ4H3cO|eWje0?);Zt;hw z>uG0a>LVz;%$4}QmI?;)6=MG}iEzT?a4H_@@>+&~;d@fymwP9ueu#8EIWu4vk^rBl zOhjGV0qMp(nF{#JNpSiB`hWDKJC^GKwwETsb*nO|`XHT=bzgY-p&i`4zl@oW)H_39 z=5l+uZZExFg^V}h@K|`!#S%VyzKP23^v88vONJ&_@vKB@e0L(&`Opi7ZKFn9kN*4_}j!z;SCfFrB`N4i1T!2p>nsFkRBSCNw8l0wa4VQTGvfeaE+6 zL8DItc=vZtrh93#3T+wd1&7$ZVy63~Q9;bY^Po0IkMFJ-C2~KrRU{$#Cc;`|jJ=kQ zfnN?~g0Ag_bmng~@%FDgTybz0(~azpw40 z>&gJQ?mzw$Lb_JF)2O{J0D{upRJtCcwZtuDTWx>jH3-+o(TiX1;MW(56x{^;LvLHDZ)S3iBSWU%3Su=YVPtkpb%y5^U3e}9yKzk?P+ zi+2^&dp7AN${hw(R~Nvsp7eTA(yg{Q1svvk!ON3snCWJ2t_OZYg5V(O3d(8DHsv3D znrOTE<2s=t=O?;j?gM>I`%&$HbV5)aYN!c@XCKnzdZhD7#Yks%6mtb)_eb@%7t`p=Msfi`AJZB)?DWGjkcA7F^=<~WA++meoyYH2TOj3!?DNHsC4ah zA_Pr?1;T`ra^j~aFVXZr^7w9l8>)XHU825^{6&^2hk7>_O1ZKTSD zbn`l&zuWy2aI@(sD!-)5)%OKQjO}pPT|Mgh>K!g|1tO5F{<=ztR5&1Bj!A+#cJ9>m zk#2`9l2q=CgZtI!ew=ha(%16i$1a6RPmQSZBi-^bd-zwA)1YR=A*P%0?FQdylLk*{ z&7)k_o`=H4;$rTL(tWP~zH!(X4~K0t>HdIp>*fu?u3le&-)ik0B7OTfpIg?IetPM^Ug~DD# z8<_6%0zEJ;J_U|%xJ8u<8PB810hDys@6})QI#tqrySyAk=tje>f9d_$-?h_)&J$IH zqfXB`mFHdF&-FY|`U;HqBTiK!_MWsX{imc(DIY&e)OCf|rmaHjTA!|Z=+V@@i9wqn8 zIYd$^QfX5uMJuI6tDgJ0uJ7-<&d>Qg^ZoyIz29?|IWu$SoEg8{JCXM7_sBDaUiVMB z9+5VmDfgZ$Eur5BWNn$nJ}m9FMV^vRMs-$>`MY_j+W41rFrUj&`r zfk|x5fehF(N=DG_W!AAS1`oiCo%5-BA@dd=#jIxO5*Yp^NHAVos1Z;&H5e8Z(ECZq zcs~c`fi0?^LG*85DsR^e8TNa(z3A)a9LA}62(-pJxb>$L?tOhD-57!OyQFI<9ty4V zt#O>=MI;ojY=9Fyw^|Vw$DS2*4@116?EnSrrfo{OtM}ws4ZU1Z-_R`PsI(XG^$5hD z7Iz3b*EKi6xb#Tex}>k5JHJ&17U~9K=Vtmoo6PH!H2~guriXV){*BVRyrkQq>I8N3 z6>;uLy1b;T^6`f4W(rtorU`X?{Zh2J742~x6Whuht#e?G<&}zqe$oA&bO!s1!Gd)q zXhkjkUX64%4?949%?rC>3+GY&g>-Y<{{q9qPtY)zNrLY0rGKEdi)6?R{$`ooik z$|&md3@Y9xe<`uT@^ri7zh(K8=iYIr$9v#S=JY%b=>pgsb`I|V|ApvN?LoSD(8*p; z4~6|STd8^`-PEE@Al%FsULF5V(1|oJ0i(2NIDCU0=-m&nUu<|O1%BT~-{+97Pwfj<)Vc`1ezKc7KGJPg7z`SX7Q?@Zfr4)A zl3;MrFA>(8h6uXn_veFH*;J@KXa;rNBJ+mWM1!r?sW7D>x4d_~knTGep5JhpJ7js=O!y4ys%rhEYiyZbf+#3Xr$YXbb4ZYsN-ya zYx^Fc;z6+yTXD0@_UgS|+*QeacC+L@`@w(QXOph%cL1xas0#nC@TSfW(mfh42ETp6 zV6r9M|48STt_E-Hw1UoO8>xCBotl#lw=)0`q>*7FO!BHO;Li*uF@T=G|0oA z+w}7mnRjLmz*xr+K9T=LogbtVkF>_COC|5Ihtls2K%Z#l^lT~7^}IdYcWxEhGsX)t zh4lLX(yW_3$Po|>-jxJDn82$c@bW^M+qHQ{J;6dZhRK1YyOjtGV z9u)^~>Cx+gNVhu7mRE^Ogh|(T3C3HzaTGYv5DHI?dP2GD(hZFDKr04bDq>__??L;% z8Nyfkrc`-JH=;}zr37?>r@Mm$o$Di2bn37I{E$0K(5b|)1O>V6z-8-fL5FIdfO4xK z+_WPL^d1k$;|ndE0T1UXRMnLP^`Dp3_df%A4>Pqea zjAbIm+cQV6|K-1bi-Ya;=csxnUBEdk`d*$6|Bkj3bc-hEGK!LU>c0zy3OdIyqC#k*BoW; zo_)l0jQh@ddT2w@&MB~WyOHkMmQz6e(tO}q9VO_Frj`TEg|?vSsjxfj*#%CeyTg`Q zr9dce|0ZqtZlN74(%&xVEZ^F|oS{KLWjOtwi7bcf7&o}}YAeX&>!^6kii2}$R+oq=vO#_;Ec6V&yRbgCa*V7>DQsGnj?jn9J%T^Q*GJ8^E6GxO?gCQg3u z#CFWzC+Joyr{W&Tw+K$WpGK8~jORCb3D!)z!mb_^A?P|ACEwjrQ-sp7d4jIl-W7X! zD8ca`=<76@*XLDV9CgbV2EKnvm7}1 z*~<4|rY^mYk8}gWjG)t)&mhrqkYKzE?&IO#nbOcrUQy8bH?r_nLMxKVKnIZHMaQ%z0Qq{H}AqBbVutk`{pt2w1(diOAj^>-@S8|3)YQ+ zW~(hhkS%>*OuDe2snFgz5LBel|FI)o$K5noVrBz|t6ZS^3+dWMro&6Edf;Tp3qg0% zAQS5EPvUKF(EFpvc#E%R!83WS;^w`hsd%lTr{bqS)EH~Y_du7ia=2DS8^3w0344!| zq*F-zhYHph;@gh&`f<{=70yE!*G|MD8+!hVbc6Q}5=Uq&i_ZMV`cBeat9(|z>((>w zL_7U_PP&%pqVklWdfTu6OFX%$w=dgV^|br-zqpJ`%P%L)8E*IYe{r2bYi+M(2K}$` z;gc{dsFb6ZZ8mvkBLGte>3kys1? zb-s}<^4b)X@L3o0ed+mP(%qVCfr_IiVuxqrsCbvFia7J%Q$)WWDf5=YuA&G%DX5g= zOpT|cJJzg)m~0OaRkm2r{nb}O#yN4IdKbN3nT)r{Ay?#D!h^px^f*qs*JkR#-0lEy zm8QpM(%Bq82I|)|uy02SyJ2^#z~H{O!HJLb^EnyMOY{^dK5YZBpQcdd{qdyKZvBtt zqOY~b#OaA|kZ!jxOuW7U_3qE4n`iz8g+2Cz#?R^XIizcIC`6(c$?&P`5vpI2u7Afy z{*Z4HOtaV|nD<-JYQ9V|KNJ!(mvUPIA2ZF{CowZT{F&hy2{>1IB~aRGCg}Wj#^ZB$ z@_>GAqM+MrW`W-~_Cv+fm)Ru|kkl%8iG-LK?d z=%ZwR^0bWApm%$auCStmulS*k@>iz|9^bVdeb8WBi@tuEFX)PwB!k!ex{=p$UqP4R zydTU7zYG+&((9_ovNKz3m8>~s#iPX2e;|@4Km)ElT*;yCSP1Nm42^5x}(Zt(T9&VIIo?) z-zA-Mf;!uNCI(yfy+*Yg=`!25u&xWfqFrO?`Xk*}7kz-VYthg@bh{aj(Y9N`uW2t%}-9j$|=)euZ+rNCGj*oQP7fpc&R}_JT{pj`Mq-$Rg2xm&( z;e2SP=W|Hs^fVdXNG$-qo6l3%k9~n>Y;V6>UOu|NJU{x;NVMk9Ff1!ak5{BSH~Ix{ ze(XJ$<(o zOb_pS z9(eZGuWZT`HL6}nmx!lhl*jQOCuj+}L49R$yr_jQ*Yy{4c4ad7t70wV_GR3~PCe26Sry!AyBo;$5(A>GbddwnAJ(~ zcq$i<>dWZ&?4-M9U(Js$OoD}T)=}+Cx?vxd!UUTd-m#VbKH={uE8bFGUG&aPf%jeF zhAUINP=rH&>i9@EXqhAKEA<%#n7yR(k}h6mGzMGLaKcymIhk~4>$I^PIEr3Pm?)Tc ztlbmj*f0bSC^8XrfB7j0H{U`fvf+YG_OvEa`l61%M7UAznzjNTTc^jgh!vRovj*dt zu~VVC-;k9*d-!_@FJ|gx^y*3|9J_oi<#t_MAbLD(U-`Kiav%6g}txSq?@>D8hoxi0$fcPBIwFSc*6;iH`#gp=>2bGyw9eypmXXbeo8LA zzK(PvV;^`@dmyS>EH9Y1_+=pcbb10BGnrnOLB@OEcOE>Y5X-!9p|69aEAWkjPa7_? z9plPD?|O01a^=3v2I7kKvE}P+0F)orgz~TSp^lGq(_YxadB;>Bf0v%OC7t6*Z)oh; zfxPDJ63qMmeaG-$ex{(4Yn%h$ZRr3CUK0h~zkw-m&=e)K$uWg;ewWnwVNwa)r)#H~ zwPC^d+ma~`ec(p5LaH_U7)*PXDE`~K5_d3&s$ z*<(6~{}UVx-+cN?)gS5J&FRBiUy6Xa>{CH!yF&(KJ(&odMwn9lii|h&H3E^c-teM* z6BTcSgDe|!%T!#ksay2w`f`Ah9Pr>&dOnPF&9@C;*@-=9s@nuAFX_Y#fPBFK-1DBE zw;STx{riG2dg#!boG$K7YiV_l|+t>bpU~#-&s| z(rtJj5AUBm4JzB|_w1y5K64Q~b!jn}n;Ih+@BETv`1{Ff!2hE6$&vA@wxz<(T`Eji zY$)p8Pf6!qo(dO$hs=NH;-dWJ`*F5TeoOEy3{9%pHFNPCq>2)5YYxDRGnpA?|_d@!4pL9!B zXv5~qQ=r0_HtKpwx*6ePVX|Z&?m68(l>5=LkK25^%PvZJEhm2Hfs>4TB>T#DQ|(5& zBNqL!G5ZPVbkN_yAl+ND2gvHI7j&3{1>-%Kc@If@MnLX>vY@NmP>E#sSOVvxk<@ua z=FR_h6s6YO0gp@R|5lN1#1s>>*;D~u@$;tQdARmr-A^xPUV#hD*e&PLYLhsqd2j&L z4@fuu_gAI2(7)>!jk5F7?L-_E6PgY~Gb3==ObF1HK*VMkWRHJRupcU{niG z`Rjs{y;}t1o%`|=oH{4@=X*ZAFNTa~GEg2$etCkQe!WY@i(5T~=^C_%iPS7(o;Ob5 z?Ya)4XOk1C_8{GmeTSHuEyd`qsj$=BEM^wyq@ypxmk7q&^!5zgW!7jS~SUWkzn2@4}yV>i8QXq^tur;Z`AAqpm1y&*t0E~ilo>Nf&a!3SZ&c zQM;3ppi7@R25*+#gu?q+3c6cY^zo#XNvO+#zTaK=dAaR8i{s@A{&M`xm23HyvP|rr zyn(t-lTN(#0BbNL7Vks!{2J*FP5cDnodG^7`NmK0@tJh5&gjA2cSLylGJ1ZEbU)`9 zKwk3gh`7J>b6&UqYi6nB|K538>qTGQ9R}0u=3{C7Ra9QmMfmGLS5;^HE3S&V9+9s6 zj3JZ`Ho&Likzl;!j)_p~nJIpB_Zd}xWIXM-DX`sp1pcW>|4)f@BcJ&|b^UInB%e+7 zKhm9C;RiL7zM*w_@q*5Mr$4Nf{e&h2%olX(mXhy-+%ZO*eNR$u_LY3GuF8$_7c<{- zLjRd3U8MO1)^BGDE`6IL7_YLa576sair3CMO4T134|=PD60IfpN6HMrcp;{PKzxCh9^gpWHeT zt7e!{@krOleFLl4<%wll>3KcUg?>H9#^pUnMJzpUM!K61%YmF^JpI*1k3*!JCK*pf z|Bvz1=H6p&*;bD6{I`SY?8wBO;fMJ*JH}G&LAr-Q>3HL7YqW7yHgz76ZvEngn6EpC zA~XI9#`}694o80GfrS~)vu)ozU!Fa}5o57b2(QvB|{T`8wxBu{Ipt>aro?SSf%9~vu&aE0{!>qfrwh8N@#?7PWf1haM_(7na%e_f;Jd^9Vbd{LDxPCMU3Otp)#bLn3f!zY zLvYN}(J*z*PwG4;ox;Gu7#IM!W^b{e%Qfvp=9c53eAz(UyPnB-O)EB{Us5yR%FFcg zjK|Nhe9)UOqH5!Q{E$n@c#iEV@c8x`>U<-elx;Hpa(*@N7abRLZ}UR%l;xknhq1#1 zUD8f}EY;T^d>u~D$C7!K>;3R-Yg_P7T8gS?(k%~mz(+pUfu`AXdnoPi;DQ|oUX}`K zVcb*RBI`ASkn4?LDjw<7k8r3?##w~_#0k2g#v9P2*{4uxez>5k+qVqW%)Y?<_FgRL z3>R+TFV`;SKRnMAbYGqX^DW97(f#@)$_3W{=0-@~_XHX~W~OTm!y&O|z*F+Q)ZYDt zbOk#G(jai#eAfBImj$3|lAov|R4NhC4iF=oqbh(ORpluljr9DfjKv8T>GjIL3D#egip82v^z#hq-i#{a$6FcW z#*YkDf213B<^;cgkr9@<#R|IY!Y*(Ls$qJ!$B6v{7@vuQ8T*unOnL2PZUauo z%HcLtdywv8g}0qn{{+13$YDXZ;c`D%=)4ZS%bZH}7c!ofT7TFQG{9G>iL{>{dOiYZWCi=Aem$h z35AYdr&H}ly2BISgI&w#z)~A}oh9kay;NY`JuCQl*K?{Iq}zRZFkD{X4$HTAQ}-{V z`;`y~LyxzCJ`)#F@j49+_=)vXnJ?W%TqeGR#_Py~s#UR6KOo)Wqo<3ORZ|HtF8aNk*D+%fRmQ@q&4ua{=hgh-OrlOJ9%3crKx1kx{2K_&PUD zFkZ&lWqe4>3S`xjOu6ruIyv*^_jYqPtl)xP8?#rA{1gXPX9>E0;%IiL?*W#-N?(u2 zcxI0K*|z%MqK)Rl@zP2M!Yi{g(ap_8CH)Y*mZPksax z;_35^jF%Vv7RiJ=!in?g{lBY@TwvsMG(_2{vP|I9y{K?w0xXzEe-Dau!;9|l>eA`Z z@s%-ke5A7~b>!<$WkIJRro-BX<3CCv{B$;5NT&1`p@G}XSOv)-DHM;0z;H3pi2-sL5o-OVKYXvYE+;$$W0 z^j8Ms2N=$$=Q~M<3nFp9%++lEq`Oo(NVoB+AI_Ds1!>Ly zD7Q3w8PhK(fU!HkF}MA;F=~s~0O`NUxOY914&OFnkE}n(_tewtHc6+c*1~?jvmAk3 z;dpgs-`Pd2*?jB%48go#HLJmiKgZdQ+!)Fw{Z?md4riBpxSV9hYzyT~CRU+U2Vw*GVoCJxt}E7S>bpy5_W=xdo;i|dHOvQd3-$|6kx&lKz7$tU%}&( z-ZlVkZP?5Q#ClTB_}6JJ^D44y72o9+Voz*qQwcteenhn|=~R?Oc+ta)p#8@n*t>m6 zcXh2U_Sn$K#z{{WblI=c&}Y-f{F!qpf^OgXAN+1lcedmjJr4B^p3OY2$=cA~ z^+LLYOQxu>WD>rWGm0wjt;Szs=?^hnfJGT+<+>ZV+4dlC&ja_4N4oBT2;9**j^w-N z2)fI`LD2iaN-!t#9ukW8Q?keUa<1{^tj2E1qO&hhSfJ8IE~e^_bdm57t7@nVd-~G%iKM&E>A~mW z`tZo4`&9jrE>C+LR9F%S^k!HI=8YR=3D1vT%``uvU5Z_#xT&H>^wqFY1hRvW@zQxv z(|~>-PrBGR2BofF1Y6rzQ^!ZTe%cyn{+nnxbPg}*9+*_~wc!!4rTmegyUnfP=bm2* z>zmaD9d`BSAN7fa-@~f~-PGnBaZX1hd=p0ZXR;hG=g5HhSCXKY0lhxEUqe4G)Fy%p z^{C_q2cHLCch&ImIu`csf27+Vc?YSNQWoQQu^wu9 z?kea)*G1s=2S@oqsgDI+p8>OQ!Vq`V_#fXJA@ioTdSW?)aJ0_157qBcg$y?-F`Vl& z`5L$6VkJ1t6dN&O_JyM1t}DZ+je+w8xMC zXb&=8f{F)>bP56y@0A7Pd3Favn}zl4)+v9fen7@MeJ2&>Ek^9MplOurx^s*BDlfz2 z?rvrjE7qawQ!jy6Kj?ZPUHYZv=vcM_)a!Ahj*oP|Z_Pwz!4+WWTzVdabkkqF<(IhB zg8kQ`1mj&_`jRnN?gTCmNf&hC`**PhPJ`h%Z+f0O)xLuXU+&NN^>m50e18Rg=pEr_ z_6eink#5NG;c$_!GhVb;m#RO~d9|_d*P3f6yOeG>(&Z$$LHjX7uu9Gu>iR~yJKN?$ z8SMkeIF_gKrab+`yh;6QYxH6=gZE3LjWQW<2!D!-N4n0fFTtGZS@81QBdGVdLAtvl zQ#fvE7r50zufHdq`>z0KI_4KRC_jukzB2u%T+5OjOqTr%=7gIQ##3{^_bVDyJ(KRd zzXk3W^OfJJX({NGn)LCalb`raXX)oRGT!5Pde|%MD=^zf?@J(^`rc;@aEAw2Fyf0vGQHjiYXlJyMOuzn@g9;C}E90y;g8^Jym2L;{B4VF;ty*?c9 za|7l2vg7%S)uE#42Mam#ofXJ&rX}!s9!b>;={^ixhTbi55xrbYzuzLA%&P?SXO$AN zaH8+qNtbTd#&@l(05_9j1oQr>I=~n5rC@yuJ#S0K8>iT9H)L5~*i%1SFrMl3LF_JT z1vqf6ALWcHZ8&jbG;>HLhxr>X!%OEZh88#Ibtt4OjI3hM-^+lbR?y#dCY@!=KJa&9 z48&`asQyB_C5Ik@t!u}_w3k}A_jyh_ATRm8k0pQ;hSBf0oa~I)m1n|4Mq73<=OzE! z872AOPSk(=Z-;ctR!Kq87%ebJ#h=PcI%f?fSesyhgI;w|HT4w9nc6~%OlO?S(QJ7Zco%@c>%-0#UazL~zS zBi-H+7uXZqQ?S909I70o)9UD9!`5WrqAiJh?{bh%yRZ*<`e`Xnol37qB3=J?&q0^p zY+PHvRWR?_JUKYe&lx{$x-96{SGz#75H&n=PYUIluE%r90~c_IpG)(r?-!s$wJCV) zgALSk6zTAnY3S6q#rW$LEzrBXqznC@?^8eekMC2HuAhlF$TgJw7s^E+3dMVzvIeX% zor9NTJrK-Wy>J~EB-!t5UN%B7-VuW{VB>i!>{YByxwd0Jxhg|z@sWZf+;T-(Jh?Rx z$+ghyq)GQo@;|cF^Zuw1&Z7Ds>HaBfMLF;Qt5Qwxb0ytMrP1iaSOl_0MhnI>bbQTk zz4;lOzdKjZ$sOFy|9E@`DC~)++^f8~T&Za!=bR(WUv@1A`{A|*6j;o`oh#_}eKsndS$qFu`KI}A#M*hkz>T6mV6V0f?A>2T z$9Mk*n~FDpnF;hdBhn4gm4yp*c7l*{`hJ&mB57r~_P`5p=dZP3-bW`a;E<{hAfr@C z(A5pMgm03hV96aRL07uh7Ot9F2`(>E7j#LXQ=zWS4zT?j{XEFHw=tt1T@Z&%o6C5d zaDYMA8$r`XdYmL(pO6IT78U|Z7cHd54bnMIPk}Mkk^IsB_|7cpirSY#@m2+-es4c@ zA4|Gtvom1$0X6jS$slSRB3;<=40!deBC`9MBktV~9IlLD*&Bx9!NJ;G&67Yp@_HQz zh}=V!gLJpk{Be}kT@bBxP|&r^aKj&`HG%_5&jg)N#|L^p|timD4KXe(5ZZ1 zhTgU$!Aq-@1@kuTcSmQ#=Rt)$dfXuMK3Zgp4#|eWg*o>HG68(7!&uaDo*5zhg3^pxdmtkN-OOFxF zsT|2?k^Tp!-6u;hp51^sAXf4}467$21>L*KL%`IvAO3ilp0};}_L#GNQpRj6FJ`Pe zGcn$Nn7HYC!ym(ndEPg4EPfu19j2BnZ7n{6;I4~>~WjcsH$uW>_D zbGPx+2hi)KNVik6CqXW7CYmPMZ{2%5CEc5o%KWy;8+qLc^!g^!sqN~+9}OLeKJfJa ztw`7CV$H7guV6KH)9b28CvUr%eRpaxzwVK+JN9%i5ItRhf(Fp@DrCIWRxJ=de-RSj zpx1|4Id0}k&>`mjuro}l%K&5-lL5mD`cl{a>?Q1Lt?q3n}+iK=Z_+}gR^kzQ2M()r0dr?2yN1r z%v%J?Q0+mw3%1p)O&G+-7(=RFNcYs?Eh{bWfcM3Z7IbGL=7Fv~b8&<6Gtm2dBjefl z)q=e%+_CyGdYt?&o5anukK$yW4&~?VZD&_#IbiuvIxp#5QnkRQmy&1c9UPUHbfw<& zz_HzP@fr>K_((U>#tN=$nvNne##7}b-Sm!l*kybkJ=<}K>s{Vdb{Ti@%6v{!WjKFe zl@)d_*v1B?)8jqq1|2+#t|rXF_ny%0OS-Kt>ycAJBl!M#4t0E_`}C!f-MS3oEIqn? zv*)IA#vemD?_!xlbXPC_<*%yi!?}YdQF%$%e^mv$}exolX5_u+aJh=;s?Qm{;x3X7GO432@w-cBjX2+|j%SQBLeO&c|;w z(oP(W^&U#zS@c?0O1iIo8u`4QaoFRTouF&FE9Q4kHO5>WBj~dB#g-e*-7hlzkMI7H zdGjKtv*YY%vMICa>on;a-(Oik1%{*_VV z8ku*glP}zKXbw8~jeeg@x-&%q&|v0z-eVrU9`pYD6HLe$s@9xe_V zNgW^Q+83zflrPFqW9KkIr)ks&AO5WYr3VYglS%xBzOGe=%F$y5<7J$#DL*h@$?pAs z^cV8@M%^_r(}QO&NJ(YW@hpAVak;bXX3smsh3zgxpCtb>`4g9bd-wbMgi9RwjvW|i zhC7_B1)aTGHOT(8m5nc>*Z-06RI}Q^cujLG?cQH7-tZ}-;R81l?*7cllxuzdhe;|l zD$k7>%iP_g48Mnsh3`t~eR8C`_g5cwN6$o|%iwW?1 zvkjcnpu`HrTQq4dTvU>enjyWel+3HWG#V~Uy$*_h?xW&0XhGKR-734E*K#=hh2|1Fp=q}t+ z<`3S>gj;rA6fB3D+D)!bKLtL~qW9~P$Co8@hLi8kgp)7O-%~xCJ%KH(W|$iJOU%9m z7DgTL14#?@sCFZrk`#o6KG|UQJNi8d>G(%8;i7L@{4G3CFy6_V-q6Kw3Siy)2)Zwy zd|~57DgKQEJ)gbtqXwT`k;1*!xXvj3yN#acM&qj|HI8qxNyCOeyaeOz(iy?;wMoa-AM6F4N!Dq0h+;S{&TpZd&zA(QX2ALKSJzL7 zA_9K0!&kfFNIV$#?x&>dn2-RrRzoZoJwnjAiFW`iUl)98ma?FG>~ar;ZP4dxKSv6> z0Zng#^47Wd@#yhL==g?JEPLHhL=9H@}*JSU_Uu$4x-QfD<-HqpNNksrn<`zKsz$r1c>P-+z^Q{v}*WApF;#M>jPtQ0~jlVSJ;`IMK6zGR(G%sd%33P3F$9 zVAQ)Dr2Doq8GAP!;Ezku`+rGyZg>I?dv%z1mESKIufJS0F4>~U`#!rZ=)6rLa6^kb z5Y^NOx?N78*xKh5JMCaQ#~hFAwDt$1LE?Q>z(SWq+J{H-R5G zrH`O%9Oa28POjpo84nP2Zi&vgVPqkidO=OlRj3)_=oJ=tugO}f{>bA~^?r}yct2d? zO|O?CUG>-7NJc*zPuizQjYFjKxKf0=&c)#JQu;pP8h4OsRgn?3|2V?Q>RF+)8FSz* z+fUT-kxu2`eQreY3^>Mg5LI5%sRnqLFZ!GS2gK3+lytiqbU^i(889%Ley$*$!-cWH z{;4Olx=X)r4D&n7{o@vKp6ZCnyWfC1FGb%K_x6Vlrc>`dR?V;*jihQmUSu}iN6z}|UD z_i?i}w5neMD&Ipvw{fux9R7I#P*9|wYsq-)Pk6(Fe%jz*H$Co>Zu??i$nKQlEu`sn zBkHUAvPKqtM4!^E#fstAz{wrq@b`8fs{Tkj$qZxk0A=3x`Wn z+6CRD>s83XVJ;j$V;9vA$ar2y_9EZi2~hp-N~*l1JM6m|&EJ*;S6#6Y%sc&cHcH=; z0$&?c2s#hv6x8jt1Ug<-5zH&JAN!`!V8%CMD&u2QB^f7^@%9oqP?nuXm6voY4TAB( z_vgUx8hSr5>E2rf;3-?BVZqNk)bWu{X_zP8ZlMOpzRsn_HPT6@*6`U6_dr6nJT(rH zt|($GK03;o1uLMSv(5R9dbW7N`Fl1{qSYC4jK`e2Y~9Qqz~UG^|3bQ^ zPw!bS^b@$L8BFCRT}$R?c4G7=Fz?@7L6__{0ytku24#N9f^NXllVEv7U+6g4g>t7x zDe>Pc){B)^Uu0A_CgS`9TTqVFWvV?$SKJzeuN$udwXg3`=OyWC-vwZoMJ$*;_p6}0 za%&QfEguEf9yX%tnT)ql#uh(s91CBcb{2H9or;oM*{Kls-6@#&-K1co0v5nk!?#fG z@b+a)giLpN#gQ|juJY+vU#|=diTg?ACEeNTsklt{E=ccqE9lN&nu60jtAK9vUqScX zgTd>(`at8lr-E**jR@a=p#rBayD8|xn{2Vc07WRHC>-xb$2goGsR7+DwNdd7+MQ?g z!lsC(=~^>CUOnXF)l*=bU#_4V_pFq^*pUoRO6JabU*E`hL5&BvF9T=53o05^KPBCv z3odMOaxhH(@KrG0znN!Qi@*>#>IuDmjf@v`R{`L(R5)n?{e2(OWfo@xRdXL`Foy02 zxkr9;+ZGZrj>AWf%KsAoS>793| zb&RA7PU!-AejzxZBlw@m0;F^g(n(p?){!KSaugnx&-Q{}zCwVd%i9LyQ+FJ)Q} zcB9MdWMTGPE7-eUNH?PHD|%kg4PIXq3A#U@>rkQMeehRqrl6A_ateLhq5?BJ=|bt;(6Z{sD4ViZw5O2sYUVlOy3g0 zc-4EZGhT^4c+3fUeu#`WJ3kH_ox2d5Y0%?UfAl^?TCQ_KXInzs$xzw)_)xDMKQF zw%cg@;DSgn@1);Zp#H2ozHx^>FUh=$WifbZ`Klb*rkhfnkJRs;Z*V5 zNt2*e-C64RNLRE>8PB{0VEX}je>~}O21?`K%go@6YqElQ_Xqq&dkiMS2afjy^PV5{ z5^XQ?hX*Ip*J(2E>L(9SxM?WVxdH^^t=c9=X}WdEFCre z*r!PDdfEvFXN|=#CQAMr^cYa(C7rA45d5%@9k7^3&##g0R-qK06%Y-2vSta!+mXKp zdF3`E`A_t`85wWynrUdsxbfi5czPWQ=@#j0@S>B!Oz`b2Dz8qaHy7}4B~vneGo!et z4;;1kB`7~;C+Jp+mErGvYdF#O1yz4!yx%R#@Px$K{igp9LAuMz!{Od>wP4Sx2~^(g zU-mQNMPA(E;=@ev3LWfxjt9FUO=0izmvj#QH1O+X%RoxyWI<V}J+6`Q z+~@y8rm~BG&x%=s@n-NJP~9OTtaC;~&|P|s(Ziiu+(oZALAPJ>9ZOZ!MlfNpzo2^^ zRfOtO)R5)H1j?JBv->sq!JPWBo(WyWL3lVX`$`b?p{1ny)Tcj{C2jq2ZvnpyVjM4v&ntZniJH zCOa3c3HwXs-Tn0#=b-vUbT#unmy=|}4m^rDd?Jg=OS-`imjY!A1vt)^zP^#p^Y|{{ zcvA{acuQa3c3!Vz#wlns4ab5+>1uyb;TSiZEtwzaT`#1o|M3F(?vTTko9O#V(s`BN zMg~9C@x~SO{VD0}KVN3c>%(yVQ~Et3>G0Lhti_h`c;Y2ns$K@_bc!#DVmX~}+Zd^# zH9&LCVO02%zOIsPzk4%q_;VR$ukpgY%S*cF!+wFu;1c>#HeJx|-lGB=pQ#})bx+Fa zZW+VJn6DNEw03cRzUz?5Yz4S`i7QnO(kZ@*;)_*Z0$maPy=Kyl@_EJnt@efAYWfPs z>n9EbJ1==dPY-%M4H-}C)JvfCOLA@&juDI(2fD$G9rDmO*PL>7i==qQY?G*e?JLeE zuNuWUt>VV{#|paVe~QuesYd8;!~#JV{rwQ?R90hc#?#{qnRki*Dr9JEhDLe{yHQg^ z_!r^!piwzpFfW%U;?q9K@t3#J=cSeVaDIvPN!z{~k~w*^I8@bKjh0^tqvDZn!=`>H z+_MA~O4H*m>7J@o*zJrs119G#6pWY1N3mIT<>0ww&sy*POvc+h`5N2Q-vJblr0>W5 zUXAB6R?QY!U+TmExqE?s_BaQmNd95bJ09tRbMn}RCsSeMhT(#4$$}GXa;+`Qxnm;e z`ivO_?)kgH6gT?)5t(=7&`xmUo+^~zYbqG;z57@Q6Xc+VyfWo{*O!aTLwAU?z6UY> zww_RP)o!$4z;|l=BVCV^KhzdqKx4<&2)Z>@K`>zOTx2%wrJ(!sOY)5;4Kcs*$8AB^ z=Xn$i8d$>XdC>2j$>TF|kB9n7)6t~Y^gL#6m?8Ue9xAW(7%ZAJUP9_bF{-$Qp+SmG;s^mUbV{ML5<{bhd~ zb6@!QUcI@^yL}A6GKo@x$0t+2fKR{ak8=jf3A);_8GP}IXk4&{u4nT2vV7y&lovjD zoiF_!tYNe~r*mMa?ShBtT=eX*@X{gx*M6t>uafTG`>}A!Hx{ZVR#5Xkq*MQG1g~mX zLiX7bs=ttKWxE6PP8$simFV?#q+5O=5Vm}61O4X23dUPKZ4R7v>>cnwOs^lxtTAQA z%+F&q$}TdR&BM?=6F2x+nLd9>H(UM$f9IbcnCX;CotLCLX=B1Ko9qXVuBM+uNmqXO zH~>qhzzNUkc~R2c-*ghVKX3)@%VMa!<9^F=zIm3SbwL}sOM8RR_<+yg!7ciJmvrXi z0+8Xr&!AH)fa+JI3zeRQUJf4(XN_b9ozk(9{G{R2pyuu2g6{K*63{)|6B>_dquPzk z>+`cR#yk1N6sqOR!Nm*d_0)cbQtYk63&a*n9x)@^6mfu&JAcB}mx@Qa ztNS|8gL);_$$Orln{#dy>e-Eul5Vu1tJ|f{H%!PyFQXPy&V05xw@xXH%YL?*>3ZKE zYu$d$$5qb6y~iukHOR@}ru=--vE}rABI#~isz6gwBYK_YEg0{>{Y3P{{Q`e=Fa7*W z##5`YMEVXRQDDOoDxOtik2v9Gb9sK9KR5sOOnBA)J9w0`mug?qIm0kmjKiYj(`e;M_z zXVNYDZHoWiNI;v#rc}F;?#sCWczW^-c-~W9Fy7vtd+3Vfp9v`mwp9HsOC7~$Z+In2 z`qZD#DC~!;Jk`K+$r{Su$49!3!D6m9#5Z8=#x}OaYo4I%-a7!YK34q4k92u8>r0uOf@sdU zY$cP$CV;CUu6SgX3KfrZ1+NM~l&m$1+mayY9JBU>>==~Q!Cmy zZ=9fuNY{eTN4-Y&PsdU&HSjGnIbtPK9X^Bk9q$G!Utb5aCcmc6Bhopi%!K#<9tBcz zp9NjrB+1$<|4ShBQHh|t*ct-!&J=?`uTBfPzo#PM&m;5L(R=O+xB8eUy3h}*XB#k3=?!W zn$z)a(}{o&{wL~vo|ExRKpMUqY>zS~R8#LsNN3X#kH@^PuyhT)fLsq*TD?_&aR2v@GLjJefv4e7=h;c2&Zsq>9=2P>jb|NA0Q z2ut5jlJ0TxG~`ls516}z3dY;q$DLPRzl|^do+;@5jJwWMd@BMUrqkLX(o{*tcs~=L zA*T*om={PtSCB6GbQAJ9@)PV-qOV7!+ihQj!efWBjnn9UKsubY6h*roLi4rg>ptns zWOiLH-LMdp->2IxB2R_WS{THMxWin5jx5~%ya?To_Mqy8bmNj`VWoLB%3e*shala> zv%0X)mNa0vn4aGyone1BctYnDdw1ht*n2!6UBwO`n14|bmWfNL=UN+)J=^V#L=}78 zM9O(S&}#2N@GAQy)elIQ|HcP?O*#NP9@Fo8NLT$O2o7Cx8l3c?-@lQrby_I=dH4{R zl}_(-Alq4f6|NcVZjPy}}@g;uSpR6UcfbPvZj=852&ll1vPy0$D^K6qXx ztRCMe81IJhL~vt-3w-uTlj?tDy!930|FU<08tN5-?$SaTY_P`_MvbD| zgN!HdIuyOxwiM2^quYaXNanbaWk64l-VwMHqbg<}z|HVQ(yiuFdp>t>#`}g=j zDqdQbFWa-H%I-qd97MDnuI9B2{rV3 zYSP`0nGI(cZQ&2zr|(NhH*IeK{E$=5CnVAHj-=D>lL)&`u43Is?MA)(73nIUB*Tpr zzUWMi9aS$nlcsR?+b@b7+WIgJajhsVLj$xsI$qF)WtpQZZJ)se<2i!v<+@t2%+F>}`yoQm&5*2rzV-iD|4bg=Nc^7FO;rY& zuj%J*(v8XOVk5&p0oOls1@lI$xq+1_H`v34^!;Dm&ePnPL}lizV!hp(e)-^ZZXE2E z?8)ifZlt?fuoHZImQxRhJ(x zx+Ri|ZV}Dgm5s*N&xGTf=yffmJ5;`oS1Vo$OX>y*#(N;QmhXRVDU9z_7j#bl^S_C= z|M9T@=zqIpZA8-3ONfFyDWs0m~GTN66xGpDnOA^96WyRiJ&_kcm+(D9ScwT zBvRKIGG4n(1E`ezlYUiy`Z<7f&&xVMbF~V*ypvwPLAq`CzXOL^{b2Do`h67XTqY{O zeU)Qi*J35A|HXaPWXmk}+qO7&+ZCxSz-{ZJQQT~LKPTyumFMF0z%lHc1;0S={ztkq zZzf~=&82AGU3BWtx@f$h3tv)z%JTj35-~j=LFS#5Ym9LHAnf>Xx?sE! zp<`g<8hbow=QFC^2IoEHCalzEw7=b9RFqoLqe1;(u$W#4K)PAp=TVfEJ$!qjKb4ns z*X$nf9R~pXRZd?oNq2U29UmZV2M6~xq2jr{GiR^x(Tu&V6SH}EK3FB$-!nev5_Nu% z?xW>uaQ$}_9PPYa(6xtN1OCB&aKb#Xpewl5A3l@pCn;V`e{Y@4Yhj@S5AU4_$FHK%=h33Zc)a2K zKI;4>-Q;ci(E5SqSZayBV7whka(w8a!T9MNcgjWdmF06xw3tEF<&0^R87{r60k;;= z-$^B1^L>4MQ&9;Xt){=bK)Ra2qi|h?73}+JKUFWJ(@~YeAJV0u+CfXf;~Ur7jV7=6 zgtzPHc^Wd_MD`tWmi%*F>jJ%Ag>-`_uR%upr$akE`aPnjV?Jl}$&CRT=a|K=`RLWp z;mEEnkvcxot(vuozv9#%&iC~abo;H|aBJfR!Is1sg0B6e9*F4f0jw$g9*oTUyxbOS zdD0gxUYaTxPg~6%7+#e{3e#wpC@uNlVfq|#a%>eR^>P3oVf6}F|Do4WkZ$;o9gMi= z8aTTvhRRF2{QhphyM7`(f7nRS^)E^SRm?=_(PJR!d|qdPQ)?~Z_IqO~XEo;)BlA3# z**TzuFQ4`1n>8HSUtm$>Kgb z?GXYuERCYZA=1U2xruh435ND}>H8tlEvPw$^ruF_1uAJ&yd(1G#A#uzBL7LMOnP*L zqz?qa-K*&5bJErRsNxSsM8IkP@n0>{4XB^~fB3rZa4x_2ar{I^B3d$|l8lUyc-^ma zNU}#ES(({FWEW`u{s;!9!-v>!I?X*6Z;uQj`ZRqcNNavw%&z$iLhpPjh@s@+{zglFxb+g9- zi3<_Xu8#iRigX{Jnt|Tip|E}211epky}9h8zX7b4;TJY0uxa3UU=jT0vn^F#((U-S z7ma-R3^`YO^E$;Fn#iRi4X>DB#GCG%F9z(s>Udmyss;?MXENO(r+y2K2hKP?&}PjI zc244$8C}~dc&f6DIkw^oyJFsO=qEOh${*>hf9+*m{>njJdwPA9be1K*7~J#~XjupI z#=B#41eklA0xu`i>q2C_PK63^dWIzY6Jf_2@5}jGkdoH`Tz>iSI+eB|(Bt6+;o}Nl z%B_A^&lCr@3C1*LGG7#rfT;&g0fq5&{z&(IWd$g3mxL{V&L8RiwHiZ9>D7X9lVuhWTV=j(E7xd|IM8=!(CloF`sfSLbKBW4Kg{Y};(!e=mH<)GYyb;5(?Z|mBNJ^Qy z4w25|?0d98(Fdxn-9Ys#(rF!jj-($hgo|G*QvHf_$NTM&%GV4SdFl`KTtYe+G6bRg zR5<&2FqQ7KN;$S`WElJJNFV#==?AcVXeWX?GpYI`-HX~O@Mots{Ncw^^+LLkBx5KN zFau7`{z~PKbdKQ`(4uJqv^h*)cS(05(is{{E5n;V_VdPjd&>hB`GkRmJ@k7c8Lu!Y z63XgTfX~`Xse0-DEH3OX%wc@Jo0$olERdUM7#y~WUOyt8w(|tkQko3=s+aM`+wD98 zJ)5@#etXaF>fg3;d1e0aOf$VtnoKu1Hl5So9|#W%`gqelmUoG@lw1VGhq08CSI`nV zKk=_0sieY&^$)|NJKW&j>%M64b&YhNrMr-|U@9Dr6{!9~Iy0AT$WqfCN*9Xqx_?dD zT=>AALS?_9yzY{^IyZ4*G7P@7lQ)0u_lB@O{qy0*hx9(EtE-+dCnnBjicY&RdxmP^ zY4>Dsa~Hk-LAu9>R)OcElJR1!Ow}LhmKRIIBVPGn%nkazk#yS(hrxr|dEm@0erGqz z1};yN#yU=CdDGPsnG1I#dAv)rin8gJAgfCbboa%Fv*PRKU50^&#K-{>6yy>Q1 z^Mw*wy=cfTcgi(M|7e(1F0|~ru${eo>MtYf}zX6x?)fXz5ifm#vuUEjwta7iR_V9v9Ox{j0Xh3644Av6I#_(GpsLAs8!7l6#uXlSq7#hdPu z1rl)9S}*wU$W*F5$apVPW#Cx{Cpfxq9j~*u9S^6DoeeXF^-}3NESVxa*u`4@&wpuG zeUQeh;SAg|gZ_SjbnjaKplb!@So1nP??XDVn0_=-%o112{h;zkx*elfRC?YE?`*ow z>nfbrqPuP8c;SvoR6pqQ_{iAR1u%Ph3YdqAns~*c@$jPz{rpV2?cVRvj7DeZszR@W zk#131B`P}M3Wx9ijt2L8(mirsgB+@U12mp~{v+MWxOC(>R21ezz&*7hV0sC?eoi{ONh9#Nu?q0=J7qjLf27MTl*TnP$AN-u{&equ{EXH`7lMqV z^!IdRJi~vl(M`1`kaoYTo?Ms(ew9s`BO$-#FJTBt;c-%eE?i>3dLfo^!_H&wIfmZ?cWR>da#=sm!xx^ zI2%s#*2HHVGpXw&>8iFk!mj%&*s>;u*UgZd1H=1=V<{11DqY8eD#FG-Ex}>uFu@0{ zMR-zmA+Rq9pz4`)`Kb%=`6EYIv58F&|0&bV4)D5DZ6mnW6 z)idcAJp|amxn! z!PuAde{`N@DsT@Ej$+D}A7WSMA4fl$G{Cb%^g1l*dKqKXpIa>~(W2KmN!KMViOz?% zgLC)7sCFaWo!E^+o5RL%S*AI!`(7&piiX<(sS0}k5E)N&vLAT4QUiX+kc#K+f4RZV zNsZ|mUcl_B3S|wF3fc6|Y+k3E|A&c~xC~5tlFIAymCAtMQf1hXMt|Q;rh6q)6prgr zhI!Fyyzx|?OTfUp@7S7DA71xvr3!p|-%S|W=}0+^?y;=C!zoL-wWGLaYS~Oj$O2rk zlztB--KvzY!tRJnTi4Aku-giZIT3@oDJOVcD_Z~pUo5~Pw)FQ$WW4(yOyCGO z4!6Fz#2e2=Hxwoq%>Gc#cp4-cGcymSxv+Pg+74OH-CN^0pUGKLVu^VS}BE>76 z17{M@`xHp`-SZUE8sE>Vr^QqCOuFn7N03Z~PZ?x|Va7fl-(%{(6u8zL9hvK6V3J!8k1YYBFzm z?|1(M9gF30`)K+;nAqIJSg+9#XykVYDmpi_`|f1JPB{tcenh&0u%>;`q8 zAzhH}U!m#6EO0}B#vgAE)yqC?nV8*Hh7+4rZ)iW7y)1?Psjdmn_ zeZH=Ka6hPRzsTIK(-%~Is1uYeT*zgdT?%(i=%dml-P>QIxE+VH;kvPkyw3Ue3Ss>E zOz4m`jmjSxkFWknH~r`z;oqh#`0er)DqV?()vTDLN<+%cY_`TSVPN`xDwsB^7!58j z=?rue@XIzsaHy+@*M(L^W4o=AT>mY4-Gz*IQ^FtLb}Qm~7Sr=^q&wYgi$^Wb6B-uK z^W!dkH(QBaRrA z!s}w(jo|isGw{dtYj|DwPfPez-T+7St)$w6%-=6DEBO7C0^YdfI91Q2tJpmYDz8z) zR(s5Notcq6G*uVD)fR}?IfmH7Sl>QW{`fMlyOiM$e~6F5$HpJyE$`AHf$)k^KN8Jb zMV0rVlC1E;nd|jg&-V)Iqz-|q`AV?kkbt@lk**XEf#$RNz^t*;dEM#-!{EPHSCFR- z;C0T1s?h)FCR9@;*GAKYk?i|l^9 zrku}YU18~3+xnmKO04C@BxJfE1-{djpxT3U1{xaNCbeW(^^%@{CY@>GzXn+`A82`n zo_{9Ya;cAu(!*?+q;ilNN2Hs!YdeV1m4Quwr*%#^koumWj+`0K1qOo8l{TxO*-KHGiurvUlRiW>zq)W?t06a}R z@LY-WRC|zaYIr+HGz-C-wXAuaO8ytHQp64~l%dyWrtH4VtUdHaaL!w*p*qjvqrD{H~y<~CTEOP|L`Ik`!DH|+opm!59+xY zCj2hNRTZGYKI5CA{%|$rYnp-)-TFXL3|MlkrZ>Q4&5p zun4Z2cZP~5wP&<2gR7`_KYrG7n5!6E?Cu7i+};8PmzQ)sL!_b4Z86vyr$^n7NM|Lf z4sU*W2f~lg>jtE=G1P*aMOm(43Vj|Z=~S< z?b5oz3>!KH-zzr3X^Qz&KOo(1T}j;Ftcg!IDp2i9I`Nn-DEi94d_)4h|A2HmD%*s) zTOoe8lim+Ux(m-g2tPe_!?pkMe6&A1q>sXYW%?pa9HAL-()D#1H(8+ck(me+;5 zp9kmHIm5(5UA*NmnDiVx>OTQ~SJLZwa@Xa!f)$QTjo4>4;PZX-T<#0V{5Ts9z7CP@ ze%Wbsq^cR%o%i8&>$jJoiZmlAQ=`S}nwiZ=Cuu1BWKQpsCeuy#nTZxwdO&WKByYS1 ztAX?VTo=G$59xVKGG3<52I1+jXxRO(1@M)3Wb8NL_TY55NPQNs+n=8S#P=t_Aq7d4 zd)hRIb)L1h0o@zM?6HHm`0sJFdc{aQI9<}6i8R4|2Q$&Vcs*X%(W#9ezj%j6ZKcdEN5m4aoZ4FVtjA z&p)5c6z3$zEntU=U18$i3BlW&YdG)U8E|mDkdFJf5a^afaH=x&ernPUyORmpRkjGT z(o=ck&7Rx}!07j!TwOT7yEqgsanC}1-`siK_CgtW__!r{n>>ed-H$gj-`(PwCr=ug z74;qH+ZYQN@K_8FE-&ds_Uu4kzxu*kk!{pCCtdwgW0b6)0X0*9QqOCo+xmC2aI1C% ztdMxb8_%MA6}X^d3QZ^L@aFH;mppJnDG@HHok_(z^6E*0ylY9r_!G^n)20x3xuzbN z&!C@ANvHoX1fEz?3?h|I@y25V7r}75Okh85J+JdwmjEXZQx_UfsN{8VI!RDs-a2k_ za4E0zR8E0`dX|EpKR5Ea4-T0yW%3$k*KN99=1N(zL7OHBcC2w^3uWE|s|f=?a!;wG z-g`)Q@kKw_+p+-u(_KroFX>c+MWNe6e^?l^n|hukUA3wr+&s(`UYE|I?yID0{H+KJ zAG^Tvsb8pgi&uuQORgj^roL;Lw{Zqc$@OfgwN;tQAL)Gb7Ykd?E`ufx2YH>s%-6z` z3zor$ZfmG|A>$dL^I-Srnb7+iJ^wN!_T#8;NCY|%1R&adeFR-ha-bYbV zuOt+=@nSxH`?nU8gV7pQhB4=A(H*X3H4mT^qrVpmP?wiD8 zu-pGW_$5#8npQA6Xy5MJq;R5TrH<32Ej6?l_0zJCa;U^2!h5j$sq2^U0ydQ zB?SI-%oE0FeByP_4n@QL`d;k1qHDbF;n#tG#5E29>+-kpI%m5Ss8N+DT#>Yva&J9t z8kXdmF{vesnfZGZv743))a<0^l}Xp?DUbEdJfP@SRjQszwxL{>0GHTg_;=w7%FQk8WB;6uVvm*9F-%w` z$lEX;?>48$5$Sg2G=l5u5%}nV*;M_J&S`Tah!Ks&AlHj3FX@~$zJd`7^YNl}%X#Dd zNbdzDwpv(a+c>JlQ5aq-dlzV`nWDk*NEfp?3`fm71-_lx#OuTqeDP?xHn2>a zzMqrv4i9(2&J#qTLLL2lK)Q{uXXAxWhC->eHN5HGir2*1w}!#$N%TAy8Sm3Y1$=&= zH7tK}kcwxw`82!EJ&x`9RKwtFx6rS%QP?eCK;3^y7giL7F6E|SpG8GfJ(JGe+Z&~g z3&taF(a)2l`&5rOrIib?!@eK9`TM)Gn@woSz$VpBlv|a0kX`yJmK6xAm`5E#)Ze-Y zpX}Mi>-hdJNyd}PL)`SG3-AP%&L8P;z+UcKt1UidL9cU?t~ffC6L)gMWiey$;QmKC zeGe7xh_elrwbbHu?OvbR(mNS=73WBm_wVF?|M$N^`BN$xbGMP4{{uZ-xK>ETBi-lv zN@1))Jnor(k~f}daJ?`hTp0_V(C=Ghyofi?h0n&QSNI`D68OHz~KEu7`EG8_6Ddev&C`S`AJ%C1B@oe!TAd<=tS{5P!T@{T8pw-FXtU ztoO&v6Z$?wrrY7(1a6B);H4{V!Ql2K-I5Vsf!x^nc+DF6I&ReUm{tELFUVLd&+SUw zg|?5W7v^Qs`;bZZQq2iz+)e>A%;^2Vq+5M)1bXWC6123?`;16;YJ~_g5Pkq|yMw8A zBc0*T3Ea7+Cg%4UdjA^f`Un06Y&&}lJd53U@8FVD z=$d$p1Fupk*OWV&gI~hf?YSqI#nVD@-w6!dx2{8j>xFc4B7?Bzoyo}PA^l%z(yh;& zkDn?(1!jUhyzw5S>ELaarCh{wdVPzGw`1TxI;S`bFge_TYPS^ulR4!JVuG4EkJ*q_ z5qQeGCbUA^f+{cR+N&(E>Da08O*Fj@OS&_s%y7feJRsgm&l8gFO_vUy@x>CxM$-Fj zNtc~83BRva!C9!2H-8}>YPk519KKvC2M4#up_nb~i;LR@>SZ(8ANO=oLR&2SolQR< zkPf@P=VX@*oLT>d{!WB+?YX&}-sS|jLz-4RmiB==<;J`3UUBf@cmS_Ebx{tY&xg>0 zeKx#q_QUaTSG_*!0{pIdyE)uZxe3j4pGd_!Y?04w+A)MVUUH4;`V@@{r4+G=0X>gS zx~GY%=z+W*?hLc!jpro(h>MJSf*NNmxOzrdxl-p9@`^ge$^J zc-@8i9iVeoIL>xIL^-p$Qk>YOaCYajqs%FVm1tVo6z-@hz5khX`{Hboaa9d>*C+!I z9&eJl>*)Iy>8$HMv5gldFcB~Ko$94&!t$NdasFr%-gMvV#RBn}TKGYT zCFR72_At%6moQnGBbk3!7r?K+kI@#3B~-nTu5xh*oK@D2RwoE}U8Hh4v>mmIySXxi z*A2JKAl;kxFgRq)Z8YZ-!yB)%Fa|m%HlnGYN_q45=gSiK(_uY&kebU4 z?k{AzLD^YQ++r;H_K$w=A>Fbi%V6QFN1TRJEA<{VW1AFb1GWf^^WLz|`+af2@Q+Ar z<}#`rq_aOg4mWSHfWoLMUKb?Fpz5$_G@>Dy8oy*bwagH1Vt^IU{g40hkdEW|FHic3 zCe}>KR*?9RW%tJCBb^tDpz{m;d`h~<6JwBu_fKK1Aw7OcXYA~b-ft}tE_|I%jStd= zKX*iVZ}h+ebN+ZAyzX#mSIz(pC;EF5GM*r84Y$>7EZkAz%A2l?!y1nLBmyt2r1$5L z@xq306S}q!oCCCke%?JGdYkFVp3Tfw*v8!Y_k&G(k&2~y=y?#*nK?IuoX>&qtM+!P zACPY3Vm0VBbv6uHuEgsyPfUid9ObZ;E4>e%j5pV9DzrH%4^#ZV@Wxx_?hZE$7lZoW z==%a0Z}R1N(AC`p40|m`^;6PaDUX4hMvVt@YwM_VYjt~Bky;1KpxUR5Qt?oe)%`(rpGg&BCKt1+)zQn*G~ z-I#}dM9|--kny(PJ}G>c@eH|J(fcS!cd&dOxYKX~O$~|WP1nVCF{q1l#x`f@{T5`r zz3yv4L`eYl8%?j9l5WBLy}<9pdL%6oMWuT;W;g338_Ucc@|dZ#e-1)6zC=6b+QY&1 zM>^E-68L16p@er{yl%w(w?Ghb2z?UgcVRvwptMj0e^@Qg8&7yl8y<@uh5xRhzuzbG zC;rI=ez|%B^^bZ+^%v5a+;xR5l7&dEnEv06!ClD)Q_V8Vg1nZ7O-pTY%|cnY3++RL z>xFcgfwtIZ=nF9QX9usdPPWGB?W3Tz>TX`QVU;{q-favcKfUI4>uQE###I&8Mbi85 zs;n-h;;6w>>{NH`4Snt<>3TYvtWF z1MTKw<5Eq)=YD!zLdK^}v1JzBU&wfGTF#(#1N9fRhps=;&2QU>rr9jQy+I6bIr!@N zjI|BBFC>iB+_QsyelQIz54OY8Wk*xxC0+T~>VaQ@ze8vKqaTni?u89pG%$`fZuvls zBhpR!8UyuGHld}F>!|u0xy6JVEi&+5Rl|*}{=EI%ho`4OVB#Vwf24cry_fsE_YhbU zk;v;D&MOF`w4`8h@qAwQW7SOIyvHo)*&oO2mhD>y9;NF+WMs_iLT@&Lb?Rf_@%iSI zTjHY3l{xPd%-xX7ym8LN*$W`Ju0^j;lP+swCKk_tV3ec>_1;K2?`vuJL3AKkT6vn+ zy&o5c?_a3`bDdSF_8{X)?TEzf;rGCW(N0u6h4mL0Wjuv(oHU$i^WBJWln{@zRl|eF z2kBgHRdV&|y4bm%UKb+WxO;`{;Y-UoxsWWi*S&jh$_dh>#9P>*=Ord zIUZ$vPL9R$<885EL>4uUNH=2Nd-TI`;6Iu3hf(DqorgX|a<5ZxKsDrzHyNs+->*`! zx<0**cq<^1wV4yi1|F|ucPlfahaj$tHle60PiB`jwY%$}@fS^q9+JY}vH?#dcQ z^?TB>kNeT@YD>Ig?Ki3%q_a5DjJ}PG!qfJQr0SV;6Ri%S-<^~3{x(D2bblXOkCu3* z;E#IreV>eXPmqB==%?UCE9m+o-G|XjxzhM_?6{t;m*I)?nED&z1+9Oku%o6=21=h6 z!!7I9Q{^R{%(N}wu#YqBmZr}OCtYCZc5r8RG`us3e*Y!i2lrYK|1<>3;6mPXSIj;G zmM&cc4Q1VhgU2r!k6U&JcsF^%pEYzpCEYrYp)j?>7{0pkhe~&(+Y6R;H)cwHePj=< zcLdU#?t-rTP-?u9PE6?_aByIN_)B_Tg>;2W4uX`Fm*8pueO@W)PR=OAo&$0ktbM;N?qtl&jTqWUZ`MF|E1{%&BcM_`|eO@Su(=)&EF$sq`T--mVTG+w1VU z-TQALu@Z6kW~~*kYdv)k>928zw9&8jfIBLF-L{h={#x&!9pFlW(9qJ zBh&qP^cDDfdO8f*K;J)9w#*amJiOi_;#mo6b3q#Fw7Xz$ujOd)cq84@_JMDmqXc-l z5xt*=bRLT>A)cUzKbk62?LoSK$NZqBc>{OVSCr~kr2C)$o#YSv@8tM@{O@GD^UsD= z*8*7Bb&Z{qA_k8g^@DXQhfv=wlJ44hb%^=j3`8aC*6EK{~Rk(nQQ z9;FmJ!ExulQsp3>_0?m@Kn;P#`va(cMY_1&ZRp;wH(*5Ed|vmW*BTwz_X6zP8^r4_ zbzbJer&WUQQSrQP%1$lJ-NY|Y- z4t~g72xDfjbgU$7?mU zW!oPoHZ;EJ6qLTu#^H_c(AHzhR6NrC+&2Md4AsOlW8YBiOS=8yZ_ttIfw{jBdER*A zFE%5GQWxwHMDKebWY89eoeUOy+@?7Tj3b?gh! z&}>bmn>Mh&w=X5Vp(eSJ&D^n$TaY~lURI*laYz@^t0+{wa~E_zjimY?>C|SO5aujD z4e}N&;&oM4vYEh`XA{gE7pMPC*vVD7NMV?iE<1-A_7x2`@#FJ=~O?M z6e`1p?O9x}QM6Lftu_Upag~E6sY9sxBi)kXKgh<$0A}gZ&l{x6(teFL{0o5p%0sE~ zOS&%ytAz4dzHod2{rwi{{9EPWnz0_RHL28M@OaZzJI^F_Y+-V)K4GH0d{ENNXgFu< z399}`CmVKMXrCAlTWTw){E=?N{na3reF!=}((6a0yR=UXni|!C;Ei@vJ(I5cv?u&J zt_>`8sH4&iHe1eeDp$6Y>i~2vVF`xnLaH33E4|=|lzyaQ_a-G?C;8~6aQYBC zJol42l|M3Gnf3{=t=bHG98%+Tm!@(+b+sk_dVrqa9iqF2t$DwYwORg$y<^>n1iC?Z zc5WT@yhgf~`d(xnITwo^q}LZncV6x>k~8+fbIkbNy|ZhO@3j;xyL=lvxWAC`1TO=S z?z$!TW3VMvf23=%a70H$((vk1x}Hz0m*&hy&0-p!Z)MGgUKKhgYeBD**3>v6-PYe? z;Bez&I6sa4j*oOE`7?mZ1}EqZNAt!D(AW&7PhJ3ft8P>Mij1dPiowEQ2v?^L=Z$yb z`(0qRUkH!HOY*wq>z)91zAqfJaXW9i<4s?UwsD8O@-#>2t=O6$Wa)_QvgEA?KKv;QK2Z4+Bjy8}J%NV+Qn{eH&(qu-Nm)9EhM zUb_j+T}IC{knZ8Fw@9LGC=M~TpxTXeY11F0wDCT;U;#ajNVmf3KDv}pkFHwL&+YG{ z&oPT*rU`OnLM&qUt75$p2l#hnA$5Nv-Mi(|Shmyys)*`S?Mu2Ge-S)uSpdvAcZNFW zj&w(x4x!6a6JT8;{k<;fK9^^rt?yFdc~v8-ACRuwIt9&4PK8b*>HiLsPJWLp8kevX z%Bs@ydb$D+wq*1s!8YeScKksNsINO4I$b|TrAxX~O;cfNm?2#3vWBV`(k-Yrfm;IF zf!!_zs(neP{M#J1ifTaaPYG|ly)RQ?e%TZti#Rxp znL2p_Xud#~gLJ(mQo>Q2oS4l2CFV17~_P;Ne~a-ux+P z-U6|4^6+!NIj@5^l;Hh~icri!nsOPJ3fP#+5cb|PInLX41kkGT$K_%DVDNo`bg8W) zz}A6t!0nrU@H&(c1!iBIh0Dd1AYVL%?W18@=Xtba1O0wUrkesLL*}FiE*&|Nig)sy zC?k=m#+V+x&P;sch4t4D$Ju&ksplrr&5eD4YD0bTwm-Y5@j*I!zmv$b)e*njEJD>E z>2mhTAgiMp_@|mOZ@kL=Ghj)j6xQs0LDk=zb#lU%)SQNGMqAm>TpnmG@`T1Y^!x_t z>Jm=_X08@2(40!;k92o+d%*n&fB0veC6zzYt@a!Ozbu#uPvq14M(njF3Y}N0FjEq@ z2@c-%#7zPYY+rVdibuM8EBH*JLHC zykxo`=ILQm167!!N$=Al-CW%V=%JAb+<12sZ#>B?ghm(IL#NAsdGqIaXA7F7pbh^a z6Dr=AdD~e<>o9iL^T&+GoQFv6!4TZN8^XckgLGTw)}y6c_Hx&Y=yi6|b-g-+jFNYA zQt$X(*!dc?a>NhrKo!3`{kICe%NdSmKA_Jx8#nVTdu3%1D^=6NSa1A>;yx?mfTI(r za*(bgs0Zbg+(F*s==V#~)q8zJM;)7xw}uOEyxJ=dQSx^?EdKo?7+im3yzD7=QQbu~ zEOuUxH(prZb(9Mn@yX|(c;kt%my!MhcU)Tih;m!o)Hto^X!cI}4aTR-AOEt>1qzFw zQT>H<*Cl=N%l^gOFlYL{Pr5_HreO6QCYT$Y&l}I9R}+VQQ$(M()9psa>sOb=^=_Kj z_?iM$FDl6@TgPK5sQnCdxF9BOuDtDdy%z4G&b?f<#n^0wxRU_ zN%)!V2kJeAjK}wV{McJ++`KSZflNXU`&nTH`j}`hc$Jz82j`D;({6Qf$B*q2I;Ah= zb>}v{<$gXq2Udp0@Ve{E?s8G*5{1}+-k(UOyJ7w&&hd2zBRwmdH=g!tV}XuJ19<01 z?+;5>93d=ijkRo&JIJ)0EMztp4Z|%4-gt0%N#`gM4U8-`@T50@*FEV!0{)CSfO-f1 z9mE$eb9NQ5J~0Wu8#wco&%LgZfP4QuLpBwbyso`m33?@u!azZe*Wso~Fmbp94tPa7 z7b{EQ-&ehY=bxknTjj0;nPwgM@(H~zPP#*ScR;MR0W@AruZxrJ$!IP3yiXLqnmLln zAL(XW=s=Ms1sG)dle!*|ZlS0##8-ZUU~zh$OU>&g6O&oUNY~6_iVH6T$F;#wcxMeY zjz~A`)K#E;(+^f>(%<`$E>=kfj&=2bs*hB8<4L>7K=02MaGTr%UKiLh9>#pvg&D;+ zdELzsy71dh3%K2up6?{{C%)bYjs*J9Y%;xnQX)l;o6tFdakyE--WE;8iaQ?)PNuC! zgZm%pEVen}tT7J&Y^U$%q$?~I;H3SnV2X(})xMJQ+vbnr2Vax@#&1fk!_ZY+Ly6fHx?$$1YiOa50^E70-X;V1%OYL%-&!QEtd)@=xHyt$_( zVC#4mFA*LB>)U{_fAA?nh+01@Zwfsi7BS7fj-fw>&TuZv5~O{I$73?HjIm zaiih%!C?*3HV0Voc6pe5YAjxOgCkH6|8(o8ZK3LgjHk091GcF$C`E+jb)9!J;3?x7KvlMe zw;U%gXT$FOFB;B2(V|>J@m;2;wUjwh;mjBW)e7soGvL!Vrc^mdH~e&)FeqRVG~HCq z>$0y;0}JEQq0@Q=Ue~qZGPt%r7@q%+>ob{dpv4dFT18)_P5*CBQZ}oVsq1?yW>23ZECv^cN)ax{RJA6l!G(KIif~ z74x&4eZ(K2Ck)_?r=_%u>)omk8{`>YH}>%e@FH0iG{t66E@V|Rd)b^5=t>Xg(ksHb zhPl_ldxdCT*Y(4V3qRQo_CKZTg^U;Avl&EZEC&AKi+JO`+j|Lw&6R=Ub?N6OGTxTJ z79b8Jp<197Z#?VY_rRroDY%}Y>qW}@7`rn!j`34SU^Fe(p@%<0VVwnw29ICTu`*Y< zVzo-JATFLtmvl-4`=Dh0AN!z4cjVX?R(!l4+^;Rp8_&4^9-Dk66+Zfy&6_{-JU0-EHT&BL?)j8l)304##nQZA|j!r&PM6Gp_f= z?|(X@Ez7_0I@`pU?wx#V z>~y&w)Gqjs=OLmTQ<`Sr7r`x{DT!Y1c{Xh;8+sS(n7?tPD1z*guj?#=a%I&Tx}HI%pvc>o0onxtpttRGZ+kdE&h7ShGP4+CaK>F|}C zD|LS(-DB4kV9o9nDDrkM<%Zr8 zI0;b`)KN}fpGjx3T7mnH^swt5A#b`<{`WkOy#F}QgN)as@={oh2F9TiW%!;`() z9l=UWKg^&fE?BBS5x>=$N7W1I>O5Sq$IUDhJcAy;q^ogv!s9lM!k;y4srDsZNBD81 zWo?f`rb_VUZ>a2Ed1ITz4#~iq^epB$H1p59_rJ&4xwYXdV?)zyGcf&I!a`utQ3hQ7&U{7JKDEIBPF{klFlJ zo$HN>$Gde-QSC;$peYdK2f5)x17|c0&L8O{JL7;|{8Y;o0*b}D~PS9=@!b%F#Inl1|Ty2grAVD0fp_@s#54@WxNpo^ffXd(3P3**h-i^RJitZo4`?4;k%%|@MR_@DX7 zgowS&8*@n%ShEyg{e7Hz?;)L2VhI4RlW^hEAYNDQvKvSZkH=9tGpPKL@iLprK`e^H z!R_>W9_ivgAn?8{2(Ou6%p31k$wlyYWh{RF;24#^UvGrW_#%yli}5R&vOk$vcTzQL zKhcDWN4nCv=~yb!8jP1F7M1z_&Y~bxFTMhO1I|LE9U$WJ4RPYz?dwK$FI3~bmTIMM7LkxhUy~MDJPdgY~4l-W(hb%a1_$BV@qwm7OZf1=&`$TCGt8ur4xhn2} zA8F+v|3CD;b<%z97=e{;yy4=`&!OstbUr5S$Xdw^kN7cy*9|W@hnlY3L7SI(^14$C zG3tD;idUFUqa1RNX0BR=v+kNZ8JAu|eDlp>6n)MR4lXb0G_T6ziQ(?hSV@wqXVS?& zJ_wZh0r_ETvVVS#g6Epud0m<6UqSf4=b-BALSFZ`?I1Wa6M(tpba}~goPGBQ zoZY4e4a?~AKDG2>?+4@x-dJ8^r9-T^O%oI04)dc_KPBDKqB<75Uka@ci151dTlax%@vvg90-=D4p-fi^r zRoRU34X)3knQhtSjBDsebjE%@oQ3kJ`XgPY?osqdKLM8gX`-%Iq>E-Wxpxa0SR^%- zsu$A5i+chmm;p^~Cs6l&(iIA~fxngEFiES7%3r>E6tlf!5xe>D7A8pv;`EJjc=w8W zs(ne9CT4;i-YDQNUmx>2OdT1)!dC?CK?l1qpctIk#I8y;W6Vc{%hl1~+-r750 z>wlbYOU6^!a1DL9D-Ab%rQbhxzjSCAJGDyC*ia;x|MwVTT4SKrV|%I`q${xvM;*~& z@K@SpUYGkf02yS4z$}-$yl$bsJ+kRagSX@8d1^A<$K^iUdhuAO9N$RAODfP6n)IkL z^PkKURE&8raE74?%(_MIe<7X1T7+Ep+Cz)|^!^vp*-FNtO@UM3*X8C^dywvFm#=XD z6K7cWmVS;P-4?t^*j!`-KW0p#;`RO%GOH|Y1`=+)!GF8>KEGP&iP=ZXDx?i>H~O zvi)PJa*!_lHNbxbI#}=8QEFV0E?IH}KD&4vR=h;F8|jwYiej0{dDzx|4%H8;uS#=6 zBKqn(?v=3RQR+DDl`XztJc8H#{V0mzI2%0aDLs!w#!KG!30WSq$4}hp_ZiYPhkQb& zz9Iwb`vR(7NH==y4J3SXmg_T$;&oou2(?)~M-BP(a~K(K{%dzMXLmiCT||FJmGWyI z^SQ1<(0{p{vCUtM_g_mvrB>clKOkMbZZs~6Xa;4cKT`dQbcY;5ahzQi*!-)RH(pbR z54Qie86_FLq}-WL;jH9GfA)*?PBt}aG!C#Fi*;+|;oyExI=*vzNS8WH8iV#WB z8*f?MC3N_VDXxiE^tbHW@MtrN6Kfh8BU!9uuHA zJ^>FdFX<*uItX0GGeG}8&Oabsq(%#f^VNW5BlUUXeV=s;{3;m&Hf)XHb&GyH1&a^; z0tXf7?`Oz#Cw4yv+a?$aU!7ja8!z_lOYkRF0vi0IzlW%rAIIqD4`B**%9-i&Jh7;> zG<3?ENc9)ewbZ-g{V^lq?tgVuKP4SoXNP_FtHWKQRlH8*ErX3~C&Ovm%y`q?o2G~@ zN{t}SyU**EmJP!RO3rXy%38`*>ds;7Hioi#Mf+I`NpWBy9fONsU^KWNkWMFVIQW(| zFh_odes3gQ`~RMkRq-F^WRb2e@*s%t_rpb5H>h;a%^JzBI_JZh^c-N1mLZ|v=z1pp z4n5yQI{k|(U>4j3t}IJ{gUdm>p)K>liTr~=(ms~gt+Pi!@x^ta!7P4PT6P=k+h53* zE|21k7qw0dmVUj6zU9y2b*7)3;o~K*g#qWsQtsMpAsdtJ->}kCmb>Ts3FMs(fj2bh z|4Nh2YusOuR~rCZzNJw2LDGqwl7w98GKaguoB%#rNANn!iea!Vv`x5hu@~h|UA@NS{<2_3uUo-v4DiJV77j;ThX@|r z|43In;6T8=Df@KTjva^|%$8}Ze?-q0lg?c6FDh>-MHBkmsCFZr#_U)oKsOnWuP&ncGwHr7{}QUc&%(Xh7kKmM zSE~k;g0ry9+%>#zVS5887&s&A(k1%+%`R~UBlQkh${6ortJgh3J(n%vMty0j9Hjd! zej0U2Tf%G2^z$?6F5k{VsrmtM)amC`yOD0)tS8+2=WbBzF1-(rbU^$Bcm10;98*WH z>*`NUXYCY2SvRL@wxwGhhi5tBOWWe8dM4eFfj#y0Jzm&y^k!;)gLIp<9w7Nb4-6VH zZ@f_z&1i-~6mDvz&-)_dU98MN_a>#_ch&UyT%dF;`~F2igR1gIf!D^l*zeXcbYG`~ zsz1`@eRjtio|K>wOMmgYN)Z?Q8tg^^^Teq3CFAWGILFo6MG-$6n4=tg9U`6lUu!&S z;9pqd!|Ct*NjL1)z&~YvYU3YY>F-!bXSG=l7pu;~ujU=3(p@!qHxoS}hWUB?ICH}! z5&KHc1WH+XyiVHG2m2a{z?w~lyzWBRJiK+dBuqO>&ySPo-q!cPKEdtabu+zxgLJPe z=HmVx7|1?q<4yNXxE_x0o(eyd7g5gCO`J8`63nWVv25G2T|n;bAEf-6zP^yoi_wQS zOpI{$yY;;B)PrZj;SXM+GUXm#_o^-kK6zOLa(*CQ=l3)i9_>s6eg5=w7@0qnv~-Bo zY{4b3Pt^5lsiQX6>GVwS&`5$iUzCKG)R%xmjpo9^{f~6rQ{!;l8WE&cej4yO&$1{y z>E$&byXy#VyyOyJEF$3xdR6KBC7JH3pqaS*%QevIBSzhSN%uq);CqRh@QZFFZ~o5D zGRHHY$v~B@Pk9}iC6DLb`~x(9O`+2Lpa1m=kD3VXzB|GmR>Q*db3t(5B6_`%bZe_M zfzkU&XtK7EN|$tvPrQM7Y$CkDuHbd>n>RRoJ09Nd&gXT9wF*J_o-kO`R>A9P2G%8q zU0MK**3s*dWd6j1<)NCg2b3ReO7$z!`862BiYo@tWPB8ru8ndIyXEzEM*dJ8vv#op zyqPi=XSj~0;*qY(LlL_By5helKT-D&()9=G!(T@QI48f6>VKq5-ERm*q%5)I(-FL` zXJZ0{=l2Pf6OW?7{ho|x(v$&LrcFob&kCQiy3FlZ9p$W9GdmJm$+POmr4)_%^c8ki%W$|W+LFEjAR-b2EiehaGpNH?R{4Zgkl z5R{+4LG>5Xb-6EqQ3f68pAO`8Pu&8c`NAjY;c2=YWV}Y55Ljmj!4UDsyz#0Q$HAqC z62S4R1-#DKI1wIoibl#eGSJ}uGOqIyd&y0Od1keS-BlGS>{Gi1t|rp&p`k4S zV&O6MvsAjIo3m>h_?@s99N9;|ACbKv*Zr0a{Ci}SkgfH^@| zc-@0uH*C5?0egGX&vj%xw%H9o^csn`occ~(CrjPdvUXGb*|^S5_F}UX{!l*~*V`YX z(j{H>HVHi0!WKV2d4|_T&S*lKJtBBik1bWtWV{3Ys%YfN5FEMbIT$>CNv9txjZOq7 z;NKJX^SU`-4A_0u1M_gFYA7dh;16rpWX>!zAIA)PSdaepgbw`6X#-Ub(#1HOMXxV} zLY-Cg_pqc3?Mp{f#-zfuyXUBSCY|9vIkZqL3;LJ0^E!)=<6J=6BKTeFG?l+8dy?6I zfBo4Ln}4ucyGv1CO#<#WP~vrmx8|Yy+mmsE4t>548PD#(L{z*b0lQx+=8g9&auZ0% z7U0QG)v5a%8Sj72$=dq=I46sA2PShsIo}dbET!+O4n2< zne={d(!Dme!Y=3bqbwnPo<8X&o}Px)N8AHrR*#|jDe11pkHs7JYGW~f`n`g5(J4RC zA9GLGcx^ox+@DF;`?3S2>1)EXlQnqL_0v3q8aK|y4{q?6cZSp`;hcfuVmk5?V{YgD@t6&)nH~~Y9Xs{y#Wk8n*ZRd@*XvbTi92@}uET#7o zlJUMg5{HqNa?sOtGF6VK4LOY72?K$RNk02)lQ#;t$$*05-PCzYq%&y#$3=7|z>GV4 zsr-@7t9b?&8<_;vKa}#i3+FDdAp_sFt@ak{^?6>^KRp!^6`UZ7 zNY|Da1PniT!1dZSQRN_A zfcJf*98iyfpck*(KVk#gW0Qh&eLJc7Y%-qshkmX*=^qL$qvuaaH*CaS?&9P&;rjDS zdDDF<9t4z@$>3oY^nA{ZCq-=3<51T3s2n$X>R;4qvH-{W&Y_-TNjL0dFUpe&!drwT zRR1I0yqRNB!lQKjxN{O1eBC7--}ytNt2{jdB){;-AIpAF@qWbYVh`XzmWdw0y`SKY z_pZK!vSjX3Tq&wCti4R?L$GN33RQ-|eVt5})aq-7r z`zG-^HsJp-cIWY21pni}6-o$EBuC^(2Njig@6I@)!xiPoO@!pAP>ymWT|%NuRE~7$ zzP)#6x^yT)(xF55sigb*0^@n()-bg5P zeC>mIHtx(aT%e&u)t4-{k6kca8rj8jS?{TGFZXR>W_=#XRNh(4*zB;yQ#=vfakp7z@h=z3-d?z`wIH6D;oZ*V-?bK42` zKSw{$kS-GYf#cU5aMwF}T~+*vM&|FJag52)G)6^w4u1Ko0UhiUMYRj*x>MZnx$KQV z?RYP0d?8(*5?fsL_8u~ApxcFXH%kX&*CSJLf;-(Vq&v4I2)XAh!8_uvvOU|6bYqYn zygsS{oo}G?Mcd#4H&Nzrt?wK){?7COOs1nO4HE$Gc(YzRf&QwF#9V1 zQL^vMk%VP}ZhQJ$uJdRCd&7p_zm6>T?ZnlrbYMMm%tzRnc9??h#DS=Ibuv}1(u{b{ zTe82XOyeNF`l>QYR87Y9FGN)Sk#2nXQ#SXm4_+%H3wyRR=^`UE!Lo<*@Xr05V7y*4 zD!};zQCO5qzh@`oxwipW+RqR#`6GOMu@&y{O0eV|oiY7CB{H7VyEyo1)Da|Aa*`S+ z*WK&Ij$UX{ixhh?u0QQ~`J?IZVS^fVzLD;Bs|pvpG#x5EPN(vZbklgqjDEWe9vWFo zjYFh+T9^qobtFME`7%NG>A_H_e^3*Cx%QW8XENR<$$IMCIt}<}^=-=8tS+^Br+Bco z@3~g)XO17cNG=5zwbA?RkWM4FjSZ1ohO_VHQ1vC<=YAVOam{li|Ja+#7t$SlTnDOu zMBw)3F@nc8we}4tA8Lx^2L}np`=zJ@FLj)twquR3P~2FQ`|FYJ#RYfhGF}yrDw|66FXnYF6=i#U0^MY#R` zMgXQ?7j$k;k$Ci@>mbzO0hI@2JRI(gGxR=#B%chb9;ADg+Dr0o)nD>HG)A!8g1%o- z%>5v!=HMdeD$nt#T-g}fj~Yq!FaNue3s(!_p1f*fx}S8Tg$XU_+SDmjzK~AJt^+M) z4)aR~(BFTM?s{tr8dR=>^S+M~jCXhIMby+N%hxnU3p$U#r_j5iGCuH8jG$|Jeh3X& zp@?_iv7=n!8!>aPWIbaY)y~-0SzzUPrm(^OkEtJ<9o>@?y3$4j1>fGiD+dMdGG6yFtErwxFB8bS9R)@DeOqNWYgP z<8@WJVuR)PK>n^q!FZ+G&iGNbJbe6yZWl71t(r5g+4T;*O1>Z%@3mxJwA)Dr=EL!9`jVLujoSMX{LJld>sFIFG!Dppl3dl z&SZ2no-z0+h|-|nGm&ndXBe*WF9N4)4-3ZYWfq3Pr6#cc*>pkIy1^4ODs5nK?^A+q z-Qii-&kBKJ!&X5zF=!UvWp@TF-h6{{QN8anmi;|A!}eNc)0@3$)1)lm7!XN~r=-*N zvq6?G72tul^!J0L`{|{MwrG3>S0)4q#v8X~FE?0E3ha8fRM2hqC}wYM*$W<3(d&W5 zk5yPjMIYv^YzK4R;VgS`!YFv=GQF;pbZ7NGv*vGKfG?8wyFK%ObfVL8!0aP{9g4#R zop-7Nc>e-G=CiS&8#e6#czaV5UNW!}bRU-<2Rf_!!caE{%FVrpx#7c4FkklOGlN=e z(6$|Qz;Un&mQ-2%SgZPCf(MUX0Y;`8PvZ-&ySPN!LAd;?;Qn?xD2G~D_7mc z;qyk!GmjE3#o-b=ex?K5YN{{jW)xgwpG6qK*yFZ>PD}nVd$B?Cf1!5zK7uUw14W-(}yff%%6WD*8PYHz2W%Sb1seH~pI90|9HKMT5py&BM+=~1w4 zJ-t4RjOTmt8q#Wrgnqj8cWr~^&vQnf=W;SK$C&4Pwxa~!g?L>;6;&?j8c%LO!6A$A z+lH5dZqAk{bSY~I_Kn>l=+>Kfqdct;e5a9K_ez#K`r}w6Du}>e3olXaJWm|NS^Qlu zy7A^Fw<+y5KmM*g{8}~)_8iAaH%@&m(~JSMI6%)klCGh81F+c>3s?W+J9^Twofyck zje=c2On^|i&f1s2o5*Om(QGc&E*@dtl68b?);5RpnG+M1;iuBM+y(3Re9w5KyXdhL z7w*quD;CL6<&v&q{8IejVE}9Ep(yAsCNIFybQ+RTT1~Yx8Lwqv6n-wg0ruDwP~T0E zF7j^(W;5Rb`5TJ`>uZ|kkCmVQ1{;l^2-a6eYX;t9sSFdv^uD19VIuD8`UugYgc6RO z_8B~v35LTS=Tha8?%46c@b3ZubFH>g?LxYp5r(i@elnEzlBbT3bOT)6;r_i>!5ovD zRQr)`UtTC&=u;0oHPQs#nY-c8cw8;0)?G%qwm+vivE+NYr3y7nfXEvKYJ}j0l5anI z<_qbbqH$=SdN^LUqD9axyFM0u$cw;jJLvO`jJLTJ@y1I6aZ5eD{(y9EFDLOI!UxV2+0qdN0m#uz({T= z$Sh(T3j=-Roy#{_Y$WqYVWt)J@qFy-TB0bMV9$)d#Hz2{eKQ4bhPB7lt#4fP) zkSu;=JyFnwZj^>UE}P2fuzxGAS+ zLjNXZ+_T?E*A*4Y20er@;SrtBr1Q;K2Kqd(fHH^a`A*VJKn>uEuRg5qFYNjl+yMP% z4~Aok#|j>w>B`$+U7Z#@`+OATl%w0kBR_o;**(0)$Vt{HtXyY;8|_u7_9GqM5Q_Tm zvc$i2MhH5!zEja=#}$ZGSt#hdJB(0?Z8n&DeUYHcsOyyMJJ`TSeNPi~3rzR08cQ7T z>(%;#?t$}3Hqw749=c6Q&|O(o0?tIOLq}rhb5zP)}NE{?4cgi^@DV>vL;B@atYr4fnH}$I-Sy^`~y!He8)-y_smn$d0pSZ zTi+Z!bDfPhm&h&jdS?+Bq z4L0;fIyTsOo?7=+E&YyJ)&Ie1V;wza*Q((tenT=Gy=e$_-6Gxi$NI=;Y$`0>{Fv$w z(#?BQ%A2iP3gr*Hq56Y#sv?FR;TR5`bLshF(s^H-3|>jTow&g*5R7Ni%mEvxSup%( z8&!|1rP-YHrMXkEgxupP|s+rzi| z>VodOI3Afu{;#p|^I_mgo?q|YBiMMAB}tF0qK0>&VrLCKJul? z!p=?Y9C&v$64_RU3&xW^bqPGZ9)jHNg;DOv$XiUK`cy`%#D_^f>xgD|dE?Lt^!sGe zO}S};G(JzlMo;MLD(MoFn?-A~ZXi|tf9!WdlcLmp+<9F(ZPZtK{3P zp6y(GS%beRoiB27t>M(<6|uF}Db%@wo);zE?a6CUW6e{vOtOE4P`nbyLCAfrTT!tv=N zQ>o)yqrHR+?966j5*hexl?`=%kj`<0p4teeqEH~+W5cb{n1no$65OgwYMA*E!H~uDi zP95LzODDxKW9D)FyfX#&YbM>xCzwCHXBnRN*oYcWNoS|h#B?d8t0zvlaWk29rqYnbEm_ZYKk3+%Gm z6z=v7rrM8mlbemP%t<3?v#4IsJOyO8m=4(&ukTC>5$k3O*H_(!_K ziZ_wn@|7U{SfHQ__H9BD`}MhFt@QKikN$r+Q|&mh$H^t!B&;hs+}MvjaW|ccM>^ZH zj$rqo*X)&OdLD^%Rzottt}%N-->Z>=@iM;WflV8a0P8;ClnV;IEneX_Up(~cS?+8> zJY29&hn4wBzsDinE8QgMGS)%F-OZ))nRMYvi{T}?<-lOg5b8dHboWlD!0Ou@*d$$B z!Fc`dEQ5=kD*23ku2lYoTzD;hRUgSseHq2PHPphL-=^aU>dUD-Ae{y)gM;4q;8?F; zg7MaucA#U$b8y$}KGgA%@n&-^NO?{qe%V34$0422`AfQ)|2co#{&D`2t_X*K7nR9) z&9r?~JMSM`$n^UX%q7L;FzQGZPs}rAFQw7f1=7{MzJfB&w*d87^!QA=7atEHR;|A$!a@vsh(EzA$e664Z?tl0(fiW=nCH?-FjCXBJ zGk?)?K3w38sC*$^dewCHerhc26>*Ak?&lsc@-w??7s(&y#&~T2kJF9-d0+ZDigbo2 z4ueydE5NCPbbpY}X#OcM&{_(%Ety8OGwHq-Uj^Ta`ogB`^z#wv+{;M9&Da`O>qSo&Qv-ZSecK&f{ z+#sF$H!-l3TrV4+9T0Rgf9b>G=*hTu-!?(lbkhjF#x^)$d#9k=)M^D!Y7fUs4+5yX zB9E^ocsBIeD~tC!R8a9Y`fG8?9$8HIluG8+_uJsh%CYdVw>s6oq=Uho;NH|xaPAR$ zod@Z1ZN34u{pH~8<{5(Vwn+Bt**E$Q2^HF~<`hJ{r5t?x@e^mr3-?NU2H#&P1cRA$l z>0zuqXZCqA?9TcE^gg!e+O=ytr3h@vD6*zHd_I{ zjF+a`g^YJ#z&v>LO$I2OQ%=RZkQ&AX+z#bl)$igwQ(MtR-UEN~zbNSHHt$3+9Qk@BmpzSZ3LZTu0HCJd>?Nk*(*>eo~gbG|H;Jjx{14o@w$inaFraLf250V+QQyeRmDlZ?o_{#Zj!+M#iTQm>|gxx|FM5D z>2|%+f-gHK<4>*he?9Cr4B^Te(nLdxPH-6)i&z`U|46N^eW`vUozuHB?6mq|c*2~X z2PU0rtQshIkOn(c5~=Gi>Gr?Z2eY0;!o!6Z1j}_k8v`Q7E`fjLcT({#1i#{5^s!^C zE2^0YU0)nKtR8SOhp2d@Ye@0JQqiqo*0JM)Zg$=PthnACt~S_3B%)WE|%GlWITGbr$~w zk6$|Ap8*YmuC7`ZO2=_v?AOWExbfqul~}>N7X!Z4Gt+P07T0yB!-RPy^f*bl!)GyT zRj~{<>5iq&BQjoIYbyvJJsC4CKd9p)-K3X4z;7u>yyzxfk6kBQ85JcRQSReH(MFl4 zte$!TJdl)6#Uq{BZFO*{dI7v{xk=F7vtI}tqZh+~@zkhX$94Ci|0GTC4&dS{AMjdcYWb3xGzi=8aX%%y55@p zu&uZ^>|K48>Nm1nq5V%uH?uSvdIg?Ey$)Wd+J$t_CHtQiiX1?Hj$WtGn4QMCmIp9H z6OS_|GxhO-)+QOCnRzHfhC|UuhY$Jf5658T(= z2fH=iq0V12UXHa6Y{rAJl$8t>Pkzw|_D;Stlc3fu8ls_r+5Oh=u`9j)o^-pqi;#TV zIG8n$UYABXxNHpy_niu}a_Dt#q#G{d!XN4r2y=>mqn`aiy5sAI@wc!SeDgzIupUp9 zWcc>BKzJwRr(nF%E{N-pl$*5q59NHzwlUY&sxrx6+L-=Qg(yz@0qVTw3ws_P>0ZB` zhc?M+U<)%xLHA&RHoB=Y3cnAd|DQs}tM)17Cf}ZqGJDhWZCYPJ{H`(yxijdG$~?bKZEl~yn}!1)um&-N<{9T|)-%s4=;&n8`A zuh(e$`Z?Gr_6s$SNxI<=10?UP5^>ctYigV%9UQNNwjT?{*ONK~ozQ-QWV|W*E$r-9 zjyV3Wu3&v{1^;IK&{FIoZ%3VPPiu>~nGd|Uzw3T+nWrsr$&_Qrq)`+1%ooy))zHCS zTXT_eHY@0+e&~Z87PO(e(}Z1I&L6aCP#|_Wv4(1AvfO5muPD(d7@v$pRKJm~zV;Kc zjP$_Lm1WfVLAw9;ui-!XxBayO|14gY*=cu-LwhbDH-CG4TtPAyci9;R8YDBTL%xfo zq%t7seoWy}Uc4m^pHHtlBwfuq6R==aEWWY7iaI{h-Ly1?YmFm$_b!oOxrTQE?k*Rv&siGZS=MC41XCl&V1Yo0ftO zixuJdGY*iwSWeZKJU+ui{o!^`JE$9fP|%f2zBiELN5YJSX9e9L-3f3-y&g2_pxfEv zy*yv|G)p|Q?GR&CvAkK)0;MmEh* z^(XG><>FYTAm9n}ag2h<$H_vx?Jxb_o^$~V+e9XhpNqc#5_YE#-vZy*J|Kak z-^Y{jKKHo?%KUGFpDHd?yO3_~j80%<)&v4_rwKZRFlE>>b1O((O~0?$Br4;c^$y~a zo+|Lc6aOH&ae;XH?wQo}l62zaCIlVAa91Y1Ujga1cV0(fl6~`*+?h%3n@2jKeGExg znr00GGN$6xvGh7x(xoa!0lo8+vA>cg)h;I-eL1W!L%bwfoBz8kzFb1%zqsP&rO}+!U^>KGZ{~D^eNzC;s+;4Bf)r;Hd-+MrZpT~u#<9a zaqBr{;Ln{2QsyVNc7Xx*gR$OIdVc}Z?Nt2;#4Q@wI7Qe=1^fUydsMK!4*i`b8E-)G zK)B@HS+sHOB&wZB_eb&%u{+14@c0h{C|5pmJy+m(K%~{Qp374hfD4pc(3Gx;g3fU9 z8`RnN2$CH|KPQv%uJyZwWH%1Qr}oq12I)>To<{n=b?}Q?`gwtLqwe~k4@OTBS3|#d z{+ZCsoWJKPdOK>1xb6N&^ee+3YIl#P`i*qT>bFqZy9gM)&6B!6Al($%{m9`_JY3yC zuk#>XxBE7I zUh#vs(ffF9-9ML^{99Xe;oDv&)+7c;$mN1JS=m%P(j5$*k4;PW0rSgH&?Sxy!$-@S z!22L4LC5Na;tL;rP^1q1o|7!MrD6=8Rka;WaxkItJ~k(ZbJ*y|tx_4n*Jn+@2a7ke zy4e=EXFHSbMbb#T%c_O>)&T^a&VF?)Z=Vllja#eUs~e(Np8+Y^o(wy%H zvx@5|H{kI@M%o~PIdEzbQ$05gD~%b>yS_1^@``l%w^MNa)Lrb*i`Ihi%u{2qyvlae zHgcArtLl=1pCbHlu?4+<9a(PtO*^>Ha0}A*Rf9e2OS+9CL*Z?62tNF6r|NOXS%cp= zC5~Bnave9xV>uXiDi;16mqi^P>Bbo41B1<$ur1nv>NnCYAG8syO)-a)Q-=#Wt?{+s zepVC|XWI&vYjIr$23sk?Yu@xaX|mkxk*csxK@;{>p!btG@>h-j;TFf-|C_`4%~}p3 zPshR+#&ms2r#-n6Oj*1TMh_Yx?%B?y`~NL>(HaJZj5CHGciU0*CF7a0&hT*mJ0Nyh zJLMcqPjM)r&U&Gx3pZxmWW2Jb0cd;D-|di2_O2cN@~{!~dfbcZ57LcpnuvAU72w_> z9fIX{Nh#rmr03w4AwB+)@nRqTK~b6OLHh;zIgfPrw*EkyGT#DMA9@}spjd}rnjOkH zAGyxFd+3j6W@Uk;s~=LwN4lJDeO#(C7-?*@qs|Y~C7&OPAE``)MThD61JYRs%i`|U z3mK;rdY+YZlNDT%+5#I`cu|ik_sP0PjBeF*W_+3>^pXOCcSQ*bkkk_pugN${HB_IZ$LW3#K*jH$bNKfJpKGjx@qwMu5*{h<}>JVgLDPI z-C_KB75we>LF&GQbb*g&!Nx`f{B;ohz9-C7gV!JE&(-HOG8tios3}ha4u3{}*Fn13 zvlUR4a(Gs%bz8Kb(D4RmR9=tjf{6S_%E_wW`d6e(BH?C?gy$xM<3p0 zKU|^L>yd78!8&Asx1i#qQG&oRROxvYpM8%wv$9e~?#mtKeOe-(`N$Sj zh-h=U%d3j zLSAJGJ)cdww|bKO*FK-)?ak=xCF!0?x#24>20;VqdDMAMI@gY&_`>@Mu=NH#o{}#A zgfb2=w}rDF(BC z_o2!F`#GopxmC7QJCm;Z&1$twnfSr7>u_xSYx>(w!W=2#?&c9PE*u zDCkobZEHL*P%DHGI!}AzhsLRP4V~7pkhQ7If7PMp$c! z4GggChlJv-*fJEmaK>9+-5s9aqsw z;~==)u8?YH(y7kOL!r$x;nZ8-1)c1|Rmk(Z7i^r=E$Hksvycb$hB3?O{R+r(vqzdC z)UXg1zg|VfQ;24G4V_+$EU4q&G{|A)m9ubL$uQKje@UmM`w9K}9gOuZWl;0Lq}z4k zBnrD5jlVC{6pY7BRzP1Q>paS~(fv!tt1@WdpGn?HX)2GP`i*o4FBI|S^M>K0z36#? zZL#l|upH0YxsEA})K*()P?L&6t+l9lq?<209sa$ehko~>|NlX{S|@inz*!nSmt04B zwjb$E>du6%t@M31>7F*vf%DgW;wwTQQSC>%6_dlD(#q%PtA-6VZjf%Ec`O{b zvKHMh)T7Sx)obMW2XRJ>s+AP~WpWevS<)M(phfZli2aIY>qBcVvtbY?YUw><;3D$c`dTsf5oq`TZ(8Ex2@idmU&R34B{ zL;Q@N{2>Cr=xP#-_e$v=H{`4rP8dzkhmrA8T+2Cy;5qnBKYHI^(#2iPX1_}Qgw>9Q0E)zxPb96_v?6Em_h#+ z#rSd{x1cFX-#_V1g<5Arj?x8rRD z<4t%_1Z@7=;HDOJK^Jj#AJ}zf02b*B#~ZxqH7L#hf!sgQ^D3!_bomq0cGgw}e&OUV z91;gqPshXOX;bBrPIG}HGiA#?bm;F~L8q|zDccrmfhUHI7j)Cz)`2;;x;Qs5L)8heoe7N5ZP&r*2Z*Z~}jQ7NP2bjJ?69*>>mm9z23OGDS0gt##w_o1T zR!&Y%mpLmg;bOl=i}!5_g0(K+sq>9=o{DwsQwImwJXN1MKGNBLf5bk&>I=mW==nO* z*;)4kCaIpVRjHp~yrg&i!D+7)SQ(@zczovfh5>n<#qhleJx@)RTYpXr3Qs!0S7*LZ z@hTT=;3{rKaLe;HF$+^xBE_XiI7W^>FG&}pCMEiim5%#fOQX(T(rx?CeqWAG^nPEY z^V#6c>g`Ox_fHg2;}Gc{;CA-P`&6umR0Qj>N;w`>#`)s3W%RyaWV{uMOTi&S$$q{L z^mtFYklUw#-=%6AH zo6B_sozQ$X84pVKqE+gn5BE>j6pW{@G!lwCj9^kDqS~2^SH6IOB`(IWxtgB$R(0ON ztt^V*+=g#uswU>3MUwTCd%Z7E@kqDuOf*_n=8yGbUI;ovD?gMpEeVgEU@GWVOY*N< zl7IdGk$+^lI?*ody@~`pVF#U8vGdn5sjb1>h0tP#+hd5=Zfj*r$J6uAr1NXjz#bz9 z!6l3m)y|}w=XViBqc`mE5%fGE=}h$X&`h0CFkrZ~V7!;pI=F(*YS8iO3_<7I(JiWZ z(*cfr4X50lgS)sf!=t#*mFt+sm43*}AqlS^L$@>O&U?S+X4f~{e3s-Ootyw(M7&^S~|V{k96zSWub)H!FXsR{eGHssw&>B zs*V?W`6C(kY(LWN3>N{#=1LUb5F_ZMhFk=L*X=?pAJfk%WV|dDB^WwD4VnDoJ=4Li zyW*qj5!_?B4NUAod8}qJ6Wd&&pFc>K=5qsujgQ2sXZKLoBhodq$5Bh6FJ7>KZa>mp zl*}KvN!o9G6WxBKduG`e1sz?Aul}lGdbS_wg!V5X-Ih}bEI$;CfBA2v@_GK(*{sx~ z3zl}G`J74BbYL{s0Y2#*LiGpfRF~(2mBD+(U&V=nZgtZzSoFgfel@%ySnd`R2N+Yf z1#H!%=bs;3uI9q7jS-!HdX2j`-3Nbdl!03}%TnhX>0Bnb;itXS;fPzhRKJnV&DsL{ zWqt+yR?+XvNGCVM4Eu)bL!Dww)q`|3rP?^t(*pYH(BJEl?qZZCez9@_)DY3@%}R%w zvR&Q>PR~uc#oV7`15-9fq3FfBuxB2S?$qa*@LDy)HmE8Ky6B5u@a%>_Hn~(@(4Ck3 zZ+2NsBRZ45l4@tN+^gaUs9x5HoFe1|-HeEMxX@yW`1;p_l=EzV%sdGU;oe-`z%1>( ziamH{9oiW|=N0K>jvi*SV;-Up_Tg0ik#5U^Eg(Z=rT`*4sM4BxO@^1ojC`Ga(ueu&_7oAu~YhYl5Qc!3mqW}pu9 z4Q4V~oBH7cc7s7t`Yb_r^@=nO|7OK@j_?z7xzDbkH9`GAC>JT{);!;fVCDd@Fh5q% z4KZGawnJU;wPT^6n-ISi`P=J*B~pt7-QsUqXhY&HcDi&D!>;`xIY0fdq zxz*=$Q~e9XYc39AY_@xVfk&iqysjrz57Lc)xE_?Yzej=UUV`qiRv8$x+X%}oG8c4* z-EV-j2l{yIEqdJzS?*e<9qf3njgx!P-~0Vcxxpw*uw%YR?(6VAJ=D}^923%%MwLrC z)sCUib3O-*e8<9`{Xsg@6UOkOn-X4cBO~ZWzZwl6Zn@7EaP)aZ##89>h0{CLPE;lQ{d0$P<+mgeoiJ`pz%4-d%q_($hbzuJLa~4 zxq3B}+flcHxguFhotioW-f`$F=(JL$@VCqX@b+_Ks{P1#L5CZW?oLHG%89;ykZ!5= zel+yYT)6%p?}bQrQj~-8{G6b_qat;FknYRDJ3uvi6zr_mqTKs}2F}$^pV{3VFS^xF zlMR?U52mLzQ1vBUMg29_uwN>?uxYfQ8#3f0%YILRj~IPHC)a-gFi!P_GX~Q0C3RQ! zh-2I%xQvGx%oB|gkoR#Bo`2byy5A+;c2^F}=o^D&Tj_m?N!KLV_wtWq-^(Ze*!Plj z10-u>i;ubDPMIOpc}Y5cIRCZL*i$EkKEUDsu2JU3e!hFvTZboz3ZI8elcw09a*K9lk8F3Dx5 zJdI&5eOV^x{?06AWrKR-jyU>$gN#>o_8`ma^u`ARX=h|}ic{+|m-`s7R`7Y6bZ*r- zXhdlomfaQydX5{Uo2&SmKX7g__TEZACzCGO?3v~IrzMG3CyBS`e~D-IpZN{nf6Q-?@ph@HgMD_X_|zJDUry3JbI1URilNwG5Hi_;Iab`9drpM6hsmXYmlKuA*5?#@d@Myt!%SV3!t-WQ~ z8#96_H+HreAD=r>bh2^}R}nZ8^8+++;Gb7ieM$F9TMEmm`r!UJb%45MqD&gWXIZZ(@ z-yof;;z+a?NS+y$^r^fjU4oJxYQ2&M%kocB@25#O2G#MR+ez@?nKaPz{2<-xBcXid zr&!3P)7O2{ZCP5y3~Wz_dpEQT)+1|s2pgQ04%>8IP)_no5Y8!gE|=k&#T+YMjrwcG z;jXdtdREenF3CY%TjKEb*Yx$5biHoGBex^5cx6T|RbSGfpx!8`ekt~pm!jI4ba9ny z`Hcn3aQX`Rx@xznofFLwGn=vwGX38#!?Fdt_@9?d_@3=dI!=8VR+m1+J{8g5=aJ44 z#o%XR9!&YTkm_I36}v0o-By!fX~_YqzN8yEQx2N~J2*t?4COj}A^*}~i)ePyW^Rvi z2)?q*8I@(+M?LF7IxAa8ToTwHTPoA{f27;MSm1FBhT;upj|j#~P*cI#RmI4%i+;~e z#?u^i78&)@!PS-HsPm0<%!M6jhORX3-bJrByY=lP$NrAw63iDdu?cF(x-kXsKchq) zAL&Nf_C}glm*Nj==zJkvlq6p^N%AG_ANfK$N7s#vwdB4jD2~1lBc0Iw5b5q89}Y5c zB=+iaL9ia%S8oO#IgvQ{AMbyMs5Nk=(Q~*-&lfYnGM^Cm=8Y$hUkZBW0qGXMyoB0= zqj5$Ppw1)Gt(HHG`d{3pzmYfC;kx|G=*?wW9KmQ{={M@hZh83kgyfS|c{3q`q8bWD1pVqM{wN zY}-$rzoav&`-!x9e>mHfUY|%hhquqr+JrDTO?d*F?=C=WZ&47ku-<_cqaaO1i&^9q4M=9IQIOk6^jJr>~&u z{2+XrFQnX*{rAKnE_1m)z?PY{yaQQon}Z+u(D6v;ZBvh&qJr?LPT_b3Zb9J0xnz8Q z&n4>q<&7m4e{~7vibm)&AI9q73PodFYfHBa=^~8kkW|vztrj!!u=P1Rbc72RAjBK(DtRg5@qtnFMMR65x`3 z3#fSA2Mn40w>OIN?QSsE6Q$AJ*^#)thMu<|o$aV&;D%2eZqcx!+K+TkxjGO(+6)z{ zN5Y=h1=8s!41ljY?(hN6=ygj=TtloohHO6NJ>wSVJhdMD<=286>w>9xq|?`F0E1$yc2ytgTy{w@K)Grs+~#K-%trQFZO^XN2I8BCf&qS zi{RP~YeBpZeI1-0tiw$F_mO>f@P0@`YkI#cWgr;8ofyh`H!OawdxL3 z;6|PH;2JEBbAL4LVUoHMJX5omIzG}J_MHyz43mTE6(xdhSb{Sg-FFZiZ>25hPA-}S z1A=AY$548|T(Vr%>A`SX$2pLiOz#g&y5dRUuzd9+Fhy?#+cWRe(PnPss4t@aQ5!hv zP;=3;7Av@V5dD6Ybec&SAaL7aXqGUPI^RgQqiZFY7L)`HHb)D({K`D=V6_KK`bb}= z$#_yZW1))AeBj8Bq5AiwYaeb-yg&D9{~7L;-Y8gTErV-+)A>TW8%3~*Zhcj zwhQT|Zbw7*Z9?;*FlddZ%89tVkeCP0y9>++ zGQ#G|>2*A$tGsv-b*e?-seM(c_8WgnntO78HmAAm66cmA4fpQ#gY8+pspl=y$vL~g z*C*8>n|Gb62kHK*`NNp)ymd!b+$f=&MVS^@@Uuu&mu#WCRQlk z0ZG5*EJp05K)Tmsg7Q9Ud@x4${zXb~6&$+EV>Sx+lsSP(kud;;Ik}K^GIG z3!DB<#lh!ZQT;~73y3#^ub)}qTPxhD{vaLmWhzwvG#J}#8BXP&?wOO!$P0eV;PywN zzh4&PrW#lF1Dh=95>6%Jg;Iz4&dOC(xn#UumW%L#+7^CGEB%~8I#=%nIK`+8m^`58 z+ex=7KLT^!D^a}*yb7wzw?;VQe85T17l#VbeQ zo_RpJT`rS&gV{M;<1zaGrlh;@pbvZ!JOV9POq0DWb_ok&Q$vQTGH(@Q-Kam zqrrJKH^Jkpd^8bemG{OPtc>zbF$nfZw+W$H4S>_jich_l&Y}T zL?5gNx;$bgUkEzg^m-GY;3S!=?y+u;bYbD!*{wfwd56+vf^O*h3E*hVRutP1C+KFo z1_6VNa@5C;-jAZ`!*I^$Im0D}z2P36Fo8ec4ToR+II13`6PJvKQDSrW#pgTKE~Hx$ zY6UB6he7Z6^!Y}*Zvz3`=co%ed|577?kF<=&)E!v<(vHlUCJLX$@;5q@bL3WL6_(4 z1LN27pgpaQax(SnxvNKgxfgsFH*JCfuAJe8Yj(s_<1Xn&jOd3oE_>m?(sP0?Ht7$# zsTqhJpX5^GBpL6&`!(zQW4~t7y$H%gHQr%3{38ZE^NMu4zH1}Z!=X4LzeCVXp4kt* z4~@r9^~)*uY-A?)$RmK88S#mmi49Qy!gxG{r`J=HZor^n$m9JI{AR@%s+~#K<=@P% z>UP9`ztZb`Nhh?wH|gq3d7ztPjXzY-`-1h0Jgg>FL7n>=g(tcl{QO z7teE?u1X;EPW~h4-k!K6j;r>D=ik%c=aJ=Zo19>MV*YHHWzZM*Y(LWNtXlzAn+8Fv zQLR+DwmU8}^<#~ht~FXrAIp8byz(4Erw+?2`C z`uYXIc*+)k(BlF(m~g60(7CN?L}mQ}WZu)ygUeoz6_1TSbh>kBy=0Ek5Ba{07j>(o zPt*Qyj@R5kg@fk^y6%KTP*iyutzI`*(4k)I!NoTg;F0ko{b1>FYY7BGF>M6mu7y}o^;{#>zAN@4BI+^d|YjUP(WiV|_kbi0r) z=bAqIblg0wa=C%(57K!K_5jbf-$1i;=yoC9%?<;CjSn;Vdzavz;{oY*GzO#bU^F`UkMA%@mtz)y{5Fq9Gsn~4Ymm+`tsgSI zn#b<%zf`bX7yc?=vzcKP6PHo0&y)v@xHyx!xjU1YG1L}*_P78t!s&5?bP8vk;bP0d z;Kjp%RJ)MQG07d?{Jk4U$$X&tmvjw}0^s;_O6ZySXF+##XCxeLH-{~3z9Hz`^(1T3 zKnO}o*+{vkUw3l0`}{cYS%LrY*bQHmzkvdm)8EsP&gRfNv}8&k=J%Ki#(R6G8J*M& z!$A+H2s(o|*HM>b-}o5|`qcK!mscg*xp9ZQxcDwP-czz4{LB?o@wX9!sdgrvjW`J0 zP1C|!EA0hcwq)Pv z_qGP!u+Ui03GKITP`;dViuC20)Kqzmb-z)WsUOb%txmNw>5}#;qmk;#IOd2*(De$- zt5OntSCX7yoFTNfiOVyV=zJ|i5tmh3Md|ZWg-zJac z$K1^oeJnrDt^ezZZ4Yhdx2VzY#Yv}ZPPgX%ZZ z)&J-MIpZYX9Y3e@nRI61-QZ97FQoF2K0ip8tMC!5kenZhi|Kf;HSH-?g4^8=EEa)fHUk_57L<_z6VmjSU6@9 zoqwdW^iYC_l!wCZ+4MT@-)bKi_w{y+*@-nwq4sE;xV#YN=qf#uQNO{xps}W~ zOKP$}mHH__(~usAK6dx#jVF&|l=ruCWwvLKI6D%Kdd*PhIq9kx9=TVIfNK$b9+6J} z&~oIdlL+%$Wd-ByQ*Z@mCHJuv#q@nF8BeYM4Y2CCJDg@l-^Y?pRQ?WxoN5CnVyD2K zd37aAi?_%Q<0egNVJt#qv03b5CNSAo(2ZE@g6t*Vw0k|G_ZcJO$yILP8J30j=ZzAK zr+NA+P$(+pmR+AG=pujL1J@S;Hoa^v<qFaI=m$0LL%OBA+%<6Z z2|eDE@j}aGu$sRO>^q^EI=<+x8_bERs*H?th1kEz47Mr!0$a`GanE{?ZcpbJXeIg2 zz*|@Pew=hmf-K=dTQw*H>jlg0yfzKyyR86^Pto6rknzSGN`&SyG5o%>xq|Vc&LqJM zqy<7>2MIbQoh9&cOfL|z#7EFcMWn#^mLze~yIGWre7=ZrJ@!~M;`SNF*`}D?oREZ% zgscEP+mCdHvx~tT6D^z_$5MGux>@0Wfx$k1yzl2JDql#qyvi8nyVzk3EpKW*jCA9U zS-}6p*L{ce_{ERom!yf%BpMo&qO@Q4>l{f#TYHH1B9ZnMNk#U^$jC0)TK9d9y-ElX zWlJ{MNxrYo?|Of(>-;)C_y3RUdFFlY`#$%%&&g7mjMc=2RQ{l#k^Q|qgf$&i&q%b~ zN6%k7U>()Bylwz{1x>u?fwvuR<8^oUUqFsIF}NsPpVxIB+<}q<6Y-iP`acIUe?M=o zLkEKv;Z~Q|)I8xpolk7go|){{qlocd^_Nk<^N4M`On-kPU0#qc$eJ@8Ngqz7+Jkf} zT&sb^dUd?j%#_#NUCn|H=P1lB9$(BK8%c4 zxcn;!pP_?|is<)Hle;?HdYRjTfS?-oqm8!kVX`7N+DLz|C0(JG9(eCO7@NJKzY~-0 z-cJXxSXBYra89^?zbBpCXHPIe@(-F~LH}n+x^pM4fdKbaoG>bmH=bTj8_=_vi9TEm z<#h+eK7tdA9q=5YUThc`w-@kau5ywaJ9C%#;P6Q&2S7s_iG#fM2)_1j8LM`sNc zk91}eVsW5H9A^|nkGrJXWg3pB7h!O%u823@m`$R0>Gk5cddOYsJQgzE$z*@5@v{TC zmF(b+H#y25e>NY8)ne%N7G%7O(w;bc*hAo=L$3=bT}kjr9GatzHB!ZR>#t;+BwjX9 z50{*!?=u?TtLqFcl?K(DAlg>IuKtWiUgppJtYXp9eV=-mtfvUavwrvETPWw2e13IaUw)*9+;~ zR9=Ce-&SzgUV46)bQ3QsK@Zu{@KG;4-$}YfdE=qY-HCAIN_t&n^PLgGbh+t*F}cr~ zY{Lb019lxg^{?->q~lv}K{~$m7NooDy$ghd7jO^45~=ne-IYxpAj!QCt=}}2*R8!U z6n=lZ7pd){=MziPHZ{yF3ujH5cQSj9Yz1%H7GV>kXzKZZbo*V)fs|YVj?J^A#tqUv zS#$@abj0AV+jdjy8Azuk+GoO2w9mxq1*53v7t+}^8N*NGjqo-uf$A@$(>UY{h4G^M z(LDvqB`SYsN?JYHFpI;?+z>SwywnL_Rh6Kg4@mcXwt+vxw_NSA*?0Jm%zh2;nD+L@UOi;c+0y~%@N)X9){bN)6dVBha6&8)daJa75f?I#^YS4yDM(BQ^x(TU(#(F zx04%q-wu0QY4W;);)c2$)1aH89B;hXEsjX;Wjd7HgsFNa;~6Y6 zN3(UK;I(FYo`H1PT@75MFcaqOnaG>&>$VMCYELFSP^3+{0|tYIfd{JV6?Q%stowcd zB;RcXvg!V?f4h-x=i1L8K>H0k-9wKrq-%2<3XfFAvyU!#^TsplvWMM@uYq^@Bi{VI zbn%08+GiuUnO^rwru$Yl7;c>F=SW z>yC*)*HwULFg7G80SUcXDaIS08r&L1)gS59Zb(7(iJI7!#BQuaFgT~eiu3%{;`<}ue4s| zb>qye;X+ki*xV7po4+(k0Mq{H!>vC9sq3=%T)x0buvcLDb%kKr#zJ5^H3c3#LZ6RA zx@y~PKy~qac=YiM)c-mn-Q(C=kaToD#5;Sa`ylCl8;H)vPLG9_CxWT+l1^;bZE$~M z6#RHxiYhPZMz5O!f9RRR${<}TUPIV1cJ)Ow#$m@zre^n{1{vXZG&(Va>IbA-5V%{Y ztab~0ycWajtWG@_YTdU0GS(Tq?)jAvFn|3`Q2Hs1*Dc(<9mwvIfC+o(bpT}kHa@!x zIv0*b?Z%P3@w$`Wfp;w%(e{bHlq;@$%v67hVrt$bGd>qHut)BGA*aUB?Mt{-KY>Ostv*x#bw}*#a*hr zq^m#SgDaA@f<5|gdEFWXTReR{2c~IDQROA$t-s9R!(YUKfSthWoQtR6`!nx@bv+|^ zT}{{o?0mHc)OZi)b(Ouk_;{cMocvXe*NvSp7OQ)_1^ayHb6@wPQNpO2`ubrVhZ*;S zU1;}oGrT>Rey=6n@$;upLb@SNd#p{ROS;*vW6|HHRQzqV6IIWo`}{SXU2PYNDvzi0 z#@m1Ifc4P7SCJGmm)E^`eO8bobsn8PHjmehe)b-e2G*gSPu(b2aB3Ut5FN_)uocY9 znT04YKLv;R(B~kKj&J{a(n$>tMB7W#v0Z2(HQtl%-ezB9{v{n}JNr}PBVQt@9j4j>+S0J`;2z5bPRnS0qHWf48^zIy8%3D1p8m-q+6LT zi@&@X0S_%z<8}T$?TA|fpmP2|URSu_A3QxlJBWR+)ZoYS_ED zVb!!ic7)klX2gH{1b+I*K7pkBpZ)*Vi1z=R^pE}jNLRnx1+L3i!H*~Hq}qdYnxgkS zM)aO%@{jjC(!JU=8%m!0grqLg&o892UmXXvKVC$EPg|+}^3iW2<0?AW+}^RAkzHei z-Qu#*JJZQjJ(G^zs*RtD&Ns-IO0UBsUCU+-Y`Y2po3WF4n=MTK;JFKfs=0YDYsK`2^)MOn9WJv$QZ6m0H7!kzk(mA@r87Iq_RP` zLMWCkxykEP(=UQ8?VfnTU3z^s8ILLc1RM(Nuy8AVzBB1ECQ8DBPI0{T7X98xx``4) z;ewZa=)!(|-2Zwb-3J|cD0CIWzKQg@j0ZE6xGVCOjC4p5o4UgUWgc+`_nxFs^+&qM zmE%$UxwwX^#q|6i=>k|yH13rj==sVYPh;OAHsH-1u=Y|qZ@T&kZOmNG38>$rpTi!F zGGfbrtZF!L_qt$&(KH;La1))f9Z1y+=|=lo;aS_q;i$(;srDsZZOjz>V^1c!lVHFb zPwSN)R=W2Jtt%hJ>jsOiqrKC&q7TxhyiVq(7Jk>Ghkth8;LYFfU0OIpLK9D$_mbDm z2`fi7_XF^E?>5RAX(qEiV-_;{@-<9>i#GPnxhAZvrmu6-)h^b=9dlj@I~Gre{rey3 zio0a7gv?%$^T>|Zop~>bTN`eH@=p5uAQ^97<2Ce5ctWVt7t0&(f?OpM(|*OiG@|Fd z$#@l)H=xkp`@!!|^mF#JF3eQCXtr+By4RrpAqcDL{QwoZMxcLrNw;HxAC~?q1?PU; zOpUvwoAKEj?_DAWKeWbD?LoSPVt|J$kB8xJ>HpA3cV58~BU57-IW&tmT_al~JZ_LB zjNc^Bn{MI@RlGvtAtq2UhyK1#y0G%6 z+z2%b*nNoJ2b^@98~3xD&U(SX^TT-ar@42IaLT}`u!I{=xjh;A)*dC$1R`Oq>qw#NTwHLt!$`vBVCAH9qKNKg$1qCdEIpRG8F8&42*di zM_rd>ydOIrbIVHtp-vF}9!0vev-aTht)WnSjT;rubbukZ!dJIm=h-{w-wP?$uHB)NU?Lx0}WruRU)AO8T<^KbEKO3#;vx)ZcNF zsE=QMlttrYVErOB90?St_8{Gka1|KbItgp!(DOc|8~Q^F>e((6iq%Z#jh9+$1~aTz zfnS;QcN{X_+^I2eAI<}JDymTb@rraWIuqcZn(64|9mVO`%Tr0$6*al4=jqrA6Km8q}r1xYq%^ZoA_c;4vW;HYNJ; zx&yL#;QP)o&|n6n>X}UU>!3nlAnOE+e+{7=(=}DtYqMS;zg~%1l;RD!!`*1sF8co? z(y49ofiq;J@x+URLH~YAI-SN)sIspCSsvWP>l$BWK)2`9QNTne>OMopQ;E%lTP9l~ z_Gc93qLw$a|MPucuQQ0@+y9hwnz`GNR$C&LtKP&LZ*Ao^bVMl;4**Yj-RIW39NV0M zqsP(z`IG7L?Ndp*pizs2u}wL6Oz}1XpeK!X$SV!-VNjkp$F-d10RVwTnG7l@irq@d?S|rZB5)NiI zjM>E+)&(H5Aw!V#zErB8lCD)*9!>bN8XbI;$m@DH-C@_f+5i-eCGon-ch8uv-3ZiV z#q+va?IoZ{7jexV^#6@y{$2zx0UO3ea2mYGcTY)d+2#g(kazA;({}8xh`#b{*-hJ6HIWzzyY{wjX3Oo{gQ6Df;ui% zx`twH4S8LMiwfTHO9gcrIZ;kyy(_!hqCl|gL<#HbrOqin426p5=JV;pS2B#~^@;Wg85V-kiGwAt2uNNiLRo|ll_4Vzc)AdT~dL!M_p_b6% zyE<&VL+`Ugx&eJ5@K4!F=CjgQs=OP%A8)YJn8V6lHe%HG%fP>Pe6eKS46c8BkS^ts z4m?*k6_?L?&+8nrMC)nXjBr%O8ERc58P7@04_c{6V-w{l!Hs5v+vUi9sy(k0!#xO#BSXFgnd_%8LH zLOS_jXTbZ#5Z)h0f43r?mwOWk7!wEAMlGk(4XmkR<7Fk8y}sq_!A~>6fR&5jjD)$U ze|wP5Ts{>fHU-1|_a5`Q_=pxTWN;KL{V;~tIh-2>3kPdKxdT5a_sglNA$78;;8b=q zJNP*S>pfIpppql*pFh&UfPC=r;B5FR?mln4gBFG0`ker1y10wi{fsCFZTAzQo#b+= zACT#O?>Gb=#>c@+N|C(rnz(AbFuOho zkCmd=50TFD^JwV*eL7zGVLDX~(#?Et3q7`L(`hJ_gy{S_%5cONtuK9$D+hDjFPQqdNVBe`>UVM0gg}uShrFP#o?Vv=-^jqSwol zF7vNAlyg6U&?LH_l5P=jf`(2~(5z}JZ~n%v^MxN_fj5m0C2psa~9I#8H zpF2tS$1Mih#UBOr<5Q?~Z_d=6$xwD!<|coGt1_|-l{WHyOA#WfgE_1J_&A+ zv7qXYbbR~jlJ3_HNjUE9J&+6--gwzTBVhV2T^Qc*m&zZvs+9Gc>CC=tI>p8$+v3Jx zE!-pXi>g1;?WnTEd$o-5pvmv3ahG(LrcJ~fHz?t-LoccNBc0QK`(B>-$G(@O>-jE^ z#qyl6x^6sgJpDCtIJe6Ov!XLL`}b$1>uQ|Tc1I@lngq;H zyqPU)*JHfpME@@jIV5zgHHO8K7O;PLNw>kNTId$&0oAle^15*=E(j}^xWn_$_?_ds zK#(*(5@y<6q1uB?H)g~|&^65sUdij^b?ZPEuu*r0X_s$MZj8P-0%}aXnWtkwVDm{T-b0UV?4m?B*0ApzTT~^$?XUH4q#nKg zo^(F77I>@GNp$cw{TxBMyHO_i(dY*B;1}I)q~qJikaV~5`p{3M**MLT-p6qFcwN>@ z$(1!@dRdzTL!fHVH0ZVP2vyId3teOk2L@Y0$=q)0zE3)3Wiy!4A^IM5YA?vsEgg551qDjDtiutyIn4n5$05?qSS^Q7 z-f)K(4mk5VzagK|7xxf&zOset2V^|?SB_|wXiq5DfGO0tM!Jb7dbuq-2E#`S{CFK4 zSuV`+*M-R&Y$*4rCy<#s_mtq>+T;J<`J8H^^EsJ+oX<(R2M%L#*cJ<{Q?`dHFX_TG zRd7$L3%;LmmMSml=Cxgutt=<6{*)aTKEPZYj=@y)`fJa5|WZ5q- zQu*r(U%`%KT-mJhfn44DF}T=K9tZ8B-=j#^`aliu8M6W@To+RLBi+U4iuh`wJB}=T zOYIj#y0^*0aocK7+?;-ex}THI;qzc@zpxcOn8BZ}ukl^9eQ77KyBxf z@R}v}srO_u-QB}VP`Pai&JFxPU6)a76oj7&w_9C7dzr|q_PEXbHG22@5$b<^kS^eu z5|&rD!-8R1yiWJxFsyf06`wy!uiGT!c}ot(PsP>o!sGP(F6q9W>q0Am8Ey)szekbo zp3OrPzHt~145Ob*NT-HRp#_G9c*SJ;eo4ADqgSGbTcq*)K`vB#ed~ z;W~C!fTu@e@lNG@YTO`QS_gnDRkU$gtu?P>U0q;k_AxX(u$R{r7Dd7jPAy1#&IDd( zzBe99cQ~PvQM-7ZZf88)*}NBxZ#SddqXToPP90Lj61Y`vxbUCy20BWU}uUt42@V!^()eiX$*sZ<{6-M zS@i!$q*L=wg=uX+IiELP@TE1NBxWMqSYbrD<*la7RMCF4XHQnMw;ewqeMxz^<}JUgdG-{U z7Fhyf#a(*dk#vuxG=XI1Qs&WRes@v99JKEgV7bxsIyW-j!xN1l>T)2s8WTa~&vNid z>oU(~!R$I!X4`Lp<3l(n?$dI1au=IKiu52TAW60!50w z==*BRMGq#tAy#ncSs^ncIt}kNNJRl4j(T4p-KLMpIC{WJq@piR-7iVk_bUmTUtI!r zERd$!jdYsE2{=8$7i_9nM>*tpn|0rJn9+}1$DH@F$9ux{QHDN!{gN(xi~*h>ItXuU zm!jH(bT2F=@CsW4)I8gl*WDB^K<)M#c&RzV>%LT{p!_AuXhCT*ulse;968L`k9KXQ zzl%>fc$$%LQDGFkw3!#X5i(z)h>z{Cq~ejzx6B#cG`WxZqUq;O(p^<>LN^=+;NBB{ zyz!JgvKj3H3%qK939tKNl>{!V2H5J5Id==6cpjEASv{22~C+ z-8wV?J1fM2pa}ZDKswd$ztO8n0pRyI`u$_3wlSx1vc)oXaW8AG*p0G|2IKrjT`GU1 zQ%?Sfa$n5GQ@TgtF*F z&uFA?Lu=4LMmFIlb5mgqehOF;w_v^(p=r&{=R;&6+ITDx}l+fgph4WHz}`pF(GFu9@ZO{j!M`!T5Woi$F!}cp8l?(Ly<@igo+}{IkY?yH+v!-y{z&)o_7?7{?@V}qyO6dDJ8E@T%a-bqT3%d-yiTd{!(w#ne43sUKg zk#3W}K3=LK+NZqlHI+Zo%}#Gbw}cXSZaO{BK)Su6^9RxYasD9bwu{am{Otel^9M;6 z*xe&M2IH~9?Ne0#CSDoOnRHySJ{9$bJ+LwqA3TOpb?-XRzrT=f%Uef0I{yGtoI4ou zITIT@od3ojyy{ftbups-)4R?_q3^5d`#za&6l;aA<~-m&$r|y-+Zw2idn9WR+)b}5 zCF5Po9gbaeT)~ik>?@=>LYe!rC!^ti&Vji#Hy>TM6HSu~s0jQ>~ng7TC{6lLyo9t7Lhr zDraztLE~}Tf~izIt1+Xv^)|YUbNxGZ?cxR4LU$D?y5vM%N2F`au)+Igr=UTvN5lTt z5$QaHW$1F`GSJr=$Lp4tCZdH`wsOf|Qh8na<9HHQB#cPo7?mvWB5 z2K#8ImY%{cxf{UVF4@YYn@t5bHQe!;)kCRtNq4t#J+SVXiqCf_@j8VQZ@{Ru9u)tD zes3h>wQc?cZe`iwBM0gI9!STxkHhHk1=R9Xv5--Oa&tga?du+G@Jb%iAa{K1gFgnp8%-MUlnETPbaD}Wi-lhJ8>VKp= zu+R^d{ThVj4k}amBi+xqIZ$=yH)NS!#~W{gel+}(@&J8&t!z&qVtLTL{T4?j8 z`(?so^m)QX6bU`3eow};bI(V4^(uJr{b`g7_2$@uHFMZ+%hxjBOLwE$jviPu>=%_T z=}doZMc17?@U4PByv`}M2;CT+fV1Kj^19|5%aGXi1Z-6&1X2s3U$IY>oPlYoyas=thtB2jc_F z^?04Z)Q4#J6=m$Uk$!F`^eI@o{}!pWjXkC)(pKZPNeFObZqlV@MmxY{#sB= z)eGrX9j^kC%iPfCsJT=;5Th*|*J{}C$LbP;gPXzbPnP)8ZF-*s(gjYO0L?JO-3M&B z{_RG(W)A=tCy&6VLyl4TBVB3)glVToV8N|Q%ITZ#W#)iDHh)zEG$XcfP9Jl4-O89wVc3@-Y`>abKTgIwAGHx&E$>AZ z8|ml719cbc$6qpLcEm4W7NDoXUh{ddR)cr0Ruqhi2)6D;MU# z#)I_x8|jXkYr!OEbyy$xmN(wI{rYhGMSVEVnSQ<}<1HU&4%zXepkhKD70-2%s?g-h z3+pR8a|QN^iP-6U1#tcRg8Cjsx_8$X;$(?cp!57>(7#`iuK98_P7Q1W5fv{4d~Tt5 z1aA3^k@=A&yzy4`2IFg^E}-p$Dk#_9@R_ygHDz3F*RlRTo(o5@)^ODo`nid86HQcs z_wIDKBA(tSpLBPkHUO_#ad7d&l~nza?$^xCKy%V;=y<4+*X8}K1jB!s!n?leRDUMp z4YL0Vv=0ZsmxbZH@gge3p{=?%d|Dkwxza0|3|5}aWSvKhmPQB;9&sELU!<>J(w*Gn zid%4``uA<3x^m<^@EgSv-t?IprR*BXI@x_yxeIIGX7bDZ8U|#pK zxdDA}9E1y{>F*Gu63#G(Z9>>JO0i7U07JApF%zFZwx7Bmk#72VZ4`e!6W_VLkJp)( zHE_4Diq^gQl!E@{Amd$4OJ;<(({YW&99|c{sb2WZBM0Y=ETx`z$#^M}NH}9u4pyz* zNx5f7uQDC&A?%SjXC`N(HuAcWiR+r^a**!*Zy`7FQ6^sAGnu-MNauZ-6RsbfgBR!V zr`w#G3*L7mWA*EQsQSwaX=hvlXA0DcFE*r`g`ha+G-zb{fGP*+5@n{K=g#Rcxk-V_ zAL(8isB@Eavtiokk-W~=e=uv{oBNn_Rh|hO+woW7^JXQzO3VZ zOpe9<#{<&&zwkga%j=PS8GZjC-J6$Rxa?PD;4P$|?@1S!*T_w)C>LJ-md%@PyHzDu zuQmnj(5Amzk@39h{x)2lqzukZqT}tdINLBLB9PrYS=b}etVd-uo(7%02*QH+6@CoH&(?e#|xIsF& zphmc-D+gckKS@3Bl1`$rM>u_I0&bG1_aCL<>)V2P zox+<>>@qGFr&P;Q*Etz4tR=r;5YEMWcGC4sx?Z>S!eIuvxGY7Usu$9M|JtMBAMJrX z2MJrm@&u_L(il5u7tTRf5kIM<`xWU{vll@?NhcC0yHWj*bauxE!tn~T@Fc0VR6Ua} z;f^xgU88|Z<-~a78CrTnkAG{p{IPWdZ@Rsr_T9VITBvGHS>QNKj-RvR<@#~0GgT((}gRzDa2N}&6* zN9iW!$H-vz{fQ!W^Y@pW%F1;7!`F_g7t)ERJm9)uHXh#4MCFfk{?l}rhs)Ek?xG0L zKYyf~Zx5M}73p}qCcis2&W=%Co`qA2==nM_-g@=3!ldgtc-HVL>iQsEZ_Ib$8igF} zu=6NYe~)(`V04Q8*~P2!*jM+8(X7A}3~uh_b%)Nb<#POTu~}=9b^r2`@t&Ek;C{L0 zV(%l5c;oTa9~qCY990^#*bB-V1(lZT*|6~%oMA^O3^%0r0V17nks4REY%Z)ie3@!D z()F;G!bGV#u-LAL*QvD`!XW{Z;A8DVs$Y@unuCnsJeSEZt~!U;`Ab>CzF+Fl;Kf$T zz4b0-(!B!Mwt}?-0)dM(+!gsnkSP-y_s=p6S zWeofsz}|hfmQ|BeMxkSpvG$8>svM+i)$io46r|(j59#rWbhmFsZ{!mQwDy(sJhRZy(ktU<<3QUxFqcpMx6~H1j&o<6aHX3gK8h;vKK6xNTwW_kXk- znXY2&dBJ+u6uf!`-EO4&uS zDOb>Rh`I5>pZ#`t1N*=Ch4O#g7f2@zk`-=l%EjiA`>5-KbQ?wYw?xtXE#@EXOFF*$ z0_o<+$bvn`7UHXy%6QB1!9W*SPe{aVmsjz+l+LZdMk^M(cGLZ3XNU?Xp8rf>kSm%m zysn5%5;q79&(QOFr28;i5|=*BKwl*3@6M!CI4OaLct``I&3>@|{g-qfVoxIF{WZdX zjQPB7R-YG2>dit%zKOi9Y@s=N9<-e+(#oWquAd|;{>qyznzxS~?1;d6rDkENE&bh| zbhlK*Vaw_@Xn8jMzCb#ugW_<>?(?W&CH6SN%LsgBFC{oK2_pg`t-J98ywtEHa zr@`FS&P48TIRi({rN2XvZtm}WOzYao@Ta2{Z#*Z7BOt5E8}432e^(>pEqizp=x+>! zY210LUy<(D&Cj4!4!~W`UnpnE7zn3^tg;%k^{Bu``7hGXG{uf)VpMyOPXEjww0E-w zet4gLej(jqm*wd80}C9vQJXiO)eQr5{9!O=Hqg&kWW3I%Xh4uBOxocxYpGQW znVZ#7_~o-BLYb{?RJx=y7S&6Ks9v7@qh3h&r^N?PNRfq>y_>22N4o6ZnK-Vo7i@b- z{|8CB*Oy%J>S6LQb1D5iNxBE~rsB7v_E`UmZVweb1@>ZzD|@WzDVr(OhlR2h(4u1& zRbJ9P>NJA0Ypvm$kHe^Pkj^@OGVHChgyWe)UdL`Vg|Q7L@S8t<&I%dtu>im`CR%WQ z9)JEE_PW8M(<9-@>wQ$Z_92_t8(TfuU7c^(^^;}sSZ`l^(`JFN|F}!Knp;x%$pIJq zW5Ei*=bmreiSCSb!8=9!GV(b!uf^z!e*|W~W8QcpeCH!WPd9wfUzUoela$Z?HTPmy zAPH_r1;uj8Fx_s_8^_Gcn1F5Duz{8oZxjqwRRY6)4~R3F4X;;jJI{eZ}jN7J8m`D#aoW4 zM?au6huN4tXh^x!4Z-X*(Rn~`z9?`idc*Pdv(X^ptP|C*NSAP58mHGT;kuRlc-VKi*zLEb@gOC+k3y!F?DgygQNGeBwgQ`x5#=z73g&L&M>~1oArL z)j`7fQW-d;)tlE%9N`J>7u`lJTJ&=XnXd8nB(N!_4t>}k1^f3u(zzCG1p1+`(2}k6 z`&)fY8f&rDmrXL2;ZhF`L;6bTqJ6gnRQ^aO&ojP|PS?%^Y->uu)0WWV3+V!@E5O8a zu~@EnF>kti?OmXi+cBiKwwKqHpY(_9s`n^kKYbnxnQlT{CY)4ch?-U%pzd3a8+AD4 zgE35H+;aAfR|OiCkCDrV*;GA~?wC>;3Od__)UVU)WJve<&l+^FeLdQ9BbGN_Uh;A@ zH&Gs|%Q*5n>q#kSQm-tI5Islt?*~VH-m?ag4h_;a*V!OvG0+yP1ut3I^19$3v%nQ4 zL%7)Al-KoG1cM$8c^GWr!s~w71p}{f^6?59Xa14QJW@<2=5674G!|2|>QY z2Bzv#79QdEfHMrEzpok*?&t9geD~T$;my%DRDU6zf_FOpqI#b-I~>L9Hm(oEN2EF7 zOkMguNXE+o(a^|rcn%&v)Im5WZXeIb3%?YZ3NvMCjk?x#{4m8#` zhc9Q)^FE|=zcCq#e>H=?hopGp^?h=HR$}T3)dz zE&KA_3B4IY-;YR__$VH_+}n%tgUzXWjxr2lzqGh8M-|R9Pe%CRP3c>Z^u`B(jr9-gWM2!1g5si#%(qPQRRn+)Gx*;Zaxfq)q_@Tm=Y7f$dKR(VmPd9<7!REZ_ zs!g2$R-8$KcRr?4^+(3LezpKK*DZpZCB{+xg>=S0HUdH4T-bgwkBayG_5{X$EEas4 zc9OX~#vV_Yl8V-e_Q~wupGnskWsRRtRK`UUkMqVWxUPz`&kaU04`=Ykt6X~#S&F_b z`0NhlbszRELw$aF*!+MQuah!NL7stW_|+H*s@(=Q6tK1t0qmgc=gg>zW;AQ#ccIGU z7}&qOq!XR{fQG*<=a!bm^E!Cr1Zvm($<-d_cd1wRqgWd?pmLO+XC>2pFBrpB40_9+ zI+@Fx?zm&`>lgkQRR7{H?Q)F@*c*X|nU20zX8-XfG7>9eZcJ+q+?N$Z^?TAqZTTVWbRPq2);Un+Al(|jZg6trWPP60Imqru<>^#7Nn%V}Q>hDOf9jm$p+urH4OkB^L3eP=)N(o+K_N9gN=bb}@KqOJl*(4j)7+Y?gF>^t_S zzDa3I!y1ze91vgy)H|L~;{oY@ar5xm=2Kvlj2!A;FQgl+I1lf*WeCo6(f`?yuCXH) zm!@6?Y27Wn>1s|4!`&Ixz8y8O7}t4`e@_Zen~J)$vLh zb2#eAUMe2x%FrnqCZ#Hnl z+=MXH!+>&UHlAZA9@@p&Ut7(rOi{wMc7xHH5EtCPJxI4_hAiInK!}EC(*FUGE=^Gi zpD|Hpy<6ygQ%GlfPPD(7S_e`zqyKv+9jh&dN8dC>?}Pc{B~AH)n66zQ%-WN;99eRm zD8HZt{Jc)@*FvTnu91v>X^sJp=hNe#{7-$Mh5iHUgURj8#o2$s#cSKaq%e1?o=KN9 zd?b9CqzJi=5xnkzsXF{pFAsu@?0DVDu<`Kars1%?oqo?F)4l!83qIS=2=|N_#vAX; zO1@w-n%j0azh`UKdWr>l%qbMyMTXT}D4|knZ7hX*hLg1KT3zPp8XR z36AGf2+sUkQ^>XiA>&;B}ut}A+!neOta8BM*(EmCo z-6{8D!n>mRje7YYUU%B;qi|1z9A5X6ZVxhEfwuyPJ|$X@bjpi2UfpvC@J_l7&5sSE z+JlU@@~#XF+iQf^j{MCV&r@m$e1CZ)p6Wb`iWh0#!SsFbVes4e%+fz~NFpEvPWiM8 z^{*GwHDu=?tI$-8RxPL6mvlRAEn(s}ahNya1C>A0wM}qHbW*4_oc=B)2xe$b3Zo>zQ=MqCM%RiOze{cvs2mQUdI7qRdmU zNSa>9L&kF&FTjP_qoI-34&Hd_F&22x2_>k00`t0xof3Fwn3`z+Y!%$U9Ouq{VUGV= z+@R)opBbi(!D?q^ykNKm)xMaj`h_ z)BcS>bM-55n%fP6ynU$rk**}-EBLG=56|I=ye>?41RQGI1$@jV@w&NVwcuXa;jrmD z{r@1D?xb&~u*ba}aJ9pzczXn2*me4zthdx&=D^G(RDNj-vay-R>*9;acDNjEikWS^zW9#y<*4W`9U0%`^eykN`Aqjw)GWB2_MEAb3>2i8UlJ_nqu(z{_x0mUzy+wn`FiyKgQR<}lncZp z_kiY~^!zF54q0pgYsXK3XaCaQnMmj9u^S|<)P`b(Ca{0Mw;4TxW7#v-JL`cp*D(*z zkNVB5-f)(>j!5TmKLUH~X%w!%@R-+asGNhZ8w=6c$WC6@;p>fcom|n_Gy;HI}_*LI3`;_oz1a&T6fo zcH2-cB~=XD#|%U1Z|Uc8(n)rGN0V>6;P}eZR6ihH`S47%SKc0fUa3g62k9EZTNo9u zt0;cPTweEnhrO^%rvaILkLPuLm&AdU=5TE9LeC43>F)De0p?xR$A3MIsd($eN?5zf zAof<)DrWbPZ18M&C_c53-Y1ZBq4#S+&?eD&K)xHPdLf$&b9FcU_f@n_;v%9+Sxws4$< zEcADyzdMuejGhY&`z8q|ZCp$BE7EQ0bAzkJYQf9p^m7>L_A2|rq(SS!wgP_Fd(R)P z*Lep#Z3=nQ{j@U_woYCLn!eEMD26}Z$yR%x5j;Y2tV&KU*Z3n0W*>Y*wFl`2)hcj% z2c*Fii%ed3Pr6vBZZZcp%>K#i61pOQ+2nNi+}({DH^_908j^t0%Y`s*cqDJU7t8@* za6blKaLlLNmfXke;TL8C+xCa-(&lnvp*5q1qpA=5@uV_Ob5)x}=fT{};f-hOvyU60YQU*|pj~DDp9YCp z{w$bQ%9J0C#tX)_qU0Op!v5tTo#KN4?5B4GO_ZdsOVUj$bi$V=jl!e+=>N}2w?778 zpNe7lT_3%F3F)MIt?(NQDZFn7y?*kE!!<^%*^3?QRmv3aaR-Zg7hqPgm}+0r?b+`O zS{jZZ!>~ANJRqGx^HOm4YZ6{7H<&jbE4dt$shcCi)%5%>8L#l{O7KP|0@q~K^2XB` zwiDdVD@Mhtu~hzSW)?Kex$4V`T}@%UdNtvOxzq7L$yVz6AYDiMIQTom7C(M^nAhdB z8Ng$+&2YWM94dcgyt>;~uzZvr{xonluM6Jp0{;}L;5Ax1dDC5JEjpW1QW1L{c}h7a zxlK$%r!V``XbH1>$6q97bstTtwxQ~UbT&VqAmdmM{444ll|RzSr(Q4Y~pAr|dN zajTKu7lL#@9_Iq_+sSy+Ki2D!PWWXnXd62pzurOrzfZclS8bpuI}&HTrO!VnorjV# zyu8N^FR|9A{=*>MkD1EQN75Brm|URRmvmKPs_@Gk7u@-QK6m8m%R5Y^S`d46Vm6}( zlbA1e({W_$Y|wwaBHgaE0^v%@5PW~}H(s~!zxK%e$NnH>ycbTzz;2NbKDz8XZ@de4 z+Q5MPNWADhU4Q-uPcecIv)IIxc*ZLC3QC+4jth)ZsD4VitMe+6i`7E>R>go?M@G8S zdfSlr`+3-+kG>C*u1_%*4X;YZqa`O$46`%^m+@@$-WE2H~+i?6XlDj^_`@fDCLF~HF|)aXy3^G{f~6(&&|Mx z7R$iBw)FF^(U?cQ4&&Lct0i28xpWw|e2_lREaNV?~C-_fw|9(cgb3ab7{=lJ&x zO1BTkNlRsg{qsk%V<_ zYX7ls59#vUAeY{riHl|EeN(zSAF}F|vsjJq(;3g|ZZtV26gPezNcB_FIsDfi@&9NK z(zRxuM8A?FaF6k7s$NJp-G4iZe4L0gj?wK#x}Cf4aMPMI@cR;aJre15OCWC4_;j2$ z&W}oW(*$qfnR)tklD_L%D{cx*V@>fFDMXFqr1Lys4d0y6$NIz6sD4ViokLuqaQj;n zGyDRtTWaPG_Xoy__L!o-_mJ_xWN&DdBaTWUWnuq*Pdcxq0dUB~4V>+930{|89RxRw zY~UjO=>MZ;J6&PDF8Z+V949lwgA#;F-t(|+5&gVDI^CvB;m4~H*tq05RnMfmp;aop zG;$uUyTKoCsku3L@IV(|6YV+Nzr19;u6q@rxOE)Hcj(@CLRp?OuqR{J29AgDGFU-Wu9S^F!WV|UCgkbsDG@Re3 zL&Zz!kYF}!3}D~fQe_7kB%{AkY1niWeg7rh;uXVC-JndotU->dKhkNQ{LJ-D$ie!C z+o<~t=|bKXaT`SSvS-Lhs$NL9tN62Um1Z`UPHv#ugLJR$t-$?+Of0jTu9qj15w4S59@k*RSn9WZz@vR(sohq5G?X}Os42^7DkVn@`$&|@VTTvi;?V}01F#2-C zQBk_f9vz|5C0$EH2&4Nr6PuRP>5^_5(;{5rlY`f2I8ptNbgfEV!u@kI@HBlBs{fJB zbM_!`yC@q^dNG4)UkBxnf=1xS+KUU>b+s#zjq5yYe1ZNihIAz#O3+cYdD!t8y>9^N zBt-rGkEq`>|LFImJF@Z<_sA#*KWy7f)gS2+@4apCuSmytaTwJPPX0f}?mL{z?|&RP zk|K%Fpwd!NX({7%zs`x0vO-1(4HA)=y+c%r_LR{cN;~fRoQek0o@nnqw5fit_xJby zT-W({`rg;~|Ht(_^FH@}9*F}Nv(Sw{baDi5JNKouab7&_I~Dc|>yG*9qE2n@VWglqi&_Bf09sB8q#M?QZ z`W=POuUNPDXFp<05^3=54A6h9)BLypvfJoC)=eyaQZZ&z9My4x>(KKscP_lil~>y< zg{V_+*s$mVj@m>a*5RE{tJO9fCa>zdxk zp6{#9r)dVeMcsY#4n##VpN{Y*qOQd9u;BYBiK;}v{$tDSw6aWkyIlhH35EUl;ZJ{# zo^|Hmq^I(z&lxheXdc~tZ8T|p9%Nn8;br9Z)KKa$W3H%sFk~4CdLKZ)J8c(r11wC) z`_Iwzp57!;7x=n8S-ByBP7P@<>eh*@L&-YJxDooEe7BNFJ|JNu|6Z2IuvTRmn18Ih z@=KfBD9cAypgtU|FRU}{u|;b2c_AIO1Rh7M>p|p*f=#fah1N^B+5ms3r2! zu<gt4nR{X6#1DGq%j?uFA-#Q~>Ap|vz__ul@M%Yq=02MS zk9`LEk9A_>%Q~_Aj;s^QPslo#-j}4ByBEr?U*NoF-61?0WyQ>=SGpV#ZHL&re><|` zf6g=WFQtmE&#b#N?T}FQG>O`bg6k>k7MMxQRs3S9^CkFSAnV>PTF#|4rqK2`;r<`2 z`_K8vwT<%;>#Vo-K|bZN)NZT^X}xZ+uDLD?S$$bZ6>1NG`+%1t9`HdY=X1+^7IP(w z>&dNBYiwut8pLB=Wpgs=GAax=eT44~SQlA_g-bIeczZ`9@EneHTh_ebx6Gc6<2Str zC>4;`mr8Q<3+MOPg7dp`vBJ6T;C7SW7;Dq3#oQ*Zq3L>7s7aYxh* zDVl>nFS#vb{(d6r?ljHC6JEa&bQ^B~_xHPl)b-j|^TliO_!k+9R{5;pPj5WiEU(DJyDD(!0{)roJHhQgd*GGZ_kiP#b$JG|{~^X)M=yRY2gf<<>K_K< zufa!T?{d13*6TCt924WP!95RTlAR}7?n)Aer*F1G7JYAvy7$-P@sUxcs8{F1f>^mj zdne$6rvp%RzsJCt?jK&hvg>Eb%#mLuy$+8*mz%d+2Zk5I{0c`Drhh3`aE&Nzdv-u8pdZu+hIL@4(=%b2AMlu z2j_(ouj07HM_l=-_crnB9TpLPL)rIhmluF`ur6PxFKL=KgTB@MA?k$iOTyDZ3ADu9 zK-3MCe=F7%pu@y1MUHrt!2f?)r@N?>tc~r; zz1kH9)^XMyomfJCW@YjA8{l`Kz8x=d8M7C2r}ht)C{1^!M{l&CSeg&|nRV?aTGPYE z+PLKj9ADNQ`JzQFjwoXF1%1IhW!*lBA9*m+5HH9YC+a?R9Zb&L)Wt!SlYqMvww{|c z%aI>&WScCH-T%+SY|};_X4VZ&DivN7hSS}FC7`{mJF>#X{JShKan?EbeGcnJ-mv8= zMo*%NfBT8n@5=S1Tv~^rv@jHjxAN0(MC*5QZ>lu2esdrF zl!li&P_J4|(Q+$CO-GAQ*-_g&@PDC8f7kNe;;JR7r}s+Q?J&juw2GfruyPC`Qs?_>TcLx#(6!Mh12*OXo^34pTgF!$|w-q*X~3P!KonL z*h6discNQ@P4_c+pQ{?w#nT#x6=#XM_nr2T&cRdhPyAifUDjAn3N8oZXUP$wZi>w^ z((*hQkLw~{Zg<%=li#^0{O({o5O4TTCF!1~2NJ!LVO*l1OP_|jNxShjpr2WXZg-;< zUuJU)E<1=iuj+P`J8vo-J=9Co4O#S@Ost)PW;FSTy0wq1$vzil6e7$6ZpS3VS0D-R zG=2kLeoO-=s1K)d8$Y1d=U>)on`q%X?}yTaBX32W!{mPWNtO&- zI{dz!b;sUWA!m=aSJBuy zMcSw1cv1KHv=&bCACF9r+W^<&nh8Hb#fG0^R=}5kIf*m^uM?H4uw2%yJgbEZUyMiB z_ld_-`Y{w&_0S=M4w#9Sdq_6Ev9j@1Xk&cYa>d4%b@O_L;{5CYQnEW2%mWYOZ2smL zJATgcZM@38u=oN0C@e4cm;=kdjnllV^V=lFg4 zJ8f#aW-2|R87o@9k}Vokh5t_8TN;9Lk82VU2>#?CvWDxp^NV^Kd)Kh_!A&PIlsj&x;zEtzpRZu@R zp8B*+=yGQVGFsN2*5@tO^`M(jx_>U2;vXpLLT<|A#**H2ueT0xZWZ}_J3U*zcSr*t zRo<0$^PfNq_OA!^W8E6-FJ#9eA6n9^NLtsAb?@w(h=$D!+EI}cjn{9|D^llVOHJ?8 zi8>4ZB5C*$NPCi8Fm7zQ+hzHnqLhv34i`PpUghl@`9bdE`JHF(^CSEBq6kJjRDAXv6nvtg{$cL;~F%X-C~(qU9beEhJ-P`J}ynwi9i~v4v|$ zZQXqO^x-1XdOX;2XH8l_DyBNnCU5wC@t%#*e091LU!1NaY)<_tM6Ul!3b(-PKh|lR z|CMU|kdO@pakO>0tebgs3|f66ls;U&3AC4WPZejP9?6}kirG}rct-OR@PwY($Fdv{FL-Ug} zK|iz3I_VG>eJg+})!z|yj#3rrsOVVwN)iQ}=?7Qd_q;WK;eC6-UZ+sF>{2hiaw-Y5 zgLUmcb&v)d+j0%JQbb+nomo<%|CW2aOfOMLK2q;5DPSiMrb56=dtc8Myz? zqoVHX?vdogt9dxU0_JgG>t|FxltdN=)LF^$Y9Ds?SK(-<#oRYa>vpVWV(Ba;yRDER` zxKCl-*Y}7n@%Tmb3SNMCeU?@7`v*Dl3TG~Go3)xqXvj5kMPiLxALp!782*~j-e<|_ zarUC_c<4hia>Y@B{_qoZLku4h)7&z_qnp2|YySFxG;Tj3>{f+tiq{0`*$3Vgla`L+ zzgm|{a~|kY%NJ8XJl4$_Y=Wj$jG=~6BSoF?vJyFdpGWIF2B6mc!p6H=c@Y(E^P_{# zIEy;nh4;~}ha8=U;rmrK-ttM$k<0JVbmAm6(fakrYB<%!FAnjfq7tFhcgLtfaWmQ1xe(p!@ z{N{){=_E%|G+BYDWyOlRo0ay2lz$bTJP~(U*UZtxa4*5#1%7|EJpVTT&R6!IO-?Ci zdZ3DAMbD$9uMNR`X5I7MTS=5>1YI7r9o*-!?kO2X_I2~8xtZ5U>*JSorNa>kBU78o zh1>h#JYeHl&wfgdUA9G9vwcP5)s5C83XPLEtNV$-Ey*wEDwXZ|iu6)WTlUQC$+~vf z(P^xxTl#z-IlrwlHvIsfBeC&LXY3<;^3zf8_VBo5UD3`Rq_f&JG_sqgXt`p?B^xht zRX%y>)|HGXgYQjQxAVR~Q3?1iy|^R>lsn&bps>IHLW!o*Hr}wX2mMmwhC0oiL|cz9 z>jZ7t|L3!Api=|keGluJlpRQ@O%BN&5iT0<%#jdj=+8nlrH#BUY`ixvZYcd_jj&1u z-oKT+NaORO4oKD<{K`-NsEHB{V{sj_1@oSD3#zq|^4KIi=jd|qy#VW+_l!W_`zGQN zzjNR|g>^^vXQ7|hqj74vDp(I#r&)FpotYDW>%QoM72#ibFVZe(R1>c3C6fAX6gFz@H`?%d?J zAI$TsmT|_ie~xbtTFTG5_a0ogv+nrlBs%4Zw{%*LDwuz)^Ob#(;deBS(0-v{{;{q> zDT?;2%qPR2UIxbp>#pt$pxIWH#;hbin^O_x@g?RL@eKbBHz|VgWu5a$2`*Z#LmT7^LAk8Eq&^8>A90XuHtHxE z??KPWc(q3tI(GLm(Rhm0?Q$;V%BVlQ%t*3*T?C zE@5yFv}l|iJz1cQTc2lGH|1I;Qo9vMd9oFWInUE&=CT<-djZyQM$3unlPLP6&rvX+S+{*$7KuC}dv@wxC0ef1&G{sAqwKv) z415m9#?!R(Ah}!OsKX$*?-J`;H0aOsF{T?ya!uxRmn$A*hK<-=j5 z=GX#yIdmCt4+B1NXEai|9%pt+dX2Nf585@L^W8p^*6RlAjErn?XAdPjEN6?TJ09RjqXUHZ%@d}c!cO3R)E+}om++~u3@e6nX2w{mk=dg$CR z>7&(7U_D^n)FJZpki8>Ky|qd--m?0?%3xWyZ7Sz=H3j#3kKK5zU{=olB;I0Qa# zceTso1Lwb!eA3J31MhT`DAbwZU|qPru+H}QK3r<&qUpi(OUS3NjtpGy}xMv9@S08^6}cZ zzk?fy7vXZ3e>^5#BJI0^Uo)>KQXXTERyDx;Ro3-rHxP|n<%-;YM}u-%*L+3}zjPfb zENYn{>K@j1!dv>BkQSS|in@m9+Bo&WbU~^$6}U@Nb-9&))<}LzZgT6~ACu{KRjBdP zaiT8GA(iMon@XKtD$&;C%f`dw+K~p2dGyY{i=h8lH##{8o$BzBFVKe1FKeJBhoB|C>b)y=uCW^Y4m*+{t%=t9+3X+P&iwG$ral99GKXF<#Ufk); zWOmmGIxGU_|NHe#k^iaVBI%-ZkAGe=64lTI?D7omE5o|gs>W!>_XOOm5Ay)AE<36K zt-cX~M_SI3~ve-m&enhTycvF@DZOjNBIjrokBqU}vNACI!P zhT*EzNYVOLEx3;2=1#@x9d3enlgIZFj%`adAH7Dl@8;coBx{cz?UrB+)*;qizdDO3 zUGGE2W=4y;g(-tb!;4a~`$w>-+qT(A$ea{SKXq9mTEEK7S!uR5Axe*pu$iV4dxO99m=oi*4{j`+?ANRrSr&Wr&$<3R| zH~&faT@3s$OUZq(^qga+WYNLZT!LUib<9W8=3poAJco7tr*@#ZF)noAu5qaK`p3Ep z3SG#mwF%Th@dr3AS$8}xL%P&y9#u%c0ouX3q~B#yH2oaO`x*rLnRR`;k3%~OB~(ur zKCfflqK2uc?5~8Lx}+}}uhYH>xUTq?)aD_)-c=QbNmZ_o;2!?jAkoMs#G!C9HY@%E z+QGU*qgIkNKL+85Gh;xxtSfL`L8{G$;$wDjzOb%oZ6`_9Pj{>tt}GhwQdpRD(%K2Q zAaS6mOZs(PdTp*PRvp$8xWjeDoc&rae#pyFTwFo~37i~Dv-9VJ@nxNFp)pxqmOu~b zT8cVsJe<^JCeWX8Tcxe%6&tVii#6XUNufulZx(gIs>>?kWp15puS~Ic!-{uEe>f-8 z0<&$R@y5QmCM{o-Ojnlu0qeN2aF<)P)sx?E}-58Bf&giU8P$o%9riq zo}K3}>R#Vb#TV@?>B>omL|uV*cWm?5j<%>)f%dZHRu}fd%UrGL`AjtsFXP4?{(!p& z&)pu)nK~aKzNvn+*T6hc7k%R($sX=SYtB}Qx=VNe2z{4(Q1jmK{)jDip_?G|F_i5) zH_%-)-kXq(!Voo2`t<~SzQ)GWSeztPAbvFR@DtH^Yro}6Gt`6Wl1FENlZ!mV?d&;? zztu8^JG{f$?SC{o_6;L-yQE(ta$M&#W`pxE!VKT1W$@4FK^rJ2vs*OFx^hzI~&@PGJV^ zzb+a*dixyo3+qh$oTy^vB9wap_6zI2&UT`^)iP00fVjImMS~7mIYDX{4BwNm@zOT5 zqn$!B(FSAqykvSrDxWp1lyg3Ni7U4*5@yTxPgd><_fKY>!kqO&twjpnpqT;AgRHwa zQV*G&48tdXZUp_px{}<_$k)vQS06lzTCYQ_d$jZm(n@r}LL_{i!@Bj~dgI*@=D1)j z{0^RV%j9LxIWL>x0c$pc@g1kw$gN2n$jN17N(K$`r=hPNpiRrmz&tNTnwD)(aO@LPJK^=k_DL3zb- zRPE{*(fTd@l!+`OgX!j=6{7L#tCyo8MGL9ocX(Vr?|+@k?d{43*&A`EbiIW5OjBy{ z23{Yq?x2DudbLNBzG$=u>k#WgLrT#l5=eh!!}AgAIu<-fS1)`0ZJ9ry&<92kS&-C1=YP<&+U)D|bRG}+m z?^bI%BhvbKV_jO-N8&TkgKkfc7j=f#c_i~q1l=8?A?mcOj7j#91ln%(1kw75UFXOb zZsopbPUls7b>hs_^2qHU5!CmMIw+TQj!qV2uxvlqhD#Drccjx;GI@Ujm4;e?`myl} z6?j3#Cy55{eF)|=>uy<>330M_%7ae8Jl3pBlwF6#{V&&H2MfDPgMVjK1d<&7gOH1E zZ*ak*QsIBhtXprp4c!#N@WY+YLH$^FJp3r)ob~bQe#61MXWi$eSI~~wuK2YC{^!rS zX}$yS>ID<=!4{aeLizWPipV=tCGNkk@N(A1Nd0R9o~XVKoIhAsNb`{0)<7&p>%h3N zE?{l}`g1n|n*=Tf%8P7#&@_etX%_s{-n zg`4k7dd=13sx~Llg=U>VKeKMz3HAk@7#1>D%8fqRwlkK6Y&SywDzBJ?(;{?^uF)z`7lAL-DnfQvCduIT#Pt*&j5; z^*X)qK*e36@jhKN#mzeg;xDJuMctrZQv7aIH*EZUJ8&~!RB#dlFaBxuUdgHzqljT@ z46QRBPg?gg>lXey9+%q~57vqGAL|Zy9OgpiCD4cGuxPmkjjN?&WqYfI?{EeEcgtlj z*M6NFf5G#lq)<{xG}q0dw>qx?@mP06eJ!ajmhB<6=^L2OtV_GKjI2F2pU&HvD;n?5 z{!wIpQVbpF1pAMT_n-M((?^MPd?VSS>c*>{EUDP{ zH%B_8eG2WO4$m{Jn|CEo8m*T?!^sHIc*^^$rE6X#(NSgayLvX>%j(`J+a-aH>-|(T zUbpiGsCq>x-R!Uxw3m$+l$(J*JzPjFj>7W-5vasTbvhsAbiCqOx);&RkE4CuVnMmA z`&jNq7Tk!XCQf&S*8R*nBf}`kq3R@h%1Q~$d)EEa&x2+C+_jBs?G<^ogMQbOmS!>zwLiNJCCEbyxl@ z>LLeqA$BSW)G7J(AVW3hdi3D%(@=Xp;nKuKk7?cOf9Y1C?7Z>Qv*UwktBm4PrOYSGou$}O|3+t?&zK}+T z#8b_#aK8@L4c2XvPVJRMLyh5nEUbIl(+qtIOQ7@WoJ8waRW3z`bz*6q9~=)ho=t2T za#CDCM=0iiabumS!(pT?KZ`b1!}BWZ-kF|2Mr-}4aDEYpck}U1$*674{4otJezNTq z5;$lcE!p=7w1aioR3P&{&!ZhT!RH68JLXVKntDgj6yto+c>f$9^|Iq*dKu7T#)0fKs;c=VNo~c&ulcM z+d^EkLn`WeRVSd89YgVDlT1+;(Jl>HI)~xm2f{?1iCZ4ZT0I^=h=A`+Hzlb`>y~72 z!QEGLA9VJUZA*i&vF!{Hk99j&m5_u{)A4%sMp38ycLOn??zkoIsi=Em^-<9N9F1d7 zgp0b5UGfEk9TE7K&Q{=#&HOD{m+Zuw|Musmk?)z1$04+iKtU= zR3f*f^XageMAT_K%rP}-N}&?y!q#bqg?Yu`pjy-XgsBN4QO?r09rX} zH{W`E|9LNYInI?|p5n)+9w-*9jwVxEZP+iYbKJR{zp*8e&igqK^b6}$W@Jbwx^E-;hi`M#q##}yxY@A`<05)Dw zo&uhqV~Y=Hz~=(hy&iJau6`W3xsW>)m`In5A0%`-2#-tFy+{b5H+pR)_r6aft^1jE z^}gNcQe}IZdiouhf2^C67$xK{G2xUK!~f)1cOW7JZ`>Y+w%4u(^M!SReboV@`e9eWoGD+i|&NXwrWc&7=IHe8R!MewX7fNqeCeh8(H8T+{_tLUHs9rse3g+&xu)0o_Nv?a=cww?#9>*zn9 z46T`kj~8D9?O>hd?;b+_?EbiUAN5R|Ko|#p7zMLAk+`KJmsnqqzNbnS2Ir z5NyVjl6Zqqa2&Dj)Hq)FV|swhnIgPqYd)9(1tDL5Xi`!eqdTHntYyR^W0 zm8CO+yZyn5e|I>CmsidsE}cDTl-*-cF6$1iT}Jd>LTOL0xuWhK%^<5yV(2^XFmRq` z3-a4fmMZw3t;)FkSz$@Y5++L%CxO=}O_SDPw+wsCsJqoqgr zV;ASsQ5P$Ob^K{jH=$6rH+xPXx!eohceC+6S=i9e8rmp39NvGhPRm_N|60}&1Ai4T z4_G(v79p17%TVRq8KQ2}<6}e;uuS2Zsx=cm7WK}%XuXYf1KVNN<*2W}JGtW<8 zy=UX~eE&!4mzzZM*G7uE_U=mP-0MV|DF^fBvGL3|<)N>3ku)%}J*eM+uamjs;nVn? z>3MvReihld&ztVv1@oY>?z>hV8L93`ubIK)h;?G~o^|7^hLhR-L+B65J}^&NXEr5B zkXT03^|jfeuE0`Tcv}!fb86QB_anE8b2{n7YX>dk<*&TpxTA5DtMV0f6aGD)A8X@$ z&c^%v@A=oMjq@+-PK*sjMz3Y(={;GJ*7J&Ww=QQPH`#tg<)v`HBGz>aZ$!1f=hErc za9`E^Jt{eicxPUcvVoud&WKZNj-b`LMWDT`+wm<}dhWXHKf|JfqOLG76m@5)OM zGiaJVd@jYhnT|SSwxd0jeuw8v)=gc|gP44=qp#M8x5Gr__!!^qI2UO?ogXX77o7*J z6Wi~Jb?X~dq}MLW_Mf)i0mg%MeVbI!fwFLVx^@HTXV!JP8j7wwl@$kFK*MSL0IL%I?9)<# z7KhVY?j@pb^u#o7*u0@MO$YAR!N!Z8{6L!YSC$`S4gv9AwCv`NuX5zAZMX67q-Nyx zOGnycG5jBvbywHeal_Fh8vLmr=x5e_){f#nrwyf%im-mH3zgL`;r~#-I12@2t?5rY zbZ-!CM^XDhNPSoYt)=k&G+XZA*iA^uGLZh=xE#duIn|GUls}%=NZ83=IAnz;klV=P z_H5kx{KmT6i&}W2lLhiCg7+z`EBibYE6mm*Qx2Mm#;g7%JBAkNVyi1RkyyD88pq+x z=dwKn+I19l2+hLhE;UH~mEQp;X;Kuf?cF2UGW|Jkd$gN>(V{Dx=^OXW9v&JlG^*B+6p)mu?Ukh`esoVbxBnRF(LQ{nR_w%l*FOUVn} zQRIb7glN363A2U%-s6#Brv%{aHH&yF?_1`*r)2ZVJFV%r8NKnfXn4KLI>TaXYUf{r zx-N$2OV;)6Y))tY(!oxKJ4oyCW!(WyL%REo0hYcwAnKOn4xxwNjKq7ktp|=Ybmfh` zEcl-OJb$r^Jyufbju&QJ2G`@P%d)k{4kx-{gU#a3W1$N!3vQ3^$(~cTZU-CBQey`8 zEm6QbX4in{KCByp{Bc#pBeblIydSJH(o4i?@6&}MHGR?ceoITlue6#g{>&O8TEB&x z6LI%r#nN?W;rF&|xmG&K_-y?_>8{=fq^;Y#)K^d1E6=ukc2zrmZ>Sxe4YU z>-O!D(3*FHsh6s$XuQFuo#;6SH(FX42F8PpXJDXAyI*jlK3mR+I(n%itvF~$k2t{Z zY1nwT>W-2#Km2IY*rllTJW%_p!S68d#jTVJiIH^4k}&S8sWqo{>W~nYvk+Tc zh55r+r&nLXJ0wS7y&8C3!n(UbcBt~j0(`j%u0yQLy5Wo_)Gxq#J>d7xtm_(*hIYS- zz&BS|fcCPk=xip+8SabChTaf$<3?toS2O&v{04Ym#>SgAZW-G0I}qo&fZC+n{y;cjccg7rCQi5tHs@~EVwD3f0| zM4lY$>xglt1~^}`Zg{1NVEb$VE*W_owQeu#W^9p@nqTRN1v9u$A?w_iIiTq_@p#7e zP|yz6J?eT9-QUm-Uk`G${Eq=0g^>fAiHfQteW6wa;{BI9^`7*$^r7eJa8Vb#;wqWZ zOP1g9`D9VIDek#&c`-*jo;3vXg)Mh;qB-(TolFx(_7HW8m!_k}%UU$%iWP7#r-t)W z5^VX76FUjNKU!mnydECW59T*xoq@Uy);H{p^RM&-$0h3y+1O$2rw2*s4__Yl&nioom&00`D*4b>mEu7B_z(G0JiCDZd2d<*o5i@CHuQbtk zQ)@KvwQC(|&_g{iZfv=)L#bi2zxN%&`PL6|p+b-@D`aMgpOXyxe* zqV;=i)D9^hmA%WJb4b*sD|bToUBmEKjbc$ZzE=e~& z=BKHOx93(lZI+PzN4fs~*}|Rb`BYd~MOx1T)}6UFUux^2M27`=fceL|Y_~#b{%Ls{ zS_ShNv2MWVGHIl#0v&B5?vx(?Lf7Bf(}6$tf_`D+b>3-$?|NuazU3@%)2ozt+u<|# zoeB53-4EWQA%Cu#8!Uj&BUtyGbip^8JCUw!aVTRAu z6r)&=UZU=?I>vFk^H9HuI->4o;dnfGe^+v4)j&}fu+$EZ)qO0b&fS5#`7*7dhgN&8 z@y{(TIrBYq?pSy>UeukZ>BMu%J*nAO_+1qn zPx5@FFm7v>(5)Ko1IW6TdUt7nu(m?FEk(3k6}f?^|EMV8vm{Z}9ljt%r$%K9KU(5N z-Mxbe=>CX&X<$MOaL&2yr6xr&6@S%>_>M#NpxE0Oq;D{W&r4W01*y`R$3|d_r|@|M>)!fzpe{!G zxOac}UgJ{nV}42>N51LG3GVakmBd!Ao&;9G@A_C*^>IGwxio~HSBK|m*7cpdPe`jA zK%cCc0LGVf?q;RPZ;c+cGBXx+!*2^{=&@!JdvuDZ`*7$x(sp;IIxZW*c}6b!E*~21 z$~P7s=L%E5lA>QabZBvZ5RY~9>MqExIUT9xsk@@_R+d(g0de!_<|Brpu2R;2I1Tt@ITZn}c6@xzUT*yjH=N&GEHy1x2JK~C zmxb;Fu3tnIC`22{MpWx2-P%h=<%IA})l_B)l_cb6M>&zbYCf^4~(~1h%&#b## z|4gu2=12SZKOn7-bJls+$Cf#TOk^=!_FuqVdK}FvbsM$9d%7cA_q13c?3vxrbCw z!{;w-x$C=lNyPYjU>-E1#XNWAu;k{ST)z5Z1Nm6tO!oGj1XOrY{Q-ZXio~MSGBF z{c7U+2+?OaYPe$K1KLH@N==(quKAN;N9L@y6C~#o2Yl>;6=l zcw7#|bG!MFlOJNu+qbNgrRU#(ekV=l6-UG82dvXCszGiBwzO!=TQF{{^9X&9BEwg3 z39{#zt^0*_vvb?y?KP@&>~}bBtW%rR4R3NDLr+}249ZPRyv^x%wdY@I=W#>7Wl4kg z=8|?H@cxK(+jhF4YZV8`@YygABmP2Bq!jrr?AL#tPSa=GRQ+`$|#^To%C`O`%cP~YnZD&jMu^!blc&oS@3$2b^olpV`b}ZbQ|j~>vq*l#%W2~ zILO@%^z+tlmeM4Phzhs;HvGVrO7!RJJX)jkv z%k0OZj)cEKO&@*fagSc2^^>2dh7}B)>Bm6$9G$J-sbQKpe4iz~TLiCPSjW5d#0@*F z=}LKXP`}PSR`7G8HglIf9�OY3PQ|9wL8W9#~&kcYoYkG`piaopbz^XuQZ98`0TI zZnFLEUWmGCt81u_DHH{
TRx)BEo3q0x@Hdbw0kY;%x|Pgx2*J~ z*QR_Ibw#n6(%cR+>7BH%z$J%W=k7hR=WpCy!r9B>ZI;Em+D1Iq{a@n^c<+E>)WRv> z2;cv*@mh+*k?r7F)MVXt(fS!h%hp}Rh4j}ZxbCv?#-JtWMzkx9Px~esPk-hU^o)AY zfT4M$^*Z!tasZ!scfW+}Qx&+gg(NsU6z_XANYwTJ_kE~B8}CEec(La4MDAu1me*_s z?_F5ezrU_@!NLf<(69uwgLMIk7m&l#K{$pR1dcb>eK;nEr7D_uh%dbEH2JlkJDKFp zU%ND)d+o889Oc4k!$U3bT`B7VT{e^M_k-!i__?58SZ7z1&fmG8M90=BfOfEMT&^Ae zSC(h-O!X%4T#t3n?K@V)ol2xe>-vkv+u8ZL)Jm3Dw|p_otE=t2ic>an=M8-VI9G=< zQqeDr&K?m2#)EaE^wLOA)ku17HwNXhuGuJp^sJ9S}H*n<@TH#UVEp;6Pi;vrd$t#bN&e8Dy57yo38_2zjGNTt4j0D#Qtot@A z6K#BxC0(}$-Y>B3xGwTrH3yy(bjxMux$l%ovynPTJJPjSU&?}wrVE0jPy zqN&WkP8`p#Gn~c+{aHZmWZ#%uU1VdLcaacX_*|ZK`?opK2eR|R94-UQ zXVzIID$wv#F4XPC98q`OsD{M+_N0?n!{_&Gyg_m$viw{TG++(<&pO~obA_~GBCi#1 z%GI8qPyfagkhEbDpj_7dr@gd|_Oi~k$cdgcZAbec*k0C6qxMvB#XfROvstvas97yy{=0~rzcbOI=H^D?mu~4 zyS0(W^<$!u#9qx*GJ5cEe)nr7dis+c9@udus2}UzXeiO&aSph0-ZD|Qv+pjlZ;ds+ zmJW|MHeR^uMl$hf5ZL+;$;hVknN9QYPwDhDHiai$d_(wLEb1UN7Oo{hfH1 zV>TQo%eyM+>qfKs!Mv-iOX|>(7Du?!g4mv-@eGRE(Vh;T^kQcotOsno5ig&S4n=-6 z#^VX!`n=D&Ny%m8Xpb;Ds z`LDovpLOLL5w!1;p2)O*m1w+8{ln?kODoZeucLvx9e9$Pw0|BKcFRt(HDC_C@U#Kx zY=qZ!tlQ@5MV-yk(X0c{KtHoCs&jv;U)LKyJ^w+}JzAqiUo3aQ-#Qh5dBw&XFs>v0 z)?+&E`7{g6X9wji+*wsuK6^}yL@eJh>t>k0Cl)52RC!7is2}To$mNk2e;B0XnJUW{snbTjNY=d^V?k2>M$`EL5>T#&3C}e*yYO;*-6Zaj8%dc@D2+OUM4eCL zGGcaUK3z^=UOzV8?WdzicuWip-T?FKvF<bgx|m5-T^T-$zs!?oNLUgZZ>vPhI2w`Mz$~t3AfDlEF0Lf;36fcCPE_Er=^8dB(T4>i!wtn2n~|4rNk`;T>V=DH%M-tly- zktygu*7YdxKuNA~G)I8_%(|Zb`N&!?iW*(H2-d4*qt0>`(_Q(4tFD<>`aL9jV!i1= z8VBY9>!$b~C%x}@)6wtYd6ji&-bQk4Rw%974UZ4jXpN3+s~qt>48q>c_f!|IRC+jd{ho${9nYs>#Xpe#J#F4_N2_%^c}c{c%R3* zy2<%Szi$-%bEyu@gUw9|lAWVn_?c!S%9Df4h(O}#tDApBU4id+LC-9aPPhL7>c_@Y zU;ITlrjtyCPRGIdgLOSECJKs&Q)ubqw_w~@m%25hT=Qx&{kgA7w0_URk4jyK#M4u< z|JGWs8*Dt@P8FS-lSDsd=z(@fh6hMA72SE$gZ(Q^(yfSMcpNQw`c~9U9cxBH&&ARF z+~1&nY`l(EYQiZli5@$x0p>mH8n2d@TVIpyH(>?a%etsTZzM{UDKvGs5vbqO$rX|h zH{JLXb~+W3iG9jluO!nEZ(%&voxk}~Vjznbp)4LxHRq_*Oh29mzJ>kF#>?&16Akc- zrRQ#0g7IKoOlmp`S{g$a-0Wf6dfav`<|Udsj=Y@dx|5UU9+hSr#8cxfuw2#&|Bmmw zHpZ8AV)bL4daN&U@Qqb1J-! zdXbRjvg?g8Fdr@J?mxdEI8`RorF)i2#NzpwdkV+BQ|PrW95{~Hc)Q+q7Sv_OuTecb zep&Z!!)HlX*>P0(Ww>a(A)j)j4-`{qaE2ckUpC&xJ=M|?ual^69GnNNyL=)YwJeIE ziVa;(wr=mi!s(JnOQ!KZ=BHHb8oYsg8x=*9e$;~N7uJnlxr{U|UO){dMS}H;b^lo> zH@C4)vd%ZsLumF%q1h4%=oi-gS>0KvHcO&)eY%2jwXpPHDP%azqVcG$*{hlYC=>qdxuuiQ1Sof~}oN%~0nVvGv1M`n{ zSwlU9x4tQKy_LCW{T?Ul3umuJ(uRE-L3{gt|_J#!+T@^=ry?-p~N{*Ztx}Q&$?Yp@I z^a~p=ruSfB^u$eFyk<~R}o4J?N))~?PQ}0 z=X%hUcTv7u;TVx4vCClJBC!~olK$6nmABD*7ds|C3$i_iFQj=0`rA+ z!LmH%QL_Bmer@C_XWd`T-l(Hj0)0ODsc5u-qq$O3{>R zUurN4Ubk|!F`!>q*H6`zv{cCM|H^7Wds!!Reqr71c&TLa?05d8l%>vAi@MEb=EbbS+? z_eZI@Wb)IloQM2FuG!jzwo*qlYzkao%(@_bb(+#`Bp$2!5zH6XwP+~Qj5=-l-~!A8 z#JT|PJQ2x_rB%aq!23zoHJ>;^qRTbuxvL^UXPuQ#)HIi3H=pTX+}L;{t3y!Ca7+5i z9Ijhp-KLD?_?1r%+3pAb_q2F%GpB#onXkP4TCxSrmu}jfNE1(90OQNLyL0pTlDGt# ze55<*Kh`~|p1|qtN}>i;^T51f-7fP%==IZhS{-Z;&Zn#^ljVhVTog`S`WzFCH-7q2 zR5dV^elmmS@n!`zPR=`=o2*;Ic@=+_?y4S1WBjae$K#iEFHRLme}6ZknghjxE^~En zk*Dl>Uf*LE=odC#^WyF(>~IVzBXC~_>#qO0fquRCL)0AL{9`zkLx@%inI zMDMvTZR(Z-`j2(BziLU3KmJrM0KP|JUDd}E?dM&=`gtTeiL>`5(n80}V7{>NLS+4S zP}YADf9XHgEnTO8@=qkt&4;>x@nv0zeht!&3!sl@uL4fm_c`}1W)`ovRLn8MAIH|aNe_SUr>M2^Fk~=p{9a5&I8tk z>&cPVzh&=fD!zmH!n!2caa1pxFTZ=i$7vhLX}-GaHFW&fMi zJObuD>!OYtqdHMMP2F-_(51=RF6D;xvu zVBLd_Mrd!5nC_2&>&;l#dP#&vh56B4ORELr6?St%P3B?rYsd;gCpqSdO0R{}ye%^X zUEI?X$oJ6@!$FC^J{p%Vx3V! znDp(ccv}7kuFGYeSUa7+o*PdC-VG5fw@>P7aeHbE4XX7Jbn%;v(Frb|wi}-W^MEb) z-+A!wd`|hxJh)?-&Z)k4;OiexI*mrwNWT={z%-YIUYPOu+EUXf$&`oyuNmvpqo9v7OgW= z#C5;m^9LJm)aIwiW{)CvlUNDHs|$aQkZc|NDQ~f$Tdk;tU9!)h19`&nihhald^Z(* zs?#mf@%&seU=@Gk$N{c-!)Y#a;0y99qRjt18^)>Y>;ATHYzzrSxG7;pTLHq>hA zi3gnN$_tfSJ#hi>_+8|uREun3hNl${Um>BIXH)`fnQ-Dj+dp)bC|aXeTzQ#lRwQ}Luj;;IE*Zfh_6 zU2Zz%{NVeS+s)6oK{_+}mERJ0q584zcc(NI*~gQr&W7c(Zj5Z6=E~;j21_;2FRYs@ zo2OZ_c{=tl^K|Uu2i&Q=8T{(!8~Bgq|9c*F)|m_BQD>dd__9tMmxU&F^P)u~Zi9Yi z-HMi8*jZ^h^|pikoUW+ArOsF9EV7?)59B|PJIf~0Zr_{0d}dvs>3FN;o?&#%p~IkD z)>)_JioLeYB7+XZ;EwZ!b*8oJ(2<12^y`9b!FWAF`{DJ5Q;F7f_?~9!(N)|i-AVkT zWykpjgZ1R}DKDy!a2Ld5opP}cDLgip{tRsrbncr!N)1cQC@F&1eKwxwSr^H|K7O>* zf=0o3aw}8CE9q$Jk^uMJl^)dKBOW{O;|?6+mwGA@!^>fK-0jV%WB;*ETW{QqYBc$oub@*Zb3-RG4kE>AaQ`$LuTGXnI9ZlQxZ*E)gugzO=l|(% z$KSeegl}qBBF7GdVLRh3pdGARDCaItJ)?(a`^JO&9M;8c(?)MU>_TV%(q7gX%_FEW z;;wi!g6&}4p21!4LHTo}uhBG6u5oG?=>+E{(UHTic%l5otkW`XAU(RY5zRet9~$ej zTt1L@+dhyHM`1n>)~TR#WN6tG(w4m#j2r77Z#zRARUL`LDq&|HokQZBx)YnfLYTb(+bs45l^CLfi`x4gG`}d_)Geq>suY54CShpGfB46cXc>)LQ6LzxovE#d0Qn#&x zK|izc#!B8wopLy8aSG=DbF+%zt)a{=sacl`Ud_l`TE#$)&I-aXaARceXLuR>x~DG_=ZxIn!)vw zb-|0{@YuD+72wmSF^a~sBxY-2iarvy&WUqmsd;UO7CoCLH6u!dmJxjx0@%)Q-qJRG* zvHsa>vBHW)QtoF0?${32#XB~NOT@>;Y2L!lq|;$^=4dkM7rjU@-l+>$Q25s}ae;Y| zpmQ(lhT992P*V?>hk&i$`vxc6!!uu6Q>6~#jr>~0Jz6%DtD73a4Nfqnr8iZmO+_mh z57sr!G@)JosL-AVe+jyQjh{&Q3LmPt{56Uj`o~ zu3qrDn{|_o0`cg(X(Xonuweb(H%H>rN?K%0iyYTxo>ue)5v0soK-sEZu#_fN&_1YMZpNiGZ z2i5Tib4PHz#l*ao{E&T5>9g}5S6`2Ce*8wXEup`lOV_r=r`Lp|u7i3Dx|fmD@sFi- z;+SZd7m+PjD6bXk2Cs0%8E!%1>pn2A)%pH^_-{()d}P>l?$*qnsH<-$vOEyx*)V$BVkDfQMSdlMi2JfOtLhHKnIo9r;a9OSvrB z-jtV@MspWC$%A>%I*YN96HdkRH=^jD zFb^N=o@zVM>BSn@QY%2Pe#oX9?R3Z#FID;mjyJts!=<4)k=(u$Yx!9{d(+G75N^4A z2DF293X#3&fd^vz=)^@q7p2)mp7#qy9Q6SG%*Mk9>xrd8C>pZ}=9ysKu(mzq$yg7Z zd#VbQTQ}(|pMGkzBze55bk>hbetUBP8Nk7P+pHV1R88VMy_nQ3TS_~g*I4)HbcEQt z{sEb@Hc-%gTeeO-*8LI@`NMLZt7>_E>=ZtyM#@>|eIo-4=e~q<(2b%mQ36qZ1Lr;KLS*yaS~l<3{$<{??wu_Er17Ig zQWK8~FrQf`?(Ifj?(R%?7#f24!a9#WGbwuXf=HqXaAvi=#HBAYBmvKN@}dJF=#$(O z{LeW}Fb`N~W$^~JyhD{qSXv0qFKoH%=7iu$ZF|v%mpwuMeQx^9`5m(3jc)VYWY^tN6P2OV@WMneuUO}$ z9MA7q^ohK<4D-#gZmZ`hL_Md_Lvl)j@j`x{K@D3+(-D5Ug0AQNkLc3Q;Z$0r37qmy zb?LwRqHlVh=3YMurx!M*OS=r(1lr5GNE>y!E@KGQP3lBDo)1{p()^2zQ*uWc!`%ek zBk$K_jZHcU{_Za55^aW(75!4lhOO}V(&XrAKE?YC7ZtaT8}BuNsQQ+moJj#79_xu#5I6^VdIUDa6&AaIC~1 zoQGKVsHZC4GRp;juN(;4%er5KjBwOyOZ+j@O3)=BGyF7TJQlC`#&;YKHs194V%#8$ z`J%c8+`kluNAaV_WOBb8_H!9cf24s`6R}epyk4?yc*;DUm;Fn2ht&tP4+C2C@zHWspzh|K>KS?o{3$4i`*Dddn zUH##4$-3_$qe#Z@AY$7czQ1DK;_72)RzWX1M}Go1-dLyly%3#R|DBw2wgYbZt04Zm zhYjDmUpA-k<`}Z$d(nG3FdpkVpSy@$tqzmvVsF8C8rnt3BJ4ZSoGDyxzwCOnEAuCr z`4xU=XUiR_&;y6OX(Po)j0DU5v!*9L+4VIkI1m3X&c=IgqK5m~cB0im@Vyl4TJ8pHzFmW=9eMyqPZgMMM%<^}l@{XZ78vdv7;)pQyt z2@{W})>2_-+&u!N{{BfkGv)}!Q!vxU{W1;c{i+w>I>Xj4-q{j=PFY7xqx3*Lud}IK z#jF{;QjYAuu61!VTC|ZX8)6RPvF=-HFs-~Bg;wRP6Ld4}{iyqd;V4}BiJ)^_*@=4T z&Y&-HHVe99(?+t_MIM*Vw1n-rvyHo=G>f0+p3E7^zaTpo&Y+9^i(ov)>1wSY?rO{F z>_u?>ffwVfjxHpeY`<<=lrOkmvhKs?HtDExKUyHE6D-$nce3>HNNd`|0-o2{ctUyP zSSOSpuJYmqQB@xw(aP$P{DZz{hZ;g3y-$KCFZ6m-+u3izVg@mODNgrNIfv6@d`7mW{;!@Mqcf97**cFy80 z_a|^mWjWscCWO-3ah<_;HP*FhEF!&*N6-O^@Hv!qdd)FX`=!>juyq)if24jqJv~Y`Xv7H-DIx!`EEEMeKx&lY6+gFS$A)rH6G@yLn9`@ z^=7QA479_MEqy4RHc7DD+uNt(+Kj%`b=h9Qaxac?#9VI;+LZW0&`sI67!UbaLOfnn zf%|N>elIeY<3nRMkzRYg0jDx5n?KWN$1C}Sa2{vmv8(PFI_kk6(sA5a_iniow(c>O zO7FA?y77*K@!KD*1pn#}<`o<7Tu(!MW&ca^dK%1&$U3d7W3Y6Q?3>FQm^V+y%TT-} z*2!wt;1`moq3@)7e@?n5lhNGIESU{7ZSP(Rj9*6JoTdSZuN-oyH_Zft0~ zq`SO3wz{b(7;j$gR`jQ@Gfwt}-}BgbiN|tL=66ecQAt}co?_h<)Wy~WYdjHdZ^Y#i zWLYs2d!DTU<5uKpDH*HvQFL2bgBxu*k*=u8Kq=?p`!Loe+l%S0zDv*_c~~y%{MT_b z#APY!eM8tOdcP;f>_=knWcVGCjn}66o{U^S0^7&H`u$Qk%zrAi<8%CHa>=%r(SbAC zw6pIR(0{BeThNBIlFcdgf%BeqM%U!=Xq_<>ofmdy1+pCAXFiiZ-3JMl`+1`5_-JV* z*(z{e-FyE-_KtO(WV+@G$qH9%dOA;u4!HvFOIWvUKBga5{Un>@-h%OE-H78xvYhsR z$b-}#pnj|qNruyVvU|Ti*>K$#>x$3!qdPK2P_M=CzawdNJ@`i&qd6_rL{4YOF#N1~ z4N6{X4$5U+We;=QW6WMuXEa#QDUY+j|5*E>2Wt%l-O?{sII4dT`jR$8(5*4WIL+oL z_r(xChqCos^2i2vFE114pN92|%xL7xx7+c$VdFR}g~8OPbpkCZo(RT+b&qdrQ=Du| z+ng_g`zzMnexOFfKikmt-{87F);XX2OhyIz&|9B63&u+j6S6+hmEKRjAy_~E-1B7b z(gn29dZVC=tUOK9jOWs_68Im$)s;IWp}p<-(rIR#8cs%2{i5iL(aXT~jdkVAl(EU@ zS+t+68Yq`_q3V6`t;4eaG#H!#*EiP1KN^A0dXA%o3SNTov}>4xqfM9#8KF!DTo&J!LnGql!+08g9H6)r>54=hq z<#eUPJSO3e*J;)rKORYX?-7Z|m_`e_`!B<#_f3XTXI=O`fQ?sB&`A_(twSv>Z3W}4 z4pR{;`&EknM8oHE#g)e;hl>3~F{F*6rPY7|nWpK`hq>zdN(8 zWpD{Pp>hd%SGWtt(=EP_Hhf7&Sr*=c?!=NRFS-mt5+C-%c1P7%xXdgRWbljXf2V1fA8?N;2z?7;jgH_kaA*yPQPFfw#Ib zjC<8{A@K_vN!#&Q5RY}2uXspLo*hru@-Y86>y*lSBe%oqH14H?U_7v&i<_Wm}h{)mg>O}6m7!8)&Q)A(X#O}u2GlVG{>*JHTR4zfJ6&G3B1##?kX zR(#FuCYtwhF^D&N-!?9=_P1!~-s@ahp=_^4?Kv`){|x$%b?@~&>CuZXq`ii>qK^H- zI=>07v`;W0cJtx$D(kchv!yLdBdFZY4TAAzySYjaCoQL+B|8P(m!>OxOI;Fm_CLyX ztRLz9lp7a0li%K1LDc>yRIFB>K!=AkgX5fa+S5fSp?4Hby8+*avCdF?HmVpLOGnSQ z0R6|hMe{eIMLOYh%OaRB(j_xZbYagdepFqSRo<>-sm+Nv`aymaXfNy1S4@^JIGaSz z1y+K*OsxAiA7hDM0&V_FzCPB4^IoWFehl@sSO)rqb(e1V%GT8fQ8$z=SifY=BdF=v zQaa(HEpUNDi>)j(o%!U0zEV`bVl@ z6;D0C`~${=b=u35rEaI<=s%B51?$JZv5}_B`nkKf0rWE)ul=X1cw8Nhx)u8bcjO$K#iE0rxY>IG5!#tiO_=Q%6YQR?gHJ9i z6^xf_JrhexZ=sb|4+Wj%nm_(sU4SmFNC1x0ddz80cjjlPA1df3_y6bpUGSH@zpNAL zXVxA6?>Kt>m*a?aBIi-!H@Zpmt=vY?&#ZIO2^PCfPogfXVE#nbCI5H4ZT!pe#=7bQ zT~K3X9IYGL4$AfIRm17~yYNb7og`BWGRY|q*>{(tFpmxEmX9zdy3LWa$-@csGwX!< zk9Bi$%)}dYlBnWA*e~86He0<)bmEie_m}YBf0J+PJZYJJ060IhF75gQ(k)>Do!ezR zs2}U@AKXA3)&*0=?_q*YDDNd3uffZb+$oBoU%veT{mi;w4qv5v2PD#nOBccY!Hw)U z|0lmsUc(%T-`B~+=AT|Cc|p`Y-ttSr?yYChjL2 z535Qz9;|!4xeM~BilZkRVLoZr1*hpE`*E`WB-v*Owj*zXA^K-$993BX^D&-_|IFPy z=*S0}>q~@=57y1P-vwQ*knK}Xhx49wYj*0Q+A;BT$#z&j);-*viY`Y+%JOZl0PSGi zw*za@(K`{eN_Cf@yYYG(a@-wG?ea~*e17GnEiIN8af@31@KgFvr^%}Qu<50vARg;% zml@N4idUnbT}FZXY}VZ}(55|Hc{JR5__A*AfAeqfU*;d{(ieE3R|jPIA~j(C7uK0eN7QU}zo%*_QR8=|}_ZoB)j0fvZP8m(r zn{@D8_sgJu-Df@K&bc}BznuytKSX(?l7>>_p{bx>SU2YBCZZP=PA~hyvbxX)&tMK@0=wceW$WAydfb)72CP6jor0;Qk?j1@;eWlX<6dn+ZL&P6ne8x7D(jlYUq&X|{3(Au zMKE4jKq<<2=t~h^Dd>W=l(F{23Dml@M9`%_QNgD1!)V1&xL%p9-^8Q6u|}ySZS8#x z#EUF6=dbkaC(*Ty7uj`krXS`HL%%$`(T@GXI@{9e)Jpp~vA20Zgxv1_)98lWSETtT z{GP(bdzNiLe|B0cy;ca<^|5ZWdsniqF%iO<9)0b(bkJRF_rHv=t_-7(%H9> z)J#Jx=ysnRN_*#O(2N~FL3{V^tLGKlhI5kwYWT)!3rMd9Thx7FIPN%KSZ8=yOzutG zf-3#t`*GIApE4j%?hF*~_lOsa7rN;%7d){Uxu^LGx<}JoP;#s{)^mD>gz9&9%Ph2e zkvAS=1KqS|ce#DQ!t3>wQ=k-YJhuGlSu6_y7}ftP(RkW_uEN~a)Rm9UG{?I z9`f8k%+!PF#*$b;CzPL>Eq8sJH3^XAzwhP*^WX2h{+&yICELHXTZI?O_sY7RKNL~I zqBuJ7yAtSU)(v?u2+ggIr@FhG!STVmOb;=dxG9!aJUS2NDeFeHtwp$SIh_=#4*G?4 ziB;>-6xqMyUpBXa@nD_*z${d}B%GG0!#vFU3hr{E9`-!C-i?1M%QxIpmT$OyA?ONu85ny45Q~KseE46d;Xp`nRO4hD4=)86R25;0+`RN6FS~lXWo>G z4%Ew@7kc~w^OT(8BBd}m`l-us&h%HOe={<;b073-9byP_+yJfucj;d3bKzI4q+j$4<}TM97m z0_%1=7NOa-)2OS;FEFoIM}6KP(#Mt#$%XT8ndA*;+24sj+258wyiUpm)hAK^(s7_) zSSOSxnsq|?1X=g)X%u=`8cuKA7*0C&GwZa6)*#R20rYUn8ZfWATYTe0DUSRUGsK&H zy&}tPAj^Zh+!C~dbwcf6-ScP#6ei1KJntr$9mtelI@lK3;g-#y# zq=T=`1MOwq#xB3nZ9fkhGQkYEI;jJf65CDEp6SR9TOCDP)-FWToWFzPgLSjIETX-u zGf>r;U4rovg97QuhCI|TZiWPKOldJP*RzHoV=`EC@?i+>w)r5@8TC{!Ui6DNyia``S?f^&<|!LbAs`+{ zD(RD@6P&>Kj@n(wf34`xW&6D39}U`%rrS8;4|;GPAL}gE9Y?Qqym5bzGob%i_kGk2 z)Wv-X9*)NemK!qd7BZb;g{#K&1lJEXo@4E8r`o_L34G^k&C z#UcK3r%=(Y$YNe+@c?S9dIWhTz*G3mX7qsjJ5ogWCznj(wwque*GN*3&jd;Ik`-e)A z^Lp7oegE9&dd`FI30XH)wjXSV!vSezwLa;19%7xYjcni8^hR+?z(7HFj`+~s{s&QB z&1pgBJlKGF(MsN;CB&NXNWo|3u?k(Kd+Zuf^+JnRZb za;Cz(&TKs6+(hi$E|CrqPXWi}c+*$h?i2R>vUe-^n*LYCTQ@DIx!Ul54y>!~u8*!X z#L)`n{etm^Hzgy_^k6!)cs1x3Hl9%aUDg@DS%X?tJt?=YS}@-K&BHwCFZpeQSN7xF z_3ik7q#Jlk`%h%bc1yZ`8+?Dty5jCdg@LYtMEeF?R36iJhuhwh)HN9)iw_W_nmCKM?3qGi&1l_ronH) zcq7Ihmrm_(PupDKJ|#BZVYxhMSECTxnL92RPc0-GxmNhlE%ZO3 zd$zyj#-5L%18TiMJl6TYTZs6%o99(C~ zx|;g2q@mWA{+Rt33B`NlVJ)uHreyA@Ai;94F54$|+b~_)<0V{I%9gu9Q4NLXT;iVl zB?!hFqr4i0{P|7hFPH_~?G{_^+{S7A^YeT7N7^4rmbU>N5de=%)&&eLCP$9Xrzi3b zg7IKo)vqH2g$<|2QjBTGeqo(fqcP$1g6O5uaGtX6{DOYOe5L~pRDj=8?kDyZPx0I% zIT(AKTjbme-+vfE#%{L-<+3h!x;}nq)0gH%!S5QZ+pydS&wQ><=iK@P+RHk>Toc@& zZ%3Rbj1?^R#uYPcHLOhPmjd?{vGIuWSnMv9l8JxWkI1?~RU#a@y@9xYZWpZIgY^in z@-m{eO}^lI^j7I4_iOev{$}AZzDaCJ8s5*KT5I6XlKL+h!-CAEKRPQj2CS277@ig-W@b=A^A6i(;KNHDb z$Bx#+LCNqro^@674)~p>7QUc+5A+M`0(Uv$-&fVKvu3-Xd)GJz&)WAHrFDhR$!xq5 ze;>TbaJBe%cnfGR>%>|i*!|BYG$`Fp(1jn0$L;?6#nbCxJ}o2dY~H8y6u$eF8s6p6 z7vgfrlMdJepU+wMA>=l>s=SyQZAuq+Jbqbs#eFL|@?Z%)TLtq4v2KosD=~ZPO)u_- z=DS>^9I|)@dqDCi7EW>Be3#FB9J-i&yi2mK>fW=mHj|63@C1 z$S~U-xc-G__z`|Kym7btoZQ4Z63LyBCiL>h9mj)p=Izgk_~m8kVP#=gn^Q{e-Bpkt zzYFtrv+)AnNr|&sI+AUY5-c}GLOd_G7z`AtI& z+VFbmuG(L`9T|#7MAdP5eT~WZUs0%Z3;gcPx|nB$(s7Gkp?-Z}{aDu`Ue75_pNJ}) z;y^oC*X3&;amKDu;{0rwcZPL&0h>|AuqWKAzw9Tm>08N#$&0zfhwHgrXOd|Bu^nNxExPLn@HBzuV6gbcy=Gcv2VY0?$E6* zAl}jD-~5&w#MjL{$Qj39A$LA+6xTKc(T?N6y4mGXB=*Zm;v5U}e6mg_ERvL(e3BL) zh!l)>Xl6LcEzKd;)=LH5ovUL=-dTB?RR_;&Y`G5thY>T&QFM1Jyw73X(zTV+;U%Mq z!O>X3atCyCl!linQt5s-;5tvu=1%pW&VTXU&ncHRlFp}%sMBr@+_C>ycm53}7Q6cK z7hK?ZgLT`kWs~|UC#qQt-^a49`@BS=xppiKZ#NVyx81siPwBph9uIi{=E2kG4cx;_ zNB(roHqLDBIJ!}`=6m=OQxK1JAvgO`Te^e<{ek;tS!X;MFs0VV$OB zD>2#aN$Xz2?+dIua_$@PtCjtK&;ovUX5GgPMPzlUnfS=srC@xwc|YM_^`6H2bV}!z zbQ?%-e;P{-Z(IW7!8+@ZzVyD^2#S;7`!LphcT=X-DbmwN`?l zYrbAbvZiACCc0hF?RPvwMqZsui>?&{S5{oa8OZiS1S+L*Bg|HDd(-^r`lNb6x9Y$O zagR(dYU}oopwl&;fzCFB&>UBopNlP5bDcBF*x^JK5PY6to%C)xYU{dyep`K+bezvo z-;?>g&xmjL*}%n)RK%;_%F~?{BdL(1rfS$jme=p~QUgJ!`fM=1W+@>}H70`Yxsn0C z6sbm|;^6%*TfdzPMq=wZ=SXb+Fc8nc_&Oi${!L_;s3~SL;g)Z3-6rdFjaG^6dT?0h0~|NjJ(!z|=2!${o14=>J6Lyc z+BLK}ZXw=tWR9R4zor;{@?DC1Z{G*jKeO>(%pHa0e^}ty2ADUwFG}bCy>B|dc_rr) zqJ;0LjivqX!skZTt!+`l)4C6%pLVE#dGJ46X9GMST8(PT^3!#k&#XHu%X@VBf605q zx_{^21ljzH`OExcUExe~d?2opxPOA*7h<=n@-^QPf3IK-XVA2mIrd9I*~U4`iEgr0Ot=K?TpY&_48ugIy9m_GUm-^a4Zd?PJiD}2kQ=5cP%%D6!nRw1K+|t3137nxfP}k{2P-LZta>-R5ikf9$ydd zH(2-DZXKGud^SCu`WU7*Vd&!{t`W%_O$5<-;YaIa$EE5_?~@Yxk5cvy4`v<-IN0F50*1dKV6=V zOK_*ncfNpjuuey-6FsolgH~=)0_|Yk=fSOH@?lTfSr^_Pux?fJ8xp=}0ev(16?p&5 zx;e7z<$=K=^kgCY|2gXxbzVWH_gGF#%dlYmgz`3yx$7WS|JG!+(hi?wj3 z61*<3E+yqFITI3yZcl^nBUtCWtdV54PeM~K!|(B|bCJ7EmK$iI0XG7``Gs{gQ;NvL zpOdjh7x*2Kb!Tn!h(^p*{B;k^Z^1g7TStg{(Npx{Gkl&oUEN)}=Cm`Hax#TaJP?3x zpUFp4u^fE= z!n*FGhvJ#%tnuK3)zXgTnk<+q?K0AcOE0|1@ALGg^0M5ap|0J*d|};`3QL-?M+ZM{ z+)jkzJw7so>bYsrK!YEGE_GuAsayG)yh^YET1V3s+e$dZ)Ty0v$nJ*RTY%Wx;38^RWL|mzaGYT?)nYa3IVR_&?nD_vnD*V7gjkuwebFcgx{d zS6j)Rz81ihS(Nfe5=8uj?)|w{=H{rjb{H*_aDpyr!#*_nCr29(!0$|Ky!X`y(7Gyp zN*=;~VV##=9on<3hTPY;7c6&PbTisfUrp8wpDO6&R?FdGZ(GSCZP?y#n>vf1CohxS zj;;{JK3a{=#!aNRmiEOR=N0QV{^*Idr<>4jq823N=9&$|OWnKD?9bf<KwS0KZWPVPZI#>RvO{$yWF5Bw`^RBW^X?Kp)LB)dx zlP;kDSocS*lGinhQFUN^A5)(}reG)dueOu_v5$Zxe39 zi;^qxU0kuXk|O$5(pAuPm;FN`d+IHsVLAgGzihl*&p@1VSB%ydUKMmz%8PJTW2VHR z@qwVz)mx1FiTk1%>B8}}BbVasv0F$_E4Xfxt>2e9p?G5bPV#lGDkxX9E{$uKea}nd zb-6czJ*hN!GW9FV5p*M6ROrk8&a_t_B22&7UDU?ogP{lD;Tf%a5LfcJ!sbD<$^8`KOoaM4|>%dexEjNy~#a&<-qTC8pKr& zn1Gg*$56%NFuxS*j{I1SY(tjP(~+5|_r;F&P zVbS3JfORLnKR`beXVFn}3qgBX*ZEO9${FiSHO$jN{j~4qNu+Vpc#md9j-)Q3mB)Wb zxw)ckx_+rNY-DjTSM)!^mAam z$hvp~zbs-oJ$5;k+_Z)J-dXqT`aG(8_7drN{~~BF>jv$dLaQHjqi=`ig7&gb>@$UW zaoy>c_qzq%Mb$C%)rLVdN$(tRO%I=N$G%PB)84%lZ9AESzRHKvZjAw;eysDHcN2ZK zSVAk}6u~@TT~EFiIfnbt+|4rur~UjNYHT0yw!jPq@qrj=Y-hLD7{tvB-63Fn!Z!gP_|b>%Y&k z{!{!*|FQ9e`h|6SOrIh0$d|579VS@rys<5)dyp$l7!LP~#~)V`87R->(_Zfry{XtL zUH>AHhF1oGabum)oMh?gL2>lj6b_WjI+MK*#eO)E%FT2I=MC1aXj+QSL&lJtQTWouRC&Z=P;U0@CeC_B5Ql>9aywrsP;Z6FShQ9m=yV&O5Zf{zJYIRCp!@MH zgs2x7;+`MJ;g07?w%mgQorr~(FD_nD4dSJESczB7oW?CYlfhNLcf(u$G@vd6)(E-@ zPM)|b<{k3-%f1~pp0d~r`<{A@rnXHNjMsY92e+tgM*W{sK_}U|5VyYxLoc1-_Y}5V zx8h*zHE|Zo)yoF)4*anYjj(az&sU|39!_)@i&B$lQvNrtWB;-4($PcWF1F#+K=xf( z$jzEkCDuTRRA=fOFt6Bn&+ZLDH~nL&zr3Pgy#G6|RQ@urYD`vH1~&%Kk@nJ3UUhVXqS>%0xGOD`Nwq^|Yw|FEpPA=xT@U6)9wl3;LLvaWf$ zt5`WWiDp>Bd~U208V}Z$W>tw7i4$pH-E7d$&$Lf+@@aPb`zDd-jzpQdv~x6W+C9>7 z+*o(kK#6vJXideY@Hv!qPt+9YiK$}hZCE83ZYM?QIrjcAf#sQ8C0Z(~D1 zGZ;74O_iUGHtEOG*^kXZKeH}qiaYZ4h@rR7?h|wuinCEQ4Wr#{KM0m@Hw%m$~A5mD7I~}q$40Rk|@BEb_r^k-GT(GT3M<72T>w@ZC#mQ@u=*U6ve84(A z4L9+5S$@Kc7Y#r=SSNIxvo5dZ0IK@9kbbn>BG`^+C5Mszzj+|b?F8NN>U$_dH;}rw z)`I%YxpQ6gEz^O&`Z?9=lc6_io*hFo^+N@nP@YOQ-jGl6sGg6aQvd0K@%A5jj8;#R zt-G$w0_|Yq<(yW)GqY#W$Csu6ckfCI_d#w3zc(VbKq#LU>*D{*H@EpO`Q}*nZ(gez zvbqsBAqKMd7*ehdGpwK|K=Y$@W13A zVqNhRW8zaENyFE}d~S)aG&rX}_I#H`YbC1J4biR4WpuaW9?&nW3t6=aHN2GNBa5p5 z^NMxf0!vZnr@k~s8Lm@c-Jr-@sMi%A8ZbiGeH^chTMZ{r)9WRI^)oZ=jjseuquK-D z_x+u^?c4(&2YzYhJ_&DpOMLlH0-f||r?lgEu&#COXcS=)OY4t)6?C>q9;iW<$II!5 z6Q~~>Z{52u=)HyyZArgYAXM(M0c~iO?AyYt4dI}l_u2l#wZEFqAAepY3ADc@c9Z2T z+ZqDf!Md0OqtUr>vOErzupO+cm@h{5vV0FJH(|a9*5&`$gcgQ{)3{8SCyRA8$wyJR zdMLG+ZUg#{byGdgAvamxveNJ@aC|6_5R0C!vFE4ne=m9K^PPAv@uahNG=q4oQ;7RW z97E<)D-|nn{IV`iVJF$UE0|^-g?T?%x8Z>``5?>F;ZIu(v$9}Tuu%0;rpiU z!zYUW&BJogBvbSvFbqH6b4$ECZ5OB?>*g#8!}5_BSv*`V=r%e=;bvzYB>n9o=+b*d z{j@#2MG{j%DAp|J}*Xo`m!=;td>&Wp5mOyf0&&E&mG3DNZPp?yZe_kXN2 zK6{!xT(Fq#u!ZBsy5H)j$+HcM>47X~!Eys@w-AGi%V}rRV$fbTp3<}ok}g_Gx8|n_ z#*_QCp4=R;lsbWZP$aM_Z>s5*Ltpp&|dz>(VdNX5%Y z&~>85*zVYMKJdLr(B(UrVzu)1{H&E$z2~KMU_4moGr3HbzGn$_8T1{@7uL1^H*PEbGH#h6AOFw(t;4F3{D>Lp;-#zO z=r=t$uUL1p(HM<#il)0f$>io)$cGW&B7_UqH3uLeEO+V$qeKBl2bxQ?&rDhhrJa?*Kyo^~o z_?mPQE!=Ji+ySdJez?&vQLAEiDfRC~b7->-0M(d&7{p6cYvc+S%Jw(~PdT|Dvr&eWE zob}mhylCWRzFhO1*e@}Ve%o3B+QGVi_m$6=?JL*+%f52fH6K`w{`ne0d&JKbj3>1J zoQ)@HUyHhTmF3-vx+oaWa$6R9BIiZT?QRRYcUlLLQsZ3OJV)3?xAwvUjLJ&RY8%aqDeQR~oeo zI-&i; z%Q~Mohfs4u8fo(i#2wqqI?t(nux9xP`sQ6DXfNxAOc{(*cK1iWx=aG`Ue^raLPuNj zTX8NQVe*LtAGD;2Suno<>zsGhkuI(J^wK=IUWIi@uz7? zZ7vmXAHSXA_LNPOZXOefHAk!i{meSEqMv-@Vo*wOiZ$uj6=d!#l9p@G6h7IqHEr#mjm=#@s z3p;p&%Um^?clfxEe?I=EIQjNW*?LyEZkTmu&)1^#p8j;F7d#KKt|4(38aULA+Pl60 zw@L}*CLL8lxshf^Ak+ zC0|_T(Z&I-q+>s`@$gv}NkAVzD!-sn(4{JdJ)S)db_l)^AB?XLQ|Hc3(UT9&fB$ z>2?=cXiT72hr;!1ZAO~>k_prKLZ3Wd{elunI30$w>f!fa)*W@0Pc9iFj z_z>&UbE#rr6X<8w`E>70#GOXdBF%B2pIPU=`J>dZ#Eg<6VK+eES=_aGKJD}Pk6^hA zU;Ge)ByF6CI%VqzbUU*X-T(?;Fv!@jv_PRpa{=`_& z<*B;kfCnd}Bia=N-NV9pSgO-N4g`6CerC)4lox;(hxH&XO?L!cZ@*>OdEQ*KC=IS3 z+Bnxr+(T}IsP{-)?uN}^EV3FzO?8?*4MGmQ-rDUeGP6_Qic>){?E=tOQ-Z zvrDnn!9&FPw*zo1-;L$po;T+U_kHL02MobVQX`xk2G`B8E~x)FTveru=U+WUI?j96 zwe~^y*c2VS`8&*S!8+TdNx0r39w}dk>zY~TwPq%cj3`1Q3!Vs;o8jt)L)J@CZF~uE zFHhL=!?;oWdD~9XzGLp8l{3_Es_J-fe6UVSwJWwTd5%&Shy)$J+YdjyriJBgl?9zp zKeOf9{nsxlf9aQqO(*znN*v!iuak7PB$FIBx1{~T2ZMRfI?vFz(pv{PYI+F1|6|?f z@#Cd0bu{S|RVTrCN0Yoz;K~8CB^5rWu<_DA`J+R+Lutux_}s|4Uw2ocvqgO(EcPloX8~me~bNj4G0(Q*DAKKvi64s?v8B0AZ-0;tRaK8)dhmRsIekwM7t_a4Lb-GQD(G-OMtT#zn-0}Ee-KQZ9Na3?Res6jc%v092Cx1h7 z>fU(TiDd9T@mTo^$#jJ2w-}ZdIfnm#2eqV_n?%EVSpD1AP|;&(Ey;yr~Hle0@sBUW4<% zT)r!pa>zwgU+=1A#?L6eD0SBl)Lq2XQ^JZ9`~i_ z3IF{|I8n*{A#K|c3Hq6Jg_Rr`xo8XOwL8jkm#Ffg~ADM0t8Kg7Iue#3L6w zWuz&A|Nmv@ymhOLC}Rao~-aDvBjq7&bu=6a+zuf&v0cP*L*qR1pLbL4qR5grJf|MMpE!H@8A-~IoLfY` zBxsTHBQu!uOS`g1lZpD&Z{kbK*nQk-=T~V&R*x+qM8wWN+C2zbE8XyOIK1lDOR(K( z`+G>0<%U7Rxjup}Yv4^@Uo#G-#5D+x%Mi!?;!id1u;#P5V7&F7|A^1N_k_>6rh@Lp zxd-C&vhN>8<*b`}`vqrN>A}xGww4Q<){5p%U%_SNOoI0FfOcOGC}E?sYH;xh`@e^F zP2Kxpmk%Pc*pGcKq21%218{8d9x1=TRj}P|(a!ir>OG>btS0C*mtx#Cyp7B+eMZ{% zqs#jtd_dVS(V()<(u#Z9C@{evj~4Y{;?d6h0f%O$W?}ncHRe7^yDJIdD7q~JcYdfZ z=(<`KA-T{{Jn`IX!Q-oc(Tbkdb;EWi1_~bEr5k2=I1%HQV%J08{^;Z z+ZlJhA&*m?;?IvRT*j@F)rkobt>o(ZIx@#cyMsUEVRAzN{M}P5==xXxCBxnSAt^iD znSRjmMi_r5f#u_Yhzaw2K)dVKPsoC(KoI+}d9<_>T0gxn>jzhL&8=oh>?=|H%j44A zGjs9v3w@Y&X?NzcyELhC9_}^Nn0XGP-8d=cY~IYp2drwCc|be2$VPE#;9MN2rz+?U z#FeAbJ(6(ZX9woI(ed_uIf}x&B;aw&hA^%vHC|#Q_T~qxMR3lgbz+e1tNQiv3Z`A! zExL=*-Y2u*-i=_vcn`WpqYW?9L6XDni%iFR6RL`@w2p?q^0Iq*yM6m;w|Ji#jxG*? zho_wdk1yq}HNH5}0s6llFBmVybtJynxhI4jdcwq0|IwZMdtskQnt7Ys+c*_sx<;b! zBiMBlv~%t<6<*z1O%@+zuOr$Gk!vEK+q%HvXO6gie`)7xxsv=&>y9V9XP+l&XIAEk zw%H#f5mgC-@oZkjqb)hDe5nTeJaqfaTmJOw;e2vf2$%6_43zX%hR<_*Fylu%rA5x* z9^MZmQzkO=fOhz*5fscF4%JJJGI7l_!#zK_`OzL7ghhVwpp?wr** zHGF@h2V75Q^C)QNTdIz4Hn_oH8}>U1?S%S4yJzP9cm~%6ew`IQzOuU`@q%&pNRtt} z9)gbd`%)l&rS+JQ7WO`Fa^xZB+Tz7`dN6=fEqRWvU(tt3O|~8Y?LO^O$2xc1K>piN zW}IpFXNH~_4dm%zn65p*QdL~scr7K>>>L-ly=5yf62@E zK6reRzF<6?!WZP?_`x`ONjJvr-*cN&SmeRquruZ2Z)>3|yS3rk6Skfz?e@sl!{*D@ z!@loeJuK~n*2B`Sc;9mbH}&DLGCL1w7ty&pHk6%TTV3}2(r#0&CFXz2*0Yz5V$KKc zio06j_1#_JpF4vYm(-9eS+m8PpM9qXS6$qR>`tEp>lD~JHnjV6;jDC&dKQes0|et; z^UpzH(P^M>p2Yla(eawn>(Hw;lVMj+Hm{U+TeN!M5xW9l_vs4eK6y3whQxh7=KH?U z;fy@|;gDks+$!Yz$<5kudQt&8V&UAzRPXZ`ozh4fg}&=5^V6-KF}1u5|7+aycml z&YfoKJ<##oSH}?3rD+hK&(`OnoxEIkvMMYKbW`L}`*}dS`hK&;Q48mR!G?)Uf43$d zcfDmWg7@*dE84g}N17>H$2^~7*D=#>+r?B#k-M z!7vW&T{W0?X@~7kksp`i0XqYw zos$`me&z(zU)tUOZ(JHW7?+^ir$x=vJbAf0J|dy@p|pGUbO$>9X$pMOUX9w%XWIF_ z*o`Ka%hrD+`wF_6tM^eNj)au@Rf29!ksdbC=?AtIZ2lzOuIG3ce7i+fPiy!TCf==z z$K12^G2BR$&Q<(&gawge{<43y>p-H%P(hO93iXG?m-%oIM$7Sbj)hCy{(q0f5?F^k_%Siip zv~wKS8B*4`!kJ3;I~eT__UsISZennEx-A%QW@aNfK6@NgB!^6|L!;l{ZYZV z6q9C=M*avsC(XWQ-;Fuw$;mW0`*t{UK4^E}bSqjdnF=EV*gPKERoB*`{{5q%S~Cx| z9~av7uKa>*S9`(mjcgtd?S$4b(=PCW4mO`M9BRD9OuIq5esZbN9{j`_GuP^M`_a6T z1ZaNJ!Sz8ooAP65^!|8w=;tgL@8q=;=#^eFc&XB_?vX zhiuPC)0G36`#2ph^?@=jyd4b9I8-p+ucB`Fsg>;gkk16h#XPhSE4M7-Miv)ys}~xR z9XaWkm~f>1d86Hw7ybF_k7+n&^;|($@O2Dw!I`*!=MttLbUd%gOHc{S#`&dxU4_~` zJZ`gWo+jaL!`c4Q@s4M;pxbvRVeac5=Dy)(cbLJ;>#RyIX4+ot~BLv<4 z@?LP>-x&h8u-7>quhv5YLiUe@yJs;oF0`9i*#-Q_7}#?pOt9VOC;yVGCqp4(1iPM{ zj%PiqksQky2j;Wb`vL7VXEu_BI#b~7j&ke zeQQoC{3he`#)DjC9CLnY_u9FLs63hm_n)%AzqDK6u!4+=nE|EMrp)-!?wN%@`Ajmv zVGH~FOS{l{-=s>eb0G55H)fn^7x&a~5 z)Q^yz4p=!w3w)2*}>-f z(C*dDPFTCb6>H#Ug6;O!QO3~&IQ(Gh13|aR+zMyz8;pOiTEe)n5FJ->Fq`*C+An|^dg*>PFm@s-Ulrd^w?9>r`~J&M*2>QT_{#(#Ajlsl;7K)a>? z)uYf^$=0Kw-J<6|P+r^w_{@)F<^k>OSN%n?72{y(`!9m7IZPg>=SMr}&N*I?qiV#=E1SLY;ti{P`Iw$R1jm_n#mAN-Tjx~xv6-!ZK)ZD@ z^0;_mB$OJRWsa}@dRNi$CzucJsmB|eIKbxQ{&0L}HgkQ@ZkvfQta;=DLn_(#iL~q4 zvlsZua_ZNlz7&l2LZDs-9k2JadnD#r2>c$(KHt-B!q1Il%JyW?9ml>$r`^E#d@@2i z8LZ1Qnd9r8dXZCG>dD6_zm?RPI>MzUb5O8n^Q39Fm+uD~_G4%nxRM!X+KuXG2s0-Q z2hV%&1zk{=x1{O*BxsW5u(!Xz(DCw@J|n${On^zZhBNbucJ{aL5o5(Ekm__Dd-cb@w&+mDaPwd4zB?e>wi8`nX*wCmsPBzg1CSon0{fMC3fDpe%2 zX95%tbrp11N_LQh0m&fuz)8?`9-2q4UYZW-7liw1c$HY(BQ_-7usEIdqE@x-f&Op3DYj^uFQBw;+!Uc z(g*hZ(oR?JB;oIj1-ZTKIDfu(hgVOTCb67!ji2-wf&HP?#35fFx1U$E>vGT;xNKuM z)>y(EAMO5VZzr|VWO%UNjtIrG9u`ify}n4EK8<1C6VmbKr0Ws+n%SVTev)83b;~Ju z#qdMovybjG$LIfP2lvqh^MCZ5`SMB?QW!D`5{9zRVYEx1|4N!jCc+gpcHIQ+wwG5+ zH;?QK-`;sJ<43y-`%}ep=M040S{Ffg>B)Yv(NAj_AHxZ{*YoPc&st@5U66vH)5fyj z-_!*7(YuNnmkAg5if$!%@B@ZN^EVz}rszu1VYZo4fmg zm3D8a=zABnKR((m8`1;rPtgHK&}8Nn?NlWyFw6Ho`L>>2UqQR1pei!9JOP~F*$B2f z@_9Z{m+gOEJ|I-EA8q@VldCIIU@l_k3*D|$kNwj6=b7*kv;Ql&;W3=Ng)?6;?I0hQ zUra`9^MGfn?7C0d{k!hdQMT@r>tNj{?E;eZi1TMZc(I1fKc(Gt@h#~n-q zV{Vjk)1?l)VpG-s?C<&X`8S4byR#6n5zvjO9pw3%CSK~4n zUtRbF#kehEo}1`)t3qS(b(6!$A$zu9ysz`;;5R*fO8!LkW1QZYVf?%Ja7n+sUXrmj z%6P+o`=p=;`@2B9Q~9H@_nKC+VC81Pc%J)5V{6Y=GHQ~rd%Q0a=R7@vI+dRkjF+P` z8(W!mAr%^If1k9jp zfi{pR+cP?0J^Oo3JASMgl{n+kGBj0$t~ML--0S#wDoj;x~21{M|n{`SGes zfJQDLl@|kX`{SeC;Ah`Sv3Ug4C3-XCN4u}~jpW6(Xox(mAn39dR*}0O8p-_JQG)G8 zK3BILrHA(tbdQS> zHn^}7`QI@RbgtPL=WRQHOw_dmonzPGSWbBs>SE10yS0BfSp@}t!1`+Ltif7wAPED9 zR%Iq0?beJxglflo!!9`$L8tb*0(DwC7%t6X*GJLu`mg_ij`{iko_>xwAGCWW?uEN; z_JxQA?D|#OnJF0K*wEo{vELD9-nVYkk(%uG;(yg2;@%I`hUk5Lp?*4>Z%ezP($3)e z$^x$6XZPKtUDquNus6#BUiM(?*wC)Codx;ae=%`hIuqK@XWF?ID3Oyd93lD#yAFtU zyVc%F@6L6CjNhz#zCcZywt57AZ`}b-G-Ws82X8>Bz2j)N zUW0a?GaZPWi#M*#H57EFIh&;WBZ6>jS1m!eYr}o<2TdI^lVmZjN9IeuK*5XO-E%89 z)8aJoGJi%~^a2Fk`gv(YLG=(>ofRwS`o*V`MA?4oM{%N{dp|CeXga9C&aXj&&Pncv zH0Uh{K5y83Wx5~MjSqM$BQ3b08_dL8yWgG*FxVz?)V|CeJg`7)JvtUfExF13Zqe>W zmpt*tKT~1Z^;?3@H6RIn3`+;ajAG_~Psj6H+!y=kszQXP8g4%iX!mfE3qD%V8wQ)P z&(Ce0Mckxk8zc)4ujW#Y&4X4>Lp-}tfoYd^Wij(0a7-KDEq{)*eY>;^DVqZ}xq9SR zA7S@3Iui~gd5U#&*>!Ssyw0f^a7^bV@8}uB+=pnlwlxg`A7qnNs%M$|3+)VVr@`}k zy~wsdY#xQFvL^rfgD0;&a3xo<55e^i4T!s6&73#dnSFAB4?ZezpqR~*p`*GU2OJlzgPW+#BN~N-ON?$ryr$jrsTzlBP+X$wAsbtO@?dE(p zgr=YNVD$93pcC46osO4RqX2vI#=wK8Lj~i>n|>w5%0aNdVh7{YLO=5HeK$y=75DHp zo6I2JwhJ5@%0BE6O$(Pdng@mp={sbS+aeHpLekDu>Q(D{KPBv{LO3; zx5@ehdbraFT2hBF<3hWnWCd*XL?4Egvj0D5S0}H5y`#62Z+1fk<4NU=aN>t`Bqf?% zXG6!EzppoLTKSR4^=H?A(C$ztQ=BvD3~98nVcMPFcRrUF?8!H-bKw5jZ3&lOWB6iy zn)zLzU3k4A%yD*s;v4LHQQCR!?g}=2#(=I>xL~|t5nW)VPB7G|Bj)_l@%nF51pSc_ zP_NDl#`|}_#dO(zi@iJ8Z;_5?y-~I=@`>rtRjYvczxC2gL7MWRA9wZXHvVSbSH8zZ zTV!X=)&-;8=%`WRa9=}Qpv&&7N;_qJBQ)*(6Yl*Z;drgTIAmdLk8}64&z%NvpI@bs z!J)E^+%T(A@Z6;*Nx#MJn@hWlX~8h+_$joqlP!uau4_pYMlrZ}x;6!_)=iE%-PNPaN@^1W0Fz+y5@e zIl9yoDai`jOFoLuT+k%r$7R8JJ$5|_?P?v;#Z%_bgFlPd^#-(?q9{h9Wyx?|X)6+H zH&J06ih&Gx<88@|pWBroE;FAF=hdcu7WMTClSUO}f~EQhCLZmC)=kjv(0}Vw@;g|c zLc3n6uf!jIropuhQG)GG{ja~*I_NJQZ-4kWv`mr#W>?Lb{sI3N!IK?SI8V|0UdsksCyv?|ws7*=G2)3Hv^bc7GqYp#u)y*t5rFW@AEN^5`{py({Jq&)q8$+SihH5cmjHUYi7WHd>(e$49$C1-iJq z(*Us7d?@Ii9x}q4oSfmL$xcD1(W^H$Qn!LP%pSg=gv!?j+J1w`1g!U<yZ1&8L<1_OC}!e`kXz1+65HC=u*bGq0{cwJp0Fk&vBbqEhn{wG&e^;x7qKPwEMHn07j2;2c4@6 zNc(w3yV0%sVDQZwcE1!0x?Wq~5tpqI;B+8X&`D+MlobD$bxL%*rg}wW!pmv!cRri{ zOuJjYD@czCGhpv)Q>I;f;5a9DG?3Fx<+*tqSE7*F(PjcTy-aTC{7*8}I4Ij&~BKBR`yqm}XWvS_^eAj6GZTyh4?}#+s5A64!V&c(G zbJGhlw#g0RM}8J`HDT9DfSVHZc*d@ursF-zyh3s!yuoDX55agM^Lk=g?F0iCuEv+uCIPa7VU|E598T+PdlM} zW!jmKUO~bmXTUr&Gp5}VwI6((L6*cKI+LHQ_J)7IFbJK_$i(f(g?4^3E9j&Xek1Y->UXGpKWJwnmY|TYmJs~6A9H-P(}}A^u?;?;sK$QZr=9z{^JrG79qf`f z6pZ(H+cT7W)dzyZ+59j%-deL3v^w4vLZ7qsfoZoXs4MpL><$Mo5F2wULZZcA{Azy zDi(B)E<2$!H!`6@?I`p6OUFyv@h6$ zAKYaaFTb@HEcWDJfCann4eg||byPmrT%lnx`#pem4YItx53;9 zl^x7e+AS8Cr?mUCf)Fk-3I@8ed3dxtef}_cJT@Ly7mi}aC38|IaUVr@e)c8AC#q$j zFr}IB{5zY+O}j$bK96-h;^DeAJO5~RO!hsaE-@99*RlKT(XO(nFYc{16!uhmFyFCh zcT2+@7jzi_(alGgeu$5?aVy^r<+Xf9@>@QpBPGR|uzaYWpv(WSA2&Ma2OV!=pW|ro zx@7Qwk|J$CPignUt`6PSOn~IluS`E^C$#Sz?GDNIojbIDJoN2g-#OY9b^3*_L`OiP zn;p~Ne?A}mpWlzci=Fs1y&puXFCQ70dBE*X>_|i-&RX2{QH8mgFIx~wc5+$j6UcM8V)ci*q^vVFhIJJ|P&jwiJ57ww)I z)*`N_6F{&Iv>#{MjS|b_``26`$nhO>d@fyfaXT$zIGf$Y+#ua_$ZC^{YdXgZx_f<6 zU|Tn5BtE%L&=tQ)2CKrE#OdTxLAS#<2@KIJ>D7H~el~r4Tx0@_2@E0zhV1(x+Eu*p z10&aSq&esn)9%)?P=1Cc$1hw^#5WZoak)B>Mu#Nkd6ITkPiKp3wkN=x>a(c*IMeRp zfiPr#ei&G9*Aa|2MYivkbL%hiCt+hL!1Tn2%xo&Q==bIqDLAGEu6R~!0n4+P^I9)j`WK@IeJB#J9W zg$TwAld6Kp?IB>8%jUV!?P_;bf>mw{2&rT9PidE)S4DE=pO888*nCmVmhJrBzaoA@ zVk56rs{)3yJnobZ>XFed_Wn^~_az2IB6d9!?MzFzk~6u1FzxOSX8zIcPwrN-z{C$) z<=FpGS%X&db|2mO&t~#c)8|I8LY6YKv^hzx0~RJ{$AK0C=gx6|%g)kG|5{EQ9;J!jfI(~`-5>x+54k6oolci7-L z!~y3&4j}F4AMGM848qgw>~Ud~m7oi_ItVL%cEDrGRRmq=w_*6>cVj%+iCs5AxBEuT zSGMns5iW}}6zs>Y;S+GASsQYE&5p|y|8@M!#(sRJqJ|WEJ|yX*T+rwKZ2f!MZS_1v zc5T0dEIWlV^PYA`A{LX)A6n3u)$H{_yLV4FNcKHYz`K>$>w|Vz*zyQX5Tiips&ex4MpHRnb9323Dp5^EjU(@rkx6v;^$1P6WD z|1-3EuuzuL!gYdXTQ6qb)6QT4kc9mM$f#_6eeCH zMT4T4cn^$qq&^x$`S8$lob$bTFkRV^`z!l!+kX6Lx6L9QycTy7S0!gK<3c-&2?21y zuN-Yf?D)|x@jM50(bk}5dYt*)r`>5eHPBYEg1}4#=Dg9a$omx0T{#FA4P?)U*YJm& zg|8?7;ZHT!+qs#fEI%kcHa>O1d;6I9>Le z=?Co|mRu&Yr^gdjc{aa}b`$p1lFpLh@a)Yu!FY+ADoE0FeNZ^y%*A%; ze+}99)U*@IKQ-_UmTVgA%)8Dh=A?(*v75*kCgw(<_SZS>K3(^~arUaP!(1ZhPS%9s zIDDHlNAD4IKUdDgUZ{wy`uv%>ztHWbH>Tp^$Rci?{2C^n zFenOw@)`u)LWixWws9IHHX94NyPNA!sr3j*+wg|89~Zja(iM+U-YrJ)*r#1 z4?5nW6GQRKj|7GER$}5UJEG3d4n_RWPt&;1-;*I_{C<+9@|(F|(a!H(JS@w)NNk3T zXXX{{EaY~Ohg)ZW$C|Co^APQ}_uN7(%Vt954}IqUN9wHUobm|S`r7A_oc2O7eCcWf z0lLM^^Ca!Mt#gKyTx$rvZ_k`x+Id^3z{&9;U^$n49;e-?b&60mIs$&(moVc(yZ@IL zDc?a}^ z;)A$EQHzQ9-nG7FP5m(5=YtKma`s_q;@d0;*6%IoGT$AN?(H`Ru6XGSx>Zr7;<

li6kctflyyvW81Mc!J`&{6r(ICcIG``_>gpQOr z&Tr;M4n1>R`ICd|uMYAZY3DVw(W%5Zu;%}AC*4<~l4fIY2ohmtoT+wIUe=*sYs_KY z6$?SP_UCJq>ZcCdp4$n!WjXKB+$tr=uyR2CFplVj!|9q**T{G;7;X{q>#**q`{XRlw{jT`w& z48PJ~*_tT9cK>RNkzQUhY|!2+=!C9cy4{a0xhQ{78r<%*kog_lnSI(dYP=8cy|yz~ zwJ1zFBtH{+^%=pmOS`e8MY3d08kjy^Am|qSm#@6EgM4K=o=x-$q$8`7Ut73~Id8Nx zd%hNV1;vAJLB3$Suc|hnyIC_}*3RclJcSekvB&*wB9&f4IrRbaNywHNP^Ig`#G_sP zn?mW^&a%9|iH{imt$_ANVK zXg4@#18QA31B{Nb^MH1q`?sL^uckvq3;TYOcK_!2w#f2)mv)fnOS|hswai#>6)J-dFNKEA$#MWklZWNc}9RWRPi4UXiE$rP-6k9`iK<0(|yky|Qm*do%5 zx!)g==t-8#)<78Dc{DVgT}IkpAG8}P+brZ?1Bv@r2jhS<5D01y5WmP%CAd%=?P zKG5Hut;0+^t@>Z2xvM`!M;{Q3SFy8-n4V37+oRdK$#lHk8HdQz*Aeiu*LfyhaDkFI zBGQddH9ICb7}JXEyeGktK5SiL+70~l37yr7g7nG*%y(GY)$aO%w#o8duWV-P^wO@t z{11A0bR2x?&DJ?~%YWp;kGALMM17Hj`nbX8S7xwfcVDI-v|HWm0!@n)V23UH-i&rF zy^TTli3^w?+$b3D-}CY0e>op?yyvp|wowV=A!I`<^ZY`)i)-Hz!=!Q0=Y)%3yJHFu zkwteSAUl#hZ|?^!;EtH7b5_R>aw++`@G^T4uB*O<+FwVs8?(6!l9m$f_6XLXOWXX(y-f)#mxQc z{(2>G+8j@QW4I>IKU|Eaze$DbrtEt-+8tI|hOUsAuy}WiPL4u#QQ-30q_<|BuHuQY{^X>rW)eYv}q zD-e6~t|wghI)VDEv>PwFDBk}#0^Uzx>#ovH>Su+Vc`^9TXWt9ZZs0}{QkWJE%X99a z_SYrtZhsh$Y=iqjb(u5soM^LOK@6cBe`M8Yez`1f_@XTT`C12g!?gRUe;fsDNQP2n zHgA}A<+IgrQC%?Hck026AMLn^o_L(Z1HRN03A)}b`uJ%#KQP!ig_&1$JiA`zSiS22 zxLV2PQx7pv`;SDeDorLTxI0AEKRhzdU3YYYb*_V&-?6c8TSMXz~~{ z&^hfS=!}}yBX4JS2+U*ahSKp~&)tj+&BI_==o4mKXm@$aPITvaB;2ySB)M*+%+;{a8F&0qZ~R0S41e85bAQ$eG^4yo2H<{=n2q@$C7r z(6*2rXW9wnsnRa}^?I}dxx=M7?D)~n)>sY));dG>tj?FLWll(g6#qJ_lS1Sq}^rn)D}z&-l6u_CGA4(`s2Y996@FObV0ZF zlQmwXU_fH4*zaI;yd(TTobhc4QQXdcx1wF($?>@Ug0{4#j9ni^yAl+IgErq6zv%Lo zIlcwUMsuI;+4Fmk9ON6GwvzJ^me90NkC_Lw>mPBEf% z{{0s6KYG=pJ2wVkGZiD;{`}GoTi!#_DNcA&l)9iB<$n)VtnkEF6~8m%OvgLZ`6*H! zV~r=e=?TUgn(-8IXGM5}yP}}Gw)`z>-ZvO$?d>Y)RR79j!=*iOguW@`^7&JoNzfqP zW!VwlS#nW)LYA+$J4F-Pj|=S*6@t;ZNg_Be+tWeF1#bvPhi(sm?3aTD-T3%OG+?F% z?7ZeD=nkFRiyXXlARCd z*rLn+4_#$?p4%R4#QpmnVwu`iGW)s-e&yI7w;vbU4cmEznE9LFhMU69)aJWn<@ByD zz5lTF9_V;sVPuH*8igu3xg5cEjhhy`Zabk_^RItsc!#&dAgy9H7`ZF50Kw$8y;)!W4%{4^PNxuT3uTkOoQ zD|yGiyW|b&-Frh={4M7Bigry~MbP()C7f|{7K|79Uwzw%4(i*|@jirVK=!Lq@Fqk< zu-%&I8>G{P7?`w*eJ@4F3-qreW#8h#rp{2@{(R7`Pq$oh(>)Co)$6(Tu4YFFuX@3P zpP{TEz5aDHYL&l@#zs$K<_qmKG!COxoi3y6)4~PaDdQJt(bsX(u8J{&E?Sl+9WTq1 zUe!UKG~I5Bf-)BMe2mOzhy>%|EBg4>XF^<0QG8D=6SY4++D+*rt5fNlP25(OGuI{UGOUB3 zAoB^CypUawNIM`LbV;y=U;Eg+SK57u><@)6G2D1i!d#crN?&msl)d?=7Aa@<_9S_9 zn~;k=!+g`EqLc2R;ir$PkVt?0Bx`c}al zB6tr$cZSdA9UMQ9x#xtBZ%?0ieu}KtNaf2^!FaE3e?`+DzaWi&*t$&H4}awgRhLNO zew^fs@2HWqRld?eZrMyc+I_ZCBPxf+N&7nryPT@2(wHBr(reS%=M6eu;M`5zF#QYY z``QG-cKdxwM@HxD@j+xI=+X-3qS4NF_9xuPoJ~!R7GLQy59>Q-L zcY^D;JQC*YQG`!XKn+505zPUY?=`;`IJm_kL8lzZ>BNljgGhH(PW}A z^_%$8vNS>GQEE&Y<4eeaf$aV7w^9#j?m;hpZp%UL;>@QcZdd`4|G@rE)2_0vFKK+V zh@9Teu6v?gQ72V0JJ1Tv(9eYS_fy&pnA0l#xY-FzpRmuJw0q{VM)W?w31(NY|9g(T z=ql|YtEXT4XFpdpB!dKM8-T(I52jt(9lPjH1q6{K6GXTqScAV*UYwxF! zBdwVz|9pyIynn|z{C^o|I^MBO7UVuR2zr0CXW}i_-OByohVh#`_HdQs=aR_9_F$mE z-Y03-b@xbeCp#Lt-n+rvuW0uoXsvYp&*AW@UoYH#KGSa3iu?R*)i|)2$G#7v9rmrV9B$49$=q+f_{Lm<2xu}jc7>AWXz zo&3S!o>b6naKAw6Ji@^CPmQ1}TDya6JMIU+%@hRtVRd31k$)KgclXH&I<>KLiOy1c zNd3$H9?|{P`Z$@KZ3_dN0qiekQG8+~w|FrD5ZCNmksx!w1XP z5I2`Z*nd({(ETkbBtH5xA;gyb?nlR~J2#(PK5PP^MeP4F+C|RGBExT+LYs%M(~O%$ zW?ymx^HO7I-(Nc3@t$j>^~3Z);XV64EOmrDuTsVFwdzB-&SgRH$wm>r_~bJErQKNN zzOZzgF3dM>6Ld-o6<}k{Xm}tOBj_Uc$-$&Sp>X2%NI};n{5d(?D-?b)}c6;&|(m}uCoda1;NuNvHo+an5- zYA??OR}q_6N;@^JR>_gMY2e+!=9SWJ^txB#!Ls_cC%3S9w6vQg@(>#b@$uk3rIZ;z+Fd_+j(n8W#Yub1 z=55k$+kg3!WgX;C(oQI^o^}P9N2Rx)hrs?TU6|{Qb^);|($5jo;Ff+RbAD-e?!Wx! zf)4WUY3H=F4y{`?8LD=&?+KN;Fww<6nAglu=9d4n7Oj%y?>^j+kJ^tj?dI*?fEu%B zK=V;HZ11>3zWQH4=|Imqz2Cg_e>s({KZ zcW@h6E9mx~Jw=oTjDR^0J~6K0Q?1A$8}XgSkuct7sE?1Q^6*=*88;VYJ+xi7PTIB^=M{fx_p?q69o-201#e1|NYsWRgc+3BB zzz)X@p&#Gh2(CrgS4)M zttS&{U?C3Ns8{_IRdP|gULzBQcjTWSccxw1T~5)($1hkyuY~uc{d}ff-HYD1AYlMh zOgb&-y33j18rdEQJ6D_%baicx_^z5FaNpVMjc#}HH-sUkAFP?ge&3?qajU6#JU&Va zMrAPVrexW0;!m!;+T%r%J$9F(avt57OtM^14f3~sQtLm&Z|rdE1Yuy zr(UN8UCu>o+_qB((%(E6bRV`j;KRvUpn8e@Kltp;Fs>1~@>LbLBwa6d!Gs3zC;b08m0M(R(oHnL zJb<}AXxES-+q3@Y7*y7mecu!zCofiP67z*Rllfo&<=62YMF|YbC(i>ED>= zY}%QG)}fl}NHASnM%vFm+BKVALGtxsFz|JSpfebyjE}2~fZpRv1fAMUHEbly|NEQH z=KrOReIg1-a^`Il^ZC_tdc&WCJzYKg<6FpxZD zzsJ+=bl2^qbtMO$o%99UO-|oP96~V|E@s!c{{HrbGui3LTV^fe`-kpAzl|rr@s)lypFeQe^aGG{;K9hQs^5EDobXe_Va~yJsnRG*ThlKyx_K=Tdnn2x^U)nctf@d zI&<}7Ql)|Ea7Z~`@c4|rbwg@1(&6do;eu{ztpl1Codur{~68rXtxw#t5bws-$krMuPXEdA$946TAhhSs8S>g#c4eWfT zhJ7H=AB6}Hkz&T zPP;7@9^%+OKn4#?V$Lt^c-cNl8%h#jNe9mdw42^V18K}m2g@Pse5PION(W>-B?}Vg zu=9m>L3s<%eeE*b0^+wD*rCq3p9eVRH7N&-tV#bAb`5&{<)DsEN zz5hnWC7o~K%15q~s4t$yy_%(l@A$ky<+IuEV6>a=u8VVLsNx0v*?bz>9m=)AQ`c-p z^E=oVk9KN@J#a$P4HUCLj_EJ$_I-}Wo96A6MmC&d&KvCpht0+ny7AJO0ZSOS{M13d zPH76)klxH~@3LC*xcH*0dk6V{w7YI{$mK(iUDbd750`CUA+k#jaOv`YxVE`gs7_S{ zx@{lLT$gmar%ot%8UD#CWW*4leBA&sunLy?+n>(!cM*6l2}=mXW251{oYN-^B*37 z>PPy(+*9oD4DA#h&Y(e4dqA8H`<<9}-Nsx&uXWvI>$li^+h^5#`Mk4Ee0BF*yii?T z+PNlG5$`*VByi;@X1>sFQI}kz-gJ~aRAk@7(XM-50;y>zAV+Vq`CMn#l<*Z75N}Z= zC*Ar;753fr2gx(`y(8@=E2u(`iJlNYxth5yX*a1t4#aPQ;D>I$pqqaohagYc@5i)k z<~f3n_vDi$F_hJ}&6uSx7*B7g9s%=g*sateYXAGI(RC|7;gbs=@jyYk?Z5ukbkJYg z&A258Jst&t!%Madz6W^9>bPq4HAF(~K2`1^Ue&_~!jswOwYIf8c{?j-zOS`{ z^qr3$`6G*G<<7>VU6O&Oxb^!m*t}Xe-g_HQG(=-KbULHM%qu#cy<`HCpJfQ41)hR# z<;}^cRNWjdYOr-@=y+XceMG-D{UZC%yE5^{Z1#{?99}8et>VC+E-{8Zz8DvFp3R(J z+J*TT$@UX=$NgT%2)YWz)za2K$@trG_B#n3Pq(+JRI|%eJZ#Naaglg z1LKm-O~o5}c#Behe-}+l*-v)73xgCY|Gst z0IZhVFb| z-|Nxt-+IlrWc8W{bx^OFc2bMC=&#aM@z*I)(0*KKCn>kV7f(3g`_}`Qai-n>t2ey8 zgL=cXyR~>CcF6gH-W_|#eBZxybusUH%$8r-q9*PA@gXXV@xn=0TA6lf7iXb_Tha&M zK^NG1P_$dz&m6C?bHs;66$-`+|F3>=K?n7V>39q42jMGU9dNQ#MKIo4&7pY77!%wx zmtE(YdtOu81-tO>x>q>wEkF_j29ooEam;+7UAe~`G9~yLc|VZN7o}a!EgKS5GC{ie zeU@N6?)fUIYw2RC?!~!`yKC0M?U3!UGH>QdZgAo^GWSa&v9}BpbbWG~N#&VD(pWT3 z(EVGFcABgnZB+;LXz6yp4?IQg5JH^P*gRj_wYjY$o=H5h>>$rqTRTVc(qb@gX|$Vb zB^*9DXFSQSHDivCc1zMRt}Hl!Z1lARoxl5VJR?07O?cN`&`rHI28W*CEWjYXpuQ-5eCLlO;XLC;iBbwS}%WM zo;P;9dc%eMVT8dW$U1`&MRNrGPyg$z7 zQPA=JbTYu7()~bbs0MStqFvj6`AxGr$Zw+E-@gu6>9ieu=>Al&zd4?=?;4Zrz|6gc zaW}JH^W^a$ei^rnlYi|CX0I-imTs*~e`$ARjy?P=GlH$^Re~-*%pQ78*z^DKb?0$8 zJ#XW{TWD9-_Er17@8>>~78N2%izP*oEM+T1vTxan>?DL_4=v}Oi)5F5Ns&S%B)bT| z`}_PppXW7C(|7v&{krDNoH?g+&Rq93c%F^35V<#+D~|F*qX+!K=g-mq_euB4Gz87$l;H10 zx?VHsJf96lA<8xQ!)SW_mvkQzBG8NH{l#M==>5t`_t+{P>6|FR#YgGqY|^=}pMU~( z?8Bb%bY2?ia#W|He(8dDMG*a6*h6Y7<4n5fy0QHE z=GowKY%?{lNO$ziNlG^AtIPbA&pJ4^U?&S?qn$x)k(eWlDe@VVs|4!;fl5SPEBED_= zI5@3G=ZBH*`tf3ZyHPx}$z)UKci+neT>fK`FsO%QFOT6o_&4>1F-ya!`AoWMdk>g9 zN(ZW57qMM|IaIwxAZ2qw-0}J)bl()Zp z;cZ_*@RH%|)h2ZkxX^K~0D-rB&=_*qyuyqT8Ebn%Vn@c`$6aO}iq$}Owh;C(08ThR4y@NPZ3 zlUI5zsgD`{occdQIyXsu%w|b_%vGJ#$0Xh3FQ529qldw-esta!>Hd?Cd0Uc?xw4ad zOw#q)tAjrIy1bbc7=8a#B-lT2Hf)b%dkah{USLQWr*)j2_xX(`iP=Z#TMAA4xI zOFy4R|II1iWyuLIjdy!DCOg2oax=(Un@^21>6{MhLrOvbY)t6Gbc=`S!=drElKi3T zOgH48d}Z%W@|DSUH~&*-R<4sev!qMh6@o*X(x5zx&KD)!-{=9jVAKqlDMROrI+Xn4 zPH2jR?owa8_MZL8%ezFu*v8S+IFl~yh8!xd4ub&@$#nUl-B8MOe;6fyfa%uUG)1BX z+OSoRe*YlbE!1>INLm*n<$;PfTdY!UA$Au+7pyP4Gt6J|TQyx!OsCiVNcYv>9;E&l z!zekr&J*bZD{P^XcY_Uk==Da@oqcQrj@S@*Cwd)>bhWkGu(hu7YbU#QZviymgCHvOj ztNe&NUYDfP&HI2o^G1OCkwnThb(IqZ)OiUh0rusBtQ1-xsq>k%hOYBTx`kb2kUt&) zGao#o?rWsedMb}(#)m?$4b!N3K)N7T6;vu&|M-1wGSeOE=7g-19l`5OKc)*2JEMDj z+#oJUi8{WNWs0Klo81MI4+Z4|gIjpBL1Urem>bgtWw!BB%f>)|&rmA=ii|gR!(YDn z#AwOyqrNa5QjkG@;t`;-k{&-YUd=^SG;l^Ze37T?kCU$WXb&{Fi$C~eY^BD9bg$K& zkaU70xP7C?k8~ODJy7U22S`fsV~)#@8wjc2(Srk@(x`Ud{<*}Z`|?6%#^dtXVhgx? z9Kmpx4OBeRx$oBlbII=qrDhHkcbw0pE4I)9!*RioP|(VZms_L+o)r;r%`BQ3Z`c-D zF#bCN_T0>5##_1PFP1ty8n#OProIoQ=E{p6XmY|&PFeUG(Z=_AJ`#R<_Qf6hLAr_O zWRR$CBn+LbPqjC8`Q`!f- z%IWno(zUHJhBfngfxPf?%qgQ`1E`bti43%fs*do-ex>{ zst9y6+nMp!d~U!$KKXz_R2$_keLL#i$XN^B#7l(HvV9@Yr4JlUm!aMlNcVb?0W|OL z1HKCM`#$Nur0Bt+OieKC*M%9+F}xR)1p0yfNBTX0jJIrY8xC;vhL3S{-9gd?OU7lK zWL!3NGA^V`Zfd}nfB1k`D0^J&WXte@OnK-T=uh=ytzo86GMN)C*bRH-fFCtwJ%U&(S@3iT>2huH-^vLn>LxOsPwyh}bx9uM2Sh)Q ze=aN)rr6B*pZ$fFXxPMcE`k%i{rn@|5lIvriy>6Y=|2sBjyRdq^t$Ez&S~^e7mis?Ch| z!14h;awHMnHC9m1<7B*`m08#(Jq7M2g;DMDUDbsy`yGT~Sto^qBP>yExEoxLN}>8o zI+KsK=)poqDB3@Z=^n)dp=vb)2=wkF?l@1$c*gSwq9{Kd7_YdA>Idl>-^ZZwd{6N) z#b3;Jzb%}He)RrT{x{Bo>EyIB&_wMMqP|0qQR5uz&_jHQ_vH2-ST3jwnYcdtA^sjY zhMIq*b3E*X%k~fCZ`Y?X-My_=ICs&?^2|x}yeH$8y->&3d`fZ2fl17Gw=#c<=Vfid z_eM@=Vo^Z_{+q{+*Ot3dbhoc3Kf{sEw;+%2&&hoLOu<0@RydtMzN#os*zRB{ z+}m>NfASNxdQTRe97gArlJ4$)MR@bm8Ey@vzrT=fk$M*X)-V+s?@gu7FX;?im*6=K zr*X~i1ZrGJ*IRc9p85sBi|_PvHtBBF&&BPx+i;h;5mdZ)y$%aiey+l6<$B@ZLrFbB zDFayK`H-6Tq+`{KBpo-Q1?$g- zjUO4WaN=R?zRUz1k{p25Zn0S&ZrKqEst?zz!+nq8{I8y?MvnAr!Z>z8!(E02lG9Wx;P(gCJ(igy$zW=)5= z{qw1Qknv7BmpzOUISXIT&Vd%#`|0Qh)*161A1xn{CjBn(@QbR zOSn{NDRvHdfY<6GXt+r~-;*w7ekuNG><=~#^3-`Foqg|Cf%v`$HZqGGGPBXdYnmT5;H*@mX-mf1wdUNPlvmE7bbcO_w6jjFyOdY z&prdrx6$!PCwDwaoH#QB-fm~dd#vzQq|`q{QXgp<^?!zpH&iBvSCj0!lvYfiU#Bl= z-YxSzh3pn9v6EwHZn;Wbi_&UD92V?DKS6((aaOcDp;1 zAMq2+Z9w%IJzvOp3*4NM5I7$1T1eLuBwf!bu4wm`v3T+V`u&4+-p_rIQ^-23JA|&= zeHo4PUS#AYjIXm5@7qy|t!@0_#5H>Ukx);v_F3VDD1yLwM#l~i4L-!S%{PJ=-&sB&fujFI?k`d z#-a52Al>G==Br@yA1DLJzNCN-9aq3=PKS1+ntYHo=BY!(*5;4fe$(B zKv58V-blCnY8O#mzzDz#>2V=lI{qP2u3F~TKk?S- zppWAV@!zfV`284mQ&64jF1$Te$qkRK$9FwXi?e^nqmJ=Nx3~NmetYJu_?;g896`F5 zBTr#2Ya`#ieH=61TEzo6I#HkRR!)CEAmfGn-h}I85wD{{*MTG*vR{b5%3s6d?8j2= zmPFs-#^^f>d+!x5w@E9vIHx`^#AXz^XYBr@Aw8J3Ty_E6w0$J6~F z<0)h&gM&YtCZ}Fk5QA~GM+Z-Ew_=3N_pq-7bw)m-(i!k}iVeZT5 zS&*XZiCtdBQU3=?*X>0T+?hN@@S8)guaa(N_DFEwAq!pmRa5yYq}y%~0Pn($A#Kt! zrgP}&3kLBK_`NP&FO7_MI!_)hd@uv0`*c17=|T?4!1uLgkoH*(I?nqZe=lCrmq`?HAcV10qf{-Cf$>E1AIk(7hd2<&jZpqyA_E(m-T~9 zUredUMm}I=h(IYwC z^*r2avZCVYw!Rc<>|BLUirYBvXFZ^3=pno`*N5q9drHH`oMJq%Dwyd8PP&EPI46Q$ zQ#19vMz*VHegTKNG~&0thA`tD?0pdT-~CX0d#L0a)|Ejh#&{05GOo@0Ki_T0cv`a} zakRezh~5sRoX_$hLRD{XK|gyt_jFeko;58AD@fDzX-GHo{0ZzeP74klqyI0E&f#(_ zj<@2#(c6UCZZmek{&7?BL0P))3>okGoh_mU-W^_v>G?uB&--WiFU|${ta~i8T^IKX ze(i*BxclG%luJ=e;zs4T2@}&+a!Hdtq4}8|XfL4ajFC=w=m;L4+~CU{`Z=3)>)Ul; z=OkZHOPol(_mJ+$H4PXn1VCRcw);0<{#_^e@?<RiZlM}yAr-%=A`R^W1` zi+%Z(|FR@X@{MB()15i1f}FC3!`CWz>Utyl+dORmT2bE{2F&!M;^jTf5 zb27uW@mq(Dh4$(*xa0LkI;G|9{Hy!HFvW|`&nDgV(JIL6niEcba!WnHCt9-4-uPH%yjDrRcjy-%C@J-2#;d)d2YhBQG=`m_#&6T3XI#l$ zXCdsi1vmRocQoNe1=cb0rp_wb{#q|_92^36UhUoe1qe6mqf(671^IQESiHO}YO zJrK6f@e;zeDR8S|u5sgDIZNsaxl!XnIvJhr{GJi=upx+k-XI-+vL8Rn+#m8?>G~0* zll554uRqs@755Bhw)-Y)kEH$|2Yd1~neLEwJwIhmHI6VI$aGOp+W7Em?byYS{y%+a z*`e}=2VR0r_B(G@UL@&O?`y(Ub5T~>i9_apSO!a@Hy+x=Tl^>8QkRLSFezdZyG zd6NdeXVLkrV!dzN?15f_g;K1y+0aY;e)EB_$*+~~c;6)*gx2w=ZjXgW+sv5m#0p71 z(1&Q?t!FS@icu@Sds-xXv02GK~ncDX^u$ahaaI5E99)2%scf+m0Sf&uT6nC_4y-`3~9$OjkH>@bh8;`)>8(wk%P!iey>5sd#UmhPkrnSO;vPW zbNevhWY@V1uUb`wSq5&<<&`O@yV2`(q>GT`i%uUK35)(m3#sQx z(xqv(VR26%ka1|_JI*W8y;N?(QcL>7D)k1Yvs_VtjrLE2xB7|H`wSV+c4+~2Ta*H8 zX3%xtT7RZ;!^7%3~|41j_%@vMJv4o za;6i-)Zp0H!@)W91mz?(w7A0u^o4Cj>cTdkAQ9Kk6I4YG)VPrD0%IR?(ha$rB^q<+ z4_-BnuFpWa=;k7k(HCpjmBcaIW##XZ@ti&$;`1k~K$ld1W;`QNIY0cHIfVVSU^<`8 zm-(5y9ic#)Ue6=jjVr#+&pi4Kr#=g$;ysd=5|!+865?W(3AH}^c^{oIaJs9QIv=FF zC#m0gKX?RWCDXqzBi;7O2L7{FEc|{vfEiEN*#kAMv4@&@O-$FKW{IBMa)RL|YnbkU zgB5a`YX@mLJ1AFlDN*=v-dR|+eu0oYKLPt)8U(USRjF|yU09VK{&v3*$M>1abR~(| zB4aBNST3R0L&3X!JW7eZ3#^rln7Pi4?!$9CcKAeSX&_c&8Gh^knLvNOW=RVnS!{FHx=*N&k~{akhO5|gp`=~i-Z{6 z8Z6&hNR12WRMz`J%EnLFBdnh3r0xA+uBtIqWxk>QpOf(h8yLgPjV@6AV;40pq;rbY zgrH<^7+QFUa&pxtg?-c9g?C4~h((fqjQlVCAYIk5P$*k03m3nwp!z{Nm6HB&Ny7_w zTSfowophz*0NA~$FZ8??Lw&C!-7=9Mq_y>hMSbaY64I%4a|idfWq9{FQ))hw&i-x> zP!HIIqsr*@ZVOp^Z`}osLi+|&@o(Qt{KOp^;M+*&8IkT=>os2OjtrFh`cddzT*l+@R61WJW^cQf z{ZuC*@wkn6{mKv6>5DO#zSW_|k92dUH{s^h}NK(D@N$yFHdxV3(X~QLfJ|$WA;vyPkjf?mZvdOwTLQrAzWCK1uQ@{&bQ@LAt}|BT%Kg zGCF*^jCxNd-I}*^Q2vc9Z{;dF59RK)UP6(rNGLL``?HLwEqNvtZ?1HMkP+`K1ZH54mDfVL zPh+!juv86BtQ^UVm-{CZt5#pda{cJM7Bb#h$@p3Sm+>Rr`w%Hnw!(9v{t`WYq;q&A z=B>{B!fB_2spEUQdMjsf)mt!}c!J9qvlnaL9Rz!oWti^4>%q8U>NxnTbdUP~M#g*g zSwmzy)dz-V)9(wU+w?<+Hx3Pk^}h5zlzCZCgg?i;g(SUPZdwe2&v*Jt_P6q<+9lnF zNON#la08dGF`@cFx_&8|a92{-ieK=88LvWJ8a$>JWAl5#(DC{uyqf)& z8E4Q|}P!^~B(%;QUJy@@yYC&H?%_tbL<+3pgDHF!bHRCpdc6L&m5uRn2uW`&dB z8<5LgldRi6ldRh}b+T?xI@3T~zIN1Tcxn8J8BbH~FkiYL7}5m#{|p%~``HuE^t}3bZ$yG25-MRY%rCoZ*TwU5|`xchO9Q&W-$uH5wYJ@f*BLL8!R4 zx-6(!N_^z*NAabd4Y>Ixo##P1xu+#w#-?eoA%lJoAl=wWWt{P)381a@nAt8=KIUxX z`ogO|{i*(v@uWjn@;x3$!!Os@%y_+Yvw6Gc8W42ChZ*nI<(vGpV0Y!e zplrMcOXUPH<9)YQL?VMNxFn3uSBc4Q6k^lugxMb7y;~)9s4lLyf#EUq^Em0$B(?e; zOmT)%e+{Z#(p}BkkGJ3-c=U66Tu7HV!5p6~e2Gsu#xdhr9(gE4p6~<{O$Vk^2r@43 z_oEe`e#VY>Rq6(}?SnJ)Zg*wIdo`^)Um__sa;`tUuG@?r3Lm8Amp|)zTUb)y0Va#} zLHiy3zD2tH@Lzb(^i8UkeD>5&NboS@g$ zNH_AZ9(w5R0ftWWx*F*o>KdT;@>XDR>^`$yy(|Ody0{0-&7|wIlJTlnn4`P_J)w5d zZ)UvozmmSbmVu|G*C|(XcpvA09fbPvSG^vT_`uGJ-+0Z%r?}%dldjsx1+r!+g6jY} ze~5G@S0y=?XTRh7!xgCWLArf!?ZNPGv!tduofky9Q=@D_D_j8_+NGKCjviM8<=-5b zPNn~Ek@4I{%R|a0FQ`0K$L#OZ?($F+D1vy)hmD2V)(7t!kuyxlbuH*S2onMtIQkxnMl?6+v_czi7oBE;e%lg8cRw-sb zN-qT=&2mk68eqqFYKswb)OBVF0o20p2KESx()e{UxpYyUFRDP`&*!v!XAeDA7gL4LTCaG@|$$jDd4t|z8L-TZ9oypc}*t^)t?Q5y7Xh+;ZdT@60p z?lT^)5krk18E>zf27fBrAA}kMrW<+Bj~`_ysq;CGu8%~d3>z8 z0Um1E!tfnV!mlUm1T|$_aGRtJW|ef^0Mh-4(*#ua2;bDRr}{y<=DwQnYlS7K9H8?Q zNcVHLIyAbKh;{CTFyoz;QvkosmH1+4Kc@34x`SsaM8UE26V$kn?Z&Mwz>OF6L0)iU z#(Ua(JBHX9pf+}esN?;Bj29l~hI1wRJnn3xzx(v^|HLi1=`36g$q{mlD)=v5`oXg> zMd%ohbgX^nNN2SCFJEhE3CWAqnDN5vt(VUw2qnwq+2sX6I5RXL-k6!t_JCLEl~nPN&T>QT_0NC7k;JGeNYbOjs2cjh&^m!Ot{+YL|4CoBZ&B_YL@Y zD*c^-bkAQZ;R_F+DGuM`XKFiCPr_G!t-)GV^tw11?`@Br;;xfaV7J+DW;_Gw z0pb}23ZSG*@2??0=b(_X-9uQc+9p`uvVyNCo#0Xr`a2Ejat>&MnXV;FSwTO)kZyux z|EQjl{i6~)S+6BsMdUU7;A;|$G}WQb2k9(qmtYf78q7UYMLj>0?%#c;iaOb6YOuvI zVYrU9u&(D%K>@7bwPbzzsVCiE(j^?%gxLm`P(Fd~FX>uFsln$4Cva(eLER5Xr;zyo zhpSD1n^Cn?e@S;>)h4Xsm<-C=^g1@_eD;)aO>5-Ptkd*9Chex%T#?a^2-o!m#gVwnUyKIfcuXa0$1CGsr?E|+{_XE;NU2_yqT|FH(4ajG@lnc51k%aEh zGCzR2e#v+*j4$vdUeeGns6W#=y}rmdm21GS7cNY9`_(mG=7tQ2gZwBbwYK+6Yd(yS+xFH_) zcs_UyqU&3buI7)cSmD78=r(v8HO{1ym7I^1|8hP^xBs$|__pf|*zlD8UiYK!N?EnK zt?C_c7u-pXGrJ7 zIB%r$nYjz!9h(H7=F#U(Kcrqrs@zoWGW`+PaO4|qHN1_r%jx+?x;?&Y@SKSVKJC_~ z<`wB0{+{4wy7z?BYGIV)i&lFt|7|P$RI?H1FE>ErC;K32A9{V7bb2{vXj!RbPjFp1 zX1w-+uIQ)9I9!!W=aG@|3?+3Oj!Eh`^zEdM1LB8R3K`K?1 zUIu^ZehA+c#WT13C|90%lk*+FN_4-wiO@KnUJoVR_moyq=xx2SN-ugnnRF);Re3{M zX?$@;IyEk&Q<5^_`#R1PfAXHkbf>R~_)5nW;Ef^kawc*f25mRxeWjOYbW|xmdcEma3~$ONWKxOxx_J@-98(9AbpJZ z(IR9y;DPNHYwa9v7|U-u+Uam5@@ zK_Rx1>s`XZ>S@*xQFm6{u^*%hi?;;V1_Tec?xLO(Nw+{!OZt6nZ>WAvj|=G(G*zJR zoh2wPrN@PIbJk(*Crjk5=dWEYHt zQHJ!o3+bNp%N1QY9|hlE)Av8pjW{-q-@0i$Of4y+{$G+VG;%FpyCMb57Y<@N?o}JV z4F$nH?@N^1v;)c&x7rA)qf5EGk-EtK)lhur8vVRMy7o{5Bvbu`57`OS9*^_7gojK!H0~Q?%#d;Y&+Sv?~10Js7%R9=&pK} z+xN!^Wlie`g@(4&|8vqkHFrX@6l_5%em2v!?r=d@EFB?xv@X-dDYzo5FPf0P@jTN# zb9O`BH>pGXHu}36d3?*0-H?-HZPlZ9H!7Z%jjZT+h_&FMe}tbZn$w{q7UT+w?rsK3&q z?n9)T)^j$Fs7-~dgKH^QP?{<9SCTxh-CNE@8E@hz7{x#nNB@3-bd#(O^Zp-$Ay1AT zKhh1EuY#f)9YO!yd#b;rvtFQvu*yqZUrNsx(v`Iup;YT~JmWh3zDl~pfi}p+_7q-s zlg_6h9g1*6D`(uthg;}%PN}HUGZj-@g;|+nxs-qQL+jbuerSYC+GfNn#?FL<*oAz@ z>xhiEOj0l7lB8b7nNI3uknY0Y9DYOaOn7>h-gl04to_hP$Ev?Uy7704d67XpOntL~ z*^kBVZ}F*(QLul=F{Z2I?(m2V)qq$_YM;%rz%e7if%dySJpXmp>AUUdw#=?8wBdQB;7ozFo?UN2r7#G znek4%9sq+MU&lA5zhgR+7#@x`_l1&o^!IzRUHOCNkn|3LZ)FAZ_@b}tz&sC6$hk|u z|31`y#s%9u3Cm{bbEm#2prylt;Zslg{hW0AXU)+8Nj-`!jdVQ<(&Z>yp)EbUp!$&$ z)nC#L%d$aVOB~^D0DWDO?!7OEwzzeJdrPkJ9p?e*?%f=THXZ$hFFgyS+8rL*T>d=O zLEzGUc)KBysUGxdBx##{M)J@0#LB09gnlX?`y@maX+O z=9N8%AnUYNrh6@_3hBK-3{z9ay z@KuB1MT6n-Ma1my)+>J{`)Wz*9|ZrR-fL9{9N`MVOgJ|#s7znS7yNrm)*>1YQ}IYQ z=N$(s&<9ik>3)zdTVIkNHd_(a2hrc#NtckX3pJxXVAZSx%y#1g)Ij;rU~qay_m_;v z%ICVdO8h_h2bIpB%Deq@erq~8zocXByF@yFb7{!)42RtsX?(}|Lb{wge{ucJ(U3Xy zCv`qZcXUeuwx5>*#x_qy9pjbQbQ67+)Q`ZeYQptdZM@2(kx)LVFExIoGt`trhON;s z!0R*BF6oSGgHX3)ns95DE!7Xw#qJ12n=Mtq^0qIt-LVy+NVH6FriuV0b zg*m-ssdkGjR7BhN+X$EH&4lL(ZG7I7k#IJg?l0*|C#oX%7|A}A(R96G(tSLxiY`d< z4_tO%q3&y>YrPPP9{y2=U47{OlJ0~`1X?5cCU#`J5p_R^{H83ramYqkR^l!woyW8X=&=L(5NcLg( z6&E~VA{q?JY!ftrkgV_0gt~n z2+SAIzoRGPnIG4~#@7n*Dor|HAggtdAlm34*gse;)F?UeJD;b+{L5z4eTa1T>iu{l zNxt679g0jh>Uk7D=SmN4|H)h0*Gb+I=~P41ko$CN@UCs6;spoZTKym(cToYFJgZ8`qz`l{ssQWJI%pegp`rXHQM-3?#G{r-hx5QFdZ1qK02^>1^)*qLh zFs1rIy3MsiP|OUBZHB+1&M)c4EFX$eXI1bvWlxw+r7i+t;S-M)ndMO z-bJRXVLEqXL_Xzmvk(Ir1f3JhPM&FvvrTC*MYfIe@W-ePv@T`rSVJO zrZ8PZ=plYh^&mV=XEM`8qGrB)q^1~>>EFMR?JmCgj(;9>OJqMkj*2(OXoc|Tf|(!_ zsvvHi(abj<(G<7G(eX%kapHS^tNty~_i%PR_3R(Ko`$|SBX3*(87zZDE;9O z>U@yxj=180k{w;p+Bhqw6SVx%kO4;M$5#4zNFi3Y3~Sp9l_mz_zJYFH@7ps#WfGmg zLApHEuHrcB8Sq!KZ+XZ2J?X~I$``GS3joFQMu_EHFX!?rXLg6E>GZlJ8ShkV9$#@z z6H5AusCccq4PGr{Erm+kzGCa%7x+HD(hwHdpXo%6*Z8I@GT=3kUI!!Nr7l!OzQu<8 zw}+w3cqzM$P}({t-g-Ly96`p@kkotd`Y-h!3Oy6OkB+wyiXT{rS$PzsOK-A72G*V; zMPo!AAL)`joY9o{@wnf7Tc%qw*%jS7Jr-}BPv>Qj@h)a?=yAFfnm@9Mng>x!4a)Yu zHy4)8HfQGNkZ!@aCfvQhSa_!p4;|+V>DuoJxVjL5V;4H_hIGBH1w35srnv4HecvG6 zy4_{i^;Cs;iOCeI-6Kdx%(W+b&DN3@2Q4bVUOwZX@)`YIlynhOv&GAfq`|yIdL5B; zxi{>^j{d2zTzeID{gUq1$HSs;x@wSSJ&Za&-n5qo=o@Z>=4oUf{~C{ zEyHvuI#=X>Aqs38>GgB6-Aysac!=o_`=u19c)9Z)3H>6C1-<*gth+$EnO$=6sjG-T z-<7UMK{_Xs4fw;JO1|WCEVJEm_oeu8)lNRfht3Bf<6T_nj;~2=<{^OHuHpM7;x#u? z#9m$K{1^E?vLaEDhp;DH;BE)4)5WHtYdGi$>Uy>SqVSSmvM6YbH(D%!EoP^t|LOa ziOIdh8-DkP9oG!0^Fg|)K89S{_9;-i08{-XUF<7a(V&K8@acAv>G-o6qFdvApkV+&wWxUEi!{V_U+jf>^^)I{O7=T3{4e{RkZy6l z3>eNagXcZz^-$8Cj+2549*b8wkAjZ(UDBzKGQm$rJ-{)l2~5|0q#X8ccY{GS_LN&Z zS4I4>tDTTOZ7=spvhPR_$-W~=o$Nb8y0PX%vFtz<{%2qMchRIPT@r#LgB_uGEM0$% zbh!>z_|gd}yfBV_J|$gYcD|QvZWS(?nZ)czm|qRIezPN#_VZvmSFIY6;e_vk@01M6 z8RhjBUv+j6-o4t(m3tZEtBW6Ct|vXtq)Sigiuo6AQ2Li1XVT#zE#iY)-Cn|Tq;Pp6ecnj7!egsgCM6OFubjhd_xC^h#oX>>znBSIK5)yHI|_4swsAY3 zwDO$cC`nDXfz z!a~Qs~y5#q7dDQu0yKY2IWo#fq+Zi{0K{+c@-;=86W;|>2b z0ypMNhh*CsOm}Ztf4od99Y#OdNcH!M@mTJ5f|Ky(+)U2#)=0RlBnz5DpEBKjjc72F zk%gWrbbc5aZ}<7(u<)lcOxK-H%@@*b8Now#r5Pk7XjAZdUD4zRJoLR;id%^OZit(1YZR(|JpzJ5sNJ)2 zT`HY7LdI)wRYRH!y>m^wdL)I5pVu7#XFDywsXD$`QRscR|-b~4sN zM6^1W^r|nsk9L8kCOQv=bS{S!VaeD~aC$}OmyoUow_q*F{#L)|cBSSs>Adzo#uu^& zK#*($?s(ovS7&!0&s`b>=g@n~ja$&dsn!_?qk?{Whh}LYb00fs`TB(FFX_5V>bmH6 zvw|mi_nD5B7evM@aO03j)D4vK=<`duttP%`wC`Cgnx%|7_Lp?|N`7c_gACl;d7XKD zr``mhshe8x&SC8S&aWDS7IK;R-DkSLVw@y}E3Ad6kBhyZDf&UoW?gt=JA&#j z>3nuMz@&6D(7ln*bc$!Kq5iTP9NG}Vbh{TCgXVB&sQb;1$C@wX@yW^QL-lc6(0NDC zm+?(F#@p zP`Ok$_&AgPzePHYYvE|hJt-)VnNIa%P@WTa+`vi*&4?=3U(*K}-m``C`(7~J;(?mT zXPyHL+DX^dAme3TwMIYpsl)7dubA;1JY12@-dr}Tu;0)0Oq+a3AL z6%AY56NVkXL&ej5Sy$FC+ejF-=2-c}kZ@=l`V_Ald>VKBzd*VOm!a@OvL8!8C;PFG zuEm@K-LUnsBtFUgF>0dJRAg**1o0A2kClTZ^sSFAuw*-5vtwTO1aWc5vGE#gNjhPI}BpA>u`HFI?tSR zH$I0#&kaxTVQqT7mUP`be8A$jF?=dEVYYkLR3CaZc*3IGZA|yuQWsJun!%aBuPOJd z?-_2lv!hU;t|t7F%!9cz4Z&BJo(H5mx5gBXZ!mzAJ`H@w>xgs%^`+qe3WrB(bp9Xd z9CsJs%JdYt|C8Pyhjc%N72pF$ra{pbdcPg>wgN6vQjel+hMBNw>SC-Ssc)vWm;SCy zx&*Wcue&aSp>6c<D!#|(~&C;p=E{jis*a7{KsxV6>~?(1v8XKi}jige{8`@tuLkGN(Uo%cmL+n=tG zcBv0ctiMdn7t*z@GKMwtdV)a#T^E9MN}qJ0;id*0%%|T|NcVK7E-3kNu+4E3v)u#b zO3;4O3$CR;pxkz4C6S7wnPBEOOkm{+lFoNZA7p;q7ite~V8&zR*OBqAUb07VQ%#^x z%u!~%#sXIqR@?`&{I4<{E5D9x7xMkkNwEp9**c#ExtkTGkS`D>*6H{a|= zC;4WiTQ9SS_uP{TgvQg4(i8rUMu$TjhT}mL3%vj@%}=_8xRG2 zi%|l^IMVkksiSS&@fDVWR=_4e8B2ahZzZ% zcGwF$74`_D*6!myCF6YSX96|Oq*Dq2eu`BBq<)yqbgcSoWW0&avdF-#%Q%Rf>>R|jQ1kc62Wjc=qsc!-RU2;$RxuN^5)K>Tzy_I zA>yR9;QFiLfAiPEI>}!n-BY=6RL3j9{Xtr|<9Q=p!MagsseC&QG5SOGmvkz3Mx$9_ ze{lAOLDY3by7lK1(M|3?=9d{TLZvV&ly&ipClCHZ1BRCyPbv#LReeE~lfKi!X&WU)?B|CKL-#o|p?=yS@}YMykR5 z=3($|xEeLiq%$v+hWwXN5Z7kRcbo^LyXe`1PfU*h=PB9DcHQ#dVbA8VFz|W}wZ1^c z+cNGhUUV@YiYh&*cF&1S1^N3{g17&3VS2+5RF;SF+)nnFBwcZF6iSHLk3SYyQ^!X- zWy$%FlAMndotzKSDJI4t@4ib#cycQ<-pt4;Xj;@{aoraBypi!l8Yw9H_Xgfz%>XK% z$1N#u{8wK{v9}SY&91srD$;5V01LUH|4Si5AsegFcbQYuoDl+zKZt*cIQ{FPGq{2 zwH4UmOtr{_r~6CBduzH_biXweRZ7#xN4nAKKSklad!U`0Lz(UFx}(TfYD6NLxpI_K z@43XApJyTX>)MHTU2GHm((8c|v*~!GyYHaFo9IWPH9_on|Je_yQL-PFV0oV0FGba`X&j#;cUP_q>@pfqzv( z=Pez7wTX-IaS#ffOSqjQ_G0vU5Zr$&O~oVKxa$dc`|l`lwf#ojUr6`NJRZw5#lr6J zYNiWw^v7LV$ADqO3#RjtEB5n&qvjzoXH6NA*@5Aqs&96=JF%r0e-90blwV1vYl{ z_>rzWIvyuC#KNty^!RzrX%`Nib`&Umr=r0aQ* zPMjT!M_X_pi$Q@OFrfaZ?@P$X#3BVe5H>cGu|IlBeZnd3cld6 z7t_tzCD~VS?=$iC>m1Wv05>#X;Y7SX(~{}*#zdmyVrk^Gm7XszG(L0UR7YX`q$ONi zg#+@J@q}6Wf2ik4(oIrvLl5^k!piBdsrf>>K_U;-`?w=KQdmvJGjnzkR^&Me*TNTZ z#uraush`P^QCvg)za-tm-m~$>C#fJb*HG67=>{bB$GvpY;rUuRKZkUz>y32U>X*e1 zTm~dr(AQCOfEkPdd)Of&chn z3|wd)!gLo;edRyxi-JKP>2?F7|XBRGw}iJ-am9yXTbZnE6E9dRH(@ID@ImdK3vNRp=& z+(j0Y->ER&EqZT%-tYkVhpT4XXja_Yoj&z zRk%>?F8Yzg&B!+u1U+4@PgFcOC!fJVv)3|Rgvl6Cp7jm?P!dzu8yU|oAPl^poX5?R zYMAk~B=v4aUhNBUD~B;%iy05Odz7Fxm;NqFwp(rQ0qLW3pz3uI6;E!pmJlsj52){D z#;rOl1*5DY;pq9nOjj$(r_q+=)3kSzPeaCAzWEj2rWOguZqe&5q$_v4kAE!+g3SSR zJ`L$6pD)D$?jvESqrg1A!5Mq;>qg0X)IcffIwIqZco2gZyq*Tn`_HA~ol1OFKF7pN z(42G2TdPMPtf*B2?c4cGHz3s&+ALII;)yz@GpI3uNftk_;!R!Z_{es1Bz1P0wCy3j zKmFZ@bd!(vhU8{vC>ws4*{(%G6TbW=8aCC_c_?H&R-GNv;nVr}SoILd7k*OhZmN_L zWvZD8p#x@mSHA6omfsaYw}S`xj`tVRU0f^K%XLK$s86H!ts-4eh%pMu>j$1Qdo$x@ zZ4E(n$M54QM{AgFdY>UE#NiP>noh5u_j7X>El4sh*DBj091?xS55{W1Q){lkQBp30nHe z3r2lNV!A!gP0`+I+VDf6h3S%dI-?>*T|lxxxxPbtatGJy386EtdHGA$nfip9K;Ye@ zOt-q)6}g_#fi=;mneJtZCp!C63u@;TF~heCnU7BI-8QUfA*AV)@fc zsz{g~4hL-)QU6y-_u~da>XI6_|BtY@4y&s9;=Yj(MM_GL?vNBjVxK*vgdHG?l7fLK zih?L&VPJP-VuGzGFlUwpwuoYbirs6zp6>PGnLJxny*3?crd zH)^U!bARGTk}-N_@I5bp%kl1~X+7TkG|j#GJ6|?<$sh7(_+Z8^ZdmFslfL8Au*=6) z*Suiuq_1RPk}|V?X%4*H;e4q+OgwRy@gL3YD0oQ9N7eho#r%U})A>Skcz6xjq8S6G zB?q|Nto-dH?y?!YC}rm#t#{&_1L+f=11Y1;xb3T36)5-7od9iZCUEU0Cu;cS3fZu? zCZFNFONN`H|TrR;k*&5fF{mUQZmz<3s0&z0sv56&l}3T>dZLT6^4+Pqzl|H%)M zsj?Oi8|(z59YwG$U%~8aG{>tmMRPT-h7d8s5tgiG|KDg1H58E{%A?@$3HBb0=AN`( zM+PTlLR|)14=pru16JSeh|e8Aj)#p8h6{tO;HTPmrXMtSHP0VD8#}|d*=&AqnycUB z1EXC%V8Y5b%sx(Y>!vt^xrz+_+B_ASt`C~Ka$6T{w)6tCt3k~EOmjy9u9Fcvhrz7x zC%Ja#&nuVTEX@Pk)=u31jy--+c()-7YL3le){%VIA)K7*iZ@^RfPWt{gfs(3SUjPb zI39}giPeL(dOpx1;WSt8pL#ouQoSATX6o(Gc6)7Y0g5kTp!-Mm{*vZaaqb&wE-(B% z+4pS(s9rW^{9@ATFkYKyh!?u3%DWqMhS-AH=8Pn+-B~4BB(Uv0GBz}h;bP;8 zaP0<5Y&NEiyfVoIj!wTTTXQ9x%NY#NhcB;R$@bQC=WRv%MUy*s%Y_2 z5v^>do)XQ~KV2Xjm!pVeb7PtQ(%ij@4YGa9mC&Ap1G!wl%wuAes~<|4!=7K!dM%Wc zP>scG(V}~AM$e-1MfoY>jPhvkk5((a$sN_v|YQM*IZ??0I zXK?lM7cV1DOETfx>Uw5>ruFoalgP@G6QJ}R`@JsBc{)ZBm)$w=V$o`5JZ?Q~;n%(1 z2G{;DlY3uVDPA3^4Tr|F`EF>=y6Yyf(_TXe@|H1vra42K3h{g9RB|pmh08tpw{BH% zGj*$IJ99JwqvPPv(E*?V-7zvjkKzUI8uW#lBzW93SG}KEoE9BsB%xf@E#*zu8_g~3ql-?o3qsGovG)Nq$BRFpx$!IQ(D(i7=)DD-hlS?y z=Lu+@)L)$dw!iZ_7vkB4PPk~ojsF{`FuIvI1)AH{8Iu+p&BeQi**FE7i_qQr>p?2AUwIwz^RcIe$FXC?iJMYkS0SrMb2U=lnK&u$ z%)Dmu&d{9A$h%_rpgy1x#kbpKvoTtt5eAW~ZMf}=Y-xqYrUyd$S7*|6eb9Cn4VUVy zn7YGKR}F?sbs8mHx!{NwCKL(Ix4fWD3kP^x!QQ{o+`=*^82HQrKEJuhw2$UishdEL zv>=#!d>EHI|Fs<~-5LrpOZnV^pPCS?;03C^*!U9K?zTELIR3sH3`n2OwOjwY*BR2;OU(nqv)d@;qiwg}8umzapLpC-DPKnHk~>8CGkdO_RM3d^ z3tezb{01Q~Sq%zq$BV(=dot~#xz4VqNR0gxa#f$tIV@(@Pv#;}2 zH);xey|4u?x*RBeReMw?0zpMGo^T+K`zzI zxd6?TOL07d{v(cu<}O$T5?!ZBkYni1JRi{9xti6o`(kH!A!qX*(cCs|7je^|!7#i&Kx_f>1C{Hn?29DIkMH4BcBjH&av+|Ox4QT)XsQa5K2!%Zj~ z?PshjeHVRTq;UIPwJ4XyZ9x}y+-NQ>s7AEf9s^Dv+50z|b3D)jRlgMAWiY!gX)bG| z8aj2u8@|kE=K;;tEL20=TKj_I@4I4C|IyqlDIbdaB>~h@&N19L$2EAzT1&ieMt5P= zurjf4etVdHvlFwQ(wtnu6pj3_iex0S|K~KfPs+11Bk44G;LPUFp*e$n)~L&4M7}=} zxpo~dSR?Htn0OYkdUGuv3F#KL*x{0;^iL$95MK@Gw}kC4&GGVi(A=2wv8ZirBiWl3 z#>^L*QMPgzq-W;4bNJCFES;j`Ekt#t5(4{7(A{h8)6qCL>%dD7YUR`&Zhn(IHv6WMj~ zgu4dnV$=PA=I+`CBd-E07U%T)k6{cgRYgA@F34DVG~I zIfVpPbpxfDny9J&XuH)|lYHMd7Pd@T%GF!ruP8rNmkZ{TOt@T`w}B`O`bd`Q#W8mG zM+f5_yIk;P_lfvXLo0E^jch1*6T|4y9Iq|~%`L~l;wh;vh3&33%>1LdgGY14rRPV( zk)%AX-F2U)iFdbTL0voc``_mV+whY!_83Y3H;!tmu=srs=v+OM(WALn?LLyy`UIHO zm>_RD9yI6otd?m0i3aWc?0q-Q-JD%RuC|GR$d&AUH_gpdJ4|*;-+~QW#NKn#-2d)F zOPje5rMX*r>&WqhOfX1d??b=5F2aosmN>0yCm#995$3KGq2l~vW;|%FW|j_ zST)krFEm&8wgrqFJO~DAviU)1F6;L((rA|s)(dZQ?J5}_CWB>Z@b@n37h12y{UV~H zG73s6SkAz`gV1TA1-{vG4=yqML>wOLgYs=Q{~yiuS8X7>PFcg6k(SK=AkCGvzd_n> z{6RiEV&m^=&TCK#+4M^rdbeT!e`zji_CS)N;RnyH+4glddMS9>TH+nEcVJzI*`miV zGq4`c{=d=O$lVLYlxS;cC*@CRI&L%Nzx+64~)Kv?G zjOYOOKYeHB3(dWn)fV||`$f2|4(zTP_~%gI%RQ{VY^_g>KxH*7vfvIer} zO|;$4`Rl}|()!S{V(-O2f7&h-JT%3F;{ZRO-I@d+QvlsH?70ff-CD0i)=M#3+lR3E zscFva>>ByCFe})k8Or#N=JrYbD3tn<-Aq4dPANb-uh`NVlDf0=ndbi2U+rf4YvpzW zpSr7q?agjroz)+SZuh~kOtfRx5zS4rXdvsmC&9keR?NJoIrp2Vh~1bp(3o`Eq zt#2uL6PW}ntk*GmZQ{@4mB&o+nVP$JvfDSJp6dzc?yE5Vqd8tbXwL4(12Sl&9oQT) z;NQhJ|Z;aXHP}MdVhdR4>cH z5;fibXuHl!JIbH`)Q826J-J-x&E>-L1ufC|BLf&NOJ^vabk77QBr0?3717*s+bLqh z@SkMUfhcA?XpUE}h~}oaJQE##ez5t&MYma@D)#Mvz9}~BA^g}nMv+*i4cW*(h=;PEy^jX5TkLKr|@h~@WqJDQU{OLHTW6~!|BNRVUJe>A7&=q75kvw{nV^&icp2%SXx z>sD|yG=S+xO22#@+|?YXAFdaaCLSl<`z#k<_e+8bHJS z7`>is%x2@;X|BMb6=>y);PdD*S8rDNB~qC@3@Vm2;6Gebe4dGUGEKWFtFIvzHjlOLScD^Qt34kNENM(%6@1Rwpw3pt%U!P|)aM z4Z)jcRW$V<%^ec_;nGbYhWFY6k4ygK2SUtx(mjLqGp+YdsuAoj`8nzX>*vy>m$IbOa3n)~sgN^UOYD^N^f z^A+5S`hjD$?D0ys5rWI8IA~K)M!xSYVg8S3F6Uk}Y%p&LpY!yXbwqPLY@`}G>U&9x z688R*<`%E+4K5aHprI4NwcFxVBv`*ZM_y>M-%HYZEob^bzyJp*Pfg(JRp)xa&mE>v zsBxI#GR7fc)PmI&z7rCK9Ydx-ujn6GbAB!}ZZ!8RBM-cm$IBino#t{;J95D#-;n&U z;OnWY4;&$2GsT^T>qc8>&2fN8%@$|Cerx!jhjY-rpbM}9`M;BpPmvmma2capB; z&TyxF1Mt9nC;Y^#i!iJ725Be6!m8En{Dew%ezrGL z=ZEIJFAXG53&(=`zOjtmfvr99WvPDrgW4eBp0g=vH%Q+L`PXo{8MutBc8i7Q1K2n+ zT5sp15)xr7gX81a_br;6aj1~kUGo9wLiW6b<}!ybBeq@aAy~QoK)Y%%OI2C#zssLEQ4(Dv4zk4zHns48?vbfU(f5J3q;-3 zfKFS!aQkuH!3jciEFmL|{r{bAx?IS1cftW{a{LG0^@q|~uSs>wzl&9yOn!c{ zXi|mu3Jv_t#J1v=5C_-iA19mZwlV&rxw$$quv zGr`Yq_*DGa-4?wy36btO*N9E$GtK$6?1+@JJixRukjwp3uOnQl*D<@9dL6W0hsHig zC+-R%*Vs5CnwxjFA1b}C0PFXS;o9x6FA4=)za`#ZS8}<2AxUW8u^VKRT|b74Y!fI{ z`I%zF^-&eUi}lfpTP{#Dk9`iKIR|2Z`YXD?+n*1)da*u+Xvs`>h&jUUFSH(Sf1$Y* z)7{YCdoAHhp#o|;ZZ!8u^hR4p-Xwh*wYc2GTIrl_)>rb`jeSlGkN;4f5v`6-Kf6^i zLaP7qO{)JfubKKEH1|EE4|v08a^^xIY1%%Tt9;iBoKM%0xsB}iwKQkx+6yu!yd^z$ zvFn%S!d(JjznTp!*lxqM>uQ4FnVBkNji}~wJ39&Rb)phDHd9}Nw!1~DuTd-2*QjW& zzDBqEKJ5;)!$D7^X9TIvMZ8q!;%75;E)*y(c2sZ3E&4!m&`zd(G-qcX3@u;%A&;)H z`yb8m>K4#kiw~VZ`Gh_g=$z%+-J#V9o@Y2hLfT)-8CRNZwUG>jb&n$y#cK`T64!6Map%>Eo1GX}>mvByh?4#Gzl)sghJ zNzh_~C^q#A&6SxK5j1EF95Aks@wiqk*OADZ()X*$DqOqYuC|gd^v!}#`t!JUGu@Qr z&+g_zQa&4hMYr$r2qoE}yd0RQn9S(SIno0wY;nME-^Ai}!J6dn!LiV>U@4aiywzHc zWmypQX)c%3QBab%yORsgkFf2d?Y5bD8W)@#4@0gm)cwYIV7pxWp|dXPQPLHDS_hM+<4bdO^G%WKG#iN8_kzor zC_18VcRGTP>jEyLYY`Pzb zhkKxT>Dth76Z@XrZ`1;8m~M*q2(!6yj5HS#*cv9!iG=Kf?EgN^EqkL1`Dv%g!gTiD zh2~Ck;vH$u!*??IVmJWGzO(NEH1}k$H(3*_19ug>GylIdSK*{Y`lfUOts)PGv+8Vw zPubYuc|#ZB2C4o>sZ{@?cQf@rXfF2Ox)fKMsY^j~)!B;ZXnAR%|wM4oGK9K9dj&D(m zR3Z7H87^3G4DbFsfO!8j0>La4nzoPT<|Ymxo(kn|0c2-tWZn(OzwR^DiC20DwvxOPW{d&njXeNHysVDG2f zByPe}qaE$Lxy>5*{`(Vn zZdz+1$Q7jTcPksMNbz~we+=sx?%I~dUxylHbcTMBVCGu6?;1Zl!OE zzudYhWOrX9UYXksotdhFn$A<2JGo(tcy?!@IB{hPm#Z_nDUQN!X#IQk-jvq!ReLAS z{v^d)^!_69?A`+v)Gg(OtgcTC*Y22=8feIAFM0e=HcsYQo`pPhxf`BPcv*Puc!_9j z8V0K`ykpiS%~j}aCiQU{ps+!cnSV65E`I}QQRxG-a@aTunj2@7BzvD64R77pI24+T zGIbS4t}2#akDbKym*)CK%oM-XSwg={Y&?kd5-s_6YYizjw^|reb%QAAio|7NGNVUx zA5>NnhZXl^aW0u$ZsO@#e{B$k618TyCfRNBL2eqoSuRyHC<~dG%drE>Nn+GXFp7u_R1t(^r7g{en)E>5Vy+|zg z+i0Hh-%tfr1@w?ka9mD(_2@$nl($u}Mny0CEoG^dw0jXdc+ z7J9tz#;iA*E8dw!((AIp(|s=EXPTQ7pGC6Pjf2n&u3SA&Sr^jUbP@y~Ss^rCZ?xWt zQXjJBQyLgv+sD;QE-@mPq;Z=T@5PJV%LD0|d`K`q*q(fS{j}4srE+ z$Vf9w#xBkMQ@_GUs$bE*nfetpSN*;ZT#RZB4rP8^z0)dvfSi)JN1=pnls1U0;c6EcDM-DTbV(Kp3wUrqzzw0iHf1!dBx7?S&E)T#a4x6WUlUELJSy*5(3i`dZ=r?4lDCj=9wA&VC0_^0-VerWp7iE&-j7X? zy}@eIkjdr|q5Hdil{He$4+z|jON&@fYB{1PzrD<14`glj#2`1c!Z0>;w!)1RKOc4;oL zb$eKEeT8go!P=!c!}Sjdvc64h}tS=Q0d#A+rD%2w~^K4n-s&weqUP| zFr%VS-v}#A7*Sqj8UsJqJSW$8u<<@L*Fnk$w#cKATpxCh@iWbBsf+-dTt#TNem|G< z?dA!`4x7S(WyiSO|Kf9En~Be%?G{{fhB~l-!9i7wo>8inY=4d^o>MZe;@W|>=x&=3 zxYCu4YoWPU?|jhRmF^$}hsc`Fdz$NXF9MDFZUV}I0bFj`pFU_p@)Z)gmW^wn^`7oe zMNg)kA|Jf_h)wO@zE~}0Tp>l>?lSG8xiMKopkP-qIk$W* z*REM$BADejlD;8q{sUTXjg+h9kra<)Uc$yB(Oif6&Y+~|1ThEtF?NgQCkfq-nd6e7 z7b;R+RZ+nUJE)0d&lzYgGNKL2_+twJy;`BB{-ZgU;|6HqKk+%A+4vlq`#Q@4y?a$k zj(V~8Z#4Hb-3@s^Z3!U<6}Wcqx9@=-I$tIhKkhO8O-Gd#i+Ap**!XoO4o{0fi|q~2 zgG%=OjpnRvx*^rShUna)-OTvXT#S1+)UQql*`5`-b`K2CK#B1|V#PN0KAzTlP?&)X z10%(kD;IM02Hlu|UheKK9zOAk+r9uPqNUrBP|>9B2E$z_+a+{wsfB07D&gSnVc>D@ z7|9x|#Q2%!;@8>1zC1H{s@TA^kLGOW)|2FgT5!MAi>r6A9Frnvhn2Wj0$$ zquVXw5Ws$4OLHn|GssML0gSh>@7**P7rt3O0*Au7XiKJj?W;cdyaPxa^y zx2%4UUHR<3OLNWPz~7iy04^eLsix&pRLT;LfYXabM{H^APdD*DPN00 zGx=I*E~fCLs4C@ac|Sau=?Bf38l4eUJXJwGFp$gbHGe2xbL#;6EsVIF_*x6){@zO_ zoeN;NdzN&pt;>)SHweioZ(46JH9lh7xqxJw(0;G zmTdcI?#E*-l=X2hajs$8=X%dq_@{o)i}`!;!QXF5@?d-Dl5NQJgXWU5&yjnb)Iq7G zjLXf@KSc^Hw80tJ_X=9?v-VEnJIw(UGhDcO;SDLI%U^9!R$%XOXuZ?Z2a<6*eo$m) z&*%+Wd{VGjtc&Lzl;eN$zhwPK{ui1{IaMaB%~6Gc-`IP5nyXBjAO`>XN=)4O+~E9O z;+C{_5alg!+jl#2Ctr|WjS0~IoTk`xzo+%ys-Gq|m-T^hK{vUa=eCuk za_(68hS_|0v|dC&I=MMH3)FtH@d7kgAS8*fqVb_B;@3mpIL46aXf1y9d6WScpwM{}FkE5n((o)AY0nDL;wz8|lV zh_1;ndQ*3%zce?rw2HimONJe9`R&8|50Y6urTt(VV){$#iAfs?t{e@2nu)unIo(^+ z$kUaI&@#0Tqqmo6(v+0Qo3pzR(;m zu7&2*zkRB>Js=aNJ!9iqAQS%eIf^N{Z)^W8X$WO(NSq znmcDZiA=loom7sEX66gc`G!QwLpQeq9dq`c-N4iwC)gR`wEGWn=iA08bE5;i8uE}C zUz)4bGe>`J`VsP_ZRiuX0~} zoy9(v(43c@B@(7>B;S3#fv0!zojY=0noGi-vCl8G-v9Dir8Se+isq&t6Oe*S7c#!w zmTT8-YA~9qpDT_&$3CyodhxS+qpa~KMdxz%{|#pYzWLJxM=1TlT{i}U%F0I4-I$Go zqPby4){wo{3o1TuVEjyTb6gc*#u#6?w}HJ6rMd1$uM<_}p`iQu4)Y#QbMyNJlfbEA z;9t%5m*#Hk1(E4}CP7d2dCYwy&FxcnBK9%Td{I>7_T%coRe14=Nl=+4aJk+cu#b9aZFR8;5hbLl^Fe zHCY=f3?`>CT(|7mpG>_hn&6+Tl;*P2{7eRETq2 zrjp;I*!VD-%kz9DzH)yiySiqPap&{W6-f{H%vw9d||U1KIOanmgOu z2;I~7LqD}jnDs_;rgJROOm$B&EstGCzruf%`*bwJ8#da?H}^kF9?yFy^qQ0gP4{t{ zD?eF5CMRB$4?91S%l$r6PKvIcl-rr4bGiECWhBPo9hp6{2bYTqSwc*!q8fyOxjy6!-s67>dZMQNpgCR~9?jMFohc4^WC;zGeq6nFMo+}rxpv|m z^F)UGo@p&l9_@rb@3<@+{geS$&y?eU0`@y$n%mrF6wHQ7x#=nP-jC+u#~MLm-;aWB zRX46(lLh*4%;>1UWhLtuT5t98OJwV$VbJwSBlDb1bG>G6AX)o;AaaQrW7np$iF|W* z2i&sPCBbEgi)eGESl%a@jq9Vi^?ozO%A1xju9o#P&1qyW6MgIEiDSQx;M%=s{6rj@ zV<&!UW;|#;Va7Xg;g}KPtAc@y-n}yzx3sjxd%v9#j=YwW&k75~d^I*MlIFS$KSYE@ z%f%1h_*|=Z2g%J@C&eWJv0S@BuUC*I+mIODhRu6K+tqbkLY~b!EnfeY!05e*Y9pIr zYmT#&s)U)dFUTEcje%{iH#7SN&HYmkZK+fbt!p#&&}eSTU1KzUMUk{ph3Y#0r3st38;%J_w{AX{HBdCL9| z(t16GEwb2=q0*hLCAWPl)09Nt$`pwB#-0zo@3l*aSmB7Z8!Lpqeg^V#l`wcIXYW5~ zZb5*Bki9M)?o1&}KWOflZk_Df*U=W=HjR?GZw7+g_e_gz}=oaJrVOU)4Y5X<_7<}^12i8>Sef@+N_WB0U? zzTDfx76;{S7XFDFKKCDS!!#Fd^OXEZuoN4bi5sT5>e<#rYs_`xpqm0s_XC>SE#EJ% z__j!_FB!+>9xvVEr?m1CDH%6{%ZVB*Wg5G}#q&{Y95QX!S?{*YXZS~4Iwp_Nn`-?U z7noS%YxC9#U+UY!lUBQl>1g)efaYE&s)5_bcrpDO8#h982Nt)6QtP2&qDn8W-BXV* zlJT30#We#4a=B%?J4sQW8*-h#8C=ePa1nXhdxB^d$NDeTc_yAvVTbdMP7(@!UzUds z%!LzsT9c;ZMsraqRr1`^dGPIcCKG>3b03Ok$;O7{L7^d=kBsJQx~~xb8pOfGuIzat z&HXC*CHA`*0RhgK+dhprb#(Bf2efFz#u=T>8;R>SJK}(S6NS8g<9CCaiQlEUgIA1* zx87vP`|iW^m*yt_>%XdI{6}*SO{(N8E2Vg9)eNrQqO*r(;eW@%^37|R{>FXmCp_+H zg2VS`3Ly_iL%WH^q;c|j=DCjM(ngK~>k;K7q^6qrPMGHW7be2pX|*Il7{;~hRvimx z)Re%zcRh2?Kd(f#(t6#x4nZ}+$4Eljd~QGP z{~Chc^_osDc(U`feZdn!X_6l9=G;Mu`yGlh(%zDIzdEt$dZW2Z*P~Ebf*^nLii^<5| zyq#=nS2ix!Yw~&joIxhoS@)CwU@6`jn>@dT( z{(AaHz5Oj}2g%^D_X{pJHQX8v-x>&AX6tb|y9+i*>xCc8FCW3>?!4J`h?B!3*V8Lpu~RW@>> zAxg8bZdgexW(rKu@$J-x3aJv(KG0cc)4~J00$jA5N_QXwFtM1g*)? zfyap}8UNATtzUi6xbW|!y%`&KLvwK_`yz{sePpZZV@5Cb$W&pVk~MBzp@Q*`O=6d? zPl&l8doM(Dma+;l>We+}`Rl;!Lo}y#^Mcqo`U`pXf<1?$xgf_E;`A{t@a?WHS8u$E z6`H;3C5fvvXSjX$v}EBM&G7UoTG)JrD|&9}3yrtfI(9Ty{m~a4>SYVLA2XPFMRO;5 zBJ`}l5)OBY;&Ll5^g_3vv;nPyL0s;~)!r!kize8-W6#^i)=j|!)>>n`$Kg0!t%Q8F z9|fvg4VZDGxlOWlB%nGIKD}0A{`YBa&6#<`Gb_0EOF_sDR_NMYe*g+32jcZ>zwA6tb0Hr(o&#s7@Mz|=Jv0tBi&ji z!B3NB>R?fJPe}QAR{Tf(L0WIzyRBqL>KHhcQqK6r)O86irryrvD!_mpIB4TFfzoa(`tmmvq}0 zE)+XLy}-ux(Rvr}8$v6673h>`!quBBSBHCl=z;ND5AA~FC+T#}QwqnIirDBVE zPl(ve#?8^(v-VF#)4AWsrXOs)Bh4K>^<9iMZ3zV@*!U}&)6P~wrAP%1o3Qu4GqTDjkPR61 zoQ$hYX7uh{xF8&f(7-))F}@ZOE2iaW!P(1f{3OkFj~gwXao2?Mu6(Zk-Yzl5uN^Fk zVB_#;J*!D2VwQmwv~MO3Z-bg9KDEyRpO}Mj<0XBxbVW}HjCswxU(%fN7k%_MvnOos z+n0I&rMbUrozU;8{t&iXlbJ6x_w?#ul+*1G@f*qJL!r4~w>T7F@s0fPVC(GB+^6Hi zP_nF+wCZdjZ#qva7aqVZpBdwd@p7D1G8m?u`9b2#tC@Y0=GKJ=g7T*J(59G;o1?jc zmk8>mxWntS*|<5HoASC1)Lrw2j*r;=h2{=eKOy%^HJf%6$5#eHSaSJ&0m9mqqI>POcU6le>uDSF!7j=3;le6gR6I$#eSgIkjWoM2qjn z^7I9)UwkSy;S@y;>=)ifzRs_nga`PF8ZJppKWJ`@QXO%2@)0#>^SRVBStQKp9$66> z$JH|&KAM>AUyVQCoxtU^otMbQc2q>yietIl?5qv4X9Y^=a~XR+N%tf4lbZOpCQPo` zcQT__K`JWFVpHs1Xe19>vyLdQ84FwSS!TV_T!8;Fa%e{;xW2o?<(9)7qUACUo?TRD zo)2if!Jqq)x5YW&{(UvGerXO_8WZREOmJ8|m#g=Bd>fLhoeE3FUFUM^r`?wKoI4zr z&OOg?rX4l>EAANKZm`ORio&^IB2Oa2UFBb1O3*wBFje@5EL26Hs#T8OF~vhZnpP zI|d{nFL_CM(|vc|p9QZK@#sqV{MZ}v0Z-U`GPK^% z2eF3~{?BhJSMN-GTBq9qTfP6Ov&6IeVcQD7#?lD?9e<}V++LR*SV7MQ|IVlp5~O=) z8)NC-xg~p_OmluGSuh!e|s&Ke#E_roJ3EH~!;d0}Y zbBVd$7qVtTe=dgx_m(%9yTkK7zFcnc;Q;yOiLIfgkgs=Su_%si;{~IO*n3^NAIl&2 z7X$0NK%eLB7`uMojODJwtT4KALD0LLO8QsSi5|P-xm>`~Ai3+Cbh#{yoiG27UhnQ= z$0RLOSIOo-rMaka%f!U$dE)u+Y#as6mCaovZfNX=rd6}&$~5OM#ZfGg;wauU6GzcK z<*D$kQ3>b0trWa-z7oN0S(C zX5w|>_ggdEr&EQXxOWh#h<`65qs}U>vdN37w_Nb0K1=c=IWUyB#M3eJ3;(9_FO>a z(y|Jz@fKKR(SBig*c+{My2Vxp;3qhyf=m(!Zx3dN;*!iu?#%>OE_ zw_>gfS~4|)L`1RY0yKB=l?Te*f0^K3hK$|U`=z>Wk=D3R-9f=`$av7c?L!jwCz7W7 zAI-tl5imoRhRrK4aJf~g13+W^Rq@p-_8yGZ+gZ>bRxD|OzULsW-aH?FFuDw+@M&A% zwQu4=>AO^veb0f`AH7=)0Hwj+y43W+^~=M`!5P znf*SV=BAENfU7wj;Jhu{k8X}FCg}mGTWU0>t?6zqV<7b-F#UJG-jE;(* z%-Hxznp<#UmHcvfB&u>U=IYt>G%3&53PW$dviBdf-oGNbsXVp75ouHKTM?Xt%m zEX3}A*nYIUuU@fnlRmzwv_ts)?u6K8YERHU!rm{?+`>+8M6cmquzUf#&S|b@!y7UB zuR9n4yUuA&-BuG#uQP=`^_tAQqB&lDKbqUNKo50Y=L*{OY<&`%b12h8hUON~Dq4kW zH$2A(eeG)x-cw&Q^ZE4tlJcxJws;s?CS*^?V&v@v2(?+y<#>Lk^+xq+5MRBDha-(W zxqAP!?~ByFPX9mc+tpx<)Jr_TsQ5IaH_m1{Ha>2RKNu$p^Q5?k5Giitcr$SiH22_y zg8c5Cco=j4D`~n9(cBv;ZX{ER8(G&(+z8EuR~(j2{W=!Xud(qFG-sYtDciql2!z-+ zFm~fSaxghAx%e4vm zh<}vCgKXJ1E*B>Ccbe4S)MolS=OTU z0t6a=CO5n1a=Asr^h?D{%?IK zHnTojPi!Igdu5E@yE_P5&t*Wv_hOPfts8UBKy&|$+g@qhmNheOG{?)&MRWffU$q|W z_|n{0%W!!6yCoD3-_5LFntL4`3gU57*xJpO;g+xKBSg3TQ(^JUN4UBt6Xp*~BXgGZ zIMmRzpKh&0$$m`RfKHgUO~(L>-tZYg;>dLfsS zGOj{j^DiWD8D_?f?r+rRNH}=v0$CZ&#)AYVT*1Smbn)@yFZ`8#W{69Ue48Jb-##dFCS(;)7;7^jMyCsh5yb6b_dl8&8qozce7HvzH@p;^?$0#W`&v(=dg>$zuX)JjETwph<+p)cdQ#8j zPFqBwMJL;U!P?`@K2F>Q`oDn+s{k)QL=jTr7cxOFO+VPId zjg{(J+DmmU$2U{glGb~9S%%`4d?gFK-*WYYpe31| z^)qdk^omDQ+8icdUhQG@mhKM5jSZH#u{;>}_&46dznORonoIS&?yoJyTV&p7%lMh* z-v6-_&HIgqpv{?FyVtMv5KVSv!MhqyF1NZsE*`j_2=dEpycBKseyg+M;l;6_>%hiy z1>RbYAEoHytF2S``$ic+2@dDtRmJZSD>o+28a6AOR!mof8z=JpvXqs;lz z9n(3s{t?aXpJ$EKyE=h+LnULkRg$VqbFd+fxG)=!v~Ph>oeeDW(`EK&nzKx4jkXl% zgU$o?y_@EyMd%`pZC%0g92@sVb3-*uk&A9Ch?}9$wL77O6-pna49U6t_Pq)ZLIv=E z%nANNnyz2k?z`PRP;jm`j9cu^yz(YM3;HX4VO-Oh%99el^sRFvb4xVe>&Q#~U|V@2{aF z`4yKV^^|>IrMXzQ zx8znqTQEGt#!Jy$S^FEL{l*{U!=qqk-=I0gq?6>$kT%dU8*#a#Rr|=ZOLnle1K)1v zZ#zhEu?>jE9*kb`t6vqyul2D;z%Crxtu4AE`FWkjM#j%Hr{->oI`55ur7uI7{hsEY z&9p`z+9EhUfQ@6Mxn39T(ZK{69K^=VJfOM%joXT5#?5x`Wo%fXj@#^Nz^bp`kakm| z;mek#r0IT2b594nCKrAuLD!0#%>OjawJdl*QZwzOcv1Gfo92FBzDj299SW8zY+e_d zJD_-ueDWCq<4yqMKbl);R!R~aM#E3_dS;%|T=DQ?(s`B*ct|zcoA!5CWECD|W`Ng? zc>RC#*km-5$A;!ctZM=L-^ReLd)CZ&(A=E-*JNyC5)40ii}4@LiFUOl?Lizoy)c`r zcjm=easiEi=x(fEXuZqUP9${fM2H{G#w*iYgXIcLR!)NYfdXS!adTI^^oTy5tI|SF z^0tV{r53Q_V<*OcG^c3uOq@C;PVUiyJ#VME;=r$BTEQREelGhSN^`t?JTy1|lO;M` z`h|4q#6G{!+_X{7=+lXhR(q%@yg~mbd6N9JDuFVEjyTXU&V{y$8g@!dYLq+{q9uTmR7xBDMygrt|s# z(Yx76%-d-NQAvC*;d&o2Y=JVUF6+nDGn&;`#MR2MAdcm}uHRHKu*eYKd1WClQ8+;w zv;E*jwhrSznj4)0WNObisJpbCH0=k?Wfo$xzZ5}qOAW4GmpK)rGUKAW>iS47x8YnF zQMYD3`7RDs3lL7j>wJTTeNPU%T-QONaV^K5b&y?NE3biug7=?O3hjl87K#XwY+1AO*t72<$-Yzf+;b^gvJ*lgODJ2}v;EHV{XNg? zHJ_$uzTf}fuWQbkGxxdAIoHfJoyNd~edpy5?by00v@7-$zfoTRGO(V_chfHAlMhG+ zZYF)kT0rybMmzU|7N9;_A9X5G=Q_>J@5r>q1T?YIihCZ>@1GDupJX(l)|=}tmlTnA zz9Z4>d+v-o|6-{m`A!Gy{kc@KeTf2iiFxd4Hf$c7cDy_`?V@|0A^A#9@O^|0bKPiX z8=pc7#r!3iT`4s0KiZua>vRPDN1YDZT^!nzJd-EF+l_2K*<%=y`HZr`-Q$ZTQBMnn z-Esaf`>+mke6-uut4YY-?gW`f*nBeWMtA!m1nv^+4F~WYZ+;0K??{OeDs?+X=FRZo z9-ncR1)6;#f-EQw;JS6RsYmr5GeSxL$^jE12L*}5OJ z+hEpOio`YJQ`Fh_H`>XocSyG%6>}CzZ2c12ZCyP<(25uV`o8RUGuoLQTrCLm21233 z3ue5yYa~e0z8T{l4Z9=@)d#?Vmx?g`NKdYF%Z`S!DKANzfC8=yxD)~d-9HdJ9~swa zb(6xGCKZUaso=V0H{GFwx&w4O%08dc=fRuT;&S?j#G$qW_8huOay7Rtx|0We~eTEWvROGxwIFYPApm!hI= z)-cB`MQ@^b76&tyj>sg?a_FJ2_wgbh)Dl9oqXbFr6*BM?f5+d@<;Lc9=y@zi1L%(|AQT9|)Jd<4?Ks*1h zHpu+}CJtkrn08H$>foV4MtJV5MqelUZlJF7i{vCIb6xusaUNOl2l9O>+b?uH&llFP zX}CM29%l2Lw6l6(1?djoh}t#w`G9tDd(B}^hpuo!a*Y}HwClF?K3TuE4-{+GFwQUM zvhTw^MtJL6P08Q&4>HC22YM~kKcL;59VTe&`7SUfi2eVio%2&ybbX~O^c>ZL8PBxy zDDg$tub&{9DF&$dIHld~6(Q*IU)PDk(Z}3)*VV$&4e^_?{u}mxLH)sZ$?vvW*!IR< zU;C-{=vyB>knH}&#G_s2J}G)MB#Eq;Z_OMZ?bdYefhs*uk+E#F8 zFZ&)!yVZwckZxr#xt-UVY4=!Kt!zZO5q{HZlkZo}Kv?-$9dhpGG1r%N0VmxdI{yJt z+{?aq(@xw^6BM>TCZ`S=Gvl6ir?(qGb%PuH8FGu;?zz6YU?1lO{$tpB3M=NWlKh^d zgB>0^`NoO)>5Rp5Nct=`|4X~H*O4$iEr-}vD>BDNyWqLK;K-~T(mI39f6%U`-WNX4 zctiR=;%Wq5$*SDrx8Jbkh-M7sDJ{|8?WiXnfXbEZ|i1}ZooyzdO$f&^-6xQr#&g0_k1(Ixi4g99l zPg#@tXdyLz2H90Umbq@Ulhe9$a%C#(zOy5?$2vx|&z`3eUt6C|j1yfgT8%)rgB zFYP*r+i3r7XonvnN_&4<$N!`X0j_qPUY zG~~M|rT*xJxh5oD?!a7MI$pHlK(xHGD*XA#?$7aJ* zCo`^S7dhauukPKMaP77>*KN?ZmpY4eE7m+?>sHY5zVy)%md1<%dy`Yl?~-3UG7jdG-RD2_*bxb7urqB zwnK>xUy0g1_IZeQynV!ISC#0FMh?}6V*SUY`TgGS(>LD>4H~#er2xmT(1QZ89+^oi zwq4qtG}i%-lRwGplbwJU&nv2iX#G@y0Rz0bj+dXN+uc!7Ko)Peg`Li9-kEk$MN5ct zt}WE6uW~KByp_tfc?G9nej(E%Yfr#pKCfCv+mAZU)q_RvM2Yv)4+Ec z``o#AS~32%$pruSavaChXh6G1p78JqJ6>p4Qq&qo|A+(Qpz%z<&~B4h1JZYjJ7^F5 z!5km$`iT2wMTq-l#kH_s7VSL6eX!1n`(QP;un$&Y-crfmb$d?umEfn()ydhrPsz?I zwoU@=4&H1#%U?cIHg^(j*H~ss~6$0aM|#<3i?njdnxS z*Wt}#zI(v{Hs5{m&n4M@B{MA1x0LsIa)z7}^Ox6Wv-wNfjS=fzR?TyVi{07#AMKWO z-cPF2g1}6f%_Gt-;>Aw#$nib{Ra#fxW| zaX`nj*{h4ToLeX;o3ZZ!v^x`Hiq`7;pko^Bd}`WFTVaFZA4r9=_J}#Yws9Tgx%WHZ z^!%HWA?rErJa*Cc&B z&X7_u{}wpLhB*(~9rHX%qBN|bM!|*aocb*!UlPQ9wW2(@?(aO^f7R2c+dZGsDARsF z2tI`>a^syUnJ?RHI2<}fR59b8j<;B>r{7bor*GauJ^c&c&Py!k7~#H}XC=An*QKpa z1VX+xyH1^U9RhrWK^Hs2npW(08ruC`A6-YRkKU$*`slR#v8Sg{b1nj=_fTifmv#ng za)j^S{UA-k{-4t>snvR6hq(7v(F+SEUedf)(m&tyF;Og#lpZ%m?PNR2La{b%^XD+y z&AMrgx_VzC+r&M=c~0KN0qOo;O`J8maozL7PH2aoEhH|LG51}%-RE~a(VipPFu~+5 z<9@b!f$jYaF?zL8(vUF|F8AAkZPw*5_g&fzET0B@cUqEiMQyGd5aA2B$5Jw6xfOFB zbUd3$R`A2!i4?A3=TFk^`MWE`Cw-rAFqzF)&`wjVqdv%cvTz}BB-5^7(a-lpj4qyV zJ591+yE@AF>;-cS*l|z0`h}Xv^{NEaQrY_??P@%u9&BtpmC*Hw52j zADQ19?E)t|qYL|t!9b7weown|Pux-F(>8Fex`7*Sbz*nqK2H^FQLDCT<5?)^y{v?BnKh}Z18 ztj$lW@Rks594@=#+nAyw%QS5uwc@vd=D#D_)sE8E0L!(6xPdT*$k^qn|Q zy25pf8+w8Mf+q50KAZQW+nv0z7Zj{khTzXd+;}$8zA(5*2TI?RGR}EIzGU2GZQOoL zR&f{iSkS8y*Y@_P;<{DW2g3SUTgaNW)m+D`$4$5UL>>h@Wc$esyIO9%3x+)anQ4Pl z9XtN$cyP)OD#$Og_bPjRY1h%p9R|-(gEa4VOuL@iUa|tQ24&Adi)Cpc(a;p}h^!1{ zpX+EB;~oKDvX!7`Z4Nh{b(e6+ocxZ26&~d}Uk`t{y!#Ugbzu92ZrA93H;6fA2i*b4X1HUYri^lQH-BmWSvFsga}L zlRf)=yxMjUJ}A+_wZ|0kfn92XvKY@dm5oO`HEkV1Id~MTPvOVY?Q19GJ(vgq5&fCt zqvQFB-`n^9$M<&H&G5|;Y(qwX`Rv`?c)RL%3C~v~!Gge(TsQom@9hpPd~Zi*=i{vX zX1Fo8D-Jc-PkM{>!pr8fS94CIp z@n$n2<=r-BTp2HGE1l%8iJQWQWBIi9sH>P~%Bz1(nvXx)-GAeRQuNIr%klx&wM%h9 zTYf9S`9W;nnU1H|Bt_f%Ye0El_WzA`xd{Tw*xM1Bw4J!^LS6tmD(?VRH`Z-pB6u!d_2@Nuo9_V*@oZfj+6DZcMh+Xq!YLE>dp7O%y%|Ds zh%1x_vEQ?4XK=d}xt8hyn+se~^Xoyovq9zZGxKuE&pYF}P8-SOotoy7vt|>yPG6=h z{Q2qv1K+dnp^>*|`_|MbW5bb4aHnc_I4I7Q#<5Dwa}Mn~D_KL9han7{!mdB3o#9$b zaCm776UG1j=I2X0{k|4Z-k}rV9qe~e+I>~9fM4@EfwMo~EvhXdg}Evq^Xtj9`)*w^ z-cziNe1MRf`se68+ zg}Udos~78;d;Lc}bJ``w8ls4izT$h?apt;>{&NBkIID%_olEe9f9g&rwNQ7OcGE-S zVa1A{GQV>=p4mb>(7hN&6bJiq zoyFCoM3$@r_g1jqCwsaTygZaIgOoKQ9%?SjZrvUHFRxUJ{MGpNiV zwQE~Jn_+AnQaYY;c9Xo%odgp0f?cm`V{id49BqahmjA+;KYtMI&7q*(rhw@`+67C? zN!;6!Fe-%oeownM!-`3-4=zw4&dqIp-Dp=~89)|}4Fs!KCR|s3)1SPInF_m}E@JWl zl4>6u->WSS5q{!=@)}`*mjU=J@5;oZot}*e+S$hd3@X}k-N){xXw51us7z+(W76?P zi2KY>o3M=xl6Z3Cz53PxEj{ps3~^`k3v@i*KJ&HfjPb44su;_38+rR^M7kY{h!q`)6q~=Mj2h6#o6x3|~;Lk*w;!gf#g# z35VLS>*;8xxOWB#JRXf^RR8A2JN4ehcjcveVV7hmYW_Q-ihfeALNz;SF)Fv=4iHbi581 z`}#WFEGXXbe~I`1dLG-?s0lsnd!vad?00m!-IF~w2$l2up@v1uO#jiY=lTPJbrcbP zO4vHRv^&xLo{%K#ih8~@X5t;`c1V)C$pT-SctP^@jky9*>y2=Jk5Xd z3oY%xO1t{>oy2pH_l<`-yZeR;KzmopG1*s$wo_CKn@ql2|^$0E6;>|=rSSHx`T z?=3T!^PpXB{Ud4Vr`__ydDFS>T3!!9A%8u2F)@SdOn1)~9v)jxRI5jET~xny!XLHP zQoAu(T&Hs5fN*QV3)zqs=55mFVYctKaNJ&*96d3NiFa;>XU+TAK?579Zjk>%F~%=0eo7T8(BpB=&InnEmdKc(H&RTj_?tB;O-V%HDS zj<+t5cE``(B|5)`A}?h&-{`(lLAval5!Ou2lO%4|M*|JRVQgw4b9}VxzM&JU2{wlX zt=V-6wDYWXLaT~x;D;$@`j2+sJ2<1v=@R%>c#`=aq#c^$icY(^!IIi8+;}@Qx}&`A z+K^Yk=9%btNw<&Uy3;P|@PG`hvGW>TkiXOR<8!z7Ui2Sj^3gKWu7BnA!biB9=FQj`lqL6(X_W3Ho z?lTTiZHI5T=Sh~ut3!E7qVVHS7!!|nhdKKW)2{6NIa0pR3-=Yj#Wg=Z+SU5@BR`jY zlUKZ%%ym<<%t=7q31MkFe!L4GlDv)UdZTW39k}s=OB|%9Qfq~zM0S48+`Q*_>2hP7 zJ!p+&shDr9xSxkj3fX)k?FNYX#sV?lSkywkk#;w1N5Fo`DrrLS4WW6z&~Di082D1L zlPn$2u3x2{P6u0a-!8yWt}G+ zoX^gqrJemU12kq^7tp`Xce>L}(fZ!@;J*0{GY;r@wO>uqmRX&_ud15sc=eUXq<+F0 z4LaCj!$OJO!Dz6^Tu%B5?0W$1DlMZSr0D>uzsa5l?G)?#fKA;c^13ZsPmp#s;qI_% z_#RTF%0B1NPG77e6Xej2^hfM>J=(RivW2-<$CKq3*l|z0zsJ4$e~kNKL#JZ3OcU&D z(@%15_9e3Nm<9|S%Fd6Von7=iVix2JoBOf%7upRL>pyo8>pxFyq5d=NF2wDTH;(s! zlj2&c=Hr=m;j%yY$N5Cq?8N4AXgArw2@mfY4r@NK@5!_qyXKtKVOI)#|Mi6V9ntQv z%6X|_C?28`Q;Z7TjEiEMVmX@&Ns}uBWcaw=nyXfoM@Js(0*p_DtPRg3ZOX+gXN8 zyv>HSk^{yXxJ_3N$qKts=(s_K;G409IbYiS-kXKy7#R}l*Rz@5FYS2yUeoT7)pVo~ zXCkfiGvKy+^y_p~ZelH6GWiqp+}T6ig@9*?W(&}knDLu0O&2#FSHAtv6H-f5dtZF6`1R* z;E^bq?f6@^Y>AE}Ni^ezE~RGxUV7 zt9e(HF}6LVScA~~{!F`#30+ax9Y?UuTf=pki5}<))`w%?uXA0BW+-}fN)1l;p2c-8 zI^n3Mbv60R=OWi7#zmrrM?cBE9V;34VS<8G-d`OLJax*KEVn`tD|I1yG@D1HU0SX^ zn$=eiUZt?>tZDZ;SBeHMP9j^jvg@pAcjjmx^z*hGIa_Lon)fs9()GhoNvC^c;Nn}{ z^T=_IM!RFi6P*L>cOT2F6S5B3X84A#lP_;R4egv%0$~4E3)rC$N17iW?RfKUXcv6T z8-@}c2wukKlWDj0pLtN#EzE;5SehvDjL^rQTnlB}rgcS%VvXR2LItM(Xy@wWi8hV9 zN7}3EaGm1|0hI_Rh~8|zyO-J*C7d}xtX}imjWY;E+qz#Py;RwGf;!d*CEZ4t4ZLYp7lg$5%6s!4Gv66# zR}}4r`t@@IH4pZ?H|F;wOL}mfcJ4g#-fEJ#-cOV1XFA>`7bSA_ z=rk~T%Fe%{-TJ4m<)4*jz;F+C-VN=p_N=i%hA zL$c+H3buA_gHQd!B(9?gOsex_#y#y8FWOI3!f%ric>}qw$aW`b=vqk}{9?JTd;TbL zSD_uiB0sL1=NL`)ygN-)#C@5Y-^Uv&mf`xH=6G0o54=f50S1b7)D?y;LwmjJj*o%Dy^GH;aqk;EA3XI0H_&h3PHM4nDeEb zOQ1N9(Y}GSS<61}(yrGtduSbF0%cX~b35&xU9^XW`6i&fmv!3iTGHKV2W5?^&m_kJ zkC6$t70A`CqnYbVyQ5w^Nle3h+;dYV*Hy_Dk-VR?$c83E^+=X8&t4H7W-=^<32BXB~umGmuVw{FMF(zC@z@*0~fAf#sTfh z`rnnFAC(2>Q`q+u+F86&6h{s!#=Z8r!xzFDxfdLuJVY4`T7p;#9p45r`u z$n4`zyFoREXlzaxq|O?FoBuv&7vtF;NtGn-fO>LJta*Xvzm zeythYOYwo`5fOV;jC3ek_w%efcBbv~wai-kc7@ z$V;<_^63qe7^m6oXz>YiO+042o&4j3GV;0aGs(fMbgmm%w34J%hR8eUv&TorCO9@jklsW=k zC+vNQj<;+572(Ca5ol0u5%a%5yH#2h!UFR&bWdX!AoN{t%eW%j_Hw;j=6Fo*Wl8AXcSP}H0@^moiZt&R+SM&6 zB5MYXL^|!*@6WV5BR3*lW75#TgiG9Zdnkqo_XlgEs;ePPKhyCNmTwS7f9Qvn++_2~ zLzZbu2Z{Sz6+gKuNsYW9Z=5?0I>fWrmv;BEe+nml^n<~+Z2!?N>Vi4ie!35+1V%CM zdGD>i$;ve?@UANtC5P7P3kgGe!QC=;z8>vthAb8e^L)YnrWJF(v^#RAP>2ilhx~Kw z{~PUsoEnA3aAmSvKam@+?5Po&ka&y;v20%Vc5$A>{kk5GJ$y}aNvs>7^B;8s{>O3Z z2GGueY?E#*>IXR0ggHLijUKl{I^g^e@NQqnj2GH1D?cwC_caBaH?ZG3_m*l&(ptkuHg2_pX;Xla7QukP2l_O z60R%T=!O3Hc7mUMqq*+pcORtnm-KmDboN7YE^ETn;W8#(dZxPkpkReh z?bsA#b! zmF1a3ba4N3dnHMhhe`6SV4~lKeQu&15w?@rUCM+Ds|Pdf(r#V961mfQN0J^emFuqm z(|_Mu=s!B1;ssmjhu}HFb8q(fk9O;8yGtL9b3muZu>DNCQJp4AGXu=gPI3R&=Ht(3 zvV#1LSg&usX1?S}*mm;MyG$@#&YmyrwqSEI*V1@eNbyBc3jc! z4rg4^&M~iRvCKRW-FVfWIgh#8EATEaZ9MHAl1%((p2yl2=6TT0zR!8-pkQk-&FsmI zXTPe4VDPFlIK;8@E$Da?B0`0GSAxOft^pIz=*I*}qmvr`RCwR_{0?!w_>~;8j&FC)Zx0A`T$tc_Y%pQ#IEBDb5@gfRJFni zWhSTBzc52hjR(mD6EDN_${iOu)WZvD?8NF(SDv0fI!ZMXNcR5Z`Ki1_%h`EEMisRP5%{KaR9 zJe2)jN4vE1X{deFEpj_(5%WCsz%*P^6|9N(sAb6Px_cu3VfV=F-`dRerQK5nZ&YU$ zK=vE4-vwxwT_Ht#=YJ)iyR!4)XxB;1ua^EtewB6!;{LkY*VmEq7WUVrT|jaS!qsV{ zu2z9L4-LmPxL}tN&fcqv-xL>-bz(lMavhtGqFu+)vq{jPiJ%iy%DlhPZrjsYq@R2e z=x^|1zT497@^Mpg!)G!~-qnj42eexdTq}<_FdgPxWAjn8d-6}-?`#WsKiU=Ki0fbt zC&B#69H!mC?fP=B^2M^>0UnamigA$T+6Hj970h>P+WCs#Fpcl%!!B30?l0{&t_*?k zVvV~6eH^*%X61E*#BxutI6Q*sXF8s_i7RZp?FE&psZ2l9u2r%V404sg{auG1Y| zNBlg7!id|E+;(RrVdBwq6vRo`{3_kqe=;LqM)XveFU zOS^7;?a=89Mli7xJAe1YEj{V)zrM=JW5XyhT*s?xK)3sEU4z{%)HR@;zbq0BYO4i52D9r2X&3CDj1tpslUJo< znd7@0*UeWcL?7R}nSuL!=nhwQ>cWJFSGcZ=xG&GUw6A2lxQBA{aZktFH{V^nr`3>D zm$qCt(%l8Ji^O_bvWMJuzc03drPK7lYIkdHybWtCK`PcE_|!rj0{Zx}>ny-}fiXP% zsm#PnAFnPo@Yci^il^hfQ`;k9Q3nuyviaKoaq%u_j94#YYMLT9UW}Ur)%~&plksex zj*gdnJQV#kS_hoByDM}qw$F6YG=vhneFBg14FhR1s(5${v5e-+AMOc_att-&B{6Q6E*45dpa|@?)idN z(%++Rk>wILpF+1AIOC;sP?eKdS16l_m+N^3@BgfYrOQ`ft0*N%d^Z556|!|4Xt$~2 zD~YI&2gPZQ%=Mt1&F@B{KPC#+Rc>PXnRarGM&cbA4;x&gxbY^gs3yNlQXpa|TknC6 z7kcU}amgA1Dwj>T?e3GUBAWfif^uq4#$EsYMpk-K3!_dOu%w`u@V3iTP-(T2`QN8q zp9iOe!|T()b6y-b-h?B!gvx#+AatNV^FKq!)2sU`Tq#a~Hv8qw|32+5&QV88g9kwP zrrF%%yKHZXGL8qsk@mfr|5ZBPzx!0TZ(*Nm+HLvjixysVhQ0^1ndc473*96O*DB#T z8mBRDUuoLyF+58=?R7xE*cY1r-e@=Az;UuT;V#ke?9X-Ta}SY#M|M!^?96pevOLn@ zr~xk?_2#;t<9CqpUK*fp9LRP4HL0ZcA01Fu=*u{r!zI{rks2P|=QO^$%mz-FD3MWi zJ-BYwOASc9;|cTY9y7lWI^JtNRfz2Llenb2aN`YAZVi!B-Qo41AKZA$lwT01>gA=$eE}=>8dOLwUYN1XC z9q)OMSoyk(1Bq`1zuiIRf209Ae#C7w>%vzlVM(MWPPMy-6CNEDl8+@rd$OCkZnWEG zSSIw5q(klc!OZWRcHeca(4nDTP+rTfPobT?xjnMZw+AQ1v)pzq;~devb=~2n2KybD zj(4j#1R13oLZ@HvnEP7H-VZWQgElz1?=?IPEs;*jn+_Fc-ZSSxyZB#gLMg6nLiS$aV9G=;Y+b$dmAYt9dEZ%le>J>g`h4w$&~y4%zcA) zs%s~bmnPN3tXBfpeelm9bCuTP5!GxyfR3lX`>yYC1OlS4V_)zXI}v z%GFzhkAx}xWdOm^Xo=C z194y7g(o9m;Q)2!JZN|HRfgbyJsPkYyB>#jKVRes@0I;wn}so7ZBXs59VO0cAViA`KB8xbgnZ zcTW}b-E}SGyXknh#JqFc|HwOsebSRZ68AyXlJ1lY&ps^Q{$;uF?m!mPF74(G*dbB5 z8HqGH>T+FG)oSUDuED~i7V^4uyc4tPqyd^yD7IFM8?QWXh~TFZi_$NAVa6#PZ~4vx z!j!H~C^Ct?9(}gdV~??_c=?O1lJ;V~`rl%``U5T0tEb)mzto_;>TqGBdN^}@wDT3~ z)qjkbELbLt*aU--I;i_yW!}I zmfp64tq<7s6|{R_AVv4Li+RrEM5g~}S1Id@&W=_A!#iuauG`5lH2FXcv0ZVF>%0$# zqZK)m$*di1xaZMoNGwu1tW37HV!!Jp{R)=oEqg7K*2hTd&QF3z`3XdQh$7Q2?IK=I zgoy(}$V@x-yBY1I#pA(`j3kEXVcdAJ&oV$aV;@m3DQBKf>3E~#M#DS5gXGsp_I^q` z`JXfxzvMRAlJtf7en30lWy$a`r-CF&(wO7RayW=5&1-|(G}=qn@5&L@zfgjzCU%_C zu3C4gkSp#}9U|5;Y<^$+AJ_hzFngR8jL+-Bbz|;T2_Z`@;NCU%K1s(rGgzz*w|*+o znZiDY(QeXfWi&YNu{>$WKyJHt`?N)mPn?pImF)ARTKXy9vEn=r7w3+Wf_xJ+s-z2q z_o)<`pD*na3(U}drvNxIeKgle7rUd5idG;~ImC4qTSHLejO#>qDf@gtw>va04B1Zo zMTULd&cu`Gzw^DSu7!WDtMN^F=!*8Oc7;>`JtE3S+4a-38@VqMnG88gX5`%C9$(1XMAYNO1LF2*4CCCNw~;C( ze35zi4fTzn(fqZ&iL2EQ?)e%FjzgbjjUnE4?-_T> z$UyoORB_7Zn=)(@jMlrfgBS&NUtikQJPbzqzbqj4G-AFV&~91D5ae2ThXkmFbKAAl z7>cGD-XVPw*?9_dypVokt+c{AlA~+O+$U*=VpGukUA1JSra9N06z4N66z4OPv@oAx zweD=J9;bt&buP&4UB;2_A4fs!B6hw7?ZSQ!!#0;^f>LWUreA1xyH}>P)FTVra@qMM zv~yo;Csd2;VeJ+AGyO-q+3#lxt!-i;&XlbOK)b^xIYRA#5pX4GH#gq#!zTo@U6C-Y zH#<({o%E%){o7((|3#J{aYdecx9-r5@M*_cP!mk*1A4NJ|cED^BmOK$MGuZh^0ZIB&)3i3Y-84I#_sbi__3Q`-6xsR* zv^x`q&?_XQD!{T&T766ih1M! zL2AFbuAtEt-5YNJl>vXa&MMdr9WOD0Sl=&=mBd_1e)Sq<5GZrL}!G-alBCzx3 zXy?%ABux0434d%Ca^rm;K1h>VK-C4;?$e z&|d6(AKLNe`}CN+4c|0Y#~pUh!3&NX!0e?801CFu@0WHf{@MS-zJ>iiXt$+}Os-Nt zmrSu_=QGf5Ubk6t?X~IBi+VGecI$|`^zZxML;Lyo_e&=#4v0WH{SR0v*pgQvq)nwJHLdEr@2T$+OzBy3GT$s8+mEpTH0}x3Z8dhJ$_@N zh{jdef^xV%G{67R?)X=+PJW^iOkB-(K`$N9hA<_#l&`^!*T29Km8GekuAF!!UT z4%gXy6z%Gak$DkGyDwKm5cQhx{37^a$BgUK*wvir39fv z{NPaD4d#ADyCZ9_lNY-Of_dFxuIoSH7+KZD5>hoim~lnNd+(h~z6{NTp~d=4KQB90 zfk$m@gLf$@$p1Z$RV|zc?Z*GJ--&Ju`<>A4gZmGnm*@pH*6jZW?WXw@6J1qT7=6x) z8TYhX?skkUtqXu%eb~G>?c4)%iEdIRoUZ4e?-IpDlXaXpjO(^XGzlJ|pQMw$ z*!K!L-ZrtOy}{8A=zXFQH(u0qBec)O0A1Ou!?@D24*1zh6?{QzDo?cCU!`tT(<3kZ}wT#X0)6UI)23dQw4-9$S zmfLRC!C_?6fGJ>p4sHV4Ws1-9DP@PA!{3)@S)uM7_QqqDqET}{I;N;$G&&d@p${4(C(|3f^dGjTsrazJD-7ey!i~%9PIIMi5^y+ zS|RD;eO~In0>M3H2j)Cz=T_(=9PkvN`T_eMKs&;je?U9OgghZ?`xYU7Cp(XVb|WSp z5W46@3g>j#c@(tES*?spv+JZ^(%5+lFRKsYX;#{}DEE?N%$-XlV`r-Le#J=Ud}-H7 z^)S(!dqHT`7{_%(-tHt=+Z=jjv){Ssct?lq5WksOKxh}fyC&9!*dBdHSfwA&ZTBzj z^+YMp00g}rjGHu2TN?AO4c=k?P}1&`pZt2GI=tP-e%GVjm;-+D%j47_d*=XdygN&k zg@wzF;8;vQt~;wZP?&PHHwqg^h+maBj{u<~icn z*)~!;ZB2}4RZ4Wiju4mA8_BtNb{`_zmEc9>sbUT(`97LCKH81lI*n|4{h3Uf!uAX8 z62qd1TI?zkyCQ=duj@QN`IIl}&{)V`4?3RVA0*!}N)1v9*mnI_7|K5%HoHWW|f#*0i#CwrZ42oK`f zc_VZ@%erC2x~xj@%1`9R^Ip|M?(}xFTpBo&amOle$&S8O!x|&5NqBW3X!qz*q3~Gn zhu3%6=L6dPa5yS#ziSN_LtVJ-mWG@ars}kVIt#w*mU~v{4Gvy8jW>PIQB|>smAMt}U&=bs6e7Xfl@6&st4RzE=?@Y-j5U(k?J%9@(F@ zRj9UP?|-y2d)b}Lty?P$>p7O&Zf0t|TxI-vGI%q;-SeaONc#x0rO!6c;Ko}i?&EY; z+{fuq-gL%guh*8ZEH}jcYzib}CwNP}2RNVwbN!(CxToC}wJFjni8<=@wGY=x9t;s= z(pa?NJNq6=$MfECK$zai38@cf=f6zqpd_6?TpcT@Zjk)FZ_qe#-=Lo@>>ETo-abFH zbGP+H)9+fr=nw2X6xxl+?TZvkR6t=aJHKRUfu_`EkiN__=b0pL$3gPmSW~iPCwqNq zce3YB(lmcQ4%xt7U)ouHT|w^68ZB&>uUfS{F@#;^~@jfnm?DE$R z*|ERBKQtc)v>U&Cv)7PUyS!U+_O=Sr9cNnOa~&5-+P-o{vc(;xPcL<6#tZFk{S}V> zG)yANb?m$w+BrK8KraI?OP3B(<;I(~bO5TbT_;^~jqjcW#G-FW%4Cx_JCBEMw_4n% zra|1N=6VbJ)RcWc>hrCaI@X!8MAAvzr{>0g>{CO#)#5%iyZ>XK8rm&brH&-6ya8)g zG5^!FYpAnFR)h4wzQ0(Xso8fV+I7}+K$FCEi$_0wWZd3%t>k+yH_8roPLtI184X|M zE6LZSY_3~2A^{wB7m>*Y`?>DghG;0tT~6MQW%CAfyL+sop;GrCQ9H=yiD_57IRHZ4 zEMVOTHjhm^kP5J4S4Zeq*oAw1diDzNb9q15J!3E9WRJC_!#^tE!&#NZGKWC4M5X}| z(c8E#qBsV5DeqIzWcMQsBB2@pnF9Vh2(pW#_-p$EQ3k z1Fe&;Bd^!=X8L7L$#z^@s)LVDXp$Y+zltowS@0(4`OZK) z(=aIsnl}Ni7shkj<<(snu)YvS>uciBK5cNlR0Z1j4Fsd5hnVk^wEO*9Mn2`Hz?GHr zNb~y!?OxjKCxx0~{koeQn0!3#HpHwWT4Fx$pvPlwyE`AQA_b?iU{C5SrvK=8ygV`O z%w)63DY2imR&`_gxyOgl|5Fbj?tW_=vUisdwkio$PCd!=Gwssy@`bJM216&iQm)&c z_D&d{CPuBx4S{L6VPL))|1xsSHr)T`eKAXuGlZRIPCNDPZ-rB#$*^Nc1@n8O-5mT)*mN@<9wU3^ zdeCmTmL+o5SA~Q*hTP*bPH{)w-n0VM3ikUw9k0;82TDBugmj2u^SV=0FX6@qKV?_H z6yVEsDsU}gAoyyF^m61$I z0t|0t=atef$M6&>yX^r-yxDvn?Yt)JBKjFYFlY#y&+~b6Tk@paZ`tTA1YdkyC(Zlm z4QIx&>z!$*P!%H-47G)nTN3tqQ1SMe{{S_g&BgHS6guO=ewKc zlLgfmUrC+s0B*b;WA_WXrq&QRtQ*%^Jvt+7>thO?Ke%(9-0`At!Bqv4rT$#k)U#fQ zJlYrRHOtxYO!Z6ahuSFm)j?wOkbSR>&z&P#QP&!`{#uF`6h;x7_Q~*U4Vw?8-Q(H- z64_Wog2yE>$49%T&(+DCT^V;tL55q+`5{|6<}98#B_1y7{v>n%mQOJh7{;zYr`uJ|Zj$%8lR&~-Sohwe z%_Dr-pcUS!_Xzu2D8fb64$w5#nCU;-t=svBcqk5nm#1r(`!4O=Lw}OU(+O}uXCCuE zO}nz*-^lUNZqWS|TgQfWp8{%#5NQW-$J=p_ubtyb(#&%Zvls4JfdI{Gy#2X!q;dEi&)maOj}?koo_m-RLi6 zWR_$kgiis+DJfWD&G(9Uj;s+^bafPlOy~vWy)BvRM!WkX{}Qf6j)pW+Zx-@T4u=JE*Ky;W^)x~4kpZY(X7ikMyx-kS(WLcS5SwhkJ&!9j z=BR0t1LO~Q%567#y)O!O)`Pdxcf(Qh`ycI8UQZ;W+eb@}8&BrC zGM#v`JnS-&Wv6gmn6?Em{k=w5y_3yP)9oJ46zA>gsH3>+Y<`+{yOOlzkrh>B$7Oc@ z#@)-k@Pb}icw+8-Nyn${<@b-8fqM}PdXyXK<3dsVCOT;F9xRf-p zc@o;qjoCq_nOnf}7S=h?&P!t&*=np0k8TAr*Oztg;&=A7>O#_I@cR z4$Ii_Lc5HWv*n2rT}bZ|$!#}YaS&eSY6Js=!WegRj)DBHb8DP$dPQ>dxC=A{xCy(8 z-MDV$(vHyj`%3ALG&Vm?$GaH(f^;&70L92+q51EKc7FHok`fPr)Q@NLy0q)kaUV(k z%ZudP8pS=nxXiW0DYQnqR&PAx)59{!o!602*swreZmh#~@x%po1-l95 zhuMCiCmu`1XK`BW{ABIQ^`p`ychp>3FBd6_OX0o}^S5&5idlVLRC#SSIvd zG??qA>&zi%R&^wge~jn4O$*IQ*QOJ~9y9iQ(LEjc8Fww*-EXg?=fRU??VdZru`ler zT-x#K5YUcSN1b-rE2c{${LPX5J2nqXyW+72gbNN%sCSkFbH0&>4*4pMQpIt{eI
84+4lfCo}-3Xlc`o6yvp*p z@y4ZjK&fk6Ff6O)x(GfuA?HX% z`2()w?T<~z>uxp_8JhqpYyB4!Z~2w$vVmevw@P1aU#-Ueu$){W3f(Z%&$N5?tUr{V zzD$-aWuNb9H$^o9@>YK!XHK&JAG90ywig&JZX)kiUE{XP+ozh2$J?jc{@Y4ywm})fM!WU}d-2jUnQ+XDotH+t%{fW` zXFcc88|->c+Et=)(k)(D;J08cbKMleGbDMdT49Sp=VU#D+M-dtu95K$>^wo*{k?AX z&3~+$rQL;v?a^}0Q)G{$D{6kew6heS*NdMXAhH(r(WYIJb|`u;xkfG;viDuu@$#3n zJ9|Cx|6}aTqq+LN|Bqyd455@rrAVnz60g@i5=EsVWGYFf1{o?z^Qegip)?PgG?&V~ zud^G_j7Wn}5=wKaMCEtipY{H%b-s?zS-<}u>$%Uc@45G$z0W?V+wk@{eEuiqxE$IQ zhIVzRlYR0jrnrEXokDz~h9G%czucY%WNG@^M3U2Sj2sjr_pN}Uw zGoK^e{8iH+z?6g--kExTJoQhSbUDHQ#&bYQgJ7 zIR~X9V6_MR-Xb}lv+_tb%pPVG(DkHAuHQUkH1SYRxOtz+G_jq`{kS29Gr&ta$<{JnLH(py!LAuI@16-F2> z7lay9sEiyA%Z~dpx%}k@@U^E4ymr@Oa`K;b;aE>a;NBTi>kDbOW4sZ0qBeolrA>V=n0$HsYRmaY3kP?}!AfO%Tu833 z$c-0kXirw_$+T;3UW`v^rgKj&1u(gdXNFl-HX5TngNFe-HQF(swQi=>d_loj~~f(u&w3Lx<>ryD`IllH-B+HhDwllosO@P zdJ3OMB6hU@gjcNCvbG>)|$GP5)$Ex|Bnd-u`%2R?+@66@& zPXIVh*E1)%-PXxmiN!n!82ys+1CkrXxQCqNj+g48Z^;v2>+nxh9d(jZ8*GS%opyyS z_0E*PklfQMQ`9_O3LOs`Q1eT2gHz4X|n!~-hJQps!Tg&A32d8m; zuPfAinDq6K9BP&q(%e8O`lzF}&Rr%Ts;BlV8$?JCo(>;#|Z)8~$Jp1%~-o7)R{HwuLvzg}UB ztUxeRqU%ACoX_u zmb6DUAWI#ro9KG4Bp0Q&TUI(-9b(MrI7IUMAAIg&6~TY&6Cv*LEs1w*0(9QOQSBqS zp{X0C!wxNh;Lmj3Zj!r}cvrf=^Fp{VD~$3hk_!obBJFi{5jX`~GP&iiPICo&f?%e_ zQ6{%rtdBlctdCyOMjh~7dzFOb+v2&bGcSaxSx=>YM;Adx9&MN8-d}X$Jc0t?Jo-Y} zCAsfD5uA& za<*b!@zY{m@$+re6({u$KefPH)*w(AWNW1rI*W2gDc7Z>^n^JQ3$Un9FQmz`AwZj7hig`GY|eXSlSQ-(>%rH+rinJ9{RCD{)$n4?Lsw zNG>a39al8=HtvWB)R&o8) z==PCZ|EHB)8t*LY(3j48Ai01i)tnJH%8qR*=>hp7l9uO3KV=d9p*wm3l7fd-Tw$<0b# z#XbD)4fDS=aIM!#lG|jH&Z!32!{f&8Oua~@J)DWE3uN?EV{*wUH@VB=ee@}&A1J$T zy4DI!!|&(kFl4;I5eH8Vc;?MV3*$qlaYf)C#gVf9_FnR-6%_Hfm4GoGH@16uc& z)U%E^h2Yx~*rYN5x8@cd{~*!2tR`$qc9*DnBh+E%T5gh6cS?`s9^G0&4bCo1_xO^6zO3A}p zI**XHo)40{S}KJd1Ns6wZbA70$$h)144*gqfcLbyOg(SAKlrWsRLG7DV)o;%>u20s z$qyWAA}PC(_Z4Lg3+wq}!ANrF-*J((F)k!`D}NfCz6>~bcRDp6B=<9G8eCa^1ltU~ z#N?J>TL`(-3;M;<=etS0&tl!Jt}A`PVbXP~za*zU_7Co@G8NWE(c?mLhI+O5^~NdC zQ$d_vwNmBYdqGvXj@r1ebxJ;S z#`@3jkzl&NB&WM<6e{tk!d9>9n0gN<`=fOc{qgyWbbm>`?oNT|p~*#ju+wR#Ub1s2 z$}=>@5vvL*&L!Y%&ie-~d~uGNaCM&tOzT#On>*6$AIVLLbcdyfzu5JR)8??oJsU7LqGL| zAW2mc{-zBU%*0y5cU|p4XUa56kK_y-lpzlJfT0_GzLw-ZUy+CWqhmn&;51V&rdkf> zee!~+b8Nf+t?L}tMqOvpuJzG0eCcxxbdRf`*0q;&zT4%hzvkV{RtXcThl%+r+7MlE zpK2e;>7^QinRq|(f;R3aCOMt4-QjM}ejprp!PL8_qzQLj5G)@}$7@NwKVl7~*a-;c z#olJ>{SstC=gvzY%vPV`ra!wZOnRjtgej~R@_dzW^2RLen?={vAh`j*TV%*02WPp{ zd9Ng=9H1awQT7m5PNDzLNv_-OI_alp1Mr_?i>P&%y9@;BIl zvb&i7-|9Rp$!$1jj&{#ffDV)B{|b`3`oSDMv$cjd=_@F`OL({aBK2B6gWoNH><^WV}5GK+Pfi-I2250c9^(1M}azwz7beoW5bf;#N0ZU-&?be=D%SKC_! zZZCF#@5^s7`>}>klD+j0gsXdgGC9+hQL-2B!obh>36s0i@4K|2G8Pv1OXgb7#|O77 z{EmexLZI7W;YpD*_iI1`oP#w~T$ki7`fTR<W%;R zK5(v$`@l(VVMZC3v@sOo0*+G8$Bt{;_}*eXyq4of8(%O zZNySC!+ZEyl=bYuJ^`7K>tMpLZYExLC{GA#Xk~0H{df(bc@L96s?wPh;`dC8a9slC!`D0X{w~Sg z>J`bY5&iUtjP_HKYnDCbPCN~R{E}PLdywRQKI@Lu+Yf<@r>;=*L2~ICp6F8JX1vgc z_P=qHm4q5CIl=vHt?)yuHy6$?hRM;+)O(ubzKQ3=`$R2<&4(XR?IXEgVtjh27@rPm zBR)-XAs93l0vnd@<#z!lJnU!+F<{obasi8827W%+Px7F0TMsgOz72&C+KP(CC zBeZ^gNltV3Z+vk7RM@>ZnaQ!v9g}(=ow9MW@m$cDC+>x`dY>=K<%DAyulShPin5nx zmE5R-2C(FyIpy~xwu%%oR)Yd`s3goyx)8}9z}A#A1k@yN@v+7V>Y*8Lp^t( zuL1fM*B7<+15)pPx;*-Gs3&rr)|tum>#2YSl^COucWF*CXqNExrm9e;mV$yHa{2XA0eMcFhjXp^ZA*Bp18ZSayDMH#k{3mZ`TttE=qQpKfqr4V$w{)R3KN zD#xcQDQ;cZk-J{+*{N1eBIYVs{jC`3L==Q>R1Jx=V83lD=^_3|!#S>H;Pg zJMuSoTv80fRWgLA}{07te)FhX!_yKpcdWo-(rSkX<$ol1$4rcIcIX9<6bDmW?s|FI_+5qk?tljpb+y@2{g~t2h8}dho8;=Zu8^v2 zKF;a2V{;wcHb^I)?$$u zS~J*vbQqIczWfrG)o2FYlloEIdbLuC!|NaX#JYQusR!)1vb+7k{}-)Ca(mVUag%+` zAuW||AIbgGz9C}!_O#JHl6$c(o%`uz4+rH8neE$XyobA_;sQ^*(dz-J=eIPIa};as zz!G{NljPoh(?B(6Y+%ne@w>d$cU{BasgiW}@4We&%aW0cra(^KdMtmI&8@!c20hh2 zppof zy0@qV$FHR0#3UDf+5tUxeTwy6ll$$9sfj1u-eknRdpq54a5$2Lwz zlibpzd=Z}F3H_{u^rb= ztHQZQ=saYS%d6^v6XyKD{R#t^dbj9$8vZ5uW=doZ=jN`Uv{V zHH2=RtR%{Ln$X;-8rwg#Vsekg{%#Zd>(fSmNxfqUS=iM;3fJb*`}`!ARJjM|m)L@A zs}a-gf5-1e8{#6g z{fsw!u%+}!&St45nr*EJ`-MJC&L^uEx@l~L?M{tga!!l;qH=Q+tk{KPa-Z(?Lu=>0 zm%SWA_hWTnsi5D#i8s4aVE?Y&5bpfm{!qA)?gz=ex)sii+1a&@b>aKUpPU_aeJrrv!s1(fjp6ZZbdZXaIQ7mcws!9iW=acSPVS%_Ps zBpj=c=ZA=OFp~dA9So9-?6P0z?-~n_RrYbMzt>1EYfiMZf}02NQ&O4SSuUA-)o&_P z*wghMNWJ~3m$<%S&d-H8)l9t|7q4^o4o(C99c@>8<0*;cRUMyl>;T`+Iv!S4Mqo?B zHPn7K$@R8b2>n)%z#)@*P zqEQjn@TTitl3Z><2<&&gfi-Ol{1nnaH?$^CbnbJ`eZl6ySo4JY?i3O&<*Q{zW+UE)=ceRdbHPU(hPj|<7oSkVc6 z(m0^uocVXXoy6yt0H%nO#)DKUAOYf4X=Y!G>r&*8Gy(nj3YT`Bky5y}Alz_uhb0|M5RBzcs@Av|)HylnZKELjU)WT+y`wc%A!9 z)P(4L0g`*kHA!L|oKTCU2{kSxr&ClX4R!QD9=+)O4U$u=c_aOOasVEZxrowxuU#r^ z(|yBVKA9?%-~EYCig`;_>2%%_$sOqY6d=j|BZFn#eXV9FPgyQ(oa0Y zOP2UUr^FN{r;~OMH@=wxQCV~zRO*DK_AZ;g^D7d!3#|Mv18uh;=_@+lMWL>o4iLLL_(46iMg$ zEr9rb>#6x5IlptUQakMsXqWto$=T*MNR3Nl!77f<(<1fuIIAMt4HKZ>(I`r}a^4|3rCF=z!SXY7z7)yr{5PMgtvVtkH~QZ?A}1?% zQSVifyJwWi9S#+rOGM{Yk(?yGj9a%k6vlkbr2K{C+Pf&DVTE80EsKkSm+IR|AFU*iqSr?T~i?bbst%1t2zH&D+9sb?bk{l&$aFz^NK_ayi1 zi$4ktn2382hR2~`0Ev=h?wt4Fz)m&F9Z-nGLeojCyqP_i=PqwT|8CEWwOsy{@7os&-^88H=etBgElhcWKCE2YX0_tk7neDS_ z*5oEH9|K=z>ofHNlX`LWF9YDH>^r5GF2+3?ls@sn$LJYnCJb+Y1JKF|Z+FXaqrNR+ za-ViBkbb#YA|2dsDU(~Ma#cF*k_EP~qvQLeU0;J1=}0XHY(0nFzO-5ExB<7Pa0j3K2#)TE94Q<58+>J8nxwug?fW?buWA-QJ`li=v-(RkNI zWv1OVmtAm}^E;Wvc)A~?-aqrP`G3p@$vHmulQb8}aZA6@^PzwLuAnE@kGQ!pSFjJ& z#v2BH!;?IxQtcx--y8E}U)t@!@lo@b9BbZ4J%7f$^>91Dt3H+!p7`7rE^mCwwXX?- zUte>n_X5c+u69R#=4Ike+Td=T=&TA$)^%PH(@oO`#i>C8RNiI4# z0-e2+E(?22=RpM-?BTU*+Y7x@ON8Wq>p|(Zk-tlFS6|(d7B|Piv0D*TKS)k<<$i8L z-59w4sy(#!KayK^UlUnr{KnJ7+IcK)?W69fU7sN^Z6uvoK} zc6}0}mVf5kClm`K#e0qN|Hr*XB&R*H5l6*Z1J_1BNUl@*H>~3}1-5g2nRegnRO5q3 z0->~>8`rwOq+VRrOWZGLIw(5!Vsdb$2&-lWg0e~?llxV35?8BRK!SMhBFnDv_H?{L z-WWnI(EHg_P5~cPswjL9kSx~3d-y=Myj z->5OUD=P;>64wR#uYJt5_AAn^n;5^YT;TwHoQf!J)0k3W)Qe{Rajk;vDp=u-;PVPYIE$!weOk4bk$G4Sb<+|$J+82xAow!D~9zT+Mv-2RAe%2Tce;vxy za|^u5%`Xgw^1sWd@gwzARyA`fjh=A4&uVHuNbckB-`uF&q3~@k{r^jHG7~*?RLp~q zTS({okX&c)0jMP98@}_N9%q;9SV%wio0t2nCi^uu8EXW}!O#>s9!hd2z9r#~#q!{Z z>F-mLyR&Hq&X`ny``HFl<41BP_bl+7Bm`S5OqiVR(^6Twvn!;&qx1Ahz4a#yWYTNf z@x1zZOg*JRTcz6%rsDd)u}p5P!Y^sUV0HNVVG_l;H=PoS{XX$$OVng~4%)IiIZaql zq~n()SIwxGMslq7k(`=JqqK6OI&`g|+vlj{BJAGMz&l>-Ds$Pl5l?RZg<-fS)en-} zRlNoe%yNe*f&!E4c5Df5zB~q=)Mzld?7{P}`Db77boxX+AEaG_m8!Uh=TImMw`A&N zZq?+jTJ(eGK>zpnEYQg@9<3m3sWFy$$vxn@Mn$05(O0SGoa9bfKjM`2!jbyOLrl)s zt&U4s7=)tNX;aTHsrQ`!#K{erj)upr%xS&8kX%!lChGXo9?hR|lc|@WrGu`UI3lI9 zdzhR;qb{0sbs*B5`HIPzhIU0qJJ_L$pC>8qVv&ikC9j45exp({=HGkHa2xlWkzB^Z z1=6jZ6=0RPKh?UwB)3~RPg)|@b?(^NjLC(?*>SN}95`3g@g7o7G9sRPWuXn8b6qLD zqKti#qvE}Nw>2M2KKLf$&%vhR{@+k0=VWGwSI^Rdf`t>1ZfvqkK`i% zKlSq8K&6jWk-u4Gm7)JGjwClclF8A)CC$wnM`*4@_^<>@d)bRt& z9!Qd(JjSa`IBYvVn9?J;G>?;b$3t8EGJiIciwjV|#b?HHLvJi(a)Iq0%RcH=Nt;#a z|6kJX`?CXNrfaO=qB-4Pk}G}NN7k^p>T() z0D5;NFYHQjdUG~jFYitDgXFHiI)vZp8$jbcJ0_-L*@2UAE^~%4c;p3^g z;BV~6)a%=%gB#6UVP->DCg;E4l&tUZaZrTxDemC;`+}#IqOg1pmYnh~#e2SI2$>~09_#rx@!-ug;gug@f>Z>tK6PrIPbv*|o7l5@F#14sLW zqTd3YkN)z@Q^D-4yfApYOo9(|fqS8&VY9*{%Ku32UB7mCtAjS|kSjBe}Rd z7ulngJ;7`EC~7`PF6CW?^hQIb?94%WJs`Qrl$G4ctgdeRm{RwWL4vopc!& ztmsR%kL2XUGgKqE&)8<4E|cp~)&pjlHDc9*?i9Cm)+fFL{>2{~w3K;I9LcfneGKLo@huIH53~$xZqo z)+gL{3NNY1WOAC_gHeVO;H#P&DXwCurnGXvM_#V+)0IDOyCKIPr*X3m{as9QgZAl24ITGWzVR1|@;Z6wZ zcY6kQ-h6|}9hn@43O;4yIVYnjuD|<1{zgkJ|5CLkr%cHQmi~H!ZPK>l*6TgVxvlep z+FSSWmgP5?+<@9~P^Iw}U*vBwxz|rzA;91(P6@xm$!#eZ1)q(7 z;R!YODXyXEn54nJg7=x?$#>ik4XWi*T$WDfOOf1%kO=tWIuCC{Cz*N+i$mb<&>Q&P zG&;YS)O-8e7rcze;ko1J_z}seOMGGb***B6V>#1q+WAQ^p(qP4cBrK|n08QTTCO6D zo0P;?o$88r9Z7)g7wP*TNzS7|1INEl0JjNM)b}6BRUc8qf5s=kb2k;PwZD+uFS`@M zQ;30S(t}Knl`l`~O$bPpy4;M1h)eW$BFWXi)!+)BEQCLPBPhG6Jwy2+-d}n3l)b#Q z?NnI0_Zn8JIzo*f$=M&60$*Mh;i4!y&ywUGP2r&5f(E?tAiaM@a!#+UAnv3dbWkc` z+AVYL1Lst_K!`K#FIL;P3yw}re4|{yp5R;egXBip zc;QmhMQ~l+f_gqkZuv<~JpGM$uhs$jUQ3eu?{iev#&bk+k1Ws0-1fzbb%5Nd{;EfN zOFDP|$m_?%@LuhPqy4`e@r};r)O?VfzODmmIPz2GIK3~EE1l|vmgR@zQy=JgBlTu0 zOh&VNTH;X`+cEXF&GtbR^G)#7a5^tdnC~eph-=_YhLrFNOaF3>wgcd~i8`f6a!XYd zP;Uz}Xg)xnb0E1B<$aOlg%RitqW7;z?v}%7^r6FZ+%WnbHO}Qv9R($Y2LAWeuY7jZ zUoK9ptD)YPZXd}l5!=^CY~SxT+DCGRYqgMfg&DZ2{$<)d_n{kd5xRoG9r}DSsW)n$ z5gI(GH~225_X$bv=vNc;G*%a$k8Gjr?q7~_jK@{+uP)dLRq^idb;bdg?4akaZA`t`uHW!F`Dw7P zA6+k;)Du$n$u8>7gu;k>l-`lG2ZZSp|M0&)Ef;)OctFpa8ulrtwJAR(xd@pX>}*kl z;%)T%gXCEEk&@hq0$unco(l|ZHm2-8KXR3?E|nKD%VrDX$EnI>gQ6gJ(pj$cyph}; zzh%PlyUy@Az86z3-!+Y^2#kdxz3F=>b=IEZpGGwEA&<8T8|H83^zTN(THQI6U6Px? zsM|<#J!^k*n*3BaTuKM!+&@s2#HpCSV_Fk zH6#ge>v-M*G-kGV6IVQ?dHE#)shNk=3de*NV2g6;^L?7X;* zdhSqtgU(YWx#fx8++6)AknW-TL2}O&S8xRnVxh2p5Y=Cj>vs4Pr`zNMzFNzfoU3g& zq`PG_c&E~Oe@E5`Drq(RoJV(rr@I7P_hTY-E~WpcN$$egEPQ-~2b|qPzo$v=WX5j% zqhJ~wn<#Lt{hs6ow)o<^)AXR@0s5Xtl5@=Q!ug@9(B$e)tp_AmAG1exI$IsmzIjrd zrfE6fx$r07e)nsERWFj{&MP`|XQl>#>Tr60m*jph>PnJaN7Mb>v9d8RP+N(5&PlHK z?siDkvMV%BFl2J4FSSQLUHl-sivjgrOzP>DXrlXizj4bTI-ii_I_(>Ygb!!%f@^f0 zqJtT4gzn`HyppY)Y{O1<=y1UkNQF zls}W)xzs}ZI@1RX>go3?$$c8W9sdZ9ff+eEOuZN16Y=)y5ZLqlJjLy9EEN>=KkzmK zRApB(oWQlR2kcp?&E#_3M#8t#hw$GrO={jqz2di4;M6q*9}(-ow0=HF?!R>^ceatw zMRFS(lCVpZ9HgYXGxfBOBw@!F^04_Pofl*j)Q@i(U(av(+fDXyRSlOnAP99e>dm!o zAIVMT>bPJr-(vhbZ6^0mea9BDzT@aN>N}EpC4I!Y0Y%2h@J?sMvU|Tt1?^a-h|0wJ z;w-N4ktVuSW{*ra-ek7#XLM(j&FLb$V_KBnQq1w5_ZoQfMZIN;o;G;f>%N?B=xVPlXU+FLP!$xR%+Qo6mX6h(-& z&{~fRX?I9^i*${qExM{Qh~k!8v=>Hx6VIx5c_s-wtHaqXbA~gAjZkYnl3O&=j=OHj zflx>1gOJ>+Z=<=%3k={+UuULXkB0%=vf(Z;<2e2ON9t|spTJ!a^Gp0)>HHFs>pgt~ zcl@9|m_F>mwENonJh!~87eu=Zrno-Wx=0gOzT$C9k%U#JlH@L29gZwYb-`_iK&=}j zSGms)E!brNc4A4;*5gca;m8497tid*iS?OS+@ll+RGHof%#7uj+)Hpp_PMIythkfO zscsm9Opd5Rz5Nb~8(`mA7A>?B9)1!eHm76YVh?Aou9&X(PjU{!V&IZdFgGtInyGhQ ztmh`5sENBjJjCSID7(VmxbDDjyGxB9X}6D9gEVT(J3QavEmN<oP+*b6o0@z~l;yJ!Li;J@A%|iniT`@HmQV9Q#912>Z&{em@{ln*0&xJ~9WX_>8n37n196v=qZYL+H7hUe`!& z_D&vuY?6R&3mx|(xiYbC*(I@VSxFmp%Si5}(klFTK_BefM*eAv%Q(q~kl%c_q5CC< z=HXB^q!8bA`b>Qfk=#|Q5RmRYgMC+TrTm5Dg4`#=<1%?T;7RWnlbl(*$&mY59;OyM zG4(QHJt2H+9j+L8l;WP;SCKkuz2!YG?Ug(lYl()rTf^klgK_KmAi3@fEYWiZYlwSI z=P8ifv=TeCO4|Y~*B4RaLUPZ)jYXD5%8+w2m1+0Rg>k55K`Guon%=)6^@eNx57X3w!mPAWK*RV>}@%OSDkoGjSIeXrFVB_~;pqwz3*^hPksd)34 zSorYt0W}}O`}dM9cPsd_-2)^md~{JCZ*|l-y&LshlH6TqgwW!(+{|%we4pfA?(#qv zf+D$Yw-lLrta^P7U3o$OilT7hY8Q#&uv~7;tR7HxU?8POa@HoboKl_zn2L9>ww^bV z%PDJ*B6q%&EeZ2sa!VF!qWPwZ(BoboCKs~06Ow+OBJ8Z8zsE_t3yb=pWB1?5{<=yj zy(?jg(pTm$_>=*A>{F_pP`X$<;>Za4`-SA*UL1p(yAQ#BIrMiE$!(C1MT__7U^iPj zenfH>*&b-opLAKf9$KjN_>o)}Q%{sII~KpZNavN3T;`9-==G>gI4PRW>m#{K3w@E@ zWoK*~+)Vki{m>DTyMgt*mO*}whWuDmcrgtdj8>uAM{>!ofqCw7$}Y({4_uA6PKbj7V?Cj@pOV~Ev;yy(5eI$yxyV?Ymu(oH7#t7&7n~nE+_3zO3oj9!8a^>$g}FXk(|l%a6rel z;FRVJre0^~aBv$|gbN;(QR7GIMJ<>CiN{ak{FGfxy}vHwp>Nta{PPkW_apW6!big? zyDRu^0v(qmxdpQ-aNk{;@G*M`^;|m40io$?BX2VL4{v+!EB^XE07kX9#;xarF3DxToPdrF(S?z|X_TLmTym&8sz0XzD-O{6FC-Ur zAP9}K{)kft9b@Xva|ssjS*gc`n@yNpR?rNzenl-#I!NDRN7}6&6DF>wkMNG~G(a zk5@^U+(|`wnEBibR=06qYI4>we$?SV{I14uVeHR^LgN`{P|2X8X~+<8i4j}kuvSF>Oh{1`ELKu zcTUN}vqH&_4>&(t8}9A5fY#$ea%TIgaLUFB;NnTgok=b>vcf$o!t@*X z!wfaCP8(v{wdxTq9X>1sjOAWY&r!^#LZPAi8$QV4lHjPP0zJF^#)XlCDLsIw&-ez zN7qMET+NIm-el%49v!+M7-^5> z>+EgR_ZrEu>Y$Na{J(WTh1SDL5^BjhD&?!mTgv)O?U!{Oc^7BgXAxX43Czl1sa?8%N|%g9Sl!+@9nX z7-?gD$8WgSovuGba*`dfvS+<^;7_yXq1Mki$>~Ph%UmX=;8~dF9*o+~*FJ9MgPRM5 z@%x{0Dlfxe%>6vduSo8KydmmaWDQpvu2ADba;5#G=#zIJ^l&%5e@b#US9qg?zg5xV z%k;hVBzM&=6b+nFgpVBVP0bt0eOwTMHV#Xd_1I3=AL^Kz%7;#A;#=mF3I{f~L+h-% zLZ+V~^<0wN;T%mQQT>g_xYF@`k~^Yphjui}qlgFZsrHc^?kGXa#?R$eck0cwyHMth z95PhV`fX>a_aLd4ZxxCn7Z>4f<@C7Bs8%Y;O>LN@j{UJed9OV{SroO z84OQsyMPe!nDQ%<`}5fVWG6a;!5lh2k>pMlD#F@W2Z)|k#MEmp&BdXW`|-SC^z%mQ zeG|^(p~DOz!HV9e{wF`eCioK{rvFD+C+20G5c4ut|Bt+k|8kqW%kZnTlen|aWa{}P z_5R7rs1yIYyZw*6jQ{Et9mvH8TlVAM61pFxo{{lIT&ZUWkw58u0pqC_g4x7Zypz6y z?ETafF5tWynDuB+`2oo#jXBNjRWgCN0rY#Cw_)p=ms_n?woYEU)zF+m5eouK3A zB=@GDKC*Sxg>|JGRQuN6dMo66f8^&qmzUk#T!O2Vrh=V#Cv)p{lH}6AZNZLvoT0z? z?Zo18%M?;C)U!EkA$u6sUd(UuW9mtY`pA^4J43fkl z4o|H^B$pK9!f_Ynq1#t)rk?C}I(IyzE0hi7D6ajwl|szJI{w%@b=k8%iTH)-3^-{> z$M;E2ueSo$75n?pgzhiNS$n>dU4G*St7geF?KbtXkX0VZ#xvj2-)p4a{o3{Rxv^c~ zPcS`iB&Qs=LHb?!7p@b(C0hFx$qkw5!ks)R4>y0(=YB0@uPt$#dZndMX8u_SkTtTWCuNq`U9XQ}TdlFL4> zfP+Lo)z+Z>l;osF?_~B>esCe4_EVD6{&P^a<#P-ywWa-l?pu#%((vi#FxZ&(E0TNgwKrG0 z@-UA2MDLf7oVjWsw`F!$m|#usACR0|JDy8FzCyO+#vIi8c_X=Luk*RRC&OgUv9l=d z<(hW?sT(zIhlXr*d4_b6Sl@BDTm+LVGY{mRg>{AWA$0plJzFlEOAblIor~u(^_-V& z+$~J1<-t4iF$tj5BGZwzIMzVl6kt07s(j~&ckQL`dr&= zJ~8b+I~|I5O^ye>bM$&Z>Rq(b;!Ku?!j%WbOugM#u5d1Y$3jX^`hQh^dW|asaY*iwUnVy#Bmxy;dOamMue}2I>gO!9 z=;u#qYri5nTc-z{eqaRh{6yCoBe|+sHJqPS5K=Oy^Il1=z_gB=urUZ#9@e7Pt94Tp zq%k(N{3g$5l1`_UVA`HXGG5n*@+*?Nxkv#XD@?=-mAsi;^$v2S;wwK-~B=s(g zzJTYK$l(Wj>Gg%=hDV*l&kJ_pX!l^I-Q@f0ag5puJm3ed_o8!}5a3k7FQ|PX*>!gZ z?(FslZ(l;^>64tT+G4!7iw;y2)6W~pb$R+mmNY2^Z*YyJ+DCHPPh4bU0+wNe^f)HB z0s9M8nwM zI~#9O?**sZxR;ycO2fys^X$>(&F2ZPq0 z?o|7pXJzt|cJKMAwhtw}TyAosbc~?UU@()58{Wdr-)jX&+BkRC-uMro%C@QB`s zsh4EZ3*}6yz=PcAeCpGeuLu=(azaZch#Asz3DqQC!0yVG{8PH-N?HAK-qg0B1?)ZTN6zTs)@9ZXFqIl2LwvlTj+YWhxc|tNyobrRxBe_m9 z2ZM{55%xy(d-eZtrgHEnc^n*FO8;MyTtQ?uR`Z+V6TrUlLIl&H+@7b%!#A(uC1E4*rzV3<4toSB)Kn#pqN)mP*6#aAIYTz4nsrM zs6awQEoGPFHfJC-{6rm2lQc59fo2oXMvFYGVnO>AspmJ`1L<$vgJ)~e^G0&}o&3F5y%qKR?UXT+LkYUb$X6XDh<9|h{=Oo)aMT6u-l&Rt>an@vu}B=3 zwOqH6bpA7`7nb4GHLv*w{C+jX&v z;wq-y!Xt6WcWI`q*X8+4E;}n8eH`MBkC|mr|Ce)Ye+S73yl2hJYiw~IkLhWukoK z--qNPj`~3O{T0~zCB5%MawfMtz$$5%Y*mXU)en+eKYR>~2wRR{a5Pt0RV8#2^HhH~ zUbkmH6>H2eR-1G`#Vt@ zzA6MpTEAr4Wz}gT^;FCcNX_?$KnI@wUh_S?SE8Q){I%NboRw#S;eBzQ>~ZdEYMe>V zdT;;~{k|sCn@qpoNKQ}H53K6O;@KATej>>oa`A=yJxsu?EoYhq^rndPJlhYCB|B#*&B+Jp?YouPKqAIGN<^paRbp5~ZxC??(x8Ho@ zwO;&Q(VzSDj)psr%_+Mi_gTMKCe2(59j33K?u{h5|Hs%}hgH!<4Z{aSFi^TnPyrJG zL4|W>tC$D|At@mth)O9IV1wO_f!&1)%FOJAVxXd+fRu%(C{>weyAzijUP ze*FEr)}9?RhnZQk_PRgkMdN+*A$sg2X1rWzKwn1Nte1*1NC#1?c+X! zzF#F>CmTIdleyO8bsR*SA$+olf;sKlY8-CE46i%s&xY_{?>u@khI2 z9CMt0eowmFBah+V%MI|Tidoe0k?vlGCl2ztik%NfGTqkR!J=QuG`!~PJf{2IZ6vH5X*ESvB$Y&k4yOA_+X~vW6pB=ih)vo3>~i^w7XF9vW7P~t|#2wa+~vM91T~> z>HBlieO&&Wa|(2U%^#|$aVFiB_Z?9{Uo*JwM$a$l=I|!SPOCfgU0BDA_fLJjvj3>B zN5*?Cu|OG@b)a@WeSfLdq#$hXEPD=o5DBWKs-kyg5cJIbPPI!qcfXFJ#o;jMaQrpX zeZ9VzJ7SXneUC_)u6_Ma&U9-4Eb{KkboOf%kx>^X$f}_4r^(~uM8Qz|d=W+|TzP^yoK7XjOS+NjCOR>hns=P%y@S-+>p0RS8z@WrQ8YQllAVf%;QqPS^bMf^i=1k7lp+a=wr^3#H< z-*v2an|_{6y3~K$Rr-Il8?z;it9jrCtKI4ElT!xe3!RXh(E0T;0c|P7^9H%Wl+X14 z_oS=Zw^%$AoeVKwkq#9&a+%$WWVJQu_W`7f6Vtfh5;rJ7?0zWp+0NBg zyMXOW+WlH}S#Xi%QP>0bW( zos#n>`Z+)8Sl=IQTCtTciT}>8y0uGKF{POs9P9yW+i&DrpGTyV%IaB~$m&_XYonee z>4M6Q4{|7TzG+hzxZozk%=zd;wxe=~sT{*+Hdy09rf2UcH~`R(pTI2d_^8x0(}7x1d`io|mo;(I@&r>-9{w z+q}9OPnCU_Wi{g_Gv4NwbGYHE1ti$8;{~5Oh|dk^42DnXI;mv4Wfc>oN1iO{tni8{Uq57eYus-O64@1ILzH+tatb2nq7mGpZ~(n-(k70>&`VtsY` z|8dfp`wtiAzwHFR7w9}5((OMY%RgPO11r5;ssG1Gx95*3_w~>dELlP4=Op5>lFCJ2 z_(_G=gw@A#aH*^w?X_kVYTigU^~E0iU~dHY&!^uTkS_L~Ca;>CK6ube}bfV&s?)LLK>A_z^AUBR)FQike^WvsV z?*Z%XNtp3ggq3nD7EOZ(5p?}xGG6e`-&|kwDc~zB+uVBHUwgZczq0ci-(-772z=WU z*~kq>N8T>xST6BYFJxnDf$TJZ8W%Di>-!_po!=!z*RFI!11#q-MKf_^?^wj-gp3id~X694h^E_jdWfe zPKwefYnaLnVLD5HL3%(|A9(ZHbyPq8^m{L;ba}~-{ZJ_s1qXnCcnh9>w*%81>eUO3 zLc79K*?01-=a-Ck(M%aEZ~MUhRJuMe=@yUri;o!wfa{ZLYF&{|SSqW{dOQ$ze@UaB z`xq*FKcwtMEBHI{u3q3TB6&ybE)2bXlcf_rnu zR&!y$w;MHnq_e%EiWEY|0hZFgTcl&vnI&EMB6qaLssqG&)Bi_oJKDg%!A<>IblDHtw2ON4dG27k$Y#aCUk{;}yNPnOFeQF86^}-LnqPkH~eyj%$k=mg9mhLa< zijO97BS-mwi5A^1>DKR7MV1T4f%Uf;)bR~SvlEQ=*YZ1kjKqeaM{wyU1L!}-ks24$ z4ZXDno5(fe1{+VN8zmosi?pl6Sxs}9&VN%!>>F$k`}}Q~uBN-2mDA%*(3U6|+f^ROD?N8j@0cR9ha6RJYG2MR4K6s~wDW`zuGhL-ujBs(L zHVP@3z;xqkj!NQBtD|}G?v$GzI$S6zeZyZ(tdR_VpDk8(--SonCZN{W1JZ4|YAQA+ z7(mIpaZIP*O+;)O-^S5yBiV#bS*4&oK&8iGP7JKpRUX8f_lJ6G@j zWyc%(d9L*LA9)z?$DeA~DEo}W-0LZy7GEP_<-L-wJ@# z#}6Xt|6|E`=aPPj*ZLm7HVyRi=Zq=3V#+vq!Qc9}gp<{ey(Ft2o7hJESkeVHxkKjU zG|@;!jXFNk_31DcViSy@c+frScbatfRrdLK19z9tS-di#3&^f#nR&pTJ>7_SkdKOr}%T z+JO%YlGQjn&32y4UyBv0cf>Vq)Q=^P&u!5)@#xfExOT!qs@-XlAx`mUKk>n5Qzg3( zSfcc;8qi@o{XCI$>0PZ*xu^|8YMQ8VAsv!9phD%R_|iiofx;gZ;&<$PbGrIM$|lHkD-J>32LLh5`Y-KY0+Vddv! z+}+|9^`4k?bvNh2(<6bn<5c>&DCt&zi~;SAnb>hb0W)6Q>lo-4eF|@%OxKep<3-Py z1>L9T;1LfC`PS>@q=|yqSn{4v;@V5TpALpAi;rLj`^(gIgLJGsDAIktJ{V#zn!}y2 zwaj??How847QS%mBAo}d@<1P`N4DGFPYaqCDMBYJ zGb)~4$Ja62ohr-U7$wW!fHv|s$atS6tE9)5gu}N%^m`4`y>g$- zy_Y@LYvM*x?S5K*M<{Xo%>M{T;0Io)mfc#0L(5(_>bgO?J?6Xd@mKLM=0zSgE~HyM zb{pQ7HWQ|Hn}u7CAL%YQEy1T`bwlTzr0a%~uC6f&|NT7|9v0+L_wl5=$=LUhbXvo` zaI?h%Pz|B?JtUpm#C_uDyd)TXv{NUkw_XRNJAHNp7`%|x!F|!p zbRX)R;768#t=nl(*C8_Ay8-LqZGzgmV)nP;x z{rrV&_wt&7z+JA!-m*Q*Th9mSmb|fqu^xJ$S>C{G_xVy&$nMv&3sO z%&#+Ly6@`@;cxJ0aP?-pV~qNaWIz5kUluI%l3|*q9@Xx(dsp~hn_uxd8zu_lxKxR& zS18zytmj&f3+Y(r5$UXDbu>TbJAk!sd&G*jd!#z*UHS{}I&H;ttn=;Y?i<3hqI&*L z-V)*Bkip#JHa_k)c0EkJ^17^~%0ZKQrzNtgC)1`74R#6@*bQp>tzhu_hA_4>OjAT zCEefDM06|L6hBi7p^opff4);>b^|}C?wIhVdk4r*8VX+*)4w02v$^{lPgv~__Ip*R zaVFi@?@c&XX9^76V#Rbb(!PsZ2F-)K7j(U0GTzi*U!-DH0yvML_vf6mZ8tx>?`OU$ z>#U&AjzcL0W=P#EjOs7xUZf61S9+Nu!}h^U=ga$}5zlM6CBGA?evt9r$?8Bh-u960 z@lc@F73qSTrXcejb==>KG0b=+>WOG!I|H1aJA-oD9NI}A)IaC%e>)}&^3dlRuMC66 zT61W<{zzxIZ5P)v)Dc!U88cn<@eI!FgB=W-(VgiI2Wg{&(LAE<*tr5~V zGaA%PI#ACJrop{weZg)&I=#ob>a9< zH<&bF6Lox~JFL_J7KHu6OM>X{aY*-Ue><4a$sd-!N?^wGYS#|_q{yBzOm1NwpUcqi zxRYNVeXHO@ghzDYiJdBWEhpBHYNlg*ohBb5K3=Z$n;$_KcVCOc4>NY5MT`tPXX zrrhv=*;QAm<0GAE&QI=g4<+ygTjuc<4wXmJ5KqWAn$3(iac+B*GqOF@=+f`S$#y$R zwNds$C)iK2<&J<>LQWbMX(a)tw*JGGG99dINk?Z`Czg%`r$kVwmXzcO>4K4b4 z3F#JD_LA1gdBdpnblwB$Sa}bmt53Pk1@4N5f=ROSlCA24kgjD!J?EY|4lGpeQtQCr z*Jg=iZUrB7t5~S=Nyn%Bit(sQe`;JvSFf3dH5_$7`031a-@KCXLc?It-c!PCx8BME zYh?LDr0Y+ntE+n{DY6a+yE8RRw|l~UuE*~vc(j;)o=Em%l}`)TZ>l*Qd8xjj={$8l3SHM$^3vC3g0{RA zK9{zG9`etrc%=JPX$5|(yTbCJbbbWs)@jK@aaS`iiqoa~LAvw5{@{!D0g!v;1+|_@ zmt$Rr>)xnC@7(^(c#6+X;i1F(!Q326rmNp@3U@DU!naK(QZDbtJ>GF&1OMrCjc|}r zf0uN=e0y|M(@&OTVkm8WUXqS8m7xBnv0Tr3`u`2mEtL;P560wSm-Ja&>v)AW1^n@0 zA9zdU&%$3>UO}KNuV8Q+c?F~!o3V}ient<%rqX!@qzn1-hU+qY7501MON|TZR_<3t zsf))!^FsRnE7D~z?uLS@wsQK)LzwX@WO*KIWqBTPZRB~7@m_q3Ky@*lxJ?%yQtLEQ zS}RQUxy>(e{Ujuh^8(lM3)pSK6Q-Mz;|Z_jv+!K~DyDmRb36>U)dqvpS=9WJ?Y;}- zz&O+r-n{F|jQ7`qgY*ZMu=HqWrn@%V9J-yIR=J^_fn2OK;A7;YipwnEro=jA!b(l{=N|23=L?-#605P20{n?9hXyZuGkPzg+jT zTu_%DP+?8~pGdl?7vFI9sjIMQ6TSZaFE>gN?bO|dvyAAvrd|1wf}hcQ-lCzSICFTG z)MI!oG~GSPwLXtX=P*Wv%X^vx!}IAnpQJ13(u4c8{4lO-puh7X-SSB-TuKKoxG1ZO z*Sg&iIE=|d#{p&XuoUR)8tHn!TZ*Oq z5dKy||9?fgn0~3U(F@%n81veP^O8z79`>+mqt_0v3jA9q+i3|%GVYLD1F2J zM*d(TI8)~v>8zeM;8O_!5H*F)Zzo;U{6l!xu6Xzs){)AuBi*p)8}a&?@$j(3klF5{ z&#Q2(u!WufigmhIk+d2P3FYq9D zUuL|%nUA>f8Gc~bOn*O3#`CT-LZ%wdu&l|8I?w-fS}qLEZ{WR~o=V;f^2dD2J^XTJ z7}YN6h8{wg>w6n()JHH~t1J#6a~E4!ztS&MP`l?UIgFM~-xp;^*NW6WW96 z>PgIa#g{a3q+~4geXh@R+jf+RR$pvkfVw@?HFr2Gnw)ioR0loEsZG}tZM%NwtH0fp zER^j(yEK&9ijTn|>N-R^t;bWLPobUc`(*n6A<`Ll4hE+)+1yb3 zqs(}A6|N8z-ojn*q~9Nr@j9V_U}>d*c0T&ej2CaA02fx3id?ZDwEmqT<5i8W!Ogo} z#mtWM{XXf^j2!W_u{L0Sg?>)+#8F-BE8F+x?4VPUYBgEA?H-E`&**kZ_e9oiy{z3! zZL~|eZ6gtWQ?weJ=fqL{Af1ByEAiz1C8DGzndwSDdy0H#Q~YCf66KZ~Du^0+W&F;y zhb2bidV$hUDg1Dy@3%;|=5QmHKGlJmMmjHpbPKae@n(BtP@CU}+3x(*6F9lb9!t2H zOgB370KVXtDq2jU|1TliW#zAtZsFt2Sn_?haMPCly(C?N)-tRg+!H7LPN0r&`hZa3 z<>;Gyl9{Q*vrrXUG;451KD}N@cW~R-reV0@ay1eoOgu&|Cw}>ZKhZ{Hb**u$a?KwmPd+%g-LW-KB zg7M~+=BV{`h;(R=3(~P0CZ13*V!9Z?1*P>EhF0y?! zHsAs*XDcw>i|WY`dFLL!v7F9RAma@Sa0lbOJGe6c5i?#!@NjV1lZ*Ke%Fuc~$aq6e z4uq~<)gd*nf{rJvdDPhd1wT}2%T*VJaCkcGAfD@gfaw$~0^xqlew^36jd3C3Y1T}J zM!1L5R<+Sz!YO%-h2}r?c+vI9Vyzlh9GVP|deix4r0YFR4)5N%5TYtNG22ac zy)4>1PJy_qs?>88GM+{4W-;4i4(#1S=cSSE_9zvun`njOcr?nhqlJHoz_M*ej2 z4d#Brq+7Y}C2lbYh6ps8>Ido8%(k!jmI(ExX1u&l+n*s$av=^hj8G)a=hM= zzJD`n)|Osc@Qio7GUR{uS>7(&XSuMAeU?cV-@yTu?X`w^4aU^`lJ3iScjTQlJZ=Q-(E`~Q;8 zx4SP&n5YZ`QdFq`p6VMXtI-Mi+lu-5Mrzy0KV zq3qv!Bf4$W8zEgv^n9t#+6c+ZMfCSaq&sXdlndMTn43GDzCS13Y*{^z5LrEsyKU6- zAl>JH?cBS17dU>CuIE8Iuge#>0*y>g<$EA?o|7(i!&UBTLT9vR*D$7wl;wTRQ9CH@ z)<)hJ8E^EBZs_Q;YO&kkkyN}v4o7AC96#hQ;xs`$HU^Ha4#ooqtf$r==^iQ10_WQO zSUqwywXR6#h=O6Itvg<`=sDAgP61%$wFMuZTgGhnrnL`TRBpr@tX48ziMu!K=^MvI zxcp?cJ8q3Tn1h~EuMBnOxKwtT1aW)X<2#M2OlRI>B4pUF7AJSqVmj8o>*V--tFVXq zb_=EXi|nX)OO_qvxpB4p!@LbborNdLtXBfN5;{MObmzl8Q9wu+2z)}3&=&5})xN5vzpHE4`ul zKrDCW{10m0NEh}R@;YtC};H>Ue%{2Kpb{K$BHv>)L^COf&|R|2SU-fmISA0BX3E$2Z`YAl+1MfPHg4YWK4$} z&(>0Iul@->LZOsD(-nk`Cwrl@))vUbgs!JRIyluIX?Au(+m6xS_mHmtLkEO^*rHPp z)upX}KS;-_r$D-J)d^_FJRPLgeG`?R`1VP;;P~+xe>pN&uyDL6h9`E$tM?~S^FcZz zr#Mlw*EZ}iYc|ud_RS^Z&FgSg8hp7Q?&r9W8Bh87Qcgc&E%(H8Ce!VRPUHIKPvH)3 ziKU!_nYZNN_g8$+vSMNC`*N&%Y&ghw`9;ky=~mj_#7f`2A$&bOzogrD=oHqB(|`wu z==Y7JyVJ4<>!nA)>zR9*?OF!yl)nD90Cw6qG2MKNO-4D`rn|_}=`y~qYHziZod(w^G@|cS)nFf9zR#2{&a=xVN^B4Ts?T>`F6K{$2 zXU9RbHvK-Hbk`@G7c(E*!$;YB;MVJabc-8P#o`@4P!ml*-yoesL@8%1t9R2pjjm%u zx-j?OTqpY}a5RMNOipz|=a*W;$M$rd)+?<{iRZQw{+@ZUVDRg&7# z9VW|PoBS&Z#=0j_>xy)fE*@7Jy6njo-IZ%5D5X zC8#I$yDBcY##i3*&TVm(fListE`3dB@g+coQ~pk zSsu#o|Hwlj-Il*O+-Gj7*r|3$uKLt{?`IzH0H>^OwiZjFac3zVol6w>X~ zT8R_1!eH1+`nf#m`Z4yOt`=VLi*-wQwMA;8*78l<@ZMV7^#k$LIv`!|$D6su`91KD z>v2pcmF<^il$nUFFVcBDWV{_)b)5wfhgs*U2zKw(SgMTpHD)V1ltmqGY z12wtU>%QyE$wK7iXZ(!EM&hASv+;OYF6No3AEOMtyJg*weKX#u{XztBd1Nw@05KCWA;58St;_g{Ef6D9P>{=hdpeId!dhj6O#ZEW$L&MzU|TUlO< zzbvmMy^XvU(s}R67Bx2P!V}CBsC7WPyz6@68)ZYdkwVuWIvsaFi2SF1oq45X?}tO! zyR#w0COcB`NcYq00KWRu5OPPe9cv#{G9GImRMP2}J{FJE*}^~*I$wo!zoO2H&6%z+ zv_JiRkaU?FXGv`Osz7r8$y9&iPTrNoj&I~0N=qcKUv1+&-#EfA4HKp-eY%Icr91`{ ztUEKEUi?vRgt9Xnh@qc1k?m$`-{4%cT;WXqd+Pik-P4Y@xWa=2VE=yl{VMv{Np#IG z;`0tYkX%}zfW1=2ak+W(sN*ADo#JD0u3@$GRmWte%Tp>96~r6d)UxSJw|wq&iP^g% z?$7xsrqh`-OIqxAf*Wo|Unj}qd%kzIG$+27Fff9C4oo@?_m5I5O)h7!Qwr7Y-6VZ+ z^}?_G^6_^h)$RMixso36F@w%WBHe@320UfK6mZmarmjPzD;fG4>#0nFflKImMx?Xo zdMNt*+q!;4qcIwjqbsqL_xL>*$J6PfMW zDvuF=1)ISkuThj+KJAQv)2jHLmKu`x`nlYf0fAt4fXIrRxfaJIP@wEo>9-E#jI-1D@aFrdPe=@27-gN)a=P6bU( zLa^*9{eH{SL{>*#uYpfmQs`u1|5}U_lfY$VEp;D7x`{U3IBQ`hXgi#y#)WhPui0@W zJNm$|?SrX)kgi-SoZI?&9;92+^*~9-%9A18;XA-R(hG+uKRQq5SAILeaby{v9~$rE zvB4cGZ=AwwE$gX%kZy*G8+0__hqEJ95ozbmgi!ddips7>4qE~2!`6~&<@ji z6r@`>pf?Pe)&;uc()&WiZapU4hk_QTcIUQ8g!IDuGN9}TR8x^y)p-NjSEcI zWs($ytk;8zkr_-^@>hxqWzJV_FVj8FABGM#seyw0F{X1}?}^5IeS?2)VY@6}fAnki zK3s2B%#2rXCmapl6^1wMy3TZ$-KQa6{cPN4KAo3Aj^A^&87OSgCfpdAO2xZ2D^I9f z_LVRHq0j$szKVGp`6{FR5=^Vy;;r6mRJ7vXmogLD}{hR-Cw~hQ4 z(y{6-k%xQK^!*#@#9iv3RL8;10~e@vr>FMi&j;M%&83}$X>RVY^4wQ!olWi_7Q0Pj(2P54?D+F4K%CLJ`A+z1nX`0~SG6DK7q3fKG@#OcZL;G(W^bBVA zBc><=H^{zY`8#|y^}9;On=cL(mxnHd`%~%nDesFbb0VWl_{YDkgj(qs*&g$%pyf&T zmvq5P`@zsRJ)m~wWvaiV8`WY6H!WPC=fN%1@sW--E~HD)Z^CKv!LYyAH7cH=#vxuV zyoPU1@)gdl|G-7wb%3Fsbp0IC{Zl`u&wtd->jBzmhfj2pW#mur1~?0u5X zA71~Ok3PCYm=)-WUd42QS{?emIO&u%y-}ZtPVo7HE!AJr9Uth6<_%DW$oXnaH+gF` z^0^P(g3fQ5&i8aQ+Poce2DzV@F7Dranu%@X)4Vp1zl#lQ>Wa<2@e!u z?c?Eyb$nb`51ix05vU_;Y@U-&VoBYXjHGGXz!@ zmQw4UbT+9!IL#OSu-x4ew_Y!#>pQy#Ivpy7Bjv74cj2)eD!FU}*N%0g)^l9i9H)JH z@A&L)yM-eaUq#(jb75&j1Qm~TJCCmy8-jwMe#3XBlkYxCd{R3N?#?V@IH4u>C*b&p2ix?HEUDC1oOS-@M z)41)jZ!b}jCNmzZzbl)ng!Ox#@b_Pw74j_2z`4{OtVhuK=%jn;qYHNryTSMq^zR_) zuD(%)@?WkX-$H-qO1jl53h;aIWxP)IeOv4GN4h2BTkwn#=kb*qSEdV;e8)+PlwgGq z{azOz{3tnor-r|ooh5k4tIDoJp`hkWKUXGQ?~MN3r1in@?$K*%oJp5$yOjHyC4oxk zZq)ISuCqiQ4GZ#wf?&EH59tPtmPZkj{ozPKDRsRkoo=c!(lMR{#s{Z!t;dgaDX!Y6 zAjS!rdeU`!e08cN89S=^HJPHo>M!Z?do1N5MG5F4y1%6RupyT_W2+Cp_3Wu}A)UDD zI=6afG^o{J>Uu>wR^1uW-Oq1_p0DtOyJHVg@iwnFk|@Q$;62vd{y+O$ooZu$E7Ikg zJ;TB_b12;1o$3eaxaqf~Lkki?!!MayFQh9okK#O4gCKqbz5YmdK6@)Sa?f=5T2KEU zd;CX~MDbHOzioE0kkr0bGH_A}u76DD$&jw+zj-n{+sKn4o#vm7+^Sl4I1tuC^@DU5 zE%$Qkx5YrU8J&+rx`bhtNN}5lx6GiQbCE7mRu{2CCtKWD(T5u6Az!ZZonjyI+g29{ z&t|BhH!uOkJ~X7(J?Rb%FheyJ4rph>9;zRt``>++4!5!I66r>D=#2`VNzkY7->CDF zbOAf0DEDADWY?RnOV{z}ImxYV4|tpSQsIf>@*FEIchHo*-)(*VlCDK~Cmq}<$K4v0 z#B_=)ytsL?eL;=FJ2GAW!3Jp9=FwmrYfX&{*>0Ay5sI*r;2$&SycW_~r42^KLk8kr z8T7o7&bggC%JdB58tyAm$EW(^IIknyU&HK1iSSf5zprKU8`sAClJ2sSE=s;;kGj3S zLG^=ltobEfvz8+o{aqeSEqKq2$J$qmjHlu;87YqFgpPfnzjHYE{Wj0-dB!iXsTO*w z>!Nd6_DHUQ?g#0@)Ow*WSyl*-xI!Ht>B{B%qwHuWRIE3My8e;wO-X-Ln&^lYmQQ86 z@3L`mk&R1K8{l8hU6;jhPdd@pNz&bIkf0x9`y!*@vCMXt$m$f`k<}@h)JC16 z%ij0+MDyqT?I9n9-d*)j6sL$DRU1?5igZCcx*?~Atz7vB`Z`3q9XqYi_zVZMg_}c- zGwE34OuCy|Qgp9dU-bR&XsW-YyZti)>3VeHQcuzOIkSF07kU>~@^U-ciOZ(7VAD8R zjs6_EPBiIoW*xR#VGZYRs8QoWI?XUkY_;7FniPLi{UzP^_wv{x&l@UUwP(i5t>_~z znbIDv52e2+CgTk+zvLv}UI$LhqVwF|AFC6NcP``=&nt>cUwy}ey_~>f*H`NJNN4;& z9^2mchP21@@sV!Ax1QpIw>oemjjr!Qx))=!oTe-2z_M8O@inRyNPg@r#wN;9)VL&l zeIi_%SI9T7QW6)Q9064Yrf_|ZI@J%-8I5y>!P$o}dZNmVSM<0Jo2|5lxta9*lJQvc zOS<5~k3!`(TR@;G! z5%%{nl{q%h(8Lz{mjd)E$Jmkh2GUEmRo1atEMt%+%@1R+*bc19O?0X$3ZT66+@kmMp=`7<$8sGGUE%ZN88nd4p<>CW9AJYGy zl5Vp5Ak=Rb;KwyORJ$pgEQAc7o4mMhURR~wAnzSHl| zN%!OD0$*sIj}M#hT|5hO+fQo!$UBh%Ft{gn8R;h;v7 z9zQZ(hpxtGb+r-XxBJUHKFu+H%RwSyNUll+U=M+5@{ZlecQ3+12dkwUOZCUI}2-dkEGoD zuOkG5jaB?GPa)E`5GTGG*(< zNQ+)Cww{KKICE{z)BlG%@Gw!jNk;*e$?Bi8jxXPJ1h+%u1~#2Mjp5r3uVv80R9J#2EVKUf;kc~zui z)$t4;Yfn|LFQE0T+{I$6tR*x_fF>FYS@`WQGv#=d$S(1+glfpl)?>_Gee z9K7TVz3xeOWRoVOJ#Yqa+(Mndq}$`{h>a|5V0##dN^>_@m)q#4tVncEw^ zeWD4MZhfNr8|^Ilrc=%jx85t+R5urrv{SH68NE+jBH^AtoC^!BjqzvIanyB}bgX^i zNH@NII=pjOgL?*VWyW*2h=lGV3-QJAAF1C61 ztz^Dh4qp3i8obO1WIB~YS=eyg3~)ZI$#gl2XRw28U*rS#{F$!&#df@PSOQ!fTS)ce zw4=NbaQ8azu%t%PK_T<%ki<(v{`_4;%`fTX{?FfHrUU=ejxFulzV4Fo;@8SK*>*Ud zQ{2XN*EmW+bV+{4?@f=BhioP9bPrhRm#;<>JSEqTk`;dh%%kSMCpKpCB9al<_K;nwFR>Ap{mM@kPu zIK2-sOs92vHX8j)3n#x_%53-Vk-2Dk)lt#s@EoQKKaq^4D0jl88x~Rf9%k+-cY32y z#(!MaUy}7{B6<{?hj(c_qvDZn%x@30ZucX6K{1c%PJQ-6<|ESZYbl*?OU83}KLvRw zrDD`rPQ`OQ_CmmCKkylkPdfdbVS_83!{C|uV@!=R;pXI8i@$!QfX&GLBFmXR%n`K9 zQoulk{;ra2_s}j4&iGU`Bz4YVw!0$Pne&&`0eTT`OZCInCsk5Va!EGMK~C0uF!22b ziUa$8q2iIwudgS>u3m^fZe!qt@(TQ*ntrbGte{xXF>2(;s3tlkCkEi8o%3ON z4E_9+bg8oWZIR8dT^sXDI@c#k;_9EWx>lELsPQ9R_b5%tiR1I3eBxAU-blA}=|$=E zA1P33vy=M1k#rZzpGvJlWcOR;P1N;;bZWhwxhWIo!j-M`dO0$!ha@K|k1x;icbfci z0_t=BI$pTxC3SqH>-K08T3-S9-s`7Kx2IwfvJcI}W6xAFo%4Bb)G)k{sI!3nev52( z(C4Y>oy%Tf)+PG;j~o7vghy5lyxdxyA-7(Q!|RvM1EZLZxb=BSI&6)w*N}N|{(%|O zbsO)5b>kPpNA3R9?;9D<@Sq&-m%b4C`q1^wNcY+5ve+W4Zx+&?u5T7Fxj=Z(?k%tO zv?@pL-}-A>ZRE3(F8$wqEhn|HuO;bFIKr1?`$Emhru$1e;|w_*yL%xlkUg(yJ$|IC zoUl*SlB5YX@%Wax;ES(Q=Ve0bdj5@7 z5#J$oK3^^ggwnOS_`s7RR6j@;w_^%S|67DZ7SqpjNavR31#fN_;Eju~GvoDaafQ&Q zZ}H^)x0!BlCl^Q_p#lNF>F>|Uc6IlRgspSC!1THdD&Ew|I?}Tm0)HB<;NRXHh7vxj zL8b%8WPi(@gYr)((8_E}gG@$*5R(8UB=)yxqfJ_*#vteZ#>lY$CP(NXM${ zM>@^IU3hZ%4A`}mUZ^a}YQ}IyEk&i=JJ}1tM>^-h^60C_K2E`NJk>7g&g*nRxzB^~eJ!@z(nk{=cNmJV$#Nc9 z?XIzPLUxBP;`O<7U0AYR$7Y1i?7z!dT~=nsTiN7-&Yk`t9q?9<=^kAPLbJar;w2^Y zb4;?`WSuA!_pWg?-sP=YDH|WB9eE*COobpd&y8o>QI<1X*pq-P> z3lO{Ev>>?iYtAXh*4(bm|{d+*)S#%ye8SiXr zU)XuU9Ol>LQt=9Ql?&rn%WC>+&Jzx=D94&phr_ucbY3&*PHeu2pQ(?4A5HZCYot5V zFbNyKT`s;H_c!CKl|oZ$@a|^+t@dkbh92^ z;1uLCIk~Ta)O?VR?`Vk1LJmm%vs@?_=#nqwA1LMLA6_hYK6xcPyAg|qg`DA9U$02F z!*DPs3Ej(W9uxyC_tj!3S9t0%ml_tzZ1+i_7dL;>Jmh5Xm-_uB+YMN9fy*+<6&Hvdede5 z7+1EjkMVKcT47H?A@6LrUYPaocM~lV`nw6zO_i(#+VKB+po!RaouWPuuA_QJE zZ=l>j=|m^JWzYDiPKSj2ygu;3uNS;rc#7%9Dq6y_g+rj%?og(CFxCQ;i|pX4;x?uW z4%dUVs|LeGk-pxO$M^fXB7B=N65L0N%y@JB+<{LVqo_#=0-gyZ)dkm_$+B#G6e?q^7MUznZ6fRt`lI z%}mj_eDD8x}OqTdrRnXVHoxMLAnO67w0>=5;vX-Wx5$AHrzwY zdpPA*1k+7jew_>56Ah<2()sOVyAu;Wa<(sY;d`(pGv0K*9a_FlR*!5Jo!?Hz(-9QW zv|L}=yNHX_`O*7ut&oyk#0N>P3mT5Ocw)XiY)Ynok4Sf8kANH6O@fPuYN&NUy3bEe zBE8HX$wmq83;)o!gGV=%@NX9JPsl@0^#DD)H%F z!Oy9z5N^uqkh=Xx9a7STHy*$r-8jk6u|>2JmabSx^_O%OD^7~fy{$pX zZ3xr-Q;#uOR*$h~8}%3yW0iys6-E5jj=zP%6K}Y~t5@M~Uwo-}q;o&0h_=kyip}Kc z{8Q2ex^_Wb3OnMQ)9%c8|KvYM{zv{Z8PE1WH}s@#D|fe+&VMG|7&{B(V|||6aHJoz z-QN@JQC#;HZg?~O9;bKhH(_;9A@90XPW-!i1RQqKgyM{i^!0#nk8eAIRoWyq2ZuKq|=ycH&vUypSCudc)|?80EeJf1p_NN46J+mpvu z6^7}0Qu9H&f;X$2ZY1c!?@)SOWqHR zE2Kqov#9=(&h1JrcR`jD6kkR^*CXBU3H97sXG4T^Etv7nM<^nzRsB(90)3xC#!EQb z9--SOq-GO*nem$Lw@1H&`=e)4_VHCV>Y^2@2B>`zy&pkR=V8JVDB>MCW6?Kf6JM=5 z8Hah(`J$xTF3T6a^B?)5r1Sk$Bt5=Wid6=&<6V&D?=JX{{9Q8MR3jafI%N>vFLj~T z%f?6_A@k>BUg?Fo*#F-=>B2Vhq)E5c--uIrJ|9l+F`>>6(pj{-$py89LA+BG(`hUG z;?CvygU2yVrW<4!fPQ?^#J6uWGoACb0F?Fe0Ipwjm+8u7JME0zT8QJG8RFL0mx9L= z1F3^E z$N38Xe5drFM?W#z_AS0B+gs~Z#4c+5NcZ|<0ZuHA0G+LtOjr7EzUcHe@%Mun zlaTSYoNrX`Cq6NK%575_2WjQ>{E}{gb4O(T!3?%&(Z@$Rqo4iJ&%Zas4bmah@saMC zjRV@{utFTCM)!ks4YG|W6P7%|ev9en{J)%RgfUhneEwHkF|ODMwbM3+5!!#L^+LKG z^DU6eX(vuypuck<9V?%jbo*x5qdV5=9Iw}%x=xZVaokLF;!Y0NC|so073mC(;?b-_ zv#@@}H0pfY*I}^GBc_Z$y>6g*vZXzieE{He;vRipK|1M(Uy@CuIe6Meemm(}>W$ER zIb%rfOphPw!n`fe+z(D%=g0K;^}%Ze&xMtI-JTbcri5+c?|_ZC_|0r;9gt3;QC9oe zQ60>!-I?xu*%)zLz#?q4b1u`}j0+Gddg?&I#0g9{t8%x*|K~fr?HK)h7pLA6aKb0P zU+FDoelh9Xggm@#f)s9-b)niN-NMjaSn>2ocs-jwk4Sg!PyjXx^@0FL1!g?sVsAWq zc_0|dzoym;882R`M^GH6WyQ^SqoXgl4tPby+Zx^^ywZBZuQb{tX;`2JrXCaFqA~rvj&#%P z8}XEDy`kxc7PS8VfOJ>Y1uT~@fn5gbOt(muN4rLrNBg9WJX$i|hTo^LclvbLm+nvX zmvleY9K$i*GeF6ct`oR2^t0r=)n)#s{d~!jM&n&|X86*O$00n-(a)J<{SkS5Ca-PKE`@aNRkH=N z-A7d(X!w{kZq#=A`_;nlSg`0&%lj04at(9Zk|*+N^~!FDSyj zhAU9>LB?x{?gPgovvJ^hdfrGEmfizSyQkw#N&}hk?quo0t=GkP!5ey=4t)GhkQ{r* z$9@TO^0>1edtHfx7rylSc+#~CU5!_j#)IB9E2_Vw3*%SeHS!6twZVevidLkH3pdPz zm(wDd?w>s0fATEt6K zxLsBAK;upt^Z2?1p5bgOV&T-t80vih8SkI-GFx_DK565;B;C^~_qa@HDAeqnMfJnK zAV+Xq`idX$)xzm_yfNg_~kjDbG$qg+Rfd-bZ;&1aap56!R0nRE`Kzh z2ush`@R8G1oGy%-f^V*!53Wb)yk^ox7TDtN9~XkI?q6yhkPa%+#kcF`!PVLH`9Zqb zrt8Fgp^IQnyLHrcjdZL$>CF${3%x%+7#F2ZW;Lhv>+4h;;YYuEu}w#zS=PUd(s}J|Vd1!dy_Y`9rM(GTyC!$AxcWTu3+n-*LI3K#$Aa zSr3Ji)%E9%CLz|aykPHO!BF?QzhSU>N-4`pd5 ziELStkVuQ=zGoy+k}XS=T_sssq)m%9g_N{XXqB`GZQk$qj8M`dWv#Sn(O%k<>fE1m zzMu1$pYfe@{=C^S)=U>l#&R-y*q5>nGyEH3>*2W+25$-Mhp)e2~0(a^tA= ztncH|eziDUao(Alza;nbKkJoa7wZ+teK1NFs$3W2sG==QJytuDdaQPKeSMB^%6i2; z)@-vL(LNsC(u~8NVRSu6E^37)YL~3Lii_!Wm*k`zyutVxi?L0f162=_n=Dx;KS|cf z^f`DHt;N14sU*E>pu z0Y2TR{v|nwgTC0}vkD5GOOGp(8(ugaE1uksE(bqEo!2XpJ6!6GU*Fn}OrFwtib(EL zniG!M*B^9qrpGDCO=gT!l2e;*gWo*djPBSEq3SDJ{D}Ydy@e}PI%YM^GzImPj>QFe zGE_ZCu5v{%k~_5ohv(4iB*|U+;fW@<#o|;MH>Tc@pHtAGbxZM1a|I@+&shIRyVoj5 zA^)}&*xmIHwf>QuT$v(7Lq$um%1Jt|gXDG=X9*o;@i^^BAJBQ6 zPCmGnKlb4=H{bAZNzRa?pm)9q7hf9$S={!!SHRWmiMZ$v{q7g3_xDAA_^?kOtoKWU zspnch5Kg(PfMdHUB&NxjO=+{bZi zvox{qP7936&Qs%$YaP+3Ufy*;|adIsdgbb5aJGVF80Omk`*btAFX8h?&t1t z)iwk8)rkSfKW_$>1Miuf?P-0~cu|CR|E2G{Nxh%01H|>40am+cM2$a^8|63xyq3I2 z@WNpe({7&hL?APNDqgg!Kc%m&qNkG=aBd%(3aSbxdyWwJ~r5R>490FH@YtxXWC(70ukY z6K4FGOD{$1|N7(msehQ<#@4IAXOIl`$e2L&FR5qPt_$%SJN#i;JM}++y#A4#x{eeseBg<7+@qP?@30DSKk*_w@x^W?_h+~q_+cB3beY!K%E+p6U@DhIiQGHNwD4xmXO4;&@zZt{IEHRVI(+L2$nt63JPD5E7{J91Bba)u{O!8gt8J#6)N_Z%7VxL8cE_%> zC*sx0v>!6bJ-Mol{Gx`V45wwdbN`ZD#%yV1acU?kUq|~}kX+G=ufneNOR!_XY^vW# z&L!%&V16wD`E~I=G0Djco&)ws@^;&Fk++-VSb4kK)1UIG62GbgJ#zWkJ#}!*?=je{ z`vIzaB=_yTGQKI}hVfY1ADHBtU-iS^zdPdueNU#|sr`NMx}o|w(mD^+(MO)ZY-voKikgvm{{R)9ZJTyfCL`An|1KnMEg zd=S=J*i-G-yFAmT>Dx`tfASfApo|NiRd5tl4Esark=zCZ@rEfcP_hc`S4whb*M6g^ zNi*=6{k@rbrNh3UBfb4`@f1TQ*D*d%Fua_AL_FNUnLvNSq^im+aQ?;Y_YfQs1MJ`WAIj zUs6x&flb;t}^^HzAv7TPY!xt;^!T$?!TD4)dC>po5aj!JdKQ@_&Vl++8!?g^XU4iZYG zeW>;$xv7tJAXfY&Oz%dIXOeUF8wwX+P(hIukkUKyvzl)(=D9}~&+)GwB4jrG4A2Og z$>hv;mLUD3^}>YbkxXt&gCzfu-veRyC^~M8w7X~8eiS$4m1uFoBBtKtCRKE)%@#zh zT1s(m4_6Y^swmVdoymQgn|K!RHt60~=DGGxhG;PQ&LnP|2GQq8q+QD?L}gb%Psz{|c`sGX)Q*j|Bz`X#aMS8+BM4OK-m}-nPbpsW+=y69*Vq zf^@r)Oipg38ou?;2+u5~_YczUkDXGu&*Q1sH$IzcXOc^>{Dw>pBqI6mUQD}*gFc|b zW_Ns!r}raL?_%M5)MIrHioH6GsrRApL$p0r7f(Az`z^iJ9Vz-JPk#CYNxWhAo_O7% z$s+MCdj67JQtn-p9&Cqg>^i9WlH8_ImyzsuA3Q4+Gr5?l`r@Td5m?pjCX+jt6Apf~ z2jCylkC>eP?X3WM7~tdv`kt69-^jcjASEXPS3XQ(>aCQ#Gk>qS86}&Hr`p-^RjVi~ ztD3tQSiyWJgydN7W{}+S%^pC(-vEDiw_)1#9p3^(Dq*;^iGII_)VnTu=i-Uvor}sY z-nk$-bKD*N5`6L58FU=b+>}fFQS}SlUWLoNYJVTRaOOS`vYB2tNbbWLFYLE`AJ{#H zj_)D4KNF|n`~XMvrHEc%NY2$U1C6=c2O1r7fSuPNlG7+!Clt=KfiI8K|0_t&<-4zF z?dxuU`?!*+7i76ath=dRd{TE6#i_Jk=i74-_tUC^KkBqzNJ_JTa`S1sBv+FXCk_m* z6PpcV>pks175q4?1I;TT)2>v-THwAQ1-$W&Vsg9ZB?6PH{@`Hxd?u%GA`5tqGlK5z zbUngO>xllzr?AZN27lz~do;B?2c0`fuR|pFdB8*TR}xpQSwycxBv(8?9Oy~r`86ea zo|9Zy*;X*d#{j>nqvv^ZA7{}iue)4ZS}m`+svkC*7%aGMrprfi0UZi>-Eb(QO>K=RN3NPP zUVMw!H@eBUX8PgT{ph$wlG6$>5HfjxxqzebznnBq5Z^jjSmH;rZ6s zc^~b+M(RDf^&12z`r~y|=zMb|_kBZ8D5Q+UlSTCZ50bl|rUDx*2jY_T^uFH``s$EF#eb^qf zwPm3 z=UR)ZnrBdYB$wf{4ekB5Kpba4=M^WpS*4qhjlG{Z!Gr!^Mskg98_`8)73|zLfob>Z zf8q>tx`;C*^)g+0g4*d>$okiOO3&|mJHM~El1tU^F6`OmhW{M=gQ_?0q4sH#!@XUx ze!*X~O_u%+Be_lK_Bcv30Gq_n@ns}ezp*#Yy5xyRemO^-Pm)}=QXSgf;*X{5QkmsT zo}PwO(k9}KC+T@~YVK%$rsUkBAwW(j3HuF(9vp)QM$z|MB!~0|!aR%dIBqF@FGO-T z2WUgjSpfg`iKog(a;6Fn@ZG%^XlTb%CU=~7fJ2V+Xw_TVUpeHM8gKOZB$uk#TPT-) z3Ub#T0E4c2!_M=A9u8@=JsqY<4jkn2>HD)fKyZFLGM@kpmRM)?&b;}z%TP)+hY1W zo8-=gmx8{g6XCK~GEBQq<~;{~qk^HVksi}-^o!SEfSo%0CZ^-$NV^6)($Kti2(-VZ zLfQTD%aebcc8gQCA0oIls(}*kK%A=co*D-v_xVQ___1s{Ug$>qACTO*!5!d^FasN= z4xs8ma*hGxV7x0v{T`{{&h1QcvmX1y)%wp+@oxIQk>q++%!c7BZ=oY!==d%BmRLS+ z`*kjM&Tv7g&KoPK<)Gp9^tdOvY#UEJN%2Q>47m~YjMFRs@U2Ic9=ZPk{IgwsE+W}f*w$zY z&ooyEHU4zm4$1v;v4cwEwc(Cpd#c|^PF!XOKi11Ydz))aZfDv=7`wL_?O964_mFyu z_E9kFZwa`WUr4RHBzI7IAxz4SMnewHq3n(=_TjrpzE4~H&4r?J1H8Mz38k;1|3{Hr zYMus8@zuqSU+8`#Ig<`qY?QbGdG>In#wp2tk@TClq~9iW(QhR8Z(Lh=7jbRpC%17A zm(+86@*j(qTG)gB1{KI>+8k>BlH8AelYrAgbv(jwB9lw=*$+0%OGZy4=Q6o=!$OeL zpo=SA%$S^3ayc*^riIshAIaqAJ*)>86R#rs$LfZ`Tn3AC&9LZz2E_#rx+ijZSjCNTY7#wvwi9?t@*Q?4(RNAhAG^g8yUV(;OLBwe z9|aG)Pr%C-(eXzlXE*c#n6O3#e^jOWjpRB8^n-U!j>Qf3P1JlNxxt5Zp`Vu)eqR2T z$$hS~f%hMOL#tH3qR#8R*h)iqmj8m=zW0Wx``2}7VjqA-Zgjhl9N*@RHb2+JP4a+h zXOjChM+@nhIpC@xnoRD`EmOfZV-(g>9>?VTmkbrg^lB8|2d-jr!Q<0GQuH?jeomvf z*8Lj7pP2WY>ZdA^ezGx^Us-@+oalHflDqaW4aHjd;_1$GJQK+&e_n^0e~9srxpe!H zT;L%s6g9#D$92&zyX>Fv;LTG`e{{L%V#*-=Bg_$N^z)?pm*l+lPNFn*U3}JZ6jfi6 ztIaurz6{aF--fZd-lu1xoB%Jp&X)e}B=vg5`=IyR1F+YFXUy{bzB@@c9;1UFOrp<` zN;Z^>USz9^{&_#Z!0ZRNhVN&o{bw~*50XntC@-9lwW+A9_gzSC`gCM5V5fBP|BJh0 z=VYTj{V3PegT@aA`BRR5A(uEp(T_1whq#FT$AsdsJiN2Dj~hi#unGxcOMpP~}GS$LOc7E|ws)J-(aI2^BrvXtHc>0Uy^ zs~WD7i!>>_t@O}8IM6r z;!tdQSDUFfptl@+v`QOC-yJ}4r;Km&YaO3)VZKLgjQ$fBIJJwoK$80%{(s(^Xzb#> z36f*IJ3?}}#}KgjVic}-Ie|K_FC^DJWCA!Nd7orSJpJB8xAWbE>YnwS+l!qxwN}4S zztw)&=pY^UNpgEpJF2=q1N*tq=LaOmiW?)jzZ;X#?&^iO;Wh0iLvllFHzP@~A&!)x z|HntAW%J$MHFDc3^R2(#NfQm&7KsB^lvDGP|O$1}<8DgZE`{|3Oj(*ILPPF2|!zCH3?m=Hpr|B+l|kuA(z z_f42xFqCQcaG57e9k>IOS$t;Jqv4S!?0GClG)|*0Q!k>;8!DbPljJ#}&pSPBqC_<# zBuqsE^LA? zTpXu^E{W-LV3Mo-8whvyFGNRTPEhSaaTj>+XNZ$QC|!m;!gIu8L^zWoN3!p}vs@!n~7DZPM(XwjOnRa{Eb z8LsADEH;0#1wGovQQrq7_b_t|UN=!1+>0~Eo!gJ()b6W8pR=dLV_r>Wa{aZYz-xJu zKh&pHsc}W>jl1Xvy@&n*>*r_!mREUSqu^UL&xJc#VsvPjlPf)p9KpT=-3u zw?VfXp)mLW?N3N@L+usevpXH=+$nlLA~}OUy3q2e9iABfi<)o$gF7=0`t%qD*T(8F zxx`=*ROvke24?6|-{YiS?=52ZKC=f7ZKTf~NiO`BBa|^wfjb@jsrDneV|%AU&BZDZ zcwc3fj}=cs>eU2=!>`TbK}``IuNFRcp!n#V+gzb#Fn__Y5d><4<9Sg7srr)K;Ql{A zNp=7ZTvSGtkL2<$^@Kj!UieS-YbIy$rY{_>?ShS3ovC&q^-eb`!DmjBvESf%sPlS7 zatr0h!p8k0@zQsiOm3>q1h{*M8onH`lF8Lv@_=W0^uZ6N(0=CqUG7@VcdFrZ!jt)n zzeeB;$5Gg@XC$RZa*f;7ah;bVUiMm>$<5pM8I8MYiMJi^My>axUhcWA=t)yFUUGma#Ht@8yR%@EwrW7#f_&Zy)u!K*iZQ;cQY!1cT=tg5k8){ z)aeS7J3O}s9KKQ+M>!0k>Pzaa>@bF3Qp7mcB$tYVB)N*CV_?9~!8j#{j-w*E+;P@$ zzr@$JehQ?<>1D4Peq-%jPU%%Vf7`o-KZfSR-iaqc=kZ5!t+ydqxwZk6FASyDQ|al^*ccz9g!Ai*0hbPjhZ@C&M=KyDU}U z+L9@-vA-JCA0&5o)@0~BN(HuL()X(*H+G0KJk(tcPFjAPYCn>jXg(KC=vNEWFQ-xc zMsh(B^I+thQt+$jwa~epNlv$P9<*>pVDS8pOs@O7IGB7`8;uX6-!JPouCKT*yo#$I zu#Z2wJOSubh;WuKJ^o1U<)VBL5v+@YgX!;klGC5_0~ohTe4rN7|C34Xg=7qfWV&JO zN1s2Fob6o;_`BE~mu?zD^)JaCsusaV8A{j?o~QcPV5Pix={n3w8Jy;2eyM^iZajYb zN|%~%BzM5{2FN=z3+*~U`{9vXUDQDMEYKCtsin_tN$%l0Luj4z2yyE)D7$j?h1|Ws zo7{PsVt&E}Q&{%b8b(jPPM!aeTv_EdjX#omywMh37_JQm_n_Z>AUVe~ z{;+z~8zAy=qS}w-YL11$()ahk>X^PvZvDequ8}!zw2CabLS=k>xO~c8d0^C-oLQ z6vX@mS(KSa-=~n=)gQw_w);I)okPzfk~5R|v(A@I+b5DRq!Aq(? zOdq!MN>+8;l=V0GLEWFC^?89HBU{Z(!;Sq`i3{u9`E6X?J3Y7rH!K0k==4&tKf02Z;I~tmXc; zH1X#jeLx*q+Q>MI_J1b1o!9e`!CEDJV+$R>MRHeSc8YK84F{_->3cAe!>VcE%u^4n z7xIhh50bkPG7O$|i9xHaXusS=jypu2cGVnCujl!98E9xgE%JIx`_Yn|=;$Vt>g6X^ z@{Xg%Gs&GP+kl3j>m`o=!sb@(l!ASpYvN08gPD5cD*D1r-(}%i$=!J8anS9tDevTY zg?qoDhj8-yDd2ot4;y!pmy_fyB=4R(L3JFKLB|D>oWqXp&_r_9bWM(a7l7p41Ny*& zl6TjGvOJjO>#wE_%T@sFIA8_UZ=~L;o({03@dY~3{*=jO=PrUTqyy1Gdw+`S(XoMF zbMFc_I8I%#ki0McZ0svEGVCamlMWt(2f1qD70UE?HmTRwSqZl%IN_<=0-1WlWxk;% z^%;0m-2^6Q_~0GNUo;cX^`FM%{`C`V>cUSjtgtWd8Cc9Yz10--o*N--r46Ro((&vh zmtD~dg|6}fTi-6B`iNP5XB}OXHxUVzC^-w#>NpHQvJv7i3RzIG{ubwjys@$dh@JO!aZJuaQmLj~l zf-WD)8Md2=`F0byHjFMG$xT)LE#5l95+40-$}FFfBtt`+K{PCUvVrbjq8@kmZv}^9 zqT$mWQB3aEx7|SYSvdTbOP>SV3NiejZe^V8F%w~Oqc<+-pMzdi)ANYr&N_SG?SJF} zZtX+WgXA1eK2?gH6aMBq$;DBhmBzJtjf#f|`C-mzWZI|TWYgv3IeFOU2 zmmXInSJ?L*im$x@qD5>@I^Z0-xOb{J`~mIP5)CxOHyX;hrLK=e8V$R^mQ#<>S$AL9 zdA%pOLvyphOZ$9e^o0KZOL96BWuU+BZ6q2`|NkX9<#!tJfTARC_dPGbvI`?j;h=XG zxG2`08mFY5Rf;uSd29qe7*|Stcaq$KJX^RkVJN<&*p1RVF;P=cac}0lb1OurE$3j( zrAR=D4NOii&n-;@_0eg?|&t^{yCz z^OGmwGqvf=@|9)|z|+bn;CoYP&c@AMq(85LYsxDUMZJ!|`6kK8D`p4i+#e)YFlH9k zOFxZzu1;feYit7WGfi()lkkGcIYxQnxZSPjzzq7FpR_yR%2eEU;74RXpJVE^)sM$N zR~<9^Bk=YRq;ilR;MH$4%aCq6*UBa+*csfbm-NZtV6aEod8 zUw;~>F8paoJ(m9v$qgEC6B!N*$M#ONUyz|sPoeje8=P`^e^FqE4*q%rVtfBdsPlLx zIk_e++&I<|KY2&{1(6)f--qO!`u;_$Bzu1FpA@ED&4Dk_vt)m){UL%4Fuo<0R zJ{4yzpx5V!0%;-oB<7m_TG-^N4#cZgxnS$WYHHk*T-vQ(_@>4bymQ}Xs(d6TJK`7e zU+agX^XPhzT-%Hn$k{RgmwfeR>NO6lLo@3_@nu>1`<~Qe`2~?&)U1O@PLfYrD5mpC z@7B7&S2W$>CKax?F}`F6#Fv(0*`@UTAjz@vdy`z>|Kw56?jnym$@#lq2l*frpDvCD zo#(I1Ib%_*yTC2IV`{Ua${pVMgwctQ515?mBOh2FU@XX+DNx@zq~7($8PMXMfZp{y z%haoWItO;#;l(S?*D^V8?+7TGds)0o=PHwvu3HF&+-~4aHNF3m<(o8l5v+d{fkNl_ zF!g#TErpdSZK8~nMHJUv)mGH(c8MEuCB5Xm(s=l3YzC4K8c4MZ$!(qN0?nP}QQ`Rk zOs>sgI?VRxkbgrZ)9#w!ICyE$Pd>nqzSmf9oXj_T6u55Bc3+Tfz5>)TC*rmyIxdyu zUd?(8?#kI?jXxhLyCfH;q5$8yPs06=A7pa>=5Za`MIKjD&-3>{_;8HGPb=*=Q%|?R z0Je=+!D{~BDDK)pS^inYDK0+vD;L(Pk779y_HG|WwKK`F@@_f0FQ%yIPy^nv%YWEhQJ4*cIfuQyA;>2 zjpGjIU+0o8kLD{vN5ixIjo@LY)l9CfuN{0d_O`ITRi7#!saII%08bpx0?MJinVd!T zRJcxZZ?98-h5F7R^;q}zSBFn4nYr=?*K@81KO<2aUv;y_Gc&fM&g&Y<{Yg^Cma`o3 zaC7=TndE|Z-4ra8WAX3(X-qwvx3sgms8__~SiAiqK zfg1425W?R(WGTCQVqWrb0VQ0>mZiM1LnX>>?2bhZc1+H;^$PNRCB{{6>3aiGPb#z= zRiCuR(&36sy&k>SaqBf=k$e{2ex%-qb`_9Hp(BQ?NgAcTIW>GmVJ(+lr`-ZtZ4_~t%TeMye* z)(q|(vw%U1>2@JG@1$p7gJ1*4NX|_<&m)q{iTVZ-{Kvs#zO=t6$te%%21lfLK;;N} zUnRNSyd2!oF&u7}ob`9MyEV6l_sFW@T$|SODXmZWN#*n5lzFs&1j$X_|5!Zm!4#mna5$(fA_2B!66ps%Sh z)9#XuA>i_PUAShtn91E#-vYEc%EZGS$1=Hp^4lK$FZpft`km(2IG1rcm(uy!L*22v zUk^09hK|=IIURjBoHHg#@KI2v?2_DqnAa#%D+Zx|$mXA7KKltAsPo?i#s9PcROK0G+WkFyow{W-Gme&anRr#iq4_w9ch*d9@%>PzYc zyfwfX>#Xpw$ze=ALGqr*k7Jhj;I^|Am*3%M^GUgi3sf)QulyN_w+*@teqN;QlHAwH zs(9N;OYD@$*6VAbg2hYa;F&iXR6R(&zgN2B1O5|ntXN={FE&~lZMmn9tW%a#dTZ^a z#Di~~#h z_cVoZ7oUlR6f0)=a$6kXkCy|nmRumEw<+|DO}J?#chQvNTL!w|uxm%rnY+KK@{wHd za0eXuq!sL3)57GAU55CU%L}ybH=Qq+)LY?gj=8a)!HqX`{xFi8<2VvaOY-H)NYim> z1KR#ip1`5)96v>p4|KS0Hn?x@w$j>+K)gw{Bm z0bX-wGP&&SC8+XPy})&m7nZcE7IYLTPSZpKp3(O>30BoM9xd0n`wnIN18Z|Uw>lHK zt{FzzCAq^YX6Wd4EBvaQzK{L(T zSV10l-r^3Q__G_XadE+cC`l8?hC{ZOg1s~rc0F| zXcdW%l*&-^m((jizX#cLXydQ~+OLJ=>JFr$VH%6@)CMI=&n|C{s6C;I%d@HHSK4VI z#V}tu#zBf22P8N4;7id8SSML~!N3GxO4Ydxbw~zX8CO0 z2fza-9AR)h?Kkp2^k#}+qsn<<+gX?lXUnPaL^TvUe;HtBhDom5=1CC4OI9|BK%j$xY5l zM0o6Q$Z-}-y&{Q!nErq94Whhk@h1ax$l|R#EmP$;g-oY%=-FyG=QJA z!SG5yeZ4J$qc#pj*nl%e&9pi?^ZU>lcVC zjp%kJxr%xPFm7oUn$Pu8^WFY#zM>2^mii3-IX$h=jYkLy{hA=|I;LQ;HD|m zjJJjd)#!IONv?R}Y`ARneQ{k&6V=WnH|a?<+-kL79N$z#aof|s@F5-Ug5Y6 z_I>kPFdj|+|0TKlN^3kU(E;6Pq0hZZ&cA3B-jz8NdyLo*I`8KsH!yezF4|*<6XMO7 z^}}=i=CL|Lyo#IZ}(qNV>O84l@Pp)48K6dne zPIBH$&mqM{Q^o5gF>9UY2g$XZnuUH%%N9>NMSl;GTu`Pnx`A!reo3xvmR@$mVe#q{ zUQlmkFD6%FB?WBvOokQn>3#ncZ_Qhlm2z>5Mhn{)&O)KN+2S7sboof`dOun8WYj5} zzt?C#Rg&vd{#zWBF&Pfp!nRwuvksJQm<(qxc}2}jQt#LT1GxUN4Y-3vRDDVA!-_F* zf<`9r>P>%7T7Amr|MB}$IPpN_RMv+2%gbW7lrgY#JCodz-Hn3Lmr;16BAeT_<*e}X z0Y=hxkxae9ZP6lgliqlxsW-*VsyWMzF0JNlpWhYfPAUfu1GMlDbvh3u$!SXRK$=PN zK(6j04$Hh ztNX1-68-_uM$ZwScq0=PC~wi7BRW* zmrPKfq)RAOVJ?#!5w6N_d32Hk9rXDNX;|nhz|<>j-3H8h4igu;E~dDQ zsDa{*H>KJa?kZt>)Lc}lNwLlWPSR>+lo(iN>K)<(85-_XSx`uvpS zq<;MoJZ5Z0x+$?ty(8!M3pJ8FHjPi{b0kvlaYH0O^w1-uXGec0lH3eS3(y{O3Ee1V z>)B>|0Odj%JYUO;S-v+f(}3Ug56E84o5=-=(}Dj!DO^0njpBB`pDwZ+b&|`tDkr)< zBnAi0Utu%1>Krv*NG?=128SzqqX|trnB2M0d3bvDB6QF&hsh09jlel(v&C_i^m|IA zT~EVcZ2o(#_*PUKQ}3D7Ox*A*8Y#Vf$>bbw&A^Q&p@M3xG}SKKTdeq_`!E;&^Sh0_ zDa7m4PNJ{-l$hLwa0~qX@CsBHL;sKeA9|VkIM+TCy;T^^)LVX76DLUyDc=sF_XSc< z|H2^r=|wI2@yv|Ub9-3G|FEj&M$5mlQSmJY+lpr5(2K{Zb|Jar(_ev=&7l~auBP65 zCpq~9Dd?Z;iPxz{Gxbbf_l6odtUB~O6ck8DCw(JD-?^twINdpHp74AEwC278@g?1J$^h^z*a zGdbr0SO4B4$Y|5&0>`3G@fm9`b9G54{;z**k1qUUN$y|2*PJf=UP-Dx(HWA!hu zF+>!5SQ1yXBHm`jId>TFv>e4;x<~1eT!Bsqyr6#)y|XyV)^|sDl09R<0@Rjn%nVj$PSQx+aIB&gXH8PDnq7C+NdwDfdsHF2tk(?w>7rurU(YO~MDZ3=+zswUp z)oMi*6}e1K{MQG*AD4opX3+gh>YZHU3)2i7P?7mBre0I19~?X-8oe9*fyv#dngy-) zhM}~*WfW&n*2edhyi?fi;WEqm_&VfK6^f6C*rCqjh2*5?)FO{*A^4Sk5R~5oC7)h`(=z{1>jBBlJ?@F-eT&8KKe>KY{Kr2# zOX8m$(1m|C$<_GGfJt+W(b?jkRJ)K|?9w3Uy?h<$u2I9};ywq#skX6TcM8x%g{iaQs#*hNvEUZduE)&?xJ%C&^g2+$?C#=U(5-@VeO#kYVN_Cb#&nGuCT* ziLRzsGP#K=PWadG-ndXNmB}@GO~#7d-Xf>?J4~+1Sq-NIIph0wYpMO5tcTt)d3>Qv z5({};o~g(CdZ9|MSgcs-M{z5!JBX4dT;Ya{ep=E;V?3;#oPqpY2U7bq$tl{qz{5H6 zXnDy1CZ{pq751F7SA3?5KDQwC>~DF({WA`TZjbKE)T?{!4TH9uA%*X>-zKT|aN~41 zZ<0Qm*v0z+BzI=@LiopBE0sACbeFX zdLE`JsHb!+F36+(4@l11$_st@7>i3P>2)om;3etT(S(YVMvgDM}% zDd);!<;W@cnRO)g;h;&2ou-Q_naj6-E0_adOWH)tPMKPHO>K!~e27PIa#@LHKe<8V1+inUeO0hU6kB$Q( zxqst;c6SvAyNsg7*l;n;` z@>ClBmpqjuH?nU(=p*lf&);&U>PvDTK5D~&rb?8mH3D~DUr6p=tr>JbTZrPdbt&$# zhd!Uwk;J7O&f)x${K2aP9o&TIbAFQh-0}vv+ck>nH0V4XB!__%yb$e!3f<`YHSW2gWaZR2AUXBrve@{LC)TqNqt5M2a{kpnk=kM({Buwg)9&TTcaWmxTpYV} z5M@{ASuVeRbP0EB`$m4mt{5yt1)|XGEtFl7(~ytG3HP&6;3h}PF3G8TkH_)tm1z4V zS!x`R+}(DFd;cv&T9^A#T*0O@)+*JPxe;z@ywv(Y{QbaEZ}~c#=D} zz9+n6^%b4^N}t=3T)nCx+*cyW!xZrR0u zn6U(}o)7uf@^zFR$yvnD#q)5A-W)3ihg-$VOb zkX#2g#_hhtadRp?u1HRjJObMkOY%<++DVnKbm0fSIyIlmfLV+Szx+>>N+Qo9G;idu6VzpO5%PV?deB%?!?gT;J=H=E>&foL^zi#ntTzhi| zdh?eaFC@3|qb=@M^%RUL`c9RP zA-S!u9HB+aKz#dc08=k@y)V4<=YZHCt_QOo{@4BB)|+MGzsKl%SkkU`;v(py<^v+N z=1}D;IQE%0Jzc~J#+Uf!yOqdh{Yb3jq6s_Km*hPAm7>}A$6&`;RVFv$S#Q+SF<3}5 zS;^$q6weXDekuqx3uwO<(r&K)Na4(!=ddc1L$RpncSp{rtr}pYj|3L&a+MG?M)NIb+?B= z+r(I=-sG(zu(GHGh%D*-h}3&l69RpAWdL>4Vy52Tr?Vvc%oz|rEQ#WjZ@m}&6TiPQ z>oR{n`JOmhEdV5k)Bczw7x$n1+26a!pG|TnN6!Z_((>rt20G4xTIY(qni3N?N+9RLVIBu zC|GrcYQO1`fB5Y##oSq=tNc-)+o2wrMAwk6!Z z_CD3Wq+ZMp6}V)|Kzt~gK7S#(+F=fG#)T)~Sl&xYZ`=CqA{B)Su9r+bUo45w8!Cy< zTiHeac9L5+Y94wj$f0%h^f(~7Z;ZG~k~=KPy)kyS9Q4qp;~T#^_=xns^4z6+jr_}$ zemDq(3PvmG^^fGvUy;XYt8ao|3jx*6B)3reBdXEWM#+-5(mU@9B$w6ZP;zFcD?Cy& zkjag)*)7KAbAa9n`ul*?TQ74C3`#bIZ}RDQh+Vf5MGr>`+{kzL_?ha>$Y9@YQKrfq z$}Y(r%DsuM2gtxdBkY*m$kSD5l60Q%$v1+@nfuG3g;la>Tfzz^*S)bCWXWm6oiAwr z#QA}r_)&ZTH^=8OUlTMF&zSWKMO>rr<4F!keCnS+I)j#XYo^92$=xdP#Jl>PL;k(# z`9X3jQeyn6UIyz+J!0zBC5^+0KHc%zg&&w)w+DvUFR?E+8!tt*%Z>O?yzHR@?&=0v zVeqUTxN_f3;PXviDZ8ZJKH-`uV|p!;R-xm|NX~R~FYzzu2k7o; z+HZK&GgE%gtFv52hMX{U#8_DI@EO=v+7osj_awJf)dBV|e<8_-_mnCh$%R!oz^(Z_ zf{&${dL4%sK*#(b^y*MNVA-9uaUncw9wQ!MLi?+bb{`*I1Yd3pKx?Y~sq$IQyU#z4 z;5bVu1tHRL0$y?V5L(qpuap0SYa4~#2JS#}qUrAgl6z*MjiY+@6G|K=QTa zXH#aQzNz$g9m(|yH$gqloJCSm^O$<>1;6=fd2_r6TQa%U-XHm6siW}PDYU;lX?IG* zKJi$TiY$~CQ+gLirSpY;=eZ#x6a{QI1K;pGj`sGyMzu4^{qv55isT)MwOza;L2|mw z)$lw?%zHSZ?-xkU5GrBWO-}d_4rJQhT~mdguhzx4_2@VPQtwgt6G3!J8Yg@BG3&d& z^d3LRq#yRz@MLm_4C48o+I!G~@K}ngws7VfhM(k)yA2Uw=3tPX@f!t7&0uo#O=Mw< z=RVQq@4ig#zOD+avK@yOSUWK}Zx2Zhk!Xw>C9$rZ=Nnl*n`VFLKKdCNv3C~L&LlVZ z$5I&PrV4(!(|#Gz$L;wt>2utb8Aieoy^*lRwnC6mvx1%NlH7ptV_|;p4T7_j1(W;y z&<@HK$iM|7uK||cpI$SeBxeR{QvAi_!q7~3;L8D|zKX4<_BsL%>#+sgF4#`#ZJIlV z4_Cq5xrd{K#Ruv@{;J7Pa|3-pLvji_Jz>H|A2=&dkvdl5xJyt%+fYz_ER*a1@;=9}esgi-ANrh&wEK3-6`O62D>=9S2dAf7j%IQb3Uu+>z$55mB0Ww?z0$Kiu$N*J3M>*c z_1aI%;N=Q0gh7XWncNbocgWY`G4geu$mE1UZ_u?APN*6k!sMn*+kzICA4RWL&7rt< zyCOb9>JXPUvPD!i=@YuAB8xYB(($z<=e}?$(s%8FwUgYLdXhg>C_Om}ZJQd$b=(xa+U`-+JNey>xM~z7KkU2JPb`&;t5vNIV`4j%2>z*~>`b2xmF3Fk4`k>{K zHxz9;=y64IMh-r}-$ot|{6hB!$<^zpgT-FoP<#(h%5F}Os&GuMnrlkADf+B9R4|Zk z6kLK|L}>>Lspxzd${bKD5Cu=*QcOH zq#Klq&YN@SY8bu#k(`<&ZgJ1s92EX;K2vYZ>@z~#k;|x?<~$~s5*cUxx#At#dVyYt zNW0owa)4HoF&^>3n5mbu;w-THW{B^k4QFzrI}rFedk}skL&rsvc5PN-;Qdew7sr?} z^`@Nf4b@hv;@Xe2zxNt1IYItLEvM(3AW1c+hpQjj;j`Q)YF{O}$Q?RZf5&)S_=vv8 zCb{D(O4xe08+H@jX6h}U+8rB6`~}h-4paL+sds+pXEb|aFuqbHruoA?2>T(_T7MI#MeVbX}p zsK*HUT%P2Pd~$3twP`;p??LC6C-n|#dc&ioR%m_%o&SL3mVWVr z4Sf^QX76WAyV)~iV9pgM+Y-Qt^|-L`Puj z)2Eqw6Mn`3t-}%6gDMd}@%xC=b9(*VJ{7BIONwby{d=m?a2gx(iOJ(X=5 za3ne=p1xo*vwX56gJ6c#X*72a9j8R<-O-*4Q~cK<&pLXXPUMqBZncO@X>a9zWp#)` z&mROU_AaFAL2}AkQJ|n~CE8p|?^`728-5DBTkJ31>BQ!ys7b*hkOh{_b79)OCV98? zhrwT-?i>>U(zpe?c;U%mC{wPR*+dk?Nicyxa|nl zE~{eW)mJ!O*iUzuxTryJOw5=XFBz|Qj2HaC9ss72vYbx+aSF`5X^a}?(0Tu4yeh{9 zaEW$>Kzhm+s((6uFIb0dh!K@o%qj@KgYZ-M9fU;#dI>dGjQ172~Wd#jD%O1k+wc^xxNjFmI30S?w9)@gJpj>{1Mop(&4bz;I&7Q5C zgV&jaApJ81)b9rA+7>3_ruFmD@mq&DU3^stHciApas~Z7o{Z--#0tL}Ylq*|CUVAe zejv;bldb_vPto_+$au=CKTyj2>?oUvSi2<2kDez~O7vdmDa zgX|k&UTOR`$ZB7v^GZp#DKl31Ol=ps`;pGCBVBrp8}3eR1G*RK{5sN&xa)-3MZ)Wa zhdZcwAzh7zBOYe22rF%yIUNeJ#W=L%pdXN?8FIQfxWOU`;zHd zR9$w`rNpbi5%B@|tV5)r|2&g!>l`g8cF_xeSW4G#CtdONYd;RH5Kii3qoSE=zD6zz5W z_x_u`WEETe$q$DtFG9L&{&Kp-OYCs!K51CF_Y1%H zeK>aRXF;CySk87eHyFXyT`K6tD*8Fy!WuhXyWj#7H}xhfvSJusk~CfLegpm7nRL>3 zq;RdJKkwz)5UO3$E%+#jpE%wIyW;8R)1>ngUPmqQZbefYgE`|3-QW&Fh50^h!taCj zpJy_jtm_}3-u?tFFm|Wnd8yhsG(gf(_dI|Wyq`%ujy3&xj(9J9Z z=tt6deJ4-q@^*WkW7Zqiv!71t;?R_v{E~&^sCglsOH?hfyq(PHGR{mwaZ5(S zZ9!(7&id;;5O>ZCW)7k250UM*eQpQmN-UtqHTpTuqpvTSRVNCV6>ga|h2A_ob(aB- zJUfrt2c$EJv%uPh04HA`N?q@hZh@#dZl5(8=ULG2S(9$5i7r<7sfFin_{rI>J6wc( zduHM@I#)Q|K4EdSgk`b#a`zp|E$tCGYjCb=LuhwZr0F3)UAK%D$qqAke zTDyhN|5P+*Jhxx#!Ak2n&=zJ>&Sq5#Z>jJ*I$0YVS=HhvNbk`;Ugx)1YX6Z={_t(| zclKcT(Ui^`A)T81Ra6=?9*WoXaJH-FwjKRQ@PgCK=;!QYJj-@%)U!Mk{?r}B*}pq} z=fUE}NP+mHIh0c#lFhqcBh1V7X<~cwcB94F6Jh5w`glaT87J1GF5U>3QfmJ&Kz(`A74^&j+i!=!lh*Y6V5I8~ z8w8_ zkhPC19(0P%S0UXgZ& zuk{K9yKbTOjkBqBBVB6AZ}!AsTkLR!&Z8jR$tT~~#fRv?}a{}bMd<|xtb z(EI{+s`Md7a?z+^axdNI(L*XicB*&RIB%6-_?GY&EbF zz%q!9FDHZCOFC4$q*HV^#a0m#;CB;!{2<*)X*oQ+Mh89?mE(+8E!TyXHl71XyZ}z8 zTJD8P&3UjGm~gri%ZyP-a|jIg8%()jGWo1*<9Q~d?*%XSMh;T-`-65a3xxg8|43JV z@{Qoa%w6cX7yaCxbQ;#D1@fmcnmb_*XFRUwp=3O+`pOYkZnI+Z1&m+X1D@HoXXxu$ z8yqXIOtnk8j>cy6`Q1y@GI;{0d)~YSEqWk2IOAPacfliX z)T410a-8mOuq{4rR)EgGpzqh+U#Y>5`F51?{CSD@3p>DR71sDuvmN!jOS+(Qqhas^ zW&C+3%jxbtafeN|CRpa}cItiv8BZ$32Ohg9g=NC&_Y8N}xiRNGKQXFrG0)<~D-g3V z2(QJbsre&awqqA?hQy%ISt}k%W=4_BdzL7tVHrE0y6z zBR$+5GK4dp)Gi%3IO+}xHM8V&f$f&?VM`~HYEoN6tlVLbfY9^yMH{xpcYe&%tq94#>=`C38$$>AzPnT%I)xz5y%Sb0hq?k>Z#}5q#Lv26*@e27S4Nrh`L@S-Ei&O$k}){{_G)6 z_3zQldd5!pKIe*>vo*$&vv8Gu0ooZx=NFUCpd%9B6hDOeoG+pN|3{?zS2u6f|EQZs zy51Q<82`SGiZkwU#(R@H0{^@|8n1fD=X4{7>*DkuT6j%0ecf%4*uzHJRx=wKRhe2T zOKj*o3LBmEpyH9vl`+E&3k|T+o_bE#dR849W?Nvx>CZXcZ;rZUWV?lGcTkS7ZW-Uz zi!wz+HI z{n7MspKQ0~z6#ux?SU-{w{gbnbW`zfR|&%ci@CCtWZTP{#_j^7oP z@}4OiW%9P|V?@%IAs4okE`63@x^G9xy!oS9Hrk2K#5!4YQkeRpQ(9iMLC=j@k9PoO!C~ge!lFf|PGI)Hq0YaFPW- zy+RS1ZlJFlN!QS|3oQ5423i;9QT-#`s5VcSJ!>lv|3QzJbV0RYaH7UvptxI`+NZJR zb9q5Mml!tZBxAQK4ZAfzx zmvlwK{2Uu$e$KrC@^eU6{%$9@a8L&vd`!=avyKLTdUFMn_V_7dt9~8WjGu*T&rhbt zOFD_m3ee|zARZRCmKrbVv?LXwbkPKS$1jjGUZ<1?oU5RNKSk4dOJuy(8G-POKn_a< zD{#h3i;adJ%QI2n@9Ugy_O)pEd3Q59`XqqUU78yMU;DNr>vx*e?_V|Zp81ytux{F5 z_Gf?+zj-6T>NV!n{v+MkDW2eSh#y{EDbMNRyBa~6uQEziq~CKO;}t%zgpPeSSh;jH zH4f5!Zl46}(^CO-5#?-m!NU}|tlk(!rSGNUE#Jmx_Fk@FB8QJ**G-v;jkh55#hHF? zMY?z$1ApDXqulu=SJ`i+wM;tCf(@9@$8Te5P~mU| z>i?H?A3I%f&lwh34_4%KbN4yoH_toJM-TcrI~i|llp{{^XhD_x=;s=wQ%^I&;=^_# zU3mx2cK>=B;5Ro$VhcvVIo_@)U3_t>DcP#)SHwBd}WF{2xN zm@x{5gwpqO$au!(5>RchIehU)oQfwRZsXG3d!7mG+QF)({6NbVoDi&5p!4BK_x!?F zG~tFbZpxwa;YfF(BSkPpI~prlexUXh>E1=@@RjG7^Bs0);{NkYx>d3iv_&$N za+d5Fc2nd5#xpX9{j$0f1&m2Xd$&!a#!I@F@_9&lTMIHfMZecZx)(ndvP-ZLC@EOV z8Lw175=2*dfH67?I9;f076`t4kuU!$jdG{&De|Yp9%kT(eXRCABluc)-97uWFExLp zbCoiKuj^c~RIvl6TiRj|zn!$j9W{EO|2&iN_MPIvue%lTgEMD2<8js7B;&174~JU{ zGWpjp(9h3FH_R&qp3*xEVh9O7K$yEPHH|xtFd^g}U3Q+RqbOr9e z(H5%;6e+A3-haGgywidc=*ZV6f<4a3oUZ0XF}m94$CuqSkJIg)bO5F6z2z-fIiJ%- zjoph({~YF@*hxEw2THt(#mAWgBG*}i!4t4ba~d$2N1x}A&bCk&i|x3{-@by*mm*!w z3I_cU*5b2?XQ};1y2s|hD93y>bUsWUS4lU1Z6MPAJ_~--rt>j1URd&8)Cri45dy6N0w5pDC!5jPf2Gu)dQqOM!?r9^zSa|6t1u!c4RcX@^L3; zyH2h5KqmHr4ZU<8C>igiFz>5YnD^yAK;9SWz=hx7^Rh6Q!q`ylUal(VX@oIM#J48a z);9um85zOznLKL0kgi3%j;}A~B{0og>T1-}04(-!lF zL{6uu`HH{C&>3&qX3goOZQA&&PdMX-pLDw?cXu$svgOQ!{SVkXhMF)ySQl(%NDg&= zMY^+1I&eXiE7V+1-xnp_io`(Js@nprYw3Dqq|?q!fD=bv0=s|H`IG1G$g$BuxlG@Y z@2t6;8jJ^G@ZL*0kDGK}g=TPfo)hGErcvuly5=d4a4G*c&~BrTTcmrG-~)>$8uL#_ zYfk0`gbuZy)gQOGpvceCeT`Q!0oDj4rO zORWd#=Gp+9e%TcN+%Ll!Z&;xX&NUj2vuE4~{f`S|JoWFIxMBZL?6Q!)Z$>)TM<0-X zdIVl^k4MEz8`sDFO(|y*HVqa83-jMEC^{nDKliC|kZxw)M9g0Ni+(%orN%+JJKM+N z=dMb)aS8o=fpj^(x_D#KUcrTBUaiJ;~$)!Ty2Ur@%3dn_f`rO1FA1*-(}1WDAqkWPEdRp71>Ehvpi z)8zxXxOGVwaSI`7Ex}G5E?&l>SHUEpKX3;F%f4`6}H_#rXB;_El zvniZTbG03M`dJoz%%$_g$ap`DhN2!5gl5Un^_EEYUYHMOE6j&e7$6^xbg%5R1Rq}R zM3S%5IQwVyS)83a@hs9BLZAPU@x-mS^LG~PMxB4@^EDrn9qdw(Qf6zTl3-tQG**~v z1dKdhQ2UQ`T=knsr}KF-mit}6)-RW(#zDHU)B5;aTNLkQ5`F$hI(=cCr-c7e=jr2} z&y0;o86*8tS@5C#3@FY>g!kVXQ~Qc^c1`C&qp2s%x=BB;C0%e{Gr0G6791Wd%NbAc z)ez_xUlBeL=hq?_v``HQemil- z+fYH7Yfviqh74s|FPB8Or5&ymY6xfze-&ZD`#V8SQ_mDRXPotk-lFo0%NwDpGB3!l8 zg&GIxw6`>Y-|M|$$|AZB73of@NyAf{L*Qmx6}JDrB3-llDEKkn4u0U;m5 zCu#GXR=(nWvFTw%Y~`GF2dK+5ZmzCC&HNhEaq|{$NK_m?DuD$SkDIA+kZx6!@Y{{= zm4Qn-oxeu9g{8K*&2Fp!z8MAkkArk)ocn+14U)3UD8>0HKXqGm&j!L1Wu>lcN{gD z8sHEoJ5HC^SBwrkF~I(pxZS<{qv)HS5&mw`nIXS?R@TTnnD#Cmh+ z{1nap#v;mPFO}tY=Lr~- zhQqw@afuSv?ApxwVz3M_f`O`U-1&1nMq$?#&n9YPoC~%UWBN*Mz0RS?>fp*rSm%~ z9_ju}55luruA{1hbUqyEqFp_3v(*Lk>yrdEFQohT{#&T<{kQ1@y#GczjrtL|>(FRy zxRuVYBVEZ>IlNP6Eba>`? z_my=2&DSd(AYae(P$93Wu#mad;K?j5o`Y-sEr4t~oo7V4NAdA^UB`Un<5xzFgLEdR zX5#igmjx|?Hcsbh9*#qs4S}|D52xGtCltRC^+l!=X*aHZ4sX0P%e+5Y&3M5yEK#-{ zwVlV*@sf12vwiV)tc(kR4%IH{(jM0%{RD9wdy&ppA>F>?TJUGaQU0G<^nGg59WZu- zbK-7*Gh67qr3uz*{2kJ@jI7B8=BK&`lor>)Lk7`#Bc$s%JrOFD%i`2uE};MKF6j~y zqT!egnJBuQ&Kn_J&etT^JADt*x;}%7H}Tm#-u(~djBMX=X43f^K<-*RdRjr}bCGV) zMRVA6ZVi%apr31yZpI^9_$@OB9P=`R{l`JN&33NP;Yc;gKCi;*=2W}E{j0kLu@%Og zZqo)I*dtp67M>U5blZOh!gqPXT%(`8ob%G;84r)_UX9Wk3OSwB@?;p~y9X(IjH6uM znx(vRmS-4QiCfHV!$ELI>_Olj;ZOCCbW?H%LH`MRz~;CBPIod|6ncZ5V0|ICo9gTe zN3NJ*agf-69uJTv4+Y$2j_WnsmbtKMgeo# z{tGiC(h6;KVL%2mI8&C&>8#SF`6k_$KzOL| z9h!dMO(WYam|qTbr$_QDgwKonyCw7G*pjX@%&nc@nQd{Wgzwr<$HwQ1sqvET?5zvn zdE;y>t4z-`>9%Ox1aBh8V~y_vd5FtF`$m-E9EW#2qw7GD@m7z& zhdeFgu)f$JY8<4S>NW|<&0K;<#=NEOzmN{b@X)Tz416zClsex?xI2O`-gAW!A2pnH zS<{HrP2#Z31G;~tTXFavdM5nV#1Lb;f232g-iE&SrQ!QES=9WI&a^QCDeqi_!@cfs zx-~@;&y~(wj-}J-?ycipe_M_H=bZNqPD}?dN{(s_yx0?fAlP^99Eq*$h36*y{(nj5_4h8|zmLG9mA6xFkB1kY=*u<~48gt2Lh#>KSt=gsb{so| z%FSc&i>wk(*I=~`rHd@Um22t$OETW6d#(OJ)5nQu$fqL8$vbe^mQ^B zPhpff9(y1YxjWPMOGx+MeCmh+@~KHDq1J{@^}RuM(>-zj^(Eclt&V8p{kd2#j($(c zZS&Sz)$Qk)zqYBYQQaIoS~mo(b}yjDOS)5ji8%CR95PWo%IUVrSmC8!b~tTfBBy(> zLsR$-Z7;mIQmpx(2Pnm^J- z9(P37?#{&xOStFH>%eWna``mOJF}e{2Q%&r`$1_BqoF#REf0^z>yz6A&z#L2NrY!Pw&AyHD>*hkkhCtY657_de4GTJ^P4)*^)B3;Sc4dBQ(fV!0F^Ig)Z zO+5gZ4VzKQ?070(NcW1wLfabv{Wa>%qeds>I>JqmQX}NhhW2hy`|vu)~mkZbiD>Mr(X0;VzKA zqfX5;=^XS_@w#Oa&_Y-JwxKKkE9y&?qt6a@vT;(H*nFHx(S)SQAT%q#@ z-12Ot#zDG8!upf*h4m+^2dFVsL+fIOI4FRxa{#Q;{v!WN2hdG0@FGHzyBipUqBMmox7%n(15yI*0UQ0tA zFHiV%Bz-@djHlLW1WWT(P{wFCD&Fd~9j;^HF~;jh6}zq78V`Lb4)-aFa5|f(!gZTF z7V7!a^GwEjJ5~hG%W{E(ML$yWLb|wGZ**Lb56}KJ;%wJS%o(Wf3x$cB{&2>N*Ej+A z&jR4uTzWl@dfs*QEw5n?zd6r#7cEBdI|880D0*L!Zi&Tkf$z3F(4Ix-(~xd$njzmi zXEr?dh2B@BYrE46Ama=Quh9E|bX@Bz<0r!ZcfRYl^#c27Ofr~kB8evLOsD3Lbl;TH zLBt#tJaj9acSAb42s!vc+#XN-^qQJy(k)yT3d3^_@>O@x&sX2C@8a30RWth*)v?|q zo`4qH3&25`ciaE>igf(*?LhNPB<$&+->)FuHsSZ8FBUBZcwHUUzmtnQdAszgnW*`< z*>~c$z)t5TVy?$h^Fq4QxBbB7-r;EbOZt40bi)^w0;?E3c;N_r9YDIROWQ%~wMZy) zj~)l}h)boULE+{=L_c#k<2^zTqe6t^Nw`U71eBBc0CbQEaB*G5_xxI^Uag%Z~{7y+_5- z`(sNv{mCJ+HvFk{O)!kj2bx^e}udR2|_# zwM)7;rdQE(-|=u)AAP@_bn()6Kz5G~lznZ%8Sh`6#fbk=XOWDjC9JbJO;~4f%>Z>4 zmz#?S5~dzwCdfTw!(w-%aor(!nNd5n?@9L|IRiD^Gr-=WHE~S}wZbo|8J9 zF6i=cfp#0jj}^=~UGNGmJ{WC=6VK7d8M0kvVIKT$VIKVE0rKEU=d0Pq7v1lS&kv>Z z_!b{#lfuZ2rK0IGj04a#_z$5k*9nRi)Fr9>3?b_Tp}Pv;Aej_W-K()m;lMs6Nc zV2~Ak{2-ll_d4)FED8b@`nW(kk0tkk$ITfqX>bI!zNG88*a3>3gu_Y{OSvb_yIKE> zN0?`C6$G94_3@O8p}dbl^zS|C{^eQz`<`ap0N>LjUEbA&?3SB*Q1yZ|YMx1_Dy+x& z@_*E0w0g;~Pk+b$pXSVjh^&D9j|-3BZ|2O90>&;^O<+4=4LGDY7plHq zOO2OwgR8TFP4Zm$adr}?LmSFLXH6Wu_H!kt`;dATG{z@FDP=mZlx)|0IScmwOoZQ6 ze)74-A*Fu{JbySF3JgDSIv4w9P@xnH|D2Qs{p0<6p4=%}$|!_2@NNtb#oZSJ(Au(J zobLKnh*JlNp`ytq)I5{%B7Oqwzo$!Z?1d?(OBiR1(_IUY;N8H_r~li(5tfG7@ku^9 zuI<1XZ&;ZDZuCBiinh~r)vDh=<2`&?$t0IN;^n@4k6iC4Vil#4R6Noh=J@Ux>BMGX zknmIot1qm;?W$auUlH-Sya2R@SL-Ur{8eE{>64d4wA9je`u5t;(E2NxLAw#z)j(C28IZ7B3u zL+9I)F4d|9r3&+HoyvEi{=cWBdntMlz1a~96?fD3BS^QQzz+?(v=B=A(0TQwt0{!J3ZWr*Fr4T!3>%)x+LDV=%r_}xs zU37_s-A|rU#~IS?8s3P~MB?GZS4N!f#ee2SX@GelspwNFVW>n#O+ErRiv{f5*yNOvnt55`uH!(DrKa>f($Fo4q2?Quy>G3vh$ z$atGp+QZhR#`xf`eN?-C7S=pzmE(+j&TALZrc@{>76I?-cX2vL;dcdFpNfK?TXu4~ zqu%MzG-DqB&&&;+E<9@y3_Q}to3&v+r&DiQ4D}DS^QIn(pj=_d2i7Ea4-;;Cf^oZL zhZW4aQ1UVQzC7t%a?J6bravesM~?bGBHfY)rg&C{3ZAM>pEr@tpxgxCvVViTZ)X4G|&wuKWhUn9I(%G-_cs=ENnJv0q%tB$FTct41?eGA3Zlt^B zS&T&1YM^nC=2FKu((%w9w0%`2=)Ftl!;vm*!6ejpdL77jpT`-mdYL)OxWoV^kUp;? z<82h?k*WWWJTg=D*USsON+!WumW^Iu1Xq3@1@q_8`;T;WhXdd#eMRW-LX_H9q#Myb z304nJ1>47oQsW@qh2|7!@x~Zstk}yL?-X1B7u_xs?3uNNa&^{-4Q z?wY9$&ic{kiKLq;tfe~oo3r5JFZw+j(tS0T#7oYu0=FyayjRkNwx1G6tvt@Ue_l?F zmvm7H+iQ)(?u`CE!1GYjeevq{LDG@`%kP}#{k>idu?0hwh~E zRY=E`heEoF)3<>2l1MywB%NnOy6+MSa8ZyiUiTr8S`X6sDX2gNYaX6+t&(yZbaeTu z@5-2>90~Tot`fo8@AI(k{llD2fQNvEZx-X6F}A4x?>HH6RdoSSSBt{0yfA0HW0~U6 zQ8fgs=1WoWejQ6<^4^|ieudkyDy!}B{GX0ke9m<0_)EIPXNGvi`H?s(kba&*y6oR7 zST!X;SOPkb$_pZ$k^@3+6;tr|A2&JsH@_htbtR=@sWF>4`?sgeP4F%(1CP<-QSoBK zb@@8N8ocR2MyxD51gv|z81J#7=b3chH*EtCo+jgq*XZ*w(q(SC3N|MtVwmMc^^bH{ zmo@|W<&k)(GyOY6I={u@@S;WtuGvnn8|hvItHX#6U%X%A1~t#5vvD5}T}riZ&!Z32 zdBp7)6aJf{HH@8t1G~I>G(LUJ3SSvX=fjasE@BkE7h{LP)Zx^4Nq4_&2sT|9f~O7| zO05U!z6$fXI)(XMivsCHl?=}q&iH8t*K)` z|NkS>SwuTP4He;a?Z`|{Cz#EH8^uP#r(Oosc*%J4_WQxo1**`x?kY9U*S6^Jd$w0G z=^?Ic@s(z;{NMPy5$BKXbSVLubv9!jHhy48s5~HjI9w}SCWk9 ztUe6tsk!2no9X;8(sgty!riXk_?HE}|46rc{b)Ee*BoC7vZwYR=>{)$hbq2$xHg#H zr=)vQJRPRm9Y<>2<(%}xr%%ris6Qb^m!fW2A9^M@t^p3 z(N7u9c(>Irpo7KWN;*y80xMjt zu~Rr*H}sC;9rj+sZsrciVNV9GMRkGe_!|4tsdXb=RBsU9*L?~~?p@63{?!e=Dy$ot zIY8Y|GM-V)Y!IFpf*h0QbH>}rZvY9wdeC_ceZQEDcPHiznC34J+e+!@5ce_^_`TUj zn921A*k9-Vf?F4tgAze7wQi()=h6qx<}L*HwI_2r+vPG)R8|BRkEic*k@0-4@L=-} zMI4q%*PkRE(>o0gnzxc~@Se^mG@6BqIaK`f~Ph`L6MMFgeI**o&7qjvdf0cg{3@NYWjCaXo z1W?&H3yzvfKTjs(IWKVnBLd^#=S5ekc-zb(dF_vj8Ktr->__|UXm`993?Dg+S~t=i z8M79xd!Pz=4P!Xn$VL}rGQ1Tquju>@GM>Ag4w9V~3inQ-*Nt>371#MILv7%*N255~ z&AToG+8q|c%GhYm@y__R9ypAg13yj5=5%g>O7QS;FF2z)gK}r9LwO~_yv+sOO>D`2 z&sxvT0Z{e13e`W-tv(?GT!sB>UQPFpbUANMgQ7eucrxFRGhU1E8>ngHoM5ouch3G9 zge$>|d0z0G^HR!XjL+i9#vWm=ue!!snyo+RE+;HOFmC5*u=y>0{zAIB zmil0CuQ?PO<-!?HAvPN9+zgSIbOPs4&10j5fAD5z+}6jFB=77;77&JhH!5KHGe+*ZnnH{JLB5Y z%4Q7ZldiAlE!v0_u-P{& zY8?L`*IS0}_|3pKZHTc~zP*LBSwYm8LEo=?wE=aZy6ux=E-I#CR7-b&}6l1@FW7bT@n z#WVHj`6FGuuzq6mq6lo9&jbDUJ?V;uwII!@GjYc#OUgOv4`$1=k1}dQwFGmU?D?}a zN5WfUc+`53uDM|-$XqW5e;7>VbTyw8L4dg`G#Kj3=|YZXgWvP!LW2nUxeM8@c))IO z|8@+Vm4AX-57Jepl!KxRaqxL7olmoAzB%hAdVsklr7ifVT_f;(a+WXJxs2)`>9R_O zf>bC5YbMg;C0+4<#%nmhcuBV)#sb)3DX6z}5@)*#YZrh;%T&RLvIUfToIHk=Uv-?3 zTxKcwp)L)3Hif_{8zt(zm~@fhqo7!T9bDaNP3=?C9S`w<6>hq)%X%!eUr1Mf(*xeQ zF&HM>-{5pN?1LZ*9t`ufR&YAAR|$}>kp+HUqu+PlpIgDCU)#;3w?F4`y+1>`z)jo1 z*P=Fo*cJM`m~_8m4*-{`n~`M_od-a=^Yzz2%&)(KB|+To^6h3&x8)l0eH94%|6h{v zj(vR(tX62DgpE<0F01Mz@E>*s9m%Kf^9NtS>=%_H##;Xc@3CV7VPOU(VKc%)Nb zwgnj;&Opv0^z$Cly$PFyf_ii@I`76Aud-bc{XUt5y2sPkJ!Cwa+6uw_)rNRHLm#K3 z%d`bwgzquGZ@bM~XZ#l>7~ci*YGbK(Nyk;+jC5r#>4L_Q%VFFS`hFtmx(;XYzixcN zmw&K~v)#KM!@%_Ep0HC!m(!Vy3jqQg80D!{yQF*NAc7AD9TmtN4Ci#(SRW;4A#~R$fzzdC{}rr$myaSo zrf|BJ-U>lmU>*AKla9B0qLQFVfqp9(!QW1F zz8UFMOC3?(*l^gCL+6{3Zhn; z+)sU+@wn=~k?j`GY7>N{trP^jqK|{5n|=5KyR$4Ec+Ffy_3xUfzpLcU!_4}3J9uql zo#2G-Cn(|eP-?%Bj_dodr1O5tgQ{g85FAA3m6EQ)iVu&JcB9dH^nF{>*$nrF>QD}K z&7kZ0k#39lM3}Z@F6z7@$vF;t-W1rOs(_|PNKmeB?@&Shm{O)~$|}yh8`7=wamBA4 zt?<5wCe(47bQQj%@HjDR{CB53^?yV)t!q2Ltmu>+9eJ!5#O`v&xw1d0c%&O*Cjs|n zTH|CN5o+I)uEAO!zNxjv>WQy8Vx!+$obhTOsK8bAQuy>JO-=`ec~wQv z#^I~6YpDMtvVRd>Ca_jl6(5!Erux_N#DnK^_B69Cd~fXsMR)ksDHlmjr|Wo;&ev@! zES8gbF+n>3$@;{2@Qm*Gn5bt|{HIUA{8gcNUBG^7{z$jbmk*!sQp49g@;P0_ zWp}vilRSQ^L;r4&@mdT$;QL?NSo-@E&UpW=vzRtOokfpLX8g2*Qw)#S%s4K)hvf9) z@N(%vR6NohT@jC>J(6(2jlG;M(QYD=%vypCZ@2OKAGgSO5%Y}EaW)>;pQn#Aq`MQO zAkY3 z_eJ2Ql5L#rR;Me$o0G=iFpJ%s&aHVkoIA$@uXs%7(~#}{=rn*vr!8=<^d&0Z#Rwz* znyn|8wCH<`yB0!GwsE-ZT{x#(ZC-^Q&zp-=JswlX4>H~{v0yZA$`Tx&`IXvNr0X)} zqZ#QLn4Lk_HzOU_{#)C!j&VyWWBe86S(VZmc<8N9s5*V5p#Od*-Hjh!*i~E$S3i|T zTyDVzd#v-_5$ha@;*95T$q-ln7=zEXW>ND(wk!2P1z%kpfO8EeQTL@nm)i1K;djy# z)CRL`$}QlrF%loJrStVjrzv(1y!{w~r+%mR73oCvRNxjP9xl05Nv$vG4lYxNt+Ibm zh_OEPJ5IXA9}QssQ42i6j^0nUhrkuL11b@AAd>5m6uDp*Rc!W-VG&!q#c{7 z{*|P3)!w^a$}B&W%)U1@$G1u{(Rxn@+<)JbZkOk4=D4!T>D zi29F%bSH%MptcC>LA@NH9u(;=3+tITPaTHbY==_)BVDlYdrI?^JJFg%x*iniWG1;| zNy%&I(|K{uc;@nMSYc*0O5R96PcA9%V0XlvU~-o(V%J^k;N^zqvG*Qj!v5nWUFeUS z{1v9d1fRFl`O2i*RICCmm-~%j3yrL?1DSZk5c=T zbUNwcct~L|_6X#2x~Hk)c((i`Jia-E(@ijWiq`#@fh9`01K3nhx;2 zRMH*nu*OZ@;xPIfegBzs^RH=R@hMlqZDHq^fH>E^9ukX~IF z+`XFR90v&7g=Eqv!<6lGK370xAMasOF*9WPMOIYiAwLqm1hcGSsQ!_z_{L*?qgf=l z8%y8!Cf%scWH7f!0^Qj}*F7TL$6G}}WsfkAOjv8X|Gbb+bYUn|n17V-l|jE3O}bCz zVNmJh1-{*LQ7T@{fnKaL7m+s5+an zbQKNNNJ(-U3^;v}S`X4)kSRn8Z(4z5F#Uf-x`);W&=k9waDO-b-Yn_f51$C0gt)>T z>rFVvp(Ol%?JVK|NgMgVoGYaEDFVqKIzgYr#7vUex@NjydZmh^hYy7)0mmk?v`$ zBRlNUV}9=d^_EB%V{iwYYM%{vEk@M!0_h%z$w0~b&QP$Tg_=Lo4L2DFZ=ZPyR4d<5 zZdKL_o{Mr0v-sClRzvjLoNP#+pOW!5daOka4XSW=Go9~9 zIv)|tN0?b>o7r28HBvHa0#EPI?UF75)(Bb(MZu0obR93!JrQl@={u&t zjhpHIk?z)|BJjXr9*o;gzo$;RMD;ts?agdBKabweq>Gc5fj)Pg;el23ex5zrg#F;3 z!%UwhD)6>9fs?E&K=#p*)Vz@H%`q#euHDRLO1W~nIinom3!UHKv<`h-Amcfx`oJ`6 ze=u`_GG{y`z7G_5j1|5Pro!n0VtpV_%7ot-r^V^sItIf7!}3QDwxR#uqy=wT)!n<9 zCrDcGQ@;)Q+f*TWGdf?2bf=* z7W%VcHfOw0x#zqq+p^L2!wV?4iocYVKeU6XFESDQy&s7;zxM<+bsg0I2kFeBg7AVm z31Ix3zCI^idlAHajmcozRUOWDWe&OEmivR?{V4i6fQ;wzR2gslsSowv(ffsT)n;<| zbcqhs{XzH7sbmtXx8@*oe~PtWIr2emB0RX$jy_J4?h9*#oZp7PCfC8#I7oL&X+Pg2 zeJ-@JpzlYJE+natA67RR&YMiv10WsOcPL30wzCKP+8GM(R|Qh*_DNDi(5`TlxfXw& zr++37iRdf?-@+1M|Kl|2s?`J0?_2fYh*u1!+fbG#IOpmL*Jh05bkeJo*xl);n6O^@ zehJyGk!=#M-TW@lDTwEc*Y;{QzeZ3B0#xR4x~=n9@<**J1sla^m$6t$pd59E*?IRO zPxs?PlqanJ@_Q;>|Alm=r_Upc=4iNkGo2SiI<9&xq&s&=4t*8o`@FhC=llHC94b&= z!!XXV%Dh7&(b#8r7b>k z4zTCVipxF7CgdNhiK?5DYI4#>>^_Qtgt?Z-@jeS*MGgA1HCg zv+R_G(Zbq7tDg!uUTvv(Jih|+lvWW1h8 zKltU;Q?~Ym8fQFR%W!C`Q;1~wH$ne(BjcgbGhnUBZo$*VpE#Y#`8b&S?Ym&&kp{{Y zl?@dfJdnpYmmYPs6nJ9K_lo%b*v-`Zk#6fM4=nOY37=cPm(xApz{d#}OtC?%I;T71 zX^$VfIpRyFYN`E9w!5xY27hy$fHy{LRR2il>?jXA zt8KC6eEPbZbS9rv;5ld{{I=E~&Uh|w4502{J)F0Io9cWwe2pttyhgS4=+=TTJlLU~v)!1otAbYxWAQB4N0bw}CBt4ERmfZ()4~MF z-2|@_#^YhB->G>fowPF#Dn)AJmCp400i?6Zhfp_J45vglamLfIodK&d=A)9=_c)zL z`wS?0cMiIA=`N>xuqqnf{_25#p+}UvKDL|rC11wG%1s|o*`4(in ztT&UOYfvh9;VMeCt3NZBsn6NV9GfP}s(WYPoZs~VUY{}QzpqHwC(KiLpsa;$?n-gG zeAW<;_%jB7dQImakn!>?b#R*0SbXxd6KA|3H8OZy97I4P5OeiUPkKGl+!ThFeSFOs zuOX{W;6Eo8KUhlddzCwDnQrxBW~+!jTcekT5Aq6J{fFmL@kp0cBz!UA(I@oB+>$!J zk?wS+A3mv=i7Zb`Q{y1rv$giv@`odKlBVkbkq*5w#DnlitUQ*!FE2iY$9H~Hz+CL` zWjDRs4w^cX@hMS%Y8<4iN!$Tud`-qfzE9wETy>tvcwMu;fcWqk_$BP7&a+AP-#Slg z2dMKzx;%R&SXb6|`)xn`u6xeRIeTK}o|$RV{nbFCIi>4&-N!F*tb_uM)0A%7d@G_XtOU;L zyFlse<>QGj>q_9TY9FNw9vDRg>??$Zd-^HeyRY*ItDzbgtchRuXuBj8bP_Y(*Fd^Y z6c%r3p`$?W_DYe3UzOPO)?rd{r$2lgriPt2)P2~ylKjLhf+K5e`!o*|=DYp&(UO*lHR4`;O(*ftM%%hBFAl(;_CEXWK@Q;1*(0FeS z%2>OgZi$tEe5Ml%&OgQTcpT@s3Uo%T5~;{ni0^VQkf$@_Vb56n`a|8Q%mImiZ4I>F zjQ@{Nw~b;yL)0DdEE5DNSHbt*_<2K}NAE?!dg;17Yc%llmd0IvIJjq%Xo+*3_*{1- z9OBfI7ME6F?Tos-pi0Q%myxq9@jMUI4KGfGf)+@4pFcqvZ~lE2oO|68BpzQ)>0Z2O zAdQ@gB&FXPu=9qN`@eZr`TxkPLR~T=hKMcB1o<~VVC8;DFcNGxTq0uSOcK9+X9;o! z`^k0-yk8!5ftOuC9^HIi*za5z+xSjxcj9#A*y2?P9T-A!5;*yhXfMv`|!jutn^kTn)zztRz`0!ic}? zfx5%qS@8bSF4BC&b?mxAUEh>cXlSvBv_6P`N1-mDBLPN5X_6x>@&0zyaee{#;p%Qu zGJub#B(QV^&9*B=KMr?_o2_Wz;{I(!!&4#ryB?_9utWtEd3_=)p5b`_sPo+B2D;~M zB5w@g*B|PbqZr_dX(2hGlR949GJjxK=>!F)O4$1@8gKvDa^S{0OLVP0M(HMH*MeEE zRuS79G_mtR>zTl5T(w>_x2awHPI|v0r1vZCKkiqkt9izPem5+^rj_{p3U$%a{4lOG zKg{(X`C+L0GOP`M>4XBg@;1uj(~;(f=}Gg$4*erPZ2Vjszo%c?MA|Fnic62N;G|Al zP_P+){-W-x&O{*U}b z)WORcfN9kyQ0clAh4)?XJmsXQR^vhchN)NPRF&0YFG^5#&t@ZC=0(&Q1~aH|t` zU7>EqE-^7>&QWzf3yz zPIR|%foR6Mt75Z?craG)7IFD3-p_!#+mkE6C+VD`k#T>p_ZQSne^vp?X8aMae2PC; zQTHIW8a&P$NBkU%-|tb!F&PC6F3gm?J+TbGUXXeel#T(-4$T7lqs^F$Q9s46y}m{? zqw2J{LD7_)zc3kC?^1++w+rh2%R4;xf8-sa&a-u;#O{6s7<9zHS5eoryO{7v$OMPZ zyrw+9O=~s~KiDI|tk%_7JEQTur2XwrUzdT7&3HbSQRZ?!X*@^74)3R2rww&;UQHqo z31XyqjCel->V|v9OKQXC6Yr+iW9^5!l@#mip>B|WQEYW?Jt1R(?~jc-Z?6vVS+5Pm z3L|Q_Chd&iQcf8d3-SI9G@iP43-OGW3qI&w!OjQj!V<3$)>rdE#i%&(-V97KVv@*lrV^L@IX^3om%!5s>`1=d$)|PdXZr@U&i4p!CiaM^^MAEU; z8p=oTv3j6xcGWnt@|F#h@%O{rX>Swp^w@c#3+uEbC5*GgkE>;1zdXMGAnHQCUm=Ff zN4EBD2x^LO92>R{S>sx)Y&HIOrq`d_}(~9o0TvXt};m+sW@sM}q^+ z_Sk(FbxzXtj9UJW^^8z=*GQZEezgvGz3#w{Z}(PpNy^PFq7&vj`9t6_S@qQhoHVk= zu0PZ*b-YO`g%^QL!i+MW1I2nvXuSO%+NAFFI*@yx`uG+$e38h_O9qb*;m?H&kCY{x z<6A`;e|q?fwpBuz8W(cc;9l(bP`BloDXe;C1ePzs=ZT>1UHbttuBuo3@>w<3E~pFJ zy_(#W(JXO@$Da$R8+WafDu=66r&5)CdM?Uyl-3Ur2DBwV2~_CG@1 z?KcI$J!7@Flf?5QP#1Z%6tK681xDX46Mz3NQP(ii)UmOdz>{u+= za$OI*UQp+AvI2|>jUs$@@5I^DsKTfN{4CvH8<>O1De89?y_; zJ)U>}SdZt?f(s&t(Ve2a>eGiKucyM?(RawM_O)31p-y6N36Bq(L5Bt3C|&*`6PO(< zgz4E+u;&&UFFC;&HswUYZ8g+x@sK51F`)$ZeLjzsD{iV3_c(Wo7=C*W7o}DSl237A z`Xo>6e4x(uy#>LWng=_s4q@$wI&&9Au(r(;wgDPtyh9Z0JfZQPs+a?ogAR<@h38`q zzVs10N%PT{t(zvA&x#^8AB=@f>(#JwQMc(;5|R4e2QIVmpmZ~x`iPpaTzL2JQmnpc zJmp)j2#vvH_)2FHrF*@Z1E#Lhfn;hwrBg5^!0-6yWK+Zs%-wx%C*H7nxoFsQr|47V zZvOaWKAatce|MwKdUZD8+Gq`Hj}usZQ8%)ynBYt{gkEgC{{VGmGOr1fQ^}Cyiq{u) z+l>ie8t|OtX5;lxthE*dUfV2UZJ~>sT0f8@JkSWxGi*&})RVkG1muff_Gb?X1K&(xBC>@$VB^UWPZ)ZH5R_6+_W_SC>y zaMo?HDCP}cEc2tE@Jg$M-R;5HdlTw@c5%VpIWDjx4$nVDU5Rv`l_%2ufZmw}W9^4J zbs`+xmF@>rBEa_pLS2}C6bP)>gWF%bV)1M(Z3H877m7YuxQU(QuwryqXBd$m9K!sM|Ms zK(ec>20pro=QE&gPGge9`E(XM`;Z3z{{NzmD&J?j^AGXa8=WGZ&_=P(8#y>2)`0v0 zd+dINxjY{4N&xw<@#hTc@&w1o zj8#1N>>ulSpic1mrC5D`JmKDeufKu1>(VWkhli#Tb1U(6KTx*_TKH`pP!{aJiH{qg z?#|Cp;;H^~LC1)(Sbe)!8wm*2#iBdaGsStk+`x~Wo5&rv@&0Vo-Kk@M?$Sb1JO>}w zMct+KED$Qq)mM4ihy9OG_usxe2c-M*EcnO1JgBo>G69TV{7UfE0M9>IyEfQw#nIKG z14C=YiWa``hMx{d)wqiNk5KpDc<2Y|c<8i$jEACbNt8TfjRSAJ5Oqg?IS~;Pi@}_^mne^~M~g*h3QIxKHvE6NMzPZ`??bmpaAK*rC)5u5 z1+F17&v;|UhdP&FGx#QTBQbg}o+pU9uP@}_b=gP|sosMfAL`qeCI{jx^?U(r=o-{~u_%7P5Ju`N;=jj`DHrxrMrq zYb!ue>Ph0n;~q*^Zd?P-8P}6U#7ykG{kLAmSDBR}>#O_4_Z)xm7f((G2}*cA4eExL zX%qcLkpMR0*A?pQH?q|8*j>h|M-Jbu(#n=5~-JXvkS;;_Pr^wO%n0Wo|tK`CojxeLh z8vK2JQD>%kkyIMRfSGK3{u}B}9q1>oFZ6_e0?jGoWgV>~D}K$DNE#a{-Q%zbvMRzv zqI?N|uA=2m8>vSAw2F{C2*%g@M;$LfjjR!6OVWLD_xP)jKhv-gRR=F2`@X6Jmrne<5q0ZFEhIyO z)xnT-PpZGKEAftd{QvgZi}g55Io^o6s7@U+7@C238exzsUi`dh$>WV5iRe>#l+L+j z6Y-|T3iL0)*Aqm`y}C(E+^eesJ(uu21=O|9RRnLOc?ISpEwS^q_p_EHW=6Ltf9ef! z^EVp25EBWfF4#@{T@Tb9`0$u)=cYiBXf>r<*L08Uwv2&2?dK?6(x!Iur^zU2Jg7r? zdnJgWvDW-J#B?cPIqe7SM8;KjSWf|$6gW}WD=hiwuRmml7 z8R%72LLMKPj9o9N>(6;Y#&WdauLE9`PNmF^l;5?Fl#%WU{&)MW7!xC|*Xk6>Ew+-Z zk5mAOy-WE@Ptqyfv058Y<@Ja7z`^sc(0EJb@};?=ABmh=BkcM^o!s|Eu)oNNm}JPt zt^?Es?wtf4y8B6zjO(%QvQFg~F~5G1Nac=`glfGE)NS_tK%CLf0B(9ESh=X9T2}*g zmkQb7T$nfL7=iCwg}PMB1aN)<9enVZgk68AyYMv+3@-afn3&=FZKEz{%OsFuA0bJq zPsZBCvE?y8sd2HW!1y*lbbSYL_oW4tXZwM_uLIP@wXP!4uDHT$A6+ROZvrGz?pnaT zHF$nI8c%8HH1TtRJzO{-{STjv0y(y0`K|fi{Ajev0Cj=(cZi_L2JoE`-hYp}g%ABe zH2h39X??=Z+hosoV*a*uBHwjq_;nt@Su#zU3*T%)8INZ*io6yaMz*fS_Xk7c zy&vmNE==tu>r~4r<3*iTBN}F1BX1qW=ixrK)ck+fi5Yk52wzv}2Dy+^0?5?cg1^rj z>Zr!qQFp!P2)X520hr%~k2j*ua&9~Me$!}B)@6&`H&7Ru5k}5>+yr)fu%$dc)plRf zA|wm^UNnsT-_UqBXE>8P$!xH*^gZU9LzN|GS4roM8Ls6^Mnywyo(^aIQW zfs5TdV9kpp%6NLuz2N>9d)TjnzYn4Dob8>Vkv;(hQy*aMg1XXFB{(!Y3DzV#QI@Ne zCZ^%y%44}?G_Nl&^vO+xHXuhcD>5$*0(@H?qGYvi(Z-AW-)Wt>H zfS^zxX#aB~)_$n7_wWV2`)uIIxA;0IsIyJ;1!bd{F#4fBWw|ucAB6fl!YkX?U@lfD zFZr}^g2=yq&EdSI(a=g$30hpk*WWgK>&kWVUi|~C9;gcuy2E5gIwT|U@ov6Z?K6b&zJYMpa(uiSEq6o#4c?s{2&?v8#^T9$ z^^5+?b7PW+M7NgaLF@3VWX0)GlH1My2!~i}Hi^dD=vLku@<#qiLPWJ>3{`?Nvisd%VaIs?0J>`~n<@;JL#WVdKo^ti4R zE}cAsWTfKbOsKoIL7IDDbCrC&1^*wRt}(|Cju>)*p4;&M5$dih>A-RR2BhkP80@-7 z9ebN96zBl*w?jOo%a^X3(mNpoY8X5v|Gr+5E_n$Q%odBrpL`Ni({T1QG_BoXC*4&5&*S#K)iT!6OUCG5-@Tz$oDLH-@ zJ8!4nzZJb0TqH^{vJ#(>=2Nd+l>_3m@O&xMEwQ^p%&pA_2gl;`Dp7a4*baP_;eb7b zGqK}C9p_yj7_Vpx$}7J}{%&W~QSLV}cCN^vZ=ooq%~q@#GY&rO8<6~3Xixqf?-1gC z+tfqbk{-W_N=qmm)xIrgyuFh$p~;bl#4~UFJ05jidYRCv^%3!EQ43|cGQ(l;nxPq7 z`b8OYr?rDb)$;2^yOYDjX9DY>hm#R8`(r1iJ20&f#^*~&?alae5RJDku@H83ljKYR zwOg>s9&TuvByO_C*TF#Jotb`)v`yB6*(dRFE7ZMtI*SZ_<8j zd!ogYJztXkd4;e!9UtFEo%~0V_!&?NW1giEe_scvi(k$KBc{2)fFK{N{ZN-376m@r z>cRW1ZkY23w-$uIm@jgel`KB<>IGRgvJj5Dz{b8qQ76)ZL?*iwUiV4Ijt_OaO*Mh1 zxgVT65`WJ@-KLifVBhw7V!a=pS8$75&EfDUK6w0(JX+Mf_@WKX4MV|}kT%MAAw`|!$Jatom9B){pV4?a zOl_i~HXYozm!))5m1Cs$t4uI_=mS=6$Ee-Bse$uFJ6JQsPp4Qx^4?E^?uU<;p{^}U zx=vBBJur*H=hvd{u(A$plg_Vwp?{jP+)Cp$q-%mbsJ?^uU!n0-UCfAX=XCJnf(%yQ z=gF#q+p>#A=>_Y=iOXt8v8@Q$BFoQH)uSX+C@STTn3V42C(M` z>b9)8N9^uR0cPPFu==8|KmRw8&6z~J9Y~@)zH0M7go$q>QDcht|Do|7-p&PE13nUi zO((JE2kLURSAcN)lZ4AJd|WaxL!JM0OtVOEX193bdv$m|dm90l1!BjCI_4ck_^L7( zY)-|;by1gKp$O%Ab`qgG@qTaA%}S&}PCF0S-+zO(AL=T%+#{V1bP+k`8I;F2I(0s& z-;@k4PJc%kFFYTRRR(#|oU_N6TX;{G@1ZqcBpEy`J~dfH&Oey}ZZ(Q2-K+5V>7 z2kCs0Z(Wr2crKl%`BFMh^V>h>Y1X*+@Y@;7M8^kDikD53BPVZ70exff?^V?0*SAVe zb?XD3ax8XysI#3vSu85qKpfJ>^Z8Ntn!7{bJ#rs$JRhGQfVvYhEkqnW7tHy`Jg@1Y z$N5q1oucyx`o!m+uaN9{9s!gr@H_z2c?*|HmUKjb=9Sd0tI>#XU|%EN<`iS~MdK;{ zE+#%iWP)ec@p)OO`?;r)aIQK-tesOp8851RCgJqj8;pH`zelj@e8fL5wu|Olt4O-n zJR;U^SxxA4g69}nb{M~>q2ozZ$c&GjHZ$r9v5i0A8F3Q~~RBrFr1U2&X$?nfqE z3k3w!8OF{B>I|1`CV!1F2e00+uzH|w{Kl2!*teO0cKkeLybq`I$&+r?;OgfEl+NU2 z9GTs5p7>%}L|Lxy*kzK-d_SNv&K-00zN(U_L#2E zfMT&VD4OX){(aq}?zJu#vY<0CIuuIjHcRJ6)kx<@E&j*+C^X(3-^ZlQ4;!%97@s$W zx;Z*GNxj%2;G}7Wm77$gAUS+`ttii85${}_7rcGd33j(EpmZ%0%^~03Q~IpN-^bB- zn~e0~#ECJG*D`>;m!OWS-w|~Ws-BYS%p9om7SA7AxM4Ye-R8xjRTmE&zP7m#x(1w( zjJ^1e=OyBrw&cNSOCpJuwtHB8(Rc&AEI3`ESF$dc2LC?4s0(q)f*DtB2@Acil<`8> zq(dL+T6cxz_ zU()qBAKrF-NBmt6)bZCqg4|XN9gS)!-T&@$JLMny+@kT+KN*6Tul?Zc8$DP&=5upF zf#EVymiN#9QCe$CQ?VIGOF#^8pSDxOTcnC>MV%z~7a_R| zK!e=_EFL-5NN{)IEK$JIR`G|~7l;jwI^cyLz8)y*?%LCUUdJ{f8P?srPcTjHgE5WLGJnvs? zx{km=sZ(@^)hRx)WglS?V-F$?+_8F~j;dWyS7!HwsDEAr9-S6o{cxze?DCPgRw^AA zZ{=avAL{I!X&`ReHiG^NZ)eo07M6p^R_Qu-JUmbOtW}BM%&yrYU(0Usj1E~ivDgfx z(@nAZqAp6hUYhfS3UE){fgK;}b}M|A>{5*bNnf=om+c8Uin^2bs4cufZ}@>ms^cLc8o>hw0xCzf*~ zi0}W%(?{KZ`TWPE`TQUMe_Z-TJYU z(3P$qW>M*cT`y?7ACGnsN1l3u{&ZW)c=J3UaqdA0kgv?a;+c*A%rA0ZAX4=1rEC|} zL0XVxQYZ$7yP;SfM|BX*HuH^W|8jITF>y7M~@65)oKVBn$zt1s%*)~JJBL%WGT^8>JY(BqXQug)wL z)h<86zw$;IYWhcjWlH$?H0mZEUrAaINx!Gh;osA!a}CZXHN2`phDJB>_wyWeU3Oul z+p{L{Ud9f4zM<}a^QCtEBVX#Cy^7?`yH%pkpL_VO^G3n0Bi-ad!-H5n)LHDWgaZXG zr1=i~yBl@R>!P97APuh2Sc}yIbxASNa88R3R8;W9&Ijr~i#gEC&;{7)g;BaOG0yPu zCjoq!bRWC#qVcHKC3%_1;TP;{7174*;dnF_0CHcOAWZ)iRu9xY+*1zf)x8N7Jqe|I zwYmZn3ev@$o6k}@{`OJ8?$;GT_R=oQy^_R;o1}TyLku@j;9dn_U380#SLTDiuNTx^ zR@MOxNdlA}-y@ccT|`J6C;?jb^GF%y5E zMBTYqW4JFX3VPq4ie2}p`)#BJD+dDLv8#A~6Y3_+NhaSX)Wf)w8CZQ8A)4Zc_H#wI zM;{SMUemyqCj=OqaSv-h)O}i`2!5|k14U)U*zuw6ekc=My`>^?Z^QG9P}g}h0nD4I z41!Ggl;v`L^MOEjBzbfCWl9I6d&7pD89~lGcoB0O(n3Y`aEU0=DNrnHUk8(q8xhyq z@o^2*QLWF9x^HsUF#TvCIC|BV{QJ5>-J2c@_#*&-1uA1G-Q%~d<$kg&TFI4~b(@cs)?JVEq#E z%iat zOVr(NUPiWjm_STVs-$$BhjC=%-1EdX3w+#Q`4d&iV{(PaHT4kR{cHeaAF>8Zuj2ju zs7oDEhV85f@Hq~DUqjtwhnr-Hun6>hGR6MqsB1XWPWr4G4aO+hW6v$r*=!FZX%Ct} z;x8NQK90H*f!gG{Yjq&(F8)2eeV8GhoZl+yaL*O}vi>X>YoHHZF5%-=s0-FfCS-p3 zz-_wt`a`Ho%7ujFg#{^RT!Ebr)OqaUfbZ=((6YXt`1|~#uBk5z~$pxulKW9)EI@eZGpj-;>blt+r-F)9dz?eHn6#6?y+~0AIgu=T0WZg`ap;_6@I(&OwrQdWB>2`T6QR7Y#^wJFQG;;^>cRQo*c>Ni|)$Wa; zR{@{r6*hE9d~kM)Xzi~7@z>NQ$Z9F%CoW3Hu4mM_YHlTWT;Re>>y5GVi@F=qb}5v$ z3;!SOf;wxUxVGJh zG`Gdi2O4jzl88u_=4}q%(WWeymwSe=@pvN;{$oC!TE}Iv4QGaEdE$9-a!M%Nxyl+i zR;XalY1H+9+)D16!G)nm@ODOB`JK_^hjXs*aXa3AsFPLv##c_42g?ibc0t|6)}4gb z_z>`CNC~Si>Q;0fCNgI5LDVa4;GHc)lP#6eqM6X>4$|LGa#U%$G#ZUbOQ)IBSTs6q za^fS;aUnBlW;9vaUYZ5%A#IE0CE6O>2ebj%J+xCX#~6At_i1MIbFz`S+ufX?1GPDfZ44QuBvWAVOY0h%Iv6}a2rnDB?So$NsrSZPB z&2$Y#HANBKhqi^zrd7#Yqi>J+WbREnOi!g5tEKT~)z->b(e~4<6ASVp|G?U$Sh{kvSXye0jrLJPf4 z{)&P*T~%?e%0ar9Z4>ZUG`5QOJXLpG@ms@;shjLnl=ucZN>gb+*irGU|#O>GM>U_Jy#$D!r=q!FG1fRpzKHRB6_lqV-LFwn~K{#d5xu zs{3NCi&?r#t!n$_j{6ml*yew`UW->^b<9jdbES5J$Bf91*ZJu3Ts~00Uj4XsyUq#CM)hyT1!|8fzp3t!SJe2b`dsI@ zs*1)z#UQO2S_@R3>ZItZhAYW`m7lDosg$HTUiYlrecf2qYYMsAKMc(Dz6z&LdKs*% z`O6?*JJ6|2Z@8k}JbKs1`P%pN|UtcrTV7P+D*DvN@wJz8Vt*{8vHakX>h^7K(pWMkHJmbiKz~TtF#ZQ z%~AVqaL&L~?-VCZ`vj*}e!tpn-JOQ-65_2nQ_dUK<+ll%&HDTfsjbmgH|mNyzb)Qq z(6HHPM{|R|wo#1wA){|it9Sx-gZ13xAbnfoSvn!csv5ys;l|O%OsfXtFfD7P#|Y8T_poyX0XoGvPK6kC?5{c8R|xlNE3?W0mO`rTf#~m`<{lFWX^fFym0I2Hi2nmP$_ab!ILyFN|lY=_}=18XCV( z4HkYivnz8p=O{m{*pnZr@iuaw8pm{_;T_!rYFiA)#h1l+E2~s}D5^4_EHlgekZyObN!v#KGny~V_le5$QDQOHV5(M+#x|=DYT{zmQV01BWnRojyB zy5|iPtZ&)KSq~WW8+cf+l4*-?w4PGck*sCZVd`f(%eu>YoR)v~XwO5|y@hHukAaR6 zw4G;aqPNBTp}D{QU2|*WxjJ$-{hB>8N;Z#qgPQYbi)f`5mo1tMc4ZBE?`0e{NVb{f z*k`6>eaaw}QKsn3X&YTQkBuHWJ$u)f1*BcFp#W zymrJ?*!5OU;fyk#WEX1OX8w#mG1JMKG`nKqVtv)3(&D(8qqVZNoprC7oAn_b1AAlp zNcnkbLVM5Axj`L_*4F)GlsCQlH~FM@4IUYtx#_`h>!pWnY6@eI+J?Hr7t@PUD$}ObXHkMM+Kv?d_Z{ zI9fUFu@{@fYemOSDeH0C>9o)4z$6A;Hlo*QqxoL@>KI>-IE81%Z=K4Wh9=887pK`e z9Q3rb3n@l5V%Cq7w_fLX)8?Y%21gZZV>u1)P?Jtuu3~I5+qBPPgQ2pUZl#^faQKvrWiIzi zQj#WF?wZDMbJb(J$=bB(*f@wh4|p=!_6}|i7IynQ%bX87nA?>)yQ}SW+Y~sZ)tIpQ}_#Zq}em~atmW6 zBfDn(bPs3i3JVVXhM{(HqNjC?-jz>KltdDsNIQDyRP1{W0HtiCeW9_#;;&Id|om=gB$K1=! z#`wPZPERuHM7}Ru?CId(?ddM_+|!S7$ia;f#5fbaO=Ycv#37s!7`H*!juFNXI{?N7 z=Mbin`x4plu_t6b<6?q}9lKIrDnC?y@2uc{mk}7~=yf9pxPNv|;v8(!nWiUH(g-q+ zva6)m&^NYL1lWwcQBAR-sr^ObFcXIZ2n|x|% zyL{T+*7z_SHag68^K$TD9CoO1c4t^K`HU}u@99@eQ<+zsZ#&;{E@h@M<=n3`?l9I_ z$7bE2L*}zlf_x3jGh2Uci?$0k9&e|cuyD#gL99!o?o!8I4;$+=59pEN;ovQHyg~ZRYP9qpBotGtpCQ%W~VqlCcr>SC^U~X{ODO6swmc63< zgzjmetooZ>C9lR&bPr;t1^Umv>RzW$7~gMB+JLG*7JVdjMB8QK5jqv99PU`y4A53>UUK;^g?FLK2yUqK_N+1;3 zf9z>mg<4Zg&eyLQb3eq*Z%yTVuORbU4Ie)?dxg(qeLY4$k?Z?Hwb-wqbQ*u{#OvAp zew?^(u^aOS{eqcq*y@~QW*GCbvl)Ls+mb(Cc|*Ef$PI?PyDH~G##{$=ohd~VywnPf zT(yEv>wD>@@FV<(qh|5-<)h5P?PPtY+xYqDq^B7^80io|@-sZDESf?dcv{Jx^k_FN z;r{Ub$lqqNGe9qLahk*ZQ~onHQP9mw5=^w1;zwxu z7>^IsQz!{i^J=NC7076l+^sB*n}l1>QskwCzOl2c(9gHn*x$#W;h*ep>u>F!?{Dhw<^RX2 z+W$+ichFLUG?~quI%A?M? zQFWU`FJUO^v!`eF1)K^9EhXf)aV zj7FaRKHWtGm(BE(VY4zz+21q>T{56PeRa$`*)M@V13x5c2F(-bH|}r_bk*gl=y8Jh zLHR(58Nsk&GC&xp1$NAE@Wf$sP*c!TkBV4T3wgyH)tvbGL6HetRVD%^r~&&lihMQ& z)q!l_z|5sfCyL9B02hPCfk#0*0)N-1FhBT(Gc`*G!-~UfgA-_#rRmHvrg5-$cB>ZG zsDhcoxez@%_=EF(#?oL}Zen^`;ZMVKi;uzkbIaW(r7hFz&b17&3)%0XA-rXhpw{Mn z+0W4Gj`DZ54L8IkGlW@P95Pz2I;6N?*Mol~ow|yo1UQ0ZE(`IIqZa8KWh}vKT07mAgZ1>6s8>5zsc6{srr;NMQ6FOf7Pn+a&~!2iF0tu z_VB)BdXOul+}RVjFl2+a@`M^02|nOxcr^$!XSwpcdh?AF-iA*!(J2_HKdNb_q#AKy z+k&Vi7HXqSiXT=-0$(r*lmpL*^Fb1Wdxf_O-?AGcG&tK6-m%~L1+WZqr>2+&fAY&< zE{m|8#PL5v_ZY3_z1ibNWmiB&;iD4h@WVfcZkLeA8Fp?A_6`0P@jF5_lI?HlZyD+7 z@9i(l2{++K+WV*Z2Su*7zE1yQ{yS^z#>B`}|A3Id$i9)8TYVH-LO@80|K3QU-8eh{ zkeMMrLxw}l{R{o4hnV<(4UsqAuRkH}mhXMvfhv!p&$Ue9mP$^BQniFX!s4a-kC5h& z$wEC9gOb_8BJOYB6CS^O3%H;7U-@;RJ53a-HmT(}tq>-2t-ZGjOKh2y^rC&jap9%z zHO^foOO1zwN12fOLAagufZG>(OL$XwQgDwe2vg<-gt3giTNj$H4eJj$EO3nC@FIAw z!i{n(bxsG^M}_m8Le46%%%eRoOlip7YNRFKSc6YHa3)H|#GsN(Q*o*M!u$V@ZcIfZU340nIa9 z>Q*G~teoxI6TRBy1A9k8Q^cHzL54ENJh+^BKKdrH#Bz)BnBWJD8_~&}vB9UK)grC@ zZT#nRk2@+luJH^`wy<>bZ;Z+DFYtdJVi;@Y|1soyh;_KHMS+uk?E8>B|92sJvE10! zz*+Pc4ikjaLOz8|6n+jl9XlUr@~*_%YbZ>;pz_~aKJWJL(ziqAFXD&#|3%C&5U`b?oI@S zsq*}Irn%0#4$A$4HDQMYO=kYIVi{%PLjWg?h-!{I#+uCB;x;pFM%;^lqb$Y1^>Kkw zb{=fc#VI~puiEUjy2sNAe-c(A-{$g^`!j5M&Q0EtT>)g{b%~S-HlD|`+Z3mu2-HS_P$W@ zFn5*VjSzQ#^T_1HEPTC<&ZnoSdCCjAPzYum4?7cf3)Wat;ZW!yofR`bvNLarpq zu+cxESO5BGZ!h1mUTS+(WX#j^rw9jPpHJj<;gurmXa-O;KZxOj+fVOpLJ{o8soXg`Y3O)Vm)$bKJg^ ziADpwBjE)Fy3uc zUS{<$eMV5H(f2gE>HW%O=IOyQ=`(~*uD0IE9_RAT#(oLm#cI`VANc~@k8@PWj@>_L z^#~8TIH@UVn7_;W@V4abGlOok8{Lms%+|PVG*vh^JtL`@%Vv>DZRwMQsre6@gJeI3 zon)$1Z17zaaETa{YY7I{n><5;BQ5rpY-!T=@YHiN`4Dl8do=yD;I8nD;8;2s$;42P&Q0i_vsQE3^~8QYBOGA3vE@HS_6XDm}}vzJL&nxU*z zQn6V3Ucdn1CS0d;FXLf`qLXj<INsuNdc>7<1fwV5~-?8~xG zJDIp3%OP!l)`7?gb{jbU_Pcq#rq{BbyVHEbg@S;on(yn%YLnEP3Zq?S3YXQW1r#`F zW*fvl3z=czIJ$kpW`;#}PrNJrMVg;VP|{i%LG~MSJ^ccO%c@7@1F}!Wa$>pJ=59OG z>+JMm`1By(KUrE9X2mdx!y1>pTsS3rPcWG@&DCzJc$Gb%RGQCBhUtA?X+d?uKE|0CL*XUHm#{zC-pM8TiWvbexyDN- zmk8&i3ybB=b^NC|`X=k;tPkV!5;B6r;xl+W=O{^7;@I!XyD~P!JqpXu$sONmGLcu9 zV;ZO%zBl7pSYYujUUN>`D39rKAbsZI@b;WL?ro`A&NuRpCO=C4?yScjlG~Tlu`xDf zbrd7_n15i(xg4fvUW#kxGGbJ?tV-~>lv+ir58So#TjV{m{5kKmm`>W!TDfisVfnPI znB3L5u4Nt-=RK|C7V`&!Ix|-$M1k6fIhplkk)iRSvomWV_9T4t8_3+1@WV7QE+Nq_ ze@|XVkt*@QNTpTuYH{xnOu*OOkuc*J#AZtj{IyOtXv^g*9xUF z%GQg&kZWA|Gb=t)-6DX9E77Ulk@(Z?hJT8RfhsScL(bcGjiz?mimc+o?ePcV)5|N( z{;1v4>?|p=9TQ`jHDN|SUar3TZIH0!*VS>NcxvbpN+%ynhH z%-p;cT=k4s&ad@!bY{`+$u}w<%&5ximX9#i1rvgGW7V?_v;TzTCdCx8V|8K;vR`NQ zq?M)7YYyjk=8X=er8~OnXCKRB#V)L|Q$C%?$@Yysn)fJ6&-t$4k^L`j$P#wImp$GTcuTBh0%I~BJpy2y2v z1jw^kT5(O;XJY-b8To-sN$gC!)7f`~)3Y}O<@#J2S?S|h%53UQzb!nKU6y|&{bY7b zQF(rKzD|x$vPy=3e2v+*f}QMCt)tFy{2lCG=O0BuQ5)m@5`%SQLc?imGLFWE6x&y7 zhcDL~ayHVRpL`|%YZznHgN9f6y~(A450Zg)y=SbSRnGP5KQSFXQ&sHgd2SmNj~eqb zW8yz1D+Iky{$A#nIh?E#q#QINg`4@VL7=ygsp4c*Yt74L7OBmTstM0F`JJlFOfINN z(azP0&MRmtZ%!GS)@HC@C|5M1kx`js=n)Z`doHMU%qZd0!cs-1np*kZgxLjiGtXzv zEZCjklG0TmFO-Wk@ZG8N9*oNr(e{^5cP$M2%B}Z)Q`B2U#X?=b*_fFZ8rhooyoS)@V zXqT3frBk>#>;C8!p8pR+XZ@DQ!vJx+ySoFsTT$#*3`7M4>COd~g=I;-?(X#Nyz{!d z>wBr!-QC^qJO9JX5A!_pnR6Wx_#|E|**E4!Mwf(%564H7BL$DVlf&*3>SMOnH&H9A z{#F%u{$FKZU6$58OG+;AD*!mNV%O@Sq|=%QdECmULBE@e8xP0Kbp7L1!{$WqZT;Fm zH-29F<0?0NKlL^?Aohc|MKMf?_A2bKZ)uElcCBe?QM(b}QUi%cg~oKX(?{wB%$61h zS^)74^<>zSz7jjjzB`E)G>QM73Z;J-jnFZzn*oe4T+lDdAC&jd*ff(Lmv)StN+~4H zw^-CYK4t{?TT4TaqyF}q?s}@}j9|Z#XD_n%t8r^proC=B*OE!WQ64e32ConP>vhb_ zSe`Z3lrrzYkaA>Z$sPqKSj zlhCfXc$5*wTtJu~saS_{|I0YjE~DUlP{iMby*nw#hQjd*yqJU#8q3 zjITsmpU zH_Jp^Ks!tHls=Z}^A^#%SpN}E(mE*_l!;L&@v3@icNZ!F^R3#(jM$(YYs6r=k#H@i zplzt*rb~R8n|7wW#&&nns=h&%8+~2t)}EWv$F;tM?LEG=ne?FYe$uo~>lTZ8+tO(6 zJknLl!%h?F8U+q?OFC_zWOhyOv_ES3r0b$g7soJl<@LtM`;sv;Y zmK7qqrbVtg&-}0_j&B`N$`1kWuoYDe)QRn9+y60k61Eqot55jO$X!7#aP@LIU5=00 zQNJpmOx4BKh8AU%;r+;$OA#Ml)KKQ8*rtR+Xia{7qLR8Ozew;n*N^|fOWEkh;baVi zAMwSsEpfO)6;n6hcLXo&Z-^f^+0V1H>vPdV}$ma~<*WwE~tC@|#Iru=kVf;Gg z743$N94psETTN7A)Eo^&DABf%DthRG!OyL^1I&KNu zm2tA!xACZxAZ&l@F4FTr4(g5L32w8XS8$PgoZBNf#=XFO!Zk)OMhBF>=RW41=YHWn z<$mOT<-X)TZ6=gGWWB4?$?kP~@i-oF~FeuRXe@Lndx?hWfR$Md#UKW)}IFQjzDGW(q**WL9dQMz#s&?u(Ctaa%GMWz0%k6U>*%Vr$L-?PQi&Zfb6kT> z_aZ_#lScJ$zMgog>waQzdR|Qo(K@7rGa*c=8Z1S7expd!uJBed3pmn(Kd7Xl^W=NH z*vt)eW7bzKd{_$`A~GGD9Qe+p*w~M;$*5Q4soh_A^Ee95Rq{!4P3u3NKGeJ34ZC;! zLTO#X>B#=!-{}(~U-xwS+SBLcp@WH1*aqG6zM-h*I;UB=GcMP)tfrY?Tyrk&sVc`* zUenss!vD@|=sr`;>gn!b^LczZ|9T6=|3h=3Lntl3C^0BFgAg9fC0TLbNw@SQ(_QI_ z)>l)W;v=}Dlo_2h^g+_I&ZnJ4+-mwhzDvaP_|6;~_2iynZeeW|_Yb!-zC9!@)upYY zrZE7Oca{~wQQ`{=y!t5pXZSPo`w~1k*S^u0ojzM*&QD}l%nn2LUsz9lX}V`j#r2G1$S}X7-)7_dl2J#Q@!9^ zRc3vYpi9s#Pzz3RUvQl<3xtByqrE{Ra#?6~VtjP<(UL5$6NUNlN%cQO_3hnRYqK+X zR|RRjGfb<-LdM2;KL@>UGH*;k;r$XMQ)d%4$F3?n=w_J!S9nN@m{H_D-cqkMHo1Y5 zoqYtxw*KP49A7IbHBI=N;n+ZQf9cKURSCx!BfLGu*9mlDN^ThHB6)Z52HuVurWyhS z)XUUHp^(}l#0o28DM?4%Sk$dNFJeLGd*Qj*oNC9qAP1u7*ZSc6@xni@Q-q-y%1CEk zYt&xm?X)-O_vj1GpM8I3Y)18k&J488kR&Xwm{|0LepWKSb7x**+K1xF-My60y#HF` zyaW5@bL4=MLl@`pkJA`+?sf9!Kr2hhO z5__w;!Tm9kx1En!DA8+{1h>g)UHMvzUkWV9t~kXf_J3!6!k(gA3MTd13C_^zsR@p% za+w0Om|B;o3$naKBZ-(Iggc4r!uUi7MMZ3yNGj5ECv#7l%!yPZnKk3S``BnkhQef7at_JGP=luu#O4yyp=k z(ix2cjszz-$%O>10=%F@aE?1g0t#MnUvpK0=iJRAZ)!8Uj^J2}!;K1#iVll1c*jLo z1pkLahUsmpLe{XyyLUBitCldx0G^wUlexxUupSVMh#lP?Pnib%Z6qKk|`>b5{5 zS`hRtZ4)}6@}|We0VKVgUzxlmltLZKms7Vy23Q_X|0T-r-t1dLf5bAAJ7h(5JOK#zcPZB#>=h(9wewj=7Cx}e3bK?t(ow(T?IdP{D zPdP*D2Bz`idZ%Wt%v(B6TzL+?-0OELucwLM(u3d9^u< z(=QP}P|YiB(R`BFEo?Rdey zs$}x9aDVD{(H6;;B5yi?c@=*pd1B!W#vj2P!X*)lcY(32Zgt(q#C0iFS>IZ9d0m+E zk|)@Dd=7N1lv(SEzQx#0uwY)7Y_IR5<}-=B=aT2Hgo0G`?y7)Z3j)i`LT^)JSHPbTf}it&kRoFHr}C5zJa) zrPR(Rp`ydjio9Rn(U9FT1&wCZiam&1c%5-iTdt8PK{MK|@WEcgc4TR{_zt!rWsAa> zb(`lUST4BL_#*yN?xo}@+BVT%rSMq)-*5Na%qrXxmz{SU1kl-gmw4L`lmV<+Gil|&dNG6cxChdwG zaIEgQ9TAX1%A<-fGP&q-`6j}m^rzBx*+}M96<#I^_}q54Xa`0nv!uUEU&%hM*{5Pj z_%ew^B;!gJh-xa9L_jG(49jY-qf#(ga!uY$zSnN&GEO#KvO@BS`++-CcEYdB=9MQH z{EIYP`Ybk`R?uLh_}xFDeJr%Gd8y3Wl}I^g;X~ah*(34>W_I*79TFW8ZI_*pSt_!5 z(|tp2s(mKc9+{jNy23i4lg=`uOpzP74{Rq`WU&lghUBk-=WDU{@tk!I#F|CHo-AG! zU3w+>b^lMw-%oB0W%ECL9ylN?ls^hK_` zd%ngZx5MqO>%G>!!EtsA!dC#Vie$iC&Te4^&Z!=Sbfso^CpzobM)xnv>QF>;vWkhk*eftFR_uC$I;o^WX~RlaE)f z^wl(W^=y(d`9$ChutvHIcm{j{_5!Yjr{OH~gqaU(r|Z(+%0-X#uOG zrvPU;sW7qmH|rDd7jTuk$V26;r8V%<%u9Vk(lB|1d=6^2>w!{q=z-k(PBWw^`C;jF z={jkgoE=e->e*(?FMEnOiFd%D=+l> z=i|U+RtB+NM?A$oWc?L($b03j@_KF^H$l`bf5yV7P?Bu?i_ne46;bW3v39W{KCVL5 zgI&xD&v5TM%};8(>It@&`hejb4hN)G0=fJvwm|llpC{Q!1_Ke#cl;vRfP5!9(V_6Pe{lEXb7E@g?mH>w_5&@j{d)m&J*o(;5?mbt$dUG zJ2f-3*lUS%Lq&eHz$>sztUQA2lkLUL65Vc^DsmFVw0yyxlS^caL^6p`c1AuqWW+PI zz^EFPPm(;7pW%um59LakMzEvpc|M;|5genb3Gef{n)f&IxqQ0pEcaWoMbx#tX|i|R z)7JgaqDI*;C1=C{ke~-RD)6vVpRp z^uMq#ZoRg@!kvno1Hs{fp!UGEiCcVg6b#`LiHmNOGnam_D8?;I zybSP&`x^Ayt1`qgB<)?na;k*bYoXy%C>Opd+Iihtf_vOjx_Fu|#0k@9dj_ z`xt&Ubwt|P^MHo-m!zIfY~*u#t^!@fCzE&hWoKRQUfFUfc5l>=@V^d^oW<6@{CvPRF~+E#%?KnY_>lcgMfv*LE80VeB#9 zwsLoQgfd#WA*tJHb;N@ZW~(xKNm-d!w$o@#UO=DiM(QM1W7B2Vjb5bUM0ug|m~?se zWwsq@J@qyc9dI)CsSi-|&co8E=t}oHo^!Ad!x*e5m}2CS@^JYT`;n@xRjJBq%kVm8 zW0j)F<$8Eoz%txp;RRv4vQ2qj_(>{Kk89m8elNA=wkY3ZTrNIlx8Lp{eIDOR_C)+c zSRqfP`^vUwJa)guSrsel5=SSmb4Ov4TI4~ppW;%7s?wI4NjY(4AHr6&I(rwmB_uo# z`Y&X0W;OgcirYfvx`chKDYv@g#Tn4qmy{gN*>7>*ewOCD#Y~_~WRT}d#`y%{)8lg_ zdU?J~D>o`jWwU#Y@>0pY#4Pt@d*6(ij;m3*GDKc3vlfIi%t}r#sbPu|Xg$JeM!SgO ztJIcZj7FJBxj;#ks6>oVT;}6!KYT|xs|2MzEf>fVwPM*>`FiCtm%&g?xl=bQb(3;H zHC3`%IZZMs+ojy9951^sR|u}kN9(V|y(>$@4K?gm&z7B5f95WgeB=J7#su=?YZOe` zpOVtjcDuaPdOLNLi)~2yXeUPW$aNLRUi1<7rEL;vZtYDa-N8C`zi69mOh)zZ^FLO| z*1nM3lA#n=85u&DW!2i^aVCFbSFh)m_@9&yaVc(bOs6Uu+_`Pw$W_LHoJx`XEj z`hz=p?Fwt`F-l9coitdA5&l$;@>s&Fyl^lY{1iWsVVPbbDC?T%elSHKl!SGG%N3+uC_8Q~ElR>$Wv$YZSEv(3@B%jsSd!L{M2?B`$KO_1j~fcz6*W*4h+F zQ5{M39l0LFtQm9+P^xJItXQAf!m4zyq5h+sYG5vHtKw0qvv9s;3l$xR?q-5~aUCEK z<5~4Uk!CA^1wN+-Dv$fxv?sdWZI%MNgsZh?sad=Tm~VT{)rUX;gy3mlgY+J4oU}Ag zLvGQ|sMwNI*A`Uu-YKA3Exp@QmwOlI+MDElx$t`7@tzvUNq!RG^2dW?fCB7r3E~_C zY~-I61sQ76rN;4jx9k=ev4Q#hq@=>oVT%pr!OCBNLIcG`wKdmWt>|&v=Y6B%fcFiH zNM)GP2#tU+v=s~vt+2I9z6?goL*xsf0%d}HW2U9UaK=^e26PX6o#-BTqUo{pKz5s~ z+P$EoA@U1!A9@eo1z&>iz#ovi%3gINJhu)Lpk%dGC-u3gzCs^B50{hpE5^^Dt;$ig z(mE79E}{^e>oXzF+x3Rm&(d$8tI9{^r}_kXs-lBQG&28!w8}6hoS1ne^jOe0%a4{i zKer9*6T1SPRbeV`)d6~v?HoShWKQ?9?@*3Op9m`hTpM@ej)+zK3{_0-)`Inw-AWI7 zx%{!1sce^9h@Of&Pds)cmimR;M%B8C9N>24^7cN&>QoT%7iTYE3-mtD6W?u_FiR&(2%e!fLFb_lhr)(`bFWM~%Rn$eF z@OoIX1Z|G~A-5z^Ekj&ZhAxPHWcj}DVc8tqEP;bptkZOh1>N&3Xu>ST52dv?Z^&0v|>D{3g_q?OFuH!jRJgwVl^=*CKSDH_C-#%}A?k!8SA1zM9( z-5R#cTMq63Fd7lz<^Q*fXk}<7N5lY^0z7e@PlSzkTmX4V$oUd{`Nyd1At}&KMLtl+ zZ-Mp;tDzGBAKV52;A5bcuLYYRu2RvG#+?{8Yy?$rIi8tgh4uU^fDW8c_}AiP{3AdH zHfpxG+^`L1H);L=Pk@b5yoSM-+C@?BsE(vHlOD!@P|O1k0D~Zl-vjyZ^HnJ}nCfq; zkv?}%jkG@ZL*t>I@x;<(-^80)y$~JR4Bn-0PF=>@0&WKhkdyKU;3YpE@PM7l1fftR zsM%;8?f4;H18o3#(CkXU^Lk_-5!EvmR~$`ApWJ__dBp!q-dxa{T~4-+>~&2G-T@v5 ziI9gpMmY&`%q#RNci9GNp=022_uaO^G4c8ot09$<#%6g_7D6+iB4ummDH$4l)WL;f zS2_=hm5+h5To(2E()Ka2QT?2?&|YW+igE>Y<2Qu$v?d3l4?sJii_m}2Mra?j0XhpE zg)Ttbp%c(CXe+b{x(S_!jzj05>(CYOCzg@>+v*zl0DJ^JguX#z$Q&ZiVVH9Vyas)S zE}~~+7GoS#uIiuA8^~S#1Ukw+XsyqG0Nn>af`33q^%rn{`>G~+ew+0KiJbWd`V9uD zoz!-!ui)|^bjJSBTACwaa?n6wX~iq2n;c=mrOfv&w+6bsi}B05j71^pBe17BQ2h&x zQgz2esrDs*!5?6(3M+PyP%)wEXw^~JN%b16RL7{kg8{0iX{<B;>U2}R; zYIeCF#dtOk74^_%^=_&vb-1cS?WGD;{mXdjyfVi>?qA~X{Hrzw=6j{1G|k?MaVxYp zY9#VrT~btLs=w>|fOut>GF=7oHKLF1{+4gv&X&2UfrLU6C)~D;pFj6@~n3Mth&2dGrg1%7YHC;L154xR(Mo@ zaO!QAI63D22~KP9=k2p|pj_+yopg5StZE7=y6aKqp$@xDd#{;-{gzo|cHuglG^-j@ zCp+3dR}@jW*v}EQ0Pk1N!+&YLXt5@IEHzv`1HD$wQJGa2+*hC<$WF>7D!ycu=wZrJ z&GPEWE^B=%6EmY`)P@ocmQeG2QsXICLyxHM$j9WKE$eIfDKF(r!wlJ6;wWF>u*AkO zBP%*87aR8r_p+*3QJe4xeiJ`ih_E(y%*LAOhf2Rz9Fbj7St!cArV;a;a5_7MLR--H z$L_iMlGlX@ZEc?7nS`mmO}HX?udb)8YaS~3f({uzzy4p`Ow7{mPN7blE(EX*Z98%( z4f!6k=*58fvAGSbj?jN#7VCpFy{N6 z4awA?60W#E?SgU36nL;q;}130bSE{6cPsk90u9IkfuZX4;qk&cFpEzWS8A$&&5BCL znKko+ZLQM$&(W$iRImmRxIUza*)!{>*G#R^wCXE-QVa>I%vVCaU}eCf>;hmukP0mT zJ}T0n^-`0xUGp|$YKG9wIU?I;T72)IW&a-USgm`yFZoWAB2%BBPqA%W<1SPjq$19t zwmxx@HucHgW%i+VR=+GhyYr!q;9>1i?Iw^4&8V|->9aWihRS9TgUQxe!zrH>)^ZnR ziQ4KDk&UuGs3KXl9;?o>owES%!al@kn!>W6ltM^2G^Rg?N=uNSbNLOj@Y94Bw zsn1*%Rd-?*JFO$F(LB+d*K|6s&OIIs$O1>+X%<80G>z4hSxzW zpe%R|lnL)eRzd5b68M1wf=kHV0u{rX*<*%-hIR0B$Vt6(+w0Uw|9n ztrf6)qsKpcE1T-9@AVSr>3xnxH%tZR#1mH9qrw`3dwCAoWw;B<5@Do7~}4+5lc1 zsk#iKR6(lS@Q@f$-xkJOpC(;NnMmLlUMTQawW~+r8*rfN3cR&WnJdnDUeUvv96<~j zsJR#&tjkp4m6ozQLY+EX@7${r3#Ahx;us%ce;HnGEQVDZvWTE;iYpJ?O6x(L0)yT=J*I6%eLURpD zSZ<|_7sR4kQGf_7o3DH+y3|m^VyTAIbcv@TiF}M;ORx?zKMUd>09F#ql zUzAH#nL2^wO@XFl9BPGXMa&xI5>tHd{L8M6S8*v_C}KOw=BeB~Uj= zZm4&P2C#48bCk=fX59_h{nXBmzObV)WJDe{@ny@ z)>OPTCNd-}q`q5~0C%5i-ck^q`x|#KVW{Q5b_Od9y~_HlI$R;q)?w}3hxEl%yMzW` zAFKTga`Eqoj~%n~FOb*stTch3Qd>ujsQl>Q5SrkS;&{*bJcnSdM=!^f2Pit_ga;MB zWkbwsym-(hi6lH_e>pQWwNx-mn=3X7r(1^e7h5uG9)~#Dt9&n2$!gOy1jP;VDa#r^ z&+^1n4DM*>+ksu#r!*Bfk7!H{;3umNiL|3EaOGQ<6LqD3Fh zwHm!W`kgmkyu*u=maGg)8wRk@u%c1HZ&V5|14IoBc4_bsoqt+q2D_nO#gdxJR+{07VL$BtTc2qZ}WkWq00dz!*%Ni)+qYNcid-L*Vmj)aBtPiKi!;V>}g-`2KQ~Cb? z%()5UBf41=rN2<0D-(;ZY42)>G#u!P_LH_OdR{9v9jOtgC~F5DB%Q(aLBPZ;7s*D> zA9#8AbJD_s1EvI*B_8x3k2-eUMm*Z-dSe3fg66Y!t;Wr-DC9FKg6AJsnAxH=u zghU}}NDLB;WFpZ>DzYHABw24~pJtV|!(;n8$F9v=|EUWB8)F`CFRw{!l|$vfslAufqZbe zW)S5Gk-7S5ND|COOh~Xdy5yH-GCYU?2+eb~(>a%R&ibf&hhqto5d&iu<`#EZcU7*M zJ=Fd&WqJE&l@eJEq2aAD%f*MS3+#SnXT>{N#^CN(b3K<=&ItUGvJ@FcRv$Fods;WLN|lVG8*9ywpo zn?IB~t@+E$4~6dSU3s~zH`0~hVz7LW0r$b*k+l&7tFqe9NU+*Nt%vFG3+N+s1;WEW zk$zYU|3ldDFT`8D2}a;`@N;ku?591CyQuwvz_6{(M|}d`0^8^`@J9Gfk1fiMeF%O7 zu7{7qJK)XmYyFnk+7_Lpj`wZjcl8o_g{f_O!DUD`tEY>0a<{6}b;IiMDv96jj?ttvZHjK3YKt;eJE*!W zr>hRB2Wuf;pf-Wmkn*Nc2^j@zTg>c&)uWouEtGyKvN zy`jTD(TzH)?wZU6|I&3_Gf(Foa-nP*POtw^%h1YonTn0Pn*?jkJGGtW79mrp*9x`H zl$VavyBw0p)&71N3Zw43@@@J3-Yl7kbv0xXTBg-#f2#NTo(Y9AQ*0w-HPt3z92lti z;1|>0XoG0mg(;w|^{`-Ra(vx`?hP(>i}MLsTNS5Jld37vbb>Qj?;62SrzT+n;wz%k8uq2`6ZV3>vT*LcleKQvXF(*P=<9QQ*2x z93Zm0uDYJrZ~r~{l=g&{2GIh~`?&SFMJl|8(cXqVsw0{+x+}T?@DeZ%yr$DQx8>h# zu5`U^Kj?l}*XMDfv0F2y<3g81Cn!|#P1|UF1?{TtKize0y4|7P_vu%)XLWb9ySkTF z#aqp(zh*q#_e1wZ;ij~6j7iu}`l7v|U8iAp)YKh~U#YpRwL-cQGgHEnjyp}qS=)^3 z_G_x6FUNbOt1>+0FAa{$bK|~i@NKI#*2p~#W>7^~0e;n9((Ki|F?h?TLvtlHj3>OS zn)RBKU|L3}rCZsA@`0!Vd`ic-Mg*Cx4%9d2q!pj+-p`(pyRv=$@MLJa#uiD_9|3o3 z()DASqhKU$VIe^Gkjj1HJJ#vv#Kx}mLGEkrXfA91XxxqKYbb8=gaXIP{>PjW?7Wi6 zu8X1xm3J}QtajtivjSi{c#UbiWeBD{FTzh*=58CFx3lL@`J1Bb%nWuI5|1<)?*gOM zi_$9eC?p3lm;G16vTWC5^x4R+{_6qKj1+{R&p@j5&H4glcIR1($Mh_Ou5Z;(^^T6H z!d~F)%|z48m*LVe);*c48u{SQBl9@LN1&#g`gd+c3;i1j3- z3F$%NV4f^AyMsDjuhNSUmJtQ3kxjXcMb}&eh+IEMKSE5zXW^}CrLBu2^C%C4yBw2p zFDZghe1wT;j7yMN`n~#l!SeEit{KQY{c>c!9z;svyaosQaM^TZ8L|@j!>ew+-)VKi*wehN3@E4;(4XE$J!Ql@66HDzK zn|k9CT!OClRVn8>*B8I4tLI(mGG_#-d?Jr8{#DdL#?V$bu;uNt0zjOOlf@> zAwVn8c&u}*q%Sdgz&uA;B1>Yvt@cZZ)5hxn)lM~2vQ8aXt_V5{?~8d_{$H0+lC66p z-`af#7h2?7{591HTdSL|dZc`wX&aO@$T3_{&ywLg_pM8*RORf+;{-Qo+jKL`Aw{=w z9yToPO&Lx1TX3C0()H@DFk%&kpmF)1-FAosI+1p_V2j{Ubc&F#jZye?2`$!SshMMg z3hIPxSI?SUu2!v;YR9r8bl0n5JaOc;uEC(zpwbFsO!+vXSr-caRzBoiCfjNvv$9$X zeSfK8ZHQ(Z=ULuMqCx1VnXa9oH5+ooA=2;aAWcwMOSPKS3r0%kYo%bZX1cCWv@_A& z+lzeJ85Jf0r|B9r{oriFQQeY0qpMw4hNWB2%MPQI0v^#>7O*pYJ1MDFF|&CW1s6%u zuAe}yW|?8VArsnbxa$_`J72oTkO6&HfCWUth+(hOo5u8}liF2=<61CjU)1H;6$Yi| zH}H~l$mC(^Wgk@)R@GxVq3eRO8+-g(s?3Dgx{qWBc@=cXVD$P~{xI`+cRT4yNK{{m z_rVt-YQu@!}VeaA{RO|Vm(elOV-&@W&_=kP9 zd~En&If>onAA@rX5~Z(xlSU7@>KE6(Xjm9n6%-KQZ*#N}t38>p zycWaXQCQLQuzxA-ydW zXOCTL)tB(RJ~^<&-PQI$Xlcf6jkD1UnG21A{>IUC8`71W3DA6gYU9Gxj}^01!;F75 z(eO`=4IBY?<93Hms~V`C8{W!{F-F4S$f=IkmbAJ+xZW6m6h*e=hWpfZhlZGYu<6fB zPL(#Y!^ys(1kX)f{6uGjK-QP8^PXnEJ|wSwMO`?%M*h*YPb2h__XKs_VO6*TTwycT zuC?h<&V6?a*CbNO5yY|*zH8;x;Dxjs_;H=vqQsmB_d^!`Yl zF$s~UeW!>bk`0x^T3?KO?1`|=4ry>)79?}zyOg%^c{~E(MWTo=a z_^fH+TAXY5%$`t6vt6Zv`d7thi~PkQZCpLm2y3_9B`6J~BPSI9vZwZEy>2eq&|s@4_$8YY-K}OOU0O z`8#_oOaI$2NiRW^M*pm*J@{5JG8<7CX%;0G4Yg#&xY)CPxZ`aJV~WK~yWQKZFM~)8X<%VO%VR5zLqV$CEb<>Ob zi?;PS$Nipp9xgU$-ZPx}EvC=3d&W}3F8Fb)M-bCv9eW*rPSSnjcKD;w%CQ)n7+0a* z55F<``cPXA{69?I86#Bn;dVJ6GKQLFsQT$1x)9Y{qrdKl(M#9fbh_?q?}3Kf1uP)H zqssk#*binE?@Ir5cnrp=Z?q`*`mC8WKgWoUPsW=t-tb$0O0tE$qIjz9?wH@iz78!Z4$U7ug(5qZGv@U97#&n`lV! zK9k&0yfp7}t&Lx>^LyqrQWd4CFFtyKcABAFc|m`EmrdlhSSbtVO{Lc7R718X$X z4RZ`t8UR?UU8Ws}M3?-Ban{~;X8WANH+pu))Iz(>hYdKWQ-e3fv>uQ6lx&|EQ#@R- z+we{COt;UsA@yA7DP6B=)DV+b7x1#LlD(t#lI*1Jvf-BYsqU-dr!G^=uqe<1kX&=j zTvcVv*pqrwd&yvlP@oYFU}}esOTG2gCD}cD7z)!yjoQRCwLxBb1d^JZ^*Tra$xMeC z(e&Wl4Vvp3m8mq#B8Bc;MK>g=$ANsgkP+If)PhydLL`N z>53*pZ-Z>p{5I^-xEV9`*i3IlDydjG3-Zx>3ZFLZ?GGR4sh?%?L%)fZ1u3}ok-v$4 z#!KKlQ-Spp*Gkb^lRfN$nCkVA70ac_(tV)W*rD$>o-@_z zW%Mhi$%-c?j{%(im#IO2*7V5KsV5up#u|M+a>vwTY(Og9Zios>OfJtlu6H#eSmdth zWbjPqG4G%5ar)INZQ9d>!u%4yE%K}RVMT*cSgSGnmqp6~4>J)F>8FP5uYcjcM?X_f zGZt{4^P9W`#zDQ*C^X89f#wNiJj*+F6H3me&y1MX(HZtr5@ZI97xdq16V_PNu?=wv=2Lpe$n1I@SruJb*5)a6uYiy1O9rm%4?@rMcOU`A zE$~zzBjkSE_BI|NNj0TtZ~3~K00Fbg+?M0WZZ7SA6{%}_YM&0q=iDo6%{!Xy*UQ0 zml+otV=D%G1M+qlmmA+A9p+AWt8u&W4U%a10O8$UE^Jcb4l!e ztkQ-nQ#W^2W(YmIbL_L;`~Pj3lZ)6rfccNIA`xsZnG{I2D~ zYE`e{9lW;w1!Y71M773@Rz0zTZRhzubj`8O>|d^4pr#m9xYOwaB{4Kr+p@x2I9#c_ z%~DiS#ma1*(r7N0rG^eV)}%i5(u;%>X+YU5+tue|Pm7SLVsx7)wE5Ng zowXFJHcrUUg&V3yFhNTPQg!Lt$>zKAqw0k%X_<-Q*%h1U>x^u7Y|dRnRb6k!>gW?m z!ko2v0>dWBaTP9ig^fJoWL}ASh3ko&2k1Yc*KET3%}kJq=q?YkJXeMdJ7q@1h2oge|A6qowLc%@v&B+|+a!2g9Ro&yE6w(rGSeeoN$<(d{&=t0T2y=Z z174|Vl3~2T4ayU{L+j1qnxyb7q;bk^~1( zc|-3D-x1V+^tcYE`9;RG69O8cv)VP5Zo30 zGGc@7WIaweC_0xXMGO!`vb z`HifVKhC#-g>=Y*nU3$YvrQL4yu)tJ2m3@u45KsTjd>=t2=Yc;jH^s3RE>p3rlI^R zf)d`Dod!3Uya&ISH=FjFzMDUqYt}cc3+P#f6|e{un@pe0yG^0SC^*)*$MoJjVj44D z3I*X4IPV$>9Bzy=+73Jb&UZ|xYAt-|yER}Fb_4cQU9)D?-+CagucY%+X72=)F%o&! zb+NuYDj%yS1()$Buo$A!o)eX1D)-_$SEzikoQ-x#=}&oJkj zXP{IrT9?Ny&$G(P9cvEbW0GF6|1n)zFTy`DL!Hav;(;9q*7qVSpz)>t9FjdyY$gn3 znOj2Ki}qrB;2bk?;5o{^?|h}btv7Smcs=S#@T=hNfpNyKdhXyAq}E(#zK*!4E6nz4 zU&BUALHq;k7yT?FexPe$rg4d}$~7zCS01YVP*r-t+3=2vpq4GhcDTiy0PG20OMS)$ z$(y``@ozmd;su26(w9AQ&(@I}k-Ll&#tj*<=5)h5=)LTFvn_R-F~PtcPzP+qX&L;1 zB*Px#+v12+|Ln_Bp8AZjs4|8?Z%xHBk{YUBd&Z{4W~{e=l--=3QhMB#9_5Z+U=gpm zY20rtF?5-=>eb>JCe`I*?6j6} zDkoV?^|*rlg@H5MEJ67=rMoGhe7BQ4$ZVcGFk8uDPUp<_btqlQz004goH8)Mym;XF zxCiok@+sy;13d6UD=YkgK^OhbGDSNyuw-D7YV|;}b|pN8!(g6OUsm(~$Iw}DrP?S_ z*cKHNTTDz8yTw9OOfaypySob!csl@3cc-52?(XjH?*7iX_b1F+6KnRfW;Ql%=S$5f zydWGl)21E{)F0}oJUO^^@EF7?dan1dGNSTJM49(iuuPIBSyK00=X1`j=pV5fjffu0 z?||eyv>z<4DycdEUhlk?{hqJWS+8H`{KU^~U^!qta=VlnFiq=T+*QuBJYlnb(hQrC z(56Nw^+fr9kU~1f4jmlP6vn>uO@bUoj)Akqopz(S^eioSk(iMF$=K+yFm;-Ap;!Yp z*IU%@n48tTCz!F$nO4#^$j+`=RBo;oHqzgdE|;~8%7WdQCZWz(DM!KZ}C8R(WtBzX)w*$0NncBqLu2ymBe;Cyh|%~z5R(Uuo5`j!PL6IZFqJKkqjJmf8AI;? zh z!nO`biEG+!z)UfT_b;B*mKC0mACU(^Kd`|Or?Mr5cbl9IF6Nl!yC?f(sF%34216I* zA{ldxC%YpLfULpe@?zOTc?h)K<4<%`#8fYN-McVC`8_E)~fBe~Tt)i>u1 z?Y?KFEPwoq9A@IN`c{TO+qgFfSsbl;+pd#?XBs400G+Z-sB+8*NP()yipPwB{o0>n zzNaq=)-E*)E$fQ5w>3N6vEDqSe52!tVN-T4G$^YWiycZ65T@J4YY-pcyHrB05G@?P zJ6;J#bxj-Yu4VvbkOPqI5M}b&+pkD{cw22_zfik_j|CLdwEZ{msyt2zXECKN(-KP| z7vSP}D0qAP_4vtgCJ+ObKo`cJj2C$sM%-atX_@ZTMoFsG(<(+lbn_`fL~!rjd=rQ3~Ds3NlpKZaYpUB5N0-rTvT_UxPJJw>mamWc1O0V zcsh2B!=m2B5&2`~$KDElre8kT@HK$i*7In7y~JeL1YTdvz!c-glfK!+jl z+i1CT9aQ61*BdrKR;Z@BMYYnnK`C&&vcF-Gqo%lG5CMy%rGtaL8=$d%HSx#V=0SyE zBP0jL`(K&aw(kwSOHFR1@SBtL^wv<{S=iQX_Oz56$}_r^;9htx2-a>5vty%zOTuRP zJy4sb>%VH)Te5X{%P>hM;CL52haTkW0q-#N{J55I; zcB|=n?gh9op61}`o+?%Wr_qkqWYh0qr;F1Z{*US7BDWk3x)ReNv?G6 z0pAV_`{n?K1DmXKBhw;nGk=7>sCfxNl7&EQ#;u0ehM?pHaVYtX>6FjV z3czJxX{viiuBk;qUG$L765uOjG1BI+tMsGVLbqpioW6Q%pO)!KwcYs{B^h5JnN%r0 zZ0OP*psCWF8L^l$&)|zA7_UJWvb^=DOJ;}-?>%plFKXbK%ilcsL*vN8hAN62~R{`VxSD<14JLyX> zyM6=PpDQ(|&~l8r zy}kt=<-_MHxPI;B(N@QqMGg%n4=lfce?Tf^;y15Oy&&3dT3CRqAV?!VNZSQAguVeh zhxa<0Ym?W_m};R7#+NqoU4DWpxhMP^^o9+fm8EW}H*@tM57-f!lv5yk$QQPR7!cjI zy&%NxO9n-AiI0!W8QLUg$=EV?$O(#&>4SNxjeWn;w%g7zXe~>IBM~F;y-iEBWy);t zlF~4vY(A~S*iZ-bkQJgyupyW)D?s@&Q}CS2Y&!?gpdpC5Bj#ev!uTU2y$wez6X@x1 zDD+6)+;hDs#&37ZSIK;j>DmqDo}4uJfm{uEBCn9Kp`Y@TavP8s-DR>iH`hWhZ?n)f zc21aPqb=wI{*o`ZN*BZr4O;)}+*4faVi2^I|3mHxwvJzopt+pTaPigmGV|ILrae$( zQU)&?uZEjt3&u;}pJrfw9}OGdW&YRnU)ShxA8@Hr znzAqKo2*c}2~J?9C##!X&TZ`#h4Q#9RG1D{Ofi*$jc~qn6_io(q}-Uj*zR^wfd2mM zh7m>nPwQ3wqN?cTQXK~!C~S^wj_-JFH9LpBI?}GN-)_#pkIn)^1lR|w!2IkO+f%To z=af&5=UvxsI=go_d;p#e+R4xK9)oc}0nPzG+x@KlJA5>wy)MW~KeNH2rNnUENRp98 zes`j{O78~jCs_jSYWNj+F_V|%+%5`4uEZez*sgm1pvZMpM2?y1RL&l1)_l2-7 z2Apr0BO=cK;w&>DF&`~*6f za=~SmeJsd#TrN_^9Z&nvvlMs_{eT{cK5)M0Y_$KEa54NlG)-(Zvf38q+s6Nbv|&BCDEe3+Xj)M^CSBk6M6yPF600DL}pa5U@b{7ry6w)odmAl(c+^0*6OU zmT712YI@N#x3MN&U&!rq2uzO2H{2y;mN!%WNTu8!9*zHPu|elK7=%6mYUC#44)Dn=_MlD6 z-DtV{{bV?5vL4C&1R5Z8*e+5x`_SOrgctohM?=<6_ceix zH+w<{EOX2tC&U?Eq`f2Qlg=#l$d=DKKzCH$jsa0nS`I}LL2=gjFJ5=-pELnYL_bO? zV<&u2IhBtc6z!!2JvP_ie$l{IINNg@=KhD2m zJl&37_%ucp>6rYf?QG-k-fg|F?d?2f@Ym4)cvWOo7^nj+vQn5Tn(ORkJQ@3^^t8jy z@haIjc^7+wolAbzSSlohDnmDEeG|GS>O`H*_azeC>Q} z)|_RRvLT9T^f_UBIUmdg+aNpdvVaJ++gTrIm)XIgn(Br@$@%X~7vv4Xt7I5FQ3p8L z#$d=OJPvP^b;APSK|yzvnW#=!Tp5}h>2TjKZ}3jGR_FIFSJ7!U5jX+MVF?Vt)8J{y z2Imr&ZTu42T~Nngfy_aMVXm|fRKVM1%^(EdXxJ4iikJCz(5VQ2R=}W7#--}4Oz(Nv>${I!}Gw8AzOt8dE22K!!yD4{~s(m zJ<^6djt|Nm{GTu{I_r4H(aVxfAS2jCWJTguuF>d8i$xr{tSZX(x^C&&%tG4c#KoZB4vqVWy#6nTUUgjA;O3^P>MbovuKB{odxaUV?$ zV@AtAB6o*dq+81>oN9e^<1*c}oNndV@r4QQjPx?5XQuZiJEgf!4cl&IoKQ4B=is6$dS-H&iVPZ2lw59{vi>48t8oB*+6weX~T0!2j$40 zLGg0R2;GZQCm6g~da;!&vGLb63`tHj%Jmy=e(U}pU##=q#n+3SZHU6spAcQ9vU%S# zpSO+jt$Q_KI0QUD6-%v=!JB037%jjRPGr2n8f(q)pB5#RK1QcWx(x3*@Z6S6rA&Txh~x;> zT<8%Y+4>68vdCxbF9z>D3S!r3e#lzR_UeBc>ty<+_MFriy#%~6oCJ5=!q>b(pP_bFOAGj|__>&ZRLhN! z0r`kr9a-b{bP!~mR9n~ZxJGZhLmq+t4Em>*8SP=lG;0yE%tP3lq!+VDli$q61*K+( zW1JC7gaMDs33()H3D1;&5L^0S)}-~EUQwEpTRQ3m`y*5;(ekF}3AR}7EHezL4{Fay z>}H4H?Qha+*f#8$9u*a{{7YFEJhwOi&NjkzO^T==y2rA^VFxG)NksC|FgOqjhV#%t ziJRf~DQX@j{1j4*(!dmC!3f#0zI}QBXyzVzo;I&IH*cm+0_SDWc$ZsLjnBEnS=qei z1A3vdkCh+gH{=vtz02NXZ*eU20)HvDHQa2pD&bDZ`|_<0OwbAxB0DW-Q5P{RfjlG{ zx*G;36gnLk??{}{x|<&tY;N9(QUMQe`}k*hJz@@|LB&W3k^#{HFF|WyVUCct)?c6J zY^kO{5VzfCo{>XaUd@_;&7m1aDr!-R2QVPZf!Yu!pd4~ddl~FHyvFNZ{!%Azpc{<< zgcQx>eT^b866i-iGPX4GGd}ty(Y$F1hZb^;gzi`yyj&Ij8! zu#WWHuw2o6HfyrQG$UBNffJNmiD(lrV37-)>$HV*BUd5PCS?wr1{y_Bl=_2 z2EJR6W!)OlR;U_-fDA55S41yEcfpm|QglDO6F!w4KCIPYEq_LOO57z+$SHIcN|zsp z*P@$HH_6QQZNuB3>+oW56{zks%i*k+*pjdII$Dpcm%i>@4$d3A3%i6YZSsxk!Nk}p z#3LpkrXl~f1wXEP^y%;~9T(nNvxcn8X}F?<41t`|jBVcX^?0->qi%zD6D( zhtMPFbL2hJQKz@)YxIsxguA7B$jY)}PHmz1KD-G$S>fza$y=eV%2D^&9ibOjVJuN2 z#Di|e4%w+oHEz<2&3`*nL)tP-oID~U0*yH5P?x@I=nIoV_u9%Yu4+2@+~&GmHB)A% zy_2ZCcN%CoD>)<>?$6PB{rKaqFCd%+QWE|AwZr*mwux~{5a(B(+# zb+?t?$5>{T#+FRs+IlFeAm}ZmkA8!Mc@*A~@&?De__d|w^xxFQ5gx+8Aih>f-7>ES zCO+-^^=H=C7Mkh!d1R2GBWdzAfH`^uOe(ysTV!F2u8=%O)pf@l^K<=8d`wma8&%IU z)W~>^rplLz-=NFIH^4l~fyT+UJ-`|8u=E;uQu+lxEBypJp${Z=D?^#NVbbVrx5##oY;xlgG}roLda@t2BV?Mh~L&=qy}tODjV1~$f>?>%2JQ|zwof-eOf33+Cty*e%FhexMhX^Yh&nX$P4s>{2n3Ql; z`?mMluHL|3&2IGcLUkWer>(s_*0avS%fw|v<-aV)j>|M1i+0|>e0BZLoihdu0tbCL zM%vM?n%25I%Z_{g&iv|D$XH!uU2&8%H|0s`U#S`vk7l8UGA1(Y&Iq|#a3xLuj^KyI1{PUV~ZIffbpnb!^N!+|4;DY23ntv9*rx1yeNx(vJK9 zzPNq7{(Z>P_ASDYta`H!!9}%QmWvr&c%?iHdGBsT+2FC=Dp`jpsdBqv_O1VN%(0Pe z!Jim^TwXI`*RgH6>ynXY@=6p;*jHZQv@_ta%_`k;YEqrLRY>6t(@K43b3v$ucOmi| zkAdD5?iQKECOX8^=F>&BWH6<{3MfPJk^j;?x`TC1vyS)s7tYTg$z0n1G_Ah%HoFwD z2W&Bk=S#a0=VrtXa|BpG9nymyV{cLa*FBK*Gh~kD53@w8`OzQiZD=%F1JsUGK%ZMf z+K=`n0U+84ee(06ofBO1_0N$~7D!qnJfenDm+37lt~Sr>a>$#cKJhk;XGW|wHIGOI zQos=eK+*v*l5SOB>%a`pRC%MWzSwM326I9l`Cqrb<6f0s9bgh@rxlqWgpmk@e2MuR z^fMjQdQ+BaeZ^|D64uq^NlPQL%z~^9mn7r>J@7)bX*dx(DZ7$=S~rN}C!LF)mbIr| zNXL@qBB@vra3y?IuW9ljE%$DJ?I9I*lUKH3F*Au9WwhX#{c0%M6Uqf^i}cnE;Os)S_g zT3gTfJkRR^d`gYy2Tz`Ro4a=(3LZwZ#6BgQig?4V`X}?(w7-o#RH6}Hg>8Y%z+_o`?J!p9Z{yw_y9g zbI@}*zi&G>iZ=>;1;hQ1q1VGdkh|(4R%OynR2TjY0r+k7FEob#ffD2kqm!)~G)z5G z!V1KPu);pp$Vcc6G!wtue!eWQP+o4?e%-({?4O7pM)6^&&nv;L@0t9+`B?atTy*7v zM)`7$CAfghkUv5Xf~F|ipccNjEdj67- zYj)c$Eg8n8?eHlej-a<@B};$ zEG6Q~#1ZPob3~`zej4f{#>gdXp!0=Mp+!TKN6xhD%a{$~g51W$a+y4-veGCy{PzEi zI38n^@o>}(@j~=u_ks7)uhQ>mq53>a$4FBC6pKRj$ITHsvNa>oWoO2<;5&)ZKzIL@ z*$+&|G^FvY! z1bv}qbZyk$#^Rc>tm;~mY}0Oo(2p(`1%I&H%xd(x{3+gu3J?o02QddTk$#7Xu-d-B zVHa~NZ&qvMV3KAR>ILQ^6um1cC7#KUKA=VP&~aC)R%mi{4<+U()mP5uZ*00~$Li!k z+C(-qt9)!u{S`S|or}Oe)CH5HQJ^PqL{~CC#^hIL z>or!qw-1(ESiop9U_t!q3yB2BC0_fC4uzldJm9m*p#$oGUGQw9gC5+JF5fEFk_uEX)q`oi&ca2%@V7nJMw3^JPYm%4Qn z&eB_u`8elg_>SyOfjTcNYkTGD_7nNbypLL)V$s0~yYF`E5D2OVX4qv5e%XCzt~8{X zU&v`uGtIZJTIQeE6fPeWn1-myjU_qQ+>UFW6(Ntzp1UY57r9j$q{jU7I);+iOQbF@IJdAeggh~L z6ygm1({r>GxSFZyt8D~lU`w!-*iLW}_B#RyNJ>pWH)@a?`C7m>%P6W?c8ZhyH^XN)Ka)q$j}D z^|?VMp+{T$OKq7)9G2O9U|j(0(M|Zn)-j)_maF1#Xh>;CrN^+<_%!!g^;oq>;1TIc zoQ1xU?8K`J)V#VQD*N0UT(r00FC>2?j5g18Mqz0-b`A%!R^YG155WlYcYPWDqZ>K3MfjLN%uyV9G|_o%e}-j57`7d*;#+C)5{tc!c9y%9)l%Nz&+r076aOUF!@uI1Kn1)sE>wSS(3MIB=WN}`h@asc zdXfi8wwD{r^O|cwNx1bdT$9iPKI7$Z9W2x=sehR;Y_uYNoYsI)@m_RK@5$74 z5;q_V(j$Bd@~AiU+jJXsALo(Y8Ny%8g?`tQF65fvO^79~r)5%{9g&<_!T%v}{f^Jx?iK(r1NM)u?;CQgB!Iye@VGY!S*x}ZA9b}Kw2_7g#2as&A8#--s zsdQ7>#+F!~NW)*~;=Q+Ep#S;EW0syV9&tA~DsjYU9xXEcSLQKK4?F~ekyh$22ZVm8 z)ruMKGXVPH6Udp;xI7QvHKtY(w1_xySKOTruhf8u41E(fS^-aAeK1Pzh47tAR5q-= ztHeE~y#FIH8wti>xD5=#ld)OI2LjCWiJ9La0#dNm$ate?tWM*;n5A8NtJff5gd9rs z^W&~(p9a7t-&Iw$`W?pEW7>2fPjA=(Nqih1g-^n>p>5S9E0H}4{*z^6Lvg+7>#UEv z?sqxGh_3q_eS-VOJ2J(FvBT6ligcaUcb+awnQZT|-Jw4W?0`$KmkloLB`*1x7#IW= zGUhOxUJ(9Re1>0D5MT+wEDAm}mgX4g!UC*pVBAx2|Z zK5j`mTcwtMs<0=AF&gPe7UI3wl0d|Z+wVDK7OfYZN4!Gzp(Vs&^d0i3Qj4oC0EP(px`Y$B$h}c^p{#ctXK(TlV<3p zOw#B`jgQ*-)bDX09XnG_`o0r|$qwpSqJ6|^Fh?zdW5Qf3J%de3PGc|7HIj{CFVpSW z#U@E%N77G$y~GhrTi_r*z;Q(1!%1W!DIpxt#oBuVHvfOM|6006?WXQYodS!g-kZX% z(OKaW;SWvDVf&=Ms5?4?s38erIerww6M@|B%Hf>;#P8#;)8gHZ2BXAx*Z@8V{D#96 zS!uU}`|YcWD;)mTr+YsrQLFkbxdCj&r}VlTmX|Lf0?^0c9{i87 z$!7k7@TZ~KZb!Ak%v&r1f^L^&YMsE}U~}ZNZ2}pT0Mu90U*Y@Idtu54rZ2zAMN`K# zJkDP+^32+x`i;SM!WVgm`5`-qH1toCfc~gKQo}7c?0pMoBRu#4o{h#KZ(0{Jr9~y^ zPJ)VAVsWrg(HZf~xUwK}Qk2skSgWhwAWHf#4*&Wc{Ir^y~S)Z-;yOF7v5wpr*@i+qr4;9eEqtD?+) z;|4$nYJ@i;TDSrJ5Bm?d=$Spz=v@~2U(yDxi$pnMkGVJ~EcOnrXW*qP^AP@)be4>TK_3eK;>YVUa;ScADui_l*9ErGzHcr@ls zL}9_W6bd2|FjeBhhT^f`7yDPFekQyw~>Y?eoTwbtP5OZ-lB151&JRHR7y)A`YND(uw7-Gnwd! zQj_MU@)Fw#!6U0wJd-GuT4t?m;nKy?A0jf`j0%HAleH_*=cKLNOzWbJOUq?A9iI;R zNUp#$z|E)zxgP?m2dyLlRh8xL+W)sHloNXk+jAaeo==_xjmT!~f#HbRMPVN%!d=Ls zNLy;DI@w%DbrW@Ee=yvVuW7lNJ!V*j??jp84zvRIA`{H3!mIUVOq-w)nm<{NqgY%1 zFk@L8fgMH5i9$j|yhT<{rM9PX8F`~+_mhhFfx%(HJ5=q`U~*@Ei%q-D5#B_0N%ulb zPq6~ix8?O-F0)mv!t@m%&3p4+n=GBU0JY(r_!=yNY^v;B{(y2YnZeK~5i;hpw0&d9 zDQpOz$lzqg7F#_??Vm>hDp!lmii_` zpTwo{!UE%wR~j{hCVT_+2(QsCO8SLpp--WiURPTliw1>nTz{HhiOTk~a|#(rC--0& zJ{#9VjnH{`HvvhhXa|u;qS7uxF3lxZ0nP4-?p-v~AyI5t3tyT8;e44999C%!IgLn-yCAHWxWp0y}poWZkNuH!*+RT*c<)5plcm zHH0;+sMoK4Y+Y6FSLsf9iOIhQ;Fg3>#YRNZLOr+(x8MeX3v@`a%7q7aAaC-L(_8V z_4fOwcRJntV}+B3`v%QJHWo(6j}xg#4eAF8(H68x-xl&r*h$$go`5Ah8SS8N8}(w2AZaE+?5Eql#AE4Z2j znKh^F41e4w*ScErtLT~AuV|TeLxf$?J=+ybL&6YOBka69`0;f_)?)SeTu;MitX1uo z6Mx34SMTpe9c^1JELUjKG!M3(5C4RkcIzEq!}}j`t!CL?6-# zEhN1$m4b;+M;DMY6h7Dz@|>=~<4N=~(hp$a&~i@{CNc z!-{%3t;%whQw(o*+nI8Wmi6Qcgohm>!-=&>96kcAgY#lG1ot@#Y*KB)D%TlA@i@F{ z^%oigbl>dY)UeSvvh@l+X3glbuhBY3u7Ik5#ijE?x0pY3xYk9{@@+j{t7R&}w!?dn zLhK58i#&u#fZJrV^~}1WN?YkMeRItuViR-#sT}6{g-{ecUjD+o8&37cm8r?Nsr-Nv z7{R=kGWRP@^%T6S6cC< zUd#n^3-GU`6}eL7K$??IpS4;fI+qZ0y5LYPB>NV!M;Gwy)@MDJ$zMD4jb zhZ%BD1S=!_$o*&*kxvx0#}qqTtne)emvXJCT=g?)qg1Mn%JZ=KN%OBZW#S*L(=b(% zDc8n(k>*&z46A(iD)*YoXfleN#Lm?3C{T9vfYY<6InH)vEzZpzHunmD2p>Y$3TH*J z#G}tmanxl&a;kxgg3)&Y-I>bO;-|=MzZ>n1hkU2eUl{MgIHVXq(|~Aj-4E-1(|j+| zR!MNK+@}_ywRW}IG}|0mqFwsjp^- zBsA!3v%*W>wN~r24*Dx-N)-`g5|sHaqs*G=L>v0m^-{LHaAl_?R#g6w|HE9WN9cv5 zTz8yo^w7`MKa_S~M@E^~`@^a@Z7t4Gq$;js2k`;2h&!JDuqjrfxc+!!Z0*0;BG&u7 z_r)91_u*@Bo?9WFN-4^pUMhc^u`C^9>jUJX~;D~;&|B<$1cnspBY@jy!u+=xHKgxO* zV~@lsf1wm+i$Qr|ChCE#Cd$1=&G#kIGS4xhG!N9b3-nEH;wk7h!l5S5<8M=0%Gb7q z{jg4E@lt2&XpXpoH$gU`xoAQoEN}h02{Cz?s_Uw9je1$T@q!{a4(%u6y1e zt52AeI$zC+cD=*9N4M&+Z=2C`h=BtL#E_$9{R4;}KRY72#>yXwS>yxffGLz>w?5Rzy(;Z@yL@Xd+GTp73tqnamk0_g+xxTnrE^!pbKK)j>I&DLa~UnA&O@V zA+1bVuw7tUfoJoZO0~d;2G0$4CG~if840ZdnmjX7qa$b~Ud_r`ishs@Cms>=6w}Zpicri8UrPGmu0)ssr2j5jrSK#Ih;u2qUc*k3z?`ls za~W%raWzBf9hNyyYoDgCZ*B^%<)|JZp|V&VKimf+7rQQSebC?E$MxEt*;aPN@u}zT zl8XKvB%r(?dzu{+pPEKew|b5gmjfiUS+P#>T2=~lmd|xb(O;A5*Y&#MC$S3IrVxX< z*gi!xL8!R+F2zyBFQOrO!oTxfT+ zY%S$U+~+cFzk2L1v0eF;T#hzkb1kmc7-+0RSEH8|0|Wo{o2E@UZ{ZJxZM7%a{|48I zVu249mFjAxtdQ=u=hoW_Z^50|XY!VY#`x{nYy1SpOXp1;4Aa-Kf|@gSAH3A^&o?_) z{Uxo*Z{*^J-Gk>c|B$Ox7UVmv7y1m>2i&Myc3!QYjo(Fni2I4ei+VR>P1zky2~mE$ ziZ*Yu8V?|6^nkXVdbRj1#U3;;Ju^{gwmPud>o;Rg(39$oHcu4qdyN#cv4`*n#qGYs z8X1*_ih0;8g@NLQg08q2eWm_c$(C4e>Nmsjz*~unY*$9i_1PdWQ0c08a!`GzdPhbr z(MssRm3De&joJZDKV8oaI8?4Q0b9-nPbL~QYA2%1?V<&ghSbI3>gW#zhyw}Ttocp~ zd<&8L| z8CI}Mt%BLya0e|S)s=e6O7bZ>GvpfMpiZ1kR+aIsM~d;;TJ#ez{lWZ&8maoFJWF9?;IYy_>3so$Om~(|CpBeW;e=X0 z*+O2!MpI<`IeFzx)7?F44$yYD-c}p2^`)3rY7XtPyDNyWztHcM7_V4`8!DIS?yQ=X z-`y&N_2R?Oc6q46g<9EHPnUkM%C%f7D7D zsJsTe0l5k%g&$8Dk&a1%fj|+2@X@ol9%zJ_G|586p)wnl z`I9;&=WxANdN7iuh=;$Wd8W-tE__WjcX923IQ}>t!1~DJB;Qi?~L<9Y{%WQHnD~2>3(J-OLT_p7Hfh|#+qZ( zoiQrm4(JnrqO;Vu^Eqvp6~ahOpgS;nehJ!YHzw_<0u>Ip6R|%f#wpT~q4hlLy;FeW zNYw&PZn1$K#r2in?WrI?HPEbWIQU`mQCf*(qmD{>M6p9* z+W5|Pep`I=t-kci5Pw>hbrVZ?uY~8FAp8{PT2u>+gBQqy3S2o&xwm&a{dDSa#TmtK z;)FsD{vcLy96GGS_eMDy>54hTQe`CZj*`*a(_6d0EV1)DawjwkJXPwg9^f}o<`DifHBn~~pL7{ZPvmEZPS+DV z>Z2pBFh;y1Gdr4KwFdoWFX ztlg~h-L3@2w|bKIm8JMRPO`&IS{*LKR1@}I*@IeH*~CHguA-PIBG#$eZ5wQ_+McjD zpRLXH51%E7VSMO4fto7(IAv|2oR^Ac%6H1HlnTZv-#3a6%IC_j^lY1r7D~WEaSF9j zJXgF`&d1&>Un{0D1}Y= zxV+rRu4nLBXyL@`bZfQ)JIP@#=bg^lq_*&AM~`}~d}PvGp#U~uZH#IGqqrolRv41| z4S52eR((fygHK^@`k$Kj73X~-*e89qL~ituSqiL%6!7Y63^_`x-#Qg~1%sQAI-qaz+JSePm(*-cG`OR-FsF zf2yj<>BM){G@_YY&|F+FQ{by8Cv}vrDt+Y%jE;(ljd)VB()GTpH|nlBg&8SX3TDAtF4!*e zH{gT?ZcF?mVMWJs^@4uqezXcyX(9o$MGa>x66(34?K4}`!>k-T$9aj~E{?uyewRJ* z5gWTTgxET3TV@v~zT;&jJCDavw1Ref{}lX0{gki4n#KyQcgz4~gu?N1b?R}RACiHt zA~F?vv3{}@O|hzIwh1_6e7Atn5uq{HY^K?cEZ;@d;t zd$TN0se3xA8g}OxtGyC%)SZHy^c~$f$W{C?zMCjR6IJEtF(OID6Y(rGy~e9Q2G`YB zpdtel4bGR?Q<@R7(}} z$&>ACwM-b>!$a#Xd$uY)h?R<`L^#%_io}*H+EwF7kLne1pHQK`#Ey3w1v%;K*y~M6`U|T}%JboB&uK*^Cb|Oys!nAfUS4+B<$LX3azqu0r(wO& zPSQ@~Q@O&{)1Dj*(_4vbAh#;?3)mUY4CDKo+q-M?0{ZIc&SK?|au}+&+z|4qu-Wo+ zVLd%G{y;^s|3=0C1soL{p99HNzjeaP^fmw0pR%fmeCd{!gfJ9iU#q;M=RuocOsQ1O zP!h`Z@Ji?yc}an(*u){lEag09eC*B6h}hGLV~RD(<;E!YOt*6f%4-TO zatlg!iRxoCt_BClf4S}*p_mIT1^8T5Caz8DlLw)Bs%-ot`8VEGBe!d&^`pLku82&` zbwQy+?CdZ`ES+4g%9yq{fcX_moBe$Dij+UQ_-e=~}1CqVhBJ zzS#c_PuIH zp4}#wC**8XY1*!@YtY-xu);x9XA_U`k3f|~5cx&fCf%+|Pub#YONFP z`&AuyI60^O0*%%F*1kgLzsP!tT7_xeuDXiGdworX7b-_XTiG$*Q(nRoQgvnj!1_$jiNiq8-`4dZ6YFBHc zzmW^7%8>&Z*UL6zFJLdlZPg~sQ;|$I5zkc5EL;LMvOIP6+RbvR{c?*~g zNeS661F&j}gL{oJYNryB!p`e?iiR6S$~r&&?FDB?2W^=uiqb`;Wnj`%<2>nie{gfP zx9Xotd*V)gXH%wyn~I52C%y+=kNVHza_3WW$?teYtm6M=HxaBbod`kkj;XY;rbbS7Nq~be)O74z$Y}Jmg1M8`S+q_ z1DSaYWiunghJ1XF3Lhp)5{3m+?3ShiWDj&wTunYEDks(` zf{B`mK=qky<02bIsO!l z=N|v5Wmv86A6K91DT@iO+1IxjnOS(6Tn$|$LH7rxkCG277ARLJKk;Pa;v#WXY1xC! z{WcMBsZU9m70ZhaW~dClHuQQNNSR^(fK0^qDY4cE-UCG^l`qI9%);ls$x^T7mA+TQ@Q`JOb(ET*4j&|5J_rK6hSwDNxpodbKD4HSm!Hbqb)ZBrvDQ`@Oh+jeTNSle~0 zg4amW&bIA+vu)e<_U%`kbDifo_br47&HQF-gK=mD_*+clw=3ufbbFc%9c@H`D|qcr zv$*DTQ~GJ(yZAhi#QCJ5)cQl|I@^JBOHwO*0Enx<__}J|h-hI9_+e1G=#C^ulp$IL z9vxGYREQ?cE--FY@3)Jm*_PGh`y_eOjnnp(dWUE9{O&rcF0S;q7A3O1J_US%AB-0a zevteJz6YkKLdCC;AaNeN1bP9yMZ&~C07J=hU@>&th7tZqRRP=p)rbgds$GnxB=L3A zxXCt1PqJ=mBxh~rMEIys1*{V#SU<~qJm8R5SlD8#V~1NGa4uK&P*^&=W$G6YF76ec zp1eHyx%+}{kB=I-0~!_bOw`@8cdZi_;-!oPRjma?iBQ%8k2AXZ35`CfSBR%@Ai1~e8rLvd z6f{y?r*N$$LvWAY&IvRvMjRhGd~HMh*&Id==6 zMeWuh9EX*T8K1Vzl6(-hN(Q68bv`yfmTD|m)>xOiF7SKZkCCy#@H*pJ{^d{2(k4nI z&65*u0_9IuzEwNiBRy5^E?YJiTg|IC`C_Xm`Y!C3w5oaYtxD5?0pzdngyjlOdSn96 z!QgUzAxMf1gtwXPHbJ)cvjh#>D=TX3GdEHSKs_M^)`aziCPE!}AzTKAKzc9({%%v| zv@gb3G&DIPu~f0QV5;sd%rcs)vDQx_WZiUnnRtb z0`1_t%A8rc%KxC5hL^H3T0b`rC#L(H_U>Xush=)bNq^bR&-NBIK~>QCvWDELh-VH0 zpL0G9Nqqjsx^0pTVjtKmIEoq&yrGv+{_5=yL%oQJh#8{k<&a- zIyM0;Rco}r$P0mC5CF!2_2b9IH<=%;3-vp?78Y&M|H-E?*IAsG1d0{|RQvDRhDi*L zxO3ciIj|boHSt(a--?JSvt3-gJ@D|vEpaatD>^XI4xLfCr=-N%3j7w$f=mkX^i!+v z7#}FQFE|X;PHhKx@G)QrQg1n2dmv=@*ch}MAi$SmzHqVXRx2RA&DJ{4DbLbI-A7>6 z+HqVLa(O}t%NtbLWYS>z$_5LGE5)g%;&>Q=+7nvs$1{>)Tk$ObOuE-xqUqkjuP%v{ z(un+TI)BQoiqBXG>Yk^Qg{#3#5doc5eHwpBHL8lQuvrJzpJzffm@+)5b}lFreg!-R z^5K_22K)iYfu8{%fn#7UJZfVWy3DSe|Ct^!Zw5OIl2f074-+jT+HPaXr}K7~Z;Tn# zT3-A-MkTGhFr?C9Y?WXSoz6v?UO8A(zFL3u*la7OL|bz04i_4w5K)TYh;SzqNmMOb2gzD0z2_!zsFdg(`LDIF+HR&f8!XI>$Yx25B+DR6$x`SZ*zfnJ z@qFkf-f8!TbLDmSV|Ld+s%p{4JX1<{YOqocl}=`E_c$7HIw#9^*dj1zIPf<3S@LH> zOW%#Y%p$x^} zw{sBV7u~jDMT~RPWY6OurG}4M-SA=3SHeN%vqzlL{-5-kh;YwK2ffW7^OEjWzAHF z+7!ClY7bW2j$UXK=CMRD+7PT_SXSSLg*}DN3mH?dpsT_yqAhcOWh@B!QNMPM#G+HF zRllCUD$`wSTWo=|PLQGHqU_+DaqG~)9kj5b4+iTTmpM+t*MzU3N5U(@3HYV;ce_7H ze-zKVF4qt=+E#Bb35odGP#t5T^D9I|eF2RP~|CFDX6-}8o zE8;B~*RtJNbDnzrU)8oW(}9`CTn_8P`tTWQOwGB3B5(#?4Qs)sLQCO<&q1XKA8nW= zoRru^CY$S<`~!->a^zWZj{Q@5Y3oq(Xlb>QPufn(N5NOYC@lobr?pjh8gEk=bO}0!bZc1BdEG zSsVyYfLef6l09$<)CQVTv%Oy$32Xw#_nR!&t@V@i+!h^z=S_Gte$M~gNoYsJEwbqX zIPkwwqg|Mz&s-)hg^s}6tA#60X{-|a!5hV!#pGlyv{OYP*v9!eOE^$jFc36L`MA+r zUWrZGNTg5*9u{k*1Tw4}nmg_njoD}F)HX9c8Hq0{EObBRobY&OwO^7s6#?%KJ(5!D ze+fna2}l4Ka2b{ZSK;gM?wDEnJhMLNuZSmV^S)_y!00Hj1DFl*8h%%A7sSB#;QxR* zVVqP}%|63hAn)2fL_3-fFp<)+NF!w4x}#z-@=J7k$uF22-|MZ&%lg)lnMmD zT+-nifSq`ze|_`cL@nq4$0v(eV&Wr-3Ktgr1V6oa474_U%5uPU4)LV%RTkpTsv^w=O z@*MdN+%WR&oM&7XXF@reaof`-5Oa}w_~-eA(z7S*B78^V&NK1yPZM8(PN6EY2hsuY zMl~&U&vVo=W^7GA?IGs{$3}8~QWJ@Adv9B)y}RwbBf#R0Uh~>Gd_Q4+m}3;qD)253 ztb`fhCGb`WL-D|9gC1OZp_`7}2bV(z>Z9&j#>!EQ3RS+eofBGa{lfZp(o@rVc-K^d z_=~`+`ioVv*Z^sSPoq@S1e|C4%{kl)QO`HZr0Yjbu`c%omoS(m5sL9gG}J>AxVZ0R zj-5ka%jU{-Jyx=#zGLRqTrT&3%GYq)cG$qy!a^kw`8BQtbco%M<4|Olx0_(Cx8%oo z0HRta^W}5vN`7QIMXc0+n)tw&i!_R7iOIk%O*%PyY4+Z3Jv&YNz2sV*VwDMRu*Y?^ zK{$0^zi%W(f4;|;>P|Zq=rEEA z{Sc@A3oeuD=QLih^8)?iB(PZAieRwrR060sg~RGXNA#`m3-m@cFIPeTREVT^F+axc zuTD98P@&uIYxO&!K=Kv(5LLr*3anO)D0;5cYtN5kc{fcKOJwi^!J#5ehDpWz{FCL1 zi3e)5>BsFg8%|iqbWb_ym`c*nnpR`;!orGky1C#m0*hA%zsl7Kok#mFpqJh&U1+?x z1V%24%7OXt7$QOF@KSg&tdj9VPhf@zIVrAg{pfZ!#Y5f1{7c3Y!2%dS*20}BUe2PL z?$9dk5zWtrpFk3%QyMTPo z>^6huD66$GA3F~+gpwGj5j@J?#ZQ|-*SU&FR^JGdT%cI`2?1FRYn~_z(vVSMK`M?ICRGpt^=hqL#i8`R+ z7!T{zsQjpAwo{05#*oW0+8*RK91S-Hv>KfEU!A|k@vFxRF$V5KvYgG?WeVR7{!-Vd zUGfg~=Cx0Q+F~{Ft)KJBuC(>V zKYMqE3+M}@uL38Ki@<_#2Wz~{!Em72JvpGVEM#%Z9pD$420sK~=qwUG6gotRZc6R} zSCIS27jhl=jdT%j07>W;vIcyfb2%|U6EoHA?lh+J*4Ty`zK2yMd-81JMhhO;JuR@b zI_GTPnC!US)LwZ+(?tCz{HpW5M;5dIRbw7_-Jr|wF)YL-y<)Kw}o%Z{aczdM(e78l|Tig4E_WEMjnpKq2nNv zvW}!DwWu4F4z&Ad&kH>84pVG6iG+qCwp_VQjA&QF@@ zAU8g_c_p+DWgvUaRAwD-%Bf%Geka7AWoeOUVqhiGSU0p*;8(wop5BCTfek0zG41ML&wVV@)x% zwOh@}&K%GAT0DzJ<*%SGs9Q|G?5D{KG&C|Q$U7MJH!~$FvH5Y%6^BcS&9FU^BX&d- zfL!tUhP{1u<)Le6x)OVp(RoHDyz7FO{A*+ThE+#$?rZH+1M`BnIyI)=Fsmt`@>Z8Q*T*O@l!KLug3SbL6qYyc8d^!U zrafb>s@R1ErM9QX*yHhsi)Chu@;R{!{Y@zglB3Hm2z|jhVoU$g))u-SK%Zbj!Lc7z zB4hWayoe3%xg8^`i_bo-zRfJj;YtSE@LRe-FjuWx@J}^iG&hQAZ@?H4ImWHkriPC< zx7WRIPOXA;_S^RH?HC-!rq;J?v@KGDui@GvPoL+wuKtjEzw>9x$ElMdcSs0F0V46| zT%2FaTwpJ^w=t-wlw%u62-Qms65L!pPLaL+FE(eJd5_*I*mUju@a@C3$?CuOnq!bTi^`TT4XQW z44aDTfFiWOBPOmUV{tpbRn@Q5{HF_I(iW&1$Bf(n+X>|ot5Ca8dj)NVA489^k-joh zt9efBDdq5zOeho+pl9_NCJE;I@YRw|v>RO`sfJF#j#2`s(7B# zeZTdB>y?FuMaC1}A5$>1;ndB+UQRdQadZZlthiHlo(`b|dRDRtSprA_FSdi$rl*S&l1=ACI>xHP1k*)IuCm+ z*@`}q&?Vc@iqyK|ol&Z+jOO27@%%!~JF|ZxTTq(hk&BH^O-et#x3!bb%Uhjz#bm#^ zt}0)B2WUxr0WNlH`aiI6N%I*P=B$9;A$!r|z7eT^n(ug9u{oJ)T#J%~TB{`ALS=oY zq{4uAs%f5A_5LeRM)bgHc$&&K+CLbsRie_XJEK38Qy>1oE5q|xfn$}JC2A|RI^@=q z{EAZJ=wqRZZlBsW)x|z#_qK`Ww7F^PYIXF$)Cu%)-oD1{ln4_>Pm_Z-s*jqX4JAYIQU@5xdZyq54%LQN6=RA#1(;K<0v;B|Tm= zU;m8CaKsQ&go4|0*m&QA5;S_3c@qDJ^*bAVh$jh?#6)eW;_^}udmtFRRoda)-XJX& zM7U?)g~CHm4+D=%Ff^0nya48xf}m6ZF6`8 z_!hkft@RpB9*nCguHtHXpYzQRC~B-Thq}6wtkDEXArdt?2eyN*Iy}vBbPcgTMPJ5A zV{`1+6qfXD)3StcFb?IiMakdvXNP!cZ}ZhoC0d1Y(Emp;rIIg9OLb7t`ZGjz@530kH zdahLi%tX`~GlKc3G0cQVhCKrY@{&<2*c+<>3`O&igTsSeS6c`qg^YqemK~~u9GD?x zHFg?52kW&)QZ~ZVk`nZ@Db0Rv{_J8c?Ux#<9~Nkk>iQ(41?)Nu~Q+hgGlOak3y&Gj{Psdt>p$mCu_ z9sw7S2Ps(=e~f6Juj+WFhQTSc^}UDn$lBS~yLsOz$pJNW_rlAfQp4iIa)MIQ>hx^V z)g>R`S=dJOH~diY6e$;}NOqN~bMClu{Bo_}ly9C}YOiYk(%9YbpXn&J9(^DIu!G=B zBs^}5QH|QD>W~s@y#U$^qL?RZv({YKM~*KXLlUO2UEpKnnGcKpHp!qX(hn~^1Wsdz z(7BptYZmn@AQ*)8KjVH?Va|2_5tQUBgLQfc-!=LS>x+N+YaiV1sB4bj=kB z@krlie5ojAXocAe9@m}Ga)Yy2O9v^y?}G2aYoNX45ELbT1b&g+0rPQF7B!e*u4h-pEg|N$iUp&e72xE}lrhJoGdjQ^!iKYb|GnD}R{u0S{pANT0Y9 zK8*bdC|7&kctRmivaXg6c}R|7aYp9Oi?pXjuHXYyZQ}Nn7ZHW1LFOn|Q?G8384IOA z7a+6Jk!Gb{G)XJrrCwFg+$z(cTD|WfmmT`y%g}&$jgE1^{$8GLQ2KRhj6@GIC$A)R zCa}Ys8|z(Pn7*?ObEA$d(fQ&WpGm1zbIhx<*U!)Vhf4<7z)SRTpl^lL@oX7cG|LCh zen{z4**UbDwT$XY9|^eR960=%Wme-I%&1mVZLM8Rky%E9HOM>kk9HlC;D;q~{ccfT za+yB2IaghrT%YAUg6LBMq(SwUua|L7Fll6NWafX?dwInIp9u?7&9Y&@*R;(EO$A>H zH&Vl#%DJ~00iicrDb)%FE`8aOHi-{Zo#s?8V4lamK~0h--yd_gsExz~g&b`c1RjkQ z4rM3*N=D(|{g+)S zJpjFhJ;t75t6&2dLrk$NqOPW{k#H*!;)hyc$4d7VupH(fd7v#erEn?rW!o!D6`yM> zga`|ZLmzOx;)Iku-cpULIeRUKZQD7wiuc&ocE+QrB#DG&G?whjvxXC)1NbfzR#UvE z1H2C30nbR%p)%ADt3r3fm1qI93ofKAEltgh#0sHmbWy<~%B@-JBbKRM;%T_u4^wu_ zf|}6dFdOa!;xMM+YQ9v(z}>^H&qJf`Pwkw#R%pNYG@epZ84vjF688Y7;f>6S$ZFFo z_%PUqh6v|^YPg9Z;1thw*B=NpOH-`HdY-VTc*@jziKhXWKYkGj8;0 zasRyClCxrC{DjyXzXo4{m%9!cmDNrLs-`zP?suNycje|y-NY}8KWDB}IokZJ;9t$% z$`OhVF@cqG9AH zt1Ppcm5eKq{nxtd*)2*7R-Rx5`3f_sS)U^pGDj+3!jq69v0=zV!_exKv3B-@9@F&t z&a>G;Wz7L#K`nL$xBxU`3Gf?OD^Mq`K=m|o9Y}?LXgt(5jkoq=XdVpi!p%vZLDA!SsVG3#u*D8d?w5NUPtu${+PE);!_~Z8^qZwpMTiFM%kqUbG=RWhK_en$8 z4|p9qh<$>;!{NAwq#vtjyj}jFoQKcG)}q7x^}TPaBy3V;6<=8rj6Xtdw^y_LW0qy5 zS%<0?#NVV`%{hJ)A68WDA%wt8(&8P5Vx z&n<1sdS(^ua=fqpD!kb)IPeHt-?yV0)G)ES489<$;O+i#s_}Nu8dnuQGVkf?)rfZL z5w5^aO)hr6Wy&)+uTvNlZ}`=o)50xha|#MtC`ZvfQvx`RW|U~DJ4!huiptPMD{*6# zXPp+X-q-}K#%=x;rw-H2qgQlY(b8{@OKFT1GSo`45~3S*oE25cXeXr}FO4#j)EP^+ z+8o2#to{84fLwGRJ;~zuHgg=Rgl(0b(Gn(^h}>xph&iVE40Q!`W${P`VhQ;5)N~rB zKdqD5Nz~?L?o8QhGFE@f$7}h=cv<3PcNhK~+8~l?ricG&#f^)3!|YE*Q>H%@?g#3m zlc`_PW@L}37Wp#Oho_k{Q|6kdNnD`!PzN#(o{N7}dS+FmBgio|mF2jz?B{*6Wk>%q zW7+(m?%`)Ao${U6oE@-Ix5cW#Po17kJ!{&NuTq!Doy1i!KeC`%s`(eGc=$84%x zJ9pGr1)IQ)u@!UHR(ACcPKxj>K;Y5m%BTu;25sYbM%Wlm;M&+P^f$EF#US!!~pN~xkV_ENNG^d~bgP#K<_w7^)Fp=|T)9Tw_5 z8}=j22J=VrOlKAOd6>X#>^WwqrR1>YYEuvuE8= zev@@Efmi-gwTwlFDbQTbSVLzIi|g+s7% zGy|H6Icamiy1n#yW)Njl#KDIBR-S9&r004qXgJnL{H=^iVz^w)xu7Vk--WlMJw&r*e62Kcy!rldJ?MKq|Lo1?eKA|?<{Z>+eJ}fq`s%>~_`6wOn6)O1w*AfKRBJnUq_C&R{S-@(x}!wGDZMW2gjOVo7h@P{+Ze-~nhI;Elh; zUGYJv8)DK#&$WUBQ^pLJz(BJbwzF5%X-&IJ_TdRYi zp+JwNZrWhB!{~s%VWm+S9+qD}ny+JTkhCn|%_ztA3iyR21CPkQ8WWlow6L$9~A$LUv##z?m{vO^voLZ0zn8AH+P6 z+l8CL+m)AjeA02yKErC^48*#Xvs+>{BFdF|YJ*OMnwVM03%raM&g3T zcQHqKUDR)Wx29|XE@1$LA(o^GM1_2b3H9?XmyH;up2m?ngRlqi9F-Uoeh=u*1y9sC zS+*{o^3J(?kRa~JFY#doXl^UVaS$D?wN%K4JZpTE)Qc)4|)!`*g(eqS% zNJ)9bWzEgCWjq#-pYf?FDIH{eaQyB5yHI6y&-QkekbQ_kBPG8; ziHG%?2ltt)#rv7m&_k{5Lx<`bB`)Y$EHB&J%+lH>H?#V;GGB!m^U?5dRA1t92B5k) z2=?|ydyvbRk)S6rwc>Hx8qeh(@xUMGH)^F;mh7aqF!@@cJGZ08Kbq7F)!k@#qGq*P zBekrpREpvA@XbXDStC83vOXjk7;Z{T>q=$#7dZv$E%mV1E_9p12PPSqfPKAN$&MD` zV0pZ1CHw@FyxB`Y*QWn{hco*^6B{WMnV z7gbu~wlq#}P3Ea?EGSWnbqwgq&F{Mai$N)Y5E9}d{;+*X z$o>jx5=PM+UE03AFgO7wF5pXubMteIm8PfAo3JH*!z(3WW6pE@AudJ@;z!Kub85q` z*48?=sz1)UF>fpJ7@i9i#wOA9gEwRybDLFls%xn&ziRu4p3;4OV(d!$wp=QqP5g(< zu?zCJn0P5TAiArjRO1vyvrs?{H7{+83C(Ax@JhWhjUDnmt&##;-S!ekk+Z-$OJBCT zPgO~0+ucBc=}3rKU9HN)lElLK+7XPs`B#yP$iwNQ$qG>_{LOK#-g}MmN@R|N|0~@H zbHL*&HM?@FPa^&d3Bmuc!&K9)$FPS;9BxxQ&@W}aqAg1QyRBTT(|BEOh+tHn>Ia*9xrRpTQu9=3ytb|)}>umlc9xVbA z1FSpQSBSMx5xg6%h3$ynVf?xXL$w0i;qSCu+?+Uo9(Ot9vWU%$-JLr}v^DE|z`;EG z3^$id=XGq=JoT#Ob$>1P^=LH)=E*#sYtQ!B5qY&d+-5fST+Da+2A{K&t1va>L-97c zirce_14(_kRK$$1lEx{0(r)vGmR$wkflZD|>G}?~{O$2A+_hLeZiMQfYcNB!NBdBh zj$SQ(3jIUa%$w2UTU2&XbXHdVD0&y^L_LFAAb*KnCDSF1jdp@1F_xp7l*F`k{N!9^ z^FSv}y@e^Q@pLbt#YAX)YgzQqT2HAbatOm33T(?=K_6e833>>k0H!Q=#?v`|@-e+xy{l7qF12L>UXnOI|UKOkThU|U{;?&E5?-KdE_ zcu~kBY^YZZsvB=vEsZ*4j5hDRB07|f7XRuVc>zZoe>}OH#K%; zVSU-`V`U#{w@Zx~zw8Y=rQt*H-+uvqic3oDhqAX;Ol;Ioh%U?TH? z$u^Ho?!ygtGJ+H1l#erC_5YZ1*Si^v`|IBA{e)HO_+f8X^kYiszCQ=r+6t^~dnsJcs>VU4ddB!~Cl( zZOdw!Rr9=ASJ*MCYFXNYg=7QTN|ckG;6XSA>L-3+_ga33*o3Fnut!Z}aA_MVBrxS< zT5+t6TCz@I?i6txA0Q7KyHwY5U55=^Mj~qx9yPKmH>BSPo1Zxm`!l=JV1%4a0z?oj zo}Pm~_WqiCX^kd+2JQvURJa=jRZo%-ff5iniq0nn)1|f#+-#aX666Aa41?)-D4aS) z!>1y}sv|b@$zx(EIS)80o*|c$n@AD5hMYhx@W%lY*#&Wni1YX=WI3^o#EAoLNoC#1 zi;2|;idL%q!)uqim@H9oNI=kg_(Ea_xq!HfA0>B^_wlRZ3*rN0o55ZypsYZ5Ca2u( z82JEyjOR6-jz4ATf_FjdiCnD#UEJj?`3(2O?eX(u9yX0uVmHaHHd6!7SZlNVwalBP z=nZlQ(ciVW{Bp|-x|4W=4?_o#+vK;Bc^3To)w2Bv4k{H-7VBm`B^RUb@I{~ku?pQ% zalcpO@;;K7^UU=*yjRwaF^J=cA@Lf13O8a)0%`Q`0XdpM;d`t8V+E9c;yfEr5V++o zQ!nN0sqw>aAeW`bi2*DcXXy49ni^QA$SlYp&~=I1l!0x=4Th^rn>yX=5``B$wv5LTXHS7kf}S3{SG z3*Z^>G4a~*D@+WjFJJ zu4^yJ2yr-GY^vf(=#yTcru*Ko7m5PB7iI$D#18hWro8c6!Tc;OwYSVEM;}55I*Q$) z#OVC>jX^9>f9cX0Lp-1Q$&(SdJn#TN@fN#A!lTn4awuhB&br}~w zuB#4^+Q}Lh6g+n>by}%3sBa1d6F$I9-IQPvUD;u7?pjqBa!Tw7xse7kp*SPzrSequ zCeckOT>6`RE#GI@!96s0dDzIgeJUnJR7Cc(aoPXAcspO^-_cI+%S)f&+SR2)g^qOToOuh(Mwpb^lm$% z!3c;dS8LDriY_nk(ry>y*RWosOY&7nz-7`dDURR95ZqNZG-r|D@o1o1J?M!~vE_`@ zSGze;d47d{H!&yKL+o7<)F0vgG*{a|z3h~?BXcOxpsuK;+GCx|x^O(FpRJXQ+HG_C zU73*hpMpkic5#bcVRmZ3hU%pue>09-9I|-pGFy^Kj7#qdmek)iw$W75Ew!7KsS%z& zzB10x{-<9xFoWbySG%!-+bz}ol3Hy;`n^LPk84rv-x*rQ#FKmQERvUz&h~F30zzZ9 z8}HG`ZMf|dfmIXDL=}-EYa#+PTAQqumL%kAd{Dm;w?}zz{VL=8+FvxXO($Y{id=d( z8*g$MCSHoVKukJGG?6j2MfEi{F7OD^L5heWvYGs-d9vXsHG1A$r4-BONi#*QU9$$5 ztyf1!NsyQz?X(|K3*1iX*95-S`mga=z^?9BDwmz-1X#Jf;qgbzvVQn|@*4vu0S&y1 zp_`YwRtHbVmP;3g6J@nJcAP_gpOyAW!eNN)Zg8nFWvpRjsqb_-A~wQF(%BbMPp1zw zX)C+8zYcq%1lPT?A5h~KEi1nfIMKhKw85{4cabN^T~fXmtC4MSoP2`skUlRfn-9U5lkV(NUFQgA1>F)84XK(`0e$26#NJX-Y~e9xsB4T zyeZ?tjJ|XNtBBUEQLibDu8XGE#Cu)RiYPp%ewDJrECtWTNsO@QQaY=$HRMFfi=b_a za}}Ql)2E+FO^CuFZR8sz?09CSR1Y7Vn2X5XD98fTF%=SP5h{5J{j5h* zKR~apzuX*34ee;pSlwQ`_DJ=Yem0>hb3&5q#$6UC>5_XfF8Iacd?AN9nc*DXk?^|i zVnDOk3-^;&o%{glIfzBZvHzAGjtnj$LL0qjRcz&UhDq}u=s(lHkiymbJ$1p#TYvl? ztmK^V3FKPNS3GWh4N5~ir$^b_YTbgJ6HbN@>FwG5Bd@96q$}wJ*+Zi+m;Bkfy*0Nv zM*0%!!M7zy31(YL9+~q=hfiZ@G#y zg6QcMuGxoEf2UZ<(uhDPzNVacpz{pIMr~!~(hPaGbT@Y!Bh~ztnO*iYt-S4T@%P#a zNue~Hj3fg{3Km9s$dUjPRln}fbyKuByL%Sv=o-yPi^z{XJQz9My_3nzfbn)IM>Z_& zmcPPQdKGZr^XZ(EJ-f0w9q(E-J*#4VYBe|Prud~@@wQVx-SA1%QRXkZk5RF?NQCT5 zwh8rq+^F;=#=!<9YN8CHXn0Xz7^TCJl9E(-C!=v~`$E#qhUYivj|AziEX$uL_j zLB>N1iOCkv`V=nr?MjT)`?_>ki6y;@w08u~6PdT%(^idc)PU5LY~OO@n@6!B_`MNP7uK;{_30taUBN z^?t`144xe<@ZCk@M39L_*|ENO-XXjl=mn>|Vtv$W=a8-BFzKimrn#zhRQF8kvIcj! zUe*9z88vPdcMWCdL@BDRrXl(?1B9`{X3#|-8$pHB6>LF#np3B2j1-Zzc6W;#ITPbE~~~Xa|F%elbZ9eX>++2)vBnvg>JJ3E6IPY3#xJdRui9UsHzJ zPU%y86|rSa-%5oTJA4Dt1LZea>UnBRavOM>W}xg0>5d=psBy@OJezFncH8bUiO34E zL((FQloex`OeV`rB@%A9ERb>W2e6QD)Hs)4jUACLmR%)}OScoH;SmW|H3+x@-6+!_ zPRLXUPRbq!G8s=^qql~6K&C`&mVGYF8Go#}R3XZJt>$TFt$Ayb0dWl3PfRQIWM8vc z6p`-@#@}S*!Rk#Ld?K-)rDhqIVYPX%NZn)p4!kE{@h2 zNb-lU*T_kt&6JsE5b{n|0xL<+v;bD)RzSs;lEGRJ7V>P~wl|h_@a>5& zvOVa%v?$lzLrVo0jE|UOX-&cJO^V?+va1A#yDpCxyP)DlSxkB`Yj@mo7gr_6;oGWK z)XK((swy3A@wnjYBvnUNW2Y0M z6`vN0Iw^x=#=ZXQM?8ZfS}t-f`Gkkvv|N;>F9(+?kkTNzMW9zreHe9>0lMrns6_se z?t?NHyGxs3W5mSrNy%>WL#Zy=M;qLvMu>t;hb+UtNfpTtps}2z%1OipCh||97osRL zK{jF(vJF0us*@a|6>d%oE2~HEN--AG&v2 z$A^ZiXSbeebhXPv7K^N*vQp&{nLAZQVrvrkr|=7p?fss2L)TCzJ?S{_Y*tmMXSlQ9 z+`y&T53Jk*A4Z4d2Lh4u5a5VKgqn~V3Pj6`ktdc_TB5p@23@XXr3X0zr^!*CcIeK0 zYYlc;WmfsB6IKf=5Oq# z+odloltb`s|2x{u`a>PXF51judA7VtS}L!WHcG)DgP5aD%fqIE4+W04-;D~$s<7s{ z$=Yk>O;UfdPiiUiMSo}Vn(MV`K1KSUtP=qx%pKK@fNGsBmGb`!eHt7Y8mMu+Y+mbj z=HAW^byfO?s_G55m^WgB41Tzjn0po8vw5aEgFnOC>eoZ!7@nHneY;W~Cepm)mGm3##d9s@mo-Feab2Lf ztY($h2mXn?Nx3DQK&~&n8uYXsktWL0$@wPvv_!RKxLCdkj+3px`Q)^Ye#IDLsXS+9 zfqZ9$Ja1RXQoIxm!nz&I>sJ{69JuLc?_3m#T1Feo<%{L><%jI-%a$uFljqBFXF@A0 z3e6oC$z}2`A}Ds9R*B&fc?*#%v-LX?T&zCXe=~4p$$F!-v;rE{vK8_?vP9`xUrXC()wc@N#97q!MN7hi zL&Ni?D;8>-IY%-|YajK{vafVq@HiE5%>FKu($GS#k(1JTbff$~_(Gw$-Gy01Zjv{m zQ?92g*9FfeVzHyRaorWudeg)32KjGnF1cOaMw(QP4*V<-574-~=-y4B(g!0qxRb1t zwRSobwIm8j;evMA9Q(@t&4YQ$n?nRq`A$>Wyx_w;EA>|DY>RqfK+f#k-P$bOcclW$ z=)`r=V~VYOsDq{j_FuzK$uqIDHpgv3m1Tq(ei2?ss^jCpB)XoQEo-x$G+5;38WYA3 z?pi5DNL@U@OPDxjqU$o^uTUi?P4RWo+$LR{&Y)M>AGm)sPb9c8K6Gp+$7I*#drWqu z)Y_!>Kd`-ORBg7*;#&O{;~MYHF8j#M(=7ZRZ?xxbFgr^v!Li_hd>vtp|49D9O%2{# zT9TRXzGB81UrThy{BZo{{YbuoI7PmeKarm%7bzU;(dK;51*|WaIhd`mC`g$vyAN+7 zbUl6#8F?5+Seb9rT& z8+YVQ(L;6i@g}i&{Nl_ShZC9>BU%mz62pBBJ$q80tNo|`os!mbGQvQ+q^ixPHTz7_ z32++HnNG#^r*m+A*hA%4F}?Z8+#L!A(!VmM^lllW;aaSvi?yn) z)Ga{eW^a(+Ug)>9U*v;urKa){$12CyjyKW$n8UQCJP1*f?e^xUZStOQ7waQkf6Y}b z*2nP@qmvY?PP>-btV~#-@Za1^j=B0q1$&J2fqN(mTIu1|&GqF3zZ)82TLW%#H)4I& zRWaDNRzSge4XY2#WgK5 zwHm#oG;6z{lssMk>4(sJv;c{dTcKX0#SEJ?DD5#Ct=QMOen_m*VjwAV&+y3}sC+Va zyW^|$=DIU!8YT1!Q&|i09bG?|(mZItQ!_XSuDP0&;&&>uFK8*dFVIi(Zs}gG7@mWB z%!K5GCI!&%vxSY{QHJ8zw^erFr*Sl|VzvX#-=wRZ1PHob3 zd8Pa{hsnr{c$%OQZByN8)MuoWHAa8aEAjd3r_7$Cb~1C_V5j{t_A1})+{lEZZC{zw zc$++$JVZ@$+Gyt`3!Nze6fhkuR5m7c!RE-5XYOHsGP}AZvHq?3#9b_L<_+_$|D@w- z&2M_4{>(&;taO97SmE?SZl>>e*z)bn-OU8&C-xN}7%%Gs#SJD-6g% z>GJ;>I?Jv$8ZL?=f#5EIpuvL%*FbQ03-0a?MGBO<&?2$%nM@K&-R-HnySpoOm-qb# z_tRPHp0&>2{1~88PzGfKkBsVc0!(PJ9gTaq;aSfWK7vs4mu#P$cPL~Z#G!4Ag3{v>0 z@B$bbrZ0c5WX1G)AtCGowh3>5c;U&w<4yBJQtYO4&(VDXuG%o=K8Mj9hJdZ2ZBrQv zU}TKLdD*{VeOAB6T-2FXH=48V(FCj38cu#ABZ1L>)6KT>aFtU@ySAHWr}jXUO8VPq zd3*f=A1G!il+cna-NjB(SjaHoc9ybL6F4+QYu~kz ze58ga25hz0Y9%Ph=`St6Q29u>L$GM#GSgniRj1VG9&J=o;^3u|lzSk{rHH!@IXWi>t>prV@wBRJoGJljt zar+GR^5%p+yief8sp2M!KyURQ;APQM=&$CPi1FrwG(p6@+NW~Kt}A{1ffwQ9g1_J~ zK?MH=^?J%XYd|ASDHjAfLCAm&6a{zk|a0Cj=j%H_#g1DZ$$Ahc$~o9;jIk(uh`!myMdOj+u7Eq-uedjDg$f1y36Q)R#!1bV=2s#; z=qGfH*65X$yn)u8IL~2_U6i;s!$$N*^j$D!rrml(B@eq*#bA{oh!F4Ho!hZP_ri8 z56YNw5Q+w0ryr3&6YFFWlxf3GY}-tA5n96fK)`BuC>;D0KCAU3<67AfgP+xa_hj>P z+aCVrm2A-&Q?8bxZ>;F!blsGTo&hs7eBoq-Xq4Ze5!dp=Vuj9u7}uol(-~`0MOVyp z0HoP8C@h76EN(-x=OHftsez+%z0=*EQenZ2TF&=4`IM{>aK z5>e&&)MR-{d3ck(v9xukk9NEj*HB)89}!Op4xb3GO^5|Ehqw~|q$tb3wr$a%&` zj@~JXg?-}0rC*}MA`b^1Ycp3^;AF^MWG$D_%qkk2ZtEKtO`0KImM0Rd{2!Ps ztCn(W;->W1=T@wafTyQ2Xs3c1`E%?)ULV=E)Z_i98a76_n>ZyH#+=U9j2WA9;&Fgj zm<>4a#y~e->U5XmKhI*%mdgHUn|ZVTT$jqQ!0ye>(N4cYwmYCSYr7Kn%aNaXInyz4 z9`ug4Oq3190(pW8+lXP&O3nHs$p_Vv`y*2dsv~2wtT(Ff9cnDnvMo~M`j02S@Rl>N z=|}4K*xhj8*57Bdj0U*odM_&=kc*1I)uKqC8t$hCu0NPlPWkG{i{rQZMGv{sLI~|Xju_ig)I*m0A^)AcN<-%T|9TtlYgO$jcNmc$b zv^yDr7$hf6tCPUEfezmiQ=o2M2}4*YyDIsBpMo808URYNSls)-aWg>Qk=FeLncxfyxA=V0N=-WvZle~SjJN;P%8$b`QU zO7$sDyFH5e*To-=%Fd07{Y*h&ndmO)=zh?XQod4a(&1<&q>*X9$b1Ig4eb-n!uv%p zz?a}5XdQfyC1?DHyBcukpN7srEItT4w4=K-;;wP+vNVnEmG3pWB6ml)3%CSjlxf?9 zHyi^t!j~Z(Uusc_!D-QT=!vj9bE3addp{rr)&mc1hsv%Qx7lR`#xb<(6D0Q^ zlX-D+tqH?EPs=|FuK_3Fz4Q~!y3xyYHDW&1v?7f2`clz-~f*j>!hLs?iG!> z`szwwyaCsmn$;dbX)81zh|UWr)9L)@upx9H7f*Pb>*oAlvuw$mVcjOu@^Cm~NEp{i zwP-SqQ2@ofEfe(aB&$60R4VA#r+MD3hI=cw)BL~M6Wp5|px84<4}7}jl0aPQ*HjoK zb}FhiNi-Gx1-_zO-(IV$97S;J#H55S`i8!NFXeoo%vz{UF-4l7h3Fk@FFLGrHC4v$ z_uHBB!%cDeSJ<_FGYW$ZvqNTg?|WoUAtV16#5jGtDG=)&QmO( ziVE~#doMS+F|7b>%ZY-TfV;NRp1(na<*#szVMBCrE;;cwxBxj3CRk2 z7^srutTGwsq3XKk^n@$)%i%=)7BdT|f6^XoFmtSzmDR}k3~lw&Y+K<~7j{4Kx8{=O zm(|Pa7EpC~F$7PGZgVyk<33TnzqW zus`0VpO$bt{d4=x32!J&^w7qq&?0$M;hb%f<;B=Q>+M-mpF!vKBY4-PjvcAGgWDsW z)wg9vMn6iAijH!7lCBqO8rmQE*LaUa9*M5DxnWJk}sartB3;dYpB2}nV5!93B* zNe}qP#3f$3=rT_W$rOb^Ua&rLUY}oMm!Y4vX`$V`R`Wfa3d+Kvvi!by)qtr|P&p3j z66qnv#W%Y{8|2*T#-`$&foLcMewi8+b~a>K6p40&ZwBA`X==ryEBJc6LY2+g?-Nao zkA`_L{j{?xjpT9#{o^*sJdn=gPsxfvHT(DxFnQXWmocW%*e>VL;A#`+s;g5vLTisV zCN$Rf#KDfdFTChkA*C&!}bfy+01uTH9tr>ukdxwmZTSDz6D_gOS|EYp24lbl*nPtIof=~w`rhD=+HS% zYYmxfZa)Rq!7QXyL&5kV%PGa$J?&%MGzR z9NA@UXSG_t!Cb3IwNWipt2D12a?Q1=uesl()H&qhq8O}3nzaK<&>@IZ?-@6)XELQyw~i;w<5sv9^y5o}^=x&1-}U%l#>`K@d2lZ8EI0;VP4=^&)Y4_hrK_k^=_-}}a{jx}$ak5GVYaX8ioONN zRd5X0-LOdIWY`kDL#(ER33yh7!|Ne^z65gAs4#t^wGdbVj3J@&O)l-sQDhmg6j_EW z2lha!x`&Dm^-Lfe;KPsvJ_$MT(_>t%7$fP``38|jetoR!`HJJfDd-KDVV$|8z3D$_ z4m=C}EsksZUi+V+@lcZ6K@lI=juy51=6NjGEU+eE;D)fAH;Gh*%{O`*(i>vh^TlJl z;A=oo*-XO$zx}Lux1^S3LpPxv@KfP__yDj0;0ET%7c|)gU$tEqun&F!?Ew}>pRRo> zy9umCj>D(m^~h)8QTQ}`1NaJl63!wg>Pkbx6x3Li5h=YTUZGB~(O?^U_;k}jy(iiA z)J<8JYSIns{3Fs%`<2u!9=qE;8Cwt)%~XW`3a=t>@(Ub(<-UiG2+qSN%%P-xOcjUP zVuh@$a034YAc<|T4Q%_S`p_^r@O`X2WmUGl`GdNB>Sm+7&`6EX#*+#Sew*0e-A@fr z6i!!=x;{0l!Q8vD{jn^Jj z;8pls>5bAxgO6IehOb4x(1*y+A%=1Rx5)i~{l&-^NTvA1^t;r$-X}SuW`{K@74FrW z>NC`DY3Il9P*Q{I@J}KW=!2*RpYO3m{aMB4rTe-mO8vU0LrsluPRpbeK+8whO01F| zTps)?vB`;JeA6acSEtTH?f$gO8W(8LdenM>V@9QKzr^@&j)vUQaWxJFPL@s@lR2P|Cto9{4*^H#A<;dFyr0#UBa;A5Lt^2~=uJSMj%F z?s*(byleK)GKD>bzhHy<)5UO(75sFfX$q7# zZ#<}^T)!~!&i@Z__RG{6FK$*>&x{fE@#T@_g-7ye{q#z$&c%bFIx3cztq%KDL<4E> zY*%~#QHoLZ_saAAu3{43l6BI_KIGQ$zc~4n8%-Z4aF=^C@?b;(nW00)V8LUd}@s-f7}(d2Uyd- z=sJ2_$Z^jXN#~Sa%m$!=a0IkEc)NL+i!oJ$R%r!IHi#?{&kEDhzdz9-U%isv02z^!+U&c1OVa_Z)R#T4F zK-FjqS`U=~qoro%MQv8)IrZ*FBT)febftYRd1`S<_7$g0`qMv~Z8VH^*^~T2aiw_= z+9eQzYl_bGWl}1H<${&iTvK!3f&m)cg8rv5bfhEgr|*^+y!5m8_TkIOSESGU0*z=~ zET|DCBVQ}R<$`Ncky_z=l$-cGd0Vu|IHt(Lc%SP>*X$Hn29&~ZC40&rjloA$v%eq8xhq;Ph@ zkNW$yxZ{fWb20<|xKIksLjd7A(PFxpPo~=>%oB>>))!}o;)nXks^Y5&3NfL-XJ)Eg=j zkv9|*3T{P|8XpQ|N7g#K=hjDTFnr!rpKvWc!gwd+7NjRQ2N#o$UDhGT(C^@Mz-qiqZ!(ng0R$ z1gJo2BI8;mHj#oCz<7>iuGN)tH;?Tg*(%gZd^G8QR)8ehHq z2^`X?YcSsbk)kz_naibirfj9I*E94f2!7KO#Y)N1f^Ly#*2rTo;S79HcXsS*_d@|^ z0-Q~|=ng7()k};kjc0PQ>4nP61Gseew)UcY+)*?Km+8sPtFye_GC%oDv6t(W?j^N; zUIZn_SBotUH}Zcy*roT{&vxCS<$pa``P(!uj2&^qmS-0X3llMopa#u^dV;dY+z; z5NkXYTBnerHs`5YiN)`95jM1$Evd?KH`jHq`KRNTbG&${(n)hr{Z8^(o)!25`O~pJ z{9=r+5{2_B?E!8$y@)56~~meNWx( zytRE<&htP$>^*D-udVWFbA;^*C5<+7=0u$92%J*Y_+yJ$~ToW%_FP*1{Dx;Rz0>8r*c^nta7BfQS z5N9|_)W*D}X`$hb>7!OyD8|GL(TnM?yyuw=@I5DJs4nV(1z~ZRGZu!upNPV;u{YIE zY}YhPm$WFlI6Gl6SR$6#ZdvYT6paN#3791sj1^#6278Q+E1#5GXfd?r{JGKT#R^Cf zIDz-{Jh19e@`kNYJ2bra@9Z7B1a+x2l0d%=q}G$?}0cCz;m zBpL%j&v58fy?4;#Z+ zyv5+r^iuZTaAC~8e2(rK_xEzgQ!g>gwAI5FuiMj>p7^C$BT0>M7*B$hV4>ym^71|A zBLZu+e6DJ=&CT+&Z7VwF`*AeDrq|4?nMJ-iULHsWd;!mx9tW@EHgdK>_dFYdJJf&1 zLs==AjF_|ZEYAvayvnlSK)e9VMFWrmxE88JThV&70WxeeZF6v435xlT@sP5e;jMvO z-4$WS{oM>q(|v>Ms*>0%!rM?j=!e8{7v~*|eqr|~@00Hyzmd2gcl(kAPxIPlI2tJh z5=*27cQbfc0Wb?{W;@e^{F?#0$(?)mE6?AjZ)UrM)WcMAugotUVXtGUCb zN4N{ygO&S!%eu=ow%l!=pM4K2M9PtugZyUs#_8Gu!&h3{!d}|5iiUwr!hX0DZbWWl zZSW0@5TPOU3ca=uu^MC&h21iu?o?6|)|BnH_SB-=s4QFnp9XQ!@*XI$Hs4pi-D1l9 zCx$}jz!kBbSqE48QL4OKbP1QYoG(d{C6wCc!IdZi{lEeeU7Dg4Gh#m~d{O*^T>|;= zFnkUBhDGKXS{zpq2zwC_{_cFKzFPN8^aHObDyFDwWRnHJ5IP0h>&{P7%3nR8scztZ z2b7^O{G$9o+f2;{NDW8P5R0_Fh-x-Ee&{^37PT|qtIkL} zB+|h#;DBfws*P9ECZpx;1&9Oy5fr&8oI)N7_3^C&J^X=i3!Izuxxh36@?|9sIDXdi zq^Mb$;unE~=zG=|1{eY5^ECc5+7cGxwK$w-#Oq2ZygKy-+=A?Jz2IXO5E=9%Rx)!8 zX5eRF8+;>j7Ji%hFlUm^sBUO_mhcPoBCd(J@xKz_rZ+|h>r`T{T3_jzioAi6h$~)b z%%dI*>l4D8q$b zejRne{qW;zN%oe$7Oba+C)q6gDS8~)m*`|*o#KU`KwhIaQGfh2vMs2abHm-KS!|QX zn&^GCy2ps!$m=+3zF&gVQtZe@yKw2vJ-2{ZG|D<4Jz*q z>I(W5d8u)_(5rU~<7QW4*agd&o)y7tm+M|u4MmLy<2fFB{wHF!oA%pntUDT9;=f5= zu53ttr~dD@bk0O3x>Uh*>zWErGp|nX-_SGoA6jU;BS@^CE#~6i(d2L!m3gM`d<)HI zN`Ihv_*?j^;PDzA@W%hOo`LM3wnp2g@HV~Cv>EoXX&2FR1gcu6Ldkw7dV(myDF!;` zJW2!ZCi*8jlDb{MirOs`R$-m<0W@8RxdF}iVPyt0P=Yl+I zjbRI+k+9GAvR;SJS`9VTVn-d|Bm8vQ0Cp6{O%@LHO=N+C5g-2R1oMUpIECsAO@ zXwwDE;V*C_5ec%O`KD->eYT~tK{31GZ#7&fuTT+qxnfVcHue*?!x-2%cnN+m?_=WD z>=^k#SF1RYLa=djNtC{6!q;~5!1bD@E{k&t(i63kMDzJPu^F}+_ruOqp732CVu1x< zo>-8i)yDRxJfnMkaAJzr8)D1I3XW{SO)EV`Z2*Ds-pVs?cN8a_CChzX#XX?X&C9 zxvgp)V1brnwx|ml1C?UgB6qZK{Au({ozCnlLxz1& z_h}QvZTjCd4bgQ!V0DF&;Y~zLCV+`P$<_H%{3dTTKL`#)o3R;ug1;NziLc=&qIIGT zxCIgbH(?nl*D@d?IL=?Cn$g_6uFyBoDOX)$z*Cy6VpSyuY7BtN61hop-XN$j=@J7j zxs(xZ(3i1AUd{b<9;-JQ_5;$<-#LA;ZLVR9$o#UT-RKcF ztSEELu0{5N7qHD8|5=ozE-noTT+e*3{z~qH(kdnv5*KOa$TGFAy@@p-AF&-NT3!_S zcWFb0X$Eie|KxV&UIs^yE@ZviUj6F2bxo($@7pYdO^6nxAK4@# z&|Ny8hGm%&^ftH*o`KfD82qhF{QTw1>vC((Tm>7lELIkWP7KK#V-R|lr-c>NTsA z651HVEP4TQ69WhdFngSQzQinyTjs&*-ru9)H^*GWr8wBDzZAAf-wIDDDD+$l*n@5Y z{_(>!Ii-hV);i7^elv8)t&T8Kery2bgW7vwXW~9|USy3Q77)lih)D#c<|UM5eB$E< zbVHBSDu>5biXm(*&yZjhi;><|#h#@F*8`qFSEe>2JC^EHQ>ibYt%w`p?jK?URX=Lk zsjxZgC-@9M81R=aUq=X6Yv?-7Jr@cD!(JwgYYJPgJPHB@F4r{GQbwGovH~9 zZdIbN3aMpB75Y+ygNNmhV~KXkVY>sa zhif`bW#`pj=rAnfl+`6yCEqrFZ0z0jvIfrTXY+VRLCI89&gR*7MX|(N=$rtSGxet$ z7DZ9rVAnV?&ietp?7L{c#O7Wo6m_6HU$H4tV(rIx>lzbq6ZwMv0YdW^y0U^!8|p<~ zNPi9Mh*EG5S`ocQNiEJdTEJZwIqPSln2cxPuizuPFN@=tC#s`7A76#Wy4vIw?`x|S&8H(W>l+6~XsoW6whJ=87|82itX$=GheMCGNO&o~JFGmem0g;# zLpibTci5o)25lX~_gW_nl_R$YTjeF^)518pY@LJ7rzYMY&X5uFNx^NeHRUhlM#^(M z2g~m#x8v5}2PCI(p?|Nc7N#rI2K)tQcs=-5`*W7E;vhjEUPef|Q$klLJh03f>y&%k z8&-3UCXc=$+xW5suk15!`^r=epK%$&$I~Nt==5!a%kBcLX?L?`*TQM7h|(|GzvaGq z8T2~a*foSP`ST}jRj6sINflY`cSFsy?cgZEiwVyTEybYX`L%aTf-8cH8hwI;6m#_R zOAQZNNa`^Y+03Wucv16|F~ET7Sm{(VVUD#BYjBIkh{8ikT5=qD1C31{9M2sd{e&at zj!l*LM&4?YGrAc>mNO^R(RUMI$?lTJmTcQDn`0(kSRht}4G}&Qi2^rxgzpIR@G?+< zf3bwr2fb(ORh#nbKD26jSPvmJ>pAOPLmdohPZzYX^V6(YQ+}^KtGkyFt)ePyz1b2c z&@)c?Hy5Hgb;u`ewwa5}%)IZmxt^Xiq@<*4U8IoG9`V>d#*-Pg$|uED{{N5KtPdP> zjIr4`tuVl>i2^$MSL_{I*f`#}A||9OR%>&qG4gl%mE@L`4SNBHEf;6(j#3U$Qrh2L zY4X@>SoM3|x}b&-!-h`3-O5+2n+*L8{=LGGSjN7|BD$ zgdZoA^DO-xjuYO9gY81Ebrz)&o6K-e!}RKm+$jB=)ppD5b`ekUDwNrg5j5U)G(KS{&j>mEp(k?H!>##`kFmoS6CFrN6dRC}O zbhoGhFD|uRINb)kB=X{^o&HWKAqw(g<*;CQ`Wf*XUySy^2f$iDhEen1TG!+}B~D|I z;6^0i`CX0e7UDUUBTp0{cQO6&2<~LIIcstWN4n?jk!Ek*l>{>A{-l~rL?<7~OGn~`tZu13}&SFjIQNS;q# zLA!rxtK~?c?Deon#4Hz3sWbG$W`bQ)BMWab%%sE`8vcg;SWL)Z$f?( zD_~QCB5p%g8S)MLl+?u*#4MzYiy=C(4k95{{AJ|3sCgbAZH4B=8lDc{y_Xx5lf%eD zBqpe=ST@p~0qaXaksn_qE{D4ca`mc@)F;9~%7bRMF>aGjX3Z)l0NA6L`%JMfJ zjSVXi08Zi^C`ZbyZ%P}93~MBB~hK46KT5q%Rr0M3fE%mPbJ zhZX7E9sXtYHwldwG?-}X7(WV!a)=&5_g%Gy2#?&oNC0sgurDqTIaQaMK}r5WUq_xr zAD|0Woz0J|3?+PUChk)a>G-vdO>hWrd=vGl_XcWb)F=I&df~)L#21ew0>!70=ja?7 zAwGwMiQk~x$T{d79G>sd7}sCv?MorEHix1*OpVV#7_JI^hpxfV;`&r)O=`w{5ylI~ zLvVr@FLqxvYXG&IW-Ych=Ef5j1&>7YHLm3(G=z0Os$NT<3cFX-*l8ay)u5wV;`h7y zsKHZ3zpnXFY2rBiz2GrCzWkOTfGy}_Gtw;$a&_%e#cu>J1c`WoI1~SS5)lv&DpJ$A$> z&L@X~R9zX}q@6;Po zai+@2vb}qYL66)(1;YhP`{PbC(>BZYd)0o~@I}5FZN%e6gG%JHOpm%1$}I~61f|3f zE?*E^`j19~jfKtPXVahHg}CElPNhw4;Bb2>%g4{v&gf3$u-FH(7kWUUf?8tjOd#}m zI$6y#;Em^!KozHd-OI(cunAx@od9a1p4n#EpDcAS2W*virPv;uN5opg!;V2yVxc%u zWS(-yOViH>8^^neEtPqG4#6Yq!c1G!7UX<0c~n1zewgmKEYs(+(6L%;x*66Ii< z=%D{ztzadt$Q|A(E^RES$kBJ|t1pOV928ptgQDN%-$OValui;O`x2!7SD@q_@mFTsYR-_)9Yw}C?V*NK~ZH+4nrsAvY zn<>1NPt;C$PAWf(Xsp^F{{Uvr|EBvNh+$?3p3w#r?m)JqP#Ou&JxB}fn z)S``OAo5S#g@PUN$=!oRa3Ly3wnep5cukL+dXuy}FV9|a_|9I9-NRK$rDXr8$snB& zw%69MP0kMrJj!J9VT!7Z_N0cgjZtNu-_&M{nxS~aTH1-4ktM?2K~KXZ>W3;>A-if% zMxL)=SNEbyqyg!rxvn@M$iQ}0tpn$e#!pi`V9L8Ob|hxD^jU{q`*zTh?0^*AhG`80 zBR>1vo|kv~zN=Dqmg8HHVyq8!ATJYJtVeZrHC(ihbTcPgb#^@!l9>Icp0bIc+z9S zliY@#YE5)nZ?F|(k*|oCp_`cJmEU3WVVUq`uUHOl6$*}FGr|Xzc+G~e2(k;l0$u}q zkSOxYI7z6lzj3Q_6hrL&7%Em9HxX?e2@O!w};k8S#3C=bg=Ia zQ7l;n!{}d30JoF>Fa!Ud$1)Qv(Tva*tKd>}gj5zAi>bJl zSRJQ{F?0bbhVOw>#T1kN+_mr;WI4hVi-2k1WYz?8{g77vw#tE4YR@;cf!^wHqjD8rjdF{W6E4lvBM?gCgdz9WN1T5xAD%1A(racG9_X1Y4i$u7j4sLWI=6f$@}ONlx0@jX3KgL zmk_+sb}Q+Lze4}9VdeDn?d<~34ueSXX7VK(Bn}myMRxOMDxjd<}BnI4XhqqjB1=G`<&jrQ^B zD)|+*duAuEVtJ(HU<0Rld8jslhPvdBh5<=Nb0?xzTR|O)DlX zeg{4`e`9W7B`i}h9SBeo(m|*dle_6igQ{>H_*=n`d~VKSWz0HN^=;A?y<>T9UbU(l zRT{*$&|Y4cd*G`AV zfE#QV)p~<_>h;b4xpM73!1~yz_;^8r$3yRT5wTg5ZhPXRIBj0v?OrlUEaw!!~1D0QK!O%3Hv@Kcx90bUaWgb5lVKc{_}@>{=7)5uCu#gw|9<%{(YQt=H|uH*ZH z)86yzWKqWP4>S%ZTsJkT%g{J$e5s;5uv-1OWt7)K!UEVQzV7~W(2fZjM)Y2_xnB29MN{McudE?iNvL0Liji&2R1hS(k0TZYJ~7#bljB}b(4yfEOk1do8r z*Cf#8s|I$bU!!d=Sh=%SDJDk+OE^+yn8q>N zQaq4;#^i6Q#{WZIiwQ*Cj%ViCL`b0QjI%{fVy1~DiY1H7F@F-qB$EI92 zf3yK_JZv7S;jhPMt*~s*pRiQ-cq?xg{RqeT4l_E^-9!VrDST_9RGH;^PnS%uf{zhV zNEpJ$ju0y3UED-k#t5jAOI+h>KN?xr0x_go}}U*h>~e zKkyR^vk?^AmUF;ANU0{mG1ohAf$3gOoB8Lilk#V)ZW68%0D~}Z$tFyMxk$Vu3!&8z zlWg%3hR*n{VGMH?vt7vv=oXQxaNHaBJyecIB?hd+JS6vttf93jC!8Y5UwAj{mSENL zB>s2lj==E7|FA&GES4w>lI+LYYAoz6)w;uet9B%END=yh*oVC%;$`=-cv68FR&mX^ z=eWFiqFLnq8Y6`-F@vB_p)Iu=bvsgWso`WN5+QkjQHf;oNuH6HhNB^|U6ey|$@kc0 z><(5)awK1{t5}F+HCilFCQi|B=x2CNprvHFjO^BJNv>+BSZH)UxQy&T<|D177V#Tv zA|ZGHS!O;gzpf`wGDI$hRm2sNZt|s@j?dFXb?r(;>BxO>3$%ocHm?kEQl}4P4w%&Ofz%P4EiqjXobwA8vkZuju}1|CIsAOv|F-GB%(TOv*e zokxeH4tQoVr|5KyviXREso5!04W}#Nk5M;#hCI^vEq65yNe)dn>RF*bY*wKlXtE7Z zQ-5calFrE3SMq>sA9n*@Ac+;L=Wc8cNeahr!clnDqKDd>S)ZXO@geeBVO7JiprsWn zZSIy$TbwPIaU4DFwiz{FQ}MH29e)qW5&uNbBsz_0I;7#3$#bMdx;68Lzch}B%jO1I zeNB~Fo?mm9d?pCb_+1iIv|5@-N?QYqaomniSF6&vrU z?9e1#8C+K2!=e13*UoY7RSZ9sayd)qV7afc`>77efXjg0rc_d51v!8($XUreT))gi zDg}9ga#r+Wi(BiB+>ch2tiiyPF zto1<#arGf}T00V(E7p0d4arRc( zJY3L>^xnxFZpg!C#3#iiST1%#JnCk<$jypdc|)r`-oiXC{JMg;qQ6UG_n zMK7```bWe&C1=GCO*gV+y`K4{9fz~8`r2`Qv(ufebGFgH>d4%p7dfKm#Vy!={Q|99 z#VCHAcS`y$ue&YBaJKMe(@5TJi5UM!K9<~($Vu)>u1h3%g%2-iEO`fhQ*uwT1-~!Z zCsmMa!w*Qe;^oHbPN}fKoO)rqABG%Uk95lBGd8-2G?T)!G=AirWu&&sc z2ewKnewlAAHbrC>D|2yUb0ZFGzwNo4x-OF_Pv%$a8HQ}=E5w&|Jt=#lUR8kmJQQEVm1hK+ z+FI*kvBgFBv$E-IEhihd8D~n>UH>=Y<2X!|KmcJTqe`#fpTr8f`W@VGdFfj*LW~+7 zqHhV@Pwy&$7)#t&$1QhnvX<#ZSgK1uiXY-~1CDlZ@B(+Qq{W351ql^p7WQVRd~(hH z%oL+GvXs6c3vS;&!brN4IHY(&(NCV{_^i3EejsOSvYoNMv3yE#UI2@qsNB5N& znU9oy$%M`MHmG^fScva#U170poqt;^z>*%qIztRP6m^B@2rvN0$=(v#G707{Igcfh zT$v)VaAYETn0bM|lHt;pNp2SL(C>jpwQ<$cXb71>#z}I?i&*)z8g7e`BnkQNd| z>&Xk+k2mjqtsqvMe5RG*h1_DlP1*ObdVDv>>rE zt01g(Af|Att4`J3YeD7-7ysa;EPH%VDkY~V&a6uR_2hu`9NIcFOM2jYV&`m(*;~k# z8FzdWxl-CRV^Pdh-4VA!x{(YQUo)umV40`Ic5*)`obfo&K4pb29+wv28d`7sW@5kT zpHb7LhO)<^AIr+z@@?POA(d_3X9Eef1-6&H@x&D-L0O9>S>oG>2J{$MJY(eOnYT-; z+i6d9H2rMZEuCXtPv@8CKG!~(doVIZ_fofuZx-bgIU(hWKh^p6jI@vpO7Zf(%h~e& zD{JTSR$AXw&BZgtA}J?jvh|ckL{;%vf}9=a8cW~SusF>3fI@}O&_|tBV3v2Anzv7peS3;#H{eRLMe!9Kd^OxD2vGS0))^WLNH&rgp*Sd0P zwnXWK@(t>JwLQMssog$Kh9wDwN?vX*j48!+eM#CEogK836wb<7Ox&B!ty1<@YAw~< zYW}w`wY7|M&PCt+Wn)}zkjPrtE;butRrtk^g#?V;%0E^HSsJI+F1Z?^W!z&3(tu?=uoED>*)+N938z!pcvJEXfLJ7&g+z2bz(RUxaH z#i9@vQxDY_7UhINf+pe9+RxY^F`+*Y~eaaX5Gco z<5Cj8Dk(G3EFO+eGAa&!k^WF}NwQyhS@KBomz0+rlU|XWl~N>0=pXVwX%sq<@+07V zg`R4Eg_TAGWrdk*z-{p!{GQa;=dXpN?o#9-`)iReq*Tce7!F^P^?|G6Q_*_N4zWV6 zh&_B-N*hXFO84SJ*dIR?b(?@)&es@6*NdlaVQf0rT zKcx>XyXCe;Xy}<3zI2ji`BQ@YOZ|=+>@@x={U_6uDapP|wPkm8ZkiwW+G04v^i__B z|4MS8bci9#L?fN+tPBFJWFYZM9Hx6STo7X^dnq=SS+w~Ye^zqlJ}kZ#Wo`49uIBp< zxq>id@#cNXRUu0U3)JH)fE+)^W2{T*^G!}sOVPhG3M5U&n4w8-;-)gXBqMi`k4A$j z>q?$t;7V3da1|%f(?7$i_GaA$&rG}N?t1eJW@;o|>MeVcJCT5t>yZ@FP4*V=f_(e^ zWcsALOy5b}Nx@e}-CtuY?<=#E=#Y+$uh?hRyCG}RufJZtvi^?pI+{iOBaN%XB_c#- zMeYEH(V_6v!dszi8B=ndc;k3LL_>8h+JI%hA*I)&1mg#BjlahIDbB zbN!jY^-1gFqx?&>*2bjE0wl4rt$xfHmEK&-B*&HVvbLgglPto-SoKqq^?#`pdEI8sV*9PKK!K)HC4J z7(iXz2#z_dWBl@`q9l!P#a5CAnSr#QLA9er49>3nKe@z(H_q_^vc}P8sPDvU&Z@!FuKdyTca!CV$Olmzjk! zZ(Bx_3;+&do>xqQeit>T(y*pEP|_+7k%UXy<-XFTK&UiGTCefY$g1iMlOBesc$?@% zj&LB7M(=XJ9ielPJ2SfE|IIvGZy1_v_(Ywfn-w#ZX3#qkYSQ>#gJE$zCcSKH5_*Tz7F6@`{iL3s|}YV-IJ{XUyM(HS7rBS z4DFJ$HSCr^w`6+LxZ%xNGVqP+e$Hp_!@(aDe}td3xJ3RynUKdzRsoSAMut|cH*$#B zO`%QfV6I>8GU{TQamaf4F0e?9XX-oL%iiAjyYW2LJ!xf+ni643bz)xrW;R*!m$ybQ z$K$t$Zo%gI{KOpor)(^5Jy*^?MiwCkGXn9;q;D9jQdQse5!S6ch_CRNs3&2&>@4(# zGbf9iU2PMb6#L>#J2^ERSL!sgMg|PxSE;Y{w3_mooP<0lt)|DI{Imwjd)Ib+Y+amE zto29tnQ(1|j>?wa1BoJHW%Ul3(sY{X?NP_+z!e8UNd82&Bk)yI6~PBSq`ZeSUg19V zXVxkvI?T5^PXfyif!nn9=Q+geiy{sbL zEdAA)k=||UAu0P?q*Csr&aBp~D0EKh?wS&H*DT54P(%PFNDav#yB(0WPfEmVqrGf7 z9hb>W-~E{Ju1@w|gDp0&hM97rBb14AO*LSJ5L;Ue3UpQzPB(&bnI3C#mN}RN-~K3$GO2POqH5 z2CQP!3^cQty?ezkfd{}7U6$#t)CA!Y!XUiD+>Q{SJEs1HyEAijzJ~9`<~5SnK+pV# z{FvM->o34r=mYRtzCzM6{|mSb{QwN)cfk+xClO=z3>J0viu4oc;r+Z0bRUy^g!JWO zqDLCf!u|l7;8Rcu`Ua?hqY@S9J#>yxOcdoO#5P%(*#=WN!CMQ*CFjIyP?taGWGaf1 zWH)Xo0;%KJ+Kk=db%f{ijkZN?KSQ4y{0-k|#hr$GXrK;sO8ic$0bLOjAQR}a7z6z9 zs!e)Pj91=Qs$*vr_l}24wTAp>VaX;5UJgn4>}NiE)VCSzW-LVb%vwQzr4QTa%rzw{ zz?|fzc%zo?Wl5u#i^XT2l1)Ll#A6lVaOH^U zQd2|YVCEOc!LkP`4bDu+4)`k0vw$Mh4Jk4kxgSWC`GXfFCl^cR4UxC$l32Mzb=;11 zlm30RR=(}Eevqf!Rh}_>X0aQf8)3)Ut8rQrj*H9;1>NOd5I-R%?m?o5JPdp&S?Q}q z&deIrxl6;Py_x?c>74PFQ{Z#+SkkV_PljKq^umsMnn#_>E$>{KvW&Ev|UG!4q!E%2fTNWn|24dwdND%N#5(4GQZ^sdIpGDhee3ckTh5{23FYA3` z&gW0Myzuud^DDYmdMQwBS=T$|ZyhIN1&|8g(@4pPH6q4|}q!&`b>-nk7oRL=7tC@h{cz0s8D*CJK)E!8=2jl5DGQ52?>_u7rF zyk1rh^aD|Kn{?Pp_L3>t5I_poh{=jCf%-uoiJ93S+H2y1-A4Ve1he$boVK(Rb26E? zbWp2{_M}LgoQDY!+KU$heiD15uS(aP2Md?$oGb1tp+#->j$^%~a9NVUWsQ7s67*(0 zM?F^B3Q>(!^u8ot)B%qejG z9&xToNqL!{Qgauy1~@IdB30cB>iXc zjC?D&8~h{spczS0n#mV$2T4pEMTBRm6eWMFtq`w+#K2mRjK+%NT!%Z)S@j2PHG7dd z67r^DrP&13;cGc{0QXx%yQ06wyIHNJM(mBAcOQqWr=@a5(W;QUDNfN#qGo(&=$o>0 zZFkWWM&k)PFk`WGL8cBK*%lT)QZwOM^$N#Pbpn=05Q8p@rFq)dFM>W~&mT4CXYJRshf5$=k~b6q6-I;EJRfb|o1^a|N(h2i34e#AtG#Vva0hx5DD$lOF z$^nO#S86WeZ?FqYs4dWHrTUF(lIaqo&Csw!FrOFK9h9zm)a+1Wv86)3Me010T-WLG zJM>XauE$Q51<&Q-TRb~VFq}l=+{vt|J%GgTG_4ttN7D4KIyPeGiqHFr#rvWC(qqH` z%zmPW&Q>bSzXF_+UIPDx)#RvI9R+;m%x7Ol^mZ;{TQG|)-Up;vu}KH$e>?8DNvzKZ zPqYm=HS3x)@;wZKUuc>I3+GQuuL3j94I$p0zdQLELai%c$joiP(*!L&SbGin5Bdub zZSwTaJJyQAUC%YVGzeC+bGr#X0otZwy{iMNquNq`bJK!80_UN-(2c|&@Ixm?XeQms zXH|Nvx^?{Nl3iR%ZeBfxyf^hTbPqI?@37in74G~L`UgA*2_{>6hVxrl!eUYuZT2(x zUEVPNQ2G;GYOb06NAJBeGia6wtUWgM)bcxcU#bpWO%WM+Ha?R&&VH7!)k!W{DA0ve zq0{0|ZAATcMx{m{;gI2%xQD^x%A1)V!*sKixMZUvE@xm2s1M$B|B#)<*M{CoRe{$@ z*P?ZWOal%vG3_g41>(UA>B|Vsm}C6pq_$!uc!R`5K2UbKDOJr5Iq?Mpn_wR*34L@d6ae4ZB=6V zK#&u_fIf?{><>BqW}$A`+PB?tyw<|y{9y11;v~P0*vo&4d2ExCc2{8026qb$d54DP zM5Y<+Cc7gE0qL^)lDiTgnK^6=$AW3#KKttOzLWyG8*h1mCa2qEIQn~yBik#MsYz&pA&j2J*a_>CGu)83NDtj;CN`h>^!F`*ErKSF)WAtmujGAG49sDZZ9swc}Evm&A`q)}EVH%Wkq4Land|$xkhM?FlM(y0UQ@(6;F)z_jrY-6Xb2<6iWT(r1l5 z<&gi1*+jrnnj15!O(^OsR1#j!o~n&DHlS{vvz4ORiFw-MEFdY*Nvb0*PTFE#!57P# zg=t(TqI@kSj{l~d~W`E4y&uy1^a@W~d_H16I&YD@W#-PJRg(u{{jM)=$unZ&e zYs)nIBr?nW6ys`6Gq2T&q#V_C0sX~|P?~cGz9=M+=VT_#a{{l<`ieWDd$Y%77bxGY z)79<4E#04Ioxyr&NB0_#El!s5?POY=Re!Y9LcTb6%U`VjZ5G?MbzOLtH2rP&B`OSHy0dDtI>Kx(ZDzRm%c^%uIM`F zF1zolIXd~YweTwGH<_AmE|!;Jo;~YgovmbkQr0VvwC~l4vHv0)6_1JiQqED{d#qKV zC0*Cr0yIcYq6>0|85rnhgpsc#NRk6GFew9)9S|&Sjek<*j@g#>#jeCmL33xH#`Ph) zphMEK`O2w-@_o|1P#3a4vckg6_W?emFpHSut7=-9b_Cij51z}O+zDKiFRR394@VVQ zm@zjwoq?EhhXGd(&M+)Qi6_=ePAQG6iCga_Q5>W1W2V8*P%M<2Su$6!$$^)-<4d47Cw>s;$VBP!=u&-!3G^`8WhtoYRboV+5bSwz&j=s5|e*^m)^b96~c90qP7%msIyd*RxJc7;SWay{c2jL^{LCbH%-eI${7@%DwWN!X8+N%c^r72nQsi^VWb)mrKcM&%a3-2^W~Qavx9=0rfQF>g_A3 z4ctpnTOwckU(*m;tF+!uoS!$786W{5S$+sHB=Trh#YGv)!3LP@qO+v)hWZ+ok%#mh zfO8Ux{5TQ-xyhFVt|lcWhGVm%Yzv%aSCQ}HsL(y^#26DqNfIr4COI%a-SJanF8qh> zY4?Eq6C^IkkVSxA?$0!O;_YBBc|2$V`^$)k72+pzg;^4`=#?c236Z^*kPD*qSVf(2 zSs@t$v#g?2hXVELC|RVOuAtXuTG%7;vTX3Mkz-RzqHhh&Ynx-LoB_W^V$|~U;!Af% zH1jWY7k~~(4(Noiu66$%kw>~#xxM@o z`JZS&wrM&QDviJib{FRWTjmtmbxt`Eo3yTmER(rQVYCDwh_}sLpI$$GU@iwS6Su{_ zuD=tLiyWG31&nnk^qxeY#TICuxZ2xIj(#vL@9H>&_d)|bJ2)^4g+OyfV4wi3?EQ>8~RYA-jreIZKtZP z7RU&^ox3_@V-dTlzEK#rjJ9SGOBj|NE@p`j8!jz;n)-OXWG%aGNPcIw9s1`gHM~{H zk^16yH4-S%E|wHxey>}g&oa5*)Ch>3N)wL*cayFL!1*1v=WLwf8sH7!a%hX-!}t<; zTCloRO+ZN<#08S(iy(ulr<` zcpg{_36W}~SUd;F0d8-lIEb${(dJufBC(jM7Kzg(KImxQb&N2fE-$IzsN1aYq<(Jt zYiDj)U+Eu@OSrXqH5P9@7{2q+BiT9khqg`)%Lz-2Klps{0pyNTdX;lSu2W+bYIDI; z4sDeoBMe(rr`-6aXzrsMmMN2%`G;|DpT(0VHDf^wtb@eWz+V+zAEtlmFz9uKyD+u z)n8h;#_O4*Qu?I8z1c3t((OmY+8koNpI(HB5FR+U961DGD6Q33ts`v+HH-6JQ#3Os19VU)Pu~M zc6r8Mp^b9zLuCj^UT*I-iT@6KBe?1UI+07-N6%iS?26SFLpOIspg(3 zP;rR(gV~$6%=iKl4thhk5EsBf9_$+15#({8%vLrq=OoimTtQ6!KW84H9-e0a%3(He z5*P*k$2y<1*pLLLfGp6fM%U;>lPPS8JVLUgOFc$a1@`&&Orp>r+}%^H$rn=Fq80+U zA~R?pFpYY`xfE7TO}kpP5yFyD5Jxyh79e|yB+CjIv-n%~s}nakJ_}xw{>{3ZxsP*H z86gNGHV2(`r=|&=KLFaagrdo6dYC$OkU5iuw`0|g}v6~r&$KaA`-L>3{X$Yoyl2Tf<0sy-q$JWm za$;l_{(3PxGF{sxovy3C_y_BFnRng)PcO;iNzv5doX5lrLMFDTydo`L`g^@M9u<5^ zH%)v?-=9@iZyMuM-583SS`X0B|A(-ooKT;@>owP+Ry&yE$JDA#SC>{{JnTljTZkjj z80d}?HU81JdeyJOOoV zB%qr~sZO86b}2Cnmv!!Rc%EdZhMU)3?=+<~?>sd#wADR1o=;K`xND75ad8^onaw>Ote+($I z*oRqPNso=nE^AICyix1-dxl%qzFf6(*-Gge_$as%u9u9635|cKBiu&h6m3enfqvDa zL--`?QPDV~G4fZ>LfLBgt879%3Qvir;kx2wO@_6EJOldW;P4|2fvR8OKJi=R z3qTt(f|So6mJ6LK!`Jat*{IhiCH<07B1{4$R6^&0FJQ#1HuA&5*U`N*~_DJwe$S1JN;0(TG+{` zZ{8%9!aLx8W{u-pomaq0i44xkv?QDfuAP4aUPt$)t&$+{78-z^F+E#jOuoU@WgV?H zW_f8LsYx+YIS*ZN&X1vs(k<`>(F&V3{o^9o5sPkwZ-D~zugZCYL|1LAo4KphxOS8I z33iqmYMP&mx8Q9#`=klUuBqwsE6pxEe~V3d(^OEc5HD`Z>gCKZZ)3TvR~yuO4rLHa*l z2DPG1C~7Ss+gB@7FgaP;8~uv;7@DP}O$63zHt1(#R|Ho3AvZt0Ta_JVZN(I&n7=T6 z;o&@3+;pnmtL|9Y8qH(siXbFxo3oFV8uAqGK-0>!Gt_lh*mSS|LQx3@-hmLItw;n; z9bP;525mKMD^aTRAt|Fo;y>sYtSb90wS;i+n!&A-PcU11GB`N*FT5AAhxXJO!5WAs zXaeu6Wq^BYhtPkO-}TS4v=BNtfNtWLrnh72v{q}qrO=_zurY8(-7I{K$0c>s@YCu( z=_9I3!VV*Lax7vQ^`Dt$|BE1I>!_bUbPV~2a(VlVbBJHF)6=ZOFCsqBDdYxz*CIez zoTg!l$#V5sA1n{PiL6AOf#qSUai;}!LRY_tWKrXbLPcpnE61-^6OJ{m)j?M7CxZTw{tp!R+{GM-4R(8nJf8Q1J+wBY z^rbr@Mc@yF8|!Qmo~EL?(SxT*=A2DEY#IOuBVQ0)fu*aX$}Gx3TER^Pyb{%9BdyD6 z_7*(>7|r>P4?%m?FKC4$!Eh2B2!BNcU^{3mjYGIlo;(5(vIkj74o1=xh>gJEeDkfU zK1e*Ej%Gt_pb6B(>EKKVgR(S;4|xWCaIUeoktS#(*{WJaHYK>HjE4z*SV9G0;X&VC zB;xPnh!)#~E>~WnvtYZ7j-nRgJmkHhNhMuvI_JB9@BJHhs%~%W;vC}o3NqgiQ8O=rZ z{e#3Gd3fAClkoVx+PWl(?xfRI^^Mw3G6ei?Q88lxdaypa4Pei3ooeGPCJgbx!;YB9 z>jC@FNw5-rMqH(Ttu9|Gf^Ur99d|_eQfH5^ZiI-OKSNL-%E;9RCQ*b(b9`5 z&qnOT1*rSI|MR6^T`(fVnbSba&r6S^wUV!6Gaa8z|HD7@ zoQVILkr}r<^d)CRvJIMrZK_e}&bU7j0_OtKVq~*CQNBBFLE4RMl=mZBr5RJF&|QGL zMV`)A`YvfKdP07|X*-Xq=R$d=+g$t9d!W2J;&b<|7>MVXVC_(5YtW#sHP#-by-iPt za}m7=U4<%DD2Z3xzTzf5UieK~tc@CFuS4zw9Q1DOzd%CuRp}}DTR}emd&vV%yisDd zfn9sTYr=P4Cgyq50;U1ir+X2&fo7mjy>xYw+AbHrQ?2rP-15owk6i+OBdfFFww;?>9f_KDkT;{Z8LmbjLSI1` znL(J$*U)%LuR)vHE9Mt)8hH&)ARzJ%s8K76{7_bg-UdHGuOr&n(rhWd6#W2=mb?HD z!4mvCNDC4pzd$S$s6J6BO|3(Z!KDfyYG>GAHB+b=okOBIU5R*?g{mD@&sbSSAf0El zxO60lk>Fa!@L28Cowuk+m-Z0-1Im%dD1h8Sm$_~XTxEHmn@i73e^+W~#3kGIK8Jrm zjS6!J2aE{H8d4${x^J8;$;X0>=;HL1(HG#Dw0xd(b&k6`r&jNL<|`BntH35|UohD# zBb`x`ve?h$SZC$h9Lh0OAMHq-K5PSx4t|BH*83#7_D<0H!XWkKB@1{@D*+u2G|z1u z5Syqta*Ozp>!Pu)XAocLFFJy{Lyo`-^ai4;7|a+U8ZxVKRMIExDRx2F3F}DkKg1gD zoBJm=MiRirthMNcV10U{;5mZA7q>2AwP zx`auxCx}m~v~fq`;*3htW#Cp7{rY@uF4?6HFl|U~1kdJ<#2e>Z^wjzo?#w zB*3w71$9MLts3fgfR>>9)_RaGirJ!jw>i{dbI*W>r5+E3J!efC3}1HiCuIQn5KXFQ zY|*p4Ej}+30JC>eVq(5`xLMkmV*(7&Fj8DQud$BzDgxNapTn-4|)Dvzm(XG?l;n0D<}XbULA_yEAmz7tlFsrBd0kt(@n8EGA&UL2~KPyp;o^aDxuYC-y=4o+;A4M5v zi+r#e4=s7v!C`xJ3h=~ZrtBTJ=RTcWDYtWWN)RWV;uUIs&#_XBg1gcBP{ZQ)W)zd{ z`OBJ5VhPx_MeXc>{@n(Q_Bhql+#+N%=z7^9TJlWZ1TYl(5ss6Rnz zj7q8yAi0VPWZY9b>6_~+->j@N_PxQ+{I$E(t!<_kV&lA~Ai3Och5huF#r_^{$^Fh@ zjK|i`1U(TQ1gR^H@~`cIZ8MxJ2_IcyykPM_;Ah?fM~;$v!_0fp-^RreH+rA;4mI?P zmln?kHrZV-Y-k=e@JGAh<6!huyYzzp5-EOtaaM%h-O{P{6W|z}oc~@gNcm>|v~*0` zgha)5>xE^!(HIT$u(-}Y82?un?Ymz#5ne&S5Sm1H(tL8izK(z~rB+ov(9mGzk$ z%-U!PrDm*HwX~QnY&}*1B*-_(Bhk&k3DhEzs__MPv*4N;2l`{#%5+j$hHQaK=X;EQ zlV6k!^aoWx&F^wjvDiyw%$~>2=Wb_ zMJmu@#ZLHdlZHcJ;Tb0AxuGXi(SVjKQez&NbzmPVFBuVANsvV-iX8Kn=mc5AdH)jL zQYS;Yt+Oi{(H0a!ii-C8T_Cxr?n~7mUx#bZK*a-8fwZGH;UGo0B0kEb)roX6PMen8 zSranm>~7*pJFXpEv|ndGdrrBA4gx#Pdiw_O12I~z-(GNn~ONca;I*?M3_Q4g$en$2Rc}U%9 z#`5@yDkJUPG@zqf1!?Q10-n%OL>KvudO*w3)^2@TOVLl#E%$7GMr~K24v)`oFsb(2 z9%g14NY%G2(d+kh?74nJj%DlcBm<=tf&y&79IxqLSQf6_J|D1Gx6|Q8^#d6RT@7LrV#*V2(iMAAAzTILNq-c3pyMD( zaV}*|Oj-Zy04u(InE^3THHk(?traXM}m64CO);QH{zDs(n zDbyc@CZ)F;2;5g;hnilC2=k9)Zv<#W9s!f`{m^7now# zB5FDOZLCfb=&6!xrF|^A!hdb@st6y9x~b6pQ`(@lqr$FwS6n!H4DHIHL>JmWZOfcW znm>c?uZ}f>hGsa8flqC4PDO#Ang^WBQe9I|dH<^kZRn-bB)%1Ibx)_9XN>>ijX|TVQ2+X zS=?u8lcn5q8Qdm+lkk7?vadj~8u=mpDD)_K>|Lx+@Kk4is*dH^^FL=?fi9s99XC_% zn#_iE7p8lppywdeQ-iZKT3|Ac{FJUi;q`%(#()bjOEtk<7ZKjBv2P4EMQ za&%wX1{lHrk$0A#VnTQnE=G;rCH5D=uhxsxmxkUNRCc>vsm&81YL$SUwZTL8(KhrAy(QiaV+2(x?xJGhLHLNyI=j7w8}fH>w-}rsGA%k)xSH6c zs8v`%x6xN_kI)Q%sq!PgmD+Zd+w2R2A9Kr7Leu6_ZiPHUU-K@*Et$U{8*o`-W&b@w zbLKs#pU_w0q44jSyJ|5=H(IB74L7M5n7nLp%kd@`s2tLMiS9x);53J3J-Wvc-iz`P zwQ1~4R;|q@oQ=1VRipYVxTE=G-A`PxMQ?lefv((1dEPQ4y~lp@p=3@qFR^M*mgLadk`JxTG%ht(i$oIOT|i#H%g5 zFzJ7t6?0;VKZBAp_8i7R+S(9QYOxfnr z;c(8!-g%*6b#r)UB1nXrvp!&aE2q^jgq=?Mlv$;Pbu3Iem+{!fPU*gPHtC(PNB2Wp z8{=;L17ut8MO9N|zHWQ(L&O4c!Ts@9xBTnz&EqQ0)qa)dT);~tNOpDbg6nVP;6S>q zzM@@mW$;D(3uH~+jVf|(t3p>nMZ8lVBda|e6EnFxX?56k>`d`z$-8+m7zvwY#zCx_ z1Y{14t%1;FM4Ld<-H~-lt0TL^)6B6c*T$w(kXg@mujG$wy@?4;vB})1BPl*(^NQ|` z^e6zZQ{j#*R*f+^OO}K} z*_ss(xP0W82tn_|%ZAQzxE`)w6Y?Bwk;^Oq$m1TIlPPw$W z1b%>}Mb8eBD$kom<^Y8|td;S%(*S?(TqExBrEeR@MbE=Bib!l`$XmZ#E`V=Z(mCw$ z$ZzqP45t43_zbnmnuJ;fFTi?Ehsb{8msDoj+!Q#^(Go89JZLZ40h( z>4>U`PBhJBu8La$?vbH!OCeg_ZP|U9W1V{IYn3WSe?g(6r@Fgt?bMUWZMkWR3ixX= z?*A`tU$lL!?9&Sk^=}G_-&`#)wn;Trj~smIDl`6IW0v?ey@x!a{$4p-^x4RqqCqe% zYZlRSUbPJ9KMFG-Xye{9&bz$!WT1A6z06m$e|S3C$B)K526Moh^DAp_68RSq_l~`=Z z(o&e!WR5YEb*tIMPA=x%T}$FL&Bpl4V10uXO#P6OEYtNe>^56ZcSlozXCD&hLb6O! zvW*Cv$IWp}g+hkakHRj=#?pGkQczqRwzwwiTiU~zM-)bEf$#?LKDbc$+qa6f$m5rc zQhf?+C=0W^L$s!3#QG&FTB5W{47WSaviCbjXu64XU2YcHiSDLHcb1p^DEQHy8t@01QAOa)(I5qc2Hadz~}&7JZx!O`P(sZ5Jc0L+Mx z1bYA1zz{*5V1wWIKP4QA z?bkGAZ(^97w#ip`C&+GO_;N6{LCEYwfr2=&Q&%w*1ovmJ@s|MfcvMo9y+|x-~WjXe?My}lf?#2_mkg~_26knn9YGF2U zMc$5l9I_bIvet#eabx}pz14#h>)-GX^gSBj@X#lReZU|H^Nhb=638;J&-PfYw@u}Y z;o7iQ8lMu3Y#KFu+fFC*S1QMPG4L69nHF5&sV=CcSJ4kkNI(#47q1TQrrxMaO#kLX z)FRuK*|^lja5V;xFV;h@*q5l9Cw{b9C7N$PTdHqeK|=F}QDuc0&%ccgjy`#M4YIAz}c_)PTZ2*?Pbug(tbDW}=usis6 z*{HptLQAo^S7g5|LZ+vuaI@`Z-7~A#j&(93+zOA&_9og#KgPZ)-r?EX5aOHfpJ+iq zG^%Io5(-W^>X0WKH41-lY>?JKz z*fDmKF4@wNPe_@eR}vwxnf}CK(U?LuNdl*sdhZ z+1dmo>sTk>@QIGO7D_H3=Z_?3LL=E!>5}AcF+5-o&00EAf1#FW9>sO4bIeUOONDh% zbLyfxErZJ;XG5~!Pr3`n?gNvuI{6~yT6r$qtjr6(p8DGLU$VK4t&wksKYLNWeq=eY z#WI0i1sFy$G10*1Di@|}-)L)4|Pp zFELZhR%r0x3o$FP2JT!zBwoy^n%b0mJIYh#rNv{5FPvS?; z%V1+)Xu)=Z>}A4Cg{4C3)EaP%a1b39QWUo{sAkjDm!5}8h+av(5`a6*E?924F?<`o+o|Hi>(;a-Jg5Qw2g0@I@^ftny}Bv zOE52NBC8u!zL%|JjTvNNZx;SEJ*)iFs$SaP@KCe0>_u-6Jeu!epKsI)2cYd`CEY`O z=f+URq9|3DL1~|MKMX({AeMh;m!tV<--kI_amt0=VYh=-ds5sjZ1nxr`z~oVryZw7 z`>&UtskzRT2K&^VtsjnXtI{wy*!+!jn9-dKa(VgV@Y#S=)2sf??7Xab?4QE3#DBR~ z-hGlYpruJ?&X=*H=;yJH97FHZAhkMqKEd=HnrkkKj!#^Le{LJy;ba&XR-IB4dard> zI_pZ#;YE&dlH}xgjoE5Jb?7)}2uYSNDmIUg3!APkqL$~FYhAKu2!K?2zyOV*7(mu? z)&$~n--%{L^q?xI?gAl0*Oelw(c>C$1ZP$IqjQ^Wf@1UHgne+Yw%p_dl#Vi^Fgk?| z3z3xtxUdP$%v=Hct*N0-yGfQs4C<-yOB$h9bGN#brMR~E#cGvX0kYkbtF;-K&;(vx`qN^(UbsKSuYrKlSm1Ddf12@2Xg1#CAJqrT zVVjx=X4n~x!fK(Kqnl>oK|zV45;d^0%$udnB|dcTrQFOBCs<=c6eouQ%^$a|E!o*Q z%u(hp@gLM^FL)`C2zPZJhSdhD2?_0UEWkL&vs&Thb`PBsiJVR?YEUdv7b$8K&FZYw zF0?u+DQ;(NCz=?CQdR9Iv4*0ggj>$3wqWW~8ZK|2hGEe=broZ;oP9bhR~GA$$$sr^ zrY-|Jkr(I&Uvkw}^V67o{2|H*UHZUV)Xgf|^`Op+T$P|H-;37UsBz6_WB&Pa9p1N` z^SbQ&vc0|e1A5!!v1($-SM){uJ2b%M8UB5qM%ry!AUl(EFfYKqT&o~yN5p@2dFqI- zj`c588@a|Kvz_s`(wQn=g|EwWOTU%9k22ArHW!l})E-spBLvws`?Z*p9;NLubuReb ze8Yy^_!1j)UP0$FbZzD^#VJZ%Vaiid+)5m&T1O{FPa2p<7nx$>dR^`yN6H(ul)^lK zTVAsrN9NVS{4BNcIjnmD>d{Gr{bl`g=T$pgYuwk>#wf1Ya1_7tH`BKIMR-ZM!(ON8 zE!O+%UV9Z_*EHvFn(_=;EeaXxVtYU}Bc{*C7MTZc4z93nRDzL+cNncGghN%oVYY%Bgl_wNO;EiFOl7w?6 zJp?P$9Bv?@iAF54A}XPZxP7vlW*C$t-AB_v_tUbu(S|p5cY2-44%c8Lu~psMPgx%G zU7CE-cZ1Px8W-4~RbxEB~NPPV1v}$`jLS_Ro}7czQW%@>iCgNj2^~WJ+>Vvp(G{;4~-Y zah_|g$W(8u=jg_qv+PbXNZuUyzTFg6DSni*GBi8xesqh*KfixP0$5i3y`Z!#f~^r7 zt-js2&NQojWwKCjRa>&>bjYW4M1Y1_J<4*Ok52jkJ@3gnAoAv%y$|Nun*TzI_z`SNMqUlHnds zch4!gQ@kc@qw7l+#6NG1QCij09Q#d8iZO04Q}XF7Rx;u3@o{lnUHNW6Ubac~jn9H6 zt12xvB5g#}Y_6#J9&OKYYHO07Q(BkO?;$oH@LYro5Qz!P38I+Nn!JTY ziFe|$&gr}G?ewL7i;$Pbeud_(b$l_;nH&)DktM0JO0Uy>XD|cH{Xf0alcAJ=p-7Oi!r8&=tQc}q=T>R`$?e=DXhbSUey>}t=y z7E47x+8$f=m`yY0Or)8Rk&pnF1-G)5Ou;|fTSZRx-&OX6pRH77yxfMV2z1FY!wXb_j@+3404P|6XdIk-W}JePv>dtd7h4 z#e128ik6qeu-vp|%;L=Y6zC(e%%;j`p=eObXAWN-F4$pG>`j?;*Z*Peh*lUGCZpU_-6CYEQyXtFqjr#vF&Ky!r{7#JB0VA`Z%3>e*D&&UX4 zqtLBD9@Aw8c9?lUqlAG@EJ!NSO-szlNlHx4hNuVX2i_CK4sPKnOIM zkwG4qLfC)|C6G)pFvWZ30drAaVvb*8E-1xIGjK5gZA#A1FG|rf;DM-;VPItdHj?s- icp-dQ1~!H=u#2DqazFt{3`2Fu19fEPrKDDXy#oN`^ERvi literal 0 HcmV?d00001 diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.mtl b/tutorial/tracking/render-based/data/sequence1/dragon.mtl deleted file mode 100755 index 21a14b379f..0000000000 --- a/tutorial/tracking/render-based/data/sequence1/dragon.mtl +++ /dev/null @@ -1,12 +0,0 @@ -# Blender 3.4.1 MTL File: 'None' -# www.blender.org - -newmtl Material.002 -Ns 0.000000 -Ka 1.000000 1.000000 1.000000 -Kd 0.800000 0.015198 0.007607 -Ks 0.000000 0.000000 0.000000 -Ke 0.000000 0.000000 0.000000 -Ni 1.450000 -d 1.000000 -illum 1 diff --git a/tutorial/tracking/render-based/data/sequence1/dragon.obj b/tutorial/tracking/render-based/data/sequence1/dragon.obj deleted file mode 100644 index dced87ac26..0000000000 --- a/tutorial/tracking/render-based/data/sequence1/dragon.obj +++ /dev/null @@ -1,58578 +0,0 @@ -# Blender 4.2.1 LTS -# www.blender.org -mtllib dragon.mtl -o stanford_dragon -v 0.021793 -0.020850 0.022920 -v -0.034272 0.010277 0.008211 -v 0.023778 0.018954 0.011798 -v 0.023496 0.018710 0.011374 -v -0.039781 0.010787 -0.025248 -v 0.022555 -0.020873 0.022555 -v -0.034690 0.002925 -0.037135 -v -0.003943 -0.000769 -0.033376 -v -0.009694 -0.001628 0.000876 -v 0.021359 -0.020764 0.023366 -v 0.039381 0.016915 0.015149 -v -0.012642 0.005015 -0.035779 -v 0.002809 0.006012 0.010020 -v 0.029930 -0.000079 0.005180 -v -0.039811 0.005917 -0.033749 -v 0.021298 -0.020448 0.022733 -v -0.027228 0.014305 0.020178 -v 0.038028 0.017209 0.015125 -v -0.002928 0.009072 0.023764 -v -0.003026 0.008896 0.023325 -v -0.009898 0.002908 -0.036338 -v -0.023252 0.011947 0.022540 -v -0.016790 0.006242 -0.020301 -v 0.022128 -0.020529 0.021836 -v -0.009589 -0.003061 -0.009323 -v -0.034994 0.008935 -0.036146 -v -0.035944 0.009618 -0.035542 -v -0.016382 0.015039 0.011826 -v -0.032015 -0.001750 -0.022596 -v -0.026729 0.008277 -0.033093 -v 0.043394 -0.001511 -0.001886 -v 0.023466 -0.020652 0.022026 -v -0.000854 0.000968 -0.035855 -v 0.045297 -0.000603 -0.005204 -v -0.035584 0.001578 -0.029648 -v 0.012714 -0.004365 0.007812 -v -0.004518 0.009490 0.014160 -v -0.038383 0.005246 -0.024120 -v 0.023042 -0.020608 0.021430 -v 0.045123 0.007563 0.015745 -v -0.022383 0.008614 -0.019821 -v -0.038246 0.000310 -0.029504 -v -0.025822 0.007623 -0.034165 -v -0.040428 -0.000579 -0.031795 -v 0.000154 0.007013 0.016079 -v -0.006582 -0.001234 -0.002453 -v 0.041955 -0.000840 -0.022756 -v -0.019220 0.019826 0.024514 -v -0.027160 0.005952 -0.020707 -v 0.015312 0.014933 0.019507 -v 0.040724 -0.001013 -0.017922 -v 0.040029 -0.002580 -0.017948 -v -0.038069 0.002194 -0.029651 -v 0.019583 0.000356 -0.000855 -v 0.024287 0.018690 0.013001 -v -0.032168 0.000082 0.022307 -v -0.015110 0.004385 -0.020153 -v -0.033291 0.004133 -0.024200 -v -0.033397 0.007928 -0.024170 -v -0.033628 0.008572 -0.023673 -v -0.014552 0.005079 -0.035852 -v 0.022387 -0.020323 0.023470 -v -0.027232 -0.002595 -0.037387 -v -0.029068 0.010387 -0.032675 -v 0.017799 0.009455 0.018914 -v -0.021393 0.012477 0.003787 -v -0.011459 -0.002541 -0.006265 -v -0.008038 0.000371 -0.016903 -v -0.009788 0.002377 -0.017899 -v 0.045734 0.000449 -0.024138 -v -0.007980 0.000987 -0.035838 -v 0.042594 0.016057 0.016789 -v 0.030568 -0.000877 0.013635 -v -0.019319 0.013132 0.004655 -v -0.031134 -0.000374 -0.019621 -v -0.022824 -0.003093 -0.026954 -v 0.028611 0.011548 0.013854 -v 0.029134 -0.001173 0.010094 -v -0.008408 0.017405 0.020093 -v 0.028855 0.003920 -0.008054 -v -0.035367 0.001125 -0.023390 -v 0.040910 0.001212 0.017075 -v 0.039681 -0.000681 0.017354 -v -0.047673 0.011541 -0.027683 -v -0.047530 0.010846 -0.028104 -v -0.021304 0.022164 0.016283 -v 0.037381 -0.000028 -0.001924 -v -0.039614 -0.001831 -0.032105 -v 0.028975 -0.002848 -0.024899 -v 0.026584 0.004473 0.011792 -v 0.013493 -0.000970 0.008738 -v -0.014640 0.004430 -0.017105 -v -0.012736 0.016543 0.014379 -v -0.021180 0.007269 -0.033947 -v -0.035597 0.002576 -0.000339 -v 0.022800 0.012385 0.004664 -v -0.029841 0.010583 -0.022952 -v 0.050872 0.000249 -0.022431 -v -0.037405 0.003625 -0.038848 -v 0.013292 0.005906 0.021683 -v -0.016700 0.007174 -0.031232 -v 0.023865 0.012565 -0.000857 -v -0.034454 0.006824 0.018226 -v -0.035690 -0.003438 0.010602 -v -0.002783 0.014169 0.018035 -v 0.019481 -0.001089 -0.002471 -v -0.029888 0.010558 0.001827 -v 0.034027 0.005017 0.011377 -v -0.006018 0.016560 0.024665 -v -0.007445 0.016893 0.023085 -v -0.015299 -0.001962 0.001094 -v -0.015948 0.000840 -0.001280 -v -0.020893 -0.001246 -0.039031 -v 0.014947 0.002544 0.011228 -v 0.010129 -0.002623 0.001774 -v 0.044122 0.009013 -0.001080 -v 0.014411 -0.002667 -0.008466 -v -0.015376 -0.001589 0.001998 -v -0.002012 -0.000134 -0.025895 -v 0.024325 -0.020615 0.021459 -v 0.039284 0.006098 0.000140 -v -0.008149 0.013276 0.013194 -v 0.021672 0.000440 -0.005587 -v -0.003323 -0.000507 -0.031924 -v -0.017115 0.006139 -0.034234 -v 0.047380 0.007552 0.009980 -v -0.046292 0.004952 -0.019853 -v 0.045407 -0.001771 -0.011123 -v 0.044925 0.000335 0.001111 -v 0.019165 0.008501 0.022172 -v 0.021812 0.011773 0.006201 -v 0.038348 0.004186 0.004045 -v 0.024569 -0.020508 0.019922 -v -0.016613 0.017233 0.019340 -v 0.039783 -0.001840 -0.016695 -v 0.050277 -0.002589 -0.016517 -v 0.011239 0.006972 0.021933 -v 0.036918 0.009431 0.008311 -v -0.009082 -0.000789 -0.034857 -v 0.043638 0.000891 0.002968 -v -0.021654 0.000276 -0.038935 -v 0.023883 0.011802 0.004046 -v 0.038207 -0.001646 -0.008991 -v -0.010038 -0.001036 0.002304 -v -0.021723 0.014287 0.024670 -v -0.021698 0.013124 0.023920 -v 0.019582 0.013209 0.011083 -v -0.019204 0.005456 -0.037200 -v 0.040444 0.006099 -0.003303 -v 0.025038 -0.020217 0.020040 -v -0.038305 0.001897 -0.035029 -v -0.000422 0.013153 0.014569 -v 0.011161 0.006249 0.019413 -v -0.036857 0.000259 0.003646 -v 0.021783 0.013641 0.006472 -v 0.021818 -0.019860 0.023792 -v -0.032348 0.002969 -0.031107 -v 0.020833 -0.020169 0.023288 -v -0.032191 0.011510 0.010515 -v -0.038773 0.002605 -0.029761 -v -0.038530 0.001969 -0.029663 -v -0.025572 0.010625 -0.021401 -v -0.006085 -0.003217 -0.025738 -v -0.038083 0.004459 -0.023187 -v -0.041975 0.002967 -0.036876 -v -0.000840 0.001589 -0.029105 -v -0.021403 0.000555 -0.027872 -v -0.037592 -0.002728 -0.029854 -v 0.047415 0.010450 0.010812 -v 0.035715 0.000679 -0.008022 -v -0.039018 0.013104 -0.035769 -v -0.010654 0.001733 -0.012200 -v 0.009380 0.015105 0.022429 -v -0.006069 -0.002154 -0.019357 -v -0.027815 0.014454 0.015203 -v 0.001256 -0.000477 -0.030455 -v 0.018451 0.006965 0.021178 -v -0.005596 0.007053 0.005142 -v 0.040075 0.001665 0.001339 -v -0.025318 0.020524 0.015860 -v -0.012646 0.008427 0.006195 -v -0.035314 0.010302 -0.023188 -v 0.007473 0.002077 -0.020184 -v 0.019552 0.013170 0.010056 -v 0.022535 -0.000088 -0.009508 -v -0.035724 0.014333 -0.020484 -v 0.009350 0.006316 0.020861 -v -0.007455 0.003602 -0.034998 -v -0.012434 0.012084 0.008602 -v 0.026548 0.011776 0.010369 -v 0.027583 0.012694 0.010452 -v 0.028718 0.012604 0.024658 -v -0.006701 0.002814 -0.034586 -v 0.000311 0.001452 0.020427 -v -0.028249 0.003692 -0.020037 -v -0.030231 0.006519 -0.024663 -v -0.038197 0.012251 -0.036998 -v -0.034582 0.008656 0.003802 -v -0.032640 -0.000954 -0.028565 -v -0.027399 0.005649 -0.037154 -v -0.027903 0.005700 -0.036587 -v 0.022725 -0.019952 0.020808 -v 0.038160 -0.001379 -0.008386 -v 0.050656 -0.001342 -0.018851 -v 0.025432 -0.019908 0.020857 -v 0.020671 0.000016 -0.003914 -v -0.024890 0.022895 0.014388 -v -0.015377 0.020346 0.019938 -v -0.033823 0.003669 -0.024153 -v -0.000304 0.008835 0.022105 -v -0.026321 0.002102 -0.012748 -v -0.015617 0.006034 -0.032439 -v 0.023595 -0.019739 0.019335 -v 0.014649 0.008477 0.014517 -v -0.034936 0.010132 -0.019309 -v 0.050001 0.001055 -0.018148 -v -0.023636 0.005539 -0.029128 -v -0.012238 0.003738 -0.019814 -v 0.001218 0.000382 -0.030280 -v 0.024616 0.003377 -0.014329 -v 0.051499 0.002209 -0.020599 -v 0.049935 -0.001967 -0.018988 -v -0.004735 0.001175 -0.035620 -v -0.044083 0.007979 -0.021415 -v -0.007413 0.006194 0.004270 -v 0.041372 0.015295 0.008176 -v -0.008170 -0.002532 -0.002789 -v 0.020133 -0.005715 0.024669 -v -0.039307 0.013297 -0.024331 -v -0.034501 0.010115 0.013372 -v 0.005753 0.005085 -0.006200 -v -0.012150 0.001978 -0.039608 -v 0.024078 0.008522 0.010968 -v 0.024105 -0.020156 0.019291 -v 0.038782 -0.003437 -0.017499 -v -0.002240 0.000164 -0.031649 -v -0.030297 0.009988 -0.000441 -v 0.045668 0.003695 0.008135 -v -0.047644 0.011472 -0.027186 -v -0.030382 0.003924 -0.035384 -v -0.008265 -0.000735 -0.014599 -v -0.019803 0.022321 0.021974 -v 0.024074 0.011341 0.014962 -v -0.019084 0.022217 0.020694 -v 0.023576 -0.019879 0.022986 -v -0.034623 0.008193 -0.037148 -v -0.008644 0.001647 -0.020131 -v -0.020819 -0.003521 -0.020586 -v -0.032832 -0.002504 -0.027148 -v -0.034248 -0.001906 -0.027541 -v 0.023766 0.009712 -0.005831 -v -0.022731 0.008004 -0.033179 -v -0.008791 -0.003534 -0.008925 -v 0.024650 0.007291 -0.008579 -v 0.024349 0.007019 -0.010407 -v -0.024098 0.009559 -0.019408 -v 0.021434 -0.019283 0.021685 -v -0.019743 0.007008 -0.026774 -v 0.019093 0.003909 0.009217 -v -0.010101 -0.001952 0.000257 -v 0.010394 0.003395 -0.018485 -v -0.036516 0.011630 -0.031026 -v -0.013500 -0.001849 0.003678 -v 0.002668 0.003769 -0.011534 -v 0.001276 0.003552 -0.010934 -v 0.020887 0.002575 0.003836 -v -0.012642 -0.002002 -0.038236 -v -0.040144 0.001047 -0.019466 -v 0.031003 0.015420 0.016142 -v -0.029261 0.007354 -0.006241 -v -0.039482 0.009416 -0.038516 -v -0.040611 0.008583 -0.038456 -v 0.002077 0.003338 0.017332 -v -0.013227 -0.001055 0.002656 -v -0.031314 0.012011 -0.030569 -v -0.027284 0.006574 -0.008703 -v -0.022205 0.017850 0.013921 -v 0.029206 -0.002164 0.009063 -v -0.015507 0.002832 -0.004846 -v -0.040615 0.002774 -0.035964 -v -0.037802 0.003278 -0.023079 -v -0.012418 -0.003743 -0.004937 -v -0.027134 0.002798 -0.020030 -v -0.032433 0.003186 -0.024248 -v 0.009681 0.000545 -0.023052 -v -0.014644 0.005395 -0.032265 -v -0.042536 0.007871 -0.026761 -v 0.002382 0.001056 0.017658 -v -0.003372 0.017381 0.024170 -v 0.053011 0.002352 -0.022986 -v -0.043376 0.011313 -0.026981 -v 0.024733 0.011461 0.014571 -v -0.025020 0.010723 -0.031341 -v 0.024814 -0.019575 0.019263 -v -0.013514 0.004472 -0.037035 -v -0.018225 0.004866 -0.028511 -v -0.032016 0.002976 -0.035740 -v -0.042571 0.015005 -0.022165 -v -0.006424 -0.002909 -0.017689 -v 0.020443 0.008653 0.022898 -v 0.011334 0.017752 0.022492 -v -0.032997 0.011038 -0.019652 -v 0.021095 -0.019944 0.023754 -v -0.043644 0.001673 -0.018243 -v -0.017373 0.014175 0.020061 -v -0.030271 -0.002885 0.022087 -v -0.003259 0.002561 -0.005489 -v -0.012219 0.005434 -0.030229 -v -0.012848 0.005638 -0.029973 -v 0.041504 0.012023 0.002819 -v -0.010706 0.011342 0.021829 -v -0.035736 0.008607 0.006124 -v 0.043648 0.000890 -0.020132 -v -0.022991 0.006947 -0.028540 -v 0.004142 0.002171 0.014257 -v -0.034041 0.012572 -0.022149 -v 0.033775 -0.000180 -0.001174 -v -0.037670 0.002653 -0.031190 -v -0.006237 0.000791 -0.021728 -v -0.006482 0.002025 -0.021972 -v -0.008621 -0.002878 -0.010244 -v -0.018773 0.020655 0.014213 -v 0.029379 0.013436 0.000487 -v -0.009848 -0.001355 -0.035196 -v 0.045199 -0.000806 -0.011826 -v -0.003452 0.008372 0.022492 -v -0.027570 0.015327 0.020645 -v -0.020736 0.021740 0.023595 -v -0.039174 0.014608 -0.023029 -v -0.037638 0.014281 -0.022783 -v 0.024864 -0.019461 0.022836 -v 0.007763 -0.001706 0.007689 -v -0.038199 0.011328 -0.032204 -v 0.009025 -0.002569 0.004623 -v -0.023420 0.011440 0.003175 -v 0.024345 0.010916 0.014476 -v 0.045342 -0.000622 -0.003489 -v -0.040509 0.002071 -0.022143 -v 0.050825 0.000315 -0.013491 -v -0.028110 0.003115 0.024489 -v 0.013222 0.005167 0.015192 -v -0.039932 0.012148 -0.037168 -v -0.031300 -0.003377 0.021148 -v -0.003712 -0.000601 -0.027186 -v 0.021922 -0.018605 0.020490 -v -0.036348 0.008895 -0.037711 -v 0.025369 -0.019181 0.021804 -v 0.023533 0.015943 0.005943 -v 0.043981 0.015783 0.012385 -v -0.027786 0.017963 0.021557 -v -0.025584 0.002757 -0.038387 -v -0.016368 0.004209 -0.017792 -v -0.005188 0.005890 0.023713 -v -0.020263 0.003610 -0.021470 -v -0.017801 0.003159 -0.020674 -v 0.022230 0.010522 0.022289 -v -0.029211 0.004070 0.024051 -v -0.022714 0.014544 0.011969 -v 0.040964 0.002371 0.015292 -v 0.040838 0.003256 0.015176 -v -0.015171 0.011945 0.019348 -v -0.021339 0.004637 -0.026139 -v 0.003876 0.005530 0.007136 -v 0.004560 0.005486 0.005472 -v -0.018011 0.005711 -0.028738 -v -0.020324 0.005402 -0.037573 -v -0.024372 0.001661 -0.038881 -v -0.021057 -0.001106 -0.020519 -v 0.046741 0.002810 0.003483 -v -0.000547 0.013545 0.015423 -v -0.022849 0.023461 0.015800 -v 0.039316 0.016315 0.010972 -v -0.033455 0.002171 -0.030743 -v 0.018965 0.010774 0.017319 -v -0.028125 -0.001774 -0.023526 -v 0.024321 0.012731 0.019855 -v 0.014206 -0.002059 0.021612 -v 0.028714 0.012815 -0.000645 -v -0.028423 -0.002625 -0.010124 -v -0.037467 0.000362 -0.018240 -v -0.015363 -0.002812 0.005793 -v -0.040663 0.007216 -0.019914 -v -0.035613 0.009625 -0.031863 -v -0.041058 0.005609 -0.035181 -v -0.021597 0.006396 -0.028525 -v -0.014236 0.020260 0.021420 -v -0.040811 0.001597 -0.031661 -v -0.040926 0.001809 -0.018159 -v 0.016098 0.000072 0.004798 -v 0.039041 0.000286 0.015417 -v 0.016609 0.010122 0.011395 -v -0.032465 0.004131 -0.031242 -v -0.036406 -0.000183 -0.028635 -v 0.044872 0.014924 0.011991 -v -0.042421 0.014635 -0.020550 -v -0.012028 0.005419 -0.021875 -v -0.023937 0.024660 0.015292 -v -0.032111 0.009861 0.001670 -v -0.037050 0.003565 -0.022520 -v -0.029981 0.009224 -0.020097 -v -0.037164 0.000918 -0.023328 -v 0.012785 0.005395 0.019684 -v 0.041770 0.016098 0.011809 -v -0.026217 0.006836 -0.035225 -v -0.027965 0.012510 0.011349 -v -0.029153 0.012393 0.013654 -v -0.030710 0.001329 -0.024072 -v 0.047070 -0.001499 -0.021974 -v 0.043616 0.000411 -0.021003 -v -0.031243 0.000406 -0.008155 -v 0.045742 0.005282 0.011050 -v 0.001734 0.011193 0.017540 -v 0.034779 -0.003546 -0.000291 -v -0.025086 0.009721 -0.002389 -v 0.021664 0.014852 0.008852 -v 0.021184 0.014286 0.009806 -v -0.033202 0.007943 0.019585 -v 0.046068 0.011584 0.014837 -v 0.030215 0.016892 0.004212 -v 0.039847 0.001192 0.014940 -v 0.046537 0.001747 -0.001754 -v -0.025958 0.011401 0.003399 -v 0.024453 0.011102 0.013713 -v 0.026269 0.011073 0.024668 -v 0.025753 0.011794 0.023672 -v 0.000870 0.008202 0.014830 -v -0.037886 0.010533 -0.032192 -v -0.026071 0.002679 -0.029907 -v -0.040205 0.002383 -0.024179 -v -0.040141 0.002779 -0.024302 -v 0.034477 -0.000507 0.000524 -v -0.021398 0.007904 0.024668 -v 0.035104 0.001348 -0.011756 -v 0.024808 0.010614 0.007769 -v -0.014570 0.011064 0.020910 -v -0.021341 0.002682 -0.026946 -v -0.025414 0.007895 -0.007479 -v 0.040977 -0.000729 -0.015387 -v -0.031373 -0.003905 -0.019146 -v -0.015229 0.000158 -0.002794 -v 0.019741 0.003419 -0.020460 -v -0.012968 0.011376 0.020819 -v 0.024934 0.005142 0.011316 -v 0.033494 -0.000167 0.016488 -v 0.038864 0.005950 0.010336 -v 0.000717 0.007161 0.014563 -v 0.017367 -0.004368 -0.010499 -v 0.017377 -0.001523 -0.026601 -v -0.017641 0.015813 0.022336 -v 0.044126 0.012293 0.003253 -v 0.021168 -0.019285 0.022414 -v 0.020950 -0.019596 0.023458 -v 0.021769 -0.019378 0.022780 -v 0.024452 0.017596 0.024040 -v 0.048782 -0.001395 -0.012663 -v 0.016921 0.009066 0.022049 -v -0.028417 0.006839 -0.033229 -v 0.040034 0.008493 0.000666 -v -0.022889 0.015667 0.012519 -v -0.039487 0.012270 -0.035738 -v 0.038246 0.004055 0.002220 -v -0.043652 0.001711 -0.019039 -v 0.044894 0.004258 -0.005183 -v 0.036659 0.002993 0.015937 -v -0.039610 0.007716 -0.025369 -v -0.027163 0.001706 -0.020105 -v -0.026051 0.004120 -0.011489 -v -0.002376 0.003051 -0.005629 -v -0.005494 0.014614 0.018337 -v 0.041048 0.004919 0.012617 -v 0.025085 0.010217 0.010412 -v -0.026526 0.006689 -0.034719 -v -0.025979 0.000635 -0.013208 -v 0.022934 0.005510 0.011385 -v 0.021372 -0.001740 -0.010341 -v -0.018373 0.020792 0.017691 -v -0.012473 0.002064 -0.008818 -v 0.014245 0.000082 -0.010422 -v -0.036086 0.009463 -0.023463 -v 0.029012 -0.001342 0.011301 -v 0.010381 0.007390 0.019086 -v -0.031318 0.004365 -0.006797 -v 0.025988 -0.018395 0.019718 -v -0.035571 0.006195 -0.039106 -v -0.030723 0.011583 -0.019511 -v 0.028845 0.011831 0.002136 -v 0.005134 0.004116 -0.011985 -v -0.043898 0.010123 -0.024266 -v 0.031653 -0.002691 -0.023225 -v -0.025574 0.011903 0.021345 -v -0.019284 0.011914 0.021422 -v 0.027682 0.012669 0.009606 -v -0.043310 0.010717 -0.024337 -v 0.009434 0.003821 -0.009315 -v 0.026035 0.014073 -0.001934 -v 0.024447 0.003044 0.006627 -v -0.022185 0.008591 -0.032243 -v -0.034586 0.000847 -0.022489 -v 0.023368 0.008234 -0.004289 -v -0.038516 0.012655 -0.020409 -v 0.022083 -0.019338 0.023241 -v 0.024344 0.007858 -0.004406 -v -0.008402 0.001994 -0.020583 -v -0.010035 0.017020 0.020554 -v 0.042903 0.016058 0.011622 -v -0.001422 0.000695 -0.025336 -v -0.002840 0.001382 -0.026076 -v 0.008802 0.016824 0.023207 -v -0.023930 0.008140 -0.020739 -v 0.023396 -0.019199 0.023168 -v 0.032513 0.002321 -0.003440 -v 0.009415 0.006813 0.021432 -v -0.030202 -0.000058 -0.036266 -v -0.025825 0.023786 0.018227 -v 0.024331 0.019791 0.009637 -v -0.033646 0.009174 -0.024145 -v 0.018318 0.001318 0.003964 -v -0.018999 0.008100 -0.019918 -v -0.030229 0.007635 -0.033873 -v -0.037981 0.002458 -0.030143 -v 0.041475 0.016346 0.017738 -v 0.035775 -0.000789 0.001208 -v 0.038291 0.006721 0.004713 -v -0.030037 -0.003790 -0.034348 -v -0.043929 0.001586 -0.034926 -v 0.037796 0.003286 0.015116 -v -0.014926 0.005992 -0.027523 -v 0.018340 -0.001118 -0.000487 -v 0.022736 -0.000586 -0.025857 -v -0.032223 0.010390 0.017091 -v -0.010379 -0.002829 0.001231 -v -0.010152 -0.002347 0.000339 -v 0.030926 -0.003194 0.004928 -v 0.022912 -0.018988 0.019502 -v 0.010341 0.016545 0.019250 -v -0.004119 0.011897 0.015231 -v -0.003644 0.010978 0.014656 -v 0.019090 0.010634 0.018997 -v -0.038157 0.001853 -0.018460 -v 0.023635 0.008700 -0.008153 -v 0.023118 -0.018911 0.019019 -v -0.038304 0.009476 -0.033448 -v 0.024750 0.013435 -0.001538 -v 0.011634 0.003792 -0.015215 -v 0.018795 0.010388 0.023346 -v 0.045290 0.001385 -0.023066 -v 0.042891 0.004554 0.019409 -v -0.020749 0.003083 -0.028989 -v 0.036900 0.012288 0.008547 -v 0.048301 0.000722 -0.021480 -v 0.049678 0.000743 -0.022207 -v 0.023767 0.008544 -0.009259 -v 0.036723 0.006005 0.008847 -v 0.044518 -0.001805 -0.005289 -v 0.053571 0.000998 -0.016969 -v 0.025573 0.016140 -0.001237 -v -0.029969 0.009466 -0.023244 -v 0.000358 0.006890 0.003535 -v 0.020492 -0.019518 0.017181 -v 0.033719 -0.002673 -0.021523 -v -0.007782 0.003192 -0.031127 -v -0.005883 0.002685 -0.029899 -v 0.004918 0.005339 -0.000046 -v 0.005810 0.005040 -0.000518 -v 0.024195 0.009843 0.013275 -v 0.021554 -0.019359 0.017083 -v 0.003285 0.004274 -0.009713 -v -0.029874 0.012057 -0.020968 -v 0.048040 0.008868 0.006890 -v -0.037852 0.002359 0.006315 -v 0.018338 0.000695 -0.013439 -v -0.023311 0.008525 -0.006217 -v 0.020775 -0.019430 0.016201 -v 0.004285 0.003482 0.011830 -v -0.013130 -0.001751 -0.002949 -v -0.042666 0.005421 -0.025195 -v -0.004555 -0.000212 -0.023506 -v -0.021196 0.002242 -0.016664 -v 0.007653 0.000820 0.006804 -v -0.000880 0.008335 0.004949 -v -0.033447 0.012760 -0.034387 -v -0.004265 0.001691 -0.031888 -v 0.030696 0.000278 0.006640 -v -0.036073 -0.000092 -0.018074 -v 0.047715 -0.003730 -0.017257 -v -0.019572 0.005536 -0.013270 -v 0.030563 0.007289 0.012715 -v -0.009549 0.002007 -0.015382 -v 0.018218 0.000366 0.002279 -v 0.010399 0.007776 0.021423 -v -0.034818 -0.001485 -0.020116 -v -0.043772 0.010991 -0.021817 -v -0.018567 0.007470 -0.020511 -v 0.029753 0.014664 0.005748 -v -0.019511 0.007770 -0.005598 -v 0.024431 -0.018567 0.023220 -v -0.019344 0.002917 -0.017947 -v 0.028298 0.014142 0.008597 -v -0.006974 0.009835 0.013303 -v -0.006548 0.010166 0.014276 -v -0.008235 0.002375 -0.041266 -v -0.004852 0.001781 -0.035592 -v -0.018638 0.006958 -0.000980 -v -0.038286 0.004457 -0.018848 -v 0.009329 0.012377 0.021680 -v -0.003270 0.013089 0.014956 -v 0.010150 0.008801 0.019760 -v -0.040075 0.005256 -0.023319 -v 0.014767 0.006456 0.011184 -v 0.026828 0.010986 -0.004962 -v -0.042048 0.009139 -0.026861 -v -0.004854 0.000290 -0.004330 -v -0.008095 0.014536 0.015163 -v 0.017202 0.006082 0.020284 -v 0.015602 -0.003754 -0.009607 -v 0.029955 0.015538 0.017262 -v 0.045948 0.001147 -0.005309 -v 0.006802 0.003977 0.001643 -v -0.015932 0.019648 0.023674 -v 0.000185 0.014140 0.018253 -v 0.049184 -0.000817 -0.021752 -v 0.020879 0.010841 0.023178 -v 0.000443 0.007009 0.004927 -v -0.044096 0.006786 -0.020967 -v -0.021425 0.007575 -0.008801 -v -0.000067 0.004627 -0.005847 -v 0.024706 0.017231 0.015617 -v -0.037575 0.009459 -0.037101 -v -0.026763 -0.001416 0.024364 -v 0.022533 0.016790 0.023919 -v -0.020141 0.008418 -0.019709 -v 0.025969 0.011237 0.013383 -v -0.029311 -0.003385 -0.018968 -v -0.010566 0.004742 -0.033005 -v -0.020167 0.007766 -0.024081 -v 0.003070 -0.000545 0.017008 -v -0.011048 -0.000603 0.002871 -v 0.021133 -0.019290 0.018089 -v 0.019587 -0.019043 0.018451 -v -0.039819 0.003693 -0.023321 -v -0.025052 0.009881 -0.029094 -v 0.049223 -0.001218 -0.021368 -v -0.003327 -0.000131 0.024087 -v -0.013226 0.005288 -0.031393 -v -0.040561 0.010822 -0.025594 -v -0.035421 -0.001191 -0.028131 -v 0.042510 0.004117 0.016385 -v -0.023758 0.008401 -0.032492 -v 0.011216 0.005991 0.019088 -v -0.038730 0.010684 -0.033833 -v -0.041014 0.005884 -0.038346 -v -0.007144 -0.002560 -0.005376 -v 0.003838 -0.000994 -0.019539 -v -0.034449 0.013641 -0.019039 -v -0.033774 0.001962 -0.004754 -v -0.033105 0.001963 -0.005672 -v -0.010078 0.002340 -0.036434 -v 0.024641 0.009170 0.013572 -v -0.019429 0.007911 -0.003828 -v 0.043795 0.006703 -0.003528 -v 0.028244 0.013389 0.006631 -v -0.028713 0.004159 -0.019510 -v -0.009268 0.009527 0.022869 -v -0.027869 -0.002853 -0.020495 -v 0.048126 0.001592 -0.021149 -v 0.037714 0.006030 0.006133 -v 0.008087 0.010982 0.021060 -v -0.035564 0.008623 -0.037837 -v 0.021477 -0.018903 0.016171 -v 0.011969 -0.002480 0.015588 -v 0.022288 0.012739 0.020923 -v -0.034572 0.009413 -0.035521 -v 0.043729 -0.002118 -0.003842 -v -0.016014 0.020268 0.016447 -v -0.000777 0.000920 -0.023370 -v 0.021683 0.001911 -0.002082 -v -0.040115 -0.001016 -0.032789 -v -0.023198 0.006898 -0.034484 -v -0.009575 0.004462 -0.023938 -v 0.010438 0.008628 0.019322 -v -0.011975 0.004715 -0.023433 -v -0.011532 0.004467 -0.023394 -v 0.014694 0.005639 0.019273 -v 0.015072 0.006221 0.019743 -v 0.010206 -0.003240 0.000893 -v -0.027676 -0.001142 -0.011238 -v -0.027504 0.000190 -0.011544 -v 0.007834 0.010635 0.023786 -v 0.021422 0.016344 0.021916 -v 0.004897 -0.002351 -0.021297 -v 0.025172 -0.019002 0.022788 -v -0.009904 0.002287 -0.037390 -v 0.022162 0.014898 0.010460 -v 0.045582 -0.001159 -0.011304 -v -0.002781 0.008463 0.022762 -v -0.010406 0.004604 -0.023543 -v 0.029660 0.002049 0.011523 -v -0.014004 0.004676 -0.011304 -v 0.025267 0.011471 0.012830 -v 0.025389 0.011633 0.013015 -v 0.021616 -0.018844 0.021664 -v 0.004543 0.005562 -0.002748 -v -0.010854 -0.001127 -0.009544 -v -0.019475 0.006033 -0.021300 -v -0.019245 0.008860 -0.020482 -v -0.025429 0.024556 0.015005 -v -0.025518 0.023485 0.014660 -v 0.011618 0.003136 -0.011634 -v 0.008506 0.009967 0.021638 -v -0.001687 0.007308 0.004902 -v -0.044501 0.002715 -0.018611 -v -0.029897 0.001192 -0.037861 -v 0.017822 0.003080 0.024667 -v 0.028556 0.015920 0.000080 -v -0.004170 0.006742 0.022067 -v 0.044580 0.013712 0.006679 -v -0.027415 0.002212 -0.025130 -v 0.027333 0.010472 -0.002539 -v 0.035007 0.005246 0.013157 -v 0.045471 0.001545 -0.018975 -v 0.025106 0.003377 0.000939 -v 0.028152 0.014312 0.016699 -v -0.035302 0.004155 -0.024162 -v -0.036210 0.003919 -0.023679 -v 0.023830 0.003160 -0.000929 -v -0.031360 0.012944 -0.033018 -v -0.043516 0.003027 -0.021026 -v -0.044609 0.004171 -0.021720 -v -0.034758 0.003507 -0.023808 -v 0.046813 0.001754 -0.021032 -v 0.018039 0.012719 0.019662 -v -0.022249 0.001445 -0.026798 -v 0.023680 0.017958 0.008736 -v -0.033544 0.003773 -0.004029 -v -0.045561 0.008875 -0.022392 -v 0.018314 -0.019051 0.018412 -v 0.016363 0.009868 0.022212 -v -0.025720 0.021204 0.016638 -v 0.018193 0.014891 0.020454 -v 0.014030 -0.002960 -0.026663 -v -0.037497 0.000263 0.006108 -v 0.007899 0.000603 0.005600 -v 0.007917 -0.000676 0.006961 -v -0.028024 0.002765 -0.030068 -v -0.011689 0.011039 0.021628 -v -0.037620 0.001507 -0.024807 -v 0.022155 -0.018899 0.018557 -v 0.038567 -0.000358 -0.001914 -v -0.034926 0.011495 -0.023637 -v 0.039766 0.004370 0.005418 -v 0.008595 0.015374 0.023121 -v 0.031052 0.014455 0.014025 -v 0.019247 -0.019069 0.017466 -v 0.041856 0.001201 0.018653 -v 0.045412 -0.002776 -0.011161 -v 0.033719 -0.000834 0.016748 -v 0.035190 0.016030 0.021714 -v -0.004269 -0.003671 -0.011144 -v -0.011475 0.008335 0.006533 -v -0.005511 -0.001095 -0.004049 -v -0.026133 0.006792 -0.036916 -v 0.013411 0.015971 0.022789 -v 0.023826 0.009047 0.008946 -v -0.034152 -0.000918 -0.002918 -v -0.041744 0.009688 -0.020802 -v -0.040838 0.007501 -0.026011 -v -0.039199 0.010091 -0.033736 -v -0.038994 0.007290 -0.034097 -v -0.039112 0.006856 -0.034059 -v -0.031562 0.000747 0.022841 -v 0.035067 -0.000274 -0.000222 -v 0.035574 -0.000408 0.000905 -v -0.001095 0.003748 0.021564 -v -0.025627 0.007068 -0.008518 -v -0.025417 -0.002508 0.024083 -v -0.003199 0.007381 0.006163 -v 0.023813 0.007371 -0.009407 -v -0.020350 0.010998 0.022440 -v -0.001872 0.016824 0.021272 -v -0.002240 -0.000730 -0.010991 -v 0.011355 0.007519 0.018313 -v -0.017775 0.010976 0.021705 -v -0.020805 0.000298 -0.018643 -v 0.010165 0.007792 0.020712 -v -0.033842 0.005391 -0.037477 -v 0.029338 0.003908 -0.012475 -v 0.020860 -0.018842 0.015762 -v 0.044332 -0.000238 -0.022214 -v -0.036503 0.010929 -0.030622 -v -0.036480 0.010428 -0.030974 -v -0.031337 -0.001424 -0.028420 -v 0.000350 0.011203 0.014027 -v 0.029743 0.004646 0.012149 -v 0.007620 0.010469 0.022524 -v 0.012280 -0.001833 0.011857 -v -0.005706 0.000251 -0.022089 -v 0.043120 0.000686 0.022175 -v 0.047911 -0.000150 -0.014068 -v 0.022508 0.008642 0.008221 -v -0.029287 0.009864 -0.023408 -v -0.028268 0.009929 -0.023514 -v 0.022850 -0.018699 0.022850 -v -0.038513 0.009538 -0.025124 -v 0.039219 0.000752 -0.000516 -v -0.035325 0.007236 0.016722 -v -0.005789 0.000436 -0.022315 -v -0.004011 0.000684 -0.022697 -v -0.018739 0.007398 -0.003649 -v -0.011340 -0.002353 0.002715 -v -0.021625 0.022433 0.016932 -v -0.019339 0.021001 0.016559 -v -0.024195 0.003738 -0.037748 -v -0.037147 -0.000089 -0.028816 -v -0.008325 0.004310 -0.027834 -v -0.022791 0.004152 -0.021555 -v -0.009475 0.004364 -0.032666 -v -0.009330 0.004319 -0.027102 -v -0.019204 0.016802 0.024669 -v 0.011982 -0.001089 -0.005725 -v 0.049207 0.001130 -0.017613 -v -0.004995 0.002420 -0.022785 -v 0.026422 0.008994 -0.007736 -v 0.007466 0.000133 -0.021846 -v 0.010306 -0.001740 -0.024921 -v 0.001491 -0.000058 -0.029303 -v 0.026109 -0.018065 0.020360 -v -0.009385 0.014522 0.013285 -v 0.008037 -0.001584 0.006917 -v 0.023039 0.013428 -0.000493 -v 0.000318 0.008043 0.011167 -v -0.009311 -0.000740 0.002241 -v 0.016067 0.004082 0.020724 -v -0.034113 0.002450 -0.022608 -v -0.021941 0.000814 -0.021109 -v -0.009029 -0.002301 -0.033981 -v 0.000621 0.004365 -0.006969 -v 0.017450 0.009380 0.018478 -v -0.039152 0.005596 -0.024464 -v -0.016977 0.014039 0.006462 -v 0.005109 0.005014 0.002856 -v -0.019390 0.016592 0.012016 -v -0.042708 0.012246 -0.024160 -v 0.025101 -0.018499 0.018888 -v -0.006847 0.002084 -0.021770 -v -0.007133 -0.002893 -0.005989 -v 0.011910 -0.002760 0.014050 -v -0.044684 0.002487 -0.019257 -v 0.016833 0.002132 -0.014561 -v 0.025515 0.008151 -0.009637 -v -0.029406 0.000554 -0.010218 -v -0.035415 0.014728 -0.018320 -v -0.034084 0.012151 -0.034915 -v 0.017772 -0.018799 0.018061 -v 0.005588 -0.001461 0.012403 -v 0.012334 -0.003183 -0.005089 -v -0.021453 0.007511 -0.035706 -v 0.050865 -0.000717 -0.019543 -v 0.029937 0.017122 0.007367 -v 0.031962 -0.001450 0.015404 -v 0.001165 -0.000850 -0.030077 -v -0.029627 0.006875 -0.023922 -v -0.028360 0.007026 -0.023662 -v 0.036968 -0.000899 -0.006154 -v 0.030000 0.001971 0.000609 -v -0.012868 0.004035 -0.019455 -v 0.044220 0.015307 0.010156 -v -0.001837 0.014256 0.018935 -v 0.013813 0.002664 0.012606 -v 0.014358 0.003363 0.011384 -v 0.018204 0.003915 0.009583 -v -0.005999 0.000965 -0.001282 -v -0.028235 -0.002107 -0.020446 -v -0.041346 0.003477 -0.031738 -v -0.035245 -0.002379 0.001179 -v 0.009672 0.016187 0.020291 -v -0.031007 -0.002290 -0.018464 -v -0.022395 0.011474 0.022527 -v 0.015388 0.015814 0.022930 -v 0.038266 0.000672 -0.003970 -v 0.037632 0.000529 -0.003319 -v 0.009486 0.016677 0.023228 -v 0.040608 0.005077 0.009881 -v -0.002580 -0.000409 0.023377 -v -0.035345 -0.004095 0.009901 -v 0.028358 0.012851 0.006061 -v 0.028441 0.013093 0.005478 -v -0.035014 -0.000852 -0.001572 -v 0.026358 0.009315 -0.000982 -v -0.028915 0.000510 -0.024491 -v 0.050833 0.002560 -0.022136 -v 0.046314 0.002909 0.004983 -v -0.017523 0.015344 0.011943 -v -0.029713 -0.002069 -0.019929 -v -0.029688 0.011424 -0.030002 -v -0.034313 -0.002925 -0.000877 -v 0.023974 0.017526 0.024385 -v 0.010454 0.012071 0.022740 -v 0.025606 0.011458 0.006870 -v -0.005221 0.009148 0.024662 -v 0.034557 0.000927 -0.015986 -v -0.035698 0.006654 0.002134 -v 0.019620 -0.018724 0.016529 -v -0.043302 0.001010 -0.032930 -v 0.041211 0.004105 0.015545 -v 0.045696 0.010728 0.002144 -v 0.025263 0.011141 0.014267 -v 0.001547 0.005248 -0.004787 -v -0.023637 0.004768 -0.025252 -v 0.050897 -0.000511 -0.018963 -v -0.031022 -0.000530 -0.032442 -v 0.022454 -0.018384 0.017336 -v -0.027642 0.007250 -0.023799 -v -0.036594 0.007754 -0.038581 -v 0.028820 0.018144 0.009217 -v -0.010519 0.004862 -0.040239 -v -0.000624 -0.000462 -0.031293 -v -0.001647 -0.000783 -0.031407 -v -0.038241 -0.002411 -0.031748 -v 0.039533 -0.002973 -0.005584 -v -0.040448 0.004671 -0.019349 -v -0.012736 -0.001506 -0.037465 -v -0.036694 -0.001183 0.005527 -v -0.013489 0.005759 -0.019199 -v 0.047582 0.004547 0.004047 -v 0.006441 -0.000936 0.010233 -v 0.031498 0.002653 0.012974 -v -0.010512 -0.002226 -0.007123 -v -0.006445 0.011327 0.014428 -v -0.001087 0.001600 -0.028702 -v -0.037699 0.009808 -0.033071 -v 0.001328 0.014367 0.020988 -v -0.025563 -0.002829 -0.028713 -v -0.025911 -0.003096 -0.028722 -v 0.002132 -0.000662 0.017999 -v -0.039776 -0.000126 -0.033968 -v 0.005145 0.001709 0.012475 -v -0.043984 0.009503 -0.024919 -v 0.019825 0.011832 0.007745 -v 0.020561 0.012205 0.007186 -v -0.038428 0.012837 -0.036740 -v -0.025817 0.004496 -0.029600 -v 0.023750 0.002836 -0.005342 -v 0.022173 0.014438 0.023836 -v 0.030451 0.000297 0.007904 -v -0.003137 -0.003625 0.023052 -v -0.003255 -0.000285 -0.027499 -v 0.037216 -0.001356 -0.008316 -v 0.027937 0.009138 0.013297 -v 0.030303 0.009541 0.013029 -v -0.029910 0.000623 -0.009226 -v -0.018330 0.008129 0.024665 -v -0.022589 0.009495 -0.031375 -v 0.042188 -0.002288 -0.002965 -v 0.040107 0.011199 0.022990 -v 0.050824 -0.001152 -0.020176 -v 0.021781 -0.018323 0.021047 -v 0.028659 0.000276 0.006963 -v -0.047152 0.011272 -0.028082 -v -0.045521 0.011621 -0.027231 -v -0.026089 0.009086 -0.024448 -v 0.025506 0.011060 0.006566 -v -0.035091 0.007965 -0.024376 -v 0.003354 0.006173 0.004690 -v -0.007633 -0.003468 -0.014230 -v -0.007795 -0.003638 -0.013106 -v -0.000099 0.002614 0.020933 -v -0.004487 0.002276 -0.026688 -v -0.004473 0.009923 0.014957 -v -0.011305 0.007142 0.005572 -v 0.017371 -0.018483 0.019750 -v 0.016738 -0.018514 0.019522 -v -0.024193 -0.002602 -0.024929 -v 0.026299 0.003724 -0.009264 -v 0.038003 -0.002268 -0.011779 -v 0.029957 0.001556 0.010833 -v -0.031465 0.002581 0.023057 -v 0.008379 0.001994 -0.020529 -v 0.003423 0.001384 0.016284 -v 0.017469 -0.018839 0.019246 -v -0.013859 0.005806 -0.028124 -v -0.008940 0.002565 -0.041538 -v -0.039258 0.003185 -0.023687 -v -0.037579 0.001597 0.007280 -v -0.000970 -0.002019 -0.013721 -v -0.017254 0.004070 -0.001493 -v -0.014932 0.020351 0.023563 -v 0.037237 -0.000876 -0.002096 -v -0.025258 0.010182 -0.019622 -v -0.016035 0.000669 0.000678 -v -0.035965 0.005395 0.017084 -v 0.017241 0.010425 0.019438 -v -0.037828 0.012221 -0.024857 -v 0.013211 0.001732 -0.022905 -v 0.044788 -0.001206 -0.011064 -v 0.044061 -0.000551 -0.010373 -v -0.013764 0.005216 -0.029263 -v 0.029275 0.018013 0.003462 -v 0.038983 0.014840 0.008210 -v 0.038610 0.015400 0.009569 -v 0.032530 0.003178 0.013679 -v -0.006094 -0.000317 -0.022139 -v 0.029295 -0.003419 0.007519 -v -0.024258 0.009909 -0.022570 -v -0.037271 -0.000187 0.005008 -v -0.001717 -0.002596 -0.012773 -v -0.027876 0.004870 -0.029978 -v 0.024566 -0.017863 0.018714 -v -0.022902 -0.001556 -0.026724 -v -0.029729 0.006442 -0.007143 -v 0.037096 -0.000408 -0.004262 -v 0.021536 0.007130 0.009033 -v -0.020942 0.005715 -0.037344 -v -0.026713 0.008231 -0.020857 -v 0.029569 0.015726 0.001027 -v 0.011158 0.005369 0.022279 -v 0.010422 0.005670 0.022834 -v -0.036059 0.011942 -0.024240 -v -0.006902 0.009571 0.010540 -v -0.004691 0.017303 0.023677 -v 0.027925 0.000905 0.009414 -v 0.027462 0.001201 0.010215 -v -0.037865 -0.000041 -0.019535 -v -0.017207 0.013688 0.019215 -v 0.022561 -0.018645 0.018447 -v -0.028298 0.013678 0.014919 -v 0.031209 0.001894 0.013105 -v 0.025566 0.003054 0.010115 -v -0.044419 0.004623 -0.022903 -v -0.044815 0.005096 -0.022441 -v 0.023447 0.007984 0.012265 -v 0.004786 0.005236 -0.005317 -v 0.044178 -0.001463 -0.021461 -v -0.020855 0.009372 -0.019866 -v 0.000206 0.003630 0.019800 -v 0.017051 -0.003808 -0.000123 -v -0.011609 0.007902 0.024669 -v -0.007940 0.003729 -0.021705 -v 0.023219 0.014731 0.004148 -v -0.021562 0.019057 0.013507 -v 0.023848 0.002950 -0.021645 -v -0.025983 0.012757 0.011383 -v 0.010976 0.005311 0.022095 -v 0.042849 0.014569 0.006917 -v 0.045247 0.014013 0.008190 -v 0.042114 0.002873 -0.008128 -v -0.026944 0.008948 -0.004753 -v 0.025893 0.002370 0.006368 -v -0.023031 0.003722 -0.029301 -v -0.036834 0.008586 -0.033768 -v 0.027326 0.013380 0.011770 -v -0.016581 0.005087 -0.036632 -v 0.032625 0.004933 0.011729 -v -0.013623 0.001459 0.004206 -v 0.039199 0.010937 0.004116 -v 0.029101 0.015324 0.018933 -v 0.007904 0.016514 0.022452 -v -0.015903 0.005495 -0.012557 -v -0.030254 0.008430 -0.022892 -v -0.025063 -0.002345 -0.024576 -v 0.029799 0.000590 0.009861 -v 0.009406 0.000544 0.001109 -v -0.036074 -0.002676 0.004669 -v 0.035714 -0.002337 0.000312 -v 0.039315 0.005788 0.008829 -v 0.044303 0.003685 0.011835 -v 0.042615 0.003658 0.013808 -v 0.020374 -0.017913 0.015800 -v -0.027996 0.004828 -0.034664 -v -0.034489 -0.000569 -0.028800 -v -0.033108 -0.001133 -0.028305 -v 0.030206 0.001755 0.011523 -v 0.040364 0.014989 0.021146 -v 0.024849 -0.018376 0.023007 -v -0.034542 -0.001097 -0.032024 -v -0.033352 -0.002690 -0.031684 -v -0.011291 -0.002266 -0.036509 -v 0.019128 0.014119 0.018583 -v 0.009748 0.015879 0.023326 -v -0.030677 0.000831 -0.023135 -v -0.030032 -0.000017 -0.022916 -v 0.025511 -0.017581 0.021539 -v 0.008844 -0.002015 0.005247 -v 0.008922 -0.002346 0.004929 -v -0.030150 -0.001414 -0.019923 -v -0.037492 0.003348 0.010996 -v -0.046585 0.005178 -0.021027 -v -0.036573 0.004118 0.003230 -v -0.039396 0.005757 -0.038245 -v 0.031669 0.016395 0.019268 -v 0.023079 0.016164 0.023904 -v -0.017520 0.011872 0.020329 -v -0.042702 0.004975 -0.037864 -v -0.014923 0.019504 0.023214 -v -0.023476 0.022262 0.023094 -v 0.026806 0.014893 0.014197 -v -0.006756 -0.000238 -0.020740 -v 0.016007 -0.002298 0.023614 -v -0.031354 0.011637 0.013749 -v 0.025131 0.012532 0.021986 -v 0.021472 -0.018286 0.019845 -v 0.038599 0.001234 -0.003401 -v -0.014923 0.006376 -0.026075 -v -0.019367 -0.004246 0.024669 -v 0.020850 0.002431 -0.015161 -v -0.018896 0.008215 -0.021009 -v 0.027231 0.002044 0.011160 -v 0.001814 0.013106 0.019728 -v 0.015431 0.004094 0.019244 -v -0.030375 -0.002354 -0.034280 -v -0.031014 -0.001682 -0.033193 -v 0.024376 0.002776 -0.011856 -v -0.035887 -0.003545 0.006700 -v -0.000974 -0.002907 -0.014954 -v -0.028332 0.013970 0.013897 -v -0.015313 -0.002717 -0.001089 -v 0.025839 0.003796 -0.015486 -v -0.016227 0.005792 -0.010004 -v -0.030362 0.001957 -0.030402 -v -0.020110 0.009000 -0.020114 -v -0.043594 0.004151 -0.037208 -v -0.043973 0.003793 -0.035826 -v 0.041422 0.009121 -0.000488 -v -0.027588 0.019681 0.021219 -v -0.010217 0.004087 -0.033858 -v -0.024861 0.007254 -0.034914 -v -0.017495 0.004626 0.001152 -v 0.025558 0.002617 -0.022309 -v 0.025750 0.020002 0.004976 -v -0.026595 0.008287 -0.028913 -v 0.025163 0.018841 0.003486 -v 0.026071 -0.016808 0.018132 -v 0.008677 0.003965 -0.007256 -v 0.016705 -0.018074 0.018759 -v -0.023222 0.008436 -0.028568 -v 0.009873 0.009839 0.019625 -v 0.009748 0.009298 0.019443 -v -0.044130 0.002894 -0.035979 -v -0.044113 0.002074 -0.034429 -v -0.029477 -0.000396 0.023733 -v 0.044129 0.002634 0.006371 -v -0.023373 0.001639 -0.026535 -v 0.052215 -0.001220 -0.017794 -v 0.037131 0.005962 0.010019 -v -0.024637 -0.000651 -0.014399 -v 0.046494 0.013098 0.009360 -v -0.017236 0.017809 0.022562 -v -0.036469 -0.002491 0.006084 -v 0.022216 0.016365 0.010811 -v 0.043691 0.000966 -0.018723 -v 0.044678 0.001114 -0.017540 -v -0.024962 0.001225 -0.013540 -v 0.047817 0.009550 0.005608 -v 0.052479 0.000286 -0.013141 -v 0.023735 -0.017603 0.018876 -v 0.022059 0.003323 -0.021246 -v 0.013323 0.003694 0.012870 -v -0.035195 0.011153 -0.030761 -v -0.045521 0.003630 -0.020746 -v -0.012280 -0.001081 0.002421 -v -0.006437 -0.003330 -0.008514 -v 0.023103 0.007597 0.010131 -v 0.011287 0.010336 0.022337 -v 0.018364 0.002768 -0.015732 -v 0.042479 0.016376 0.013017 -v -0.013720 0.005228 -0.033681 -v -0.030591 0.009556 -0.033316 -v 0.045620 -0.003311 -0.011654 -v 0.023368 -0.017331 0.018286 -v 0.022824 0.013472 0.020448 -v -0.023511 0.024549 0.016013 -v -0.021427 0.003598 -0.026286 -v 0.037531 -0.000979 0.018147 -v -0.025739 -0.000178 -0.020645 -v -0.026937 -0.001840 -0.020523 -v -0.024396 0.011936 0.004062 -v -0.000409 0.002651 -0.009430 -v -0.037043 0.006951 -0.039281 -v -0.042051 0.011629 -0.025166 -v -0.030853 0.008229 -0.003329 -v -0.003930 0.001985 -0.027132 -v -0.029910 0.005577 -0.019570 -v -0.035567 0.002937 -0.001390 -v -0.035098 0.004194 -0.000759 -v -0.047698 0.010046 -0.027366 -v 0.023203 0.012912 0.019491 -v 0.017258 -0.001833 -0.011317 -v -0.015748 0.010245 0.022666 -v 0.019397 0.004275 0.009508 -v -0.028625 -0.000928 -0.037631 -v -0.030025 -0.001245 -0.036949 -v -0.041208 0.005076 -0.033229 -v -0.040246 0.005413 -0.033738 -v 0.022940 0.015412 0.002599 -v 0.014542 0.003299 0.017940 -v -0.011441 0.010109 0.008820 -v 0.018946 0.009385 0.008093 -v -0.021704 0.008690 -0.003539 -v 0.022834 -0.017680 0.022245 -v -0.018760 0.002300 -0.037894 -v 0.022793 0.014942 0.003115 -v 0.036670 0.006305 0.008671 -v 0.025792 0.016480 0.015189 -v 0.042894 -0.003136 -0.005421 -v 0.001003 0.006955 0.012113 -v 0.009898 0.013986 0.021756 -v -0.014122 0.005595 -0.035156 -v 0.023625 0.014325 -0.001180 -v 0.022284 0.000412 -0.025532 -v -0.035393 0.011451 -0.023784 -v -0.001779 0.000006 -0.022863 -v -0.009009 0.003354 -0.031797 -v 0.021681 0.015692 0.019910 -v 0.040053 -0.001534 -0.017378 -v -0.008592 -0.001160 -0.033871 -v -0.021111 0.009405 -0.020943 -v -0.025688 -0.002023 -0.038378 -v 0.036395 0.002168 0.016335 -v 0.020179 -0.018156 0.019599 -v 0.043519 0.001997 0.004866 -v -0.008374 0.002280 0.002678 -v 0.028460 0.003256 -0.001229 -v 0.024587 0.013299 0.016473 -v -0.031389 0.009585 -0.019852 -v 0.037141 -0.005468 0.024670 -v -0.009435 -0.001730 -0.000205 -v -0.010704 -0.000246 -0.035945 -v -0.010557 0.016478 0.015903 -v -0.031132 0.007015 -0.034362 -v -0.041537 0.004670 -0.034594 -v -0.029159 0.006016 -0.024843 -v -0.003796 0.007862 0.006931 -v -0.006834 0.007406 0.005670 -v 0.039871 0.006581 -0.001440 -v -0.038873 0.013625 -0.020173 -v 0.046455 -0.002729 -0.020284 -v -0.001414 0.001391 0.022516 -v -0.026550 0.009614 -0.032957 -v -0.040022 0.008445 -0.025834 -v -0.013713 0.003036 -0.008072 -v 0.040102 0.004812 0.006969 -v 0.019811 0.010649 0.018215 -v 0.014079 0.006342 0.021261 -v -0.036173 0.005091 0.002497 -v -0.040273 0.013250 -0.024468 -v -0.007691 0.001867 0.001478 -v -0.008656 0.003966 -0.035421 -v -0.011851 0.002167 0.004510 -v -0.036296 0.003344 0.017200 -v 0.001312 0.010152 0.018817 -v 0.019895 0.009980 0.018601 -v -0.021829 -0.000762 -0.028364 -v -0.022499 -0.002358 -0.028451 -v -0.015820 0.005862 -0.027413 -v -0.036336 0.002499 -0.023258 -v -0.036276 0.002640 -0.023414 -v 0.017634 -0.017985 0.017847 -v -0.004212 -0.003406 -0.010946 -v -0.003536 -0.002178 -0.009722 -v -0.013471 0.014726 0.009850 -v -0.024443 0.007459 -0.028567 -v -0.015128 0.004553 0.004210 -v -0.014437 0.005836 -0.019694 -v 0.027677 0.014561 0.011913 -v -0.002999 0.006807 0.021037 -v 0.019567 -0.017838 0.016456 -v -0.034156 0.011782 -0.031252 -v -0.031985 0.011316 -0.030291 -v -0.037135 0.004131 -0.022736 -v 0.029934 -0.001142 0.008935 -v 0.019520 0.006533 0.008669 -v 0.019838 0.007255 0.008430 -v -0.012457 0.003739 -0.037314 -v -0.018191 -0.000642 -0.039042 -v 0.014686 0.000372 0.021758 -v -0.035379 -0.002343 -0.031106 -v 0.000500 0.000231 -0.030902 -v -0.007244 0.002635 -0.020988 -v -0.026193 0.012764 0.008091 -v 0.024307 0.011128 0.023559 -v 0.014041 0.000579 0.010626 -v -0.007949 0.003141 -0.033075 -v -0.042314 0.014575 -0.022948 -v -0.034318 0.002856 -0.022975 -v 0.023124 0.017640 0.022574 -v 0.028728 0.001572 0.010289 -v 0.015796 0.015871 0.022599 -v -0.027512 0.008646 -0.020552 -v 0.021749 -0.017270 0.020420 -v -0.039009 0.001487 -0.029782 -v 0.023938 0.003649 -0.017908 -v -0.036946 0.001261 -0.034107 -v -0.022986 0.009114 0.023927 -v -0.015587 0.002015 -0.037694 -v -0.005752 0.013405 0.015906 -v 0.019822 -0.001812 -0.003644 -v -0.037055 -0.000537 0.011618 -v 0.012503 0.010484 0.022182 -v -0.024237 0.002750 -0.013479 -v 0.020780 0.004554 0.009890 -v -0.030638 0.006691 0.022690 -v -0.022833 0.000350 -0.015704 -v 0.030480 0.015890 0.017954 -v 0.031673 0.015974 0.016139 -v -0.010874 0.004828 -0.032297 -v 0.021439 -0.017854 0.020377 -v -0.009589 0.012823 0.023779 -v -0.021802 0.008659 -0.004568 -v 0.012095 0.000998 -0.023893 -v -0.011467 0.000932 -0.009798 -v 0.043373 0.004561 0.017868 -v 0.019736 -0.000754 -0.026401 -v -0.012991 0.012420 0.020143 -v 0.033256 -0.002441 0.015790 -v 0.003550 -0.003078 -0.020380 -v 0.008185 -0.001928 0.006338 -v -0.012915 0.015124 0.011507 -v -0.010006 0.003629 -0.041179 -v -0.025863 -0.003746 -0.020991 -v 0.027499 0.012586 0.014935 -v -0.011243 0.004403 -0.020252 -v -0.044624 0.006305 -0.023134 -v -0.028112 -0.000290 -0.023914 -v -0.002103 0.009305 0.006927 -v 0.000892 0.011477 0.015469 -v 0.013355 0.003468 0.014515 -v 0.034724 0.005589 0.010932 -v -0.012518 -0.000804 -0.006870 -v -0.027061 0.005888 -0.009739 -v 0.044919 0.003427 0.009043 -v 0.023377 0.015201 0.021684 -v -0.000760 0.000686 -0.012131 -v -0.035961 -0.000812 0.015589 -v 0.021780 0.010998 0.022329 -v 0.011499 0.017400 0.022858 -v -0.026134 0.019022 0.024671 -v 0.028251 0.013252 0.009039 -v 0.028075 0.013411 0.010149 -v -0.022963 0.009799 -0.020256 -v -0.023578 0.009952 -0.001141 -v 0.040646 0.001223 -0.010010 -v -0.003675 0.010771 0.012143 -v 0.002837 0.003605 0.015932 -v -0.039420 -0.000992 -0.033445 -v 0.048333 -0.000954 -0.010983 -v -0.029143 -0.000343 -0.023168 -v -0.027906 0.001684 -0.038336 -v -0.004157 0.002077 -0.028826 -v 0.039913 0.006810 0.023061 -v 0.043653 -0.000670 -0.021674 -v -0.009290 0.002915 -0.037741 -v 0.029059 0.012376 0.002456 -v 0.020160 -0.003581 -0.010384 -v -0.004605 0.004027 -0.000495 -v 0.010860 0.002728 -0.009050 -v -0.035198 0.008922 0.014336 -v 0.021079 -0.001528 -0.006040 -v -0.007668 -0.001399 -0.000629 -v 0.038157 0.001262 -0.000172 -v 0.000101 0.013604 0.016976 -v 0.019105 0.002005 -0.014684 -v 0.015173 -0.001207 0.004762 -v 0.000701 0.007142 0.013816 -v -0.005587 0.004590 0.024669 -v -0.033275 0.000871 -0.022434 -v -0.034364 -0.002750 -0.030694 -v -0.003307 0.010468 0.009481 -v 0.048769 -0.000999 -0.012757 -v -0.040589 0.006485 -0.034248 -v 0.015010 0.007140 0.021233 -v 0.018617 0.002884 0.007937 -v -0.021493 0.008562 -0.029094 -v 0.023373 0.009499 -0.001389 -v -0.016605 0.014957 0.018895 -v -0.023164 -0.002440 -0.021269 -v 0.008348 -0.002561 0.006051 -v 0.047402 0.000779 -0.022748 -v -0.034138 0.009885 0.005307 -v -0.031107 0.002801 -0.008273 -v 0.022787 0.013299 0.004419 -v 0.023152 0.012187 0.001987 -v 0.023052 0.011891 0.021110 -v 0.010738 0.017818 0.021216 -v 0.023369 0.010814 -0.001552 -v -0.025762 0.006570 0.024229 -v -0.019742 0.008476 -0.031227 -v 0.048274 -0.000789 -0.021420 -v -0.025032 -0.003180 -0.028670 -v -0.025197 -0.003387 -0.028701 -v -0.036023 -0.002562 0.013155 -v 0.046337 -0.000624 -0.013034 -v 0.005206 -0.001043 -0.020649 -v -0.012845 0.005954 -0.038189 -v 0.037432 -0.003060 -0.017537 -v -0.027998 0.011209 -0.019940 -v 0.019015 0.007768 0.021432 -v -0.002964 0.008299 0.022841 -v 0.047214 0.011448 0.007569 -v 0.016857 -0.017629 0.019711 -v -0.020561 -0.000597 -0.019597 -v -0.007155 0.003049 -0.022386 -v -0.023491 0.002626 -0.038564 -v -0.006154 -0.001928 -0.005781 -v 0.018342 -0.017570 0.019545 -v 0.019526 -0.017528 0.019701 -v 0.045874 0.001177 -0.024192 -v -0.027229 -0.002859 -0.011093 -v 0.004877 -0.000665 0.013894 -v 0.039033 0.003915 0.023989 -v -0.014417 0.017279 0.017602 -v 0.042680 0.003704 0.017202 -v -0.024752 -0.001512 -0.025751 -v -0.019233 0.007373 -0.032952 -v -0.030072 0.002329 -0.037412 -v -0.015155 -0.002172 -0.000358 -v 0.037826 0.006140 0.011650 -v 0.019603 -0.003013 -0.011082 -v 0.000732 0.008754 0.013725 -v 0.047812 0.007747 0.002520 -v -0.034416 0.006203 -0.000428 -v -0.033469 0.007912 -0.000090 -v 0.024789 0.011726 0.014138 -v 0.025692 0.011783 0.012619 -v -0.004300 0.000054 0.024532 -v 0.013952 0.009621 0.019433 -v -0.038356 0.003807 -0.022870 -v 0.027995 0.011615 0.002436 -v -0.001851 0.006984 0.019590 -v -0.020161 0.021930 0.023081 -v 0.047190 -0.000256 -0.023217 -v -0.032486 0.000632 -0.033481 -v 0.041501 0.016816 0.016086 -v -0.015347 -0.002639 -0.041637 -v 0.050874 0.000568 -0.019027 -v 0.011478 -0.002316 -0.025583 -v 0.021960 0.007763 0.008653 -v -0.033689 0.002114 -0.035064 -v 0.047419 0.006203 0.008761 -v -0.039499 0.001215 -0.021136 -v -0.023201 0.013720 0.024268 -v 0.022835 0.006788 0.011803 -v 0.030483 0.002202 -0.000279 -v 0.021761 -0.017365 0.015909 -v -0.009921 0.000113 -0.035666 -v -0.003550 -0.000859 -0.026083 -v -0.010500 0.001604 0.004065 -v 0.052293 -0.000318 -0.012951 -v 0.028876 0.016009 0.009751 -v 0.020494 -0.000287 -0.011797 -v -0.034123 0.010432 0.011894 -v 0.025943 -0.003308 -0.026446 -v 0.032727 0.015948 0.015033 -v -0.037422 0.002167 0.014085 -v -0.000507 -0.000787 -0.034199 -v -0.034560 0.007830 -0.032516 -v 0.039870 0.002672 -0.007394 -v -0.009319 0.006223 0.004851 -v -0.001435 0.006289 0.019306 -v 0.009571 0.010582 0.018731 -v -0.018020 0.004709 -0.015629 -v 0.017011 0.003072 0.009743 -v -0.016930 0.019090 0.023285 -v -0.010985 0.005244 -0.039706 -v 0.049802 0.001442 -0.018610 -v -0.016105 0.014738 0.008016 -v -0.037772 0.002124 -0.037056 -v -0.031822 0.007025 -0.004450 -v -0.027772 0.010502 0.001033 -v -0.014508 -0.000449 -0.001557 -v 0.001949 0.004281 -0.009351 -v -0.037046 0.014764 -0.018727 -v -0.015855 0.003807 -0.019917 -v -0.043409 0.005181 -0.024013 -v -0.036081 0.006370 0.014589 -v 0.034843 0.008483 0.010579 -v -0.030806 0.005747 -0.006405 -v 0.023082 0.013997 0.019637 -v -0.023128 -0.002836 -0.028763 -v 0.016407 -0.017467 0.019633 -v -0.045771 0.008781 -0.026341 -v -0.025867 0.009429 -0.023420 -v 0.045534 0.003456 0.007338 -v 0.027372 0.003321 -0.000397 -v 0.013049 0.004743 0.015143 -v -0.042110 0.005863 -0.038126 -v -0.021077 0.005345 -0.021703 -v 0.051722 -0.001440 -0.016057 -v -0.014273 -0.000387 0.002169 -v -0.027443 0.003661 -0.037749 -v -0.006309 0.003232 -0.035758 -v 0.019304 -0.001318 -0.011771 -v 0.008021 0.003827 -0.003040 -v 0.042005 0.011028 0.021383 -v -0.036878 0.006102 0.005049 -v 0.024972 0.013032 -0.001860 -v -0.031113 0.001420 -0.035553 -v -0.038943 0.001419 -0.022155 -v 0.043273 0.002518 0.019769 -v -0.021499 0.023132 0.019407 -v 0.035905 0.015884 0.012068 -v 0.037293 -0.004110 0.019027 -v -0.004197 0.006047 0.002448 -v -0.025687 0.020118 0.024296 -v 0.026126 0.012814 0.014099 -v 0.026272 0.012530 0.014192 -v -0.048224 0.011044 -0.027375 -v -0.034448 0.010676 -0.028551 -v 0.016802 -0.001027 0.024659 -v -0.009846 0.011935 0.023004 -v -0.035845 0.001867 -0.023180 -v -0.035902 0.001556 -0.023188 -v -0.002986 0.011161 0.013906 -v -0.012875 0.009971 0.022729 -v 0.039787 0.012758 0.004947 -v -0.029004 0.011849 -0.019889 -v 0.023079 -0.017247 0.017143 -v -0.035003 0.004048 -0.002292 -v 0.036050 0.007535 0.009378 -v 0.036412 0.007010 0.009070 -v -0.042786 0.011220 -0.025842 -v -0.016455 0.001228 -0.000154 -v 0.024772 0.007664 -0.006537 -v -0.010339 -0.015315 0.024669 -v -0.042771 0.005424 -0.037190 -v -0.041584 0.006904 -0.037338 -v 0.016337 0.005952 0.009631 -v 0.019842 0.003169 0.007558 -v -0.017711 0.018745 0.023560 -v -0.019099 0.019061 0.024666 -v 0.015292 0.003190 -0.020751 -v -0.035728 0.008220 -0.038288 -v -0.005685 -0.017273 -0.030149 -v -0.025535 0.003713 -0.012534 -v -0.004925 -0.017247 -0.030406 -v 0.042747 0.016147 0.015821 -v 0.023336 0.003519 -0.020017 -v 0.024830 0.003400 -0.020527 -v 0.025713 0.014427 0.015638 -v 0.000813 -0.002425 0.019585 -v 0.024080 -0.016259 0.021505 -v 0.023576 0.019350 0.010401 -v 0.023666 0.019476 0.009561 -v 0.023175 0.002988 0.005633 -v 0.027311 0.011926 0.010854 -v -0.030288 0.011964 0.008102 -v -0.004242 0.001448 -0.032564 -v -0.032944 0.009278 0.018153 -v 0.024980 -0.016761 0.021697 -v 0.048627 -0.000822 -0.011765 -v -0.036116 0.011432 -0.035238 -v 0.009713 0.014658 0.022642 -v 0.013283 0.000155 0.012971 -v -0.011218 0.013237 0.022320 -v -0.012181 0.014123 0.021332 -v -0.003206 -0.000129 -0.026801 -v 0.009807 0.004071 -0.012779 -v 0.013842 0.004552 0.017028 -v -0.040367 0.003995 -0.023255 -v -0.005472 -0.000314 -0.023146 -v 0.034663 0.006094 0.010669 -v 0.002959 0.005042 -0.006652 -v 0.047765 0.000325 -0.021572 -v 0.010221 0.013967 0.022305 -v 0.030268 0.015121 0.002403 -v -0.026298 -0.000649 -0.025267 -v -0.018369 0.004713 -0.027700 -v -0.031634 0.000641 -0.022482 -v -0.031611 0.009266 -0.030240 -v 0.039077 0.003972 0.014907 -v 0.040274 0.008475 0.023133 -v -0.014195 -0.000174 -0.004482 -v 0.012081 -0.001905 0.012960 -v 0.012055 -0.001861 0.012992 -v -0.004852 0.017191 0.021000 -v -0.045325 0.009915 -0.026002 -v 0.026018 0.010504 0.012562 -v 0.001837 0.012545 0.018035 -v 0.022610 0.017390 0.008026 -v -0.037870 0.006351 -0.039347 -v -0.020935 0.008153 -0.005330 -v -0.008424 -0.002198 -0.002078 -v -0.016581 0.019668 0.013136 -v -0.039624 0.003004 -0.029639 -v 0.023552 0.010421 0.007035 -v -0.041652 0.004615 -0.024456 -v 0.044696 -0.000760 -0.001699 -v -0.033324 0.008289 -0.031434 -v -0.017143 0.006953 -0.020164 -v -0.001909 0.009472 0.024648 -v -0.016207 0.005029 -0.006155 -v -0.003479 0.008446 0.022460 -v -0.003756 0.008494 0.022639 -v -0.022983 -0.001751 -0.016185 -v -0.027938 0.000406 -0.019946 -v 0.026362 0.012443 0.014083 -v -0.034401 0.010429 -0.028780 -v -0.021075 0.006368 -0.011456 -v 0.017382 -0.017113 0.018384 -v 0.039646 -0.001077 -0.012527 -v -0.024614 0.008710 -0.032311 -v 0.028356 0.013009 0.004844 -v -0.036409 0.007239 0.013541 -v -0.024297 0.005219 -0.037725 -v -0.037367 -0.003063 -0.030273 -v -0.034455 0.002459 0.020399 -v 0.019600 0.001833 -0.024502 -v 0.016413 0.000370 0.024155 -v -0.043713 0.010347 -0.024918 -v 0.043980 0.003575 0.008690 -v -0.009429 0.004219 -0.022422 -v -0.011377 -0.001594 0.001860 -v 0.010333 0.002615 -0.020514 -v 0.037349 0.005673 0.008033 -v 0.001601 -0.000586 -0.029673 -v -0.036685 0.003979 -0.023633 -v 0.036282 -0.000266 -0.011570 -v -0.006346 -0.016913 -0.029619 -v 0.014881 0.001907 0.020314 -v -0.004394 -0.017045 -0.029933 -v 0.047046 0.003737 -0.001930 -v -0.028985 -0.000134 -0.037567 -v -0.007317 0.015501 0.024666 -v -0.041410 0.005877 -0.025047 -v 0.038122 0.002433 0.001503 -v -0.027705 0.004357 -0.025235 -v -0.027770 0.005069 -0.025230 -v -0.026392 0.004364 -0.025520 -v 0.026334 0.011593 0.011003 -v -0.041960 0.006910 -0.025941 -v 0.028728 0.001706 -0.021959 -v 0.038655 -0.001952 -0.011039 -v -0.016759 0.006995 -0.021518 -v 0.042022 -0.001488 0.023056 -v -0.041214 0.002559 -0.032524 -v -0.032960 -0.001843 -0.004665 -v -0.013559 0.004463 -0.036118 -v -0.027141 0.005496 -0.034937 -v -0.027600 0.005278 -0.034281 -v -0.004626 -0.016473 -0.031148 -v 0.045621 0.006386 0.013047 -v 0.040514 0.014789 0.007362 -v -0.004796 0.002118 -0.029137 -v -0.005486 -0.016894 -0.031382 -v -0.003578 0.016012 0.019752 -v 0.022606 0.012994 0.019281 -v -0.032386 0.010820 -0.029861 -v -0.003316 -0.000336 -0.032935 -v 0.038830 0.017173 0.017626 -v 0.025662 0.015365 0.015868 -v -0.014302 0.019579 0.021278 -v -0.039774 0.002537 -0.035473 -v -0.037403 0.008929 -0.037268 -v -0.017424 0.005185 -0.021276 -v -0.017633 0.021137 0.020857 -v -0.002180 0.014276 0.015097 -v -0.003359 0.008381 0.023063 -v 0.031575 0.000170 -0.021546 -v -0.007523 -0.000989 -0.032974 -v -0.023011 0.014215 0.010259 -v -0.004007 0.006023 0.022884 -v 0.010925 0.003653 -0.016562 -v -0.006169 -0.000694 -0.002291 -v 0.017620 0.003491 -0.018576 -v -0.028149 0.014329 0.016518 -v -0.028287 0.013815 0.016912 -v 0.013288 0.005097 0.021326 -v -0.023888 0.012852 0.004753 -v -0.018205 0.000967 -0.038582 -v -0.037256 0.009707 -0.019432 -v 0.047339 0.011411 0.009510 -v 0.037693 -0.002830 -0.015541 -v 0.032095 0.003348 -0.011087 -v 0.042307 0.014797 0.019223 -v -0.021814 0.000679 -0.029328 -v -0.018434 0.011609 0.020951 -v -0.041652 0.003256 -0.033320 -v -0.010353 0.006038 0.004776 -v 0.038225 0.001430 0.000582 -v 0.045243 0.000178 -0.006747 -v 0.026744 -0.016501 0.019614 -v -0.003452 0.008355 0.007471 -v 0.016504 -0.017266 0.019731 -v 0.038753 0.005137 0.002056 -v -0.037138 0.007766 -0.037652 -v -0.026725 0.009441 -0.002605 -v -0.007826 -0.002708 -0.031837 -v -0.002179 0.013728 0.014523 -v 0.009812 -0.003454 0.002373 -v 0.017255 -0.017238 0.018962 -v 0.006708 -0.001706 -0.022523 -v 0.039931 -0.002465 -0.014381 -v -0.013373 -0.001707 -0.002591 -v -0.013694 -0.001530 -0.001561 -v -0.039717 -0.001041 -0.030890 -v -0.033007 0.005005 -0.031495 -v -0.001252 0.001328 -0.023731 -v -0.026811 -0.002076 -0.038060 -v 0.044809 0.004474 0.014040 -v -0.036298 0.007881 -0.024546 -v -0.023825 -0.002977 -0.021134 -v -0.042242 0.004732 -0.020101 -v 0.023232 0.001563 -0.011570 -v 0.017051 -0.017125 0.019009 -v 0.009259 0.002869 -0.004941 -v -0.044483 0.010754 -0.025802 -v 0.026418 0.009311 -0.005487 -v -0.025062 0.012729 0.022374 -v 0.023629 0.008495 -0.002528 -v -0.012247 0.005380 -0.019159 -v -0.013377 -0.000868 -0.005131 -v -0.012407 -0.001348 -0.004782 -v 0.009503 0.003384 -0.006952 -v 0.013723 0.003494 -0.018526 -v -0.039383 0.001301 -0.018169 -v 0.022978 0.010590 0.022703 -v 0.024119 0.012108 0.021906 -v 0.031734 0.001330 -0.019917 -v -0.008112 0.008651 0.023123 -v 0.046320 0.006408 -0.001978 -v -0.021080 0.010103 0.023030 -v -0.034376 0.006265 -0.001504 -v -0.009434 -0.002107 -0.000499 -v -0.009515 -0.002509 -0.000039 -v -0.034997 -0.000312 -0.018390 -v 0.041305 -0.000871 -0.021061 -v -0.029406 -0.002489 -0.008761 -v -0.025367 -0.002809 -0.028791 -v -0.025369 -0.002925 -0.028753 -v 0.011195 0.015603 0.018967 -v 0.010965 0.014881 0.019135 -v 0.017988 -0.017052 0.017728 -v 0.041930 0.003938 0.008010 -v -0.013509 0.000614 0.003817 -v 0.021959 0.005364 0.010643 -v -0.031492 -0.002688 -0.022282 -v 0.004041 0.005818 0.003880 -v -0.038017 0.016272 -0.020002 -v -0.037782 0.015966 -0.018906 -v 0.023600 0.011995 0.021293 -v 0.009651 0.006109 0.020437 -v -0.015369 0.018534 0.017670 -v -0.042635 0.000466 -0.032082 -v 0.010141 0.009629 0.020569 -v 0.010447 0.009342 0.020953 -v 0.042836 0.000138 -0.015118 -v 0.016090 0.002654 0.010200 -v -0.041443 0.000327 -0.030867 -v 0.045396 0.002253 0.004741 -v 0.026120 0.019598 0.002670 -v -0.032435 0.008193 -0.034670 -v 0.002153 0.006560 0.005672 -v -0.031629 -0.002172 -0.018313 -v -0.019326 0.007043 -0.009066 -v -0.031864 0.002196 -0.006868 -v -0.023648 0.004555 -0.021214 -v 0.015623 0.003899 0.010306 -v -0.007337 -0.016157 -0.030438 -v -0.016682 0.002253 0.001878 -v 0.013689 0.005599 0.013062 -v -0.039979 0.008336 -0.034490 -v -0.045694 0.007478 -0.021160 -v 0.014108 -0.001197 0.006902 -v -0.020202 0.009165 -0.021390 -v -0.039626 0.012051 -0.037604 -v -0.016396 0.012232 0.019101 -v 0.042996 0.003989 0.009844 -v 0.043537 0.013001 0.004182 -v -0.027059 0.006854 0.024211 -v -0.023329 -0.000597 -0.020764 -v 0.000161 -0.001868 -0.015451 -v 0.018425 0.005754 0.023089 -v -0.002539 0.008628 0.022776 -v -0.005915 -0.016904 -0.036007 -v -0.006458 -0.016654 -0.035298 -v -0.001650 0.005824 -0.000341 -v -0.005479 -0.016683 -0.035706 -v -0.027299 0.017316 0.016786 -v -0.034428 -0.002056 -0.001301 -v -0.040937 0.011749 -0.025244 -v -0.006416 -0.016541 -0.036647 -v -0.000445 0.008515 0.021294 -v -0.032355 0.012658 -0.019467 -v 0.041387 -0.002524 -0.003497 -v 0.005638 0.004825 -0.008666 -v 0.015681 0.009921 0.013859 -v -0.039593 0.006303 -0.033661 -v -0.005185 -0.002261 -0.006794 -v 0.017000 0.011584 0.019781 -v 0.038818 -0.000027 -0.009101 -v -0.001777 -0.003742 0.021966 -v -0.037533 0.003683 0.007134 -v 0.007033 0.015781 0.024026 -v 0.046392 0.004943 -0.002897 -v 0.010821 0.014781 0.022888 -v 0.032344 0.014189 0.013374 -v 0.026471 -0.015981 0.020402 -v 0.036973 0.017258 0.016208 -v -0.012599 0.015132 0.013970 -v -0.004387 0.001635 -0.035413 -v 0.026253 0.002042 0.009333 -v -0.044936 0.010537 -0.022172 -v 0.019317 0.001227 0.001937 -v -0.010817 0.015088 0.013584 -v -0.038477 0.011178 -0.033811 -v -0.011123 0.015037 0.014973 -v -0.010402 0.001992 -0.040353 -v 0.026139 0.000702 -0.024289 -v -0.015738 0.014124 0.007374 -v -0.036276 0.013422 -0.033568 -v -0.043082 0.001466 -0.032692 -v -0.011574 -0.002527 -0.037047 -v -0.026334 0.011303 -0.030887 -v -0.012384 -0.001903 0.002773 -v -0.015232 0.007701 0.004983 -v -0.013923 -0.000490 -0.002597 -v -0.014634 -0.000293 0.001525 -v -0.006315 -0.001788 -0.003777 -v -0.026934 0.000299 -0.012486 -v -0.011946 0.004501 -0.030764 -v 0.051245 -0.000002 -0.018563 -v -0.025700 0.001711 -0.029755 -v 0.035836 -0.001645 0.000833 -v 0.023771 0.007355 -0.010388 -v -0.035172 0.012565 -0.034461 -v -0.011796 -0.001489 -0.007616 -v -0.036991 0.003426 -0.023428 -v 0.020670 0.009997 0.007309 -v 0.008668 -0.002652 0.005342 -v 0.006145 -0.001889 0.011081 -v 0.037837 0.017033 0.017164 -v -0.029577 0.008085 0.022679 -v 0.026933 -0.016249 0.018619 -v -0.020274 0.013724 0.023872 -v -0.014422 0.004618 -0.010106 -v 0.001005 0.006401 0.014307 -v -0.024745 -0.002558 -0.020995 -v -0.030514 0.010729 0.018927 -v -0.027110 -0.002700 -0.020772 -v -0.006782 0.007485 0.023298 -v -0.032550 -0.003454 -0.031390 -v -0.020674 0.007841 -0.006910 -v 0.038495 0.004480 0.014828 -v -0.033892 -0.000150 -0.022454 -v -0.037296 0.004647 0.014013 -v -0.023293 -0.001047 -0.015489 -v 0.043864 0.002436 -0.007597 -v -0.002885 0.004298 -0.002902 -v -0.035848 0.013166 -0.034495 -v -0.020046 0.008796 -0.000277 -v 0.000580 0.012748 0.015564 -v -0.022297 0.005560 -0.037035 -v -0.016700 0.006512 -0.030507 -v 0.011234 0.009064 0.021585 -v -0.023815 -0.001709 -0.029088 -v -0.004910 0.009548 0.011788 -v 0.021661 0.016033 0.021021 -v 0.038051 0.004816 0.006071 -v -0.013649 -0.002931 0.005540 -v 0.051366 -0.000586 -0.020983 -v -0.045708 0.004876 -0.019391 -v -0.021486 -0.003110 -0.018309 -v 0.023499 0.007831 -0.009541 -v -0.005392 0.002397 -0.036246 -v 0.021988 0.016982 0.023128 -v 0.015138 0.014169 0.023008 -v 0.017120 0.014210 0.023687 -v -0.007916 0.007348 0.005450 -v 0.017006 0.014870 0.020210 -v -0.030952 -0.001629 -0.023133 -v 0.043221 0.013855 0.005719 -v -0.005284 0.002133 -0.032533 -v 0.015600 0.000371 0.006471 -v -0.046285 0.006267 -0.020288 -v -0.023995 0.007916 -0.035574 -v 0.020702 -0.016855 0.015724 -v -0.041990 0.001945 -0.036368 -v -0.004066 -0.001649 -0.008371 -v -0.012717 0.000546 -0.036898 -v -0.041762 0.005147 -0.035437 -v 0.028255 0.000504 0.008588 -v -0.019718 0.009027 0.000808 -v -0.022693 0.021630 0.023778 -v -0.015716 0.015709 0.018665 -v 0.018311 -0.000017 0.000889 -v 0.048039 -0.000459 -0.011468 -v 0.022278 0.001742 -0.004812 -v 0.030051 0.000755 0.010923 -v -0.017672 0.006785 -0.025387 -v 0.026383 0.018734 0.001069 -v -0.004286 -0.016395 -0.030105 -v -0.011641 0.005132 -0.021162 -v -0.003120 0.009103 0.024664 -v 0.045608 0.000246 -0.000848 -v -0.028594 0.000823 -0.038064 -v 0.011155 0.000488 -0.005559 -v -0.028812 0.009312 -0.033645 -v 0.022621 0.004307 0.009508 -v 0.022614 0.005133 0.010451 -v -0.005805 0.002530 -0.026299 -v -0.007321 0.003635 -0.026709 -v -0.039788 -0.000298 -0.030058 -v 0.026988 0.014472 -0.001807 -v -0.012230 0.001249 -0.037260 -v -0.010917 0.001740 -0.038313 -v 0.024827 0.003313 -0.001417 -v -0.036361 -0.001665 0.013463 -v 0.032612 0.000920 -0.001033 -v 0.028260 0.012398 0.005090 -v -0.007005 -0.016762 -0.036007 -v -0.019630 0.005129 -0.021923 -v 0.002882 0.001567 -0.016351 -v -0.011969 0.005763 -0.038853 -v -0.038410 0.013446 -0.035907 -v 0.028428 0.015596 0.011022 -v 0.036945 0.017002 0.019376 -v 0.023991 0.002675 -0.007076 -v -0.032364 0.002304 0.022316 -v -0.005561 -0.016455 -0.036410 -v 0.012095 -0.001865 0.012960 -v 0.044726 0.009082 0.017247 -v -0.014291 0.009705 0.023455 -v 0.029684 0.003779 -0.005461 -v 0.020325 0.005059 0.009775 -v -0.016986 0.004879 0.002767 -v -0.021456 -0.000482 -0.017626 -v -0.022818 0.007145 -0.026097 -v 0.023671 0.011442 -0.000288 -v 0.023949 0.012049 -0.000978 -v -0.011011 0.008561 0.023957 -v 0.037028 -0.001851 -0.013188 -v 0.042945 0.002323 0.022669 -v -0.035209 0.004995 -0.038833 -v 0.034612 0.015002 0.012085 -v 0.034946 -0.000166 -0.003385 -v -0.004259 0.008929 0.009301 -v 0.001030 0.013323 0.022146 -v -0.037923 0.007662 -0.034247 -v -0.034148 0.011745 -0.023279 -v -0.039706 0.002516 -0.029522 -v -0.022601 0.004935 -0.037294 -v -0.021444 0.004886 -0.037749 -v 0.028318 0.013235 -0.001515 -v 0.039428 -0.002748 -0.016015 -v -0.001459 0.015097 0.024668 -v -0.024764 0.006261 -0.021523 -v 0.035126 -0.002744 -0.019889 -v 0.022282 -0.016568 0.020231 -v 0.032558 0.016335 0.016665 -v -0.000172 0.000136 -0.023600 -v -0.036669 0.004084 0.002065 -v 0.009415 0.005345 0.022788 -v 0.035310 0.016485 0.014230 -v -0.019113 0.006542 -0.034889 -v -0.002871 0.005519 0.021939 -v -0.014621 0.018204 0.013656 -v 0.010355 0.009745 0.021624 -v 0.039331 -0.002931 -0.015655 -v -0.032844 0.010873 0.011545 -v -0.040003 0.010337 -0.038360 -v -0.023572 0.008324 -0.025384 -v -0.010557 0.004508 -0.027811 -v 0.047424 -0.002399 -0.020139 -v -0.015292 0.006364 -0.020465 -v 0.046480 -0.002372 -0.011103 -v 0.020058 -0.017030 0.019803 -v 0.020798 0.002702 0.005391 -v -0.035859 0.000230 -0.028707 -v -0.024455 0.002109 -0.026143 -v -0.016022 0.001983 0.003023 -v -0.038192 0.007707 -0.019386 -v 0.033104 -0.000498 0.003733 -v -0.033843 0.001597 -0.022458 -v -0.003403 0.001340 -0.023314 -v -0.003343 0.000369 -0.022892 -v -0.009877 0.004327 -0.040516 -v -0.010248 0.004611 -0.040087 -v -0.016471 0.009721 0.023480 -v 0.033495 0.003879 0.013861 -v -0.016497 0.020807 0.017821 -v 0.049230 -0.000636 -0.012997 -v -0.041855 0.001087 -0.017737 -v 0.017959 -0.016932 0.018235 -v 0.024390 -0.016815 0.018415 -v -0.004182 0.005179 0.000703 -v -0.020876 0.022402 0.015153 -v 0.006769 0.002845 0.005302 -v 0.014463 0.016418 0.020817 -v -0.010666 0.003629 -0.039415 -v 0.008843 0.015748 0.021009 -v -0.032209 0.008552 -0.030610 -v -0.000037 0.007473 0.017193 -v -0.030086 -0.002518 -0.027683 -v 0.008707 0.010251 0.021165 -v 0.008268 0.010333 0.021591 -v -0.024361 -0.001531 -0.029353 -v -0.034388 0.000940 0.020243 -v 0.036086 -0.002916 0.017405 -v -0.013651 0.009643 0.007213 -v 0.047666 -0.000760 -0.021612 -v 0.039500 -0.003440 -0.016744 -v 0.009791 0.009919 0.022328 -v -0.018362 0.004600 -0.028075 -v -0.018180 0.003568 -0.018015 -v 0.006627 0.003712 -0.015108 -v 0.013730 -0.003166 0.005379 -v 0.009574 0.013375 0.021270 -v -0.019872 0.007878 -0.019893 -v -0.002520 0.016179 0.019806 -v -0.034999 -0.000864 0.017813 -v 0.019727 -0.016689 0.016213 -v 0.046879 0.001108 -0.023935 -v 0.023072 -0.016273 0.016273 -v -0.025405 0.015992 0.014934 -v -0.023301 0.012746 0.023642 -v -0.021702 0.012270 0.022726 -v -0.038553 0.001325 -0.029427 -v -0.016733 0.018120 0.022551 -v 0.027637 0.003907 -0.014672 -v -0.010788 0.004626 -0.040476 -v 0.040716 0.003086 0.024385 -v -0.024565 0.013092 0.005901 -v -0.007606 -0.016563 -0.029543 -v -0.007344 -0.016556 -0.029177 -v -0.014309 -0.001164 -0.000417 -v -0.022350 0.014337 0.011333 -v -0.037004 -0.001400 0.009017 -v 0.039446 0.001694 -0.008117 -v 0.013693 0.000120 0.011166 -v 0.037209 0.006142 0.011344 -v 0.039988 -0.003534 -0.017700 -v -0.011163 0.005003 -0.028767 -v 0.025361 0.010678 0.001508 -v -0.030453 -0.003409 -0.036591 -v -0.004169 0.001735 -0.023219 -v 0.040102 -0.000699 0.018872 -v 0.020041 0.015460 0.018755 -v 0.001727 0.013589 0.019238 -v 0.050669 0.000742 -0.018438 -v -0.020411 0.000396 -0.020581 -v 0.037398 0.015018 0.022410 -v -0.007836 -0.016122 -0.030978 -v 0.036176 -0.001976 0.017555 -v -0.037830 0.001719 0.010265 -v -0.006125 -0.016467 -0.031843 -v -0.027247 0.007386 -0.033266 -v -0.004973 -0.016109 -0.031675 -v -0.040644 0.014784 -0.022425 -v -0.018474 0.014092 0.005954 -v -0.039554 0.003230 -0.031545 -v -0.030441 0.000288 -0.035298 -v -0.001300 -0.000647 0.022545 -v 0.022231 0.015412 0.009290 -v 0.021967 0.015999 0.008612 -v -0.018722 0.015677 0.023972 -v -0.031743 -0.000346 -0.019341 -v -0.017874 0.012930 0.020092 -v -0.005647 0.003285 0.000316 -v -0.042915 0.006438 -0.024623 -v -0.021143 -0.000974 -0.018878 -v 0.044596 -0.001077 -0.008165 -v 0.009539 0.009514 0.019265 -v 0.029467 0.000889 0.009509 -v 0.049454 0.000977 -0.016500 -v 0.009222 0.012265 0.019898 -v 0.009297 0.011700 0.019070 -v 0.013837 0.007552 0.021632 -v -0.018826 0.020134 0.024191 -v 0.022363 0.011731 0.022083 -v -0.032587 0.010973 -0.023059 -v -0.009317 -0.015756 -0.035525 -v -0.008244 -0.016046 -0.036189 -v 0.038832 0.013117 0.006252 -v -0.014346 -0.002257 -0.041450 -v 0.048056 0.006648 0.002832 -v -0.016276 -0.003310 -0.040902 -v -0.026727 -0.003399 0.023652 -v -0.035630 0.006808 0.003368 -v -0.036823 0.011291 -0.031343 -v -0.031360 -0.001678 -0.007278 -v -0.031740 -0.001998 -0.006075 -v 0.000940 0.014798 0.022062 -v -0.012318 0.009709 0.007927 -v -0.032346 0.005031 -0.024453 -v -0.043163 0.003746 -0.022832 -v -0.016206 0.005491 -0.007633 -v -0.025602 0.006548 -0.029201 -v -0.025204 0.020816 0.015608 -v -0.023569 0.021453 0.014491 -v -0.032203 0.006874 -0.019060 -v -0.020460 0.001751 -0.038537 -v -0.001647 0.011993 0.013667 -v 0.040251 0.017084 0.015852 -v 0.027997 0.013188 0.008902 -v 0.032310 -0.000410 0.002216 -v 0.039967 0.010412 0.002529 -v 0.001458 0.013405 0.018198 -v 0.037010 0.013653 0.008945 -v -0.042528 0.001756 -0.017474 -v -0.005184 0.002441 -0.024802 -v -0.039757 0.009998 -0.025740 -v 0.035106 -0.000698 0.001431 -v 0.033609 0.015379 0.022697 -v -0.018948 0.007209 -0.020611 -v -0.032447 -0.001742 0.020985 -v -0.017211 0.020238 0.014886 -v -0.021658 0.022964 0.021725 -v 0.030859 0.003677 -0.010737 -v -0.025435 0.014028 0.023620 -v -0.034701 -0.003914 0.014292 -v 0.025043 0.003278 -0.009082 -v 0.014947 0.003523 -0.018742 -v -0.015372 0.006047 -0.028768 -v -0.017342 0.005125 -0.003254 -v 0.033783 0.002674 -0.009583 -v -0.042226 0.010640 -0.026908 -v 0.013408 0.003620 0.015642 -v -0.025237 -0.002959 -0.028792 -v -0.000712 0.000966 -0.024441 -v 0.024606 0.009645 0.009671 -v -0.027458 0.010722 -0.021726 -v -0.027509 0.014862 0.014053 -v -0.043953 0.012587 -0.022280 -v -0.031390 0.012357 -0.020665 -v 0.019123 -0.015693 0.017499 -v 0.023733 0.011301 0.000343 -v -0.032964 0.003936 -0.005528 -v -0.020336 0.009597 0.001596 -v -0.019724 0.007319 -0.025277 -v 0.009809 0.012362 0.019177 -v -0.014644 0.019251 0.021183 -v 0.025491 0.009150 -0.009432 -v -0.041123 0.013470 -0.024258 -v -0.043605 0.007055 -0.024884 -v 0.045513 0.007147 -0.002231 -v -0.008533 0.015015 0.016685 -v 0.011656 0.005808 0.019983 -v -0.006565 -0.002466 -0.028586 -v -0.044224 0.003991 -0.019109 -v -0.013944 0.004260 -0.019565 -v -0.026968 0.009867 -0.029043 -v -0.025052 0.008415 -0.028573 -v 0.015881 -0.002107 0.002734 -v -0.033168 -0.003191 -0.027277 -v -0.003635 0.014439 0.019165 -v -0.023411 0.009199 -0.023094 -v 0.016736 0.003422 0.010011 -v -0.032670 -0.003226 0.019959 -v -0.036747 -0.002079 0.007918 -v 0.008640 0.009710 0.023226 -v -0.016564 0.009291 0.005367 -v -0.026301 0.002290 -0.020540 -v -0.014752 0.018698 0.014948 -v 0.008756 0.011503 0.019780 -v -0.034280 0.004133 -0.037792 -v -0.030626 0.000648 -0.019380 -v 0.020282 0.003212 -0.017154 -v -0.035625 0.008391 0.011179 -v 0.045935 0.003754 -0.004517 -v 0.045535 0.005786 -0.003369 -v -0.005097 0.008893 0.010310 -v 0.000061 0.005715 0.017523 -v -0.000150 0.006785 0.003322 -v -0.038530 0.006843 -0.024849 -v -0.010267 0.015027 0.015524 -v 0.035896 -0.000338 -0.014329 -v -0.025223 -0.003407 -0.028506 -v 0.039720 0.016630 0.012147 -v 0.018256 0.011489 0.009680 -v -0.034309 0.008864 0.002494 -v -0.038413 0.002631 -0.036953 -v 0.029402 0.012754 0.003745 -v -0.039414 0.012623 -0.037019 -v -0.004180 0.000837 -0.035562 -v 0.031705 0.002468 -0.017612 -v 0.007990 0.009958 0.023971 -v 0.002226 0.006229 0.003793 -v -0.000862 0.014603 0.017050 -v -0.017475 0.006175 -0.035434 -v -0.037514 0.010805 -0.023732 -v 0.016021 0.004866 0.019763 -v -0.038898 0.001719 -0.023056 -v -0.022821 0.004556 -0.013203 -v -0.016986 0.017394 0.021345 -v -0.010565 0.003713 -0.022046 -v -0.016905 0.012055 0.019687 -v -0.004632 -0.015995 -0.029665 -v -0.004038 0.008628 0.023108 -v -0.003570 0.008671 0.023412 -v 0.038497 0.004293 0.005851 -v -0.023955 0.008128 -0.007666 -v -0.002613 0.007432 0.020773 -v 0.011377 -0.000126 -0.004868 -v -0.002816 -0.002067 -0.010970 -v -0.004921 -0.001007 -0.005632 -v 0.044152 0.000857 -0.021069 -v -0.032253 0.002373 -0.024072 -v 0.028497 0.014513 -0.000737 -v 0.042059 0.003856 0.013842 -v -0.040618 -0.000281 -0.032761 -v -0.010206 0.003010 -0.021024 -v -0.005640 -0.000625 -0.023135 -v -0.004569 -0.015899 -0.031138 -v -0.013583 0.001786 -0.038722 -v 0.010593 0.009304 0.021520 -v 0.038805 0.010226 0.024327 -v -0.007134 -0.016023 -0.032076 -v -0.015279 -0.010849 0.024669 -v 0.046735 -0.003122 -0.013084 -v 0.048026 -0.002302 -0.012982 -v -0.037414 0.001117 0.011089 -v -0.035609 0.011470 -0.035161 -v -0.007398 -0.016333 -0.034941 -v -0.007686 0.001256 -0.020669 -v -0.000674 0.006554 0.002003 -v -0.006313 -0.015669 -0.034818 -v -0.001279 0.008419 0.020789 -v 0.017613 -0.001790 0.000338 -v -0.027085 0.019559 0.017271 -v -0.005483 -0.015902 -0.035318 -v -0.028161 0.012823 0.012559 -v -0.012053 0.015416 0.014767 -v 0.010624 0.002767 -0.008087 -v -0.044072 0.011867 -0.022127 -v 0.030330 -0.001178 0.007847 -v -0.035118 0.005615 -0.024356 -v -0.018591 0.005138 -0.027423 -v 0.030360 0.016653 0.005212 -v 0.027084 0.002386 0.003687 -v -0.029226 -0.000782 -0.010172 -v 0.007981 0.009880 0.023335 -v 0.020858 0.010326 0.022785 -v -0.014610 0.021120 0.021243 -v -0.033975 -0.003341 0.017373 -v -0.038450 0.004632 -0.039078 -v -0.024822 -0.003616 -0.013320 -v 0.048596 -0.001474 -0.011344 -v -0.030414 0.009934 -0.029858 -v -0.012285 0.000375 0.003976 -v -0.040178 0.014305 -0.023594 -v 0.009021 0.000030 0.002879 -v 0.034650 0.013520 0.011317 -v -0.007330 -0.000897 -0.000305 -v 0.023498 -0.015760 0.020719 -v 0.013860 0.002197 0.015701 -v -0.000504 0.014340 0.016162 -v 0.007783 0.015924 0.022428 -v 0.027873 0.003201 0.012016 -v 0.046696 -0.002804 -0.011730 -v 0.038824 -0.002064 -0.011553 -v 0.008519 0.011261 0.020536 -v -0.033046 0.008714 -0.023151 -v -0.028089 0.005648 -0.019983 -v -0.012210 0.011798 0.020907 -v -0.033305 0.010038 -0.024508 -v 0.038067 0.011137 0.006500 -v -0.009812 0.007558 0.006134 -v -0.034491 0.013213 -0.019037 -v -0.039079 0.011572 -0.020256 -v -0.005673 0.009623 0.011404 -v 0.009880 0.017012 0.021873 -v -0.031118 -0.003158 -0.021333 -v -0.038690 0.008587 -0.034170 -v 0.038088 0.004942 0.005179 -v 0.021531 0.008335 0.007892 -v 0.011747 0.011851 0.022632 -v 0.024686 0.008478 -0.001604 -v 0.033090 0.002830 -0.013328 -v 0.023086 0.014508 0.019853 -v 0.044375 0.005066 0.016400 -v -0.045833 0.011557 -0.026973 -v 0.001113 0.008775 0.015367 -v -0.003631 0.001930 -0.026238 -v -0.024367 -0.003238 -0.014373 -v 0.040855 -0.003563 -0.005738 -v 0.016200 0.007657 0.021355 -v 0.015820 0.007629 0.021052 -v 0.044571 -0.001339 -0.003700 -v 0.030555 -0.000050 0.007962 -v 0.022756 0.014622 0.001714 -v -0.033506 0.010837 -0.024994 -v -0.032770 0.007740 0.020311 -v -0.031470 0.007854 0.021152 -v 0.043947 -0.003192 -0.007715 -v 0.027226 0.012195 -0.003515 -v 0.046783 0.007825 -0.000055 -v 0.010433 0.006428 0.019411 -v 0.025066 -0.016400 0.018153 -v 0.010292 0.009288 0.019917 -v 0.018065 -0.003645 -0.010825 -v 0.028601 0.002284 0.002286 -v 0.026287 0.017532 -0.000292 -v 0.025955 0.013129 -0.003624 -v 0.038136 0.003081 0.003110 -v -0.014272 -0.002173 0.004728 -v 0.022869 0.000602 -0.010671 -v 0.000674 0.005267 0.016793 -v 0.025047 -0.015570 0.016751 -v 0.008038 0.015745 0.023214 -v -0.017031 -0.002216 0.002790 -v -0.035752 0.004722 -0.024149 -v 0.005108 -0.002872 0.013252 -v 0.024161 0.015410 0.000458 -v -0.033158 0.009654 0.002946 -v 0.030688 0.002945 -0.016528 -v -0.028170 0.005028 -0.035823 -v 0.047404 -0.001030 -0.010564 -v -0.039234 -0.002025 -0.031202 -v 0.019850 -0.016497 0.015637 -v 0.021526 0.008747 0.007714 -v 0.015023 0.013313 0.019913 -v 0.016815 0.012935 0.020019 -v -0.017030 -0.002502 0.001387 -v 0.002953 0.005782 -0.002192 -v -0.041982 0.001303 -0.035014 -v -0.022148 0.009764 0.023153 -v -0.036727 0.005105 -0.039491 -v 0.021389 -0.016351 0.015639 -v 0.045250 0.001547 -0.021996 -v -0.027007 -0.002476 0.023811 -v -0.038627 0.008395 -0.025202 -v -0.006904 -0.016119 -0.023296 -v -0.002345 -0.000607 -0.024152 -v -0.038316 -0.001355 -0.029716 -v -0.006127 -0.016240 -0.023745 -v -0.029094 -0.002631 -0.023865 -v -0.017589 0.019551 0.012666 -v 0.014287 0.006168 0.019827 -v 0.018424 0.001349 -0.025127 -v 0.018982 0.008206 0.020412 -v -0.008249 -0.016132 -0.028603 -v -0.008651 -0.016104 -0.028918 -v 0.036101 -0.000727 0.000306 -v 0.011353 -0.003028 -0.002408 -v 0.037924 0.005421 0.006895 -v 0.011130 -0.002924 -0.001416 -v -0.030071 0.005823 -0.034440 -v -0.000707 0.005720 0.019144 -v 0.047208 -0.000625 -0.010912 -v -0.033509 -0.001441 0.019833 -v -0.006316 -0.015844 -0.029164 -v 0.047491 0.009702 0.004259 -v -0.003383 0.008523 0.022734 -v -0.024207 0.001769 -0.021236 -v -0.039264 0.004802 -0.038170 -v -0.010297 -0.002983 -0.006400 -v -0.012887 0.005861 -0.038631 -v 0.036969 -0.000341 -0.002909 -v -0.007928 -0.015829 -0.029983 -v -0.004604 0.017242 0.024223 -v 0.052487 0.002075 -0.023228 -v -0.000918 0.007562 0.018947 -v 0.013989 0.001853 0.016862 -v -0.011812 0.005413 -0.038615 -v -0.010504 0.004026 -0.020457 -v 0.021650 0.003487 -0.018213 -v -0.002107 -0.000146 -0.035777 -v 0.004591 0.002207 0.013438 -v 0.030302 -0.002769 0.013782 -v 0.037956 0.004514 0.005468 -v -0.001962 0.008502 0.022013 -v 0.010136 0.010388 0.022992 -v 0.030780 0.003764 -0.009188 -v -0.000669 0.008677 0.007140 -v -0.034160 0.009458 -0.023467 -v 0.030873 0.000054 0.002703 -v 0.023797 0.010961 -0.000102 -v 0.027058 0.010157 0.000098 -v -0.020219 0.001524 -0.018586 -v -0.008435 -0.015860 -0.034492 -v -0.022350 -0.000089 -0.026835 -v 0.024921 0.010091 0.011509 -v 0.015452 0.001766 -0.024005 -v -0.038345 0.014848 -0.021528 -v -0.009831 -0.015318 -0.034160 -v -0.027194 0.006166 -0.034282 -v -0.018411 0.015048 0.011502 -v -0.045353 0.008154 -0.023000 -v 0.033332 -0.000437 0.000444 -v -0.038464 0.003418 -0.032560 -v -0.030221 0.002613 -0.036398 -v 0.021187 0.015537 0.023770 -v -0.025477 0.018592 0.015208 -v 0.026864 0.010219 -0.005251 -v 0.015334 0.007702 0.011122 -v 0.001290 0.009217 0.015650 -v 0.030010 -0.000884 -0.023530 -v -0.005635 -0.016050 -0.036459 -v 0.033489 0.001585 0.015012 -v 0.032465 0.000374 0.014846 -v -0.031444 0.006819 -0.024522 -v -0.000403 0.010158 0.010810 -v -0.001949 0.009701 0.008066 -v -0.025817 -0.002058 -0.029032 -v 0.018924 0.014865 0.019896 -v -0.028751 0.012429 0.009604 -v -0.012410 0.004289 -0.034124 -v 0.005210 0.002591 -0.017550 -v 0.046057 0.012411 0.006106 -v 0.046151 0.012804 0.006884 -v -0.016484 0.019359 0.012800 -v 0.047361 0.003489 0.003169 -v 0.026138 -0.015331 0.020643 -v 0.026993 0.001236 0.009544 -v 0.021789 0.005927 0.010523 -v -0.000183 -0.001009 0.020837 -v -0.045651 0.008072 -0.021483 -v -0.046446 0.006766 -0.021160 -v -0.045996 0.007841 -0.021616 -v -0.004676 -0.002485 -0.009597 -v -0.002696 0.000018 -0.027879 -v 0.038825 -0.000647 -0.010223 -v -0.014759 0.006375 -0.030880 -v -0.034020 0.006595 -0.037178 -v -0.035296 0.003167 -0.031723 -v -0.005248 0.002507 -0.001727 -v -0.005322 0.001685 -0.002200 -v -0.036500 0.003532 -0.022772 -v 0.012390 0.005606 0.021058 -v 0.010556 0.000209 -0.023753 -v -0.023912 0.006355 -0.021558 -v -0.034560 0.011233 -0.024099 -v -0.034056 0.011093 -0.024894 -v 0.025585 0.011289 0.011753 -v 0.017046 0.000297 0.003667 -v -0.034922 0.010910 -0.023751 -v 0.019206 0.003234 -0.017004 -v -0.042287 0.011291 -0.025667 -v -0.033369 0.010673 0.007817 -v -0.044034 0.002420 -0.020155 -v 0.034829 0.017065 0.016492 -v -0.010956 0.003015 -0.014567 -v 0.018705 -0.016135 0.017187 -v -0.036652 -0.000571 -0.019857 -v 0.025114 -0.015819 0.017618 -v -0.027970 0.009987 -0.001048 -v -0.015282 0.018704 0.016130 -v -0.026091 0.007301 -0.036509 -v 0.002644 -0.004325 0.016404 -v 0.002911 -0.000016 -0.017724 -v -0.026285 0.010205 -0.019308 -v -0.012687 -0.000700 0.002744 -v -0.001222 0.013594 0.014394 -v 0.041924 -0.003149 -0.019287 -v 0.036179 0.005914 0.009343 -v -0.000726 0.012674 0.024667 -v 0.006072 0.004898 -0.006944 -v 0.038620 0.002754 0.003189 -v -0.007734 -0.002374 -0.004432 -v 0.020911 -0.016427 0.015265 -v -0.031003 -0.002713 -0.032734 -v -0.030761 -0.002960 -0.032014 -v -0.031224 -0.002094 -0.032106 -v -0.001279 -0.000632 -0.024685 -v -0.020394 0.002692 -0.028641 -v 0.019575 -0.016664 0.014132 -v -0.011670 0.001588 -0.038947 -v -0.008847 -0.001213 -0.000518 -v -0.031612 -0.003469 -0.031495 -v -0.042735 0.002674 -0.018220 -v -0.032214 -0.000372 -0.006062 -v 0.020465 -0.016663 0.013872 -v -0.036130 0.001190 0.017286 -v -0.022484 -0.001276 -0.020916 -v -0.006324 0.002600 -0.032136 -v -0.035797 0.008444 -0.024422 -v -0.018661 0.008340 0.002484 -v 0.034177 0.001612 -0.004811 -v -0.036785 0.012203 -0.033230 -v 0.020552 -0.016194 0.012863 -v -0.023855 0.009682 -0.029846 -v 0.019862 -0.016443 0.012722 -v -0.036441 0.009238 -0.033085 -v -0.034590 0.008885 -0.032003 -v -0.034124 0.008888 -0.023745 -v -0.025107 0.007678 -0.021206 -v -0.029579 0.000559 -0.019875 -v -0.031515 -0.001611 -0.032034 -v -0.005736 -0.016028 -0.023606 -v -0.010411 0.013890 0.022887 -v -0.007360 -0.016230 -0.023694 -v -0.026998 0.001970 -0.011709 -v -0.041395 -0.000058 -0.031044 -v -0.018603 0.007407 -0.030643 -v 0.045130 0.014719 0.013566 -v 0.026644 0.013818 0.012499 -v 0.010068 -0.003033 0.001381 -v 0.043131 0.016330 0.014458 -v -0.002838 0.014458 0.015686 -v -0.038366 0.007294 -0.038222 -v -0.006870 -0.016297 -0.024136 -v 0.044338 -0.000736 -0.011416 -v 0.036020 -0.000457 -0.001368 -v -0.026877 0.012817 0.011892 -v -0.027213 0.014271 0.012774 -v -0.006567 -0.015978 -0.024482 -v -0.008514 0.001352 -0.035989 -v -0.004443 0.013388 0.016774 -v -0.014112 -0.015022 0.024669 -v -0.013541 0.005031 -0.025230 -v -0.032905 0.012386 -0.031204 -v -0.008632 -0.002754 -0.012302 -v -0.034430 0.009125 0.015228 -v -0.021784 0.003270 -0.038110 -v -0.001429 0.001248 -0.034313 -v 0.008769 0.015382 0.022776 -v -0.035846 0.003597 -0.038504 -v -0.015065 0.017766 0.017434 -v 0.038471 -0.002228 -0.012617 -v -0.005551 -0.015454 -0.029464 -v -0.004659 0.002608 -0.031248 -v 0.038128 0.005727 0.006178 -v 0.009157 -0.003700 0.004216 -v 0.046334 0.001479 -0.023921 -v 0.040413 0.013700 0.005664 -v -0.006083 0.002147 -0.036450 -v -0.045531 0.003132 -0.019838 -v 0.010004 0.017175 0.022775 -v -0.019409 0.020249 0.013353 -v 0.050227 -0.002165 -0.014832 -v 0.001350 0.006007 -0.001523 -v 0.002447 0.006037 -0.000649 -v -0.021987 0.006365 -0.036305 -v -0.035143 0.001385 -0.034784 -v 0.032621 0.001339 -0.018681 -v 0.013679 0.006158 0.015196 -v 0.023630 0.012923 0.018784 -v -0.032131 -0.003358 -0.019989 -v 0.037500 0.001221 0.024669 -v -0.012477 0.005403 -0.023219 -v -0.027225 0.000469 0.024395 -v 0.039098 0.003481 -0.002737 -v 0.038926 0.001041 -0.007902 -v 0.024365 0.003026 0.007230 -v -0.009403 0.010507 0.010858 -v 0.022841 0.001583 -0.024256 -v 0.035397 0.003603 0.014856 -v 0.015084 -0.003789 0.002769 -v -0.040077 0.001000 -0.034222 -v 0.019000 0.012824 0.012514 -v 0.041727 0.000806 -0.021002 -v -0.023105 0.010138 0.000219 -v -0.007024 -0.015287 -0.034365 -v -0.016372 0.011210 0.021318 -v -0.039041 0.007877 -0.033858 -v 0.014602 0.005513 0.018964 -v -0.011029 0.014810 0.012040 -v 0.000163 0.008399 0.019323 -v -0.001324 0.008707 0.021441 -v -0.001161 0.008564 0.021152 -v 0.003511 0.004690 -0.008393 -v -0.011876 0.005523 -0.039527 -v -0.009669 0.003847 0.003942 -v -0.024332 0.007705 -0.036583 -v -0.006486 0.002987 -0.026225 -v -0.021867 0.016757 0.012986 -v -0.009417 0.010131 0.010425 -v 0.043056 0.003844 0.020599 -v 0.010321 0.003754 -0.010586 -v -0.001893 0.008685 0.022217 -v -0.005023 0.003269 -0.027292 -v 0.027926 0.005627 0.012326 -v -0.001255 0.008933 0.022202 -v -0.043949 0.012166 -0.023087 -v -0.024813 0.000064 -0.021015 -v -0.026068 0.004353 -0.037588 -v -0.020319 0.006454 -0.035999 -v -0.002648 -0.000893 -0.028640 -v -0.010844 0.003138 -0.020133 -v -0.003587 0.000088 -0.007573 -v 0.041325 -0.001597 -0.018827 -v -0.037194 0.000108 0.010679 -v -0.046346 0.010966 -0.026764 -v -0.032494 0.008254 -0.022978 -v 0.005372 0.003202 -0.015942 -v 0.005535 0.001705 0.010794 -v 0.021535 -0.015076 0.019183 -v -0.032704 0.013177 -0.033417 -v 0.030819 0.001272 0.013077 -v 0.015917 -0.003466 0.001869 -v -0.044727 0.011221 -0.027655 -v 0.012181 -0.001552 0.015370 -v -0.010015 0.001684 -0.039439 -v -0.038371 0.010361 -0.023921 -v -0.024136 0.007411 -0.021426 -v -0.037583 0.002147 -0.028001 -v 0.010314 0.009862 0.022072 -v 0.026524 -0.015565 0.017581 -v -0.021411 0.003383 -0.021190 -v 0.038178 -0.000924 -0.007414 -v -0.036510 0.008427 -0.019194 -v -0.039308 0.004015 -0.036829 -v -0.038685 0.003907 -0.036951 -v 0.012182 0.006485 0.018274 -v -0.036391 0.000644 0.016470 -v -0.002398 0.008466 0.022895 -v 0.043261 0.000534 -0.010154 -v -0.035985 0.007266 -0.018752 -v -0.035693 0.005334 -0.018693 -v -0.019154 0.021091 0.015683 -v -0.042874 0.007616 -0.020614 -v -0.024690 0.002446 -0.020895 -v -0.041400 0.000078 -0.032994 -v -0.035269 0.001070 -0.034133 -v -0.000460 -0.002361 -0.014945 -v 0.021873 0.011002 0.006428 -v -0.013560 0.001457 -0.006823 -v 0.038963 0.002620 -0.002119 -v 0.025459 0.002970 0.003100 -v 0.047737 0.006246 0.007106 -v -0.008817 -0.002320 -0.001815 -v 0.018334 0.015078 0.023449 -v 0.022583 0.012167 0.021524 -v 0.023924 0.001653 -0.024260 -v 0.020460 0.015325 0.015973 -v -0.041950 0.004951 -0.025446 -v -0.034677 0.007773 0.017578 -v 0.026236 -0.000139 -0.024833 -v 0.020670 0.012151 0.016778 -v -0.003145 -0.000306 -0.022879 -v 0.028497 0.019168 0.005279 -v 0.019247 -0.016184 0.012728 -v 0.034800 -0.000381 -0.002029 -v 0.017930 -0.015680 0.013952 -v 0.021972 0.015936 0.018853 -v 0.017082 0.004188 0.022741 -v 0.001030 -0.000156 -0.035904 -v 0.041893 -0.000268 0.020750 -v -0.021602 0.013685 0.004849 -v 0.028763 0.000313 0.006085 -v 0.038007 -0.002908 -0.004841 -v -0.029139 0.009196 -0.002663 -v 0.036353 0.012754 0.024659 -v 0.041940 -0.003701 -0.018344 -v 0.053992 -0.000063 -0.017429 -v -0.018175 0.015047 0.009195 -v -0.043377 0.004294 -0.035458 -v 0.022404 0.014089 0.006069 -v -0.039583 0.014917 -0.022243 -v -0.036005 0.000324 -0.021944 -v -0.035045 -0.000459 -0.021765 -v -0.036580 0.000042 0.014294 -v -0.008369 0.011616 0.024640 -v -0.014162 0.015899 0.019104 -v -0.030695 0.012108 -0.019925 -v 0.013149 0.009931 0.019488 -v -0.009086 -0.015932 -0.028375 -v 0.021276 0.011303 0.022199 -v -0.002773 -0.002611 -0.011723 -v 0.013954 0.006553 0.017726 -v -0.007087 -0.014913 -0.028287 -v 0.000204 0.015614 0.022826 -v -0.001312 0.016703 0.023506 -v 0.024999 0.010806 0.005087 -v 0.024097 0.011927 0.004457 -v -0.043310 0.004037 -0.037400 -v -0.026856 0.010853 0.001285 -v 0.028973 0.003381 -0.002090 -v 0.007304 0.002753 0.002685 -v -0.006153 -0.015154 -0.029147 -v -0.034670 0.011220 -0.029231 -v 0.012712 -0.003151 0.018762 -v -0.020577 -0.000892 -0.020131 -v 0.025146 0.010811 0.002643 -v -0.037680 0.002353 -0.028805 -v -0.005919 -0.001564 -0.025091 -v 0.000446 0.015518 0.021757 -v -0.029551 -0.001370 -0.028950 -v -0.015286 0.021389 0.020905 -v -0.025977 0.010429 0.000025 -v 0.030195 0.000399 0.009031 -v 0.044046 0.015318 0.015485 -v -0.009690 0.003084 -0.021511 -v -0.009561 0.002326 -0.020753 -v 0.007499 -0.002263 -0.023183 -v 0.010684 0.002017 -0.021599 -v 0.027457 0.014334 0.020639 -v 0.019653 0.013339 0.017485 -v -0.035287 0.010277 -0.030663 -v -0.034895 0.010079 -0.029906 -v -0.003338 -0.000567 -0.034998 -v -0.000014 -0.000712 -0.035752 -v -0.020887 0.003572 -0.015516 -v -0.009352 -0.015559 -0.031802 -v 0.034389 0.014171 0.024002 -v 0.032809 0.013658 0.024669 -v -0.006132 0.006786 0.023469 -v -0.008561 -0.015408 -0.032237 -v -0.008478 0.015961 0.023575 -v 0.009128 0.015062 0.021548 -v -0.034124 0.004627 -0.032084 -v -0.005881 -0.015364 -0.032035 -v -0.038685 0.004882 -0.033868 -v -0.010795 -0.015854 -0.032052 -v -0.007691 -0.014940 -0.032478 -v -0.036650 0.006990 0.006108 -v -0.010181 -0.015745 -0.032625 -v 0.042111 0.000627 -0.018617 -v -0.012286 0.002689 -0.039855 -v -0.035444 0.002800 0.018432 -v 0.038199 0.005423 0.004324 -v -0.029427 0.003831 -0.036531 -v -0.028779 0.003946 -0.037414 -v -0.029326 0.003695 -0.037488 -v -0.013392 0.005192 -0.033253 -v -0.018605 0.007878 -0.020610 -v 0.029561 -0.003557 0.023826 -v -0.035879 -0.000597 -0.018860 -v 0.022981 0.015229 0.020821 -v -0.018917 0.014569 0.006594 -v -0.037282 0.000035 0.006919 -v 0.019628 0.015233 0.019785 -v -0.009428 0.013515 0.012119 -v -0.012642 0.003844 -0.017287 -v -0.028844 0.012282 -0.031965 -v 0.015996 0.000402 -0.025488 -v 0.000814 0.000525 -0.035620 -v -0.027712 0.009402 -0.023945 -v 0.030947 0.002872 -0.002716 -v -0.007463 -0.001807 -0.003302 -v -0.034401 0.004302 -0.024191 -v -0.041671 0.002445 -0.032976 -v -0.010272 -0.016446 0.023320 -v -0.009287 -0.016267 0.023258 -v 0.043279 0.005313 0.019066 -v -0.013597 -0.016151 0.022904 -v -0.011554 -0.016121 0.024076 -v 0.021391 0.016733 0.016740 -v 0.042535 -0.001145 -0.022515 -v -0.034084 0.001896 -0.003617 -v -0.004466 0.003099 -0.027860 -v -0.003359 0.002587 -0.028245 -v -0.008482 -0.016223 0.022397 -v 0.024692 0.016350 0.001824 -v -0.011745 -0.016232 0.021328 -v 0.027689 0.000694 0.007953 -v -0.015850 0.018147 0.019101 -v -0.003496 0.008647 0.023758 -v -0.024005 0.004533 -0.029325 -v -0.039504 0.000995 -0.018428 -v -0.012274 0.017855 0.016627 -v -0.014003 0.005290 -0.036698 -v -0.046293 0.006007 -0.022002 -v 0.041985 0.000625 0.024284 -v -0.026223 0.016026 0.024122 -v -0.024043 0.007235 -0.009311 -v 0.022264 0.002824 -0.022624 -v 0.050064 -0.001779 -0.013301 -v -0.039590 0.002955 -0.036275 -v 0.039189 -0.001201 0.018786 -v -0.037843 0.003020 0.008373 -v -0.016919 0.005795 -0.028817 -v -0.028374 -0.002308 -0.036987 -v -0.029211 -0.003711 -0.036509 -v 0.026721 0.012349 0.005803 -v 0.008863 0.010915 0.020285 -v 0.025822 0.002468 0.008715 -v -0.003584 -0.000322 -0.032336 -v -0.003995 -0.000810 -0.032550 -v 0.038521 -0.001986 -0.010328 -v -0.005242 0.000824 -0.035607 -v -0.026238 0.002093 -0.025721 -v 0.023636 0.008060 -0.007517 -v 0.024910 0.017512 0.001780 -v -0.011263 -0.003247 -0.006051 -v 0.012660 0.002599 -0.021572 -v 0.030961 0.001601 -0.020492 -v -0.040128 0.004002 -0.032204 -v 0.024844 0.006787 0.012195 -v 0.024812 0.007615 0.012740 -v 0.022202 -0.015417 0.015857 -v -0.036751 0.010729 -0.023763 -v -0.014214 0.005702 -0.024988 -v 0.023911 0.016998 0.022659 -v 0.014049 0.000848 0.019059 -v -0.008093 0.017199 0.019141 -v -0.006240 0.003594 -0.025032 -v -0.036547 -0.000444 0.001846 -v 0.036351 -0.003999 -0.003214 -v 0.039127 0.002312 -0.005929 -v 0.001524 -0.000967 0.019009 -v -0.027973 0.011100 0.002669 -v 0.011011 0.003174 -0.010110 -v -0.027747 0.010136 0.021778 -v -0.016195 0.020813 0.019860 -v -0.016640 0.021642 0.020997 -v 0.018830 0.000242 -0.012795 -v -0.007329 0.013911 0.014678 -v 0.000276 0.010320 0.022841 -v 0.017749 0.011900 0.012563 -v -0.014348 0.004878 -0.013563 -v -0.009306 0.003848 -0.033787 -v 0.037831 0.005822 0.006658 -v 0.019269 -0.015595 0.012368 -v -0.002148 0.008621 0.023093 -v -0.031583 0.010956 0.003875 -v -0.036588 0.001537 -0.023830 -v 0.026023 0.003703 -0.018479 -v -0.008900 -0.015204 -0.023433 -v 0.046099 0.000591 -0.002483 -v 0.051618 -0.001105 -0.018313 -v -0.015189 0.004019 -0.019705 -v -0.026582 -0.003401 -0.024774 -v -0.005875 -0.015632 -0.023580 -v -0.020246 0.010241 0.003048 -v 0.027491 0.011313 0.014253 -v 0.040596 0.008107 -0.001025 -v -0.009733 -0.015228 -0.024493 -v 0.051507 -0.001194 -0.013070 -v -0.029667 0.004230 -0.035994 -v 0.007821 0.010742 0.021796 -v 0.009273 -0.002127 0.003778 -v 0.009430 -0.002554 0.003628 -v -0.039533 0.005271 -0.033658 -v -0.031276 0.002959 -0.024387 -v 0.039382 0.005776 -0.001312 -v -0.028004 0.017759 0.019446 -v 0.026135 0.003568 -0.000750 -v 0.027295 0.011629 0.003797 -v -0.028119 -0.000032 -0.038186 -v -0.009989 -0.015520 -0.027503 -v -0.027745 0.012170 0.006697 -v -0.031840 0.003981 -0.018914 -v -0.035795 -0.000481 -0.028581 -v -0.010161 0.011880 0.010499 -v 0.036210 0.016483 0.013052 -v -0.038587 0.001955 -0.036171 -v 0.012534 0.011210 0.019104 -v 0.050217 -0.000270 -0.012783 -v -0.042788 0.014388 -0.022787 -v -0.044187 0.005793 -0.023916 -v -0.019945 0.014793 0.010679 -v -0.027937 0.008753 -0.033466 -v -0.043940 0.008114 -0.027103 -v -0.032342 -0.000315 -0.032631 -v 0.014295 0.007814 0.016058 -v 0.021751 0.016994 0.013012 -v 0.024530 0.019951 0.008049 -v 0.025112 0.003012 -0.010807 -v 0.009342 0.010499 0.019795 -v 0.017770 0.014274 0.020051 -v -0.040422 0.003261 -0.023620 -v -0.041105 0.002921 -0.023516 -v 0.020083 0.009669 0.023162 -v -0.032665 0.004391 -0.035829 -v -0.032105 0.005469 -0.035385 -v -0.011123 -0.014418 -0.029718 -v 0.026231 0.002136 -0.022481 -v -0.035093 -0.002130 -0.027823 -v 0.052530 -0.000755 -0.013676 -v 0.038328 0.005383 0.007366 -v -0.029960 -0.000709 -0.008916 -v -0.032730 0.007526 -0.024379 -v -0.028186 0.004293 -0.010287 -v -0.028207 0.002056 -0.011008 -v 0.015516 -0.000727 -0.026038 -v 0.024731 0.012323 -0.003165 -v 0.037034 -0.002356 -0.014613 -v -0.029066 0.002070 -0.038202 -v 0.032954 0.002857 -0.012431 -v -0.021946 0.009894 -0.020614 -v -0.036919 0.011558 -0.032182 -v 0.036644 0.003812 0.015289 -v -0.014819 0.019000 0.020322 -v -0.014996 0.019396 0.019920 -v 0.003754 0.002083 -0.016309 -v 0.023294 0.010323 -0.001113 -v -0.047898 0.010964 -0.027007 -v 0.015854 0.007968 0.021610 -v -0.016346 0.004423 -0.037174 -v 0.013088 0.004340 0.014934 -v 0.001258 0.006422 0.002019 -v -0.033533 0.000859 -0.029963 -v -0.009364 0.002588 -0.037432 -v 0.038285 0.014382 0.008178 -v 0.017582 0.000118 -0.025861 -v -0.029124 0.011875 0.017640 -v 0.029625 0.014035 0.004976 -v -0.011686 -0.015360 -0.032761 -v -0.038955 0.004911 -0.023460 -v -0.009761 -0.015131 -0.033202 -v -0.044997 0.008812 -0.027577 -v 0.023758 0.011416 0.003492 -v -0.008869 0.003281 -0.041055 -v 0.022770 0.015275 0.020046 -v -0.005214 -0.003329 -0.010540 -v 0.006305 0.002079 0.008329 -v 0.031677 -0.000695 0.006181 -v 0.006908 -0.001890 0.009056 -v 0.023572 0.011346 0.001948 -v -0.006248 -0.015321 -0.034902 -v -0.040709 0.005677 -0.034276 -v -0.024235 0.005099 -0.012197 -v 0.013490 -0.003176 -0.007130 -v 0.008346 0.003856 -0.015745 -v 0.024589 0.012469 0.017674 -v 0.043140 -0.000265 -0.011809 -v -0.040897 0.015565 -0.021352 -v 0.025009 -0.001174 -0.025743 -v -0.020554 0.002317 -0.028186 -v -0.017628 0.006772 -0.026840 -v -0.035471 0.001587 -0.022503 -v 0.052412 0.002723 -0.022866 -v 0.027480 0.010696 0.001740 -v 0.029359 -0.003396 0.012552 -v -0.007694 -0.014917 -0.036262 -v -0.034771 0.011345 -0.030352 -v 0.032756 0.001830 0.014434 -v 0.040390 0.004096 0.023464 -v -0.007857 0.009027 0.023131 -v -0.038303 0.000260 -0.018901 -v 0.013322 -0.000701 -0.025698 -v 0.012609 0.005439 0.021330 -v -0.036944 0.002509 0.003657 -v 0.022578 0.007404 0.009425 -v 0.038644 0.004058 0.004668 -v -0.013203 0.004051 -0.010739 -v 0.007195 0.004354 -0.012073 -v 0.046084 0.013119 0.007884 -v 0.023761 0.018597 0.007889 -v 0.038218 -0.001878 -0.003768 -v -0.037092 0.015181 -0.018745 -v -0.005334 0.016621 0.020167 -v -0.004595 0.015865 0.019594 -v 0.025431 0.003699 -0.005966 -v -0.033948 0.001424 -0.018683 -v 0.034171 -0.002025 0.002695 -v 0.013064 0.016874 0.021055 -v -0.015784 0.017225 0.018090 -v -0.015982 0.014287 0.018687 -v -0.028587 0.012757 0.013580 -v -0.008368 0.001505 -0.040563 -v 0.034591 -0.000685 -0.018624 -v -0.023145 -0.002716 -0.038752 -v -0.003144 0.001642 -0.006555 -v -0.043270 0.001791 -0.017624 -v -0.042920 0.001292 -0.018039 -v -0.026751 0.010599 -0.032068 -v 0.016259 0.000097 -0.011962 -v 0.023729 0.012837 0.018149 -v 0.017145 0.005395 0.021778 -v -0.006870 -0.015875 0.021260 -v -0.041598 0.001572 -0.017644 -v 0.038124 0.003869 0.015163 -v -0.018578 0.010045 0.023484 -v -0.041031 0.003691 -0.031132 -v 0.033855 0.015182 0.012904 -v 0.027512 0.012624 0.010133 -v 0.026924 0.012506 0.010219 -v 0.012212 -0.001970 0.011359 -v 0.013154 -0.000987 0.009737 -v 0.000229 0.001001 -0.030597 -v -0.007322 -0.016137 0.020915 -v 0.026930 0.003784 -0.017007 -v -0.014709 0.014226 0.008297 -v 0.015682 0.009805 0.015426 -v -0.013313 0.004340 -0.013890 -v -0.026791 -0.000558 -0.012567 -v -0.021587 0.011014 0.002991 -v -0.021245 0.010661 0.002716 -v -0.026765 -0.001644 -0.023965 -v 0.018027 0.003079 -0.017213 -v 0.047032 0.002410 0.000210 -v 0.038023 0.002441 0.000094 -v -0.027915 0.008484 -0.024002 -v -0.028767 0.008347 -0.029579 -v 0.039404 -0.002727 -0.014005 -v -0.013228 -0.015701 0.020133 -v -0.032790 -0.001165 -0.018738 -v -0.009369 -0.015945 0.020317 -v -0.007712 -0.015702 0.019203 -v -0.006395 -0.015891 0.019533 -v -0.023180 -0.002849 0.024633 -v -0.037718 0.004209 0.005925 -v -0.001328 0.003370 -0.007155 -v -0.002284 0.001838 -0.007499 -v 0.007628 0.003112 -0.018203 -v 0.008569 0.003088 -0.018533 -v 0.040574 0.000046 0.017533 -v -0.035271 0.002509 -0.022604 -v -0.033969 -0.000921 -0.018557 -v -0.036706 0.009377 -0.036867 -v -0.022535 -0.003535 -0.021207 -v 0.027178 0.013611 0.011943 -v 0.048004 -0.003059 -0.018451 -v 0.015570 0.000585 0.022829 -v 0.016312 0.001919 0.023536 -v -0.035824 0.002454 -0.031044 -v 0.019570 0.010520 0.007683 -v 0.032165 0.003326 -0.007083 -v -0.041669 0.003081 -0.019221 -v 0.027595 -0.015461 0.017994 -v 0.010703 0.005808 0.020492 -v 0.027296 -0.003338 -0.025740 -v -0.007863 0.010818 0.024668 -v -0.018201 0.006706 -0.009293 -v 0.006727 -0.003062 0.009505 -v -0.007312 0.003497 -0.021771 -v 0.036113 0.009795 0.009427 -v 0.010738 0.017114 0.019937 -v -0.002927 0.011147 0.010475 -v 0.030798 0.012023 0.013301 -v -0.026566 0.012373 0.020136 -v -0.007027 -0.003751 -0.015410 -v 0.014513 0.004357 0.011007 -v 0.018949 -0.015894 0.016473 -v -0.040524 0.004234 -0.032498 -v 0.044354 0.001374 -0.020606 -v 0.027452 0.003907 -0.013426 -v 0.001697 0.009818 0.016984 -v -0.025837 0.021831 0.017198 -v 0.026400 0.009389 -0.004077 -v -0.001863 0.001719 -0.029448 -v 0.042304 -0.000264 -0.013116 -v -0.003794 0.002202 -0.034467 -v -0.027340 0.006420 -0.036228 -v -0.029502 0.006301 0.023322 -v -0.003373 0.001078 -0.027358 -v -0.003051 0.000689 -0.027622 -v -0.006599 0.000119 -0.021535 -v 0.024588 0.010859 0.005365 -v -0.002827 0.008550 0.022271 -v -0.040656 0.015818 -0.020405 -v 0.052669 0.000558 -0.017822 -v 0.022697 -0.014781 0.014499 -v 0.021743 -0.015314 0.014012 -v 0.011138 0.013754 0.022552 -v -0.006011 0.006045 0.024276 -v -0.033101 0.010517 0.015540 -v -0.023555 0.023330 0.014626 -v 0.044344 0.003217 -0.006412 -v -0.032579 0.008100 -0.019083 -v -0.016647 0.017781 0.021633 -v -0.022233 0.002470 -0.021145 -v 0.028785 0.012787 0.004608 -v 0.028998 0.012906 0.005021 -v -0.022423 0.007526 -0.026254 -v 0.035616 0.006221 0.009666 -v -0.025498 0.024859 0.016710 -v -0.024231 0.024984 0.016062 -v 0.018453 0.013769 0.019366 -v -0.030753 0.004469 -0.007777 -v 0.018228 -0.015304 0.013009 -v 0.014678 0.008126 0.013355 -v 0.033682 0.010784 0.011623 -v -0.037050 0.010309 -0.032015 -v 0.006352 0.004836 -0.002300 -v -0.004287 0.001765 -0.003709 -v -0.015338 0.005401 -0.036005 -v -0.043314 0.007402 -0.026392 -v -0.034274 0.005559 -0.018559 -v 0.040065 -0.004090 0.023201 -v -0.005892 -0.015317 -0.024044 -v 0.037807 -0.002111 0.018398 -v -0.031764 0.010210 -0.022955 -v -0.010180 -0.014709 -0.025545 -v 0.014152 0.008827 0.018902 -v -0.038627 0.011650 -0.024819 -v 0.051560 0.001180 -0.017606 -v -0.006657 -0.014729 -0.025043 -v -0.037499 0.001882 -0.024674 -v -0.036746 0.002065 -0.024193 -v 0.022688 0.009581 0.023903 -v 0.035149 0.005786 0.010359 -v 0.009661 -0.002763 0.002851 -v -0.008874 -0.014621 -0.027180 -v -0.017298 0.007473 -0.032020 -v -0.019161 0.007609 -0.032410 -v 0.038708 0.016852 0.013393 -v 0.046336 0.008836 0.013671 -v -0.019617 0.012370 0.021766 -v 0.012148 0.005397 0.018942 -v -0.020482 0.014891 0.009194 -v -0.021123 0.006048 -0.026836 -v -0.027856 0.001645 -0.030094 -v -0.024355 0.007024 -0.025477 -v 0.048178 -0.000680 -0.013142 -v -0.024044 0.010249 -0.020230 -v -0.024847 0.006004 -0.024793 -v 0.044658 -0.003513 -0.019241 -v 0.033260 0.015365 0.013497 -v 0.017909 0.010640 0.016962 -v -0.038950 0.006600 -0.038395 -v -0.032295 0.011395 0.007480 -v -0.020714 0.001291 -0.017624 -v 0.038235 -0.003526 -0.016536 -v 0.015595 0.001193 -0.012958 -v -0.042184 0.005796 -0.036733 -v -0.010160 -0.015207 -0.031330 -v -0.021162 0.021652 0.013522 -v -0.027930 0.005478 -0.033877 -v 0.004931 0.000930 0.013525 -v 0.019381 0.005490 0.024667 -v 0.024919 0.014578 0.017146 -v -0.009474 -0.002239 -0.011183 -v 0.028721 0.013986 0.007229 -v -0.040379 0.002553 -0.031116 -v -0.037611 0.013254 -0.034275 -v 0.007842 -0.002927 0.007517 -v 0.013999 0.006955 0.018270 -v 0.051098 -0.001588 -0.015511 -v -0.035903 0.009233 -0.037129 -v -0.008911 0.001066 0.003082 -v 0.039116 0.002887 -0.004539 -v 0.039584 0.004834 -0.003138 -v -0.033207 0.002415 0.021410 -v 0.023128 0.008556 -0.004789 -v -0.013978 -0.014584 -0.031915 -v 0.043950 -0.000115 -0.021431 -v -0.006260 0.002895 -0.036280 -v -0.028804 0.004604 -0.009151 -v -0.002463 0.012000 0.014164 -v 0.039206 -0.001395 -0.011760 -v -0.036420 0.010667 -0.023486 -v -0.031890 0.011480 0.011896 -v -0.004242 0.012741 0.015914 -v 0.038994 -0.000742 0.016617 -v -0.008607 -0.000019 0.002121 -v -0.008634 -0.014769 -0.033471 -v -0.005202 0.005275 0.002206 -v -0.009373 -0.015092 -0.033777 -v 0.009189 0.009770 0.022830 -v -0.006522 0.003854 0.001574 -v -0.010706 -0.014911 -0.034193 -v -0.023862 0.012398 0.022788 -v 0.009026 0.005848 0.022136 -v 0.022125 0.017593 0.014686 -v 0.023902 0.008337 -0.010275 -v 0.024096 0.007848 -0.010566 -v -0.036919 0.004469 -0.023696 -v 0.020575 0.007917 0.008097 -v -0.036785 0.001087 -0.027935 -v -0.002615 0.008767 0.006648 -v -0.022553 -0.000908 -0.029238 -v 0.052628 0.000360 -0.013532 -v -0.031772 0.001168 -0.007596 -v -0.041228 0.001483 -0.018225 -v -0.033797 0.010360 0.009920 -v 0.029290 0.015754 0.008552 -v 0.009560 0.003949 -0.010690 -v -0.030092 -0.003552 -0.033971 -v -0.030649 -0.003248 -0.033286 -v 0.024082 0.012326 0.018369 -v 0.025246 0.013100 0.018362 -v 0.030549 0.002751 0.012061 -v -0.009682 -0.015445 0.024375 -v 0.000806 0.010030 0.021173 -v -0.019312 0.004903 -0.028793 -v -0.014494 -0.015437 0.024300 -v 0.023890 0.016198 0.023696 -v 0.018466 0.003313 -0.018920 -v 0.038173 0.002745 0.001284 -v -0.015270 0.006452 -0.021815 -v -0.014217 -0.003021 -0.002652 -v -0.008007 -0.015589 0.023184 -v 0.039403 0.004689 -0.000206 -v -0.019682 -0.003488 -0.038956 -v 0.033970 -0.000418 0.003358 -v -0.033847 0.009229 -0.035060 -v 0.005105 0.000665 -0.019666 -v 0.046554 0.001828 0.001872 -v -0.018350 0.006979 -0.006139 -v -0.026043 -0.000377 0.024667 -v 0.034082 -0.003540 0.000850 -v 0.008437 0.015593 0.023806 -v -0.022601 0.013739 0.005374 -v 0.031667 -0.000201 0.005122 -v -0.027068 -0.004485 -0.010055 -v -0.024288 0.024556 0.017143 -v -0.008781 -0.003108 -0.000924 -v 0.021668 0.004510 0.009717 -v -0.032981 0.005580 -0.003723 -v 0.042621 0.006152 -0.004547 -v 0.042591 0.006808 -0.003557 -v 0.025037 -0.014793 0.020746 -v -0.036218 0.010934 -0.024121 -v 0.049859 0.002081 -0.019652 -v -0.027187 0.000059 -0.038402 -v -0.003458 -0.000693 -0.033199 -v -0.036667 0.004144 0.014984 -v 0.016870 0.011019 0.014145 -v 0.052491 0.000670 -0.022578 -v -0.033382 -0.001494 -0.027737 -v 0.008827 0.011731 0.021646 -v -0.044770 0.010428 -0.023371 -v -0.035030 0.008048 0.002303 -v -0.032416 0.001527 -0.034780 -v -0.007661 -0.003029 -0.005167 -v -0.043456 0.000957 -0.033787 -v -0.016924 0.020790 0.023878 -v -0.012197 0.004792 -0.026201 -v -0.036181 0.001517 -0.023948 -v 0.008414 0.000930 0.003867 -v -0.031754 0.000167 -0.029589 -v 0.053121 0.001316 -0.022877 -v 0.018915 0.002995 -0.022101 -v -0.037082 0.015601 -0.019232 -v -0.008859 0.016923 0.017648 -v 0.026366 0.010093 0.013705 -v -0.010835 0.000749 0.004017 -v 0.026779 0.012297 0.007762 -v -0.003994 0.017037 0.022477 -v 0.009329 0.010997 0.023246 -v -0.014398 0.000422 -0.037542 -v 0.031103 0.003438 -0.013587 -v 0.029453 0.001991 -0.021040 -v -0.035017 0.009769 0.009979 -v -0.006603 -0.015901 0.018280 -v 0.027805 -0.015234 0.019009 -v 0.034406 -0.000503 0.001802 -v -0.000672 0.006233 0.001271 -v -0.002710 0.016587 0.024662 -v 0.018791 -0.015509 0.016936 -v -0.028137 0.006568 0.023994 -v -0.003389 0.005346 0.000397 -v 0.031115 -0.003694 0.013843 -v -0.025172 0.008476 -0.025088 -v -0.006606 0.015960 0.018338 -v -0.019425 0.004032 -0.028753 -v -0.045452 0.006194 -0.022685 -v 0.026300 0.018890 0.011435 -v -0.036691 0.006158 0.006772 -v 0.018192 -0.015566 0.015933 -v -0.024534 0.005746 -0.011134 -v -0.008684 0.001481 -0.039833 -v -0.038587 0.005678 -0.039101 -v 0.022383 -0.015131 0.015883 -v -0.030626 0.001234 -0.030056 -v 0.034272 -0.000899 0.003148 -v 0.010380 0.010441 0.018543 -v -0.010118 0.008332 0.023940 -v -0.022473 0.009181 -0.019792 -v -0.039030 0.011100 -0.034962 -v 0.045749 0.011524 0.003425 -v 0.039525 0.002670 0.024660 -v 0.020283 -0.015602 0.012422 -v 0.051509 0.001129 -0.019862 -v -0.020185 0.009332 0.023878 -v 0.042714 0.002890 0.006218 -v -0.006820 -0.015263 -0.023052 -v 0.000699 0.001768 -0.013126 -v 0.001588 -0.002683 -0.018013 -v 0.005484 0.003705 -0.014987 -v -0.028337 0.011248 0.019902 -v 0.026790 0.011851 0.003234 -v 0.040166 0.016872 0.018062 -v 0.037228 0.002991 0.024332 -v 0.035888 0.001038 0.024302 -v -0.023623 0.003195 -0.029332 -v 0.039019 -0.001771 -0.003685 -v 0.024521 0.015929 0.000773 -v -0.030173 -0.000504 -0.034391 -v -0.037620 0.003187 0.012809 -v 0.018786 -0.002361 -0.002296 -v 0.007965 0.011102 0.021832 -v -0.037932 0.003677 0.009925 -v -0.010173 -0.015595 -0.027823 -v 0.015322 -0.003180 0.023083 -v 0.014915 0.003228 -0.016058 -v -0.043361 0.008705 -0.027248 -v 0.011960 -0.004270 -0.003571 -v -0.003014 0.008601 0.022877 -v -0.003225 0.008434 0.023072 -v -0.017632 0.006639 -0.006128 -v 0.040655 -0.000795 -0.014022 -v 0.029786 0.015668 0.007436 -v 0.008146 0.016200 0.021761 -v -0.001072 0.008746 0.021453 -v -0.024273 0.015037 0.013159 -v -0.010540 0.002671 -0.019948 -v 0.040858 0.011279 0.002357 -v 0.007098 0.001891 0.006752 -v -0.009402 0.002434 -0.036185 -v -0.012026 -0.015256 -0.031296 -v -0.014066 0.001175 -0.037654 -v -0.027645 0.015191 0.019349 -v -0.007242 -0.003727 -0.004511 -v -0.037034 0.011786 -0.024081 -v 0.005869 0.004881 -0.003945 -v -0.023273 0.016488 0.014008 -v -0.005750 -0.003360 -0.009089 -v -0.033982 -0.001669 -0.019355 -v -0.038155 0.009947 -0.033358 -v 0.023728 0.004037 0.009795 -v -0.041120 0.007840 -0.038253 -v 0.051493 -0.000234 -0.015027 -v 0.051678 -0.000731 -0.015081 -v 0.036753 0.005857 0.012573 -v 0.053656 -0.000764 -0.016552 -v -0.000742 0.014168 0.018151 -v -0.019658 0.011829 0.003934 -v -0.015317 -0.001476 -0.039162 -v -0.043615 0.003288 -0.021911 -v 0.027553 0.012414 0.009783 -v 0.027484 0.012247 0.009887 -v 0.019343 0.015302 0.023291 -v 0.043719 -0.002762 -0.005673 -v -0.015697 0.005372 0.004133 -v -0.027983 -0.002095 -0.028606 -v -0.037369 0.013280 -0.035578 -v 0.042095 0.007748 -0.002510 -v -0.000317 -0.000529 -0.034133 -v 0.000481 -0.000459 -0.034658 -v -0.018298 0.007643 -0.022461 -v 0.036438 -0.002266 -0.001588 -v -0.006946 -0.014818 -0.035885 -v -0.012934 0.009393 0.023520 -v -0.009674 -0.014098 -0.035974 -v 0.029423 -0.003292 -0.025022 -v -0.014945 0.015155 0.011711 -v -0.031280 -0.003089 -0.026859 -v 0.007283 0.010198 0.023078 -v 0.046589 0.001543 -0.000133 -v 0.020471 0.004090 0.008821 -v 0.023792 0.012232 0.018646 -v -0.026743 0.006007 -0.024394 -v 0.037316 0.006987 0.007544 -v 0.017754 0.007770 0.019830 -v 0.025588 0.007961 -0.008629 -v 0.007553 -0.003262 0.008048 -v -0.025417 0.009696 -0.019655 -v -0.034011 0.000504 -0.004040 -v 0.007573 0.010639 0.023210 -v -0.037731 0.011153 -0.036906 -v 0.020728 0.015978 0.023179 -v 0.002338 0.002617 -0.014201 -v 0.027771 0.014569 0.011549 -v -0.016388 0.005436 -0.036167 -v -0.018479 0.007546 -0.023622 -v -0.000537 0.004039 -0.007029 -v -0.043691 0.012474 -0.021779 -v -0.043065 0.013838 -0.021166 -v -0.040277 0.010734 -0.037926 -v -0.007283 0.000974 0.000848 -v -0.013598 -0.015535 0.021542 -v 0.036049 0.002361 0.016325 -v -0.033135 -0.002248 -0.020512 -v 0.033893 0.000639 -0.018007 -v 0.034777 0.001922 0.015719 -v -0.006877 -0.003295 -0.005739 -v 0.046781 0.005380 0.008883 -v 0.036890 -0.001127 -0.008899 -v 0.020336 0.010846 0.018015 -v -0.016786 0.004151 -0.003128 -v 0.040185 0.004751 0.023202 -v -0.022306 -0.001874 -0.027682 -v -0.039597 0.009680 -0.035537 -v -0.016969 0.020352 0.024359 -v 0.046289 0.002547 -0.004421 -v 0.030587 -0.000227 -0.022794 -v -0.043970 0.007523 -0.025578 -v -0.026204 0.010914 0.021696 -v 0.016132 0.007396 0.020109 -v -0.016682 0.013028 0.005907 -v 0.043401 0.003122 0.007257 -v 0.026803 0.013982 0.017901 -v 0.042910 0.004204 0.018288 -v -0.022549 0.000026 -0.016399 -v -0.010302 -0.015547 0.019696 -v -0.027613 0.002949 -0.038076 -v 0.011885 -0.002548 -0.003949 -v 0.014253 0.002409 -0.012976 -v 0.016171 0.001679 0.008178 -v 0.026253 0.003867 -0.004064 -v -0.008835 -0.015407 0.018464 -v 0.010914 0.003780 -0.013567 -v 0.024827 0.015888 -0.000750 -v 0.022167 0.014781 0.009883 -v 0.026884 0.015112 -0.001210 -v 0.048051 -0.002116 -0.011371 -v 0.001163 0.002399 -0.012601 -v -0.034149 0.011140 -0.035166 -v -0.012984 0.004075 -0.037322 -v -0.037468 0.013344 -0.023234 -v -0.014828 -0.001386 0.000313 -v -0.008989 0.009219 0.008431 -v 0.008232 0.010099 0.022285 -v 0.026009 0.018256 0.000468 -v -0.043504 0.002422 -0.017846 -v -0.007904 -0.001578 -0.032256 -v -0.032147 0.005760 -0.005298 -v 0.017397 0.009874 0.009412 -v -0.002647 0.008596 0.023207 -v -0.000502 0.006679 0.017747 -v -0.035010 0.010679 -0.035534 -v 0.004542 0.004710 0.008151 -v -0.007641 -0.015372 0.016330 -v -0.035445 0.000251 0.017809 -v -0.039422 0.002174 -0.023074 -v 0.051647 -0.000339 -0.020725 -v -0.029931 0.001627 -0.024602 -v 0.045677 0.014002 0.012783 -v -0.007025 0.003134 -0.022898 -v 0.013564 -0.001284 0.020472 -v -0.040553 0.000778 -0.033989 -v 0.021072 0.015813 0.013576 -v 0.047679 0.001751 -0.020667 -v 0.025167 -0.014984 0.016086 -v 0.014253 -0.000910 -0.025889 -v -0.023947 0.014817 0.024668 -v 0.019689 0.010487 0.017936 -v -0.036848 -0.001795 0.011251 -v -0.006734 -0.001862 -0.029723 -v 0.036006 -0.002108 -0.017171 -v 0.022080 0.001409 -0.024868 -v -0.001983 0.017048 0.022511 -v -0.020933 0.002539 -0.021214 -v -0.029436 0.003129 -0.030464 -v 0.022793 0.012543 0.020971 -v -0.038870 0.006468 -0.024957 -v -0.024163 0.001592 -0.014466 -v 0.024007 0.012947 0.017274 -v 0.035363 -0.002619 -0.019092 -v 0.011331 0.008832 0.018890 -v 0.007215 0.016144 0.023378 -v 0.003819 0.003108 -0.014397 -v -0.008638 -0.014348 -0.023062 -v 0.009782 0.005958 0.023073 -v -0.029492 0.012387 -0.031487 -v -0.030533 0.001272 -0.036212 -v 0.027387 0.002599 -0.020678 -v -0.017858 0.006335 -0.004726 -v -0.006496 -0.015062 -0.023587 -v 0.011248 0.013075 0.019839 -v -0.001204 0.010005 0.024655 -v -0.025623 0.021728 0.022409 -v -0.039921 0.001579 -0.030922 -v -0.036938 -0.000384 -0.018754 -v -0.038216 0.001494 -0.028260 -v -0.010570 0.004878 -0.029082 -v -0.020510 -0.003428 -0.019923 -v 0.000453 0.002830 -0.010798 -v 0.027977 0.001704 0.011046 -v 0.022804 0.017986 0.014618 -v 0.023212 0.014593 0.021187 -v -0.004530 0.009703 0.011783 -v -0.036880 -0.000758 -0.033141 -v -0.024095 0.023122 0.018993 -v 0.015476 0.002655 0.010788 -v 0.000995 0.009127 0.018045 -v 0.035998 -0.000673 0.017528 -v -0.022208 0.009463 -0.001331 -v 0.041697 0.016726 0.013831 -v -0.035598 0.012760 -0.019390 -v -0.009316 0.017390 0.019430 -v -0.035331 0.008782 0.007496 -v 0.012401 0.008003 0.018216 -v -0.042426 0.006006 -0.024984 -v 0.000329 0.007830 0.009983 -v -0.011418 -0.001093 0.002068 -v -0.010563 -0.015185 -0.028399 -v -0.027840 0.014508 0.018007 -v -0.000131 0.015446 0.023509 -v -0.032798 0.012460 -0.019182 -v 0.006396 0.004619 -0.009324 -v 0.039265 0.004424 -0.001460 -v -0.000124 -0.003391 -0.016135 -v 0.017982 0.008246 0.021095 -v -0.042992 0.014402 -0.021319 -v 0.026292 0.020049 0.004870 -v -0.019552 0.001589 -0.020229 -v 0.044999 -0.000037 -0.023367 -v 0.021334 0.014076 0.013203 -v 0.021217 0.013568 0.013204 -v 0.033040 0.002935 -0.010052 -v 0.018580 0.002373 0.006535 -v 0.049887 0.000325 -0.015288 -v 0.050942 0.000135 -0.015254 -v 0.051321 0.000325 -0.015725 -v -0.019410 0.004171 -0.037915 -v -0.034614 0.000070 -0.032719 -v 0.042938 0.000018 0.001106 -v 0.026123 0.003756 -0.012006 -v -0.010877 -0.001551 -0.008770 -v -0.042556 0.001518 -0.036097 -v 0.012080 -0.001782 0.013200 -v 0.043484 0.014516 0.017976 -v 0.019325 0.006836 0.023402 -v -0.029895 0.007680 -0.023132 -v -0.006621 -0.014212 -0.031875 -v 0.047111 -0.001794 -0.010694 -v -0.005577 -0.001198 -0.027125 -v -0.002819 0.002093 -0.031062 -v -0.033539 0.010270 0.014381 -v 0.027377 0.019728 0.007578 -v -0.040685 0.003784 -0.031068 -v -0.023657 0.007106 -0.036637 -v 0.038600 -0.001696 -0.009950 -v -0.014800 -0.014114 -0.030758 -v -0.016934 0.006872 -0.023053 -v -0.034479 0.005251 0.019471 -v 0.046972 0.004176 0.006408 -v 0.034490 0.002156 -0.008896 -v 0.016681 0.007961 0.021486 -v 0.009453 0.002045 -0.021321 -v -0.002230 -0.003298 -0.012814 -v -0.002987 0.014572 0.016464 -v -0.032284 0.011595 -0.022340 -v 0.002269 0.005554 0.013189 -v -0.042670 0.010167 -0.021518 -v 0.027128 0.013781 0.012471 -v 0.026985 0.014328 0.013210 -v -0.001508 0.008077 0.021001 -v 0.027559 0.012531 0.009896 -v -0.030120 -0.003438 -0.031583 -v -0.020330 0.019270 0.013078 -v 0.038499 0.001940 -0.001860 -v -0.010897 -0.014874 -0.033450 -v 0.036823 0.016280 0.020769 -v 0.037900 0.016801 0.019907 -v -0.008170 -0.014826 -0.033994 -v -0.037177 0.005647 -0.034047 -v -0.025616 0.006690 -0.021099 -v 0.013420 0.005674 0.016415 -v -0.005709 -0.002757 -0.021325 -v 0.006866 -0.000324 0.008703 -v 0.009144 -0.001914 0.004331 -v -0.008300 0.003689 -0.023795 -v -0.009734 0.004346 -0.025020 -v 0.048226 -0.001945 -0.020611 -v 0.025956 0.007607 0.012685 -v -0.023306 -0.002510 -0.026212 -v 0.017465 0.011398 0.014729 -v -0.027315 0.016596 0.022640 -v -0.022844 0.003766 -0.037574 -v 0.033301 -0.000746 -0.020561 -v 0.021136 0.013061 0.014357 -v -0.008918 -0.011904 0.024671 -v -0.041680 0.003568 -0.024211 -v -0.010786 -0.014421 -0.035642 -v 0.007211 0.001003 -0.021091 -v -0.017858 0.018489 0.012194 -v 0.006100 0.004065 0.003755 -v -0.005211 0.001163 0.024670 -v 0.025058 0.009025 -0.009646 -v -0.024716 -0.001572 0.024667 -v 0.032712 0.000355 0.024667 -v 0.008182 0.009508 0.023428 -v 0.023159 0.012018 0.019767 -v -0.015586 -0.015187 0.023572 -v -0.007235 -0.002559 -0.030139 -v -0.003280 0.017472 0.023357 -v -0.040934 0.004051 -0.032579 -v -0.014701 -0.015591 0.022495 -v -0.042033 0.006313 -0.025248 -v 0.031006 -0.002097 0.014657 -v 0.013114 -0.000454 0.011036 -v -0.026238 -0.001459 -0.024194 -v -0.007060 -0.014822 0.022722 -v -0.018234 0.020937 0.022474 -v -0.028246 -0.000935 -0.029396 -v -0.034097 0.005824 -0.002429 -v -0.000763 0.000051 -0.023066 -v -0.017618 -0.002906 0.001372 -v 0.025786 0.011234 0.004730 -v 0.040882 0.003079 0.004275 -v 0.025798 0.012340 0.015467 -v 0.014920 0.000398 0.008035 -v -0.032796 -0.015456 0.020438 -v -0.002629 0.008834 0.022978 -v -0.028853 0.003403 -0.038051 -v -0.030371 -0.000297 -0.035606 -v -0.037856 0.004031 -0.033242 -v 0.012905 0.016321 0.019748 -v -0.031425 0.004129 -0.035701 -v 0.021491 0.012258 0.023462 -v -0.010013 0.010169 0.022459 -v 0.016624 0.002873 -0.015859 -v -0.043788 0.008682 -0.024838 -v -0.000776 -0.004067 0.020427 -v 0.032195 -0.003090 -0.023496 -v 0.036756 0.001840 0.016036 -v 0.034993 0.016989 0.019266 -v 0.013946 0.001336 0.013107 -v -0.030460 0.000100 -0.033951 -v 0.024737 0.016380 0.002887 -v 0.042984 0.004272 0.017367 -v -0.028706 0.005224 -0.034013 -v 0.045685 0.000005 -0.023863 -v -0.006610 0.008035 0.023177 -v 0.023682 0.010836 0.005889 -v 0.013611 0.016672 0.022389 -v -0.006172 -0.015491 0.017882 -v -0.000309 0.011927 0.014155 -v -0.001231 0.012377 0.013965 -v -0.040912 0.006108 -0.024921 -v -0.034721 0.014342 -0.018610 -v 0.027062 -0.015334 0.017409 -v 0.040710 0.016548 0.013725 -v 0.029049 0.002845 -0.019426 -v 0.022786 0.016949 0.021632 -v 0.036855 0.005007 0.013880 -v 0.026706 0.003226 -0.020094 -v 0.042387 0.004903 0.020621 -v -0.001696 0.008513 0.005483 -v 0.021479 0.014054 0.011900 -v 0.049797 -0.001936 -0.019996 -v 0.026535 -0.015132 0.017163 -v -0.029340 0.002839 -0.019325 -v 0.039885 0.000558 0.015488 -v 0.029224 0.003700 -0.015461 -v 0.023181 0.014993 0.023456 -v 0.010496 0.013058 0.019989 -v 0.031718 -0.001675 0.005442 -v 0.040566 -0.003521 -0.018230 -v 0.047018 0.011168 0.005627 -v -0.007042 0.009037 0.008791 -v 0.012578 -0.004233 0.018370 -v -0.001441 0.014157 0.015514 -v 0.039194 0.016029 0.020708 -v 0.012086 0.006083 0.021892 -v 0.012202 0.005505 0.019668 -v -0.032221 0.009061 -0.000224 -v 0.000130 -0.000483 -0.028667 -v 0.020288 0.013311 0.008457 -v -0.030444 0.009688 0.020494 -v 0.016692 -0.015492 0.013766 -v -0.036917 0.005783 0.010667 -v -0.003471 0.000818 -0.031855 -v -0.009888 0.004178 -0.040874 -v -0.034696 0.012874 -0.033923 -v -0.009224 0.010261 0.022802 -v 0.013270 -0.000989 -0.008130 -v -0.039940 0.002919 -0.030970 -v 0.023305 0.015773 0.002820 -v -0.037977 0.006025 -0.034386 -v -0.019679 0.005840 -0.028569 -v 0.044442 -0.002310 -0.020888 -v -0.027453 0.000968 -0.025221 -v 0.011057 0.013768 0.019832 -v -0.024386 0.022802 0.021577 -v 0.047278 0.008311 0.001629 -v -0.011357 -0.014315 -0.025727 -v 0.012973 -0.002870 0.007147 -v 0.024868 0.011237 0.005792 -v -0.026706 0.018966 0.016463 -v 0.013340 0.001730 -0.011470 -v 0.045659 0.009735 0.000651 -v 0.005518 0.000175 0.012509 -v -0.011964 -0.015044 -0.026917 -v 0.038945 -0.002837 -0.014950 -v 0.029670 0.000388 -0.022967 -v 0.009338 0.006419 0.022571 -v -0.000882 0.000961 -0.028548 -v 0.041358 0.001332 0.024657 -v -0.009777 -0.014364 -0.026558 -v -0.014029 0.005756 -0.022284 -v -0.012489 -0.014646 -0.028865 -v -0.028635 0.004575 -0.035868 -v 0.024153 -0.001269 -0.026111 -v 0.040819 0.015987 0.009980 -v 0.046565 0.010720 0.003460 -v -0.040877 0.015163 -0.019900 -v -0.004189 0.003292 -0.002221 -v -0.012592 0.003608 -0.019196 -v -0.026465 0.021809 0.019287 -v -0.031429 0.001896 -0.035139 -v -0.003520 0.004313 -0.000937 -v -0.033739 -0.003569 -0.028051 -v 0.027324 0.003997 -0.007111 -v 0.039082 -0.003562 -0.016584 -v 0.039096 -0.003408 0.019932 -v -0.039612 0.012319 -0.025520 -v -0.014650 0.015044 0.010186 -v -0.005949 -0.014642 -0.029367 -v 0.024357 0.016456 0.004632 -v -0.009619 -0.014681 -0.029553 -v -0.006231 -0.014091 -0.029582 -v 0.026476 0.009556 -0.003066 -v 0.021764 0.012047 0.021775 -v -0.016815 -0.002463 0.004822 -v 0.025046 0.011682 -0.005592 -v -0.038325 0.012130 -0.034553 -v 0.009492 0.010074 0.021326 -v 0.043434 -0.001958 -0.021752 -v -0.008491 0.004742 0.003944 -v -0.036826 0.009768 -0.023651 -v -0.024297 0.013675 0.012314 -v -0.021098 0.008828 -0.019527 -v 0.052659 -0.001179 -0.016250 -v 0.053124 -0.000413 -0.016074 -v -0.003543 0.002518 -0.027792 -v -0.015192 0.005595 -0.036596 -v 0.016631 0.002128 -0.023789 -v 0.008723 0.015289 0.021867 -v -0.002660 0.001706 0.023627 -v -0.004985 0.000858 -0.021829 -v -0.042095 0.004168 -0.037732 -v 0.014737 0.002987 -0.014789 -v -0.006730 -0.014449 -0.032233 -v 0.038249 0.002547 0.002125 -v -0.000038 0.005071 -0.004518 -v -0.013393 -0.002372 -0.002842 -v 0.033460 0.004829 0.011755 -v -0.003686 0.008732 0.023051 -v -0.018510 0.011321 0.021714 -v -0.025587 -0.001580 -0.020997 -v -0.030945 0.003892 -0.019181 -v -0.035529 0.000656 -0.033509 -v -0.028782 0.011455 0.004412 -v -0.026333 0.015253 0.015339 -v 0.027390 0.012903 0.006806 -v 0.044002 -0.003675 -0.019272 -v -0.025911 0.021684 0.015655 -v -0.035855 0.003541 -0.023163 -v 0.052822 -0.000343 -0.013701 -v -0.033177 0.008981 -0.030307 -v -0.037287 0.000458 -0.021516 -v 0.026508 0.012385 0.013974 -v 0.028115 0.011790 -0.001662 -v -0.016386 0.001525 -0.001789 -v -0.020755 0.007638 -0.026141 -v -0.003867 0.013357 0.016492 -v -0.025134 0.004834 -0.021217 -v 0.027115 0.013061 0.023290 -v -0.026208 0.014266 0.022859 -v 0.036354 0.000722 0.017438 -v -0.035677 0.002291 -0.036783 -v 0.044453 -0.001591 -0.010172 -v -0.045151 0.009644 -0.022022 -v -0.030647 -0.000211 -0.022721 -v -0.007603 -0.004300 -0.010641 -v 0.039275 0.007913 0.001602 -v -0.041018 0.003480 -0.023768 -v -0.025979 0.001214 -0.013189 -v 0.031024 -0.001499 0.007046 -v -0.027109 0.003658 0.024377 -v 0.022765 0.013704 0.020795 -v -0.001606 -0.000437 -0.033455 -v 0.042194 0.003832 0.012481 -v 0.027977 0.013598 0.009312 -v -0.022909 0.005716 -0.025516 -v -0.026271 0.000683 -0.029916 -v 0.038618 0.008499 0.024667 -v -0.032727 -0.002734 -0.019448 -v -0.014708 -0.015172 0.020341 -v -0.015069 0.000556 -0.003909 -v -0.005178 0.000740 -0.003375 -v -0.033939 -0.015363 0.021465 -v -0.036413 0.011824 -0.032108 -v 0.037362 0.003655 0.015483 -v -0.035022 0.011542 -0.031096 -v -0.036941 0.001703 -0.035862 -v 0.020749 0.015690 0.020823 -v 0.043665 0.013270 0.018625 -v 0.024066 0.015019 0.018272 -v -0.017489 0.006176 -0.033105 -v -0.029874 -0.000020 -0.036933 -v -0.015621 0.019763 0.017165 -v -0.034613 -0.015538 0.019606 -v 0.001462 0.010841 0.019097 -v 0.045764 0.014285 0.011333 -v -0.033913 0.010029 0.006663 -v -0.036334 -0.001075 0.003199 -v 0.012221 0.000677 -0.008196 -v -0.005206 -0.000260 -0.035075 -v -0.008240 -0.002798 -0.002129 -v 0.001232 0.011876 0.021209 -v 0.000129 0.014993 0.019349 -v 0.000368 -0.000868 -0.014680 -v -0.034242 -0.015163 0.018653 -v -0.010071 -0.000283 0.003174 -v 0.043354 0.008898 -0.001309 -v -0.028254 0.009069 0.022518 -v -0.025534 0.022741 0.020165 -v 0.024028 0.019155 0.007708 -v 0.028725 -0.003942 0.009194 -v -0.022212 0.022981 0.015075 -v -0.035747 0.001175 0.000073 -v -0.000229 0.005904 -0.000652 -v 0.040336 -0.001535 -0.015176 -v -0.026241 0.009605 0.023131 -v -0.024769 0.014363 0.024269 -v 0.046084 0.013643 0.010068 -v 0.028521 -0.014690 0.018273 -v -0.035078 0.000201 -0.029340 -v 0.053902 0.000869 -0.016535 -v -0.038273 0.003510 -0.038286 -v -0.033291 0.009276 0.001456 -v 0.043903 0.015689 0.013793 -v 0.035857 -0.000246 -0.005761 -v -0.034231 -0.004031 -0.028548 -v -0.030803 0.006692 -0.030705 -v 0.034211 -0.000326 0.017104 -v 0.001670 0.007057 0.007824 -v 0.038734 0.014860 0.021851 -v 0.025778 0.011155 0.014439 -v -0.040963 0.005123 -0.032967 -v -0.031486 0.008432 -0.033874 -v 0.013098 0.005409 0.020461 -v 0.024641 0.008213 -0.010409 -v 0.004001 0.004163 -0.011684 -v 0.011590 0.003239 -0.018906 -v -0.020835 0.022314 0.014272 -v 0.014653 0.012082 0.019353 -v 0.046553 0.007280 0.012191 -v -0.016697 0.006962 0.003904 -v -0.039314 0.009231 -0.034416 -v -0.018869 0.021792 0.019176 -v -0.014792 0.001270 -0.037629 -v -0.006944 -0.015169 0.016062 -v -0.037082 0.012343 -0.020018 -v -0.037031 0.009697 -0.036219 -v -0.017405 0.020726 0.019987 -v -0.028358 0.012451 0.016433 -v -0.013999 0.008549 0.006083 -v 0.008159 0.015580 0.022512 -v -0.015593 0.004950 -0.015069 -v -0.037511 0.002451 -0.023885 -v 0.016014 -0.015194 0.015140 -v -0.010240 0.002687 0.004018 -v -0.033280 0.003194 -0.035787 -v 0.053828 -0.000796 -0.016992 -v 0.018729 0.011093 0.008676 -v -0.027702 0.005038 -0.035303 -v 0.023016 0.009417 -0.003363 -v -0.015132 0.015598 0.012814 -v 0.020271 0.011371 0.018058 -v 0.042509 -0.003842 -0.006573 -v -0.029553 0.007964 -0.005256 -v -0.016433 0.006465 -0.029371 -v 0.015988 -0.015075 0.013923 -v 0.041455 -0.002663 -0.018905 -v 0.016057 -0.003614 -0.027148 -v -0.043362 0.003101 -0.034017 -v -0.003703 0.000452 -0.032387 -v -0.003535 0.000806 -0.032888 -v -0.013774 0.013075 0.008028 -v -0.041949 0.007097 -0.020368 -v 0.031155 0.015215 0.022453 -v 0.030951 0.013385 0.024668 -v 0.014965 -0.000722 0.022616 -v 0.032914 -0.000389 0.000966 -v 0.021408 -0.014519 0.013172 -v 0.019166 -0.014576 0.012487 -v -0.037675 0.000058 0.008193 -v -0.037808 0.000398 0.009340 -v 0.020141 -0.014957 0.012399 -v -0.017085 0.011500 0.020946 -v -0.018092 0.011500 0.020888 -v -0.021887 -0.002521 -0.017433 -v -0.035586 0.012935 -0.032564 -v -0.041415 0.003827 -0.033093 -v -0.038721 0.008804 -0.019936 -v -0.003219 0.008555 0.022565 -v -0.006215 -0.001563 -0.028744 -v 0.003210 0.004707 0.012177 -v 0.037908 0.016775 0.013144 -v -0.006547 -0.014478 -0.024591 -v -0.030734 0.005169 -0.035275 -v -0.014089 -0.009521 0.024667 -v -0.024954 0.014877 0.013274 -v 0.007989 0.010229 0.021953 -v -0.033574 -0.000807 -0.004420 -v -0.020392 0.003521 -0.026860 -v -0.036104 0.005901 -0.024151 -v -0.037306 0.006477 -0.024397 -v -0.034013 0.005671 -0.032271 -v 0.024924 0.011412 0.013833 -v 0.025223 0.003420 -0.012843 -v 0.020409 0.000195 -0.025794 -v -0.020879 0.014438 0.006329 -v -0.040568 0.001536 -0.020424 -v -0.003202 0.002977 0.023877 -v 0.001107 0.005619 -0.002946 -v 0.024460 0.017811 0.003852 -v 0.009736 0.005541 0.021542 -v 0.016856 -0.001891 0.001365 -v -0.006595 -0.014273 -0.028466 -v 0.053838 0.000406 -0.016315 -v -0.009643 -0.014751 -0.029082 -v 0.037855 -0.002678 -0.014184 -v 0.032904 -0.001286 0.023973 -v -0.042418 0.000944 -0.031780 -v -0.012570 0.005408 -0.019009 -v -0.015366 0.001918 0.003580 -v -0.014462 0.000332 0.002560 -v 0.033114 -0.003418 0.001978 -v 0.008356 0.011148 0.023220 -v 0.028031 0.014010 0.010136 -v 0.007943 -0.003954 -0.024242 -v 0.000521 0.000301 -0.036068 -v -0.021287 0.000951 -0.028836 -v 0.037561 0.005393 0.007799 -v -0.007997 -0.014098 -0.033255 -v -0.014008 -0.013191 -0.033012 -v 0.028190 0.013274 0.006097 -v -0.004989 0.011440 0.015329 -v 0.036417 0.005607 0.010506 -v -0.025564 -0.003242 -0.028569 -v -0.008443 0.001791 -0.041365 -v 0.018852 0.012082 0.019149 -v -0.010233 -0.003160 -0.039900 -v -0.038491 0.010443 -0.038094 -v -0.007203 -0.014618 -0.034493 -v 0.018992 0.014055 0.023844 -v 0.020213 0.011347 0.023601 -v -0.016707 0.013088 0.018659 -v 0.046850 0.012092 0.012017 -v 0.030205 0.014448 0.014965 -v 0.052538 -0.000131 -0.014346 -v 0.010928 -0.000703 -0.003149 -v 0.009815 0.000247 -0.000367 -v -0.023368 0.006878 -0.033933 -v 0.020817 0.009572 0.022811 -v -0.009437 0.000536 -0.013493 -v 0.036469 -0.000774 -0.005718 -v 0.035837 -0.000499 -0.004391 -v 0.024592 0.012476 0.017182 -v -0.032399 0.002348 -0.035525 -v -0.020342 0.022853 0.020239 -v 0.043401 0.000130 -0.014702 -v 0.023959 -0.005536 0.024668 -v 0.023576 0.018122 0.024215 -v 0.027218 -0.003971 0.024668 -v -0.038982 0.012709 -0.024673 -v -0.038281 0.003667 -0.023126 -v -0.018284 0.016976 0.023996 -v -0.016861 -0.015237 0.021907 -v -0.025808 0.007496 -0.036034 -v -0.028069 0.010609 -0.019591 -v -0.003199 0.000634 -0.026654 -v -0.035430 0.005446 -0.032930 -v -0.046819 0.009317 -0.027641 -v 0.010236 0.015774 0.019152 -v 0.025291 0.008483 -0.002017 -v -0.033873 0.004998 0.020386 -v -0.000350 -0.000318 -0.023874 -v -0.031091 -0.003036 -0.031667 -v -0.032743 -0.014879 0.021609 -v -0.017341 -0.015073 0.020541 -v 0.034894 -0.002111 0.001265 -v -0.030845 -0.003956 -0.035265 -v 0.008961 0.010879 0.019379 -v -0.032476 -0.015134 0.021002 -v -0.024584 0.013718 0.008405 -v 0.032088 0.005943 0.011966 -v -0.041543 0.013979 -0.023392 -v -0.034681 0.009571 0.006193 -v -0.020540 0.006390 -0.021706 -v 0.024824 -0.013541 0.020010 -v 0.010630 0.008554 0.021173 -v -0.005508 -0.001475 -0.005190 -v -0.035474 -0.015038 0.019080 -v 0.015908 0.003454 -0.017142 -v 0.052139 -0.000801 -0.014512 -v -0.017493 -0.002911 -0.039062 -v 0.007337 0.004329 -0.004391 -v 0.039458 0.003026 0.014806 -v -0.012887 -0.014332 0.018692 -v -0.009819 -0.014933 0.018515 -v 0.047870 0.000217 -0.015378 -v -0.017368 0.010400 0.022804 -v 0.006048 0.004923 0.000556 -v 0.003188 0.005391 -0.005320 -v 0.024793 0.007227 -0.009318 -v -0.008743 -0.015062 0.016959 -v 0.046492 0.000565 -0.024336 -v -0.007708 0.000820 -0.020221 -v 0.024689 0.011107 0.006152 -v -0.011506 0.013663 0.010183 -v -0.027502 0.012374 0.008690 -v -0.002306 0.000993 -0.033588 -v 0.021428 -0.000048 -0.011968 -v -0.025450 0.004599 -0.025534 -v -0.032086 0.006319 -0.035254 -v 0.026729 -0.014637 0.015923 -v -0.032903 -0.003596 -0.002612 -v 0.018302 -0.014929 0.016465 -v -0.025402 0.015560 0.014601 -v -0.027921 0.006963 -0.007892 -v -0.015020 0.012882 0.018727 -v 0.014495 0.015968 0.019805 -v 0.036944 -0.000432 -0.002129 -v 0.025328 -0.014116 0.015623 -v -0.035453 0.012001 -0.032081 -v -0.035912 0.001846 -0.018464 -v -0.037575 0.015551 -0.020435 -v 0.013317 0.000825 -0.024400 -v 0.015217 -0.014635 0.015533 -v 0.014258 0.002632 0.016999 -v 0.020631 0.001952 -0.024381 -v 0.017899 0.011565 0.010830 -v -0.028815 0.010591 0.020754 -v 0.024138 0.017494 0.015551 -v 0.027689 0.010930 -0.000604 -v 0.030515 0.001519 0.011915 -v 0.042084 0.002560 0.016583 -v -0.032472 0.010298 -0.023329 -v 0.028783 0.001401 0.004124 -v -0.007336 0.003292 -0.036147 -v 0.017520 -0.014969 0.013144 -v 0.019919 0.013749 0.016737 -v -0.038856 0.000474 -0.030029 -v 0.026730 0.013257 0.016500 -v 0.032830 -0.000245 0.024205 -v 0.026080 0.008613 -0.008850 -v -0.040038 0.003398 -0.036442 -v -0.026156 0.003259 0.024669 -v 0.037953 0.005815 0.005161 -v -0.016478 0.005578 -0.035279 -v -0.001391 -0.001174 -0.012758 -v -0.014267 -0.002683 -0.001785 -v -0.008589 0.003347 0.003211 -v 0.045540 0.001306 0.002582 -v -0.018707 0.007131 0.000024 -v -0.012257 -0.013818 -0.024171 -v -0.017014 0.020048 0.024451 -v -0.006513 -0.002451 -0.007424 -v -0.017259 0.006339 -0.008385 -v 0.014081 0.007421 0.018461 -v -0.009188 -0.014385 -0.025754 -v 0.015879 0.009719 0.016553 -v 0.021901 -0.001423 -0.009018 -v -0.013472 -0.014259 -0.026612 -v 0.012581 0.013206 0.020058 -v -0.024981 0.010490 0.022368 -v 0.023966 0.016568 0.023156 -v -0.006277 0.014237 0.016608 -v 0.039380 -0.003267 0.021650 -v -0.039547 0.001013 -0.030610 -v 0.028944 0.014803 0.017453 -v 0.039563 0.011786 0.004119 -v 0.039434 -0.002935 -0.016490 -v 0.027048 0.012494 0.012642 -v -0.029643 0.003918 -0.024786 -v 0.041599 -0.001903 0.023821 -v 0.023035 0.018410 0.012589 -v 0.042192 -0.002680 -0.020790 -v -0.026185 0.007924 -0.033180 -v -0.009204 0.003375 -0.041393 -v -0.012769 0.005075 -0.031757 -v -0.038528 0.015718 -0.018800 -v 0.007954 0.016131 0.024176 -v -0.014114 -0.014287 -0.030612 -v -0.015398 -0.001709 0.002792 -v -0.037195 0.000926 -0.027923 -v -0.010173 0.004111 -0.031521 -v 0.023191 0.010844 0.005871 -v 0.017393 0.003703 0.023958 -v -0.037599 0.005500 0.009604 -v 0.020224 0.008998 0.022641 -v 0.001477 -0.003970 0.017872 -v -0.014238 -0.014171 -0.032417 -v 0.009805 0.001285 -0.002959 -v -0.034712 0.001775 -0.030462 -v 0.016653 0.003284 -0.017583 -v -0.044484 0.008096 -0.025557 -v -0.002130 0.014855 0.016641 -v 0.008252 0.004377 -0.009485 -v 0.041559 0.007086 0.021823 -v 0.008465 0.004050 -0.013403 -v -0.026463 0.022841 0.019323 -v -0.003199 0.008816 0.023632 -v -0.039371 0.016333 -0.019412 -v -0.043866 0.008543 -0.024139 -v -0.036031 -0.002390 0.003205 -v -0.030714 0.011337 0.005220 -v -0.012441 -0.002265 -0.003281 -v 0.023264 0.003493 0.008440 -v -0.002717 0.001806 -0.029662 -v 0.027216 0.013560 0.012512 -v -0.016498 0.016587 0.018837 -v 0.030932 0.000257 0.007167 -v -0.023009 0.023197 0.017513 -v -0.027510 0.014847 0.016967 -v 0.036152 0.000499 0.017531 -v -0.020365 0.008503 -0.023246 -v -0.040517 0.005429 -0.023633 -v -0.029935 0.005438 -0.030627 -v 0.031571 0.015154 0.014910 -v 0.000995 0.003922 0.018846 -v 0.008939 0.010306 0.021336 -v -0.011464 0.001402 -0.036300 -v 0.027591 0.013242 0.008931 -v 0.007387 -0.001194 0.008217 -v -0.033259 0.002482 -0.035419 -v -0.007711 0.002746 -0.020824 -v 0.020680 0.015691 0.019492 -v -0.004584 0.008612 0.008801 -v -0.035812 -0.014680 0.020399 -v 0.025661 0.009952 -0.008489 -v -0.029399 -0.000871 -0.023090 -v -0.031003 -0.000937 -0.019746 -v -0.027603 -0.001661 -0.037812 -v -0.026185 0.010783 -0.020638 -v -0.039789 0.016167 -0.021086 -v -0.030948 -0.003868 -0.036077 -v -0.031725 0.012494 -0.033524 -v 0.041521 -0.001562 -0.019420 -v 0.005897 0.001024 -0.019887 -v 0.020772 0.012232 0.015761 -v -0.029878 0.004598 -0.035122 -v -0.014907 0.000238 -0.000004 -v 0.000209 0.003871 -0.007806 -v -0.003496 0.008502 0.023071 -v -0.006684 0.000721 -0.000469 -v -0.012335 0.017701 0.017503 -v 0.018324 0.015274 0.021953 -v 0.024994 0.012394 0.016552 -v -0.008917 0.002185 -0.038333 -v -0.039432 0.011815 -0.025520 -v -0.025053 0.009278 -0.004271 -v -0.039324 0.002170 -0.034783 -v 0.008433 -0.001850 0.006067 -v -0.008636 0.002544 -0.039625 -v 0.023057 0.009078 -0.002662 -v -0.009420 -0.014723 0.017236 -v -0.031188 0.003760 -0.031085 -v 0.021678 -0.013953 0.018536 -v 0.028169 -0.014827 0.016384 -v 0.041931 -0.000246 -0.023005 -v -0.012826 0.014240 0.009734 -v -0.006337 -0.014016 0.015914 -v -0.032981 0.005090 0.021028 -v -0.024320 0.006611 0.024669 -v -0.042147 0.015387 -0.020641 -v 0.017695 0.012173 0.023236 -v 0.026497 0.013613 0.021892 -v 0.023814 0.008642 0.012773 -v 0.037153 0.015625 0.010782 -v -0.013554 0.005704 -0.021131 -v -0.024249 0.018535 0.014541 -v -0.009855 0.003380 -0.037642 -v -0.001934 0.005323 0.021415 -v -0.010003 -0.014810 0.015891 -v -0.030357 0.006575 -0.019286 -v -0.035349 -0.002259 0.016265 -v 0.007809 0.003128 -0.000258 -v 0.020471 0.011662 0.016558 -v -0.018805 -0.004069 0.001958 -v -0.007875 -0.015105 0.015549 -v 0.044559 -0.001673 -0.006941 -v 0.015033 -0.014797 0.015109 -v -0.029320 0.008660 -0.020270 -v -0.027899 0.008017 -0.020494 -v -0.014836 0.006049 -0.023684 -v -0.039979 0.007408 -0.034823 -v -0.007785 0.008458 0.007811 -v -0.028649 0.011412 -0.030476 -v 0.009106 -0.001055 -0.023799 -v 0.026643 0.009535 -0.006710 -v 0.023399 0.018167 0.010372 -v 0.033343 0.013163 0.012225 -v 0.013557 0.005280 0.021117 -v 0.012848 -0.000290 0.013623 -v 0.009641 0.012138 0.022448 -v 0.016369 0.015602 0.020738 -v -0.040383 0.003704 -0.031314 -v -0.023236 0.023213 0.020735 -v -0.023524 0.013991 0.007621 -v -0.018553 0.002593 -0.020102 -v -0.010697 -0.014497 -0.026140 -v 0.020849 0.001983 0.001060 -v -0.024917 0.008611 -0.005861 -v 0.041304 0.005139 -0.005214 -v -0.000228 -0.000517 -0.013703 -v 0.047476 0.001447 -0.021223 -v -0.037652 0.007906 -0.037526 -v 0.015733 0.008933 0.018676 -v -0.015396 0.017194 0.012756 -v -0.021741 0.003915 -0.014618 -v -0.027178 0.019015 0.023678 -v -0.007515 -0.014277 -0.027656 -v -0.024606 0.024250 0.014558 -v -0.024760 0.007825 -0.032823 -v 0.023696 0.017632 0.005658 -v 0.011721 0.008470 0.021600 -v -0.032814 -0.002276 -0.032070 -v -0.041215 0.012608 -0.021042 -v 0.016655 0.008233 0.009652 -v -0.014524 -0.000727 0.001072 -v -0.006803 -0.013647 -0.029869 -v 0.024107 0.015790 0.003798 -v -0.012187 -0.014305 -0.030547 -v -0.026945 0.003524 -0.025141 -v -0.014067 -0.003624 0.006165 -v -0.019155 0.009976 0.003652 -v 0.027882 0.003104 -0.019182 -v -0.011704 0.012515 0.021480 -v 0.029892 0.013872 0.001478 -v -0.018564 0.006899 -0.034021 -v -0.007772 -0.013996 -0.034217 -v -0.031253 0.000980 -0.034380 -v 0.020381 0.000578 -0.013113 -v -0.025670 0.012362 0.005989 -v -0.030603 0.000027 0.023048 -v 0.001104 0.007224 0.009430 -v -0.004874 -0.000737 -0.024688 -v 0.038913 0.009602 0.003829 -v -0.015534 0.015245 0.012364 -v -0.008960 -0.013693 -0.035929 -v -0.023424 0.009094 -0.003064 -v -0.005126 0.007261 0.022712 -v 0.012652 0.012093 0.019276 -v 0.037760 0.001346 -0.001849 -v 0.017732 -0.003031 0.024669 -v 0.045301 0.011936 0.016510 -v 0.044434 -0.000438 -0.008839 -v -0.007882 -0.014077 0.023956 -v -0.028789 0.011669 0.018816 -v -0.014779 0.012400 0.007041 -v 0.035548 0.012180 0.010100 -v -0.018157 -0.014487 0.022905 -v 0.029582 0.000992 0.008508 -v -0.000888 0.005112 -0.002399 -v -0.033399 -0.014655 0.021941 -v -0.016467 0.004659 -0.020961 -v -0.035694 0.001457 -0.001196 -v -0.042392 0.000194 -0.032689 -v -0.002305 0.008395 0.021776 -v -0.005425 -0.013396 0.020310 -v 0.039515 0.013279 0.022612 -v 0.029290 0.001083 0.009854 -v 0.027740 -0.012580 0.019754 -v -0.015156 -0.014695 0.019147 -v -0.000829 0.015134 0.019192 -v -0.031614 -0.014529 0.019352 -v 0.028274 -0.013426 0.019507 -v -0.043827 0.007360 -0.024802 -v -0.021675 0.007737 -0.020796 -v -0.004675 0.000295 -0.022710 -v -0.037073 0.006752 0.009220 -v -0.020266 0.007177 -0.020910 -v -0.007366 0.004144 0.002450 -v 0.002510 0.006043 0.000486 -v -0.039068 0.000286 -0.034338 -v 0.024348 0.003328 0.009670 -v -0.009400 0.014634 0.023569 -v -0.026097 0.012674 0.020842 -v -0.012791 0.004101 -0.015013 -v 0.029334 0.018100 0.008008 -v -0.005739 0.012010 0.015205 -v -0.032428 -0.014290 0.018509 -v -0.037993 0.001167 -0.024095 -v -0.005003 0.009763 0.014968 -v -0.005317 0.009359 0.014495 -v 0.032366 0.002877 -0.014386 -v -0.011867 -0.014629 0.018535 -v -0.002379 0.008565 0.023073 -v -0.002081 0.003918 0.022244 -v -0.011558 0.004262 -0.030973 -v -0.026553 0.008524 -0.024610 -v -0.010955 -0.014955 0.017777 -v 0.007725 0.016655 0.023824 -v 0.007368 0.000325 0.007674 -v -0.004822 0.012606 0.015964 -v -0.005492 -0.014015 0.017503 -v 0.027174 0.015025 0.013132 -v -0.011784 -0.014640 0.017383 -v 0.017668 0.002529 -0.023431 -v -0.012451 0.005893 -0.019628 -v 0.041719 0.000770 -0.022336 -v 0.013409 0.003561 -0.017036 -v -0.023582 0.007256 -0.033372 -v -0.029336 0.009632 -0.020092 -v 0.040949 -0.001858 -0.002395 -v -0.040482 0.002717 -0.023907 -v 0.046274 -0.000030 -0.015014 -v -0.046478 0.009877 -0.027989 -v -0.044533 0.009812 -0.027755 -v -0.003714 0.008375 0.023267 -v 0.018247 0.001529 0.005073 -v 0.036447 0.014597 0.010062 -v 0.017469 0.001460 0.024667 -v -0.010669 0.003495 -0.038754 -v 0.038137 0.001993 0.015051 -v 0.017359 -0.014086 0.015906 -v 0.038276 0.006868 0.024669 -v -0.034005 0.010619 -0.025438 -v 0.039882 -0.002940 0.024669 -v 0.041197 0.004692 0.022269 -v -0.006414 -0.001823 -0.027753 -v 0.013575 0.000105 0.018882 -v -0.009027 -0.014533 0.015121 -v 0.037535 -0.000678 -0.002146 -v -0.026041 0.007522 -0.020972 -v -0.035429 -0.000624 -0.000071 -v 0.016500 -0.014369 0.013607 -v -0.017841 0.012485 0.020070 -v -0.039344 0.009850 -0.034399 -v -0.044476 0.003123 -0.018630 -v -0.011479 0.004360 -0.035351 -v -0.008287 -0.013490 -0.023204 -v -0.013159 -0.003310 -0.043389 -v 0.020571 0.003352 -0.020453 -v -0.007699 -0.013759 -0.023625 -v 0.038332 -0.000029 -0.005471 -v -0.016871 -0.001348 -0.039011 -v 0.025504 0.012287 -0.004916 -v -0.011787 0.003824 -0.036521 -v -0.007074 -0.013661 -0.025221 -v 0.000588 0.000201 -0.034985 -v 0.013936 0.005905 0.018091 -v 0.022277 0.001518 -0.013286 -v -0.008002 -0.013698 -0.026014 -v -0.013092 0.000969 -0.037219 -v -0.040708 0.011265 -0.025429 -v -0.028230 -0.001066 0.023877 -v -0.025936 -0.003163 -0.028406 -v -0.025801 -0.003194 -0.028476 -v 0.011097 0.005518 0.021666 -v 0.027583 0.014671 0.012093 -v -0.027586 0.015262 0.017767 -v 0.022378 0.015845 0.020693 -v -0.033769 0.009593 0.016841 -v -0.037485 0.000560 0.012725 -v 0.008630 0.010127 0.023951 -v -0.039894 0.006429 -0.019676 -v -0.028050 0.012605 0.012085 -v -0.014302 -0.003348 -0.043719 -v 0.026367 0.012442 0.014176 -v -0.013865 0.005032 -0.038611 -v -0.002577 0.004122 0.022955 -v 0.052779 0.002657 -0.022575 -v 0.044033 0.000776 -0.008781 -v -0.007692 -0.013923 -0.032696 -v -0.003603 -0.000105 -0.022970 -v -0.038726 -0.002480 -0.031277 -v -0.015422 0.008253 0.024652 -v 0.050480 -0.000902 -0.012681 -v 0.012794 -0.002425 0.007977 -v 0.018115 0.008369 0.020151 -v -0.013071 -0.013397 -0.033629 -v -0.030331 -0.004001 0.021493 -v 0.001071 0.000099 -0.015208 -v -0.014963 0.005773 -0.030071 -v -0.012638 -0.013819 -0.035395 -v 0.033593 -0.000131 0.003128 -v -0.012188 -0.013822 -0.035452 -v -0.008245 -0.013348 -0.034568 -v 0.022609 0.013554 0.002684 -v 0.022619 0.013876 0.000486 -v 0.025314 0.009118 -0.000593 -v 0.010122 0.011781 0.018643 -v 0.028964 0.003725 -0.004891 -v 0.031522 -0.000236 0.005673 -v -0.011887 0.015412 0.021004 -v -0.005568 -0.001009 -0.024682 -v -0.034903 0.006786 -0.024484 -v 0.025428 0.020150 0.007092 -v 0.014966 0.010342 0.019547 -v -0.027214 0.012755 0.018878 -v -0.034908 0.013841 -0.020414 -v -0.024056 0.013564 0.011783 -v -0.001867 0.008798 0.022427 -v 0.009881 0.013921 0.021267 -v -0.006230 0.005437 0.002820 -v 0.047006 -0.003692 -0.014126 -v 0.038394 0.015929 0.010478 -v 0.049191 0.002328 -0.021270 -v -0.035436 -0.014294 0.021891 -v 0.054291 0.000435 -0.016754 -v -0.041880 0.015676 -0.021277 -v -0.040665 0.009464 -0.020541 -v 0.025970 0.006092 0.012076 -v 0.026208 0.011350 -0.005559 -v 0.028394 0.013050 0.014678 -v -0.019509 -0.014675 0.020548 -v -0.031035 -0.013314 0.020819 -v 0.013021 0.016556 0.022722 -v -0.002151 0.014565 0.019281 -v 0.018568 0.007572 0.008491 -v -0.031586 0.012931 -0.032279 -v -0.046164 0.008732 -0.026811 -v -0.031281 -0.014353 0.020030 -v 0.022695 0.016392 0.009283 -v 0.052004 0.002554 -0.021888 -v -0.034492 0.007535 -0.018900 -v -0.025907 -0.002969 -0.028502 -v -0.018093 -0.014401 0.018885 -v -0.008293 0.001818 -0.040022 -v 0.042068 -0.000141 -0.016138 -v -0.017719 0.004799 -0.036755 -v 0.022365 0.006247 0.011462 -v -0.036383 -0.014147 0.019698 -v 0.037672 -0.001802 -0.003140 -v 0.015344 0.001313 0.009483 -v -0.014067 0.005895 -0.026272 -v -0.024122 0.010155 -0.021070 -v 0.036636 -0.000939 -0.006996 -v 0.025032 0.016688 0.000568 -v 0.045477 0.012550 0.005043 -v -0.001037 -0.001056 -0.029695 -v -0.040376 0.006512 -0.033871 -v 0.037266 -0.002678 -0.002608 -v -0.022413 0.001311 -0.038962 -v 0.028905 -0.013583 0.019006 -v -0.023421 0.022265 0.014328 -v -0.030604 0.011621 0.016163 -v -0.020785 0.002710 -0.027512 -v 0.022947 0.014321 0.004699 -v -0.022864 0.000392 -0.029598 -v -0.030834 0.003197 -0.035451 -v -0.034361 -0.014177 0.017795 -v -0.025315 0.016051 0.024669 -v 0.013652 -0.003565 0.020720 -v 0.040769 0.002714 -0.008080 -v -0.003709 -0.003505 -0.012675 -v 0.010765 0.012249 0.018761 -v -0.011814 -0.014379 0.016724 -v -0.011105 -0.014605 0.016645 -v 0.044679 -0.003287 -0.010739 -v -0.027850 -0.000661 -0.020384 -v 0.029684 0.013110 0.002149 -v 0.021175 -0.003615 -0.009516 -v -0.017749 0.006725 -0.020368 -v 0.037433 0.000647 -0.001888 -v 0.027172 0.012531 0.010321 -v 0.027388 0.012483 0.010201 -v 0.027196 0.012539 0.010205 -v 0.018109 -0.013976 0.016152 -v 0.019329 0.008001 0.022048 -v -0.011860 0.017636 0.016163 -v -0.012544 -0.003553 -0.004164 -v 0.023190 0.003113 0.002234 -v -0.009447 -0.003345 -0.008071 -v -0.013241 0.005341 -0.034773 -v 0.030982 0.002596 0.012251 -v 0.027704 0.017771 0.011551 -v 0.005934 0.002614 -0.017882 -v 0.015411 -0.014296 0.015682 -v 0.023486 0.012026 0.003954 -v 0.021740 0.014826 0.008143 -v 0.035520 0.014884 0.011364 -v 0.034773 0.001633 -0.010909 -v 0.015391 0.002177 0.021098 -v 0.021760 0.014519 0.011581 -v 0.025888 0.003731 -0.003101 -v 0.024053 0.003312 0.008583 -v 0.006994 0.016334 0.023860 -v -0.020787 0.017448 0.012753 -v -0.000133 0.012401 0.024044 -v 0.049168 -0.001444 -0.012947 -v 0.032645 0.002159 -0.016704 -v 0.010519 -0.002436 -0.000097 -v -0.021489 0.020104 0.024668 -v 0.011315 0.009368 0.018961 -v -0.000908 0.005120 0.020252 -v 0.044453 0.010140 0.000449 -v 0.022863 0.015461 0.019165 -v 0.041828 0.004237 0.015587 -v -0.015927 -0.013144 -0.027407 -v 0.025563 0.010973 0.004994 -v -0.006525 -0.013843 -0.028773 -v -0.020494 0.022343 0.017711 -v -0.014325 -0.013490 -0.029669 -v -0.026812 0.009722 -0.019978 -v -0.026988 0.011124 -0.020357 -v -0.035704 0.005912 -0.024363 -v -0.036483 0.002256 -0.030539 -v -0.012962 0.004963 -0.026041 -v 0.024875 0.009759 -0.008165 -v 0.023570 0.002701 -0.013636 -v -0.036678 0.001683 -0.028075 -v -0.021374 0.009297 -0.000046 -v 0.042794 0.001258 -0.020063 -v -0.013873 -0.014085 -0.035502 -v 0.025168 0.003421 -0.019455 -v -0.026579 0.020241 0.023637 -v -0.005709 0.008773 0.008285 -v -0.015405 -0.014214 0.024643 -v 0.052622 0.000983 -0.016489 -v 0.032292 0.003455 0.012716 -v 0.032906 0.004482 0.012485 -v -0.008890 -0.014010 0.024659 -v -0.001482 0.001470 -0.035325 -v -0.024244 0.009286 -0.003430 -v -0.017872 -0.002887 0.003946 -v 0.042159 0.000863 -0.022247 -v 0.022663 0.001134 -0.007267 -v 0.014760 0.002469 -0.022453 -v 0.025868 0.011562 0.014685 -v -0.016376 0.014930 0.008627 -v -0.015077 0.021113 0.023471 -v -0.019744 0.008298 -0.001987 -v 0.012716 -0.002340 0.009029 -v 0.044594 0.001790 -0.007284 -v -0.011489 0.003296 0.004513 -v -0.005905 -0.002039 -0.024687 -v -0.006275 0.009481 0.024669 -v 0.027109 0.001642 0.006884 -v -0.035204 -0.001320 -0.019302 -v -0.017317 0.003562 -0.037246 -v 0.001864 0.004599 -0.008284 -v 0.027132 0.012327 0.010222 -v 0.027237 0.012609 0.010120 -v 0.001076 -0.000464 -0.035485 -v 0.000811 -0.000511 -0.036076 -v -0.025388 -0.000840 -0.013371 -v -0.022015 0.003012 -0.026581 -v 0.028366 0.012914 0.007841 -v -0.043814 0.002754 -0.036380 -v -0.032755 0.010508 0.005243 -v 0.004119 -0.000711 0.015038 -v -0.012005 -0.002394 -0.004005 -v -0.035587 -0.014260 0.018233 -v -0.016424 0.010763 0.022247 -v 0.032522 -0.002172 0.004453 -v 0.043352 0.003126 0.020134 -v 0.037594 -0.001927 -0.010605 -v -0.019162 0.002363 -0.020442 -v 0.033020 0.016829 0.018778 -v 0.040258 0.003428 -0.006356 -v -0.036583 0.000723 -0.022370 -v 0.012656 0.015225 0.019370 -v -0.034613 0.010263 -0.023932 -v 0.028536 -0.014123 0.015781 -v -0.026283 -0.002998 -0.012220 -v 0.000732 -0.000788 -0.035415 -v 0.028474 0.011445 0.001295 -v -0.003636 -0.001031 -0.031584 -v 0.027746 -0.014151 0.015339 -v -0.026236 0.023532 0.015818 -v 0.013786 0.003585 -0.015780 -v -0.013550 0.011749 0.019948 -v 0.040039 0.000137 -0.011405 -v -0.041021 0.007954 -0.037324 -v -0.028653 0.000372 0.024286 -v -0.030262 0.002754 0.023528 -v 0.030421 -0.003623 -0.024765 -v 0.023482 0.011608 0.004821 -v 0.009304 0.009679 0.023321 -v 0.024762 -0.013962 0.014952 -v -0.015890 0.019286 0.015016 -v -0.040334 0.012828 -0.020921 -v -0.028786 0.002310 -0.019896 -v -0.028148 0.013952 0.013173 -v 0.022407 0.002786 0.004922 -v -0.012274 0.004700 -0.019784 -v 0.038913 0.003041 -0.000764 -v -0.010846 -0.013310 -0.023212 -v -0.030394 -0.002695 -0.034828 -v -0.040104 0.011004 -0.036879 -v 0.016529 0.013908 0.019924 -v 0.036605 -0.000471 0.017928 -v -0.020883 0.001966 -0.028949 -v -0.012791 -0.013714 -0.025776 -v -0.007178 -0.013889 -0.025588 -v 0.002239 0.006436 0.011038 -v -0.036959 0.012355 -0.023993 -v -0.003067 0.006576 0.003311 -v -0.008118 -0.013541 -0.026700 -v 0.044104 -0.000812 -0.021623 -v -0.007504 -0.013494 -0.027427 -v -0.024648 0.008447 0.023828 -v 0.029560 0.013848 0.004313 -v 0.029879 0.000994 0.008914 -v -0.026519 0.019367 0.024394 -v -0.013284 0.004009 -0.036554 -v -0.041818 0.003986 -0.019782 -v -0.010800 0.014843 0.012651 -v 0.042036 0.004000 0.016012 -v -0.006830 -0.001513 -0.030864 -v -0.014159 -0.014020 -0.034810 -v -0.030000 -0.002269 -0.023553 -v -0.013166 -0.013661 -0.034720 -v 0.015072 -0.001304 -0.010195 -v 0.028590 -0.004978 0.010526 -v 0.039236 -0.002065 -0.012708 -v 0.030796 0.015952 0.020729 -v -0.032364 0.008443 -0.001668 -v -0.013667 -0.013670 -0.035930 -v -0.026252 0.023076 0.017128 -v -0.032510 0.011209 0.009008 -v -0.016251 -0.013813 -0.039822 -v -0.016471 -0.013766 -0.040276 -v 0.013489 0.012633 0.022552 -v -0.017744 0.020621 0.018273 -v -0.015545 0.006325 -0.026924 -v -0.015305 -0.013917 -0.040842 -v -0.014417 -0.013726 -0.040911 -v -0.015544 -0.013635 -0.041201 -v -0.014744 -0.013401 -0.041350 -v -0.016466 0.001519 -0.037809 -v -0.022494 0.006874 -0.021709 -v 0.024158 0.014550 0.018050 -v 0.021463 0.007679 0.024669 -v 0.052773 0.001325 -0.023169 -v 0.031345 -0.000140 0.007238 -v 0.047132 0.001578 -0.018945 -v 0.043568 0.012032 0.019240 -v -0.036127 -0.014550 0.021444 -v -0.036366 -0.014157 0.022056 -v 0.039824 0.002572 0.002585 -v -0.014352 -0.000848 0.002140 -v 0.037764 0.001597 -0.000777 -v 0.030057 -0.002509 0.006604 -v -0.037514 0.003137 0.004893 -v -0.026998 -0.002288 -0.024058 -v -0.037298 -0.014025 0.020881 -v 0.020464 0.002495 -0.023607 -v -0.021050 -0.014244 0.020100 -v -0.002170 0.002157 0.022888 -v 0.033324 0.002543 -0.005887 -v 0.022028 0.002796 0.003044 -v 0.009642 0.012803 0.020728 -v -0.012937 0.006239 0.004984 -v -0.033247 -0.003907 0.019181 -v 0.016541 -0.001374 0.002258 -v 0.022233 0.003553 0.008014 -v -0.030243 0.000944 -0.037344 -v 0.047975 -0.003620 -0.016378 -v 0.027872 0.003928 -0.010156 -v 0.023254 -0.013201 0.019069 -v -0.015345 -0.013990 0.018056 -v -0.005356 -0.013972 0.018391 -v -0.020485 0.007398 -0.028751 -v -0.034141 0.000681 -0.033108 -v -0.001867 0.004344 -0.003842 -v -0.035199 -0.013707 0.017830 -v -0.012493 0.017478 0.015122 -v 0.020246 -0.012395 0.017240 -v 0.032510 -0.000781 0.005091 -v -0.020270 0.007928 -0.029164 -v 0.025475 0.010095 0.000295 -v -0.006821 -0.013908 0.015569 -v -0.040194 0.004789 -0.032752 -v -0.030882 0.005033 -0.031030 -v -0.037684 0.000839 -0.018091 -v -0.010137 0.003830 -0.035748 -v 0.006170 -0.004201 0.010506 -v 0.041588 -0.000942 -0.000809 -v -0.007772 0.000658 -0.018474 -v 0.011205 0.016673 0.019202 -v -0.007640 0.003265 -0.021092 -v 0.031765 -0.003131 0.023444 -v -0.010409 -0.013408 0.015192 -v -0.007300 -0.001174 -0.016457 -v 0.014408 -0.013876 0.014988 -v -0.038946 0.007486 -0.038244 -v 0.022670 -0.013804 0.013831 -v 0.028963 0.017405 0.009617 -v -0.037070 0.001868 0.002670 -v 0.049074 0.001726 -0.018781 -v 0.020056 -0.013268 0.012899 -v -0.038823 0.002629 -0.023234 -v -0.038557 0.002233 -0.023329 -v -0.008161 -0.013066 -0.023456 -v 0.047408 0.006319 0.000035 -v -0.024985 0.025013 0.015443 -v -0.025716 0.024855 0.016224 -v -0.014493 0.020436 0.023049 -v 0.053198 0.002003 -0.022483 -v -0.011685 0.006083 0.005070 -v -0.020838 0.009022 -0.001523 -v -0.001023 0.006784 0.003746 -v -0.014558 0.006312 -0.031470 -v 0.037819 0.000818 -0.001216 -v -0.026564 0.010126 0.022527 -v 0.044157 0.014838 0.008935 -v -0.014904 -0.013279 -0.029909 -v -0.031512 0.009860 0.019696 -v -0.015913 0.013080 0.018514 -v -0.031019 -0.002869 -0.026958 -v 0.028353 0.014968 0.018878 -v -0.004926 0.007450 0.005580 -v -0.015469 -0.013039 -0.032544 -v 0.023794 0.007063 0.012407 -v 0.023292 0.007175 0.012264 -v 0.044423 0.001325 -0.018620 -v -0.008232 -0.013410 -0.033335 -v 0.032930 0.016208 0.021109 -v 0.040776 -0.000332 -0.012569 -v 0.027762 0.012604 0.009575 -v -0.007093 0.001234 -0.021384 -v 0.007447 0.004500 -0.006084 -v 0.041604 0.001952 0.003311 -v 0.029081 0.014043 0.015080 -v 0.032011 0.013699 0.013224 -v -0.016095 0.018960 0.012688 -v 0.027638 0.013450 0.007377 -v 0.038475 0.003043 0.000381 -v -0.017316 -0.013674 -0.038711 -v -0.017693 -0.013648 -0.038898 -v -0.017009 -0.013759 -0.039585 -v -0.035042 0.009522 -0.023306 -v -0.005638 0.010111 0.014970 -v -0.008736 0.001886 -0.039121 -v -0.023691 -0.000013 -0.026360 -v -0.015527 -0.013494 -0.039880 -v 0.024619 0.002960 0.004086 -v 0.024385 0.003146 0.002510 -v -0.021355 -0.001855 -0.018716 -v 0.025863 0.011469 0.009383 -v 0.034925 -0.001059 0.001807 -v 0.042017 -0.000243 -0.012445 -v 0.043314 -0.000682 0.000012 -v 0.024966 0.007885 -0.005183 -v 0.025556 0.008538 -0.006152 -v -0.037237 0.005504 -0.024308 -v -0.005678 -0.002892 -0.008479 -v 0.036761 -0.000815 -0.001686 -v 0.026577 0.010712 0.012493 -v -0.037494 -0.014311 0.022062 -v 0.025996 0.013175 0.017785 -v 0.030224 0.001266 0.011588 -v -0.013937 -0.001243 -0.037988 -v -0.034387 0.012871 -0.032035 -v -0.012327 -0.003648 0.005371 -v -0.031868 -0.013045 0.021435 -v 0.018160 0.015117 0.020929 -v -0.006295 -0.004229 -0.027356 -v -0.010878 0.002991 -0.015464 -v -0.013349 0.015207 0.013542 -v 0.038008 0.013527 0.023369 -v -0.015449 0.018590 0.022901 -v 0.011411 -0.004360 -0.002315 -v -0.002504 0.011589 0.011705 -v -0.029747 -0.013755 0.019311 -v -0.007456 0.017267 0.021647 -v 0.039734 0.004413 -0.004145 -v -0.021687 -0.013974 0.018861 -v -0.019600 -0.013948 0.018411 -v -0.030670 -0.013990 0.018157 -v -0.029274 -0.013700 0.018611 -v -0.026493 0.002723 -0.038368 -v 0.009189 -0.002700 0.003915 -v -0.035781 -0.013463 0.018322 -v -0.040140 0.002521 -0.029997 -v -0.017275 0.005081 -0.014983 -v 0.038227 0.005629 0.024181 -v 0.017838 0.008481 0.021874 -v -0.032805 -0.013575 0.017756 -v 0.030142 0.015502 0.005838 -v 0.030182 0.014569 0.003459 -v -0.032867 0.004943 -0.031124 -v -0.023655 0.003517 -0.026155 -v 0.025990 0.012626 0.014850 -v -0.029329 0.001280 0.024084 -v -0.032652 -0.002449 -0.018915 -v 0.025929 -0.013564 0.014875 -v -0.018862 0.014918 0.023754 -v -0.001596 0.001778 -0.009284 -v -0.011657 -0.013700 -0.021761 -v -0.012102 -0.013426 -0.021204 -v -0.012414 -0.013874 -0.021998 -v -0.013461 -0.013571 -0.022271 -v -0.011441 -0.013429 -0.021489 -v -0.043363 0.004783 -0.020215 -v -0.037195 0.005433 0.012833 -v 0.024224 0.010810 0.005451 -v 0.038758 -0.000903 0.017685 -v -0.013706 -0.013669 -0.024425 -v -0.014537 -0.013234 -0.026137 -v 0.013565 0.002949 -0.013417 -v -0.027027 0.011333 -0.031787 -v -0.011863 0.016777 0.019745 -v -0.036869 0.008915 -0.024598 -v 0.052861 0.000775 -0.022130 -v -0.007162 -0.013027 -0.028119 -v -0.021391 0.014975 0.011639 -v 0.034372 -0.004279 0.016118 -v -0.011560 -0.003180 0.004188 -v -0.016886 -0.012652 -0.031759 -v 0.010472 0.007421 0.021784 -v 0.022890 -0.003296 -0.027084 -v -0.015694 0.006585 -0.021076 -v -0.008031 -0.000415 0.000944 -v 0.024050 0.018323 0.023972 -v -0.015296 -0.013620 -0.033718 -v -0.016023 -0.013522 -0.034048 -v -0.033103 0.012478 -0.021032 -v -0.013894 -0.013196 -0.033957 -v -0.015870 -0.013319 -0.034818 -v 0.023965 0.003233 -0.002887 -v -0.012416 0.004877 -0.020351 -v -0.034072 0.009844 -0.024322 -v -0.011971 -0.012867 -0.035795 -v -0.010462 -0.012607 -0.035741 -v -0.017685 -0.013325 -0.037984 -v 0.008396 0.010120 0.022003 -v 0.035276 -0.003410 -0.020948 -v 0.040307 0.010003 0.001397 -v -0.017753 -0.013421 0.023860 -v -0.022138 -0.013193 0.021641 -v -0.038062 -0.013797 0.022102 -v -0.037476 -0.013860 0.022575 -v -0.028196 0.004288 -0.037052 -v -0.022250 -0.013701 0.020673 -v -0.038052 0.002668 -0.018781 -v 0.035411 0.001414 0.016924 -v 0.045948 0.007984 -0.000998 -v 0.028105 0.019002 0.008903 -v -0.034304 0.010455 -0.025052 -v 0.017362 0.003099 -0.021163 -v -0.000002 0.007395 0.006908 -v -0.005837 -0.001605 -0.023032 -v 0.026307 0.019656 0.009390 -v 0.024946 0.014483 -0.001582 -v -0.023757 0.006285 -0.037291 -v -0.020439 0.015007 0.011550 -v -0.036420 0.000468 0.001242 -v -0.033110 0.004697 -0.004813 -v -0.017370 0.004185 -0.021250 -v -0.017942 0.006080 -0.012064 -v -0.031216 -0.013133 0.017403 -v -0.012519 -0.013646 0.017431 -v -0.037138 -0.001101 -0.028733 -v -0.014924 -0.013579 0.016919 -v -0.006994 0.003931 -0.024969 -v -0.005141 -0.013701 0.016478 -v 0.012067 -0.001940 0.013064 -v 0.028286 0.012697 0.008317 -v -0.011346 -0.014022 0.015919 -v 0.014778 -0.013543 0.015468 -v 0.015105 -0.013667 0.015378 -v -0.012538 0.004489 -0.028033 -v -0.003445 0.004158 0.023652 -v -0.001953 0.014846 0.017344 -v 0.014705 -0.014072 0.014678 -v -0.002604 0.005887 0.001589 -v 0.042122 0.010090 0.000176 -v 0.012072 0.003520 -0.013338 -v -0.040792 0.002557 -0.023444 -v -0.033165 -0.001377 -0.022125 -v 0.013598 0.005812 0.017379 -v -0.013618 -0.012973 -0.021662 -v -0.029662 0.012196 -0.032526 -v 0.014963 0.008479 0.017303 -v -0.012290 -0.013378 -0.022951 -v -0.008451 -0.012780 -0.023116 -v -0.011076 -0.002854 -0.037607 -v -0.031894 -0.001031 -0.019155 -v 0.025476 0.011862 0.012954 -v 0.003361 0.006097 0.002056 -v -0.003272 0.008696 0.023550 -v 0.011734 0.001967 -0.022291 -v -0.014732 -0.013350 -0.024867 -v -0.008716 -0.004033 0.001173 -v 0.019782 0.014862 0.017976 -v -0.007599 -0.013257 -0.026131 -v -0.040366 0.007325 -0.035864 -v -0.006295 0.003252 -0.023843 -v -0.015161 0.018808 0.019315 -v 0.027743 0.014666 0.011881 -v 0.027839 0.014739 0.011652 -v -0.023929 0.009990 -0.019613 -v -0.016372 -0.012236 -0.029097 -v -0.031924 0.007536 -0.003131 -v -0.006892 -0.002982 -0.007195 -v -0.016163 -0.012928 -0.032269 -v -0.030485 0.011727 0.006188 -v -0.014454 -0.012978 -0.033445 -v 0.027448 0.012576 0.010024 -v -0.037069 0.014292 -0.021592 -v 0.016168 0.003176 -0.020461 -v -0.009110 0.008442 0.007136 -v -0.014646 -0.012607 -0.035739 -v -0.018306 -0.013397 -0.037933 -v -0.018740 -0.013146 -0.038116 -v 0.025486 0.011195 0.013309 -v 0.026115 0.010945 0.012025 -v 0.025710 0.011319 0.012321 -v -0.023466 -0.000840 -0.039086 -v -0.014191 -0.013196 -0.039676 -v 0.032181 -0.000174 0.004774 -v 0.000777 -0.000825 -0.029074 -v -0.014164 -0.013051 -0.040848 -v 0.041698 -0.000477 -0.017942 -v -0.019664 -0.013227 0.023132 -v 0.023416 0.018285 0.023681 -v 0.001174 -0.003340 -0.018438 -v 0.034239 0.001757 -0.014317 -v 0.013582 -0.002050 0.007045 -v 0.014802 0.002571 0.019559 -v 0.027089 -0.012310 0.019707 -v 0.035849 0.013697 0.024244 -v -0.022944 0.022746 0.014435 -v -0.036240 -0.013665 0.019279 -v -0.006698 0.016518 0.018906 -v -0.028900 0.010628 -0.022063 -v 0.023793 0.017994 0.022984 -v -0.025118 0.013287 0.010278 -v -0.023332 -0.013586 0.018872 -v -0.013179 0.004966 -0.029216 -v 0.013623 0.001073 0.014438 -v -0.010961 0.004044 -0.022079 -v -0.022228 -0.013378 0.017899 -v -0.034963 0.013175 -0.032647 -v 0.031148 -0.002550 0.023574 -v 0.042774 0.004448 -0.006284 -v -0.006067 0.008108 0.023249 -v -0.017100 -0.013628 0.017709 -v 0.029531 0.000087 0.006670 -v -0.015712 -0.013575 0.016184 -v -0.014072 0.003995 -0.019000 -v 0.028439 0.014049 0.022645 -v -0.041651 0.008038 -0.026417 -v 0.026742 0.012723 0.010118 -v -0.026689 0.016092 0.023637 -v 0.022718 0.013085 0.000472 -v 0.020936 0.012631 0.015324 -v -0.036580 0.004875 -0.024136 -v -0.014667 0.016737 0.018254 -v 0.016898 -0.012519 0.014341 -v 0.023090 0.012974 0.003528 -v -0.005132 -0.013783 0.012686 -v 0.022575 0.017388 0.023758 -v -0.030536 -0.003138 -0.018283 -v -0.006127 -0.003096 -0.026759 -v -0.006688 -0.013698 0.011174 -v 0.018322 -0.013220 0.013308 -v -0.003501 0.013900 0.017786 -v 0.028035 -0.001323 -0.024714 -v 0.022647 0.011386 0.021807 -v -0.004988 -0.013472 0.009917 -v -0.009006 0.016419 0.016951 -v -0.044868 0.003927 -0.019047 -v -0.011356 -0.012910 -0.021238 -v -0.009992 0.000094 -0.011540 -v -0.013469 -0.013335 -0.023463 -v -0.034203 -0.002481 0.018291 -v -0.009955 -0.002691 -0.007473 -v -0.011455 -0.013206 -0.023085 -v -0.008958 0.004368 -0.025390 -v -0.028012 0.012353 0.017361 -v -0.015446 -0.012567 -0.023948 -v -0.002323 0.008432 0.021698 -v -0.002360 0.008396 0.021674 -v 0.026443 0.002907 0.001380 -v -0.007687 -0.012655 -0.025853 -v -0.014936 0.014038 0.019048 -v 0.050197 -0.002434 -0.018130 -v 0.041846 0.012996 0.004285 -v 0.019595 0.009455 0.023138 -v -0.016648 -0.013168 -0.032924 -v -0.017679 -0.012604 -0.033932 -v -0.033683 0.010181 -0.025107 -v -0.009898 -0.012478 -0.035318 -v -0.033443 -0.003484 0.018484 -v 0.012387 0.005113 0.019590 -v -0.022414 0.021192 0.013782 -v 0.051797 -0.000375 -0.015651 -v 0.037776 0.011300 0.024652 -v -0.018839 -0.013101 -0.037256 -v -0.012846 -0.002664 -0.041291 -v -0.017277 -0.012932 -0.038106 -v -0.017244 0.005829 -0.020902 -v 0.026045 0.003667 -0.007777 -v -0.013998 -0.012931 -0.039534 -v 0.014556 0.002906 0.017768 -v -0.015945 -0.012892 -0.040716 -v -0.019624 0.003405 -0.017108 -v 0.027806 0.014618 0.011773 -v -0.036462 0.015115 -0.020402 -v -0.035656 0.015117 -0.019582 -v -0.022006 0.002017 -0.015628 -v -0.037996 -0.013315 0.022251 -v 0.028010 0.012879 0.009012 -v -0.036432 -0.012922 0.022112 -v -0.008232 0.009752 0.023253 -v -0.027071 0.019751 0.023504 -v -0.037109 -0.013344 0.020490 -v -0.022234 -0.001751 -0.020620 -v 0.012582 -0.001247 0.017077 -v -0.034343 0.010012 0.010587 -v -0.016820 0.011787 0.005441 -v 0.019438 0.012181 0.015088 -v -0.045524 0.008391 -0.027180 -v 0.029582 -0.000304 0.012173 -v -0.033347 0.010608 -0.034407 -v -0.016156 -0.001289 -0.038966 -v 0.039213 0.005041 0.013713 -v -0.015776 0.018241 0.022539 -v -0.013121 -0.013078 0.016974 -v -0.038266 -0.000720 -0.033177 -v -0.025488 0.010156 -0.022113 -v -0.017522 -0.013640 0.015398 -v -0.035327 0.015008 -0.018685 -v -0.019091 -0.013624 0.015715 -v 0.017496 -0.013212 0.015133 -v -0.019871 -0.013720 0.014188 -v -0.020585 -0.013326 0.015520 -v -0.007628 -0.013015 0.014870 -v -0.006205 -0.013594 0.014846 -v 0.053691 0.000534 -0.017521 -v -0.020005 0.003193 -0.028114 -v 0.042743 0.000178 0.023199 -v 0.028169 -0.013245 0.014939 -v 0.031864 0.010098 0.012675 -v 0.017562 0.008075 0.019846 -v -0.017076 -0.003895 0.006039 -v 0.026292 0.012364 0.014188 -v -0.025680 0.007160 -0.034891 -v -0.018545 -0.013514 0.013754 -v 0.015205 -0.013332 0.014936 -v -0.024617 0.010353 0.000574 -v -0.004705 -0.013608 0.012629 -v 0.013698 0.006553 0.018383 -v -0.022015 -0.013529 0.013910 -v -0.020155 -0.013580 0.012883 -v 0.019592 0.005122 0.009355 -v -0.006757 -0.013432 0.013819 -v -0.012358 0.004566 -0.028596 -v 0.021402 -0.012906 0.013167 -v -0.042089 0.003296 -0.023811 -v 0.026615 0.003739 -0.014958 -v -0.022887 -0.013561 0.012804 -v -0.026329 0.023385 0.018322 -v -0.046241 0.005184 -0.021728 -v -0.021981 -0.013710 0.011741 -v -0.024557 -0.013370 0.012028 -v -0.020264 -0.013476 0.011922 -v -0.007289 -0.013272 0.010764 -v -0.022757 -0.013312 0.009727 -v -0.017728 0.021136 0.021795 -v -0.006717 -0.013304 0.008586 -v -0.006258 -0.013546 0.008692 -v -0.005359 -0.013302 0.006734 -v -0.039590 0.016527 -0.020171 -v 0.010528 0.005114 0.022686 -v 0.001336 0.000438 -0.029386 -v 0.010082 0.013142 0.022158 -v -0.008030 -0.012351 -0.025222 -v -0.018169 0.008023 -0.021097 -v -0.007721 -0.012944 -0.026623 -v -0.015779 -0.012623 -0.026640 -v -0.007563 -0.012787 -0.027469 -v 0.039572 -0.004510 0.024030 -v 0.022907 0.013924 0.003790 -v -0.041845 0.004116 -0.024212 -v 0.031910 0.003031 -0.015246 -v 0.035783 0.002351 0.024400 -v -0.009774 -0.011019 -0.031837 -v -0.017320 -0.012838 -0.032490 -v -0.015291 -0.012998 -0.032937 -v 0.023112 0.009052 0.024669 -v 0.042014 0.014478 0.006862 -v 0.024967 0.010654 0.006391 -v -0.006027 0.017205 0.021403 -v -0.026336 0.021972 0.020631 -v -0.002223 0.000174 -0.027776 -v -0.003035 -0.000607 -0.027950 -v -0.032993 0.011339 -0.030303 -v -0.003776 -0.003872 0.023665 -v -0.025325 0.000209 -0.038853 -v 0.027610 0.016329 0.012725 -v -0.019295 -0.012897 -0.037272 -v -0.019007 -0.012593 -0.036535 -v -0.015592 -0.012820 -0.038766 -v -0.042558 0.004809 -0.025275 -v -0.017128 -0.011978 -0.037344 -v -0.019182 -0.011765 -0.037791 -v -0.010233 -0.009739 0.024251 -v 0.029905 0.012386 0.013830 -v -0.034179 0.011330 -0.029064 -v -0.037490 -0.013437 0.022559 -v -0.006871 -0.013308 0.022945 -v 0.014924 0.008139 0.018243 -v 0.026348 0.009439 -0.008086 -v 0.015363 0.007429 0.020438 -v -0.024332 -0.013194 0.019615 -v -0.028838 -0.012285 0.020175 -v -0.040010 0.006951 -0.025485 -v -0.035786 -0.012763 0.019312 -v -0.032854 -0.001507 -0.018753 -v -0.027030 0.000616 -0.020535 -v 0.041302 0.015786 0.019212 -v 0.036324 0.003502 0.024668 -v -0.004146 -0.013381 0.016527 -v 0.030517 -0.012358 0.018042 -v -0.020282 -0.013022 0.017361 -v 0.022655 0.003218 -0.016105 -v 0.033233 -0.000822 0.003844 -v -0.024476 0.011746 0.022111 -v 0.003364 0.006014 0.008206 -v 0.004467 0.005553 0.001199 -v -0.021177 0.011605 0.022364 -v 0.027780 0.014606 0.011907 -v -0.006631 0.001969 0.000320 -v 0.038256 -0.000914 0.018121 -v -0.018653 -0.013247 0.016885 -v -0.009756 0.016133 0.022241 -v -0.003480 -0.012811 0.014745 -v 0.018829 -0.012892 0.016219 -v -0.015525 -0.013021 0.015264 -v -0.036215 0.011745 -0.019872 -v -0.010150 -0.003883 0.003179 -v -0.014485 0.015227 0.019244 -v 0.023903 0.002089 -0.009668 -v -0.014855 -0.001135 0.002270 -v 0.041614 0.004051 -0.006830 -v 0.001472 0.001007 0.019388 -v 0.029719 0.018018 0.005846 -v -0.018826 -0.012806 0.012002 -v -0.037829 0.011635 -0.032500 -v -0.041760 -0.000124 -0.032019 -v -0.000525 0.000002 -0.024652 -v -0.020773 -0.012728 0.009927 -v 0.023874 0.002689 -0.022814 -v 0.047573 0.005035 0.006088 -v -0.024735 -0.013381 0.010319 -v -0.023808 -0.013374 0.009716 -v -0.031616 0.008704 -0.022770 -v -0.033211 -0.000878 0.020786 -v -0.012071 0.004576 -0.020156 -v -0.004985 -0.013108 0.007565 -v -0.033085 0.013034 -0.020263 -v -0.020607 0.008753 -0.022431 -v -0.005758 0.003260 -0.028309 -v -0.010850 -0.012784 -0.022847 -v -0.008398 -0.012647 -0.023753 -v -0.038664 0.016183 -0.020856 -v -0.016926 -0.011899 -0.025295 -v -0.037805 0.012755 -0.024673 -v -0.018151 0.010756 0.022416 -v -0.038382 0.001600 -0.024004 -v 0.037591 -0.003733 -0.018657 -v -0.018605 -0.012090 -0.033131 -v -0.009665 -0.012007 -0.033893 -v 0.008890 0.011475 0.022882 -v 0.013842 0.006047 0.018696 -v -0.016661 -0.012016 -0.034992 -v 0.036748 0.000811 0.017130 -v -0.013550 0.014036 0.020187 -v 0.019228 0.009777 0.019040 -v -0.014211 -0.012652 -0.037691 -v -0.013907 -0.012561 -0.039115 -v 0.036284 -0.000853 -0.000720 -v 0.029760 0.014883 0.016009 -v 0.035213 -0.001241 0.017371 -v -0.027816 0.009887 -0.033215 -v 0.011514 0.000174 -0.024429 -v 0.040069 0.004253 0.015070 -v 0.001850 0.006807 0.006280 -v -0.014236 -0.012310 -0.039733 -v 0.013219 0.004077 0.013485 -v -0.025315 0.021708 0.014890 -v 0.022774 0.009806 0.006927 -v -0.035470 -0.012777 0.018247 -v -0.042771 0.000611 -0.033926 -v -0.002790 0.008467 0.022341 -v 0.030128 -0.012614 0.019106 -v 0.041249 0.013587 0.021414 -v -0.003999 -0.012801 0.017767 -v -0.034831 -0.012196 0.018021 -v -0.033648 -0.012103 0.017795 -v -0.028058 -0.012732 0.017492 -v 0.008272 0.010698 0.020929 -v -0.042783 0.004358 -0.024172 -v -0.040730 0.002043 -0.031716 -v -0.036406 -0.003314 -0.030303 -v -0.012109 -0.012273 0.016203 -v -0.037149 0.010658 -0.032000 -v -0.022335 -0.012448 0.016889 -v -0.014567 -0.012785 0.015885 -v 0.016731 -0.012703 0.014746 -v 0.022861 0.014207 0.022513 -v -0.007383 -0.012854 0.014662 -v -0.022635 -0.013135 0.014785 -v -0.043144 0.001082 -0.035347 -v 0.023022 -0.012877 0.013756 -v 0.040615 -0.002142 0.021095 -v 0.020643 -0.012810 0.012835 -v -0.001032 0.011361 0.011572 -v 0.037940 0.002256 0.000798 -v -0.029032 0.011557 -0.021079 -v 0.010351 0.014066 0.020184 -v 0.010264 0.015032 0.019311 -v -0.030421 -0.001789 0.022358 -v 0.023967 -0.013177 0.011124 -v 0.025097 -0.013214 0.009313 -v 0.027378 0.003705 -0.009131 -v -0.014082 0.012826 0.019338 -v 0.025258 -0.013024 0.008171 -v -0.032108 -0.000615 -0.022668 -v -0.005420 -0.012819 0.006127 -v 0.014184 -0.012814 -0.016118 -v 0.013160 -0.012874 -0.017594 -v 0.032782 0.004417 0.012091 -v 0.013012 -0.012806 -0.019433 -v 0.014455 -0.012849 -0.019474 -v 0.018977 -0.012983 -0.019912 -v 0.021062 -0.012706 -0.018796 -v -0.012959 0.005091 -0.021196 -v 0.017851 -0.012754 -0.018851 -v 0.016751 -0.012845 -0.020912 -v 0.019251 -0.012794 -0.021033 -v 0.020667 -0.012780 -0.021932 -v 0.017089 -0.012550 -0.021944 -v 0.021326 -0.012730 -0.021374 -v -0.036725 0.007423 -0.034047 -v -0.007784 -0.012484 -0.023418 -v -0.018194 0.005554 -0.036047 -v 0.042282 0.000784 0.002287 -v -0.017322 -0.012388 -0.028446 -v -0.007867 -0.012602 -0.028799 -v -0.008870 -0.003523 -0.008364 -v 0.015079 0.001906 0.010850 -v 0.014671 0.001683 0.011641 -v -0.008566 -0.012035 -0.030666 -v -0.018002 -0.012344 -0.031777 -v -0.015448 -0.012381 -0.035755 -v -0.031677 0.012419 -0.031454 -v -0.019957 -0.012387 -0.036478 -v -0.013057 0.004051 -0.039468 -v -0.000418 -0.000800 -0.028647 -v -0.014704 -0.012588 -0.036844 -v -0.039950 0.014711 -0.019755 -v -0.028495 -0.002532 -0.028158 -v -0.036757 0.002553 0.015120 -v -0.013958 -0.012173 -0.038135 -v -0.012901 0.013012 0.020711 -v -0.021586 0.007264 -0.034645 -v 0.010842 0.006343 0.018902 -v -0.015848 -0.012758 0.024667 -v -0.015781 0.021672 0.023142 -v -0.001647 0.001316 -0.031267 -v -0.018367 -0.012330 0.023710 -v 0.021763 -0.001425 -0.007805 -v -0.037213 -0.012796 0.021887 -v -0.023277 0.020245 0.014572 -v 0.042217 0.002175 0.023809 -v -0.032809 0.009872 -0.029620 -v 0.003303 0.005500 -0.003381 -v -0.001100 -0.000275 -0.023147 -v 0.027480 0.013568 0.011480 -v -0.001488 0.000600 -0.010590 -v 0.030232 -0.003456 0.023299 -v -0.017541 0.008537 0.004047 -v -0.029215 -0.012317 0.017043 -v -0.008423 0.006811 0.024665 -v -0.035194 0.001981 -0.002375 -v 0.011818 0.005617 0.021562 -v -0.039731 0.004973 -0.037920 -v -0.016492 -0.012897 0.014413 -v 0.044827 0.013740 0.016241 -v -0.019163 0.006380 -0.011693 -v -0.026806 0.003286 -0.029941 -v -0.007260 -0.012695 0.014263 -v 0.025169 -0.012417 0.014271 -v -0.003592 -0.012599 0.011960 -v 0.018915 -0.012606 0.012911 -v 0.026766 -0.012954 0.010640 -v 0.026465 -0.012863 0.012350 -v 0.022652 -0.012974 0.011391 -v -0.027478 0.019868 0.018896 -v -0.026637 -0.012765 0.010306 -v 0.024553 -0.013069 0.008627 -v -0.026367 -0.012958 0.008919 -v 0.052274 0.000348 -0.021210 -v -0.023973 -0.012537 0.007657 -v -0.004517 -0.012594 0.006154 -v -0.004779 -0.012873 0.005816 -v 0.022730 -0.012953 0.005433 -v 0.008961 -0.012779 -0.011212 -v 0.008647 -0.012770 -0.012491 -v 0.009277 -0.012821 -0.013840 -v 0.011231 -0.012828 -0.014024 -v 0.007773 -0.012627 -0.014639 -v 0.013064 -0.012579 -0.013828 -v 0.010846 -0.012797 -0.015449 -v 0.008040 -0.012356 -0.015841 -v 0.013626 -0.012548 -0.014679 -v 0.010922 -0.012833 -0.016848 -v 0.035535 -0.003899 -0.001742 -v 0.015364 -0.012690 -0.016914 -v 0.024383 -0.012735 -0.017876 -v 0.023847 -0.012579 -0.016742 -v 0.010425 -0.012354 -0.018790 -v 0.017579 -0.012804 -0.017973 -v 0.021024 -0.012673 -0.017681 -v -0.039495 0.009708 -0.020153 -v 0.019619 -0.012257 -0.016769 -v 0.023327 -0.012735 -0.018826 -v -0.026768 0.014898 0.013422 -v 0.021782 -0.012759 -0.018927 -v 0.008319 0.001800 0.002070 -v 0.007567 -0.004079 0.007793 -v 0.051006 0.002386 -0.020752 -v 0.005841 -0.000686 0.011387 -v -0.005226 -0.004624 -0.022396 -v -0.000186 0.007898 0.004380 -v 0.015730 -0.012533 -0.022129 -v 0.032434 -0.003933 0.023826 -v 0.025627 0.017037 -0.000544 -v 0.019085 -0.012208 -0.023208 -v -0.017956 0.006659 0.002139 -v -0.017919 0.003319 -0.019322 -v 0.033429 0.007345 0.011590 -v -0.011137 -0.010918 -0.021810 -v -0.009830 -0.012198 -0.023001 -v -0.010743 -0.011821 -0.022417 -v -0.016150 -0.011953 -0.023190 -v -0.017132 -0.011602 -0.027314 -v -0.017837 -0.011991 -0.028201 -v -0.034684 0.014114 -0.018279 -v -0.004390 0.007734 0.022576 -v -0.017313 -0.011887 -0.029888 -v -0.018401 -0.011229 -0.030295 -v -0.014575 -0.012277 -0.035942 -v -0.006405 -0.000597 -0.034417 -v -0.012581 -0.011683 -0.035801 -v -0.001912 0.005229 -0.001650 -v -0.016516 -0.012045 -0.037384 -v -0.003283 0.003271 -0.003897 -v -0.015057 -0.012401 -0.040445 -v -0.016308 -0.011234 -0.039315 -v 0.023315 0.012179 0.000467 -v -0.023394 -0.012194 0.021404 -v 0.048171 -0.002875 -0.013939 -v 0.021260 0.009398 0.022899 -v 0.025695 -0.011817 0.019056 -v 0.016366 0.006082 0.019995 -v -0.025838 -0.012818 0.018203 -v -0.047008 0.009871 -0.026853 -v 0.023251 -0.012004 0.018200 -v -0.039644 0.004251 -0.023125 -v -0.015381 0.005865 -0.033094 -v -0.033096 -0.012070 0.017770 -v -0.026471 -0.012025 0.016746 -v 0.013644 0.002341 0.014081 -v -0.015656 0.015214 0.010544 -v 0.030601 -0.011896 0.017342 -v 0.044289 0.001366 0.003811 -v 0.030195 -0.011755 0.016663 -v -0.021149 -0.012742 0.016345 -v 0.017527 -0.012524 0.015061 -v -0.024556 -0.012728 0.014212 -v 0.029945 0.016144 0.002017 -v 0.018376 -0.012663 0.013298 -v 0.022411 -0.012616 0.013140 -v -0.017138 0.007756 -0.020818 -v -0.026053 0.004484 -0.020574 -v 0.009956 0.005088 0.022927 -v 0.024452 0.010636 0.006453 -v -0.025928 -0.012784 0.012103 -v -0.007639 0.003747 -0.030083 -v -0.034009 0.013010 -0.032976 -v -0.038159 0.001492 -0.034739 -v -0.026722 0.007344 -0.034056 -v 0.041331 0.004579 0.015048 -v 0.042649 0.011242 0.001597 -v 0.020350 -0.012892 0.007756 -v 0.027056 -0.012528 0.008875 -v -0.025992 -0.012755 0.007813 -v 0.024213 -0.012374 0.007883 -v -0.029225 0.002361 -0.009598 -v -0.015203 0.021772 0.022138 -v 0.027334 0.010550 0.000972 -v 0.022536 -0.012810 0.006567 -v 0.026250 -0.012497 0.007536 -v 0.017840 -0.012448 0.007906 -v 0.019962 -0.012705 0.005388 -v 0.037495 -0.003548 -0.019917 -v -0.007122 0.003682 -0.028614 -v -0.012413 -0.003399 -0.042159 -v -0.003139 -0.003420 -0.013073 -v 0.025291 -0.012505 0.004990 -v 0.024655 -0.012695 0.003691 -v 0.021713 -0.012722 0.003694 -v -0.011950 0.002975 -0.011658 -v 0.023414 -0.012866 0.002140 -v 0.021391 -0.012587 0.002554 -v 0.024935 -0.012772 0.001828 -v 0.007659 -0.012554 -0.008099 -v 0.006328 -0.012676 -0.008697 -v 0.006129 -0.012590 -0.011239 -v -0.015760 0.006593 -0.023623 -v 0.011353 -0.012332 -0.011307 -v 0.005600 -0.012346 -0.012140 -v -0.022290 0.008190 -0.024551 -v 0.034776 0.016690 0.014975 -v 0.008209 -0.012276 -0.017140 -v 0.024512 -0.012391 -0.016040 -v 0.025156 -0.012400 -0.016510 -v 0.027056 -0.012519 -0.017049 -v -0.026291 0.010694 -0.019446 -v -0.002359 0.001865 -0.028050 -v 0.027834 0.014447 0.011902 -v 0.024872 -0.012479 -0.018876 -v -0.016449 -0.001906 -0.039459 -v -0.028976 0.011320 -0.019436 -v -0.000439 0.007733 0.003969 -v 0.011164 -0.012303 -0.019912 -v -0.023485 -0.003463 -0.025264 -v -0.004592 -0.001274 -0.030160 -v 0.012742 -0.012395 -0.020743 -v 0.024470 -0.012290 -0.020243 -v 0.024292 -0.012336 -0.021840 -v 0.014046 -0.011954 -0.022614 -v 0.022826 -0.012687 -0.020831 -v 0.041492 0.007319 -0.002609 -v 0.018071 -0.012276 -0.023196 -v 0.020315 -0.012378 -0.023033 -v 0.021227 -0.012220 -0.023158 -v -0.009396 -0.011243 -0.023547 -v -0.031982 0.005719 -0.031221 -v -0.019186 0.002146 -0.019739 -v -0.008487 -0.011291 -0.026100 -v 0.039386 -0.000266 -0.011145 -v -0.019615 -0.011304 -0.031886 -v -0.008432 0.010046 0.011546 -v 0.043113 0.015192 0.009057 -v -0.014565 0.005694 -0.037286 -v -0.012618 0.006048 -0.019415 -v 0.020852 0.016284 0.016834 -v -0.019560 -0.012574 -0.036340 -v -0.014252 -0.011909 -0.037103 -v -0.003356 0.008895 0.023844 -v -0.002882 0.008748 0.023699 -v 0.013018 0.005281 0.019075 -v -0.007749 -0.012928 0.024056 -v -0.003488 0.008633 0.023142 -v -0.034488 -0.011856 0.022013 -v 0.033082 -0.003268 -0.022764 -v -0.036279 -0.012734 0.020412 -v -0.027189 -0.012192 0.019458 -v -0.026069 -0.012517 0.019313 -v -0.003723 -0.011961 0.017868 -v -0.027105 -0.012628 0.018142 -v 0.033242 -0.002122 0.003048 -v -0.016033 0.005998 -0.020436 -v -0.031827 -0.012143 0.017435 -v -0.024137 -0.011957 0.016455 -v 0.018551 -0.012116 0.016217 -v 0.027922 -0.011645 0.014840 -v 0.026781 -0.012006 0.014486 -v 0.027818 0.001348 -0.022965 -v -0.016304 0.006675 -0.020707 -v 0.048075 -0.003186 -0.015473 -v -0.016991 0.019609 0.024284 -v 0.024839 -0.012823 0.012644 -v 0.026287 -0.012056 0.013847 -v -0.013640 0.005816 -0.037447 -v 0.021714 -0.012642 0.011290 -v 0.018460 -0.012623 0.011019 -v -0.005207 0.001443 -0.036258 -v -0.007890 -0.011238 0.009786 -v -0.007213 -0.011497 0.008157 -v 0.023164 -0.012562 0.009015 -v 0.003139 0.003319 -0.013671 -v 0.017434 -0.012270 0.009270 -v -0.025523 -0.012398 0.007160 -v 0.041546 -0.000442 -0.019914 -v 0.023110 0.014712 0.000023 -v 0.019646 -0.012493 0.004594 -v 0.023452 -0.012489 0.000173 -v 0.027471 -0.012397 0.000837 -v 0.026203 -0.012574 -0.000373 -v 0.024548 -0.012511 -0.001496 -v 0.026724 -0.012588 -0.001975 -v 0.004321 -0.012441 -0.003771 -v 0.004004 -0.012613 -0.005585 -v 0.006192 -0.012602 -0.005457 -v 0.006230 -0.012191 -0.003391 -v 0.007199 -0.012337 -0.004897 -v 0.006370 -0.012554 -0.006575 -v 0.003782 -0.012401 -0.007000 -v 0.003619 -0.012297 -0.009026 -v 0.005382 -0.012469 -0.008719 -v 0.029475 -0.012455 -0.008898 -v 0.008952 -0.012532 -0.009726 -v 0.009457 -0.012291 -0.008267 -v -0.030796 -0.000610 -0.032756 -v 0.006209 -0.012525 -0.009838 -v -0.002312 0.008742 0.022900 -v 0.029580 -0.012356 -0.010085 -v 0.009267 0.015426 0.023280 -v 0.027038 -0.012441 -0.011030 -v 0.028662 -0.012490 -0.011154 -v 0.027531 -0.012410 -0.012839 -v 0.027710 -0.012458 -0.014664 -v 0.005600 -0.012079 -0.014317 -v 0.025765 -0.012211 -0.014016 -v 0.025164 -0.012361 -0.014631 -v 0.016162 -0.011908 -0.014313 -v 0.025977 -0.012237 -0.015423 -v 0.017716 -0.012057 -0.015301 -v 0.025810 0.003742 0.010818 -v -0.015650 0.020488 0.018449 -v 0.027641 -0.012249 -0.015990 -v 0.022292 -0.012226 -0.016785 -v 0.026517 -0.012347 -0.019150 -v 0.027690 -0.012253 -0.018603 -v 0.026284 -0.012225 -0.020299 -v 0.008596 0.009505 0.023825 -v 0.016671 -0.011399 -0.024152 -v -0.008657 -0.012054 -0.023322 -v -0.007572 -0.011825 -0.023575 -v -0.031878 0.007753 -0.030892 -v -0.020615 -0.011583 -0.035423 -v -0.014491 -0.011739 -0.036033 -v -0.020258 -0.011876 -0.036545 -v -0.027288 0.007587 -0.020831 -v 0.026716 0.010608 0.011563 -v 0.027055 0.010736 0.011190 -v -0.014987 -0.011615 -0.039096 -v -0.036163 -0.012145 0.021603 -v -0.006557 -0.012458 0.022362 -v -0.030420 -0.010600 0.021244 -v -0.036178 -0.012122 0.021173 -v -0.040688 0.015562 -0.019909 -v -0.029341 -0.002216 -0.037092 -v -0.026237 -0.011587 0.020072 -v -0.036051 -0.012165 0.019825 -v 0.036085 -0.003850 -0.022130 -v 0.030131 -0.011858 0.019944 -v -0.035560 -0.012270 0.018427 -v -0.021089 0.022163 0.013802 -v -0.023591 -0.012006 0.016052 -v 0.028678 0.019050 0.006622 -v -0.014627 0.017991 0.016710 -v -0.012677 -0.011782 0.016188 -v -0.014043 -0.011474 0.015342 -v -0.025881 0.001458 -0.038690 -v -0.006275 -0.003806 0.024669 -v 0.047771 -0.001328 -0.021249 -v 0.016919 -0.012205 0.014549 -v 0.018885 -0.012431 0.012565 -v 0.006022 0.003945 -0.013652 -v 0.021226 -0.012466 0.012378 -v -0.002804 0.008402 0.022904 -v -0.002652 -0.011425 0.012621 -v -0.017979 -0.011875 0.011569 -v 0.041827 0.001302 -0.009973 -v -0.002352 0.007807 0.005994 -v -0.019790 -0.011866 0.009678 -v -0.030030 -0.003726 -0.007042 -v -0.008244 0.011380 0.012403 -v -0.028400 -0.011855 0.007972 -v -0.004218 -0.011884 0.007718 -v -0.035307 0.014186 -0.018266 -v -0.004788 0.003986 0.024332 -v -0.022169 0.007170 -0.034039 -v 0.003611 0.001306 -0.017288 -v 0.025641 -0.012009 0.007077 -v 0.017015 0.014895 0.023616 -v 0.018864 0.008227 0.021266 -v 0.027463 -0.012274 -0.001073 -v 0.004644 -0.012467 -0.001982 -v 0.001973 -0.012341 -0.002238 -v 0.028515 -0.012421 -0.002872 -v 0.025024 -0.012042 -0.003721 -v -0.011242 0.004955 -0.021759 -v 0.027221 -0.012325 -0.004362 -v 0.026852 -0.012392 -0.005083 -v 0.001605 -0.012154 -0.005458 -v 0.028503 -0.012410 -0.006382 -v 0.030077 -0.012102 -0.005593 -v -0.037945 0.011925 -0.034101 -v 0.030202 -0.012212 -0.007420 -v -0.036199 0.008544 0.009805 -v 0.027250 -0.012328 -0.009002 -v 0.011355 -0.011782 -0.009400 -v -0.010678 -0.001825 0.000747 -v -0.023176 -0.003670 -0.015432 -v -0.028165 0.010825 -0.029519 -v 0.025729 -0.011813 -0.008287 -v 0.026465 0.012148 0.009736 -v 0.004458 0.005661 0.002927 -v 0.004234 -0.011948 -0.011361 -v 0.030601 -0.012178 -0.011563 -v 0.025712 -0.011883 -0.011695 -v 0.013516 -0.011425 -0.011171 -v 0.030436 -0.012030 -0.012850 -v 0.014095 -0.012088 -0.013001 -v 0.028520 -0.012130 -0.015377 -v 0.030410 -0.012094 -0.014711 -v 0.013034 -0.001633 0.009505 -v 0.044214 -0.003010 -0.009496 -v -0.023158 0.009960 -0.030737 -v -0.019765 0.004188 -0.027085 -v -0.016897 0.021642 0.022029 -v 0.022105 -0.012092 -0.015701 -v 0.038347 0.005462 0.003395 -v -0.001255 -0.003660 -0.016288 -v 0.043315 0.001840 0.021881 -v 0.028209 -0.011921 -0.018960 -v 0.009846 -0.011827 -0.020283 -v -0.042362 0.001780 -0.019546 -v 0.025151 -0.011928 -0.021767 -v -0.013031 -0.011429 -0.021032 -v 0.012802 -0.011731 -0.022598 -v 0.036242 -0.004353 0.017952 -v 0.021721 -0.011717 -0.024069 -v -0.009024 -0.011204 -0.029806 -v -0.017970 -0.011575 -0.029558 -v -0.017348 -0.011388 -0.039076 -v -0.021222 -0.011476 0.022538 -v 0.038085 0.003093 0.024298 -v 0.026367 0.012047 0.013967 -v -0.003288 -0.011802 0.016786 -v -0.030399 -0.011123 0.016956 -v 0.018943 -0.011947 0.016720 -v 0.017624 -0.012097 0.015266 -v 0.016886 -0.011828 0.014767 -v -0.026425 -0.011701 0.014110 -v 0.024252 -0.012392 0.013503 -v -0.015266 -0.011144 0.014034 -v -0.023837 0.007998 -0.036182 -v 0.029511 -0.003437 -0.025490 -v -0.016765 -0.011802 0.012837 -v -0.008043 -0.011145 0.013466 -v 0.028093 -0.012013 0.012911 -v 0.016436 -0.011859 0.012161 -v 0.050722 0.002326 -0.022410 -v -0.034153 0.013370 -0.019177 -v -0.048203 0.010897 -0.027731 -v -0.017809 -0.003537 0.005231 -v -0.022841 -0.011820 0.007520 -v -0.023720 -0.010933 0.006300 -v 0.032354 -0.003144 0.003290 -v -0.026239 -0.011565 0.005899 -v 0.027414 0.011135 -0.003480 -v 0.017144 -0.011717 0.006708 -v 0.025131 -0.012056 0.006621 -v -0.004675 -0.011726 0.005194 -v -0.046226 0.004362 -0.020286 -v 0.027434 -0.011633 0.003822 -v 0.027373 -0.012106 0.001914 -v 0.002562 -0.012248 0.001838 -v 0.029448 0.014995 0.022096 -v 0.045973 0.012737 0.014316 -v 0.003284 -0.012140 0.001226 -v 0.001485 -0.012270 0.000081 -v 0.021731 -0.011851 -0.000235 -v 0.028488 -0.012099 -0.000103 -v 0.004464 -0.012115 -0.000029 -v 0.006574 -0.012036 -0.002073 -v 0.029862 -0.012185 -0.004058 -v 0.025966 -0.011922 -0.006578 -v 0.009625 -0.011940 -0.007296 -v 0.031620 -0.012025 -0.008033 -v 0.030663 -0.011995 -0.009660 -v 0.003363 -0.011912 -0.010202 -v 0.047878 0.005661 0.001267 -v 0.031045 -0.011833 -0.014198 -v 0.005996 -0.011733 -0.015868 -v 0.029776 -0.012095 -0.016013 -v -0.011176 0.004312 -0.039239 -v 0.030331 -0.011782 -0.017225 -v 0.029705 -0.011731 -0.018120 -v -0.016153 0.003046 -0.037534 -v 0.007612 -0.011533 -0.018706 -v 0.029293 -0.011721 -0.019263 -v 0.026696 -0.011739 -0.021068 -v -0.014857 -0.011349 -0.021616 -v -0.011821 -0.011096 -0.021212 -v 0.010538 -0.010793 -0.022420 -v -0.023913 0.023303 0.018377 -v 0.024969 -0.011545 -0.022870 -v 0.023981 -0.011891 -0.023099 -v -0.028130 0.012948 0.016386 -v 0.015782 -0.011306 -0.024325 -v 0.023074 -0.011806 -0.023480 -v -0.008689 -0.011956 -0.023657 -v 0.017998 -0.011871 -0.023909 -v -0.006108 -0.001089 -0.022241 -v 0.045974 0.004783 0.009176 -v -0.010565 -0.010641 -0.033209 -v -0.011833 -0.010246 -0.034667 -v -0.020711 -0.010966 -0.034757 -v 0.011394 0.017781 0.020942 -v -0.003485 0.008448 0.023235 -v 0.008656 0.003740 -0.016037 -v -0.031454 0.010455 -0.030051 -v 0.007667 0.015613 0.023509 -v 0.021420 -0.011562 0.017718 -v 0.028777 -0.011373 0.015295 -v -0.010506 0.003557 -0.036221 -v 0.017057 -0.012026 0.013811 -v 0.030931 -0.000225 0.004051 -v -0.003101 -0.011589 0.010206 -v 0.009386 0.005753 0.023079 -v -0.028548 -0.011793 0.009919 -v 0.028495 -0.011600 0.010009 -v 0.027935 -0.011803 0.008683 -v 0.027539 -0.011569 0.007570 -v 0.040197 0.004173 -0.005526 -v 0.026680 -0.011362 0.006797 -v -0.003577 -0.011612 0.005982 -v -0.005948 -0.011178 0.006109 -v 0.026157 -0.011647 0.005994 -v 0.019118 -0.011920 0.003570 -v -0.001007 -0.012036 0.003170 -v 0.001876 -0.011886 0.003528 -v -0.000624 -0.011999 0.002068 -v 0.041383 -0.000496 -0.022486 -v -0.000977 -0.012019 0.000397 -v -0.000586 -0.011820 -0.002171 -v 0.006453 -0.011418 -0.000038 -v 0.027783 0.014463 0.012049 -v 0.023056 -0.011435 -0.002638 -v 0.007408 -0.011913 -0.003791 -v 0.031195 -0.011354 -0.002478 -v 0.041215 0.016857 0.014912 -v 0.024792 -0.011346 -0.006071 -v 0.001453 -0.012095 -0.003731 -v 0.009427 -0.011422 -0.005198 -v -0.005715 0.002397 -0.035050 -v 0.001050 -0.011538 -0.007240 -v 0.032211 -0.011584 -0.006581 -v 0.032185 -0.011715 -0.009736 -v 0.032132 -0.011854 -0.010704 -v 0.002610 -0.011201 -0.012385 -v 0.025068 -0.011424 -0.010336 -v 0.024813 -0.011969 -0.013327 -v 0.024179 -0.011574 -0.013025 -v -0.025873 -0.003143 -0.028540 -v 0.020490 -0.011161 -0.014339 -v 0.005658 -0.011356 -0.016975 -v 0.008419 -0.011249 -0.020188 -v -0.017149 -0.010710 -0.022925 -v 0.014410 -0.010729 -0.024396 -v 0.019986 -0.010582 -0.025183 -v -0.008676 -0.011072 -0.024958 -v -0.011690 -0.002807 -0.005491 -v -0.018070 -0.010499 -0.025171 -v -0.019671 -0.011149 -0.029103 -v -0.020430 -0.010872 -0.029790 -v -0.018519 -0.011182 -0.033766 -v -0.017624 -0.011316 -0.036160 -v -0.006161 -0.011379 0.021364 -v 0.031554 -0.011498 0.019553 -v -0.036299 -0.011553 0.018357 -v -0.033828 -0.011915 0.018088 -v -0.027902 -0.011514 0.016439 -v 0.011504 0.005427 0.021931 -v 0.011892 -0.004186 0.015048 -v -0.008314 -0.011449 0.014498 -v -0.028998 -0.011260 0.010601 -v -0.029106 -0.004163 -0.023612 -v 0.014993 -0.011112 0.011483 -v -0.020100 -0.010525 0.008341 -v 0.016241 -0.011411 0.007981 -v -0.031296 0.010822 -0.022865 -v -0.026348 0.015712 0.015776 -v -0.003955 -0.011685 0.005555 -v -0.000230 -0.012003 0.004305 -v 0.000648 -0.011812 0.004356 -v -0.004026 0.017008 0.024662 -v 0.029123 0.017132 0.001576 -v 0.029269 -0.011150 0.002070 -v 0.004581 -0.011843 0.001846 -v 0.029856 -0.011736 -0.000617 -v -0.001190 -0.011382 -0.003346 -v 0.022898 0.013249 0.019902 -v -0.032314 0.001583 -0.022768 -v -0.000021 -0.011213 -0.006389 -v -0.029925 -0.003321 -0.018385 -v 0.014663 -0.011429 -0.012389 -v 0.003237 -0.011147 -0.013290 -v 0.034692 0.005390 0.011593 -v 0.004604 -0.011350 -0.015251 -v 0.032797 -0.011270 -0.014748 -v 0.031081 -0.011509 -0.015693 -v 0.022688 -0.011429 -0.014304 -v -0.018172 0.020741 0.016014 -v 0.028576 -0.011163 -0.021308 -v 0.020623 0.014436 0.014921 -v -0.012686 -0.010968 -0.020865 -v 0.019308 -0.010624 -0.025376 -v -0.018481 -0.010023 -0.027997 -v -0.019410 -0.010964 -0.030498 -v -0.017613 -0.011327 -0.034631 -v -0.013649 -0.010151 -0.035514 -v -0.018408 -0.011032 -0.035673 -v -0.014701 -0.011346 -0.036171 -v -0.014838 -0.011156 -0.037269 -v -0.017993 -0.009797 -0.038018 -v -0.035785 -0.011226 0.021601 -v -0.036174 -0.011456 0.021109 -v 0.027489 -0.011409 0.019602 -v -0.025996 -0.011216 0.015760 -v -0.009747 -0.011025 0.014812 -v -0.002732 -0.010732 0.014901 -v 0.027931 -0.011368 0.014373 -v -0.004961 0.001983 -0.022226 -v -0.008172 -0.011107 0.011543 -v 0.015214 -0.011043 0.010319 -v -0.021373 -0.010745 0.007505 -v -0.014457 0.021083 0.022262 -v -0.001074 -0.011684 0.007453 -v -0.002054 -0.011792 0.006155 -v -0.027356 -0.011184 0.005539 -v 0.029392 -0.002638 0.024669 -v -0.001011 -0.011725 0.005592 -v 0.001968 -0.011719 0.005173 -v 0.038181 0.005450 0.008867 -v -0.002893 -0.011589 0.003251 -v 0.003785 -0.011295 0.003886 -v 0.022701 0.002756 -0.015044 -v -0.001854 -0.011514 -0.000640 -v 0.007379 -0.011290 -0.001047 -v 0.031775 -0.011587 -0.004811 -v 0.009650 0.015557 0.020146 -v 0.001153 -0.011376 -0.008878 -v 0.033082 -0.011230 -0.008661 -v 0.000901 -0.010496 -0.010591 -v 0.016369 0.009125 0.018225 -v 0.033093 -0.011421 -0.011913 -v 0.032741 -0.011341 -0.013275 -v 0.018891 -0.011406 -0.014438 -v 0.032379 -0.010985 -0.016077 -v 0.026572 -0.010784 -0.023218 -v 0.027861 -0.011198 -0.022025 -v -0.009677 -0.010620 -0.023157 -v 0.013449 -0.010528 -0.024428 -v -0.027661 -0.004217 -0.019113 -v 0.024126 -0.010251 -0.024897 -v 0.024785 0.010118 0.024669 -v 0.021139 -0.010827 -0.025095 -v -0.008905 -0.010901 -0.028805 -v -0.019994 -0.010752 -0.032353 -v -0.012563 -0.009669 -0.034847 -v -0.020974 -0.010074 -0.036166 -v -0.016538 -0.010722 0.024091 -v -0.036355 -0.011158 0.020348 -v 0.029117 -0.011576 0.020080 -v -0.029637 -0.003641 -0.026659 -v -0.037162 -0.010468 0.019403 -v 0.024225 -0.011140 0.018319 -v -0.035662 -0.011555 0.018249 -v -0.033680 -0.011316 0.018015 -v -0.032715 -0.011474 0.017830 -v 0.020019 -0.011650 0.017437 -v 0.017487 -0.011388 0.016770 -v 0.029735 -0.010792 0.011322 -v -0.033476 -0.004536 -0.029450 -v -0.007415 -0.011007 0.007826 -v -0.003581 -0.011448 0.007556 -v 0.000341 -0.011375 0.006431 -v -0.003689 -0.011378 0.004697 -v 0.003776 -0.011155 0.005105 -v -0.002331 -0.011325 0.001743 -v -0.024578 0.019828 0.024663 -v 0.018235 -0.010307 0.001584 -v 0.006426 -0.011116 0.000936 -v 0.008870 -0.010673 -0.003172 -v -0.025576 0.000298 -0.025829 -v 0.041029 0.000365 0.018778 -v 0.011004 -0.010900 -0.007188 -v 0.012679 -0.010857 -0.009624 -v -0.039279 0.003844 -0.023522 -v 0.031971 -0.011079 -0.017085 -v 0.007354 -0.010746 -0.020244 -v 0.030502 -0.010637 -0.020007 -v -0.015829 -0.011347 -0.020439 -v -0.014441 -0.011163 -0.019397 -v 0.029660 -0.011181 -0.020585 -v -0.014372 -0.011059 -0.020815 -v -0.015663 -0.011061 -0.021724 -v -0.002285 0.008854 0.022756 -v 0.029014 -0.004107 0.011883 -v -0.020856 0.014550 0.024665 -v 0.025731 -0.010692 -0.023978 -v 0.023363 -0.010538 -0.025074 -v -0.020242 -0.010706 -0.029112 -v -0.018882 -0.011134 -0.034491 -v -0.019060 -0.010839 -0.035051 -v -0.019615 -0.010730 -0.034882 -v -0.002493 -0.003905 -0.014152 -v 0.040063 0.003533 0.004496 -v -0.015199 -0.010446 -0.035978 -v -0.015980 -0.010092 -0.037505 -v -0.034870 -0.010796 0.022055 -v 0.028936 -0.010691 0.020390 -v -0.003432 -0.010363 0.017175 -v 0.015630 -0.011029 0.014597 -v 0.029397 -0.011024 0.013474 -v -0.028270 -0.010285 0.013772 -v 0.029696 -0.009904 0.010181 -v -0.001834 -0.011276 0.010516 -v -0.001760 -0.011372 0.009045 -v -0.030241 -0.009969 0.006585 -v 0.000552 -0.011342 0.007959 -v -0.028917 -0.010748 0.006085 -v 0.001714 -0.011111 0.007468 -v 0.016095 -0.011077 0.006362 -v -0.004578 -0.011380 0.004846 -v 0.018179 -0.010795 0.002443 -v 0.004925 -0.010939 0.003772 -v -0.004040 -0.010974 0.001754 -v 0.031204 -0.011031 -0.001241 -v -0.001671 -0.010704 -0.004205 -v -0.001271 -0.010632 -0.005998 -v 0.033197 -0.010895 -0.005777 -v 0.034052 -0.010695 -0.008197 -v 0.024768 -0.011102 -0.009740 -v 0.033579 -0.010970 -0.011601 -v 0.017236 -0.011072 -0.013634 -v 0.033507 -0.010677 -0.014590 -v 0.004703 -0.010668 -0.017175 -v 0.005816 -0.009941 -0.019306 -v -0.015164 -0.010990 -0.019129 -v -0.016725 -0.010957 -0.020467 -v -0.013416 -0.010830 -0.020420 -v -0.017410 -0.010943 -0.021543 -v -0.022188 -0.003200 0.024669 -v -0.018490 -0.010073 -0.024072 -v -0.008680 -0.010271 -0.024898 -v -0.034970 0.011817 -0.019662 -v -0.019137 -0.009816 -0.028444 -v -0.020407 -0.010553 -0.030452 -v 0.002309 -0.010764 -0.043434 -v 0.002385 -0.010863 -0.044550 -v 0.003274 -0.010928 -0.044407 -v 0.004260 -0.010811 -0.044834 -v 0.003822 -0.010850 -0.045551 -v 0.004839 -0.010805 -0.045565 -v 0.004355 -0.010480 -0.046124 -v -0.024710 -0.010688 0.020909 -v 0.026032 -0.010422 0.018971 -v -0.037148 -0.010476 0.017888 -v 0.024646 -0.010430 0.018621 -v -0.031867 -0.011044 0.017218 -v -0.027470 -0.010548 0.015701 -v -0.012190 -0.010908 0.015888 -v 0.014761 -0.010633 0.013678 -v -0.002189 -0.011074 0.011780 -v -0.016719 -0.009900 0.011502 -v 0.015266 -0.011066 0.009036 -v -0.030280 -0.010398 0.008409 -v 0.027801 -0.010465 0.007201 -v -0.025593 -0.010871 0.005235 -v -0.004697 -0.010893 0.004117 -v 0.016571 -0.010601 0.004488 -v -0.003450 -0.010862 0.000232 -v 0.030520 -0.010860 0.000316 -v 0.032496 -0.010601 -0.002482 -v -0.002918 -0.010142 -0.002940 -v -0.001338 -0.009725 -0.007334 -v 0.023832 -0.010693 -0.011827 -v 0.015551 -0.009115 -0.010375 -v 0.002488 -0.010415 -0.014140 -v 0.018548 -0.009173 -0.012299 -v 0.031734 -0.010393 -0.019505 -v -0.013731 -0.010461 -0.018701 -v 0.008660 -0.009744 -0.022175 -v -0.020385 -0.010219 -0.034196 -v -0.022104 -0.009967 -0.034522 -v -0.021355 -0.010686 -0.035495 -v 0.003147 -0.010323 -0.043525 -v 0.002404 -0.010380 -0.045263 -v 0.004877 -0.010346 -0.045745 -v -0.008544 -0.011036 0.024015 -v -0.027324 -0.009967 0.020188 -v -0.026990 -0.010927 0.020151 -v 0.019220 -0.010951 0.018554 -v -0.026446 -0.010945 0.015222 -v -0.013317 -0.010400 0.015241 -v 0.028901 -0.010938 0.015026 -v -0.007862 -0.000556 -0.034576 -v -0.022167 -0.009779 0.006607 -v -0.027555 -0.010139 0.004442 -v -0.025677 -0.003350 -0.028496 -v 0.030441 -0.010394 0.001518 -v 0.020578 -0.010277 -0.001566 -v 0.034375 -0.010438 -0.010299 -v 0.021564 -0.009847 -0.012874 -v 0.032111 -0.010424 -0.018527 -v -0.012817 -0.010374 -0.018809 -v -0.017353 -0.010391 -0.020664 -v 0.030050 -0.010464 -0.021084 -v -0.011085 -0.010529 -0.021310 -v -0.018266 -0.010480 -0.022489 -v 0.028266 -0.010206 -0.023097 -v 0.016681 -0.009639 -0.025875 -v -0.022672 -0.009714 -0.029418 -v -0.020089 -0.010757 -0.033505 -v -0.020905 -0.009933 -0.033629 -v -0.016558 -0.010246 -0.038295 -v 0.001708 -0.010571 -0.042941 -v 0.000455 -0.010543 -0.043029 -v -0.001056 -0.010054 -0.042948 -v -0.026904 -0.004060 0.023197 -v 0.004739 -0.010109 -0.045110 -v -0.033207 -0.007076 0.022094 -v -0.036718 -0.010303 0.021767 -v -0.036972 -0.010901 0.021242 -v -0.036734 -0.010810 0.020869 -v 0.031827 -0.010792 0.020648 -v -0.005371 -0.010024 0.019525 -v 0.033215 -0.009868 0.019243 -v 0.032501 -0.009945 0.018030 -v -0.009526 -0.010804 0.014282 -v -0.015237 -0.010051 0.013478 -v 0.000471 -0.010563 0.010722 -v 0.029271 -0.009687 0.009113 -v 0.015109 -0.010403 0.007857 -v 0.027711 -0.010365 0.006569 -v -0.006675 -0.010260 0.004480 -v 0.008234 -0.009112 0.000948 -v -0.009958 0.004167 -0.029849 -v 0.023404 -0.010217 -0.006788 -v 0.021630 -0.009667 -0.003867 -v 0.023614 -0.010464 -0.010494 -v 0.034943 -0.010142 -0.011888 -v 0.034695 -0.010027 -0.013288 -v 0.034647 -0.010028 -0.014316 -v 0.033640 -0.009960 -0.017123 -v -0.014824 -0.010219 -0.018795 -v -0.012032 -0.010267 -0.020172 -v 0.029474 -0.010011 -0.022128 -v 0.025657 -0.010054 -0.024624 -v -0.008471 -0.009986 -0.025272 -v -0.010780 -0.009836 -0.032908 -v -0.014848 -0.009750 -0.035711 -v -0.016141 -0.009668 -0.036382 -v -0.000120 -0.010177 -0.041956 -v 0.002194 -0.009828 -0.042697 -v 0.004020 -0.010012 -0.044322 -v -0.000132 -0.009739 -0.043989 -v -0.037426 0.001426 -0.034621 -v 0.031256 -0.010483 0.021224 -v -0.025828 -0.009459 0.020314 -v 0.032479 -0.010761 0.019887 -v 0.020112 -0.009910 0.019695 -v -0.036513 -0.010229 0.017024 -v -0.033820 -0.010111 0.016849 -v -0.035809 -0.010244 0.016905 -v -0.032372 -0.010555 0.016662 -v 0.029724 -0.010325 0.015727 -v -0.009869 -0.010562 0.010398 -v 0.014279 -0.010378 0.011836 -v -0.017482 -0.009689 0.010326 -v -0.008804 -0.010380 0.008675 -v 0.002964 -0.010387 0.008186 -v -0.007830 -0.009927 0.006074 -v 0.029590 -0.009247 0.004627 -v -0.005548 -0.009840 0.002167 -v 0.006590 -0.009875 0.003053 -v -0.004617 -0.009959 0.000924 -v 0.033413 -0.010059 -0.003375 -v 0.034143 -0.009900 -0.004469 -v 0.011379 -0.009873 -0.006406 -v -0.001224 -0.009351 -0.008460 -v 0.023098 -0.009875 -0.009556 -v 0.000211 -0.010561 -0.009433 -v 0.000348 -0.009581 -0.011659 -v 0.022710 -0.010305 -0.011836 -v 0.020859 -0.009933 -0.013262 -v 0.002902 -0.009565 -0.016165 -v 0.034179 -0.009633 -0.015997 -v -0.010290 -0.009972 -0.020482 -v 0.030955 -0.009837 -0.021324 -v -0.009370 -0.010208 -0.022760 -v -0.008534 -0.009969 -0.026904 -v -0.008903 -0.009966 -0.028944 -v -0.021586 -0.009735 -0.030937 -v -0.009609 -0.009916 -0.030723 -v 0.002442 -0.009194 -0.045140 -v 0.003594 -0.009661 -0.045669 -v 0.004507 -0.009773 -0.045610 -v -0.017193 -0.009483 0.023616 -v 0.018775 -0.010247 0.019383 -v 0.016719 -0.009865 0.019098 -v -0.030343 -0.010336 0.016459 -v -0.011179 -0.010475 0.015043 -v 0.014139 -0.009830 0.014698 -v -0.036457 0.003020 -0.023634 -v 0.030151 -0.010321 0.013062 -v -0.010522 -0.010392 0.012807 -v -0.001944 -0.010308 0.014058 -v 0.026805 0.011209 0.010767 -v 0.014390 -0.010133 0.010231 -v 0.014818 -0.009599 0.006426 -v -0.008895 -0.009933 0.007034 -v -0.006555 -0.009630 0.003229 -v 0.031914 -0.009625 0.000625 -v 0.045206 -0.001983 -0.021746 -v 0.031889 -0.010041 -0.000911 -v 0.009407 -0.009106 -0.001558 -v 0.034769 -0.010194 -0.009140 -v 0.020205 -0.009199 -0.012444 -v 0.004959 -0.009459 -0.019234 -v 0.032425 -0.009521 -0.019952 -v -0.019327 -0.009470 -0.020760 -v 0.007621 -0.009384 -0.022100 -v -0.018680 -0.010054 -0.021904 -v -0.018846 -0.009844 -0.026632 -v -0.021455 -0.010134 -0.032621 -v -0.021500 -0.008797 -0.036105 -v -0.019588 -0.009354 -0.037146 -v -0.017947 -0.008918 -0.037497 -v -0.001307 -0.010033 -0.041633 -v -0.001646 -0.010017 -0.042365 -v 0.000972 -0.009552 -0.041916 -v 0.003207 -0.009445 -0.043631 -v 0.003967 -0.009587 -0.044701 -v -0.018715 -0.009903 0.023078 -v 0.032877 -0.010083 0.021718 -v 0.033035 -0.010384 0.020878 -v 0.015013 -0.009853 0.016963 -v 0.030324 -0.010132 0.016368 -v -0.029130 -0.010086 0.016230 -v -0.027426 -0.009766 0.015323 -v -0.012405 -0.010113 0.015045 -v -0.002386 -0.010382 0.014696 -v -0.000114 -0.009819 0.013257 -v 0.030639 -0.009814 0.013114 -v 0.001391 -0.009870 0.011344 -v -0.018220 -0.009353 0.009441 -v 0.028202 -0.009568 0.006773 -v -0.023364 -0.009027 0.005483 -v -0.004199 -0.009795 -0.001049 -v 0.035402 -0.009160 -0.010531 -v -0.014473 -0.009980 -0.018311 -v -0.011446 -0.010089 -0.018373 -v -0.019676 -0.009730 -0.021799 -v -0.019656 -0.009370 -0.023705 -v 0.010925 -0.009289 -0.024224 -v 0.029053 -0.009325 -0.023553 -v -0.008125 -0.009559 -0.024417 -v 0.022028 -0.008222 -0.026667 -v 0.020857 -0.009126 -0.026463 -v -0.025669 -0.008453 -0.029240 -v -0.024227 -0.009116 -0.029936 -v -0.009977 -0.008818 -0.032297 -v -0.022203 -0.009568 -0.033821 -v -0.013627 -0.009064 -0.035422 -v -0.016837 -0.008906 -0.036798 -v -0.000907 -0.009609 -0.041163 -v -0.002675 -0.009555 -0.040714 -v -0.015677 -0.009212 0.023961 -v -0.037715 -0.010464 0.021619 -v -0.007777 -0.009552 0.021577 -v -0.038928 -0.009924 0.020723 -v -0.037504 -0.010053 0.019087 -v -0.028135 -0.009544 0.020424 -v -0.003093 -0.009842 0.016959 -v -0.012049 -0.010266 0.013188 -v -0.030082 -0.009686 0.011191 -v 0.012162 -0.004145 0.010659 -v -0.011256 -0.009897 0.008995 -v -0.010451 -0.010028 0.008789 -v 0.016058 -0.009515 0.003964 -v 0.018557 -0.009877 0.000706 -v 0.010711 -0.009110 -0.004180 -v -0.003362 -0.008131 -0.005622 -v 0.022304 -0.009012 -0.006475 -v 0.035076 -0.009048 -0.005923 -v 0.012259 -0.009086 -0.006362 -v -0.001365 -0.008055 -0.009722 -v 0.000583 -0.008748 -0.013167 -v 0.035181 -0.009093 -0.015001 -v -0.014254 -0.009717 -0.016555 -v -0.012140 -0.009782 -0.016526 -v 0.033641 -0.008992 -0.018489 -v -0.016788 -0.009098 -0.019611 -v -0.008875 -0.009508 -0.020608 -v 0.014515 -0.009187 -0.025631 -v -0.019101 -0.009764 -0.025230 -v 0.019140 -0.008134 -0.026777 -v -0.020537 -0.009712 -0.027260 -v -0.019273 -0.009458 -0.028061 -v -0.008105 -0.009221 -0.026899 -v -0.022490 -0.008431 -0.035510 -v 0.000616 -0.008654 -0.044396 -v -0.010249 -0.009077 0.023246 -v -0.038707 -0.010206 0.022119 -v -0.034574 -0.008104 0.022254 -v -0.036835 -0.009330 0.017115 -v -0.031647 -0.009775 0.016438 -v -0.027658 -0.009656 0.014784 -v -0.013863 -0.009879 0.014096 -v -0.012027 -0.010126 0.011060 -v 0.013759 -0.008625 0.008641 -v 0.005066 -0.008674 0.008389 -v -0.009779 -0.009511 0.006921 -v 0.028606 -0.008684 0.008072 -v 0.005033 -0.009042 0.007253 -v -0.020202 -0.009135 0.007692 -v -0.030730 -0.008296 0.005081 -v -0.029736 -0.008842 0.004533 -v -0.003529 -0.008833 -0.003997 -v 0.035486 -0.009101 -0.006836 -v 0.022791 -0.009223 -0.008539 -v 0.014304 -0.009238 -0.009310 -v -0.005543 -0.004606 -0.019456 -v 0.021195 -0.008219 -0.011120 -v 0.002344 -0.008742 -0.016447 -v -0.009126 -0.009478 -0.018374 -v 0.030938 -0.008973 -0.022467 -v 0.027917 -0.008722 -0.024530 -v 0.027104 -0.008712 -0.025140 -v 0.011821 -0.009384 -0.024410 -v 0.024227 -0.008496 -0.026259 -v -0.021587 -0.009089 -0.024699 -v -0.020759 -0.009418 -0.026550 -v -0.021641 -0.009300 -0.027513 -v -0.008358 -0.009223 -0.028627 -v -0.021193 -0.009258 -0.028628 -v -0.022505 -0.008946 -0.028921 -v -0.009235 -0.008837 -0.030797 -v -0.022950 -0.008882 -0.032709 -v -0.011542 -0.009346 -0.033923 -v -0.022896 -0.009071 -0.034110 -v -0.001864 -0.009042 -0.040471 -v -0.000557 -0.008950 -0.040982 -v 0.000018 -0.008749 -0.041301 -v 0.001989 -0.008996 -0.042718 -v -0.001433 -0.009145 -0.043538 -v -0.038854 -0.009787 0.022534 -v -0.039429 -0.009892 0.022124 -v -0.037662 -0.009955 0.021960 -v -0.022568 -0.009324 0.021308 -v 0.034494 -0.009203 0.021069 -v 0.018955 -0.009472 0.020977 -v 0.021145 -0.009840 0.019840 -v 0.022254 -0.009440 0.020134 -v 0.023442 -0.009481 0.019885 -v -0.035925 -0.009572 0.016610 -v -0.028349 -0.009445 0.015885 -v -0.015780 -0.009666 0.012261 -v -0.013958 -0.009843 0.012198 -v 0.013474 -0.009030 0.011771 -v 0.030569 -0.008684 0.011413 -v 0.028496 -0.008552 0.007345 -v 0.006656 -0.009033 0.004346 -v 0.032672 -0.009173 -0.000356 -v 0.019411 -0.008450 -0.001631 -v 0.033567 -0.008796 -0.001309 -v 0.016188 -0.009439 -0.011256 -v 0.035601 -0.009171 -0.011861 -v -0.015140 -0.009475 -0.015364 -v -0.013200 -0.009392 -0.015270 -v -0.015883 -0.009375 -0.018707 -v -0.018093 -0.009269 -0.020026 -v 0.006134 -0.008335 -0.021538 -v 0.029897 -0.008937 -0.023114 -v 0.013566 -0.008368 -0.026095 -v 0.025354 -0.008113 -0.026061 -v -0.008193 -0.009297 -0.026117 -v -0.021198 -0.009005 -0.026230 -v -0.016074 -0.008660 -0.036387 -v -0.019144 -0.008096 -0.037107 -v -0.005253 -0.009117 -0.040606 -v 0.002631 -0.008880 -0.044673 -v -0.022472 -0.003003 0.024669 -v -0.019931 -0.009504 0.022464 -v 0.033051 -0.009212 0.022560 -v -0.037602 -0.009402 0.021777 -v 0.028601 -0.007543 0.021059 -v 0.026524 -0.009190 0.019750 -v -0.004034 -0.009283 0.018450 -v -0.037534 -0.009456 0.018731 -v 0.015088 -0.008324 0.019489 -v -0.031057 -0.009229 0.016573 -v -0.001673 -0.008622 0.017285 -v -0.000841 -0.009563 0.014872 -v -0.015410 -0.009484 0.010637 -v -0.014733 -0.009302 0.010268 -v -0.016953 -0.009570 0.010480 -v -0.031161 -0.008659 0.009514 -v -0.012639 -0.009212 0.008925 -v -0.031134 -0.009006 0.007163 -v 0.013331 -0.007243 0.008183 -v -0.024960 -0.008482 0.004031 -v 0.017608 -0.008664 0.000976 -v 0.009984 -0.008146 -0.001087 -v 0.011471 -0.008426 -0.004419 -v -0.011466 -0.009370 -0.015049 -v -0.017693 -0.008608 -0.017143 -v -0.008242 -0.008914 -0.018011 -v 0.033529 -0.008789 -0.019679 -v -0.020747 -0.009294 -0.020339 -v -0.019771 -0.009163 -0.019619 -v -0.020043 -0.009283 -0.021160 -v -0.007571 -0.009015 -0.022200 -v 0.008949 -0.007887 -0.024041 -v -0.007242 -0.008640 -0.023763 -v -0.024753 -0.008079 -0.030649 -v -0.023729 -0.008652 -0.031962 -v -0.011952 -0.008627 -0.034602 -v -0.004308 -0.008858 -0.039745 -v -0.004425 -0.008806 -0.042390 -v 0.001522 -0.008690 -0.044595 -v 0.031208 -0.008960 0.022165 -v -0.038772 -0.009348 0.020247 -v 0.017798 -0.009367 0.020696 -v -0.005334 -0.009464 0.019646 -v 0.021256 -0.009528 0.020614 -v 0.014029 -0.008765 0.017032 -v 0.031204 -0.009371 0.014767 -v 0.013275 -0.008564 0.014242 -v -0.018781 -0.008552 0.008471 -v -0.008355 -0.008662 0.004298 -v 0.006687 -0.008685 0.005499 -v 0.030976 -0.008099 0.003453 -v -0.006555 -0.008693 0.001628 -v 0.018362 -0.008310 -0.000465 -v 0.034940 -0.008101 -0.003435 -v 0.035560 -0.009171 -0.008983 -v 0.017057 -0.007978 -0.010798 -v 0.035529 -0.008750 -0.013391 -v -0.013668 -0.009328 -0.013401 -v -0.012159 -0.009132 -0.013619 -v -0.009067 -0.008850 -0.016536 -v -0.016993 -0.008795 -0.019170 -v 0.031961 -0.008731 -0.021119 -v 0.008074 -0.008031 -0.023492 -v -0.021300 -0.008731 -0.023736 -v -0.022288 -0.008804 -0.025193 -v 0.017766 -0.008335 -0.026693 -v -0.023992 -0.008840 -0.032990 -v -0.005688 -0.008890 -0.041451 -v 0.000487 -0.008161 -0.041847 -v -0.038916 -0.009368 0.022489 -v -0.039472 -0.009275 0.022065 -v 0.018540 -0.008464 0.022083 -v 0.024643 -0.008676 0.020707 -v 0.032342 -0.008521 0.017284 -v -0.027479 -0.008599 0.015807 -v 0.003591 -0.008360 0.011108 -v -0.019703 -0.008502 0.007960 -v -0.026487 -0.008236 0.003420 -v -0.005944 -0.008737 0.000898 -v -0.004750 -0.007608 -0.003020 -v 0.020674 -0.008266 -0.004035 -v -0.002332 -0.008159 -0.007325 -v -0.014813 -0.009130 -0.012438 -v -0.012960 -0.008293 -0.011019 -v -0.015974 -0.008930 -0.013819 -v 0.035280 -0.008050 -0.017221 -v -0.018189 -0.008492 -0.019251 -v 0.004469 -0.007661 -0.020243 -v -0.022301 -0.008262 -0.022558 -v 0.029486 -0.006942 -0.024964 -v -0.021740 -0.008142 -0.026683 -v -0.022253 -0.008603 -0.027269 -v -0.023703 -0.008915 -0.034055 -v -0.010929 -0.008173 -0.033894 -v -0.008776 -0.007846 -0.038682 -v -0.008565 -0.008109 -0.040092 -v -0.013971 -0.008943 0.024366 -v -0.011517 -0.009523 0.024659 -v 0.021863 -0.009048 0.021124 -v -0.027095 -0.008235 0.020057 -v -0.037222 -0.008821 0.019050 -v 0.031865 -0.008704 0.016721 -v -0.036230 -0.008479 0.016960 -v -0.029449 -0.009135 0.016698 -v -0.027433 -0.008740 0.015130 -v 0.031470 -0.008652 0.013580 -v 0.000588 -0.008524 0.014484 -v -0.029357 -0.008336 0.013572 -v -0.014867 -0.008794 0.009357 -v -0.011419 -0.007719 0.006426 -v 0.028563 -0.007979 0.007956 -v -0.009205 -0.009025 0.005777 -v 0.014100 -0.007246 0.005720 -v -0.028967 -0.006843 0.003031 -v 0.008151 -0.008546 0.002433 -v 0.031839 -0.007933 0.002504 -v -0.005061 -0.008918 -0.000477 -v 0.014121 -0.008481 -0.008266 -v 0.021733 -0.008975 -0.011390 -v 0.036284 -0.008489 -0.011622 -v -0.015946 -0.008885 -0.011411 -v -0.017623 -0.008791 -0.012728 -v 0.020149 -0.007778 -0.011293 -v -0.016959 -0.008989 -0.014969 -v 0.001372 -0.007980 -0.015267 -v 0.034950 -0.004812 0.024656 -v -0.006620 -0.008161 -0.026326 -v -0.024348 -0.007848 -0.028343 -v -0.024946 -0.008409 -0.033434 -v -0.013128 -0.007236 -0.036350 -v -0.004591 -0.008131 -0.039220 -v -0.000729 -0.007964 -0.041020 -v -0.006735 -0.007653 -0.042019 -v -0.000883 -0.008041 -0.043740 -v 0.000975 -0.008040 -0.043698 -v -0.017910 -0.008722 0.022807 -v 0.034718 -0.008706 0.022628 -v -0.038621 -0.009000 0.021748 -v 0.034792 -0.008914 0.022029 -v -0.007096 -0.009014 0.021287 -v 0.020341 -0.008450 0.022128 -v 0.035086 -0.008307 0.020268 -v -0.033324 -0.009209 0.016872 -v -0.032136 -0.008302 0.017743 -v -0.030888 -0.008850 0.017045 -v -0.017109 -0.008231 0.008612 -v 0.015490 -0.007862 0.003540 -v 0.033967 -0.009196 -0.003139 -v 0.035912 -0.007922 -0.006509 -v 0.013178 -0.008052 -0.006750 -v -0.017732 -0.008684 -0.011444 -v -0.035565 -0.003725 0.007961 -v -0.018947 -0.008448 -0.014260 -v -0.009906 -0.008050 -0.013827 -v 0.036322 -0.007044 -0.015982 -v 0.003198 -0.008480 -0.017740 -v 0.034278 -0.008048 -0.018589 -v -0.021290 -0.007681 -0.019331 -v -0.022987 -0.008154 -0.020749 -v -0.006756 -0.008139 -0.021799 -v 0.011388 -0.007582 -0.025569 -v -0.023167 -0.007884 -0.025599 -v -0.023555 -0.008009 -0.027302 -v -0.007615 -0.008054 -0.029366 -v -0.006868 -0.007673 -0.028285 -v -0.023155 -0.008210 -0.035149 -v -0.021353 -0.007925 -0.036580 -v -0.017451 -0.007968 -0.036880 -v -0.011336 -0.008604 0.023470 -v -0.008484 -0.008624 0.022097 -v 0.022517 -0.008169 0.022225 -v -0.037892 -0.008682 0.021345 -v 0.033992 -0.008381 0.018784 -v -0.035401 -0.008685 0.016824 -v -0.028285 -0.007817 0.016294 -v 0.032466 -0.007902 0.014779 -v 0.012805 -0.006617 0.009954 -v -0.020783 -0.007700 0.007148 -v 0.006074 -0.008302 0.006979 -v 0.007742 -0.008098 0.003782 -v 0.033409 -0.007008 0.000365 -v 0.036631 -0.007836 -0.009510 -v -0.015401 -0.008300 -0.009147 -v 0.036405 -0.008177 -0.010638 -v 0.016858 -0.007235 -0.010325 -v -0.016783 -0.008322 -0.010317 -v 0.019178 -0.007589 -0.011438 -v -0.019627 -0.008026 -0.013036 -v 0.036457 -0.007693 -0.013264 -v -0.010669 -0.007636 -0.012289 -v -0.008633 -0.006750 -0.013593 -v -0.018990 -0.007918 -0.019173 -v 0.034350 -0.007589 -0.019479 -v -0.022187 -0.008150 -0.019513 -v 0.032497 -0.007755 -0.021740 -v -0.025152 -0.007153 -0.024159 -v 0.013593 -0.006870 -0.026856 -v -0.025710 -0.007736 -0.033717 -v -0.025488 -0.007705 -0.034357 -v -0.002258 -0.007147 -0.040269 -v -0.009398 -0.007764 -0.040515 -v -0.008767 -0.007364 -0.041360 -v -0.013538 -0.008432 0.023733 -v -0.009726 -0.008415 0.022835 -v -0.020870 -0.008225 0.021504 -v 0.035473 -0.007725 0.023644 -v 0.033378 -0.008038 0.023326 -v -0.036038 -0.008809 0.021886 -v -0.005958 -0.007907 0.022094 -v -0.025470 -0.007939 0.019904 -v -0.034581 -0.008632 0.017300 -v 0.032735 -0.007937 0.015578 -v 0.034816 -0.001738 0.024669 -v 0.031761 -0.007531 0.013517 -v 0.001842 -0.007929 0.014045 -v -0.031291 -0.006899 0.011068 -v 0.035602 -0.007360 -0.004754 -v 0.014350 -0.007258 -0.007800 -v -0.019147 -0.008325 -0.010746 -v -0.020226 -0.008039 -0.011299 -v -0.012154 -0.008050 -0.011150 -v 0.000755 -0.007762 -0.014675 -v 0.036315 -0.007872 -0.014550 -v 0.033533 -0.006688 -0.021588 -v -0.024108 -0.007206 -0.023606 -v 0.026346 -0.007247 -0.026371 -v 0.016538 -0.007541 -0.026902 -v 0.019964 -0.007302 -0.027398 -v -0.022351 -0.007165 -0.026959 -v -0.026504 -0.007429 -0.030089 -v -0.025795 -0.007818 -0.032452 -v -0.009106 -0.007420 -0.032733 -v 0.000528 -0.008020 -0.043909 -v -0.015874 -0.008206 0.023286 -v -0.011596 -0.008112 0.023457 -v -0.017886 -0.008236 0.022787 -v -0.035782 -0.007496 0.021812 -v -0.036295 -0.007932 0.021416 -v -0.036678 -0.008324 0.017950 -v -0.030707 -0.008337 0.017212 -v -0.034885 -0.008108 0.017680 -v 0.005838 -0.007816 0.008354 -v -0.008262 -0.006399 0.001887 -v 0.009551 -0.007436 0.000316 -v -0.005865 -0.007581 -0.000917 -v -0.017342 -0.008254 -0.008608 -v 0.015083 -0.007459 -0.009095 -v -0.018322 -0.008189 -0.009417 -v -0.013916 -0.007942 -0.009293 -v 0.035383 -0.006458 -0.019276 -v -0.018550 -0.007875 -0.018742 -v -0.019515 -0.007393 -0.019238 -v -0.006523 -0.008001 -0.019286 -v 0.031919 -0.006989 -0.023166 -v -0.006471 -0.008074 -0.024327 -v -0.004875 -0.008049 -0.026046 -v 0.013303 -0.007423 -0.026455 -v -0.026972 -0.007667 -0.028464 -v -0.007059 -0.007820 -0.029417 -v -0.007740 -0.007716 -0.030408 -v -0.023682 -0.007827 -0.036305 -v -0.033558 -0.003762 -0.000680 -v -0.019069 -0.007083 -0.037145 -v -0.008531 -0.007546 -0.038096 -v -0.007061 -0.007415 -0.038160 -v -0.006466 -0.007187 -0.038237 -v -0.004627 -0.007119 -0.039148 -v -0.036593 -0.008149 0.020953 -v -0.022483 -0.008238 0.020860 -v 0.024048 -0.007815 0.022030 -v -0.027612 -0.007682 0.015557 -v 0.029488 -0.008017 0.009688 -v -0.032023 -0.006724 0.008502 -v -0.031945 -0.006645 0.006586 -v 0.029388 -0.006767 0.006545 -v 0.010923 -0.006879 -0.002041 -v 0.011593 -0.007015 -0.003263 -v -0.000869 -0.007296 -0.011631 -v -0.020347 -0.007704 -0.013881 -v 0.002349 -0.006449 -0.019113 -v -0.021966 -0.007478 -0.019217 -v -0.023398 -0.007783 -0.019532 -v -0.025045 -0.007155 -0.019908 -v -0.005054 -0.007354 -0.020333 -v 0.032915 -0.006312 -0.022578 -v 0.005260 -0.006510 -0.022235 -v -0.005148 -0.007819 -0.023159 -v -0.004002 -0.007827 -0.025530 -v -0.003883 -0.007709 -0.026386 -v -0.022459 -0.006806 -0.026379 -v -0.004701 -0.007481 -0.027922 -v -0.007723 -0.007306 -0.031290 -v -0.026581 -0.007355 -0.031560 -v -0.011167 -0.006405 -0.035547 -v -0.024735 -0.007463 -0.036450 -v -0.003873 -0.006585 -0.039484 -v -0.013878 -0.007898 0.023513 -v 0.036473 -0.007574 0.022756 -v 0.016738 -0.007484 0.022053 -v -0.031149 -0.005825 0.021966 -v -0.028995 -0.005498 0.021316 -v 0.027377 -0.007459 0.021104 -v 0.026483 -0.007024 0.021788 -v 0.014038 -0.006976 0.019347 -v -0.035526 -0.007798 0.018108 -v -0.000015 -0.006520 0.017958 -v -0.028388 -0.007145 0.016232 -v 0.030541 -0.007463 0.011599 -v -0.013826 -0.007224 0.007646 -v -0.012715 -0.008187 0.007766 -v -0.018428 -0.006469 0.007093 -v -0.011113 -0.006536 0.005487 -v -0.024648 -0.007482 0.004090 -v -0.025570 -0.007124 0.003206 -v -0.016805 -0.007700 -0.006916 -v 0.021661 -0.006566 -0.008036 -v -0.014464 -0.006684 -0.006894 -v -0.007430 -0.007547 -0.016495 -v -0.019464 -0.007571 -0.016496 -v -0.006401 -0.007354 -0.017514 -v -0.020663 -0.007547 -0.019381 -v -0.025533 -0.006572 -0.021495 -v 0.004357 -0.006983 -0.021112 -v -0.033920 -0.004688 0.003765 -v -0.004261 -0.007440 -0.022686 -v 0.007200 -0.006754 -0.023897 -v -0.004978 -0.007611 -0.024552 -v -0.004270 -0.007198 -0.024348 -v -0.003615 -0.007446 -0.025482 -v 0.017926 -0.006913 -0.027405 -v 0.021687 -0.006784 -0.027719 -v 0.023379 -0.007211 -0.027244 -v -0.023762 -0.006457 -0.026977 -v -0.022657 -0.006675 -0.026962 -v -0.024279 -0.007415 -0.027095 -v -0.004446 -0.007353 -0.027559 -v -0.004318 -0.007662 -0.028931 -v -0.028772 -0.006829 -0.028796 -v -0.005373 -0.007597 -0.029660 -v -0.008211 -0.007386 -0.031912 -v -0.026592 -0.006779 -0.033071 -v -0.025560 -0.007176 -0.035061 -v -0.012042 -0.006798 -0.036253 -v -0.022809 -0.007200 -0.037267 -v -0.020761 -0.006794 -0.037240 -v -0.011732 -0.006953 -0.040628 -v -0.000086 -0.007441 -0.042384 -v -0.009583 -0.007295 0.024090 -v 0.019960 -0.008020 0.023028 -v 0.021886 -0.007771 0.023178 -v -0.035924 -0.006563 0.021941 -v -0.021369 -0.007887 0.021566 -v -0.024511 -0.007550 0.020143 -v -0.035947 -0.007812 0.018803 -v -0.026006 -0.007405 0.020006 -v 0.033887 -0.006983 0.017851 -v 0.001374 -0.007040 0.015684 -v -0.016176 -0.007084 0.007782 -v -0.008597 -0.007065 0.003281 -v -0.006830 -0.007111 0.000776 -v 0.009247 -0.007128 0.001729 -v 0.035440 -0.006758 -0.003217 -v -0.004477 -0.006539 -0.004850 -v 0.021104 -0.006241 -0.006343 -v -0.019345 -0.007821 -0.007446 -v -0.003035 -0.006885 -0.007942 -v -0.017538 -0.007127 -0.005209 -v -0.021216 -0.007512 -0.007068 -v 0.013565 -0.006756 -0.006802 -v -0.012491 -0.006950 -0.009548 -v -0.011416 -0.006936 -0.010510 -v -0.000254 -0.006365 -0.014498 -v -0.019241 -0.007220 -0.018842 -v -0.005189 -0.007414 -0.017559 -v -0.004819 -0.007162 -0.020905 -v 0.011148 -0.006597 -0.026160 -v 0.016225 -0.007229 -0.027394 -v 0.020686 -0.007057 -0.027685 -v -0.027510 -0.006496 -0.027740 -v -0.006242 -0.007052 -0.031009 -v -0.027918 -0.006962 -0.034406 -v -0.025643 -0.006725 -0.036592 -v -0.002108 -0.006640 -0.040943 -v -0.002434 -0.006960 -0.043014 -v -0.007652 -0.007421 0.023398 -v 0.037525 -0.006402 0.022410 -v -0.036201 -0.007530 0.019961 -v -0.034597 -0.007528 0.017846 -v -0.029589 -0.006887 0.016668 -v 0.012945 -0.007192 0.016454 -v 0.033875 -0.006602 0.016271 -v -0.028044 -0.007192 0.015099 -v 0.029398 -0.006258 0.010332 -v -0.022363 -0.007590 0.006158 -v 0.032802 -0.006300 0.001694 -v 0.012269 -0.006642 -0.004614 -v 0.036241 -0.007095 -0.005882 -v -0.022139 -0.007301 -0.008750 -v 0.021379 -0.006315 -0.009496 -v -0.022891 -0.007080 -0.010832 -v 0.036911 -0.007106 -0.011719 -v -0.019927 -0.007086 -0.017182 -v -0.004671 -0.007230 -0.017322 -v 0.001588 -0.006643 -0.017689 -v -0.023217 -0.007065 -0.019243 -v -0.020545 -0.007207 -0.019793 -v 0.007967 -0.006315 -0.024687 -v -0.024859 -0.006573 -0.025228 -v -0.003869 -0.007101 -0.025031 -v -0.003793 -0.007220 -0.026515 -v -0.025849 -0.006758 -0.026992 -v -0.004018 -0.007175 -0.028491 -v -0.004119 -0.007130 -0.029156 -v -0.007636 -0.006925 -0.032958 -v -0.026752 -0.006916 -0.033526 -v -0.027918 -0.006795 -0.033998 -v -0.010105 -0.006396 -0.034864 -v -0.028061 -0.006763 -0.034806 -v -0.014099 -0.007020 -0.036916 -v -0.015457 -0.006564 -0.037507 -v -0.012472 -0.006810 -0.036866 -v -0.013480 -0.006894 -0.037397 -v -0.009361 -0.006610 -0.037131 -v -0.007551 -0.006953 -0.037913 -v -0.012901 -0.006965 -0.040007 -v -0.004263 -0.005492 -0.041228 -v 0.032304 -0.006515 0.023427 -v -0.017967 -0.006242 0.024229 -v 0.018556 -0.007046 0.023395 -v 0.023973 -0.007168 0.023205 -v -0.004610 -0.006692 0.022437 -v -0.022072 -0.007316 0.022145 -v -0.003299 -0.006275 0.021734 -v -0.027589 -0.005974 0.020879 -v 0.015647 -0.006261 0.021981 -v -0.001311 -0.006600 0.019394 -v 0.000790 -0.006835 0.016809 -v -0.030128 -0.006754 0.013165 -v 0.004901 -0.006554 0.011163 -v 0.028665 -0.006657 0.009262 -v 0.028977 -0.006230 0.007395 -v 0.008302 -0.005736 0.005260 -v -0.030092 -0.006916 0.003703 -v 0.014909 -0.005360 0.003239 -v -0.027097 -0.007106 0.002817 -v -0.020520 -0.007208 -0.004136 -v 0.019842 -0.005333 -0.004498 -v -0.018504 -0.007076 -0.004229 -v -0.021431 -0.007183 -0.005586 -v -0.015569 -0.006832 -0.005918 -v 0.038912 -0.005014 0.023569 -v -0.013300 -0.006605 -0.007849 -v 0.019186 -0.005957 -0.010785 -v -0.009496 -0.006444 -0.012420 -v -0.007516 -0.006693 -0.014799 -v 0.036432 -0.006249 -0.017565 -v -0.004715 -0.007195 -0.018626 -v -0.025521 -0.007247 -0.018982 -v -0.024944 -0.007161 -0.018481 -v -0.023964 -0.007317 -0.019203 -v -0.021684 -0.006965 -0.020028 -v -0.004056 -0.007041 -0.021874 -v -0.025181 -0.006466 -0.022737 -v -0.003826 -0.006784 -0.022772 -v 0.009645 -0.006927 -0.025317 -v 0.035830 -0.006846 0.024232 -v 0.012790 -0.006951 -0.026761 -v 0.024963 -0.006460 -0.027449 -v -0.004373 -0.007015 -0.027663 -v 0.016789 -0.006659 -0.029167 -v -0.028354 -0.006388 -0.029828 -v -0.005658 -0.006975 -0.031778 -v -0.006776 -0.006928 -0.032938 -v -0.006005 -0.007079 -0.032263 -v -0.010481 -0.006558 -0.041273 -v -0.005164 -0.006136 -0.042372 -v -0.011388 -0.006534 0.024664 -v 0.021682 -0.006244 0.024662 -v 0.029927 -0.006058 0.022088 -v -0.036478 -0.007381 0.021212 -v -0.032357 -0.006922 0.017530 -v 0.003303 -0.006865 0.013338 -v 0.032865 -0.005093 0.014720 -v 0.012326 -0.006111 0.012780 -v -0.031291 -0.006717 0.005030 -v -0.009999 -0.006432 0.004376 -v 0.008254 -0.006450 0.004884 -v -0.021887 -0.007136 -0.003779 -v -0.024123 -0.006884 -0.006816 -v -0.005971 -0.006713 -0.014725 -v -0.021530 -0.006015 -0.016035 -v 0.001199 -0.006807 -0.016527 -v -0.005163 -0.006465 -0.015832 -v -0.023523 -0.006686 -0.018943 -v 0.034662 -0.006225 -0.020449 -v -0.004332 -0.006547 -0.021310 -v 0.006591 -0.006744 -0.023600 -v -0.004241 -0.006880 -0.024430 -v 0.032511 -0.006323 -0.023606 -v -0.025077 -0.007165 -0.024636 -v 0.030578 -0.006205 -0.024688 -v -0.024892 -0.004035 -0.037729 -v 0.026755 -0.006815 -0.026765 -v 0.018419 -0.006126 -0.028954 -v 0.020684 -0.006546 -0.029416 -v -0.028831 -0.006159 -0.029457 -v -0.005742 -0.006741 -0.030895 -v -0.005755 -0.006791 -0.032647 -v -0.027751 -0.005573 -0.032558 -v -0.007853 -0.006179 -0.033956 -v -0.011592 -0.006695 -0.036776 -v -0.025413 -0.005824 -0.037235 -v -0.006710 -0.006618 -0.038430 -v -0.014897 -0.006420 -0.039671 -v -0.005553 -0.006828 -0.042416 -v 0.036872 -0.006909 0.024017 -v -0.015642 -0.006746 0.023991 -v -0.020838 -0.006684 0.023264 -v -0.036734 -0.007029 0.021063 -v -0.035842 -0.005801 0.018154 -v -0.034980 -0.007101 0.017798 -v -0.031288 -0.006074 0.016984 -v -0.013390 -0.005510 0.006610 -v -0.024309 -0.007106 0.004084 -v 0.031233 -0.005260 0.004129 -v -0.006561 -0.006400 -0.000612 -v -0.005367 -0.006331 -0.003383 -v -0.023487 -0.006891 -0.003349 -v -0.024080 -0.006778 -0.009099 -v 0.020824 -0.006179 -0.010245 -v 0.037092 -0.006279 -0.014438 -v -0.022431 -0.006406 -0.013786 -v -0.004137 -0.006372 -0.017281 -v -0.024290 -0.006855 -0.018341 -v -0.019813 -0.005871 -0.019673 -v -0.004483 -0.006548 -0.020652 -v -0.020048 -0.006287 -0.019875 -v 0.010310 -0.006664 -0.026089 -v -0.004684 -0.005990 -0.026425 -v -0.025996 -0.005408 -0.026590 -v 0.013607 -0.006477 -0.028962 -v 0.015098 -0.006091 -0.028913 -v 0.017604 -0.006539 -0.028180 -v 0.024894 -0.006352 -0.028809 -v 0.022215 -0.005977 -0.028876 -v 0.017405 -0.006549 -0.029340 -v -0.028129 -0.006428 -0.031131 -v -0.005428 -0.006589 -0.031857 -v -0.010257 -0.005893 -0.036728 -v -0.023860 -0.005723 -0.037671 -v -0.016408 -0.005909 -0.038402 -v -0.006504 -0.005962 -0.038380 -v -0.013696 -0.006382 -0.041555 -v -0.012611 -0.006286 -0.041393 -v -0.013799 -0.006805 0.024347 -v -0.019231 -0.006659 0.023525 -v 0.025216 -0.006762 0.022878 -v -0.033444 -0.005861 0.022122 -v -0.036996 -0.006981 0.021471 -v -0.025519 -0.006987 0.020377 -v -0.020691 -0.006189 0.005818 -v -0.023952 -0.006725 0.003230 -v -0.007567 -0.006059 0.000596 -v -0.019980 -0.006521 -0.002815 -v 0.036817 -0.004562 -0.005179 -v -0.023380 -0.006982 -0.005452 -v 0.037309 -0.006076 -0.008856 -v -0.002559 -0.006261 -0.009337 -v -0.002156 -0.005543 -0.011540 -v -0.001193 -0.005972 -0.013417 -v -0.004500 -0.006429 -0.016377 -v -0.004280 -0.006495 -0.018929 -v -0.027190 -0.005991 -0.018470 -v -0.023735 -0.005945 -0.019879 -v -0.020358 -0.006166 -0.020473 -v 0.034318 -0.006315 -0.021212 -v 0.004223 -0.006603 -0.021917 -v 0.005211 -0.006025 -0.023104 -v -0.026373 -0.006222 -0.024450 -v 0.029851 -0.006441 -0.025407 -v 0.027953 -0.006374 -0.026259 -v 0.010032 -0.006339 -0.027461 -v 0.014757 -0.006110 -0.028915 -v -0.005473 -0.005881 -0.028071 -v 0.021918 -0.005780 -0.029158 -v -0.004680 -0.006244 -0.029075 -v -0.005626 -0.006283 -0.030592 -v -0.005729 -0.006299 -0.032427 -v -0.026866 -0.006167 -0.035229 -v -0.028168 -0.005808 -0.035497 -v -0.026496 -0.005821 -0.035949 -v -0.014258 -0.006193 -0.042283 -v -0.012047 -0.005999 -0.041543 -v -0.009690 -0.005512 -0.041572 -v -0.002273 -0.006573 -0.042576 -v -0.010798 -0.006447 -0.046761 -v -0.010571 -0.006386 -0.046276 -v -0.011545 -0.006190 -0.047080 -v -0.009004 -0.006244 0.024670 -v -0.022970 -0.005917 0.023120 -v -0.036207 -0.006930 0.019367 -v 0.036232 -0.005363 0.019167 -v 0.012404 -0.006084 0.016085 -v -0.029539 -0.006840 0.014065 -v -0.007411 -0.005434 0.024669 -v -0.031362 -0.006615 0.011644 -v 0.028498 -0.005631 0.009539 -v 0.007087 -0.006053 0.007549 -v -0.026947 -0.006804 0.002111 -v 0.016876 -0.005008 0.000308 -v -0.025378 -0.006756 0.000652 -v 0.010511 -0.005453 0.000250 -v -0.025202 -0.006727 -0.002959 -v -0.024467 -0.006570 -0.004780 -v -0.026340 -0.006332 -0.006236 -v -0.003873 -0.005842 -0.006910 -v 0.037180 -0.005229 -0.007169 -v -0.025294 -0.006246 -0.007891 -v -0.011932 -0.005247 -0.007964 -v 0.015159 -0.005515 -0.008693 -v -0.024892 -0.005971 -0.010881 -v -0.021067 -0.005889 -0.017158 -v -0.025964 -0.006525 -0.018244 -v -0.020003 -0.005905 -0.019009 -v -0.023744 -0.006195 -0.018823 -v -0.023973 -0.006009 -0.018806 -v -0.024190 -0.006020 -0.019249 -v -0.027733 -0.005831 -0.020461 -v 0.003654 -0.006280 -0.023005 -v -0.005260 -0.004968 -0.024477 -v -0.004458 -0.006271 -0.025416 -v 0.028005 -0.006192 -0.027849 -v -0.027800 -0.005859 -0.026813 -v 0.025031 -0.005937 -0.029247 -v 0.021368 -0.006093 -0.029667 -v 0.016923 -0.006116 -0.029696 -v -0.007729 -0.005863 -0.033991 -v -0.029663 -0.005818 -0.034494 -v -0.017115 -0.005844 -0.038044 -v -0.007273 -0.005328 -0.038244 -v -0.011306 -0.005860 -0.041492 -v -0.012732 -0.006050 -0.042867 -v -0.012270 -0.006188 -0.044197 -v -0.012786 -0.006283 -0.045374 -v -0.011801 -0.006066 -0.044510 -v -0.010974 -0.006109 -0.045356 -v -0.010341 -0.005964 -0.046794 -v -0.010756 -0.006064 -0.047183 -v -0.016704 -0.006157 0.024316 -v -0.024368 -0.006858 0.021169 -v -0.037439 -0.006679 0.021177 -v -0.029235 -0.006511 0.015954 -v 0.030065 -0.005018 0.012108 -v -0.022835 -0.006540 0.004277 -v -0.009516 -0.004880 0.003031 -v -0.028068 -0.006620 0.000391 -v -0.023720 -0.006551 0.001487 -v -0.022326 -0.006463 -0.000555 -v -0.026388 -0.006438 -0.000960 -v -0.028432 -0.006293 -0.000890 -v -0.025089 -0.006688 -0.001590 -v 0.017587 -0.004636 -0.001032 -v -0.023187 -0.006476 -0.001830 -v -0.021852 -0.006619 -0.001263 -v 0.018285 -0.004625 -0.001960 -v -0.026831 -0.006416 -0.002782 -v -0.026883 -0.006253 -0.003875 -v -0.015470 -0.005530 -0.004355 -v -0.026507 -0.005610 -0.008828 -v 0.038100 -0.005413 -0.011917 -v -0.007716 -0.006164 -0.012089 -v -0.008810 -0.005828 -0.011981 -v -0.007216 -0.006098 -0.012169 -v -0.005542 -0.006218 -0.013886 -v 0.001893 -0.005970 -0.019399 -v -0.021608 -0.005792 -0.021088 -v 0.004377 -0.005995 -0.024613 -v -0.027304 -0.005818 -0.023491 -v 0.007920 -0.005676 -0.025980 -v 0.005230 -0.005775 -0.024744 -v 0.006412 -0.006146 -0.026219 -v 0.007157 -0.006014 -0.026553 -v -0.024789 -0.005232 -0.025408 -v -0.022795 -0.005010 -0.026560 -v 0.009020 -0.005734 -0.027377 -v 0.011166 -0.005881 -0.027793 -v 0.028786 -0.005795 -0.027074 -v -0.023150 -0.005108 -0.027155 -v -0.024423 -0.005307 -0.027056 -v 0.010345 -0.005971 -0.028039 -v 0.012931 -0.006122 -0.028929 -v 0.025968 -0.005777 -0.028427 -v -0.030463 -0.005780 -0.029005 -v 0.020673 -0.006078 -0.029771 -v -0.030159 -0.005584 -0.035364 -v -0.010535 -0.005676 -0.036152 -v -0.008902 -0.004798 -0.037299 -v -0.004883 -0.005427 -0.039844 -v -0.012523 -0.005824 -0.042230 -v -0.014470 -0.005702 -0.044461 -v -0.010538 -0.005718 -0.045716 -v -0.012689 -0.005971 -0.046405 -v -0.006887 -0.006004 0.024323 -v 0.024856 -0.005839 0.024140 -v 0.027099 -0.005650 0.023300 -v -0.037664 -0.006529 0.021873 -v -0.037760 -0.006766 0.021549 -v -0.027022 -0.006445 0.020726 -v 0.024344 0.009826 0.024669 -v -0.036254 -0.005972 0.019071 -v -0.033061 -0.005928 0.017512 -v 0.034681 -0.006042 0.017218 -v -0.031164 -0.006150 0.014458 -v -0.032064 -0.006259 0.010117 -v -0.033461 -0.005865 0.007898 -v -0.018854 -0.005387 0.006270 -v -0.025057 -0.006456 0.001974 -v -0.030948 -0.005991 0.001472 -v -0.019002 -0.006079 -0.001792 -v -0.017854 -0.005869 -0.002342 -v 0.014114 -0.005013 -0.007108 -v 0.014956 -0.005690 -0.008329 -v -0.003489 -0.005254 -0.008887 -v 0.015054 -0.005630 -0.008530 -v -0.010201 -0.005927 -0.010750 -v -0.006453 -0.005822 -0.013153 -v -0.004885 -0.005957 -0.015692 -v 0.036954 -0.005880 -0.016849 -v 0.000891 -0.005846 -0.020120 -v 0.036179 -0.005748 -0.018902 -v -0.024955 -0.006137 -0.018539 -v -0.004627 -0.005819 -0.019508 -v 0.035197 -0.005636 -0.022155 -v 0.033799 -0.005334 -0.024483 -v -0.004981 -0.005757 -0.025077 -v 0.031302 -0.005707 -0.026445 -v 0.028914 -0.005630 -0.027921 -v 0.026334 -0.005557 -0.028466 -v -0.030147 -0.005966 -0.028068 -v 0.014081 -0.005948 -0.029578 -v 0.018577 -0.005784 -0.029174 -v -0.010197 -0.005542 -0.035701 -v -0.015879 -0.005558 -0.041057 -v -0.008233 -0.004994 -0.041658 -v -0.004806 -0.005549 -0.041958 -v -0.014156 -0.005410 -0.045255 -v -0.012571 -0.005451 -0.046651 -v 0.038622 -0.005466 0.024157 -v -0.037920 -0.006213 0.020903 -v 0.013252 -0.006033 0.018829 -v -0.031170 -0.005690 0.016560 -v -0.033375 -0.005842 0.009002 -v -0.033298 -0.005724 0.005733 -v -0.030974 -0.006277 0.003180 -v -0.031430 -0.005339 -0.000356 -v -0.021999 -0.005924 0.000947 -v 0.010957 -0.005267 -0.000435 -v 0.012201 -0.005389 -0.004230 -v -0.016512 -0.005286 -0.003175 -v -0.007741 -0.004823 -0.010591 -v -0.005259 -0.005705 -0.014136 -v -0.000329 -0.005730 -0.015945 -v -0.004521 -0.005608 -0.017978 -v -0.026185 -0.005736 -0.018240 -v -0.027897 -0.005177 -0.018273 -v -0.026058 -0.005357 -0.018876 -v -0.024994 -0.005856 -0.019319 -v -0.023269 -0.005194 -0.020830 -v -0.020893 -0.005419 -0.021139 -v 0.033810 -0.005236 -0.023188 -v 0.002841 -0.005440 -0.023350 -v 0.003818 -0.005626 -0.024600 -v 0.032036 -0.005068 -0.025567 -v 0.005890 -0.005568 -0.025952 -v -0.023198 -0.005108 -0.026049 -v 0.006770 -0.005681 -0.026818 -v -0.026899 -0.004649 -0.026566 -v -0.033381 -0.004668 -0.028762 -v 0.014616 -0.005639 -0.029132 -v 0.014286 -0.005642 -0.029492 -v 0.017781 -0.005771 -0.029858 -v 0.021009 -0.004975 -0.029804 -v 0.021315 -0.005353 -0.029917 -v -0.007917 -0.004274 -0.032421 -v -0.029379 -0.004199 -0.033704 -v -0.030201 -0.005238 -0.035814 -v -0.011281 -0.004409 -0.041801 -v -0.011772 -0.005065 -0.046936 -v -0.010921 -0.005372 -0.047158 -v -0.020513 -0.006033 0.023957 -v -0.005072 -0.005799 0.023496 -v 0.027502 -0.005704 0.022675 -v -0.024650 -0.006305 0.021957 -v -0.038386 -0.006242 0.021913 -v -0.029707 -0.004755 0.021493 -v 0.036958 -0.005648 0.020106 -v 0.031499 -0.005578 0.013376 -v -0.016433 -0.004939 0.006843 -v 0.013717 -0.004775 0.005185 -v -0.010869 -0.005337 0.004465 -v -0.021358 -0.005783 0.004009 -v 0.031722 -0.003830 0.003604 -v -0.020816 -0.005517 0.002163 -v 0.010249 -0.005460 0.000750 -v 0.009816 -0.005159 0.002245 -v 0.035755 -0.004806 -0.002818 -v -0.029035 -0.005881 -0.003043 -v 0.011885 -0.004848 -0.003040 -v -0.005137 -0.004612 -0.005748 -v 0.012610 -0.005540 -0.004836 -v -0.028812 -0.005604 -0.004578 -v -0.027928 -0.005632 -0.006300 -v -0.002722 -0.005398 -0.010925 -v 0.021255 -0.004872 -0.008528 -v -0.010385 -0.005004 -0.009217 -v 0.037719 -0.005621 -0.014474 -v -0.001397 -0.005572 -0.016101 -v -0.005118 -0.005671 -0.016480 -v 0.037895 -0.005454 -0.017749 -v -0.009553 -0.003731 -0.008005 -v -0.029103 -0.005175 -0.019517 -v -0.020018 -0.005172 -0.019530 -v 0.001831 -0.005526 -0.020841 -v 0.035717 -0.005147 -0.021005 -v 0.002157 -0.005513 -0.021521 -v -0.028753 -0.004725 -0.022235 -v -0.005285 -0.004755 -0.023116 -v 0.002563 -0.005366 -0.022778 -v 0.032457 -0.005028 -0.025163 -v 0.006470 -0.005295 -0.026682 -v 0.032121 -0.005198 -0.026222 -v -0.029267 -0.004973 -0.026683 -v -0.005711 -0.005029 -0.026570 -v 0.029628 -0.005357 -0.027226 -v -0.030581 -0.004992 -0.027537 -v 0.010622 -0.005481 -0.028380 -v 0.028034 -0.005683 -0.028289 -v -0.005604 -0.005570 -0.029246 -v 0.022210 -0.005246 -0.029055 -v 0.025619 -0.005229 -0.029365 -v 0.018362 -0.005472 -0.029105 -v 0.013616 -0.005256 -0.029452 -v 0.017055 -0.005263 -0.029827 -v -0.029110 -0.004883 -0.030488 -v -0.029124 -0.004880 -0.035945 -v -0.010198 -0.005041 -0.036209 -v -0.026308 -0.005209 -0.036551 -v -0.017492 -0.005085 -0.038546 -v -0.011987 -0.004774 -0.042242 -v -0.011527 -0.005044 -0.044694 -v -0.010596 -0.005321 -0.046772 -v -0.015185 -0.005460 0.024639 -v 0.016737 -0.004468 0.023769 -v -0.021406 -0.004464 0.024508 -v -0.037947 -0.005864 0.022359 -v -0.036725 -0.005777 0.021989 -v -0.035145 -0.005726 0.021872 -v 0.029500 -0.005043 0.022372 -v -0.032564 -0.005953 0.012687 -v 0.006127 -0.005931 0.009469 -v -0.020288 -0.005692 0.000229 -v 0.011340 -0.004950 -0.001822 -v 0.015094 -0.005481 -0.008485 -v 0.017412 -0.005313 -0.010182 -v -0.006180 -0.005397 -0.013006 -v -0.026904 -0.005305 -0.018302 -v 0.000329 -0.005137 -0.020611 -v 0.002386 -0.005249 -0.022394 -v 0.034438 -0.004899 -0.024102 -v 0.004263 -0.005269 -0.024718 -v 0.005135 -0.005398 -0.024835 -v 0.007792 -0.005469 -0.026118 -v 0.011385 -0.005402 -0.027925 -v -0.006240 -0.005196 -0.028047 -v 0.010223 -0.005113 -0.028266 -v -0.006419 -0.004454 -0.003346 -v 0.013171 -0.004878 -0.028927 -v 0.015156 -0.005419 -0.028925 -v 0.017935 -0.005371 -0.029017 -v -0.028106 -0.005209 -0.036475 -v -0.027194 -0.005047 -0.036669 -v -0.019354 -0.004343 -0.038750 -v -0.013529 -0.004355 -0.045616 -v -0.019060 -0.005374 0.024363 -v -0.024642 -0.005271 0.023198 -v 0.014313 -0.004916 0.021213 -v 0.038198 -0.004554 0.020820 -v -0.002465 -0.006822 0.020324 -v -0.037416 -0.005633 0.020273 -v 0.000311 -0.004330 0.019306 -v 0.004845 -0.004949 0.012746 -v -0.033533 -0.005513 0.010777 -v -0.005822 -0.004973 -0.003453 -v -0.029848 -0.004958 -0.005404 -v -0.013057 -0.004704 -0.006199 -v -0.004451 -0.004802 -0.007319 -v 0.021186 -0.004527 -0.007789 -v 0.014946 -0.005480 -0.008418 -v 0.014982 -0.005535 -0.008440 -v 0.015013 -0.005470 -0.008461 -v 0.038103 -0.004886 -0.009873 -v -0.006748 -0.005249 -0.011120 -v -0.002416 -0.004884 -0.015010 -v -0.023874 -0.005186 -0.013554 -v -0.005568 -0.004916 -0.018404 -v 0.038562 -0.004914 -0.017444 -v 0.037021 -0.004861 -0.019023 -v -0.024907 -0.004941 -0.020560 -v 0.001148 -0.005379 -0.021038 -v -0.021830 -0.004292 -0.021336 -v 0.036322 -0.004415 -0.021799 -v 0.034737 -0.004735 -0.023197 -v -0.027566 -0.004433 -0.024487 -v 0.009500 -0.004753 -0.027639 -v 0.011028 -0.005281 -0.027844 -v 0.021802 -0.005207 -0.029098 -v -0.029879 -0.005056 -0.029670 -v -0.006591 -0.004801 -0.029422 -v -0.008240 -0.004199 -0.033088 -v -0.028576 -0.004515 -0.033148 -v -0.030685 -0.004813 -0.035217 -v -0.010043 -0.004870 -0.035706 -v -0.009978 -0.004722 -0.036758 -v -0.022650 -0.004664 -0.038038 -v -0.017364 -0.004647 -0.039193 -v -0.006903 -0.004708 -0.039450 -v -0.012149 -0.004682 -0.043049 -v -0.015309 -0.004903 -0.043437 -v -0.011184 -0.004942 -0.046654 -v 0.024776 0.010113 0.024669 -v -0.038447 -0.005598 0.021897 -v -0.026149 -0.004730 0.022710 -v -0.033695 -0.005102 0.017732 -v 0.034775 -0.005276 0.016650 -v -0.007636 -0.004002 -0.000778 -v -0.030026 -0.005424 -0.003021 -v 0.020572 -0.004514 -0.006121 -v 0.014930 -0.005228 -0.008585 -v 0.037631 -0.005167 -0.008997 -v 0.015239 -0.004828 -0.008382 -v 0.015889 -0.005049 -0.009329 -v -0.027404 -0.004934 -0.009049 -v 0.020750 -0.004607 -0.009790 -v -0.008692 -0.005024 -0.009292 -v 0.018136 -0.004448 -0.010494 -v -0.008218 -0.005072 -0.010597 -v 0.040566 -0.004855 -0.011958 -v 0.041936 -0.005531 -0.012332 -v 0.043263 -0.005330 -0.011931 -v 0.041075 -0.005248 -0.013160 -v 0.044281 -0.005216 -0.015177 -v 0.041516 -0.005172 -0.015573 -v -0.001615 -0.005126 -0.017306 -v -0.000611 -0.005122 -0.017885 -v -0.021774 -0.004100 -0.017268 -v -0.007429 -0.005455 0.024669 -v 0.001753 -0.004976 -0.020996 -v 0.002179 -0.005135 -0.021621 -v 0.003257 -0.005000 -0.023526 -v 0.006202 -0.004597 -0.025498 -v 0.007527 -0.005489 -0.026341 -v 0.007542 -0.004685 -0.024949 -v 0.006863 -0.005156 -0.026651 -v 0.031800 -0.005126 -0.026730 -v 0.029472 -0.004955 -0.027330 -v 0.029099 -0.004956 -0.028182 -v 0.028209 -0.004735 -0.028400 -v 0.016976 -0.004897 -0.029537 -v -0.030814 -0.004688 -0.030209 -v 0.021367 -0.004869 -0.028676 -v -0.017936 -0.004487 -0.038726 -v -0.022458 -0.003014 0.024669 -v -0.007191 -0.004434 -0.040359 -v 0.015239 -0.004648 0.022331 -v 0.027689 -0.004918 0.023467 -v -0.033630 -0.005105 0.021787 -v -0.025681 -0.003553 -0.028200 -v -0.037405 -0.005405 0.020932 -v -0.036202 -0.005296 0.020038 -v -0.036146 -0.005448 0.019361 -v -0.034586 -0.004856 0.010142 -v -0.020091 -0.004823 0.003336 -v 0.011168 -0.004741 -0.001351 -v -0.028618 -0.004116 -0.008388 -v 0.019628 -0.004149 -0.010339 -v -0.006515 -0.004895 -0.011665 -v -0.008446 0.013152 0.024665 -v 0.044674 -0.005114 -0.013223 -v 0.039324 -0.004736 -0.011378 -v -0.003150 -0.005041 -0.013989 -v 0.039383 -0.004417 -0.013132 -v 0.041100 -0.005155 -0.014093 -v -0.005665 -0.005049 -0.014732 -v 0.039185 -0.004939 -0.014537 -v -0.006495 -0.004247 -0.016491 -v 0.039139 -0.004404 -0.016462 -v -0.029644 -0.004670 -0.018825 -v -0.000520 -0.004944 -0.018266 -v 0.036956 -0.005009 -0.020130 -v -0.024801 -0.004092 -0.021321 -v 0.035995 -0.004481 -0.022366 -v 0.004695 -0.004852 -0.023551 -v 0.014036 -0.004612 -0.027232 -v 0.013764 -0.005000 -0.029099 -v 0.017723 -0.004476 -0.027579 -v 0.017564 -0.003773 0.024270 -v 0.020315 -0.004638 -0.029223 -v -0.029582 -0.003945 -0.030795 -v -0.028666 -0.004204 -0.031917 -v -0.007527 -0.004542 -0.041201 -v -0.009927 -0.004281 -0.041442 -v -0.011452 -0.004754 -0.045214 -v -0.004913 -0.004091 0.024229 -v -0.022933 -0.004558 0.024257 -v -0.038017 -0.005330 0.022031 -v 0.030805 -0.004428 0.022752 -v -0.035489 -0.005245 0.021349 -v -0.035191 -0.005332 0.017710 -v 0.003620 -0.004427 0.014832 -v -0.034093 -0.004655 0.012808 -v 0.008452 -0.004394 0.005951 -v 0.009166 -0.005347 0.003503 -v -0.015778 -0.004308 -0.002972 -v 0.012370 -0.005035 -0.004265 -v 0.013333 -0.004668 -0.005951 -v -0.012007 -0.004518 -0.006861 -v 0.037693 -0.004367 -0.006872 -v 0.041624 -0.005002 -0.009610 -v 0.042628 -0.004601 -0.008783 -v 0.040605 -0.004786 -0.009523 -v -0.003639 -0.004721 -0.011896 -v 0.043808 -0.004802 -0.011104 -v -0.006079 -0.005152 -0.013284 -v -0.001335 -0.004671 -0.017728 -v -0.020990 -0.004359 -0.018732 -v -0.027805 -0.004781 -0.018269 -v -0.029160 -0.004399 -0.018121 -v -0.030693 -0.004019 -0.020190 -v 0.000985 -0.004697 -0.021017 -v 0.032229 -0.004725 -0.025333 -v 0.006754 -0.003802 -0.023707 -v 0.008696 -0.004578 -0.026428 -v 0.031689 -0.004599 -0.026830 -v -0.007425 -0.005452 0.024669 -v 0.010811 -0.004666 -0.026253 -v -0.022939 -0.004197 -0.027378 -v 0.026038 -0.004971 -0.028401 -v 0.016169 -0.004039 -0.027514 -v 0.023767 -0.004369 -0.028945 -v 0.024767 -0.004486 -0.029191 -v -0.009669 -0.004046 -0.034928 -v -0.028056 -0.004085 -0.036976 -v -0.014919 -0.003964 -0.043789 -v -0.012442 -0.004327 -0.045910 -v -0.030782 -0.004527 0.021484 -v -0.035528 -0.005055 0.020679 -v -0.033974 -0.005212 0.005955 -v -0.018694 -0.004591 0.005559 -v 0.030063 -0.003510 0.005781 -v -0.034111 -0.004269 0.001953 -v -0.018475 -0.004277 0.000740 -v -0.017079 -0.003902 -0.000705 -v -0.004603 -0.004744 -0.009708 -v -0.008056 -0.004501 -0.009794 -v -0.007039 -0.004710 -0.010897 -v -0.004235 -0.004146 -0.011059 -v -0.003607 -0.004589 -0.014028 -v 0.046457 -0.004461 -0.015609 -v -0.003050 -0.004704 -0.014799 -v 0.044123 -0.005098 -0.015953 -v 0.041343 -0.004368 -0.017582 -v -0.001893 -0.004482 -0.017269 -v 0.042363 -0.004386 -0.017386 -v -0.000723 -0.004667 -0.017883 -v 0.037665 -0.004192 -0.018689 -v -0.025920 -0.004449 -0.020294 -v -0.020402 -0.004120 -0.019670 -v 0.036417 -0.004346 -0.021014 -v 0.000537 -0.004544 -0.020495 -v 0.002957 -0.003822 -0.020634 -v -0.029090 -0.004526 -0.023191 -v -0.005784 -0.004362 -0.025958 -v 0.031902 -0.004436 -0.026443 -v -0.028780 -0.003984 -0.026622 -v 0.028728 -0.004526 -0.027138 -v 0.010016 -0.004667 -0.027709 -v -0.023892 -0.004512 -0.027867 -v -0.006871 -0.004051 -0.029182 -v 0.025019 -0.004459 -0.027813 -v 0.019685 -0.003765 -0.027429 -v 0.023258 -0.003828 -0.027499 -v -0.033114 -0.003963 -0.030069 -v -0.008935 -0.003924 -0.038416 -v -0.035454 -0.004891 0.018542 -v -0.034112 -0.004734 0.018396 -v -0.033188 -0.004762 0.017527 -v 0.010336 -0.003991 0.000645 -v -0.031192 -0.003793 -0.005039 -v 0.012474 -0.004561 -0.004769 -v -0.005889 -0.003959 -0.004647 -v -0.013896 -0.003950 -0.004470 -v -0.010505 -0.004327 -0.007120 -v -0.009589 -0.004300 -0.008477 -v 0.039890 -0.004703 -0.011139 -v 0.039805 -0.004164 -0.014634 -v 0.040057 -0.004109 -0.013608 -v 0.042785 -0.003990 -0.018607 -v -0.030183 -0.003971 -0.018256 -v 0.037740 -0.004160 -0.019757 -v 0.003477 -0.004426 -0.023111 -v 0.004933 -0.004096 -0.022118 -v 0.006230 -0.003609 -0.022996 -v 0.034477 -0.004390 -0.024420 -v 0.031689 -0.004342 -0.025421 -v -0.031441 -0.003953 -0.026924 -v 0.012926 -0.004225 -0.027013 -v -0.023193 -0.003871 -0.028056 -v 0.027782 -0.004092 -0.028027 -v -0.034915 -0.004083 -0.029654 -v -0.007274 -0.004755 -0.030818 -v -0.010724 -0.003772 -0.036270 -v -0.025978 -0.003953 -0.037095 -v -0.012125 -0.003947 -0.042311 -v -0.012099 -0.004142 -0.044329 -v 0.028373 -0.004173 0.023765 -v -0.028843 -0.004515 0.021756 -v -0.034466 -0.004527 0.020431 -v -0.033038 -0.004483 0.016806 -v -0.018852 -0.004009 0.004005 -v -0.032066 -0.003359 -0.004342 -v -0.005614 -0.003828 -0.008771 -v -0.008463 -0.004301 -0.008804 -v 0.039348 -0.003856 -0.007798 -v -0.004957 -0.004183 -0.010567 -v 0.043890 -0.004162 -0.010115 -v -0.006846 -0.004154 -0.012874 -v -0.003902 -0.004121 -0.013085 -v -0.002500 -0.004495 -0.015269 -v 0.039736 -0.003968 -0.015655 -v 0.039852 -0.004034 -0.016136 -v -0.000695 -0.004235 -0.017090 -v 0.001838 -0.004014 -0.019364 -v 0.034494 -0.004159 -0.023169 -v 0.009104 -0.003593 -0.024928 -v 0.009502 -0.004008 -0.025911 -v 0.021006 -0.004256 -0.027620 -v 0.024558 -0.003962 -0.027116 -v -0.010476 -0.003848 -0.036826 -v -0.024124 -0.004414 0.023943 -v -0.032303 -0.004260 0.021021 -v -0.033510 -0.004474 0.018233 -v -0.032334 -0.004488 -0.001942 -v 0.019721 -0.004179 -0.004505 -v 0.042924 -0.003893 -0.007433 -v 0.039029 -0.004253 -0.010004 -v 0.039749 -0.003795 -0.016728 -v 0.040276 -0.004138 -0.017189 -v -0.028944 -0.004077 -0.018201 -v 0.037702 -0.003719 -0.019936 -v 0.036247 -0.003946 -0.020951 -v 0.003988 -0.003749 -0.021428 -v 0.034238 -0.003921 -0.024303 -v 0.033914 -0.003908 -0.024639 -v 0.027611 -0.003943 -0.026220 -v 0.030565 -0.004042 -0.026686 -v -0.010913 -0.003376 -0.041053 -v -0.033048 -0.004244 0.020410 -v -0.033251 -0.004401 0.017523 -v 0.011727 -0.003692 -0.003017 -v -0.012142 -0.003772 -0.005730 -v -0.006128 -0.004005 -0.007482 -v -0.008268 -0.003858 -0.008976 -v -0.002550 -0.004212 -0.014953 -v -0.001756 -0.003851 -0.016370 -v 0.009928 -0.003640 -0.025369 -v 0.012881 -0.003739 -0.026553 -v -0.031758 -0.003939 0.020998 -v -0.033678 -0.004334 0.019522 -v -0.010324 -0.003682 -0.006508 -v -0.003470 -0.004093 -0.014455 -v 0.039265 -0.003779 -0.016713 -v 0.038995 -0.003851 -0.017380 -v 0.026463 -0.003641 -0.026939 -v -0.025271 -0.003676 -0.028363 -v -0.025269 -0.003626 -0.028370 -v -0.025349 -0.003555 -0.028411 -vn -0.6148 0.7877 -0.0387 -vn -0.6149 0.7877 -0.0385 -vn -0.5114 -0.7878 -0.3432 -vn -0.5113 -0.7879 -0.3431 -vn -0.5111 -0.7880 -0.3433 -vn 0.1101 -0.9499 0.2924 -vn 0.1107 -0.9502 0.2913 -vn 0.1105 -0.9501 0.2916 -vn -0.6327 0.7089 -0.3118 -vn -0.6326 0.7089 -0.3119 -vn -0.6327 0.7089 -0.3116 -vn -0.1841 -0.9256 -0.3308 -vn -0.1841 -0.9256 -0.3307 -vn -0.1843 -0.9257 -0.3303 -vn 0.1375 -0.9755 -0.1717 -vn 0.1380 -0.9755 -0.1716 -vn 0.1377 -0.9755 -0.1717 -vn -0.7205 0.6812 0.1301 -vn -0.7205 0.6811 0.1301 -vn -0.7204 0.6812 0.1301 -vn -0.0031 -0.9974 -0.0722 -vn -0.0035 -0.9974 -0.0722 -vn -0.0030 -0.9974 -0.0721 -vn -0.1455 0.7981 0.5847 -vn -0.1441 0.7989 0.5839 -vn -0.1463 0.7980 0.5847 -vn -0.0039 -0.9975 -0.0701 -vn 0.7899 0.5665 0.2349 -vn 0.7898 0.5666 0.2349 -vn 0.7897 0.5668 0.2348 -vn 0.2872 -0.7975 0.5306 -vn 0.2874 -0.7975 0.5305 -vn 0.3200 0.9409 -0.1106 -vn 0.3197 0.9410 -0.1108 -vn 0.3205 0.9408 -0.1104 -vn 0.6292 0.2666 -0.7301 -vn 0.6295 0.2665 -0.7299 -vn 0.6288 0.2666 -0.7304 -vn 0.5066 -0.4359 -0.7439 -vn 0.5068 -0.4359 -0.7437 -vn 0.5061 -0.4358 -0.7443 -vn -0.4917 -0.7809 -0.3852 -vn -0.4916 -0.7810 -0.3852 -vn -0.4924 -0.7807 -0.3848 -vn 0.0016 -0.3947 -0.9188 -vn 0.0013 -0.3945 -0.9189 -vn 0.0014 -0.3945 -0.9189 -vn -0.6755 -0.1338 -0.7251 -vn -0.6750 -0.1334 -0.7256 -vn -0.6752 -0.1335 -0.7254 -vn -0.2194 -0.9241 -0.3129 -vn -0.2192 -0.9241 -0.3129 -vn -0.3463 0.9318 0.1092 -vn -0.3464 0.9317 0.1091 -vn -0.3462 0.9318 0.1092 -vn 0.0028 -0.4251 0.9051 -vn 0.0015 -0.4253 0.9050 -vn 0.0017 -0.4252 0.9051 -vn -0.6404 -0.4860 0.5948 -vn -0.6403 -0.4859 0.5949 -vn -0.6403 -0.4858 0.5950 -vn 0.1134 -0.4688 0.8760 -vn 0.1135 -0.4690 0.8759 -vn 0.1131 -0.4688 0.8760 -vn -0.1534 -0.9218 -0.3559 -vn -0.1538 -0.9212 -0.3574 -vn -0.1532 -0.9220 -0.3556 -vn -0.7058 -0.6586 -0.2609 -vn -0.3923 -0.4598 -0.7967 -vn -0.3925 -0.4597 -0.7966 -vn 0.4732 -0.7142 0.5157 -vn -0.5232 0.6208 -0.5838 -vn -0.5232 0.6210 -0.5836 -vn 0.3941 -0.7378 0.5481 -vn -0.5351 -0.7764 -0.3330 -vn -0.5349 -0.7766 -0.3327 -vn -0.5347 -0.7769 -0.3325 -vn -0.3306 -0.7281 -0.6004 -vn -0.3305 -0.7281 -0.6005 -vn 0.5499 -0.8347 0.0295 -vn 0.5500 -0.8347 0.0293 -vn 0.5499 -0.8347 0.0294 -vn 0.5124 -0.8553 0.0762 -vn 0.5126 -0.8551 0.0776 -vn 0.5127 -0.8552 0.0764 -vn -0.5736 -0.6930 -0.4367 -vn -0.5737 -0.6929 -0.4367 -vn -0.5731 -0.6933 -0.4369 -vn -0.9724 -0.2102 -0.1014 -vn -0.9725 -0.2098 -0.1014 -vn -0.9724 -0.2103 -0.1014 -vn 0.4712 0.8808 -0.0466 -vn 0.4762 -0.7108 0.5178 -vn 0.1032 0.8144 -0.5710 -vn -0.6769 -0.4473 -0.5846 -vn -0.6772 -0.4470 -0.5845 -vn -0.6770 -0.4472 -0.5846 -vn 0.3167 -0.7844 0.5334 -vn 0.3164 -0.7848 0.5329 -vn 0.7353 -0.4623 0.4956 -vn 0.7354 -0.4625 0.4953 -vn 0.1261 0.0365 -0.9913 -vn 0.1258 0.0366 -0.9914 -vn 0.1259 0.0365 -0.9914 -vn -0.3783 0.1763 0.9088 -vn -0.3782 0.1764 0.9088 -vn -0.3796 -0.8158 -0.4364 -vn -0.3797 -0.8157 -0.4364 -vn -0.3800 -0.8155 -0.4366 -vn -0.6288 -0.7770 0.0288 -vn -0.6284 -0.7773 0.0304 -vn -0.6285 -0.7773 0.0294 -vn 0.5194 -0.5786 -0.6288 -vn 0.5198 -0.5792 -0.6279 -vn 0.5198 -0.5791 -0.6280 -vn 0.4572 -0.5884 -0.6669 -vn 0.4567 -0.5885 -0.6671 -vn 0.4571 -0.5885 -0.6669 -vn -0.8786 0.0406 0.4759 -vn -0.8786 0.0406 0.4758 -vn -0.8787 0.0405 0.4756 -vn -0.8480 0.4815 -0.2212 -vn -0.7972 0.4665 -0.3833 -vn -0.7972 0.4661 -0.3837 -vn -0.5311 0.8262 0.1880 -vn -0.5310 0.8261 0.1887 -vn -0.5312 0.8259 0.1892 -vn 0.6213 -0.7728 0.1292 -vn 0.6215 -0.7727 0.1293 -vn -0.7019 -0.4568 -0.5466 -vn -0.7018 -0.4569 -0.5465 -vn -0.7021 -0.4566 -0.5464 -vn 0.6294 -0.6997 0.3380 -vn 0.6295 -0.6997 0.3379 -vn 0.6295 -0.6996 0.3380 -vn 0.8740 -0.3557 0.3312 -vn -0.9863 -0.1201 0.1135 -vn -0.5117 0.3128 -0.8002 -vn -0.5118 0.3131 -0.8000 -vn -0.5116 0.3126 -0.8004 -vn 0.6185 -0.7028 0.3515 -vn 0.6190 -0.7024 0.3515 -vn 0.6189 -0.7025 0.3514 -vn 0.4122 -0.1235 0.9027 -vn 0.4126 -0.1235 0.9025 -vn 0.4124 -0.1235 0.9026 -vn 0.6370 0.6377 0.4332 -vn 0.6371 0.6372 0.4337 -vn 0.6371 0.6380 0.4325 -vn -0.9397 0.0179 -0.3415 -vn -0.9398 0.0174 -0.3414 -vn -0.9397 0.0165 -0.3416 -vn -0.7969 -0.3497 -0.4926 -vn -0.7970 -0.3497 -0.4924 -vn -0.7969 -0.3498 -0.4926 -vn -0.5949 -0.5025 -0.6273 -vn -0.5947 -0.5026 -0.6275 -vn 0.8097 -0.4933 -0.3180 -vn 0.8099 -0.4931 -0.3176 -vn 0.8088 -0.4943 -0.3186 -vn -0.8539 0.2129 0.4748 -vn -0.6256 0.7797 -0.0249 -vn -0.1146 0.6157 0.7796 -vn -0.1147 0.6163 0.7791 -vn -0.1143 0.6152 0.7800 -vn 0.8432 -0.5118 0.1644 -vn 0.8433 -0.5117 0.1645 -vn 0.4922 0.2864 0.8220 -vn 0.4922 0.2865 0.8220 -vn -0.0254 0.3236 -0.9458 -vn -0.0255 0.3238 -0.9458 -vn -0.0254 0.3238 -0.9458 -vn -0.0255 0.9602 0.2780 -vn -0.0258 0.9601 0.2783 -vn -0.0250 0.9603 0.2777 -vn 0.7605 -0.6458 0.0678 -vn 0.7605 -0.6458 0.0672 -vn 0.7604 -0.6458 0.0685 -vn -0.9621 0.2392 -0.1309 -vn -0.9621 0.2393 -0.1306 -vn -0.9621 0.2390 -0.1315 -vn -0.4882 0.8636 0.1257 -vn -0.4879 0.8637 0.1264 -vn -0.4880 0.8637 0.1260 -vn -0.9266 0.2422 0.2876 -vn -0.9266 0.2422 0.2875 -vn 0.3190 0.8754 -0.3633 -vn 0.3190 0.8753 -0.3635 -vn 0.6807 -0.4562 -0.5732 -vn -0.0359 0.7357 0.6763 -vn -0.0351 0.7350 0.6771 -vn -0.0353 0.7353 0.6768 -vn 0.4109 -0.1349 0.9016 -vn 0.4116 -0.1351 0.9013 -vn 0.4115 -0.1351 0.9013 -vn 0.8152 -0.5182 0.2587 -vn 0.8153 -0.5181 0.2586 -vn 0.8152 -0.5182 0.2588 -vn -0.9727 -0.2320 0.0050 -vn -0.9726 -0.2326 0.0037 -vn -0.9729 -0.2310 0.0059 -vn -0.8540 0.1801 -0.4881 -vn -0.8542 0.1800 -0.4877 -vn -0.7234 -0.5639 -0.3985 -vn -0.7222 -0.5644 -0.3999 -vn -0.7229 -0.5640 -0.3992 -vn 0.2733 0.7018 -0.6578 -vn 0.2718 0.7024 -0.6579 -vn 0.2708 0.7023 -0.6583 -vn 0.1608 -0.9776 0.1355 -vn 0.1609 -0.9777 0.1352 -vn 0.1607 -0.9776 0.1356 -vn 0.1451 -0.9883 -0.0474 -vn 0.1453 -0.9883 -0.0473 -vn 0.1453 -0.9882 -0.0476 -vn 0.4910 0.3090 -0.8145 -vn -0.2093 0.9760 0.0598 -vn -0.2094 0.9760 0.0599 -vn -0.2095 0.9760 0.0602 -vn 0.2063 -0.3028 0.9305 -vn 0.2065 -0.3028 0.9304 -vn 0.2062 -0.3028 0.9305 -vn -0.0990 0.0772 -0.9921 -vn -0.0988 0.0774 -0.9921 -vn -0.0994 0.0776 -0.9920 -vn 0.8175 -0.1281 -0.5614 -vn 0.8174 -0.1282 -0.5617 -vn 0.8175 -0.1278 -0.5616 -vn -0.3289 0.8564 -0.3980 -vn -0.3290 0.8564 -0.3979 -vn 0.8457 -0.4823 -0.2283 -vn 0.8457 -0.4824 -0.2282 -vn -0.6968 -0.5265 -0.4871 -vn -0.6969 -0.5264 -0.4871 -vn -0.6970 -0.5264 -0.4869 -vn -0.2660 -0.0169 0.9638 -vn -0.2658 -0.0171 0.9639 -vn 0.0063 0.0088 0.9999 -vn 0.0060 0.0088 0.9999 -vn 0.0067 0.0087 0.9999 -vn 0.2759 -0.3803 -0.8827 -vn 0.2763 -0.3799 -0.8828 -vn 0.2772 -0.3801 -0.8824 -vn -0.5016 -0.5458 -0.6712 -vn -0.5015 -0.5457 -0.6713 -vn -0.0273 0.7310 -0.6819 -vn -0.0270 0.7312 -0.6816 -vn -0.0282 0.7306 -0.6822 -vn 0.2065 0.8768 0.4343 -vn 0.2063 0.8769 0.4342 -vn 0.2061 0.8770 0.4340 -vn 0.3059 0.2116 0.9283 -vn 0.3057 0.2117 0.9283 -vn 0.3057 0.2114 0.9284 -vn -0.3099 -0.9415 0.1325 -vn -0.3093 -0.9418 0.1319 -vn -0.3094 -0.9417 0.1322 -vn 0.1875 -0.9655 0.1806 -vn 0.1873 -0.9655 0.1807 -vn 0.1880 -0.9654 0.1805 -vn 0.2752 -0.9442 0.1811 -vn 0.2755 -0.9443 0.1800 -vn 0.2753 -0.9443 0.1804 -vn -0.7823 0.4985 -0.3736 -vn -0.7823 0.4984 -0.3738 -vn -0.7821 0.4981 -0.3744 -vn -0.3719 -0.9087 -0.1896 -vn -0.3718 -0.9088 -0.1894 -vn 0.5363 -0.7359 -0.4133 -vn 0.5363 -0.7361 -0.4130 -vn -0.0172 0.7997 -0.6002 -vn -0.0174 0.7996 -0.6003 -vn -0.0178 0.7997 -0.6002 -vn -0.0402 0.7349 0.6769 -vn -0.0404 0.7347 0.6772 -vn -0.5233 0.8022 0.2872 -vn -0.5235 0.8022 0.2872 -vn -0.5539 0.6466 -0.5245 -vn -0.5541 0.6464 -0.5245 -vn -0.5540 0.6465 -0.5245 -vn -0.1355 0.8863 0.4429 -vn -0.1355 0.8863 0.4428 -vn -0.8824 0.3459 -0.3190 -vn -0.8821 0.3452 -0.3206 -vn -0.8817 0.3451 -0.3216 -vn 0.8102 0.3631 0.4602 -vn 0.8100 0.3630 0.4606 -vn -0.4461 -0.4541 0.7712 -vn -0.4460 -0.4538 0.7715 -vn -0.4459 -0.4540 0.7714 -vn -0.6940 -0.5290 -0.4884 -vn -0.6941 -0.5288 -0.4885 -vn 0.1568 0.8130 -0.5607 -vn 0.1570 0.8131 -0.5606 -vn 0.1569 0.8130 -0.5607 -vn -0.6393 0.1409 0.7560 -vn -0.6390 0.1419 0.7560 -vn -0.6384 0.1435 0.7562 -vn 0.0244 -0.7932 0.6085 -vn 0.0237 -0.7935 0.6081 -vn -0.2930 0.1892 0.9372 -vn -0.2928 0.1895 0.9372 -vn -0.1636 0.7915 0.5889 -vn -0.1634 0.7914 0.5890 -vn -0.1632 0.7913 0.5893 -vn -0.0821 -0.9512 0.2974 -vn 0.0049 -0.9997 0.0228 -vn 0.0053 -0.9997 0.0227 -vn 0.0057 -0.9997 0.0227 -vn -0.7331 0.6141 -0.2922 -vn -0.7331 0.6142 -0.2920 -vn -0.7333 0.6141 -0.2918 -vn 0.0312 0.6463 -0.7625 -vn 0.0309 0.6460 -0.7627 -vn -0.5010 -0.8646 0.0376 -vn -0.5011 -0.8646 0.0376 -vn -0.5548 -0.6840 -0.4737 -vn -0.5550 -0.6840 -0.4734 -vn -0.5547 -0.6839 -0.4740 -vn 0.4077 -0.5850 -0.7011 -vn 0.4078 -0.5850 -0.7010 -vn 0.2620 0.9325 -0.2487 -vn 0.2619 0.9325 -0.2485 -vn 0.0931 -0.2335 0.9679 -vn 0.0930 -0.2335 0.9679 -vn 0.0932 -0.2333 0.9679 -vn -0.0070 0.5304 0.8477 -vn -0.0071 0.5302 0.8478 -vn -0.0072 0.5304 0.8477 -vn 0.4151 -0.1832 0.8911 -vn 0.4143 -0.1819 0.8918 -vn 0.4149 -0.1827 0.8913 -vn -0.4991 0.7525 0.4297 -vn -0.4997 0.7520 0.4298 -vn -0.4998 0.7520 0.4298 -vn -0.0209 0.9856 -0.1677 -vn -0.0210 0.9856 -0.1678 -vn -0.0207 0.9856 -0.1678 -vn -0.9153 0.3673 -0.1650 -vn -0.9154 0.3672 -0.1649 -vn -0.9152 0.3675 -0.1653 -vn 0.9390 -0.3438 -0.0013 -vn 0.9389 -0.3443 -0.0015 -vn 0.6510 -0.3982 -0.6462 -vn -0.3525 -0.9280 -0.1206 -vn -0.3524 -0.9280 -0.1207 -vn -0.3526 -0.9280 -0.1204 -vn 0.3636 -0.3741 0.8531 -vn 0.3632 -0.3741 0.8533 -vn 0.3640 -0.3742 0.8529 -vn -0.0018 -0.9699 0.2436 -vn -0.0003 -0.9697 0.2442 -vn -0.0010 -0.9698 0.2438 -vn 0.7629 -0.4559 0.4584 -vn 0.7645 -0.4541 0.4575 -vn 0.7637 -0.4552 0.4577 -vn -0.0372 -0.9513 -0.3060 -vn -0.0372 -0.9512 -0.3063 -vn -0.0373 -0.9514 -0.3058 -vn -0.9579 0.2748 0.0831 -vn -0.9574 0.2764 0.0833 -vn -0.9577 0.2754 0.0832 -vn -0.6239 0.4297 0.6528 -vn -0.6235 0.4303 0.6528 -vn -0.8705 -0.4615 -0.1711 -vn -0.8707 -0.4613 -0.1708 -vn -0.8708 -0.4612 -0.1702 -vn -0.2735 -0.9284 -0.2515 -vn -0.2726 -0.9285 -0.2523 -vn -0.2740 -0.9286 -0.2501 -vn 0.0008 -0.8753 0.4836 -vn 0.0011 -0.8749 0.4842 -vn 0.0009 -0.8752 0.4837 -vn 0.5410 -0.8400 0.0414 -vn 0.5411 -0.8399 0.0415 -vn -0.3308 -0.8355 -0.4387 -vn -0.3306 -0.8356 -0.4387 -vn -0.0370 0.7900 0.6120 -vn -0.0355 0.7898 0.6123 -vn -0.0390 0.7895 0.6125 -vn 0.7325 -0.5809 -0.3550 -vn 0.7327 -0.5808 -0.3547 -vn -0.4943 -0.4756 -0.7276 -vn -0.4940 -0.4753 -0.7281 -vn -0.4937 -0.4750 -0.7284 -vn 0.0288 0.9271 0.3738 -vn 0.0290 0.9269 0.3741 -vn 0.0292 0.9268 0.3743 -vn -0.2417 0.3213 0.9156 -vn -0.2414 0.3213 0.9157 -vn -0.2415 0.3213 0.9157 -vn -0.6464 0.1588 -0.7463 -vn -0.6463 0.1589 -0.7464 -vn -0.6463 0.1588 -0.7464 -vn 0.6453 0.7566 -0.1053 -vn -0.1322 0.1219 -0.9837 -vn -0.9681 0.0088 -0.2504 -vn -0.9681 0.0088 -0.2505 -vn -0.8558 0.4459 -0.2623 -vn -0.8556 0.4461 -0.2625 -vn -0.8560 0.4457 -0.2621 -vn 0.9256 -0.2688 0.2666 -vn 0.9253 -0.2689 0.2673 -vn 0.9254 -0.2690 0.2671 -vn 0.0707 0.8680 -0.4915 -vn 0.0705 0.8681 -0.4913 -vn -0.1591 -0.8201 0.5496 -vn -0.1592 -0.8202 0.5495 -vn -0.1590 -0.8201 0.5497 -vn 0.1329 -0.8162 0.5623 -vn 0.1331 -0.8162 0.5623 -vn 0.1333 -0.8160 0.5624 -vn 0.9458 0.3102 0.0961 -vn 0.9458 0.3103 0.0962 -vn 0.9458 0.3102 0.0965 -vn 0.0527 -0.9895 -0.1348 -vn 0.0529 -0.9895 -0.1348 -vn -0.4448 -0.8843 -0.1418 -vn -0.4444 -0.8845 -0.1422 -vn -0.4449 -0.8843 -0.1417 -vn -0.9230 0.3846 -0.0101 -vn -0.9234 0.3836 -0.0112 -vn -0.9239 0.3824 -0.0114 -vn -0.0166 -0.2269 -0.9738 -vn -0.0165 -0.2263 -0.9739 -vn -0.4536 -0.2627 -0.8516 -vn -0.4539 -0.2627 -0.8515 -vn 0.3242 -0.2514 0.9120 -vn 0.3249 -0.2510 0.9118 -vn 0.3245 -0.2511 0.9119 -vn -0.0507 0.7475 -0.6623 -vn 0.2892 -0.7292 -0.6202 -vn 0.2890 -0.7293 -0.6202 -vn 0.2894 -0.7291 -0.6202 -vn -0.8272 0.2095 -0.5215 -vn -0.8274 0.2093 -0.5211 -vn -0.8270 0.2095 -0.5218 -vn 0.2315 -0.9701 0.0726 -vn 0.2315 -0.9701 0.0725 -vn 0.2318 -0.9701 0.0720 -vn 0.7457 -0.6288 -0.2203 -vn 0.7457 -0.6288 -0.2204 -vn 0.7780 0.2519 0.5756 -vn 0.7780 0.2518 0.5756 -vn 0.8769 0.3914 -0.2789 -vn 0.8772 0.3912 -0.2785 -vn 0.8771 0.3912 -0.2785 -vn -0.5287 -0.2436 -0.8131 -vn -0.5296 -0.2421 -0.8129 -vn -0.5281 -0.2441 -0.8134 -vn 0.4770 -0.0616 0.8767 -vn 0.4770 -0.0625 0.8767 -vn 0.4772 -0.0618 0.8766 -vn -0.5661 -0.5532 -0.6112 -vn -0.5657 -0.5536 -0.6111 -vn -0.5659 -0.5535 -0.6110 -vn 0.9767 -0.0561 0.2072 -vn 0.9771 -0.0563 0.2053 -vn 0.9768 -0.0562 0.2068 -vn 0.6990 0.2361 0.6750 -vn 0.6997 0.2379 0.6736 -vn 0.6980 0.2354 0.6763 -vn -0.7056 0.6719 -0.2249 -vn -0.7053 0.6722 -0.2252 -vn -0.7058 0.6717 -0.2250 -vn -0.0569 0.6731 -0.7373 -vn -0.8433 0.0611 -0.5339 -vn 0.3286 0.9095 -0.2545 -vn 0.3286 0.9095 -0.2546 -vn 0.3285 0.9095 -0.2546 -vn 0.1252 -0.7996 0.5873 -vn 0.1254 -0.7995 0.5874 -vn 0.1253 -0.7995 0.5874 -vn -0.3824 -0.8956 0.2273 -vn -0.3823 -0.8957 0.2272 -vn -0.3827 -0.8955 0.2273 -vn 0.5877 -0.5868 -0.5570 -vn 0.5876 -0.5869 -0.5570 -vn -0.6810 -0.0884 0.7269 -vn -0.6812 -0.0885 0.7268 -vn 0.0155 -0.7949 0.6065 -vn 0.0156 -0.7949 0.6065 -vn -0.6713 -0.6548 -0.3473 -vn -0.6712 -0.6548 -0.3474 -vn -0.6714 -0.6548 -0.3472 -vn 0.7659 -0.5519 0.3300 -vn -0.1599 -0.9212 0.3548 -vn -0.1597 -0.9213 0.3546 -vn -0.1601 -0.9212 0.3547 -vn 0.1123 0.9780 -0.1760 -vn 0.1130 0.9780 -0.1755 -vn 0.1128 0.9779 -0.1759 -vn -0.4702 0.1609 -0.8678 -vn -0.4698 0.1609 -0.8680 -vn -0.4694 0.1608 -0.8682 -vn -0.8764 -0.4613 0.1380 -vn -0.8763 -0.4615 0.1381 -vn -0.8765 -0.4612 0.1379 -vn 0.0129 0.8360 0.5486 -vn 0.0130 0.8358 0.5489 -vn 0.0131 0.8359 0.5487 -vn -0.0546 0.8765 0.4783 -vn -0.0543 0.8765 0.4783 -vn -0.0549 0.8766 0.4780 -vn -0.3119 0.9477 0.0679 -vn -0.3122 0.9476 0.0681 -vn -0.3121 0.9476 0.0675 -vn 0.2565 0.9325 -0.2542 -vn 0.2565 0.9325 -0.2543 -vn 0.2555 0.9326 -0.2548 -vn 0.1876 -0.2780 -0.9421 -vn 0.1871 -0.2779 -0.9422 -vn 0.1868 -0.2781 -0.9422 -vn 0.8262 0.2481 0.5058 -vn 0.8261 0.2474 0.5063 -vn 0.8262 0.2479 0.5059 -vn 0.8907 -0.0027 0.4545 -vn 0.8908 -0.0026 0.4544 -vn 0.8908 -0.0025 0.4543 -vn -0.9396 0.1798 -0.2911 -vn -0.9396 0.1799 -0.2911 -vn -0.4573 -0.8818 -0.1155 -vn -0.4581 -0.8813 -0.1156 -vn -0.4577 -0.8816 -0.1156 -vn -0.0456 -0.9956 0.0819 -vn -0.0456 -0.9955 0.0829 -vn -0.0457 -0.9956 0.0823 -vn 0.4556 0.6494 -0.6089 -vn -0.2149 -0.4301 0.8768 -vn -0.2144 -0.4297 0.8771 -vn -0.2146 -0.4299 0.8770 -vn -0.7156 0.5308 0.4540 -vn -0.7156 0.5309 0.4539 -vn -0.7154 0.5313 0.4538 -vn -0.1963 -0.0126 -0.9805 -vn -0.1964 -0.0126 -0.9804 -vn -0.1966 -0.0125 -0.9804 -vn -0.0062 -0.2711 -0.9625 -vn -0.0065 -0.2714 -0.9624 -vn -0.0061 -0.2708 -0.9626 -vn -0.8127 0.2465 0.5280 -vn -0.8126 0.2466 0.5281 -vn -0.8125 0.2463 0.5284 -vn 0.0838 0.7256 -0.6830 -vn 0.0839 0.7257 -0.6829 -vn -0.2396 0.9706 0.0240 -vn -0.8265 0.3194 0.4636 -vn -0.8264 0.3196 0.4637 -vn -0.8265 0.3191 0.4638 -vn 0.8443 -0.4978 -0.1983 -vn -0.7920 -0.3829 0.4756 -vn -0.7914 -0.3838 0.4757 -vn -0.7915 -0.3834 0.4759 -vn 0.7616 -0.4907 -0.4233 -vn 0.7611 -0.4929 -0.4217 -vn 0.7611 -0.4920 -0.4227 -vn 0.0182 0.9129 0.4077 -vn 0.0182 0.9127 0.4083 -vn 0.0182 0.9128 0.4080 -vn -0.2368 0.4925 0.8375 -vn -0.2371 0.4920 0.8377 -vn -0.2370 0.4921 0.8376 -vn -0.6637 0.3733 0.6482 -vn -0.6639 0.3731 0.6481 -vn -0.6638 0.3734 0.6480 -vn -0.8436 -0.5342 0.0548 -vn -0.8437 -0.5341 0.0547 -vn -0.8146 -0.4738 0.3347 -vn 0.9340 0.0867 0.3466 -vn 0.9339 0.0857 0.3470 -vn 0.9340 0.0866 0.3466 -vn -0.2044 -0.8163 -0.5403 -vn -0.2043 -0.8163 -0.5403 -vn -0.9488 -0.2888 -0.1280 -vn -0.9496 -0.2859 -0.1282 -vn -0.9491 -0.2875 -0.1284 -vn -0.4634 -0.7191 -0.5179 -vn -0.4572 -0.5789 -0.6752 -vn -0.4570 -0.5792 -0.6750 -vn -0.4567 -0.5797 -0.6748 -vn 0.5810 -0.3549 -0.7325 -vn 0.5811 -0.3550 -0.7323 -vn 0.5812 -0.3551 -0.7322 -vn -0.6555 -0.2940 -0.6956 -vn -0.6555 -0.2941 -0.6956 -vn -0.6318 -0.1010 -0.7685 -vn -0.6323 -0.1008 -0.7682 -vn -0.6319 -0.1008 -0.7685 -vn 0.1470 -0.2327 0.9614 -vn 0.1471 -0.2321 0.9615 -vn 0.1473 -0.2333 0.9612 -vn -0.1325 -0.0272 -0.9908 -vn -0.1322 -0.0276 -0.9908 -vn -0.1330 -0.0268 -0.9908 -vn -0.7045 0.4750 0.5273 -vn -0.7042 0.4754 0.5273 -vn -0.7040 0.4761 0.5269 -vn -0.8197 -0.3120 -0.4804 -vn -0.8193 -0.3122 -0.4810 -vn -0.8192 -0.3121 -0.4812 -vn -0.3426 -0.1614 -0.9255 -vn 0.1489 0.9387 0.3108 -vn 0.1486 0.9390 0.3102 -vn 0.1485 0.9391 0.3099 -vn 0.4497 -0.6992 0.5557 -vn 0.4498 -0.6991 0.5557 -vn -0.1938 -0.7672 0.6114 -vn -0.0317 0.5776 -0.8157 -vn -0.0318 0.5774 -0.8158 -vn -0.0317 0.5775 -0.8157 -vn -0.2306 -0.1728 0.9576 -vn -0.2303 -0.1726 0.9577 -vn -0.2303 -0.1727 0.9577 -vn -0.3310 -0.1544 0.9309 -vn -0.3309 -0.1540 0.9310 -vn -0.3307 -0.1535 0.9312 -vn -0.7494 0.0959 -0.6551 -vn -0.7493 0.0964 -0.6551 -vn -0.7494 0.0971 -0.6550 -vn 0.8881 0.3212 -0.3289 -vn 0.6375 -0.4675 -0.6124 -vn 0.6373 -0.4682 -0.6121 -vn -0.7975 0.3910 -0.4595 -vn -0.7982 0.3911 -0.4581 -vn -0.7979 0.3910 -0.4588 -vn 0.7961 -0.1254 -0.5921 -vn 0.7958 -0.1255 -0.5924 -vn 0.7961 -0.1254 -0.5920 -vn 0.4883 0.8702 -0.0660 -vn 0.4882 0.8702 -0.0665 -vn 0.8115 -0.5302 -0.2456 -vn 0.8116 -0.5300 -0.2458 -vn 0.8115 -0.5304 -0.2453 -vn -0.5424 -0.2984 -0.7853 -vn -0.6339 -0.1031 -0.7665 -vn -0.6342 -0.1028 -0.7663 -vn -0.6331 -0.1037 -0.7671 -vn 0.5206 -0.2359 -0.8206 -vn 0.0566 -0.3098 -0.9491 -vn 0.0571 -0.3103 -0.9489 -vn 0.0569 -0.3101 -0.9490 -vn 0.1226 0.7475 -0.6528 -vn 0.1223 0.7475 -0.6529 -vn -0.7195 0.3402 0.6054 -vn -0.7196 0.3402 0.6054 -vn -0.8054 0.1094 -0.5825 -vn -0.8054 0.1093 -0.5826 -vn -0.8054 0.1096 -0.5825 -vn -0.0418 0.5601 -0.8274 -vn -0.0421 0.5605 -0.8271 -vn -0.0417 0.5603 -0.8273 -vn 0.0449 0.0714 0.9964 -vn 0.0456 0.0715 0.9964 -vn 0.0452 0.0713 0.9964 -vn 0.2018 0.9001 0.3862 -vn 0.2021 0.8999 0.3864 -vn 0.2015 0.9003 0.3858 -vn 0.6755 0.1082 -0.7293 -vn 0.6767 0.1052 -0.7287 -vn 0.6762 0.1065 -0.7289 -vn -0.5872 0.7868 -0.1899 -vn -0.5871 0.7868 -0.1901 -vn -0.5872 0.7868 -0.1900 -vn -0.6619 0.6706 -0.3350 -vn 0.6946 -0.6989 0.1706 -vn 0.6947 -0.6987 0.1709 -vn 0.6948 -0.6986 0.1708 -vn 0.6736 -0.2451 -0.6972 -vn 0.6734 -0.2450 -0.6975 -vn 0.6741 -0.2452 -0.6968 -vn 0.2959 0.3774 -0.8775 -vn 0.2959 0.3777 -0.8774 -vn 0.2959 0.3779 -0.8773 -vn 0.8107 0.5021 0.3011 -vn 0.8105 0.5023 0.3012 -vn 0.8105 0.5024 0.3011 -vn -0.3128 0.9495 0.0263 -vn -0.3128 0.9495 0.0262 -vn 0.7484 0.3808 0.5430 -vn 0.7484 0.3806 0.5432 -vn -0.9525 0.3046 0.0068 -vn -0.9515 0.3075 0.0090 -vn -0.9518 0.3065 0.0077 -vn -0.3631 -0.5031 0.7843 -vn -0.3629 -0.5032 0.7843 -vn -0.3632 -0.5031 0.7842 -vn -0.3170 0.0988 0.9433 -vn 0.0859 0.3652 0.9270 -vn 0.0870 0.3669 0.9262 -vn 0.0885 0.3676 0.9258 -vn -0.1159 -0.2752 0.9544 -vn -0.9042 -0.3838 -0.1873 -vn -0.9037 -0.3838 -0.1896 -vn -0.9041 -0.3837 -0.1882 -vn -0.9393 -0.2723 -0.2086 -vn -0.9392 -0.2723 -0.2092 -vn -0.9391 -0.2722 -0.2096 -vn 0.1386 0.9779 -0.1566 -vn 0.1385 0.9779 -0.1566 -vn -0.1138 -0.3485 -0.9304 -vn -0.1128 -0.3485 -0.9305 -vn -0.1140 -0.3485 -0.9303 -vn -0.6950 0.2234 -0.6834 -vn -0.6950 0.2235 -0.6834 -vn -0.3575 0.9305 -0.0797 -vn -0.3576 0.9305 -0.0795 -vn -0.3580 0.9303 -0.0797 -vn 0.5945 -0.2354 0.7688 -vn 0.5944 -0.2355 0.7689 -vn -0.0820 -0.9381 -0.3364 -vn 0.0420 -0.8036 0.5937 -vn 0.0436 -0.8031 0.5943 -vn 0.0427 -0.8035 0.5938 -vn -0.3702 -0.6484 0.6652 -vn -0.3702 -0.6481 0.6655 -vn -0.3701 -0.6484 0.6653 -vn -0.2133 -0.0126 -0.9769 -vn -0.2133 -0.0128 -0.9769 -vn -0.2134 -0.0124 -0.9769 -vn 0.1235 -0.9545 0.2713 -vn 0.1234 -0.9545 0.2713 -vn 0.1236 -0.9545 0.2713 -vn 0.6281 -0.6504 -0.4272 -vn 0.6283 -0.6503 -0.4270 -vn 0.6284 -0.6503 -0.4269 -vn -0.0709 -0.9504 -0.3027 -vn -0.0708 -0.9504 -0.3027 -vn -0.0709 -0.9504 -0.3028 -vn -0.1730 0.5711 0.8024 -vn -0.1727 0.5708 0.8027 -vn -0.1728 0.5710 0.8026 -vn -0.4274 0.7799 -0.4572 -vn -0.4264 0.7799 -0.4581 -vn -0.4268 0.7800 -0.4576 -vn 0.0993 0.9786 -0.1804 -vn 0.0989 0.9785 -0.1808 -vn 0.0991 0.9785 -0.1806 -vn 0.2459 0.9684 -0.0418 -vn -0.9693 0.1513 -0.1937 -vn -0.9693 0.1512 -0.1939 -vn -0.0805 0.3309 -0.9402 -vn -0.0803 0.3308 -0.9403 -vn 0.0177 0.8832 0.4686 -vn 0.0181 0.8832 0.4687 -vn 0.0174 0.8832 0.4686 -vn 0.4638 0.4065 0.7872 -vn 0.4635 0.4066 0.7873 -vn 0.4635 0.4067 0.7872 -vn 0.9269 0.3354 0.1682 -vn 0.9265 0.3355 0.1702 -vn 0.9268 0.3353 0.1694 -vn -0.7357 0.4113 -0.5381 -vn -0.7363 0.4123 -0.5365 -vn -0.7359 0.4121 -0.5373 -vn 0.5500 0.8301 0.0920 -vn -0.1071 0.9920 -0.0666 -vn -0.1069 0.9920 -0.0666 -vn -0.1072 0.9920 -0.0665 -vn 0.5128 0.8085 0.2887 -vn 0.5128 0.8085 0.2888 -vn 0.5128 0.8084 0.2889 -vn -0.8099 0.4087 -0.4208 -vn -0.8100 0.4086 -0.4206 -vn -0.8342 0.5392 -0.1159 -vn -0.8339 0.5395 -0.1166 -vn 0.0044 0.3122 0.9500 -vn 0.0037 0.3115 0.9502 -vn 0.0042 0.3118 0.9501 -vn 0.4228 -0.7910 0.4422 -vn 0.4227 -0.7911 0.4421 -vn 0.4230 -0.7909 0.4423 -vn -0.7303 0.1953 -0.6546 -vn -0.7305 0.1952 -0.6544 -vn -0.7304 0.1953 -0.6545 -vn -0.6812 0.2738 -0.6790 -vn -0.6809 0.2741 -0.6791 -vn -0.6813 0.2734 -0.6790 -vn -0.3938 0.9041 0.1658 -vn -0.3940 0.9039 0.1664 -vn -0.3940 0.9039 0.1665 -vn 0.9824 0.1718 -0.0735 -vn 0.9824 0.1718 -0.0736 -vn 0.9824 0.1717 -0.0735 -vn -0.2327 -0.9147 0.3304 -vn -0.2317 -0.9153 0.3295 -vn -0.2336 -0.9143 0.3308 -vn 0.2149 0.9766 -0.0007 -vn 0.2150 0.9766 -0.0007 -vn 0.2148 0.9767 -0.0006 -vn -0.8885 0.2932 -0.3531 -vn -0.8884 0.2934 -0.3531 -vn -0.8883 0.2936 -0.3531 -vn 0.5334 -0.2328 -0.8132 -vn 0.5334 -0.2330 -0.8132 -vn 0.5333 -0.2326 -0.8133 -vn 0.4848 -0.6956 -0.5302 -vn 0.5332 -0.6112 -0.5849 -vn 0.5334 -0.6109 -0.5850 -vn 0.5336 -0.6105 -0.5853 -vn -0.1168 -0.9008 -0.4183 -vn -0.1170 -0.9006 -0.4186 -vn -0.1167 -0.9007 -0.4184 -vn 0.8527 -0.1574 0.4981 -vn 0.8531 -0.1577 0.4974 -vn 0.8529 -0.1575 0.4977 -vn 0.0652 0.9977 0.0206 -vn 0.0653 0.9977 0.0204 -vn -0.7881 0.5410 -0.2935 -vn -0.2732 -0.3150 0.9089 -vn -0.2727 -0.3154 0.9089 -vn -0.2730 -0.3151 0.9089 -vn 0.5903 0.5447 0.5957 -vn 0.5902 0.5447 0.5958 -vn 0.5904 0.5447 0.5956 -vn -0.7377 0.6738 0.0426 -vn -0.7377 0.6738 0.0428 -vn -0.7376 0.6738 0.0428 -vn -0.6736 -0.3311 0.6608 -vn -0.6736 -0.3309 0.6609 -vn -0.2749 -0.3036 -0.9123 -vn -0.2748 -0.3037 -0.9123 -vn -0.2743 -0.3035 -0.9125 -vn 0.3830 0.0836 -0.9200 -vn 0.3830 0.0835 -0.9200 -vn -0.4079 0.6791 0.6103 -vn -0.4081 0.6792 0.6100 -vn -0.4078 0.6793 0.6101 -vn 0.3482 0.5012 0.7922 -vn 0.3481 0.5014 0.7921 -vn 0.3486 0.5010 0.7921 -vn 0.1647 0.9717 0.1693 -vn 0.1655 0.9715 0.1695 -vn 0.1641 0.9718 0.1693 -vn 0.1725 -0.0043 -0.9850 -vn 0.1721 -0.0035 -0.9851 -vn 0.1714 -0.0029 -0.9852 -vn -0.2517 -0.9471 0.1991 -vn -0.2516 -0.9471 0.1992 -vn -0.2515 -0.9472 0.1990 -vn 0.1210 -0.3931 0.9115 -vn 0.1207 -0.3933 0.9115 -vn 0.1205 -0.3933 0.9115 -vn -0.4331 -0.7647 -0.4771 -vn -0.4887 -0.8085 -0.3279 -vn -0.4886 -0.8086 -0.3277 -vn -0.4889 -0.8085 -0.3274 -vn 0.1861 -0.0233 -0.9823 -vn 0.1859 -0.0235 -0.9823 -vn -0.1383 0.9900 0.0281 -vn -0.1378 0.9901 0.0281 -vn -0.2552 0.7974 -0.5468 -vn -0.2554 0.7974 -0.5467 -vn 0.1541 -0.8890 0.4312 -vn 0.1542 -0.8889 0.4313 -vn 0.1544 -0.8890 0.4311 -vn -0.8900 -0.3448 0.2983 -vn -0.8899 -0.3449 0.2984 -vn -0.8898 -0.3451 0.2985 -vn -0.1255 -0.9622 0.2419 -vn 0.2458 -0.7450 -0.6202 -vn 0.2461 -0.7449 -0.6201 -vn 0.2465 -0.7449 -0.6200 -vn 0.5934 -0.7430 -0.3095 -vn 0.5934 -0.7430 -0.3096 -vn 0.5934 -0.7430 -0.3097 -vn -0.8446 0.4192 -0.3331 -vn -0.6175 0.6048 0.5029 -vn -0.0619 0.6126 -0.7880 -vn -0.0623 0.6121 -0.7883 -vn -0.0624 0.6120 -0.7884 -vn -0.3215 0.1516 0.9347 -vn -0.3214 0.1519 0.9347 -vn -0.3216 0.1515 0.9347 -vn 0.2479 0.1924 0.9495 -vn 0.9212 -0.3879 0.0304 -vn 0.9211 -0.3882 0.0306 -vn 0.9211 -0.3881 0.0306 -vn 0.9365 -0.3396 0.0876 -vn 0.9363 -0.3401 0.0880 -vn 0.9363 -0.3400 0.0879 -vn -0.5551 0.4498 -0.6997 -vn -0.5547 0.4501 -0.6998 -vn -0.7146 0.5555 -0.4252 -vn -0.7138 0.5565 -0.4251 -vn -0.7110 0.5592 -0.4263 -vn 0.5024 0.6939 0.5158 -vn 0.5020 0.6933 0.5171 -vn 0.5021 0.6939 0.5162 -vn -0.1267 -0.0668 0.9897 -vn -0.1269 -0.0671 0.9896 -vn -0.1270 -0.0672 0.9896 -vn -0.1967 -0.2275 -0.9537 -vn -0.1961 -0.2267 -0.9540 -vn -0.1949 -0.2265 -0.9543 -vn 0.6523 -0.5542 -0.5171 -vn 0.6520 -0.5545 -0.5172 -vn 0.6525 -0.5540 -0.5170 -vn -0.2615 0.9537 0.1489 -vn -0.2613 0.9537 0.1487 -vn -0.2614 0.9536 0.1493 -vn 0.0467 0.9032 0.4267 -vn 0.0466 0.9031 0.4268 -vn 0.4230 -0.6926 -0.5843 -vn 0.4233 -0.6923 -0.5844 -vn 0.4231 -0.6924 -0.5844 -vn 0.0478 -0.9648 0.2588 -vn 0.0478 -0.9648 0.2587 -vn -0.3465 0.9081 -0.2351 -vn -0.3466 0.9082 -0.2345 -vn -0.3464 0.9081 -0.2353 -vn -0.7023 -0.0518 -0.7100 -vn -0.7023 -0.0517 -0.7100 -vn -0.7024 -0.0515 -0.7099 -vn -0.6173 0.1357 -0.7749 -vn -0.6174 0.1352 -0.7749 -vn -0.3965 0.8900 -0.2250 -vn -0.3963 0.8901 -0.2251 -vn 0.2543 -0.3863 0.8866 -vn 0.2546 -0.3864 0.8865 -vn 0.2541 -0.3862 0.8867 -vn -0.8902 -0.0785 -0.4488 -vn -0.8905 -0.0799 -0.4479 -vn -0.8903 -0.0794 -0.4484 -vn -0.3468 -0.8764 -0.3343 -vn -0.3472 -0.8764 -0.3337 -vn -0.3469 -0.8763 -0.3342 -vn -0.1968 0.3622 -0.9111 -vn -0.1968 0.3624 -0.9110 -vn -0.1970 0.3622 -0.9110 -vn 0.4634 -0.5571 -0.6891 -vn 0.4634 -0.5572 -0.6890 -vn 0.4634 -0.5573 -0.6890 -vn -0.2671 0.2131 0.9398 -vn -0.2671 0.2132 0.9398 -vn 0.2728 -0.4867 -0.8299 -vn 0.2730 -0.4867 -0.8298 -vn 0.2729 -0.4867 -0.8298 -vn -0.2051 -0.9322 0.2983 -vn -0.2048 -0.9323 0.2981 -vn -0.2049 -0.9322 0.2982 -vn 0.8864 -0.3956 0.2405 -vn 0.8864 -0.3956 0.2402 -vn 0.4778 0.8719 -0.1074 -vn 0.4773 0.8721 -0.1078 -vn 0.4776 0.8720 -0.1076 -vn -0.3995 0.6311 0.6649 -vn -0.3467 -0.7426 -0.5730 -vn -0.3465 -0.7429 -0.5727 -vn -0.3461 -0.7431 -0.5727 -vn -0.1691 -0.1184 -0.9785 -vn -0.1694 -0.1186 -0.9784 -vn 0.2708 -0.0683 -0.9602 -vn 0.2707 -0.0674 -0.9603 -vn 0.2707 -0.0669 -0.9603 -vn -0.3998 0.8345 0.3792 -vn 0.1266 0.6036 0.7872 -vn 0.1265 0.6039 0.7870 -vn 0.1266 0.6042 0.7867 -vn 0.1664 -0.5314 0.8306 -vn 0.1665 -0.5315 0.8305 -vn 0.1665 -0.5314 0.8306 -vn -0.8545 -0.2002 -0.4793 -vn -0.8544 -0.2002 -0.4795 -vn -0.4601 -0.4463 -0.7676 -vn -0.4608 -0.7294 -0.5056 -vn -0.4606 -0.7291 -0.5062 -vn 0.8490 -0.3875 0.3593 -vn 0.8490 -0.3878 0.3590 -vn 0.8488 -0.3883 0.3589 -vn -0.1838 -0.2954 -0.9375 -vn -0.1845 -0.2963 -0.9371 -vn -0.1825 -0.2948 -0.9380 -vn 0.5954 0.2240 -0.7716 -vn 0.5953 0.2239 -0.7716 -vn 0.5956 0.2241 -0.7714 -vn -0.1457 -0.3104 -0.9394 -vn 0.2250 -0.2042 -0.9527 -vn 0.2251 -0.2041 -0.9527 -vn 0.2249 -0.2043 -0.9527 -vn -0.7373 0.1978 -0.6460 -vn -0.7376 0.1986 -0.6454 -vn -0.7374 0.1984 -0.6457 -vn -0.5859 0.0506 -0.8088 -vn -0.4629 -0.1230 -0.8778 -vn -0.4613 -0.1239 -0.8786 -vn -0.4623 -0.1236 -0.8781 -vn -0.2829 -0.9341 0.2180 -vn -0.2825 -0.9345 0.2167 -vn -0.2826 -0.9344 0.2169 -vn -0.7293 0.5129 0.4528 -vn -0.7831 -0.3644 0.5039 -vn -0.3990 0.3093 -0.8632 -vn -0.3991 0.3090 -0.8633 -vn -0.3996 0.3087 -0.8632 -vn 0.3080 -0.8850 -0.3491 -vn 0.3071 -0.8849 -0.3501 -vn 0.3078 -0.8850 -0.3493 -vn 0.7993 0.0260 0.6003 -vn 0.7992 0.0241 0.6006 -vn 0.7991 0.0275 0.6006 -vn 0.9304 -0.2292 -0.2859 -vn 0.9305 -0.2293 -0.2857 -vn -0.2758 -0.9416 0.1932 -vn -0.2759 -0.9414 0.1940 -vn -0.2759 -0.9416 0.1932 -vn -0.3292 -0.8983 -0.2909 -vn -0.3290 -0.8985 -0.2904 -vn -0.3506 0.8664 -0.3557 -vn 0.3316 -0.4523 0.8279 -vn 0.3839 -0.4088 0.8279 -vn 0.3841 -0.4087 0.8279 -vn 0.3841 -0.4089 0.8278 -vn -0.4330 -0.8351 -0.3393 -vn -0.4312 -0.8363 -0.3386 -vn -0.4323 -0.8355 -0.3392 -vn 0.9060 -0.1981 0.3739 -vn 0.9062 -0.1978 0.3737 -vn 0.9059 -0.1985 0.3740 -vn -0.7366 -0.5746 0.3568 -vn -0.7365 -0.5747 0.3567 -vn -0.7368 -0.5741 0.3571 -vn -0.1198 0.8124 -0.5707 -vn -0.1202 0.8132 -0.5694 -vn -0.1201 0.8127 -0.5702 -vn 0.1772 0.6115 0.7711 -vn 0.4703 0.8824 0.0142 -vn 0.4699 0.8826 0.0140 -vn 0.8939 -0.1628 0.4176 -vn 0.8939 -0.1626 0.4177 -vn -0.3263 0.8090 0.4889 -vn -0.3262 0.8088 0.4894 -vn -0.3264 0.8088 0.4892 -vn -0.3964 0.7141 0.5770 -vn -0.3962 0.7142 0.5770 -vn -0.3960 0.7145 0.5768 -vn -0.1460 0.9882 0.0470 -vn -0.1460 0.9882 0.0469 -vn -0.1459 0.9882 0.0465 -vn -0.1164 0.1567 0.9808 -vn -0.1164 0.1563 0.9808 -vn -0.1164 0.1562 0.9808 -vn 0.3852 -0.6132 -0.6896 -vn 0.6396 -0.5120 0.5734 -vn 0.6402 -0.5102 0.5743 -vn 0.6397 -0.5110 0.5741 -vn 0.6042 -0.5269 -0.5978 -vn 0.6041 -0.5270 -0.5978 -vn 0.6037 -0.5274 -0.5978 -vn 0.0551 -0.2374 -0.9699 -vn 0.0549 -0.2377 -0.9698 -vn 0.0549 -0.9765 0.2086 -vn 0.0551 -0.9765 0.2082 -vn -0.0349 -0.9784 0.2038 -vn -0.0357 -0.9782 0.2048 -vn -0.0355 -0.9782 0.2044 -vn -0.2721 -0.9266 0.2597 -vn -0.2722 -0.9265 0.2599 -vn -0.2720 -0.9267 0.2594 -vn -0.5897 -0.5893 -0.5522 -vn -0.5893 -0.5896 -0.5523 -vn -0.6755 -0.5738 -0.4632 -vn -0.6048 -0.0671 0.7935 -vn -0.6046 -0.0672 0.7937 -vn -0.6047 -0.0670 0.7936 -vn 0.7020 0.5499 0.4525 -vn 0.7035 0.5480 0.4526 -vn 0.7013 0.5515 0.4518 -vn 0.9489 -0.0890 -0.3027 -vn -0.1768 0.9839 0.0259 -vn -0.1771 0.9839 0.0257 -vn -0.6917 0.4717 0.5468 -vn -0.6918 0.4717 0.5467 -vn 0.8099 -0.0685 -0.5826 -vn 0.8100 -0.0685 -0.5825 -vn 0.8101 -0.0685 -0.5822 -vn 0.5665 0.4533 -0.6882 -vn 0.5664 0.4533 -0.6883 -vn 0.2105 0.8822 -0.4211 -vn 0.2104 0.8819 -0.4219 -vn 0.2104 0.8820 -0.4216 -vn 0.8682 -0.4908 0.0734 -vn 0.8683 -0.4907 0.0732 -vn 0.8683 -0.4906 0.0733 -vn -0.2995 -0.9188 0.2573 -vn -0.2994 -0.9185 0.2584 -vn -0.2995 -0.9185 0.2584 -vn 0.2175 0.8708 0.4409 -vn 0.2180 0.8706 0.4410 -vn 0.2931 0.6972 -0.6542 -vn 0.2930 0.6970 -0.6545 -vn 0.2930 0.6974 -0.6541 -vn 0.4623 -0.2950 0.8362 -vn 0.4613 -0.2934 0.8373 -vn 0.4618 -0.2946 0.8366 -vn 0.4060 0.1421 0.9028 -vn 0.4056 0.1412 0.9031 -vn 0.4056 0.1417 0.9030 -vn 0.9938 0.0522 -0.0985 -vn 0.9938 0.0524 -0.0983 -vn 0.9760 0.1577 -0.1498 -vn 0.9760 0.1579 -0.1499 -vn 0.9760 0.1578 -0.1499 -vn 0.6611 -0.4822 -0.5747 -vn 0.6612 -0.4820 -0.5749 -vn 0.6613 -0.4821 -0.5747 -vn -0.1190 -0.0132 -0.9928 -vn -0.1183 -0.0128 -0.9929 -vn -0.1179 -0.0129 -0.9929 -vn -0.8284 0.5040 0.2444 -vn -0.8285 0.5040 0.2443 -vn 0.5266 0.6297 -0.5711 -vn 0.4541 0.7933 0.4056 -vn 0.4536 0.7934 0.4058 -vn 0.2003 0.7180 0.6666 -vn 0.2000 0.7178 0.6669 -vn 0.2002 0.7176 0.6671 -vn -0.3679 0.9299 -0.0010 -vn -0.3680 0.9298 -0.0010 -vn 0.5285 0.1828 0.8290 -vn -0.6092 0.6115 0.5049 -vn -0.6091 0.6118 0.5047 -vn -0.6091 0.6115 0.5051 -vn -0.1373 0.7860 0.6028 -vn -0.1372 0.7860 0.6029 -vn -0.1371 0.7859 0.6029 -vn -0.0026 0.0144 0.9999 -vn -0.6497 0.4560 0.6082 -vn -0.6497 0.4565 0.6079 -vn -0.6495 0.4569 0.6078 -vn -0.9876 -0.0386 0.1521 -vn -0.9876 -0.0385 0.1519 -vn -0.9876 -0.0384 0.1520 -vn 0.3480 -0.9370 -0.0305 -vn 0.3483 -0.9369 -0.0309 -vn 0.3480 -0.9370 -0.0303 -vn 0.6976 0.6526 -0.2956 -vn 0.6975 0.6530 -0.2952 -vn 0.6977 0.6527 -0.2955 -vn -0.4767 0.8442 -0.2452 -vn -0.4765 0.8441 -0.2458 -vn -0.4764 0.8442 -0.2455 -vn 0.5932 -0.7787 -0.2042 -vn 0.5922 -0.7793 -0.2048 -vn 0.5942 -0.7780 -0.2040 -vn -0.4779 -0.5900 -0.6507 -vn -0.4783 -0.5898 -0.6507 -vn 0.9320 0.1041 0.3471 -vn 0.9320 0.1041 0.3472 -vn 0.9321 0.1042 0.3468 -vn -0.6098 -0.4046 -0.6815 -vn -0.6100 -0.4048 -0.6812 -vn -0.6099 -0.4048 -0.6813 -vn -0.3286 -0.8721 -0.3626 -vn -0.3285 -0.8722 -0.3624 -vn -0.0470 0.2678 -0.9623 -vn -0.0487 0.2682 -0.9621 -vn -0.0464 0.2673 -0.9625 -vn -0.8793 -0.4557 0.1385 -vn -0.8793 -0.4557 0.1383 -vn -0.2075 -0.6690 -0.7137 -vn -0.2074 -0.6690 -0.7137 -vn 0.1447 -0.5980 -0.7884 -vn -0.4976 0.7042 -0.5065 -vn -0.4975 0.7040 -0.5069 -vn -0.4974 0.7039 -0.5071 -vn 0.0288 -0.9942 0.1036 -vn 0.0290 -0.9942 0.1035 -vn 0.0291 -0.9942 0.1035 -vn -0.5366 -0.1486 0.8307 -vn -0.5366 -0.1487 0.8306 -vn 0.3839 -0.9154 0.1210 -vn 0.3838 -0.9154 0.1210 -vn 0.3793 -0.8522 -0.3603 -vn 0.3792 -0.8522 -0.3604 -vn 0.3787 -0.8522 -0.3610 -vn -0.0489 -0.9852 -0.1644 -vn -0.0489 -0.9852 -0.1642 -vn -0.0490 -0.9852 -0.1642 -vn 0.2173 -0.7800 0.5868 -vn 0.2193 -0.7812 0.5845 -vn 0.2187 -0.7805 0.5857 -vn 0.4749 0.8609 -0.1823 -vn 0.3140 -0.8190 -0.4802 -vn 0.3140 -0.8191 -0.4801 -vn -0.1913 -0.9685 0.1592 -vn -0.1926 -0.9685 0.1576 -vn -0.1930 -0.9687 0.1563 -vn 0.2296 0.9642 0.1329 -vn -0.8439 0.5068 0.1762 -vn -0.8437 0.5071 0.1759 -vn -0.8437 0.5072 0.1758 -vn -0.2347 0.8530 -0.4661 -vn -0.2347 0.8529 -0.4664 -vn -0.2347 0.8529 -0.4663 -vn 0.4459 -0.0213 -0.8948 -vn 0.4462 -0.0212 -0.8947 -vn 0.4459 -0.0217 -0.8948 -vn 0.2926 0.1490 0.9446 -vn 0.2928 0.1486 0.9445 -vn 0.2933 0.1482 0.9445 -vn 0.7478 0.6526 -0.1218 -vn 0.7477 0.6528 -0.1217 -vn 0.7474 0.6531 -0.1216 -vn -0.3202 0.9389 -0.1260 -vn -0.3206 0.9389 -0.1256 -vn -0.3206 0.9389 -0.1253 -vn 0.0335 -0.9787 0.2024 -vn 0.0338 -0.9788 0.2021 -vn 0.0337 -0.9788 0.2020 -vn 0.1701 0.8693 -0.4641 -vn 0.1680 0.8707 -0.4623 -vn 0.1689 0.8699 -0.4634 -vn -0.3485 -0.2133 -0.9127 -vn -0.3485 -0.2135 -0.9127 -vn -0.3483 -0.2134 -0.9127 -vn -0.2757 -0.9078 0.3161 -vn -0.2754 -0.9078 0.3164 -vn -0.2764 -0.9077 0.3158 -vn 0.1765 -0.4505 0.8752 -vn 0.1760 -0.4510 0.8750 -vn 0.1757 -0.4522 0.8744 -vn 0.6738 -0.4362 0.5964 -vn 0.6739 -0.4363 0.5962 -vn 0.6742 -0.4360 0.5961 -vn -0.5239 0.8415 0.1323 -vn -0.3631 -0.9183 0.1577 -vn -0.3636 -0.9179 0.1587 -vn -0.3639 -0.9178 0.1591 -vn -0.8386 -0.4150 -0.3529 -vn -0.8387 -0.4149 -0.3528 -vn -0.7488 0.2703 -0.6051 -vn -0.7489 0.2703 -0.6050 -vn -0.7488 0.2703 -0.6052 -vn 0.9356 0.0211 0.3525 -vn 0.9357 0.0212 0.3521 -vn 0.9360 0.0218 0.3513 -vn 0.3008 0.9537 0.0071 -vn 0.3006 0.9537 0.0077 -vn 0.2999 0.9539 0.0081 -vn 0.4025 0.5511 0.7310 -vn 0.4016 0.5527 0.7303 -vn 0.4019 0.5519 0.7307 -vn -0.3469 0.6542 0.6721 -vn -0.5878 -0.6453 -0.4880 -vn -0.1080 0.8120 -0.5735 -vn -0.1083 0.8121 -0.5734 -vn -0.2463 0.4576 0.8544 -vn -0.2468 0.4576 0.8543 -vn -0.7218 0.6513 -0.2341 -vn -0.7213 0.6517 -0.2345 -vn -0.7219 0.6514 -0.2338 -vn 0.4365 -0.7343 -0.5199 -vn -0.1610 -0.3486 -0.9233 -vn -0.1610 -0.3487 -0.9233 -vn -0.1609 -0.3487 -0.9233 -vn 0.9184 -0.2184 0.3298 -vn -0.8220 0.5416 -0.1762 -vn -0.8226 0.5405 -0.1766 -vn -0.8225 0.5407 -0.1764 -vn 0.1901 0.2187 0.9571 -vn 0.1901 0.2185 0.9571 -vn 0.1899 0.2187 0.9571 -vn 0.0858 -0.5083 -0.8569 -vn 0.0865 -0.5087 -0.8566 -vn 0.0856 -0.5081 -0.8570 -vn 0.1604 0.9868 -0.0211 -vn 0.1604 0.9868 -0.0216 -vn 0.1600 0.9869 -0.0220 -vn 0.0719 -0.8435 -0.5323 -vn -0.1086 -0.8863 -0.4503 -vn -0.1086 -0.8862 -0.4504 -vn -0.1085 -0.8862 -0.4505 -vn 0.1736 0.5901 0.7884 -vn 0.1730 0.5914 0.7876 -vn 0.1721 0.5920 0.7874 -vn -0.8248 0.5045 0.2554 -vn -0.8248 0.5044 0.2556 -vn -0.8249 0.5042 0.2557 -vn 0.0644 0.9826 0.1743 -vn 0.0649 0.9825 0.1743 -vn 0.4850 -0.7385 -0.4684 -vn 0.4849 -0.7385 -0.4685 -vn 0.1121 -0.9850 0.1315 -vn 0.1121 -0.9849 0.1316 -vn -0.6209 0.2562 0.7408 -vn -0.6209 0.2554 0.7411 -vn -0.6209 0.2558 0.7410 -vn -0.4894 -0.8537 -0.1780 -vn -0.4895 -0.8536 -0.1781 -vn -0.4894 -0.8538 -0.1777 -vn -0.3805 -0.8983 -0.2199 -vn -0.3804 -0.8983 -0.2198 -vn -0.3801 -0.8985 -0.2195 -vn 0.3066 0.7492 -0.5872 -vn 0.3068 0.7492 -0.5870 -vn 0.3067 0.7491 -0.5872 -vn 0.2898 -0.4902 0.8220 -vn 0.2898 -0.4899 0.8222 -vn 0.2899 -0.4896 0.8223 -vn -0.4661 -0.6868 -0.5577 -vn -0.4661 -0.6873 -0.5572 -vn -0.4660 -0.6875 -0.5569 -vn 0.2644 -0.1838 0.9467 -vn 0.2645 -0.1838 0.9467 -vn 0.2643 -0.1837 0.9468 -vn 0.5368 0.5489 -0.6408 -vn 0.5384 0.5488 -0.6395 -vn 0.5374 0.5490 -0.6401 -vn 0.7934 0.6042 0.0740 -vn 0.7932 0.6044 0.0741 -vn 0.7935 0.6041 0.0739 -vn -0.2262 -0.9466 -0.2298 -vn 0.2069 -0.2098 -0.9556 -vn 0.2064 -0.2094 -0.9558 -vn 0.2067 -0.2097 -0.9557 -vn -0.8840 0.3166 0.3440 -vn -0.8840 0.3165 0.3441 -vn 0.1350 -0.1942 -0.9716 -vn 0.1338 -0.1948 -0.9717 -vn 0.1345 -0.1944 -0.9717 -vn 0.1184 -0.9821 0.1468 -vn 0.1170 -0.9824 0.1459 -vn 0.1166 -0.9825 0.1450 -vn 0.3398 0.5287 -0.7778 -vn 0.3389 0.5286 -0.7783 -vn 0.3380 0.5282 -0.7789 -vn 0.1334 -0.5138 0.8475 -vn 0.1333 -0.5139 0.8474 -vn 0.1333 -0.5141 0.8473 -vn -0.3920 0.9038 -0.1716 -vn -0.3919 0.9038 -0.1717 -vn 0.5140 -0.6788 0.5244 -vn 0.5148 -0.6783 0.5243 -vn 0.5146 -0.6786 0.5241 -vn 0.5231 0.6706 0.5260 -vn 0.5229 0.6707 0.5260 -vn 0.5225 0.6708 0.5263 -vn -0.1138 -0.9681 0.2232 -vn 0.1841 -0.9750 0.1248 -vn 0.1848 -0.9748 0.1252 -vn 0.1851 -0.9747 0.1253 -vn -0.0816 -0.9956 -0.0463 -vn -0.0815 -0.9956 -0.0462 -vn -0.0816 -0.9956 -0.0458 -vn 0.9417 -0.2157 0.2582 -vn 0.9418 -0.2154 0.2582 -vn 0.1098 0.5948 -0.7963 -vn 0.1093 0.5950 -0.7963 -vn 0.1099 0.5950 -0.7962 -vn 0.6958 0.0895 0.7126 -vn 0.6960 0.0904 0.7123 -vn 0.6960 0.0900 0.7124 -vn -0.6162 -0.0951 -0.7818 -vn -0.6163 -0.0948 -0.7818 -vn -0.6161 -0.0952 -0.7819 -vn -0.5984 -0.6471 -0.4724 -vn -0.5986 -0.6467 -0.4727 -vn -0.5976 -0.6481 -0.4720 -vn 0.6148 -0.6870 0.3873 -vn 0.6140 -0.6879 0.3869 -vn -0.4828 -0.7535 0.4463 -vn -0.4832 -0.7529 0.4469 -vn -0.4841 -0.7523 0.4469 -vn 0.2557 -0.9367 0.2394 -vn 0.2565 -0.9368 0.2380 -vn 0.2548 -0.9368 0.2397 -vn 0.5937 -0.7604 -0.2633 -vn 0.5934 -0.7604 -0.2638 -vn 0.1869 0.9758 0.1134 -vn 0.6890 -0.7079 0.1556 -vn -0.7123 -0.5547 -0.4301 -vn -0.7120 -0.5551 -0.4300 -vn -0.7121 -0.5549 -0.4302 -vn -0.7224 -0.5933 -0.3552 -vn -0.7223 -0.5935 -0.3550 -vn -0.7230 -0.5922 -0.3558 -vn 0.3552 -0.1158 -0.9276 -vn 0.3551 -0.1160 -0.9276 -vn 0.3327 -0.8609 0.3850 -vn 0.3328 -0.8608 0.3851 -vn 0.3610 0.9130 0.1899 -vn 0.3607 0.9131 0.1902 -vn 0.3612 0.9131 0.1890 -vn -0.3864 0.8382 -0.3850 -vn -0.3863 0.8380 -0.3854 -vn -0.3864 0.8381 -0.3851 -vn -0.9775 -0.1879 -0.0958 -vn 0.0232 0.7992 0.6006 -vn 0.0231 0.7995 0.6002 -vn -0.8442 -0.4041 -0.3521 -vn -0.8443 -0.4041 -0.3519 -vn -0.2215 -0.5039 -0.8349 -vn -0.2223 -0.5030 -0.8352 -vn -0.2220 -0.5034 -0.8350 -vn -0.7091 0.6653 -0.2336 -vn -0.7092 0.6650 -0.2342 -vn -0.7091 0.6655 -0.2329 -vn -0.3651 -0.7014 0.6122 -vn -0.3649 -0.7021 0.6115 -vn -0.3641 -0.7008 0.6134 -vn -0.1363 0.3717 -0.9183 -vn -0.1359 0.3710 -0.9186 -vn -0.1360 0.3713 -0.9185 -vn -0.9167 -0.1424 0.3733 -vn -0.9167 -0.1426 0.3733 -vn -0.9168 -0.1421 0.3732 -vn 0.5433 -0.6352 -0.5490 -vn 0.5428 -0.6343 -0.5505 -vn 0.5432 -0.6345 -0.5498 -vn -0.6478 0.3855 -0.6571 -vn -0.6477 0.3854 -0.6572 -vn -0.6475 0.3855 -0.6574 -vn -0.3161 -0.9243 -0.2140 -vn -0.3178 -0.9234 -0.2153 -vn -0.3168 -0.9238 -0.2151 -vn -0.9467 0.1632 -0.2778 -vn -0.9466 0.1633 -0.2779 -vn -0.1395 -0.9433 0.3013 -vn -0.1402 -0.9432 0.3012 -vn -0.1404 -0.9432 0.3012 -vn -0.1465 -0.9441 0.2952 -vn -0.1416 -0.9448 0.2954 -vn -0.1445 -0.9447 0.2944 -vn -0.1222 0.8639 -0.4886 -vn -0.1223 0.8636 -0.4891 -vn -0.1219 0.8641 -0.4884 -vn 0.8588 0.2944 0.4192 -vn 0.8589 0.2947 0.4189 -vn 0.8589 0.2946 0.4190 -vn 0.3285 -0.4891 0.8080 -vn 0.1255 0.6752 0.7269 -vn 0.1249 0.6752 0.7270 -vn -0.1537 0.9373 -0.3127 -vn -0.1537 0.9373 -0.3128 -vn -0.1536 0.9373 -0.3129 -vn 0.4152 -0.1186 0.9020 -vn 0.4147 -0.1188 0.9022 -vn 0.4153 -0.1188 0.9019 -vn -0.6301 -0.5313 -0.5663 -vn -0.6308 -0.5306 -0.5662 -vn -0.6304 -0.5308 -0.5664 -vn 0.3998 0.8537 -0.3336 -vn 0.8791 -0.3855 0.2803 -vn 0.8793 -0.3852 0.2801 -vn 0.1610 0.3025 -0.9395 -vn 0.1611 0.3027 -0.9394 -vn 0.1609 0.3025 -0.9395 -vn 0.2637 0.7893 -0.5546 -vn 0.2636 0.7893 -0.5546 -vn 0.2637 0.7892 -0.5546 -vn 0.0517 -0.1545 0.9866 -vn 0.0518 -0.1543 0.9867 -vn 0.0518 -0.1547 0.9866 -vn -0.7142 0.2212 -0.6640 -vn -0.7142 0.2212 -0.6641 -vn 0.6217 0.4471 -0.6430 -vn 0.6217 0.4473 -0.6430 -vn 0.6219 0.4473 -0.6428 -vn -0.2308 -0.7077 -0.6678 -vn -0.0573 -0.3744 -0.9255 -vn -0.0571 -0.3744 -0.9255 -vn 0.8914 -0.0577 -0.4496 -vn 0.8914 -0.0583 -0.4495 -vn 0.8914 -0.0584 -0.4495 -vn 0.4917 0.7829 0.3812 -vn 0.4936 0.7816 0.3813 -vn 0.4926 0.7822 0.3815 -vn 0.0169 -0.3159 0.9486 -vn 0.1261 -0.4707 0.8732 -vn 0.1272 -0.4708 0.8730 -vn 0.1266 -0.4705 0.8733 -vn 0.1969 -0.9801 0.0263 -vn 0.1963 -0.9802 0.0265 -vn 0.1965 -0.9801 0.0265 -vn 0.3506 0.9322 -0.0899 -vn 0.1712 -0.2650 -0.9489 -vn 0.1708 -0.2653 -0.9489 -vn 0.1709 -0.2656 -0.9488 -vn -0.0075 0.9149 -0.4036 -vn -0.1968 -0.9023 -0.3836 -vn -0.1967 -0.9023 -0.3835 -vn -0.1966 -0.9023 -0.3836 -vn -0.0725 -0.6344 -0.7696 -vn -0.0725 -0.6343 -0.7697 -vn -0.0726 -0.6344 -0.7696 -vn 0.2304 -0.5313 0.8153 -vn 0.2306 -0.5310 0.8154 -vn 0.2307 -0.5306 0.8156 -vn 0.0435 0.1738 0.9838 -vn 0.0436 0.1739 0.9838 -vn -0.4397 -0.2407 0.8653 -vn -0.4405 -0.2400 0.8651 -vn -0.4396 -0.2408 0.8653 -vn 0.5349 0.1012 0.8388 -vn 0.5351 0.1015 0.8387 -vn 0.0952 0.9885 -0.1172 -vn 0.6304 0.7548 -0.1814 -vn 0.6303 0.7549 -0.1813 -vn 0.6303 0.7548 -0.1817 -vn -0.2298 0.0510 -0.9719 -vn -0.2299 0.0510 -0.9719 -vn -0.2297 0.0509 -0.9719 -vn -0.4208 -0.8831 -0.2076 -vn -0.4210 -0.8830 -0.2074 -vn -0.4211 -0.8830 -0.2073 -vn 0.1203 0.7324 -0.6702 -vn 0.1201 0.7324 -0.6702 -vn 0.1198 0.7325 -0.6702 -vn 0.5334 0.3200 0.7830 -vn 0.5328 0.3195 0.7836 -vn 0.5331 0.3197 0.7833 -vn -0.9113 -0.2105 -0.3539 -vn -0.9112 -0.2103 -0.3543 -vn -0.9113 -0.2106 -0.3538 -vn -0.3132 -0.7274 0.6106 -vn -0.3127 -0.7274 0.6109 -vn -0.3126 -0.7273 0.6110 -vn -0.8843 -0.4520 0.1173 -vn -0.8842 -0.4521 0.1175 -vn -0.8841 -0.4523 0.1177 -vn -0.8115 0.3745 -0.4486 -vn -0.8112 0.3747 -0.4490 -vn -0.8114 0.3746 -0.4486 -vn 0.7677 -0.5054 0.3940 -vn 0.7676 -0.5055 0.3940 -vn -0.5597 0.5671 -0.6043 -vn -0.5596 0.5671 -0.6043 -vn -0.5592 0.5667 -0.6051 -vn 0.2193 -0.9633 0.1546 -vn 0.2189 -0.9634 0.1545 -vn 0.2198 -0.9632 0.1547 -vn 0.0119 -0.0055 0.9999 -vn -0.2229 0.1970 0.9547 -vn -0.2228 0.1966 0.9548 -vn -0.2229 0.1972 0.9547 -vn 0.2088 -0.0986 -0.9730 -vn 0.2093 -0.0991 -0.9728 -vn 0.2091 -0.0989 -0.9729 -vn 0.6452 -0.0918 0.7585 -vn 0.6452 -0.0913 0.7586 -vn 0.6452 -0.0915 0.7585 -vn 0.1568 -0.9853 0.0680 -vn 0.1585 -0.9851 0.0673 -vn 0.1548 -0.9856 0.0673 -vn -0.3190 0.2475 -0.9149 -vn -0.4952 0.8646 -0.0853 -vn -0.4950 0.8646 -0.0862 -vn -0.4951 0.8646 -0.0856 -vn 0.3451 -0.3537 0.8694 -vn 0.3450 -0.3538 0.8694 -vn 0.3452 -0.3541 0.8692 -vn 0.5509 0.1879 -0.8132 -vn 0.5508 0.1881 -0.8132 -vn -0.0326 -0.1558 0.9872 -vn -0.0327 -0.1557 0.9873 -vn -0.0330 -0.1557 0.9872 -vn -0.9839 0.1537 0.0915 -vn -0.9839 0.1536 0.0917 -vn -0.9839 0.1535 0.0918 -vn -0.3561 -0.9305 0.0863 -vn -0.3566 -0.9303 0.0856 -vn -0.3549 -0.9309 0.0870 -vn 0.7620 -0.6473 -0.0192 -vn 0.6239 -0.7354 -0.2645 -vn 0.6235 -0.7361 -0.2634 -vn 0.6236 -0.7358 -0.2640 -vn 0.3657 0.8917 -0.2667 -vn 0.3657 0.8918 -0.2663 -vn 0.3656 0.8920 -0.2660 -vn -0.7282 0.6853 0.0008 -vn -0.7286 0.6849 0.0011 -vn -0.7285 0.6851 0.0009 -vn -0.6306 0.5422 -0.5552 -vn -0.6306 0.5423 -0.5552 -vn -0.2800 0.5326 0.7987 -vn -0.8178 -0.2590 -0.5139 -vn -0.8177 -0.2587 -0.5142 -vn -0.8178 -0.2586 -0.5142 -vn 0.4557 0.8864 -0.0817 -vn 0.4574 0.8853 -0.0837 -vn 0.4560 0.8861 -0.0825 -vn 0.3550 -0.0933 -0.9302 -vn 0.3558 -0.0925 -0.9300 -vn 0.3554 -0.0928 -0.9301 -vn 0.7024 0.1022 0.7044 -vn 0.7029 0.1014 0.7040 -vn 0.7022 0.1026 0.7046 -vn -0.4293 -0.8856 0.1772 -vn -0.4293 -0.8857 0.1770 -vn -0.4293 -0.8856 0.1773 -vn 0.6544 -0.7517 -0.0819 -vn 0.6547 -0.7515 -0.0812 -vn 0.6550 -0.7513 -0.0808 -vn 0.1160 0.8201 -0.5603 -vn 0.1161 0.8201 -0.5603 -vn 0.1156 0.8202 -0.5603 -vn -0.7278 0.0921 -0.6796 -vn -0.7277 0.0918 -0.6797 -vn -0.7279 0.0921 -0.6795 -vn 0.2691 -0.2895 0.9186 -vn 0.2696 -0.2880 0.9189 -vn 0.2695 -0.2870 0.9192 -vn 0.5174 0.1284 0.8460 -vn 0.5176 0.1274 0.8461 -vn 0.5181 0.1264 0.8459 -vn 0.9324 0.3138 0.1791 -vn 0.9323 0.3135 0.1805 -vn 0.9324 0.3135 0.1798 -vn 0.6930 -0.2626 -0.6714 -vn 0.6932 -0.2627 -0.6712 -vn 0.8899 -0.1194 -0.4402 -vn 0.8897 -0.1194 -0.4406 -vn 0.8896 -0.1194 -0.4408 -vn -0.0462 -0.7136 -0.6991 -vn -0.0459 -0.7133 -0.6993 -vn -0.0457 -0.7132 -0.6995 -vn 0.4482 0.7126 0.5397 -vn 0.4474 0.7126 0.5404 -vn 0.4479 0.7126 0.5399 -vn -0.4125 0.3670 0.8338 -vn -0.4130 0.3668 0.8336 -vn -0.4130 0.3666 0.8337 -vn -0.4493 -0.8899 -0.0788 -vn -0.4494 -0.8899 -0.0788 -vn -0.2431 0.9692 0.0391 -vn 0.7242 0.2657 -0.6363 -vn 0.7242 0.2656 -0.6363 -vn -0.5488 0.1426 -0.8237 -vn -0.5489 0.1429 -0.8235 -vn -0.5487 0.1425 -0.8238 -vn -0.5854 -0.7889 -0.1869 -vn -0.5862 -0.7880 -0.1884 -vn 0.0153 0.9144 -0.4046 -vn 0.0153 0.9143 -0.4047 -vn -0.3581 -0.8935 0.2708 -vn -0.3585 -0.8934 0.2706 -vn -0.3589 -0.8932 0.2707 -vn -0.4100 -0.9010 0.1419 -vn -0.4097 -0.9010 0.1428 -vn -0.8867 0.4018 -0.2287 -vn 0.0443 -0.7630 0.6448 -vn 0.6992 0.6612 0.2721 -vn 0.6991 0.6612 0.2720 -vn 0.6489 0.1310 0.7495 -vn 0.6485 0.1294 0.7501 -vn 0.6489 0.1316 0.7494 -vn -0.9589 0.1893 0.2112 -vn 0.1760 0.7859 -0.5928 -vn 0.1760 0.7860 -0.5926 -vn 0.1760 0.7862 -0.5924 -vn -0.8152 0.2278 -0.5325 -vn -0.8153 0.2279 -0.5323 -vn -0.8152 0.2277 -0.5326 -vn -0.0909 0.9828 0.1609 -vn -0.0912 0.9828 0.1607 -vn 0.1975 -0.9801 0.0202 -vn 0.1977 -0.9801 0.0200 -vn 0.1976 -0.9801 0.0201 -vn -0.3702 -0.9128 -0.1726 -vn -0.3686 -0.9137 -0.1709 -vn -0.3693 -0.9132 -0.1720 -vn -0.2576 0.8138 -0.5209 -vn -0.2530 0.8149 -0.5215 -vn -0.2559 0.8145 -0.5207 -vn -0.1476 -0.7627 0.6297 -vn -0.1473 -0.7628 0.6297 -vn -0.1470 -0.7628 0.6297 -vn 0.1039 -0.4550 0.8844 -vn 0.1044 -0.4551 0.8843 -vn 0.1046 -0.4551 0.8843 -vn 0.2943 -0.9443 -0.1471 -vn 0.5677 0.0942 0.8178 -vn 0.5672 0.0935 0.8183 -vn 0.5665 0.0921 0.8189 -vn -0.6259 0.7736 0.0994 -vn -0.6262 0.7734 0.0992 -vn -0.6257 0.7737 0.0995 -vn 0.1336 0.8341 -0.5351 -vn 0.1340 0.8339 -0.5354 -vn 0.1338 0.8340 -0.5353 -vn -0.1397 0.9901 0.0149 -vn -0.1409 0.9899 0.0145 -vn -0.1384 0.9902 0.0160 -vn -0.1414 0.1781 -0.9738 -vn -0.1418 0.1780 -0.9738 -vn -0.1415 0.1781 -0.9738 -vn -0.7161 0.6181 -0.3243 -vn -0.7159 0.6183 -0.3244 -vn -0.7160 0.6182 -0.3243 -vn 0.0587 0.2752 -0.9596 -vn 0.0584 0.2752 -0.9596 -vn 0.0589 0.2750 -0.9596 -vn -0.5381 0.8114 -0.2283 -vn -0.5381 0.8115 -0.2279 -vn -0.5381 0.8114 -0.2282 -vn 0.1759 -0.7606 0.6249 -vn 0.1758 -0.7606 0.6250 -vn 0.1759 -0.7607 0.6248 -vn -0.1857 -0.9177 0.3512 -vn -0.1859 -0.9176 0.3513 -vn -0.1861 -0.9175 0.3514 -vn 0.2715 -0.8909 0.3641 -vn 0.2715 -0.8911 0.3636 -vn 0.2709 -0.8910 0.3644 -vn 0.4499 -0.8076 0.3811 -vn 0.4497 -0.8077 0.3812 -vn 0.2246 -0.5005 -0.8361 -vn 0.2244 -0.5008 -0.8360 -vn 0.0128 -0.2290 -0.9733 -vn 0.0129 -0.2289 -0.9734 -vn 0.4443 -0.8094 0.3841 -vn 0.4446 -0.8094 0.3837 -vn 0.4446 -0.8094 0.3838 -vn 0.4616 0.8856 0.0503 -vn 0.3538 -0.9081 0.2242 -vn 0.3539 -0.9080 0.2243 -vn 0.3538 -0.9080 0.2243 -vn 0.0518 0.4325 0.9002 -vn 0.0518 0.4328 0.9000 -vn 0.0518 0.4327 0.9001 -vn 0.4271 -0.8953 0.1266 -vn 0.4267 -0.8954 0.1273 -vn 0.4272 -0.8953 0.1263 -vn 0.0564 -0.9874 -0.1478 -vn 0.0558 -0.9874 -0.1479 -vn 0.0561 -0.9874 -0.1477 -vn -0.0819 -0.9701 -0.2286 -vn -0.0821 -0.9700 -0.2288 -vn -0.0818 -0.9701 -0.2285 -vn -0.9412 -0.2976 -0.1597 -vn -0.9412 -0.2977 -0.1595 -vn -0.5003 0.5022 0.7054 -vn -0.5001 0.5020 0.7056 -vn -0.0889 0.9631 -0.2540 -vn -0.0886 0.9631 -0.2540 -vn -0.1811 0.8907 0.4170 -vn -0.1812 0.8907 0.4170 -vn -0.1812 0.8906 0.4170 -vn -0.2890 0.4481 0.8460 -vn -0.2889 0.4487 0.8457 -vn -0.2889 0.4484 0.8459 -vn 0.2158 -0.9761 -0.0270 -vn 0.2151 -0.9762 -0.0280 -vn 0.2149 -0.9762 -0.0288 -vn 0.4442 0.8957 0.0200 -vn 0.4438 0.8959 0.0201 -vn 0.4446 0.8955 0.0199 -vn 0.1298 -0.6765 -0.7249 -vn 0.1314 -0.6793 -0.7220 -vn 0.1299 -0.6781 -0.7234 -vn 0.1048 -0.6791 -0.7265 -vn 0.1049 -0.6791 -0.7266 -vn 0.1047 -0.6792 -0.7265 -vn 0.3552 -0.4866 -0.7982 -vn 0.3562 -0.4861 -0.7980 -vn 0.3560 -0.4863 -0.7980 -vn 0.0572 0.3648 0.9293 -vn 0.0569 0.3647 0.9294 -vn -0.7688 0.3225 0.5522 -vn -0.7669 0.3195 0.5565 -vn -0.7634 0.3195 0.5613 -vn -0.1453 0.9176 -0.3700 -vn -0.1458 0.9176 -0.3699 -vn -0.1456 0.9176 -0.3699 -vn -0.3242 0.0719 -0.9433 -vn -0.3243 0.0718 -0.9432 -vn 0.9212 0.2149 -0.3243 -vn -0.7288 -0.1077 -0.6762 -vn -0.7293 -0.1084 -0.6755 -vn 0.6114 -0.3562 -0.7066 -vn 0.6113 -0.3567 -0.7065 -vn 0.6113 -0.3566 -0.7065 -vn -0.4849 -0.8611 0.1529 -vn -0.4841 -0.8617 0.1520 -vn -0.4846 -0.8613 0.1524 -vn -0.5198 -0.8461 0.1179 -vn -0.5197 -0.8462 0.1177 -vn 0.5988 -0.5021 -0.6240 -vn 0.5986 -0.5021 -0.6242 -vn 0.5990 -0.5018 -0.6240 -vn 0.8995 -0.4322 -0.0638 -vn 0.8992 -0.4328 -0.0633 -vn 0.8997 -0.4317 -0.0646 -vn -0.5558 -0.4184 -0.7183 -vn -0.5558 -0.4186 -0.7182 -vn -0.5557 -0.4180 -0.7187 -vn 0.3339 -0.4609 -0.8222 -vn 0.3335 -0.4610 -0.8224 -vn 0.3335 -0.4611 -0.8223 -vn 0.1316 0.6100 0.7814 -vn 0.1320 0.6102 0.7812 -vn 0.0491 -0.3577 -0.9325 -vn 0.0485 -0.3581 -0.9324 -vn 0.0489 -0.3579 -0.9325 -vn 0.2448 0.6764 -0.6946 -vn 0.2448 0.6762 -0.6949 -vn 0.2448 0.6761 -0.6950 -vn -0.0243 0.9853 -0.1690 -vn -0.0242 0.9854 -0.1688 -vn -0.0243 0.9853 -0.1691 -vn -0.1408 -0.1405 0.9800 -vn -0.2971 -0.8990 -0.3218 -vn -0.2953 -0.8995 -0.3220 -vn -0.2988 -0.8989 -0.3206 -vn -0.3621 0.8572 -0.3662 -vn -0.3622 0.8571 -0.3664 -vn -0.9981 -0.0449 0.0411 -vn 0.0716 0.8823 0.4652 -vn 0.0715 0.8823 0.4652 -vn 0.2656 -0.5993 0.7552 -vn 0.2667 -0.5997 0.7545 -vn 0.2664 -0.5992 0.7550 -vn 0.7233 0.6705 0.1652 -vn 0.7233 0.6708 0.1640 -vn 0.7231 0.6712 0.1631 -vn -0.4248 -0.8486 -0.3154 -vn -0.4247 -0.8486 -0.3154 -vn -0.6679 -0.0261 -0.7438 -vn -0.6680 -0.0263 -0.7437 -vn -0.6683 -0.0267 -0.7434 -vn -0.1533 0.9808 0.1202 -vn 0.2989 0.1757 -0.9380 -vn -0.5816 -0.8001 -0.1469 -vn -0.5804 -0.8009 -0.1470 -vn -0.5809 -0.8006 -0.1468 -vn -0.1969 -0.7104 0.6757 -vn -0.1971 -0.7101 0.6759 -vn -0.1970 -0.7102 0.6759 -vn -0.5172 -0.0993 0.8501 -vn -0.5171 -0.0991 0.8502 -vn -0.5170 -0.0990 0.8503 -vn -0.1105 -0.3388 -0.9343 -vn -0.1106 -0.3386 -0.9344 -vn -0.1106 -0.3390 -0.9343 -vn 0.1340 0.9675 -0.2145 -vn 0.1342 0.9676 -0.2138 -vn 0.1345 0.9677 -0.2132 -vn 0.6194 0.4839 -0.6182 -vn 0.6192 0.4840 -0.6183 -vn -0.8296 -0.5549 -0.0615 -vn -0.8297 -0.5548 -0.0616 -vn -0.0975 -0.6450 -0.7579 -vn -0.0977 -0.6450 -0.7579 -vn -0.0977 -0.6449 -0.7580 -vn -0.1966 0.9719 0.1292 -vn -0.1969 0.9719 0.1291 -vn -0.1968 0.9720 0.1288 -vn 0.0573 -0.7042 -0.7077 -vn 0.0576 -0.7042 -0.7077 -vn -0.6955 0.5096 -0.5066 -vn -0.6954 0.5097 -0.5065 -vn -0.6953 0.5098 -0.5065 -vn -0.6217 0.5681 -0.5392 -vn -0.6219 0.5678 -0.5393 -vn -0.6221 0.5677 -0.5392 -vn 0.1994 0.9639 -0.1767 -vn 0.1996 0.9639 -0.1764 -vn 0.1993 0.9638 -0.1770 -vn 0.2551 -0.4737 0.8430 -vn 0.2551 -0.4737 0.8429 -vn -0.4228 -0.8971 0.1283 -vn -0.4230 -0.8970 0.1281 -vn -0.4228 -0.8971 0.1280 -vn 0.5988 0.8007 -0.0164 -vn 0.5987 0.8008 -0.0164 -vn 0.0658 0.9639 -0.2579 -vn -0.1409 0.0041 -0.9900 -vn -0.1410 0.0040 -0.9900 -vn -0.1415 0.0039 -0.9899 -vn 0.2795 0.6328 -0.7221 -vn 0.2793 0.6328 -0.7222 -vn 0.2800 0.6330 -0.7218 -vn 0.1780 -0.7610 0.6238 -vn 0.1779 -0.7611 0.6237 -vn 0.0094 0.7234 -0.6904 -vn 0.0096 0.7235 -0.6903 -vn -0.1246 0.5008 -0.8565 -vn -0.1238 0.5021 -0.8559 -vn -0.1235 0.5034 -0.8552 -vn -0.3652 -0.8485 -0.3830 -vn -0.3651 -0.8487 -0.3827 -vn -0.3651 -0.8486 -0.3829 -vn -0.0114 -0.9184 -0.3955 -vn -0.0113 -0.9183 -0.3957 -vn -0.0112 -0.9182 -0.3959 -vn 0.0418 -0.9876 -0.1515 -vn 0.0421 -0.9876 -0.1515 -vn -0.5676 0.6927 0.4450 -vn -0.5679 0.6922 0.4453 -vn -0.5677 0.6925 0.4451 -vn -0.0821 -0.8907 -0.4470 -vn -0.0825 -0.8908 -0.4469 -vn -0.1808 -0.9296 -0.3212 -vn -0.1807 -0.9296 -0.3212 -vn -0.4138 -0.9086 0.0560 -vn -0.4139 -0.9086 0.0562 -vn -0.4140 -0.9086 0.0561 -vn -0.3074 -0.9366 -0.1683 -vn -0.3070 -0.9367 -0.1686 -vn -0.3071 -0.9366 -0.1685 -vn -0.2677 -0.9564 -0.1169 -vn -0.2681 -0.9562 -0.1172 -vn -0.2675 -0.9564 -0.1172 -vn -0.7295 -0.1624 0.6644 -vn -0.7296 -0.1624 0.6643 -vn 0.7467 0.0200 -0.6649 -vn 0.7469 0.0208 -0.6646 -vn 0.7471 0.0211 -0.6644 -vn 0.6864 -0.7258 -0.0462 -vn 0.6863 -0.7259 -0.0461 -vn 0.6868 -0.7254 -0.0465 -vn -0.4655 0.3285 0.8218 -vn 0.4938 0.7708 -0.4026 -vn 0.4940 0.7706 -0.4026 -vn 0.4939 0.7705 -0.4030 -vn -0.9451 0.0018 -0.3268 -vn -0.9453 0.0029 -0.3263 -vn -0.9453 0.0028 -0.3263 -vn 0.3955 -0.7247 -0.5642 -vn 0.3952 -0.7249 -0.5642 -vn 0.3954 -0.7248 -0.5642 -vn -0.5852 -0.7114 0.3892 -vn -0.5854 -0.7113 0.3890 -vn -0.5852 -0.7114 0.3891 -vn 0.8183 0.3041 0.4877 -vn 0.8977 -0.4378 0.0488 -vn 0.8978 -0.4377 0.0488 -vn 0.4966 -0.2369 -0.8350 -vn 0.4966 -0.2368 -0.8351 -vn 0.4962 -0.2372 -0.8352 -vn 0.2210 -0.8129 0.5388 -vn 0.2210 -0.8128 0.5390 -vn 0.2209 -0.8132 0.5384 -vn 0.7252 0.6498 -0.2278 -vn 0.7252 0.6499 -0.2273 -vn 0.7250 0.6504 -0.2267 -vn -0.4545 -0.7827 -0.4253 -vn -0.4555 -0.7821 -0.4252 -vn -0.4548 -0.7825 -0.4254 -vn 0.7168 -0.6539 -0.2421 -vn -0.2559 -0.6448 0.7202 -vn -0.2559 -0.6453 0.7198 -vn -0.2557 -0.6450 0.7201 -vn -0.6513 -0.6125 -0.4479 -vn -0.6512 -0.6125 -0.4480 -vn 0.0500 0.7893 -0.6120 -vn 0.3184 0.0771 -0.9448 -vn 0.3183 0.0770 -0.9449 -vn -0.1351 -0.2582 0.9566 -vn -0.1352 -0.2582 0.9566 -vn 0.7547 0.5577 0.3456 -vn 0.7547 0.5578 0.3455 -vn -0.2148 -0.3315 0.9187 -vn 0.5557 0.6095 0.5655 -vn 0.5558 0.6097 0.5652 -vn 0.5555 0.6092 0.5660 -vn -0.3421 -0.9388 -0.0407 -vn -0.3422 -0.9387 -0.0406 -vn -0.3424 -0.9387 -0.0405 -vn -0.0448 0.4872 0.8722 -vn -0.0447 0.4871 0.8722 -vn 0.6915 -0.2548 -0.6760 -vn 0.6913 -0.2553 -0.6760 -vn 0.6914 -0.2551 -0.6759 -vn -0.1669 -0.8979 -0.4073 -vn -0.1670 -0.8979 -0.4073 -vn 0.0242 -0.5986 -0.8007 -vn 0.0238 -0.5980 -0.8011 -vn 0.0247 -0.5990 -0.8004 -vn -0.1375 -0.9430 0.3030 -vn -0.1386 -0.9428 0.3031 -vn -0.1376 -0.9430 0.3031 -vn 0.0750 0.4016 0.9128 -vn 0.0751 0.4017 0.9127 -vn 0.0748 0.4013 0.9129 -vn -0.4286 0.7759 -0.4630 -vn -0.4287 0.7759 -0.4628 -vn -0.4286 0.7762 -0.4625 -vn -0.9456 -0.2133 0.2455 -vn -0.9456 -0.2131 0.2459 -vn -0.9455 -0.2131 0.2462 -vn 0.3907 -0.0926 -0.9158 -vn 0.3911 -0.0927 -0.9157 -vn 0.3912 -0.0927 -0.9156 -vn 0.3732 -0.5495 0.7475 -vn 0.3728 -0.5499 0.7474 -vn -0.4139 -0.4027 -0.8164 -vn -0.4144 -0.4021 -0.8164 -vn -0.4148 -0.4019 -0.8164 -vn 0.6431 -0.1705 0.7466 -vn 0.6428 -0.1709 0.7467 -vn -0.9749 0.2207 0.0279 -vn -0.9749 0.2204 0.0306 -vn -0.9750 0.2204 0.0289 -vn 0.2047 -0.0159 0.9787 -vn 0.2047 -0.0158 0.9787 -vn 0.2047 -0.0160 0.9787 -vn 0.1433 0.8724 0.4673 -vn 0.1432 0.8722 0.4677 -vn 0.1431 0.8722 0.4678 -vn 0.4960 0.8662 -0.0603 -vn 0.4963 0.8660 -0.0603 -vn 0.4963 0.8661 -0.0603 -vn -0.9269 -0.0600 -0.3704 -vn -0.9269 -0.0599 -0.3705 -vn -0.7232 -0.1567 -0.6727 -vn -0.7231 -0.1566 -0.6727 -vn -0.2131 -0.9219 0.3235 -vn -0.2116 -0.9223 0.3234 -vn -0.2126 -0.9221 0.3234 -vn -0.7952 0.4201 -0.4372 -vn -0.7944 0.4211 -0.4378 -vn -0.7933 0.4216 -0.4393 -vn -0.0058 0.3021 0.9533 -vn -0.0063 0.3022 0.9532 -vn -0.0067 0.3022 0.9532 -vn 0.0323 -0.7588 0.6505 -vn 0.0326 -0.7586 0.6507 -vn 0.0326 -0.7587 0.6507 -vn 0.0363 0.9977 -0.0579 -vn 0.0372 0.9976 -0.0578 -vn 0.0353 0.9977 -0.0584 -vn -0.3480 -0.9231 0.1636 -vn -0.3479 -0.9232 0.1635 -vn -0.3482 -0.9230 0.1635 -vn -0.3619 -0.9244 0.1208 -vn -0.3616 -0.9245 0.1206 -vn -0.3621 -0.9243 0.1209 -vn 0.3002 0.7672 -0.5668 -vn 0.3002 0.7673 -0.5667 -vn 0.5137 0.8113 -0.2793 -vn 0.9305 0.3568 -0.0823 -vn 0.9304 0.3572 -0.0824 -vn 0.9439 -0.2498 0.2159 -vn 0.9433 -0.2509 0.2175 -vn 0.9427 -0.2521 0.2184 -vn 0.2850 -0.8443 -0.4538 -vn 0.2848 -0.8444 -0.4538 -vn -0.0476 -0.7918 -0.6089 -vn -0.0482 -0.7911 -0.6097 -vn -0.0466 -0.7922 -0.6085 -vn 0.4186 0.9078 -0.0252 -vn -0.4190 -0.9058 -0.0626 -vn -0.5824 0.6152 -0.5313 -vn 0.9720 0.2048 0.1151 -vn 0.9720 0.2046 0.1156 -vn 0.9720 0.2048 0.1154 -vn -0.2296 0.8814 -0.4127 -vn -0.2299 0.8820 -0.4114 -vn -0.2294 0.8827 -0.4101 -vn -0.5238 -0.6245 -0.5793 -vn -0.5240 -0.6244 -0.5793 -vn -0.5245 -0.6241 -0.5791 -vn 0.5062 0.0827 0.8584 -vn 0.6842 0.7155 0.1412 -vn 0.6841 0.7155 0.1416 -vn 0.6842 0.7154 0.1415 -vn 0.9509 0.0629 0.3030 -vn 0.9510 0.0628 0.3026 -vn -0.3983 0.8716 0.2858 -vn 0.0007 -0.9455 -0.3255 -vn 0.0008 -0.9455 -0.3256 -vn 0.0008 -0.9455 -0.3255 -vn -0.3431 -0.1934 0.9192 -vn -0.3625 -0.9033 0.2295 -vn -0.3625 -0.9032 0.2299 -vn -0.3626 -0.9032 0.2297 -vn -0.6952 0.6584 -0.2885 -vn -0.6951 0.6585 -0.2885 -vn -0.6951 0.6584 -0.2885 -vn 0.6806 -0.5497 0.4843 -vn 0.6805 -0.5497 0.4845 -vn 0.6805 -0.5498 0.4844 -vn -0.2956 -0.8707 -0.3930 -vn 0.0203 0.9029 -0.4294 -vn 0.0201 0.9027 -0.4298 -vn 0.0206 0.9030 -0.4291 -vn -0.3483 -0.9372 0.0176 -vn -0.3482 -0.9373 0.0183 -vn -0.3484 -0.9372 0.0175 -vn 0.7163 0.5752 -0.3950 -vn 0.7163 0.5753 -0.3949 -vn 0.4712 -0.8774 -0.0898 -vn 0.4712 -0.8775 -0.0898 -vn 0.4706 -0.8778 -0.0899 -vn 0.7600 -0.3883 0.5212 -vn 0.7598 -0.3887 0.5212 -vn 0.7602 -0.3881 0.5211 -vn -0.0572 -0.9544 -0.2929 -vn -0.0576 -0.9545 -0.2927 -vn -0.0577 -0.9544 -0.2929 -vn 0.2716 0.9617 0.0371 -vn 0.6359 -0.7652 -0.1007 -vn 0.6358 -0.7653 -0.1006 -vn -0.3413 -0.9398 0.0158 -vn -0.3418 -0.9396 0.0154 -vn -0.3411 -0.9399 0.0161 -vn 0.2441 -0.8772 -0.4134 -vn -0.2509 0.7309 0.6347 -vn -0.2506 0.7305 0.6353 -vn -0.2513 0.7309 0.6345 -vn 0.1055 -0.6929 -0.7133 -vn 0.1054 -0.6928 -0.7134 -vn 0.1054 -0.6926 -0.7136 -vn 0.8342 -0.5355 0.1316 -vn 0.8343 -0.5355 0.1315 -vn -0.6655 -0.5901 -0.4570 -vn -0.6654 -0.5902 -0.4570 -vn 0.3895 0.1502 -0.9087 -vn 0.3895 0.1500 -0.9087 -vn 0.2661 -0.8855 -0.3809 -vn 0.2653 -0.8852 -0.3821 -vn 0.2654 -0.8854 -0.3815 -vn 0.0065 0.9785 -0.2064 -vn 0.0065 0.9785 -0.2060 -vn 0.0065 0.9786 -0.2058 -vn 0.8337 -0.4528 0.3159 -vn 0.8338 -0.4529 0.3158 -vn 0.8338 -0.4527 0.3161 -vn 0.3593 0.6264 -0.6918 -vn 0.3594 0.6262 -0.6919 -vn 0.3589 0.6268 -0.6916 -vn -0.8308 0.3715 0.4143 -vn -0.8310 0.3714 0.4142 -vn -0.8310 0.3713 0.4142 -vn 0.3291 -0.1209 -0.9365 -vn 0.3289 -0.1206 -0.9366 -vn 0.2389 -0.3621 0.9010 -vn 0.2385 -0.3612 0.9015 -vn 0.2397 -0.3626 0.9006 -vn 0.6660 -0.7451 -0.0363 -vn 0.6662 -0.7448 -0.0374 -vn 0.6660 -0.7451 -0.0348 -vn -0.6700 0.4711 -0.5738 -vn -0.6700 0.4712 -0.5737 -vn -0.6700 0.4710 -0.5739 -vn 0.6211 0.7036 0.3452 -vn 0.9891 0.1440 -0.0316 -vn 0.9889 0.1450 -0.0319 -vn 0.9889 0.1449 -0.0319 -vn 0.1530 0.9863 0.0616 -vn 0.1535 0.9862 0.0618 -vn 0.1523 0.9864 0.0614 -vn 0.6094 0.6684 0.4265 -vn 0.6086 0.6690 0.4266 -vn 0.6102 0.6675 0.4267 -vn -0.2502 -0.9069 -0.3390 -vn -0.2485 -0.9068 -0.3406 -vn -0.2488 -0.9069 -0.3400 -vn -0.8260 0.1931 -0.5296 -vn -0.8261 0.1933 -0.5293 -vn -0.3043 -0.4932 0.8150 -vn -0.2575 -0.1314 0.9573 -vn -0.2579 -0.1309 0.9573 -vn -0.2575 -0.1320 0.9572 -vn 0.3463 -0.3632 -0.8649 -vn 0.3461 -0.3627 -0.8652 -vn 0.3467 -0.3634 -0.8647 -vn -0.9008 0.4257 0.0855 -vn -0.9009 0.4254 0.0856 -vn 0.1462 0.9878 0.0533 -vn 0.1462 0.9877 0.0553 -vn 0.1461 0.9878 0.0544 -vn -0.3384 -0.9357 -0.1000 -vn -0.1079 -0.8428 -0.5273 -vn -0.1078 -0.8428 -0.5273 -vn -0.1077 -0.8427 -0.5275 -vn -0.1731 0.0874 -0.9810 -vn -0.1731 0.0872 -0.9810 -vn -0.1730 0.0873 -0.9811 -vn 0.5162 -0.1732 -0.8388 -vn 0.5159 -0.1743 -0.8387 -vn 0.5160 -0.1740 -0.8387 -vn -0.1130 0.7654 -0.6335 -vn -0.6987 0.3142 0.6427 -vn 0.6677 0.5456 0.5065 -vn 0.6713 0.5439 0.5036 -vn 0.6697 0.5450 0.5045 -vn 0.7648 0.6400 0.0744 -vn 0.7648 0.6399 0.0743 -vn 0.0566 0.4664 0.8828 -vn 0.0568 0.4666 0.8826 -vn 0.0570 0.4669 0.8825 -vn 0.5593 0.3963 -0.7281 -vn 0.5594 0.3959 -0.7283 -vn 0.5593 0.3947 -0.7290 -vn 0.8008 -0.4603 0.3831 -vn 0.8011 -0.4600 0.3829 -vn 0.8010 -0.4602 0.3829 -vn -0.2068 0.8590 -0.4683 -vn -0.2069 0.8589 -0.4684 -vn -0.2068 0.8592 -0.4679 -vn 0.0297 -0.6153 0.7878 -vn 0.0303 -0.6160 0.7872 -vn 0.0300 -0.6156 0.7875 -vn -0.4959 -0.7754 0.3910 -vn -0.4960 -0.7751 0.3913 -vn -0.4956 -0.7756 0.3910 -vn 0.7848 0.6183 -0.0419 -vn 0.7849 0.6182 -0.0417 -vn -0.2400 0.7620 -0.6014 -vn -0.2399 0.7621 -0.6014 -vn -0.2397 0.7622 -0.6013 -vn 0.3667 0.7958 -0.4819 -vn 0.3667 0.7957 -0.4821 -vn -0.1803 -0.9656 -0.1875 -vn -0.1798 -0.9656 -0.1879 -vn -0.1797 -0.9656 -0.1880 -vn 0.3385 -0.9266 0.1636 -vn 0.3379 -0.9269 0.1635 -vn 0.3374 -0.9270 0.1637 -vn -0.0116 -0.8545 0.5193 -vn -0.0118 -0.8546 0.5191 -vn -0.0115 -0.8545 0.5194 -vn 0.2600 -0.9068 0.3318 -vn 0.5507 0.3011 0.7785 -vn 0.5512 0.3014 0.7780 -vn 0.5508 0.3012 0.7784 -vn -0.0681 0.6888 -0.7217 -vn -0.0689 0.6889 -0.7216 -vn -0.3808 0.9155 0.1298 -vn -0.3808 0.9155 0.1300 -vn 0.9692 0.1264 -0.2114 -vn 0.9692 0.1266 -0.2112 -vn -0.3645 0.7994 0.4776 -vn -0.3645 0.7998 0.4769 -vn -0.3643 0.7997 0.4773 -vn 0.2773 0.8031 -0.5274 -vn 0.2780 0.8030 -0.5271 -vn 0.2776 0.8032 -0.5271 -vn 0.1456 0.4020 -0.9040 -vn 0.1464 0.4025 -0.9036 -vn 0.1457 0.4020 -0.9040 -vn -0.1848 0.2898 0.9391 -vn -0.1844 0.2899 0.9391 -vn -0.1852 0.2895 0.9391 -vn 0.1316 0.0663 0.9891 -vn 0.1318 0.0665 0.9890 -vn 0.1317 0.0660 0.9891 -vn 0.3908 -0.6698 0.6314 -vn 0.3907 -0.6696 0.6316 -vn -0.6589 0.1163 -0.7432 -vn -0.6588 0.1162 -0.7433 -vn 0.3747 0.1834 -0.9088 -vn -0.4441 -0.8955 -0.0292 -vn -0.4443 -0.8954 -0.0289 -vn 0.1916 -0.6303 0.7523 -vn 0.1926 -0.6306 0.7518 -vn 0.1932 -0.6310 0.7514 -vn 0.9612 -0.2536 0.1087 -vn 0.9605 -0.2558 0.1093 -vn 0.9607 -0.2555 0.1089 -vn -0.3148 0.7245 -0.6132 -vn -0.1141 -0.9753 -0.1893 -vn -0.2000 0.9276 0.3155 -vn -0.1996 0.9278 0.3153 -vn -0.2006 0.9274 0.3157 -vn 0.0138 -0.9678 0.2512 -vn 0.0137 -0.9678 0.2513 -vn 0.0140 -0.9679 0.2508 -vn -0.4999 0.8513 0.1592 -vn -0.7218 -0.6611 0.2050 -vn 0.0015 -0.9957 0.0927 -vn 0.0018 -0.9957 0.0928 -vn 0.0016 -0.9957 0.0930 -vn -0.8442 0.3621 0.3952 -vn -0.8442 0.3622 0.3952 -vn -0.3336 -0.9424 0.0247 -vn -0.3338 -0.9423 0.0247 -vn -0.3334 -0.9425 0.0246 -vn 0.9462 -0.2400 -0.2169 -vn 0.9462 -0.2398 -0.2172 -vn 0.9463 -0.2398 -0.2170 -vn 0.3425 0.7199 -0.6037 -vn 0.3426 0.7200 -0.6035 -vn -0.2630 0.7498 -0.6071 -vn -0.2630 0.7497 -0.6073 -vn -0.2627 0.7494 -0.6078 -vn 0.1783 -0.9369 -0.3006 -vn 0.1789 -0.9367 -0.3009 -vn 0.1781 -0.9370 -0.3006 -vn -0.3377 0.7041 -0.6247 -vn -0.3372 0.7055 -0.6233 -vn -0.3374 0.7046 -0.6242 -vn -0.3784 0.9237 0.0603 -vn -0.3699 0.6416 0.6719 -vn -0.3697 0.6415 0.6721 -vn -0.3700 0.6415 0.6720 -vn -0.8648 0.3344 -0.3747 -vn -0.8647 0.3343 -0.3748 -vn 0.0738 0.8349 -0.5454 -vn 0.0744 0.8350 -0.5452 -vn 0.0731 0.8349 -0.5456 -vn -0.9807 0.1900 0.0455 -vn -0.9807 0.1901 0.0454 -vn -0.9807 0.1902 0.0456 -vn 0.6767 0.7188 -0.1595 -vn 0.6768 0.7187 -0.1595 -vn 0.1182 0.6882 -0.7158 -vn 0.1179 0.6880 -0.7161 -vn 0.1181 0.6880 -0.7160 -vn 0.7087 -0.6805 0.1865 -vn -0.6088 0.5537 0.5681 -vn -0.6089 0.5537 0.5680 -vn -0.6089 0.5534 0.5683 -vn -0.1798 -0.9768 -0.1166 -vn 0.3957 0.6270 -0.6710 -vn 0.3948 0.6264 -0.6722 -vn 0.3956 0.6280 -0.6701 -vn -0.6393 0.6520 -0.4076 -vn 0.3981 -0.8438 0.3599 -vn 0.3979 -0.8437 0.3603 -vn 0.3979 -0.8436 0.3606 -vn 0.0695 -0.6948 -0.7158 -vn -0.3332 0.6152 0.7145 -vn -0.3331 0.6152 0.7146 -vn -0.3329 0.6158 0.7141 -vn -0.8810 -0.0484 0.4705 -vn -0.8811 -0.0480 0.4704 -vn -0.8810 -0.0481 0.4706 -vn -0.4448 0.8884 -0.1133 -vn -0.4451 0.8883 -0.1132 -vn -0.4448 0.8884 -0.1136 -vn 0.4649 -0.8171 -0.3410 -vn 0.4648 -0.8173 -0.3405 -vn 0.4649 -0.8172 -0.3407 -vn 0.3425 -0.8954 -0.2846 -vn 0.3424 -0.8954 -0.2845 -vn 0.3423 -0.8954 -0.2847 -vn 0.1148 -0.9378 -0.3277 -vn 0.1151 -0.9381 -0.3265 -vn 0.1148 -0.9380 -0.3270 -vn -0.0301 0.1697 -0.9850 -vn -0.0301 0.1696 -0.9850 -vn -0.0299 0.1693 -0.9851 -vn -0.8766 -0.1836 -0.4449 -vn -0.8757 -0.1835 -0.4467 -vn -0.8751 -0.1839 -0.4476 -vn 0.4089 0.5992 -0.6883 -vn 0.4087 0.5992 -0.6884 -vn 0.4088 0.5992 -0.6884 -vn 0.1775 0.6938 0.6980 -vn 0.1779 0.6935 0.6981 -vn 0.0507 0.8281 -0.5582 -vn 0.2949 0.9218 0.2515 -vn 0.2947 0.9219 0.2513 -vn 0.2945 0.9220 0.2513 -vn -0.8994 -0.1858 -0.3957 -vn -0.8992 -0.1859 -0.3960 -vn -0.1968 -0.9770 0.0823 -vn -0.1666 -0.9775 0.1293 -vn -0.1668 -0.9774 0.1298 -vn -0.1667 -0.9776 0.1288 -vn -0.0821 -0.9169 -0.3905 -vn -0.0819 -0.9170 -0.3904 -vn -0.0822 -0.9169 -0.3906 -vn -0.9937 -0.0500 -0.0999 -vn -0.5134 0.0469 -0.8569 -vn -0.5136 0.0467 -0.8568 -vn -0.5135 0.0467 -0.8568 -vn 0.0556 0.1225 -0.9909 -vn 0.0555 0.1224 -0.9909 -vn -0.1131 -0.0612 -0.9917 -vn -0.0301 0.8467 0.5312 -vn -0.0301 0.8466 0.5314 -vn -0.5966 0.3000 0.7444 -vn -0.5970 0.2997 0.7442 -vn 0.4435 -0.2247 -0.8677 -vn 0.4430 -0.2246 -0.8679 -vn 0.4426 -0.2245 -0.8682 -vn 0.3056 -0.9477 0.0918 -vn 0.3058 -0.9477 0.0918 -vn 0.3060 -0.9476 0.0916 -vn 0.4378 -0.7851 -0.4381 -vn 0.2086 0.6142 0.7611 -vn 0.2087 0.6142 0.7611 -vn 0.1125 -0.1836 -0.9765 -vn 0.1126 -0.1837 -0.9765 -vn 0.1126 -0.1836 -0.9765 -vn 0.3125 -0.6328 0.7084 -vn 0.3116 -0.6316 0.7099 -vn 0.3125 -0.6359 0.7057 -vn 0.3972 -0.4969 0.7716 -vn 0.3975 -0.4972 0.7712 -vn 0.3967 -0.4969 0.7718 -vn -0.4281 0.7680 0.4763 -vn -0.4286 0.7682 0.4755 -vn -0.4287 0.7688 0.4745 -vn -0.9446 0.1678 0.2821 -vn -0.9444 0.1671 0.2832 -vn -0.9448 0.1679 0.2813 -vn -0.8390 0.4823 -0.2520 -vn -0.8390 0.4822 -0.2522 -vn -0.8390 0.4823 -0.2519 -vn 0.2506 0.4531 -0.8555 -vn 0.2500 0.4529 -0.8558 -vn 0.2501 0.4532 -0.8556 -vn 0.6142 -0.2668 0.7427 -vn 0.6139 -0.2665 0.7431 -vn 0.6144 -0.2669 0.7425 -vn 0.5174 0.1554 0.8415 -vn 0.5175 0.1544 0.8416 -vn 0.5174 0.1549 0.8416 -vn -0.3031 -0.9151 0.2659 -vn -0.3032 -0.9150 0.2661 -vn -0.3032 -0.9151 0.2660 -vn 0.5273 0.6512 -0.5458 -vn 0.5274 0.6511 -0.5459 -vn 0.5271 0.6514 -0.5458 -vn -0.2405 0.9700 0.0346 -vn -0.8232 0.3774 0.4241 -vn -0.8227 0.3764 0.4260 -vn -0.8229 0.3772 0.4249 -vn 0.6697 0.5072 -0.5425 -vn 0.6700 0.5063 -0.5429 -vn 0.6697 0.5070 -0.5426 -vn 0.1225 -0.6110 0.7821 -vn 0.2411 0.0163 -0.9704 -vn 0.2407 0.0163 -0.9705 -vn 0.2404 0.0162 -0.9705 -vn 0.8628 -0.1725 0.4751 -vn 0.8628 -0.1726 0.4752 -vn 0.1317 -0.6430 -0.7544 -vn 0.1318 -0.6428 -0.7546 -vn -0.0149 0.4681 -0.8836 -vn -0.0150 0.4683 -0.8834 -vn -0.0148 0.4676 -0.8838 -vn -0.8534 0.2684 -0.4469 -vn -0.8534 0.2685 -0.4468 -vn 0.0259 -0.0778 0.9966 -vn 0.0260 -0.0782 0.9966 -vn 0.0256 -0.0779 0.9966 -vn 0.6401 0.7405 0.2047 -vn 0.6399 0.7411 0.2033 -vn 0.6399 0.7412 0.2028 -vn 0.5921 0.8058 -0.0085 -vn 0.5919 0.8060 -0.0086 -vn -0.9622 -0.2558 -0.0934 -vn -0.9621 -0.2563 -0.0933 -vn -0.9622 -0.2560 -0.0934 -vn 0.0257 -0.3932 -0.9191 -vn 0.0258 -0.3932 -0.9191 -vn 0.0259 -0.3929 -0.9192 -vn 0.3853 -0.1693 0.9071 -vn 0.3861 -0.1701 0.9066 -vn 0.3862 -0.1701 0.9066 -vn -0.2100 -0.9590 0.1901 -vn -0.2099 -0.9590 0.1902 -vn -0.5943 -0.7987 0.0945 -vn -0.5943 -0.7987 0.0947 -vn -0.5943 -0.7987 0.0944 -vn -0.7946 0.1847 0.5784 -vn -0.7945 0.1845 0.5785 -vn -0.1432 -0.9873 -0.0682 -vn -0.0503 -0.9803 -0.1912 -vn -0.0502 -0.9803 -0.1911 -vn 0.3178 0.9105 -0.2646 -vn 0.3176 0.9106 -0.2646 -vn 0.2548 -0.8958 0.3641 -vn 0.2541 -0.8957 0.3648 -vn 0.2544 -0.8958 0.3645 -vn 0.2780 -0.8358 0.4735 -vn 0.2783 -0.8360 0.4730 -vn 0.2784 -0.8360 0.4728 -vn 0.2814 0.4107 0.8672 -vn 0.2810 0.4106 0.8674 -vn -0.3913 0.6130 -0.6863 -vn -0.3915 0.6129 -0.6864 -vn -0.3914 0.6131 -0.6862 -vn -0.5996 0.5454 0.5857 -vn -0.5998 0.5450 0.5858 -vn -0.5995 0.5455 0.5857 -vn -0.1720 0.4499 -0.8764 -vn -0.1720 0.4496 -0.8765 -vn -0.1721 0.4502 -0.8762 -vn 0.0999 0.6461 -0.7567 -vn 0.0991 0.6463 -0.7566 -vn 0.1007 0.6464 -0.7563 -vn 0.7624 -0.3493 0.5447 -vn 0.7626 -0.3494 0.5444 -vn 0.7625 -0.3494 0.5445 -vn -0.2034 0.0760 -0.9761 -vn -0.2026 0.0758 -0.9763 -vn -0.2026 0.0757 -0.9763 -vn -0.0662 -0.7155 -0.6954 -vn 0.2963 -0.5607 -0.7732 -vn 0.2963 -0.5608 -0.7731 -vn -0.0676 0.8683 0.4914 -vn -0.0676 0.8682 0.4917 -vn -0.0676 0.8683 0.4915 -vn -0.7566 0.6367 0.1486 -vn -0.7563 0.6370 0.1490 -vn -0.7560 0.6373 0.1493 -vn -0.1401 -0.5106 -0.8483 -vn -0.1403 -0.5097 -0.8488 -vn -0.1401 -0.5102 -0.8486 -vn -0.1317 0.4758 0.8696 -vn 0.5236 0.5162 0.6778 -vn 0.5230 0.5161 0.6783 -vn 0.5231 0.5161 0.6782 -vn -0.3829 -0.8951 -0.2283 -vn -0.3830 -0.8950 -0.2286 -vn -0.3830 -0.8951 -0.2285 -vn 0.5229 0.8077 -0.2725 -vn -0.8542 0.0239 -0.5194 -vn 0.0337 0.0192 -0.9992 -vn 0.0336 0.0187 -0.9993 -vn 0.3450 -0.8890 -0.3009 -vn -0.8157 -0.2832 0.5044 -vn -0.8153 -0.2825 0.5054 -vn -0.8160 -0.2834 0.5038 -vn 0.0379 0.9471 0.3187 -vn 0.0380 0.9471 0.3187 -vn 0.0382 0.9472 0.3182 -vn 0.0882 -0.4823 -0.8716 -vn 0.0881 -0.4823 -0.8716 -vn 0.0879 -0.4820 -0.8717 -vn 0.5016 0.8378 0.2156 -vn 0.5019 0.8377 0.2154 -vn -0.2350 0.5568 -0.7967 -vn -0.5613 0.2106 -0.8003 -vn -0.5613 0.2106 -0.8004 -vn -0.5613 0.2107 -0.8003 -vn -0.0879 -0.0351 0.9955 -vn -0.0891 -0.0360 0.9954 -vn -0.0889 -0.0357 0.9954 -vn 0.8538 -0.4692 -0.2257 -vn 0.8539 -0.4689 -0.2258 -vn -0.3764 -0.9263 0.0170 -vn -0.3765 -0.9263 0.0163 -vn -0.3763 -0.9263 0.0172 -vn 0.3277 0.9434 -0.0515 -vn 0.3279 0.9433 -0.0519 -vn 0.3277 0.9434 -0.0518 -vn -0.1433 0.7349 0.6628 -vn -0.1421 0.7357 0.6623 -vn -0.1416 0.7361 0.6619 -vn 0.4648 0.3946 -0.7926 -vn 0.4667 0.3932 -0.7922 -vn 0.4659 0.3936 -0.7925 -vn -0.5314 -0.8131 -0.2377 -vn -0.5319 -0.8129 -0.2371 -vn -0.5313 -0.8131 -0.2380 -vn 0.1375 -0.2444 0.9599 -vn 0.1371 -0.2450 0.9598 -vn 0.1381 -0.2438 0.9599 -vn 0.2401 0.0063 -0.9707 -vn 0.2408 0.0073 -0.9705 -vn 0.2383 0.0052 -0.9712 -vn -0.9923 -0.0276 -0.1207 -vn -0.9922 -0.0274 -0.1216 -vn -0.9922 -0.0274 -0.1213 -vn -0.3607 -0.4205 -0.8325 -vn -0.3607 -0.4207 -0.8324 -vn -0.3608 -0.4212 -0.8321 -vn 0.7668 -0.2843 -0.5755 -vn 0.7668 -0.2840 -0.5756 -vn 0.7667 -0.2841 -0.5757 -vn 0.6781 -0.2141 -0.7031 -vn 0.6783 -0.2144 -0.7028 -vn 0.6780 -0.2139 -0.7033 -vn -0.2313 -0.1049 0.9672 -vn -0.2323 -0.1045 0.9670 -vn -0.2332 -0.1045 0.9668 -vn 0.5872 0.7108 0.3872 -vn 0.5878 0.7101 0.3877 -vn 0.5883 0.7095 0.3878 -vn 0.9109 0.3278 -0.2508 -vn 0.9109 0.3277 -0.2507 -vn -0.4460 -0.8586 0.2527 -vn -0.4468 -0.8580 0.2535 -vn -0.4462 -0.8588 0.2519 -vn 0.8301 0.3762 -0.4116 -vn 0.8307 0.3774 -0.4093 -vn 0.8305 0.3764 -0.4106 -vn 0.1065 -0.5075 -0.8550 -vn 0.1067 -0.5072 -0.8552 -vn 0.1070 -0.5071 -0.8552 -vn -0.5229 0.7698 0.3661 -vn -0.5230 0.7696 0.3663 -vn -0.5228 0.7698 0.3661 -vn -0.4437 0.7954 0.4129 -vn -0.4440 0.7953 0.4127 -vn 0.0335 0.2008 0.9791 -vn 0.0336 0.2002 0.9792 -vn 0.0341 0.1993 0.9793 -vn 0.2510 -0.9350 0.2506 -vn 0.2495 -0.9356 0.2497 -vn 0.2501 -0.9354 0.2498 -vn 0.5581 -0.8003 0.2191 -vn 0.5581 -0.8003 0.2192 -vn 0.7573 -0.6491 -0.0719 -vn 0.7573 -0.6492 -0.0712 -vn -0.9797 0.1579 -0.1233 -vn -0.9796 0.1579 -0.1240 -vn -0.9797 0.1578 -0.1240 -vn -0.4236 0.3643 -0.8294 -vn -0.4235 0.3643 -0.8294 -vn 0.8001 -0.0595 0.5969 -vn 0.7998 -0.0593 0.5973 -vn -0.0810 -0.0420 0.9958 -vn -0.0808 -0.0422 0.9958 -vn -0.0812 -0.0418 0.9958 -vn 0.0863 0.8535 -0.5140 -vn 0.4015 0.9031 0.1522 -vn 0.9035 -0.4117 -0.1190 -vn 0.9034 -0.4119 -0.1191 -vn 0.9037 -0.4115 -0.1186 -vn -0.3000 -0.8873 0.3503 -vn -0.2984 -0.8876 0.3508 -vn -0.2971 -0.8881 0.3507 -vn 0.8044 0.5518 0.2200 -vn 0.8047 0.5515 0.2197 -vn 0.7429 -0.4183 0.5227 -vn 0.7429 -0.4183 0.5226 -vn 0.7430 -0.4182 0.5225 -vn -0.9853 -0.1668 0.0378 -vn -0.9852 -0.1671 0.0378 -vn -0.3780 -0.4947 -0.7825 -vn 0.7315 -0.5885 -0.3444 -vn 0.7312 -0.5886 -0.3450 -vn 0.7326 -0.5879 -0.3431 -vn -0.8819 0.2981 0.3654 -vn -0.8819 0.2983 0.3651 -vn -0.8819 0.2980 0.3652 -vn 0.5187 -0.6670 0.5348 -vn 0.5186 -0.6671 0.5349 -vn 0.5185 -0.6671 0.5350 -vn 0.3972 0.2755 0.8754 -vn 0.3972 0.2753 0.8755 -vn 0.3972 0.2756 0.8754 -vn 0.9608 0.0381 0.2746 -vn 0.9608 0.0379 0.2748 -vn 0.9608 0.0380 0.2746 -vn 0.3571 0.9189 -0.1675 -vn 0.3571 0.9188 -0.1680 -vn 0.3572 0.9189 -0.1677 -vn 0.4901 -0.5383 -0.6856 -vn 0.4903 -0.5384 -0.6853 -vn 0.4906 -0.5384 -0.6851 -vn -0.2606 -0.0850 -0.9617 -vn -0.2608 -0.0848 -0.9617 -vn -0.2604 -0.0857 -0.9617 -vn -0.0844 0.6952 -0.7138 -vn -0.0844 0.6957 -0.7134 -vn -0.0844 0.6961 -0.7130 -vn 0.6553 0.4459 -0.6097 -vn 0.5455 0.6618 0.5142 -vn 0.5455 0.6619 0.5142 -vn 0.5454 0.6617 0.5145 -vn -0.6444 -0.7641 -0.0301 -vn -0.6441 -0.7644 -0.0296 -vn -0.6442 -0.7643 -0.0298 -vn -0.7493 0.5203 -0.4096 -vn -0.7493 0.5204 -0.4096 -vn -0.7494 0.5202 -0.4097 -vn 0.0016 0.3424 0.9395 -vn 0.0015 0.3426 0.9395 -vn 0.0013 0.3427 0.9394 -vn 0.5651 -0.0732 -0.8218 -vn 0.5650 -0.0732 -0.8218 -vn 0.5648 -0.0732 -0.8220 -vn -0.0466 -0.0061 -0.9989 -vn -0.0467 -0.0062 -0.9989 -vn -0.4233 0.6191 0.6615 -vn -0.4234 0.6187 0.6618 -vn -0.4231 0.6195 0.6613 -vn 0.2852 -0.7788 0.5587 -vn 0.2856 -0.7785 0.5589 -vn 0.2859 -0.7780 0.5595 -vn 0.0584 0.4729 -0.8792 -vn 0.0584 0.4732 -0.8790 -vn 0.0584 0.4727 -0.8793 -vn 0.7130 -0.0778 0.6968 -vn -0.0617 -0.9346 -0.3502 -vn 0.2580 0.4712 0.8434 -vn 0.2579 0.4708 0.8437 -vn 0.6155 -0.7696 0.1697 -vn 0.6156 -0.7696 0.1694 -vn 0.6153 -0.7697 0.1700 -vn -0.3196 0.6345 -0.7038 -vn -0.3201 0.6349 -0.7032 -vn -0.3199 0.6347 -0.7035 -vn -0.4035 0.7450 -0.5312 -vn -0.4034 0.7450 -0.5312 -vn -0.4036 0.7450 -0.5311 -vn -0.3910 -0.2128 -0.8955 -vn -0.3913 -0.2128 -0.8953 -vn -0.3914 -0.2127 -0.8953 -vn 0.6740 0.6660 0.3198 -vn 0.6740 0.6659 0.3199 -vn 0.3958 0.9146 0.0822 -vn 0.3960 0.9146 0.0821 -vn -0.5394 -0.8372 0.0903 -vn -0.5392 -0.8373 0.0902 -vn 0.9812 -0.0642 0.1822 -vn 0.3049 -0.3712 -0.8771 -vn 0.3037 -0.3708 -0.8777 -vn 0.3046 -0.3712 -0.8772 -vn -0.7517 -0.2452 -0.6122 -vn -0.7525 -0.2448 -0.6114 -vn -0.7518 -0.2452 -0.6121 -vn -0.7530 -0.4712 -0.4593 -vn -0.7531 -0.4712 -0.4592 -vn -0.7529 -0.4713 -0.4593 -vn 0.2739 0.8462 0.4571 -vn 0.2741 0.8462 0.4569 -vn 0.2750 0.1598 -0.9481 -vn 0.2762 0.1588 -0.9479 -vn 0.2755 0.1593 -0.9480 -vn -0.7204 0.1502 0.6771 -vn -0.7205 0.1502 0.6770 -vn -0.1934 -0.8367 -0.5124 -vn -0.1932 -0.8367 -0.5124 -vn -0.1939 -0.8366 -0.5124 -vn 0.9280 -0.3710 0.0355 -vn 0.9280 -0.3709 0.0350 -vn 0.9280 -0.3709 0.0353 -vn -0.3869 -0.7454 -0.5428 -vn -0.3876 -0.7451 -0.5428 -vn -0.3883 -0.7445 -0.5430 -vn -0.2373 -0.8692 -0.4337 -vn -0.2379 -0.8694 -0.4331 -vn -0.2375 -0.8693 -0.4334 -vn 0.2771 0.9418 -0.1901 -vn 0.2765 0.9419 -0.1906 -vn 0.2776 0.9418 -0.1896 -vn 0.6621 -0.7205 -0.2060 -vn -0.4294 -0.8601 -0.2755 -vn -0.4293 -0.8601 -0.2755 -vn -0.4292 -0.8602 -0.2755 -vn -0.1836 -0.2289 0.9560 -vn -0.1829 -0.2297 0.9559 -vn -0.1832 -0.2292 0.9560 -vn -0.5071 -0.8325 -0.2232 -vn -0.5072 -0.8324 -0.2232 -vn -0.5070 -0.8326 -0.2232 -vn 0.0745 0.2834 0.9561 -vn 0.0738 0.2842 0.9559 -vn 0.0740 0.2837 0.9560 -vn -0.4494 0.8495 0.2763 -vn -0.4497 0.8493 0.2765 -vn -0.4488 0.8498 0.2764 -vn 0.2768 0.9583 0.0709 -vn 0.2767 0.9583 0.0710 -vn 0.2766 0.9583 0.0718 -vn 0.0708 0.9970 0.0322 -vn 0.0708 0.9970 0.0321 -vn 0.7817 -0.4647 -0.4160 -vn 0.1307 -0.9375 -0.3226 -vn 0.1304 -0.9374 -0.3230 -vn 0.1304 -0.9373 -0.3233 -vn 0.6315 0.1349 0.7636 -vn 0.6309 0.1351 0.7640 -vn 0.6304 0.1351 0.7644 -vn -0.1675 -0.9070 -0.3865 -vn -0.1682 -0.9063 -0.3876 -vn -0.1681 -0.9066 -0.3870 -vn 0.0195 -0.9035 -0.4281 -vn 0.0194 -0.9036 -0.4279 -vn 0.0195 -0.9034 -0.4284 -vn 0.1585 -0.0201 0.9872 -vn 0.1597 -0.0199 0.9870 -vn 0.1608 -0.0190 0.9868 -vn 0.2397 0.9395 -0.2446 -vn 0.2397 0.9395 -0.2448 -vn 0.2392 0.9396 -0.2449 -vn -0.1326 0.8302 -0.5415 -vn -0.1321 0.8301 -0.5417 -vn 0.0987 -0.7550 -0.6482 -vn 0.0986 -0.7552 -0.6480 -vn 0.0987 -0.7557 -0.6475 -vn -0.2415 -0.9688 0.0557 -vn -0.2412 -0.9689 0.0560 -vn -0.2411 -0.9689 0.0562 -vn 0.0955 0.4830 -0.8704 -vn 0.0954 0.4829 -0.8704 -vn -0.2851 -0.5849 0.7593 -vn 0.1536 0.9878 0.0253 -vn 0.1535 0.9878 0.0252 -vn 0.1535 0.9878 0.0254 -vn 0.0211 0.6899 -0.7236 -vn 0.0207 0.6898 -0.7237 -vn 0.0204 0.6897 -0.7238 -vn -0.3188 -0.8067 0.4976 -vn -0.3187 -0.8065 0.4979 -vn -0.3451 -0.8180 0.4602 -vn -0.3453 -0.8179 0.4602 -vn -0.3447 -0.8181 0.4603 -vn 0.0753 -0.1772 0.9813 -vn 0.0755 -0.1773 0.9813 -vn 0.0752 -0.1771 0.9813 -vn -0.4034 -0.3605 -0.8410 -vn -0.4042 -0.3615 -0.8402 -vn -0.4038 -0.3608 -0.8407 -vn 0.6551 0.7488 0.1006 -vn 0.6551 0.7488 0.1007 -vn -0.4759 0.7374 -0.4794 -vn -0.4755 0.7376 -0.4794 -vn -0.4757 0.7375 -0.4794 -vn -0.4865 0.7261 -0.4859 -vn -0.4867 0.7259 -0.4860 -vn -0.4866 0.7260 -0.4859 -vn 0.6064 0.5501 0.5742 -vn 0.6064 0.5503 0.5739 -vn 0.6064 0.5503 0.5740 -vn -0.2742 -0.3534 0.8944 -vn -0.2743 -0.3534 0.8943 -vn -0.2744 -0.3535 0.8943 -vn 0.7370 0.6302 0.2443 -vn 0.3707 -0.3316 -0.8675 -vn 0.3712 -0.3323 -0.8670 -vn 0.3709 -0.3321 -0.8673 -vn -0.9001 -0.2807 -0.3332 -vn -0.9000 -0.2806 -0.3334 -vn -0.9000 -0.2808 -0.3335 -vn -0.3063 -0.9492 -0.0723 -vn -0.3064 -0.9491 -0.0725 -vn -0.3065 -0.9491 -0.0725 -vn -0.0202 0.8270 -0.5618 -vn -0.0205 0.8272 -0.5616 -vn -0.0206 0.8273 -0.5614 -vn 0.0718 -0.6374 0.7672 -vn 0.0715 -0.6375 0.7671 -vn 0.0716 -0.6375 0.7671 -vn 0.5513 0.8170 -0.1689 -vn 0.5513 0.8170 -0.1688 -vn 0.5513 0.8171 -0.1688 -vn -0.6436 0.6927 -0.3254 -vn -0.6435 0.6932 -0.3246 -vn -0.6436 0.6929 -0.3252 -vn 0.9433 -0.2673 0.1969 -vn 0.0185 0.7460 0.6657 -vn 0.0186 0.7465 0.6651 -vn -0.0758 -0.7921 -0.6056 -vn -0.0767 -0.7925 -0.6050 -vn -0.0761 -0.7922 -0.6055 -vn -0.2340 -0.7757 -0.5861 -vn -0.2335 -0.7759 -0.5861 -vn -0.2341 -0.7758 -0.5860 -vn -0.0623 -0.9353 -0.3484 -vn -0.0618 -0.9350 -0.3492 -vn -0.0620 -0.9351 -0.3488 -vn -0.1537 -0.9760 -0.1542 -vn -0.1536 -0.9760 -0.1542 -vn -0.1539 -0.9761 -0.1537 -vn 0.9173 0.3869 0.0942 -vn 0.9172 0.3871 0.0942 -vn 0.1831 0.0528 -0.9817 -vn 0.1838 0.0529 -0.9815 -vn 0.1841 0.0523 -0.9815 -vn -0.8254 0.3492 -0.4437 -vn -0.8253 0.3493 -0.4437 -vn -0.1263 -0.0223 0.9917 -vn -0.1257 -0.0230 0.9918 -vn -0.1251 -0.0234 0.9919 -vn 0.6542 0.7395 -0.1587 -vn 0.6549 0.7388 -0.1590 -vn 0.6545 0.7392 -0.1588 -vn -0.0331 -0.6227 0.7818 -vn -0.0328 -0.6229 0.7816 -vn -0.0332 -0.6226 0.7818 -vn 0.5983 -0.7045 -0.3819 -vn 0.6013 -0.7024 -0.3809 -vn 0.6006 -0.7031 -0.3808 -vn -0.2744 0.4686 -0.8397 -vn 0.6723 0.2153 -0.7083 -vn 0.6727 0.2151 -0.7080 -vn -0.4281 -0.7940 -0.4315 -vn 0.3840 0.9225 -0.0391 -vn 0.3838 0.9226 -0.0389 -vn 0.3842 0.9224 -0.0392 -vn 0.1905 0.9534 0.2341 -vn 0.1909 0.9532 0.2343 -vn 0.9061 -0.3877 0.1692 -vn 0.9058 -0.3882 0.1695 -vn 0.9060 -0.3880 0.1693 -vn 0.4557 0.0210 0.8899 -vn 0.4557 0.0211 0.8899 -vn -0.0397 -0.6422 -0.7655 -vn -0.0394 -0.6424 -0.7654 -vn -0.0394 -0.6423 -0.7654 -vn 0.0265 0.0576 -0.9980 -vn 0.2864 0.7704 -0.5696 -vn 0.2864 0.7705 -0.5694 -vn 0.6656 0.4710 -0.5789 -vn 0.6655 0.4713 -0.5788 -vn -0.0779 0.4979 0.8637 -vn -0.0778 0.4978 0.8638 -vn 0.3196 0.5411 -0.7779 -vn 0.3192 0.5411 -0.7780 -vn 0.3194 0.5411 -0.7779 -vn -0.0566 0.2099 -0.9761 -vn -0.0568 0.2098 -0.9761 -vn -0.0567 0.2098 -0.9761 -vn -0.7200 0.0337 -0.6932 -vn 0.6874 0.5174 0.5096 -vn 0.6873 0.5177 0.5095 -vn 0.6876 0.5177 0.5091 -vn 0.3009 0.1917 0.9342 -vn 0.6392 -0.3904 0.6626 -vn 0.6398 -0.3903 0.6621 -vn 0.6396 -0.3903 0.6622 -vn -0.1307 0.6560 0.7433 -vn -0.1309 0.6559 0.7434 -vn -0.4452 0.1840 -0.8763 -vn -0.4451 0.1839 -0.8764 -vn -0.5655 0.0999 -0.8187 -vn -0.5656 0.0999 -0.8186 -vn -0.5656 0.0998 -0.8186 -vn 0.7490 -0.6442 -0.1549 -vn 0.7485 -0.6450 -0.1543 -vn 0.7487 -0.6447 -0.1544 -vn -0.3172 -0.9093 0.2693 -vn -0.3170 -0.9094 0.2694 -vn -0.3176 -0.9092 0.2692 -vn 0.1638 -0.6339 0.7559 -vn 0.1639 -0.6337 0.7560 -vn 0.1640 -0.6335 0.7561 -vn -0.4668 -0.8825 0.0576 -vn -0.4663 -0.8827 0.0579 -vn -0.0552 0.9334 -0.3545 -vn -0.0554 0.9335 -0.3543 -vn -0.0554 0.9331 -0.3552 -vn -0.3490 -0.9371 0.0108 -vn -0.3486 -0.9372 0.0107 -vn -0.3488 -0.9371 0.0106 -vn 0.0668 0.9861 -0.1523 -vn 0.0667 0.9861 -0.1524 -vn -0.4520 -0.8578 0.2446 -vn 0.8808 -0.0393 0.4719 -vn 0.8807 -0.0395 0.4720 -vn 0.8807 -0.0398 0.4721 -vn -0.0733 0.4969 0.8647 -vn -0.0742 0.4967 0.8648 -vn -0.0728 0.4968 0.8648 -vn 0.8753 -0.4177 0.2438 -vn 0.8758 -0.4170 0.2432 -vn 0.8755 -0.4174 0.2433 -vn 0.0461 -0.4481 -0.8928 -vn 0.0459 -0.4480 -0.8928 -vn 0.0460 -0.4480 -0.8928 -vn -0.8883 0.4126 -0.2017 -vn -0.8880 0.4128 -0.2025 -vn -0.8882 0.4126 -0.2022 -vn -0.6456 -0.0980 -0.7574 -vn -0.6436 -0.0966 -0.7592 -vn -0.6444 -0.0976 -0.7584 -vn -0.9307 -0.0503 -0.3624 -vn -0.9308 -0.0496 -0.3622 -vn -0.9308 -0.0494 -0.3622 -vn -0.8951 0.4373 0.0867 -vn -0.8953 0.4368 0.0876 -vn -0.8952 0.4372 0.0863 -vn -0.2043 -0.9189 0.3375 -vn -0.2045 -0.9186 0.3383 -vn -0.2044 -0.9187 0.3380 -vn 0.3450 -0.6267 0.6987 -vn 0.3456 -0.6270 0.6981 -vn 0.3454 -0.6268 0.6984 -vn -0.3467 0.7194 0.6019 -vn -0.3464 0.7197 0.6017 -vn -0.3467 0.7192 0.6021 -vn 0.9370 -0.1092 -0.3319 -vn 0.9373 -0.1087 -0.3312 -vn 0.9366 -0.1104 -0.3326 -vn -0.3570 -0.9061 -0.2270 -vn -0.3567 -0.9063 -0.2268 -vn -0.3560 -0.9066 -0.2267 -vn -0.9778 0.2059 0.0392 -vn -0.9778 0.2059 0.0395 -vn -0.9778 0.2059 0.0394 -vn -0.5832 -0.3460 0.7350 -vn -0.5830 -0.3458 0.7352 -vn -0.5829 -0.3460 0.7352 -vn 0.8772 -0.4791 0.0332 -vn 0.8771 -0.4791 0.0332 -vn 0.8772 -0.4789 0.0332 -vn -0.5817 0.5187 -0.6266 -vn -0.5815 0.5193 -0.6263 -vn -0.5819 0.5184 -0.6267 -vn -0.0975 -0.7091 0.6983 -vn -0.0978 -0.7094 0.6980 -vn -0.0979 -0.7095 0.6979 -vn 0.8044 -0.4039 0.4357 -vn 0.8042 -0.4035 0.4363 -vn 0.8043 -0.4036 0.4361 -vn 0.1608 -0.8404 0.5175 -vn 0.1622 -0.8405 0.5170 -vn 0.1614 -0.8404 0.5174 -vn -0.1395 -0.9600 0.2429 -vn -0.1398 -0.9599 0.2428 -vn -0.1389 -0.9599 0.2434 -vn -0.5798 0.6984 -0.4196 -vn -0.5802 0.6981 -0.4196 -vn -0.5804 0.6979 -0.4196 -vn 0.5384 0.8416 0.0417 -vn 0.5378 0.8421 0.0412 -vn 0.5371 0.8426 0.0399 -vn -0.4764 0.7589 -0.4440 -vn 0.7817 -0.4659 -0.4146 -vn 0.7816 -0.4661 -0.4146 -vn 0.7701 0.3000 -0.5629 -vn 0.7702 0.2999 -0.5629 -vn 0.7703 0.2998 -0.5629 -vn -0.3556 0.4692 -0.8083 -vn 0.1189 -0.0091 -0.9929 -vn 0.1191 -0.0092 -0.9928 -vn 0.1190 -0.0089 -0.9929 -vn -0.3648 -0.9055 0.2167 -vn -0.3648 -0.9057 0.2161 -vn 0.5265 0.1866 -0.8294 -vn 0.5256 0.1880 -0.8297 -vn 0.5253 0.1898 -0.8295 -vn -0.7999 0.5137 -0.3101 -vn -0.8003 0.5135 -0.3097 -vn -0.8007 0.5130 -0.3093 -vn 0.0902 -0.8343 0.5438 -vn 0.0879 -0.8350 0.5432 -vn 0.0895 -0.8348 0.5433 -vn 0.8858 -0.1676 0.4327 -vn 0.8859 -0.1674 0.4326 -vn 0.1217 0.2147 0.9691 -vn 0.1213 0.2138 0.9693 -vn 0.1219 0.2156 0.9688 -vn 0.0843 -0.2756 -0.9576 -vn 0.0844 -0.2757 -0.9575 -vn -0.1741 -0.9463 -0.2725 -vn -0.1750 -0.9461 -0.2725 -vn -0.1745 -0.9462 -0.2726 -vn 0.1252 -0.0172 0.9920 -vn 0.1251 -0.0173 0.9920 -vn 0.1253 -0.0170 0.9920 -vn 0.6882 -0.4142 -0.5957 -vn 0.6880 -0.4142 -0.5959 -vn 0.6885 -0.4143 -0.5953 -vn -0.1727 -0.5744 0.8001 -vn -0.1732 -0.5746 0.7999 -vn -0.1730 -0.5745 0.8000 -vn 0.2903 0.9568 0.0161 -vn -0.6993 -0.5699 -0.4315 -vn -0.6998 -0.5695 -0.4313 -vn -0.6992 -0.5700 -0.4316 -vn 0.9161 -0.3673 -0.1606 -vn 0.9163 -0.3668 -0.1604 -vn -0.4493 -0.0731 -0.8904 -vn -0.4486 -0.0747 -0.8906 -vn -0.4492 -0.0737 -0.8904 -vn -0.3015 -0.2695 -0.9146 -vn -0.3014 -0.2694 -0.9147 -vn -0.3016 -0.2695 -0.9146 -vn 0.6450 0.5076 -0.5713 -vn 0.6448 0.5074 -0.5716 -vn 0.6449 0.5077 -0.5712 -vn -0.4513 0.0708 0.8896 -vn -0.4510 0.0706 0.8897 -vn -0.4528 0.0706 0.8888 -vn 0.4999 0.0792 -0.8625 -vn 0.5002 0.0791 -0.8623 -vn 0.9108 -0.0808 0.4049 -vn 0.0629 0.1331 0.9891 -vn 0.0626 0.1332 0.9891 -vn 0.0649 0.1335 0.9889 -vn -0.5686 0.7392 -0.3610 -vn -0.5686 0.7390 -0.3613 -vn -0.5684 0.7392 -0.3613 -vn -0.4219 -0.7603 0.4939 -vn -0.4226 -0.7601 0.4936 -vn -0.4224 -0.7603 0.4934 -vn 0.9391 0.0186 0.3432 -vn 0.9392 0.0187 0.3429 -vn -0.1657 -0.2536 0.9530 -vn -0.1656 -0.2535 0.9531 -vn -0.1656 -0.2537 0.9530 -vn 0.1829 -0.8641 -0.4689 -vn 0.1826 -0.8644 -0.4685 -vn 0.1827 -0.8643 -0.4687 -vn -0.2439 -0.4123 0.8778 -vn -0.2453 -0.4122 0.8774 -vn 0.5077 -0.6635 -0.5495 -vn 0.5077 -0.6636 -0.5494 -vn 0.9453 -0.0274 0.3250 -vn 0.9452 -0.0278 0.3252 -vn 0.9452 -0.0279 0.3252 -vn -0.8130 0.5594 -0.1618 -vn 0.8335 0.2238 0.5051 -vn 0.8332 0.2239 0.5056 -vn 0.8331 0.2242 0.5056 -vn -0.7146 0.6887 0.1225 -vn -0.5138 0.4192 -0.7485 -vn -0.4605 0.3363 -0.8215 -vn -0.4603 0.3365 -0.8215 -vn -0.4606 0.3360 -0.8215 -vn -0.6865 0.6494 -0.3272 -vn 0.2592 -0.5015 0.8254 -vn 0.2589 -0.5014 0.8256 -vn 0.2590 -0.5013 0.8256 -vn -0.1385 -0.5209 -0.8423 -vn -0.1384 -0.5209 -0.8423 -vn 0.3358 -0.1975 -0.9210 -vn 0.3359 -0.1975 -0.9209 -vn 0.3356 -0.1974 -0.9211 -vn 0.4602 -0.4668 -0.7552 -vn 0.4596 -0.4675 -0.7551 -vn 0.4599 -0.4672 -0.7551 -vn -0.4710 -0.7498 -0.4647 -vn -0.7821 0.4681 0.4113 -vn -0.7824 0.4676 0.4114 -vn -0.7821 0.4680 0.4115 -vn -0.3261 0.0175 0.9452 -vn -0.3254 0.0173 0.9454 -vn -0.3246 0.0167 0.9457 -vn -0.5463 -0.8368 -0.0352 -vn -0.5453 -0.8375 -0.0346 -vn -0.5449 -0.8378 -0.0347 -vn -0.5008 -0.8615 0.0841 -vn -0.5006 -0.8616 0.0841 -vn 0.3979 0.8586 0.3232 -vn 0.3980 0.8586 0.3233 -vn 0.3979 0.8586 0.3231 -vn 0.7708 0.6351 0.0505 -vn 0.7706 0.6353 0.0505 -vn 0.7705 0.6354 0.0505 -vn -0.1237 -0.1462 -0.9815 -vn -0.1229 -0.1477 -0.9814 -vn -0.1232 -0.1467 -0.9815 -vn -0.0250 0.2058 -0.9783 -vn -0.0248 0.2059 -0.9783 -vn -0.2859 -0.3911 -0.8748 -vn -0.2865 -0.3910 -0.8746 -vn -0.2856 -0.3910 -0.8750 -vn -0.0360 0.9987 0.0366 -vn -0.0365 0.9987 0.0366 -vn -0.3824 0.8721 -0.3053 -vn -0.3824 0.8725 -0.3043 -vn -0.3824 0.8724 -0.3043 -vn -0.1961 0.6430 -0.7404 -vn -0.1968 0.6429 -0.7402 -vn -0.1965 0.6430 -0.7403 -vn -0.0029 0.1628 -0.9867 -vn -0.0039 0.1611 -0.9869 -vn -0.0034 0.1616 -0.9868 -vn -0.2771 0.7200 -0.6362 -vn -0.2772 0.7200 -0.6362 -vn -0.2770 0.7201 -0.6362 -vn -0.2420 -0.6322 0.7361 -vn -0.1099 -0.4958 0.8615 -vn -0.1098 -0.4957 0.8615 -vn -0.1095 -0.4958 0.8615 -vn 0.2429 -0.8819 -0.4041 -vn 0.2433 -0.8815 -0.4047 -vn 0.2426 -0.8821 -0.4038 -vn -0.1755 -0.9685 0.1767 -vn -0.1751 -0.9685 0.1771 -vn -0.1756 -0.9685 0.1767 -vn 0.6953 -0.4994 0.5169 -vn 0.6955 -0.4989 0.5170 -vn 0.6954 -0.4992 0.5169 -vn 0.7644 0.5438 0.3463 -vn 0.7645 0.5435 0.3465 -vn 0.7643 0.5440 0.3462 -vn -0.4935 0.5173 0.6992 -vn -0.4931 0.5179 0.6990 -vn -0.4929 0.5184 0.6988 -vn 0.6421 -0.1854 0.7439 -vn 0.6421 -0.1855 0.7438 -vn -0.5837 0.4151 -0.6979 -vn -0.5837 0.4152 -0.6978 -vn -0.5837 0.4153 -0.6977 -vn -0.1731 -0.9375 -0.3018 -vn 0.3922 -0.1245 0.9114 -vn 0.5758 -0.8145 -0.0711 -vn 0.5753 -0.8148 -0.0715 -vn 0.5758 -0.8145 -0.0712 -vn 0.8063 -0.4935 -0.3261 -vn 0.8063 -0.4937 -0.3259 -vn 0.8063 -0.4937 -0.3258 -vn -0.6919 -0.7217 0.0194 -vn -0.6917 -0.7219 0.0189 -vn -0.6920 -0.7216 0.0196 -vn 0.3129 -0.8633 -0.3959 -vn 0.3130 -0.8632 -0.3961 -vn 0.3127 -0.8635 -0.3958 -vn 0.1729 0.4513 -0.8755 -vn 0.1737 0.4522 -0.8748 -vn 0.1736 0.4521 -0.8749 -vn -0.3919 0.3892 0.8336 -vn -0.3920 0.3892 0.8336 -vn 0.1585 0.0343 -0.9868 -vn 0.1584 0.0344 -0.9868 -vn 0.1588 0.0338 -0.9867 -vn 0.1045 -0.9923 0.0658 -vn 0.1051 -0.9923 0.0657 -vn 0.1048 -0.9923 0.0658 -vn -0.1641 0.9655 -0.2024 -vn -0.1640 0.9654 -0.2025 -vn -0.5596 -0.7682 0.3110 -vn -0.5595 -0.7682 0.3110 -vn -0.3297 0.5029 0.7990 -vn -0.3294 0.5032 0.7989 -vn -0.3295 0.5030 0.7990 -vn -0.3484 -0.9372 -0.0153 -vn -0.3484 -0.9372 -0.0155 -vn 0.8906 -0.4401 -0.1145 -vn 0.8909 -0.4396 -0.1145 -vn 0.8910 -0.4393 -0.1149 -vn 0.2219 -0.9227 -0.3153 -vn 0.2220 -0.9227 -0.3152 -vn 0.2221 -0.9225 -0.3156 -vn -0.0122 -0.9861 -0.1654 -vn -0.0122 -0.9861 -0.1655 -vn -0.0120 -0.9861 -0.1655 -vn -0.2318 -0.9375 -0.2595 -vn -0.2318 -0.9375 -0.2596 -vn -0.2317 -0.9375 -0.2595 -vn -0.5448 0.5252 -0.6537 -vn 0.6471 -0.7597 -0.0647 -vn 0.6467 -0.7598 -0.0663 -vn 0.6468 -0.7597 -0.0673 -vn -0.4298 0.7089 -0.5592 -vn -0.4297 0.7090 -0.5592 -vn -0.4300 0.7089 -0.5591 -vn 0.3252 -0.4463 -0.8337 -vn 0.3251 -0.4464 -0.8337 -vn -0.1091 -0.9879 0.1099 -vn -0.1092 -0.9879 0.1101 -vn -0.1091 -0.9879 0.1100 -vn -0.5962 0.1402 0.7905 -vn -0.5964 0.1401 0.7903 -vn -0.5961 0.1399 0.7906 -vn -0.2273 0.0992 -0.9688 -vn -0.2273 0.0989 -0.9688 -vn -0.2272 0.0992 -0.9688 -vn 0.2761 0.9534 0.1217 -vn 0.2790 0.9528 0.1196 -vn 0.2772 0.9532 0.1206 -vn -0.2446 0.3321 0.9110 -vn -0.2445 0.3324 0.9109 -vn -0.9105 0.4135 0.0044 -vn -0.0667 -0.3637 0.9291 -vn -0.0657 -0.3640 0.9291 -vn -0.0639 -0.3654 0.9286 -vn -0.2014 -0.8114 -0.5487 -vn -0.2013 -0.8114 -0.5487 -vn -0.8110 0.4984 -0.3065 -vn -0.8110 0.4981 -0.3070 -vn -0.8111 0.4985 -0.3060 -vn -0.0684 0.9635 -0.2590 -vn -0.0684 0.9635 -0.2589 -vn -0.0687 0.9635 -0.2589 -vn 0.2053 0.9042 -0.3746 -vn 0.2051 0.9042 -0.3747 -vn 0.2052 0.9042 -0.3746 -vn -0.1005 -0.0275 0.9946 -vn -0.1004 -0.0275 0.9946 -vn -0.1002 -0.0273 0.9946 -vn -0.7481 0.3169 0.5831 -vn 0.8667 -0.2494 0.4321 -vn 0.8667 -0.2492 0.4322 -vn 0.8665 -0.2491 0.4326 -vn 0.2613 0.8718 -0.4144 -vn 0.2458 0.9581 -0.1471 -vn 0.2455 0.9582 -0.1471 -vn 0.2462 0.9580 -0.1469 -vn 0.6858 0.6432 0.3405 -vn 0.6859 0.6431 0.3405 -vn 0.6861 0.6430 0.3404 -vn 0.9143 0.2518 0.3172 -vn 0.9143 0.2521 0.3171 -vn 0.9144 0.2517 0.3171 -vn 0.8851 0.2818 -0.3704 -vn 0.8851 0.2819 -0.3703 -vn 0.8851 0.2821 -0.3701 -vn -0.4892 -0.8721 -0.0040 -vn -0.4891 -0.8722 -0.0044 -vn -0.4891 -0.8722 -0.0042 -vn -0.4907 0.8713 0.0070 -vn -0.4920 0.8705 0.0073 -vn -0.4915 0.8708 0.0074 -vn -0.1716 -0.7567 0.6309 -vn -0.1714 -0.7567 0.6309 -vn -0.1715 -0.7567 0.6309 -vn 0.0986 -0.9903 -0.0981 -vn 0.8892 -0.1681 0.4255 -vn 0.8890 -0.1692 0.4255 -vn 0.8890 -0.1711 0.4247 -vn -0.3721 0.8223 -0.4305 -vn -0.3723 0.8224 -0.4301 -vn -0.4239 -0.9031 -0.0694 -vn -0.4239 -0.9030 -0.0695 -vn -0.4239 -0.9031 -0.0695 -vn 0.6327 -0.2857 0.7198 -vn 0.6326 -0.2859 0.7198 -vn 0.6329 -0.2854 0.7197 -vn -0.1711 0.4930 -0.8531 -vn -0.1710 0.4931 -0.8530 -vn -0.6805 0.3152 0.6615 -vn -0.6797 0.3147 0.6625 -vn -0.6811 0.3170 0.6600 -vn 0.8535 0.4974 0.1555 -vn 0.8536 0.4971 0.1555 -vn 0.8536 0.4970 0.1558 -vn 0.4770 0.4535 0.7529 -vn 0.4770 0.4535 0.7528 -vn 0.4767 0.4535 0.7530 -vn -0.3307 0.0532 -0.9422 -vn -0.2683 -0.9379 0.2198 -vn -0.2688 -0.9378 0.2198 -vn -0.2687 -0.9378 0.2198 -vn 0.4166 0.7276 -0.5450 -vn 0.4169 0.7277 -0.5447 -vn 0.4171 0.7274 -0.5449 -vn -0.4637 -0.8285 -0.3140 -vn 0.6652 0.7149 -0.2155 -vn 0.6649 0.7150 -0.2160 -vn 0.6650 0.7150 -0.2158 -vn -0.4963 0.6997 -0.5139 -vn -0.4966 0.6995 -0.5139 -vn -0.4971 0.6993 -0.5137 -vn 0.5889 0.5799 -0.5630 -vn 0.5888 0.5800 -0.5629 -vn -0.3170 -0.4368 -0.8419 -vn -0.3168 -0.4372 -0.8417 -vn 0.8872 -0.0974 -0.4510 -vn 0.8872 -0.0976 -0.4510 -vn 0.8866 -0.0986 -0.4518 -vn -0.2063 0.4545 0.8666 -vn -0.2064 0.4544 0.8666 -vn -0.2065 0.4546 0.8664 -vn 0.9711 0.1114 0.2111 -vn 0.9711 0.1114 0.2110 -vn -0.1790 0.9760 -0.1242 -vn -0.1791 0.9760 -0.1239 -vn 0.7608 0.6326 0.1449 -vn 0.7607 0.6327 0.1449 -vn 0.7606 0.6329 0.1448 -vn 0.1666 -0.8287 -0.5343 -vn 0.2426 0.1037 -0.9646 -vn 0.2427 0.1036 -0.9646 -vn 0.2428 0.1035 -0.9645 -vn -0.3686 0.2391 0.8983 -vn -0.3688 0.2394 0.8982 -vn -0.3688 0.2397 0.8981 -vn -0.0002 -0.0000 1.0000 -vn -0.0012 1.0000 0.0029 -vn -0.0011 1.0000 0.0028 -vn -0.5414 -0.5747 0.6136 -vn -0.3519 -0.6624 0.6613 -vn -0.3518 -0.6628 0.6610 -vn -0.3519 -0.6628 0.6610 -vn 0.3432 0.8919 0.2945 -vn 0.3429 0.8916 0.2956 -vn 0.3431 0.8917 0.2951 -vn -0.4790 -0.5914 -0.6487 -vn -0.5939 0.6512 0.4725 -vn -0.5939 0.6512 0.4724 -vn 0.0460 0.8956 -0.4425 -vn 0.1718 -0.1746 0.9695 -vn 0.1715 -0.1743 0.9696 -vn 0.1717 -0.1743 0.9696 -vn -0.1349 -0.9795 -0.1499 -vn -0.1360 -0.9793 -0.1501 -vn -0.1364 -0.9792 -0.1505 -vn 0.8823 0.4604 0.0975 -vn 0.8823 0.4605 0.0976 -vn -0.3562 0.6587 0.6627 -vn -0.3561 0.6587 0.6628 -vn -0.3560 0.6588 0.6628 -vn -0.0260 0.2928 -0.9558 -vn -0.0246 0.2934 -0.9557 -vn -0.0249 0.2930 -0.9558 -vn 0.8578 -0.3577 0.3692 -vn 0.8576 -0.3577 0.3695 -vn 0.8576 -0.3577 0.3697 -vn 0.6040 -0.7896 0.1081 -vn 0.8841 0.2164 0.4142 -vn 0.8841 0.2165 0.4141 -vn 0.8841 0.2167 0.4140 -vn 0.2705 0.9615 -0.0488 -vn 0.2707 0.9615 -0.0484 -vn 0.2706 0.9615 -0.0485 -vn -0.4303 0.9018 0.0387 -vn -0.4305 0.9017 0.0387 -vn -0.4298 0.9021 0.0389 -vn 0.1885 0.2018 0.9611 -vn 0.1895 0.2010 0.9611 -vn 0.1892 0.2015 0.9610 -vn 0.7044 0.6773 0.2122 -vn -0.3935 0.9191 0.0213 -vn -0.3936 0.9190 0.0214 -vn -0.3701 0.3645 -0.8545 -vn -0.3698 0.3643 -0.8547 -vn -0.3703 0.3645 -0.8544 -vn -0.0370 0.9687 -0.2456 -vn -0.0367 0.9688 -0.2453 -vn -0.0363 0.9688 -0.2453 -vn 0.5083 -0.0565 0.8593 -vn 0.5085 -0.0565 0.8592 -vn 0.5084 -0.0565 0.8593 -vn 0.1808 0.4264 -0.8863 -vn 0.1798 0.4259 -0.8867 -vn 0.1816 0.4262 -0.8862 -vn -0.4247 -0.6948 0.5805 -vn -0.4247 -0.6945 0.5807 -vn -0.0958 0.9552 -0.2800 -vn -0.0954 0.9550 -0.2810 -vn -0.0943 0.9547 -0.2823 -vn 0.8699 -0.4698 0.1500 -vn 0.8698 -0.4700 0.1504 -vn 0.3297 -0.7756 -0.5383 -vn 0.3302 -0.7756 -0.5380 -vn 0.3299 -0.7756 -0.5381 -vn -0.5358 0.6774 -0.5040 -vn 0.7139 -0.2280 -0.6621 -vn 0.7137 -0.2283 -0.6622 -vn -0.0218 -0.7221 -0.6914 -vn -0.0220 -0.7223 -0.6912 -vn -0.2895 -0.7244 -0.6256 -vn -0.2898 -0.7246 -0.6253 -vn -0.2137 -0.6566 -0.7234 -vn -0.2136 -0.6565 -0.7234 -vn 0.0715 0.6278 0.7751 -vn 0.0708 0.6281 0.7749 -vn 0.0720 0.6277 0.7751 -vn 0.2398 -0.6202 -0.7469 -vn 0.2395 -0.6202 -0.7470 -vn 0.2397 -0.6202 -0.7469 -vn 0.0140 -0.7245 -0.6892 -vn 0.0142 -0.7244 -0.6892 -vn 0.0141 -0.7244 -0.6892 -vn -0.3384 0.8460 -0.4120 -vn -0.3384 0.8459 -0.4121 -vn -0.3383 0.8460 -0.4121 -vn -0.2433 -0.8499 -0.4674 -vn -0.2446 -0.8495 -0.4675 -vn -0.2436 -0.8498 -0.4675 -vn -0.3184 -0.8861 -0.3367 -vn -0.3191 -0.8853 -0.3381 -vn -0.3185 -0.8856 -0.3380 -vn -0.3170 -0.9242 -0.2128 -vn -0.3173 -0.9242 -0.2123 -vn -0.3172 -0.9243 -0.2124 -vn 0.0099 0.7603 -0.6495 -vn 0.0100 0.7601 -0.6497 -vn -0.3325 0.2330 0.9139 -vn -0.3326 0.2329 0.9139 -vn -0.3325 0.2331 0.9138 -vn -0.6123 0.5919 -0.5241 -vn -0.6122 0.5921 -0.5241 -vn -0.7758 -0.3519 -0.5237 -vn 0.0119 -0.4720 -0.8815 -vn 0.0118 -0.4722 -0.8814 -vn 0.0121 -0.4718 -0.8816 -vn 0.0715 -0.8239 -0.5622 -vn 0.0716 -0.8240 -0.5621 -vn 0.6581 -0.1563 -0.7365 -vn 0.6584 -0.1570 -0.7361 -vn 0.6573 -0.1560 -0.7373 -vn -0.4281 -0.7074 -0.5624 -vn -0.4283 -0.7075 -0.5621 -vn -0.4279 -0.7074 -0.5626 -vn 0.2736 0.2006 0.9407 -vn 0.2737 0.2006 0.9407 -vn 0.2737 0.2004 0.9407 -vn 0.6961 0.5714 -0.4346 -vn 0.6960 0.5714 -0.4348 -vn 0.6965 0.5712 -0.4344 -vn -0.3736 -0.6131 -0.6961 -vn -0.3734 -0.6133 -0.6960 -vn -0.3738 -0.6129 -0.6961 -vn 0.2742 0.4589 -0.8451 -vn 0.2747 0.4587 -0.8450 -vn 0.2752 0.4586 -0.8450 -vn -0.8207 0.5711 -0.0160 -vn -0.8207 0.5711 -0.0159 -vn -0.8208 0.5710 -0.0161 -vn -0.2741 -0.7399 -0.6143 -vn -0.2742 -0.7396 -0.6147 -vn -0.7465 -0.5568 -0.3643 -vn -0.7468 -0.5568 -0.3636 -vn -0.7473 -0.5565 -0.3631 -vn -0.5128 -0.0106 -0.8585 -vn -0.3836 0.0608 -0.9215 -vn -0.3836 0.0601 -0.9215 -vn -0.5214 0.5664 -0.6382 -vn -0.9471 0.3199 -0.0279 -vn -0.1984 0.9223 0.3316 -vn -0.1981 0.9224 0.3314 -vn -0.1983 0.9224 0.3315 -vn -0.2180 -0.3316 0.9179 -vn -0.2185 -0.3312 0.9179 -vn -0.2183 -0.3314 0.9179 -vn 0.6299 0.5971 0.4967 -vn 0.6302 0.5969 0.4966 -vn 0.6304 0.5965 0.4967 -vn -0.0977 -0.9904 -0.0976 -vn -0.0976 -0.9904 -0.0976 -vn -0.0975 -0.9904 -0.0977 -vn -0.3714 -0.4747 0.7979 -vn -0.3713 -0.4750 0.7978 -vn -0.3722 -0.4743 0.7978 -vn 0.4172 0.8300 -0.3701 -vn 0.8270 -0.5462 0.1330 -vn 0.8270 -0.5463 0.1326 -vn 0.8270 -0.5463 0.1328 -vn 0.5784 0.4631 0.6716 -vn 0.5782 0.4635 0.6714 -vn 0.5784 0.4632 0.6715 -vn -0.2930 0.1847 0.9381 -vn -0.2928 0.1849 0.9381 -vn -0.2934 0.1844 0.9380 -vn 0.0495 0.7437 -0.6667 -vn 0.0498 0.7435 -0.6669 -vn 0.0494 0.7437 -0.6667 -vn 0.8685 0.2709 -0.4152 -vn 0.8686 0.2708 -0.4149 -vn 0.8685 0.2709 -0.4151 -vn -0.3154 0.0278 0.9485 -vn -0.3163 0.0289 0.9482 -vn -0.3157 0.0284 0.9484 -vn -0.3876 -0.9192 0.0694 -vn 0.1148 0.4693 -0.8755 -vn 0.1153 0.4692 -0.8755 -vn 0.1151 0.4694 -0.8755 -vn 0.8295 0.3817 0.4078 -vn 0.8293 0.3815 0.4082 -vn 0.8292 0.3815 0.4084 -vn 0.0804 0.6332 -0.7698 -vn 0.0803 0.6333 -0.7697 -vn 0.0802 0.6334 -0.7696 -vn -0.1815 -0.6395 0.7470 -vn -0.1811 -0.6397 0.7470 -vn -0.1814 -0.6396 0.7470 -vn 0.3484 -0.5735 0.7414 -vn 0.3483 -0.5737 0.7413 -vn 0.3484 -0.5737 0.7413 -vn -0.4407 -0.8907 0.1112 -vn -0.4410 -0.8906 0.1112 -vn -0.4408 -0.8907 0.1112 -vn 0.2900 0.5232 -0.8014 -vn 0.2899 0.5234 -0.8012 -vn 0.2903 0.5232 -0.8012 -vn 0.3783 -0.2641 0.8872 -vn 0.3780 -0.2644 0.8873 -vn 0.3784 -0.2641 0.8871 -vn 0.0583 0.7645 -0.6420 -vn 0.0575 0.7656 -0.6407 -vn 0.0581 0.7649 -0.6415 -vn 0.2747 -0.8890 -0.3665 -vn 0.6895 0.7213 -0.0663 -vn 0.6893 0.7215 -0.0661 -vn -0.5286 -0.8299 0.1785 -vn -0.5285 -0.8300 0.1784 -vn -0.5530 -0.8269 -0.1024 -vn -0.5530 -0.8268 -0.1025 -vn -0.5529 -0.8269 -0.1025 -vn 0.8481 0.4440 0.2892 -vn 0.8480 0.4441 0.2892 -vn 0.2758 -0.8641 0.4210 -vn 0.2760 -0.8641 0.4210 -vn 0.2763 -0.8640 0.4209 -vn 0.1932 -0.9663 0.1701 -vn -0.8013 0.0790 0.5930 -vn -0.8014 0.0790 0.5929 -vn -0.8016 0.0788 0.5926 -vn -0.7756 -0.1787 0.6054 -vn -0.7759 -0.1783 0.6052 -vn -0.7759 -0.1782 0.6052 -vn -0.3701 0.7932 0.4836 -vn -0.3702 0.7932 0.4835 -vn -0.0445 -0.9958 0.0795 -vn -0.0443 -0.9958 0.0797 -vn -0.0444 -0.9958 0.0795 -vn -0.0882 -0.9943 -0.0592 -vn -0.0881 -0.9943 -0.0594 -vn -0.0881 -0.9943 -0.0595 -vn -0.1454 -0.9888 -0.0331 -vn -0.1457 -0.9888 -0.0324 -vn -0.1454 -0.9889 -0.0318 -vn -0.9506 0.0042 0.3103 -vn -0.9506 0.0043 0.3104 -vn -0.3294 -0.8338 -0.4431 -vn -0.3295 -0.8345 -0.4416 -vn -0.3293 -0.8336 -0.4435 -vn 0.0940 -0.7487 -0.6562 -vn 0.0958 -0.7476 -0.6572 -vn 0.0947 -0.7481 -0.6568 -vn 0.1126 -0.7582 -0.6422 -vn 0.1131 -0.7582 -0.6421 -vn 0.1139 -0.7579 -0.6423 -vn 0.7175 0.6813 0.1447 -vn 0.7173 0.6816 0.1448 -vn 0.7174 0.6814 0.1448 -vn -0.3593 0.4327 0.8268 -vn -0.3591 0.4327 0.8269 -vn 0.8054 0.5393 0.2459 -vn 0.8053 0.5395 0.2458 -vn 0.8053 0.5395 0.2461 -vn -0.1719 0.4891 -0.8551 -vn -0.1717 0.4889 -0.8553 -vn 0.4663 0.5535 -0.6901 -vn 0.4662 0.5533 -0.6903 -vn 0.4663 0.5537 -0.6899 -vn -0.0296 -0.8467 0.5313 -vn -0.0297 -0.8467 0.5312 -vn 0.2705 -0.3180 -0.9087 -vn 0.2704 -0.3177 -0.9088 -vn 0.8761 -0.1087 0.4698 -vn 0.8759 -0.1085 0.4701 -vn 0.8763 -0.1087 0.4694 -vn -0.8123 0.3062 -0.4963 -vn -0.8122 0.3064 -0.4964 -vn -0.4043 -0.9146 -0.0082 -vn -0.4042 -0.9146 -0.0084 -vn -0.1553 0.3027 -0.9404 -vn -0.1555 0.3024 -0.9404 -vn -0.1551 0.3028 -0.9404 -vn 0.2195 0.4074 0.8865 -vn -0.8593 0.1853 0.4767 -vn -0.8592 0.1852 0.4770 -vn -0.8591 0.1850 0.4773 -vn -0.5202 0.5602 0.6446 -vn -0.9796 0.0891 -0.1799 -vn -0.9796 0.0891 -0.1801 -vn -0.9796 0.0891 -0.1803 -vn 0.3171 -0.0752 0.9454 -vn 0.3182 -0.0748 0.9451 -vn 0.3180 -0.0750 0.9451 -vn -0.1855 -0.9330 -0.3085 -vn -0.1852 -0.9331 -0.3082 -vn 0.6610 0.6698 0.3384 -vn 0.6609 0.6699 0.3383 -vn 0.4079 -0.9130 -0.0065 -vn 0.4077 -0.9131 -0.0064 -vn 0.4078 -0.9131 -0.0062 -vn 0.5265 -0.3500 0.7748 -vn 0.5264 -0.3498 0.7750 -vn 0.5264 -0.3503 0.7747 -vn 0.8661 0.4900 0.0984 -vn 0.8663 0.4898 0.0983 -vn 0.8662 0.4900 0.0982 -vn -0.7665 -0.5206 -0.3761 -vn -0.7663 -0.5208 -0.3762 -vn 0.2528 0.9489 -0.1890 -vn 0.8390 -0.5120 0.1844 -vn 0.8389 -0.5123 0.1839 -vn 0.8387 -0.5123 0.1848 -vn 0.7724 -0.5150 0.3718 -vn 0.7727 -0.5148 0.3713 -vn 0.7725 -0.5150 0.3716 -vn -0.0618 -0.9349 -0.3496 -vn -0.0615 -0.9348 -0.3497 -vn -0.0621 -0.9349 -0.3495 -vn -0.6100 0.0267 -0.7920 -vn -0.6095 0.0271 -0.7923 -vn -0.6097 0.0270 -0.7922 -vn 0.3040 0.3820 -0.8728 -vn 0.3036 0.3816 -0.8730 -vn 0.3036 0.3819 -0.8729 -vn 0.1276 0.7181 0.6841 -vn 0.1275 0.7181 0.6841 -vn -0.5381 -0.0637 -0.8405 -vn -0.5385 -0.0643 -0.8402 -vn -0.5386 -0.0645 -0.8401 -vn 0.3652 0.9105 -0.1939 -vn 0.3651 0.9105 -0.1943 -vn 0.3653 0.9105 -0.1939 -vn -0.2764 -0.4307 -0.8591 -vn -0.2766 -0.4305 -0.8592 -vn -0.2764 -0.4306 -0.8592 -vn 0.9350 0.3430 0.0898 -vn 0.9351 0.3429 0.0896 -vn -0.4988 0.2354 0.8341 -vn -0.2459 -0.7784 -0.5776 -vn -0.8720 -0.1488 0.4663 -vn -0.8718 -0.1493 0.4665 -vn -0.8719 -0.1492 0.4663 -vn -0.0876 0.2537 -0.9633 -vn -0.0878 0.2536 -0.9633 -vn -0.5816 0.4145 0.7000 -vn -0.5812 0.4146 0.7002 -vn -0.5810 0.4147 0.7003 -vn 0.4884 -0.3580 -0.7958 -vn 0.4884 -0.3579 -0.7959 -vn 0.4885 -0.3579 -0.7958 -vn 0.3649 -0.7076 -0.6051 -vn 0.3651 -0.7076 -0.6050 -vn -0.3226 0.0356 0.9459 -vn -0.3228 0.0359 0.9458 -vn -0.3222 0.0357 0.9460 -vn 0.8976 -0.4055 0.1727 -vn 0.8976 -0.4055 0.1726 -vn 0.8974 -0.4059 0.1730 -vn 0.0023 0.0336 0.9994 -vn -0.7288 0.5075 -0.4596 -vn -0.7290 0.5072 -0.4597 -vn -0.7293 0.5069 -0.4595 -vn -0.7792 -0.5764 0.2462 -vn -0.7792 -0.5763 0.2463 -vn -0.7794 -0.5760 0.2465 -vn -0.0115 0.9984 -0.0562 -vn -0.0114 0.9983 -0.0563 -vn -0.0116 0.9984 -0.0560 -vn -0.2698 0.7637 0.5865 -vn -0.2699 0.7636 0.5866 -vn 0.3914 -0.9094 -0.1409 -vn 0.3913 -0.9094 -0.1407 -vn 0.6024 0.7340 -0.3135 -vn 0.6022 0.7343 -0.3134 -vn 0.6023 0.7342 -0.3134 -vn 0.5912 -0.4439 -0.6734 -vn 0.2464 0.1346 0.9598 -vn 0.2465 0.1350 0.9597 -vn 0.2463 0.1341 0.9599 -vn 0.5997 -0.4477 -0.6633 -vn 0.5996 -0.4476 -0.6634 -vn -0.0571 0.4415 0.8954 -vn -0.0578 0.4416 0.8954 -vn -0.0573 0.4415 0.8954 -vn 0.0245 0.2854 -0.9581 -vn 0.0249 0.2849 -0.9582 -vn -0.2837 0.0378 -0.9582 -vn -0.2837 0.0377 -0.9582 -vn -0.2838 0.0372 -0.9582 -vn 0.6355 0.2447 0.7323 -vn 0.6362 0.2439 0.7319 -vn 0.6366 0.2436 0.7317 -vn 0.8395 0.3174 -0.4411 -vn 0.8395 0.3173 -0.4411 -vn 0.8394 0.3176 -0.4410 -vn -0.3412 0.9248 0.1684 -vn -0.3410 0.9248 0.1686 -vn -0.0393 -0.8584 0.5115 -vn -0.0385 -0.8586 0.5113 -vn -0.0397 -0.8582 0.5119 -vn 0.6758 0.6719 0.3031 -vn 0.6759 0.6717 0.3031 -vn 0.6757 0.6720 0.3031 -vn -0.8461 0.4902 0.2095 -vn -0.8460 0.4902 0.2100 -vn -0.8461 0.4902 0.2094 -vn -0.3718 -0.9071 -0.1973 -vn -0.3720 -0.9071 -0.1968 -vn 0.4172 -0.8480 -0.3268 -vn 0.4170 -0.8480 -0.3270 -vn 0.4089 -0.8718 -0.2698 -vn 0.4090 -0.8718 -0.2696 -vn 0.4089 -0.8718 -0.2696 -vn 0.6501 -0.7520 0.1087 -vn 0.6499 -0.7522 0.1088 -vn -0.1680 0.0917 0.9815 -vn -0.1683 0.0921 0.9814 -vn 0.6090 -0.6366 0.4732 -vn 0.2062 0.5152 -0.8319 -vn -0.5653 0.8241 0.0365 -vn -0.5651 0.8242 0.0364 -vn 0.7887 0.4692 0.3972 -vn -0.5607 0.8069 -0.1856 -vn -0.0325 -0.5886 0.8078 -vn -0.0322 -0.5885 0.8078 -vn 0.5934 0.7729 -0.2246 -vn 0.5936 0.7727 -0.2247 -vn 0.5938 0.7726 -0.2248 -vn 0.9121 -0.3529 -0.2088 -vn 0.9121 -0.3528 -0.2087 -vn 0.9122 -0.3527 -0.2086 -vn -0.6428 0.3722 -0.6695 -vn -0.6421 0.3721 -0.6703 -vn -0.6435 0.3728 -0.6685 -vn -0.6800 0.6946 -0.2347 -vn -0.6799 0.6947 -0.2349 -vn -0.6800 0.6946 -0.2348 -vn -0.8709 0.4251 -0.2467 -vn -0.8709 0.4250 -0.2469 -vn 0.9080 0.3382 0.2472 -vn 0.9080 0.3380 0.2474 -vn 0.9080 0.3381 0.2476 -vn -0.2659 -0.9638 -0.0180 -vn -0.2653 -0.9640 -0.0179 -vn -0.2651 -0.9641 -0.0180 -vn -0.8476 -0.4984 0.1822 -vn -0.8474 -0.4987 0.1820 -vn -0.8474 -0.4988 0.1820 -vn 0.1075 -0.8297 -0.5478 -vn 0.1074 -0.8297 -0.5478 -vn -0.4508 -0.5229 -0.7235 -vn -0.4505 -0.5225 -0.7239 -vn -0.4509 -0.5234 -0.7230 -vn 0.8081 0.2173 0.5475 -vn 0.8079 0.2173 0.5478 -vn 0.7461 0.2507 0.6169 -vn 0.7461 0.2506 0.6168 -vn 0.7460 0.2508 0.6169 -vn 0.2158 -0.7509 -0.6242 -vn -0.2210 -0.2146 -0.9514 -vn -0.2213 -0.2145 -0.9513 -vn -0.2211 -0.2145 -0.9514 -vn -0.7851 0.6165 -0.0599 -vn -0.7850 0.6165 -0.0600 -vn -0.7850 0.6166 -0.0600 -vn -0.0986 -0.9932 0.0612 -vn -0.0987 -0.9933 0.0608 -vn -0.0986 -0.9932 0.0613 -vn 0.3921 -0.8062 0.4430 -vn 0.3903 -0.8072 0.4429 -vn 0.3913 -0.8068 0.4427 -vn -0.2296 0.1222 -0.9656 -vn 0.3601 0.8560 -0.3709 -vn 0.3607 0.8558 -0.3707 -vn 0.3597 0.8561 -0.3711 -vn -0.0513 0.9747 -0.2174 -vn -0.0513 0.9747 -0.2176 -vn -0.0508 0.9747 -0.2178 -vn 0.1018 0.9921 -0.0738 -vn 0.1413 0.9767 -0.1616 -vn 0.1415 0.9767 -0.1614 -vn 0.1414 0.9767 -0.1612 -vn -0.8853 -0.4591 0.0737 -vn -0.8857 -0.4584 0.0733 -vn -0.8860 -0.4580 0.0729 -vn 0.1128 -0.8122 0.5724 -vn 0.1142 -0.8120 0.5724 -vn 0.1107 -0.8129 0.5718 -vn 0.1115 0.0955 -0.9892 -vn -0.7456 0.4978 -0.4431 -vn -0.7457 0.4976 -0.4430 -vn -0.2834 -0.9213 -0.2664 -vn -0.2840 -0.9210 -0.2665 -vn -0.2847 -0.9207 -0.2670 -vn 0.4183 -0.1133 0.9012 -vn 0.4183 -0.1127 0.9013 -vn 0.4183 -0.1132 0.9012 -vn -0.0366 0.9079 -0.4176 -vn -0.0370 0.9080 -0.4174 -vn -0.0368 0.9080 -0.4174 -vn 0.9797 -0.1774 -0.0933 -vn 0.9795 -0.1785 -0.0933 -vn 0.9796 -0.1782 -0.0932 -vn -0.4597 -0.8466 -0.2683 -vn 0.1549 0.6578 0.7371 -vn 0.1536 0.6588 0.7364 -vn 0.1542 0.6582 0.7369 -vn -0.6449 -0.5463 -0.5344 -vn -0.6446 -0.5462 -0.5349 -vn -0.6445 -0.5461 -0.5351 -vn 0.2783 0.1147 -0.9536 -vn 0.2783 0.1151 -0.9536 -vn 0.2783 0.1149 -0.9536 -vn 0.3840 -0.9219 0.0519 -vn 0.3839 -0.9219 0.0521 -vn -0.7039 0.6183 -0.3496 -vn -0.7043 0.6183 -0.3489 -vn -0.7038 0.6183 -0.3497 -vn -0.1711 -0.9349 -0.3108 -vn -0.4003 0.4161 0.8165 -vn -0.4003 0.4160 0.8165 -vn -0.4002 0.4159 0.8166 -vn -0.6561 0.6333 0.4103 -vn -0.6562 0.6332 0.4104 -vn -0.6560 0.6334 0.4104 -vn -0.4781 0.4835 0.7333 -vn -0.4779 0.4835 0.7334 -vn -0.5149 0.0459 -0.8560 -vn -0.5148 0.0451 -0.8561 -vn -0.5148 0.0454 -0.8561 -vn 0.0856 -0.9344 -0.3459 -vn 0.0867 -0.9345 -0.3453 -vn 0.0853 -0.9343 -0.3461 -vn 0.2636 -0.9402 -0.2156 -vn 0.2634 -0.9404 -0.2152 -vn 0.2632 -0.9405 -0.2148 -vn 0.0973 0.9792 -0.1780 -vn 0.0991 0.9788 -0.1795 -vn 0.0979 0.9790 -0.1790 -vn 0.0246 -0.8377 -0.5456 -vn -0.9085 0.4148 -0.0496 -vn -0.0081 0.8672 -0.4979 -vn -0.0080 0.8672 -0.4980 -vn -0.8703 0.1478 -0.4698 -vn -0.8704 0.1476 -0.4697 -vn -0.8699 0.1481 -0.4705 -vn 0.8845 -0.4291 0.1830 -vn 0.8845 -0.4293 0.1827 -vn 0.8845 -0.4291 0.1828 -vn 0.3739 -0.1557 0.9143 -vn 0.3737 -0.1552 0.9144 -vn 0.3737 -0.1553 0.9144 -vn -0.4800 0.6489 -0.5904 -vn -0.4805 0.6489 -0.5900 -vn -0.4794 0.6487 -0.5910 -vn 0.1076 0.7144 0.6914 -vn 0.1073 0.7147 0.6912 -vn 0.1070 0.7149 0.6910 -vn 0.1715 -0.3888 0.9052 -vn 0.1728 -0.3890 0.9049 -vn 0.1710 -0.3885 0.9054 -vn -0.9403 0.3327 -0.0714 -vn -0.9402 0.3329 -0.0716 -vn -0.9432 0.3202 -0.0883 -vn -0.9433 0.3199 -0.0883 -vn -0.9432 0.3203 -0.0882 -vn -0.7501 0.5026 -0.4297 -vn -0.7502 0.5023 -0.4300 -vn -0.7500 0.5030 -0.4296 -vn 0.1573 -0.8450 0.5112 -vn 0.1570 -0.8449 0.5113 -vn 0.1567 -0.8449 0.5115 -vn 0.4305 -0.3632 -0.8263 -vn 0.4303 -0.3634 -0.8263 -vn -0.5256 -0.5761 0.6260 -vn -0.5255 -0.5758 0.6263 -vn -0.5255 -0.5759 0.6263 -vn 0.4302 -0.5253 -0.7341 -vn -0.3762 -0.4117 -0.8301 -vn -0.3764 -0.4116 -0.8300 -vn -0.7682 0.2910 -0.5703 -vn -0.7679 0.2908 -0.5708 -vn -0.7682 0.2914 -0.5701 -vn -0.7494 -0.4416 0.4933 -vn -0.7494 -0.4417 0.4933 -vn 0.2622 -0.8686 -0.4205 -vn 0.2628 -0.8684 -0.4205 -vn 0.6695 0.0547 0.7408 -vn 0.6696 0.0547 0.7407 -vn 0.6698 0.0550 0.7405 -vn -0.1369 -0.7420 -0.6563 -vn -0.1367 -0.7415 -0.6569 -vn -0.1369 -0.7417 -0.6566 -vn -0.3475 0.1601 -0.9239 -vn 0.9213 0.1709 -0.3494 -vn 0.9213 0.1704 -0.3495 -vn 0.9212 0.1710 -0.3496 -vn 0.3190 0.8486 -0.4220 -vn 0.3188 0.8482 -0.4231 -vn 0.3190 0.8484 -0.4224 -vn -0.2665 0.9604 -0.0810 -vn -0.2661 0.9605 -0.0814 -vn -0.2661 0.9605 -0.0817 -vn 0.0495 -0.8796 0.4732 -vn 0.0491 -0.8783 0.4756 -vn 0.0490 -0.8787 0.4749 -vn -0.3621 -0.7447 0.5607 -vn -0.3609 -0.7450 0.5610 -vn -0.3614 -0.7450 0.5607 -vn 0.0268 0.8062 -0.5910 -vn 0.0268 0.8062 -0.5911 -vn 0.0268 0.8061 -0.5911 -vn -0.1046 0.6470 -0.7553 -vn -0.1046 0.6469 -0.7554 -vn -0.1048 0.6470 -0.7552 -vn 0.0309 0.8340 -0.5509 -vn -0.1867 -0.9644 -0.1873 -vn -0.1867 -0.9644 -0.1872 -vn -0.1869 -0.9643 -0.1877 -vn -0.5596 -0.7842 -0.2680 -vn -0.5597 -0.7842 -0.2679 -vn -0.5596 -0.7842 -0.2681 -vn 0.6492 -0.5248 0.5506 -vn 0.6490 -0.5249 0.5507 -vn 0.9248 -0.3238 0.1999 -vn 0.9246 -0.3235 0.2012 -vn 0.9248 -0.3233 0.2006 -vn -0.2707 -0.9623 0.0280 -vn -0.2703 -0.9624 0.0279 -vn -0.2705 -0.9623 0.0280 -vn 0.3072 -0.4965 -0.8118 -vn 0.3066 -0.4970 -0.8118 -vn 0.3076 -0.4959 -0.8121 -vn -0.2909 -0.7917 -0.5372 -vn -0.2908 -0.7917 -0.5373 -vn -0.0007 0.3428 0.9394 -vn -0.0006 0.3429 0.9394 -vn -0.1053 0.9046 -0.4131 -vn -0.1053 0.9046 -0.4132 -vn 0.2925 0.1135 -0.9495 -vn 0.2925 0.1138 -0.9495 -vn 0.2918 0.1143 -0.9496 -vn 0.6448 -0.2217 0.7315 -vn 0.6445 -0.2215 0.7318 -vn 0.6442 -0.2217 0.7320 -vn -0.4874 -0.8157 -0.3117 -vn -0.4875 -0.8156 -0.3117 -vn -0.4871 -0.8159 -0.3115 -vn 0.8312 0.5393 0.1350 -vn 0.8312 0.5391 0.1361 -vn 0.8310 0.5392 0.1367 -vn 0.2276 -0.1773 -0.9575 -vn 0.2272 -0.1775 -0.9575 -vn 0.2270 -0.1776 -0.9576 -vn -0.2988 0.2623 0.9176 -vn -0.2992 0.2624 0.9174 -vn -0.2991 0.2624 0.9174 -vn -0.3493 -0.9368 0.0196 -vn 0.4567 -0.4650 -0.7584 -vn 0.4568 -0.4651 -0.7583 -vn 0.4568 -0.4649 -0.7584 -vn 0.8278 0.2179 -0.5170 -vn 0.8274 0.2230 -0.5154 -vn 0.8281 0.2195 -0.5159 -vn -0.0037 0.1688 0.9856 -vn -0.0032 0.1686 0.9857 -vn -0.0044 0.1692 0.9856 -vn -0.1609 -0.6332 0.7571 -vn -0.1613 -0.6333 0.7569 -vn -0.1611 -0.6331 0.7571 -vn 0.1155 0.0841 0.9897 -vn 0.1158 0.0842 0.9897 -vn 0.1154 0.0839 0.9898 -vn -0.1980 -0.9686 0.1502 -vn -0.1975 -0.9688 0.1500 -vn -0.1982 -0.9686 0.1502 -vn 0.0085 -0.9722 0.2342 -vn 0.0084 -0.9721 0.2344 -vn 0.0088 -0.9721 0.2345 -vn -0.4301 -0.8482 -0.3093 -vn -0.4298 -0.8484 -0.3090 -vn 0.2072 -0.7350 0.6456 -vn 0.9628 -0.0714 -0.2607 -vn 0.9627 -0.0719 -0.2607 -vn 0.9628 -0.0718 -0.2606 -vn -0.8377 0.4683 0.2808 -vn -0.8378 0.4686 0.2800 -vn -0.8378 0.4686 0.2803 -vn 0.3657 0.6278 -0.6871 -vn 0.3218 -0.5480 -0.7721 -vn 0.3224 -0.5480 -0.7718 -vn 0.3228 -0.5483 -0.7714 -vn -0.1198 -0.3107 -0.9429 -vn -0.1197 -0.3107 -0.9429 -vn -0.1199 -0.3105 -0.9430 -vn -0.7917 0.1414 -0.5944 -vn -0.7913 0.1412 -0.5949 -vn -0.7918 0.1414 -0.5942 -vn -0.9601 -0.2496 -0.1265 -vn -0.9601 -0.2496 -0.1264 -vn -0.2247 -0.2838 -0.9322 -vn -0.2249 -0.2832 -0.9323 -vn -0.0206 0.1443 -0.9893 -vn -0.0204 0.1445 -0.9893 -vn -0.0204 0.1450 -0.9892 -vn -0.5297 0.1775 -0.8294 -vn -0.5294 0.1783 -0.8294 -vn -0.5294 0.1771 -0.8297 -vn 0.1405 -0.8627 0.4859 -vn 0.1399 -0.8631 0.4853 -vn -0.4042 -0.5778 0.7090 -vn -0.4038 -0.5780 0.7092 -vn -0.1463 -0.9761 0.1608 -vn -0.1467 -0.9760 0.1611 -vn -0.1475 -0.9758 0.1612 -vn 0.3877 -0.7926 0.4707 -vn 0.3878 -0.7925 0.4706 -vn -0.5258 -0.7500 -0.4013 -vn -0.5256 -0.7500 -0.4015 -vn -0.5263 -0.7496 -0.4014 -vn 0.1498 -0.9175 0.3685 -vn 0.1499 -0.9175 0.3684 -vn 0.2210 -0.8735 0.4337 -vn 0.2213 -0.8734 0.4337 -vn 0.2211 -0.8735 0.4337 -vn -0.4225 -0.5111 0.7485 -vn -0.4224 -0.5112 0.7485 -vn 0.6861 0.3172 -0.6547 -vn 0.6859 0.3169 -0.6550 -vn 0.6857 0.3167 -0.6554 -vn -0.5280 -0.6301 0.5694 -vn -0.5283 -0.6300 0.5692 -vn -0.5278 -0.6301 0.5695 -vn 0.1067 -0.7482 0.6548 -vn 0.1068 -0.7483 0.6547 -vn 0.1069 -0.7483 0.6547 -vn 0.4004 0.9062 0.1363 -vn 0.4001 0.9063 0.1362 -vn 0.3998 0.9065 0.1359 -vn 0.3039 0.9416 -0.1447 -vn 0.3042 0.9416 -0.1447 -vn 0.3044 0.9415 -0.1447 -vn -0.5150 0.7094 0.4811 -vn -0.5151 0.7095 0.4809 -vn 0.4658 0.6331 0.6182 -vn 0.4656 0.6331 0.6184 -vn 0.4660 0.6331 0.6181 -vn -0.9873 0.1522 0.0448 -vn -0.9873 0.1521 0.0451 -vn -0.9873 0.1522 0.0450 -vn 0.2789 0.8371 -0.4706 -vn 0.2789 0.8369 -0.4709 -vn 0.2789 0.8372 -0.4704 -vn -0.6563 -0.7016 -0.2775 -vn -0.6564 -0.7015 -0.2775 -vn -0.6565 -0.7013 -0.2777 -vn -0.3137 -0.9148 0.2545 -vn -0.3134 -0.9149 0.2545 -vn -0.3135 -0.9149 0.2545 -vn -0.5687 -0.0375 -0.8217 -vn -0.5688 -0.0377 -0.8216 -vn -0.3408 -0.9391 0.0447 -vn -0.3409 -0.9390 0.0450 -vn -0.3409 -0.9390 0.0449 -vn -0.0792 -0.3372 -0.9381 -vn 0.0019 0.8261 -0.5635 -vn 0.0020 0.8260 -0.5637 -vn 0.0020 0.8259 -0.5639 -vn 0.4531 0.0248 0.8911 -vn 0.4529 0.0242 0.8912 -vn 0.4532 0.0246 0.8911 -vn 0.1648 0.6047 0.7792 -vn 0.1648 0.6045 0.7794 -vn 0.1646 0.6045 0.7794 -vn 0.2630 0.9564 -0.1273 -vn 0.9049 -0.1391 0.4022 -vn 0.9049 -0.1392 0.4022 -vn -0.4307 -0.7324 -0.5274 -vn -0.4307 -0.7322 -0.5276 -vn -0.4076 -0.9131 0.0115 -vn -0.4078 -0.9130 0.0114 -vn -0.4079 -0.9130 0.0116 -vn -0.0291 -0.9798 -0.1980 -vn -0.0293 -0.9799 -0.1975 -vn -0.0294 -0.9796 -0.1989 -vn -0.8746 -0.1421 -0.4635 -vn -0.8746 -0.1422 -0.4635 -vn 0.3838 -0.9028 0.1940 -vn 0.3810 -0.9038 0.1951 -vn 0.3854 -0.9024 0.1929 -vn -0.8766 -0.1628 -0.4529 -vn -0.8766 -0.1629 -0.4528 -vn -0.8765 -0.1627 -0.4531 -vn 0.8720 0.2457 -0.4234 -vn -0.0296 0.8559 -0.5163 -vn -0.0295 0.8560 -0.5162 -vn -0.0297 0.8559 -0.5163 -vn 0.2309 -0.6457 -0.7278 -vn 0.2308 -0.6456 -0.7279 -vn 0.2307 -0.6455 -0.7281 -vn -0.2499 0.8371 -0.4867 -vn -0.3737 0.6432 0.6683 -vn -0.3125 -0.7930 -0.5229 -vn -0.3126 -0.7931 -0.5227 -vn -0.3126 -0.7932 -0.5226 -vn 0.3259 0.0958 0.9405 -vn 0.3258 0.0957 0.9406 -vn 0.3251 0.0952 0.9409 -vn -0.8042 -0.5921 -0.0523 -vn 0.0653 0.6529 0.7546 -vn 0.0668 0.6526 0.7548 -vn 0.0659 0.6528 0.7546 -vn -0.7942 -0.5764 -0.1923 -vn -0.7942 -0.5763 -0.1926 -vn -0.7941 -0.5764 -0.1925 -vn -0.5859 0.2569 0.7686 -vn -0.5860 0.2569 0.7685 -vn -0.5864 0.2576 0.7680 -vn 0.3277 -0.9287 -0.1737 -vn 0.3276 -0.9287 -0.1740 -vn -0.9428 0.3332 -0.0109 -vn -0.9426 0.3338 -0.0112 -vn -0.9425 0.3339 -0.0112 -vn 0.3078 0.5221 0.7954 -vn 0.3078 0.5220 0.7954 -vn 0.3078 0.5220 0.7955 -vn -0.0271 0.6283 -0.7775 -vn -0.0270 0.6287 -0.7772 -vn -0.0270 0.6286 -0.7773 -vn -0.3664 0.8600 -0.3552 -vn -0.3663 0.8600 -0.3553 -vn -0.5269 0.8006 -0.2852 -vn -0.5270 0.8006 -0.2852 -vn -0.6540 0.0475 0.7550 -vn -0.6551 0.0482 0.7540 -vn -0.6544 0.0479 0.7546 -vn 0.0003 0.0008 1.0000 -vn -0.6874 -0.2371 0.6865 -vn -0.6877 -0.2368 0.6863 -vn -0.6873 -0.2372 0.6865 -vn -0.2084 -0.0821 0.9746 -vn -0.2089 -0.0822 0.9745 -vn -0.2083 -0.0824 0.9746 -vn -0.0578 -0.7183 -0.6933 -vn -0.0577 -0.7188 -0.6928 -vn -0.0576 -0.7190 -0.6926 -vn 0.1833 -0.3217 -0.9289 -vn 0.1830 -0.3219 -0.9289 -vn -0.7801 0.3815 -0.4958 -vn -0.7801 0.3815 -0.4959 -vn 0.6739 0.3058 -0.6726 -vn 0.1896 0.6860 0.7025 -vn 0.1892 0.6857 0.7029 -vn 0.1895 0.6859 0.7026 -vn 0.5712 -0.3095 -0.7602 -vn 0.5712 -0.3094 -0.7603 -vn 0.4025 0.4266 -0.8099 -vn 0.4028 0.4266 -0.8098 -vn 0.4027 0.4266 -0.8098 -vn 0.1124 0.2858 -0.9517 -vn 0.1133 0.2864 -0.9514 -vn 0.1128 0.2859 -0.9516 -vn -0.0008 0.9490 -0.3153 -vn 0.5560 0.3036 -0.7738 -vn 0.2428 -0.7788 0.5783 -vn 0.2430 -0.7790 0.5780 -vn 0.2433 -0.7792 0.5776 -vn 0.7229 0.6860 0.0825 -vn -0.3895 -0.7059 0.5915 -vn -0.3894 -0.7058 0.5918 -vn -0.3892 -0.7058 0.5919 -vn 0.2869 -0.9068 0.3088 -vn 0.2867 -0.9068 0.3090 -vn 0.2871 -0.9068 0.3086 -vn 0.4355 0.4915 -0.7542 -vn 0.4354 0.4915 -0.7542 -vn 0.3211 -0.8569 -0.4033 -vn 0.3210 -0.8563 -0.4045 -vn 0.3210 -0.8566 -0.4039 -vn 0.9427 -0.3045 -0.1361 -vn 0.9425 -0.3051 -0.1363 -vn 0.1588 -0.8840 -0.4398 -vn 0.4271 -0.2564 -0.8671 -vn -0.2276 -0.9555 -0.1876 -vn 0.4096 -0.0188 0.9121 -vn 0.4095 -0.0185 0.9121 -vn 0.4095 -0.0186 0.9121 -vn 0.1537 0.9811 -0.1175 -vn 0.1537 0.9812 -0.1171 -vn -0.0410 -0.8566 0.5143 -vn -0.0411 -0.8568 0.5141 -vn -0.1574 -0.9202 0.3583 -vn -0.4607 0.7103 -0.5322 -vn -0.4606 0.7105 -0.5320 -vn -0.3615 0.9095 0.2053 -vn -0.3615 0.9095 0.2054 -vn -0.0618 -0.9744 -0.2163 -vn -0.0627 -0.9743 -0.2163 -vn -0.0624 -0.9743 -0.2163 -vn -0.2449 -0.9615 -0.1249 -vn -0.2448 -0.9615 -0.1249 -vn -0.2444 -0.9616 -0.1248 -vn 0.9021 0.4313 -0.0107 -vn 0.9022 0.4311 -0.0108 -vn 0.9025 0.4306 -0.0112 -vn -0.8091 0.5874 -0.0190 -vn -0.8092 0.5872 -0.0191 -vn -0.8092 0.5872 -0.0192 -vn 0.8823 0.2431 -0.4031 -vn 0.8825 0.2434 -0.4023 -vn 0.8822 0.2423 -0.4036 -vn 0.0933 0.8779 0.4696 -vn 0.0941 0.8781 0.4691 -vn 0.0942 0.8781 0.4691 -vn -0.3212 -0.6520 0.6868 -vn -0.6015 0.4459 -0.6629 -vn -0.6011 0.4463 -0.6630 -vn -0.6013 0.4462 -0.6628 -vn 0.0075 0.9735 -0.2287 -vn 0.6728 -0.6883 -0.2713 -vn 0.6728 -0.6883 -0.2714 -vn 0.6685 -0.5164 0.5352 -vn 0.6685 -0.5165 0.5351 -vn -0.5593 0.4291 0.7092 -vn -0.5590 0.4294 0.7093 -vn 0.0352 0.9985 0.0431 -vn 0.0351 0.9984 0.0434 -vn 0.8256 0.2309 0.5148 -vn 0.8258 0.2308 0.5146 -vn -0.3379 0.9390 0.0646 -vn -0.5265 -0.8499 -0.0209 -vn 0.0357 -0.7583 -0.6510 -vn 0.0358 -0.7583 -0.6509 -vn 0.8044 0.2377 -0.5445 -vn 0.3918 0.8810 0.2653 -vn 0.3917 0.8810 0.2653 -vn -0.5534 -0.8310 -0.0572 -vn -0.5534 -0.8309 -0.0573 -vn -0.5535 -0.8309 -0.0571 -vn -0.3144 -0.4373 -0.8426 -vn -0.3145 -0.4373 -0.8425 -vn 0.1347 0.3762 -0.9167 -vn 0.1348 0.3761 -0.9167 -vn 0.1350 0.3764 -0.9166 -vn 0.0267 -0.6329 -0.7738 -vn 0.0266 -0.6329 -0.7738 -vn -0.2167 -0.9590 0.1825 -vn -0.2167 -0.9591 0.1820 -vn -0.2161 -0.9588 0.1847 -vn -0.4607 0.6296 -0.6256 -vn -0.4611 0.6305 -0.6244 -vn -0.4622 0.6311 -0.6230 -vn -0.1136 0.7710 0.6266 -vn -0.4317 -0.7612 0.4840 -vn -0.4320 -0.7611 0.4838 -vn 0.3421 -0.7098 0.6158 -vn 0.2807 -0.7314 0.6215 -vn 0.2802 -0.7324 0.6206 -vn 0.2803 -0.7329 0.6200 -vn 0.5691 0.7587 0.3169 -vn -0.3223 -0.9133 0.2491 -vn -0.3228 -0.9132 0.2489 -vn 0.7985 0.6017 0.0199 -vn 0.7983 0.6019 0.0213 -vn 0.7983 0.6019 0.0210 -vn 0.2722 0.3688 -0.8888 -vn 0.2722 0.3690 -0.8887 -vn 0.2722 0.3692 -0.8886 -vn -0.1317 0.7869 -0.6029 -vn -0.1315 0.7871 -0.6027 -vn -0.1315 0.7870 -0.6028 -vn 0.1623 0.9489 0.2706 -vn -0.4680 -0.2806 -0.8380 -vn -0.4682 -0.2808 -0.8378 -vn 0.5497 0.7725 -0.3179 -vn 0.5496 0.7725 -0.3182 -vn 0.5495 0.7725 -0.3183 -vn 0.1226 -0.9879 -0.0945 -vn 0.1226 -0.9879 -0.0948 -vn 0.1226 -0.9879 -0.0953 -vn -0.7183 0.5077 -0.4756 -vn -0.7183 0.5078 -0.4756 -vn -0.7183 0.5077 -0.4757 -vn -0.4780 -0.8751 -0.0756 -vn -0.4779 -0.8751 -0.0758 -vn -0.4782 -0.8750 -0.0755 -vn 0.6494 -0.5027 0.5706 -vn 0.6488 -0.5021 0.5718 -vn 0.6498 -0.5028 0.5701 -vn -0.8829 -0.3776 -0.2792 -vn -0.8827 -0.3778 -0.2794 -vn -0.6563 -0.5310 -0.5360 -vn -0.6563 -0.5308 -0.5362 -vn -0.6563 -0.5311 -0.5359 -vn 0.4901 -0.5643 0.6644 -vn 0.4890 -0.5651 0.6645 -vn 0.4888 -0.5655 0.6643 -vn -0.0639 0.0700 0.9955 -vn -0.0645 0.0712 0.9954 -vn -0.0649 0.0716 0.9953 -vn -0.7805 0.6193 0.0858 -vn -0.7805 0.6192 0.0858 -vn -0.7801 0.6197 0.0859 -vn -0.8566 -0.5092 0.0832 -vn -0.8565 -0.5095 0.0832 -vn -0.8404 -0.3015 0.4503 -vn -0.8401 -0.3017 0.4507 -vn -0.8397 -0.3023 0.4512 -vn 0.8910 0.4033 0.2086 -vn 0.8909 0.4036 0.2083 -vn 0.9372 -0.3480 -0.0224 -vn 0.7075 -0.1994 -0.6780 -vn 0.7073 -0.1996 -0.6782 -vn 0.7079 -0.1991 -0.6777 -vn -0.2168 0.6351 -0.7414 -vn -0.2171 0.6351 -0.7413 -vn -0.2171 0.6348 -0.7415 -vn -0.0078 -0.0046 1.0000 -vn -0.7411 -0.6527 0.1574 -vn -0.3141 0.0083 -0.9494 -vn -0.3149 0.0089 -0.9491 -vn -0.3153 0.0097 -0.9490 -vn -0.3458 -0.5489 0.7610 -vn -0.3457 -0.5488 0.7611 -vn -0.3455 -0.5489 0.7611 -vn -0.9480 0.3029 -0.0978 -vn -0.9480 0.3028 -0.0979 -vn -0.4497 -0.6842 0.5741 -vn -0.4499 -0.6839 0.5744 -vn -0.4513 -0.6823 0.5751 -vn 0.5451 -0.1826 0.8182 -vn 0.5455 -0.1825 0.8180 -vn 0.5454 -0.1823 0.8181 -vn -0.3195 -0.9245 0.2078 -vn -0.3197 -0.9246 0.2073 -vn -0.3194 -0.9245 0.2079 -vn -0.6595 0.1706 -0.7321 -vn -0.6594 0.1708 -0.7321 -vn -0.6593 0.1711 -0.7322 -vn -0.4109 0.8567 -0.3118 -vn -0.4109 0.8568 -0.3116 -vn -0.4110 0.8567 -0.3117 -vn -0.9186 0.3498 0.1837 -vn -0.9187 0.3497 0.1835 -vn 0.8085 0.3596 0.4659 -vn 0.8086 0.3594 0.4659 -vn -0.0664 0.9847 -0.1613 -vn -0.0659 0.9847 -0.1611 -vn -0.0661 0.9847 -0.1612 -vn 0.7171 -0.5212 0.4628 -vn 0.0729 0.3332 0.9400 -vn 0.0725 0.3328 0.9402 -vn 0.0729 0.3331 0.9401 -vn -0.7752 -0.2662 -0.5729 -vn -0.7752 -0.2659 -0.5730 -vn -0.7753 -0.2661 -0.5728 -vn -0.4510 -0.7846 -0.4255 -vn -0.4510 -0.7843 -0.4259 -vn -0.3656 -0.0874 -0.9267 -vn -0.3663 -0.0867 -0.9264 -vn -0.3668 -0.0863 -0.9263 -vn -0.9930 -0.0171 -0.1168 -vn -0.9930 -0.0170 -0.1166 -vn -0.9930 -0.0170 -0.1172 -vn 0.6422 0.7658 -0.0338 -vn 0.6431 0.7650 -0.0336 -vn 0.6429 0.7652 -0.0339 -vn -0.0929 -0.8691 -0.4858 -vn -0.0931 -0.8692 -0.4856 -vn -0.0932 -0.8690 -0.4859 -vn -0.8084 0.3760 -0.4528 -vn -0.8079 0.3753 -0.4544 -vn -0.8082 0.3759 -0.4534 -vn 0.8917 -0.4502 -0.0469 -vn 0.3987 0.8857 -0.2377 -vn 0.3989 0.8858 -0.2372 -vn 0.3983 0.8859 -0.2378 -vn 0.0031 0.0018 1.0000 -vn -0.0317 -0.8227 -0.5676 -vn -0.0680 -0.8421 -0.5350 -vn -0.0687 -0.8422 -0.5347 -vn -0.0674 -0.8422 -0.5349 -vn 0.0436 -0.7133 -0.6995 -vn 0.0438 -0.7133 -0.6995 -vn -0.0603 -0.8098 -0.5835 -vn -0.8908 -0.0723 -0.4487 -vn -0.8909 -0.0725 -0.4484 -vn -0.8909 -0.0724 -0.4483 -vn 0.7185 -0.6927 0.0627 -vn 0.7185 -0.6927 0.0624 -vn 0.0874 0.9889 0.1199 -vn 0.0872 0.9889 0.1204 -vn 0.0875 0.9889 0.1198 -vn -0.0388 -0.9352 -0.3519 -vn -0.0390 -0.9354 -0.3515 -vn -0.0391 -0.9353 -0.3516 -vn -0.2140 -0.0517 -0.9755 -vn -0.2140 -0.0518 -0.9755 -vn -0.2139 -0.0513 -0.9755 -vn -0.0127 0.3206 0.9471 -vn -0.0126 0.3207 0.9471 -vn 0.3770 -0.1199 -0.9184 -vn 0.3784 -0.1187 -0.9180 -vn 0.3778 -0.1190 -0.9182 -vn -0.9739 0.1889 -0.1257 -vn -0.9738 0.1894 -0.1256 -vn -0.9737 0.1901 -0.1259 -vn -0.6273 0.3722 0.6841 -vn -0.6272 0.3723 0.6841 -vn -0.6271 0.3705 0.6852 -vn -0.0386 0.9537 -0.2984 -vn -0.0391 0.9536 -0.2986 -vn -0.0379 0.9537 -0.2984 -vn -0.5747 -0.6341 0.5173 -vn -0.5746 -0.6342 0.5173 -vn 0.5025 0.4866 0.7147 -vn 0.5026 0.4866 0.7146 -vn 0.6745 0.1296 -0.7268 -vn 0.9430 -0.0479 0.3294 -vn 0.9429 -0.0480 0.3297 -vn 0.9430 -0.0478 0.3295 -vn 0.6832 0.4922 -0.5395 -vn 0.6829 0.4923 -0.5398 -vn 0.6837 0.4919 -0.5391 -vn 0.3220 0.1865 0.9282 -vn 0.3220 0.1858 0.9283 -vn -0.1565 0.6683 0.7272 -vn -0.1565 0.6684 0.7272 -vn -0.1564 0.6684 0.7272 -vn 0.1700 -0.0922 -0.9811 -vn 0.1698 -0.0912 -0.9813 -vn 0.1700 -0.0920 -0.9811 -vn 0.2662 -0.8657 -0.4240 -vn 0.2663 -0.8659 -0.4235 -vn 0.2664 -0.8658 -0.4236 -vn 0.3613 -0.7831 0.5063 -vn 0.3614 -0.7825 0.5071 -vn 0.3612 -0.7832 0.5061 -vn 0.6986 0.2674 -0.6637 -vn 0.3739 -0.5176 -0.7696 -vn 0.3746 -0.5175 -0.7694 -vn 0.3734 -0.5176 -0.7698 -vn -0.1756 0.9772 -0.1197 -vn -0.1755 0.9772 -0.1197 -vn -0.4149 0.4115 -0.8115 -vn -0.4149 0.4116 -0.8115 -vn -0.4146 0.4114 -0.8117 -vn 0.3678 -0.9259 -0.0863 -vn 0.3671 -0.9262 -0.0855 -vn 0.3671 -0.9262 -0.0854 -vn 0.7664 -0.6423 0.0045 -vn 0.7665 -0.6423 0.0046 -vn 0.7667 -0.6420 0.0047 -vn 0.3192 0.8931 -0.3169 -vn 0.3190 0.8931 -0.3173 -vn 0.3185 0.8930 -0.3180 -vn -0.1518 0.9523 -0.2647 -vn -0.1520 0.9524 -0.2644 -vn -0.1518 0.9522 -0.2650 -vn 0.3332 0.9263 0.1761 -vn 0.3332 0.9262 0.1766 -vn 0.3328 0.9261 0.1777 -vn 0.1374 -0.9356 -0.3254 -vn 0.1371 -0.9355 -0.3256 -vn 0.8086 -0.5307 0.2540 -vn -0.6733 0.3350 -0.6591 -vn -0.6732 0.3349 -0.6592 -vn 0.6292 0.7715 0.0946 -vn 0.6291 0.7715 0.0948 -vn 0.6294 0.7713 0.0945 -vn -0.3157 -0.9309 -0.1836 -vn -0.3161 -0.9307 -0.1840 -vn -0.3153 -0.9311 -0.1834 -vn 0.1285 -0.9181 -0.3750 -vn 0.1289 -0.9181 -0.3748 -vn -0.3368 0.9148 0.2229 -vn -0.3368 0.9148 0.2230 -vn -0.3367 0.9149 0.2228 -vn -0.4150 -0.8232 0.3874 -vn -0.4149 -0.8233 0.3874 -vn 0.0310 0.2482 -0.9682 -vn 0.0309 0.2485 -0.9681 -vn 0.0309 0.2484 -0.9682 -vn 0.7968 0.5704 0.1996 -vn 0.7965 0.5708 0.1996 -vn 0.7961 0.5713 0.1996 -vn 0.4165 -0.7665 0.4889 -vn 0.4154 -0.7658 0.4909 -vn 0.4157 -0.7663 0.4899 -vn 0.8778 0.3006 -0.3730 -vn 0.2000 0.9757 -0.0891 -vn 0.2001 0.9757 -0.0890 -vn 0.2001 0.9758 -0.0887 -vn 0.7596 -0.4444 -0.4749 -vn 0.7594 -0.4448 -0.4748 -vn 0.7593 -0.4450 -0.4748 -vn -0.4875 -0.7296 0.4796 -vn -0.4870 -0.7299 0.4797 -vn -0.4880 -0.7293 0.4796 -vn 0.4625 -0.5860 -0.6653 -vn 0.4634 -0.5854 -0.6653 -vn 0.4629 -0.5856 -0.6654 -vn -0.3254 0.6892 0.6474 -vn -0.3252 0.6909 0.6457 -vn -0.3256 0.6900 0.6464 -vn 0.8088 0.2169 0.5467 -vn 0.8088 0.2171 0.5466 -vn 0.8088 0.2169 0.5466 -vn -0.0324 0.8705 -0.4911 -vn -0.0322 0.8705 -0.4911 -vn -0.0325 0.8704 -0.4913 -vn 0.2329 0.3862 0.8925 -vn 0.2335 0.3868 0.8921 -vn 0.2326 0.3855 0.8929 -vn 0.6418 0.7598 -0.1038 -vn -0.8920 0.2898 0.3469 -vn -0.8919 0.2898 0.3471 -vn -0.8919 0.2896 0.3472 -vn -0.2575 0.1352 -0.9568 -vn -0.2573 0.1354 -0.9568 -vn -0.2574 0.1353 -0.9568 -vn -0.5258 -0.7703 -0.3607 -vn -0.5257 -0.7704 -0.3607 -vn -0.5338 -0.7766 -0.3346 -vn -0.5340 -0.7765 -0.3345 -vn -0.5343 -0.7763 -0.3345 -vn -0.3855 -0.5036 -0.7732 -vn -0.3856 -0.5035 -0.7732 -vn -0.3852 -0.5037 -0.7732 -vn -0.6031 -0.1599 -0.7815 -vn -0.6030 -0.1603 -0.7815 -vn -0.6030 -0.1602 -0.7815 -vn 0.2246 0.8178 -0.5299 -vn 0.2247 0.8178 -0.5298 -vn 0.2245 0.8176 -0.5302 -vn 0.7648 0.0787 -0.6394 -vn 0.7658 0.0784 -0.6383 -vn 0.7659 0.0785 -0.6381 -vn -0.4045 0.1170 -0.9070 -vn -0.4044 0.1159 -0.9072 -vn -0.4046 0.1164 -0.9070 -vn 0.3695 -0.7286 0.5767 -vn 0.3694 -0.7287 0.5766 -vn 0.7611 0.5484 -0.3463 -vn 0.7610 0.5485 -0.3465 -vn 0.7605 0.5489 -0.3468 -vn 0.1738 -0.7043 -0.6883 -vn 0.1735 -0.7041 -0.6886 -vn 0.1739 -0.7045 -0.6880 -vn 0.0508 0.9770 -0.2069 -vn 0.0518 0.9772 -0.2061 -vn 0.0507 0.9770 -0.2070 -vn -0.4780 -0.8219 -0.3098 -vn -0.8299 -0.3842 0.4046 -vn -0.8298 -0.3848 0.4042 -vn -0.8296 -0.3854 0.4041 -vn -0.7442 -0.4727 0.4719 -vn -0.7442 -0.4728 0.4719 -vn -0.7445 -0.4722 0.4720 -vn -0.5877 -0.1311 -0.7984 -vn -0.5877 -0.1310 -0.7984 -vn -0.5869 0.8023 0.1090 -vn -0.5870 0.8023 0.1082 -vn -0.5873 0.8022 0.1077 -vn 0.2805 0.9045 -0.3213 -vn 0.2806 0.9045 -0.3212 -vn 0.2802 0.9045 -0.3216 -vn 0.4733 0.8066 0.3542 -vn 0.4737 0.8060 0.3549 -vn 0.4733 0.8064 0.3546 -vn -0.4964 -0.8680 -0.0128 -vn -0.4965 -0.8679 -0.0129 -vn -0.4965 -0.8680 -0.0125 -vn 0.1400 -0.8621 0.4871 -vn -0.8334 0.5004 -0.2344 -vn -0.8331 0.5006 -0.2352 -vn -0.8013 0.5027 0.3243 -vn 0.1117 -0.8473 0.5192 -vn 0.1116 -0.8471 0.5196 -vn 0.1116 -0.8470 0.5198 -vn -0.9664 0.1795 -0.1838 -vn -0.9665 0.1792 -0.1837 -vn -0.9664 0.1794 -0.1839 -vn 0.8185 -0.5723 -0.0507 -vn 0.8189 -0.5718 -0.0496 -vn 0.8194 -0.5711 -0.0490 -vn -0.2821 0.4110 -0.8669 -vn -0.2818 0.4110 -0.8670 -vn -0.2817 0.4111 -0.8670 -vn 0.2606 0.6275 -0.7337 -vn 0.2604 0.6275 -0.7338 -vn 0.2607 0.6274 -0.7338 -vn 0.0248 0.9973 0.0687 -vn 0.0260 0.9973 0.0681 -vn 0.0261 0.9974 0.0679 -vn 0.0974 0.9070 -0.4097 -vn 0.0972 0.9070 -0.4098 -vn 0.7622 -0.1859 0.6201 -vn 0.5020 -0.8583 0.1065 -vn 0.5040 -0.8568 0.1093 -vn 0.5037 -0.8571 0.1085 -vn 0.8400 -0.5421 -0.0212 -vn 0.8401 -0.5421 -0.0212 -vn 0.8399 -0.5423 -0.0212 -vn -0.4119 -0.6160 0.6715 -vn -0.4118 -0.6158 0.6718 -vn -0.4124 -0.6163 0.6709 -vn -0.0269 -0.8389 -0.5436 -vn -0.0269 -0.8389 -0.5437 -vn -0.6326 -0.1484 0.7601 -vn -0.6326 -0.1481 0.7602 -vn -0.6326 -0.1485 0.7601 -vn 0.3983 -0.0194 0.9170 -vn 0.3979 -0.0192 0.9172 -vn 0.3983 -0.0197 0.9170 -vn 0.2760 -0.7160 -0.6413 -vn 0.2773 -0.7149 -0.6418 -vn 0.2750 -0.7180 -0.6394 -vn 0.0804 -0.8584 -0.5067 -vn -0.6953 0.5777 -0.4276 -vn -0.7144 0.6379 -0.2877 -vn -0.7145 0.6377 -0.2877 -vn 0.4481 0.8815 0.1491 -vn 0.2024 0.9481 0.2451 -vn 0.7913 0.1540 0.5917 -vn 0.7913 0.1543 0.5916 -vn 0.7031 0.5227 -0.4820 -vn 0.7030 0.5229 -0.4820 -vn 0.0066 -0.4131 -0.9107 -vn 0.0065 -0.4131 -0.9107 -vn 0.0064 -0.4131 -0.9107 -vn -0.0561 0.4019 -0.9140 -vn -0.0563 0.4010 -0.9143 -vn 0.7910 -0.6109 -0.0334 -vn 0.7908 -0.6111 -0.0339 -vn 0.7906 -0.6113 -0.0349 -vn 0.3460 0.7984 0.4928 -vn 0.3469 0.7986 0.4918 -vn 0.3464 0.7973 0.4942 -vn -0.2281 -0.9707 0.0749 -vn -0.7666 0.4023 -0.5004 -vn -0.7665 0.4021 -0.5008 -vn -0.7664 0.4017 -0.5013 -vn 0.2024 0.8948 -0.3979 -vn 0.2025 0.8949 -0.3976 -vn 0.2025 0.8951 -0.3973 -vn 0.1621 -0.3910 -0.9060 -vn 0.1614 -0.3908 -0.9062 -vn 0.1626 -0.3911 -0.9059 -vn 0.4182 -0.5978 0.6839 -vn -0.6620 -0.0763 -0.7456 -vn -0.6621 -0.0763 -0.7455 -vn -0.6618 -0.0764 -0.7457 -vn -0.0357 -0.6713 -0.7404 -vn -0.0354 -0.6709 -0.7407 -vn -0.0355 -0.6709 -0.7407 -vn 0.5937 0.8042 0.0295 -vn 0.8523 0.4375 0.2865 -vn 0.8524 0.4374 0.2866 -vn 0.8524 0.4373 0.2867 -vn -0.1641 -0.9696 -0.1817 -vn -0.1642 -0.9695 -0.1819 -vn -0.1639 -0.9696 -0.1815 -vn -0.9937 0.1078 -0.0312 -vn -0.9937 0.1077 -0.0317 -vn 0.2322 -0.9389 -0.2540 -vn 0.2320 -0.9389 -0.2541 -vn 0.2325 -0.9389 -0.2537 -vn 0.2756 -0.6181 -0.7362 -vn 0.0369 -0.9993 -0.0014 -vn 0.0365 -0.9993 -0.0015 -vn 0.3092 -0.9338 -0.1802 -vn -0.4496 0.2648 0.8531 -vn -0.4491 0.2650 0.8533 -vn -0.4487 0.2663 0.8531 -vn 0.3723 -0.8778 -0.3015 -vn 0.3725 -0.8777 -0.3015 -vn 0.3729 -0.8776 -0.3014 -vn -0.1321 -0.9910 0.0211 -vn 0.5576 0.6897 -0.4621 -vn 0.5574 0.6897 -0.4622 -vn 0.3002 0.7827 0.5452 -vn 0.3002 0.7827 0.5453 -vn 0.3002 0.7825 0.5456 -vn 0.1392 0.2929 -0.9459 -vn 0.1390 0.2930 -0.9459 -vn 0.1393 0.2928 -0.9460 -vn 0.8583 -0.5110 -0.0466 -vn 0.8582 -0.5112 -0.0466 -vn 0.8580 -0.5115 -0.0464 -vn -0.4636 0.2590 0.8473 -vn -0.4633 0.2592 0.8474 -vn -0.4631 0.2594 0.8475 -vn -0.2144 -0.9620 0.1691 -vn -0.2141 -0.9621 0.1691 -vn 0.3868 -0.3255 -0.8628 -vn 0.3868 -0.3254 -0.8628 -vn -0.1456 -0.6703 -0.7277 -vn -0.1458 -0.6701 -0.7278 -vn -0.8459 0.0806 -0.5273 -vn -0.8457 0.0808 -0.5275 -vn -0.3338 0.1421 -0.9319 -vn -0.3333 0.1423 -0.9320 -vn -0.3336 0.1421 -0.9319 -vn 0.7366 0.6711 0.0838 -vn 0.7370 0.6706 0.0839 -vn 0.7367 0.6710 0.0838 -vn 0.4127 -0.6323 -0.6556 -vn 0.4130 -0.6323 -0.6554 -vn -0.3542 -0.8536 -0.3819 -vn -0.3538 -0.8539 -0.3817 -vn -0.3540 -0.8539 -0.3815 -vn -0.3040 -0.8310 -0.4659 -vn -0.3042 -0.8309 -0.4659 -vn -0.3036 -0.8311 -0.4659 -vn 0.3918 0.6519 0.6493 -vn 0.3916 0.6519 0.6494 -vn 0.3919 0.6520 0.6491 -vn -0.9453 0.1948 0.2616 -vn -0.9454 0.1951 0.2610 -vn -0.9453 0.1945 0.2619 -vn -0.6538 0.6845 -0.3224 -vn -0.6543 0.6841 -0.3223 -vn 0.0998 0.9806 -0.1688 -vn 0.0868 -0.4364 -0.8956 -vn 0.0871 -0.4365 -0.8955 -vn 0.0869 -0.4365 -0.8955 -vn 0.0020 -0.9981 0.0617 -vn 0.1073 -0.9842 -0.1412 -vn 0.1075 -0.9841 -0.1414 -vn 0.1072 -0.9841 -0.1414 -vn -0.0937 -0.9948 0.0405 -vn 0.3820 -0.9239 0.0210 -vn -0.4160 0.5497 -0.7244 -vn -0.4037 0.5493 -0.7316 -vn -0.3995 0.5384 -0.7420 -vn 0.2363 -0.7984 -0.5538 -vn 0.2365 -0.7985 -0.5537 -vn 0.2366 -0.7985 -0.5536 -vn -0.8584 -0.3760 0.3489 -vn -0.8585 -0.3757 0.3490 -vn -0.8586 -0.3756 0.3488 -vn 0.9662 -0.0483 0.2533 -vn 0.9661 -0.0483 0.2536 -vn 0.9661 -0.0484 0.2535 -vn 0.0272 -0.6001 0.7994 -vn 0.0272 -0.6006 0.7991 -vn 0.0272 -0.6004 0.7993 -vn 0.1115 -0.9851 -0.1307 -vn 0.1114 -0.9851 -0.1307 -vn 0.2184 -0.4187 -0.8815 -vn 0.2183 -0.4187 -0.8815 -vn 0.2179 -0.4185 -0.8817 -vn -0.0777 -0.9930 -0.0888 -vn -0.0778 -0.9930 -0.0889 -vn -0.0781 -0.9929 -0.0892 -vn 0.2901 -0.8707 0.3971 -vn 0.2905 -0.8706 0.3970 -vn 0.2908 -0.8705 0.3971 -vn 0.0529 -0.8375 0.5438 -vn 0.0531 -0.8377 0.5436 -vn 0.0528 -0.8373 0.5441 -vn -0.1977 0.4155 -0.8878 -vn -0.1977 0.4156 -0.8878 -vn -0.4128 -0.9070 0.0829 -vn -0.4144 -0.9063 0.0834 -vn -0.4116 -0.9078 0.0810 -vn -0.0679 -0.9944 0.0808 -vn -0.0682 -0.9944 0.0808 -vn 0.0185 -0.9963 0.0841 -vn 0.0183 -0.9963 0.0842 -vn 0.1466 -0.9815 -0.1233 -vn -0.8837 0.3401 -0.3217 -vn -0.8835 0.3408 -0.3214 -vn -0.8837 0.3402 -0.3214 -vn -0.7122 -0.5724 0.4063 -vn -0.7125 -0.5720 0.4065 -vn -0.3913 -0.4101 -0.8239 -vn -0.3916 -0.4102 -0.8236 -vn -0.6060 -0.7929 0.0640 -vn -0.1902 -0.6175 0.7632 -vn -0.1893 -0.6181 0.7629 -vn -0.1904 -0.6174 0.7633 -vn -0.1440 -0.9797 -0.1394 -vn -0.1437 -0.9798 -0.1391 -vn -0.1437 -0.9798 -0.1392 -vn -0.5166 -0.8474 -0.1227 -vn -0.5163 -0.8475 -0.1228 -vn -0.5166 -0.8473 -0.1232 -vn 0.1751 0.8671 -0.4663 -vn -0.4387 -0.8890 -0.1312 -vn -0.4384 -0.8891 -0.1313 -vn -0.4385 -0.8891 -0.1312 -vn -0.0145 -0.8434 0.5370 -vn -0.0152 -0.8434 0.5371 -vn -0.0149 -0.8434 0.5371 -vn 0.3773 -0.3364 -0.8628 -vn 0.3773 -0.3359 -0.8630 -vn 0.3773 -0.3363 -0.8629 -vn 0.3291 -0.9401 -0.0890 -vn 0.3291 -0.9402 -0.0882 -vn 0.3289 -0.9402 -0.0886 -vn 0.0253 -0.9963 -0.0818 -vn 0.1682 0.0427 0.9848 -vn 0.1681 0.0428 0.9848 -vn 0.2205 -0.9752 -0.0209 -vn 0.2181 -0.9756 -0.0244 -vn 0.2201 -0.9752 -0.0232 -vn 0.1802 0.9549 -0.2360 -vn -0.6293 0.7100 0.3162 -vn 0.3500 -0.4508 0.8211 -vn 0.3495 -0.4512 0.8211 -vn 0.3501 -0.4508 0.8211 -vn 0.4628 -0.1529 0.8732 -vn 0.4635 -0.1532 0.8727 -vn 0.4633 -0.1530 0.8729 -vn -0.2212 -0.0129 -0.9752 -vn -0.2213 -0.0142 -0.9751 -vn -0.2212 -0.0137 -0.9751 -vn -0.1076 -0.0885 0.9902 -vn -0.1076 -0.0883 0.9903 -vn 0.8005 0.1114 0.5889 -vn 0.8007 0.1115 0.5885 -vn 0.8010 0.1114 0.5882 -vn -0.8130 -0.4503 -0.3691 -vn -0.8127 -0.4506 -0.3695 -vn -0.8122 -0.4512 -0.3698 -vn -0.7114 0.6473 -0.2735 -vn -0.7115 0.6472 -0.2737 -vn 0.8382 0.5381 0.0886 -vn 0.8382 0.5382 0.0888 -vn 0.8383 0.5379 0.0887 -vn 0.1587 0.3671 -0.9165 -vn 0.7623 0.5551 0.3329 -vn 0.7622 0.5551 0.3332 -vn 0.7621 0.5551 0.3333 -vn -0.8918 0.2071 -0.4022 -vn -0.8917 0.2073 -0.4023 -vn -0.8917 0.2072 -0.4023 -vn 0.4558 0.8160 -0.3555 -vn 0.7151 -0.1625 0.6799 -vn -0.0285 0.9869 0.1586 -vn -0.8792 0.3620 0.3099 -vn -0.8792 0.3620 0.3098 -vn -0.5389 -0.6455 0.5412 -vn -0.5388 -0.6458 0.5410 -vn -0.5388 -0.6457 0.5411 -vn 0.9759 0.0930 0.1976 -vn 0.9758 0.0925 0.1979 -vn 0.8632 0.1013 0.4947 -vn 0.8630 0.1014 0.4949 -vn -0.1571 -0.8865 -0.4352 -vn -0.1568 -0.8865 -0.4353 -vn -0.1548 0.8683 0.4712 -vn -0.1551 0.8683 0.4711 -vn -0.1552 0.8683 0.4711 -vn -0.0623 0.9667 -0.2481 -vn -0.0622 0.9667 -0.2482 -vn 0.6201 0.7673 -0.1634 -vn 0.6198 0.7675 -0.1637 -vn 0.8208 0.0982 0.5627 -vn 0.8208 0.0984 0.5627 -vn -0.3136 -0.6955 0.6464 -vn -0.3137 -0.6956 0.6464 -vn -0.3135 -0.6958 0.6463 -vn 0.5977 0.0413 -0.8006 -vn 0.5989 0.0410 -0.7998 -vn 0.5982 0.0416 -0.8003 -vn 0.3917 0.2980 0.8705 -vn 0.3918 0.2980 0.8704 -vn 0.6590 0.6560 -0.3679 -vn 0.6588 0.6562 -0.3678 -vn -0.0107 -0.9363 0.3510 -vn 0.8822 0.2660 0.3886 -vn 0.1237 -0.9912 -0.0474 -vn -0.7328 0.6454 0.2155 -vn -0.7329 0.6454 0.2153 -vn -0.7325 0.6457 0.2155 -vn -0.1583 -0.9724 -0.1714 -vn -0.1584 -0.9726 -0.1701 -vn -0.1580 -0.9723 -0.1720 -vn 0.1026 -0.7770 0.6211 -vn 0.1015 -0.7774 0.6208 -vn 0.1022 -0.7771 0.6210 -vn 0.9268 -0.3221 -0.1931 -vn 0.9266 -0.3226 -0.1932 -vn 0.9270 -0.3216 -0.1931 -vn -0.3059 -0.9402 -0.1496 -vn -0.3059 -0.9402 -0.1497 -vn -0.4829 -0.8756 0.0056 -vn -0.4829 -0.8756 0.0053 -vn -0.4831 -0.8756 0.0058 -vn -0.4033 0.7425 0.5349 -vn -0.4037 0.7424 0.5347 -vn -0.4034 0.7424 0.5349 -vn -0.2759 -0.9556 0.1034 -vn -0.2765 -0.9554 0.1036 -vn -0.2763 -0.9555 0.1035 -vn -0.9381 0.2896 0.1903 -vn -0.9380 0.2895 0.1907 -vn -0.9380 0.2896 0.1906 -vn 0.2051 -0.4132 0.8873 -vn 0.2053 -0.4134 0.8871 -vn 0.2052 -0.4133 0.8872 -vn 0.5789 0.2368 0.7802 -vn -0.6878 0.6836 -0.2441 -vn -0.6875 0.6841 -0.2436 -vn -0.6877 0.6838 -0.2439 -vn 0.3852 0.8055 0.4504 -vn 0.3854 0.8052 0.4506 -vn 0.3849 0.8057 0.4502 -vn 0.2718 -0.3664 0.8899 -vn 0.2722 -0.3664 0.8898 -vn 0.2709 -0.3667 0.8900 -vn 0.0080 0.1585 -0.9873 -vn 0.0086 0.1581 -0.9874 -vn 0.0086 0.1578 -0.9874 -vn 0.4111 0.8311 0.3744 -vn 0.2276 -0.7686 0.5979 -vn 0.2280 -0.7686 0.5977 -vn -0.4061 -0.9138 -0.0004 -vn -0.4061 -0.9138 -0.0002 -vn -0.4061 -0.9138 -0.0005 -vn 0.2831 0.1808 -0.9419 -vn 0.2852 0.1836 -0.9407 -vn 0.2849 0.1829 -0.9410 -vn -0.1403 -0.9730 0.1833 -vn -0.1404 -0.9729 0.1835 -vn -0.6961 -0.0557 -0.7158 -vn -0.6963 -0.0558 -0.7156 -vn -0.6962 -0.0559 -0.7156 -vn 0.4706 -0.5945 0.6521 -vn 0.4704 -0.5948 0.6519 -vn 0.4705 -0.5947 0.6519 -vn -0.4617 0.3939 0.7947 -vn -0.4617 0.3940 0.7947 -vn -0.9697 -0.2439 -0.0147 -vn -0.9697 -0.2439 -0.0146 -vn 0.4996 0.7325 0.4623 -vn -0.6660 0.0256 -0.7455 -vn -0.6659 0.0257 -0.7456 -vn -0.6661 0.0254 -0.7454 -vn 0.5726 0.6989 0.4285 -vn -0.7090 0.0745 -0.7012 -vn -0.7093 0.0745 -0.7010 -vn 0.2489 -0.1676 0.9539 -vn 0.2489 -0.1675 0.9539 -vn 0.2489 -0.1677 0.9539 -vn -0.8694 0.1131 0.4810 -vn -0.8693 0.1133 0.4811 -vn -0.8693 0.1132 0.4811 -vn 0.7524 -0.1432 0.6429 -vn -0.5210 0.0151 0.8534 -vn -0.5210 0.0148 0.8534 -vn -0.5210 0.0145 0.8534 -vn 0.4316 0.0465 0.9009 -vn 0.4317 0.0464 0.9008 -vn 0.4320 0.0461 0.9007 -vn -0.7178 -0.6632 0.2120 -vn -0.7179 -0.6630 0.2123 -vn 0.9421 -0.0038 -0.3353 -vn 0.9428 -0.0046 -0.3333 -vn 0.9434 -0.0058 -0.3317 -vn 0.8609 -0.1795 0.4760 -vn 0.8613 -0.1788 0.4756 -vn 0.8617 -0.1768 0.4757 -vn -0.4023 -0.7900 0.4627 -vn -0.4022 -0.7908 0.4613 -vn -0.4021 -0.7905 0.4620 -vn -0.8014 0.3487 0.4859 -vn -0.8008 0.3509 0.4854 -vn -0.8012 0.3499 0.4854 -vn -0.8517 -0.0593 -0.5206 -vn -0.8517 -0.0593 -0.5207 -vn -0.2670 0.6615 0.7008 -vn -0.2668 0.6617 0.7007 -vn -0.1431 0.4817 0.8646 -vn -0.1429 0.4826 0.8641 -vn -0.1435 0.4844 0.8630 -vn 0.5196 -0.5913 0.6167 -vn -0.8207 -0.0955 -0.5633 -vn -0.8208 -0.0952 -0.5632 -vn -0.8206 -0.0958 -0.5635 -vn -0.2886 -0.9506 0.1139 -vn -0.2887 -0.9506 0.1139 -vn -0.2885 -0.9507 0.1137 -vn -0.8714 0.4724 -0.1325 -vn 0.1618 0.9854 -0.0529 -vn 0.1607 0.9856 -0.0530 -vn 0.1613 0.9855 -0.0530 -vn -0.6282 0.6756 0.3859 -vn -0.6280 0.6756 0.3862 -vn -0.6281 0.6756 0.3861 -vn -0.6892 -0.6872 -0.2296 -vn -0.6895 -0.6869 -0.2298 -vn -0.6894 -0.6870 -0.2297 -vn 0.6461 0.4964 -0.5798 -vn 0.6461 0.4965 -0.5797 -vn -0.8455 0.4335 -0.3116 -vn -0.8456 0.4338 -0.3110 -vn -0.8456 0.4337 -0.3112 -vn 0.5994 -0.1945 0.7765 -vn 0.5990 -0.1943 0.7768 -vn 0.5999 -0.1945 0.7761 -vn 0.6481 0.5875 -0.4845 -vn 0.6481 0.5880 -0.4840 -vn 0.6484 0.5869 -0.4849 -vn 0.7604 -0.6381 0.1209 -vn 0.7613 -0.6369 0.1214 -vn 0.7600 -0.6386 0.1209 -vn -0.8872 0.3870 -0.2511 -vn -0.8871 0.3872 -0.2513 -vn -0.8871 0.3873 -0.2512 -vn 0.7525 -0.6523 -0.0902 -vn 0.7531 -0.6516 -0.0907 -vn 0.7533 -0.6513 -0.0909 -vn -0.1958 0.9762 0.0937 -vn -0.1959 0.9762 0.0934 -vn 0.1639 0.9349 -0.3147 -vn 0.1641 0.9350 -0.3145 -vn 0.1638 0.9349 -0.3147 -vn 0.7768 0.4551 0.4353 -vn 0.7769 0.4553 0.4349 -vn 0.7770 0.4552 0.4348 -vn -0.0783 -0.7728 -0.6298 -vn -0.0782 -0.7728 -0.6299 -vn -0.0785 -0.7728 -0.6298 -vn -0.4198 0.9061 0.0522 -vn -0.4201 0.9060 0.0522 -vn 0.3990 0.9145 0.0665 -vn 0.4148 -0.9097 -0.0197 -vn 0.4150 -0.9096 -0.0200 -vn 0.4149 -0.9096 -0.0199 -vn 0.5574 0.7360 0.3841 -vn 0.5572 0.7359 0.3847 -vn 0.5580 0.7363 0.3827 -vn -0.3367 -0.7818 -0.5248 -vn -0.3373 -0.7827 -0.5231 -vn -0.3367 -0.7822 -0.5241 -vn -0.0574 0.2623 -0.9633 -vn -0.0576 0.2624 -0.9632 -vn -0.0575 0.2626 -0.9632 -vn 0.2342 0.3667 -0.9004 -vn 0.2335 0.3668 -0.9005 -vn 0.2329 0.3672 -0.9005 -vn 0.2072 0.9732 0.0998 -vn 0.2072 0.9732 0.0999 -vn -0.5674 0.8045 -0.1756 -vn -0.5674 0.8046 -0.1751 -vn -0.5673 0.8048 -0.1747 -vn -0.3333 0.8530 -0.4017 -vn -0.3331 0.8531 -0.4017 -vn 0.3452 -0.8052 -0.4822 -vn 0.0998 -0.3449 -0.9333 -vn 0.1009 -0.3433 -0.9338 -vn 0.1004 -0.3442 -0.9335 -vn 0.6976 0.6526 -0.2959 -vn 0.6976 0.6527 -0.2956 -vn -0.0088 0.9980 0.0625 -vn -0.0092 0.9980 0.0629 -vn -0.0089 0.9980 0.0627 -vn -0.3341 -0.9424 -0.0173 -vn -0.3339 -0.9424 -0.0171 -vn -0.3339 -0.9424 -0.0168 -vn -0.8021 -0.2469 -0.5438 -vn -0.7852 -0.2502 -0.5665 -vn -0.7853 -0.2501 -0.5664 -vn -0.7852 -0.2503 -0.5664 -vn -0.8192 -0.5646 0.1005 -vn -0.8196 -0.5640 0.1009 -vn -0.8188 -0.5652 0.1003 -vn -0.8325 0.2727 -0.4823 -vn -0.8326 0.2729 -0.4820 -vn -0.8326 0.2725 -0.4822 -vn 0.0498 -0.9556 0.2904 -vn 0.0501 -0.9556 0.2903 -vn 0.0502 -0.9556 0.2903 -vn 0.5887 -0.8074 -0.0376 -vn 0.5887 -0.8074 -0.0377 -vn -0.4608 0.7125 -0.5292 -vn -0.4615 0.7125 -0.5286 -vn -0.4631 0.7119 -0.5280 -vn -0.9333 -0.3584 -0.0215 -vn -0.9334 -0.3582 -0.0214 -vn -0.9332 -0.3586 -0.0217 -vn 0.3041 -0.9525 0.0141 -vn 0.3036 -0.9527 0.0137 -vn 0.3029 -0.9529 0.0125 -vn -0.3287 0.1594 0.9309 -vn -0.3281 0.1592 0.9311 -vn -0.3284 0.1593 0.9310 -vn 0.2340 -0.8537 -0.4653 -vn 0.2342 -0.8535 -0.4655 -vn 0.2343 -0.8533 -0.4658 -vn -0.5721 -0.1665 -0.8031 -vn -0.5718 -0.1663 -0.8034 -vn -0.5720 -0.1665 -0.8032 -vn -0.4690 0.5980 -0.6499 -vn -0.1558 -0.7415 -0.6526 -vn -0.1551 -0.7416 -0.6527 -vn -0.1544 -0.7414 -0.6531 -vn 0.7534 0.5534 0.3551 -vn 0.4262 0.6708 0.6069 -vn 0.4256 0.6702 0.6080 -vn 0.4252 0.6700 0.6086 -vn -0.3681 -0.9250 0.0942 -vn 0.5532 -0.1434 -0.8206 -vn 0.5549 -0.1436 -0.8194 -vn 0.5521 -0.1420 -0.8216 -vn -0.1837 -0.9782 0.0971 -vn -0.1838 -0.9781 0.0974 -vn -0.4335 -0.1473 -0.8890 -vn -0.4335 -0.1474 -0.8890 -vn -0.2612 0.5332 0.8047 -vn -0.7257 0.6032 -0.3309 -vn -0.7257 0.6031 -0.3309 -vn -0.7258 0.6033 -0.3306 -vn -0.8152 -0.3251 0.4793 -vn -0.8151 -0.3252 0.4794 -vn -0.8153 -0.3249 0.4793 -vn -0.5652 0.8143 -0.1323 -vn -0.5656 0.8141 -0.1319 -vn -0.5651 0.8144 -0.1321 -vn 0.4847 0.4560 0.7464 -vn 0.4848 0.4558 0.7465 -vn 0.4849 0.4557 0.7465 -vn 0.3531 0.1306 0.9264 -vn 0.3533 0.1302 0.9264 -vn 0.3533 0.1303 0.9264 -vn -0.2549 -0.5966 -0.7610 -vn -0.2550 -0.5966 -0.7610 -vn -0.2545 -0.5966 -0.7611 -vn -0.8987 0.4227 0.1168 -vn -0.8988 0.4226 0.1167 -vn -0.8988 0.4225 0.1169 -vn -0.1145 -0.9678 0.2242 -vn -0.1143 -0.9679 0.2240 -vn -0.1144 -0.9678 0.2242 -vn -0.6360 -0.6562 -0.4061 -vn -0.6360 -0.6562 -0.4062 -vn 0.0335 0.4854 0.8737 -vn 0.0332 0.4856 0.8736 -vn 0.0338 0.4853 0.8737 -vn -0.8480 -0.2031 0.4896 -vn -0.8480 -0.2029 0.4896 -vn 0.2945 0.0799 -0.9523 -vn 0.2945 0.0794 -0.9523 -vn -0.4137 0.7250 -0.5507 -vn -0.3456 0.3200 -0.8821 -vn -0.3456 0.3201 -0.8821 -vn -0.3455 0.3199 -0.8822 -vn 0.6664 0.6487 -0.3675 -vn 0.4809 0.0317 -0.8762 -vn 0.4809 0.0321 -0.8762 -vn 0.4809 0.0322 -0.8762 -vn 0.3303 0.6139 0.7169 -vn 0.3305 0.6139 0.7169 -vn 0.3307 0.6137 0.7169 -vn -0.7151 0.4667 -0.5204 -vn -0.7155 0.4664 -0.5202 -vn -0.7151 0.4665 -0.5205 -vn -0.7911 0.3262 0.5174 -vn -0.7910 0.3261 0.5177 -vn -0.7911 0.3260 0.5175 -vn 0.8892 0.0100 -0.4575 -vn 0.8889 0.0087 -0.4580 -vn 0.8891 0.0096 -0.4576 -vn 0.4695 -0.3725 -0.8005 -vn 0.4698 -0.3721 -0.8005 -vn 0.4696 -0.3723 -0.8006 -vn -0.1272 -0.9914 0.0314 -vn -0.1273 -0.9914 0.0313 -vn -0.4203 -0.8530 -0.3095 -vn -0.4219 -0.8528 -0.3077 -vn -0.4207 -0.8531 -0.3086 -vn -0.1651 -0.7224 -0.6715 -vn -0.1649 -0.7225 -0.6714 -vn 0.1639 -0.9092 -0.3829 -vn 0.9544 -0.2675 0.1326 -vn 0.9544 -0.2675 0.1325 -vn 0.9544 -0.2674 0.1324 -vn 0.0357 -0.9994 0.0027 -vn -0.7259 0.5354 -0.4317 -vn -0.7777 0.6257 0.0601 -vn -0.7775 0.6260 0.0600 -vn -0.7775 0.6259 0.0602 -vn -0.0527 -0.5064 -0.8607 -vn -0.0525 -0.5065 -0.8607 -vn -0.0523 -0.5065 -0.8606 -vn 0.0575 -0.9955 0.0754 -vn 0.0593 -0.9953 0.0764 -vn 0.0582 -0.9954 0.0755 -vn 0.3031 0.7050 0.6412 -vn 0.3031 0.7049 0.6412 -vn 0.8273 -0.0975 0.5532 -vn 0.8260 -0.0999 0.5547 -vn 0.8267 -0.0993 0.5539 -vn -0.3507 0.7667 -0.5378 -vn 0.0118 0.9874 -0.1578 -vn 0.0117 0.9875 -0.1572 -vn 0.0118 0.9875 -0.1573 -vn 0.7192 0.6641 -0.2043 -vn 0.7191 0.6642 -0.2045 -vn 0.0153 0.2048 -0.9787 -vn 0.6477 -0.7530 -0.1157 -vn 0.6479 -0.7528 -0.1159 -vn 0.4533 0.8689 0.1991 -vn 0.4533 0.8689 0.1989 -vn 0.3916 0.5850 -0.7102 -vn 0.3911 0.5852 -0.7104 -vn 0.3914 0.5850 -0.7103 -vn 0.3766 0.9104 -0.1712 -vn 0.3765 0.9104 -0.1716 -vn 0.3769 0.9103 -0.1711 -vn 0.8951 -0.3969 -0.2033 -vn 0.8950 -0.3970 -0.2033 -vn 0.8951 -0.3966 -0.2036 -vn 0.7994 0.3252 0.5051 -vn 0.7994 0.3253 0.5051 -vn 0.7995 0.3251 0.5052 -vn -0.0903 0.9952 0.0387 -vn -0.0898 0.9952 0.0390 -vn -0.0900 0.9952 0.0395 -vn -0.3948 -0.8728 -0.2869 -vn -0.3950 -0.8727 -0.2870 -vn -0.3940 -0.8733 -0.2866 -vn 0.0771 0.6584 -0.7487 -vn 0.0771 0.6583 -0.7488 -vn -0.7840 -0.1151 0.6099 -vn -0.7841 -0.1151 0.6098 -vn -0.7840 -0.1153 0.6100 -vn 0.4235 0.8292 0.3647 -vn 0.4238 0.8291 0.3646 -vn 0.4239 0.8290 0.3647 -vn 0.3679 -0.0052 -0.9299 -vn 0.7652 -0.6432 0.0285 -vn 0.7652 -0.6432 0.0282 -vn 0.7653 -0.6430 0.0278 -vn 0.6091 -0.7694 -0.1923 -vn 0.6090 -0.7692 -0.1936 -vn 0.6090 -0.7693 -0.1932 -vn 0.0929 0.0225 0.9954 -vn 0.0930 0.0227 0.9954 -vn 0.0931 0.0227 0.9954 -vn 0.0751 -0.5706 0.8178 -vn 0.0753 -0.5705 0.8178 -vn 0.0756 -0.5704 0.8179 -vn 0.3521 0.5165 -0.7806 -vn 0.3518 0.5168 -0.7805 -vn 0.3516 0.5170 -0.7805 -vn 0.8361 0.5443 0.0679 -vn 0.8362 0.5442 0.0678 -vn 0.8359 0.5447 0.0676 -vn -0.4202 -0.8265 0.3745 -vn -0.4201 -0.8266 0.3745 -vn 0.7987 0.5821 0.1526 -vn 0.7985 0.5824 0.1522 -vn 0.5522 0.7103 -0.4365 -vn 0.5519 0.7103 -0.4369 -vn 0.5521 0.7103 -0.4367 -vn 0.6441 0.3815 0.6630 -vn 0.6440 0.3823 0.6626 -vn 0.6444 0.3809 0.6631 -vn 0.0516 -0.2092 0.9765 -vn 0.9745 0.1924 -0.1157 -vn 0.9745 0.1926 -0.1151 -vn 0.9745 0.1925 -0.1154 -vn 0.4977 0.6761 0.5433 -vn 0.4972 0.6756 0.5443 -vn 0.4972 0.6755 0.5444 -vn 0.7895 -0.4892 0.3705 -vn 0.7894 -0.4893 0.3706 -vn 0.7893 -0.4895 0.3707 -vn 0.8007 0.5952 0.0680 -vn 0.8005 0.5954 0.0681 -vn 0.1490 -0.9307 0.3340 -vn 0.1492 -0.9309 0.3335 -vn 0.1452 0.8622 -0.4854 -vn 0.1446 0.8622 -0.4854 -vn 0.1455 0.8621 -0.4854 -vn 0.5152 0.8134 0.2702 -vn 0.5146 0.8135 0.2709 -vn 0.5150 0.8134 0.2704 -vn -0.0895 0.4834 -0.8708 -vn -0.0896 0.4836 -0.8707 -vn -0.0899 0.4838 -0.8706 -vn 0.3835 0.9078 -0.1698 -vn 0.3835 0.9077 -0.1701 -vn 0.3833 0.9079 -0.1694 -vn 0.6852 -0.7279 -0.0247 -vn 0.6851 -0.7280 -0.0246 -vn 0.6851 -0.7280 -0.0249 -vn -0.3066 0.7750 -0.5526 -vn -0.3063 0.7750 -0.5528 -vn -0.3061 0.7750 -0.5529 -vn -0.1338 -0.9390 0.3168 -vn -0.1341 -0.9390 0.3167 -vn -0.1342 -0.9390 0.3167 -vn -0.8706 0.3177 -0.3757 -vn -0.1533 -0.8855 0.4386 -vn -0.1535 -0.8856 0.4384 -vn -0.4969 -0.8677 -0.0172 -vn -0.4970 -0.8676 -0.0171 -vn -0.4970 -0.8676 -0.0170 -vn -0.1597 -0.9397 -0.3023 -vn -0.1599 -0.9397 -0.3022 -vn -0.1598 -0.9397 -0.3023 -vn 0.6134 0.5190 -0.5953 -vn 0.6135 0.5190 -0.5952 -vn 0.6127 0.5192 -0.5959 -vn -0.6492 -0.2633 -0.7136 -vn -0.6491 -0.2635 -0.7136 -vn -0.6491 -0.2636 -0.7136 -vn -0.4570 -0.8889 -0.0301 -vn 0.6932 0.7202 0.0296 -vn 0.6931 0.7202 0.0295 -vn 0.0771 0.6496 0.7563 -vn 0.0775 0.6489 0.7569 -vn 0.0772 0.6498 0.7562 -vn 0.2376 0.1336 -0.9621 -vn 0.2376 0.1340 -0.9621 -vn 0.2375 0.1338 -0.9621 -vn 0.1978 0.4132 -0.8889 -vn 0.1979 0.4133 -0.8888 -vn 0.1977 0.4129 -0.8890 -vn 0.5536 0.7590 -0.3427 -vn 0.5535 0.7591 -0.3426 -vn 0.5533 0.7592 -0.3427 -vn -0.4164 -0.3643 -0.8330 -vn -0.4167 -0.3640 -0.8330 -vn -0.4166 -0.3641 -0.8330 -vn -0.0248 0.6398 -0.7682 -vn -0.0248 0.6395 -0.7684 -vn -0.0248 0.6396 -0.7683 -vn 0.7831 0.3502 0.5138 -vn -0.4093 -0.8911 0.1962 -vn -0.4099 -0.8910 0.1952 -vn -0.4072 -0.8917 0.1978 -vn 0.1821 -0.7832 0.5945 -vn 0.1821 -0.7833 0.5944 -vn -0.5193 -0.1255 -0.8453 -vn -0.5194 -0.1253 -0.8453 -vn -0.5192 -0.1252 -0.8454 -vn 0.6230 0.1923 0.7582 -vn 0.6223 0.1925 0.7588 -vn 0.6224 0.1925 0.7586 -vn 0.3196 -0.9129 0.2541 -vn 0.3197 -0.9131 0.2530 -vn 0.3190 -0.9128 0.2550 -vn 0.7456 -0.6410 0.1823 -vn 0.7454 -0.6410 0.1832 -vn 0.8967 -0.4105 0.1655 -vn 0.8966 -0.4107 0.1654 -vn 0.8967 -0.4106 0.1653 -vn 0.0084 -0.8541 0.5201 -vn 0.0076 -0.8553 0.5181 -vn 0.0103 -0.8535 0.5210 -vn 0.7492 -0.5609 0.3524 -vn 0.7497 -0.5596 0.3533 -vn 0.7494 -0.5603 0.3529 -vn -0.5838 0.6695 -0.4594 -vn -0.5840 0.6694 -0.4591 -vn -0.1243 0.6450 -0.7540 -vn -0.1242 0.6450 -0.7540 -vn -0.1239 0.6448 -0.7542 -vn 0.1882 0.6916 -0.6973 -vn 0.1880 0.6916 -0.6974 -vn 0.5890 0.6056 0.5351 -vn 0.0021 -0.0027 1.0000 -vn -0.1227 0.0952 -0.9879 -vn -0.1236 0.0949 -0.9878 -vn -0.1228 0.0952 -0.9879 -vn 0.5257 0.7498 0.4017 -vn -0.1232 0.6945 0.7088 -vn -0.1228 0.6941 0.7094 -vn -0.1234 0.6948 0.7085 -vn 0.2920 0.9163 0.2741 -vn 0.2916 0.9165 0.2738 -vn 0.2920 0.9164 0.2739 -vn -0.4457 0.8176 0.3645 -vn -0.4455 0.8177 0.3645 -vn -0.4455 0.8177 0.3646 -vn 0.1573 0.0162 -0.9874 -vn 0.1569 0.0159 -0.9875 -vn -0.8630 0.2544 -0.4364 -vn -0.8628 0.2549 -0.4366 -vn -0.8623 0.2555 -0.4372 -vn 0.6991 0.7126 0.0585 -vn 0.6988 0.7130 0.0582 -vn 0.6989 0.7129 0.0582 -vn -0.5289 0.6452 -0.5513 -vn -0.5291 0.6452 -0.5512 -vn -0.5288 0.6452 -0.5514 -vn 0.4776 -0.6457 0.5958 -vn 0.4776 -0.6454 0.5961 -vn 0.4775 -0.6456 0.5960 -vn -0.9429 0.0135 -0.3328 -vn -0.9429 0.0139 -0.3329 -vn -0.9427 0.0139 -0.3334 -vn -0.8962 0.4364 0.0803 -vn -0.8959 0.4366 0.0819 -vn -0.8961 0.4366 0.0799 -vn -0.1550 0.2769 -0.9483 -vn -0.1548 0.2771 -0.9483 -vn -0.1548 0.2768 -0.9484 -vn 0.9831 -0.1796 -0.0357 -vn 0.9833 -0.1785 -0.0367 -vn 0.9831 -0.1792 -0.0362 -vn -0.6335 0.6159 -0.4683 -vn -0.6330 0.6164 -0.4683 -vn -0.6329 0.6165 -0.4684 -vn -0.4013 0.8407 0.3635 -vn -0.4016 0.8405 0.3638 -vn -0.4010 0.8409 0.3634 -vn 0.6941 -0.6824 0.2293 -vn 0.6944 -0.6804 0.2341 -vn 0.6946 -0.6803 0.2340 -vn 0.6945 -0.6803 0.2341 -vn 0.0042 0.9985 -0.0543 -vn 0.0042 0.9985 -0.0544 -vn -0.2101 -0.8793 -0.4274 -vn -0.2102 -0.8793 -0.4275 -vn -0.2103 -0.8793 -0.4274 -vn -0.5901 0.1812 -0.7867 -vn -0.5900 0.1817 -0.7867 -vn -0.5901 0.1814 -0.7867 -vn -0.1978 0.1691 -0.9655 -vn -0.1983 0.1696 -0.9654 -vn -0.1971 0.1692 -0.9657 -vn 0.1825 0.9353 0.3032 -vn 0.1857 0.9350 0.3023 -vn 0.1840 0.9350 0.3031 -vn 0.5068 -0.7227 0.4700 -vn 0.5070 -0.7226 0.4699 -vn 0.5072 -0.7225 0.4699 -vn -0.6146 -0.5584 0.5572 -vn -0.6146 -0.5586 0.5570 -vn -0.2117 -0.9761 -0.0500 -vn -0.2096 -0.9764 -0.0528 -vn -0.2098 -0.9764 -0.0513 -vn -0.2644 -0.9629 0.0538 -vn -0.2643 -0.9629 0.0540 -vn -0.2646 -0.9628 0.0540 -vn 0.7265 -0.6367 -0.2584 -vn 0.7259 -0.6374 -0.2584 -vn -0.5548 -0.6211 -0.5535 -vn -0.5550 -0.6213 -0.5531 -vn -0.5551 -0.6211 -0.5532 -vn -0.3819 0.0338 -0.9236 -vn -0.3820 0.0344 -0.9235 -vn -0.3820 0.0340 -0.9235 -vn 0.1877 -0.8091 -0.5569 -vn 0.1873 -0.8097 -0.5562 -vn 0.1867 -0.8101 -0.5558 -vn 0.2908 -0.7539 -0.5892 -vn 0.2906 -0.7538 -0.5893 -vn -0.2845 0.4048 0.8690 -vn -0.2840 0.4049 0.8691 -vn -0.2852 0.4046 0.8689 -vn -0.4319 0.1473 -0.8898 -vn 0.8175 0.3624 0.4476 -vn 0.8174 0.3625 0.4478 -vn 0.0465 0.1993 0.9788 -vn 0.0462 0.1994 0.9788 -vn -0.0371 0.2526 0.9669 -vn -0.0381 0.2525 0.9668 -vn -0.0389 0.2526 0.9668 -vn -0.2302 -0.8618 0.4520 -vn -0.2304 -0.8617 0.4521 -vn 0.3149 0.3667 -0.8754 -vn 0.3150 0.3621 -0.8773 -vn 0.3147 0.3635 -0.8768 -vn -0.3009 -0.1278 0.9451 -vn -0.3004 -0.1276 0.9452 -vn -0.3009 -0.1280 0.9450 -vn -0.5931 0.5827 0.5556 -vn -0.5928 0.5829 0.5558 -vn -0.5926 0.5829 0.5560 -vn 0.4533 0.8911 -0.0214 -vn 0.4532 0.8911 -0.0212 -vn 0.3003 0.5294 0.7934 -vn 0.3008 0.5291 0.7935 -vn 0.3002 0.5294 0.7935 -vn -0.0281 0.5784 0.8153 -vn -0.0277 0.5780 0.8155 -vn -0.0274 0.5780 0.8156 -vn 0.0079 0.4394 0.8983 -vn 0.0081 0.4397 0.8981 -vn 0.0074 0.4393 0.8983 -vn -0.3193 -0.8626 0.3924 -vn 0.9800 -0.1926 0.0494 -vn 0.9801 -0.1922 0.0496 -vn 0.9801 -0.1925 0.0493 -vn 0.6162 0.4554 -0.6426 -vn 0.6160 0.4556 -0.6426 -vn 0.6163 0.4553 -0.6426 -vn 0.0664 -0.2769 -0.9586 -vn 0.0662 -0.2769 -0.9586 -vn 0.0659 -0.2767 -0.9587 -vn -0.5023 0.5682 -0.6518 -vn -0.5015 0.5683 -0.6524 -vn -0.5019 0.5684 -0.6520 -vn 0.8189 0.4753 0.3216 -vn -0.5417 -0.8250 0.1609 -vn -0.5426 -0.8245 0.1605 -vn -0.5418 -0.8250 0.1608 -vn -0.3944 0.4115 -0.8217 -vn -0.3945 0.4114 -0.8217 -vn -0.9286 0.2217 -0.2977 -vn -0.9286 0.2210 -0.2980 -vn -0.9286 0.2206 -0.2983 -vn 0.1197 -0.5465 0.8289 -vn -0.6307 0.6362 -0.4443 -vn -0.6307 0.6363 -0.4443 -vn -0.0174 -0.0051 -0.9998 -vn -0.0173 -0.0053 -0.9998 -vn -0.0169 -0.0051 -0.9998 -vn 0.4926 0.0383 0.8694 -vn 0.4921 0.0385 0.8697 -vn 0.4924 0.0383 0.8695 -vn 0.0477 0.5258 -0.8493 -vn 0.0475 0.5264 -0.8489 -vn 0.0475 0.5260 -0.8491 -vn -0.7911 -0.6023 0.1066 -vn -0.7912 -0.6022 0.1063 -vn -0.7909 -0.6026 0.1068 -vn 0.2943 -0.4928 -0.8188 -vn 0.2938 -0.4934 -0.8187 -vn 0.2930 -0.4949 -0.8181 -vn -0.6406 -0.5728 -0.5114 -vn -0.6405 -0.5732 -0.5111 -vn -0.6407 -0.5726 -0.5115 -vn 0.4243 -0.8938 -0.1453 -vn 0.4242 -0.8938 -0.1454 -vn 0.6282 0.7781 -0.0004 -vn 0.6282 0.7781 -0.0003 -vn 0.6849 -0.0170 0.7284 -vn -0.1920 -0.5195 -0.8326 -vn -0.1902 -0.5214 -0.8319 -vn -0.1899 -0.5223 -0.8314 -vn 0.3147 0.0544 -0.9476 -vn 0.3150 0.0546 -0.9475 -vn 0.3149 0.0547 -0.9476 -vn -0.3904 -0.9194 0.0466 -vn -0.8053 0.5669 -0.1737 -vn -0.8052 0.5666 -0.1748 -vn -0.8050 0.5676 -0.1724 -vn -0.3127 -0.8117 -0.4934 -vn -0.3127 -0.8117 -0.4933 -vn -0.1342 -0.8297 -0.5418 -vn -0.1343 -0.8297 -0.5418 -vn -0.1343 -0.8297 -0.5419 -vn -0.1048 -0.9797 -0.1709 -vn -0.1044 -0.9797 -0.1710 -vn -0.1038 -0.9797 -0.1714 -vn -0.1609 -0.9836 -0.0814 -vn -0.1607 -0.9836 -0.0813 -vn 0.0999 0.7320 -0.6739 -vn 0.0999 0.7321 -0.6739 -vn -0.6152 -0.6479 -0.4492 -vn -0.6140 -0.6486 -0.4497 -vn -0.6130 -0.6489 -0.4507 -vn 0.5419 -0.8389 -0.0497 -vn 0.5416 -0.8392 -0.0492 -vn 0.5418 -0.8391 -0.0495 -vn -0.6306 -0.3757 0.6791 -vn -0.6306 -0.3757 0.6792 -vn -0.6304 -0.3756 0.6793 -vn -0.0042 -0.9990 0.0444 -vn -0.0040 -0.9990 0.0442 -vn 0.8661 -0.3886 0.3143 -vn 0.8662 -0.3887 0.3141 -vn 0.8661 -0.3886 0.3144 -vn -0.7856 -0.5372 0.3069 -vn -0.7856 -0.5372 0.3070 -vn 0.8616 -0.3569 -0.3608 -vn 0.8617 -0.3562 -0.3613 -vn 0.8616 -0.3570 -0.3607 -vn -0.0186 -0.9975 0.0685 -vn -0.0294 -0.9990 -0.0341 -vn -0.0294 -0.9990 -0.0345 -vn -0.0294 -0.9990 -0.0343 -vn 0.1185 -0.9928 -0.0196 -vn 0.1185 -0.9928 -0.0197 -vn 0.1182 -0.9928 -0.0200 -vn 0.5037 0.1042 -0.8576 -vn 0.5037 0.1041 -0.8576 -vn -0.8334 0.4200 0.3593 -vn 0.0094 -0.9999 0.0108 -vn 0.0092 -0.9999 0.0107 -vn 0.0097 -0.9999 0.0108 -vn 0.1865 0.8767 0.4434 -vn 0.1862 0.8768 0.4433 -vn 0.1866 0.8767 0.4434 -vn -0.1067 -0.9892 0.1001 -vn -0.1070 -0.9892 0.1000 -vn -0.1066 -0.9892 0.1002 -vn -0.6949 0.5725 -0.4352 -vn -0.6951 0.5724 -0.4349 -vn -0.6953 0.5724 -0.4347 -vn -0.8811 -0.3744 0.2890 -vn -0.2920 0.1110 -0.9500 -vn -0.2927 0.1108 -0.9498 -vn -0.2936 0.1098 -0.9496 -vn 0.0120 -0.9865 -0.1636 -vn -0.1123 -0.9748 -0.1930 -vn -0.1123 -0.9748 -0.1925 -vn -0.1124 -0.9747 -0.1932 -vn -0.0086 0.9091 0.4164 -vn -0.0085 0.9091 0.4166 -vn 0.0788 -0.0495 0.9957 -vn 0.0788 -0.0498 0.9956 -vn 0.0790 -0.0496 0.9956 -vn -0.0031 0.0040 1.0000 -vn -0.4127 0.4083 -0.8142 -vn -0.4127 0.4079 -0.8144 -vn 0.8141 0.2238 -0.5359 -vn 0.8153 0.2225 -0.5345 -vn 0.8147 0.2235 -0.5351 -vn 0.0064 -0.9620 -0.2729 -vn 0.0061 -0.9621 -0.2726 -vn 0.6686 0.5037 0.5471 -vn 0.6686 0.5037 0.5470 -vn 0.6687 0.5037 0.5469 -vn 0.8721 -0.3434 0.3487 -vn 0.8723 -0.3429 0.3485 -vn 0.8722 -0.3431 0.3486 -vn 0.9218 -0.2800 0.2681 -vn 0.9217 -0.2805 0.2679 -vn 0.9217 -0.2802 0.2684 -vn -0.0273 0.5380 0.8425 -vn -0.0278 0.5364 0.8435 -vn -0.0274 0.5352 0.8443 -vn 0.5138 -0.3827 0.7678 -vn 0.5135 -0.3832 0.7678 -vn 0.5143 -0.3821 0.7678 -vn -0.5214 -0.6362 0.5687 -vn -0.5215 -0.6360 0.5689 -vn 0.7900 0.5324 0.3040 -vn 0.7908 0.5313 0.3041 -vn 0.7904 0.5318 0.3041 -vn -0.5488 -0.8357 -0.0176 -vn -0.5491 -0.8356 -0.0176 -vn -0.5481 -0.8363 -0.0179 -vn -0.3881 -0.9104 -0.1432 -vn -0.3880 -0.9104 -0.1434 -vn -0.3882 -0.9105 -0.1426 -vn -0.9649 0.0074 -0.2626 -vn -0.9649 0.0066 -0.2626 -vn -0.9649 0.0073 -0.2626 -vn -0.4147 0.8576 0.3042 -vn -0.4145 0.8577 0.3042 -vn -0.4144 0.8578 0.3041 -vn -0.7387 0.5488 -0.3913 -vn -0.7388 0.5487 -0.3913 -vn 0.0537 0.7861 0.6158 -vn 0.0536 0.7865 0.6153 -vn 0.0537 0.7862 0.6157 -vn 0.6833 0.7293 -0.0347 -vn 0.6832 0.7294 -0.0351 -vn 0.6835 0.7291 -0.0345 -vn -0.3879 -0.6797 0.6225 -vn -0.3883 -0.6797 0.6223 -vn 0.4774 0.2880 0.8301 -vn 0.4775 0.2881 0.8301 -vn 0.4776 0.2879 0.8301 -vn -0.2802 0.6698 -0.6877 -vn -0.2799 0.6688 -0.6887 -vn -0.2801 0.6695 -0.6879 -vn -0.1122 0.4726 -0.8741 -vn 0.4700 0.0667 0.8801 -vn 0.4700 0.0668 0.8802 -vn 0.4699 0.0668 0.8802 -vn -0.2526 -0.8920 0.3749 -vn -0.2527 -0.8920 0.3749 -vn -0.4052 -0.8275 -0.3887 -vn -0.4056 -0.8275 -0.3882 -vn -0.4057 -0.8276 -0.3880 -vn -0.7224 0.0062 -0.6915 -vn -0.7227 0.0063 -0.6911 -vn -0.7227 0.0062 -0.6911 -vn 0.4701 -0.5941 0.6527 -vn 0.4701 -0.5941 0.6528 -vn 0.4702 -0.5941 0.6526 -vn 0.0382 0.4748 0.8793 -vn 0.0375 0.4744 0.8795 -vn 0.0382 0.4747 0.8793 -vn -0.2716 -0.9620 0.0288 -vn 0.0332 0.0124 -0.9994 -vn 0.0334 0.0124 -0.9994 -vn 0.0332 0.0123 -0.9994 -vn -0.5574 0.4723 0.6828 -vn -0.5569 0.4732 0.6826 -vn -0.5573 0.4729 0.6825 -vn 0.1793 0.7256 0.6643 -vn 0.1792 0.7256 0.6644 -vn -0.4659 0.8576 -0.2179 -vn -0.4662 -0.8683 0.1696 -vn -0.4663 -0.8682 0.1697 -vn 0.1042 0.9780 -0.1807 -vn 0.1041 0.9780 -0.1806 -vn 0.1044 0.9780 -0.1805 -vn -0.7492 -0.2991 -0.5910 -vn -0.7491 -0.2992 -0.5911 -vn -0.0599 -0.9872 0.1478 -vn -0.0598 -0.9872 0.1479 -vn 0.0284 -0.1638 -0.9861 -vn 0.0284 -0.1639 -0.9861 -vn 0.3232 0.9184 0.2280 -vn 0.9290 -0.3242 0.1787 -vn 0.9292 -0.3239 0.1781 -vn 0.9293 -0.3238 0.1776 -vn 0.0010 0.5249 0.8512 -vn 0.0011 0.5249 0.8512 -vn 0.0019 0.5254 0.8508 -vn 0.7418 -0.3898 0.5457 -vn 0.7419 -0.3897 0.5457 -vn 0.9869 -0.1139 -0.1146 -vn 0.9869 -0.1139 -0.1143 -vn 0.9868 -0.1138 -0.1150 -vn -0.8026 0.3746 -0.4642 -vn 0.8432 0.4715 -0.2582 -vn 0.8431 0.4712 -0.2589 -vn 0.8434 0.4714 -0.2577 -vn 0.4447 0.7137 -0.5412 -vn 0.4445 0.7137 -0.5413 -vn 0.4445 0.7139 -0.5411 -vn 0.3480 0.7906 -0.5038 -vn 0.3481 0.7906 -0.5037 -vn 0.3480 0.7907 -0.5037 -vn 0.7891 -0.1571 -0.5938 -vn -0.3644 -0.0772 0.9280 -vn -0.3639 -0.0784 0.9281 -vn -0.3641 -0.0776 0.9281 -vn -0.3613 -0.0773 0.9292 -vn -0.3611 -0.0774 0.9293 -vn -0.3610 -0.0773 0.9294 -vn -0.7557 -0.2407 0.6091 -vn -0.7558 -0.2406 0.6090 -vn -0.7554 -0.2411 0.6093 -vn 0.8863 -0.4196 0.1959 -vn 0.8862 -0.4198 0.1960 -vn 0.8861 -0.4199 0.1962 -vn -0.2012 0.7517 0.6280 -vn -0.2007 0.7515 0.6284 -vn -0.2008 0.7516 0.6283 -vn 0.1715 -0.0341 0.9846 -vn 0.1715 -0.0340 0.9846 -vn -0.0603 -0.2008 0.9778 -vn -0.0599 -0.2007 0.9778 -vn -0.0602 -0.2001 0.9779 -vn 0.2712 -0.9160 -0.2957 -vn 0.2709 -0.9163 -0.2951 -vn 0.2708 -0.9164 -0.2947 -vn -0.6241 0.7112 -0.3236 -vn -0.6242 0.7111 -0.3236 -vn -0.6245 0.7107 -0.3239 -vn 0.2458 0.0709 0.9667 -vn 0.7529 -0.6534 0.0791 -vn 0.4969 0.5082 0.7034 -vn 0.4966 0.5081 0.7037 -vn 0.4970 0.5083 0.7033 -vn 0.0646 0.9976 -0.0267 -vn 0.0651 0.9975 -0.0267 -vn 0.0644 0.9976 -0.0269 -vn -0.1906 -0.9459 -0.2627 -vn -0.1904 -0.9459 -0.2627 -vn -0.4234 -0.7811 0.4589 -vn -0.4235 -0.7809 0.4592 -vn 0.7894 -0.5110 -0.3401 -vn 0.7897 -0.5106 -0.3402 -vn 0.7895 -0.5108 -0.3401 -vn -0.3696 0.6627 0.6513 -vn 0.7490 -0.3952 -0.5318 -vn 0.7489 -0.3954 -0.5318 -vn 0.7488 -0.3950 -0.5322 -vn 0.8505 0.5097 0.1299 -vn 0.8497 0.5108 0.1306 -vn 0.8492 0.5116 0.1308 -vn -0.3529 -0.8222 -0.4465 -vn -0.3525 -0.8223 -0.4467 -vn -0.3536 -0.8220 -0.4464 -vn 0.7681 -0.6153 -0.1774 -vn 0.7683 -0.6150 -0.1776 -vn 0.7682 -0.6151 -0.1774 -vn 0.3311 0.8381 -0.4336 -vn 0.3304 0.8381 -0.4341 -vn 0.3316 0.8383 -0.4328 -vn -0.8875 0.3744 -0.2687 -vn -0.8875 0.3741 -0.2690 -vn -0.8875 0.3743 -0.2689 -vn -0.3118 -0.9467 0.0807 -vn -0.5279 0.3452 -0.7760 -vn -0.0317 0.2864 -0.9576 -vn -0.0319 0.2864 -0.9576 -vn -0.0318 0.2865 -0.9576 -vn 0.4299 0.7081 -0.5601 -vn 0.4298 0.7082 -0.5601 -vn -0.1731 -0.9045 -0.3898 -vn -0.0289 0.0099 -0.9995 -vn 0.3102 -0.8595 -0.4063 -vn 0.3101 -0.8594 -0.4065 -vn 0.3100 -0.8596 -0.4062 -vn -0.0507 -0.7373 -0.6737 -vn -0.0506 -0.7374 -0.6735 -vn -0.0508 -0.7372 -0.6737 -vn -0.0933 0.8586 -0.5041 -vn -0.0935 0.8584 -0.5045 -vn -0.0932 0.8584 -0.5044 -vn 0.8336 -0.5374 -0.1276 -vn 0.8338 -0.5371 -0.1277 -vn 0.8339 -0.5369 -0.1277 -vn 0.0903 -0.6030 -0.7926 -vn 0.0896 -0.6031 -0.7926 -vn 0.0910 -0.6031 -0.7924 -vn -0.0873 -0.8020 -0.5909 -vn -0.0869 -0.8017 -0.5914 -vn -0.0877 -0.8021 -0.5907 -vn -0.0490 -0.6577 -0.7517 -vn 0.4111 -0.7296 -0.5466 -vn 0.4112 -0.7296 -0.5464 -vn 0.4113 -0.7296 -0.5464 -vn 0.9477 0.2916 -0.1296 -vn 0.9476 0.2920 -0.1297 -vn 0.6529 0.7574 -0.0104 -vn 0.6526 0.7577 -0.0108 -vn 0.6530 0.7573 -0.0103 -vn 0.3856 -0.8237 -0.4159 -vn 0.3857 -0.8237 -0.4157 -vn 0.3851 -0.8239 -0.4158 -vn 0.1486 -0.8633 0.4823 -vn 0.1500 -0.8633 0.4819 -vn 0.1467 -0.8638 0.4820 -vn -0.2621 -0.8856 0.3835 -vn -0.0380 -0.6793 -0.7329 -vn -0.0378 -0.6793 -0.7329 -vn -0.0385 -0.6796 -0.7326 -vn -0.1123 -0.9326 0.3430 -vn -0.1115 -0.9326 0.3432 -vn -0.2809 0.4364 0.8548 -vn -0.2810 0.4363 0.8548 -vn -0.2810 0.4365 0.8547 -vn 0.1802 0.7951 -0.5791 -vn -0.2601 0.7946 0.5485 -vn -0.2622 0.7944 0.5479 -vn -0.2611 0.7944 0.5484 -vn 0.7162 -0.5755 -0.3948 -vn 0.7162 -0.5756 -0.3946 -vn -0.0854 0.9752 0.2041 -vn -0.0858 0.9752 0.2040 -vn -0.0860 0.9752 0.2039 -vn 0.1581 0.9787 0.1310 -vn 0.2471 -0.8792 -0.4074 -vn 0.2471 -0.8792 -0.4073 -vn 0.2471 -0.8795 -0.4068 -vn 0.3115 -0.2704 -0.9109 -vn 0.3126 -0.2705 -0.9105 -vn 0.3132 -0.2709 -0.9102 -vn -0.8510 -0.3421 -0.3985 -vn -0.8511 -0.3418 -0.3985 -vn -0.8507 -0.3432 -0.3981 -vn -0.2630 -0.9360 0.2340 -vn -0.2633 -0.9360 0.2338 -vn -0.2630 -0.9359 0.2344 -vn 0.2653 -0.1774 -0.9477 -vn 0.2662 -0.1775 -0.9474 -vn 0.2656 -0.1778 -0.9475 -vn 0.6397 0.6460 -0.4165 -vn 0.6394 0.6463 -0.4166 -vn 0.6396 0.6461 -0.4165 -vn -0.4924 -0.1365 -0.8596 -vn -0.4926 -0.1364 -0.8595 -vn -0.4558 0.7631 -0.4581 -vn -0.4559 0.7632 -0.4578 -vn 0.3374 -0.2016 -0.9195 -vn 0.3373 -0.2017 -0.9195 -vn -0.5018 -0.8637 -0.0474 -vn -0.2686 -0.9340 0.2354 -vn -0.2684 -0.9340 0.2358 -vn -0.2683 -0.9341 0.2356 -vn -0.6220 0.7299 -0.2835 -vn -0.6220 0.7306 -0.2815 -vn -0.6219 0.7305 -0.2823 -vn -0.2351 -0.9325 0.2743 -vn -0.2350 -0.9324 0.2745 -vn -0.2352 -0.9324 0.2744 -vn -0.2283 0.0029 -0.9736 -vn -0.2282 0.0031 -0.9736 -vn -0.2394 0.1534 -0.9587 -vn 0.7120 -0.4590 0.5314 -vn 0.7121 -0.4593 0.5310 -vn 0.7121 -0.4596 0.5308 -vn 0.2505 -0.8830 -0.3969 -vn 0.2505 -0.8830 -0.3970 -vn -0.0512 -0.0754 -0.9958 -vn -0.0503 -0.0745 -0.9960 -vn -0.0501 -0.0740 -0.9960 -vn -0.4982 -0.7050 0.5047 -vn -0.2489 -0.9661 -0.0686 -vn -0.2485 -0.9663 -0.0667 -vn -0.2489 -0.9660 -0.0697 -vn -0.0132 0.0140 -0.9998 -vn -0.0117 0.0132 -0.9998 -vn -0.0124 0.0138 -0.9998 -vn -0.2781 0.8125 -0.5123 -vn -0.2778 0.8125 -0.5125 -vn -0.2777 0.8124 -0.5128 -vn -0.7866 0.4998 -0.3626 -vn -0.7866 0.4997 -0.3627 -vn -0.7864 0.4997 -0.3631 -vn 0.0911 -0.9934 0.0694 -vn -0.2281 0.0761 0.9707 -vn -0.2293 0.0762 0.9704 -vn -0.2287 0.0761 0.9705 -vn 0.0928 -0.9926 0.0785 -vn 0.0926 -0.9926 0.0780 -vn 0.0927 -0.9926 0.0784 -vn 0.2978 -0.9083 -0.2936 -vn 0.2977 -0.9084 -0.2936 -vn 0.0046 0.3687 -0.9295 -vn 0.0041 0.3705 -0.9288 -vn 0.0041 0.3694 -0.9293 -vn -0.3059 -0.9456 0.1103 -vn -0.3060 -0.9456 0.1100 -vn -0.3062 -0.9456 0.1101 -vn -0.3171 0.0796 0.9450 -vn -0.3155 0.0790 0.9456 -vn -0.3151 0.0785 0.9458 -vn -0.1689 -0.9822 -0.0819 -vn -0.3115 0.2894 -0.9051 -vn -0.3116 0.2893 -0.9051 -vn 0.4870 0.0576 0.8715 -vn 0.4871 0.0578 0.8714 -vn 0.4871 0.0579 0.8714 -vn -0.7898 -0.5378 -0.2949 -vn -0.7898 -0.5378 -0.2950 -vn -0.7823 0.2512 -0.5701 -vn 0.2918 0.9155 -0.2771 -vn 0.9523 0.3052 -0.0027 -vn 0.9523 0.3053 -0.0026 -vn 0.2495 -0.9604 -0.1239 -vn 0.2499 -0.9602 -0.1249 -vn 0.2498 -0.9603 -0.1244 -vn 0.0584 -0.9232 -0.3800 -vn 0.7223 0.6207 0.3050 -vn 0.7218 0.6210 0.3055 -vn 0.7221 0.6208 0.3053 -vn -0.0464 -0.9839 -0.1728 -vn -0.0467 -0.9838 -0.1729 -vn -0.0468 -0.9838 -0.1730 -vn 0.6548 0.4292 -0.6221 -vn 0.6547 0.4292 -0.6222 -vn 0.6543 0.4288 -0.6229 -vn -0.1040 0.9932 0.0528 -vn -0.1041 0.9932 0.0525 -vn -0.1041 0.9932 0.0524 -vn -0.4991 0.7005 -0.5101 -vn 0.7324 -0.6808 -0.0058 -vn 0.7324 -0.6809 -0.0059 -vn -0.5601 -0.5206 0.6444 -vn -0.4778 0.8681 0.1344 -vn -0.4779 0.8681 0.1343 -vn -0.4779 0.8681 0.1341 -vn -0.3366 -0.7550 -0.5628 -vn -0.3384 -0.7548 -0.5620 -vn -0.3400 -0.7540 -0.5621 -vn -0.3471 0.4863 -0.8019 -vn -0.3470 0.4865 -0.8018 -vn -0.3471 0.4864 -0.8018 -vn -0.3795 0.8096 -0.4478 -vn -0.1180 -0.9928 -0.0191 -vn -0.1175 -0.9929 -0.0187 -vn -0.1178 -0.9929 -0.0186 -vn 0.2351 0.7736 -0.5884 -vn 0.2350 0.7735 -0.5887 -vn 0.2350 0.7734 -0.5888 -vn -0.3825 0.7097 0.5916 -vn 0.1293 -0.9904 0.0496 -vn 0.1293 -0.9904 0.0493 -vn 0.1291 -0.9904 0.0497 -vn -0.0069 -0.9750 -0.2220 -vn -0.0070 -0.9751 -0.2217 -vn -0.0073 -0.9751 -0.2214 -vn -0.1342 -0.9804 -0.1442 -vn 0.1027 -0.9935 -0.0493 -vn -0.0058 -0.9998 -0.0216 -vn -0.0061 -0.9998 -0.0215 -vn -0.0056 -0.9998 -0.0216 -vn 0.0819 -0.9962 0.0310 -vn 0.0810 -0.9962 0.0314 -vn 0.0811 -0.9962 0.0315 -vn -0.0322 -0.9848 0.1709 -vn -0.0324 -0.9848 0.1708 -vn -0.0320 -0.9848 0.1708 -vn -0.2448 -0.0702 0.9670 -vn -0.2446 -0.0703 0.9671 -vn 0.0896 -0.9957 -0.0220 -vn 0.0764 -0.9608 0.2666 -vn 0.0767 -0.9607 0.2667 -vn 0.0762 -0.9608 0.2665 -vn -0.2284 0.5597 0.7966 -vn -0.2282 0.5597 0.7967 -vn -0.2281 0.5596 0.7967 -vn -0.0899 -0.9722 -0.2163 -vn 0.1162 0.8237 -0.5551 -vn 0.2471 -0.9687 0.0214 -vn -0.0875 -0.9917 0.0940 -vn -0.0871 -0.9918 0.0938 -vn -0.0870 -0.9918 0.0938 -vn -0.2893 0.9486 -0.1281 -vn -0.2893 0.9486 -0.1286 -vn -0.2891 0.9486 -0.1285 -vn 0.0725 -0.9967 0.0353 -vn 0.0724 -0.9968 0.0353 -vn 0.0101 -0.9747 0.2231 -vn 0.1479 0.5796 0.8014 -vn 0.1480 0.5798 0.8012 -vn 0.1479 0.5799 0.8012 -vn 0.0670 0.0244 -0.9975 -vn 0.0670 0.0247 -0.9974 -vn -0.0685 -0.9973 0.0272 -vn -0.0684 -0.9973 0.0278 -vn 0.0117 -0.9748 0.2228 -vn -0.2638 -0.3027 0.9159 -vn -0.2639 -0.3026 0.9158 -vn 0.4511 0.8104 -0.3739 -vn 0.4509 0.8105 -0.3739 -vn 0.4509 0.8107 -0.3735 -vn -0.4650 0.2894 -0.8367 -vn -0.4652 0.2897 -0.8365 -vn 0.4594 0.8653 0.2004 -vn 0.4593 0.8654 0.2004 -vn 0.2391 0.7727 0.5881 -vn 0.2383 0.7728 0.5882 -vn 0.2388 0.7727 0.5881 -vn 0.1005 -0.8956 -0.4333 -vn 0.1008 -0.8956 -0.4333 -vn 0.0174 -0.9995 -0.0279 -vn -0.0715 -0.9974 0.0010 -vn -0.0718 -0.9974 0.0009 -vn -0.1521 0.0947 0.9838 -vn -0.1523 0.0947 0.9838 -vn 0.1203 -0.9925 0.0216 -vn 0.4130 0.8700 0.2694 -vn 0.4130 0.8702 0.2686 -vn 0.4130 0.8701 0.2689 -vn 0.0337 -0.9992 -0.0202 -vn 0.0340 -0.9992 -0.0203 -vn 0.0339 -0.9992 -0.0203 -vn -0.1007 -0.9810 -0.1656 -vn -0.1007 -0.9810 -0.1659 -vn -0.1008 -0.9811 -0.1654 -vn 0.0943 -0.9953 -0.0210 -vn 0.0963 -0.9765 -0.1926 -vn 0.0964 -0.9767 -0.1915 -vn 0.0961 -0.9770 -0.1904 -vn 0.2743 0.8834 -0.3799 -vn 0.2734 0.8835 -0.3804 -vn 0.2745 0.8834 -0.3797 -vn 0.5031 -0.5348 0.6789 -vn 0.5034 -0.5349 0.6785 -vn 0.5033 -0.5349 0.6787 -vn -0.9038 -0.4265 0.0345 -vn -0.9038 -0.4266 0.0343 -vn -0.3027 -0.1204 0.9455 -vn -0.3027 -0.1203 0.9455 -vn 0.0232 -0.9629 -0.2689 -vn 0.0231 -0.9629 -0.2688 -vn 0.0008 -0.9658 -0.2593 -vn 0.0007 -0.9658 -0.2594 -vn 0.5480 0.6279 -0.5527 -vn 0.5478 0.6280 -0.5528 -vn 0.5479 0.6280 -0.5526 -vn -0.7069 0.5541 0.4396 -vn -0.7069 0.5539 0.4400 -vn -0.7068 0.5540 0.4400 -vn -0.1785 -0.3267 -0.9281 -vn -0.1786 -0.3268 -0.9281 -vn 0.0170 0.7451 0.6668 -vn 0.0169 0.7452 0.6667 -vn 0.0169 0.7452 0.6666 -vn 0.7560 0.1976 0.6240 -vn -0.3436 0.9347 -0.0914 -vn -0.3436 0.9347 -0.0908 -vn -0.3436 0.9347 -0.0913 -vn -0.1407 -0.2831 -0.9487 -vn -0.1408 -0.2830 -0.9487 -vn 0.5124 -0.2852 -0.8100 -vn 0.5121 -0.2843 -0.8105 -vn 0.5122 -0.2849 -0.8102 -vn -0.5014 0.8652 -0.0014 -vn -0.5015 0.8651 -0.0015 -vn -0.5663 -0.7910 0.2316 -vn -0.5661 -0.7910 0.2320 -vn -0.5662 -0.7909 0.2321 -vn 0.2320 0.8068 0.5433 -vn 0.2321 0.8067 0.5436 -vn 0.9204 -0.3776 0.1015 -vn 0.9205 -0.3774 0.1016 -vn 0.9204 -0.3777 0.1014 -vn -0.6671 -0.5498 0.5027 -vn -0.6672 -0.5501 0.5022 -vn -0.6672 -0.5504 0.5019 -vn -0.9773 0.1773 0.1158 -vn -0.9774 0.1773 0.1155 -vn -0.9774 0.1771 0.1154 -vn -0.5685 -0.4840 0.6652 -vn -0.5691 -0.4838 0.6649 -vn -0.5688 -0.4839 0.6650 -vn -0.5658 -0.8026 -0.1889 -vn -0.5663 -0.8023 -0.1887 -vn -0.5669 -0.8019 -0.1885 -vn -0.5602 -0.2413 0.7924 -vn -0.5612 -0.2401 0.7921 -vn -0.5607 -0.2409 0.7922 -vn 0.5135 0.8581 0.0020 -vn 0.4591 -0.4875 -0.7427 -vn 0.4590 -0.4874 -0.7428 -vn 0.4591 -0.4876 -0.7426 -vn -0.8216 0.3429 -0.4553 -vn -0.8215 0.3429 -0.4556 -vn -0.8213 0.3426 -0.4561 -vn -0.5094 0.8605 -0.0067 -vn -0.5095 0.8605 -0.0069 -vn -0.5097 0.8603 -0.0070 -vn -0.1026 -0.4745 -0.8743 -vn -0.1028 -0.4745 -0.8742 -vn -0.1023 -0.4745 -0.8743 -vn -0.6012 0.7580 -0.2530 -vn -0.6012 0.7581 -0.2527 -vn 0.1197 0.3110 0.9428 -vn 0.1201 0.3109 0.9428 -vn 0.1204 0.3106 0.9429 -vn 0.6421 -0.0106 -0.7666 -vn 0.6417 -0.0106 -0.7669 -vn 0.6418 -0.0106 -0.7668 -vn -0.0996 -0.2425 0.9650 -vn -0.0995 -0.2424 0.9651 -vn -0.9772 0.1815 -0.1098 -vn -0.9773 0.1810 -0.1098 -vn -0.9774 0.1805 -0.1099 -vn 0.0520 -0.0552 0.9971 -vn 0.0517 -0.0554 0.9971 -vn 0.0521 -0.0552 0.9971 -vn 0.7504 -0.5689 -0.3365 -vn 0.7497 -0.5694 -0.3373 -vn 0.7501 -0.5691 -0.3368 -vn 0.2491 -0.1558 0.9559 -vn 0.2489 -0.1559 0.9559 -vn -0.0504 -0.1116 -0.9925 -vn 0.3710 0.6290 -0.6832 -vn 0.3708 0.6290 -0.6832 -vn 0.3710 0.6287 -0.6834 -vn 0.1318 0.0976 -0.9865 -vn 0.9511 -0.2236 0.2132 -vn -0.7870 0.6142 0.0586 -vn -0.7870 0.6141 0.0595 -vn -0.7870 0.6141 0.0591 -vn 0.7178 0.6854 0.1226 -vn 0.1755 -0.9364 0.3039 -vn 0.1768 -0.9362 0.3038 -vn 0.1741 -0.9367 0.3037 -vn -0.9525 0.1627 0.2574 -vn -0.8122 -0.4121 -0.4131 -vn -0.8113 -0.4118 -0.4150 -vn -0.8131 -0.4110 -0.4122 -vn 0.2768 0.8305 -0.4834 -vn -0.6780 0.7084 -0.1963 -vn -0.6780 0.7084 -0.1964 -vn -0.6786 0.7077 -0.1968 -vn -0.6785 0.5761 -0.4559 -vn -0.6792 0.5755 -0.4556 -vn -0.6786 0.5760 -0.4558 -vn -0.0457 0.9965 -0.0697 -vn -0.0458 0.9965 -0.0695 -vn -0.0458 0.9965 -0.0696 -vn 0.4961 0.5301 0.6877 -vn 0.4960 0.5303 0.6876 -vn -0.0695 -0.8894 0.4519 -vn -0.6574 0.2760 -0.7012 -vn -0.6575 0.2759 -0.7012 -vn -0.5877 0.2794 -0.7593 -vn -0.5881 0.2797 -0.7589 -vn -0.5886 0.2798 -0.7585 -vn -0.0725 0.5595 0.8256 -vn -0.0723 0.5597 0.8255 -vn -0.7749 0.5223 -0.3561 -vn -0.7748 0.5223 -0.3562 -vn -0.7747 0.5225 -0.3561 -vn -0.7203 -0.6412 0.2647 -vn -0.7199 -0.6418 0.2641 -vn -0.7193 -0.6425 0.2641 -vn -0.3283 0.0194 0.9444 -vn -0.3282 0.0192 0.9444 -vn -0.3282 0.0191 0.9444 -vn -0.5965 0.7250 0.3444 -vn -0.5965 0.7249 0.3446 -vn -0.8804 0.4622 -0.1062 -vn -0.8804 0.4622 -0.1060 -vn -0.8804 0.4622 -0.1058 -vn 0.7209 0.6749 -0.1574 -vn 0.7210 0.6748 -0.1575 -vn 0.7211 0.6747 -0.1576 -vn -0.0744 0.7396 0.6690 -vn -0.0732 0.7395 0.6692 -vn -0.0721 0.7392 0.6696 -vn -0.1963 0.7872 -0.5846 -vn -0.1962 0.7872 -0.5847 -vn 0.8419 0.0580 0.5366 -vn 0.8421 0.0577 0.5362 -vn 0.8416 0.0575 0.5371 -vn -0.3633 0.3955 0.8436 -vn -0.3634 0.3955 0.8435 -vn -0.3636 0.3958 0.8433 -vn 0.0552 0.8730 0.4846 -vn -0.8205 0.4278 -0.3792 -vn -0.8205 0.4279 -0.3791 -vn -0.8203 0.4280 -0.3793 -vn -0.1878 0.5465 0.8161 -vn -0.9361 0.3369 0.1013 -vn -0.9364 0.3357 0.1027 -vn -0.9362 0.3362 0.1025 -vn -0.6228 0.5056 -0.5972 -vn -0.6227 0.5054 -0.5973 -vn -0.6229 0.5056 -0.5970 -vn -0.1105 0.8861 -0.4502 -vn -0.1104 0.8861 -0.4502 -vn 0.4728 -0.8441 0.2530 -vn 0.4729 -0.8440 0.2530 -vn 0.2657 -0.9439 0.1962 -vn 0.2657 -0.9438 0.1965 -vn 0.2656 -0.9439 0.1962 -vn 0.1707 0.5350 0.8274 -vn 0.1707 0.5353 0.8272 -vn 0.1707 0.5350 0.8275 -vn 0.7190 0.2849 -0.6339 -vn 0.7198 0.2846 -0.6331 -vn 0.7195 0.2848 -0.6335 -vn -0.5030 0.2286 -0.8335 -vn -0.5021 0.2289 -0.8340 -vn -0.5029 0.2286 -0.8336 -vn 0.2436 -0.8847 0.3975 -vn 0.2435 -0.8847 0.3975 -vn 0.2436 -0.8846 0.3977 -vn 0.1095 -0.6174 -0.7790 -vn 0.1098 -0.6175 -0.7788 -vn 0.1104 -0.6176 -0.7787 -vn -0.0379 -0.7629 -0.6454 -vn -0.0383 -0.7631 -0.6451 -vn -0.0378 -0.7628 -0.6455 -vn 0.7110 0.3984 -0.5794 -vn 0.7847 -0.5852 -0.2042 -vn 0.7846 -0.5854 -0.2043 -vn 0.7845 -0.5855 -0.2044 -vn 0.0162 0.0938 -0.9955 -vn 0.1486 -0.7974 0.5849 -vn 0.1486 -0.7977 0.5844 -vn 0.1484 -0.7976 0.5846 -vn 0.8888 -0.4074 0.2100 -vn 0.8886 -0.4065 0.2125 -vn 0.8876 -0.4073 0.2150 -vn -0.2129 -0.9748 0.0661 -vn -0.2114 -0.9752 0.0649 -vn -0.2122 -0.9751 0.0650 -vn 0.3169 0.6429 0.6973 -vn 0.4699 -0.7714 -0.4290 -vn 0.4698 -0.7716 -0.4288 -vn 0.7344 -0.2836 -0.6166 -vn 0.7345 -0.2839 -0.6163 -vn 0.7343 -0.2837 -0.6167 -vn -0.5924 0.8012 -0.0842 -vn -0.5923 0.8013 -0.0841 -vn -0.5923 0.8014 -0.0840 -vn -0.5622 -0.1122 -0.8194 -vn -0.6437 0.1037 0.7582 -vn -0.6432 0.1038 0.7586 -vn -0.6430 0.1038 0.7588 -vn 0.5024 0.8488 -0.1645 -vn 0.5024 0.8489 -0.1645 -vn 0.5023 0.8489 -0.1646 -vn 0.3155 -0.2398 0.9181 -vn 0.3153 -0.2409 0.9179 -vn 0.3155 -0.2404 0.9180 -vn -0.3871 0.1151 0.9148 -vn -0.3867 0.1150 0.9150 -vn -0.3874 0.1151 0.9147 -vn -0.0068 0.9637 -0.2670 -vn -0.0065 0.9637 -0.2668 -vn 0.0982 0.9238 0.3701 -vn 0.0983 0.9236 0.3705 -vn -0.4488 0.7941 -0.4099 -vn -0.4487 0.7941 -0.4100 -vn -0.4493 0.7940 -0.4095 -vn 0.3843 0.5823 0.7164 -vn 0.3843 0.5828 0.7160 -vn 0.3844 0.5825 0.7162 -vn 0.2420 0.9636 0.1135 -vn 0.2420 0.9636 0.1136 -vn 0.2419 0.9636 0.1134 -vn 0.3610 -0.8851 -0.2936 -vn 0.3611 -0.8851 -0.2935 -vn 0.3792 -0.8347 -0.3994 -vn 0.3797 -0.8346 -0.3991 -vn 0.3799 -0.8346 -0.3989 -vn -0.5732 0.0424 -0.8183 -vn -0.5726 0.0422 -0.8187 -vn -0.5727 0.0422 -0.8187 -vn 0.4317 0.0219 -0.9017 -vn 0.4311 0.0222 -0.9020 -vn 0.4313 0.0220 -0.9019 -vn 0.0364 -0.9762 0.2139 -vn -0.2395 0.9687 0.0659 -vn -0.2415 0.9677 0.0728 -vn -0.2388 0.9686 0.0693 -vn -0.4929 0.8558 0.1569 -vn -0.4930 0.8557 0.1570 -vn -0.4917 0.8565 0.1569 -vn 0.1737 0.5526 0.8152 -vn 0.1737 0.5532 0.8147 -vn 0.1740 0.5521 0.8154 -vn 0.1657 0.5902 0.7900 -vn 0.1654 0.5902 0.7901 -vn 0.1656 0.5904 0.7899 -vn -0.5488 0.1622 0.8201 -vn -0.5487 0.1620 0.8201 -vn 0.9149 0.1188 -0.3857 -vn 0.9149 0.1184 -0.3858 -vn 0.9149 0.1181 -0.3860 -vn -0.8295 0.3578 0.4288 -vn -0.8281 0.3622 0.4278 -vn -0.8283 0.3604 0.4290 -vn -0.8401 -0.5419 -0.0248 -vn -0.8404 -0.5414 -0.0243 -vn -0.8396 -0.5426 -0.0263 -vn -0.0927 -0.9561 0.2780 -vn -0.0916 -0.9562 0.2780 -vn -0.0923 -0.9561 0.2780 -vn 0.0149 -0.9759 0.2176 -vn 0.0151 -0.9759 0.2179 -vn -0.9503 0.2779 -0.1404 -vn -0.9485 0.2827 -0.1426 -vn -0.9495 0.2799 -0.1421 -vn -0.5442 -0.1867 0.8179 -vn -0.5444 -0.1865 0.8179 -vn -0.3921 0.8711 -0.2957 -vn -0.3922 0.8711 -0.2956 -vn 0.4039 -0.8179 -0.4097 -vn -0.8358 -0.5364 0.1173 -vn 0.6437 0.7139 -0.2757 -vn 0.6437 0.7137 -0.2761 -vn 0.6437 0.7139 -0.2758 -vn 0.6328 -0.7673 -0.1045 -vn -0.7150 0.3696 -0.5935 -vn -0.7154 0.3687 -0.5936 -vn -0.7152 0.3690 -0.5936 -vn -0.3918 -0.8881 -0.2403 -vn -0.3920 -0.8881 -0.2402 -vn -0.3916 -0.8882 -0.2404 -vn -0.3076 -0.9486 0.0741 -vn -0.3073 -0.9487 0.0741 -vn 0.2030 -0.7344 -0.6477 -vn 0.2024 -0.7346 -0.6476 -vn 0.2029 -0.7344 -0.6477 -vn -0.4173 -0.7507 -0.5121 -vn -0.4170 -0.7508 -0.5122 -vn -0.4176 -0.7507 -0.5119 -vn 0.3241 -0.9302 -0.1725 -vn 0.3243 -0.9301 -0.1725 -vn -0.0928 -0.9733 -0.2101 -vn -0.0924 -0.9733 -0.2101 -vn -0.8536 0.2309 -0.4669 -vn -0.8535 0.2310 -0.4670 -vn -0.8536 0.2308 -0.4670 -vn 0.0692 -0.9221 -0.3806 -vn 0.0694 -0.9222 -0.3805 -vn 0.0695 -0.9221 -0.3807 -vn 0.6579 0.7308 0.1821 -vn 0.8926 -0.4190 0.1663 -vn 0.8928 -0.4187 0.1662 -vn -0.7693 0.2611 0.5831 -vn -0.8627 0.4947 0.1051 -vn -0.8625 0.4946 0.1066 -vn -0.8625 0.4948 0.1061 -vn -0.7361 -0.5211 -0.4321 -vn -0.7363 -0.5209 -0.4319 -vn -0.7359 -0.5213 -0.4321 -vn -0.1764 -0.9832 -0.0474 -vn -0.1760 -0.9832 -0.0477 -vn -0.1768 -0.9831 -0.0472 -vn -0.7541 0.0061 -0.6567 -vn -0.7541 0.0063 -0.6568 -vn -0.7540 0.0062 -0.6568 -vn 0.9383 -0.2040 -0.2792 -vn -0.0044 -0.9970 -0.0774 -vn -0.0043 -0.9970 -0.0771 -vn 0.1885 0.1423 -0.9717 -vn 0.1886 0.1424 -0.9717 -vn 0.1887 0.1422 -0.9717 -vn 0.3515 0.7937 -0.4965 -vn 0.3514 0.7940 -0.4960 -vn 0.3514 0.7940 -0.4961 -vn -0.0915 -0.9898 0.1091 -vn -0.0918 -0.9896 0.1104 -vn -0.0918 -0.9897 0.1097 -vn 0.4613 -0.8750 0.1468 -vn 0.4611 -0.8752 0.1462 -vn -0.0866 -0.9930 -0.0802 -vn -0.0866 -0.9930 -0.0799 -vn 0.0088 -0.9906 -0.1363 -vn 0.0087 -0.9906 -0.1362 -vn 0.0090 -0.9907 -0.1361 -vn -0.1516 -0.9856 -0.0745 -vn 0.0092 -0.9947 0.1023 -vn 0.0731 -0.9960 0.0519 -vn 0.0728 -0.9960 0.0520 -vn 0.0725 -0.9960 0.0521 -vn -0.2548 -0.9450 -0.2051 -vn -0.2546 -0.9450 -0.2053 -vn -0.2549 -0.9450 -0.2052 -vn 0.0674 -0.9962 0.0557 -vn 0.0674 -0.9962 0.0558 -vn 0.3024 -0.5519 -0.7771 -vn 0.3026 -0.5518 -0.7771 -vn 0.3025 -0.5519 -0.7771 -vn 0.7036 0.5018 0.5032 -vn 0.7036 0.5017 0.5032 -vn -0.0057 -0.9989 0.0464 -vn -0.0058 -0.9989 0.0467 -vn -0.0057 -0.9989 0.0461 -vn -0.0670 -0.9844 0.1627 -vn -0.0671 -0.9844 0.1627 -vn -0.0669 -0.9844 0.1628 -vn -0.0673 -0.9977 0.0090 -vn -0.0674 -0.9977 0.0091 -vn -0.1402 -0.9805 -0.1374 -vn -0.1398 -0.9806 -0.1372 -vn -0.1395 -0.9807 -0.1371 -vn 0.1808 -0.9822 -0.0510 -vn 0.1809 -0.9822 -0.0509 -vn 0.1808 -0.9822 -0.0512 -vn 0.0851 -0.8908 -0.4463 -vn 0.0849 -0.8908 -0.4464 -vn 0.0853 -0.8908 -0.4464 -vn 0.1181 -0.9888 0.0916 -vn 0.1187 -0.9887 0.0914 -vn 0.1179 -0.9888 0.0915 -vn 0.0138 -0.9838 0.1785 -vn 0.0137 -0.9839 0.1782 -vn 0.0136 -0.9838 0.1785 -vn 0.1136 -0.9782 0.1740 -vn 0.1132 -0.9782 0.1739 -vn 0.1133 -0.9782 0.1740 -vn -0.2394 -0.9703 0.0340 -vn -0.2396 -0.9703 0.0341 -vn 0.1397 -0.6129 -0.7777 -vn 0.1402 -0.6128 -0.7777 -vn 0.1399 -0.6120 -0.7784 -vn -0.9385 0.1697 -0.3006 -vn -0.9384 0.1699 -0.3009 -vn -0.0707 0.9478 -0.3109 -vn -0.1581 -0.9873 0.0162 -vn -0.1584 -0.9872 0.0166 -vn -0.1582 -0.9873 0.0162 -vn -0.1915 -0.9778 -0.0848 -vn 0.0866 -0.9805 0.1764 -vn 0.0871 -0.9806 0.1755 -vn 0.0867 -0.9805 0.1762 -vn -0.0087 -0.1067 -0.9943 -vn -0.0088 -0.1065 -0.9943 -vn -0.3921 -0.5710 -0.7212 -vn -0.3921 -0.5710 -0.7213 -vn -0.3919 -0.5709 -0.7214 -vn -0.2232 -0.9664 0.1278 -vn 0.2049 -0.9602 0.1898 -vn -0.2710 -0.9624 0.0195 -vn -0.2711 -0.9624 0.0185 -vn -0.2713 -0.9623 0.0201 -vn 0.7228 -0.6895 0.0470 -vn 0.7225 -0.6897 0.0474 -vn 0.5175 0.8539 -0.0557 -vn 0.5176 0.8539 -0.0551 -vn 0.5180 0.8535 -0.0571 -vn -0.1308 -0.9828 -0.1304 -vn -0.1308 -0.9828 -0.1303 -vn -0.1308 -0.9828 -0.1302 -vn -0.2058 0.7898 -0.5778 -vn -0.2057 0.7900 -0.5776 -vn -0.2061 0.7900 -0.5775 -vn -0.2590 -0.9658 -0.0149 -vn 0.1548 -0.9729 -0.1718 -vn 0.1547 -0.9729 -0.1716 -vn -0.1015 0.9899 -0.0994 -vn -0.1028 0.9897 -0.0993 -vn -0.1025 0.9898 -0.0992 -vn 0.2871 -0.4300 -0.8560 -vn -0.0363 -0.9555 -0.2926 -vn -0.0367 -0.9555 -0.2925 -vn -0.0365 -0.9556 -0.2925 -vn 0.4935 -0.8590 0.1359 -vn 0.4935 -0.8588 0.1378 -vn 0.4929 -0.8596 0.1344 -vn -0.6645 0.7437 -0.0735 -vn -0.6640 0.7442 -0.0730 -vn -0.6635 0.7446 -0.0726 -vn -0.7263 -0.0682 -0.6840 -vn -0.7264 -0.0682 -0.6839 -vn -0.7267 -0.0683 -0.6835 -vn -0.7423 0.6606 0.1122 -vn -0.2559 -0.9381 -0.2332 -vn -0.2562 -0.9380 -0.2336 -vn -0.2565 -0.9379 -0.2338 -vn -0.6616 0.2976 -0.6883 -vn -0.6621 0.2980 -0.6876 -vn -0.6620 0.2980 -0.6877 -vn -0.8713 0.0408 0.4890 -vn -0.8713 0.0406 0.4891 -vn 0.7729 0.0238 0.6341 -vn 0.7730 0.0235 0.6340 -vn 0.7737 0.0228 0.6332 -vn 0.4814 0.5242 -0.7025 -vn 0.4810 0.5241 -0.7028 -vn 0.4805 0.5243 -0.7030 -vn -0.2690 0.8904 -0.3672 -vn -0.2680 0.8905 -0.3676 -vn -0.2675 0.8906 -0.3679 -vn -0.5781 0.7646 -0.2849 -vn -0.5783 0.7646 -0.2846 -vn -0.5776 0.7647 -0.2856 -vn 0.5278 0.4143 -0.7415 -vn 0.5277 0.4148 -0.7413 -vn 0.5277 0.4145 -0.7414 -vn -0.1470 -0.9576 -0.2476 -vn -0.1475 -0.9575 -0.2479 -vn 0.2912 -0.6972 -0.6551 -vn 0.2895 -0.6986 -0.6543 -vn 0.2929 -0.6968 -0.6548 -vn 0.8626 0.2500 -0.4398 -vn 0.8627 0.2500 -0.4397 -vn -0.7900 0.3149 -0.5261 -vn -0.7899 0.3148 -0.5263 -vn -0.7898 0.3149 -0.5264 -vn -0.1191 0.9901 0.0744 -vn -0.1187 0.9901 0.0747 -vn -0.1186 0.9901 0.0751 -vn 0.0628 -0.9842 -0.1657 -vn 0.0634 -0.9840 -0.1665 -vn 0.0631 -0.9841 -0.1663 -vn 0.3045 -0.9107 -0.2792 -vn 0.3038 -0.9110 -0.2789 -vn 0.3037 -0.9112 -0.2785 -vn -0.5629 -0.6559 0.5030 -vn -0.5638 -0.6549 0.5032 -vn -0.9523 0.2802 -0.1205 -vn -0.9521 0.2811 -0.1202 -vn -0.9523 0.2806 -0.1203 -vn -0.7460 -0.3653 -0.5568 -vn -0.7461 -0.3649 -0.5570 -vn -0.7457 -0.3660 -0.5567 -vn -0.0858 -0.9439 -0.3190 -vn -0.0852 -0.9439 -0.3192 -vn -0.0854 -0.9439 -0.3189 -vn 0.1088 -0.9221 -0.3715 -vn -0.0226 -0.3988 -0.9168 -vn -0.0251 -0.3987 -0.9167 -vn -0.0237 -0.3989 -0.9167 -vn -0.8749 -0.4719 0.1088 -vn -0.8751 -0.4713 0.1094 -vn -0.8751 -0.4715 0.1091 -vn -0.6837 0.1532 -0.7135 -vn -0.6841 0.1536 -0.7130 -vn -0.6837 0.1533 -0.7135 -vn 0.5161 -0.3496 -0.7819 -vn 0.5148 -0.3518 -0.7818 -vn 0.5156 -0.3502 -0.7820 -vn -0.5480 -0.8215 0.1577 -vn -0.5481 -0.8214 0.1577 -vn -0.5482 -0.8214 0.1575 -vn 0.4117 0.2519 0.8758 -vn 0.4114 0.2515 0.8761 -vn -0.9223 -0.3848 0.0361 -vn 0.8596 0.5103 0.0247 -vn 0.8598 0.5100 0.0249 -vn 0.8598 0.5101 0.0245 -vn 0.0395 -0.9148 0.4019 -vn 0.2650 0.9424 -0.2042 -vn 0.8914 -0.3632 0.2712 -vn 0.8914 -0.3631 0.2712 -vn 0.9773 -0.1278 0.1690 -vn 0.9774 -0.1277 0.1682 -vn 0.9775 -0.1278 0.1677 -vn -0.8119 0.1196 -0.5714 -vn -0.8117 0.1198 -0.5717 -vn 0.4523 0.3183 -0.8331 -vn 0.4523 0.3181 -0.8332 -vn 0.4524 0.3180 -0.8332 -vn -0.8128 0.4953 0.3065 -vn -0.8111 0.4971 0.3082 -vn -0.8119 0.4964 0.3072 -vn -0.4556 -0.7942 0.4020 -vn -0.4555 -0.7944 0.4019 -vn -0.4753 -0.8605 0.1836 -vn -0.4752 -0.8605 0.1836 -vn -0.6099 -0.7820 0.1283 -vn -0.5438 -0.8371 0.0587 -vn -0.5438 -0.8372 0.0587 -vn -0.5437 -0.8372 0.0587 -vn 0.4698 0.5602 -0.6823 -vn -0.5358 -0.8390 0.0950 -vn 0.5448 0.7941 0.2695 -vn -0.5273 -0.4189 -0.7393 -vn 0.5441 0.7263 0.4200 -vn -0.1217 -0.4996 -0.8577 -vn -0.1218 -0.4992 -0.8579 -vn -0.1220 -0.4989 -0.8580 -vn 0.6873 0.5978 -0.4127 -vn 0.6870 0.5977 -0.4132 -vn 0.6870 0.5976 -0.4134 -vn 0.2940 -0.4519 0.8422 -vn 0.2929 -0.4505 0.8433 -vn 0.2934 -0.4507 0.8431 -vn -0.2929 -0.9561 -0.0066 -vn -0.2922 -0.9563 -0.0070 -vn -0.2916 -0.9565 -0.0069 -vn 0.5804 -0.3788 0.7209 -vn 0.4748 -0.5931 0.6503 -vn 0.4748 -0.5931 0.6502 -vn -0.7873 -0.5072 -0.3507 -vn -0.7873 -0.5071 -0.3506 -vn -0.7872 -0.5072 -0.3507 -vn -0.7578 0.4890 -0.4319 -vn -0.7579 0.4889 -0.4319 -vn -0.7574 0.4895 -0.4322 -vn -0.6416 -0.0137 0.7669 -vn -0.6416 -0.0140 0.7669 -vn 0.9282 -0.1982 0.3148 -vn 0.9283 -0.1981 0.3148 -vn -0.9939 0.0545 -0.0957 -vn -0.9939 0.0544 -0.0962 -vn -0.9939 0.0548 -0.0960 -vn 0.7923 0.5799 -0.1895 -vn 0.7925 0.5797 -0.1897 -vn 0.7924 0.5798 -0.1895 -vn -0.4975 0.6195 -0.6073 -vn -0.4976 0.6195 -0.6071 -vn -0.2703 0.5009 -0.8222 -vn -0.2701 0.5011 -0.8222 -vn -0.1122 0.6284 -0.7698 -vn -0.1117 0.6287 -0.7696 -vn -0.1125 0.6281 -0.7700 -vn 0.0054 0.0002 1.0000 -vn -0.0659 0.5025 -0.8621 -vn -0.0659 0.5026 -0.8620 -vn -0.0661 0.5036 -0.8614 -vn 0.7988 0.1099 0.5915 -vn 0.7987 0.1096 0.5917 -vn 0.7990 0.1104 0.5911 -vn -0.3381 0.9162 -0.2150 -vn -0.0028 0.9843 0.1768 -vn -0.0030 0.9843 0.1767 -vn -0.0028 0.9843 0.1765 -vn 0.4124 0.5951 -0.6898 -vn 0.4122 0.5950 -0.6900 -vn 0.4123 0.5950 -0.6899 -vn -0.1841 -0.3784 -0.9072 -vn -0.1836 -0.3788 -0.9071 -vn -0.1847 -0.3782 -0.9071 -vn 0.0527 -0.0046 0.9986 -vn 0.0528 -0.0045 0.9986 -vn -0.4744 -0.4110 0.7785 -vn -0.4748 -0.4110 0.7782 -vn -0.4752 -0.4114 0.7778 -vn -0.6577 0.6917 -0.2983 -vn -0.6584 0.6911 -0.2981 -vn -0.6574 0.6919 -0.2983 -vn -0.5615 0.7546 -0.3395 -vn -0.5614 0.7547 -0.3396 -vn 0.3409 0.9395 0.0335 -vn 0.8478 -0.0849 0.5234 -vn 0.8479 -0.0845 0.5234 -vn -0.3921 -0.8158 0.4252 -vn -0.3922 -0.8157 0.4253 -vn -0.9891 0.0544 0.1371 -vn -0.9891 0.0544 0.1369 -vn -0.9891 0.0540 0.1372 -vn 0.8553 -0.2041 0.4762 -vn 0.8556 -0.2038 0.4759 -vn 0.8555 -0.2039 0.4760 -vn 0.0014 -0.9654 -0.2606 -vn 0.0443 -0.4401 -0.8969 -vn 0.0441 -0.4401 -0.8969 -vn 0.0440 -0.4401 -0.8969 -vn -0.2846 0.9539 0.0951 -vn -0.2843 0.9540 0.0954 -vn -0.2846 0.9539 0.0950 -vn -0.7508 0.5253 0.4005 -vn -0.7508 0.5252 0.4005 -vn -0.5654 -0.7494 0.3446 -vn -0.5661 -0.7495 0.3433 -vn -0.5663 -0.7498 0.3423 -vn -0.9531 -0.1691 -0.2509 -vn -0.6945 0.5773 -0.4295 -vn -0.6946 0.5771 -0.4295 -vn -0.6944 0.5773 -0.4295 -vn -0.3841 -0.9081 0.1669 -vn -0.3841 -0.9082 0.1664 -vn -0.3841 -0.9081 0.1667 -vn -0.0473 0.8632 -0.5027 -vn -0.0468 0.8629 -0.5032 -vn -0.0465 0.8627 -0.5036 -vn -0.6749 -0.7355 0.0590 -vn -0.6750 -0.7355 0.0588 -vn -0.6747 -0.7357 0.0592 -vn 0.1782 0.2347 -0.9556 -vn 0.1783 0.2347 -0.9556 -vn 0.1782 0.2344 -0.9557 -vn 0.7465 0.6434 -0.1698 -vn 0.7465 0.6433 -0.1698 -vn 0.7468 0.6429 -0.1700 -vn -0.4842 0.5140 0.7081 -vn -0.4837 0.5139 0.7085 -vn -0.4839 0.5140 0.7083 -vn 0.8548 -0.3289 0.4014 -vn 0.8547 -0.3290 0.4015 -vn 0.8550 -0.3285 0.4015 -vn -0.7845 0.5629 0.2602 -vn -0.7842 0.5631 0.2606 -vn 0.5064 0.7339 -0.4527 -vn 0.5062 0.7338 -0.4531 -vn 0.4737 -0.8804 0.0243 -vn 0.4726 -0.8809 0.0257 -vn 0.4734 -0.8805 0.0250 -vn 0.5349 -0.3555 -0.7665 -vn 0.5367 -0.3544 -0.7658 -vn 0.5356 -0.3552 -0.7661 -vn -0.1358 -0.5853 -0.7994 -vn -0.1355 -0.5852 -0.7995 -vn -0.1360 -0.5854 -0.7993 -vn -0.0362 0.0140 -0.9992 -vn -0.0364 0.0137 -0.9992 -vn -0.0366 0.0135 -0.9992 -vn 0.7177 -0.6346 0.2866 -vn 0.7176 -0.6355 0.2849 -vn 0.7182 -0.6336 0.2876 -vn 0.5654 0.7875 -0.2452 -vn 0.5656 0.7875 -0.2449 -vn 0.5656 0.7875 -0.2448 -vn -0.1928 -0.0874 -0.9773 -vn 0.6680 0.7033 0.2432 -vn 0.6679 0.7035 0.2430 -vn 0.6682 0.7031 0.2433 -vn 0.3165 0.2242 0.9217 -vn 0.3167 0.2245 0.9216 -vn 0.3166 0.2247 0.9216 -vn -0.4549 -0.2412 -0.8572 -vn -0.4548 -0.2411 -0.8573 -vn 0.7816 -0.5600 -0.2747 -vn 0.7817 -0.5600 -0.2745 -vn -0.3773 0.3057 -0.8742 -vn -0.3776 0.3067 -0.8737 -vn -0.3776 0.3063 -0.8739 -vn -0.5134 0.7669 -0.3850 -vn -0.5140 0.7670 -0.3841 -vn -0.5140 0.7673 -0.3836 -vn 0.6833 0.7261 -0.0762 -vn 0.6836 0.7258 -0.0765 -vn -0.5300 -0.1877 0.8270 -vn 0.8247 -0.4609 -0.3278 -vn 0.8247 -0.4609 -0.3279 -vn 0.9077 0.1855 -0.3764 -vn 0.9077 0.1854 -0.3765 -vn 0.9078 0.1852 -0.3763 -vn 0.6888 -0.7219 -0.0666 -vn 0.6887 -0.7220 -0.0663 -vn 0.6884 -0.7223 -0.0661 -vn 0.5633 -0.6942 0.4481 -vn 0.5632 -0.6943 0.4481 -vn -0.4296 0.8960 -0.1126 -vn -0.4293 0.8961 -0.1130 -vn -0.4297 0.8960 -0.1124 -vn -0.1765 -0.1555 -0.9719 -vn 0.0523 -0.2086 -0.9766 -vn 0.0524 -0.2092 -0.9765 -vn 0.0525 -0.2091 -0.9765 -vn 0.1448 0.8784 -0.4554 -vn 0.1447 0.8785 -0.4554 -vn 0.1444 0.8787 -0.4550 -vn -0.1678 -0.8666 0.4699 -vn -0.1678 -0.8667 0.4698 -vn -0.3571 0.4335 0.8274 -vn -0.3570 0.4338 0.8273 -vn -0.3572 0.4337 0.8273 -vn -0.4493 -0.8927 -0.0337 -vn -0.4494 -0.8927 -0.0337 -vn -0.4492 -0.8928 -0.0336 -vn 0.2096 -0.3432 -0.9156 -vn -0.1108 0.9908 -0.0771 -vn -0.1108 0.9909 -0.0770 -vn 0.4851 0.8688 0.0990 -vn 0.4850 0.8689 0.0990 -vn 0.1507 0.9859 0.0727 -vn 0.1508 0.9859 0.0727 -vn 0.1502 0.9860 0.0728 -vn -0.9843 -0.0216 -0.1752 -vn -0.9843 -0.0217 -0.1749 -vn -0.9844 -0.0221 -0.1746 -vn -0.7949 -0.3734 0.4783 -vn -0.7949 -0.3730 0.4786 -vn -0.7949 -0.3729 0.4786 -vn 0.6403 -0.7634 -0.0850 -vn 0.6401 -0.7636 -0.0849 -vn 0.3151 -0.0651 0.9468 -vn 0.2165 -0.8029 -0.5554 -vn 0.2164 -0.8029 -0.5554 -vn -0.3902 -0.6658 -0.6360 -vn -0.3896 -0.6659 -0.6363 -vn -0.3904 -0.6657 -0.6360 -vn -0.1243 -0.8899 -0.4389 -vn -0.1248 -0.8898 -0.4389 -vn -0.1246 -0.8899 -0.4388 -vn 0.0516 0.0014 0.9987 -vn 0.0516 0.0013 0.9987 -vn 0.0517 0.0013 0.9987 -vn -0.1157 0.9527 -0.2809 -vn 0.0161 -0.8888 0.4580 -vn 0.0164 -0.8890 0.4577 -vn 0.0165 -0.8890 0.4576 -vn -0.3344 -0.9424 0.0021 -vn -0.3345 -0.9424 0.0024 -vn -0.3348 -0.9423 0.0026 -vn -0.0448 -0.9798 0.1949 -vn -0.0447 -0.9798 0.1947 -vn 0.5138 0.7716 -0.3749 -vn 0.5139 0.7717 -0.3748 -vn -0.1507 0.2697 0.9511 -vn -0.1504 0.2697 0.9511 -vn -0.9838 -0.0796 -0.1607 -vn -0.9839 -0.0797 -0.1600 -vn -0.9838 -0.0796 -0.1606 -vn 0.2524 -0.0738 0.9648 -vn 0.2527 -0.0741 0.9647 -vn 0.2537 -0.0745 0.9644 -vn -0.9270 0.1619 -0.3382 -vn -0.9272 0.1614 -0.3381 -vn -0.9272 0.1613 -0.3381 -vn 0.4900 0.7742 -0.4008 -vn 0.4900 0.7743 -0.4005 -vn 0.4902 0.7740 -0.4007 -vn -0.9345 -0.3316 0.1294 -vn -0.9344 -0.3320 0.1295 -vn -0.9346 -0.3313 0.1294 -vn 0.6608 0.0311 0.7499 -vn -0.0125 -0.9970 0.0761 -vn -0.0123 -0.9970 0.0762 -vn -0.0122 -0.9970 0.0763 -vn -0.3050 -0.9255 -0.2246 -vn -0.3053 -0.9253 -0.2251 -vn -0.3054 -0.9250 -0.2261 -vn -0.6948 -0.5242 -0.4924 -vn -0.6946 -0.5245 -0.4924 -vn -0.6949 -0.5242 -0.4923 -vn -0.3736 0.0105 -0.9275 -vn -0.3726 0.0093 -0.9279 -vn -0.3749 0.0108 -0.9270 -vn 0.0830 -0.1986 0.9766 -vn 0.0834 -0.1985 0.9765 -vn 0.0836 -0.1985 0.9765 -vn 0.5911 -0.8061 -0.0284 -vn 0.5911 -0.8061 -0.0286 -vn 0.5911 -0.8061 -0.0289 -vn -0.5862 0.7428 -0.3235 -vn -0.5860 0.7431 -0.3231 -vn -0.5864 0.7426 -0.3236 -vn -0.7888 -0.5325 -0.3071 -vn -0.7887 -0.5323 -0.3075 -vn -0.7891 -0.5325 -0.3063 -vn 0.3904 0.6268 0.6743 -vn 0.3905 0.6269 0.6742 -vn 0.3905 0.6265 0.6746 -vn -0.5741 0.4469 -0.6861 -vn -0.5163 0.8528 -0.0791 -vn -0.5162 0.8528 -0.0791 -vn -0.5158 0.8531 -0.0786 -vn 0.0814 -0.9935 0.0802 -vn -0.6989 0.1504 -0.6993 -vn -0.6988 0.1509 -0.6992 -vn -0.6988 0.1507 -0.6993 -vn -0.5224 -0.4319 -0.7352 -vn -0.5223 -0.4318 -0.7354 -vn -0.5225 -0.4319 -0.7352 -vn -0.5439 0.7888 -0.2862 -vn 0.0005 -0.0003 1.0000 -vn -0.3502 -0.1940 0.9164 -vn -0.3504 -0.1938 0.9163 -vn -0.3501 -0.1941 0.9164 -vn 0.7689 0.0990 -0.6317 -vn 0.7691 0.0987 -0.6315 -vn 0.7689 0.0990 -0.6316 -vn -0.8125 0.5189 -0.2657 -vn -0.8125 0.5188 -0.2658 -vn -0.3170 -0.7622 -0.5644 -vn -0.3169 -0.7622 -0.5645 -vn -0.3173 -0.7620 -0.5645 -vn -0.8223 0.3232 -0.4684 -vn -0.8870 -0.4431 0.1302 -vn -0.8868 -0.4434 0.1302 -vn 0.0208 0.2820 -0.9592 -vn 0.0211 0.2816 -0.9593 -vn -0.0030 0.8799 0.4752 -vn -0.8416 0.5130 0.1690 -vn -0.0238 0.9935 -0.1110 -vn 0.1953 -0.9682 0.1565 -vn 0.1954 -0.9681 0.1568 -vn 0.1954 -0.9682 0.1561 -vn 0.2161 0.5627 0.7979 -vn -0.6418 0.0989 0.7605 -vn 0.1820 -0.9817 0.0558 -vn 0.1819 -0.9817 0.0558 -vn -0.1191 0.4621 -0.8788 -vn -0.1189 0.4622 -0.8788 -vn -0.1186 0.4626 -0.8786 -vn 0.8196 0.4809 0.3116 -vn 0.8196 0.4809 0.3113 -vn 0.8195 0.4810 0.3115 -vn -0.1888 -0.9647 -0.1834 -vn -0.1887 -0.9648 -0.1830 -vn -0.1886 -0.9649 -0.1826 -vn -0.1181 -0.4406 -0.8899 -vn 0.3819 0.9239 0.0242 -vn -0.1734 -0.9668 -0.1877 -vn -0.1735 -0.9668 -0.1878 -vn -0.1737 -0.9667 -0.1881 -vn 0.2429 0.9661 -0.0869 -vn 0.2431 0.9661 -0.0869 -vn 0.2435 0.9660 -0.0870 -vn 0.3996 0.9149 -0.0575 -vn 0.3993 0.9150 -0.0571 -vn 0.3995 0.9149 -0.0574 -vn 0.1451 -0.9894 -0.0057 -vn 0.1451 -0.9894 -0.0056 -vn -0.4563 -0.1446 0.8780 -vn -0.4562 -0.1448 0.8780 -vn -0.4560 -0.1451 0.8781 -vn 0.0218 -0.9820 -0.1875 -vn 0.0219 -0.9821 -0.1873 -vn 0.0220 -0.9821 -0.1872 -vn -0.0549 -0.9913 -0.1196 -vn -0.0550 -0.9913 -0.1196 -vn -0.0325 -0.9994 -0.0082 -vn -0.0325 -0.9994 -0.0086 -vn -0.0358 -0.9994 -0.0035 -vn -0.0359 -0.9993 -0.0034 -vn 0.5570 -0.7491 -0.3585 -vn -0.6503 -0.4964 -0.5750 -vn 0.6264 -0.7768 0.0647 -vn 0.6264 -0.7769 0.0644 -vn -0.8647 0.2146 -0.4542 -vn -0.9005 0.0129 0.4346 -vn -0.9004 0.0125 0.4349 -vn 0.1495 -0.9703 0.1903 -vn -0.0006 -0.9954 0.0962 -vn -0.0010 -0.9954 0.0960 -vn -0.0014 -0.9954 0.0958 -vn 0.0071 -0.9991 -0.0425 -vn 0.0072 -0.9991 -0.0425 -vn 0.0074 -0.9991 -0.0425 -vn -0.0347 -0.9892 -0.1423 -vn -0.0347 -0.9892 -0.1427 -vn -0.0346 -0.9892 -0.1424 -vn 0.4147 0.2900 -0.8625 -vn 0.4148 0.2897 -0.8626 -vn 0.4144 0.2905 -0.8625 -vn -0.0533 -0.9975 -0.0459 -vn -0.0531 -0.9975 -0.0457 -vn -0.0530 -0.9976 -0.0455 -vn -0.0975 -0.9952 0.0042 -vn -0.0981 -0.9952 0.0043 -vn -0.0971 -0.9953 0.0044 -vn -0.2147 -0.9748 0.0603 -vn -0.0423 0.2127 -0.9762 -vn 0.0707 -0.9966 0.0429 -vn 0.0708 -0.9966 0.0428 -vn 0.1535 -0.9818 0.1115 -vn 0.1541 -0.9818 0.1114 -vn 0.1534 -0.9819 0.1115 -vn -0.3987 0.1468 -0.9053 -vn -0.3983 0.1465 -0.9055 -vn -0.0543 -0.9947 -0.0873 -vn -0.0542 -0.9946 -0.0883 -vn -0.0540 -0.9946 -0.0887 -vn -0.2098 -0.9720 -0.1062 -vn -0.2094 -0.9720 -0.1063 -vn -0.2100 -0.9719 -0.1060 -vn 0.4805 0.8562 0.1898 -vn 0.4806 0.8562 0.1896 -vn 0.4804 0.8562 0.1900 -vn 0.0036 -0.9914 -0.1311 -vn 0.0037 -0.9913 -0.1318 -vn 0.0035 -0.9913 -0.1313 -vn -0.3165 -0.3974 0.8613 -vn -0.3166 -0.3973 0.8614 -vn -0.3166 -0.3973 0.8613 -vn -0.4203 0.8269 0.3736 -vn -0.4197 0.8272 0.3735 -vn -0.4193 0.8279 0.3726 -vn -0.3332 0.9218 -0.1981 -vn -0.3312 0.9222 -0.1996 -vn -0.3306 0.9223 -0.2001 -vn -0.0752 0.9961 -0.0459 -vn -0.0752 0.9961 -0.0460 -vn 0.6807 -0.7290 0.0723 -vn 0.6807 -0.7289 0.0725 -vn 0.5425 -0.6821 0.4903 -vn 0.5418 -0.6821 0.4911 -vn 0.5423 -0.6822 0.4904 -vn 0.1853 -0.9693 0.1617 -vn 0.1853 -0.9692 0.1621 -vn 0.1853 -0.9692 0.1625 -vn -0.9475 -0.2410 0.2102 -vn -0.9475 -0.2411 0.2102 -vn -0.4827 0.5075 -0.7138 -vn -0.6943 0.6343 -0.3401 -vn -0.6945 0.6342 -0.3399 -vn -0.9549 0.0780 -0.2864 -vn -0.9675 0.2424 0.0726 -vn -0.0332 -0.9991 -0.0254 -vn -0.0331 -0.9991 -0.0253 -vn -0.0334 -0.9991 -0.0258 -vn -0.8315 0.3745 -0.4102 -vn -0.8314 0.3747 -0.4104 -vn -0.8311 0.3750 -0.4107 -vn -0.1415 0.9892 -0.0380 -vn -0.1407 0.9893 -0.0379 -vn -0.1401 0.9894 -0.0380 -vn 0.9129 0.1739 0.3694 -vn 0.9129 0.1739 0.3692 -vn 0.9129 0.1739 0.3693 -vn -0.2421 -0.9630 -0.1182 -vn -0.1213 -0.9925 0.0142 -vn 0.3993 0.9134 -0.0787 -vn 0.3994 0.9134 -0.0786 -vn 0.3994 0.9134 -0.0785 -vn -0.1250 -0.9922 0.0005 -vn -0.1251 -0.9921 0.0005 -vn -0.4091 0.8999 -0.1513 -vn -0.4088 0.8999 -0.1515 -vn -0.4094 0.8998 -0.1512 -vn 0.2006 0.9521 -0.2309 -vn 0.2001 0.9522 -0.2307 -vn 0.1997 0.9523 -0.2307 -vn -0.5045 -0.1766 -0.8452 -vn -0.5071 -0.1757 -0.8438 -vn -0.5059 -0.1758 -0.8445 -vn -0.0006 -0.9998 0.0204 -vn 0.0001 -0.9998 0.0198 -vn 0.0001 -0.9998 0.0196 -vn 0.7562 0.2321 -0.6118 -vn 0.7563 0.2314 -0.6120 -vn -0.0587 -0.9864 -0.1534 -vn -0.0592 -0.9864 -0.1533 -vn -0.0589 -0.9864 -0.1536 -vn -0.2578 -0.1935 -0.9466 -vn -0.2576 -0.1936 -0.9467 -vn -0.2577 -0.1936 -0.9466 -vn 0.6245 0.3680 0.6889 -vn 0.6248 0.3677 0.6888 -vn 0.6248 0.3676 0.6889 -vn 0.5357 0.5996 0.5946 -vn 0.5357 0.5995 0.5947 -vn 0.5356 0.5997 0.5945 -vn -0.9260 0.3624 -0.1061 -vn -0.9261 0.3621 -0.1061 -vn -0.9258 0.3627 -0.1061 -vn 0.9113 0.1539 0.3820 -vn 0.9112 0.1539 0.3820 -vn 0.0652 -0.9747 0.2137 -vn 0.0646 -0.9748 0.2135 -vn 0.0654 -0.9747 0.2138 -vn 0.9323 0.2803 -0.2287 -vn 0.9323 0.2803 -0.2286 -vn 0.1818 -0.9763 0.1172 -vn 0.1814 -0.9764 0.1172 -vn 0.1810 -0.9764 0.1175 -vn 0.1006 -0.9596 0.2627 -vn 0.1006 -0.9594 0.2634 -vn 0.2817 0.2354 -0.9302 -vn 0.2819 0.2368 -0.9298 -vn 0.2820 0.2361 -0.9299 -vn 0.7276 0.6617 0.1811 -vn 0.7275 0.6618 0.1810 -vn 0.3932 -0.2546 0.8835 -vn 0.3932 -0.2555 0.8832 -vn 0.3935 -0.2561 0.8829 -vn 0.1142 -0.9779 0.1752 -vn 0.1141 -0.9780 0.1747 -vn -0.8122 -0.0210 -0.5830 -vn -0.8121 -0.0206 -0.5832 -vn -0.8121 -0.0205 -0.5832 -vn 0.5195 -0.3843 -0.7632 -vn -0.0019 0.0031 1.0000 -vn 0.8675 0.3336 0.3689 -vn 0.8677 0.3336 0.3685 -vn 0.8679 0.3337 0.3679 -vn -0.8385 -0.4048 -0.3649 -vn -0.8385 -0.4047 -0.3650 -vn -0.8385 -0.4050 -0.3646 -vn -0.0796 -0.9950 -0.0610 -vn 0.3923 0.9187 0.0461 -vn 0.3906 0.9193 0.0476 -vn 0.3913 0.9191 0.0468 -vn 0.0008 -0.9703 0.2418 -vn 0.0006 -0.9702 0.2422 -vn 0.0007 -0.9703 0.2420 -vn 0.4296 -0.9028 -0.0207 -vn 0.4295 -0.9028 -0.0207 -vn 0.4293 -0.9029 -0.0205 -vn -0.1790 -0.9646 -0.1935 -vn -0.1791 -0.9647 -0.1931 -vn -0.1789 -0.9647 -0.1935 -vn 0.0846 -0.9961 0.0238 -vn 0.0843 -0.9962 0.0239 -vn 0.0839 -0.9962 0.0240 -vn 0.1323 -0.9846 -0.1145 -vn 0.1549 -0.9716 -0.1789 -vn 0.1547 -0.9716 -0.1789 -vn -0.1910 -0.9471 -0.2578 -vn -0.1269 0.9915 0.0300 -vn -0.1267 0.9915 0.0302 -vn -0.1262 0.9915 0.0306 -vn 0.0600 -0.9913 -0.1174 -vn 0.2633 -0.9608 -0.0873 -vn 0.2632 -0.9608 -0.0873 -vn 0.2633 -0.9608 -0.0872 -vn 0.0307 -0.9888 -0.1462 -vn -0.4556 -0.2165 -0.8634 -vn -0.4556 -0.2163 -0.8635 -vn -0.4556 -0.2159 -0.8636 -vn -0.0572 -0.9619 -0.2672 -vn -0.0574 -0.9621 -0.2667 -vn 0.2342 -0.9722 0.0042 -vn 0.2338 -0.9723 0.0041 -vn 0.2336 -0.9723 0.0041 -vn -0.2223 0.6637 -0.7142 -vn -0.2224 0.6641 -0.7138 -vn -0.2229 0.6648 -0.7130 -vn -0.1300 0.8133 -0.5672 -vn -0.1306 0.8131 -0.5673 -vn -0.1300 0.8133 -0.5671 -vn 0.8935 0.2566 0.3685 -vn 0.8937 0.2564 0.3681 -vn 0.8643 0.3583 0.3530 -vn 0.8643 0.3584 0.3529 -vn 0.8643 0.3581 0.3532 -vn 0.5271 0.6512 -0.5459 -vn 0.5271 0.6512 -0.5460 -vn 0.5272 0.6513 -0.5457 -vn -0.2417 0.0459 0.9693 -vn -0.2409 0.0458 0.9695 -vn -0.2399 0.0461 0.9697 -vn 0.3323 0.7726 -0.5410 -vn 0.2122 0.9769 -0.0268 -vn 0.2125 0.9768 -0.0270 -vn 0.6555 -0.3099 0.6887 -vn 0.8624 -0.4590 0.2134 -vn 0.8623 -0.4592 0.2133 -vn 0.8623 -0.4592 0.2132 -vn -0.8818 0.3211 -0.3454 -vn -0.8816 0.3216 -0.3455 -vn -0.8817 0.3214 -0.3455 -vn 0.1358 -0.9441 -0.3003 -vn 0.1356 -0.9441 -0.3004 -vn 0.1357 -0.9441 -0.3004 -vn -0.2372 0.9040 -0.3556 -vn -0.2371 0.9041 -0.3554 -vn -0.2372 0.9040 -0.3557 -vn -0.0996 0.0457 -0.9940 -vn -0.0995 0.0465 -0.9940 -vn -0.0995 0.0460 -0.9940 -vn -0.5076 0.8211 -0.2608 -vn -0.5077 0.8211 -0.2607 -vn -0.5078 0.8209 -0.2611 -vn -0.2718 -0.8738 -0.4032 -vn -0.2718 -0.8738 -0.4033 -vn -0.2719 -0.8737 -0.4033 -vn 0.9004 -0.3231 -0.2913 -vn 0.9007 -0.3228 -0.2908 -vn 0.9003 -0.3233 -0.2914 -vn 0.1721 0.9664 -0.1909 -vn 0.1734 0.9664 -0.1896 -vn 0.1716 0.9662 -0.1926 -vn 0.8102 -0.2827 0.5135 -vn 0.8103 -0.2826 0.5134 -vn 0.8101 -0.2830 0.5134 -vn -0.5529 -0.3007 -0.7771 -vn -0.5528 -0.3008 -0.7771 -vn -0.5524 -0.3008 -0.7774 -vn 0.2117 0.3214 0.9230 -vn 0.0510 -0.8668 -0.4960 -vn 0.0513 -0.8669 -0.4958 -vn 0.0508 -0.8667 -0.4963 -vn -0.7766 0.4278 -0.4624 -vn -0.7766 0.4279 -0.4624 -vn -0.7767 0.4274 -0.4626 -vn 0.0762 0.9867 -0.1435 -vn 0.0761 0.9867 -0.1434 -vn 0.0761 0.9867 -0.1433 -vn 0.2380 -0.4585 0.8562 -vn 0.2380 -0.4584 0.8563 -vn 0.8072 -0.4823 0.3402 -vn 0.8072 -0.4822 0.3405 -vn 0.8071 -0.4823 0.3405 -vn 0.5244 0.8411 -0.1325 -vn 0.5245 0.8410 -0.1328 -vn 0.5245 0.8410 -0.1329 -vn 0.6181 0.7828 -0.0720 -vn 0.6184 0.7826 -0.0723 -vn -0.7773 0.1591 0.6087 -vn -0.7774 0.1592 0.6085 -vn -0.6255 0.3678 -0.6881 -vn -0.6255 0.3680 -0.6880 -vn -0.5561 -0.8169 0.1530 -vn -0.5561 -0.8170 0.1526 -vn -0.5561 -0.8169 0.1528 -vn -0.4969 -0.6901 -0.5261 -vn -0.4952 -0.6918 -0.5256 -vn -0.4967 -0.6904 -0.5260 -vn -0.5732 -0.7633 0.2982 -vn 0.5445 0.5250 0.6541 -vn 0.5451 0.5244 0.6541 -vn 0.5440 0.5253 0.6543 -vn -0.2327 -0.8059 0.5444 -vn -0.2327 -0.8059 0.5443 -vn -0.2325 -0.8058 0.5446 -vn -0.0267 0.8151 -0.5788 -vn -0.0266 0.8147 -0.5792 -vn -0.0266 0.8149 -0.5790 -vn 0.7055 0.6981 -0.1221 -vn -0.3873 -0.9203 0.0556 -vn -0.4554 -0.7931 -0.4045 -vn -0.4556 -0.7930 -0.4044 -vn -0.4556 -0.7929 -0.4047 -vn 0.6827 0.6195 -0.3875 -vn 0.6826 0.6195 -0.3876 -vn 0.6828 0.6196 -0.3872 -vn 0.6761 0.1869 -0.7127 -vn -0.9339 0.2212 -0.2809 -vn -0.9339 0.2207 -0.2812 -vn -0.9339 0.2215 -0.2807 -vn -0.2143 0.4711 0.8556 -vn 0.8901 -0.1677 -0.4238 -vn 0.8906 -0.1677 -0.4228 -vn 0.8902 -0.1677 -0.4236 -vn -0.9386 -0.2586 -0.2282 -vn -0.9385 -0.2588 -0.2285 -vn -0.0781 0.1065 -0.9912 -vn -0.0782 0.1065 -0.9912 -vn -0.0782 0.1066 -0.9912 -vn 0.0657 0.0288 -0.9974 -vn 0.9821 -0.1695 -0.0823 -vn 0.9821 -0.1694 -0.0822 -vn 0.5776 -0.7984 -0.1700 -vn 0.5774 -0.7985 -0.1702 -vn 0.5773 -0.7985 -0.1707 -vn 0.8464 -0.4642 0.2611 -vn 0.8465 -0.4640 0.2610 -vn 0.7981 -0.3466 0.4928 -vn 0.7980 -0.3455 0.4938 -vn 0.7980 -0.3462 0.4932 -vn -0.4952 -0.8562 0.1475 -vn -0.4949 -0.8563 0.1476 -vn -0.4953 -0.8561 0.1473 -vn -0.4461 -0.3403 -0.8277 -vn -0.4460 -0.3406 -0.8277 -vn 0.8435 -0.0314 0.5362 -vn -0.1921 -0.6578 -0.7283 -vn -0.1922 -0.6578 -0.7283 -vn -0.1919 -0.6579 -0.7282 -vn -0.0305 0.5833 0.8117 -vn -0.0306 0.5832 0.8117 -vn -0.0298 0.5839 0.8113 -vn -0.2195 0.6190 -0.7541 -vn -0.2189 0.6190 -0.7543 -vn -0.2196 0.6191 -0.7540 -vn -0.5464 0.8174 -0.1825 -vn -0.5463 0.8174 -0.1826 -vn -0.1362 0.5767 0.8055 -vn -0.1368 0.5775 0.8049 -vn -0.1361 0.5766 0.8056 -vn 0.2584 0.2121 0.9425 -vn 0.2582 0.2118 0.9426 -vn 0.2581 0.2117 0.9426 -vn -0.3213 0.4399 -0.8386 -vn -0.8102 0.5835 0.0562 -vn -0.8090 0.5850 0.0564 -vn -0.8086 0.5856 0.0571 -vn -0.4478 -0.8661 -0.2219 -vn -0.4476 -0.8663 -0.2217 -vn -0.4479 -0.8661 -0.2219 -vn 0.0600 -0.4139 -0.9083 -vn 0.0599 -0.4139 -0.9083 -vn -0.6780 0.2612 0.6871 -vn -0.6775 0.2614 0.6875 -vn -0.6778 0.2611 0.6873 -vn -0.9108 -0.0572 -0.4089 -vn -0.9108 -0.0571 -0.4089 -vn -0.3381 0.5531 0.7614 -vn -0.3371 0.5534 0.7616 -vn -0.3377 0.5533 0.7615 -vn -0.3092 0.5753 0.7573 -vn 0.4838 -0.8216 0.3014 -vn -0.5097 0.6991 0.5014 -vn -0.3516 -0.0695 -0.9336 -vn -0.3515 -0.0697 -0.9336 -vn -0.3516 -0.0699 -0.9335 -vn -0.9565 -0.0693 -0.2834 -vn -0.9566 -0.0692 -0.2832 -vn -0.9566 -0.0694 -0.2829 -vn 0.0636 -0.2570 0.9643 -vn 0.0638 -0.2567 0.9644 -vn 0.0554 0.9831 0.1748 -vn 0.0551 0.9830 0.1752 -vn -0.1553 -0.9614 0.2271 -vn -0.1542 -0.9615 0.2273 -vn -0.1548 -0.9615 0.2270 -vn -0.4667 -0.0736 0.8813 -vn 0.3035 -0.7949 -0.5253 -vn -0.0469 -0.0010 -0.9989 -vn -0.0470 -0.0009 -0.9989 -vn -0.0465 -0.0010 -0.9989 -vn -0.2137 0.6617 -0.7187 -vn -0.2136 0.6617 -0.7187 -vn -0.2135 0.6617 -0.7187 -vn 0.3470 -0.8614 -0.3709 -vn 0.3469 -0.8615 -0.3708 -vn 0.3471 -0.8614 -0.3708 -vn 0.4289 -0.8834 0.1886 -vn 0.4285 -0.8836 0.1886 -vn 0.4287 -0.8836 0.1886 -vn -0.9838 0.1082 -0.1430 -vn -0.9838 0.1082 -0.1428 -vn -0.9838 0.1082 -0.1431 -vn 0.0008 -0.0110 0.9999 -vn 0.7736 -0.3441 -0.5320 -vn 0.7737 -0.3441 -0.5320 -vn -0.2777 -0.9566 -0.0884 -vn -0.3271 -0.4086 -0.8521 -vn -0.3286 -0.4081 -0.8518 -vn -0.3298 -0.4067 -0.8520 -vn 0.3329 0.2987 0.8944 -vn 0.3328 0.2988 0.8944 -vn 0.3326 0.2988 0.8945 -vn 0.4582 -0.4894 -0.7420 -vn 0.4584 -0.4892 -0.7420 -vn 0.3721 0.5220 0.7675 -vn 0.3730 0.5221 0.7670 -vn 0.3725 0.5221 0.7672 -vn 0.8386 -0.5249 0.1455 -vn 0.8386 -0.5250 0.1451 -vn -0.6812 -0.2476 0.6889 -vn -0.6819 -0.2475 0.6883 -vn -0.6823 -0.2473 0.6880 -vn -0.4543 -0.7080 -0.5406 -vn -0.4544 -0.7080 -0.5406 -vn -0.4543 -0.7079 -0.5409 -vn -0.2632 0.9088 -0.3238 -vn 0.0533 -0.1124 0.9922 -vn 0.0532 -0.1127 0.9922 -vn 0.0055 0.9833 -0.1820 -vn 0.0057 0.9833 -0.1820 -vn 0.0060 0.9833 -0.1820 -vn -0.3372 0.9024 0.2683 -vn -0.3381 0.9023 0.2674 -vn -0.3371 0.9023 0.2687 -vn 0.7856 -0.5277 -0.3231 -vn 0.3196 -0.9022 -0.2898 -vn 0.3196 -0.9021 -0.2898 -vn -0.2366 -0.0559 -0.9700 -vn -0.2363 -0.0561 -0.9701 -vn -0.2367 -0.0557 -0.9700 -vn -0.4581 -0.8881 -0.0373 -vn -0.4580 -0.8881 -0.0374 -vn 0.6480 0.6017 0.4670 -vn 0.6479 0.6017 0.4670 -vn 0.2058 -0.8111 -0.5474 -vn 0.2056 -0.8109 -0.5478 -vn 0.2057 -0.8110 -0.5477 -vn 0.2772 -0.8908 -0.3600 -vn 0.7263 0.6810 0.0935 -vn 0.7264 0.6809 0.0935 -vn 0.7262 0.6810 0.0936 -vn 0.2245 -0.8289 -0.5123 -vn -0.5307 -0.0092 -0.8475 -vn -0.5311 -0.0092 -0.8473 -vn -0.5316 -0.0092 -0.8470 -vn 0.6435 0.6235 0.4441 -vn 0.0652 -0.8751 0.4795 -vn 0.4425 0.2505 0.8611 -vn 0.4422 0.2511 0.8610 -vn 0.4423 0.2506 0.8611 -vn -0.7565 -0.5634 0.3321 -vn -0.7583 -0.5615 0.3312 -vn -0.7571 -0.5630 0.3314 -vn -0.0789 0.9955 0.0529 -vn -0.0787 0.9955 0.0536 -vn -0.0787 0.9955 0.0535 -vn -0.0628 -0.7546 -0.6532 -vn -0.0610 -0.7556 -0.6522 -vn -0.0606 -0.7565 -0.6512 -vn 0.1142 -0.8588 -0.4994 -vn 0.1125 -0.8592 -0.4991 -vn 0.1163 -0.8576 -0.5010 -vn 0.5438 0.3670 -0.7548 -vn 0.5438 0.3667 -0.7549 -vn 0.5439 0.3668 -0.7548 -vn 0.8292 0.3614 -0.4264 -vn 0.6033 0.6936 0.3937 -vn -0.2276 -0.9597 0.1651 -vn -0.0598 0.0103 -0.9982 -vn -0.0597 0.0112 -0.9982 -vn -0.3246 0.5651 -0.7585 -vn -0.3250 0.5649 -0.7585 -vn -0.3245 0.5652 -0.7585 -vn -0.0021 -0.9873 0.1588 -vn 0.2898 0.9297 -0.2274 -vn -0.0159 -0.9917 0.1277 -vn 0.3048 0.9472 -0.0993 -vn 0.5575 0.6619 0.5011 -vn 0.5573 0.6620 0.5012 -vn 0.4969 -0.7129 -0.4949 -vn 0.4970 -0.7130 -0.4946 -vn 0.4969 -0.7130 -0.4947 -vn -0.3176 0.6143 0.7224 -vn -0.3193 0.6143 0.7216 -vn -0.3171 0.6141 0.7227 -vn 0.1032 -0.9942 0.0311 -vn 0.1030 -0.9942 0.0309 -vn 0.1030 -0.9942 0.0311 -vn -0.2221 0.2338 -0.9466 -vn -0.2222 0.2335 -0.9466 -vn -0.2221 0.2339 -0.9466 -vn -0.2368 -0.9699 -0.0575 -vn -0.2365 -0.9699 -0.0575 -vn -0.2367 -0.9699 -0.0575 -vn 0.1663 0.9827 0.0813 -vn 0.1663 0.9827 0.0814 -vn 0.1665 0.9827 0.0815 -vn -0.6366 0.3829 0.6695 -vn -0.1309 -0.9785 -0.1591 -vn -0.1300 -0.9781 -0.1628 -vn -0.1299 -0.9782 -0.1620 -vn 0.6198 0.7298 -0.2886 -vn 0.6198 0.7297 -0.2887 -vn 0.6197 0.7298 -0.2887 -vn 0.2867 -0.7879 -0.5450 -vn 0.2868 -0.7879 -0.5450 -vn -0.0051 0.9110 -0.4123 -vn -0.1691 -0.9825 0.0779 -vn -0.8386 -0.1471 -0.5245 -vn -0.8390 -0.1468 -0.5240 -vn -0.8388 -0.1470 -0.5243 -vn 0.2172 -0.9751 0.0439 -vn 0.2175 -0.9751 0.0442 -vn 0.4113 -0.7478 -0.5211 -vn 0.4111 -0.7479 -0.5211 -vn 0.6245 0.6003 0.4996 -vn 0.6245 0.6003 0.4997 -vn 0.6246 0.6002 0.4997 -vn 0.3407 -0.9131 -0.2242 -vn 0.3405 -0.9131 -0.2243 -vn 0.3402 -0.9132 -0.2242 -vn -0.0430 -0.2292 -0.9724 -vn -0.0430 -0.2294 -0.9724 -vn -0.0428 -0.2293 -0.9724 -vn -0.0938 -0.9576 -0.2723 -vn -0.0939 -0.9576 -0.2724 -vn -0.9166 -0.1718 -0.3611 -vn -0.9167 -0.1716 -0.3609 -vn -0.9165 -0.1719 -0.3612 -vn -0.0596 -0.6488 0.7586 -vn -0.0598 -0.6492 0.7583 -vn -0.0597 -0.6495 0.7580 -vn -0.3258 0.0978 -0.9404 -vn -0.3255 0.0976 -0.9405 -vn -0.3252 0.0976 -0.9406 -vn 0.4899 -0.7295 0.4773 -vn 0.4898 -0.7297 0.4772 -vn 0.4896 -0.7298 0.4772 -vn 0.0615 -0.8937 -0.4444 -vn 0.0619 -0.8935 -0.4447 -vn 0.0617 -0.8936 -0.4447 -vn -0.2251 -0.6737 -0.7039 -vn -0.0534 -0.7215 -0.6904 -vn -0.0535 -0.7208 -0.6911 -vn -0.0538 -0.7203 -0.6915 -vn 0.6982 -0.5476 0.4611 -vn -0.9433 -0.1965 -0.2677 -vn -0.9433 -0.1965 -0.2676 -vn -0.8025 -0.1463 -0.5785 -vn -0.8023 -0.1467 -0.5787 -vn -0.2813 -0.9492 -0.1410 -vn -0.2814 -0.9491 -0.1415 -vn -0.2818 -0.9489 -0.1420 -vn 0.2616 -0.9236 0.2801 -vn 0.2614 -0.9238 0.2799 -vn 0.2617 -0.9236 0.2802 -vn -0.8670 0.3769 -0.3261 -vn -0.8669 0.3771 -0.3261 -vn -0.0648 -0.2699 0.9607 -vn -0.0649 -0.2702 0.9606 -vn -0.0643 -0.2693 0.9609 -vn -0.0852 0.3662 -0.9266 -vn -0.0854 0.3664 -0.9265 -vn -0.0396 -0.9966 0.0727 -vn -0.0397 -0.9966 0.0727 -vn -0.0401 -0.9966 0.0725 -vn 0.0595 0.7971 -0.6010 -vn 0.0598 0.7971 -0.6009 -vn 0.0587 0.7969 -0.6013 -vn -0.2931 -0.9556 -0.0301 -vn -0.2932 -0.9556 -0.0300 -vn -0.2935 -0.9555 -0.0298 -vn 0.2355 0.3412 0.9100 -vn -0.1472 -0.1369 0.9796 -vn -0.1474 -0.1370 0.9795 -vn 0.2030 0.6848 -0.6999 -vn 0.2033 0.6843 -0.7003 -vn 0.3558 0.8533 -0.3813 -vn 0.3559 0.8533 -0.3811 -vn 0.3559 0.8532 -0.3814 -vn 0.2121 -0.9740 -0.0793 -vn 0.2125 -0.9740 -0.0790 -vn 0.2122 -0.9740 -0.0791 -vn -0.1563 0.9875 -0.0224 -vn -0.1562 0.9875 -0.0224 -vn -0.1561 0.9875 -0.0224 -vn 0.2839 -0.9536 0.1003 -vn 0.2840 -0.9536 0.1000 -vn 0.2838 -0.9536 0.1005 -vn 0.2799 0.8730 0.3994 -vn 0.1836 -0.9650 0.1872 -vn 0.1829 -0.9651 0.1873 -vn 0.1826 -0.9652 0.1872 -vn -0.8239 0.2823 -0.4914 -vn -0.8241 0.2822 -0.4912 -vn -0.8240 0.2821 -0.4913 -vn -0.0838 -0.9715 -0.2218 -vn -0.0837 -0.9715 -0.2217 -vn -0.0482 -0.9988 -0.0065 -vn -0.0481 -0.9988 -0.0072 -vn -0.0478 -0.9988 -0.0072 -vn -0.9684 0.0597 -0.2422 -vn -0.9684 0.0596 -0.2422 -vn -0.9685 0.0595 -0.2420 -vn 0.0418 -0.9941 -0.1001 -vn 0.9592 0.2794 -0.0436 -vn 0.9592 0.2794 -0.0437 -vn -0.0227 -0.9834 -0.1801 -vn -0.0221 -0.9833 -0.1806 -vn -0.0222 -0.9833 -0.1806 -vn -0.1680 -0.9756 -0.1415 -vn -0.1678 -0.9756 -0.1415 -vn 0.0660 -0.9905 -0.1209 -vn 0.0887 -0.9772 0.1931 -vn 0.0886 -0.9771 0.1933 -vn 0.0888 -0.9772 0.1930 -vn 0.6666 0.6487 0.3672 -vn 0.6665 0.6490 0.3669 -vn 0.6665 0.6490 0.3668 -vn -0.3207 0.1902 -0.9279 -vn -0.3210 0.1904 -0.9277 -vn -0.3208 0.1903 -0.9278 -vn 0.8432 0.0676 0.5333 -vn 0.8425 0.0688 0.5342 -vn 0.8429 0.0683 0.5337 -vn -0.1811 -0.9756 0.1244 -vn -0.1810 -0.9756 0.1240 -vn -0.1809 -0.9757 0.1238 -vn 0.0434 -0.9966 0.0707 -vn 0.0429 -0.9966 0.0703 -vn 0.0434 -0.9966 0.0706 -vn -0.6395 -0.6202 0.4543 -vn 0.9136 -0.0879 0.3970 -vn 0.9137 -0.0876 0.3968 -vn 0.2549 -0.9670 -0.0000 -vn 0.2553 -0.9669 -0.0000 -vn 0.2550 -0.9669 -0.0000 -vn 0.1831 -0.6671 -0.7221 -vn 0.1833 -0.6670 -0.7221 -vn 0.1836 -0.6665 -0.7226 -vn 0.0411 -0.0363 0.9985 -vn 0.0403 -0.0370 0.9985 -vn 0.0406 -0.0368 0.9985 -vn 0.9271 0.0907 0.3636 -vn 0.9270 0.0909 0.3639 -vn 0.9271 0.0909 0.3636 -vn 0.1568 -0.9852 0.0696 -vn 0.1568 -0.9852 0.0695 -vn 0.1570 -0.9852 0.0695 -vn 0.9192 0.3020 0.2529 -vn -0.1930 -0.9744 -0.1157 -vn 0.0985 -0.9919 0.0806 -vn 0.0985 -0.9919 0.0808 -vn 0.0985 -0.9918 0.0809 -vn 0.5601 0.3014 0.7716 -vn 0.5596 0.3016 0.7719 -vn 0.5596 0.3017 0.7719 -vn 0.1653 -0.9828 0.0818 -vn 0.1652 -0.9829 0.0819 -vn 0.1658 -0.9358 0.3111 -vn 0.1656 -0.9358 0.3112 -vn -0.2117 0.9652 -0.1536 -vn -0.2117 0.9651 -0.1540 -vn -0.2117 0.9651 -0.1544 -vn -0.0567 -0.9984 -0.0045 -vn -0.0565 -0.9984 -0.0044 -vn -0.1723 0.8618 0.4770 -vn 0.0045 0.5551 -0.8317 -vn 0.0046 0.5551 -0.8317 -vn 0.0034 0.5552 -0.8317 -vn 0.7026 0.1157 0.7021 -vn 0.7029 0.1151 0.7019 -vn -0.8591 0.4827 0.1701 -vn -0.8589 0.4830 0.1701 -vn -0.0408 -0.9523 -0.3023 -vn -0.0404 -0.9524 -0.3021 -vn -0.0396 -0.9525 -0.3021 -vn -0.2855 -0.9548 0.0829 -vn -0.2847 -0.9550 0.0831 -vn -0.2851 -0.9549 0.0832 -vn 0.2895 0.0429 0.9562 -vn 0.0118 -0.9985 0.0539 -vn 0.0117 -0.9985 0.0541 -vn 0.2527 -0.9297 0.2679 -vn 0.2529 -0.9297 0.2678 -vn 0.2530 -0.9297 0.2676 -vn 0.0122 0.9738 -0.2272 -vn 0.0118 0.9740 -0.2263 -vn 0.0127 0.9736 -0.2278 -vn -0.0207 -0.9902 0.1383 -vn -0.0192 -0.9903 0.1377 -vn -0.0197 -0.9903 0.1378 -vn -0.3837 -0.0170 0.9233 -vn -0.3841 -0.0168 0.9231 -vn -0.3840 -0.0168 0.9232 -vn -0.3237 -0.9442 0.0612 -vn -0.3241 -0.9441 0.0611 -vn -0.3235 -0.9443 0.0611 -vn 0.7124 0.4318 0.5531 -vn 0.1555 -0.9878 -0.0124 -vn 0.1560 -0.9877 -0.0127 -vn 0.1561 -0.9877 -0.0129 -vn -0.2191 0.9699 0.1066 -vn -0.2188 0.9699 0.1067 -vn -0.8050 0.0353 -0.5922 -vn -0.8051 0.0356 -0.5921 -vn 0.0293 0.9928 0.1161 -vn 0.0293 0.9928 0.1162 -vn 0.0292 0.9928 0.1165 -vn 0.3502 -0.8789 0.3238 -vn 0.3504 -0.8790 0.3235 -vn 0.3503 -0.8790 0.3236 -vn 0.1308 -0.9829 -0.1298 -vn 0.8872 -0.4547 0.0783 -vn 0.8872 -0.4546 0.0786 -vn 0.1283 -0.9829 -0.1320 -vn -0.4555 0.3165 0.8321 -vn -0.4554 0.3168 0.8320 -vn -0.8295 0.4991 -0.2505 -vn 0.4004 -0.8933 0.2043 -vn 0.3999 -0.8931 0.2058 -vn 0.4004 -0.8933 0.2042 -vn 0.1303 -0.9909 0.0328 -vn 0.1305 -0.9909 0.0326 -vn 0.1304 -0.9909 0.0324 -vn 0.0507 -0.9947 -0.0900 -vn 0.3089 -0.9358 0.1700 -vn 0.3086 -0.9358 0.1702 -vn 0.3088 -0.9358 0.1703 -vn -0.0434 -0.9605 0.2750 -vn -0.0427 -0.9605 0.2751 -vn -0.0430 -0.9605 0.2750 -vn 0.6878 -0.7049 0.1731 -vn 0.4223 -0.9041 0.0662 -vn 0.4221 -0.9042 0.0646 -vn 0.4220 -0.9043 0.0651 -vn 0.2106 -0.9561 0.2037 -vn 0.2108 -0.9560 0.2040 -vn 0.1225 -0.9346 0.3340 -vn 0.1222 -0.9348 0.3336 -vn -0.0638 0.9396 -0.3362 -vn -0.0637 0.9397 -0.3361 -vn -0.0637 0.9397 -0.3360 -vn -0.9986 -0.0237 0.0474 -vn -0.9986 -0.0241 0.0473 -vn -0.9986 -0.0233 0.0474 -vn 0.2022 -0.9462 0.2528 -vn 0.5144 -0.8117 0.2767 -vn 0.5115 -0.8134 0.2771 -vn 0.5132 -0.8126 0.2764 -vn -0.1445 -0.7762 -0.6137 -vn 0.2402 0.9474 -0.2115 -vn 0.2398 0.9475 -0.2116 -vn 0.2406 0.9474 -0.2113 -vn -0.3515 -0.9184 0.1819 -vn -0.3516 -0.9184 0.1813 -vn -0.3514 -0.9187 0.1805 -vn 0.5640 0.8246 -0.0440 -vn 0.2354 0.8534 -0.4650 -vn 0.2351 0.8537 -0.4646 -vn 0.5276 -0.1638 -0.8335 -vn 0.5277 -0.1638 -0.8335 -vn 0.1695 -0.9853 0.0213 -vn 0.1696 -0.9853 0.0211 -vn 0.1697 -0.9853 0.0212 -vn 0.1954 -0.9795 0.0480 -vn -0.6403 0.7199 -0.2681 -vn -0.6403 0.7198 -0.2681 -vn -0.6071 0.3263 -0.7246 -vn -0.7551 0.6268 -0.1923 -vn -0.7549 0.6269 -0.1927 -vn -0.0172 -0.9868 0.1612 -vn -0.0174 -0.9868 0.1611 -vn -0.0171 -0.9868 0.1609 -vn -0.1317 -0.9189 0.3718 -vn -0.1319 -0.9189 0.3719 -vn -0.1321 -0.9189 0.3717 -vn 0.2421 -0.9562 -0.1648 -vn 0.2418 -0.9563 -0.1645 -vn 0.2419 -0.9562 -0.1646 -vn -0.2189 -0.9182 0.3302 -vn -0.2191 -0.9182 0.3300 -vn -0.2187 -0.9181 0.3304 -vn -0.0367 0.5070 0.8612 -vn -0.0368 0.5068 0.8613 -vn -0.0368 0.5070 0.8612 -vn -0.0737 -0.9453 0.3176 -vn -0.0741 -0.9454 0.3174 -vn 0.2279 -0.9609 0.1575 -vn -0.1822 0.9251 -0.3332 -vn 0.4083 -0.9128 0.0086 -vn 0.4083 -0.9128 0.0088 -vn 0.4083 -0.9128 0.0090 -vn 0.5447 -0.8385 0.0115 -vn -0.2755 0.7280 -0.6278 -vn -0.2751 0.7284 -0.6275 -vn -0.2750 0.7282 -0.6277 -vn -0.2746 -0.9348 -0.2251 -vn -0.2748 -0.9348 -0.2251 -vn 0.3038 0.9525 -0.0203 -vn -0.5625 0.5399 -0.6261 -vn 0.0283 -0.9754 -0.2185 -vn 0.0282 -0.9753 -0.2191 -vn -0.3455 -0.2389 0.9075 -vn -0.2728 0.9127 -0.3042 -vn -0.2733 0.9126 -0.3041 -vn -0.1697 -0.9263 -0.3365 -vn -0.1697 -0.9263 -0.3364 -vn -0.1698 -0.9263 -0.3363 -vn 0.4308 -0.9022 -0.0212 -vn 0.4305 -0.9023 -0.0217 -vn 0.4305 -0.9023 -0.0213 -vn 0.8681 0.0465 0.4943 -vn 0.9340 -0.2261 0.2767 -vn 0.9337 -0.2267 0.2770 -vn 0.0107 -0.9491 -0.3147 -vn 0.8309 -0.2172 0.5123 -vn 0.8309 -0.2167 0.5126 -vn 0.8309 -0.2170 0.5124 -vn -0.4292 -0.2057 0.8795 -vn -0.4292 -0.2059 0.8794 -vn 0.1624 -0.9459 -0.2808 -vn 0.1621 -0.9460 -0.2808 -vn 0.5811 0.1884 0.7917 -vn 0.5811 0.1879 0.7919 -vn 0.5812 0.1888 0.7915 -vn -0.4474 -0.1527 -0.8812 -vn -0.4474 -0.1532 -0.8811 -vn -0.4479 -0.1538 -0.8807 -vn -0.3018 0.6084 0.7340 -vn -0.3014 0.6083 0.7343 -vn -0.3016 0.6085 0.7340 -vn 0.4109 0.8985 -0.1542 -vn 0.2330 0.9662 0.1107 -vn 0.2327 0.9662 0.1111 -vn 0.4110 -0.6647 0.6239 -vn 0.4112 -0.6647 0.6238 -vn 0.1539 0.3065 0.9394 -vn 0.1515 0.3077 0.9393 -vn 0.1521 0.3071 0.9394 -vn 0.5903 0.4878 -0.6431 -vn 0.5903 0.4880 -0.6430 -vn -0.1451 -0.8937 -0.4246 -vn -0.1450 -0.8951 -0.4216 -vn -0.1455 -0.8940 -0.4238 -vn 0.3718 0.1008 0.9228 -vn 0.3716 0.1005 0.9229 -vn 0.3716 0.1006 0.9229 -vn -0.1206 0.3008 -0.9460 -vn 0.5544 0.6749 0.4871 -vn 0.0530 0.1589 -0.9859 -vn 0.0527 0.1589 -0.9859 -vn 0.0526 0.1589 -0.9859 -vn -0.3584 0.0159 -0.9334 -vn -0.3584 0.0162 -0.9334 -vn 0.2383 0.2238 0.9450 -vn 0.2384 0.2246 0.9448 -vn 0.2391 0.2255 0.9444 -vn 0.4573 0.4296 -0.7787 -vn 0.4580 0.4295 -0.7783 -vn 0.4576 0.4296 -0.7785 -vn -0.2055 -0.8432 -0.4967 -vn 0.8071 0.5772 -0.1246 -vn 0.8064 0.5781 -0.1250 -vn 0.8072 0.5770 -0.1244 -vn 0.6606 0.6293 0.4094 -vn 0.6608 0.6291 0.4094 -vn 0.4275 0.8006 -0.4199 -vn 0.4277 0.8004 -0.4201 -vn 0.4276 0.8005 -0.4199 -vn 0.6431 0.6066 0.4674 -vn 0.6438 0.6055 0.4678 -vn 0.6436 0.6059 0.4676 -vn 0.7122 -0.0013 0.7020 -vn 0.7125 -0.0009 0.7017 -vn 0.7121 -0.0011 0.7021 -vn -0.6133 -0.2742 -0.7407 -vn -0.6127 -0.2737 -0.7414 -vn -0.6136 -0.2746 -0.7403 -vn -0.4217 0.9041 0.0698 -vn -0.4217 0.9040 0.0700 -vn -0.4905 -0.8127 0.3146 -vn -0.4907 -0.8125 0.3147 -vn -0.4914 -0.8121 0.3148 -vn 0.2188 -0.5449 -0.8095 -vn 0.2187 -0.5449 -0.8095 -vn -0.4460 0.6742 -0.5887 -vn -0.4447 0.6749 -0.5889 -vn -0.4456 0.6744 -0.5888 -vn 0.3531 0.3950 -0.8481 -vn 0.3534 0.3933 -0.8488 -vn 0.3531 0.3941 -0.8485 -vn -0.7507 -0.0873 -0.6549 -vn -0.7508 -0.0873 -0.6548 -vn -0.7509 -0.0869 -0.6547 -vn -0.3525 -0.9291 0.1123 -vn -0.3526 -0.9290 0.1124 -vn -0.3524 -0.9291 0.1120 -vn 0.7902 -0.5855 0.1811 -vn 0.7901 -0.5855 0.1814 -vn 0.5877 0.7907 -0.1712 -vn 0.5875 0.7909 -0.1711 -vn 0.5877 0.7908 -0.1712 -vn -0.1825 0.8961 0.4046 -vn -0.1827 0.8960 0.4047 -vn -0.1828 0.8961 0.4046 -vn -0.2635 0.5886 -0.7643 -vn -0.2637 0.5885 -0.7643 -vn -0.2632 0.5886 -0.7643 -vn 0.8094 0.3090 0.4994 -vn 0.8089 0.3108 0.4991 -vn 0.8094 0.3097 0.4990 -vn 0.4621 -0.3033 0.8333 -vn 0.4622 -0.3030 0.8334 -vn 0.4622 -0.3032 0.8334 -vn 0.7464 0.2825 0.6026 -vn 0.7458 0.2822 0.6035 -vn 0.7445 0.2829 0.6048 -vn -0.3604 -0.9261 0.1116 -vn -0.3601 -0.9263 0.1109 -vn -0.3592 -0.9268 0.1096 -vn -0.5478 0.6864 -0.4783 -vn -0.5481 0.6866 -0.4776 -vn -0.5480 0.6860 -0.4786 -vn 0.5226 -0.2464 0.8162 -vn 0.5228 -0.2466 0.8160 -vn 0.5227 -0.2463 0.8162 -vn 0.3681 -0.2251 0.9021 -vn 0.3683 -0.2247 0.9022 -vn 0.3683 -0.2249 0.9021 -vn 0.1436 0.8120 -0.5657 -vn -0.4794 -0.6052 0.6355 -vn -0.4798 -0.6050 0.6354 -vn -0.4795 -0.6054 0.6353 -vn 0.7432 -0.6691 0.0041 -vn 0.7428 -0.6695 0.0035 -vn 0.7428 -0.6695 0.0033 -vn 0.3406 -0.6232 0.7040 -vn 0.3403 -0.6234 0.7040 -vn 0.3404 -0.6234 0.7039 -vn 0.2690 -0.9603 -0.0737 -vn 0.2691 -0.9603 -0.0736 -vn 0.4819 -0.4528 0.7502 -vn 0.4821 -0.4529 0.7500 -vn 0.4821 -0.4528 0.7501 -vn -0.1662 -0.1097 -0.9800 -vn -0.1660 -0.1093 -0.9800 -vn -0.1663 -0.1095 -0.9800 -vn -0.2304 -0.9279 0.2931 -vn -0.2302 -0.9280 0.2929 -vn -0.3469 -0.2009 0.9161 -vn -0.3469 -0.2012 0.9161 -vn -0.3470 -0.2010 0.9161 -vn 0.4518 0.4776 -0.7535 -vn 0.4519 0.4776 -0.7534 -vn 0.8905 -0.3345 0.3086 -vn 0.8907 -0.3343 0.3080 -vn 0.8899 -0.3345 0.3100 -vn -0.1011 0.9748 -0.1989 -vn -0.1011 0.9749 -0.1986 -vn -0.1011 0.9748 -0.1988 -vn -0.4921 0.2119 -0.8444 -vn -0.4921 0.2121 -0.8443 -vn -0.4920 0.2122 -0.8443 -vn -0.3255 0.4103 0.8519 -vn 0.8190 0.5003 -0.2810 -vn 0.8189 0.5006 -0.2807 -vn 0.8189 0.5007 -0.2807 -vn -0.1123 -0.8928 -0.4362 -vn -0.1122 -0.8928 -0.4363 -vn -0.1124 -0.8928 -0.4363 -vn 0.7185 -0.6870 -0.1088 -vn 0.7186 -0.6869 -0.1089 -vn 0.7185 -0.6869 -0.1089 -vn -0.2578 -0.0412 -0.9653 -vn -0.2580 -0.0411 -0.9653 -vn -0.2580 -0.0406 -0.9653 -vn -0.2407 -0.1178 -0.9634 -vn -0.2407 -0.1176 -0.9634 -vn -0.1736 -0.8949 -0.4112 -vn -0.1735 -0.8947 -0.4116 -vn -0.7250 0.4683 0.5050 -vn -0.7249 0.4683 0.5051 -vn -0.0386 -0.7373 -0.6745 -vn -0.3046 -0.8136 0.4952 -vn -0.3045 -0.8135 0.4954 -vn -0.3660 -0.7860 -0.4982 -vn -0.3657 -0.7863 -0.4980 -vn -0.3658 -0.7862 -0.4980 -vn 0.3297 0.0005 0.9441 -vn 0.3304 0.0008 0.9438 -vn 0.3290 -0.0002 0.9443 -vn -0.3175 -0.8136 0.4871 -vn -0.3177 -0.8135 0.4871 -vn -0.3179 -0.8135 0.4871 -vn -0.8872 0.1661 -0.4305 -vn -0.8893 0.1623 -0.4276 -vn -0.8879 0.1643 -0.4298 -vn 0.4228 -0.0174 0.9061 -vn 0.4229 -0.0175 0.9060 -vn 0.4233 -0.0177 0.9058 -vn -0.5578 -0.0691 -0.8271 -vn -0.5580 -0.0690 -0.8270 -vn -0.5582 -0.0689 -0.8268 -vn -0.9311 0.2389 -0.2756 -vn -0.9316 0.2392 -0.2736 -vn -0.9317 0.2420 -0.2707 -vn -0.4265 -0.8961 0.1228 -vn -0.4261 -0.8962 0.1235 -vn -0.1059 0.9612 -0.2546 -vn 0.9006 -0.2667 0.3433 -vn -0.4766 -0.8436 0.2473 -vn -0.4763 -0.8437 0.2475 -vn -0.4770 -0.8434 0.2472 -vn 0.6525 -0.5643 -0.5058 -vn 0.6525 -0.5645 -0.5055 -vn 0.6524 -0.5643 -0.5059 -vn -0.4159 0.2647 0.8700 -vn -0.4162 0.2647 0.8699 -vn -0.4161 0.2647 0.8699 -vn 0.5349 -0.6486 -0.5414 -vn 0.5350 -0.6486 -0.5414 -vn -0.2560 0.9392 -0.2287 -vn -0.2568 0.9390 -0.2286 -vn -0.2574 0.9389 -0.2287 -vn -0.5394 0.6696 -0.5106 -vn -0.5399 0.6692 -0.5106 -vn -0.5388 0.6703 -0.5103 -vn 0.0634 -0.8733 0.4830 -vn 0.0633 -0.8733 0.4831 -vn -0.7640 0.3583 0.5366 -vn -0.7640 0.3582 0.5366 -vn -0.7640 0.3583 0.5365 -vn -0.3463 -0.8584 0.3784 -vn -0.3465 -0.8584 0.3784 -vn -0.3458 -0.8586 0.3785 -vn -0.6082 -0.6148 -0.5021 -vn -0.6081 -0.6149 -0.5020 -vn -0.6082 -0.6150 -0.5019 -vn -0.5126 -0.7340 0.4455 -vn -0.5129 -0.7338 0.4455 -vn -0.5130 -0.7337 0.4455 -vn -0.4398 -0.8140 -0.3795 -vn -0.4395 -0.8141 -0.3797 -vn -0.4394 -0.8141 -0.3797 -vn -0.0224 0.5218 0.8528 -vn -0.0225 0.5221 0.8526 -vn -0.0224 0.5221 0.8526 -vn -0.5874 0.1635 0.7926 -vn -0.5877 0.1636 0.7924 -vn -0.5875 0.1634 0.7926 -vn -0.9050 -0.4184 0.0772 -vn -0.9050 -0.4182 0.0775 -vn 0.7740 -0.1148 -0.6227 -vn -0.5127 0.2979 -0.8052 -vn 0.3829 0.8245 0.4165 -vn 0.3828 0.8246 0.4166 -vn 0.3830 0.8244 0.4166 -vn -0.3795 0.7733 -0.5079 -vn -0.3794 0.7737 -0.5074 -vn -0.3792 0.7742 -0.5067 -vn 0.3327 0.9425 0.0308 -vn 0.3322 0.9427 0.0310 -vn 0.3331 0.9424 0.0310 -vn 0.1364 0.1944 -0.9714 -vn 0.1362 0.1946 -0.9714 -vn 0.4255 -0.8965 0.1234 -vn 0.4257 -0.8964 0.1232 -vn -0.8127 0.5226 -0.2577 -vn -0.8127 0.5225 -0.2578 -vn -0.8125 0.5228 -0.2580 -vn 0.7840 -0.5720 -0.2409 -vn -0.7984 -0.4031 0.4473 -vn -0.7978 -0.4035 0.4480 -vn -0.7982 -0.4033 0.4475 -vn -0.8238 0.1292 0.5520 -vn -0.8238 0.1290 0.5520 -vn -0.8238 0.1292 0.5519 -vn -0.4202 0.4045 -0.8123 -vn -0.4201 0.4044 -0.8124 -vn -0.1991 0.7823 -0.5903 -vn -0.1989 0.7822 -0.5904 -vn -0.1993 0.7821 -0.5904 -vn -0.9210 -0.3095 -0.2365 -vn -0.9209 -0.3097 -0.2368 -vn -0.9209 -0.3097 -0.2367 -vn 0.4643 0.6753 0.5731 -vn 0.4642 0.6771 0.5710 -vn 0.4641 0.6751 0.5734 -vn 0.8491 -0.5221 -0.0797 -vn -0.3522 -0.8926 -0.2816 -vn -0.3525 -0.8924 -0.2816 -vn -0.3528 -0.8923 -0.2818 -vn -0.6942 0.2459 -0.6765 -vn -0.6940 0.2465 -0.6765 -vn -0.6941 0.2464 -0.6764 -vn -0.8633 0.4770 0.1650 -vn -0.1274 0.9339 -0.3342 -vn -0.1274 0.9338 -0.3343 -vn -0.1272 0.9343 -0.3330 -vn 0.0914 0.1678 -0.9816 -vn -0.0000 0.0001 1.0000 -vn 0.1779 -0.6518 -0.7372 -vn 0.9684 0.1881 0.1640 -vn -0.8040 -0.3371 -0.4899 -vn -0.8038 -0.3374 -0.4899 -vn -0.8037 -0.3370 -0.4904 -vn 0.8820 0.2257 -0.4137 -vn 0.8820 0.2258 -0.4136 -vn 0.8821 0.2255 -0.4136 -vn 0.2785 -0.9596 -0.0399 -vn 0.2789 -0.9595 -0.0400 -vn 0.2790 -0.9595 -0.0401 -vn 0.0722 0.5815 -0.8103 -vn 0.0718 0.5815 -0.8104 -vn 0.0713 0.5815 -0.8104 -vn -0.5481 -0.0728 -0.8332 -vn -0.5484 -0.0728 -0.8330 -vn -0.5481 -0.0729 -0.8333 -vn -0.5924 -0.2294 -0.7723 -vn -0.5924 -0.2289 -0.7725 -vn -0.5925 -0.2296 -0.7722 -vn -0.0180 0.7454 0.6664 -vn -0.0178 0.7451 0.6667 -vn -0.0174 0.7450 0.6668 -vn -0.2163 -0.3556 0.9092 -vn -0.2165 -0.3554 0.9093 -vn -0.2167 -0.3554 0.9092 -vn -0.4698 -0.8482 -0.2446 -vn -0.4246 -0.4020 -0.8112 -vn -0.4246 -0.4019 -0.8113 -vn -0.4245 -0.4019 -0.8113 -vn 0.8486 0.3163 -0.4240 -vn 0.8484 0.3166 -0.4243 -vn 0.8488 0.3161 -0.4238 -vn 0.8496 -0.0728 0.5223 -vn 0.8493 -0.0733 0.5228 -vn 0.8499 -0.0723 0.5219 -vn 0.7591 0.5961 0.2615 -vn 0.7594 0.5959 0.2612 -vn 0.7593 0.5961 0.2610 -vn 0.3933 -0.9188 0.0331 -vn 0.3933 -0.9188 0.0332 -vn 0.3932 -0.9189 0.0331 -vn 0.1612 -0.9848 0.0646 -vn 0.1615 -0.9847 0.0655 -vn 0.1621 -0.9846 0.0658 -vn 0.1317 0.9083 -0.3971 -vn 0.1316 0.9083 -0.3971 -vn 0.3788 0.9153 -0.1371 -vn 0.3791 0.9151 -0.1373 -vn 0.2445 -0.9303 0.2736 -vn 0.5262 -0.7341 -0.4291 -vn 0.5263 -0.7342 -0.4290 -vn 0.5264 -0.7341 -0.4289 -vn -0.2754 -0.9207 -0.2766 -vn -0.2754 -0.9206 -0.2767 -vn -0.2754 -0.9207 -0.2767 -vn 0.8939 -0.0357 0.4468 -vn 0.8939 -0.0355 0.4468 -vn -0.7332 0.1935 0.6519 -vn -0.7332 0.1933 0.6520 -vn 0.0888 0.8260 -0.5567 -vn 0.0886 0.8259 -0.5568 -vn 0.0876 0.8261 -0.5567 -vn 0.2535 0.9302 -0.2656 -vn 0.2536 0.9302 -0.2654 -vn 0.2537 0.9300 -0.2660 -vn -0.8756 0.2770 0.3957 -vn -0.8757 0.2768 0.3957 -vn -0.8757 0.2766 0.3957 -vn -0.9456 0.1499 0.2888 -vn -0.9455 0.1497 0.2890 -vn -0.9456 0.1499 0.2886 -vn 0.7245 -0.2140 -0.6552 -vn -0.2603 0.8524 -0.4535 -vn -0.2605 0.8524 -0.4533 -vn -0.2602 0.8524 -0.4537 -vn 0.0027 0.7259 0.6878 -vn 0.0023 0.7258 0.6879 -vn 0.3965 0.8344 0.3829 -vn 0.3967 0.8343 0.3829 -vn 0.5990 -0.5387 -0.5925 -vn 0.5980 -0.5385 -0.5937 -vn 0.5984 -0.5387 -0.5930 -vn -0.6735 0.2738 -0.6866 -vn 0.6483 -0.7362 0.1943 -vn 0.1043 -0.9932 -0.0526 -vn 0.1048 -0.9931 -0.0521 -vn 0.1047 -0.9932 -0.0517 -vn 0.0853 0.9517 0.2950 -vn 0.0859 0.9516 0.2950 -vn -0.0911 -0.2274 -0.9695 -vn -0.0907 -0.2278 -0.9695 -vn -0.0912 -0.2272 -0.9696 -vn 0.0526 -0.9978 0.0411 -vn 0.0527 -0.9978 0.0410 -vn 0.0528 -0.9978 0.0409 -vn 0.2080 -0.9771 -0.0445 -vn 0.2084 -0.9770 -0.0450 -vn 0.2081 -0.9771 -0.0447 -vn 0.8014 0.5781 0.1533 -vn 0.8015 0.5781 0.1529 -vn -0.0628 -0.9831 0.1719 -vn -0.0627 -0.9831 0.1717 -vn -0.3018 -0.9350 -0.1863 -vn -0.3016 -0.9351 -0.1862 -vn 0.8506 0.4651 -0.2454 -vn 0.8505 0.4651 -0.2458 -vn 0.8505 0.4651 -0.2455 -vn 0.2060 -0.4942 -0.8446 -vn 0.2063 -0.4936 -0.8449 -vn 0.2062 -0.4938 -0.8448 -vn 0.4547 0.6838 -0.5707 -vn 0.7015 0.6859 0.1935 -vn 0.7016 0.6858 0.1934 -vn 0.7017 0.6858 0.1933 -vn 0.1370 -0.9898 -0.0389 -vn -0.4671 0.8685 0.1662 -vn -0.1208 -0.9853 -0.1211 -vn 0.1321 0.5067 0.8519 -vn 0.8375 -0.5353 0.1094 -vn 0.0865 0.6975 0.7113 -vn 0.0872 0.6980 0.7108 -vn 0.0859 0.6966 0.7123 -vn -0.8105 0.2939 -0.5067 -vn -0.8105 0.2938 -0.5066 -vn -0.8105 0.2940 -0.5067 -vn -0.1194 -0.9926 0.0223 -vn -0.1191 -0.9926 0.0223 -vn -0.1193 -0.9926 0.0223 -vn 0.6469 0.1806 -0.7408 -vn -0.0873 -0.9868 0.1364 -vn 0.1295 -0.9837 0.1246 -vn 0.1295 -0.9837 0.1245 -vn 0.1297 -0.9837 0.1248 -vn 0.0581 -0.9973 -0.0458 -vn -0.2807 -0.9506 -0.1325 -vn -0.2809 -0.9505 -0.1329 -vn -0.7205 -0.4132 -0.5570 -vn -0.7206 -0.4132 -0.5568 -vn -0.7206 -0.4130 -0.5569 -vn -0.6024 -0.5248 -0.6014 -vn -0.6030 -0.5242 -0.6013 -vn -0.6026 -0.5246 -0.6014 -vn -0.4530 -0.3665 -0.8127 -vn -0.4529 -0.3665 -0.8128 -vn -0.4527 -0.3665 -0.8128 -vn -0.5649 -0.0932 0.8199 -vn -0.5650 -0.0933 0.8198 -vn 0.3899 0.5442 -0.7428 -vn 0.3893 0.5444 -0.7430 -vn -0.1691 -0.9646 -0.2025 -vn -0.1693 -0.9645 -0.2027 -vn -0.1693 -0.9645 -0.2026 -vn 0.8024 0.5927 0.0702 -vn 0.8023 0.5928 0.0701 -vn 0.8023 0.5928 0.0700 -vn 0.2587 -0.9605 0.1023 -vn 0.2589 -0.9605 0.1024 -vn 0.9614 0.0030 -0.2752 -vn 0.9614 0.0030 -0.2751 -vn 0.9614 0.0028 -0.2753 -vn -0.7085 -0.4649 -0.5309 -vn -0.7084 -0.4652 -0.5308 -vn -0.2423 -0.0450 -0.9692 -vn -0.2425 -0.0452 -0.9691 -vn -0.2424 -0.0450 -0.9691 -vn -0.5570 -0.1869 -0.8092 -vn -0.5570 -0.1867 -0.8092 -vn -0.5570 -0.1868 -0.8092 -vn 0.2922 0.8209 -0.4907 -vn 0.2922 0.8208 -0.4908 -vn 0.2922 0.8207 -0.4910 -vn -0.1529 -0.2719 0.9501 -vn -0.1544 -0.2714 0.9500 -vn -0.1521 -0.2726 0.9500 -vn -0.1933 -0.9792 0.0613 -vn -0.1932 -0.9792 0.0612 -vn -0.3091 0.3398 0.8883 -vn -0.3093 0.3392 0.8884 -vn -0.3089 0.3403 0.8881 -vn 0.4752 0.8702 0.1300 -vn 0.4752 0.8703 0.1298 -vn 0.2907 -0.9551 0.0572 -vn 0.2904 -0.9552 0.0573 -vn 0.2909 -0.9551 0.0570 -vn 0.7706 0.5534 -0.3160 -vn 0.7709 0.5530 -0.3161 -vn 0.7705 0.5538 -0.3157 -vn -0.3208 -0.3833 -0.8661 -vn -0.3209 -0.3834 -0.8660 -vn -0.3207 -0.3831 -0.8662 -vn 0.3504 -0.9364 -0.0183 -vn 0.3504 -0.9364 -0.0182 -vn 0.3504 -0.9364 -0.0181 -vn 0.3389 -0.0324 -0.9403 -vn 0.3395 -0.0340 -0.9400 -vn 0.3383 -0.0366 -0.9403 -vn 0.3328 -0.9418 -0.0480 -vn 0.3326 -0.9418 -0.0479 -vn 0.3330 -0.9417 -0.0480 -vn 0.2129 0.9701 -0.1164 -vn -0.2051 -0.9733 -0.1028 -vn 0.2855 -0.9547 0.0835 -vn 0.2854 -0.9548 0.0835 -vn 0.2851 -0.9549 0.0833 -vn -0.3171 -0.9458 -0.0702 -vn -0.3171 -0.9458 -0.0707 -vn -0.3170 -0.9458 -0.0709 -vn 0.9469 0.1870 -0.2614 -vn -0.9510 -0.2448 0.1888 -vn -0.9510 -0.2447 0.1889 -vn -0.9510 -0.2447 0.1888 -vn -0.3397 -0.9342 -0.1085 -vn -0.3396 -0.9343 -0.1085 -vn -0.5330 0.4001 -0.7456 -vn -0.5331 0.3995 -0.7458 -vn -0.3736 0.4837 0.7915 -vn -0.3732 0.4836 0.7917 -vn -0.1510 -0.9793 0.1348 -vn 0.2696 -0.7539 -0.5991 -vn 0.2696 -0.7538 -0.5993 -vn 0.2699 -0.7535 -0.5995 -vn -0.1967 -0.9715 0.1320 -vn -0.1969 -0.9715 0.1318 -vn -0.1966 -0.9715 0.1323 -vn 0.2803 0.9387 0.2008 -vn 0.2804 0.9387 0.2006 -vn 0.2805 0.9387 0.2004 -vn 0.4829 0.5297 0.6973 -vn 0.4840 0.5295 0.6967 -vn 0.4822 0.5296 0.6978 -vn 0.3622 -0.9317 0.0276 -vn 0.3622 -0.9317 0.0275 -vn 0.3621 -0.9317 0.0277 -vn 0.8019 -0.3415 0.4903 -vn 0.8018 -0.3415 0.4904 -vn 0.8019 -0.3415 0.4902 -vn -0.9460 -0.3153 -0.0747 -vn -0.9461 -0.3153 -0.0745 -vn 0.0277 0.1930 0.9808 -vn 0.0276 0.1929 0.9808 -vn 0.0958 0.8105 0.5778 -vn 0.0959 0.8107 0.5776 -vn 0.0958 0.8106 0.5777 -vn 0.6576 -0.2758 0.7011 -vn 0.6576 -0.2761 0.7009 -vn 0.6575 -0.2762 0.7010 -vn 0.0227 -0.9997 -0.0113 -vn 0.0231 -0.9997 -0.0111 -vn 0.0230 -0.9997 -0.0112 -vn -0.2759 -0.9232 -0.2675 -vn -0.2768 -0.9231 -0.2671 -vn -0.2779 -0.9228 -0.2669 -vn -0.2733 -0.9223 -0.2732 -vn -0.2734 -0.9223 -0.2732 -vn 0.9411 0.2674 0.2068 -vn 0.9412 0.2672 0.2067 -vn 0.9412 0.2672 0.2066 -vn -0.8213 0.2737 0.5006 -vn -0.8213 0.2738 0.5005 -vn -0.8212 0.2739 0.5006 -vn 0.5047 -0.8425 0.1882 -vn 0.5012 -0.8447 0.1878 -vn 0.5025 -0.8441 0.1873 -vn -0.6902 0.0166 0.7234 -vn -0.6918 0.0159 0.7219 -vn -0.6912 0.0159 0.7225 -vn 0.2507 0.7517 -0.6100 -vn 0.2506 0.7516 -0.6102 -vn 0.2507 0.7519 -0.6098 -vn -0.2903 -0.9522 -0.0948 -vn -0.2907 -0.9520 -0.0958 -vn -0.2903 -0.9520 -0.0969 -vn -0.0049 -0.4811 0.8766 -vn 0.0726 -0.9934 0.0887 -vn 0.0690 -0.9825 -0.1730 -vn 0.0692 -0.9825 -0.1730 -vn 0.0689 -0.9826 -0.1726 -vn 0.0065 0.0070 1.0000 -vn -0.0286 -0.8093 -0.5867 -vn -0.0284 -0.8095 -0.5865 -vn -0.0277 -0.8093 -0.5868 -vn 0.6221 0.7739 0.1190 -vn 0.2564 0.7517 0.6076 -vn 0.2568 0.7518 0.6074 -vn 0.2559 0.7517 0.6079 -vn 0.2657 -0.8673 -0.4209 -vn 0.2656 -0.8675 -0.4206 -vn 0.5702 -0.7969 -0.1996 -vn 0.5701 -0.7970 -0.1995 -vn 0.5702 -0.7968 -0.1998 -vn -0.3045 -0.2583 0.9168 -vn 0.1407 0.0224 0.9898 -vn 0.1405 0.0221 0.9898 -vn 0.0375 0.5182 0.8545 -vn 0.0375 0.5185 0.8543 -vn 0.0373 0.5179 0.8546 -vn 0.1120 0.6330 -0.7660 -vn -0.0399 0.9675 0.2496 -vn -0.0398 0.9675 0.2496 -vn -0.0397 0.9675 0.2496 -vn 0.1447 0.8022 -0.5793 -vn 0.1444 0.8024 -0.5790 -vn 0.1442 0.8026 -0.5788 -vn 0.4270 -0.8300 -0.3588 -vn 0.4269 -0.8301 -0.3588 -vn 0.4269 -0.8300 -0.3589 -vn 0.1226 0.5468 -0.8282 -vn 0.4954 0.8536 -0.1613 -vn 0.4954 0.8535 -0.1614 -vn 0.4954 0.8535 -0.1615 -vn 0.0580 -0.9368 -0.3450 -vn 0.0579 -0.9368 -0.3450 -vn 0.0572 -0.9368 -0.3452 -vn -0.7705 0.2118 0.6012 -vn -0.7707 0.2117 0.6010 -vn -0.1564 -0.8607 -0.4846 -vn -0.1559 -0.8607 -0.4847 -vn 0.2850 0.2137 -0.9344 -vn 0.0531 -0.8731 -0.4846 -vn 0.0529 -0.8730 -0.4849 -vn -0.9509 -0.2970 0.0866 -vn -0.9508 -0.2975 0.0870 -vn -0.9509 -0.2972 0.0868 -vn 0.2162 0.5631 0.7976 -vn 0.2161 0.5629 0.7978 -vn 0.2163 0.5630 0.7977 -vn -0.0032 -0.8870 -0.4617 -vn -0.1338 0.9478 0.2894 -vn -0.1335 0.9480 0.2889 -vn -0.1332 0.9481 0.2887 -vn 0.2599 0.8142 -0.5191 -vn 0.2585 0.8136 -0.5208 -vn 0.2596 0.8137 -0.5200 -vn -0.8097 0.5856 0.0382 -vn -0.8090 0.5865 0.0393 -vn -0.8094 0.5860 0.0388 -vn 0.7825 -0.5514 -0.2892 -vn 0.7830 -0.5507 -0.2893 -vn 0.7821 -0.5518 -0.2896 -vn -0.9005 0.4239 -0.0971 -vn -0.9007 0.4237 -0.0965 -vn -0.9004 0.4241 -0.0973 -vn 0.0149 -0.6700 -0.7423 -vn 0.0158 -0.6696 -0.7426 -vn 0.0171 -0.6681 -0.7439 -vn -0.2465 -0.3209 -0.9145 -vn -0.2467 -0.3209 -0.9144 -vn -0.4920 -0.4253 -0.7597 -vn -0.4920 -0.4253 -0.7596 -vn -0.4922 -0.4255 -0.7594 -vn 0.1259 -0.8948 -0.4283 -vn 0.1272 -0.8948 -0.4279 -vn 0.1265 -0.8948 -0.4282 -vn -0.7979 0.5402 -0.2675 -vn -0.7973 0.5411 -0.2674 -vn -0.7979 0.5403 -0.2674 -vn -0.1424 0.3922 0.9088 -vn -0.1421 0.3922 0.9088 -vn 0.8298 0.5211 0.1995 -vn 0.8299 0.5212 0.1990 -vn 0.8299 0.5210 0.1996 -vn -0.9614 -0.0148 -0.2748 -vn -0.9614 -0.0152 -0.2747 -vn -0.9616 -0.0156 -0.2742 -vn -0.9744 -0.1855 0.1267 -vn -0.9749 -0.1844 0.1250 -vn -0.9746 -0.1852 0.1259 -vn -0.1676 0.4352 -0.8846 -vn -0.1675 0.4352 -0.8846 -vn 0.8020 0.5886 -0.1014 -vn 0.8020 0.5887 -0.1013 -vn 0.8022 0.5884 -0.1015 -vn -0.2249 0.8923 -0.3915 -vn -0.4004 -0.9137 0.0696 -vn -0.3993 -0.9142 0.0691 -vn -0.3999 -0.9140 0.0692 -vn -0.5401 0.2612 0.8001 -vn -0.5403 0.2613 0.7999 -vn 0.3990 0.5969 -0.6961 -vn 0.3991 0.5971 -0.6958 -vn 0.3994 0.5973 -0.6955 -vn 0.8369 0.3217 -0.4428 -vn 0.8380 0.3196 -0.4424 -vn 0.8375 0.3203 -0.4427 -vn 0.6514 0.7516 -0.1037 -vn -0.5682 -0.8225 -0.0245 -vn -0.5684 -0.8224 -0.0241 -vn 0.4066 0.5637 -0.7189 -vn 0.4065 0.5649 -0.7181 -vn 0.4065 0.5642 -0.7187 -vn -0.1319 -0.5306 -0.8373 -vn -0.1316 -0.5302 -0.8376 -vn -0.1125 -0.7365 0.6671 -vn -0.1125 -0.7369 0.6666 -vn -0.1128 -0.7368 0.6666 -vn 0.0655 0.9741 -0.2164 -vn 0.0662 0.9740 -0.2167 -vn 0.0659 0.9741 -0.2165 -vn 0.2555 -0.5811 0.7727 -vn 0.2550 -0.5813 0.7727 -vn 0.2542 -0.5815 0.7728 -vn 0.4736 -0.4934 0.7296 -vn 0.4735 -0.4933 0.7297 -vn 0.4734 -0.4930 0.7300 -vn -0.7348 -0.6777 -0.0278 -vn 0.2123 0.9765 -0.0376 -vn 0.1546 0.2400 -0.9584 -vn 0.4984 0.8638 0.0740 -vn 0.4988 0.8635 0.0739 -vn 0.4985 0.8637 0.0739 -vn 0.3643 0.7719 -0.5211 -vn 0.3647 0.7717 -0.5210 -vn 0.3650 0.7716 -0.5209 -vn 0.6154 0.7782 -0.1253 -vn 0.6151 0.7784 -0.1255 -vn 0.6154 0.7782 -0.1252 -vn -0.1009 0.7950 -0.5981 -vn -0.0683 -0.1598 -0.9848 -vn -0.0680 -0.1599 -0.9848 -vn -0.0681 -0.1599 -0.9848 -vn -0.9703 -0.2414 -0.0143 -vn -0.9703 -0.2414 -0.0144 -vn -0.4378 -0.0867 0.8949 -vn -0.4384 -0.0866 0.8946 -vn 0.6829 -0.4565 -0.5703 -vn -0.2859 0.5921 0.7535 -vn -0.2859 0.5920 0.7535 -vn -0.2858 0.5921 0.7535 -vn 0.6149 -0.7806 0.1119 -vn 0.6147 -0.7808 0.1120 -vn 0.6151 -0.7805 0.1116 -vn -0.4409 0.3124 0.8414 -vn -0.4411 0.3123 0.8414 -vn -0.4411 0.3121 0.8415 -vn -0.4577 -0.3853 0.8013 -vn -0.9544 0.2820 -0.0976 -vn -0.9545 0.2820 -0.0975 -vn 0.1575 0.9864 -0.0474 -vn -0.7422 0.6307 0.2267 -vn -0.7413 0.6315 0.2273 -vn -0.7412 0.6316 0.2273 -vn -0.0143 -0.2908 0.9567 -vn -0.0150 -0.2911 0.9566 -vn -0.0146 -0.2909 0.9566 -vn 0.7130 0.5885 0.3812 -vn 0.7130 0.5883 0.3814 -vn 0.7130 0.5883 0.3816 -vn -0.6215 0.0334 -0.7827 -vn -0.6214 0.0325 -0.7828 -vn -0.6215 0.0331 -0.7827 -vn -0.6543 -0.7300 -0.1975 -vn -0.6546 -0.7298 -0.1972 -vn -0.6538 -0.7303 -0.1979 -vn 0.4684 -0.6586 0.5889 -vn 0.4698 -0.6591 0.5873 -vn 0.4702 -0.6590 0.5870 -vn -0.9071 0.4107 0.0926 -vn -0.9070 0.4108 0.0926 -vn -0.9071 0.4105 0.0926 -vn 0.9415 0.2323 -0.2441 -vn 0.9415 0.2322 -0.2443 -vn 0.9415 0.2323 -0.2442 -vn -0.0840 -0.6259 0.7754 -vn -0.0842 -0.6261 0.7752 -vn -0.0839 -0.6255 0.7757 -vn -0.5414 -0.5179 -0.6623 -vn -0.5412 -0.5182 -0.6623 -vn -0.5413 -0.5179 -0.6624 -vn -0.6321 -0.7439 -0.2171 -vn -0.6323 -0.7437 -0.2171 -vn -0.6323 -0.7437 -0.2170 -vn -0.8014 -0.1283 -0.5842 -vn 0.0947 0.9345 0.3430 -vn 0.0962 0.9340 0.3441 -vn 0.0937 0.9347 0.3429 -vn 0.8035 -0.0930 0.5880 -vn 0.8035 -0.0929 0.5880 -vn 0.8036 -0.0932 0.5879 -vn 0.2827 -0.9206 -0.2694 -vn 0.2828 -0.9205 -0.2696 -vn 0.2826 -0.9207 -0.2693 -vn 0.8427 0.2574 0.4729 -vn 0.8428 0.2570 0.4729 -vn 0.8426 0.2574 0.4731 -vn 0.0023 -0.7269 -0.6867 -vn 0.0014 -0.7271 -0.6865 -vn 0.0017 -0.7270 -0.6866 -vn 0.2730 0.9581 -0.0864 -vn 0.2729 0.9582 -0.0863 -vn -0.4625 -0.6667 0.5844 -vn -0.4624 -0.6666 0.5847 -vn 0.2318 0.9109 0.3413 -vn 0.2316 0.9110 0.3414 -vn 0.2314 0.9110 0.3415 -vn 0.8887 0.2664 0.3732 -vn 0.8884 0.2666 0.3737 -vn 0.8881 0.2668 0.3743 -vn -0.9206 0.2344 0.3123 -vn 0.7992 0.5653 0.2043 -vn 0.7991 0.5654 0.2044 -vn -0.7083 -0.1692 0.6853 -vn -0.7084 -0.1691 0.6853 -vn -0.9432 -0.0940 -0.3185 -vn -0.9432 -0.0940 -0.3187 -vn -0.9433 -0.0940 -0.3184 -vn 0.5548 -0.4978 -0.6666 -vn 0.4657 0.0175 -0.8848 -vn -0.3800 0.0434 0.9240 -vn -0.3802 0.0445 0.9238 -vn -0.3802 0.0448 0.9238 -vn -0.6007 -0.2302 0.7656 -vn -0.6009 -0.2302 0.7655 -vn 0.2997 -0.0122 -0.9540 -vn 0.2999 -0.0121 -0.9539 -vn -0.6807 0.2019 0.7042 -vn -0.6802 0.2015 0.7048 -vn -0.6812 0.2021 0.7037 -vn 0.1996 0.9332 -0.2987 -vn -0.9726 0.1039 -0.2078 -vn -0.9727 0.1038 -0.2077 -vn -0.7438 -0.5611 -0.3633 -vn -0.7448 -0.5599 -0.3630 -vn -0.7442 -0.5605 -0.3633 -vn -0.4993 -0.4222 -0.7566 -vn -0.4997 -0.4225 -0.7562 -vn -0.4995 -0.4224 -0.7564 -vn -0.8866 -0.4080 0.2177 -vn -0.8864 -0.4088 0.2173 -vn -0.8867 -0.4076 0.2181 -vn -0.0670 0.9974 -0.0263 -vn -0.0673 0.9974 -0.0260 -vn 0.5330 -0.7034 -0.4703 -vn 0.5331 -0.7033 -0.4703 -vn 0.5330 -0.7033 -0.4704 -vn -0.3558 0.5387 0.7637 -vn -0.3561 0.5382 0.7639 -vn -0.3561 0.5381 0.7639 -vn -0.2253 -0.9742 -0.0138 -vn 0.6062 0.4677 0.6433 -vn 0.6061 0.4677 0.6434 -vn 0.6063 0.4676 0.6432 -vn -0.7174 0.6553 0.2367 -vn -0.7167 0.6563 0.2358 -vn -0.7170 0.6559 0.2360 -vn -0.2521 -0.9495 0.1869 -vn -0.2522 -0.9494 0.1873 -vn -0.2522 -0.9494 0.1872 -vn 0.5144 -0.6997 -0.4958 -vn 0.5146 -0.6997 -0.4955 -vn 0.5147 -0.6997 -0.4955 -vn -0.2431 0.1581 -0.9570 -vn -0.2430 0.1585 -0.9570 -vn -0.2433 0.1585 -0.9569 -vn -0.5105 -0.8381 0.1924 -vn -0.5108 -0.8379 0.1923 -vn 0.1253 -0.2536 0.9592 -vn 0.1248 -0.2536 0.9592 -vn 0.1252 -0.2536 0.9592 -vn -0.3463 -0.9380 0.0143 -vn -0.3467 -0.9379 0.0145 -vn 0.5911 -0.8009 -0.0958 -vn 0.5913 -0.8008 -0.0957 -vn 0.5911 -0.8009 -0.0959 -vn 0.7259 -0.6526 -0.2171 -vn 0.7259 -0.6527 -0.2168 -vn 0.7260 -0.6527 -0.2166 -vn -0.1680 0.1639 0.9721 -vn -0.1670 0.1636 0.9723 -vn -0.1675 0.1639 0.9722 -vn 0.6118 -0.7786 -0.1392 -vn 0.6713 -0.7085 -0.2177 -vn 0.6713 -0.7085 -0.2178 -vn -0.4740 -0.8805 -0.0080 -vn -0.4590 -0.8878 0.0341 -vn 0.3922 0.7021 -0.5943 -vn 0.3918 0.7023 -0.5944 -vn 0.3925 0.7022 -0.5940 -vn 0.5502 -0.7590 -0.3482 -vn 0.5499 -0.7590 -0.3486 -vn 0.5543 -0.7895 0.2636 -vn 0.5542 -0.7895 0.2636 -vn 0.5540 -0.7897 0.2635 -vn -0.1071 -0.3402 0.9342 -vn 0.8817 -0.3777 0.2827 -vn 0.8817 -0.3778 0.2826 -vn -0.9548 0.2719 -0.1199 -vn -0.9549 0.2718 -0.1198 -vn -0.9548 0.2721 -0.1200 -vn 0.5497 -0.2798 0.7871 -vn -0.2619 -0.6730 0.6917 -vn -0.9666 0.2329 -0.1073 -vn -0.9668 0.2321 -0.1072 -vn -0.9664 0.2335 -0.1076 -vn 0.1434 -0.5768 -0.8042 -vn 0.1436 -0.5768 -0.8042 -vn -0.0754 -0.8518 -0.5184 -vn -0.0755 -0.8517 -0.5185 -vn 0.1871 -0.9759 -0.1120 -vn 0.1876 -0.9758 -0.1121 -vn 0.1875 -0.9758 -0.1122 -vn 0.7882 0.2604 -0.5575 -vn 0.7883 0.2604 -0.5575 -vn 0.8403 -0.5355 0.0846 -vn 0.8402 -0.5357 0.0846 -vn 0.0591 0.9950 -0.0802 -vn 0.0590 0.9950 -0.0807 -vn 0.0590 0.9950 -0.0805 -vn 0.5784 -0.8111 0.0867 -vn 0.5784 -0.8111 0.0865 -vn 0.5784 -0.8111 0.0868 -vn -0.7007 0.6842 0.2024 -vn -0.7007 0.6841 0.2025 -vn 0.8486 -0.1721 -0.5003 -vn 0.8483 -0.1724 -0.5006 -vn 0.8484 -0.1724 -0.5006 -vn -0.6287 -0.2122 -0.7481 -vn -0.6286 -0.2123 -0.7482 -vn -0.6284 -0.2123 -0.7483 -vn 0.2907 0.7111 0.6402 -vn 0.2906 0.7106 0.6408 -vn 0.2905 0.7108 0.6406 -vn -0.2581 -0.8936 -0.3671 -vn -0.2582 -0.8937 -0.3669 -vn 0.8666 -0.1887 0.4620 -vn 0.8666 -0.1884 0.4621 -vn 0.8666 -0.1885 0.4621 -vn 0.3406 0.9127 0.2256 -vn 0.3411 0.9124 0.2260 -vn 0.3400 0.9131 0.2251 -vn -0.5822 0.2550 0.7720 -vn -0.5820 0.2552 0.7721 -vn -0.0629 -0.9809 0.1839 -vn -0.0627 -0.9809 0.1839 -vn -0.0627 -0.9810 0.1839 -vn -0.6383 0.4774 0.6039 -vn -0.6383 0.4773 0.6040 -vn 0.3427 0.7701 -0.5381 -vn 0.3433 0.7701 -0.5377 -vn 0.3425 0.7700 -0.5383 -vn -0.3813 -0.8814 -0.2788 -vn -0.3813 -0.8812 -0.2794 -vn -0.3815 -0.8810 -0.2799 -vn -0.0731 -0.9956 0.0580 -vn -0.0731 -0.9956 0.0583 -vn -0.0733 -0.9956 0.0580 -vn -0.0972 -0.9947 0.0325 -vn -0.8458 0.4847 0.2227 -vn -0.8460 0.4841 0.2232 -vn -0.8461 0.4841 0.2233 -vn -0.9222 0.1697 -0.3475 -vn -0.9222 0.1695 -0.3477 -vn 0.1610 -0.9781 0.1318 -vn 0.1067 0.9892 0.1009 -vn 0.5951 0.7596 0.2624 -vn 0.5949 0.7597 0.2625 -vn 0.0530 -0.9981 0.0300 -vn -0.1129 -0.9891 -0.0944 -vn -0.1130 -0.9891 -0.0941 -vn 0.0589 -0.9915 0.1164 -vn 0.0591 -0.9914 0.1164 -vn 0.0593 -0.9914 0.1166 -vn 0.8927 0.4377 0.1077 -vn 0.8920 0.4392 0.1068 -vn 0.8928 0.4372 0.1084 -vn -0.7944 -0.4160 -0.4426 -vn -0.7946 -0.4158 -0.4425 -vn 0.7438 -0.5131 0.4285 -vn 0.7439 -0.5130 0.4283 -vn 0.7438 -0.5130 0.4284 -vn -0.2008 -0.9796 -0.0105 -vn -0.2007 -0.9796 -0.0104 -vn -0.7432 0.5210 -0.4197 -vn -0.7431 0.5212 -0.4198 -vn -0.7432 0.5209 -0.4199 -vn 0.2965 -0.9482 0.1137 -vn 0.2964 -0.9482 0.1139 -vn 0.2966 -0.9483 0.1134 -vn 0.2215 -0.9294 0.2954 -vn 0.6683 0.5331 0.5188 -vn 0.6693 0.5325 0.5182 -vn 0.6686 0.5329 0.5187 -vn 0.3610 -0.9301 0.0684 -vn 0.3607 -0.9302 0.0682 -vn 0.3611 -0.9300 0.0687 -vn -0.2003 -0.9756 -0.0901 -vn -0.2002 -0.9756 -0.0902 -vn 0.3371 -0.9204 0.1981 -vn 0.3370 -0.9204 0.1981 -vn 0.2189 -0.9740 0.0589 -vn 0.2185 -0.9741 0.0584 -vn 0.2182 -0.9742 0.0575 -vn 0.2469 -0.9678 0.0493 -vn 0.2470 -0.9677 0.0499 -vn 0.2466 -0.9679 0.0490 -vn -0.0701 0.0287 0.9971 -vn -0.0700 0.0288 0.9971 -vn -0.0701 0.0285 0.9971 -vn 0.7584 -0.5257 0.3853 -vn 0.7583 -0.5258 0.3853 -vn 0.3128 -0.9051 0.2878 -vn 0.3130 -0.9051 0.2878 -vn 0.3128 -0.9052 0.2877 -vn -0.6761 0.3415 -0.6529 -vn -0.2268 0.9714 -0.0703 -vn -0.2251 0.9719 -0.0695 -vn -0.2262 0.9715 -0.0702 -vn -0.6765 0.0585 -0.7342 -vn -0.6767 0.0586 -0.7339 -vn 0.6554 -0.4274 0.6227 -vn 0.6552 -0.4274 0.6229 -vn 0.6551 -0.4274 0.6230 -vn 0.1234 -0.7730 -0.6222 -vn 0.0383 0.9154 -0.4008 -vn 0.0377 0.9152 -0.4013 -vn 0.0374 0.9152 -0.4012 -vn -0.2746 -0.9318 -0.2374 -vn -0.2745 -0.9318 -0.2375 -vn -0.2747 -0.9318 -0.2373 -vn 0.4650 -0.1772 -0.8674 -vn 0.4651 -0.1772 -0.8673 -vn -0.3281 -0.9445 -0.0166 -vn -0.3286 -0.9443 -0.0164 -vn -0.3274 -0.9447 -0.0168 -vn 0.1273 0.9561 -0.2640 -vn 0.0992 -0.9922 -0.0761 -vn 0.0990 -0.9922 -0.0763 -vn 0.0993 -0.9922 -0.0759 -vn 0.1743 -0.9774 -0.1196 -vn 0.1745 -0.9774 -0.1195 -vn 0.7862 0.2375 0.5705 -vn 0.7863 0.2375 0.5703 -vn 0.7861 0.2368 0.5709 -vn 0.7280 0.3701 0.5770 -vn 0.7281 0.3701 0.5770 -vn 0.7281 0.3702 0.5770 -vn -0.0795 0.8176 -0.5703 -vn -0.0798 0.8185 -0.5689 -vn -0.0795 0.8181 -0.5695 -vn 0.1849 -0.9788 0.0883 -vn 0.8892 -0.1051 0.4453 -vn -0.1894 -0.9757 -0.1105 -vn -0.1892 -0.9757 -0.1108 -vn -0.1893 -0.9757 -0.1107 -vn 0.1328 -0.9821 0.1338 -vn -0.4277 -0.8984 0.0998 -vn -0.4274 -0.8985 0.1002 -vn 0.7107 -0.4049 -0.5753 -vn 0.7107 -0.4050 -0.5752 -vn -0.3027 -0.9322 -0.1986 -vn -0.3029 -0.9320 -0.1988 -vn -0.3028 -0.9321 -0.1989 -vn -0.3563 -0.8583 -0.3692 -vn -0.3559 -0.8585 -0.3691 -vn -0.3562 -0.8584 -0.3692 -vn -0.9446 0.2174 -0.2459 -vn -0.9445 0.2177 -0.2462 -vn -0.9446 0.2175 -0.2460 -vn -0.3705 -0.9100 -0.1861 -vn -0.3706 -0.9099 -0.1863 -vn 0.1350 -0.9166 0.3764 -vn 0.1347 -0.9168 0.3759 -vn 0.1357 -0.9164 0.3765 -vn 0.6683 -0.6195 0.4118 -vn 0.6686 -0.6193 0.4117 -vn 0.8335 0.2130 0.5098 -vn 0.8335 0.2133 0.5098 -vn 0.8332 0.2135 0.5101 -vn -0.5222 0.1341 0.8422 -vn -0.5223 0.1341 0.8422 -vn -0.9182 0.3865 -0.0866 -vn -0.9179 0.3874 -0.0861 -vn -0.9180 0.3870 -0.0864 -vn 0.7620 -0.5370 0.3619 -vn 0.7640 -0.5359 0.3594 -vn 0.7626 -0.5369 0.3607 -vn -0.3239 -0.4001 0.8573 -vn -0.3238 -0.4004 0.8572 -vn -0.3240 -0.4003 0.8572 -vn -0.3629 -0.8571 -0.3656 -vn -0.3629 -0.8572 -0.3655 -vn -0.6961 -0.1858 -0.6935 -vn -0.6974 -0.1831 -0.6929 -vn -0.6941 -0.1875 -0.6950 -vn -0.6940 -0.4865 -0.5307 -vn -0.6937 -0.4866 -0.5310 -vn -0.6939 -0.4865 -0.5308 -vn 0.9372 0.3412 0.0727 -vn 0.9372 0.3413 0.0727 -vn 0.1833 -0.8885 0.4207 -vn 0.1831 -0.8884 0.4210 -vn 0.4294 0.0965 -0.8980 -vn 0.4296 0.0961 -0.8979 -vn 0.4294 0.0963 -0.8980 -vn 0.5774 -0.1835 -0.7956 -vn 0.5769 -0.1836 -0.7959 -vn 0.5772 -0.1835 -0.7957 -vn -0.3512 0.3349 -0.8743 -vn -0.3513 0.3348 -0.8744 -vn -0.3512 0.3350 -0.8743 -vn 0.4245 0.2061 -0.8817 -vn 0.4243 0.2061 -0.8818 -vn 0.4242 0.2059 -0.8819 -vn 0.2062 -0.8608 -0.4654 -vn 0.2062 -0.8609 -0.4651 -vn 0.2061 -0.8606 -0.4658 -vn -0.3439 -0.9162 -0.2056 -vn -0.3438 -0.9162 -0.2057 -vn 0.5464 0.7130 -0.4394 -vn 0.5463 0.7131 -0.4394 -vn 0.1694 -0.9700 -0.1743 -vn 0.1698 -0.9700 -0.1742 -vn 0.1698 -0.9700 -0.1743 -vn -0.0391 -0.9982 -0.0464 -vn -0.0392 -0.9982 -0.0463 -vn -0.0395 -0.9981 -0.0464 -vn 0.1743 -0.9821 -0.0714 -vn 0.1742 -0.9821 -0.0715 -vn -0.2759 -0.9048 -0.3244 -vn -0.2757 -0.9049 -0.3241 -vn -0.2761 -0.9046 -0.3247 -vn 0.1591 -0.9841 -0.0791 -vn 0.1595 -0.9840 -0.0790 -vn 0.1592 -0.9841 -0.0791 -vn -0.2738 -0.9060 -0.3229 -vn -0.2740 -0.9059 -0.3229 -vn -0.5221 0.4392 -0.7311 -vn -0.5219 0.4389 -0.7314 -vn -0.5226 0.4394 -0.7307 -vn 0.2635 -0.9264 -0.2691 -vn 0.3317 0.1019 -0.9379 -vn 0.3314 0.1018 -0.9380 -vn 0.2861 -0.8713 -0.3988 -vn 0.2862 -0.8712 -0.3989 -vn 0.2863 -0.8711 -0.3990 -vn 0.2485 0.7026 -0.6668 -vn -0.2813 -0.8519 -0.4418 -vn -0.2815 -0.8518 -0.4418 -vn -0.2813 -0.8518 -0.4420 -vn -0.3831 -0.8659 -0.3216 -vn -0.3832 -0.8659 -0.3215 -vn -0.9264 0.2735 0.2588 -vn -0.9261 0.2745 0.2588 -vn -0.9259 0.2750 0.2589 -vn -0.0956 0.1557 0.9832 -vn -0.0955 0.1558 0.9832 -vn -0.4592 -0.0916 0.8836 -vn 0.3846 -0.8364 -0.3905 -vn 0.3846 -0.8363 -0.3907 -vn 0.3845 -0.8364 -0.3906 -vn -0.1584 -0.6087 -0.7774 -vn -0.1583 -0.6089 -0.7773 -vn -0.1583 -0.6087 -0.7774 -vn 0.4101 -0.5188 0.7501 -vn 0.4102 -0.5185 0.7503 -vn -0.7700 -0.6199 -0.1511 -vn -0.7696 -0.6203 -0.1515 -vn -0.7696 -0.6203 -0.1514 -vn 0.2680 0.8608 -0.4327 -vn 0.2679 0.8609 -0.4325 -vn 0.2680 0.8609 -0.4325 -vn 0.2484 -0.6784 -0.6914 -vn 0.2480 -0.6787 -0.6913 -vn 0.2489 -0.6781 -0.6915 -vn 0.7140 0.6874 0.1329 -vn -0.8038 0.5628 -0.1929 -vn -0.8038 0.5627 -0.1929 -vn -0.2824 0.7603 0.5849 -vn 0.1196 0.8799 -0.4599 -vn 0.1193 0.8800 -0.4598 -vn 0.1189 0.8800 -0.4599 -vn 0.0125 -0.7745 -0.6325 -vn 0.0125 -0.7744 -0.6326 -vn 0.0124 -0.7742 -0.6328 -vn 0.8761 0.3807 0.2959 -vn 0.8761 0.3807 0.2957 -vn -0.6729 -0.5882 0.4486 -vn -0.6728 -0.5883 0.4486 -vn -0.6731 -0.5881 0.4484 -vn 0.3232 0.4717 0.8204 -vn 0.3228 0.4731 0.8197 -vn 0.3215 0.4746 0.8194 -vn -0.0552 0.9689 -0.2411 -vn -0.0550 0.9690 -0.2409 -vn -0.0551 0.9689 -0.2412 -vn 0.6035 0.7662 0.2208 -vn 0.6034 0.7662 0.2210 -vn 0.6034 0.7662 0.2208 -vn -0.5821 -0.8109 -0.0606 -vn -0.6807 -0.2937 0.6711 -vn -0.6807 -0.2936 0.6712 -vn -0.0611 0.1932 -0.9793 -vn -0.0607 0.1929 -0.9793 -vn -0.0609 0.1932 -0.9793 -vn -0.0303 -0.9683 0.2481 -vn -0.0304 -0.9683 0.2481 -vn 0.8013 0.5896 -0.1012 -vn 0.8008 0.5902 -0.1016 -vn 0.8010 0.5900 -0.1013 -vn -0.3341 0.7806 -0.5282 -vn -0.3342 0.7807 -0.5281 -vn -0.3344 0.7808 -0.5278 -vn -0.5109 -0.8207 0.2558 -vn -0.5115 -0.8203 0.2557 -vn 0.2840 -0.0657 -0.9566 -vn 0.2839 -0.0659 -0.9566 -vn 0.2838 -0.0657 -0.9566 -vn -0.2758 0.2914 0.9160 -vn -0.2753 0.2917 0.9160 -vn -0.2750 0.2919 0.9161 -vn -0.4774 -0.8690 -0.1300 -vn -0.4771 -0.8692 -0.1299 -vn -0.4763 -0.8697 -0.1295 -vn 0.0781 0.7696 0.6338 -vn 0.0780 0.7696 0.6337 -vn 0.9283 -0.2781 -0.2467 -vn 0.9280 -0.2793 -0.2466 -vn 0.9282 -0.2784 -0.2468 -vn -0.3895 -0.9086 0.1508 -vn -0.3903 -0.9081 0.1515 -vn -0.3898 -0.9084 0.1510 -vn -0.8322 -0.2987 -0.4671 -vn -0.8322 -0.2989 -0.4670 -vn -0.8321 -0.2993 -0.4669 -vn -0.7177 -0.3520 -0.6009 -vn -0.7177 -0.3522 -0.6007 -vn -0.7177 -0.3521 -0.6008 -vn 0.3474 -0.8137 -0.4660 -vn 0.3475 -0.8137 -0.4659 -vn 0.9663 0.0886 -0.2415 -vn 0.9664 0.0885 -0.2413 -vn 0.9661 0.0891 -0.2424 -vn -0.1212 0.5512 -0.8255 -vn -0.1224 0.5508 -0.8256 -vn -0.1234 0.5500 -0.8260 -vn 0.7075 0.6283 -0.3236 -vn 0.7075 0.6283 -0.3235 -vn 0.7075 0.6281 -0.3240 -vn 0.8449 -0.0362 0.5337 -vn 0.8449 -0.0372 0.5336 -vn 0.8453 -0.0382 0.5330 -vn -0.7723 -0.6352 0.0031 -vn -0.7724 -0.6351 0.0036 -vn -0.7724 -0.6351 0.0034 -vn -0.1527 0.2629 -0.9527 -vn -0.8152 -0.5137 -0.2675 -vn -0.8154 -0.5135 -0.2675 -vn -0.2586 0.8621 -0.4359 -vn -0.2589 0.8621 -0.4357 -vn -0.2600 0.8624 -0.4343 -vn 0.8602 0.4979 0.1103 -vn 0.8603 0.4973 0.1121 -vn -0.0675 -0.8822 0.4660 -vn -0.0679 -0.8822 0.4660 -vn -0.0672 -0.8823 0.4659 -vn -0.7219 0.3952 -0.5681 -vn -0.7219 0.3951 -0.5681 -vn -0.7221 0.3950 -0.5679 -vn -0.5223 0.1484 -0.8397 -vn -0.5229 0.1483 -0.8394 -vn -0.5219 0.1484 -0.8400 -vn 0.3952 -0.0327 0.9180 -vn 0.3951 -0.0328 0.9181 -vn 0.3953 -0.0326 0.9180 -vn -0.4447 0.5053 -0.7395 -vn -0.4446 0.5052 -0.7396 -vn -0.4448 0.5051 -0.7396 -vn -0.9554 0.2954 0.0040 -vn -0.9554 0.2953 0.0042 -vn -0.9553 0.2955 0.0040 -vn -0.3879 -0.0327 0.9211 -vn -0.6683 0.6604 -0.3424 -vn -0.6682 0.6605 -0.3424 -vn 0.4176 0.8908 -0.1791 -vn 0.4173 0.8907 -0.1802 -vn 0.4164 0.8910 -0.1810 -vn 0.9078 -0.1784 0.3796 -vn 0.9078 -0.1781 0.3798 -vn 0.9078 -0.1780 0.3797 -vn 0.0107 0.1196 -0.9928 -vn 0.0120 0.1192 -0.9928 -vn 0.0099 0.1203 -0.9927 -vn -0.0156 -0.4706 0.8822 -vn -0.0154 -0.4715 0.8817 -vn -0.0155 -0.4711 0.8819 -vn -0.0445 -0.2290 0.9724 -vn -0.0447 -0.2292 0.9723 -vn -0.7563 -0.2500 -0.6045 -vn -0.7562 -0.2498 -0.6048 -vn -0.7564 -0.2500 -0.6044 -vn -0.5753 -0.6428 -0.5059 -vn -0.5756 -0.6426 -0.5057 -vn -0.5750 -0.6432 -0.5056 -vn 0.4580 -0.8319 -0.3135 -vn -0.3107 0.3756 0.8732 -vn -0.3105 0.3754 0.8733 -vn -0.3103 0.3751 0.8735 -vn 0.6626 -0.3801 -0.6453 -vn 0.6969 -0.7141 0.0657 -vn 0.6970 -0.7141 0.0654 -vn -0.1769 0.7739 -0.6081 -vn -0.1771 0.7740 -0.6079 -vn -0.1772 0.7743 -0.6075 -vn -0.2843 -0.1430 0.9480 -vn -0.2842 -0.1430 0.9480 -vn -0.2840 -0.1430 0.9481 -vn 0.0595 0.9913 -0.1171 -vn 0.0592 0.9913 -0.1173 -vn 0.0595 0.9914 -0.1169 -vn 0.7566 0.5224 0.3933 -vn 0.7564 0.5226 0.3935 -vn 0.7563 0.5227 0.3936 -vn -0.3748 -0.0094 0.9271 -vn -0.3751 -0.0074 0.9270 -vn -0.1038 -0.1746 -0.9792 -vn -0.1037 -0.1748 -0.9791 -vn -0.0270 -0.5709 -0.8206 -vn -0.0270 -0.5708 -0.8207 -vn -0.0269 -0.5708 -0.8206 -vn 0.1408 0.1371 0.9805 -vn 0.1408 0.1369 0.9805 -vn 0.1408 0.1368 0.9805 -vn -0.0603 -0.7501 -0.6585 -vn -0.2179 -0.9598 -0.1771 -vn -0.2163 -0.9598 -0.1787 -vn -0.2170 -0.9599 -0.1777 -vn 0.5383 -0.8039 -0.2528 -vn 0.5374 -0.8047 -0.2522 -vn 0.5381 -0.8041 -0.2526 -vn 0.3357 -0.5693 -0.7505 -vn 0.3356 -0.5692 -0.7505 -vn 0.3356 -0.5694 -0.7505 -vn 0.4620 0.0976 -0.8815 -vn 0.4620 0.0975 -0.8815 -vn 0.4621 0.0974 -0.8815 -vn 0.8695 -0.4702 0.1511 -vn -0.5526 0.8331 0.0237 -vn -0.5532 0.8327 0.0234 -vn -0.9744 -0.0283 0.2229 -vn -0.9744 -0.0283 0.2230 -vn -0.9743 -0.0281 0.2233 -vn 0.9263 -0.2517 0.2804 -vn 0.9264 -0.2506 0.2811 -vn 0.9264 -0.2512 0.2807 -vn 0.7768 -0.2292 0.5866 -vn 0.7771 -0.2298 0.5859 -vn 0.7763 -0.2290 0.5873 -vn -0.5275 0.6735 -0.5179 -vn -0.5275 0.6734 -0.5180 -vn 0.5631 -0.5051 -0.6541 -vn 0.5632 -0.5050 -0.6540 -vn -0.4358 -0.3850 -0.8135 -vn -0.4360 -0.3851 -0.8134 -vn -0.4359 -0.3851 -0.8135 -vn -0.7265 -0.5321 -0.4348 -vn -0.7268 -0.5318 -0.4347 -vn -0.7264 -0.5324 -0.4347 -vn -0.3322 -0.3061 -0.8922 -vn -0.3331 -0.3058 -0.8919 -vn -0.4613 0.5130 -0.7239 -vn -0.4612 0.5130 -0.7239 -vn -0.0000 -0.0002 1.0000 -vn 0.2594 -0.9569 -0.1309 -vn 0.2587 -0.9571 -0.1305 -vn 0.2581 -0.9573 -0.1300 -vn 0.2028 -0.9414 -0.2697 -vn 0.2033 -0.9411 -0.2702 -vn 0.2021 -0.9416 -0.2694 -vn 0.6700 0.5240 0.5258 -vn -0.5045 -0.8137 -0.2887 -vn -0.5059 -0.8130 -0.2883 -vn -0.5077 -0.8118 -0.2884 -vn -0.9622 -0.1568 0.2227 -vn -0.9622 -0.1570 0.2226 -vn -0.9622 -0.1565 0.2231 -vn 0.5142 0.8286 -0.2214 -vn 0.5115 0.8308 -0.2196 -vn 0.5176 0.8267 -0.2208 -vn -0.3069 0.0912 -0.9474 -vn -0.3068 0.0916 -0.9474 -vn -0.3075 0.0908 -0.9472 -vn -0.7165 -0.6049 -0.3475 -vn -0.7164 -0.6051 -0.3472 -vn -0.7166 -0.6045 -0.3478 -vn 0.8493 -0.4472 -0.2804 -vn 0.8493 -0.4471 -0.2806 -vn 0.8494 -0.4470 -0.2807 -vn 0.3931 0.9194 -0.0119 -vn -0.5365 -0.7910 0.2940 -vn 0.7992 -0.5960 -0.0781 -vn 0.7994 -0.5957 -0.0782 -vn 0.7992 -0.5959 -0.0781 -vn 0.3131 0.9283 -0.2004 -vn 0.3129 0.9284 -0.2005 -vn -0.2309 0.5174 0.8240 -vn -0.2312 0.5173 0.8240 -vn -0.2316 0.5174 0.8238 -vn -0.8938 0.0997 -0.4372 -vn -0.8939 0.0994 -0.4370 -vn -0.8941 0.0990 -0.4367 -vn -0.4807 -0.8165 0.3197 -vn -0.4809 -0.8164 0.3196 -vn -0.4810 -0.8163 0.3198 -vn -0.4490 -0.8931 -0.0278 -vn -0.4491 -0.8931 -0.0277 -vn 0.1583 0.5041 -0.8490 -vn 0.3599 -0.6160 -0.7007 -vn 0.3599 -0.6159 -0.7008 -vn 0.3597 -0.6158 -0.7010 -vn -0.4993 -0.8507 0.1642 -vn -0.4994 -0.8507 0.1640 -vn -0.4993 -0.8507 0.1643 -vn -0.5455 -0.8364 -0.0531 -vn -0.5455 -0.8364 -0.0530 -vn -0.4261 0.1524 0.8918 -vn -0.4262 0.1523 0.8917 -vn -0.4259 0.1528 0.8918 -vn 0.5535 -0.7534 -0.3550 -vn 0.5534 -0.7533 -0.3554 -vn 0.5532 -0.7532 -0.3558 -vn 0.4217 0.2762 -0.8637 -vn 0.4223 0.2769 -0.8631 -vn 0.4222 0.2768 -0.8632 -vn 0.8025 0.3943 0.4478 -vn 0.8021 0.3944 0.4484 -vn 0.8027 0.3943 0.4474 -vn 0.0039 0.9741 -0.2261 -vn 0.0040 0.9740 -0.2265 -vn -0.8017 -0.2638 -0.5363 -vn -0.3685 0.0030 0.9296 -vn -0.3684 0.0029 0.9297 -vn -0.9917 0.1278 0.0161 -vn -0.9917 0.1273 0.0161 -vn -0.9918 0.1271 0.0161 -vn 0.7990 -0.5853 -0.1380 -vn 0.7989 -0.5855 -0.1377 -vn 0.7989 -0.5854 -0.1379 -vn -0.4653 -0.8524 -0.2386 -vn -0.4661 -0.8521 -0.2380 -vn -0.4658 -0.8522 -0.2383 -vn -0.5646 -0.4134 0.7143 -vn -0.5650 -0.4123 0.7147 -vn -0.5666 -0.4103 0.7146 -vn -0.6238 -0.2671 0.7345 -vn -0.6233 -0.2670 0.7350 -vn -0.6249 -0.2667 0.7338 -vn -0.1414 -0.9819 0.1261 -vn -0.1412 -0.9820 0.1258 -vn -0.1416 -0.9818 0.1264 -vn 0.0073 -0.9948 0.1013 -vn 0.2161 -0.9755 -0.0406 -vn 0.2162 -0.9755 -0.0405 -vn 0.2158 -0.9756 -0.0408 -vn -0.0572 0.3546 -0.9333 -vn 0.5848 0.8098 -0.0477 -vn 0.5851 0.8096 -0.0476 -vn 0.5852 0.8095 -0.0475 -vn -0.0037 -0.9965 0.0835 -vn 0.2497 -0.9415 0.2265 -vn 0.2495 -0.9415 0.2266 -vn 0.0602 -0.9981 -0.0137 -vn 0.0606 -0.9981 -0.0137 -vn 0.0601 -0.9981 -0.0137 -vn -0.5874 -0.8010 -0.1160 -vn -0.5875 -0.8008 -0.1167 -vn -0.5874 -0.8009 -0.1161 -vn 0.2985 0.1665 0.9398 -vn 0.2983 0.1671 0.9397 -vn 0.2985 0.1668 0.9397 -vn 0.4272 -0.8807 0.2047 -vn 0.0202 0.9994 0.0268 -vn -0.2711 -0.6129 0.7422 -vn -0.2713 -0.6134 0.7417 -vn -0.2714 -0.6137 0.7414 -vn 0.1812 0.9372 -0.2981 -vn 0.1812 0.9376 -0.2969 -vn 0.1806 0.9370 -0.2990 -vn 0.7704 0.4278 -0.4728 -vn 0.7703 0.4276 -0.4730 -vn -0.8319 0.3238 0.4506 -vn -0.8320 0.3237 0.4506 -vn -0.8321 0.3235 0.4506 -vn 0.4690 -0.8416 0.2679 -vn 0.4692 -0.8415 0.2679 -vn 0.1877 -0.7493 0.6351 -vn 0.1884 -0.7509 0.6330 -vn 0.1896 -0.7513 0.6322 -vn 0.1262 -0.0564 -0.9904 -vn 0.4678 -0.8513 0.2375 -vn 0.4685 -0.8512 0.2366 -vn 0.4682 -0.8513 0.2369 -vn -0.1096 0.8475 0.5193 -vn -0.1102 0.8480 0.5184 -vn -0.1104 0.8487 0.5172 -vn -0.8274 0.3407 0.4465 -vn 0.3257 -0.9245 0.1981 -vn 0.3263 -0.9245 0.1970 -vn 0.3260 -0.9245 0.1977 -vn -0.6176 -0.4017 -0.6762 -vn -0.6175 -0.4021 -0.6760 -vn 0.1885 0.0560 0.9805 -vn 0.1876 0.0560 0.9806 -vn 0.1889 0.0560 0.9804 -vn 0.4812 0.3256 0.8139 -vn 0.4812 0.3255 0.8140 -vn -0.1500 -0.8573 -0.4925 -vn -0.1500 -0.8573 -0.4924 -vn -0.1498 -0.8574 -0.4924 -vn -0.2535 -0.9342 -0.2510 -vn -0.7359 0.3372 -0.5872 -vn -0.7359 0.3370 -0.5873 -vn -0.7359 0.3373 -0.5871 -vn 0.3667 0.8673 -0.3366 -vn 0.3670 0.8672 -0.3366 -vn 0.3673 0.8670 -0.3368 -vn -0.4907 0.1867 -0.8511 -vn -0.4911 0.1864 -0.8509 -vn -0.4903 0.1868 -0.8513 -vn -0.0901 0.9686 -0.2316 -vn -0.0900 0.9686 -0.2318 -vn 0.2799 0.8226 0.4950 -vn 0.2794 0.8224 0.4955 -vn 0.2786 0.8224 0.4960 -vn 0.0437 0.3476 -0.9366 -vn 0.6423 0.7472 -0.1705 -vn 0.6424 0.7470 -0.1711 -vn 0.6423 0.7472 -0.1706 -vn 0.3973 -0.8818 0.2541 -vn 0.3974 -0.8817 0.2543 -vn 0.3974 -0.8817 0.2542 -vn -0.3558 0.3408 -0.8702 -vn -0.3563 0.3409 -0.8700 -vn -0.3567 0.3406 -0.8699 -vn 0.2946 -0.9556 -0.0104 -vn 0.2947 -0.9555 -0.0107 -vn 0.4943 0.7377 -0.4599 -vn 0.2629 -0.9627 0.0631 -vn 0.2684 -0.9603 0.0762 -vn 0.2687 -0.9602 0.0763 -vn 0.2133 -0.9556 0.2032 -vn 0.2134 -0.9556 0.2031 -vn 0.1845 0.7797 -0.5983 -vn 0.1849 0.7796 -0.5984 -vn 0.1850 0.7794 -0.5986 -vn 0.3875 -0.8861 0.2543 -vn 0.3875 -0.8861 0.2544 -vn 0.3875 -0.8862 0.2540 -vn -0.4171 0.8665 0.2744 -vn -0.4177 0.8664 0.2737 -vn -0.4190 0.8660 0.2729 -vn 0.8365 -0.1417 0.5293 -vn 0.8367 -0.1414 0.5291 -vn 0.8369 -0.1417 0.5288 -vn -0.2565 -0.1551 0.9540 -vn -0.2562 -0.1549 0.9541 -vn 0.0710 0.9813 0.1790 -vn 0.0708 0.9803 0.1844 -vn 0.0717 0.9809 0.1811 -vn -0.0909 0.1046 0.9904 -vn -0.0908 0.1046 0.9904 -vn -0.4629 -0.8862 -0.0188 -vn -0.4629 -0.8862 -0.0186 -vn -0.4630 -0.8862 -0.0191 -vn 0.3598 -0.8968 0.2575 -vn 0.3599 -0.8968 0.2573 -vn 0.1392 0.6754 0.7242 -vn 0.1385 0.6752 0.7245 -vn 0.1399 0.6753 0.7242 -vn -0.2642 -0.9446 0.1949 -vn -0.2642 -0.9445 0.1951 -vn -0.4833 -0.7130 -0.5080 -vn -0.4820 -0.7128 -0.5095 -vn -0.4829 -0.7129 -0.5085 -vn -0.2518 -0.1007 -0.9625 -vn -0.2515 -0.1009 -0.9626 -vn -0.2510 -0.1008 -0.9627 -vn -0.1335 0.3308 0.9342 -vn -0.1333 0.3307 0.9343 -vn -0.9472 0.2696 -0.1734 -vn -0.9473 0.2695 -0.1732 -vn -0.9473 0.2694 -0.1731 -vn -0.5946 0.3763 0.7106 -vn -0.5944 0.3761 0.7108 -vn -0.5944 0.3762 0.7107 -vn -0.4068 -0.9068 -0.1102 -vn -0.4070 -0.9067 -0.1105 -vn -0.4073 -0.9065 -0.1111 -vn 0.3178 0.7990 -0.5105 -vn 0.3180 0.7990 -0.5104 -vn 0.3174 0.7992 -0.5105 -vn 0.3795 -0.7846 0.4903 -vn 0.3795 -0.7846 0.4904 -vn 0.3797 -0.7845 0.4903 -vn -0.3752 -0.8627 0.3392 -vn -0.3751 -0.8627 0.3392 -vn 0.0760 0.0149 -0.9970 -vn 0.0761 0.0146 -0.9970 -vn -0.3197 -0.9303 0.1797 -vn -0.3195 -0.9304 0.1797 -vn 0.0581 0.2484 0.9669 -vn 0.0578 0.2463 0.9675 -vn 0.0582 0.2481 0.9670 -vn 0.3170 0.1991 0.9273 -vn 0.3167 0.1995 0.9273 -vn 0.3178 0.1989 0.9271 -vn -0.9411 0.3372 0.0256 -vn -0.9412 0.3370 0.0258 -vn -0.9412 0.3368 0.0260 -vn 0.4922 -0.8531 -0.1731 -vn 0.4922 -0.8531 -0.1732 -vn 0.0983 -0.8550 0.5093 -vn 0.0985 -0.8551 0.5090 -vn 0.0989 -0.8552 0.5088 -vn 0.1742 -0.9197 0.3518 -vn 0.1742 -0.9198 0.3517 -vn 0.1741 -0.9198 0.3517 -vn -0.1335 -0.8841 0.4478 -vn -0.1337 -0.8841 0.4477 -vn -0.1333 -0.8842 0.4477 -vn 0.6071 0.6739 0.4210 -vn 0.6072 0.6738 0.4210 -vn 0.4439 -0.8697 -0.2157 -vn 0.4182 -0.9073 -0.0434 -vn 0.8314 -0.4831 0.2745 -vn 0.8315 -0.4831 0.2743 -vn 0.8313 -0.4834 0.2744 -vn -0.1472 0.9844 0.0960 -vn -0.1473 0.9844 0.0960 -vn -0.0418 0.2104 -0.9767 -vn -0.0419 0.2107 -0.9767 -vn -0.3395 -0.8935 -0.2938 -vn -0.3397 -0.8934 -0.2940 -vn -0.3397 -0.8935 -0.2939 -vn 0.3129 -0.6001 -0.7362 -vn 0.3131 -0.6001 -0.7361 -vn -0.4535 0.8471 -0.2771 -vn -0.4535 0.8470 -0.2773 -vn -0.4533 0.8471 -0.2775 -vn -0.8669 0.3032 -0.3956 -vn -0.8669 0.3035 -0.3954 -vn -0.8669 0.3033 -0.3955 -vn -0.4401 0.2049 0.8743 -vn -0.4404 0.2046 0.8742 -vn -0.4403 0.2048 0.8742 -vn -0.3015 0.3167 -0.8993 -vn -0.3020 0.3162 -0.8993 -vn -0.3020 0.3164 -0.8993 -vn 0.5204 -0.8314 -0.1946 -vn 0.5205 -0.8314 -0.1948 -vn -0.3791 -0.9088 -0.1743 -vn -0.3790 -0.9088 -0.1746 -vn -0.3792 -0.9087 -0.1745 -vn 0.5540 0.2380 -0.7978 -vn 0.0940 -0.9515 -0.2928 -vn 0.0938 -0.9514 -0.2932 -vn -0.3070 0.8945 -0.3250 -vn 0.2521 -0.9317 -0.2614 -vn -0.8753 -0.4816 0.0442 -vn 0.6301 0.1508 0.7617 -vn 0.6300 0.1509 0.7618 -vn 0.6300 0.1510 0.7618 -vn 0.6303 0.7762 0.0155 -vn 0.6303 0.7762 0.0154 -vn 0.6299 0.7765 0.0161 -vn -0.2863 -0.3223 -0.9023 -vn -0.2869 -0.3228 -0.9019 -vn -0.2866 -0.3226 -0.9021 -vn 0.2756 0.7627 -0.5851 -vn -0.0530 0.9162 -0.3971 -vn -0.3357 0.7979 -0.5006 -vn -0.3359 0.7980 -0.5004 -vn -0.1073 0.9914 0.0755 -vn -0.1073 0.9913 0.0757 -vn -0.1071 0.9914 0.0753 -vn 0.2693 -0.8948 -0.3562 -vn 0.2695 -0.8946 -0.3564 -vn -0.5789 -0.5875 0.5654 -vn -0.5793 -0.5872 0.5653 -vn -0.5797 -0.5868 0.5653 -vn 0.4357 0.8697 -0.2320 -vn -0.4840 0.8225 0.2988 -vn -0.4842 0.8225 0.2984 -vn -0.4841 0.8225 0.2986 -vn -0.0009 0.0049 1.0000 -vn -0.0011 0.0049 1.0000 -vn -0.0010 0.0049 1.0000 -vn -0.4139 -0.8021 0.4305 -vn -0.4137 -0.8025 0.4300 -vn -0.4137 -0.8024 0.4302 -vn 0.1697 0.9855 -0.0055 -vn -0.4919 -0.0320 -0.8701 -vn -0.4920 -0.0322 -0.8700 -vn -0.4921 -0.0320 -0.8699 -vn -0.2640 0.8023 -0.5354 -vn -0.2640 0.8024 -0.5352 -vn 0.7467 0.6647 0.0268 -vn 0.5745 0.7930 0.2029 -vn 0.5743 0.7931 0.2032 -vn 0.5744 0.7930 0.2030 -vn 0.6757 0.6075 0.4176 -vn 0.6764 0.6070 0.4172 -vn 0.6760 0.6073 0.4174 -vn -0.2204 -0.8581 -0.4637 -vn -0.2204 -0.8580 -0.4639 -vn 0.1220 -0.8073 -0.5773 -vn 0.1222 -0.8072 -0.5775 -vn 0.9076 0.3440 0.2407 -vn 0.9073 0.3452 0.2400 -vn 0.9075 0.3446 0.2404 -vn 0.5191 -0.7033 0.4857 -vn 0.5190 -0.7034 0.4856 -vn 0.8954 0.4405 0.0651 -vn 0.8954 0.4405 0.0650 -vn 0.8955 0.4403 0.0650 -vn -0.7300 0.6431 0.2312 -vn -0.7301 0.6430 0.2314 -vn -0.7298 0.6432 0.2315 -vn -0.1025 -0.6757 0.7300 -vn -0.1027 -0.6757 0.7300 -vn -0.1025 -0.6758 0.7299 -vn -0.3810 0.8345 -0.3982 -vn -0.3804 0.8344 -0.3989 -vn -0.3813 0.8344 -0.3980 -vn -0.6950 -0.6465 0.3146 -vn -0.6950 -0.6466 0.3145 -vn -0.4862 -0.8521 0.1938 -vn -0.4863 -0.8520 0.1937 -vn -0.8514 -0.4333 0.2956 -vn -0.8513 -0.4334 0.2957 -vn -0.3132 -0.7975 0.5157 -vn -0.3137 -0.7973 0.5156 -vn -0.3138 -0.7973 0.5155 -vn 0.5879 0.2695 -0.7627 -vn 0.5882 0.2697 -0.7624 -vn -0.4099 -0.1551 -0.8988 -vn -0.4098 -0.1553 -0.8989 -vn -0.4095 -0.1553 -0.8990 -vn 0.7241 0.6357 -0.2675 -vn 0.7242 0.6358 -0.2669 -vn 0.7241 0.6358 -0.2671 -vn 0.7764 0.5437 0.3188 -vn 0.7765 0.5434 0.3189 -vn -0.2189 0.7736 0.5946 -vn -0.2188 0.7737 0.5945 -vn -0.2188 0.7733 0.5951 -vn 0.7425 0.6183 -0.2577 -vn 0.7427 0.6182 -0.2573 -vn -0.6166 0.6972 -0.3656 -vn -0.6166 0.6973 -0.3656 -vn -0.6168 0.6970 -0.3658 -vn -0.6167 -0.5632 -0.5500 -vn -0.6168 -0.5632 -0.5499 -vn -0.6169 -0.5636 -0.5493 -vn 0.1391 -0.9691 -0.2036 -vn 0.1390 -0.9691 -0.2037 -vn 0.1391 -0.9691 -0.2037 -vn -0.4362 0.8944 0.0989 -vn -0.4364 0.8943 0.0989 -vn -0.4363 0.8943 0.0988 -vn -0.5855 -0.8107 -0.0018 -vn -0.5855 -0.8107 -0.0017 -vn -0.5856 -0.8106 -0.0019 -vn 0.1903 -0.7846 0.5900 -vn 0.1906 -0.7854 0.5889 -vn 0.1894 -0.7847 0.5903 -vn -0.0195 -0.8762 0.4815 -vn -0.0188 -0.8757 0.4824 -vn -0.0193 -0.8759 0.4822 -vn 0.9216 -0.3634 0.1364 -vn 0.9217 -0.3632 0.1364 -vn 0.9217 -0.3631 0.1364 -vn -0.7259 0.6196 -0.2987 -vn 0.7893 0.6139 0.0094 -vn 0.7893 0.6140 0.0095 -vn 0.7895 0.6137 0.0090 -vn 0.7810 0.6211 0.0650 -vn 0.7811 0.6210 0.0650 -vn 0.0761 -0.9901 -0.1178 -vn 0.0538 0.7238 -0.6879 -vn 0.0547 0.7234 -0.6883 -vn 0.1946 0.3074 -0.9315 -vn 0.1952 0.3074 -0.9313 -vn 0.1948 0.3071 -0.9315 -vn -0.7082 0.6808 0.1872 -vn -0.7083 0.6807 0.1871 -vn -0.7082 0.6807 0.1871 -vn 0.5708 0.4538 -0.6843 -vn 0.5709 0.4535 -0.6844 -vn 0.5714 0.4528 -0.6844 -vn -0.3278 0.1525 0.9324 -vn -0.3277 0.1526 0.9324 -vn -0.3277 0.1527 0.9324 -vn -0.1006 -0.5147 -0.8514 -vn -0.9994 0.0111 0.0321 -vn -0.9994 0.0109 0.0320 -vn -0.9994 0.0114 0.0324 -vn 0.2528 -0.0958 -0.9628 -vn 0.2536 -0.0959 -0.9625 -vn 0.2532 -0.0958 -0.9627 -vn 0.9604 0.2644 0.0874 -vn 0.9605 0.2641 0.0878 -vn 0.9604 0.2646 0.0872 -vn 0.7239 -0.2705 -0.6346 -vn 0.7239 -0.2708 -0.6345 -vn -0.2774 0.0656 0.9585 -vn -0.2774 0.0659 0.9585 -vn -0.0205 0.1252 0.9919 -vn -0.0208 0.1253 0.9919 -vn -0.0208 0.1251 0.9919 -vn 0.2107 0.9367 0.2795 -vn 0.2102 0.9368 0.2797 -vn 0.2109 0.9367 0.2794 -vn -0.0535 -0.9934 0.1014 -vn -0.0756 0.8177 -0.5706 -vn -0.0759 0.8178 -0.5705 -vn -0.0753 0.8177 -0.5707 -vn -0.1136 0.0213 -0.9933 -vn -0.7176 -0.6860 -0.1202 -vn -0.7175 -0.6862 -0.1200 -vn -0.8991 0.2020 -0.3882 -vn -0.8990 0.2019 -0.3886 -vn -0.8992 0.2023 -0.3880 -vn 0.0226 -0.2453 -0.9692 -vn 0.0229 -0.2452 -0.9692 -vn -0.0259 -0.9104 0.4129 -vn -0.0268 -0.9103 0.4131 -vn -0.0264 -0.9104 0.4130 -vn 0.3531 0.8541 -0.3819 -vn 0.3532 0.8539 -0.3822 -vn -0.6364 -0.6219 -0.4564 -vn -0.6364 -0.6223 -0.4559 -vn -0.6364 -0.6226 -0.4554 -vn -0.0582 -0.7588 -0.6487 -vn -0.0574 -0.7583 -0.6494 -vn -0.0580 -0.7588 -0.6488 -vn -0.1054 0.8728 -0.4765 -vn -0.1054 0.8725 -0.4771 -vn -0.1052 0.8728 -0.4766 -vn -0.2963 -0.8121 0.5026 -vn -0.2964 -0.8120 0.5028 -vn -0.2964 -0.8119 0.5030 -vn -0.0290 0.9203 -0.3901 -vn -0.0290 0.9203 -0.3902 -vn -0.0290 0.9204 -0.3900 -vn -0.3915 -0.8447 0.3650 -vn -0.3909 -0.8448 0.3654 -vn -0.3911 -0.8448 0.3652 -vn -0.5617 -0.6003 -0.5693 -vn -0.5616 -0.6006 -0.5691 -vn -0.5619 -0.6002 -0.5693 -vn -0.8034 -0.5030 0.3185 -vn -0.8034 -0.5032 0.3184 -vn -0.8033 -0.5033 0.3185 -vn 0.0600 0.4187 -0.9061 -vn 0.0601 0.4189 -0.9061 -vn 0.0485 -0.2688 -0.9620 -vn 0.0484 -0.2688 -0.9620 -vn 0.6799 -0.0823 -0.7287 -vn 0.9470 0.0998 -0.3054 -vn 0.9469 0.0994 -0.3057 -vn 0.9469 0.0993 -0.3059 -vn -0.6390 -0.2284 -0.7345 -vn -0.6390 -0.2283 -0.7345 -vn 0.3595 0.9320 0.0455 -vn 0.3593 0.9321 0.0457 -vn 0.3592 0.9321 0.0458 -vn 0.4838 0.4829 0.7299 -vn 0.4840 0.4827 0.7299 -vn 0.4836 0.4829 0.7300 -vn 0.9514 -0.2837 0.1196 -vn 0.9514 -0.2836 0.1199 -vn 0.1085 -0.2193 -0.9696 -vn 0.1073 -0.2197 -0.9696 -vn 0.1088 -0.2193 -0.9696 -vn -0.6096 0.1626 -0.7758 -vn -0.6096 0.1621 -0.7760 -vn -0.8989 0.3861 -0.2072 -vn -0.8985 0.3867 -0.2078 -vn -0.8991 0.3856 -0.2072 -vn -0.9839 0.0176 -0.1779 -vn -0.9839 0.0175 -0.1779 -vn 0.4449 -0.8501 -0.2816 -vn 0.4427 -0.8516 -0.2808 -vn 0.4441 -0.8506 -0.2816 -vn 0.5280 -0.5152 -0.6751 -vn 0.1348 0.3743 -0.9175 -vn -0.1274 0.9882 -0.0856 -vn 0.2698 -0.8339 0.4815 -vn 0.2699 -0.8338 0.4815 -vn 0.5631 -0.2134 -0.7983 -vn 0.5617 -0.2133 -0.7994 -vn 0.5613 -0.2131 -0.7997 -vn -0.8828 0.3676 -0.2925 -vn -0.8829 0.3674 -0.2924 -vn -0.8830 0.3672 -0.2923 -vn -0.5957 0.7189 -0.3582 -vn -0.5950 0.7194 -0.3583 -vn -0.5929 0.7202 -0.3601 -vn -0.9177 -0.3937 0.0541 -vn -0.9177 -0.3936 0.0543 -vn -0.9177 -0.3936 0.0538 -vn 0.8056 -0.5821 -0.1102 -vn 0.8055 -0.5823 -0.1101 -vn -0.9336 -0.3365 -0.1234 -vn -0.9335 -0.3366 -0.1237 -vn 0.4437 0.8317 -0.3338 -vn 0.4438 0.8316 -0.3338 -vn 0.4436 0.8317 -0.3338 -vn 0.6511 -0.5558 0.5168 -vn 0.6512 -0.5559 0.5166 -vn 0.6513 -0.5559 0.5165 -vn -0.8671 -0.3999 -0.2971 -vn -0.8671 -0.4000 -0.2970 -vn 0.3864 0.3840 0.8386 -vn 0.3868 0.3838 0.8385 -vn 0.3867 0.3839 0.8385 -vn -0.5146 -0.8525 -0.0919 -vn -0.5141 -0.8528 -0.0917 -vn 0.8523 -0.1443 0.5027 -vn 0.8520 -0.1441 0.5033 -vn 0.8522 -0.1442 0.5030 -vn -0.8343 0.4181 0.3594 -vn -0.8344 0.4173 0.3600 -vn 0.5009 -0.7953 0.3413 -vn 0.5011 -0.7955 0.3407 -vn 0.5007 -0.7954 0.3415 -vn -0.7159 -0.1123 0.6891 -vn -0.7161 -0.1122 0.6889 -vn 0.9378 -0.2206 0.2679 -vn -0.0397 0.8389 -0.5429 -vn -0.0381 0.8394 -0.5421 -vn -0.0410 0.8381 -0.5440 -vn -0.9120 0.2736 0.3055 -vn -0.9121 0.2740 0.3049 -vn -0.9120 0.2749 0.3045 -vn 0.3200 -0.6400 -0.6986 -vn 0.3202 -0.6398 -0.6987 -vn 0.4503 -0.6008 -0.6605 -vn 0.4505 -0.6009 -0.6603 -vn -0.3454 -0.8562 -0.3843 -vn 0.4140 -0.8282 -0.3777 -vn 0.4143 -0.8282 -0.3775 -vn -0.5431 0.8136 -0.2076 -vn -0.5442 0.8130 -0.2070 -vn -0.5436 0.8134 -0.2071 -vn 0.4022 -0.9135 0.0606 -vn 0.4023 -0.9135 0.0607 -vn 0.8670 -0.4947 0.0599 -vn 0.8669 -0.4949 0.0601 -vn 0.8670 -0.4947 0.0600 -vn 0.2505 -0.9664 -0.0584 -vn 0.2505 -0.9664 -0.0585 -vn 0.2506 -0.9664 -0.0579 -vn -0.6986 0.3253 -0.6373 -vn 0.4999 -0.8216 0.2740 -vn 0.4997 -0.8211 0.2758 -vn 0.4996 -0.8221 0.2729 -vn 0.3319 0.9428 0.0295 -vn 0.3319 0.9428 0.0297 -vn 0.3316 0.9430 0.0293 -vn 0.4896 -0.8249 0.2826 -vn 0.1846 -0.9317 0.3127 -vn -0.9200 -0.1219 -0.3724 -vn -0.9182 -0.1231 -0.3765 -vn -0.9193 -0.1231 -0.3738 -vn 0.5228 -0.5146 -0.6796 -vn 0.5223 -0.5146 -0.6800 -vn 0.5231 -0.5146 -0.6794 -vn -0.8437 0.5031 -0.1873 -vn -0.8436 0.5030 -0.1879 -vn -0.8438 0.5029 -0.1875 -vn -0.7388 0.5705 -0.3587 -vn -0.7389 0.5704 -0.3588 -vn -0.7388 0.5704 -0.3590 -vn 0.2800 -0.9566 0.0810 -vn 0.2802 -0.9565 0.0809 -vn 0.2800 -0.9566 0.0809 -vn 0.8011 -0.2728 0.5327 -vn 0.8011 -0.2731 0.5326 -vn 0.8012 -0.2725 0.5327 -vn 0.8610 -0.3693 0.3498 -vn -0.9260 0.1186 -0.3583 -vn -0.9261 0.1185 -0.3583 -vn -0.9261 0.1188 -0.3580 -vn -0.2337 -0.9392 -0.2516 -vn -0.2338 -0.9391 -0.2517 -vn -0.2334 -0.9393 -0.2514 -vn -0.3284 0.7796 -0.5332 -vn -0.3284 0.7794 -0.5336 -vn -0.3383 -0.9290 -0.1497 -vn -0.3384 -0.9290 -0.1498 -vn -0.7821 0.6195 -0.0670 -vn -0.7818 0.6199 -0.0673 -vn -0.7818 0.6199 -0.0672 -vn -0.9666 -0.1600 -0.2000 -vn -0.9667 -0.1598 -0.2000 -vn -0.9666 -0.1599 -0.2001 -vn -0.7757 -0.6303 -0.0309 -vn -0.7758 -0.6302 -0.0319 -vn -0.7757 -0.6303 -0.0305 -vn 0.4923 0.8538 -0.1695 -vn -0.3774 -0.9172 -0.1278 -vn -0.3774 -0.9172 -0.1279 -vn 0.1722 0.9835 -0.0562 -vn 0.1725 0.9834 -0.0564 -vn 0.1723 0.9834 -0.0562 -vn 0.3723 0.9191 -0.1292 -vn 0.3721 0.9193 -0.1284 -vn 0.3713 0.9197 -0.1274 -vn 0.1146 -0.9321 0.3436 -vn 0.1146 -0.9321 0.3437 -vn 0.1147 -0.9321 0.3436 -vn 0.3802 0.9175 0.1168 -vn 0.3803 0.9174 0.1171 -vn 0.3803 0.9174 0.1169 -vn 0.4294 -0.8564 0.2867 -vn 0.4293 -0.8564 0.2867 -vn 0.4290 -0.8566 0.2868 -vn -0.3581 -0.8666 -0.3475 -vn -0.3584 -0.8665 -0.3475 -vn -0.3580 -0.8666 -0.3476 -vn -0.3890 -0.9106 -0.1399 -vn 0.5222 -0.8304 0.1941 -vn -0.0848 0.9175 -0.3885 -vn -0.0848 0.9176 -0.3883 -vn -0.0850 0.9174 -0.3888 -vn -0.4384 -0.8651 -0.2436 -vn -0.4383 -0.8651 -0.2439 -vn -0.4384 -0.8651 -0.2437 -vn 0.7605 -0.1474 0.6324 -vn 0.7607 -0.1476 0.6321 -vn 0.7599 -0.1471 0.6332 -vn 0.3960 -0.8795 0.2638 -vn 0.3962 -0.8794 0.2639 -vn -0.9303 0.2963 -0.2163 -vn -0.9303 0.2963 -0.2164 -vn -0.9303 0.2960 -0.2165 -vn 0.6490 0.7563 0.0825 -vn 0.6489 0.7563 0.0830 -vn -0.4999 -0.8426 -0.2002 -vn -0.4995 -0.8428 -0.2003 -vn -0.4995 -0.8428 -0.2005 -vn -0.3951 -0.5358 -0.7462 -vn -0.4136 -0.8925 -0.1797 -vn 0.6899 0.6725 0.2679 -vn 0.6898 0.6726 0.2678 -vn 0.6896 0.6728 0.2679 -vn 0.6751 0.5717 -0.4663 -vn 0.6749 0.5716 -0.4666 -vn 0.6749 0.5717 -0.4665 -vn 0.4963 -0.8661 0.0596 -vn 0.4963 -0.8661 0.0597 -vn 0.4964 -0.8661 0.0596 -vn -0.3528 -0.9288 -0.1134 -vn -0.3527 -0.9288 -0.1135 -vn -0.2991 -0.9539 -0.0249 -vn 0.4804 0.8495 0.2181 -vn 0.4808 0.8492 0.2183 -vn 0.4810 0.8490 0.2187 -vn 0.3949 0.8430 0.3653 -vn 0.3948 0.8430 0.3654 -vn 0.3660 -0.1442 -0.9194 -vn 0.3659 -0.1443 -0.9194 -vn 0.3795 0.6362 0.6717 -vn 0.3797 0.6359 0.6719 -vn 0.3797 0.6360 0.6718 -vn 0.7711 0.5837 0.2545 -vn 0.7709 0.5838 0.2548 -vn 0.7713 0.5833 0.2548 -vn -0.4679 -0.8650 -0.1814 -vn -0.4677 -0.8650 -0.1817 -vn -0.4677 -0.8650 -0.1818 -vn -0.2026 0.2453 0.9480 -vn -0.2029 0.2454 0.9480 -vn -0.2025 0.2453 0.9481 -vn -0.6591 -0.7487 0.0705 -vn -0.6590 -0.7488 0.0709 -vn -0.6591 -0.7487 0.0704 -vn 0.5624 -0.6809 0.4692 -vn 0.5629 -0.6811 0.4682 -vn 0.5611 -0.6816 0.4697 -vn 0.5424 -0.6503 0.5318 -vn 0.5428 -0.6504 0.5314 -vn 0.5421 -0.6500 0.5326 -vn 0.0826 -0.7714 0.6310 -vn 0.0811 -0.7712 0.6314 -vn 0.0798 -0.7707 0.6321 -vn 0.5055 -0.8575 0.0961 -vn 0.5056 -0.8573 0.0964 -vn 0.5054 -0.8576 0.0960 -vn -0.5546 0.8146 -0.1698 -vn -0.3530 0.2570 0.8997 -vn -0.3528 0.2568 0.8998 -vn 0.2239 0.8826 -0.4134 -vn 0.6216 0.7818 -0.0497 -vn 0.6215 0.7819 -0.0496 -vn 0.2288 0.8512 -0.4724 -vn 0.2287 0.8511 -0.4725 -vn 0.2287 0.8512 -0.4724 -vn 0.3847 0.7670 -0.5136 -vn 0.2728 -0.9540 -0.1243 -vn 0.2729 -0.9540 -0.1243 -vn 0.2731 -0.9539 -0.1245 -vn 0.4485 -0.7844 0.4284 -vn 0.4480 -0.7853 0.4273 -vn 0.4480 -0.7855 0.4270 -vn -0.2742 -0.9300 -0.2449 -vn -0.2742 -0.9300 -0.2448 -vn -0.2742 -0.9301 -0.2445 -vn 0.2696 -0.9521 -0.1441 -vn 0.2695 -0.9522 -0.1440 -vn 0.2696 -0.9521 -0.1442 -vn 0.0196 0.1906 0.9815 -vn -0.0283 0.5798 0.8143 -vn -0.0288 0.5798 0.8143 -vn -0.0290 0.5796 0.8144 -vn 0.6143 0.6703 0.4164 -vn 0.6145 0.6701 0.4164 -vn 0.2853 -0.9584 -0.0104 -vn 0.2858 -0.9582 -0.0110 -vn 0.2855 -0.9583 -0.0106 -vn 0.3396 -0.8158 0.4681 -vn 0.3395 -0.8158 0.4682 -vn -0.4377 -0.8730 -0.2152 -vn 0.3265 0.9268 -0.1853 -vn 0.3270 0.9267 -0.1853 -vn 0.3266 0.9268 -0.1855 -vn 0.1666 -0.7413 0.6502 -vn 0.1663 -0.7412 0.6504 -vn 0.1665 -0.7412 0.6503 -vn 0.1268 0.8085 0.5747 -vn 0.1271 0.8087 0.5743 -vn -0.7237 0.2669 -0.6364 -vn -0.7235 0.2670 -0.6365 -vn -0.7238 0.2666 -0.6364 -vn -0.0256 0.9631 -0.2679 -vn -0.0255 0.9631 -0.2679 -vn -0.3726 -0.8804 -0.2933 -vn -0.3727 -0.8804 -0.2933 -vn -0.3722 -0.8806 -0.2934 -vn -0.1142 -0.8780 0.4649 -vn -0.1145 -0.8781 0.4645 -vn -0.1145 -0.8779 0.4649 -vn 0.2430 -0.9493 -0.1995 -vn 0.2432 -0.9493 -0.1992 -vn 0.2431 -0.9494 -0.1990 -vn -0.3451 -0.9156 -0.2063 -vn -0.3453 -0.9155 -0.2066 -vn -0.3453 -0.9154 -0.2069 -vn 0.5506 0.7133 0.4337 -vn 0.5507 0.7131 0.4338 -vn 0.6444 -0.7446 0.1738 -vn 0.6448 -0.7443 0.1740 -vn -0.8380 0.5139 -0.1835 -vn -0.8377 0.5143 -0.1836 -vn -0.8379 0.5141 -0.1835 -vn 0.0654 0.1481 0.9868 -vn 0.0653 0.1482 0.9868 -vn 0.0655 0.1481 0.9868 -vn -0.9371 0.2108 -0.2782 -vn -0.9370 0.2109 -0.2783 -vn -0.9372 0.2108 -0.2780 -vn 0.1513 0.8791 -0.4521 -vn 0.1513 0.8791 -0.4519 -vn 0.1513 0.8791 -0.4520 -vn 0.1545 0.9654 -0.2102 -vn 0.1540 0.9654 -0.2102 -vn 0.1536 0.9655 -0.2104 -vn 0.8723 0.0511 0.4862 -vn 0.8724 0.0515 0.4861 -vn 0.8724 0.0513 0.4861 -vn 0.3472 -0.8499 0.3963 -vn 0.3472 -0.8500 0.3961 -vn 0.3471 -0.8502 0.3958 -vn -0.0877 0.9695 0.2290 -vn -0.0880 0.9696 0.2285 -vn 0.2597 -0.4940 0.8298 -vn 0.2598 -0.4941 0.8297 -vn 0.8646 -0.4367 0.2485 -vn -0.1774 -0.8619 -0.4750 -vn -0.1774 -0.8620 -0.4748 -vn 0.2610 -0.9412 -0.2143 -vn -0.8217 0.4938 -0.2847 -vn -0.4502 0.1971 -0.8709 -vn 0.3211 -0.8590 -0.3988 -vn 0.3205 -0.8591 -0.3991 -vn 0.3204 -0.8591 -0.3992 -vn -0.5353 -0.4275 0.7285 -vn -0.5346 -0.4277 0.7289 -vn -0.5341 -0.4283 0.7289 -vn -0.0753 -0.9440 0.3213 -vn -0.0748 -0.9440 0.3213 -vn 0.0958 0.8976 -0.4303 -vn 0.0951 0.8975 -0.4307 -vn 0.0953 0.8975 -0.4306 -vn 0.3911 0.9193 -0.0440 -vn 0.3910 0.9193 -0.0441 -vn -0.5686 0.7219 -0.3944 -vn -0.5683 0.7223 -0.3942 -vn -0.5684 0.7222 -0.3941 -vn 0.6865 -0.1758 0.7056 -vn -0.1489 -0.8006 -0.5804 -vn 0.4393 0.0428 -0.8973 -vn 0.4406 0.0427 -0.8967 -vn 0.4398 0.0428 -0.8971 -vn 0.3968 0.6831 0.6131 -vn 0.3967 0.6831 0.6132 -vn 0.3967 0.6829 0.6134 -vn 0.3844 -0.6973 -0.6050 -vn 0.0010 -0.0006 1.0000 -vn -0.2881 -0.7604 -0.5821 -vn -0.2882 -0.7605 -0.5819 -vn -0.2882 -0.7603 -0.5822 -vn 0.2051 -0.7320 -0.6497 -vn 0.2050 -0.7319 -0.6498 -vn 0.2111 -0.7998 -0.5619 -vn 0.2103 -0.8003 -0.5616 -vn 0.2112 -0.7997 -0.5620 -vn 0.6286 -0.4013 0.6662 -vn 0.6279 -0.4007 0.6672 -vn 0.6282 -0.4009 0.6668 -vn 0.0003 0.7075 -0.7067 -vn 0.0008 0.7076 -0.7066 -vn 0.0006 0.7075 -0.7067 -vn 0.6253 0.7789 -0.0487 -vn -0.5196 -0.2545 0.8156 -vn -0.5197 -0.2544 0.8156 -vn 0.9868 0.0793 -0.1413 -vn 0.9869 0.0793 -0.1405 -vn 0.9868 0.0795 -0.1409 -vn -0.1396 -0.3895 -0.9104 -vn -0.5545 0.3386 -0.7602 -vn -0.1924 -0.8419 -0.5042 -vn -0.1934 -0.8417 -0.5042 -vn -0.1919 -0.8423 -0.5037 -vn 0.3608 0.8619 -0.3562 -vn 0.3605 0.8624 -0.3553 -vn 0.3607 0.8619 -0.3563 -vn -0.5344 -0.7996 0.2739 -vn -0.5344 -0.7995 0.2743 -vn -0.5342 -0.7997 0.2740 -vn 0.7431 0.6336 -0.2151 -vn 0.7429 0.6338 -0.2153 -vn -0.7329 -0.6561 -0.1800 -vn -0.7331 -0.6559 -0.1798 -vn -0.7331 -0.6560 -0.1796 -vn 0.0202 0.8491 0.5279 -vn 0.0200 0.8491 0.5279 -vn 0.0204 0.8491 0.5279 -vn -0.6970 -0.3654 -0.6170 -vn -0.6973 -0.3653 -0.6167 -vn 0.3165 0.0339 -0.9480 -vn 0.3166 0.0338 -0.9480 -vn 0.9588 0.2753 -0.0697 -vn 0.9589 0.2751 -0.0698 -vn 0.9589 0.2749 -0.0695 -vn 0.0708 0.6635 0.7449 -vn 0.0713 0.6628 0.7454 -vn 0.0709 0.6632 0.7450 -vn 0.3631 0.3874 0.8474 -vn 0.3637 0.3867 0.8474 -vn 0.3625 0.3875 0.8476 -vn 0.6422 0.6669 -0.3778 -vn -0.1641 -0.9750 -0.1498 -vn -0.1640 -0.9750 -0.1499 -vn -0.1640 -0.9751 -0.1496 -vn 0.5760 -0.7217 0.3838 -vn -0.2815 0.5682 0.7732 -vn -0.2817 0.5681 0.7732 -vn 0.7684 0.3729 0.5200 -vn 0.7686 0.3729 0.5198 -vn 0.7687 0.3730 0.5197 -vn 0.1246 -0.1836 -0.9751 -vn 0.1242 -0.1833 -0.9752 -vn 0.1240 -0.1835 -0.9752 -vn 0.1092 0.2560 -0.9605 -vn 0.1087 0.2564 -0.9604 -vn -0.7416 -0.1570 -0.6522 -vn -0.7415 -0.1576 -0.6522 -vn -0.7414 -0.1578 -0.6522 -vn 0.9091 -0.0205 0.4160 -vn 0.9093 -0.0218 0.4156 -vn 0.9092 -0.0193 0.4158 -vn 0.4795 0.8753 -0.0628 -vn 0.4796 0.8752 -0.0629 -vn 0.4797 0.8752 -0.0629 -vn 0.0803 -0.9608 -0.2655 -vn 0.0802 -0.9608 -0.2654 -vn -0.2631 0.4566 -0.8499 -vn -0.2625 0.4568 -0.8500 -vn -0.2624 0.4569 -0.8499 -vn 0.4023 0.8507 -0.3384 -vn 0.4020 0.8507 -0.3388 -vn 0.4028 0.8507 -0.3377 -vn -0.2064 -0.7558 0.6214 -vn -0.2065 -0.7561 0.6210 -vn -0.2066 -0.7565 0.6205 -vn -0.8867 0.3715 0.2752 -vn -0.8866 0.3718 0.2752 -vn -0.8867 0.3716 0.2752 -vn 0.7252 0.3180 0.6107 -vn 0.7254 0.3178 0.6106 -vn -0.3314 0.0463 -0.9423 -vn -0.3313 0.0463 -0.9424 -vn -0.3312 0.0463 -0.9424 -vn 0.2038 0.7406 -0.6403 -vn -0.2556 0.1076 0.9608 -vn -0.2554 0.1082 0.9608 -vn -0.2557 0.1075 0.9608 -vn -0.8100 0.3326 0.4829 -vn -0.8099 0.3325 0.4832 -vn -0.1602 -0.9022 -0.4005 -vn -0.1603 -0.9024 -0.4000 -vn -0.1839 0.9437 -0.2751 -vn -0.1840 0.9436 -0.2752 -vn 0.1266 0.6468 -0.7520 -vn 0.1985 0.4217 -0.8848 -vn 0.3708 -0.4916 0.7879 -vn 0.3709 -0.4916 0.7879 -vn -0.8412 -0.3888 -0.3758 -vn -0.8412 -0.3891 -0.3756 -vn -0.0841 -0.6397 0.7640 -vn -0.0841 -0.6396 0.7641 -vn 0.7955 0.6026 0.0629 -vn 0.7957 0.6025 0.0630 -vn 0.7958 0.6022 0.0631 -vn 0.3476 -0.6975 0.6266 -vn 0.3475 -0.6974 0.6268 -vn 0.3476 -0.6976 0.6265 -vn -0.8431 -0.5117 0.1656 -vn -0.8453 -0.5087 0.1635 -vn -0.8440 -0.5102 0.1652 -vn -0.3337 0.2544 0.9077 -vn -0.3340 0.2541 0.9077 -vn 0.6108 -0.7911 0.0325 -vn 0.6103 -0.7914 0.0336 -vn 0.6099 -0.7918 0.0336 -vn -0.5120 -0.4540 0.7292 -vn -0.5124 -0.4536 0.7292 -vn -0.3228 -0.2870 0.9019 -vn -0.3227 -0.2871 0.9019 -vn -0.1609 -0.2615 -0.9517 -vn -0.1614 -0.2619 -0.9515 -vn -0.1623 -0.2619 -0.9513 -vn -0.2712 -0.9603 0.0652 -vn -0.2714 -0.9603 0.0651 -vn -0.2712 -0.9603 0.0651 -vn -0.4462 -0.2756 -0.8514 -vn -0.1333 0.1666 -0.9770 -vn -0.1338 0.1663 -0.9770 -vn -0.1332 0.1666 -0.9770 -vn -0.1704 0.5321 0.8293 -vn -0.1702 0.5320 0.8295 -vn 0.1070 -0.1465 -0.9834 -vn 0.1071 -0.1464 -0.9834 -vn 0.1071 -0.1461 -0.9835 -vn -0.9374 0.3165 -0.1452 -vn 0.7776 0.3614 0.5144 -vn -0.3250 0.2992 -0.8971 -vn -0.3252 0.2987 -0.8972 -vn -0.7079 -0.3074 0.6359 -vn -0.7080 -0.3075 0.6358 -vn 0.5660 -0.2747 0.7773 -vn 0.5661 -0.2746 0.7773 -vn 0.3526 0.8205 0.4500 -vn 0.3526 0.8208 0.4495 -vn 0.3527 0.8206 0.4497 -vn 0.8842 0.2913 0.3652 -vn 0.8841 0.2912 0.3655 -vn 0.8840 0.2910 0.3659 -vn -0.3622 0.0708 -0.9294 -vn -0.3623 0.0708 -0.9294 -vn 0.4302 -0.8963 -0.1075 -vn 0.4305 -0.8962 -0.1074 -vn 0.5108 0.8078 -0.2943 -vn 0.5085 0.8092 -0.2942 -vn 0.5098 0.8085 -0.2938 -vn 0.5145 0.7611 0.3949 -vn 0.5143 0.7610 0.3954 -vn 0.5139 0.7610 0.3960 -vn 0.0763 0.8822 0.4646 -vn 0.0760 0.8823 0.4646 -vn -0.2733 -0.9273 -0.2559 -vn -0.2726 -0.9274 -0.2560 -vn -0.2720 -0.9275 -0.2564 -vn 0.3431 0.1091 -0.9329 -vn 0.3427 0.1099 -0.9330 -vn 0.3430 0.1094 -0.9330 -vn -0.7817 0.6220 -0.0456 -vn -0.7815 0.6222 -0.0456 -vn -0.7814 0.6223 -0.0460 -vn -0.5080 0.0041 -0.8613 -vn -0.5088 0.0053 -0.8609 -vn -0.5081 0.0047 -0.8613 -vn -0.4267 -0.7442 0.5140 -vn -0.4273 -0.7437 0.5141 -vn -0.4264 -0.7444 0.5138 -vn 0.1909 0.7648 -0.6153 -vn 0.1910 0.7648 -0.6153 -vn 0.2213 0.9716 0.0838 -vn 0.2205 0.9718 0.0832 -vn 0.2200 0.9719 0.0832 -vn -0.4764 -0.8791 -0.0158 -vn -0.4768 -0.8789 -0.0157 -vn -0.4771 -0.8787 -0.0155 -vn -0.2380 -0.0881 -0.9673 -vn -0.2381 -0.0876 -0.9673 -vn -0.8195 0.2937 -0.4921 -vn -0.8188 0.2943 -0.4929 -vn -0.8200 0.2937 -0.4913 -vn -0.4390 -0.7472 0.4990 -vn -0.4390 -0.7471 0.4992 -vn -0.1280 -0.8141 0.5665 -vn -0.1283 -0.8143 0.5662 -vn -0.1278 -0.8139 0.5668 -vn -0.0265 0.6308 0.7755 -vn -0.9688 0.2226 -0.1090 -vn -0.9686 0.2232 -0.1091 -vn -0.1322 0.4759 -0.8695 -vn -0.1320 0.4758 -0.8696 -vn -0.1318 0.4756 -0.8697 -vn 0.2407 0.9386 0.2473 -vn 0.2406 0.9386 0.2472 -vn 0.7311 0.3048 -0.6104 -vn -0.4846 -0.8698 0.0929 -vn -0.4848 -0.8696 0.0937 -vn -0.4846 -0.8698 0.0933 -vn 0.2359 -0.8795 0.4134 -vn 0.2359 -0.8796 0.4132 -vn 0.2357 -0.8797 0.4131 -vn -0.0634 0.9716 -0.2278 -vn -0.0635 0.9716 -0.2278 -vn -0.8328 -0.3337 -0.4417 -vn -0.8329 -0.3331 -0.4419 -vn -0.8329 -0.3334 -0.4418 -vn -0.8310 0.4908 -0.2618 -vn -0.8309 0.4912 -0.2616 -vn 0.1211 0.1602 0.9796 -vn 0.1213 0.1609 0.9795 -vn 0.1212 0.1598 0.9797 -vn 0.8005 0.1508 0.5800 -vn 0.8006 0.1510 0.5799 -vn 0.8006 0.1512 0.5798 -vn 0.6850 -0.1487 0.7132 -vn 0.6849 -0.1490 0.7132 -vn 0.6849 -0.1491 0.7132 -vn 0.5981 -0.7981 -0.0737 -vn 0.5977 -0.7984 -0.0734 -vn 0.1557 0.9823 -0.1044 -vn 0.1552 0.9824 -0.1042 -vn 0.1554 0.9823 -0.1044 -vn -0.8625 -0.3584 0.3574 -vn -0.8626 -0.3583 0.3572 -vn -0.8624 -0.3588 0.3571 -vn 0.0533 0.9982 0.0270 -vn 0.0551 0.9981 0.0282 -vn 0.0544 0.9981 0.0275 -vn 0.5095 -0.6011 -0.6157 -vn 0.5087 -0.6015 -0.6160 -vn 0.5080 -0.6015 -0.6165 -vn 0.4549 -0.6302 -0.6292 -vn 0.4550 -0.6301 -0.6292 -vn -0.1820 0.9251 -0.3332 -vn -0.1820 0.9250 -0.3334 -vn -0.2583 0.7237 -0.6400 -vn -0.2580 0.7237 -0.6401 -vn -0.7254 0.6761 0.1293 -vn -0.7254 0.6761 0.1290 -vn -0.7252 0.6762 0.1297 -vn -0.0859 -0.9850 0.1497 -vn -0.0863 -0.9849 0.1498 -vn -0.0853 -0.9851 0.1492 -vn 0.6861 -0.3904 0.6139 -vn 0.6861 -0.3895 0.6144 -vn 0.6861 -0.3898 0.6143 -vn 0.1973 -0.9799 0.0283 -vn -0.1243 -0.8498 -0.5122 -vn -0.1295 -0.9862 0.1028 -vn -0.1295 -0.9862 0.1030 -vn -0.1295 -0.9862 0.1032 -vn 0.2596 -0.9656 -0.0160 -vn 0.2595 -0.9656 -0.0159 -vn 0.2594 -0.9656 -0.0159 -vn -0.4381 0.2251 0.8703 -vn -0.4385 0.2253 0.8700 -vn -0.5696 0.7787 -0.2630 -vn -0.5697 0.7787 -0.2627 -vn -0.5698 0.7787 -0.2626 -vn 0.4592 0.8617 0.2158 -vn 0.4591 0.8618 0.2159 -vn 0.2358 0.8359 -0.4957 -vn 0.2363 0.8349 -0.4972 -vn 0.2360 0.8356 -0.4961 -vn 0.0778 -0.9967 0.0251 -vn 0.0776 -0.9967 0.0254 -vn 0.0780 -0.9966 0.0251 -vn -0.0764 0.1842 0.9799 -vn -0.0760 0.1843 0.9799 -vn -0.0762 0.1844 0.9799 -vn -0.0892 0.9938 -0.0658 -vn 0.0411 -0.0975 -0.9944 -vn 0.0429 -0.0959 -0.9945 -vn 0.0423 -0.0961 -0.9945 -vn 0.1145 -0.9687 0.2203 -vn 0.1144 -0.9687 0.2203 -vn -0.1592 0.8429 -0.5139 -vn -0.1593 0.8426 -0.5144 -vn -0.1590 0.8424 -0.5149 -vn -0.4371 0.2879 -0.8521 -vn -0.4369 0.2885 -0.8520 -vn -0.4372 0.2876 -0.8521 -vn -0.7250 0.6568 -0.2074 -vn -0.7250 0.6567 -0.2076 -vn -0.7250 0.6567 -0.2075 -vn -0.0966 -0.9807 -0.1702 -vn -0.0542 -0.9748 -0.2165 -vn 0.8610 -0.4682 -0.1988 -vn 0.8609 -0.4685 -0.1984 -vn 0.8609 -0.4684 -0.1986 -vn -0.1489 -0.9869 0.0624 -vn -0.2232 -0.9669 0.1233 -vn -0.2233 -0.9669 0.1233 -vn -0.2231 -0.9669 0.1235 -vn 0.3001 -0.9472 0.1127 -vn 0.3002 -0.9472 0.1126 -vn 0.2998 -0.9473 0.1127 -vn 0.9823 -0.1746 0.0683 -vn 0.9825 -0.1736 0.0677 -vn 0.9823 -0.1745 0.0682 -vn 0.6892 -0.6716 0.2720 -vn 0.6890 -0.6719 0.2719 -vn 0.6890 -0.6720 0.2716 -vn 0.2314 -0.9276 0.2933 -vn 0.2313 -0.9277 0.2930 -vn 0.2313 -0.9277 0.2931 -vn 0.3307 -0.9156 0.2286 -vn 0.0809 -0.9542 0.2879 -vn 0.5559 -0.0145 0.8311 -vn 0.4126 0.9066 0.0883 -vn 0.4130 0.9064 0.0883 -vn 0.4753 -0.8253 0.3049 -vn 0.4745 -0.8256 0.3052 -vn 0.4741 -0.8259 0.3052 -vn -0.9598 0.2791 -0.0295 -vn -0.9598 0.2790 -0.0296 -vn -0.9598 0.2792 -0.0293 -vn 0.7824 0.6204 -0.0537 -vn 0.7821 0.6208 -0.0535 -vn 0.7822 0.6207 -0.0537 -vn 0.1400 0.1532 -0.9782 -vn 0.1405 0.1528 -0.9782 -vn 0.4342 -0.8860 0.1627 -vn 0.4340 -0.8861 0.1626 -vn 0.4078 -0.9069 0.1064 -vn 0.4078 -0.9068 0.1065 -vn 0.4079 -0.9067 0.1069 -vn 0.3870 -0.7935 0.4696 -vn 0.9663 -0.1659 0.1968 -vn 0.9663 -0.1653 0.1975 -vn 0.9663 -0.1665 0.1963 -vn 0.1451 0.9884 0.0440 -vn 0.1453 0.9884 0.0438 -vn 0.1552 0.9404 -0.3026 -vn 0.1555 0.9403 -0.3027 -vn 0.2284 0.9736 -0.0010 -vn 0.2279 0.9737 -0.0007 -vn 0.5890 -0.7867 0.1848 -vn -0.5993 0.7092 -0.3714 -vn -0.5998 0.7089 -0.3711 -vn -0.5987 0.7095 -0.3716 -vn -0.7365 0.2305 -0.6360 -vn -0.7365 0.2308 -0.6359 -vn -0.7366 0.2302 -0.6360 -vn -0.6380 0.6413 -0.4262 -vn -0.6382 0.6412 -0.4262 -vn -0.6381 0.6412 -0.4262 -vn 0.4797 -0.7718 0.4174 -vn 0.4799 -0.7718 0.4172 -vn 0.4798 -0.7716 0.4177 -vn 0.3568 -0.9167 0.1800 -vn 0.3569 -0.9167 0.1798 -vn -0.2835 -0.9370 -0.2040 -vn -0.2835 -0.9370 -0.2039 -vn -0.2834 -0.9371 -0.2036 -vn -0.6346 0.3335 -0.6972 -vn -0.6357 0.3329 -0.6965 -vn -0.6351 0.3334 -0.6968 -vn 0.6550 0.6210 -0.4304 -vn 0.6551 0.6210 -0.4304 -vn 0.6549 0.6211 -0.4305 -vn -0.1564 -0.6093 -0.7774 -vn -0.1562 -0.6093 -0.7774 -vn -0.1561 -0.6093 -0.7774 -vn -0.2799 -0.9468 -0.1591 -vn -0.2798 -0.9467 -0.1593 -vn -0.2797 -0.9468 -0.1589 -vn -0.1872 -0.1034 0.9769 -vn -0.1871 -0.1035 0.9769 -vn -0.1874 -0.1033 0.9768 -vn -0.4468 0.8912 0.0777 -vn 0.7735 0.3237 0.5449 -vn 0.7738 0.3237 0.5444 -vn 0.7741 0.3242 0.5437 -vn -0.4942 -0.8692 -0.0143 -vn -0.4943 -0.8692 -0.0137 -vn -0.4941 -0.8693 -0.0141 -vn 0.4127 -0.7260 -0.5501 -vn 0.4140 -0.7271 -0.5477 -vn 0.4136 -0.7264 -0.5489 -vn -0.7997 -0.5565 0.2253 -vn -0.8000 -0.5560 0.2257 -vn -0.7998 -0.5563 0.2255 -vn -0.0384 0.9992 0.0136 -vn -0.0392 0.9991 0.0129 -vn -0.0392 0.9991 0.0130 -vn 0.5729 -0.7257 0.3811 -vn 0.5729 -0.7257 0.3810 -vn 0.5360 -0.7506 0.3863 -vn 0.5355 -0.7510 0.3863 -vn 0.5359 -0.7507 0.3863 -vn -0.8247 0.5352 0.1827 -vn 0.4765 -0.8792 -0.0013 -vn 0.4764 -0.8792 -0.0015 -vn 0.6839 -0.2452 0.6871 -vn 0.6840 -0.2453 0.6870 -vn 0.9234 -0.2736 0.2692 -vn 0.9238 -0.2727 0.2686 -vn 0.9235 -0.2734 0.2689 -vn -0.6283 0.1542 0.7625 -vn -0.6283 0.1546 0.7625 -vn -0.6284 0.1542 0.7624 -vn -0.4481 -0.8719 0.1972 -vn -0.4483 -0.8719 0.1971 -vn 0.2634 -0.9567 -0.1236 -vn 0.2635 -0.9567 -0.1236 -vn -0.4544 0.6615 -0.5967 -vn -0.4546 0.6617 -0.5962 -vn -0.4547 0.6616 -0.5963 -vn -0.7816 -0.4447 -0.4375 -vn -0.7816 -0.4446 -0.4375 -vn 0.5778 0.8113 -0.0888 -vn 0.5778 0.8113 -0.0891 -vn -0.5993 -0.0245 -0.8002 -vn -0.5992 -0.0247 -0.8002 -vn -0.5988 -0.0253 -0.8005 -vn 0.2948 -0.9549 -0.0349 -vn 0.2951 -0.9548 -0.0352 -vn 0.2952 -0.9548 -0.0353 -vn 0.7157 0.2219 -0.6623 -vn 0.8109 0.5040 -0.2972 -vn 0.8108 0.5042 -0.2973 -vn 0.8110 0.5040 -0.2971 -vn 0.3576 -0.9320 -0.0586 -vn 0.3577 -0.9320 -0.0588 -vn 0.3950 -0.9182 -0.0301 -vn 0.3952 -0.9181 -0.0300 -vn 0.3949 -0.9182 -0.0302 -vn -0.3341 -0.0294 0.9421 -vn -0.3341 -0.0282 0.9421 -vn -0.3341 -0.0287 0.9421 -vn 0.3211 0.4424 -0.8374 -vn 0.3213 0.4423 -0.8374 -vn 0.3212 0.4423 -0.8374 -vn 0.3641 0.9310 -0.0261 -vn 0.3642 0.9309 -0.0261 -vn 0.3645 0.9308 -0.0260 -vn -0.7650 0.5387 -0.3529 -vn -0.7650 0.5388 -0.3527 -vn -0.7811 0.4357 -0.4474 -vn -0.7810 0.4360 -0.4472 -vn -0.7810 0.4363 -0.4470 -vn -0.0032 0.9354 0.3535 -vn 0.7042 -0.4916 0.5123 -vn 0.7041 -0.4917 0.5123 -vn 0.9150 -0.0027 -0.4034 -vn 0.9149 -0.0025 -0.4036 -vn 0.9148 -0.0025 -0.4039 -vn 0.0167 0.7997 -0.6002 -vn 0.0165 0.7998 -0.6000 -vn -0.5277 0.8426 -0.1077 -vn -0.5269 0.8430 -0.1084 -vn -0.5278 0.8426 -0.1072 -vn 0.0876 -0.9082 -0.4092 -vn 0.0874 -0.9082 -0.4093 -vn 0.0877 -0.9083 -0.4091 -vn 0.3184 0.7099 0.6282 -vn 0.3184 0.7098 0.6283 -vn 0.9181 -0.0830 -0.3875 -vn 0.9178 -0.0828 -0.3883 -vn 0.9175 -0.0819 -0.3892 -vn 0.7303 0.2315 -0.6427 -vn 0.6717 -0.1504 0.7254 -vn 0.6718 -0.1505 0.7253 -vn 0.6717 -0.1508 0.7253 -vn -0.0122 0.5861 0.8102 -vn -0.0114 0.5864 0.8100 -vn -0.0106 0.5864 0.8100 -vn -0.6302 -0.7753 0.0420 -vn -0.6303 -0.7752 0.0421 -vn -0.6301 -0.7754 0.0416 -vn 0.5589 -0.7829 -0.2734 -vn 0.5591 -0.7827 -0.2734 -vn 0.5592 -0.7826 -0.2734 -vn 0.2031 -0.7822 -0.5890 -vn 0.2025 -0.7824 -0.5889 -vn 0.2024 -0.7825 -0.5889 -vn 0.1576 -0.2632 0.9518 -vn 0.1572 -0.2629 0.9519 -vn 0.1575 -0.2632 0.9518 -vn 0.2534 0.9187 -0.3030 -vn 0.2538 0.9185 -0.3033 -vn 0.1402 0.3634 -0.9210 -vn 0.1398 0.3639 -0.9209 -vn 0.1402 0.3637 -0.9209 -vn 0.1473 0.7704 0.6204 -vn 0.1472 0.7705 0.6202 -vn 0.1000 -0.7214 -0.6853 -vn 0.1003 -0.7214 -0.6853 -vn 0.1002 -0.7214 -0.6852 -vn 0.4845 0.6832 -0.5464 -vn -0.3870 0.5162 -0.7641 -vn -0.3868 0.5164 -0.7640 -vn 0.5462 0.0900 0.8328 -vn 0.5461 0.0899 0.8329 -vn 0.5461 0.0897 0.8329 -vn 0.6944 0.7182 -0.0447 -vn 0.6944 0.7182 -0.0449 -vn 0.1218 -0.7990 -0.5889 -vn 0.1220 -0.7989 -0.5889 -vn 0.1213 -0.7993 -0.5886 -vn 0.6786 -0.0241 0.7341 -vn 0.6787 -0.0244 0.7340 -vn -0.3371 0.8459 -0.4134 -vn -0.3374 0.8456 -0.4137 -vn 0.5130 0.8336 -0.2047 -vn 0.5128 0.8336 -0.2051 -vn 0.5130 0.8336 -0.2046 -vn 0.3359 0.7069 -0.6224 -vn 0.3361 0.7063 -0.6230 -vn 0.3359 0.7067 -0.6226 -vn -0.1481 -0.9889 0.0077 -vn -0.1487 -0.9889 0.0071 -vn -0.1486 -0.9889 0.0072 -vn -0.6141 0.7571 -0.2231 -vn -0.6143 0.7568 -0.2235 -vn -0.6144 0.7567 -0.2236 -vn 0.7892 0.5652 0.2404 -vn 0.7891 0.5654 0.2403 -vn 0.7891 0.5654 0.2402 -vn -0.8587 0.0551 0.5096 -vn -0.8587 0.0554 0.5095 -vn -0.8586 0.0548 0.5097 -vn -0.5027 -0.8200 -0.2736 -vn -0.5033 -0.8198 -0.2733 -vn -0.5035 -0.8197 -0.2731 -vn 0.2182 -0.6074 0.7638 -vn 0.2185 -0.6074 0.7638 -vn 0.2186 -0.6073 0.7638 -vn -0.3417 -0.9398 -0.0050 -vn -0.3417 -0.9398 -0.0049 -vn -0.3418 -0.9398 -0.0053 -vn -0.6063 -0.4234 0.6731 -vn -0.6072 -0.4232 0.6725 -vn -0.6066 -0.4232 0.6730 -vn 0.7282 -0.1736 0.6630 -vn 0.7287 -0.1735 0.6625 -vn 0.7283 -0.1735 0.6629 -vn 0.0544 0.6592 -0.7500 -vn 0.0548 0.6595 -0.7497 -vn 0.0543 0.6589 -0.7503 -vn 0.1699 0.6649 -0.7273 -vn 0.4902 -0.8043 0.3359 -vn 0.4900 -0.8044 0.3359 -vn 0.4903 -0.8042 0.3359 -vn 0.8773 0.4791 0.0294 -vn 0.8774 0.4788 0.0291 -vn 0.8778 0.4783 0.0281 -vn 0.8191 0.1991 -0.5380 -vn 0.8191 0.1992 -0.5379 -vn 0.3060 -0.8596 -0.4091 -vn 0.3059 -0.8599 -0.4087 -vn 0.3057 -0.8601 -0.4085 -vn 0.1640 0.9256 -0.3411 -vn 0.1644 0.9256 -0.3410 -vn 0.1641 0.9256 -0.3412 -vn 0.6453 0.7116 -0.2779 -vn 0.6452 0.7116 -0.2781 -vn 0.6451 0.7117 -0.2780 -vn 0.4335 0.7710 -0.4665 -vn 0.4337 0.7709 -0.4665 -vn 0.2714 -0.8807 0.3882 -vn 0.2715 -0.8806 0.3884 -vn 0.2715 -0.8807 0.3883 -vn -0.6794 0.7203 -0.1398 -vn 0.0014 -0.0018 1.0000 -vn -0.1982 -0.9352 0.2934 -vn -0.1982 -0.9352 0.2935 -vn 0.3072 -0.8710 0.3834 -vn 0.3077 -0.8709 0.3833 -vn -0.3115 0.2300 0.9220 -vn -0.3115 0.2293 0.9222 -vn -0.3119 0.2291 0.9221 -vn 0.2018 0.9621 0.1834 -vn 0.2020 0.9621 0.1835 -vn -0.9693 0.0322 0.2436 -vn -0.9692 0.0321 0.2442 -vn -0.9695 0.0327 0.2427 -vn -0.9653 -0.2474 -0.0833 -vn -0.9653 -0.2473 -0.0834 -vn -0.9654 -0.2470 -0.0831 -vn -0.4381 -0.0888 0.8945 -vn -0.4384 -0.0887 0.8944 -vn 0.2463 0.7791 -0.5764 -vn 0.2470 0.7797 -0.5754 -vn 0.2464 0.7785 -0.5773 -vn 0.8728 -0.1771 0.4549 -vn 0.8725 -0.1776 0.4551 -vn 0.8729 -0.1764 0.4550 -vn 0.9191 -0.0696 0.3877 -vn 0.9192 -0.0696 0.3877 -vn 0.9191 -0.0697 0.3877 -vn 0.6400 0.5707 -0.5144 -vn 0.6402 0.5685 -0.5167 -vn 0.6395 0.5679 -0.5182 -vn 0.8391 0.0795 0.5381 -vn 0.8392 0.0796 0.5380 -vn -0.0685 0.9735 -0.2182 -vn -0.0685 0.9735 -0.2183 -vn -0.6100 -0.4011 0.6834 -vn -0.6098 -0.4010 0.6836 -vn -0.6101 -0.4010 0.6833 -vn -0.7708 -0.5911 -0.2375 -vn -0.7708 -0.5911 -0.2376 -vn -0.7710 -0.5910 -0.2372 -vn -0.3370 0.2550 0.9063 -vn -0.3375 0.2549 0.9062 -vn -0.6181 0.3543 0.7017 -vn -0.6169 0.3550 0.7024 -vn -0.6178 0.3544 0.7020 -vn -0.0639 -0.9553 -0.2886 -vn -0.0634 -0.9554 -0.2884 -vn -0.0644 -0.9552 -0.2889 -vn -0.5629 -0.2922 -0.7732 -vn -0.5628 -0.2924 -0.7732 -vn -0.1985 -0.0695 -0.9776 -vn -0.1985 -0.0697 -0.9776 -vn 0.2878 -0.2632 0.9208 -vn -0.1817 0.7830 -0.5950 -vn -0.1823 0.7828 -0.5950 -vn -0.1821 0.7829 -0.5949 -vn -0.2352 0.2451 -0.9405 -vn -0.2353 0.2450 -0.9405 -vn -0.2350 0.2454 -0.9405 -vn -0.7636 0.5593 -0.3225 -vn -0.2484 -0.7052 0.6641 -vn 0.0399 0.1211 0.9918 -vn 0.0395 0.1211 0.9919 -vn 0.0404 0.1207 0.9919 -vn 0.3993 -0.7046 0.5866 -vn 0.3973 -0.7045 0.5881 -vn 0.3983 -0.7047 0.5871 -vn 0.8278 -0.0729 0.5563 -vn 0.8277 -0.0730 0.5565 -vn 0.8278 -0.0730 0.5563 -vn 0.0274 -0.0503 -0.9984 -vn 0.0274 -0.0501 -0.9984 -vn 0.0273 -0.0505 -0.9984 -vn 0.3350 0.9194 -0.2062 -vn 0.3351 0.9194 -0.2058 -vn 0.3353 0.9194 -0.2057 -vn 0.0764 0.5869 0.8061 -vn 0.0765 0.5870 0.8060 -vn 0.0763 0.5868 0.8061 -vn 0.9163 -0.3866 0.1049 -vn 0.3958 -0.7936 -0.4621 -vn 0.3957 -0.7936 -0.4621 -vn 0.6241 -0.7546 -0.2026 -vn 0.6240 -0.7547 -0.2028 -vn -0.5435 -0.8330 0.1033 -vn -0.5436 -0.8330 0.1033 -vn -0.2886 -0.0445 -0.9564 -vn -0.2890 -0.0445 -0.9563 -vn -0.2891 -0.0443 -0.9563 -vn -0.8935 0.3455 0.2869 -vn -0.8936 0.3455 0.2866 -vn -0.8934 0.3457 0.2870 -vn 0.0153 0.6145 0.7888 -vn 0.0561 0.7040 -0.7079 -vn 0.0541 0.7019 -0.7102 -vn 0.0513 0.7002 -0.7121 -vn -0.6093 -0.7070 0.3592 -vn -0.6096 -0.7068 0.3589 -vn -0.6094 -0.7070 0.3589 -vn 0.4576 -0.6057 -0.6510 -vn 0.4574 -0.6060 -0.6508 -vn 0.4579 -0.6053 -0.6511 -vn 0.5902 -0.8072 -0.0104 -vn 0.2476 0.9525 0.1775 -vn 0.2479 0.9524 0.1777 -vn 0.2478 0.9524 0.1774 -vn -0.9958 -0.0813 -0.0411 -vn -0.9958 -0.0813 -0.0412 -vn -0.9958 -0.0812 -0.0414 -vn 0.3816 0.8307 0.4054 -vn 0.3815 0.8307 0.4054 -vn 0.3816 0.8306 0.4055 -vn 0.2162 0.9686 0.1228 -vn 0.9655 0.0245 0.2591 -vn -0.5314 -0.8338 -0.1499 -vn -0.5316 -0.8336 -0.1500 -vn -0.5318 -0.8335 -0.1499 -vn -0.0385 -0.9813 0.1885 -vn -0.0386 -0.9814 0.1883 -vn -0.0386 -0.9813 0.1884 -vn -0.1289 0.1708 0.9768 -vn -0.1289 0.1709 0.9768 -vn 0.0472 -0.5033 -0.8628 -vn 0.0471 -0.5028 -0.8631 -vn 0.0471 -0.5030 -0.8630 -vn 0.0703 -0.4209 -0.9044 -vn 0.0702 -0.4207 -0.9045 -vn 0.0706 -0.4215 -0.9041 -vn 0.2254 0.1880 0.9559 -vn 0.2259 0.1878 0.9559 -vn 0.2262 0.1878 0.9558 -vn 0.8719 -0.4642 0.1560 -vn 0.8719 -0.4641 0.1563 -vn 0.8719 -0.4640 0.1565 -vn -0.5510 0.7758 -0.3075 -vn 0.0988 -0.9926 -0.0703 -vn 0.0989 -0.9926 -0.0704 -vn 0.0991 -0.9926 -0.0704 -vn 0.8597 -0.0238 0.5103 -vn 0.8601 -0.0240 0.5096 -vn 0.8599 -0.0239 0.5099 -vn -0.3293 -0.9442 0.0043 -vn 0.5365 -0.8318 -0.1426 -vn 0.5369 -0.8318 -0.1409 -vn 0.5367 -0.8317 -0.1420 -vn -0.1010 -0.8591 0.5018 -vn 0.7405 -0.5763 -0.3457 -vn 0.7406 -0.5762 -0.3458 -vn 0.7407 -0.5761 -0.3456 -vn 0.5820 0.7482 -0.3184 -vn 0.5822 0.7485 -0.3175 -vn 0.5821 0.7484 -0.3180 -vn -0.0862 -0.9840 0.1557 -vn -0.0862 -0.9841 0.1551 -vn 0.3070 0.6468 -0.6982 -vn 0.3069 0.6472 -0.6978 -vn 0.3072 0.6466 -0.6983 -vn -0.9606 -0.2756 -0.0352 -vn -0.9607 -0.2754 -0.0352 -vn -0.2283 -0.5252 0.8198 -vn -0.2283 -0.5253 0.8197 -vn -0.2283 -0.5254 0.8196 -vn -0.5404 -0.8207 -0.1857 -vn -0.5403 -0.8207 -0.1856 -vn 0.2148 0.7012 -0.6798 -vn 0.2144 0.7011 -0.6801 -vn -0.3715 -0.8418 -0.3916 -vn -0.3964 -0.5207 -0.7561 -vn -0.3974 -0.5205 -0.7558 -vn -0.3961 -0.5208 -0.7562 -vn -0.0071 -0.9667 0.2557 -vn -0.0072 -0.9668 0.2556 -vn -0.0073 -0.9668 0.2555 -vn 0.8983 0.2791 0.3393 -vn 0.8984 0.2790 0.3392 -vn 0.8984 0.2790 0.3391 -vn 0.8992 0.4368 0.0251 -vn 0.8991 0.4369 0.0251 -vn -0.1747 0.9738 -0.1454 -vn -0.1748 0.9738 -0.1453 -vn -0.4559 -0.7589 0.4651 -vn -0.4556 -0.7591 0.4649 -vn -0.4551 -0.7595 0.4648 -vn -0.0701 0.9873 -0.1426 -vn -0.0700 0.9873 -0.1426 -vn 0.1895 -0.7656 -0.6147 -vn 0.1893 -0.7660 -0.6144 -vn 0.1892 -0.7662 -0.6141 -vn 0.3155 -0.7382 -0.5962 -vn 0.3153 -0.7381 -0.5965 -vn 0.6776 -0.4270 0.5987 -vn -0.0530 -0.9787 0.1984 -vn -0.0530 -0.9787 0.1983 -vn -0.0531 -0.9787 0.1983 -vn -0.6399 -0.4481 -0.6243 -vn -0.6401 -0.4485 -0.6238 -vn -0.6400 -0.4484 -0.6240 -vn 0.2947 -0.9153 0.2745 -vn 0.2946 -0.9153 0.2746 -vn 0.3955 -0.8968 -0.1983 -vn 0.3956 -0.8968 -0.1981 -vn 0.3958 -0.8968 -0.1979 -vn 0.6683 0.0126 -0.7438 -vn 0.6681 0.0128 -0.7440 -vn 0.6681 0.0133 -0.7440 -vn 0.0354 0.1957 0.9800 -vn 0.0356 0.1956 0.9800 -vn -0.5930 0.4818 -0.6451 -vn -0.5930 0.4820 -0.6450 -vn -0.5928 0.4821 -0.6451 -vn -0.0593 -0.9348 -0.3503 -vn -0.0590 -0.9349 -0.3500 -vn -0.0587 -0.9350 -0.3498 -vn -0.8855 0.1160 -0.4500 -vn -0.8851 0.1170 -0.4505 -vn -0.8853 0.1163 -0.4502 -vn 0.0961 0.3494 -0.9320 -vn 0.0987 0.3476 -0.9324 -vn 0.0997 0.3451 -0.9333 -vn -0.5602 -0.7712 -0.3024 -vn -0.5602 -0.7712 -0.3023 -vn -0.5604 -0.7709 -0.3027 -vn -0.3834 0.5298 -0.7565 -vn -0.3884 -0.9181 -0.0790 -vn -0.3882 -0.9182 -0.0791 -vn 0.3109 -0.8808 0.3570 -vn -0.5119 -0.2157 -0.8315 -vn 0.0931 0.9754 0.1996 -vn 0.0925 0.9757 0.1986 -vn 0.4776 0.8280 -0.2940 -vn 0.4777 0.8279 -0.2940 -vn 0.4777 0.8278 -0.2941 -vn 0.8616 -0.3411 -0.3760 -vn 0.8614 -0.3415 -0.3761 -vn 0.8617 -0.3408 -0.3760 -vn -0.0884 0.5127 0.8540 -vn -0.3803 -0.9201 0.0934 -vn -0.3807 -0.9200 0.0935 -vn -0.3808 -0.9199 0.0935 -vn -0.5318 -0.7573 -0.3791 -vn -0.4761 -0.8790 -0.0262 -vn 0.3200 -0.9021 0.2895 -vn 0.3201 -0.9022 0.2892 -vn 0.3202 -0.9023 0.2887 -vn 0.9572 0.2732 0.0956 -vn 0.9570 0.2737 0.0962 -vn 0.9572 0.2731 0.0955 -vn -0.1731 0.4926 0.8528 -vn -0.1749 0.4919 0.8529 -vn -0.1741 0.4921 0.8530 -vn -0.0748 -0.3055 0.9493 -vn -0.0744 -0.3057 0.9492 -vn -0.0742 -0.3058 0.9492 -vn 0.2917 -0.6061 0.7400 -vn 0.2920 -0.6066 0.7395 -vn 0.2919 -0.6062 0.7398 -vn 0.1105 -0.0013 0.9939 -vn -0.0045 0.0015 1.0000 -vn 0.0989 0.8136 -0.5729 -vn -0.8361 -0.0786 -0.5429 -vn -0.8359 -0.0779 -0.5433 -vn -0.8359 -0.0780 -0.5433 -vn 0.5267 -0.8236 0.2103 -vn 0.5268 -0.8236 0.2102 -vn 0.5266 -0.8236 0.2107 -vn -0.0859 -0.9200 -0.3824 -vn -0.0841 -0.9204 -0.3818 -vn -0.0852 -0.9201 -0.3824 -vn 0.9508 -0.0681 0.3023 -vn 0.9507 -0.0685 0.3025 -vn 0.9507 -0.0686 0.3025 -vn 0.8453 -0.3641 0.3909 -vn 0.8451 -0.3643 0.3912 -vn 0.8454 -0.3641 0.3908 -vn 0.6284 0.7692 0.1161 -vn 0.6285 0.7690 0.1163 -vn -0.0862 -0.6655 -0.7414 -vn -0.0854 -0.6659 -0.7411 -vn -0.0838 -0.6658 -0.7414 -vn 0.2012 0.9588 0.2008 -vn 0.2012 0.9587 0.2008 -vn 0.4648 -0.7889 -0.4020 -vn 0.4647 -0.7888 -0.4023 -vn 0.4648 -0.7890 -0.4018 -vn 0.3230 0.4641 0.8248 -vn 0.3244 0.4650 0.8237 -vn 0.3227 0.4636 0.8252 -vn 0.5710 -0.7828 0.2472 -vn 0.4212 0.0440 0.9059 -vn 0.1351 0.9906 0.0199 -vn 0.1347 0.9907 0.0200 -vn 0.1353 0.9906 0.0201 -vn -0.4390 -0.8985 0.0044 -vn -0.4385 -0.8987 0.0044 -vn -0.4384 -0.8988 0.0042 -vn 0.4044 -0.1809 0.8965 -vn 0.4046 -0.1807 0.8965 -vn 0.4051 -0.1805 0.8963 -vn -0.3428 -0.8549 -0.3893 -vn -0.3427 -0.8552 -0.3889 -vn -0.3429 -0.8549 -0.3894 -vn -0.6715 0.6573 0.3421 -vn -0.6716 0.6570 0.3425 -vn -0.6716 0.6576 0.3413 -vn -0.1328 -0.8123 0.5680 -vn -0.1327 -0.8123 0.5680 -vn -0.1330 -0.8123 0.5679 -vn 0.6772 0.5996 0.4265 -vn -0.0770 0.3435 -0.9360 -vn -0.7143 0.5461 -0.4376 -vn -0.7138 0.5465 -0.4379 -vn -0.7141 0.5463 -0.4377 -vn 0.2623 0.9097 -0.3218 -vn 0.2628 0.9096 -0.3218 -vn 0.2634 0.9094 -0.3220 -vn -0.9456 0.3089 -0.1025 -vn -0.9453 0.3097 -0.1026 -vn -0.9457 0.3084 -0.1026 -vn 0.8262 0.5444 0.1450 -vn 0.8263 0.5443 0.1449 -vn 0.2851 -0.9144 -0.2874 -vn -0.0909 0.9879 -0.1258 -vn -0.0903 0.9880 -0.1254 -vn -0.0911 0.9878 -0.1262 -vn -0.9811 0.1917 0.0259 -vn -0.9811 0.1917 0.0257 -vn -0.9812 0.1915 0.0256 -vn 0.8069 0.4118 0.4234 -vn 0.8069 0.4118 0.4235 -vn 0.8070 0.4119 0.4231 -vn 0.0313 -0.8184 -0.5738 -vn 0.6187 -0.7645 -0.1812 -vn 0.6185 -0.7646 -0.1812 -vn 0.6185 -0.7645 -0.1816 -vn -0.9171 0.2329 -0.3235 -vn -0.9173 0.2325 -0.3233 -vn -0.1090 -0.9431 0.3141 -vn -0.1089 -0.9432 0.3139 -vn -0.3805 -0.8471 -0.3710 -vn -0.3805 -0.8471 -0.3709 -vn -0.3808 -0.8470 -0.3710 -vn -0.1878 0.9549 -0.2300 -vn -0.1867 0.9552 -0.2296 -vn -0.1869 0.9552 -0.2297 -vn -0.3852 0.8731 0.2990 -vn -0.3851 0.8731 0.2989 -vn -0.8353 0.5446 -0.0748 -vn -0.8353 0.5448 -0.0747 -vn 0.1583 0.9096 0.3841 -vn 0.1579 0.9098 0.3839 -vn 0.1581 0.9097 0.3840 -vn -0.7966 0.3118 -0.5179 -vn -0.7964 0.3119 -0.5182 -vn 0.1773 -0.9820 -0.0647 -vn 0.1769 -0.9821 -0.0646 -vn 0.1775 -0.9820 -0.0648 -vn 0.2551 -0.9651 -0.0589 -vn 0.2549 -0.9652 -0.0591 -vn 0.2549 -0.9652 -0.0592 -vn 0.7993 0.2563 0.5434 -vn 0.7994 0.2563 0.5434 -vn 0.7996 0.2568 0.5428 -vn 0.7001 0.5826 0.4129 -vn 0.6999 0.5830 0.4127 -vn -0.3929 -0.8876 0.2406 -vn -0.3930 -0.8879 0.2390 -vn -0.3927 -0.8879 0.2398 -vn 0.0472 -0.3733 0.9265 -vn 0.0465 -0.3730 0.9266 -vn 0.0474 -0.3733 0.9265 -vn 0.2003 -0.9257 -0.3210 -vn 0.2000 -0.9257 -0.3211 -vn -0.5374 -0.7444 0.3964 -vn -0.5373 -0.7444 0.3965 -vn 0.1394 -0.9705 -0.1967 -vn 0.1397 -0.9705 -0.1965 -vn 0.1396 -0.9705 -0.1966 -vn -0.1767 -0.8861 0.4285 -vn -0.1767 -0.8862 0.4284 -vn 0.5430 0.4405 0.7149 -vn 0.5429 0.4408 0.7148 -vn 0.5433 0.4406 0.7146 -vn -0.2372 -0.8246 0.5136 -vn -0.2373 -0.8243 0.5140 -vn -0.2371 -0.8245 0.5138 -vn 0.9303 -0.2196 0.2936 -vn 0.9302 -0.2200 0.2939 -vn 0.9305 -0.2194 0.2934 -vn 0.8850 0.3952 -0.2462 -vn 0.8853 0.3949 -0.2456 -vn 0.8851 0.3951 -0.2461 -vn -0.1964 -0.2040 -0.9591 -vn -0.6459 0.7622 0.0428 -vn -0.6458 0.7623 0.0435 -vn -0.6459 0.7622 0.0431 -vn -0.8699 -0.4926 -0.0236 -vn -0.8701 -0.4922 -0.0235 -vn -0.8700 -0.4926 -0.0236 -vn -0.9389 -0.3209 -0.1242 -vn -0.9390 -0.3207 -0.1240 -vn -0.9389 -0.3209 -0.1245 -vn -0.3499 -0.7933 0.4983 -vn -0.3498 -0.7932 0.4984 -vn 0.3820 0.9185 -0.1025 -vn 0.3820 0.9184 -0.1027 -vn 0.3821 0.9184 -0.1026 -vn 0.2746 0.4289 0.8606 -vn 0.2755 0.4287 0.8604 -vn 0.2751 0.4288 0.8605 -vn -0.3526 -0.9204 0.1687 -vn -0.3522 -0.9206 0.1689 -vn -0.3532 -0.9203 0.1684 -vn 0.1202 -0.0629 -0.9908 -vn 0.1206 -0.0624 -0.9907 -vn 0.1206 -0.0626 -0.9907 -vn 0.8736 -0.1207 0.4715 -vn 0.8737 -0.1210 0.4712 -vn 0.8737 -0.1210 0.4711 -vn 0.3239 0.4683 -0.8221 -vn 0.3248 0.4678 -0.8220 -vn 0.3259 0.4675 -0.8217 -vn 0.1931 0.4214 0.8861 -vn 0.1933 0.4206 0.8864 -vn 0.1932 0.4211 0.8862 -vn 0.9657 -0.1081 0.2359 -vn 0.9657 -0.1082 0.2361 -vn 0.3057 -0.8443 -0.4401 -vn 0.3053 -0.8444 -0.4401 -vn 0.3632 -0.4129 0.8352 -vn -0.1503 -0.8021 -0.5780 -vn -0.1507 -0.8020 -0.5780 -vn -0.1498 -0.8020 -0.5782 -vn 0.0985 -0.8196 -0.5644 -vn 0.0983 -0.8195 -0.5646 -vn 0.0985 -0.8197 -0.5642 -vn -0.6589 -0.6213 0.4241 -vn -0.6588 -0.6214 0.4241 -vn 0.3889 0.9196 0.0562 -vn 0.3888 0.9196 0.0565 -vn 0.0714 -0.9503 -0.3031 -vn 0.0713 -0.9504 -0.3027 -vn 0.0712 -0.9504 -0.3027 -vn -0.0554 0.7665 -0.6399 -vn -0.0552 0.7665 -0.6399 -vn -0.0553 0.7665 -0.6399 -vn -0.1808 -0.8161 -0.5489 -vn -0.2514 -0.4191 0.8724 -vn -0.2511 -0.4189 0.8726 -vn 0.3469 0.8635 -0.3662 -vn 0.3470 0.8633 -0.3665 -vn -0.5498 0.0576 0.8333 -vn -0.1610 0.9792 -0.1233 -vn -0.1608 0.9793 -0.1233 -vn -0.1607 0.9793 -0.1234 -vn -0.2919 -0.9211 -0.2576 -vn -0.2917 -0.9212 -0.2575 -vn -0.2913 -0.9214 -0.2573 -vn -0.2103 -0.8785 -0.4289 -vn -0.2101 -0.8785 -0.4291 -vn -0.3159 -0.9372 0.1477 -vn -0.3155 -0.9372 0.1486 -vn -0.3158 -0.9372 0.1482 -vn -0.3147 -0.8138 0.4885 -vn -0.3128 -0.8149 0.4879 -vn -0.3137 -0.8145 0.4880 -vn 0.7607 -0.5340 0.3691 -vn 0.7611 -0.5339 0.3682 -vn 0.7612 -0.5339 0.3681 -vn -0.3091 0.9076 0.2842 -vn -0.3092 0.9076 0.2839 -vn -0.3092 0.9076 0.2840 -vn 0.6026 0.7980 -0.0102 -vn 0.6026 0.7980 -0.0099 -vn 0.6025 0.7981 -0.0100 -vn 0.3994 0.2880 0.8704 -vn -0.4874 -0.7263 0.4847 -vn -0.4871 -0.7266 0.4845 -vn -0.4874 -0.7266 0.4842 -vn -0.2517 -0.9658 0.0619 -vn -0.5976 0.7450 -0.2964 -vn 0.6008 0.5928 -0.5363 -vn -0.1489 -0.9772 0.1515 -vn -0.1487 -0.9772 0.1516 -vn -0.1495 -0.9772 0.1509 -vn 0.7029 0.5697 -0.4260 -vn 0.7029 0.5697 -0.4258 -vn 0.7028 0.5696 -0.4261 -vn 0.3439 0.4004 -0.8494 -vn 0.3444 0.4006 -0.8491 -vn 0.3441 0.4006 -0.8492 -vn 0.4068 0.1275 -0.9046 -vn 0.6261 0.3486 -0.6975 -vn 0.6260 0.3487 -0.6976 -vn 0.7937 0.5998 0.1012 -vn -0.3724 -0.1250 -0.9196 -vn -0.3718 -0.1255 -0.9198 -vn -0.3722 -0.1252 -0.9197 -vn -0.1001 -0.9916 0.0823 -vn -0.0999 -0.9916 0.0822 -vn -0.1003 -0.9915 0.0824 -vn 0.6698 0.7411 0.0456 -vn 0.6699 0.7410 0.0455 -vn -0.0857 -0.9929 0.0819 -vn -0.0859 -0.9929 0.0819 -vn -0.0861 -0.9929 0.0820 -vn 0.2868 -0.8564 0.4294 -vn 0.2875 -0.8565 0.4288 -vn 0.2873 -0.8563 0.4292 -vn -0.7310 0.4666 0.4979 -vn -0.7310 0.4666 0.4980 -vn -0.0810 -0.3546 -0.9315 -vn -0.0802 -0.3554 -0.9313 -vn -0.0804 -0.3552 -0.9313 -vn -0.0573 -0.9940 -0.0937 -vn -0.0565 -0.9940 -0.0936 -vn -0.0581 -0.9939 -0.0939 -vn 0.1151 -0.9932 -0.0158 -vn 0.1148 -0.9933 -0.0165 -vn 0.1153 -0.9932 -0.0148 -vn 0.0486 -0.9985 0.0253 -vn 0.0470 -0.9986 0.0233 -vn 0.0477 -0.9986 0.0239 -vn 0.5692 -0.2484 0.7838 -vn 0.0324 -0.8526 -0.5215 -vn 0.0322 -0.8526 -0.5216 -vn 0.0325 -0.8525 -0.5216 -vn 0.2631 -0.0533 0.9633 -vn 0.2634 -0.0534 0.9632 -vn 0.2632 -0.0532 0.9633 -vn -0.6666 0.6652 -0.3363 -vn 0.2489 0.8188 -0.5174 -vn 0.2493 0.8187 -0.5172 -vn 0.2485 0.8187 -0.5177 -vn -0.1007 -0.9753 0.1964 -vn -0.1011 -0.9753 0.1963 -vn -0.1012 -0.9753 0.1963 -vn -0.4370 -0.0897 0.8950 -vn -0.4374 -0.0902 0.8947 -vn -0.4375 -0.0903 0.8947 -vn 0.2358 0.0185 0.9716 -vn 0.2360 0.0188 0.9716 -vn 0.2359 0.0187 0.9716 -vn -0.5471 0.8204 -0.1661 -vn -0.5474 0.8201 -0.1666 -vn -0.5471 0.8202 -0.1671 -vn 0.0205 0.1104 -0.9937 -vn 0.0202 0.1105 -0.9937 -vn 0.0208 0.1101 -0.9937 -vn 0.7935 0.5630 0.2309 -vn 0.7937 0.5626 0.2312 -vn 0.1182 -0.2992 0.9468 -vn 0.1181 -0.2993 0.9468 -vn 0.1185 -0.2992 0.9468 -vn -0.1720 0.9172 -0.3593 -vn -0.1718 0.9173 -0.3592 -vn -0.1716 0.9175 -0.3589 -vn 0.3869 0.1823 -0.9039 -vn 0.3868 0.1824 -0.9039 -vn 0.2344 0.9621 0.1392 -vn 0.2344 0.9621 0.1393 -vn 0.2344 0.9621 0.1396 -vn -0.2859 -0.4258 0.8585 -vn -0.2857 -0.4264 0.8582 -vn -0.1484 -0.8931 -0.4246 -vn -0.1486 -0.8930 -0.4248 -vn -0.1485 -0.8930 -0.4249 -vn 0.7862 0.2387 0.5701 -vn 0.7853 0.2393 0.5710 -vn 0.7856 0.2388 0.5708 -vn -0.0958 0.5441 -0.8335 -vn -0.8578 -0.5140 -0.0065 -vn -0.8576 -0.5143 -0.0065 -vn -0.8577 -0.5141 -0.0066 -vn -0.5297 -0.6524 -0.5420 -vn -0.5298 -0.6521 -0.5423 -vn -0.5298 -0.6520 -0.5424 -vn 0.8290 -0.5330 -0.1695 -vn 0.8294 -0.5321 -0.1703 -vn 0.8296 -0.5315 -0.1710 -vn -0.1549 -0.3094 0.9382 -vn -0.1562 -0.3087 0.9382 -vn -0.1540 -0.3093 0.9384 -vn -0.2247 0.1208 0.9669 -vn -0.6968 0.5988 -0.3948 -vn -0.6967 0.5992 -0.3945 -vn 0.9069 -0.2671 0.3259 -vn 0.9068 -0.2673 0.3259 -vn 0.9069 -0.2672 0.3258 -vn 0.2648 0.7142 -0.6479 -vn 0.2651 0.7143 -0.6477 -vn 0.2652 0.7142 -0.6477 -vn -0.9573 0.1288 -0.2587 -vn -0.9571 0.1303 -0.2586 -vn -0.9572 0.1296 -0.2587 -vn 0.2150 -0.6841 -0.6970 -vn 0.2149 -0.6841 -0.6970 -vn 0.2144 -0.6844 -0.6969 -vn 0.5802 -0.7504 0.3166 -vn 0.5803 -0.7504 0.3164 -vn -0.1625 -0.6884 -0.7069 -vn -0.1627 -0.6884 -0.7068 -vn -0.6994 -0.6233 -0.3499 -vn -0.6999 -0.6229 -0.3494 -vn -0.7001 -0.6228 -0.3491 -vn -0.2665 0.8397 0.4731 -vn -0.2387 -0.3023 -0.9228 -vn -0.2386 -0.3023 -0.9229 -vn 0.6249 -0.0928 -0.7752 -vn 0.6250 -0.0928 -0.7751 -vn 0.6246 -0.0930 -0.7754 -vn -0.1596 0.8550 -0.4934 -vn -0.1596 0.8551 -0.4933 -vn -0.1596 0.8552 -0.4931 -vn 0.7102 -0.5994 0.3692 -vn 0.7101 -0.5995 0.3694 -vn 0.7103 -0.5993 0.3691 -vn -0.1211 -0.7380 -0.6639 -vn -0.5123 -0.7935 0.3285 -vn -0.5124 -0.7935 0.3284 -vn -0.5125 -0.7935 0.3282 -vn 0.3788 -0.4815 -0.7903 -vn 0.3791 -0.4813 -0.7903 -vn 0.3793 -0.4813 -0.7902 -vn -0.1691 0.6945 0.6993 -vn -0.1696 0.6950 0.6987 -vn -0.1693 0.6946 0.6991 -vn -0.1723 -0.2324 -0.9572 -vn -0.1726 -0.2328 -0.9571 -vn -0.1725 -0.2327 -0.9571 -vn -0.5342 -0.4026 0.7434 -vn -0.5336 -0.4029 0.7436 -vn -0.5339 -0.4025 0.7436 -vn -0.4596 -0.8463 -0.2695 -vn 0.0686 0.0581 -0.9960 -vn 0.0685 0.0581 -0.9960 -vn 0.0684 0.0581 -0.9960 -vn 0.0697 0.9904 -0.1192 -vn 0.0695 0.9904 -0.1192 -vn 0.0695 0.9905 -0.1189 -vn -0.2759 -0.9311 -0.2387 -vn -0.2758 -0.9311 -0.2387 -vn -0.2757 -0.9313 -0.2382 -vn 0.2595 0.9144 -0.3108 -vn 0.2594 0.9144 -0.3107 -vn 0.2592 0.9144 -0.3109 -vn -0.0157 0.3250 -0.9456 -vn -0.0176 0.3246 -0.9457 -vn -0.0170 0.3250 -0.9456 -vn -0.0894 0.1020 0.9908 -vn -0.0898 0.1022 0.9907 -vn -0.0901 0.1022 0.9907 -vn -0.3669 0.4965 0.7867 -vn -0.3667 0.4965 0.7868 -vn -0.3670 0.4964 0.7867 -vn -0.0226 -0.6811 0.7318 -vn -0.0225 -0.6812 0.7318 -vn -0.4695 0.0174 0.8827 -vn -0.4696 0.0173 0.8827 -vn -0.4694 0.0173 0.8828 -vn 0.0272 0.3723 -0.9277 -vn 0.0273 0.3723 -0.9277 -vn 0.0277 0.3723 -0.9277 -vn 0.2202 0.9718 0.0849 -vn -0.5043 -0.8531 0.1336 -vn -0.5042 -0.8532 0.1338 -vn 0.1707 0.3274 0.9293 -vn 0.1708 0.3275 0.9293 -vn 0.1711 0.3278 0.9291 -vn 0.0305 0.2716 0.9619 -vn -0.4541 0.8436 -0.2867 -vn -0.4540 0.8436 -0.2867 -vn 0.6016 -0.7988 0.0088 -vn 0.6016 -0.7988 0.0086 -vn -0.1693 0.9835 -0.0635 -vn -0.1685 0.9837 -0.0628 -vn -0.1690 0.9836 -0.0632 -vn -0.2353 -0.7967 -0.5567 -vn -0.2345 -0.7963 -0.5576 -vn -0.2349 -0.7964 -0.5573 -vn 0.6605 -0.4425 -0.6066 -vn 0.6604 -0.4426 -0.6066 -vn -0.3768 -0.8337 -0.4037 -vn -0.3764 -0.8339 -0.4037 -vn 0.5497 -0.8342 -0.0449 -vn 0.5496 -0.8342 -0.0455 -vn 0.5495 -0.8343 -0.0451 -vn -0.9046 -0.3821 -0.1890 -vn -0.9048 -0.3816 -0.1889 -vn -0.9049 -0.3814 -0.1889 -vn -0.0273 -0.9430 0.3317 -vn -0.0243 -0.9437 0.3299 -vn -0.0220 -0.9445 0.3279 -vn -0.6685 0.6306 -0.3943 -vn 0.1872 -0.9605 0.2059 -vn 0.1874 -0.9605 0.2059 -vn -0.1842 0.7948 -0.5782 -vn -0.1843 0.7948 -0.5783 -vn -0.1846 0.7947 -0.5783 -vn -0.3275 0.6210 -0.7122 -vn 0.4105 0.8752 0.2559 -vn 0.4106 0.8750 0.2565 -vn 0.4110 0.8748 0.2565 -vn -0.6638 0.7302 0.1615 -vn -0.6639 0.7301 0.1616 -vn -0.6639 0.7302 0.1615 -vn -0.6119 0.7875 -0.0738 -vn -0.8189 -0.5124 -0.2585 -vn -0.8189 -0.5126 -0.2583 -vn -0.8189 -0.5125 -0.2584 -vn 0.2217 -0.9723 0.0743 -vn 0.2218 -0.9723 0.0742 -vn 0.2218 -0.9723 0.0741 -vn 0.8017 -0.5397 -0.2571 -vn 0.8014 -0.5400 -0.2574 -vn 0.1570 -0.6568 0.7375 -vn 0.1571 -0.6562 0.7381 -vn 0.1571 -0.6572 0.7371 -vn -0.9958 0.0484 -0.0777 -vn -0.9958 0.0482 -0.0782 -vn -0.9958 0.0484 -0.0781 -vn -0.6164 -0.7871 -0.0223 -vn -0.6164 -0.7871 -0.0222 -vn -0.3546 -0.9110 -0.2107 -vn -0.3546 -0.9110 -0.2106 -vn 0.2796 0.0045 0.9601 -vn 0.2791 0.0053 0.9602 -vn 0.2790 0.0062 0.9603 -vn 0.2732 0.5828 -0.7653 -vn 0.2729 0.5828 -0.7654 -vn 0.2739 0.5829 -0.7650 -vn 0.5624 0.7189 0.4086 -vn 0.5618 0.7192 0.4089 -vn 0.5613 0.7193 0.4094 -vn 0.5144 0.8213 -0.2468 -vn 0.1912 -0.9815 -0.0074 -vn 0.1904 -0.9817 -0.0066 -vn 0.1907 -0.9816 -0.0069 -vn 0.5664 -0.3807 -0.7309 -vn 0.5665 -0.3807 -0.7308 -vn 0.5664 -0.3806 -0.7310 -vn -0.6407 -0.5923 -0.4885 -vn -0.6409 -0.5923 -0.4883 -vn -0.6404 -0.5926 -0.4886 -vn 0.3941 0.8384 -0.3765 -vn 0.0397 0.9960 0.0798 -vn 0.0392 0.9960 0.0800 -vn 0.0394 0.9960 0.0798 -vn -0.0883 -0.8355 -0.5423 -vn -0.0886 -0.8356 -0.5422 -vn -0.5323 0.7589 0.3751 -vn -0.5325 0.7587 0.3753 -vn 0.5350 -0.7864 0.3087 -vn 0.5350 -0.7864 0.3088 -vn 0.5350 -0.7865 0.3086 -vn 0.7940 0.5899 0.1467 -vn 0.7940 0.5900 0.1462 -vn 0.7940 0.5902 0.1458 -vn 0.1646 -0.9318 -0.3236 -vn 0.1648 -0.9324 -0.3216 -vn 0.1636 -0.9338 -0.3181 -vn 0.1336 -0.9529 0.2723 -vn 0.1334 -0.9530 0.2719 -vn 0.9344 -0.3300 -0.1344 -vn 0.9344 -0.3299 -0.1341 -vn 0.9344 -0.3300 -0.1342 -vn 0.4329 0.1898 -0.8812 -vn -0.6719 0.7023 -0.2350 -vn -0.6719 0.7024 -0.2350 -vn -0.9083 0.4176 -0.0258 -vn -0.9084 0.4173 -0.0262 -vn -0.9084 0.4173 -0.0261 -vn -0.1978 -0.9506 -0.2394 -vn -0.1978 -0.9506 -0.2392 -vn -0.1975 -0.9506 -0.2394 -vn -0.2008 -0.9684 -0.1480 -vn -0.2008 -0.9684 -0.1479 -vn -0.2009 -0.9684 -0.1480 -vn -0.3793 -0.9253 -0.0022 -vn -0.3794 -0.9252 -0.0022 -vn 0.4477 0.8941 0.0113 -vn 0.4475 0.8942 0.0117 -vn 0.7721 0.5131 -0.3749 -vn 0.7725 0.5127 -0.3747 -vn 0.7725 0.5128 -0.3746 -vn 0.5520 -0.7674 0.3262 -vn 0.5519 -0.7674 0.3264 -vn -0.3721 0.7837 -0.4973 -vn -0.2756 -0.5375 -0.7969 -vn -0.2761 -0.5372 -0.7970 -vn -0.2760 -0.5372 -0.7970 -vn 0.4619 0.6236 -0.6307 -vn 0.4620 0.6236 -0.6307 -vn 0.4620 0.6235 -0.6308 -vn -0.1618 -0.2401 -0.9572 -vn -0.1619 -0.2401 -0.9572 -vn -0.1620 -0.2400 -0.9572 -vn -0.2255 0.5516 0.8031 -vn -0.2260 0.5512 0.8032 -vn -0.2254 0.5521 0.8027 -vn -0.7512 0.5723 -0.3289 -vn -0.7510 0.5723 -0.3294 -vn -0.7512 0.5722 -0.3290 -vn 0.9009 0.2370 0.3635 -vn 0.9007 0.2372 0.3639 -vn 0.9012 0.2371 0.3629 -vn -0.6120 -0.7199 -0.3274 -vn -0.6118 -0.7203 -0.3270 -vn -0.6119 -0.7202 -0.3271 -vn -0.4004 0.9113 0.0960 -vn -0.4005 0.9113 0.0955 -vn -0.4003 0.9113 0.0960 -vn 0.5570 -0.8015 0.2178 -vn 0.5569 -0.8015 0.2180 -vn 0.5569 -0.8015 0.2181 -vn 0.3219 0.9415 -0.0998 -vn 0.3220 0.9415 -0.0996 -vn 0.3221 0.9414 -0.0999 -vn -0.6889 0.3476 0.6361 -vn -0.6888 0.3476 0.6362 -vn -0.6888 0.3475 0.6363 -vn -0.4680 -0.8540 -0.2272 -vn -0.7311 0.4209 -0.5370 -vn -0.7311 0.4207 -0.5371 -vn -0.7312 0.4203 -0.5373 -vn 0.5001 -0.8573 0.1222 -vn 0.5000 -0.8573 0.1225 -vn -0.7875 -0.2631 0.5573 -vn -0.7877 -0.2631 0.5570 -vn -0.7876 -0.2632 0.5571 -vn 0.7820 -0.5004 -0.3716 -vn -0.0311 0.4050 -0.9138 -vn -0.0324 0.4071 -0.9128 -vn -0.0313 0.4060 -0.9133 -vn -0.5434 -0.7366 -0.4026 -vn -0.5416 -0.8390 -0.0529 -vn -0.5418 -0.8388 -0.0528 -vn -0.5417 -0.8389 -0.0528 -vn 0.4658 -0.8838 0.0441 -vn 0.4656 -0.8839 0.0442 -vn 0.4654 -0.8840 0.0446 -vn 0.4873 -0.8731 -0.0127 -vn 0.4876 -0.8730 -0.0126 -vn 0.4881 -0.8727 -0.0126 -vn 0.8478 -0.4061 -0.3411 -vn 0.8478 -0.4061 -0.3410 -vn -0.0234 0.9896 0.1420 -vn -0.0230 0.9895 0.1424 -vn -0.0218 0.9895 0.1430 -vn -0.1451 -0.1446 0.9788 -vn -0.1451 -0.1447 0.9788 -vn 0.3115 -0.4638 0.8294 -vn 0.3116 -0.4638 0.8293 -vn 0.3119 -0.4635 0.8294 -vn -0.4257 -0.4082 0.8076 -vn -0.4259 -0.4082 0.8075 -vn -0.4256 -0.4083 0.8076 -vn -0.7159 0.3739 -0.5896 -vn -0.4812 -0.8688 -0.1165 -vn 0.6175 -0.7715 0.1534 -vn 0.8907 0.4255 0.1600 -vn 0.8906 0.4257 0.1601 -vn -0.0029 0.0518 0.9987 -vn -0.0029 0.0516 0.9987 -vn -0.0026 0.0510 0.9987 -vn -0.7115 -0.6480 0.2719 -vn -0.7114 -0.6480 0.2719 -vn -0.7112 -0.6483 0.2719 -vn -0.6054 0.1732 0.7769 -vn -0.6065 0.1740 0.7758 -vn -0.6059 0.1733 0.7765 -vn -0.4532 -0.7755 0.4396 -vn -0.4531 -0.7756 0.4395 -vn -0.4532 -0.7754 0.4396 -vn -0.8806 0.4723 0.0379 -vn -0.8809 0.4717 0.0379 -vn -0.8811 0.4715 0.0379 -vn 0.1643 0.9628 0.2146 -vn 0.1643 0.9628 0.2145 -vn 0.1642 0.9629 0.2143 -vn -0.7932 0.5044 -0.3412 -vn -0.5156 0.7586 -0.3983 -vn -0.5156 0.7587 -0.3982 -vn -0.0388 0.6615 0.7490 -vn -0.0400 0.6598 0.7504 -vn -0.0396 0.6600 0.7502 -vn -0.1436 0.7409 0.6561 -vn -0.1460 0.7408 0.6557 -vn -0.1453 0.7409 0.6557 -vn 0.6428 -0.7660 -0.0121 -vn 0.6431 -0.7657 -0.0118 -vn 0.6430 -0.7658 -0.0118 -vn -0.5030 -0.8225 -0.2655 -vn -0.3488 0.9265 -0.1412 -vn -0.3488 0.9265 -0.1410 -vn -0.0907 -0.6418 0.7615 -vn -0.0908 -0.6418 0.7615 -vn -0.0906 -0.6419 0.7614 -vn -0.2196 -0.1787 -0.9591 -vn 0.0930 -0.6090 0.7877 -vn 0.0930 -0.6091 0.7876 -vn 0.0929 -0.6091 0.7876 -vn 0.4020 -0.8470 -0.3478 -vn 0.4026 -0.8468 -0.3475 -vn 0.4015 -0.8472 -0.3479 -vn 0.4050 0.8619 -0.3053 -vn 0.4048 0.8617 -0.3058 -vn 0.3952 -0.8583 -0.3273 -vn 0.3941 -0.8590 -0.3268 -vn 0.3946 -0.8586 -0.3272 -vn -0.4873 -0.7312 -0.4773 -vn -0.4873 -0.7311 -0.4775 -vn -0.4874 -0.7310 -0.4776 -vn -0.5758 -0.7625 -0.2951 -vn -0.5755 -0.7628 -0.2948 -vn -0.5756 -0.7627 -0.2949 -vn 0.4413 -0.8753 -0.1979 -vn 0.4412 -0.8753 -0.1979 -vn 0.4409 -0.8754 -0.1981 -vn 0.0715 -0.7389 0.6700 -vn 0.0724 -0.7392 0.6696 -vn 0.0719 -0.7391 0.6698 -vn 0.3229 -0.8716 -0.3689 -vn -0.5374 0.1488 -0.8301 -vn -0.5375 0.1487 -0.8301 -vn 0.8771 0.4535 0.1585 -vn -0.3774 -0.8259 0.4190 -vn -0.3773 -0.8259 0.4190 -vn -0.3771 -0.8258 0.4193 -vn 0.4027 -0.9090 0.1076 -vn 0.6714 -0.6337 -0.3842 -vn 0.6714 -0.6335 -0.3846 -vn 0.6717 -0.6337 -0.3836 -vn 0.4160 0.5351 -0.7353 -vn -0.4548 0.6769 -0.5787 -vn -0.4549 0.6769 -0.5787 -vn 0.2629 0.8682 -0.4208 -vn 0.2637 0.8681 -0.4204 -vn 0.2634 0.8683 -0.4204 -vn 0.2369 0.9664 0.1002 -vn 0.2366 0.9665 0.0994 -vn 0.2363 0.9665 0.0999 -vn 0.5788 0.7794 0.2399 -vn 0.5789 0.7796 0.2391 -vn 0.5787 0.7796 0.2395 -vn 0.0606 -0.9204 0.3863 -vn 0.0604 -0.9205 0.3861 -vn 0.0606 -0.9204 0.3862 -vn -0.0193 -0.6848 0.7285 -vn -0.0194 -0.6847 0.7285 -vn -0.0191 -0.6848 0.7285 -vn 0.3972 -0.9082 -0.1317 -vn 0.3973 -0.9082 -0.1317 -vn 0.3975 -0.9081 -0.1313 -vn 0.2047 0.1500 0.9673 -vn 0.2047 0.1501 0.9673 -vn -0.3355 -0.7305 -0.5948 -vn -0.3356 -0.7305 -0.5947 -vn 0.6910 0.7221 0.0331 -vn 0.6909 0.7222 0.0339 -vn 0.6909 0.7222 0.0341 -vn -0.2052 -0.8545 0.4772 -vn -0.2049 -0.8544 0.4774 -vn -0.0840 -0.9801 -0.1799 -vn -0.0843 -0.9801 -0.1798 -vn -0.0889 -0.9695 -0.2285 -vn -0.0885 -0.9695 -0.2284 -vn -0.0887 -0.9695 -0.2285 -vn 0.1454 -0.7523 -0.6426 -vn 0.3555 0.9067 0.2269 -vn 0.3668 0.1844 0.9118 -vn 0.3677 0.1855 0.9113 -vn 0.3671 0.1849 0.9116 -vn 0.4640 0.8818 -0.0842 -vn 0.4644 0.8817 -0.0837 -vn 0.4891 -0.0789 -0.8687 -vn 0.4890 -0.0791 -0.8687 -vn -0.1176 0.9929 0.0166 -vn -0.1169 0.9930 0.0168 -vn -0.0702 0.9869 -0.1453 -vn -0.0702 0.9869 -0.1452 -vn 0.5739 0.6092 -0.5473 -vn -0.4644 0.5341 0.7064 -vn -0.5949 0.8033 -0.0268 -vn -0.5946 0.8036 -0.0268 -vn -0.5947 0.8035 -0.0267 -vn -0.3404 -0.7104 -0.6159 -vn -0.6381 -0.7681 0.0527 -vn -0.6378 -0.7684 0.0525 -vn -0.6383 -0.7680 0.0527 -vn 0.4031 -0.7504 -0.5238 -vn 0.4030 -0.7503 -0.5240 -vn 0.4030 -0.7504 -0.5240 -vn 0.2617 0.9410 0.2145 -vn 0.2614 0.9410 0.2147 -vn 0.2619 0.9410 0.2141 -vn -0.3992 -0.4518 0.7978 -vn -0.3989 -0.4517 0.7980 -vn 0.8880 -0.3392 0.3106 -vn 0.8880 -0.3390 0.3106 -vn 0.8881 -0.3389 0.3105 -vn -0.4312 0.8172 -0.3825 -vn -0.4310 0.8172 -0.3827 -vn -0.4675 -0.8708 -0.1521 -vn -0.4677 -0.8707 -0.1523 -vn -0.4678 -0.8706 -0.1524 -vn -0.0474 0.9988 0.0095 -vn -0.0476 0.9988 0.0090 -vn -0.0473 0.9988 0.0097 -vn -0.6810 0.6757 0.2824 -vn -0.6809 0.6758 0.2824 -vn -0.6808 0.6758 0.2825 -vn 0.5155 -0.8477 -0.1254 -vn 0.5153 -0.8478 -0.1253 -vn 0.1337 -0.8735 0.4681 -vn 0.1332 -0.8734 0.4684 -vn 0.1334 -0.8735 0.4682 -vn -0.4441 -0.6980 0.5617 -vn -0.4440 -0.6981 0.5617 -vn -0.2579 -0.9659 0.0248 -vn -0.2582 -0.9658 0.0251 -vn -0.2581 -0.9658 0.0258 -vn 0.2402 0.5216 -0.8186 -vn 0.2404 0.5222 -0.8183 -vn -0.5352 -0.7632 -0.3621 -vn -0.5388 -0.8038 -0.2522 -vn 0.9746 0.2125 0.0708 -vn 0.9746 0.2128 0.0706 -vn 0.9747 0.2121 0.0709 -vn -0.2807 -0.7235 0.6307 -vn -0.2809 -0.7244 0.6295 -vn -0.2813 -0.7228 0.6312 -vn -0.5953 -0.7317 0.3320 -vn -0.5946 -0.7327 0.3310 -vn -0.5951 -0.7322 0.3314 -vn 0.2244 -0.6446 0.7308 -vn 0.2246 -0.6450 0.7304 -vn 0.2243 -0.6448 0.7307 -vn -0.7624 -0.6369 -0.1140 -vn -0.7627 -0.6366 -0.1143 -vn -0.7621 -0.6373 -0.1140 -vn 0.2082 0.4178 -0.8844 -vn 0.2083 0.4173 -0.8846 -vn 0.2080 0.4180 -0.8843 -vn 0.8723 0.4884 -0.0235 -vn 0.8722 0.4886 -0.0236 -vn -0.8502 0.3345 -0.4065 -vn -0.8502 0.3345 -0.4064 -vn 0.3764 0.9227 0.0836 -vn 0.3758 0.9230 0.0829 -vn 0.3755 0.9231 0.0828 -vn -0.5834 0.1152 -0.8040 -vn -0.5843 0.1136 -0.8035 -vn -0.5844 0.1135 -0.8035 -vn 0.6907 0.7107 -0.1335 -vn -0.2166 0.9731 -0.0781 -vn -0.2168 0.9731 -0.0778 -vn -0.0434 -0.9474 0.3171 -vn -0.0433 -0.9475 0.3169 -vn -0.3140 -0.5609 -0.7661 -vn -0.3144 -0.5606 -0.7661 -vn 0.4241 0.7325 0.5326 -vn 0.4250 0.7318 0.5328 -vn 0.4246 0.7320 0.5329 -vn -0.5201 0.5703 0.6358 -vn -0.5201 0.5702 0.6359 -vn -0.5202 0.5705 0.6356 -vn 0.4216 -0.6734 0.6073 -vn 0.4208 -0.6725 0.6089 -vn 0.4214 -0.6729 0.6080 -vn -0.0672 0.9937 0.0899 -vn -0.3624 -0.7662 -0.5307 -vn -0.3625 -0.7663 -0.5304 -vn -0.3623 -0.7662 -0.5308 -vn 0.8157 0.1421 0.5608 -vn 0.8156 0.1424 0.5608 -vn 0.8158 0.1420 0.5606 -vn 0.0328 0.9976 -0.0610 -vn 0.0330 0.9976 -0.0612 -vn 0.0332 0.9976 -0.0615 -vn -0.3462 -0.6063 -0.7159 -vn -0.3452 -0.6069 -0.7159 -vn -0.3470 -0.6060 -0.7158 -vn 0.6078 -0.3328 -0.7210 -vn 0.6075 -0.3329 -0.7212 -vn 0.7420 -0.5962 0.3066 -vn 0.7422 -0.5959 0.3066 -vn 0.7421 -0.5961 0.3066 -vn 0.6180 0.4526 0.6428 -vn 0.6185 0.4525 0.6424 -vn 0.6179 0.4526 0.6429 -vn -0.3222 0.7829 -0.5322 -vn -0.3739 -0.1718 0.9114 -vn -0.3742 -0.1712 0.9114 -vn -0.3740 -0.1716 0.9114 -vn -0.2696 0.9625 -0.0293 -vn 0.5737 0.7599 0.3058 -vn 0.5737 0.7598 0.3058 -vn -0.3089 0.8776 -0.3665 -vn -0.3089 0.8776 -0.3666 -vn 0.1364 -0.1201 0.9833 -vn 0.1368 -0.1203 0.9833 -vn 0.1365 -0.1202 0.9833 -vn 0.0027 -0.0313 -0.9995 -vn 0.0030 -0.0312 -0.9995 -vn 0.2799 0.8810 0.3814 -vn 0.6815 0.7177 0.1433 -vn 0.6816 0.7176 0.1434 -vn 0.6733 0.6602 -0.3329 -vn 0.6723 0.6610 -0.3332 -vn 0.6730 0.6605 -0.3329 -vn 0.0312 -0.0269 0.9992 -vn 0.0312 -0.0272 0.9991 -vn 0.0313 -0.0276 0.9991 -vn 0.0836 -0.0366 -0.9958 -vn 0.0836 -0.0365 -0.9958 -vn 0.0129 0.3814 -0.9243 -vn -0.2755 -0.0635 0.9592 -vn -0.2755 -0.0642 0.9591 -vn -0.2751 -0.0622 0.9594 -vn -0.2522 -0.3944 0.8836 -vn -0.2523 -0.3946 0.8835 -vn -0.2519 -0.3942 0.8838 -vn -0.8168 -0.4410 0.3720 -vn -0.8167 -0.4411 0.3720 -vn -0.8171 -0.4404 0.3721 -vn -0.7027 -0.6804 0.2079 -vn -0.7028 -0.6804 0.2078 -vn -0.2717 0.9440 -0.1872 -vn -0.2712 0.9441 -0.1876 -vn -0.2704 0.9441 -0.1886 -vn -0.3447 0.4555 -0.8208 -vn -0.3169 0.1330 0.9391 -vn -0.3169 0.1329 0.9391 -vn 0.6179 -0.7860 0.0215 -vn 0.6172 -0.7865 0.0219 -vn 0.6175 -0.7863 0.0216 -vn 0.0536 -0.9767 0.2078 -vn 0.1999 0.8300 0.5208 -vn 0.2000 0.8301 0.5206 -vn 0.2000 0.8297 0.5211 -vn 0.2783 0.2507 -0.9272 -vn 0.2784 0.2506 -0.9272 -vn -0.6706 0.4828 -0.5632 -vn -0.6709 0.4828 -0.5628 -vn -0.6706 0.4827 -0.5633 -vn 0.5624 0.7615 -0.3221 -vn 0.5623 0.7616 -0.3221 -vn 0.5625 0.7615 -0.3222 -vn -0.2434 -0.6019 -0.7606 -vn -0.2434 -0.6022 -0.7604 -vn -0.2434 -0.6021 -0.7604 -vn 0.6671 0.2341 -0.7073 -vn 0.6660 0.2333 -0.7086 -vn 0.6663 0.2334 -0.7082 -vn 0.9583 -0.1532 -0.2411 -vn 0.9584 -0.1529 -0.2410 -vn 0.9584 -0.1530 -0.2409 -vn -0.5396 -0.4945 -0.6814 -vn -0.5398 -0.4948 -0.6810 -vn -0.5397 -0.4946 -0.6813 -vn -0.7286 0.6254 -0.2793 -vn 0.3705 0.8412 -0.3939 -vn -0.2890 0.4492 -0.8454 -vn -0.2888 0.4491 -0.8455 -vn -0.2885 0.4490 -0.8457 -vn 0.0747 0.9854 -0.1528 -vn 0.6564 -0.1834 -0.7318 -vn 0.6562 -0.1834 -0.7320 -vn 0.6565 -0.1835 -0.7316 -vn -0.2103 -0.5321 -0.8202 -vn -0.2104 -0.5323 -0.8200 -vn -0.2105 -0.5324 -0.8199 -vn 0.1450 -0.9233 -0.3557 -vn 0.1443 -0.9234 -0.3557 -vn 0.1447 -0.9233 -0.3557 -vn 0.3571 -0.3245 -0.8759 -vn 0.3568 -0.3247 -0.8759 -vn 0.3572 -0.3246 -0.8758 -vn 0.3784 0.7467 0.5471 -vn 0.3785 0.7467 0.5469 -vn 0.3784 0.7468 0.5469 -vn -0.5807 -0.1109 -0.8065 -vn -0.5805 -0.1109 -0.8067 -vn -0.5803 -0.1109 -0.8068 -vn 0.7653 0.4193 0.4884 -vn 0.7653 0.4186 0.4889 -vn 0.7650 0.4181 0.4899 -vn 0.5220 -0.5499 -0.6520 -vn 0.5222 -0.5499 -0.6519 -vn 0.5217 -0.5500 -0.6522 -vn 0.5866 -0.7004 -0.4065 -vn 0.5870 -0.7005 -0.4059 -vn 0.5869 -0.7005 -0.4061 -vn -0.4751 0.0302 0.8794 -vn -0.4754 0.0300 0.8793 -vn -0.4754 0.0303 0.8792 -vn -0.3348 -0.8765 -0.3459 -vn -0.3346 -0.8766 -0.3459 -vn -0.3349 -0.8766 -0.3457 -vn 0.4366 -0.8046 0.4024 -vn 0.4367 -0.8046 0.4024 -vn -0.5139 -0.8496 0.1190 -vn 0.7564 -0.6184 0.2131 -vn 0.7565 -0.6182 0.2133 -vn 0.7566 -0.6181 0.2134 -vn 0.2040 0.6130 -0.7633 -vn 0.2041 0.6123 -0.7638 -vn 0.2038 0.6137 -0.7628 -vn 0.4016 0.6303 -0.6645 -vn 0.8818 0.1748 0.4380 -vn 0.8818 0.1749 0.4380 -vn 0.8818 0.1750 0.4380 -vn 0.3471 0.3199 -0.8816 -vn 0.3473 0.3198 -0.8815 -vn 0.3472 0.3199 -0.8815 -vn 0.7558 -0.6314 -0.1736 -vn 0.7557 -0.6313 -0.1745 -vn 0.7557 -0.6314 -0.1739 -vn -0.1513 0.8893 -0.4315 -vn -0.1512 0.8894 -0.4313 -vn -0.1511 0.8896 -0.4311 -vn 0.2402 0.2370 -0.9413 -vn 0.2401 0.2372 -0.9413 -vn 0.2403 0.2368 -0.9414 -vn -0.1760 0.9592 0.2214 -vn -0.1762 0.9590 0.2220 -vn -0.1760 0.9592 0.2213 -vn 0.0155 -0.7169 -0.6970 -vn 0.0153 -0.7171 -0.6968 -vn -0.7279 -0.2549 -0.6366 -vn -0.7279 -0.2548 -0.6366 -vn -0.6420 -0.3575 0.6783 -vn -0.6420 -0.3572 0.6784 -vn 0.1581 -0.9544 0.2534 -vn 0.1578 -0.9546 0.2527 -vn 0.1580 -0.9544 0.2533 -vn 0.1164 -0.9551 0.2723 -vn 0.3908 0.9185 -0.0606 -vn -0.5204 -0.1673 -0.8374 -vn -0.5203 -0.1675 -0.8374 -vn -0.5204 -0.1674 -0.8373 -vn -0.8012 0.1579 -0.5772 -vn -0.8007 0.1584 -0.5778 -vn -0.8000 0.1593 -0.5784 -vn 0.6209 0.7606 0.1898 -vn 0.6206 0.7608 0.1898 -vn 0.6207 0.7607 0.1899 -vn -0.2772 0.9606 0.0197 -vn -0.2769 0.9607 0.0193 -vn -0.8393 0.5082 -0.1931 -vn -0.8394 0.5081 -0.1930 -vn 0.0509 0.3821 0.9227 -vn 0.0503 0.3820 0.9228 -vn 0.0516 0.3820 0.9227 -vn 0.2157 0.8309 0.5129 -vn 0.2154 0.8308 0.5132 -vn 0.2155 0.8309 0.5130 -vn 0.0586 0.8559 -0.5139 -vn 0.0586 0.8561 -0.5134 -vn -0.5859 0.7771 0.2299 -vn -0.5859 0.7771 0.2300 -vn 0.0806 -0.9833 0.1629 -vn 0.0803 -0.9834 0.1629 -vn 0.1067 0.2157 -0.9706 -vn 0.1064 0.2158 -0.9706 -vn -0.1078 0.0063 0.9942 -vn 0.1114 0.7295 -0.6748 -vn 0.1113 0.7294 -0.6749 -vn -0.1814 0.1669 0.9691 -vn -0.1806 0.1663 0.9694 -vn -0.1813 0.1668 0.9692 -vn 0.9132 -0.1364 0.3840 -vn -0.2856 -0.8742 0.3927 -vn -0.2858 -0.8744 0.3921 -vn -0.2854 -0.8741 0.3930 -vn -0.2008 0.9046 -0.3759 -vn -0.2009 0.9046 -0.3759 -vn -0.2005 0.9048 -0.3757 -vn -0.7495 0.6583 -0.0694 -vn -0.7493 0.6586 -0.0696 -vn -0.7497 0.6582 -0.0693 -vn 0.0247 -0.7028 -0.7110 -vn 0.0249 -0.7029 -0.7109 -vn 0.0247 -0.7027 -0.7110 -vn -0.4125 -0.8524 -0.3214 -vn -0.4126 -0.8525 -0.3210 -vn -0.4130 -0.8525 -0.3206 -vn -0.1640 0.9513 -0.2612 -vn -0.1644 0.9511 -0.2613 -vn -0.1637 0.9513 -0.2614 -vn -0.4753 -0.8292 -0.2940 -vn -0.4752 -0.8294 -0.2938 -vn -0.4753 -0.8292 -0.2941 -vn -0.3947 -0.9155 -0.0778 -vn -0.4892 0.8290 0.2711 -vn -0.4892 0.8279 0.2744 -vn -0.4880 0.8277 0.2771 -vn 0.4754 0.3368 -0.8128 -vn 0.4756 0.3368 -0.8126 -vn 0.4758 0.3371 -0.8124 -vn -0.9343 0.2093 -0.2885 -vn -0.9344 0.2093 -0.2884 -vn -0.9344 0.2089 -0.2884 -vn -0.8512 0.1921 0.4885 -vn 0.2368 -0.5427 -0.8059 -vn 0.2373 -0.5427 -0.8057 -vn 0.2357 -0.5430 -0.8060 -vn -0.1393 0.5101 -0.8488 -vn -0.1398 0.5103 -0.8485 -vn -0.1395 0.5103 -0.8486 -vn 0.9067 0.0911 -0.4119 -vn 0.9066 0.0909 -0.4120 -vn 0.9066 0.0910 -0.4120 -vn 0.7356 -0.3147 0.5998 -vn 0.7352 -0.3146 0.6005 -vn 0.7353 -0.3146 0.6002 -vn -0.2457 0.9684 0.0433 -vn -0.2458 0.9683 0.0432 -vn 0.6612 0.5693 -0.4886 -vn 0.6607 0.5695 -0.4890 -vn 0.6612 0.5694 -0.4885 -vn -0.2600 0.3845 -0.8857 -vn -0.2602 0.3851 -0.8854 -vn -0.7266 0.6207 -0.2946 -vn -0.7264 0.6209 -0.2945 -vn -0.7262 0.6212 -0.2946 -vn -0.3785 -0.7937 -0.4763 -vn -0.3786 -0.7937 -0.4761 -vn -0.3787 -0.7937 -0.4760 -vn -0.3703 0.2135 -0.9040 -vn -0.3703 0.2132 -0.9041 -vn -0.3703 0.2131 -0.9041 -vn -0.4288 0.7369 -0.5226 -vn 0.5880 -0.6572 -0.4716 -vn 0.5878 -0.6578 -0.4709 -vn 0.5878 -0.6568 -0.4723 -vn 0.4769 0.8307 -0.2873 -vn 0.4776 0.8300 -0.2880 -vn 0.4774 0.8302 -0.2878 -vn -0.7650 0.5870 -0.2649 -vn -0.6290 0.7608 -0.1600 -vn -0.6292 0.7605 -0.1603 -vn -0.6290 0.7607 -0.1601 -vn 0.4895 -0.8446 0.2170 -vn -0.9362 -0.1890 0.2963 -vn -0.9362 -0.1889 0.2964 -vn 0.0661 0.8495 0.5234 -vn 0.1550 0.9875 -0.0302 -vn 0.1546 0.9875 -0.0304 -vn 0.1547 0.9875 -0.0305 -vn 0.6388 -0.0827 -0.7649 -vn 0.9122 -0.0682 0.4040 -vn 0.9119 -0.0686 0.4046 -vn 0.9121 -0.0684 0.4043 -vn 0.5477 -0.8041 0.2312 -vn 0.5475 -0.8043 0.2311 -vn -0.6753 -0.3920 -0.6248 -vn -0.6776 -0.3914 -0.6227 -vn -0.6767 -0.3912 -0.6237 -vn 0.6324 0.6517 0.4188 -vn -0.0385 -0.1029 -0.9939 -vn -0.0388 -0.1030 -0.9939 -vn -0.0389 -0.1030 -0.9939 -vn 0.5078 -0.8545 0.1096 -vn 0.5078 -0.8545 0.1092 -vn 0.5079 -0.8545 0.1093 -vn -0.5904 0.7292 -0.3459 -vn -0.5902 0.7292 -0.3463 -vn -0.5902 0.7292 -0.3462 -vn 0.2241 -0.0391 -0.9738 -vn 0.2243 -0.0389 -0.9737 -vn -0.4283 -0.5607 -0.7087 -vn -0.4283 -0.5605 -0.7088 -vn -0.4283 -0.5609 -0.7085 -vn 0.0153 -0.8685 0.4954 -vn 0.0156 -0.8687 0.4951 -vn 0.4992 -0.8660 -0.0299 -vn 0.4991 -0.8660 -0.0300 -vn 0.4992 -0.8660 -0.0298 -vn -0.9459 0.3242 -0.0156 -vn -0.9457 0.3245 -0.0156 -vn -0.9458 0.3244 -0.0156 -vn 0.5107 -0.8589 0.0387 -vn -0.6061 -0.7867 0.1176 -vn -0.6061 -0.7867 0.1175 -vn 0.7563 -0.2458 -0.6064 -vn -0.2148 -0.8687 -0.4463 -vn -0.2149 -0.8688 -0.4461 -vn -0.2151 -0.8689 -0.4459 -vn -0.8353 0.3732 0.4038 -vn -0.8358 0.3696 0.4061 -vn -0.8352 0.3716 0.4054 -vn 0.4020 0.7706 -0.4946 -vn 0.7381 -0.6350 -0.2280 -vn 0.7380 -0.6355 -0.2269 -vn 0.7378 -0.6360 -0.2264 -vn -0.6560 -0.4529 -0.6038 -vn -0.6558 -0.4527 -0.6042 -vn -0.6559 -0.4528 -0.6040 -vn 0.0595 -0.6855 0.7257 -vn 0.2259 0.9735 0.0368 -vn 0.2242 0.9738 0.0369 -vn 0.2251 0.9737 0.0365 -vn 0.7618 0.6264 0.1650 -vn 0.4088 0.7718 0.4871 -vn 0.7193 -0.5356 0.4424 -vn 0.7191 -0.5357 0.4426 -vn 0.7192 -0.5356 0.4425 -vn 0.2577 0.6158 0.7446 -vn 0.2583 0.6154 0.7447 -vn 0.2582 0.6155 0.7447 -vn -0.9965 0.0577 0.0606 -vn -0.9965 0.0579 0.0600 -vn -0.9965 0.0579 0.0601 -vn -0.7438 0.1237 -0.6569 -vn -0.5131 -0.8004 -0.3101 -vn -0.4412 -0.7538 -0.4869 -vn -0.4413 -0.7536 -0.4871 -vn -0.4411 -0.7537 -0.4872 -vn -0.0549 0.2734 -0.9603 -vn -0.0551 0.2736 -0.9603 -vn -0.0550 0.2735 -0.9603 -vn 0.6888 0.1933 -0.6987 -vn 0.6888 0.1931 -0.6988 -vn 0.6890 0.1931 -0.6986 -vn 0.1478 -0.7670 0.6244 -vn 0.1475 -0.7670 0.6244 -vn -0.8589 0.2780 -0.4302 -vn -0.8588 0.2779 -0.4304 -vn -0.8589 0.2781 -0.4300 -vn 0.1872 0.9772 0.1006 -vn 0.1873 0.9771 0.1006 -vn -0.4796 0.8596 0.1762 -vn -0.4795 0.8597 0.1762 -vn -0.5952 -0.4216 0.6840 -vn -0.5955 -0.4217 0.6837 -vn -0.5950 -0.4219 0.6841 -vn 0.5823 0.7063 0.4026 -vn 0.5822 0.7065 0.4023 -vn 0.5822 0.7060 0.4032 -vn 0.7160 0.2234 0.6614 -vn 0.7160 0.2233 0.6614 -vn 0.8811 0.0396 -0.4713 -vn 0.8810 0.0395 -0.4715 -vn 0.8808 0.0399 -0.4718 -vn 0.2329 0.2803 -0.9312 -vn -0.0593 0.9434 -0.3262 -vn -0.0595 0.9434 -0.3263 -vn -0.0592 0.9435 -0.3260 -vn -0.3162 -0.7366 -0.5978 -vn -0.3165 -0.7366 -0.5977 -vn -0.3164 -0.7366 -0.5978 -vn 0.5790 -0.6716 0.4623 -vn 0.5792 -0.6711 0.4627 -vn 0.9656 -0.0614 0.2528 -vn 0.9656 -0.0612 0.2527 -vn 0.9655 -0.0616 0.2530 -vn -0.4713 -0.7250 -0.5023 -vn -0.4711 -0.7252 -0.5022 -vn 0.4287 0.9017 -0.0563 -vn 0.4283 0.9019 -0.0563 -vn 0.4285 0.9018 -0.0563 -vn -0.2752 -0.9381 -0.2101 -vn -0.0724 -0.3897 0.9181 -vn -0.0724 -0.3896 0.9181 -vn -0.0727 -0.3895 0.9181 -vn 0.6133 -0.5978 -0.5162 -vn 0.6142 -0.5967 -0.5165 -vn 0.6136 -0.5973 -0.5164 -vn 0.8978 0.3961 0.1924 -vn 0.2987 -0.7549 -0.5839 -vn 0.2986 -0.7548 -0.5841 -vn 0.2991 -0.7548 -0.5838 -vn 0.1142 0.8913 -0.4388 -vn 0.1140 0.8913 -0.4388 -vn 0.1141 0.8913 -0.4389 -vn 0.7978 0.4239 -0.4287 -vn 0.8798 0.1072 0.4631 -vn 0.8799 0.1072 0.4629 -vn 0.8800 0.1074 0.4628 -vn 0.7460 -0.6578 -0.1042 -vn 0.7460 -0.6577 -0.1042 -vn 0.0657 -0.6982 -0.7128 -vn 0.0661 -0.6981 -0.7129 -vn -0.1192 -0.7826 -0.6111 -vn 0.9864 -0.0077 0.1644 -vn 0.9926 0.0865 0.0853 -vn 0.9926 0.0865 0.0856 -vn 0.9926 0.0864 0.0855 -vn -0.7635 -0.6343 0.1215 -vn -0.0613 -0.9916 -0.1139 -vn -0.0617 -0.9916 -0.1140 -vn -0.0616 -0.9916 -0.1140 -vn 0.9848 -0.0639 -0.1613 -vn 0.9849 -0.0639 -0.1612 -vn 0.9848 -0.0639 -0.1612 -vn -0.3525 -0.4390 0.8264 -vn -0.3527 -0.4393 0.8262 -vn -0.3526 -0.4395 0.8262 -vn 0.4415 0.8971 -0.0141 -vn 0.4416 0.8971 -0.0141 -vn -0.0695 0.9634 -0.2590 -vn -0.0695 0.9634 -0.2589 -vn -0.3782 0.7332 0.5652 -vn -0.3786 0.7329 0.5653 -vn -0.3790 0.7327 0.5653 -vn 0.1952 -0.5787 -0.7918 -vn 0.1953 -0.5785 -0.7920 -vn -0.3552 -0.8944 0.2719 -vn 0.6945 0.7154 -0.0764 -vn 0.6944 0.7155 -0.0765 -vn 0.6944 0.7155 -0.0766 -vn -0.8207 0.3623 -0.4417 -vn -0.1754 0.6914 -0.7008 -vn -0.1753 0.6918 -0.7005 -vn -0.3952 -0.9178 0.0379 -vn -0.3951 -0.9178 0.0380 -vn -0.3951 -0.9179 0.0380 -vn -0.3899 0.5543 -0.7353 -vn -0.3910 0.5545 -0.7346 -vn -0.3901 0.5544 -0.7351 -vn -0.5130 0.8428 -0.1627 -vn -0.5123 0.8429 -0.1643 -vn -0.5130 0.8428 -0.1628 -vn -0.6672 -0.6980 -0.2599 -vn -0.6670 -0.6982 -0.2602 -vn -0.6670 -0.6982 -0.2601 -vn 0.0353 -0.7813 0.6232 -vn 0.0361 -0.7816 0.6228 -vn 0.0357 -0.7813 0.6231 -vn -0.2100 0.1174 0.9706 -vn -0.2102 0.1176 0.9706 -vn -0.2099 0.1173 0.9707 -vn -0.7985 -0.1669 -0.5784 -vn -0.7981 -0.1668 -0.5790 -vn -0.7979 -0.1666 -0.5793 -vn -0.7761 -0.1819 -0.6038 -vn -0.7762 -0.1818 -0.6037 -vn -0.7762 -0.1817 -0.6037 -vn 0.4027 -0.5392 0.7397 -vn -0.3882 -0.8032 -0.4519 -vn -0.3885 -0.8031 -0.4518 -vn 0.6906 0.7038 -0.1663 -vn 0.1715 0.9849 -0.0242 -vn -0.0260 0.8151 -0.5787 -vn -0.0261 0.8151 -0.5788 -vn -0.1376 0.2458 -0.9595 -vn -0.1385 0.2455 -0.9595 -vn -0.1392 0.2456 -0.9593 -vn 0.1026 0.9910 -0.0855 -vn 0.1029 0.9910 -0.0854 -vn 0.1020 0.9911 -0.0858 -vn -0.8287 0.4192 0.3708 -vn -0.8288 0.4193 0.3706 -vn -0.8286 0.4194 0.3708 -vn 0.8137 0.5119 0.2753 -vn 0.8138 0.5113 0.2764 -vn 0.8137 0.5118 0.2756 -vn -0.3094 -0.9156 -0.2567 -vn -0.3093 -0.9158 -0.2561 -vn -0.3095 -0.9156 -0.2568 -vn 0.3872 -0.5922 0.7066 -vn 0.3865 -0.5927 0.7066 -vn 0.3860 -0.5935 0.7063 -vn -0.2118 -0.4456 0.8698 -vn -0.6224 -0.0586 0.7805 -vn -0.6225 -0.0582 0.7805 -vn -0.3113 -0.9293 -0.1988 -vn -0.0037 -0.4846 0.8747 -vn -0.0036 -0.4846 0.8747 -vn -0.9913 0.1069 -0.0772 -vn -0.9913 0.1067 -0.0769 -vn -0.9913 0.1069 -0.0774 -vn -0.4166 -0.7465 -0.5188 -vn -0.4170 -0.7462 -0.5190 -vn -0.4167 -0.7464 -0.5189 -vn -0.6432 -0.5912 -0.4866 -vn -0.3895 0.8974 0.2072 -vn -0.3894 0.8975 0.2069 -vn 0.7069 0.4303 -0.5614 -vn 0.7069 0.4303 -0.5613 -vn 0.7535 -0.2797 0.5951 -vn 0.7535 -0.2799 0.5950 -vn 0.0573 0.0793 0.9952 -vn -0.8111 0.4548 0.3678 -vn -0.8117 0.4538 0.3676 -vn -0.8124 0.4524 0.3679 -vn -0.3109 0.1250 0.9422 -vn -0.3105 0.1251 0.9423 -vn -0.3106 0.1251 0.9423 -vn 0.4718 -0.4573 0.7538 -vn 0.4719 -0.4573 0.7538 -vn -0.8905 -0.2526 -0.3784 -vn -0.8905 -0.2524 -0.3785 -vn -0.8905 -0.2525 -0.3785 -vn -0.2462 -0.4069 0.8797 -vn -0.2458 -0.4070 0.8797 -vn -0.2460 -0.4071 0.8796 -vn -0.3777 -0.6892 0.6183 -vn -0.3776 -0.6896 0.6180 -vn -0.3775 -0.6897 0.6179 -vn 0.8611 0.4505 -0.2356 -vn 0.8612 0.4504 -0.2358 -vn -0.7372 -0.6697 -0.0898 -vn -0.7373 -0.6696 -0.0897 -vn -0.7374 -0.6695 -0.0894 -vn 0.2393 -0.4903 -0.8381 -vn 0.2393 -0.4900 -0.8382 -vn 0.2393 -0.4902 -0.8381 -vn 0.3538 -0.9326 0.0708 -vn 0.3539 -0.9327 0.0701 -vn 0.2987 0.0072 -0.9543 -vn 0.2986 0.0073 -0.9543 -vn 0.3425 -0.7749 0.5313 -vn 0.0733 -0.8467 0.5271 -vn 0.0734 -0.8467 0.5270 -vn 0.0734 -0.8467 0.5269 -vn 0.9060 -0.4128 0.0936 -vn 0.7480 0.3391 0.5705 -vn 0.7479 0.3390 0.5707 -vn -0.2953 -0.3681 0.8816 -vn -0.2956 -0.3680 0.8816 -vn -0.2954 -0.3680 0.8816 -vn 0.7053 -0.6923 -0.1527 -vn 0.7056 -0.6919 -0.1526 -vn 0.4724 0.7989 -0.3723 -vn 0.4732 0.7988 -0.3715 -vn 0.4727 0.7988 -0.3721 -vn -0.3867 0.1503 0.9099 -vn -0.3865 0.1500 0.9100 -vn -0.3865 0.1502 0.9100 -vn 0.1781 0.9840 -0.0054 -vn 0.1779 0.9840 -0.0053 -vn -0.2022 -0.8884 0.4122 -vn -0.2020 -0.8885 0.4121 -vn -0.2018 -0.8886 0.4118 -vn 0.1525 -0.7861 0.5990 -vn 0.1523 -0.7864 0.5987 -vn 0.1523 -0.7863 0.5987 -vn -0.0736 -0.7889 0.6101 -vn -0.0734 -0.7890 0.6100 -vn -0.7283 0.2625 0.6330 -vn -0.7282 0.2623 0.6332 -vn -0.7283 0.2621 0.6331 -vn 0.8971 0.4261 0.1171 -vn 0.8972 0.4260 0.1168 -vn 0.8971 0.4260 0.1172 -vn 0.7333 -0.6038 -0.3125 -vn 0.7332 -0.6039 -0.3125 -vn 0.0047 -0.7159 -0.6982 -vn 0.0046 -0.7161 -0.6980 -vn 0.0047 -0.7157 -0.6984 -vn 0.3320 -0.3185 -0.8879 -vn 0.3323 -0.3185 -0.8878 -vn 0.3313 -0.3185 -0.8881 -vn -0.2986 0.8586 0.4167 -vn 0.9533 0.2355 0.1889 -vn 0.9532 0.2359 0.1891 -vn 0.9531 0.2358 0.1895 -vn 0.3483 0.5025 -0.7913 -vn 0.3484 0.5023 -0.7914 -vn 0.3483 0.5026 -0.7913 -vn 0.3204 0.8921 -0.3185 -vn 0.3204 0.8922 -0.3183 -vn 0.3201 0.8925 -0.3177 -vn -0.1562 0.9617 -0.2251 -vn -0.1564 0.9617 -0.2250 -vn 0.4264 -0.8810 0.2051 -vn 0.4258 -0.8815 0.2040 -vn 0.4258 -0.8817 0.2033 -vn 0.7203 -0.4265 -0.5470 -vn 0.7203 -0.4269 -0.5467 -vn 0.7203 -0.4267 -0.5470 -vn -0.4042 -0.9073 -0.1160 -vn -0.4046 -0.9072 -0.1152 -vn -0.4051 -0.9070 -0.1147 -vn -0.2729 0.8248 -0.4952 -vn -0.2728 0.8246 -0.4956 -vn -0.2728 0.8247 -0.4954 -vn -0.4016 -0.2289 -0.8867 -vn 0.6406 0.6356 0.4309 -vn 0.1350 0.9692 0.2059 -vn 0.1354 0.9691 0.2060 -vn 0.1356 0.9691 0.2060 -vn 0.3139 -0.9367 0.1550 -vn 0.3131 -0.9370 0.1552 -vn 0.3129 -0.9370 0.1552 -vn 0.6763 -0.2579 0.6900 -vn 0.4097 0.9086 -0.0816 -vn 0.2133 0.8784 -0.4277 -vn 0.0531 0.9970 0.0570 -vn 0.0530 0.9970 0.0572 -vn -0.5926 0.0714 0.8024 -vn -0.5918 0.0725 0.8028 -vn -0.5929 0.0713 0.8021 -vn 0.6734 -0.3503 -0.6510 -vn 0.6730 -0.3500 -0.6516 -vn 0.7907 -0.5816 0.1911 -vn 0.7907 -0.5818 0.1907 -vn 0.7908 -0.5815 0.1909 -vn 0.6258 0.7173 -0.3064 -vn -0.1748 0.9846 0.0040 -vn -0.1749 0.9846 0.0042 -vn -0.5535 0.6343 -0.5397 -vn -0.5535 0.6344 -0.5396 -vn 0.0125 0.8997 -0.4364 -vn 0.0121 0.8999 -0.4360 -vn -0.9315 -0.3514 0.0938 -vn -0.9311 -0.3525 0.0942 -vn -0.9312 -0.3522 0.0942 -vn -0.1867 0.1726 -0.9671 -vn -0.1866 0.1726 -0.9672 -vn -0.1856 0.1726 -0.9673 -vn 0.7907 0.5746 -0.2115 -vn 0.4969 0.3410 -0.7980 -vn 0.4968 0.3413 -0.7980 -vn 0.4967 0.3415 -0.7979 -vn 0.4460 0.7001 -0.5577 -vn 0.4457 0.6999 -0.5581 -vn 0.4458 0.6999 -0.5581 -vn 0.2946 0.8584 -0.4200 -vn 0.2932 0.8590 -0.4198 -vn 0.2930 0.8591 -0.4196 -vn -0.9575 -0.0846 -0.2757 -vn -0.9575 -0.0844 -0.2758 -vn -0.7211 -0.6700 -0.1766 -vn -0.7208 -0.6702 -0.1767 -vn 0.7467 -0.1862 0.6386 -vn 0.6746 -0.6990 0.2372 -vn 0.6744 -0.6993 0.2369 -vn 0.6744 -0.6992 0.2370 -vn 0.2892 -0.9542 0.0769 -vn 0.2889 -0.9543 0.0764 -vn 0.2891 -0.9542 0.0765 -vn 0.0923 -0.9951 -0.0347 -vn 0.0921 -0.9952 -0.0343 -vn 0.0923 -0.9951 -0.0351 -vn -0.1837 0.4216 -0.8880 -vn -0.1838 0.4216 -0.8880 -vn 0.2941 -0.9176 0.2673 -vn 0.2944 -0.9175 0.2675 -vn 0.8156 -0.4353 -0.3812 -vn 0.8156 -0.4357 -0.3807 -vn 0.8155 -0.4351 -0.3818 -vn -0.7595 0.3178 -0.5676 -vn -0.6086 -0.7235 -0.3258 -vn -0.6089 -0.7232 -0.3260 -vn -0.6290 -0.7538 -0.1902 -vn -0.6292 -0.7537 -0.1901 -vn -0.6291 -0.7537 -0.1903 -vn -0.4822 -0.8658 -0.1333 -vn -0.4823 -0.8658 -0.1332 -vn 0.5024 -0.4858 -0.7152 -vn 0.5020 -0.4861 -0.7153 -vn 0.5020 -0.4863 -0.7152 -vn 0.1217 0.0826 -0.9891 -vn 0.1220 0.0825 -0.9891 -vn 0.1228 0.0827 -0.9890 -vn 0.6553 -0.7265 -0.2067 -vn 0.6551 -0.7266 -0.2069 -vn 0.6552 -0.7266 -0.2068 -vn -0.5657 -0.7693 -0.2968 -vn -0.5657 -0.7693 -0.2969 -vn 0.4957 -0.5377 0.6820 -vn 0.4962 -0.5380 0.6814 -vn 0.4956 -0.5378 0.6821 -vn -0.2307 -0.0670 0.9707 -vn -0.2296 -0.0675 0.9709 -vn -0.2303 -0.0671 0.9708 -vn 0.1973 0.8090 0.5538 -vn 0.1973 0.8089 0.5538 -vn -0.1062 0.9297 -0.3527 -vn -0.1062 0.9295 -0.3532 -vn -0.1062 0.9297 -0.3528 -vn -0.1335 0.9878 0.0804 -vn -0.1335 0.9878 0.0805 -vn -0.1334 0.9878 0.0806 -vn 0.3080 -0.9449 0.1109 -vn 0.3080 -0.9450 0.1103 -vn 0.3080 -0.9449 0.1105 -vn -0.7499 -0.3172 0.5806 -vn -0.7511 -0.3185 0.5782 -vn -0.7508 -0.3179 0.5791 -vn 0.7946 0.4782 0.3741 -vn 0.7945 0.4785 0.3739 -vn 0.7946 0.4781 0.3741 -vn -0.9692 0.0665 -0.2370 -vn -0.9693 0.0666 -0.2369 -vn -0.9692 0.0664 -0.2370 -vn 0.7097 -0.6067 0.3581 -vn 0.7098 -0.6070 0.3573 -vn 0.7094 -0.6066 0.3588 -vn -0.4303 -0.3459 0.8338 -vn -0.4308 -0.3456 0.8337 -vn -0.4307 -0.3458 0.8336 -vn -0.0586 -0.8541 0.5169 -vn -0.0583 -0.8547 0.5159 -vn -0.0588 -0.8545 0.5161 -vn 0.2852 -0.3412 -0.8957 -vn 0.2864 -0.3424 -0.8949 -vn 0.2845 -0.3409 -0.8960 -vn -0.6869 -0.7263 0.0258 -vn -0.6873 -0.7260 0.0239 -vn -0.6862 -0.7269 0.0277 -vn 0.6160 -0.7196 0.3206 -vn 0.6158 -0.7197 0.3207 -vn 0.6159 -0.7196 0.3207 -vn -0.1402 0.2322 0.9625 -vn -0.8323 0.4085 0.3748 -vn -0.8327 0.4078 0.3745 -vn -0.8322 0.4086 0.3748 -vn -0.0734 0.8052 -0.5885 -vn -0.0742 0.8048 -0.5889 -vn -0.0738 0.8049 -0.5888 -vn -0.5277 -0.7392 -0.4184 -vn -0.5276 -0.7394 -0.4183 -vn 0.8280 0.0461 0.5589 -vn 0.8280 0.0461 0.5588 -vn -0.6013 -0.7772 -0.1855 -vn -0.0549 -0.2872 0.9563 -vn -0.0549 -0.2871 0.9563 -vn 0.2028 0.9786 0.0346 -vn 0.2028 0.9786 0.0345 -vn 0.1473 0.9440 0.2953 -vn 0.1479 0.9439 0.2953 -vn 0.1475 0.9440 0.2952 -vn 0.3527 0.8095 -0.4693 -vn 0.3521 0.8096 -0.4695 -vn 0.5009 -0.8655 -0.0109 -vn 0.5005 -0.8657 -0.0107 -vn -0.6044 -0.7544 -0.2560 -vn -0.6049 -0.7535 -0.2574 -vn -0.6037 -0.7552 -0.2555 -vn -0.6787 -0.7119 -0.1806 -vn -0.6787 -0.7119 -0.1805 -vn -0.6787 -0.7119 -0.1803 -vn -0.0919 0.9814 0.1688 -vn 0.9278 0.1440 0.3441 -vn 0.9277 0.1441 0.3444 -vn 0.9277 0.1442 0.3444 -vn -0.2662 -0.7182 0.6429 -vn -0.4884 -0.7338 -0.4723 -vn -0.4887 -0.7337 -0.4721 -vn -0.4886 -0.7337 -0.4722 -vn -0.0435 -0.1575 0.9866 -vn -0.0445 -0.1580 0.9864 -vn -0.0441 -0.1580 0.9865 -vn -0.6096 -0.7843 -0.1152 -vn -0.6095 -0.7843 -0.1156 -vn -0.6098 -0.7842 -0.1150 -vn -0.8289 -0.5151 0.2181 -vn 0.2803 -0.0058 -0.9599 -vn 0.2803 -0.0052 -0.9599 -vn 0.2804 -0.0063 -0.9599 -vn -0.0169 0.9999 -0.0007 -vn -0.0171 0.9999 -0.0008 -vn -0.0169 0.9999 -0.0006 -vn -0.5206 0.6477 -0.5563 -vn -0.5207 0.6477 -0.5562 -vn -0.5207 0.6477 -0.5563 -vn -0.4937 -0.8010 -0.3386 -vn 0.6764 0.5659 0.4714 -vn 0.6771 0.5649 0.4715 -vn 0.6770 0.5652 0.4714 -vn 0.0761 0.8129 -0.5774 -vn 0.0766 0.8128 -0.5775 -vn 0.0772 0.8129 -0.5773 -vn -0.4593 -0.4959 0.7370 -vn -0.4594 -0.4964 0.7366 -vn -0.4593 -0.4961 0.7368 -vn -0.4482 0.2648 0.8538 -vn -0.4479 0.2650 0.8539 -vn -0.4483 0.2647 0.8538 -vn -0.7547 -0.4044 -0.5166 -vn -0.7566 -0.4058 -0.5128 -vn -0.7555 -0.4057 -0.5145 -vn 0.5442 -0.6612 0.5164 -vn 0.5447 -0.6614 0.5156 -vn 0.5447 -0.6613 0.5157 -vn -0.1173 0.9646 -0.2361 -vn -0.1174 0.9646 -0.2362 -vn -0.1171 0.9647 -0.2360 -vn 0.5239 -0.8513 0.0296 -vn 0.5242 -0.8511 0.0293 -vn 0.5238 -0.8513 0.0297 -vn 0.5170 0.8505 -0.0968 -vn 0.5158 0.8511 -0.0977 -vn 0.5163 0.8509 -0.0971 -vn 0.8303 -0.4660 0.3058 -vn -0.0780 -0.3563 0.9311 -vn -0.0777 -0.3564 0.9311 -vn -0.0776 -0.3560 0.9313 -vn 0.5564 -0.8256 -0.0941 -vn 0.5565 -0.8255 -0.0942 -vn 0.5563 -0.8257 -0.0939 -vn 0.2916 0.4611 -0.8381 -vn 0.2915 0.4610 -0.8382 -vn 0.2917 0.4609 -0.8382 -vn 0.5161 0.6944 0.5013 -vn 0.5160 0.6945 0.5014 -vn -0.4865 -0.7503 0.4476 -vn -0.4265 -0.8356 -0.3463 -vn -0.4264 -0.8356 -0.3463 -vn -0.4266 -0.8355 -0.3462 -vn -0.7978 0.5974 0.0816 -vn -0.7973 0.5978 0.0834 -vn -0.7976 0.5975 0.0828 -vn 0.1047 -0.1775 0.9785 -vn -0.1309 0.1904 0.9729 -vn -0.1302 0.1896 0.9732 -vn -0.1303 0.1902 0.9731 -vn 0.0844 -0.6717 0.7360 -vn 0.0844 -0.6718 0.7359 -vn 0.0844 -0.6715 0.7361 -vn -0.3619 0.9122 0.1922 -vn -0.3619 0.9122 0.1923 -vn -0.3619 0.9121 0.1925 -vn 0.0989 0.4704 0.8769 -vn 0.0985 0.4709 0.8767 -vn 0.0984 0.4710 0.8766 -vn 0.0175 0.6675 -0.7444 -vn 0.0178 0.6676 -0.7443 -vn 0.0174 0.6674 -0.7445 -vn 0.5487 -0.8234 -0.1446 -vn 0.5486 -0.8235 -0.1449 -vn 0.5486 -0.8234 -0.1448 -vn -0.4814 0.2534 -0.8390 -vn 0.6875 0.1655 -0.7071 -vn 0.6873 0.1651 -0.7073 -vn 0.6874 0.1652 -0.7073 -vn 0.4544 0.8680 -0.2001 -vn 0.4539 0.8681 -0.2007 -vn 0.4542 0.8681 -0.2004 -vn 0.5247 -0.7931 -0.3093 -vn 0.7867 0.3012 0.5389 -vn 0.7867 0.3013 0.5388 -vn 0.7868 0.3015 0.5386 -vn -0.1541 -0.3336 0.9300 -vn -0.1540 -0.3336 0.9301 -vn -0.1538 -0.3336 0.9301 -vn 0.6119 -0.7748 0.1588 -vn 0.6118 -0.7750 0.1580 -vn 0.6121 -0.7748 0.1584 -vn 0.3689 -0.3827 0.8470 -vn 0.3689 -0.3825 0.8471 -vn 0.3687 -0.3829 0.8470 -vn 0.0611 0.6050 0.7939 -vn 0.0610 0.6053 0.7937 -vn 0.0611 0.6048 0.7941 -vn 0.1702 0.8846 0.4342 -vn 0.1699 0.8847 0.4342 -vn 0.1113 0.8431 0.5261 -vn 0.1113 0.8432 0.5260 -vn 0.1115 0.8428 0.5265 -vn 0.3540 -0.9260 0.1314 -vn 0.3543 -0.9259 0.1311 -vn 0.3541 -0.9260 0.1310 -vn -0.1099 -0.0953 -0.9894 -vn 0.0615 -0.4764 -0.8771 -vn 0.0616 -0.4758 -0.8774 -vn 0.0615 -0.4765 -0.8770 -vn 0.1724 0.7988 -0.5763 -vn 0.1721 0.7989 -0.5763 -vn 0.3527 -0.8039 0.4789 -vn 0.3528 -0.8040 0.4787 -vn 0.3526 -0.8040 0.4788 -vn -0.6257 0.6593 -0.4169 -vn -0.6258 0.6592 -0.4169 -vn -0.6259 0.6592 -0.4168 -vn -0.6759 -0.6033 0.4233 -vn -0.6761 -0.6031 0.4233 -vn -0.6760 -0.6032 0.4233 -vn 0.3245 -0.2667 0.9075 -vn 0.3240 -0.2666 0.9077 -vn 0.3234 -0.2664 0.9080 -vn 0.2210 -0.8942 0.3893 -vn -0.8707 0.2724 0.4095 -vn -0.8708 0.2727 0.4091 -vn -0.8707 0.2718 0.4100 -vn 0.1638 -0.0788 -0.9833 -vn 0.5856 -0.0529 0.8089 -vn 0.5856 -0.0531 0.8088 -vn 0.5856 -0.0531 0.8089 -vn -0.0940 -0.4425 -0.8918 -vn -0.0942 -0.4426 -0.8918 -vn -0.0940 -0.4426 -0.8918 -vn 0.5693 -0.6760 0.4679 -vn 0.5692 -0.6759 0.4681 -vn 0.7486 -0.1051 0.6546 -vn 0.7489 -0.1057 0.6542 -vn 0.7489 -0.1062 0.6541 -vn 0.5046 -0.7259 -0.4673 -vn 0.5049 -0.7261 -0.4668 -vn 0.6153 -0.1687 -0.7701 -vn 0.6153 -0.1686 -0.7700 -vn -0.3107 0.6065 -0.7318 -vn -0.3095 0.6069 -0.7320 -vn -0.3113 0.6063 -0.7318 -vn 0.7811 -0.5168 0.3504 -vn 0.7812 -0.5167 0.3505 -vn 0.7812 -0.5168 0.3503 -vn -0.2957 0.5238 0.7989 -vn -0.2958 0.5239 0.7988 -vn 0.0027 0.6357 -0.7719 -vn 0.0039 0.6361 -0.7716 -vn 0.0021 0.6347 -0.7727 -vn -0.8314 0.3696 -0.4149 -vn -0.2453 0.5414 -0.8042 -vn 0.5395 0.8027 -0.2541 -vn 0.5396 0.8023 -0.2552 -vn 0.5400 0.8030 -0.2523 -vn 0.8708 -0.0357 0.4903 -vn 0.8701 -0.0361 0.4915 -vn 0.8705 -0.0360 0.4909 -vn 0.9457 0.1355 0.2955 -vn 0.9457 0.1349 0.2956 -vn -0.0453 0.6794 -0.7324 -vn -0.0457 0.6794 -0.7323 -vn -0.0456 0.6794 -0.7324 -vn 0.1132 -0.9485 0.2959 -vn 0.1134 -0.9485 0.2957 -vn 0.1131 -0.9486 0.2957 -vn -0.1265 0.9883 0.0848 -vn -0.1267 0.9883 0.0848 -vn -0.1266 0.9883 0.0848 -vn -0.7018 -0.6615 -0.2643 -vn -0.7017 -0.6617 -0.2642 -vn -0.7018 -0.6616 -0.2642 -vn -0.1170 -0.6944 -0.7100 -vn -0.1167 -0.6947 -0.7097 -vn -0.6188 -0.7730 -0.1398 -vn -0.6190 -0.7728 -0.1398 -vn -0.6193 -0.7726 -0.1397 -vn 0.2043 0.9140 -0.3506 -vn 0.2045 0.9140 -0.3505 -vn 0.2044 0.9140 -0.3505 -vn 0.7826 -0.6214 -0.0365 -vn -0.7212 -0.6921 -0.0290 -vn -0.7214 -0.6919 -0.0288 -vn 0.9379 0.2851 -0.1978 -vn 0.5511 -0.5772 0.6026 -vn 0.5509 -0.5773 0.6027 -vn 0.5510 -0.5773 0.6027 -vn -0.9956 0.0896 -0.0284 -vn -0.9956 0.0896 -0.0287 -vn -0.9955 0.0897 -0.0290 -vn 0.7652 -0.0604 -0.6410 -vn 0.7657 -0.0610 -0.6403 -vn 0.7654 -0.0607 -0.6407 -vn 0.8396 0.4739 -0.2657 -vn 0.8398 0.4735 -0.2655 -vn 0.8393 0.4741 -0.2660 -vn 0.8451 0.3702 -0.3857 -vn 0.0104 0.4692 0.8830 -vn 0.0106 0.4691 0.8831 -vn 0.0105 0.4691 0.8831 -vn 0.8186 0.5060 -0.2717 -vn 0.8183 0.5062 -0.2723 -vn 0.8186 0.5060 -0.2718 -vn -0.9287 0.3706 -0.0148 -vn -0.9287 0.3705 -0.0149 -vn -0.9285 0.3710 -0.0145 -vn 0.3207 0.9447 0.0684 -vn 0.3207 0.9447 0.0681 -vn 0.3206 0.9447 0.0686 -vn 0.6745 0.7098 -0.2029 -vn 0.6744 0.7099 -0.2030 -vn 0.6743 0.7101 -0.2030 -vn -0.2068 -0.7662 0.6084 -vn -0.2071 -0.7662 0.6083 -vn -0.0025 -0.6683 -0.7439 -vn -0.1153 -0.7971 0.5928 -vn -0.1154 -0.7971 0.5927 -vn 0.0950 0.7271 -0.6799 -vn 0.0951 0.7263 -0.6808 -vn 0.0948 0.7267 -0.6804 -vn 0.0797 0.9933 -0.0838 -vn 0.0797 0.9933 -0.0837 -vn -0.0444 -0.9525 0.3014 -vn -0.0436 -0.9519 0.3033 -vn -0.0445 -0.9524 0.3016 -vn 0.8841 0.2564 0.3906 -vn 0.8840 0.2569 0.3906 -vn 0.8841 0.2560 0.3909 -vn 0.8290 -0.0000 -0.5592 -vn 0.8289 0.0003 -0.5593 -vn 0.8291 -0.0001 -0.5591 -vn 0.3964 -0.5110 0.7627 -vn 0.3963 -0.5109 0.7629 -vn 0.3963 -0.5109 0.7628 -vn 0.7002 -0.2248 0.6776 -vn 0.7001 -0.2249 0.6778 -vn 0.7001 -0.2250 0.6777 -vn -0.4678 -0.6404 -0.6091 -vn 0.7087 -0.2214 0.6699 -vn 0.7087 -0.2213 0.6699 -vn 0.7082 -0.2218 0.6703 -vn 0.5668 -0.2416 0.7876 -vn 0.3863 0.5575 0.7348 -vn 0.3862 0.5579 0.7346 -vn 0.3862 0.5577 0.7347 -vn 0.9763 0.0043 0.2166 -vn 0.9762 0.0015 0.2168 -vn 0.9763 0.0003 0.2164 -vn -0.8086 0.5532 -0.2005 -vn -0.8084 0.5534 -0.2008 -vn -0.8085 0.5532 -0.2007 -vn -0.3561 0.1865 0.9156 -vn -0.3560 0.1865 0.9157 -vn -0.3559 0.1864 0.9157 -vn -0.1636 -0.1417 0.9763 -vn -0.1635 -0.1415 0.9763 -vn -0.1637 -0.1419 0.9763 -vn -0.8253 0.5010 0.2605 -vn -0.8253 0.5011 0.2605 -vn -0.8252 0.5010 0.2607 -vn -0.3742 -0.5167 0.7701 -vn -0.3741 -0.5166 0.7702 -vn -0.3744 -0.5169 0.7699 -vn -0.5472 -0.6638 -0.5099 -vn -0.5469 -0.6642 -0.5097 -vn -0.5471 -0.6640 -0.5097 -vn 0.2627 0.6452 0.7175 -vn 0.2620 0.6398 0.7225 -vn 0.2637 0.6423 0.7196 -vn -0.0768 -0.6447 0.7606 -vn -0.0766 -0.6448 0.7605 -vn -0.0767 -0.6446 0.7607 -vn 0.3492 -0.3626 -0.8641 -vn 0.3487 -0.3624 -0.8643 -vn 0.7214 0.6098 0.3282 -vn -0.7598 -0.5779 -0.2979 -vn -0.0856 0.8436 -0.5300 -vn -0.0855 0.8437 -0.5299 -vn -0.9153 -0.4013 0.0355 -vn -0.9152 -0.4015 0.0356 -vn -0.3125 0.8524 0.4193 -vn -0.1867 0.8193 0.5422 -vn -0.0841 -0.7934 -0.6029 -vn 0.1199 -0.5259 0.8421 -vn 0.1185 -0.5256 0.8424 -vn 0.1167 -0.5243 0.8435 -vn 0.2409 0.9607 -0.1381 -vn 0.2407 0.9607 -0.1380 -vn -0.4204 0.4867 -0.7658 -vn -0.4193 0.4876 -0.7658 -vn -0.4199 0.4873 -0.7657 -vn 0.7117 -0.5882 -0.3840 -vn 0.7126 -0.5871 -0.3840 -vn 0.7122 -0.5875 -0.3841 -vn -0.6709 0.3302 -0.6640 -vn -0.2007 -0.6925 -0.6929 -vn -0.2005 -0.6924 -0.6931 -vn -0.2010 -0.6925 -0.6929 -vn 0.6539 0.0794 0.7524 -vn 0.6541 0.0794 0.7523 -vn 0.9597 -0.0580 -0.2749 -vn 0.9597 -0.0580 -0.2750 -vn 0.9019 -0.4215 0.0946 -vn 0.9020 -0.4213 0.0947 -vn 0.6961 -0.4971 -0.5180 -vn 0.6963 -0.4970 -0.5178 -vn 0.6960 -0.4971 -0.5181 -vn -0.6800 -0.7320 -0.0425 -vn -0.6805 -0.7315 -0.0422 -vn -0.6802 -0.7318 -0.0423 -vn 0.1623 -0.0805 -0.9835 -vn 0.9566 0.0177 0.2910 -vn 0.9564 0.0181 0.2914 -vn 0.9567 0.0172 0.2906 -vn 0.0391 -0.6389 0.7683 -vn 0.6211 0.3623 -0.6949 -vn 0.6210 0.3617 -0.6953 -vn 0.6209 0.3632 -0.6947 -vn 0.7479 -0.4890 -0.4490 -vn 0.7476 -0.4891 -0.4493 -vn 0.7482 -0.4890 -0.4485 -vn -0.3206 0.9117 0.2569 -vn -0.6405 0.5797 0.5036 -vn -0.6407 0.5798 0.5033 -vn -0.6408 0.5796 0.5035 -vn 0.7744 0.5955 0.2138 -vn 0.7749 0.5948 0.2139 -vn 0.7748 0.5949 0.2139 -vn -0.5955 -0.6693 0.4443 -vn -0.5955 -0.6694 0.4441 -vn -0.4457 -0.7457 -0.4953 -vn -0.4452 -0.7468 -0.4941 -vn -0.4457 -0.7456 -0.4954 -vn 0.3662 0.9284 -0.0638 -vn 0.3659 0.9285 -0.0636 -vn 0.0374 0.9322 -0.3600 -vn -0.2764 0.9540 -0.1160 -vn -0.6948 -0.7145 0.0821 -vn -0.6947 -0.7146 0.0819 -vn 0.9500 0.0722 -0.3037 -vn 0.9503 0.0725 -0.3029 -vn 0.9501 0.0723 -0.3034 -vn 0.5632 0.5993 -0.5689 -vn -0.2439 -0.9690 -0.0386 -vn 0.0500 0.4617 -0.8856 -vn 0.0501 0.4619 -0.8855 -vn 0.0493 0.4619 -0.8856 -vn -0.3068 -0.9518 0.0021 -vn -0.3069 -0.9518 0.0018 -vn -0.3069 -0.9517 0.0021 -vn 0.7021 -0.4658 -0.5385 -vn 0.7022 -0.4657 -0.5387 -vn 0.7021 -0.4659 -0.5385 -vn 0.9694 0.2318 0.0804 -vn -0.3578 0.8781 0.3177 -vn -0.3579 0.8781 0.3177 -vn -0.3580 0.8780 0.3177 -vn 0.6300 -0.4863 -0.6055 -vn 0.6301 -0.4863 -0.6054 -vn 0.6299 -0.4862 -0.6056 -vn 0.8846 0.0690 0.4612 -vn 0.8846 0.0692 0.4611 -vn 0.8847 0.0701 0.4609 -vn -0.1631 -0.5115 -0.8437 -vn -0.1632 -0.5116 -0.8436 -vn -0.1631 -0.5117 -0.8436 -vn -0.3184 -0.9478 0.0196 -vn 0.8806 0.4529 0.1393 -vn 0.8805 0.4530 0.1395 -vn 0.8806 0.4529 0.1394 -vn 0.9078 0.2705 0.3205 -vn -0.1619 0.2893 0.9434 -vn -0.1638 0.2888 0.9433 -vn -0.1630 0.2894 0.9432 -vn 0.5035 0.7456 0.4365 -vn 0.5036 0.7457 0.4362 -vn 0.5035 0.7456 0.4366 -vn -0.9610 0.1678 0.2199 -vn -0.9609 0.1680 0.2199 -vn -0.9610 0.1677 0.2199 -vn 0.8081 -0.4259 -0.4070 -vn 0.8080 -0.4265 -0.4065 -vn 0.0778 -0.0688 0.9946 -vn 0.0780 -0.0689 0.9946 -vn 0.0779 -0.0690 0.9946 -vn 0.4445 0.3427 -0.8277 -vn 0.4443 0.3429 -0.8276 -vn -0.0041 0.0179 0.9998 -vn -0.0035 0.0183 0.9998 -vn -0.0041 0.0178 0.9998 -vn -0.5207 -0.6012 -0.6062 -vn -0.5207 -0.6015 -0.6058 -vn -0.6549 -0.7497 -0.0953 -vn -0.6549 -0.7497 -0.0951 -vn 0.3402 -0.4753 -0.8114 -vn 0.3404 -0.4754 -0.8113 -vn 0.3360 -0.8891 0.3108 -vn 0.3361 -0.8891 0.3108 -vn 0.3362 -0.8891 0.3105 -vn 0.6942 0.6827 0.2280 -vn 0.6942 0.6827 0.2279 -vn 0.6943 0.6828 0.2277 -vn 0.6642 -0.7268 -0.1747 -vn 0.5053 0.8627 0.0194 -vn 0.5054 0.8627 0.0193 -vn -0.1175 0.0987 -0.9882 -vn -0.1177 0.0980 -0.9882 -vn -0.1177 0.0983 -0.9882 -vn 0.9231 0.3342 0.1900 -vn 0.9230 0.3344 0.1904 -vn 0.5001 0.2892 -0.8163 -vn 0.5007 0.2884 -0.8162 -vn 0.4996 0.2894 -0.8165 -vn -0.8988 0.1665 0.4056 -vn -0.8984 0.1673 0.4061 -vn -0.8983 0.1674 0.4062 -vn -0.4458 0.2558 -0.8578 -vn -0.4071 -0.8614 -0.3038 -vn 0.5340 -0.7767 0.3340 -vn 0.5347 -0.7764 0.3337 -vn -0.3995 -0.7009 -0.5909 -vn -0.3994 -0.7009 -0.5910 -vn -0.3995 -0.7008 -0.5910 -vn -0.0262 -0.7254 -0.6879 -vn -0.0259 -0.7253 -0.6879 -vn -0.0265 -0.7253 -0.6880 -vn 0.3205 0.9470 0.0237 -vn 0.3207 0.9469 0.0236 -vn 0.3202 0.9471 0.0237 -vn -0.7226 0.3009 0.6224 -vn -0.7226 0.3007 0.6225 -vn -0.7227 0.3006 0.6224 -vn -0.8600 0.1600 -0.4845 -vn -0.9621 0.2689 0.0464 -vn -0.9620 0.2691 0.0464 -vn -0.9619 0.2694 0.0463 -vn -0.0204 0.8531 -0.5214 -vn -0.0205 0.8531 -0.5214 -vn -0.9368 0.3081 0.1659 -vn -0.9369 0.3076 0.1659 -vn 0.6403 -0.7591 0.1176 -vn 0.6405 -0.7589 0.1178 -vn 0.6402 -0.7592 0.1175 -vn 0.5920 -0.6807 0.4316 -vn 0.5921 -0.6805 0.4316 -vn 0.8933 -0.1758 0.4137 -vn 0.8931 -0.1762 0.4139 -vn -0.7151 0.4941 -0.4945 -vn -0.7214 -0.6191 0.3103 -vn -0.7213 -0.6192 0.3103 -vn -0.7212 -0.6192 0.3105 -vn -0.9988 -0.0268 0.0416 -vn -0.9988 -0.0243 0.0426 -vn -0.9986 -0.0312 0.0416 -vn 0.7225 -0.6535 0.2255 -vn 0.7232 -0.6528 0.2255 -vn 0.7241 -0.6520 0.2249 -vn 0.6561 -0.2589 -0.7089 -vn 0.6562 -0.2589 -0.7088 -vn -0.5379 -0.7382 -0.4071 -vn 0.5960 -0.6566 0.4623 -vn 0.5959 -0.6569 0.4620 -vn 0.5958 -0.6570 0.4619 -vn -0.4363 0.8955 0.0882 -vn -0.4363 0.8953 0.0896 -vn -0.4364 0.8953 0.0891 -vn -0.2855 -0.0035 -0.9584 -vn -0.2854 -0.0035 -0.9584 -vn 0.6996 -0.6094 0.3731 -vn 0.6995 -0.6095 0.3731 -vn 0.5378 0.2784 0.7958 -vn 0.5375 0.2780 0.7961 -vn 0.5372 0.2775 0.7965 -vn -0.3532 0.9113 0.2115 -vn -0.3532 0.9114 0.2113 -vn -0.9197 0.3902 -0.0424 -vn -0.9202 0.3893 -0.0418 -vn -0.9202 0.3892 -0.0417 -vn -0.5288 -0.7288 -0.4350 -vn 0.2241 0.1923 -0.9554 -vn 0.5310 -0.8138 0.2360 -vn 0.5309 -0.8140 0.2358 -vn 0.5305 -0.8142 0.2357 -vn -0.5596 -0.8073 -0.1874 -vn -0.5597 -0.8073 -0.1874 -vn 0.7095 -0.5720 0.4116 -vn 0.7095 -0.5720 0.4115 -vn 0.7094 -0.5720 0.4117 -vn -0.1961 0.8668 -0.4585 -vn -0.1964 0.8670 -0.4580 -vn -0.1962 0.8669 -0.4582 -vn 0.2702 0.1479 -0.9514 -vn 0.2701 0.1478 -0.9514 -vn 0.2703 0.1477 -0.9514 -vn 0.3651 0.8005 -0.4753 -vn 0.6652 -0.1300 0.7353 -vn -0.4289 0.2199 0.8762 -vn -0.4290 0.2200 0.8761 -vn -0.4290 0.2201 0.8761 -vn 0.0938 0.9593 -0.2665 -vn 0.0934 0.9593 -0.2665 -vn 0.0932 0.9593 -0.2666 -vn -0.6709 -0.7381 -0.0711 -vn -0.6706 -0.7384 -0.0712 -vn -0.6708 -0.7382 -0.0711 -vn 0.6710 -0.5885 0.4510 -vn -0.4989 -0.6529 0.5699 -vn -0.4988 -0.6531 0.5698 -vn -0.4991 -0.6526 0.5701 -vn 0.4648 0.8227 -0.3274 -vn 0.4650 0.8226 -0.3273 -vn 0.4652 0.8225 -0.3273 -vn -0.5140 -0.8555 0.0629 -vn -0.5140 -0.8555 0.0632 -vn -0.2370 0.0213 -0.9713 -vn -0.2366 0.0215 -0.9714 -vn -0.6177 -0.7261 -0.3021 -vn -0.6178 -0.7261 -0.3019 -vn -0.5978 0.0922 -0.7964 -vn -0.5976 0.0921 -0.7965 -vn -0.5981 0.0922 -0.7961 -vn 0.0672 0.2065 0.9761 -vn 0.0669 0.2066 0.9761 -vn 0.0671 0.2066 0.9761 -vn 0.4850 0.5019 -0.7161 -vn 0.4823 0.5023 -0.7177 -vn 0.4837 0.5017 -0.7172 -vn 0.1395 0.9900 0.0192 -vn 0.1406 0.9899 0.0193 -vn 0.1392 0.9901 0.0192 -vn 0.4872 -0.8587 -0.1586 -vn 0.4870 -0.8589 -0.1584 -vn 0.4871 -0.8588 -0.1585 -vn 0.7901 0.5755 0.2109 -vn -0.5238 0.8065 -0.2743 -vn -0.5237 0.8066 -0.2741 -vn -0.3249 -0.9440 -0.0570 -vn -0.3256 -0.9438 -0.0567 -vn -0.3249 -0.9440 -0.0568 -vn 0.2177 -0.6575 0.7213 -vn -0.2544 -0.7414 0.6210 -vn -0.2540 -0.7419 0.6205 -vn 0.1225 0.5457 -0.8290 -vn 0.1227 0.5459 -0.8288 -vn 0.1226 0.5458 -0.8289 -vn -0.8357 0.2422 0.4930 -vn -0.8357 0.2423 0.4929 -vn -0.8357 0.2421 0.4930 -vn 0.5565 0.7625 -0.3300 -vn 0.5565 0.7625 -0.3301 -vn 0.5138 -0.8483 -0.1279 -vn 0.5137 -0.8484 -0.1278 -vn 0.5140 -0.8482 -0.1278 -vn 0.5574 -0.8299 -0.0245 -vn 0.5577 -0.8296 -0.0252 -vn 0.5574 -0.8299 -0.0250 -vn -0.5418 -0.7298 -0.4170 -vn -0.5415 -0.7299 -0.4171 -vn -0.5418 -0.7297 -0.4172 -vn 0.6449 -0.6796 -0.3497 -vn 0.6448 -0.6798 -0.3494 -vn 0.6453 -0.6797 -0.3487 -vn 0.9434 -0.1115 0.3124 -vn 0.9437 -0.1093 0.3123 -vn 0.9436 -0.1105 0.3122 -vn 0.3796 0.9232 0.0594 -vn 0.3797 0.9232 0.0594 -vn 0.3800 0.9231 0.0595 -vn -0.4062 0.6521 0.6401 -vn -0.4063 0.6519 0.6403 -vn -0.4070 0.6519 0.6398 -vn 0.3209 0.9404 0.1126 -vn 0.3208 0.9404 0.1126 -vn 0.0052 0.7517 -0.6595 -vn 0.0053 0.7516 -0.6596 -vn 0.0055 0.7515 -0.6597 -vn -0.8307 0.5165 0.2076 -vn -0.8308 0.5164 0.2075 -vn -0.8306 0.5166 0.2077 -vn -0.2887 -0.8763 0.3856 -vn -0.5885 -0.0898 0.8035 -vn -0.5878 -0.0899 0.8040 -vn -0.5880 -0.0900 0.8038 -vn 0.1462 0.3656 -0.9192 -vn -0.6017 0.7895 -0.1208 -vn -0.6016 0.7896 -0.1208 -vn 0.2116 -0.7804 0.5884 -vn 0.2118 -0.7804 0.5883 -vn -0.8600 0.4983 -0.1100 -vn -0.8599 0.4984 -0.1100 -vn -0.8603 0.4978 -0.1098 -vn -0.8216 -0.3297 -0.4650 -vn -0.8218 -0.3306 -0.4642 -vn -0.8217 -0.3306 -0.4642 -vn 0.1546 -0.9857 -0.0665 -vn 0.1538 -0.9859 -0.0660 -vn 0.1540 -0.9859 -0.0661 -vn -0.0243 0.9985 0.0482 -vn -0.0235 0.9986 0.0479 -vn -0.0247 0.9985 0.0484 -vn 0.7246 0.6099 0.3209 -vn 0.7239 0.6115 0.3194 -vn 0.7242 0.6094 0.3228 -vn 0.0451 0.8712 0.4888 -vn 0.0444 0.8718 0.4879 -vn 0.0458 0.8710 0.4892 -vn 0.5254 -0.8351 0.1633 -vn 0.5253 -0.8351 0.1634 -vn 0.5253 -0.8350 0.1636 -vn 0.5305 0.4216 -0.7354 -vn 0.5305 0.4214 -0.7355 -vn 0.5305 0.4217 -0.7353 -vn -0.5945 -0.6622 0.4562 -vn -0.5941 -0.6623 0.4565 -vn -0.5943 -0.6622 0.4564 -vn 0.3792 -0.7151 -0.5872 -vn 0.3791 -0.7152 -0.5872 -vn 0.3789 -0.7150 -0.5876 -vn -0.5955 -0.7887 0.1529 -vn -0.4622 -0.7839 -0.4147 -vn -0.2728 -0.9397 -0.2063 -vn -0.2753 -0.9394 -0.2045 -vn -0.2745 -0.9394 -0.2055 -vn 0.0794 -0.9222 -0.3784 -vn 0.0785 -0.9219 -0.3793 -vn 0.0791 -0.9221 -0.3788 -vn 0.9794 0.0724 -0.1887 -vn 0.9794 0.0722 -0.1886 -vn 0.9794 0.0724 -0.1884 -vn 0.6615 -0.7122 0.2347 -vn 0.6614 -0.7122 0.2351 -vn 0.6609 -0.7124 0.2360 -vn -0.1880 0.9379 -0.2914 -vn -0.1883 0.9377 -0.2920 -vn -0.1879 0.9380 -0.2913 -vn -0.5096 -0.2142 -0.8333 -vn -0.5104 -0.2136 -0.8330 -vn -0.5101 -0.2139 -0.8331 -vn 0.1751 0.9742 0.1422 -vn 0.1748 0.9743 0.1422 -vn 0.1750 0.9743 0.1421 -vn -0.4398 0.8362 -0.3276 -vn -0.0350 0.9988 -0.0334 -vn 0.2125 -0.6830 -0.6989 -vn 0.6754 0.5765 0.4598 -vn 0.6751 0.5767 0.4601 -vn -0.1267 -0.6954 -0.7074 -vn -0.1270 -0.6953 -0.7074 -vn -0.1260 -0.6958 -0.7071 -vn -0.0422 -0.0194 0.9989 -vn -0.0410 -0.0207 0.9989 -vn -0.0389 -0.0216 0.9990 -vn -0.6943 0.0240 -0.7193 -vn -0.6942 0.0241 -0.7194 -vn 0.5211 -0.6629 0.5376 -vn 0.5198 -0.6653 0.5360 -vn 0.5230 -0.6615 0.5375 -vn 0.4565 0.7661 -0.4524 -vn -0.6065 -0.7274 -0.3209 -vn -0.6065 -0.7276 -0.3206 -vn -0.6063 -0.7277 -0.3205 -vn -0.7013 0.4225 -0.5741 -vn -0.6850 0.4140 -0.5994 -vn -0.6852 0.4139 -0.5994 -vn -0.2300 -0.2770 0.9329 -vn -0.2300 -0.2769 0.9330 -vn -0.2301 -0.2772 0.9328 -vn -0.0721 0.9544 -0.2897 -vn -0.0724 0.9545 -0.2894 -vn -0.0721 0.9545 -0.2892 -vn -0.4379 -0.8899 0.1277 -vn -0.4380 -0.8899 0.1276 -vn 0.8421 -0.1380 -0.5213 -vn 0.8418 -0.1376 -0.5220 -vn 0.8415 -0.1374 -0.5225 -vn -0.4147 -0.9098 0.0147 -vn -0.4146 -0.9099 0.0146 -vn -0.7766 -0.6214 -0.1042 -vn -0.7766 -0.6213 -0.1044 -vn -0.7767 -0.6211 -0.1046 -vn 0.8052 0.5736 -0.1505 -vn 0.8051 0.5737 -0.1504 -vn 0.8050 0.5738 -0.1505 -vn -0.3361 0.9212 -0.1963 -vn -0.5964 -0.6606 -0.4559 -vn -0.5963 -0.6606 -0.4561 -vn -0.5965 -0.6605 -0.4560 -vn 0.6431 -0.6548 -0.3972 -vn 0.6426 -0.6553 -0.3971 -vn -0.0192 -0.2313 0.9727 -vn -0.0185 -0.2308 0.9728 -vn -0.0188 -0.2310 0.9728 -vn 0.0143 0.9811 -0.1931 -vn 0.0142 0.9810 -0.1934 -vn 0.0146 0.9810 -0.1932 -vn 0.0762 -0.9823 -0.1712 -vn 0.0762 -0.9822 -0.1715 -vn 0.0489 -0.9165 0.3971 -vn 0.0483 -0.9164 0.3973 -vn 0.0488 -0.9164 0.3974 -vn 0.8680 -0.1687 0.4670 -vn 0.8679 -0.1694 0.4670 -vn 0.8680 -0.1682 0.4673 -vn 0.9125 0.0996 0.3967 -vn 0.9139 0.0984 0.3939 -vn 0.9130 0.0988 0.3958 -vn 0.9307 -0.2288 0.2855 -vn 0.9308 -0.2289 0.2850 -vn 0.9308 -0.2291 0.2848 -vn -0.0047 0.9654 -0.2608 -vn -0.0046 0.9653 -0.2610 -vn 0.8183 0.2601 0.5125 -vn 0.8340 0.1679 -0.5256 -vn 0.8339 0.1688 -0.5255 -vn 0.8340 0.1683 -0.5255 -vn -0.0339 -0.9500 0.3103 -vn -0.0325 -0.9499 0.3109 -vn -0.0308 -0.9499 0.3110 -vn -0.7024 0.3539 -0.6176 -vn -0.2211 -0.9717 0.0830 -vn -0.2210 -0.9717 0.0830 -vn -0.2216 -0.9717 0.0824 -vn 0.2946 -0.5642 0.7713 -vn 0.2945 -0.5643 0.7713 -vn 0.2944 -0.5637 0.7718 -vn 0.2413 0.8664 -0.4372 -vn -0.2452 -0.7737 -0.5842 -vn -0.2456 -0.7751 -0.5822 -vn -0.2464 -0.7755 -0.5813 -vn -0.3937 0.1409 -0.9084 -vn -0.3938 0.1410 -0.9083 -vn -0.3935 0.1407 -0.9085 -vn 0.4387 0.4647 -0.7691 -vn 0.4386 0.4647 -0.7692 -vn 0.3886 0.6273 -0.6749 -vn 0.4710 0.8392 -0.2719 -vn 0.4710 0.8390 -0.2725 -vn -0.2227 0.0773 -0.9718 -vn -0.2225 0.0775 -0.9718 -vn -0.2226 0.0772 -0.9718 -vn -0.3223 0.1958 0.9262 -vn -0.3222 0.1956 0.9263 -vn 0.2246 -0.0564 0.9728 -vn 0.2245 -0.0567 0.9728 -vn -0.0058 -0.6591 0.7520 -vn -0.0056 -0.6589 0.7522 -vn -0.0060 -0.6590 0.7521 -vn -0.4963 0.0610 -0.8660 -vn -0.4964 0.0607 -0.8660 -vn -0.4964 0.0608 -0.8660 -vn -0.0913 -0.5410 -0.8360 -vn -0.0911 -0.5385 -0.8377 -vn -0.0913 -0.5409 -0.8361 -vn 0.1898 0.8859 -0.4232 -vn 0.1896 0.8858 -0.4235 -vn 0.1895 0.8859 -0.4233 -vn 0.2983 -0.7363 -0.6074 -vn 0.2982 -0.7359 -0.6079 -vn 0.2985 -0.7353 -0.6085 -vn 0.9472 0.2352 0.2181 -vn 0.9472 0.2351 0.2181 -vn -0.3674 -0.9238 -0.1077 -vn -0.3676 -0.9236 -0.1085 -vn -0.3675 -0.9236 -0.1091 -vn 0.4903 0.8678 -0.0809 -vn 0.4908 0.8674 -0.0818 -vn 0.4907 0.8675 -0.0813 -vn 0.1184 0.9804 -0.1575 -vn 0.1187 0.9804 -0.1575 -vn 0.4878 -0.7823 0.3875 -vn 0.4881 -0.7822 0.3872 -vn 0.4875 -0.7824 0.3876 -vn -0.6616 -0.7496 0.0194 -vn -0.6616 -0.7496 0.0195 -vn -0.6620 -0.7492 0.0194 -vn 0.2853 -0.1562 0.9456 -vn 0.2846 -0.1561 0.9459 -vn 0.2852 -0.1560 0.9457 -vn 0.7084 -0.7049 0.0366 -vn -0.1081 0.8282 -0.5498 -vn -0.1082 0.8287 -0.5492 -vn -0.1082 0.8285 -0.5494 -vn 0.4261 -0.5026 -0.7522 -vn -0.3098 0.0227 -0.9505 -vn -0.3101 0.0233 -0.9504 -vn -0.3100 0.0228 -0.9505 -vn -0.4477 -0.7194 0.5311 -vn -0.4474 -0.7193 0.5314 -vn -0.4473 -0.7193 0.5316 -vn 0.6127 0.4711 -0.6346 -vn 0.6126 0.4711 -0.6347 -vn 0.1116 0.9936 -0.0177 -vn 0.1114 0.9936 -0.0165 -vn 0.1116 0.9936 -0.0171 -vn 0.8188 -0.0452 0.5723 -vn 0.8186 -0.0451 0.5726 -vn 0.8185 -0.0452 0.5728 -vn -0.5102 -0.6503 -0.5628 -vn -0.5104 -0.6506 -0.5623 -vn -0.5103 -0.6503 -0.5628 -vn -0.5917 0.6898 0.4173 -vn -0.5917 0.6899 0.4171 -vn -0.5920 0.6894 0.4174 -vn -0.1164 -0.7172 -0.6870 -vn -0.1167 -0.7168 -0.6875 -vn -0.1164 -0.7172 -0.6871 -vn 0.0266 -0.6937 -0.7198 -vn 0.0266 -0.6938 -0.7197 -vn 0.5903 0.8048 0.0615 -vn 0.5906 0.8047 0.0609 -vn 0.5903 0.8048 0.0616 -vn -0.1303 -0.7144 -0.6875 -vn -0.1304 -0.7145 -0.6874 -vn -0.1312 -0.7148 -0.6869 -vn -0.8974 0.4386 0.0486 -vn -0.8966 0.4401 0.0498 -vn -0.8970 0.4393 0.0495 -vn 0.7099 0.2799 -0.6464 -vn 0.7097 0.2798 -0.6465 -vn -0.4348 -0.8921 0.1226 -vn -0.4348 -0.8921 0.1227 -vn -0.4350 -0.8921 0.1224 -vn 0.9285 -0.0068 0.3712 -vn 0.9285 -0.0067 0.3713 -vn 0.9286 -0.0070 0.3711 -vn -0.0595 0.9195 -0.3886 -vn -0.3812 -0.4475 -0.8089 -vn -0.3812 -0.4476 -0.8089 -vn -0.3812 -0.4477 -0.8089 -vn 0.8673 0.1011 -0.4873 -vn 0.8680 0.0999 -0.4865 -vn 0.8665 0.1014 -0.4887 -vn 0.1684 -0.9850 -0.0378 -vn 0.1685 -0.9850 -0.0377 -vn 0.1683 -0.9850 -0.0383 -vn -0.5876 0.6772 -0.4429 -vn -0.5876 0.6771 -0.4430 -vn 0.9323 0.2071 0.2965 -vn 0.9327 0.2073 0.2952 -vn 0.9326 0.2072 0.2955 -vn -0.3472 -0.5992 -0.7214 -vn -0.3471 -0.5990 -0.7216 -vn -0.3469 -0.5994 -0.7214 -vn -0.3515 -0.0174 0.9360 -vn -0.3514 -0.0186 0.9360 -vn -0.3515 -0.0165 0.9360 -vn 0.6323 -0.3657 -0.6830 -vn 0.6326 -0.3656 -0.6828 -vn 0.6321 -0.3657 -0.6832 -vn 0.5605 -0.4452 -0.6983 -vn 0.5607 -0.4452 -0.6982 -vn 0.5607 -0.4454 -0.6981 -vn -0.4528 0.8157 -0.3601 -vn -0.4527 0.8160 -0.3595 -vn -0.4525 0.8156 -0.3606 -vn 0.1051 0.7363 -0.6684 -vn 0.1062 0.7361 -0.6685 -vn 0.1056 0.7363 -0.6684 -vn -0.3802 -0.7880 -0.4842 -vn -0.3800 -0.7881 -0.4843 -vn -0.3809 -0.7877 -0.4841 -vn -0.8848 0.4488 -0.1252 -vn -0.8848 0.4490 -0.1250 -vn -0.8848 0.4488 -0.1251 -vn -0.5929 -0.7724 0.2276 -vn -0.5933 -0.7722 0.2273 -vn -0.5936 -0.7720 0.2271 -vn -0.6096 -0.7594 0.2273 -vn -0.6094 -0.7595 0.2275 -vn -0.6093 -0.7595 0.2279 -vn 0.2530 0.8831 0.3951 -vn 0.2529 0.8832 0.3950 -vn 0.2380 0.5591 -0.7942 -vn 0.2381 0.5591 -0.7942 -vn 0.2384 0.5595 -0.7938 -vn -0.2903 0.3611 -0.8862 -vn 0.4105 0.1779 0.8944 -vn 0.4903 0.7544 -0.4365 -vn 0.4887 0.7539 -0.4392 -vn 0.4897 0.7544 -0.4371 -vn 0.7125 -0.4146 -0.5661 -vn 0.7123 -0.4148 -0.5661 -vn 0.7122 -0.4149 -0.5663 -vn 0.4803 -0.8458 0.2324 -vn 0.4799 -0.8463 0.2314 -vn 0.4788 -0.8471 0.2306 -vn -0.3472 -0.9374 -0.0267 -vn -0.3468 -0.9376 -0.0266 -vn -0.3474 -0.9373 -0.0268 -vn 0.1641 0.9597 -0.2282 -vn 0.1642 0.9599 -0.2274 -vn 0.1641 0.9597 -0.2281 -vn -0.9665 0.2256 -0.1224 -vn -0.9665 0.2257 -0.1219 -vn -0.9669 0.2251 -0.1203 -vn -0.2751 -0.0579 -0.9597 -vn -0.2747 -0.0579 -0.9598 -vn -0.2750 -0.0580 -0.9597 -vn 0.6905 -0.7227 0.0310 -vn -0.7051 -0.6159 0.3515 -vn -0.7050 -0.6158 0.3517 -vn -0.0493 0.2958 -0.9540 -vn -0.0431 -0.4491 0.8924 -vn -0.0430 -0.4491 0.8924 -vn -0.0430 -0.4490 0.8925 -vn -0.4080 0.7993 0.4411 -vn -0.4079 0.7993 0.4412 -vn -0.4074 0.7995 0.4414 -vn 0.6239 -0.4740 -0.6213 -vn 0.6237 -0.4738 -0.6217 -vn 0.6237 -0.4737 -0.6218 -vn 0.2192 0.9506 -0.2199 -vn -0.7403 -0.6721 -0.0180 -vn -0.3948 -0.8554 -0.3352 -vn -0.3949 -0.8554 -0.3351 -vn -0.3948 -0.8555 -0.3350 -vn -0.7564 -0.4315 -0.4916 -vn -0.7563 -0.4315 -0.4918 -vn 0.2141 0.6270 -0.7490 -vn 0.2139 0.6271 -0.7490 -vn 0.2140 0.6270 -0.7490 -vn -0.5098 -0.8310 -0.2227 -vn -0.5097 -0.8311 -0.2226 -vn -0.5099 -0.8308 -0.2230 -vn 0.7560 -0.6035 -0.2535 -vn 0.7561 -0.6034 -0.2534 -vn 0.4345 0.8548 -0.2839 -vn 0.4345 0.8548 -0.2838 -vn 0.3532 -0.8911 0.2850 -vn 0.3529 -0.8911 0.2852 -vn 0.3530 -0.8911 0.2850 -vn 0.1123 -0.5043 0.8562 -vn 0.1122 -0.5043 0.8562 -vn 0.8059 -0.3507 -0.4769 -vn 0.8058 -0.3509 -0.4771 -vn 0.6288 0.7189 0.2962 -vn 0.6286 0.7190 0.2964 -vn 0.6283 0.7192 0.2966 -vn -0.9793 0.1836 0.0850 -vn 0.7286 -0.2797 -0.6252 -vn -0.0001 0.0010 1.0000 -vn 0.2318 0.8872 0.3989 -vn -0.7436 -0.6359 -0.2066 -vn -0.7435 -0.6364 -0.2056 -vn -0.7436 -0.6364 -0.2050 -vn -0.4190 0.8922 -0.1685 -vn -0.4191 0.8922 -0.1685 -vn 0.0639 -0.9075 -0.4151 -vn 0.0638 -0.9075 -0.4151 -vn -0.4663 -0.7146 -0.5214 -vn -0.4662 -0.7149 -0.5212 -vn -0.4505 -0.8401 -0.3022 -vn -0.4499 -0.8403 -0.3025 -vn -0.4504 -0.8401 -0.3024 -vn 0.4912 0.3575 0.7943 -vn 0.4165 -0.8500 0.3226 -vn 0.4186 -0.8497 0.3206 -vn 0.4159 -0.8486 0.3270 -vn 0.2061 0.7490 -0.6296 -vn 0.9612 -0.2723 0.0444 -vn 0.9611 -0.2726 0.0445 -vn 0.9611 -0.2725 0.0443 -vn -0.7327 0.6246 -0.2702 -vn -0.7326 0.6247 -0.2703 -vn -0.5377 -0.8140 -0.2196 -vn -0.5376 -0.8141 -0.2197 -vn -0.5375 -0.8142 -0.2196 -vn -0.8206 0.3117 -0.4791 -vn -0.8208 0.3114 -0.4789 -vn -0.8205 0.3118 -0.4792 -vn 0.3109 0.3949 0.8645 -vn 0.3112 0.3944 0.8646 -vn -0.9081 0.1654 -0.3846 -vn -0.4285 0.7762 -0.4625 -vn -0.4281 0.7765 -0.4624 -vn -0.7523 0.4017 -0.5222 -vn -0.7522 0.4017 -0.5223 -vn -0.2269 0.9653 -0.1290 -vn -0.2269 0.9654 -0.1287 -vn -0.2268 0.9655 -0.1281 -vn -0.3595 -0.8191 -0.4470 -vn -0.3176 -0.8119 -0.4899 -vn -0.3178 -0.8119 -0.4897 -vn -0.3178 -0.8119 -0.4898 -vn 0.1438 0.3170 -0.9375 -vn 0.1437 0.3168 -0.9375 -vn -0.1225 0.7225 -0.6805 -vn -0.1221 0.7222 -0.6808 -vn -0.1224 0.7225 -0.6805 -vn 0.6080 -0.7041 0.3669 -vn 0.6077 -0.7044 0.3668 -vn -0.6899 -0.6503 -0.3180 -vn -0.6896 -0.6507 -0.3178 -vn -0.6892 -0.6513 -0.3175 -vn -0.1898 0.8269 0.5294 -vn -0.1901 0.8268 0.5294 -vn -0.1902 0.8268 0.5294 -vn 0.5856 -0.7415 0.3276 -vn 0.5855 -0.7416 0.3275 -vn -0.6772 -0.5325 -0.5078 -vn -0.6774 -0.5324 -0.5076 -vn -0.6776 -0.5321 -0.5076 -vn 0.8795 0.4448 -0.1691 -vn 0.8797 0.4445 -0.1691 -vn 0.8796 0.4446 -0.1692 -vn 0.9176 -0.0312 -0.3963 -vn 0.9175 -0.0309 -0.3966 -vn 0.9180 -0.0318 -0.3953 -vn 0.0625 0.8983 0.4348 -vn -0.5459 0.8266 -0.1366 -vn -0.5467 0.8258 -0.1386 -vn -0.5462 0.8267 -0.1351 -vn 0.0118 0.9991 0.0408 -vn 0.0120 0.9991 0.0409 -vn 0.0123 0.9991 0.0408 -vn 0.7279 -0.5970 0.3374 -vn 0.3826 0.9166 0.1165 -vn 0.3824 0.9166 0.1167 -vn 0.3820 0.9167 0.1169 -vn 0.9779 -0.0977 0.1848 -vn 0.9779 -0.0978 0.1847 -vn 0.7079 -0.5767 0.4078 -vn 0.7080 -0.5768 0.4075 -vn 0.7079 -0.5768 0.4076 -vn 0.4737 -0.0414 -0.8797 -vn 0.4731 -0.0421 -0.8800 -vn 0.4741 -0.0412 -0.8795 -vn 0.2199 0.9678 -0.1222 -vn 0.2197 0.9679 -0.1219 -vn 0.2202 0.9677 -0.1224 -vn -0.8412 -0.3718 0.3927 -vn -0.8410 -0.3718 0.3931 -vn -0.8408 -0.3719 0.3933 -vn 0.5951 -0.6446 0.4800 -vn 0.5946 -0.6449 0.4802 -vn 0.5935 -0.6459 0.4802 -vn 0.3061 0.5030 0.8083 -vn 0.3060 0.5031 0.8082 -vn 0.3062 0.5029 0.8083 -vn -0.6158 -0.7863 -0.0497 -vn -0.6157 -0.7864 -0.0498 -vn -0.6159 -0.7863 -0.0497 -vn 0.5695 0.3727 0.7326 -vn -0.5670 -0.7629 -0.3108 -vn -0.4996 -0.8657 0.0306 -vn -0.4993 -0.8659 0.0309 -vn -0.4996 -0.8657 0.0307 -vn -0.7506 -0.6608 0.0014 -vn 0.0647 -0.9074 -0.4152 -vn 0.0646 -0.9075 -0.4151 -vn 0.0647 -0.9076 -0.4149 -vn -0.8170 0.5436 0.1921 -vn -0.8171 0.5436 0.1920 -vn 0.5577 -0.8299 -0.0159 -vn 0.5577 -0.8299 -0.0160 -vn 0.5578 -0.8298 -0.0162 -vn 0.2403 0.1517 -0.9588 -vn 0.2405 0.1518 -0.9587 -vn 0.2404 0.1517 -0.9587 -vn -0.4484 -0.8857 0.1202 -vn -0.4485 -0.8857 0.1201 -vn -0.9448 0.2788 0.1722 -vn -0.9445 0.2795 0.1727 -vn -0.9446 0.2793 0.1726 -vn 0.4644 -0.3621 -0.8082 -vn 0.4646 -0.3620 -0.8081 -vn 0.4645 -0.3619 -0.8082 -vn 0.4252 -0.5933 0.6836 -vn 0.4253 -0.5932 0.6835 -vn 0.4250 -0.5934 0.6836 -vn -0.3254 -0.9394 0.1080 -vn -0.3257 -0.9393 0.1081 -vn -0.3252 -0.9395 0.1076 -vn 0.2112 0.6990 0.6832 -vn 0.2107 0.6994 0.6830 -vn 0.2101 0.6998 0.6828 -vn 0.9069 0.2221 0.3580 -vn 0.9068 0.2225 0.3580 -vn 0.9069 0.2224 0.3579 -vn -0.6716 0.6899 -0.2702 -vn -0.6718 0.6897 -0.2702 -vn -0.6714 0.6901 -0.2701 -vn 0.2788 0.1272 -0.9519 -vn 0.2784 0.1271 -0.9520 -vn 0.2789 0.1272 -0.9519 -vn -0.9790 0.0740 0.1898 -vn -0.9793 0.0736 0.1886 -vn -0.9789 0.0739 0.1904 -vn 0.2683 -0.8618 0.4304 -vn 0.3897 -0.6940 0.6055 -vn 0.3896 -0.6939 0.6055 -vn -0.1057 0.7650 0.6352 -vn -0.1061 0.7652 0.6350 -vn -0.1051 0.7650 0.6354 -vn -0.6020 0.7633 -0.2344 -vn -0.6019 0.7633 -0.2348 -vn -0.6017 0.7633 -0.2354 -vn -0.4486 -0.0272 -0.8933 -vn -0.4485 -0.0271 -0.8934 -vn -0.4484 -0.0271 -0.8934 -vn -0.6566 -0.0284 0.7537 -vn -0.6563 -0.0285 0.7540 -vn -0.6565 -0.0285 0.7538 -vn 0.4892 0.4933 0.7193 -vn 0.4893 0.4933 0.7192 -vn -0.1987 -0.4223 -0.8844 -vn -0.1989 -0.4227 -0.8842 -vn -0.6118 -0.7354 -0.2914 -vn -0.6120 -0.7354 -0.2910 -vn -0.6118 -0.7354 -0.2913 -vn 0.1468 -0.4753 0.8675 -vn 0.1462 -0.4759 0.8673 -vn 0.1476 -0.4751 0.8675 -vn 0.2551 0.9406 0.2242 -vn 0.2522 0.9416 0.2232 -vn 0.2532 0.9411 0.2240 -vn -0.8954 -0.3546 -0.2694 -vn -0.8954 -0.3543 -0.2696 -vn -0.4581 -0.7402 -0.4923 -vn -0.4583 -0.7400 -0.4924 -vn 0.7987 0.5517 0.2401 -vn -0.8082 -0.5294 0.2579 -vn -0.8086 -0.5289 0.2578 -vn -0.8085 -0.5290 0.2580 -vn -0.4523 -0.7535 -0.4771 -vn -0.4524 -0.7535 -0.4772 -vn -0.0186 0.4964 -0.8679 -vn -0.0185 0.4963 -0.8680 -vn 0.8833 -0.0655 0.4643 -vn 0.8833 -0.0654 0.4642 -vn -0.2304 -0.0706 0.9705 -vn -0.2303 -0.0705 0.9706 -vn -0.2302 -0.0703 0.9706 -vn 0.5019 0.5733 0.6476 -vn 0.5028 0.5744 0.6460 -vn 0.5050 0.5743 0.6443 -vn -0.3017 -0.1380 0.9434 -vn -0.3017 -0.1379 0.9434 -vn -0.3017 -0.1382 0.9433 -vn 0.2266 -0.0276 -0.9736 -vn 0.2268 -0.0271 -0.9736 -vn 0.2263 -0.0279 -0.9737 -vn -0.8629 0.4464 -0.2371 -vn -0.8628 0.4462 -0.2376 -vn -0.8627 0.4465 -0.2375 -vn -0.3392 0.1387 0.9304 -vn -0.3391 0.1389 0.9304 -vn -0.3392 0.1388 0.9304 -vn 0.9879 -0.1334 0.0789 -vn 0.9878 -0.1341 0.0795 -vn 0.9879 -0.1334 0.0790 -vn -0.3017 -0.7474 -0.5919 -vn 0.4992 -0.6607 -0.5606 -vn 0.4989 -0.6610 -0.5605 -vn 0.4991 -0.6608 -0.5606 -vn 0.3793 -0.7539 -0.5364 -vn 0.4928 -0.7656 0.4134 -vn 0.2955 0.8728 -0.3884 -vn 0.2956 0.8728 -0.3883 -vn 0.2954 0.8727 -0.3888 -vn 0.7173 -0.5795 0.3868 -vn 0.7174 -0.5795 0.3867 -vn 0.7178 -0.5791 0.3865 -vn 0.5005 -0.7217 -0.4782 -vn 0.5004 -0.7215 -0.4786 -vn 0.2525 -0.8866 0.3875 -vn 0.2528 -0.8863 0.3881 -vn 0.2528 -0.8864 0.3879 -vn -0.3281 -0.6580 -0.6778 -vn -0.3281 -0.6579 -0.6779 -vn -0.3283 -0.6582 -0.6775 -vn -0.2925 0.3282 0.8982 -vn -0.2927 0.3285 0.8980 -vn -0.2925 0.3281 0.8982 -vn -0.4670 -0.6538 -0.5953 -vn -0.4668 -0.6538 -0.5956 -vn -0.4666 -0.6537 -0.5958 -vn -0.9216 -0.3011 0.2450 -vn -0.1581 0.9812 0.1105 -vn -0.1578 0.9812 0.1108 -vn -0.1580 0.9812 0.1108 -vn -0.2579 0.7784 -0.5723 -vn -0.2582 0.7786 -0.5720 -vn -0.2584 0.7787 -0.5717 -vn -0.7983 -0.3214 -0.5094 -vn -0.7986 -0.3219 -0.5086 -vn -0.7984 -0.3217 -0.5090 -vn 0.3014 -0.8012 -0.5169 -vn 0.3015 -0.8010 -0.5172 -vn 0.3016 -0.8010 -0.5171 -vn -0.1598 0.3988 -0.9030 -vn -0.6738 -0.7384 0.0281 -vn -0.6738 -0.7384 0.0278 -vn -0.6738 -0.7384 0.0276 -vn -0.2279 -0.8738 -0.4297 -vn -0.2281 -0.8736 -0.4298 -vn -0.2282 -0.8736 -0.4298 -vn -0.6153 0.7776 -0.1296 -vn -0.6153 0.7775 -0.1298 -vn -0.6149 0.7779 -0.1294 -vn -0.7325 -0.6722 -0.1080 -vn -0.7325 -0.6721 -0.1080 -vn -0.7324 -0.6723 -0.1077 -vn 0.1671 0.7946 0.5837 -vn 0.1672 0.7946 0.5836 -vn 0.9835 -0.0283 -0.1789 -vn 0.9836 -0.0277 -0.1783 -vn 0.9835 -0.0279 -0.1787 -vn 0.9271 -0.0578 -0.3702 -vn 0.9271 -0.0577 -0.3703 -vn 0.1773 0.8902 -0.4197 -vn 0.1775 0.8900 -0.4200 -vn 0.0065 -0.2795 0.9601 -vn 0.0065 -0.2802 0.9599 -vn 0.0067 -0.2794 0.9602 -vn 0.1922 -0.9790 -0.0677 -vn 0.1921 -0.9791 -0.0675 -vn 0.0512 0.2491 0.9671 -vn 0.0513 0.2490 0.9671 -vn 0.0510 0.2491 0.9671 -vn 0.1631 0.9519 0.2594 -vn 0.1637 0.9519 0.2591 -vn 0.1638 0.9519 0.2590 -vn 0.1656 0.9812 -0.0990 -vn 0.1654 0.9813 -0.0986 -vn 0.4835 0.4396 0.7569 -vn 0.4834 0.4410 0.7562 -vn 0.4835 0.4403 0.7565 -vn 0.8805 0.0654 -0.4696 -vn 0.8805 0.0652 -0.4696 -vn 0.2613 0.9279 -0.2660 -vn 0.2618 0.9278 -0.2658 -vn 0.2617 0.9278 -0.2659 -vn -0.5611 0.6233 -0.5447 -vn -0.5610 0.6229 -0.5453 -vn -0.5609 0.6241 -0.5440 -vn 0.6691 0.2436 0.7021 -vn 0.6693 0.2432 0.7021 -vn -0.0432 -0.5859 0.8093 -vn -0.0436 -0.5859 0.8092 -vn -0.0450 -0.5864 0.8088 -vn 0.8644 0.4583 0.2067 -vn 0.8645 0.4582 0.2067 -vn 0.2363 0.2415 -0.9412 -vn 0.2366 0.2416 -0.9411 -vn 0.2366 0.2414 -0.9411 -vn 0.2513 0.1778 -0.9514 -vn 0.2514 0.1778 -0.9514 -vn -0.7150 -0.2636 -0.6475 -vn -0.7152 -0.2647 -0.6469 -vn -0.7149 -0.2643 -0.6473 -vn -0.3840 0.6016 -0.7005 -vn -0.3841 0.6015 -0.7005 -vn -0.3837 0.6016 -0.7006 -vn -0.5976 0.0289 -0.8013 -vn -0.5970 0.0287 -0.8017 -vn -0.5977 0.0290 -0.8012 -vn -0.0194 0.4339 -0.9008 -vn -0.0196 0.4338 -0.9008 -vn -0.4788 -0.8383 -0.2609 -vn -0.4789 -0.8382 -0.2610 -vn -0.0047 0.5112 -0.8595 -vn -0.0050 0.5114 -0.8593 -vn -0.6596 0.7141 0.2344 -vn -0.6604 0.7133 0.2348 -vn -0.6592 0.7147 0.2336 -vn 0.3811 -0.5048 0.7745 -vn 0.3810 -0.5049 0.7745 -vn -0.2755 -0.5987 -0.7521 -vn -0.2755 -0.5971 -0.7534 -vn -0.2748 -0.5999 -0.7514 -vn -0.7958 0.3595 -0.4873 -vn -0.7955 0.3598 -0.4877 -vn -0.2131 0.0693 0.9746 -vn -0.2132 0.0696 0.9745 -vn -0.2135 0.0695 0.9745 -vn 0.8518 0.4856 0.1967 -vn 0.8517 0.4858 0.1964 -vn 0.8517 0.4858 0.1966 -vn 0.6667 0.0442 0.7441 -vn 0.6638 0.0456 0.7465 -vn 0.6637 0.0452 0.7466 -vn 0.6637 0.0453 0.7466 -vn 0.7239 -0.3770 -0.5778 -vn 0.1213 0.9774 -0.1729 -vn 0.1213 0.9774 -0.1730 -vn 0.6507 0.5496 0.5240 -vn 0.6507 0.5497 0.5239 -vn 0.6150 0.7741 0.1501 -vn 0.6150 0.7741 0.1499 -vn 0.8392 0.5434 -0.0221 -vn 0.8389 0.5438 -0.0228 -vn 0.8386 0.5442 -0.0232 -vn 0.1221 0.5667 -0.8148 -vn 0.1220 0.5669 -0.8147 -vn 0.1215 0.5671 -0.8146 -vn 0.1489 0.4184 -0.8960 -vn 0.1484 0.4181 -0.8962 -vn -0.9576 0.0119 -0.2878 -vn -0.9576 0.0123 -0.2880 -vn 0.5277 -0.8446 0.0904 -vn 0.5275 -0.8448 0.0902 -vn 0.5274 -0.8449 0.0898 -vn -0.3615 0.2711 0.8921 -vn -0.3614 0.2709 0.8922 -vn -0.1745 -0.3650 -0.9145 -vn -0.1734 -0.3653 -0.9146 -vn -0.1732 -0.3654 -0.9146 -vn -0.2365 0.0984 -0.9666 -vn -0.2367 0.0986 -0.9666 -vn -0.2364 0.0984 -0.9666 -vn -0.6149 -0.5835 -0.5305 -vn -0.6136 -0.5844 -0.5309 -vn -0.6165 -0.5815 -0.5309 -vn 0.2510 0.9672 -0.0390 -vn 0.2509 0.9672 -0.0389 -vn 0.2511 0.9672 -0.0391 -vn -0.3713 -0.9270 -0.0534 -vn -0.3722 -0.9266 -0.0538 -vn -0.3718 -0.9268 -0.0535 -vn 0.7390 -0.6727 -0.0356 -vn -0.1804 -0.5194 0.8353 -vn -0.1809 -0.5197 0.8350 -vn -0.1796 -0.5195 0.8354 -vn 0.0507 -0.8580 0.5111 -vn 0.0499 -0.8574 0.5122 -vn 0.0503 -0.8577 0.5116 -vn -0.0144 -0.4369 -0.8994 -vn -0.0146 -0.4367 -0.8995 -vn -0.0145 -0.4369 -0.8994 -vn 0.5321 0.8455 0.0454 -vn 0.5319 0.8456 0.0453 -vn 0.5319 0.8456 0.0452 -vn -0.5286 0.7678 -0.3621 -vn -0.5278 0.7684 -0.3620 -vn -0.5288 0.7677 -0.3620 -vn 0.2779 -0.9396 0.1999 -vn 0.2780 -0.9396 0.1997 -vn -0.4432 0.8893 -0.1127 -vn -0.3262 0.1547 0.9325 -vn 0.1260 0.3883 -0.9129 -vn 0.1262 0.3883 -0.9128 -vn 0.6387 -0.5228 -0.5646 -vn 0.6388 -0.5227 -0.5646 -vn 0.9928 -0.0597 -0.1039 -vn 0.9928 -0.0593 -0.1040 -vn 0.9928 -0.0594 -0.1040 -vn 0.0370 -0.7516 0.6586 -vn 0.0371 -0.7517 0.6585 -vn -0.7700 -0.6380 -0.0041 -vn -0.7700 -0.6380 -0.0040 -vn -0.7701 -0.6379 -0.0041 -vn 0.9405 0.0504 0.3361 -vn 0.9405 0.0501 0.3362 -vn 0.9405 0.0508 0.3360 -vn 0.1172 0.8522 0.5099 -vn 0.1179 0.8520 0.5100 -vn 0.1176 0.8521 0.5099 -vn 0.1462 0.9891 0.0173 -vn 0.1463 0.9891 0.0173 -vn 0.1467 0.9890 0.0171 -vn -0.3190 -0.8004 0.5075 -vn -0.3195 -0.7997 0.5084 -vn -0.3191 -0.8001 0.5080 -vn 0.0596 0.8858 0.4602 -vn 0.0597 0.8856 0.4606 -vn 0.0599 0.8856 0.4605 -vn -0.2339 -0.2580 0.9374 -vn -0.2342 -0.2578 0.9374 -vn -0.2333 -0.2592 0.9372 -vn 0.1601 0.4980 0.8523 -vn -0.3735 -0.2407 -0.8959 -vn -0.3735 -0.2406 -0.8959 -vn -0.7667 0.4084 -0.4954 -vn -0.7667 0.4084 -0.4953 -vn -0.7666 0.4083 -0.4956 -vn 0.6057 -0.1884 -0.7730 -vn -0.3149 -0.8358 -0.4497 -vn 0.0134 -0.7444 -0.6676 -vn -0.1755 -0.5144 -0.8394 -vn -0.1758 -0.5143 -0.8394 -vn -0.1754 -0.5145 -0.8394 -vn -0.0503 -0.5307 -0.8461 -vn -0.2420 -0.3417 -0.9081 -vn -0.2425 -0.3413 -0.9081 -vn -0.2417 -0.3419 -0.9081 -vn -0.2915 -0.7105 -0.6405 -vn -0.2921 -0.7091 -0.6418 -vn -0.2920 -0.7098 -0.6410 -vn 0.8470 -0.4183 0.3280 -vn 0.8466 -0.4185 0.3289 -vn -0.5042 -0.3527 -0.7883 -vn -0.5044 -0.3523 -0.7883 -vn -0.5042 -0.3524 -0.7884 -vn 0.0746 -0.7158 -0.6943 -vn -0.5426 -0.8005 0.2545 -vn -0.5431 -0.8002 0.2545 -vn -0.5424 -0.8005 0.2547 -vn -0.2193 -0.7350 -0.6416 -vn -0.2195 -0.7350 -0.6415 -vn 0.2100 0.9606 -0.1820 -vn 0.2103 0.9605 -0.1821 -vn 0.2101 0.9606 -0.1821 -vn -0.8449 0.5188 0.1305 -vn -0.2423 -0.9643 -0.1069 -vn -0.2423 -0.9643 -0.1071 -vn -0.2423 -0.9643 -0.1070 -vn -0.3887 -0.6234 0.6784 -vn -0.3887 -0.6234 0.6785 -vn -0.3889 -0.6233 0.6784 -vn 0.4705 -0.8598 0.1983 -vn 0.4704 -0.8598 0.1987 -vn 0.4706 -0.8597 0.1988 -vn -0.0983 -0.9930 -0.0658 -vn 0.7107 -0.7003 0.0663 -vn -0.6555 -0.4613 0.5979 -vn -0.6552 -0.4614 0.5981 -vn -0.6550 -0.4615 0.5983 -vn 0.3030 -0.8931 0.3326 -vn 0.3032 -0.8931 0.3324 -vn 0.7193 -0.6945 0.0166 -vn 0.7197 -0.6941 0.0170 -vn 0.7203 -0.6935 0.0172 -vn -0.1936 -0.9809 0.0183 -vn -0.1939 -0.9809 0.0182 -vn -0.1938 -0.9809 0.0181 -vn 0.2691 -0.9363 0.2255 -vn 0.2692 -0.9363 0.2254 -vn 0.7250 0.4425 -0.5278 -vn 0.7246 0.4426 -0.5283 -vn 0.7249 0.4426 -0.5279 -vn -0.8755 0.3478 -0.3355 -vn -0.8756 0.3475 -0.3355 -vn -0.8752 0.3487 -0.3354 -vn -0.1675 -0.5813 0.7963 -vn -0.1672 -0.5812 0.7964 -vn -0.8180 0.2566 -0.5148 -vn -0.8179 0.2566 -0.5149 -vn -0.8180 0.2566 -0.5149 -vn -0.0233 0.9838 0.1776 -vn -0.7436 -0.6514 -0.1508 -vn 0.7631 -0.4967 -0.4136 -vn 0.7629 -0.4968 -0.4137 -vn 0.9389 0.2961 -0.1752 -vn 0.2035 0.9135 -0.3523 -vn 0.2031 0.9137 -0.3520 -vn 0.2033 0.9136 -0.3522 -vn -0.8394 -0.5239 -0.1448 -vn 0.8239 0.4749 0.3093 -vn 0.6329 -0.3836 -0.6726 -vn 0.6329 -0.3835 -0.6726 -vn -0.8663 0.1428 -0.4787 -vn -0.8664 0.1428 -0.4785 -vn -0.8661 0.1431 -0.4790 -vn -0.5719 0.8098 -0.1309 -vn -0.5717 0.8100 -0.1309 -vn -0.9649 0.0273 -0.2613 -vn -0.9649 0.0275 -0.2612 -vn 0.0738 0.7526 0.6544 -vn 0.0729 0.7530 0.6540 -vn 0.0744 0.7526 0.6543 -vn -0.3515 0.9230 -0.1564 -vn -0.3514 0.9231 -0.1565 -vn -0.3515 0.9230 -0.1567 -vn -0.1051 0.7447 0.6591 -vn -0.1052 0.7447 0.6591 -vn 0.2210 0.9235 -0.3134 -vn 0.2203 0.9234 -0.3145 -vn 0.2208 0.9234 -0.3139 -vn -0.3379 0.9409 -0.0210 -vn -0.0234 0.6291 0.7769 -vn -0.0230 0.6290 0.7771 -vn -0.6210 0.7726 0.1319 -vn -0.6210 0.7726 0.1320 -vn -0.5030 -0.8404 -0.2018 -vn -0.5028 -0.8405 -0.2019 -vn -0.5026 -0.8406 -0.2019 -vn -0.4033 0.9034 -0.1455 -vn -0.4032 0.9036 -0.1450 -vn -0.4033 0.9035 -0.1448 -vn -0.7660 -0.0339 -0.6419 -vn -0.7659 -0.0340 -0.6420 -vn 0.8586 -0.4740 -0.1952 -vn 0.8586 -0.4743 -0.1948 -vn 0.8586 -0.4741 -0.1950 -vn -0.8024 0.4144 0.4295 -vn -0.0383 0.7499 0.6604 -vn -0.0392 0.7500 0.6603 -vn -0.0386 0.7499 0.6604 -vn 0.4253 -0.2044 -0.8817 -vn 0.4248 -0.2044 -0.8819 -vn 0.9479 0.3150 -0.0479 -vn 0.4988 0.5610 -0.6607 -vn 0.4990 0.5611 -0.6605 -vn 0.4990 0.5613 -0.6603 -vn 0.3225 0.5987 0.7332 -vn 0.3225 0.5986 0.7332 -vn 0.3223 0.5990 0.7330 -vn 0.2113 0.9428 0.2579 -vn 0.2108 0.9431 0.2573 -vn 0.2113 0.9428 0.2580 -vn 0.9955 -0.0802 -0.0505 -vn 0.6740 -0.6942 0.2525 -vn -0.7176 0.6574 -0.2302 -vn -0.7174 0.6575 -0.2303 -vn -0.6198 -0.7711 -0.1459 -vn -0.3006 -0.8112 0.5016 -vn -0.2986 -0.8122 0.5011 -vn -0.2995 -0.8119 0.5011 -vn -0.1474 -0.3618 0.9205 -vn -0.3403 0.2853 -0.8960 -vn -0.3405 0.2857 -0.8958 -vn -0.3406 0.2856 -0.8958 -vn 0.6082 0.7885 -0.0916 -vn 0.6089 0.7879 -0.0922 -vn 0.6085 0.7882 -0.0918 -vn 0.6546 -0.5245 0.5444 -vn 0.6545 -0.5246 0.5445 -vn -0.8957 -0.1053 0.4321 -vn -0.8958 -0.1053 0.4318 -vn 0.9693 -0.2118 -0.1246 -vn 0.9692 -0.2123 -0.1245 -vn -0.4651 -0.0292 -0.8848 -vn -0.4653 -0.0290 -0.8847 -vn -0.4653 -0.0292 -0.8847 -vn -0.0040 0.9606 -0.2777 -vn -0.0039 0.9608 -0.2772 -vn -0.0042 0.9606 -0.2779 -vn 0.3935 -0.5433 -0.7416 -vn -0.6007 0.3227 0.7314 -vn -0.1124 0.3762 0.9197 -vn -0.1126 0.3767 0.9195 -vn 0.1362 0.7457 0.6522 -vn 0.2536 0.1928 -0.9479 -vn 0.2541 0.1933 -0.9477 -vn 0.2535 0.1929 -0.9479 -vn -0.6131 -0.7386 -0.2803 -vn -0.6133 -0.7384 -0.2803 -vn -0.6132 -0.7385 -0.2803 -vn 0.6480 -0.6033 0.4649 -vn 0.6477 -0.6035 0.4651 -vn 0.6478 -0.6035 0.4649 -vn -0.4866 -0.8305 -0.2710 -vn -0.4871 -0.8303 -0.2708 -vn -0.4869 -0.8304 -0.2710 -vn 0.4634 -0.8821 0.0848 -vn 0.4635 -0.8820 0.0854 -vn -0.2172 0.7515 0.6230 -vn -0.2168 0.7512 0.6234 -vn -0.2165 0.7512 0.6236 -vn 0.7058 -0.4769 0.5239 -vn 0.7060 -0.4772 0.5234 -vn 0.7057 -0.4768 0.5241 -vn 0.1415 -0.7811 -0.6082 -vn 0.1416 -0.7811 -0.6081 -vn 0.1414 -0.7811 -0.6082 -vn 0.1325 0.7402 0.6592 -vn 0.1327 0.7401 0.6593 -vn 0.0904 0.7572 0.6469 -vn 0.3510 0.1987 0.9150 -vn 0.3509 0.1980 0.9152 -vn 0.3514 0.1996 0.9147 -vn 0.3768 0.7590 -0.5310 -vn 0.3777 0.7584 -0.5312 -vn 0.3784 0.7581 -0.5311 -vn 0.3941 -0.8924 0.2198 -vn 0.3937 -0.8925 0.2201 -vn 0.3939 -0.8924 0.2200 -vn -0.9976 -0.0306 -0.0617 -vn -0.8513 -0.2832 0.4418 -vn -0.8507 -0.2833 0.4428 -vn -0.8518 -0.2835 0.4405 -vn -0.3361 -0.0477 0.9406 -vn -0.3362 -0.0477 0.9406 -vn 0.1139 0.9672 -0.2269 -vn 0.1137 0.9672 -0.2270 -vn 0.1137 0.9671 -0.2274 -vn 0.6647 -0.0088 0.7470 -vn 0.0194 0.6251 -0.7803 -vn 0.0193 0.6247 -0.7806 -vn -0.0985 0.9200 -0.3793 -vn -0.7573 0.3279 0.5648 -vn -0.7573 0.3280 0.5648 -vn -0.5044 -0.8291 0.2413 -vn -0.5045 -0.8290 0.2413 -vn -0.5046 -0.8290 0.2412 -vn -0.7495 0.5846 -0.3108 -vn -0.7492 0.5847 -0.3112 -vn -0.7498 0.5842 -0.3105 -vn -0.5167 -0.4117 -0.7507 -vn -0.5181 -0.4111 -0.7500 -vn -0.5170 -0.4117 -0.7505 -vn 0.5091 0.7593 -0.4054 -vn -0.4068 0.1460 -0.9018 -vn 0.8316 -0.5461 0.1011 -vn 0.8319 -0.5455 0.1014 -vn 0.8318 -0.5458 0.1012 -vn -0.5918 0.1070 -0.7989 -vn -0.6233 0.7245 -0.2943 -vn -0.6230 0.7248 -0.2941 -vn -0.1665 -0.2338 -0.9579 -vn -0.1665 -0.2339 -0.9579 -vn -0.1663 -0.2340 -0.9579 -vn 0.6288 0.6959 -0.3468 -vn -0.5673 -0.1166 -0.8152 -vn -0.5672 -0.1166 -0.8153 -vn 0.5257 -0.7838 -0.3305 -vn 0.5837 -0.7605 -0.2845 -vn 0.5835 -0.7605 -0.2847 -vn 0.5834 -0.7607 -0.2846 -vn -0.1394 -0.9480 0.2861 -vn -0.1393 -0.9480 0.2862 -vn -0.1389 -0.9480 0.2863 -vn -0.2241 -0.8000 0.5566 -vn -0.2241 -0.7999 0.5567 -vn 0.1336 -0.9681 0.2118 -vn 0.1337 -0.9681 0.2118 -vn -0.2235 0.6925 -0.6859 -vn 0.1911 -0.9810 0.0341 -vn 0.1912 -0.9810 0.0338 -vn 0.1913 -0.9810 0.0336 -vn 0.1540 0.6439 0.7494 -vn 0.1541 0.6439 0.7495 -vn -0.3154 0.9351 -0.1618 -vn -0.3140 0.9353 -0.1630 -vn -0.3143 0.9353 -0.1627 -vn 0.4396 0.4517 0.7763 -vn 0.4391 0.4516 0.7767 -vn 0.4391 0.4518 0.7766 -vn 0.0828 0.1940 0.9775 -vn 0.0827 0.1940 0.9775 -vn 0.0826 0.1939 0.9775 -vn 0.0729 -0.7818 0.6193 -vn 0.0729 -0.7816 0.6195 -vn 0.0731 -0.7819 0.6191 -vn 0.4759 -0.8148 -0.3313 -vn -0.4095 -0.8439 0.3466 -vn -0.4090 -0.8440 0.3470 -vn -0.4092 -0.8439 0.3468 -vn -0.3028 -0.9507 0.0666 -vn -0.3029 -0.9507 0.0666 -vn 0.2108 0.1781 0.9612 -vn 0.2108 0.1780 0.9612 -vn 0.2108 0.1782 0.9612 -vn 0.3734 -0.8952 0.2432 -vn 0.3735 -0.8952 0.2432 -vn 0.3735 -0.8951 0.2436 -vn 0.4311 0.1645 -0.8872 -vn 0.4312 0.1649 -0.8871 -vn 0.4315 0.1655 -0.8868 -vn -0.6625 -0.7458 0.0701 -vn -0.6655 -0.7428 0.0731 -vn -0.6639 -0.7445 0.0707 -vn -0.4406 -0.6393 -0.6302 -vn -0.4395 -0.6397 -0.6306 -vn -0.4387 -0.6405 -0.6303 -vn 0.1072 0.9309 0.3491 -vn 0.1068 0.9311 0.3489 -vn 0.3408 0.9312 -0.1294 -vn 0.3408 0.9313 -0.1289 -vn 0.3407 0.9313 -0.1289 -vn -0.0458 -0.0326 0.9984 -vn -0.5413 -0.8299 -0.1351 -vn -0.5411 -0.8299 -0.1357 -vn -0.5411 -0.8299 -0.1361 -vn 0.6794 -0.6933 0.2401 -vn 0.6796 -0.6933 0.2397 -vn 0.6795 -0.6934 0.2399 -vn 0.5087 -0.5819 -0.6345 -vn 0.5091 -0.5814 -0.6346 -vn 0.5086 -0.5820 -0.6345 -vn 0.0725 0.4900 0.8687 -vn 0.0725 0.4895 0.8690 -vn -0.3032 -0.4092 -0.8606 -vn 0.1935 0.7108 -0.6763 -vn 0.1930 0.7110 -0.6762 -vn -0.0319 0.8128 -0.5817 -vn -0.0316 0.8129 -0.5815 -vn 0.2365 0.9715 0.0117 -vn -0.2123 -0.6016 -0.7701 -vn 0.2958 0.9551 -0.0173 -vn 0.2960 0.9550 -0.0174 -vn 0.2959 0.9551 -0.0174 -vn -0.0751 -0.6339 -0.7698 -vn -0.0750 -0.6339 -0.7698 -vn -0.0747 -0.6338 -0.7699 -vn -0.1775 0.3159 0.9320 -vn -0.1777 0.3158 0.9320 -vn -0.1777 0.3160 0.9320 -vn 0.7688 0.4817 0.4206 -vn 0.7694 0.4815 0.4198 -vn 0.7691 0.4816 0.4202 -vn -0.6292 0.6229 -0.4648 -vn -0.6292 0.6229 -0.4649 -vn -0.2577 -0.3553 0.8985 -vn -0.2579 -0.3552 0.8985 -vn -0.2582 -0.3552 0.8984 -vn -0.3822 -0.9198 0.0887 -vn -0.3825 -0.9197 0.0886 -vn -0.3831 -0.9195 0.0884 -vn -0.3690 -0.8322 -0.4138 -vn -0.7386 0.6622 0.1265 -vn -0.7381 0.6626 0.1270 -vn -0.7389 0.6619 0.1263 -vn -0.9982 0.0258 0.0538 -vn -0.9982 0.0258 0.0540 -vn -0.5599 -0.8278 -0.0350 -vn -0.2970 0.9250 -0.2368 -vn -0.2969 0.9251 -0.2367 -vn -0.2970 0.9250 -0.2369 -vn 0.2179 -0.7797 -0.5870 -vn 0.2175 -0.7796 -0.5874 -vn 0.2170 -0.7792 -0.5881 -vn -0.5736 0.3840 -0.7235 -vn -0.5739 0.3839 -0.7234 -vn -0.5738 0.3839 -0.7234 -vn 0.8185 0.3798 -0.4311 -vn 0.2190 0.9612 -0.1675 -vn 0.2192 0.9612 -0.1674 -vn 0.2195 0.9612 -0.1672 -vn 0.7638 0.2461 -0.5967 -vn 0.7637 0.2463 -0.5968 -vn 0.1873 0.0791 -0.9791 -vn 0.4637 0.1011 -0.8802 -vn 0.4625 0.1012 -0.8808 -vn 0.4632 0.1011 -0.8805 -vn -0.6108 0.1072 -0.7845 -vn 0.9443 -0.0126 0.3288 -vn -0.6119 0.4106 -0.6761 -vn -0.6118 0.4104 -0.6762 -vn -0.6117 0.4108 -0.6761 -vn -0.3427 0.4210 -0.8398 -vn -0.3422 0.4211 -0.8400 -vn -0.3423 0.4212 -0.8399 -vn -0.1663 0.6341 0.7552 -vn -0.1675 0.6331 0.7557 -vn -0.1668 0.6336 0.7555 -vn 0.1800 0.9599 -0.2149 -vn 0.0793 -0.7710 0.6319 -vn 0.0794 -0.7711 0.6317 -vn 0.0795 -0.7712 0.6316 -vn -0.2080 -0.9753 0.0747 -vn -0.2082 -0.9753 0.0745 -vn -0.2078 -0.9753 0.0749 -vn 0.3131 -0.5964 0.7391 -vn 0.3134 -0.5968 0.7387 -vn 0.3132 -0.5967 0.7388 -vn 0.4591 0.6860 -0.5645 -vn -0.5701 0.0193 -0.8214 -vn -0.5699 0.0192 -0.8215 -vn -0.5704 0.0196 -0.8211 -vn -0.5858 -0.6257 -0.5151 -vn 0.2272 -0.0799 0.9706 -vn 0.2274 -0.0794 0.9706 -vn 0.2272 -0.0798 0.9706 -vn 0.0010 0.8493 -0.5279 -vn 0.0009 0.8492 -0.5281 -vn 0.0008 0.8493 -0.5280 -vn -0.8181 0.3834 -0.4287 -vn -0.8179 0.3835 -0.4289 -vn 0.6229 0.7518 0.2162 -vn -0.3799 0.1058 -0.9190 -vn -0.3798 0.1057 -0.9190 -vn -0.3800 0.1058 -0.9189 -vn 0.2633 0.4233 0.8669 -vn 0.2627 0.4237 0.8669 -vn 0.2628 0.4237 0.8669 -vn 0.4846 -0.3933 -0.7813 -vn 0.1469 0.9398 0.3085 -vn 0.1469 0.9397 0.3088 -vn 0.1470 0.9398 0.3086 -vn -0.5264 -0.1068 -0.8435 -vn -0.5261 -0.1066 -0.8437 -vn -0.5640 0.7283 -0.3893 -vn 0.1853 -0.0665 0.9804 -vn 0.1856 -0.0663 0.9804 -vn 0.9357 -0.0099 0.3526 -vn 0.9358 -0.0100 0.3525 -vn -0.9053 -0.2367 -0.3527 -vn -0.2009 -0.2890 -0.9360 -vn -0.2009 -0.2889 -0.9360 -vn -0.2010 -0.2889 -0.9360 -vn 0.2357 -0.9009 0.3645 -vn 0.2353 -0.9010 0.3644 -vn 0.2360 -0.9007 0.3647 -vn 0.0536 0.8002 -0.5973 -vn 0.0538 0.8001 -0.5975 -vn 0.0535 0.8002 -0.5973 -vn -0.9194 -0.2044 -0.3361 -vn -0.9194 -0.2039 -0.3364 -vn -0.9193 -0.2046 -0.3362 -vn -0.0893 0.9818 0.1677 -vn -0.4763 0.8766 0.0684 -vn -0.4763 0.8766 0.0685 -vn -0.5321 -0.7442 -0.4038 -vn -0.5319 -0.7442 -0.4041 -vn -0.5318 -0.7442 -0.4042 -vn 0.4071 -0.1864 0.8942 -vn 0.4070 -0.1866 0.8942 -vn 0.4068 -0.1866 0.8942 -vn -0.8065 0.4169 -0.4192 -vn 0.2090 -0.1423 0.9675 -vn 0.2093 -0.1420 0.9675 -vn 0.2095 -0.1420 0.9674 -vn -0.1787 -0.8864 -0.4271 -vn -0.1777 -0.8868 -0.4266 -vn -0.1780 -0.8867 -0.4267 -vn 0.2557 0.8143 -0.5210 -vn 0.2557 0.8144 -0.5210 -vn 0.0850 0.4091 0.9085 -vn 0.0853 0.4092 0.9085 -vn 0.0854 0.4093 0.9084 -vn 0.7126 -0.6878 -0.1379 -vn 0.7127 -0.6878 -0.1381 -vn -0.0003 0.0006 1.0000 -vn 0.9512 0.1181 0.2850 -vn -0.0367 -0.7774 0.6279 -vn -0.0360 -0.7773 0.6281 -vn -0.0363 -0.7773 0.6280 -vn -0.9305 -0.1117 -0.3488 -vn -0.9305 -0.1119 -0.3487 -vn -0.4011 -0.5043 -0.7647 -vn -0.3998 -0.5041 -0.7655 -vn -0.4019 -0.5039 -0.7646 -vn 0.0841 -0.7568 0.6483 -vn -0.4466 0.6756 0.5866 -vn -0.4467 0.6761 0.5859 -vn -0.4467 0.6764 0.5857 -vn 0.1360 0.9387 0.3167 -vn 0.1358 0.9388 0.3165 -vn -0.4689 -0.8017 0.3706 -vn -0.4689 -0.8016 0.3708 -vn 0.4842 -0.5254 -0.6996 -vn 0.4841 -0.5252 -0.6998 -vn 0.4842 -0.5250 -0.7000 -vn -0.8810 0.3599 0.3071 -vn -0.8810 0.3596 0.3075 -vn -0.8810 0.3598 0.3072 -vn -0.8490 0.4039 0.3408 -vn -0.8489 0.4039 0.3408 -vn -0.8491 0.4037 0.3407 -vn -0.4799 -0.8158 0.3227 -vn -0.4801 -0.8156 0.3229 -vn -0.4803 -0.8157 0.3225 -vn -0.3764 0.8694 -0.3201 -vn -0.3763 0.8692 -0.3207 -vn -0.3764 0.8692 -0.3206 -vn -0.4665 -0.7123 0.5244 -vn -0.4666 -0.7122 0.5244 -vn 0.0669 -0.5043 0.8609 -vn 0.0669 -0.5042 0.8610 -vn -0.8822 -0.3314 -0.3345 -vn -0.8822 -0.3304 -0.3354 -vn -0.8822 -0.3309 -0.3351 -vn 0.0945 -0.9793 -0.1791 -vn 0.0944 -0.9793 -0.1793 -vn 0.0940 -0.9792 -0.1799 -vn 0.0763 0.8310 0.5511 -vn -0.6540 -0.3995 0.6424 -vn -0.6537 -0.3994 0.6428 -vn -0.6534 -0.3990 0.6433 -vn 0.7110 -0.6943 0.1115 -vn 0.7112 -0.6940 0.1118 -vn 0.7109 -0.6944 0.1114 -vn -0.5474 0.1669 0.8201 -vn -0.5474 0.1664 0.8201 -vn -0.5471 0.1665 0.8203 -vn -0.2831 -0.9588 0.0247 -vn -0.2832 -0.9587 0.0253 -vn -0.2831 -0.9588 0.0254 -vn 0.3434 0.4398 0.8299 -vn 0.3430 0.4395 0.8302 -vn 0.3431 0.4396 0.8301 -vn 0.0224 0.9950 -0.0971 -vn 0.0224 0.9950 -0.0975 -vn 0.3558 -0.8964 0.2644 -vn 0.3560 -0.8963 0.2642 -vn 0.3430 0.8763 -0.3383 -vn 0.4693 -0.7432 0.4769 -vn 0.4691 -0.7433 0.4770 -vn 0.4692 -0.7433 0.4769 -vn 0.3386 0.8101 -0.4786 -vn 0.3385 0.8102 -0.4786 -vn 0.3383 0.8102 -0.4787 -vn -0.4464 0.6188 -0.6464 -vn -0.4460 0.6189 -0.6466 -vn -0.4461 0.6188 -0.6466 -vn 0.0680 0.9156 0.3963 -vn 0.0683 0.9156 0.3963 -vn 0.0682 0.9156 0.3963 -vn -0.0971 -0.9931 -0.0656 -vn -0.0972 -0.9931 -0.0655 -vn -0.8231 0.4244 0.3774 -vn -0.8238 0.4247 0.3756 -vn -0.8234 0.4244 0.3766 -vn 0.0033 0.0060 1.0000 -vn -0.8378 0.4149 0.3549 -vn -0.8377 0.4147 0.3553 -vn -0.8378 0.4147 0.3552 -vn -0.9502 0.2947 -0.1012 -vn -0.9502 0.2945 -0.1014 -vn -0.3866 -0.4329 -0.8143 -vn -0.3867 -0.4327 -0.8144 -vn -0.3864 -0.4333 -0.8142 -vn -0.2655 0.5008 -0.8238 -vn -0.2653 0.5007 -0.8240 -vn -0.2654 0.5007 -0.8239 -vn -0.1440 0.8706 0.4704 -vn -0.1438 0.8706 0.4705 -vn -0.4054 0.3350 0.8506 -vn -0.4050 0.3353 0.8506 -vn -0.4052 0.3352 0.8506 -vn 0.1502 0.9801 -0.1295 -vn 0.1501 0.9802 -0.1295 -vn -0.2138 -0.9476 -0.2375 -vn -0.2139 -0.9477 -0.2370 -vn -0.2138 -0.9476 -0.2374 -vn 0.4087 -0.8464 0.3415 -vn 0.4086 -0.8462 0.3421 -vn 0.4087 -0.8463 0.3417 -vn 0.1889 0.9291 -0.3179 -vn 0.1899 0.9295 -0.3162 -vn 0.1873 0.9292 -0.3185 -vn -0.6775 -0.6615 -0.3216 -vn -0.6774 -0.6615 -0.3217 -vn -0.6775 -0.6614 -0.3217 -vn 0.1302 0.9582 0.2549 -vn 0.1310 0.9580 0.2551 -vn 0.1304 0.9581 0.2549 -vn -0.0249 0.9827 0.1835 -vn -0.0246 0.9827 0.1835 -vn -0.0251 0.9827 0.1835 -vn -0.2169 -0.9476 -0.2346 -vn -0.2170 -0.9476 -0.2344 -vn -0.2176 -0.9476 -0.2339 -vn -0.2175 -0.9449 -0.2446 -vn -0.2174 -0.9449 -0.2449 -vn -0.2176 -0.9449 -0.2444 -vn 0.3574 0.9304 0.0816 -vn -0.0975 0.9536 -0.2849 -vn -0.0976 0.9535 -0.2851 -vn -0.0974 0.9536 -0.2850 -vn 0.1473 0.1815 0.9723 -vn 0.1475 0.1814 0.9723 -vn 0.1479 0.1813 0.9722 -vn -0.7026 0.4114 -0.5806 -vn 0.9184 0.3724 -0.1333 -vn 0.9185 0.3723 -0.1335 -vn -0.8633 0.4757 -0.1685 -vn -0.8642 0.4745 -0.1674 -vn -0.8637 0.4752 -0.1679 -vn -0.1277 -0.8349 -0.5354 -vn -0.1276 -0.8347 -0.5358 -vn -0.1107 0.9928 0.0447 -vn -0.1109 0.9928 0.0448 -vn -0.1103 0.9929 0.0446 -vn -0.4689 0.5653 -0.6787 -vn -0.4694 0.5650 -0.6786 -vn -0.1015 -0.8077 -0.5808 -vn -0.1017 -0.8077 -0.5807 -vn -0.1014 -0.8077 -0.5808 -vn -0.9589 0.2415 0.1490 -vn 0.8078 -0.2953 0.5102 -vn 0.8079 -0.2951 0.5101 -vn 0.8078 -0.2949 0.5103 -vn 0.6173 -0.6987 0.3616 -vn -0.7404 0.5172 -0.4294 -vn 0.6597 0.6593 0.3608 -vn 0.6598 0.6593 0.3606 -vn -0.4267 -0.6741 -0.6029 -vn -0.4268 -0.6742 -0.6028 -vn -0.4266 -0.6741 -0.6031 -vn -0.0161 0.9784 -0.2059 -vn -0.0162 0.9784 -0.2060 -vn -0.7195 -0.6069 -0.3377 -vn -0.5821 -0.2074 -0.7862 -vn -0.8601 0.0199 -0.5098 -vn -0.8601 0.0196 -0.5098 -vn -0.4499 0.1029 -0.8871 -vn -0.4500 0.1031 -0.8870 -vn -0.4543 -0.8511 -0.2632 -vn -0.4544 -0.8511 -0.2631 -vn -0.4539 -0.8512 -0.2633 -vn 0.2926 0.3344 -0.8959 -vn -0.5886 -0.7700 -0.2461 -vn 0.6310 0.7438 -0.2205 -vn 0.6316 0.7431 -0.2211 -vn 0.6314 0.7434 -0.2208 -vn 0.0574 -0.5245 -0.8495 -vn 0.0576 -0.5248 -0.8493 -vn 0.0575 -0.5247 -0.8494 -vn -0.6037 -0.7494 -0.2719 -vn -0.6035 -0.7496 -0.2717 -vn -0.6037 -0.7496 -0.2714 -vn 0.8636 -0.2599 0.4321 -vn 0.8635 -0.2600 0.4321 -vn 0.8635 -0.2601 0.4322 -vn -0.7709 0.4395 -0.4610 -vn -0.7710 0.4395 -0.4609 -vn -0.4731 0.8145 0.3359 -vn -0.4731 0.8144 0.3360 -vn -0.2381 0.9577 -0.1616 -vn -0.2382 0.9577 -0.1617 -vn 0.5816 0.4922 0.6477 -vn 0.5816 0.4922 0.6476 -vn 0.5655 0.8247 -0.0109 -vn 0.5656 0.8246 -0.0113 -vn 0.5654 0.8247 -0.0109 -vn 0.3362 0.9241 0.1817 -vn 0.3360 0.9239 0.1832 -vn 0.3355 0.9247 0.1801 -vn -0.7667 -0.6111 -0.1968 -vn -0.7669 -0.6109 -0.1968 -vn -0.7666 -0.6112 -0.1969 -vn -0.7762 0.1451 -0.6136 -vn -0.7761 0.1451 -0.6136 -vn 0.6788 0.0705 0.7309 -vn 0.6790 0.0709 0.7307 -vn 0.6789 0.0708 0.7309 -vn -0.7378 -0.5852 -0.3364 -vn -0.7380 -0.5849 -0.3365 -vn -0.7381 -0.5848 -0.3365 -vn -0.6767 -0.5118 -0.5293 -vn -0.2116 0.3076 -0.9277 -vn -0.2113 0.3068 -0.9280 -vn -0.2113 0.3070 -0.9280 -vn -0.8898 0.4317 -0.1480 -vn -0.8902 0.4311 -0.1472 -vn -0.8901 0.4312 -0.1475 -vn 0.3095 0.5543 0.7726 -vn 0.3099 0.5540 0.7727 -vn 0.3089 0.5548 0.7725 -vn -0.5964 0.2145 -0.7735 -vn -0.5964 0.2144 -0.7735 -vn -0.5964 0.2146 -0.7734 -vn 0.7764 -0.4399 0.4513 -vn 0.7760 -0.4403 0.4516 -vn 0.1042 -0.7624 0.6387 -vn 0.1041 -0.7624 0.6387 -vn 0.7948 -0.6010 -0.0843 -vn 0.7945 -0.6014 -0.0844 -vn 0.7945 -0.6013 -0.0843 -vn 0.7928 0.5592 0.2423 -vn 0.7931 0.5587 0.2426 -vn 0.7927 0.5596 0.2418 -vn 0.4148 0.8969 0.1535 -vn 0.4153 0.8969 0.1523 -vn 0.4151 0.8970 0.1517 -vn -0.5439 0.8390 0.0144 -vn 0.7621 -0.6352 -0.1254 -vn 0.7623 -0.6349 -0.1259 -vn 0.7623 -0.6349 -0.1257 -vn -0.3600 0.3137 -0.8786 -vn -0.3600 0.3136 -0.8787 -vn -0.3599 0.3136 -0.8787 -vn -0.9364 -0.1920 -0.2938 -vn -0.9363 -0.1920 -0.2940 -vn -0.9365 -0.1918 -0.2935 -vn 0.7844 -0.5965 0.1699 -vn 0.7843 -0.5966 0.1702 -vn 0.7846 -0.5964 0.1694 -vn 0.4552 -0.6775 0.5778 -vn 0.4554 -0.6775 0.5776 -vn 0.4553 -0.6777 0.5774 -vn -0.8609 0.0553 0.5058 -vn -0.8608 0.0555 0.5058 -vn -0.8610 0.0553 0.5056 -vn 0.3657 -0.6561 0.6601 -vn 0.9411 -0.1865 0.2821 -vn -0.6531 -0.3597 -0.6664 -vn -0.6536 -0.3597 -0.6659 -vn -0.6534 -0.3596 -0.6662 -vn 0.2253 0.9155 0.3333 -vn 0.4053 -0.0161 -0.9141 -vn 0.4055 -0.0162 -0.9139 -vn -0.7072 -0.6618 -0.2486 -vn -0.7075 -0.6618 -0.2477 -vn -0.7073 -0.6618 -0.2484 -vn 0.0489 -0.7237 0.6884 -vn 0.1465 0.9603 0.2374 -vn 0.1464 0.9605 0.2368 -vn -0.5884 0.7845 0.1960 -vn -0.5880 0.7846 0.1966 -vn -0.5870 0.7851 0.1978 -vn -0.5199 -0.4065 0.7513 -vn -0.5201 -0.4064 0.7512 -vn -0.5188 -0.4073 0.7516 -vn -0.1893 -0.4328 0.8814 -vn -0.1894 -0.4328 0.8814 -vn 0.6012 -0.7971 -0.0563 -vn -0.0320 -0.9877 0.1530 -vn -0.0320 -0.9877 0.1528 -vn -0.0318 -0.9877 0.1528 -vn -0.6388 -0.5722 -0.5143 -vn -0.4345 0.2543 0.8640 -vn -0.4346 0.2540 0.8641 -vn -0.4348 0.2537 0.8641 -vn 0.8311 0.1947 0.5209 -vn 0.8312 0.1947 0.5207 -vn 0.8311 0.1947 0.5210 -vn 0.5804 0.5270 -0.6208 -vn 0.5807 0.5271 -0.6205 -vn 0.5808 0.5271 -0.6204 -vn -0.8847 0.1450 -0.4430 -vn -0.8846 0.1449 -0.4432 -vn 0.7036 0.0171 -0.7104 -vn 0.3559 -0.0338 0.9339 -vn 0.3554 -0.0339 0.9341 -vn 0.3556 -0.0338 0.9340 -vn 0.2468 -0.9367 0.2484 -vn -0.4076 -0.8883 -0.2115 -vn -0.6884 -0.5848 -0.4291 -vn -0.6884 -0.5847 -0.4291 -vn 0.6602 -0.6987 -0.2757 -vn 0.6603 -0.6985 -0.2759 -vn 0.6604 -0.6985 -0.2758 -vn 0.2538 -0.9635 0.0857 -vn 0.2539 -0.9634 0.0859 -vn 0.6644 -0.6817 -0.3063 -vn 0.6643 -0.6817 -0.3064 -vn 0.6648 -0.6815 -0.3058 -vn -0.5310 -0.3836 0.7556 -vn -0.5314 -0.3839 0.7551 -vn -0.5314 -0.3838 0.7552 -vn 0.1739 -0.9839 0.0407 -vn 0.0497 0.5597 -0.8272 -vn 0.0502 0.5596 -0.8273 -vn 0.0506 0.5595 -0.8273 -vn 0.3214 -0.9199 0.2246 -vn -0.8967 0.1984 -0.3956 -vn -0.8968 0.1984 -0.3954 -vn -0.8965 0.1983 -0.3962 -vn 0.1341 0.8834 0.4491 -vn 0.1352 0.8825 0.4504 -vn 0.1381 0.8816 0.4514 -vn 0.2036 0.7831 0.5876 -vn 0.2036 0.7824 0.5886 -vn 0.2035 0.7827 0.5882 -vn 0.6683 0.2249 -0.7091 -vn 0.6686 0.2249 -0.7088 -vn 0.6684 0.2250 -0.7090 -vn -0.5670 0.8117 0.1401 -vn -0.5672 0.8116 0.1400 -vn -0.5669 0.8118 0.1402 -vn 0.3627 0.0983 0.9267 -vn 0.3630 0.0973 0.9267 -vn 0.3627 0.0991 0.9266 -vn -0.2817 0.0085 0.9595 -vn -0.2816 0.0084 0.9595 -vn -0.2812 0.0085 0.9596 -vn -0.6431 0.1413 0.7526 -vn 0.5353 0.8413 -0.0753 -vn 0.5355 0.8412 -0.0752 -vn 0.5822 0.1323 0.8022 -vn 0.5819 0.1323 0.8024 -vn 0.5716 0.6510 -0.4994 -vn 0.5717 0.6509 -0.4995 -vn -0.2134 -0.7268 -0.6529 -vn -0.2134 -0.7268 -0.6528 -vn -0.0412 0.3841 -0.9224 -vn -0.0410 0.3841 -0.9224 -vn -0.0416 0.3839 -0.9224 -vn -0.1607 0.1459 -0.9762 -vn -0.1615 0.1452 -0.9761 -vn -0.1619 0.1451 -0.9761 -vn -0.1039 -0.6176 -0.7796 -vn -0.1040 -0.6177 -0.7795 -vn -0.2128 -0.6014 -0.7701 -vn 0.7392 0.6653 -0.1044 -vn -0.1802 0.6944 -0.6966 -vn -0.1802 0.6945 -0.6966 -vn -0.4165 -0.9088 -0.0238 -vn -0.4162 -0.9089 -0.0238 -vn -0.0190 -0.4907 -0.8711 -vn -0.0188 -0.4907 -0.8712 -vn -0.0189 -0.4907 -0.8711 -vn 0.9092 -0.4145 -0.0389 -vn 0.9092 -0.4145 -0.0391 -vn 0.9091 -0.4147 -0.0392 -vn -0.0909 -0.9950 0.0409 -vn -0.0913 -0.9949 0.0418 -vn -0.0911 -0.9950 0.0415 -vn 0.8013 0.2869 0.5249 -vn 0.8014 0.2869 0.5249 -vn -0.8385 0.4957 -0.2262 -vn -0.1924 0.1917 0.9624 -vn -0.1582 0.3743 -0.9137 -vn -0.1602 0.3714 -0.9145 -vn -0.1589 0.3736 -0.9139 -vn -0.5376 -0.7031 0.4654 -vn -0.5380 -0.7025 0.4658 -vn -0.5382 -0.7022 0.4661 -vn -0.4138 -0.8806 0.2311 -vn -0.4128 -0.8806 0.2327 -vn -0.4147 -0.8803 0.2305 -vn 0.8565 0.4917 0.1568 -vn 0.8566 0.4916 0.1569 -vn 0.8565 0.4918 0.1566 -vn 0.5124 -0.7279 -0.4556 -vn 0.5117 -0.7283 -0.4558 -vn 0.5119 -0.7282 -0.4558 -vn -0.5600 -0.6988 -0.4451 -vn -0.2916 -0.9346 0.2037 -vn -0.2925 -0.9342 0.2043 -vn -0.2921 -0.9343 0.2042 -vn -0.2657 -0.8763 -0.4019 -vn -0.2652 -0.8764 -0.4020 -vn -0.8409 -0.4260 -0.3339 -vn -0.8408 -0.4262 -0.3337 -vn -0.4728 -0.8658 -0.1636 -vn -0.4728 -0.8660 -0.1629 -vn -0.4728 -0.8659 -0.1633 -vn 0.6794 -0.4597 0.5720 -vn 0.6804 -0.4585 0.5717 -vn 0.6807 -0.4578 0.5719 -vn -0.7759 0.4246 -0.4666 -vn -0.7760 0.4245 -0.4665 -vn -0.7758 0.4245 -0.4669 -vn -0.3171 -0.9323 -0.1738 -vn -0.3165 -0.9326 -0.1734 -vn -0.3159 -0.9328 -0.1733 -vn 0.6755 -0.3196 -0.6645 -vn 0.6755 -0.3199 -0.6643 -vn 0.6756 -0.3198 -0.6643 -vn 0.0674 0.9768 -0.2035 -vn 0.0674 0.9766 -0.2040 -vn 0.0674 0.9767 -0.2039 -vn 0.5201 0.6815 -0.5148 -vn 0.5200 0.6816 -0.5149 -vn 0.5197 0.6817 -0.5150 -vn 0.6491 0.2654 -0.7129 -vn 0.6490 0.2650 -0.7132 -vn -0.4582 -0.7889 -0.4095 -vn -0.4586 -0.7888 -0.4092 -vn 0.4432 0.5251 -0.7266 -vn 0.4432 0.5253 -0.7264 -vn 0.4432 0.5250 -0.7266 -vn -0.1002 0.3137 -0.9442 -vn -0.0999 0.3137 -0.9443 -vn -0.4216 0.8874 -0.1863 -vn 0.1273 -0.7894 0.6005 -vn 0.1271 -0.7893 0.6007 -vn 0.1266 -0.7891 0.6011 -vn 0.1202 0.6145 0.7797 -vn 0.1209 0.6145 0.7796 -vn 0.1215 0.6144 0.7796 -vn -0.1513 -0.9505 0.2715 -vn -0.1515 -0.9507 0.2707 -vn -0.1510 -0.9509 0.2701 -vn -0.7336 0.4263 -0.5292 -vn -0.7339 0.4262 -0.5288 -vn -0.7334 0.4264 -0.5294 -vn -0.0569 0.9850 0.1630 -vn -0.8287 -0.3286 0.4531 -vn -0.8288 -0.3286 0.4529 -vn -0.8288 -0.3284 0.4530 -vn 0.9540 -0.2576 -0.1535 -vn 0.6132 0.7431 -0.2679 -vn 0.6137 0.7427 -0.2677 -vn 0.6134 0.7430 -0.2678 -vn 0.9127 0.0897 0.3987 -vn 0.9128 0.0900 0.3984 -vn 0.7364 0.5018 0.4537 -vn 0.7363 0.5019 0.4538 -vn 0.7365 0.5018 0.4536 -vn -0.1079 0.7955 -0.5963 -vn -0.1085 0.7954 -0.5963 -vn -0.1070 0.7955 -0.5964 -vn -0.4539 -0.0231 -0.8908 -vn -0.4536 -0.0233 -0.8909 -vn -0.4540 -0.0229 -0.8907 -vn -0.1001 0.6444 0.7581 -vn -0.3273 -0.1906 -0.9255 -vn -0.3273 -0.1909 -0.9254 -vn -0.3273 -0.1910 -0.9254 -vn 0.5227 0.5504 0.6511 -vn 0.5225 0.5506 0.6510 -vn 0.5229 0.5500 0.6512 -vn 0.4670 0.7420 0.4811 -vn 0.4669 0.7421 0.4809 -vn 0.4668 0.7419 0.4813 -vn -0.1685 -0.0546 0.9842 -vn -0.1688 -0.0546 0.9841 -vn -0.1687 -0.0547 0.9842 -vn 0.6757 -0.7346 -0.0619 -vn 0.6762 -0.7341 -0.0628 -vn 0.6752 -0.7351 -0.0615 -vn 0.0551 -0.8375 0.5437 -vn 0.0556 -0.8375 0.5436 -vn 0.0552 -0.8375 0.5437 -vn -0.3147 -0.9389 -0.1393 -vn -0.3146 -0.9389 -0.1393 -vn -0.3146 -0.9390 -0.1393 -vn 0.2406 0.8071 0.5392 -vn 0.2409 0.8072 0.5389 -vn 0.2405 0.8070 0.5394 -vn 0.8781 0.1874 0.4403 -vn 0.8782 0.1871 0.4401 -vn -0.2931 0.0105 0.9560 -vn -0.2930 0.0104 0.9561 -vn -0.2933 0.0103 0.9560 -vn 0.0074 -0.0058 1.0000 -vn 0.1070 -0.7650 0.6351 -vn 0.1075 -0.7648 0.6352 -vn 0.1078 -0.7646 0.6354 -vn 0.2336 0.4249 -0.8746 -vn 0.2335 0.4250 -0.8745 -vn 0.2332 0.4250 -0.8746 -vn -0.2244 -0.8476 0.4808 -vn -0.2247 -0.8476 0.4808 -vn 0.7698 -0.5869 -0.2508 -vn 0.7699 -0.5868 -0.2508 -vn 0.7703 -0.5864 -0.2507 -vn -0.0079 0.1478 -0.9890 -vn -0.0078 0.1476 -0.9890 -vn -0.0929 0.7326 -0.6743 -vn -0.0926 0.7325 -0.6744 -vn -0.0921 0.7325 -0.6745 -vn -0.5107 -0.1205 -0.8513 -vn -0.5109 -0.1209 -0.8511 -vn -0.5106 -0.1206 -0.8513 -vn -0.2528 -0.9184 -0.3045 -vn -0.2527 -0.9183 -0.3048 -vn -0.2527 -0.9182 -0.3051 -vn 0.7695 -0.5806 0.2662 -vn 0.7697 -0.5803 0.2660 -vn 0.7693 -0.5808 0.2662 -vn -0.7582 -0.2094 -0.6176 -vn -0.7580 -0.2095 -0.6176 -vn -0.9638 0.2435 0.1088 -vn -0.9639 0.2433 0.1085 -vn -0.9637 0.2438 0.1091 -vn 0.0012 -0.4015 -0.9159 -vn 0.5151 0.8532 -0.0815 -vn 0.5148 0.8534 -0.0818 -vn 0.5153 0.8532 -0.0810 -vn 0.8647 -0.3911 0.3152 -vn 0.8647 -0.3912 0.3152 -vn 0.8645 -0.3916 0.3150 -vn -0.1661 -0.1256 -0.9781 -vn -0.1657 -0.1255 -0.9782 -vn -0.1662 -0.1257 -0.9780 -vn -0.8329 0.4898 -0.2577 -vn -0.8334 0.4891 -0.2573 -vn -0.8337 0.4886 -0.2573 -vn -0.0748 -0.2104 -0.9748 -vn 0.7610 -0.5360 0.3655 -vn -0.0429 -0.9620 -0.2697 -vn -0.0433 -0.9619 -0.2699 -vn -0.0426 -0.9620 -0.2697 -vn -0.4525 0.8835 -0.1211 -vn -0.4524 0.8836 -0.1212 -vn -0.3252 -0.8877 -0.3259 -vn 0.0628 0.7607 -0.6461 -vn -0.7475 -0.6360 0.1915 -vn -0.7473 -0.6362 0.1920 -vn -0.7469 -0.6365 0.1924 -vn 0.1692 -0.8647 -0.4729 -vn 0.1690 -0.8647 -0.4730 -vn 0.1001 0.9945 0.0301 -vn 0.1001 0.9945 0.0300 -vn 0.1001 0.9945 0.0302 -vn 0.4568 0.4364 0.7752 -vn 0.4570 0.4363 0.7751 -vn 0.3341 -0.7871 -0.5185 -vn 0.3343 -0.7888 -0.5157 -vn 0.3346 -0.7880 -0.5169 -vn -0.8756 0.4785 0.0658 -vn -0.8756 0.4784 0.0663 -vn -0.8756 0.4785 0.0659 -vn -0.0160 0.0541 -0.9984 -vn -0.0161 0.0539 -0.9984 -vn -0.0158 0.0544 -0.9984 -vn 0.7120 -0.6929 0.1139 -vn 0.7110 -0.6940 0.1131 -vn 0.7104 -0.6947 0.1131 -vn 0.8806 0.4540 -0.1358 -vn 0.8806 0.4539 -0.1359 -vn -0.5783 -0.6863 0.4412 -vn -0.0697 -0.9337 0.3513 -vn -0.0699 -0.9337 0.3511 -vn 0.7981 0.5921 0.1115 -vn 0.7981 0.5921 0.1118 -vn 0.7979 0.5923 0.1121 -vn -0.4047 -0.8993 0.1658 -vn -0.4040 -0.8995 0.1663 -vn -0.4043 -0.8994 0.1661 -vn -0.6161 0.5105 -0.5998 -vn -0.6154 0.5105 -0.6006 -vn -0.6158 0.5105 -0.6002 -vn 0.8682 -0.4596 0.1871 -vn 0.8684 -0.4593 0.1867 -vn 0.3521 0.9351 -0.0406 -vn 0.3518 0.9352 -0.0399 -vn 0.3521 0.9351 -0.0402 -vn 0.4061 -0.8473 0.3423 -vn 0.4062 -0.8472 0.3425 -vn 0.4062 -0.8472 0.3424 -vn -0.1980 -0.9517 -0.2345 -vn -0.1978 -0.9517 -0.2347 -vn -0.1981 -0.9517 -0.2345 -vn 0.1034 0.7207 -0.6855 -vn 0.1036 0.7208 -0.6853 -vn 0.0298 -0.6679 -0.7436 -vn 0.0299 -0.6682 -0.7434 -vn 0.0300 -0.6684 -0.7432 -vn -0.9676 0.1513 0.2023 -vn -0.9676 0.1518 0.2020 -vn -0.7164 0.5887 -0.3744 -vn 0.2847 0.6735 -0.6822 -vn -0.2530 -0.9465 -0.2001 -vn -0.2529 -0.9466 -0.2001 -vn -0.8419 -0.4452 0.3048 -vn -0.8418 -0.4454 0.3048 -vn -0.2784 -0.0441 -0.9595 -vn -0.2784 -0.0443 -0.9595 -vn -0.7208 -0.6575 0.2193 -vn -0.4417 0.8918 -0.0976 -vn -0.4416 0.8919 -0.0975 -vn -0.4415 0.8919 -0.0977 -vn -0.1736 0.7523 -0.6355 -vn -0.1737 0.7522 -0.6357 -vn -0.1734 0.7525 -0.6354 -vn 0.5473 0.6414 -0.5377 -vn 0.5476 0.6424 -0.5361 -vn 0.5477 0.6417 -0.5368 -vn -0.8240 -0.5362 -0.1828 -vn -0.8240 -0.5363 -0.1826 -vn -0.8240 -0.5365 -0.1823 -vn 0.6133 -0.2968 -0.7320 -vn -0.4553 -0.7301 -0.5095 -vn -0.4554 -0.7301 -0.5095 -vn -0.4550 -0.7300 -0.5099 -vn -0.8206 -0.5379 -0.1932 -vn 0.5586 -0.3172 -0.7664 -vn 0.5585 -0.3171 -0.7665 -vn -0.3628 -0.8562 -0.3679 -vn -0.3627 -0.8563 -0.3677 -vn -0.3626 -0.8564 -0.3675 -vn -0.0780 0.5550 0.8282 -vn -0.0781 0.5551 0.8281 -vn -0.0781 0.5554 0.8279 -vn 0.3635 0.8648 -0.3463 -vn 0.3638 0.8648 -0.3460 -vn 0.3637 0.8649 -0.3460 -vn 0.3825 0.4024 -0.8317 -vn 0.3823 0.4025 -0.8318 -vn 0.3704 0.9033 0.2163 -vn 0.3701 0.9034 0.2164 -vn 0.3706 0.9034 0.2159 -vn 0.4657 -0.4217 -0.7780 -vn 0.4658 -0.4217 -0.7780 -vn 0.4658 -0.4217 -0.7779 -vn 0.9011 -0.2633 0.3446 -vn 0.9010 -0.2635 0.3446 -vn 0.9010 -0.2634 0.3446 -vn -0.5721 -0.6343 -0.5200 -vn -0.5721 -0.6339 -0.5205 -vn -0.5721 -0.6342 -0.5201 -vn -0.1566 0.0108 -0.9876 -vn -0.1569 0.0108 -0.9876 -vn -0.1567 0.0108 -0.9876 -vn 0.0820 0.9693 0.2320 -vn -0.2334 0.9709 -0.0534 -vn -0.2335 0.9709 -0.0534 -vn -0.2340 0.9708 -0.0530 -vn 0.2390 0.9449 -0.2237 -vn 0.2389 0.9449 -0.2239 -vn 0.2389 0.9449 -0.2238 -vn 0.2432 0.7062 0.6650 -vn 0.2431 0.7061 0.6651 -vn 0.2433 0.7062 0.6649 -vn -0.3192 0.4673 -0.8245 -vn -0.3191 0.4673 -0.8245 -vn -0.2785 0.1483 -0.9489 -vn -0.2782 0.1483 -0.9490 -vn -0.3138 -0.1373 0.9395 -vn -0.3143 -0.1364 0.9395 -vn -0.3136 -0.1360 0.9398 -vn -0.5671 0.8235 -0.0173 -vn -0.5669 0.8236 -0.0175 -vn -0.5668 0.8237 -0.0175 -vn -0.2140 0.0038 0.9768 -vn -0.2141 0.0036 0.9768 -vn 0.4502 0.8649 -0.2220 -vn 0.4506 0.8646 -0.2222 -vn 0.4504 0.8648 -0.2221 -vn -0.6998 -0.1373 -0.7010 -vn -0.6997 -0.1372 -0.7011 -vn -0.7000 -0.1375 -0.7008 -vn -0.4963 -0.3062 -0.8124 -vn -0.4960 -0.3063 -0.8125 -vn -0.7980 0.1504 -0.5836 -vn -0.7981 0.1502 -0.5835 -vn -0.7979 0.1504 -0.5837 -vn -0.6789 -0.5541 -0.4817 -vn -0.6790 -0.5541 -0.4815 -vn 0.6215 -0.6643 0.4153 -vn 0.6215 -0.6642 0.4154 -vn 0.0417 -0.0867 -0.9954 -vn 0.0411 -0.0865 -0.9954 -vn 0.0408 -0.0866 -0.9954 -vn 0.2290 -0.1033 0.9679 -vn 0.2285 -0.1036 0.9680 -vn 0.2280 -0.1037 0.9681 -vn 0.2895 -0.1178 -0.9499 -vn -0.6646 -0.6295 -0.4026 -vn -0.6647 -0.6292 -0.4029 -vn -0.6646 -0.6301 -0.4017 -vn 0.0575 0.3488 0.9354 -vn 0.0575 0.3490 0.9354 -vn 0.1406 0.9765 0.1635 -vn 0.7034 -0.6358 0.3177 -vn 0.7032 -0.6363 0.3174 -vn 0.7032 -0.6362 0.3174 -vn -0.0280 0.4398 0.8977 -vn -0.0275 0.4397 0.8977 -vn -0.0278 0.4396 0.8978 -vn -0.4388 0.8978 -0.0371 -vn -0.4392 0.8977 -0.0352 -vn -0.4391 0.8977 -0.0361 -vn -0.7619 -0.6116 -0.2131 -vn -0.7618 -0.6118 -0.2129 -vn -0.7618 -0.6118 -0.2130 -vn 0.2619 0.8961 -0.3583 -vn 0.2621 0.8960 -0.3585 -vn 0.7286 -0.5951 0.3392 -vn 0.7286 -0.5950 0.3393 -vn -0.6709 -0.7139 -0.2007 -vn -0.6708 -0.7139 -0.2008 -vn -0.6708 -0.7140 -0.2007 -vn 0.3160 -0.9181 0.2393 -vn 0.3159 -0.9181 0.2395 -vn 0.3161 -0.9179 0.2398 -vn -0.4848 0.4777 -0.7326 -vn -0.4850 0.4773 -0.7328 -vn -0.4850 0.4770 -0.7330 -vn 0.3734 0.2947 -0.8796 -vn 0.3735 0.2947 -0.8796 -vn 0.7103 -0.6082 0.3542 -vn -0.2879 0.2213 -0.9317 -vn -0.2877 0.2212 -0.9318 -vn -0.0026 0.7341 -0.6790 -vn -0.0027 0.7341 -0.6790 -vn -0.0026 0.7341 -0.6791 -vn 0.9141 0.0760 0.3983 -vn 0.9139 0.0761 0.3987 -vn 0.9140 0.0760 0.3985 -vn 0.7105 -0.5723 0.4095 -vn 0.4593 0.7967 -0.3929 -vn 0.1499 -0.0829 -0.9852 -vn -0.0020 0.2191 -0.9757 -vn -0.0019 0.2189 -0.9757 -vn -0.0020 0.2193 -0.9757 -vn 0.5691 -0.7658 0.2994 -vn 0.5690 -0.7661 0.2989 -vn 0.5691 -0.7657 0.2998 -vn -0.3173 -0.3752 -0.8709 -vn 0.7301 -0.6802 0.0650 -vn 0.7302 -0.6801 0.0650 -vn 0.7305 -0.6799 0.0649 -vn 0.5845 -0.6789 0.4444 -vn 0.5842 -0.6791 0.4444 -vn 0.5842 -0.6790 0.4446 -vn 0.7492 -0.6165 0.2421 -vn 0.5441 -0.6484 0.5325 -vn 0.5439 -0.6485 0.5325 -vn 0.5442 -0.6485 0.5323 -vn -0.7262 -0.5100 -0.4610 -vn -0.7261 -0.5099 -0.4613 -vn 0.6859 0.7049 -0.1806 -vn 0.6858 0.7051 -0.1805 -vn 0.6860 0.7048 -0.1807 -vn 0.5280 -0.6521 0.5440 -vn 0.5281 -0.6520 0.5441 -vn 0.5280 -0.6522 0.5440 -vn 0.0019 -0.6182 0.7860 -vn 0.0020 -0.6182 0.7860 -vn -0.0537 0.8853 -0.4619 -vn -0.0531 0.8854 -0.4617 -vn -0.0538 0.8853 -0.4619 -vn 0.3998 0.9039 0.1523 -vn 0.3989 0.9042 0.1529 -vn 0.4000 0.9038 0.1522 -vn -0.8932 0.0514 -0.4467 -vn -0.8932 0.0517 -0.4467 -vn -0.8933 0.0517 -0.4465 -vn -0.6468 -0.6232 0.4397 -vn -0.6469 -0.6232 0.4395 -vn -0.6468 -0.6232 0.4396 -vn -0.6097 -0.6497 -0.4540 -vn -0.6101 -0.6500 -0.4532 -vn -0.6101 -0.6493 -0.4542 -vn -0.8387 0.5053 -0.2029 -vn -0.8388 0.5046 -0.2042 -vn -0.8386 0.5044 -0.2057 -vn -0.7617 0.6180 -0.1945 -vn -0.7619 0.6179 -0.1944 -vn -0.0052 -0.7915 -0.6111 -vn -0.0054 -0.7916 -0.6110 -vn -0.0051 -0.7915 -0.6112 -vn -0.8529 0.1755 0.4918 -vn -0.8528 0.1754 0.4918 -vn 0.6869 -0.6419 -0.3408 -vn 0.6868 -0.6420 -0.3408 -vn 0.6866 -0.6423 -0.3406 -vn -0.4561 0.7098 -0.5367 -vn -0.4561 0.7100 -0.5366 -vn -0.4558 0.7105 -0.5361 -vn -0.8152 0.4637 0.3470 -vn -0.8153 0.4636 0.3468 -vn -0.8153 0.4635 0.3469 -vn -0.8874 -0.0551 -0.4577 -vn -0.8873 -0.0548 -0.4579 -vn -0.8874 -0.0555 -0.4576 -vn 0.8365 -0.1404 0.5298 -vn -0.7618 -0.5533 -0.3369 -vn -0.7619 -0.5526 -0.3379 -vn -0.3017 0.8959 -0.3260 -vn -0.3016 0.8959 -0.3262 -vn -0.3015 0.8960 -0.3261 -vn 0.6154 -0.6426 -0.4564 -vn 0.6155 -0.6427 -0.4562 -vn 0.6152 -0.6426 -0.4567 -vn -0.5608 -0.5050 0.6561 -vn 0.1279 0.9016 0.4132 -vn 0.1280 0.9015 0.4134 -vn 0.1278 0.9015 0.4135 -vn -0.9774 -0.0508 -0.2051 -vn -0.9774 -0.0507 -0.2054 -vn 0.3411 0.0110 -0.9399 -vn -0.6225 0.2457 -0.7430 -vn -0.0413 -0.9091 0.4145 -vn -0.0412 -0.9090 0.4148 -vn -0.0414 -0.9091 0.4146 -vn -0.6231 -0.5846 -0.5197 -vn -0.6230 -0.5848 -0.5195 -vn 0.3322 -0.8527 -0.4032 -vn 0.3322 -0.8528 -0.4029 -vn 0.3323 -0.8529 -0.4026 -vn 0.3979 0.2136 -0.8922 -vn 0.3977 0.2137 -0.8923 -vn 0.3887 -0.7329 -0.5584 -vn 0.3886 -0.7328 -0.5585 -vn 0.3888 -0.7329 -0.5583 -vn -0.7053 0.5657 0.4272 -vn -0.7051 0.5658 0.4274 -vn 0.5079 -0.7077 -0.4911 -vn 0.3334 -0.5231 -0.7844 -vn 0.3332 -0.5231 -0.7844 -vn 0.3340 -0.5230 -0.7842 -vn -0.2748 -0.5606 0.7811 -vn -0.2744 -0.5605 0.7813 -vn -0.2751 -0.5606 0.7811 -vn -0.5849 0.7899 0.1844 -vn -0.5839 0.7905 0.1849 -vn -0.5854 0.7894 0.1846 -vn 0.7852 -0.5528 -0.2791 -vn 0.7854 -0.5526 -0.2788 -vn 0.7853 -0.5528 -0.2789 -vn 0.9051 0.0110 0.4251 -vn 0.9051 0.0105 0.4251 -vn 0.9051 0.0108 0.4250 -vn -0.0692 0.9871 -0.1444 -vn -0.0693 0.9871 -0.1445 -vn 0.4068 -0.6752 -0.6153 -vn 0.7949 -0.6064 -0.0182 -vn 0.7949 -0.6064 -0.0185 -vn -0.2731 0.7746 -0.5705 -vn -0.2735 0.7739 -0.5712 -vn -0.2317 -0.9628 0.1387 -vn -0.2316 -0.9629 0.1387 -vn -0.2315 -0.9629 0.1385 -vn -0.1988 0.1682 -0.9655 -vn -0.1984 0.1681 -0.9656 -vn -0.1981 0.1679 -0.9657 -vn 0.4567 -0.8734 -0.1691 -vn 0.4566 -0.8735 -0.1690 -vn 0.4571 -0.8731 -0.1697 -vn 0.5345 0.0544 -0.8434 -vn 0.5345 0.0543 -0.8434 -vn 0.5349 0.0538 -0.8432 -vn -0.4807 0.7201 0.5003 -vn -0.4808 0.7203 0.5000 -vn -0.4807 0.7199 0.5007 -vn 0.8846 0.1041 -0.4545 -vn 0.8847 0.1043 -0.4544 -vn 0.8846 0.1042 -0.4545 -vn 0.2311 -0.7178 -0.6568 -vn 0.2310 -0.7178 -0.6568 -vn 0.2308 -0.7173 -0.6574 -vn -0.7866 0.4435 -0.4296 -vn -0.7861 0.4435 -0.4305 -vn -0.7863 0.4436 -0.4301 -vn -0.2194 -0.1684 -0.9610 -vn 0.0251 -0.9634 -0.2669 -vn 0.0250 -0.9634 -0.2670 -vn -0.5772 -0.8152 -0.0475 -vn -0.5775 -0.8150 -0.0476 -vn -0.0259 0.9679 -0.2499 -vn -0.0260 0.9679 -0.2499 -vn -0.0264 0.9679 -0.2500 -vn 0.6188 0.6547 -0.4341 -vn 0.6189 0.6545 -0.4343 -vn 0.6189 0.6545 -0.4344 -vn 0.8281 -0.5399 -0.1507 -vn 0.8282 -0.5400 -0.1500 -vn 0.8282 -0.5400 -0.1497 -vn -0.6918 0.5973 0.4057 -vn -0.6919 0.5968 0.4063 -vn -0.6922 0.5963 0.4066 -vn -0.2452 -0.4881 0.8376 -vn -0.2455 -0.4881 0.8376 -vn -0.2450 -0.4879 0.8378 -vn -0.2882 0.7770 0.5596 -vn -0.2885 0.7770 0.5595 -vn -0.2885 0.7769 0.5596 -vn -0.8307 -0.4361 0.3460 -vn -0.8306 -0.4360 0.3463 -vn -0.8307 -0.4358 0.3463 -vn -0.4109 -0.8936 0.1804 -vn -0.4109 -0.8937 0.1801 -vn 0.2476 0.2662 -0.9316 -vn 0.2475 0.2663 -0.9316 -vn -0.9427 0.3089 0.1257 -vn -0.9427 0.3089 0.1259 -vn -0.9427 0.3090 0.1259 -vn -0.8235 0.3528 -0.4444 -vn 0.5028 0.0618 -0.8622 -vn -0.9307 0.0643 -0.3601 -vn -0.9304 0.0652 -0.3607 -vn -0.9308 0.0640 -0.3599 -vn -0.6115 0.0293 -0.7907 -vn -0.6116 0.0294 -0.7906 -vn -0.5206 0.5639 -0.6411 -vn -0.5208 0.5636 -0.6412 -vn -0.5207 0.5640 -0.6409 -vn -0.7587 0.6291 -0.1694 -vn -0.6247 -0.0035 -0.7809 -vn -0.6246 -0.0031 -0.7809 -vn -0.6246 -0.0034 -0.7809 -vn 0.7661 0.6299 -0.1280 -vn 0.7659 0.6302 -0.1275 -vn 0.1711 -0.6332 0.7549 -vn 0.1713 -0.6333 0.7547 -vn 0.1710 -0.6331 0.7550 -vn -0.4350 -0.2373 -0.8686 -vn -0.4338 -0.2375 -0.8691 -vn -0.4341 -0.2373 -0.8690 -vn 0.6617 0.7458 -0.0772 -vn 0.5472 -0.4811 0.6849 -vn 0.5473 -0.4812 0.6848 -vn 0.1879 0.0767 0.9792 -vn -0.7255 0.0893 -0.6824 -vn 0.8157 -0.4708 0.3362 -vn 0.8158 -0.4706 0.3361 -vn -0.8553 -0.4238 -0.2982 -vn -0.8553 -0.4237 -0.2983 -vn -0.8551 -0.4240 -0.2984 -vn 0.6718 0.6663 -0.3236 -vn 0.6717 0.6667 -0.3231 -vn 0.6310 0.1745 0.7559 -vn 0.6310 0.1750 0.7558 -vn 0.6314 0.1744 0.7556 -vn -0.4459 0.4719 -0.7606 -vn -0.4460 0.4718 -0.7606 -vn -0.4457 0.4721 -0.7606 -vn -0.3688 -0.7487 -0.5508 -vn -0.3685 -0.7488 -0.5509 -vn -0.3684 -0.7489 -0.5509 -vn -0.6606 0.2946 -0.6905 -vn -0.6605 0.2945 -0.6907 -vn -0.6607 0.2946 -0.6905 -vn -0.3485 0.1073 -0.9312 -vn -0.3482 0.1069 -0.9313 -vn -0.3484 0.1072 -0.9312 -vn 0.1369 0.8403 -0.5245 -vn 0.1346 0.8402 -0.5253 -vn 0.1357 0.8405 -0.5246 -vn -0.9567 0.2021 -0.2096 -vn -0.9567 0.2019 -0.2096 -vn 0.8967 0.2641 0.3552 -vn 0.8967 0.2642 0.3552 -vn 0.8967 0.2640 0.3553 -vn -0.7403 0.0791 -0.6676 -vn -0.7403 0.0787 -0.6676 -vn -0.7403 0.0789 -0.6677 -vn 0.5559 0.6213 0.5522 -vn 0.5559 0.6212 0.5524 -vn 0.5558 0.6208 0.5529 -vn 0.7536 0.0471 0.6556 -vn 0.7535 0.0475 0.6558 -vn 0.7535 0.0472 0.6557 -vn -0.3096 -0.7218 0.6190 -vn -0.3096 -0.7214 0.6194 -vn -0.5009 0.7736 -0.3882 -vn -0.5008 0.7736 -0.3882 -vn 0.2603 -0.6323 0.7297 -vn 0.2602 -0.6322 0.7298 -vn 0.2604 -0.6324 0.7296 -vn 0.5742 0.0615 -0.8164 -vn 0.5740 0.0616 -0.8165 -vn 0.6638 0.5272 0.5304 -vn 0.6638 0.5275 0.5302 -vn 0.6640 0.5277 0.5298 -vn -0.4018 -0.9078 -0.1204 -vn -0.4007 -0.9087 -0.1171 -vn -0.4015 -0.9081 -0.1186 -vn 0.1684 -0.0844 0.9821 -vn 0.1694 -0.0841 0.9819 -vn 0.1699 -0.0839 0.9819 -vn -0.6573 -0.3606 0.6618 -vn -0.6571 -0.3610 0.6617 -vn 0.4385 0.5586 -0.7041 -vn 0.8238 0.4587 0.3330 -vn 0.8243 0.4582 0.3324 -vn 0.8246 0.4581 0.3320 -vn 0.0393 0.9412 -0.3356 -vn 0.0393 0.9412 -0.3357 -vn -0.8891 -0.4182 0.1861 -vn -0.8890 -0.4179 0.1871 -vn -0.8890 -0.4181 0.1867 -vn -0.8874 0.3448 -0.3060 -vn -0.8874 0.3450 -0.3058 -vn -0.8876 0.3444 -0.3059 -vn -0.6292 0.3297 -0.7038 -vn -0.1161 -0.1001 0.9882 -vn -0.3773 -0.3726 0.8478 -vn -0.3768 -0.3727 0.8480 -vn -0.3774 -0.3726 0.8478 -vn 0.1087 -0.8627 0.4939 -vn 0.1091 -0.8625 0.4941 -vn 0.1093 -0.8625 0.4942 -vn -0.4620 0.7039 -0.5395 -vn -0.4618 0.7040 -0.5396 -vn 0.3968 0.8499 -0.3468 -vn 0.3980 0.8494 -0.3466 -vn 0.3957 0.8497 -0.3484 -vn 0.0584 -0.7255 0.6857 -vn 0.0579 -0.7257 0.6855 -vn 0.6223 0.4782 0.6197 -vn 0.6164 0.6870 0.3848 -vn 0.6176 0.6866 0.3837 -vn 0.6169 0.6868 0.3844 -vn -0.3913 0.9202 -0.0099 -vn -0.3914 0.9202 -0.0097 -vn -0.3913 0.9202 -0.0095 -vn -0.4443 -0.2312 0.8655 -vn -0.4438 -0.0852 0.8921 -vn -0.7632 0.4309 -0.4816 -vn 0.5613 0.8180 0.1254 -vn 0.5612 0.8181 0.1251 -vn -0.2811 0.9432 -0.1773 -vn -0.2809 0.9432 -0.1771 -vn -0.8621 0.2026 -0.4646 -vn -0.8622 0.2029 -0.4643 -vn -0.8620 0.2037 -0.4642 -vn -0.1920 -0.5194 0.8327 -vn -0.1919 -0.5193 0.8328 -vn -0.1918 -0.5195 0.8327 -vn -0.8149 0.0334 0.5786 -vn -0.8149 0.0340 0.5786 -vn 0.3086 -0.6472 -0.6971 -vn 0.3083 -0.6475 -0.6969 -vn 0.3088 -0.6471 -0.6971 -vn 0.8577 -0.3917 -0.3332 -vn 0.8578 -0.3911 -0.3334 -vn 0.8579 -0.3910 -0.3334 -vn -0.4908 -0.2920 -0.8209 -vn -0.4912 -0.2920 -0.8207 -vn -0.4915 -0.2920 -0.8205 -vn 0.1621 -0.3837 0.9091 -vn 0.1635 -0.3840 0.9088 -vn 0.1613 -0.3840 0.9091 -vn -0.1597 -0.4169 -0.8948 -vn -0.1594 -0.4170 -0.8948 -vn -0.1605 -0.4167 -0.8947 -vn -0.8571 0.3773 -0.3507 -vn -0.8574 0.3771 -0.3502 -vn -0.8574 0.3772 -0.3501 -vn -0.3280 -0.1046 -0.9389 -vn -0.3283 -0.1046 -0.9388 -vn -0.3283 -0.1048 -0.9387 -vn 0.1844 0.9822 -0.0343 -vn 0.1862 0.9820 -0.0328 -vn 0.1840 0.9823 -0.0353 -vn 0.5569 -0.8300 0.0327 -vn 0.5569 -0.8299 0.0328 -vn -0.9796 0.0817 -0.1836 -vn -0.9800 0.0810 -0.1815 -vn -0.9799 0.0811 -0.1822 -vn 0.4401 -0.8747 0.2031 -vn 0.4398 -0.8748 0.2030 -vn 0.4400 -0.8748 0.2029 -vn 0.3682 -0.8783 0.3050 -vn -0.9098 -0.3986 -0.1161 -vn -0.9095 -0.3991 -0.1163 -vn -0.9096 -0.3989 -0.1164 -vn -0.1885 -0.9811 0.0429 -vn -0.1886 -0.9811 0.0430 -vn -0.1884 -0.9812 0.0429 -vn 0.2916 -0.8675 -0.4029 -vn 0.2907 -0.8679 -0.4027 -vn 0.2913 -0.8677 -0.4028 -vn -0.7243 -0.6831 0.0935 -vn -0.7253 -0.6820 0.0935 -vn -0.7245 -0.6829 0.0934 -vn -0.3359 -0.6000 0.7261 -vn -0.3357 -0.6003 0.7259 -vn -0.3358 -0.6002 0.7260 -vn 0.5484 -0.6951 -0.4648 -vn 0.5484 -0.6951 -0.4649 -vn 0.5488 -0.6949 -0.4647 -vn -0.2409 -0.9682 -0.0675 -vn -0.2415 -0.9681 -0.0668 -vn -0.2411 -0.9682 -0.0673 -vn -0.2689 -0.1790 -0.9464 -vn -0.2668 -0.1789 -0.9470 -vn -0.1502 -0.9886 -0.0110 -vn -0.1501 -0.9886 -0.0107 -vn -0.1503 -0.9886 -0.0113 -vn 0.1782 0.8726 -0.4547 -vn 0.1784 0.8724 -0.4550 -vn -0.9085 0.2794 -0.3109 -vn -0.9087 0.2790 -0.3105 -vn -0.9087 0.2791 -0.3105 -vn 0.1591 0.0474 0.9861 -vn 0.1596 0.0475 0.9860 -vn 0.1587 0.0472 0.9862 -vn -0.1765 0.8718 -0.4570 -vn -0.1752 0.8714 -0.4582 -vn -0.1757 0.8716 -0.4576 -vn -0.9061 0.4229 0.0053 -vn -0.9062 0.4229 0.0053 -vn -0.0243 0.9616 0.2734 -vn -0.0234 0.9616 0.2735 -vn -0.0248 0.9615 0.2736 -vn -0.7011 -0.7119 -0.0411 -vn -0.7008 -0.7122 -0.0408 -vn -0.7004 -0.7126 -0.0407 -vn 0.4640 0.7986 -0.3832 -vn 0.4640 0.7987 -0.3831 -vn 0.4640 0.7986 -0.3834 -vn 0.3862 0.8196 -0.4232 -vn 0.3016 0.9049 -0.3004 -vn 0.8378 -0.0485 -0.5438 -vn 0.8375 -0.0487 -0.5443 -vn 0.8378 -0.0484 -0.5439 -vn 0.5980 -0.7100 -0.3719 -vn 0.5981 -0.7099 -0.3719 -vn -0.2829 0.2322 0.9306 -vn -0.2831 0.2319 0.9306 -vn -0.2831 0.2318 0.9306 -vn 0.1317 0.9229 0.3619 -vn 0.1315 0.9230 0.3616 -vn 0.1316 0.9229 0.3618 -vn 0.2269 -0.2104 0.9509 -vn 0.5181 -0.8062 -0.2856 -vn -0.4492 0.8770 0.1704 -vn -0.4491 0.8772 0.1695 -vn -0.1609 -0.0784 0.9839 -vn 0.5723 0.3598 0.7369 -vn 0.5720 0.3598 0.7371 -vn 0.5723 0.3600 0.7368 -vn -0.3590 0.8693 -0.3398 -vn -0.3587 0.8697 -0.3391 -vn 0.5358 -0.2971 -0.7903 -vn 0.5357 -0.2974 -0.7903 -vn 0.2772 -0.4838 -0.8301 -vn 0.2772 -0.4844 -0.8298 -vn 0.2772 -0.4840 -0.8300 -vn 0.4126 0.8991 0.1459 -vn 0.4127 0.8992 0.1455 -vn 0.4128 0.8991 0.1458 -vn 0.9739 -0.0314 -0.2247 -vn 0.9738 -0.0307 -0.2255 -vn 0.9738 -0.0310 -0.2254 -vn -0.7431 -0.5410 -0.3939 -vn -0.7428 -0.5415 -0.3937 -vn -0.7430 -0.5411 -0.3940 -vn -0.4316 0.8820 0.1893 -vn -0.4315 0.8820 0.1895 -vn 0.6102 -0.6777 0.4102 -vn -0.9989 0.0350 0.0320 -vn -0.8468 -0.0650 -0.5280 -vn -0.8468 -0.0645 -0.5279 -vn -0.8467 -0.0653 -0.5280 -vn -0.7939 -0.3753 0.4785 -vn -0.7939 -0.3754 0.4783 -vn -0.7938 -0.3752 0.4786 -vn -0.3059 0.8255 -0.4743 -vn 0.4295 0.9024 0.0335 -vn 0.4102 -0.7428 0.5291 -vn -0.1756 0.2443 -0.9537 -vn -0.1757 0.2439 -0.9537 -vn -0.3103 0.6598 -0.6844 -vn -0.3103 0.6600 -0.6842 -vn -0.3102 0.6599 -0.6844 -vn -0.1534 0.9501 0.2715 -vn -0.1533 0.9501 0.2716 -vn -0.1537 0.9501 0.2714 -vn 0.8080 0.5752 -0.1276 -vn 0.8080 0.5751 -0.1277 -vn -0.6185 -0.6773 -0.3984 -vn 0.6379 -0.7564 0.1450 -vn 0.6378 -0.7564 0.1449 -vn 0.6434 -0.7303 0.2294 -vn 0.6435 -0.7303 0.2294 -vn 0.6437 -0.7301 0.2292 -vn -0.7942 -0.0247 0.6071 -vn -0.7941 -0.0248 0.6073 -vn -0.6760 0.4498 -0.5837 -vn -0.6762 0.4496 -0.5836 -vn -0.6760 0.4499 -0.5836 -vn 0.4960 -0.7393 0.4555 -vn 0.1958 -0.4237 0.8844 -vn 0.1944 -0.4239 0.8846 -vn 0.1952 -0.4239 0.8844 -vn -0.7004 -0.6160 -0.3605 -vn -0.6998 -0.6162 -0.3614 -vn -0.7005 -0.6161 -0.3601 -vn 0.2714 0.4523 -0.8496 -vn 0.2704 0.4522 -0.8500 -vn 0.2711 0.4521 -0.8498 -vn 0.0028 0.3653 0.9309 -vn 0.0027 0.3654 0.9308 -vn 0.0027 0.3654 0.9309 -vn -0.9290 0.2251 -0.2939 -vn -0.9289 0.2253 -0.2939 -vn -0.1525 0.8017 -0.5780 -vn -0.1526 0.8018 -0.5778 -vn -0.1522 0.8015 -0.5783 -vn 0.9167 0.3149 -0.2460 -vn 0.9168 0.3146 -0.2461 -vn 0.7200 -0.5702 0.3957 -vn 0.7201 -0.5699 0.3958 -vn 0.7201 -0.5697 0.3960 -vn 0.9248 0.3736 0.0718 -vn 0.9247 0.3738 0.0719 -vn 0.9247 0.3739 0.0717 -vn 0.6828 0.5941 0.4252 -vn 0.6825 0.5943 0.4255 -vn 0.6826 0.5941 0.4255 -vn 0.7021 -0.7113 0.0338 -vn 0.6955 -0.6931 0.1894 -vn 0.6957 -0.6929 0.1894 -vn 0.6954 -0.6932 0.1894 -vn 0.6751 -0.4645 0.5731 -vn 0.6753 -0.4636 0.5736 -vn 0.6752 -0.4641 0.5733 -vn -0.7494 -0.6530 -0.1097 -vn -0.7494 -0.6530 -0.1096 -vn -0.7494 -0.6530 -0.1098 -vn -0.4890 -0.5143 -0.7045 -vn -0.4890 -0.5143 -0.7046 -vn -0.4890 -0.5142 -0.7046 -vn -0.1048 0.9445 -0.3114 -vn -0.1048 0.9445 -0.3112 -vn 0.5888 -0.6758 0.4433 -vn 0.5890 -0.6759 0.4431 -vn 0.5889 -0.6758 0.4433 -vn 0.4242 0.4108 -0.8071 -vn -0.7404 -0.6266 0.2433 -vn -0.7402 -0.6268 0.2433 -vn -0.0431 -0.3201 -0.9464 -vn -0.0432 -0.3202 -0.9464 -vn 0.3322 0.8967 0.2926 -vn 0.3324 0.8965 0.2928 -vn 0.3319 0.8969 0.2924 -vn -0.8626 0.2913 -0.4136 -vn -0.8627 0.2911 -0.4136 -vn -0.2567 -0.7351 0.6275 -vn -0.2569 -0.7351 0.6274 -vn -0.7261 -0.1052 0.6795 -vn -0.7255 -0.1067 0.6799 -vn -0.7268 -0.1047 0.6788 -vn -0.4893 0.8602 0.1435 -vn -0.4894 0.8601 0.1438 -vn -0.4894 0.8602 0.1437 -vn 0.0321 -0.9747 0.2214 -vn 0.0321 -0.9746 0.2217 -vn 0.0322 -0.9746 0.2215 -vn 0.4051 0.8373 -0.3671 -vn -0.0237 -0.9600 0.2790 -vn -0.0240 -0.9600 0.2790 -vn 0.3529 0.9089 -0.2223 -vn 0.3535 0.9087 -0.2220 -vn 0.3538 0.9087 -0.2217 -vn -0.0335 -0.9618 0.2716 -vn -0.0334 -0.9618 0.2717 -vn -0.0337 -0.9619 0.2714 -vn 0.2020 -0.9635 0.1756 -vn 0.2022 -0.9634 0.1762 -vn 0.2024 -0.9633 0.1764 -vn 0.2512 0.0314 -0.9674 -vn 0.2511 0.0313 -0.9675 -vn 0.2510 0.0314 -0.9675 -vn 0.1886 0.7745 0.6038 -vn 0.1891 0.7746 0.6035 -vn 0.1894 0.7746 0.6034 -vn -0.4308 -0.8831 0.1860 -vn -0.4309 -0.8829 0.1866 -vn -0.4305 -0.8832 0.1862 -vn -0.4261 -0.8915 0.1539 -vn -0.5361 0.2519 -0.8057 -vn -0.5360 0.2519 -0.8058 -vn -0.5361 0.2521 -0.8056 -vn 0.8214 0.1341 -0.5544 -vn 0.8216 0.1346 -0.5540 -vn 0.8213 0.1337 -0.5546 -vn 0.3167 -0.9474 0.0472 -vn -0.3252 -0.6203 0.7137 -vn -0.3253 -0.6202 0.7138 -vn -0.3252 -0.6204 0.7137 -vn -0.1781 -0.5720 0.8007 -vn -0.1784 -0.5717 0.8008 -vn -0.1785 -0.5717 0.8008 -vn -0.6150 -0.5957 -0.5166 -vn -0.6150 -0.5958 -0.5165 -vn 0.5689 -0.6854 -0.4546 -vn 0.5688 -0.6858 -0.4541 -vn 0.5688 -0.6858 -0.4540 -vn -0.9103 0.2790 -0.3059 -vn -0.9102 0.2804 -0.3047 -vn -0.9102 0.2799 -0.3052 -vn 0.5789 -0.3294 0.7459 -vn 0.5788 -0.3296 0.7459 -vn -0.6761 0.5457 0.4950 -vn -0.6758 0.5454 0.4958 -vn -0.6755 0.5455 0.4962 -vn -0.4287 0.8191 -0.3811 -vn -0.4288 0.8193 -0.3806 -vn -0.4287 0.8193 -0.3809 -vn 0.3115 -0.3885 -0.8672 -vn 0.3130 -0.3878 -0.8670 -vn 0.3140 -0.3867 -0.8671 -vn -0.4029 0.6795 0.6132 -vn -0.4028 0.6797 0.6130 -vn -0.4029 0.6793 0.6134 -vn 0.2063 0.9784 0.0096 -vn 0.2070 0.9783 0.0090 -vn 0.2073 0.9782 0.0085 -vn 0.3567 -0.7026 -0.6157 -vn 0.3565 -0.7027 -0.6158 -vn 0.3566 -0.7026 -0.6158 -vn -0.6272 -0.5191 0.5807 -vn -0.6269 -0.5187 0.5814 -vn -0.6278 -0.5194 0.5797 -vn 0.5597 -0.6696 -0.4882 -vn 0.5603 -0.6697 -0.4874 -vn 0.5598 -0.6697 -0.4880 -vn 0.2640 -0.6188 -0.7399 -vn -0.8333 0.4597 -0.3070 -vn -0.2405 -0.5467 0.8021 -vn -0.2404 -0.5468 0.8020 -vn -0.2403 -0.5472 0.8018 -vn -0.5072 -0.8610 0.0379 -vn -0.5584 -0.6977 0.4488 -vn -0.5583 -0.6977 0.4489 -vn -0.5584 -0.6976 0.4489 -vn 0.3751 0.7481 -0.5474 -vn 0.3742 0.7476 -0.5487 -vn 0.3747 0.7481 -0.5477 -vn 0.1155 0.3736 -0.9204 -vn 0.1158 0.3734 -0.9204 -vn 0.1159 0.3733 -0.9205 -vn 0.4420 -0.6685 -0.5982 -vn 0.4415 -0.6687 -0.5983 -vn 0.4416 -0.6688 -0.5981 -vn 0.0476 -0.9160 0.3984 -vn 0.0473 -0.9161 0.3982 -vn 0.0474 -0.9160 0.3983 -vn 0.3622 -0.8448 0.3938 -vn 0.3635 -0.8444 0.3935 -vn 0.3637 -0.8443 0.3936 -vn 0.5373 0.7418 0.4013 -vn 0.5374 0.7416 0.4015 -vn 0.5373 0.7417 0.4014 -vn -0.1342 -0.6007 -0.7881 -vn -0.1341 -0.6007 -0.7882 -vn -0.1341 -0.6005 -0.7883 -vn 0.2139 -0.5603 -0.8002 -vn 0.2143 -0.5604 -0.8000 -vn 0.2141 -0.5605 -0.8000 -vn -0.4987 0.2897 0.8169 -vn -0.4986 0.2898 0.8170 -vn -0.4989 0.2898 0.8168 -vn 0.0116 -0.5068 0.8620 -vn 0.0117 -0.5066 0.8621 -vn -0.8463 -0.0447 0.5309 -vn -0.8464 -0.0450 0.5307 -vn -0.8463 -0.0447 0.5308 -vn 0.9514 -0.3015 0.0627 -vn 0.9513 -0.3016 0.0630 -vn 0.3831 -0.5801 -0.7188 -vn 0.3832 -0.5797 -0.7191 -vn 0.3834 -0.5793 -0.7193 -vn -0.7497 -0.6227 -0.2242 -vn -0.7495 -0.6227 -0.2246 -vn 0.0773 -0.5352 -0.8412 -vn 0.0771 -0.5351 -0.8413 -vn 0.0768 -0.5351 -0.8413 -vn 0.8665 -0.4966 0.0498 -vn 0.8665 -0.4968 0.0498 -vn -0.3881 -0.8882 0.2460 -vn -0.3877 -0.8883 0.2461 -vn 0.0944 0.6688 0.7374 -vn -0.0066 -0.9506 -0.3104 -vn -0.0069 -0.9506 -0.3103 -vn -0.0075 -0.9506 -0.3104 -vn -0.2762 -0.3004 0.9129 -vn -0.2761 -0.3004 0.9130 -vn -0.2765 -0.3003 0.9129 -vn -0.9889 0.1478 0.0168 -vn -0.9889 0.1476 0.0168 -vn -0.9888 0.1480 0.0170 -vn -0.2580 -0.7498 0.6093 -vn 0.7021 -0.7060 -0.0928 -vn 0.7020 -0.7062 -0.0927 -vn 0.7020 -0.7061 -0.0927 -vn 0.8109 -0.4243 -0.4029 -vn 0.8110 -0.4244 -0.4026 -vn 0.8115 -0.4240 -0.4022 -vn 0.8743 -0.3295 -0.3563 -vn 0.8744 -0.3296 -0.3562 -vn 0.8465 -0.3228 -0.4233 -vn 0.8466 -0.3229 -0.4231 -vn 0.8465 -0.3229 -0.4233 -vn 0.8120 -0.3715 -0.4501 -vn 0.8120 -0.3723 -0.4494 -vn 0.8119 -0.3720 -0.4499 -vn 0.2722 -0.0867 -0.9583 -vn 0.2722 -0.0868 -0.9583 -vn -0.6372 -0.7054 0.3105 -vn -0.6371 -0.7055 0.3105 -vn 0.5235 0.4356 -0.7323 -vn 0.5236 0.4359 -0.7320 -vn 0.5235 0.4357 -0.7322 -vn -0.7641 -0.4740 -0.4375 -vn -0.7639 -0.4738 -0.4381 -vn -0.7642 -0.4738 -0.4376 -vn -0.5697 -0.2918 -0.7683 -vn -0.7326 -0.5110 -0.4497 -vn -0.7324 -0.5111 -0.4498 -vn -0.7320 -0.5113 -0.4503 -vn -0.2393 -0.1219 0.9633 -vn -0.2391 -0.1220 0.9633 -vn -0.8594 0.2408 -0.4510 -vn -0.8594 0.2399 -0.4516 -vn -0.8594 0.2401 -0.4514 -vn 0.4579 -0.0373 -0.8882 -vn 0.4583 -0.0374 -0.8880 -vn 0.4575 -0.0372 -0.8884 -vn -0.5089 -0.1690 -0.8441 -vn -0.5089 -0.1693 -0.8440 -vn 0.4857 -0.0381 -0.8733 -vn 0.4855 -0.0386 -0.8734 -vn 0.4844 -0.0397 -0.8739 -vn 0.1355 0.9737 -0.1832 -vn 0.1356 0.9737 -0.1830 -vn 0.0552 0.7491 -0.6602 -vn 0.0544 0.7499 -0.6593 -vn 0.0553 0.7495 -0.6597 -vn 0.7182 0.0158 -0.6957 -vn 0.7182 0.0148 -0.6957 -vn 0.7181 0.0146 -0.6958 -vn -0.1851 -0.7102 -0.6792 -vn -0.1852 -0.7102 -0.6792 -vn -0.2882 -0.9514 -0.1082 -vn -0.2876 -0.9518 -0.1069 -vn -0.2888 -0.9512 -0.1085 -vn 0.6098 -0.7212 0.3287 -vn 0.6098 -0.7214 0.3281 -vn 0.6098 -0.7213 0.3285 -vn -0.7951 -0.5289 -0.2968 -vn -0.7949 -0.5288 -0.2976 -vn -0.7950 -0.5288 -0.2973 -vn 0.6550 0.7330 0.1836 -vn 0.6551 0.7329 0.1836 -vn 0.6550 0.7330 0.1835 -vn 0.9181 -0.0174 0.3960 -vn 0.9182 -0.0171 0.3958 -vn 0.3655 -0.2509 0.8964 -vn 0.3663 -0.2504 0.8962 -vn 0.3667 -0.2506 0.8960 -vn -0.4620 0.8792 -0.1162 -vn -0.4621 0.8793 -0.1154 -vn -0.4621 0.8793 -0.1157 -vn -0.4039 -0.3793 -0.8325 -vn -0.4033 -0.3796 -0.8326 -vn -0.4042 -0.3785 -0.8327 -vn -0.2514 0.8894 -0.3818 -vn -0.2515 0.8893 -0.3821 -vn -0.2514 0.8893 -0.3819 -vn 0.5566 0.1569 0.8158 -vn 0.5567 0.1569 0.8158 -vn -0.3738 -0.8684 -0.3258 -vn -0.3738 -0.8686 -0.3252 -vn -0.3738 -0.8686 -0.3254 -vn 0.4439 0.7781 -0.4444 -vn 0.4436 0.7782 -0.4445 -vn 0.4437 0.7783 -0.4443 -vn -0.6538 -0.7478 0.1153 -vn -0.3675 -0.1006 -0.9246 -vn -0.3663 -0.0998 -0.9251 -vn -0.3667 -0.0998 -0.9250 -vn 0.4676 0.8785 0.0983 -vn 0.4677 0.8785 0.0975 -vn 0.4675 0.8785 0.0980 -vn -0.7330 0.6003 -0.3198 -vn -0.7769 0.5229 -0.3506 -vn -0.7770 0.5229 -0.3505 -vn 0.0011 0.0031 1.0000 -vn -0.0001 0.0003 1.0000 -vn 0.0447 -0.1645 0.9854 -vn 0.0443 -0.1642 0.9854 -vn -0.7891 0.4672 -0.3987 -vn -0.7890 0.4677 -0.3985 -vn -0.7892 0.4671 -0.3987 -vn -0.3674 0.1559 0.9169 -vn -0.3673 0.1563 0.9169 -vn -0.3676 0.1559 0.9168 -vn -0.3709 0.2754 0.8869 -vn -0.3708 0.2755 0.8869 -vn -0.3708 0.2756 0.8869 -vn -0.8534 0.4125 -0.3186 -vn -0.6850 0.3531 -0.6373 -vn -0.6850 0.3530 -0.6373 -vn -0.0511 -0.6880 0.7239 -vn -0.0512 -0.6881 0.7238 -vn -0.1894 0.4428 -0.8764 -vn -0.1891 0.4419 -0.8769 -vn -0.1894 0.4407 -0.8775 -vn -0.2049 0.5287 0.8237 -vn -0.2046 0.5288 0.8237 -vn -0.2048 0.5287 0.8237 -vn -0.4583 0.2354 0.8571 -vn -0.4966 0.7391 -0.4550 -vn -0.4968 0.7389 -0.4553 -vn -0.4968 0.7388 -0.4553 -vn 0.0362 0.4057 -0.9133 -vn 0.0362 0.4058 -0.9132 -vn -0.1631 0.0043 0.9866 -vn -0.1637 0.0048 0.9865 -vn -0.1633 0.0046 0.9866 -vn 0.5660 0.2994 0.7681 -vn 0.5662 0.2998 0.7678 -vn 0.5661 0.2995 0.7680 -vn 0.8316 -0.0169 0.5551 -vn 0.8316 -0.0172 0.5552 -vn 0.2566 -0.9197 -0.2971 -vn 0.2564 -0.9197 -0.2972 -vn 0.2569 -0.9197 -0.2969 -vn -0.3204 -0.0430 -0.9463 -vn 0.2429 0.3972 -0.8850 -vn 0.2429 0.3973 -0.8850 -vn 0.9099 0.1562 0.3842 -vn 0.9099 0.1561 0.3843 -vn 0.9100 0.1562 0.3841 -vn -0.1193 -0.3736 0.9199 -vn -0.1195 -0.3734 0.9199 -vn -0.1192 -0.3738 0.9198 -vn -0.1581 0.7592 -0.6313 -vn -0.1580 0.7592 -0.6314 -vn -0.1582 0.7594 -0.6312 -vn -0.4539 0.6730 -0.5840 -vn -0.1912 0.4203 -0.8870 -vn -0.1905 0.4198 -0.8874 -vn -0.1899 0.4189 -0.8879 -vn -0.2153 -0.4596 0.8617 -vn -0.2155 -0.4597 0.8615 -vn 0.4756 0.7880 -0.3910 -vn 0.4759 0.7876 -0.3915 -vn 0.4757 0.7878 -0.3913 -vn 0.7376 -0.2173 0.6393 -vn 0.7373 -0.2173 0.6397 -vn 0.7369 -0.2171 0.6402 -vn 0.6950 -0.4037 0.5950 -vn 0.6953 -0.4063 0.5928 -vn 0.6963 -0.4071 0.5911 -vn -0.5585 -0.7031 0.4401 -vn -0.5573 -0.7039 0.4404 -vn -0.5593 -0.7021 0.4408 -vn 0.9471 0.0768 0.3115 -vn 0.9472 0.0767 0.3113 -vn -0.5601 0.8164 -0.1407 -vn -0.5600 0.8165 -0.1407 -vn -0.0470 0.9419 0.3325 -vn -0.0463 0.9419 0.3328 -vn -0.0453 0.9422 0.3320 -vn -0.2392 0.9432 0.2304 -vn -0.2397 0.9431 0.2303 -vn -0.2401 0.9431 0.2302 -vn 0.5160 0.8495 0.1102 -vn 0.5162 0.8493 0.1106 -vn 0.0290 0.9909 -0.1315 -vn 0.0291 0.9909 -0.1314 -vn -0.5698 -0.3307 -0.7523 -vn -0.5698 -0.3321 -0.7517 -vn -0.5698 -0.3315 -0.7520 -vn -0.0451 0.9508 -0.3065 -vn -0.0454 0.9509 -0.3063 -vn -0.5472 0.6701 -0.5016 -vn -0.5469 0.6704 -0.5015 -vn -0.1866 0.7458 -0.6395 -vn -0.1866 0.7460 -0.6393 -vn -0.0967 -0.9952 -0.0146 -vn -0.0964 -0.9952 -0.0145 -vn -0.0969 -0.9952 -0.0149 -vn -0.2511 -0.9143 -0.3179 -vn 0.5745 0.5838 0.5737 -vn 0.0883 -0.9492 -0.3020 -vn 0.0882 -0.9491 -0.3024 -vn 0.2108 -0.8061 -0.5529 -vn 0.4935 -0.7883 -0.3675 -vn -0.7539 -0.3303 -0.5679 -vn -0.7540 -0.3301 -0.5679 -vn -0.8296 0.3755 0.4133 -vn -0.8297 0.3754 0.4132 -vn -0.8296 0.3757 0.4131 -vn 0.3027 -0.8837 -0.3570 -vn 0.3014 -0.8841 -0.3571 -vn 0.3036 -0.8837 -0.3563 -vn 0.2353 0.8216 0.5192 -vn 0.2354 0.8217 0.5191 -vn 0.2355 0.8217 0.5191 -vn 0.4661 0.7798 -0.4179 -vn 0.4657 0.7796 -0.4187 -vn 0.4657 0.7798 -0.4184 -vn -0.6711 0.5488 0.4984 -vn -0.3627 0.8977 -0.2500 -vn -0.4194 -0.8720 -0.2524 -vn -0.8187 -0.5396 0.1964 -vn -0.0531 0.9219 -0.3837 -vn -0.0533 0.9220 -0.3836 -vn -0.3103 0.9487 -0.0601 -vn -0.3104 0.9487 -0.0600 -vn -0.3102 0.9488 -0.0601 -vn -0.5321 0.8441 -0.0659 -vn -0.7012 -0.5479 -0.4561 -vn -0.7012 -0.5480 -0.4560 -vn -0.7014 -0.5479 -0.4558 -vn 0.3436 0.8661 0.3630 -vn 0.3433 0.8665 0.3624 -vn 0.3432 0.8666 0.3622 -vn 0.7432 -0.5724 -0.3465 -vn 0.7434 -0.5721 -0.3464 -vn 0.7436 -0.5719 -0.3464 -vn 0.8062 -0.0766 -0.5867 -vn 0.8062 -0.0763 -0.5867 -vn 0.8062 -0.0760 -0.5867 -vn -0.1833 -0.0005 -0.9831 -vn -0.1838 -0.0003 -0.9830 -vn -0.1836 -0.0004 -0.9830 -vn -0.7710 -0.6162 -0.1610 -vn -0.7708 -0.6163 -0.1614 -vn -0.7708 -0.6162 -0.1618 -vn -0.8912 0.4175 0.1773 -vn -0.8910 0.4179 0.1774 -vn -0.8911 0.4178 0.1772 -vn 0.7126 0.4093 0.5698 -vn 0.7126 0.4094 0.5697 -vn -0.8717 -0.4813 -0.0924 -vn -0.8719 -0.4809 -0.0921 -vn -0.8720 -0.4807 -0.0921 -vn 0.0668 0.9494 -0.3069 -vn 0.0677 0.9491 -0.3076 -vn 0.0676 0.9492 -0.3074 -vn 0.9271 -0.3474 0.1405 -vn -0.1042 -0.7322 -0.6731 -vn -0.1039 -0.7325 -0.6727 -vn -0.1041 -0.7323 -0.6730 -vn 0.4707 -0.6159 0.6317 -vn 0.4706 -0.6161 0.6316 -vn 0.4707 -0.6160 0.6317 -vn -0.5308 -0.3972 0.7487 -vn -0.5309 -0.3971 0.7486 -vn -0.5307 -0.3973 0.7487 -vn -0.3193 -0.8043 -0.5012 -vn -0.3192 -0.8042 -0.5014 -vn 0.9400 0.2705 0.2077 -vn 0.9395 0.2715 0.2089 -vn 0.9388 0.2737 0.2092 -vn 0.2502 0.9380 0.2400 -vn 0.2503 0.9377 0.2411 -vn 0.2509 0.9373 0.2420 -vn -0.6108 -0.6397 -0.4666 -vn -0.6111 -0.6404 -0.4653 -vn -0.6109 -0.6398 -0.4662 -vn -0.2697 -0.9628 0.0149 -vn -0.2703 -0.9627 0.0147 -vn -0.2699 -0.9628 0.0147 -vn 0.5458 0.7130 -0.4401 -vn 0.4379 -0.4227 -0.7935 -vn 0.4378 -0.4228 -0.7934 -vn 0.4377 -0.4228 -0.7935 -vn 0.7353 -0.5517 0.3937 -vn 0.7354 -0.5516 0.3936 -vn 0.7352 -0.5517 0.3938 -vn 0.7046 -0.7069 0.0624 -vn 0.7047 -0.7068 0.0622 -vn 0.8473 0.4609 0.2639 -vn 0.8472 0.4610 0.2640 -vn 0.8470 0.4613 0.2642 -vn 0.0190 0.9922 -0.1235 -vn -0.4558 0.7905 -0.4091 -vn -0.4560 0.7904 -0.4090 -vn -0.4559 0.7902 -0.4095 -vn -0.0317 0.9668 -0.2536 -vn -0.0312 0.9668 -0.2537 -vn -0.0314 0.9668 -0.2537 -vn 0.0830 0.6942 0.7150 -vn 0.0831 0.6941 0.7150 -vn -0.7247 -0.4643 -0.5092 -vn -0.7250 -0.4641 -0.5090 -vn -0.7248 -0.4642 -0.5091 -vn 0.0986 0.7916 0.6031 -vn 0.0988 0.7914 0.6033 -vn 0.0988 0.7917 0.6029 -vn 0.2854 -0.5931 -0.7529 -vn 0.2854 -0.5933 -0.7527 -vn 0.2854 -0.5932 -0.7528 -vn 0.5481 0.7970 0.2538 -vn 0.5481 0.7970 0.2537 -vn 0.5482 0.7970 0.2537 -vn -0.9691 0.0928 -0.2285 -vn -0.9693 0.0929 -0.2277 -vn -0.1969 -0.8696 -0.4527 -vn -0.1968 -0.8698 -0.4525 -vn -0.1968 -0.8697 -0.4526 -vn 0.6696 -0.6406 0.3759 -vn 0.6694 -0.6408 0.3760 -vn 0.6690 -0.6413 0.3758 -vn 0.4461 0.8947 0.0234 -vn 0.4458 0.8948 0.0236 -vn 0.4463 0.8946 0.0232 -vn 0.4984 0.8631 0.0821 -vn 0.2815 0.8678 -0.4096 -vn -0.7929 -0.4215 -0.4401 -vn -0.7927 -0.4215 -0.4403 -vn -0.6752 -0.6279 -0.3871 -vn -0.6751 -0.6279 -0.3872 -vn 0.0698 0.9172 -0.3923 -vn 0.0691 0.9174 -0.3920 -vn 0.0708 0.9171 -0.3924 -vn 0.5061 0.2764 -0.8170 -vn 0.5063 0.2763 -0.8169 -vn -0.8799 -0.4736 0.0377 -vn -0.8799 -0.4737 0.0377 -vn 0.9802 -0.1840 -0.0735 -vn 0.9801 -0.1843 -0.0734 -vn 0.9802 -0.1837 -0.0736 -vn 0.1975 -0.9111 0.3617 -vn 0.2633 0.0170 -0.9646 -vn 0.2634 0.0170 -0.9645 -vn -0.6020 0.1891 -0.7758 -vn -0.6020 0.1890 -0.7758 -vn -0.7509 -0.6406 -0.1608 -vn -0.7511 -0.6403 -0.1608 -vn -0.7507 -0.6408 -0.1608 -vn -0.9739 0.1112 0.1980 -vn -0.9739 0.1111 0.1980 -vn -0.9739 0.1111 0.1981 -vn -0.5507 0.8157 -0.1770 -vn -0.5508 0.8159 -0.1760 -vn -0.5506 0.8161 -0.1754 -vn -0.6525 0.5095 -0.5610 -vn -0.6528 0.5095 -0.5606 -vn -0.6530 0.5095 -0.5604 -vn 0.7617 -0.3004 0.5741 -vn 0.7611 -0.2991 0.5756 -vn 0.7612 -0.2993 0.5753 -vn -0.0784 -0.7724 0.6303 -vn 0.2977 -0.8755 -0.3806 -vn 0.2976 -0.8756 -0.3806 -vn 0.8735 -0.3166 0.3698 -vn 0.8733 -0.3168 0.3701 -vn 0.8734 -0.3166 0.3700 -vn 0.2328 0.6082 0.7589 -vn 0.2320 0.6082 0.7591 -vn -0.1102 0.7153 -0.6901 -vn -0.1105 0.7150 -0.6903 -vn -0.1103 0.7152 -0.6902 -vn 0.0408 -0.9982 0.0439 -vn 0.0407 -0.9982 0.0439 -vn -0.1063 0.6835 0.7221 -vn -0.1064 0.6837 0.7220 -vn -0.1065 0.6838 0.7219 -vn 0.0065 -0.9993 0.0356 -vn 0.0068 -0.9994 0.0351 -vn 0.0067 -0.9994 0.0353 -vn -0.5859 0.7222 -0.3676 -vn 0.4865 0.2203 -0.8454 -vn 0.4859 0.2202 -0.8458 -vn 0.4860 0.2207 -0.8457 -vn 0.4333 0.8917 -0.1311 -vn 0.4333 0.8917 -0.1306 -vn -0.8583 0.2996 -0.4166 -vn -0.8583 0.2999 -0.4164 -vn -0.8583 0.2993 -0.4169 -vn -0.2849 -0.4336 0.8549 -vn -0.2846 -0.4337 0.8549 -vn -0.2852 -0.4338 0.8547 -vn -0.5096 0.7993 -0.3185 -vn -0.5093 0.7994 -0.3186 -vn -0.5089 0.7999 -0.3180 -vn -0.2448 0.9674 0.0653 -vn -0.4328 0.6706 -0.6025 -vn -0.4328 0.6706 -0.6024 -vn -0.4326 0.6707 -0.6025 -vn 0.5754 -0.7956 -0.1896 -vn 0.5753 -0.7955 -0.1902 -vn 0.5751 -0.7956 -0.1906 -vn 0.4627 0.6621 -0.5895 -vn 0.4628 0.6609 -0.5907 -vn 0.4629 0.6616 -0.5899 -vn 0.0001 -0.9658 0.2594 -vn 0.0005 -0.9659 0.2588 -vn 0.1782 0.2128 0.9607 -vn 0.1781 0.2129 0.9607 -vn 0.1778 0.2125 0.9609 -vn 0.3423 0.3580 -0.8687 -vn 0.3432 0.3594 -0.8678 -vn 0.3429 0.3585 -0.8683 -vn -0.1651 -0.9741 -0.1544 -vn -0.1648 -0.9741 -0.1547 -vn -0.1648 -0.9741 -0.1550 -vn -0.0473 -0.9690 0.2423 -vn -0.0473 -0.9690 0.2424 -vn -0.0477 -0.9689 0.2427 -vn -0.3611 0.8650 -0.3485 -vn -0.3610 0.8650 -0.3486 -vn -0.3610 0.8652 -0.3480 -vn -0.0750 -0.0175 -0.9970 -vn -0.0745 -0.0177 -0.9971 -vn -0.0747 -0.0176 -0.9971 -vn 0.5196 -0.6910 0.5024 -vn 0.5186 -0.6914 0.5030 -vn 0.5192 -0.6912 0.5027 -vn 0.2190 0.1974 -0.9556 -vn 0.2187 0.1968 -0.9557 -vn 0.2190 0.1972 -0.9556 -vn 0.9468 -0.0711 0.3138 -vn 0.9468 -0.0713 0.3138 -vn 0.9468 -0.0707 0.3138 -vn 0.0448 0.9349 0.3519 -vn 0.0454 0.9350 0.3518 -vn 0.0449 0.9350 0.3519 -vn -0.4158 -0.8398 0.3490 -vn -0.4157 -0.8400 0.3487 -vn -0.4158 -0.8399 0.3489 -vn 0.5125 -0.8443 0.1563 -vn 0.5125 -0.8444 0.1562 -vn -0.5562 -0.0072 -0.8310 -vn -0.5562 -0.0077 -0.8310 -vn -0.0001 0.0147 0.9999 -vn -0.0778 0.8971 -0.4349 -vn -0.0777 0.8972 -0.4347 -vn -0.0777 0.8973 -0.4346 -vn -0.3219 -0.9298 -0.1786 -vn -0.3220 -0.9298 -0.1784 -vn -0.8674 -0.3823 0.3186 -vn -0.8669 -0.3834 0.3185 -vn -0.8671 -0.3830 0.3184 -vn 0.6388 -0.7464 0.1869 -vn 0.6387 -0.7464 0.1869 -vn 0.6387 -0.7465 0.1866 -vn 0.2784 -0.6383 -0.7177 -vn 0.1985 0.8470 -0.4931 -vn 0.1987 0.8468 -0.4934 -vn 0.1988 0.8465 -0.4938 -vn -0.7617 -0.5713 0.3057 -vn -0.0262 0.4626 -0.8862 -vn -0.0266 0.4628 -0.8861 -vn -0.0264 0.4626 -0.8862 -vn -0.9180 -0.1775 -0.3546 -vn -0.9180 -0.1774 -0.3546 -vn -0.1646 -0.0036 0.9864 -vn -0.1666 -0.0042 0.9860 -vn -0.1633 -0.0020 0.9866 -vn 0.3037 -0.5664 -0.7661 -vn 0.7968 -0.5926 0.1180 -vn -0.3112 -0.9367 -0.1606 -vn -0.3113 -0.9366 -0.1608 -vn -0.6017 0.2500 0.7586 -vn -0.6019 0.2497 0.7585 -vn -0.7447 -0.6673 -0.0032 -vn -0.2023 0.5948 0.7780 -vn -0.2027 0.5947 0.7780 -vn -0.2022 0.5949 0.7779 -vn 0.0192 0.9428 -0.3328 -vn 0.0197 0.9426 -0.3334 -vn 0.0194 0.9427 -0.3332 -vn 0.6962 0.1427 0.7035 -vn 0.6961 0.1427 0.7036 -vn 0.6977 0.1437 0.7018 -vn -0.6530 0.3424 0.6756 -vn 0.7375 -0.1934 -0.6470 -vn 0.7373 -0.1936 -0.6472 -vn 0.7372 -0.1935 -0.6474 -vn -0.9168 -0.0331 -0.3981 -vn 0.0231 0.5258 0.8503 -vn 0.0228 0.5256 0.8504 -vn 0.3659 0.8440 -0.3921 -vn 0.3658 0.8440 -0.3921 -vn -0.4159 -0.3080 0.8556 -vn 0.3603 0.7274 -0.5840 -vn 0.3604 0.7273 -0.5841 -vn 0.3604 0.7273 -0.5840 -vn -0.8604 -0.0270 -0.5089 -vn -0.8603 -0.0273 -0.5090 -vn 0.8547 -0.4775 0.2037 -vn 0.8548 -0.4774 0.2034 -vn 0.8546 -0.4775 0.2041 -vn 0.1770 -0.6361 0.7511 -vn 0.1764 -0.6364 0.7509 -vn 0.1776 -0.6354 0.7515 -vn 0.5141 0.3579 0.7795 -vn 0.5142 0.3578 0.7795 -vn 0.5136 0.3585 0.7796 -vn -0.1364 -0.8985 0.4172 -vn -0.1362 -0.8987 0.4169 -vn -0.1359 -0.8988 0.4168 -vn 0.6610 0.5179 -0.5430 -vn 0.6612 0.5177 -0.5429 -vn 0.6614 0.5174 -0.5431 -vn 0.6442 0.1811 0.7431 -vn 0.6442 0.1810 0.7431 -vn 0.6443 0.1809 0.7431 -vn -0.9223 0.3728 -0.1020 -vn -0.9224 0.3725 -0.1021 -vn -0.4915 -0.3312 0.8054 -vn -0.4915 -0.3315 0.8053 -vn -0.4916 -0.3313 0.8053 -vn 0.3558 -0.4184 0.8357 -vn 0.3555 -0.4185 0.8357 -vn 0.3559 -0.4183 0.8357 -vn -0.5664 0.4942 0.6595 -vn -0.5613 0.4962 0.6624 -vn -0.5644 0.4957 0.6601 -vn -0.5762 0.2579 0.7756 -vn -0.5759 0.2587 0.7755 -vn -0.5758 0.2597 0.7752 -vn -0.3646 -0.0950 -0.9263 -vn -0.3645 -0.0951 -0.9263 -vn -0.3648 -0.0951 -0.9262 -vn -0.6956 0.2289 -0.6810 -vn -0.6963 0.2256 -0.6814 -vn -0.6962 0.2315 -0.6795 -vn -0.4277 0.6813 -0.5941 -vn -0.1518 0.5847 -0.7969 -vn -0.1517 0.5844 -0.7971 -vn 0.0640 0.8162 -0.5742 -vn 0.0638 0.8158 -0.5748 -vn 0.0636 0.8153 -0.5755 -vn -0.2544 0.2260 0.9403 -vn 0.6425 -0.3698 0.6711 -vn 0.6427 -0.3698 0.6709 -vn 0.6423 -0.3698 0.6713 -vn -0.0037 0.5010 -0.8654 -vn -0.0037 0.5011 -0.8654 -vn -0.5312 0.8104 0.2470 -vn -0.5313 0.8105 0.2465 -vn 0.5239 0.7531 0.3980 -vn 0.5268 0.7505 0.3991 -vn 0.5264 0.7510 0.3986 -vn 0.1980 0.5566 0.8068 -vn 0.1941 0.5579 0.8069 -vn 0.1917 0.5579 0.8074 -vn -0.9922 -0.0542 0.1120 -vn -0.9922 -0.0543 0.1120 -vn 0.0024 0.0007 1.0000 -vn -0.0716 -0.0657 0.9953 -vn 0.2880 0.2731 0.9179 -vn 0.2880 0.2732 0.9178 -vn 0.2880 0.2734 0.9178 -vn 0.4286 -0.8217 0.3757 -vn 0.4286 -0.8220 0.3749 -vn 0.4285 -0.8219 0.3753 -vn -0.9302 -0.0964 -0.3542 -vn -0.9303 -0.0965 -0.3538 -vn -0.9299 -0.0966 -0.3550 -vn 0.6078 -0.7776 0.1607 -vn -0.9412 -0.0236 -0.3371 -vn -0.9412 -0.0228 -0.3370 -vn -0.4622 -0.8671 0.1858 -vn -0.4626 -0.8668 0.1860 -vn -0.1911 -0.8733 0.4481 -vn -0.1918 -0.8740 0.4465 -vn -0.1916 -0.8748 0.4451 -vn 0.4948 0.8586 0.1337 -vn 0.4948 0.8587 0.1336 -vn -0.9811 0.1867 -0.0513 -vn -0.9810 0.1870 -0.0515 -vn -0.9809 0.1873 -0.0522 -vn 0.6111 -0.2049 0.7645 -vn 0.6114 -0.2046 0.7644 -vn 0.6108 -0.2050 0.7648 -vn 0.6435 0.6371 0.4242 -vn 0.6434 0.6372 0.4243 -vn 0.1284 -0.8975 0.4218 -vn -0.4594 -0.0159 0.8881 -vn -0.4593 -0.0158 0.8881 -vn -0.4594 -0.0157 0.8881 -vn 0.4823 0.0914 0.8712 -vn 0.4826 0.0916 0.8711 -vn 0.2773 0.9534 0.1189 -vn 0.2773 0.9534 0.1191 -vn 0.2773 0.9534 0.1187 -vn -0.1266 0.9047 -0.4069 -vn -0.1267 0.9046 -0.4070 -vn 0.6328 -0.7556 -0.1691 -vn 0.6329 -0.7555 -0.1694 -vn 0.6329 -0.7556 -0.1689 -vn -0.0649 -0.0588 0.9962 -vn -0.0650 -0.0588 0.9962 -vn 0.2385 -0.7444 -0.6237 -vn 0.2394 -0.7438 -0.6240 -vn 0.2394 -0.7439 -0.6240 -vn 0.0098 -0.9282 0.3721 -vn 0.0097 -0.9281 0.3721 -vn -0.9557 0.2939 0.0136 -vn -0.9561 0.2928 0.0140 -vn -0.9560 0.2931 0.0139 -vn 0.2402 -0.9112 0.3346 -vn 0.2394 -0.9116 0.3343 -vn 0.2398 -0.9114 0.3343 -vn -0.3456 0.9379 -0.0310 -vn -0.3459 0.9378 -0.0311 -vn -0.3458 0.9378 -0.0311 -vn -0.7834 0.2628 -0.5632 -vn -0.7840 0.2639 -0.5618 -vn -0.7833 0.2611 -0.5641 -vn 0.1054 -0.7653 0.6350 -vn 0.1057 -0.7654 0.6348 -vn 0.1060 -0.7659 0.6342 -vn 0.0999 -0.7491 0.6549 -vn 0.0997 -0.7492 0.6548 -vn 0.0996 -0.7491 0.6549 -vn 0.6779 -0.1968 0.7083 -vn 0.6778 -0.1969 0.7084 -vn 0.1341 0.7123 -0.6889 -vn 0.1344 0.7120 -0.6892 -vn -0.9585 -0.1808 -0.2206 -vn -0.9585 -0.1808 -0.2205 -vn -0.9586 -0.1804 -0.2205 -vn -0.6931 0.0389 -0.7198 -vn -0.6929 0.0390 -0.7200 -vn -0.6929 0.0387 -0.7200 -vn -0.0061 -0.7826 0.6225 -vn -0.0062 -0.7823 0.6228 -vn -0.0054 -0.7829 0.6222 -vn -0.5015 -0.0929 -0.8602 -vn 0.1060 -0.0297 -0.9939 -vn 0.1063 -0.0300 -0.9939 -vn 0.1065 -0.0302 -0.9939 -vn 0.0814 0.1565 -0.9843 -vn 0.0812 0.1564 -0.9843 -vn -0.1834 -0.0152 -0.9829 -vn -0.1833 -0.0148 -0.9830 -vn -0.1836 -0.0152 -0.9829 -vn 0.6625 -0.6066 -0.4395 -vn 0.6619 -0.6075 -0.4391 -vn 0.6622 -0.6071 -0.4393 -vn -0.5406 0.2186 -0.8124 -vn -0.5405 0.2185 -0.8125 -vn -0.5406 0.2187 -0.8124 -vn 0.5614 -0.7480 0.3539 -vn -0.3166 -0.4417 -0.8394 -vn -0.3169 -0.4419 -0.8392 -vn -0.6203 0.4874 -0.6145 -vn -0.6204 0.4872 -0.6146 -vn -0.0018 -0.0005 1.0000 -vn 0.0559 -0.6955 0.7164 -vn 0.0562 -0.6948 0.7170 -vn 0.0554 -0.6960 0.7159 -vn 0.2591 0.6113 0.7478 -vn 0.2589 0.6121 0.7472 -vn 0.2590 0.6120 0.7473 -vn -0.0975 0.9710 -0.2182 -vn -0.0978 0.9709 -0.2185 -vn -0.0980 0.9708 -0.2189 -vn -0.5330 -0.8309 -0.1598 -vn -0.5344 -0.8302 -0.1588 -vn -0.5337 -0.8306 -0.1592 -vn -0.2558 0.1052 -0.9610 -vn -0.2550 0.1056 -0.9612 -vn -0.2555 0.1054 -0.9610 -vn -0.0000 0.0007 1.0000 -vn -0.8588 -0.5116 0.0273 -vn -0.6579 -0.6599 0.3630 -vn -0.6578 -0.6598 0.3631 -vn 0.2766 -0.8511 0.4462 -vn 0.2763 -0.8511 0.4463 -vn 0.4286 0.8909 -0.1504 -vn 0.4280 0.8912 -0.1502 -vn 0.4283 0.8911 -0.1501 -vn 0.1447 0.9833 0.1101 -vn 0.1450 0.9833 0.1102 -vn 0.1451 0.9833 0.1101 -vn -0.1011 -0.9858 -0.1345 -vn -0.2325 -0.3832 0.8939 -vn -0.2313 -0.3844 0.8937 -vn -0.2319 -0.3841 0.8937 -vn 0.9045 -0.3215 -0.2801 -vn 0.9043 -0.3219 -0.2803 -vn 0.9044 -0.3218 -0.2801 -vn 0.0657 -0.9932 -0.0957 -vn -0.8480 -0.5118 -0.1376 -vn -0.8480 -0.5118 -0.1377 -vn -0.2406 -0.9555 -0.1707 -vn -0.2405 -0.9555 -0.1708 -vn 0.7572 -0.2419 0.6067 -vn -0.5118 -0.1095 -0.8521 -vn -0.5117 -0.1093 -0.8522 -vn -0.1803 -0.9219 -0.3430 -vn -0.1804 -0.9217 -0.3434 -vn 0.5490 -0.7375 0.3933 -vn 0.5490 -0.7374 0.3935 -vn -0.5089 0.6247 0.5922 -vn -0.5092 0.6246 0.5921 -vn -0.5088 0.6247 0.5924 -vn 0.6398 -0.3686 -0.6744 -vn 0.6405 -0.3689 -0.6736 -vn 0.6397 -0.3675 -0.6751 -vn 0.7175 -0.6513 0.2469 -vn 0.7178 -0.6509 0.2473 -vn -0.9046 0.4263 0.0082 -vn -0.9054 0.4245 0.0070 -vn -0.9057 0.4239 0.0055 -vn 0.2809 0.9590 -0.0366 -vn 0.2815 0.9589 -0.0368 -vn 0.1819 0.9150 -0.3603 -vn 0.1818 0.9150 -0.3602 -vn 0.9258 -0.3221 -0.1979 -vn 0.9257 -0.3222 -0.1980 -vn -0.3408 0.9384 0.0570 -vn -0.3408 0.9384 0.0571 -vn -0.9552 0.2886 -0.0656 -vn 0.7765 -0.1951 0.5991 -vn 0.7766 -0.1953 0.5990 -vn -0.4144 -0.7832 -0.4634 -vn -0.4144 -0.7833 -0.4634 -vn 0.6643 0.7250 0.1819 -vn 0.6645 0.7247 0.1822 -vn 0.3364 0.3281 -0.8827 -vn 0.3363 0.3283 -0.8827 -vn 0.3362 0.3281 -0.8828 -vn 0.4043 -0.8765 0.2612 -vn 0.0891 0.9802 0.1767 -vn -0.6363 -0.7047 -0.3138 -vn -0.6363 -0.7045 -0.3143 -vn 0.0413 0.6826 -0.7296 -vn 0.0411 0.6832 -0.7291 -vn 0.0412 0.6821 -0.7301 -vn 0.4881 -0.4937 -0.7197 -vn 0.4880 -0.4937 -0.7198 -vn 0.4876 -0.4939 -0.7200 -vn 0.6377 -0.6846 0.3532 -vn 0.6376 -0.6847 0.3530 -vn 0.6376 -0.6848 0.3529 -vn 0.7676 -0.0212 -0.6406 -vn 0.7672 -0.0217 -0.6411 -vn 0.7674 -0.0213 -0.6408 -vn -0.3263 0.6837 0.6527 -vn -0.3268 0.6835 0.6527 -vn -0.3255 0.6841 0.6527 -vn -0.1551 0.9088 -0.3874 -vn -0.1552 0.9089 -0.3871 -vn -0.1549 0.9088 -0.3875 -vn -0.4749 0.8520 0.2205 -vn -0.4745 0.8522 0.2206 -vn -0.4742 0.8523 0.2208 -vn 0.4435 0.5573 0.7019 -vn 0.4434 0.5572 0.7021 -vn 0.4437 0.5573 0.7018 -vn -0.7331 -0.4648 -0.4965 -vn -0.7330 -0.4646 -0.4969 -vn -0.7332 -0.4650 -0.4962 -vn 0.7276 0.6486 0.2233 -vn 0.7274 0.6488 0.2237 -vn 0.7274 0.6488 0.2235 -vn -0.8332 0.4494 -0.3223 -vn -0.8332 0.4487 -0.3231 -vn -0.8331 0.4493 -0.3226 -vn -0.7384 0.6241 -0.2555 -vn -0.7385 0.6239 -0.2556 -vn 0.9089 0.0553 0.4133 -vn 0.9087 0.0554 0.4137 -vn 0.9093 0.0551 0.4126 -vn -0.6944 -0.4838 -0.5327 -vn -0.6945 -0.4835 -0.5328 -vn -0.6945 -0.4838 -0.5326 -vn 0.0793 0.4084 0.9094 -vn 0.0793 0.4084 0.9093 -vn -0.6872 -0.4590 -0.5631 -vn -0.8627 0.3994 -0.3103 -vn -0.8627 0.4000 -0.3094 -vn -0.8627 0.3992 -0.3105 -vn 0.4597 -0.4267 -0.7788 -vn 0.4599 -0.4271 -0.7785 -vn 0.4597 -0.4268 -0.7788 -vn -0.0022 -0.3836 -0.9235 -vn -0.0022 -0.3834 -0.9236 -vn -0.0025 -0.3831 -0.9237 -vn 0.6416 -0.5560 -0.5283 -vn 0.6415 -0.5559 -0.5286 -vn 0.6418 -0.5562 -0.5280 -vn 0.7002 -0.6309 0.3341 -vn 0.7001 -0.6309 0.3343 -vn 0.0135 0.7572 0.6531 -vn 0.0138 0.7573 0.6530 -vn 0.6867 -0.6418 0.3414 -vn 0.6861 -0.6427 0.3408 -vn 0.7282 -0.4824 0.4869 -vn 0.7282 -0.4825 0.4867 -vn 0.7280 -0.4821 0.4875 -vn -0.8172 -0.5666 0.1057 -vn -0.8173 -0.5665 0.1055 -vn -0.8172 -0.5666 0.1058 -vn 0.3153 0.2937 -0.9024 -vn 0.3158 0.2917 -0.9029 -vn 0.3159 0.2929 -0.9024 -vn -0.6375 -0.6183 -0.4596 -vn -0.6375 -0.6182 -0.4598 -vn -0.4405 0.6056 0.6627 -vn -0.4404 0.6056 0.6628 -vn -0.4407 0.6055 0.6627 -vn 0.2807 -0.0074 0.9598 -vn 0.2808 -0.0069 0.9597 -vn 0.2804 -0.0074 0.9599 -vn -0.1906 -0.4566 -0.8690 -vn -0.1903 -0.4566 -0.8691 -vn 0.5953 -0.6891 0.4132 -vn 0.5949 -0.6894 0.4133 -vn 0.5946 -0.6895 0.4135 -vn -0.3754 0.9084 0.1842 -vn -0.3755 0.9083 0.1845 -vn -0.1134 -0.8543 0.5073 -vn -0.1131 -0.8544 0.5072 -vn -0.1129 -0.8547 0.5068 -vn -0.9728 0.2281 -0.0399 -vn -0.9729 0.2279 -0.0399 -vn 0.7434 -0.5645 0.3588 -vn 0.7433 -0.5645 0.3589 -vn 0.7431 -0.5646 0.3592 -vn -0.9253 0.0307 -0.3781 -vn -0.9252 0.0308 -0.3783 -vn -0.7440 -0.5689 -0.3505 -vn -0.7438 -0.5692 -0.3505 -vn -0.0189 -0.5392 0.8420 -vn -0.0185 -0.5389 0.8422 -vn -0.4417 0.4663 -0.7665 -vn -0.4415 0.4662 -0.7666 -vn -0.4416 0.4663 -0.7665 -vn 0.6098 -0.1663 0.7749 -vn 0.6098 -0.1664 0.7749 -vn -0.4089 -0.5205 -0.7496 -vn -0.4086 -0.5202 -0.7499 -vn -0.4089 -0.5208 -0.7494 -vn -0.7348 -0.5141 -0.4424 -vn -0.7350 -0.5139 -0.4424 -vn -0.7352 -0.5136 -0.4424 -vn -0.2469 0.1323 -0.9600 -vn -0.7182 -0.6641 0.2078 -vn -0.7177 -0.6644 0.2083 -vn -0.7178 -0.6644 0.2080 -vn -0.1678 -0.1696 -0.9711 -vn -0.1675 -0.1698 -0.9711 -vn 0.0444 0.0937 0.9946 -vn 0.0445 0.0939 0.9946 -vn 0.8196 -0.5584 0.1279 -vn 0.8196 -0.5585 0.1279 -vn 0.8196 -0.5585 0.1280 -vn 0.7559 -0.3400 0.5595 -vn 0.7558 -0.3403 0.5595 -vn 0.7831 0.1415 0.6056 -vn -0.7287 0.6771 -0.1029 -vn 0.8156 -0.5465 -0.1901 -vn 0.8149 -0.5475 -0.1902 -vn 0.8151 -0.5471 -0.1904 -vn 0.8155 -0.5468 -0.1895 -vn 0.8155 -0.5469 -0.1894 -vn -0.0685 -0.9900 0.1234 -vn -0.0686 -0.9899 0.1240 -vn 0.1582 -0.9583 0.2379 -vn 0.1586 -0.9582 0.2380 -vn 0.1588 -0.9582 0.2380 -vn -0.5563 -0.0787 -0.8273 -vn -0.5564 -0.0792 -0.8271 -vn -0.5564 -0.0790 -0.8271 -vn -0.7109 -0.5849 -0.3905 -vn -0.7108 -0.5849 -0.3906 -vn -0.7108 -0.5849 -0.3908 -vn 0.6220 0.1825 -0.7615 -vn 0.6221 0.1824 -0.7614 -vn -0.2419 0.8217 -0.5161 -vn -0.2419 0.8215 -0.5163 -vn -0.2416 0.8215 -0.5165 -vn -0.5772 0.4122 -0.7050 -vn -0.5774 0.4120 -0.7049 -vn -0.2730 -0.9589 -0.0770 -vn -0.2734 -0.9589 -0.0765 -vn -0.2734 -0.9588 -0.0768 -vn -0.7844 0.2317 -0.5754 -vn -0.7842 0.2316 -0.5756 -vn -0.7845 0.2316 -0.5753 -vn -0.3028 -0.9525 -0.0326 -vn -0.3032 -0.9524 -0.0322 -vn -0.3030 -0.9524 -0.0325 -vn 0.1681 -0.0265 0.9854 -vn 0.1684 -0.0263 0.9854 -vn 0.1682 -0.0265 0.9854 -vn -0.3008 0.8428 -0.4464 -vn -0.7959 -0.0921 -0.5984 -vn -0.7951 -0.0913 -0.5996 -vn -0.7954 -0.0917 -0.5992 -vn -0.1647 -0.8311 -0.5312 -vn -0.1648 -0.8311 -0.5311 -vn -0.1645 -0.8310 -0.5314 -vn 0.4229 -0.4409 0.7917 -vn 0.4228 -0.4410 0.7917 -vn 0.4227 -0.4409 0.7918 -vn -0.8878 0.0846 -0.4524 -vn -0.3723 -0.5842 -0.7212 -vn -0.4106 0.9113 -0.0285 -vn -0.4106 0.9114 -0.0281 -vn -0.4107 0.9114 -0.0283 -vn -0.4282 -0.5929 -0.6820 -vn -0.4283 -0.5930 -0.6819 -vn -0.1280 -0.7083 0.6942 -vn -0.1281 -0.7086 0.6939 -vn -0.1278 -0.7085 0.6940 -vn 0.5100 -0.0685 0.8574 -vn 0.5101 -0.0686 0.8574 -vn -0.6137 -0.7690 0.1790 -vn -0.6141 -0.7684 0.1801 -vn -0.6140 -0.7687 0.1792 -vn -0.5235 0.4950 -0.6935 -vn -0.5238 0.4948 -0.6934 -vn -0.5237 0.4949 -0.6934 -vn 0.5677 0.7123 0.4127 -vn 0.5676 0.7127 0.4123 -vn 0.5672 0.7132 0.4119 -vn 0.6503 -0.4843 -0.5853 -vn 0.6505 -0.4843 -0.5851 -vn -0.2219 0.2695 -0.9371 -vn 0.5682 -0.8221 -0.0362 -vn -0.8467 -0.1036 -0.5219 -vn -0.8467 -0.1037 -0.5218 -vn 0.8182 0.3301 0.4707 -vn 0.2741 -0.6671 -0.6927 -vn -0.6503 -0.2598 -0.7139 -vn -0.6504 -0.2597 -0.7138 -vn -0.6502 -0.2598 -0.7139 -vn -0.1245 0.9411 -0.3144 -vn -0.1249 0.9411 -0.3141 -vn -0.1241 0.9411 -0.3144 -vn -0.6687 0.6653 -0.3320 -vn -0.6687 0.6653 -0.3319 -vn -0.6616 0.7357 -0.1448 -vn -0.6612 0.7359 -0.1459 -vn -0.6615 0.7358 -0.1451 -vn -0.7747 -0.1665 -0.6101 -vn -0.7747 -0.1664 -0.6100 -vn -0.7748 -0.1663 -0.6099 -vn 0.5674 -0.8197 -0.0778 -vn 0.5676 -0.8197 -0.0777 -vn 0.5676 -0.8197 -0.0772 -vn 0.0374 0.1852 -0.9820 -vn 0.0377 0.1848 -0.9820 -vn 0.0375 0.1853 -0.9820 -vn -0.6197 -0.4971 0.6073 -vn -0.9598 0.2719 0.0692 -vn -0.3617 -0.9262 0.1062 -vn -0.3613 -0.9264 0.1062 -vn -0.3620 -0.9261 0.1060 -vn -0.0663 0.0208 0.9976 -vn -0.0665 0.0210 0.9976 -vn -0.2404 -0.9701 -0.0325 -vn -0.2409 -0.9700 -0.0321 -vn -0.2398 -0.9703 -0.0328 -vn -0.1638 -0.9071 0.3877 -vn -0.1633 -0.9072 0.3876 -vn -0.1641 -0.9071 0.3876 -vn -0.4533 0.6701 -0.5878 -vn -0.3935 -0.5477 -0.7384 -vn -0.3933 -0.5476 -0.7386 -vn -0.8249 -0.1457 -0.5462 -vn -0.8251 -0.1454 -0.5459 -vn -0.8249 -0.1458 -0.5461 -vn 0.3318 -0.5907 -0.7355 -vn 0.3316 -0.5909 -0.7354 -vn 0.3311 -0.5915 -0.7352 -vn 0.0226 -0.6414 -0.7669 -vn 0.0225 -0.6415 -0.7668 -vn -0.2942 -0.9474 -0.1257 -vn -0.2942 -0.9474 -0.1259 -vn 0.0907 -0.5292 -0.8436 -vn 0.0905 -0.5292 -0.8437 -vn 0.0903 -0.5292 -0.8437 -vn 0.3191 0.8809 0.3496 -vn 0.3188 0.8810 0.3496 -vn 0.3189 0.8809 0.3497 -vn -0.1561 0.2595 0.9531 -vn -0.1557 0.2593 0.9532 -vn -0.1566 0.2595 0.9529 -vn -0.0807 0.9229 -0.3764 -vn -0.0808 0.9231 -0.3761 -vn 0.8615 -0.4923 -0.1240 -vn 0.8616 -0.4922 -0.1241 -vn 0.8616 -0.4923 -0.1239 -vn -0.8146 -0.2202 -0.5366 -vn -0.0563 0.8493 -0.5249 -vn -0.0569 0.8491 -0.5252 -vn -0.0563 0.8494 -0.5247 -vn -0.2733 -0.9332 0.2332 -vn -0.2728 -0.9335 0.2328 -vn -0.2736 -0.9331 0.2333 -vn 0.9502 0.3113 0.0167 -vn 0.9502 0.3112 0.0166 -vn 0.2103 0.9610 -0.1796 -vn -0.3348 -0.6427 -0.6891 -vn -0.4653 -0.8377 -0.2860 -vn -0.4656 -0.8377 -0.2854 -vn -0.4647 -0.8379 -0.2864 -vn -0.8399 0.3497 -0.4151 -vn -0.8398 0.3496 -0.4153 -vn -0.8398 0.3496 -0.4154 -vn -0.5795 -0.7190 -0.3838 -vn -0.5795 -0.7191 -0.3835 -vn 0.1532 0.9824 -0.1068 -vn 0.1533 0.9824 -0.1068 -vn 0.1535 0.9824 -0.1067 -vn -0.3977 0.8778 -0.2671 -vn -0.3977 0.8777 -0.2673 -vn -0.3978 0.8777 -0.2671 -vn -0.4174 -0.9024 0.1069 -vn -0.4170 -0.9026 0.1071 -vn -0.4172 -0.9025 0.1070 -vn -0.0184 -0.9827 0.1840 -vn -0.0186 -0.9827 0.1845 -vn -0.0183 -0.9827 0.1841 -vn 0.9992 -0.0069 -0.0405 -vn 0.9992 -0.0068 -0.0402 -vn 0.9992 -0.0070 -0.0399 -vn 0.6911 -0.2460 -0.6796 -vn 0.6910 -0.2455 -0.6799 -vn 0.6913 -0.2466 -0.6792 -vn 0.3307 -0.2001 -0.9223 -vn 0.5169 0.7409 0.4288 -vn 0.6826 0.4677 0.5615 -vn 0.6827 0.4677 0.5614 -vn 0.0004 0.3785 0.9256 -vn -0.0003 0.3783 0.9257 -vn 0.0010 0.3784 0.9256 -vn 0.9390 -0.0034 0.3440 -vn -0.0158 0.0318 0.9994 -vn -0.7623 0.4994 -0.4118 -vn -0.7623 0.4994 -0.4117 -vn -0.7624 0.4993 -0.4117 -vn 0.8298 0.5181 0.2075 -vn 0.8294 0.5185 0.2079 -vn 0.8296 0.5183 0.2078 -vn -0.3364 -0.7828 -0.5235 -vn -0.3363 -0.7829 -0.5235 -vn -0.3363 -0.7829 -0.5234 -vn 0.1864 0.8874 -0.4217 -vn 0.1860 0.8874 -0.4217 -vn 0.1863 0.8874 -0.4217 -vn 0.5585 0.1539 0.8151 -vn 0.5585 0.1538 0.8151 -vn 0.5983 -0.5764 -0.5566 -vn 0.6002 -0.5760 -0.5549 -vn 0.5997 -0.5763 -0.5552 -vn 0.1591 0.9653 -0.2073 -vn 0.6730 -0.7341 0.0901 -vn 0.2862 0.8187 0.4978 -vn 0.1001 0.3040 -0.9474 -vn 0.1001 0.3034 -0.9476 -vn 0.0969 0.8085 -0.5804 -vn 0.0961 0.8085 -0.5806 -vn 0.0971 0.8086 -0.5803 -vn -0.0354 0.4866 0.8729 -vn -0.0340 0.4873 0.8726 -vn -0.0362 0.4866 0.8729 -vn 0.1967 0.9244 -0.3267 -vn 0.1961 0.9238 -0.3288 -vn 0.1966 0.9248 -0.3256 -vn 0.3285 0.2094 0.9210 -vn 0.3288 0.2095 0.9209 -vn 0.3286 0.2095 0.9209 -vn 0.1801 0.8600 -0.4774 -vn 0.1796 0.8600 -0.4777 -vn 0.1798 0.8599 -0.4777 -vn -0.5842 0.0056 0.8116 -vn -0.5843 0.0053 0.8115 -vn -0.5993 0.0298 0.8000 -vn -0.5994 0.0297 0.7999 -vn -0.6000 0.0293 0.7995 -vn 0.4475 0.1626 0.8794 -vn 0.4678 0.2290 0.8537 -vn 0.4677 0.2290 0.8537 -vn -0.6731 -0.5685 0.4730 -vn -0.6738 -0.5676 0.4730 -vn 0.2832 -0.9482 -0.1436 -vn 0.2831 -0.9483 -0.1434 -vn -0.0475 -0.0581 0.9972 -vn -0.3504 0.2903 0.8905 -vn -0.3502 0.2902 0.8906 -vn -0.3506 0.2902 0.8904 -vn -0.0661 -0.9443 -0.3225 -vn -0.0658 -0.9442 -0.3227 -vn -0.0660 -0.9442 -0.3226 -vn -0.7927 -0.1508 0.5906 -vn -0.7925 -0.1503 0.5911 -vn -0.7929 -0.1509 0.5904 -vn 0.0491 0.9793 0.1962 -vn 0.0494 0.9793 0.1960 -vn 0.0492 0.9793 0.1961 -vn -0.7418 0.6192 0.2575 -vn -0.7420 0.6189 0.2578 -vn -0.7427 0.6180 0.2579 -vn -0.2512 0.8196 -0.5150 -vn -0.2512 0.8193 -0.5153 -vn -0.2511 0.8197 -0.5148 -vn -0.8540 -0.4571 0.2483 -vn -0.8538 -0.4575 0.2485 -vn -0.8542 -0.4569 0.2482 -vn -0.9188 -0.1277 0.3736 -vn 0.9270 0.0651 -0.3694 -vn 0.9270 0.0652 -0.3693 -vn -0.0132 0.6481 -0.7614 -vn -0.0126 0.6490 -0.7607 -vn -0.0131 0.6484 -0.7612 -vn 0.0324 -0.9370 0.3478 -vn 0.0322 -0.9370 0.3479 -vn 0.0320 -0.9370 0.3477 -vn -0.8120 0.5631 -0.1535 -vn -0.6478 0.2837 -0.7070 -vn -0.6479 0.2837 -0.7069 -vn -0.6482 0.2835 -0.7068 -vn -0.2230 -0.8784 0.4226 -vn -0.2228 -0.8785 0.4225 -vn -0.2229 -0.8783 0.4229 -vn -0.5075 -0.7621 -0.4021 -vn 0.9347 -0.2984 -0.1932 -vn 0.9347 -0.2982 -0.1934 -vn -0.0920 0.3391 -0.9362 -vn -0.0921 0.3388 -0.9363 -vn 0.6012 -0.7562 -0.2581 -vn 0.6012 -0.7563 -0.2580 -vn 0.6012 -0.7562 -0.2582 -vn -0.7303 -0.3054 -0.6111 -vn -0.7302 -0.3053 -0.6112 -vn -0.7314 -0.3747 -0.5698 -vn -0.7313 -0.3746 -0.5700 -vn -0.7313 -0.3746 -0.5699 -vn -0.4610 0.7224 -0.5154 -vn -0.4604 0.7230 -0.5151 -vn -0.4598 0.7233 -0.5151 -vn 0.1536 0.0277 -0.9877 -vn 0.1541 0.0285 -0.9876 -vn 0.1534 0.0276 -0.9878 -vn -0.9393 -0.3199 -0.1237 -vn -0.9393 -0.3200 -0.1236 -vn -0.9393 -0.3199 -0.1235 -vn -0.0100 0.7432 -0.6690 -vn -0.0114 0.7429 -0.6693 -vn -0.0092 0.7430 -0.6693 -vn -0.1772 0.7967 0.5779 -vn -0.1771 0.7967 0.5779 -vn -0.0744 0.9328 0.3527 -vn -0.0743 0.9329 0.3525 -vn -0.7652 0.5922 -0.2527 -vn -0.7652 0.5923 -0.2524 -vn -0.7652 0.5920 -0.2529 -vn -0.0247 -0.9695 -0.2438 -vn -0.0250 -0.9694 -0.2442 -vn -0.0246 -0.9695 -0.2439 -vn -0.9173 -0.0144 -0.3980 -vn -0.9173 -0.0144 -0.3979 -vn -0.9175 -0.0145 -0.3974 -vn -0.5847 -0.1066 -0.8042 -vn -0.5847 -0.1064 -0.8043 -vn -0.5846 -0.1057 -0.8044 -vn -0.2045 0.1372 -0.9692 -vn -0.1190 0.3576 -0.9263 -vn 0.0414 0.4499 -0.8921 -vn 0.0412 0.4500 -0.8921 -vn 0.0416 0.4498 -0.8921 -vn 0.0021 0.8435 -0.5372 -vn 0.2040 0.3664 -0.9078 -vn 0.2044 0.3667 -0.9076 -vn 0.2040 0.3665 -0.9078 -vn -0.8469 0.1809 0.5000 -vn -0.8471 0.1805 0.4998 -vn -0.8471 0.1807 0.4997 -vn -0.4002 0.3350 -0.8530 -vn -0.4002 0.3352 -0.8529 -vn -0.4003 0.3348 -0.8531 -vn 0.3788 -0.8105 0.4467 -vn 0.5766 -0.8128 0.0827 -vn 0.5765 -0.8129 0.0826 -vn 0.5764 -0.8130 0.0824 -vn -0.7328 0.4192 -0.5359 -vn -0.7321 0.4202 -0.5362 -vn -0.7317 0.4205 -0.5365 -vn -0.6225 0.7740 -0.1157 -vn -0.6230 0.7735 -0.1163 -vn -0.6227 0.7738 -0.1158 -vn -0.3073 0.3365 0.8901 -vn -0.3074 0.3365 0.8901 -vn -0.3076 0.3363 0.8901 -vn -0.8350 -0.5468 0.0618 -vn -0.8342 -0.5479 0.0623 -vn -0.8354 -0.5461 0.0620 -vn 0.5439 0.8387 -0.0290 -vn 0.5439 0.8386 -0.0289 -vn -0.7373 0.5413 0.4043 -vn -0.7372 0.5415 0.4042 -vn -0.7372 0.5413 0.4045 -vn 0.4640 -0.4335 0.7725 -vn 0.4640 -0.4334 0.7726 -vn 0.4641 -0.4335 0.7724 -vn 0.3636 0.4948 -0.7893 -vn 0.3635 0.4951 -0.7891 -vn -0.0214 0.9960 0.0873 -vn 0.1100 0.9227 -0.3696 -vn 0.1101 0.9228 -0.3693 -vn 0.1102 0.9227 -0.3694 -vn -0.0917 -0.6691 0.7375 -vn 0.5594 -0.7324 0.3881 -vn -0.4606 0.1987 0.8651 -vn -0.4608 0.1983 0.8651 -vn -0.4608 0.1985 0.8650 -vn -0.9380 0.3373 -0.0798 -vn -0.9380 0.3374 -0.0798 -vn -0.9379 0.3375 -0.0798 -vn 0.1975 0.4316 -0.8802 -vn 0.1975 0.4321 -0.8799 -vn 0.1975 0.4317 -0.8801 -vn 0.6390 -0.1880 -0.7459 -vn 0.6395 -0.1868 -0.7457 -vn 0.6394 -0.1874 -0.7457 -vn 0.8345 0.2915 0.4675 -vn 0.8345 0.2913 0.4677 -vn 0.8345 0.2915 0.4677 -vn 0.6013 -0.7651 0.2304 -vn 0.7591 -0.5024 0.4139 -vn 0.7594 -0.5020 0.4138 -vn 0.0529 0.7560 0.6525 -vn 0.0528 0.7561 0.6524 -vn 0.0528 0.7561 0.6523 -vn 0.9236 0.3466 0.1639 -vn 0.9237 0.3465 0.1635 -vn 0.9237 0.3465 0.1636 -vn -0.1193 -0.8490 0.5148 -vn -0.1192 -0.8490 0.5148 -vn -0.1190 -0.8491 0.5147 -vn 0.7431 0.1149 0.6592 -vn 0.7431 0.1150 0.6592 -vn 0.0934 0.9947 -0.0420 -vn 0.0936 0.9947 -0.0430 -vn 0.0940 0.9946 -0.0441 -vn 0.7114 0.6269 -0.3176 -vn -0.4354 0.8484 -0.3011 -vn -0.4353 0.8485 -0.3010 -vn -0.4251 -0.7913 -0.4395 -vn -0.4248 -0.7915 -0.4394 -vn -0.4249 -0.7914 -0.4395 -vn -0.1981 -0.1409 0.9700 -vn 0.4477 -0.8595 0.2465 -vn -0.1064 -0.7940 -0.5985 -vn -0.1068 -0.7938 -0.5987 -vn -0.1071 -0.7935 -0.5990 -vn 0.5606 0.7895 0.2499 -vn 0.5606 0.7894 0.2500 -vn 0.5602 0.7897 0.2500 -vn -0.7502 0.3822 -0.5396 -vn -0.7500 0.3826 -0.5395 -vn -0.9456 -0.0813 -0.3149 -vn -0.9455 -0.0809 -0.3153 -vn -0.9458 -0.0815 -0.3145 -vn -0.6965 0.1498 -0.7017 -vn -0.6966 0.1499 -0.7016 -vn -0.3894 0.9000 -0.1962 -vn -0.2079 -0.1625 0.9646 -vn -0.2084 -0.1624 0.9645 -vn 0.1184 0.4693 -0.8751 -vn 0.1179 0.4696 -0.8750 -vn 0.1182 0.4694 -0.8750 -vn -0.7234 -0.1304 0.6780 -vn 0.7618 -0.5113 0.3978 -vn 0.7619 -0.5113 0.3977 -vn 0.7617 -0.5113 0.3979 -vn -0.5806 -0.7029 -0.4109 -vn -0.5810 -0.7026 -0.4109 -vn -0.5808 -0.7028 -0.4108 -vn -0.9781 0.0477 0.2027 -vn 0.0315 0.1695 -0.9850 -vn 0.0314 0.1696 -0.9850 -vn 0.0317 0.1695 -0.9850 -vn 0.0059 0.9945 -0.1042 -vn 0.0071 0.9945 -0.1041 -vn 0.0061 0.9945 -0.1043 -vn 0.5232 0.6425 0.5599 -vn 0.5234 0.6425 0.5597 -vn 0.1697 0.9852 -0.0248 -vn 0.1698 0.9852 -0.0245 -vn 0.1697 0.9852 -0.0249 -vn 0.1251 -0.9052 -0.4062 -vn -0.5909 -0.8061 0.0328 -vn -0.5909 -0.8061 0.0324 -vn -0.5910 -0.8060 0.0330 -vn -0.0485 0.3183 0.9467 -vn -0.0504 0.3166 0.9472 -vn -0.0487 0.3182 0.9468 -vn -0.5678 -0.7005 -0.4323 -vn -0.5675 -0.7006 -0.4326 -vn -0.5676 -0.7006 -0.4325 -vn -0.6173 -0.6785 -0.3983 -vn -0.6178 -0.6783 -0.3979 -vn -0.6175 -0.6783 -0.3982 -vn 0.1393 -0.9587 0.2480 -vn 0.1394 -0.9586 0.2481 -vn 0.1396 -0.9586 0.2482 -vn 0.5292 0.7674 0.3619 -vn 0.5293 0.7675 0.3616 -vn 0.5291 0.7675 0.3618 -vn 0.8874 0.1896 0.4203 -vn 0.8876 0.1892 0.4199 -vn 0.4427 0.6171 0.6506 -vn 0.4427 0.6171 0.6505 -vn 0.4426 0.6170 0.6508 -vn 0.0581 -0.9637 0.2606 -vn 0.0585 -0.9639 0.2598 -vn 0.0576 -0.9637 0.2609 -vn -0.0000 -0.0006 1.0000 -vn 0.5628 -0.8249 -0.0529 -vn -0.8048 0.4780 -0.3517 -vn -0.8046 0.4783 -0.3519 -vn 0.0496 0.0510 0.9975 -vn 0.0498 0.0511 0.9975 -vn 0.2133 0.9522 -0.2186 -vn -0.7582 -0.5589 -0.3357 -vn -0.7582 -0.5589 -0.3358 -vn 0.0240 -0.8521 -0.5229 -vn 0.0236 -0.8518 -0.5233 -vn 0.0238 -0.8519 -0.5231 -vn 0.3139 0.9189 -0.2388 -vn 0.3142 0.9188 -0.2388 -vn 0.3147 0.9187 -0.2387 -vn -0.5278 -0.8133 0.2448 -vn -0.9918 -0.1253 -0.0247 -vn -0.9919 -0.1248 -0.0250 -vn -0.9919 -0.1244 -0.0251 -vn 0.7223 -0.6899 0.0478 -vn 0.7221 -0.6901 0.0474 -vn 0.7224 -0.6898 0.0481 -vn 0.9750 0.0087 -0.2219 -vn 0.9750 0.0085 -0.2221 -vn 0.9749 0.0087 -0.2225 -vn 0.1517 0.9875 -0.0430 -vn 0.1518 0.9875 -0.0431 -vn 0.1517 0.9875 -0.0425 -vn 0.8031 0.4347 -0.4076 -vn 0.6238 0.5192 0.5842 -vn 0.6244 0.5189 0.5838 -vn 0.6241 0.5189 0.5842 -vn -0.7564 0.5758 0.3105 -vn -0.7563 0.5759 0.3103 -vn -0.7563 0.5760 0.3101 -vn 0.1702 -0.9213 0.3497 -vn 0.5232 0.7046 0.4794 -vn 0.5231 0.7045 0.4795 -vn -0.3359 -0.9303 0.1471 -vn -0.3360 -0.9303 0.1469 -vn -0.3361 -0.9303 0.1470 -vn 0.8360 -0.5473 -0.0395 -vn 0.8361 -0.5471 -0.0394 -vn 0.8361 -0.5472 -0.0394 -vn 0.4236 -0.8873 0.1822 -vn 0.4231 -0.8875 0.1823 -vn 0.4233 -0.8874 0.1824 -vn 0.8441 -0.5319 -0.0678 -vn 0.8442 -0.5318 -0.0679 -vn 0.8440 -0.5320 -0.0679 -vn -0.2011 -0.9002 0.3862 -vn -0.2011 -0.9002 0.3863 -vn -0.2048 -0.9527 0.2246 -vn -0.2048 -0.9526 0.2248 -vn -0.2050 -0.9527 0.2243 -vn -0.1896 -0.0727 -0.9792 -vn -0.1897 -0.0726 -0.9792 -vn -0.1898 -0.0729 -0.9791 -vn 0.2531 0.8191 -0.5147 -vn 0.2531 0.8193 -0.5145 -vn 0.2529 0.8192 -0.5148 -vn -0.8149 0.3676 0.4481 -vn 0.3306 0.3522 -0.8756 -vn 0.3304 0.3528 -0.8754 -vn 0.3702 -0.8823 0.2906 -vn 0.3699 -0.8825 0.2903 -vn 0.3703 -0.8822 0.2909 -vn 0.1870 -0.9208 0.3423 -vn 0.1881 -0.9206 0.3421 -vn 0.1874 -0.9207 0.3423 -vn 0.5829 -0.5971 0.5510 -vn 0.5826 -0.5973 0.5513 -vn 0.5822 -0.5974 0.5515 -vn -0.1225 -0.2978 0.9467 -vn -0.1227 -0.2976 0.9468 -vn -0.1223 -0.2979 0.9467 -vn 0.4330 -0.8569 0.2798 -vn 0.4329 -0.8569 0.2799 -vn 0.4329 -0.8569 0.2798 -vn -0.5097 0.2039 0.8358 -vn -0.5099 0.2036 0.8358 -vn 0.4242 0.8463 -0.3223 -vn 0.4241 0.8464 -0.3221 -vn 0.4239 0.8464 -0.3224 -vn -0.0508 0.4291 -0.9018 -vn -0.0135 0.9275 0.3735 -vn -0.0134 0.9275 0.3737 -vn -0.6790 -0.4318 0.5937 -vn -0.5362 -0.7911 0.2943 -vn 0.5536 0.7854 -0.2769 -vn 0.5539 0.7853 -0.2767 -vn 0.5534 0.7855 -0.2771 -vn 0.5160 -0.8537 0.0702 -vn 0.5161 -0.8536 0.0703 -vn 0.5163 -0.8535 0.0703 -vn 0.1306 -0.6913 0.7107 -vn 0.1307 -0.6913 0.7106 -vn 0.1306 -0.6912 0.7107 -vn 0.0235 0.9953 -0.0940 -vn 0.0236 0.9953 -0.0939 -vn 0.0235 0.9953 -0.0942 -vn -0.1191 0.5760 0.8087 -vn -0.1190 0.5761 0.8087 -vn -0.1191 0.5761 0.8087 -vn 0.7117 0.6019 -0.3622 -vn 0.7117 0.6020 -0.3620 -vn 0.7117 0.6020 -0.3621 -vn -0.3631 -0.5295 -0.7667 -vn -0.3631 -0.5296 -0.7666 -vn -0.3633 -0.5293 -0.7667 -vn -0.2643 0.4935 -0.8286 -vn -0.2642 0.4933 -0.8288 -vn -0.2643 0.4937 -0.8285 -vn -0.6809 0.5689 -0.4613 -vn -0.6809 0.5685 -0.4618 -vn -0.6809 0.5688 -0.4614 -vn 0.7044 -0.5603 -0.4358 -vn 0.7046 -0.5601 -0.4357 -vn 0.7042 -0.5605 -0.4358 -vn -0.8945 0.1150 -0.4319 -vn -0.8945 0.1149 -0.4320 -vn -0.5275 -0.8084 0.2613 -vn -0.7459 -0.1161 0.6558 -vn -0.7460 -0.1160 0.6558 -vn -0.7457 -0.1164 0.6561 -vn -0.3516 -0.9190 -0.1783 -vn -0.3521 -0.9187 -0.1788 -vn -0.3517 -0.9189 -0.1786 -vn -0.4767 -0.5855 -0.6557 -vn -0.4768 -0.5853 -0.6558 -vn -0.4769 -0.5852 -0.6558 -vn -0.9175 0.3659 -0.1560 -vn -0.9174 0.3663 -0.1556 -vn -0.9175 0.3660 -0.1560 -vn 0.4529 0.4079 0.7928 -vn 0.4530 0.4079 0.7927 -vn 0.4531 0.4080 0.7926 -vn 0.1685 0.8299 -0.5319 -vn 0.1684 0.8300 -0.5318 -vn 0.1687 0.8298 -0.5319 -vn 0.7045 -0.3706 -0.6053 -vn 0.7046 -0.3708 -0.6050 -vn 0.7044 -0.3706 -0.6054 -vn 0.8678 -0.4849 -0.1090 -vn 0.8679 -0.4846 -0.1090 -vn 0.8678 -0.4848 -0.1090 -vn -0.0341 0.9954 0.0892 -vn 0.8760 -0.4032 0.2646 -vn 0.8760 -0.4032 0.2647 -vn 0.1284 0.9481 -0.2908 -vn 0.1289 0.9483 -0.2900 -vn 0.1287 0.9483 -0.2901 -vn -0.9530 0.2842 0.1047 -vn -0.9531 0.2842 0.1043 -vn -0.9531 0.2843 0.1041 -vn -0.2850 -0.6994 0.6555 -vn -0.2845 -0.7002 0.6548 -vn 0.0268 -0.5485 -0.8357 -vn 0.0275 -0.5467 -0.8369 -vn 0.0269 -0.5474 -0.8364 -vn -0.1858 -0.9754 0.1185 -vn -0.1860 -0.9754 0.1182 -vn -0.1861 -0.9754 0.1179 -vn -0.7551 -0.6040 -0.2551 -vn -0.7548 -0.6042 -0.2555 -vn -0.7550 -0.6040 -0.2552 -vn -0.6812 -0.4632 0.5669 -vn -0.6813 -0.4635 0.5666 -vn -0.6812 -0.4633 0.5668 -vn -0.3490 -0.5637 0.7486 -vn -0.3492 -0.5640 0.7483 -vn -0.3491 -0.5639 0.7484 -vn -0.8259 -0.0817 -0.5579 -vn -0.8260 -0.0816 -0.5577 -vn -0.5063 -0.8474 0.1600 -vn -0.5064 -0.8473 0.1601 -vn -0.5065 -0.8472 0.1601 -vn 0.3501 -0.6433 -0.6809 -vn 0.3497 -0.6432 -0.6812 -vn -0.1661 -0.9779 0.1270 -vn -0.1654 -0.9782 0.1256 -vn -0.1662 -0.9783 0.1237 -vn -0.7695 -0.3544 0.5312 -vn -0.7692 -0.3547 0.5316 -vn -0.7692 -0.3546 0.5316 -vn -0.1892 -0.9818 0.0166 -vn -0.1893 -0.9818 0.0168 -vn -0.1895 -0.9817 0.0170 -vn 0.3075 0.9364 -0.1691 -vn -0.0136 -0.0184 -0.9997 -vn -0.0141 -0.0188 -0.9997 -vn -0.0139 -0.0185 -0.9997 -vn 0.4515 -0.0545 -0.8906 -vn 0.4514 -0.0543 -0.8907 -vn 0.4514 -0.0542 -0.8907 -vn -0.0741 0.9971 -0.0163 -vn -0.0743 0.9971 -0.0164 -vn -0.0744 0.9971 -0.0161 -vn -0.3277 0.4331 -0.8397 -vn -0.3282 0.4330 -0.8395 -vn -0.3289 0.4329 -0.8393 -vn -0.2363 0.9397 -0.2473 -vn -0.2364 0.9396 -0.2476 -vn -0.4781 0.8580 0.1878 -vn -0.4786 0.8574 0.1894 -vn -0.4785 0.8577 0.1883 -vn 0.5939 0.7460 -0.3014 -vn -0.4321 0.1809 -0.8835 -vn -0.4322 0.1810 -0.8834 -vn -0.4322 0.1808 -0.8835 -vn 0.8248 -0.1590 -0.5426 -vn 0.8247 -0.1590 -0.5428 -vn 0.8246 -0.1587 -0.5429 -vn 0.9839 -0.1768 -0.0256 -vn 0.9839 -0.1771 -0.0254 -vn -0.1062 -0.9123 0.3956 -vn -0.1060 -0.9114 0.3977 -vn -0.1084 -0.9094 0.4015 -vn 0.2066 -0.5186 0.8297 -vn 0.2067 -0.5189 0.8295 -vn 0.2066 -0.5188 0.8296 -vn -0.8728 0.4825 -0.0741 -vn -0.8728 0.4825 -0.0740 -vn -0.8727 0.4826 -0.0740 -vn -0.3039 -0.9476 -0.0980 -vn -0.3037 -0.9477 -0.0983 -vn -0.6974 -0.4192 0.5812 -vn -0.6971 -0.4197 0.5813 -vn -0.6967 -0.4206 0.5812 -vn -0.8702 -0.4922 0.0237 -vn -0.8703 -0.4920 0.0238 -vn -0.8705 -0.4916 0.0236 -vn -0.9019 0.0461 -0.4295 -vn -0.9019 0.0463 -0.4295 -vn 0.6389 0.1854 0.7466 -vn 0.6390 0.1853 0.7466 -vn 0.6389 0.1855 0.7466 -vn -0.2855 0.6522 -0.7022 -vn -0.2848 0.6526 -0.7021 -vn -0.2851 0.6525 -0.7021 -vn 0.5818 0.6828 0.4420 -vn 0.5819 0.6825 0.4422 -vn 0.5819 0.6826 0.4421 -vn 0.5745 0.7584 0.3080 -vn 0.5742 0.7575 0.3106 -vn 0.5755 0.7582 0.3066 -vn 0.4286 0.0023 -0.9035 -vn 0.4284 0.0024 -0.9036 -vn 0.4287 0.0022 -0.9034 -vn 0.9024 -0.3558 -0.2432 -vn 0.9030 -0.3540 -0.2435 -vn 0.9027 -0.3547 -0.2435 -vn -0.3383 0.3059 0.8899 -vn -0.3389 0.3054 0.8899 -vn -0.3394 0.3046 0.8900 -vn -0.6494 0.7478 -0.1381 -vn -0.6493 0.7479 -0.1381 -vn -0.8375 -0.3710 -0.4011 -vn -0.8375 -0.3709 -0.4013 -vn -0.8383 -0.3715 -0.3990 -vn -0.5883 -0.0679 0.8058 -vn -0.5886 -0.0679 0.8056 -vn -0.5883 -0.0677 0.8058 -vn -0.9183 0.2341 -0.3193 -vn -0.9183 0.2342 -0.3193 -vn 0.5579 -0.5597 0.6128 -vn 0.5573 -0.5599 0.6132 -vn 0.8166 0.3628 0.4489 -vn 0.4821 0.5482 -0.6834 -vn 0.4822 0.5479 -0.6835 -vn 0.4820 0.5477 -0.6839 -vn 0.1660 0.6494 0.7421 -vn 0.1659 0.6493 0.7422 -vn -0.2632 0.0427 0.9638 -vn 0.3287 0.9422 -0.0652 -vn 0.3289 0.9421 -0.0649 -vn 0.3286 0.9422 -0.0653 -vn -0.0968 -0.9434 0.3171 -vn -0.0978 -0.9433 0.3171 -vn -0.0994 -0.9434 0.3163 -vn 0.3506 -0.9355 -0.0442 -vn 0.3519 -0.9349 -0.0452 -vn 0.3493 -0.9360 -0.0437 -vn 0.2889 -0.7321 -0.6169 -vn 0.2888 -0.7318 -0.6173 -vn 0.2888 -0.7319 -0.6172 -vn 0.4907 -0.4068 -0.7706 -vn 0.4908 -0.4067 -0.7705 -vn -0.1170 0.6930 0.7114 -vn -0.2569 -0.9023 0.3461 -vn -0.2580 -0.9018 0.3466 -vn -0.2573 -0.9021 0.3464 -vn -0.6494 0.2647 -0.7129 -vn -0.6493 0.2644 -0.7130 -vn -0.2929 0.1869 0.9377 -vn -0.2927 0.1872 0.9377 -vn -0.2930 0.1873 0.9376 -vn 0.2906 -0.8457 0.4475 -vn 0.2904 -0.8458 0.4476 -vn 0.2903 -0.8458 0.4476 -vn 0.8144 -0.5743 -0.0834 -vn 0.8143 -0.5743 -0.0836 -vn 0.6149 0.5844 0.5295 -vn 0.6148 0.5840 0.5300 -vn 0.6147 0.5839 0.5303 -vn 0.4181 -0.9027 0.1017 -vn 0.4182 -0.9027 0.1015 -vn 0.4179 -0.9028 0.1015 -vn 0.2955 0.0318 0.9548 -vn 0.2954 0.0320 0.9548 -vn 0.2955 0.0320 0.9548 -vn -0.3217 0.9050 -0.2782 -vn -0.3218 0.9051 -0.2780 -vn -0.3078 0.8461 0.4352 -vn -0.3075 0.8457 0.4362 -vn -0.1638 0.0383 0.9858 -vn -0.2944 0.7768 -0.5567 -vn -0.2930 0.7770 -0.5571 -vn -0.6959 0.7174 -0.0313 -vn -0.6968 0.7166 -0.0302 -vn -0.6962 0.7172 -0.0308 -vn 0.1010 -0.7802 0.6174 -vn 0.1010 -0.7803 0.6172 -vn 0.1010 -0.7800 0.6176 -vn -0.5626 -0.3383 -0.7544 -vn -0.4415 0.4730 -0.7625 -vn -0.4417 0.4731 -0.7623 -vn -0.4412 0.4730 -0.7626 -vn -0.6116 0.5756 -0.5428 -vn -0.6115 0.5752 -0.5433 -vn -0.6120 0.5759 -0.5420 -vn 0.8666 -0.3396 0.3656 -vn 0.8666 -0.3393 0.3659 -vn 0.8465 0.3709 0.3820 -vn 0.8465 0.3711 0.3818 -vn 0.8465 0.3708 0.3820 -vn -0.3556 0.8579 -0.3710 -vn -0.3555 0.8580 -0.3708 -vn -0.3554 0.8580 -0.3708 -vn 0.1096 -0.8307 0.5458 -vn 0.1097 -0.8306 0.5459 -vn 0.5926 -0.3198 -0.7393 -vn 0.5925 -0.3197 -0.7394 -vn 0.5111 0.0949 -0.8543 -vn 0.5110 0.0949 -0.8543 -vn 0.6754 -0.6394 -0.3674 -vn 0.6753 -0.6396 -0.3674 -vn 0.6746 -0.6409 -0.3663 -vn 0.0727 0.1965 -0.9778 -vn 0.0725 0.1966 -0.9778 -vn 0.0733 0.1960 -0.9779 -vn 0.0931 0.5114 -0.8543 -vn 0.0938 0.5100 -0.8550 -vn 0.0938 0.5101 -0.8550 -vn 0.1026 0.8586 0.5022 -vn 0.1020 0.8588 0.5021 -vn 0.1027 0.8586 0.5023 -vn -0.8927 -0.4409 -0.0932 -vn -0.3857 -0.3200 -0.8654 -vn -0.3857 -0.3201 -0.8653 -vn -0.3856 -0.3203 -0.8653 -vn -0.4434 0.8947 -0.0536 -vn -0.4435 0.8947 -0.0535 -vn -0.2092 -0.2278 -0.9510 -vn -0.2093 -0.2286 -0.9507 -vn -0.2091 -0.2276 -0.9510 -vn 0.5692 0.4543 0.6853 -vn 0.9422 0.2319 0.2419 -vn -0.7213 0.4560 -0.5213 -vn -0.7214 0.4559 -0.5213 -vn -0.7212 0.4565 -0.5210 -vn 0.4965 -0.6138 -0.6138 -vn 0.4965 -0.6137 -0.6138 -vn 0.4021 -0.1414 -0.9046 -vn -0.7044 -0.3288 0.6291 -vn -0.7045 -0.3288 0.6289 -vn -0.7046 -0.3287 0.6290 -vn 0.8309 -0.5386 -0.1397 -vn -0.4006 0.1926 -0.8958 -vn -0.4018 0.1932 -0.8951 -vn -0.4015 0.1931 -0.8953 -vn -0.7926 -0.3944 0.4650 -vn -0.1017 0.0025 -0.9948 -vn -0.1015 0.0026 -0.9948 -vn -0.1015 0.0036 -0.9948 -vn -0.2409 0.8711 -0.4279 -vn -0.2411 0.8712 -0.4277 -vn -0.4713 0.7304 -0.4944 -vn -0.4726 0.7291 -0.4950 -vn -0.4725 0.7294 -0.4947 -vn 0.5404 -0.7145 0.4444 -vn 0.5403 -0.7145 0.4445 -vn 0.5407 -0.7142 0.4444 -vn -0.3924 -0.7874 0.4755 -vn -0.3917 -0.7878 0.4754 -vn -0.3921 -0.7876 0.4754 -vn -0.7152 -0.1589 -0.6806 -vn -0.7158 -0.1605 -0.6796 -vn -0.7155 -0.1600 -0.6800 -vn 0.5627 0.8130 0.1497 -vn 0.5625 0.8131 0.1499 -vn 0.8915 -0.3605 -0.2744 -vn 0.8913 -0.3607 -0.2748 -vn 0.8918 -0.3599 -0.2743 -vn -0.2070 0.1656 0.9642 -vn -0.8179 0.2599 -0.5133 -vn -0.8177 0.2590 -0.5141 -vn -0.8177 0.2584 -0.5144 -vn -0.2587 -0.1654 0.9517 -vn -0.0297 -0.8737 -0.4855 -vn -0.0314 -0.8744 -0.4841 -vn -0.0312 -0.8741 -0.4847 -vn 0.3424 -0.6763 -0.6522 -vn 0.3411 -0.6764 -0.6528 -vn 0.3415 -0.6764 -0.6525 -vn 0.0960 -0.8931 -0.4394 -vn 0.0964 -0.8929 -0.4397 -vn 0.0968 -0.8926 -0.4404 -vn 0.8024 -0.4587 -0.3818 -vn 0.8025 -0.4587 -0.3816 -vn 0.8026 -0.4586 -0.3815 -vn 0.0768 -0.2064 0.9755 -vn 0.0774 -0.2076 0.9751 -vn 0.0762 -0.2038 0.9760 -vn -0.3922 -0.7318 0.5574 -vn -0.3923 -0.7320 0.5570 -vn -0.3922 -0.7312 0.5581 -vn -0.8758 -0.4787 0.0616 -vn -0.8756 -0.4789 0.0624 -vn 0.5941 0.7981 0.1004 -vn 0.5939 0.7983 0.1001 -vn 0.5940 0.7982 0.1003 -vn -0.9532 -0.2849 0.1016 -vn -0.9532 -0.2847 0.1017 -vn -0.9532 -0.2847 0.1015 -vn -0.6568 -0.6638 -0.3578 -vn -0.6570 -0.6637 -0.3574 -vn -0.6562 -0.6639 -0.3587 -vn -0.7928 -0.3980 -0.4616 -vn -0.7926 -0.3981 -0.4618 -vn -0.7931 -0.3977 -0.4613 -vn -0.6138 -0.6755 -0.4086 -vn -0.6140 -0.6753 -0.4087 -vn -0.6137 -0.6757 -0.4084 -vn -0.8883 0.4352 -0.1466 -vn -0.8885 0.4350 -0.1462 -vn -0.8885 0.4350 -0.1463 -vn 0.5358 -0.3151 -0.7833 -vn 0.5351 -0.3159 -0.7835 -vn 0.5354 -0.3155 -0.7834 -vn -0.0199 0.8128 -0.5822 -vn -0.0189 0.8128 -0.5822 -vn -0.0194 0.8128 -0.5822 -vn -0.0464 0.9874 -0.1512 -vn -0.0465 0.9874 -0.1511 -vn 0.0808 0.9545 -0.2872 -vn 0.0807 0.9547 -0.2864 -vn 0.0808 0.9546 -0.2867 -vn -0.1946 -0.7343 0.6504 -vn -0.1945 -0.7342 0.6504 -vn -0.1946 -0.7343 0.6503 -vn -0.9074 0.4060 0.1085 -vn -0.9073 0.4062 0.1087 -vn -0.9075 0.4057 0.1087 -vn -0.8355 -0.5490 -0.0224 -vn -0.8355 -0.5490 -0.0225 -vn -0.8355 -0.5490 -0.0226 -vn 0.8511 0.5215 0.0611 -vn 0.8511 0.5215 0.0608 -vn 0.8508 0.5220 0.0603 -vn -0.3233 -0.4858 -0.8120 -vn 0.1407 -0.5287 -0.8370 -vn 0.1411 -0.5287 -0.8370 -vn -0.6081 -0.6842 -0.4026 -vn -0.6082 -0.6840 -0.4028 -vn -0.6081 -0.6840 -0.4029 -vn 0.6839 -0.6264 0.3740 -vn 0.6838 -0.6272 0.3728 -vn 0.6840 -0.6267 0.3733 -vn -0.0054 0.3976 -0.9175 -vn -0.0053 0.3977 -0.9175 -vn 0.1879 -0.6834 -0.7054 -vn 0.1878 -0.6834 -0.7055 -vn 0.1879 -0.6835 -0.7053 -vn -0.7653 -0.3934 -0.5095 -vn -0.7651 -0.3933 -0.5098 -vn -0.7653 -0.3933 -0.5095 -vn 0.6850 -0.6673 0.2923 -vn 0.6852 -0.6672 0.2922 -vn 0.6852 -0.6672 0.2924 -vn 0.6233 -0.5686 0.5368 -vn 0.6232 -0.5684 0.5371 -vn 0.6233 -0.5685 0.5370 -vn 0.4129 0.8102 -0.4160 -vn 0.4130 0.8103 -0.4158 -vn 0.4132 0.8104 -0.4154 -vn -0.8315 0.5063 -0.2285 -vn -0.6387 -0.7005 -0.3183 -vn 0.0159 0.9884 -0.1508 -vn 0.0155 0.9884 -0.1509 -vn 0.0157 0.9884 -0.1509 -vn 0.8833 -0.1139 -0.4547 -vn 0.8833 -0.1141 -0.4547 -vn 0.8833 -0.1140 -0.4548 -vn 0.1887 0.2584 -0.9474 -vn 0.1887 0.2586 -0.9474 -vn 0.1890 0.2588 -0.9473 -vn -0.7719 -0.5218 -0.3632 -vn -0.7525 -0.4961 -0.4333 -vn -0.7528 -0.4957 -0.4332 -vn -0.7036 -0.5369 -0.4654 -vn -0.7036 -0.5371 -0.4653 -vn -0.7036 -0.5370 -0.4654 -vn 0.7394 -0.5505 0.3876 -vn 0.7392 -0.5508 0.3876 -vn 0.7392 -0.5507 0.3876 -vn 0.6488 -0.1604 -0.7439 -vn 0.6489 -0.1598 -0.7439 -vn 0.6489 -0.1601 -0.7439 -vn 0.1260 0.6343 0.7627 -vn 0.1263 0.6344 0.7626 -vn 0.2298 0.9612 -0.1524 -vn -0.2084 -0.2831 0.9362 -vn -0.2093 -0.2827 0.9361 -vn -0.2095 -0.2829 0.9360 -vn 0.8312 -0.5033 0.2364 -vn 0.8312 -0.5034 0.2360 -vn 0.8310 -0.5037 0.2361 -vn 0.4881 0.3284 0.8086 -vn 0.4881 0.3290 0.8084 -vn 0.4882 0.3277 0.8089 -vn 0.1095 0.9021 -0.4175 -vn 0.1093 0.9020 -0.4178 -vn -0.8530 0.3755 -0.3625 -vn -0.7547 -0.4779 -0.4494 -vn -0.7548 -0.4782 -0.4490 -vn -0.7547 -0.4778 -0.4495 -vn -0.3316 0.9113 -0.2442 -vn -0.3315 0.9113 -0.2440 -vn -0.3315 0.9114 -0.2439 -vn 0.4265 0.3818 -0.8200 -vn 0.4260 0.3824 -0.8199 -vn 0.4268 0.3815 -0.8199 -vn -0.0445 -0.3918 -0.9190 -vn -0.0430 -0.3918 -0.9190 -vn -0.0468 -0.3928 -0.9184 -vn 0.7886 -0.4981 0.3606 -vn 0.7881 -0.4983 0.3613 -vn 0.7884 -0.4982 0.3609 -vn 0.6045 0.6329 -0.4837 -vn 0.6043 0.6334 -0.4833 -vn 0.6042 0.6335 -0.4833 -vn -0.3567 0.2500 -0.9002 -vn -0.3573 0.2497 -0.9000 -vn -0.0869 0.9588 0.2704 -vn 0.6820 -0.7232 0.1093 -vn 0.6819 -0.7232 0.1092 -vn 0.6819 -0.7233 0.1091 -vn -0.7869 -0.3857 -0.4818 -vn -0.7870 -0.3856 -0.4816 -vn -0.7867 -0.3858 -0.4819 -vn 0.6940 0.0046 -0.7200 -vn 0.6947 0.0041 -0.7193 -vn 0.6939 0.0047 -0.7200 -vn -0.0613 0.9188 -0.3899 -vn -0.0612 0.9188 -0.3898 -vn -0.3691 -0.5943 0.7145 -vn -0.3689 -0.5945 0.7145 -vn -0.3686 -0.5945 0.7146 -vn -0.1293 -0.9871 0.0946 -vn -0.1292 -0.9871 0.0947 -vn -0.1291 -0.9871 0.0947 -vn 0.1409 -0.9232 0.3576 -vn 0.1407 -0.9230 0.3582 -vn 0.1409 -0.9231 0.3577 -vn 0.0164 0.8695 0.4937 -vn -0.3706 0.6487 -0.6647 -vn 0.2688 0.9548 0.1272 -vn -0.0421 0.8840 -0.4656 -vn -0.0422 0.8841 -0.4654 -vn -0.1148 -0.9922 -0.0486 -vn -0.1142 -0.9923 -0.0484 -vn -0.1145 -0.9922 -0.0486 -vn -0.9201 -0.1678 -0.3539 -vn -0.9197 -0.1682 -0.3547 -vn -0.9198 -0.1681 -0.3546 -vn -0.8613 0.3432 0.3747 -vn -0.8608 0.3437 0.3754 -vn -0.8616 0.3426 0.3746 -vn -0.0303 -0.9965 0.0774 -vn -0.0300 -0.9965 0.0785 -vn -0.0300 -0.9965 0.0781 -vn -0.7553 -0.4708 -0.4559 -vn -0.7550 -0.4710 -0.4562 -vn 0.2873 0.8767 0.3858 -vn 0.3907 -0.8577 0.3343 -vn 0.3910 -0.8573 0.3349 -vn 0.3907 -0.8580 0.3335 -vn -0.8820 0.3557 -0.3090 -vn -0.8820 0.3562 -0.3086 -vn 0.0859 0.3351 -0.9383 -vn 0.0874 0.3363 -0.9377 -vn 0.0867 0.3355 -0.9381 -vn 0.8796 -0.0658 0.4712 -vn 0.8796 -0.0659 0.4712 -vn 0.8795 -0.0660 0.4713 -vn 0.6236 0.7783 -0.0737 -vn 0.6238 0.7781 -0.0736 -vn 0.6236 0.7783 -0.0738 -vn -0.2991 0.7869 0.5398 -vn -0.2989 0.7868 0.5399 -vn -0.3931 0.2998 -0.8693 -vn -0.3206 -0.9428 0.0914 -vn -0.3198 -0.9431 0.0909 -vn -0.3202 -0.9430 0.0910 -vn -0.5930 -0.6830 0.4264 -vn -0.5926 -0.6830 0.4271 -vn -0.5930 -0.6833 0.4259 -vn 0.3776 0.7990 -0.4681 -vn 0.3776 0.7990 -0.4679 -vn 0.3776 0.7989 -0.4681 -vn -0.3368 -0.8240 0.4557 -vn -0.3367 -0.8235 0.4565 -vn -0.3367 -0.8242 0.4553 -vn -0.4405 -0.8952 -0.0670 -vn -0.4387 -0.8962 -0.0666 -vn -0.4393 -0.8959 -0.0667 -vn 0.5097 -0.8574 0.0718 -vn 0.5096 -0.8574 0.0716 -vn 0.5095 -0.8575 0.0718 -vn -0.2471 -0.8480 0.4689 -vn -0.2473 -0.8480 0.4687 -vn -0.2472 -0.8480 0.4689 -vn -0.6913 0.3501 -0.6321 -vn -0.6911 0.3500 -0.6323 -vn 0.6960 -0.6295 -0.3454 -vn 0.6961 -0.6295 -0.3454 -vn 0.6961 -0.6294 -0.3454 -vn -0.6325 -0.5832 -0.5097 -vn -0.6329 -0.5828 -0.5097 -vn 0.5368 -0.5841 -0.6089 -vn 0.5367 -0.5843 -0.6087 -vn 0.7613 0.5966 0.2538 -vn 0.7612 0.5968 0.2537 -vn 0.7613 0.5967 0.2539 -vn -0.7564 0.3193 0.5709 -vn -0.0588 0.4165 -0.9072 -vn -0.9896 0.0639 0.1289 -vn -0.9896 0.0638 0.1292 -vn -0.4479 -0.3200 0.8349 -vn -0.4484 -0.3203 0.8344 -vn 0.0230 0.8977 0.4400 -vn 0.0234 0.8976 0.4401 -vn 0.0236 0.8976 0.4401 -vn 0.6660 -0.7329 -0.1391 -vn 0.6664 -0.7325 -0.1393 -vn 0.6663 -0.7326 -0.1391 -vn -0.1060 -0.7950 -0.5972 -vn -0.1075 -0.7946 -0.5975 -vn 0.6286 0.7728 0.0875 -vn 0.6287 0.7728 0.0873 -vn 0.6287 0.7728 0.0868 -vn -0.9592 -0.0795 -0.2715 -vn 0.5855 -0.8106 -0.0143 -vn 0.5858 -0.8104 -0.0129 -vn 0.5852 -0.8108 -0.0145 -vn 0.7184 0.2827 -0.6355 -vn 0.7184 0.2828 -0.6355 -vn 0.7185 0.2829 -0.6354 -vn 0.9816 0.0166 -0.1904 -vn 0.9816 0.0162 -0.1904 -vn 0.9816 0.0168 -0.1903 -vn -0.1398 0.9584 0.2488 -vn -0.1399 0.9584 0.2489 -vn -0.1554 0.6722 -0.7239 -vn -0.1552 0.6723 -0.7238 -vn -0.1555 0.6723 -0.7238 -vn -0.8147 0.4224 -0.3973 -vn -0.8150 0.4221 -0.3970 -vn 0.5224 -0.5798 -0.6253 -vn 0.5230 -0.5794 -0.6251 -vn 0.5229 -0.5796 -0.6251 -vn -0.2582 0.6360 0.7272 -vn -0.2580 0.6359 0.7273 -vn -0.3071 -0.7937 0.5251 -vn -0.3077 -0.7933 0.5253 -vn -0.3083 -0.7929 0.5257 -vn 0.6527 -0.6549 -0.3808 -vn 0.6527 -0.6548 -0.3811 -vn 0.4138 0.8745 0.2530 -vn 0.4150 0.8736 0.2542 -vn 0.4155 0.8734 0.2541 -vn -0.4619 -0.8865 0.0265 -vn -0.4622 -0.8864 0.0267 -vn -0.4616 -0.8867 0.0263 -vn 0.4211 0.4455 -0.7901 -vn 0.4210 0.4451 -0.7904 -vn 0.4211 0.4450 -0.7904 -vn -0.2855 -0.2841 -0.9153 -vn -0.2852 -0.2843 -0.9153 -vn -0.2853 -0.2840 -0.9154 -vn 0.1256 0.6324 0.7644 -vn 0.1257 0.6324 0.7644 -vn -0.3948 -0.9178 -0.0425 -vn -0.4446 -0.1329 -0.8858 -vn -0.4446 -0.1331 -0.8858 -vn -0.4445 -0.1327 -0.8859 -vn -0.3432 -0.2985 -0.8906 -vn -0.3436 -0.2983 -0.8905 -vn -0.3443 -0.2983 -0.8902 -vn 0.2492 -0.4910 -0.8347 -vn 0.2485 -0.4904 -0.8353 -vn 0.2489 -0.4909 -0.8349 -vn 0.1464 0.9843 0.0981 -vn 0.1465 0.9843 0.0983 -vn 0.7247 0.0302 0.6884 -vn 0.7246 0.0301 0.6885 -vn 0.7245 0.0300 0.6886 -vn 0.8238 -0.1256 -0.5528 -vn 0.8244 -0.1253 -0.5520 -vn 0.8236 -0.1258 -0.5530 -vn -0.4297 0.1798 -0.8849 -vn -0.4296 0.1797 -0.8850 -vn -0.4298 0.1798 -0.8848 -vn 0.1222 -0.9268 -0.3551 -vn 0.1220 -0.9268 -0.3551 -vn 0.1225 -0.9268 -0.3551 -vn -0.5738 0.6753 0.4633 -vn -0.5748 0.6721 0.4669 -vn -0.5747 0.6723 0.4667 -vn 0.0693 0.5097 -0.8576 -vn 0.0671 0.5101 -0.8575 -vn 0.0709 0.5086 -0.8581 -vn 0.8132 0.4289 -0.3932 -vn 0.8132 0.4291 -0.3931 -vn 0.8133 0.4290 -0.3929 -vn 0.3199 0.7831 0.5333 -vn 0.3197 0.7835 0.5329 -vn -0.7611 0.4037 -0.5078 -vn -0.7611 0.4041 -0.5073 -vn 0.8840 0.4104 0.2241 -vn 0.8853 0.4089 0.2213 -vn 0.8830 0.4110 0.2267 -vn 0.4625 0.8866 0.0084 -vn 0.4627 0.8865 0.0081 -vn 0.4625 0.8866 0.0089 -vn 0.4516 0.1129 0.8851 -vn 0.4519 0.1132 0.8849 -vn 0.4516 0.1132 0.8850 -vn -0.0669 0.8311 0.5520 -vn -0.3237 0.9382 -0.1224 -vn -0.3238 0.9382 -0.1224 -vn -0.3239 0.9382 -0.1223 -vn -0.8872 0.2467 0.3900 -vn -0.8875 0.2466 0.3892 -vn -0.8878 0.2464 0.3886 -vn 0.5989 0.7268 0.3362 -vn 0.5991 0.7268 0.3359 -vn 0.5989 0.7270 0.3358 -vn -0.3628 -0.4671 -0.8063 -vn -0.3629 -0.4671 -0.8063 -vn -0.3752 -0.7188 -0.5853 -vn -0.3752 -0.7188 -0.5852 -vn -0.3752 -0.7186 -0.5855 -vn -0.3916 0.0276 -0.9197 -vn -0.3913 0.0274 -0.9198 -vn -0.3915 0.0275 -0.9198 -vn 0.4141 0.9067 -0.0801 -vn 0.4145 0.9065 -0.0797 -vn 0.4143 0.9066 -0.0800 -vn 0.4681 0.8836 -0.0009 -vn 0.4677 0.8839 -0.0010 -vn 0.4679 0.8838 -0.0012 -vn 0.1035 0.8327 -0.5440 -vn 0.1046 0.8324 -0.5442 -vn 0.1028 0.8329 -0.5438 -vn -0.7930 0.5883 -0.1584 -vn -0.7931 0.5881 -0.1582 -vn -0.7931 0.5881 -0.1586 -vn 0.1043 0.9717 -0.2121 -vn 0.1037 0.9716 -0.2128 -vn 0.1038 0.9716 -0.2127 -vn 0.9915 0.0964 -0.0874 -vn 0.9915 0.0965 -0.0875 -vn 0.9915 0.0967 -0.0876 -vn -0.2741 0.4888 0.8282 -vn -0.2742 0.4887 0.8282 -vn -0.2745 0.4885 0.8282 -vn -0.6196 0.1460 0.7712 -vn -0.5073 0.8559 -0.1002 -vn 0.5248 0.8342 0.1696 -vn 0.5245 0.8344 0.1692 -vn 0.5247 0.8342 0.1694 -vn 0.9535 -0.1799 0.2419 -vn 0.2992 0.7990 0.5217 -vn 0.2993 0.7989 0.5217 -vn 0.2994 0.7990 0.5215 -vn 0.7791 0.2843 0.5587 -vn 0.7792 0.2841 0.5586 -vn 0.7791 0.2843 0.5588 -vn 0.9094 0.4007 -0.1117 -vn 0.9093 0.4008 -0.1121 -vn 0.9094 0.4007 -0.1118 -vn -0.4059 0.4582 0.7908 -vn -0.2752 0.6234 -0.7318 -vn -0.2754 0.6233 -0.7319 -vn 0.9054 0.2702 0.3274 -vn 0.9054 0.2704 0.3272 -vn 0.9053 0.2701 0.3277 -vn -0.3030 0.4045 0.8629 -vn -0.3648 0.1066 0.9250 -vn -0.3648 0.1068 0.9250 -vn -0.3647 0.1069 0.9250 -vn 0.1863 -0.7032 0.6862 -vn 0.1861 -0.7033 0.6861 -vn 0.1862 -0.7032 0.6862 -vn -0.6793 0.3175 -0.6617 -vn -0.6791 0.3173 -0.6619 -vn -0.6789 0.3171 -0.6622 -vn -0.1472 0.9075 0.3934 -vn -0.1472 0.9075 0.3933 -vn -0.6776 0.5143 -0.5258 -vn -0.6776 0.5137 -0.5263 -vn -0.6777 0.5146 -0.5253 -vn 0.1903 0.0733 0.9790 -vn -0.2464 -0.5150 0.8210 -vn 0.2999 0.8006 0.5188 -vn 0.2999 0.8005 0.5188 -vn 0.2999 0.8007 0.5186 -vn 0.1602 -0.0596 0.9853 -vn 0.2007 0.5602 0.8037 -vn 0.2002 0.5600 0.8039 -vn 0.2005 0.5601 0.8038 -vn 0.0592 0.2178 0.9742 -vn 0.0574 0.2178 0.9743 -vn 0.0615 0.2166 0.9743 -vn -0.3628 0.9150 -0.1766 -vn -0.3629 0.9151 -0.1758 -vn -0.3624 0.9155 -0.1749 -vn 0.2649 0.9487 -0.1724 -vn 0.2647 0.9488 -0.1724 -vn 0.2646 0.9489 -0.1721 -vn -0.5180 0.7515 -0.4086 -vn -0.5178 0.7516 -0.4086 -vn -0.5181 0.7514 -0.4086 -vn 0.0695 -0.7232 0.6871 -vn 0.0696 -0.7230 0.6873 -vn -0.0074 -0.8630 0.5051 -vn -0.0077 -0.8632 0.5047 -vn -0.4834 -0.2313 0.8443 -vn -0.4833 -0.2314 0.8443 -vn -0.4833 -0.2315 0.8443 -vn -0.8088 0.5269 -0.2613 -vn -0.8087 0.5269 -0.2615 -vn -0.8087 0.5269 -0.2614 -vn 0.8060 -0.5540 0.2085 -vn 0.8061 -0.5538 0.2085 -vn 0.0893 -0.8258 0.5569 -vn 0.0895 -0.8256 0.5571 -vn 0.0892 -0.8257 0.5570 -vn -0.2172 -0.7605 0.6119 -vn 0.5894 -0.3503 0.7279 -vn 0.5898 -0.3510 0.7272 -vn 0.5889 -0.3500 0.7285 -vn 0.3183 -0.8646 0.3889 -vn 0.3183 -0.8645 0.3889 -vn 0.3173 -0.8652 0.3883 -vn 0.0488 -0.9221 0.3839 -vn 0.0487 -0.9219 0.3843 -vn 0.0489 -0.9221 0.3839 -vn -0.6375 0.7486 -0.1820 -vn -0.6375 0.7484 -0.1828 -vn -0.6376 0.7483 -0.1832 -vn -0.0873 0.6964 0.7123 -vn -0.0876 0.6956 0.7131 -vn -0.0876 0.6955 0.7131 -vn 0.2017 0.9777 -0.0585 -vn 0.2022 0.9776 -0.0582 -vn 0.2019 0.9777 -0.0584 -vn -0.4393 0.8798 -0.1815 -vn -0.5218 0.6111 -0.5952 -vn -0.5220 0.6109 -0.5953 -vn -0.5223 0.6106 -0.5952 -vn 0.6845 0.4736 0.5542 -vn 0.6848 0.4734 0.5541 -vn 0.6843 0.4738 0.5542 -vn 0.0701 -0.6207 -0.7809 -vn 0.0702 -0.6205 -0.7811 -vn 0.0702 -0.6210 -0.7807 -vn -0.1700 0.4442 -0.8797 -vn -0.1699 0.4443 -0.8796 -vn -0.1700 0.4447 -0.8794 -vn -0.0040 0.9099 -0.4148 -vn -0.0038 0.9099 -0.4149 -vn -0.5507 0.8311 0.0776 -vn -0.5509 0.8310 0.0775 -vn -0.5505 0.8312 0.0778 -vn -0.6889 -0.5394 0.4842 -vn 0.2794 0.3492 0.8944 -vn 0.2793 0.3488 0.8946 -vn 0.2795 0.3493 0.8944 -vn -0.3943 0.1341 -0.9091 -vn -0.3945 0.1342 -0.9090 -vn -0.3943 0.1342 -0.9091 -vn 0.4631 -0.1700 -0.8699 -vn 0.4629 -0.1695 -0.8700 -vn -0.4495 0.1576 -0.8793 -vn -0.4495 0.1577 -0.8793 -vn 0.0427 0.9798 0.1954 -vn 0.0428 0.9798 0.1953 -vn 0.0430 0.9799 0.1948 -vn -0.0741 0.7919 -0.6061 -vn -0.0743 0.7919 -0.6061 -vn -0.0742 0.7919 -0.6061 -vn -0.0007 0.7778 -0.6285 -vn 0.0002 0.7770 -0.6295 -vn -0.0006 0.7776 -0.6288 -vn 0.1628 0.0504 0.9854 -vn 0.1629 0.0508 0.9853 -vn 0.1631 0.0512 0.9853 -vn -0.6259 0.0124 0.7798 -vn -0.6259 0.0121 0.7798 -vn -0.6259 0.0127 0.7798 -vn 0.7848 0.5082 0.3546 -vn 0.7850 0.5083 0.3543 -vn 0.7848 0.5083 0.3545 -vn 0.3471 -0.6153 -0.7078 -vn 0.3471 -0.6153 -0.7077 -vn -0.8216 0.2342 -0.5197 -vn -0.8215 0.2343 -0.5198 -vn -0.8218 0.2342 -0.5194 -vn 0.5756 -0.0348 0.8170 -vn 0.5756 -0.0347 0.8170 -vn -0.9826 -0.0438 -0.1805 -vn -0.9827 -0.0434 -0.1802 -vn -0.9826 -0.0442 -0.1806 -vn 0.3671 0.2060 -0.9071 -vn 0.3672 0.2060 -0.9070 -vn -0.9168 0.3994 -0.0020 -vn -0.9168 0.3993 -0.0017 -vn -0.9168 0.3994 -0.0021 -vn -0.9978 -0.0196 -0.0634 -vn -0.9978 -0.0199 -0.0633 -vn -0.9978 -0.0197 -0.0636 -vn -0.9107 0.0714 0.4068 -vn -0.9108 0.0713 0.4067 -vn -0.1675 0.9127 -0.3728 -vn -0.1677 0.9126 -0.3728 -vn -0.1676 0.9126 -0.3728 -vn -0.8032 -0.5315 -0.2692 -vn -0.8030 -0.5320 -0.2686 -vn -0.8030 -0.5319 -0.2688 -vn 0.7268 -0.1025 0.6791 -vn 0.0189 0.3906 0.9204 -vn 0.0190 0.3908 0.9203 -vn 0.0191 0.3909 0.9202 -vn 0.7687 -0.5645 0.3009 -vn 0.7675 -0.5649 0.3029 -vn 0.7682 -0.5645 0.3019 -vn 0.9410 0.0160 0.3381 -vn 0.9408 0.0155 0.3387 -vn 0.9406 0.0145 0.3393 -vn 0.0558 0.2176 -0.9744 -vn 0.0557 0.2177 -0.9744 -vn -0.9569 0.2576 -0.1342 -vn -0.9570 0.2572 -0.1342 -vn -0.9569 0.2574 -0.1342 -vn 0.8234 -0.4574 -0.3359 -vn 0.8242 -0.4569 -0.3345 -vn 0.8238 -0.4572 -0.3350 -vn -0.5149 0.8566 0.0341 -vn -0.5148 0.8566 0.0341 -vn -0.4540 0.7626 -0.4608 -vn -0.4540 0.7626 -0.4607 -vn -0.4540 0.7627 -0.4607 -vn -0.7470 0.3836 -0.5430 -vn 0.8586 0.5015 0.1061 -vn 0.8591 0.5008 0.1057 -vn 0.8595 0.5003 0.1052 -vn 0.5822 0.8129 -0.0126 -vn -0.7747 -0.2337 -0.5875 -vn -0.7744 -0.2349 -0.5875 -vn -0.7747 -0.2326 -0.5880 -vn -0.0509 -0.9161 0.3976 -vn -0.0510 -0.9162 0.3976 -vn -0.0061 -0.6918 -0.7221 -vn -0.0067 -0.6920 -0.7219 -vn 0.0001 0.0003 1.0000 -vn -0.1232 -0.5546 -0.8229 -vn -0.1233 -0.5545 -0.8230 -vn 0.6042 0.6811 0.4136 -vn 0.6043 0.6810 0.4136 -vn 0.6041 0.6813 0.4135 -vn -0.1084 -0.9667 -0.2317 -vn -0.1085 -0.9667 -0.2316 -vn -0.1084 -0.9667 -0.2318 -vn -0.8627 0.3311 -0.3823 -vn -0.8624 0.3304 -0.3836 -vn -0.8627 0.3309 -0.3825 -vn 0.7731 -0.4660 0.4303 -vn 0.7733 -0.4658 0.4302 -vn -0.2186 -0.9706 0.1003 -vn -0.2184 -0.9708 0.0993 -vn -0.2184 -0.9709 0.0981 -vn -0.7818 -0.5274 -0.3327 -vn -0.7818 -0.5273 -0.3328 -vn 0.2127 0.4942 -0.8429 -vn -0.7456 -0.2252 0.6272 -vn -0.7452 -0.2254 0.6276 -vn -0.9819 -0.1788 0.0628 -vn -0.9819 -0.1786 0.0628 -vn -0.2808 0.6724 -0.6849 -vn 0.4712 -0.2927 0.8320 -vn 0.4708 -0.2909 0.8329 -vn 0.4714 -0.2892 0.8332 -vn -0.0012 0.2345 -0.9721 -vn -0.0017 0.2341 -0.9722 -vn -0.0003 0.2349 -0.9720 -vn 0.6138 -0.3038 -0.7287 -vn 0.6139 -0.3039 -0.7286 -vn 0.6140 -0.3037 -0.7286 -vn -0.0958 -0.0209 -0.9952 -vn -0.0964 -0.0206 -0.9951 -vn -0.0969 -0.0204 -0.9951 -vn -0.9760 -0.1543 -0.1537 -vn -0.7075 -0.6382 -0.3036 -vn -0.7084 -0.6380 -0.3019 -vn -0.7070 -0.6377 -0.3058 -vn 0.2506 -0.8878 0.3860 -vn 0.2507 -0.8878 0.3860 -vn -0.6734 -0.7265 -0.1370 -vn -0.6730 -0.7269 -0.1367 -vn -0.6731 -0.7268 -0.1367 -vn -0.7022 0.6774 0.2191 -vn -0.7015 0.6783 0.2186 -vn -0.7018 0.6779 0.2191 -vn -0.1684 0.5360 0.8272 -vn -0.1685 0.5360 0.8272 -vn -0.6647 0.5779 -0.4735 -vn -0.6646 0.5780 -0.4735 -vn -0.6645 0.5781 -0.4735 -vn -0.9152 -0.3554 0.1901 -vn -0.9152 -0.3552 0.1904 -vn -0.9151 -0.3556 0.1900 -vn 0.7245 -0.6012 0.3370 -vn 0.7244 -0.6015 0.3369 -vn 0.7242 -0.6014 0.3374 -vn -0.7882 -0.5095 -0.3452 -vn -0.7882 -0.5097 -0.3449 -vn -0.7883 -0.5094 -0.3451 -vn 0.4712 -0.8131 0.3417 -vn 0.4709 -0.8139 0.3404 -vn 0.4711 -0.8135 0.3411 -vn -0.6417 0.7397 -0.2026 -vn -0.6418 0.7397 -0.2026 -vn -0.6417 0.7397 -0.2028 -vn 0.3445 0.3285 -0.8794 -vn 0.3445 0.3289 -0.8793 -vn 0.3444 0.3287 -0.8794 -vn 0.1864 0.1128 -0.9760 -vn 0.1863 0.1127 -0.9760 -vn -0.6846 -0.6407 -0.3476 -vn 0.4071 0.7370 0.5396 -vn 0.4067 0.7371 0.5398 -vn -0.4164 0.8801 -0.2280 -vn -0.4171 0.8797 -0.2282 -vn -0.4175 0.8796 -0.2281 -vn 0.1172 -0.9292 0.3505 -vn 0.1221 -0.9293 0.3486 -vn 0.1161 -0.9287 0.3522 -vn -0.8701 -0.1515 0.4691 -vn -0.8699 -0.1521 0.4693 -vn -0.7295 0.6019 -0.3249 -vn -0.7297 0.6013 -0.3255 -vn -0.7297 0.6015 -0.3253 -vn -0.4521 -0.5523 0.7004 -vn -0.4522 -0.5522 0.7005 -vn -0.4518 -0.5523 0.7006 -vn 0.6852 -0.5271 0.5026 -vn 0.6855 -0.5268 0.5026 -vn 0.6856 -0.5268 0.5024 -vn -0.9728 0.2034 -0.1109 -vn -0.9728 0.2034 -0.1108 -vn -0.0420 0.2999 0.9531 -vn -0.0434 0.2997 0.9531 -vn -0.0411 0.2997 0.9532 -vn -0.9764 -0.0470 -0.2106 -vn 0.7219 0.6010 -0.3430 -vn 0.3025 0.2271 0.9257 -vn 0.3022 0.2267 0.9259 -vn 0.1329 0.8117 -0.5687 -vn 0.5885 0.8068 -0.0520 -vn 0.5886 0.8068 -0.0519 -vn -0.7730 0.3466 -0.5313 -vn -0.7730 0.3472 -0.5309 -vn -0.7728 0.3478 -0.5308 -vn 0.9090 0.2499 0.3335 -vn 0.9091 0.2499 0.3332 -vn -0.6508 -0.6191 0.4395 -vn -0.6515 -0.6191 0.4385 -vn -0.6505 -0.6193 0.4397 -vn -0.1123 -0.9909 0.0737 -vn -0.1124 -0.9909 0.0734 -vn -0.2636 0.9406 -0.2139 -vn -0.2636 0.9406 -0.2138 -vn -0.2638 0.9406 -0.2137 -vn 0.2204 0.9675 0.1241 -vn 0.2202 0.9676 0.1239 -vn -0.0023 0.0021 1.0000 -vn -0.7946 -0.6036 -0.0657 -vn -0.2610 -0.9653 0.0084 -vn -0.2609 -0.9653 0.0086 -vn -0.2610 -0.9653 0.0085 -vn 0.0517 0.6067 -0.7933 -vn 0.0516 0.6066 -0.7933 -vn -0.3086 -0.2742 0.9108 -vn -0.3082 -0.2741 0.9110 -vn -0.3083 -0.2741 0.9109 -vn -0.7148 -0.6967 0.0604 -vn -0.7147 -0.6968 0.0604 -vn -0.7151 -0.6964 0.0603 -vn -0.1971 0.0361 -0.9797 -vn -0.1973 0.0359 -0.9797 -vn 0.7095 -0.5849 -0.3931 -vn 0.7096 -0.5848 -0.3931 -vn 0.7094 -0.5849 -0.3932 -vn -0.2892 0.8414 -0.4565 -vn -0.2892 0.8412 -0.4569 -vn -0.2892 0.8411 -0.4570 -vn 0.7642 -0.6318 -0.1297 -vn 0.7436 -0.6471 -0.1680 -vn -0.6131 -0.5930 -0.5220 -vn -0.6132 -0.5924 -0.5225 -vn -0.6130 -0.5919 -0.5234 -vn -0.3240 0.7745 -0.5433 -vn -0.3250 0.7743 -0.5429 -vn -0.3245 0.7745 -0.5430 -vn 0.2796 0.7172 -0.6384 -vn 0.2795 0.7166 -0.6390 -vn 0.2793 0.7170 -0.6387 -vn -0.9055 0.4198 0.0612 -vn -0.9055 0.4198 0.0613 -vn 0.5344 -0.8445 -0.0345 -vn 0.5345 -0.8445 -0.0346 -vn 0.6755 -0.6019 -0.4260 -vn -0.0779 -0.9854 -0.1511 -vn -0.0778 -0.9855 -0.1509 -vn -0.0778 -0.9854 -0.1513 -vn -0.2393 -0.6127 -0.7532 -vn -0.2394 -0.6126 -0.7533 -vn -0.2389 -0.6135 -0.7527 -vn 0.5209 0.6949 0.4959 -vn 0.5209 0.6949 0.4958 -vn 0.2441 0.9697 -0.0064 -vn 0.2442 0.9697 -0.0063 -vn 0.2442 0.9697 -0.0062 -vn -0.4763 -0.8251 0.3040 -vn -0.4749 -0.8258 0.3043 -vn -0.4746 -0.8259 0.3044 -vn -0.5795 -0.7963 0.1735 -vn -0.5794 -0.7962 0.1740 -vn -0.5792 -0.7964 0.1741 -vn 0.5411 -0.8410 -0.0040 -vn 0.6301 -0.7190 0.2931 -vn 0.6300 -0.7191 0.2933 -vn -0.2701 -0.9314 -0.2440 -vn -0.8335 0.5525 -0.0072 -vn -0.7018 0.3061 -0.6432 -vn -0.7026 0.3059 -0.6425 -vn -0.7021 0.3060 -0.6430 -vn -0.9961 -0.0718 -0.0514 -vn -0.9961 -0.0715 -0.0514 -vn -0.4749 -0.8783 -0.0548 -vn -0.4747 -0.8785 -0.0547 -vn -0.2747 -0.6430 -0.7149 -vn -0.2745 -0.6434 -0.7147 -vn -0.2749 -0.6429 -0.7150 -vn -0.3396 0.1613 -0.9266 -vn -0.6809 0.4771 -0.5556 -vn -0.6808 0.4770 -0.5558 -vn 0.2097 0.9776 -0.0184 -vn 0.2101 0.9775 -0.0169 -vn 0.2099 0.9775 -0.0193 -vn -0.0899 -0.6688 -0.7380 -vn -0.0902 -0.6685 -0.7382 -vn 0.7832 0.6196 -0.0516 -vn 0.7830 0.6199 -0.0515 -vn 0.3301 0.8276 0.4540 -vn 0.3301 0.8277 0.4539 -vn 0.3300 0.8279 0.4535 -vn -0.2245 -0.5664 -0.7930 -vn -0.2240 -0.5664 -0.7931 -vn -0.2598 0.8834 -0.3901 -vn -0.2601 0.8832 -0.3902 -vn -0.2599 0.8833 -0.3901 -vn 0.7704 0.6361 -0.0429 -vn 0.7707 0.6358 -0.0426 -vn 0.7708 0.6357 -0.0427 -vn 0.0201 0.7283 0.6849 -vn 0.0200 0.7281 0.6852 -vn 0.0201 0.7284 0.6848 -vn -0.5466 -0.7142 -0.4373 -vn -0.5464 -0.7143 -0.4373 -vn -0.5465 -0.7142 -0.4373 -vn 0.3295 -0.8930 0.3065 -vn 0.3296 -0.8930 0.3064 -vn -0.0228 0.9857 -0.1671 -vn -0.0228 0.9857 -0.1672 -vn -0.1026 0.9363 -0.3360 -vn 0.2295 -0.5549 -0.7996 -vn 0.2296 -0.5549 -0.7996 -vn 0.2287 -0.5553 -0.7996 -vn 0.3768 0.9259 0.0268 -vn 0.3766 0.9260 0.0268 -vn 0.3767 0.9259 0.0268 -vn 0.0016 0.0670 0.9978 -vn 0.9565 -0.2829 -0.0715 -vn 0.9565 -0.2829 -0.0716 -vn 0.3964 0.8930 -0.2131 -vn 0.3962 0.8931 -0.2131 -vn 0.3965 0.8930 -0.2129 -vn -0.2536 -0.5101 0.8219 -vn -0.0034 0.0004 1.0000 -vn 0.6654 -0.7172 -0.2071 -vn -0.4139 -0.8879 -0.2007 -vn -0.4140 -0.8879 -0.2008 -vn 0.5626 0.6721 0.4814 -vn 0.5630 0.6718 0.4814 -vn 0.5632 0.6718 0.4812 -vn -0.0376 0.9199 0.3903 -vn -0.0382 0.9200 0.3900 -vn -0.0373 0.9199 0.3905 -vn -0.6309 0.1130 0.7676 -vn 0.3132 0.6186 0.7206 -vn 0.3143 0.6180 0.7206 -vn 0.3130 0.6187 0.7206 -vn 0.7271 -0.3661 -0.5808 -vn -0.7524 0.4829 -0.4480 -vn -0.7524 0.4842 -0.4466 -vn -0.7525 0.4835 -0.4472 -vn -0.1907 -0.7794 -0.5968 -vn -0.1905 -0.7791 -0.5973 -vn -0.1911 -0.7794 -0.5967 -vn -0.5000 -0.7251 -0.4736 -vn -0.5007 -0.7244 -0.4739 -vn 0.4829 -0.4971 -0.7209 -vn 0.4823 -0.4974 -0.7211 -vn 0.4826 -0.4972 -0.7210 -vn 0.6765 -0.0570 -0.7342 -vn 0.6766 -0.0567 -0.7341 -vn 0.6765 -0.0569 -0.7342 -vn -0.2623 -0.3730 -0.8900 -vn -0.2624 -0.3730 -0.8900 -vn -0.2622 -0.3732 -0.8900 -vn -0.5704 -0.3188 -0.7570 -vn -0.5705 -0.3189 -0.7568 -vn -0.5701 -0.3187 -0.7572 -vn -0.5576 0.8250 0.0914 -vn -0.5576 0.8251 0.0913 -vn -0.6214 0.1052 -0.7764 -vn -0.6220 0.1052 -0.7759 -vn -0.2410 -0.4338 -0.8682 -vn -0.2409 -0.4337 -0.8683 -vn -0.2408 -0.4338 -0.8682 -vn 0.4151 0.1935 -0.8890 -vn 0.4154 0.1933 -0.8889 -vn 0.4148 0.1937 -0.8890 -vn 0.5291 0.7444 -0.4073 -vn 0.5299 0.7451 -0.4051 -vn 0.5292 0.7447 -0.4066 -vn -0.3301 0.2714 -0.9041 -vn -0.3299 0.2711 -0.9043 -vn -0.0709 0.7083 0.7023 -vn -0.0709 0.7083 0.7024 -vn 0.4364 0.5121 -0.7398 -vn 0.4364 0.5123 -0.7397 -vn -0.6693 0.6797 -0.3000 -vn -0.6695 0.6795 -0.3001 -vn -0.2671 -0.9538 0.1375 -vn -0.2670 -0.9538 0.1379 -vn -0.2672 -0.9538 0.1372 -vn 0.0688 -0.0274 0.9973 -vn 0.0687 -0.0274 0.9973 -vn 0.5105 0.4833 0.7112 -vn 0.5106 0.4830 0.7113 -vn 0.5107 0.4829 0.7113 -vn 0.4184 -0.5968 -0.6847 -vn 0.4182 -0.5967 -0.6848 -vn 0.4186 -0.5967 -0.6846 -vn 0.7014 0.7116 -0.0406 -vn 0.7014 0.7116 -0.0407 -vn 0.7012 0.7118 -0.0408 -vn 0.5647 0.0831 -0.8211 -vn 0.5645 0.0831 -0.8212 -vn 0.5648 0.0832 -0.8210 -vn 0.3359 0.9393 -0.0702 -vn 0.3358 0.9393 -0.0700 -vn 0.3356 0.9394 -0.0696 -vn -0.4058 -0.9137 -0.0234 -vn -0.4058 -0.9137 -0.0233 -vn -0.1497 0.5871 -0.7955 -vn -0.1515 0.5868 -0.7954 -vn -0.1514 0.5867 -0.7956 -vn 0.2575 0.8483 -0.4627 -vn 0.2586 0.8485 -0.4618 -vn 0.2582 0.8484 -0.4622 -vn -0.5920 0.7565 0.2780 -vn -0.7400 0.4467 -0.5029 -vn -0.7399 0.4467 -0.5030 -vn -0.1825 0.9320 -0.3131 -vn -0.1826 0.9320 -0.3131 -vn -0.5017 0.7204 -0.4789 -vn -0.5018 0.7205 -0.4786 -vn -0.5018 0.7204 -0.4788 -vn -0.2740 -0.9436 0.1857 -vn 0.5218 0.1145 0.8454 -vn 0.5225 0.1140 0.8450 -vn 0.5212 0.1146 0.8457 -vn 0.5531 -0.0445 0.8319 -vn 0.5531 -0.0448 0.8319 -vn 0.1242 0.9905 -0.0592 -vn 0.1243 0.9905 -0.0592 -vn 0.1243 0.9905 -0.0594 -vn -0.4953 0.6807 -0.5397 -vn -0.4952 0.6808 -0.5397 -vn 0.4325 0.5299 -0.7295 -vn 0.4325 0.5301 -0.7293 -vn 0.4328 0.5298 -0.7294 -vn 0.4730 -0.1302 0.8714 -vn 0.4732 -0.1302 0.8713 -vn 0.4733 -0.1303 0.8712 -vn 0.3277 0.9135 -0.2411 -vn 0.3277 0.9135 -0.2410 -vn 0.3276 0.9135 -0.2414 -vn 0.8761 -0.1179 -0.4674 -vn 0.8760 -0.1174 -0.4678 -vn 0.8764 -0.1188 -0.4667 -vn -0.6514 0.0492 0.7571 -vn -0.6515 0.0491 0.7571 -vn -0.6515 0.0494 0.7570 -vn -0.1345 -0.3305 0.9342 -vn -0.1346 -0.3304 0.9342 -vn -0.1347 -0.3303 0.9342 -vn -0.3495 0.3801 0.8564 -vn -0.3494 0.3801 0.8564 -vn -0.3495 0.3799 0.8565 -vn -0.4055 0.6809 -0.6098 -vn -0.4050 0.6810 -0.6101 -vn -0.4060 0.6810 -0.6094 -vn 0.1861 0.9779 -0.0953 -vn -0.4660 0.8709 -0.1562 -vn -0.4662 0.8709 -0.1558 -vn -0.4658 0.8710 -0.1563 -vn 0.8634 0.4783 -0.1606 -vn -0.5673 0.5403 0.6215 -vn 0.1933 0.9743 -0.1160 -vn 0.1935 0.9742 -0.1158 -vn 0.1932 0.9744 -0.1152 -vn 0.7454 -0.6433 -0.1750 -vn 0.7455 -0.6430 -0.1752 -vn -0.2068 -0.6160 0.7601 -vn -0.5087 0.6109 -0.6067 -vn -0.5086 0.6108 -0.6069 -vn 0.1901 -0.8258 0.5309 -vn 0.4425 -0.5122 0.7361 -vn 0.4423 -0.5122 0.7362 -vn 0.4421 -0.5126 0.7361 -vn -0.8613 0.4541 -0.2280 -vn -0.8613 0.4540 -0.2280 -vn -0.8613 0.4540 -0.2281 -vn -0.8427 -0.5265 -0.1125 -vn -0.8425 -0.5268 -0.1125 -vn -0.2681 0.7688 -0.5806 -vn -0.2675 0.7684 -0.5814 -vn -0.2685 0.7688 -0.5804 -vn -0.8747 -0.4447 0.1927 -vn -0.8749 -0.4446 0.1921 -vn -0.8747 -0.4447 0.1929 -vn 0.7297 -0.5938 0.3391 -vn 0.7296 -0.5938 0.3392 -vn -0.3948 0.7694 0.5021 -vn -0.3949 0.7694 0.5020 -vn -0.3949 0.7694 0.5021 -vn 0.7070 -0.5974 -0.3786 -vn 0.7072 -0.5975 -0.3781 -vn 0.7067 -0.5975 -0.3789 -vn -0.9262 0.3451 0.1517 -vn -0.9262 0.3453 0.1517 -vn -0.4182 -0.3078 0.8546 -vn -0.4180 -0.3078 0.8547 -vn -0.4183 -0.3077 0.8546 -vn 0.7304 -0.4475 -0.5161 -vn 0.3363 -0.0626 -0.9397 -vn 0.6301 0.5097 0.5858 -vn -0.0598 0.7303 -0.6805 -vn 0.8968 -0.1190 0.4261 -vn 0.8969 -0.1162 0.4267 -vn 0.8970 -0.1209 0.4251 -vn -0.0867 0.2818 -0.9555 -vn -0.0863 0.2813 -0.9557 -vn -0.0863 0.2812 -0.9558 -vn 0.0322 -0.9936 0.1082 -vn 0.0320 -0.9936 0.1082 -vn 0.0323 -0.9936 0.1080 -vn -0.5374 0.2257 -0.8126 -vn -0.5373 0.2256 -0.8127 -vn -0.5707 0.7442 0.3471 -vn -0.5705 0.7444 0.3471 -vn -0.6556 0.3868 -0.6485 -vn -0.6552 0.3870 -0.6487 -vn 0.6538 -0.5925 0.4707 -vn 0.6536 -0.5927 0.4706 -vn 0.6539 -0.5923 0.4707 -vn 0.7854 0.5465 0.2906 -vn 0.7855 0.5465 0.2905 -vn 0.0582 0.3152 -0.9472 -vn 0.0580 0.3148 -0.9474 -vn 0.0580 0.3144 -0.9475 -vn 0.7408 -0.6353 -0.2181 -vn 0.7409 -0.6352 -0.2181 -vn 0.7409 -0.6353 -0.2178 -vn -0.9697 -0.1610 -0.1838 -vn -0.9697 -0.1609 -0.1838 -vn -0.9696 -0.1612 -0.1839 -vn 0.3722 0.9216 -0.1104 -vn 0.3719 0.9217 -0.1100 -vn 0.3717 0.9218 -0.1098 -vn 0.1293 -0.0007 -0.9916 -vn 0.1280 -0.0005 -0.9918 -vn 0.1278 -0.0006 -0.9918 -vn 0.1701 -0.1450 -0.9747 -vn 0.1700 -0.1450 -0.9747 -vn 0.1698 -0.1450 -0.9748 -vn -0.2777 0.7510 -0.5991 -vn -0.2781 0.7513 -0.5985 -vn -0.2771 0.7508 -0.5996 -vn -0.1392 -0.3266 0.9348 -vn -0.1853 0.9015 -0.3910 -vn -0.1855 0.9015 -0.3911 -vn -0.5466 -0.5865 -0.5977 -vn -0.5467 -0.5866 -0.5975 -vn -0.5468 -0.5868 -0.5972 -vn 0.1434 0.3871 -0.9108 -vn 0.1444 0.3873 -0.9106 -vn 0.1440 0.3875 -0.9106 -vn -0.2481 -0.8606 -0.4447 -vn -0.2480 -0.8607 -0.4447 -vn 0.3038 -0.2761 0.9118 -vn 0.3041 -0.2762 0.9117 -vn 0.3042 -0.2762 0.9117 -vn 0.4293 0.7032 -0.5667 -vn 0.4295 0.7031 -0.5668 -vn -0.8942 0.4477 0.0033 -vn -0.8941 0.4478 0.0033 -vn -0.8943 0.4475 0.0033 -vn -0.2856 -0.6540 -0.7005 -vn -0.2879 -0.6534 -0.7001 -vn -0.2868 -0.6538 -0.7002 -vn 0.0867 0.9566 -0.2781 -vn 0.0868 0.9567 -0.2777 -vn 0.9888 0.0372 -0.1448 -vn 0.9888 0.0361 -0.1449 -vn 0.9888 0.0369 -0.1448 -vn -0.4743 0.8773 -0.0736 -vn -0.4745 0.8772 -0.0735 -vn -0.4744 0.8772 -0.0735 -vn -0.1545 0.9611 -0.2289 -vn -0.1547 0.9611 -0.2288 -vn 0.5962 -0.6827 0.4224 -vn 0.5963 -0.6826 0.4225 -vn 0.5963 -0.6826 0.4224 -vn -0.5309 0.4096 0.7419 -vn -0.5308 0.4099 0.7418 -vn -0.5311 0.4100 0.7415 -vn 0.5723 -0.0135 -0.8199 -vn 0.5721 -0.0134 -0.8201 -vn 0.6646 0.6572 0.3555 -vn 0.6647 0.6573 0.3553 -vn 0.6646 0.6573 0.3555 -vn 0.5769 0.7715 -0.2683 -vn 0.5770 0.7715 -0.2680 -vn 0.5769 0.7715 -0.2682 -vn -0.0732 -0.8662 0.4944 -vn -0.0732 -0.8665 0.4938 -vn -0.8520 0.3949 0.3438 -vn -0.6056 0.7891 0.1030 -vn -0.6055 0.7892 0.1029 -vn 0.6947 -0.6937 0.1900 -vn 0.6948 -0.6937 0.1901 -vn 0.6949 -0.6936 0.1899 -vn -0.1903 -0.9510 -0.2437 -vn -0.1903 -0.9512 -0.2428 -vn -0.1904 -0.9511 -0.2433 -vn 0.2488 0.9510 -0.1838 -vn 0.2498 0.9511 -0.1817 -vn 0.2498 0.9510 -0.1822 -vn -0.1321 0.4283 -0.8939 -vn -0.1322 0.4284 -0.8939 -vn -0.1319 0.4283 -0.8940 -vn -0.7374 0.1288 -0.6631 -vn -0.7374 0.1289 -0.6630 -vn -0.7375 0.1288 -0.6630 -vn -0.8227 -0.3890 -0.4146 -vn 0.2563 -0.4878 -0.8345 -vn 0.2561 -0.4877 -0.8346 -vn -0.8269 0.5269 0.1964 -vn -0.8271 0.5266 0.1964 -vn -0.2446 -0.3672 -0.8974 -vn -0.2446 -0.3670 -0.8975 -vn -0.1939 0.6566 0.7289 -vn -0.1941 0.6565 0.7290 -vn 0.0107 -0.0037 -0.9999 -vn 0.0116 -0.0081 -0.9999 -vn 0.0105 -0.0056 -0.9999 -vn -0.5714 0.5947 -0.5656 -vn -0.5704 0.5952 -0.5660 -vn -0.5709 0.5951 -0.5656 -vn -0.1796 0.2670 0.9468 -vn -0.1798 0.2670 0.9468 -vn -0.3503 -0.2751 0.8953 -vn -0.3527 -0.2750 0.8944 -vn -0.3521 -0.2751 0.8946 -vn 0.1270 0.9610 -0.2457 -vn 0.1272 0.9609 -0.2458 -vn 0.6080 -0.3254 -0.7242 -vn 0.6079 -0.3256 -0.7242 -vn 0.6083 -0.3254 -0.7240 -vn 0.2451 0.6980 0.6728 -vn 0.2450 0.6981 0.6728 -vn 0.2450 0.6979 0.6730 -vn -0.9444 -0.2416 -0.2232 -vn 0.7414 -0.4836 0.4653 -vn 0.7415 -0.4835 0.4652 -vn -0.8311 -0.5543 0.0455 -vn 0.2398 -0.7687 -0.5929 -vn 0.8240 -0.4070 0.3942 -vn 0.8242 -0.4070 0.3938 -vn -0.7983 0.5487 -0.2482 -vn -0.7982 0.5488 -0.2485 -vn -0.9815 0.1028 -0.1613 -vn -0.9815 0.1029 -0.1614 -vn 0.8559 0.4536 -0.2484 -vn 0.8558 0.4537 -0.2487 -vn 0.8560 0.4536 -0.2481 -vn 0.7119 -0.4208 0.5623 -vn 0.7116 -0.4208 0.5626 -vn 0.7118 -0.4207 0.5625 -vn -0.8172 -0.5175 -0.2537 -vn 0.7019 -0.6879 0.1847 -vn 0.7020 -0.6878 0.1847 -vn -0.5404 0.5248 -0.6577 -vn -0.5406 0.5246 -0.6577 -vn -0.5410 0.5244 -0.6575 -vn 0.6562 0.1051 -0.7472 -vn 0.6561 0.1053 -0.7473 -vn 0.6559 0.1053 -0.7474 -vn 0.1624 -0.9643 0.2093 -vn 0.1627 -0.9643 0.2090 -vn 0.1625 -0.9643 0.2091 -vn 0.6329 -0.4582 0.6241 -vn 0.6332 -0.4580 0.6239 -vn 0.7005 -0.7004 0.1368 -vn 0.7006 -0.7003 0.1368 -vn 0.0639 -0.9651 0.2539 -vn 0.0642 -0.9652 0.2536 -vn 0.0646 -0.9653 0.2532 -vn -0.1099 -0.9162 0.3853 -vn -0.1102 -0.9161 0.3854 -vn 0.3694 0.8150 -0.4465 -vn 0.3694 0.8150 -0.4464 -vn 0.1344 -0.9201 0.3680 -vn 0.1344 -0.9200 0.3681 -vn 0.1344 -0.9201 0.3678 -vn -0.9664 -0.0600 -0.2501 -vn -0.9663 -0.0602 -0.2502 -vn -0.9663 -0.0602 -0.2503 -vn 0.0892 0.0457 0.9950 -vn 0.0895 0.0459 0.9949 -vn 0.0897 0.0461 0.9949 -vn 0.9082 -0.4174 -0.0295 -vn -0.2439 0.1938 -0.9502 -vn -0.2443 0.1941 -0.9501 -vn -0.2449 0.1950 -0.9497 -vn 0.0687 -0.4970 0.8650 -vn 0.0688 -0.4974 0.8648 -vn 0.0688 -0.4972 0.8649 -vn -0.0071 0.8072 -0.5902 -vn -0.0069 0.8076 -0.5897 -vn -0.0073 0.8069 -0.5906 -vn -0.5452 0.8380 0.0242 -vn 0.7473 -0.6310 -0.2082 -vn 0.7473 -0.6311 -0.2080 -vn -0.8612 0.2071 -0.4642 -vn 0.4231 -0.7998 0.4258 -vn 0.4233 -0.7996 0.4260 -vn 0.4273 -0.8214 0.3779 -vn 0.4267 -0.8220 0.3771 -vn 0.4266 -0.8229 0.3753 -vn -0.6139 0.3678 0.6985 -vn -0.6137 0.3681 0.6985 -vn -0.6135 0.3683 0.6986 -vn 0.6208 -0.6786 0.3927 -vn -0.7633 -0.5986 -0.2430 -vn -0.7639 -0.5981 -0.2423 -vn -0.7627 -0.5993 -0.2432 -vn 0.4066 0.9120 -0.0541 -vn 0.4066 0.9120 -0.0540 -vn -0.5001 -0.8658 0.0171 -vn -0.5005 -0.8656 0.0173 -vn -0.5002 -0.8657 0.0172 -vn 0.8560 0.3016 -0.4199 -vn 0.8560 0.3025 -0.4192 -vn 0.8561 0.3017 -0.4197 -vn -0.7898 0.4528 -0.4138 -vn -0.0809 0.9346 -0.3463 -vn 0.6890 -0.5195 -0.5053 -vn 0.6890 -0.5195 -0.5054 -vn 0.6889 -0.5195 -0.5055 -vn -0.7971 -0.6038 0.0004 -vn -0.7973 -0.6036 0.0007 -vn -0.7972 -0.6037 0.0008 -vn -0.5433 0.7670 0.3413 -vn -0.5448 0.7660 0.3413 -vn -0.5442 0.7665 0.3410 -vn -0.3016 -0.7786 0.5503 -vn -0.3017 -0.7786 0.5503 -vn -0.3010 -0.7783 0.5510 -vn 0.5100 0.7951 0.3283 -vn 0.8721 -0.2633 0.4125 -vn 0.8720 -0.2631 0.4127 -vn 0.8721 -0.2631 0.4126 -vn -0.5083 0.8327 -0.2197 -vn -0.5081 0.8327 -0.2200 -vn 0.9751 -0.1335 0.1771 -vn 0.9751 -0.1336 0.1771 -vn 0.9751 -0.1331 0.1772 -vn 0.3837 0.7521 -0.5358 -vn 0.3846 0.7520 -0.5353 -vn 0.3853 0.7523 -0.5344 -vn -0.1384 0.8737 -0.4664 -vn -0.1383 0.8739 -0.4660 -vn -0.1387 0.8734 -0.4668 -vn 0.7342 -0.6789 -0.0088 -vn 0.7342 -0.6789 -0.0087 -vn -0.3281 -0.6432 -0.6918 -vn -0.3278 -0.6431 -0.6921 -vn 0.5686 -0.4933 -0.6583 -vn -0.5123 -0.5796 0.6337 -vn -0.5133 -0.5801 0.6324 -vn -0.5126 -0.5796 0.6335 -vn -0.0937 0.5064 0.8572 -vn -0.0932 0.5066 0.8571 -vn -0.0936 0.5064 0.8572 -vn 0.9327 -0.3473 0.0978 -vn 0.9326 -0.3475 0.0975 -vn 0.9326 -0.3474 0.0977 -vn 0.5853 -0.8108 -0.0074 -vn 0.5853 -0.8108 -0.0073 -vn 0.5852 -0.8109 -0.0072 -vn 0.0439 -0.4541 -0.8899 -vn 0.0433 -0.4539 -0.8900 -vn 0.0434 -0.4540 -0.8900 -vn -0.1275 -0.5036 -0.8545 -vn -0.1276 -0.5037 -0.8544 -vn -0.5877 -0.6548 -0.4753 -vn -0.5876 -0.6548 -0.4753 -vn -0.5878 -0.6548 -0.4752 -vn 0.5790 0.5126 0.6340 -vn 0.5791 0.5124 0.6341 -vn 0.5791 0.5121 0.6343 -vn 0.2894 -0.9064 0.3077 -vn 0.2890 -0.9065 0.3078 -vn -0.3119 -0.9076 -0.2809 -vn -0.3117 -0.9077 -0.2810 -vn -0.3116 -0.9076 -0.2812 -vn 0.2979 0.9347 0.1940 -vn -0.6825 0.1017 -0.7238 -vn 0.6256 -0.7347 -0.2622 -vn 0.5116 0.8390 0.1851 -vn 0.5116 0.8391 0.1849 -vn 0.5116 0.8391 0.1850 -vn -0.5180 -0.8120 0.2690 -vn -0.5186 -0.8116 0.2689 -vn 0.8036 -0.5836 -0.1166 -vn 0.8036 -0.5836 -0.1167 -vn -0.4599 -0.1406 -0.8768 -vn -0.4603 -0.1412 -0.8765 -vn -0.4599 -0.1408 -0.8767 -vn -0.0496 -0.5331 0.8446 -vn -0.0493 -0.5338 0.8442 -vn -0.0494 -0.5337 0.8442 -vn -0.3934 -0.6470 0.6532 -vn -0.3936 -0.6471 0.6530 -vn -0.3939 -0.6471 0.6528 -vn 0.6214 -0.7205 -0.3078 -vn 0.6214 -0.7204 -0.3081 -vn 0.6214 -0.7203 -0.3084 -vn 0.1405 0.7414 0.6562 -vn 0.1400 0.7414 0.6563 -vn -0.5894 -0.7710 -0.2411 -vn -0.4922 -0.8071 -0.3262 -vn -0.4920 -0.8071 -0.3264 -vn 0.6295 -0.3114 -0.7118 -vn 0.6295 -0.3115 -0.7118 -vn 0.1235 -0.6708 0.7313 -vn 0.1233 -0.6710 0.7312 -vn -0.3643 -0.6909 -0.6245 -vn -0.3641 -0.6912 -0.6243 -vn -0.3637 -0.6915 -0.6241 -vn -0.8144 -0.3271 0.4794 -vn -0.4663 0.4334 0.7712 -vn -0.4663 0.4330 0.7714 -vn -0.4661 0.4327 0.7717 -vn 0.0775 0.5140 -0.8543 -vn 0.0774 0.5138 -0.8544 -vn 0.5120 0.2637 -0.8175 -vn 0.6219 0.1413 0.7702 -vn 0.6219 0.1413 0.7703 -vn 0.2063 -0.5179 0.8302 -vn 0.2065 -0.5180 0.8301 -vn 0.2059 -0.5178 0.8304 -vn -0.0246 0.5482 -0.8360 -vn -0.0248 0.5483 -0.8359 -vn 0.4889 0.1193 0.8641 -vn 0.4882 0.1198 0.8645 -vn 0.4886 0.1196 0.8643 -vn 0.5052 -0.7817 0.3655 -vn -0.5944 0.6009 -0.5344 -vn -0.5943 0.6009 -0.5345 -vn -0.5945 0.6009 -0.5343 -vn -0.3767 -0.7284 -0.5723 -vn -0.3766 -0.7284 -0.5724 -vn -0.3770 -0.7284 -0.5721 -vn 0.5544 0.6234 0.5514 -vn 0.5540 0.6236 0.5516 -vn 0.3923 0.8266 -0.4035 -vn -0.2840 -0.0338 -0.9582 -vn -0.2393 0.8893 -0.3898 -vn -0.2395 0.8891 -0.3900 -vn -0.2388 0.8895 -0.3895 -vn -0.7045 0.6829 -0.1933 -vn -0.7044 0.6830 -0.1932 -vn -0.2639 -0.6535 -0.7094 -vn -0.2635 -0.6538 -0.7093 -vn -0.2630 -0.6536 -0.7097 -vn -0.1242 0.9297 -0.3468 -vn -0.1238 0.9295 -0.3473 -vn -0.1239 0.9296 -0.3471 -vn -0.3226 -0.7535 0.5729 -vn -0.3222 -0.7535 0.5731 -vn -0.3227 -0.7535 0.5728 -vn 0.5276 -0.7418 -0.4140 -vn 0.5273 -0.7419 -0.4142 -vn 0.4689 0.8607 0.1985 -vn 0.4687 0.8609 0.1979 -vn 0.4687 0.8605 0.1997 -vn -0.3359 0.5585 -0.7584 -vn -0.3361 0.5584 -0.7585 -vn -0.3360 0.5587 -0.7583 -vn -0.2496 0.8308 0.4975 -vn -0.2487 0.8309 0.4978 -vn -0.2492 0.8308 0.4976 -vn 0.4203 0.6863 0.5936 -vn 0.4203 0.6865 0.5934 -vn 0.4201 0.6865 0.5935 -vn -0.2766 0.5639 0.7782 -vn -0.2773 0.5634 0.7782 -vn -0.2778 0.5633 0.7782 -vn 0.2769 0.7077 -0.6500 -vn 0.2764 0.7079 -0.6500 -vn 0.2760 0.7080 -0.6501 -vn -0.9606 0.1979 -0.1953 -vn -0.9608 0.1974 -0.1949 -vn -0.9604 0.1982 -0.1956 -vn 0.6259 0.4604 -0.6295 -vn 0.6259 0.4605 -0.6294 -vn 0.6261 0.4603 -0.6294 -vn 0.1077 0.1055 0.9886 -vn 0.1077 0.1054 0.9886 -vn 0.1075 0.1057 0.9886 -vn 0.3171 0.3079 0.8970 -vn 0.3169 0.3078 0.8971 -vn 0.3176 0.3079 0.8968 -vn 0.2109 -0.7766 0.5936 -vn 0.2108 -0.7768 0.5934 -vn 0.2107 -0.7770 0.5932 -vn -0.4781 0.5271 -0.7025 -vn -0.4781 0.5271 -0.7026 -vn -0.4780 0.5272 -0.7025 -vn -0.0617 0.9706 -0.2328 -vn -0.2467 -0.4805 0.8416 -vn -0.2461 -0.4806 0.8417 -vn -0.2467 -0.4803 0.8417 -vn 0.0419 -0.0015 -0.9991 -vn 0.0417 -0.0015 -0.9991 -vn 0.5035 0.8540 0.1312 -vn 0.5036 0.8539 0.1312 -vn 0.5035 0.8540 0.1310 -vn -0.3066 0.4171 0.8556 -vn 0.1221 -0.3929 0.9114 -vn 0.1223 -0.3928 0.9115 -vn 0.9639 0.1521 -0.2187 -vn 0.9639 0.1524 -0.2183 -vn 0.9639 0.1517 -0.2189 -vn -0.2254 0.4311 0.8737 -vn -0.2255 0.4312 0.8736 -vn -0.2249 0.4312 0.8738 -vn 0.1035 0.7945 -0.5984 -vn 0.1035 0.7946 -0.5983 -vn 0.1035 0.7945 -0.5983 -vn 0.0802 -0.7707 0.6321 -vn 0.0792 -0.7712 0.6317 -vn 0.0790 -0.7723 0.6304 -vn 0.0207 0.4753 -0.8796 -vn 0.0210 0.4746 -0.8800 -vn 0.0209 0.4748 -0.8799 -vn 0.2212 0.8885 -0.4020 -vn 0.2215 0.8884 -0.4021 -vn -0.1231 0.7968 0.5916 -vn -0.1230 0.7969 0.5915 -vn -0.1231 0.7967 0.5918 -vn 0.0127 0.9937 0.1117 -vn 0.0126 0.9937 0.1118 -vn 0.0129 0.9937 0.1115 -vn 0.3396 -0.0070 0.9406 -vn 0.3401 -0.0075 0.9403 -vn 0.3399 -0.0074 0.9404 -vn -0.2836 0.3842 0.8786 -vn -0.2835 0.3838 0.8788 -vn -0.2836 0.3838 0.8788 -vn 0.3391 0.9324 0.1251 -vn 0.3420 0.9317 0.1220 -vn 0.3401 0.9323 0.1232 -vn -0.4194 0.8906 -0.1759 -vn -0.4195 0.8906 -0.1758 -vn 0.1584 0.2680 0.9503 -vn 0.1584 0.2678 0.9504 -vn 0.1584 0.2677 0.9504 -vn -0.1632 -0.4784 0.8629 -vn -0.1644 -0.4788 0.8624 -vn -0.1640 -0.4786 0.8626 -vn 0.6957 -0.6762 -0.2422 -vn 0.6959 -0.6759 -0.2426 -vn 0.6962 -0.6757 -0.2423 -vn -0.1673 -0.7325 0.6599 -vn -0.1674 -0.7324 0.6600 -vn -0.1675 -0.7325 0.6598 -vn 0.3318 -0.7549 0.5658 -vn 0.3317 -0.7551 0.5655 -vn 0.3318 -0.7553 0.5652 -vn -0.9598 -0.0864 -0.2669 -vn -0.9600 -0.0862 -0.2665 -vn -0.9600 -0.0861 -0.2664 -vn -0.5016 -0.6698 0.5475 -vn 0.7832 0.6058 0.1398 -vn 0.7833 0.6057 0.1398 -vn 0.9758 -0.1374 0.1701 -vn 0.9758 -0.1373 0.1701 -vn 0.9758 -0.1376 0.1701 -vn 0.4517 -0.0867 -0.8879 -vn 0.4515 -0.0866 -0.8881 -vn -0.0904 0.4949 -0.8642 -vn -0.0917 0.4935 -0.8649 -vn -0.0909 0.4940 -0.8647 -vn -0.8420 0.5060 -0.1872 -vn -0.8419 0.5061 -0.1871 -vn -0.8419 0.5062 -0.1870 -vn 0.4641 -0.6914 0.5537 -vn 0.4643 -0.6919 0.5530 -vn 0.4641 -0.6916 0.5535 -vn -0.6669 -0.6285 0.4003 -vn -0.8478 0.4111 -0.3351 -vn -0.8478 0.4110 -0.3351 -vn -0.7726 0.4724 -0.4241 -vn -0.6978 0.3888 -0.6016 -vn -0.6977 0.3887 -0.6018 -vn -0.6979 0.3886 -0.6016 -vn 0.2213 0.8478 -0.4820 -vn 0.2215 0.8486 -0.4804 -vn 0.2231 0.8460 -0.4842 -vn -0.0000 -0.0008 1.0000 -vn -0.5989 0.5184 -0.6104 -vn 0.9508 -0.2901 -0.1087 -vn 0.9509 -0.2900 -0.1082 -vn 0.9509 -0.2902 -0.1075 -vn 0.7053 -0.5163 0.4858 -vn -0.3210 0.2424 -0.9155 -vn -0.3210 0.2425 -0.9155 -vn 0.6763 -0.7363 0.0223 -vn 0.6763 -0.7363 0.0224 -vn -0.3189 -0.0164 0.9477 -vn -0.3188 -0.0165 0.9477 -vn -0.7064 -0.6563 0.2651 -vn -0.7063 -0.6564 0.2650 -vn -0.7064 -0.6564 0.2650 -vn 0.7482 0.4225 -0.5116 -vn 0.5995 -0.6536 0.4619 -vn 0.5996 -0.6534 0.4621 -vn 0.6089 -0.6940 0.3841 -vn -0.3523 0.8011 0.4839 -vn -0.3523 0.8011 0.4838 -vn 0.2749 0.9614 0.0113 -vn 0.2747 0.9615 0.0111 -vn 0.2750 0.9614 0.0112 -vn -0.0730 0.9603 0.2694 -vn -0.0725 0.9604 0.2691 -vn -0.0729 0.9604 0.2689 -vn 0.2682 -0.8509 -0.4516 -vn 0.2682 -0.8509 -0.4517 -vn 0.2682 -0.8510 -0.4516 -vn 0.8945 -0.2545 -0.3676 -vn 0.5412 -0.7228 0.4297 -vn 0.5416 -0.7225 0.4297 -vn 0.5413 -0.7227 0.4298 -vn 0.0075 0.8680 0.4965 -vn 0.0064 0.8682 0.4961 -vn 0.0096 0.8684 0.4958 -vn -0.9729 0.1199 -0.1979 -vn -0.8689 -0.3624 0.3373 -vn -0.2495 0.2259 -0.9417 -vn -0.2493 0.2262 -0.9416 -vn -0.8813 -0.4146 -0.2267 -vn -0.8811 -0.4151 -0.2268 -vn 0.9299 0.0058 -0.3677 -vn 0.9299 0.0055 -0.3678 -vn 0.9300 0.0059 -0.3676 -vn -0.0108 -0.8131 -0.5820 -vn -0.0102 -0.8133 -0.5818 -vn -0.1607 0.5684 -0.8069 -vn -0.1608 0.5683 -0.8070 -vn -0.1610 0.5682 -0.8070 -vn 0.2015 -0.7883 -0.5814 -vn 0.2014 -0.7884 -0.5813 -vn 0.2011 -0.7886 -0.5811 -vn 0.6796 0.6848 -0.2631 -vn 0.6788 0.6851 -0.2643 -vn 0.6791 0.6850 -0.2640 -vn -0.5761 -0.6631 -0.4778 -vn -0.5761 -0.6630 -0.4781 -vn 0.2953 -0.9229 0.2470 -vn -0.3633 0.4507 -0.8154 -vn -0.3633 0.4508 -0.8153 -vn 0.3635 -0.6050 -0.7084 -vn 0.3629 -0.6040 -0.7095 -vn 0.3621 -0.6036 -0.7103 -vn 0.2634 0.3512 -0.8985 -vn 0.2639 0.3512 -0.8983 -vn 0.2625 0.3516 -0.8986 -vn -0.1642 -0.4307 0.8874 -vn -0.3080 -0.7220 -0.6196 -vn -0.3085 -0.7220 -0.6193 -vn -0.3083 -0.7220 -0.6194 -vn 0.3996 0.6856 -0.6085 -vn 0.3995 0.6857 -0.6085 -vn -0.3522 -0.0304 -0.9354 -vn -0.3523 -0.0303 -0.9354 -vn -0.4406 0.8575 -0.2655 -vn -0.4409 0.8574 -0.2656 -vn -0.4403 0.8577 -0.2655 -vn -0.0817 0.8937 -0.4411 -vn -0.0819 0.8937 -0.4411 -vn -0.0818 0.8937 -0.4411 -vn -0.0386 -0.1034 -0.9939 -vn -0.0385 -0.1031 -0.9939 -vn -0.0386 -0.1035 -0.9939 -vn 0.8412 0.2819 0.4615 -vn 0.8413 0.2819 0.4613 -vn 0.6040 -0.7624 0.2320 -vn 0.6047 -0.7622 0.2312 -vn 0.6041 -0.7624 0.2319 -vn -0.9697 0.2442 -0.0015 -vn -0.9698 0.2439 -0.0013 -vn -0.9698 0.2439 -0.0012 -vn -0.0752 0.5704 -0.8179 -vn -0.0750 0.5702 -0.8180 -vn -0.0750 0.5702 -0.8181 -vn -0.3924 0.6313 0.6689 -vn -0.3925 0.6312 0.6689 -vn -0.3923 0.6314 0.6689 -vn -0.3433 0.0238 -0.9389 -vn -0.3433 0.0237 -0.9389 -vn -0.8490 0.1944 -0.4914 -vn -0.8491 0.1943 -0.4912 -vn -0.8492 0.1944 -0.4910 -vn -0.8677 -0.1102 0.4847 -vn -0.8680 -0.1104 0.4842 -vn 0.0683 0.1668 0.9836 -vn 0.0681 0.1666 0.9837 -vn 0.1102 0.9449 -0.3083 -vn 0.1098 0.9449 -0.3084 -vn 0.1104 0.9450 -0.3080 -vn 0.7086 -0.5774 0.4056 -vn 0.7085 -0.5771 0.4062 -vn 0.7086 -0.5771 0.4060 -vn 0.4741 -0.6405 0.6042 -vn 0.4753 -0.6403 0.6034 -vn 0.4748 -0.6405 0.6036 -vn -0.5056 0.4583 0.7310 -vn -0.5054 0.4584 0.7311 -vn -0.5053 0.4584 0.7311 -vn 0.4682 0.5620 -0.6819 -vn 0.4689 0.5619 -0.6815 -vn 0.4681 0.5623 -0.6817 -vn -0.8209 0.5670 0.0673 -vn -0.8210 0.5670 0.0670 -vn -0.8210 0.5670 0.0669 -vn 0.6542 -0.5715 0.4954 -vn 0.6544 -0.5715 0.4951 -vn 0.6546 -0.5715 0.4949 -vn 0.8348 -0.5157 0.1927 -vn 0.8348 -0.5157 0.1929 -vn -0.8278 0.3443 -0.4429 -vn -0.8283 0.3441 -0.4423 -vn -0.8280 0.3442 -0.4427 -vn 0.2316 0.7436 -0.6273 -vn 0.2318 0.7435 -0.6273 -vn 0.2316 0.7435 -0.6273 -vn 0.1638 0.6608 0.7325 -vn 0.1627 0.6608 0.7327 -vn 0.1630 0.6607 0.7327 -vn 0.8975 0.3649 -0.2476 -vn 0.8978 0.3642 -0.2478 -vn 0.8979 0.3637 -0.2482 -vn 0.7664 -0.5713 0.2936 -vn 0.7658 -0.5720 0.2937 -vn 0.7656 -0.5726 0.2934 -vn 0.3117 0.9378 -0.1530 -vn 0.3119 0.9377 -0.1529 -vn 0.1333 0.7459 0.6525 -vn 0.1333 0.7459 0.6526 -vn 0.1335 0.7459 0.6525 -vn -0.0204 0.9916 0.1274 -vn -0.0205 0.9916 0.1275 -vn 0.6675 -0.5789 0.4683 -vn 0.6676 -0.5790 0.4681 -vn 0.5800 0.7565 0.3020 -vn 0.5798 0.7567 0.3021 -vn 0.8839 -0.4193 0.2070 -vn 0.8840 -0.4192 0.2071 -vn 0.8839 -0.4194 0.2072 -vn -0.0723 0.8367 0.5429 -vn -0.0721 0.8366 0.5430 -vn -0.7275 -0.4429 0.5240 -vn -0.7274 -0.4431 0.5240 -vn -0.7276 -0.4427 0.5240 -vn 0.2628 0.4344 -0.8615 -vn 0.2627 0.4344 -0.8616 -vn 0.2279 -0.7164 0.6594 -vn 0.2278 -0.7163 0.6596 -vn 0.2277 -0.7162 0.6597 -vn 0.5093 0.3973 0.7634 -vn 0.5094 0.3974 0.7633 -vn 0.6932 -0.7165 -0.0783 -vn 0.6927 -0.7170 -0.0779 -vn 0.6923 -0.7174 -0.0775 -vn 0.9779 -0.0046 -0.2089 -vn 0.9780 -0.0045 -0.2084 -vn 0.9781 -0.0038 -0.2079 -vn -0.2354 -0.9256 0.2965 -vn -0.2355 -0.9256 0.2963 -vn -0.1501 -0.9696 0.1930 -vn 0.1654 0.9560 0.2424 -vn 0.1653 0.9561 0.2421 -vn 0.1654 0.9560 0.2422 -vn 0.5580 0.8223 0.1114 -vn 0.5584 0.8221 0.1117 -vn -0.0604 0.9258 0.3732 -vn -0.0608 0.9264 0.3716 -vn -0.0605 0.9261 0.3723 -vn -0.2517 -0.9677 -0.0113 -vn -0.2514 -0.9678 -0.0110 -vn -0.2514 -0.9678 -0.0109 -vn 0.3235 -0.8669 0.3792 -vn -0.2311 -0.6172 0.7521 -vn -0.2312 -0.6170 0.7522 -vn -0.2308 -0.6175 0.7519 -vn 0.2875 0.0270 0.9574 -vn 0.2879 0.0269 0.9573 -vn -0.3628 -0.9307 0.0474 -vn -0.3627 -0.9307 0.0476 -vn -0.2708 0.9622 -0.0287 -vn -0.2708 0.9622 -0.0290 -vn -0.2707 0.9622 -0.0292 -vn 0.7263 -0.6458 -0.2354 -vn 0.7264 -0.6458 -0.2353 -vn 0.7265 -0.6456 -0.2354 -vn 0.7646 0.6441 0.0217 -vn 0.7647 0.6441 0.0215 -vn 0.7648 0.6439 0.0218 -vn -0.2070 0.2631 0.9423 -vn -0.2063 0.2631 0.9425 -vn -0.2065 0.2631 0.9424 -vn -0.3681 -0.9228 0.1137 -vn -0.3682 -0.9228 0.1138 -vn -0.3679 -0.9229 0.1134 -vn -0.4267 0.3922 -0.8149 -vn 0.3326 0.8942 -0.2998 -vn 0.3323 0.8942 -0.3001 -vn 0.6148 0.7071 0.3494 -vn 0.6148 0.7072 0.3492 -vn 0.6147 0.7073 0.3490 -vn 0.5266 -0.1651 -0.8339 -vn 0.5265 -0.1648 -0.8340 -vn 0.5267 -0.1652 -0.8338 -vn -0.3422 -0.8987 -0.2744 -vn 0.4542 0.4797 -0.7507 -vn 0.6390 -0.6651 0.3863 -vn 0.6389 -0.6652 0.3865 -vn 0.6389 -0.6649 0.3869 -vn 0.8248 -0.5365 0.1782 -vn 0.8244 -0.5371 0.1786 -vn 0.8245 -0.5370 0.1785 -vn -0.2217 -0.6945 0.6845 -vn -0.2218 -0.6944 0.6846 -vn 0.8074 -0.5642 -0.1725 -vn 0.8073 -0.5644 -0.1724 -vn -0.0913 -0.2596 0.9614 -vn -0.0916 -0.2600 0.9613 -vn -0.0914 -0.2597 0.9613 -vn -0.0984 -0.2879 0.9526 -vn -0.0987 -0.2880 0.9525 -vn -0.0988 -0.2881 0.9525 -vn -0.5716 -0.7832 0.2448 -vn -0.5717 -0.7846 0.2400 -vn -0.5721 -0.7833 0.2432 -vn -0.0637 -0.2507 0.9660 -vn -0.0645 -0.2511 0.9658 -vn -0.0640 -0.2508 0.9659 -vn 0.6611 -0.5748 0.4823 -vn 0.6597 -0.5775 0.4809 -vn 0.6608 -0.5759 0.4813 -vn 0.0623 -0.6783 -0.7322 -vn 0.0619 -0.6787 -0.7318 -vn 0.0624 -0.6784 -0.7321 -vn -0.6277 -0.5645 -0.5360 -vn -0.6277 -0.5644 -0.5361 -vn -0.6277 -0.5646 -0.5360 -vn -0.4345 -0.8937 -0.1121 -vn -0.4347 -0.8936 -0.1120 -vn -0.4346 -0.8936 -0.1120 -vn 0.6728 -0.6232 -0.3987 -vn 0.5310 0.5103 -0.6765 -vn 0.5307 0.5105 -0.6766 -vn 0.5317 0.5100 -0.6762 -vn 0.8514 0.4331 -0.2960 -vn 0.8516 0.4329 -0.2954 -vn 0.8515 0.4330 -0.2957 -vn 0.6395 -0.7335 -0.2303 -vn 0.6399 -0.7329 -0.2310 -vn 0.6394 -0.7337 -0.2300 -vn 0.6555 -0.7398 0.1521 -vn 0.6555 -0.7397 0.1521 -vn 0.6558 -0.7395 0.1520 -vn -0.3114 0.7107 -0.6308 -vn -0.3116 0.7106 -0.6309 -vn -0.3112 0.7107 -0.6309 -vn 0.3800 -0.5222 -0.7635 -vn 0.3801 -0.5222 -0.7634 -vn 0.4625 0.8771 -0.1299 -vn -0.3533 -0.4186 -0.8367 -vn -0.3530 -0.4187 -0.8367 -vn -0.3529 -0.4187 -0.8368 -vn 0.2335 -0.5554 -0.7982 -vn 0.2338 -0.5554 -0.7980 -vn 0.2340 -0.5555 -0.7979 -vn 0.0469 0.7057 -0.7070 -vn 0.0467 0.7054 -0.7073 -vn 0.0462 0.7053 -0.7074 -vn 0.3172 0.3188 -0.8932 -vn 0.3171 0.3175 -0.8937 -vn 0.3170 0.3181 -0.8935 -vn 0.1498 0.9751 0.1635 -vn 0.1496 0.9751 0.1635 -vn 0.1499 0.9751 0.1635 -vn -0.1913 -0.4413 -0.8767 -vn -0.1910 -0.4413 -0.8768 -vn -0.1915 -0.4413 -0.8767 -vn -0.0017 -0.0272 0.9996 -vn -0.6573 0.2430 0.7134 -vn -0.6574 0.2431 0.7132 -vn -0.6574 0.2434 0.7132 -vn 0.1360 0.9907 -0.0011 -vn 0.1361 0.9907 -0.0011 -vn -0.1283 -0.4924 -0.8609 -vn -0.1285 -0.4921 -0.8610 -vn 0.1452 -0.3938 -0.9076 -vn 0.1453 -0.3940 -0.9075 -vn -0.6505 -0.2022 0.7321 -vn -0.6506 -0.2033 0.7317 -vn -0.6505 -0.2029 0.7319 -vn 0.5644 -0.6403 -0.5211 -vn 0.5643 -0.6404 -0.5210 -vn 0.5644 -0.6401 -0.5212 -vn 0.6349 0.6210 -0.4596 -vn 0.6348 0.6210 -0.4598 -vn 0.5123 0.2024 -0.8346 -vn -0.3541 -0.8841 0.3050 -vn -0.3556 -0.8838 0.3041 -vn -0.3561 -0.8840 0.3030 -vn -0.8648 0.3065 -0.3978 -vn -0.8636 0.3079 -0.3992 -vn -0.8644 0.3069 -0.3984 -vn -0.1839 0.8682 -0.4609 -vn -0.1834 0.8678 -0.4618 -vn -0.4400 -0.6497 -0.6199 -vn -0.4385 -0.6502 -0.6204 -vn -0.4394 -0.6501 -0.6199 -vn 0.7328 -0.5710 -0.3701 -vn 0.7329 -0.5709 -0.3700 -vn -0.0232 0.8673 -0.4973 -vn -0.6393 -0.7632 -0.0942 -vn -0.6396 -0.7630 -0.0939 -vn -0.6399 -0.7628 -0.0934 -vn 0.5152 0.7916 0.3286 -vn 0.5153 0.7915 0.3287 -vn 0.5148 0.7920 0.3282 -vn 0.0778 0.6150 0.7847 -vn 0.3987 0.7330 -0.5512 -vn 0.3989 0.7328 -0.5513 -vn 0.3992 0.7326 -0.5513 -vn -0.1178 0.4777 -0.8706 -vn -0.1184 0.4781 -0.8703 -vn -0.1190 0.4782 -0.8701 -vn -0.2274 0.0715 0.9712 -vn 0.8588 -0.4883 0.1553 -vn 0.8587 -0.4883 0.1557 -vn 0.8587 -0.4883 0.1558 -vn 0.0869 -0.3874 -0.9178 -vn 0.0877 -0.3890 -0.9171 -vn 0.0857 -0.3868 -0.9182 -vn -0.7160 -0.6837 0.1412 -vn 0.8130 0.4855 -0.3214 -vn 0.8130 0.4856 -0.3214 -vn 0.8131 0.4855 -0.3213 -vn 0.3637 0.7983 -0.4800 -vn 0.3635 0.7982 -0.4803 -vn 0.3636 0.7983 -0.4801 -vn -0.0836 -0.8724 0.4816 -vn -0.0836 -0.8725 0.4815 -vn -0.0681 0.2422 -0.9678 -vn -0.0682 0.2421 -0.9679 -vn -0.0683 0.2418 -0.9679 -vn -0.0499 -0.5827 -0.8112 -vn -0.0498 -0.5830 -0.8110 -vn -0.0499 -0.5826 -0.8112 -vn 0.5633 0.1687 -0.8089 -vn 0.1341 -0.2085 -0.9688 -vn 0.1342 -0.2085 -0.9688 -vn 0.1344 -0.2087 -0.9687 -vn 0.3646 -0.0216 0.9309 -vn 0.3644 -0.0218 0.9310 -vn 0.3651 -0.0213 0.9307 -vn -0.3202 -0.9374 -0.1370 -vn -0.3201 -0.9374 -0.1372 -vn -0.5461 0.7302 0.4107 -vn -0.5461 0.7300 0.4109 -vn -0.5460 0.7300 0.4111 -vn 0.5691 0.2653 0.7783 -vn 0.5692 0.2650 0.7783 -vn 0.5690 0.2671 0.7777 -vn 0.0307 -0.1309 0.9909 -vn 0.0548 0.9969 0.0569 -vn 0.0554 0.9968 0.0579 -vn 0.0549 0.9969 0.0556 -vn -0.3340 -0.3945 -0.8561 -vn -0.3339 -0.3945 -0.8561 -vn 0.3323 -0.7429 0.5811 -vn 0.3323 -0.7431 0.5809 -vn -0.9754 0.0248 -0.2189 -vn -0.9754 0.0249 -0.2189 -vn -0.9754 0.0247 -0.2192 -vn 0.0584 -0.8394 0.5404 -vn 0.0579 -0.8392 0.5407 -vn 0.0583 -0.8393 0.5406 -vn -0.3632 0.8763 -0.3164 -vn -0.3633 0.8763 -0.3163 -vn -0.0550 0.9973 0.0480 -vn -0.0560 0.9972 0.0487 -vn -0.0555 0.9973 0.0481 -vn -0.1061 0.5957 -0.7962 -vn -0.1059 0.5955 -0.7964 -vn -0.1059 0.5955 -0.7963 -vn 0.1310 0.9254 -0.3557 -vn -0.6459 0.2281 -0.7286 -vn -0.6458 0.2279 -0.7287 -vn 0.1824 -0.0536 0.9818 -vn 0.1825 -0.0535 0.9818 -vn 0.1825 -0.0532 0.9818 -vn 0.1344 0.7740 0.6187 -vn 0.0959 0.7414 0.6641 -vn -0.1076 0.5393 0.8352 -vn -0.1075 0.5396 0.8350 -vn 0.3244 0.6035 -0.7284 -vn 0.3257 0.6037 -0.7276 -vn 0.3230 0.6024 -0.7300 -vn 0.1252 0.0923 0.9878 -vn -0.1201 0.8494 0.5139 -vn 0.5233 0.5149 -0.6790 -vn 0.5231 0.5149 -0.6792 -vn -0.3140 0.4859 0.8157 -vn -0.3139 0.4858 0.8158 -vn -0.3139 0.4857 0.8158 -vn -0.4525 -0.2105 0.8666 -vn -0.4527 -0.2102 0.8665 -vn -0.4529 -0.2099 0.8665 -vn -0.2641 0.3933 -0.8807 -vn -0.2637 0.3940 -0.8805 -vn -0.2632 0.3943 -0.8805 -vn 0.5445 0.0393 -0.8378 -vn 0.5444 0.0388 -0.8379 -vn 0.5443 0.0395 -0.8379 -vn -0.0470 -0.5369 0.8423 -vn -0.0469 -0.5368 0.8424 -vn -0.0470 -0.5370 0.8423 -vn -0.3258 0.0469 0.9443 -vn -0.3255 0.0466 0.9444 -vn -0.3255 0.0467 0.9444 -vn -0.9272 0.3436 -0.1493 -vn -0.9272 0.3431 -0.1505 -vn -0.9273 0.3435 -0.1487 -vn 0.5600 -0.6064 0.5646 -vn -0.2937 0.1100 0.9495 -vn -0.2938 0.1096 0.9496 -vn -0.2930 0.1087 0.9499 -vn 0.0422 -0.0052 -0.9991 -vn 0.0423 -0.0052 -0.9991 -vn 0.0421 -0.0053 -0.9991 -vn 0.8002 -0.5075 -0.3197 -vn 0.7992 -0.5083 -0.3208 -vn 0.8009 -0.5072 -0.3184 -vn 0.0116 -0.4313 -0.9022 -vn 0.0120 -0.4310 -0.9023 -vn -0.2298 0.4067 0.8842 -vn -0.2299 0.4065 0.8842 -vn 0.0079 0.5091 -0.8607 -vn 0.0078 0.5093 -0.8605 -vn 0.0079 0.5092 -0.8606 -vn 0.3484 0.4555 -0.8192 -vn 0.3486 0.4556 -0.8191 -vn 0.3484 0.4554 -0.8193 -vn 0.1921 -0.8192 0.5404 -vn 0.1918 -0.8197 0.5398 -vn 0.1921 -0.8194 0.5401 -vn -0.3448 0.3873 0.8551 -vn -0.3443 0.3873 0.8552 -vn -0.3438 0.3877 0.8553 -vn 0.3593 -0.3381 -0.8698 -vn 0.3594 -0.3381 -0.8698 -vn 0.3591 -0.3381 -0.8699 -vn 0.8554 -0.1443 0.4975 -vn 0.8556 -0.1442 0.4972 -vn 0.8552 -0.1445 0.4977 -vn -0.8611 0.4962 -0.1109 -vn -0.1020 0.9230 -0.3710 -vn -0.1031 0.9225 -0.3720 -vn -0.1021 0.9227 -0.3717 -vn -0.2844 -0.2115 -0.9351 -vn -0.2843 -0.2125 -0.9349 -vn -0.2841 -0.2104 -0.9354 -vn 0.7363 -0.6407 0.2175 -vn -0.9683 0.1070 -0.2255 -vn -0.9683 0.1069 -0.2256 -vn -0.9683 0.1068 -0.2257 -vn 0.0131 0.2990 -0.9542 -vn 0.0129 0.2992 -0.9541 -vn 0.0128 0.2995 -0.9540 -vn 0.1826 -0.6712 0.7184 -vn 0.1823 -0.6711 0.7186 -vn 0.1819 -0.6710 0.7188 -vn -0.9507 -0.1576 -0.2672 -vn -0.9506 -0.1575 -0.2675 -vn -0.9505 -0.1575 -0.2678 -vn -0.4177 0.4707 0.7771 -vn 0.5679 0.8174 -0.0966 -vn 0.5687 0.8166 -0.0983 -vn 0.5680 0.8172 -0.0975 -vn -0.1792 0.2949 0.9386 -vn -0.1795 0.2949 0.9385 -vn -0.1793 0.2954 0.9384 -vn -0.8360 0.1178 0.5360 -vn -0.8351 0.1171 0.5374 -vn -0.8355 0.1173 0.5369 -vn -0.0259 0.2665 -0.9635 -vn -0.3082 0.0079 0.9513 -vn -0.3082 0.0081 0.9513 -vn -0.3080 0.0080 0.9514 -vn -0.3145 0.8070 0.4998 -vn -0.3145 0.8071 0.4997 -vn -0.3143 0.8072 0.4997 -vn 0.6570 -0.2910 -0.6955 -vn -0.6819 0.6074 0.4075 -vn -0.6823 0.6068 0.4077 -vn -0.6818 0.6078 0.4071 -vn 0.1093 -0.7370 -0.6670 -vn -0.3130 0.3910 -0.8655 -vn -0.3132 0.3912 -0.8654 -vn -0.3131 0.3911 -0.8655 -vn -0.5394 -0.3802 0.7513 -vn -0.5394 -0.3799 0.7514 -vn -0.1521 0.3554 -0.9223 -vn -0.1519 0.3554 -0.9223 -vn -0.1518 0.3553 -0.9223 -vn -0.5954 0.0615 0.8011 -vn -0.5951 0.0609 0.8013 -vn -0.5959 0.0617 0.8007 -vn -0.3212 0.8148 0.4826 -vn -0.3209 0.8148 0.4827 -vn -0.3217 0.8146 0.4827 -vn -0.2860 -0.0651 0.9560 -vn -0.2861 -0.0656 0.9560 -vn -0.2855 -0.0649 0.9562 -vn 0.7913 -0.6087 -0.0575 -vn -0.8031 0.5942 0.0445 -vn 0.5256 0.0253 -0.8503 -vn 0.5254 0.0252 -0.8505 -vn 0.5252 0.0255 -0.8506 -vn 0.3243 0.9418 -0.0882 -vn -0.5675 0.0477 -0.8220 -vn -0.9101 -0.4132 -0.0302 -vn -0.9101 -0.4132 -0.0301 -vn -0.1534 0.9862 0.0624 -vn -0.1526 0.9862 0.0636 -vn -0.1530 0.9862 0.0628 -vn -0.9046 -0.2643 0.3344 -vn -0.9044 -0.2646 0.3346 -vn -0.9045 -0.2643 0.3346 -vn -0.3369 -0.7387 -0.5838 -vn -0.3240 -0.2444 0.9139 -vn -0.3242 -0.2464 0.9133 -vn -0.3239 -0.2453 0.9137 -vn 0.5231 -0.1092 -0.8453 -vn 0.5229 -0.1097 -0.8453 -vn -0.5389 -0.6434 -0.5437 -vn -0.0450 -0.0164 -0.9989 -vn -0.0449 -0.0163 -0.9989 -vn 0.0786 0.0079 0.9969 -vn 0.0789 0.0078 0.9969 -vn 0.0789 0.0080 0.9968 -vn -0.3553 0.7912 0.4977 -vn -0.3550 0.7913 0.4978 -vn -0.3554 0.7912 0.4977 -vn -0.2950 0.0792 -0.9522 -vn -0.2961 0.0796 -0.9518 -vn -0.2974 0.0791 -0.9515 -vn -0.5486 0.8121 0.1987 -vn -0.5494 0.8115 0.1989 -vn -0.5491 0.8118 0.1989 -vn -0.7775 -0.5427 -0.3176 -vn -0.7776 -0.5424 -0.3180 -vn 0.8612 0.2462 -0.4447 -vn 0.8608 0.2464 -0.4453 -vn 0.8606 0.2468 -0.4455 -vn 0.3617 0.7046 -0.6105 -vn 0.3617 0.7046 -0.6106 -vn 0.3617 0.7045 -0.6106 -vn 0.1944 0.9560 -0.2198 -vn 0.1950 0.9562 -0.2183 -vn 0.1945 0.9561 -0.2193 -vn -0.3947 0.8509 0.3467 -vn -0.3947 0.8509 0.3466 -vn 0.8089 -0.4202 0.4112 -vn 0.8089 -0.4203 0.4111 -vn 0.8049 -0.5380 0.2505 -vn 0.8049 -0.5382 0.2501 -vn -0.9309 0.0905 0.3538 -vn -0.9309 0.0906 0.3539 -vn -0.9307 0.0908 0.3544 -vn -0.7338 -0.4620 -0.4981 -vn -0.7340 -0.4619 -0.4979 -vn -0.7341 -0.4619 -0.4978 -vn -0.7259 -0.5654 -0.3917 -vn 0.9804 -0.1160 0.1595 -vn 0.9567 -0.2072 0.2046 -vn 0.9568 -0.2068 0.2044 -vn 0.9566 -0.2071 0.2048 -vn -0.0744 -0.3384 -0.9381 -vn 0.1125 0.3663 0.9237 -vn 0.1123 0.3663 0.9237 -vn 0.1121 0.3664 0.9237 -vn 0.1577 0.9816 -0.1075 -vn 0.1572 0.9817 -0.1075 -vn 0.1576 0.9816 -0.1075 -vn -0.9943 -0.0089 -0.1064 -vn -0.9943 -0.0092 -0.1058 -vn -0.9942 -0.0088 -0.1068 -vn 0.9427 0.1823 -0.2793 -vn 0.9427 0.1824 -0.2794 -vn -0.7015 -0.6862 -0.1925 -vn -0.7014 -0.6863 -0.1925 -vn -0.7016 -0.6861 -0.1924 -vn -0.1097 -0.0289 -0.9935 -vn -0.1099 -0.0288 -0.9935 -vn -0.1097 -0.0292 -0.9935 -vn 0.0589 -0.9540 0.2940 -vn 0.0591 -0.9540 0.2940 -vn 0.0589 -0.9541 0.2937 -vn 0.8309 0.4260 -0.3580 -vn 0.2630 0.9642 0.0344 -vn 0.0660 -0.9061 -0.4179 -vn 0.0659 -0.9062 -0.4176 -vn 0.0660 -0.9061 -0.4180 -vn -0.0141 -0.9992 0.0376 -vn -0.0137 -0.9992 0.0376 -vn -0.0136 -0.9992 0.0376 -vn -0.5680 0.2260 -0.7914 -vn -0.5674 0.2264 -0.7917 -vn -0.5670 0.2263 -0.7920 -vn 0.6270 -0.3575 0.6921 -vn 0.6269 -0.3577 0.6922 -vn 0.6269 -0.3575 0.6922 -vn -0.3694 0.8967 0.2439 -vn -0.3699 0.8965 0.2439 -vn -0.1651 -0.3514 0.9216 -vn -0.1650 -0.3514 0.9216 -vn -0.1653 -0.3514 0.9215 -vn -0.0785 -0.9968 0.0133 -vn -0.0781 -0.9969 0.0130 -vn -0.0786 -0.9968 0.0135 -vn 0.7858 -0.6178 0.0290 -vn 0.7857 -0.6179 0.0289 -vn 0.6353 0.6314 0.4446 -vn -0.0153 -0.2200 -0.9754 -vn 0.2520 -0.9115 0.3249 -vn 0.2524 -0.9113 0.3252 -vn 0.2524 -0.9114 0.3251 -vn 0.3138 -0.4498 0.8362 -vn 0.3143 -0.4492 0.8363 -vn 0.3141 -0.4492 0.8364 -vn 0.3981 -0.4813 0.7809 -vn 0.3979 -0.4818 0.7808 -vn 0.3980 -0.4814 0.7809 -vn 0.1559 0.1194 0.9805 -vn 0.1562 0.1194 0.9805 -vn 0.1561 0.1194 0.9805 -vn -0.4067 -0.0683 -0.9110 -vn -0.4062 -0.0687 -0.9112 -vn -0.4065 -0.0684 -0.9111 -vn -0.3124 0.9339 -0.1738 -vn -0.3114 0.9341 -0.1747 -vn -0.3116 0.9341 -0.1743 -vn 0.3321 -0.5485 0.7674 -vn 0.3319 -0.5485 0.7674 -vn 0.3320 -0.5485 0.7674 -vn -0.0013 0.0008 1.0000 -vn -0.0001 0.0002 1.0000 -vn -0.0019 0.0017 1.0000 -vn -0.3831 0.2988 0.8740 -vn -0.2544 -0.9624 -0.0949 -vn -0.2549 -0.9623 -0.0949 -vn 0.5810 0.8081 0.0970 -vn 0.4913 -0.7982 0.3487 -vn 0.4911 -0.7984 0.3485 -vn 0.4910 -0.7985 0.3483 -vn 0.5771 0.7864 -0.2201 -vn 0.5770 0.7864 -0.2206 -vn 0.5770 0.7864 -0.2204 -vn -0.6554 -0.5958 -0.4642 -vn -0.6555 -0.5959 -0.4640 -vn -0.1005 0.6309 0.7693 -vn -0.1013 0.6299 0.7700 -vn -0.0993 0.6312 0.7692 -vn -0.2898 0.9483 0.1297 -vn -0.2893 0.9484 0.1300 -vn -0.9168 0.3660 -0.1595 -vn -0.9169 0.3658 -0.1596 -vn -0.9169 0.3657 -0.1596 -vn 0.1287 -0.5669 -0.8137 -vn 0.1284 -0.5671 -0.8136 -vn 0.1287 -0.5667 -0.8138 -vn -0.9213 0.3194 -0.2217 -vn -0.9214 0.3193 -0.2217 -vn 0.8176 0.4663 0.3379 -vn 0.8177 0.4665 0.3373 -vn 0.7645 0.6134 0.1983 -vn 0.7643 0.6136 0.1984 -vn 0.7641 0.6138 0.1985 -vn 0.6269 -0.6311 -0.4569 -vn 0.6269 -0.6310 -0.4570 -vn 0.6268 -0.6314 -0.4566 -vn -0.3599 0.8256 -0.4347 -vn -0.3593 0.8259 -0.4346 -vn -0.3596 0.8257 -0.4347 -vn -0.5269 -0.8436 -0.1039 -vn -0.5270 -0.8434 -0.1042 -vn 0.2403 -0.4805 -0.8434 -vn 0.2397 -0.4816 -0.8430 -vn 0.2397 -0.4825 -0.8424 -vn -0.7063 -0.4835 -0.5171 -vn -0.7063 -0.4832 -0.5173 -vn -0.7065 -0.4833 -0.5170 -vn 0.8230 -0.5290 -0.2070 -vn -0.6919 0.0355 -0.7211 -vn -0.6919 0.0356 -0.7211 -vn 0.1406 0.9823 0.1237 -vn 0.1408 0.9823 0.1238 -vn 0.1409 0.9822 0.1239 -vn -0.1833 -0.6723 -0.7172 -vn -0.1833 -0.6718 -0.7177 -vn -0.1832 -0.6716 -0.7179 -vn -0.8063 -0.5811 -0.1101 -vn -0.8064 -0.5810 -0.1103 -vn -0.2866 -0.9387 0.1918 -vn -0.2873 -0.9384 0.1919 -vn -0.7163 0.5380 -0.4445 -vn 0.9897 -0.1431 -0.0091 -vn 0.9897 -0.1432 -0.0091 -vn 0.4113 -0.9114 0.0128 -vn 0.4115 -0.9113 0.0118 -vn 0.4115 -0.9113 0.0124 -vn -0.1137 0.4949 -0.8615 -vn -0.1137 0.4955 -0.8611 -vn -0.1133 0.4958 -0.8610 -vn 0.9909 -0.1346 -0.0040 -vn 0.9909 -0.1348 -0.0039 -vn 0.5043 -0.6439 -0.5754 -vn 0.5045 -0.6440 -0.5751 -vn 0.5044 -0.6440 -0.5752 -vn -0.4468 0.8790 -0.1666 -vn -0.4470 0.8789 -0.1666 -vn -0.4469 0.8789 -0.1667 -vn 0.5169 -0.1622 -0.8405 -vn 0.5169 -0.1623 -0.8405 -vn 0.4929 0.8557 0.1575 -vn -0.9686 0.0505 0.2434 -vn -0.9688 0.0506 0.2428 -vn -0.9686 0.0505 0.2433 -vn 0.6598 -0.5168 -0.5455 -vn 0.6593 -0.5169 -0.5461 -vn 0.6596 -0.5169 -0.5457 -vn -0.1493 -0.9637 -0.2214 -vn -0.1487 -0.9638 -0.2213 -vn -0.1489 -0.9638 -0.2213 -vn -0.4785 -0.8762 -0.0578 -vn 0.3445 0.6861 -0.6408 -vn 0.3450 0.6864 -0.6402 -vn 0.3440 0.6862 -0.6409 -vn 0.6139 -0.7879 0.0484 -vn 0.6140 -0.7878 0.0483 -vn 0.2726 -0.9051 0.3264 -vn 0.2725 -0.9051 0.3264 -vn 0.2730 -0.9050 0.3263 -vn 0.8391 0.0544 0.5412 -vn 0.8389 0.0544 0.5415 -vn 0.8390 0.0544 0.5414 -vn -0.3830 -0.8226 0.4203 -vn -0.0384 -0.0287 0.9989 -vn -0.4566 -0.8787 0.1394 -vn -0.1604 0.9043 -0.3956 -vn -0.1595 0.9039 -0.3969 -vn -0.1602 0.9040 -0.3963 -vn 0.2991 -0.9540 0.0189 -vn -0.6137 -0.2544 0.7474 -vn -0.6137 -0.2543 0.7475 -vn -0.6140 -0.2541 0.7473 -vn 0.1488 -0.8661 0.4771 -vn 0.1482 -0.8665 0.4766 -vn 0.1485 -0.8664 0.4768 -vn -0.3808 -0.5631 -0.7334 -vn -0.3807 -0.5632 -0.7334 -vn -0.0701 -0.0362 0.9969 -vn -0.0699 -0.0322 0.9970 -vn -0.0706 -0.0343 0.9969 -vn 0.2826 0.8336 -0.4747 -vn 0.2824 0.8335 -0.4749 -vn 0.2825 0.8335 -0.4748 -vn 0.1284 0.7899 -0.5996 -vn 0.1292 0.7892 -0.6004 -vn 0.1289 0.7896 -0.6000 -vn 0.1112 0.0014 0.9938 -vn 0.1109 0.0016 0.9938 -vn 0.1111 0.0013 0.9938 -vn -0.2417 -0.0181 0.9702 -vn -0.2417 -0.0182 0.9702 -vn -0.2414 -0.0180 0.9703 -vn 0.0008 -0.0005 1.0000 -vn -0.1343 -0.5028 -0.8539 -vn -0.1342 -0.5029 -0.8539 -vn 0.5298 -0.8257 0.1938 -vn 0.5297 -0.8259 0.1932 -vn 0.5293 -0.8261 0.1934 -vn 0.3077 0.7379 -0.6007 -vn 0.3077 0.7380 -0.6005 -vn 0.3076 0.7383 -0.6003 -vn -0.0762 -0.5485 0.8326 -vn -0.0767 -0.5485 0.8326 -vn -0.0762 -0.5483 0.8328 -vn 0.3908 -0.9189 0.0541 -vn -0.2884 0.8122 -0.5072 -vn -0.2877 0.8130 -0.5062 -vn -0.2882 0.8125 -0.5067 -vn -0.4144 -0.8706 0.2652 -vn 0.6088 -0.6587 -0.4422 -vn 0.6089 -0.6586 -0.4421 -vn 0.6090 -0.6586 -0.4420 -vn -0.3925 -0.9150 0.0935 -vn -0.3924 -0.9150 0.0934 -vn -0.3926 -0.9149 0.0936 -vn -0.4586 -0.8787 0.1324 -vn 0.3029 -0.9487 -0.0910 -vn 0.3030 -0.9487 -0.0909 -vn 0.3029 -0.9487 -0.0911 -vn 0.5984 -0.5531 -0.5796 -vn 0.5985 -0.5530 -0.5796 -vn 0.7839 -0.5159 0.3454 -vn 0.7837 -0.5164 0.3452 -vn -0.5723 0.7966 -0.1946 -vn -0.5723 0.7966 -0.1948 -vn -0.5724 0.7964 -0.1950 -vn -0.3772 -0.9166 -0.1326 -vn -0.3770 -0.9167 -0.1325 -vn -0.3770 -0.9166 -0.1328 -vn -0.0974 -0.8561 -0.5075 -vn -0.0970 -0.8558 -0.5082 -vn -0.0964 -0.8557 -0.5085 -vn 0.4401 0.2581 -0.8600 -vn 0.4404 0.2583 -0.8598 -vn 0.4406 0.2585 -0.8597 -vn -0.2338 -0.0184 -0.9721 -vn -0.2338 -0.0186 -0.9721 -vn -0.2336 -0.0188 -0.9721 -vn 0.2077 0.6851 -0.6982 -vn 0.2078 0.6855 -0.6978 -vn -0.7830 -0.2274 0.5790 -vn -0.7830 -0.2273 0.5790 -vn 0.0921 -0.6523 0.7524 -vn 0.0922 -0.6528 0.7519 -vn 0.0919 -0.6522 0.7525 -vn 0.3366 0.9366 -0.0978 -vn 0.3363 0.9366 -0.0980 -vn 0.3360 0.9368 -0.0978 -vn 0.0630 0.5590 0.8268 -vn 0.0626 0.5604 0.8259 -vn 0.0642 0.5575 0.8277 -vn 0.5096 -0.8404 0.1847 -vn 0.5096 -0.8403 0.1849 -vn 0.5096 -0.8403 0.1850 -vn 0.7340 0.6467 0.2074 -vn 0.7339 0.6468 0.2075 -vn 0.7338 0.6470 0.2074 -vn 0.1984 0.9397 -0.2785 -vn 0.1984 0.9398 -0.2784 -vn 0.1983 0.9398 -0.2782 -vn 0.6279 0.7782 -0.0108 -vn 0.6278 0.7783 -0.0101 -vn 0.6278 0.7783 -0.0094 -vn -0.0797 0.9833 -0.1633 -vn -0.0796 0.9833 -0.1634 -vn -0.0799 0.9833 -0.1632 -vn -0.3680 -0.7046 -0.6067 -vn -0.3680 -0.7044 -0.6069 -vn -0.3676 -0.7052 -0.6063 -vn 0.2929 0.3342 -0.8958 -vn 0.4373 -0.8490 -0.2965 -vn 0.4373 -0.8490 -0.2967 -vn 0.4370 -0.8493 -0.2961 -vn 0.0272 -0.9933 0.1127 -vn -0.9929 0.0737 0.0930 -vn 0.9612 -0.1350 0.2405 -vn 0.9613 -0.1349 0.2403 -vn 0.9613 -0.1349 0.2402 -vn 0.9714 0.1790 0.1559 -vn 0.9713 0.1794 0.1561 -vn 0.9714 0.1789 0.1559 -vn -0.1531 0.2928 0.9438 -vn -0.1524 0.2931 0.9439 -vn -0.1537 0.2924 0.9439 -vn 0.3388 0.2050 0.9182 -vn 0.3389 0.2052 0.9182 -vn 0.3391 0.2049 0.9182 -vn -0.7606 0.5605 -0.3276 -vn -0.7607 0.5608 -0.3269 -vn -0.7608 0.5600 -0.3281 -vn 0.1307 0.1111 -0.9852 -vn 0.1310 0.1111 -0.9851 -vn 0.1442 -0.7715 0.6197 -vn 0.1441 -0.7713 0.6200 -vn 0.1441 -0.7710 0.6203 -vn 0.8835 0.1867 0.4296 -vn 0.8835 0.1867 0.4297 -vn -0.1544 -0.5835 -0.7973 -vn -0.1544 -0.5837 -0.7971 -vn -0.1544 -0.5837 -0.7972 -vn -0.2259 0.0769 0.9711 -vn -0.2261 0.0767 0.9711 -vn -0.2259 0.0770 0.9711 -vn -0.1785 -0.4545 -0.8727 -vn -0.1781 -0.4545 -0.8728 -vn -0.1777 -0.4545 -0.8728 -vn -0.0312 0.7985 0.6012 -vn -0.0297 0.7986 0.6011 -vn -0.0301 0.7986 0.6011 -vn -0.5811 0.7263 -0.3672 -vn -0.5814 0.7261 -0.3670 -vn -0.5815 0.7262 -0.3668 -vn -0.7006 -0.1193 0.7035 -vn -0.8353 -0.2094 -0.5084 -vn -0.8353 -0.2093 -0.5084 -vn -0.8352 -0.2095 -0.5084 -vn 0.3054 0.9287 0.2101 -vn 0.3054 0.9288 0.2101 -vn 0.2201 -0.6654 0.7133 -vn 0.2200 -0.6654 0.7133 -vn 0.2202 -0.6655 0.7132 -vn 0.7019 0.4623 0.5418 -vn 0.7018 0.4624 0.5418 -vn 0.7019 0.4626 0.5416 -vn -0.3609 -0.3002 -0.8830 -vn -0.3612 -0.3003 -0.8828 -vn -0.3613 -0.3004 -0.8827 -vn -0.2602 0.3082 0.9150 -vn -0.2602 0.3090 0.9148 -vn -0.2605 0.3095 0.9145 -vn -0.9618 -0.2468 -0.1186 -vn -0.9617 -0.2460 -0.1208 -vn -0.9617 -0.2465 -0.1199 -vn -0.0712 0.9874 0.1412 -vn 0.0975 0.1896 0.9770 -vn 0.0973 0.1895 0.9770 -vn 0.0972 0.1895 0.9771 -vn 0.8235 0.5038 0.2607 -vn 0.8233 0.5042 0.2607 -vn 0.1870 0.9426 -0.2766 -vn 0.1872 0.9427 -0.2763 -vn 0.1872 0.9427 -0.2760 -vn -0.9256 -0.1266 0.3568 -vn -0.9259 -0.1259 0.3561 -vn -0.9265 -0.1255 0.3548 -vn 0.4001 0.7363 0.5456 -vn 0.4005 0.7360 0.5458 -vn 0.4010 0.7356 0.5460 -vn 0.3389 0.6724 -0.6580 -vn 0.3391 0.6725 -0.6578 -vn 0.3391 0.6726 -0.6577 -vn 0.8167 0.5762 0.0304 -vn 0.8164 0.5767 0.0305 -vn 0.8165 0.5765 0.0310 -vn 0.3176 0.8291 0.4601 -vn 0.3173 0.8290 0.4606 -vn 0.3177 0.8293 0.4597 -vn -0.0354 0.4457 0.8945 -vn -0.0360 0.4457 0.8945 -vn -0.9875 -0.1538 -0.0349 -vn -0.9875 -0.1537 -0.0345 -vn 0.6175 0.7581 0.2097 -vn 0.6174 0.7582 0.2099 -vn 0.6173 0.7579 0.2109 -vn -0.3477 0.8256 -0.4444 -vn -0.3490 0.8260 -0.4427 -vn -0.3478 0.8250 -0.4455 -vn 0.7310 -0.6244 -0.2753 -vn 0.7312 -0.6243 -0.2750 -vn 0.7311 -0.6243 -0.2751 -vn 0.0854 0.8139 0.5747 -vn 0.0848 0.8136 0.5751 -vn 0.0851 0.8139 0.5748 -vn 0.5063 -0.7381 0.4459 -vn -0.6704 0.7155 -0.1965 -vn -0.6701 0.7158 -0.1965 -vn -0.6704 0.7156 -0.1963 -vn 0.2029 -0.5937 0.7787 -vn 0.0215 0.9915 -0.1284 -vn -0.5102 0.5728 0.6416 -vn -0.5100 0.5739 0.6407 -vn -0.5098 0.5745 0.6404 -vn -0.6119 -0.6579 -0.4390 -vn -0.6136 -0.6572 -0.4377 -vn -0.6152 -0.6561 -0.4371 -vn 0.3961 -0.0696 -0.9156 -vn 0.3959 -0.0700 -0.9156 -vn 0.3965 -0.0692 -0.9154 -vn -0.9380 0.1798 -0.2963 -vn -0.9380 0.1797 -0.2964 -vn -0.9380 0.1800 -0.2962 -vn -0.3219 0.5246 0.7882 -vn -0.3221 0.5242 0.7883 -vn -0.3229 0.5237 0.7883 -vn -0.2382 0.9623 -0.1311 -vn -0.2380 0.9624 -0.1310 -vn -0.7335 0.4833 -0.4778 -vn 0.8659 0.0585 -0.4968 -vn -0.2605 -0.7317 -0.6299 -vn -0.2604 -0.7316 -0.6301 -vn -0.2603 -0.7315 -0.6302 -vn -0.9213 -0.3859 0.0471 -vn 0.8816 0.0369 -0.4706 -vn 0.8817 0.0370 -0.4704 -vn 0.8814 0.0372 -0.4709 -vn 0.8274 -0.0296 -0.5608 -vn 0.8271 -0.0295 -0.5613 -vn 0.5561 -0.0897 -0.8263 -vn 0.5560 -0.0897 -0.8263 -vn 0.5558 -0.0897 -0.8264 -vn 0.5003 0.7796 -0.3767 -vn 0.5003 0.7797 -0.3765 -vn 0.1678 -0.4079 -0.8975 -vn 0.1680 -0.4081 -0.8973 -vn 0.1682 -0.4084 -0.8972 -vn 0.3307 0.9390 -0.0942 -vn 0.3309 0.9389 -0.0945 -vn -0.0540 0.8765 0.4784 -vn -0.0542 0.8765 0.4783 -vn -0.0554 0.8764 0.4784 -vn 0.6000 0.7804 0.1763 -vn 0.6000 0.7804 0.1760 -vn 0.6000 0.7804 0.1758 -vn -0.8234 -0.2237 -0.5214 -vn -0.8238 -0.2238 -0.5209 -vn -0.8233 -0.2234 -0.5218 -vn -0.5828 -0.6262 -0.5178 -vn -0.5824 -0.6268 -0.5177 -vn -0.5823 -0.6269 -0.5176 -vn 0.6914 0.4937 -0.5274 -vn 0.6914 0.4938 -0.5274 -vn 0.6918 0.4933 -0.5273 -vn -0.8214 -0.3786 -0.4266 -vn 0.6186 0.7825 0.0713 -vn 0.6187 0.7824 0.0714 -vn -0.1917 -0.2763 -0.9418 -vn -0.1915 -0.2764 -0.9418 -vn 0.5427 0.5049 -0.6712 -vn 0.5423 0.5052 -0.6713 -vn 0.5426 0.5051 -0.6712 -vn 0.1987 -0.9331 0.2998 -vn 0.1984 -0.9330 0.3003 -vn 0.1987 -0.9332 0.2993 -vn -0.2113 0.9745 0.0752 -vn -0.2113 0.9745 0.0751 -vn -0.2113 0.9745 0.0749 -vn -0.6786 0.4833 -0.5531 -vn -0.6787 0.4835 -0.5528 -vn -0.6788 0.4839 -0.5523 -vn -0.6531 0.1967 0.7312 -vn -0.1635 -0.4466 -0.8797 -vn 0.4853 0.8294 -0.2768 -vn 0.4852 0.8294 -0.2769 -vn 0.4854 0.8293 -0.2767 -vn 0.7877 -0.5364 0.3031 -vn 0.7876 -0.5365 0.3030 -vn 0.9028 0.3189 -0.2886 -vn 0.9030 0.3178 -0.2892 -vn 0.9029 0.3166 -0.2907 -vn 0.8709 0.3406 -0.3542 -vn 0.8710 0.3403 -0.3543 -vn 0.8029 -0.4160 0.4270 -vn 0.8031 -0.4154 0.4271 -vn 0.8030 -0.4158 0.4269 -vn -0.5471 0.8362 0.0376 -vn -0.5474 0.8360 0.0377 -vn -0.0070 -0.8193 0.5733 -vn -0.0069 -0.8191 0.5736 -vn 0.7727 -0.6340 -0.0306 -vn 0.7728 -0.6339 -0.0305 -vn 0.7727 -0.6341 -0.0305 -vn 0.8362 0.3920 -0.3836 -vn -0.0017 0.5291 -0.8485 -vn -0.0018 0.5291 -0.8485 -vn -0.0018 0.5292 -0.8485 -vn -0.5704 0.7533 0.3274 -vn -0.5706 0.7531 0.3274 -vn -0.5702 0.7534 0.3274 -vn -0.9739 -0.0264 0.2253 -vn -0.9739 -0.0262 0.2256 -vn -0.9740 -0.0266 0.2251 -vn 0.2213 0.4048 -0.8872 -vn 0.2212 0.4045 -0.8874 -vn 0.2208 0.4070 -0.8864 -vn -0.0692 -0.9950 -0.0715 -vn -0.0694 -0.9950 -0.0713 -vn -0.0696 -0.9950 -0.0715 -vn 0.8347 -0.4651 0.2949 -vn 0.8348 -0.4649 0.2950 -vn 0.8349 -0.4646 0.2952 -vn 0.8145 -0.0680 0.5762 -vn 0.8145 -0.0679 0.5762 -vn 0.8144 -0.0679 0.5763 -vn 0.7990 0.5723 0.1847 -vn 0.7992 0.5720 0.1847 -vn 0.7989 0.5724 0.1846 -vn -0.0913 0.8848 -0.4570 -vn -0.0912 0.8848 -0.4570 -vn -0.0914 0.8848 -0.4569 -vn 0.0381 -0.7762 0.6293 -vn 0.0378 -0.7764 0.6291 -vn 0.0376 -0.7766 0.6289 -vn -0.1255 0.4226 0.8976 -vn -0.1256 0.4227 0.8975 -vn -0.1261 0.4227 0.8974 -vn 0.7457 -0.3540 0.5645 -vn -0.4154 -0.7051 0.5747 -vn -0.4152 -0.7048 0.5752 -vn -0.4151 -0.7051 0.5750 -vn -0.7669 -0.2824 0.5763 -vn -0.7671 -0.2830 0.5758 -vn -0.7668 -0.2822 0.5766 -vn 0.7885 -0.6132 0.0469 -vn 0.7885 -0.6133 0.0467 -vn 0.7885 -0.6132 0.0468 -vn -0.3453 0.7827 -0.5179 -vn -0.3452 0.7825 -0.5182 -vn -0.8248 0.4865 -0.2882 -vn -0.8394 0.3755 0.3929 -vn -0.8397 0.3753 0.3925 -vn -0.8396 0.3754 0.3926 -vn 0.7643 0.3891 0.5142 -vn 0.7646 0.3894 0.5136 -vn 0.7642 0.3888 0.5147 -vn 0.3901 -0.2203 -0.8940 -vn 0.3900 -0.2206 -0.8940 -vn 0.3901 -0.2205 -0.8940 -vn -0.1501 -0.9830 0.1058 -vn -0.1499 -0.9831 0.1053 -vn -0.1500 -0.9830 0.1056 -vn 0.6608 -0.7490 -0.0478 -vn -0.8924 -0.3353 0.3019 -vn 0.2944 -0.8995 0.3229 -vn 0.2940 -0.8996 0.3230 -vn 0.4515 0.2309 0.8619 -vn 0.1715 -0.6006 0.7810 -vn 0.1722 -0.6011 0.7804 -vn 0.1720 -0.6010 0.7805 -vn 0.5558 -0.4029 0.7272 -vn 0.5558 -0.4029 0.7271 -vn 0.5557 -0.4029 0.7272 -vn 0.1557 0.0207 -0.9876 -vn 0.1554 0.0207 -0.9876 -vn 0.1555 0.0207 -0.9876 -vn -0.4475 0.4254 -0.7866 -vn -0.4475 0.4253 -0.7867 -vn -0.4477 0.4252 -0.7866 -vn 0.3221 -0.8772 0.3560 -vn 0.3216 -0.8772 0.3564 -vn 0.3229 -0.8770 0.3558 -vn -0.7662 0.5630 -0.3099 -vn -0.4075 0.5179 0.7522 -vn -0.4076 0.5178 0.7522 -vn 0.2902 0.8406 -0.4574 -vn 0.2872 0.8409 -0.4586 -vn 0.2887 0.8405 -0.4585 -vn 0.3203 -0.8879 0.3303 -vn 0.3202 -0.8879 0.3302 -vn 0.3203 -0.8878 0.3305 -vn -0.8281 0.4429 -0.3437 -vn -0.9102 -0.1968 -0.3644 -vn -0.9101 -0.1970 -0.3645 -vn -0.0389 0.9889 -0.1435 -vn -0.6982 0.4143 -0.5839 -vn -0.6978 0.4141 -0.5845 -vn -0.6981 0.4142 -0.5841 -vn 0.2540 -0.0178 0.9670 -vn 0.2534 -0.0177 0.9672 -vn -0.2956 -0.9491 -0.1090 -vn -0.2962 -0.9490 -0.1081 -vn -0.2957 -0.9491 -0.1086 -vn -0.0200 0.9472 -0.3199 -vn -0.0202 0.9472 -0.3201 -vn 0.7353 -0.6775 -0.0146 -vn 0.7511 -0.6601 0.0093 -vn -0.5143 0.2607 -0.8170 -vn -0.5143 0.2605 -0.8171 -vn -0.5141 0.2605 -0.8172 -vn 0.0745 -0.4803 -0.8739 -vn 0.0744 -0.4816 -0.8732 -vn 0.0737 -0.4774 -0.8756 -vn 0.9289 0.3188 -0.1885 -vn 0.9288 0.3189 -0.1887 -vn 0.9287 0.3191 -0.1888 -vn -0.2622 0.7506 -0.6065 -vn -0.2613 0.7505 -0.6070 -vn -0.2617 0.7506 -0.6067 -vn -0.1962 0.2936 -0.9356 -vn -0.1969 0.2938 -0.9354 -vn -0.1973 0.2940 -0.9352 -vn 0.3675 -0.3564 0.8590 -vn 0.3665 -0.3569 0.8593 -vn 0.3676 -0.3564 0.8590 -vn -0.8470 -0.2857 0.4483 -vn -0.8469 -0.2858 0.4484 -vn -0.8469 -0.2856 0.4486 -vn -0.1240 0.7611 0.6367 -vn 0.2859 0.9502 0.1239 -vn 0.2858 0.9503 0.1237 -vn -0.0888 0.9955 0.0325 -vn -0.0490 0.7750 -0.6301 -vn -0.0487 0.7747 -0.6304 -vn -0.0498 0.7754 -0.6295 -vn 0.3207 0.8674 -0.3804 -vn 0.3218 0.8672 -0.3800 -vn 0.3211 0.8674 -0.3802 -vn 0.4605 0.8714 0.1689 -vn 0.4604 0.8715 0.1689 -vn 0.4609 0.8712 0.1688 -vn -0.2320 0.1321 0.9637 -vn -0.2327 0.1329 0.9634 -vn -0.2328 0.1330 0.9634 -vn -0.4566 -0.7096 0.5366 -vn -0.4395 -0.0078 0.8982 -vn -0.4397 -0.0080 0.8981 -vn -0.0963 0.9772 -0.1889 -vn -0.0963 0.9773 -0.1890 -vn -0.0961 0.9772 -0.1891 -vn 0.3959 0.2037 0.8954 -vn 0.4426 0.8956 -0.0453 -vn 0.4426 0.8956 -0.0454 -vn 0.4425 0.8956 -0.0451 -vn -0.9299 -0.2291 0.2877 -vn -0.9299 -0.2291 0.2878 -vn -0.4381 0.2230 0.8708 -vn -0.4381 0.2227 0.8709 -vn -0.4382 0.2224 0.8709 -vn -0.3818 -0.9121 0.1491 -vn -0.3821 -0.9120 0.1492 -vn 0.9827 0.1184 0.1423 -vn 0.9827 0.1180 0.1426 -vn 0.6327 -0.5171 -0.5765 -vn 0.6328 -0.5172 -0.5763 -vn 0.6328 -0.5173 -0.5761 -vn 0.0202 -0.3231 -0.9461 -vn 0.0200 -0.3233 -0.9461 -vn 0.0201 -0.3234 -0.9460 -vn -0.7209 0.6390 -0.2682 -vn -0.7212 0.6385 -0.2687 -vn -0.7209 0.6389 -0.2685 -vn 0.6166 0.6870 0.3846 -vn 0.6164 0.6872 0.3845 -vn 0.6168 0.6868 0.3846 -vn 0.3169 0.8055 0.5007 -vn 0.3168 0.8057 0.5004 -vn 0.3171 0.8056 0.5005 -vn -0.0024 -0.7197 -0.6943 -vn 0.2883 0.3134 0.9048 -vn 0.2865 0.3132 0.9054 -vn 0.2864 0.3132 0.9055 -vn -0.3524 0.0897 0.9316 -vn 0.6186 0.5496 0.5615 -vn 0.1930 -0.9812 -0.0044 -vn 0.1933 -0.9811 -0.0040 -vn 0.1932 -0.9812 -0.0041 -vn -0.5629 -0.4936 -0.6629 -vn 0.2892 0.6186 0.7305 -vn 0.2893 0.6185 0.7306 -vn 0.2894 0.6186 0.7305 -vn -0.1539 0.1847 0.9707 -vn -0.1536 0.1844 0.9708 -vn -0.1543 0.1849 0.9706 -vn -0.0475 -0.0660 0.9967 -vn -0.0473 -0.0663 0.9967 -vn 0.1604 0.2075 0.9650 -vn 0.1601 0.2077 0.9650 -vn 0.1601 0.2078 0.9650 -vn -0.6575 0.5612 0.5027 -vn -0.3574 -0.7104 0.6063 -vn -0.3571 -0.7103 0.6065 -vn -0.3576 -0.7103 0.6063 -vn -0.6568 0.5558 -0.5097 -vn -0.6567 0.5559 -0.5096 -vn -0.5288 -0.2445 0.8128 -vn -0.4182 -0.4895 -0.7652 -vn -0.5968 -0.7812 -0.1829 -vn -0.5968 -0.7815 -0.1820 -vn -0.5968 -0.7815 -0.1817 -vn -0.5141 -0.8556 -0.0594 -vn -0.5145 -0.8554 -0.0594 -vn -0.6929 0.5853 0.4210 -vn -0.6930 0.5854 0.4207 -vn -0.0577 0.9982 0.0135 -vn -0.0579 0.9982 0.0135 -vn -0.0579 0.9982 0.0134 -vn 0.8383 0.5293 -0.1308 -vn 0.8383 0.5293 -0.1309 -vn 0.0175 -0.9593 0.2820 -vn 0.0172 -0.9593 0.2818 -vn 0.0176 -0.9592 0.2823 -vn 0.5622 -0.3418 -0.7531 -vn 0.5621 -0.3417 -0.7532 -vn 0.5619 -0.3416 -0.7533 -vn 0.0749 -0.9551 0.2865 -vn 0.0749 -0.9552 0.2863 -vn 0.0748 -0.9552 0.2862 -vn 0.0214 0.3670 0.9300 -vn 0.0220 0.3668 0.9300 -vn 0.0221 0.3665 0.9301 -vn 0.5598 -0.3841 -0.7342 -vn 0.5597 -0.3840 -0.7343 -vn 0.7055 0.4136 -0.5754 -vn 0.7060 0.4131 -0.5753 -vn 0.7057 0.4135 -0.5753 -vn -0.8659 -0.4898 0.1014 -vn 0.2957 -0.9510 -0.0900 -vn -0.9152 0.2296 0.3312 -vn -0.9151 0.2296 0.3315 -vn -0.9149 0.2299 0.3317 -vn 0.6341 -0.7238 0.2719 -vn 0.6338 -0.7240 0.2721 -vn 0.6337 -0.7242 0.2721 -vn 0.3637 0.9122 -0.1890 -vn 0.3640 0.9121 -0.1888 -vn 0.3636 0.9122 -0.1890 -vn 0.2327 -0.9363 -0.2631 -vn 0.2318 -0.9364 -0.2635 -vn 0.2326 -0.9363 -0.2632 -vn -0.0025 -0.0004 1.0000 -vn -0.1222 -0.2176 0.9684 -vn -0.1223 -0.2176 0.9683 -vn -0.1243 0.5709 -0.8116 -vn 0.3414 -0.8811 -0.3272 -vn 0.3416 -0.8813 -0.3265 -vn 0.3415 -0.8816 -0.3257 -vn 0.9407 -0.2820 0.1888 -vn 0.9406 -0.2822 0.1887 -vn 0.9407 -0.2817 0.1890 -vn 0.7526 0.6395 0.1572 -vn 0.7523 0.6398 0.1574 -vn 0.7520 0.6400 0.1577 -vn 0.1636 0.3242 0.9318 -vn 0.1638 0.3241 0.9318 -vn 0.1640 0.3240 0.9317 -vn 0.6326 -0.4819 -0.6063 -vn 0.6327 -0.4818 -0.6063 -vn -0.4179 -0.4656 -0.7801 -vn -0.4179 -0.4655 -0.7802 -vn -0.4627 0.8028 -0.3760 -vn -0.4624 0.8029 -0.3763 -vn -0.4630 0.8027 -0.3760 -vn -0.5465 0.3223 0.7729 -vn -0.5468 0.3222 0.7728 -vn -0.5466 0.3223 0.7729 -vn 0.6889 0.7186 -0.0947 -vn 0.6884 0.7191 -0.0951 -vn 0.6890 0.7186 -0.0946 -vn 0.7930 -0.3585 0.4926 -vn 0.7929 -0.3583 0.4928 -vn 0.2646 -0.3912 0.8814 -vn 0.2647 -0.3913 0.8814 -vn 0.7352 0.6464 0.2040 -vn 0.7355 0.6462 0.2038 -vn 0.7350 0.6466 0.2041 -vn -0.8348 0.3694 0.4082 -vn -0.8348 0.3693 0.4084 -vn -0.8347 0.3699 0.4080 -vn 0.3052 -0.0056 -0.9523 -vn 0.3799 -0.2266 -0.8969 -vn 0.3789 -0.2272 -0.8971 -vn 0.3791 -0.2272 -0.8970 -vn 0.5650 0.6488 0.5098 -vn 0.5650 0.6486 0.5100 -vn 0.5649 0.6490 0.5097 -vn -0.7724 0.3388 -0.5373 -vn -0.7724 0.3387 -0.5373 -vn -0.7724 0.3387 -0.5374 -vn 0.2525 0.3995 -0.8813 -vn 0.2545 0.3998 -0.8806 -vn 0.2534 0.3995 -0.8810 -vn 0.4075 -0.0325 0.9126 -vn 0.4077 -0.0326 0.9125 -vn 0.4076 -0.0325 0.9126 -vn 0.6528 0.6526 0.3846 -vn 0.6528 0.6524 0.3850 -vn 0.6528 0.6525 0.3848 -vn -0.5586 0.7049 0.4371 -vn -0.5580 0.7056 0.4369 -vn -0.5613 0.7034 0.4361 -vn -0.6170 -0.3281 -0.7153 -vn -0.6158 -0.3286 -0.7162 -vn -0.6164 -0.3286 -0.7156 -vn 0.4626 0.4766 -0.7475 -vn 0.4626 0.4769 -0.7474 -vn -0.5342 0.0023 -0.8454 -vn -0.5340 0.0030 -0.8455 -vn -0.5337 0.0033 -0.8457 -vn -0.2846 -0.0504 -0.9573 -vn -0.2836 -0.0509 -0.9576 -vn -0.2843 -0.0503 -0.9574 -vn 0.7755 0.5421 0.3236 -vn 0.7755 0.5422 0.3236 -vn 0.7756 0.5420 0.3236 -vn 0.1442 -0.6798 -0.7191 -vn 0.1443 -0.6798 -0.7191 -vn -0.9694 -0.2442 0.0253 -vn -0.9694 -0.2444 0.0249 -vn -0.9693 -0.2444 0.0254 -vn 0.4376 -0.0203 -0.8989 -vn -0.3676 -0.3630 0.8562 -vn -0.3677 -0.3629 0.8562 -vn -0.3675 -0.3622 0.8566 -vn -0.2419 0.0516 0.9689 -vn -0.2416 0.0516 0.9690 -vn -0.2411 0.0518 0.9691 -vn -0.2113 0.6521 -0.7281 -vn -0.2113 0.6522 -0.7280 -vn -0.3942 0.0562 0.9173 -vn -0.3935 0.0562 0.9176 -vn -0.3928 0.0565 0.9179 -vn 0.3911 0.7788 -0.4905 -vn 0.3907 0.7788 -0.4907 -vn 0.3910 0.7787 -0.4906 -vn 0.6258 0.2673 0.7328 -vn 0.6257 0.2674 0.7328 -vn -0.0041 -0.9027 0.4303 -vn 0.9203 -0.3837 0.0766 -vn 0.9204 -0.3834 0.0768 -vn 0.9204 -0.3834 0.0771 -vn -0.1541 -0.0346 0.9875 -vn -0.1542 -0.0350 0.9874 -vn -0.1543 -0.0350 0.9874 -vn -0.2404 0.8525 -0.4642 -vn -0.2403 0.8523 -0.4646 -vn 0.2703 -0.7330 0.6243 -vn 0.1536 0.5592 -0.8147 -vn 0.1537 0.5593 -0.8146 -vn 0.1539 0.5593 -0.8146 -vn 0.0780 -0.7997 0.5953 -vn 0.0772 -0.7996 0.5955 -vn 0.0775 -0.7996 0.5955 -vn 0.6840 0.3191 -0.6559 -vn 0.6844 0.3193 -0.6555 -vn 0.6842 0.3191 -0.6557 -vn -0.9492 0.1053 -0.2964 -vn -0.9493 0.1055 -0.2960 -vn -0.9493 0.1054 -0.2961 -vn -0.4324 0.8984 0.0766 -vn -0.4324 0.8984 0.0768 -vn -0.4323 0.8985 0.0769 -vn -0.5398 0.6149 -0.5749 -vn -0.5401 0.6142 -0.5754 -vn -0.5406 0.6136 -0.5755 -vn -0.9791 0.0559 0.1957 -vn -0.9791 0.0560 0.1957 -vn -0.9791 0.0559 0.1955 -vn -0.3757 -0.6720 0.6382 -vn -0.3759 -0.6717 0.6384 -vn -0.3755 -0.6719 0.6384 -vn 0.2537 -0.7540 0.6059 -vn 0.2531 -0.7538 0.6064 -vn 0.2534 -0.7539 0.6062 -vn 0.1234 0.9677 -0.2199 -vn 0.1233 0.9676 -0.2205 -vn 0.1234 0.9675 -0.2209 -vn -0.2402 0.9699 -0.0388 -vn -0.2403 0.9699 -0.0385 -vn -0.4159 0.8961 -0.1549 -vn -0.4155 0.8962 -0.1555 -vn -0.4151 0.8964 -0.1556 -vn -0.3020 0.4853 -0.8206 -vn -0.3019 0.4854 -0.8205 -vn -0.0785 0.5221 -0.8492 -vn -0.0794 0.5220 -0.8492 -vn -0.0792 0.5221 -0.8492 -vn -0.0692 0.6000 -0.7970 -vn -0.0691 0.6001 -0.7970 -vn -0.0102 0.9968 0.0797 -vn -0.0100 0.9968 0.0797 -vn -0.0100 0.9968 0.0798 -vn 0.4015 0.9142 -0.0558 -vn 0.4017 0.9141 -0.0556 -vn 0.4022 0.9139 -0.0554 -vn -0.5316 0.2041 0.8221 -vn -0.5310 0.2047 0.8223 -vn -0.5314 0.2045 0.8221 -vn -0.1069 0.8619 0.4957 -vn -0.6044 0.2672 -0.7505 -vn -0.7005 -0.6661 -0.2562 -vn -0.7004 -0.6662 -0.2563 -vn -0.7005 -0.6660 -0.2563 -vn -0.1701 0.9854 0.0114 -vn -0.1686 0.9856 0.0125 -vn -0.1692 0.9855 0.0117 -vn 0.0821 0.0637 0.9946 -vn 0.0822 0.0635 0.9946 -vn 0.0820 0.0635 0.9946 -vn 0.4385 -0.8395 -0.3209 -vn 0.4382 -0.8395 -0.3212 -vn 0.4391 -0.8395 -0.3201 -vn -0.9734 -0.0563 0.2219 -vn -0.9730 -0.0571 0.2234 -vn -0.9733 -0.0566 0.2223 -vn -0.6280 0.7754 -0.0664 -vn -0.6278 0.7755 -0.0665 -vn -0.6279 0.7755 -0.0662 -vn -0.2559 -0.1902 -0.9478 -vn -0.2561 -0.1902 -0.9478 -vn -0.2553 -0.1902 -0.9480 -vn 0.4634 -0.7047 0.5373 -vn 0.4635 -0.7046 0.5373 -vn 0.6100 0.6153 -0.4993 -vn -0.2638 -0.2069 -0.9421 -vn -0.2630 -0.2079 -0.9421 -vn -0.2635 -0.2076 -0.9421 -vn 0.0608 0.6064 -0.7928 -vn 0.0619 0.6065 -0.7927 -vn 0.0601 0.6065 -0.7928 -vn 0.0450 0.6579 -0.7517 -vn 0.0453 0.6576 -0.7520 -vn 0.0449 0.6580 -0.7517 -vn -0.7241 -0.6387 -0.2602 -vn -0.7240 -0.6391 -0.2595 -vn -0.7241 -0.6389 -0.2598 -vn 0.0197 0.8235 -0.5670 -vn -0.3968 -0.7177 -0.5723 -vn 0.6360 0.6523 -0.4124 -vn 0.6361 0.6524 -0.4120 -vn 0.6360 0.6523 -0.4123 -vn 0.6567 0.5727 -0.4906 -vn 0.6574 0.5726 -0.4898 -vn 0.6569 0.5727 -0.4904 -vn 0.1145 0.8244 -0.5543 -vn 0.1122 0.8244 -0.5548 -vn 0.1130 0.8245 -0.5544 -vn 0.9761 0.0190 0.2165 -vn 0.9761 0.0188 0.2165 -vn -0.0425 0.8448 -0.5334 -vn -0.0426 0.8447 -0.5335 -vn -0.0424 0.8446 -0.5337 -vn 0.0333 0.7247 -0.6883 -vn 0.5317 0.3906 -0.7515 -vn 0.7778 0.6283 0.0164 -vn 0.7777 0.6284 0.0166 -vn -0.4579 -0.3622 -0.8119 -vn -0.4573 -0.3620 -0.8123 -vn -0.4588 -0.3619 -0.8115 -vn 0.0359 -0.9202 0.3898 -vn 0.0360 -0.9206 0.3889 -vn 0.0360 -0.9207 0.3887 -vn 0.5077 -0.6877 0.5190 -vn 0.5076 -0.6878 0.5190 -vn -0.0888 0.9607 -0.2631 -vn 0.1572 0.9858 0.0590 -vn 0.1570 0.9859 0.0587 -vn -0.6402 -0.1282 0.7575 -vn -0.6402 -0.1282 0.7574 -vn -0.8286 -0.3398 0.4450 -vn -0.8287 -0.3400 0.4447 -vn 0.0178 0.6597 -0.7513 -vn 0.0174 0.6594 -0.7516 -vn 0.0176 0.6596 -0.7514 -vn -0.5962 0.2096 -0.7750 -vn -0.5815 0.2177 -0.7839 -vn -0.5889 0.2105 -0.7803 -vn 0.6076 -0.0245 -0.7939 -vn 0.2566 0.9382 0.2321 -vn 0.2567 0.9383 0.2319 -vn 0.2567 0.9382 0.2320 -vn 0.9467 -0.3145 -0.0692 -vn 0.9467 -0.3147 -0.0692 -vn 0.9466 -0.3148 -0.0695 -vn 0.8270 -0.4649 0.3161 -vn 0.8271 -0.4649 0.3157 -vn -0.3937 -0.5457 -0.7398 -vn 0.5043 -0.8466 0.1701 -vn 0.5049 -0.8466 0.1685 -vn 0.5046 -0.8466 0.1693 -vn 0.3826 0.8045 -0.4543 -vn 0.7057 -0.6208 0.3415 -vn 0.7052 -0.6211 0.3419 -vn 0.7055 -0.6208 0.3418 -vn -0.4214 -0.0989 -0.9015 -vn -0.4213 -0.0990 -0.9015 -vn -0.4212 -0.0992 -0.9015 -vn 0.4597 -0.2454 -0.8535 -vn 0.4597 -0.2456 -0.8534 -vn 0.0843 0.0491 0.9952 -vn 0.0838 0.0493 0.9953 -vn -0.9405 -0.3360 -0.0501 -vn -0.9406 -0.3359 -0.0499 -vn -0.6693 0.6101 -0.4241 -vn -0.6718 0.6113 -0.4183 -vn -0.6700 0.6116 -0.4208 -vn 0.5321 0.6514 -0.5409 -vn 0.5322 0.6512 -0.5410 -vn 0.5324 0.6510 -0.5411 -vn 0.0077 0.8444 0.5356 -vn 0.0078 0.8444 0.5357 -vn 0.2929 -0.3421 0.8928 -vn 0.2930 -0.3422 0.8928 -vn 0.8742 -0.2505 0.4159 -vn 0.6068 0.0506 -0.7932 -vn 0.6071 0.0506 -0.7930 -vn 0.6075 0.0507 -0.7927 -vn 0.4099 -0.6546 -0.6352 -vn 0.4102 -0.6545 -0.6351 -vn -0.4887 -0.4608 -0.7408 -vn 0.3735 0.8283 0.4177 -vn 0.3725 0.8277 0.4196 -vn 0.3728 0.8282 0.4185 -vn -0.6643 0.6638 -0.3436 -vn -0.6644 0.6636 -0.3438 -vn 0.4340 -0.8703 0.2329 -vn 0.4339 -0.8705 0.2323 -vn 0.4336 -0.8703 0.2336 -vn -0.9272 0.3712 -0.0504 -vn -0.9273 0.3709 -0.0498 -vn -0.9273 0.3710 -0.0502 -vn 0.7618 -0.6470 -0.0324 -vn 0.7618 -0.6471 -0.0307 -vn 0.7621 -0.6466 -0.0317 -vn 0.3034 -0.2012 0.9314 -vn 0.3027 -0.2010 0.9317 -vn 0.3041 -0.2020 0.9310 -vn -0.4421 0.8863 -0.1381 -vn -0.4491 0.8924 -0.0442 -vn -0.0022 -0.4709 -0.8822 -vn -0.0025 -0.4706 -0.8823 -vn -0.0019 -0.4711 -0.8821 -vn 0.9072 -0.0760 0.4137 -vn 0.0775 0.3751 -0.9237 -vn 0.0755 0.3729 -0.9248 -vn 0.0794 0.3755 -0.9234 -vn 0.4947 0.5977 -0.6309 -vn 0.4945 0.5976 -0.6311 -vn 0.4948 0.5977 -0.6308 -vn -0.1312 0.9117 -0.3895 -vn 0.7376 -0.4260 0.5239 -vn 0.7375 -0.4257 0.5243 -vn 0.7374 -0.4260 0.5241 -vn 0.7598 0.6230 0.1860 -vn 0.7596 0.6231 0.1863 -vn 0.7597 0.6231 0.1860 -vn 0.7746 -0.4409 0.4534 -vn 0.7750 -0.4405 0.4531 -vn 0.7754 -0.4401 0.4529 -vn 0.6894 0.2308 0.6866 -vn 0.6721 -0.1401 0.7271 -vn 0.6720 -0.1402 0.7272 -vn 0.6719 -0.1402 0.7272 -vn 0.4852 0.8232 0.2948 -vn 0.4850 0.8232 0.2951 -vn 0.4852 0.8232 0.2950 -vn 0.2983 0.8496 0.4349 -vn 0.2981 0.8497 0.4349 -vn 0.2982 0.8497 0.4349 -vn 0.4297 0.4167 0.8010 -vn 0.2194 0.2110 0.9525 -vn 0.2196 0.2109 0.9525 -vn 0.2197 0.2109 0.9525 -vn -0.1404 0.4423 -0.8858 -vn -0.1404 0.4421 -0.8859 -vn -0.1404 0.4418 -0.8861 -vn -0.0195 -0.9503 0.3106 -vn 0.3829 -0.8917 0.2414 -vn 0.3823 -0.8919 0.2416 -vn 0.3819 -0.8920 0.2420 -vn -0.0208 -0.9483 0.3168 -vn -0.0210 -0.9482 0.3171 -vn -0.2980 0.8460 -0.4422 -vn 0.2883 0.3484 -0.8919 -vn 0.2878 0.3486 -0.8920 -vn -0.2048 0.8089 -0.5511 -vn -0.2059 0.8090 -0.5506 -vn -0.2046 0.8088 -0.5513 -vn 0.2501 -0.8328 0.4939 -vn 0.2499 -0.8326 0.4943 -vn 0.8049 -0.4028 0.4357 -vn 0.8050 -0.4028 0.4356 -vn 0.8051 -0.4027 0.4355 -vn -0.0752 0.9240 0.3748 -vn -0.0750 0.9240 0.3749 -vn -0.4910 0.8228 -0.2861 -vn -0.4912 0.8226 -0.2864 -vn -0.4913 0.8225 -0.2865 -vn -0.1277 -0.8604 0.4933 -vn -0.1277 -0.8606 0.4931 -vn 0.2827 0.9126 -0.2954 -vn 0.2831 0.9128 -0.2942 -vn 0.2829 0.9128 -0.2946 -vn 0.5916 -0.6554 -0.4696 -vn -0.8162 -0.4308 -0.3850 -vn -0.8162 -0.4312 -0.3847 -vn -0.8162 -0.4307 -0.3850 -vn -0.4328 -0.5607 0.7059 -vn -0.4331 -0.5603 0.7060 -vn -0.4326 -0.5608 0.7059 -vn -0.2099 0.9200 -0.3311 -vn -0.2102 0.9201 -0.3306 -vn -0.2103 0.9202 -0.3302 -vn 0.2315 0.8958 -0.3795 -vn 0.2316 0.8958 -0.3793 -vn -0.4577 -0.8876 0.0517 -vn 0.8172 0.5709 -0.0794 -vn 0.8172 0.5708 -0.0795 -vn 0.0404 -0.5838 -0.8109 -vn 0.0400 -0.5838 -0.8109 -vn 0.0401 -0.5838 -0.8109 -vn 0.7337 0.6153 0.2882 -vn 0.7338 0.6153 0.2880 -vn 0.7337 0.6153 0.2881 -vn 0.7495 -0.5747 -0.3286 -vn 0.7492 -0.5751 -0.3287 -vn 0.4171 0.4916 -0.7645 -vn 0.4159 0.4933 -0.7640 -vn 0.4192 0.4904 -0.7641 -vn -0.6949 0.1685 -0.6991 -vn -0.6951 0.1684 -0.6989 -vn -0.5310 -0.8412 -0.1018 -vn -0.5310 -0.8412 -0.1019 -vn -0.5310 -0.8412 -0.1020 -vn 0.5860 -0.7485 0.3104 -vn 0.5867 -0.7481 0.3101 -vn 0.5880 -0.7470 0.3102 -vn 0.3477 0.5130 0.7848 -vn 0.3476 0.5128 0.7850 -vn 0.3480 0.5131 0.7846 -vn 0.1688 0.9729 -0.1581 -vn 0.1687 0.9729 -0.1582 -vn 0.3793 -0.3583 0.8531 -vn 0.3799 -0.3589 0.8526 -vn 0.3791 -0.3578 0.8534 -vn -0.5811 -0.5018 0.6407 -vn -0.5806 -0.5024 0.6407 -vn -0.5809 -0.5022 0.6406 -vn 0.0319 -0.4110 0.9111 -vn 0.0318 -0.4099 0.9116 -vn 0.0314 -0.4117 0.9108 -vn -0.1682 0.9153 0.3658 -vn -0.1687 0.9153 0.3657 -vn -0.1686 0.9153 0.3658 -vn -0.0627 0.0575 0.9964 -vn -0.0630 0.0576 0.9964 -vn -0.0626 0.0575 0.9964 -vn -0.0152 0.2184 0.9757 -vn -0.0150 0.2180 0.9758 -vn -0.0149 0.2187 0.9757 -vn 0.0231 0.9633 -0.2676 -vn 0.0234 0.9632 -0.2677 -vn 0.0234 0.9633 -0.2676 -vn -0.5771 0.3723 -0.7268 -vn -0.5770 0.3728 -0.7267 -vn -0.5771 0.3725 -0.7268 -vn 0.7283 -0.6685 0.1506 -vn 0.7293 -0.6670 0.1524 -vn 0.7266 -0.6704 0.1505 -vn 0.2059 0.9330 -0.2952 -vn 0.2059 0.9331 -0.2950 -vn 0.2059 0.9330 -0.2951 -vn -0.4840 -0.8591 -0.1666 -vn -0.4840 -0.8591 -0.1665 -vn -0.4840 -0.8591 -0.1664 -vn -0.6095 -0.6620 -0.4362 -vn -0.6088 -0.6628 -0.4360 -vn -0.6094 -0.6622 -0.4360 -vn 0.6135 -0.5315 -0.5840 -vn -0.2469 0.8640 -0.4389 -vn -0.2474 0.8642 -0.4381 -vn -0.2471 0.8641 -0.4385 -vn -0.3026 0.9441 -0.1307 -vn -0.3027 0.9441 -0.1307 -vn 0.3591 -0.9086 0.2134 -vn -0.3935 -0.7501 0.5316 -vn -0.3935 -0.7500 0.5316 -vn -0.2954 0.9419 -0.1601 -vn -0.2953 0.9419 -0.1602 -vn 0.2797 -0.9538 -0.1096 -vn -0.1001 0.6982 -0.7088 -vn -0.1006 0.6977 -0.7093 -vn -0.4145 0.7415 -0.5277 -vn -0.4147 0.7415 -0.5275 -vn -0.4145 0.7415 -0.5276 -vn 0.3012 0.3237 -0.8970 -vn 0.4680 -0.7846 0.4067 -vn -0.3496 0.0076 -0.9369 -vn -0.3495 0.0077 -0.9369 -vn -0.3497 0.0075 -0.9368 -vn 0.3243 -0.8025 0.5009 -vn 0.3243 -0.8024 0.5010 -vn -0.5119 -0.7050 -0.4909 -vn -0.5118 -0.7051 -0.4909 -vn -0.5118 -0.7050 -0.4909 -vn 0.5938 -0.7338 0.3301 -vn 0.5936 -0.7341 0.3298 -vn 0.3891 -0.5280 -0.7548 -vn 0.3889 -0.5279 -0.7550 -vn 0.3890 -0.5280 -0.7549 -vn 0.4766 -0.5500 0.6858 -vn 0.4761 -0.5497 0.6864 -vn 0.7006 -0.7136 -0.0000 -vn 0.7007 -0.7135 0.0001 -vn 0.7007 -0.7135 -0.0000 -vn -0.4475 -0.3119 -0.8381 -vn -0.4473 -0.3119 -0.8382 -vn -0.4474 -0.3120 -0.8381 -vn -0.6749 0.7187 -0.1672 -vn -0.6747 0.7188 -0.1675 -vn -0.6749 0.7188 -0.1669 -vn 0.9604 -0.2107 0.1824 -vn 0.9603 -0.2109 0.1826 -vn -0.1278 -0.4325 -0.8925 -vn -0.1356 -0.4430 -0.8862 -vn -0.5838 0.5152 0.6275 -vn -0.5842 0.5152 0.6272 -vn -0.5844 0.5152 0.6269 -vn 0.0815 -0.5745 -0.8144 -vn 0.0812 -0.5747 -0.8143 -vn 0.0814 -0.5746 -0.8144 -vn 0.0800 -0.5726 -0.8159 -vn 0.1248 -0.1874 0.9743 -vn -0.1960 -0.1149 0.9739 -vn -0.1961 -0.1150 0.9738 -vn -0.1959 -0.1149 0.9739 -vn -0.2660 0.7395 -0.6183 -vn -0.2660 0.7395 -0.6184 -vn -0.2660 0.7399 -0.6179 -vn 0.1048 -0.9548 -0.2783 -vn 0.1046 -0.9547 -0.2785 -vn 0.1047 -0.9548 -0.2783 -vn 0.8305 -0.2773 -0.4831 -vn 0.8304 -0.2773 -0.4833 -vn 0.8301 -0.2776 -0.4835 -vn 0.6928 -0.6581 0.2947 -vn 0.6927 -0.6583 0.2946 -vn 0.6928 -0.6582 0.2947 -vn 0.1271 -0.9584 -0.2554 -vn 0.1269 -0.9585 -0.2554 -vn 0.1888 0.9008 0.3911 -vn 0.1890 0.9006 0.3915 -vn 0.1889 0.9005 0.3916 -vn 0.0415 0.6564 0.7533 -vn 0.0416 0.6564 0.7533 -vn 0.0682 -0.9908 0.1172 -vn 0.0244 -0.9822 0.1861 -vn 0.0985 -0.9688 -0.2273 -vn 0.0976 -0.9687 -0.2283 -vn 0.0989 -0.9691 -0.2260 -vn -0.4757 -0.8646 -0.1619 -vn -0.2052 -0.7832 -0.5869 -vn -0.2055 -0.7831 -0.5870 -vn -0.2054 -0.7831 -0.5870 -vn 0.2860 0.8241 -0.4889 -vn 0.2859 0.8240 -0.4892 -vn 0.2856 0.8239 -0.4895 -vn 0.1046 -0.9793 -0.1731 -vn 0.1052 -0.9793 -0.1732 -vn 0.1058 -0.9791 -0.1736 -vn -0.0398 0.0241 -0.9989 -vn -0.0396 0.0242 -0.9989 -vn -0.0397 0.0242 -0.9989 -vn -0.4117 -0.9050 0.1069 -vn 0.6959 0.0470 -0.7166 -vn 0.6959 0.0471 -0.7166 -vn 0.6958 0.0470 -0.7167 -vn 0.3048 -0.9052 -0.2961 -vn 0.3044 -0.9054 -0.2959 -vn 0.3052 -0.9051 -0.2959 -vn -0.7616 -0.6411 -0.0942 -vn -0.7623 -0.6403 -0.0944 -vn -0.7620 -0.6406 -0.0944 -vn -0.3496 -0.7651 -0.5408 -vn -0.3500 -0.7653 -0.5402 -vn -0.3500 -0.7652 -0.5404 -vn 0.4162 0.6037 0.6799 -vn 0.4162 0.6037 0.6800 -vn 0.4163 0.6036 0.6800 -vn 0.4294 0.6610 -0.6154 -vn 0.4294 0.6611 -0.6153 -vn -0.3960 -0.9171 -0.0457 -vn 0.3052 0.9316 -0.1975 -vn -0.2997 -0.9380 -0.1743 -vn 0.3174 -0.6278 -0.7107 -vn 0.3170 -0.6281 -0.7107 -vn 0.3176 -0.6277 -0.7107 -vn -0.2047 0.3757 0.9038 -vn -0.2045 0.3758 0.9039 -vn -0.2049 0.3757 0.9038 -vn 0.2984 -0.5992 -0.7429 -vn 0.2983 -0.5993 -0.7429 -vn -0.4573 0.2262 0.8601 -vn -0.4591 0.2279 0.8586 -vn -0.4582 0.2266 0.8595 -vn -0.1044 -0.7862 -0.6091 -vn -0.1048 -0.7861 -0.6092 -vn -0.1041 -0.7864 -0.6089 -vn 0.1357 -0.0488 -0.9895 -vn 0.1362 -0.0489 -0.9895 -vn 0.1353 -0.0486 -0.9896 -vn 0.6577 0.5691 0.4936 -vn 0.6578 0.5687 0.4939 -vn 0.6697 0.3309 0.6648 -vn 0.6693 0.3303 0.6655 -vn 0.6693 0.3298 0.6658 -vn -0.1927 -0.9810 0.0215 -vn 0.4448 -0.0478 0.8943 -vn -0.4249 -0.8993 0.1037 -vn -0.4253 -0.8991 0.1036 -vn -0.4252 -0.8991 0.1041 -vn 0.6460 0.6126 -0.4555 -vn 0.1991 0.4706 -0.8596 -vn -0.8810 -0.4123 0.2319 -vn -0.8811 -0.4122 0.2320 -vn -0.8812 -0.4119 0.2322 -vn -0.2721 -0.1728 0.9466 -vn -0.2722 -0.1729 0.9466 -vn 0.0491 0.5312 0.8458 -vn 0.0488 0.5314 0.8457 -vn 0.0488 0.5310 0.8460 -vn -0.1130 0.4354 -0.8931 -vn -0.1127 0.4357 -0.8930 -vn 0.0610 0.4132 0.9086 -vn -0.7777 -0.4170 -0.4705 -vn -0.7779 -0.4165 -0.4705 -vn -0.7779 -0.4169 -0.4703 -vn -0.9849 -0.1704 0.0294 -vn -0.9849 -0.1705 0.0287 -vn 0.1613 0.5991 -0.7843 -vn 0.1618 0.5992 -0.7841 -vn -0.0268 0.9300 0.3665 -vn 0.4681 0.5754 0.6706 -vn 0.4681 0.5762 0.6700 -vn 0.4681 0.5752 0.6709 -vn -0.0727 -0.0737 -0.9946 -vn -0.0727 -0.0739 -0.9946 -vn -0.0727 -0.0741 -0.9946 -vn 0.2658 0.9623 -0.0572 -vn 0.2658 0.9623 -0.0573 -vn 0.2655 0.9624 -0.0575 -vn -0.0959 0.9000 -0.4251 -vn -0.0958 0.9000 -0.4253 -vn -0.0957 0.9000 -0.4252 -vn 0.0965 -0.8943 0.4368 -vn 0.0966 -0.8944 0.4367 -vn -0.4196 -0.1857 0.8885 -vn -0.4196 -0.1858 0.8885 -vn -0.4195 -0.1856 0.8886 -vn 0.6656 0.6292 0.4014 -vn 0.6657 0.6292 0.4012 -vn 0.6657 0.6292 0.4011 -vn 0.4927 -0.8009 0.3403 -vn 0.4931 -0.8007 0.3401 -vn -0.7936 -0.5998 0.1023 -vn -0.8573 0.3470 -0.3804 -vn -0.8570 0.3466 -0.3813 -vn -0.8571 0.3468 -0.3808 -vn 0.1395 -0.1260 0.9822 -vn 0.1391 -0.1260 0.9822 -vn 0.1400 -0.1264 0.9821 -vn -0.0831 0.0091 -0.9965 -vn -0.0832 0.0093 -0.9965 -vn 0.7211 -0.6611 -0.2073 -vn 0.7212 -0.6610 -0.2072 -vn 0.7210 -0.6612 -0.2074 -vn 0.6085 -0.7919 0.0516 -vn 0.6088 -0.7916 0.0518 -vn 0.6082 -0.7921 0.0514 -vn -0.6007 0.7690 -0.2186 -vn -0.6009 0.7688 -0.2189 -vn -0.6007 0.7691 -0.2185 -vn -0.2973 -0.5807 0.7579 -vn -0.2970 -0.5806 0.7581 -vn -0.2968 -0.5804 0.7583 -vn 0.2979 -0.7315 0.6133 -vn 0.2973 -0.7319 0.6132 -vn 0.2969 -0.7323 0.6129 -vn -0.1418 0.6819 0.7176 -vn -0.1416 0.6818 0.7177 -vn -0.1416 0.6817 0.7178 -vn 0.7325 0.2774 -0.6217 -vn 0.7325 0.2771 -0.6218 -vn 0.7325 0.2770 -0.6219 -vn -0.5018 -0.6726 0.5438 -vn -0.5021 -0.6726 0.5435 -vn -0.5019 -0.6727 0.5437 -vn -0.0133 -0.6114 0.7912 -vn -0.0138 -0.6114 0.7912 -vn -0.0134 -0.6115 0.7912 -vn -0.6652 -0.6168 -0.4208 -vn -0.6648 -0.6164 -0.4220 -vn -0.6647 -0.6157 -0.4232 -vn -0.2897 0.1331 0.9478 -vn -0.2900 0.1328 0.9478 -vn 0.9103 0.2626 0.3201 -vn 0.7498 -0.6348 -0.1868 -vn -0.6138 0.7877 0.0528 -vn -0.6139 0.7876 0.0530 -vn -0.6137 0.7878 0.0531 -vn -0.7944 0.6037 -0.0674 -vn 0.9217 -0.2178 0.3210 -vn 0.1184 0.7393 -0.6628 -vn 0.1183 0.7393 -0.6629 -vn 0.7264 0.6380 0.2555 -vn 0.7263 0.6380 0.2557 -vn 0.7261 0.6384 0.2555 -vn 0.9496 0.3071 -0.0632 -vn -0.7173 -0.6967 -0.0123 -vn -0.7177 -0.6962 -0.0128 -vn -0.7179 -0.6960 -0.0131 -vn 0.5652 0.6232 0.5405 -vn -0.3805 0.8999 -0.2133 -vn -0.3802 0.9001 -0.2129 -vn -0.3805 0.8998 -0.2136 -vn -0.2393 0.2567 0.9364 -vn -0.2396 0.2567 0.9363 -vn 0.2217 0.9574 -0.1852 -vn 0.2217 0.9574 -0.1851 -vn -0.7390 -0.5312 0.4143 -vn -0.7391 -0.5311 0.4143 -vn -0.7390 -0.5311 0.4144 -vn -0.3602 0.8829 -0.3013 -vn -0.3601 0.8828 -0.3015 -vn -0.3602 0.8828 -0.3016 -vn 0.0402 0.2564 -0.9657 -vn 0.5497 -0.8293 0.1007 -vn 0.5499 -0.8291 0.1007 -vn 0.5495 -0.8294 0.1003 -vn 0.7490 -0.6588 0.0702 -vn 0.7481 -0.6600 0.0690 -vn 0.7498 -0.6579 0.0703 -vn -0.3641 0.2815 -0.8878 -vn -0.2740 0.9254 -0.2618 -vn -0.2737 0.9255 -0.2618 -vn 0.7130 -0.0736 -0.6973 -vn -0.3843 -0.0113 -0.9231 -vn 0.1465 0.9655 -0.2153 -vn 0.1463 0.9656 -0.2150 -vn -0.2750 0.1545 -0.9489 -vn -0.2757 0.1546 -0.9487 -vn -0.2758 0.1548 -0.9487 -vn 0.8625 0.4288 -0.2687 -vn 0.8623 0.4290 -0.2690 -vn -0.9437 -0.3028 -0.1334 -vn -0.9437 -0.3027 -0.1334 -vn -0.4405 0.0782 -0.8943 -vn -0.4405 0.0779 -0.8944 -vn -0.8411 -0.5072 0.1878 -vn -0.8412 -0.5072 0.1876 -vn -0.8413 -0.5070 0.1876 -vn -0.6411 -0.2381 0.7296 -vn 0.8146 -0.2421 -0.5270 -vn 0.8152 -0.2427 -0.5259 -vn 0.8148 -0.2425 -0.5265 -vn 0.3541 -0.0372 -0.9345 -vn 0.3544 -0.0377 -0.9343 -vn 0.3547 -0.0386 -0.9342 -vn 0.5657 0.8246 0.0001 -vn 0.5663 0.8242 0.0008 -vn 0.5658 0.8245 0.0003 -vn 0.8302 0.5223 0.1947 -vn 0.8302 0.5223 0.1948 -vn -0.5950 0.8002 -0.0751 -vn -0.5948 0.8003 -0.0752 -vn 0.8597 0.0961 -0.5016 -vn 0.8599 0.0963 -0.5012 -vn 0.4876 -0.8608 -0.1456 -vn 0.4876 -0.8609 -0.1455 -vn 0.6778 -0.5920 0.4360 -vn -0.9817 0.1867 0.0379 -vn -0.9816 0.1871 0.0384 -vn -0.9816 0.1869 0.0381 -vn 0.7147 -0.5119 -0.4766 -vn 0.7149 -0.5116 -0.4766 -vn 0.7149 -0.5115 -0.4768 -vn -0.6016 0.4878 -0.6326 -vn -0.6002 0.4883 -0.6335 -vn -0.6008 0.4881 -0.6331 -vn -0.9269 -0.2847 0.2446 -vn 0.8972 -0.2970 0.3268 -vn 0.0962 -0.6339 -0.7674 -vn 0.0963 -0.6339 -0.7674 -vn 0.2512 0.8367 -0.4867 -vn 0.2513 0.8367 -0.4866 -vn 0.2513 0.8366 -0.4867 -vn 0.1900 -0.6715 -0.7162 -vn 0.1895 -0.6715 -0.7164 -vn 0.1897 -0.6714 -0.7164 -vn 0.2753 -0.5632 -0.7791 -vn 0.2755 -0.5632 -0.7791 -vn 0.3786 0.9205 -0.0966 -vn 0.3783 0.9206 -0.0970 -vn 0.3781 0.9206 -0.0978 -vn 0.7198 0.5155 0.4650 -vn -0.1602 0.1473 -0.9760 -vn -0.1603 0.1475 -0.9760 -vn -0.1604 0.1476 -0.9759 -vn 0.6800 -0.7277 -0.0902 -vn 0.0420 -0.0076 0.9991 -vn 0.0421 -0.0076 0.9991 -vn 0.5405 -0.3943 0.7432 -vn 0.5398 -0.3940 0.7439 -vn -0.5624 -0.2547 -0.7866 -vn -0.5628 -0.2542 -0.7866 -vn -0.8780 -0.3744 -0.2981 -vn -0.8506 0.4277 -0.3059 -vn -0.8507 0.4277 -0.3057 -vn 0.6016 0.7871 -0.1359 -vn 0.6015 0.7872 -0.1361 -vn 0.6014 0.7873 -0.1358 -vn 0.6355 -0.1543 -0.7565 -vn 0.6352 -0.1544 -0.7567 -vn 0.6353 -0.1545 -0.7567 -vn 0.6633 -0.1154 -0.7394 -vn 0.6633 -0.1151 -0.7394 -vn 0.6633 -0.1153 -0.7395 -vn -0.8264 0.3157 -0.4663 -vn -0.8263 0.3158 -0.4664 -vn -0.6244 -0.4847 -0.6125 -vn -0.0748 0.0882 0.9933 -vn -0.0757 0.0881 0.9932 -vn -0.0736 0.0889 0.9933 -vn 0.3083 0.8032 0.5097 -vn -0.7059 -0.4270 -0.5651 -vn -0.0149 0.9748 0.2224 -vn -0.0141 0.9747 0.2230 -vn -0.0152 0.9749 0.2220 -vn 0.2542 0.9657 0.0536 -vn 0.2545 0.9656 0.0541 -vn 0.3648 0.9221 -0.1288 -vn 0.3650 0.9221 -0.1284 -vn -0.7318 -0.5653 -0.3807 -vn 0.9609 -0.2764 -0.0167 -vn 0.9610 -0.2761 -0.0164 -vn -0.8295 -0.2005 -0.5214 -vn -0.5470 -0.3596 -0.7559 -vn -0.5470 -0.3594 -0.7561 -vn -0.5470 -0.3595 -0.7560 -vn -0.2294 -0.5900 0.7741 -vn -0.0000 -0.0000 1.0000 -vn -0.0209 -0.0771 -0.9968 -vn -0.0210 -0.0772 -0.9968 -vn 0.2441 0.7290 0.6395 -vn 0.2440 0.7290 0.6396 -vn 0.2439 0.7289 0.6397 -vn 0.5711 0.4510 -0.6859 -vn 0.5713 0.4509 -0.6858 -vn 0.7223 0.2167 0.6568 -vn 0.7223 0.2172 0.6566 -vn 0.7223 0.2169 0.6567 -vn -0.4784 0.6761 -0.5604 -vn -0.4785 0.6762 -0.5602 -vn -0.4785 0.6763 -0.5601 -vn -0.9679 -0.2416 0.0691 -vn -0.9677 -0.2424 0.0691 -vn -0.9679 -0.2414 0.0694 -vn 0.5723 0.6127 0.5451 -vn 0.5705 0.6142 0.5453 -vn 0.5709 0.6137 0.5454 -vn -0.0375 0.6343 -0.7722 -vn -0.0374 0.6344 -0.7721 -vn -0.6986 -0.5848 -0.4123 -vn -0.6988 -0.5846 -0.4122 -vn -0.9821 0.1848 0.0360 -vn -0.2780 0.8274 0.4880 -vn -0.2778 0.8274 0.4881 -vn -0.2776 0.8275 0.4881 -vn -0.9170 -0.3559 -0.1800 -vn 0.7227 -0.1907 0.6644 -vn 0.7228 -0.1906 0.6642 -vn 0.7227 -0.1904 0.6644 -vn -0.2896 0.3907 0.8738 -vn -0.2897 0.3908 0.8737 -vn -0.2892 0.3907 0.8739 -vn -0.3124 -0.8837 -0.3484 -vn -0.3125 -0.8837 -0.3484 -vn -0.3124 -0.8837 -0.3485 -vn -0.0066 0.9998 0.0190 -vn -0.0066 0.9998 0.0187 -vn 0.7944 -0.3396 0.5036 -vn 0.7945 -0.3396 0.5034 -vn 0.7945 -0.3394 0.5036 -vn -0.8293 -0.4323 -0.3541 -vn -0.1396 -0.9841 0.1100 -vn -0.1403 -0.9840 0.1097 -vn -0.1399 -0.9841 0.1098 -vn -0.1849 -0.9591 0.2145 -vn -0.1848 -0.9591 0.2144 -vn -0.1849 -0.9591 0.2144 -vn 0.9690 -0.2463 -0.0179 -vn 0.9690 -0.2464 -0.0185 -vn -0.6183 -0.7172 0.3215 -vn -0.6184 -0.7171 0.3214 -vn -0.6185 -0.7171 0.3213 -vn -0.2118 -0.9635 0.1640 -vn -0.2119 -0.9634 0.1641 -vn -0.2123 -0.9632 0.1647 -vn 0.5152 -0.3286 -0.7916 -vn 0.5159 -0.3284 -0.7912 -vn 0.5157 -0.3285 -0.7913 -vn -0.2865 -0.9560 0.0632 -vn -0.2866 -0.9560 0.0629 -vn -0.2867 -0.9560 0.0627 -vn -0.4067 0.8568 -0.3170 -vn -0.4067 0.8569 -0.3169 -vn -0.4067 0.8568 -0.3171 -vn 0.3401 0.0221 -0.9401 -vn 0.3397 0.0222 -0.9403 -vn -0.6729 0.6142 -0.4123 -vn -0.6726 0.6146 -0.4122 -vn -0.6731 0.6140 -0.4122 -vn -0.9354 -0.2341 -0.2651 -vn -0.9353 -0.2341 -0.2652 -vn -0.9355 -0.2340 -0.2648 -vn 0.9054 -0.1335 0.4031 -vn 0.9053 -0.1340 0.4030 -vn 0.9055 -0.1336 0.4027 -vn -0.8417 0.1435 -0.5205 -vn -0.8417 0.1433 -0.5206 -vn -0.8417 0.1432 -0.5206 -vn -0.7370 0.4071 -0.5395 -vn -0.7369 0.4071 -0.5397 -vn 0.5839 0.3776 0.7186 -vn 0.5837 0.3771 0.7191 -vn 0.5840 0.3777 0.7185 -vn -0.5398 -0.6840 0.4907 -vn -0.5400 -0.6837 0.4909 -vn -0.5412 -0.6823 0.4915 -vn -0.9043 -0.0423 0.4248 -vn -0.2959 0.9433 -0.1505 -vn -0.2960 0.9433 -0.1504 -vn -0.2960 0.9434 -0.1496 -vn -0.8181 -0.4720 -0.3286 -vn -0.8184 -0.4716 -0.3285 -vn -0.4327 0.8965 0.0956 -vn -0.4331 0.8964 0.0946 -vn -0.4328 0.8965 0.0948 -vn 0.4394 -0.6979 -0.5655 -vn 0.4391 -0.6978 -0.5660 -vn 0.4397 -0.6982 -0.5649 -vn -0.3294 -0.0601 -0.9423 -vn -0.3275 -0.0602 -0.9429 -vn -0.3258 -0.0611 -0.9435 -vn -0.9005 -0.4338 -0.0318 -vn -0.9005 -0.4336 -0.0319 -vn -0.9005 -0.4337 -0.0316 -vn -0.8015 -0.4885 -0.3448 -vn -0.8228 -0.4517 0.3450 -vn -0.8228 -0.4516 0.3449 -vn 0.3275 0.8103 -0.4860 -vn 0.3274 0.8103 -0.4860 -vn 0.3277 0.8102 -0.4860 -vn -0.2221 -0.9460 0.2360 -vn -0.2226 -0.9459 0.2361 -vn -0.2224 -0.9459 0.2363 -vn -0.2679 0.8551 -0.4439 -vn -0.2680 0.8550 -0.4440 -vn -0.2679 0.8552 -0.4436 -vn 0.4387 -0.8534 0.2814 -vn -0.1622 0.2599 0.9519 -vn -0.1622 0.2602 0.9518 -vn -0.1620 0.2583 0.9524 -vn -0.7035 0.0790 -0.7063 -vn -0.7041 0.0793 -0.7057 -vn -0.7051 0.0792 -0.7047 -vn -0.1606 0.5163 -0.8412 -vn -0.1604 0.5159 -0.8415 -vn -0.1252 -0.3637 0.9231 -vn -0.1250 -0.3636 0.9231 -vn -0.1248 -0.3637 0.9231 -vn -0.1312 -0.3370 0.9323 -vn -0.1300 -0.3373 0.9324 -vn -0.1295 -0.3376 0.9323 -vn -0.0044 0.9549 -0.2970 -vn -0.0043 0.9549 -0.2968 -vn -0.0040 0.9550 -0.2967 -vn -0.2646 0.1354 0.9548 -vn -0.2646 0.1353 0.9548 -vn -0.5704 0.8202 -0.0438 -vn -0.5704 0.8202 -0.0439 -vn -0.1825 -0.1823 0.9661 -vn -0.1822 -0.1822 0.9662 -vn -0.1823 -0.1820 0.9663 -vn 0.4048 0.9130 -0.0503 -vn -0.2070 -0.2471 0.9466 -vn -0.2069 -0.2470 0.9467 -vn -0.2071 -0.2474 0.9465 -vn -0.5971 -0.5198 -0.6109 -vn -0.5974 -0.5194 -0.6110 -vn 0.2763 -0.9328 0.2315 -vn 0.2761 -0.9327 0.2321 -vn 0.2762 -0.9327 0.2317 -vn -0.4347 0.5714 0.6961 -vn -0.4348 0.5714 0.6960 -vn -0.4349 0.5716 0.6958 -vn -0.5725 -0.5774 -0.5821 -vn -0.5726 -0.5774 -0.5821 -vn 0.4270 -0.9005 -0.0817 -vn 0.4269 -0.9006 -0.0815 -vn 0.4269 -0.9006 -0.0820 -vn -0.5450 0.7453 -0.3841 -vn 0.5316 -0.8171 -0.2232 -vn 0.5299 -0.8181 -0.2236 -vn 0.5306 -0.8176 -0.2236 -vn -0.3660 0.3261 0.8716 -vn 0.9275 0.2350 0.2906 -vn 0.9271 0.2367 0.2905 -vn 0.5844 -0.6557 0.4780 -vn 0.5855 -0.6544 0.4786 -vn 0.5847 -0.6554 0.4781 -vn 0.0937 -0.2765 0.9564 -vn 0.0940 -0.2778 0.9560 -vn 0.0937 -0.2770 0.9563 -vn 0.1055 0.6059 0.7885 -vn 0.1049 0.6062 0.7884 -vn 0.1059 0.6056 0.7887 -vn 0.5129 0.8098 0.2848 -vn 0.5135 0.8093 0.2854 -vn -0.8311 0.2081 -0.5157 -vn -0.8311 0.2082 -0.5158 -vn -0.8310 0.2082 -0.5159 -vn 0.5675 -0.2403 -0.7875 -vn 0.5678 -0.2400 -0.7874 -vn 0.5677 -0.2401 -0.7875 -vn -0.6238 0.4326 -0.6510 -vn -0.6231 0.4329 -0.6514 -vn -0.6235 0.4327 -0.6512 -vn 0.3369 -0.6331 -0.6969 -vn 0.3366 -0.6333 -0.6969 -vn 0.3368 -0.6332 -0.6969 -vn -0.1876 0.1395 -0.9723 -vn -0.2067 -0.8794 -0.4289 -vn -0.2065 -0.8795 -0.4288 -vn -0.2065 -0.8794 -0.4289 -vn -0.0522 0.7975 0.6010 -vn -0.0524 0.7979 0.6005 -vn -0.0519 0.7972 0.6014 -vn -0.9713 0.0792 0.2244 -vn 0.0107 -0.4490 -0.8935 -vn -0.2919 0.9554 -0.0449 -vn 0.0182 0.8063 -0.5912 -vn 0.0179 0.8054 -0.5925 -vn 0.0181 0.8058 -0.5919 -vn 0.0263 -0.5859 -0.8099 -vn 0.0264 -0.5860 -0.8099 -vn -0.3703 0.6200 0.6917 -vn -0.3697 0.6200 0.6920 -vn -0.3701 0.6199 0.6919 -vn -0.1527 -0.6682 0.7281 -vn 0.4630 -0.6607 -0.5909 -vn 0.4633 -0.6607 -0.5906 -vn 0.4631 -0.6607 -0.5908 -vn 0.1991 -0.7049 -0.6808 -vn 0.1993 -0.7049 -0.6807 -vn -0.2204 -0.1552 -0.9630 -vn -0.2203 -0.1552 -0.9630 -vn -0.2203 -0.1548 -0.9631 -vn -0.4849 -0.7010 -0.5230 -vn -0.4849 -0.7009 -0.5231 -vn -0.4847 -0.7011 -0.5229 -vn 0.3135 -0.7926 -0.5230 -vn 0.3117 -0.7924 -0.5243 -vn 0.3128 -0.7924 -0.5237 -vn 0.7637 -0.0983 0.6381 -vn 0.7637 -0.0982 0.6381 -vn 0.7637 -0.0983 0.6380 -vn 0.1923 -0.8606 -0.4716 -vn 0.1921 -0.8609 -0.4712 -vn 0.1924 -0.8608 -0.4711 -vn 0.0003 0.0002 1.0000 -vn 0.5596 -0.7549 -0.3421 -vn 0.5585 -0.7554 -0.3428 -vn 0.5601 -0.7549 -0.3411 -vn 0.5509 0.8276 0.1081 -vn -0.6440 0.7258 -0.2417 -vn -0.6441 0.7258 -0.2416 -vn -0.6442 0.7257 -0.2417 -vn 0.7647 -0.1379 -0.6294 -vn 0.7648 -0.1380 -0.6293 -vn 0.7648 -0.1381 -0.6293 -vn 0.2578 0.9581 -0.1251 -vn -0.8652 -0.3039 0.3989 -vn -0.8653 -0.3036 0.3989 -vn -0.7474 0.6642 0.0156 -vn -0.7475 0.6641 0.0154 -vn -0.7474 0.6642 0.0155 -vn -0.0732 -0.9588 0.2745 -vn -0.0738 -0.9587 0.2746 -vn -0.0741 -0.9587 0.2746 -vn 0.6532 0.6601 -0.3709 -vn 0.6207 0.4612 -0.6341 -vn 0.6207 0.4615 -0.6339 -vn 0.6207 0.4614 -0.6339 -vn -0.0048 -0.2072 -0.9783 -vn -0.2878 -0.9467 -0.1444 -vn -0.2876 -0.9468 -0.1443 -vn -0.8365 0.5409 -0.0877 -vn -0.8365 0.5410 -0.0876 -vn 0.4775 0.8288 -0.2917 -vn -0.1698 -0.7481 -0.6415 -vn -0.1697 -0.7483 -0.6413 -vn 0.6970 -0.0323 0.7164 -vn 0.6969 -0.0322 0.7165 -vn 0.6967 -0.0320 0.7166 -vn -0.6489 -0.2500 0.7187 -vn -0.6505 -0.2487 0.7176 -vn -0.6495 -0.2493 0.7183 -vn -0.6242 -0.0582 0.7791 -vn -0.0821 0.4091 -0.9088 -vn -0.0816 0.4090 -0.9089 -vn -0.0474 -0.8806 0.4715 -vn -0.0473 -0.8807 0.4713 -vn -0.2619 -0.3901 -0.8827 -vn -0.2616 -0.3905 -0.8827 -vn -0.2617 -0.3903 -0.8827 -vn -0.2779 0.9568 0.0857 -vn -0.2780 0.9568 0.0857 -vn 0.4352 -0.0048 0.9003 -vn 0.4354 -0.0043 0.9002 -vn 0.4354 -0.0046 0.9002 -vn 0.9589 0.2823 0.0281 -vn 0.9590 0.2821 0.0279 -vn -0.2482 -0.7918 -0.5581 -vn -0.2477 -0.7919 -0.5582 -vn -0.2486 -0.7915 -0.5584 -vn 0.6041 -0.7130 -0.3560 -vn 0.6042 -0.7128 -0.3561 -vn 0.6045 -0.7125 -0.3562 -vn -0.1580 0.3861 -0.9088 -vn -0.1590 0.3859 -0.9087 -vn -0.1599 0.3850 -0.9090 -vn -0.9045 -0.4193 -0.0783 -vn -0.9046 -0.4191 -0.0782 -vn -0.9045 -0.4192 -0.0786 -vn 0.2451 0.8695 -0.4289 -vn 0.2454 0.8693 -0.4291 -vn 0.5649 0.6824 -0.4639 -vn 0.5647 0.6823 -0.4643 -vn 0.5647 0.6822 -0.4645 -vn -0.1201 -0.2731 -0.9545 -vn 0.7397 0.6645 0.1061 -vn 0.7397 0.6646 0.1059 -vn 0.7397 0.6645 0.1062 -vn -0.1873 -0.2249 -0.9562 -vn -0.1874 -0.2251 -0.9561 -vn -0.1875 -0.2251 -0.9561 -vn -0.6116 0.7736 0.1659 -vn -0.9887 -0.1088 -0.1032 -vn -0.9887 -0.1088 -0.1036 -vn -0.9886 -0.1089 -0.1042 -vn 0.2612 0.6620 0.7025 -vn 0.2611 0.6627 0.7019 -vn 0.2609 0.6625 0.7022 -vn -0.3466 -0.3024 0.8879 -vn -0.3465 -0.3027 0.8879 -vn -0.3463 -0.3022 0.8881 -vn -0.1935 0.6770 0.7101 -vn -0.1936 0.6770 0.7100 -vn -0.1934 0.6770 0.7101 -vn 0.1480 -0.2402 0.9594 -vn 0.1480 -0.2400 0.9594 -vn 0.0788 -0.8859 0.4572 -vn -0.4168 0.8761 0.2425 -vn -0.4173 0.8759 0.2422 -vn -0.4166 0.8762 0.2425 -vn -0.1700 -0.1854 0.9678 -vn -0.1697 -0.1854 0.9679 -vn -0.1704 -0.1856 0.9677 -vn 0.4006 0.3343 0.8531 -vn 0.4014 0.3338 0.8529 -vn 0.4011 0.3342 0.8529 -vn -0.4581 0.8737 0.1636 -vn -0.4584 0.8736 0.1637 -vn -0.3202 -0.6056 0.7285 -vn -0.3201 -0.6058 0.7284 -vn -0.3202 -0.6057 0.7284 -vn 0.1200 0.3453 0.9308 -vn 0.1197 0.3455 0.9307 -vn 0.1202 0.3451 0.9308 -vn -0.0597 0.7707 0.6344 -vn -0.0593 0.7715 0.6335 -vn -0.0596 0.7707 0.6344 -vn 0.6301 0.5374 0.5606 -vn 0.6242 0.5401 0.5645 -vn 0.6277 0.5376 0.5630 -vn -0.0585 0.8416 -0.5369 -vn -0.0586 0.8414 -0.5373 -vn -0.6903 0.1751 0.7021 -vn -0.6904 0.1751 0.7019 -vn -0.6901 0.1749 0.7023 -vn -0.8364 0.3230 -0.4428 -vn -0.8364 0.3231 -0.4428 -vn -0.7453 0.6196 0.2463 -vn -0.7451 0.6200 0.2458 -vn -0.7450 0.6201 0.2458 -vn 0.1011 0.6669 -0.7382 -vn 0.1008 0.6657 -0.7394 -vn 0.1003 0.6680 -0.7374 -vn -0.9462 0.2218 -0.2358 -vn -0.9462 0.2219 -0.2356 -vn 0.4133 -0.1300 0.9013 -vn 0.4134 -0.1300 0.9012 -vn 0.4126 -0.1300 0.9016 -vn 0.6024 0.7913 0.1044 -vn 0.6024 0.7914 0.1044 -vn 0.6744 0.1962 0.7118 -vn -0.1983 0.1653 -0.9661 -vn -0.1982 0.1654 -0.9661 -vn -0.1985 0.1654 -0.9660 -vn -0.9483 0.1914 -0.2531 -vn -0.9477 0.1929 -0.2543 -vn -0.9480 0.1925 -0.2536 -vn -0.9326 0.3066 -0.1904 -vn -0.9326 0.3068 -0.1902 -vn -0.9326 0.3069 -0.1899 -vn 0.1353 0.6736 0.7266 -vn 0.1346 0.6727 0.7275 -vn 0.1346 0.6725 0.7277 -vn -0.0222 -0.0382 -0.9990 -vn -0.0221 -0.0380 -0.9990 -vn -0.0223 -0.0384 -0.9990 -vn 0.4269 0.8607 0.2775 -vn 0.4280 0.8601 0.2774 -vn 0.4276 0.8603 0.2776 -vn 0.7872 0.2701 0.5544 -vn 0.5214 0.4659 -0.7149 -vn 0.5215 0.4661 -0.7147 -vn 0.8785 0.3791 0.2906 -vn 0.8786 0.3791 0.2905 -vn 0.4477 0.8858 -0.1220 -vn -0.8916 0.4457 0.0802 -vn -0.8904 0.4479 0.0813 -vn -0.8921 0.4449 0.0786 -vn 0.0571 0.3991 0.9151 -vn 0.0579 0.3991 0.9151 -vn 0.0569 0.3987 0.9153 -vn 0.6372 -0.3932 -0.6629 -vn 0.6360 -0.3930 -0.6641 -vn 0.6367 -0.3929 -0.6635 -vn -0.3568 0.4173 -0.8358 -vn -0.1273 -0.1767 0.9760 -vn -0.9598 0.1058 0.2599 -vn -0.8038 -0.4689 0.3661 -vn -0.8039 -0.4691 0.3657 -vn 0.8825 0.4154 -0.2207 -vn 0.8823 0.4155 -0.2211 -vn 0.2768 -0.9556 -0.1013 -vn 0.2767 -0.9556 -0.1015 -vn 0.6295 -0.6787 -0.3783 -vn 0.6306 -0.6779 -0.3779 -vn 0.6289 -0.6794 -0.3780 -vn -0.1994 -0.1214 -0.9724 -vn -0.1998 -0.1220 -0.9722 -vn -0.1994 -0.1217 -0.9723 -vn -0.7738 -0.4951 0.3951 -vn -0.7742 -0.4953 0.3941 -vn -0.7740 -0.4951 0.3946 -vn -0.2560 0.0031 0.9667 -vn 0.7361 0.6496 -0.1901 -vn 0.7358 0.6499 -0.1902 -vn 0.7365 0.6492 -0.1901 -vn -0.3649 0.8685 -0.3355 -vn -0.3649 0.8684 -0.3357 -vn -0.3650 0.8683 -0.3358 -vn -0.8355 -0.3202 0.4465 -vn -0.8354 -0.3203 0.4466 -vn -0.8358 -0.3200 0.4462 -vn 0.6154 0.7802 -0.1124 -vn 0.6154 0.7802 -0.1119 -vn 0.6153 0.7803 -0.1124 -vn 0.8403 0.1004 -0.5327 -vn 0.8404 0.0993 -0.5327 -vn 0.8403 0.1006 -0.5327 -vn -0.8893 -0.2009 0.4108 -vn 0.3556 0.8606 -0.3646 -vn 0.3558 0.8605 -0.3647 -vn 0.3552 0.8607 -0.3648 -vn -0.4745 0.4245 -0.7712 -vn -0.4744 0.4246 -0.7711 -vn -0.4746 0.4243 -0.7712 -vn -0.2579 0.8756 -0.4083 -vn -0.2577 0.8755 -0.4088 -vn 0.0986 -0.5612 -0.8218 -vn 0.0989 -0.5614 -0.8216 -vn -0.4462 0.8514 0.2757 -vn -0.9650 -0.1531 -0.2128 -vn -0.9650 -0.1535 -0.2128 -vn -0.9650 -0.1538 -0.2126 -vn 0.9158 -0.3380 -0.2170 -vn 0.9158 -0.3377 -0.2176 -vn 0.9157 -0.3376 -0.2179 -vn 0.9019 0.3389 0.2678 -vn 0.9019 0.3390 0.2677 -vn 0.9017 0.3391 0.2683 -vn 0.4281 0.8078 -0.4052 -vn 0.4282 0.8080 -0.4048 -vn 0.4282 0.8077 -0.4053 -vn 0.8073 -0.2277 0.5445 -vn 0.8082 -0.2287 0.5427 -vn 0.8094 -0.2289 0.5408 -vn 0.7585 -0.3578 0.5447 -vn 0.7584 -0.3579 0.5448 -vn -0.5153 -0.0307 0.8565 -vn -0.5154 -0.0311 0.8564 -vn -0.5155 -0.0315 0.8563 -vn -0.6959 -0.4943 -0.5210 -vn -0.6958 -0.4943 -0.5211 -vn 0.6767 0.5053 -0.5354 -vn 0.1161 0.5196 0.8465 -vn 0.1159 0.5194 0.8466 -vn 0.1163 0.5197 0.8464 -vn 0.9203 -0.3778 -0.1017 -vn 0.9203 -0.3779 -0.1010 -vn 0.9200 -0.3781 -0.1027 -vn 0.6503 -0.1604 -0.7426 -vn 0.6503 -0.1603 -0.7425 -vn 0.6504 -0.1604 -0.7425 -vn 0.2824 -0.4019 -0.8711 -vn 0.2822 -0.4014 -0.8714 -vn 0.2823 -0.4012 -0.8714 -vn 0.1000 0.9353 -0.3394 -vn 0.0999 0.9353 -0.3395 -vn 0.1003 0.9353 -0.3393 -vn -0.6769 -0.4368 -0.5925 -vn -0.0745 0.6683 -0.7401 -vn -0.0743 0.6683 -0.7401 -vn -0.0736 0.6683 -0.7402 -vn 0.7745 -0.4353 0.4590 -vn 0.7744 -0.4355 0.4590 -vn 0.7746 -0.4354 0.4588 -vn 0.8325 -0.5459 0.0940 -vn 0.8323 -0.5463 0.0938 -vn 0.8242 -0.4869 0.2893 -vn 0.8243 -0.4868 0.2892 -vn 0.8240 -0.4871 0.2894 -vn 0.7733 -0.4242 0.4712 -vn 0.7732 -0.4241 0.4715 -vn -0.8389 -0.2867 -0.4627 -vn 0.6051 -0.3417 0.7191 -vn 0.6051 -0.3418 0.7190 -vn 0.2133 0.8945 -0.3928 -vn 0.2131 0.8945 -0.3929 -vn 0.2136 0.8946 -0.3926 -vn -0.4387 0.7926 -0.4235 -vn -0.4389 0.7925 -0.4235 -vn 0.3364 -0.5267 -0.7807 -vn 0.3379 -0.5271 -0.7797 -vn 0.3372 -0.5272 -0.7800 -vn 0.8721 -0.3519 0.3401 -vn 0.8721 -0.3518 0.3400 -vn 0.8723 -0.3516 0.3397 -vn 0.7544 0.3834 0.5328 -vn 0.7780 -0.5458 0.3112 -vn 0.7780 -0.5456 0.3114 -vn 0.7780 -0.5457 0.3114 -vn -0.1364 -0.9817 0.1331 -vn -0.1365 -0.9816 0.1333 -vn 0.1428 -0.9594 0.2434 -vn 0.1431 -0.9594 0.2432 -vn 0.1431 -0.9594 0.2429 -vn 0.1264 0.1471 0.9810 -vn 0.1269 0.1469 0.9810 -vn 0.1271 0.1469 0.9810 -vn -0.1941 -0.8435 -0.5008 -vn -0.1949 -0.8432 -0.5011 -vn -0.1950 -0.8431 -0.5011 -vn -0.8977 -0.3795 -0.2240 -vn -0.8978 -0.3793 -0.2240 -vn 0.3548 -0.8228 0.4440 -vn 0.3547 -0.8227 0.4442 -vn 0.3549 -0.8228 0.4439 -vn -0.9074 -0.4065 0.1071 -vn -0.9073 -0.4067 0.1068 -vn -0.9074 -0.4064 0.1071 -vn 0.8789 0.0173 0.4767 -vn 0.8789 0.0174 0.4767 -vn 0.3505 0.9138 -0.2053 -vn 0.3505 0.9138 -0.2054 -vn 0.3558 0.8863 0.2965 -vn 0.3561 0.8862 0.2964 -vn 0.3557 0.8863 0.2965 -vn -0.6062 0.6641 -0.4375 -vn -0.6064 0.6639 -0.4377 -vn -0.6063 0.6639 -0.4377 -vn -0.7765 -0.4555 -0.4354 -vn -0.7766 -0.4555 -0.4352 -vn -0.7767 -0.4555 -0.4350 -vn -0.2259 -0.9741 0.0019 -vn -0.2259 -0.9741 0.0020 -vn 0.7784 -0.4278 0.4595 -vn 0.7780 -0.4289 0.4591 -vn 0.7781 -0.4294 0.4585 -vn -0.4468 -0.8867 0.1193 -vn -0.4474 -0.8863 0.1192 -vn -0.4479 -0.8861 0.1190 -vn -0.1190 0.3008 -0.9462 -vn -0.1191 0.3006 -0.9463 -vn -0.1190 0.3003 -0.9464 -vn 0.0962 0.7706 -0.6300 -vn 0.0973 0.7708 -0.6296 -vn 0.0969 0.7708 -0.6297 -vn 0.3894 0.8968 0.2098 -vn 0.3890 0.8970 0.2098 -vn 0.3893 0.8969 0.2098 -vn -0.7640 0.3380 0.5496 -vn -0.7636 0.3381 0.5501 -vn -0.7634 0.3382 0.5502 -vn -0.4909 0.7662 -0.4146 -vn -0.4911 0.7664 -0.4141 -vn -0.3351 -0.9420 0.0185 -vn -0.3355 -0.9419 0.0185 -vn -0.3362 -0.9416 0.0188 -vn 0.9113 -0.4114 0.0182 -vn 0.8510 -0.5247 -0.0198 -vn 0.8506 -0.5255 -0.0196 -vn 0.8502 -0.5261 -0.0186 -vn 0.5645 -0.6596 0.4962 -vn -0.8227 -0.4338 -0.3673 -vn 0.5196 0.8345 -0.1831 -vn 0.5200 0.8344 -0.1827 -vn 0.5198 0.8345 -0.1827 -vn 0.2770 0.4444 0.8519 -vn 0.2771 0.4442 0.8520 -vn 0.2769 0.4443 0.8520 -vn 0.8222 -0.1294 -0.5542 -vn 0.8223 -0.1298 -0.5540 -vn 0.8224 -0.1298 -0.5538 -vn 0.8416 -0.5194 0.1481 -vn -0.7618 -0.4984 -0.4138 -vn -0.7622 -0.4979 -0.4137 -vn -0.7617 -0.4988 -0.4136 -vn 0.7603 0.1921 0.6206 -vn 0.7603 0.1919 0.6206 -vn 0.7604 0.1920 0.6204 -vn -0.5040 -0.8354 -0.2194 -vn -0.5035 -0.8357 -0.2194 -vn -0.5035 -0.8357 -0.2195 -vn -0.2168 0.8847 -0.4127 -vn -0.2173 0.8847 -0.4124 -vn -0.2168 0.8849 -0.4123 -vn 0.5178 -0.7307 0.4450 -vn -0.5687 -0.8016 -0.1847 -vn -0.5691 -0.8014 -0.1840 -vn -0.5689 -0.8015 -0.1845 -vn 0.2636 -0.9089 -0.3230 -vn 0.2628 -0.9094 -0.3223 -vn 0.2630 -0.9093 -0.3226 -vn 0.0340 -0.9706 -0.2382 -vn 0.0337 -0.9706 -0.2385 -vn 0.0336 -0.9705 -0.2386 -vn 0.2039 0.0750 -0.9761 -vn 0.2036 0.0752 -0.9762 -vn 0.2035 0.0752 -0.9762 -vn -0.7053 -0.4406 -0.5554 -vn -0.7052 -0.4407 -0.5554 -vn -0.7055 -0.4404 -0.5552 -vn -0.0336 -0.9381 0.3448 -vn -0.4225 0.8870 -0.1862 -vn -0.4223 0.8872 -0.1861 -vn -0.4225 0.8871 -0.1862 -vn 0.2957 -0.9506 0.0946 -vn 0.2955 -0.9508 0.0934 -vn 0.2955 -0.9507 0.0943 -vn -0.7183 -0.5692 -0.4000 -vn -0.7185 -0.5689 -0.4001 -vn -0.7181 -0.5695 -0.4001 -vn 0.4200 -0.9067 -0.0388 -vn 0.4201 -0.9066 -0.0390 -vn 0.4199 -0.9067 -0.0393 -vn -0.4448 0.1457 -0.8837 -vn -0.4442 0.1460 -0.8840 -vn -0.4440 0.1459 -0.8841 -vn 0.2833 0.1755 0.9428 -vn 0.2832 0.1756 0.9428 -vn 0.2832 0.1757 0.9428 -vn -0.6156 -0.6012 -0.5096 -vn 0.6474 0.1243 0.7519 -vn 0.6470 0.1243 0.7523 -vn 0.6473 0.1245 0.7520 -vn -0.5806 -0.5169 0.6291 -vn -0.5818 -0.5161 0.6286 -vn -0.5813 -0.5164 0.6288 -vn -0.6764 -0.4168 0.6072 -vn -0.6765 -0.4165 0.6073 -vn -0.0017 0.8274 0.5617 -vn -0.0013 0.8270 0.5622 -vn -0.0017 0.8280 0.5607 -vn 0.4071 -0.9134 0.0038 -vn 0.4073 -0.9133 0.0041 -vn 0.4072 -0.9133 0.0038 -vn -0.4057 -0.8015 0.4393 -vn -0.4054 -0.8016 0.4394 -vn -0.4052 -0.8019 0.4390 -vn 0.6733 0.3509 -0.6508 -vn 0.6734 0.3510 -0.6507 -vn 0.6732 0.3510 -0.6508 -vn 0.2827 0.9398 0.1918 -vn 0.2829 0.9397 0.1920 -vn 0.7589 -0.4390 -0.4810 -vn 0.7587 -0.4389 -0.4814 -vn 0.4842 -0.8700 -0.0926 -vn 0.4842 -0.8700 -0.0927 -vn 0.4844 -0.8699 -0.0931 -vn -0.4910 -0.5125 -0.7044 -vn 0.9654 -0.0244 0.2598 -vn 0.9653 -0.0247 0.2601 -vn 0.9654 -0.0240 0.2598 -vn -0.1381 0.9892 -0.0491 -vn -0.9028 0.3810 -0.1994 -vn -0.9023 0.3819 -0.2000 -vn -0.9025 0.3815 -0.1997 -vn 0.7170 -0.0178 0.6968 -vn 0.7168 -0.0177 0.6970 -vn 0.7166 -0.0175 0.6973 -vn 0.4497 -0.4854 -0.7498 -vn 0.4498 -0.4856 -0.7496 -vn 0.4494 -0.4853 -0.7500 -vn -0.0762 -0.1746 -0.9817 -vn -0.0764 -0.1741 -0.9818 -vn -0.0763 -0.1739 -0.9818 -vn 0.5283 -0.8394 -0.1273 -vn 0.5285 -0.8394 -0.1271 -vn 0.5284 -0.8394 -0.1272 -vn -0.4825 0.8744 -0.0504 -vn -0.4823 0.8746 -0.0502 -vn -0.4823 0.8746 -0.0498 -vn -0.0541 0.9977 -0.0419 -vn -0.0538 0.9977 -0.0418 -vn -0.0539 0.9977 -0.0418 -vn -0.3797 -0.5445 -0.7479 -vn 0.8118 0.4226 0.4030 -vn 0.8110 0.4234 0.4038 -vn 0.8109 0.4235 0.4038 -vn 0.0653 0.7555 -0.6519 -vn 0.0630 0.7555 -0.6521 -vn 0.0638 0.7553 -0.6523 -vn 0.3315 0.1007 0.9381 -vn 0.3316 0.1006 0.9380 -vn 0.0481 0.6907 0.7216 -vn 0.0481 0.6905 0.7217 -vn 0.0482 0.6906 0.7217 -vn -0.5316 -0.4924 -0.6892 -vn -0.5315 -0.4925 -0.6892 -vn -0.5313 -0.4929 -0.6890 -vn 0.3756 0.9208 -0.1055 -vn 0.3758 0.9207 -0.1056 -vn 0.3757 0.9207 -0.1054 -vn 0.8629 -0.0212 0.5050 -vn 0.8631 -0.0218 0.5046 -vn 0.8632 -0.0220 0.5043 -vn 0.7141 -0.5099 -0.4796 -vn 0.7140 -0.5103 -0.4794 -vn 0.7144 -0.5103 -0.4788 -vn -0.9610 0.1749 -0.2141 -vn -0.9611 0.1749 -0.2137 -vn -0.9611 0.1747 -0.2139 -vn -0.6133 -0.3187 0.7227 -vn -0.6131 -0.3193 0.7226 -vn -0.6131 -0.3191 0.7227 -vn -0.3154 -0.5438 -0.7777 -vn -0.3153 -0.5438 -0.7777 -vn -0.3151 -0.5438 -0.7778 -vn -0.2012 -0.2681 -0.9421 -vn 0.9492 -0.2295 -0.2154 -vn 0.9491 -0.2295 -0.2157 -vn -0.3576 -0.4185 -0.8349 -vn -0.3580 -0.4178 -0.8350 -vn -0.3581 -0.4182 -0.8348 -vn -0.6026 -0.0454 0.7967 -vn -0.6024 -0.0450 0.7969 -vn -0.6026 -0.0452 0.7968 -vn 0.8279 -0.2800 -0.4859 -vn 0.8276 -0.2831 -0.4847 -vn 0.8274 -0.2822 -0.4855 -vn -0.7123 0.5593 -0.4241 -vn -0.7124 0.5593 -0.4238 -vn -0.7123 0.5592 -0.4242 -vn -0.6268 0.4940 -0.6025 -vn -0.3381 -0.9276 -0.1589 -vn -0.3378 -0.9277 -0.1591 -vn -0.3379 -0.9276 -0.1590 -vn 0.1374 -0.0707 0.9880 -vn 0.1374 -0.0710 0.9880 -vn 0.1374 -0.0711 0.9880 -vn -0.0993 -0.5306 -0.8418 -vn -0.0993 -0.5308 -0.8416 -vn -0.0992 -0.5308 -0.8417 -vn 0.4576 0.8828 0.1059 -vn 0.4575 0.8829 0.1057 -vn 0.4570 0.8832 0.1053 -vn 0.4233 -0.9056 0.0244 -vn 0.4231 -0.9058 0.0240 -vn 0.4230 -0.9058 0.0240 -vn 0.5646 -0.2428 0.7888 -vn 0.5645 -0.2431 0.7888 -vn 0.5645 -0.2430 0.7889 -vn -0.0768 -0.5497 0.8319 -vn -0.0763 -0.5495 0.8320 -vn -0.0770 -0.5492 0.8321 -vn -0.1143 0.3909 0.9133 -vn -0.1140 0.3912 0.9132 -vn -0.1142 0.3912 0.9132 -vn -0.4392 -0.8843 0.1585 -vn -0.4397 -0.8840 0.1588 -vn -0.4394 -0.8842 0.1587 -vn 0.6127 -0.7032 0.3607 -vn 0.6126 -0.7037 0.3599 -vn 0.6133 -0.7024 0.3612 -vn 0.8992 -0.4072 -0.1599 -vn 0.8992 -0.4072 -0.1600 -vn 0.8993 -0.4070 -0.1598 -vn 0.9008 0.1644 0.4019 -vn 0.9011 0.1637 0.4015 -vn 0.9009 0.1641 0.4018 -vn -0.0624 0.8866 -0.4583 -vn -0.3727 -0.1263 -0.9193 -vn -0.3742 -0.1263 -0.9187 -vn -0.3720 -0.1256 -0.9197 -vn 0.5618 -0.4924 -0.6648 -vn 0.5614 -0.4923 -0.6652 -vn 0.5618 -0.4922 -0.6649 -vn -0.2942 0.9528 0.0747 -vn -0.2944 0.9528 0.0745 -vn -0.2944 0.9527 0.0749 -vn -0.8210 -0.5480 -0.1602 -vn -0.8208 -0.5484 -0.1598 -vn -0.8214 -0.5472 -0.1606 -vn 0.2279 -0.8842 -0.4078 -vn -0.2743 -0.2455 0.9298 -vn -0.2744 -0.2457 0.9297 -vn -0.2745 -0.2457 0.9297 -vn -0.3558 -0.9342 -0.0270 -vn -0.3560 -0.9341 -0.0270 -vn -0.3557 -0.9342 -0.0270 -vn -0.0378 0.5831 -0.8115 -vn -0.0377 0.5829 -0.8117 -vn -0.0377 0.5828 -0.8117 -vn 0.5486 -0.7495 0.3706 -vn 0.5489 -0.7495 0.3701 -vn 0.5489 -0.7496 0.3700 -vn 0.2722 -0.9270 -0.2581 -vn 0.2722 -0.9270 -0.2579 -vn 0.2723 -0.9270 -0.2578 -vn 0.1883 0.9552 -0.2283 -vn 0.1885 0.9553 -0.2279 -vn 0.1884 0.9551 -0.2288 -vn -0.9050 -0.0834 0.4172 -vn -0.9051 -0.0835 0.4170 -vn -0.9052 -0.0838 0.4166 -vn -0.5187 -0.7520 0.4068 -vn -0.5188 -0.7518 0.4071 -vn -0.5189 -0.7515 0.4075 -vn -0.4054 -0.8463 0.3455 -vn -0.3505 -0.6140 0.7072 -vn -0.3491 -0.6141 0.7078 -vn -0.3518 -0.6136 0.7069 -vn 0.5213 0.4416 0.7303 -vn 0.5213 0.4415 0.7303 -vn 0.5944 -0.5790 -0.5580 -vn 0.5946 -0.5791 -0.5578 -vn 0.5943 -0.5793 -0.5579 -vn 0.5394 0.2749 0.7959 -vn 0.5399 0.2757 0.7953 -vn -0.2676 -0.8980 -0.3493 -vn -0.2675 -0.8980 -0.3493 -vn -0.2673 -0.8980 -0.3495 -vn -0.6003 -0.7752 -0.1967 -vn 0.3777 0.8564 -0.3521 -vn 0.3781 0.8562 -0.3520 -vn 0.3779 0.8564 -0.3518 -vn 0.0678 -0.4861 -0.8713 -vn 0.0679 -0.4861 -0.8713 -vn 0.0676 -0.4864 -0.8711 -vn 0.0761 -0.4071 0.9102 -vn 0.0761 -0.4072 0.9102 -vn 0.8995 -0.0977 -0.4258 -vn 0.8993 -0.0977 -0.4262 -vn 0.8991 -0.0976 -0.4267 -vn 0.8532 -0.2852 -0.4366 -vn 0.8532 -0.2854 -0.4366 -vn 0.8533 -0.2850 -0.4367 -vn -0.0796 -0.9490 0.3051 -vn -0.0798 -0.9487 0.3059 -vn -0.0797 -0.9488 0.3057 -vn 0.6247 -0.6812 -0.3818 -vn 0.6246 -0.6813 -0.3816 -vn -0.1575 0.2750 -0.9484 -vn -0.1572 0.2756 -0.9483 -vn -0.1572 0.2767 -0.9480 -vn -0.8771 -0.0641 -0.4760 -vn -0.8771 -0.0638 -0.4760 -vn -0.8771 -0.0648 -0.4760 -vn 0.4352 -0.0483 0.8990 -vn 0.4354 -0.0485 0.8989 -vn 0.4354 -0.0483 0.8989 -vn 0.7817 0.6069 0.1438 -vn 0.7817 0.6069 0.1436 -vn 0.7816 0.6069 0.1438 -vn -0.1815 -0.5437 -0.8194 -vn -0.1817 -0.5440 -0.8192 -vn -0.1818 -0.5441 -0.8191 -vn 0.2439 0.8266 -0.5072 -vn 0.2437 0.8267 -0.5071 -vn 0.5879 0.5789 0.5651 -vn 0.5874 0.5794 0.5650 -vn 0.5876 0.5790 0.5652 -vn -0.5351 0.3073 -0.7869 -vn -0.5352 0.3067 -0.7871 -vn -0.5344 0.3080 -0.7871 -vn 0.5351 0.5176 0.6677 -vn 0.5337 0.5190 0.6677 -vn 0.5327 0.5213 0.6667 -vn 0.9422 -0.2288 -0.2446 -vn 0.9421 -0.2289 -0.2449 -vn 0.9422 -0.2288 -0.2449 -vn -0.2680 0.8284 -0.4919 -vn -0.2679 0.8287 -0.4914 -vn -0.2681 0.8290 -0.4909 -vn 0.8931 -0.1850 0.4101 -vn 0.8929 -0.1854 0.4103 -vn 0.8931 -0.1847 0.4101 -vn 0.3486 0.9291 0.1238 -vn 0.3486 0.9293 0.1223 -vn 0.3480 0.9292 0.1247 -vn -0.1998 0.2659 0.9431 -vn -0.1996 0.2660 0.9431 -vn 0.5268 0.8321 -0.1735 -vn 0.5262 0.8325 -0.1733 -vn 0.5268 0.8320 -0.1741 -vn 0.3249 0.9117 -0.2515 -vn 0.4009 0.9116 -0.0908 -vn 0.4004 0.9119 -0.0905 -vn 0.3996 0.9122 -0.0906 -vn 0.5601 0.8121 0.1637 -vn 0.5601 0.8121 0.1636 -vn -0.9970 -0.0491 -0.0606 -vn -0.9970 -0.0487 -0.0605 -vn -0.4996 -0.5739 0.6489 -vn -0.4996 -0.5741 0.6487 -vn -0.0593 0.7368 -0.6735 -vn -0.0589 0.7366 -0.6737 -vn -0.0590 0.7366 -0.6738 -vn 0.5224 0.8312 0.1905 -vn 0.5226 0.8311 0.1903 -vn 0.4759 -0.7816 0.4034 -vn 0.4758 -0.7816 0.4034 -vn 0.4757 -0.7817 0.4034 -vn -0.7211 0.5300 0.4463 -vn -0.2664 -0.6540 0.7080 -vn -0.2662 -0.6538 0.7083 -vn -0.2663 -0.6539 0.7082 -vn -0.8530 -0.1371 -0.5036 -vn -0.8560 -0.1421 -0.4971 -vn -0.8501 -0.1356 -0.5089 -vn 0.4781 0.8604 0.1766 -vn 0.0031 0.0019 1.0000 -vn 0.7644 -0.5743 -0.2929 -vn 0.4559 0.2536 -0.8531 -vn 0.4560 0.2536 -0.8531 -vn 0.2570 -0.8397 0.4784 -vn 0.2571 -0.8398 0.4782 -vn 0.2568 -0.8396 0.4786 -vn -0.0052 -0.7186 -0.6954 -vn -0.0050 -0.7183 -0.6957 -vn -0.0052 -0.7187 -0.6953 -vn 0.2002 0.0988 -0.9748 -vn 0.2004 0.0986 -0.9747 -vn 0.2001 0.0991 -0.9747 -vn -0.8406 0.4698 -0.2695 -vn -0.8405 0.4702 -0.2693 -vn -0.8405 0.4698 -0.2698 -vn -0.3559 -0.6330 0.6875 -vn -0.3557 -0.6330 0.6876 -vn -0.3557 -0.6329 0.6877 -vn -0.0316 0.9796 -0.1987 -vn -0.0307 0.9794 -0.1998 -vn -0.0311 0.9795 -0.1991 -vn 0.0003 -0.0005 1.0000 -vn -0.7213 0.5024 -0.4768 -vn -0.7214 0.5023 -0.4769 -vn -0.7212 0.5024 -0.4770 -vn -0.0067 0.7157 -0.6984 -vn -0.0066 0.7160 -0.6981 -vn 0.5053 0.6052 -0.6151 -vn 0.5055 0.6053 -0.6149 -vn 0.5058 0.6046 -0.6153 -vn -0.8239 -0.0664 0.5629 -vn -0.8240 -0.0661 0.5627 -vn -0.8239 -0.0663 0.5628 -vn -0.4167 -0.3574 0.8358 -vn -0.4166 -0.3575 0.8359 -vn -0.4167 -0.3575 0.8358 -vn 0.3976 0.9063 -0.1431 -vn 0.3975 0.9064 -0.1429 -vn 0.3975 0.9064 -0.1428 -vn -0.6587 0.6214 -0.4242 -vn -0.6588 0.6213 -0.4242 -vn 0.9105 -0.0035 -0.4136 -vn 0.9104 -0.0040 -0.4137 -vn 0.9103 -0.0044 -0.4139 -vn 0.8724 -0.2691 0.4081 -vn 0.8723 -0.2692 0.4082 -vn -0.3672 -0.6377 0.6771 -vn -0.3670 -0.6374 0.6775 -vn -0.3673 -0.6378 0.6770 -vn 0.9893 0.0665 0.1295 -vn 0.9893 0.0665 0.1296 -vn 0.9893 0.0665 0.1297 -vn -0.3462 -0.7922 -0.5026 -vn -0.3464 -0.7923 -0.5022 -vn -0.3464 -0.7923 -0.5023 -vn -0.0876 -0.8319 -0.5480 -vn -0.0870 -0.8320 -0.5480 -vn -0.0873 -0.8319 -0.5480 -vn -0.1202 0.9176 -0.3789 -vn -0.1209 0.9174 -0.3792 -vn -0.1200 0.9177 -0.3787 -vn 0.5334 -0.7008 0.4737 -vn 0.8854 0.4501 0.1163 -vn 0.8853 0.4503 0.1159 -vn 0.8853 0.4502 0.1166 -vn -0.1653 0.1269 0.9780 -vn -0.1655 0.1268 0.9780 -vn 0.3555 0.9181 0.1752 -vn 0.3556 0.9181 0.1754 -vn 0.1084 -0.0815 0.9908 -vn 0.2407 0.8739 0.4224 -vn 0.2411 0.8740 0.4219 -vn 0.2418 0.8740 0.4214 -vn -0.0871 0.9590 -0.2697 -vn -0.0873 0.9591 -0.2692 -vn -0.0870 0.9590 -0.2698 -vn -0.2194 0.8967 -0.3845 -vn -0.2217 0.8958 -0.3852 -vn -0.2205 0.8961 -0.3851 -vn -0.5057 -0.4688 0.7242 -vn -0.5045 -0.4698 0.7244 -vn -0.5051 -0.4695 0.7242 -vn 0.6161 -0.0561 -0.7857 -vn 0.6161 -0.0560 -0.7857 -vn 0.4450 -0.8219 0.3556 -vn 0.4451 -0.8221 0.3550 -vn 0.4446 -0.8221 0.3555 -vn -0.9768 -0.2142 -0.0026 -vn -0.9769 -0.2139 -0.0029 -vn -0.9767 -0.2144 -0.0021 -vn -0.2372 -0.1353 0.9620 -vn -0.2373 -0.1359 0.9619 -vn -0.2372 -0.1355 0.9620 -vn 0.5808 -0.6256 0.5208 -vn 0.5810 -0.6255 0.5208 -vn 0.5810 -0.6254 0.5208 -vn -0.8299 -0.4523 0.3267 -vn -0.8300 -0.4521 0.3267 -vn -0.8298 -0.4523 0.3269 -vn 0.7136 -0.5622 -0.4181 -vn 0.7142 -0.5613 -0.4182 -vn 0.7150 -0.5594 -0.4192 -vn 0.5194 0.7749 -0.3602 -vn 0.2249 -0.6414 -0.7335 -vn 0.2247 -0.6418 -0.7332 -vn 0.6934 -0.7000 -0.1708 -vn 0.6932 -0.7002 -0.1708 -vn -0.3551 -0.0758 -0.9318 -vn 0.5553 -0.6166 0.5581 -vn 0.6996 0.4070 0.5873 -vn 0.6997 0.4072 0.5871 -vn 0.6997 0.4067 0.5874 -vn 0.5802 -0.6819 0.4453 -vn 0.5803 -0.6821 0.4450 -vn 0.5803 -0.6821 0.4449 -vn 0.7298 -0.6760 0.1018 -vn -0.6228 -0.1680 -0.7641 -vn -0.6229 -0.1682 -0.7640 -vn -0.7317 -0.2759 -0.6233 -vn -0.2844 -0.0174 0.9586 -vn -0.2842 -0.0168 0.9586 -vn -0.2839 -0.0167 0.9587 -vn -0.4660 0.1502 -0.8719 -vn -0.3244 -0.5007 0.8025 -vn -0.3248 -0.5001 0.8027 -vn -0.3246 -0.5004 0.8026 -vn 0.8081 -0.0981 0.5809 -vn 0.6565 -0.5846 0.4767 -vn 0.0275 0.9190 -0.3933 -vn 0.0274 0.9189 -0.3935 -vn -0.8306 -0.2802 0.4812 -vn -0.8305 -0.2804 0.4813 -vn -0.8308 -0.2802 0.4809 -vn 0.7066 -0.5269 0.4724 -vn 0.4809 -0.5698 0.6664 -vn 0.4810 -0.5695 0.6666 -vn 0.4809 -0.5699 0.6663 -vn -0.7548 0.1929 0.6270 -vn -0.7546 0.1932 0.6271 -vn -0.7544 0.1934 0.6273 -vn 0.2180 0.9736 0.0685 -vn 0.2180 0.9735 0.0684 -vn 0.2181 0.9735 0.0683 -vn 0.7472 0.2627 -0.6104 -vn 0.7472 0.2627 -0.6105 -vn 0.7474 0.2629 -0.6101 -vn 0.4835 0.8750 0.0260 -vn 0.4838 0.8748 0.0256 -vn 0.4838 0.8748 0.0253 -vn -0.9205 0.3617 0.1478 -vn -0.9205 0.3616 0.1479 -vn -0.9205 0.3616 0.1480 -vn -0.8050 0.5200 0.2856 -vn -0.8058 0.5196 0.2841 -vn -0.8063 0.5190 0.2837 -vn -0.1883 0.3860 -0.9031 -vn -0.1879 0.3855 -0.9034 -vn -0.1882 0.3858 -0.9032 -vn 0.2146 -0.7727 -0.5974 -vn 0.2146 -0.7726 -0.5975 -vn -0.8920 -0.3562 -0.2783 -vn -0.8920 -0.3563 -0.2782 -vn 0.9858 -0.1599 -0.0511 -vn 0.9859 -0.1592 -0.0506 -vn 0.9859 -0.1593 -0.0508 -vn -0.5726 -0.6605 -0.4856 -vn -0.5728 -0.6602 -0.4859 -vn -0.5726 -0.6609 -0.4851 -vn 0.4282 -0.2522 -0.8678 -vn 0.4283 -0.2524 -0.8677 -vn 0.4285 -0.2527 -0.8675 -vn -0.1885 -0.0777 -0.9790 -vn -0.1886 -0.0779 -0.9790 -vn -0.1886 -0.0780 -0.9790 -vn -0.0158 0.9502 0.3113 -vn -0.0165 0.9502 0.3112 -vn -0.0172 0.9503 0.3109 -vn 0.3696 0.6493 0.6647 -vn 0.3697 0.6493 0.6647 -vn 0.3266 -0.8252 -0.4609 -vn 0.3263 -0.8249 -0.4616 -vn 0.3265 -0.8250 -0.4614 -vn 0.0629 0.9524 -0.2982 -vn 0.0626 0.9522 -0.2990 -vn 0.0629 0.9525 -0.2981 -vn -0.6018 -0.4065 -0.6875 -vn -0.6016 -0.4066 -0.6876 -vn -0.6017 -0.4065 -0.6875 -vn -0.2203 0.9265 -0.3049 -vn -0.2205 0.9265 -0.3048 -vn -0.2206 0.9265 -0.3050 -vn -0.4426 -0.4241 -0.7901 -vn -0.4428 -0.4243 -0.7899 -vn -0.4428 -0.4242 -0.7899 -vn 0.9270 -0.1650 -0.3369 -vn 0.9268 -0.1690 -0.3353 -vn 0.9266 -0.1678 -0.3366 -vn -0.3601 0.2788 0.8903 -vn -0.3601 0.2789 0.8903 -vn -0.3602 0.2787 0.8903 -vn 0.2273 -0.3606 -0.9046 -vn 0.2273 -0.3605 -0.9046 -vn 0.2270 -0.3607 -0.9046 -vn -0.8489 -0.1363 -0.5107 -vn -0.8488 -0.1365 -0.5108 -vn -0.8439 -0.0093 -0.5365 -vn -0.8438 -0.0082 -0.5367 -vn -0.8438 -0.0088 -0.5366 -vn -0.5815 0.6327 -0.5114 -vn -0.5835 0.6328 -0.5089 -vn -0.5801 0.6331 -0.5125 -vn 0.8217 -0.4939 0.2844 -vn -0.5678 -0.6884 0.4513 -vn -0.5677 -0.6884 0.4515 -vn -0.8396 -0.3999 -0.3676 -vn -0.2014 -0.1195 0.9722 -vn -0.2009 -0.1200 0.9722 -vn -0.2011 -0.1199 0.9722 -vn -0.0961 -0.5476 -0.8312 -vn -0.0960 -0.5477 -0.8311 -vn -0.0959 -0.5479 -0.8310 -vn 0.4996 0.7460 0.4404 -vn 0.4984 0.7454 0.4427 -vn 0.4988 0.7458 0.4415 -vn -0.2477 0.7864 -0.5659 -vn -0.2476 0.7863 -0.5661 -vn -0.2474 0.7862 -0.5663 -vn -0.8465 -0.3080 -0.4343 -vn -0.8467 -0.3079 -0.4340 -vn -0.8469 -0.3076 -0.4337 -vn -0.6351 0.1031 0.7656 -vn -0.6348 0.1033 0.7658 -vn -0.6350 0.1028 0.7656 -vn 0.4642 -0.2577 -0.8474 -vn 0.4643 -0.2579 -0.8473 -vn 0.4644 -0.2581 -0.8472 -vn 0.0734 -0.9756 0.2067 -vn 0.1397 -0.9720 0.1888 -vn 0.1396 -0.9720 0.1888 -vn 0.1395 -0.9721 0.1885 -vn -0.7552 0.5779 -0.3094 -vn -0.7554 0.5777 -0.3091 -vn -0.7557 0.5776 -0.3088 -vn -0.0541 0.7860 -0.6159 -vn -0.0539 0.7862 -0.6156 -vn -0.0542 0.7859 -0.6160 -vn -0.2065 0.9746 -0.0865 -vn -0.2062 0.9747 -0.0864 -vn -0.2060 0.9747 -0.0864 -vn -0.3412 0.8571 -0.3859 -vn 0.2797 -0.8676 0.4112 -vn 0.2793 -0.8674 0.4118 -vn 0.2798 -0.8678 0.4106 -vn 0.8335 -0.2273 0.5036 -vn 0.8334 -0.2269 0.5039 -vn 0.8335 -0.2274 0.5035 -vn 0.0371 0.4136 -0.9097 -vn 0.0371 0.4137 -0.9097 -vn 0.0370 0.4134 -0.9098 -vn 0.3993 0.9017 0.1660 -vn 0.3992 0.9017 0.1660 -vn 0.3994 0.9016 0.1661 -vn 0.9011 -0.3818 0.2053 -vn 0.9011 -0.3819 0.2054 -vn -0.1589 0.4675 -0.8696 -vn -0.1590 0.4673 -0.8697 -vn 0.0017 0.8907 -0.4546 -vn 0.0019 0.8909 -0.4542 -vn 0.0016 0.8907 -0.4546 -vn 0.3201 0.5495 0.7718 -vn 0.3203 0.5495 0.7717 -vn 0.3201 0.5493 0.7719 -vn -0.2161 -0.1685 -0.9617 -vn -0.2160 -0.1685 -0.9617 -vn -0.2160 -0.1686 -0.9617 -vn 0.4920 -0.0093 0.8705 -vn 0.4922 -0.0098 0.8704 -vn 0.6821 -0.4720 0.5585 -vn 0.6823 -0.4716 0.5586 -vn -0.9065 0.3350 0.2571 -vn -0.9065 0.3348 0.2572 -vn -0.9066 0.3345 0.2573 -vn 0.3422 -0.9279 0.1480 -vn 0.3424 -0.9280 0.1469 -vn 0.3423 -0.9280 0.1473 -vn 0.4657 -0.7398 0.4856 -vn 0.4656 -0.7397 0.4858 -vn 0.4658 -0.7399 0.4854 -vn -0.0093 0.9848 0.1734 -vn -0.0093 0.9848 0.1737 -vn -0.2582 -0.9661 -0.0092 -vn -0.2583 -0.9660 -0.0091 -vn -0.2586 -0.9659 -0.0091 -vn 0.7400 0.3906 0.5476 -vn 0.7396 0.3905 0.5482 -vn 0.7392 0.3899 0.5491 -vn 0.5754 -0.4059 0.7100 -vn 0.5752 -0.4063 0.7100 -vn 0.4068 -0.3699 0.8353 -vn 0.4072 -0.3699 0.8351 -vn 0.4060 -0.3703 0.8355 -vn 0.5079 -0.6569 0.5572 -vn 0.5079 -0.6568 0.5573 -vn 0.0103 0.9494 -0.3138 -vn 0.0104 0.9495 -0.3137 -vn -0.2084 0.0367 -0.9774 -vn -0.2083 0.0368 -0.9774 -vn -0.2084 0.0366 -0.9774 -vn -0.8624 -0.0763 -0.5005 -vn -0.8631 -0.0767 -0.4992 -vn -0.8627 -0.0767 -0.4998 -vn 0.1154 -0.6923 -0.7123 -vn 0.1143 -0.6928 -0.7120 -vn 0.1152 -0.6928 -0.7119 -vn -0.1641 0.9605 -0.2247 -vn -0.1642 0.9605 -0.2245 -vn -0.1641 0.9605 -0.2246 -vn 0.5930 0.0043 0.8052 -vn -0.3314 -0.9145 -0.2323 -vn -0.3312 -0.9145 -0.2323 -vn -0.3313 -0.9145 -0.2323 -vn 0.5665 -0.7241 0.3933 -vn -0.8215 0.5627 0.0923 -vn -0.8216 0.5627 0.0917 -vn -0.8212 0.5631 0.0924 -vn -0.0156 -0.7726 0.6347 -vn -0.0152 -0.7722 0.6352 -vn -0.0155 -0.7724 0.6350 -vn 0.0541 -0.0703 -0.9961 -vn 0.0538 -0.0706 -0.9960 -vn 0.0537 -0.0711 -0.9960 -vn 0.7430 -0.5438 -0.3902 -vn 0.7423 -0.5442 -0.3910 -vn 0.7421 -0.5443 -0.3912 -vn -0.6077 -0.7816 -0.1407 -vn -0.6074 -0.7818 -0.1409 -vn -0.6075 -0.7817 -0.1408 -vn 0.8917 0.2009 0.4056 -vn 0.8919 0.2006 0.4054 -vn 0.8916 0.2009 0.4059 -vn 0.2651 -0.8040 0.5322 -vn 0.2648 -0.8039 0.5325 -vn 0.6804 -0.7306 -0.0575 -vn 0.6813 -0.7298 -0.0567 -vn 0.6818 -0.7294 -0.0555 -vn 0.7352 -0.6250 -0.2626 -vn -0.2450 -0.1065 0.9636 -vn -0.8130 0.5072 -0.2859 -vn -0.8130 0.5071 -0.2860 -vn -0.8129 0.5074 -0.2859 -vn 0.0871 0.8722 0.4813 -vn 0.0877 0.8721 0.4814 -vn 0.0869 0.8722 0.4814 -vn -0.0172 -0.9818 0.1892 -vn 0.2223 0.4630 -0.8580 -vn 0.2211 0.4622 -0.8588 -vn 0.2222 0.4630 -0.8581 -vn 0.2933 -0.7925 0.5347 -vn 0.2929 -0.7922 0.5354 -vn 0.2937 -0.7927 0.5343 -vn -0.6653 0.6578 0.3530 -vn -0.6649 0.6581 0.3533 -vn -0.0628 -0.9899 -0.1269 -vn -0.0619 -0.9900 -0.1270 -vn -0.0620 -0.9900 -0.1270 -vn 0.1957 0.7233 -0.6622 -vn 0.1953 0.7232 -0.6624 -vn 0.1953 0.7232 -0.6625 -vn 0.1824 -0.4065 0.8952 -vn 0.1826 -0.4063 0.8953 -vn 0.1825 -0.4071 0.8950 -vn 0.3793 0.8923 0.2449 -vn 0.3792 0.8920 0.2462 -vn 0.3789 0.8923 0.2455 -vn -0.1626 -0.3416 -0.9257 -vn -0.1630 -0.3415 -0.9256 -vn -0.1640 -0.3412 -0.9256 -vn -0.0193 0.8798 -0.4750 -vn -0.0199 0.8801 -0.4744 -vn -0.0198 0.8800 -0.4745 -vn 0.1512 0.2482 -0.9568 -vn 0.1509 0.2484 -0.9568 -vn 0.1137 -0.1686 0.9791 -vn 0.1131 -0.1688 0.9791 -vn 0.1130 -0.1688 0.9792 -vn -0.1794 0.7830 0.5956 -vn -0.1793 0.7831 0.5955 -vn 0.4934 0.8566 0.1513 -vn 0.4932 0.8567 0.1510 -vn 0.1132 0.8213 0.5591 -vn 0.1133 0.8214 0.5590 -vn 0.3014 0.7711 -0.5609 -vn 0.3018 0.7708 -0.5610 -vn -0.0289 0.0708 -0.9971 -vn -0.0288 0.0706 -0.9971 -vn 0.0305 0.7666 0.6414 -vn -0.7458 -0.4890 -0.4524 -vn 0.2269 -0.0138 0.9738 -vn 0.2263 -0.0136 0.9740 -vn 0.2267 -0.0136 0.9739 -vn 0.4322 0.8206 -0.3739 -vn -0.0002 -0.0001 1.0000 -vn -0.2827 0.1597 -0.9458 -vn 0.5101 -0.8599 -0.0184 -vn 0.5105 -0.8597 -0.0178 -vn 0.5106 -0.8597 -0.0177 -vn -0.6807 0.7188 -0.1412 -vn -0.6789 0.7206 -0.1409 -vn -0.6800 0.7195 -0.1412 -vn 0.7764 -0.3745 0.5069 -vn 0.7766 -0.3744 0.5066 -vn 0.7769 -0.3742 0.5064 -vn 0.4890 -0.8255 0.2816 -vn 0.4890 -0.8257 0.2813 -vn 0.4889 -0.8258 0.2811 -vn -0.5169 -0.8435 -0.1462 -vn -0.5170 -0.8434 -0.1463 -vn -0.5169 -0.8434 -0.1463 -vn -0.8834 -0.2118 0.4181 -vn -0.8833 -0.2119 0.4182 -vn -0.4727 -0.8567 -0.2065 -vn -0.4726 -0.8568 -0.2063 -vn -0.2123 -0.0444 0.9762 -vn -0.2123 -0.0441 0.9762 -vn 0.6668 -0.5093 -0.5441 -vn 0.6669 -0.5092 -0.5440 -vn -0.8026 -0.2065 -0.5596 -vn -0.8028 -0.2065 -0.5593 -vn -0.8022 -0.2061 -0.5603 -vn -0.5309 -0.8450 0.0640 -vn 0.8238 -0.5605 -0.0849 -vn 0.8237 -0.5606 -0.0854 -vn 0.8238 -0.5605 -0.0848 -vn -0.5397 0.2442 -0.8057 -vn -0.5383 0.2447 -0.8065 -vn -0.5409 0.2432 -0.8052 -vn -0.6344 0.2946 -0.7146 -vn -0.6345 0.2943 -0.7147 -vn -0.6343 0.2945 -0.7148 -vn -0.1946 0.9489 0.2483 -vn -0.1942 0.9491 0.2481 -vn -0.4401 -0.5312 -0.7240 -vn -0.4403 -0.5311 -0.7240 -vn -0.4403 -0.5311 -0.7239 -vn -0.0002 -0.0742 0.9972 -vn -0.0000 -0.0741 0.9972 -vn -0.0003 -0.0739 0.9973 -vn 0.8124 0.5830 0.0141 -vn 0.8129 0.5822 0.0142 -vn 0.8127 0.5825 0.0143 -vn 0.7844 0.5839 -0.2093 -vn 0.7844 0.5837 -0.2098 -vn 0.7843 0.5839 -0.2094 -vn 0.2344 -0.6820 0.6928 -vn 0.0253 0.1367 0.9903 -vn 0.0251 0.1366 0.9903 -vn 0.0254 0.1368 0.9903 -vn -0.8463 0.4483 -0.2877 -vn -0.8467 0.4479 -0.2873 -vn -0.8460 0.4484 -0.2883 -vn -0.0718 -0.9674 -0.2428 -vn -0.0715 -0.9675 -0.2426 -vn -0.0711 -0.9676 -0.2422 -vn -0.5459 -0.4742 0.6908 -vn -0.5456 -0.4740 0.6911 -vn -0.5455 -0.4735 0.6915 -vn -0.7052 0.4286 -0.5648 -vn 0.2374 0.4391 -0.8665 -vn 0.2375 0.4390 -0.8665 -vn -0.4548 0.5625 -0.6905 -vn -0.4548 0.5626 -0.6904 -vn -0.0375 -0.5737 -0.8182 -vn -0.0376 -0.5738 -0.8181 -vn -0.0377 -0.5739 -0.8180 -vn -0.7058 -0.0734 -0.7046 -vn -0.8570 -0.4928 0.1508 -vn -0.8573 -0.4923 0.1504 -vn -0.8567 -0.4933 0.1510 -vn 0.2420 -0.4841 -0.8409 -vn 0.2423 -0.4842 -0.8408 -vn 0.2426 -0.4843 -0.8406 -vn -0.1423 -0.4752 0.8683 -vn -0.1420 -0.4750 0.8685 -vn -0.1418 -0.4752 0.8684 -vn -0.1120 0.7640 -0.6354 -vn -0.1095 0.7652 -0.6344 -vn -0.1134 0.7626 -0.6369 -vn -0.2520 -0.7036 0.6644 -vn 0.1404 -0.7912 -0.5952 -vn 0.1406 -0.7910 -0.5954 -vn 0.1405 -0.7912 -0.5952 -vn -0.9965 -0.0389 -0.0737 -vn -0.9965 -0.0388 -0.0735 -vn -0.9965 -0.0388 -0.0739 -vn -0.7088 0.4551 -0.5390 -vn 0.2541 -0.9519 -0.1714 -vn 0.2529 -0.9522 -0.1715 -vn 0.2520 -0.9524 -0.1718 -vn -0.1255 0.4555 -0.8813 -vn -0.1256 0.4555 -0.8813 -vn -0.6906 -0.7211 -0.0558 -vn -0.3140 -0.5122 -0.7994 -vn 0.9117 -0.0746 0.4041 -vn 0.9120 -0.0743 0.4035 -vn 0.9117 -0.0746 0.4040 -vn -0.3677 0.7136 0.5963 -vn 0.9061 0.1348 -0.4010 -vn 0.1512 -0.2357 0.9600 -vn 0.1509 -0.2358 0.9600 -vn 0.1503 -0.2357 0.9601 -vn -0.2066 -0.2503 0.9459 -vn -0.2066 -0.2504 0.9459 -vn -0.2067 -0.2502 0.9459 -vn -0.5043 -0.6290 -0.5916 -vn -0.5042 -0.6291 -0.5916 -vn 0.7475 -0.5733 -0.3355 -vn 0.7476 -0.5731 -0.3356 -vn 0.7477 -0.5729 -0.3357 -vn -0.0201 -0.6709 -0.7413 -vn -0.0201 -0.6709 -0.7412 -vn -0.4932 -0.8698 -0.0166 -vn -0.4934 -0.8696 -0.0175 -vn -0.4928 -0.8700 -0.0162 -vn -0.1493 -0.7453 -0.6498 -vn -0.1493 -0.7452 -0.6500 -vn 0.5058 0.5702 0.6474 -vn 0.5055 0.5703 0.6474 -vn -0.5165 -0.8562 -0.0101 -vn -0.5169 -0.8560 -0.0104 -vn -0.2248 -0.8678 -0.4432 -vn -0.2250 -0.8677 -0.4433 -vn -0.2249 -0.8677 -0.4432 -vn 0.1590 -0.9873 0.0029 -vn 0.1592 -0.9872 0.0029 -vn 0.1596 -0.9872 0.0027 -vn 0.1663 -0.9655 -0.2006 -vn 0.1664 -0.9655 -0.2004 -vn 0.1661 -0.9655 -0.2005 -vn -0.4400 -0.0939 -0.8931 -vn -0.4394 -0.0936 -0.8934 -vn -0.4398 -0.0942 -0.8932 -vn -0.4708 0.7744 -0.4227 -vn -0.4711 0.7742 -0.4227 -vn -0.4709 0.7743 -0.4227 -vn -0.7688 0.3857 -0.5100 -vn -0.7690 0.3856 -0.5098 -vn -0.7689 0.3856 -0.5100 -vn 0.4441 -0.5761 -0.6862 -vn 0.4410 -0.5790 -0.6858 -vn 0.4428 -0.5768 -0.6865 -vn -0.7554 -0.5336 -0.3804 -vn -0.7549 -0.5341 -0.3805 -vn -0.7958 0.4777 -0.3722 -vn -0.7958 0.4778 -0.3721 -vn -0.7958 0.4776 -0.3723 -vn -0.2755 -0.4219 -0.8638 -vn -0.2759 -0.4224 -0.8634 -vn -0.2763 -0.4231 -0.8629 -vn -0.4249 0.7294 -0.5361 -vn -0.4249 0.7296 -0.5358 -vn 0.7504 0.6002 -0.2768 -vn 0.7503 0.6004 -0.2769 -vn 0.7502 0.6005 -0.2767 -vn 0.1242 -0.8367 -0.5334 -vn 0.3816 -0.8899 -0.2500 -vn 0.3813 -0.8900 -0.2500 -vn 0.1957 -0.5065 -0.8397 -vn 0.1955 -0.5063 -0.8399 -vn -0.4682 -0.7754 -0.4237 -vn -0.4682 -0.7753 -0.4239 -vn -0.4683 -0.7753 -0.4239 -vn 0.1211 -0.5481 -0.8276 -vn 0.1215 -0.5478 -0.8278 -vn 0.1216 -0.5476 -0.8279 -vn -0.7882 0.4121 -0.4570 -vn -0.7882 0.4124 -0.4569 -vn 0.1064 -0.6657 0.7386 -vn 0.1053 -0.6657 0.7387 -vn 0.1060 -0.6656 0.7388 -vn 0.4242 -0.8419 0.3335 -vn 0.4245 -0.8419 0.3332 -vn 0.4244 -0.8419 0.3333 -vn 0.2737 -0.9577 -0.0883 -vn 0.2742 -0.9576 -0.0886 -vn 0.2741 -0.9576 -0.0885 -vn 0.0031 -0.0013 1.0000 -vn -0.3761 0.1760 0.9097 -vn 0.2243 -0.2681 0.9369 -vn 0.2268 -0.2664 0.9368 -vn 0.2260 -0.2673 0.9367 -vn -0.2253 -0.9740 -0.0243 -vn -0.2250 -0.9741 -0.0242 -vn -0.2615 -0.8190 -0.5107 -vn -0.2610 -0.8191 -0.5109 -vn -0.2617 -0.8190 -0.5107 -vn 0.3843 0.9114 0.1471 -vn 0.3853 0.9113 0.1456 -vn 0.3843 0.9115 0.1465 -vn 0.3602 0.5009 -0.7870 -vn 0.3601 0.5009 -0.7871 -vn 0.5618 0.7338 0.3819 -vn 0.5620 0.7334 0.3824 -vn 0.5619 0.7339 0.3816 -vn 0.7697 -0.5374 -0.3447 -vn 0.7698 -0.5372 -0.3448 -vn 0.7699 -0.5371 -0.3447 -vn -0.4960 0.8670 -0.0475 -vn -0.4956 0.8673 -0.0468 -vn -0.4950 0.8676 -0.0463 -vn 0.7911 0.3243 0.5186 -vn 0.7912 0.3241 0.5187 -vn 0.0630 0.7391 -0.6706 -vn 0.0636 0.7387 -0.6711 -vn -0.0028 -0.6073 0.7945 -vn -0.0029 -0.6074 0.7944 -vn 0.0963 -0.7482 0.6564 -vn 0.0965 -0.7482 0.6564 -vn 0.0965 -0.7481 0.6566 -vn 0.2610 0.7038 -0.6607 -vn 0.1819 -0.7429 0.6442 -vn 0.1821 -0.7430 0.6441 -vn 0.1823 -0.7430 0.6440 -vn 0.0349 -0.6941 0.7190 -vn 0.0347 -0.6935 0.7196 -vn 0.0348 -0.6940 0.7191 -vn 0.2156 -0.7821 0.5846 -vn 0.2157 -0.7822 0.5845 -vn 0.2339 -0.8313 0.5042 -vn 0.2343 -0.8313 0.5041 -vn 0.2337 -0.8314 0.5041 -vn 0.3444 0.9385 -0.0230 -vn 0.3442 0.9386 -0.0231 -vn 0.5774 0.7707 -0.2695 -vn 0.5774 0.7706 -0.2696 -vn 0.5775 0.7707 -0.2694 -vn 0.1730 -0.9097 0.3775 -vn 0.1731 -0.9096 0.3776 -vn 0.1732 -0.9096 0.3777 -vn 0.3711 0.9286 0.0073 -vn -0.3152 -0.6096 0.7273 -vn -0.3151 -0.6098 0.7272 -vn -0.3151 -0.6093 0.7277 -vn -0.8677 0.3547 -0.3484 -vn -0.8678 0.3546 -0.3480 -vn -0.8677 0.3546 -0.3483 -vn -0.3315 0.8573 0.3940 -vn -0.3315 0.8571 0.3943 -vn -0.3315 0.8570 0.3944 -vn -0.8641 0.4977 -0.0746 -vn -0.8642 0.4976 -0.0749 -vn -0.2371 -0.0760 0.9685 -vn -0.2379 -0.0758 0.9683 -vn -0.2369 -0.0761 0.9686 -vn -0.1309 0.9877 0.0850 -vn -0.1301 0.9878 0.0853 -vn -0.1288 0.9880 0.0850 -vn 0.7497 0.5618 0.3497 -vn 0.7490 0.5619 0.3511 -vn 0.7484 0.5623 0.3518 -vn -0.4670 -0.1831 0.8651 -vn -0.4671 -0.1833 0.8650 -vn -0.6467 0.0713 0.7594 -vn -0.6473 0.0709 0.7589 -vn -0.6480 0.0701 0.7584 -vn 0.2352 0.9032 -0.3592 -vn 0.2350 0.9035 -0.3584 -vn 0.2351 0.9033 -0.3589 -vn -0.0916 0.1273 -0.9876 -vn -0.0912 0.1271 -0.9877 -vn -0.0914 0.1271 -0.9877 -vn -0.2980 -0.8357 0.4613 -vn -0.2976 -0.8358 0.4614 -vn -0.2981 -0.8357 0.4612 -vn -0.0015 0.0005 1.0000 -vn -0.6858 -0.3121 0.6574 -vn -0.6860 -0.3119 0.6573 -vn -0.6861 -0.3118 0.6573 -vn -0.1086 0.9797 0.1688 -vn -0.1084 0.9797 0.1685 -vn -0.1083 0.9798 0.1683 -vn -0.1148 -0.2979 0.9477 -vn 0.4247 0.8912 -0.1595 -vn 0.4248 0.8912 -0.1591 -vn 0.4243 0.8915 -0.1590 -vn 0.1619 0.4720 0.8666 -vn 0.1622 0.4721 0.8665 -vn 0.1625 0.4721 0.8664 -vn 0.3173 0.9069 0.2772 -vn -0.1561 0.9385 -0.3080 -vn -0.1553 0.9384 -0.3088 -vn -0.1551 0.9378 -0.3107 -vn 0.7791 -0.6184 0.1031 -vn 0.7790 -0.6186 0.1030 -vn 0.7790 -0.6185 0.1031 -vn -0.0945 -0.1654 -0.9817 -vn -0.0944 -0.1666 -0.9815 -vn -0.0945 -0.1660 -0.9816 -vn -0.3440 -0.1971 -0.9181 -vn 0.1332 0.7451 -0.6536 -vn 0.1330 0.7449 -0.6538 -vn 0.4728 -0.4694 0.7458 -vn 0.4727 -0.4696 0.7456 -vn 0.4728 -0.4692 0.7459 -vn -0.4750 0.3162 -0.8212 -vn -0.8401 -0.5074 0.1921 -vn -0.8399 -0.5076 0.1922 -vn 0.6014 -0.6699 0.4353 -vn 0.6019 -0.6696 0.4351 -vn 0.6017 -0.6697 0.4353 -vn -0.6175 0.6758 0.4025 -vn -0.6174 0.6760 0.4024 -vn 0.8491 -0.1306 -0.5118 -vn 0.8487 -0.1303 -0.5126 -vn 0.8490 -0.1302 -0.5121 -vn -0.6891 -0.1544 0.7080 -vn -0.6891 -0.1542 0.7081 -vn 0.5369 -0.5767 -0.6158 -vn 0.5356 -0.5787 -0.6150 -vn 0.5362 -0.5780 -0.6151 -vn -0.6615 0.4896 -0.5681 -vn -0.6618 0.4898 -0.5676 -vn -0.6617 0.4898 -0.5677 -vn -0.2426 -0.2054 -0.9481 -vn -0.2428 -0.2050 -0.9482 -vn -0.2427 -0.2052 -0.9481 -vn -0.6390 0.5388 -0.5490 -vn -0.6386 0.5390 -0.5493 -vn -0.6387 0.5389 -0.5492 -vn -0.3426 0.8397 -0.4214 -vn -0.3424 0.8395 -0.4219 -vn -0.3427 0.8399 -0.4208 -vn -0.6391 -0.5398 -0.5479 -vn 0.0212 0.9672 -0.2530 -vn 0.0212 0.9673 -0.2529 -vn 0.0214 0.9673 -0.2526 -vn -0.9273 -0.3396 -0.1572 -vn -0.9272 -0.3403 -0.1567 -vn -0.9273 -0.3397 -0.1573 -vn -0.6971 -0.5004 0.5135 -vn -0.6970 -0.5000 0.5139 -vn -0.6973 -0.5006 0.5130 -vn 0.3098 0.7265 -0.6133 -vn 0.3099 0.7264 -0.6134 -vn 0.3098 0.7264 -0.6135 -vn 0.7791 0.2991 -0.5509 -vn 0.7789 0.2996 -0.5510 -vn 0.7793 0.2987 -0.5508 -vn 0.9308 -0.3178 -0.1805 -vn 0.9308 -0.3178 -0.1806 -vn 0.8832 0.3815 -0.2729 -vn 0.8833 0.3813 -0.2728 -vn -0.0822 -0.7088 -0.7006 -vn -0.0823 -0.7088 -0.7006 -vn 0.9753 -0.2045 0.0840 -vn 0.8101 -0.4952 0.3140 -vn 0.8100 -0.4951 0.3144 -vn 0.8100 -0.4949 0.3147 -vn -0.3847 -0.1795 0.9054 -vn -0.3848 -0.1798 0.9053 -vn -0.0224 0.9996 0.0163 -vn -0.0232 0.9996 0.0159 -vn 0.0133 -0.9989 0.0456 -vn 0.3205 0.1839 -0.9292 -vn 0.3205 0.1836 -0.9293 -vn 0.3206 0.1836 -0.9292 -vn -0.4543 0.6429 -0.6167 -vn -0.4542 0.6428 -0.6168 -vn -0.4542 0.6428 -0.6169 -vn 0.1345 0.9772 -0.1641 -vn 0.1346 0.9772 -0.1640 -vn 0.1343 0.9772 -0.1647 -vn 0.8127 -0.4764 0.3356 -vn 0.8126 -0.4763 0.3358 -vn 0.8127 -0.4763 0.3357 -vn -0.8463 -0.2532 -0.4687 -vn -0.8463 -0.2535 -0.4685 -vn -0.8461 -0.2536 -0.4688 -vn 0.5084 -0.4687 -0.7224 -vn 0.5086 -0.4685 -0.7223 -vn 0.5083 -0.4688 -0.7224 -vn -0.3952 0.6932 -0.6027 -vn -0.1343 0.0696 -0.9885 -vn -0.5168 -0.7028 -0.4888 -vn -0.5159 -0.7040 -0.4881 -vn -0.5161 -0.7036 -0.4884 -vn -0.8220 0.3784 -0.4256 -vn 0.3168 0.2446 -0.9164 -vn 0.3170 0.2444 -0.9164 -vn 0.3171 0.2443 -0.9164 -vn 0.8260 0.1974 0.5280 -vn 0.8260 0.1974 0.5279 -vn 0.8261 0.1974 0.5278 -vn 0.8287 -0.2377 0.5067 -vn 0.8289 -0.2376 0.5065 -vn 0.8286 -0.2381 0.5067 -vn 0.2709 0.9375 0.2185 -vn 0.2704 0.9377 0.2183 -vn 0.2706 0.9377 0.2181 -vn -0.5496 0.7059 -0.4468 -vn -0.5497 0.7058 -0.4469 -vn -0.5497 0.7053 -0.4476 -vn 0.4524 0.4598 -0.7641 -vn 0.4523 0.4598 -0.7642 -vn 0.1056 0.6448 -0.7570 -vn 0.1052 0.6446 -0.7572 -vn 0.1050 0.6446 -0.7573 -vn -0.1915 0.9179 -0.3475 -vn -0.7732 -0.4893 -0.4034 -vn -0.7733 -0.4891 -0.4036 -vn -0.7734 -0.4891 -0.4033 -vn -0.6058 0.7891 -0.1018 -vn -0.6058 0.7891 -0.1017 -vn -0.6057 0.7890 -0.1026 -vn -0.8596 -0.0746 -0.5054 -vn -0.8595 -0.0749 -0.5057 -vn -0.8597 -0.0747 -0.5054 -vn 0.0069 0.4987 0.8667 -vn 0.0066 0.4986 0.8668 -vn 0.0064 0.4986 0.8668 -vn 0.5479 0.8128 0.1978 -vn 0.5477 0.8129 0.1981 -vn 0.5475 0.8130 0.1982 -vn 0.7929 -0.2965 0.5323 -vn 0.7930 -0.2963 0.5323 -vn 0.0106 0.9992 -0.0377 -vn 0.0109 0.9992 -0.0375 -vn 0.0109 0.9992 -0.0378 -vn -0.7423 0.5199 -0.4226 -vn -0.7426 0.5198 -0.4223 -vn -0.7426 0.5197 -0.4225 -vn -0.1781 -0.3178 -0.9313 -vn -0.1780 -0.3178 -0.9313 -vn -0.2911 -0.9420 0.1670 -vn -0.2914 -0.9419 0.1668 -vn -0.1724 0.9840 -0.0439 -vn -0.1720 0.9841 -0.0441 -vn -0.1731 0.9840 -0.0428 -vn 0.7031 -0.6528 0.2819 -vn 0.7030 -0.6527 0.2824 -vn 0.7031 -0.6528 0.2821 -vn -0.1600 0.8962 -0.4139 -vn -0.1604 0.8965 -0.4130 -vn -0.1601 0.8964 -0.4134 -vn 0.0604 0.9749 -0.2141 -vn 0.0604 0.9749 -0.2144 -vn 0.0606 0.9750 -0.2139 -vn -0.1881 0.9820 -0.0171 -vn -0.1885 0.9819 -0.0176 -vn -0.1883 0.9820 -0.0172 -vn 0.3706 0.7157 -0.5919 -vn 0.3705 0.7158 -0.5919 -vn 0.3701 0.7161 -0.5919 -vn -0.5866 -0.6828 0.4356 -vn -0.5867 -0.6828 0.4355 -vn -0.5867 -0.6827 0.4355 -vn 0.4238 0.6895 -0.5874 -vn 0.4238 0.6896 -0.5873 -vn 0.4236 0.6896 -0.5874 -vn 0.4540 -0.7419 0.4934 -vn 0.4539 -0.7420 0.4933 -vn 0.4540 -0.7420 0.4933 -vn 0.1803 0.9045 -0.3864 -vn 0.1804 0.9045 -0.3864 -vn 0.1807 0.9044 -0.3866 -vn -0.7789 -0.3598 0.5136 -vn -0.7793 -0.3591 0.5135 -vn -0.7785 -0.3609 0.5135 -vn 0.8879 -0.4583 -0.0401 -vn 0.8878 -0.4585 -0.0403 -vn 0.8878 -0.4584 -0.0402 -vn 0.6443 -0.5799 0.4986 -vn -0.3670 -0.8929 -0.2609 -vn -0.3619 0.8897 -0.2784 -vn -0.5283 -0.8447 -0.0856 -vn -0.5283 -0.8447 -0.0857 -vn -0.6925 0.4441 -0.5686 -vn -0.6923 0.4439 -0.5689 -vn -0.6922 0.4435 -0.5693 -vn -0.5245 -0.7893 -0.3193 -vn -0.5243 -0.7894 -0.3193 -vn -0.5244 -0.7893 -0.3193 -vn 0.6453 0.6366 -0.4223 -vn -0.6560 -0.5950 -0.4644 -vn -0.6558 -0.5954 -0.4642 -vn -0.6558 -0.5950 -0.4646 -vn -0.2977 0.8396 -0.4544 -vn -0.2979 0.8394 -0.4545 -vn 0.3127 0.9498 0.0097 -vn 0.3128 0.9498 0.0100 -vn 0.3128 0.9498 0.0096 -vn 0.4527 -0.8817 0.1329 -vn 0.8122 -0.0827 0.5775 -vn 0.3334 -0.9288 0.1619 -vn 0.3334 -0.9287 0.1622 -vn 0.3335 -0.9286 0.1625 -vn 0.8010 -0.5558 -0.2225 -vn 0.8011 -0.5557 -0.2223 -vn -0.6558 -0.7243 -0.2126 -vn -0.0232 -0.9886 -0.1487 -vn -0.0222 -0.9886 -0.1486 -vn 0.4387 0.8090 -0.3913 -vn 0.4387 0.8088 -0.3917 -vn 0.4387 0.8089 -0.3914 -vn -0.4344 0.7263 -0.5328 -vn -0.4345 0.7263 -0.5327 -vn 0.8623 0.1219 -0.4915 -vn 0.6287 -0.1100 0.7698 -vn 0.6291 -0.1099 0.7695 -vn 0.6280 -0.1101 0.7704 -vn -0.7191 0.6921 0.0616 -vn -0.7191 0.6922 0.0615 -vn -0.7192 0.6921 0.0617 -vn 0.2455 0.7783 0.5779 -vn 0.9520 0.2726 -0.1390 -vn 0.9522 0.2715 -0.1397 -vn -0.2419 -0.8574 -0.4543 -vn -0.2418 -0.8574 -0.4543 -vn -0.6823 -0.7105 0.1720 -vn -0.6827 -0.7101 0.1719 -vn -0.6826 -0.7103 0.1720 -vn 0.7047 -0.5114 -0.4918 -vn 0.7044 -0.5114 -0.4922 -vn 0.7045 -0.5116 -0.4919 -vn 0.2644 0.9619 -0.0694 -vn 0.2645 0.9620 -0.0681 -vn 0.2648 0.9619 -0.0677 -vn -0.8091 0.5301 -0.2537 -vn -0.6105 -0.6607 -0.4368 -vn 0.5745 -0.8176 -0.0383 -vn 0.5743 -0.8177 -0.0379 -vn 0.5746 -0.8176 -0.0373 -vn 0.0850 -0.0235 -0.9961 -vn 0.0842 -0.0240 -0.9962 -vn 0.0844 -0.0238 -0.9961 -vn 0.2445 0.7421 0.6242 -vn 0.2446 0.7420 0.6242 -vn 0.2444 0.7421 0.6242 -vn -0.5498 -0.5150 -0.6577 -vn -0.5496 -0.5151 -0.6577 -vn 0.8355 -0.5465 0.0576 -vn -0.2211 0.9724 -0.0750 -vn -0.2210 0.9724 -0.0750 -vn -0.2212 0.9723 -0.0751 -vn 0.1196 -0.9526 0.2798 -vn 0.1195 -0.9525 0.2802 -vn 0.1197 -0.9526 0.2796 -vn 0.0715 0.9607 0.2683 -vn 0.0714 0.9607 0.2683 -vn 0.4878 -0.5239 -0.6983 -vn 0.4877 -0.5240 -0.6982 -vn 0.8829 0.4585 0.1013 -vn 0.9611 -0.1504 -0.2317 -vn 0.9612 -0.1504 -0.2312 -vn 0.9610 -0.1504 -0.2320 -vn -0.4939 -0.8024 0.3350 -vn 0.3138 -0.7029 -0.6384 -vn 0.3142 -0.7030 -0.6380 -vn 0.3145 -0.7030 -0.6379 -vn -0.1014 0.9335 -0.3438 -vn -0.1013 0.9336 -0.3438 -vn 0.6644 0.6478 0.3728 -vn 0.6643 0.6479 0.3727 -vn 0.5213 -0.5205 -0.6762 -vn 0.5214 -0.5206 -0.6761 -vn -0.4651 -0.5688 -0.6784 -vn -0.4652 -0.5685 -0.6785 -vn -0.4648 -0.5692 -0.6782 -vn 0.8592 0.0517 0.5091 -vn 0.8592 0.0516 0.5091 -vn 0.3698 -0.3838 0.8462 -vn 0.3698 -0.3841 0.8460 -vn 0.3697 -0.3842 0.8460 -vn -0.3434 -0.6516 -0.6764 -vn -0.3437 -0.6513 -0.6765 -vn -0.3428 -0.6518 -0.6765 -vn -0.3178 -0.5436 -0.7768 -vn -0.3177 -0.5437 -0.7768 -vn -0.3177 -0.5438 -0.7768 -vn -0.2430 0.9251 -0.2918 -vn -0.2427 0.9252 -0.2917 -vn -0.2427 0.9252 -0.2918 -vn -0.8910 0.2998 -0.3410 -vn -0.8912 0.2997 -0.3406 -vn 0.2208 -0.0460 0.9742 -vn 0.4595 -0.7957 -0.3946 -vn -0.1931 -0.2204 0.9561 -vn -0.1952 -0.2205 0.9557 -vn -0.1963 -0.2215 0.9552 -vn -0.3964 -0.8818 0.2554 -vn -0.3964 -0.8819 0.2553 -vn 0.2051 0.5906 -0.7805 -vn 0.2057 0.5908 -0.7801 -vn 0.2055 0.5907 -0.7803 -vn 0.2089 -0.6422 -0.7375 -vn 0.2088 -0.6422 -0.7376 -vn 0.1807 -0.3712 -0.9108 -vn 0.1803 -0.3715 -0.9107 -vn 0.1801 -0.3716 -0.9108 -vn -0.0530 -0.2117 0.9759 -vn 0.8199 -0.3251 -0.4713 -vn 0.8200 -0.3249 -0.4712 -vn 0.5343 0.5155 0.6699 -vn 0.5360 0.5145 0.6693 -vn 0.5352 0.5149 0.6696 -vn -0.5261 -0.0927 -0.8454 -vn -0.5262 -0.0913 -0.8454 -vn -0.5270 -0.0889 -0.8452 -vn 0.0879 0.8042 -0.5878 -vn 0.0896 0.8038 -0.5881 -vn 0.0907 0.8039 -0.5878 -vn 0.0562 -0.9974 -0.0448 -vn 0.0563 -0.9974 -0.0449 -vn -0.3061 -0.8780 0.3679 -vn -0.3059 -0.8782 0.3678 -vn -0.3054 -0.8783 0.3678 -vn -0.1942 -0.3966 0.8972 -vn -0.1947 -0.3964 0.8972 -vn -0.1945 -0.3964 0.8973 -vn -0.6663 -0.4958 -0.5570 -vn -0.6667 -0.4956 -0.5567 -vn -0.6664 -0.4958 -0.5568 -vn 0.3987 0.1583 0.9033 -vn 0.3987 0.1584 0.9033 -vn 0.3985 0.1586 0.9034 -vn -0.7194 -0.5196 -0.4609 -vn -0.7194 -0.5197 -0.4609 -vn -0.7195 -0.5195 -0.4610 -vn -0.9370 -0.0947 -0.3363 -vn -0.9370 -0.0947 -0.3362 -vn -0.9372 -0.0947 -0.3356 -vn 0.8157 0.5373 0.2144 -vn 0.8146 0.5388 0.2147 -vn 0.8138 0.5397 0.2156 -vn 0.5446 0.7130 -0.4416 -vn 0.5448 0.7131 -0.4413 -vn 0.5445 0.7130 -0.4418 -vn -0.8050 0.1004 -0.5847 -vn -0.8049 0.1005 -0.5849 -vn 0.3348 0.9421 0.0189 -vn 0.3347 0.9421 0.0189 -vn 0.3350 0.9420 0.0189 -vn -0.3357 -0.6767 -0.6552 -vn -0.3357 -0.6768 -0.6552 -vn -0.3357 -0.6760 -0.6560 -vn -0.4993 -0.8594 -0.1102 -vn -0.4980 -0.8602 -0.1097 -vn -0.4986 -0.8598 -0.1103 -vn 0.5141 -0.5984 -0.6145 -vn 0.5139 -0.5984 -0.6147 -vn -0.5279 -0.8468 -0.0657 -vn -0.5279 -0.8468 -0.0652 -vn -0.5278 -0.8469 -0.0646 -vn -0.0152 0.0181 0.9997 -vn -0.0156 0.0172 0.9997 -vn -0.0151 0.0183 0.9997 -vn -0.1786 0.9592 0.2193 -vn -0.1786 0.9591 0.2195 -vn 0.1642 -0.9861 0.0260 -vn -0.5980 -0.5830 0.5500 -vn -0.5966 -0.5838 0.5507 -vn -0.5970 -0.5837 0.5504 -vn 0.5614 -0.7944 -0.2317 -vn 0.5610 -0.7948 -0.2313 -vn 0.5610 -0.7949 -0.2309 -vn 0.0055 -0.9162 -0.4006 -vn 0.0054 -0.9164 -0.4003 -vn -0.9465 -0.1428 0.2895 -vn -0.9466 -0.1429 0.2891 -vn -0.9464 -0.1426 0.2899 -vn 0.2469 -0.8447 -0.4749 -vn 0.2467 -0.8448 -0.4748 -vn -0.7436 -0.6539 -0.1396 -vn -0.7437 -0.6538 -0.1396 -vn -0.7436 -0.6539 -0.1395 -vn 0.5344 0.8420 -0.0736 -vn 0.5346 0.8419 -0.0735 -vn 0.6007 0.7967 0.0658 -vn 0.6006 0.7968 0.0653 -vn 0.6008 0.7967 0.0656 -vn -0.3245 -0.6913 -0.6456 -vn -0.3245 -0.6912 -0.6457 -vn -0.3246 -0.6914 -0.6454 -vn 0.2865 0.9509 -0.1167 -vn 0.2862 0.9510 -0.1166 -vn 0.2861 0.9511 -0.1165 -vn -0.9054 -0.1562 0.3948 -vn -0.9048 -0.1561 0.3962 -vn -0.9060 -0.1570 0.3932 -vn -0.0420 -0.5210 -0.8526 -vn -0.0423 -0.5213 -0.8523 -vn -0.0424 -0.5211 -0.8524 -vn 0.1368 -0.6780 -0.7222 -vn 0.1368 -0.6779 -0.7223 -vn 0.1369 -0.6778 -0.7224 -vn 0.1322 -0.2579 0.9571 -vn 0.1327 -0.2576 0.9571 -vn 0.1321 -0.2579 0.9571 -vn 0.6732 -0.4757 -0.5661 -vn 0.6733 -0.4758 -0.5659 -vn 0.6736 -0.4761 -0.5654 -vn -0.8558 -0.0078 -0.5172 -vn -0.8555 -0.0072 -0.5178 -vn -0.8556 -0.0076 -0.5176 -vn 0.7089 0.4041 0.5781 -vn 0.7090 0.4038 0.5781 -vn -0.3680 0.0287 -0.9294 -vn -0.3688 0.0296 -0.9290 -vn -0.3691 0.0311 -0.9289 -vn 0.9595 -0.2567 -0.1163 -vn 0.9595 -0.2566 -0.1166 -vn 0.9596 -0.2560 -0.1168 -vn -0.3589 0.1320 0.9240 -vn -0.3591 0.1318 0.9240 -vn -0.2799 -0.5015 -0.8186 -vn -0.2796 -0.5015 -0.8187 -vn -0.2792 -0.5017 -0.8187 -vn -0.7726 0.5641 -0.2913 -vn -0.0355 -0.4898 -0.8711 -vn -0.0355 -0.4897 -0.8712 -vn -0.7846 0.3942 -0.4786 -vn -0.7846 0.3941 -0.4787 -vn -0.7845 0.3941 -0.4788 -vn -0.7049 0.5795 0.4091 -vn 0.0217 0.1994 0.9797 -vn 0.0222 0.1993 0.9797 -vn 0.0225 0.1991 0.9797 -vn 0.1303 -0.9873 -0.0913 -vn 0.1302 -0.9873 -0.0910 -vn -0.4672 -0.0259 -0.8838 -vn -0.4673 -0.0261 -0.8837 -vn 0.0880 -0.9386 0.3335 -vn 0.0890 -0.9385 0.3336 -vn 0.0897 -0.9386 0.3331 -vn -0.3357 -0.9233 0.1866 -vn -0.3356 -0.9233 0.1870 -vn -0.3355 -0.9232 0.1872 -vn -0.0609 0.8736 0.4829 -vn -0.0608 0.8735 0.4830 -vn -0.0606 0.8736 0.4829 -vn -0.0423 -0.3567 -0.9332 -vn -0.0067 0.8423 -0.5390 -vn -0.0066 0.8424 -0.5388 -vn -0.0067 0.8422 -0.5391 -vn 0.2179 -0.5992 0.7703 -vn 0.2178 -0.5993 0.7703 -vn 0.2179 -0.5993 0.7703 -vn -0.8636 0.1561 -0.4794 -vn -0.8635 0.1559 -0.4797 -vn -0.8635 0.1558 -0.4796 -vn 0.5956 -0.3412 -0.7272 -vn 0.5951 -0.3414 -0.7275 -vn 0.5952 -0.3415 -0.7274 -vn 0.3408 0.4326 0.8347 -vn 0.3396 0.4317 0.8356 -vn 0.3400 0.4322 0.8352 -vn -0.2270 0.7520 -0.6189 -vn -0.2269 0.7516 -0.6194 -vn -0.2269 0.7518 -0.6191 -vn 0.3858 0.4400 0.8109 -vn 0.3854 0.4403 0.8109 -vn -0.9583 0.1396 -0.2493 -vn -0.7749 -0.5517 -0.3084 -vn -0.7744 -0.5522 -0.3087 -vn -0.7742 -0.5525 -0.3087 -vn 0.1946 0.9177 0.3463 -vn 0.1940 0.9178 0.3465 -vn 0.1953 0.9177 0.3459 -vn 0.6242 0.6678 0.4055 -vn 0.6244 0.6676 0.4055 -vn 0.4986 0.3083 0.8101 -vn 0.4988 0.3082 0.8101 -vn 0.4986 0.3078 0.8103 -vn -0.1564 0.1483 -0.9765 -vn -0.1563 0.1483 -0.9765 -vn -0.1012 -0.9787 -0.1786 -vn -0.1009 -0.9787 -0.1787 -vn -0.1011 -0.9787 -0.1787 -vn -0.2730 -0.4883 -0.8289 -vn -0.2733 -0.4884 -0.8287 -vn -0.2727 -0.4883 -0.8290 -vn -0.3230 -0.6059 -0.7270 -vn -0.3228 -0.6053 -0.7277 -vn -0.3221 -0.6051 -0.7281 -vn 0.0686 0.6940 -0.7167 -vn -0.1779 0.1629 -0.9705 -vn -0.1781 0.1630 -0.9704 -vn -0.1778 0.1626 -0.9705 -vn 0.8940 -0.4084 0.1845 -vn -0.3846 0.5006 -0.7755 -vn -0.3847 0.5006 -0.7755 -vn -0.3850 0.5005 -0.7755 -vn 0.8999 -0.1641 0.4040 -vn -0.0374 -0.6055 0.7950 -vn -0.0373 -0.6056 0.7949 -vn -0.0375 -0.6054 0.7950 -vn -0.0390 -0.6033 0.7965 -vn -0.0392 -0.6037 0.7962 -vn -0.0393 -0.6043 0.7958 -vn -0.2896 -0.8529 -0.4344 -vn -0.2896 -0.8528 -0.4345 -vn -0.2897 -0.8528 -0.4345 -vn -0.5269 0.2099 -0.8236 -vn -0.5268 0.2101 -0.8236 -vn -0.5268 0.2097 -0.8237 -vn 0.4574 0.5137 0.7259 -vn 0.4571 0.5140 0.7258 -vn 0.4578 0.5131 0.7260 -vn 0.5797 0.4213 -0.6974 -vn 0.5799 0.4208 -0.6976 -vn 0.5799 0.4207 -0.6977 -vn -0.0475 -0.5426 0.8386 -vn -0.0468 -0.5427 0.8386 -vn -0.0471 -0.5428 0.8386 -vn -0.2141 -0.3964 0.8928 -vn -0.2139 -0.3971 0.8925 -vn -0.2141 -0.3975 0.8923 -vn -0.0345 -0.4313 0.9015 -vn -0.0348 -0.4316 0.9014 -vn -0.0347 -0.4315 0.9014 -vn 0.4115 -0.8540 0.3183 -vn 0.4118 -0.8540 0.3181 -vn 0.4113 -0.8540 0.3185 -vn -0.6309 0.7609 0.1518 -vn -0.6308 0.7610 0.1517 -vn -0.1490 0.7459 0.6492 -vn -0.1486 0.7458 0.6494 -vn -0.1482 0.7460 0.6493 -vn -0.4761 0.1548 -0.8657 -vn -0.6332 -0.2383 0.7364 -vn -0.6331 -0.2382 0.7365 -vn -0.6333 -0.2383 0.7363 -vn 0.4864 -0.0225 0.8734 -vn 0.4861 -0.0227 0.8736 -vn 0.4863 -0.0227 0.8735 -vn 0.0650 0.9242 -0.3763 -vn 0.0646 0.9243 -0.3762 -vn 0.0649 0.9242 -0.3763 -vn -0.0917 0.1604 -0.9828 -vn -0.0925 0.1609 -0.9826 -vn -0.0923 0.1608 -0.9827 -vn 0.1074 0.9911 0.0788 -vn 0.1074 0.9911 0.0791 -vn 0.9052 0.3031 0.2979 -vn 0.9051 0.3033 0.2979 -vn -0.2913 0.1242 -0.9485 -vn -0.2915 0.1241 -0.9485 -vn -0.5921 0.4548 0.6653 -vn -0.5920 0.4548 0.6654 -vn -0.5484 -0.5691 -0.6127 -vn -0.5484 -0.5687 -0.6130 -vn -0.1427 0.2490 -0.9579 -vn -0.1420 0.2491 -0.9580 -vn -0.1422 0.2492 -0.9580 -vn 0.3011 -0.0975 0.9486 -vn 0.2667 0.4367 -0.8592 -vn 0.2668 0.4366 -0.8592 -vn 0.2666 0.4369 -0.8591 -vn 0.4985 -0.6978 0.5143 -vn 0.4985 -0.6977 0.5145 -vn 0.4985 -0.6981 0.5140 -vn -0.1134 0.9119 -0.3943 -vn -0.7853 -0.6112 -0.0989 -vn -0.7853 -0.6111 -0.0992 -vn -0.7853 -0.6112 -0.0988 -vn 0.1038 0.7734 -0.6253 -vn 0.1037 0.7735 -0.6253 -vn -0.0323 -0.0216 0.9992 -vn -0.0322 -0.0216 0.9992 -vn -0.2549 -0.8228 -0.5079 -vn -0.2546 -0.8229 -0.5079 -vn -0.2548 -0.8229 -0.5079 -vn -0.5360 0.7839 -0.3133 -vn -0.5339 0.7870 -0.3092 -vn -0.5340 0.7859 -0.3117 -vn -0.2949 0.0141 -0.9554 -vn -0.2950 0.0143 -0.9554 -vn -0.2950 0.0142 -0.9554 -vn -0.1873 -0.2710 -0.9442 -vn -0.1863 -0.2713 -0.9443 -vn -0.1868 -0.2712 -0.9442 -vn 0.7776 0.6179 -0.1164 -vn -0.1217 0.9742 -0.1902 -vn -0.6541 -0.7374 -0.1684 -vn -0.6544 -0.7374 -0.1676 -vn -0.6542 -0.7374 -0.1680 -vn -0.9224 -0.0478 0.3834 -vn -0.9223 -0.0478 0.3835 -vn 0.6548 -0.5726 0.4933 -vn 0.6566 -0.5709 0.4929 -vn 0.6559 -0.5717 0.4928 -vn 0.3919 0.9179 -0.0622 -vn 0.3920 0.9179 -0.0617 -vn 0.3920 0.9179 -0.0619 -vn 0.8419 0.0741 -0.5345 -vn 0.8420 0.0738 -0.5344 -vn 0.8420 0.0739 -0.5344 -vn 0.1127 0.1741 0.9783 -vn 0.1126 0.1741 0.9783 -vn 0.1128 0.1741 0.9782 -vn 0.8228 0.2317 -0.5189 -vn 0.8227 0.2328 -0.5187 -vn 0.8228 0.2323 -0.5187 -vn 0.3678 0.9058 -0.2102 -vn 0.3669 0.9062 -0.2103 -vn 0.3668 0.9062 -0.2104 -vn 0.8092 -0.3851 0.4437 -vn 0.8090 -0.3853 0.4440 -vn 0.3048 0.9403 0.1517 -vn 0.3047 0.9403 0.1518 -vn 0.9920 0.0399 -0.1194 -vn 0.9920 0.0398 -0.1196 -vn 0.9921 0.0397 -0.1193 -vn -0.5550 0.8307 0.0448 -vn -0.5551 0.8306 0.0446 -vn -0.5550 0.8306 0.0449 -vn 0.5262 -0.4375 -0.7292 -vn 0.5254 -0.4390 -0.7289 -vn 0.5257 -0.4381 -0.7292 -vn 0.5900 0.3469 -0.7291 -vn -0.4893 -0.6637 -0.5658 -vn -0.4896 -0.6640 -0.5652 -vn -0.4895 -0.6632 -0.5662 -vn -0.8776 -0.3232 -0.3539 -vn -0.3123 0.9380 -0.1507 -vn -0.3129 0.9377 -0.1508 -vn -0.2603 0.2341 -0.9367 -vn -0.2600 0.2337 -0.9369 -vn -0.2602 0.2340 -0.9368 -vn -0.5795 -0.5176 -0.6295 -vn -0.8891 -0.2282 -0.3968 -vn -0.8892 -0.2282 -0.3966 -vn -0.8891 -0.2286 -0.3964 -vn -0.1419 0.7682 -0.6243 -vn -0.1421 0.7682 -0.6243 -vn -0.1424 0.7680 -0.6244 -vn 0.2721 0.9520 -0.1401 -vn 0.2720 0.9520 -0.1402 -vn 0.5605 -0.5164 -0.6474 -vn 0.5608 -0.5166 -0.6470 -vn 0.5604 -0.5162 -0.6476 -vn -0.7328 -0.2804 -0.6200 -vn 0.5588 -0.3850 0.7345 -vn 0.5599 -0.3865 0.7329 -vn 0.5597 -0.3883 0.7321 -vn -0.8916 0.4245 -0.1577 -vn -0.8914 0.4250 -0.1576 -vn -0.8914 0.4249 -0.1576 -vn 0.9940 -0.1065 0.0258 -vn 0.9940 -0.1064 0.0262 -vn 0.9940 -0.1059 0.0264 -vn -0.7086 -0.5554 -0.4351 -vn -0.7088 -0.5553 -0.4349 -vn -0.7089 -0.5552 -0.4350 -vn -0.6278 -0.0678 0.7754 -vn -0.6275 -0.0681 0.7756 -vn -0.6272 -0.0682 0.7759 -vn 0.8128 -0.4333 0.3894 -vn 0.8127 -0.4329 0.3900 -vn 0.8127 -0.4336 0.3891 -vn 0.6110 0.0416 0.7905 -vn 0.6109 0.0415 0.7906 -vn 0.6126 0.0410 0.7893 -vn -0.8165 -0.4699 -0.3354 -vn 0.1382 0.4160 -0.8988 -vn 0.1379 0.4149 -0.8993 -vn 0.1380 0.4155 -0.8991 -vn 0.3903 0.9164 -0.0885 -vn 0.3904 0.9164 -0.0886 -vn 0.3905 0.9163 -0.0887 -vn 0.8273 -0.3425 0.4453 -vn 0.8272 -0.3427 0.4454 -vn 0.8274 -0.3425 0.4451 -vn -0.5357 -0.0448 -0.8432 -vn -0.5356 -0.0449 -0.8433 -vn -0.5355 -0.0448 -0.8434 -vn -0.0005 0.0003 1.0000 -vn -0.8187 -0.5535 -0.1528 -vn -0.8186 -0.5536 -0.1530 -vn -0.8185 -0.5538 -0.1528 -vn -0.0725 0.4955 -0.8656 -vn -0.0727 0.4955 -0.8656 -vn -0.0722 0.4956 -0.8655 -vn -0.3193 -0.3741 0.8707 -vn -0.3190 -0.3739 0.8709 -vn -0.3191 -0.3740 0.8708 -vn -0.7883 -0.4730 -0.3934 -vn -0.6938 0.1104 -0.7116 -vn 0.8203 -0.5654 0.0860 -vn 0.8202 -0.5655 0.0860 -vn 0.8203 -0.5655 0.0859 -vn 0.5575 0.7118 -0.4272 -vn -0.8440 -0.4547 -0.2844 -vn -0.8442 -0.4543 -0.2845 -vn -0.8439 -0.4550 -0.2844 -vn -0.0503 -0.9986 0.0136 -vn -0.0505 -0.9986 0.0137 -vn 0.4683 -0.7114 -0.5241 -vn 0.4703 -0.7120 -0.5214 -vn 0.4664 -0.7116 -0.5255 -vn -0.1026 -0.9947 -0.0000 -vn 0.9494 0.3103 -0.0492 -vn 0.9494 0.3103 -0.0491 -vn 0.9494 0.3102 -0.0491 -vn -0.8485 -0.3083 -0.4302 -vn -0.8488 -0.3077 -0.4300 -vn -0.8486 -0.3080 -0.4302 -vn 0.1298 0.9915 0.0103 -vn 0.1298 0.9915 0.0098 -vn 0.1299 0.9915 0.0099 -vn -0.0865 -0.9752 0.2039 -vn 0.0066 -0.3810 -0.9246 -vn 0.0074 -0.3805 -0.9247 -vn 0.0059 -0.3809 -0.9246 -vn -0.8270 -0.3374 -0.4497 -vn -0.8271 -0.3374 -0.4495 -vn -0.4673 0.6971 -0.5438 -vn -0.4676 0.6968 -0.5439 -vn -0.7915 0.5785 -0.1971 -vn -0.7917 0.5783 -0.1970 -vn -0.7913 0.5788 -0.1972 -vn 0.3783 -0.8775 0.2948 -vn 0.4640 -0.8579 0.2206 -vn 0.4643 -0.8578 0.2205 -vn 0.5219 0.8319 0.1885 -vn 0.5218 0.8321 0.1880 -vn 0.5218 0.8322 0.1876 -vn -0.7232 0.4189 -0.5491 -vn -0.7231 0.4190 -0.5491 -vn -0.7231 0.4189 -0.5492 -vn -0.4669 0.7228 -0.5094 -vn -0.4658 0.7232 -0.5100 -vn -0.4667 0.7229 -0.5096 -vn -0.6413 -0.0733 -0.7638 -vn -0.6411 -0.0734 -0.7639 -vn -0.2117 -0.9773 -0.0053 -vn -0.2121 -0.9772 -0.0056 -vn -0.5724 0.3934 -0.7194 -vn 0.4285 0.8612 -0.2734 -vn 0.4283 0.8613 -0.2733 -vn -0.8262 0.4544 -0.3329 -vn -0.8262 0.4544 -0.3330 -vn -0.8261 0.4545 -0.3332 -vn -0.6514 0.6038 -0.4595 -vn -0.6513 0.6039 -0.4595 -vn -0.6514 0.6039 -0.4594 -vn 0.0118 0.9958 -0.0908 -vn 0.0117 0.9958 -0.0909 -vn -0.8132 -0.4658 -0.3489 -vn -0.8131 -0.4659 -0.3490 -vn -0.4619 -0.1179 -0.8791 -vn -0.4619 -0.1177 -0.8791 -vn -0.4617 -0.1175 -0.8792 -vn -0.3568 0.9267 0.1178 -vn -0.3570 0.9267 0.1177 -vn -0.3570 0.9267 0.1176 -vn -0.5745 0.4465 -0.6860 -vn -0.5754 0.4457 -0.6858 -vn -0.5749 0.4462 -0.6858 -vn -0.3186 -0.4222 0.8486 -vn -0.3189 -0.4224 0.8485 -vn -0.8015 0.3133 -0.5093 -vn -0.8015 0.3134 -0.5092 -vn -0.8014 0.3137 -0.5093 -vn 0.4600 0.6662 0.5870 -vn 0.4601 0.6661 0.5870 -vn -0.5576 0.7548 -0.3454 -vn -0.5576 0.7549 -0.3453 -vn 0.0659 0.6046 0.7938 -vn 0.0657 0.6044 0.7939 -vn 0.0662 0.6047 0.7937 -vn 0.7818 0.2623 0.5657 -vn 0.7826 0.2613 0.5650 -vn 0.7821 0.2617 0.5656 -vn 0.9035 -0.4148 -0.1078 -vn 0.9035 -0.4148 -0.1076 -vn 0.9035 -0.4148 -0.1079 -vn 0.8815 -0.4649 -0.0821 -vn 0.8814 -0.4652 -0.0821 -vn 0.8815 -0.4649 -0.0822 -vn 0.6494 -0.5887 0.4814 -vn 0.6496 -0.5889 0.4809 -vn 0.6496 -0.5890 0.4808 -vn 0.6404 0.4979 -0.5848 -vn 0.6403 0.4979 -0.5849 -vn 0.0920 -0.9591 -0.2678 -vn 0.4326 0.8939 -0.1174 -vn 0.4324 0.8940 -0.1177 -vn 0.4325 0.8939 -0.1175 -vn -0.4407 -0.2441 0.8638 -vn -0.4410 -0.2443 0.8636 -vn -0.4413 -0.2445 0.8634 -vn -0.0923 0.9724 -0.2142 -vn -0.0923 0.9725 -0.2140 -vn -0.0922 0.9725 -0.2138 -vn 0.0519 0.8092 -0.5852 -vn 0.0516 0.8094 -0.5850 -vn 0.0517 0.8094 -0.5850 -vn 0.8799 -0.4129 -0.2351 -vn 0.8801 -0.4128 -0.2344 -vn -0.7563 -0.4900 -0.4335 -vn -0.7562 -0.4902 -0.4335 -vn -0.7561 -0.4903 -0.4335 -vn -0.6456 -0.7316 -0.2191 -vn 0.5991 -0.3329 -0.7282 -vn 0.5993 -0.3329 -0.7280 -vn -0.9083 0.0686 0.4126 -vn -0.9082 0.0686 0.4128 -vn -0.9079 0.0688 0.4135 -vn -0.7783 0.5829 -0.2333 -vn -0.7783 0.5829 -0.2334 -vn -0.7784 0.5827 -0.2337 -vn 0.2600 0.8717 -0.4154 -vn 0.2520 -0.3322 0.9089 -vn 0.2521 -0.3324 0.9088 -vn 0.5077 -0.5545 -0.6593 -vn 0.5077 -0.5546 -0.6593 -vn 0.5077 -0.5545 -0.6594 -vn 0.8236 0.4710 0.3159 -vn 0.8233 0.4711 0.3165 -vn 0.8234 0.4711 0.3164 -vn -0.8020 0.4107 -0.4337 -vn -0.8012 0.4121 -0.4338 -vn -0.8016 0.4113 -0.4338 -vn 0.8593 0.4886 0.1514 -vn 0.8593 0.4886 0.1513 -vn -0.9707 -0.0534 0.2341 -vn -0.9710 -0.0518 0.2335 -vn -0.9712 -0.0511 0.2327 -vn -0.3506 -0.7660 0.5388 -vn -0.3507 -0.7659 0.5389 -vn -0.3506 -0.7661 0.5387 -vn -0.8037 -0.5195 -0.2902 -vn 0.8232 0.5372 0.1838 -vn 0.8233 0.5371 0.1837 -vn 0.8230 0.5374 0.1837 -vn -0.8182 -0.4411 -0.3688 -vn -0.8181 -0.4410 -0.3691 -vn -0.8181 -0.4410 -0.3692 -vn -0.5946 -0.7322 -0.3321 -vn -0.5945 -0.7323 -0.3322 -vn -0.5942 -0.7324 -0.3324 -vn 0.0565 0.2730 -0.9603 -vn 0.0564 0.2730 -0.9604 -vn -0.7456 -0.2904 0.5998 -vn -0.7462 -0.2899 0.5993 -vn -0.7454 -0.2905 0.6000 -vn -0.8225 0.0023 0.5688 -vn -0.8220 0.0016 0.5694 -vn -0.8223 0.0022 0.5691 -vn 0.9911 0.0316 -0.1293 -vn 0.9911 0.0315 -0.1294 -vn 0.9911 0.0316 -0.1295 -vn 0.4957 0.5866 -0.6405 -vn 0.4955 0.5868 -0.6404 -vn 0.4959 0.5865 -0.6404 -vn -0.4103 0.2971 0.8622 -vn -0.4102 0.2970 0.8623 -vn -0.4105 0.2970 0.8621 -vn 0.6754 -0.5237 -0.5192 -vn 0.8842 -0.4649 -0.0454 -vn 0.8839 -0.4654 -0.0458 -vn 0.8846 -0.4641 -0.0453 -vn -0.7458 0.1116 -0.6567 -vn -0.7460 0.1115 -0.6566 -vn -0.7461 0.1114 -0.6565 -vn 0.7573 0.4503 0.4730 -vn 0.7568 0.4506 0.4735 -vn 0.7566 0.4507 0.4738 -vn 0.7789 -0.2299 0.5834 -vn 0.7790 -0.2300 0.5833 -vn 0.6434 0.6416 -0.4176 -vn 0.6433 0.6417 -0.4176 -vn 0.6431 0.6420 -0.4175 -vn -0.7846 0.5041 0.3608 -vn -0.7847 0.5042 0.3607 -vn -0.1039 0.2681 0.9578 -vn -0.1984 0.2410 -0.9500 -vn -0.3021 -0.6873 -0.6606 -vn -0.3031 -0.6880 -0.6594 -vn -0.3028 -0.6876 -0.6600 -vn 0.0790 -0.9016 -0.4253 -vn 0.0794 -0.9022 -0.4240 -vn 0.0792 -0.9018 -0.4248 -vn 0.0764 0.9527 -0.2943 -vn 0.0764 0.9526 -0.2945 -vn -0.2366 0.9628 -0.1306 -vn -0.2369 0.9627 -0.1307 -vn -0.2368 0.9627 -0.1306 -vn -0.7113 0.5993 -0.3673 -vn -0.7113 0.5990 -0.3678 -vn -0.7113 0.5992 -0.3675 -vn 0.7891 0.5646 0.2421 -vn 0.7891 0.5645 0.2423 -vn 0.7892 0.5643 0.2425 -vn 0.8727 -0.4862 -0.0446 -vn 0.8727 -0.4862 -0.0447 -vn 0.8727 -0.4863 -0.0445 -vn -0.0558 0.9911 0.1206 -vn -0.0557 0.9911 0.1206 -vn -0.7352 0.5209 -0.4336 -vn -0.7356 0.5208 -0.4332 -vn -0.7347 0.5214 -0.4341 -vn 0.8121 0.5833 -0.0123 -vn 0.0506 -0.9585 -0.2807 -vn 0.0511 -0.9586 -0.2800 -vn 0.0507 -0.9585 -0.2806 -vn 0.3761 -0.5984 -0.7074 -vn 0.3756 -0.5983 -0.7078 -vn 0.3767 -0.5988 -0.7068 -vn 0.8088 0.5878 -0.0177 -vn 0.8089 0.5877 -0.0179 -vn -0.3125 0.9039 -0.2921 -vn -0.3122 0.9042 -0.2914 -vn -0.3121 0.9043 -0.2913 -vn 0.7799 -0.4814 -0.4000 -vn 0.7664 0.5760 -0.2844 -vn 0.0708 0.9029 -0.4239 -vn 0.6642 0.6574 0.3559 -vn 0.6642 0.6576 0.3555 -vn 0.6643 0.6572 0.3561 -vn -0.7105 0.7033 0.0220 -vn -0.7106 0.7033 0.0223 -vn -0.4461 -0.8711 0.2052 -vn -0.4462 -0.8711 0.2050 -vn 0.2094 -0.5699 0.7946 -vn 0.2087 -0.5706 0.7943 -vn 0.2095 -0.5699 0.7946 -vn -0.2140 -0.8515 -0.4787 -vn -0.3125 0.8699 -0.3816 -vn -0.3125 0.8701 -0.3812 -vn -0.3124 0.8700 -0.3815 -vn 0.5270 -0.0281 -0.8494 -vn 0.5270 -0.0277 -0.8494 -vn 0.5269 -0.0283 -0.8495 -vn -0.3453 -0.8559 -0.3850 -vn -0.0659 -0.8461 -0.5290 -vn -0.0663 -0.8461 -0.5289 -vn -0.0662 -0.8461 -0.5289 -vn -0.2163 0.6317 -0.7444 -vn -0.2163 0.6322 -0.7440 -vn 0.6336 0.6222 -0.4598 -vn 0.6336 0.6224 -0.4596 -vn 0.6336 0.6226 -0.4593 -vn -0.3641 0.9311 -0.0221 -vn -0.3643 0.9310 -0.0218 -vn 0.2095 -0.9379 -0.2766 -vn 0.2095 -0.9376 -0.2774 -vn 0.2091 -0.9381 -0.2761 -vn 0.2257 0.3311 0.9162 -vn 0.2260 0.3312 0.9161 -vn 0.2262 0.3314 0.9160 -vn 0.8705 -0.4856 0.0803 -vn 0.2929 0.6716 -0.6806 -vn 0.0925 -0.9566 -0.2762 -vn 0.0922 -0.9566 -0.2764 -vn 0.0920 -0.9566 -0.2765 -vn 0.5143 0.1570 -0.8431 -vn 0.5141 0.1572 -0.8432 -vn 0.5139 0.1576 -0.8432 -vn 0.8673 0.0945 -0.4887 -vn 0.8671 0.0941 -0.4892 -vn 0.8672 0.0944 -0.4889 -vn -0.6563 -0.4369 -0.6151 -vn -0.6562 -0.4370 -0.6151 -vn -0.6563 -0.4368 -0.6152 -vn 0.5227 -0.8517 0.0377 -vn 0.5224 -0.8519 0.0379 -vn 0.5223 -0.8519 0.0379 -vn 0.7641 -0.3436 0.5459 -vn 0.8223 -0.5319 -0.2025 -vn 0.8221 -0.5322 -0.2024 -vn -0.2677 0.5050 0.8206 -vn -0.2677 0.5051 0.8205 -vn -0.2678 0.5051 0.8205 -vn 0.1665 -0.7716 -0.6139 -vn 0.1662 -0.7713 -0.6144 -vn 0.1666 -0.7714 -0.6141 -vn 0.2897 -0.8037 -0.5197 -vn 0.2897 -0.8036 -0.5198 -vn 0.2898 -0.8035 -0.5200 -vn -0.6284 -0.1058 0.7707 -vn -0.6282 -0.1060 0.7708 -vn -0.6285 -0.1058 0.7706 -vn -0.7344 0.4685 -0.4911 -vn -0.7335 0.4691 -0.4919 -vn -0.7329 0.4689 -0.4929 -vn -0.3194 0.8404 -0.4379 -vn -0.3196 0.8400 -0.4385 -vn -0.3196 0.8400 -0.4384 -vn 0.1368 -0.9878 -0.0746 -vn 0.1365 -0.9878 -0.0745 -vn 0.1370 -0.9878 -0.0746 -vn 0.9716 -0.1598 -0.1747 -vn 0.9719 -0.1596 -0.1729 -vn 0.9717 -0.1599 -0.1740 -vn 0.1601 -0.3213 0.9333 -vn 0.1602 -0.3213 0.9333 -vn 0.5513 0.7721 0.3160 -vn 0.5512 0.7722 0.3159 -vn -0.2786 -0.5073 -0.8155 -vn -0.2790 -0.5072 -0.8154 -vn -0.2792 -0.5071 -0.8154 -vn 0.9471 0.3055 0.0979 -vn 0.9481 0.3026 0.0980 -vn 0.9472 0.3054 0.0979 -vn -0.1276 -0.9074 -0.4005 -vn -0.1273 -0.9074 -0.4006 -vn -0.1271 -0.9074 -0.4007 -vn 0.8996 0.0533 -0.4334 -vn 0.8997 0.0533 -0.4333 -vn 0.8998 0.0531 -0.4330 -vn -0.5230 -0.3847 0.7606 -vn 0.0186 0.2763 -0.9609 -vn 0.0187 0.2766 -0.9608 -vn 0.0187 0.2765 -0.9608 -vn 0.9759 -0.2177 0.0167 -vn 0.4765 -0.4877 0.7315 -vn 0.4750 -0.4895 0.7313 -vn 0.4738 -0.4901 0.7317 -vn -0.1250 -0.7812 0.6116 -vn -0.1249 -0.7814 0.6114 -vn -0.1247 -0.7815 0.6113 -vn -0.2696 -0.9624 -0.0331 -vn -0.2694 -0.9625 -0.0330 -vn -0.2694 -0.9625 -0.0329 -vn 0.9730 -0.0651 0.2213 -vn 0.9731 -0.0650 0.2212 -vn 0.9730 -0.0650 0.2213 -vn 0.7344 -0.6139 0.2894 -vn 0.7344 -0.6140 0.2892 -vn 0.7344 -0.6141 0.2891 -vn -0.6335 0.3861 -0.6705 -vn 0.9742 0.1630 0.1559 -vn 0.9743 0.1629 0.1554 -vn 0.4230 0.8745 0.2373 -vn 0.4232 0.8743 0.2377 -vn 0.4230 0.8746 0.2371 -vn 0.7907 0.5773 0.2037 -vn 0.7906 0.5774 0.2037 -vn 0.7910 0.5770 0.2037 -vn 0.3077 0.9362 -0.1699 -vn -0.2385 -0.8513 -0.4673 -vn -0.2387 -0.8513 -0.4672 -vn -0.2386 -0.8511 -0.4676 -vn -0.5644 0.6938 -0.4473 -vn -0.5646 0.6937 -0.4472 -vn -0.5646 0.6936 -0.4475 -vn 0.9435 0.2474 0.2205 -vn 0.1305 -0.5881 0.7982 -vn 0.1304 -0.5881 0.7982 -vn 0.1306 -0.5880 0.7983 -vn -0.4197 -0.6886 0.5913 -vn 0.3725 0.6802 -0.6313 -vn 0.3727 0.6802 -0.6312 -vn 0.3727 0.6803 -0.6311 -vn -0.0017 -0.0027 1.0000 -vn -0.6408 0.4801 -0.5991 -vn -0.6408 0.4800 -0.5991 -vn -0.1818 -0.5641 0.8054 -vn -0.1816 -0.5643 0.8054 -vn 0.4090 0.6835 -0.6046 -vn 0.4088 0.6836 -0.6046 -vn -0.3032 -0.0166 -0.9528 -vn -0.3022 -0.0171 -0.9531 -vn -0.3031 -0.0167 -0.9528 -vn -0.0118 -0.1744 -0.9846 -vn -0.0118 -0.1743 -0.9846 -vn -0.0116 -0.1738 -0.9847 -vn -0.6134 0.6105 0.5011 -vn -0.6111 0.6104 0.5040 -vn -0.6120 0.6108 0.5024 -vn -0.0908 -0.3801 0.9205 -vn -0.0910 -0.3802 0.9204 -vn 0.3818 -0.7996 0.4635 -vn 0.3820 -0.7997 0.4632 -vn 0.3830 -0.7997 0.4625 -vn -0.5097 -0.2031 0.8360 -vn -0.5099 -0.2032 0.8359 -vn -0.5097 -0.2033 0.8360 -vn -0.0852 -0.7996 0.5945 -vn -0.0850 -0.7995 0.5946 -vn -0.0847 -0.7995 0.5947 -vn -0.4969 0.8593 0.1214 -vn -0.4953 0.8600 0.1228 -vn -0.4963 0.8596 0.1215 -vn -0.1095 0.8533 0.5098 -vn -0.1092 0.8537 0.5092 -vn -0.1090 0.8539 0.5090 -vn -0.1442 -0.7861 0.6011 -vn -0.1444 -0.7859 0.6013 -vn -0.1445 -0.7858 0.6014 -vn -0.3843 -0.7631 -0.5196 -vn -0.3841 -0.7631 -0.5197 -vn 0.3064 -0.7814 0.5437 -vn 0.3067 -0.7814 0.5435 -vn 0.3069 -0.7814 0.5434 -vn -0.8972 -0.2627 0.3549 -vn 0.6414 -0.5039 0.5785 -vn 0.6413 -0.5036 0.5789 -vn 0.3484 0.8514 0.3920 -vn 0.3476 0.8519 0.3917 -vn 0.3479 0.8518 0.3917 -vn -0.5470 0.3746 -0.7487 -vn -0.5470 0.3748 -0.7486 -vn -0.2684 0.4216 -0.8661 -vn -0.2685 0.4216 -0.8661 -vn 0.7023 -0.6863 -0.1893 -vn -0.4478 -0.8167 0.3639 -vn -0.4478 -0.8166 0.3643 -vn -0.3671 0.4602 0.8084 -vn -0.3669 0.4599 0.8086 -vn -0.3671 0.4600 0.8085 -vn 0.4379 -0.4423 0.7827 -vn 0.4381 -0.4425 0.7825 -vn 0.4378 -0.4422 0.7828 -vn -0.0408 0.8530 -0.5204 -vn -0.0409 0.8528 -0.5206 -vn -0.0411 0.8526 -0.5209 -vn -0.7623 0.6444 -0.0600 -vn -0.7623 0.6444 -0.0604 -vn -0.7623 0.6444 -0.0602 -vn 0.5780 0.1487 0.8024 -vn 0.5780 0.1492 0.8023 -vn 0.5781 0.1496 0.8021 -vn 0.4888 -0.6743 0.5535 -vn 0.6510 -0.7590 0.0131 -vn 0.6554 0.6475 0.3888 -vn 0.3992 0.9140 -0.0717 -vn 0.3991 0.9141 -0.0719 -vn -0.3217 0.1065 -0.9408 -vn -0.1364 0.9729 -0.1867 -vn -0.1365 0.9729 -0.1866 -vn -0.6268 -0.5253 0.5755 -vn -0.4473 0.3852 -0.8072 -vn -0.4473 0.3850 -0.8073 -vn -0.4473 0.3849 -0.8073 -vn 0.3860 0.8071 -0.4469 -vn -0.3816 -0.7399 0.5540 -vn -0.3827 -0.7394 0.5539 -vn -0.3823 -0.7395 0.5541 -vn -0.5042 0.8144 -0.2874 -vn -0.5041 0.8144 -0.2874 -vn 0.4906 -0.6744 0.5518 -vn -0.2991 -0.7723 0.5605 -vn -0.2996 -0.7722 0.5604 -vn -0.2988 -0.7723 0.5606 -vn -0.3949 0.2844 -0.8736 -vn -0.3951 0.2843 -0.8735 -vn -0.3951 0.2844 -0.8735 -vn 0.2553 -0.2807 0.9252 -vn 0.2550 -0.2804 0.9254 -vn 0.2550 -0.2805 0.9254 -vn -0.1285 -0.5673 0.8134 -vn -0.1283 -0.5673 0.8134 -vn -0.1281 -0.5674 0.8134 -vn -0.9074 0.0109 0.4202 -vn -0.9074 0.0108 0.4202 -vn 0.8717 -0.1992 0.4478 -vn 0.8717 -0.1991 0.4477 -vn 0.6988 -0.5216 -0.4894 -vn 0.8999 -0.3267 0.2889 -vn 0.9001 -0.3266 0.2882 -vn 0.9003 -0.3265 0.2879 -vn 0.8857 -0.4271 0.1818 -vn 0.8861 -0.4264 0.1817 -vn 0.8847 -0.4287 0.1831 -vn -0.9370 -0.1402 -0.3200 -vn -0.9370 -0.1404 -0.3198 -vn -0.9370 -0.1401 -0.3200 -vn -0.4438 -0.0501 -0.8947 -vn -0.9091 -0.0527 -0.4133 -vn -0.9092 -0.0525 -0.4130 -vn -0.9093 -0.0521 -0.4130 -vn 0.1661 0.7740 -0.6110 -vn 0.1661 0.7741 -0.6109 -vn 0.1660 0.7744 -0.6105 -vn 0.4058 0.5073 -0.7602 -vn -0.8964 -0.0129 0.4431 -vn -0.8966 -0.0126 0.4426 -vn 0.7958 -0.5290 -0.2946 -vn 0.7967 -0.5278 -0.2945 -vn 0.7952 -0.5303 -0.2940 -vn -0.8051 0.3768 -0.4581 -vn -0.8051 0.3768 -0.4580 -vn -0.8052 0.3766 -0.4581 -vn -0.1725 0.9098 -0.3776 -vn -0.1721 0.9098 -0.3777 -vn -0.1718 0.9097 -0.3780 -vn 0.3826 0.7246 -0.5732 -vn 0.3818 0.7262 -0.5717 -vn 0.3819 0.7259 -0.5720 -vn -0.8649 0.4698 0.1769 -vn -0.8647 0.4701 0.1767 -vn -0.0279 0.9768 -0.2123 -vn -0.2945 -0.9502 0.1018 -vn -0.2945 -0.9504 0.1005 -vn -0.2947 -0.9502 0.1012 -vn -0.0992 -0.2552 -0.9618 -vn 0.6904 0.7231 -0.0195 -vn 0.6903 0.7232 -0.0202 -vn 0.6904 0.7231 -0.0200 -vn -0.9313 -0.3641 -0.0063 -vn -0.2599 -0.1967 -0.9454 -vn -0.2598 -0.1965 -0.9455 -vn -0.2594 -0.1961 -0.9457 -vn 0.7163 -0.5333 0.4500 -vn 0.4609 0.8809 0.1074 -vn 0.4611 0.8808 0.1073 -vn 0.4607 0.8811 0.1072 -vn 0.4097 -0.8768 0.2517 -vn 0.4095 -0.8768 0.2522 -vn 0.4096 -0.8767 0.2523 -vn 0.6733 -0.7331 0.0959 -vn 0.6732 -0.7333 0.0956 -vn 0.6730 -0.7335 0.0954 -vn 0.8703 -0.4306 0.2390 -vn 0.8703 -0.4306 0.2393 -vn 0.8703 -0.4304 0.2395 -vn 0.8395 -0.4825 -0.2500 -vn 0.8393 -0.4827 -0.2501 -vn 0.8394 -0.4826 -0.2501 -vn 0.5137 0.7928 -0.3280 -vn 0.5131 0.7932 -0.3280 -vn 0.5137 0.7928 -0.3278 -vn 0.4129 0.8983 0.1501 -vn 0.4120 0.8988 0.1496 -vn 0.4125 0.8986 0.1496 -vn -0.1740 0.4730 -0.8637 -vn -0.1740 0.4728 -0.8638 -vn -0.1743 0.4725 -0.8639 -vn -0.2259 0.8635 -0.4509 -vn -0.2257 0.8638 -0.4505 -vn -0.2258 0.8636 -0.4508 -vn -0.3932 0.2096 -0.8952 -vn -0.3935 0.2097 -0.8951 -vn 0.5518 0.5307 0.6434 -vn 0.5537 0.5299 0.6423 -vn -0.3369 -0.6237 -0.7053 -vn -0.3372 -0.6237 -0.7052 -vn -0.3376 -0.6237 -0.7050 -vn -0.7964 0.3407 -0.4996 -vn -0.7954 0.3419 -0.5005 -vn -0.7960 0.3410 -0.5001 -vn 0.8355 -0.1822 0.5184 -vn 0.8353 -0.1820 0.5188 -vn 0.8352 -0.1820 0.5190 -vn 0.2973 0.8680 -0.3976 -vn 0.2975 0.8679 -0.3978 -vn 0.2971 0.8681 -0.3977 -vn 0.8328 -0.0725 0.5489 -vn 0.8028 -0.4054 0.4372 -vn 0.8032 -0.4053 0.4366 -vn 0.8030 -0.4054 0.4369 -vn 0.6767 0.6933 0.2477 -vn 0.2518 -0.8653 0.4334 -vn 0.2516 -0.8655 0.4331 -vn 0.2515 -0.8652 0.4338 -vn -0.2409 -0.1481 -0.9592 -vn 0.3086 0.1108 -0.9447 -vn 0.3092 0.1098 -0.9446 -vn 0.3082 0.1110 -0.9448 -vn -0.1297 0.9818 0.1388 -vn -0.1296 0.9817 0.1392 -vn -0.1294 0.9817 0.1397 -vn 0.0737 0.9740 0.2144 -vn 0.0733 0.9741 0.2141 -vn 0.0726 0.9743 0.2131 -vn -0.6656 -0.4693 -0.5803 -vn -0.6652 -0.4693 -0.5807 -vn -0.6654 -0.4692 -0.5806 -vn 0.6133 -0.7795 0.1275 -vn 0.6131 -0.7798 0.1262 -vn 0.6133 -0.7796 0.1268 -vn -0.1686 -0.4706 -0.8661 -vn -0.1687 -0.4703 -0.8662 -vn -0.1684 -0.4708 -0.8660 -vn 0.8872 0.0757 0.4552 -vn 0.8874 0.0750 0.4549 -vn 0.8873 0.0755 0.4551 -vn -0.6724 -0.0463 -0.7387 -vn -0.6727 -0.0467 -0.7384 -vn -0.6726 -0.0465 -0.7386 -vn -0.6515 0.6719 0.3523 -vn -0.6515 0.6718 0.3525 -vn -0.6514 0.6721 0.3521 -vn 0.7420 0.5867 0.3243 -vn 0.7422 0.5866 0.3242 -vn 0.7421 0.5868 0.3242 -vn 0.1767 -0.8822 -0.4364 -vn 0.1767 -0.8823 -0.4363 -vn 0.2432 -0.8721 -0.4246 -vn 0.2430 -0.8722 -0.4246 -vn 0.2434 -0.8722 -0.4243 -vn -0.8295 0.2558 0.4965 -vn -0.8294 0.2561 0.4965 -vn 0.9149 -0.2172 0.3402 -vn 0.0073 0.4037 -0.9149 -vn 0.0075 0.4038 -0.9148 -vn 0.8665 0.4660 0.1790 -vn 0.8665 0.4658 0.1793 -vn -0.2106 -0.0825 -0.9741 -vn -0.2104 -0.0824 -0.9741 -vn 0.0787 -0.8970 0.4350 -vn -0.7766 -0.4866 -0.4002 -vn -0.7766 -0.4872 -0.3993 -vn -0.7767 -0.4869 -0.3996 -vn 0.8963 -0.3718 0.2417 -vn 0.8965 -0.3715 0.2413 -vn 0.8964 -0.3716 0.2414 -vn 0.9038 -0.3568 0.2361 -vn 0.9036 -0.3576 0.2358 -vn 0.9037 -0.3573 0.2360 -vn -0.1418 -0.9892 0.0367 -vn -0.1415 -0.9893 0.0367 -vn -0.2841 0.3152 -0.9055 -vn -0.2842 0.3153 -0.9054 -vn 0.7242 -0.6233 0.2950 -vn 0.7242 -0.6233 0.2952 -vn 0.7243 -0.6233 0.2949 -vn 0.2335 0.9588 0.1621 -vn 0.6090 -0.5399 0.5810 -vn 0.6086 -0.5404 0.5810 -vn -0.4160 0.5030 -0.7576 -vn -0.4158 0.5036 -0.7573 -vn -0.4159 0.5033 -0.7574 -vn -0.2083 -0.9771 0.0423 -vn -0.2081 -0.9772 0.0422 -vn -0.2083 -0.9771 0.0424 -vn 0.3038 -0.7806 -0.5462 -vn 0.3025 -0.7814 -0.5458 -vn 0.3022 -0.7826 -0.5443 -vn -0.9026 -0.2901 0.3181 -vn -0.9025 -0.2907 0.3178 -vn -0.9026 -0.2899 0.3183 -vn -0.2524 -0.9664 -0.0489 -vn -0.2524 -0.9664 -0.0490 -vn -0.2036 0.8961 0.3943 -vn -0.2037 0.8962 0.3941 -vn 0.6518 -0.6206 0.4359 -vn 0.6519 -0.6206 0.4359 -vn -0.7268 0.6054 -0.3245 -vn 0.5750 -0.1876 0.7964 -vn 0.5750 -0.1876 0.7963 -vn -0.4323 0.4797 -0.7635 -vn -0.4321 0.4795 -0.7638 -vn -0.4318 0.4794 -0.7640 -vn -0.9708 0.0055 -0.2399 -vn -0.9709 0.0054 -0.2396 -vn 0.3812 0.4327 -0.8170 -vn 0.3820 0.4325 -0.8167 -vn 0.3826 0.4321 -0.8166 -vn -0.7466 -0.5276 -0.4052 -vn -0.7465 -0.5278 -0.4051 -vn -0.7467 -0.5274 -0.4053 -vn -0.2076 -0.3620 0.9088 -vn -0.2076 -0.3616 0.9089 -vn -0.2072 -0.3612 0.9092 -vn 0.9330 -0.3426 -0.1099 -vn 0.9325 -0.3436 -0.1115 -vn 0.9333 -0.3422 -0.1086 -vn 0.5388 -0.6296 0.5598 -vn 0.5390 -0.6296 0.5596 -vn 0.5390 -0.6295 0.5597 -vn 0.4666 0.5578 -0.6864 -vn 0.4670 0.5579 -0.6860 -vn 0.4668 0.5578 -0.6862 -vn 0.8197 -0.0625 0.5694 -vn 0.8197 -0.0626 0.5694 -vn 0.8196 -0.0627 0.5694 -vn 0.8175 0.3978 -0.4164 -vn 0.8174 0.3980 -0.4165 -vn 0.8176 0.3978 -0.4163 -vn -0.2221 -0.0859 -0.9712 -vn -0.2220 -0.0857 -0.9713 -vn 0.8993 -0.4356 -0.0381 -vn -0.0617 0.2896 -0.9552 -vn 0.0165 -0.8877 0.4601 -vn 0.0164 -0.8880 0.4595 -vn 0.0164 -0.8874 0.4607 -vn 0.4679 -0.7140 0.5208 -vn 0.4677 -0.7141 0.5209 -vn 0.4678 -0.7141 0.5207 -vn 0.8059 -0.5155 0.2911 -vn 0.4966 0.1244 0.8590 -vn 0.4966 0.1241 0.8591 -vn 0.0275 0.0151 -0.9995 -vn 0.0279 0.0152 -0.9995 -vn 0.0277 0.0151 -0.9995 -vn 0.3608 0.1406 0.9220 -vn 0.3609 0.1408 0.9219 -vn 0.8401 -0.5406 -0.0436 -vn 0.8402 -0.5406 -0.0429 -vn 0.8399 -0.5409 -0.0440 -vn -0.8898 -0.1976 0.4115 -vn -0.2850 -0.8994 -0.3314 -vn -0.2851 -0.8994 -0.3313 -vn -0.2849 -0.8994 -0.3315 -vn 0.4598 0.3026 0.8349 -vn 0.4598 0.3028 0.8348 -vn 0.0001 -0.0002 1.0000 -vn -0.9277 -0.3108 -0.2070 -vn -0.9277 -0.3107 -0.2072 -vn 0.8520 0.4081 0.3280 -vn -0.2453 0.1880 -0.9510 -vn -0.2453 0.1880 -0.9511 -vn -0.2452 0.1879 -0.9511 -vn 0.1487 -0.9160 0.3725 -vn 0.1485 -0.9159 0.3728 -vn 0.1485 -0.9158 0.3733 -vn 0.7857 0.6182 0.0207 -vn 0.8296 -0.5524 -0.0813 -vn 0.8297 -0.5523 -0.0815 -vn 0.8296 -0.5525 -0.0811 -vn 0.1633 0.9865 -0.0147 -vn -0.6656 0.6836 -0.2996 -vn -0.6660 0.6830 -0.3000 -vn -0.6658 0.6834 -0.2996 -vn -0.0705 -0.2240 0.9720 -vn -0.0706 -0.2242 0.9720 -vn -0.0704 -0.2238 0.9721 -vn -0.7104 0.0613 0.7012 -vn 0.8831 0.0144 0.4690 -vn 0.1941 0.1143 0.9743 -vn 0.1943 0.1138 0.9743 -vn 0.1939 0.1152 0.9742 -vn 0.8288 -0.5272 0.1877 -vn 0.8287 -0.5270 0.1883 -vn 0.8283 -0.5286 0.1860 -vn 0.3162 0.8937 0.3182 -vn 0.9370 0.1894 0.2934 -vn 0.9371 0.1893 0.2933 -vn 0.9371 0.1894 0.2933 -vn -0.0959 0.4455 -0.8901 -vn -0.0955 0.4450 -0.8904 -vn -0.0955 0.4445 -0.8907 -vn 0.0519 0.4100 0.9106 -vn 0.0518 0.4098 0.9107 -vn 0.0520 0.4101 0.9105 -vn 0.1664 0.8741 -0.4564 -vn 0.1664 0.8740 -0.4565 -vn -0.3390 -0.5887 -0.7338 -vn -0.3392 -0.5891 -0.7334 -vn -0.3386 -0.5857 -0.7364 -vn -0.5913 -0.8032 -0.0718 -vn -0.5912 -0.8033 -0.0721 -vn -0.5916 -0.8031 -0.0709 -vn -0.2056 -0.8681 0.4518 -vn -0.2055 -0.8682 0.4516 -vn -0.3615 0.4389 0.8226 -vn -0.3608 0.4404 0.8221 -vn -0.3611 0.4395 0.8225 -vn 0.9880 -0.0279 -0.1518 -vn 0.9881 -0.0280 -0.1514 -vn 0.9881 -0.0278 -0.1514 -vn 0.0632 0.7887 -0.6115 -vn 0.0612 0.7884 -0.6121 -vn 0.0647 0.7885 -0.6116 -vn -0.3128 0.9072 0.2814 -vn -0.3131 0.9072 0.2811 -vn -0.3126 0.9073 0.2813 -vn -0.4350 0.6264 -0.6468 -vn -0.4347 0.6266 -0.6469 -vn -0.4345 0.6266 -0.6469 -vn 0.9303 -0.3646 0.0390 -vn 0.9305 -0.3643 0.0392 -vn -0.7041 0.7090 0.0395 -vn -0.7043 0.7088 0.0394 -vn 0.7426 0.6317 0.2227 -vn 0.7425 0.6317 0.2227 -vn 0.7422 0.6320 0.2228 -vn -0.9006 -0.0824 -0.4267 -vn 0.0314 0.5344 0.8446 -vn 0.0304 0.5345 0.8446 -vn 0.0305 0.5345 0.8446 -vn 0.2683 0.9579 -0.1021 -vn 0.2662 0.9585 -0.1022 -vn 0.2675 0.9581 -0.1024 -vn 0.1958 0.9703 -0.1417 -vn 0.2543 -0.7372 -0.6260 -vn 0.2544 -0.7372 -0.6260 -vn 0.2542 -0.7372 -0.6260 -vn 0.5193 0.8544 -0.0199 -vn 0.5192 0.8544 -0.0200 -vn 0.5193 0.8544 -0.0196 -vn 0.8724 0.3473 0.3440 -vn 0.8724 0.3472 0.3439 -vn 0.8723 0.3475 0.3440 -vn -0.5835 0.7758 -0.2402 -vn -0.5836 0.7757 -0.2402 -vn -0.5387 -0.7197 0.4379 -vn 0.0377 0.9341 0.3549 -vn 0.0968 -0.9642 -0.2470 -vn 0.0969 -0.9641 -0.2474 -vn 0.0969 -0.9641 -0.2473 -vn -0.3639 -0.7509 -0.5512 -vn -0.3645 -0.7509 -0.5507 -vn -0.3651 -0.7511 -0.5500 -vn -0.3852 -0.8436 -0.3741 -vn 0.1147 -0.7265 -0.6775 -vn 0.0134 0.1258 0.9920 -vn 0.0133 0.1259 0.9920 -vn 0.0132 0.1256 0.9920 -vn -0.1957 0.9724 -0.1273 -vn -0.1955 0.9724 -0.1274 -vn 0.7777 0.2155 -0.5905 -vn 0.9623 -0.0572 -0.2660 -vn 0.9621 -0.0567 -0.2668 -vn 0.9620 -0.0556 -0.2674 -vn -0.8538 0.0923 0.5123 -vn -0.8538 0.0924 0.5123 -vn -0.8538 0.0922 0.5123 -vn 0.1586 -0.8628 -0.4801 -vn 0.1591 -0.8625 -0.4803 -vn 0.1583 -0.8631 -0.4796 -vn -0.6032 -0.4811 -0.6361 -vn -0.6033 -0.4810 -0.6361 -vn 0.4168 -0.9043 -0.0925 -vn 0.0745 -0.9802 -0.1836 -vn 0.0744 -0.9803 -0.1832 -vn 0.0744 -0.9803 -0.1828 -vn 0.9632 -0.0708 -0.2594 -vn 0.9633 -0.0715 -0.2587 -vn 0.9632 -0.0711 -0.2592 -vn 0.2863 -0.9222 -0.2601 -vn 0.2875 -0.9218 -0.2601 -vn 0.2870 -0.9219 -0.2602 -vn -0.2417 -0.2743 0.9308 -vn -0.2417 -0.2737 0.9309 -vn -0.2416 -0.2739 0.9309 -vn 0.4841 0.6386 -0.5982 -vn -0.2849 -0.2908 0.9134 -vn -0.2845 -0.2910 0.9134 -vn -0.2851 -0.2908 0.9133 -vn 0.7389 0.6459 0.1920 -vn 0.0637 0.1012 0.9928 -vn 0.2198 0.9734 -0.0642 -vn 0.2197 0.9734 -0.0642 -vn 0.4191 -0.9056 -0.0654 -vn 0.4187 -0.9057 -0.0657 -vn 0.4193 -0.9055 -0.0652 -vn -0.2474 -0.8754 -0.4153 -vn 0.2931 0.5324 0.7941 -vn 0.2941 0.5322 0.7939 -vn 0.2936 0.5323 0.7940 -vn 0.8379 0.5390 -0.0858 -vn 0.8388 0.5375 -0.0862 -vn 0.8372 0.5401 -0.0859 -vn -0.6113 0.7367 -0.2892 -vn -0.6114 0.7366 -0.2892 -vn -0.6109 0.7370 -0.2892 -vn 0.7269 0.5077 -0.4625 -vn 0.7268 0.5077 -0.4625 -vn 0.7346 0.2339 -0.6369 -vn 0.7346 0.2337 -0.6370 -vn 0.7349 0.2345 -0.6364 -vn -0.3947 0.9024 -0.1730 -vn 0.9023 0.1351 -0.4095 -vn 0.9023 0.1344 -0.4097 -vn 0.9022 0.1352 -0.4096 -vn -0.6347 -0.5766 -0.5145 -vn -0.6346 -0.5768 -0.5144 -vn -0.6346 -0.5772 -0.5139 -vn 0.5805 0.3662 0.7273 -vn 0.5806 0.3667 0.7270 -vn 0.5811 0.3677 0.7260 -vn 0.3000 0.9397 -0.1645 -vn 0.3002 0.9395 -0.1653 -vn 0.2999 0.9398 -0.1637 -vn 0.4723 0.7424 -0.4752 -vn 0.4723 0.7424 -0.4751 -vn 0.4725 0.7422 -0.4754 -vn 0.0074 -0.8010 -0.5986 -vn 0.0077 -0.8013 -0.5983 -vn 0.0072 -0.8008 -0.5989 -vn -0.2936 -0.1729 -0.9402 -vn -0.2935 -0.1730 -0.9402 -vn -0.2937 -0.1730 -0.9401 -vn 0.2923 -0.5963 -0.7476 -vn 0.2927 -0.5964 -0.7474 -vn 0.2937 -0.5960 -0.7473 -vn -0.3596 -0.7756 -0.5188 -vn -0.1254 0.8125 0.5693 -vn -0.1261 0.8130 0.5684 -vn -0.1268 0.8132 0.5680 -vn -0.5301 -0.7847 0.3212 -vn -0.5301 -0.7848 0.3211 -vn -0.2351 0.6632 0.7106 -vn -0.2355 0.6626 0.7110 -vn -0.2353 0.6630 0.7107 -vn 0.4337 -0.6064 -0.6664 -vn -0.4907 -0.7203 -0.4903 -vn -0.4906 -0.7202 -0.4905 -vn -0.4910 -0.7205 -0.4897 -vn 0.4721 0.8767 0.0926 -vn 0.4722 0.8766 0.0928 -vn 0.9820 -0.1800 0.0564 -vn 0.0347 -0.4053 -0.9135 -vn 0.0343 -0.4055 -0.9134 -vn 0.0345 -0.4054 -0.9135 -vn 0.0735 0.9959 -0.0522 -vn -0.3604 0.7758 0.5179 -vn -0.3604 0.7756 0.5183 -vn -0.3604 0.7761 0.5175 -vn -0.2235 -0.4029 -0.8875 -vn -0.2233 -0.4030 -0.8875 -vn -0.2232 -0.4030 -0.8876 -vn -0.1149 -0.8551 -0.5055 -vn -0.1148 -0.8550 -0.5058 -vn -0.3367 0.1571 -0.9284 -vn -0.3374 0.1563 -0.9283 -vn -0.3370 0.1570 -0.9283 -vn 0.0276 0.9815 -0.1897 -vn 0.0271 0.9815 -0.1897 -vn 0.0273 0.9815 -0.1895 -vn -0.3195 -0.9476 0.0020 -vn -0.3193 -0.9477 0.0022 -vn -0.3194 -0.9476 0.0020 -vn -0.0004 0.0008 1.0000 -vn 0.3608 -0.7969 -0.4846 -vn 0.3606 -0.7969 -0.4847 -vn 0.3607 -0.7965 -0.4852 -vn 0.1399 -0.6603 -0.7379 -vn 0.1402 -0.6604 -0.7377 -vn 0.1402 -0.6609 -0.7373 -vn 0.1411 -0.9004 -0.4116 -vn 0.1408 -0.9004 -0.4117 -vn -0.1343 -0.7085 -0.6928 -vn -0.1343 -0.7083 -0.6930 -vn -0.1344 -0.7083 -0.6930 -vn -0.4742 -0.5544 -0.6839 -vn -0.9395 0.2796 0.1980 -vn 0.1786 0.9702 -0.1640 -vn 0.1780 0.9702 -0.1642 -vn -0.4725 -0.8809 0.0279 -vn 0.0950 -0.4845 0.8696 -vn 0.0951 -0.4845 0.8696 -vn 0.0952 -0.4845 0.8696 -vn 0.3493 0.7759 -0.5253 -vn 0.3494 0.7760 -0.5251 -vn 0.9075 0.3624 -0.2122 -vn 0.9076 0.3618 -0.2130 -vn 0.9076 0.3623 -0.2124 -vn -0.4981 0.6266 -0.5993 -vn -0.4980 0.6266 -0.5994 -vn -0.5356 0.4892 -0.6884 -vn -0.5359 0.4890 -0.6883 -vn -0.5362 0.4891 -0.6880 -vn 0.0604 -0.5078 0.8594 -vn 0.0602 -0.5081 0.8592 -vn 0.8744 0.4833 0.0417 -vn 0.8744 0.4834 0.0416 -vn 0.8745 0.4832 0.0416 -vn -0.1720 -0.5899 0.7889 -vn -0.1721 -0.5899 0.7889 -vn 0.4456 0.2279 -0.8658 -vn 0.4453 0.2285 -0.8657 -vn 0.4455 0.2281 -0.8658 -vn 0.3344 0.8790 -0.3399 -vn 0.3343 0.8789 -0.3403 -vn -0.2461 -0.5746 0.7806 -vn -0.2438 0.9652 -0.0944 -vn -0.2444 0.9651 -0.0943 -vn -0.3405 -0.7603 0.5532 -vn -0.3405 -0.7600 0.5536 -vn -0.3404 -0.7597 0.5540 -vn -0.7106 0.2921 0.6401 -vn -0.7104 0.2921 0.6403 -vn -0.7105 0.2919 0.6403 -vn -0.2852 -0.3228 0.9025 -vn -0.2854 -0.3228 0.9024 -vn -0.2851 -0.3228 0.9025 -vn -0.9815 0.1154 -0.1527 -vn -0.9815 0.1155 -0.1527 -vn -0.1736 0.9755 0.1352 -vn -0.1735 0.9755 0.1353 -vn -0.1738 0.9755 0.1348 -vn -0.0334 -0.9932 0.1112 -vn -0.0333 -0.9932 0.1112 -vn -0.0333 -0.9933 0.1111 -vn -0.1040 -0.3426 0.9337 -vn -0.1041 -0.3425 0.9337 -vn -0.1038 -0.3423 0.9338 -vn 0.8071 0.5890 0.0405 -vn 0.8066 0.5896 0.0410 -vn 0.8065 0.5897 0.0414 -vn -0.1030 0.9911 -0.0842 -vn -0.1031 0.9911 -0.0846 -vn -0.1029 0.9911 -0.0849 -vn -0.9930 0.0748 0.0909 -vn -0.9931 0.0747 0.0909 -vn -0.3343 -0.1802 0.9251 -vn -0.3346 -0.1805 0.9249 -vn -0.3341 -0.1798 0.9252 -vn -0.5309 0.7681 0.3580 -vn -0.5302 0.7683 0.3585 -vn -0.6762 -0.6436 -0.3585 -vn 0.8233 -0.3890 0.4134 -vn 0.8232 -0.3889 0.4136 -vn 0.8232 -0.3890 0.4135 -vn -0.7306 0.3571 0.5819 -vn -0.7313 0.3558 0.5819 -vn -0.7317 0.3534 0.5828 -vn -0.7730 0.5135 -0.3726 -vn -0.7731 0.5134 -0.3725 -vn -0.7733 0.5132 -0.3724 -vn 0.2833 0.9450 -0.1635 -vn 0.2833 0.9450 -0.1634 -vn 0.2832 0.9450 -0.1638 -vn 0.7510 -0.5498 -0.3658 -vn 0.7507 -0.5500 -0.3660 -vn 0.7508 -0.5499 -0.3659 -vn 0.1903 -0.2989 0.9351 -vn 0.1901 -0.2981 0.9354 -vn 0.1900 -0.2984 0.9353 -vn 0.2785 0.7698 -0.5743 -vn 0.4392 0.8869 -0.1431 -vn 0.4392 0.8869 -0.1430 -vn -0.4063 -0.8898 0.2078 -vn -0.4063 -0.8899 0.2073 -vn -0.4065 -0.8900 0.2066 -vn -0.5921 -0.7788 0.2068 -vn -0.5923 -0.7789 0.2061 -vn -0.5920 -0.7789 0.2071 -vn -0.6517 0.6472 0.3956 -vn -0.6516 0.6473 0.3954 -vn 0.1742 -0.9778 0.1164 -vn 0.1739 -0.9780 0.1155 -vn 0.1744 -0.9776 0.1174 -vn 0.5568 0.5934 0.5813 -vn 0.5567 0.5933 0.5814 -vn -0.7621 -0.4600 -0.4556 -vn -0.7621 -0.4602 -0.4554 -vn -0.3009 0.9175 -0.2600 -vn -0.3005 0.9178 -0.2595 -vn -0.0331 0.4939 -0.8689 -vn -0.0328 0.4941 -0.8688 -vn -0.0323 0.4946 -0.8685 -vn 0.6584 -0.4110 -0.6305 -vn 0.6589 -0.4107 -0.6303 -vn 0.6591 -0.4105 -0.6302 -vn 0.8727 -0.4797 0.0905 -vn 0.8727 -0.4797 0.0906 -vn 0.8728 -0.4797 0.0903 -vn -0.4487 -0.2177 -0.8668 -vn -0.4481 -0.2183 -0.8669 -vn -0.4476 -0.2200 -0.8667 -vn 0.4237 0.8839 -0.1979 -vn 0.4236 0.8840 -0.1979 -vn 0.4238 0.8839 -0.1978 -vn 0.5080 0.6814 -0.5269 -vn 0.5083 0.6814 -0.5266 -vn -0.0520 -0.1553 -0.9865 -vn -0.0519 -0.1555 -0.9865 -vn -0.0518 -0.1553 -0.9865 -vn -0.1122 -0.0982 -0.9888 -vn -0.1120 -0.0981 -0.9889 -vn 0.6798 0.0109 0.7333 -vn 0.6811 0.0106 0.7321 -vn 0.6807 0.0106 0.7325 -vn -0.1744 0.1988 0.9644 -vn -0.1743 0.1988 0.9644 -vn -0.1745 0.1988 0.9644 -vn -0.9554 -0.2259 0.1903 -vn -0.9554 -0.2261 0.1901 -vn -0.9554 -0.2262 0.1900 -vn 0.8114 -0.4408 -0.3839 -vn 0.8117 -0.4404 -0.3836 -vn 0.8123 -0.4400 -0.3829 -vn 0.8771 0.3001 -0.3751 -vn 0.8770 0.3000 -0.3754 -vn 0.8770 0.3000 -0.3753 -vn -0.3512 0.8851 -0.3055 -vn -0.3511 0.8851 -0.3056 -vn -0.3509 0.8852 -0.3056 -vn 0.8772 0.4614 -0.1327 -vn 0.8774 0.4611 -0.1322 -vn 0.8772 0.4614 -0.1329 -vn -0.3953 0.1833 -0.9001 -vn -0.3950 0.1843 -0.9000 -vn -0.3951 0.1837 -0.9001 -vn -0.9371 -0.3348 -0.0990 -vn -0.9370 -0.3349 -0.0989 -vn -0.9371 -0.3348 -0.0988 -vn -0.8750 0.4841 -0.0050 -vn -0.8749 0.4842 -0.0053 -vn -0.8750 0.4841 -0.0048 -vn 0.1026 0.8016 -0.5890 -vn 0.1026 0.8015 -0.5891 -vn 0.1028 0.8017 -0.5889 -vn 0.9221 0.2325 -0.3092 -vn 0.9225 0.2327 -0.3080 -vn 0.9224 0.2335 -0.3076 -vn 0.9186 0.2911 0.2672 -vn 0.9186 0.2912 0.2673 -vn -0.9844 0.0841 0.1546 -vn 0.9558 -0.1455 0.2557 -vn 0.9557 -0.1456 0.2557 -vn 0.9558 -0.1451 0.2559 -vn -0.1950 -0.4020 -0.8946 -vn -0.1951 -0.4022 -0.8945 -vn -0.1951 -0.4021 -0.8946 -vn 0.3599 0.9316 0.0508 -vn 0.5188 0.7997 -0.3022 -vn 0.5185 0.7997 -0.3027 -vn 0.3440 0.9388 0.0186 -vn 0.3437 0.9389 0.0187 -vn 0.3445 0.9386 0.0186 -vn 0.5198 0.4123 -0.7482 -vn 0.7334 -0.3551 0.5797 -vn 0.7327 -0.3554 0.5804 -vn -0.2355 0.1961 0.9519 -vn -0.2354 0.1962 0.9519 -vn 0.4281 0.5934 -0.6816 -vn 0.4280 0.5933 -0.6817 -vn -0.2028 -0.3723 -0.9057 -vn -0.2023 -0.3726 -0.9057 -vn -0.2020 -0.3725 -0.9058 -vn -0.2409 -0.4000 -0.8843 -vn -0.2409 -0.3999 -0.8843 -vn -0.2411 -0.4000 -0.8842 -vn 0.5045 0.8565 -0.1092 -vn 0.5047 0.8564 -0.1092 -vn 0.5049 0.8563 -0.1091 -vn 0.8315 0.0827 0.5494 -vn 0.8314 0.0831 0.5495 -vn 0.8314 0.0829 0.5494 -vn -0.9719 0.2181 -0.0886 -vn -0.9719 0.2182 -0.0887 -vn -0.9718 0.2182 -0.0888 -vn 0.2317 -0.9207 -0.3139 -vn -0.0139 -0.3813 -0.9244 -vn -0.0139 -0.3821 -0.9240 -vn -0.0135 -0.3837 -0.9234 -vn 0.7409 -0.2192 0.6349 -vn 0.7409 -0.2190 0.6349 -vn 0.7405 -0.2193 0.6352 -vn 0.6616 0.7439 0.0947 -vn 0.6615 0.7439 0.0947 -vn -0.9828 0.0652 0.1729 -vn -0.9828 0.0646 0.1729 -vn -0.9829 0.0641 0.1727 -vn -0.3552 0.5054 0.7864 -vn -0.3550 0.5055 0.7864 -vn -0.3549 0.5054 0.7865 -vn -0.9930 -0.0286 -0.1146 -vn -0.9930 -0.0289 -0.1145 -vn -0.6646 -0.5524 -0.5032 -vn -0.6647 -0.5523 -0.5031 -vn -0.6648 -0.5524 -0.5029 -vn -0.0283 0.8843 -0.4660 -vn -0.0284 0.8843 -0.4660 -vn -0.0055 0.6253 -0.7804 -vn -0.0055 0.6255 -0.7802 -vn -0.0055 0.6252 -0.7804 -vn -0.6543 0.4547 -0.6043 -vn -0.6543 0.4549 -0.6041 -vn -0.6542 0.4544 -0.6046 -vn 0.3355 0.9417 -0.0255 -vn 0.3358 0.9416 -0.0254 -vn -0.7878 -0.5668 0.2410 -vn -0.7870 -0.5676 0.2418 -vn -0.7864 -0.5684 0.2418 -vn -0.4771 0.8410 -0.2550 -vn -0.4774 0.8410 -0.2545 -vn -0.0508 -0.2500 0.9669 -vn -0.0510 -0.2503 0.9668 -vn -0.0508 -0.2501 0.9669 -vn 0.0690 -0.5489 -0.8330 -vn 0.0689 -0.5487 -0.8332 -vn 0.0690 -0.5491 -0.8329 -vn -0.5212 0.6079 -0.5990 -vn -0.5216 0.6077 -0.5989 -vn -0.7318 -0.2693 -0.6260 -vn 0.1370 -0.9621 0.2358 -vn 0.0915 0.9957 0.0142 -vn 0.0912 0.9957 0.0142 -vn 0.0912 0.9957 0.0145 -vn -0.0885 -0.9955 0.0351 -vn -0.0882 -0.9955 0.0348 -vn -0.0885 -0.9955 0.0349 -vn -0.0677 -0.9213 -0.3829 -vn -0.0666 -0.9210 -0.3837 -vn -0.0685 -0.9217 -0.3818 -vn -0.0720 -0.9583 0.2767 -vn -0.0717 -0.9583 0.2766 -vn -0.0717 -0.9583 0.2767 -vn 0.2093 -0.9584 0.1940 -vn 0.2093 -0.9585 0.1936 -vn 0.2098 -0.9586 0.1926 -vn -0.3328 0.9382 0.0955 -vn -0.3324 0.9382 0.0967 -vn -0.3325 0.9384 0.0938 -vn -0.2020 -0.1826 -0.9622 -vn -0.2017 -0.1828 -0.9622 -vn -0.2020 -0.1827 -0.9622 -vn 0.0669 -0.8965 0.4379 -vn 0.0670 -0.8965 0.4379 -vn 0.3084 0.5902 -0.7460 -vn 0.3088 0.5905 -0.7456 -vn 0.2740 0.9140 -0.2992 -vn 0.2739 0.9140 -0.2993 -vn 0.2738 0.9140 -0.2994 -vn 0.4231 0.6780 -0.6011 -vn 0.2955 0.2309 0.9270 -vn -0.2523 -0.9479 0.1947 -vn -0.2523 -0.9477 0.1954 -vn -0.2523 -0.9478 0.1948 -vn -0.2598 -0.6261 -0.7352 -vn -0.2593 -0.6262 -0.7353 -vn -0.2595 -0.6262 -0.7352 -vn -0.4563 0.8108 -0.3666 -vn -0.4563 0.8108 -0.3667 -vn 0.2220 0.9564 -0.1896 -vn 0.2223 0.9564 -0.1897 -vn -0.3011 -0.9488 0.0956 -vn -0.3006 -0.9490 0.0956 -vn 0.4329 0.8531 -0.2912 -vn 0.4327 0.8529 -0.2921 -vn 0.4328 0.8530 -0.2918 -vn -0.8680 -0.3762 -0.3240 -vn -0.8681 -0.3761 -0.3239 -vn 0.9090 -0.4114 0.0674 -vn 0.9093 -0.4107 0.0670 -vn 0.9089 -0.4116 0.0673 -vn 0.2143 0.0086 0.9767 -vn 0.2139 0.0085 0.9768 -vn 0.2140 0.0085 0.9768 -vn -0.1966 -0.0376 0.9798 -vn -0.4413 -0.8959 -0.0509 -vn -0.4409 -0.8961 -0.0506 -vn -0.4408 -0.8962 -0.0502 -vn -0.7707 0.4301 -0.4701 -vn -0.7706 0.4301 -0.4703 -vn -0.7709 0.4300 -0.4700 -vn 0.8754 -0.3259 0.3571 -vn 0.8752 -0.3261 0.3573 -vn 0.8751 -0.3262 0.3575 -vn -0.6454 -0.5903 -0.4847 -vn -0.6456 -0.5900 -0.4849 -vn -0.6455 -0.5901 -0.4849 -vn 0.5033 0.7311 -0.4606 -vn 0.5033 0.7312 -0.4604 -vn -0.8030 -0.5723 0.1663 -vn 0.2301 0.9380 -0.2591 -vn 0.2296 0.9382 -0.2591 -vn 0.2304 0.9378 -0.2596 -vn 0.3372 0.1999 -0.9200 -vn 0.3371 0.2000 -0.9200 -vn 0.3370 0.2001 -0.9200 -vn -0.2150 -0.1559 -0.9641 -vn -0.2147 -0.1558 -0.9642 -vn -0.2152 -0.1563 -0.9640 -vn -0.4740 -0.8630 -0.1748 -vn -0.8369 0.4004 0.3733 -vn -0.8369 0.4004 0.3732 -vn -0.0342 0.7924 -0.6090 -vn -0.0346 0.7925 -0.6089 -vn -0.0344 0.7924 -0.6090 -vn -0.5686 0.8186 0.0811 -vn 0.2706 -0.1370 0.9529 -vn 0.2708 -0.1375 0.9528 -vn 0.2709 -0.1375 0.9527 -vn 0.5422 0.5501 -0.6352 -vn 0.5423 0.5501 -0.6351 -vn -0.7822 -0.5595 -0.2741 -vn -0.7822 -0.5595 -0.2740 -vn -0.7821 -0.5597 -0.2739 -vn -0.6778 -0.6441 -0.3546 -vn -0.8026 -0.4339 -0.4094 -vn -0.8038 -0.4331 -0.4079 -vn -0.8047 -0.4320 -0.4072 -vn -0.0351 -0.8744 0.4839 -vn -0.0350 -0.8745 0.4838 -vn -0.5067 -0.7916 -0.3414 -vn -0.5067 -0.7917 -0.3412 -vn -0.5067 -0.7916 -0.3415 -vn -0.0332 -0.8932 0.4484 -vn -0.0334 -0.8932 0.4484 -vn -0.8678 0.0400 0.4952 -vn -0.8683 0.0406 0.4944 -vn -0.8863 0.4630 -0.0043 -vn -0.8865 0.4627 -0.0042 -vn -0.8865 0.4627 -0.0041 -vn -0.5050 0.6936 -0.5137 -vn -0.5051 0.6935 -0.5137 -vn -0.0539 -0.9513 0.3035 -vn -0.0526 -0.9512 0.3042 -vn -0.0523 -0.9510 0.3047 -vn -0.4048 0.9142 -0.0192 -vn -0.4046 0.9143 -0.0189 -vn 0.8482 -0.5286 -0.0343 -vn 0.8484 -0.5283 -0.0351 -vn 0.8485 -0.5281 -0.0353 -vn -0.0211 -0.3796 0.9249 -vn 0.0682 0.8719 -0.4849 -vn 0.0680 0.8718 -0.4851 -vn 0.0674 0.8719 -0.4851 -vn 0.4389 0.8224 -0.3619 -vn 0.4387 0.8226 -0.3617 -vn 0.4391 0.8222 -0.3623 -vn -0.8446 -0.4650 -0.2655 -vn -0.5357 -0.0730 -0.8412 -vn 0.6538 0.5899 0.4738 -vn 0.1798 0.3078 -0.9343 -vn 0.1797 0.3075 -0.9344 -vn 0.7277 0.6769 -0.1104 -vn 0.7271 0.6776 -0.1105 -vn 0.7265 0.6781 -0.1112 -vn 0.1769 0.9125 -0.3689 -vn 0.1768 0.9126 -0.3688 -vn 0.1773 0.9125 -0.3686 -vn 0.4422 0.8349 -0.3276 -vn 0.4426 0.8350 -0.3269 -vn 0.4424 0.8350 -0.3272 -vn 0.5555 0.8220 -0.1256 -vn 0.5552 0.8222 -0.1257 -vn 0.5552 0.8222 -0.1254 -vn 0.3355 0.6157 -0.7129 -vn 0.3357 0.6153 -0.7132 -vn 0.3358 0.6155 -0.7131 -vn 0.9310 -0.2172 0.2933 -vn 0.9309 -0.2171 0.2939 -vn 0.9311 -0.2175 0.2929 -vn 0.4880 0.2280 -0.8426 -vn 0.4885 0.2282 -0.8422 -vn -0.9350 0.3399 -0.1008 -vn -0.9352 0.3394 -0.1008 -vn -0.9351 0.3397 -0.1008 -vn -0.3776 -0.8822 -0.2812 -vn -0.3772 -0.8823 -0.2815 -vn -0.3776 -0.8823 -0.2810 -vn -0.9136 0.3933 -0.1031 -vn -0.9135 0.3935 -0.1030 -vn -0.9133 0.3942 -0.1025 -vn -0.5586 -0.7473 -0.3598 -vn -0.5587 -0.7472 -0.3599 -vn 0.1198 0.9741 0.1915 -vn 0.1197 0.9741 0.1917 -vn 0.1199 0.9741 0.1918 -vn -0.4546 0.8480 0.2725 -vn -0.4547 0.8479 0.2726 -vn -0.4545 0.8480 0.2726 -vn -0.0227 -0.9995 0.0208 -vn -0.0227 -0.9995 0.0206 -vn -0.0227 -0.9995 0.0213 -vn -0.5889 0.1188 -0.7994 -vn -0.5887 0.1187 -0.7996 -vn 0.0013 -0.0010 1.0000 -vn 0.1154 0.1361 -0.9840 -vn 0.1148 0.1362 -0.9840 -vn 0.1151 0.1362 -0.9840 -vn -0.0486 -0.9059 -0.4206 -vn -0.0475 -0.9058 -0.4210 -vn -0.0484 -0.9059 -0.4208 -vn 0.4889 0.8723 0.0036 -vn 0.4897 0.8719 0.0040 -vn 0.4905 0.8714 0.0045 -vn 0.3949 -0.8037 -0.4451 -vn -0.4632 0.5918 0.6597 -vn -0.4633 0.5918 0.6596 -vn -0.8248 0.1964 -0.5302 -vn -0.8243 0.1967 -0.5309 -vn -0.8240 0.1966 -0.5314 -vn 0.4568 0.8455 -0.2766 -vn 0.4565 0.8457 -0.2766 -vn 0.4565 0.8456 -0.2767 -vn 0.2786 0.0595 -0.9585 -vn 0.2788 0.0595 -0.9585 -vn 0.2787 0.0597 -0.9585 -vn -0.5318 -0.7519 -0.3897 -vn 0.2758 -0.0814 -0.9578 -vn 0.2757 -0.0815 -0.9578 -vn -0.7891 0.6128 -0.0418 -vn -0.7901 0.6114 -0.0440 -vn -0.7897 0.6120 -0.0427 -vn 0.1441 0.9881 0.0541 -vn 0.1441 0.9881 0.0540 -vn 0.1440 0.9881 0.0541 -vn -0.8987 -0.2306 0.3730 -vn -0.9515 0.3042 0.0448 -vn -0.9517 0.3039 0.0447 -vn -0.9517 0.3037 0.0446 -vn 0.0101 -0.9271 -0.3746 -vn 0.0102 -0.9271 -0.3748 -vn 0.0101 -0.9271 -0.3747 -vn 0.6370 0.1890 -0.7473 -vn 0.6369 0.1887 -0.7475 -vn 0.6367 0.1876 -0.7479 -vn -0.9195 0.3769 -0.1120 -vn -0.9195 0.3769 -0.1119 -vn -0.7942 0.5440 -0.2707 -vn -0.7939 0.5448 -0.2701 -vn -0.7940 0.5448 -0.2696 -vn -0.1893 -0.4332 0.8812 -vn -0.1892 -0.4332 0.8812 -vn -0.4829 -0.5254 -0.7006 -vn -0.4830 -0.5253 -0.7005 -vn -0.4829 -0.5253 -0.7006 -vn 0.5830 -0.7324 -0.3519 -vn 0.5834 -0.7321 -0.3517 -vn 0.5832 -0.7322 -0.3519 -vn 0.2185 0.9039 -0.3678 -vn 0.2182 0.9039 -0.3678 -vn 0.2179 0.9040 -0.3678 -vn -0.2907 0.4065 -0.8661 -vn -0.2911 0.4066 -0.8660 -vn -0.2909 0.4065 -0.8661 -vn 0.1023 -0.9692 -0.2239 -vn 0.0904 -0.8111 0.5778 -vn 0.0903 -0.8111 0.5778 -vn 0.0902 -0.8112 0.5778 -vn -0.3956 0.6739 -0.6240 -vn -0.3958 0.6738 -0.6239 -vn -0.3959 0.6738 -0.6239 -vn -0.1979 -0.1765 0.9642 -vn -0.1979 -0.1762 0.9642 -vn -0.1981 -0.1763 0.9642 -vn -0.8385 -0.5192 0.1653 -vn -0.8382 -0.5199 0.1645 -vn -0.8380 -0.5204 0.1642 -vn -0.4619 0.1870 -0.8670 -vn -0.4619 0.1869 -0.8670 -vn 0.0903 -0.1696 0.9814 -vn -0.7182 0.6139 -0.3275 -vn -0.7185 0.6135 -0.3278 -vn -0.7188 0.6131 -0.3278 -vn -0.3105 -0.5575 -0.7699 -vn -0.3101 -0.5577 -0.7699 -vn -0.3097 -0.5574 -0.7703 -vn 0.3800 -0.9203 -0.0932 -vn 0.3799 -0.9203 -0.0934 -vn 0.3799 -0.9204 -0.0928 -vn 0.8516 -0.5061 -0.1364 -vn 0.8519 -0.5055 -0.1365 -vn 0.8521 -0.5051 -0.1369 -vn 0.1529 0.9497 0.2731 -vn 0.1528 0.9498 0.2729 -vn -0.3373 -0.8213 0.4601 -vn -0.3377 -0.8213 0.4598 -vn -0.3376 -0.8213 0.4599 -vn 0.4127 0.0219 -0.9106 -vn 0.4123 0.0213 -0.9108 -vn 0.4125 0.0218 -0.9107 -vn -0.2617 0.3240 0.9092 -vn -0.2617 0.3231 0.9095 -vn -0.2618 0.3236 0.9093 -vn 0.0536 -0.9462 -0.3191 -vn 0.0535 -0.9463 -0.3189 -vn -0.2941 0.8552 -0.4268 -vn -0.2946 0.8552 -0.4264 -vn -0.2942 0.8553 -0.4266 -vn -0.2665 -0.5643 0.7814 -vn -0.2144 -0.5841 0.7828 -vn -0.2131 -0.5840 0.7833 -vn -0.2129 -0.5835 0.7837 -vn 0.3068 -0.9359 -0.1731 -vn 0.3068 -0.9359 -0.1730 -vn 0.3070 -0.9359 -0.1728 -vn -0.2732 0.2177 -0.9370 -vn -0.2756 0.2173 -0.9364 -vn -0.2745 0.2171 -0.9367 -vn 0.0275 -0.8951 -0.4451 -vn 0.0277 -0.8953 -0.4447 -vn 0.0276 -0.8949 -0.4454 -vn -0.1495 0.2023 -0.9678 -vn -0.1500 0.2025 -0.9677 -vn -0.1503 0.2026 -0.9677 -vn -0.6985 -0.4633 -0.5454 -vn -0.6986 -0.4630 -0.5455 -vn -0.6984 -0.4632 -0.5456 -vn -0.1619 -0.8583 -0.4869 -vn -0.1621 -0.8583 -0.4869 -vn -0.1623 -0.8582 -0.4869 -vn 0.2085 -0.8176 -0.5367 -vn 0.2084 -0.8172 -0.5373 -vn 0.2082 -0.8167 -0.5381 -vn 0.3711 -0.7008 0.6093 -vn 0.3713 -0.7009 0.6090 -vn 0.3708 -0.7006 0.6097 -vn -0.0968 -0.7956 -0.5981 -vn -0.0966 -0.7954 -0.5983 -vn -0.0968 -0.7955 -0.5981 -vn 0.0502 0.0309 0.9983 -vn 0.0502 0.0310 0.9983 -vn 0.0503 0.0307 0.9983 -vn -0.9080 0.3299 -0.2582 -vn 0.9337 -0.2401 0.2655 -vn 0.4680 -0.8476 -0.2500 -vn 0.4682 -0.8476 -0.2499 -vn 0.4680 -0.8476 -0.2501 -vn 0.9397 0.2608 0.2215 -vn 0.9396 0.2609 0.2215 -vn 0.9396 0.2610 0.2214 -vn -0.0028 0.9749 -0.2227 -vn -0.0028 0.9749 -0.2225 -vn 0.0689 0.8831 -0.4642 -vn 0.0703 0.8831 -0.4639 -vn 0.0713 0.8833 -0.4633 -vn 0.8485 -0.4597 0.2620 -vn 0.6274 0.2908 -0.7224 -vn 0.6270 0.2907 -0.7228 -vn 0.6275 0.2908 -0.7223 -vn -0.5196 0.6913 -0.5021 -vn -0.5197 0.6913 -0.5021 -vn -0.7388 -0.2979 -0.6044 -vn -0.7388 -0.2980 -0.6045 -vn 0.4095 0.6655 -0.6240 -vn 0.4097 0.6651 -0.6243 -vn 0.4093 0.6653 -0.6244 -vn 0.5219 0.4426 -0.7292 -vn 0.5218 0.4429 -0.7291 -vn 0.7919 -0.2286 0.5663 -vn 0.7920 -0.2287 0.5661 -vn 0.7922 -0.2286 0.5659 -vn 0.1526 0.8601 0.4867 -vn 0.1529 0.8600 0.4868 -vn 0.1528 0.8599 0.4871 -vn -0.2296 0.8814 -0.4129 -vn -0.2307 0.8814 -0.4122 -vn -0.7680 -0.6245 -0.1421 -vn -0.7682 -0.6242 -0.1421 -vn -0.7681 -0.6243 -0.1421 -vn 0.4907 -0.8322 0.2583 -vn 0.4912 -0.8319 0.2581 -vn -0.1558 0.9705 -0.1838 -vn -0.1548 0.9707 -0.1837 -vn -0.1540 0.9708 -0.1839 -vn -0.2658 -0.8909 -0.3682 -vn -0.2659 -0.8912 -0.3674 -vn -0.2670 -0.8914 -0.3663 -vn -0.3913 -0.6947 0.6036 -vn -0.3917 -0.6946 0.6034 -vn -0.3914 -0.6946 0.6037 -vn 0.2340 -0.1303 -0.9635 -vn 0.2328 -0.1300 -0.9638 -vn 0.2349 -0.1311 -0.9631 -vn 0.3827 0.9217 -0.0638 -vn 0.3830 0.9216 -0.0638 -vn 0.3832 0.9215 -0.0638 -vn 0.0549 -0.6666 -0.7434 -vn 0.0552 -0.6663 -0.7437 -vn 0.4376 0.3438 -0.8309 -vn 0.4377 0.3437 -0.8308 -vn 0.4376 0.3440 -0.8307 -vn -0.9488 0.2768 0.1523 -vn -0.9487 0.2771 0.1521 -vn 0.2867 -0.1610 0.9444 -vn 0.2869 -0.1611 0.9443 -vn 0.2868 -0.1609 0.9444 -vn 0.6248 -0.2217 0.7486 -vn 0.6249 -0.2218 0.7485 -vn 0.6249 -0.2216 0.7486 -vn -0.4365 -0.8052 0.4015 -vn -0.4333 -0.8059 0.4035 -vn -0.4352 -0.8056 0.4020 -vn 0.4672 -0.7793 -0.4177 -vn 0.4669 -0.7793 -0.4179 -vn 0.5911 0.6026 0.5362 -vn 0.5935 0.6018 0.5344 -vn 0.5921 0.6020 0.5357 -vn 0.3625 0.0651 0.9297 -vn 0.3642 0.0647 0.9291 -vn 0.3653 0.0648 0.9286 -vn 0.0602 0.7097 -0.7020 -vn 0.0603 0.7097 -0.7020 -vn -0.4478 0.7025 -0.5532 -vn -0.4471 0.7024 -0.5539 -vn -0.4468 0.7021 -0.5545 -vn -0.2687 -0.0097 0.9632 -vn -0.2688 -0.0100 0.9631 -vn 0.5060 0.6315 0.5875 -vn 0.5059 0.6316 0.5875 -vn -0.2830 -0.9470 -0.1518 -vn -0.2828 -0.9471 -0.1520 -vn -0.2830 -0.9470 -0.1522 -vn 0.4337 0.8966 -0.0892 -vn -0.3262 -0.9324 0.1554 -vn -0.3267 -0.9325 0.1540 -vn -0.3266 -0.9325 0.1545 -vn -0.9133 -0.1661 0.3720 -vn -0.9138 -0.1640 0.3715 -vn -0.9146 -0.1626 0.3703 -vn 0.1521 0.8981 -0.4126 -vn 0.1520 0.8982 -0.4125 -vn 0.1525 0.8979 -0.4130 -vn 0.1021 -0.1848 -0.9774 -vn 0.1020 -0.1853 -0.9774 -vn 0.3628 0.3072 -0.8798 -vn 0.3629 0.3074 -0.8797 -vn 0.3630 0.3076 -0.8796 -vn -0.0037 -0.9686 -0.2487 -vn 0.1527 -0.9761 0.1549 -vn 0.1527 -0.9763 0.1536 -vn 0.1522 -0.9760 0.1556 -vn -0.6852 0.3139 -0.6572 -vn -0.6853 0.3139 -0.6571 -vn -0.6854 0.3139 -0.6571 -vn 0.0549 -0.9970 0.0542 -vn 0.0553 -0.9970 0.0540 -vn 0.0547 -0.9970 0.0544 -vn 0.7069 0.1673 0.6873 -vn 0.7071 0.1674 0.6870 -vn 0.7068 0.1670 0.6875 -vn -0.0184 -0.9957 0.0903 -vn -0.0185 -0.9957 0.0905 -vn -0.0186 -0.9957 0.0906 -vn 0.5365 -0.6313 0.5600 -vn 0.5362 -0.6318 0.5597 -vn 0.5362 -0.6325 0.5590 -vn 0.1719 0.6733 -0.7191 -vn 0.1722 0.6733 -0.7191 -vn 0.0245 -0.9929 0.1163 -vn 0.0248 -0.9929 0.1162 -vn 0.0230 -0.9929 0.1165 -vn 0.4319 -0.7932 0.4294 -vn 0.4321 -0.7931 0.4292 -vn 0.4314 -0.7933 0.4296 -vn -0.9200 -0.3637 -0.1461 -vn -0.2314 -0.9473 -0.2216 -vn -0.2315 -0.9472 -0.2217 -vn -0.2316 -0.9473 -0.2215 -vn 0.6964 -0.6757 -0.2417 -vn 0.1709 -0.5077 0.8444 -vn 0.1709 -0.5076 0.8445 -vn 0.1708 -0.5079 0.8443 -vn 0.6135 -0.6128 -0.4981 -vn 0.6130 -0.6133 -0.4981 -vn 0.6126 -0.6136 -0.4982 -vn 0.0308 -0.7433 -0.6683 -vn 0.0305 -0.7433 -0.6683 -vn 0.0303 -0.7433 -0.6683 -vn -0.4822 -0.7998 -0.3575 -vn -0.4822 -0.8001 -0.3568 -vn -0.4822 -0.7999 -0.3573 -vn -0.0063 0.0196 0.9998 -vn -0.0065 0.0199 0.9998 -vn -0.0062 0.0192 0.9998 -vn 0.4914 -0.7731 0.4011 -vn 0.4922 -0.7731 0.4001 -vn 0.4902 -0.7734 0.4020 -vn 0.2444 -0.5669 0.7867 -vn 0.2434 -0.5671 0.7869 -vn 0.2453 -0.5671 0.7863 -vn -0.1860 -0.5554 0.8105 -vn -0.0639 -0.5673 0.8210 -vn -0.0636 -0.5676 0.8209 -vn 0.1848 -0.6712 0.7179 -vn 0.1844 -0.6713 0.7179 -vn 0.1840 -0.6715 0.7178 -vn 0.6400 0.7676 0.0343 -vn 0.6398 0.7678 0.0342 -vn 0.6395 0.7680 0.0342 -vn 0.5433 0.8376 -0.0566 -vn 0.5436 0.8374 -0.0569 -vn 0.5432 0.8377 -0.0564 -vn -0.3966 -0.5052 -0.7665 -vn -0.3965 -0.5051 -0.7666 -vn -0.5944 -0.2379 0.7682 -vn -0.5951 -0.2377 0.7677 -vn -0.5938 -0.2381 0.7686 -vn 0.3084 0.9456 -0.1041 -vn 0.3084 0.9455 -0.1042 -vn 0.3085 0.9455 -0.1040 -vn -0.0285 0.4685 -0.8830 -vn -0.0264 0.4697 -0.8824 -vn -0.0275 0.4689 -0.8828 -vn 0.5078 -0.8445 0.1704 -vn 0.5072 -0.8448 0.1705 -vn 0.5077 -0.8445 0.1704 -vn 0.1174 -0.0006 0.9931 -vn 0.1173 -0.0007 0.9931 -vn 0.4959 0.6290 0.5987 -vn 0.4960 0.6288 0.5988 -vn 0.4958 0.6291 0.5987 -vn 0.1444 0.9694 -0.1985 -vn 0.1445 0.9694 -0.1985 -vn 0.1444 0.9694 -0.1983 -vn 0.3599 0.4571 -0.8134 -vn 0.3600 0.4569 -0.8134 -vn -0.0279 0.1273 -0.9915 -vn -0.0279 0.1276 -0.9914 -vn -0.6684 -0.5171 -0.5346 -vn -0.6683 -0.5172 -0.5347 -vn -0.2781 -0.3655 0.8883 -vn -0.2781 -0.3656 0.8882 -vn -0.2783 -0.3654 0.8883 -vn -0.2852 -0.8486 -0.4457 -vn -0.2856 -0.8487 -0.4451 -vn -0.2849 -0.8485 -0.4459 -vn 0.4177 -0.1547 0.8953 -vn 0.4196 -0.1534 0.8947 -vn 0.4187 -0.1535 0.8951 -vn -0.9668 -0.1124 -0.2294 -vn 0.3226 0.9392 -0.1179 -vn 0.3225 0.9392 -0.1180 -vn 0.3227 0.9391 -0.1179 -vn 0.7945 0.3899 0.4656 -vn 0.7946 0.3899 0.4654 -vn 0.7945 0.3901 0.4654 -vn -0.1941 0.5044 -0.8414 -vn -0.1941 0.5042 -0.8415 -vn -0.1942 0.5044 -0.8414 -vn -0.8219 0.4120 -0.3933 -vn -0.8210 0.4125 -0.3947 -vn -0.0490 -0.6306 0.7745 -vn -0.0490 -0.6309 0.7743 -vn -0.0488 -0.6304 0.7747 -vn -0.7731 0.5381 -0.3358 -vn 0.0185 -0.5414 -0.8406 -vn 0.0191 -0.5418 -0.8403 -vn 0.0194 -0.5421 -0.8401 -vn -0.7445 0.6564 -0.1221 -vn -0.7443 0.6566 -0.1220 -vn -0.7442 0.6568 -0.1221 -vn -0.5702 0.8214 0.0118 -vn -0.5702 0.8214 0.0115 -vn -0.5702 0.8214 0.0120 -vn -0.1547 0.9878 -0.0159 -vn -0.1548 0.9878 -0.0161 -vn -0.7798 0.3953 -0.4854 -vn -0.4818 -0.4065 0.7763 -vn -0.4819 -0.4063 0.7763 -vn 0.2142 0.2459 0.9453 -vn 0.2136 0.2459 0.9455 -vn 0.2149 0.2453 0.9453 -vn 0.9091 0.1958 -0.3678 -vn 0.9091 0.1960 -0.3677 -vn 0.9091 0.1959 -0.3677 -vn 0.4274 -0.8163 -0.3885 -vn 0.4273 -0.8163 -0.3888 -vn 0.4273 -0.8163 -0.3887 -vn 0.1081 0.3966 0.9116 -vn 0.1078 0.3963 0.9118 -vn -0.8955 -0.3426 0.2842 -vn -0.8953 -0.3430 0.2842 -vn -0.8954 -0.3429 0.2842 -vn -0.3310 -0.1778 -0.9267 -vn -0.3314 -0.1776 -0.9266 -vn -0.3311 -0.1776 -0.9267 -vn -0.7707 0.4226 -0.4769 -vn -0.7707 0.4226 -0.4770 -vn -0.7711 0.4222 -0.4766 -vn -0.2560 -0.1617 -0.9531 -vn -0.2560 -0.1615 -0.9531 -vn -0.2559 -0.1616 -0.9531 -vn 0.3966 0.9041 -0.1593 -vn -0.3664 -0.7382 -0.5664 -vn -0.3673 -0.7374 -0.5668 -vn -0.3658 -0.7385 -0.5664 -vn 0.4134 0.9007 0.1336 -vn 0.4133 0.9008 0.1332 -vn 0.4137 0.9006 0.1332 -vn -0.5643 -0.8138 -0.1388 -vn -0.5641 -0.8140 -0.1385 -vn -0.5644 -0.8138 -0.1388 -vn -0.8727 0.4716 -0.1265 -vn -0.8728 0.4714 -0.1263 -vn -0.8728 0.4715 -0.1263 -vn -0.0083 0.3808 -0.9246 -vn -0.7074 0.2084 0.6755 -vn -0.7074 0.2082 0.6754 -vn 0.0797 0.9956 0.0485 -vn 0.0800 0.9956 0.0486 -vn 0.0857 0.8803 -0.4667 -vn 0.0861 0.8804 -0.4664 -vn 0.0861 0.8803 -0.4665 -vn -0.8733 0.4860 -0.0346 -vn -0.8726 0.4869 -0.0379 -vn -0.8730 0.4864 -0.0369 -vn -0.1464 0.9891 -0.0149 -vn -0.1466 0.9891 -0.0145 -vn -0.7188 0.5880 -0.3710 -vn -0.7190 0.5874 -0.3715 -vn -0.7189 0.5869 -0.3724 -vn 0.5875 0.3793 -0.7148 -vn 0.5874 0.3794 -0.7148 -vn -0.5006 -0.7991 0.3330 -vn -0.1002 -0.7442 -0.6604 -vn -0.1000 -0.7440 -0.6607 -vn -0.1004 -0.7446 -0.6599 -vn 0.4432 -0.6609 -0.6057 -vn 0.4431 -0.6610 -0.6057 -vn 0.4432 -0.6608 -0.6057 -vn -0.0628 0.9720 -0.2264 -vn 0.7665 -0.3811 -0.5170 -vn 0.2681 0.9205 -0.2843 -vn 0.2682 0.9206 -0.2837 -vn 0.2680 0.9206 -0.2842 -vn -0.0483 0.9207 -0.3873 -vn -0.0487 0.9207 -0.3872 -vn -0.0490 0.9207 -0.3871 -vn 0.5264 -0.1492 0.8371 -vn 0.5263 -0.1494 0.8371 -vn 0.5266 -0.1489 0.8370 -vn -0.6456 0.7518 -0.1340 -vn -0.6455 0.7519 -0.1344 -vn -0.6457 0.7518 -0.1335 -vn -0.1124 0.9441 -0.3099 -vn -0.1122 0.9441 -0.3099 -vn -0.1121 0.9441 -0.3099 -vn 0.6375 0.2991 -0.7100 -vn -0.4495 0.2726 -0.8507 -vn -0.4493 0.2725 -0.8508 -vn -0.4491 0.2725 -0.8509 -vn -0.5620 -0.4433 -0.6983 -vn -0.5616 -0.4435 -0.6985 -vn -0.1516 -0.9683 -0.1984 -vn -0.1540 -0.9681 -0.1977 -vn -0.1546 -0.9680 -0.1978 -vn 0.5228 0.3681 0.7689 -vn 0.5221 0.3680 0.7694 -vn 0.5238 0.3686 0.7680 -vn 0.3385 -0.2013 -0.9192 -vn 0.3386 -0.2016 -0.9191 -vn 0.3386 -0.2014 -0.9191 -vn -0.3986 0.0215 -0.9169 -vn -0.3980 0.0207 -0.9171 -vn -0.3985 0.0219 -0.9169 -vn 0.4840 0.8204 -0.3044 -vn 0.4834 0.8210 -0.3036 -vn 0.4836 0.8208 -0.3039 -vn -0.3769 0.9224 0.0844 -vn -0.3769 0.9225 0.0837 -vn -0.3769 0.9224 0.0840 -vn -0.1242 0.9272 -0.3533 -vn -0.1244 0.9270 -0.3539 -vn -0.1243 0.9271 -0.3536 -vn 0.3755 -0.8678 -0.3254 -vn 0.3751 -0.8680 -0.3255 -vn 0.3755 -0.8677 -0.3258 -vn 0.7160 -0.6128 0.3345 -vn 0.7160 -0.6127 0.3344 -vn 0.7376 -0.4577 -0.4964 -vn 0.7377 -0.4575 -0.4965 -vn 0.7377 -0.4573 -0.4967 -vn 0.3746 -0.8949 -0.2425 -vn 0.3747 -0.8948 -0.2426 -vn 0.3747 -0.8949 -0.2425 -vn -0.6695 -0.3583 -0.6507 -vn -0.6696 -0.3582 -0.6506 -vn -0.6699 -0.3581 -0.6504 -vn 0.8323 0.2293 0.5047 -vn 0.8322 0.2290 0.5050 -vn 0.8322 0.2293 0.5049 -vn -0.2677 -0.8026 -0.5330 -vn -0.2677 -0.8027 -0.5330 -vn -0.2481 -0.0212 -0.9685 -vn -0.2476 -0.0214 -0.9686 -vn -0.2472 -0.0217 -0.9687 -vn -0.9985 -0.0298 -0.0452 -vn 0.1758 -0.6704 -0.7209 -vn 0.1759 -0.6703 -0.7209 -vn 0.1755 -0.6703 -0.7210 -vn -0.6769 -0.5124 -0.5284 -vn -0.6771 -0.5121 -0.5284 -vn -0.6769 -0.5123 -0.5285 -vn -0.1733 -0.8917 -0.4182 -vn 0.1564 -0.9287 -0.3363 -vn 0.1567 -0.9285 -0.3367 -vn 0.1563 -0.9286 -0.3365 -vn 0.1432 -0.9206 -0.3634 -vn -0.0228 -0.9955 -0.0923 -vn -0.0227 -0.9955 -0.0923 -vn -0.3313 0.8144 -0.4765 -vn -0.7408 0.5895 -0.3219 -vn 0.3348 0.7009 0.6299 -vn 0.3348 0.7009 0.6298 -vn 0.3345 0.7004 0.6305 -vn -0.7825 -0.2599 -0.5658 -vn -0.7826 -0.2599 -0.5657 -vn -0.7826 -0.2598 -0.5657 -vn 0.2444 0.9400 0.2379 -vn 0.2447 0.9400 0.2379 -vn 0.2449 0.9399 0.2378 -vn 0.1908 -0.9660 0.1743 -vn 0.1909 -0.9660 0.1742 -vn 0.1906 -0.9661 0.1744 -vn 0.0090 -0.9752 0.2210 -vn 0.0092 -0.9752 0.2210 -vn 0.8289 -0.1284 0.5445 -vn -0.0429 -0.9960 -0.0778 -vn -0.8425 0.4808 0.2429 -vn -0.8427 0.4809 0.2421 -vn -0.8425 0.4809 0.2428 -vn 0.1084 -0.9936 0.0304 -vn 0.1082 -0.9937 0.0299 -vn -0.7057 -0.5667 -0.4253 -vn -0.7057 -0.5666 -0.4253 -vn -0.7057 -0.5666 -0.4254 -vn -0.6424 0.6827 -0.3483 -vn -0.6425 0.6825 -0.3484 -vn -0.6422 0.6830 -0.3480 -vn -0.0329 -0.9843 -0.1735 -vn -0.0331 -0.9842 -0.1740 -vn 0.0877 -0.9960 -0.0185 -vn 0.0879 -0.9960 -0.0187 -vn 0.8959 0.3007 0.3272 -vn 0.8957 0.3013 0.3270 -vn 0.8958 0.3009 0.3272 -vn 0.8119 -0.3806 0.4427 -vn 0.8118 -0.3804 0.4430 -vn 0.8120 -0.3805 0.4425 -vn -0.2153 -0.9750 -0.0553 -vn -0.2161 -0.9748 -0.0553 -vn -0.2145 -0.9751 -0.0557 -vn 0.1032 -0.9929 -0.0595 -vn 0.1029 -0.9929 -0.0590 -vn -0.7718 -0.2528 -0.5835 -vn 0.9607 -0.2701 -0.0637 -vn 0.9607 -0.2701 -0.0636 -vn 0.2634 -0.5644 0.7823 -vn 0.2634 -0.5643 0.7824 -vn 0.2634 -0.5644 0.7824 -vn -0.1537 -0.9815 0.1140 -vn -0.1536 -0.9816 0.1138 -vn 0.3688 0.8293 -0.4199 -vn 0.3689 0.8290 -0.4203 -vn -0.1894 -0.9613 0.1999 -vn -0.1895 -0.9613 0.1998 -vn -0.1894 -0.9614 0.1996 -vn -0.1829 -0.9822 0.0425 -vn -0.4573 0.8677 -0.1950 -vn -0.4573 0.8677 -0.1948 -vn 0.5417 0.6958 -0.4716 -vn 0.5420 0.6950 -0.4725 -vn 0.5414 0.6962 -0.4714 -vn 0.0294 0.6778 0.7346 -vn 0.0176 -0.9241 0.3818 -vn 0.2489 0.8455 -0.4724 -vn -0.1254 -0.9828 -0.1356 -vn -0.1256 -0.9828 -0.1351 -vn -0.1256 -0.9828 -0.1352 -vn -0.2367 -0.8557 -0.4601 -vn -0.2386 -0.8554 -0.4598 -vn -0.2400 -0.8548 -0.4601 -vn -0.6284 0.1841 -0.7558 -vn -0.6284 0.1840 -0.7558 -vn -0.6285 0.1843 -0.7556 -vn -0.5675 -0.7025 0.4295 -vn -0.5674 -0.7025 0.4296 -vn -0.5670 -0.7027 0.4298 -vn -0.3414 -0.9396 0.0238 -vn -0.2951 -0.7970 -0.5269 -vn -0.2953 -0.7964 -0.5278 -vn -0.2948 -0.7956 -0.5292 -vn 0.8568 -0.3095 0.4124 -vn 0.8570 -0.3094 0.4121 -vn 0.8569 -0.3095 0.4124 -vn -0.0773 -0.9874 0.1384 -vn -0.0775 -0.9874 0.1383 -vn -0.0773 -0.9874 0.1383 -vn -0.6250 0.7644 -0.1583 -vn -0.6250 0.7643 -0.1586 -vn -0.6251 0.7643 -0.1583 -vn 0.3244 -0.7370 0.5930 -vn 0.3246 -0.7371 0.5928 -vn -0.1970 0.2543 -0.9468 -vn -0.1975 0.2538 -0.9469 -vn -0.1974 0.2539 -0.9469 -vn -0.4792 0.8249 -0.3000 -vn 0.4834 0.1296 0.8657 -vn 0.4831 0.1299 0.8659 -vn 0.4831 0.1298 0.8659 -vn 0.4977 -0.6727 0.5474 -vn 0.4978 -0.6727 0.5475 -vn -0.0893 -0.9399 -0.3295 -vn -0.0891 -0.9401 -0.3291 -vn -0.0892 -0.9396 -0.3305 -vn -0.0662 0.9876 0.1426 -vn -0.0645 0.9877 0.1424 -vn -0.0655 0.9876 0.1427 -vn 0.6204 -0.6366 0.4581 -vn 0.6196 -0.6374 0.4580 -vn 0.6200 -0.6370 0.4580 -vn 0.5161 -0.8021 0.3003 -vn -0.3370 -0.4125 0.8463 -vn -0.3370 -0.4127 0.8462 -vn -0.3369 -0.4124 0.8464 -vn -0.2575 0.9566 0.1364 -vn -0.2577 0.9566 0.1363 -vn -0.2576 0.9566 0.1361 -vn -0.2340 -0.3606 -0.9029 -vn -0.2351 -0.3602 -0.9028 -vn -0.2345 -0.3605 -0.9028 -vn 0.7027 0.4346 0.5633 -vn 0.7021 0.4340 0.5646 -vn 0.7023 0.4345 0.5639 -vn -0.1796 -0.9534 -0.2425 -vn -0.1797 -0.9535 -0.2418 -vn -0.1795 -0.9535 -0.2421 -vn -0.2173 -0.8581 0.4652 -vn -0.2174 -0.8580 0.4653 -vn 0.1689 -0.9491 0.2659 -vn 0.1691 -0.9490 0.2662 -vn 0.1692 -0.9490 0.2662 -vn 0.2517 -0.9498 0.1858 -vn 0.2508 -0.9503 0.1843 -vn 0.2515 -0.9500 0.1852 -vn -0.9135 0.3926 0.1066 -vn -0.9130 0.3936 0.1070 -vn -0.9134 0.3929 0.1066 -vn -0.5452 -0.0215 -0.8380 -vn -0.9053 -0.2960 0.3046 -vn -0.9051 -0.2962 0.3050 -vn -0.9053 -0.2960 0.3048 -vn -0.1637 0.9189 -0.3588 -vn -0.1637 0.9192 -0.3583 -vn -0.1636 0.9191 -0.3585 -vn -0.3166 0.6458 -0.6948 -vn -0.3165 0.6455 -0.6951 -vn -0.3163 0.6451 -0.6956 -vn 0.1795 -0.2527 -0.9507 -vn 0.0283 -0.8673 0.4969 -vn 0.0286 -0.8669 0.4977 -vn 0.0284 -0.8672 0.4972 -vn -0.2921 -0.9411 -0.1701 -vn -0.2919 -0.9413 -0.1696 -vn -0.2920 -0.9414 -0.1690 -vn 0.3255 0.0888 0.9414 -vn 0.3254 0.0888 0.9414 -vn -0.2784 -0.9604 -0.0115 -vn -0.9239 0.3339 0.1869 -vn -0.9234 0.3352 0.1873 -vn -0.9229 0.3359 0.1881 -vn 0.6101 -0.2805 0.7410 -vn 0.6101 -0.2806 0.7410 -vn 0.6102 -0.2807 0.7409 -vn 0.5231 0.8440 0.1188 -vn 0.5241 0.8433 0.1193 -vn 0.5237 0.8436 0.1189 -vn 0.9072 0.1885 0.3761 -vn 0.9068 0.1885 0.3770 -vn 0.9077 0.1893 0.3744 -vn 0.7622 -0.5982 -0.2474 -vn 0.4946 -0.5368 -0.6835 -vn 0.4947 -0.5368 -0.6834 -vn -0.5875 0.3932 -0.7073 -vn -0.5873 0.3931 -0.7075 -vn -0.5873 0.3929 -0.7076 -vn 0.3124 -0.8047 0.5048 -vn 0.3132 -0.8046 0.5046 -vn 0.3129 -0.8046 0.5046 -vn -0.0949 0.4783 -0.8731 -vn -0.0948 0.4784 -0.8730 -vn -0.0948 0.4783 -0.8731 -vn -0.1263 0.9715 0.2004 -vn -0.1264 0.9716 0.1999 -vn -0.1264 0.9715 0.2004 -vn -0.4241 -0.7591 0.4938 -vn -0.4229 -0.7593 0.4946 -vn -0.4214 -0.7599 0.4950 -vn 0.6057 0.0791 0.7918 -vn 0.6057 0.0790 0.7917 -vn 0.6056 0.0788 0.7918 -vn 0.7358 0.5629 -0.3765 -vn 0.7356 0.5631 -0.3767 -vn 0.8725 -0.4320 0.2281 -vn 0.8720 -0.4326 0.2289 -vn 0.7096 -0.6054 -0.3605 -vn 0.7095 -0.6055 -0.3606 -vn 0.1848 -0.3123 -0.9318 -vn 0.1847 -0.3122 -0.9319 -vn 0.1849 -0.3124 -0.9318 -vn -0.9220 0.1902 -0.3372 -vn -0.9223 0.1895 -0.3368 -vn -0.9221 0.1899 -0.3370 -vn 0.2903 0.4063 -0.8664 -vn 0.2904 0.4061 -0.8665 -vn 0.2904 0.4058 -0.8666 -vn 0.0871 -0.2497 -0.9644 -vn 0.0874 -0.2497 -0.9644 -vn 0.0880 -0.2495 -0.9644 -vn -0.5819 -0.8079 0.0929 -vn -0.5817 -0.8081 0.0922 -vn -0.5900 0.1263 0.7975 -vn -0.5901 0.1265 0.7974 -vn 0.1284 0.6525 -0.7468 -vn 0.4770 -0.8141 0.3313 -vn 0.4762 -0.8143 0.3318 -vn 0.4778 -0.8139 0.3304 -vn -0.4072 0.7317 -0.5466 -vn -0.4073 0.7317 -0.5466 -vn -0.4061 0.7320 -0.5470 -vn -0.7532 0.4488 0.4809 -vn -0.7536 0.4485 0.4805 -vn -0.7534 0.4487 0.4807 -vn -0.9804 0.1402 0.1381 -vn -0.9803 0.1409 0.1382 -vn -0.9805 0.1396 0.1381 -vn 0.3241 0.6226 0.7122 -vn 0.7794 0.6155 -0.1173 -vn 0.7797 0.6150 -0.1176 -vn 0.7799 0.6148 -0.1176 -vn 0.6933 -0.1705 0.7002 -vn 0.6933 -0.1706 0.7001 -vn 0.6932 -0.1703 0.7003 -vn 0.1500 0.6853 -0.7126 -vn 0.1497 0.6854 -0.7126 -vn 0.1495 0.6854 -0.7126 -vn -0.5043 -0.8316 -0.2328 -vn -0.5044 -0.8315 -0.2327 -vn -0.5045 -0.8314 -0.2329 -vn 0.4633 -0.8801 -0.1037 -vn 0.4630 -0.8802 -0.1044 -vn 0.4636 -0.8800 -0.1032 -vn -0.7905 0.0558 -0.6099 -vn -0.8347 0.3034 -0.4595 -vn -0.8348 0.3035 -0.4594 -vn -0.8348 0.3036 -0.4592 -vn -0.0697 -0.8726 -0.4834 -vn -0.0697 -0.8725 -0.4836 -vn 0.4603 -0.6952 -0.5521 -vn 0.4604 -0.6952 -0.5520 -vn 0.4602 -0.6954 -0.5520 -vn -0.1199 -0.9670 -0.2250 -vn -0.1201 -0.9669 -0.2252 -vn -0.1201 -0.9669 -0.2253 -vn 0.3630 0.6808 -0.6362 -vn 0.6412 -0.7282 -0.2422 -vn 0.6408 -0.7287 -0.2416 -vn 0.6404 -0.7293 -0.2410 -vn -0.3214 -0.7828 0.5328 -vn -0.3213 -0.7829 0.5328 -vn -0.3212 -0.7830 0.5327 -vn -0.3716 0.5829 0.7226 -vn -0.3714 0.5826 0.7230 -vn -0.3717 0.5826 0.7228 -vn 0.8584 0.4528 -0.2412 -vn 0.8584 0.4528 -0.2413 -vn 0.8583 0.4529 -0.2412 -vn 0.2913 0.6593 -0.6931 -vn 0.2793 -0.9587 -0.0540 -vn 0.2794 -0.9587 -0.0541 -vn 0.0577 -0.8960 -0.4404 -vn 0.0589 -0.8954 -0.4414 -vn 0.0595 -0.8948 -0.4425 -vn 0.5986 0.0844 -0.7966 -vn 0.5983 0.0842 -0.7968 -vn -0.4765 -0.8636 -0.1646 -vn -0.4769 -0.8635 -0.1644 -vn 0.5362 -0.8107 -0.2350 -vn 0.5360 -0.8108 -0.2353 -vn 0.5361 -0.8107 -0.2354 -vn 0.0699 0.4202 0.9047 -vn 0.0427 0.3053 -0.9513 -vn 0.0425 0.3050 -0.9514 -vn 0.0426 0.3051 -0.9514 -vn -0.1209 -0.9696 -0.2128 -vn 0.4771 0.8503 -0.2222 -vn 0.4777 0.8501 -0.2218 -vn 0.4765 0.8506 -0.2223 -vn 0.0467 -0.9623 -0.2679 -vn 0.0466 -0.9621 -0.2685 -vn 0.0466 -0.9618 -0.2696 -vn -0.6143 0.5737 0.5417 -vn -0.6143 0.5736 0.5418 -vn -0.6139 0.5738 0.5421 -vn 0.1733 0.9431 -0.2839 -vn 0.1732 0.9429 -0.2846 -vn 0.1734 0.9430 -0.2841 -vn 0.1705 -0.8772 -0.4489 -vn -0.0553 0.1879 0.9806 -vn -0.0550 0.1879 0.9806 -vn 0.4293 -0.8680 0.2496 -vn 0.4293 -0.8681 0.2493 -vn 0.4293 -0.8681 0.2492 -vn -0.5156 -0.7055 -0.4863 -vn -0.0596 -0.2914 0.9547 -vn -0.0599 -0.2910 0.9548 -vn -0.0589 -0.2913 0.9548 -vn 0.2904 -0.9165 -0.2751 -vn 0.2905 -0.9164 -0.2752 -vn 0.0399 -0.9150 -0.4015 -vn 0.0401 -0.9152 -0.4010 -vn 0.0400 -0.9152 -0.4011 -vn -0.5657 0.3708 0.7366 -vn -0.5653 0.3708 0.7369 -vn -0.5656 0.3707 0.7366 -vn 0.5148 -0.8536 -0.0797 -vn 0.5146 -0.8537 -0.0799 -vn 0.1043 0.6647 0.7398 -vn 0.1042 0.6646 0.7399 -vn -0.1851 -0.8040 -0.5651 -vn -0.1852 -0.8040 -0.5650 -vn -0.1850 -0.8039 -0.5652 -vn 0.6647 0.6978 0.2668 -vn 0.6647 0.6979 0.2668 -vn 0.6647 0.6980 0.2667 -vn -0.3066 -0.9008 -0.3075 -vn -0.3066 -0.9007 -0.3077 -vn -0.3068 -0.9006 -0.3078 -vn -0.4708 0.8762 0.1029 -vn -0.4709 0.8761 0.1031 -vn -0.4709 0.8761 0.1036 -vn -0.4447 0.4487 0.7752 -vn -0.4452 0.4480 0.7753 -vn -0.4448 0.4483 0.7754 -vn 0.0416 -0.8398 -0.5413 -vn 0.0413 -0.8399 -0.5412 -vn 0.0412 -0.8399 -0.5412 -vn -0.2703 -0.7937 -0.5450 -vn -0.2711 -0.7931 -0.5455 -vn -0.2707 -0.7933 -0.5454 -vn -0.6923 0.3269 -0.6434 -vn 0.7685 -0.6323 0.0975 -vn 0.7687 -0.6322 0.0970 -vn 0.7687 -0.6322 0.0972 -vn 0.4192 0.9018 0.1054 -vn 0.4188 0.9019 0.1056 -vn 0.4190 0.9018 0.1056 -vn -0.0253 -0.8540 -0.5197 -vn -0.0249 -0.8540 -0.5198 -vn -0.3671 -0.8352 0.4095 -vn -0.3673 -0.8350 0.4097 -vn -0.3672 -0.8349 0.4100 -vn 0.9482 -0.0976 0.3022 -vn 0.9483 -0.0975 0.3021 -vn 0.4957 -0.8635 -0.0924 -vn 0.4953 -0.8638 -0.0923 -vn 0.4948 -0.8641 -0.0925 -vn -0.4237 -0.7604 -0.4923 -vn -0.4251 -0.7593 -0.4927 -vn -0.4263 -0.7577 -0.4941 -vn -0.8722 0.1441 0.4674 -vn -0.0009 -0.8206 -0.5716 -vn -0.0010 -0.8206 -0.5715 -vn -0.0007 -0.8206 -0.5715 -vn -0.0809 -0.2046 0.9755 -vn -0.0812 -0.2045 0.9755 -vn -0.0813 -0.2043 0.9755 -vn -0.6843 0.6181 -0.3869 -vn -0.6853 0.6169 -0.3870 -vn -0.6845 0.6179 -0.3869 -vn -0.7625 0.3976 -0.5104 -vn -0.7626 0.3972 -0.5105 -vn -0.7626 0.3980 -0.5100 -vn -0.0854 -0.7078 -0.7012 -vn -0.0841 -0.7071 -0.7021 -vn -0.0861 -0.7103 -0.6986 -vn -0.4053 -0.8882 -0.2163 -vn -0.7002 0.3951 -0.5947 -vn -0.7002 0.3950 -0.5947 -vn -0.0830 -0.6852 -0.7236 -vn -0.0833 -0.6849 -0.7238 -vn -0.0825 -0.6855 -0.7234 -vn 0.5096 0.8372 -0.1986 -vn 0.5094 0.8372 -0.1989 -vn 0.5093 0.8372 -0.1990 -vn 0.1064 -0.5986 -0.7940 -vn 0.1060 -0.5986 -0.7940 -vn -0.6892 0.6057 -0.3976 -vn -0.6890 0.6061 -0.3974 -vn -0.6890 0.6060 -0.3974 -vn -0.2840 0.3183 0.9045 -vn -0.2837 0.3184 0.9045 -vn 0.8946 -0.3813 0.2330 -vn 0.8946 -0.3814 0.2330 -vn 0.1304 0.9832 -0.1275 -vn 0.1303 0.9832 -0.1279 -vn 0.1304 0.9832 -0.1280 -vn 0.4511 -0.2684 -0.8512 -vn 0.4506 -0.2686 -0.8514 -vn 0.4505 -0.2686 -0.8514 -vn -0.3018 -0.3290 0.8948 -vn -0.3019 -0.3292 0.8947 -vn -0.3015 -0.3296 0.8947 -vn -0.4134 -0.8672 -0.2776 -vn -0.4142 -0.8668 -0.2778 -vn -0.4132 -0.8673 -0.2776 -vn -0.5492 -0.8309 0.0896 -vn -0.5489 -0.8311 0.0893 -vn 0.3391 0.9386 -0.0630 -vn 0.3390 0.9387 -0.0632 -vn 0.3391 0.9386 -0.0629 -vn 0.0055 -0.5860 -0.8103 -vn 0.0056 -0.5860 -0.8103 -vn -0.4586 -0.6857 -0.5652 -vn -0.4585 -0.6857 -0.5654 -vn -0.4584 -0.6856 -0.5655 -vn 0.5823 -0.7550 -0.3014 -vn 0.4949 -0.7095 0.5017 -vn 0.4941 -0.7100 0.5017 -vn 0.4945 -0.7098 0.5017 -vn -0.4421 -0.8599 0.2550 -vn -0.4421 -0.8603 0.2539 -vn -0.4428 -0.8601 0.2533 -vn -0.1276 0.6643 0.7365 -vn -0.1274 0.6638 0.7370 -vn -0.1275 0.6645 0.7363 -vn -0.2307 -0.8266 0.5133 -vn 0.5218 0.0827 0.8490 -vn 0.5221 0.0830 0.8488 -vn 0.5221 0.0829 0.8489 -vn -0.9529 -0.2057 0.2227 -vn -0.9531 -0.2053 0.2223 -vn -0.9532 -0.2049 0.2221 -vn -0.1954 0.1695 -0.9660 -vn -0.1954 0.1696 -0.9659 -vn -0.1955 0.1698 -0.9659 -vn -0.5199 -0.5855 -0.6220 -vn -0.5199 -0.5855 -0.6219 -vn 0.4329 -0.1945 -0.8802 -vn 0.4327 -0.1946 -0.8803 -vn 0.4324 -0.1948 -0.8804 -vn -0.2247 -0.1070 -0.9685 -vn -0.2246 -0.1070 -0.9686 -vn 0.3487 0.8758 -0.3338 -vn 0.3483 0.8756 -0.3346 -vn 0.3479 0.8757 -0.3349 -vn 0.9270 -0.0110 0.3748 -vn 0.9270 -0.0121 0.3748 -vn 0.9270 -0.0119 0.3749 -vn 0.1503 -0.8724 -0.4652 -vn 0.1502 -0.8724 -0.4651 -vn 0.3105 -0.8456 -0.4342 -vn 0.3111 -0.8449 -0.4352 -vn 0.3104 -0.8458 -0.4339 -vn 0.6767 -0.5528 0.4864 -vn 0.6766 -0.5526 0.4867 -vn 0.6768 -0.5531 0.4859 -vn 0.7028 -0.5947 0.3904 -vn -0.0146 0.5837 -0.8118 -vn -0.0144 0.5836 -0.8119 -vn -0.0142 0.5835 -0.8120 -vn 0.8514 0.3754 0.3664 -vn 0.8522 0.3741 0.3657 -vn 0.8518 0.3749 0.3660 -vn -0.3780 0.1342 0.9160 -vn -0.3945 0.3898 -0.8321 -vn -0.3944 0.3899 -0.8321 -vn -0.3946 0.3899 -0.8320 -vn -0.4003 -0.9017 -0.1636 -vn -0.4008 -0.9014 -0.1637 -vn -0.4012 -0.9012 -0.1637 -vn 0.3323 0.7490 0.5732 -vn 0.3326 0.7486 0.5735 -vn 0.3323 0.7490 0.5733 -vn -0.8553 0.4816 0.1911 -vn -0.9313 -0.1633 -0.3255 -vn -0.9309 -0.1637 -0.3266 -vn -0.9304 -0.1638 -0.3278 -vn 0.1393 -0.0665 0.9880 -vn 0.1390 -0.0669 0.9880 -vn 0.1400 -0.0666 0.9879 -vn -0.2821 -0.3092 -0.9082 -vn -0.2820 -0.3091 -0.9083 -vn -0.2819 -0.3091 -0.9083 -vn -0.1400 0.3324 -0.9327 -vn -0.1398 0.3328 -0.9326 -vn -0.9079 0.2957 -0.2972 -vn -0.9083 0.2951 -0.2965 -vn -0.9085 0.2944 -0.2964 -vn 0.1021 -0.7784 0.6195 -vn 0.1023 -0.7786 0.6191 -vn 0.1021 -0.7783 0.6195 -vn -0.3481 0.9127 -0.2139 -vn -0.3482 0.9127 -0.2137 -vn -0.3483 0.9127 -0.2136 -vn -0.4535 -0.8394 -0.2996 -vn -0.4537 -0.8394 -0.2994 -vn -0.9957 0.0883 -0.0269 -vn -0.9958 0.0880 -0.0268 -vn 0.8099 0.5838 0.0577 -vn 0.8098 0.5838 0.0578 -vn 0.7719 -0.4307 0.4677 -vn 0.7718 -0.4307 0.4678 -vn 0.7716 -0.4310 0.4679 -vn 0.9446 0.1088 0.3098 -vn 0.9445 0.1086 0.3099 -vn 0.9445 0.1084 0.3101 -vn 0.9458 -0.2330 0.2262 -vn 0.9457 -0.2330 0.2267 -vn 0.9457 -0.2330 0.2264 -vn -0.3485 -0.8874 -0.3019 -vn -0.7946 0.5440 -0.2695 -vn -0.5210 0.8520 0.0524 -vn -0.5209 0.8520 0.0527 -vn -0.5208 0.8521 0.0528 -vn -0.5372 0.8265 -0.1679 -vn -0.5371 0.8266 -0.1681 -vn -0.5371 0.8266 -0.1680 -vn -0.0134 -0.5867 0.8097 -vn -0.0135 -0.5865 0.8098 -vn -0.0134 -0.5862 0.8101 -vn -0.1587 0.4916 -0.8563 -vn -0.1586 0.4913 -0.8564 -vn -0.1586 0.4914 -0.8564 -vn -0.3848 0.6682 -0.6368 -vn -0.3852 0.6681 -0.6366 -vn -0.3847 0.6681 -0.6369 -vn 0.1954 -0.6073 0.7701 -vn 0.1952 -0.6074 0.7700 -vn 0.5348 -0.7369 0.4135 -vn 0.5340 -0.7363 0.4156 -vn 0.5343 -0.7369 0.4141 -vn -0.3428 0.2468 0.9064 -vn -0.3429 0.2469 0.9063 -vn -0.3426 0.2467 0.9065 -vn -0.7316 -0.6806 0.0407 -vn -0.7315 -0.6806 0.0410 -vn -0.7314 -0.6807 0.0410 -vn -0.5505 -0.1228 0.8257 -vn -0.5492 -0.1226 0.8267 -vn -0.5502 -0.1226 0.8260 -vn 0.3866 -0.6901 0.6118 -vn 0.3874 -0.6897 0.6118 -vn 0.3868 -0.6900 0.6118 -vn -0.2857 -0.6646 0.6904 -vn 0.4880 0.8163 -0.3090 -vn 0.4882 0.8162 -0.3089 -vn 0.4878 0.8165 -0.3088 -vn 0.3253 -0.7616 0.5605 -vn 0.3251 -0.7618 0.5604 -vn 0.3250 -0.7619 0.5603 -vn -0.7757 -0.5503 -0.3088 -vn -0.7758 -0.5502 -0.3089 -vn -0.7759 -0.5496 -0.3095 -vn -0.1045 0.1099 0.9884 -vn -0.1046 0.1099 0.9884 -vn -0.1402 -0.1055 -0.9845 -vn -0.1401 -0.1056 -0.9845 -vn -0.1404 -0.1052 -0.9845 -vn 0.6578 0.7500 0.0691 -vn 0.6568 0.7509 0.0686 -vn 0.6586 0.7492 0.0705 -vn -0.0265 0.9996 -0.0046 -vn -0.0252 0.9997 -0.0059 -vn -0.0259 0.9996 -0.0056 -vn -0.2624 -0.1533 0.9527 -vn -0.2623 -0.1533 0.9527 -vn -0.2622 -0.1534 0.9527 -vn -0.7740 -0.5140 -0.3697 -vn -0.7742 -0.5140 -0.3694 -vn -0.7744 -0.5140 -0.3689 -vn 0.1873 0.5950 -0.7816 -vn 0.1874 0.5950 -0.7816 -vn -0.8480 0.3923 -0.3564 -vn -0.8481 0.3923 -0.3562 -vn -0.8474 0.3921 -0.3579 -vn -0.0970 0.9497 0.2978 -vn -0.0968 0.9496 0.2980 -vn -0.0969 0.9497 0.2978 -vn -0.7112 0.4309 -0.5555 -vn -0.7107 0.4304 -0.5564 -vn -0.7108 0.4305 -0.5562 -vn -0.4669 0.6767 -0.5693 -vn -0.4667 0.6769 -0.5692 -vn -0.4672 0.6766 -0.5691 -vn 0.6364 -0.2631 -0.7251 -vn 0.6366 -0.2633 -0.7248 -vn -0.2471 0.9685 0.0312 -vn -0.2478 0.9683 0.0303 -vn -0.2474 0.9684 0.0307 -vn 0.6344 0.3067 -0.7096 -vn 0.4036 0.6946 -0.5955 -vn -0.4646 -0.8646 -0.1914 -vn -0.4639 -0.8651 -0.1905 -vn -0.4635 -0.8655 -0.1901 -vn -0.0581 0.9981 0.0201 -vn -0.0599 0.9980 0.0187 -vn -0.0587 0.9981 0.0194 -vn -0.2155 -0.8335 0.5088 -vn -0.2155 -0.8335 0.5087 -vn -0.9871 0.1330 0.0894 -vn -0.9871 0.1327 0.0899 -vn -0.9870 0.1330 0.0899 -vn 0.8721 -0.4541 0.1823 -vn 0.8723 -0.4540 0.1818 -vn 0.8722 -0.4541 0.1820 -vn -0.2108 -0.8692 0.4473 -vn -0.2104 -0.8694 0.4470 -vn -0.6862 -0.4769 0.5492 -vn -0.6863 -0.4769 0.5491 -vn -0.7350 -0.3115 0.6022 -vn -0.7351 -0.3116 0.6022 -vn -0.7348 -0.3115 0.6026 -vn -0.1392 0.9844 -0.1076 -vn -0.8531 0.3348 -0.4001 -vn -0.8533 0.3348 -0.3998 -vn -0.8532 0.3348 -0.3999 -vn 0.6407 -0.3921 -0.6601 -vn -0.1177 0.8762 -0.4674 -vn -0.1177 0.8761 -0.4675 -vn -0.1814 -0.6916 -0.6991 -vn -0.1819 -0.6920 -0.6986 -vn -0.1818 -0.6925 -0.6981 -vn 0.2634 0.7683 -0.5833 -vn 0.2637 0.7683 -0.5833 -vn 0.2636 0.7682 -0.5834 -vn 0.6929 -0.7000 -0.1728 -vn 0.6931 -0.6997 -0.1731 -vn 0.6926 -0.7005 -0.1724 -vn -0.2987 -0.6752 0.6744 -vn -0.2995 -0.6746 0.6747 -vn -0.3000 -0.6744 0.6747 -vn 0.0684 0.9777 -0.1984 -vn -0.3624 -0.3661 -0.8571 -vn -0.3623 -0.3658 -0.8573 -vn -0.3622 -0.3659 -0.8573 -vn 0.4924 0.6352 -0.5950 -vn 0.4923 0.6353 -0.5950 -vn 0.4925 0.6352 -0.5950 -vn 0.2159 0.6758 0.7048 -vn 0.2158 0.6761 0.7045 -vn 0.2161 0.6757 0.7048 -vn 0.2641 0.8509 -0.4541 -vn -0.4741 0.5662 -0.6743 -vn -0.4738 0.5664 -0.6743 -vn -0.4736 0.5666 -0.6743 -vn -0.3634 -0.9059 0.2174 -vn -0.3634 -0.9059 0.2173 -vn -0.1841 0.8930 -0.4108 -vn -0.1843 0.8928 -0.4110 -vn 0.1839 -0.4634 -0.8669 -vn 0.1842 -0.4632 -0.8669 -vn -0.9070 -0.4045 0.1174 -vn -0.9069 -0.4047 0.1173 -vn -0.9068 -0.4048 0.1173 -vn 0.4391 0.8757 0.2008 -vn 0.4390 0.8758 0.2008 -vn 0.4389 0.8758 0.2007 -vn -0.3981 0.4926 -0.7738 -vn -0.3979 0.4920 -0.7744 -vn -0.3981 0.4914 -0.7747 -vn 0.6811 0.6887 -0.2487 -vn 0.6811 0.6886 -0.2489 -vn 0.6812 0.6886 -0.2488 -vn -0.3403 -0.9205 0.1920 -vn -0.3404 -0.9206 0.1913 -vn -0.7641 -0.6102 0.2094 -vn -0.7642 -0.6101 0.2092 -vn 0.7103 -0.6816 -0.1761 -vn 0.7103 -0.6815 -0.1763 -vn 0.7103 -0.6815 -0.1762 -vn -0.4069 -0.0099 0.9134 -vn -0.4073 -0.0093 0.9132 -vn -0.4071 -0.0095 0.9133 -vn 0.4657 0.4196 0.7791 -vn 0.4662 0.4192 0.7791 -vn 0.4661 0.4192 0.7791 -vn -0.1753 0.6236 -0.7618 -vn -0.7322 0.4431 -0.5173 -vn -0.7319 0.4436 -0.5172 -vn 0.4436 0.5963 0.6691 -vn 0.4434 0.5961 0.6694 -vn 0.4439 0.5966 0.6686 -vn -0.8799 0.1940 0.4338 -vn -0.8800 0.1941 0.4335 -vn 0.8271 -0.4128 0.3814 -vn 0.8275 -0.4124 0.3811 -vn 0.8281 -0.4113 0.3809 -vn 0.3913 0.8834 -0.2577 -vn 0.3923 0.8835 -0.2561 -vn 0.3918 0.8834 -0.2573 -vn -0.2888 -0.4402 -0.8502 -vn 0.3983 -0.3605 -0.8434 -vn 0.3980 -0.3607 -0.8435 -vn 0.3979 -0.3607 -0.8435 -vn 0.0995 0.2840 0.9537 -vn 0.0994 0.2841 0.9536 -vn 0.3833 -0.6228 -0.6821 -vn 0.3831 -0.6227 -0.6823 -vn 0.3833 -0.6229 -0.6820 -vn -0.5477 -0.4284 -0.7187 -vn -0.5476 -0.4287 -0.7186 -vn 0.2791 0.9361 -0.2142 -vn -0.3261 0.6963 0.6393 -vn -0.3262 0.6964 0.6392 -vn -0.3262 0.6966 0.6390 -vn 0.5521 -0.8337 0.0114 -vn 0.5519 -0.8338 0.0112 -vn 0.5520 -0.8338 0.0116 -vn 0.4705 0.7381 0.4836 -vn 0.4706 0.7380 0.4836 -vn 0.4708 0.7378 0.4838 -vn 0.4495 -0.6788 -0.5807 -vn 0.4495 -0.6787 -0.5807 -vn -0.4503 -0.8483 -0.2787 -vn -0.4503 -0.8483 -0.2785 -vn -0.8749 0.4835 0.0260 -vn -0.8749 0.4837 0.0256 -vn 0.2361 -0.7488 -0.6193 -vn 0.2365 -0.7491 -0.6188 -vn -0.4134 -0.0154 0.9104 -vn -0.4137 -0.0162 0.9103 -vn -0.4135 -0.0155 0.9104 -vn 0.2464 -0.0220 0.9689 -vn 0.2242 -0.9723 -0.0656 -vn 0.2237 -0.9725 -0.0655 -vn 0.2250 -0.9721 -0.0663 -vn -0.1119 -0.9873 -0.1131 -vn -0.2581 0.5143 -0.8179 -vn -0.2583 0.5143 -0.8178 -vn -0.7340 -0.0671 0.6758 -vn -0.7340 -0.0673 0.6759 -vn -0.7341 -0.0676 0.6757 -vn 0.4052 0.9089 0.0984 -vn 0.4052 0.9089 0.0982 -vn 0.4050 0.9090 0.0980 -vn 0.1442 0.9877 -0.0596 -vn 0.4041 0.9146 -0.0136 -vn 0.4042 0.9146 -0.0135 -vn -0.7519 0.5339 -0.3868 -vn -0.7506 0.5352 -0.3876 -vn -0.7515 0.5342 -0.3872 -vn 0.8872 -0.3731 0.2715 -vn 0.8871 -0.3732 0.2715 -vn -0.2703 -0.9486 -0.1648 -vn -0.2706 -0.9484 -0.1650 -vn -0.2706 -0.9484 -0.1652 -vn -0.3965 -0.9176 -0.0297 -vn -0.3967 -0.9175 -0.0300 -vn -0.3965 -0.9175 -0.0298 -vn -0.0759 -0.9709 -0.2270 -vn -0.0761 -0.9709 -0.2270 -vn 0.9091 -0.0750 0.4098 -vn -0.7647 0.4180 -0.4905 -vn -0.7645 0.4187 -0.4902 -vn -0.7645 0.4186 -0.4903 -vn 0.4410 -0.7193 0.5368 -vn 0.4416 -0.7191 0.5366 -vn 0.4426 -0.7184 0.5367 -vn -0.7327 -0.3816 0.5635 -vn -0.7326 -0.3818 0.5635 -vn -0.7318 -0.3825 0.5641 -vn -0.2806 0.0269 -0.9594 -vn -0.2822 0.0270 -0.9590 -vn -0.2851 0.0282 -0.9581 -vn 0.2130 -0.9149 0.3430 -vn 0.2129 -0.9148 0.3432 -vn -0.4233 0.9002 0.1025 -vn -0.4231 0.9003 0.1026 -vn -0.4235 0.9001 0.1024 -vn -0.1746 -0.9841 0.0311 -vn -0.1746 -0.9842 0.0310 -vn -0.1746 -0.9842 0.0306 -vn 0.8807 -0.3469 0.3226 -vn 0.8808 -0.3466 0.3226 -vn 0.8809 -0.3465 0.3225 -vn -0.0327 -0.9899 0.1379 -vn -0.0328 -0.9899 0.1379 -vn -0.0324 -0.9899 0.1382 -vn 0.2198 -0.9544 0.2018 -vn 0.2198 -0.9545 0.2017 -vn 0.2196 -0.9545 0.2016 -vn 0.7797 0.6229 0.0632 -vn 0.7798 0.6228 0.0631 -vn 0.4083 -0.6755 -0.6140 -vn -0.1992 -0.9708 -0.1340 -vn -0.1990 -0.9707 -0.1346 -vn -0.1991 -0.9707 -0.1342 -vn 0.3732 -0.5807 0.7236 -vn 0.3732 -0.5812 0.7232 -vn 0.3733 -0.5811 0.7232 -vn -0.1730 0.8739 -0.4542 -vn -0.1731 0.8740 -0.4540 -vn -0.1729 0.8739 -0.4544 -vn -0.5912 0.6424 -0.4876 -vn -0.5913 0.6425 -0.4873 -vn -0.5913 0.6422 -0.4878 -vn 0.6505 -0.6938 0.3090 -vn 0.6505 -0.6939 0.3086 -vn 0.6506 -0.6936 0.3092 -vn -0.1867 -0.9696 -0.1580 -vn -0.1866 -0.9697 -0.1579 -vn -0.1869 -0.9696 -0.1579 -vn -0.2472 -0.9687 -0.0238 -vn -0.2470 -0.9687 -0.0239 -vn -0.2471 -0.9687 -0.0236 -vn -0.8341 -0.4000 -0.3799 -vn 0.7105 -0.7009 0.0626 -vn 0.7104 -0.7011 0.0622 -vn 0.7107 -0.7008 0.0623 -vn 0.4090 0.7459 -0.5256 -vn 0.4092 0.7461 -0.5252 -vn 0.4093 0.7458 -0.5256 -vn -0.8203 0.4937 -0.2888 -vn -0.2916 -0.9279 -0.2325 -vn -0.6809 -0.5429 -0.4915 -vn 0.8981 -0.3616 0.2502 -vn 0.8867 -0.4166 0.2007 -vn 0.8869 -0.4162 0.2006 -vn -0.0674 0.3586 0.9311 -vn -0.0673 0.3587 0.9310 -vn -0.0675 0.3587 0.9310 -vn 0.0653 0.9140 -0.4004 -vn -0.5432 0.8300 0.1267 -vn -0.5429 0.8301 0.1273 -vn -0.5428 0.8302 0.1274 -vn 0.8487 -0.1577 0.5048 -vn -0.4372 -0.8983 -0.0438 -vn -0.4370 -0.8984 -0.0440 -vn 0.9047 -0.1130 0.4107 -vn 0.9047 -0.1128 0.4108 -vn 0.9048 -0.1134 0.4104 -vn 0.8739 -0.1298 0.4685 -vn 0.8743 -0.1301 0.4677 -vn 0.8739 -0.1298 0.4684 -vn -0.7436 -0.4776 -0.4679 -vn -0.7437 -0.4773 -0.4681 -vn -0.4425 -0.8754 -0.1946 -vn -0.4429 -0.8752 -0.1945 -vn -0.6164 0.6071 -0.5015 -vn -0.6167 0.6067 -0.5016 -vn -0.1664 0.9252 -0.3409 -vn -0.1667 0.9252 -0.3408 -vn -0.1792 0.9125 0.3677 -vn 0.6894 -0.2504 0.6797 -vn 0.6881 -0.2505 0.6810 -vn 0.6881 -0.2507 0.6809 -vn 0.3937 0.9134 0.1035 -vn 0.3938 0.9134 0.1032 -vn 0.3938 0.9134 0.1034 -vn 0.2316 -0.2481 0.9406 -vn 0.2316 -0.2478 0.9407 -vn 0.2315 -0.2484 0.9406 -vn 0.3290 -0.3522 0.8762 -vn 0.2480 -0.9208 0.3011 -vn 0.7035 -0.2907 -0.6485 -vn -0.2832 -0.8373 -0.4676 -vn -0.2853 -0.8361 -0.4685 -vn -0.2826 -0.8378 -0.4671 -vn -0.4625 -0.8463 -0.2644 -vn -0.4624 -0.8463 -0.2646 -vn -0.4623 -0.8464 -0.2644 -vn -0.3268 -0.3378 -0.8826 -vn -0.3269 -0.3380 -0.8825 -vn -0.3269 -0.3381 -0.8825 -vn 0.1795 -0.9798 0.0884 -vn 0.1793 -0.9798 0.0884 -vn 0.3976 0.5296 -0.7493 -vn 0.3977 0.5295 -0.7493 -vn 0.3978 0.5294 -0.7493 -vn 0.3826 -0.9100 0.1595 -vn 0.3828 -0.9100 0.1593 -vn 0.3830 -0.9099 0.1592 -vn 0.7404 -0.5219 0.4235 -vn -0.5006 -0.8520 -0.1534 -vn -0.5005 -0.8518 -0.1546 -vn -0.5004 -0.8519 -0.1547 -vn -0.5058 0.8607 -0.0580 -vn -0.5058 0.8608 -0.0568 -vn -0.5050 0.8613 -0.0554 -vn 0.5675 -0.4938 0.6589 -vn -0.0822 0.4786 -0.8742 -vn -0.0824 0.4786 -0.8742 -vn -0.0821 0.4786 -0.8742 -vn -0.2807 -0.9330 -0.2252 -vn -0.6805 -0.6413 -0.3544 -vn -0.6807 -0.6411 -0.3544 -vn -0.6804 -0.6415 -0.3542 -vn -0.5773 0.3411 -0.7418 -vn -0.5773 0.3410 -0.7419 -vn -0.5771 0.3405 -0.7423 -vn 0.0601 0.0142 0.9981 -vn 0.0594 0.0138 0.9981 -vn 0.0609 0.0141 0.9980 -vn 0.2941 0.6638 0.6876 -vn 0.2943 0.6641 0.6873 -vn 0.2941 0.6640 0.6874 -vn 0.3624 0.5447 0.7563 -vn 0.3624 0.5447 0.7562 -vn 0.7734 0.6124 -0.1638 -vn 0.7733 0.6125 -0.1639 -vn 0.7733 0.6126 -0.1638 -vn 0.1873 0.4190 0.8885 -vn 0.1876 0.4191 0.8883 -vn 0.1876 0.4193 0.8883 -vn -0.5984 0.7250 -0.3410 -vn -0.5985 0.7248 -0.3411 -vn 0.1320 -0.9307 -0.3412 -vn 0.1315 -0.9307 -0.3413 -vn 0.1309 -0.9307 -0.3415 -vn 0.3345 0.8756 -0.3486 -vn 0.3370 0.8755 -0.3464 -vn 0.3318 0.8763 -0.3493 -vn 0.3202 0.9402 -0.1166 -vn 0.3225 0.9395 -0.1152 -vn 0.3212 0.9398 -0.1164 -vn 0.8148 0.2942 0.4996 -vn 0.8150 0.2940 0.4994 -vn 0.8149 0.2941 0.4995 -vn 0.4945 -0.0333 -0.8685 -vn 0.4940 -0.0333 -0.8688 -vn 0.4937 -0.0333 -0.8690 -vn 0.2825 0.6495 0.7059 -vn -0.5369 -0.7473 -0.3915 -vn -0.5368 -0.7474 -0.3914 -vn -0.3629 -0.6171 0.6982 -vn -0.3622 -0.6168 0.6988 -vn -0.3626 -0.6170 0.6984 -vn -0.8056 0.4681 -0.3632 -vn -0.8055 0.4682 -0.3634 -vn -0.8055 0.4679 -0.3636 -vn 0.6055 0.7934 -0.0629 -vn 0.6054 0.7934 -0.0633 -vn 0.6053 0.7934 -0.0636 -vn 0.6222 0.5857 0.5194 -vn 0.6220 0.5857 0.5197 -vn 0.6218 0.5856 0.5200 -vn -0.5014 -0.8211 -0.2726 -vn -0.5013 -0.8212 -0.2726 -vn -0.1668 0.3610 0.9175 -vn -0.1666 0.3606 0.9177 -vn -0.1666 0.3607 0.9177 -vn 0.5655 -0.5885 0.5778 -vn 0.5659 -0.5887 0.5773 -vn 0.2535 -0.0644 -0.9652 -vn 0.2546 -0.0638 -0.9649 -vn 0.2553 -0.0639 -0.9647 -vn 0.4858 -0.8587 -0.1633 -vn 0.4852 -0.8590 -0.1635 -vn 0.4854 -0.8589 -0.1634 -vn 0.4636 0.6691 -0.5808 -vn 0.6666 0.6670 -0.3328 -vn 0.6665 0.6669 -0.3332 -vn 0.6666 0.6671 -0.3326 -vn -0.3927 -0.8793 0.2695 -vn -0.3911 -0.8799 0.2698 -vn -0.3944 -0.8790 0.2679 -vn 0.0729 -0.9627 0.2605 -vn 0.0729 -0.9628 0.2603 -vn 0.0727 -0.9630 0.2596 -vn 0.3136 -0.9300 -0.1918 -vn -0.5621 -0.8007 -0.2070 -vn -0.5622 -0.8007 -0.2072 -vn -0.2040 -0.2030 0.9577 -vn -0.2041 -0.2035 0.9576 -vn -0.2045 -0.2040 0.9574 -vn 0.0061 -0.0039 1.0000 -vn 0.7521 0.6217 0.2187 -vn 0.7521 0.6216 0.2190 -vn -0.4957 -0.8576 -0.1373 -vn -0.4958 -0.8576 -0.1370 -vn -0.4910 -0.3440 -0.8004 -vn -0.0003 0.0002 1.0000 -vn -0.8327 -0.4408 0.3352 -vn -0.8326 -0.4409 0.3352 -vn -0.8327 -0.4407 0.3352 -vn -0.3644 -0.1043 -0.9254 -vn -0.3644 -0.1047 -0.9253 -vn -0.0266 -0.1142 -0.9931 -vn -0.0270 -0.1131 -0.9932 -vn -0.0264 -0.1116 -0.9934 -vn -0.4670 -0.8198 -0.3315 -vn -0.4675 -0.8194 -0.3318 -vn -0.4672 -0.8196 -0.3316 -vn -0.8936 -0.3744 -0.2476 -vn -0.8937 -0.3744 -0.2473 -vn -0.5060 -0.8043 -0.3116 -vn -0.5062 -0.8042 -0.3115 -vn -0.4975 0.2842 -0.8196 -vn 0.1589 0.6922 0.7040 -vn 0.1587 0.6930 0.7033 -vn 0.1586 0.6927 0.7035 -vn -0.2069 -0.6809 0.7025 -vn -0.2071 -0.6809 0.7025 -vn -0.2067 -0.6810 0.7025 -vn 0.1470 0.5491 -0.8227 -vn 0.1466 0.5489 -0.8229 -vn 0.1467 0.5489 -0.8229 -vn -0.6666 0.6936 0.2730 -vn -0.6670 0.6933 0.2728 -vn 0.2272 -0.8710 -0.4356 -vn 0.2277 -0.8713 -0.4347 -vn 0.2270 -0.8710 -0.4357 -vn 0.8275 0.3894 0.4046 -vn 0.8274 0.3896 0.4045 -vn 0.8276 0.3890 0.4046 -vn -0.2436 0.1952 -0.9500 -vn -0.2456 0.1964 -0.9493 -vn -0.2446 0.1954 -0.9497 -vn 0.8962 0.4437 0.0009 -vn 0.8963 0.4435 0.0012 -vn 0.6481 0.7188 0.2518 -vn 0.4604 0.8695 -0.1792 -vn 0.3077 0.9453 -0.1082 -vn 0.1312 -0.9880 -0.0820 -vn 0.1304 -0.9881 -0.0822 -vn 0.1307 -0.9880 -0.0822 -vn 0.2036 -0.9705 0.1292 -vn 0.2034 -0.9706 0.1289 -vn 0.2835 -0.8238 -0.4909 -vn 0.2834 -0.8238 -0.4910 -vn 0.2832 -0.8238 -0.4910 -vn 0.6025 -0.7794 -0.1718 -vn -0.7586 0.2792 -0.5887 -vn -0.7587 0.2790 -0.5887 -vn -0.7588 0.2789 -0.5886 -vn -0.3163 -0.6208 -0.7173 -vn -0.3161 -0.6206 -0.7176 -vn 0.4010 -0.9140 -0.0614 -vn 0.4012 -0.9139 -0.0620 -vn 0.4010 -0.9140 -0.0616 -vn 0.9847 0.1383 -0.1056 -vn 0.9848 0.1380 -0.1059 -vn 0.0852 0.6658 -0.7413 -vn 0.0854 0.6660 -0.7410 -vn 0.0851 0.6657 -0.7413 -vn -0.3351 -0.5715 -0.7491 -vn -0.3355 -0.5722 -0.7483 -vn -0.3353 -0.5719 -0.7486 -vn 0.4909 -0.6343 -0.5972 -vn 0.4909 -0.6344 -0.5972 -vn 0.1175 -0.9289 -0.3513 -vn 0.1175 -0.9290 -0.3509 -vn 0.1174 -0.9289 -0.3511 -vn 0.8115 -0.0139 0.5842 -vn -0.2810 0.9417 -0.1849 -vn -0.2815 0.9416 -0.1846 -vn -0.2813 0.9417 -0.1847 -vn 0.8917 0.1130 0.4382 -vn 0.8918 0.1127 0.4382 -vn 0.0780 -0.5784 -0.8120 -vn 0.0779 -0.5785 -0.8120 -vn -0.6747 0.6992 -0.2363 -vn -0.6750 0.6991 -0.2359 -vn -0.6751 0.6990 -0.2357 -vn -0.7585 0.4946 0.4242 -vn -0.7589 0.4950 0.4231 -vn -0.7589 0.4956 0.4224 -vn -0.2039 -0.1217 0.9714 -vn -0.2027 -0.1218 0.9716 -vn -0.2053 -0.1221 0.9711 -vn -0.3873 0.5276 -0.7560 -vn -0.3877 0.5277 -0.7558 -vn -0.3876 0.5275 -0.7560 -vn -0.0078 0.8477 -0.5304 -vn 0.9515 -0.0215 0.3070 -vn 0.9511 -0.0213 0.3081 -vn 0.9513 -0.0213 0.3076 -vn 0.5179 -0.2900 -0.8048 -vn 0.5181 -0.2899 -0.8047 -vn 0.5167 -0.2912 -0.8051 -vn -0.0406 -0.5894 -0.8068 -vn -0.0405 -0.5895 -0.8068 -vn -0.0405 -0.5894 -0.8068 -vn 0.2560 -0.0929 -0.9622 -vn 0.2560 -0.0928 -0.9622 -vn 0.2560 -0.0930 -0.9622 -vn -0.6178 0.4596 -0.6380 -vn 0.9665 -0.1683 0.1938 -vn 0.9665 -0.1684 0.1937 -vn 0.6857 0.6891 -0.2346 -vn 0.6858 0.6889 -0.2347 -vn 0.6860 0.6887 -0.2347 -vn 0.0709 -0.2942 -0.9531 -vn 0.5395 -0.6114 -0.5789 -vn 0.5396 -0.6111 -0.5791 -vn 0.5395 -0.6113 -0.5791 -vn 0.0042 -0.5916 -0.8062 -vn 0.6780 0.7246 0.1231 -vn 0.3653 -0.5033 0.7831 -vn 0.3646 -0.5037 0.7832 -vn -0.4735 0.8739 0.1096 -vn -0.4733 0.8740 0.1097 -vn -0.4737 0.8738 0.1097 -vn 0.9090 0.3783 -0.1753 -vn 0.9091 0.3778 -0.1757 -vn 0.9092 0.3772 -0.1761 -vn -0.4646 -0.8611 -0.2064 -vn 0.5084 0.6282 0.5890 -vn 0.5083 0.6282 0.5890 -vn -0.4803 -0.8560 -0.1913 -vn -0.4805 -0.8559 -0.1911 -vn -0.4805 -0.8559 -0.1912 -vn 0.0040 0.8950 -0.4460 -vn 0.0038 0.8949 -0.4462 -vn 0.0041 0.8951 -0.4459 -vn -0.7183 -0.6812 -0.1416 -vn -0.7191 -0.6801 -0.1427 -vn -0.7193 -0.6797 -0.1434 -vn 0.5181 0.8393 -0.1645 -vn -0.3024 0.2171 0.9281 -vn -0.3026 0.2173 0.9280 -vn -0.3025 0.2173 0.9281 -vn 0.3850 0.3575 0.8509 -vn 0.5953 -0.6869 -0.4170 -vn -0.2368 -0.1249 -0.9635 -vn -0.2369 -0.1250 -0.9635 -vn -0.2364 -0.1250 -0.9636 -vn 0.0672 0.1808 0.9812 -vn 0.0679 0.1809 0.9812 -vn 0.0680 0.1810 0.9811 -vn -0.1336 0.2042 -0.9698 -vn -0.1352 0.2054 -0.9693 -vn -0.1365 0.2085 -0.9685 -vn -0.7826 0.1568 -0.6025 -vn -0.7826 0.1570 -0.6024 -vn 0.4005 0.6632 -0.6323 -vn 0.4005 0.6630 -0.6324 -vn -0.1671 0.1553 -0.9736 -vn -0.1668 0.1556 -0.9736 -vn -0.1669 0.1555 -0.9736 -vn 0.1261 0.7190 -0.6835 -vn 0.1248 0.7190 -0.6837 -vn 0.1236 0.7194 -0.6836 -vn -0.4585 -0.8755 -0.1527 -vn 0.4924 -0.8584 0.1439 -vn 0.4922 -0.8584 0.1442 -vn 0.4924 -0.8584 0.1441 -vn 0.8676 0.4758 0.1446 -vn 0.8677 0.4756 0.1443 -vn 0.8677 0.4756 0.1446 -vn 0.0209 0.5687 -0.8223 -vn 0.0207 0.5688 -0.8222 -vn 0.0204 0.5690 -0.8221 -vn -0.5541 -0.1938 -0.8096 -vn -0.5542 -0.1939 -0.8095 -vn -0.5541 -0.1940 -0.8095 -vn -0.7793 -0.1757 0.6015 -vn -0.4691 0.4859 -0.7375 -vn -0.4689 0.4858 -0.7376 -vn -0.4692 0.4860 -0.7373 -vn -0.8009 0.5186 -0.2994 -vn -0.8008 0.5188 -0.2991 -vn -0.8009 0.5187 -0.2993 -vn 0.9156 0.3399 0.2150 -vn 0.9149 0.3413 0.2157 -vn 0.9160 0.3394 0.2139 -vn -0.4823 0.7826 0.3936 -vn -0.6980 0.7161 -0.0065 -vn -0.6979 0.7162 -0.0067 -vn -0.6979 0.7162 -0.0066 -vn 0.0014 0.0005 1.0000 -vn 0.7922 -0.5807 0.1876 -vn 0.7922 -0.5808 0.1874 -vn 0.7922 -0.5807 0.1877 -vn -0.9211 -0.0917 -0.3784 -vn -0.9211 -0.0918 -0.3783 -vn -0.9211 -0.0916 -0.3784 -vn -0.6071 0.7590 -0.2353 -vn -0.6071 0.7589 -0.2354 -vn -0.6071 0.7589 -0.2355 -vn -0.6649 -0.7340 -0.1386 -vn -0.7707 0.2525 0.5850 -vn -0.7709 0.2524 0.5848 -vn -0.7711 0.2522 0.5846 -vn -0.2595 -0.2961 0.9192 -vn -0.2596 -0.2961 0.9192 -vn -0.2596 -0.2960 0.9192 -vn 0.5698 -0.1049 0.8151 -vn 0.5688 -0.1056 0.8157 -vn 0.5682 -0.1064 0.8160 -vn 0.3222 -0.7797 0.5369 -vn 0.3220 -0.7795 0.5374 -vn 0.3225 -0.7799 0.5365 -vn -0.2064 -0.2858 0.9358 -vn -0.2066 -0.2861 0.9357 -vn -0.2072 -0.2862 0.9355 -vn -0.0519 -0.8625 -0.5035 -vn 0.6130 -0.7620 0.2088 -vn 0.6130 -0.7619 0.2089 -vn 0.6130 -0.7621 0.2086 -vn 0.1158 0.7019 -0.7028 -vn 0.1171 0.7010 -0.7035 -vn 0.1166 0.7016 -0.7030 -vn -0.3142 0.8248 -0.4702 -vn -0.3143 0.8250 -0.4697 -vn -0.3142 0.8248 -0.4701 -vn 0.3814 -0.6175 0.6879 -vn 0.3815 -0.6174 0.6880 -vn 0.5362 -0.0228 0.8438 -vn 0.5362 -0.0227 0.8438 -vn 0.5364 -0.0226 0.8436 -vn 0.2405 0.9663 -0.0919 -vn 0.2419 0.9658 -0.0938 -vn 0.2417 0.9659 -0.0927 -vn 0.2445 -0.6688 0.7021 -vn -0.3143 0.9156 -0.2509 -vn -0.3141 0.9156 -0.2510 -vn -0.3967 -0.6826 0.6137 -vn 0.3745 0.8413 -0.3898 -vn 0.3741 0.8414 -0.3901 -vn 0.3747 0.8413 -0.3896 -vn 0.9485 0.0937 0.3026 -vn 0.9485 0.0939 0.3026 -vn 0.9485 0.0934 0.3027 -vn -0.0429 -0.6981 0.7147 -vn -0.0420 -0.6974 0.7154 -vn -0.0427 -0.6977 0.7152 -vn 0.6786 -0.7340 0.0263 -vn 0.6781 -0.7345 0.0268 -vn 0.6783 -0.7343 0.0266 -vn 0.0189 0.9006 -0.4343 -vn 0.0190 0.9004 -0.4347 -vn 0.0196 0.9003 -0.4348 -vn -0.5025 -0.8623 0.0624 -vn -0.1547 -0.7742 0.6138 -vn -0.1549 -0.7741 0.6138 -vn -0.1546 -0.7742 0.6138 -vn -0.1204 0.8122 -0.5709 -vn -0.1511 0.8108 -0.5655 -vn -0.1512 0.8108 -0.5655 -vn 0.3071 0.1732 0.9358 -vn 0.3082 0.1731 0.9354 -vn 0.3092 0.1724 0.9352 -vn 0.8971 -0.0955 0.4314 -vn 0.8968 -0.0955 0.4319 -vn -0.9338 -0.0078 -0.3577 -vn -0.9336 -0.0075 -0.3582 -vn -0.9338 -0.0079 -0.3577 -vn -0.9120 -0.4098 0.0163 -vn -0.9119 -0.4100 0.0166 -vn -0.9120 -0.4099 0.0161 -vn -0.2661 -0.2512 0.9306 -vn -0.2658 -0.2511 0.9308 -vn 0.8417 -0.0314 0.5391 -vn 0.8418 -0.0312 0.5389 -vn 0.8421 -0.0310 0.5384 -vn 0.9326 0.3111 0.1828 -vn -0.5764 -0.7649 -0.2876 -vn -0.5763 -0.7651 -0.2874 -vn -0.5766 -0.7647 -0.2877 -vn 0.2270 -0.7636 0.6044 -vn 0.2270 -0.7636 0.6045 -vn 0.0903 0.0452 0.9949 -vn 0.0904 0.0453 0.9949 -vn 0.0901 0.0451 0.9949 -vn -0.0195 0.5583 -0.8294 -vn -0.0195 0.5577 -0.8298 -vn -0.0197 0.5586 -0.8292 -vn -0.9287 -0.3513 -0.1185 -vn -0.9286 -0.3514 -0.1190 -vn -0.9287 -0.3514 -0.1188 -vn 0.8024 -0.5906 0.0859 -vn 0.8029 -0.5900 0.0855 -vn 0.8025 -0.5904 0.0857 -vn -0.1281 -0.9076 -0.3998 -vn -0.1283 -0.9075 -0.3999 -vn -0.4704 -0.7174 -0.5139 -vn -0.4703 -0.7174 -0.5139 -vn -0.4703 -0.7175 -0.5139 -vn 0.1630 -0.2438 0.9560 -vn 0.1629 -0.2438 0.9561 -vn 0.1631 -0.2438 0.9560 -vn -0.2492 -0.5978 -0.7619 -vn 0.3237 -0.9195 -0.2229 -vn 0.3236 -0.9194 -0.2236 -vn 0.3233 -0.9198 -0.2222 -vn 0.3504 0.9253 0.1450 -vn 0.3507 0.9252 0.1450 -vn 0.0463 0.9974 0.0554 -vn 0.0476 0.9973 0.0560 -vn 0.0469 0.9973 0.0558 -vn 0.4574 0.6116 0.6456 -vn 0.4574 0.6116 0.6455 -vn 0.4575 0.6117 0.6454 -vn 0.9139 0.2449 0.3238 -vn 0.9140 0.2447 0.3236 -vn -0.1854 0.6671 0.7215 -vn -0.2527 0.8909 -0.3774 -vn -0.2526 0.8909 -0.3774 -vn -0.2523 0.8910 -0.3775 -vn -0.9373 -0.3477 0.0250 -vn -0.7383 0.5353 -0.4102 -vn -0.7383 0.5354 -0.4102 -vn -0.2779 -0.8058 0.5230 -vn -0.8047 -0.5933 0.0209 -vn -0.8053 -0.5924 0.0211 -vn -0.8049 -0.5930 0.0209 -vn -0.3561 -0.9232 0.1445 -vn -0.3563 -0.9231 0.1444 -vn -0.3567 -0.9230 0.1442 -vn 0.0076 0.9987 -0.0498 -vn 0.8276 0.2642 -0.4953 -vn -0.7415 -0.6491 0.1696 -vn -0.7431 -0.6470 0.1706 -vn -0.7434 -0.6468 0.1703 -vn 0.1199 0.9862 -0.1138 -vn 0.1196 0.9863 -0.1139 -vn 0.1198 0.9863 -0.1138 -vn -0.4693 -0.8517 0.2333 -vn -0.4316 0.7442 0.5098 -vn -0.4317 0.7442 0.5097 -vn 0.7179 0.6207 0.3152 -vn 0.7177 0.6200 0.3169 -vn 0.7180 0.6193 0.3177 -vn 0.3862 -0.4503 -0.8050 -vn 0.3857 -0.4510 -0.8049 -vn 0.3864 -0.4497 -0.8053 -vn 0.8162 -0.3817 0.4337 -vn 0.8162 -0.3818 0.4336 -vn 0.8162 -0.3817 0.4338 -vn -0.3691 0.7517 -0.5465 -vn -0.3692 0.7517 -0.5464 -vn 0.1841 0.6872 -0.7027 -vn 0.1830 0.6875 -0.7028 -vn 0.1834 0.6876 -0.7026 -vn 0.2536 -0.5193 -0.8161 -vn 0.2532 -0.5191 -0.8163 -vn -0.8516 -0.5242 -0.0044 -vn -0.8516 -0.5242 -0.0043 -vn -0.8514 -0.5246 -0.0046 -vn -0.0033 -0.5905 0.8070 -vn -0.0035 -0.5905 0.8071 -vn 0.7304 0.6779 0.0836 -vn 0.7304 0.6779 0.0835 -vn -0.8263 -0.5631 -0.0127 -vn -0.8259 -0.5637 -0.0132 -vn -0.8261 -0.5633 -0.0130 -vn 0.7401 0.2112 0.6385 -vn 0.7400 0.2116 0.6384 -vn -0.0914 -0.6677 0.7388 -vn -0.0912 -0.6678 0.7387 -vn -0.0913 -0.6678 0.7387 -vn 0.0711 -0.1245 0.9897 -vn 0.2359 0.9654 -0.1112 -vn 0.2356 0.9654 -0.1114 -vn 0.8347 -0.1971 0.5143 -vn 0.8346 -0.1972 0.5144 -vn 0.8347 -0.1971 0.5142 -vn 0.0249 -0.7174 0.6963 -vn 0.0251 -0.7168 0.6968 -vn 0.0250 -0.7172 0.6965 -vn 0.0537 0.5548 -0.8302 -vn 0.0528 0.5544 -0.8306 -vn 0.0514 0.5544 -0.8307 -vn -0.9767 -0.1472 0.1564 -vn -0.9766 -0.1471 0.1567 -vn -0.1471 0.9618 -0.2308 -vn -0.1474 0.9618 -0.2306 -vn -0.4146 0.9096 0.0268 -vn -0.4150 0.9094 0.0263 -vn -0.4148 0.9095 0.0266 -vn 0.8229 -0.3820 0.4206 -vn 0.8229 -0.3816 0.4209 -vn 0.7918 -0.1756 0.5850 -vn 0.7917 -0.1761 0.5850 -vn 0.7919 -0.1759 0.5848 -vn -0.2790 -0.9442 -0.1750 -vn -0.2790 -0.9442 -0.1751 -vn -0.2689 -0.9493 -0.1630 -vn -0.2691 -0.9492 -0.1633 -vn -0.2691 -0.9492 -0.1631 -vn 0.6638 0.7420 0.0939 -vn 0.6642 0.7416 0.0940 -vn 0.6636 0.7422 0.0939 -vn -0.2289 0.9260 0.3001 -vn -0.6666 0.5864 -0.4602 -vn -0.6667 0.5866 -0.4598 -vn -0.6667 0.5868 -0.4596 -vn 0.3971 -0.8877 0.2331 -vn 0.3972 -0.8877 0.2330 -vn 0.3968 -0.8878 0.2332 -vn -0.4245 0.8800 -0.2130 -vn -0.4243 0.8801 -0.2129 -vn -0.4246 0.8799 -0.2130 -vn -0.3068 -0.2878 -0.9072 -vn -0.3072 -0.2877 -0.9071 -vn -0.3066 -0.2877 -0.9073 -vn -0.8287 -0.2569 -0.4972 -vn 0.9289 0.2488 0.2742 -vn 0.9291 0.2487 0.2738 -vn 0.9288 0.2490 0.2746 -vn 0.8053 -0.2885 0.5180 -vn 0.8054 -0.2883 0.5179 -vn -0.0689 -0.9976 0.0043 -vn -0.0688 -0.9976 0.0045 -vn 0.8588 -0.3708 0.3536 -vn 0.8588 -0.3708 0.3535 -vn -0.8394 -0.3979 -0.3703 -vn -0.8393 -0.3980 -0.3702 -vn 0.3523 -0.8388 0.4151 -vn 0.5904 0.7995 0.1108 -vn 0.5899 0.7997 0.1114 -vn 0.5895 0.7999 0.1125 -vn -0.1584 0.9555 0.2488 -vn -0.1585 0.9555 0.2487 -vn -0.8396 0.5275 -0.1296 -vn -0.8390 0.5283 -0.1299 -vn -0.8397 0.5274 -0.1295 -vn 0.8700 -0.1067 0.4813 -vn 0.8700 -0.1069 0.4813 -vn -0.9820 -0.1879 0.0183 -vn -0.9820 -0.1880 0.0179 -vn 0.8263 0.2973 0.4784 -vn -0.0735 0.9843 0.1606 -vn 0.3884 -0.7719 0.5033 -vn 0.3884 -0.7720 0.5032 -vn 0.1369 0.9618 -0.2372 -vn 0.1369 0.9618 -0.2371 -vn -0.1965 0.8070 -0.5570 -vn -0.1967 0.8070 -0.5569 -vn -0.1966 0.8070 -0.5569 -vn -0.2705 0.7826 -0.5606 -vn -0.2706 0.7826 -0.5607 -vn 0.3120 0.9499 0.0167 -vn 0.3120 0.9499 0.0168 -vn 0.3121 0.9499 0.0169 -vn -0.4408 0.8400 -0.3163 -vn -0.5185 0.7704 -0.3709 -vn -0.5186 0.7704 -0.3708 -vn -0.5186 0.7703 -0.3711 -vn 0.6796 -0.7299 0.0736 -vn 0.6798 -0.7296 0.0738 -vn 0.6797 -0.7297 0.0739 -vn 0.9070 -0.1616 0.3889 -vn 0.9071 -0.1616 0.3887 -vn 0.9071 -0.1614 0.3888 -vn -0.3167 -0.8296 0.4598 -vn -0.6841 0.5207 -0.5108 -vn -0.6846 0.5206 -0.5102 -vn 0.6868 0.2704 -0.6746 -vn 0.6865 0.2711 -0.6747 -vn 0.6867 0.2708 -0.6746 -vn -0.9672 0.2537 0.0133 -vn -0.9673 0.2534 0.0142 -vn -0.9672 0.2537 0.0136 -vn -0.1505 0.9867 0.0610 -vn -0.1507 0.9867 0.0607 -vn -0.1510 0.9867 0.0602 -vn -0.7599 0.4652 0.4539 -vn -0.7598 0.4654 0.4539 -vn 0.8860 -0.4169 0.2028 -vn 0.8858 -0.4173 0.2032 -vn 0.8859 -0.4172 0.2029 -vn -0.8057 -0.1992 0.5578 -vn -0.8058 -0.1993 0.5577 -vn -0.8058 -0.1998 0.5575 -vn -0.3645 -0.1020 -0.9256 -vn -0.3659 -0.1027 -0.9250 -vn -0.3654 -0.1026 -0.9252 -vn -0.1577 0.2108 0.9647 -vn -0.1578 0.2107 0.9647 -vn -0.5166 -0.7635 -0.3876 -vn -0.9921 0.1048 -0.0693 -vn -0.9921 0.1049 -0.0692 -vn 0.3830 0.0742 -0.9208 -vn 0.3829 0.0740 -0.9208 -vn 0.3830 0.0740 -0.9208 -vn 0.9978 0.0191 -0.0641 -vn 0.9978 0.0167 -0.0645 -vn 0.9978 0.0183 -0.0644 -vn 0.4368 -0.7905 0.4293 -vn 0.4366 -0.7905 0.4296 -vn 0.4367 -0.7905 0.4294 -vn 0.8731 0.3574 -0.3317 -vn 0.8731 0.3574 -0.3316 -vn -0.0445 0.7552 -0.6540 -vn -0.0449 0.7550 -0.6542 -vn -0.3060 0.3717 0.8765 -vn -0.3063 0.3713 0.8765 -vn -0.3061 0.3716 0.8765 -vn 0.4882 -0.8615 0.1395 -vn 0.4881 -0.8616 0.1390 -vn 0.4887 -0.8611 0.1404 -vn 0.4631 0.6707 -0.5794 -vn 0.4635 0.6706 -0.5792 -vn 0.4634 0.6706 -0.5793 -vn -0.8458 0.0781 -0.5278 -vn -0.8459 0.0782 -0.5276 -vn -0.0483 0.7814 -0.6221 -vn -0.0484 0.7813 -0.6223 -vn -0.0483 0.7811 -0.6225 -vn 0.5749 0.7450 -0.3383 -vn 0.5752 0.7449 -0.3381 -vn 0.5750 0.7450 -0.3381 -vn -0.6586 -0.3393 0.6716 -vn -0.6587 -0.3394 0.6715 -vn 0.6367 -0.7613 0.1228 -vn 0.6366 -0.7614 0.1223 -vn 0.6366 -0.7614 0.1226 -vn -0.5132 0.2287 -0.8272 -vn -0.5137 0.2286 -0.8270 -vn -0.5135 0.2286 -0.8271 -vn 0.8232 -0.5510 -0.1371 -vn 0.8233 -0.5509 -0.1370 -vn 0.8230 -0.5511 -0.1375 -vn -0.3406 0.8074 -0.4818 -vn -0.3406 0.8075 -0.4816 -vn -0.6232 -0.7277 -0.2863 -vn -0.6232 -0.7278 -0.2863 -vn -0.6231 -0.7279 -0.2862 -vn 0.1036 0.9931 -0.0557 -vn 0.1035 0.9931 -0.0557 -vn 0.1039 0.9930 -0.0558 -vn -0.3777 0.7953 -0.4741 -vn -0.3780 0.7952 -0.4741 -vn 0.7805 0.5866 0.2161 -vn 0.7809 0.5862 0.2159 -vn 0.7797 0.5878 0.2159 -vn 0.4869 0.6433 -0.5908 -vn 0.0129 0.9937 -0.1112 -vn 0.0116 0.9938 -0.1107 -vn 0.0122 0.9937 -0.1111 -vn -0.6755 -0.6339 -0.3768 -vn -0.6739 -0.6355 -0.3767 -vn -0.6747 -0.6348 -0.3766 -vn 0.9245 0.3656 -0.1078 -vn 0.9246 0.3654 -0.1075 -vn -0.2061 -0.0656 0.9763 -vn -0.2050 -0.0649 0.9766 -vn -0.2046 -0.0643 0.9767 -vn -0.0355 0.5479 -0.8358 -vn -0.0363 0.5485 -0.8354 -vn -0.0358 0.5485 -0.8354 -vn 0.9196 0.3758 -0.1146 -vn 0.9198 0.3754 -0.1139 -vn 0.9202 0.3746 -0.1133 -vn -0.3343 0.3925 -0.8568 -vn -0.3343 0.3924 -0.8569 -vn -0.3343 0.3926 -0.8568 -vn 0.3252 0.8434 -0.4278 -vn 0.3254 0.8434 -0.4275 -vn 0.3251 0.8434 -0.4279 -vn -0.2882 0.9338 0.2118 -vn -0.2883 0.9338 0.2118 -vn -0.2884 0.9338 0.2116 -vn 0.1580 -0.8660 0.4744 -vn 0.1584 -0.8666 0.4732 -vn 0.1582 -0.8663 0.4738 -vn -0.0278 0.9405 0.3387 -vn -0.0276 0.9404 0.3389 -vn -0.0279 0.9405 0.3386 -vn -0.0501 0.8673 -0.4953 -vn -0.0498 0.8672 -0.4955 -vn -0.0501 0.8672 -0.4954 -vn -0.1765 0.9792 0.0999 -vn -0.1762 0.9793 0.1000 -vn 0.3800 -0.4829 0.7890 -vn 0.3804 -0.4832 0.7886 -vn 0.3802 -0.4831 0.7887 -vn -0.8411 0.2355 0.4869 -vn -0.8427 0.2348 0.4845 -vn -0.8419 0.2350 0.4857 -vn -0.6885 0.1297 -0.7136 -vn 0.9209 0.3717 -0.1174 -vn 0.9206 0.3722 -0.1180 -vn 0.9210 0.3716 -0.1174 -vn 0.3697 0.5822 0.7241 -vn -0.5644 0.2225 0.7950 -vn -0.5645 0.2220 0.7950 -vn -0.5648 0.2213 0.7950 -vn 0.5998 0.5227 -0.6058 -vn 0.5998 0.5229 -0.6057 -vn -0.3300 0.4097 0.8504 -vn -0.9012 0.4333 -0.0031 -vn -0.9012 0.4334 -0.0031 -vn -0.9012 0.4334 -0.0032 -vn 0.1261 0.7564 -0.6418 -vn 0.1263 0.7548 -0.6437 -vn 0.1260 0.7554 -0.6431 -vn -0.3977 -0.8942 -0.2057 -vn -0.3978 -0.8942 -0.2054 -vn -0.3976 -0.8942 -0.2057 -vn 0.1169 0.8886 -0.4436 -vn 0.1170 0.8886 -0.4436 -vn 0.1168 0.8886 -0.4435 -vn -0.0117 0.6717 0.7407 -vn -0.0118 0.6716 0.7408 -vn -0.0110 0.6720 0.7405 -vn -0.2121 0.5606 0.8004 -vn -0.2119 0.5605 0.8006 -vn -0.2124 0.5608 0.8003 -vn -0.4392 0.7610 0.4775 -vn -0.2317 0.5560 0.7982 -vn -0.2318 0.5560 0.7982 -vn -0.2318 0.5561 0.7981 -vn 0.9629 -0.1559 0.2201 -vn 0.9630 -0.1560 0.2198 -vn -0.5054 -0.8532 -0.1292 -vn -0.5052 -0.8532 -0.1294 -vn 0.7103 0.0729 -0.7001 -vn 0.7102 0.0730 -0.7002 -vn 0.7105 0.0727 -0.6999 -vn 0.6677 -0.7001 -0.2531 -vn 0.6681 -0.6997 -0.2531 -vn 0.6673 -0.7004 -0.2533 -vn -0.9197 -0.3232 0.2230 -vn -0.5949 -0.7213 -0.3546 -vn -0.5949 -0.7214 -0.3545 -vn -0.5953 -0.7208 -0.3550 -vn 0.1086 0.1193 0.9869 -vn 0.1086 0.1192 0.9869 -vn 0.1087 0.1192 0.9869 -vn -0.0325 0.9619 0.2716 -vn -0.0294 0.9619 0.2720 -vn -0.0306 0.9620 0.2713 -vn 0.7918 0.3603 0.4932 -vn -0.7546 0.3195 0.5731 -vn -0.7544 0.3198 0.5732 -vn -0.7545 0.3197 0.5731 -vn 0.4515 0.7263 0.5183 -vn 0.1336 0.9745 -0.1801 -vn 0.1337 0.9746 -0.1799 -vn 0.1338 0.9746 -0.1795 -vn -0.3249 -0.1535 -0.9332 -vn -0.3248 -0.1534 -0.9333 -vn -0.3250 -0.1536 -0.9332 -vn 0.4275 0.2545 -0.8675 -vn 0.4284 0.2551 -0.8668 -vn 0.4277 0.2547 -0.8673 -vn -0.2100 -0.9191 -0.3334 -vn -0.6384 -0.1290 -0.7588 -vn -0.6389 -0.1290 -0.7584 -vn -0.6386 -0.1290 -0.7587 -vn 0.7140 0.6992 0.0364 -vn 0.7140 0.6992 0.0360 -vn 0.7141 0.6991 0.0356 -vn -0.4405 -0.8107 -0.3857 -vn -0.4407 -0.8107 -0.3854 -vn -0.3336 -0.9394 -0.0793 -vn -0.3347 -0.9390 -0.0797 -vn -0.3350 -0.9388 -0.0797 -vn -0.7495 -0.2022 -0.6304 -vn -0.7494 -0.2024 -0.6305 -vn -0.7492 -0.2026 -0.6306 -vn 0.3917 0.4967 -0.7745 -vn 0.2512 0.9662 0.0576 -vn 0.2508 0.9663 0.0575 -vn 0.1397 -0.8900 -0.4341 -vn -0.1398 0.5336 -0.8341 -vn -0.1399 0.5336 -0.8341 -vn -0.1395 0.5339 -0.8340 -vn -0.1720 -0.7249 -0.6671 -vn -0.1725 -0.7255 -0.6662 -vn -0.1718 -0.7247 -0.6673 -vn -0.0875 -0.1361 0.9868 -vn -0.0878 -0.1361 0.9868 -vn -0.0875 -0.1362 0.9868 -vn 0.9030 -0.4266 0.0505 -vn 0.9030 -0.4267 0.0505 -vn 0.6582 0.6751 0.3331 -vn 0.6583 0.6751 0.3328 -vn 0.6581 0.6750 0.3335 -vn -0.6234 0.6513 0.4326 -vn -0.6236 0.6512 0.4326 -vn -0.6235 0.6513 0.4325 -vn -0.6213 -0.3952 0.6766 -vn -0.6215 -0.3951 0.6765 -vn -0.6214 -0.3947 0.6768 -vn -0.3527 0.8499 0.3914 -vn -0.3523 0.8503 0.3910 -vn -0.3528 0.8500 0.3911 -vn 0.5185 -0.8506 -0.0875 -vn 0.5185 -0.8506 -0.0876 -vn 0.4111 -0.3072 0.8583 -vn 0.4105 -0.3072 0.8586 -vn 0.4107 -0.3071 0.8585 -vn -0.2545 0.4921 -0.8325 -vn -0.2553 0.4933 -0.8315 -vn -0.2547 0.4929 -0.8320 -vn 0.2823 0.9523 0.1160 -vn 0.4015 0.7692 -0.4971 -vn 0.4020 0.7692 -0.4968 -vn 0.4019 0.7693 -0.4967 -vn -0.4338 -0.6351 -0.6391 -vn -0.4335 -0.6351 -0.6393 -vn -0.4337 -0.6349 -0.6394 -vn -0.2797 0.7529 0.5957 -vn -0.2797 0.7528 0.5958 -vn -0.9244 -0.2605 0.2785 -vn -0.0298 0.7302 -0.6826 -vn -0.5788 0.8154 0.0080 -vn -0.5772 0.8165 0.0107 -vn -0.5783 0.8158 0.0046 -vn 0.1660 -0.4264 -0.8892 -vn 0.1653 -0.4263 -0.8893 -vn 0.1670 -0.4270 -0.8887 -vn 0.0306 -0.6532 -0.7566 -vn 0.0305 -0.6531 -0.7566 -vn -0.2855 -0.3386 0.8966 -vn -0.4435 -0.8736 0.2002 -vn -0.4433 -0.8737 0.2002 -vn -0.4434 -0.8737 0.2002 -vn -0.2980 -0.6250 -0.7215 -vn -0.2983 -0.6250 -0.7214 -vn -0.2977 -0.6250 -0.7217 -vn 0.0282 -0.4147 -0.9095 -vn 0.0284 -0.4146 -0.9096 -vn 0.0275 -0.4150 -0.9094 -vn 0.6539 -0.2337 -0.7196 -vn 0.6536 -0.2331 -0.7201 -vn 0.6533 -0.2327 -0.7204 -vn 0.1573 -0.1509 -0.9760 -vn 0.1573 -0.1507 -0.9760 -vn 0.1572 -0.1510 -0.9759 -vn 0.5058 -0.6169 -0.6029 -vn 0.5062 -0.6168 -0.6028 -vn 0.5044 -0.6179 -0.6032 -vn -0.3032 -0.4127 -0.8589 -vn -0.3034 -0.4128 -0.8588 -vn -0.3026 -0.4128 -0.8591 -vn -0.2637 -0.5870 -0.7654 -vn -0.2638 -0.5868 -0.7655 -vn -0.2636 -0.5871 -0.7654 -vn 0.3972 0.1588 0.9039 -vn -0.1831 0.6006 -0.7783 -vn -0.8225 0.3547 -0.4446 -vn 0.5899 0.7101 -0.3844 -vn 0.5899 0.7100 -0.3847 -vn 0.5901 0.7098 -0.3846 -vn 0.9380 0.0706 0.3393 -vn 0.9380 0.0705 0.3395 -vn 0.9381 0.0707 0.3391 -vn -0.3856 -0.8436 -0.3736 -vn -0.3855 -0.8436 -0.3738 -vn -0.3855 -0.8436 -0.3739 -vn 0.5490 -0.8076 0.2154 -vn 0.5482 -0.8080 0.2161 -vn 0.5487 -0.8077 0.2155 -vn 0.8977 -0.4395 0.0292 -vn -0.3588 -0.9213 -0.1499 -vn -0.3591 -0.9211 -0.1502 -vn -0.3589 -0.9213 -0.1499 -vn -0.4683 -0.7985 -0.3784 -vn -0.4694 -0.7981 -0.3778 -vn -0.4689 -0.7983 -0.3779 -vn -0.7854 -0.3804 -0.4883 -vn -0.7852 -0.3805 -0.4885 -vn -0.7853 -0.3805 -0.4884 -vn 0.7025 0.3530 0.6180 -vn 0.7025 0.3531 0.6179 -vn 0.7024 0.3532 0.6180 -vn 0.1503 0.9039 0.4005 -vn 0.1499 0.9040 0.4005 -vn 0.1507 0.9039 0.4004 -vn -0.4264 -0.3351 0.8401 -vn -0.4263 -0.3347 0.8404 -vn 0.3404 -0.6407 -0.6882 -vn 0.3417 -0.6399 -0.6883 -vn 0.3401 -0.6408 -0.6882 -vn -0.2839 -0.7717 -0.5691 -vn -0.2835 -0.7718 -0.5692 -vn -0.2831 -0.7719 -0.5692 -vn -0.9480 0.2794 0.1526 -vn -0.9478 0.2798 0.1528 -vn -0.9480 0.2790 0.1531 -vn 0.5948 0.6259 -0.5045 -vn 0.5949 0.6257 -0.5046 -vn -0.1269 -0.8428 -0.5230 -vn -0.1268 -0.8430 -0.5228 -vn -0.1266 -0.8431 -0.5226 -vn 0.6214 -0.7437 -0.2464 -vn 0.6215 -0.7441 -0.2452 -vn 0.6214 -0.7439 -0.2461 -vn 0.6328 0.7005 0.3299 -vn 0.6331 0.7003 0.3298 -vn 0.6334 0.7001 0.3295 -vn -0.2051 -0.1570 0.9661 -vn -0.2051 -0.1571 0.9661 -vn 0.3652 -0.0636 0.9287 -vn 0.3653 -0.0633 0.9287 -vn 0.3655 -0.0638 0.9286 -vn 0.4520 0.0271 0.8916 -vn 0.4520 0.0286 0.8915 -vn 0.4522 0.0283 0.8915 -vn 0.0402 0.6308 0.7749 -vn 0.4588 0.6065 0.6494 -vn 0.4596 0.6065 0.6488 -vn 0.4581 0.6061 0.6503 -vn -0.2855 -0.3129 0.9059 -vn -0.2858 -0.3126 0.9059 -vn -0.2857 -0.3127 0.9059 -vn 0.2073 0.2153 0.9543 -vn 0.4480 0.8797 0.1593 -vn 0.4483 0.8796 0.1593 -vn 0.4518 0.8807 0.1421 -vn 0.4515 0.8810 0.1414 -vn 0.4516 0.8808 0.1425 -vn -0.4554 -0.4423 -0.7726 -vn 0.5884 -0.7730 -0.2372 -vn 0.5887 -0.7727 -0.2374 -vn 0.5884 -0.7730 -0.2371 -vn 0.0488 0.8768 -0.4784 -vn 0.0495 0.8768 -0.4783 -vn 0.0490 0.8768 -0.4784 -vn -0.0060 0.5775 -0.8164 -vn -0.0063 0.5767 -0.8169 -vn -0.0070 0.5758 -0.8176 -vn -0.3551 -0.6766 -0.6451 -vn -0.3550 -0.6765 -0.6453 -vn -0.3550 -0.6776 -0.6440 -vn 0.0828 -0.6205 -0.7799 -vn 0.0808 -0.6222 -0.7787 -vn 0.0802 -0.6225 -0.7785 -vn 0.2971 0.9096 -0.2904 -vn 0.2968 0.9097 -0.2903 -vn 0.2969 0.9097 -0.2904 -vn -0.3443 -0.7112 -0.6129 -vn 0.8556 0.1152 0.5046 -vn 0.8555 0.1152 0.5048 -vn 0.8556 0.1153 0.5047 -vn 0.8595 -0.1439 0.4904 -vn 0.8598 -0.1445 0.4898 -vn 0.8597 -0.1443 0.4901 -vn 0.1462 -0.8243 -0.5470 -vn 0.1463 -0.8241 -0.5472 -vn -0.6123 -0.6340 -0.4723 -vn -0.6120 -0.6342 -0.4726 -vn -0.6124 -0.6340 -0.4722 -vn 0.9582 0.1709 -0.2293 -vn 0.9582 0.1711 -0.2294 -vn -0.6510 -0.1977 -0.7328 -vn -0.6508 -0.1976 -0.7330 -vn -0.6514 -0.1981 -0.7324 -vn 0.2506 0.5950 -0.7637 -vn 0.2499 0.5946 -0.7642 -vn 0.2503 0.5947 -0.7640 -vn -0.9169 0.3989 0.0138 -vn -0.9170 0.3987 0.0140 -vn -0.9168 0.3992 0.0136 -vn -0.5270 -0.2609 -0.8088 -vn -0.5267 -0.2611 -0.8090 -vn -0.5273 -0.2608 -0.8087 -vn -0.3562 0.0502 -0.9331 -vn -0.3564 0.0502 -0.9330 -vn -0.3567 0.0502 -0.9329 -vn 0.6503 0.1833 -0.7372 -vn 0.6498 0.1835 -0.7376 -vn 0.6502 0.1835 -0.7373 -vn -0.1309 0.0053 -0.9914 -vn -0.1308 0.0053 -0.9914 -vn -0.1870 -0.3889 0.9021 -vn -0.1872 -0.3888 0.9021 -vn -0.4659 0.0338 0.8842 -vn -0.4661 0.0339 0.8841 -vn -0.4659 0.0343 0.8842 -vn -0.6950 0.3845 -0.6076 -vn -0.6949 0.3848 -0.6076 -vn -0.6951 0.3847 -0.6073 -vn 0.8126 0.4939 0.3095 -vn 0.8130 0.4926 0.3104 -vn 0.8126 0.4937 0.3097 -vn 0.2034 -0.6502 0.7321 -vn -0.1053 -0.6990 0.7073 -vn -0.1049 -0.6989 0.7075 -vn 0.7478 0.4199 -0.5142 -vn 0.3481 -0.6361 0.6886 -vn 0.3481 -0.6360 0.6887 -vn 0.3819 -0.6178 0.6874 -vn 0.3822 -0.6178 0.6872 -vn 0.2501 0.3324 0.9094 -vn 0.2502 0.3324 0.9093 -vn -0.6236 0.6196 -0.4767 -vn 0.7287 -0.6784 -0.0940 -vn 0.7290 -0.6782 -0.0925 -vn 0.7290 -0.6781 -0.0932 -vn 0.4826 -0.6947 0.5334 -vn 0.4827 -0.6946 0.5333 -vn 0.1123 0.0449 0.9927 -vn 0.7512 -0.2283 0.6193 -vn 0.7513 -0.2285 0.6192 -vn 0.7515 -0.2281 0.6190 -vn -0.6754 0.5837 -0.4508 -vn -0.6755 0.5836 -0.4506 -vn -0.6756 0.5836 -0.4506 -vn -0.8212 0.5484 -0.1579 -vn -0.8212 0.5484 -0.1578 -vn 0.4649 0.8852 -0.0147 -vn 0.4650 0.8852 -0.0146 -vn 0.4649 0.8852 -0.0148 -vn 0.5587 -0.7136 0.4227 -vn 0.5589 -0.7136 0.4224 -vn 0.5584 -0.7136 0.4230 -vn 0.0676 -0.0104 0.9977 -vn 0.0676 -0.0100 0.9977 -vn 0.0675 -0.0099 0.9977 -vn -0.7709 -0.2484 0.5865 -vn -0.7708 -0.2484 0.5867 -vn -0.7708 -0.2484 0.5866 -vn 0.7254 0.5911 0.3526 -vn 0.7253 0.5912 0.3528 -vn 0.2280 -0.6583 0.7174 -vn -0.2577 -0.7424 0.6184 -vn -0.2579 -0.7427 0.6180 -vn -0.2577 -0.7421 0.6188 -vn -0.9751 0.2216 -0.0037 -vn -0.9751 0.2217 -0.0038 -vn -0.8592 -0.3743 0.3489 -vn -0.8591 -0.3744 0.3490 -vn -0.8591 -0.3743 0.3491 -vn -0.5596 0.4687 0.6835 -vn -0.5594 0.4692 0.6833 -vn -0.5594 0.4693 0.6832 -vn 0.2830 0.0408 0.9582 -vn 0.2830 0.0409 0.9582 -vn 0.2670 0.9536 -0.1389 -vn 0.5020 0.1496 -0.8518 -vn 0.5022 0.1496 -0.8517 -vn -0.5772 -0.7639 -0.2887 -vn -0.5769 -0.7640 -0.2889 -vn -0.5774 -0.7638 -0.2884 -vn -0.6700 -0.3449 -0.6574 -vn -0.6701 -0.3447 -0.6574 -vn -0.6703 -0.3446 -0.6572 -vn 0.9460 0.3196 -0.0546 -vn 0.9460 0.3195 -0.0541 -vn 0.9460 0.3194 -0.0544 -vn -0.0100 0.9687 -0.2482 -vn -0.0109 0.9684 -0.2490 -vn -0.0104 0.9686 -0.2486 -vn 0.0707 0.7044 -0.7063 -vn 0.0708 0.7046 -0.7061 -vn 0.0708 0.7047 -0.7060 -vn -0.4798 0.5912 -0.6483 -vn -0.4799 0.5908 -0.6486 -vn -0.4802 0.5901 -0.6490 -vn -0.7019 -0.2401 -0.6706 -vn 0.3306 -0.0853 -0.9399 -vn 0.3295 -0.0865 -0.9402 -vn 0.3266 -0.0877 -0.9411 -vn -0.4986 0.0780 -0.8633 -vn -0.4984 0.0784 -0.8634 -vn -0.4985 0.0782 -0.8633 -vn -0.5072 -0.1045 -0.8555 -vn -0.5081 -0.1045 -0.8550 -vn -0.5084 -0.1043 -0.8548 -vn -0.1112 -0.0638 -0.9917 -vn -0.1115 -0.0633 -0.9917 -vn -0.1115 -0.0632 -0.9917 -vn 0.9078 -0.0447 -0.4169 -vn 0.9078 -0.0448 -0.4171 -vn 0.9080 -0.0445 -0.4166 -vn 0.2109 0.9751 0.0688 -vn 0.2105 0.9752 0.0681 -vn 0.2102 0.9753 0.0681 -vn -0.1547 0.4575 -0.8756 -vn -0.1545 0.4574 -0.8758 -vn -0.0386 -0.9869 -0.1569 -vn -0.0387 -0.9868 -0.1574 -vn -0.0387 -0.9867 -0.1578 -vn -0.4173 -0.6140 -0.6700 -vn -0.4174 -0.6141 -0.6698 -vn -0.4173 -0.6139 -0.6701 -vn 0.3749 0.9123 0.1650 -vn 0.3749 0.9123 0.1649 -vn 0.3750 0.9122 0.1650 -vn -0.4655 -0.6673 -0.5814 -vn -0.4653 -0.6670 -0.5819 -vn -0.3379 -0.9164 0.2145 -vn -0.3379 -0.9164 0.2146 -vn 0.7007 -0.1146 -0.7042 -vn 0.7007 -0.1149 -0.7041 -vn 0.7006 -0.1149 -0.7042 -vn 0.8972 -0.2834 -0.3388 -vn 0.8970 -0.2836 -0.3391 -vn 0.8973 -0.2834 -0.3384 -vn -0.0763 0.2482 -0.9657 -vn -0.0768 0.2485 -0.9656 -vn -0.3055 0.0616 -0.9502 -vn -0.3063 0.0615 -0.9499 -vn -0.3059 0.0615 -0.9501 -vn -0.2279 -0.4425 0.8673 -vn -0.2295 -0.4402 0.8681 -vn -0.2287 -0.4407 0.8680 -vn -0.5202 0.7857 -0.3348 -vn -0.5201 0.7857 -0.3350 -vn -0.4273 -0.0648 -0.9018 -vn -0.4273 -0.0658 -0.9017 -vn -0.4271 -0.0666 -0.9018 -vn 0.7198 0.5760 0.3875 -vn 0.7198 0.5754 0.3883 -vn 0.7198 0.5757 0.3879 -vn 0.7712 0.0551 0.6342 -vn 0.7120 -0.4019 0.5758 -vn 0.7123 -0.4020 0.5754 -vn 0.7121 -0.4019 0.5757 -vn 0.8308 -0.4654 0.3054 -vn -0.5301 -0.8459 0.0584 -vn -0.5302 -0.8459 0.0585 -vn 0.8182 0.5636 0.1135 -vn 0.8183 0.5635 0.1131 -vn 0.8184 0.5635 0.1129 -vn -0.1559 -0.4812 -0.8626 -vn -0.1564 -0.4815 -0.8624 -vn 0.4313 -0.6115 -0.6633 -vn 0.4316 -0.6106 -0.6640 -vn 0.4316 -0.6111 -0.6635 -vn -0.5665 0.7317 0.3790 -vn -0.5665 0.7316 0.3793 -vn 0.5500 0.1335 0.8244 -vn 0.5498 0.1333 0.8246 -vn 0.5498 0.1335 0.8246 -vn -0.4947 0.8563 -0.1483 -vn -0.6158 -0.4355 -0.6566 -vn -0.6158 -0.4354 -0.6567 -vn -0.6159 -0.4353 -0.6567 -vn -0.7217 -0.6356 -0.2742 -vn -0.7217 -0.6355 -0.2743 -vn -0.7219 -0.6354 -0.2741 -vn 0.8736 -0.4270 0.2335 -vn 0.8736 -0.4266 0.2340 -vn 0.8734 -0.4275 0.2333 -vn 0.0281 0.9979 0.0576 -vn 0.0285 0.9979 0.0578 -vn -0.5519 -0.7922 0.2604 -vn -0.5520 -0.7920 0.2607 -vn 0.8231 -0.0747 0.5630 -vn 0.8231 -0.0745 0.5630 -vn -0.7898 -0.2506 -0.5598 -vn -0.7899 -0.2508 -0.5596 -vn -0.7896 -0.2507 -0.5600 -vn -0.3919 0.8086 -0.4388 -vn -0.3923 0.8086 -0.4385 -vn 0.3547 -0.9286 -0.1090 -vn 0.3547 -0.9286 -0.1092 -vn 0.3386 -0.9408 -0.0146 -vn 0.4323 0.7503 0.5001 -vn 0.4337 0.7493 0.5005 -vn 0.4331 0.7497 0.5004 -vn 0.8833 -0.3382 0.3246 -vn 0.8831 -0.3384 0.3251 -vn 0.8825 -0.3390 0.3259 -vn 0.8556 0.3306 0.3983 -vn -0.3327 -0.9126 -0.2378 -vn -0.4596 0.5252 -0.7162 -vn -0.2858 0.7966 -0.5326 -vn 0.2097 0.9542 -0.2135 -vn 0.2108 0.9541 -0.2129 -vn 0.2107 0.9541 -0.2129 -vn 0.2339 -0.9166 0.3243 -vn 0.2341 -0.9166 0.3241 -vn 0.8495 -0.1931 0.4910 -vn 0.8496 -0.1939 0.4905 -vn 0.8496 -0.1935 0.4906 -vn -0.3481 0.7510 0.5610 -vn -0.3483 0.7508 0.5612 -vn -0.3488 0.7508 0.5609 -vn 0.8528 -0.2331 0.4673 -vn 0.8531 -0.2327 0.4671 -vn 0.8531 -0.2327 0.4670 -vn -0.2202 -0.9675 -0.1243 -vn -0.2201 -0.9676 -0.1239 -vn -0.2201 -0.9675 -0.1243 -vn 0.2612 0.9521 -0.1592 -vn 0.2609 0.9521 -0.1595 -vn 0.2608 0.9521 -0.1597 -vn 0.5887 0.2280 -0.7755 -vn 0.5888 0.2279 -0.7755 -vn 0.5890 0.2279 -0.7754 -vn 0.8570 -0.1673 0.4874 -vn 0.8568 -0.1674 0.4877 -vn -0.9356 0.0830 -0.3430 -vn -0.9355 0.0833 -0.3435 -vn -0.9355 0.0832 -0.3434 -vn 0.5355 -0.7825 0.3177 -vn 0.5354 -0.7825 0.3177 -vn 0.5352 -0.7827 0.3176 -vn -0.5890 0.0139 -0.8080 -vn 0.8996 -0.1629 0.4052 -vn 0.8995 -0.1632 0.4053 -vn 0.4383 -0.7657 0.4707 -vn 0.4379 -0.7660 0.4707 -vn 0.4380 -0.7659 0.4707 -vn -0.0197 0.3522 0.9357 -vn -0.0195 0.3522 0.9357 -vn -0.0196 0.3520 0.9358 -vn -0.7866 -0.4607 -0.4112 -vn -0.7864 -0.4609 -0.4112 -vn 0.0459 0.8919 0.4499 -vn 0.0456 0.8919 0.4500 -vn 0.0455 0.8917 0.4504 -vn -0.5850 0.0732 0.8077 -vn 0.8458 -0.1604 0.5088 -vn 0.8454 -0.1606 0.5094 -vn 0.0909 0.9948 -0.0452 -vn -0.3901 -0.9019 -0.1856 -vn 0.9222 -0.2841 0.2622 -vn 0.9222 -0.2842 0.2621 -vn 0.9221 -0.2842 0.2625 -vn 0.0014 0.0012 1.0000 -vn -0.0940 0.4190 -0.9031 -vn -0.5142 0.7667 0.3844 -vn -0.5140 0.7667 0.3846 -vn -0.5143 0.7667 0.3842 -vn 0.5331 -0.5924 0.6040 -vn 0.5331 -0.5926 0.6038 -vn 0.5331 -0.5928 0.6036 -vn -0.4438 -0.6009 -0.6647 -vn -0.4385 0.8049 -0.3997 -vn -0.4384 0.8050 -0.3996 -vn -0.4388 0.8047 -0.3998 -vn -0.8656 -0.4082 -0.2900 -vn -0.8657 -0.4080 -0.2899 -vn -0.8656 -0.4083 -0.2899 -vn -0.4598 0.8137 -0.3556 -vn -0.4591 0.8143 -0.3552 -vn -0.4589 0.8146 -0.3548 -vn -0.7642 -0.5966 -0.2450 -vn -0.7643 -0.5965 -0.2451 -vn 0.0545 0.9516 -0.3026 -vn 0.0551 0.9514 -0.3030 -vn -0.3310 0.9365 -0.1159 -vn 0.5046 0.3093 0.8060 -vn 0.5050 0.3090 0.8060 -vn 0.5045 0.3091 0.8062 -vn 0.3255 0.2143 0.9209 -vn 0.3256 0.2143 0.9209 -vn 0.3260 0.2141 0.9208 -vn 0.3095 0.9486 -0.0668 -vn 0.3094 0.9486 -0.0661 -vn 0.3094 0.9486 -0.0664 -vn 0.6052 -0.6005 0.5226 -vn 0.6051 -0.6005 0.5227 -vn 0.6050 -0.6005 0.5228 -vn 0.5510 -0.2195 0.8051 -vn 0.5510 -0.2198 0.8050 -vn -0.8410 0.5056 -0.1925 -vn -0.8406 0.5066 -0.1918 -vn -0.8410 0.5054 -0.1932 -vn -0.8214 -0.4800 -0.3082 -vn -0.8216 -0.4796 -0.3080 -vn -0.8215 -0.4799 -0.3080 -vn 0.3659 0.9077 -0.2053 -vn 0.3664 0.9076 -0.2051 -vn 0.2796 0.9548 -0.1006 -vn 0.2792 0.9550 -0.1002 -vn 0.2791 0.9550 -0.1001 -vn -0.4414 -0.5429 0.7144 -vn -0.4419 -0.5427 0.7143 -vn -0.4421 -0.5424 0.7144 -vn 0.3902 -0.7804 0.4887 -vn 0.3898 -0.7810 0.4880 -vn 0.3902 -0.7804 0.4885 -vn 0.8120 -0.5789 -0.0739 -vn 0.5710 0.5978 -0.5627 -vn 0.7095 -0.6858 -0.1621 -vn 0.7094 -0.6859 -0.1620 -vn 0.2217 0.9721 0.0765 -vn 0.0937 0.9943 0.0503 -vn 0.0934 0.9944 0.0504 -vn -0.6800 0.6305 -0.3743 -vn 0.8924 -0.3594 0.2727 -vn -0.4748 -0.8750 -0.0943 -vn 0.7111 -0.6860 -0.1542 -vn -0.4193 0.4341 -0.7974 -vn -0.4193 0.4338 -0.7975 -vn -0.0779 -0.9143 -0.3974 -vn -0.0779 -0.9144 -0.3973 -vn -0.9217 -0.0925 -0.3766 -vn -0.9219 -0.0925 -0.3763 -vn -0.9220 -0.0924 -0.3759 -vn -0.2011 -0.0740 0.9768 -vn -0.2007 -0.0745 0.9768 -vn 0.1267 0.7150 0.6875 -vn -0.6915 -0.5960 -0.4082 -vn -0.6915 -0.5960 -0.4081 -vn 0.4873 -0.0743 0.8701 -vn 0.4872 -0.0743 0.8701 -vn 0.4874 -0.0745 0.8700 -vn 0.1745 -0.2496 -0.9525 -vn 0.1744 -0.2497 -0.9525 -vn 0.1743 -0.2498 -0.9525 -vn 0.6284 0.7474 0.2155 -vn 0.6287 0.7472 0.2153 -vn 0.6282 0.7474 0.2160 -vn -0.9970 0.0262 0.0728 -vn -0.9970 0.0260 0.0727 -vn -0.9968 0.0280 0.0752 -vn 0.5021 0.7687 0.3962 -vn 0.5019 0.7690 0.3959 -vn 0.3776 0.7595 0.5296 -vn 0.3777 0.7595 0.5296 -vn 0.3778 0.7597 0.5293 -vn 0.5007 0.8222 0.2706 -vn 0.5004 0.8225 0.2703 -vn 0.5006 0.8223 0.2707 -vn 0.3467 0.3479 0.8711 -vn 0.3471 0.3478 0.8710 -vn 0.3474 0.3478 0.8708 -vn 0.2088 0.9700 -0.1246 -vn 0.2085 0.9700 -0.1246 -vn -0.4097 -0.9115 0.0369 -vn -0.4107 -0.9110 0.0370 -vn -0.4105 -0.9111 0.0369 -vn -0.9859 -0.0407 0.1620 -vn -0.9859 -0.0417 0.1622 -vn -0.9860 -0.0406 0.1618 -vn -0.9353 -0.2193 -0.2777 -vn -0.9355 -0.2191 -0.2773 -vn -0.9359 -0.2182 -0.2766 -vn 0.7827 -0.4832 -0.3923 -vn 0.7828 -0.4831 -0.3923 -vn 0.1298 0.9326 -0.3368 -vn 0.1302 0.9323 -0.3373 -vn 0.1293 0.9328 -0.3365 -vn -0.4614 0.3223 -0.8266 -vn -0.4615 0.3219 -0.8267 -vn -0.4615 0.3222 -0.8266 -vn 0.0959 -0.9502 -0.2967 -vn 0.9712 0.2025 0.1258 -vn 0.9712 0.2023 0.1257 -vn 0.9712 0.2023 0.1259 -vn -0.5174 -0.1084 -0.8488 -vn -0.5175 -0.1083 -0.8488 -vn -0.5176 -0.1081 -0.8488 -vn -0.3684 -0.2818 0.8859 -vn -0.3683 -0.2818 0.8860 -vn 0.1776 -0.5582 -0.8105 -vn 0.1776 -0.5592 -0.8098 -vn 0.1776 -0.5590 -0.8099 -vn 0.3459 0.2311 -0.9094 -vn 0.3458 0.2312 -0.9094 -vn 0.3456 0.2312 -0.9094 -vn 0.2964 0.8954 -0.3324 -vn 0.2957 0.8958 -0.3318 -vn 0.2960 0.8956 -0.3322 -vn 0.6426 -0.7396 -0.2000 -vn 0.6424 -0.7398 -0.2001 -vn 0.6430 -0.7393 -0.2001 -vn -0.4251 -0.8574 -0.2901 -vn 0.2945 0.9532 0.0685 -vn 0.2946 0.9532 0.0684 -vn 0.2944 0.9532 0.0685 -vn 0.8069 0.3018 -0.5078 -vn 0.8072 0.3021 -0.5071 -vn 0.8062 0.3025 -0.5085 -vn 0.6424 -0.4617 0.6117 -vn 0.6423 -0.4616 0.6118 -vn 0.6423 -0.4615 0.6119 -vn -0.6710 -0.6616 -0.3349 -vn -0.6703 -0.6620 -0.3353 -vn -0.6709 -0.6615 -0.3351 -vn 0.2526 0.9519 0.1735 -vn 0.2525 0.9520 0.1730 -vn -0.0958 0.9274 -0.3616 -vn -0.0959 0.9274 -0.3616 -vn -0.0956 0.9275 -0.3615 -vn 0.1001 -0.9924 -0.0710 -vn 0.1004 -0.9924 -0.0709 -vn 0.1003 -0.9924 -0.0710 -vn -0.1246 0.2663 -0.9558 -vn -0.1245 0.2658 -0.9560 -vn -0.1248 0.2668 -0.9556 -vn -0.8829 0.4656 0.0610 -vn -0.8828 0.4659 0.0607 -vn -0.8828 0.4658 0.0606 -vn 0.7861 0.5935 0.1728 -vn 0.7860 0.5937 0.1727 -vn -0.2508 -0.8120 -0.5270 -vn -0.2505 -0.8122 -0.5269 -vn -0.2506 -0.8121 -0.5270 -vn 0.4971 0.8126 -0.3041 -vn -0.0986 -0.3666 -0.9251 -vn -0.0985 -0.3667 -0.9251 -vn -0.3655 -0.8681 0.3358 -vn -0.3669 -0.8679 0.3347 -vn -0.3671 -0.8682 0.3338 -vn -0.6524 -0.7245 -0.2223 -vn -0.6528 -0.7243 -0.2220 -vn -0.6520 -0.7247 -0.2229 -vn -0.9287 0.1265 0.3487 -vn 0.9205 0.1553 0.3585 -vn 0.8660 0.4594 -0.1976 -vn 0.8664 0.4590 -0.1965 -vn 0.8670 0.4582 -0.1959 -vn -0.5187 -0.7710 -0.3696 -vn -0.5187 -0.7711 -0.3693 -vn -0.5186 -0.7710 -0.3697 -vn 0.2256 -0.9635 -0.1440 -vn 0.2362 0.7317 -0.6394 -vn 0.2363 0.7318 -0.6393 -vn 0.2362 0.7318 -0.6393 -vn -0.6751 0.0618 -0.7352 -vn -0.6749 0.0618 -0.7353 -vn -0.6746 0.0620 -0.7356 -vn 0.1494 -0.7568 -0.6364 -vn 0.1497 -0.7567 -0.6364 -vn 0.1495 -0.7568 -0.6364 -vn 0.5049 -0.8296 -0.2384 -vn 0.5048 -0.8296 -0.2386 -vn 0.5048 -0.8296 -0.2385 -vn -0.7490 -0.4498 -0.4865 -vn -0.7491 -0.4498 -0.4863 -vn -0.7493 -0.4500 -0.4859 -vn 0.5294 -0.8168 0.2292 -vn 0.5295 -0.8168 0.2292 -vn 0.5050 -0.8568 0.1044 -vn 0.5035 -0.8577 0.1039 -vn 0.5057 -0.8564 0.1043 -vn -0.4100 0.8929 -0.1860 -vn -0.4092 0.8932 -0.1862 -vn -0.4107 0.8927 -0.1855 -vn 0.0888 0.5736 0.8143 -vn 0.0889 0.5740 0.8140 -vn -0.6847 -0.3088 -0.6602 -vn -0.6847 -0.3088 -0.6601 -vn -0.6841 -0.3088 -0.6608 -vn 0.2909 0.6102 0.7369 -vn 0.2916 0.6093 0.7374 -vn 0.2923 0.6087 0.7376 -vn -0.6919 -0.3045 -0.6546 -vn -0.6919 -0.3045 -0.6547 -vn -0.6923 -0.3043 -0.6543 -vn 0.3858 0.9206 -0.0610 -vn 0.3856 0.9206 -0.0609 -vn 0.3853 0.9208 -0.0610 -vn 0.2645 0.2166 0.9398 -vn -0.4025 -0.0908 -0.9109 -vn -0.9462 -0.1486 0.2875 -vn -0.9462 -0.1487 0.2875 -vn 0.0892 -0.6026 0.7930 -vn 0.0892 -0.6024 0.7932 -vn 0.0891 -0.6026 0.7931 -vn 0.6627 0.6492 -0.3734 -vn 0.6628 0.6492 -0.3733 -vn 0.6628 0.6492 -0.3732 -vn 0.7406 0.6278 -0.2394 -vn 0.7406 0.6275 -0.2404 -vn 0.7405 0.6282 -0.2388 -vn 0.3548 0.6457 -0.6761 -vn 0.3544 0.6458 -0.6763 -vn -0.9501 -0.1029 -0.2946 -vn -0.9499 -0.1030 -0.2950 -vn -0.9500 -0.1030 -0.2949 -vn 0.8757 -0.3032 -0.3759 -vn 0.8754 -0.3037 -0.3762 -vn 0.8760 -0.3030 -0.3752 -vn 0.2809 -0.6497 -0.7064 -vn 0.2808 -0.6498 -0.7064 -vn 0.7639 -0.1467 -0.6285 -vn 0.7596 -0.1506 -0.6327 -vn 0.7625 -0.1492 -0.6296 -vn 0.2071 0.9775 -0.0405 -vn 0.2071 0.9775 -0.0406 -vn 0.2070 0.9775 -0.0405 -vn 0.9112 -0.2628 0.3173 -vn 0.9114 -0.2623 0.3172 -vn 0.9114 -0.2622 0.3171 -vn 0.2750 0.1721 -0.9459 -vn 0.3728 -0.0547 -0.9263 -vn 0.3756 -0.0544 -0.9252 -vn 0.3739 -0.0548 -0.9258 -vn 0.5413 -0.6856 -0.4867 -vn 0.5411 -0.6857 -0.4868 -vn 0.5417 -0.6856 -0.4864 -vn 0.5882 -0.5832 -0.5603 -vn 0.5882 -0.5829 -0.5606 -vn 0.5882 -0.5831 -0.5603 -vn -0.4337 0.8984 -0.0691 -vn -0.4348 0.8980 -0.0675 -vn -0.4343 0.8982 -0.0687 -vn -0.1752 -0.7165 0.6752 -vn -0.1754 -0.7164 0.6753 -vn -0.1754 -0.7165 0.6751 -vn 0.7208 -0.1760 -0.6704 -vn 0.7211 -0.1758 -0.6701 -vn 0.7209 -0.1759 -0.6703 -vn -0.3352 -0.4761 -0.8130 -vn -0.3357 -0.4759 -0.8129 -vn 0.0450 -0.0233 0.9987 -vn -0.4688 -0.1557 -0.8695 -vn -0.4690 -0.1554 -0.8694 -vn -0.4685 -0.1559 -0.8696 -vn 0.7358 -0.0894 -0.6713 -vn 0.5561 0.5289 -0.6411 -vn 0.5577 0.5272 -0.6411 -vn 0.5570 0.5277 -0.6413 -vn -0.4350 0.8639 -0.2537 -vn -0.4348 0.8642 -0.2532 -vn -0.4350 0.8640 -0.2537 -vn 0.4773 0.5628 -0.6748 -vn -0.5859 0.4255 -0.6897 -vn -0.5859 0.4254 -0.6898 -vn -0.3937 -0.0826 -0.9155 -vn -0.3939 -0.0825 -0.9154 -vn -0.9220 0.0170 0.3869 -vn -0.9222 0.0165 0.3863 -vn -0.2669 0.0532 -0.9623 -vn -0.2671 0.0533 -0.9622 -vn -0.1321 -0.1313 -0.9825 -vn -0.1322 -0.1316 -0.9824 -vn -0.1321 -0.1315 -0.9825 -vn -0.2817 0.0590 -0.9577 -vn -0.2819 0.0591 -0.9576 -vn -0.2816 0.0589 -0.9577 -vn 0.1351 -0.3093 -0.9413 -vn 0.1346 -0.3095 -0.9413 -vn 0.1348 -0.3094 -0.9413 -vn -0.8609 -0.4910 -0.1336 -vn -0.9721 -0.2229 -0.0728 -vn -0.9722 -0.2226 -0.0726 -vn -0.9722 -0.2227 -0.0727 -vn 0.7383 0.6727 -0.0491 -vn 0.7386 0.6724 -0.0488 -vn 0.7380 0.6730 -0.0492 -vn -0.3840 -0.3145 0.8681 -vn -0.3844 -0.3142 0.8680 -vn 0.3222 0.6231 -0.7127 -vn 0.6105 0.2673 0.7456 -vn 0.6104 0.2674 0.7456 -vn 0.9371 -0.1921 -0.2914 -vn 0.9373 -0.1914 -0.2911 -vn 0.9370 -0.1928 -0.2914 -vn 0.0247 -0.4128 -0.9105 -vn 0.0249 -0.4133 -0.9103 -vn 0.0247 -0.4129 -0.9104 -vn 0.5663 -0.3927 -0.7246 -vn 0.5663 -0.3924 -0.7248 -vn 0.5661 -0.3919 -0.7252 -vn 0.7736 -0.4509 -0.4453 -vn 0.7738 -0.4507 -0.4451 -vn -0.8846 0.3706 -0.2830 -vn -0.8846 0.3707 -0.2830 -vn -0.6609 -0.4089 -0.6293 -vn -0.6606 -0.4089 -0.6296 -vn -0.6607 -0.4089 -0.6295 -vn -0.1635 -0.8539 -0.4942 -vn 0.6673 0.3252 0.6700 -vn 0.6675 0.3249 0.6700 -vn 0.6676 0.3250 0.6698 -vn -0.7629 -0.3197 -0.5619 -vn -0.7628 -0.3198 -0.5620 -vn -0.7628 -0.3200 -0.5619 -vn -0.0082 -0.3580 -0.9337 -vn -0.0083 -0.3583 -0.9336 -vn -0.0042 -0.2092 -0.9779 -vn -0.0046 -0.2088 -0.9779 -vn -0.0044 -0.2090 -0.9779 -vn -0.7409 0.5615 -0.3685 -vn -0.7404 0.5621 -0.3686 -vn -0.7407 0.5616 -0.3686 -vn 0.7163 -0.3736 -0.5894 -vn 0.7161 -0.3739 -0.5894 -vn 0.1281 -0.9287 0.3481 -vn 0.1281 -0.9285 0.3484 -vn 0.1281 -0.9287 0.3479 -vn -0.6173 0.6962 -0.3664 -vn -0.6171 0.6964 -0.3663 -vn -0.6170 0.6966 -0.3661 -vn 0.6300 -0.6220 0.4651 -vn 0.6296 -0.6225 0.4648 -vn 0.6299 -0.6223 0.4647 -vn 0.3848 -0.8945 0.2278 -vn 0.3847 -0.8946 0.2275 -vn 0.3851 -0.8943 0.2279 -vn 0.4604 -0.1691 0.8715 -vn 0.4605 -0.1690 0.8714 -vn 0.7119 -0.0650 0.6992 -vn 0.1866 0.8157 -0.5475 -vn 0.1867 0.8157 -0.5475 -vn 0.2351 0.9681 0.0863 -vn 0.2347 0.9682 0.0861 -vn 0.2356 0.9680 0.0865 -vn 0.9268 0.3651 0.0876 -vn 0.9268 0.3652 0.0872 -vn 0.9269 0.3648 0.0879 -vn -0.1320 0.7405 -0.6590 -vn 0.0495 0.9316 -0.3602 -vn 0.0496 0.9315 -0.3602 -vn 0.0494 0.9315 -0.3603 -vn 0.7089 0.3029 -0.6369 -vn 0.7087 0.3031 -0.6371 -vn -0.2243 0.0778 -0.9714 -vn -0.2241 0.0780 -0.9714 -vn 0.0188 -0.4569 0.8893 -vn 0.0189 -0.4570 0.8893 -vn 0.0187 -0.4569 0.8893 -vn -0.2428 0.9620 -0.1245 -vn 0.5555 0.7626 -0.3313 -vn 0.5556 0.7625 -0.3315 -vn 0.5557 0.7624 -0.3317 -vn 0.4809 0.8031 0.3518 -vn 0.4809 0.8031 0.3519 -vn -0.9515 -0.2024 -0.2317 -vn -0.9515 -0.2025 -0.2316 -vn -0.9516 -0.2020 -0.2317 -vn -0.2691 -0.2520 0.9295 -vn -0.2689 -0.2520 0.9296 -vn -0.2690 -0.2519 0.9296 -vn -0.3662 -0.4920 -0.7898 -vn -0.3662 -0.4920 -0.7899 -vn 0.9284 -0.3521 -0.1190 -vn 0.9284 -0.3521 -0.1189 -vn -0.7397 0.2425 -0.6277 -vn -0.7395 0.2423 -0.6280 -vn -0.4629 -0.4380 0.7706 -vn -0.5172 0.6974 0.4961 -vn 0.7546 0.6514 -0.0785 -vn 0.7536 0.6524 -0.0800 -vn 0.7541 0.6519 -0.0798 -vn 0.1306 0.3701 -0.9198 -vn 0.1307 0.3700 -0.9198 -vn -0.5223 -0.4220 0.7410 -vn -0.5224 -0.4219 0.7410 -vn -0.5225 -0.4218 0.7410 -vn -0.8370 -0.4887 0.2462 -vn -0.8366 -0.4893 0.2463 -vn -0.8371 -0.4884 0.2465 -vn -0.6478 0.5392 0.5382 -vn -0.6482 0.5391 0.5378 -vn -0.6481 0.5390 0.5380 -vn -0.3459 -0.2972 -0.8900 -vn -0.3459 -0.2973 -0.8899 -vn -0.3458 -0.2968 -0.8901 -vn -0.7354 -0.1716 -0.6555 -vn -0.7355 -0.1719 -0.6554 -vn -0.7354 -0.1714 -0.6556 -vn -0.5087 0.7100 0.4870 -vn 0.2671 0.9622 -0.0536 -vn 0.2667 0.9623 -0.0532 -vn -0.2100 -0.6364 0.7423 -vn -0.2099 -0.6363 0.7423 -vn -0.2104 -0.6364 0.7421 -vn 0.1755 0.9844 0.0141 -vn -0.0405 -0.1050 0.9937 -vn -0.0403 -0.1050 0.9937 -vn -0.0404 -0.1050 0.9937 -vn 0.0740 0.0176 0.9971 -vn 0.0745 0.0175 0.9971 -vn 0.0746 0.0174 0.9971 -vn -0.1273 0.1989 0.9717 -vn -0.1273 0.1986 0.9718 -vn -0.1274 0.1988 0.9717 -vn 0.8571 0.4659 -0.2198 -vn 0.8571 0.4660 -0.2198 -vn 0.6445 -0.7629 0.0508 -vn 0.6449 -0.7626 0.0504 -vn -0.5729 0.1334 0.8087 -vn -0.5861 -0.2093 0.7827 -vn -0.5861 -0.2097 0.7826 -vn -0.5862 -0.2098 0.7826 -vn -0.8225 -0.1399 -0.5513 -vn 0.8365 -0.2030 0.5090 -vn 0.8357 -0.2030 0.5102 -vn 0.8356 -0.2030 0.5105 -vn -0.4201 -0.7884 0.4493 -vn -0.4211 -0.7890 0.4473 -vn -0.4183 -0.7888 0.4504 -vn -0.8866 -0.4025 -0.2280 -vn -0.8868 -0.4023 -0.2276 -vn 0.8307 0.1537 0.5350 -vn -0.8854 -0.4473 0.1268 -vn -0.8855 -0.4471 0.1267 -vn -0.0773 0.7738 0.6287 -vn -0.0777 0.7737 0.6288 -vn -0.0779 0.7737 0.6287 -vn 0.4807 0.5076 -0.7150 -vn 0.4803 0.5077 -0.7152 -vn -0.2643 0.4842 0.8341 -vn -0.2645 0.4839 0.8342 -vn -0.2642 0.4842 0.8341 -vn 0.0021 0.7420 0.6704 -vn 0.0021 0.7421 0.6703 -vn 0.0020 0.7420 0.6704 -vn 0.6888 -0.4132 0.5957 -vn -0.4617 -0.5014 -0.7318 -vn -0.4620 -0.5012 -0.7317 -vn -0.4624 -0.5011 -0.7315 -vn -0.2951 -0.2258 -0.9284 -vn 0.8040 -0.3583 -0.4745 -vn 0.8033 -0.3588 -0.4754 -vn 0.8024 -0.3599 -0.4761 -vn 0.3097 0.6072 -0.7317 -vn 0.3109 0.6075 -0.7309 -vn 0.3087 0.6074 -0.7320 -vn -0.8456 -0.0344 -0.5328 -vn -0.8458 -0.0336 -0.5324 -vn -0.8459 -0.0332 -0.5323 -vn 0.1894 0.9300 -0.3151 -vn 0.6949 0.0401 -0.7180 -vn 0.6949 0.0400 -0.7180 -vn 0.6949 0.0404 -0.7180 -vn -0.5536 0.7791 -0.2942 -vn -0.5534 0.7792 -0.2943 -vn -0.5537 0.7790 -0.2942 -vn 0.8257 -0.4883 0.2824 -vn 0.8257 -0.4884 0.2823 -vn -0.3367 -0.9273 0.1634 -vn -0.3367 -0.9273 0.1635 -vn -0.3369 -0.9273 0.1632 -vn -0.8452 -0.2425 -0.4762 -vn -0.8451 -0.2427 -0.4764 -vn -0.8454 -0.2424 -0.4759 -vn 0.6946 0.2748 -0.6648 -vn 0.6948 0.2749 -0.6646 -vn 0.9842 0.1396 -0.1086 -vn 0.9843 0.1395 -0.1085 -vn 0.8767 -0.4563 0.1522 -vn 0.8767 -0.4565 0.1519 -vn 0.8767 -0.4563 0.1525 -vn -0.5471 0.3372 -0.7662 -vn -0.5467 0.3372 -0.7664 -vn -0.5471 0.3372 -0.7661 -vn 0.2175 -0.9607 0.1725 -vn 0.2178 -0.9607 0.1724 -vn 0.2180 -0.9606 0.1727 -vn -0.4670 0.7534 -0.4629 -vn -0.4669 0.7534 -0.4631 -vn -0.4669 0.7534 -0.4629 -vn 0.4726 0.8580 -0.2015 -vn -0.4947 -0.8673 -0.0550 -vn -0.4946 -0.8674 -0.0549 -vn -0.4945 -0.8674 -0.0550 -vn -0.0769 -0.4076 -0.9099 -vn -0.0770 -0.4081 -0.9097 -vn -0.2480 -0.6215 0.7432 -vn -0.2475 -0.6216 0.7432 -vn 0.7809 -0.2826 0.5571 -vn 0.7808 -0.2824 0.5573 -vn 0.7810 -0.2828 0.5569 -vn -0.2867 0.0771 -0.9549 -vn -0.2868 0.0771 -0.9549 -vn -0.2864 0.0773 -0.9550 -vn -0.0210 0.9380 -0.3460 -vn -0.0216 0.9379 -0.3462 -vn -0.0211 0.9380 -0.3459 -vn 0.4993 0.8664 0.0039 -vn 0.4993 0.8664 0.0041 -vn -0.7098 0.2767 0.6478 -vn -0.7090 0.2773 0.6484 -vn -0.7095 0.2770 0.6480 -vn 0.3815 -0.8622 -0.3332 -vn 0.3813 -0.8622 -0.3334 -vn 0.3815 -0.8621 -0.3335 -vn -0.2701 0.8478 -0.4564 -vn -0.2703 0.8479 -0.4562 -vn 0.5912 0.7383 -0.3248 -vn 0.5904 0.7385 -0.3255 -vn 0.5904 0.7386 -0.3253 -vn -0.0997 -0.7932 -0.6008 -vn -0.0994 -0.7931 -0.6009 -vn -0.0992 -0.7931 -0.6010 -vn -0.1319 -0.9892 -0.0646 -vn -0.1318 -0.9892 -0.0647 -vn 0.7026 -0.4656 0.5382 -vn 0.7025 -0.4658 0.5381 -vn 0.7027 -0.4652 0.5383 -vn -0.8326 -0.3947 -0.3886 -vn -0.1110 0.8260 0.5527 -vn -0.1110 0.8259 0.5528 -vn -0.4065 0.0438 -0.9126 -vn 0.8536 -0.3472 0.3884 -vn 0.8537 -0.3471 0.3883 -vn 0.8536 -0.3470 0.3885 -vn 0.8188 -0.3834 0.4273 -vn 0.8197 -0.3816 0.4271 -vn 0.8192 -0.3826 0.4273 -vn -0.5155 -0.7114 0.4777 -vn -0.5159 -0.7112 0.4775 -vn -0.5153 -0.7115 0.4778 -vn 0.2435 -0.9285 0.2802 -vn -0.2699 0.5697 -0.7763 -vn -0.2701 0.5698 -0.7761 -vn -0.2696 0.5696 -0.7764 -vn -0.5012 0.3729 0.7809 -vn -0.5013 0.3726 0.7809 -vn -0.8241 -0.2521 -0.5073 -vn -0.8239 -0.2527 -0.5073 -vn 0.5238 0.7351 0.4305 -vn 0.5239 0.7351 0.4303 -vn 0.5236 0.7351 0.4308 -vn 0.0950 -0.9875 0.1259 -vn 0.0945 -0.9875 0.1259 -vn 0.0942 -0.9875 0.1260 -vn 0.8196 -0.3747 0.4334 -vn 0.8195 -0.3749 0.4335 -vn -0.6772 0.6652 -0.3145 -vn 0.0776 0.6628 0.7447 -vn 0.0779 0.6631 0.7445 -vn 0.0776 0.6628 0.7448 -vn -0.5549 -0.3123 0.7710 -vn -0.3172 -0.9439 -0.0922 -vn -0.3171 -0.9439 -0.0920 -vn -0.0152 0.9984 0.0547 -vn -0.0155 0.9984 0.0547 -vn -0.6475 -0.2387 -0.7237 -vn -0.6475 -0.2388 -0.7237 -vn -0.6474 -0.2389 -0.7237 -vn -0.2270 0.0737 0.9711 -vn -0.2269 0.0736 0.9711 -vn -0.2268 0.0738 0.9711 -vn -0.7644 -0.4692 -0.4421 -vn -0.7637 -0.4707 -0.4418 -vn -0.7634 -0.4721 -0.4409 -vn 0.2339 0.0649 0.9701 -vn 0.2341 0.0645 0.9701 -vn 0.2340 0.0647 0.9701 -vn 0.9479 -0.2673 -0.1734 -vn 0.9478 -0.2673 -0.1740 -vn 0.9477 -0.2674 -0.1743 -vn 0.8058 -0.1331 0.5770 -vn -0.8357 0.4686 -0.2865 -vn -0.8356 0.4688 -0.2864 -vn -0.1925 -0.9230 -0.3331 -vn -0.3060 -0.9513 -0.0385 -vn 0.3582 0.2215 0.9070 -vn 0.1755 -0.7011 0.6912 -vn 0.1769 -0.7011 0.6908 -vn 0.1789 -0.7021 0.6893 -vn -0.8007 -0.4548 -0.3899 -vn -0.8004 -0.4552 -0.3901 -vn -0.8008 -0.4548 -0.3898 -vn 0.1245 -0.9904 -0.0595 -vn 0.5803 -0.7697 0.2662 -vn 0.5804 -0.7696 0.2662 -vn 0.5801 -0.7699 0.2660 -vn 0.3416 0.0547 -0.9383 -vn 0.3419 0.0544 -0.9382 -vn 0.3417 0.0546 -0.9382 -vn 0.2216 0.9751 0.0109 -vn 0.2215 0.9751 0.0107 -vn 0.2218 0.9750 0.0109 -vn -0.3004 -0.9234 -0.2388 -vn -0.3005 -0.9234 -0.2390 -vn -0.3003 -0.9235 -0.2388 -vn 0.7503 -0.1209 0.6499 -vn 0.7501 -0.1212 0.6501 -vn 0.9114 0.1575 0.3803 -vn 0.9109 0.1581 0.3812 -vn 0.9110 0.1580 0.3810 -vn 0.9355 -0.2955 0.1936 -vn 0.9355 -0.2954 0.1939 -vn 0.8750 -0.3478 0.3368 -vn 0.8754 -0.3498 0.3335 -vn 0.8757 -0.3418 0.3410 -vn 0.7838 0.0859 0.6151 -vn 0.7840 0.0858 0.6148 -vn -0.9696 -0.1890 0.1556 -vn -0.9695 -0.1889 0.1559 -vn 0.1596 0.8108 -0.5631 -vn 0.1601 0.8107 -0.5631 -vn 0.1605 0.8108 -0.5629 -vn 0.8847 -0.2503 0.3931 -vn 0.8844 -0.2495 0.3945 -vn 0.8844 -0.2497 0.3943 -vn 0.8920 -0.4505 -0.0379 -vn 0.8921 -0.4502 -0.0380 -vn 0.8923 -0.4498 -0.0381 -vn -0.0000 0.9704 -0.2414 -vn -0.0000 0.9704 -0.2415 -vn -0.0002 0.9703 -0.2418 -vn 0.1499 0.2007 0.9681 -vn -0.8591 0.2762 -0.4308 -vn -0.8593 0.2760 -0.4307 -vn -0.8591 0.2762 -0.4309 -vn 0.9705 -0.2267 0.0825 -vn 0.9703 -0.2271 0.0828 -vn 0.9705 -0.2265 0.0826 -vn -0.1608 -0.7372 0.6562 -vn -0.1610 -0.7372 0.6562 -vn -0.1607 -0.7371 0.6564 -vn 0.1927 -0.8021 0.5652 -vn 0.1924 -0.8025 0.5648 -vn 0.1922 -0.8028 0.5644 -vn 0.3444 -0.6430 -0.6841 -vn 0.3448 -0.6429 -0.6840 -vn 0.3444 -0.6433 -0.6838 -vn 0.8179 -0.5575 0.1421 -vn 0.8179 -0.5576 0.1419 -vn 0.8180 -0.5574 0.1422 -vn 0.7101 -0.5890 0.3858 -vn 0.7102 -0.5891 0.3856 -vn 0.6849 0.7216 0.1007 -vn 0.6850 0.7216 0.1007 -vn 0.6851 0.7215 0.1006 -vn 0.3569 0.3671 -0.8590 -vn 0.3569 0.3666 -0.8592 -vn 0.3569 0.3663 -0.8593 -vn 0.3602 0.9324 -0.0306 -vn 0.3599 0.9325 -0.0306 -vn 0.3601 0.9324 -0.0306 -vn 0.3924 -0.5121 0.7641 -vn 0.3926 -0.5122 0.7639 -vn 0.3930 -0.5124 0.7635 -vn -0.2921 0.5026 0.8137 -vn -0.4763 0.8613 -0.1767 -vn 0.7423 0.3902 -0.5447 -vn 0.7416 0.3913 -0.5449 -vn 0.7415 0.3915 -0.5449 -vn -0.4657 0.2204 0.8571 -vn -0.4654 0.2205 0.8572 -vn -0.4659 0.2202 0.8570 -vn 0.1396 0.9443 -0.2980 -vn 0.1395 0.9443 -0.2980 -vn 0.9613 0.2751 0.0155 -vn 0.9613 0.2749 0.0156 -vn -0.6617 0.7398 -0.1222 -vn -0.6613 0.7401 -0.1221 -vn -0.6607 0.7407 -0.1216 -vn -0.6846 0.7269 0.0535 -vn 0.8989 0.1549 0.4098 -vn 0.8988 0.1553 0.4099 -vn -0.6077 -0.7787 -0.1562 -vn 0.5215 0.8525 -0.0361 -vn 0.5213 0.8526 -0.0365 -vn 0.5215 0.8525 -0.0363 -vn 0.1094 -0.2614 -0.9590 -vn 0.1093 -0.2613 -0.9590 -vn 0.4845 -0.8696 0.0950 -vn -0.4413 0.8540 -0.2757 -vn 0.4024 -0.8295 -0.3872 -vn -0.0036 -0.2386 0.9711 -vn -0.0031 -0.2387 0.9711 -vn -0.0040 -0.2384 0.9712 -vn -0.1807 -0.1596 0.9705 -vn -0.1810 -0.1596 0.9704 -vn -0.8127 -0.3513 -0.4648 -vn -0.8125 -0.3510 -0.4654 -vn -0.8128 -0.3512 -0.4647 -vn 0.3260 -0.9055 0.2718 -vn 0.3259 -0.9057 0.2711 -vn -0.6830 0.6819 -0.2618 -vn -0.6829 0.6822 -0.2612 -vn -0.6830 0.6823 -0.2607 -vn 0.7255 0.5647 -0.3934 -vn 0.7250 0.5655 -0.3933 -vn 0.7258 0.5643 -0.3934 -vn 0.4502 -0.6957 -0.5598 -vn 0.4501 -0.6957 -0.5599 -vn 0.4501 -0.6957 -0.5598 -vn -0.2765 0.9521 -0.1306 -vn -0.2767 0.9520 -0.1308 -vn -0.2768 0.9520 -0.1309 -vn 0.1031 0.3014 -0.9479 -vn 0.1027 0.3017 -0.9479 -vn 0.3125 0.6875 0.6555 -vn 0.3124 0.6876 0.6555 -vn 0.9863 0.0742 0.1474 -vn 0.6418 -0.7436 -0.1876 -vn 0.6419 -0.7435 -0.1876 -vn 0.6418 -0.7435 -0.1878 -vn 0.6718 -0.7404 -0.0204 -vn 0.6718 -0.7404 -0.0205 -vn 0.6718 -0.7405 -0.0202 -vn 0.1098 0.7961 0.5951 -vn 0.1098 0.7963 0.5948 -vn 0.1097 0.7967 0.5944 -vn 0.1562 -0.3760 -0.9134 -vn 0.1560 -0.3760 -0.9134 -vn 0.1559 -0.3761 -0.9134 -vn 0.1354 0.8758 0.4633 -vn 0.1350 0.8759 0.4632 -vn 0.1356 0.8758 0.4633 -vn -0.8131 -0.0675 0.5783 -vn 0.3396 0.6509 0.6790 -vn 0.3395 0.6509 0.6790 -vn -0.0588 -0.8834 -0.4650 -vn -0.0588 -0.8833 -0.4652 -vn -0.2213 0.0301 -0.9747 -vn 0.9196 0.3058 0.2465 -vn 0.9196 0.3057 0.2466 -vn 0.9193 0.3068 0.2467 -vn 0.6563 -0.7337 -0.1760 -vn 0.6564 -0.7335 -0.1764 -vn 0.6566 -0.7333 -0.1762 -vn 0.0145 -0.9537 0.3005 -vn 0.0145 -0.9537 0.3003 -vn 0.0144 -0.9538 0.3002 -vn -0.8250 0.3488 -0.4445 -vn -0.8250 0.3484 -0.4450 -vn -0.8251 0.3487 -0.4446 -vn -0.5429 0.8122 -0.2137 -vn -0.5433 0.8120 -0.2135 -vn 0.6386 0.5981 -0.4843 -vn 0.6386 0.5980 -0.4844 -vn 0.6386 0.5982 -0.4841 -vn -0.6496 -0.7024 -0.2911 -vn -0.6500 -0.7020 -0.2912 -vn -0.6501 -0.7018 -0.2914 -vn 0.1103 0.8547 -0.5073 -vn 0.1104 0.8547 -0.5073 -vn -0.6117 0.7004 0.3677 -vn -0.6118 0.7005 0.3674 -vn -0.4741 0.2972 -0.8288 -vn -0.4733 0.2969 -0.8294 -vn -0.4758 0.2972 -0.8278 -vn -0.4522 -0.8686 -0.2027 -vn -0.4522 -0.8686 -0.2026 -vn -0.9003 -0.2904 -0.3241 -vn -0.9004 -0.2903 -0.3241 -vn -0.9002 -0.2906 -0.3242 -vn -0.6820 -0.6879 -0.2484 -vn -0.6822 -0.6877 -0.2485 -vn -0.3411 0.1475 0.9284 -vn -0.3414 0.1471 0.9284 -vn 0.5836 -0.8102 -0.0542 -vn 0.5835 -0.8102 -0.0555 -vn 0.5836 -0.8102 -0.0557 -vn -0.6299 -0.7098 -0.3153 -vn -0.6295 -0.7103 -0.3150 -vn -0.6291 -0.7109 -0.3145 -vn -0.0207 0.3287 0.9442 -vn -0.0209 0.3287 0.9442 -vn -0.4692 0.7779 0.4181 -vn -0.4691 0.7780 0.4178 -vn -0.4692 0.7778 0.4182 -vn 0.2391 0.9571 0.1636 -vn 0.2393 0.9570 0.1638 -vn 0.2389 0.9571 0.1640 -vn -0.2909 0.4293 -0.8550 -vn -0.2905 0.4291 -0.8553 -vn -0.2910 0.4294 -0.8550 -vn -0.1274 -0.1610 -0.9787 -vn -0.1273 -0.1615 -0.9786 -vn -0.1273 -0.1618 -0.9786 -vn -0.0826 -0.2535 -0.9638 -vn -0.1559 -0.1654 -0.9738 -vn -0.1560 -0.1654 -0.9738 -vn -0.1558 -0.1658 -0.9738 -vn 0.3000 -0.7275 -0.6170 -vn 0.3002 -0.7273 -0.6172 -vn -0.9407 0.3326 0.0670 -vn -0.9413 0.3311 0.0663 -vn -0.9407 0.3327 0.0670 -vn -0.2447 0.8998 -0.3613 -vn -0.2448 0.8997 -0.3613 -vn -0.2451 0.8996 -0.3615 -vn 0.4286 -0.8272 -0.3634 -vn 0.4289 -0.8272 -0.3630 -vn 0.4288 -0.8272 -0.3632 -vn -0.1281 -0.3453 -0.9297 -vn 0.5000 0.8647 0.0484 -vn 0.5000 0.8646 0.0490 -vn 0.5003 0.8645 0.0490 -vn -0.8047 -0.3256 -0.4964 -vn -0.8045 -0.3252 -0.4971 -vn -0.8050 -0.3258 -0.4958 -vn 0.0367 0.9955 0.0878 -vn 0.0369 0.9955 0.0878 -vn 0.0347 0.9957 0.0862 -vn 0.6825 0.7304 0.0248 -vn 0.6825 0.7305 0.0248 -vn 0.6823 0.7306 0.0250 -vn 0.6011 -0.7319 -0.3210 -vn 0.6010 -0.7321 -0.3207 -vn 0.6012 -0.7314 -0.3219 -vn 0.2295 0.6047 -0.7627 -vn 0.2299 0.6041 -0.7630 -vn 0.2285 0.6055 -0.7624 -vn 0.6323 -0.1182 -0.7656 -vn 0.6322 -0.1179 -0.7658 -vn 0.6316 -0.1170 -0.7664 -vn 0.6441 -0.1461 -0.7509 -vn 0.6427 -0.1464 -0.7520 -vn 0.6459 -0.1472 -0.7491 -vn 0.7965 0.5944 0.1109 -vn 0.7961 0.5949 0.1111 -vn 0.7963 0.5947 0.1109 -vn -0.2159 -0.0660 0.9742 -vn -0.2159 -0.0661 0.9742 -vn -0.2158 -0.0657 0.9742 -vn -0.0230 -0.1837 0.9827 -vn -0.0231 -0.1837 0.9827 -vn -0.0233 -0.1834 0.9828 -vn 0.5415 -0.0371 -0.8399 -vn 0.5413 -0.0371 -0.8400 -vn 0.5414 -0.0371 -0.8400 -vn 0.2056 -0.6499 -0.7317 -vn 0.6456 0.7619 -0.0516 -vn 0.6452 0.7623 -0.0516 -vn 0.9863 -0.1466 0.0753 -vn 0.9863 -0.1467 0.0752 -vn 0.0602 0.1037 0.9928 -vn 0.0602 0.1034 0.9928 -vn 0.0604 0.1043 0.9927 -vn 0.3932 0.9024 0.1763 -vn 0.3935 0.9023 0.1763 -vn 0.3933 0.9023 0.1763 -vn 0.3594 0.6417 -0.6776 -vn 0.3594 0.6418 -0.6774 -vn 0.6296 0.7143 -0.3056 -vn 0.6297 0.7142 -0.3058 -vn 0.4419 -0.8910 -0.1044 -vn 0.4418 -0.8910 -0.1046 -vn 0.4423 -0.8908 -0.1039 -vn 0.2576 -0.2814 -0.9244 -vn 0.2569 -0.2808 -0.9247 -vn 0.2573 -0.2810 -0.9246 -vn -0.2087 -0.5367 0.8175 -vn -0.2088 -0.5366 0.8176 -vn -0.4669 -0.3142 -0.8266 -vn -0.4666 -0.3140 -0.8269 -vn -0.4662 -0.3135 -0.8273 -vn 0.4945 -0.4314 -0.7546 -vn 0.4948 -0.4313 -0.7544 -vn 0.4946 -0.4315 -0.7545 -vn -0.5390 0.0123 -0.8422 -vn -0.5391 0.0123 -0.8421 -vn -0.5383 0.0126 -0.8427 -vn 0.1730 -0.3968 -0.9014 -vn 0.1729 -0.3967 -0.9015 -vn -0.4816 0.5710 -0.6649 -vn 0.4696 -0.5933 -0.6538 -vn 0.4695 -0.5932 -0.6540 -vn 0.4698 -0.5932 -0.6538 -vn -0.5448 0.5739 0.6114 -vn -0.5452 0.5750 0.6100 -vn -0.5455 0.5718 0.6127 -vn 0.1739 0.0929 -0.9804 -vn 0.1739 0.0930 -0.9804 -vn 0.1742 0.0929 -0.9803 -vn 0.5642 0.8115 0.1522 -vn 0.3804 -0.7292 -0.5689 -vn 0.3805 -0.7292 -0.5688 -vn 0.6096 -0.1840 -0.7711 -vn 0.6096 -0.1834 -0.7712 -vn 0.6095 -0.1838 -0.7712 -vn -0.2291 0.9679 0.1030 -vn -0.2272 0.9683 0.1040 -vn -0.2280 0.9681 0.1037 -vn -0.4310 0.0188 -0.9022 -vn -0.4299 0.0185 -0.9027 -vn -0.4304 0.0185 -0.9024 -vn 0.1191 0.8884 -0.4434 -vn -0.7818 -0.2992 -0.5471 -vn -0.7823 -0.2991 -0.5464 -vn 0.1025 0.8697 -0.4828 -vn 0.1023 0.8698 -0.4827 -vn -0.6608 -0.5562 -0.5040 -vn -0.6596 -0.5568 -0.5049 -vn -0.6596 -0.5567 -0.5049 -vn 0.6974 0.4852 0.5275 -vn 0.6975 0.4849 0.5276 -vn 0.3986 0.5141 0.7595 -vn 0.3987 0.5140 0.7595 -vn -0.1633 0.9827 -0.0870 -vn -0.1630 0.9828 -0.0868 -vn 0.4737 -0.0405 -0.8798 -vn 0.4735 -0.0405 -0.8798 -vn 0.4734 -0.0405 -0.8799 -vn -0.5629 -0.7699 -0.3006 -vn -0.5633 -0.7695 -0.3010 -vn -0.5630 -0.7698 -0.3008 -vn 0.2569 -0.3806 -0.8883 -vn 0.2560 -0.3812 -0.8883 -vn 0.2576 -0.3800 -0.8884 -vn 0.5940 0.5166 -0.6167 -vn 0.0631 -0.5250 0.8488 -vn 0.0633 -0.5251 0.8487 -vn 0.0628 -0.5249 0.8488 -vn -0.4629 0.2349 0.8547 -vn -0.4631 0.2354 0.8545 -vn -0.4632 0.2359 0.8543 -vn 0.5931 -0.6278 -0.5041 -vn 0.5932 -0.6279 -0.5038 -vn 0.5926 -0.6277 -0.5048 -vn -0.5048 -0.8387 -0.2045 -vn -0.5049 -0.8386 -0.2044 -vn -0.5049 -0.8386 -0.2043 -vn -0.8092 -0.3945 -0.4355 -vn -0.8092 -0.3945 -0.4354 -vn -0.4842 -0.7318 -0.4797 -vn -0.4844 -0.7313 -0.4802 -vn -0.4842 -0.7316 -0.4799 -vn 0.1347 0.4907 -0.8609 -vn 0.1353 0.4907 -0.8607 -vn 0.1337 0.4908 -0.8610 -vn -0.0299 -0.6978 -0.7157 -vn -0.0293 -0.6975 -0.7160 -vn -0.0294 -0.6976 -0.7159 -vn 0.9399 -0.0830 0.3312 -vn 0.9398 -0.0832 0.3314 -vn 0.9399 -0.0830 0.3311 -vn -0.6989 -0.2893 -0.6541 -vn -0.6990 -0.2892 -0.6541 -vn -0.6986 -0.2896 -0.6543 -vn 0.1243 -0.0302 0.9918 -vn 0.1244 -0.0304 0.9918 -vn 0.1242 -0.0301 0.9918 -vn 0.3892 -0.0552 0.9195 -vn 0.3885 -0.0566 0.9197 -vn 0.3888 -0.0563 0.9196 -vn 0.5775 -0.2407 0.7801 -vn 0.5775 -0.2409 0.7801 -vn 0.5774 -0.2400 0.7804 -vn -0.2781 0.0374 0.9598 -vn -0.2792 0.0371 0.9595 -vn -0.2774 0.0379 0.9600 -vn 0.2245 0.6968 -0.6812 -vn -0.1101 -0.5105 -0.8528 -vn -0.1102 -0.5109 -0.8526 -vn -0.1343 -0.5111 -0.8490 -vn -0.0270 -0.5594 -0.8285 -vn -0.0265 -0.5592 -0.8286 -vn -0.0267 -0.5593 -0.8286 -vn -0.3946 -0.6352 -0.6640 -vn -0.3942 -0.6348 -0.6646 -vn -0.3940 -0.6349 -0.6646 -vn 0.8621 0.4511 0.2307 -vn 0.8624 0.4506 0.2308 -vn 0.8626 0.4501 0.2308 -vn 0.9144 0.1487 -0.3764 -vn 0.9146 0.1487 -0.3761 -vn 0.9146 0.1488 -0.3760 -vn -0.1213 0.9792 -0.1628 -vn -0.1210 0.9793 -0.1625 -vn -0.1208 0.9793 -0.1624 -vn -0.5716 -0.7909 -0.2183 -vn -0.5713 -0.7911 -0.2185 -vn 0.3764 0.7701 0.5150 -vn 0.3758 0.7702 0.5153 -vn 0.3766 0.7701 0.5148 -vn -0.8818 0.2822 -0.3779 -vn -0.8820 0.2817 -0.3777 -vn -0.8817 0.2828 -0.3778 -vn 0.1717 0.7895 0.5892 -vn 0.1717 0.7896 0.5891 -vn 0.1710 0.7892 0.5898 -vn 0.5124 0.8109 -0.2827 -vn 0.5113 0.8113 -0.2834 -vn 0.5106 0.8113 -0.2847 -vn -0.8123 -0.2436 0.5299 -vn -0.8123 -0.2439 0.5298 -vn -0.8124 -0.2437 0.5298 -vn 0.0125 -0.2837 -0.9588 -vn 0.1510 -0.4953 -0.8555 -vn 0.1511 -0.4954 -0.8554 -vn 0.3257 -0.7450 -0.5822 -vn 0.3259 -0.7453 -0.5817 -vn 0.3258 -0.7452 -0.5818 -vn 0.9014 -0.4053 -0.1522 -vn 0.9015 -0.4051 -0.1523 -vn 0.0568 0.9867 -0.1522 -vn 0.0571 0.9867 -0.1519 -vn 0.0571 0.9867 -0.1521 -vn -0.9605 0.2242 0.1647 -vn -0.9603 0.2247 0.1653 -vn -0.9602 0.2249 0.1655 -vn -0.7668 -0.6373 0.0765 -vn -0.7671 -0.6369 0.0765 -vn -0.7674 -0.6366 0.0765 -vn 0.6835 -0.0962 0.7236 -vn 0.6830 -0.0961 0.7241 -vn 0.6841 -0.0958 0.7230 -vn 0.5617 0.8226 -0.0881 -vn 0.5618 0.8226 -0.0880 -vn 0.5620 0.8224 -0.0884 -vn 0.8299 -0.4740 0.2942 -vn -0.5781 -0.2220 -0.7852 -vn -0.5781 -0.2219 -0.7852 -vn 0.8711 -0.4867 0.0652 -vn -0.4060 0.7645 -0.5007 -vn -0.4059 0.7645 -0.5008 -vn -0.9920 -0.1263 -0.0031 -vn -0.9920 -0.1262 -0.0033 -vn -0.9920 -0.1262 -0.0031 -vn 0.0146 -0.5475 0.8366 -vn -0.5551 -0.6986 0.4515 -vn -0.5552 -0.6989 0.4509 -vn -0.5551 -0.6988 0.4511 -vn 0.2924 -0.7304 0.6173 -vn 0.2928 -0.7301 0.6175 -vn 0.2492 0.9456 -0.2093 -vn -0.4708 -0.5223 0.7110 -vn -0.4722 -0.5236 0.7092 -vn -0.4732 -0.5238 0.7083 -vn 0.1657 0.8241 -0.5417 -vn 0.1657 0.8237 -0.5423 -vn 0.1657 0.8242 -0.5415 -vn -0.0109 -0.0001 0.9999 -vn 0.6438 0.3501 -0.6805 -vn 0.6438 0.3497 -0.6806 -vn 0.6437 0.3501 -0.6805 -vn 0.3395 0.6012 0.7234 -vn 0.3404 0.6009 0.7232 -vn 0.3398 0.6010 0.7234 -vn -0.6103 -0.4683 -0.6389 -vn -0.1712 -0.8342 0.5243 -vn -0.1716 -0.8340 0.5244 -vn -0.1715 -0.8340 0.5245 -vn 0.2859 -0.8043 0.5209 -vn 0.2856 -0.8042 0.5213 -vn 0.2860 -0.8044 0.5207 -vn 0.2876 -0.4813 0.8280 -vn 0.2875 -0.4811 0.8282 -vn 0.2874 -0.4811 0.8282 -vn -0.9776 0.1818 -0.1063 -vn -0.9776 0.1817 -0.1060 -vn -0.9775 0.1819 -0.1066 -vn -0.0759 0.4875 -0.8698 -vn -0.7386 0.6507 -0.1762 -vn 0.0011 -0.4643 0.8857 -vn 0.0009 -0.4643 0.8857 -vn 0.0008 -0.4644 0.8856 -vn -0.9038 -0.0933 -0.4177 -vn -0.9032 -0.0930 -0.4190 -vn -0.9042 -0.0940 -0.4167 -vn 0.2372 0.7471 0.6209 -vn -0.2316 0.1363 0.9632 -vn -0.2313 0.1355 0.9634 -vn -0.2316 0.1360 0.9633 -vn -0.8301 -0.2096 0.5167 -vn -0.8302 -0.2097 0.5165 -vn -0.8302 -0.2098 0.5164 -vn -0.2549 0.8408 0.4777 -vn -0.2543 0.8413 0.4770 -vn -0.2546 0.8410 0.4774 -vn -0.7289 -0.1025 -0.6769 -vn -0.9248 0.3551 -0.1368 -vn -0.9250 0.3543 -0.1369 -vn -0.9249 0.3548 -0.1368 -vn -0.6105 0.3266 -0.7216 -vn -0.6104 0.3268 -0.7215 -vn -0.6106 0.3263 -0.7216 -vn -0.2026 0.9766 0.0725 -vn -0.2026 0.9765 0.0728 -vn -0.2028 0.9766 0.0723 -vn -0.8861 -0.1753 -0.4290 -vn -0.8861 -0.1756 -0.4290 -vn -0.8861 -0.1752 -0.4291 -vn 0.9660 0.1546 -0.2070 -vn 0.9661 0.1547 -0.2068 -vn -0.5677 0.3577 0.7415 -vn -0.5679 0.3576 0.7414 -vn -0.5678 0.3576 0.7414 -vn 0.7221 0.6430 0.2552 -vn 0.7219 0.6432 0.2554 -vn 0.7224 0.6427 0.2550 -vn -0.7669 0.6078 -0.2059 -vn -0.7669 0.6079 -0.2059 -vn -0.7670 0.6078 -0.2059 -vn -0.2316 -0.3845 0.8936 -vn -0.2320 -0.3845 0.8935 -vn -0.2318 -0.3842 0.8937 -vn 0.7796 0.5608 0.2790 -vn 0.7797 0.5606 0.2791 -vn 0.2605 0.0659 -0.9632 -vn 0.2614 0.0663 -0.9629 -vn 0.2613 0.0663 -0.9630 -vn -0.2618 0.8776 -0.4015 -vn -0.2619 0.8776 -0.4015 -vn 0.2094 0.9723 0.1035 -vn 0.8815 -0.0106 0.4721 -vn 0.8812 -0.0106 0.4727 -vn 0.8816 -0.0104 0.4720 -vn 0.0295 -0.0524 0.9982 -vn 0.7485 -0.4525 0.4848 -vn 0.7485 -0.4526 0.4847 -vn 0.7485 -0.4525 0.4847 -vn -0.4446 -0.8955 0.0192 -vn -0.4445 -0.8956 0.0195 -vn -0.4445 -0.8955 0.0193 -vn -0.9470 -0.0798 0.3111 -vn -0.4748 -0.8800 0.0118 -vn -0.4749 -0.8800 0.0116 -vn -0.4006 -0.9068 0.1311 -vn -0.4005 -0.9068 0.1311 -vn -0.4004 -0.9069 0.1311 -vn 0.2593 -0.6232 -0.7378 -vn 0.2594 -0.6223 -0.7386 -vn 0.2599 -0.6242 -0.7368 -vn -0.2115 0.9773 0.0078 -vn -0.2117 0.9773 0.0079 -vn -0.2113 0.9774 0.0078 -vn -0.2982 -0.6882 -0.6614 -vn 0.8406 0.4913 0.2280 -vn 0.8404 0.4916 0.2281 -vn -0.2316 0.6569 -0.7176 -vn -0.2315 0.6576 -0.7169 -vn -0.2315 0.6577 -0.7168 -vn 0.1869 0.9784 -0.0887 -vn 0.1874 0.9783 -0.0881 -vn 0.1870 0.9784 -0.0885 -vn 0.0004 -0.0000 1.0000 -vn -0.5188 -0.8496 -0.0944 -vn -0.5592 0.2125 -0.8013 -vn -0.5592 0.2124 -0.8014 -vn -0.5588 0.2126 -0.8016 -vn -0.8507 0.4412 -0.2858 -vn -0.9335 -0.2093 -0.2911 -vn -0.9335 -0.2092 -0.2912 -vn -0.9337 -0.2091 -0.2907 -vn -0.5810 0.6783 -0.4499 -vn -0.5812 0.6780 -0.4500 -vn -0.5815 0.6770 -0.4511 -vn -0.6964 0.6208 0.3601 -vn -0.0822 -0.3816 0.9207 -vn -0.0816 -0.3809 0.9210 -vn -0.0820 -0.3828 0.9202 -vn -0.8588 -0.2341 -0.4556 -vn -0.8592 -0.2338 -0.4551 -vn -0.8594 -0.2334 -0.4549 -vn -0.4494 -0.8654 -0.2216 -vn -0.9752 0.2202 -0.0240 -vn -0.9752 0.2201 -0.0239 -vn -0.9753 0.2197 -0.0236 -vn 0.3373 0.0484 -0.9402 -vn 0.3374 0.0485 -0.9401 -vn 0.3379 0.0486 -0.9399 -vn 0.2945 -0.2173 -0.9306 -vn -0.5926 -0.4139 -0.6910 -vn -0.5920 -0.4139 -0.6916 -vn -0.5928 -0.4137 -0.6910 -vn -0.9736 0.1705 -0.1518 -vn -0.9736 0.1703 -0.1520 -vn -0.9736 0.1704 -0.1521 -vn 0.2010 -0.9079 0.3679 -vn 0.2009 -0.9079 0.3679 -vn 0.4558 -0.8901 0.0063 -vn 0.4556 -0.8902 0.0060 -vn 0.4555 -0.8902 0.0053 -vn -0.8219 -0.3972 -0.4083 -vn -0.8218 -0.3973 -0.4085 -vn 0.1767 0.9807 0.0832 -vn 0.1767 0.9808 0.0826 -vn -0.7872 -0.4062 -0.4639 -vn -0.7868 -0.4064 -0.4646 -vn -0.7861 -0.4070 -0.4652 -vn 0.8393 0.5350 -0.0964 -vn 0.8394 0.5349 -0.0963 -vn 0.8393 0.5351 -0.0963 -vn -0.0955 -0.7347 -0.6717 -vn -0.0950 -0.7352 -0.6712 -vn -0.0954 -0.7349 -0.6715 -vn 0.4639 0.3498 -0.8139 -vn 0.4644 0.3502 -0.8135 -vn 0.4648 0.3507 -0.8130 -vn 0.1902 -0.9717 0.1401 -vn -0.2614 0.8873 -0.3799 -vn 0.5397 -0.7009 -0.4664 -vn 0.5394 -0.7010 -0.4666 -vn 0.5396 -0.7008 -0.4665 -vn -0.8452 0.2394 0.4779 -vn -0.8452 0.2395 0.4778 -vn -0.8451 0.2395 0.4779 -vn -0.9921 0.1153 -0.0503 -vn -0.9921 0.1152 -0.0495 -vn -0.9921 0.1152 -0.0501 -vn 0.3123 -0.1026 -0.9444 -vn 0.3126 -0.1027 -0.9443 -vn 0.3126 -0.1023 -0.9444 -vn 0.0567 0.9904 -0.1259 -vn 0.0549 0.9904 -0.1272 -vn 0.0556 0.9904 -0.1268 -vn 0.5321 -0.4083 -0.7418 -vn 0.5321 -0.4082 -0.7418 -vn 0.5320 -0.4083 -0.7418 -vn 0.2474 -0.3488 0.9039 -vn 0.2474 -0.3485 0.9041 -vn 0.2472 -0.3485 0.9041 -vn 0.1066 0.4848 0.8681 -vn 0.9504 -0.2293 0.2100 -vn 0.9503 -0.2294 0.2104 -vn 0.9503 -0.2295 0.2103 -vn -0.3077 -0.2579 0.9159 -vn -0.3077 -0.2578 0.9159 -vn -0.3082 -0.2578 0.9157 -vn -0.0281 0.2329 -0.9721 -vn -0.0284 0.2329 -0.9721 -vn -0.0287 0.2329 -0.9721 -vn -0.6620 0.0481 -0.7480 -vn -0.6618 0.0482 -0.7481 -vn -0.6617 0.0484 -0.7482 -vn -0.2082 -0.9568 -0.2029 -vn -0.2079 -0.9568 -0.2030 -vn -0.2738 -0.9532 -0.1286 -vn -0.1955 -0.1862 -0.9629 -vn -0.1955 -0.1864 -0.9628 -vn -0.3246 -0.0489 0.9446 -vn -0.3248 -0.0493 0.9445 -vn -0.3248 -0.0495 0.9445 -vn -0.8533 0.4938 -0.1675 -vn -0.8533 0.4939 -0.1671 -vn -0.8533 0.4937 -0.1678 -vn 0.7171 -0.2806 0.6379 -vn 0.7172 -0.2803 0.6380 -vn -0.9055 0.2108 -0.3682 -vn -0.9055 0.2105 -0.3683 -vn -0.9056 0.2101 -0.3685 -vn 0.6699 0.2332 0.7049 -vn 0.6697 0.2333 0.7050 -vn 0.6696 0.2334 0.7051 -vn -0.4041 -0.8938 -0.1946 -vn -0.4045 -0.8936 -0.1946 -vn -0.4045 -0.8936 -0.1945 -vn -0.5219 -0.3937 0.7567 -vn 0.3035 0.0157 0.9527 -vn -0.4692 -0.3653 0.8040 -vn 0.3677 -0.3268 0.8706 -vn 0.3677 -0.3270 0.8705 -vn 0.3677 -0.3269 0.8706 -vn 0.6070 -0.7711 -0.1924 -vn 0.6068 -0.7712 -0.1926 -vn 0.6070 -0.7709 -0.1932 -vn -0.3853 -0.8952 -0.2240 -vn -0.3855 -0.8950 -0.2245 -vn -0.3856 -0.8950 -0.2241 -vn -0.1061 -0.9260 -0.3623 -vn -0.1058 -0.9261 -0.3622 -vn 0.7527 -0.1204 0.6472 -vn -0.4832 -0.8606 -0.1611 -vn -0.3549 0.3882 0.8505 -vn -0.3548 0.3881 0.8506 -vn 0.0418 0.5730 0.8185 -vn 0.0417 0.5741 0.8177 -vn 0.0438 0.5698 0.8206 -vn 0.2890 0.1551 0.9447 -vn 0.2909 0.1538 0.9443 -vn 0.2936 0.1528 0.9436 -vn 0.7731 0.2782 0.5700 -vn 0.7732 0.2780 0.5699 -vn 0.7721 0.2790 0.5710 -vn -0.5166 -0.6997 -0.4935 -vn 0.8541 0.4969 0.1538 -vn 0.8540 0.4972 0.1533 -vn 0.8541 0.4968 0.1539 -vn -0.9565 -0.2771 0.0916 -vn -0.9551 -0.2810 0.0938 -vn -0.9541 -0.2845 0.0936 -vn 0.6116 0.0824 -0.7869 -vn 0.6088 0.0853 -0.7887 -vn 0.6120 0.0808 -0.7867 -vn -0.7094 0.1272 -0.6932 -vn -0.7112 0.1279 -0.6912 -vn -0.7106 0.1277 -0.6919 -vn 0.7934 0.1214 0.5964 -vn 0.7928 0.1214 0.5973 -vn 0.7942 0.1222 0.5952 -vn 0.2952 0.8931 0.3396 -vn -0.2834 0.1609 0.9454 -vn -0.2825 0.1621 0.9455 -vn -0.2833 0.1610 0.9454 -vn -0.9387 -0.0588 0.3396 -vn -0.4342 -0.8375 0.3317 -vn -0.4337 -0.8377 0.3318 -vn -0.4339 -0.8377 0.3317 -vn 0.5080 -0.7096 0.4882 -vn 0.5080 -0.7098 0.4880 -vn 0.5079 -0.7097 0.4883 -vn -0.2863 -0.1256 0.9499 -vn -0.2864 -0.1255 0.9499 -vn -0.2861 -0.1256 0.9499 -vn 0.6042 -0.7967 -0.0116 -vn 0.6044 -0.7966 -0.0114 -vn 0.0908 0.5644 0.8205 -vn 0.0909 0.5647 0.8203 -vn -0.2058 -0.1662 0.9644 -vn -0.2057 -0.1661 0.9644 -vn 0.5473 0.1355 -0.8259 -vn 0.5476 0.1350 -0.8258 -vn 0.5469 0.1359 -0.8261 -vn -0.6792 0.5275 -0.5103 -vn -0.6791 0.5274 -0.5106 -vn -0.6791 0.5273 -0.5107 -vn -0.6979 -0.1179 -0.7064 -vn -0.6977 -0.1175 -0.7067 -vn 0.6748 -0.6915 0.2579 -vn 0.6752 -0.6914 0.2572 -vn 0.6749 -0.6915 0.2576 -vn -0.7472 -0.0825 -0.6595 -vn -0.7469 -0.0826 -0.6598 -vn -0.7463 -0.0831 -0.6604 -vn -0.5812 0.1879 0.7918 -vn -0.5814 0.1880 0.7916 -vn -0.5811 0.1878 0.7919 -vn -0.8600 -0.1321 -0.4929 -vn -0.8600 -0.1319 -0.4930 -vn -0.8599 -0.1318 -0.4931 -vn 0.7577 -0.1018 0.6446 -vn 0.7581 -0.1023 0.6441 -vn 0.7580 -0.1022 0.6442 -vn -0.5763 -0.8097 -0.1106 -vn 0.4964 0.8681 -0.0082 -vn -0.3858 -0.2725 -0.8814 -vn -0.3862 -0.2731 -0.8811 -vn -0.3859 -0.2725 -0.8814 -vn 0.4444 0.4048 -0.7992 -vn 0.4202 -0.9067 -0.0365 -vn -0.6163 0.3825 -0.6884 -vn -0.4027 -0.8970 0.1821 -vn -0.4023 -0.8975 0.1808 -vn -0.4023 -0.8974 0.1813 -vn 0.1716 0.7696 0.6150 -vn 0.1715 0.7696 0.6151 -vn 0.4096 0.8897 0.2016 -vn 0.4097 0.8898 0.2008 -vn 0.4099 0.8894 0.2025 -vn -0.6076 -0.7788 -0.1556 -vn -0.6076 -0.7789 -0.1555 -vn -0.6073 -0.7790 -0.1559 -vn 0.5592 -0.8045 0.2001 -vn 0.5583 -0.8052 0.2001 -vn 0.5588 -0.8048 0.2000 -vn 0.2440 0.9360 0.2537 -vn 0.2439 0.9360 0.2538 -vn 0.4714 0.8526 0.2255 -vn 0.4716 0.8525 0.2256 -vn 0.4719 0.8523 0.2257 -vn -0.3111 0.7196 -0.6208 -vn -0.3116 0.7195 -0.6206 -vn -0.3108 0.7196 -0.6210 -vn -0.5178 0.7670 -0.3789 -vn -0.5175 0.7670 -0.3793 -vn -0.0427 -0.9151 0.4010 -vn 0.9067 0.1894 -0.3769 -vn 0.9066 0.1894 -0.3771 -vn 0.9065 0.1893 -0.3774 -vn 0.5211 -0.5800 -0.6261 -vn -0.4461 0.1990 0.8726 -vn -0.4460 0.1994 0.8725 -vn -0.4460 0.1996 0.8725 -vn -0.4399 0.5452 -0.7136 -vn -0.4401 0.5458 -0.7130 -vn -0.4401 0.5460 -0.7129 -vn -0.0134 -0.4432 0.8963 -vn -0.0131 -0.4433 0.8963 -vn -0.0130 -0.4433 0.8963 -vn -0.9641 0.2634 -0.0347 -vn -0.8149 -0.4572 -0.3563 -vn -0.8150 -0.4570 -0.3563 -vn -0.8147 -0.4576 -0.3562 -vn -0.7516 0.6247 -0.2118 -vn -0.7517 0.6246 -0.2119 -vn 0.5300 0.6641 0.5273 -vn 0.5303 0.6640 0.5271 -vn -0.0864 0.1184 0.9892 -vn -0.0863 0.1183 0.9892 -vn -0.0793 0.3551 0.9315 -vn -0.0795 0.3550 0.9315 -vn 0.9194 0.2812 0.2749 -vn 0.9194 0.2814 0.2748 -vn 0.9193 0.2817 0.2748 -vn 0.4413 0.7964 0.4135 -vn 0.4412 0.7964 0.4136 -vn -0.8239 0.0575 0.5638 -vn -0.8242 0.0576 0.5633 -vn -0.8241 0.0573 0.5636 -vn 0.4342 0.8676 -0.2424 -vn 0.4339 0.8677 -0.2426 -vn 0.2199 0.7103 0.6687 -vn 0.5066 -0.7313 -0.4567 -vn 0.4310 -0.7572 -0.4909 -vn -0.4761 -0.7218 -0.5023 -vn -0.4758 -0.7218 -0.5026 -vn -0.4760 -0.7218 -0.5025 -vn -0.9858 0.1325 0.1032 -vn -0.9858 0.1324 0.1029 -vn -0.2436 0.5040 -0.8287 -vn -0.2436 0.5044 -0.8284 -vn -0.0151 0.1609 0.9869 -vn -0.0151 0.1608 0.9869 -vn -0.0152 0.1607 0.9869 -vn 0.1371 0.2024 0.9697 -vn 0.7025 -0.6942 0.1568 -vn 0.7026 -0.6941 0.1570 -vn 0.7025 -0.6942 0.1569 -vn -0.1816 0.9657 -0.1856 -vn -0.1817 0.9657 -0.1856 -vn 0.4063 0.6589 -0.6331 -vn 0.2529 -0.7374 -0.6264 -vn 0.2530 -0.7376 -0.6261 -vn 0.2531 -0.7376 -0.6261 -vn 0.3350 -0.6344 -0.6966 -vn 0.3349 -0.6343 -0.6968 -vn 0.3350 -0.6344 -0.6967 -vn 0.9159 0.3935 0.0795 -vn 0.9160 0.3935 0.0786 -vn 0.9159 0.3936 0.0789 -vn 0.6113 -0.7801 0.1331 -vn 0.6115 -0.7800 0.1329 -vn 0.6110 -0.7803 0.1333 -vn 0.4032 0.8180 -0.4103 -vn 0.4028 0.8181 -0.4105 -vn 0.4025 0.8183 -0.4104 -vn 0.9629 0.2412 0.1210 -vn 0.9630 0.2408 0.1213 -vn 0.9630 0.2407 0.1214 -vn -0.4368 0.7911 -0.4282 -vn -0.4367 0.7913 -0.4279 -vn -0.4368 0.7910 -0.4283 -vn -0.0732 0.8816 -0.4662 -vn -0.0731 0.8816 -0.4662 -vn -0.0727 0.8815 -0.4666 -vn 0.5468 0.5071 0.6662 -vn 0.5467 0.5075 0.6660 -vn 0.5473 0.5063 0.6664 -vn -0.4408 -0.4701 -0.7647 -vn -0.3649 0.8904 -0.2720 -vn -0.3392 -0.1078 -0.9345 -vn -0.3393 -0.1079 -0.9345 -vn -0.3395 -0.1081 -0.9344 -vn 0.2900 0.9480 0.1312 -vn 0.2897 0.9481 0.1311 -vn -0.0458 -0.2897 0.9560 -vn 0.4932 0.1800 -0.8511 -vn 0.4933 0.1801 -0.8510 -vn 0.4937 0.1804 -0.8507 -vn -0.5985 -0.6677 -0.4428 -vn -0.5986 -0.6676 -0.4427 -vn -0.5984 -0.6677 -0.4429 -vn 0.2397 -0.5836 -0.7759 -vn 0.2403 -0.5837 -0.7756 -vn 0.2407 -0.5840 -0.7753 -vn -0.4676 0.5887 0.6593 -vn -0.4677 0.5886 0.6594 -vn -0.5546 0.7606 -0.3376 -vn -0.5543 0.7610 -0.3371 -vn -0.5546 0.7609 -0.3369 -vn -0.3683 -0.8165 0.4447 -vn -0.3684 -0.8163 0.4450 -vn -0.3684 -0.8165 0.4446 -vn 0.5634 0.7533 0.3393 -vn 0.5633 0.7534 0.3392 -vn -0.3753 -0.7101 0.5958 -vn -0.3751 -0.7104 0.5955 -vn -0.3749 -0.7108 0.5951 -vn -0.4812 -0.2650 -0.8356 -vn -0.4808 -0.2649 -0.8358 -vn -0.4809 -0.2649 -0.8358 -vn 0.5651 0.6925 -0.4484 -vn 0.5654 0.6924 -0.4482 -vn 0.4972 0.4110 -0.7641 -vn 0.4972 0.4111 -0.7641 -vn 0.1890 0.8643 -0.4661 -vn 0.1885 0.8643 -0.4663 -vn 0.1898 0.8647 -0.4650 -vn 0.1134 -0.7520 -0.6494 -vn 0.1133 -0.7519 -0.6495 -vn 0.1132 -0.7517 -0.6497 -vn 0.2686 0.6699 0.6921 -vn 0.2685 0.6699 0.6922 -vn 0.2688 0.6698 0.6922 -vn -0.3884 0.8322 -0.3958 -vn -0.3896 0.8322 -0.3945 -vn -0.3872 0.8326 -0.3961 -vn -0.4078 -0.8735 0.2660 -vn -0.4077 -0.8736 0.2657 -vn -0.5607 -0.0555 -0.8261 -vn -0.5605 -0.0550 -0.8263 -vn -0.5605 -0.0548 -0.8263 -vn 0.6642 0.7378 0.1206 -vn 0.6640 0.7380 0.1205 -vn 0.6990 -0.7131 0.0540 -vn 0.6990 -0.7131 0.0541 -vn 0.0844 0.9955 -0.0440 -vn 0.0847 0.9954 -0.0439 -vn 0.0844 0.9955 -0.0441 -vn -0.5692 0.1997 0.7976 -vn -0.5684 0.2002 0.7980 -vn 0.5125 0.7132 -0.4782 -vn 0.5129 0.7125 -0.4789 -vn 0.5133 0.7120 -0.4791 -vn 0.1150 0.1255 -0.9854 -vn 0.1141 0.1259 -0.9855 -vn 0.1138 0.1262 -0.9855 -vn -0.1250 -0.2358 -0.9637 -vn -0.1250 -0.2357 -0.9637 -vn -0.1250 -0.2361 -0.9636 -vn 0.5837 0.8108 -0.0447 -vn 0.5840 0.8105 -0.0446 -vn 0.3555 0.6818 -0.6393 -vn 0.3553 0.6821 -0.6392 -vn 0.3552 0.6822 -0.6391 -vn 0.5598 0.8265 0.0599 -vn 0.5595 0.8267 0.0603 -vn 0.5595 0.8266 0.0602 -vn 0.5775 0.6921 -0.4330 -vn 0.5774 0.6921 -0.4331 -vn 0.8201 0.2230 -0.5269 -vn 0.8202 0.2229 -0.5268 -vn 0.8204 0.2230 -0.5266 -vn -0.0894 -0.0916 -0.9918 -vn -0.0891 -0.0915 -0.9918 -vn -0.0893 -0.0911 -0.9918 -vn -0.9501 0.2568 0.1773 -vn -0.9499 0.2571 0.1778 -vn -0.9501 0.2568 0.1770 -vn 0.0735 0.2263 -0.9713 -vn 0.0730 0.2270 -0.9712 -vn 0.0738 0.2258 -0.9714 -vn 0.4040 0.6212 -0.6715 -vn 0.4044 0.6210 -0.6715 -vn 0.4050 0.6207 -0.6713 -vn -0.5416 0.7973 0.2665 -vn -0.5413 0.7976 0.2661 -vn 0.6204 0.7332 -0.2784 -vn 0.6203 0.7333 -0.2783 -vn 0.6205 0.7331 -0.2783 -vn 0.6604 0.6590 -0.3599 -vn -0.8337 -0.3481 -0.4287 -vn -0.8335 -0.3474 -0.4297 -vn -0.8332 -0.3474 -0.4303 -vn 0.0568 0.9984 -0.0035 -vn -0.3647 -0.9182 0.1544 -vn -0.3647 -0.9183 0.1543 -vn -0.3646 -0.9183 0.1542 -vn -0.6895 -0.5908 0.4190 -vn -0.6900 -0.5904 0.4187 -vn -0.6897 -0.5907 0.4188 -vn 0.5522 -0.1348 -0.8227 -vn 0.5527 -0.1348 -0.8224 -vn 0.5519 -0.1346 -0.8230 -vn -0.7677 -0.5751 0.2825 -vn -0.7679 -0.5751 0.2822 -vn -0.7679 -0.5751 0.2821 -vn -0.4915 0.8208 -0.2909 -vn -0.4926 0.8205 -0.2901 -vn -0.4922 0.8206 -0.2905 -vn -0.2142 0.8707 -0.4427 -vn -0.2143 0.8708 -0.4425 -vn -0.2141 0.8706 -0.4429 -vn -0.4306 0.5325 0.7287 -vn -0.4303 0.5328 0.7287 -vn -0.4301 0.5333 0.7284 -vn -0.0310 -0.6915 -0.7217 -vn -0.0307 -0.6914 -0.7218 -vn -0.0309 -0.6914 -0.7218 -vn 0.7764 -0.3685 0.5112 -vn 0.7763 -0.3685 0.5114 -vn 0.7762 -0.3685 0.5115 -vn 0.9439 -0.2194 0.2467 -vn 0.9439 -0.2195 0.2468 -vn 0.0261 0.9976 0.0642 -vn 0.0257 0.9976 0.0644 -vn 0.0253 0.9976 0.0649 -vn -0.0381 -0.2888 -0.9566 -vn -0.0380 -0.2886 -0.9567 -vn -0.0381 -0.2887 -0.9567 -vn 0.2842 0.1447 0.9478 -vn 0.2843 0.1452 0.9477 -vn 0.2842 0.1451 0.9477 -vn 0.0131 0.6297 0.7767 -vn 0.0130 0.6298 0.7766 -vn 0.0128 0.6298 0.7767 -vn 0.4752 -0.8659 -0.1560 -vn 0.4752 -0.8659 -0.1562 -vn 0.4751 -0.8659 -0.1563 -vn -0.7106 -0.5340 -0.4582 -vn -0.7106 -0.5341 -0.4580 -vn -0.9065 0.3079 0.2890 -vn -0.9661 0.0118 -0.2580 -vn -0.5175 0.8200 -0.2444 -vn -0.0835 -0.5082 -0.8572 -vn -0.0836 -0.5083 -0.8571 -vn 0.2350 0.9671 -0.0972 -vn 0.5358 0.8264 -0.1731 -vn 0.8667 -0.4456 -0.2242 -vn 0.8666 -0.4458 -0.2242 -vn 0.8666 -0.4457 -0.2242 -vn -0.1100 0.0180 -0.9938 -vn -0.1099 0.0179 -0.9938 -vn 0.8623 -0.3163 0.3955 -vn 0.8623 -0.3161 0.3956 -vn 0.8623 -0.3162 0.3955 -vn 0.7609 0.5148 0.3949 -vn 0.7612 0.5144 0.3949 -vn 0.7608 0.5150 0.3950 -vn -0.6472 0.7216 0.2458 -vn -0.6474 0.7214 0.2458 -vn -0.6471 0.7217 0.2457 -vn 0.7591 0.6221 0.1917 -vn 0.7592 0.6221 0.1916 -vn 0.7590 0.6221 0.1921 -vn 0.5396 0.8419 -0.0089 -vn 0.5394 0.8420 -0.0091 -vn 0.5395 0.8420 -0.0090 -vn 0.1940 -0.4297 0.8819 -vn 0.1939 -0.4299 0.8818 -vn 0.4151 0.7872 -0.4560 -vn 0.4153 0.7871 -0.4561 -vn 0.4152 0.7872 -0.4560 -vn 0.5503 0.0416 0.8339 -vn 0.5505 0.0418 0.8338 -vn 0.5507 0.0421 0.8336 -vn 0.9290 -0.1778 0.3246 -vn 0.9289 -0.1778 0.3248 -vn 0.7888 0.1783 0.5882 -vn -0.0076 0.0001 1.0000 -vn -0.0076 -0.0000 1.0000 -vn -0.7645 0.5948 -0.2487 -vn -0.7644 0.5945 -0.2493 -vn -0.7646 0.5946 -0.2487 -vn -0.5973 -0.8013 -0.0337 -vn -0.5973 -0.8013 -0.0336 -vn -0.5973 -0.8013 -0.0338 -vn -0.0883 -0.0211 0.9959 -vn -0.1015 0.9806 -0.1675 -vn -0.1011 0.9807 -0.1674 -vn -0.1023 0.9805 -0.1679 -vn -0.2304 0.8615 -0.4524 -vn -0.2291 0.8620 -0.4522 -vn -0.2309 0.8614 -0.4524 -vn 0.9888 0.0498 0.1407 -vn 0.9890 0.0494 0.1397 -vn 0.9891 0.0488 0.1388 -vn -0.8612 0.2612 0.4360 -vn -0.8610 0.2617 0.4361 -vn -0.8609 0.2619 0.4362 -vn -0.2572 -0.7407 0.6206 -vn -0.2574 -0.7407 0.6205 -vn -0.5008 -0.0807 0.8618 -vn -0.2857 0.1433 0.9476 -vn -0.2856 0.1435 0.9476 -vn -0.8561 0.2120 -0.4714 -vn 0.6010 0.1235 0.7897 -vn 0.6008 0.1236 0.7898 -vn 0.6005 0.1236 0.7900 -vn 0.8916 0.4028 -0.2067 -vn 0.8917 0.4023 -0.2074 -vn 0.8916 0.4027 -0.2070 -vn -0.8250 0.4866 0.2873 -vn -0.8250 0.4867 0.2873 -vn -0.8416 0.5349 0.0748 -vn -0.8416 0.5349 0.0750 -vn -0.8414 0.5352 0.0748 -vn -0.6939 -0.0488 0.7184 -vn -0.6940 -0.0479 0.7184 -vn -0.6939 -0.0480 0.7185 -vn 0.6275 0.7740 0.0845 -vn 0.6275 0.7741 0.0840 -vn -0.2988 -0.3998 0.8665 -vn -0.2986 -0.3996 0.8667 -vn -0.2990 -0.3999 0.8664 -vn -0.1789 0.8638 -0.4710 -vn 0.2254 -0.6279 0.7449 -vn 0.2255 -0.6280 0.7448 -vn 0.2254 -0.6279 0.7450 -vn -0.3235 -0.6411 0.6959 -vn 0.1983 0.9755 0.0948 -vn 0.1984 0.9755 0.0949 -vn 0.1983 0.9756 0.0947 -vn 0.1094 0.9934 -0.0334 -vn 0.1096 0.9934 -0.0334 -vn -0.1590 0.9693 -0.1873 -vn 0.2921 -0.9466 -0.1367 -vn 0.2930 -0.9462 -0.1374 -vn 0.4400 0.8475 -0.2970 -vn 0.4398 0.8476 -0.2969 -vn -0.8279 0.4683 -0.3087 -vn 0.2757 -0.2437 0.9298 -vn 0.2751 -0.2441 0.9299 -vn 0.2746 -0.2449 0.9299 -vn 0.5836 0.4698 0.6624 -vn 0.5837 0.4700 0.6621 -vn 0.5836 0.4697 0.6624 -vn 0.0098 0.9973 -0.0726 -vn 0.0096 0.9973 -0.0727 -vn -0.2225 0.9673 -0.1216 -vn -0.2227 0.9673 -0.1212 -vn -0.2227 0.9673 -0.1215 -vn 0.7996 -0.4169 -0.4322 -vn 0.7994 -0.4170 -0.4325 -vn 0.7991 -0.4171 -0.4329 -vn 0.7245 0.6872 0.0530 -vn 0.8863 -0.4008 -0.2321 -vn 0.8867 -0.4001 -0.2318 -vn 0.8870 -0.3993 -0.2319 -vn 0.6821 -0.1972 -0.7042 -vn 0.6821 -0.1974 -0.7041 -vn 0.6825 -0.1974 -0.7037 -vn -0.2405 0.9666 0.0884 -vn -0.3272 -0.9232 0.2014 -vn -0.3273 -0.9231 0.2017 -vn -0.3272 -0.9232 0.2015 -vn -0.2076 0.6409 0.7390 -vn -0.6164 -0.0173 -0.7872 -vn -0.6164 -0.0174 -0.7873 -vn 0.4024 0.8818 0.2461 -vn 0.4045 0.8805 0.2471 -vn 0.4040 0.8809 0.2465 -vn -0.9873 -0.1407 0.0736 -vn -0.9873 -0.1408 0.0735 -vn 0.5386 0.3266 -0.7767 -vn 0.5383 0.3264 -0.7770 -vn 0.5379 0.3263 -0.7773 -vn 0.2439 0.9660 -0.0854 -vn 0.2438 0.9661 -0.0853 -vn 0.5913 0.3774 0.7127 -vn 0.5911 0.3775 0.7128 -vn -0.5649 0.7675 -0.3031 -vn -0.5648 0.7677 -0.3027 -vn -0.5653 0.7678 -0.3017 -vn -0.5117 0.4855 -0.7089 -vn -0.5116 0.4866 -0.7082 -vn 0.2682 -0.1533 -0.9511 -vn 0.2679 -0.1533 -0.9512 -vn 0.2683 -0.1532 -0.9511 -vn 0.1311 0.3060 0.9430 -vn 0.1305 0.3066 0.9428 -vn 0.1307 0.3062 0.9430 -vn -0.2920 0.9478 0.1278 -vn -0.2921 0.9478 0.1275 -vn -0.2922 0.9478 0.1274 -vn -0.7282 -0.5907 0.3476 -vn -0.7281 -0.5905 0.3480 -vn -0.7282 -0.5906 0.3477 -vn 0.3255 -0.7668 -0.5532 -vn 0.3253 -0.7671 -0.5529 -vn -0.9519 -0.2300 -0.2027 -vn -0.9519 -0.2299 -0.2027 -vn -0.9521 -0.2292 -0.2026 -vn 0.9786 -0.1837 0.0927 -vn 0.9787 -0.1836 0.0923 -vn 0.9787 -0.1837 0.0918 -vn -0.8155 0.5314 -0.2295 -vn -0.8155 0.5316 -0.2290 -vn -0.8154 0.5315 -0.2294 -vn 0.3816 0.8969 -0.2236 -vn 0.1493 0.9050 -0.3984 -vn 0.1487 0.9053 -0.3979 -vn 0.1496 0.9048 -0.3987 -vn 0.1749 -0.3775 -0.9093 -vn 0.1751 -0.3775 -0.9093 -vn 0.1750 -0.3777 -0.9092 -vn 0.4098 0.8593 -0.3061 -vn 0.4092 0.8597 -0.3057 -vn 0.4098 0.8593 -0.3060 -vn 0.0612 0.3930 0.9175 -vn 0.0611 0.3930 0.9175 -vn 0.2643 0.8886 -0.3748 -vn 0.2643 0.8887 -0.3747 -vn -0.4856 0.1983 -0.8514 -vn -0.4854 0.1975 -0.8517 -vn -0.4856 0.1970 -0.8517 -vn -0.3011 0.0309 -0.9531 -vn -0.8927 0.4196 -0.1644 -vn -0.8931 0.4188 -0.1642 -vn -0.8934 0.4183 -0.1638 -vn -0.0238 0.9890 -0.1459 -vn -0.0240 0.9890 -0.1459 -vn -0.0237 0.9890 -0.1458 -vn -0.0860 0.2165 -0.9725 -vn -0.0859 0.2161 -0.9726 -vn -0.0860 0.2164 -0.9725 -vn -0.9547 0.1471 -0.2588 -vn -0.9546 0.1471 -0.2592 -vn -0.9546 0.1473 -0.2591 -vn -0.4944 -0.8013 0.3369 -vn -0.4942 -0.8014 0.3369 -vn -0.4943 -0.8014 0.3369 -vn -0.5327 0.6105 -0.5861 -vn -0.5324 0.6104 -0.5865 -vn -0.5329 0.6109 -0.5855 -vn 0.3004 0.9243 0.2356 -vn 0.3020 0.9240 0.2344 -vn 0.3014 0.9242 0.2346 -vn -0.0225 -0.5422 0.8399 -vn -0.0225 -0.5425 0.8397 -vn -0.0225 -0.5424 0.8398 -vn -0.3092 -0.8510 -0.4245 -vn -0.3095 -0.8511 -0.4241 -vn -0.3093 -0.8513 -0.4238 -vn -0.8723 0.1483 0.4659 -vn -0.8723 0.1482 0.4660 -vn -0.8724 0.1485 0.4657 -vn -0.7593 -0.3762 -0.5310 -vn -0.7594 -0.3760 -0.5309 -vn -0.7587 -0.3773 -0.5310 -vn 0.0729 -0.0605 0.9955 -vn -0.5266 0.2048 0.8251 -vn -0.5256 0.2047 0.8257 -vn -0.5240 0.2055 0.8266 -vn -0.2422 0.9235 0.2975 -vn -0.2424 0.9237 0.2967 -vn -0.2416 0.9233 0.2986 -vn 0.6170 0.7283 0.2980 -vn 0.6165 0.7283 0.2991 -vn 0.6176 0.7282 0.2972 -vn 0.6118 0.4511 -0.6498 -vn 0.6114 0.4515 -0.6499 -vn 0.6117 0.4512 -0.6498 -vn 0.2878 0.9409 0.1785 -vn 0.2878 0.9409 0.1784 -vn 0.2877 0.9409 0.1787 -vn 0.9730 -0.0928 0.2112 -vn 0.9730 -0.0930 0.2111 -vn 0.9731 -0.0929 0.2109 -vn -0.3358 0.3710 -0.8658 -vn -0.3356 0.3717 -0.8656 -vn -0.3355 0.3713 -0.8658 -vn -0.6428 0.3121 -0.6996 -vn -0.6429 0.3116 -0.6997 -vn -0.6427 0.3122 -0.6996 -vn 0.9624 -0.0304 0.2698 -vn 0.9624 -0.0305 0.2698 -vn -0.4126 -0.8841 -0.2195 -vn -0.4129 -0.8841 -0.2189 -vn -0.9498 -0.2202 0.2224 -vn -0.9498 -0.2201 0.2223 -vn -0.3962 -0.8951 -0.2046 -vn -0.3963 -0.8950 -0.2047 -vn 0.7542 -0.3012 0.5835 -vn 0.7543 -0.3013 0.5833 -vn 0.2109 0.5159 -0.8303 -vn 0.2108 0.5159 -0.8303 -vn -0.6208 0.4855 -0.6155 -vn -0.6207 0.4855 -0.6156 -vn -0.6209 0.4856 -0.6154 -vn -0.7999 -0.4358 -0.4126 -vn -0.8001 -0.4356 -0.4124 -vn -0.7998 -0.4359 -0.4127 -vn 0.5723 -0.6025 0.5563 -vn 0.5723 -0.6024 0.5563 -vn 0.5723 -0.6027 0.5561 -vn -0.7895 -0.5473 -0.2778 -vn -0.7892 -0.5479 -0.2773 -vn -0.7894 -0.5475 -0.2776 -vn -0.0011 0.0004 1.0000 -vn 0.6060 -0.5640 0.5610 -vn 0.6060 -0.5641 0.5609 -vn -0.7719 -0.5526 -0.3143 -vn -0.9435 -0.1854 -0.2746 -vn -0.9435 -0.1852 -0.2746 -vn -0.9435 -0.1853 -0.2747 -vn -0.4148 0.8996 0.1364 -vn -0.4147 0.8997 0.1364 -vn 0.6670 -0.2593 -0.6985 -vn 0.6682 -0.2597 -0.6972 -vn 0.6665 -0.2594 -0.6989 -vn 0.3823 -0.2649 0.8852 -vn 0.3823 -0.2650 0.8852 -vn 0.0916 0.2652 -0.9598 -vn -0.4036 -0.5242 -0.7499 -vn -0.4037 -0.5231 -0.7506 -vn -0.4040 -0.5250 -0.7491 -vn -0.2754 -0.7496 -0.6018 -vn -0.2766 -0.7484 -0.6028 -vn 0.3962 -0.2287 0.8892 -vn 0.3960 -0.2283 0.8894 -vn 0.3962 -0.2286 0.8893 -vn 0.9112 -0.2570 0.3219 -vn 0.9106 -0.2566 0.3239 -vn 0.9105 -0.2558 0.3249 -vn -0.7993 -0.5805 -0.1553 -vn -0.7990 -0.5811 -0.1545 -vn -0.7991 -0.5810 -0.1548 -vn 0.0491 0.7754 0.6296 -vn 0.0491 0.7760 0.6289 -vn 0.0490 0.7755 0.6295 -vn -0.5342 0.8230 -0.1930 -vn -0.5329 0.8239 -0.1930 -vn -0.5336 0.8234 -0.1931 -vn -0.4420 -0.4356 -0.7841 -vn -0.4419 -0.4378 -0.7830 -vn -0.4418 -0.4366 -0.7837 -vn 0.0136 -0.8565 0.5159 -vn 0.0138 -0.8565 0.5159 -vn -0.5690 0.2467 0.7844 -vn -0.5691 0.2468 0.7844 -vn 0.0332 0.6230 -0.7815 -vn 0.0333 0.6225 -0.7819 -vn 0.0332 0.6221 -0.7822 -vn 0.3407 0.0543 0.9386 -vn 0.3406 0.0541 0.9386 -vn 0.3407 0.0542 0.9386 -vn -0.3268 -0.1509 0.9330 -vn -0.3267 -0.1509 0.9330 -vn -0.6159 -0.7013 -0.3589 -vn -0.6154 -0.7017 -0.3590 -vn -0.6157 -0.7015 -0.3589 -vn -0.5688 -0.7459 -0.3464 -vn -0.5686 -0.7459 -0.3470 -vn -0.5687 -0.7458 -0.3469 -vn 0.2349 0.1869 0.9539 -vn 0.3524 -0.8767 0.3276 -vn 0.3526 -0.8764 0.3279 -vn 0.8652 -0.4962 0.0727 -vn 0.8652 -0.4961 0.0733 -vn 0.8652 -0.4962 0.0721 -vn -0.0447 0.2515 0.9668 -vn -0.5871 -0.2769 -0.7607 -vn -0.5870 -0.2770 -0.7608 -vn -0.5868 -0.2769 -0.7609 -vn -0.4128 -0.9031 0.1186 -vn -0.4131 -0.9029 0.1186 -vn -0.4125 -0.9032 0.1186 -vn 0.0805 0.9830 -0.1653 -vn 0.0806 0.9829 -0.1653 -vn 0.0809 0.9829 -0.1655 -vn -0.6226 -0.6537 -0.4301 -vn 0.1467 -0.9891 0.0114 -vn 0.9041 0.1658 0.3939 -vn 0.9041 0.1656 0.3940 -vn 0.9041 0.1654 0.3939 -vn -0.8881 -0.2915 -0.3553 -vn -0.8881 -0.2914 -0.3554 -vn -0.6387 0.2933 -0.7113 -vn -0.8147 0.5705 -0.1041 -vn -0.8147 0.5705 -0.1040 -vn -0.2816 -0.9570 -0.0692 -vn -0.2816 -0.9570 -0.0690 -vn -0.2816 -0.9570 -0.0691 -vn -0.0001 -0.9939 -0.1101 -vn 0.6596 -0.0924 0.7459 -vn 0.6596 -0.0925 0.7459 -vn 0.6862 0.6466 -0.3333 -vn 0.6861 0.6467 -0.3333 -vn -0.6339 -0.6789 -0.3706 -vn -0.6338 -0.6790 -0.3706 -vn -0.8485 -0.3575 -0.3903 -vn -0.8482 -0.3576 -0.3908 -vn -0.8481 -0.3577 -0.3910 -vn 0.1854 -0.3828 0.9050 -vn 0.1858 -0.3830 0.9049 -vn -0.1004 -0.9534 -0.2846 -vn -0.1004 -0.9534 -0.2844 -vn -0.1004 -0.9534 -0.2845 -vn -0.6827 0.0640 -0.7279 -vn -0.1770 -0.9330 -0.3133 -vn -0.1774 -0.9330 -0.3132 -vn -0.1773 -0.9330 -0.3133 -vn 0.0568 0.4065 0.9119 -vn 0.0532 0.4053 0.9126 -vn 0.0559 0.4059 0.9122 -vn -0.3539 -0.1880 0.9162 -vn -0.3535 -0.1880 0.9164 -vn 0.1294 0.3139 0.9406 -vn 0.1291 0.3140 0.9406 -vn 0.0020 -0.0011 1.0000 -vn 0.0014 -0.0008 1.0000 -vn 0.7741 0.4366 0.4585 -vn 0.7743 0.4363 0.4583 -vn 0.7742 0.4363 0.4585 -vn -0.0919 -0.3422 0.9351 -vn -0.0917 -0.3425 0.9350 -vn -0.0920 -0.3422 0.9351 -vn -0.6388 -0.6196 0.4561 -vn -0.6390 -0.6195 0.4559 -vn -0.6389 -0.6195 0.4562 -vn 0.9422 -0.0232 0.3341 -vn 0.9423 -0.0230 0.3341 -vn 0.9423 -0.0227 0.3339 -vn -0.7551 -0.3903 -0.5267 -vn -0.7552 -0.3907 -0.5264 -vn -0.7552 -0.3906 -0.5264 -vn -0.9249 -0.2101 -0.3169 -vn -0.9244 -0.2099 -0.3185 -vn -0.9246 -0.2101 -0.3178 -vn -0.6796 -0.6964 -0.2305 -vn -0.6799 -0.6963 -0.2298 -vn -0.6798 -0.6963 -0.2302 -vn 0.8585 -0.0704 0.5079 -vn 0.8589 -0.0707 0.5072 -vn 0.8577 -0.0705 0.5093 -vn -0.7257 -0.2049 -0.6568 -vn -0.7253 -0.2053 -0.6571 -vn -0.7255 -0.2050 -0.6570 -vn 0.7075 0.5609 -0.4299 -vn 0.7076 0.5608 -0.4299 -vn -0.0339 0.8932 -0.4483 -vn -0.0338 0.8933 -0.4482 -vn -0.0334 0.8935 -0.4477 -vn 0.4593 0.8882 0.0125 -vn 0.4594 0.8882 0.0124 -vn -0.6523 0.5209 -0.5506 -vn -0.6521 0.5209 -0.5509 -vn -0.6515 0.5212 -0.5513 -vn 0.2224 -0.2378 -0.9455 -vn 0.2227 -0.2378 -0.9454 -vn 0.2222 -0.2376 -0.9456 -vn 0.0186 0.9860 -0.1657 -vn 0.0190 0.9860 -0.1655 -vn 0.0185 0.9860 -0.1657 -vn -0.8731 -0.2428 -0.4228 -vn 0.9109 0.4122 -0.0178 -vn 0.9109 0.4122 -0.0177 -vn 0.9108 0.4125 -0.0175 -vn -0.8329 -0.0913 -0.5459 -vn -0.8333 -0.0910 -0.5453 -vn -0.8326 -0.0917 -0.5462 -vn -0.7683 -0.6232 0.1459 -vn -0.7687 -0.6227 0.1461 -vn -0.7686 -0.6228 0.1461 -vn 0.1201 0.5057 0.8543 -vn 0.1199 0.5053 0.8546 -vn 0.1200 0.5057 0.8543 -vn -0.9663 -0.0118 -0.2570 -vn -0.9662 -0.0117 -0.2575 -vn -0.2174 0.4714 0.8547 -vn -0.2171 0.4712 0.8549 -vn 0.9253 0.3523 -0.1407 -vn 0.9254 0.3524 -0.1397 -vn 0.9253 0.3524 -0.1401 -vn 0.7053 0.6482 0.2869 -vn 0.7054 0.6481 0.2870 -vn 0.7049 0.6486 0.2872 -vn -0.1215 0.0501 0.9913 -vn -0.6875 0.4084 -0.6005 -vn -0.6878 0.4083 -0.6002 -vn -0.6868 0.4090 -0.6008 -vn 0.8154 0.5739 -0.0756 -vn 0.8158 0.5734 -0.0755 -vn 0.8156 0.5736 -0.0758 -vn 0.6472 0.3701 -0.6664 -vn -0.5864 0.5293 -0.6132 -vn -0.5861 0.5292 -0.6135 -vn -0.5867 0.5291 -0.6131 -vn -0.7016 0.7125 0.0139 -vn -0.7015 0.7126 0.0139 -vn -0.7019 0.7121 0.0139 -vn 0.5593 0.7161 -0.4176 -vn 0.5581 0.7169 -0.4178 -vn 0.5585 0.7165 -0.4179 -vn -0.7006 -0.4585 -0.5468 -vn -0.7002 -0.4584 -0.5473 -vn -0.2798 -0.8568 -0.4332 -vn -0.2797 -0.8561 -0.4346 -vn -0.2797 -0.8566 -0.4336 -vn 0.9778 -0.2088 0.0204 -vn 0.7771 0.5861 0.2295 -vn 0.7770 0.5863 0.2292 -vn 0.7770 0.5864 0.2290 -vn -0.3244 0.6224 -0.7123 -vn -0.3247 0.6224 -0.7122 -vn -0.3249 0.6223 -0.7122 -vn -0.8674 0.3774 -0.3244 -vn -0.8674 0.3773 -0.3245 -vn -0.8674 0.3769 -0.3248 -vn 0.3381 0.8120 -0.4758 -vn 0.3383 0.8119 -0.4758 -vn 0.3390 0.8118 -0.4755 -vn 0.2411 0.6863 0.6862 -vn 0.2423 0.6861 0.6860 -vn 0.2416 0.6861 0.6862 -vn 0.8340 0.5431 0.0975 -vn 0.8340 0.5431 0.0974 -vn -0.8414 0.4788 -0.2507 -vn 0.1894 0.1343 0.9727 -vn -0.7909 0.0621 0.6088 -vn -0.7907 0.0624 0.6090 -vn -0.7905 0.0626 0.6093 -vn 0.6102 -0.7899 -0.0601 -vn 0.6104 -0.7898 -0.0599 -vn 0.6102 -0.7900 -0.0601 -vn 0.5559 -0.6994 -0.4493 -vn 0.5561 -0.6993 -0.4491 -vn 0.5559 -0.6994 -0.4492 -vn -0.0383 0.3067 -0.9510 -vn -0.0369 0.3058 -0.9514 -vn -0.0380 0.3065 -0.9511 -vn -0.8252 -0.1950 0.5301 -vn -0.8253 -0.1947 0.5301 -vn -0.9257 0.3782 -0.0052 -vn -0.9255 0.3787 -0.0050 -vn -0.9259 0.3777 -0.0052 -vn 0.2346 -0.1328 -0.9630 -vn 0.2343 -0.1328 -0.9631 -vn 0.2337 -0.1330 -0.9632 -vn -0.1190 0.9405 -0.3183 -vn -0.1189 0.9405 -0.3183 -vn -0.1187 0.9405 -0.3185 -vn -0.9698 0.0952 -0.2247 -vn -0.9698 0.0946 -0.2248 -vn 0.4806 0.8743 0.0682 -vn 0.4823 0.8733 0.0684 -vn 0.4791 0.8751 0.0688 -vn 0.8890 0.2438 -0.3877 -vn 0.8889 0.2439 -0.3877 -vn 0.8892 0.2424 -0.3881 -vn 0.7125 -0.4150 -0.5658 -vn 0.7123 -0.4153 -0.5658 -vn 0.7124 -0.4151 -0.5659 -vn -0.4102 0.8250 -0.3887 -vn -0.4106 0.8249 -0.3885 -vn -0.4103 0.8250 -0.3886 -vn 0.8264 0.4316 0.3616 -vn 0.8263 0.4316 0.3618 -vn -0.6238 0.0993 -0.7753 -vn -0.6236 0.0994 -0.7754 -vn 0.0899 0.7447 0.6613 -vn 0.0901 0.7450 0.6610 -vn 0.2019 -0.1491 -0.9680 -vn 0.2010 -0.1484 -0.9683 -vn -0.4575 0.5143 0.7254 -vn -0.4568 0.5147 0.7256 -vn -0.4567 0.5147 0.7256 -vn 0.5143 -0.0299 0.8571 -vn 0.5144 -0.0296 0.8570 -vn -0.3564 -0.9341 0.0210 -vn -0.3562 -0.9342 0.0209 -vn 0.7740 0.4410 -0.4544 -vn 0.7740 0.4408 -0.4545 -vn 0.7423 0.5017 0.4442 -vn -0.3732 0.3604 0.8549 -vn -0.3728 0.3605 0.8550 -vn -0.3733 0.3601 0.8550 -vn 0.9678 -0.1157 0.2236 -vn 0.9678 -0.1159 0.2235 -vn 0.9678 -0.1162 0.2233 -vn -0.4016 0.5133 -0.7584 -vn -0.4019 0.5133 -0.7583 -vn -0.4017 0.5132 -0.7585 -vn 0.0287 0.6990 -0.7146 -vn 0.1936 0.0511 -0.9797 -vn 0.1934 0.0513 -0.9798 -vn 0.1109 -0.7193 -0.6858 -vn 0.1108 -0.7193 -0.6858 -vn 0.1606 0.8971 0.4116 -vn -0.3025 -0.4362 0.8475 -vn -0.3019 -0.4373 0.8471 -vn -0.3023 -0.4368 0.8472 -vn -0.2612 0.0339 -0.9647 -vn -0.3533 0.5204 -0.7774 -vn 0.6797 0.7321 -0.0447 -vn 0.6492 0.3441 -0.6783 -vn 0.6491 0.3442 -0.6783 -vn -0.8211 0.5166 -0.2426 -vn -0.1990 -0.1117 0.9736 -vn 0.1382 -0.0940 0.9859 -vn 0.1382 -0.0945 0.9859 -vn 0.1382 -0.0941 0.9859 -vn 0.9518 -0.2173 -0.2166 -vn 0.9518 -0.2175 -0.2164 -vn 0.9518 -0.2178 -0.2161 -vn -0.6219 -0.0349 -0.7823 -vn 0.8226 0.5534 -0.1308 -vn 0.8227 0.5532 -0.1308 -vn 0.8230 0.5527 -0.1312 -vn -0.1341 0.6925 -0.7088 -vn -0.1341 0.6926 -0.7087 -vn -0.0604 -0.1628 0.9848 -vn -0.1944 -0.0645 -0.9788 -vn -0.1948 -0.0644 -0.9787 -vn 0.4439 0.8843 -0.1446 -vn 0.4444 0.8842 -0.1442 -vn 0.4450 0.8840 -0.1432 -vn 0.0953 0.9915 -0.0883 -vn 0.0954 0.9915 -0.0881 -vn 0.0953 0.9916 -0.0878 -vn 0.0363 0.0429 0.9984 -vn 0.0365 0.0433 0.9984 -vn 0.0364 0.0431 0.9984 -vn -0.0000 0.0012 1.0000 -vn 0.3681 0.9218 0.1216 -vn 0.3681 0.9217 0.1223 -vn 0.3684 0.9218 0.1211 -vn -0.1690 0.8036 0.5707 -vn 0.2573 0.9303 -0.2615 -vn 0.2584 0.9300 -0.2615 -vn 0.2580 0.9301 -0.2614 -vn -0.8203 0.1625 -0.5483 -vn -0.8201 0.1626 -0.5486 -vn -0.8203 0.1625 -0.5484 -vn 0.1168 -0.5484 0.8280 -vn 0.1164 -0.5484 0.8281 -vn 0.1160 -0.5485 0.8281 -vn 0.0444 0.6763 -0.7353 -vn 0.0439 0.6762 -0.7354 -vn 0.0432 0.6757 -0.7359 -vn -0.5935 0.7420 0.3117 -vn -0.5934 0.7421 0.3118 -vn -0.8288 -0.4555 -0.3250 -vn -0.8290 -0.4553 -0.3248 -vn -0.8290 -0.4552 -0.3248 -vn -0.5568 0.8304 0.0205 -vn -0.5570 0.8303 0.0193 -vn 0.2139 0.8951 0.3912 -vn 0.2142 0.8950 0.3913 -vn 0.2138 0.8951 0.3912 -vn -0.6536 0.1325 -0.7451 -vn -0.6533 0.1322 -0.7454 -vn -0.6537 0.1325 -0.7451 -vn -0.4630 0.3610 -0.8095 -vn -0.4629 0.3608 -0.8096 -vn 0.1252 0.7876 -0.6033 -vn 0.1239 0.7875 -0.6037 -vn 0.1262 0.7875 -0.6033 -vn 0.4975 0.2339 0.8353 -vn 0.4974 0.2348 0.8351 -vn 0.4975 0.2355 0.8349 -vn 0.9120 0.2448 0.3292 -vn 0.9119 0.2447 0.3294 -vn 0.9121 0.2447 0.3290 -vn 0.7623 0.5569 -0.3299 -vn 0.7626 0.5566 -0.3295 -vn 0.7623 0.5569 -0.3298 -vn 0.3975 0.7276 0.5591 -vn 0.3970 0.7276 0.5594 -vn 0.3973 0.7275 0.5593 -vn 0.3761 0.8868 -0.2685 -vn -0.2926 -0.4947 0.8183 -vn -0.3679 -0.8843 0.2876 -vn -0.3681 -0.8840 0.2882 -vn -0.3679 -0.8842 0.2879 -vn -0.6078 0.7078 -0.3600 -vn -0.4917 0.8623 -0.1212 -vn -0.0204 0.9840 0.1769 -vn -0.0199 0.9840 0.1773 -vn -0.0201 0.9840 0.1771 -vn 0.1664 0.5886 0.7911 -vn 0.1663 0.5888 0.7910 -vn 0.1664 0.5887 0.7911 -vn -0.7667 0.5916 -0.2492 -vn -0.7666 0.5917 -0.2493 -vn -0.7664 0.5918 -0.2496 -vn 0.3822 0.7840 0.4892 -vn 0.3823 0.7840 0.4890 -vn 0.3823 0.7840 0.4891 -vn -0.6374 -0.3142 0.7036 -vn -0.6373 -0.3143 0.7036 -vn 0.3041 -0.5438 0.7822 -vn 0.3041 -0.5439 0.7821 -vn 0.3040 -0.5440 0.7821 -vn -0.4627 -0.5735 0.6761 -vn -0.4628 -0.5730 0.6764 -vn -0.4628 -0.5727 0.6766 -vn -0.4345 -0.6904 0.5784 -vn -0.4347 -0.6901 0.5786 -vn -0.4347 -0.6903 0.5784 -vn -0.8323 -0.2013 -0.5165 -vn -0.8326 -0.2016 -0.5159 -vn -0.8326 -0.2022 -0.5156 -vn 0.3545 -0.6600 0.6624 -vn 0.3545 -0.6600 0.6623 -vn -0.1049 0.3844 0.9172 -vn -0.1055 0.3843 0.9172 -vn -0.1040 0.3843 0.9173 -vn 0.6221 -0.0088 0.7829 -vn -0.1243 -0.3144 0.9411 -vn -0.1245 -0.3143 0.9411 -vn -0.1233 -0.3148 0.9411 -vn 0.3786 -0.7615 -0.5261 -vn 0.3798 -0.7599 -0.5276 -vn 0.3774 -0.7639 -0.5235 -vn -0.7872 0.2478 -0.5647 -vn -0.7873 0.2476 -0.5647 -vn 0.9478 0.2024 -0.2464 -vn 0.9478 0.2024 -0.2462 -vn -0.5890 0.7929 0.1564 -vn -0.8336 0.1451 -0.5330 -vn -0.8335 0.1453 -0.5331 -vn -0.8335 0.1454 -0.5330 -vn -0.7430 -0.1442 -0.6536 -vn -0.7681 0.6128 -0.1856 -vn -0.7682 0.6128 -0.1853 -vn -0.7684 0.6127 -0.1848 -vn -0.0011 -0.0007 1.0000 -vn -0.7121 0.2911 0.6389 -vn -0.7126 0.2879 0.6398 -vn -0.7125 0.2899 0.6390 -vn -0.5561 0.4892 -0.6719 -vn -0.5558 0.4895 -0.6719 -vn -0.5567 0.4885 -0.6719 -vn -0.9584 -0.1563 0.2389 -vn -0.9583 -0.1570 0.2389 -vn -0.9585 -0.1559 0.2386 -vn 0.4122 0.8193 0.3985 -vn 0.4122 0.8192 0.3988 -vn 0.4122 0.8193 0.3986 -vn -0.7450 0.6309 -0.2165 -vn -0.7450 0.6310 -0.2165 -vn -0.7451 0.6308 -0.2167 -vn 0.6720 -0.4579 0.5821 -vn 0.6720 -0.4578 0.5821 -vn 0.6723 -0.4579 0.5817 -vn -0.9177 -0.2719 0.2898 -vn -0.9177 -0.2718 0.2899 -vn -0.9176 -0.2717 0.2900 -vn 0.3795 0.5976 -0.7063 -vn 0.3794 0.5975 -0.7065 -vn 0.3794 0.5975 -0.7064 -vn -0.4895 0.4619 -0.7396 -vn 0.3408 0.9131 0.2237 -vn -0.6933 0.3019 -0.6544 -vn -0.6931 0.3017 -0.6547 -vn -0.6933 0.3017 -0.6545 -vn -0.2868 -0.0189 -0.9578 -vn -0.6867 0.5516 0.4735 -vn -0.6862 0.5515 0.4743 -vn -0.6867 0.5517 0.4734 -vn -0.2947 -0.9032 -0.3121 -vn -0.2940 -0.9034 -0.3122 -vn -0.4345 0.1659 0.8853 -vn -0.4345 0.1660 0.8852 -vn 0.1279 0.4335 -0.8920 -vn 0.1278 0.4327 -0.8924 -vn 0.1279 0.4325 -0.8925 -vn -0.3575 0.2744 0.8927 -vn -0.3575 0.2748 0.8926 -vn -0.3575 0.2746 0.8926 -vn 0.9518 0.1038 0.2885 -vn 0.9519 0.1040 0.2883 -vn 0.9519 0.1038 0.2884 -vn -0.0339 0.9332 0.3578 -vn -0.0334 0.9329 0.3586 -vn -0.0337 0.9331 0.3580 -vn 0.7034 -0.0918 -0.7048 -vn -0.0656 0.9845 0.1628 -vn -0.0665 0.9844 0.1631 -vn -0.0676 0.9840 0.1649 -vn 0.7391 -0.4816 0.4709 -vn 0.7390 -0.4817 0.4709 -vn 0.7390 -0.4818 0.4709 -vn 0.7118 -0.4316 0.5541 -vn 0.7119 -0.4317 0.5540 -vn 0.7121 -0.4317 0.5537 -vn -0.1986 -0.8234 0.5315 -vn 0.1918 0.9797 -0.0587 -vn 0.1922 0.9796 -0.0590 -vn 0.1924 0.9795 -0.0590 -vn -0.9397 -0.3300 0.0899 -vn -0.9397 -0.3299 0.0900 -vn 0.0645 0.7344 -0.6756 -vn 0.0647 0.7346 -0.6754 -vn 0.0645 0.7346 -0.6754 -vn -0.6428 -0.6084 0.4655 -vn -0.6426 -0.6085 0.4656 -vn -0.6424 -0.6082 0.4663 -vn -0.0067 -0.0004 1.0000 -vn -0.9679 -0.2174 -0.1264 -vn -0.9679 -0.2173 -0.1263 -vn -0.5707 -0.8148 0.1022 -vn 0.7123 0.6892 -0.1325 -vn 0.7121 0.6895 -0.1322 -vn 0.7119 0.6897 -0.1322 -vn -0.9284 0.2138 -0.3040 -vn -0.9285 0.2137 -0.3038 -vn -0.9284 0.2138 -0.3039 -vn 0.9468 0.2201 -0.2348 -vn 0.9469 0.2207 -0.2338 -vn 0.9468 0.2205 -0.2343 -vn -0.8928 0.3522 -0.2807 -vn -0.5688 -0.8162 0.1013 -vn -0.5687 -0.8163 0.1010 -vn -0.5686 -0.8164 0.1008 -vn -0.8617 -0.4986 0.0940 -vn -0.8617 -0.4987 0.0938 -vn -0.8619 -0.4982 0.0944 -vn 0.6877 0.7043 -0.1762 -vn 0.2876 -0.5063 -0.8130 -vn 0.2878 -0.5060 -0.8131 -vn 0.6093 0.6181 0.4968 -vn 0.6095 0.6177 0.4970 -vn 0.6100 0.6171 0.4971 -vn -0.8302 -0.0414 0.5559 -vn -0.8303 -0.0415 0.5558 -vn 0.5078 0.2921 0.8104 -vn 0.4382 -0.6466 -0.6244 -vn 0.4382 -0.6467 -0.6243 -vn -0.4982 -0.8222 -0.2754 -vn -0.4986 -0.8220 -0.2752 -vn 0.0014 0.9900 -0.1414 -vn 0.0012 0.9899 -0.1416 -vn 0.0010 0.9899 -0.1417 -vn 0.5059 -0.8307 -0.2325 -vn 0.5059 -0.8307 -0.2324 -vn 0.8885 -0.2583 0.3793 -vn 0.8886 -0.2586 0.3789 -vn 0.8885 -0.2583 0.3792 -vn 0.3024 -0.8391 0.4522 -vn 0.3011 -0.8399 0.4516 -vn 0.3020 -0.8394 0.4520 -vn 0.3301 0.4207 0.8450 -vn 0.3294 0.4224 0.8444 -vn 0.3300 0.4196 0.8456 -vn 0.2191 0.8277 -0.5167 -vn 0.2191 0.8278 -0.5165 -vn 0.2192 0.8275 -0.5169 -vn -0.8161 -0.3044 -0.4912 -vn -0.8160 -0.3045 -0.4913 -vn -0.8163 -0.3043 -0.4910 -vn -0.0010 0.0001 1.0000 -vn -0.0693 0.2384 0.9687 -vn -0.0682 0.2380 0.9689 -vn -0.0686 0.2381 0.9688 -vn -0.1661 0.9853 0.0393 -vn 0.0585 -0.2132 0.9753 -vn 0.7999 -0.0345 0.5992 -vn 0.7994 -0.0352 0.5997 -vn 0.7991 -0.0355 0.6002 -vn 0.0916 -0.8114 0.5772 -vn 0.0912 -0.8114 0.5773 -vn 0.0913 -0.8114 0.5773 -vn 0.9485 0.1256 0.2906 -vn 0.9485 0.1253 0.2909 -vn 0.6458 0.7346 -0.2081 -vn 0.6455 0.7349 -0.2082 -vn 0.6460 0.7344 -0.2081 -vn 0.8941 -0.2361 0.3805 -vn 0.6594 0.1663 -0.7332 -vn -0.8705 -0.3114 -0.3810 -vn -0.8707 -0.3109 -0.3811 -vn -0.8707 -0.3106 -0.3813 -vn 0.0053 1.0000 0.0003 -vn 0.0053 1.0000 -0.0004 -vn 0.0050 1.0000 -0.0005 -vn 0.4930 0.7317 -0.4707 -vn 0.4930 0.7318 -0.4706 -vn 0.7930 0.1416 -0.5926 -vn 0.7929 0.1417 -0.5926 -vn 0.1338 0.9551 -0.2644 -vn 0.1344 0.9549 -0.2646 -vn 0.1337 0.9551 -0.2644 -vn 0.5237 0.8477 -0.0849 -vn 0.5240 0.8476 -0.0840 -vn 0.5238 0.8476 -0.0846 -vn 0.3526 -0.5937 -0.7233 -vn 0.3529 -0.5939 -0.7230 -vn 0.3528 -0.5937 -0.7232 -vn -0.6725 0.1426 -0.7262 -vn 0.0853 0.9608 0.2638 -vn 0.0852 0.9608 0.2638 -vn 0.0854 0.9607 0.2641 -vn 0.2555 0.1837 -0.9492 -vn 0.2555 0.1838 -0.9492 -vn 0.2554 0.1837 -0.9492 -vn 0.8976 -0.2232 0.3801 -vn 0.8976 -0.2234 0.3800 -vn 0.8303 -0.4511 0.3273 -vn 0.8301 -0.4513 0.3276 -vn 0.8300 -0.4514 0.3277 -vn -0.5060 0.8614 0.0440 -vn -0.5060 0.8614 0.0438 -vn -0.5060 0.8614 0.0439 -vn -0.6295 0.6473 0.4298 -vn -0.6295 0.6472 0.4299 -vn -0.6293 0.6473 0.4301 -vn 0.1221 0.6944 -0.7091 -vn 0.1219 0.6946 -0.7090 -vn 0.1221 0.6945 -0.7091 -vn 0.8394 -0.1724 0.5155 -vn 0.8399 -0.1730 0.5145 -vn 0.8396 -0.1726 0.5150 -vn -0.3196 0.8442 -0.4302 -vn -0.3196 0.8443 -0.4301 -vn -0.3195 0.8445 -0.4298 -vn -0.1947 0.9653 0.1742 -vn -0.1942 0.9653 0.1746 -vn -0.1930 0.9653 0.1758 -vn 0.0022 -0.9524 0.3048 -vn 0.0023 -0.9524 0.3047 -vn 0.3932 0.6315 0.6683 -vn 0.3933 0.6312 0.6685 -vn 0.3931 0.6316 0.6682 -vn -0.1959 0.9578 -0.2104 -vn -0.1957 0.9576 -0.2112 -vn -0.1957 0.9578 -0.2107 -vn -0.7407 0.0666 -0.6685 -vn -0.7407 0.0665 -0.6685 -vn -0.7409 0.0663 -0.6684 -vn -0.9786 -0.1516 -0.1392 -vn -0.2141 0.8055 0.5525 -vn -0.2146 0.8057 0.5521 -vn -0.2144 0.8056 0.5523 -vn 0.7499 0.3959 0.5301 -vn 0.7506 0.3953 0.5295 -vn 0.7503 0.3955 0.5298 -vn -0.9734 -0.2287 0.0159 -vn 0.5649 -0.0444 -0.8240 -vn 0.5649 -0.0442 -0.8240 -vn 0.5649 -0.0443 -0.8240 -vn 0.7128 -0.4724 0.5185 -vn 0.7127 -0.4726 0.5184 -vn 0.7127 -0.4724 0.5185 -vn 0.7312 -0.3509 0.5850 -vn 0.7313 -0.3506 0.5850 -vn 0.3963 -0.6468 0.6516 -vn -0.9096 -0.2825 0.3047 -vn 0.1815 -0.1321 0.9745 -vn 0.1814 -0.1317 0.9746 -vn 0.7738 -0.6305 -0.0610 -vn 0.7740 -0.6302 -0.0613 -vn -0.9826 -0.1681 -0.0785 -vn -0.9827 -0.1680 -0.0783 -vn -0.9827 -0.1678 -0.0782 -vn -0.4471 -0.7517 -0.4848 -vn -0.4476 -0.7515 -0.4845 -vn -0.4478 -0.7517 -0.4842 -vn -0.3305 -0.8333 -0.4432 -vn -0.3311 -0.8331 -0.4431 -vn -0.3308 -0.8331 -0.4433 -vn 0.3787 -0.9094 0.1720 -vn 0.3785 -0.9095 0.1720 -vn 0.3301 0.3886 0.8602 -vn 0.8600 -0.3208 0.3969 -vn 0.8601 -0.3206 0.3969 -vn 0.8600 -0.3206 0.3970 -vn 0.9014 0.4329 -0.0090 -vn 0.9014 0.4329 -0.0089 -vn 0.9014 0.4329 -0.0088 -vn 0.3169 0.1700 -0.9331 -vn 0.3171 0.1699 -0.9330 -vn 0.3172 0.1699 -0.9330 -vn -0.4662 0.5622 -0.6831 -vn -0.4658 0.5624 -0.6832 -vn -0.4654 0.5626 -0.6833 -vn 0.4415 -0.8540 0.2751 -vn 0.4385 -0.8552 0.2762 -vn 0.4400 -0.8548 0.2752 -vn -0.7038 0.4289 -0.5663 -vn -0.4114 -0.9027 0.1261 -vn -0.4111 -0.9028 0.1260 -vn -0.4107 -0.9030 0.1260 -vn 0.0360 -0.7443 0.6669 -vn 0.0862 -0.9759 0.2004 -vn 0.0861 -0.9761 0.1997 -vn 0.0860 -0.9760 0.2000 -vn 0.9408 -0.1619 0.2977 -vn 0.9408 -0.1620 0.2979 -vn 0.9408 -0.1619 0.2978 -vn 0.1883 0.0497 0.9809 -vn 0.1883 0.0496 0.9809 -vn 0.1882 0.0499 0.9809 -vn -0.3141 -0.9470 -0.0675 -vn -0.3145 -0.9468 -0.0676 -vn -0.7295 -0.3697 0.5754 -vn -0.7292 -0.3699 0.5757 -vn -0.7288 -0.3700 0.5762 -vn 0.7767 0.3099 0.5484 -vn 0.7775 0.3093 0.5475 -vn 0.7784 0.3081 0.5470 -vn -0.7457 -0.6611 -0.0834 -vn -0.7457 -0.6610 -0.0835 -vn -0.7461 -0.6608 -0.0823 -vn 0.1672 -0.9858 0.0178 -vn -0.2166 -0.9708 -0.1029 -vn -0.2166 -0.9710 -0.1012 -vn -0.2180 -0.9709 -0.0988 -vn 0.7046 0.6643 0.2493 -vn 0.7046 0.6644 0.2492 -vn 0.7047 0.6643 0.2491 -vn 0.3082 -0.1025 0.9458 -vn 0.3072 -0.1027 0.9461 -vn 0.3079 -0.1029 0.9458 -vn -0.2519 0.1536 -0.9555 -vn -0.2510 0.1537 -0.9557 -vn -0.2510 0.1536 -0.9557 -vn -0.5508 0.3763 0.7450 -vn -0.5517 0.3773 0.7438 -vn -0.5514 0.3767 0.7444 -vn 0.8032 0.5877 0.0971 -vn 0.8032 0.5876 0.0978 -vn 0.8032 0.5876 0.0975 -vn 0.3955 0.5284 -0.7512 -vn 0.3954 0.5283 -0.7513 -vn 0.3953 0.5283 -0.7514 -vn 0.5128 -0.4089 0.7549 -vn 0.7919 -0.5116 0.3333 -vn 0.7917 -0.5122 0.3330 -vn 0.7922 -0.5110 0.3336 -vn -0.4284 0.6945 -0.5781 -vn -0.2633 0.9561 -0.1291 -vn -0.2631 0.9561 -0.1287 -vn -0.2629 0.9562 -0.1287 -vn -0.2568 0.6133 -0.7469 -vn -0.2567 0.6135 -0.7468 -vn -0.2567 0.6132 -0.7470 -vn -0.7683 -0.4119 -0.4900 -vn -0.7680 -0.4120 -0.4903 -vn -0.7682 -0.4119 -0.4901 -vn 0.7177 0.6953 0.0390 -vn 0.7175 0.6954 0.0394 -vn 0.7177 0.6952 0.0390 -vn 0.5739 -0.7861 -0.2296 -vn 0.5736 -0.7863 -0.2296 -vn 0.5739 -0.7861 -0.2297 -vn 0.5421 -0.8324 0.1146 -vn 0.5420 -0.8325 0.1147 -vn 0.5425 -0.8322 0.1146 -vn -0.1364 -0.9800 -0.1448 -vn -0.1359 -0.9800 -0.1455 -vn -0.1365 -0.9800 -0.1447 -vn 0.0916 0.2080 0.9738 -vn 0.0907 0.2079 0.9739 -vn 0.6788 0.6779 -0.2823 -vn 0.6787 0.6781 -0.2821 -vn 0.6788 0.6778 -0.2824 -vn -0.3891 -0.5189 0.7611 -vn -0.3894 -0.5188 0.7611 -vn -0.3892 -0.5189 0.7611 -vn 0.4075 0.7464 0.5261 -vn 0.4075 0.7469 0.5255 -vn 0.4075 0.7467 0.5257 -vn 0.8239 0.3212 -0.4670 -vn 0.8240 0.3218 -0.4663 -vn 0.8239 0.3215 -0.4667 -vn 0.1313 -0.9692 0.2085 -vn 0.1312 -0.9692 0.2083 -vn 0.1313 -0.9691 0.2088 -vn -0.4875 -0.8419 0.2314 -vn -0.4880 -0.8416 0.2316 -vn -0.4879 -0.8416 0.2315 -vn 0.4345 -0.7378 0.5166 -vn 0.5872 0.7955 -0.1493 -vn 0.5872 0.7956 -0.1493 -vn 0.5868 0.7958 -0.1495 -vn -0.4841 0.5929 -0.6435 -vn -0.4835 0.5935 -0.6434 -vn -0.4831 0.5941 -0.6432 -vn 0.4079 0.8895 0.2062 -vn 0.4079 0.8895 0.2061 -vn 0.8828 0.4669 -0.0507 -vn 0.8828 0.4670 -0.0504 -vn 0.7867 0.5867 0.1920 -vn 0.7868 0.5865 0.1923 -vn 0.3734 0.8791 0.2962 -vn 0.3726 0.8794 0.2963 -vn 0.3736 0.8790 0.2961 -vn -0.7807 -0.5687 0.2591 -vn -0.7801 -0.5696 0.2588 -vn -0.7801 -0.5697 0.2587 -vn -0.8168 -0.1303 0.5620 -vn -0.8170 -0.1302 0.5618 -vn -0.8166 -0.1305 0.5622 -vn 0.7974 0.5976 0.0833 -vn 0.7974 0.5977 0.0832 -vn 0.7975 0.5976 0.0833 -vn 0.3003 -0.9353 -0.1870 -vn 0.3006 -0.9353 -0.1868 -vn 0.3005 -0.9353 -0.1868 -vn 0.2212 0.6356 0.7396 -vn -0.5009 -0.7133 -0.4903 -vn -0.5012 -0.7130 -0.4903 -vn -0.5005 -0.7135 -0.4903 -vn 0.2796 -0.7191 0.6362 -vn 0.2796 -0.7190 0.6363 -vn -0.4516 0.3284 -0.8296 -vn -0.4517 0.3284 -0.8295 -vn -0.1380 -0.2803 -0.9499 -vn -0.1375 -0.2796 -0.9502 -vn -0.1391 -0.2803 -0.9498 -vn 0.8854 0.4390 -0.1527 -vn 0.3897 0.8006 -0.4551 -vn 0.3895 0.8008 -0.4551 -vn 0.3894 0.8452 -0.3660 -vn 0.3896 0.8452 -0.3658 -vn -0.1228 0.5677 -0.8140 -vn -0.1227 0.5678 -0.8140 -vn -0.8077 0.5305 -0.2574 -vn -0.8080 0.5301 -0.2571 -vn -0.8079 0.5302 -0.2573 -vn 0.7374 -0.5725 -0.3584 -vn 0.7371 -0.5726 -0.3588 -vn 0.7375 -0.5727 -0.3579 -vn 0.6972 -0.6295 -0.3430 -vn 0.6969 -0.6299 -0.3429 -vn 0.6975 -0.6292 -0.3431 -vn -0.7537 0.4449 -0.4838 -vn -0.7528 0.4462 -0.4839 -vn -0.7541 0.4445 -0.4835 -vn -0.7355 0.5264 -0.4265 -vn -0.7354 0.5262 -0.4270 -vn -0.7353 0.5259 -0.4274 -vn -0.5535 -0.6411 -0.5315 -vn -0.5532 -0.6412 -0.5318 -vn -0.2855 0.4222 0.8604 -vn -0.2856 0.4222 0.8603 -vn -0.2402 0.2181 0.9459 -vn -0.2400 0.2183 0.9459 -vn -0.2406 0.2180 0.9458 -vn -0.5962 -0.7839 0.1732 -vn -0.5962 -0.7839 0.1734 -vn 0.0882 0.9270 -0.3644 -vn 0.0884 0.9269 -0.3646 -vn 0.0883 0.9270 -0.3646 -vn -0.5080 -0.3540 -0.7853 -vn -0.5072 -0.3547 -0.7855 -vn -0.5076 -0.3541 -0.7854 -vn 0.8474 0.0075 0.5309 -vn 0.8473 0.0078 0.5310 -vn 0.8473 0.0082 0.5311 -vn -0.7970 -0.0010 0.6039 -vn -0.7969 -0.0007 0.6040 -vn -0.6972 0.5414 -0.4699 -vn -0.6974 0.5414 -0.4696 -vn -0.5536 0.7346 -0.3924 -vn -0.5539 0.7342 -0.3925 -vn -0.5538 0.7343 -0.3924 -vn -0.6924 0.4754 -0.5427 -vn -0.6930 0.4747 -0.5426 -vn -0.6927 0.4750 -0.5427 -vn 0.3795 0.5183 -0.7664 -vn 0.3790 0.5179 -0.7669 -vn 0.3790 0.5181 -0.7667 -vn 0.7930 -0.2359 0.5618 -vn 0.7929 -0.2363 0.5617 -vn 0.7929 -0.2361 0.5617 -vn 0.2554 0.2743 0.9271 -vn 0.2559 0.2741 0.9270 -vn 0.2556 0.2742 0.9271 -vn -0.6166 0.3885 -0.6847 -vn -0.6163 0.3893 -0.6845 -vn -0.6164 0.3890 -0.6846 -vn -0.2646 -0.8536 0.4487 -vn -0.4602 -0.3476 0.8169 -vn -0.4599 -0.3477 0.8171 -vn -0.9713 -0.2345 0.0404 -vn -0.9712 -0.2350 0.0399 -vn -0.9711 -0.2356 0.0394 -vn 0.8948 0.4437 -0.0488 -vn 0.8949 0.4437 -0.0489 -vn -0.4242 0.8331 -0.3550 -vn -0.4240 0.8331 -0.3553 -vn -0.4237 0.8331 -0.3555 -vn -0.0400 -0.2080 -0.9773 -vn -0.0401 -0.2081 -0.9773 -vn -0.0403 -0.2080 -0.9773 -vn 0.6757 -0.0624 0.7345 -vn -0.3375 -0.4420 -0.8311 -vn -0.3369 -0.4420 -0.8314 -vn -0.3362 -0.4415 -0.8319 -vn 0.4511 0.6705 -0.5891 -vn 0.4511 0.6705 -0.5890 -vn 0.4120 0.7802 -0.4707 -vn 0.4117 0.7804 -0.4705 -vn 0.4119 0.7803 -0.4707 -vn -0.1546 0.8492 -0.5050 -vn -0.1545 0.8490 -0.5052 -vn -0.1542 0.8496 -0.5044 -vn 0.7874 -0.5360 0.3046 -vn 0.7876 -0.5357 0.3043 -vn -0.4105 -0.7320 0.5438 -vn -0.4106 -0.7319 0.5438 -vn 0.2379 0.7593 0.6057 -vn -0.5972 0.3567 -0.7184 -vn -0.5972 0.3568 -0.7184 -vn -0.3749 0.9267 -0.0244 -vn -0.3740 0.9271 -0.0255 -vn -0.3751 0.9267 -0.0235 -vn 0.3649 0.8803 0.3032 -vn 0.3649 0.8802 0.3034 -vn -0.1690 0.2422 0.9554 -vn -0.7262 0.6641 -0.1775 -vn -0.7266 0.6637 -0.1777 -vn 0.0923 -0.1317 -0.9870 -vn 0.0927 -0.1316 -0.9870 -vn 0.0926 -0.1315 -0.9870 -vn -0.2307 0.0173 -0.9729 -vn -0.2301 0.0174 -0.9730 -vn -0.2302 0.0177 -0.9730 -vn 0.3714 0.6076 -0.7021 -vn 0.3713 0.6075 -0.7022 -vn 0.3713 0.6076 -0.7021 -vn 0.4319 -0.5879 0.6840 -vn 0.6059 0.7921 0.0737 -vn 0.6059 0.7921 0.0735 -vn 0.6060 0.7921 0.0729 -vn 0.6861 0.6045 0.4048 -vn 0.6859 0.6046 0.4050 -vn 0.6859 0.6046 0.4051 -vn -0.5343 0.4014 -0.7439 -vn -0.5349 0.4008 -0.7438 -vn -0.5338 0.4020 -0.7440 -vn -0.4282 0.0687 0.9011 -vn -0.4294 0.0682 0.9005 -vn -0.4288 0.0683 0.9008 -vn 0.6854 0.5925 0.4233 -vn 0.6853 0.5928 0.4230 -vn -0.7395 -0.4009 -0.5407 -vn -0.7396 -0.4009 -0.5406 -vn -0.7398 -0.4010 -0.5403 -vn -0.0008 0.8107 -0.5854 -vn -0.0008 0.8109 -0.5852 -vn -0.0008 0.8105 -0.5857 -vn -0.9333 -0.2378 -0.2690 -vn -0.1237 0.9917 -0.0357 -vn -0.1237 0.9917 -0.0358 -vn 0.2469 0.5320 0.8099 -vn 0.2472 0.5318 0.8100 -vn 0.2466 0.5319 0.8101 -vn 0.4983 0.8266 0.2614 -vn 0.4984 0.8266 0.2613 -vn 0.4527 0.8628 -0.2251 -vn 0.4530 0.8626 -0.2251 -vn 0.4529 0.8627 -0.2249 -vn 0.1915 0.9805 -0.0435 -vn 0.1916 0.9805 -0.0435 -vn 0.6090 0.6346 -0.4757 -vn 0.6089 0.6347 -0.4759 -vn 0.2884 0.9323 0.2183 -vn 0.2884 0.9323 0.2184 -vn 0.2883 0.9323 0.2184 -vn 0.6106 0.2119 -0.7630 -vn 0.6106 0.2118 -0.7631 -vn 0.6101 0.2121 -0.7634 -vn 0.8564 -0.2800 0.4337 -vn 0.8564 -0.2801 0.4337 -vn 0.8564 -0.2802 0.4337 -vn 0.3134 -0.1314 -0.9405 -vn 0.3137 -0.1322 -0.9403 -vn -0.6803 0.4736 -0.5593 -vn -0.6807 0.4734 -0.5591 -vn -0.6806 0.4736 -0.5590 -vn -0.8371 0.5175 -0.1772 -vn -0.8373 0.5171 -0.1774 -vn 0.3926 -0.4958 0.7746 -vn 0.3925 -0.4959 0.7746 -vn 0.6829 0.7284 -0.0554 -vn -0.0394 0.7359 0.6759 -vn -0.0395 0.7360 0.6759 -vn -0.0394 0.7358 0.6760 -vn 0.7954 -0.5636 0.2227 -vn 0.7951 -0.5640 0.2232 -vn 0.7952 -0.5638 0.2229 -vn -0.8078 -0.5827 0.0893 -vn -0.8082 -0.5821 0.0896 -vn -0.8077 -0.5828 0.0892 -vn -0.7427 -0.6555 -0.1369 -vn -0.7429 -0.6553 -0.1363 -vn -0.6097 -0.5546 0.5662 -vn -0.6091 -0.5534 0.5681 -vn -0.6092 -0.5532 0.5682 -vn 0.5571 -0.3243 0.7645 -vn 0.5577 -0.3241 0.7642 -vn -0.1234 -0.3996 -0.9083 -vn -0.1234 -0.3994 -0.9084 -vn -0.1234 -0.3996 -0.9084 -vn -0.3071 0.5511 -0.7759 -vn -0.3072 0.5511 -0.7758 -vn -0.3074 0.5510 -0.7758 -vn -0.9452 0.3066 -0.1120 -vn -0.9453 0.3065 -0.1119 -vn -0.1855 0.8217 -0.5389 -vn -0.1855 0.8218 -0.5387 -vn 0.0423 -0.9760 0.2134 -vn 0.0427 -0.9759 0.2138 -vn 0.0425 -0.9760 0.2136 -vn -0.5995 -0.6029 -0.5263 -vn 0.2581 0.9270 -0.2721 -vn 0.2580 0.9271 -0.2719 -vn 0.2579 0.9271 -0.2719 -vn -0.6651 -0.1610 -0.7292 -vn -0.8565 -0.3327 -0.3947 -vn -0.1636 0.9749 -0.1510 -vn -0.1635 0.9749 -0.1510 -vn -0.7085 -0.6184 -0.3400 -vn 0.8131 -0.3002 -0.4987 -vn 0.8132 -0.3001 -0.4987 -vn 0.2806 0.9314 -0.2318 -vn 0.2807 0.9314 -0.2317 -vn 0.2805 0.9314 -0.2320 -vn 0.4774 -0.8563 0.1972 -vn 0.4773 -0.8564 0.1969 -vn 0.4772 -0.8566 0.1965 -vn 0.3627 0.9158 0.1724 -vn 0.3629 0.9157 0.1724 -vn 0.3627 0.9158 0.1725 -vn 0.8623 0.3286 0.3853 -vn 0.8624 0.3285 0.3852 -vn 0.5864 -0.1791 -0.7900 -vn 0.5865 -0.1790 -0.7899 -vn 0.5488 0.3791 0.7451 -vn 0.4154 -0.0101 -0.9096 -vn 0.4161 -0.0103 -0.9093 -vn 0.4146 -0.0101 -0.9099 -vn -0.8392 -0.3127 -0.4450 -vn -0.8391 -0.3127 -0.4450 -vn -0.8392 -0.3126 -0.4449 -vn -0.4259 0.3006 0.8534 -vn -0.4253 0.3007 0.8537 -vn -0.4255 0.3009 0.8535 -vn -0.1920 -0.8410 0.5058 -vn -0.1923 -0.8409 0.5059 -vn -0.1924 -0.8407 0.5062 -vn 0.1211 -0.8204 0.5588 -vn 0.1211 -0.8206 0.5585 -vn -0.8206 0.1657 0.5469 -vn -0.8206 0.1656 0.5469 -vn 0.0015 -0.0044 1.0000 -vn 0.0037 -0.0030 1.0000 -vn 0.0031 -0.0049 1.0000 -vn -0.3942 -0.3472 0.8509 -vn -0.3945 -0.3470 0.8509 -vn 0.4178 -0.3912 0.8200 -vn 0.4176 -0.3917 0.8199 -vn 0.4177 -0.3917 0.8198 -vn -0.2760 -0.3257 0.9043 -vn -0.2759 -0.3259 0.9043 -vn -0.2762 -0.3255 0.9043 -vn -0.2426 -0.5207 0.8185 -vn 0.7104 -0.6679 0.2220 -vn 0.7100 -0.6689 0.2202 -vn 0.7100 -0.6687 0.2208 -vn -0.0362 -0.2547 0.9663 -vn -0.5234 -0.7386 -0.4249 -vn 0.5288 -0.4037 0.7466 -vn -0.2023 0.9413 0.2704 -vn -0.2020 0.9415 0.2699 -vn -0.2020 0.9416 0.2694 -vn -0.3960 0.0874 0.9141 -vn -0.3961 0.0875 0.9140 -vn -0.3453 -0.9191 0.1898 -vn -0.3448 -0.9192 0.1903 -vn -0.3455 -0.9190 0.1897 -vn -0.4964 0.4085 0.7660 -vn -0.4965 0.4078 0.7663 -vn -0.4966 0.4069 0.7667 -vn 0.2102 0.5322 0.8201 -vn 0.0693 0.1095 0.9916 -vn 0.0691 0.1096 0.9916 -vn 0.0690 0.1100 0.9915 -vn -0.6133 0.6707 0.4172 -vn -0.6134 0.6705 0.4173 -vn -0.6134 0.6705 0.4174 -vn -0.2206 0.6409 0.7352 -vn -0.2209 0.6406 0.7354 -vn -0.2208 0.6407 0.7354 -vn -0.3667 -0.5167 0.7736 -vn -0.3669 -0.5167 0.7736 -vn -0.3668 -0.5167 0.7736 -vn 0.1611 -0.8514 -0.4992 -vn 0.1609 -0.8512 -0.4995 -vn -0.4359 0.8486 -0.2996 -vn -0.4361 0.8485 -0.2999 -vn 0.5909 0.8050 0.0528 -vn 0.5907 0.8051 0.0532 -vn 0.1375 -0.4190 0.8975 -vn 0.1360 -0.4187 0.8979 -vn 0.1382 -0.4195 0.8972 -vn -0.4212 -0.0038 0.9070 -vn -0.4209 -0.0037 0.9071 -vn -0.4281 0.8558 -0.2904 -vn -0.4282 0.8558 -0.2902 -vn -0.4284 0.8558 -0.2900 -vn 0.7255 -0.5814 -0.3683 -vn 0.7254 -0.5817 -0.3680 -vn 0.6630 0.6164 0.4248 -vn 0.6632 0.6162 0.4248 -vn 0.6632 0.6163 0.4247 -vn 0.0228 -0.9054 -0.4240 -vn 0.0211 -0.9057 -0.4234 -vn 0.0218 -0.9056 -0.4235 -vn -0.8400 0.4301 -0.3308 -vn -0.8402 0.4300 -0.3305 -vn -0.8402 0.4299 -0.3305 -vn -0.3018 0.9244 -0.2334 -vn -0.9127 0.4002 0.0828 -vn -0.9126 0.4003 0.0829 -vn -0.8752 0.3587 -0.3246 -vn -0.8751 0.3587 -0.3248 -vn -0.8750 0.3587 -0.3251 -vn 0.6842 0.0801 0.7249 -vn 0.6844 0.0800 0.7247 -vn 0.2828 0.8942 -0.3470 -vn 0.2832 0.8940 -0.3471 -vn 0.2824 0.8945 -0.3466 -vn -0.0237 0.2407 -0.9703 -vn -0.0236 0.2409 -0.9703 -vn -0.0233 0.2410 -0.9702 -vn 0.7337 -0.4822 -0.4786 -vn -0.2764 0.6209 0.7335 -vn -0.2765 0.6198 0.7345 -vn -0.2764 0.6208 0.7336 -vn -0.2176 -0.3150 -0.9238 -vn -0.2176 -0.3149 -0.9238 -vn -0.2175 -0.3148 -0.9239 -vn -0.8794 -0.1995 -0.4323 -vn -0.8791 -0.1998 -0.4328 -vn 0.7378 -0.4662 0.4883 -vn 0.7382 -0.4660 0.4878 -vn -0.9390 0.2096 0.2725 -vn -0.9390 0.2098 0.2724 -vn -0.9390 0.2099 0.2723 -vn 0.7187 0.6250 -0.3047 -vn 0.7190 0.6248 -0.3044 -vn 0.7189 0.6249 -0.3045 -vn -0.5326 -0.8303 0.1644 -vn 0.7311 -0.4230 0.5352 -vn 0.3932 -0.1324 0.9099 -vn 0.3934 -0.1326 0.9098 -vn 0.3935 -0.1328 0.9097 -vn -0.6136 -0.4142 -0.6723 -vn -0.6135 -0.4144 -0.6722 -vn -0.7623 -0.2734 -0.5867 -vn -0.7624 -0.2728 -0.5867 -vn -0.7626 -0.2720 -0.5869 -vn 0.8541 -0.1278 -0.5042 -vn 0.4176 0.7033 0.5754 -vn 0.4174 0.7032 0.5756 -vn 0.4175 0.7032 0.5755 -vn -0.1312 0.9719 0.1956 -vn -0.1316 0.9719 0.1953 -vn -0.1316 0.9719 0.1952 -vn 0.9674 -0.0813 0.2400 -vn 0.9674 -0.0815 0.2399 -vn 0.9674 -0.0815 0.2398 -vn -0.6504 -0.2649 -0.7119 -vn -0.6505 -0.2651 -0.7118 -vn -0.8662 0.1459 -0.4780 -vn -0.6237 0.6946 -0.3585 -vn -0.6236 0.6946 -0.3587 -vn 0.8796 -0.0734 0.4700 -vn 0.8796 -0.0734 0.4699 -vn 0.8798 -0.0733 0.4697 -vn -0.0551 0.9980 0.0325 -vn -0.0570 0.9978 0.0330 -vn -0.0560 0.9979 0.0325 -vn -0.9195 -0.2381 -0.3128 -vn -0.9196 -0.2379 -0.3127 -vn -0.9195 -0.2382 -0.3128 -vn -0.5152 0.7259 -0.4557 -vn -0.5153 0.7259 -0.4556 -vn -0.5153 0.7257 -0.4558 -vn -0.7379 0.6512 0.1773 -vn -0.7376 0.6517 0.1768 -vn -0.7378 0.6514 0.1771 -vn -0.7470 -0.3380 -0.5725 -vn -0.7472 -0.3379 -0.5723 -vn -0.7468 -0.3381 -0.5727 -vn -0.6328 -0.7492 -0.1957 -vn -0.6329 -0.7491 -0.1955 -vn -0.6330 -0.7491 -0.1953 -vn 0.2461 0.8424 -0.4793 -vn 0.2464 0.8425 -0.4791 -vn -0.2514 0.9633 -0.0941 -vn -0.2506 0.9635 -0.0943 -vn -0.2517 0.9632 -0.0937 -vn 0.5504 -0.7480 -0.3708 -vn -0.8484 0.5007 -0.1714 -vn 0.6264 -0.7762 0.0721 -vn -0.2099 0.7643 0.6098 -vn -0.2099 0.7640 0.6102 -vn -0.0563 -0.0993 -0.9935 -vn -0.0562 -0.0994 -0.9935 -vn -0.0564 -0.0992 -0.9935 -vn -0.8549 0.4529 -0.2530 -vn -0.8551 0.4529 -0.2525 -vn -0.2205 -0.9630 0.1552 -vn -0.2206 -0.9630 0.1551 -vn 0.6437 -0.5235 -0.5581 -vn 0.6437 -0.5233 -0.5584 -vn 0.6436 -0.5236 -0.5582 -vn 0.7335 -0.3940 -0.5538 -vn 0.7334 -0.3941 -0.5539 -vn 0.7338 -0.3938 -0.5535 -vn 0.9274 -0.2486 0.2796 -vn 0.9274 -0.2489 0.2792 -vn 0.4280 -0.8774 0.2166 -vn 0.4277 -0.8775 0.2168 -vn -0.8008 -0.3088 -0.5131 -vn -0.8008 -0.3091 -0.5130 -vn -0.8010 -0.3088 -0.5129 -vn 0.5566 -0.7644 -0.3254 -vn -0.2083 -0.0527 -0.9766 -vn -0.2083 -0.0527 -0.9767 -vn 0.1789 0.7817 -0.5974 -vn 0.1788 0.7818 -0.5974 -vn 0.1787 0.7819 -0.5972 -vn 0.2307 0.4538 0.8607 -vn 0.2310 0.4535 0.8608 -vn 0.2314 0.4529 0.8610 -vn -0.1794 0.7453 0.6422 -vn -0.1791 0.7451 0.6425 -vn -0.1792 0.7451 0.6424 -vn -0.4144 -0.8899 -0.1905 -vn -0.4146 -0.8899 -0.1900 -vn -0.4149 -0.8898 -0.1899 -vn 0.1239 0.9874 0.0985 -vn 0.1241 0.9874 0.0986 -vn -0.0877 0.8531 0.5143 -vn -0.0876 0.8531 0.5143 -vn 0.0915 0.9690 -0.2293 -vn 0.6335 0.5664 -0.5270 -vn 0.6333 0.5666 -0.5272 -vn 0.6334 0.5665 -0.5271 -vn -0.2836 0.1598 0.9455 -vn 0.5660 -0.5510 0.6132 -vn 0.0828 -0.9660 0.2450 -vn 0.0808 -0.9654 0.2479 -vn 0.0812 -0.9657 0.2468 -vn 0.7997 0.1488 0.5817 -vn 0.7998 0.1486 0.5815 -vn -0.8947 -0.3167 -0.3151 -vn -0.8942 -0.3173 -0.3159 -vn -0.8946 -0.3169 -0.3151 -vn -0.2156 0.9029 0.3718 -vn -0.2157 0.9029 0.3718 -vn 0.4105 0.6803 -0.6072 -vn 0.4107 0.6805 -0.6068 -vn -0.3398 -0.7941 0.5040 -vn -0.3398 -0.7941 0.5039 -vn -0.3397 -0.7942 0.5039 -vn -0.2591 0.2587 -0.9305 -vn -0.2591 0.2589 -0.9305 -vn -0.2590 0.2590 -0.9305 -vn -0.8515 -0.1993 -0.4850 -vn -0.8517 -0.1992 -0.4846 -vn -0.8515 -0.1992 -0.4850 -vn 0.9608 0.0600 0.2706 -vn 0.9609 0.0591 0.2705 -vn 0.9607 0.0608 0.2710 -vn -0.8139 -0.0809 -0.5754 -vn -0.8138 -0.0801 -0.5755 -vn -0.8138 -0.0799 -0.5757 -vn -0.1985 0.9689 -0.1480 -vn -0.1986 0.9688 -0.1481 -vn 0.8315 0.0196 0.5551 -vn 0.8310 0.0199 0.5559 -vn 0.8313 0.0197 0.5555 -vn -0.5955 0.7192 -0.3578 -vn -0.5957 0.7192 -0.3576 -vn -0.5955 0.7193 -0.3579 -vn 0.2274 0.9076 0.3528 -vn 0.2277 0.9068 0.3548 -vn 0.2278 0.9071 0.3539 -vn -0.6402 -0.7066 -0.3014 -vn 0.6400 0.1003 -0.7618 -vn 0.6401 0.1004 -0.7617 -vn 0.9295 -0.2957 0.2204 -vn 0.9295 -0.2959 0.2204 -vn 0.3075 -0.7423 0.5953 -vn 0.3075 -0.7421 0.5956 -vn 0.3075 -0.7425 0.5951 -vn 0.1191 -0.6666 0.7359 -vn 0.1200 -0.6683 0.7341 -vn 0.1195 -0.6675 0.7350 -vn 0.2361 -0.2412 0.9413 -vn -0.4575 0.7506 -0.4768 -vn -0.5042 0.6934 -0.5148 -vn -0.5044 0.6932 -0.5148 -vn -0.5040 0.6937 -0.5146 -vn 0.1737 0.9529 -0.2488 -vn 0.1734 0.9529 -0.2489 -vn 0.1735 0.9529 -0.2489 -vn -0.8821 -0.2691 0.3867 -vn -0.8820 -0.2694 0.3867 -vn -0.8821 -0.2693 0.3866 -vn -0.5265 -0.7946 -0.3022 -vn -0.5260 -0.7946 -0.3032 -vn -0.5262 -0.7946 -0.3029 -vn 0.8805 -0.4529 -0.1398 -vn 0.8808 -0.4522 -0.1405 -vn 0.8808 -0.4521 -0.1406 -vn -0.0594 0.9278 -0.3683 -vn -0.5087 -0.2612 0.8204 -vn -0.5090 -0.2613 0.8201 -vn 0.5907 0.7619 -0.2656 -vn 0.1706 -0.9516 0.2558 -vn 0.1704 -0.9516 0.2558 -vn 0.1709 -0.9515 0.2556 -vn -0.5646 0.8189 -0.1030 -vn -0.0224 0.9918 0.1256 -vn -0.0234 0.9919 0.1252 -vn -0.0231 0.9919 0.1252 -vn 0.2407 0.7319 -0.6374 -vn 0.2406 0.7319 -0.6375 -vn 0.2405 0.7320 -0.6374 -vn -0.0548 -0.2265 0.9725 -vn -0.0547 -0.2264 0.9725 -vn -0.1044 0.1640 0.9809 -vn -0.1042 0.1644 0.9809 -vn -0.1042 0.1633 0.9811 -vn 0.8677 -0.4557 0.1984 -vn 0.8678 -0.4557 0.1983 -vn -0.2063 -0.9781 0.0285 -vn -0.2033 -0.9787 0.0279 -vn -0.2070 -0.9779 0.0297 -vn -0.8418 -0.2972 -0.4507 -vn -0.8419 -0.2970 -0.4506 -vn -0.8419 -0.2971 -0.4505 -vn 0.3787 0.7476 0.5456 -vn 0.3786 0.7477 0.5456 -vn -0.9036 -0.3556 -0.2390 -vn -0.9035 -0.3557 -0.2390 -vn -0.3556 0.8354 -0.4191 -vn -0.3550 0.8355 -0.4193 -vn -0.3553 0.8355 -0.4191 -vn 0.2823 -0.3584 0.8899 -vn 0.2822 -0.3586 0.8898 -vn 0.2827 -0.3581 0.8898 -vn 0.9586 -0.0823 0.2726 -vn 0.9580 -0.0839 0.2742 -vn 0.9579 -0.0860 0.2741 -vn -0.4779 0.7380 -0.4764 -vn 0.3993 -0.8693 0.2914 -vn 0.3992 -0.8693 0.2914 -vn 0.3998 -0.8691 0.2914 -vn 0.2076 0.8766 0.4341 -vn 0.0056 -0.9704 -0.2416 -vn 0.0061 -0.9703 -0.2417 -vn 0.0060 -0.9704 -0.2413 -vn -0.0471 -0.9820 -0.1830 -vn -0.0470 -0.9819 -0.1837 -vn -0.0468 -0.9818 -0.1841 -vn 0.5989 -0.8005 -0.0245 -vn 0.5989 -0.8004 -0.0245 -vn 0.5990 -0.8004 -0.0247 -vn 0.1849 0.9784 0.0922 -vn 0.1845 0.9785 0.0922 -vn 0.1846 0.9785 0.0922 -vn -0.9493 -0.2271 0.2174 -vn -0.0770 -0.2347 0.9690 -vn 0.4170 -0.8691 0.2661 -vn 0.4157 -0.8696 0.2665 -vn 0.4175 -0.8691 0.2654 -vn 0.3951 0.2729 0.8772 -vn 0.3942 0.2725 0.8777 -vn -0.6093 -0.7896 -0.0722 -vn -0.6093 -0.7897 -0.0722 -vn 0.3501 -0.8879 0.2985 -vn 0.3505 -0.8878 0.2983 -vn 0.3504 -0.8878 0.2983 -vn 0.7360 0.6759 -0.0395 -vn 0.7359 0.6759 -0.0396 -vn 0.7359 0.6760 -0.0397 -vn -0.2035 -0.1271 0.9708 -vn -0.2033 -0.1274 0.9708 -vn 0.3138 -0.2947 0.9026 -vn 0.4501 0.8922 -0.0382 -vn 0.4501 0.8922 -0.0379 -vn 0.4504 0.8920 -0.0381 -vn 0.4310 0.0057 0.9023 -vn 0.4312 0.0055 0.9022 -vn 0.4310 0.0056 0.9023 -vn 0.1207 0.2070 -0.9709 -vn 0.1208 0.2071 -0.9708 -vn 0.1207 0.2074 -0.9708 -vn 0.0065 -0.9881 -0.1535 -vn 0.0063 -0.9881 -0.1538 -vn 0.0067 -0.9881 -0.1535 -vn 0.1837 0.9806 -0.0684 -vn 0.1835 0.9806 -0.0683 -vn 0.7148 0.6915 0.1046 -vn -0.5759 0.5468 0.6078 -vn -0.3065 -0.8221 -0.4798 -vn -0.3066 -0.8221 -0.4797 -vn -0.4478 -0.4542 -0.7702 -vn -0.4442 -0.4553 -0.7716 -vn -0.4455 -0.4551 -0.7710 -vn 0.9402 -0.2345 0.2470 -vn 0.9406 -0.2344 0.2457 -vn 0.9404 -0.2342 0.2464 -vn -0.9430 0.2500 -0.2197 -vn -0.9431 0.2494 -0.2198 -vn 0.0283 -0.0191 0.9994 -vn 0.0279 -0.0197 0.9994 -vn 0.0280 -0.0195 0.9994 -vn -0.8318 0.5059 -0.2284 -vn 0.1604 0.2087 0.9647 -vn 0.1605 0.2084 0.9648 -vn -0.7095 0.6653 -0.2323 -vn -0.7099 0.6650 -0.2322 -vn -0.7096 0.6652 -0.2323 -vn 0.4298 0.7014 0.5686 -vn 0.4297 0.7018 0.5682 -vn 0.4292 0.7022 0.5681 -vn -0.4100 0.2303 0.8825 -vn -0.4101 0.2301 0.8825 -vn -0.4102 0.2302 0.8825 -vn 0.0876 -0.9633 -0.2537 -vn 0.0876 -0.9633 -0.2536 -vn -0.9875 -0.1063 0.1165 -vn -0.9874 -0.1065 0.1167 -vn -0.9874 -0.1066 0.1169 -vn -0.1281 0.8440 -0.5208 -vn -0.1280 0.8440 -0.5209 -vn 0.0059 0.6523 0.7579 -vn 0.0050 0.6525 0.7578 -vn 0.8061 0.5405 0.2409 -vn 0.8060 0.5406 0.2410 -vn 0.7274 -0.6846 0.0467 -vn 0.7275 -0.6845 0.0467 -vn 0.7276 -0.6844 0.0467 -vn -0.4503 -0.6906 -0.5659 -vn -0.4504 -0.6906 -0.5659 -vn -0.4502 -0.6906 -0.5660 -vn -0.3710 0.5304 -0.7622 -vn -0.3710 0.5305 -0.7622 -vn -0.5193 -0.2936 -0.8026 -vn -0.5195 -0.2937 -0.8024 -vn -0.5196 -0.2935 -0.8024 -vn 0.0032 0.9849 -0.1731 -vn 0.0035 0.9849 -0.1730 -vn -0.5253 -0.8306 -0.1848 -vn -0.5252 -0.8306 -0.1849 -vn -0.5254 -0.8305 -0.1848 -vn -0.5255 -0.8241 -0.2112 -vn -0.5249 -0.8247 -0.2106 -vn -0.5252 -0.8245 -0.2108 -vn 0.3990 -0.1066 0.9107 -vn 0.3988 -0.1064 0.9108 -vn -0.5673 -0.6724 -0.4754 -vn -0.5673 -0.6720 -0.4760 -vn -0.5672 -0.6723 -0.4757 -vn 0.0474 0.9908 0.1269 -vn 0.0473 0.9908 0.1271 -vn 0.0475 0.9908 0.1267 -vn 0.5072 -0.6158 0.6030 -vn 0.5242 0.1871 -0.8308 -vn -0.4833 -0.0847 -0.8714 -vn -0.4826 -0.0842 -0.8718 -vn -0.4830 -0.0844 -0.8715 -vn 0.0387 0.0416 -0.9984 -vn 0.0387 0.0419 -0.9984 -vn 0.0391 0.0429 -0.9983 -vn -0.9173 0.3545 0.1812 -vn -0.7707 0.5649 -0.2948 -vn -0.7706 0.5651 -0.2947 -vn -0.7706 0.5650 -0.2948 -vn 0.7524 -0.6579 -0.0332 -vn -0.7817 -0.1213 -0.6117 -vn -0.7819 -0.1209 -0.6115 -vn -0.7813 -0.1216 -0.6122 -vn 0.7493 0.2496 0.6134 -vn 0.7490 0.2499 0.6137 -vn 0.7492 0.2497 0.6135 -vn -0.1496 -0.5780 -0.8022 -vn -0.1491 -0.5779 -0.8024 -vn -0.1494 -0.5779 -0.8023 -vn 0.5448 -0.4999 -0.6733 -vn 0.5449 -0.5002 -0.6730 -vn 0.5447 -0.5000 -0.6733 -vn 0.7983 0.0487 -0.6003 -vn 0.7983 0.0491 -0.6002 -vn 0.7983 0.0489 -0.6003 -vn -0.3939 0.9009 0.1824 -vn -0.3934 0.9012 0.1820 -vn -0.3931 0.9013 0.1818 -vn -0.9941 0.0264 -0.1056 -vn -0.5214 0.6215 -0.5847 -vn -0.5207 0.6228 -0.5839 -vn -0.5210 0.6221 -0.5844 -vn 0.6584 -0.4366 -0.6131 -vn 0.6599 -0.4368 -0.6113 -vn 0.6599 -0.4368 -0.6114 -vn 0.2009 0.7599 0.6183 -vn 0.2012 0.7594 0.6187 -vn 0.2010 0.7596 0.6185 -vn -0.5443 -0.2697 0.7944 -vn -0.5444 -0.2696 0.7943 -vn 0.2824 -0.9504 0.1303 -vn 0.2827 -0.9504 0.1300 -vn 0.2826 -0.9504 0.1301 -vn 0.6798 0.1116 -0.7248 -vn 0.6795 0.1105 -0.7253 -vn 0.6798 0.1117 -0.7248 -vn -0.7741 0.4534 -0.4419 -vn -0.7738 0.4525 -0.4433 -vn -0.7741 0.4529 -0.4424 -vn 0.7808 -0.5856 0.2178 -vn 0.7809 -0.5855 0.2177 -vn 0.5427 0.7707 -0.3339 -vn 0.5426 0.7706 -0.3343 -vn 0.2194 -0.5046 -0.8350 -vn 0.2198 -0.5045 -0.8350 -vn 0.2196 -0.5049 -0.8348 -vn -0.7121 -0.6938 -0.1069 -vn -0.1972 0.3054 -0.9316 -vn -0.1962 0.3063 -0.9315 -vn -0.1950 0.3065 -0.9317 -vn 0.0071 0.9950 -0.0999 -vn 0.0075 0.9950 -0.0999 -vn 0.0068 0.9950 -0.0997 -vn 0.5259 -0.8439 -0.1063 -vn 0.5260 -0.8438 -0.1063 -vn 0.8495 0.0808 -0.5214 -vn 0.8497 0.0791 -0.5213 -vn 0.8496 0.0774 -0.5218 -vn -0.2383 0.1760 -0.9551 -vn -0.2378 0.1767 -0.9551 -vn -0.2382 0.1760 -0.9551 -vn 0.2294 -0.0291 0.9729 -vn 0.2290 -0.0293 0.9730 -vn 0.2286 -0.0295 0.9731 -vn -0.0000 -0.0000 -1.0000 -vn 0.2946 -0.4388 0.8489 -vn 0.2947 -0.4388 0.8489 -vn -0.8400 0.3056 0.4484 -vn -0.8401 0.3052 0.4485 -vn -0.8401 0.3054 0.4483 -vn -0.7930 0.2391 -0.5603 -vn -0.3413 0.7917 -0.5066 -vn -0.3413 0.7917 -0.5067 -vn 0.3379 0.0125 0.9411 -vn 0.3378 0.0126 0.9411 -vn 0.3380 0.0124 0.9411 -vn 0.8251 0.4842 0.2912 -vn 0.6484 -0.2045 0.7333 -vn -0.3969 0.8306 -0.3905 -vn -0.0999 0.7266 0.6798 -vn -0.0999 0.7267 0.6797 -vn -0.0998 0.7266 0.6798 -vn 0.8685 0.4519 0.2037 -vn 0.8685 0.4520 0.2037 -vn 0.8684 0.4521 0.2037 -vn -0.0645 0.7330 0.6772 -vn -0.0646 0.7327 0.6775 -vn -0.0643 0.7319 0.6784 -vn -0.8518 0.4259 -0.3050 -vn -0.8518 0.4259 -0.3051 -vn -0.8518 0.4259 -0.3052 -vn -0.3519 0.8551 -0.3808 -vn -0.3521 0.8550 -0.3808 -vn -0.3512 0.8556 -0.3803 -vn -0.3499 -0.4872 0.8002 -vn -0.7003 -0.7080 -0.0912 -vn -0.7003 -0.7080 -0.0911 -vn -0.9468 0.2455 0.2081 -vn -0.9468 0.2461 0.2073 -vn -0.9468 0.2460 0.2075 -vn 0.9029 0.1710 -0.3944 -vn 0.9026 0.1711 -0.3951 -vn 0.9025 0.1711 -0.3953 -vn 0.5053 0.8479 -0.1605 -vn 0.5052 0.8480 -0.1605 -vn 0.2207 0.8430 -0.4906 -vn 0.2208 0.8411 -0.4938 -vn 0.2211 0.8419 -0.4922 -vn 0.3390 0.2263 0.9132 -vn 0.3388 0.2261 0.9133 -vn -0.1568 0.3291 -0.9312 -vn -0.1567 0.3287 -0.9313 -vn -0.1568 0.3290 -0.9312 -vn 0.4188 0.0471 0.9069 -vn 0.4192 0.0464 0.9067 -vn 0.4181 0.0476 0.9072 -vn -0.6470 0.4702 -0.6003 -vn 0.0973 -0.0482 -0.9941 -vn 0.0963 -0.0490 -0.9941 -vn 0.0967 -0.0486 -0.9941 -vn 0.5430 0.7220 -0.4288 -vn 0.5430 0.7221 -0.4287 -vn -0.3633 -0.9227 -0.1287 -vn -0.3634 -0.9227 -0.1287 -vn -0.7296 -0.3430 0.5916 -vn -0.7297 -0.3429 0.5916 -vn -0.7259 0.3870 0.5686 -vn -0.7259 0.3877 0.5682 -vn -0.7259 0.3875 0.5683 -vn -0.4414 -0.8676 0.2291 -vn -0.2297 -0.1326 -0.9642 -vn -0.2298 -0.1322 -0.9642 -vn -0.2296 -0.1325 -0.9642 -vn -0.2650 0.6611 -0.7019 -vn -0.2650 0.6610 -0.7021 -vn -0.2649 0.6610 -0.7021 -vn -0.4634 0.7501 0.4718 -vn -0.4633 0.7501 0.4719 -vn 0.9311 0.1037 0.3496 -vn 0.9313 0.1043 0.3489 -vn 0.9310 0.1026 0.3503 -vn -0.0905 0.1276 -0.9877 -vn -0.7989 0.5900 -0.1168 -vn -0.7990 0.5898 -0.1171 -vn -0.7991 0.5896 -0.1172 -vn -0.9283 0.3261 -0.1788 -vn 0.4263 0.5282 -0.7343 -vn 0.4265 0.5281 -0.7343 -vn 0.4263 0.5285 -0.7342 -vn -0.4570 -0.5693 -0.6834 -vn -0.4574 -0.5699 -0.6826 -vn -0.4582 -0.5702 -0.6819 -vn -0.2763 0.9252 0.2600 -vn -0.2766 0.9252 0.2598 -vn 0.2182 0.8876 0.4057 -vn -0.0713 -0.0603 0.9956 -vn -0.0715 -0.0605 0.9956 -vn 0.6586 0.7134 -0.2395 -vn 0.6588 0.7133 -0.2392 -vn -0.2056 0.5982 -0.7745 -vn -0.2061 0.5978 -0.7747 -vn -0.1604 -0.6423 0.7495 -vn -0.1605 -0.6424 0.7494 -vn 0.3865 -0.9062 0.1717 -vn 0.3865 -0.9061 0.1719 -vn 0.3865 -0.9061 0.1720 -vn -0.7296 -0.1939 0.6558 -vn -0.8149 -0.4976 -0.2973 -vn -0.8148 -0.4973 -0.2979 -vn -0.8085 -0.4995 -0.3111 -vn -0.8084 -0.4995 -0.3113 -vn -0.8088 -0.4994 -0.3106 -vn 0.1409 0.9780 0.1539 -vn -0.0154 -0.2971 -0.9547 -vn -0.0152 -0.2965 -0.9549 -vn -0.0151 -0.2965 -0.9549 -vn 0.5897 -0.4007 0.7012 -vn 0.5895 -0.4006 0.7014 -vn 0.5901 -0.4010 0.7007 -vn 0.3572 0.9199 0.1620 -vn 0.3595 0.9192 0.1610 -vn 0.3583 0.9196 0.1612 -vn 0.5075 0.5656 -0.6500 -vn 0.5074 0.5652 -0.6505 -vn 0.5076 0.5652 -0.6503 -vn 0.5629 -0.6929 0.4505 -vn 0.3208 0.9471 -0.0026 -vn -0.5434 -0.5854 -0.6016 -vn -0.5427 -0.5866 -0.6011 -vn -0.5432 -0.5858 -0.6015 -vn 0.2398 0.1470 -0.9596 -vn 0.2397 0.1471 -0.9596 -vn 0.2396 0.1472 -0.9596 -vn -0.0904 0.0897 -0.9919 -vn -0.0904 0.0898 -0.9919 -vn -0.0902 0.0899 -0.9919 -vn -0.8672 0.1437 -0.4768 -vn -0.8338 -0.0976 -0.5434 -vn -0.8338 -0.0977 -0.5433 -vn -0.8337 -0.0975 -0.5436 -vn -0.8189 -0.0549 -0.5712 -vn -0.8189 -0.0565 -0.5712 -vn -0.8190 -0.0561 -0.5710 -vn -0.8215 0.1338 -0.5543 -vn -0.8218 0.1326 -0.5542 -vn 0.7164 0.6964 0.0428 -vn 0.7163 0.6965 0.0429 -vn 0.7159 0.6969 0.0430 -vn -0.1696 0.9487 0.2669 -vn -0.1701 0.9485 0.2674 -vn -0.1700 0.9485 0.2673 -vn -0.2592 0.6221 -0.7388 -vn -0.2591 0.6219 -0.7390 -vn -0.2592 0.6219 -0.7389 -vn 0.0803 0.8347 -0.5449 -vn 0.0803 0.8351 -0.5443 -vn 0.0815 0.8367 -0.5415 -vn 0.2696 -0.5610 0.7827 -vn 0.2705 -0.5610 0.7824 -vn 0.2698 -0.5610 0.7826 -vn -0.4036 -0.3599 0.8412 -vn -0.4039 -0.3600 0.8410 -vn -0.2719 0.9317 -0.2409 -vn -0.2721 0.9316 -0.2411 -vn -0.2717 0.9317 -0.2411 -vn -0.0490 -0.2494 0.9672 -vn -0.0485 -0.2487 0.9674 -vn -0.0728 -0.2818 0.9567 -vn -0.0730 -0.2820 0.9566 -vn -0.0736 -0.2827 0.9564 -vn 0.2430 0.0793 0.9668 -vn -0.0736 -0.1047 0.9918 -vn -0.0737 -0.1047 0.9918 -vn -0.0737 -0.1048 0.9918 -vn -0.0080 0.6832 0.7302 -vn -0.0077 0.6830 0.7304 -vn -0.0072 0.6828 0.7305 -vn 0.2247 0.9692 -0.1004 -vn 0.2247 0.9692 -0.1011 -vn 0.2246 0.9692 -0.1007 -vn 0.9798 0.1799 -0.0874 -vn -0.8230 0.3741 -0.4275 -vn -0.8229 0.3743 -0.4274 -vn -0.8229 0.3742 -0.4276 -vn -0.8928 -0.1837 -0.4113 -vn 0.2201 0.9565 -0.1916 -vn 0.2205 0.9563 -0.1917 -vn 0.2202 0.9564 -0.1918 -vn 0.3072 -0.2723 0.9119 -vn 0.3071 -0.2721 0.9120 -vn 0.3074 -0.2722 0.9118 -vn 0.3614 0.9314 -0.0430 -vn 0.3612 0.9315 -0.0432 -vn 0.3610 0.9316 -0.0435 -vn 0.0169 0.8635 -0.5041 -vn 0.0173 0.8635 -0.5040 -vn 0.0166 0.8634 -0.5042 -vn 0.1908 -0.3830 0.9038 -vn 0.1917 -0.3830 0.9037 -vn 0.1916 -0.3831 0.9036 -vn -0.0863 -0.6387 0.7646 -vn -0.0859 -0.6387 0.7646 -vn -0.0857 -0.6386 0.7647 -vn -0.8289 0.5528 0.0861 -vn -0.8292 0.5521 0.0873 -vn -0.8286 0.5533 0.0855 -vn -0.0003 0.0003 -1.0000 -vn 0.2665 -0.1865 0.9456 -vn 0.6355 -0.6178 0.4631 -vn 0.6353 -0.6185 0.4624 -vn 0.6357 -0.6178 0.4629 -vn -0.0179 0.9993 -0.0328 -vn -0.0182 0.9993 -0.0330 -vn -0.0177 0.9993 -0.0327 -vn 0.4694 0.7718 0.4290 -vn 0.4696 0.7717 0.4289 -vn -0.1136 -0.2898 0.9503 -vn -0.1137 -0.2897 0.9503 -vn -0.1131 -0.2897 0.9504 -vn -0.3408 0.0089 0.9401 -vn -0.3410 0.0085 0.9400 -vn -0.3410 0.0089 0.9400 -vn -0.7811 0.2572 -0.5689 -vn 0.1863 0.8872 -0.4221 -vn 0.1866 0.8874 -0.4216 -vn 0.1863 0.8873 -0.4219 -vn -0.0396 0.9978 0.0536 -vn -0.0398 0.9978 0.0531 -vn -0.0396 0.9978 0.0533 -vn 0.6359 0.7661 -0.0931 -vn 0.6358 0.7662 -0.0931 -vn 0.0143 0.4080 0.9129 -vn 0.0457 0.9756 0.2148 -vn 0.0576 0.3309 0.9419 -vn 0.0569 0.3315 0.9417 -vn 0.0582 0.3308 0.9419 -vn 0.7956 0.4752 0.3758 -vn 0.7957 0.4752 0.3756 -vn 0.1399 0.7710 0.6213 -vn 0.1396 0.7711 0.6212 -vn 0.1386 0.7715 0.6209 -vn -0.0610 0.9928 -0.1030 -vn -0.0601 0.9929 -0.1028 -vn -0.0615 0.9928 -0.1029 -vn 0.1916 0.0062 -0.9814 -vn 0.1917 0.0059 -0.9814 -vn 0.1920 0.0059 -0.9814 -vn 0.8950 -0.0390 0.4444 -vn 0.8950 -0.0390 0.4443 -vn 0.8688 -0.2434 -0.4313 -vn 0.8688 -0.2436 -0.4312 -vn 0.5126 -0.1740 0.8408 -vn 0.5127 -0.1744 0.8407 -vn -0.4537 0.2761 -0.8473 -vn -0.4534 0.2761 -0.8474 -vn -0.4536 0.2761 -0.8473 -vn 0.6754 -0.4587 0.5774 -vn -0.4959 -0.7171 0.4897 -vn -0.4960 -0.7169 0.4900 -vn -0.4956 -0.7172 0.4899 -vn -0.7270 -0.4040 0.5552 -vn -0.7271 -0.4037 0.5553 -vn -0.7270 -0.4039 0.5553 -vn -0.3086 0.9007 -0.3058 -vn -0.2008 0.9678 -0.1516 -vn 0.6065 0.7297 -0.3158 -vn 0.6065 0.7298 -0.3156 -vn 0.2472 0.9500 -0.1907 -vn 0.2473 0.9501 -0.1901 -vn 0.2474 0.9500 -0.1905 -vn -0.7617 0.3691 -0.5326 -vn -0.7620 0.3694 -0.5318 -vn -0.7618 0.3695 -0.5321 -vn 0.6197 -0.4050 0.6723 -vn 0.6193 -0.4051 0.6726 -vn 0.6063 -0.4067 0.6833 -vn 0.6066 -0.4066 0.6832 -vn -0.9587 0.1294 -0.2534 -vn -0.9587 0.1297 -0.2533 -vn -0.9586 0.1295 -0.2535 -vn -0.9400 0.3005 -0.1616 -vn -0.9400 0.2998 -0.1631 -vn -0.9400 0.3002 -0.1620 -vn 0.2739 0.4596 0.8448 -vn 0.2768 0.4740 0.8359 -vn 0.2773 0.4753 0.8350 -vn 0.2663 0.9639 0.0020 -vn 0.2665 0.9638 0.0019 -vn -0.3520 -0.7027 -0.6183 -vn -0.3524 -0.7042 -0.6164 -vn -0.3520 -0.7031 -0.6178 -vn -0.1137 -0.2665 -0.9571 -vn -0.1136 -0.2661 -0.9572 -vn -0.1132 -0.2658 -0.9574 -vn -0.8006 0.4911 -0.3434 -vn -0.8004 0.4911 -0.3437 -vn -0.8002 0.4910 -0.3444 -vn 0.4487 0.4953 -0.7438 -vn 0.4490 0.4955 -0.7435 -vn 0.4490 0.4953 -0.7437 -vn -0.7041 0.5084 -0.4957 -vn -0.7042 0.5084 -0.4956 -vn -0.7044 0.5084 -0.4953 -vn 0.9517 -0.0583 -0.3015 -vn 0.9516 -0.0585 -0.3016 -vn 0.9516 -0.0588 -0.3016 -vn 0.7527 -0.4223 0.5051 -vn 0.7527 -0.4224 0.5050 -vn 0.3400 0.3589 -0.8693 -vn 0.3398 0.3594 -0.8691 -vn 0.3400 0.3598 -0.8689 -vn -0.1044 0.3604 -0.9269 -vn -0.1041 0.3607 -0.9269 -vn -0.1043 0.3603 -0.9270 -vn -0.1171 0.0770 0.9901 -vn -0.6588 0.6808 -0.3203 -vn -0.6587 0.6809 -0.3201 -vn -0.6587 0.6810 -0.3198 -vn -0.2727 -0.9532 -0.1305 -vn -0.2728 -0.9532 -0.1305 -vn -0.8253 0.4208 -0.3766 -vn -0.8252 0.4213 -0.3762 -vn -0.8253 0.4210 -0.3764 -vn 0.1918 0.9693 0.1536 -vn 0.1917 0.9694 0.1535 -vn 0.5965 0.7439 0.3012 -vn 0.5965 0.7440 0.3012 -vn -0.9685 -0.2480 0.0242 -vn -0.9684 -0.2481 0.0243 -vn -0.9685 -0.2479 0.0241 -vn -0.5168 -0.7937 0.3208 -vn -0.5169 -0.7939 0.3203 -vn -0.5168 -0.7937 0.3209 -vn 0.6028 -0.2166 0.7679 -vn 0.6027 -0.2164 0.7681 -vn 0.3855 -0.0650 0.9204 -vn 0.3855 -0.0648 0.9204 -vn -0.0384 0.0012 0.9993 -vn -0.0382 0.0004 0.9993 -vn -0.0375 -0.0005 0.9993 -vn 0.2501 0.6157 -0.7472 -vn 0.2502 0.6157 -0.7472 -vn 0.8212 -0.3077 0.4806 -vn 0.8212 -0.3077 0.4805 -vn 0.6886 0.3298 -0.6458 -vn 0.6884 0.3299 -0.6460 -vn 0.6886 0.3297 -0.6459 -vn -0.8828 -0.4633 0.0779 -vn -0.8830 -0.4629 0.0773 -vn -0.8828 -0.4631 0.0787 -vn -0.6725 0.4287 -0.6033 -vn -0.6722 0.4287 -0.6036 -vn -0.6723 0.4287 -0.6035 -vn -0.8070 -0.5775 0.1231 -vn -0.8074 -0.5770 0.1228 -vn -0.8072 -0.5773 0.1231 -vn -0.6206 -0.7781 -0.0971 -vn -0.6205 -0.7782 -0.0969 -vn -0.6206 -0.7781 -0.0967 -vn 0.4084 0.9112 -0.0544 -vn 0.4077 0.9114 -0.0552 -vn 0.4082 0.9112 -0.0548 -vn -0.4048 0.6325 0.6603 -vn -0.4044 0.6321 0.6610 -vn 0.0064 -0.4428 -0.8966 -vn 0.0079 -0.4408 -0.8976 -vn 0.0074 -0.4413 -0.8973 -vn -0.5179 -0.2488 -0.8185 -vn -0.5180 -0.2492 -0.8183 -vn -0.5178 -0.2488 -0.8185 -vn 0.9175 0.3824 0.1096 -vn 0.9174 0.3830 0.1078 -vn 0.9175 0.3827 0.1084 -vn 0.1767 0.7761 -0.6054 -vn -0.1657 0.9601 -0.2252 -vn -0.1660 0.9602 -0.2248 -vn -0.1658 0.9602 -0.2249 -vn -0.7560 -0.4874 -0.4368 -vn -0.7562 -0.4884 -0.4355 -vn -0.7562 -0.4878 -0.4360 -vn 0.7748 0.2486 -0.5813 -vn 0.7738 0.2489 -0.5824 -vn 0.7745 0.2486 -0.5817 -vn 0.1119 -0.0565 0.9921 -vn 0.1117 -0.0570 0.9921 -vn 0.1119 -0.0564 0.9921 -vn -0.4897 -0.8586 -0.1517 -vn -0.4896 -0.8586 -0.1518 -vn -0.5558 0.3423 -0.7576 -vn -0.5559 0.3421 -0.7576 -vn -0.2328 0.9313 -0.2801 -vn -0.2330 0.9313 -0.2800 -vn -0.2333 0.9313 -0.2798 -vn 0.1990 0.9374 0.2858 -vn 0.1989 0.9374 0.2858 -vn 0.4603 0.8600 0.2202 -vn 0.4600 0.8601 0.2204 -vn 0.4944 0.8661 -0.0735 -vn 0.4944 0.8661 -0.0737 -vn 0.4944 0.8661 -0.0738 -vn 0.9795 0.1845 0.0806 -vn 0.9795 0.1847 0.0799 -vn 0.9795 0.1855 0.0788 -vn 0.5593 -0.7979 0.2249 -vn -0.1939 -0.9765 0.0941 -vn -0.1939 -0.9765 0.0940 -vn 0.2871 0.9560 -0.0603 -vn 0.2883 0.9555 -0.0618 -vn 0.2880 0.9557 -0.0609 -vn -0.0466 -0.2733 0.9608 -vn 0.3222 0.8900 0.3226 -vn 0.3223 0.8901 0.3224 -vn 0.3221 0.8900 0.3228 -vn 0.3398 -0.8601 0.3804 -vn 0.3398 -0.8599 0.3809 -vn -0.8879 0.4542 -0.0732 -vn -0.1633 0.9635 0.2123 -vn -0.1644 0.9630 0.2137 -vn -0.1640 0.9633 0.2126 -vn -0.4500 -0.8682 -0.2094 -vn -0.4501 -0.8680 -0.2098 -vn -0.8218 -0.3945 -0.4111 -vn -0.8217 -0.3941 -0.4117 -vn -0.8218 -0.3943 -0.4114 -vn -0.6256 -0.7305 -0.2740 -vn -0.6255 -0.7305 -0.2740 -vn 0.0905 0.6786 0.7289 -vn 0.0911 0.6785 0.7289 -vn 0.0906 0.6786 0.7289 -vn 0.8448 -0.3659 0.3903 -vn 0.8447 -0.3659 0.3906 -vn 0.3406 0.7617 -0.5512 -vn 0.3403 0.7618 -0.5512 -vn 0.3402 0.7616 -0.5515 -vn -0.4812 -0.3358 -0.8098 -vn -0.4812 -0.3366 -0.8094 -vn -0.4811 -0.3362 -0.8096 -vn -0.8499 0.3368 -0.4051 -vn 0.9473 0.1105 0.3008 -vn 0.5945 -0.6360 0.4921 -vn 0.5945 -0.6361 0.4919 -vn 0.5947 -0.6360 0.4917 -vn 0.8103 0.0749 0.5812 -vn 0.8097 0.0749 0.5821 -vn 0.8101 0.0750 0.5814 -vn -0.1690 0.9561 0.2394 -vn -0.1690 0.9561 0.2395 -vn 0.2554 0.7910 -0.5560 -vn 0.2553 0.7908 -0.5563 -vn 0.2553 0.7909 -0.5561 -vn -0.4503 -0.8258 -0.3394 -vn -0.4503 -0.8258 -0.3395 -vn 0.4521 -0.7301 0.5125 -vn 0.4520 -0.7301 0.5125 -vn -0.9117 -0.2386 -0.3345 -vn -0.9118 -0.2382 -0.3346 -vn -0.9118 -0.2384 -0.3345 -vn -0.6965 0.6473 0.3096 -vn -0.6961 0.6482 0.3087 -vn -0.6962 0.6480 0.3089 -vn -0.2644 -0.4838 0.8343 -vn -0.2638 -0.4835 0.8347 -vn -0.2640 -0.4837 0.8345 -vn 0.8153 -0.5495 0.1826 -vn -0.9903 -0.0109 -0.1385 -vn -0.9903 -0.0108 -0.1387 -vn -0.9903 -0.0112 -0.1384 -vn -0.4077 0.1084 0.9067 -vn -0.4082 0.1079 0.9065 -vn -0.4076 0.1085 0.9067 -vn -0.2366 0.1467 0.9605 -vn -0.2366 0.1463 0.9605 -vn -0.2365 0.1459 0.9606 -vn 0.0947 -0.9511 -0.2940 -vn 0.0952 -0.9511 -0.2939 -vn -0.4195 -0.9077 0.0056 -vn -0.4189 -0.9080 0.0060 -vn -0.4192 -0.9079 0.0059 -vn 0.0218 -0.7357 0.6770 -vn -0.0658 0.8882 0.4546 -vn -0.8151 0.5723 0.0900 -vn -0.8154 0.5720 0.0898 -vn -0.8153 0.5720 0.0900 -vn -0.8568 0.2543 -0.4486 -vn -0.8567 0.2547 -0.4487 -vn -0.8568 0.2544 -0.4485 -vn 0.6858 -0.7269 0.0349 -vn 0.6861 -0.7267 0.0351 -vn 0.6860 -0.7268 0.0352 -vn 0.5774 0.3004 -0.7592 -vn 0.5773 0.3005 -0.7592 -vn 0.5771 0.3007 -0.7593 -vn 0.7357 -0.6141 0.2858 -vn 0.7352 -0.6147 0.2856 -vn 0.7354 -0.6144 0.2857 -vn 0.2048 0.0367 0.9781 -vn 0.2049 0.0369 0.9781 -vn 0.2049 0.0365 0.9781 -vn -0.1024 -0.4397 -0.8923 -vn -0.1026 -0.4397 -0.8923 -vn -0.1026 -0.4396 -0.8923 -vn 0.4147 -0.1443 0.8984 -vn 0.4154 -0.1440 0.8982 -vn 0.4139 -0.1448 0.8987 -vn 0.5239 0.8353 -0.1670 -vn 0.5238 0.8353 -0.1672 -vn 0.5237 0.8354 -0.1668 -vn 0.2322 0.9695 -0.0786 -vn 0.2325 0.9694 -0.0787 -vn 0.2322 0.9695 -0.0789 -vn 0.0362 0.3870 0.9214 -vn 0.0365 0.3873 0.9212 -vn 0.8277 0.2364 0.5089 -vn 0.8278 0.2366 0.5087 -vn 0.8277 0.2368 0.5087 -vn -0.6156 -0.6615 -0.4284 -vn -0.6155 -0.6616 -0.4284 -vn -0.6155 -0.6615 -0.4285 -vn 0.1346 0.8520 -0.5060 -vn 0.1348 0.8519 -0.5061 -vn -0.9008 -0.1995 0.3856 -vn -0.9010 -0.1993 0.3853 -vn -0.9010 -0.1993 0.3854 -vn 0.5254 -0.8402 -0.1344 -vn 0.5255 -0.8401 -0.1345 -vn 0.5253 -0.8403 -0.1343 -vn 0.6610 0.4113 -0.6276 -vn 0.6610 0.4117 -0.6273 -vn 0.6611 0.4110 -0.6277 -vn -0.0196 -0.8881 -0.4592 -vn -0.0194 -0.8881 -0.4592 -vn -0.0198 -0.8882 -0.4590 -vn -0.7013 -0.7108 -0.0546 -vn -0.7013 -0.7108 -0.0547 -vn -0.7012 -0.7108 -0.0548 -vn -0.5856 -0.8105 -0.0129 -vn -0.5858 -0.8103 -0.0128 -vn 0.9002 -0.3334 0.2803 -vn -0.7262 -0.6823 -0.0844 -vn -0.7265 -0.6820 -0.0842 -vn -0.8988 -0.2593 -0.3536 -vn -0.8988 -0.2593 -0.3535 -vn 0.0265 0.1980 0.9798 -vn 0.4349 -0.1399 0.8895 -vn 0.4350 -0.1398 0.8895 -vn 0.4352 -0.1396 0.8895 -vn -0.2175 -0.7795 -0.5874 -vn -0.2175 -0.7796 -0.5872 -vn -0.2175 -0.7796 -0.5873 -vn 0.8667 -0.1394 0.4789 -vn 0.8667 -0.1394 0.4790 -vn 0.8669 -0.1391 0.4787 -vn 0.1993 -0.0431 -0.9790 -vn 0.1990 -0.0431 -0.9790 -vn 0.1992 -0.0430 -0.9790 -vn 0.8434 -0.2282 0.4864 -vn 0.8435 -0.2282 0.4863 -vn 0.8433 -0.2279 0.4868 -vn 0.7543 0.0188 -0.6563 -vn 0.7531 0.0189 -0.6576 -vn 0.7536 0.0188 -0.6571 -vn 0.3249 -0.9456 -0.0160 -vn -0.4218 -0.8701 -0.2549 -vn -0.4211 -0.8698 -0.2571 -vn -0.4213 -0.8702 -0.2555 -vn -0.3724 -0.8386 -0.3976 -vn -0.3715 -0.8386 -0.3984 -vn -0.3720 -0.8386 -0.3980 -vn -0.7341 -0.3686 -0.5704 -vn 0.3382 -0.6915 0.6383 -vn 0.3382 -0.6917 0.6381 -vn 0.3382 -0.6913 0.6385 -vn -0.6603 -0.7352 -0.1533 -vn -0.6601 -0.7354 -0.1528 -vn 0.9189 0.3744 -0.1241 -vn -0.6717 0.6254 -0.3971 -vn -0.6716 0.6251 -0.3977 -vn -0.6718 0.6255 -0.3968 -vn -0.8882 -0.3697 -0.2728 -vn -0.8884 -0.3702 -0.2715 -vn -0.8887 -0.3699 -0.2708 -vn 0.6530 0.7340 0.1866 -vn 0.6527 0.7343 0.1863 -vn -0.4353 0.8528 0.2886 -vn -0.4349 0.8530 0.2885 -vn -0.4351 0.8529 0.2885 -vn -0.5222 -0.8416 -0.1376 -vn -0.5223 -0.8416 -0.1374 -vn -0.5220 -0.8418 -0.1376 -vn 0.7024 0.6402 0.3109 -vn 0.7024 0.6403 0.3109 -vn 0.7030 0.6396 0.3110 -vn -0.0326 0.9013 0.4319 -vn -0.0326 0.9013 0.4320 -vn -0.0326 0.9012 0.4321 -vn 0.3823 0.6227 -0.6827 -vn -0.0332 -0.9117 -0.4095 -vn -0.0331 -0.9117 -0.4096 -vn 0.1127 0.9931 -0.0335 -vn 0.1125 0.9931 -0.0332 -vn -0.9526 0.0425 0.3013 -vn -0.9524 0.0428 0.3017 -vn -0.9526 0.0423 0.3014 -vn -0.2296 -0.0096 0.9732 -vn -0.2302 -0.0095 0.9731 -vn -0.2308 -0.0088 0.9730 -vn -0.2420 -0.0562 -0.9686 -vn -0.2421 -0.0557 -0.9686 -vn -0.2422 -0.0555 -0.9686 -vn -0.9192 -0.2261 -0.3224 -vn -0.9192 -0.2263 -0.3224 -vn -0.9190 -0.2268 -0.3225 -vn -0.6764 0.6563 0.3344 -vn 0.6249 -0.3899 -0.6764 -vn 0.0997 -0.0347 0.9944 -vn 0.0997 -0.0349 0.9944 -vn 0.0996 -0.0350 0.9944 -vn 0.5063 0.7767 -0.3746 -vn -0.9203 -0.2385 -0.3102 -vn -0.9198 -0.2378 -0.3121 -vn -0.9204 -0.2404 -0.3083 -vn 0.0909 -0.8939 0.4390 -vn 0.0908 -0.8938 0.4392 -vn 0.0910 -0.8939 0.4390 -vn 0.0605 0.5054 -0.8608 -vn 0.0607 0.5065 -0.8601 -vn 0.0604 0.5060 -0.8604 -vn -0.8758 -0.2052 0.4369 -vn 0.5582 -0.7718 0.3045 -vn 0.5581 -0.7720 0.3041 -vn 0.5585 -0.7720 0.3034 -vn 0.4532 -0.8187 0.3527 -vn 0.4531 -0.8188 0.3524 -vn 0.4535 -0.8187 0.3523 -vn 0.5411 -0.4790 -0.6912 -vn 0.5414 -0.4789 -0.6910 -vn 0.5417 -0.4790 -0.6908 -vn -0.5992 0.7670 0.2294 -vn -0.5993 0.7669 0.2295 -vn -0.6518 0.3614 -0.6668 -vn -0.6517 0.3614 -0.6668 -vn 0.3852 -0.0877 0.9187 -vn 0.3850 -0.0877 0.9187 -vn 0.3642 0.1811 0.9135 -vn 0.3634 0.1810 0.9139 -vn 0.3648 0.1808 0.9134 -vn 0.2169 0.1901 0.9575 -vn -0.8883 0.4295 -0.1627 -vn -0.8884 0.4295 -0.1622 -vn -0.8884 0.4296 -0.1621 -vn 0.4384 -0.4065 0.8016 -vn 0.4385 -0.4063 0.8016 -vn -0.7142 0.6386 -0.2867 -vn -0.7146 0.6379 -0.2870 -vn -0.7139 0.6390 -0.2865 -vn 0.2409 0.5473 0.8015 -vn 0.2404 0.5468 0.8020 -vn 0.2408 0.5471 0.8017 -vn -0.0558 -0.7523 -0.6564 -vn -0.0564 -0.7526 -0.6561 -vn -0.0559 -0.7524 -0.6564 -vn 0.2429 0.8968 -0.3698 -vn 0.2428 0.8968 -0.3698 -vn -0.7311 0.6074 -0.3108 -vn -0.5818 -0.8126 0.0359 -vn -0.7075 0.5711 -0.4163 -vn -0.7074 0.5711 -0.4164 -vn -0.7075 0.5712 -0.4161 -vn 0.1672 0.2702 -0.9482 -vn 0.1680 0.2700 -0.9481 -vn 0.1668 0.2704 -0.9482 -vn -0.0244 0.9131 -0.4071 -vn -0.0245 0.9131 -0.4070 -vn -0.0247 0.9131 -0.4069 -vn -0.0980 0.9525 0.2883 -vn -0.0981 0.9525 0.2884 -vn -0.7368 -0.4250 0.5258 -vn -0.7378 -0.4247 0.5246 -vn -0.7357 -0.4245 0.5278 -vn 0.4752 -0.8799 0.0009 -vn 0.4752 -0.8799 0.0011 -vn 0.1778 0.9035 -0.3900 -vn 0.1782 0.9036 -0.3896 -vn 0.1782 0.9036 -0.3895 -vn 0.7280 0.4070 0.5517 -vn 0.4831 0.5000 -0.7188 -vn 0.4831 0.4998 -0.7189 -vn 0.4830 0.4999 -0.7189 -vn 0.3982 -0.2244 -0.8894 -vn 0.3984 -0.2243 -0.8894 -vn 0.3988 -0.2243 -0.8892 -vn 0.1221 -0.9272 -0.3542 -vn 0.1228 -0.9275 -0.3532 -vn 0.1229 -0.9276 -0.3527 -vn 0.8980 0.3475 -0.2700 -vn 0.8979 0.3474 -0.2702 -vn 0.8980 0.3475 -0.2698 -vn -0.3727 0.3462 -0.8610 -vn -0.3729 0.3463 -0.8608 -vn -0.3728 0.3462 -0.8609 -vn -0.5908 0.3266 -0.7378 -vn -0.5902 0.3269 -0.7381 -vn -0.5908 0.3267 -0.7377 -vn -0.7837 -0.5778 0.2279 -vn -0.7836 -0.5781 0.2277 -vn -0.7837 -0.5777 0.2280 -vn -0.2438 0.8108 -0.5322 -vn -0.2437 0.8108 -0.5322 -vn -0.2443 0.8110 -0.5316 -vn -0.3405 -0.7638 -0.5484 -vn -0.3406 -0.7638 -0.5483 -vn -0.3403 -0.7638 -0.5484 -vn -0.6871 0.5272 -0.4999 -vn -0.6872 0.5274 -0.4996 -vn -0.6871 0.5269 -0.5003 -vn 0.9512 0.2100 -0.2261 -vn 0.9513 0.2101 -0.2257 -vn 0.9512 0.2101 -0.2259 -vn 0.8548 0.0958 -0.5101 -vn 0.8547 0.0951 -0.5104 -vn 0.8542 0.0946 -0.5112 -vn 0.3092 -0.3345 0.8902 -vn 0.3094 -0.3346 0.8901 -vn 0.3089 -0.3345 0.8903 -vn -0.0432 -0.0392 0.9983 -vn -0.0428 -0.0395 0.9983 -vn -0.0433 -0.0392 0.9983 -vn -0.0821 0.5989 -0.7966 -vn -0.8368 0.5415 -0.0808 -vn -0.9034 -0.1601 -0.3978 -vn -0.9034 -0.1601 -0.3977 -vn -0.9035 -0.1599 -0.3977 -vn 0.8863 0.3016 -0.3515 -vn 0.8861 0.3018 -0.3518 -vn 0.8860 0.3019 -0.3520 -vn -0.8124 -0.5687 -0.1292 -vn 0.4298 0.3768 0.8205 -vn 0.4300 0.3774 0.8202 -vn 0.4300 0.3773 0.8202 -vn 0.1631 -0.5248 -0.8355 -vn 0.1632 -0.5246 -0.8356 -vn 0.1632 -0.5243 -0.8357 -vn -0.3878 -0.7843 -0.4842 -vn -0.3881 -0.7843 -0.4840 -vn -0.3880 -0.7843 -0.4841 -vn -0.3068 0.8876 -0.3435 -vn -0.3070 0.8875 -0.3437 -vn -0.5413 0.6641 -0.5157 -vn -0.5415 0.6636 -0.5161 -vn -0.5413 0.6637 -0.5162 -vn -0.0160 0.9710 -0.2384 -vn -0.0160 0.9710 -0.2387 -vn -0.0163 0.9709 -0.2391 -vn 0.4502 0.8703 -0.2000 -vn 0.4498 0.8705 -0.1998 -vn 0.4507 0.8700 -0.2001 -vn -0.2068 0.7243 -0.6578 -vn -0.2068 0.7245 -0.6575 -vn -0.2072 0.7233 -0.6587 -vn -0.2836 0.7791 -0.5590 -vn -0.2835 0.7792 -0.5590 -vn -0.2834 0.7792 -0.5591 -vn -0.3554 -0.5632 0.7460 -vn -0.3550 -0.5633 0.7461 -vn -0.3549 -0.5633 0.7462 -vn 0.9309 0.2455 -0.2705 -vn 0.9311 0.2457 -0.2697 -vn 0.9310 0.2453 -0.2702 -vn 0.8291 0.4752 0.2947 -vn 0.8291 0.4751 0.2948 -vn 0.8292 0.4750 0.2947 -vn 0.5755 0.7800 -0.2459 -vn 0.8685 -0.1239 0.4800 -vn 0.8682 -0.1238 0.4805 -vn -0.2644 0.4062 0.8747 -vn -0.2642 0.4061 0.8748 -vn -0.2643 0.4063 0.8747 -vn 0.1365 0.9657 -0.2211 -vn 0.1364 0.9656 -0.2212 -vn 0.1363 0.9656 -0.2214 -vn -0.2503 0.8056 -0.5370 -vn -0.2499 0.8056 -0.5372 -vn -0.2493 0.8053 -0.5380 -vn 0.3369 0.5250 -0.7816 -vn 0.3360 0.5245 -0.7823 -vn 0.3371 0.5256 -0.7811 -vn -0.2499 0.1719 -0.9529 -vn -0.2498 0.1720 -0.9529 -vn -0.2497 0.1722 -0.9529 -vn 0.9219 0.2679 0.2797 -vn 0.9221 0.2677 0.2795 -vn 0.9219 0.2680 0.2798 -vn 0.9160 0.3812 -0.1247 -vn 0.9160 0.3813 -0.1250 -vn 0.9160 0.3812 -0.1250 -vn -0.3888 0.7828 -0.4859 -vn -0.3890 0.7824 -0.4863 -vn 0.7419 0.5407 -0.3964 -vn 0.7418 0.5409 -0.3964 -vn 0.7421 0.5404 -0.3965 -vn -0.2296 0.8824 -0.4106 -vn -0.2296 0.8823 -0.4108 -vn -0.2293 0.8825 -0.4107 -vn -0.5169 -0.6135 0.5970 -vn 0.6120 0.6726 -0.4160 -vn 0.6115 0.6731 -0.4160 -vn 0.6124 0.6721 -0.4162 -vn 0.4209 -0.8250 0.3771 -vn 0.4208 -0.8250 0.3773 -vn 0.4210 -0.8250 0.3770 -vn 0.2321 0.9546 0.1865 -vn 0.2324 0.9546 0.1866 -vn 0.2322 0.9546 0.1866 -vn 0.5712 0.6375 0.5170 -vn 0.5712 0.6380 0.5164 -vn 0.5709 0.6373 0.5176 -vn -0.1721 0.4145 -0.8936 -vn -0.1725 0.4149 -0.8934 -vn -0.1716 0.4143 -0.8938 -vn 0.5243 0.4621 -0.7152 -vn 0.5243 0.4624 -0.7150 -vn 0.5245 0.4622 -0.7151 -vn 0.1876 -0.1287 0.9738 -vn -0.7593 0.4003 0.5131 -vn -0.7383 -0.5150 -0.4355 -vn -0.7385 -0.5149 -0.4353 -vn 0.0318 0.9825 0.1834 -vn -0.6223 -0.0744 0.7793 -vn -0.6221 -0.0743 0.7794 -vn -0.6215 -0.0738 0.7799 -vn -0.0342 -0.0563 -0.9978 -vn -0.0330 -0.0560 -0.9979 -vn -0.0331 -0.0558 -0.9979 -vn 0.0341 -0.4322 -0.9011 -vn 0.0342 -0.4318 -0.9013 -vn 0.4446 0.3158 0.8382 -vn 0.4440 0.3155 0.8387 -vn 0.4434 0.3155 0.8390 -vn -0.2555 -0.1865 -0.9487 -vn -0.2557 -0.1867 -0.9486 -vn -0.2557 -0.1869 -0.9485 -vn 0.5172 0.6818 0.5174 -vn 0.5172 0.6808 0.5186 -vn 0.5172 0.6819 0.5172 -vn -0.4278 0.8961 0.1180 -vn 0.5225 0.6813 0.5126 -vn 0.5227 0.6812 0.5127 -vn 0.5230 0.6809 0.5127 -vn 0.5990 -0.7534 0.2713 -vn 0.5989 -0.7534 0.2713 -vn 0.6703 -0.4613 -0.5813 -vn 0.6701 -0.4614 -0.5814 -vn 0.6706 -0.4611 -0.5811 -vn -0.2659 0.7813 -0.5647 -vn -0.2660 0.7813 -0.5647 -vn 0.1435 0.5866 -0.7971 -vn 0.1434 0.5866 -0.7971 -vn 0.5246 0.0190 -0.8511 -vn 0.5248 0.0190 -0.8510 -vn 0.5241 0.0191 -0.8514 -vn -0.2512 0.7951 -0.5519 -vn 0.9177 0.2754 0.2864 -vn 0.9176 0.2755 0.2865 -vn 0.9175 0.2756 0.2867 -vn 0.8208 0.5145 0.2481 -vn 0.8211 0.5130 0.2502 -vn 0.8208 0.5140 0.2492 -vn -0.7487 0.2340 -0.6202 -vn -0.7487 0.2343 -0.6201 -vn -0.7486 0.2342 -0.6202 -vn -0.3811 0.4001 -0.8335 -vn -0.3813 0.4001 -0.8334 -vn -0.3814 0.4001 -0.8333 -vn 0.2439 0.5082 0.8260 -vn 0.2440 0.5082 0.8260 -vn -0.0983 0.3401 -0.9352 -vn -0.0982 0.3402 -0.9352 -vn 0.3428 0.9216 -0.1822 -vn -0.1998 0.7334 -0.6498 -vn -0.1950 0.7350 -0.6494 -vn -0.1980 0.7344 -0.6492 -vn 0.8585 -0.5121 -0.0273 -vn 0.8584 -0.5122 -0.0272 -vn -0.0422 0.9391 -0.3411 -vn -0.0423 0.9392 -0.3408 -vn -0.0421 0.9393 -0.3405 -vn -0.2144 0.2618 0.9410 -vn -0.2143 0.2618 0.9410 -vn 0.5403 -0.2298 0.8095 -vn 0.5402 -0.2298 0.8095 -vn 0.5400 -0.2293 0.8098 -vn 0.1777 -0.3016 0.9367 -vn -0.8909 -0.3746 0.2569 -vn -0.8907 -0.3749 0.2572 -vn -0.8908 -0.3748 0.2571 -vn 0.3225 -0.6123 0.7218 -vn 0.3227 -0.6123 0.7218 -vn 0.3868 -0.7093 0.5893 -vn 0.3865 -0.7091 0.5897 -vn 0.3867 -0.7091 0.5896 -vn -0.3502 -0.1258 0.9282 -vn -0.3501 -0.1255 0.9283 -vn -0.2064 -0.6249 0.7529 -vn -0.2063 -0.6249 0.7529 -vn 0.2388 0.7158 0.6562 -vn 0.6886 -0.5092 0.5163 -vn 0.6882 -0.5101 0.5159 -vn 0.6885 -0.5094 0.5162 -vn 0.5910 -0.2203 0.7760 -vn 0.5918 -0.2195 0.7756 -vn 0.5888 -0.2217 0.7773 -vn -0.4730 0.0787 -0.8776 -vn -0.4730 0.0789 -0.8775 -vn -0.4731 0.0789 -0.8774 -vn -0.6927 -0.3167 0.6480 -vn -0.6925 -0.3167 0.6481 -vn -0.6925 -0.3169 0.6481 -vn -0.3382 -0.6332 0.6962 -vn -0.8885 0.4589 -0.0060 -vn -0.8884 0.4590 -0.0061 -vn -0.8884 0.4591 -0.0061 -vn 0.5902 0.3860 0.7090 -vn 0.5903 0.3860 0.7089 -vn 0.5905 0.3862 0.7086 -vn -0.1393 0.9507 0.2770 -vn -0.1393 0.9507 0.2771 -vn -0.1395 0.9507 0.2771 -vn -0.8652 -0.2687 0.4233 -vn -0.8651 -0.2690 0.4233 -vn -0.8647 -0.2698 0.4236 -vn 0.7061 -0.6862 -0.1746 -vn 0.7061 -0.6863 -0.1745 -vn 0.7058 -0.6865 -0.1749 -vn -0.9000 0.4037 -0.1643 -vn -0.9002 0.4033 -0.1643 -vn -0.7572 -0.3154 0.5721 -vn -0.7572 -0.3154 0.5720 -vn -0.7571 -0.3154 0.5722 -vn -0.5342 -0.6162 -0.5787 -vn -0.5355 -0.6167 -0.5770 -vn -0.5327 -0.6135 -0.5830 -vn -0.7480 0.6311 -0.2055 -vn -0.7481 0.6310 -0.2056 -vn -0.7481 0.6309 -0.2056 -vn -0.3459 -0.0675 -0.9358 -vn -0.3456 -0.0674 -0.9360 -vn -0.3456 -0.0673 -0.9360 -vn 0.4721 -0.7775 0.4156 -vn 0.4718 -0.7774 0.4161 -vn 0.4720 -0.7776 0.4154 -vn 0.6658 -0.5776 -0.4723 -vn 0.6659 -0.5776 -0.4722 -vn 0.7443 -0.6655 -0.0554 -vn 0.7446 -0.6652 -0.0556 -vn 0.7445 -0.6653 -0.0555 -vn -0.1204 0.8343 -0.5380 -vn -0.1209 0.8342 -0.5380 -vn -0.3585 -0.0236 -0.9332 -vn -0.3588 -0.0236 -0.9331 -vn -0.3579 -0.0236 -0.9335 -vn 0.7337 -0.4600 -0.5001 -vn 0.7337 -0.4601 -0.4999 -vn 0.7338 -0.4604 -0.4996 -vn 0.6787 -0.3752 0.6314 -vn 0.6789 -0.3752 0.6311 -vn 0.6786 -0.3754 0.6313 -vn -0.0671 0.5873 -0.8066 -vn -0.0661 0.5868 -0.8071 -vn -0.5168 -0.8368 0.1805 -vn -0.5168 -0.8369 0.1804 -vn -0.5169 -0.8368 0.1805 -vn 0.6453 0.3873 0.6585 -vn 0.6457 0.3869 0.6583 -vn 0.6454 0.3870 0.6585 -vn 0.9217 0.3874 0.0194 -vn 0.9217 0.3874 0.0190 -vn -0.5956 -0.4943 -0.6332 -vn -0.5959 -0.4950 -0.6324 -vn -0.5946 -0.4937 -0.6346 -vn -0.2376 0.9670 0.0915 -vn -0.2376 0.9670 0.0918 -vn -0.2375 0.9671 0.0912 -vn 0.3930 0.6298 -0.6700 -vn 0.3932 0.6300 -0.6697 -vn 0.0731 0.9203 0.3844 -vn 0.0720 0.9204 0.3843 -vn 0.0725 0.9204 0.3842 -vn -0.6375 -0.7613 0.1184 -vn -0.6376 -0.7612 0.1185 -vn -0.6373 -0.7615 0.1183 -vn -0.0031 0.8736 -0.4867 -vn -0.0036 0.8734 -0.4869 -vn -0.0032 0.8735 -0.4868 -vn -0.8652 0.3082 -0.3955 -vn -0.8651 0.3084 -0.3957 -vn -0.8651 0.3083 -0.3956 -vn 0.8527 -0.3509 0.3870 -vn 0.8526 -0.3509 0.3872 -vn 0.7605 0.4119 -0.5020 -vn 0.8669 -0.2627 0.4237 -vn 0.8668 -0.2631 0.4236 -vn 0.7772 -0.5991 0.1923 -vn 0.4328 -0.4967 0.7523 -vn 0.4329 -0.4965 0.7524 -vn 0.8260 0.1881 -0.5314 -vn 0.8263 0.1879 -0.5310 -vn 0.8266 0.1876 -0.5306 -vn -0.8757 0.3950 -0.2778 -vn -0.8756 0.3952 -0.2778 -vn -0.8754 0.3953 -0.2783 -vn -0.9379 0.1012 -0.3318 -vn -0.9380 0.1010 -0.3316 -vn -0.9379 0.1011 -0.3318 -vn 0.4190 0.8390 -0.3472 -vn 0.4103 -0.8850 0.2201 -vn -0.4920 -0.8582 -0.1466 -vn -0.0478 0.9987 0.0150 -vn -0.8234 -0.0754 -0.5624 -vn -0.8234 -0.0755 -0.5625 -vn -0.1105 0.9672 -0.2288 -vn -0.1104 0.9672 -0.2287 -vn -0.1103 0.9672 -0.2289 -vn -0.1876 0.7645 -0.6167 -vn -0.1878 0.7644 -0.6168 -vn -0.1875 0.7646 -0.6166 -vn -0.1232 0.0006 -0.9924 -vn 0.8433 -0.0418 0.5359 -vn 0.8430 -0.0417 0.5363 -vn 0.8425 -0.0418 0.5370 -vn 0.7203 0.6677 0.1880 -vn 0.7201 0.6680 0.1876 -vn 0.7199 0.6683 0.1873 -vn 0.8437 -0.2739 0.4616 -vn 0.8436 -0.2740 0.4618 -vn 0.5857 -0.6416 0.4953 -vn 0.5854 -0.6417 0.4955 -vn 0.5859 -0.6414 0.4952 -vn 0.8786 0.2388 0.4136 -vn 0.8787 0.2385 0.4136 -vn 0.8787 0.2386 0.4135 -vn 0.0900 0.9274 0.3631 -vn 0.0899 0.9274 0.3630 -vn 0.0900 0.9273 0.3633 -vn 0.0166 0.4323 -0.9016 -vn 0.0167 0.4324 -0.9015 -vn 0.0171 0.4326 -0.9014 -vn -0.7456 0.4015 0.5319 -vn -0.5782 0.4520 0.6792 -vn -0.5782 0.4516 0.6795 -vn 0.3333 0.9160 -0.2234 -vn 0.3337 0.9157 -0.2237 -vn 0.3336 0.9158 -0.2237 -vn 0.6924 0.7209 -0.0300 -vn 0.4214 0.9069 -0.0014 -vn 0.4216 0.9068 -0.0016 -vn -0.1572 -0.1745 0.9720 -vn -0.1567 -0.1747 0.9721 -vn 0.3820 0.9238 -0.0253 -vn 0.3820 0.9238 -0.0256 -vn 0.3832 0.9233 -0.0242 -vn -0.1017 -0.0981 0.9900 -vn -0.1014 -0.0980 0.9900 -vn -0.5948 -0.1492 0.7899 -vn -0.5946 -0.1490 0.7901 -vn -0.3645 -0.2242 0.9038 -vn -0.3642 -0.2245 0.9039 -vn -0.3644 -0.2244 0.9038 -vn -0.3160 0.1954 0.9284 -vn -0.3159 0.1955 0.9284 -vn -0.3161 0.1952 0.9284 -vn 0.1994 -0.8115 0.5493 -vn 0.1994 -0.8114 0.5494 -vn 0.1994 -0.8113 0.5495 -vn 0.6242 -0.1687 0.7628 -vn 0.6244 -0.1687 0.7627 -vn 0.6245 -0.1684 0.7626 -vn -0.1629 0.9002 0.4038 -vn -0.1638 0.9000 0.4039 -vn -0.1632 0.9002 0.4038 -vn -0.5484 0.1463 0.8233 -vn -0.5473 0.1460 0.8241 -vn -0.5481 0.1464 0.8235 -vn 0.1321 0.7088 -0.6929 -vn 0.1320 0.7088 -0.6929 -vn 0.7580 -0.6175 0.2103 -vn 0.7584 -0.6171 0.2099 -vn 0.7582 -0.6173 0.2100 -vn -0.0490 0.9309 -0.3619 -vn -0.0492 0.9309 -0.3619 -vn 0.6668 -0.3064 0.6794 -vn 0.6667 -0.3066 0.6793 -vn 0.6667 -0.3067 0.6793 -vn 0.1520 0.2060 0.9667 -vn 0.1520 0.2063 0.9666 -vn 0.2032 -0.6591 0.7241 -vn 0.2036 -0.6591 0.7239 -vn 0.2030 -0.6592 0.7241 -vn 0.2707 -0.8710 0.4100 -vn 0.2704 -0.8711 0.4099 -vn 0.2708 -0.8708 0.4103 -vn 0.7484 -0.5181 0.4142 -vn 0.7485 -0.5173 0.4149 -vn 0.7485 -0.5173 0.4148 -vn 0.2836 0.8412 -0.4604 -vn 0.2835 0.8412 -0.4605 -vn 0.2834 0.8410 -0.4609 -vn -0.7485 0.3431 -0.5675 -vn -0.7486 0.3428 -0.5675 -vn -0.7488 0.3425 -0.5675 -vn -0.0461 0.7319 -0.6798 -vn -0.0464 0.7319 -0.6798 -vn -0.0468 0.7319 -0.6798 -vn 0.4101 -0.8672 0.2825 -vn 0.4098 -0.8670 0.2834 -vn 0.4101 -0.8670 0.2832 -vn 0.3147 0.9375 -0.1486 -vn 0.3146 0.9375 -0.1486 -vn 0.3148 0.9375 -0.1486 -vn -0.6177 -0.7659 -0.1787 -vn -0.6178 -0.7658 -0.1787 -vn -0.6179 -0.7658 -0.1784 -vn 0.0300 0.3167 0.9480 -vn 0.0308 0.3178 0.9477 -vn 0.0303 0.3170 0.9479 -vn 0.5705 -0.7954 0.2046 -vn 0.5704 -0.7955 0.2044 -vn -0.1840 -0.9824 0.0317 -vn -0.1847 -0.9823 0.0318 -vn -0.1849 -0.9822 0.0318 -vn -0.3052 -0.4282 0.8506 -vn -0.3046 -0.4287 0.8506 -vn -0.3047 -0.4287 0.8505 -vn -0.2649 0.9260 -0.2690 -vn -0.2651 0.9259 -0.2690 -vn 0.2980 -0.0762 0.9515 -vn 0.2980 -0.0761 0.9515 -vn 0.2980 -0.0760 0.9515 -vn -0.9642 0.2393 0.1140 -vn -0.9642 0.2395 0.1140 -vn 0.5331 -0.8206 0.2061 -vn -0.0898 -0.2991 0.9500 -vn -0.0903 -0.2987 0.9501 -vn -0.0898 -0.2999 0.9497 -vn 0.0464 0.9894 -0.1375 -vn 0.0462 0.9895 -0.1372 -vn 0.0463 0.9895 -0.1370 -vn 0.3576 0.9159 0.1822 -vn 0.9763 0.1865 -0.1099 -vn 0.9763 0.1860 -0.1106 -vn 0.9764 0.1856 -0.1108 -vn -0.2105 0.9776 -0.0012 -vn 0.3664 0.4513 -0.8137 -vn -0.5618 -0.1078 -0.8202 -vn -0.5618 -0.1080 -0.8202 -vn -0.5618 -0.1081 -0.8202 -vn 0.1968 -0.5250 -0.8280 -vn 0.1966 -0.5248 -0.8282 -vn 0.1969 -0.5249 -0.8281 -vn 0.8390 0.1751 0.5152 -vn 0.8390 0.1751 0.5151 -vn 0.8391 0.1751 0.5150 -vn 0.6626 0.7473 0.0504 -vn 0.6618 0.7482 0.0469 -vn 0.6618 0.7481 0.0479 -vn -0.7254 -0.6827 -0.0875 -vn -0.7258 -0.6823 -0.0879 -vn 0.5175 0.7292 0.4478 -vn 0.5174 0.7292 0.4478 -vn 0.5174 0.7293 0.4477 -vn -0.6402 -0.6787 -0.3599 -vn -0.6400 -0.6788 -0.3601 -vn -0.6401 -0.6787 -0.3600 -vn -0.5280 0.4402 0.7263 -vn -0.5282 0.4404 0.7259 -vn -0.5282 0.4403 0.7260 -vn -0.7399 -0.3621 -0.5670 -vn -0.7399 -0.3622 -0.5669 -vn -0.7400 -0.3623 -0.5667 -vn 0.4433 0.8758 0.1909 -vn 0.4430 0.8760 0.1905 -vn 0.4433 0.8758 0.1908 -vn 0.4400 0.3622 -0.8217 -vn 0.4399 0.3624 -0.8217 -vn 0.4404 0.3617 -0.8217 -vn -0.0026 0.8132 -0.5820 -vn -0.0023 0.8134 -0.5817 -vn -0.0022 0.8134 -0.5816 -vn -0.4014 -0.5638 -0.7218 -vn -0.4009 -0.5637 -0.7222 -vn -0.4016 -0.5638 -0.7217 -vn 0.7558 -0.6262 -0.1915 -vn 0.7557 -0.6262 -0.1916 -vn 0.7557 -0.6262 -0.1917 -vn 0.1338 0.9482 -0.2883 -vn 0.1337 0.9482 -0.2881 -vn 0.1339 0.9481 -0.2883 -vn -0.1273 0.9670 0.2206 -vn -0.1270 0.9671 0.2204 -vn 0.5542 -0.2471 0.7949 -vn 0.5541 -0.2469 0.7950 -vn 0.5540 -0.2468 0.7951 -vn -0.8880 -0.3722 -0.2701 -vn -0.8881 -0.3722 -0.2697 -vn 0.2850 -0.9372 -0.2012 -vn 0.2852 -0.9371 -0.2012 -vn 0.2851 -0.9371 -0.2012 -vn -0.9493 0.3135 -0.0236 -vn -0.9493 0.3134 -0.0237 -vn -0.9493 0.3136 -0.0236 -vn -0.7529 0.6161 0.2313 -vn -0.7532 0.6158 0.2313 -vn -0.7530 0.6160 0.2314 -vn -0.3118 -0.8913 -0.3292 -vn -0.3120 -0.8915 -0.3285 -vn -0.3119 -0.8914 -0.3287 -vn 0.2028 0.9398 -0.2750 -vn 0.2031 0.9397 -0.2752 -vn 0.0570 -0.9258 -0.3738 -vn 0.0566 -0.9260 -0.3733 -vn 0.0567 -0.9259 -0.3734 -vn -0.2721 0.3630 0.8912 -vn -0.2718 0.3629 0.8913 -vn -0.2714 0.3627 0.8915 -vn 0.1245 0.9699 -0.2091 -vn -0.5111 -0.7849 -0.3502 -vn -0.5114 -0.7848 -0.3500 -vn -0.5117 -0.7847 -0.3498 -vn -0.1008 -0.9352 -0.3395 -vn -0.1009 -0.9352 -0.3394 -vn -0.1008 -0.9353 -0.3392 -vn 0.2843 -0.1116 0.9522 -vn -0.4459 0.8452 -0.2948 -vn -0.4457 0.8453 -0.2947 -vn -0.4461 0.8451 -0.2948 -vn -0.4162 0.4149 -0.8091 -vn -0.4161 0.4151 -0.8091 -vn -0.4162 0.4148 -0.8091 -vn -0.6649 -0.2496 -0.7040 -vn -0.6647 -0.2497 -0.7042 -vn 0.2122 0.7760 -0.5939 -vn 0.2121 0.7762 -0.5938 -vn 0.7974 0.5738 0.1868 -vn 0.7976 0.5737 0.1863 -vn 0.7975 0.5737 0.1864 -vn 0.4988 -0.8620 -0.0903 -vn 0.4989 -0.8619 -0.0903 -vn 0.0108 0.7260 0.6876 -vn 0.0109 0.7260 0.6876 -vn -0.3884 -0.7419 0.5466 -vn -0.3880 -0.7420 0.5467 -vn -0.3885 -0.7418 0.5466 -vn 0.2468 0.9123 0.3267 -vn 0.2466 0.9125 0.3265 -vn 0.2467 0.9124 0.3267 -vn 0.6910 -0.3487 -0.6332 -vn 0.6907 -0.3490 -0.6333 -vn 0.6905 -0.3492 -0.6335 -vn 0.4261 0.7166 0.5523 -vn 0.4261 0.7164 0.5525 -vn 0.4267 0.7157 0.5529 -vn 0.7146 -0.6991 0.0246 -vn 0.7128 -0.7009 0.0239 -vn 0.7135 -0.7003 0.0240 -vn 0.4811 0.7163 0.5053 -vn 0.4813 0.7163 0.5053 -vn -0.4059 0.7566 0.5126 -vn -0.4058 0.7566 0.5127 -vn -0.8422 0.3741 -0.3883 -vn -0.8426 0.3739 -0.3877 -vn 0.7238 -0.6883 0.0487 -vn 0.7239 -0.6882 0.0488 -vn -0.9298 -0.3121 0.1949 -vn -0.9298 -0.3123 0.1947 -vn -0.9298 -0.3122 0.1949 -vn -0.8602 -0.2883 -0.4207 -vn -0.8599 -0.2889 -0.4208 -vn -0.8603 -0.2877 -0.4208 -vn -0.1492 -0.8287 -0.5395 -vn -0.1501 -0.8284 -0.5396 -vn -0.1508 -0.8281 -0.5400 -vn -0.0726 0.9929 0.0944 -vn -0.5047 0.6895 -0.5194 -vn -0.5043 0.6900 -0.5192 -vn -0.5045 0.6899 -0.5192 -vn -0.2447 0.2428 0.9387 -vn -0.2447 0.2426 0.9388 -vn -0.2447 0.2425 0.9388 -vn 0.3496 0.9364 0.0306 -vn 0.3486 0.9368 0.0294 -vn 0.3498 0.9363 0.0313 -vn -0.3687 0.9293 0.0209 -vn -0.7774 0.2488 -0.5777 -vn -0.7776 0.2493 -0.5772 -vn -0.7768 0.2483 -0.5787 -vn -0.5296 0.7912 -0.3057 -vn -0.5291 0.7915 -0.3060 -vn -0.5298 0.7911 -0.3057 -vn 0.9340 -0.2384 -0.2662 -vn 0.9340 -0.2384 -0.2663 -vn 0.2523 0.9386 -0.2354 -vn 0.2520 0.9388 -0.2350 -vn 0.2516 0.9388 -0.2353 -vn 0.9765 0.2151 -0.0158 -vn 0.9764 0.2152 -0.0156 -vn 0.9765 0.2149 -0.0159 -vn 0.3501 -0.0174 -0.9365 -vn -0.7089 0.2814 0.6468 -vn -0.7086 0.2819 0.6468 -vn -0.7086 0.2820 0.6468 -vn -0.3073 0.0285 -0.9512 -vn 0.1775 0.8493 -0.4971 -vn 0.1797 0.8500 -0.4952 -vn 0.1802 0.8512 -0.4929 -vn -0.0367 0.9968 0.0717 -vn 0.0399 0.9086 -0.4157 -vn 0.0399 0.9085 -0.4159 -vn -0.6353 -0.6290 -0.4481 -vn -0.6352 -0.6291 -0.4480 -vn 0.5734 0.8181 0.0444 -vn -0.6574 -0.7534 -0.0131 -vn -0.6574 -0.7535 -0.0130 -vn -0.6572 -0.7536 -0.0129 -vn -0.5740 0.6748 0.4638 -vn -0.5741 0.6747 0.4639 -vn -0.5743 0.6742 0.4643 -vn -0.8994 -0.0261 -0.4363 -vn -0.8987 -0.0250 -0.4378 -vn -0.8999 -0.0282 -0.4353 -vn -0.5446 0.6422 -0.5395 -vn -0.5448 0.6419 -0.5396 -vn -0.5447 0.6421 -0.5395 -vn 0.4917 0.8535 -0.1726 -vn 0.4918 0.8534 -0.1727 -vn 0.3687 0.8835 -0.2889 -vn 0.3689 0.8834 -0.2890 -vn -0.4659 -0.2953 -0.8341 -vn -0.4644 -0.2961 -0.8347 -vn -0.4634 -0.2971 -0.8348 -vn 0.8850 0.3647 -0.2895 -vn 0.8850 0.3646 -0.2897 -vn 0.1068 0.2170 -0.9703 -vn 0.1067 0.2169 -0.9703 -vn -0.3903 -0.6856 0.6145 -vn -0.3901 -0.6859 0.6143 -vn -0.3902 -0.6857 0.6145 -vn 0.2254 0.9481 -0.2243 -vn 0.2888 0.9401 0.1813 -vn 0.2886 0.9402 0.1812 -vn 0.2885 0.9402 0.1812 -vn 0.7868 0.5933 0.1699 -vn 0.7869 0.5933 0.1699 -vn 0.7868 0.5934 0.1699 -vn -0.8427 0.0381 -0.5371 -vn -0.8427 0.0382 -0.5371 -vn -0.8427 0.0380 -0.5371 -vn 0.0227 -0.9828 0.1831 -vn 0.2001 0.6312 0.7494 -vn 0.2003 0.6314 0.7491 -vn 0.2000 0.6313 0.7493 -vn 0.9377 0.0089 0.3473 -vn 0.9378 0.0082 0.3471 -vn 0.9377 0.0087 0.3473 -vn -0.3013 0.5541 0.7760 -vn -0.3013 0.5546 0.7757 -vn -0.3013 0.5543 0.7759 -vn 0.2655 0.9226 -0.2798 -vn 0.2655 0.9226 -0.2799 -vn 0.2656 0.9226 -0.2798 -vn -0.3009 0.6937 -0.6544 -vn -0.2997 0.6940 -0.6547 -vn -0.2979 0.6953 -0.6541 -vn 0.2050 0.9514 -0.2299 -vn 0.2045 0.9514 -0.2304 -vn 0.2049 0.9514 -0.2299 -vn 0.9546 0.2259 -0.1942 -vn 0.9546 0.2262 -0.1939 -vn -0.4790 0.5765 0.6619 -vn -0.4791 0.5766 0.6618 -vn -0.4794 0.5764 0.6618 -vn 0.3307 0.6265 -0.7058 -vn 0.3311 0.6267 -0.7054 -vn 0.3310 0.6265 -0.7056 -vn 0.2595 -0.8007 0.5399 -vn 0.2603 -0.8005 0.5399 -vn 0.2598 -0.8006 0.5399 -vn 0.0172 0.1898 0.9817 -vn 0.0169 0.1897 0.9817 -vn -0.0104 0.1068 -0.9942 -vn -0.0111 0.1068 -0.9942 -vn -0.0112 0.1068 -0.9942 -vn 0.6995 -0.6199 0.3555 -vn 0.0838 0.2766 0.9573 -vn -0.4443 -0.8233 0.3533 -vn 0.2638 0.8711 -0.4142 -vn 0.2637 0.8711 -0.4142 -vn 0.2636 0.8712 -0.4142 -vn -0.2161 0.6412 -0.7363 -vn -0.6838 0.0601 -0.7272 -vn -0.6839 0.0601 -0.7271 -vn -0.6830 0.0601 -0.7280 -vn -0.8940 0.0757 -0.4415 -vn -0.8940 0.0758 -0.4417 -vn -0.2786 -0.9496 -0.1437 -vn 0.3391 0.3190 -0.8850 -vn 0.3390 0.3189 -0.8851 -vn 0.3389 0.3191 -0.8851 -vn 0.5421 0.7079 0.4527 -vn -0.4381 0.8146 0.3802 -vn -0.4380 0.8143 0.3808 -vn -0.4378 0.8143 0.3811 -vn 0.2086 -0.8275 -0.5213 -vn 0.2084 -0.8274 -0.5215 -vn 0.2085 -0.8275 -0.5213 -vn -0.2454 -0.6360 -0.7317 -vn -0.2455 -0.6361 -0.7315 -vn -0.2454 -0.6362 -0.7315 -vn -0.2209 -0.7530 -0.6199 -vn -0.2210 -0.7536 -0.6190 -vn -0.2211 -0.7531 -0.6196 -vn -0.1185 -0.6752 0.7281 -vn -0.1192 -0.6754 0.7277 -vn -0.1187 -0.6753 0.7279 -vn -0.0191 0.0419 0.9989 -vn -0.0196 0.0426 0.9989 -vn -0.0208 0.0438 0.9988 -vn -0.8310 -0.3555 -0.4278 -vn -0.8311 -0.3556 -0.4277 -vn -0.4611 0.1909 -0.8666 -vn -0.4605 0.1909 -0.8669 -vn -0.4618 0.1914 -0.8661 -vn 0.2857 0.2659 0.9207 -vn 0.2855 0.2657 0.9208 -vn 0.2853 0.2656 0.9209 -vn 0.1846 0.7039 -0.6859 -vn 0.1846 0.7038 -0.6860 -vn 0.1846 0.7036 -0.6862 -vn 0.7084 0.4907 -0.5074 -vn 0.7083 0.4905 -0.5077 -vn 0.7079 0.4905 -0.5083 -vn 0.7564 0.6020 0.2559 -vn 0.7564 0.6020 0.2558 -vn 0.3196 -0.8510 0.4168 -vn 0.3200 -0.8506 0.4173 -vn 0.3195 -0.8512 0.4163 -vn -0.4524 -0.3996 -0.7973 -vn -0.4523 -0.3997 -0.7973 -vn -0.4521 -0.3999 -0.7973 -vn -0.5211 -0.4016 -0.7531 -vn 0.9475 0.0577 -0.3145 -vn 0.9473 0.0594 -0.3149 -vn 0.9474 0.0584 -0.3148 -vn 0.7116 0.4471 0.5420 -vn 0.7116 0.4470 0.5420 -vn -0.4458 -0.3479 -0.8248 -vn -0.4458 -0.3480 -0.8247 -vn -0.4647 0.2957 -0.8346 -vn -0.4650 0.2962 -0.8343 -vn -0.4651 0.2965 -0.8341 -vn 0.5697 -0.5344 0.6243 -vn 0.5694 -0.5345 0.6246 -vn 0.5695 -0.5345 0.6245 -vn -0.1754 -0.1384 -0.9747 -vn -0.1747 -0.1379 -0.9749 -vn -0.1743 -0.1375 -0.9750 -vn 0.7752 0.6003 0.1969 -vn 0.1475 0.8965 0.4177 -vn 0.1481 0.8965 0.4177 -vn -0.1031 0.0147 -0.9946 -vn -0.1023 0.0141 -0.9947 -vn -0.1026 0.0146 -0.9946 -vn -0.0057 0.4316 -0.9021 -vn -0.0061 0.4316 -0.9020 -vn -0.0056 0.4315 -0.9021 -vn 0.9726 0.1489 -0.1787 -vn 0.9726 0.1488 -0.1788 -vn 0.9725 0.1487 -0.1790 -vn 0.7252 0.3774 0.5759 -vn 0.7251 0.3775 0.5759 -vn 0.7251 0.3775 0.5760 -vn 0.4704 0.8128 0.3436 -vn 0.4700 0.8130 0.3436 -vn 0.4707 0.8128 0.3434 -vn -0.8294 0.5353 0.1596 -vn -0.8295 0.5351 0.1597 -vn -0.1434 -0.2321 0.9621 -vn -0.1436 -0.2322 0.9620 -vn -0.8216 0.0441 -0.5683 -vn -0.8217 0.0439 -0.5683 -vn 0.5177 -0.7748 -0.3629 -vn 0.5176 -0.7748 -0.3630 -vn 0.5178 -0.7748 -0.3628 -vn 0.1654 -0.0714 0.9836 -vn 0.1655 -0.0712 0.9836 -vn 0.1654 -0.0713 0.9837 -vn 0.4213 0.1313 0.8974 -vn 0.4214 0.1311 0.8974 -vn 0.4212 0.1314 0.8974 -vn -0.8073 0.4307 -0.4035 -vn -0.8072 0.4307 -0.4036 -vn -0.3765 -0.2435 -0.8939 -vn -0.3769 -0.2436 -0.8937 -vn 0.5323 0.8437 0.0698 -vn 0.5325 0.8435 0.0706 -vn 0.5326 0.8434 0.0707 -vn 0.3246 -0.8352 0.4438 -vn 0.3249 -0.8355 0.4431 -vn 0.3249 -0.8354 0.4433 -vn -0.3078 0.8963 -0.3192 -vn -0.0184 0.5220 0.8528 -vn -0.0188 0.5220 0.8527 -vn -0.0191 0.5221 0.8527 -vn -0.4397 0.3169 -0.8404 -vn -0.4398 0.3168 -0.8404 -vn -0.4399 0.3165 -0.8404 -vn 0.2443 0.8097 -0.5337 -vn -0.2212 -0.7170 0.6610 -vn -0.2213 -0.7174 0.6606 -vn -0.2213 -0.7172 0.6608 -vn 0.7526 -0.6465 -0.1251 -vn 0.7523 -0.6469 -0.1251 -vn 0.7528 -0.6463 -0.1250 -vn -0.0969 0.8477 -0.5215 -vn -0.0970 0.8477 -0.5216 -vn 0.0719 -0.9679 -0.2409 -vn 0.0719 -0.9678 -0.2411 -vn 0.6332 -0.4325 0.6418 -vn 0.6334 -0.4324 0.6418 -vn 0.6331 -0.4327 0.6418 -vn -0.2735 -0.3051 0.9122 -vn -0.2737 -0.3052 0.9121 -vn -0.2739 -0.3052 0.9121 -vn 0.2752 0.9445 -0.1793 -vn 0.2753 0.9445 -0.1794 -vn -0.8949 0.4111 -0.1735 -vn -0.8939 0.4123 -0.1759 -vn -0.8938 0.4112 -0.1788 -vn -0.2966 -0.6668 0.6837 -vn -0.2969 -0.6666 0.6837 -vn -0.2965 -0.6669 0.6837 -vn 0.1473 0.9884 -0.0370 -vn 0.1463 0.9886 -0.0366 -vn 0.1454 0.9887 -0.0366 -vn -0.1033 0.0588 0.9929 -vn -0.1033 0.0591 0.9929 -vn -0.1037 0.0587 0.9929 -vn 0.2844 0.4785 -0.8307 -vn 0.2846 0.4783 -0.8308 -vn -0.6240 0.0634 -0.7788 -vn -0.6241 0.0636 -0.7788 -vn -0.0649 0.9970 -0.0429 -vn -0.1774 0.8604 0.4777 -vn -0.1775 0.8604 0.4777 -vn -0.1773 0.8604 0.4777 -vn -0.4210 -0.2762 0.8640 -vn -0.4213 -0.2759 0.8640 -vn -0.4211 -0.2761 0.8640 -vn -0.3764 0.8861 0.2706 -vn -0.3757 0.8862 0.2712 -vn -0.3763 0.8861 0.2707 -vn 0.7017 -0.4508 0.5516 -vn 0.2917 -0.7779 0.5565 -vn 0.2921 -0.7777 0.5566 -vn 0.2917 -0.7780 0.5565 -vn -0.9148 0.3875 0.1138 -vn -0.9147 0.3875 0.1146 -vn -0.9148 0.3875 0.1141 -vn 0.6379 -0.5948 -0.4892 -vn -0.1551 0.8521 -0.4999 -vn -0.5914 0.7182 -0.3667 -vn -0.6092 0.5973 -0.5216 -vn -0.6090 0.5973 -0.5219 -vn -0.3158 -0.0656 -0.9466 -vn -0.6614 -0.7420 -0.1095 -vn -0.6607 -0.7425 -0.1101 -vn -0.6613 -0.7421 -0.1095 -vn -0.4661 -0.5893 -0.6599 -vn -0.4665 -0.5894 -0.6596 -vn 0.4599 -0.8747 -0.1526 -vn 0.4599 -0.8747 -0.1527 -vn 0.4597 -0.8748 -0.1529 -vn -0.1148 -0.9876 -0.1071 -vn -0.1149 -0.9876 -0.1073 -vn -0.1146 -0.9876 -0.1072 -vn -0.5094 0.8080 -0.2960 -vn -0.5094 0.8080 -0.2961 -vn -0.5093 0.8081 -0.2960 -vn 0.1758 0.9842 -0.0187 -vn 0.1764 0.9841 -0.0185 -vn 0.6406 0.7646 0.0713 -vn 0.6405 0.7646 0.0713 -vn 0.6407 0.7645 0.0712 -vn -0.6855 -0.5421 -0.4860 -vn 0.9818 -0.1256 0.1428 -vn 0.9817 -0.1256 0.1430 -vn 0.9818 -0.1256 0.1426 -vn 0.0450 -0.3767 0.9252 -vn 0.0450 -0.3771 0.9251 -vn 0.0451 -0.3770 0.9251 -vn -0.7701 0.5441 0.3329 -vn -0.7699 0.5443 0.3331 -vn -0.7700 0.5442 0.3331 -vn 0.5777 0.5490 -0.6040 -vn 0.5795 0.5482 -0.6031 -vn 0.5800 0.5482 -0.6025 -vn 0.5909 0.5365 -0.6025 -vn 0.5908 0.5373 -0.6019 -vn 0.5908 0.5369 -0.6022 -vn -0.7266 0.4533 0.5163 -vn -0.7266 0.4535 0.5162 -vn -0.7265 0.4534 0.5164 -vn 0.0670 0.9969 -0.0410 -vn 0.0671 0.9969 -0.0412 -vn 0.0670 0.9969 -0.0408 -vn 0.3699 0.4997 -0.7833 -vn 0.2171 0.0959 0.9714 -vn -0.6736 -0.7349 -0.0787 -vn -0.6735 -0.7350 -0.0784 -vn -0.6733 -0.7351 -0.0787 -vn -0.6435 0.7436 -0.1816 -vn -0.6435 0.7436 -0.1815 -vn -0.6436 0.7435 -0.1815 -vn 0.0621 -0.9827 -0.1746 -vn 0.0635 -0.9825 -0.1753 -vn 0.0638 -0.9824 -0.1756 -vn 0.6172 0.4534 0.6431 -vn 0.6173 0.4530 0.6432 -vn 0.6172 0.4532 0.6431 -vn -0.1241 -0.2681 -0.9554 -vn -0.1245 -0.2683 -0.9553 -vn -0.1245 -0.2682 -0.9553 -vn 0.2850 -0.4683 -0.8363 -vn 0.2849 -0.4685 -0.8363 -vn 0.2847 -0.4687 -0.8362 -vn -0.4435 0.5466 0.7103 -vn -0.4435 0.5474 0.7097 -vn -0.4434 0.5472 0.7099 -vn -0.2411 0.0134 0.9704 -vn -0.2408 0.0137 0.9705 -vn 0.8290 -0.3265 0.4541 -vn 0.0857 0.3545 -0.9311 -vn 0.0856 0.3544 -0.9312 -vn 0.0857 0.3548 -0.9310 -vn 0.8022 -0.0271 0.5964 -vn 0.9944 -0.0914 -0.0537 -vn 0.9945 -0.0911 -0.0510 -vn 0.9946 -0.0918 -0.0484 -vn -0.1334 0.9204 -0.3676 -vn -0.1333 0.9204 -0.3675 -vn -0.1331 0.9204 -0.3677 -vn 0.5481 0.5155 0.6587 -vn 0.5485 0.5147 0.6590 -vn 0.5486 0.5144 0.6591 -vn 0.8829 -0.2886 0.3705 -vn 0.8826 -0.2888 0.3709 -vn 0.8825 -0.2891 0.3710 -vn -0.9003 0.0267 -0.4344 -vn -0.9002 0.0267 -0.4347 -vn -0.9004 0.0267 -0.4342 -vn 0.2546 -0.8183 0.5154 -vn 0.2547 -0.8183 0.5152 -vn 0.9493 0.0684 -0.3069 -vn 0.9493 0.0682 -0.3069 -vn -0.0143 0.3262 -0.9452 -vn -0.0146 0.3260 -0.9453 -vn -0.7901 0.3948 -0.4690 -vn -0.7910 0.3936 -0.4684 -vn -0.7892 0.3965 -0.4689 -vn 0.0836 -0.5594 -0.8247 -vn 0.0840 -0.5586 -0.8252 -vn 0.0839 -0.5590 -0.8249 -vn 0.5363 -0.8288 0.1598 -vn -0.4905 -0.8536 -0.1753 -vn -0.4905 -0.8536 -0.1755 -vn -0.4907 -0.8535 -0.1754 -vn -0.4109 0.9107 -0.0423 -vn -0.4106 0.9108 -0.0418 -vn -0.4115 0.9104 -0.0428 -vn 0.9549 -0.0208 0.2961 -vn 0.9551 -0.0207 0.2954 -vn 0.9550 -0.0208 0.2959 -vn -0.8562 0.5064 0.1021 -vn -0.8563 0.5062 0.1025 -vn 0.5197 0.5492 0.6545 -vn 0.5200 0.5489 0.6545 -vn 0.5198 0.5490 0.6545 -vn -0.8040 0.5356 -0.2585 -vn -0.8040 0.5357 -0.2581 -vn -0.8039 0.5356 -0.2588 -vn 0.4511 -0.7542 0.4772 -vn 0.4509 -0.7542 0.4773 -vn 0.4505 -0.7543 0.4776 -vn 0.6362 -0.6250 0.4523 -vn 0.6366 -0.6252 0.4516 -vn 0.6364 -0.6250 0.4521 -vn 0.6459 0.5990 0.4733 -vn 0.6460 0.5989 0.4732 -vn 0.6450 0.5996 0.4738 -vn -0.3869 0.9208 0.0486 -vn -0.3869 0.9209 0.0486 -vn -0.3867 0.9209 0.0485 -vn 0.2252 0.9287 0.2947 -vn 0.2253 0.9286 0.2949 -vn 0.2254 0.9285 0.2950 -vn 0.7361 0.2604 -0.6248 -vn 0.7354 0.2610 -0.6253 -vn 0.6998 0.4269 -0.5727 -vn 0.6996 0.4273 -0.5727 -vn 0.6994 0.4278 -0.5726 -vn -0.5924 -0.7588 -0.2709 -vn -0.5926 -0.7586 -0.2707 -vn -0.9963 0.0855 0.0002 -vn -0.9963 0.0856 0.0002 -vn 0.9646 -0.1481 0.2182 -vn 0.9646 -0.1471 0.2189 -vn 0.9646 -0.1475 0.2187 -vn 0.0566 0.5506 0.8329 -vn 0.0565 0.5506 0.8328 -vn 0.0565 0.5507 0.8328 -vn 0.9263 0.1589 0.3417 -vn 0.9263 0.1593 0.3416 -vn 0.9263 0.1589 0.3416 -vn 0.0782 0.5763 -0.8135 -vn 0.0783 0.5762 -0.8136 -vn 0.0782 0.5764 -0.8134 -vn -0.5809 0.7599 0.2917 -vn -0.8122 0.5060 -0.2904 -vn -0.8121 0.5059 -0.2908 -vn -0.8122 0.5061 -0.2903 -vn -0.6720 -0.7157 -0.1902 -vn 0.6133 -0.5709 0.5458 -vn 0.6135 -0.5708 0.5457 -vn 0.1191 -0.7659 -0.6318 -vn -0.1433 -0.0143 -0.9896 -vn -0.1435 -0.0143 -0.9895 -vn -0.8620 0.4860 -0.1441 -vn -0.8624 0.4855 -0.1435 -vn -0.8625 0.4854 -0.1434 -vn -0.4674 -0.7820 -0.4124 -vn 0.2973 0.9185 0.2607 -vn 0.2974 0.9188 0.2597 -vn 0.2974 0.9187 0.2601 -vn -0.3630 0.2797 0.8888 -vn -0.3629 0.2794 0.8889 -vn -0.7514 -0.1509 -0.6424 -vn -0.7511 -0.1507 -0.6427 -vn -0.7508 -0.1504 -0.6432 -vn 0.2053 0.5993 0.7737 -vn 0.2050 0.5990 0.7740 -vn 0.2053 0.5993 0.7738 -vn -0.9191 -0.3880 -0.0680 -vn -0.9191 -0.3881 -0.0677 -vn -0.9191 -0.3880 -0.0681 -vn -0.4071 0.7403 0.5350 -vn -0.4067 0.7402 0.5354 -vn -0.4068 0.7402 0.5353 -vn -0.4226 -0.2705 0.8650 -vn -0.4228 -0.2703 0.8650 -vn -0.4223 -0.2704 0.8652 -vn 0.3831 -0.8722 0.3042 -vn 0.3832 -0.8721 0.3043 -vn -0.1335 0.6895 0.7119 -vn -0.1331 0.6892 0.7122 -vn -0.1328 0.6890 0.7125 -vn 0.4629 -0.8351 0.2972 -vn 0.4626 -0.8353 0.2970 -vn 0.4625 -0.8354 0.2969 -vn 0.8410 -0.2176 0.4953 -vn 0.8412 -0.2178 0.4949 -vn 0.8411 -0.2176 0.4952 -vn 0.2825 -0.6208 0.7313 -vn 0.2826 -0.6208 0.7313 -vn 0.2818 -0.6207 0.7317 -vn 0.0485 -0.3655 -0.9295 -vn 0.0484 -0.3651 -0.9297 -vn 0.0484 -0.3650 -0.9298 -vn 0.6550 -0.5758 0.4893 -vn 0.1692 -0.9733 0.1553 -vn -0.0926 0.2691 0.9586 -vn -0.0925 0.2688 0.9587 -vn -0.0926 0.2688 0.9587 -vn -0.6556 -0.5839 -0.4787 -vn -0.6554 -0.5838 -0.4791 -vn -0.6557 -0.5843 -0.4782 -vn 0.2691 0.8963 -0.3525 -vn 0.2695 0.8963 -0.3521 -vn -0.0014 0.8169 0.5767 -vn -0.0014 0.8169 0.5768 -vn -0.0015 0.8170 0.5766 -vn -0.6212 -0.2531 0.7416 -vn -0.6209 -0.2535 0.7417 -vn -0.6212 -0.2532 0.7417 -vn -0.7353 -0.5919 -0.3301 -vn -0.7351 -0.5923 -0.3299 -vn -0.7350 -0.5926 -0.3295 -vn -0.0972 -0.9002 -0.4245 -vn -0.0975 -0.9003 -0.4243 -vn -0.0969 -0.9001 -0.4248 -vn -0.3584 0.2014 0.9116 -vn -0.3584 0.2010 0.9117 -vn -0.3583 0.2004 0.9118 -vn 0.3967 -0.7827 0.4796 -vn 0.3976 -0.7817 0.4805 -vn 0.3966 -0.7829 0.4794 -vn -0.9497 -0.1120 -0.2926 -vn -0.9495 -0.1125 -0.2929 -vn 0.3177 -0.8715 0.3736 -vn 0.3178 -0.8715 0.3736 -vn 0.3179 -0.8714 0.3737 -vn 0.4015 -0.0193 0.9157 -vn 0.4011 -0.0192 0.9158 -vn 0.4010 -0.0189 0.9159 -vn -0.1380 0.9685 -0.2074 -vn -0.1379 0.9684 -0.2079 -vn -0.1380 0.9683 -0.2082 -vn 0.0057 0.7477 -0.6640 -vn 0.0058 0.7477 -0.6640 -vn -0.7714 0.5523 -0.3159 -vn 0.2657 0.0553 -0.9625 -vn 0.2658 0.0552 -0.9624 -vn 0.4221 0.8328 -0.3582 -vn 0.4223 0.8328 -0.3579 -vn 0.4218 0.8330 -0.3580 -vn -0.6397 -0.7655 0.0694 -vn -0.6396 -0.7656 0.0695 -vn 0.8581 -0.1920 0.4762 -vn 0.8585 -0.1919 0.4756 -vn 0.8576 -0.1922 0.4770 -vn 0.7158 0.6498 0.2559 -vn 0.7159 0.6497 0.2557 -vn 0.7160 0.6496 0.2557 -vn 0.6423 0.7186 0.2665 -vn 0.6424 0.7185 0.2665 -vn 0.6422 0.7188 0.2664 -vn -0.0395 -0.0397 0.9984 -vn -0.0399 -0.0396 0.9984 -vn -0.0402 -0.0394 0.9984 -vn -0.1609 0.0108 -0.9869 -vn -0.9852 0.1517 -0.0803 -vn -0.9851 0.1519 -0.0805 -vn -0.9851 0.1519 -0.0804 -vn -0.5166 -0.3809 0.7668 -vn -0.5168 -0.3807 0.7668 -vn 0.4126 0.3370 -0.8463 -vn 0.5825 -0.7349 0.3472 -vn 0.5823 -0.7351 0.3471 -vn 0.5827 -0.7348 0.3471 -vn -0.8814 -0.4704 -0.0420 -vn -0.8815 -0.4703 -0.0423 -vn -0.3137 -0.5215 -0.7935 -vn -0.3127 -0.5211 -0.7942 -vn -0.3126 -0.5211 -0.7942 -vn -0.0478 0.9618 0.2697 -vn -0.0476 0.9617 0.2699 -vn 0.4361 -0.3100 0.8448 -vn -0.0369 0.9711 -0.2359 -vn -0.0372 0.9709 -0.2365 -vn -0.0367 0.9712 -0.2355 -vn 0.4521 0.4241 -0.7847 -vn 0.4521 0.4245 -0.7845 -vn 0.4521 0.4244 -0.7846 -vn 0.6079 0.6470 0.4603 -vn 0.3977 0.6843 0.6112 -vn 0.3981 0.6841 0.6111 -vn -0.8028 -0.2491 -0.5418 -vn -0.8027 -0.2491 -0.5418 -vn 0.8101 0.3772 0.4488 -vn 0.8100 0.3770 0.4491 -vn 0.8101 0.3770 0.4489 -vn -0.2480 -0.5679 0.7849 -vn -0.2482 -0.5674 0.7852 -vn -0.2481 -0.5682 0.7846 -vn 0.9713 -0.1466 0.1871 -vn 0.9713 -0.1465 0.1873 -vn -0.6624 0.1441 0.7351 -vn -0.6625 0.1439 0.7351 -vn -0.6622 0.1443 0.7353 -vn -0.1472 0.8658 -0.4783 -vn -0.1475 0.8656 -0.4786 -vn -0.1474 0.8656 -0.4785 -vn 0.3733 -0.9030 0.2126 -vn 0.3732 -0.9032 0.2121 -vn 0.3729 -0.9034 0.2118 -vn -0.5639 0.8250 0.0381 -vn -0.5638 0.8250 0.0382 -vn -0.1766 0.0351 -0.9837 -vn -0.1769 0.0354 -0.9836 -vn -0.1764 0.0347 -0.9837 -vn -0.0544 0.9356 -0.3489 -vn -0.0543 0.9354 -0.3495 -vn -0.0540 0.9358 -0.3483 -vn -0.7719 0.6357 -0.0030 -vn -0.2575 0.9574 0.1309 -vn -0.2572 0.9575 0.1307 -vn -0.2571 0.9576 0.1304 -vn 0.7337 0.5569 0.3892 -vn 0.7334 0.5564 0.3906 -vn 0.7336 0.5566 0.3898 -vn -0.8180 0.4440 -0.3658 -vn -0.8176 0.4430 -0.3679 -vn -0.8177 0.4439 -0.3664 -vn 0.2565 0.9634 -0.0786 -vn 0.2567 0.9633 -0.0783 -vn 0.2573 0.9632 -0.0783 -vn -0.1785 0.8989 0.4001 -vn -0.1783 0.8990 0.4000 -vn -0.1782 0.8990 0.4000 -vn -0.4988 -0.6582 0.5639 -vn -0.4989 -0.6584 0.5635 -vn -0.6061 -0.0820 0.7911 -vn -0.6062 -0.0814 0.7912 -vn -0.6059 -0.0826 0.7912 -vn 0.2737 0.1230 -0.9539 -vn -0.7145 0.6245 -0.3156 -vn -0.7144 0.6244 -0.3160 -vn -0.7140 0.6247 -0.3162 -vn 0.0936 0.9715 0.2177 -vn 0.0939 0.9715 0.2178 -vn 0.0937 0.9715 0.2177 -vn -0.5063 0.8146 -0.2829 -vn -0.5064 0.8146 -0.2828 -vn -0.3816 -0.7292 0.5680 -vn -0.3813 -0.7290 0.5684 -vn -0.4221 -0.7438 0.5182 -vn -0.4225 -0.7435 0.5184 -vn -0.4239 -0.7426 0.5185 -vn 0.4640 0.6979 0.5456 -vn -0.4047 0.9065 0.1199 -vn -0.4046 0.9066 0.1199 -vn -0.4045 0.9066 0.1200 -vn 0.0631 -0.6302 -0.7739 -vn 0.0627 -0.6303 -0.7738 -vn -0.7502 -0.3504 -0.5607 -vn -0.7500 -0.3493 -0.5617 -vn -0.7499 -0.3496 -0.5616 -vn -0.6114 -0.7855 0.0952 -vn 0.4461 0.7335 0.5128 -vn 0.4464 0.7334 0.5128 -vn 0.4463 0.7334 0.5128 -vn -0.9215 0.1691 -0.3497 -vn 0.6745 -0.3312 -0.6598 -vn 0.6746 -0.3314 -0.6596 -vn 0.6746 -0.3316 -0.6596 -vn -0.2210 0.8691 -0.4426 -vn -0.2209 0.8690 -0.4428 -vn 0.3118 0.8311 -0.4605 -vn 0.3117 0.8312 -0.4605 -vn 0.3117 0.8313 -0.4602 -vn 0.1519 0.8485 -0.5069 -vn 0.1526 0.8481 -0.5073 -vn 0.1525 0.8481 -0.5073 -vn -0.1953 0.9803 0.0310 -vn -0.1951 0.9803 0.0313 -vn -0.1949 0.9803 0.0312 -vn -0.5703 0.7203 -0.3949 -vn -0.5703 0.7202 -0.3951 -vn -0.5705 0.7202 -0.3947 -vn 0.8606 0.3264 0.3910 -vn -0.7083 0.7045 0.0446 -vn -0.7084 0.7044 0.0445 -vn 0.4539 0.5637 0.6901 -vn 0.4540 0.5637 0.6900 -vn 0.4541 0.5637 0.6899 -vn -0.2919 -0.0360 0.9558 -vn -0.2920 -0.0362 0.9557 -vn -0.2929 -0.0364 0.9555 -vn -0.2994 -0.0769 0.9510 -vn -0.2987 -0.0788 0.9511 -vn -0.2974 -0.0794 0.9514 -vn -0.1473 -0.9890 -0.0119 -vn -0.1474 -0.9890 -0.0117 -vn -0.1470 -0.9891 -0.0122 -vn -0.6926 0.6539 -0.3046 -vn -0.6927 0.6539 -0.3044 -vn 0.9349 0.2147 0.2826 -vn 0.9350 0.2145 0.2825 -vn 0.9351 0.2142 0.2823 -vn 0.7975 0.5311 0.2863 -vn 0.7977 0.5308 0.2863 -vn 0.1652 0.8966 -0.4108 -vn 0.1650 0.8965 -0.4112 -vn 0.2634 0.8416 0.4715 -vn 0.2636 0.8416 0.4714 -vn 0.2635 0.8417 0.4712 -vn 0.7635 -0.5599 -0.3218 -vn 0.7618 -0.5623 -0.3217 -vn 0.7625 -0.5615 -0.3215 -vn -0.5194 0.7890 -0.3281 -vn -0.5189 0.7892 -0.3283 -vn -0.5192 0.7891 -0.3282 -vn -0.0077 0.9778 0.2094 -vn -0.0082 0.9777 0.2098 -vn -0.0089 0.9777 0.2099 -vn -0.3924 -0.8581 -0.3312 -vn -0.3929 -0.8581 -0.3306 -vn -0.3928 -0.8580 -0.3311 -vn -0.8343 0.5272 -0.1614 -vn -0.8343 0.5271 -0.1614 -vn 0.9166 0.3913 -0.0825 -vn 0.9167 0.3909 -0.0825 -vn 0.2282 0.0671 -0.9713 -vn 0.2284 0.0672 -0.9712 -vn 0.2285 0.0672 -0.9712 -vn 0.6365 0.7566 0.1495 -vn 0.5912 0.7877 -0.1734 -vn 0.5916 0.7873 -0.1736 -vn 0.2234 0.9734 -0.0504 -vn 0.2239 0.9733 -0.0503 -vn 0.5251 0.4990 0.6894 -vn 0.5249 0.4979 0.6903 -vn 0.5259 0.4957 0.6912 -vn 0.4414 -0.1627 -0.8824 -vn 0.4414 -0.1621 -0.8825 -vn 0.4415 -0.1625 -0.8825 -vn -0.8048 0.4885 -0.3371 -vn -0.8048 0.4883 -0.3374 -vn -0.5308 0.7673 -0.3598 -vn -0.5307 0.7673 -0.3600 -vn -0.7640 0.3223 -0.5590 -vn -0.7639 0.3222 -0.5591 -vn 0.1084 0.1764 0.9783 -vn 0.1112 0.1795 0.9775 -vn 0.1092 0.1784 0.9779 -vn 0.0362 0.5321 0.8459 -vn 0.0356 0.5318 0.8461 -vn 0.0351 0.5308 0.8468 -vn 0.2304 0.9260 -0.2992 -vn 0.2308 0.9258 -0.2992 -vn 0.2303 0.9260 -0.2992 -vn -0.7430 0.6675 -0.0491 -vn -0.7428 0.6677 -0.0488 -vn -0.3662 0.8546 -0.3682 -vn -0.3662 0.8546 -0.3681 -vn -0.3662 0.8547 -0.3680 -vn -0.4033 -0.7748 -0.4868 -vn -0.4031 -0.7750 -0.4868 -vn -0.4850 0.8621 0.1467 -vn -0.4851 0.8621 0.1468 -vn 0.5768 0.7294 -0.3678 -vn -0.9795 0.0250 0.2001 -vn -0.9794 0.0253 0.2002 -vn -0.9794 0.0254 0.2002 -vn -0.2047 0.8983 -0.3888 -vn -0.2046 0.8983 -0.3889 -vn -0.2045 0.8982 -0.3890 -vn -0.6192 0.7650 -0.1770 -vn -0.6193 0.7650 -0.1767 -vn -0.6193 0.7650 -0.1769 -vn 0.1054 0.4410 -0.8913 -vn 0.1055 0.4409 -0.8913 -vn 0.1052 0.4395 -0.8920 -vn -0.2122 0.9151 0.3429 -vn 0.2544 0.8698 -0.4227 -vn 0.2547 0.8697 -0.4228 -vn 0.2546 0.8698 -0.4227 -vn -0.1467 0.9250 -0.3505 -vn -0.1465 0.9250 -0.3505 -vn -0.1466 0.9251 -0.3504 -vn -0.5078 -0.1412 0.8498 -vn -0.5079 -0.1412 0.8497 -vn 0.4450 0.7037 -0.5539 -vn 0.4446 0.7036 -0.5544 -vn 0.4442 0.7036 -0.5546 -vn -0.5537 -0.7110 -0.4335 -vn -0.5538 -0.7112 -0.4330 -vn -0.5533 -0.7112 -0.4336 -vn 0.5580 0.6661 -0.4949 -vn 0.7919 0.5976 0.1256 -vn 0.7918 0.5976 0.1260 -vn 0.7918 0.5976 0.1259 -vn 0.8158 0.4697 -0.3375 -vn 0.8155 0.4702 -0.3375 -vn 0.8153 0.4705 -0.3375 -vn -0.5837 0.7613 0.2823 -vn -0.5840 0.7610 0.2825 -vn -0.5836 0.7614 0.2821 -vn -0.8340 0.3056 0.4594 -vn 0.6518 0.6285 0.4245 -vn 0.6519 0.6285 0.4243 -vn 0.5294 0.8339 -0.1558 -vn 0.5296 0.8338 -0.1560 -vn 0.5295 0.8339 -0.1557 -vn 0.6243 -0.7759 -0.0908 -vn 0.6246 -0.7756 -0.0905 -vn 0.6239 -0.7762 -0.0913 -vn -0.6063 0.2998 0.7365 -vn -0.6062 0.2997 0.7367 -vn -0.6067 0.2997 0.7363 -vn -0.2881 0.8178 -0.4982 -vn -0.2873 0.8177 -0.4988 -vn -0.2878 0.8177 -0.4985 -vn -0.1431 0.6118 -0.7779 -vn -0.1431 0.6123 -0.7776 -vn 0.5488 0.2772 -0.7887 -vn 0.5491 0.2771 -0.7885 -vn -0.1294 0.8386 -0.5292 -vn -0.1284 0.8378 -0.5306 -vn -0.1286 0.8369 -0.5320 -vn 0.3654 -0.9282 0.0703 -vn 0.3656 -0.9281 0.0701 -vn -0.3236 0.0317 -0.9457 -vn -0.3253 0.0328 -0.9450 -vn 0.0241 -0.9764 0.2145 -vn 0.0239 -0.9764 0.2144 -vn 0.0239 -0.9765 0.2143 -vn 0.1231 0.7541 0.6451 -vn 0.1229 0.7540 0.6453 -vn 0.1227 0.7538 0.6455 -vn 0.4043 0.9099 -0.0931 -vn 0.4046 0.9098 -0.0930 -vn 0.4045 0.9098 -0.0931 -vn -0.0502 0.4762 -0.8779 -vn -0.0502 0.4759 -0.8781 -vn -0.0502 0.4760 -0.8780 -vn 0.4189 0.8820 -0.2158 -vn 0.4186 0.8822 -0.2158 -vn -0.2942 0.8147 -0.4997 -vn 0.2720 0.9598 -0.0695 -vn 0.2726 0.9597 -0.0688 -vn 0.0989 0.9081 -0.4068 -vn 0.0990 0.9079 -0.4074 -vn 0.0993 0.9077 -0.4077 -vn -0.0529 0.4988 0.8651 -vn 0.8180 0.4279 -0.3844 -vn 0.8180 0.4280 -0.3843 -vn 0.8180 0.4278 -0.3844 -vn 0.1114 -0.7213 -0.6836 -vn 0.1114 -0.7214 -0.6835 -vn 0.1114 -0.7211 -0.6838 -vn 0.6344 -0.3231 -0.7022 -vn 0.6345 -0.3235 -0.7020 -vn 0.6344 -0.3233 -0.7021 -vn -0.7170 -0.5170 -0.4677 -vn -0.7175 -0.5170 -0.4667 -vn -0.7169 -0.5169 -0.4679 -vn -0.9264 -0.2539 0.2781 -vn -0.9263 -0.2550 0.2775 -vn -0.9263 -0.2547 0.2778 -vn -0.7331 -0.1240 0.6688 -vn -0.7325 -0.1241 0.6693 -vn -0.7322 -0.1245 0.6697 -vn -0.3209 -0.9398 -0.1176 -vn -0.3415 -0.5049 -0.7927 -vn -0.3400 -0.5067 -0.7923 -vn -0.3397 -0.5084 -0.7913 -vn 0.3036 0.1461 -0.9415 -vn 0.3035 0.1460 -0.9416 -vn 0.3034 0.1461 -0.9416 -vn 0.6782 0.0333 0.7341 -vn 0.6783 0.0336 0.7340 -vn 0.8581 0.3494 0.3763 -vn 0.8583 0.3496 0.3757 -vn 0.8585 0.3497 0.3751 -vn -0.8506 0.0838 -0.5191 -vn -0.8505 0.0836 -0.5193 -vn -0.8506 0.0836 -0.5192 -vn 0.5528 0.6632 0.5046 -vn 0.5527 0.6632 0.5047 -vn -0.4385 -0.7091 0.5521 -vn -0.4386 -0.7091 0.5522 -vn -0.4384 -0.7091 0.5523 -vn -0.9121 0.4097 0.0173 -vn 0.5129 0.4243 -0.7462 -vn 0.5128 0.4241 -0.7464 -vn -0.6381 0.4693 -0.6104 -vn -0.6389 0.4692 -0.6097 -vn -0.6385 0.4693 -0.6100 -vn -0.7293 0.3796 -0.5692 -vn -0.7286 0.3795 -0.5702 -vn -0.7296 0.3800 -0.5686 -vn -0.8704 0.1932 -0.4528 -vn -0.8705 0.1932 -0.4526 -vn -0.8705 0.1933 -0.4527 -vn 0.8720 -0.4821 0.0849 -vn 0.8719 -0.4824 0.0838 -vn 0.8719 -0.4824 0.0844 -vn 0.9988 -0.0457 0.0149 -vn 0.9986 -0.0516 0.0137 -vn 0.9987 -0.0491 0.0130 -vn -0.2113 -0.3949 -0.8941 -vn -0.2122 -0.3944 -0.8941 -vn -0.2104 -0.3951 -0.8942 -vn -0.7243 0.5045 -0.4700 -vn 0.2934 -0.8400 0.4565 -vn 0.2933 -0.8400 0.4565 -vn 0.2932 -0.8400 0.4565 -vn -0.1839 0.7603 -0.6230 -vn -0.1839 0.7601 -0.6233 -vn -0.0884 -0.3748 0.9229 -vn -0.0886 -0.3747 0.9229 -vn -0.0882 -0.3743 0.9231 -vn 0.2797 -0.5313 0.7997 -vn 0.2802 -0.5308 0.7999 -vn 0.2800 -0.5311 0.7997 -vn -0.1576 0.3570 0.9207 -vn -0.5315 0.0054 0.8471 -vn -0.5315 0.0056 0.8471 -vn 0.3860 0.8408 -0.3795 -vn 0.3870 0.8406 -0.3789 -vn 0.3864 0.8407 -0.3794 -vn -0.8232 0.5359 -0.1874 -vn -0.8235 0.5353 -0.1877 -vn 0.2071 0.9775 -0.0396 -vn -0.5260 -0.1038 0.8441 -vn -0.5259 -0.1039 0.8442 -vn -0.6004 0.5108 -0.6153 -vn -0.6005 0.5109 -0.6151 -vn -0.6005 0.5106 -0.6153 -vn 0.0875 0.1006 0.9911 -vn 0.0873 0.1009 0.9911 -vn 0.0873 0.1010 0.9911 -vn -0.2479 -0.9453 -0.2120 -vn -0.2482 -0.9453 -0.2119 -vn -0.2481 -0.9453 -0.2119 -vn -0.0764 0.7314 0.6777 -vn -0.0768 0.7313 0.6777 -vn -0.0765 0.7314 0.6776 -vn 0.7950 0.3013 0.5266 -vn 0.7948 0.3012 0.5268 -vn 0.0633 0.3312 0.9414 -vn 0.0633 0.3310 0.9415 -vn 0.0634 0.3311 0.9415 -vn -0.1701 -0.3774 0.9103 -vn -0.1694 -0.3776 0.9103 -vn -0.1687 -0.3780 0.9103 -vn -0.3517 -0.9361 -0.0090 -vn -0.3514 -0.9362 -0.0087 -vn -0.4576 0.8450 0.2767 -vn -0.4579 0.8449 0.2768 -vn -0.3143 0.8516 0.4196 -vn -0.3141 0.8515 0.4199 -vn -0.3146 0.8514 0.4196 -vn -0.1656 0.7940 -0.5850 -vn -0.1655 0.7949 -0.5837 -vn -0.4237 0.8993 0.1081 -vn -0.4239 0.8993 0.1076 -vn -0.4236 0.8993 0.1083 -vn 0.4097 -0.1085 0.9058 -vn 0.4101 -0.1087 0.9055 -vn 0.4111 -0.1088 0.9051 -vn 0.5716 -0.5512 -0.6078 -vn 0.5716 -0.5512 -0.6079 -vn 0.5354 -0.5601 -0.6322 -vn 0.5348 -0.5606 -0.6322 -vn 0.5349 -0.5604 -0.6323 -vn 0.2613 -0.7596 0.5956 -vn 0.2614 -0.7593 0.5959 -vn 0.2614 -0.7597 0.5954 -vn -0.6084 0.0524 -0.7919 -vn -0.4458 0.6366 -0.6293 -vn -0.4457 0.6366 -0.6293 -vn -0.4448 0.6367 -0.6299 -vn 0.4303 0.8283 -0.3588 -vn -0.7724 -0.5738 -0.2724 -vn -0.7724 -0.5739 -0.2720 -vn -0.7724 -0.5739 -0.2721 -vn -0.0959 0.9904 0.1000 -vn -0.0994 0.4355 0.8947 -vn -0.0997 0.4355 0.8947 -vn -0.0996 0.4354 0.8947 -vn -0.1055 0.9864 0.1264 -vn -0.1057 0.9863 0.1264 -vn -0.1059 0.9863 0.1265 -vn -0.9553 0.1032 -0.2769 -vn -0.9554 0.1029 -0.2769 -vn -0.9555 0.1030 -0.2766 -vn -0.0861 0.9958 0.0319 -vn -0.0860 0.9958 0.0317 -vn -0.0861 0.9958 0.0324 -vn 0.2862 -0.8950 0.3422 -vn 0.2863 -0.8950 0.3422 -vn 0.2861 -0.8950 0.3422 -vn 0.6102 0.3051 -0.7312 -vn 0.6103 0.3050 -0.7311 -vn 0.6106 0.3049 -0.7309 -vn -0.6310 -0.7559 0.1743 -vn -0.6312 -0.7562 0.1727 -vn -0.6312 -0.7560 0.1733 -vn -0.7135 0.5244 0.4647 -vn -0.7135 0.5240 0.4652 -vn -0.7133 0.5238 0.4657 -vn 0.8285 0.0993 0.5511 -vn 0.8286 0.0987 0.5510 -vn -0.9646 -0.2005 -0.1716 -vn -0.9645 -0.2005 -0.1720 -vn -0.9645 -0.2005 -0.1719 -vn -0.5000 -0.8655 0.0307 -vn -0.5001 -0.8654 0.0315 -vn -0.4999 -0.8655 0.0309 -vn 0.8553 -0.2632 0.4462 -vn 0.8553 -0.2638 0.4460 -vn 0.8553 -0.2642 0.4458 -vn -0.4447 -0.4576 -0.7699 -vn -0.4441 -0.4579 -0.7701 -vn -0.3944 -0.3422 -0.8529 -vn -0.3943 -0.3420 -0.8530 -vn -0.3944 -0.3421 -0.8529 -vn 0.2819 0.7523 -0.5955 -vn 0.2817 0.7523 -0.5956 -vn 0.2815 0.7522 -0.5958 -vn 0.5432 0.8255 0.1532 -vn 0.5433 0.8254 0.1534 -vn 0.5432 0.8255 0.1533 -vn 0.7914 -0.0471 0.6095 -vn 0.7913 -0.0471 0.6096 -vn 0.8259 0.1391 -0.5464 -vn -0.0242 0.7225 0.6910 -vn -0.0240 0.7224 0.6911 -vn -0.0245 0.7225 0.6909 -vn -0.9867 0.0754 0.1441 -vn -0.9866 0.0747 0.1450 -vn -0.9866 0.0752 0.1445 -vn -0.3724 -0.3872 -0.8434 -vn -0.3723 -0.3870 -0.8436 -vn -0.9926 0.0858 -0.0862 -vn -0.9925 0.0859 -0.0865 -vn 0.8732 -0.4481 0.1917 -vn 0.8729 -0.4482 0.1925 -vn 0.8732 -0.4484 0.1910 -vn -0.0946 0.4442 0.8909 -vn -0.0947 0.4442 0.8909 -vn -0.0944 0.4443 0.8909 -vn 0.2371 -0.9587 0.1571 -vn 0.2368 -0.9587 0.1573 -vn 0.2368 -0.9587 0.1574 -vn 0.9756 0.0308 -0.2174 -vn 0.9757 0.0318 -0.2169 -vn 0.9757 0.0327 -0.2167 -vn -0.5752 -0.2914 0.7644 -vn -0.5754 -0.2913 0.7643 -vn 0.9072 0.2516 -0.3371 -vn 0.9073 0.2517 -0.3370 -vn 0.9072 0.2515 -0.3372 -vn 0.8865 -0.0197 0.4624 -vn 0.8865 -0.0185 0.4624 -vn 0.8865 -0.0192 0.4623 -vn 0.1831 -0.5306 -0.8276 -vn 0.1832 -0.5306 -0.8276 -vn 0.1829 -0.5305 -0.8277 -vn -0.8223 -0.3357 -0.4595 -vn -0.8225 -0.3355 -0.4593 -vn -0.8225 -0.3356 -0.4593 -vn 0.4039 -0.8581 -0.3170 -vn -0.5824 -0.8066 -0.1008 -vn -0.3572 0.0675 -0.9316 -vn -0.3577 0.0675 -0.9314 -vn -0.3569 0.0679 -0.9317 -vn 0.5473 -0.8046 0.2305 -vn -0.3502 0.7533 0.5567 -vn 0.6511 -0.5869 0.4812 -vn 0.6521 -0.5864 0.4806 -vn 0.6519 -0.5865 0.4807 -vn 0.8767 0.2584 0.4057 -vn 0.8768 0.2568 0.4065 -vn 0.8769 0.2596 0.4045 -vn 0.2832 -0.0376 0.9583 -vn 0.2829 -0.0363 0.9585 -vn -0.6217 -0.6131 -0.4875 -vn -0.6214 -0.6132 -0.4877 -vn -0.6217 -0.6132 -0.4874 -vn 0.9171 0.1994 0.3451 -vn 0.9172 0.1994 0.3450 -vn 0.9171 0.1995 0.3451 -vn -0.8432 -0.4324 -0.3195 -vn -0.8431 -0.4325 -0.3194 -vn -0.8894 -0.0966 -0.4468 -vn -0.8893 -0.0968 -0.4469 -vn -0.8894 -0.0962 -0.4468 -vn 0.9831 0.1630 -0.0836 -vn 0.9831 0.1628 -0.0835 -vn 0.9832 0.1623 -0.0835 -vn -0.5338 -0.8350 -0.1335 -vn -0.5339 -0.8349 -0.1333 -vn 0.3244 -0.7754 -0.5418 -vn 0.3242 -0.7753 -0.5420 -vn 0.3246 -0.7755 -0.5415 -vn -0.0374 -0.7462 0.6646 -vn -0.0373 -0.7466 0.6642 -vn -0.0373 -0.7463 0.6646 -vn 0.6267 -0.7734 0.0951 -vn 0.6264 -0.7737 0.0954 -vn 0.6265 -0.7736 0.0954 -vn -0.7394 0.2296 -0.6329 -vn -0.7393 0.2297 -0.6329 -vn -0.7393 0.2297 -0.6330 -vn -0.5333 0.7531 -0.3853 -vn -0.5332 0.7530 -0.3855 -vn -0.1397 -0.9828 -0.1211 -vn -0.9382 0.0999 -0.3314 -vn -0.9382 0.0996 -0.3315 -vn -0.9382 0.0995 -0.3315 -vn -0.0366 -0.8824 0.4691 -vn -0.0355 -0.8826 0.4688 -vn -0.0354 -0.8826 0.4687 -vn -0.8244 -0.5643 -0.0437 -vn -0.8246 -0.5640 -0.0436 -vn -0.8245 -0.5642 -0.0437 -vn 0.2848 0.8383 -0.4649 -vn 0.2849 0.8382 -0.4650 -vn 0.2849 0.8384 -0.4647 -vn 0.5028 0.7940 0.3416 -vn 0.5024 0.7943 0.3416 -vn 0.5026 0.7941 0.3417 -vn 0.2242 -0.5918 0.7743 -vn 0.2249 -0.5919 0.7740 -vn 0.2243 -0.5918 0.7743 -vn 0.3545 0.5294 0.7708 -vn 0.3549 0.5291 0.7708 -vn 0.3547 0.5294 0.7707 -vn -0.9940 -0.0997 -0.0448 -vn -0.9940 -0.0999 -0.0448 -vn -0.6172 -0.5743 0.5379 -vn -0.6173 -0.5745 0.5374 -vn -0.6174 -0.5741 0.5378 -vn 0.5926 -0.0278 0.8050 -vn 0.5925 -0.0278 0.8051 -vn 0.5926 -0.0279 0.8050 -vn 0.1435 0.9432 -0.2995 -vn 0.8681 0.1829 0.4615 -vn 0.8679 0.1830 0.4618 -vn 0.8682 0.1829 0.4612 -vn 0.5090 0.2875 0.8113 -vn 0.5091 0.2876 0.8113 -vn 0.5094 0.2874 0.8111 -vn 0.5694 -0.8195 0.0651 -vn -0.3480 -0.9314 0.1066 -vn -0.3479 -0.9315 0.1065 -vn 0.5373 0.0575 -0.8414 -vn 0.5373 0.0576 -0.8414 -vn -0.0484 0.9842 0.1705 -vn -0.0485 0.9842 0.1704 -vn -0.0824 -0.9454 0.3153 -vn -0.0823 -0.9452 0.3161 -vn -0.0822 -0.9450 0.3166 -vn 0.2450 -0.3447 0.9062 -vn 0.2459 -0.3449 0.9059 -vn 0.2454 -0.3449 0.9060 -vn -0.2639 -0.8535 -0.4494 -vn -0.2637 -0.8537 -0.4491 -vn -0.2638 -0.8534 -0.4496 -vn -0.1627 0.6085 -0.7767 -vn -0.1634 0.6090 -0.7761 -vn -0.1632 0.6087 -0.7764 -vn -0.5967 -0.7225 0.3492 -vn 0.1475 -0.5497 0.8223 -vn -0.2724 0.1579 -0.9491 -vn -0.2725 0.1580 -0.9491 -vn -0.2721 0.1578 -0.9492 -vn 0.9444 -0.0744 -0.3202 -vn 0.1368 0.0735 0.9879 -vn -0.7811 -0.6097 -0.1346 -vn -0.7811 -0.6097 -0.1347 -vn -0.7811 -0.6095 -0.1356 -vn 0.2823 -0.9370 -0.2058 -vn 0.2823 -0.9370 -0.2059 -vn 0.6589 -0.5735 0.4867 -vn 0.6593 -0.5734 0.4864 -vn 0.6582 -0.5740 0.4871 -vn 0.9055 0.2823 0.3168 -vn 0.9063 0.2811 0.3156 -vn 0.9072 0.2808 0.3132 -vn 0.1305 -0.9762 -0.1730 -vn 0.1304 -0.9762 -0.1731 -vn -0.4737 -0.8484 -0.2364 -vn -0.4736 -0.8485 -0.2362 -vn -0.4737 -0.8484 -0.2363 -vn -0.1159 -0.1418 -0.9831 -vn -0.1163 -0.1426 -0.9829 -vn -0.1166 -0.1445 -0.9826 -vn 0.8111 0.5708 0.1278 -vn 0.7383 -0.5385 0.4061 -vn 0.7384 -0.5385 0.4060 -vn 0.7384 -0.5385 0.4059 -vn 0.7615 0.6368 -0.1209 -vn 0.7615 0.6368 -0.1208 -vn 0.7614 0.6368 -0.1220 -vn 0.5665 -0.7981 0.2050 -vn 0.6996 0.7060 0.1101 -vn 0.6998 0.7058 0.1099 -vn 0.7824 -0.6117 0.1168 -vn 0.7822 -0.6120 0.1166 -vn 0.7823 -0.6119 0.1167 -vn -0.5468 0.5484 -0.6327 -vn -0.5467 0.5483 -0.6329 -vn -0.5469 0.5482 -0.6327 -vn -0.6471 -0.0156 -0.7622 -vn -0.6466 -0.0161 -0.7626 -vn -0.6462 -0.0164 -0.7630 -vn -0.9578 0.2678 -0.1048 -vn -0.9578 0.2672 -0.1060 -vn -0.9577 0.2679 -0.1055 -vn 0.7247 -0.6664 -0.1751 -vn 0.7251 -0.6661 -0.1751 -vn 0.7249 -0.6662 -0.1751 -vn -0.3320 0.8118 -0.4804 -vn -0.3321 0.8118 -0.4802 -vn -0.3325 0.8118 -0.4801 -vn 0.7293 -0.6840 -0.0163 -vn 0.7295 -0.6838 -0.0160 -vn 0.7297 -0.6836 -0.0164 -vn -0.2191 0.9587 0.1814 -vn -0.2192 0.9587 0.1815 -vn -0.2196 0.9586 0.1812 -vn 0.0574 0.9854 0.1600 -vn 0.0571 0.9854 0.1604 -vn 0.0570 0.9854 0.1606 -vn 0.2796 0.8979 -0.3400 -vn 0.2795 0.8980 -0.3398 -vn 0.4376 0.4452 0.7812 -vn 0.4379 0.4447 0.7813 -vn 0.4384 0.4441 0.7814 -vn -0.7162 -0.6969 -0.0369 -vn -0.7163 -0.6969 -0.0369 -vn -0.7161 -0.6970 -0.0369 -vn -0.5640 -0.8254 -0.0256 -vn -0.5648 -0.8248 -0.0271 -vn -0.5646 -0.8249 -0.0265 -vn -0.0159 0.0136 0.9998 -vn -0.0154 0.0134 0.9998 -vn -0.0151 0.0133 0.9998 -vn -0.9389 0.0656 -0.3379 -vn 0.2633 0.9250 -0.2740 -vn 0.2632 0.9251 -0.2738 -vn 0.2634 0.9250 -0.2739 -vn -0.1482 0.8130 -0.5631 -vn -0.1483 0.8128 -0.5633 -vn 0.8776 -0.3362 -0.3417 -vn 0.8776 -0.3363 -0.3417 -vn 0.8775 -0.3365 -0.3416 -vn -0.7000 0.4838 -0.5253 -vn -0.7001 0.4834 -0.5255 -vn -0.7000 0.4840 -0.5251 -vn 0.6967 0.7108 0.0967 -vn 0.6968 0.7107 0.0967 -vn 0.6310 0.7363 -0.2444 -vn 0.6309 0.7363 -0.2446 -vn 0.2381 -0.8895 -0.3900 -vn 0.1404 0.9563 -0.2566 -vn 0.1421 0.9560 -0.2566 -vn 0.1410 0.9562 -0.2564 -vn -0.8386 -0.1251 -0.5302 -vn -0.8379 -0.1266 -0.5310 -vn -0.8387 -0.1238 -0.5304 -vn 0.1462 0.1450 0.9786 -vn 0.1461 0.1452 0.9786 -vn 0.1461 0.1453 0.9785 -vn 0.9391 0.1901 0.2863 -vn 0.9393 0.1899 0.2859 -vn 0.9391 0.1898 0.2863 -vn 0.3298 0.2491 -0.9106 -vn 0.3299 0.2494 -0.9105 -vn 0.3298 0.2492 -0.9106 -vn -0.7157 0.5465 0.4349 -vn -0.7157 0.5465 0.4348 -vn -0.7159 0.5464 0.4347 -vn 0.4105 0.7005 0.5837 -vn 0.4105 0.7005 0.5838 -vn 0.4103 0.7014 0.5829 -vn -0.3771 -0.9147 -0.1455 -vn 0.5078 0.5841 0.6332 -vn 0.5081 0.5841 0.6330 -vn 0.5084 0.5842 0.6326 -vn -0.2602 0.0657 0.9633 -vn -0.2604 0.0656 0.9633 -vn -0.4506 0.5863 -0.6732 -vn -0.4507 0.5863 -0.6731 -vn 0.7476 0.0507 0.6622 -vn 0.7475 0.0511 0.6623 -vn 0.7475 0.0513 0.6623 -vn -0.8003 -0.3873 -0.4577 -vn -0.8004 -0.3873 -0.4576 -vn -0.2626 -0.8691 0.4192 -vn -0.2625 -0.8691 0.4192 -vn -0.2630 -0.8690 0.4192 -vn -0.2621 0.8149 -0.5170 -vn -0.2617 0.8150 -0.5170 -vn -0.2622 0.8149 -0.5169 -vn -0.0144 0.8852 -0.4650 -vn 0.4968 0.2492 -0.8313 -vn 0.4975 0.2488 -0.8310 -vn 0.4971 0.2490 -0.8312 -vn 0.8745 0.4751 -0.0979 -vn 0.8750 0.4744 -0.0962 -vn 0.8746 0.4750 -0.0974 -vn -0.4347 -0.5275 -0.7299 -vn 0.9901 -0.1391 -0.0202 -vn 0.9901 -0.1392 -0.0202 -vn 0.9900 -0.1393 -0.0203 -vn -0.2201 -0.0587 -0.9737 -vn -0.2200 -0.0587 -0.9737 -vn -0.2202 -0.0586 -0.9737 -vn -0.1490 0.9205 -0.3612 -vn -0.1490 0.9205 -0.3613 -vn -0.1491 0.9205 -0.3611 -vn 0.8929 0.4280 -0.1396 -vn 0.8932 0.4276 -0.1391 -vn 0.8929 0.4281 -0.1397 -vn -0.5011 0.7287 -0.4668 -vn -0.5011 0.7287 -0.4667 -vn -0.5013 0.7286 -0.4666 -vn -0.4623 0.8867 0.0092 -vn -0.4631 0.8863 0.0089 -vn -0.4635 0.8861 0.0091 -vn 0.7721 -0.5140 -0.3737 -vn 0.8459 -0.4794 -0.2339 -vn 0.2907 0.1966 -0.9364 -vn 0.2904 0.1965 -0.9365 -vn 0.2905 0.1964 -0.9365 -vn 0.9347 0.2846 -0.2129 -vn 0.9347 0.2846 -0.2131 -vn 0.9347 0.2851 -0.2123 -vn 0.2493 0.8948 0.3705 -vn 0.2499 0.8947 0.3701 -vn 0.2497 0.8947 0.3704 -vn -0.9838 0.1789 0.0078 -vn -0.9838 0.1789 0.0076 -vn -0.2896 0.8338 -0.4700 -vn -0.2896 0.8339 -0.4699 -vn -0.2896 0.8339 -0.4697 -vn -0.1153 0.1981 0.9734 -vn -0.1151 0.1984 0.9733 -vn -0.1152 0.1983 0.9733 -vn 0.8570 -0.2562 0.4472 -vn 0.8569 -0.2561 0.4473 -vn 0.2032 0.7303 -0.6522 -vn 0.2032 0.7318 -0.6506 -vn 0.2032 0.7318 -0.6505 -vn -0.7901 0.1456 -0.5955 -vn -0.7904 0.1451 -0.5952 -vn 0.8575 -0.2543 0.4472 -vn 0.8576 -0.2543 0.4471 -vn 0.8574 -0.2543 0.4474 -vn 0.5594 0.7116 -0.4251 -vn -0.9678 0.2513 -0.0126 -vn -0.9678 0.2514 -0.0125 -vn -0.9678 0.2515 -0.0124 -vn -0.7848 -0.3293 0.5251 -vn -0.7848 -0.3291 0.5251 -vn -0.7849 -0.3294 0.5249 -vn 0.3258 0.7914 -0.5173 -vn 0.3265 0.7911 -0.5173 -vn 0.3246 0.7921 -0.5169 -vn -0.4122 0.9094 -0.0553 -vn 0.2610 -0.9534 0.1511 -vn 0.5455 0.8320 0.1007 -vn 0.5457 0.8319 0.1008 -vn 0.5457 0.8319 0.1009 -vn 0.2710 0.6163 0.7394 -vn 0.7020 0.4287 -0.5687 -vn 0.7020 0.4286 -0.5688 -vn -0.1794 0.9288 -0.3244 -vn -0.1798 0.9287 -0.3244 -vn -0.0672 -0.1335 0.9888 -vn -0.0768 -0.1352 0.9878 -vn -0.0601 -0.1275 0.9900 -vn -0.7397 0.4158 -0.5291 -vn -0.7395 0.4159 -0.5293 -vn -0.4089 -0.6892 0.5982 -vn -0.4083 -0.6893 0.5984 -vn -0.4079 -0.6894 0.5986 -vn -0.4965 0.8108 0.3100 -vn -0.2603 0.5891 -0.7650 -vn -0.2603 0.5892 -0.7649 -vn -0.6068 -0.2499 -0.7546 -vn -0.6075 -0.2502 -0.7539 -vn -0.6071 -0.2501 -0.7542 -vn -0.0776 0.7887 -0.6098 -vn -0.0774 0.7888 -0.6097 -vn -0.0779 0.7886 -0.6100 -vn -0.4956 0.6440 -0.5827 -vn -0.4958 0.6440 -0.5826 -vn -0.4955 0.6442 -0.5827 -vn 0.4323 0.4512 -0.7807 -vn 0.4321 0.4509 -0.7810 -vn 0.4322 0.4512 -0.7808 -vn 0.0158 0.0821 -0.9965 -vn 0.0157 0.0819 -0.9965 -vn 0.2187 0.9757 0.0144 -vn 0.2189 0.9756 0.0138 -vn 0.2195 0.9755 0.0131 -vn 0.6012 0.7664 0.2260 -vn 0.6013 0.7665 0.2256 -vn 0.6011 0.7663 0.2269 -vn 0.1778 -0.7329 -0.6567 -vn 0.9496 -0.0668 -0.3062 -vn 0.9498 -0.0669 -0.3057 -vn 0.9499 -0.0671 -0.3054 -vn 0.1194 0.6710 0.7318 -vn 0.1184 0.6710 0.7320 -vn 0.1191 0.6711 0.7318 -vn 0.2599 0.1371 0.9559 -vn 0.2600 0.1372 0.9558 -vn 0.2600 0.1373 0.9558 -vn 0.2834 0.7982 0.5316 -vn 0.2838 0.7982 0.5313 -vn 0.2836 0.7982 0.5314 -vn -0.0913 -0.5727 0.8147 -vn -0.0911 -0.5728 0.8146 -vn -0.3546 0.1787 0.9178 -vn -0.3545 0.1788 0.9178 -vn 0.0272 0.9385 -0.3441 -vn 0.0260 0.9383 -0.3448 -vn 0.0261 0.9383 -0.3448 -vn 0.5001 -0.8622 -0.0809 -vn 0.5010 -0.8616 -0.0811 -vn 0.5012 -0.8615 -0.0810 -vn -0.5603 0.5203 -0.6445 -vn -0.7200 0.5556 -0.4158 -vn -0.7200 0.5557 -0.4158 -vn -0.7201 0.5556 -0.4156 -vn 0.3334 0.9194 -0.2088 -vn 0.3326 0.9195 -0.2094 -vn 0.3331 0.9194 -0.2091 -vn 0.0203 0.4655 0.8848 -vn 0.0211 0.4644 0.8854 -vn 0.0209 0.4652 0.8850 -vn -0.3394 -0.8639 0.3721 -vn -0.3398 -0.8640 0.3714 -vn -0.3400 -0.8641 0.3712 -vn -0.7799 0.6147 -0.1179 -vn -0.7798 0.6148 -0.1178 -vn -0.4665 -0.8651 0.1844 -vn -0.4665 -0.8651 0.1842 -vn -0.4666 -0.8650 0.1848 -vn 0.0336 0.1036 0.9940 -vn 0.0338 0.1037 0.9940 -vn 0.0337 0.1037 0.9940 -vn -0.9787 -0.1765 0.1050 -vn -0.9786 -0.1768 0.1050 -vn -0.9787 -0.1762 0.1053 -vn -0.8703 0.3352 -0.3610 -vn -0.8704 0.3352 -0.3607 -vn -0.8703 0.3351 -0.3610 -vn -0.7032 -0.2829 0.6523 -vn -0.7033 -0.2829 0.6522 -vn -0.7034 -0.2831 0.6520 -vn -0.1684 -0.3549 -0.9196 -vn 0.1116 -0.7007 -0.7047 -vn -0.5049 -0.2251 -0.8333 -vn -0.5034 -0.2251 -0.8342 -vn -0.5042 -0.2250 -0.8338 -vn -0.2023 0.8843 0.4209 -vn -0.2018 0.8844 0.4209 -vn -0.2293 -0.3793 -0.8964 -vn -0.2291 -0.3795 -0.8964 -vn -0.2292 -0.3793 -0.8964 -vn -0.0527 0.6671 -0.7431 -vn -0.0536 0.6669 -0.7432 -vn -0.0550 0.6677 -0.7424 -vn -0.1751 -0.2918 -0.9403 -vn -0.1754 -0.2921 -0.9402 -vn 0.3279 0.8931 0.3080 -vn 0.0500 0.9914 0.1208 -vn 0.0501 0.9914 0.1206 -vn -0.8845 0.1606 -0.4380 -vn 0.1510 0.7908 0.5932 -vn 0.1507 0.7935 0.5897 -vn 0.1501 0.7922 0.5916 -vn -0.4035 0.5937 -0.6962 -vn -0.4020 0.5942 -0.6967 -vn -0.4045 0.5929 -0.6963 -vn 0.9101 -0.0915 0.4042 -vn 0.9101 -0.0911 0.4043 -vn 0.8363 0.2891 0.4659 -vn 0.8363 0.2890 0.4659 -vn -0.6004 0.5625 -0.5684 -vn -0.1060 -0.4325 0.8954 -vn -0.3019 0.8922 -0.3359 -vn -0.3016 0.8923 -0.3358 -vn 0.3418 0.8312 -0.4384 -vn 0.3416 0.8314 -0.4383 -vn 0.3415 0.8315 -0.4381 -vn -0.8690 0.3748 -0.3230 -vn -0.0357 0.9988 -0.0341 -vn -0.0363 0.9988 -0.0337 -vn -0.0355 0.9988 -0.0341 -vn -0.8655 0.3728 -0.3344 -vn -0.8656 0.3734 -0.3337 -vn -0.8656 0.3727 -0.3346 -vn -0.6547 -0.0669 -0.7530 -vn -0.6549 -0.0669 -0.7528 -vn -0.6552 -0.0669 -0.7525 -vn -0.2757 -0.5308 0.8014 -vn -0.2755 -0.5304 0.8017 -vn -0.2751 -0.5306 0.8017 -vn 0.7572 0.0153 0.6530 -vn 0.7571 0.0154 0.6532 -vn 0.7574 0.0150 0.6528 -vn 0.2674 0.4093 0.8723 -vn 0.2662 0.4100 0.8724 -vn 0.2684 0.4078 0.8727 -vn -0.2618 0.9338 0.2439 -vn -0.2628 0.9337 0.2430 -vn -0.2621 0.9338 0.2435 -vn -0.0842 0.9315 -0.3539 -vn -0.0842 0.9315 -0.3538 -vn 0.4609 -0.5519 0.6949 -vn -0.5717 -0.5869 0.5733 -vn -0.5718 -0.5867 0.5735 -vn -0.1450 0.7347 0.6627 -vn -0.1449 0.7347 0.6628 -vn -0.1451 0.7347 0.6627 -vn -0.1587 0.7760 -0.6105 -vn -0.1580 0.7760 -0.6107 -vn -0.1595 0.7762 -0.6100 -vn -0.8249 0.4285 -0.3687 -vn -0.8248 0.4285 -0.3688 -vn 0.1899 0.0749 0.9790 -vn 0.1899 0.0747 0.9790 -vn 0.1900 0.0745 0.9790 -vn -0.2759 -0.7477 0.6040 -vn -0.2757 -0.7481 0.6036 -vn -0.2752 -0.7486 0.6032 -vn 0.5513 -0.3985 0.7329 -vn 0.5516 -0.3985 0.7328 -vn 0.7905 -0.5385 -0.2918 -vn 0.7911 -0.5378 -0.2915 -vn 0.7908 -0.5382 -0.2915 -vn -0.5014 0.7596 -0.4143 -vn -0.5012 0.7598 -0.4141 -vn 0.6994 -0.4730 -0.5359 -vn 0.6993 -0.4729 -0.5361 -vn -0.3121 0.8590 0.4059 -vn -0.3119 0.8592 0.4057 -vn -0.3118 0.8591 0.4058 -vn -0.9486 0.3095 -0.0664 -vn -0.1973 0.6859 0.7004 -vn -0.1967 0.6860 0.7005 -vn -0.1962 0.6860 0.7006 -vn -0.2007 -0.3078 -0.9300 -vn -0.2008 -0.3071 -0.9303 -vn -0.1303 -0.9518 0.2778 -vn -0.1293 -0.9520 0.2775 -vn -0.1316 -0.9517 0.2775 -vn 0.2614 -0.9134 0.3120 -vn 0.2613 -0.9134 0.3121 -vn 0.2613 -0.9135 0.3117 -vn -0.4123 0.9102 0.0403 -vn -0.2791 0.9594 -0.0404 -vn -0.2784 0.9596 -0.0399 -vn -0.2789 0.9595 -0.0403 -vn -0.4546 0.2259 -0.8616 -vn -0.4541 0.2270 -0.8616 -vn -0.4542 0.2263 -0.8617 -vn -0.8679 -0.2100 0.4502 -vn -0.8681 -0.2091 0.4502 -vn -0.8679 -0.2098 0.4502 -vn -0.5441 -0.1854 -0.8183 -vn -0.5442 -0.1857 -0.8182 -vn -0.5443 -0.1857 -0.8181 -vn 0.4479 -0.0821 0.8903 -vn 0.4473 -0.0817 0.8907 -vn 0.4472 -0.0816 0.8907 -vn -0.1417 0.9486 -0.2831 -vn -0.1419 0.9486 -0.2829 -vn -0.1418 0.9486 -0.2831 -vn 0.8170 -0.5659 0.1106 -vn 0.8170 -0.5659 0.1107 -vn 0.8169 -0.5660 0.1108 -vn 0.4700 0.7155 -0.5169 -vn -0.9418 0.2872 0.1749 -vn -0.9416 0.2880 0.1746 -vn -0.9419 0.2867 0.1748 -vn 0.5776 0.2314 -0.7829 -vn 0.8126 -0.2327 0.5344 -vn 0.8126 -0.2329 0.5343 -vn 0.8126 -0.2326 0.5345 -vn -0.9869 -0.1488 -0.0615 -vn -0.9869 -0.1489 -0.0614 -vn 0.2446 0.9629 -0.1138 -vn 0.2442 0.9630 -0.1140 -vn 0.2445 0.9629 -0.1142 -vn 0.7617 -0.6478 -0.0102 -vn 0.7615 -0.6481 -0.0091 -vn 0.7615 -0.6481 -0.0090 -vn 0.4333 -0.3833 -0.8156 -vn -0.4484 -0.0911 0.8892 -vn -0.4480 -0.0913 0.8894 -vn -0.4482 -0.0912 0.8893 -vn -0.6918 -0.7220 -0.0140 -vn -0.6917 -0.7221 -0.0138 -vn 0.0702 -0.0617 0.9956 -vn 0.0703 -0.0621 0.9956 -vn 0.0701 -0.0615 0.9956 -vn -0.6444 -0.7628 0.0547 -vn -0.6444 -0.7627 0.0545 -vn 0.1405 0.8496 -0.5084 -vn 0.1408 0.8496 -0.5082 -vn 0.1418 0.8494 -0.5084 -vn -0.3287 0.7792 -0.5337 -vn -0.3285 0.7791 -0.5340 -vn 0.4276 -0.6134 -0.6640 -vn 0.4282 -0.6129 -0.6641 -vn 0.4273 -0.6137 -0.6638 -vn -0.6472 0.5416 0.5365 -vn -0.6477 0.5414 0.5361 -vn -0.6471 0.5417 0.5365 -vn -0.6622 -0.4787 -0.5765 -vn -0.6622 -0.4785 -0.5767 -vn -0.6625 -0.4789 -0.5760 -vn 0.6340 -0.7003 -0.3281 -vn 0.6337 -0.7012 -0.3268 -vn 0.6338 -0.7007 -0.3276 -vn -0.8584 -0.0558 -0.5100 -vn -0.8586 -0.0555 -0.5096 -vn -0.8584 -0.0558 -0.5099 -vn 0.7687 -0.1464 0.6226 -vn 0.7691 -0.1466 0.6221 -vn 0.7697 -0.1463 0.6214 -vn 0.7640 0.1040 -0.6368 -vn 0.7641 0.1042 -0.6366 -vn 0.7643 0.1048 -0.6362 -vn 0.7012 -0.6464 0.3007 -vn -0.6544 0.7319 -0.1900 -vn -0.6542 0.7321 -0.1901 -vn -0.6544 0.7318 -0.1902 -vn 0.9579 -0.0364 0.2848 -vn -0.1927 0.4816 -0.8549 -vn -0.1931 0.4818 -0.8548 -vn -0.1946 0.4822 -0.8542 -vn -0.1077 0.8108 0.5754 -vn -0.1069 0.8107 0.5757 -vn -0.1081 0.8106 0.5756 -vn 0.4894 0.7078 -0.5095 -vn 0.4893 0.7077 -0.5097 -vn -0.1349 0.2319 -0.9633 -vn -0.1350 0.2319 -0.9633 -vn 0.6855 0.6681 -0.2895 -vn 0.6855 0.6679 -0.2898 -vn 0.6853 0.6682 -0.2896 -vn -0.2395 0.1305 0.9621 -vn -0.2396 0.1307 0.9620 -vn 0.7674 -0.4050 0.4970 -vn 0.7677 -0.4038 0.4976 -vn 0.7678 -0.4041 0.4972 -vn 0.9432 -0.0270 0.3311 -vn 0.9431 -0.0270 0.3314 -vn 0.3267 0.5984 0.7316 -vn 0.3267 0.5985 0.7315 -vn 0.3257 0.5983 0.7321 -vn -0.3282 0.8475 -0.4171 -vn -0.3280 0.8478 -0.4168 -vn -0.3281 0.8478 -0.4166 -vn -0.2642 0.9605 -0.0874 -vn -0.6633 -0.7251 -0.1851 -vn -0.6641 -0.7242 -0.1857 -vn -0.6625 -0.7257 -0.1854 -vn -0.5015 -0.7599 -0.4135 -vn -0.4562 0.6491 -0.6088 -vn -0.4561 0.6492 -0.6087 -vn -0.5841 -0.2781 0.7625 -vn -0.5844 -0.2777 0.7625 -vn 0.5703 0.0658 -0.8188 -vn 0.5704 0.0656 -0.8187 -vn 0.5708 0.0645 -0.8185 -vn 0.5853 -0.5383 0.6063 -vn 0.5850 -0.5387 0.6063 -vn -0.2917 -0.2466 -0.9242 -vn -0.2916 -0.2469 -0.9241 -vn -0.2917 -0.2465 -0.9242 -vn -0.5692 0.7564 -0.3223 -vn -0.6122 0.0810 -0.7865 -vn -0.6122 0.0808 -0.7866 -vn 0.7569 -0.5662 0.3263 -vn 0.7569 -0.5662 0.3264 -vn 0.7570 -0.5662 0.3262 -vn 0.3352 0.4059 -0.8503 -vn -0.7475 -0.4893 -0.4492 -vn -0.7474 -0.4893 -0.4493 -vn 0.0823 0.7608 -0.6437 -vn 0.0823 0.7609 -0.6437 -vn -0.4557 -0.4562 0.7643 -vn -0.4564 -0.4560 0.7640 -vn -0.4567 -0.4561 0.7638 -vn -0.2084 -0.9544 -0.2136 -vn -0.2085 -0.9544 -0.2137 -vn -0.2081 -0.9545 -0.2137 -vn 0.8308 0.2893 0.4755 -vn 0.8306 0.2892 0.4758 -vn 0.8311 0.2892 0.4750 -vn -0.4637 0.7130 -0.5259 -vn -0.4629 0.7140 -0.5252 -vn -0.4632 0.7137 -0.5255 -vn 0.0206 -0.9362 0.3508 -vn 0.0204 -0.9363 0.3507 -vn 0.0209 -0.9360 0.3513 -vn 0.7902 0.0116 0.6127 -vn -0.5988 0.3878 0.7008 -vn -0.5987 0.3880 0.7008 -vn -0.5989 0.3876 0.7008 -vn 0.7899 -0.4744 0.3887 -vn 0.7901 -0.4744 0.3882 -vn 0.7896 -0.4748 0.3887 -vn -0.4229 0.3973 -0.8144 -vn -0.4229 0.3971 -0.8145 -vn -0.6581 -0.7526 0.0238 -vn -0.6581 -0.7525 0.0237 -vn -0.6581 -0.7526 0.0240 -vn 0.1284 0.7779 0.6151 -vn 0.1289 0.7783 0.6146 -vn 0.1286 0.7780 0.6149 -vn -0.4551 -0.0697 0.8877 -vn -0.1616 -0.9130 0.3745 -vn -0.1607 -0.9132 0.3745 -vn 0.5049 -0.2104 0.8372 -vn -0.3536 0.7267 -0.5890 -vn 0.3928 -0.8956 0.2087 -vn 0.8797 -0.2378 0.4119 -vn 0.8800 -0.2363 0.4121 -vn 0.8797 -0.2354 0.4131 -vn 0.8825 -0.2311 0.4096 -vn 0.8824 -0.2313 0.4097 -vn -0.8756 0.2624 0.4056 -vn -0.8755 0.2623 0.4058 -vn -0.1234 0.5259 0.8416 -vn -0.1235 0.5257 0.8416 -vn -0.1237 0.5256 0.8417 -vn 0.4205 -0.7656 0.4868 -vn 0.4203 -0.7655 0.4872 -vn 0.4205 -0.7656 0.4869 -vn -0.3714 -0.9031 0.2155 -vn -0.3714 -0.9030 0.2162 -vn -0.3713 -0.9031 0.2157 -vn 0.8848 -0.1898 0.4255 -vn 0.8847 -0.1908 0.4253 -vn 0.8848 -0.1904 0.4253 -vn 0.7167 0.6293 0.3005 -vn 0.7167 0.6294 0.3004 -vn 0.7171 0.6291 0.3000 -vn 0.7834 0.4650 0.4125 -vn 0.7834 0.4649 0.4125 -vn 0.8103 0.5723 -0.1262 -vn 0.8106 0.5719 -0.1258 -vn 0.5063 0.2955 0.8102 -vn 0.5062 0.2952 0.8103 -vn 0.5061 0.2951 0.8104 -vn -0.3511 -0.1211 0.9285 -vn -0.3517 -0.1215 0.9282 -vn -0.3512 -0.1212 0.9284 -vn -0.7546 0.0974 -0.6490 -vn -0.7547 0.0973 -0.6488 -vn -0.7546 0.0974 -0.6489 -vn 0.0339 0.3830 0.9231 -vn 0.0338 0.3828 0.9232 -vn 0.7472 0.3954 -0.5341 -vn 0.7472 0.3955 -0.5341 -vn 0.7471 0.3956 -0.5341 -vn -0.0171 0.8110 0.5848 -vn -0.0172 0.8111 0.5847 -vn -0.0176 0.8111 0.5847 -vn 0.8035 -0.5282 0.2746 -vn 0.8034 -0.5283 0.2745 -vn 0.8035 -0.5283 0.2745 -vn -0.7085 -0.4282 -0.5609 -vn -0.7086 -0.4284 -0.5607 -vn -0.0783 0.3235 0.9430 -vn -0.0781 0.3243 0.9427 -vn -0.0781 0.3252 0.9424 -vn -0.1279 -0.3322 -0.9345 -vn -0.1296 -0.3309 -0.9347 -vn -0.1287 -0.3319 -0.9345 -vn 0.9263 0.3728 0.0552 -vn 0.9262 0.3730 0.0551 -vn 0.9263 0.3727 0.0553 -vn 0.3904 -0.9194 -0.0482 -vn 0.3897 -0.9196 -0.0487 -vn 0.3906 -0.9193 -0.0480 -vn -0.9537 0.0051 -0.3008 -vn -0.9536 0.0050 -0.3010 -vn -0.5602 -0.8161 0.1420 -vn -0.6472 -0.5844 -0.4895 -vn -0.2694 0.6993 -0.6621 -vn -0.2713 0.6988 -0.6619 -vn -0.2684 0.6993 -0.6625 -vn -0.3215 0.9468 0.0110 -vn -0.3208 0.9471 0.0125 -vn -0.3213 0.9469 0.0113 -vn 0.8402 0.5084 0.1887 -vn 0.8413 0.5068 0.1881 -vn 0.8406 0.5077 0.1889 -vn 0.7972 -0.5799 -0.1679 -vn 0.7979 -0.5787 -0.1685 -vn 0.8004 -0.5757 -0.1669 -vn 0.4169 0.8911 -0.1792 -vn 0.3838 -0.6888 -0.6150 -vn 0.3839 -0.6887 -0.6151 -vn 0.3837 -0.6890 -0.6149 -vn -0.6478 -0.1175 0.7527 -vn -0.6479 -0.1178 0.7526 -vn -0.4593 -0.8882 0.0111 -vn -0.4587 -0.8885 0.0112 -vn 0.1724 0.9453 0.2770 -vn 0.1720 0.9453 0.2771 -vn 0.1726 0.9452 0.2770 -vn 0.3236 -0.6725 0.6656 -vn 0.3232 -0.6728 0.6655 -vn 0.3234 -0.6726 0.6656 -vn -0.9465 0.1486 -0.2864 -vn -0.9463 0.1486 -0.2870 -vn -0.9459 0.1492 -0.2882 -vn 0.9684 0.2393 -0.0706 -vn 0.9685 0.2389 -0.0709 -vn 0.9684 0.2390 -0.0709 -vn -0.7687 0.5727 -0.2848 -vn 0.2489 0.3205 0.9140 -vn 0.2491 0.3204 0.9140 -vn 0.2485 0.3203 0.9142 -vn -0.0460 0.2816 -0.9584 -vn -0.0462 0.2812 -0.9585 -vn -0.0463 0.2809 -0.9586 -vn -0.0199 -0.8906 0.4544 -vn -0.0197 -0.8905 0.4545 -vn -0.0201 -0.8905 0.4545 -vn 0.0146 0.9938 -0.1106 -vn 0.0147 0.9937 -0.1107 -vn 0.0146 0.9937 -0.1109 -vn 0.2860 -0.9373 -0.1992 -vn 0.2859 -0.9373 -0.1994 -vn 0.9315 0.3623 -0.0306 -vn 0.9315 0.3624 -0.0307 -vn 0.9316 0.3622 -0.0302 -vn -0.1846 0.8089 -0.5582 -vn -0.1847 0.8089 -0.5582 -vn -0.1844 0.8090 -0.5581 -vn 0.2012 0.8572 -0.4741 -vn 0.7114 -0.2500 -0.6568 -vn 0.7115 -0.2501 -0.6567 -vn -0.0184 0.6872 -0.7262 -vn -0.0174 0.6867 -0.7267 -vn -0.0170 0.6866 -0.7268 -vn 0.1024 -0.7861 -0.6096 -vn 0.1026 -0.7860 -0.6096 -vn 0.4378 0.8628 0.2529 -vn 0.4379 0.8628 0.2527 -vn 0.4377 0.8628 0.2531 -vn -0.9044 -0.3866 0.1806 -vn -0.9044 -0.3865 0.1808 -vn 0.8202 0.4207 -0.3876 -vn 0.8202 0.4208 -0.3874 -vn -0.4069 -0.8178 -0.4070 -vn -0.4067 -0.8178 -0.4072 -vn -0.4068 -0.8178 -0.4071 -vn 0.1965 -0.4180 -0.8869 -vn 0.1965 -0.4179 -0.8870 -vn 0.1963 -0.4182 -0.8869 -vn -0.8143 0.3713 -0.4462 -vn 0.6977 -0.5226 0.4900 -vn 0.6976 -0.5219 0.4909 -vn 0.6980 -0.5228 0.4894 -vn 0.3332 0.7793 -0.5307 -vn 0.3333 0.7792 -0.5308 -vn -0.7894 -0.1754 -0.5883 -vn -0.7894 -0.1750 -0.5884 -vn -0.7894 -0.1752 -0.5884 -vn 0.6892 -0.2221 -0.6896 -vn 0.6893 -0.2218 -0.6897 -vn 0.6891 -0.2226 -0.6897 -vn -0.2351 -0.3820 -0.8937 -vn -0.2352 -0.3819 -0.8938 -vn 0.4067 0.6263 0.6651 -vn 0.4067 0.6268 0.6646 -vn -0.3773 -0.6133 -0.6939 -vn 0.6632 -0.2786 -0.6947 -vn 0.6632 -0.2787 -0.6946 -vn -0.4000 0.9094 0.1143 -vn -0.3998 0.9094 0.1144 -vn -0.1493 -0.7767 0.6120 -vn -0.1509 -0.7769 0.6113 -vn -0.1526 -0.7765 0.6114 -vn 0.1563 -0.7263 0.6693 -vn 0.1564 -0.7264 0.6692 -vn 0.6514 -0.7368 0.1813 -vn 0.6519 -0.7368 0.1795 -vn 0.6516 -0.7369 0.1801 -vn 0.9117 0.3995 -0.0963 -vn 0.9120 0.3989 -0.0955 -vn 0.9123 0.3984 -0.0946 -vn 0.9386 0.3147 -0.1415 -vn 0.9388 0.3144 -0.1405 -vn 0.9389 0.3143 -0.1401 -vn 0.8589 0.0643 -0.5080 -vn 0.8598 0.0624 -0.5069 -vn 0.8593 0.0632 -0.5075 -vn -0.2848 0.9160 -0.2825 -vn -0.2847 0.9160 -0.2827 -vn 0.4985 0.2418 -0.8325 -vn 0.4983 0.2424 -0.8324 -vn 0.4985 0.2419 -0.8324 -vn 0.4979 0.0520 0.8657 -vn 0.4982 0.0515 0.8655 -vn 0.4978 0.0521 0.8657 -vn 0.1845 0.9805 -0.0681 -vn 0.1844 0.9805 -0.0680 -vn -0.7335 0.0399 0.6785 -vn -0.7336 0.0399 0.6784 -vn -0.7335 0.0401 0.6785 -vn 0.0705 -0.3804 -0.9221 -vn 0.0703 -0.3806 -0.9221 -vn -0.4133 -0.1161 -0.9032 -vn -0.4130 -0.1156 -0.9034 -vn -0.4130 -0.1159 -0.9033 -vn -0.6134 0.5215 -0.5931 -vn -0.6135 0.5214 -0.5931 -vn -0.6136 0.5213 -0.5931 -vn 0.6405 0.4768 -0.6020 -vn 0.6403 0.4770 -0.6021 -vn 0.6404 0.4771 -0.6019 -vn -0.3710 0.8885 -0.2699 -vn -0.3708 0.8887 -0.2697 -vn -0.3708 0.8887 -0.2696 -vn -0.4471 0.8664 -0.2223 -vn -0.4458 0.8671 -0.2221 -vn -0.4456 0.8672 -0.2223 -vn 0.6614 0.5821 -0.4730 -vn 0.6614 0.5819 -0.4732 -vn 0.6610 0.5827 -0.4728 -vn 0.3656 0.8913 -0.2682 -vn 0.3653 0.8914 -0.2682 -vn 0.3651 0.8915 -0.2683 -vn -0.4523 0.6968 -0.5567 -vn -0.4524 0.6968 -0.5566 -vn -0.4523 0.6967 -0.5568 -vn 0.8655 -0.4959 -0.0706 -vn 0.8655 -0.4959 -0.0704 -vn 0.4535 0.1126 -0.8841 -vn -0.3206 0.4432 -0.8371 -vn -0.3204 0.4432 -0.8372 -vn -0.3197 0.4434 -0.8374 -vn -0.1870 0.8750 -0.4465 -vn -0.1869 0.8753 -0.4459 -vn -0.1869 0.8751 -0.4464 -vn 0.3008 0.6607 0.6878 -vn 0.3016 0.6610 0.6871 -vn 0.3012 0.6608 0.6875 -vn -0.1672 -0.7462 -0.6444 -vn 0.3086 0.9306 -0.1967 -vn 0.3093 0.9305 -0.1961 -vn 0.3099 0.9303 -0.1960 -vn 0.8996 0.4359 -0.0253 -vn 0.8996 0.4359 -0.0252 -vn -0.3766 0.6191 -0.6891 -vn -0.0663 0.8038 -0.5912 -vn -0.0391 0.8823 0.4691 -vn -0.0389 0.8822 0.4692 -vn -0.0390 0.8823 0.4691 -vn -0.0566 -0.0337 0.9978 -vn 0.9077 0.2265 0.3532 -vn 0.9074 0.2263 0.3541 -vn 0.9075 0.2263 0.3538 -vn 0.2699 -0.6601 -0.7010 -vn 0.2698 -0.6605 -0.7007 -vn 0.2698 -0.6603 -0.7009 -vn -0.2424 0.9677 0.0693 -vn -0.2422 0.9677 0.0694 -vn -0.2419 0.9678 0.0695 -vn -0.3843 -0.5025 0.7744 -vn -0.0740 0.8008 -0.5944 -vn -0.0764 0.7989 -0.5966 -vn -0.0758 0.7997 -0.5956 -vn 0.0985 0.6889 -0.7182 -vn -0.1824 0.4416 -0.8785 -vn 0.1933 0.8003 0.5676 -vn 0.1932 0.8003 0.5676 -vn 0.1930 0.8003 0.5677 -vn -0.9010 0.0860 -0.4252 -vn -0.9010 0.0859 -0.4253 -vn -0.9011 0.0859 -0.4250 -vn 0.3685 0.9276 0.0623 -vn 0.3685 0.9275 0.0625 -vn 0.3675 0.6046 0.7067 -vn 0.3672 0.6048 0.7067 -vn -0.1514 0.8344 -0.5300 -vn 0.6487 0.0795 0.7569 -vn 0.2243 0.8567 -0.4644 -vn 0.2242 0.8568 -0.4644 -vn 0.2246 0.8566 -0.4645 -vn 0.5722 0.7094 -0.4115 -vn 0.5715 0.7094 -0.4124 -vn 0.5719 0.7096 -0.4117 -vn -0.6892 0.1953 0.6977 -vn -0.6892 0.1954 0.6977 -vn -0.6893 0.1952 0.6976 -vn -0.4129 -0.7496 0.5173 -vn -0.4130 -0.7498 0.5170 -vn -0.4130 -0.7499 0.5168 -vn 0.4631 0.2131 -0.8603 -vn 0.4631 0.2127 -0.8604 -vn 0.4631 0.2132 -0.8603 -vn -0.6839 -0.3741 0.6263 -vn -0.6839 -0.3742 0.6263 -vn -0.6840 -0.3738 0.6264 -vn 0.3257 0.9422 -0.0785 -vn 0.3255 0.9423 -0.0789 -vn 0.3257 0.9422 -0.0784 -vn 0.2568 -0.1828 -0.9490 -vn 0.2571 -0.1829 -0.9489 -vn 0.2567 -0.1829 -0.9490 -vn 0.3325 0.9217 -0.1997 -vn 0.3324 0.9218 -0.1997 -vn 0.3326 0.9217 -0.1998 -vn -0.2936 -0.8437 -0.4493 -vn -0.2936 -0.8435 -0.4497 -vn -0.2937 -0.8436 -0.4495 -vn -0.0844 -0.7496 -0.6565 -vn -0.0853 -0.7494 -0.6566 -vn -0.0840 -0.7493 -0.6569 -vn 0.2617 -0.6126 -0.7458 -vn 0.2614 -0.6128 -0.7457 -vn 0.2618 -0.6125 -0.7458 -vn -0.4772 -0.3428 -0.8092 -vn -0.4765 -0.3430 -0.8095 -vn -0.4785 -0.3432 -0.8082 -vn -0.0182 -0.9984 -0.0540 -vn -0.4279 -0.8881 0.1681 -vn -0.4279 -0.8881 0.1682 -vn -0.4281 -0.8880 0.1680 -vn -0.6980 -0.6469 0.3070 -vn -0.6982 -0.6463 0.3079 -vn -0.6982 -0.6472 0.3061 -vn -0.6289 0.4340 -0.6450 -vn -0.6291 0.4340 -0.6449 -vn -0.3105 0.3046 -0.9004 -vn 0.2128 0.9769 0.0210 -vn 0.2130 0.9768 0.0212 -vn -0.1593 0.5189 -0.8399 -vn -0.5599 0.1270 -0.8188 -vn -0.5601 0.1280 -0.8185 -vn -0.5602 0.1257 -0.8188 -vn 0.0844 0.8316 -0.5489 -vn 0.0846 0.8320 -0.5483 -vn 0.0845 0.8319 -0.5485 -vn 0.7369 -0.5203 0.4316 -vn 0.7361 -0.5226 0.4302 -vn 0.7361 -0.5219 0.4311 -vn 0.5320 0.6792 -0.5057 -vn 0.5314 0.6798 -0.5055 -vn 0.5316 0.6794 -0.5058 -vn 0.0318 0.5104 0.8593 -vn 0.0316 0.5105 0.8593 -vn 0.0320 0.5105 0.8593 -vn -0.5321 0.2553 0.8073 -vn -0.5316 0.2551 0.8077 -vn -0.6323 0.0132 -0.7746 -vn -0.6317 0.0137 -0.7751 -vn -0.6322 0.0133 -0.7747 -vn -0.8358 -0.0199 -0.5487 -vn -0.8357 -0.0199 -0.5488 -vn 0.5826 0.7417 -0.3323 -vn 0.5828 0.7416 -0.3324 -vn 0.5825 0.7417 -0.3324 -vn 0.3990 0.9094 0.1172 -vn 0.3988 0.9095 0.1172 -vn 0.3987 0.9096 0.1173 -vn 0.4164 0.8987 0.1374 -vn 0.4160 0.8989 0.1378 -vn 0.4172 0.8984 0.1370 -vn 0.3407 0.9053 -0.2537 -vn 0.3405 0.9054 -0.2537 -vn 0.3409 0.9052 -0.2539 -vn 0.1673 0.5381 -0.8261 -vn 0.1673 0.5378 -0.8263 -vn 0.1383 0.5165 -0.8450 -vn 0.1385 0.5177 -0.8443 -vn 0.1383 0.5166 -0.8450 -vn 0.4903 -0.8669 0.0900 -vn 0.4902 -0.8670 0.0899 -vn 0.4900 -0.8671 0.0896 -vn 0.8790 0.4754 -0.0372 -vn 0.8788 0.4758 -0.0364 -vn 0.8788 0.4757 -0.0365 -vn 0.2054 0.5561 0.8053 -vn 0.2045 0.5561 0.8056 -vn 0.2032 0.5555 0.8063 -vn 0.9879 -0.0972 0.1205 -vn 0.9880 -0.0968 0.1206 -vn 0.9880 -0.0961 0.1209 -vn 0.4855 0.8499 -0.2048 -vn 0.4853 0.8501 -0.2046 -vn -0.8590 -0.5089 0.0561 -vn -0.8585 -0.5096 0.0568 -vn -0.8583 -0.5100 0.0569 -vn -0.4036 0.1204 0.9070 -vn -0.4036 0.1203 0.9070 -vn -0.4037 0.1200 0.9070 -vn 0.8825 0.3236 0.3414 -vn 0.8825 0.3236 0.3413 -vn 0.8824 0.3236 0.3416 -vn 0.5208 0.7839 -0.3380 -vn 0.5209 0.7841 -0.3376 -vn 0.5207 0.7840 -0.3379 -vn -0.1971 0.3879 0.9004 -vn -0.1965 0.3882 0.9004 -vn -0.1736 0.7501 0.6382 -vn -0.1735 0.7501 0.6381 -vn 0.6665 -0.1092 -0.7375 -vn 0.6661 -0.1086 -0.7379 -vn 0.4664 0.0012 0.8846 -vn 0.4665 0.0016 0.8845 -vn 0.1566 -0.4307 0.8888 -vn 0.1563 -0.4308 0.8888 -vn 0.1562 -0.4309 0.8888 -vn 0.6914 -0.1270 0.7113 -vn 0.6913 -0.1275 0.7112 -vn 0.6908 -0.1282 0.7116 -vn 0.9210 0.3014 -0.2469 -vn 0.9210 0.3015 -0.2467 -vn -0.3479 -0.0673 0.9351 -vn -0.3491 -0.0679 0.9346 -vn -0.3476 -0.0673 0.9352 -vn -0.3675 0.8756 0.3134 -vn 0.3156 0.9470 -0.0604 -vn 0.3157 0.9469 -0.0605 -vn 0.7595 0.1485 -0.6333 -vn 0.7594 0.1484 -0.6334 -vn 0.6186 -0.7852 -0.0285 -vn 0.6187 -0.7851 -0.0284 -vn 0.4682 -0.3849 0.7954 -vn 0.4683 -0.3848 0.7954 -vn 0.4686 -0.3849 0.7952 -vn 0.2374 0.7169 -0.6555 -vn 0.2372 0.7169 -0.6556 -vn -0.4176 -0.4413 0.7943 -vn -0.4179 -0.4399 0.7949 -vn -0.4178 -0.4408 0.7944 -vn -0.1556 0.0121 0.9877 -vn -0.1555 0.0121 0.9878 -vn -0.1559 0.0126 0.9877 -vn 0.0486 0.3682 0.9285 -vn 0.0493 0.3674 0.9288 -vn 0.0475 0.3689 0.9283 -vn 0.3740 -0.6206 0.6892 -vn 0.3738 -0.6206 0.6893 -vn 0.9755 0.0267 -0.2186 -vn 0.9755 0.0263 -0.2184 -vn 0.9755 0.0266 -0.2185 -vn -0.2040 0.4054 0.8911 -vn -0.2039 0.4054 0.8911 -vn -0.2042 0.4039 0.8917 -vn -0.0090 -0.0055 0.9999 -vn -0.0093 -0.0053 0.9999 -vn -0.0092 -0.0054 0.9999 -vn -0.1655 0.8662 0.4715 -vn -0.9057 0.2137 0.3661 -vn -0.9058 0.2137 0.3659 -vn -0.9058 0.2139 0.3658 -vn 0.1325 0.1026 0.9859 -vn 0.1322 0.1029 0.9859 -vn 0.1323 0.1028 0.9859 -vn 0.0424 0.2733 -0.9610 -vn 0.0425 0.2731 -0.9610 -vn 0.0421 0.2733 -0.9610 -vn -0.1947 0.9800 0.0399 -vn -0.1945 0.9801 0.0400 -vn -0.1950 0.9800 0.0398 -vn -0.4264 0.8916 -0.1524 -vn -0.4261 0.8918 -0.1524 -vn -0.7571 0.6317 -0.1667 -vn -0.7570 0.6318 -0.1665 -vn -0.7571 0.6317 -0.1669 -vn -0.9206 -0.1665 -0.3532 -vn -0.9206 -0.1663 -0.3533 -vn -0.9207 -0.1664 -0.3529 -vn -0.5186 -0.5584 0.6475 -vn -0.5193 -0.5576 0.6477 -vn -0.5180 -0.5589 0.6475 -vn -0.1665 -0.0999 -0.9810 -vn -0.1673 -0.1000 -0.9808 -vn -0.1673 -0.0999 -0.9808 -vn -0.1490 -0.3368 -0.9297 -vn -0.1490 -0.3349 -0.9304 -vn -0.1480 -0.3319 -0.9316 -vn -0.8650 0.0209 0.5013 -vn -0.8649 0.0212 0.5015 -vn -0.7038 0.6565 -0.2716 -vn -0.7042 0.6561 -0.2714 -vn -0.7043 0.6560 -0.2713 -vn -0.9747 -0.1784 0.1349 -vn -0.7010 0.6179 -0.3560 -vn -0.2076 0.7573 -0.6192 -vn -0.2056 0.7567 -0.6206 -vn -0.2096 0.7568 -0.6191 -vn -0.8166 -0.3944 -0.4215 -vn -0.8166 -0.3948 -0.4211 -vn -0.8164 -0.3954 -0.4208 -vn 0.6948 0.3029 -0.6523 -vn 0.6949 0.3029 -0.6522 -vn 0.3240 0.6619 0.6760 -vn -0.7451 -0.6405 0.1861 -vn 0.1114 0.9535 0.2799 -vn 0.1113 0.9535 0.2802 -vn 0.1114 0.9535 0.2800 -vn -0.8955 -0.1054 -0.4324 -vn -0.8955 -0.1055 -0.4324 -vn -0.8955 -0.1055 -0.4323 -vn 0.6097 0.3908 -0.6896 -vn 0.6096 0.3910 -0.6896 -vn 0.6094 0.3910 -0.6898 -vn -0.6978 -0.7140 -0.0571 -vn 0.3712 -0.1928 0.9083 -vn 0.3715 -0.1924 0.9083 -vn 0.3650 0.9310 0.0063 -vn -0.9330 0.3343 0.1330 -vn -0.9331 0.3342 0.1331 -vn -0.3006 0.7725 -0.5594 -vn -0.3009 0.7731 -0.5584 -vn -0.3009 0.7733 -0.5581 -vn -0.1219 0.9900 -0.0705 -vn -0.1224 0.9900 -0.0705 -vn 0.6427 -0.5355 0.5479 -vn 0.6426 -0.5358 0.5477 -vn 0.6428 -0.5347 0.5485 -vn 0.0994 -0.0173 -0.9949 -vn 0.3235 -0.3527 0.8781 -vn 0.3235 -0.3525 0.8781 -vn -0.4041 -0.7757 0.4848 -vn -0.4038 -0.7754 0.4854 -vn -0.4042 -0.7758 0.4846 -vn -0.7008 -0.2457 -0.6697 -vn -0.7103 0.4608 -0.5321 -vn -0.7088 0.4616 -0.5335 -vn -0.7096 0.4610 -0.5328 -vn -0.6430 -0.3035 -0.7032 -vn -0.6430 -0.3033 -0.7033 -vn 0.8846 -0.1808 0.4298 -vn 0.8846 -0.1807 0.4299 -vn 0.8846 -0.1810 0.4297 -vn -0.1025 -0.7702 -0.6295 -vn -0.1023 -0.7699 -0.6299 -vn -0.1023 -0.7701 -0.6297 -vn -0.7585 -0.4071 -0.5088 -vn -0.7578 -0.4078 -0.5094 -vn -0.7585 -0.4072 -0.5088 -vn -0.1817 -0.9773 -0.1086 -vn -0.1810 -0.9774 -0.1088 -vn -0.1827 -0.9771 -0.1090 -vn 0.5343 -0.8445 0.0367 -vn -0.8235 -0.0813 -0.5614 -vn -0.8236 -0.0811 -0.5613 -vn -0.3000 0.0025 0.9539 -vn 0.4198 0.3592 -0.8335 -vn 0.4199 0.3593 -0.8334 -vn 0.4200 0.3591 -0.8335 -vn -0.8192 0.4687 -0.3304 -vn -0.8192 0.4688 -0.3304 -vn -0.5458 -0.7938 -0.2683 -vn -0.5461 -0.7934 -0.2688 -vn 0.7622 -0.4820 -0.4321 -vn 0.7621 -0.4823 -0.4321 -vn 0.0683 0.2061 -0.9761 -vn 0.0685 0.2055 -0.9763 -vn 0.0683 0.2060 -0.9762 -vn -0.4230 -0.8963 0.1331 -vn -0.4229 -0.8965 0.1322 -vn 0.1955 0.7007 -0.6861 -vn 0.1960 0.7009 -0.6858 -vn 0.1963 0.7009 -0.6857 -vn 0.9166 -0.0136 0.3997 -vn 0.9166 -0.0130 0.3996 -vn 0.9164 -0.0134 0.4001 -vn -0.6158 -0.6842 -0.3907 -vn -0.6152 -0.6842 -0.3917 -vn -0.6156 -0.6841 -0.3912 -vn -0.4520 0.7335 0.5077 -vn -0.8601 -0.0941 -0.5013 -vn -0.8603 -0.0943 -0.5010 -vn 0.4428 -0.3252 0.8356 -vn 0.7926 -0.5942 0.1369 -vn -0.1974 -0.5012 -0.8425 -vn -0.1972 -0.5011 -0.8426 -vn -0.6662 0.7126 -0.2201 -vn 0.8881 0.4589 0.0255 -vn 0.8882 0.4588 0.0252 -vn 0.8881 0.4590 0.0258 -vn 0.7995 0.2112 0.5623 -vn 0.7993 0.2116 0.5625 -vn 0.7998 0.2111 0.5620 -vn 0.7850 -0.5975 0.1636 -vn 0.6268 -0.7395 0.2454 -vn 0.6267 -0.7397 0.2451 -vn -0.5057 -0.1400 -0.8512 -vn -0.5052 -0.1398 -0.8516 -vn -0.5056 -0.1400 -0.8513 -vn -0.7237 0.5877 -0.3618 -vn -0.7236 0.5879 -0.3617 -vn 0.7395 -0.5959 0.3130 -vn 0.7394 -0.5960 0.3132 -vn 0.7394 -0.5961 0.3130 -vn 0.5702 -0.7400 0.3568 -vn 0.5705 -0.7396 0.3572 -vn 0.5708 -0.7393 0.3573 -vn 0.4825 -0.6539 0.5828 -vn 0.4822 -0.6539 0.5830 -vn 0.8628 0.4698 0.1866 -vn 0.8624 0.4707 0.1864 -vn 0.8625 0.4704 0.1865 -vn 0.4882 -0.7488 -0.4483 -vn 0.4884 -0.7488 -0.4481 -vn 0.4889 -0.7486 -0.4479 -vn 0.0839 -0.6086 0.7890 -vn 0.0851 -0.6089 0.7887 -vn 0.0857 -0.6088 0.7887 -vn 0.2082 -0.7031 0.6800 -vn 0.2081 -0.7030 0.6801 -vn 0.2079 -0.7029 0.6802 -vn 0.0263 -0.9027 -0.4295 -vn 0.0260 -0.9024 -0.4301 -vn 0.0266 -0.9031 -0.4287 -vn -0.6004 -0.6701 -0.4364 -vn -0.6005 -0.6702 -0.4363 -vn 0.8720 0.4467 0.2002 -vn 0.7215 -0.5725 0.3896 -vn 0.7214 -0.5728 0.3893 -vn 0.7213 -0.5727 0.3896 -vn 0.1181 -0.6781 0.7255 -vn 0.1182 -0.6784 0.7251 -vn 0.1179 -0.6782 0.7253 -vn 0.1013 0.5206 -0.8477 -vn 0.1013 0.5207 -0.8477 -vn 0.1015 0.5204 -0.8479 -vn -0.0185 -0.9991 0.0371 -vn -0.0187 -0.9991 0.0371 -vn 0.3745 -0.8972 0.2343 -vn 0.3743 -0.8972 0.2344 -vn 0.4845 0.3492 0.8020 -vn 0.4843 0.3495 0.8021 -vn 0.4844 0.3492 0.8021 -vn -0.6328 -0.2658 -0.7273 -vn -0.2281 -0.9268 0.2984 -vn -0.2280 -0.9268 0.2984 -vn -0.2280 -0.9268 0.2985 -vn -0.2038 0.1609 -0.9657 -vn -0.2037 0.1607 -0.9657 -vn 0.7426 -0.4556 0.4909 -vn 0.7426 -0.4557 0.4908 -vn -0.2416 -0.3565 -0.9025 -vn -0.2411 -0.3565 -0.9027 -vn -0.2423 -0.3564 -0.9024 -vn 0.7042 -0.0339 0.7092 -vn 0.7042 -0.0336 0.7092 -vn 0.7043 -0.0340 0.7091 -vn 0.7210 -0.0985 0.6859 -vn 0.7210 -0.0984 0.6859 -vn 0.7210 -0.0988 0.6858 -vn 0.5933 -0.7594 0.2670 -vn 0.5930 -0.7596 0.2672 -vn 0.8205 0.2877 0.4940 -vn 0.8202 0.2883 0.4941 -vn 0.6365 -0.6706 0.3809 -vn 0.6364 -0.6707 0.3809 -vn 0.6366 -0.6704 0.3811 -vn 0.1598 -0.3813 -0.9105 -vn 0.1597 -0.3813 -0.9106 -vn 0.1591 -0.3815 -0.9106 -vn -0.6960 0.3590 0.6219 -vn -0.6965 0.3578 0.6220 -vn -0.6968 0.3574 0.6219 -vn -0.7317 -0.6678 -0.1366 -vn -0.7320 -0.6676 -0.1363 -vn -0.7319 -0.6676 -0.1364 -vn 0.2285 -0.6259 -0.7457 -vn -0.5718 0.0811 -0.8164 -vn 0.7855 -0.1389 0.6031 -vn -0.0420 -0.9777 0.2059 -vn -0.0422 -0.9774 0.2070 -vn -0.0423 -0.9774 0.2072 -vn -0.9816 -0.1011 -0.1621 -vn -0.9815 -0.1011 -0.1628 -vn -0.9817 -0.1010 -0.1617 -vn 0.6262 0.7638 0.1564 -vn 0.6260 0.7640 0.1561 -vn -0.6502 -0.2872 -0.7034 -vn -0.6496 -0.2891 -0.7032 -vn -0.6497 -0.2880 -0.7036 -vn 0.4042 0.8696 0.2835 -vn 0.4042 0.8697 0.2834 -vn 0.4043 0.8696 0.2833 -vn -0.6507 -0.4535 -0.6090 -vn -0.6508 -0.4535 -0.6089 -vn -0.6511 -0.4535 -0.6086 -vn 0.7019 0.6143 0.3605 -vn 0.7024 0.6142 0.3597 -vn 0.7028 0.6143 0.3588 -vn 0.2500 0.7052 0.6635 -vn 0.2497 0.7052 0.6635 -vn 0.2499 0.7053 0.6634 -vn -0.9330 -0.1915 0.3045 -vn -0.9329 -0.1925 0.3042 -vn -0.9330 -0.1920 0.3044 -vn -0.3758 0.2897 0.8803 -vn -0.9378 0.1720 -0.3016 -vn -0.9381 0.1716 -0.3008 -vn -0.9378 0.1721 -0.3014 -vn -0.0722 0.9336 -0.3509 -vn -0.0723 0.9336 -0.3510 -vn -0.0718 0.9338 -0.3505 -vn -0.8259 0.2880 -0.4847 -vn -0.8258 0.2879 -0.4849 -vn 0.8771 -0.0877 0.4722 -vn 0.8771 -0.0863 0.4725 -vn 0.8770 -0.0870 0.4725 -vn 0.6263 0.2790 0.7280 -vn 0.1448 -0.9676 0.2066 -vn 0.1449 -0.9676 0.2068 -vn -0.6422 0.3175 -0.6977 -vn -0.6417 0.3169 -0.6984 -vn -0.6430 0.3180 -0.6967 -vn -0.1504 -0.2414 -0.9587 -vn -0.1481 -0.2416 -0.9590 -vn -0.1494 -0.2419 -0.9587 -vn 0.5093 0.1583 -0.8459 -vn 0.5093 0.1586 -0.8458 -vn -0.4120 -0.8762 -0.2501 -vn 0.1882 -0.3264 -0.9263 -vn 0.1885 -0.3264 -0.9262 -vn 0.1887 -0.3263 -0.9262 -vn 0.5589 -0.7308 -0.3918 -vn 0.5590 -0.7309 -0.3915 -vn 0.2535 0.9438 -0.2119 -vn 0.2538 0.9441 -0.2105 -vn 0.2548 0.9442 -0.2087 -vn -0.0418 -0.3649 -0.9301 -vn -0.0417 -0.3651 -0.9300 -vn -0.0421 -0.3654 -0.9299 -vn 0.4736 -0.8803 -0.0300 -vn 0.4733 -0.8804 -0.0300 -vn -0.8274 0.5270 -0.1941 -vn -0.8274 0.5270 -0.1942 -vn -0.2551 -0.7560 0.6028 -vn -0.2548 -0.7559 0.6031 -vn -0.2552 -0.7561 0.6027 -vn 0.4060 0.4134 -0.8151 -vn 0.8921 -0.3114 -0.3275 -vn 0.8920 -0.3112 -0.3278 -vn -0.7040 -0.6236 -0.3399 -vn -0.7040 -0.6235 -0.3401 -vn -0.0334 -0.4222 -0.9059 -vn -0.0326 -0.4223 -0.9059 -vn -0.0340 -0.4222 -0.9058 -vn -0.0863 0.2108 -0.9737 -vn -0.0835 0.2119 -0.9737 -vn -0.0847 0.2112 -0.9738 -vn -0.1527 0.4856 0.8608 -vn -0.1523 0.4855 0.8609 -vn -0.1525 0.4856 0.8608 -vn 0.5102 -0.8502 0.1297 -vn 0.5104 -0.8501 0.1298 -vn -0.3650 -0.7527 -0.5480 -vn -0.8842 -0.1116 -0.4536 -vn -0.8843 -0.1116 -0.4535 -vn 0.1907 -0.3403 0.9208 -vn 0.1911 -0.3402 0.9207 -vn 0.1904 -0.3404 0.9208 -vn -0.9285 -0.2912 -0.2302 -vn -0.9285 -0.2913 -0.2303 -vn -0.9285 -0.2913 -0.2302 -vn 0.0050 0.5354 -0.8446 -vn 0.0050 0.5353 -0.8447 -vn 0.0048 0.5354 -0.8446 -vn -0.5702 0.7738 -0.2758 -vn -0.5701 0.7737 -0.2762 -vn 0.6761 0.1399 -0.7234 -vn 0.6757 0.1403 -0.7237 -vn -0.1027 0.9935 -0.0498 -vn -0.7003 0.1687 -0.6936 -vn -0.7000 0.1689 -0.6939 -vn -0.0229 0.2561 0.9664 -vn -0.0231 0.2557 0.9665 -vn -0.0233 0.2551 0.9666 -vn -0.7002 0.1016 -0.7067 -vn 0.6266 -0.1658 0.7615 -vn 0.6267 -0.1662 0.7613 -vn 0.9447 0.1019 -0.3117 -vn 0.9447 0.1020 -0.3118 -vn 0.3760 0.3895 -0.8408 -vn 0.6668 0.1597 -0.7279 -vn 0.6673 0.1602 -0.7274 -vn 0.6670 0.1600 -0.7277 -vn 0.4849 0.3177 -0.8148 -vn 0.0874 0.8535 -0.5138 -vn 0.0873 0.8535 -0.5137 -vn 0.0872 0.8535 -0.5137 -vn -0.4536 0.3354 -0.8257 -vn -0.4536 0.3353 -0.8257 -vn -0.4539 0.3347 -0.8258 -vn -0.6695 -0.7428 0.0088 -vn 0.0221 -0.9186 -0.3946 -vn 0.9841 0.1544 0.0876 -vn 0.9841 0.1540 0.0887 -vn 0.9841 0.1542 0.0883 -vn 0.9906 0.1155 0.0728 -vn 0.9906 0.1156 0.0729 -vn 0.9906 0.1155 0.0731 -vn 0.5772 0.5611 0.5933 -vn 0.5769 0.5613 0.5934 -vn 0.5769 0.5612 0.5936 -vn -0.9562 -0.2329 0.1771 -vn -0.9562 -0.2330 0.1770 -vn -0.7738 -0.2404 -0.5861 -vn -0.7739 -0.2414 -0.5855 -vn -0.7741 -0.2420 -0.5850 -vn 0.7773 -0.6291 0.0059 -vn -0.4577 -0.2334 0.8579 -vn -0.4580 -0.2337 0.8577 -vn -0.4579 -0.2335 0.8578 -vn -0.9673 0.2315 -0.1038 -vn -0.9673 0.2312 -0.1039 -vn -0.9672 0.2316 -0.1040 -vn -0.0010 0.1126 -0.9936 -vn -0.0013 0.1131 -0.9936 -vn -0.0011 0.1129 -0.9936 -vn 0.9396 0.0788 -0.3332 -vn 0.9397 0.0790 -0.3329 -vn 0.8415 0.5394 -0.0314 -vn 0.8417 0.5390 -0.0316 -vn -0.4473 -0.6941 -0.5640 -vn -0.4474 -0.6941 -0.5639 -vn -0.4475 -0.6942 -0.5637 -vn -0.4023 -0.2194 -0.8888 -vn -0.4021 -0.2194 -0.8889 -vn -0.4022 -0.2194 -0.8889 -vn 0.2876 0.9011 0.3246 -vn 0.2877 0.9011 0.3245 -vn -0.2909 0.6947 -0.6579 -vn -0.2909 0.6948 -0.6577 -vn 0.8777 -0.4780 -0.0352 -vn -0.8352 0.4910 -0.2479 -vn -0.8352 0.4909 -0.2480 -vn -0.8353 0.4908 -0.2478 -vn 0.1695 -0.0868 0.9817 -vn 0.1690 -0.0866 0.9818 -vn 0.1692 -0.0867 0.9818 -vn -0.2867 0.6472 0.7064 -vn -0.2871 0.6476 0.7059 -vn -0.2870 0.6473 0.7061 -vn 0.0768 -0.5093 -0.8572 -vn 0.0781 -0.5083 -0.8576 -vn 0.0783 -0.5069 -0.8584 -vn -0.1970 0.7388 -0.6445 -vn -0.1949 0.7386 -0.6454 -vn -0.1961 0.7388 -0.6448 -vn 0.8916 0.1467 0.4285 -vn 0.8916 0.1467 0.4284 -vn -0.4649 0.8727 0.1495 -vn 0.0731 0.9731 -0.2185 -vn 0.0730 0.9731 -0.2183 -vn 0.0731 0.9732 -0.2182 -vn 0.6152 -0.5863 -0.5270 -vn 0.6152 -0.5864 -0.5269 -vn 0.6151 -0.5865 -0.5270 -vn -0.4416 -0.5178 0.7327 -vn -0.4414 -0.5179 0.7328 -vn -0.4413 -0.5180 0.7327 -vn -0.3241 -0.0895 0.9418 -vn -0.3243 -0.0898 0.9417 -vn -0.3238 -0.0895 0.9419 -vn 0.3823 0.9001 -0.2091 -vn 0.3815 0.9003 -0.2096 -vn 0.3814 0.9003 -0.2096 -vn 0.9667 0.2559 -0.0094 -vn 0.3838 0.9234 -0.0049 -vn 0.1847 0.8376 0.5141 -vn 0.1843 0.8376 0.5143 -vn 0.6258 0.4734 -0.6199 -vn -0.3294 0.5556 0.7634 -vn -0.3292 0.5558 0.7634 -vn -0.3296 0.5554 0.7635 -vn -0.1370 -0.0541 0.9891 -vn -0.1376 -0.0550 0.9890 -vn -0.1369 -0.0541 0.9891 -vn 0.4952 0.7936 0.3535 -vn 0.4956 0.7933 0.3537 -vn 0.4949 0.7938 0.3536 -vn 0.3732 0.9020 -0.2173 -vn 0.3734 0.9019 -0.2172 -vn -0.1375 -0.0495 0.9893 -vn -0.1371 -0.0491 0.9893 -vn -0.1369 -0.0489 0.9894 -vn -0.4397 0.8765 -0.1959 -vn -0.4399 0.8764 -0.1957 -vn -0.4399 0.8765 -0.1956 -vn 0.3458 0.9238 -0.1644 -vn 0.3457 0.9238 -0.1645 -vn 0.3456 0.9238 -0.1646 -vn -0.4171 -0.6546 0.6305 -vn -0.4177 -0.6543 0.6304 -vn -0.4175 -0.6544 0.6304 -vn 0.8493 -0.4611 -0.2572 -vn 0.8493 -0.4619 -0.2554 -vn 0.8497 -0.4618 -0.2544 -vn -0.4047 0.8998 -0.1629 -vn -0.4049 0.8998 -0.1623 -vn -0.4049 0.8999 -0.1622 -vn 0.3096 0.6652 0.6794 -vn 0.3099 0.6649 0.6796 -vn 0.3095 0.6655 0.6792 -vn 0.1571 0.6680 -0.7274 -vn 0.1574 0.6679 -0.7274 -vn -0.0672 0.5840 -0.8090 -vn -0.0672 0.5842 -0.8088 -vn -0.0671 0.5843 -0.8087 -vn 0.2688 0.6987 -0.6630 -vn 0.2667 0.6990 -0.6636 -vn 0.2675 0.6987 -0.6635 -vn 0.3666 0.0258 -0.9300 -vn 0.3661 0.0259 -0.9302 -vn 0.3663 0.0259 -0.9301 -vn 0.1395 -0.9702 0.1980 -vn 0.1396 -0.9701 0.1983 -vn 0.1396 -0.9702 0.1981 -vn 0.0096 0.9524 -0.3047 -vn 0.0093 0.9523 -0.3049 -vn -0.5318 -0.0724 -0.8438 -vn -0.5319 -0.0726 -0.8437 -vn 0.4091 0.9047 0.1191 -vn 0.4099 0.9042 0.1200 -vn 0.4097 0.9043 0.1198 -vn 0.5951 0.5173 -0.6150 -vn -0.2513 0.8709 -0.4223 -vn -0.2517 0.8710 -0.4219 -vn -0.2515 0.8710 -0.4221 -vn 0.3927 0.8534 0.3428 -vn 0.3935 0.8531 0.3425 -vn 0.3943 0.8526 0.3429 -vn -0.2559 0.1497 0.9551 -vn -0.2555 0.1497 0.9551 -vn -0.0341 -0.0719 0.9968 -vn 0.3375 0.6780 0.6530 -vn 0.3366 0.6805 0.6508 -vn 0.3374 0.6775 0.6536 -vn -0.9778 0.0131 -0.2091 -vn -0.9779 0.0137 -0.2085 -vn -0.9779 0.0135 -0.2088 -vn -0.6167 0.7839 -0.0713 -vn -0.6168 0.7839 -0.0713 -vn -0.2535 -0.6316 -0.7327 -vn -0.2496 -0.6301 -0.7353 -vn -0.2481 -0.6305 -0.7355 -vn -0.9345 0.2591 -0.2440 -vn -0.9345 0.2595 -0.2438 -vn -0.9345 0.2594 -0.2439 -vn 0.0383 -0.6573 -0.7526 -vn 0.0383 -0.6573 -0.7527 -vn 0.0382 -0.6571 -0.7528 -vn -0.4929 -0.8456 -0.2052 -vn -0.4930 -0.8455 -0.2052 -vn 0.6141 -0.6544 -0.4411 -vn 0.6140 -0.6545 -0.4411 -vn -0.6263 -0.7602 -0.1727 -vn -0.6264 -0.7602 -0.1726 -vn -0.6265 -0.7602 -0.1722 -vn -0.9597 0.2722 0.0700 -vn -0.9596 0.2723 0.0703 -vn -0.9598 0.2718 0.0695 -vn 0.7899 0.1915 -0.5825 -vn 0.7900 0.1916 -0.5824 -vn -0.7561 0.4875 -0.4367 -vn -0.7561 0.4879 -0.4363 -vn -0.7561 0.4873 -0.4369 -vn 0.7895 0.2482 0.5613 -vn 0.7899 0.2476 0.5610 -vn -0.0350 -0.3944 -0.9183 -vn 0.2214 0.5812 0.7831 -vn 0.2216 0.5813 0.7829 -vn 0.2218 0.5812 0.7829 -vn -0.8771 0.1552 0.4545 -vn 0.5304 0.6974 0.4820 -vn 0.5301 0.6977 0.4820 -vn 0.5302 0.6977 0.4818 -vn -0.0147 -0.9915 -0.1290 -vn 0.2927 0.8941 -0.3390 -vn 0.2932 0.8939 -0.3390 -vn 0.2936 0.8938 -0.3391 -vn -0.2158 -0.1631 0.9627 -vn -0.1351 0.4875 0.8626 -vn -0.1355 0.4872 0.8627 -vn -0.1354 0.4872 0.8627 -vn -0.0453 0.9937 0.1026 -vn -0.1158 0.9527 -0.2810 -vn -0.2047 -0.8561 -0.4745 -vn -0.2051 -0.8570 -0.4727 -vn -0.2031 -0.8556 -0.4762 -vn 0.5533 0.3494 -0.7562 -vn 0.5534 0.3495 -0.7560 -vn 0.5535 0.3498 -0.7558 -vn 0.6345 0.4984 -0.5908 -vn 0.6337 0.4994 -0.5907 -vn 0.6339 0.4992 -0.5907 -vn -0.4776 0.2270 -0.8488 -vn -0.4774 0.2268 -0.8489 -vn -0.4505 0.3300 0.8295 -vn -0.3115 0.7750 0.5498 -vn 0.2352 -0.7233 -0.6493 -vn 0.2352 -0.7233 -0.6492 -vn 0.2352 -0.7234 -0.6491 -vn -0.5549 0.6200 -0.5547 -vn -0.5553 0.6198 -0.5546 -vn -0.5552 0.6200 -0.5544 -vn 0.1578 0.8900 -0.4279 -vn 0.1578 0.8899 -0.4280 -vn 0.1574 0.8898 -0.4283 -vn -0.1616 0.8431 -0.5129 -vn -0.1613 0.8432 -0.5128 -vn -0.1609 0.8434 -0.5126 -vn -0.4038 0.6299 0.6634 -vn -0.4043 0.6298 0.6632 -vn -0.4036 0.6301 0.6634 -vn 0.7613 0.6426 0.0868 -vn -0.1131 -0.5479 -0.8289 -vn -0.1132 -0.5478 -0.8289 -vn -0.1131 -0.5480 -0.8288 -vn -0.2897 0.0147 0.9570 -vn -0.2898 0.0155 0.9570 -vn -0.2893 0.0138 0.9571 -vn 0.4313 0.4177 0.7997 -vn 0.4317 0.4178 0.7994 -vn 0.4316 0.4178 0.7995 -vn -0.5587 -0.5955 -0.5773 -vn -0.5584 -0.5958 -0.5773 -vn -0.5593 -0.5949 -0.5773 -vn -0.0841 -0.6177 0.7819 -vn 0.6173 0.1863 0.7643 -vn 0.6177 0.1866 0.7640 -vn 0.6175 0.1863 0.7642 -vn 0.9000 -0.4280 -0.0824 -vn 0.8999 -0.4283 -0.0825 -vn -0.7863 -0.0122 0.6177 -vn -0.7862 -0.0116 0.6179 -vn -0.7863 -0.0119 0.6177 -vn 0.4136 0.7407 -0.5294 -vn 0.4139 0.7407 -0.5291 -vn -0.1461 0.8484 -0.5088 -vn -0.1454 0.8489 -0.5082 -vn -0.1458 0.8486 -0.5086 -vn -0.3042 -0.4605 0.8339 -vn -0.3047 -0.4607 0.8336 -vn -0.3043 -0.4606 0.8338 -vn 0.8820 -0.3665 0.2962 -vn 0.8822 -0.3664 0.2959 -vn 0.8409 -0.2164 0.4961 -vn 0.8408 -0.2168 0.4960 -vn 0.8408 -0.2165 0.4961 -vn -0.9299 0.2839 -0.2338 -vn -0.9299 0.2840 -0.2336 -vn -0.9299 0.2841 -0.2335 -vn 0.3135 -0.6712 0.6717 -vn 0.3136 -0.6712 0.6717 -vn -0.3859 0.0200 -0.9223 -vn -0.3836 0.0235 -0.9232 -vn -0.3841 0.0214 -0.9230 -vn -0.8324 0.3330 -0.4429 -vn -0.6354 -0.3228 0.7014 -vn -0.6355 -0.3230 0.7013 -vn -0.6354 -0.3232 0.7013 -vn -0.0864 -0.3873 0.9179 -vn -0.0864 -0.3855 0.9187 -vn -0.0865 -0.3860 0.9184 -vn 0.3730 -0.5914 0.7149 -vn 0.3734 -0.5909 0.7152 -vn 0.3733 -0.5910 0.7151 -vn 0.4505 0.8862 -0.1087 -vn 0.4505 0.8862 -0.1084 -vn 0.4505 0.8861 -0.1090 -vn 0.3871 0.1192 -0.9143 -vn 0.3866 0.1189 -0.9145 -vn 0.3869 0.1191 -0.9144 -vn 0.7882 -0.5381 -0.2988 -vn 0.7881 -0.5381 -0.2990 -vn 0.7881 -0.5381 -0.2988 -vn -0.3057 0.2480 0.9193 -vn -0.3061 0.2472 0.9194 -vn -0.3063 0.2470 0.9193 -vn -0.2201 -0.0585 0.9737 -vn -0.2208 -0.0590 0.9735 -vn -0.2191 -0.0581 0.9740 -vn 0.0307 0.4742 -0.8799 -vn -0.4294 -0.2413 0.8703 -vn 0.5833 0.6669 0.4637 -vn 0.5836 0.6667 0.4636 -vn 0.5820 0.6677 0.4642 -vn -0.6968 0.1842 -0.6933 -vn -0.6969 0.1843 -0.6931 -vn -0.6969 0.1840 -0.6932 -vn -0.1812 -0.4428 0.8781 -vn -0.1811 -0.4429 0.8781 -vn -0.6185 0.7720 0.1464 -vn -0.6188 0.7718 0.1463 -vn -0.6194 0.7714 0.1460 -vn -0.5099 -0.6194 -0.5970 -vn 0.7057 0.7082 -0.0183 -vn 0.7058 0.7082 -0.0184 -vn 0.7057 0.7082 -0.0181 -vn -0.0216 0.9982 -0.0564 -vn -0.0226 0.9982 -0.0563 -vn -0.0211 0.9982 -0.0558 -vn 0.0243 0.8207 -0.5709 -vn 0.0243 0.8202 -0.5715 -vn 0.0241 0.8201 -0.5717 -vn 0.8003 0.2243 -0.5560 -vn 0.8011 0.2242 -0.5550 -vn 0.8012 0.2242 -0.5548 -vn -0.8025 -0.5712 -0.1722 -vn -0.8020 -0.5724 -0.1709 -vn -0.8020 -0.5723 -0.1709 -vn -0.9680 -0.1535 0.1983 -vn -0.9681 -0.1532 0.1981 -vn 0.6013 0.7259 -0.3338 -vn 0.6005 0.7263 -0.3344 -vn 0.5999 0.7265 -0.3352 -vn 0.5487 0.4616 -0.6971 -vn 0.5489 0.4617 -0.6968 -vn -0.0825 0.9744 -0.2092 -vn 0.5281 -0.6855 0.5011 -vn 0.5280 -0.6858 0.5010 -vn 0.5280 -0.6855 0.5013 -vn 0.8814 0.2875 0.3749 -vn 0.8815 0.2871 0.3748 -vn 0.8815 0.2872 0.3747 -vn 0.6203 -0.1396 -0.7718 -vn 0.6206 -0.1390 -0.7717 -vn 0.6206 -0.1389 -0.7718 -vn -0.7250 -0.6438 0.2447 -vn -0.7249 -0.6440 0.2446 -vn -0.7249 -0.6439 0.2446 -vn 0.8702 -0.2179 0.4420 -vn -0.9718 0.2343 -0.0284 -vn -0.9718 0.2342 -0.0283 -vn -0.9718 0.2342 -0.0284 -vn 0.5385 -0.3566 -0.7634 -vn 0.5386 -0.3567 -0.7633 -vn 0.5384 -0.3565 -0.7635 -vn 0.8361 -0.1815 0.5177 -vn 0.8364 -0.1814 0.5172 -vn 0.8362 -0.1815 0.5174 -vn -0.6042 0.7899 0.1048 -vn -0.6811 0.6283 -0.3760 -vn 0.2181 -0.3174 0.9229 -vn 0.9506 -0.1206 0.2861 -vn 0.9506 -0.1208 0.2860 -vn 0.9506 -0.1210 0.2859 -vn 0.9053 -0.1199 0.4076 -vn 0.9053 -0.1201 0.4075 -vn 0.1201 -0.0258 0.9924 -vn 0.1200 -0.0261 0.9924 -vn 0.1200 -0.0255 0.9924 -vn 0.1466 0.9651 0.2171 -vn 0.1470 0.9650 0.2171 -vn 0.5274 -0.6232 -0.5774 -vn 0.5276 -0.6229 -0.5776 -vn 0.5275 -0.6230 -0.5775 -vn 0.4147 0.8785 0.2371 -vn -0.6163 0.3078 -0.7249 -vn 0.1704 0.8931 0.4164 -vn 0.1706 0.8930 0.4164 -vn 0.1704 0.8930 0.4165 -vn 0.4224 0.8447 -0.3287 -vn 0.4223 0.8450 -0.3281 -vn 0.4229 0.8446 -0.3284 -vn -0.8947 0.3137 -0.3180 -vn -0.8946 0.3139 -0.3180 -vn -0.8944 0.3143 -0.3182 -vn -0.7403 -0.6553 -0.1500 -vn -0.7405 -0.6552 -0.1498 -vn -0.0094 -0.1304 -0.9914 -vn -0.0096 -0.1309 -0.9913 -vn -0.0093 -0.1307 -0.9914 -vn 0.7939 -0.1442 0.5907 -vn -0.3962 -0.6230 -0.6745 -vn 0.8744 -0.1073 0.4733 -vn 0.8745 -0.1076 0.4729 -vn 0.8744 -0.1078 0.4731 -vn -0.5363 0.4768 0.6964 -vn -0.5364 0.4769 0.6963 -vn -0.5362 0.4769 0.6964 -vn -0.8779 -0.0440 -0.4769 -vn -0.8778 -0.0439 -0.4770 -vn 0.6153 0.2431 0.7499 -vn 0.9058 0.0922 0.4135 -vn 0.9057 0.0921 0.4139 -vn 0.9056 0.0921 0.4140 -vn 0.8989 0.0859 0.4297 -vn 0.8982 0.0866 0.4309 -vn 0.8990 0.0856 0.4294 -vn 0.8678 -0.4649 0.1756 -vn 0.8675 -0.4657 0.1748 -vn 0.8677 -0.4653 0.1749 -vn -0.1769 0.8652 -0.4692 -vn -0.6326 0.1536 0.7591 -vn -0.6327 0.1540 0.7590 -vn 0.2898 0.7388 0.6084 -vn 0.9490 0.1277 0.2882 -vn 0.9490 0.1278 0.2882 -vn 0.2264 0.9727 -0.0508 -vn 0.2261 0.9728 -0.0508 -vn -0.0067 0.9943 0.1061 -vn -0.0069 0.9943 0.1061 -vn -0.0065 0.9943 0.1064 -vn -0.6008 -0.1316 -0.7885 -vn -0.6010 -0.1322 -0.7883 -vn -0.6013 -0.1329 -0.7879 -vn 0.0142 0.7510 -0.6602 -vn 0.0139 0.7512 -0.6599 -vn 0.0136 0.7518 -0.6593 -vn -0.1382 0.3352 0.9320 -vn -0.1378 0.3353 0.9320 -vn -0.8332 -0.1045 -0.5430 -vn -0.8332 -0.1047 -0.5430 -vn -0.8331 -0.1045 -0.5432 -vn 0.5615 -0.1367 0.8161 -vn 0.5616 -0.1359 0.8162 -vn 0.5615 -0.1364 0.8161 -vn 0.0330 0.8530 -0.5208 -vn 0.0330 0.8531 -0.5207 -vn -0.7766 0.4646 -0.4256 -vn -0.7783 -0.4850 -0.3987 -vn -0.7784 -0.4849 -0.3987 -vn 0.9199 0.1762 0.3503 -vn 0.9198 0.1765 0.3504 -vn -0.2817 0.5213 0.8055 -vn -0.2820 0.5212 0.8055 -vn -0.2813 0.5215 0.8056 -vn 0.1565 -0.8762 0.4559 -vn 0.1552 -0.8770 0.4548 -vn 0.1563 -0.8764 0.4555 -vn 0.5855 -0.7600 0.2822 -vn 0.5850 -0.7604 0.2821 -vn 0.5853 -0.7600 0.2825 -vn -0.0860 0.9894 -0.1173 -vn -0.0858 0.9894 -0.1174 -vn -0.0858 0.9894 -0.1171 -vn -0.6426 0.0247 -0.7658 -vn -0.6422 0.0246 -0.7661 -vn -0.6425 0.0247 -0.7659 -vn -0.3270 0.9105 0.2532 -vn -0.3271 0.9104 0.2534 -vn 0.6366 0.0656 -0.7684 -vn 0.6368 0.0654 -0.7682 -vn 0.6368 0.0655 -0.7683 -vn -0.6592 -0.6345 -0.4036 -vn 0.0828 0.9874 -0.1350 -vn 0.0831 0.9873 -0.1354 -vn 0.0830 0.9873 -0.1352 -vn -0.5988 -0.7983 0.0636 -vn -0.5989 -0.7983 0.0632 -vn -0.5989 -0.7983 0.0639 -vn 0.1203 -0.5824 0.8039 -vn 0.1204 -0.5824 0.8040 -vn 0.1202 -0.5821 0.8042 -vn 0.7938 0.5400 -0.2798 -vn 0.7937 0.5401 -0.2800 -vn 0.7938 0.5400 -0.2797 -vn -0.1666 0.5819 0.7960 -vn -0.1667 0.5818 0.7961 -vn -0.1664 0.5820 0.7960 -vn 0.6947 0.2918 0.6574 -vn 0.6948 0.2919 0.6573 -vn 0.6947 0.2920 0.6574 -vn 0.1836 0.9657 -0.1839 -vn 0.1835 0.9656 -0.1840 -vn 0.1838 0.9657 -0.1836 -vn 0.9169 -0.2262 0.3288 -vn 0.9168 -0.2265 0.3289 -vn 0.9169 -0.2263 0.3289 -vn -0.3319 0.8104 -0.4828 -vn -0.3322 0.8101 -0.4830 -vn -0.3321 0.8102 -0.4829 -vn 0.2566 -0.0557 -0.9649 -vn 0.2569 -0.0556 -0.9648 -vn 0.2573 -0.0550 -0.9648 -vn 0.2163 -0.6309 0.7451 -vn 0.2164 -0.6307 0.7452 -vn 0.2165 -0.6310 0.7450 -vn -0.7133 0.1575 0.6829 -vn -0.7135 0.1573 0.6827 -vn -0.7132 0.1578 0.6830 -vn -0.8214 -0.2209 0.5259 -vn -0.2571 0.0222 0.9661 -vn -0.2572 0.0217 0.9661 -vn -0.2571 0.0219 0.9661 -vn 0.5759 -0.7631 0.2933 -vn 0.5760 -0.7630 0.2934 -vn 0.2145 0.7289 -0.6502 -vn 0.2149 0.7285 -0.6504 -vn 0.2141 0.7289 -0.6502 -vn -0.0713 -0.3095 0.9482 -vn -0.0714 -0.3096 0.9482 -vn -0.0711 -0.3094 0.9483 -vn -0.0594 0.5017 -0.8630 -vn -0.0589 0.5015 -0.8631 -vn -0.0595 0.5019 -0.8629 -vn 0.6813 -0.7028 -0.2045 -vn 0.6814 -0.7027 -0.2046 -vn -0.0244 0.9298 0.3673 -vn -0.0243 0.9299 0.3669 -vn -0.0241 0.9300 0.3668 -vn -0.8775 -0.4164 -0.2381 -vn -0.8771 -0.4169 -0.2385 -vn 0.3386 0.3734 0.8637 -vn 0.3390 0.3729 0.8637 -vn 0.3391 0.3717 0.8642 -vn -0.2964 0.3467 0.8899 -vn -0.2961 0.3469 0.8899 -vn -0.2965 0.3467 0.8899 -vn -0.1469 -0.0936 -0.9847 -vn -0.1469 -0.0935 -0.9847 -vn -0.1470 -0.0934 -0.9847 -vn -0.0784 0.0566 0.9953 -vn -0.0774 0.0578 0.9953 -vn -0.0780 0.0573 0.9953 -vn 0.3674 0.3583 -0.8583 -vn 0.3657 0.3585 -0.8589 -vn 0.3669 0.3582 -0.8585 -vn 0.3334 0.9403 0.0688 -vn 0.3329 0.9404 0.0689 -vn 0.3319 0.9408 0.0689 -vn -0.5456 -0.1866 -0.8170 -vn -0.5462 -0.1871 -0.8165 -vn -0.5458 -0.1869 -0.8168 -vn 0.6491 -0.6336 0.4209 -vn 0.7257 -0.1693 0.6669 -vn 0.4507 -0.3223 0.8324 -vn 0.4508 -0.3230 0.8321 -vn 0.4513 -0.3235 0.8317 -vn 0.4319 0.8806 0.1948 -vn 0.4318 0.8807 0.1946 -vn 0.4315 0.8809 0.1943 -vn -0.0399 0.9025 -0.4289 -vn -0.0398 0.9024 -0.4290 -vn -0.0396 0.9025 -0.4289 -vn 0.2016 0.6304 0.7496 -vn 0.2020 0.6302 0.7497 -vn 0.2017 0.6303 0.7497 -vn -0.5867 -0.7937 -0.1606 -vn 0.5990 -0.7798 0.1817 -vn 0.5990 -0.7799 0.1816 -vn 0.5994 -0.7795 0.1818 -vn 0.0065 0.9696 -0.2446 -vn 0.0069 0.9695 -0.2449 -vn 0.2770 -0.4093 -0.8693 -vn 0.2770 -0.4095 -0.8692 -vn 0.2769 -0.4092 -0.8694 -vn -0.2185 0.8143 -0.5378 -vn -0.2208 0.8153 -0.5352 -vn -0.2199 0.8153 -0.5357 -vn 0.5252 -0.8413 0.1277 -vn 0.5226 -0.8432 0.1261 -vn 0.5244 -0.8420 0.1266 -vn 0.6837 0.6354 0.3590 -vn 0.6839 0.6353 0.3589 -vn 0.6838 0.6353 0.3588 -vn 0.9431 -0.0239 0.3316 -vn 0.9430 -0.0236 0.3320 -vn 0.9431 -0.0237 0.3317 -vn 0.9052 -0.4036 0.1332 -vn -0.4811 -0.6873 -0.5442 -vn -0.4814 -0.6871 -0.5442 -vn 0.9396 0.1982 0.2789 -vn 0.9397 0.1978 0.2788 -vn 0.9399 0.1975 0.2785 -vn -0.2847 0.9012 -0.3266 -vn -0.2845 0.9013 -0.3266 -vn -0.2847 0.9013 -0.3264 -vn 0.0410 0.1276 0.9910 -vn 0.0410 0.1278 0.9910 -vn 0.0410 0.1275 0.9910 -vn -0.8172 0.4382 -0.3744 -vn -0.8170 0.4376 -0.3755 -vn -0.8175 0.4383 -0.3737 -vn 0.2041 -0.9010 -0.3829 -vn 0.2554 0.9396 0.2280 -vn 0.2553 0.9396 0.2280 -vn -0.1476 -0.6838 -0.7146 -vn -0.1474 -0.6836 -0.7148 -vn -0.5805 0.7610 -0.2897 -vn -0.5806 0.7607 -0.2902 -vn 0.1568 -0.8995 -0.4077 -vn 0.1568 -0.8994 -0.4080 -vn 0.1569 -0.8994 -0.4079 -vn 0.4263 0.7637 0.4848 -vn 0.4264 0.7639 0.4844 -vn -0.6644 0.6355 0.3933 -vn -0.6643 0.6355 0.3935 -vn -0.0474 0.6913 0.7210 -vn -0.0464 0.6909 0.7215 -vn -0.0475 0.6913 0.7210 -vn 0.4767 0.6683 -0.5711 -vn 0.4766 0.6683 -0.5712 -vn 0.4765 0.6682 -0.5714 -vn 0.0057 0.9596 -0.2812 -vn 0.0058 0.9596 -0.2814 -vn -0.7308 0.5549 -0.3975 -vn -0.7312 0.5543 -0.3976 -vn -0.7313 0.5542 -0.3975 -vn 0.2127 0.9741 -0.0772 -vn 0.2127 0.9741 -0.0774 -vn 0.2130 0.9740 -0.0769 -vn -0.6184 0.6457 -0.4480 -vn -0.6186 0.6456 -0.4478 -vn -0.6185 0.6456 -0.4479 -vn -0.4319 -0.8827 -0.1851 -vn -0.4317 -0.8829 -0.1848 -vn 0.4452 0.6693 0.5949 -vn 0.4454 0.6693 0.5947 -vn 0.4455 0.6692 0.5947 -vn 0.5005 0.3393 -0.7965 -vn 0.5006 0.3389 -0.7966 -vn 0.5006 0.3390 -0.7965 -vn 0.5514 0.5003 -0.6676 -vn -0.4449 0.8110 -0.3800 -vn -0.4453 0.8108 -0.3799 -vn 0.1277 0.1650 0.9780 -vn 0.1277 0.1649 0.9780 -vn 0.3343 0.6613 -0.6715 -vn 0.3337 0.6616 -0.6715 -vn 0.3330 0.6624 -0.6711 -vn -0.2304 0.8385 0.4938 -vn -0.2304 0.8386 0.4936 -vn -0.2305 0.8385 0.4937 -vn 0.7409 0.6063 0.2890 -vn 0.7413 0.6063 0.2879 -vn 0.7413 0.6063 0.2878 -vn 0.9756 0.1930 0.1049 -vn 0.9755 0.1931 0.1051 -vn 0.9756 0.1931 0.1049 -vn -0.6496 0.6616 -0.3745 -vn -0.6055 -0.7276 -0.3224 -vn -0.6056 -0.7274 -0.3226 -vn -0.6057 -0.7273 -0.3226 -vn -0.7302 0.3500 0.5869 -vn -0.7302 0.3499 0.5869 -vn -0.7300 0.3498 0.5871 -vn 0.2756 0.0952 0.9565 -vn 0.2755 0.0951 0.9566 -vn 0.5924 -0.7989 -0.1042 -vn -0.7347 0.4819 -0.4775 -vn -0.7348 0.4820 -0.4773 -vn -0.5783 0.3746 0.7247 -vn -0.5794 0.3773 0.7224 -vn -0.5793 0.3761 0.7231 -vn 0.4697 -0.5221 0.7119 -vn 0.4695 -0.5222 0.7119 -vn 0.4697 -0.5223 0.7117 -vn -0.6346 -0.5983 -0.4892 -vn -0.6346 -0.5966 -0.4913 -vn -0.6345 -0.5977 -0.4901 -vn -0.0966 -0.3965 0.9129 -vn -0.0970 -0.3970 0.9127 -vn -0.0970 -0.3972 0.9126 -vn 0.0583 0.7641 -0.6425 -vn 0.0587 0.7640 -0.6425 -vn 0.0582 0.7641 -0.6425 -vn 0.7450 -0.1062 0.6585 -vn 0.7452 -0.1069 0.6582 -vn 0.7451 -0.1066 0.6584 -vn 0.4083 0.9073 0.1006 -vn 0.4081 0.9074 0.1007 -vn 0.9809 0.1601 -0.1104 -vn 0.9809 0.1599 -0.1103 -vn 0.9810 0.1601 -0.1100 -vn -0.5773 0.5283 0.6225 -vn -0.0580 -0.0264 -0.9980 -vn -0.0615 -0.0276 -0.9977 -vn -0.0597 -0.0273 -0.9978 -vn -0.1732 0.9772 -0.1227 -vn -0.1733 0.9773 -0.1219 -vn -0.1731 0.9773 -0.1223 -vn 0.8520 0.0986 0.5141 -vn 0.8519 0.0987 0.5143 -vn 0.8517 0.0989 0.5146 -vn 0.2866 -0.9001 0.3282 -vn 0.2866 -0.9000 0.3284 -vn 0.6409 -0.1976 0.7418 -vn 0.6402 -0.1979 0.7423 -vn 0.6405 -0.1978 0.7420 -vn 0.2498 -0.8079 -0.5338 -vn 0.2500 -0.8074 -0.5345 -vn 0.2497 -0.8076 -0.5343 -vn -0.2246 0.8428 -0.4892 -vn -0.2247 0.8427 -0.4892 -vn -0.2245 0.8427 -0.4893 -vn -0.7189 0.0937 -0.6887 -vn -0.7191 0.0936 -0.6886 -vn -0.1952 -0.6359 0.7467 -vn -0.1951 -0.6365 0.7462 -vn -0.1950 -0.6351 0.7474 -vn -0.0476 0.8734 -0.4846 -vn -0.0478 0.8734 -0.4846 -vn -0.0480 0.8736 -0.4843 -vn -0.1518 0.0828 0.9849 -vn -0.1517 0.0822 0.9850 -vn -0.1519 0.0816 0.9850 -vn 0.3474 0.6871 -0.6381 -vn 0.3476 0.6871 -0.6380 -vn 0.3476 0.6872 -0.6379 -vn -0.4136 0.8830 0.2219 -vn 0.4874 0.0279 -0.8727 -vn 0.4871 0.0279 -0.8729 -vn 0.4873 0.0279 -0.8728 -vn -0.3919 0.5706 0.7217 -vn 0.3726 -0.9061 0.2005 -vn 0.3726 -0.9061 0.2006 -vn -0.4606 -0.7750 -0.4327 -vn -0.4613 -0.7747 -0.4325 -vn -0.4612 -0.7748 -0.4325 -vn 0.9396 0.0386 -0.3402 -vn 0.9396 0.0386 -0.3401 -vn 0.9397 0.0385 -0.3398 -vn 0.7598 0.5512 -0.3448 -vn 0.5601 0.4488 -0.6964 -vn 0.5602 0.4490 -0.6961 -vn 0.5604 0.4491 -0.6959 -vn 0.2335 0.7168 0.6570 -vn 0.2334 0.7169 0.6569 -vn 0.2334 0.7172 0.6567 -vn 0.8075 -0.2318 -0.5425 -vn 0.8077 -0.2322 -0.5420 -vn 0.8073 -0.2317 -0.5428 -vn 0.3974 0.1160 0.9103 -vn 0.3972 0.1159 0.9104 -vn 0.3970 0.1161 0.9104 -vn 0.1957 -0.1492 -0.9693 -vn 0.1955 -0.1488 -0.9693 -vn -0.2390 -0.6716 -0.7013 -vn -0.2399 -0.6710 -0.7016 -vn -0.2421 -0.6702 -0.7016 -vn -0.3360 -0.7258 -0.6002 -vn -0.3378 -0.7247 -0.6006 -vn -0.3368 -0.7252 -0.6006 -vn -0.7748 0.6313 -0.0338 -vn -0.7750 0.6311 -0.0339 -vn -0.7756 0.6303 -0.0346 -vn -0.2957 0.5519 0.7797 -vn -0.2958 0.5517 0.7798 -vn -0.2958 0.5518 0.7797 -vn -0.0803 -0.0268 -0.9964 -vn 0.0809 -0.0534 0.9953 -vn 0.0809 -0.0536 0.9953 -vn 0.0805 -0.0532 0.9953 -vn -0.3697 -0.7166 -0.5915 -vn -0.3697 -0.7166 -0.5914 -vn -0.5038 -0.7903 0.3488 -vn -0.4472 -0.8368 0.3159 -vn -0.0726 -0.5945 -0.8008 -vn -0.0729 -0.5948 -0.8006 -vn -0.0731 -0.5950 -0.8004 -vn 0.1590 0.7020 -0.6942 -vn 0.1591 0.7016 -0.6945 -vn -0.0732 0.9548 -0.2880 -vn -0.9469 0.1268 -0.2954 -vn -0.3770 0.9260 -0.0208 -vn -0.3772 0.9259 -0.0207 -vn -0.3769 0.9260 -0.0208 -vn -0.3354 -0.8803 -0.3355 -vn -0.3359 -0.8801 -0.3356 -vn -0.3362 -0.8799 -0.3359 -vn -0.5779 -0.8111 0.0897 -vn -0.5781 -0.8110 0.0895 -vn 0.8991 0.1069 -0.4246 -vn 0.8992 0.1070 -0.4243 -vn 0.8995 0.1070 -0.4236 -vn -0.8913 0.4076 0.1986 -vn -0.8913 0.4079 0.1981 -vn -0.8914 0.4076 0.1983 -vn 0.4074 -0.5055 0.7606 -vn 0.4068 -0.5057 0.7608 -vn 0.7907 0.2018 -0.5780 -vn 0.7894 0.2013 -0.5799 -vn 0.7900 0.2014 -0.5791 -vn -0.2698 -0.4465 -0.8531 -vn -0.2700 -0.4467 -0.8530 -vn -0.2701 -0.4468 -0.8529 -vn -0.3947 -0.0768 -0.9156 -vn -0.3949 -0.0763 -0.9155 -vn 0.5654 0.6342 0.5273 -vn 0.5654 0.6342 0.5274 -vn 0.0764 -0.2787 -0.9573 -vn 0.0761 -0.2788 -0.9573 -vn 0.0762 -0.2787 -0.9573 -vn 0.0274 -0.2801 -0.9596 -vn 0.0272 -0.2804 -0.9595 -vn 0.0272 -0.2805 -0.9595 -vn -0.6725 -0.6106 -0.4182 -vn -0.6722 -0.6109 -0.4183 -vn 0.0865 0.6238 -0.7768 -vn 0.0864 0.6238 -0.7768 -vn 0.0863 0.6239 -0.7767 -vn 0.5038 0.8610 -0.0704 -vn 0.5035 0.8611 -0.0705 -vn 0.5035 0.8611 -0.0704 -vn -0.2364 -0.3863 -0.8916 -vn -0.2363 -0.3860 -0.8917 -vn -0.1380 -0.3713 -0.9182 -vn -0.1378 -0.3714 -0.9182 -vn -0.1377 -0.3716 -0.9181 -vn 0.4617 0.8855 0.0521 -vn -0.5400 -0.3047 -0.7846 -vn -0.5399 -0.3045 -0.7847 -vn -0.5399 -0.3044 -0.7848 -vn 0.4466 0.8018 -0.3970 -vn 0.4465 0.8019 -0.3969 -vn 0.4464 0.8019 -0.3971 -vn -0.1374 -0.3522 0.9258 -vn -0.1376 -0.3526 0.9256 -vn -0.1694 0.7592 0.6285 -vn -0.1698 0.7592 0.6283 -vn -0.8956 0.2179 -0.3879 -vn 0.2926 0.7323 -0.6149 -vn 0.2928 0.7324 -0.6147 -vn 0.2929 0.7325 -0.6146 -vn -0.5311 -0.8155 -0.2301 -vn -0.5312 -0.8155 -0.2299 -vn 0.3585 -0.1896 0.9141 -vn 0.3584 -0.1896 0.9141 -vn 0.3583 -0.1896 0.9142 -vn -0.7547 0.5129 -0.4092 -vn -0.7547 0.5129 -0.4091 -vn -0.2851 0.5931 0.7529 -vn -0.2849 0.5932 0.7530 -vn -0.2848 0.5931 0.7531 -vn -0.8060 -0.4588 -0.3740 -vn -0.8061 -0.4588 -0.3738 -vn -0.8059 -0.4588 -0.3743 -vn 0.8579 -0.0911 0.5057 -vn 0.8581 -0.0912 0.5052 -vn 0.8581 -0.0914 0.5053 -vn -0.8845 -0.1769 -0.4318 -vn -0.8419 0.3977 0.3648 -vn -0.8417 0.3979 0.3649 -vn -0.8420 0.3977 0.3646 -vn 0.6138 -0.3609 0.7021 -vn 0.6135 -0.3611 0.7023 -vn 0.6135 -0.3612 0.7023 -vn -0.3758 -0.5258 0.7631 -vn -0.3759 -0.5259 0.7630 -vn -0.3759 -0.5258 0.7630 -vn -0.0428 0.4769 0.8779 -vn -0.0427 0.4768 0.8780 -vn 0.1978 0.1652 0.9662 -vn 0.1976 0.1651 0.9663 -vn -0.5831 -0.2669 0.7673 -vn 0.5674 0.8229 -0.0294 -vn 0.8385 0.5449 -0.0052 -vn 0.8394 0.5435 -0.0051 -vn 0.8401 0.5423 -0.0057 -vn -0.0418 -0.5497 0.8343 -vn -0.0421 -0.5498 0.8342 -vn -0.0417 -0.5496 0.8344 -vn -0.3135 0.9496 -0.0008 -vn -0.3135 0.9496 -0.0009 -vn 0.4433 0.5547 -0.7041 -vn 0.4431 0.5547 -0.7042 -vn -0.7345 0.0307 -0.6779 -vn -0.7350 0.0319 -0.6773 -vn -0.7343 0.0304 -0.6782 -vn -0.3281 -0.6362 0.6983 -vn -0.3281 -0.6357 0.6988 -vn -0.3282 -0.6361 0.6983 -vn -0.5603 0.4212 0.7132 -vn -0.5600 0.4226 0.7126 -vn -0.5602 0.4220 0.7128 -vn -0.7100 0.6931 0.1249 -vn -0.7097 0.6933 0.1251 -vn 0.0217 -0.5715 0.8203 -vn 0.0217 -0.5712 0.8206 -vn 0.0222 -0.5707 0.8208 -vn 0.5497 -0.5957 0.5857 -vn -0.5387 -0.0503 0.8410 -vn -0.5387 -0.0504 0.8410 -vn -0.5386 -0.0505 0.8410 -vn -0.0092 -0.2726 -0.9621 -vn -0.0090 -0.2730 -0.9620 -vn 0.9077 0.1977 0.3702 -vn 0.9076 0.1981 0.3701 -vn 0.9076 0.1982 0.3700 -vn 0.6820 -0.0260 -0.7309 -vn 0.6821 -0.0260 -0.7308 -vn 0.6823 -0.0262 -0.7306 -vn -0.8246 -0.1812 -0.5360 -vn -0.8244 -0.1805 -0.5365 -vn -0.8243 -0.1800 -0.5368 -vn 0.5803 0.8144 -0.0034 -vn 0.5803 0.8144 -0.0035 -vn 0.4012 -0.7230 -0.5624 -vn 0.4013 -0.7231 -0.5622 -vn -0.9457 0.3146 0.0818 -vn -0.9456 0.3149 0.0812 -vn -0.9457 0.3150 0.0803 -vn 0.3528 0.6261 -0.6954 -vn 0.3522 0.6271 -0.6948 -vn 0.3521 0.6274 -0.6945 -vn -0.2360 -0.1958 0.9518 -vn -0.2368 -0.1954 0.9517 -vn -0.2374 -0.1946 0.9517 -vn -0.7490 -0.1294 0.6498 -vn -0.7491 -0.1291 0.6497 -vn -0.7491 -0.1289 0.6497 -vn -0.3661 0.8649 -0.3433 -vn -0.3662 0.8650 -0.3431 -vn -0.3663 0.8646 -0.3439 -vn 0.7722 0.1113 -0.6256 -vn 0.7718 0.1121 -0.6259 -vn 0.7718 0.1118 -0.6259 -vn -0.5391 0.7859 0.3028 -vn -0.5387 0.7860 0.3034 -vn -0.1940 0.8946 -0.4025 -vn -0.1941 0.8948 -0.4021 -vn -0.7230 0.6631 -0.1941 -vn -0.7227 0.6634 -0.1940 -vn -0.7216 0.6644 -0.1944 -vn -0.6197 0.7843 -0.0293 -vn -0.6198 0.7843 -0.0278 -vn -0.6196 0.7844 -0.0287 -vn 0.5290 0.6582 -0.5356 -vn 0.6942 -0.0987 -0.7129 -vn 0.6940 -0.0990 -0.7131 -vn 0.8397 0.1321 -0.5267 -vn 0.8398 0.1320 -0.5267 -vn 0.8398 0.1318 -0.5266 -vn -0.2661 0.9607 -0.0788 -vn -0.2661 0.9607 -0.0786 -vn -0.2661 0.9607 -0.0787 -vn 0.5671 0.7798 0.2652 -vn 0.5671 0.7798 0.2650 -vn 0.5675 0.7797 0.2646 -vn 0.6907 0.6671 0.2791 -vn 0.6906 0.6672 0.2790 -vn 0.0026 0.4606 0.8876 -vn 0.0027 0.4605 0.8876 -vn -0.4644 -0.5722 -0.6759 -vn -0.4613 -0.5786 -0.6726 -vn -0.4645 -0.5749 -0.6736 -vn -0.2808 0.3582 0.8904 -vn -0.2809 0.3580 0.8905 -vn -0.6020 0.7711 -0.2072 -vn -0.6021 0.7710 -0.2074 -vn -0.6020 0.7709 -0.2080 -vn -0.9955 -0.0026 0.0944 -vn -0.9955 -0.0034 0.0951 -vn -0.9954 -0.0037 0.0961 -vn -0.9804 0.0987 0.1705 -vn -0.9804 0.0988 0.1707 -vn -0.9804 0.0989 0.1703 -vn -0.2016 0.9699 0.1369 -vn -0.2016 0.9699 0.1368 -vn -0.2016 0.9699 0.1367 -vn 0.9348 -0.1983 0.2947 -vn 0.9350 -0.1980 0.2942 -vn 0.9347 -0.1984 0.2948 -vn 0.0910 -0.9156 -0.3917 -vn 0.0906 -0.9163 -0.3901 -vn 0.0885 -0.9172 -0.3885 -vn 0.8022 -0.2313 0.5504 -vn 0.8022 -0.2315 0.5503 -vn 0.8023 -0.2319 0.5501 -vn 0.2057 -0.5144 -0.8325 -vn 0.6520 -0.6635 -0.3669 -vn 0.6528 -0.6633 -0.3660 -vn 0.6525 -0.6635 -0.3661 -vn 0.8695 -0.4888 0.0704 -vn 0.7079 -0.6354 -0.3083 -vn 0.7077 -0.6356 -0.3085 -vn 0.7082 -0.6352 -0.3082 -vn -0.5682 0.7415 0.3568 -vn -0.5683 0.7415 0.3568 -vn -0.5681 0.7416 0.3568 -vn 0.7586 -0.3419 0.5546 -vn 0.7589 -0.3418 0.5542 -vn 0.7589 -0.3418 0.5543 -vn 0.7208 -0.3483 0.5993 -vn 0.7209 -0.3482 0.5992 -vn 0.7206 -0.3481 0.5996 -vn 0.9355 -0.1361 0.3261 -vn 0.9354 -0.1364 0.3263 -vn 0.9354 -0.1361 0.3262 -vn -0.9668 0.2369 -0.0959 -vn -0.9669 0.2366 -0.0959 -vn -0.3271 0.8276 0.4562 -vn -0.3268 0.8274 0.4567 -vn -0.3271 0.8279 0.4556 -vn 0.7075 0.3142 -0.6330 -vn 0.7095 0.3141 -0.6309 -vn 0.7112 0.3129 -0.6296 -vn 0.1113 0.3583 -0.9270 -vn 0.1119 0.3583 -0.9269 -vn 0.1117 0.3583 -0.9269 -vn 0.9237 -0.2900 -0.2504 -vn 0.9232 -0.2910 -0.2510 -vn 0.9234 -0.2907 -0.2506 -vn 0.9430 -0.0227 0.3321 -vn -0.0478 0.7628 -0.6448 -vn -0.0479 0.7631 -0.6445 -vn -0.0480 0.7630 -0.6446 -vn -0.1953 -0.2603 0.9456 -vn -0.1953 -0.2602 0.9456 -vn -0.1956 -0.2604 0.9455 -vn -0.4538 0.7999 -0.3928 -vn -0.4536 0.7999 -0.3929 -vn -0.4536 0.8000 -0.3927 -vn 0.3949 -0.8218 0.4107 -vn 0.3948 -0.8219 0.4106 -vn 0.3946 -0.8220 0.4106 -vn 0.7383 -0.6023 0.3036 -vn 0.7383 -0.6024 0.3035 -vn -0.7202 0.4870 -0.4941 -vn -0.7206 0.4872 -0.4933 -vn -0.7201 0.4858 -0.4955 -vn -0.3742 -0.8996 -0.2251 -vn -0.3759 -0.8986 -0.2263 -vn -0.3744 -0.8994 -0.2257 -vn 0.2483 0.8376 0.4867 -vn 0.2483 0.8375 0.4868 -vn 0.9708 0.0269 0.2383 -vn 0.9709 0.0295 0.2378 -vn 0.9709 0.0279 0.2378 -vn -0.6758 -0.6791 -0.2865 -vn -0.6757 -0.6792 -0.2866 -vn -0.6926 -0.6595 -0.2921 -vn -0.6928 -0.6595 -0.2918 -vn -0.6928 -0.6594 -0.2919 -vn 0.9619 0.0590 0.2669 -vn 0.9621 0.0590 0.2664 -vn 0.9620 0.0590 0.2665 -vn -0.8501 -0.1474 -0.5055 -vn -0.1044 0.1346 0.9854 -vn -0.1047 0.1346 0.9854 -vn 0.2071 0.9133 -0.3508 -vn 0.2075 0.9137 -0.3493 -vn 0.2075 0.9134 -0.3501 -vn 0.3648 0.1350 0.9213 -vn 0.3647 0.1349 0.9213 -vn 0.3646 0.1350 0.9213 -vn 0.8048 -0.3618 0.4705 -vn 0.8048 -0.3618 0.4706 -vn 0.1210 0.7767 0.6182 -vn 0.1211 0.7767 0.6182 -vn 0.1211 0.7766 0.6182 -vn -0.2424 -0.8905 -0.3850 -vn 0.6896 -0.6363 0.3458 -vn -0.1562 -0.9004 -0.4062 -vn -0.9897 -0.1364 -0.0439 -vn -0.1027 0.3609 -0.9269 -vn -0.1025 0.3603 -0.9272 -vn -0.1025 0.3608 -0.9270 -vn 0.4924 0.4595 -0.7392 -vn 0.4920 0.4585 -0.7401 -vn 0.4920 0.4587 -0.7399 -vn -0.2168 0.2887 -0.9326 -vn -0.2173 0.2885 -0.9325 -vn -0.2169 0.2887 -0.9325 -vn -0.6046 -0.7940 0.0632 -vn -0.6044 -0.7942 0.0632 -vn -0.9425 0.1890 -0.2757 -vn -0.9424 0.1891 -0.2760 -vn -0.9422 0.1895 -0.2763 -vn -0.3716 -0.4380 -0.8186 -vn -0.3706 -0.4380 -0.8190 -vn -0.3710 -0.4379 -0.8189 -vn 0.0664 0.9066 -0.4168 -vn 0.0658 0.9065 -0.4170 -vn 0.0660 0.9065 -0.4170 -vn -0.9401 0.2227 -0.2580 -vn 0.3351 0.9324 -0.1352 -vn 0.3349 0.9325 -0.1349 -vn 0.1376 0.6855 -0.7150 -vn 0.1376 0.6854 -0.7150 -vn 0.1376 0.6855 -0.7149 -vn 0.7066 -0.4499 0.5461 -vn 0.7058 -0.4503 0.5468 -vn 0.7051 -0.4505 0.5476 -vn 0.4313 -0.8496 0.3036 -vn 0.4314 -0.8496 0.3034 -vn 0.4310 -0.8499 0.3032 -vn 0.1978 0.7712 -0.6051 -vn 0.1980 0.7706 -0.6058 -vn 0.1979 0.7711 -0.6052 -vn 0.4514 0.7478 -0.4869 -vn 0.4518 0.7476 -0.4869 -vn 0.4520 0.7474 -0.4869 -vn 0.6136 -0.7038 0.3580 -vn 0.6132 -0.7041 0.3580 -vn -0.4003 -0.1971 -0.8949 -vn -0.3995 -0.1974 -0.8952 -vn -0.4007 -0.1968 -0.8948 -vn -0.5629 -0.7570 -0.3316 -vn -0.5634 -0.7569 -0.3313 -vn -0.5629 -0.7571 -0.3317 -vn -0.5752 0.0352 -0.8172 -vn -0.5751 0.0352 -0.8173 -vn -0.5749 0.0354 -0.8175 -vn -0.1782 -0.0768 0.9810 -vn -0.5380 -0.5750 -0.6164 -vn -0.5380 -0.5749 -0.6164 -vn -0.5381 -0.5755 -0.6157 -vn 0.0676 -0.3581 -0.9312 -vn 0.0682 -0.3579 -0.9313 -vn 0.0681 -0.3580 -0.9312 -vn 0.8133 0.3518 0.4634 -vn 0.8133 0.3517 0.4636 -vn 0.8132 0.3516 0.4638 -vn 0.9408 -0.3214 0.1080 -vn 0.9408 -0.3215 0.1075 -vn 0.9407 -0.3213 0.1088 -vn -0.8919 -0.2651 0.3664 -vn -0.8919 -0.2651 0.3663 -vn -0.8922 -0.2648 0.3660 -vn 0.3181 -0.8426 0.4345 -vn 0.3188 -0.8425 0.4342 -vn 0.3176 -0.8428 0.4346 -vn -0.9041 -0.2607 -0.3387 -vn -0.9041 -0.2608 -0.3385 -vn 0.5122 0.3030 0.8036 -vn 0.5119 0.3033 0.8037 -vn 0.5119 0.3030 0.8038 -vn 0.9683 0.1647 -0.1878 -vn 0.9683 0.1665 -0.1860 -vn 0.9684 0.1655 -0.1868 -vn -0.1681 0.3667 0.9150 -vn -0.1703 0.3657 0.9150 -vn -0.1665 0.3667 0.9153 -vn 0.8040 -0.4400 0.4000 -vn 0.8041 -0.4399 0.3999 -vn 0.8041 -0.4398 0.4000 -vn -0.5707 -0.1464 -0.8080 -vn -0.5700 -0.1469 -0.8084 -vn -0.5704 -0.1467 -0.8081 -vn 0.3856 0.8755 0.2913 -vn 0.3881 0.8745 0.2909 -vn 0.3873 0.8747 0.2913 -vn -0.9220 0.3871 -0.0089 -vn 0.5993 -0.4942 0.6298 -vn 0.5996 -0.4942 0.6295 -vn 0.5989 -0.4941 0.6302 -vn -0.7095 -0.4527 -0.5401 -vn -0.7094 -0.4532 -0.5397 -vn -0.7098 -0.4523 -0.5400 -vn 0.7693 0.6294 0.1095 -vn 0.7694 0.6293 0.1096 -vn 0.7694 0.6293 0.1091 -vn -0.2490 0.9382 -0.2402 -vn -0.2489 0.9383 -0.2403 -vn -0.2492 0.9382 -0.2401 -vn -0.8558 0.4444 -0.2648 -vn -0.8555 0.4446 -0.2653 -vn -0.1851 -0.0087 0.9827 -vn -0.1857 -0.0084 0.9826 -vn -0.1860 -0.0084 0.9825 -vn 0.6589 -0.6538 0.3719 -vn 0.6593 -0.6536 0.3718 -vn 0.6591 -0.6537 0.3719 -vn 0.9667 -0.0835 0.2420 -vn 0.9667 -0.0836 0.2420 -vn 0.9666 -0.0837 0.2421 -vn 0.5620 0.1791 -0.8075 -vn -0.8574 0.4429 -0.2622 -vn -0.3819 0.7915 -0.4772 -vn -0.3814 0.7916 -0.4774 -vn -0.3817 0.7915 -0.4773 -vn 0.7286 0.6320 0.2641 -vn -0.7599 0.5346 -0.3697 -vn -0.7600 0.5346 -0.3696 -vn -0.6198 0.7471 -0.2403 -vn -0.6196 0.7472 -0.2404 -vn -0.6194 0.7474 -0.2403 -vn 0.5557 -0.8209 0.1314 -vn 0.5554 -0.8212 0.1310 -vn 0.5557 -0.8209 0.1313 -vn 0.6051 0.6330 -0.4829 -vn 0.6048 0.6332 -0.4830 -vn 0.6051 0.6329 -0.4830 -vn 0.8574 -0.4511 -0.2476 -vn 0.8579 -0.4501 -0.2477 -vn 0.8572 -0.4519 -0.2469 -vn 0.5747 -0.7605 0.3021 -vn 0.5749 -0.7605 0.3020 -vn 0.5749 -0.7604 0.3020 -vn 0.7937 0.5248 -0.3076 -vn 0.7937 0.5248 -0.3077 -vn -0.6800 0.6824 -0.2683 -vn -0.6800 0.6823 -0.2683 -vn -0.6799 0.6826 -0.2681 -vn -0.0332 -0.0682 -0.9971 -vn -0.2040 -0.3645 -0.9086 -vn 0.8607 0.3316 -0.3863 -vn 0.8609 0.3313 -0.3861 -vn 0.8606 0.3318 -0.3864 -vn 0.7152 0.6842 -0.1429 -vn 0.7145 0.6849 -0.1430 -vn -0.6148 0.7361 -0.2830 -vn -0.6197 0.6629 -0.4201 -vn -0.6202 0.6625 -0.4200 -vn 0.9340 -0.2854 0.2150 -vn -0.0767 0.6741 -0.7346 -vn -0.0769 0.6741 -0.7346 -vn -0.0769 0.6744 -0.7344 -vn -0.0290 0.5111 -0.8590 -vn -0.0291 0.5110 -0.8591 -vn -0.0289 0.5111 -0.8591 -vn 0.8749 0.1733 0.4522 -vn 0.8749 0.1734 0.4521 -vn 0.8748 0.1737 0.4522 -vn 0.7436 -0.6434 -0.1820 -vn 0.7438 -0.6431 -0.1821 -vn 0.7434 -0.6437 -0.1818 -vn 0.2535 -0.8682 -0.4266 -vn 0.2531 -0.8686 -0.4260 -vn 0.2534 -0.8684 -0.4263 -vn -0.1785 -0.5785 0.7959 -vn -0.1783 -0.5786 0.7959 -vn -0.0288 0.2046 0.9784 -vn -0.0288 0.2048 0.9784 -vn -0.0289 0.2043 0.9785 -vn 0.3262 0.9413 -0.0863 -vn 0.3260 0.9414 -0.0863 -vn 0.3261 0.9414 -0.0865 -vn 0.2199 0.4596 -0.8605 -vn 0.2200 0.4596 -0.8605 -vn 0.2198 0.4596 -0.8605 -vn 0.4949 0.7495 0.4397 -vn 0.3479 -0.8374 -0.4215 -vn 0.3482 -0.8372 -0.4218 -vn -0.7720 -0.5542 -0.3112 -vn -0.7721 -0.5543 -0.3109 -vn 0.3417 0.7234 -0.6000 -vn 0.3421 0.7229 -0.6003 -vn 0.3413 0.7237 -0.5998 -vn -0.9741 0.0665 -0.2161 -vn -0.9740 0.0662 -0.2164 -vn 0.0866 -0.9730 0.2139 -vn 0.0860 -0.9731 0.2137 -vn 0.0863 -0.9731 0.2138 -vn 0.6382 0.7673 0.0630 -vn 0.6384 0.7671 0.0635 -vn 0.6383 0.7672 0.0631 -vn 0.4272 0.8726 0.2370 -vn 0.4272 0.8726 0.2368 -vn 0.4073 0.5722 -0.7119 -vn -0.6587 0.1906 0.7279 -vn 0.4494 -0.3273 0.8312 -vn -0.7039 -0.6038 0.3740 -vn -0.7038 -0.6041 0.3738 -vn -0.7037 -0.6043 0.3736 -vn -0.1191 0.9842 -0.1313 -vn -0.1193 0.9842 -0.1312 -vn 0.0242 0.9720 -0.2336 -vn 0.0242 0.9721 -0.2335 -vn 0.0241 0.9721 -0.2334 -vn -0.5099 0.6110 -0.6056 -vn -0.5100 0.6109 -0.6055 -vn -0.5098 0.6110 -0.6057 -vn 0.5216 -0.4514 0.7240 -vn -0.9949 0.0991 -0.0189 -vn -0.9949 0.0991 -0.0191 -vn -0.9949 0.0992 -0.0187 -vn -0.9360 0.2594 -0.2381 -vn -0.9360 0.2590 -0.2382 -vn -0.9363 0.2570 -0.2392 -vn -0.2125 -0.1377 -0.9674 -vn -0.2132 -0.1375 -0.9673 -vn -0.2126 -0.1377 -0.9674 -vn -0.2245 0.8690 -0.4409 -vn -0.2252 0.8691 -0.4405 -vn -0.2250 0.8691 -0.4405 -vn -0.5969 -0.8012 0.0426 -vn -0.5970 -0.8011 0.0427 -vn -0.5968 -0.8012 0.0426 -vn 0.5029 -0.0431 0.8633 -vn -0.0771 0.9904 -0.1151 -vn -0.0729 0.9917 -0.1056 -vn -0.0733 0.9912 -0.1103 -vn -0.1122 -0.9060 -0.4081 -vn -0.1120 -0.9059 -0.4084 -vn -0.1121 -0.9059 -0.4083 -vn 0.4368 0.8388 -0.3249 -vn 0.4368 0.8389 -0.3248 -vn 0.2428 -0.9091 0.3386 -vn 0.2421 -0.9091 0.3389 -vn 0.2425 -0.9091 0.3387 -vn 0.2825 0.9288 -0.2400 -vn 0.2824 0.9288 -0.2399 -vn -0.7724 0.0693 -0.6313 -vn -0.7726 0.0691 -0.6312 -vn -0.7722 0.0697 -0.6315 -vn 0.5081 0.1372 -0.8503 -vn 0.5079 0.1378 -0.8503 -vn 0.5080 0.1376 -0.8503 -vn 0.1796 0.6426 0.7448 -vn 0.1798 0.6428 0.7447 -vn 0.1796 0.6429 0.7446 -vn 0.1422 0.7906 -0.5956 -vn 0.1423 0.7906 -0.5955 -vn 0.1429 0.7906 -0.5954 -vn -0.3263 0.0506 -0.9439 -vn -0.3275 0.0503 -0.9435 -vn -0.3266 0.0507 -0.9438 -vn -0.1494 0.1886 -0.9706 -vn -0.1491 0.1886 -0.9707 -vn -0.7432 0.1736 -0.6461 -vn -0.7434 0.1745 -0.6457 -vn -0.7427 0.1732 -0.6468 -vn 0.3180 -0.4979 -0.8068 -vn 0.3179 -0.4982 -0.8067 -vn 0.9185 0.1763 -0.3540 -vn 0.9185 0.1759 -0.3542 -vn 0.9183 0.1756 -0.3547 -vn 0.2530 0.9644 -0.0772 -vn 0.2531 0.9644 -0.0772 -vn -0.3506 0.2662 -0.8979 -vn 0.0313 0.7348 -0.6776 -vn 0.0307 0.7342 -0.6783 -vn 0.0316 0.7350 -0.6773 -vn 0.5550 -0.8149 0.1672 -vn 0.5549 -0.8150 0.1670 -vn 0.5555 -0.8144 0.1675 -vn 0.5640 -0.1784 0.8063 -vn 0.5643 -0.1780 0.8062 -vn 0.5635 -0.1799 0.8063 -vn 0.4613 -0.8830 -0.0865 -vn 0.4614 -0.8830 -0.0865 -vn -0.4652 0.6616 -0.5881 -vn -0.4655 0.6613 -0.5882 -vn -0.4649 0.6618 -0.5882 -vn -0.0756 0.7875 -0.6117 -vn -0.0758 0.7874 -0.6118 -vn -0.0755 0.7876 -0.6116 -vn -0.2392 0.9681 0.0743 -vn -0.2391 0.9682 0.0741 -vn -0.2388 0.9682 0.0741 -vn 0.2481 0.6922 0.6777 -vn 0.2478 0.6922 0.6778 -vn 0.2486 0.6923 0.6775 -vn 0.8454 -0.4850 0.2237 -vn 0.8453 -0.4852 0.2237 -vn -0.9065 -0.3801 0.1835 -vn 0.3904 0.6399 0.6619 -vn -0.8393 0.5023 -0.2081 -vn -0.8393 0.5022 -0.2080 -vn -0.8394 0.5022 -0.2078 -vn 0.3644 0.7364 0.5700 -vn 0.3650 0.7362 0.5699 -vn 0.3653 0.7361 0.5698 -vn 0.0304 0.5209 0.8531 -vn 0.0313 0.5219 0.8524 -vn 0.0315 0.5228 0.8519 -vn 0.0257 0.5235 0.8516 -vn 0.0253 0.5236 0.8516 -vn 0.3449 0.7714 0.5348 -vn 0.3448 0.7714 0.5348 -vn 0.3451 0.7714 0.5347 -vn 0.3051 0.8013 0.5146 -vn 0.3189 0.7955 0.5153 -vn 0.3153 0.7973 0.5147 -vn -0.4108 -0.8996 -0.1480 -vn -0.4110 -0.8995 -0.1483 -vn -0.4112 -0.8993 -0.1490 -vn -0.9141 -0.0336 -0.4040 -vn 0.5251 0.1714 -0.8336 -vn 0.5263 0.1713 -0.8329 -vn 0.5256 0.1714 -0.8333 -vn 0.6457 -0.3607 -0.6730 -vn 0.6458 -0.3611 -0.6727 -vn 0.6458 -0.3616 -0.6724 -vn 0.9626 0.0651 -0.2630 -vn 0.9625 0.0655 -0.2632 -vn 0.9625 0.0658 -0.2633 -vn 0.0032 -0.6396 -0.7687 -vn 0.0037 -0.6393 -0.7690 -vn -0.5144 -0.1123 0.8502 -vn 0.9332 0.0769 -0.3510 -vn 0.9331 0.0768 -0.3513 -vn 0.9387 0.0883 -0.3331 -vn 0.9388 0.0882 -0.3330 -vn -0.1608 -0.4272 0.8898 -vn -0.1606 -0.4276 0.8896 -vn -0.6733 0.7320 0.1044 -vn -0.6736 0.7317 0.1040 -vn -0.6730 0.7321 0.1051 -vn -0.0205 -0.8646 0.5021 -vn -0.0204 -0.8645 0.5023 -vn -0.0203 -0.8645 0.5022 -vn -0.5510 -0.8284 -0.1010 -vn -0.5505 -0.8287 -0.1010 -vn -0.5514 -0.8281 -0.1009 -vn 0.8748 0.1449 -0.4623 -vn 0.8748 0.1451 -0.4623 -vn -0.3571 -0.4943 -0.7925 -vn -0.3572 -0.4946 -0.7923 -vn -0.3575 -0.4945 -0.7922 -vn 0.2459 0.9337 -0.2602 -vn 0.2460 0.9338 -0.2598 -vn 0.2461 0.9339 -0.2594 -vn 0.2476 0.9621 -0.1141 -vn 0.2475 0.9621 -0.1142 -vn 0.2475 0.9621 -0.1144 -vn 0.7907 0.0405 -0.6109 -vn 0.7906 0.0405 -0.6110 -vn 0.7906 0.0407 -0.6110 -vn -0.7544 0.0439 0.6550 -vn -0.7547 0.0435 0.6546 -vn -0.7546 0.0434 0.6547 -vn -0.0260 -0.3651 -0.9306 -vn -0.0259 -0.3652 -0.9306 -vn -0.0260 -0.3649 -0.9307 -vn -0.5171 -0.1108 0.8487 -vn 0.7350 0.6342 0.2398 -vn 0.7346 0.6346 0.2400 -vn 0.7340 0.6350 0.2410 -vn -0.0493 0.6514 -0.7571 -vn -0.0503 0.6511 -0.7573 -vn -0.0498 0.6511 -0.7573 -vn -0.4434 -0.5534 -0.7051 -vn -0.4480 -0.5634 -0.6941 -vn 0.9466 -0.2243 0.2315 -vn -0.2503 0.2614 0.9322 -vn -0.2502 0.2615 0.9322 -vn -0.2501 0.2618 0.9321 -vn -0.3350 0.9266 -0.1710 -vn -0.3345 0.9267 -0.1710 -vn -0.3348 0.9266 -0.1710 -vn 0.5102 0.2496 -0.8230 -vn 0.5102 0.2501 -0.8229 -vn 0.5104 0.2502 -0.8228 -vn -0.8844 0.2234 0.4098 -vn -0.8850 0.2221 0.4093 -vn -0.8841 0.2246 0.4097 -vn -0.1079 0.1450 0.9835 -vn -0.1079 0.1447 0.9836 -vn -0.1079 0.1448 0.9836 -vn -0.7959 0.1551 -0.5852 -vn 0.3782 0.9248 -0.0409 -vn 0.3784 0.9247 -0.0412 -vn 0.3783 0.9248 -0.0410 -vn 0.4732 0.8519 -0.2243 -vn 0.4731 0.8519 -0.2247 -vn 0.4725 0.8520 -0.2256 -vn -0.1670 0.8237 0.5419 -vn -0.1670 0.8240 0.5414 -vn -0.1668 0.8242 0.5412 -vn 0.5663 0.8229 0.0463 -vn 0.5663 0.8229 0.0465 -vn 0.5663 0.8229 0.0466 -vn 0.0755 0.9312 -0.3566 -vn 0.0757 0.9315 -0.3558 -vn 0.0751 0.9310 -0.3573 -vn 0.4968 -0.4294 0.7542 -vn 0.4959 -0.4290 0.7550 -vn 0.4961 -0.4292 0.7548 -vn -0.9577 0.1611 -0.2386 -vn -0.9577 0.1607 -0.2389 -vn -0.3279 -0.0080 -0.9447 -vn -0.3277 -0.0080 -0.9447 -vn 0.9313 -0.0944 0.3519 -vn 0.9314 -0.0955 0.3513 -vn 0.9313 -0.0948 0.3517 -vn -0.4762 -0.3456 0.8086 -vn -0.4763 -0.3453 0.8086 -vn -0.4763 -0.3454 0.8086 -vn -0.0267 0.4240 0.9053 -vn -0.0267 0.4238 0.9054 -vn -0.0267 0.4246 0.9050 -vn 0.0520 0.6102 0.7906 -vn 0.0520 0.6104 0.7904 -vn 0.0518 0.6105 0.7903 -vn -0.4534 0.8762 0.1633 -vn -0.4528 0.8766 0.1631 -vn -0.4525 0.8767 0.1630 -vn 0.4995 -0.4255 0.7546 -vn 0.4996 -0.4257 0.7544 -vn 0.2841 0.9458 0.1572 -vn 0.2840 0.9459 0.1567 -vn -0.5203 0.5855 0.6217 -vn 0.9425 0.2424 0.2299 -vn 0.9425 0.2425 0.2298 -vn 0.9426 0.2419 0.2300 -vn -0.2486 0.0310 -0.9681 -vn -0.4261 -0.7909 -0.4392 -vn -0.4260 -0.7910 -0.4393 -vn -0.4259 -0.7910 -0.4393 -vn 0.5416 0.1065 0.8338 -vn 0.5417 0.1070 0.8337 -vn -0.8776 0.1979 -0.4366 -vn -0.8777 0.1978 -0.4365 -vn 0.0212 0.1630 0.9864 -vn 0.1377 0.8524 -0.5045 -vn 0.1377 0.8523 -0.5046 -vn 0.1376 0.8523 -0.5046 -vn 0.0354 0.9040 0.4261 -vn -0.8318 -0.5483 -0.0862 -vn -0.8318 -0.5483 -0.0867 -vn -0.8319 -0.5480 -0.0870 -vn 0.8179 0.4335 -0.3783 -vn 0.8178 0.4336 -0.3784 -vn 0.8177 0.4338 -0.3784 -vn 0.0852 -0.8947 0.4385 -vn 0.0853 -0.8946 0.4386 -vn 0.6029 0.5343 0.5925 -vn 0.6033 0.5340 0.5924 -vn 0.6037 0.5338 0.5921 -vn -0.1579 -0.3723 0.9146 -vn -0.1580 -0.3722 0.9146 -vn 0.4030 -0.7222 -0.5622 -vn 0.4031 -0.7224 -0.5618 -vn 0.4030 -0.7220 -0.5624 -vn 0.9920 -0.1088 0.0643 -vn 0.9920 -0.1089 0.0644 -vn 0.9920 -0.1089 0.0640 -vn -0.1023 -0.1872 0.9770 -vn -0.1023 -0.1871 0.9770 -vn -0.1018 -0.1874 0.9770 -vn 0.1938 -0.6244 0.7567 -vn 0.1936 -0.6244 0.7567 -vn 0.1935 -0.6244 0.7567 -vn -0.6825 0.6912 -0.2375 -vn -0.6824 0.6914 -0.2375 -vn -0.6823 0.6913 -0.2378 -vn -0.2190 0.9306 0.2932 -vn -0.2200 0.9304 0.2931 -vn -0.2205 0.9304 0.2929 -vn 0.8147 -0.5449 0.1985 -vn 0.8146 -0.5450 0.1986 -vn 0.8146 -0.5450 0.1985 -vn 0.7773 -0.2865 0.5601 -vn 0.7773 -0.2868 0.5600 -vn -0.9515 -0.2941 0.0903 -vn -0.9515 -0.2945 0.0893 -vn -0.9515 -0.2943 0.0899 -vn -0.1088 0.3615 -0.9260 -vn 0.3802 -0.9175 -0.1163 -vn 0.3800 -0.9176 -0.1165 -vn 0.3805 -0.9175 -0.1162 -vn -0.3243 -0.1665 0.9312 -vn -0.3241 -0.1664 0.9313 -vn 0.0363 0.0364 -0.9987 -vn 0.0361 0.0363 -0.9987 -vn 0.0366 0.0364 -0.9987 -vn -0.2320 0.0598 0.9709 -vn -0.2321 0.0596 0.9709 -vn 0.1226 0.9870 -0.1038 -vn 0.1236 0.9867 -0.1053 -vn 0.1239 0.9867 -0.1056 -vn -0.7091 0.6982 -0.0982 -vn 0.5506 0.8346 -0.0181 -vn 0.5510 0.8343 -0.0182 -vn 0.5508 0.8344 -0.0181 -vn -0.9393 -0.1914 0.2846 -vn 0.7931 -0.2294 0.5643 -vn 0.8024 0.4440 0.3988 -vn 0.8018 0.4446 0.3993 -vn 0.8014 0.4449 0.3999 -vn -0.1329 0.5600 0.8178 -vn -0.1330 0.5600 0.8178 -vn 0.8166 -0.5507 0.1729 -vn -0.4201 0.7001 -0.5774 -vn -0.4203 0.7002 -0.5772 -vn -0.4202 0.7000 -0.5774 -vn 0.9022 -0.1146 0.4158 -vn 0.9021 -0.1138 0.4162 -vn 0.9022 -0.1152 0.4157 -vn -0.9341 0.0038 -0.3570 -vn -0.9342 0.0037 -0.3568 -vn -0.9341 0.0036 -0.3569 -vn -0.2179 0.0293 0.9755 -vn -0.2178 0.0293 0.9756 -vn -0.9144 0.0562 -0.4008 -vn -0.7108 -0.6796 -0.1815 -vn -0.7110 -0.6794 -0.1814 -vn -0.7106 -0.6797 -0.1815 -vn 0.4653 0.4597 -0.7564 -vn 0.4656 0.4597 -0.7562 -vn 0.4667 0.4597 -0.7555 -vn 0.4538 0.5123 0.7291 -vn 0.4536 0.5127 0.7289 -vn -0.8795 0.0640 -0.4715 -vn -0.8991 -0.3662 -0.2399 -vn -0.8991 -0.3660 -0.2400 -vn -0.8992 -0.3656 -0.2403 -vn 0.4229 0.6085 -0.6715 -vn 0.7639 -0.2669 0.5876 -vn 0.7638 -0.2664 0.5879 -vn 0.7639 -0.2670 0.5876 -vn -0.0619 -0.2225 0.9730 -vn -0.0624 -0.2224 0.9730 -vn -0.0618 -0.2225 0.9730 -vn 0.7423 0.6680 0.0533 -vn 0.7423 0.6679 0.0535 -vn -0.3207 0.9445 0.0714 -vn -0.3206 0.9445 0.0715 -vn -0.4418 -0.8707 -0.2163 -vn -0.4409 -0.8712 -0.2157 -vn -0.4412 -0.8711 -0.2158 -vn -0.2759 0.7954 0.5396 -vn -0.2760 0.7952 0.5398 -vn -0.2761 0.7953 0.5397 -vn -0.7009 0.2691 0.6606 -vn -0.7007 0.2696 0.6605 -vn 0.9671 0.0912 0.2374 -vn 0.9671 0.0904 0.2377 -vn 0.9672 0.0895 0.2376 -vn -0.8741 -0.1839 -0.4496 -vn -0.8739 -0.1843 -0.4498 -vn -0.8737 -0.1848 -0.4500 -vn 0.8022 -0.0242 0.5965 -vn 0.0291 0.9994 -0.0202 -vn 0.0286 0.9994 -0.0200 -vn -0.8442 0.3136 -0.4347 -vn -0.8443 0.3135 -0.4345 -vn 0.6413 -0.6132 0.4612 -vn 0.6414 -0.6132 0.4611 -vn 0.6415 -0.6132 0.4610 -vn -0.5569 -0.7661 -0.3209 -vn -0.5569 -0.7661 -0.3210 -vn -0.5568 -0.7662 -0.3209 -vn 0.9153 0.0963 0.3910 -vn 0.9154 0.0964 0.3909 -vn 0.9153 0.0960 0.3911 -vn -0.7538 -0.2443 -0.6100 -vn -0.7537 -0.2443 -0.6101 -vn 0.7739 0.6135 -0.1573 -vn -0.8224 0.5384 -0.1837 -vn -0.8225 0.5383 -0.1837 -vn -0.8225 0.5382 -0.1838 -vn 0.5263 -0.4281 0.7347 -vn 0.5262 -0.4285 0.7345 -vn 0.5263 -0.4283 0.7346 -vn 0.3125 -0.6104 -0.7278 -vn 0.3129 -0.6104 -0.7277 -vn -0.7355 -0.6350 -0.2362 -vn 0.9759 0.0282 0.2164 -vn -0.2039 -0.6602 0.7229 -vn -0.2038 -0.6599 0.7232 -vn -0.2039 -0.6598 0.7232 -vn 0.7555 -0.6521 0.0636 -vn 0.7556 -0.6519 0.0633 -vn 0.3863 0.9147 0.1187 -vn 0.3860 0.9148 0.1191 -vn -0.2749 0.2317 -0.9331 -vn -0.2749 0.2313 -0.9332 -vn -0.2750 0.2318 -0.9331 -vn -0.0134 -0.9058 0.4236 -vn -0.0135 -0.9058 0.4236 -vn -0.0132 -0.9058 0.4234 -vn 0.4936 -0.7209 0.4865 -vn 0.4933 -0.7210 0.4866 -vn -0.2791 0.8569 0.4333 -vn -0.2792 0.8570 0.4332 -vn -0.2795 0.8570 0.4330 -vn -0.3517 -0.0911 0.9317 -vn -0.6475 -0.6605 -0.3802 -vn -0.6481 -0.6607 -0.3788 -vn -0.6474 -0.6605 -0.3803 -vn 0.2303 -0.8071 0.5436 -vn 0.2303 -0.8072 0.5435 -vn -0.0188 -0.3120 -0.9499 -vn -0.0187 -0.3118 -0.9499 -vn -0.0186 -0.3119 -0.9499 -vn -0.1530 0.9709 0.1840 -vn -0.1528 0.9708 0.1848 -vn -0.1529 0.9709 0.1844 -vn 0.4010 0.6856 -0.6076 -vn 0.4007 0.6859 -0.6074 -vn 0.1190 0.4537 0.8832 -vn 0.1197 0.4530 0.8835 -vn 0.1199 0.4522 0.8838 -vn -0.0832 0.1750 -0.9810 -vn -0.0833 0.1750 -0.9810 -vn -0.0836 0.1749 -0.9810 -vn -0.0970 0.9642 0.2467 -vn -0.0966 0.9642 0.2468 -vn -0.5499 -0.7231 -0.4181 -vn -0.5499 -0.7231 -0.4180 -vn -0.9244 0.1671 -0.3429 -vn -0.9244 0.1673 -0.3427 -vn -0.9244 0.1672 -0.3428 -vn 0.1817 0.8821 0.4347 -vn 0.1814 0.8818 0.4354 -vn -0.8116 -0.5716 -0.1205 -vn -0.7704 0.5503 -0.3220 -vn -0.7702 0.5505 -0.3221 -vn -0.7703 0.5503 -0.3221 -vn 0.7213 -0.5333 0.4419 -vn 0.7212 -0.5339 0.4413 -vn 0.7212 -0.5337 0.4416 -vn -0.5569 0.7580 0.3395 -vn -0.5573 0.7578 0.3393 -vn -0.5572 0.7578 0.3394 -vn 0.8735 -0.1666 0.4574 -vn 0.8730 -0.1657 0.4587 -vn 0.8741 -0.1669 0.4562 -vn 0.7185 -0.4300 0.5466 -vn 0.7187 -0.4297 0.5466 -vn 0.7193 -0.4290 0.5464 -vn 0.7448 0.2600 0.6146 -vn 0.7449 0.2599 0.6145 -vn 0.7450 0.2598 0.6144 -vn 0.5190 0.5556 -0.6496 -vn 0.5188 0.5556 -0.6498 -vn 0.8613 -0.3556 -0.3630 -vn 0.8611 -0.3560 -0.3631 -vn 0.8618 -0.3547 -0.3627 -vn 0.1168 0.7150 -0.6893 -vn 0.1165 0.7148 -0.6895 -vn -0.3318 -0.8353 0.4384 -vn -0.3317 -0.8354 0.4383 -vn -0.5942 0.6226 0.5092 -vn -0.5946 0.6223 0.5092 -vn -0.5952 0.6214 0.5095 -vn 0.4786 0.8362 0.2678 -vn 0.4784 0.8359 0.2689 -vn 0.4786 0.8360 0.2684 -vn -0.4079 -0.5119 0.7560 -vn -0.4080 -0.5121 0.7558 -vn -0.4081 -0.5121 0.7558 -vn 0.4606 0.0262 0.8872 -vn 0.4607 0.0263 0.8872 -vn 0.4606 0.0264 0.8872 -vn 0.7142 0.2771 0.6427 -vn 0.7141 0.2769 0.6429 -vn 0.7142 0.2770 0.6428 -vn -0.6194 0.7819 0.0713 -vn -0.6189 0.7822 0.0716 -vn -0.6185 0.7825 0.0719 -vn 0.3020 0.9531 0.0195 -vn 0.3014 0.9533 0.0202 -vn 0.3018 0.9532 0.0197 -vn -0.5933 0.5943 -0.5429 -vn -0.5925 0.5948 -0.5433 -vn -0.5928 0.5946 -0.5432 -vn -0.9114 -0.3217 -0.2567 -vn -0.9110 -0.3226 -0.2569 -vn 0.5298 0.8462 0.0560 -vn 0.5303 0.8459 0.0563 -vn -0.9356 -0.0899 -0.3413 -vn -0.9362 -0.0869 -0.3406 -vn -0.9358 -0.0893 -0.3409 -vn -0.0613 0.9700 -0.2352 -vn -0.0608 0.9701 -0.2350 -vn -0.0610 0.9701 -0.2348 -vn -0.6478 0.0671 0.7589 -vn -0.6478 0.0675 0.7588 -vn -0.6480 0.0672 0.7587 -s 0 -usemtl Material.002 -f 4026//1 3//1 4//2 -f 1//3 10//4 16//5 -f 6//6 10//7 1//8 -f 3545//9 2027//10 2949//11 -f 24//12 6//13 1//14 -f 32//15 6//16 39//17 -f 1341//18 37//19 1511//20 -f 39//21 120//22 32//23 -f 3346//24 2066//25 48//26 -f 39//27 133//27 120//27 -f 4043//28 1894//29 1703//30 -f 62//31 10//32 6//31 -f 1631//33 3151//34 3488//35 -f 3190//36 6051//37 81//38 -f 82//39 2977//40 83//41 -f 1//42 16//43 24//44 -f 4534//45 5070//46 1172//47 -f 1753//48 2459//49 656//50 -f 39//51 6//52 24//52 -f 147//53 2538//54 3462//55 -f 10//56 156//57 303//58 -f 303//59 158//60 10//61 -f 156//62 10//63 62//64 -f 164//65 3128//66 1268//67 -f 10//68 158//68 16//68 -f 516//69 2473//69 4766//70 -f 62//71 6//71 32//71 -f 3529//72 4089//73 183//72 -f 120//74 245//74 32//74 -f 3546//75 1322//76 889//77 -f 24//78 202//79 39//78 -f 120//80 133//81 205//82 -f 205//83 133//84 150//85 -f 39//86 202//87 213//88 -f 1147//89 2147//90 922//91 -f 3268//92 69//92 247//92 -f 245//93 62//93 32//93 -f 252//94 497//94 94//94 -f 257//95 24//96 16//97 -f 245//98 120//99 331//99 -f 1269//100 78//101 278//101 -f 3915//102 281//103 4635//104 -f 3405//105 2038//106 4500//106 -f 133//107 39//108 213//109 -f 133//110 213//111 234//112 -f 133//113 294//114 150//115 -f 234//116 294//117 133//118 -f 303//119 452//120 158//121 -f 1493//122 2694//122 312//122 -f 1361//123 2004//123 4863//124 -f 333//125 5085//126 5540//127 -f 1554//128 344//129 946//129 -f 345//130 24//131 257//132 -f 331//133 120//134 205//135 -f 331//136 205//136 347//136 -f 2815//137 327//137 350//137 -f 459//138 358//139 3267//140 -f 4003//141 369//142 1747//143 -f 245//144 156//145 62//146 -f 4192//147 1659//148 715//149 -f 158//150 451//151 257//152 -f 16//153 158//154 257//155 -f 24//156 345//157 202//157 -f 3985//158 1026//159 2577//160 -f 4831//161 3345//161 4516//161 -f 1213//162 438//162 51//162 -f 303//163 156//164 452//165 -f 2270//166 1990//166 426//167 -f 4556//168 447//169 1186//169 -f 7319//170 448//171 1311//172 -f 451//173 452//174 453//175 -f 2235//176 3368//177 455//178 -f 452//179 451//180 158//181 -f 3432//182 4026//183 3125//184 -f 2698//185 3489//185 103//186 -f 5021//187 4433//187 2303//188 -f 294//189 483//189 150//189 -f 452//190 156//191 501//192 -f 510//193 156//194 245//195 -f 691//196 331//197 347//198 -f 3139//199 1109//200 524//201 -f 535//202 3923//203 875//202 -f 213//204 534//205 541//206 -f 2037//207 3057//208 555//209 -f 566//210 638//211 559//212 -f 566//213 559//214 573//215 -f 489//216 89//216 2385//216 -f 452//217 501//218 453//219 -f 596//220 245//221 331//222 -f 1842//223 1364//224 5165//225 -f 4959//226 2357//227 2903//228 -f 269//229 5119//229 616//230 -f 483//231 205//231 150//232 -f 213//233 202//234 534//235 -f 2599//236 624//237 3827//236 -f 2563//238 3695//239 1835//240 -f 234//241 843//242 294//243 -f 213//244 541//245 234//245 -f 637//246 2237//247 3760//248 -f 4138//249 5547//250 641//251 -f 2230//252 356//253 1333//254 -f 753//255 559//256 639//257 -f 1310//258 647//259 1066//260 -f 566//261 747//262 638//263 -f 1788//264 2531//265 2026//266 -f 573//267 559//268 753//268 -f 566//269 573//270 669//270 -f 672//271 246//272 26//273 -f 501//274 156//274 510//275 -f 802//276 453//276 501//277 -f 2891//278 1532//279 467//280 -f 451//281 453//281 701//282 -f 701//283 257//284 451//285 -f 2605//286 1327//287 703//287 -f 1909//288 704//289 3938//290 -f 345//291 534//291 202//292 -f 2534//293 4590//294 2745//295 -f 4953//296 2462//297 1374//298 -f 1218//299 638//299 747//300 -f 1673//301 4391//302 3132//302 -f 1512//303 745//304 442//305 -f 638//306 639//306 559//306 -f 736//307 753//308 639//309 -f 3556//310 91//311 1280//312 -f 1625//313 3314//314 3963//314 -f 777//315 1822//315 255//316 -f 902//317 573//318 753//319 -f 787//320 669//321 573//320 -f 1102//322 527//323 4568//323 -f 510//324 245//325 596//326 -f 510//327 802//328 501//329 -f 596//330 331//331 691//332 -f 701//333 453//334 802//335 -f 820//336 3057//337 216//338 -f 257//339 701//340 345//341 -f 483//342 826//342 205//343 -f 843//344 483//344 294//344 -f 736//345 979//346 853//347 -f 3227//348 5411//349 2925//350 -f 639//351 979//352 736//353 -f 1708//354 865//355 4528//356 -f 1805//357 2581//358 2455//359 -f 4516//360 4532//361 3331//362 -f 2687//363 5072//364 4227//364 -f 4276//365 887//366 1777//367 -f 853//368 753//369 736//370 -f 899//371 4260//372 2736//373 -f 566//374 1024//375 747//375 -f 902//376 753//377 853//377 -f 1037//378 1609//379 4624//380 -f 669//381 911//381 566//382 -f 787//383 573//384 902//385 -f 3472//386 67//387 927//388 -f 802//389 510//390 596//391 -f 2987//392 938//393 939//394 -f 4342//395 654//395 5597//395 -f 587//396 948//396 949//396 -f 956//397 345//398 701//398 -f 4365//399 1148//400 733//401 -f 826//402 347//403 205//404 -f 958//405 84//405 959//406 -f 979//407 970//408 971//409 -f 639//410 1218//411 979//412 -f 1520//413 3709//414 985//415 -f 747//416 541//416 534//417 -f 979//418 971//419 853//420 -f 2407//421 735//422 2406//423 -f 234//424 541//425 843//424 -f 1008//426 3520//427 1411//426 -f 5484//428 1013//429 4134//430 -f 2612//431 1208//431 2534//431 -f 541//432 747//433 1024//434 -f 3252//435 7382//436 1035//437 -f 1015//438 1042//439 5718//440 -f 911//441 1024//442 566//442 -f 1050//443 5216//444 2484//443 -f 2340//445 1418//446 3630//447 -f 902//448 1067//449 787//450 -f 1073//451 596//452 691//453 -f 1074//454 1075//455 1365//456 -f 1081//457 691//458 347//459 -f 5082//460 4070//461 194//462 -f 760//463 2193//464 3941//465 -f 2502//466 1401//466 3523//466 -f 1109//467 1110//467 3250//467 -f 5227//468 2994//469 1117//470 -f 1218//471 970//472 979//473 -f 1100//474 747//475 534//476 -f 483//477 843//477 1131//478 -f 1135//479 1136//480 607//480 -f 1218//481 639//482 638//482 -f 971//483 1133//484 853//485 -f 955//486 3388//486 857//486 -f 1100//487 1218//488 747//489 -f 3443//490 79//491 2774//492 -f 3853//493 1171//494 362//495 -f 5598//496 1184//497 1505//498 -f 1187//499 1976//500 1920//501 -f 1191//502 1192//503 2890//504 -f 4594//505 4527//506 1542//507 -f 4945//508 4944//509 3195//510 -f 1729//511 1728//512 4504//513 -f 1081//514 1073//515 691//516 -f 826//517 1081//518 347//519 -f 135//520 1213//520 52//521 -f 1100//522 534//523 345//524 -f 1329//525 1065//526 3728//527 -f 3196//528 1227//528 4412//528 -f 1234//529 395//530 4524//531 -f 4145//532 605//533 3182//534 -f 541//535 1154//536 1007//537 -f 843//538 541//539 1007//540 -f 3457//541 3330//542 395//543 -f 4619//544 4281//544 1246//545 -f 65//546 1250//546 837//546 -f 1251//547 1673//548 1252//549 -f 1515//550 1024//550 911//550 -f 2008//551 2338//552 5094//553 -f 1515//554 911//555 669//556 -f 1266//557 5033//558 1267//559 -f 1198//560 802//561 596//562 -f 1198//563 701//564 802//565 -f 956//566 1305//566 345//567 -f 345//568 1305//568 1100//568 -f 3097//569 1375//570 1315//571 -f 1343//572 918//573 88//573 -f 971//574 1478//575 1133//576 -f 1343//577 88//577 677//577 -f 1079//578 1322//579 1345//580 -f 1154//581 541//582 1024//583 -f 1133//584 1256//585 853//585 -f 902//586 853//587 1265//588 -f 2264//589 1162//590 4566//591 -f 1874//592 787//593 1067//594 -f 701//595 1198//596 1288//597 -f 1288//598 956//599 701//600 -f 621//601 1386//601 551//601 -f 4313//602 4366//603 221//604 -f 4432//605 2207//606 5300//606 -f 1218//607 1100//607 1305//607 -f 1401//608 351//609 812//610 -f 971//611 1398//612 1478//613 -f 1398//614 971//615 970//616 -f 1405//617 70//618 3460//619 -f 1418//620 4638//620 3630//620 -f 1024//621 1168//621 1154//622 -f 1421//623 1422//624 700//625 -f 3956//626 2010//627 1429//628 -f 4229//629 4702//630 2712//629 -f 1024//631 1515//632 1168//633 -f 853//634 1256//634 1265//634 -f 902//635 1265//636 1067//637 -f 787//638 1442//638 669//638 -f 71//639 1443//640 2495//641 -f 672//642 26//643 27//642 -f 1288//644 1305//644 956//645 -f 3932//646 2152//647 2064//648 -f 969//649 1456//650 1676//651 -f 1218//652 1398//653 970//654 -f 2048//655 318//656 2378//657 -f 4982//658 1503//659 1504//660 -f 4492//661 2427//662 3082//663 -f 1009//664 1475//664 270//664 -f 1521//665 3317//666 4688//667 -f 669//668 1442//669 1515//670 -f 484//671 1177//672 1530//673 -f 1589//674 2112//675 3342//676 -f 1544//677 4563//678 2394//677 -f 1081//679 1547//679 1073//680 -f 1251//681 167//682 3881//683 -f 1404//684 1218//685 1305//686 -f 1404//687 1305//687 1288//687 -f 1218//688 1403//689 1398//690 -f 1403//691 1218//691 1404//691 -f 795//692 1571//693 1572//694 -f 227//695 3755//696 1580//697 -f 4966//698 2859//698 1003//699 -f 1131//700 843//701 1007//702 -f 1597//703 1256//703 1133//704 -f 2346//705 1010//706 3905//707 -f 945//708 1789//709 2050//709 -f 5570//710 1980//710 462//710 -f 1618//711 1616//712 1531//713 -f 1677//714 4583//715 1623//716 -f 1624//717 1625//718 1626//719 -f 1618//720 1531//721 1533//722 -f 1533//723 1638//724 1618//725 -f 1531//726 1642//727 1533//728 -f 1198//729 596//730 1539//731 -f 2493//732 2120//733 5265//734 -f 3662//735 4472//736 5312//737 -f 2106//738 2361//738 1671//738 -f 121//739 1682//740 3721//739 -f 2441//741 3583//742 1686//742 -f 1688//743 1398//744 1403//745 -f 4704//746 4933//747 4211//748 -f 4439//749 2883//750 2267//751 -f 1133//752 1478//753 1702//754 -f 1711//755 2221//755 1132//755 -f 3791//756 4252//757 1712//758 -f 1597//759 1702//760 1688//761 -f 1702//762 1597//763 1133//763 -f 693//764 3366//765 4426//764 -f 1726//766 1727//767 1387//768 -f 5420//769 136//770 3099//771 -f 1730//772 1256//773 1597//774 -f 3331//775 1958//776 272//777 -f 1099//778 1738//779 1715//780 -f 5470//781 1740//782 3747//783 -f 1616//784 2021//785 1531//786 -f 4252//787 3257//788 1712//789 -f 3040//790 1378//791 1753//792 -f 139//793 324//794 1443//795 -f 1638//796 1533//796 1642//796 -f 2403//797 4991//798 1011//799 -f 1779//800 1772//801 1908//802 -f 1081//803 826//804 1795//805 -f 5653//806 1382//807 301//807 -f 738//808 2217//808 5236//808 -f 1398//809 1681//810 1478//811 -f 1688//812 1681//813 1398//814 -f 175//815 2120//816 1114//817 -f 1508//818 311//819 3620//819 -f 1154//820 1982//821 1007//822 -f 1867//823 4533//824 50//824 -f 3096//825 3840//826 1808//827 -f 4359//828 3580//829 1334//830 -f 5590//831 1873//832 856//833 -f 1874//834 1442//835 787//836 -f 1616//837 2022//838 2021//839 -f 2339//840 1616//841 1618//842 -f 1531//843 2021//843 1756//843 -f 1642//844 1531//845 1756//846 -f 519//847 1895//848 2831//848 -f 4764//849 725//850 1904//850 -f 586//851 2681//851 4160//852 -f 1775//853 1773//854 1772//855 -f 1664//856 5643//857 4341//858 -f 1773//859 1908//859 1772//859 -f 1779//860 1917//861 1772//862 -f 1917//863 1775//864 1772//865 -f 783//866 3083//866 2367//866 -f 1198//867 1946//867 1288//867 -f 346//868 1530//869 913//870 -f 1964//871 1404//872 1288//873 -f 137//874 1015//874 3609//874 -f 483//875 1831//876 826//877 -f 1679//878 826//879 1831//880 -f 2681//881 4946//882 4160//881 -f 1478//883 1681//884 1702//885 -f 1681//886 1688//887 1702//888 -f 1403//889 1404//890 1964//891 -f 1971//892 833//893 5738//894 -f 483//895 1131//896 1831//897 -f 1597//898 1688//899 1981//900 -f 1403//901 1981//901 1688//902 -f 1982//903 1154//904 1168//905 -f 5215//906 2618//907 2321//907 -f 1597//908 1981//909 1730//910 -f 2431//911 2009//912 1265//913 -f 1874//914 1067//914 1265//915 -f 2020//916 3934//917 4149//917 -f 2339//918 2022//919 1616//920 -f 1999//921 52//922 2029//923 -f 2043//924 1642//925 2040//926 -f 2044//927 3089//928 457//929 -f 1638//930 1642//931 2045//932 -f 3405//933 834//933 2038//934 -f 2045//935 1642//936 2043//937 -f 1773//938 2211//939 1908//940 -f 111//941 3373//942 118//941 -f 3402//943 2856//944 1670//945 -f 3713//946 425//946 424//946 -f 1779//947 1908//948 2070//949 -f 2813//950 2082//951 4024//951 -f 1917//952 1779//953 2386//954 -f 5206//955 5563//955 3188//955 -f 596//956 1073//957 1539//958 -f 145//959 146//960 5845//961 -f 2776//962 4791//963 4276//963 -f 3922//964 5598//964 85//964 -f 3543//965 2057//965 2132//966 -f 3287//967 3811//968 4351//969 -f 1982//970 2286//971 1007//972 -f 4751//973 6712//974 1313//975 -f 1007//976 2286//976 1131//976 -f 2162//977 2319//978 1698//979 -f 1256//980 1730//981 2431//982 -f 2431//983 1265//983 1256//983 -f 2009//984 1874//985 1265//986 -f 2022//987 2330//988 2021//989 -f 614//990 2179//990 832//990 -f 2252//991 5202//991 1312//991 -f 1298//992 211//993 1532//994 -f 2186//995 20//996 2187//997 -f 1889//998 2185//999 1618//1000 -f 1638//1001 1889//1001 1618//1002 -f 2040//1003 1642//1004 1756//1005 -f 2040//1006 2205//1006 2043//1007 -f 2630//1008 3818//1008 1179//1008 -f 2214//1009 1773//1009 1775//1009 -f 1775//1010 2218//1011 2214//1012 -f 1908//1013 2069//1014 2070//1015 -f 1425//1016 3915//1017 164//1018 -f 2232//1019 4911//1020 4126//1021 -f 1314//1022 7340//1023 7390//1024 -f 1539//1025 1073//1025 1547//1025 -f 3483//1026 5501//1027 2619//1027 -f 1795//1028 826//1028 1679//1029 -f 1981//1030 1403//1031 1964//1032 -f 1981//1033 1964//1034 2123//1035 -f 1854//1036 4235//1037 37//1038 -f 2597//1039 3049//1040 4367//1041 -f 2011//1042 2296//1042 1515//1042 -f 2566//1043 5032//1044 344//1045 -f 1442//1046 2011//1047 1515//1048 -f 1874//1049 2316//1050 1442//1050 -f 2489//1051 2320//1052 2479//1052 -f 2323//1053 2320//1054 2489//1055 -f 2329//1056 2330//1057 2022//1058 -f 2330//1059 2347//1059 2021//1060 -f 2021//1061 2347//1061 1756//1061 -f 937//1062 1479//1063 3567//1064 -f 2352//1065 1975//1066 1462//1067 -f 2201//1068 1889//1068 1638//1068 -f 4284//1069 2155//1070 2354//1069 -f 2939//1071 2624//1071 1770//1072 -f 2045//1073 2201//1074 1638//1075 -f 3214//1076 6882//1077 2357//1076 -f 4472//1078 839//1079 2708//1080 -f 471//1081 2370//1082 233//1083 -f 2373//1084 1908//1085 2211//1086 -f 4044//1087 4449//1087 35//1088 -f 4944//1089 2372//1090 3976//1091 -f 491//1092 3069//1093 5067//1094 -f 2088//1095 1223//1096 3030//1097 -f 2218//1098 1775//1098 1917//1099 -f 2386//1100 2218//1101 1917//1102 -f 2387//1103 444//1104 2388//1105 -f 2389//1106 2851//1107 196//1108 -f 177//1109 1395//1110 2328//1109 -f 60//1111 2572//1111 59//1111 -f 3694//1112 491//1112 5105//1113 -f 4653//1114 791//1115 3181//1116 -f 2621//1117 431//1118 771//1117 -f 2401//1119 1547//1119 1081//1119 -f 1946//1120 1198//1121 2242//1122 -f 1607//1123 1519//1124 2269//1125 -f 4435//1126 5826//1126 1335//1126 -f 1252//1127 1477//1128 7346//1129 -f 154//1130 2912//1131 4632//1132 -f 4683//1133 1627//1134 2422//1135 -f 3604//1136 4381//1137 2397//1138 -f 3751//1139 2//1140 2427//1141 -f 1168//1142 1515//1143 2433//1144 -f 3626//1145 1032//1146 6061//1146 -f 828//1147 743//1148 332//1149 -f 3036//1150 1201//1151 2443//1152 -f 2307//1153 1874//1153 2009//1154 -f 4867//1155 4387//1156 3028//1157 -f 2449//1158 2450//1158 2451//1159 -f 2448//1160 1874//1160 2307//1161 -f 917//1162 4510//1162 124//1162 -f 342//1163 2171//1164 1763//1165 -f 2307//1166 2454//1167 2460//1168 -f 2179//1169 2544//1170 1108//1170 -f 692//1171 657//1171 1903//1172 -f 2470//1173 2468//1174 2460//1175 -f 2460//1176 2454//1177 2470//1178 -f 2320//1179 2323//1180 2477//1181 -f 560//1182 4771//1182 7389//1182 -f 2323//1183 2489//1183 2494//1184 -f 2329//1185 2645//1186 2330//1187 -f 1609//1188 679//1188 696//1188 -f 1123//1189 4951//1190 5030//1191 -f 2965//1192 2507//1193 4558//1194 -f 2099//1195 1238//1196 611//1197 -f 2508//1198 2339//1199 2185//1200 -f 931//1201 2036//1202 2665//1203 -f 2259//1204 508//1205 2516//1206 -f 4382//1207 2566//1208 5376//1209 -f 3980//1210 2534//1211 3403//1212 -f 3393//1213 4102//1214 2537//1215 -f 2211//1216 2368//1217 2373//1218 -f 2214//1219 2211//1220 1773//1221 -f 2547//1222 2359//1223 2548//1224 -f 406//1225 3803//1225 2929//1225 -f 2069//1226 1908//1227 2373//1228 -f 3852//1229 1634//1229 764//1230 -f 4262//1231 2096//1232 4201//1233 -f 1828//1234 2887//1235 925//1236 -f 814//1237 2559//1238 2729//1239 -f 3268//1240 2567//1241 218//1242 -f 1198//1243 1539//1243 2242//1243 -f 1465//1244 2169//1244 3776//1244 -f 993//1245 4826//1245 2764//1246 -f 2575//1247 1964//1247 1288//1248 -f 2949//1249 2027//1250 91//1251 -f 1982//1252 1168//1252 2433//1252 -f 2286//1253 2586//1254 1131//1255 -f 2787//1256 3145//1256 3756//1256 -f 1981//1257 2431//1258 1730//1259 -f 1485//1260 2587//1261 354//1262 -f 4988//1263 5401//1264 2592//1265 -f 696//1266 679//1267 4450//1268 -f 3393//1269 2601//1269 2313//1269 -f 2602//1270 1291//1271 2522//1272 -f 646//1273 1069//1274 2822//1275 -f 262//1276 2860//1277 2077//1278 -f 4681//1279 2607//1280 721//1279 -f 2448//1281 2316//1282 1874//1282 -f 2448//1283 2307//1283 2460//1284 -f 2985//1285 1606//1286 4263//1287 -f 2620//1288 2454//1289 2622//1290 -f 2620//1291 2470//1292 2454//1293 -f 61//1294 1635//1295 4548//1296 -f 2649//1297 2329//1298 2022//1299 -f 2652//1300 3019//1301 2653//1302 -f 2339//1303 1618//1304 2185//1305 -f 2231//1306 208//1307 2667//1308 -f 1889//1309 2201//1310 2185//1311 -f 2682//1312 2205//1312 2040//1312 -f 2690//1313 2045//1314 2043//1315 -f 3220//1316 2694//1317 2972//1316 -f 2205//1318 2690//1319 2043//1320 -f 4677//1321 1903//1322 2581//1323 -f 1440//1324 4658//1325 4657//1326 -f 2368//1327 2211//1328 2541//1329 -f 2700//1330 2701//1331 2702//1331 -f 4879//1332 2705//1333 5218//1334 -f 2715//1335 2503//1336 4291//1337 -f 2721//1338 2725//1338 2724//1338 -f 2731//1339 2722//1340 2721//1341 -f 2733//1342 2721//1343 2724//1344 -f 1740//1345 2735//1345 2927//1346 -f 2851//1347 962//1348 59//1349 -f 2401//1350 1081//1351 1795//1352 -f 2741//1353 2376//1354 3218//1355 -f 1650//1356 2747//1357 2825//1358 -f 2756//1359 2757//1359 3177//1360 -f 2472//1361 3705//1362 383//1363 -f 2594//1364 1396//1365 210//1366 -f 1515//1367 2296//1368 2433//1367 -f 561//1369 562//1369 2509//1369 -f 661//1370 594//1370 3094//1370 -f 3004//1371 2009//1372 2431//1373 -f 2307//1374 2009//1375 3004//1376 -f 1442//1377 2316//1378 2011//1378 -f 111//1379 118//1380 2311//1379 -f 2093//1381 3831//1382 2364//1383 -f 2588//1384 203//1385 863//1386 -f 2776//1387 154//1387 4632//1387 -f 2411//1388 4325//1389 309//1388 -f 2333//1390 3882//1390 2791//1391 -f 2792//1392 2470//1393 2620//1394 -f 1225//1395 9//1396 831//1397 -f 2797//1398 2479//1399 2320//1400 -f 5375//1401 2801//1402 1059//1403 -f 3512//1404 1483//1405 1556//1406 -f 2323//1407 2494//1408 2477//1409 -f 2808//1410 2379//1411 4392//1412 -f 2479//1413 2806//1414 2489//1415 -f 1776//1416 2815//1416 5236//1417 -f 2819//1418 3255//1419 2645//1420 -f 2329//1421 2819//1422 2645//1423 -f 2824//1424 3846//1425 1499//1426 -f 978//1427 315//1428 1342//1429 -f 2339//1430 2649//1430 2022//1430 -f 3305//1431 1036//1432 1928//1431 -f 626//1433 907//1434 836//1435 -f 2658//1436 2339//1437 2508//1438 -f 2330//1439 3869//1440 2347//1441 -f 634//1442 816//1442 2790//1442 -f 3794//1443 3339//1444 126//1444 -f 2843//1445 2844//1446 3563//1447 -f 2846//1448 2612//1449 5089//1450 -f 1768//1451 1835//1452 2462//1453 -f 850//1454 2852//1455 2853//1454 -f 2690//1456 2201//1457 2045//1458 -f 2205//1459 2682//1459 2686//1459 -f 2693//1460 2205//1461 2686//1461 -f 1649//1462 2862//1463 2863//1464 -f 1987//1465 3371//1466 1272//1467 -f 302//1468 485//1468 3452//1468 -f 2867//1469 3492//1470 456//1471 -f 2695//1472 2682//1473 2692//1474 -f 623//1475 2175//1475 2870//1475 -f 2693//1476 2690//1477 2205//1478 -f 143//1479 947//1479 203//1479 -f 2692//1480 2877//1481 2695//1482 -f 2880//1483 2832//1484 4958//1485 -f 2214//1486 2541//1487 2211//1488 -f 4367//1489 3049//1489 3030//1490 -f 2890//1491 15//1492 4383//1493 -f 2214//1494 2218//1494 2889//1495 -f 3953//1496 702//1496 1031//1496 -f 2218//1497 2386//1498 3304//1499 -f 2904//1500 1779//1501 2070//1502 -f 2911//1503 2417//1504 3788//1505 -f 4212//1506 1020//1507 1285//1508 -f 2927//1509 4061//1510 1882//1511 -f 3752//1512 874//1513 4055//1514 -f 2934//1515 2935//1516 1980//1517 -f 3187//1518 1138//1519 525//1520 -f 2141//1521 2536//1522 1361//1523 -f 423//1524 2370//1524 2422//1525 -f 1794//1526 2945//1527 4668//1528 -f 2946//1529 191//1530 2947//1531 -f 4464//1532 3526//1532 1522//1532 -f 2236//1533 2139//1534 5547//1535 -f 608//1536 5307//1537 1557//1538 -f 4691//1539 3303//1540 987//1541 -f 2731//1542 2721//1543 2951//1544 -f 375//1545 2959//1545 4588//1545 -f 2965//1546 1690//1547 1956//1548 -f 986//1549 619//1550 1093//1551 -f 189//1552 1195//1553 1997//1553 -f 4566//1554 1297//1555 737//1556 -f 1121//1557 1137//1558 1138//1559 -f 2881//1560 2888//1561 2662//1562 -f 1831//1563 3207//1563 1679//1563 -f 2990//1564 1831//1565 1131//1566 -f 4455//1567 313//1568 4468//1569 -f 1981//1570 2123//1571 2431//1572 -f 4710//1573 149//1573 4154//1574 -f 2766//1575 4616//1575 3005//1575 -f 869//1576 868//1577 1156//1578 -f 1431//1579 1534//1580 5686//1581 -f 2316//1582 2769//1583 2011//1584 -f 3016//1585 2409//1586 3017//1587 -f 3004//1588 2454//1589 2307//1590 -f 3023//1591 2448//1592 2460//1593 -f 2579//1594 958//1595 959//1596 -f 1517//1597 3036//1598 1559//1599 -f 2320//1600 2477//1601 3238//1602 -f 2802//1603 3238//1604 2477//1605 -f 3051//1606 2802//1607 2477//1608 -f 3051//1609 2477//1610 2494//1610 -f 4959//1611 2903//1612 480//1613 -f 2489//1614 3054//1615 2494//1616 -f 2790//1617 193//1618 188//1619 -f 3217//1620 548//1621 2453//1622 -f 2330//1623 2645//1624 3449//1624 -f 1658//1625 2024//1625 3071//1625 -f 484//1626 2412//1627 785//1626 -f 1088//1628 4629//1629 3081//1630 -f 2347//1631 3665//1631 1756//1632 -f 3659//1633 3084//1633 3639//1634 -f 2845//1635 2040//1636 1756//1637 -f 2682//1638 2040//1638 2845//1639 -f 2487//1640 606//1640 3495//1640 -f 2682//1641 3087//1641 2692//1641 -f 1239//1642 1833//1642 2084//1643 -f 4147//1644 3484//1645 3095//1646 -f 1123//1647 4161//1647 4951//1647 -f 668//1648 346//1649 3100//1650 -f 7382//1651 3252//1652 1295//1653 -f 4961//1654 4287//1655 4696//1655 -f 2686//1656 2682//1657 2695//1658 -f 2692//1659 3106//1660 2877//1661 -f 968//1662 4235//1663 4234//1664 -f 2368//1665 3119//1666 2373//1667 -f 3509//1668 2368//1669 2541//1670 -f 2298//1671 4034//1671 3669//1671 -f 2889//1672 2541//1673 2214//1674 -f 3125//1675 5396//1676 2726//1677 -f 162//1678 4966//1679 2119//1680 -f 1978//1681 4567//1682 2783//1683 -f 4215//1684 4360//1685 1643//1686 -f 2758//1687 143//1688 3486//1689 -f 2386//1690 1779//1691 2904//1692 -f 2894//1693 3141//1694 3142//1695 -f 3144//1696 2725//1697 2721//1698 -f 3147//1699 2724//1700 2725//1701 -f 4001//1702 1115//1703 3152//1704 -f 2722//1705 2731//1706 3153//1705 -f 1425//1707 164//1708 1268//1708 -f 3945//1709 7111//1710 3155//1709 -f 2731//1711 2940//1712 3153//1713 -f 4821//1714 7322//1714 267//1714 -f 2951//1715 2940//1716 2731//1717 -f 3173//1718 1539//1719 1547//1720 -f 2940//1721 2951//1722 2970//1723 -f 2968//1724 2721//1725 2733//1726 -f 2951//1727 2721//1728 2969//1729 -f 1062//1730 922//1731 3752//1731 -f 2280//1732 2281//1733 4651//1733 -f 4249//1734 4784//1735 3194//1734 -f 4559//1736 3828//1737 4661//1738 -f 2575//1739 1288//1740 1946//1741 -f 2970//1742 2951//1743 3206//1744 -f 431//1745 4327//1746 3208//1747 -f 2433//1748 2286//1749 1982//1750 -f 2286//1751 2433//1752 2586//1753 -f 2586//1754 2990//1755 1131//1756 -f 4618//1757 539//1758 1713//1757 -f 3211//1759 2431//1760 2123//1761 -f 3213//1762 1501//1763 4540//1764 -f 4241//1765 3215//1765 3074//1766 -f 1923//1767 1757//1767 1126//1767 -f 1088//1768 3224//1768 2233//1769 -f 2448//1770 3225//1771 2316//1772 -f 2454//1773 3004//1774 3221//1775 -f 3221//1776 2622//1777 2454//1776 -f 3023//1778 2460//1779 3024//1780 -f 1030//1781 1440//1782 1161//1783 -f 3041//1784 2792//1785 2620//1786 -f 3234//1787 2468//1788 2470//1789 -f 3192//1790 199//1790 791//1791 -f 2792//1792 3234//1793 2470//1794 -f 2936//1795 293//1796 1237//1797 -f 2003//1798 5510//1799 4050//1800 -f 1048//1801 217//1801 2737//1801 -f 3054//1802 2489//1803 2806//1804 -f 2588//1805 863//1805 4286//1806 -f 2042//1807 3254//1807 3835//1807 -f 435//1808 1920//1808 1512//1809 -f 2819//1810 2329//1811 3064//1812 -f 3156//1813 4684//1814 3208//1815 -f 3449//1816 2645//1817 3255//1816 -f 3260//1818 1396//1819 3261//1820 -f 3071//1821 2024//1821 2830//1821 -f 64//1822 1166//1822 4817//1822 -f 3665//1823 2347//1824 3869//1825 -f 2845//1826 1756//1827 3665//1828 -f 1552//1829 1508//1830 2478//1831 -f 2092//1832 4948//1833 4073//1834 -f 2758//1835 947//1836 143//1837 -f 3478//1838 2201//1839 2690//1838 -f 227//1840 3186//1841 3275//1840 -f 2695//1842 2877//1843 2879//1844 -f 4097//1845 2610//1846 3294//1847 -f 2879//1848 3117//1848 2695//1849 -f 4502//1850 2778//1851 5669//1852 -f 4838//1853 3550//1854 4560//1855 -f 1847//1856 3298//1857 1808//1858 -f 2368//1859 3509//1860 3119//1860 -f 3122//1861 2069//1862 2373//1863 -f 2889//1864 2218//1864 3304//1865 -f 2668//1866 1339//1866 414//1866 -f 2904//1867 2070//1868 3306//1869 -f 2386//1870 2904//1871 3304//1872 -f 3144//1873 2721//1874 2722//1873 -f 2441//1875 1686//1875 1654//1876 -f 2018//1877 3618//1878 1317//1879 -f 2724//1880 3333//1881 2733//1882 -f 2733//1883 2966//1884 3357//1885 -f 2721//1886 2968//1886 2969//1887 -f 3061//1888 1279//1889 1714//1890 -f 3357//1891 2968//1892 2733//1892 -f 2968//1893 3357//1893 3363//1894 -f 2825//1895 151//1896 1650//1897 -f 3206//1898 2951//1899 2969//1900 -f 3206//1901 2969//1902 3385//1903 -f 2698//1904 2461//1905 3386//1905 -f 600//1906 5519//1907 928//1908 -f 955//1909 1858//1910 3388//1911 -f 3498//1912 2599//1912 765//1912 -f 3066//1913 3745//1914 1412//1915 -f 2431//1916 3211//1917 3004//1918 -f 2011//1919 3396//1920 2296//1921 -f 3004//1922 3211//1923 3221//1924 -f 477//1925 703//1925 1309//1925 -f 4016//1926 3600//1926 1330//1927 -f 3225//1928 2769//1929 2316//1930 -f 4260//1931 5287//1932 1396//1933 -f 1929//1934 2856//1935 3402//1936 -f 3335//1937 591//1938 2639//1939 -f 3024//1940 2460//1940 2468//1940 -f 4035//1941 813//1942 393//1943 -f 2622//1944 3041//1944 2620//1945 -f 1206//1946 12//1946 61//1946 -f 2633//1947 2799//1947 3022//1948 -f 3238//1949 3415//1949 2320//1950 -f 2221//1951 1894//1952 3753//1951 -f 3415//1953 2797//1953 2320//1953 -f 2802//1954 3421//1955 3238//1956 -f 1955//1957 2000//1958 3672//1959 -f 7316//1960 1477//1960 1387//1961 -f 2494//1962 3058//1963 3051//1964 -f 232//1965 1805//1965 2455//1966 -f 3054//1967 4010//1968 2494//1969 -f 3638//1970 3255//1971 2819//1972 -f 1973//1973 1210//1974 1972//1975 -f 1370//1976 3361//1977 259//1978 -f 17//1979 3274//1980 3450//1981 -f 484//1982 1931//1983 2315//1984 -f 3064//1985 2329//1985 2649//1986 -f 3449//1987 3869//1988 2330//1989 -f 2658//1990 2649//1991 2339//1991 -f 3525//1992 3461//1993 3462//1994 -f 2185//1995 3663//1996 2508//1997 -f 3465//1998 3466//1999 3467//2000 -f 267//2001 1810//2002 4821//2003 -f 3394//2004 3461//2005 5750//2005 -f 4505//2006 182//2007 2424//2007 -f 2682//2008 2845//2009 3087//2010 -f 4783//2011 2421//2012 4268//2013 -f 1134//2014 2139//2015 2140//2016 -f 3087//2017 3272//2018 2692//2019 -f 867//2020 620//2021 3288//2022 -f 3272//2023 3487//2024 2692//2025 -f 3487//2026 3106//2027 2692//2028 -f 940//2029 1912//2029 3298//2030 -f 186//2031 3585//2031 4342//2031 -f 4060//2032 3499//2033 3500//2033 -f 3292//2034 3502//2035 3293//2036 -f 3117//2037 2686//2037 2695//2038 -f 2877//2039 3506//2040 2879//2041 -f 496//2042 2755//2042 1047//2042 -f 2373//2043 3506//2043 3122//2043 -f 3158//2044 5525//2044 2396//2044 -f 6170//2045 3513//2046 174//2047 -f 1432//2048 5371//2049 3290//2050 -f 3528//2051 2070//2052 2069//2053 -f 4592//2054 883//2054 1236//2054 -f 4912//2055 3472//2056 927//2057 -f 931//2058 1935//2058 1107//2059 -f 2538//2060 3521//2060 4957//2060 -f 5476//2061 2148//2062 4521//2063 -f 4068//2064 1006//2064 2964//2064 -f 2724//2065 3147//2066 3538//2067 -f 2603//2068 1113//2069 3494//2070 -f 2940//2071 3547//2072 3153//2073 -f 3333//2074 2724//2074 3542//2074 -f 1020//2075 4212//2076 1879//2077 -f 2733//2078 3333//2079 2966//2080 -f 4355//2081 610//2082 5049//2081 -f 222//2083 2983//2084 3595//2085 -f 1795//2086 1679//2087 3207//2088 -f 3363//2089 2969//2090 2968//2091 -f 705//2092 1762//2092 1215//2092 -f 3206//2093 3581//2094 2970//2093 -f 1521//2095 502//2096 2761//2097 -f 3586//2098 2990//2098 2586//2098 -f 3399//2099 374//2100 1250//2101 -f 2586//2102 2433//2103 3596//2104 -f 5090//2105 3490//2106 924//2105 -f 4995//2107 2083//2108 5139//2108 -f 519//2109 457//2109 1228//2110 -f 4130//2111 3206//2112 3385//2113 -f 203//2114 947//2115 863//2116 -f 434//2117 961//2118 898//2119 -f 2244//2120 370//2121 3607//2122 -f 4864//2123 1617//2124 4425//2125 -f 2769//2126 3225//2127 2011//2127 -f 5196//2128 3612//2129 5031//2130 -f 2448//2131 3023//2132 3225//2133 -f 342//2134 1763//2135 3331//2136 -f 1165//2137 2395//2137 4416//2137 -f 2036//2138 1107//2139 1576//2140 -f 726//2141 2576//2142 4362//2143 -f 3051//2144 3421//2145 2802//2146 -f 3631//2147 3054//2148 2806//2149 -f 3634//2150 1776//2151 2217//2151 -f 2107//2152 2013//2152 1439//2152 -f 5527//2153 762//2154 1864//2155 -f 3058//2156 2494//2157 4294//2158 -f 3124//2159 3641//2159 512//2160 -f 1918//2161 795//2162 1572//2163 -f 3638//2164 3646//2164 3255//2164 -f 3255//2165 3646//2166 3449//2167 -f 2363//2168 4675//2169 182//2170 -f 4072//2171 1877//2172 4295//2173 -f 5515//2174 4396//2174 1045//2174 -f 2661//2175 3459//2175 2038//2175 -f 3663//2176 2185//2177 3666//2178 -f 2201//2179 3666//2179 2185//2180 -f 2646//2181 1333//2182 3668//2183 -f 2250//2184 2572//2185 60//2186 -f 857//2187 3388//2188 5240//2189 -f 3676//2190 1041//2191 2492//2192 -f 3087//2193 4173//2194 3272//2195 -f 3554//2196 3237//2197 750//2198 -f 1848//2199 603//2200 4474//2199 -f 3902//2201 4253//2202 5524//2203 -f 4966//2204 162//2205 4378//2205 -f 2879//2206 3506//2207 3119//2208 -f 2879//2209 3119//2210 3117//2211 -f 3506//2212 2373//2213 3119//2214 -f 3509//2215 3117//2215 3119//2215 -f 2541//2216 2889//2217 3893//2218 -f 1959//2219 3035//2220 3215//2219 -f 1658//2221 4343//2222 2024//2222 -f 5049//2223 610//2224 2382//2223 -f 4117//2225 3713//2226 4886//2227 -f 3481//2228 2463//2229 2509//2230 -f 2521//2231 856//2232 2565//2233 -f 894//2234 5656//2235 5547//2236 -f 2088//2237 2821//2238 4125//2239 -f 2722//2240 3153//2241 3144//2240 -f 1817//2242 211//2242 3723//2243 -f 3874//2244 1261//2244 1053//2244 -f 3542//2245 2724//2246 3538//2245 -f 3727//2247 1646//2248 3177//2249 -f 3749//2250 1249//2251 412//2252 -f 2071//2253 998//2253 1640//2253 -f 3333//2254 3542//2254 3734//2254 -f 2905//2255 1266//2256 3740//2257 -f 2585//2258 2000//2259 1955//2260 -f 5079//2261 2837//2261 1111//2261 -f 4105//2262 499//2262 1707//2262 -f 3737//2263 3748//2264 3557//2265 -f 4039//2266 2156//2266 5542//2267 -f 3333//2268 3734//2269 2966//2270 -f 2270//2271 1417//2272 2384//2273 -f 3636//2274 116//2275 4438//2275 -f 2046//2276 2896//2277 4085//2278 -f 3759//2279 3557//2280 3748//2281 -f 144//2282 3760//2283 831//2284 -f 2//2285 3136//2285 2427//2285 -f 3762//2286 2782//2287 3982//2288 -f 871//2289 2415//2290 3736//2289 -f 326//2291 1591//2292 2341//2293 -f 1383//2294 3814//2295 2865//2296 -f 1044//2297 3772//2298 1145//2298 -f 4568//2299 1253//2300 2899//2301 -f 3773//2302 3207//2302 1831//2302 -f 2123//2303 1964//2304 4108//2305 -f 3385//2306 2969//2306 3363//2306 -f 4745//2307 4817//2308 2713//2309 -f 3430//2310 265//2310 3369//2310 -f 5420//2311 4601//2312 136//2313 -f 3596//2314 3586//2314 2586//2314 -f 2146//2315 7379//2316 7406//2317 -f 2865//2318 2365//2319 1926//2320 -f 1302//2321 616//2322 1055//2323 -f 3206//2324 3799//2325 3581//2326 -f 2433//2327 2296//2328 3596//2329 -f 3799//2330 3206//2331 4130//2332 -f 5726//2333 97//2334 3053//2335 -f 2234//2336 4488//2337 2272//2338 -f 2783//2339 2667//2340 208//2341 -f 2907//2342 1408//2343 2019//2342 -f 2896//2344 1282//2344 4352//2344 -f 5203//2345 1952//2346 856//2347 -f 1110//2348 3140//2348 2449//2349 -f 3808//2350 2622//2350 3221//2350 -f 2622//2351 3808//2352 3615//2353 -f 3615//2354 3041//2355 2622//2356 -f 3834//2357 3835//2357 2749//2357 -f 3041//2358 3833//2359 2792//2360 -f 3833//2361 3234//2362 2792//2361 -f 3836//2363 3234//2363 3833//2363 -f 3837//2364 1091//2364 3838//2365 -f 3840//2366 2467//2366 3974//2367 -f 3843//2368 326//2369 1590//2370 -f 3480//2371 3844//2372 344//2373 -f 4503//2374 746//2374 2795//2374 -f 2666//2375 3192//2376 791//2375 -f 3854//2377 3855//2378 1698//2379 -f 3064//2380 3644//2381 2819//2382 -f 4162//2383 3064//2384 2649//2385 -f 504//2386 5072//2387 110//2388 -f 3450//2389 1664//2390 17//2391 -f 3864//2392 1130//2393 2762//2394 -f 1405//2395 2010//2396 3956//2397 -f 2649//2398 2658//2399 3867//2400 -f 2508//2401 3663//2402 2658//2403 -f 4173//2404 3087//2405 2845//2406 -f 3874//2407 1732//2408 3875//2409 -f 4594//2410 1542//2410 4414//2410 -f 4535//2411 3881//2412 2453//2413 -f 3478//2414 2690//2415 3688//2416 -f 4319//2417 2746//2417 2807//2417 -f 2693//2418 3688//2419 2690//2420 -f 636//2421 2437//2422 4493//2421 -f 2693//2423 2686//2424 3883//2424 -f 65//2425 4158//2426 991//2427 -f 788//2428 546//2429 3460//2429 -f 3894//2430 3895//2431 1090//2432 -f 1350//2433 4122//2434 5660//2435 -f 3304//2436 3893//2437 2889//2436 -f 2152//2438 3932//2439 2754//2440 -f 5224//2441 651//2442 1088//2443 -f 1016//2444 5324//2445 5010//2446 -f 3542//2447 3538//2447 3917//2448 -f 5111//2449 4292//2450 2544//2451 -f 1604//2452 3925//2452 3489//2453 -f 3542//2454 3917//2454 3929//2454 -f 3542//2455 3929//2456 3734//2456 -f 4253//2457 1125//2457 4164//2458 -f 3933//2459 3737//2460 3557//2461 -f 3928//2462 3737//2463 3933//2464 -f 3173//2465 1547//2466 2401//2466 -f 1578//2467 2488//2468 1177//2469 -f 3939//2470 1946//2471 2242//2472 -f 3197//2473 2768//2474 658//2475 -f 4870//2476 4761//2477 568//2478 -f 4217//2479 1795//2480 3207//2481 -f 4726//2482 2760//2483 1626//2484 -f 3948//2485 3357//2485 2966//2485 -f 1291//2486 4965//2487 5329//2487 -f 2062//2488 3950//2489 3465//2490 -f 135//2491 3769//2492 438//2493 -f 3577//2494 70//2495 3956//2496 -f 1267//2497 894//2497 275//2497 -f 503//2498 247//2499 3957//2500 -f 3385//2501 3363//2502 3955//2503 -f 1870//2504 582//2504 1545//2504 -f 3315//2505 138//2505 2254//2505 -f 3945//2506 1273//2507 4287//2506 -f 3596//2508 2296//2508 3965//2508 -f 3211//2509 3967//2510 3221//2511 -f 5424//2512 3681//2513 3047//2514 -f 3396//2515 3225//2516 3973//2517 -f 1833//2518 2915//2519 698//2518 -f 3977//2520 2714//2520 3397//2520 -f 968//2521 536//2522 537//2523 -f 3073//2524 5228//2525 744//2526 -f 4509//2527 3984//2528 378//2527 -f 4132//2529 3615//2530 3808//2531 -f 2106//2532 2858//2533 3203//2534 -f 2066//2535 3346//2536 3188//2537 -f 2068//2538 3053//2539 3987//2540 -f 3615//2541 4132//2542 3820//2543 -f 1793//2544 1078//2545 5458//2546 -f 3202//2547 3798//2548 4295//2549 -f 1229//2550 2720//2551 1675//2552 -f 3615//2553 3990//2554 3041//2555 -f 2468//2556 3832//2557 3024//2558 -f 3832//2559 2468//2560 3234//2561 -f 3044//2562 5143//2563 427//2564 -f 3847//2565 3421//2566 3051//2567 -f 4004//2568 5277//2569 1126//2568 -f 2479//2570 4005//2571 2806//2572 -f 3058//2573 3847//2574 3051//2575 -f 4294//2576 2494//2577 4010//2578 -f 4886//2579 5612//2580 2675//2581 -f 5790//2582 3080//2582 4011//2583 -f 1944//2584 3712//2585 1754//2586 -f 4151//2587 3638//2588 3644//2589 -f 1780//2590 2546//2591 210//2591 -f 4018//2592 7116//2593 3660//2592 -f 3254//2594 4039//2595 2749//2596 -f 3659//2597 4022//2598 1999//2597 -f 3663//2599 3867//2599 2658//2600 -f 3073//2601 428//2602 5228//2603 -f 4757//2604 1357//2604 2456//2604 -f 242//2605 244//2605 3909//2605 -f 2382//2606 718//2607 1705//2608 -f 3272//2609 4033//2610 3487//2611 -f 4127//2612 3901//2612 4043//2613 -f 4057//2614 4413//2615 4494//2616 -f 2025//2617 3400//2618 2570//2617 -f 2877//2619 3884//2619 3506//2619 -f 2686//2620 3117//2621 3883//2622 -f 4425//2623 2984//2624 2985//2625 -f 3883//2626 3117//2627 3509//2628 -f 2541//2629 3893//2630 3509//2631 -f 1185//2632 3407//2633 3537//2634 -f 4122//2635 4104//2636 4264//2637 -f 2633//2638 1142//2639 2799//2640 -f 3306//2641 2070//2642 3528//2643 -f 2874//2644 2371//2645 3682//2646 -f 5732//2647 1014//2647 714//2647 -f 4062//2648 2277//2649 4578//2650 -f 3922//2651 4363//2652 1184//2653 -f 1077//2654 3039//2655 2393//2656 -f 539//2657 4618//2658 3975//2659 -f 3439//2660 4065//2661 4534//2662 -f 3945//2663 3155//2663 1273//2664 -f 2642//2665 4336//2666 4746//2667 -f 3553//2668 1907//2669 2753//2670 -f 443//2671 474//2672 2767//2673 -f 195//2674 2251//2674 662//2674 -f 3734//2675 3929//2675 4214//2675 -f 3465//2676 3467//2677 4461//2677 -f 1203//2678 554//2679 673//2680 -f 4346//2681 1501//2682 3118//2683 -f 4451//2684 3670//2685 4080//2686 -f 3176//2687 1696//2688 4083//2689 -f 3371//2690 295//2691 4548//2690 -f 3778//2692 349//2693 1164//2693 -f 3748//2694 4079//2694 3942//2695 -f 169//2696 126//2696 569//2696 -f 2207//2697 4432//2698 2208//2699 -f 4088//2700 2442//2701 3821//2702 -f 1777//2703 887//2704 764//2705 -f 25//2706 253//2706 321//2707 -f 3848//2708 4091//2709 240//2710 -f 1157//2711 2677//2712 2905//2712 -f 3357//2713 3948//2714 3949//2715 -f 2970//2716 3581//2717 4210//2718 -f 3363//2719 3357//2720 3949//2721 -f 3942//2722 3759//2723 3748//2724 -f 4700//2725 4146//2726 4097//2727 -f 2990//2728 3773//2728 1831//2728 -f 3949//2729 4106//2730 3363//2731 -f 4725//2732 392//2733 4107//2734 -f 3955//2735 3363//2736 4106//2737 -f 3940//2738 1743//2739 590//2740 -f 415//2741 416//2742 3366//2743 -f 1281//2744 1211//2745 2463//2746 -f 3658//2747 1921//2748 80//2747 -f 4112//2749 4246//2749 3799//2749 -f 2990//2750 3586//2751 4109//2752 -f 1015//2753 137//2754 1016//2755 -f 3965//2756 3586//2757 3596//2758 -f 4109//2759 3586//2760 3965//2761 -f 1837//2762 1318//2763 3695//2764 -f 2637//2765 330//2766 329//2767 -f 178//2768 4346//2768 225//2769 -f 2296//2770 3396//2771 3965//2772 -f 3385//2773 3955//2774 4124//2775 -f 2210//2776 3383//2777 1549//2777 -f 3978//2778 3221//2778 3967//2778 -f 2870//2779 2175//2780 4824//2781 -f 2177//2782 4372//2783 5183//2784 -f 3808//2785 3221//2785 3978//2786 -f 4132//2787 3808//2788 3978//2789 -f 4254//2790 4133//2791 4134//2792 -f 3990//2793 3615//2794 3820//2795 -f 3447//2796 1204//2796 4186//2797 -f 2359//2798 695//2799 1771//2800 -f 2558//2801 2359//2802 1771//2803 -f 4282//2804 3238//2805 3421//2806 -f 3534//2807 775//2808 2971//2809 -f 13//2810 3845//2810 3384//2810 -f 4294//2811 4537//2812 3058//2813 -f 874//2814 1777//2815 895//2816 -f 3631//2817 4151//2818 3054//2819 -f 4880//2820 5081//2821 4154//2822 -f 3638//2823 2819//2824 3644//2825 -f 730//2826 2010//2827 2512//2828 -f 3993//2829 4694//2830 3354//2831 -f 2182//2832 449//2832 134//2832 -f 1881//2833 328//2834 1094//2833 -f 3869//2835 3449//2836 3646//2837 -f 2845//2838 3646//2839 4445//2840 -f 3869//2841 3646//2842 2845//2843 -f 2845//2844 3665//2845 3869//2846 -f 5083//2847 858//2847 2226//2848 -f 1698//2849 4747//2850 2464//2851 -f 2216//2852 528//2853 3252//2853 -f 3073//2854 1118//2855 3731//2856 -f 2201//2857 4171//2858 3666//2859 -f 4033//2860 3272//2861 4173//2862 -f 4467//2863 3669//2864 5599//2865 -f 960//2866 3215//2866 4241//2866 -f 5104//2867 4539//2867 992//2868 -f 3106//2869 4042//2869 2877//2869 -f 5021//2870 3203//2871 4236//2872 -f 318//2873 520//2874 4449//2874 -f 3509//2875 4181//2876 3883//2877 -f 3893//2878 4181//2878 3509//2879 -f 3655//2880 4182//2881 3185//2882 -f 3143//2883 2246//2883 793//2883 -f 2715//2884 3880//2884 33//2885 -f 4476//2886 1845//2887 3029//2886 -f 2458//2888 2137//2889 4280//2888 -f 4190//2890 3304//2891 2904//2892 -f 3306//2893 4190//2894 2904//2895 -f 1458//2896 3932//2896 2064//2896 -f 2996//2897 4624//2898 1277//2899 -f 893//2900 1084//2900 4082//2900 -f 3153//2901 3547//2902 4198//2903 -f 1979//2904 3075//2905 1367//2905 -f 5044//2906 3000//2907 949//2907 -f 3809//2908 1220//2909 1445//2910 -f 4073//2911 598//2912 3729//2913 -f 3917//2914 3538//2915 4202//2916 -f 3928//2917 4205//2918 3737//2919 -f 3917//2920 4202//2920 3929//2921 -f 4996//2922 2017//2923 3599//2924 -f 3737//2925 4581//2926 4079//2927 -f 1529//2928 2110//2929 4845//2929 -f 3748//2930 3737//2930 4079//2930 -f 4664//2931 844//2932 1277//2933 -f 3939//2934 1539//2935 3173//2936 -f 4210//2937 2940//2938 2970//2939 -f 729//2940 723//2941 2719//2942 -f 552//2943 3126//2944 1861//2945 -f 2424//2946 2420//2947 4505//2948 -f 1592//2949 5546//2950 1844//2951 -f 5339//2952 2366//2953 2902//2954 -f 1140//2955 3353//2956 3237//2957 -f 1558//2958 577//2959 806//2960 -f 4458//2961 1502//2962 3424//2963 -f 4197//2964 1678//2965 2059//2966 -f 2966//2967 3734//2968 4214//2969 -f 3474//2970 1572//2971 846//2972 -f 2543//2973 4136//2974 768//2975 -f 3575//2976 3355//2977 1410//2978 -f 556//2979 3365//2980 5275//2981 -f 3948//2982 4237//2983 3949//2984 -f 4731//2985 2055//2986 449//2987 -f 4238//2988 2793//2989 3381//2990 -f 4242//2991 3949//2992 4237//2993 -f 1303//2994 4069//2995 269//2996 -f 4030//2997 1818//2998 4240//2999 -f 998//3000 2873//3000 999//3000 -f 4246//3001 3581//3001 3799//3002 -f 4975//3003 4351//3004 2633//3005 -f 2841//3006 2840//3006 4256//3006 -f 4258//3007 958//3008 4259//3009 -f 4106//3010 4124//3010 3955//3011 -f 27//3012 3801//3013 1549//3014 -f 4988//3015 3098//3016 2648//3017 -f 4220//3018 806//3019 577//3020 -f 3303//3021 4691//3022 5118//3022 -f 319//3023 320//3024 3018//3025 -f 3396//3026 2011//3027 3225//3026 -f 3385//3028 4124//3029 4130//3030 -f 4402//3031 1174//3032 1173//3033 -f 806//3034 796//3035 1001//3036 -f 542//3037 2261//3038 1049//3039 -f 2266//3040 3203//3040 2858//3040 -f 4809//3041 3820//3042 4132//3043 -f 1060//3044 1886//3045 78//3045 -f 4277//3046 3990//3047 3820//3048 -f 3041//3049 3990//3050 3833//3051 -f 1718//3052 2133//3053 4781//3054 -f 4280//3055 1859//3056 711//3057 -f 3836//3058 3832//3058 3234//3059 -f 3137//3060 858//3060 4631//3060 -f 3415//3061 3238//3062 4282//3063 -f 880//3064 4194//3065 1101//3066 -f 2797//3067 4005//3068 2479//3069 -f 4291//3070 3301//3071 2715//3070 -f 1852//3072 2065//3073 1297//3074 -f 4010//3075 3054//3076 4151//3077 -f 2203//3078 3940//3078 1852//3079 -f 1583//3080 763//3081 799//3081 -f 1447//3082 4631//3083 1913//3084 -f 1551//3085 4144//3085 4875//3085 -f 4443//3086 3867//3087 3663//3088 -f 3482//3089 4304//3089 3027//3089 -f 493//3090 488//3090 2562//3090 -f 5195//3091 4311//3092 2550//3093 -f 198//3094 312//3094 1377//3094 -f 1989//3095 5213//3096 1595//3097 -f 3821//3098 2632//3099 3603//3099 -f 2693//3100 4315//3101 3688//3102 -f 5831//3103 3660//3104 2034//3105 -f 4322//3106 3506//3106 3884//3106 -f 3366//3107 2051//3108 415//3109 -f 4323//3110 343//3111 7406//3112 -f 2069//3113 3122//3114 4322//3115 -f 4322//3116 4326//3117 2069//3116 -f 4782//3118 4787//3119 3219//3120 -f 3893//3121 3304//3122 4329//3123 -f 2069//3124 4326//3125 4328//3126 -f 2044//3127 30//3128 4028//3128 -f 3528//3129 2069//3130 4328//3131 -f 4414//3132 1542//3133 4681//3132 -f 4594//3134 1801//3135 266//3136 -f 2255//3137 1866//3138 1456//3139 -f 2644//3140 4340//3141 1424//3142 -f 2783//3143 1653//3144 2784//3145 -f 4581//3146 3737//3146 4350//3146 -f 4205//3147 4350//3148 3737//3149 -f 3135//3150 1980//3151 5570//3152 -f 3929//3153 4202//3154 4357//3155 -f 3933//3156 4358//3157 3928//3158 -f 5226//3159 2670//3160 3475//3161 -f 2242//3162 1539//3163 3939//3164 -f 945//3165 883//3165 643//3166 -f 3278//3167 277//3168 2554//3169 -f 4357//3170 4369//3170 3929//3170 -f 1423//3171 7242//3171 643//3171 -f 4364//3172 3557//3173 4216//3174 -f 2403//3175 1440//3176 4373//3177 -f 4079//3178 4374//3179 3942//3180 -f 3759//3181 4216//3182 3557//3183 -f 1867//3184 739//3185 2839//3186 -f 2575//3187 1946//3188 3939//3187 -f 3422//3189 3628//3190 4014//3191 -f 4382//3192 860//3193 4856//3194 -f 18//3195 3846//3196 1796//3195 -f 4317//3197 1603//3197 168//3198 -f 1964//3199 2575//3200 4108//3201 -f 4248//3202 4242//3203 4237//3202 -f 4246//3204 4605//3205 3581//3206 -f 4242//3207 4400//3208 3949//3209 -f 3949//3210 4400//3211 4106//3212 -f 4400//3213 4242//3214 4248//3215 -f 3409//3216 2181//3216 4160//3216 -f 3773//3217 2990//3218 4109//3219 -f 597//3220 4942//3221 2002//3222 -f 3660//3223 2748//3224 2034//3223 -f 4124//3225 4106//3226 4400//3227 -f 4410//3228 3967//3229 3211//3230 -f 1317//3231 4029//3232 981//3233 -f 4407//3234 4408//3235 4409//3236 -f 3967//3237 4266//3238 3978//3238 -f 4875//3239 4954//3239 2351//3239 -f 4266//3240 4420//3241 3978//3242 -f 4273//3243 4130//3244 4124//3244 -f 1466//3245 4792//3246 3170//3247 -f 3791//3248 1712//3249 2764//3250 -f 3013//3251 5690//3252 193//3253 -f 393//3254 4797//3255 2822//3256 -f 3925//3257 2280//3257 3489//3257 -f 3592//3258 547//3259 2723//3260 -f 5393//3261 5027//3261 226//3261 -f 2532//3262 4058//3263 4428//3264 -f 4285//3265 3421//3266 3847//3267 -f 4909//3268 3093//3269 3904//3270 -f 3847//3271 3058//3272 4290//3273 -f 2806//3274 4005//3275 3631//3276 -f 3354//3277 3142//3278 2675//3279 -f 4536//3280 4013//3281 4151//3282 -f 3644//3283 4010//3283 4151//3283 -f 1083//3284 1827//3285 334//3286 -f 9//3287 144//3288 831//3287 -f 3646//3289 3638//3290 4441//3291 -f 4162//3292 2649//3293 3867//3294 -f 4387//3295 5499//3296 3088//3296 -f 368//3297 2661//3298 2038//3299 -f 3663//3300 3666//3301 4443//3302 -f 353//3303 4807//3304 1659//3305 -f 2369//3306 1008//3306 4678//3306 -f 4445//3307 4173//3308 2845//3309 -f 1804//3310 1797//3311 2220//3312 -f 3543//3313 2132//3313 3349//3313 -f 2201//3314 3478//3315 5190//3316 -f 358//3317 2024//3318 3676//3319 -f 3688//3320 4315//3321 3478//3320 -f 2877//3322 4042//3322 3884//3323 -f 4315//3324 2693//3325 3883//3326 -f 2067//3327 3668//3328 1333//3329 -f 4408//3330 1543//3330 3293//3331 -f 4455//3332 4468//3332 4251//3333 -f 4329//3334 4181//3335 3893//3336 -f 1858//3337 98//3337 3180//3337 -f 4669//3338 892//3339 3530//3340 -f 592//3341 1800//3342 3718//3343 -f 3535//3344 5058//3344 4267//3344 -f 4077//3345 3742//3346 1212//3346 -f 3538//3347 3147//3347 4460//3347 -f 4460//3348 4202//3349 3538//3350 -f 3013//3351 1870//3352 2503//3353 -f 3460//3354 6061//3354 1032//3354 -f 4172//3355 3623//3355 1038//3356 -f 4203//3357 4883//3357 957//3357 -f 2474//3358 1944//3359 2583//3360 -f 3672//3361 3375//3362 4770//3363 -f 3270//3364 579//3365 742//3365 -f 1279//3366 424//3367 425//3368 -f 5093//3369 1058//3370 3477//3371 -f 2940//3372 4210//3373 3547//3374 -f 3557//3375 4364//3375 3933//3375 -f 2574//3376 5270//3377 925//3378 -f 2312//3379 4224//3380 563//3381 -f 515//3382 2836//3383 1541//3384 -f 3173//3385 2401//3386 4213//3387 -f 1589//3388 1239//3388 2084//3388 -f 3742//3389 4077//3389 2710//3390 -f 870//3391 1460//3392 2145//3393 -f 1596//3394 1752//3395 5227//3396 -f 2401//3397 1795//3398 4217//3399 -f 2399//3400 4669//3401 2325//3402 -f 4621//3403 804//3403 3248//3404 -f 4490//3405 2092//3406 1336//3407 -f 924//3408 3490//3409 369//3408 -f 4232//3410 4216//3411 3759//3412 -f 1175//3413 4184//3413 1666//3413 -f 6051//3414 724//3414 3703//3415 -f 2966//3416 4214//3417 3948//3417 -f 3942//3418 4495//3419 3759//3419 -f 3759//3420 4495//3421 4393//3420 -f 1157//3422 3740//3423 262//3424 -f 3759//3425 4393//3426 4232//3427 -f 71//3428 5427//3429 2759//3430 -f 1965//3431 4261//3432 3464//3433 -f 2638//3434 3706//3435 4503//3436 -f 4248//3437 4399//3438 4400//3439 -f 4399//3440 4124//3441 4400//3442 -f 4408//3443 2947//3444 191//3444 -f 4410//3445 4266//3446 3967//3447 -f 276//3448 1328//3449 3109//3449 -f 379//3450 1725//3450 2228//3450 -f 3973//3451 3965//3452 3396//3453 -f 4511//3454 4109//3454 3965//3455 -f 1166//3456 3787//3457 1749//3458 -f 4803//3459 4124//3460 4399//3461 -f 994//3462 128//3463 694//3464 -f 2553//3465 1899//3466 2775//3467 -f 4273//3468 4124//3469 4803//3470 -f 2238//3471 330//3472 3372//3473 -f 4595//3474 2152//3475 605//3476 -f 4740//3477 4037//3478 4520//3477 -f 4809//3479 4132//3480 4628//3481 -f 4809//3482 4277//3482 3820//3482 -f 3833//3483 3990//3484 4277//3484 -f 1475//3485 3379//3485 270//3485 -f 5155//3486 2962//3486 4585//3486 -f 2100//3487 772//3488 431//3489 -f 3415//3490 4530//3491 2797//3492 -f 3421//3493 4285//3494 4282//3495 -f 1066//3496 3728//3497 1065//3498 -f 4005//3499 2797//3500 4530//3501 -f 2496//3502 4017//3502 469//3502 -f 34//3503 2276//3504 554//3505 -f 221//3506 1463//3507 3235//3508 -f 1384//3509 3725//3510 4114//3511 -f 862//3512 1230//3513 861//3514 -f 3058//3515 4537//3516 4290//3517 -f 428//3518 3731//3519 1820//3520 -f 3631//3521 4005//3521 4536//3521 -f 4596//3522 3804//3523 181//3524 -f 477//3525 1309//3526 172//3527 -f 3372//3528 1017//3529 4539//3530 -f 4013//3531 3638//3532 4151//3533 -f 4541//3534 3644//3535 3064//3536 -f 3638//3537 4013//3538 4441//3539 -f 3352//3540 2047//3541 839//3542 -f 4543//3543 3064//3544 4162//3545 -f 3661//3546 1244//3547 229//3548 -f 2313//3549 5130//3549 5150//3549 -f 4171//3550 2201//3550 5190//3551 -f 2197//3552 647//3553 5331//3553 -f 3122//3554 3506//3555 4322//3556 -f 1589//3557 3342//3557 279//3558 -f 4326//3559 4555//3560 4553//3561 -f 4553//3562 4456//3562 4326//3562 -f 3345//3563 3231//3564 460//3565 -f 1289//3566 3425//3567 4019//3568 -f 1099//3569 1715//3570 425//3569 -f 4564//3571 4672//3572 4674//3573 -f 4565//3574 4564//3575 4674//3576 -f 4564//3577 4565//3578 4569//3579 -f 1506//3580 2659//3581 2678//3581 -f 4571//3582 4569//3583 4565//3584 -f 4572//3585 4569//3586 4571//3587 -f 4572//3588 4570//3589 4569//3590 -f 2466//3591 170//3592 3491//3593 -f 3541//3594 2766//3595 3005//3594 -f 2657//3596 618//3597 3531//3598 -f 2854//3599 3397//3599 2714//3600 -f 644//3601 286//3602 4646//3603 -f 4581//3604 4350//3604 4582//3605 -f 932//3606 3888//3607 933//3607 -f 7408//3608 4415//3609 2344//3610 -f 783//3611 1399//3611 2058//3612 -f 4079//3613 4581//3613 4589//3614 -f 3055//3615 4158//3616 4009//3617 -f 1719//3618 778//3618 5067//3618 -f 7379//3619 2146//3620 4597//3621 -f 3001//3622 3350//3622 490//3622 -f 4141//3623 1541//3624 733//3625 -f 283//3626 1593//3627 466//3628 -f 4712//3629 4369//3630 4357//3629 -f 3988//3631 2364//3631 864//3632 -f 136//3633 4601//3634 585//3635 -f 4217//3636 3207//3637 4386//3638 -f 603//3639 2112//3640 3420//3641 -f 3942//3642 4374//3643 4495//3642 -f 403//3644 5393//3644 3649//3644 -f 4605//3645 4210//3646 3581//3647 -f 4386//3648 3207//3649 3773//3650 -f 3929//3651 4369//3652 4214//3653 -f 473//3654 1817//3655 3723//3656 -f 1819//3657 2037//3658 3022//3659 -f 3951//3660 1187//3661 4496//3661 -f 1293//3662 5195//3663 2697//3664 -f 730//3665 4156//3666 2010//3667 -f 4609//3668 4393//3669 4495//3670 -f 2435//3671 1740//3672 2506//3672 -f 4108//3673 4611//3673 2123//3673 -f 3128//3674 164//3674 38//3674 -f 4410//3675 3211//3676 2123//3677 -f 3271//3678 4619//3679 3989//3678 -f 1574//3680 1607//3681 1704//3682 -f 4112//3683 3799//3684 4615//3685 -f 4511//3686 4506//3687 4109//3686 -f 4107//3688 3406//3689 4617//3690 -f 1249//3691 3145//3692 3438//3693 -f 7337//3694 4898//3694 1751//3694 -f 1432//3695 7282//3696 2074//3697 -f 1421//3698 3857//3699 906//3700 -f 4284//3701 2354//3702 1155//3703 -f 4886//3704 192//3704 3829//3705 -f 3225//3706 3023//3707 4522//3707 -f 5099//3708 1641//3709 562//3710 -f 3024//3711 4630//3711 3023//3711 -f 1645//3712 5213//3713 5656//3714 -f 3024//3715 3832//3716 4630//3716 -f 4616//3717 3786//3718 3005//3719 -f 3836//3720 3833//3721 4634//3721 -f 4635//3722 4636//3723 3387//3724 -f 4637//3725 4282//3726 4285//3727 -f 1718//3728 4638//3729 1792//3730 -f 1149//3731 3910//3731 1150//3732 -f 4005//3733 4530//3734 4913//3735 -f 3847//3736 4290//3737 4285//3738 -f 135//3739 1942//3740 3769//3741 -f 4536//3742 4151//3743 3631//3743 -f 4294//3744 4010//3745 3644//3745 -f 3644//3746 4541//3747 4294//3748 -f 4647//3749 1358//3750 1677//3750 -f 2257//3751 5262//3752 3842//3751 -f 4541//3753 3064//3753 4543//3753 -f 4573//3754 1667//3754 1199//3754 -f 1957//3755 3482//3755 3027//3756 -f 1034//3757 2336//3757 4437//3757 -f 4492//3758 3751//3758 2427//3758 -f 4033//3759 4173//3760 4650//3759 -f 2397//3761 4381//3762 716//3763 -f 617//3764 34//3765 1678//3766 -f 1745//3767 3437//3768 2145//3769 -f 3941//3770 1816//3771 760//3772 -f 845//3773 652//3773 4007//3774 -f 4660//3775 3883//3776 4181//3777 -f 4456//3778 4553//3779 4760//3780 -f 1955//3781 1743//3782 2203//3783 -f 3286//3784 3590//3784 719//3785 -f 4763//3786 4561//3787 4456//3788 -f 4453//3789 1966//3790 35//3790 -f 4580//3791 3743//3792 5133//3793 -f 4561//3794 4326//3794 4456//3794 -f 3528//3795 4328//3796 3306//3797 -f 4671//3798 2962//3799 3150//3800 -f 4672//3801 4673//3802 4674//3803 -f 4679//3804 4564//3805 4569//3806 -f 2760//3807 4726//3807 1967//3807 -f 3891//3808 7395//3809 4935//3810 -f 2975//3811 1660//3812 2976//3813 -f 2621//3814 771//3814 2491//3814 -f 1662//3815 3149//3816 4784//3817 -f 3536//3818 2174//3819 2229//3820 -f 4582//3821 4693//3822 4581//3823 -f 4398//3824 3228//3824 4333//3824 -f 1683//3825 346//3826 913//3825 -f 4581//3827 4693//3828 4589//3829 -f 4699//3830 4205//3831 3928//3832 -f 1596//3833 2744//3834 625//3835 -f 1740//3836 2863//3837 4833//3838 -f 4374//3839 4079//3839 4589//3839 -f 791//3840 199//3841 1070//3842 -f 492//3843 4663//3844 3502//3845 -f 2560//3846 2246//3847 90//3848 -f 4216//3849 4708//3850 4364//3850 -f 3186//3851 652//3852 845//3853 -f 4591//3854 4712//3854 4357//3854 -f 4603//3855 2575//3856 3939//3857 -f 3962//3858 2294//3859 1701//3860 -f 4108//3861 2575//3862 4603//3861 -f 3043//3863 5279//3864 4979//3865 -f 4216//3866 4232//3867 4713//3868 -f 4216//3869 4713//3870 4714//3871 -f 1579//3872 1840//3873 625//3874 -f 4214//3875 4604//3875 3948//3875 -f 3616//3876 4739//3876 1601//3876 -f 2980//3877 3100//3878 346//3877 -f 735//3879 3183//3880 2376//3881 -f 4723//3882 594//3883 4724//3884 -f 2763//3885 7408//3886 2344//3887 -f 1455//3888 4396//3889 2026//3890 -f 2671//3891 2672//3892 503//3893 -f 933//3894 2116//3895 1727//3896 -f 1243//3897 1087//3897 2076//3898 -f 1758//3899 2869//3900 2524//3901 -f 4320//3902 4863//3903 3632//3904 -f 2360//3905 2000//3906 2585//3907 -f 3799//3908 4130//3909 4615//3909 -f 3427//3910 813//3911 4035//3912 -f 4511//3913 4978//3913 4506//3913 -f 4803//3914 4626//3915 4273//3914 -f 3116//3916 3101//3917 3332//3918 -f 3978//3919 4628//3919 4132//3920 -f 3973//3921 3225//3922 4522//3921 -f 3130//3923 1966//3924 4453//3925 -f 4730//3926 3965//3927 3973//3928 -f 1171//3929 908//3929 362//3929 -f 412//3930 1417//3931 1324//3932 -f 4428//3933 1896//3934 3282//3935 -f 836//3936 1560//3937 4483//3938 -f 4733//3939 4734//3940 4735//3941 -f 4734//3942 4736//3943 4735//3944 -f 3499//3945 2484//3946 3500//3947 -f 335//3948 2627//3949 66//3950 -f 3569//3951 7392//3951 7343//3951 -f 2748//3952 4741//3953 3115//3954 -f 3865//3955 1950//3956 3124//3957 -f 533//3958 5602//3958 3602//3959 -f 1697//3960 5649//3961 411//3962 -f 4743//3963 4536//3964 4005//3965 -f 4537//3966 4294//3967 4830//3968 -f 796//3969 806//3970 4220//3970 -f 2314//3971 1719//3971 877//3972 -f 4052//3973 2187//3973 5399//3974 -f 1698//3975 2319//3976 4747//3977 -f 3867//3978 4543//3979 4162//3980 -f 4837//3981 3646//3982 4441//3983 -f 4749//3984 4443//3985 3666//3986 -f 457//3987 2831//3988 30//3989 -f 5085//3990 5143//3991 2860//3992 -f 4650//3993 4173//3993 4445//3993 -f 3478//3994 4315//3995 4660//3996 -f 3883//3997 4660//3998 4315//3999 -f 1966//4000 393//4001 2822//4002 -f 5064//4003 22//4004 3123//4005 -f 5484//4006 49//4007 4275//4008 -f 4759//4009 4760//4010 4553//4011 -f 4555//4012 4326//4013 4322//4014 -f 4763//4015 4456//4015 4760//4016 -f 4762//4017 4553//4017 4555//4017 -f 1417//4018 3008//4019 2384//4020 -f 4272//4021 1274//4022 2773//4023 -f 4928//4024 3304//4024 4190//4024 -f 4561//4025 4767//4026 4326//4027 -f 4767//4028 4328//4029 4326//4030 -f 1035//4031 6894//4032 6891//4033 -f 2209//4034 1296//4035 4305//4035 -f 4767//4036 3306//4036 4328//4037 -f 3306//4038 4768//4039 4190//4040 -f 712//4041 3559//4042 2857//4043 -f 4672//4044 4769//4044 4848//4045 -f 4614//4046 1372//4047 4332//4047 -f 4672//4048 4848//4049 4673//4050 -f 4564//4051 4679//4052 4672//4051 -f 4674//4053 4673//4054 4565//4055 -f 4854//4056 4679//4056 4570//4057 -f 4570//4058 4679//4059 4569//4060 -f 4773//4061 4202//4061 4460//4062 -f 3914//4063 3056//4064 3661//4065 -f 4693//4066 4776//4067 4775//4068 -f 4582//4069 4776//4070 4693//4071 -f 2790//4072 1281//4073 193//4074 -f 1197//4075 4474//4076 659//4077 -f 3242//4078 3001//4078 4341//4079 -f 7206//4080 4299//4081 4298//4082 -f 461//4083 2292//4084 132//4085 -f 4428//4086 4058//4087 1896//4088 -f 4693//4089 4775//4090 4589//4091 -f 4778//4092 4357//4093 4202//4094 -f 1092//4095 2654//4096 1120//4095 -f 2031//4097 2662//4098 2888//4099 -f 38//4100 4689//4100 4892//4100 -f 2408//4101 1876//4102 1257//4103 -f 4213//4104 2401//4105 4217//4106 -f 1428//4107 48//4108 2066//4109 -f 4785//4110 3783//4110 623//4110 -f 2200//4111 5648//4111 4786//4112 -f 1430//4113 4075//4114 3185//4113 -f 4778//4115 4711//4116 4591//4117 -f 4712//4118 4591//4119 4711//4120 -f 4495//4121 4374//4122 4868//4122 -f 4708//4123 4216//4124 4714//4125 -f 4868//4126 4717//4127 4495//4128 -f 1576//4129 1324//4129 1849//4129 -f 2375//4130 4790//4131 892//4132 -f 4232//4133 4393//4134 4722//4135 -f 1526//4136 259//4136 3312//4136 -f 2782//4137 3762//4137 3770//4137 -f 4237//4138 3948//4139 4796//4140 -f 872//4141 664//4142 1837//4143 -f 4796//4144 4248//4144 4237//4144 -f 485//4145 5372//4146 1514//4147 -f 4399//4148 4248//4149 4796//4150 -f 4611//4151 4410//4152 2123//4153 -f 4800//4154 4246//4155 4112//4154 -f 1571//4156 4801//4157 1918//4158 -f 778//4159 491//4160 5067//4161 -f 3403//4162 3859//4163 3980//4164 -f 1846//4165 5293//4166 4608//4165 -f 264//4167 5431//4168 3369//4168 -f 4805//4169 3978//4170 4420//4171 -f 4479//4172 3210//4172 5731//4172 -f 4628//4173 3978//4174 4804//4175 -f 3230//4176 41//4177 3677//4178 -f 4511//4179 3965//4180 4730//4181 -f 4130//4182 4273//4183 4973//4183 -f 4598//4184 3866//4184 2141//4185 -f 2357//4186 5844//4186 2903//4186 -f 2666//4187 791//4188 1991//4189 -f 3836//4190 4630//4191 3832//4190 -f 3874//4192 1053//4193 1732//4194 -f 4634//4195 4994//4196 3836//4197 -f 4590//4198 3194//4198 2745//4198 -f 3826//4199 189//4199 4200//4199 -f 4737//4200 4734//4201 4733//4202 -f 1799//4203 2402//4203 2734//4203 -f 4816//4204 4736//4205 4734//4206 -f 3501//4207 2350//4208 1780//4209 -f 4817//4210 4087//4211 726//4211 -f 4819//4212 4733//4213 4735//4214 -f 5604//4215 718//4216 2382//4215 -f 4910//4217 4819//4217 4735//4217 -f 1443//4218 324//4218 1226//4218 -f 4910//4219 4735//4219 4736//4219 -f 4282//4220 4820//4221 3415//4222 -f 2870//4223 4824//4224 4224//4223 -f 4910//4225 4005//4226 4913//4225 -f 4005//4227 4910//4227 4742//4227 -f 2071//4228 2513//4229 1513//4228 -f 4388//4230 2875//4230 3803//4231 -f 4743//4232 4005//4233 4742//4234 -f 4742//4235 4827//4236 4743//4237 -f 4004//4238 1126//4239 603//4240 -f 4902//4241 3495//4242 3711//4243 -f 4830//4244 4290//4245 4537//4246 -f 4832//4247 4799//4248 4914//4249 -f 4743//4250 4013//4250 4536//4250 -f 3529//4251 1391//4252 4089//4253 -f 3863//4254 2312//4254 5214//4254 -f 4541//4255 4830//4255 4294//4256 -f 4541//4257 4543//4257 5015//4258 -f 2405//4259 2407//4260 1760//4260 -f 1804//4261 1802//4262 1797//4262 -f 4443//4263 4749//4264 3867//4264 -f 3263//4265 3012//4265 4371//4265 -f 3646//4266 4837//4266 4445//4266 -f 2198//4267 3393//4267 2537//4268 -f 2231//4269 386//4269 2863//4269 -f 4782//4270 3483//4270 4787//4271 -f 3487//4272 4753//4273 3106//4274 -f 4656//4275 3884//4275 4042//4276 -f 2310//4277 3793//4278 2309//4279 -f 2759//4280 5943//4281 71//4280 -f 4925//4282 4760//4283 4759//4284 -f 4843//4285 3502//4286 3292//4287 -f 3828//4288 3829//4288 2684//4288 -f 1510//4289 2795//4289 81//4290 -f 4842//4291 4759//4291 4553//4291 -f 4762//4292 4842//4293 4553//4294 -f 1441//4295 1906//4295 2717//4295 -f 4762//4296 4555//4297 4322//4296 -f 4660//4298 4181//4299 4329//4300 -f 628//4301 2980//4302 1651//4303 -f 4846//4304 1866//4305 2255//4306 -f 4513//4307 544//4307 4744//4307 -f 4847//4308 4561//4308 4763//4309 -f 4928//4310 4329//4311 3304//4312 -f 2187//4313 4825//4314 2736//4315 -f 1680//4316 1934//4317 3131//4318 -f 4673//4319 4848//4320 4849//4321 -f 4769//4322 4672//4323 4936//4324 -f 4850//4325 700//4326 1575//4326 -f 4849//4327 4565//4328 4673//4329 -f 4679//4330 4936//4331 4672//4332 -f 762//4333 878//4334 4359//4335 -f 214//4336 2834//4337 4818//4338 -f 922//4339 2709//4340 741//4339 -f 1312//4341 5202//4342 5114//4343 -f 1814//4344 1692//4345 1691//4345 -f 4857//4346 4854//4346 4570//4346 -f 4572//4347 4857//4348 4570//4349 -f 3977//4350 5122//4351 1308//4352 -f 6442//4353 6355//4353 1224//4353 -f 3140//4354 3503//4354 2449//4354 -f 2959//4355 4081//4356 1345//4357 -f 4202//4358 4773//4359 4859//4360 -f 2531//4361 4286//4361 2778//4362 -f 1693//4363 1900//4364 2481//4365 -f 4358//4366 4699//4367 3928//4368 -f 4778//4369 4591//4370 4357//4371 -f 3126//4372 3127//4373 1822//4374 -f 1934//4375 2159//4376 3434//4377 -f 2351//4378 2773//4379 4864//4378 -f 3475//4380 3743//4380 5226//4381 -f 2708//4382 3071//4383 2634//4384 -f 4358//4385 3933//4385 4364//4385 -f 4865//4386 3173//4387 4213//4388 -f 4374//4389 4589//4390 4868//4391 -f 591//4392 2432//4392 2639//4393 -f 2959//4394 3546//4395 1059//4396 -f 4875//4397 5311//4398 868//4399 -f 4876//4400 2183//4401 682//4402 -f 4712//4403 4711//4404 4877//4405 -f 3265//4406 3413//4407 1056//4408 -f 1886//4409 4959//4409 480//4409 -f 3766//4410 371//4411 1984//4412 -f 3643//4413 2527//4413 4269//4413 -f 4214//4414 4369//4414 4882//4414 -f 4604//4415 4214//4416 4882//4417 -f 4795//4418 4232//4419 4722//4418 -f 4369//4420 4712//4420 4882//4420 -f 850//4421 2850//4422 950//4423 -f 4073//4424 5549//4424 3199//4425 -f 3362//4426 2656//4427 4334//4428 -f 4798//4429 3948//4430 4604//4431 -f 1624//4432 3389//4433 4024//4434 -f 1118//4435 3549//4436 3731//4436 -f 766//4437 287//4438 4887//4439 -f 4801//4440 3474//4441 1918//4442 -f 5074//4443 4410//4444 4611//4445 -f 4662//4446 4685//4447 3263//4448 -f 1693//4449 2322//4449 1900//4450 -f 5412//4451 4756//4452 5419//4452 -f 122//4453 4231//4453 928//4453 -f 418//4454 3068//4455 169//4456 -f 4080//4457 5049//4458 2130//4459 -f 4804//4460 3978//4460 4805//4461 -f 4420//4462 4266//4463 4970//4464 -f 4892//4465 4689//4466 3854//4467 -f 4730//4468 3973//4469 4522//4470 -f 1115//4471 4001//4472 1414//4473 -f 3964//4474 785//4474 2412//4474 -f 3023//4475 4630//4476 4522//4477 -f 3790//4478 567//4479 1783//4479 -f 4277//4480 4809//4481 4894//4482 -f 4987//4483 4896//4484 4905//4485 -f 2366//4486 888//4487 718//4488 -f 1027//4489 2755//4490 4226//4491 -f 2780//4492 107//4493 3698//4494 -f 2364//4495 14//4496 5662//4497 -f 4733//4498 4819//4499 4913//4499 -f 4001//4500 3152//4500 1691//4500 -f 1391//4501 1689//4501 7341//4502 -f 1799//4503 4480//4504 2755//4505 -f 4910//4506 4736//4507 4916//4508 -f 4910//4509 4913//4510 4819//4510 -f 4915//4511 3803//4512 2875//4513 -f 4910//4514 4916//4515 4742//4514 -f 4676//4516 3886//4517 968//4518 -f 965//4519 964//4520 2500//4521 -f 2215//4522 4917//4523 4918//4524 -f 4830//4525 4920//4525 4290//4525 -f 679//4526 3189//4527 4450//4528 -f 4541//4529 5015//4530 4830//4531 -f 4441//4532 4013//4533 4743//4534 -f 1142//4535 4922//4536 2799//4537 -f 4697//4538 4878//4539 1808//4540 -f 4749//4541 4543//4542 3867//4543 -f 1766//4544 4923//4545 1869//4546 -f 4904//4547 356//4548 1738//4549 -f 4171//4550 5186//4550 3666//4550 -f 1617//4551 4864//4552 2773//4553 -f 731//4554 1787//4555 2310//4556 -f 4042//4557 3106//4558 4840//4558 -f 3106//4559 4753//4560 4840//4561 -f 4656//4562 4042//4563 4840//4564 -f 950//4565 2850//4566 410//4567 -f 730//4568 3395//4569 4156//4570 -f 3964//4571 2844//4572 785//4573 -f 3628//4574 3601//4575 5157//4576 -f 5025//4577 4759//4577 4842//4578 -f 1880//4579 4004//4580 1848//4581 -f 1429//4582 408//4583 3577//4584 -f 1392//4585 1911//4586 2345//4587 -f 4760//4588 4926//4588 4763//4588 -f 2838//4589 3932//4590 2060//4591 -f 4911//4592 4929//4593 2146//4594 -f 5211//4595 4931//4595 1039//4596 -f 3521//4597 2538//4598 2788//4599 -f 4935//4600 4283//4601 2072//4602 -f 4473//4603 5338//4604 5206//4605 -f 4848//4606 4934//4607 4849//4608 -f 4934//4609 4848//4609 4769//4609 -f 2855//4610 1383//4611 1927//4610 -f 1546//4612 103//4612 417//4612 -f 4679//4613 4854//4614 5039//4615 -f 4086//4616 3560//4617 513//4618 -f 4939//4619 4854//4620 4857//4621 -f 4572//4622 4571//4623 4941//4624 -f 969//4625 181//4626 759//4627 -f 1165//4628 4030//4629 2703//4630 -f 1605//4631 4249//4632 3194//4632 -f 5047//4633 4198//4633 3547//4633 -f 1263//4634 3325//4635 4943//4636 -f 554//4637 4131//4638 34//4639 -f 4202//4640 4859//4641 4774//4642 -f 4962//4643 3590//4644 3286//4643 -f 4775//4645 4776//4646 4947//4647 -f 4949//4648 5046//4649 4582//4650 -f 916//4651 176//4652 860//4653 -f 3078//4654 6061//4654 1235//4654 -f 155//4655 3613//4655 4422//4655 -f 1720//4656 1420//4657 4560//4657 -f 253//4658 25//4658 4415//4658 -f 3710//4659 1887//4659 1102//4659 -f 3090//4660 315//4660 4493//4661 -f 371//4662 3028//4663 1170//4662 -f 4409//4664 2947//4665 4888//4666 -f 1602//4667 761//4668 4789//4668 -f 822//4669 3317//4670 3995//4671 -f 3548//4672 2066//4673 5005//4674 -f 4711//4675 4778//4675 4873//4675 -f 3356//4676 1301//4677 4946//4678 -f 3766//4679 3792//4680 5499//4681 -f 4484//4682 4485//4683 4408//4684 -f 5132//4685 4386//4685 3773//4685 -f 4717//4686 4609//4687 4495//4688 -f 4713//4689 4232//4690 4795//4691 -f 2430//4692 588//4692 4702//4692 -f 1342//4693 315//4694 574//4695 -f 4882//4696 4884//4697 4604//4698 -f 1109//4699 3250//4699 4531//4700 -f 4798//4701 4604//4702 4884//4703 -f 5141//4704 918//4704 4965//4704 -f 4884//4705 4882//4706 4967//4705 -f 4800//4707 5059//4707 4246//4707 -f 395//4708 3651//4709 4115//4710 -f 4112//4711 4974//4712 4800//4713 -f 4800//4714 4974//4714 4896//4714 -f 4289//4715 12//4715 4281//4716 -f 4439//4717 627//4718 3983//4719 -f 3563//4720 2844//4721 3848//4722 -f 4786//4723 2664//4724 4337//4725 -f 3323//4726 630//4727 4897//4728 -f 4971//4729 4969//4730 4972//4729 -f 4615//4731 4130//4732 4973//4731 -f 38//4733 4892//4734 3128//4733 -f 2997//4735 549//4736 2254//4736 -f 4979//4737 3935//4738 587//4739 -f 603//4740 808//4741 4474//4742 -f 4981//4743 5599//4744 3669//4744 -f 4112//4745 4973//4746 4974//4747 -f 3503//4748 3927//4749 2450//4750 -f 2740//4751 5424//4752 3047//4753 -f 2287//4754 607//4755 590//4756 -f 3430//4757 1176//4758 265//4757 -f 1339//4759 4986//4759 2540//4759 -f 4978//4760 4511//4761 4730//4762 -f 4969//4763 4971//4763 4967//4763 -f 4971//4764 4984//4765 4967//4766 -f 4974//4767 4900//4767 4896//4767 -f 4987//4768 4800//4768 4896//4768 -f 4628//4769 4985//4770 4809//4771 -f 4522//4772 4630//4773 4730//4774 -f 3522//4775 327//4776 4889//4777 -f 1821//4778 3303//4779 5118//4780 -f 619//4781 1461//4782 2016//4783 -f 4971//4784 4990//4784 4984//4785 -f 4991//4786 870//4787 1270//4788 -f 4971//4789 4989//4790 4990//4791 -f 692//4792 4677//4793 4099//4794 -f 2919//4795 919//4796 3248//4797 -f 3833//4798 4901//4799 4634//4799 -f 4974//4800 4992//4801 4900//4802 -f 4989//4803 4997//4804 5000//4804 -f 4990//4805 4989//4805 5000//4806 -f 5002//4807 4990//4807 5000//4807 -f 123//4808 5209//4809 1356//4810 -f 711//4811 2515//4812 847//4811 -f 3218//4813 1321//4813 1029//4814 -f 4900//4815 4992//4815 5003//4815 -f 2474//4816 3319//4817 4446//4818 -f 5000//4819 5001//4820 5004//4821 -f 5003//4822 5006//4823 4900//4824 -f 5361//4825 2144//4825 4066//4825 -f 4900//4826 5006//4827 5007//4828 -f 1723//4829 584//4830 2706//4831 -f 1238//4832 2319//4833 465//4834 -f 4896//4835 5008//4836 4905//4837 -f 4896//4838 4900//4838 5008//4838 -f 1374//4839 1835//4840 1699//4839 -f 4900//4841 5007//4842 5008//4843 -f 5102//4844 5009//4844 1736//4844 -f 530//4845 1546//4845 4651//4845 -f 4734//4846 4737//4847 4908//4848 -f 7242//4849 5034//4850 643//4851 -f 4024//4852 1625//4853 1624//4854 -f 5281//4855 4530//4856 3415//4855 -f 4820//4857 4282//4858 4637//4859 -f 1722//4860 2609//4861 3168//4862 -f 4469//4863 1885//4863 1915//4864 -f 4285//4865 5101//4866 4637//4867 -f 3530//4868 2325//4868 4669//4868 -f 4285//4869 4290//4870 5013//4871 -f 2125//4872 655//4873 4792//4874 -f 620//4875 2095//4875 1849//4875 -f 643//4876 5034//4876 945//4876 -f 890//4877 4366//4877 2901//4877 -f 4411//4878 1395//4879 3476//4878 -f 4441//4880 4743//4881 5016//4882 -f 5017//4883 5015//4884 4543//4883 -f 4543//4885 4749//4885 5017//4886 -f 4441//4887 5185//4888 4837//4887 -f 3740//4889 1266//4890 3974//4891 -f 1469//4892 567//4893 264//4892 -f 4749//4894 3666//4895 5186//4895 -f 3451//4896 4431//4897 2080//4897 -f 4033//4898 4650//4899 3487//4900 -f 756//4901 3544//4902 859//4903 -f 1333//4904 356//4905 4904//4904 -f 4660//4906 5023//4906 3478//4907 -f 4925//4908 4656//4908 4840//4908 -f 4103//4909 1082//4909 742//4909 -f 4656//4910 4925//4910 5025//4910 -f 2663//4911 520//4912 53//4913 -f 5025//4914 3884//4915 4656//4916 -f 4925//4917 4759//4918 5025//4919 -f 34//4920 4131//4921 1678//4922 -f 4842//4923 4322//4923 3884//4924 -f 4760//4925 4925//4926 4926//4927 -f 3763//4928 4051//4929 5030//4930 -f 4322//4931 4842//4932 4762//4933 -f 3979//4934 2243//4935 2351//4936 -f 5196//4937 5031//4938 5032//4939 -f 4239//4940 1236//4940 773//4940 -f 495//4941 2855//4942 1494//4943 -f 782//4944 3694//4945 5105//4946 -f 3679//4947 4932//4948 3678//4949 -f 4768//4950 3306//4951 4767//4952 -f 4744//4953 3360//4953 3687//4953 -f 5038//4954 4934//4954 4769//4955 -f 4849//4956 4934//4957 5037//4958 -f 1209//4959 749//4960 2424//4961 -f 5197//4962 5039//4962 4854//4963 -f 5042//4964 4565//4965 4849//4966 -f 5041//4967 4936//4968 4679//4969 -f 3510//4970 2413//4971 3921//4971 -f 1156//4972 5311//4973 1325//4973 -f 864//4974 2364//4974 1441//4974 -f 5042//4975 4941//4976 4565//4977 -f 1906//4978 1441//4978 2364//4978 -f 4941//4979 4571//4980 4565//4979 -f 1090//4981 943//4982 3148//4983 -f 4383//4984 1368//4985 2890//4986 -f 5402//4987 4198//4987 5047//4987 -f 5046//4988 4947//4989 4776//4990 -f 5046//4991 4776//4992 4582//4993 -f 439//4994 4729//4995 2526//4995 -f 975//4996 1071//4997 4695//4998 -f 3547//4999 4210//5000 5047//5001 -f 4774//5002 4778//5003 4202//5004 -f 395//5005 4115//5006 3457//5007 -f 4589//5008 4775//5009 4952//5008 -f 3323//5010 3294//5011 2380//5010 -f 3173//5012 4865//5013 3939//5014 -f 4358//5015 4364//5015 4708//5015 -f 4589//5016 4952//5017 4868//5018 -f 4778//5019 5051//5020 4873//5021 -f 795//5022 1918//5022 4144//5022 -f 2703//5023 1304//5024 634//5025 -f 230//5026 1355//5027 2501//5028 -f 1062//5029 7286//5030 1112//5031 -f 1076//5032 1810//5033 921//5032 -f 5054//5034 4717//5035 4868//5036 -f 5476//5037 4521//5038 4306//5039 -f 2533//5040 600//5041 599//5042 -f 5060//5043 5132//5044 3773//5045 -f 5559//5046 795//5047 3545//5048 -f 5060//5049 3773//5050 4109//5051 -f 5062//5052 1116//5053 1290//5052 -f 2463//5054 561//5055 2509//5056 -f 1970//5057 4612//5058 5063//5059 -f 4712//5060 5061//5061 4882//5062 -f 2109//5063 1915//5063 4938//5064 -f 4342//5065 1781//5065 5097//5065 -f 4605//5066 4246//5067 5059//5068 -f 886//5069 885//5070 3034//5071 -f 3948//5072 4964//5073 4796//5074 -f 761//5075 2564//5076 200//5077 -f 519//5078 1228//5079 3787//5080 -f 599//5081 4235//5081 1854//5082 -f 3328//5083 468//5084 626//5085 -f 1056//5086 2259//5087 875//5087 -f 1436//5088 3716//5088 7//5088 -f 1263//5089 4834//5090 5068//5091 -f 3604//5092 3232//5093 4381//5092 -f 4855//5094 3165//5095 4335//5096 -f 3728//5097 1066//5098 2197//5099 -f 5142//5100 4399//5100 4796//5100 -f 4399//5101 5142//5102 4803//5103 -f 4345//5104 1205//5105 2688//5106 -f 3460//5107 546//5108 1405//5109 -f 4967//5110 5071//5111 4969//5112 -f 4987//5113 5073//5113 5059//5114 -f 1021//5115 1020//5116 1879//5117 -f 2776//5118 3752//5119 154//5120 -f 5059//5121 4800//5122 4987//5123 -f 5074//5124 4266//5125 4410//5126 -f 5075//5127 4884//5128 4967//5129 -f 4054//5130 1321//5131 2376//5132 -f 4346//5133 3121//5133 4223//5133 -f 723//5134 724//5135 1614//5136 -f 4057//5137 4494//5137 1710//5137 -f 4804//5138 4805//5139 4985//5140 -f 1612//5141 1143//5141 553//5141 -f 4615//5142 4973//5143 4112//5144 -f 2417//5145 3610//5146 402//5146 -f 5722//5147 29//5147 1868//5148 -f 4544//5149 1292//5149 4015//5149 -f 2962//5150 4529//5151 3505//5152 -f 2008//5153 3386//5154 2593//5155 -f 4628//5156 4804//5157 4985//5158 -f 2503//5159 3961//5160 4291//5161 -f 932//5162 1726//5163 1994//5164 -f 4974//5165 4973//5166 5148//5167 -f 5643//5168 2929//5169 3803//5170 -f 4971//5171 4972//5172 4989//5173 -f 1722//5174 4828//5175 5077//5175 -f 1408//5176 3233//5177 2019//5178 -f 377//5179 7203//5180 3256//5180 -f 4669//5181 4159//5182 892//5182 -f 3656//5183 1353//5183 1983//5183 -f 4901//5184 3833//5185 4277//5186 -f 989//5187 1968//5187 1815//5187 -f 4630//5188 3836//5189 4994//5190 -f 2559//5191 1898//5192 967//5193 -f 2167//5194 3812//5195 3380//5196 -f 1601//5197 1473//5198 1355//5199 -f 386//5200 1649//5201 2863//5202 -f 2748//5203 1500//5204 3052//5205 -f 5000//5206 4997//5207 5001//5207 -f 3375//5208 1993//5209 4770//5210 -f 4485//5211 4409//5212 4888//5212 -f 5088//5213 5002//5213 5000//5213 -f 2485//5214 115//5215 1687//5216 -f 5004//5217 5001//5217 5091//5217 -f 4598//5218 1361//5218 389//5218 -f 4115//5219 298//5220 3457//5221 -f 3469//5222 4607//5223 2833//5224 -f 5004//5225 5091//5226 5092//5227 -f 1851//5228 101//5229 1385//5229 -f 1222//5230 3410//5231 1503//5232 -f 2744//5233 774//5233 437//5233 -f 1560//5234 1031//5235 231//5236 -f 4226//5237 4428//5237 3282//5238 -f 587//5239 793//5239 2560//5239 -f 5008//5240 5096//5241 4905//5240 -f 2227//5242 4480//5243 3988//5243 -f 4226//5244 5469//5245 1027//5246 -f 1600//5247 886//5248 3033//5249 -f 718//5250 5604//5251 3708//5252 -f 944//5253 2277//5254 4062//5255 -f 4335//5256 3165//5257 5662//5258 -f 5008//5259 5007//5260 5006//5261 -f 335//5262 2957//5262 2958//5263 -f 5094//5264 56//5265 3104//5266 -f 3244//5267 5057//5268 521//5269 -f 1349//5270 1032//5270 3673//5270 -f 4737//5271 4733//5272 5100//5273 -f 5100//5274 4733//5275 4913//5276 -f 5281//5277 3415//5278 4820//5279 -f 4913//5280 4530//5281 5100//5282 -f 2114//5283 2579//5284 291//5285 -f 290//5286 4313//5287 4642//5288 -f 4916//5289 4827//5289 4742//5290 -f 5013//5291 4290//5292 4920//5292 -f 2104//5293 674//5294 4523//5295 -f 1594//5296 3707//5297 1503//5298 -f 7229//5299 1699//5299 1835//5299 -f 5015//5300 4920//5301 4830//5302 -f 353//5303 2685//5304 3026//5305 -f 2268//5306 2723//5307 1310//5308 -f 3420//5309 808//5310 603//5310 -f 1747//5311 1140//5311 1219//5312 -f 2144//5313 5361//5314 1480//5315 -f 3371//5316 4548//5317 1272//5318 -f 3053//5319 97//5320 800//5321 -f 5748//5322 322//5323 2598//5324 -f 2276//5325 34//5326 337//5327 -f 5330//5328 43//5329 4983//5330 -f 4753//5331 5024//5332 4840//5333 -f 871//5334 3736//5334 1661//5334 -f 4840//5335 5024//5335 4925//5336 -f 5024//5337 5108//5338 4926//5339 -f 3884//5340 5025//5341 4842//5342 -f 1818//5343 644//5344 308//5345 -f 2078//5346 410//5347 1725//5348 -f 4925//5349 5024//5349 4926//5349 -f 4660//5350 4329//5351 5109//5350 -f 3877//5352 3201//5353 5110//5354 -f 3412//5355 4436//5356 2644//5357 -f 4745//5358 2936//5359 64//5360 -f 4329//5361 4928//5362 5109//5363 -f 5112//5364 4847//5365 4763//5366 -f 1244//5367 2131//5368 2238//5369 -f 3735//5370 1327//5370 2605//5370 -f 5397//5371 5037//5372 4934//5373 -f 5397//5374 4934//5374 5038//5375 -f 5115//5376 538//5377 1250//5378 -f 2822//5379 3774//5380 1966//5381 -f 5116//5382 5197//5383 4854//5384 -f 5116//5385 4854//5386 4939//5386 -f 5117//5387 5116//5388 4939//5389 -f 5041//5390 4679//5391 5039//5392 -f 3177//5393 1646//5394 2756//5395 -f 3656//5396 3213//5397 5293//5397 -f 4941//5398 5296//5399 4572//5400 -f 4857//5401 4572//5402 5296//5401 -f 1072//5403 1672//5403 5057//5403 -f 4933//5404 2631//5404 2684//5404 -f 272//5405 1958//5406 271//5407 -f 1463//5408 216//5408 2037//5408 -f 3641//5409 4754//5410 590//5411 -f 4513//5412 4744//5413 3687//5414 -f 3521//5415 4011//5416 3080//5417 -f 5123//5418 360//5418 1568//5419 -f 4775//5420 4947//5421 4952//5422 -f 995//5423 994//5424 2490//5425 -f 5406//5426 4868//5427 4952//5428 -f 5052//5429 4358//5430 4708//5431 -f 4426//5432 3394//5433 693//5434 -f 2407//5435 3718//5436 735//5437 -f 1683//5438 4157//5439 1651//5440 -f 601//5441 4370//5442 2930//5443 -f 1207//5444 5435//5445 3365//5446 -f 3521//5447 3080//5448 4957//5449 -f 4210//5450 4605//5450 5134//5450 -f 5134//5451 4605//5452 5059//5453 -f 3436//5454 4148//5454 1498//5455 -f 4873//5456 4877//5457 4711//5458 -f 5129//5459 4609//5460 4717//5461 -f 4609//5462 5135//5463 5136//5464 -f 1695//5465 2098//5466 2033//5467 -f 4670//5468 3700//5469 661//5470 -f 1938//5471 4718//5472 1289//5471 -f 5144//5473 5071//5474 4882//5475 -f 4882//5476 5071//5477 4967//5478 -f 2118//5479 233//5480 763//5479 -f 5113//5481 390//5482 3115//5483 -f 3215//5484 3035//5485 3074//5486 -f 5145//5487 3948//5488 4798//5489 -f 4964//5490 3948//5490 5145//5491 -f 2822//5492 4797//5493 646//5494 -f 4174//5495 2760//5495 717//5495 -f 3904//5496 3093//5497 2500//5496 -f 1717//5498 1838//5498 3578//5499 -f 688//5500 2174//5501 4306//5502 -f 4969//5503 5316//5504 4972//5503 -f 4407//5505 4484//5506 2947//5507 -f 770//5508 4185//5509 4518//5510 -f 4970//5511 4266//5512 5074//5513 -f 2712//5514 4702//5514 69//5515 -f 4211//5516 1072//5517 3784//5518 -f 5146//5519 4805//5520 4970//5521 -f 4805//5522 4420//5523 4970//5524 -f 5316//5525 4989//5525 4972//5525 -f 2073//5526 5090//5527 924//5528 -f 3524//5529 560//5530 3348//5531 -f 4978//5532 4730//5533 5417//5534 -f 4894//5535 4809//5536 4985//5537 -f 241//5538 588//5538 3904//5538 -f 4974//5539 5148//5540 4992//5541 -f 4901//5542 4277//5543 4894//5543 -f 2341//5544 4094//5545 5403//5546 -f 2867//5547 2274//5547 3492//5547 -f 2933//5548 468//5549 2974//5549 -f 4892//5550 3854//5551 2299//5552 -f 3684//5553 3862//5554 643//5555 -f 2492//5556 2493//5557 3850//5558 -f 5229//5559 5003//5560 4992//5561 -f 4634//5562 5153//5563 4994//5564 -f 5150//5565 525//5566 4491//5567 -f 4990//5568 5002//5569 5084//5569 -f 2084//5570 4008//5571 3262//5570 -f 2352//5572 295//5572 5630//5572 -f 1075//5573 4167//5574 1839//5575 -f 1237//5576 30//5577 2831//5578 -f 5091//5579 5001//5579 5326//5579 -f 1630//5580 3486//5581 3111//5582 -f 2878//5583 608//5584 838//5583 -f 2878//5585 838//5586 38//5587 -f 5092//5588 5091//5589 5239//5590 -f 5160//5591 5238//5592 5161//5592 -f 1232//5593 225//5593 1866//5594 -f 5166//5595 5008//5596 5006//5597 -f 5243//5598 5096//5599 5008//5600 -f 2146//5601 343//5602 2103//5603 -f 5167//5604 5254//5604 5168//5605 -f 1821//5606 1063//5607 3303//5608 -f 4911//5609 2232//5610 4929//5609 -f 647//5611 3575//5612 1410//5613 -f 5260//5614 5256//5614 5171//5614 -f 5168//5615 5170//5616 5171//5617 -f 5260//5618 5176//5619 5175//5620 -f 1349//5621 3107//5622 1032//5621 -f 4425//5623 2985//5623 4038//5623 -f 5176//5624 5260//5625 5171//5626 -f 514//5627 3763//5628 5640//5629 -f 5172//5630 5175//5631 5176//5632 -f 155//5633 2636//5634 1379//5635 -f 5140//5636 873//5636 1633//5636 -f 557//5637 800//5638 2716//5639 -f 5172//5640 5176//5640 5177//5640 -f 5178//5641 5172//5642 5177//5643 -f 1150//5644 4257//5645 4633//5644 -f 4908//5646 5572//5647 4734//5648 -f 2140//5649 1260//5649 1134//5649 -f 85//5650 84//5651 958//5650 -f 7350//5652 1810//5653 1076//5654 -f 5176//5655 5179//5655 5177//5656 -f 4313//5657 221//5658 4642//5659 -f 449//5660 2055//5661 305//5662 -f 5100//5663 4908//5664 4737//5665 -f 1033//5666 3230//5667 3677//5668 -f 4820//5669 4637//5670 5182//5671 -f 2292//5672 2446//5673 2914//5673 -f 5101//5674 4285//5675 5013//5676 -f 4827//5677 5103//5678 5016//5679 -f 4743//5680 4827//5681 5016//5682 -f 2420//5683 4783//5684 4505//5685 -f 3096//5686 1912//5687 171//5688 -f 2974//5689 468//5690 2973//5690 -f 851//5691 4968//5692 2920//5693 -f 4171//5694 5190//5695 5186//5696 -f 4650//5697 5288//5697 3487//5698 -f 3201//5699 4306//5700 2360//5701 -f 310//5702 5332//5703 3269//5704 -f 375//5705 2324//5705 4554//5705 -f 3712//5706 1944//5707 3511//5708 -f 5191//5709 5024//5710 4753//5710 -f 7336//5711 2632//5712 4027//5713 -f 1378//5714 410//5715 3134//5716 -f 885//5717 661//5718 3700//5719 -f 2137//5720 4907//5721 4280//5722 -f 5112//5723 5192//5723 4847//5723 -f 5292//5724 4768//5725 4767//5726 -f 4227//5727 5072//5728 4336//5729 -f 101//5730 1851//5731 2411//5731 -f 1278//5732 3934//5732 2020//5732 -f 5037//5733 5397//5734 5194//5733 -f 3189//5735 817//5736 4806//5737 -f 868//5738 114//5739 3572//5739 -f 5039//5740 5197//5741 5192//5741 -f 1971//5742 2900//5742 833//5743 -f 1212//5744 2883//5744 4439//5744 -f 5117//5745 5201//5746 5116//5747 -f 2989//5748 539//5749 4549//5750 -f 3033//5751 2170//5752 4545//5751 -f 4939//5753 4857//5754 5117//5755 -f 3252//5756 106//5756 1295//5756 -f 5125//5757 5117//5758 4857//5759 -f 4747//5760 803//5761 2582//5762 -f 5296//5763 5125//5764 4857//5765 -f 4959//5766 73//5766 2357//5766 -f 5208//5767 4773//5768 5205//5769 -f 4859//5770 4773//5771 5208//5772 -f 2077//5773 5143//5774 3044//5775 -f 3564//5776 3668//5777 3726//5778 -f 4947//5779 5046//5780 5210//5781 -f 4582//5782 4350//5782 4949//5783 -f 4949//5784 4350//5785 4205//5786 -f 5476//5787 3536//5788 2148//5789 -f 4947//5790 5210//5791 4952//5792 -f 5404//5793 4205//5793 4699//5793 -f 7358//5794 3552//5794 4467//5794 -f 1180//5795 3680//5796 2559//5797 -f 4602//5798 80//5799 2361//5800 -f 4208//5801 5130//5802 2601//5802 -f 4778//5803 4774//5803 5051//5804 -f 1497//5805 797//5806 2626//5807 -f 2659//5808 1506//5808 5045//5808 -f 3987//5809 60//5810 516//5811 -f 1255//5812 1509//5813 81//5814 -f 4071//5815 2754//5816 3672//5817 -f 4683//5818 763//5819 434//5820 -f 26//5821 3801//5822 27//5823 -f 4717//5824 5054//5825 5129//5826 -f 4873//5827 5051//5827 5304//5827 -f 824//5828 7373//5828 4139//5828 -f 1488//5829 200//5830 2564//5831 -f 1937//5832 316//5833 2068//5833 -f 4873//5834 5304//5834 4877//5834 -f 4393//5835 5136//5835 4722//5835 -f 5137//5836 4714//5837 4713//5838 -f 5061//5839 4877//5840 5144//5841 -f 3493//5842 1611//5843 2674//5844 -f 233//5845 2118//5846 471//5847 -f 5220//5848 5137//5849 4713//5850 -f 5061//5851 5144//5852 4882//5853 -f 4964//5854 5142//5854 4796//5854 -f 1444//5855 1554//5856 119//5857 -f 825//5858 1613//5858 219//5859 -f 3905//5860 4379//5861 3779//5862 -f 4884//5863 5075//5864 4798//5865 -f 3243//5866 142//5867 1426//5868 -f 4969//5869 5071//5869 5316//5869 -f 2978//5870 1283//5871 833//5872 -f 5149//5873 4989//5874 5316//5873 -f 3921//5875 2413//5876 2689//5877 -f 5097//5878 2122//5878 4761//5878 -f 5146//5879 4985//5880 4805//5881 -f 860//5882 176//5883 1613//5882 -f 4077//5884 1212//5885 2623//5886 -f 2816//5887 1482//5887 1221//5887 -f 5225//5888 5075//5889 4967//5890 -f 4630//5891 5230//5892 4730//5893 -f 5229//5894 4992//5895 5148//5896 -f 4989//5897 5149//5898 4997//5899 -f 4630//5900 5151//5901 5230//5902 -f 5104//5903 3372//5904 4539//5905 -f 1293//5906 5633//5907 5195//5907 -f 4526//5908 2120//5909 2493//5909 -f 4630//5910 4994//5910 5151//5911 -f 2481//5912 44//5912 1693//5912 -f 4997//5913 5149//5914 5318//5915 -f 540//5916 251//5917 4451//5918 -f 5318//5919 5001//5920 4997//5921 -f 4901//5922 5320//5923 4634//5922 -f 277//5924 4121//5924 5211//5924 -f 2023//5925 4001//5926 1692//5927 -f 5084//5928 4984//5929 4990//5928 -f 5153//5930 4634//5931 5232//5932 -f 4621//5933 5184//5933 179//5933 -f 2982//5934 5216//5935 4060//5936 -f 723//5937 4892//5938 2299//5939 -f 3267//5940 3850//5941 3968//5942 -f 1876//5943 1786//5944 2193//5945 -f 5233//5946 5234//5946 5160//5946 -f 4319//5947 1979//5948 4432//5949 -f 5160//5950 5161//5951 5233//5952 -f 5088//5953 5000//5953 5004//5954 -f 1051//5955 4482//5956 4372//5957 -f 5237//5958 5091//5959 5326//5960 -f 157//5961 392//5962 1694//5963 -f 5238//5964 5160//5964 5235//5964 -f 2910//5965 740//5965 1434//5966 -f 3961//5967 3825//5968 1646//5969 -f 1495//5970 2049//5970 4182//5971 -f 3344//5972 1008//5972 2369//5972 -f 5156//5973 4447//5973 4084//5973 -f 1397//5974 569//5974 1152//5975 -f 5161//5976 5164//5977 5233//5978 -f 5004//5979 5092//5979 5241//5979 -f 2331//5980 772//5981 522//5982 -f 5161//5983 5238//5984 5164//5985 -f 668//5986 246//5987 1530//5988 -f 5524//5989 94//5990 5203//5991 -f 4262//5992 4423//5992 4119//5992 -f 5243//5993 5242//5993 5096//5994 -f 3620//5995 4950//5995 2641//5995 -f 376//5996 4117//5997 2675//5998 -f 5243//5999 5008//6000 5166//6001 -f 536//6002 3886//6003 4245//6004 -f 4396//6005 1455//6005 4502//6005 -f 5246//6006 5249//6007 5247//6008 -f 560//6009 5496//6010 7372//6011 -f 3823//6012 1878//6012 2635//6012 -f 5250//6013 5248//6014 5253//6015 -f 5252//6016 5247//6017 5249//6018 -f 5247//6019 5252//6019 5251//6019 -f 5253//6020 5248//6020 5251//6020 -f 5251//6021 5248//6022 5247//6023 -f 5254//6024 5253//6025 5251//6026 -f 5253//6027 5254//6028 5167//6029 -f 3479//6030 2305//6031 128//6030 -f 5167//6032 5168//6032 5256//6032 -f 5256//6033 5260//6034 5468//6035 -f 3970//6036 361//6037 4514//6038 -f 5168//6039 5254//6039 5259//6039 -f 2667//6040 2783//6040 2784//6040 -f 5175//6041 5263//6041 5260//6041 -f 5258//6042 5264//6043 5257//6044 -f 4563//6045 159//6046 2394//6047 -f 5256//6048 5168//6049 5171//6048 -f 5173//6050 5263//6050 5172//6050 -f 3549//6051 3297//6052 2392//6053 -f 141//6054 4853//6055 4385//6055 -f 5261//6056 5173//6056 5266//6057 -f 5263//6058 5175//6058 5172//6058 -f 1129//6059 2085//6059 1260//6060 -f 4253//6061 3902//6062 1125//6063 -f 2480//6064 2853//6064 467//6065 -f 4523//6066 2435//6067 2151//6067 -f 3391//6068 5768//6069 821//6070 -f 3741//6071 3716//6071 2522//6072 -f 5266//6073 5381//6073 5264//6073 -f 5266//6074 5173//6075 5180//6075 -f 1668//6076 1969//6077 2589//6076 -f 5173//6078 5172//6078 5180//6078 -f 4799//6079 4832//6080 2775//6081 -f 5266//6082 5180//6083 5381//6084 -f 5176//6085 5171//6086 5273//6087 -f 5180//6088 5172//6088 5178//6088 -f 2028//6089 1415//6090 3286//6091 -f 3618//6092 2018//6093 1974//6094 -f 3693//6095 3843//6096 3020//6097 -f 666//6098 2791//6099 3315//6099 -f 2529//6100 4297//6101 3161//6101 -f 5176//6102 5273//6102 5179//6103 -f 5276//6104 5177//6105 5179//6105 -f 2117//6106 507//6107 2271//6108 -f 1614//6109 1825//6110 2416//6111 -f 207//6112 4387//6113 5127//6112 -f 4874//6114 309//6115 4325//6116 -f 1264//6117 1457//6117 1427//6117 -f 3136//6118 1449//6119 1957//6120 -f 557//6121 1058//6122 5093//6121 -f 5101//6123 5182//6124 4637//6125 -f 4764//6126 676//6127 725//6127 -f 5103//6128 4827//6129 4916//6130 -f 5095//6131 1320//6132 1890//6131 -f 5015//6133 5017//6134 4920//6135 -f 5016//6136 5284//6137 4441//6138 -f 4532//6139 342//6140 3331//6141 -f 5285//6142 4441//6143 5284//6144 -f 2510//6145 2791//6146 666//6147 -f 311//6148 4178//6149 2252//6150 -f 4749//6151 5186//6151 5017//6151 -f 3276//6152 2178//6153 992//6154 -f 3107//6155 2194//6156 788//6157 -f 1377//6158 3937//6159 3751//6160 -f 3922//6161 4258//6162 2880//6163 -f 2973//6164 468//6164 3328//6165 -f 447//6166 2288//6167 1186//6168 -f 3193//6169 4577//6170 290//6171 -f 4116//6172 3894//6173 1865//6173 -f 7126//6174 5209//6175 4012//6176 -f 3696//6177 2154//6178 3597//6179 -f 2118//6180 763//6181 4683//6182 -f 75//6183 4082//6184 2475//6183 -f 3675//6185 2178//6185 2770//6185 -f 4928//6186 4190//6187 4768//6188 -f 2464//6189 962//6189 1698//6189 -f 3756//6190 3145//6190 3749//6190 -f 3434//6191 37//6192 1341//6193 -f 1985//6194 5267//6194 2657//6194 -f 5290//6195 5192//6196 5197//6197 -f 670//6198 2660//6198 4954//6198 -f 5037//6199 5194//6200 4849//6201 -f 4771//6202 1945//6202 5344//6202 -f 2998//6203 535//6204 875//6205 -f 1794//6206 1451//6207 3079//6208 -f 3906//6209 2621//6210 2346//6211 -f 1953//6212 4123//6212 1264//6213 -f 5294//6214 5041//6214 5039//6214 -f 3356//6215 3083//6216 1924//6215 -f 5042//6217 5578//6218 4941//6219 -f 3970//6220 4652//6221 361//6221 -f 198//6222 2076//6223 1493//6224 -f 2292//6225 1623//6226 3689//6227 -f 2967//6228 5055//6229 1751//6230 -f 5387//6231 1694//6231 4725//6232 -f 4426//6233 3594//6234 3461//6235 -f 4303//6236 2707//6237 2883//6238 -f 4949//6239 5210//6240 5046//6241 -f 774//6242 3969//6242 437//6243 -f 5489//6244 5047//6245 5409//6246 -f 4040//6247 300//6248 5301//6249 -f 798//6250 1390//6250 3075//6250 -f 5054//6251 4868//6252 5406//6253 -f 3939//6254 4865//6254 5302//6254 -f 4128//6255 3341//6256 2617//6257 -f 2673//6258 7270//6259 7341//6260 -f 1653//6261 2783//6262 3802//6262 -f 4714//6263 5410//6264 4708//6264 -f 3456//6265 3492//6266 2275//6267 -f 3201//6268 688//6269 4306//6270 -f 2196//6271 1014//6272 1941//6273 -f 5135//6274 4609//6275 5129//6276 -f 1481//6277 1140//6278 1747//6279 -f 5220//6280 4713//6281 4795//6282 -f 4712//6283 4877//6284 5061//6285 -f 2158//6286 1718//6286 1792//6286 -f 5313//6287 4109//6288 4506//6289 -f 2851//6290 4338//6290 962//6290 -f 1219//6291 5314//6292 1747//6293 -f 671//6294 3726//6295 3668//6296 -f 5071//6297 5144//6298 5316//6299 -f 5221//6300 3026//6300 1838//6300 -f 4798//6301 5075//6302 5145//6301 -f 5315//6303 4506//6304 4978//6305 -f 2999//6306 1341//6307 4707//6308 -f 5142//6309 4626//6309 4803//6309 -f 5317//6310 4970//6311 5074//6312 -f 397//6313 3038//6314 1170//6315 -f 87//6316 987//6317 4274//6318 -f 5317//6319 5146//6320 4970//6321 -f 572//6322 4153//6322 4466//6323 -f 3167//6324 3038//6325 3037//6325 -f 3414//6326 2864//6327 1910//6328 -f 1760//6329 2137//6330 4738//6331 -f 4680//6332 1047//6333 2227//6334 -f 4967//6335 4984//6336 5225//6335 -f 4984//6337 5084//6338 5225//6339 -f 4901//6340 4894//6341 5320//6342 -f 2114//6343 2099//6344 611//6345 -f 1358//6346 179//6346 1677//6346 -f 5790//6347 4158//6348 837//6349 -f 5396//6350 2035//6351 4077//6352 -f 1859//6353 2137//6354 1760//6355 -f 1928//6356 3229//6357 663//6358 -f 5064//6359 4228//6360 490//6359 -f 219//6361 1613//6362 176//6363 -f 1878//6364 2720//6365 1229//6366 -f 88//6367 44//6368 677//6369 -f 5235//6370 5160//6371 5422//6372 -f 5422//6373 5160//6374 5234//6373 -f 3124//6375 512//6376 187//6377 -f 5163//6378 4921//6378 3970//6379 -f 4078//6380 2159//6381 1934//6380 -f 5084//6382 5002//6382 5088//6382 -f 777//6383 2761//6383 1861//6383 -f 4351//6384 555//6385 3775//6386 -f 4987//6387 4905//6387 5231//6387 -f 4988//6388 4009//6389 3098//6390 -f 5430//6391 5238//6392 5235//6393 -f 5091//6394 5237//6394 5239//6395 -f 5331//6396 4440//6397 904//6398 -f 5336//6399 5238//6400 5430//6401 -f 5233//6402 5164//6403 5334//6403 -f 5092//6404 5239//6404 5335//6405 -f 3040//6406 1753//6407 482//6408 -f 5335//6409 5241//6410 5092//6411 -f 3750//6412 394//6412 3390//6412 -f 3564//6413 622//6413 2646//6414 -f 1274//6415 3830//6415 2984//6415 -f 1473//6416 805//6417 2501//6418 -f 829//6419 102//6420 4890//6421 -f 5333//6422 5342//6423 5343//6424 -f 4201//6425 549//6426 2997//6427 -f 2772//6428 454//6428 4016//6428 -f 5333//6429 5343//6429 5340//6430 -f 484//6431 2315//6432 1177//6433 -f 4935//6434 7395//6435 5346//6436 -f 5244//6437 5340//6438 5343//6439 -f 2807//6440 2518//6440 2848//6441 -f 5350//6442 5244//6442 5343//6443 -f 5244//6444 5350//6445 5349//6446 -f 5352//6447 5350//6447 5353//6447 -f 5349//6448 5350//6448 5352//6448 -f 5354//6449 5349//6450 5352//6451 -f 4317//6452 5141//6453 1603//6454 -f 5355//6455 5447//6456 5356//6455 -f 1011//6457 1270//6458 3129//6459 -f 3753//6460 4556//6460 478//6461 -f 5455//6462 5357//6463 5452//6464 -f 5245//6465 5452//6466 5357//6467 -f 5246//6468 5245//6469 5357//6469 -f 5246//6470 5357//6471 5463//6472 -f 5245//6473 5246//6474 5359//6475 -f 381//6476 3669//6477 2293//6478 -f 5247//6479 5359//6480 5246//6481 -f 5359//6482 5247//6483 5248//6484 -f 5250//6485 5359//6486 5248//6487 -f 5246//6488 5463//6489 5249//6488 -f 2861//6490 464//6491 3334//6492 -f 3839//6493 1924//6494 4682//6494 -f 5362//6495 1796//6495 1951//6495 -f 5254//6496 5251//6497 5252//6498 -f 5254//6499 5252//6499 5363//6499 -f 5257//6500 5364//6501 5258//6502 -f 2900//6503 2978//6504 833//6504 -f 3776//6505 2233//6506 99//6507 -f 5264//6508 5258//6508 5472//6508 -f 5261//6509 5266//6509 5472//6509 -f 5261//6510 5263//6511 5173//6512 -f 1705//6513 718//6514 3010//6514 -f 3404//6515 2651//6516 2665//6517 -f 5168//6518 5259//6519 5374//6520 -f 3593//6521 580//6522 5373//6523 -f 5170//6524 5168//6524 5374//6524 -f 5370//6525 5257//6526 5264//6526 -f 1212//6527 3742//6528 4303//6529 -f 165//6530 3996//6530 1875//6530 -f 5171//6531 5170//6532 5377//6533 -f 2872//6534 657//6535 692//6536 -f 342//6537 171//6538 2171//6539 -f 3183//6540 488//6541 4054//6542 -f 2501//6543 4304//6543 3482//6543 -f 5273//6544 5171//6545 5380//6546 -f 3089//6547 2374//6548 1637//6549 -f 87//6550 4647//6551 4406//6551 -f 2055//6552 4278//6553 3896//6554 -f 1807//6555 3352//6556 839//6557 -f 2024//6558 4790//6559 2830//6560 -f 3623//6561 3249//6562 1193//6563 -f 3214//6564 2357//6565 3544//6566 -f 5178//6567 5177//6568 5276//6567 -f 916//6569 860//6570 917//6571 -f 1757//6572 1923//6572 1968//6573 -f 2369//6574 4389//6575 167//6576 -f 4567//6577 1978//6578 5748//6579 -f 5276//6580 5179//6581 5383//6582 -f 5180//6583 5178//6584 5385//6585 -f 4816//6586 5283//6587 4736//6586 -f 135//6588 4022//6589 1942//6590 -f 3927//6591 2476//6592 2451//6593 -f 5178//6594 5276//6595 5384//6596 -f 5385//6597 5178//6597 5384//6597 -f 3129//6598 2308//6599 2263//6600 -f 2881//6601 4421//6602 1380//6603 -f 1201//6604 3036//6605 1518//6606 -f 5479//6607 5182//6608 5101//6609 -f 4916//6610 4736//6611 5283//6612 -f 5523//6613 3862//6614 4807//6614 -f 4890//6615 1380//6615 4330//6615 -f 5389//6616 4920//6617 5017//6618 -f 2566//6619 5196//6619 5032//6619 -f 291//6620 2426//6620 645//6620 -f 1093//6621 1649//6621 4641//6622 -f 1649//6623 386//6624 4641//6625 -f 1144//6626 4488//6626 1151//6627 -f 1813//6628 3795//6629 5219//6630 -f 2038//6631 3459//6632 4500//6633 -f 5288//6634 4650//6635 4445//6635 -f 4837//6636 5288//6637 4445//6637 -f 5289//6638 4753//6638 3487//6638 -f 5391//6639 5024//6640 5191//6641 -f 2196//6642 2283//6642 2291//6642 -f 5108//6643 5024//6643 5391//6643 -f 4665//6644 1703//6644 1711//6644 -f 4763//6645 4926//6645 5112//6645 -f 4782//6646 3219//6646 4418//6646 -f 5192//6647 5290//6648 4847//6649 -f 5049//6650 4080//6651 4355//6652 -f 5196//6653 4856//6654 3612//6655 -f 5112//6656 5294//6657 5192//6658 -f 4769//6659 4936//6659 5038//6659 -f 4936//6660 5041//6660 5038//6661 -f 5194//6662 5483//6663 4849//6664 -f 2456//6665 2609//6666 1721//6667 -f 5202//6668 1553//6669 5114//6669 -f 5201//6670 5398//6671 5116//6671 -f 6124//6672 846//6673 2948//6674 -f 5117//6675 5125//6676 5201//6677 -f 4119//6678 4423//6679 1499//6678 -f 4360//6680 4215//6681 620//6680 -f 5297//6682 5296//6683 4941//6684 -f 145//6685 5845//6685 4435//6685 -f 1171//6686 4489//6687 4726//6688 -f 5047//6689 5489//6690 5402//6691 -f 5362//6692 1451//6692 2429//6692 -f 2062//6693 4461//6694 3057//6695 -f 4880//6696 463//6697 3029//6698 -f 464//6699 1217//6700 3334//6701 -f 5404//6702 4949//6703 4205//6703 -f 4859//6704 5299//6705 4774//6706 -f 3459//6707 5388//6708 4150//6709 -f 5210//6710 5488//6710 4952//6711 -f 1986//6712 3580//6712 1286//6712 -f 1558//6713 1001//6714 5648//6713 -f 5051//6715 4774//6715 5408//6716 -f 5311//6717 4875//6718 2243//6719 -f 5409//6720 5047//6721 4210//6722 -f 5291//6723 1657//6723 5943//6723 -f 2172//6724 3754//6725 2759//6726 -f 1192//6727 1191//6728 3786//6729 -f 1759//6730 3796//6730 3345//6731 -f 2446//6732 2292//6733 3689//6734 -f 1771//6735 3381//6735 3558//6735 -f 4422//6736 2636//6737 155//6738 -f 5304//6739 5051//6740 5408//6741 -f 3448//6742 637//6743 5545//6744 -f 4208//6745 1741//6746 903//6747 -f 90//6748 4354//6749 2560//6750 -f 1397//6751 3604//6752 2397//6753 -f 4108//6754 4603//6755 5306//6756 -f 5134//6757 5409//6758 4210//6759 -f 2890//6760 384//6760 1229//6761 -f 349//6762 394//6763 505//6762 -f 4520//6764 142//6765 2653//6766 -f 3673//6767 1032//6768 3626//6769 -f 3922//6770 2880//6771 4958//6772 -f 4393//6773 4609//6774 5136//6775 -f 1827//6776 4716//6777 334//6778 -f 2151//6779 1954//6780 4669//6781 -f 5413//6782 4795//6782 4722//6782 -f 68//6783 4622//6784 69//6785 -f 3030//6786 1223//6787 302//6788 -f 912//6789 2963//6789 3074//6790 -f 5313//6791 5060//6792 4109//6792 -f 77//6793 948//6794 2804//6795 -f 1956//6796 3659//6797 3639//6798 -f 5772//6799 2231//6800 5338//6800 -f 5415//6801 5074//6801 4611//6801 -f 2577//6802 4959//6802 4695//6803 -f 610//6804 5604//6805 2382//6806 -f 898//6807 4683//6808 434//6809 -f 7291//6810 7252//6811 1115//6810 -f 4152//6812 4594//6813 725//6814 -f 4273//6815 4626//6815 5720//6815 -f 4273//6816 5720//6817 4973//6818 -f 4047//6819 2244//6820 3607//6821 -f 5184//6822 3470//6823 140//6822 -f 2785//6824 1490//6825 1448//6826 -f 591//6827 4481//6828 2432//6829 -f 5417//6830 4730//6830 5230//6830 -f 2003//6831 4050//6832 2893//6831 -f 644//6833 1818//6834 4030//6834 -f 568//6835 2643//6836 1514//6837 -f 846//6838 4801//6839 795//6840 -f 2008//6841 5094//6842 1995//6843 -f 4987//6844 5231//6845 5073//6844 -f 5058//6846 3245//6846 4720//6846 -f 4994//6847 5321//6848 5151//6848 -f 5320//6849 5232//6850 4634//6851 -f 5509//6852 5153//6853 5232//6854 -f 2587//6855 3032//6856 3405//6857 -f 697//6858 1285//6858 3431//6858 -f 5588//6859 5321//6860 5422//6861 -f 5511//6862 5425//6863 5235//6864 -f 5321//6865 5235//6865 5422//6866 -f 2173//6867 2523//6868 1716//6868 -f 2610//6869 3894//6869 2380//6870 -f 2699//6871 5565//6872 132//6873 -f 1938//6874 1289//6875 160//6876 -f 1321//6877 4054//6878 4218//6879 -f 997//6880 5732//6881 1748//6882 -f 1380//6883 4421//6884 4895//6885 -f 1740//6886 2927//6886 2506//6886 -f 5425//6887 5426//6888 5333//6889 -f 5235//6890 5425//6891 5430//6892 -f 1495//6893 3418//6894 2049//6895 -f 3035//6896 1925//6897 3074//6898 -f 365//6899 3625//6900 3146//6901 -f 4963//6902 2182//6903 4833//6904 -f 4515//6905 5390//6906 1340//6907 -f 4027//6908 2442//6909 5678//6910 -f 518//6911 705//6912 1119//6913 -f 3101//6914 3116//6914 3760//6914 -f 438//6915 3263//6916 4371//6917 -f 5340//6918 5430//6918 5333//6918 -f 938//6919 1196//6920 3812//6921 -f 180//6922 2086//6923 5211//6924 -f 4184//6925 1278//6925 2020//6925 -f 1943//6926 4479//6926 2444//6926 -f 3781//6927 2964//6928 5480//6929 -f 600//6930 2533//6931 5519//6932 -f 1466//6933 3170//6933 4838//6934 -f 5238//6935 5336//6936 5164//6937 -f 1949//6938 901//6938 1419//6938 -f 4930//6939 3610//6940 3070//6940 -f 3468//6941 1940//6942 366//6941 -f 2062//6943 3465//6943 4461//6943 -f 3427//6944 53//6944 2015//6944 -f 3831//6945 4327//6945 2377//6945 -f 5244//6946 5348//6947 5340//6948 -f 5199//6949 7206//6949 4298//6949 -f 1553//6950 5078//6950 5114//6950 -f 5348//6951 5244//6952 5349//6951 -f 801//6953 800//6954 97//6955 -f 68//6956 241//6957 4627//6958 -f 5343//6959 5436//6960 5350//6961 -f 3754//6962 5943//6962 2759//6962 -f 1057//6963 698//6963 2789//6963 -f 5352//6964 5353//6965 5437//6966 -f 1579//6967 659//6968 595//6969 -f 2469//6970 3819//6971 1851//6972 -f 5438//6973 5354//6974 5439//6973 -f 4728//6975 1139//6976 4517//6977 -f 5354//6978 5352//6979 5437//6980 -f 5354//6981 5437//6981 5439//6982 -f 5440//6983 5439//6983 5437//6984 -f 5441//6985 5439//6985 5440//6986 -f 2313//6987 1875//6987 280//6987 -f 1993//6988 1992//6988 709//6988 -f 7252//6989 3691//6990 3152//6989 -f 1844//6991 1301//6991 3356//6991 -f 2660//6992 4395//6993 3392//6992 -f 5446//6994 5445//6994 5444//6994 -f 5444//6995 5442//6996 5443//6997 -f 5444//6998 5443//6999 5447//7000 -f 5443//7001 5448//7002 5447//7003 -f 601//7004 981//7005 4029//7006 -f 5447//7007 5448//7008 5449//7009 -f 5450//7010 5447//7011 5449//7012 -f 5447//7013 5450//7013 5356//7013 -f 2514//7014 3989//7014 3108//7014 -f 5355//7015 5356//7016 5452//7015 -f 5453//7017 5355//7018 5452//7019 -f 551//7020 5596//7021 2349//7021 -f 5451//7022 5543//7023 5457//7024 -f 5356//7025 5450//7026 5455//7027 -f 811//7028 2598//7029 86//7030 -f 5356//7031 5455//7032 5452//7033 -f 737//7034 456//7035 545//7036 -f 4500//7037 1471//7038 355//7039 -f 1771//7040 5456//7041 4344//7042 -f 2783//7043 4567//7044 3802//7043 -f 2298//7045 4467//7046 3552//7045 -f 1948//7047 3551//7048 5215//7049 -f 5452//7050 5245//7051 5359//7052 -f 1556//7053 4815//7053 3512//7054 -f 4139//7055 823//7055 285//7055 -f 2241//7056 1661//7056 46//7057 -f 3654//7058 3009//7058 738//7058 -f 2912//7059 1087//7059 1949//7059 -f 5459//7060 5461//7061 5460//7062 -f 612//7063 307//7064 2933//7065 -f 3619//7066 5328//7067 2576//7068 -f 3359//7069 2332//7070 7398//7071 -f 5463//7072 5357//7072 5360//7072 -f 5464//7073 5462//7073 5461//7073 -f 702//7074 3277//7075 1031//7076 -f 5467//7077 5462//7077 5464//7078 -f 3006//7079 2317//7080 546//7081 -f 3011//7082 166//7083 2950//7084 -f 5211//7085 2086//7086 2087//7087 -f 5465//7088 5364//7089 5365//7090 -f 3582//7091 1849//7092 1324//7092 -f 5462//7093 5467//7094 5471//7095 -f 98//7096 621//7097 551//7098 -f 4982//7099 1594//7100 1503//7101 -f 3360//7102 3635//7103 3085//7104 -f 1493//7105 2972//7106 2694//7107 -f 966//7108 194//7109 1034//7108 -f 5467//7110 5366//7111 5471//7112 -f 1417//7113 830//7114 2390//7114 -f 5167//7115 5256//7116 5468//7117 -f 5263//7118 5468//7119 5260//7119 -f 1602//7120 4789//7121 1850//7122 -f 2498//7123 4377//7124 2771//7124 -f 3597//7125 2154//7126 2475//7127 -f 5257//7128 5365//7128 5364//7129 -f 910//7130 5454//7131 2451//7132 -f 2387//7133 1977//7133 3337//7133 -f 6327//7134 2497//7134 3526//7134 -f 2344//7135 4415//7136 4912//7137 -f 5158//7138 5157//7139 5786//7140 -f 5366//7141 5365//7141 5473//7141 -f 1385//7142 101//7143 3065//7144 -f 5472//7145 5266//7146 5264//7147 -f 5370//7148 5365//7149 5257//7150 -f 5259//7151 5254//7152 5363//7153 -f 5473//7154 5365//7155 5370//7156 -f 5474//7157 5366//7157 5473//7157 -f 5264//7158 5378//7159 5370//7159 -f 5377//7160 5170//7160 5374//7160 -f 5394//7161 3681//7162 5424//7163 -f 5473//7164 5370//7164 5475//7164 -f 5264//7165 5381//7166 5378//7167 -f 5475//7168 5370//7168 5378//7168 -f 3854//7169 1698//7170 4448//7171 -f 5380//7172 5171//7173 5377//7172 -f 5381//7174 5379//7175 5378//7176 -f 3376//7177 2290//7178 5275//7179 -f 4398//7180 3601//7181 3422//7182 -f 964//7183 241//7183 2500//7184 -f 4230//7185 914//7186 4631//7187 -f 3874//7188 3875//7189 1968//7190 -f 1470//7191 5522//7192 851//7193 -f 560//7194 7372//7194 5405//7194 -f 4785//7195 4186//7196 3783//7196 -f 4612//7197 3602//7197 4497//7197 -f 1558//7198 5648//7199 2200//7200 -f 5565//7201 523//7202 1682//7203 -f 5180//7204 5645//7205 5381//7206 -f 836//7207 3328//7208 626//7209 -f 367//7210 4853//7211 5035//7212 -f 2396//7213 2864//7214 2573//7215 -f 5179//7216 5477//7217 5383//7218 -f 1476//7219 5737//7220 1644//7221 -f 4450//7222 3189//7223 4806//7224 -f 2053//7225 449//7226 3916//7227 -f 5562//7228 362//7229 3072//7230 -f 4820//7231 5478//7231 5281//7231 -f 5383//7232 5647//7233 5276//7234 -f 901//7235 3184//7236 1419//7237 -f 2119//7238 4084//7239 162//7240 -f 896//7241 1090//7241 3148//7242 -f 2787//7243 210//7244 3145//7245 -f 125//7246 3999//7247 2177//7248 -f 1984//7249 2598//7250 322//7249 -f 990//7251 1248//7252 2698//7252 -f 2125//7253 3379//7254 482//7254 -f 5285//7255 5185//7256 4441//7257 -f 492//7258 4073//7259 4948//7260 -f 3487//7261 5288//7261 5289//7261 -f 1392//7262 2740//7263 2352//7264 -f 5289//7265 5191//7266 4753//7267 -f 2327//7268 4249//7269 1605//7270 -f 5190//7271 3478//7271 5023//7271 -f 1022//7272 2432//7272 3426//7272 -f 889//7273 1079//7274 407//7275 -f 2528//7276 5534//7277 681//7278 -f 2823//7279 2533//7279 1195//7279 -f 1233//7280 121//7281 3721//7282 -f 4624//7283 503//7283 4076//7283 -f 4118//7284 4658//7285 1030//7286 -f 922//7287 1062//7287 1147//7288 -f 4561//7289 4847//7290 5292//7291 -f 4767//7292 4561//7292 5292//7292 -f 5482//7293 5290//7294 5197//7293 -f 955//7295 3595//7296 1858//7297 -f 5398//7298 5482//7298 5197//7299 -f 5116//7300 5398//7301 5197//7302 -f 5039//7303 5192//7304 5294//7305 -f 3077//7306 912//7307 3074//7307 -f 4580//7308 1919//7308 4196//7308 -f 3185//7309 4075//7310 3908//7311 -f 3230//7312 1033//7313 1338//7314 -f 867//7315 4360//7316 620//7317 -f 1846//7318 3656//7319 5293//7319 -f 5488//7320 5210//7321 4949//7322 -f 1726//7323 2116//7324 1994//7325 -f 3879//7326 7270//7326 2673//7326 -f 5488//7327 5491//7328 4952//7329 -f 3733//7330 591//7331 3335//7332 -f 5493//7333 1189//7334 2751//7334 -f 3671//7335 5540//7336 3096//7337 -f 5406//7338 5495//7339 5054//7338 -f 4603//7340 3939//7341 5306//7342 -f 5302//7343 5306//7343 3939//7343 -f 4708//7344 5410//7344 5407//7344 -f 4117//7345 425//7345 3713//7345 -f 1826//7346 2987//7347 939//7348 -f 5054//7349 5498//7350 5129//7351 -f 2842//7352 3895//7353 4924//7352 -f 4427//7354 1221//7355 2656//7355 -f 5408//7356 5410//7357 5304//7358 -f 923//7359 1262//7359 2138//7359 -f 222//7360 4922//7360 2983//7360 -f 4722//7361 5136//7362 5309//7363 -f 977//7364 3529//7365 183//7366 -f 5410//7367 4714//7368 5137//7369 -f 129//7370 4686//7371 1892//7372 -f 3105//7373 3814//7374 540//7375 -f 6707//7376 3911//7376 228//7376 -f 4506//7377 5315//7377 5313//7378 -f 5316//7379 5144//7379 5500//7379 -f 5142//7380 4964//7381 5503//7382 -f 5095//7383 218//7384 2567//7385 -f 4964//7386 5145//7387 5504//7386 -f 1674//7388 1091//7389 4278//7390 -f 5059//7391 5073//7391 5134//7392 -f 5317//7393 5074//7394 5415//7395 -f 4741//7396 5070//7397 5113//7398 -f 2764//7399 2674//7399 3791//7399 -f 2583//7400 1944//7400 2419//7401 -f 2708//7402 2634//7403 4472//7404 -f 4894//7405 4985//7406 5146//7407 -f 1632//7408 2626//7408 797//7408 -f 1583//7409 3579//7410 3958//7410 -f 732//7411 4678//7412 1141//7413 -f 2935//7414 304//7414 462//7415 -f 2295//7416 273//7416 1342//7417 -f 5321//7418 5588//7419 5151//7420 -f 5230//7421 5151//7421 5588//7421 -f 989//7422 112//7423 1520//7424 -f 5321//7425 4994//7425 5511//7425 -f 1039//7426 277//7427 5211//7428 -f 2364//7429 317//7429 1906//7429 -f 5423//7430 5422//7430 5234//7430 -f 1078//7431 881//7432 4032//7433 -f 1399//7434 783//7435 2661//7436 -f 5563//7437 5206//7438 5338//7439 -f 5509//7440 5511//7441 5153//7442 -f 4994//7443 5153//7444 5511//7445 -f 489//7446 2385//7447 3348//7448 -f 565//7449 336//7449 658//7449 -f 5512//7450 695//7450 3260//7450 -f 5321//7451 5511//7451 5235//7451 -f 1263//7452 5068//7453 5369//7453 -f 252//7454 5524//7455 4253//7456 -f 5511//7457 5509//7457 5425//7457 -f 267//7458 3891//7458 2072//7458 -f 5425//7459 5509//7459 5426//7459 -f 3806//7460 2955//7460 92//7460 -f 3167//7461 5640//7462 4063//7461 -f 5517//7463 5084//7464 5088//7465 -f 387//7466 1746//7467 4019//7468 -f 5430//7469 5425//7470 5333//7471 -f 3583//7472 3110//7473 1686//7474 -f 5333//7475 5426//7476 5432//7477 -f 1796//7478 1914//7479 1829//7480 -f 460//7481 3671//7481 171//7481 -f 3798//7482 3273//7483 4295//7484 -f 3757//7485 2036//7486 2095//7487 -f 5004//7488 5600//7488 5088//7489 -f 5852//7490 5347//7490 3494//7490 -f 5333//7491 5432//7491 5342//7491 -f 5786//7492 3923//7493 5158//7494 -f 5430//7495 5340//7495 5336//7496 -f 5600//7497 5004//7497 5241//7498 -f 4855//7499 4335//7500 4612//7501 -f 5341//7502 5334//7503 5164//7504 -f 2082//7505 58//7506 2719//7507 -f 2825//7508 1465//7509 3741//7509 -f 3573//7510 3250//7511 5454//7512 -f 5286//7513 5522//7514 2256//7515 -f 2551//7516 3809//7517 4477//7518 -f 2311//7519 3552//7520 7291//7521 -f 5241//7522 5335//7523 5433//7524 -f 5526//7525 5164//7525 5336//7525 -f 5526//7526 5341//7527 5164//7528 -f 4247//7529 2484//7529 4301//7529 -f 4875//7530 868//7531 3572//7530 -f 5546//7532 1592//7533 7184//7532 -f 5436//7534 5343//7535 5342//7536 -f 5340//7537 5348//7538 5606//7539 -f 3042//7540 609//7540 1758//7541 -f 395//7542 4168//7543 4524//7544 -f 3446//7545 2614//7546 576//7546 -f 1510//7547 2900//7548 2795//7549 -f 116//7550 3761//7551 4438//7552 -f 5353//7553 5350//7554 5674//7555 -f 67//7556 2763//7556 2344//7556 -f 941//7557 2737//7558 217//7557 -f 2335//7559 3848//7560 2844//7560 -f 2540//7561 2126//7562 4454//7563 -f 5438//7564 5439//7565 5617//7566 -f 4996//7567 3007//7568 2017//7569 -f 5529//7570 5439//7571 5441//7572 -f 2740//7573 3047//7573 61//7573 -f 5532//7574 5529//7575 5441//7576 -f 4188//7577 1054//7578 2094//7579 -f 5440//7580 5533//7581 5441//7580 -f 5530//7582 5531//7583 5442//7584 -f 3632//7585 36//7586 4320//7587 -f 5441//7588 5535//7588 5532//7588 -f 830//7589 1362//7589 3447//7590 -f 4521//7591 2148//7592 3120//7593 -f 5441//7594 5533//7595 5535//7594 -f 5620//7596 5532//7596 5535//7596 -f 5442//7597 5444//7598 5445//7599 -f 2364//7600 3988//7601 2628//7602 -f 1151//7603 3723//7604 1298//7605 -f 2887//7606 332//7607 4074//7608 -f 5442//7609 5537//7610 5443//7611 -f 5538//7612 5535//7613 5536//7614 -f 4228//7615 1706//7615 3714//7615 -f 1828//7616 2300//7617 4620//7616 -f 5444//7618 5447//7619 5446//7620 -f 1902//7621 4295//7622 3273//7623 -f 2475//7624 1084//7625 1593//7626 -f 4493//7627 315//7628 978//7629 -f 5539//7630 5538//7631 5541//7632 -f 2996//7633 1277//7633 844//7633 -f 5443//7634 5537//7634 5448//7634 -f 5446//7635 5447//7636 5355//7637 -f 4933//7638 2204//7639 4211//7640 -f 5541//7641 5538//7641 5451//7642 -f 5622//7643 5355//7643 5453//7644 -f 2317//7645 2512//7646 546//7647 -f 5451//7648 5538//7648 5543//7649 -f 3974//7650 3738//7650 3740//7650 -f 3055//7651 3412//7652 1424//7653 -f 4125//7654 1181//7655 400//7654 -f 2294//7656 5079//7656 1701//7657 -f 5450//7658 5449//7659 5625//7660 -f 5459//7661 5543//7662 5548//7663 -f 1181//7664 2821//7664 3696//7664 -f 5457//7665 5543//7665 5459//7666 -f 5544//7667 5452//7668 5359//7669 -f 3194//7670 4284//7671 2745//7672 -f 5457//7673 5459//7674 5460//7675 -f 4617//7676 3406//7677 4068//7678 -f 5357//7679 5455//7680 5551//7681 -f 4437//7682 4123//7682 773//7682 -f 5457//7683 5460//7684 5552//7685 -f 5162//7686 80//7686 4602//7687 -f 138//7688 1517//7689 2997//7688 -f 2621//7690 3972//7691 2346//7692 -f 5359//7693 5250//7694 5554//7695 -f 5460//7696 5555//7696 5552//7696 -f 4140//7697 2382//7698 1705//7697 -f 5555//7699 5460//7699 5461//7699 -f 624//7700 2599//7700 224//7701 -f 3444//7702 3220//7702 4221//7702 -f 2807//7703 5300//7704 2518//7705 -f 5558//7706 5555//7707 5461//7708 -f 5558//7709 5461//7709 5557//7709 -f 5556//7710 5250//7711 5253//7712 -f 5464//7713 5697//7714 5465//7715 -f 822//7716 4688//7716 3317//7716 -f 5557//7717 5461//7718 5462//7719 -f 5466//7720 5556//7720 5253//7721 -f 5466//7722 5167//7722 5468//7723 -f 586//7724 4794//7725 4719//7726 -f 1399//7727 2661//7728 3429//7729 -f 5466//7730 5253//7730 5167//7730 -f 2297//7731 5657//7732 3805//7733 -f 1857//7734 381//7734 2293//7734 -f 2463//7735 1211//7736 561//7737 -f 5697//7738 5364//7739 5465//7740 -f 821//7741 2098//7741 4832//7741 -f 4986//7742 2668//7743 335//7742 -f 1557//7744 4067//7745 608//7745 -f 5467//7746 5465//7747 5365//7748 -f 5467//7749 5464//7749 5465//7749 -f 3556//7750 1280//7751 4376//7750 -f 5562//7752 2001//7752 3853//7752 -f 4026//7753 4141//7753 2835//7754 -f 5365//7755 5366//7756 5467//7757 -f 5364//7758 5747//7759 5258//7760 -f 5557//7761 5462//7762 5471//7763 -f 5747//7764 5472//7765 5258//7766 -f 432//7767 951//7768 3236//7769 -f 5261//7770 5564//7771 5263//7770 -f 5564//7772 5261//7772 5472//7772 -f 2396//7773 2573//7773 4419//7773 -f 5366//7774 5474//7775 5471//7776 -f 5471//7777 5474//7777 5568//7777 -f 259//7778 1188//7779 3312//7780 -f 5374//7781 5259//7782 5569//7781 -f 4644//7783 3440//7783 1848//7783 -f 2603//7784 3455//7784 1113//7784 -f 5475//7785 5378//7785 5571//7786 -f 4734//7787 5572//7787 4816//7787 -f 264//7788 265//7789 1469//7788 -f 5380//7790 5377//7791 5573//7792 -f 5571//7793 5378//7794 5379//7795 -f 5280//7796 4908//7796 5282//7796 -f 5282//7797 4908//7797 5100//7798 -f 5379//7799 5381//7799 5645//7799 -f 1001//7800 1558//7801 806//7802 -f 4206//7803 1262//7804 5412//7804 -f 5180//7805 5385//7806 5645//7806 -f 5282//7807 5281//7808 5386//7809 -f 1317//7810 981//7811 2697//7812 -f 387//7813 3872//7814 1746//7815 -f 1105//7816 4066//7816 5098//7816 -f 494//7817 2557//7817 3138//7818 -f 4586//7819 3724//7820 2223//7820 -f 5479//7821 5478//7822 4820//7823 -f 3284//7824 3466//7824 3133//7825 -f 232//7826 2455//7827 2202//7828 -f 5479//7829 4820//7830 5182//7831 -f 4081//7832 1868//7832 3719//7832 -f 816//7833 4036//7833 1211//7833 -f 5479//7834 5101//7835 5646//7836 -f 908//7837 3730//7838 362//7838 -f 1994//7839 2116//7840 1388//7841 -f 1313//7842 3214//7843 3544//7844 -f 5185//7845 5577//7845 4837//7845 -f 5576//7846 5186//7847 5190//7848 -f 1264//7849 4437//7850 1457//7849 -f 5107//7851 3402//7852 1393//7853 -f 2650//7854 2651//7855 3451//7856 -f 1569//7857 4049//7858 1492//7859 -f 5711//7860 5112//7861 4926//7862 -f 4371//7863 3012//7864 1744//7863 -f 5397//7865 5481//7866 5194//7867 -f 5292//7868 4847//7869 5290//7869 -f 2805//7870 1122//7871 5382//7872 -f 1557//7873 2840//7874 3722//7875 -f 4849//7876 5483//7877 5042//7878 -f 3805//7879 3683//7880 2504//7881 -f 2546//7882 1990//7883 3438//7882 -f 5487//7884 5201//7885 5125//7886 -f 2155//7887 1104//7888 5782//7889 -f 5578//7890 5297//7891 4941//7892 -f 3621//7893 7254//7894 2892//7895 -f 2264//7896 2360//7897 1162//7898 -f 5402//7899 5489//7900 5713//7901 -f 2504//7902 3683//7903 173//7904 -f 5406//7905 4952//7906 5491//7907 -f 4699//7908 4358//7909 5490//7910 -f 5490//7911 4358//7912 5052//7913 -f 1124//7914 2395//7914 634//7914 -f 4774//7915 5494//7916 5408//7917 -f 4688//7918 4687//7919 1521//7920 -f 4708//7921 5407//7922 5052//7923 -f 3693//7924 20//7925 2186//7924 -f 4386//7926 5809//7927 4217//7928 -f 2224//7929 723//7930 2299//7931 -f 5407//7932 5410//7933 5408//7932 -f 2236//7934 5480//7935 2964//7936 -f 726//7937 4087//7938 581//7938 -f 5134//7939 5582//7940 5409//7941 -f 1544//7942 2394//7943 3960//7944 -f 5498//7945 5135//7946 5129//7947 -f 4611//7948 4108//7948 5306//7948 -f 2164//7949 3402//7950 900//7951 -f 5304//7952 5410//7953 5310//7954 -f 4509//7955 2366//7956 3984//7957 -f 4722//7958 5309//7959 5413//7960 -f 5413//7961 5583//7961 4795//7962 -f 4877//7963 5304//7963 5310//7964 -f 1274//7965 2984//7966 4425//7965 -f 5144//7967 4877//7967 5414//7967 -f 5149//7968 5316//7968 5500//7969 -f 4752//7970 1812//7971 809//7972 -f 4076//7973 503//7974 1277//7975 -f 5149//7976 5500//7977 5318//7978 -f 5146//7979 5586//7980 5508//7981 -f 4057//7982 575//7983 3691//7984 -f 52//7985 3821//7986 3603//7987 -f 4894//7988 5146//7989 5508//7990 -f 2417//7991 2135//7991 3610//7992 -f 1965//7993 1526//7993 4599//7993 -f 4692//7994 4023//7994 3707//7994 -f 5001//7995 5318//7996 5587//7997 -f 5589//7998 5225//7999 5592//8000 -f 630//8001 896//8002 4897//8003 -f 5592//8004 5225//8005 5084//8004 -f 2436//8006 3918//8007 5590//8008 -f 459//8009 3267//8010 3278//8011 -f 5423//8012 5588//8013 5422//8012 -f 1843//8014 1473//8015 1601//8016 -f 5587//8017 5326//8018 5001//8019 -f 4027//8020 5678//8021 47//8022 -f 304//8023 2935//8024 2934//8025 -f 5661//8026 5509//8027 5232//8028 -f 3236//8029 951//8030 2943//8031 -f 3925//8032 3104//8033 4113//8034 -f 5003//8035 5229//8036 5593//8036 -f 785//8037 2843//8037 2153//8037 -f 3809//8038 4002//8038 1220//8038 -f 4036//8039 816//8040 1304//8041 -f 5596//8042 4349//8043 890//8044 -f 702//8045 563//8046 564//8047 -f 182//8048 4675//8048 479//8049 -f 5594//8050 5234//8050 5233//8051 -f 1130//8052 4165//8053 3764//8054 -f 4552//8055 3844//8055 3401//8055 -f 1136//8056 2838//8057 2060//8058 -f 3392//8059 377//8060 1274//8061 -f 85//8062 5598//8062 84//8063 -f 4470//8064 993//8065 2764//8066 -f 5429//8067 5006//8068 5003//8069 -f 3961//8070 1870//8071 1545//8072 -f 4905//8073 5096//8073 5521//8073 -f 5335//8074 5239//8075 5520//8076 -f 3081//8077 3224//8078 1088//8079 -f 1114//8080 1025//8080 175//8080 -f 3260//8081 5403//8082 1771//8083 -f 3081//8084 4629//8084 2488//8084 -f 3829//8085 4195//8085 4267//8085 -f 5601//8086 5241//8086 5433//8086 -f 743//8087 742//8087 579//8087 -f 5166//8088 5006//8089 5429//8090 -f 2157//8091 1792//8092 3347//8093 -f 5336//8094 5340//8095 5606//8096 -f 908//8097 4726//8098 3963//8099 -f 2604//8100 1826//8101 939//8102 -f 3437//8103 114//8104 1755//8105 -f 3181//8106 1069//8107 646//8108 -f 217//8109 1260//8110 2085//8111 -f 5342//8112 5605//8112 5436//8112 -f 5243//8113 5166//8114 5607//8115 -f 2068//8116 3987//8117 2279//8118 -f 5240//8119 4642//8120 3235//8121 -f 1975//8122 2882//8123 1974//8124 -f 5609//8125 5348//8126 5354//8127 -f 5348//8128 5349//8129 5354//8130 -f 3662//8131 1259//8132 2953//8131 -f 3076//8133 1338//8133 4378//8134 -f 5610//8135 5354//8135 5438//8135 -f 3598//8136 83//8137 3115//8138 -f 5353//8139 5616//8140 5437//8141 -f 1407//8142 2300//8142 854//8143 -f 3786//8144 1191//8144 3841//8145 -f 2047//8146 2627//8147 2708//8148 -f 4459//8149 4078//8150 1231//8151 -f 735//8152 3718//8153 1800//8154 -f 5434//8155 4088//8156 2696//8157 -f 835//8158 324//8158 1214//8158 -f 3533//8159 3126//8160 4451//8161 -f 5014//8162 593//8163 5322//8163 -f 782//8164 3838//8164 3694//8165 -f 4440//8166 647//8167 4551//8168 -f 3331//8169 272//8169 3283//8169 -f 2276//8170 673//8170 554//8170 -f 5611//8171 5615//8172 5614//8173 -f 3910//8174 3012//8175 4257//8174 -f 1092//8176 1484//8177 3686//8178 -f 5615//8179 5531//8180 5618//8181 -f 5617//8182 5439//8183 5529//8184 -f 5267//8185 1061//8186 4127//8185 -f 5530//8187 5618//8188 5531//8188 -f 5437//8189 5616//8189 5440//8190 -f 2010//8191 4156//8192 1376//8193 -f 5053//8194 1628//8195 766//8196 -f 3204//8197 3348//8197 1629//8197 -f 840//8198 5550//8199 1735//8200 -f 5445//8201 5530//8201 5442//8201 -f 3858//8202 220//8202 1111//8202 -f 5531//8203 5688//8203 5442//8203 -f 1016//8204 137//8204 4754//8204 -f 5147//8205 3564//8205 3726//8205 -f 3877//8206 688//8207 3201//8208 -f 700//8209 1422//8210 4852//8211 -f 5442//8212 5688//8213 5537//8214 -f 3874//8215 1968//8215 3296//8215 -f 5535//8216 5533//8216 5536//8216 -f 5535//8217 5538//8218 5539//8219 -f 5539//8220 5620//8220 5535//8220 -f 5536//8221 5533//8222 5621//8221 -f 114//8223 868//8224 869//8225 -f 3381//8226 20//8227 3558//8228 -f 2202//8229 2697//8230 232//8231 -f 5202//8232 4178//8233 1553//8233 -f 2521//8234 4789//8234 3485//8235 -f 5536//8236 5621//8237 5538//8238 -f 1948//8239 2117//8240 675//8241 -f 5622//8242 5446//8243 5355//8243 -f 4271//8244 4899//8245 4701//8246 -f 260//8247 1721//8248 1722//8247 -f 2225//8249 5562//8250 3072//8251 -f 2818//8252 1189//8253 1620//8254 -f 2895//8255 4685//8256 5515//8257 -f 3873//8258 2138//8259 865//8260 -f 5538//8261 5621//8262 5543//8262 -f 5303//8263 614//8264 3316//8265 -f 125//8266 4180//8267 3745//8267 -f 5544//8268 5453//8269 5452//8270 -f 1757//8271 1968//8272 989//8273 -f 680//8274 2060//8275 3228//8276 -f 5541//8277 5451//8278 5624//8279 -f 2162//8280 3855//8281 3408//8282 -f 5451//8283 5457//8284 5624//8285 -f 18//8286 11//8286 3067//8286 -f 5551//8287 5455//8287 5450//8287 -f 5457//8288 5552//8289 5624//8290 -f 5357//8291 5551//8292 5360//8293 -f 4638//8294 1418//8294 5626//8294 -f 5608//8295 127//8296 1086//8297 -f 5459//8298 5553//8299 5461//8299 -f 4009//8300 5048//8301 3098//8301 -f 57//8302 4206//8303 355//8302 -f 5553//8304 5697//8304 5464//8304 -f 3716//8305 2505//8306 7//8307 -f 5461//8308 5553//8309 5464//8310 -f 1662//8311 2960//8312 3149//8313 -f 4616//8314 2766//8315 2691//8316 -f 5627//8317 5555//8318 5558//8319 -f 657//8320 2872//8321 21//8322 -f 5111//8323 4988//8323 4292//8324 -f 1767//8325 1384//8325 4544//8326 -f 778//8327 2943//8328 5105//8329 -f 3568//8330 7119//8331 1538//8332 -f 5558//8333 5557//8334 5629//8335 -f 5252//8336 5249//8337 5628//8338 -f 5249//8339 5463//8340 5628//8340 -f 1061//8341 4434//8342 3901//8343 -f 262//8344 2077//8345 789//8346 -f 5747//8347 5564//8348 5472//8349 -f 3329//8350 2222//8351 592//8352 -f 3431//8353 1021//8354 1106//8355 -f 5252//8356 5628//8357 5363//8358 -f 2014//8359 22//8359 5067//8359 -f 5629//8360 5557//8360 5471//8360 -f 5632//8361 5629//8362 5471//8363 -f 4933//8364 2684//8364 3732//8364 -f 4465//8365 1798//8366 602//8367 -f 3946//8368 1703//8368 4665//8368 -f 1884//8369 2337//8370 1344//8371 -f 5473//8372 5568//8373 5474//8373 -f 5473//8374 5475//8375 5636//8376 -f 5572//8377 5637//8377 4816//8377 -f 5572//8378 4908//8379 5638//8378 -f 3309//8380 3181//8381 249//8382 -f 2255//8383 969//8383 759//8383 -f 2576//8384 5328//8385 4362//8386 -f 4619//8387 5660//8388 4281//8389 -f 5641//8390 5571//8391 5379//8392 -f 3431//8393 1106//8393 697//8393 -f 4474//8394 4644//8395 1848//8396 -f 5642//8397 5379//8398 5645//8399 -f 387//8400 5140//8400 1633//8401 -f 5273//8402 5380//8403 5644//8402 -f 852//8404 3370//8404 3383//8404 -f 5273//8405 5644//8406 5179//8405 -f 1325//8407 2243//8408 2115//8409 -f 3297//8410 5199//8411 4298//8412 -f 5477//8413 5179//8413 5644//8413 -f 5479//8414 5646//8415 5478//8416 -f 3284//8417 3133//8418 3899//8419 -f 3217//8420 2453//8421 4976//8422 -f 3575//8423 647//8424 1310//8425 -f 4406//8426 4585//8427 4194//8428 -f 5385//8429 5384//8430 5276//8431 -f 3387//8432 4636//8432 2180//8433 -f 4265//8434 390//8435 3570//8436 -f 5645//8437 5385//8438 5575//8439 -f 5559//8440 4863//8441 4475//8442 -f 2571//8443 239//8443 2866//8444 -f 4920//8445 5389//8446 5013//8447 -f 121//8448 3154//8449 1682//8450 -f 3250//8451 2049//8452 3560//8453 -f 2325//8454 3530//8455 2517//8454 -f 5389//8456 5017//8457 5186//8458 -f 3209//8459 4810//8459 2213//8459 -f 4837//8460 5577//8461 5288//8462 -f 2280//8463 4113//8464 2281//8464 -f 3307//8465 89//8466 489//8467 -f 2284//8468 4638//8469 1718//8470 -f 2113//8471 3491//8471 4424//8471 -f 5712//8472 5294//8473 5112//8472 -f 5651//8474 4928//8475 4768//8476 -f 2978//8477 3703//8478 1283//8477 -f 5397//8479 5652//8480 5481//8481 -f 92//8482 4719//8483 3806//8484 -f 5652//8485 5397//8486 5038//8487 -f 5851//8488 5038//8489 5041//8490 -f 2526//8491 3733//8491 3335//8491 -f 4289//8492 5660//8492 4264//8492 -f 4596//8493 1261//8493 1813//8493 -f 5534//8494 396//8495 1890//8496 -f 5125//8497 5296//8498 5962//8499 -f 5125//8500 5962//8501 5487//8502 -f 4249//8503 2327//8503 3682//8503 -f 2082//8504 2719//8505 2224//8506 -f 1156//8507 1325//8508 5126//8507 -f 5299//8509 4859//8510 5579//8510 -f 3387//8511 429//8511 982//8511 -f 5488//8512 4949//8513 5404//8514 -f 1705//8515 4688//8516 822//8517 -f 3856//8518 1694//8519 5387//8520 -f 4774//8521 5299//8521 5494//8521 -f 5495//8522 5406//8523 5491//8522 -f 2166//8524 3067//8524 3587//8524 -f 4831//8525 1368//8526 4136//8527 -f 5809//8528 4213//8529 4217//8530 -f 1894//8531 2221//8532 1711//8533 -f 1517//8534 1518//8535 3036//8536 -f 4094//8537 1655//8538 5654//8539 -f 5497//8540 4386//8541 5132//8542 -f 4221//8543 4039//8544 5542//8545 -f 5470//8546 2863//8547 1740//8548 -f 2738//8549 1713//8550 3135//8551 -f 3746//8552 712//8553 1620//8554 -f 2245//8555 3683//8556 3805//8557 -f 656//8558 3852//8558 655//8558 -f 959//8559 2269//8560 291//8561 -f 2199//8562 2353//8563 2567//8564 -f 5310//8565 5410//8566 5137//8567 -f 2356//8568 315//8569 3090//8570 -f 5310//8571 5137//8572 5220//8573 -f 92//8574 2955//8575 2712//8574 -f 5415//8576 4611//8577 5584//8576 -f 814//8578 1899//8579 2559//8580 -f 2356//8581 3090//8582 936//8583 -f 475//8584 4404//8584 4012//8584 -f 4127//8585 4043//8586 1491//8585 -f 5415//8587 5585//8588 5317//8588 -f 3821//8589 2569//8590 4088//8591 -f 5145//8592 5075//8592 5504//8592 -f 5659//8593 4978//8593 5416//8593 -f 5586//8594 5146//8595 5317//8596 -f 5585//8597 5586//8597 5317//8598 -f 4978//8599 5417//8600 5416//8600 -f 5456//8601 2594//8602 2793//8603 -f 5393//8604 505//8604 866//8604 -f 3764//8605 733//8606 1541//8605 -f 5229//8607 5720//8608 5593//8609 -f 5232//8610 5320//8611 5661//8612 -f 3400//8613 1389//8614 1905//8615 -f 1783//8616 2549//8616 2445//8617 -f 5592//8618 5084//8619 5514//8620 -f 923//8621 1962//8622 1262//8623 -f 5509//8624 5661//8624 5595//8624 -f 2336//8625 1034//8626 4070//8627 -f 4458//8628 3424//8629 4951//8630 -f 5509//8631 5595//8632 5426//8633 -f 5514//8634 5084//8635 5517//8636 -f 5399//8637 19//8638 5400//8639 -f 5237//8640 5326//8641 5721//8640 -f 2941//8642 2097//8643 1980//8644 -f 5426//8645 5595//8645 5432//8646 -f 5233//8647 5334//8648 5666//8649 -f 5231//8650 4905//8651 5521//8652 -f 2599//8653 3827//8654 4353//8655 -f 5666//8656 5334//8656 5667//8656 -f 5663//8657 5231//8658 5521//8658 -f 5239//8659 5665//8659 5520//8659 -f 5239//8660 5237//8660 5665//8660 -f 4355//8661 4288//8662 2291//8663 -f 5334//8664 5341//8665 5667//8665 -f 2170//8666 1907//8667 486//8668 -f 4254//8669 3919//8669 5372//8669 -f 1913//8670 3878//8671 3137//8670 -f 4022//8672 1956//8673 1942//8674 -f 2360//8675 4306//8675 4521//8675 -f 3919//8676 4446//8676 2439//8676 -f 415//8677 2052//8678 4422//8679 -f 5670//8680 5341//8681 5526//8680 -f 5433//8682 5335//8682 5603//8683 -f 5336//8684 5606//8685 5526//8686 -f 2130//8687 5049//8688 3995//8688 -f 5096//8689 5242//8690 5521//8690 -f 4703//8691 3308//8692 4189//8693 -f 5821//8694 5521//8695 5671//8696 -f 2635//8697 1523//8698 1121//8698 -f 4551//8699 1410//8700 3986//8701 -f 5607//8702 5166//8703 5672//8704 -f 137//8705 590//8706 4754//8707 -f 5674//8708 5350//8709 5436//8709 -f 2779//8710 4041//8711 934//8712 -f 3257//8713 4513//8714 3687//8715 -f 2280//8716 3925//8717 4113//8717 -f 5676//8718 5677//8719 5611//8720 -f 4547//8721 4458//8722 4951//8722 -f 1464//8723 1807//8724 839//8725 -f 5616//8726 5353//8727 5674//8728 -f 5677//8729 5615//8730 5611//8731 -f 5677//8732 5679//8732 5615//8732 -f 342//8733 460//8734 171//8735 -f 5209//8736 7126//8736 1356//8737 -f 5734//8738 5614//8738 5618//8738 -f 4681//8739 4680//8739 2607//8739 -f 5502//8740 2151//8740 2435//8741 -f 5614//8742 5615//8742 5618//8742 -f 5615//8743 5679//8744 5680//8744 -f 5617//8745 5529//8746 5532//8747 -f 1204//8748 1362//8749 1834//8750 -f 2688//8751 5786//8752 4345//8752 -f 1336//8753 4948//8754 4802//8755 -f 5615//8756 5680//8757 5531//8756 -f 106//8758 528//8759 54//8760 -f 5735//8761 5617//8762 5532//8763 -f 5619//8764 5681//8764 5530//8764 -f 4301//8765 5682//8766 5068//8767 -f 5685//8768 5735//8769 5532//8770 -f 5688//8771 5531//8772 5680//8772 -f 5685//8773 5532//8774 5620//8774 -f 5619//8775 5530//8776 5445//8777 -f 5684//8778 5619//8779 5445//8780 -f 604//8781 4779//8782 2597//8783 -f 533//8784 3602//8784 3724//8785 -f 5445//8786 5446//8787 5684//8788 -f 1178//8789 493//8789 842//8789 -f 678//8790 5524//8791 5203//8792 -f 2012//8793 1776//8794 2381//8793 -f 946//8795 5032//8796 2409//8797 -f 2505//8798 1465//8798 99//8798 -f 335//8799 2540//8800 4986//8801 -f 5691//8802 5448//8803 5537//8804 -f 1209//8805 3174//8806 1017//8805 -f 5548//8807 5543//8808 5621//8809 -f 4540//8810 4655//8810 776//8810 -f 5623//8811 5541//8812 5624//8813 -f 5623//8814 5624//8815 5693//8814 -f 2740//8816 61//8817 295//8818 -f 2611//8819 2067//8820 1381//8821 -f 3589//8822 1284//8823 4871//8824 -f 5693//8825 5624//8825 5552//8825 -f 3097//8826 5268//8826 7250//8826 -f 5551//8827 5450//8828 5625//8829 -f 5693//8830 5552//8830 5694//8830 -f 5459//8831 5696//8832 5553//8831 -f 4067//8833 1584//8834 1622//8833 -f 5695//8835 5551//8836 5625//8837 -f 3706//8838 1438//8839 1496//8840 -f 2728//8841 734//8842 655//8843 -f 5360//8844 5551//8845 5742//8844 -f 5554//8846 5250//8847 5556//8848 -f 5255//8849 2777//8849 1063//8850 -f 1095//8851 1202//8852 1648//8853 -f 3510//8854 3921//8855 5181//8855 -f 2524//8856 2834//8857 3042//8858 -f 4663//8859 2946//8860 3502//8861 -f 395//8862 3330//8863 4168//8864 -f 1438//8865 3291//8865 338//8866 -f 5138//8867 2249//8868 2754//8869 -f 2343//8870 2233//8871 3776//8872 -f 2556//8873 4498//8873 547//8874 -f 5466//8875 5468//8875 5793//8876 -f 4417//8877 3985//8878 3143//8879 -f 5053//8880 1238//8881 465//8882 -f 1159//8883 3448//8884 1610//8885 -f 3782//8886 5120//8887 756//8888 -f 5743//8889 1977//8890 4463//8891 -f 5363//8892 5628//8892 5701//8893 -f 4412//8894 4610//8894 1954//8895 -f 5629//8896 5632//8897 5631//8898 -f 2849//8899 3882//8900 2333//8901 -f 5635//8902 5632//8903 5471//8903 -f 5702//8904 5363//8905 5634//8906 -f 5635//8907 5471//8908 5568//8909 -f 5259//8910 5363//8910 5702//8911 -f 1763//8912 1958//8913 3331//8914 -f 5473//8915 5636//8915 5568//8915 -f 1199//8916 3468//8916 4482//8917 -f 5475//8918 5571//8919 5636//8920 -f 660//8921 4880//8921 3171//8921 -f 5639//8922 5377//8923 5374//8924 -f 5573//8925 5377//8925 5639//8926 -f 4940//8927 3979//8928 2351//8929 -f 2563//8930 1768//8930 3032//8931 -f 1097//8932 7082//8932 7235//8932 -f 5379//8933 5642//8934 5641//8935 -f 381//8936 1857//8937 4175//8938 -f 5100//8939 4530//8940 5281//8939 -f 3702//8941 2086//8942 738//8943 -f 2258//8944 2159//8945 1018//8946 -f 3393//8947 2313//8948 280//8949 -f 5386//8950 5478//8950 5646//8950 -f 2027//8951 1551//8952 5189//8952 -f 3713//8953 192//8953 4886//8953 -f 4867//8954 3766//8955 5499//8956 -f 5705//8957 5385//8958 5276//8959 -f 5706//8960 5101//8961 5013//8960 -f 5103//8962 4916//8963 5708//8964 -f 3452//8965 1781//8966 5597//8967 -f 2166//8968 372//8969 3846//8970 -f 2781//8971 3635//8972 708//8973 -f 5284//8974 5016//8974 5103//8974 -f 5284//8975 5753//8976 5285//8976 -f 2514//8977 3271//8978 3989//8979 -f 4310//8980 3707//8981 4727//8980 -f 5186//8982 5576//8983 5389//8984 -f 3171//8985 4154//8986 3172//8987 -f 5285//8988 5710//8988 5185//8989 -f 124//8990 236//8991 917//8992 -f 590//8993 137//8994 4166//8995 -f 5289//8996 5288//8997 5577//8998 -f 3668//8999 2067//8999 2611//9000 -f 4247//9001 3500//9002 2484//9003 -f 3683//9004 2688//9005 173//9006 -f 1725//9007 2850//9008 2228//9009 -f 5108//9010 5711//9011 4926//9012 -f 1235//9013 408//9013 1961//9014 -f 975//9015 1886//9016 1060//9017 -f 800//9018 801//9019 2716//9020 -f 5650//9021 5109//9022 4928//9023 -f 4061//9024 305//9025 1373//9026 -f 5194//9027 5481//9028 5932//9029 -f 949//9030 948//9030 77//9030 -f 5194//9031 5932//9031 5483//9032 -f 5566//9033 7403//9034 1113//9035 -f 5758//9036 5482//9037 5398//9037 -f 5712//9038 5041//9039 5294//9040 -f 3379//9041 2125//9042 4792//9043 -f 2868//9044 4311//9045 5633//9046 -f 654//9047 2256//9048 5597//9049 -f 3110//9050 2090//9051 1511//9052 -f 1856//9053 2262//9054 2358//9055 -f 5579//9056 4859//9056 5208//9056 -f 2302//9057 198//9057 1377//9058 -f 2362//9059 5272//9060 580//9061 -f 2277//9062 2669//9063 1269//9064 -f 207//9065 4163//9066 4387//9067 -f 4386//9068 5497//9069 5809//9070 -f 737//9071 1297//9071 456//9072 -f 1406//9073 686//9074 4507//9075 -f 5498//9076 5054//9077 5715//9078 -f 2326//9079 4143//9079 402//9079 -f 4166//9080 3940//9081 590//9082 -f 2388//9083 859//9083 73//9083 -f 3667//9084 4687//9085 3010//9085 -f 5136//9086 5135//9087 5716//9088 -f 5306//9089 5658//9090 4611//9091 -f 3870//9092 3639//9093 1670//9094 -f 1570//9095 1709//9096 1327//9097 -f 4611//9098 5658//9099 5584//9098 -f 5583//9100 5220//9100 4795//9101 -f 5220//9102 5717//9103 5310//9104 -f 1320//9105 5095//9106 2567//9107 -f 5414//9108 4877//9108 5310//9108 -f 5414//9109 5500//9110 5144//9111 -f 1858//9112 3180//9113 4748//9114 -f 5504//9115 5503//9116 4964//9117 -f 1996//9118 2041//9119 3052//9120 -f 5134//9121 5073//9121 5582//9121 -f 2427//9122 4563//9123 3082//9122 -f 5719//9124 2660//9125 670//9126 -f 2946//9127 3293//9128 3502//9129 -f 2190//9130 1264//9131 1427//9132 -f 1005//9133 2647//9133 2192//9134 -f 5075//9135 5589//9136 5504//9136 -f 4973//9137 5720//9138 5148//9139 -f 5229//9140 5148//9141 5720//9142 -f 3888//9143 932//9143 1727//9144 -f 4894//9145 5508//9145 5320//9146 -f 4114//9147 3534//9147 1036//9147 -f 5230//9148 5423//9149 5417//9150 -f 5230//9151 5588//9152 5423//9153 -f 1659//9154 4312//9154 1953//9154 -f 5320//9155 5508//9156 5661//9157 -f 3522//9158 350//9159 327//9160 -f 5156//9161 1514//9162 1394//9163 -f 5505//9164 3176//9165 4715//9166 -f 4766//9167 2363//9168 4505//9169 -f 4408//9170 191//9171 1543//9172 -f 1986//9173 1286//9173 4146//9173 -f 5326//9174 5587//9174 5721//9174 -f 5513//9175 5073//9176 5231//9177 -f 613//9178 2134//9179 4017//9179 -f 1994//9180 1853//9181 3132//9182 -f 1516//9183 5222//9184 1182//9185 -f 5721//9186 5665//9187 5237//9188 -f 5432//9189 5595//9190 5723//9190 -f 1667//9191 2089//9191 1199//9191 -f 5517//9192 5088//9193 5724//9194 -f 1731//9195 882//9196 1240//9197 -f 5342//9198 5432//9199 5725//9199 -f 4147//9200 3095//9201 3622//9202 -f 5341//9203 5668//9204 5667//9205 -f 74//9206 3352//9207 4956//9208 -f 4631//9209 914//9210 4418//9211 -f 3587//9212 1164//9213 403//9213 -f 5429//9214 5672//9214 5166//9214 -f 357//9215 4517//9215 340//9216 -f 4331//9217 4330//9218 1200//9219 -f 5728//9220 5242//9221 5243//9222 -f 5436//9223 5605//9224 5674//9225 -f 4206//9226 23//9227 4937//9228 -f 4136//9229 2543//9230 1759//9231 -f 5729//9232 5777//9233 5675//9234 -f 5778//9235 5730//9235 5676//9235 -f 5677//9236 5730//9237 5729//9238 -f 7319//9239 7234//9239 3822//9239 -f 3463//9240 4424//9241 2858//9242 -f 5676//9243 5730//9243 5677//9243 -f 5609//9244 5354//9245 5610//9244 -f 5677//9246 5729//9247 5675//9248 -f 5682//9249 1263//9250 5369//9251 -f 3680//9252 3017//9253 5368//9254 -f 5609//9255 5610//9255 5733//9255 -f 4996//9256 3599//9256 2952//9256 -f 2471//9257 930//9258 1049//9259 -f 3466//9260 3465//9261 3133//9262 -f 5319//9263 1014//9263 5732//9264 -f 4039//9265 3616//9266 2156//9267 -f 5919//9268 5610//9269 5438//9268 -f 3727//9270 3177//9271 1453//9272 -f 3445//9273 4009//9273 2592//9273 -f 5919//9274 5438//9275 5617//9276 -f 798//9277 3075//9278 1979//9279 -f 2392//9280 4298//9280 4368//9280 -f 5618//9281 5530//9282 5681//9283 -f 3927//9284 2451//9285 2450//9285 -f 3032//9286 1768//9287 834//9288 -f 4291//9289 3961//9289 3301//9290 -f 5570//9291 462//9292 2428//9293 -f 5440//9294 5687//9294 5533//9294 -f 51//9295 52//9296 1213//9297 -f 2774//9298 5029//9299 4869//9300 -f 2551//9301 4002//9302 3809//9303 -f 2434//9304 1467//9305 2668//9305 -f 1105//9306 2704//9307 5014//9308 -f 4360//9309 2143//9309 1643//9309 -f 1670//9310 3084//9311 1393//9312 -f 5689//9313 5446//9314 5622//9315 -f 1460//9316 870//9317 259//9318 -f 5785//9319 5620//9320 5539//9320 -f 5327//9321 562//9321 561//9321 -f 5785//9322 5539//9322 5692//9322 -f 5539//9323 5541//9324 5692//9323 -f 5692//9325 5541//9325 5623//9326 -f 3374//9327 3605//9328 4137//9329 -f 5453//9330 5544//9331 5622//9332 -f 105//9333 3495//9334 4902//9335 -f 4493//9336 2437//9337 7248//9338 -f 923//9339 2138//9340 3873//9339 -f 3738//9341 262//9342 3740//9343 -f 157//9344 4107//9344 392//9345 -f 5459//9346 5548//9347 5696//9348 -f 5359//9349 5554//9350 5544//9349 -f 3391//9351 320//9352 5768//9353 -f 5553//9354 5696//9354 5697//9355 -f 1722//9356 531//9357 532//9358 -f 3389//9359 2195//9360 2813//9361 -f 3015//9362 3762//9363 1830//9362 -f 4484//9364 4407//9365 4409//9366 -f 1352//9367 4404//9368 475//9369 -f 5360//9370 5742//9371 5463//9372 -f 905//9373 4438//9374 3232//9375 -f 5556//9376 5466//9377 5741//9378 -f 5698//9379 5747//9379 5697//9380 -f 1199//9381 2502//9381 3468//9382 -f 5364//9383 5697//9384 5747//9384 -f 1737//9385 4031//9386 2920//9387 -f 215//9388 4367//9389 5892//9390 -f 1720//9391 1182//9392 1183//9393 -f 5746//9394 5627//9395 5558//9394 -f 5793//9396 5468//9397 5700//9398 -f 5700//9399 5468//9400 5263//9401 -f 5700//9402 5263//9403 5564//9404 -f 72//9405 1672//9406 3475//9405 -f 5558//9407 5629//9407 5746//9407 -f 5746//9408 5629//9408 5631//9408 -f 565//9409 1030//9410 2370//9411 -f 3149//9412 2960//9413 2425//9412 -f 1346//9414 2857//9415 3358//9414 -f 5634//9416 5363//9417 5701//9418 -f 4965//9419 1343//9420 4225//9420 -f 4483//9421 4093//9422 836//9423 -f 3736//9424 760//9425 1661//9426 -f 3921//9427 2689//9428 3856//9429 -f 740//9430 7405//9431 1434//9432 -f 5635//9433 5840//9433 5632//9434 -f 5702//9435 5569//9436 5259//9437 -f 4956//9438 3352//9438 4200//9438 -f 5635//9439 5568//9440 5749//9439 -f 1041//9441 3676//9441 4343//9441 -f 5749//9442 5568//9442 5636//9442 -f 2585//9443 1955//9443 2203//9443 -f 4908//9444 5280//9445 5638//9446 -f 2894//9447 3907//9448 3410//9449 -f 3739//9450 1841//9451 2942//9452 -f 759//9453 1997//9453 2081//9453 -f 329//9454 2238//9454 2046//9454 -f 2681//9455 586//9456 1459//9456 -f 2634//9457 28//9458 5312//9459 -f 5641//9460 5636//9461 5571//9460 -f 5703//9462 5283//9463 4816//9464 -f 4377//9465 527//9465 1102//9465 -f 530//9466 4651//9467 1836//9468 -f 4574//9469 1485//9470 3938//9471 -f 3705//9472 1595//9473 2678//9474 -f 286//9475 4030//9475 1165//9475 -f 5195//9476 1317//9477 2697//9478 -f 4080//9479 3670//9480 4288//9480 -f 68//9481 69//9481 588//9481 -f 3531//9482 3952//9483 840//9484 -f 5386//9485 5646//9486 5706//9487 -f 5647//9488 5383//9488 5477//9489 -f 5276//9490 5647//9490 5752//9491 -f 5706//9492 5646//9493 5101//9494 -f 594//9495 1600//9496 2876//9495 -f 5706//9497 5013//9498 5389//9499 -f 1098//9500 1836//9501 4388//9502 -f 4574//9503 4219//9504 509//9505 -f 3164//9506 1666//9507 2020//9508 -f 4126//9509 2108//9510 7357//9510 -f 5709//9511 5710//9512 5285//9511 -f 3835//9513 2025//9514 2570//9513 -f 5754//9515 5191//9516 5289//9517 -f 6051//9518 3190//9519 3060//9518 -f 1059//9520 3546//9521 972//9522 -f 5023//9523 4660//9524 5109//9525 -f 25//9526 703//9526 3472//9527 -f 2800//9528 2138//9529 57//9530 -f 5023//9531 5109//9532 5650//9531 -f 2805//9533 458//9534 1122//9535 -f 5711//9536 5755//9537 5112//9538 -f 4382//9539 4510//9540 917//9541 -f 2675//9542 4559//9543 4654//9544 -f 5112//9545 5755//9546 5712//9547 -f 5757//9548 5851//9549 5041//9550 -f 5041//9551 5712//9552 5757//9553 -f 5147//9554 3433//9555 1330//9556 -f 5598//9557 1505//9557 84//9557 -f 5398//9558 5759//9559 5758//9560 -f 5201//9561 5759//9562 5398//9561 -f 5376//9563 4510//9563 4382//9563 -f 5296//9564 5297//9564 5962//9565 -f 1166//9566 519//9567 3787//9568 -f 3641//9569 784//9570 512//9571 -f 2149//9572 5219//9573 4176//9574 -f 5208//9575 5205//9576 5807//9577 -f 3829//8085 424//8085 4195//8085 -f 4167//9578 2457//9578 1839//9578 -f 5762//9579 5491//9580 5488//9581 -f 4392//9582 297//9583 3563//9584 -f 2625//9585 2715//9586 4486//9587 -f 408//9588 1998//9589 5507//9588 -f 5809//9590 5763//9590 4213//9591 -f 4213//9592 5763//9593 4865//9594 -f 3516//9595 3391//9596 4832//9597 -f 445//9598 1415//9598 2028//9598 -f 5136//9599 5716//9600 5309//9601 -f 4024//9602 2082//9602 196//9602 -f 2754//9603 2838//9603 3672//9604 -f 4587//9605 2972//9606 1087//9607 -f 2309//9608 4504//9609 50//9609 -f 5658//9610 5816//9611 5584//9612 -f 2565//9613 5183//9614 148//9614 -f 2688//9615 1988//9616 5786//9617 -f 5310//9618 5764//9619 5414//9620 -f 1164//9621 3587//9622 3441//9623 -f 5817//9624 5415//9625 5584//9626 -f 3312//9627 1299//9628 3169//9629 -f 5585//9630 5415//9631 5817//9632 -f 390//9633 5113//9634 3570//9635 -f 4929//9636 2232//9637 7397//9638 -f 812//9639 4715//9640 2564//9639 -f 4296//9641 4100//9642 5//9642 -f 5315//9643 4978//9643 5659//9643 -f 4638//9644 5626//9645 1619//9646 -f 686//9647 1406//9648 379//9648 -f 2361//9649 3463//9650 1671//9651 -f 1119//9652 1033//9653 631//9654 -f 5582//9655 5513//9656 5766//9655 -f 4259//9657 2880//9658 4258//9659 -f 4169//9660 3380//9661 1196//9661 -f 1513//9662 4021//9663 1054//9664 -f 5661//9665 5508//9665 5586//9666 -f 5767//9667 5417//9668 5423//9669 -f 5075//9670 5225//9670 5589//9670 -f 1958//9671 1763//9671 3892//9671 -f 2820//9672 1544//9672 3960//9672 -f 5423//9673 5234//9674 5594//9674 -f 3915//9675 4635//9676 982//9677 -f 2835//9678 1148//9679 3394//9680 -f 879//9681 1101//9682 4286//9683 -f 5003//9684 5593//9685 5769//9686 -f 5663//9687 5513//9688 5231//9687 -f 5003//9689 5769//9690 5428//9689 -f 5405//9691 3569//9692 489//9693 -f 4727//9694 4982//9695 4310//9696 -f 5429//9697 5003//9698 5428//9697 -f 4076//9699 1277//9700 4624//9701 -f 5725//9702 5432//9702 5770//9703 -f 3318//9704 2995//9705 5268//9706 -f 1108//9707 4864//9707 832//9708 -f 2016//9709 1146//9710 3031//9711 -f 3872//9712 1741//9713 1746//9713 -f 1146//9714 449//9714 2182//9714 -f 4923//9715 1766//9716 310//9717 -f 607//9718 784//9719 590//9720 -f 5601//9721 5600//9722 5241//9721 -f 5668//9723 5341//9723 5670//9724 -f 5335//9725 5520//9725 5775//9725 -f 5670//9726 5526//9727 5606//9726 -f 3299//9728 5382//9729 3761//9730 -f 5606//9731 5673//9732 5670//9731 -f 5521//9733 5242//9734 5728//9735 -f 5521//9736 5728//9737 5671//9738 -f 734//9739 1516//9739 3170//9739 -f 5673//9740 5606//9741 5348//9742 -f 3952//9743 564//9744 563//9745 -f 5348//9746 5609//9746 5673//9746 -f 5777//9747 5729//9747 5730//9747 -f 5607//9748 5870//9749 5243//9750 -f 5243//9751 5870//9752 5728//9753 -f 4529//9754 2606//9755 3505//9756 -f 3098//9757 5048//9758 2648//9759 -f 5781//9760 5778//9761 5676//9762 -f 4061//9763 2927//9764 134//9765 -f 278//9766 1002//9766 4586//9766 -f 693//9767 3394//9768 1148//9769 -f 5780//9770 5825//9771 5675//9772 -f 3414//9773 3324//9774 5431//9773 -f 5825//9775 5677//9775 5675//9776 -f 4955//9777 230//9778 1449//9779 -f 1032//9780 3107//9781 4542//9782 -f 499//9783 3105//9784 2761//9785 -f 3909//9786 244//9786 3797//9786 -f 5680//9787 5679//9788 5783//9787 -f 5984//9789 5327//9790 4036//9791 -f 3802//9792 4567//9793 476//9794 -f 3558//9795 3693//9796 3020//9797 -f 3277//9798 3946//9799 4665//9800 -f 5784//9801 5681//9802 5619//9803 -f 5440//9804 5616//9805 5683//9806 -f 5783//9807 5736//9807 5680//9807 -f 5619//9808 5684//9808 5784//9808 -f 1684//9809 2630//9810 2434//9811 -f 5687//9812 5440//9813 5683//9814 -f 3744//9815 4575//9816 3092//9817 -f 5684//9818 5446//9819 5689//9818 -f 1682//9820 4671//9821 3150//9822 -f 3531//9823 840//9824 1735//9824 -f 5621//9825 5533//9826 5687//9827 -f 1805//9828 2697//9828 981//9828 -f 5691//9829 5537//9829 5739//9829 -f 914//9830 4230//9831 4782//9832 -f 3524//9833 3336//9834 2931//9835 -f 5692//9836 5623//9837 5788//9838 -f 5449//9839 5691//9840 5787//9839 -f 5449//9841 5448//9841 5691//9841 -f 247//9842 2672//9843 3268//9844 -f 2227//9845 3988//9846 2289//9845 -f 4887//9847 1238//9848 766//9847 -f 4822//9849 876//9850 4082//9851 -f 1342//9852 574//9853 3497//9854 -f 5789//9855 5625//9856 5449//9857 -f 5228//9858 3406//9859 744//9860 -f 5548//9861 5879//9862 5696//9863 -f 5602//9864 533//9865 3876//9866 -f 5544//9867 5554//9868 5833//9869 -f 4881//9870 5287//9871 4260//9872 -f 5694//9873 5791//9874 5693//9875 -f 1284//9876 689//9876 1863//9876 -f 3827//9877 5262//9878 4353//9877 -f 5104//9879 229//9879 3372//9879 -f 2098//9880 821//9881 2033//9881 -f 3084//9882 1670//9883 3639//9884 -f 1807//9885 1464//9885 2953//9885 -f 5791//9886 5694//9887 5552//9888 -f 5741//9889 5554//9890 5556//9891 -f 5551//9892 5695//9893 5742//9894 -f 5791//9895 5552//9896 5555//9897 -f 1754//9898 2419//9898 1944//9898 -f 4652//9899 1764//9900 361//9901 -f 4335//9902 2886//9903 4612//9902 -f 5555//9904 5627//9905 5792//9906 -f 5466//9907 5881//9908 5741//9908 -f 5463//9909 5742//9909 5744//9909 -f 322//9910 2104//9911 1581//9912 -f 5466//9913 5793//9914 5881//9915 -f 1069//9916 3181//9917 1070//9916 -f 4110//9918 5678//9919 4251//9920 -f 2975//9921 5655//9922 1660//9921 -f 5628//9923 5463//9924 5744//9925 -f 5564//9926 5747//9927 5700//9928 -f 5746//9929 5745//9930 5627//9931 -f 5628//9932 5744//9933 5701//9934 -f 1672//9935 72//9936 521//9936 -f 337//9937 1585//9937 2276//9938 -f 3249//9939 4380//9940 3365//9941 -f 385//9942 3625//9943 4606//9944 -f 3998//9945 666//9946 523//9947 -f 779//9948 2007//9949 1573//9950 -f 1155//9951 1040//9952 5089//9953 -f 2887//9954 2995//9955 3318//9956 -f 1747//9957 5314//9958 4003//9959 -f 4450//9960 682//9960 696//9961 -f 5751//9962 5572//9963 5638//9962 -f 4494//9964 4413//9964 282//9964 -f 5569//9965 5639//9966 5374//9966 -f 5749//9967 5636//9967 5796//9967 -f 3376//9968 5275//9968 4380//9968 -f 3935//9969 5279//9969 1559//9969 -f 5795//9970 5636//9971 5641//9972 -f 4816//9973 5637//9974 5703//9975 -f 577//9976 2321//9977 4316//9976 -f 4309//9978 2072//9979 4283//9980 -f 1811//9981 5561//9982 293//9982 -f 879//9983 1010//9984 880//9985 -f 5280//9986 5282//9986 5797//9986 -f 5798//9987 5704//9987 5380//9987 -f 4817//9988 4960//9989 4087//9990 -f 664//9991 633//9992 5799//9993 -f 5641//9994 5642//9994 5800//9994 -f 4195//9995 424//9995 5801//9995 -f 5644//9996 5380//9997 5704//9998 -f 5800//9999 5642//10000 5645//9999 -f 5276//10001 5752//10002 5705//10003 -f 699//10004 4852//10005 1422//10006 -f 3035//10007 3710//10008 258//10009 -f 322//10010 3792//10010 1984//10010 -f 5709//10011 5285//10011 5753//10012 -f 5389//10013 5576//10014 5803//10015 -f 1584//10016 5020//10016 5139//10016 -f 4139//10017 7373//10017 3879//10017 -f 5577//10018 5185//10019 5710//10020 -f 4191//10021 4466//10022 1339//10023 -f 5391//10024 5191//10025 5754//10026 -f 5576//10027 5190//10027 5023//10028 -f 5804//10029 5108//10030 5391//10031 -f 4362//10032 5193//10033 3417//10034 -f 5804//10035 5711//10035 5108//10036 -f 803//10037 4747//10037 2319//10038 -f 547//10039 4498//10040 3355//10041 -f 2989//10042 388//10043 539//10044 -f 932//10045 4368//10046 1727//10047 -f 5651//10048 5650//10048 4928//10048 -f 5755//10049 5849//10050 5757//10051 -f 4344//10052 2359//10052 2547//10052 -f 3416//10053 3641//10054 5664//10053 -f 5768//10055 807//10056 2033//10057 -f 5290//10058 5482//10059 5292//10060 -f 5292//10061 5482//10062 5756//10061 -f 5042//10063 5483//10064 5806//10065 -f 1375//10066 2511//10067 1827//10068 -f 5653//10069 3580//10070 2926//10071 -f 4552//10072 1657//10073 2757//10073 -f 5297//10074 5578//10075 5760//10076 -f 1611//10077 261//10078 2674//10079 -f 750//10080 2914//10081 5853//10082 -f 2773//10083 1274//10084 1617//10085 -f 5402//10086 5713//10086 5936//10087 -f 4678//10088 732//10089 2369//10090 -f 3936//10091 1282//10091 2896//10091 -f 5488//10092 5404//10093 5761//10094 -f 5488//10095 5761//10096 5762//10095 -f 81//10097 2795//10098 3190//10098 -f 776//10099 710//10100 4540//10099 -f 116//10101 3299//10101 3761//10101 -f 2089//10102 2502//10102 1199//10102 -f 5938//10103 5052//10104 5407//10103 -f 794//10105 2809//10105 3851//10106 -f 5408//10107 5494//10108 5407//10107 -f 5272//10109 4785//10110 623//10111 -f 5132//10112 5714//10113 5497//10114 -f 5811//10115 5054//10116 5495//10117 -f 4865//10118 5763//10119 5302//10119 -f 5060//10120 5714//10121 5132//10122 -f 1049//10123 2472//10124 2471//10124 -f 3316//10125 2328//10125 4321//10126 -f 5813//10127 5498//10128 5715//10129 -f 3280//10130 4481//10131 591//10132 -f 5498//10133 5813//10133 5135//10133 -f 5135//10134 5813//10135 5814//10136 -f 354//10137 4500//10138 355//10138 -f 5814//10139 5716//10140 5135//10141 -f 3170//10142 4792//10142 734//10142 -f 3735//10143 2605//10143 279//10143 -f 5716//10144 5815//10145 5309//10145 -f 1289//10146 4019//10146 42//10147 -f 1593//10148 4402//10148 5056//10149 -f 1037//10150 4624//10151 2996//10152 -f 4932//10153 3284//10154 3285//10155 -f 5815//10156 5583//10157 5413//10157 -f 585//10158 4922//10159 136//10158 -f 152//10160 2441//10161 370//10162 -f 494//10163 1354//10164 2781//10165 -f 1187//10166 1920//10167 435//10166 -f 5500//10168 5414//10169 5764//10170 -f 672//10171 3383//10172 3370//10173 -f 2249//10174 3182//10175 2152//10176 -f 4626//10177 5142//10178 5765//10179 -f 5318//10180 5500//10181 5940//10182 -f 1806//10183 2846//10184 5418//10184 -f 3417//10185 2713//10186 4362//10187 -f 4363//10188 4958//10189 3349//10190 -f 5720//10191 4626//10192 5765//10191 -f 3413//10193 4429//10194 1056//10195 -f 5940//10196 5587//10196 5318//10197 -f 179//10198 4583//10199 1677//10200 -f 4052//10201 2736//10201 5400//10201 -f 3461//10202 3594//10202 3462//10203 -f 1282//10204 3936//10205 842//10206 -f 520//10207 318//10208 2048//10207 -f 2231//10209 2863//10209 208//10209 -f 5661//10210 5586//10211 5595//10212 -f 5423//10213 5594//10214 5767//10215 -f 2780//10216 3698//10216 422//10217 -f 102//10218 2124//10219 5298//10220 -f 5542//10221 3444//10221 4221//10222 -f 881//10223 1078//10224 1334//10225 -f 2887//10226 4074//10227 3514//10228 -f 4401//10229 128//10230 3717//10231 -f 5233//10232 5666//10232 5818//10233 -f 4459//10234 3605//10235 2159//10236 -f 2515//10237 127//10238 5608//10239 -f 1116//10240 4996//10241 2952//10242 -f 5724//10243 5088//10244 5771//10245 -f 5088//10246 5600//10247 5771//10246 -f 4419//10248 2573//7773 2893//10249 -f 870//10250 1188//10251 259//10250 -f 4718//10252 1582//10253 3622//10254 -f 5773//10255 5821//10256 5774//10257 -f 5032//10258 946//10259 344//10260 -f 5866//10261 5773//10261 5777//10261 -f 5603//10262 5335//10262 5775//10262 -f 5821//10263 5671//10264 5774//10265 -f 5777//10266 5822//10267 5866//10268 -f 3842//10269 1969//10270 1668//10269 -f 5278//10271 4150//10272 2002//10273 -f 4092//10274 989//10274 1815//10275 -f 1285//10276 697//10277 975//10278 -f 5773//10279 5774//10280 5777//10281 -f 1994//10282 4391//10283 3731//10284 -f 1155//10285 2354//10285 1535//10285 -f 2172//10286 2759//10287 223//10288 -f 5822//10289 5777//10290 5730//10289 -f 1282//10291 298//10292 4352//10293 -f 7404//10294 7373//10295 824//10296 -f 2778//10297 4502//10298 1455//10299 -f 5774//10300 5671//10300 5823//10300 -f 5774//10301 5823//10301 5777//10301 -f 4016//10302 3148//10303 3600//10304 -f 5777//10305 5823//10305 5780//10305 -f 5675//10306 5777//10307 5780//10308 -f 5824//10309 5778//10310 5781//10311 -f 1107//10312 3749//10313 1576//10314 -f 3311//10315 129//10316 1892//10317 -f 5611//10318 5781//10319 5676//10320 -f 5611//10321 5614//10321 5781//10321 -f 5781//10322 5614//10322 5734//10322 -f 3156//10323 5063//10323 3227//10323 -f 1132//10324 494//10325 4048//10325 -f 5828//10326 5872//10327 5734//10328 -f 1101//10329 2606//10330 3102//10331 -f 1848//10332 4004//10333 603//10334 -f 3367//10335 4788//10336 556//10336 -f 5733//10337 5610//10338 5919//10337 -f 5828//10339 5734//10340 5618//10341 -f 5919//10342 5617//10342 5735//10342 -f 1476//10343 1169//10344 5737//10345 -f 4449//10346 520//10346 2663//10347 -f 2667//10348 2784//10348 5338//10349 -f 4466//10350 4191//10350 1197//10351 -f 5829//10352 5784//10352 5684//10352 -f 4976//10353 3853//10354 2001//10355 -f 3131//10356 5516//10357 1680//10358 -f 240//10359 4091//10360 2808//10361 -f 5829//10362 5684//10363 5689//10364 -f 5685//10365 5620//10366 5785//10366 -f 5688//10367 5680//10368 5736//10369 -f 5373//10370 710//10371 3593//10372 -f 905//10373 3650//10374 3636//10375 -f 2680//10376 2355//10377 4487//10378 -f 5736//10379 5739//10380 5688//10381 -f 1006//10382 3406//10383 5228//10384 -f 1041//10385 4872//10385 3934//10385 -f 1457//10386 2160//10387 3382//10388 -f 5688//10389 5739//10390 5537//10391 -f 2452//10392 1444//10393 119//10394 -f 1955//10395 1742//10396 1743//10397 -f 2359//10398 5131//10399 695//10400 -f 5832//10401 5544//10402 5833//10401 -f 5622//10403 5544//10404 5832//10405 -f 805//10406 4304//10406 2501//10406 -f 5788//10407 5623//10408 5693//10408 -f 4351//10409 3868//10409 3287//10410 -f 426//10411 1990//10412 45//10413 -f 2478//10414 1306//10415 4227//10416 -f 5698//10417 5697//10418 5696//10418 -f 5792//10419 5791//10419 5555//10420 -f 3278//10421 3267//10422 3968//10423 -f 531//10424 5545//10425 532//10424 -f 4092//10426 440//10427 112//10426 -f 2956//10428 1817//10429 473//10430 -f 5792//10431 5627//10432 5745//10433 -f 5519//10434 2533//10434 2823//10434 -f 2931//10435 900//10436 3402//10437 -f 5835//10438 5794//10438 5746//10439 -f 5746//10440 5631//10441 5835//10442 -f 4921//10443 5078//10444 2928//10445 -f 293//10446 2936//10447 4745//10448 -f 5097//10449 2643//10450 2122//10451 -f 3670//10452 4451//10453 251//10453 -f 1598//10454 3263//10455 1690//10456 -f 2726//10457 4077//10457 2623//10457 -f 5411//10458 5602//10458 3876//10459 -f 2010//10460 1376//10461 1429//10462 -f 310//10463 1766//10464 450//10463 -f 4320//10465 4475//10466 4863//10467 -f 5796//10468 5636//10469 5795//10470 -f 388//10471 2989//10472 2458//10471 -f 2903//10473 5844//10474 480//10475 -f 122//10476 928//10476 5519//10476 -f 5797//10477 5282//10478 5386//10479 -f 5527//10480 878//10481 762//10482 -f 4916//10483 5283//10484 5708//10485 -f 4521//10486 3120//10487 2360//10488 -f 5645//10489 5575//10490 5847//10491 -f 1793//10492 3025//10493 762//10494 -f 3599//10495 5021//10496 2303//10496 -f 2897//10497 529//10498 1208//10499 -f 4138//10500 1811//10500 3417//10501 -f 5847//10502 5575//10503 5802//10504 -f 3959//10505 4111//10505 2545//10505 -f 1171//10506 3853//10507 436//10506 -f 3511//10508 5323//10509 3712//10510 -f 1060//10511 2061//10512 4212//10512 -f 4584//10513 274//10514 263//10515 -f 2352//10516 5630//10517 1975//10516 -f 4344//10518 2561//10519 2558//10519 -f 2486//10520 3778//10521 1164//10522 -f 5156//10523 4870//10524 568//10525 -f 5711//10526 5849//10527 5755//10528 -f 3494//10529 1113//10530 5852//10531 -f 1703//10532 1894//10533 1711//10534 -f 1562//10535 1205//10536 5012//10537 -f 5849//10538 5850//10539 5757//10540 -f 5652//10541 5038//10542 5851//10543 -f 5712//10544 5755//10545 5757//10546 -f 1184//10547 4363//10548 5305//10549 -f 3303//10550 4384//10551 987//10552 -f 3314//10553 908//10554 3963//10555 -f 7393//10556 2992//10556 89//10556 -f 4930//10557 5401//10558 402//10559 -f 5854//10560 5482//10561 5758//10562 -f 4476//10563 2157//10564 3347//10563 -f 2983//10565 4922//10566 585//10567 -f 1536//10568 3591//10569 1127//10570 -f 5201//10571 5487//10572 5855//10573 -f 5487//10574 5962//10575 5855//10574 -f 4332//10576 2265//10577 3924//10578 -f 5079//10579 1915//10579 2109//10579 -f 4479//10580 1891//10580 2444//10580 -f 5400//10581 1891//10581 5399//10582 -f 4332//10583 3924//10584 888//10584 -f 4145//10585 897//10586 3025//10587 -f 2151//10588 4096//10589 2739//10588 -f 5762//10590 5808//10591 5491//10592 -f 5808//10593 5495//10594 5491//10595 -f 5494//10596 5299//10597 5902//10596 -f 2851//10598 861//10599 196//10600 -f 2669//10601 1060//10602 1269//10603 -f 1687//10604 115//10605 3063//10606 -f 2533//10607 5392//10608 2555//10609 -f 5858//10610 5489//10611 5409//10611 -f 1560//10612 2549//10613 4483//10613 -f 1184//10614 5305//10615 2866//10616 -f 1722//10617 3168//10618 4828//10619 -f 5306//10620 5302//10621 5812//10620 -f 3132//10622 1477//10623 1252//10624 -f 5743//10625 1326//10626 3887//10627 -f 2741//10628 3218//10628 4999//10629 -f 5716//10630 5814//10631 5815//10631 -f 3895//10632 2842//10632 3564//10632 -f 1257//10633 2884//10634 2408//10635 -f 5815//10636 5413//10637 5309//10638 -f 1130//10639 3376//10639 2762//10639 -f 5816//10640 5817//10640 5584//10640 -f 500//10641 2257//10642 3842//10643 -f 807//10644 3685//10645 4220//10646 -f 194//10647 2050//10648 2404//10649 -f 3810//10650 2843//10651 297//10652 -f 980//10653 4325//10654 3819//10655 -f 3770//10656 4544//10657 4015//10658 -f 5582//10659 5073//10659 5513//10659 -f 5417//10660 5767//10661 5416//10660 -f 3579//10662 1583//10663 5128//10662 -f 5586//10664 5859//10665 5595//10664 -f 3719//10666 1080//10667 1345//10668 -f 2972//10669 1790//10670 3220//10671 -f 5527//10672 2610//10672 878//10672 -f 3729//10673 2092//10674 4073//10675 -f 5721//10676 5587//10677 5861//10678 -f 1435//10679 799//10680 2913//10681 -f 5594//10682 5233//10682 5818//10682 -f 2509//10683 4059//10684 3481//10685 -f 4562//10686 4998//10687 4512//10688 -f 3244//10689 3608//10690 5057//10691 -f 2122//10692 2643//10692 568//10692 -f 3637//10693 854//10693 5270//10693 -f 5432//10694 5723//10695 5770//10696 -f 3689//10697 1623//10698 4583//10699 -f 3842//10700 382//10700 4307//10701 -f 838//10702 3408//10703 4689//10704 -f 2841//10705 3722//10706 2840//10707 -f 1582//10708 1938//10709 160//10710 -f 4337//10711 1558//10712 2200//10713 -f 2423//10714 389//10714 517//10714 -f 5864//10715 5663//10716 5821//10717 -f 2779//10718 934//10719 288//10720 -f 5770//10721 5912//10721 5725//10721 -f 5663//10722 5521//10723 5821//10724 -f 3470//10725 5184//10725 4621//10725 -f 2626//10726 1632//10727 3050//10728 -f 2523//10729 4433//10730 3336//10731 -f 5773//10732 5864//10733 5821//10732 -f 2463//10734 3481//10735 5207//10736 -f 2869//10737 5126//10738 1325//10738 -f 1909//10739 1652//10740 704//10741 -f 5342//10742 5725//10742 5605//10743 -f 2897//10744 3648//10745 529//10745 -f 5775//10746 5520//10746 5867//10746 -f 4995//10747 5139//10748 3527//10749 -f 5778//10750 5868//10751 5822//10752 -f 241//10753 3002//10754 299//10755 -f 68//10756 4627//10756 299//10757 -f 4938//10758 3658//10758 5162//10759 -f 2174//10760 3536//10761 5476//10762 -f 352//10763 92//10764 2800//10764 -f 5433//10765 5603//10766 5915//10767 -f 5915//10768 5601//10768 5433//10769 -f 2190//10770 1427//10770 2350//10770 -f 5822//10771 5730//10772 5778//10773 -f 5672//10774 5870//10775 5607//10776 -f 5868//10777 5778//10777 5824//10778 -f 5671//10779 5728//10780 5823//10781 -f 324//10782 1076//10783 1226//10784 -f 4367//10785 3030//10786 302//10785 -f 1689//10787 1391//10788 823//10789 -f 5728//10790 5870//10791 5823//10792 -f 3293//10793 492//10794 4948//10795 -f 2922//10796 1643//10797 2143//10798 -f 5674//10799 5605//10800 5871//10801 -f 467//10802 2852//10802 1328//10802 -f 5780//10803 5823//10804 5873//10803 -f 5781//10805 5734//10805 5872//10805 -f 1868//10806 4554//10806 5722//10806 -f 3508//10807 1647//10808 1914//10807 -f 2113//10809 4424//10810 3463//10811 -f 2614//10812 1622//10813 1584//10814 -f 373//10815 2871//10815 157//10815 -f 5679//10816 5677//10817 5825//10818 -f 5616//10819 5674//10819 5827//10819 -f 5679//10820 5825//10820 5783//10820 -f 5618//10821 5681//10822 5828//10823 -f 931//10824 1107//10825 2036//10826 -f 4243//10827 4429//10828 4032//10829 -f 2838//10830 1136//10831 1135//10832 -f 5050//10833 2326//10834 3351//10835 -f 3975//10836 2924//10836 2821//10836 -f 5845//10837 818//10837 1528//10837 -f 94//10838 497//10838 4180//10838 -f 1472//10839 576//10840 5040//10841 -f 5735//10842 5685//10843 5874//10844 -f 3887//10845 1326//10846 3062//10847 -f 1082//10848 1083//10849 3515//10850 -f 3726//10851 671//10852 1169//10853 -f 3778//10854 2670//10854 2483//10855 -f 3019//10856 4740//10857 4520//10858 -f 5045//10859 5033//10860 1266//10859 -f 1657//10861 3378//10862 1214//10863 -f 1781//10864 3452//10865 485//10866 -f 5689//10867 5622//10867 5832//10867 -f 3862//10868 1423//10868 643//10868 -f 2703//10869 4030//10870 1304//10871 -f 5548//10872 5621//10873 5687//10874 -f 2563//10875 1173//10876 3695//10877 -f 5449//10878 5787//10879 5789//10880 -f 2304//10881 201//10882 3647//10883 -f 2849//10884 2188//10885 1240//10886 -f 2430//10887 3904//10887 588//10887 -f 375//10888 4554//10888 4081//10888 -f 2681//10889 578//10890 4946//10891 -f 97//10892 4870//10893 801//10894 -f 3454//10895 3103//10896 2530//10897 -f 601//10898 2882//10899 4104//10898 -f 5745//10900 5746//10900 5794//10900 -f 1829//10901 2091//10902 11//10903 -f 3474//10904 846//10905 2580//10906 -f 2295//10907 45//10908 2160//10909 -f 3701//10910 4027//10910 3673//10910 -f 5837//10911 5632//10912 5840//10913 -f 4390//10914 1379//10915 2636//10914 -f 5885//10916 5838//10917 5839//10916 -f 5634//10918 5836//10919 5702//10920 -f 3768//10921 2519//10922 3863//10923 -f 3623//10924 4172//10925 3574//10924 -f 1280//10926 2027//10926 5189//10927 -f 3517//10928 4832//10929 4914//10930 -f 3866//10931 2578//10932 2141//10932 -f 5841//10933 5839//10934 5838//10935 -f 5839//10936 5841//10937 5887//10938 -f 1427//10939 1457//10940 3382//10941 -f 821//10942 5768//10943 2033//10942 -f 5886//10944 5888//10945 5838//10946 -f 5572//10947 5751//10948 5841//10949 -f 5635//10950 5749//10951 5840//10950 -f 4481//10952 2706//10953 2432//10953 -f 5842//10954 5841//10955 5838//10956 -f 5841//10957 5637//10957 5572//10958 -f 4556//10959 2937//10960 478//10961 -f 790//10962 383//10963 2677//10964 -f 4247//10965 5036//10966 1095//10967 -f 4876//10968 2353//10969 2199//10970 -f 4853//10971 2932//10971 1216//10971 -f 1663//10972 3450//10973 4064//10974 -f 1112//10975 2147//10976 1147//10977 -f 3009//10978 4051//10979 4562//10980 -f 5841//10981 5842//10982 5637//10982 -f 3653//10983 2712//10984 3268//10985 -f 3343//10986 1408//10987 2907//10988 -f 5842//10989 5703//10990 5637//10991 -f 4533//10992 2839//10993 2310//10994 -f 987//10995 4384//10996 4375//10997 -f 293//10998 4745//10999 2713//11000 -f 5386//11001 5281//11002 5478//11003 -f 1169//11004 1476//11004 2267//11005 -f 5846//11006 5795//11006 5641//11007 -f 5100//11008 5281//11008 5282//11008 -f 5798//11009 5380//11010 5573//11011 -f 5846//11012 5641//11013 5800//11014 -f 5283//11015 5703//11016 5890//11015 -f 4874//11017 4325//11018 996//11018 -f 263//11019 3669//11020 4034//11021 -f 178//11022 225//11023 1232//11024 -f 5575//11025 5385//11025 5705//11025 -f 5892//11026 3442//11026 3800//11027 -f 3607//11028 2441//11028 1654//11029 -f 5893//11030 5848//11030 5753//11030 -f 1951//11031 3846//11032 2824//11033 -f 5289//11034 5577//11035 5894//11036 -f 5577//11037 5710//11037 5894//11038 -f 268//11039 2738//11040 5570//11041 -f 5289//11042 5894//11043 5754//11044 -f 4716//11045 3063//11046 2811//11047 -f 4352//11048 4115//11049 3021//11050 -f 1491//11051 1703//11052 3946//11053 -f 4368//11054 4299//11054 3888//11054 -f 179//11055 4666//11056 3554//11057 -f 5711//11058 5960//11058 5849//11058 -f 4020//11059 616//11059 5119//11059 -f 5805//11060 5651//11060 4768//11060 -f 5850//11061 5851//11062 5757//11063 -f 2284//11064 3636//11065 3650//11066 -f 5805//11067 5292//11068 5756//11069 -f 4817//11070 1166//11070 4960//11070 -f 4468//11071 1349//11072 4110//11072 -f 2037//11073 1819//11073 1433//11073 -f 1826//11074 1196//11075 2987//11076 -f 5895//11077 5964//11078 5896//11079 -f 2955//11080 2915//11081 5351//11080 -f 5895//11082 5896//11083 5897//11084 -f 5898//11085 5895//11086 5897//11087 -f 7275//11088 1252//11089 7346//11089 -f 5427//11090 71//11091 2514//11092 -f 5897//11093 5896//11094 5899//11095 -f 5898//11096 5897//11097 5899//11098 -f 5898//11099 5899//11100 5900//11101 -f 3597//11102 2475//11102 4525//11102 -f 5901//11103 5900//11104 5899//11105 -f 2264//11106 3201//11107 2360//11108 -f 46//11109 1357//11109 2241//11109 -f 5418//11110 2846//11111 1629//11112 -f 3163//11113 1791//11114 5657//11115 -f 5902//11116 5299//11117 5579//11118 -f 4061//11119 1373//11120 1882//11121 -f 2718//11122 1580//11123 1357//11124 -f 3559//11125 3358//11126 2857//11127 -f 1491//11128 4043//11129 1703//11129 -f 1837//11130 1174//11131 872//11132 -f 4284//11133 1155//11134 2745//11135 -f 3874//11136 3296//11137 1261//11137 -f 2186//11138 4094//11139 2341//11140 -f 5938//11141 5407//11141 5494//11142 -f 3584//11143 838//11144 4067//11145 -f 5858//11146 5713//11147 5489//11148 -f 4790//11149 2024//11149 4750//11149 -f 5054//11150 5811//11151 5904//11152 -f 5054//11153 5904//11154 5715//11155 -f 5169//11156 4463//11157 4462//11158 -f 5812//11159 5905//11160 5658//11161 -f 5812//11162 5658//11162 5306//11162 -f 1745//11163 4376//11163 5188//11164 -f 4023//11165 4692//11166 5486//11167 -f 2037//11168 555//11169 3022//11170 -f 605//11171 2005//11172 4595//11173 -f 1650//11174 3393//11175 280//11176 -f 1481//11177 1747//11177 3490//11178 -f 5906//11179 5583//11179 5815//11180 -f 5608//11181 1086//11182 4999//11183 -f 3080//11184 374//11184 4957//11184 -f 5717//11185 5220//11186 5583//11186 -f 756//11187 859//11188 444//11189 -f 2921//11190 5029//11191 1573//11192 -f 3325//11193 2484//11194 3878//11195 -f 5764//11196 5310//11196 5717//11196 -f 5585//11197 5817//11198 5586//11199 -f 5503//11200 5504//11201 5908//11202 -f 1352//11203 1416//11204 2288//11205 -f 5503//11206 5908//11207 5142//11208 -f 2847//11209 4797//11210 2322//11211 -f 847//11212 2515//11212 2428//11212 -f 4988//11213 2592//11214 4009//11215 -f 4327//11216 431//11217 2377//11218 -f 5764//11219 5940//11220 5500//11221 -f 572//11222 1307//11223 1579//11224 -f 7375//11225 7319//11226 1311//11227 -f 2812//11228 15//11229 1192//11230 -f 2252//11231 442//11232 745//11233 -f 2474//11234 2583//11235 509//11235 -f 1694//11236 2689//11237 157//11238 -f 3477//11239 2572//11240 5093//11241 -f 2713//11242 726//11242 4362//11242 -f 5595//11243 5909//11243 5723//11244 -f 675//11245 1210//11246 3551//11247 -f 3731//11248 3549//11248 1994//11248 -f 1469//11249 4093//11250 4483//11250 -f 5860//11251 5594//11251 5818//11252 -f 4327//11253 3831//11254 2093//11255 -f 1627//11256 4851//11257 2422//11258 -f 5911//11259 5592//11260 5514//11260 -f 142//11261 4520//11262 4421//11261 -f 5910//11263 5513//11264 5663//11265 -f 1156//11266 868//11267 5311//11268 -f 4408//11269 4407//11270 2947//11271 -f 46//11272 1661//11272 760//11272 -f 5910//11273 5663//11274 5863//11274 -f 1596//11275 2891//11276 2744//11277 -f 3118//11278 3121//11278 4346//11278 -f 3160//11279 3420//11280 3262//11281 -f 4718//11282 3622//11283 3095//11284 -f 1885//11285 4764//11285 942//11285 -f 5820//11286 5429//11287 5428//11288 -f 5863//11289 5663//11290 5864//11291 -f 5666//11292 5667//11293 5862//11293 -f 1595//11294 5213//11295 1506//11296 -f 36//11297 4475//11298 4320//11299 -f 5520//11300 5665//11301 5913//11300 -f 2198//11302 44//11302 2601//11303 -f 768//11304 769//11305 3624//11306 -f 856//11307 2552//11308 5590//11309 -f 3472//11310 703//11311 1824//11312 -f 3757//11313 779//11313 2665//11313 -f 5868//11314 5866//11315 5822//11316 -f 5668//11317 5670//11318 5914//11319 -f 5820//11320 5672//11321 5429//11322 -f 1869//11323 1043//11323 1044//11323 -f 5029//11324 3200//11325 1573//11326 -f 5916//11327 5823//11328 5870//11327 -f 514//11329 4640//11330 4998//11330 -f 5981//11331 5673//11332 5609//11333 -f 2244//11334 2176//11335 3288//11336 -f 4927//11337 2253//11338 4766//11339 -f 3266//11340 2561//11340 2547//11341 -f 1678//11342 4131//11343 2059//11344 -f 1922//11345 1733//11345 1299//11345 -f 1420//11346 3611//11347 4560//11347 -f 2524//11348 341//11349 3512//11350 -f 5825//11351 5780//11352 5873//11353 -f 5873//11354 5918//11355 5825//11356 -f 5783//11357 5825//11358 5918//11358 -f 5496//11359 560//11359 7389//11360 -f 3650//11361 3630//11362 2284//11363 -f 5919//11364 5735//11365 5874//11364 -f 5332//11366 4811//11366 4772//11366 -f 5113//11367 3334//11368 1217//11369 -f 229//11370 3914//11371 3661//11372 -f 284//11373 2813//11374 2195//11375 -f 4893//11376 2506//11377 1882//11378 -f 2962//11379 3505//11380 4585//11381 -f 418//11382 5613//11383 4196//11384 -f 5687//11385 5683//11386 5986//11387 -f 4872//11388 1658//11389 3934//11390 -f 5785//11391 6024//11392 5685//11393 -f 558//11394 623//11395 2870//11396 -f 2281//11397 4113//11398 1300//11399 -f 5739//11400 5736//11400 5876//11400 -f 968//11401 537//11402 1511//11403 -f 5692//11404 5877//11404 5785//11405 -f 2365//11406 2865//11407 1372//11408 -f 5549//11409 2947//11409 4683//11409 -f 3383//11410 2210//11411 852//11412 -f 5922//11413 5691//11413 5739//11413 -f 5548//11414 5687//11415 5879//11416 -f 5692//11417 5788//11418 5878//11419 -f 5878//11420 5788//11421 5693//11422 -f 3401//11423 2136//11423 3539//11424 -f 820//11425 2062//11426 3057//11427 -f 941//11428 428//11429 2737//11428 -f 1093//11430 619//11431 4705//11432 -f 4297//11433 5159//11434 2318//11435 -f 606//11436 536//11436 3114//11436 -f 5695//11437 5625//11437 5789//11437 -f 5880//11438 5693//11438 5791//11438 -f 3191//11439 2239//11440 5267//11439 -f 1767//11441 3725//11442 1384//11443 -f 5696//11444 5923//11445 5698//11446 -f 357//11447 3015//11448 4518//11449 -f 5747//11450 5698//11451 5923//11452 -f 1524//11453 4516//11454 3283//11455 -f 2030//11456 817//11457 814//11458 -f 4710//11459 2814//11459 149//11459 -f 517//11460 589//11461 2423//11461 -f 2413//11462 4044//11463 373//11464 -f 3346//11465 5206//11466 3188//11467 -f 5745//11468 5882//11469 5792//11470 -f 5742//11471 5925//11471 5744//11471 -f 1947//11472 1089//11473 4501//11472 -f 5700//11474 5747//11475 6032//11476 -f 2145//11477 1525//11477 870//11477 -f 5223//11478 2911//11479 3609//11480 -f 5951//11481 5835//11482 5632//11483 -f 2126//11484 1880//11485 1848//11484 -f 5835//11486 5631//11487 5632//11488 -f 5884//11489 5634//11490 5701//11491 -f 5634//11492 5884//11493 5836//11494 -f 5951//11495 5632//11496 5927//11497 -f 5928//11498 5885//11499 5839//11500 -f 5927//11501 5632//11501 5837//11501 -f 3043//11502 4979//11503 4668//11503 -f 3772//11504 1669//11504 1145//11504 -f 5838//11505 5885//11506 5886//11507 -f 5839//11508 5887//11508 5952//11508 -f 5840//11509 5954//11510 5837//11511 -f 4789//11512 2552//11512 3485//11512 -f 1160//11513 4007//11513 3279//11514 -f 1316//11515 2545//11516 4111//11517 -f 4919//11518 2607//11519 2289//11520 -f 3045//11521 4127//11522 1491//11523 -f 5841//11524 5751//11525 5887//11526 -f 256//11527 2474//11528 509//11529 -f 3692//11530 5743//11531 4463//11532 -f 137//11533 3609//11533 4166//11534 -f 5569//11535 5702//11536 5929//11536 -f 4062//11537 4578//11538 4335//11539 -f 140//11540 3470//11541 4686//11541 -f 5888//11542 5703//11542 5842//11543 -f 5838//11544 5888//11545 5842//11546 -f 3956//11547 1429//11547 3577//11547 -f 1644//11548 2938//11548 3410//11548 -f 3612//11549 825//11550 3642//11551 -f 3151//11552 3645//11553 4135//11553 -f 2403//11554 1922//11555 4991//11555 -f 973//11556 4602//11557 3471//11557 -f 4645//11558 2161//11559 2213//11559 -f 122//11560 2711//11560 827//11560 -f 42//11561 3992//11561 1900//11561 -f 2788//11562 2538//11563 147//11564 -f 1812//11565 1610//11565 809//11565 -f 5708//11566 5283//11567 5890//11568 -f 5800//11569 5645//11570 5847//11571 -f 2227//11572 2289//11573 2607//11574 -f 3123//11575 1706//11576 5064//11576 -f 40//11577 1639//11578 3068//11579 -f 752//11580 3898//11580 269//11581 -f 3187//11582 5130//11583 4208//11584 -f 3165//11585 4855//11586 5662//11587 -f 177//11588 614//11589 2939//11590 -f 3678//11591 136//11591 1142//11592 -f 2594//11593 4238//11594 3381//11595 -f 2165//11596 4368//11597 3888//11597 -f 5804//11598 5960//11599 5711//11600 -f 2897//11601 1208//11602 2612//11601 -f 5930//11603 5849//11603 5960//11603 -f 5930//11604 5850//11604 5849//11604 -f 3513//11605 5271//11606 4786//11607 -f 5652//11608 6110//11609 5481//11610 -f 5481//11611 6110//11612 5931//11613 -f 5930//11614 5652//11615 5851//11616 -f 5931//11617 5932//11618 5481//11619 -f 4768//11620 5292//11621 5805//11622 -f 5854//11623 5758//11623 5759//11624 -f 1356//11625 1295//11625 206//11626 -f 957//11627 14//11628 2628//11629 -f 6074//11630 5578//11631 5042//11632 -f 5759//11633 5201//11633 5855//11633 -f 2248//11634 4558//11635 2507//11635 -f 5963//11636 5964//11636 5895//11637 -f 2638//11638 2639//11639 3706//11639 -f 929//11640 2730//11641 5368//11642 -f 5301//11643 300//11644 3061//11645 -f 5895//11646 5898//11647 5933//11648 -f 3071//11649 2830//11649 2634//11649 -f 5934//11650 5899//11651 5896//11652 -f 1648//11653 3744//11654 3092//11655 -f 4709//11656 1019//11657 5029//11658 -f 5901//11659 5899//11660 5934//11661 -f 5935//11662 5900//11663 5901//11662 -f 4384//11664 6794//11665 2629//11666 -f 3343//11667 2907//11668 4270//11669 -f 999//11670 4119//11670 4348//11670 -f 5404//11671 5856//11672 5761//11673 -f 4149//11674 1658//11674 3071//11674 -f 242//11675 3548//11676 1653//11675 -f 2447//11677 2718//11677 652//11678 -f 23//11679 5412//11680 1587//11681 -f 1273//11682 3155//11683 113//11682 -f 1221//11684 864//11684 1441//11684 -f 2244//11685 3288//11686 1359//11685 -f 2465//11687 2126//11688 2803//11689 -f 5937//11690 5052//11691 5938//11692 -f 717//11693 1624//11694 4174//11694 -f 1565//11695 258//11695 2899//11695 -f 4383//11696 15//11697 1785//11698 -f 5494//11699 5902//11700 5938//11701 -f 5811//11702 5495//11703 5808//11704 -f 7357//11705 2232//11705 4126//11706 -f 3495//11707 4047//11708 2487//11709 -f 3674//11710 4002//11710 2551//11710 -f 5903//11711 5302//11711 5763//11712 -f 6007//11713 5714//11714 5060//11715 -f 4856//11716 5196//11716 4382//11716 -f 4633//11717 1463//11718 3175//11719 -f 1602//11720 1850//11721 1939//11721 -f 939//11722 938//11723 3613//11724 -f 4433//11725 2523//11726 2173//11727 -f 5814//11728 5906//11729 5815//11730 -f 3661//11731 3056//11732 4100//11733 -f 1330//11734 2772//11735 4016//11736 -f 1201//11737 553//11738 2443//11739 -f 3613//11740 2167//11740 184//11740 -f 4381//11741 1766//11741 716//11741 -f 4750//11742 459//11743 4430//11744 -f 3791//11745 261//11745 1660//11745 -f 6085//11746 5315//11747 5659//11748 -f 5717//11749 5907//11750 5764//11751 -f 3785//11752 336//11753 906//11754 -f 5908//11755 5504//11756 5941//11757 -f 301//11758 1334//11759 3580//11760 -f 687//11761 686//11762 2228//11763 -f 4244//11764 579//11765 3270//11766 -f 5942//11767 5659//11768 5416//11769 -f 5942//11770 5416//11771 5767//11772 -f 357//11773 4518//11774 4728//11775 -f 5720//11776 5765//11777 5593//11778 -f 5767//11779 5594//11780 5860//11780 -f 5595//11781 5859//11781 5909//11781 -f 5513//11782 6089//11783 5766//11784 -f 2130//11785 3789//11786 3533//11787 -f 463//11788 4880//11788 660//11788 -f 4244//11789 332//11790 743//11791 -f 4903//11792 89//11793 2992//11794 -f 849//11795 3995//11796 3317//11797 -f 3395//11798 665//11799 4156//11800 -f 223//11801 1798//11802 2172//11803 -f 79//11804 3443//11805 110//11806 -f 3579//11807 5128//11807 4037//11808 -f 1739//11809 481//11809 2285//11810 -f 5140//11811 3095//11811 2944//11812 -f 5773//11813 5978//11814 5864//11815 -f 5978//11816 5773//11816 5866//11816 -f 5470//11817 1978//11817 2783//11817 -f 5127//11818 707//11819 207//11820 -f 528//11821 2216//11822 3866//11823 -f 1890//11824 2353//11825 5534//11826 -f 3960//11827 1041//11827 1278//11828 -f 3814//11829 2855//11830 251//11829 -f 1859//11831 4907//11832 2137//11833 -f 4616//11834 1192//11835 3786//11836 -f 1866//11837 4846//11838 1232//11837 -f 2696//11839 4371//11840 1744//11839 -f 1444//11841 4187//11842 3480//11842 -f 4790//11843 841//11844 892//11844 -f 3073//11845 3731//11845 428//11845 -f 4870//11846 5156//11847 2119//11847 -f 1969//11848 604//11849 2589//11850 -f 134//11851 305//11851 4061//11851 -f 1731//11852 3353//11853 1608//11854 -f 1499//11855 3846//11856 4119//11857 -f 2835//11858 3125//11859 4026//11860 -f 5603//11861 5945//11862 5915//11863 -f 5917//11864 5605//11865 5869//11866 -f 1630//11867 2248//11868 974//11869 -f 5917//11870 5871//11871 5605//11872 -f 5873//11873 5823//11873 5916//11873 -f 4843//11874 4484//11875 4408//11876 -f 90//11877 2246//11878 1106//11879 -f 1156//11880 5126//11881 1758//11882 -f 3457//11883 2121//11883 3329//11883 -f 287//11884 766//11885 1628//11886 -f 2804//11887 3197//11888 3785//11889 -f 2707//11890 1330//11891 3433//11892 -f 4310//11893 5581//11894 3707//11895 -f 3362//11896 4764//11897 4427//11896 -f 2284//11898 4781//11899 3636//11900 -f 3445//11901 781//11902 3412//11901 -f 37//11903 968//11904 1511//11905 -f 5827//11906 5674//11907 5871//11908 -f 1651//11909 346//11910 1683//11911 -f 1009//11912 270//11912 3969//11912 -f 1583//11913 799//11914 5128//11915 -f 2667//11916 5338//11917 2231//11918 -f 1524//11919 1484//11919 1523//11919 -f 7402//11920 1113//11921 7403//11922 -f 5874//11923 5685//11923 5920//11923 -f 2865//11924 4105//11924 1372//11925 -f 2105//11926 1094//11926 328//11926 -f 527//11927 4377//11928 980//11929 -f 3782//11930 756//11930 444//11930 -f 854//11931 2300//11932 1828//11933 -f 5877//11934 6024//11935 5785//11935 -f 3816//11936 3890//11937 2676//11938 -f 1281//11939 816//11939 1211//11939 -f 4338//11940 2224//11941 4448//11942 -f 5692//11943 5878//11944 5877//11945 -f 3269//11946 4923//11947 310//11948 -f 3439//11949 5120//11949 3782//11950 -f 3715//11951 3334//11952 5113//11953 -f 3223//11954 4677//11955 2581//11955 -f 5878//11956 5693//11957 5949//11958 -f 1720//11959 1183//11960 1419//11961 -f 5880//11962 5949//11962 5693//11962 -f 5696//11963 5879//11964 5923//11963 -f 2577//11965 73//11965 4959//11965 -f 2991//11966 2285//11967 153//11968 -f 805//11969 990//11970 2615//11971 -f 4444//11972 811//11972 810//11972 -f 5792//11973 5880//11974 5791//11975 -f 4698//11976 4752//11977 5077//11978 -f 5700//11979 5926//11979 5793//11979 -f 2030//11980 814//11981 3428//11982 -f 1985//11983 3531//11983 364//11983 -f 5502//11984 2435//11984 2506//11984 -f 3162//11985 413//11986 3930//11987 -f 865//11988 4885//11989 3653//11990 -f 540//11991 1861//11992 2761//11993 -f 2424//11994 749//11994 2420//11994 -f 5701//11995 5744//11995 5883//11995 -f 5884//11996 5701//11997 5883//11998 -f 991//11999 4340//12000 1787//12001 -f 3322//12002 1847//12003 1549//12004 -f 5952//12005 5928//12006 5839//12006 -f 2254//12007 2071//12008 1054//12009 -f 1647//12010 3244//12011 2091//12010 -f 2120//12012 175//12012 3699//12013 -f 5953//12014 5886//12015 5885//12016 -f 2672//12017 2199//12018 3268//12019 -f 194//12020 4070//12021 1034//12020 -f 1014//12022 4179//12023 323//12024 -f 3055//12025 4009//12025 3445//12025 -f 2161//12026 558//12027 2870//12028 -f 5702//12029 5836//12030 5929//12031 -f 5280//12032 5955//12032 5638//12033 -f 3515//12034 334//12035 2810//12036 -f 5569//12037 5929//12037 5639//12038 -f 3160//12039 3262//12040 2994//12041 -f 5888//12042 5956//12042 5703//12042 -f 2409//12043 5031//12044 3017//12045 -f 204//12046 4922//12047 222//12048 -f 603//12049 985//12049 2112//12049 -f 5796//12050 5795//12051 5957//12052 -f 1952//12053 94//12054 4180//12055 -f 3585//12056 186//12056 4945//12056 -f 5706//12057 5797//12058 5386//12059 -f 5831//12060 2034//12061 2977//12060 -f 5477//12062 5644//12063 5958//12062 -f 5802//12064 5575//12064 5705//12064 -f 5891//12065 5706//12065 5389//12065 -f 6038//12066 5891//12067 5389//12068 -f 5708//12069 6071//12069 5103//12069 -f 5223//12070 2991//12071 2135//12072 -f 6038//12073 5389//12074 5803//12075 -f 5848//12076 5709//12077 5753//12078 -f 2859//12079 1033//12080 1119//12079 -f 2764//12081 1712//12082 2110//12081 -f 356//12083 1714//12084 1738//12085 -f 1622//12086 1628//12086 5053//12087 -f 5754//12088 5894//12088 5391//12088 -f 3952//12089 4127//12090 564//12091 -f 458//12092 3721//12092 4772//12092 -f 2714//12093 3977//12094 2371//12094 -f 5960//12095 5804//12096 6072//12097 -f 3661//12098 1778//12099 1244//12100 -f 171//12101 1912//12102 2171//12103 -f 5960//12104 5961//12105 5930//12106 -f 5851//12107 5850//12108 5930//12109 -f 765//12110 4353//12111 4168//12112 -f 1379//12113 96//12114 131//12115 -f 5806//12116 5483//12117 5932//12118 -f 4057//12119 3691//12119 4413//12119 -f 4752//12120 1857//12121 2293//12121 -f 5999//12122 5759//12122 5855//12122 -f 125//12123 5308//12123 1206//12123 -f 3980//12124 1605//12124 4590//12125 -f 258//12126 2225//12127 3035//12128 -f 4050//12129 3364//12130 2893//12131 -f 1803//12132 3671//12133 3231//12134 -f 4727//12135 1504//12136 1503//12137 -f 5964//12138 6077//12139 5965//12140 -f 5933//12141 5963//12142 5895//12143 -f 1652//12144 4937//12144 2102//12144 -f 976//12145 56//12146 770//12145 -f 5896//12147 5964//12147 5965//12147 -f 22//12148 2014//12149 3123//12148 -f 461//12150 3150//12151 1623//12152 -f 5896//12153 5965//12154 5934//12155 -f 5598//12156 3922//12156 1184//12156 -f 2696//12157 1744//12158 4455//12158 -f 5219//12159 3795//12159 2465//12160 -f 5900//12161 5967//12161 5898//12162 -f 1036//8085 6828//8085 1363//8085 -f 4525//12163 283//12163 195//12163 -f 4425//12164 1617//12165 1274//12166 -f 1090//12167 3895//12168 943//12169 -f 5411//12170 3227//12171 5063//12170 -f 1722//12172 1721//12173 2609//12174 -f 5856//12175 5969//12176 5761//12177 -f 5761//12178 5970//12179 5762//12180 -f 674//12181 2435//12182 4523//12181 -f 5971//12183 5808//12184 5762//12185 -f 1998//12186 1386//12187 5507//12188 -f 3480//12189 4337//12190 3844//12189 -f 1386//12191 1998//12192 1561//12192 -f 5497//12193 5714//12193 6005//12193 -f 5714//12194 5972//12195 6005//12196 -f 4131//12197 2282//12197 5560//12197 -f 5713//12198 5858//12199 5973//12199 -f 5763//12200 5809//12201 5857//12202 -f 5060//12203 5974//12204 6007//12204 -f 3411//12205 3402//12206 5107//12207 -f 5812//12208 5302//12209 5903//12210 -f 80//12211 1921//12212 2988//12212 -f 5939//12213 5817//12214 5816//12215 -f 6008//12216 5939//12217 5816//12218 -f 6008//12219 5816//12220 5658//12220 -f 2615//12221 990//12222 103//12223 -f 1655//12224 2341//12225 5403//12226 -f 5975//12227 5060//12228 5313//12227 -f 5814//12229 5813//12230 6011//12231 -f 4780//12232 4065//12233 3782//12234 -f 4096//12235 4746//12235 504//12235 -f 2332//12236 3900//12237 2334//12238 -f 1867//12239 50//12240 3971//12241 -f 1044//12242 716//12243 1869//12244 -f 907//12245 3953//12245 1560//12246 -f 5743//12247 3692//12248 108//12249 -f 6013//12250 6085//12251 5659//12252 -f 5940//12253 5764//12254 5907//12255 -f 4470//12256 2371//12257 3977//12258 -f 5765//12259 5142//12259 5908//12259 -f 1953//12260 715//12260 1659//12260 -f 1736//12261 5009//12262 4053//12263 -f 5860//12264 5942//12265 5767//12266 -f 4578//12267 2223//12267 3724//12267 -f 2271//12268 1180//12268 967//12268 -f 1489//12269 3989//12269 1246//12269 -f 79//12270 4709//12271 5029//12271 -f 3377//12272 4280//12273 711//12274 -f 5589//12275 5592//12275 5977//12276 -f 6089//12277 5513//12278 5910//12279 -f 4649//12280 866//12280 3772//12280 -f 725//12281 721//12281 2816//12282 -f 3222//12283 2891//12283 467//12284 -f 3605//12285 4459//12286 4655//12285 -f 3274//12287 17//12288 327//12289 -f 1017//12290 3276//12291 4539//12292 -f 2917//12293 1145//12293 1397//12293 -f 1228//12294 3964//12295 1749//12296 -f 291//12297 2099//12298 2114//12299 -f 1854//12300 2159//12301 2258//12302 -f 4426//12303 3461//12303 3394//12304 -f 5770//12305 5723//12306 6056//12305 -f 4041//12307 2437//12307 636//12307 -f 3885//12308 1600//12309 594//12310 -f 5863//12311 5864//12312 5978//12313 -f 4850//12314 632//12315 906//12316 -f 2517//12317 3530//12318 3504//12317 -f 5978//12319 5866//12319 5868//12320 -f 5979//12321 5667//12322 5668//12323 -f 4169//12324 609//12324 2383//12324 -f 5725//12325 5912//12326 5980//12325 -f 5520//12327 5913//12328 5865//12329 -f 5869//12330 5605//12331 5725//12331 -f 5600//12332 5601//12333 5944//12334 -f 59//12335 962//12336 2464//12337 -f 5670//12338 5981//12339 5914//12340 -f 5520//12341 5865//12342 5867//12342 -f 3300//12343 1453//12344 3301//12345 -f 2236//12346 2964//12347 2139//12348 -f 2039//12349 3507//12349 757//12350 -f 107//12351 2780//12352 1467//12353 -f 3294//12354 3742//12355 4097//12356 -f 5824//12357 5781//12358 5872//12359 -f 3293//12360 2946//12361 4843//12362 -f 1096//12363 3018//12364 2212//12365 -f 2406//12366 2741//12367 1086//12368 -f 4301//12369 2484//12370 3325//12371 -f 4411//12372 300//12373 130//12374 -f 953//12375 4621//12376 4255//12377 -f 4392//12378 3655//12379 297//12380 -f 1504//12381 1594//12382 4310//12383 -f 5733//12384 5919//12385 5947//12386 -f 1994//12387 3132//12387 4391//12387 -f 1803//12388 3231//12389 650//12390 -f 1299//12391 1897//12392 3169//12393 -f 5683//12394 5616//12395 5948//12395 -f 5212//12396 2742//12397 4977//12396 -f 5736//12398 5783//12398 5921//12398 -f 2529//12399 4517//12399 4297//12400 -f 3458//12401 4339//12401 3483//12402 -f 4919//12403 2289//12404 1482//12405 -f 3428//12406 5984//12407 1818//12407 -f 5920//12408 5685//12409 6024//12408 -f 5921//12410 5875//12411 5736//12412 -f 5876//12413 5736//12414 5875//12415 -f 1290//12416 2354//12416 5062//12416 -f 5270//12417 854//12418 1828//12419 -f 4666//12420 5184//12420 140//12420 -f 5922//12421 5739//12422 5876//12423 -f 388//12424 3135//12425 1713//12426 -f 5787//12427 5691//12428 6029//12429 -f 1205//12430 1550//12430 173//12430 -f 3022//12431 4975//12432 2633//12433 -f 544//12434 5655//12435 3364//12436 -f 4560//12437 1179//12438 4838//12439 -f 5787//12440 6029//12440 5789//12440 -f 4098//12441 3555//12442 4727//12443 -f 2936//12444 5121//12445 64//12446 -f 1586//12447 1454//12448 5480//12449 -f 3796//12450 1759//12451 2543//12452 -f 4843//12453 492//12454 3502//12455 -f 5741//12456 5924//12457 5554//12458 -f 5362//12459 2429//12460 1796//12461 -f 5949//12462 5880//12463 5988//12464 -f 811//12465 86//12466 810//12467 -f 282//12468 7399//12468 5707//12468 -f 2006//12469 631//12470 41//12471 -f 5880//12472 5792//12473 5989//12474 -f 1763//12475 197//12476 3892//12477 -f 2066//12478 3548//12479 1428//12479 -f 5747//12480 5923//12480 5950//12480 -f 5925//12481 5742//12482 5695//12483 -f 333//12484 5540//12485 1803//12486 -f 4254//12487 400//12487 4133//12487 -f 1267//12488 5656//12489 894//12490 -f 5926//12491 5700//12492 6032//12493 -f 5085//12494 2467//12495 5540//12496 -f 1760//12497 624//12498 2405//12499 -f 1733//12500 1897//12501 1299//12502 -f 5794//12503 5835//12504 5991//12505 -f 606//12506 1686//12506 3110//12506 -f 1968//12507 1923//12508 3296//12509 -f 3588//12510 1716//12511 2765//12512 -f 5951//12513 5991//12513 5835//12513 -f 4556//12514 117//12515 615//12516 -f 5928//12517 5992//12518 5885//12519 -f 4545//12520 2876//12521 1600//12522 -f 2475//12523 2154//12524 75//12525 -f 3774//12526 1069//12527 2871//12528 -f 2542//12529 435//12529 361//12530 -f 2812//12531 1192//12532 4616//12533 -f 5887//12534 5993//12535 5952//12536 -f 420//12537 4265//12537 3947//12537 -f 4260//12538 2186//12539 5403//12540 -f 3059//12541 3807//12542 3060//12541 -f 5955//12543 5993//12544 5751//12545 -f 1690//12546 2965//12547 4558//12548 -f 5888//12549 5886//12550 5953//12551 -f 5751//12552 5638//12553 5955//12554 -f 6035//12555 5993//12555 5955//12555 -f 2146//12556 4929//12557 4597//12558 -f 3854//12559 4689//12559 3855//12559 -f 5323//12560 2150//12561 3712//12562 -f 3473//12563 165//12564 1875//12565 -f 5955//12566 5280//12567 5797//12566 -f 1538//12568 2779//12569 5082//12570 -f 5994//12571 5749//12571 5796//12572 -f 3370//12573 4087//12573 4960//12574 -f 1504//12575 3707//12576 1594//12577 -f 3794//12578 411//12579 3339//12580 -f 3561//12581 2413//12582 3510//12582 -f 3412//12583 3055//12584 3445//12585 -f 4188//12586 4772//12586 3721//12586 -f 1850//12587 1012//12587 1940//12587 -f 5737//12588 1169//12589 1185//12590 -f 5891//12591 5797//12592 5706//12593 -f 1169//12594 3407//12594 1185//12595 -f 1823//12596 581//12597 852//12598 -f 3558//12599 20//12600 3693//12601 -f 4203//12602 2061//12603 4546//12604 -f 5657//12605 3413//12606 2245//12607 -f 5647//12608 5477//12608 5958//12609 -f 4814//12610 1734//12611 2260//12612 -f 801//12613 1480//12614 960//12615 -f 5996//12616 5891//12616 6038//12616 -f 5284//12617 5103//12618 6071//12617 -f 6041//12619 5803//12619 5576//12619 -f 1948//12620 5215//12621 3926//12622 -f 1856//12623 2510//12624 2262//12625 -f 1071//12626 3985//12627 4695//12628 -f 5576//12629 5023//12630 5997//12631 -f 5023//12632 5650//12632 5997//12632 -f 356//12633 3903//12634 5301//12635 -f 419//12636 5319//12637 997//12638 -f 4998//12639 4640//12640 4512//12641 -f 231//12642 3277//12643 4665//12644 -f 5854//12645 5759//12646 5999//12647 -f 2006//12648 41//12649 4222//12649 -f 910//12650 2833//12650 1430//12650 -f 4222//12651 2102//12651 2006//12652 -f 5962//12653 5297//12654 5760//12655 -f 1290//12656 4457//12657 1535//12656 -f 5964//12658 5963//12659 6000//12660 -f 3002//12661 241//12662 964//12663 -f 835//12664 7280//12665 324//12666 -f 5933//12667 6001//12668 5963//12669 -f 5933//12670 5898//12671 6002//12672 -f 6003//12673 5934//12673 5965//12673 -f 6002//12674 5898//12675 5967//12676 -f 5056//12677 466//12677 1593//12677 -f 485//12678 2643//12679 1781//12680 -f 5935//12681 5967//12682 5900//12683 -f 3664//12684 3574//12685 4172//12686 -f 6081//12687 5208//12688 5807//12689 -f 5228//12690 428//12691 941//12692 -f 1540//12693 4//12694 3//12695 -f 5761//12696 5969//12697 5970//12698 -f 5971//12699 5762//12700 5970//12701 -f 2458//12702 2097//12703 2941//12704 -f 5497//12705 6005//12706 5809//12707 -f 1931//12708 2505//12709 2315//12709 -f 477//12710 172//12710 5351//12710 -f 7289//12711 4055//12711 874//12711 -f 993//12712 1308//12713 4826//12712 -f 2147//12714 2025//12715 3834//12715 -f 3021//12716 4115//12716 5492//12716 -f 1960//12717 817//12717 2030//12717 -f 727//12718 5570//12718 2428//12718 -f 5325//12719 5028//12720 961//12721 -f 679//12722 3517//12723 3189//12723 -f 1825//12724 4636//12725 281//12726 -f 5974//12727 5060//12728 5975//12729 -f 3083//12730 3356//12730 578//12730 -f 6010//12731 5906//12732 5814//12733 -f 2352//12734 2740//12735 295//12734 -f 5049//12736 822//12736 3995//12737 -f 2384//12738 3438//12738 2270//12739 -f 5313//12740 5315//12741 5975//12742 -f 2754//12743 3932//12744 2838//12745 -f 1787//12746 4340//12746 3793//12746 -f 5766//12747 5858//12748 5582//12749 -f 3609//12750 2911//12750 100//12750 -f 2772//12751 4303//12752 3589//12753 -f 5942//12754 6013//12755 5659//12756 -f 1098//12757 3027//12757 530//12757 -f 1577//12758 4365//12759 733//12760 -f 3384//12761 3270//12762 1985//12763 -f 5940//12764 5861//12765 5587//12764 -f 5976//12766 5593//12767 5765//12768 -f 4433//12769 2173//12770 2303//12769 -f 4690//12771 4007//12771 1786//12771 -f 1302//12772 1089//12772 1947//12772 -f 5723//12773 5909//12774 6015//12774 -f 4695//12775 1886//12776 975//12777 -f 2786//12778 122//12778 827//12778 -f 5593//12779 5976//12779 6014//12779 -f 1635//12780 61//12781 12//12782 -f 5769//12783 5593//12784 6014//12785 -f 5911//12786 5514//12787 6016//12788 -f 3747//12789 1740//12789 2435//12789 -f 5062//12790 4452//12791 220//12792 -f 6016//12793 5514//12794 5517//12795 -f 4706//12796 7398//12797 2332//12798 -f 1074//12799 1275//12800 3469//12801 -f 6014//12802 5428//12802 5769//12802 -f 858//12803 5083//12804 4230//12805 -f 4434//12806 2334//12806 3901//12806 -f 3894//12807 1090//12808 2380//12809 -f 253//12810 7401//12811 321//12812 -f 3178//12813 1248//12814 990//12815 -f 5979//12816 5862//12816 5667//12817 -f 5022//12818 3246//12819 3245//12820 -f 74//12821 4956//12821 3289//12822 -f 314//12823 385//12824 1134//12825 -f 1812//12826 263//12826 274//12827 -f 5725//12828 5980//12829 5869//12828 -f 5771//12830 5600//12830 5944//12831 -f 5868//12832 5824//12833 6018//12834 -f 2098//12835 2775//12836 4832//12837 -f 5670//12838 5673//12838 5981//12838 -f 2430//12839 4702//12840 4229//12840 -f 992//12841 3056//12842 3914//12843 -f 601//12844 4104//12844 4370//12845 -f 2978//12846 1509//12847 1254//12848 -f 1200//12849 5019//12850 1038//12851 -f 1317//12852 5195//12852 2018//12852 -f 5870//12853 5672//12853 5982//12853 -f 5872//12854 6018//12855 5824//12854 -f 5945//12856 5775//12857 5867//12858 -f 5945//12859 5603//12860 5775//12861 -f 634//12862 1304//12863 816//12864 -f 1473//12865 1843//12866 3178//12867 -f 1356//12868 7166//12868 7382//12868 -f 3154//12869 3454//12870 4529//12871 -f 648//12872 497//12872 252//12873 -f 3231//12874 3345//12875 4279//12874 -f 3311//12876 3159//12877 129//12878 -f 6020//12879 5609//12880 5733//12880 -f 1919//12881 40//12882 3068//12882 -f 1419//12883 3184//12883 1420//12883 -f 5699//12884 5946//12885 4299//12886 -f 1594//12887 5581//12888 4310//12889 -f 5983//12890 5828//12891 5681//12892 -f 4551//12893 3986//12893 360//12894 -f 5616//12895 5827//12895 5948//12895 -f 5681//12896 5784//12897 5983//12898 -f 1540//12899 515//12900 1541//12901 -f 3719//12902 1345//12902 4081//12903 -f 5919//12904 5874//12904 6062//12905 -f 3292//12906 4663//12907 492//12908 -f 1382//12909 2516//12910 301//12910 -f 2617//12911 4891//12912 4128//12913 -f 5683//12914 5948//12914 5986//12914 -f 3947//12915 1568//12915 360//12915 -f 6025//12916 6024//12917 5877//12918 -f 5985//12919 5687//12919 5986//12920 -f 6026//12921 5689//12922 5832//12923 -f 2744//12924 437//12925 2189//12926 -f 4193//12927 2826//12928 4398//12929 -f 5327//12930 561//12930 1211//12930 -f 1373//12931 1023//12931 3896//12931 -f 2571//12932 1574//12933 1704//12934 -f 1560//12935 3953//12936 1031//12937 -f 6027//12938 6029//12939 5691//12940 -f 6026//12941 5832//12941 5833//12941 -f 142//12942 4421//12943 2881//12944 -f 613//12945 2786//12946 827//12947 -f 5879//12948 5987//12948 5923//12949 -f 5035//12950 3176//12950 5505//12951 -f 5695//12952 5789//12952 6030//12953 -f 3739//12954 526//12955 464//12956 -f 320//12957 319//12958 3685//12959 -f 1847//12960 3619//12961 1823//12962 -f 2017//12963 3007//12964 3599//12965 -f 5988//12966 5880//12967 5989//12968 -f 172//12969 3904//12969 2430//12969 -f 3324//12970 3369//12971 5431//12970 -f 5950//12972 5923//12973 6031//12974 -f 5881//12975 5793//12975 5926//12975 -f 6032//12976 5747//12976 5950//12977 -f 697//12978 1106//12979 2246//12980 -f 3329//12981 2121//12982 2222//12983 -f 476//12984 4444//12985 3797//12984 -f 5792//12986 5882//12987 5990//12988 -f 5989//12989 5792//12990 5990//12991 -f 6033//12992 5744//12993 5925//12994 -f 5882//12995 5745//12996 5794//12997 -f 1095//12998 4023//12999 4060//13000 -f 4646//13001 3065//13002 101//13003 -f 3614//13004 1830//13005 3762//13006 -f 5107//13007 5344//13007 1945//13008 -f 637//13009 2440//13010 2237//13011 -f 2939//13012 614//13013 832//13014 -f 3237//13015 3353//13015 1731//13015 -f 5992//13016 5953//13017 5885//13018 -f 529//13019 1311//13019 1208//13019 -f 4690//13020 1786//13020 1876//13021 -f 5751//13022 5993//13023 5887//13022 -f 4022//13024 3659//13025 1956//13026 -f 749//13027 2421//13028 2420//13029 -f 5400//13030 2736//13031 4825//13032 -f 3149//13033 2425//13034 441//13035 -f 1570//13036 3735//13037 440//13038 -f 5174//13039 396//13040 3645//13041 -f 1481//13042 3490//13043 238//13044 -f 3976//13045 2637//13046 5102//13047 -f 6070//13048 5888//13049 5953//13050 -f 5840//13051 5749//13052 5994//13053 -f 5956//13054 5888//13054 6070//13054 -f 3335//13055 2639//13055 4814//13055 -f 5703//13056 5956//13057 5890//13058 -f 4508//13059 2680//13060 4487//13061 -f 2664//13062 4899//13063 4271//13064 -f 5891//13065 6037//13066 5797//13067 -f 2003//13068 2893//13069 2573//13070 -f 5722//13071 4554//13072 7142//13073 -f 4339//13074 4787//13075 3483//13076 -f 237//13077 3611//13077 398//13077 -f 1290//13078 2952//13078 2796//13078 -f 5995//13079 5846//13079 5800//13079 -f 4270//13080 1930//13080 2556//13081 -f 5752//13082 5647//13083 5958//13084 -f 2737//13085 3247//13086 1048//13087 -f 1559//13088 1474//13089 1517//13089 -f 4375//13090 2629//13091 2919//13092 -f 1862//13093 3108//13093 1489//13093 -f 751//13094 2504//13095 1550//13096 -f 5069//13097 1220//13097 3121//13097 -f 4772//13098 1122//13099 458//13099 -f 5709//13100 5848//13101 5959//13102 -f 4483//13103 2549//13104 1469//13105 -f 5959//13106 5710//13107 5709//13106 -f 1510//13108 1509//13109 2900//13110 -f 1765//13111 470//13111 882//13112 -f 5804//13113 5391//13114 5894//13115 -f 5083//13116 419//13117 997//13118 -f 3213//13119 4810//13119 1774//13119 -f 5961//13120 5960//13121 6072//13122 -f 222//13123 857//13124 204//13123 -f 4924//13125 3895//13126 545//13127 -f 3863//13128 5214//13129 907//13130 -f 2455//13131 1902//13132 3273//13132 -f 2031//13133 2366//13134 5339//13135 -f 1082//13136 4103//13137 1827//13138 -f 4103//13139 743//13140 828//13141 -f 3765//13142 278//13143 78//13144 -f 4153//13145 572//13146 2189//13146 -f 3093//13147 4909//13147 703//13147 -f 5427//13148 1862//13149 602//13150 -f 5964//13151 6000//13152 6076//13153 -f 984//13154 4000//13154 4155//13154 -f 6077//13155 5964//13156 6076//13157 -f 6078//13158 6000//13159 5963//13160 -f 2144//13161 1762//13161 5098//13161 -f 5224//13162 2591//13163 2590//13164 -f 6043//13165 5901//13166 5934//13167 -f 6044//13168 5935//13168 5901//13169 -f 4867//13170 3028//13170 3766//13170 -f 1945//13171 3411//13171 5107//13172 -f 3389//13173 717//13174 3627//13175 -f 5208//13176 6081//13176 5579//13177 -f 5968//13178 4699//13179 5490//13178 -f 5970//13180 5969//13181 6116//13182 -f 687//13183 2853//13184 2480//13185 -f 2653//13186 3553//13187 2652//13188 -f 474//13189 1897//13190 1733//13191 -f 3996//13192 165//13193 2590//13194 -f 3637//13195 2574//13196 936//13196 -f 5971//13197 6118//13198 5811//13199 -f 1929//13200 4499//13201 974//13202 -f 2668//13203 4986//13204 1339//13204 -f 6007//13205 5972//13206 5714//13207 -f 5808//13208 5971//13209 5811//13210 -f 2439//13211 3319//13212 988//13213 -f 3552//13214 7358//13214 4129//13214 -f 4983//13215 43//13216 1125//13217 -f 992//13218 2178//13218 2582//13218 -f 4081//13219 2959//13220 375//13221 -f 2471//13222 2472//13223 383//13224 -f 3524//13225 3348//13226 1656//13226 -f 1316//13227 4703//13228 1797//13229 -f 1222//13230 1644//13231 3410//13232 -f 5715//13233 5904//13234 6009//13235 -f 4011//13236 4818//13237 5790//13238 -f 5813//13239 5715//13240 6011//13241 -f 6010//13242 5814//13242 6011//13243 -f 4702//13244 588//13245 69//13246 -f 6011//13247 5715//13248 6009//13249 -f 2453//13250 167//13251 2898//13252 -f 2117//13253 5087//13253 506//13254 -f 2909//13255 1022//13256 3426//13257 -f 5858//13258 5409//13259 5582//13260 -f 437//13261 1046//13261 4153//13261 -f 5717//13262 6086//13263 5907//13264 -f 3347//13265 617//13266 4314//13267 -f 8//13268 3177//13269 2757//13270 -f 1353//13271 3118//13271 1983//13272 -f 3897//13273 5613//13274 418//13275 -f 5908//13276 6049//13277 5765//13278 -f 15//13279 2812//13280 1785//13281 -f 5589//13282 5977//13283 5504//13284 -f 5977//13285 5941//13286 5504//13287 -f 2359//13288 3266//13289 2548//13290 -f 695//13291 2341//13292 3260//13293 -f 5765//13294 6049//13295 5976//13296 -f 3394//13297 5396//13298 2835//13299 -f 5909//13300 5859//13301 6084//13302 -f 6084//13303 6050//13304 5909//13305 -f 242//13306 2105//13307 1428//13306 -f 4164//13308 4028//13309 30//13310 -f 336//13311 292//13311 906//13311 -f 5031//13312 3642//13312 5368//13312 -f 2398//13313 2397//13314 716//13315 -f 5977//13316 5592//13317 5911//13318 -f 5910//13319 6054//13320 6089//13321 -f 6053//13322 6014//13323 5976//13324 -f 2952//13325 3588//13326 4177//13327 -f 3545//13328 2949//13329 5559//13330 -f 3224//13331 1578//13332 2233//13333 -f 6052//13334 5860//13334 5818//13334 -f 5721//13335 5861//13336 6123//13336 -f 3198//13337 2237//13337 1247//13337 -f 3919//13338 1287//13339 4446//13340 -f 1836//13341 3982//13342 4199//13343 -f 5517//13344 5724//13345 6016//13346 -f 414//13347 4466//13347 4101//13347 -f 6056//13348 5912//13348 5770//13348 -f 6017//13349 5428//13350 6014//13351 -f 1575//13352 4852//13353 4851//13352 -f 59//13354 2464//13355 4675//13356 -f 5820//13357 5428//13358 6017//13359 -f 344//13360 1554//13360 1444//13361 -f 4412//13362 1954//13363 2151//13362 -f 5978//13364 5868//13365 6018//13366 -f 2065//13367 1369//13368 2867//13367 -f 5668//13369 5914//13370 5979//13370 -f 1457//13371 2336//13372 2160//13373 -f 1025//13374 1114//13374 2929//13374 -f 3285//13375 3899//13375 3944//13375 -f 1036//13376 432//13376 4114//13376 -f 1102//13377 1887//13377 2771//13377 -f 6057//13378 5869//13379 5980//13380 -f 2718//13381 1357//13381 46//13382 -f 5223//13383 5718//13384 4300//13384 -f 6019//13385 5672//13386 6058//13385 -f 5672//13387 5820//13388 6058//13389 -f 3961//13390 3300//13390 3301//13390 -f 1396//13391 5512//13392 3381//13393 -f 2399//13394 2325//13394 1581//13394 -f 204//13395 857//13396 909//13397 -f 2167//13398 3981//13399 184//13398 -f 6019//13400 5982//13401 5672//13402 -f 1087//13403 1493//13404 2076//13405 -f 1972//13406 2033//13407 1973//13406 -f 1861//13408 3126//13408 1822//13408 -f 3361//13409 1460//13410 259//13410 -f 2374//13411 2044//13411 5330//13412 -f 1056//13413 4243//13414 508//13415 -f 6059//13416 5870//13416 5982//13416 -f 5870//13417 6059//13418 5916//13419 -f 4573//13420 1199//13420 4482//13421 -f 4303//13422 3742//13423 1855//13424 -f 6022//13425 5872//13425 5828//13426 -f 6023//13427 5918//13428 5873//13429 -f 4697//13430 1808//13431 3840//13432 -f 5919//13433 6060//13433 5947//13434 -f 5948//13435 5827//13436 6128//13437 -f 2435//13438 674//13439 3747//13440 -f 7317//13441 3539//13442 2136//13443 -f 318//13444 4449//13444 2986//13444 -f 3142//13445 3141//13446 376//13447 -f 973//13448 4938//13449 5162//13450 -f 5784//13451 5829//13451 6063//13451 -f 4342//13452 5597//13453 1781//13454 -f 1437//13455 2608//13456 569//13455 -f 6026//13457 5829//13458 5689//13459 -f 2403//13460 1733//13461 1922//13462 -f 2555//13463 5392//13464 1018//13465 -f 4411//13466 130//13467 5528//13468 -f 388//13469 2941//13470 3135//13471 -f 4606//13472 4613//13473 1371//13474 -f 5879//13475 5687//13476 5985//13477 -f 4123//13478 4239//13478 773//13478 -f 6027//13479 5691//13479 5922//13479 -f 5987//13480 5879//13481 5985//13482 -f 5987//13483 5985//13483 6028//13483 -f 4962//13484 5331//13485 1841//13486 -f 2304//13487 3014//13488 201//13488 -f 6064//13489 5878//13490 5949//13491 -f 1276//13492 916//13493 5207//13494 -f 2914//13495 2188//13496 2358//13495 -f 1623//13497 3150//13498 5155//13499 -f 3052//13500 5070//13501 2748//13502 -f 455//13503 2208//13504 4432//13505 -f 5987//13506 6031//13507 5923//13508 -f 4260//13509 4094//13510 2186//13511 -f 45//13512 1834//13513 446//13514 -f 3670//13515 2855//13516 495//13517 -f 2041//13518 1996//13519 5120//13520 -f 3178//13521 5200//13522 1248//13523 -f 1588//13524 1891//13524 2793//13524 -f 5741//13525 5881//13526 5926//13525 -f 4874//13527 4993//13528 309//13529 -f 552//13530 4451//13531 3126//13532 -f 3935//13533 1559//13534 1052//13535 -f 42//13536 4019//13537 3992//13538 -f 2937//13539 4556//13540 1186//13540 -f 2308//13541 1826//13542 5128//13542 -f 6033//13543 5883//13544 5744//13545 -f 6098//13546 5928//13547 5952//13548 -f 3391//13549 3516//13550 1400//13551 -f 2147//13552 3834//13552 2709//13553 -f 6066//13554 5884//13555 5883//13555 -f 574//13556 2885//13556 3384//13556 -f 2688//13557 1205//13558 173//13559 -f 2195//13560 1079//13560 5738//13561 -f 3914//13562 229//13563 5104//13563 -f 5082//13564 2779//13564 288//13565 -f 249//13566 2142//13567 7344//13568 -f 1392//13569 5424//13570 2740//13571 -f 5480//13572 5387//13573 3781//13574 -f 3439//13575 3782//13576 4065//13577 -f 3183//13578 2121//13579 2562//13580 -f 4353//13581 5262//13582 4524//13583 -f 78//13584 480//13585 4557//13586 -f 5929//13587 5836//13587 6069//13587 -f 5840//13588 5994//13589 5954//13590 -f 6036//13591 5954//13591 5994//13591 -f 5797//13592 6037//13592 5955//13592 -f 2953//13593 4472//13594 3662//13595 -f 402//13596 5401//13597 5111//13598 -f 5796//13599 5957//13599 5994//13600 -f 3700//13601 1907//13602 885//13603 -f 5573//13604 5639//13605 6177//13606 -f 2642//13607 1882//13608 5078//13609 -f 5573//13610 6177//13611 5798//13612 -f 2042//13613 2570//13613 2209//13613 -f 4883//13614 4062//13615 583//13616 -f 1666//13617 3164//13618 2627//13619 -f 3140//13620 1109//13621 3139//13622 -f 1436//13623 4607//13624 2522//13625 -f 1059//13626 2801//13626 2959//13626 -f 6071//13627 5708//13628 5890//13629 -f 2991//13630 3865//13631 1739//13632 -f 2948//13633 795//13634 5559//13635 -f 5753//13636 5284//13637 6071//13638 -f 791//13639 1070//13640 3181//13640 -f 6038//13641 5803//13642 6039//13643 -f 6039//13644 5803//13644 6041//13645 -f 1231//13646 776//13646 4655//13647 -f 302//13648 4254//13649 485//13650 -f 1583//13651 5325//13652 434//13652 -f 2750//13653 365//13654 296//13655 -f 3364//13656 708//13657 4812//13658 -f 11//13659 3587//13659 3067//13660 -f 4754//13661 3416//13662 1016//13663 -f 5997//13664 6041//13665 5576//13665 -f 3440//13666 4644//13667 1197//13668 -f 2609//13669 2456//13670 1580//13671 -f 3775//13672 3868//13673 4351//13672 -f 5930//13674 6110//13675 5652//13676 -f 174//13677 1096//13678 4622//13677 -f 5854//13679 5998//13680 5756//13681 -f 5482//13682 5854//13683 5756//13683 -f 5932//13684 6073//13685 5806//13686 -f 4262//13687 999//13688 2096//13689 -f 4174//13690 1626//13691 2760//13692 -f 1825//13693 6051//13694 3807//13693 -f 3543//13695 3349//13696 3048//13696 -f 5760//13697 6075//13698 5962//13698 -f 590//13699 784//13700 3641//13701 -f 5963//13702 6001//13703 6078//13702 -f 2473//13704 516//13705 60//13706 -f 4598//13707 528//13708 3866//13707 -f 3498//13709 592//13710 3718//13711 -f 936//13712 2574//13713 574//13714 -f 6001//13715 5933//13715 6079//13715 -f 5933//13716 6002//13717 6079//13718 -f 859//13719 2388//13719 444//13719 -f 1804//13720 2163//13720 827//13721 -f 6080//13722 6002//13723 5967//13723 -f 3707//13724 1504//13725 4727//13725 -f 5967//13726 5935//13727 6044//13728 -f 6043//13729 6044//13730 5901//13731 -f 7376//13732 4755//13733 2897//13733 -f 3654//13734 4051//13734 3009//13735 -f 3368//13736 2207//13737 2208//13738 -f 6231//13739 5579//13740 6081//13739 -f 3719//13741 1079//13742 1080//13743 -f 3088//13744 3504//13745 4931//13746 -f 5970//13747 6116//13748 5971//13749 -f 1105//13750 5014//13751 4066//13752 -f 6118//13753 5971//13754 6116//13755 -f 888//13756 3667//13756 718//13756 -f 6269//13757 5809//13758 6005//13759 -f 6005//13760 5972//13761 6082//13762 -f 4175//13763 7027//13764 381//13765 -f 3045//13766 1491//13767 3946//13768 -f 1499//13769 1932//13770 1951//13771 -f 6083//13772 5972//13773 6007//13772 -f 3294//13774 3323//13774 3742//13774 -f 5938//13775 5902//13775 6006//13775 -f 1488//13776 3358//13777 3559//13776 -f 7//13778 2153//13778 3810//13779 -f 4478//13780 163//13781 2664//13782 -f 6046//13783 5939//13784 6008//13783 -f 5904//13785 5811//13786 6119//13787 -f 685//13788 7326//13789 4434//13790 -f 571//13791 2937//13792 2785//13793 -f 3745//13794 5308//13795 125//13796 -f 6046//13797 5817//13798 5939//13799 -f 2378//13800 318//13801 2986//13802 -f 5903//13803 5905//13804 5812//13805 -f 1764//13806 4652//13806 3896//13806 -f 3627//13807 1564//13808 889//13808 -f 2536//13809 2004//13810 1361//13811 -f 5315//13812 6085//13812 5975//13812 -f 6010//13813 6012//13813 5906//13813 -f 5906//13814 6012//13814 6048//13814 -f 5583//13815 5906//13816 6048//13817 -f 6086//13818 5583//13818 6048//13818 -f 5583//13819 6086//13820 5717//13821 -f 1628//13822 1622//13823 3543//13824 -f 6121//13825 5858//13826 5766//13826 -f 5907//13827 6087//13828 5940//13829 -f 5941//13830 6088//13830 5908//13830 -f 5859//13831 5586//13832 6084//13833 -f 6049//13834 5908//13835 6088//13834 -f 1808//13836 3298//13837 1912//13838 -f 2453//13839 2898//13839 4976//13839 -f 6053//13840 5976//13841 6049//13842 -f 4937//13843 4405//13844 2102//13845 -f 6013//13846 5942//13847 5860//13848 -f 6049//13849 6122//13849 6053//13849 -f 1892//13850 1585//13850 2798//13850 -f 4363//13851 1479//13852 5305//13853 -f 6090//13854 5910//13855 5978//13855 -f 6091//13856 6052//13857 5818//13858 -f 6157//13859 6014//13860 6053//13861 -f 5863//13862 5978//13863 5910//13863 -f 1792//13864 2157//13865 2158//13866 -f 5157//13867 4595//13868 4345//13869 -f 748//13870 4647//13870 87//13871 -f 2852//13872 5337//13873 3109//13874 -f 2766//13875 3541//13875 3484//13875 -f 5723//13876 6015//13876 6056//13876 -f 5666//13877 5862//13877 5818//13878 -f 1561//13879 1376//13879 4156//13879 -f 4870//13880 1480//13881 801//13882 -f 5665//13883 5721//13883 6123//13883 -f 241//13884 68//13884 588//13884 -f 6093//13885 6016//13886 5724//13885 -f 875//13887 3923//13888 5786//13889 -f 4007//13890 652//13891 1402//13890 -f 655//13892 3320//13893 2728//13893 -f 1070//13894 199//13895 1069//13896 -f 2837//13897 2109//13898 973//13899 -f 4648//13900 4015//13901 3350//13901 -f 4869//13902 5029//13903 2921//13904 -f 973//13905 2109//13905 4938//13905 -f 2183//13906 2671//13907 1609//13907 -f 5396//13908 4077//13909 2726//13908 -f 6017//13910 6058//13911 5820//13912 -f 4429//13913 4243//13914 1056//13915 -f 4422//13916 4165//13917 348//13916 -f 5981//13918 6094//13919 5914//13920 -f 1138//13921 3823//13921 1121//13921 -f 3837//13922 3838//13923 2542//13924 -f 1238//13925 5053//13926 766//13926 -f 830//13927 3447//13927 2390//13927 -f 3826//13928 2953//13929 4111//13930 -f 522//13931 2100//13932 4684//13933 -f 3516//13934 4832//13935 3517//13936 -f 163//13937 4899//13937 2664//13937 -f 5981//13938 5609//13938 6020//13938 -f 1128//13939 1748//13940 1130//13940 -f 5873//13941 5916//13941 6021//13941 -f 380//13942 2738//13943 2909//13944 -f 5892//13945 2256//13945 3442//13945 -f 1940//13946 3523//13947 1939//13948 -f 659//13949 808//13950 595//13951 -f 4823//13952 699//13953 1422//13952 -f 2698//13954 3386//13954 1604//13955 -f 5626//13956 2961//13956 1619//13957 -f 1008//13958 1411//13959 4678//13960 -f 1591//13961 2186//13962 2341//13963 -f 4965//13964 4225//13964 5329//13964 -f 1553//13965 2478//13965 4336//13965 -f 4549//13966 539//13967 4779//13967 -f 757//13968 4866//13968 2039//13968 -f 3617//13969 582//13970 5207//13971 -f 2245//13972 3805//13973 5657//13974 -f 6062//13975 5874//13976 5920//13977 -f 5783//13978 5918//13979 5921//13980 -f 445//13981 5779//13981 2849//13982 -f 374//13983 837//13984 1250//13985 -f 1980//13986 3135//13987 2941//13988 -f 2505//13989 3716//13990 1465//13991 -f 675//13992 1695//13993 1972//13993 -f 2101//13994 2683//13994 757//13994 -f 1320//13995 2567//13996 2353//13997 -f 2220//13998 1797//13999 4703//14000 -f 3368//14001 2247//14002 2207//14003 -f 6124//14004 5719//14004 846//14004 -f 4815//14005 1556//14006 4292//14007 -f 4035//14008 2584//14009 3427//14008 -f 3007//14010 786//14011 3203//14012 -f 2404//14013 5082//14013 194//14013 -f 3980//14014 3859//14015 1605//14015 -f 2630//14016 237//14016 2434//14016 -f 3823//14017 1138//14018 1809//14018 -f 6031//14019 5987//14020 6028//14021 -f 1745//14022 3361//14023 4376//14024 -f 3460//14025 70//14026 3577//14027 -f 560//14028 1945//14028 4771//14028 -f 2963//14029 2716//14029 4241//14029 -f 4948//14030 1336//14031 4663//14032 -f 939//14033 155//14033 131//14033 -f 4690//14034 2408//14035 2884//14034 -f 1822//14036 3127//14037 255//14038 -f 679//14039 2996//14039 1400//14039 -f 4265//14040 3570//14041 464//14040 -f 6034//14042 5990//14042 5882//14042 -f 6034//14043 5882//14044 5794//14045 -f 6098//14046 5952//14047 6138//14048 -f 5992//14049 5928//14050 6098//14050 -f 6138//14051 5952//14051 6099//14052 -f 335//14053 1666//14053 2627//14053 -f 6099//14054 5952//14055 5993//14056 -f 2097//14057 2458//14057 3377//14058 -f 2345//14059 5424//14060 1392//14061 -f 2033//14062 807//14063 1973//14064 -f 1446//14065 2827//14066 4319//14067 -f 3261//14068 3381//14069 2187//14070 -f 5837//14071 5954//14071 6036//14071 -f 5953//14072 6068//14073 6100//14074 -f 6070//14075 5953//14076 6100//14076 -f 4133//14077 1181//14078 2251//14079 -f 5955//14080 6037//14081 6035//14082 -f 4487//14083 3880//14084 2625//14085 -f 5956//14086 6070//14087 6101//14088 -f 5929//14089 6102//14090 5639//14091 -f 4787//14092 515//14092 3219//14093 -f 952//14094 1385//14095 3065//14096 -f 4725//14097 4107//14097 4617//14097 -f 6101//14098 5890//14099 5956//14100 -f 6104//14101 6037//14102 5891//14103 -f 5995//14104 5795//14105 5846//14106 -f 2646//14107 2230//14107 1333//14108 -f 1075//14109 1074//14109 4167//14109 -f 497//14110 3065//14111 3066//14110 -f 61//14112 125//14113 1206//14113 -f 3488//14114 3151//14114 5358//14114 -f 5644//14115 6142//14115 5958//14115 -f 1489//14116 1246//14117 188//14118 -f 6106//14119 5802//14120 5705//14121 -f 4015//14122 2314//14123 877//14124 -f 1309//14125 4909//14126 172//14127 -f 4667//14128 4356//14128 722//14129 -f 5959//14130 5848//14131 5893//14132 -f 5959//14133 6107//14134 6108//14135 -f 5894//14136 5710//14136 6108//14136 -f 1038//14137 4390//14138 4172//14139 -f 5565//14140 461//14141 132//14140 -f 6040//14142 5804//14142 5894//14142 -f 5278//14143 2002//14144 352//14145 -f 3078//14146 3701//14147 3673//14148 -f 1391//14149 653//14150 3158//14151 -f 5997//14152 5650//14152 6187//14152 -f 5328//14153 1847//14154 1808//14155 -f 6187//14156 5650//14157 5651//14157 -f 6111//14158 5756//14158 5998//14158 -f 5999//14159 5998//14160 5854//14161 -f 6074//14162 5042//14162 5806//14162 -f 1913//14163 3137//14163 1447//14163 -f 2562//14164 2828//14165 842//14166 -f 5578//14167 6074//14168 5760//14169 -f 778//14170 1719//14171 3236//14172 -f 2952//14173 3599//14173 3588//14173 -f 6000//14174 6113//14175 6076//14176 -f 6228//14177 6077//14178 6076//14179 -f 6078//14180 6113//14181 6000//14182 -f 560//14183 5405//14183 489//14183 -f 850//14184 2853//14185 687//14186 -f 1791//14187 3413//14187 5657//14187 -f 3696//14188 2924//14189 2054//14190 -f 5027//14191 1640//14192 226//14193 -f 3550//14194 1516//14195 1720//14195 -f 5967//14196 6044//14196 6080//14196 -f 5934//14197 6042//14198 6043//14199 -f 4758//14200 3912//14201 896//14202 -f 1977//14203 2387//14203 2906//14203 -f 515//14204 55//14205 3219//14206 -f 532//14207 260//14208 1722//14207 -f 879//14209 880//14209 1101//14209 -f 5404//14210 4699//14211 5968//14210 -f 2995//14212 2887//14213 1828//14212 -f 154//14214 3752//14214 1004//14214 -f 1624//14215 1626//14216 4174//14217 -f 6083//14218 6082//14219 5972//14220 -f 4438//14221 3761//14222 4811//14223 -f 5750//14224 3461//14225 3525//14226 -f 1150//14227 4633//14227 4579//14227 -f 1068//14228 3813//14229 3647//14228 -f 5811//14230 6118//14231 6119//14232 -f 5490//14233 5052//14234 6120//14235 -f 1475//14236 3040//14236 482//14236 -f 6120//14237 5052//14238 5937//14239 -f 3174//14240 182//14241 3112//14242 -f 1124//14243 634//14244 2790//14243 -f 1972//14245 1210//14246 675//14247 -f 5974//14248 6083//14249 6007//14248 -f 4479//14250 109//14250 1621//14250 -f 418//14251 169//14251 3897//14251 -f 6200//14252 6008//14253 5658//14254 -f 4331//14255 829//14256 4890//14255 -f 1080//14257 1079//14258 1345//14259 -f 5658//14260 5905//14260 6202//14260 -f 4514//14261 442//14262 2252//14263 -f 4052//14264 5400//14265 20//14264 -f 6047//14266 6084//14266 5817//14267 -f 3811//14268 1142//14269 2633//14270 -f 4272//14271 3392//14272 1274//14273 -f 4365//14274 2051//14275 3366//14276 -f 5586//14277 5817//14278 6084//14279 -f 1774//14280 5293//14281 3213//14282 -f 1372//14283 1707//14284 2265//14284 -f 4446//14285 1287//14285 1013//14286 -f 874//14287 4276//14288 1777//14289 -f 3672//14290 2000//14291 3120//14292 -f 1163//14293 848//14293 1360//14293 -f 5861//14294 5940//14295 6155//14296 -f 6091//14297 6013//14298 5860//14299 -f 3498//14300 765//14301 4168//14302 -f 6049//14303 6088//14304 6122//14305 -f 1267//14306 1645//14307 5656//14308 -f 2923//14309 3362//14310 4334//14310 -f 6054//14311 5910//14312 6090//14311 -f 4153//14313 4101//14313 4466//14313 -f 3301//14314 1453//14315 4508//14316 -f 59//14317 2572//14318 2851//14319 -f 276//14320 1009//14321 3969//14322 -f 4697//14323 275//14324 5193//14325 -f 6122//14326 6157//14327 6053//14327 -f 688//14328 3321//14329 3310//14330 -f 1036//14331 1363//14331 5221//14331 -f 4915//14332 5643//14333 3803//14334 -f 4858//14335 2696//14335 4088//14336 -f 3389//14337 889//14338 407//14339 -f 409//14340 3107//14341 1349//14342 -f 4514//14343 435//14344 442//14344 -f 3217//14345 296//14346 365//14347 -f 5029//14348 1019//14348 3200//14349 -f 6014//14350 6125//14351 6126//14352 -f 5978//14353 6018//14354 6092//14355 -f 2899//14356 3710//14357 4568//14358 -f 96//14359 4421//14360 4520//14361 -f 4334//14362 2717//14363 1921//14364 -f 3687//14365 3943//14366 3257//14367 -f 6017//14368 6014//14369 6126//14370 -f 6017//14371 6126//14372 6058//14373 -f 3540//14374 2651//14374 3404//14374 -f 567//14375 2549//14376 1783//14377 -f 3975//14378 584//14379 2924//14380 -f 3240//14381 2438//14381 653//14381 -f 5470//14382 208//14382 2863//14383 -f 2828//14384 2562//14385 298//14386 -f 2202//14387 3273//14388 3798//14387 -f 1390//14389 325//14390 2337//14391 -f 1578//14392 3081//14393 2488//14393 -f 2602//14394 3697//14395 1291//14396 -f 102//14397 1926//14397 2124//14397 -f 449//14398 2053//14399 4731//14400 -f 6018//14401 5872//14401 6162//14401 -f 528//14402 1883//14402 54//14402 -f 72//14403 3475//14404 2670//14403 -f 5867//14405 6165//14406 5945//14407 -f 1783//14408 487//14408 3790//14409 -f 5917//14410 5869//14410 6057//14410 -f 1755//14411 869//14411 3003//14411 -f 3315//14412 1518//14413 138//14413 -f 4436//14414 3412//14414 680//14415 -f 6021//14416 5916//14417 6059//14418 -f 4287//14419 1667//14419 4573//14419 -f 3115//14420 4741//14420 5113//14420 -f 281//14421 3915//14422 1425//14423 -f 2592//14424 5401//14425 3070//14426 -f 6096//14427 5921//14428 5918//14429 -f 4497//14430 5411//14431 5063//14432 -f 5217//14433 2568//14433 4732//14434 -f 530//14435 3027//14436 4304//14435 -f 4097//14437 3742//14438 2710//14437 -f 5419//14439 1587//14440 5412//14439 -f 3745//14441 4180//14442 1412//14443 -f 2621//14444 1933//14445 317//14446 -f 5876//14447 5875//14448 6130//14449 -f 1151//14450 3409//14451 1144//14450 -f 3732//14452 1569//14453 2204//14454 -f 5985//14455 5986//14456 6131//14457 -f 1634//14458 2079//14458 7359//14458 -f 1387//14459 1388//14460 3888//14461 -f 3486//14462 1630//14463 2758//14464 -f 4907//14465 1859//14466 4280//14467 -f 712//14468 1413//14469 3559//14470 -f 1537//14471 3092//14472 1222//14471 -f 4963//14473 4705//14474 2016//14473 -f 6064//14475 6097//14476 6284//14477 -f 4043//14478 2191//14479 1894//14480 -f 1750//14481 364//14482 963//14483 -f 2427//14484 3136//14484 4563//14484 -f 6064//14485 5949//14486 6097//14487 -f 706//14488 4163//14489 707//14490 -f 3882//14491 3315//14492 2791//14493 -f 6097//14494 5949//14495 5988//14496 -f 5741//14497 6214//14498 5924//14499 -f 1205//14500 2005//14501 5012//14502 -f 5926//14503 6214//14503 5741//14503 -f 1543//14504 191//14504 1050//14504 -f 1559//14505 3036//14506 3062//14507 -f 5269//14508 221//14508 4366//14508 -f 4629//14509 271//14509 3892//14510 -f 5925//14511 5695//14512 6135//14513 -f 6065//14514 5926//14514 6032//14514 -f 1736//14515 4053//14516 1737//14516 -f 3182//14517 5110//14518 4145//14519 -f 1900//14520 1746//14521 2481//14522 -f 4222//14523 704//14523 2102//14524 -f 5794//14525 5991//14525 6034//14525 -f 6138//14526 6137//14527 6098//14528 -f 6033//14529 6385//14529 5883//14529 -f 1800//14530 2222//14531 2121//14532 -f 3743//14533 4580//14534 4196//14535 -f 2117//14536 506//14537 507//14538 -f 3003//14539 1758//14540 609//14540 -f 992//14541 4539//14541 3276//14541 -f 2600//14542 815//14543 1754//14544 -f 6173//14545 6138//14545 6099//14545 -f 3291//14546 1438//14546 3861//14546 -f 5883//14547 6385//14547 6066//14548 -f 6139//14549 5951//14550 5927//14551 -f 6173//14552 6099//14552 6035//14553 -f 6067//14554 6139//14555 5927//14556 -f 6140//14557 5953//14558 5992//14559 -f 6099//14560 5993//14560 6035//14560 -f 3403//14561 1208//14562 3859//14563 -f 6141//14564 6035//14564 6037//14564 -f 3134//14565 1753//14566 1378//14567 -f 2138//14568 4885//14569 865//14570 -f 1928//14571 1512//14572 3305//14573 -f 1847//14574 3322//14575 197//14576 -f 159//14577 1957//14578 3113//14579 -f 195//14580 49//14581 5484//14582 -f 1909//14583 4793//14584 1652//14585 -f 2478//14586 1553//14586 1552//14586 -f 5124//14587 5065//14588 1750//14587 -f 3343//14589 4049//14590 1348//14590 -f 1736//14591 3976//14591 5102//14592 -f 6102//14593 6177//14594 5639//14593 -f 3519//14595 2768//14596 3197//14597 -f 535//14598 1728//14599 3923//14600 -f 5704//14601 5798//14602 6142//14602 -f 6142//14603 5644//14603 5704//14603 -f 4092//14604 1468//14604 440//14604 -f 3171//14605 4880//14606 4154//14606 -f 6071//14607 5890//14608 6143//14607 -f 5752//14609 5958//14610 6144//14611 -f 6038//14612 6224//14613 5996//14614 -f 6143//14615 6145//14616 6071//14617 -f 2605//14618 703//14619 477//14618 -f 1918//14620 3474//14620 4144//14620 -f 2599//14621 4353//14621 765//14621 -f 4081//14622 4554//14623 1868//14624 -f 5893//14625 5753//14626 6146//14627 -f 5710//14628 5959//14629 6108//14630 -f 1170//14631 4063//14632 371//14633 -f 2754//14634 4071//14635 1992//14636 -f 5961//14637 6072//14637 6186//14637 -f 6110//14638 5930//14639 5961//14640 -f 918//14641 4317//14641 88//14642 -f 5932//14643 5931//14643 6148//14644 -f 5150//14645 5130//14646 3187//14647 -f 1427//14648 3382//14649 2350//14650 -f 1258//14651 2568//14652 5217//14653 -f 3888//14654 5699//14655 933//14656 -f 60//14657 3987//14658 2250//14659 -f 4719//14660 1057//14661 3806//14662 -f 5855//14663 5962//14664 6112//14665 -f 122//14666 5519//14667 2711//14667 -f 3387//14668 1496//14668 1438//14669 -f 4817//14670 726//14671 2713//14672 -f 4296//14673 1178//14674 1778//14674 -f 3690//14675 4608//14675 4204//14675 -f 6114//14676 6076//14677 6113//14678 -f 4473//14679 5206//14680 3346//14681 -f 6114//14682 6228//14683 6076//14684 -f 211//14685 467//14686 1532//14687 -f 2923//14688 4334//14688 3658//14688 -f 2008//14689 1995//14690 3386//14691 -f 1619//14692 2961//14692 421//14692 -f 2711//14693 2545//14694 4550//14695 -f 2511//14696 3063//14697 4716//14696 -f 6079//14698 6002//14699 6080//14700 -f 4983//14701 1125//14702 404//14703 -f 6003//14704 6149//14705 5934//14706 -f 3236//14707 2943//14707 778//14707 -f 2145//14708 1755//14709 1525//14710 -f 2184//14711 4278//14712 1091//14713 -f 6150//14714 5043//14715 6117//14716 -f 5969//14717 5856//14718 6152//14719 -f 5080//14720 118//14721 4170//14722 -f 6116//14723 5969//14724 6151//14725 -f 6116//14726 6151//14727 6118//14728 -f 2623//14729 4439//14730 3983//14731 -f 2704//14732 518//14733 593//14733 -f 2139//14734 2964//14735 1129//14736 -f 2444//14737 1891//14737 3423//14737 -f 6201//14738 6200//14739 5658//14740 -f 66//14741 74//14742 3289//14743 -f 6046//14744 6047//14745 5817//14745 -f 1161//14746 763//14747 233//14748 -f 1364//14749 1566//14749 5165//14750 -f 4163//14751 706//14752 4639//14753 -f 2234//14754 2956//14755 4488//14756 -f 2930//14757 1805//14758 3889//14759 -f 369//14760 3159//14761 2400//14762 -f 5904//14763 6153//14764 6009//14763 -f 2865//14765 1926//14766 1383//14767 -f 6010//14768 6011//14768 6203//14768 -f 1367//14769 3075//14770 1548//14771 -f 1913//14772 3325//14773 3878//14774 -f 6154//14775 6012//14776 6010//14777 -f 2562//14778 2121//14779 298//14780 -f 6012//14781 6154//14781 6048//14781 -f 5766//14782 6089//14782 6121//14782 -f 6004//14783 1291//14784 5329//14785 -f 2896//14786 3021//14786 4085//14787 -f 6004//14788 151//14788 3741//14788 -f 33//14789 1798//14789 4465//14789 -f 5940//14790 6087//14791 6155//14792 -f 6156//14793 6088//14794 5941//14793 -f 2269//14795 1519//14796 291//14797 -f 1072//14798 4211//14799 5133//14799 -f 5941//14800 5977//14801 6156//14802 -f 2076//14803 198//14804 3184//14805 -f 1273//14806 113//14807 141//14808 -f 5860//14809 6052//14810 6091//14811 -f 3824//14812 1545//14812 582//14813 -f 2031//14814 2124//14814 2365//14814 -f 1143//14815 5779//14816 445//14816 -f 3709//14817 112//14818 440//14819 -f 3070//14820 3610//14821 2135//14822 -f 4021//14823 3269//14824 2094//14825 -f 3325//14826 1913//14826 4835//14827 -f 3100//14828 3801//14829 26//14830 -f 6092//14831 6090//14832 5978//14833 -f 3120//14834 3375//14835 3672//14836 -f 4548//14837 1635//14838 4289//14838 -f 838//14839 4689//14840 38//14841 -f 1123//14842 350//14842 4161//14843 -f 5217//14844 1176//14844 3430//14844 -f 1237//14845 5121//14845 2936//14845 -f 6125//14846 6014//14846 6157//14847 -f 327//14848 4228//14849 3714//14849 -f 4678//14850 5830//14851 2760//14851 -f 5913//14852 5665//14852 6123//14852 -f 517//14853 1965//14854 266//14855 -f 2808//14856 3647//14857 2700//14858 -f 3959//14859 2545//14860 2711//14861 -f 5912//14862 6056//14863 6158//14864 -f 5724//14865 6163//14865 6093//14865 -f 1365//14866 1075//14867 7321//14868 -f 5980//14869 5912//14869 6158//14869 -f 6163//14870 5724//14870 5771//14871 -f 6126//14872 6160//14873 6058//14874 -f 646//14875 250//14876 3181//14877 -f 4869//14878 3196//14879 2774//14880 -f 4482//14881 3468//14882 148//14882 -f 1710//14883 1327//14884 1709//14885 -f 5944//14886 5601//14887 6095//14888 -f 4471//14889 4982//14890 3555//14891 -f 6164//14892 5867//14893 5865//14894 -f 4310//14895 4982//14896 1504//14897 -f 3566//14898 2960//14898 4045//14898 -f 720//14899 730//14900 2512//14901 -f 5227//14902 1752//14903 2994//14904 -f 1991//14905 5810//14906 7206//14907 -f 4668//14908 752//14909 1794//14908 -f 1967//14910 4726//14911 1141//14910 -f 87//14912 3972//14913 987//14914 -f 416//14915 184//14916 147//14917 -f 5031//14918 2409//14919 5032//14919 -f 316//14920 330//14921 4844//14922 -f 492//14923 3293//14924 4484//14925 -f 4825//14926 20//14926 3381//14927 -f 607//14928 680//14929 481//14930 -f 6127//14931 5871//14932 5917//14932 -f 6020//14933 5733//14933 5947//14934 -f 4533//14935 2310//14936 2309//14937 -f 1084//14938 872//14939 4402//14940 -f 2826//14941 4436//14941 3228//14941 -f 5871//14942 6127//14943 5827//14944 -f 3226//14945 3192//14946 3549//14946 -f 4281//14947 2395//14947 1246//14947 -f 6022//14948 5828//14949 5983//14950 -f 1118//14951 2871//14952 3226//14953 -f 4659//14954 313//14955 1149//14956 -f 6023//14957 6346//14958 6096//14959 -f 4649//14960 5393//14961 866//14960 -f 6063//14962 5983//14962 5784//14963 -f 5918//14964 6023//14965 6096//14966 -f 1907//14967 1426//14968 486//14969 -f 7341//14970 690//14971 1391//14972 -f 90//14973 443//14974 4354//14973 -f 6129//14975 6063//14975 5829//14975 -f 3661//14976 4296//14977 1778//14976 -f 3035//14978 1959//14979 3710//14980 -f 5216//14981 1337//14982 3878//14983 -f 5829//14984 6026//14984 6129//14984 -f 2926//14985 3562//14985 5653//14985 -f 4340//14986 2826//14986 3793//14986 -f 3468//14987 2502//14988 1940//14989 -f 6167//14990 6132//14991 5878//14992 -f 3627//14993 889//14993 3389//14993 -f 3199//14994 5549//14995 4683//14996 -f 5833//14997 6133//14998 6026//14999 -f 5878//15000 6064//15000 6284//15000 -f 6169//15001 5833//15002 5554//15003 -f 6029//15004 6134//15004 5789//15005 -f 1044//15006 1145//15007 2917//15008 -f 5924//15009 6169//15010 5554//15011 -f 2256//15012 5522//15013 3442//15013 -f 2573//15014 3241//15015 2003//15016 -f 5308//15017 286//15018 1165//15019 -f 155//15020 1379//15021 131//15022 -f 6348//15023 5950//15024 6031//15025 -f 5695//15026 6030//15027 6135//15028 -f 4007//15029 4839//15030 845//15031 -f 1927//15032 1494//15032 2855//15033 -f 1275//15034 4965//15035 3435//15036 -f 4341//15037 3001//15037 4228//15038 -f 6136//15039 5990//15040 6034//15041 -f 3131//15042 1366//15043 1323//15044 -f 177//15045 3476//15046 1395//15047 -f 1321//15048 4218//15049 2829//15050 -f 3916//15051 1146//15051 1527//15051 -f 2029//15052 7385//15052 1999//15053 -f 1526//15054 1965//15055 3464//15056 -f 6139//15057 5991//15058 5951//15059 -f 6098//15060 6140//15060 5992//15060 -f 1764//15061 2542//15062 361//15063 -f 3574//15064 3864//15065 2762//15064 -f 611//15066 4259//15066 2114//15066 -f 4223//15067 1220//15067 4002//15067 -f 2321//15068 577//15069 4187//15070 -f 5884//15071 6069//15071 5836//15072 -f 5927//15073 5837//15074 6036//15075 -f 5123//15076 904//15076 360//15077 -f 6174//15078 6036//15079 5994//15080 -f 614//15081 177//15081 2328//15082 -f 6103//15083 5994//15083 5957//15083 -f 2535//15084 3337//15085 1977//15086 -f 789//15087 790//15088 2677//15089 -f 3937//15090 3444//15091 3751//15092 -f 3598//15093 82//15094 83//15095 -f 3637//15096 1407//15097 854//15098 -f 2213//15099 4540//15099 4645//15100 -f 6176//15101 5795//15101 5995//15101 -f 5891//15102 5996//15103 6104//15102 -f 3222//15104 1328//15105 276//15105 -f 6179//15106 6145//15107 6143//15108 -f 4489//15109 1141//15110 4726//15111 -f 4584//15112 5080//15113 4170//15114 -f 2041//15115 3439//15116 4534//15117 -f 3614//15118 3982//15119 1836//15120 -f 3617//15121 2756//15122 3824//15123 -f 5705//15124 5752//15125 6106//15126 -f 6145//15127 6179//15128 6180//15129 -f 5035//15130 1216//15130 3176//15130 -f 6145//15131 6146//15132 6071//15132 -f 6146//15133 5753//15134 6071//15134 -f 2830//15135 4790//15136 2375//15137 -f 2533//15138 599//15139 5392//15140 -f 6039//15141 6182//15142 6038//15143 -f 1523//15144 3086//15145 1524//15146 -f 6184//15147 5959//15148 5893//15149 -f 374//15150 3080//15151 837//15152 -f 17//15153 4228//15154 327//15155 -f 6072//15156 5804//15157 6040//15156 -f 1237//15158 1895//15159 5121//15158 -f 1038//15160 5019//15161 1379//15162 -f 1183//15163 1949//15163 1419//15163 -f 6111//15164 5805//15164 5756//15164 -f 4022//15165 52//15166 1999//15167 -f 4054//15168 2376//15169 3183//15168 -f 270//15170 3379//15171 1466//15172 -f 3249//15173 3365//15173 2301//15173 -f 410//15174 1378//15175 950//15176 -f 6112//15177 5999//15177 5855//15178 -f 6114//15179 6113//15180 6189//15181 -f 912//15182 557//15183 2963//15184 -f 3340//15185 947//15185 4499//15185 -f 6113//15186 6191//15187 6190//15187 -f 3030//15188 3049//15188 2088//15188 -f 3839//15189 3356//15189 1924//15189 -f 4001//15190 1691//15191 1692//15190 -f 728//15192 1029//15193 1028//15194 -f 1581//15195 2151//15195 4669//15196 -f 6079//15197 6192//15198 6001//15199 -f 2828//15200 1282//15201 842//15202 -f 6003//15203 5965//15204 6267//15205 -f 1745//15206 5188//15207 3437//15208 -f 6042//15209 5934//15210 6149//15211 -f 6044//15212 6043//15213 6229//15214 -f 1121//15215 1120//15216 1137//15215 -f 925//15217 3514//15218 2885//15219 -f 2379//15220 3418//15221 1495//15222 -f 5043//15223 5936//15224 6117//15225 -f 2810//15226 4716//15227 2811//15228 -f 6151//15229 6194//15229 6195//15230 -f 3118//15231 1501//15231 1983//15232 -f 6151//15233 6196//15234 6194//15235 -f 1226//15236 1076//15236 921//15237 -f 5713//15238 6117//15239 5936//15240 -f 6118//15241 6151//15242 6195//15243 -f 5969//15244 6196//15245 6151//15246 -f 1508//15247 4178//15248 311//15248 -f 2534//15249 1208//15249 3403//15249 -f 1985//15250 742//15251 3191//15252 -f 1155//15253 5089//15254 2745//15253 -f 903//15255 1138//15256 3187//15257 -f 2414//15258 871//15259 2056//15260 -f 2562//15261 842//15261 493//15261 -f 2908//15262 3578//15262 4881//15262 -f 5857//15263 5809//15264 6269//15265 -f 3266//15266 2547//15267 2548//15268 -f 1282//15269 2828//15270 298//15269 -f 2999//15271 2391//15272 1323//15273 -f 4413//15274 3691//15275 7330//15275 -f 6117//15276 5713//15276 5973//15276 -f 1503//15277 3410//15278 3907//15279 -f 2732//15280 3623//15281 3574//15282 -f 5903//15283 5857//15283 6234//15283 -f 5903//15284 5763//15284 5857//15284 -f 3239//15285 4324//15285 4155//15285 -f 1899//15286 2553//15286 1898//15287 -f 2488//15288 1683//15288 913//15289 -f 1005//15290 780//15291 4000//15292 -f 1980//15293 2097//15294 2934//15295 -f 2984//15296 1097//15297 1507//15297 -f 3669//15298 381//15299 4981//15300 -f 3401//15301 3844//15302 2136//15303 -f 5946//15304 4298//15305 4299//15306 -f 161//15307 1289//15308 53//15309 -f 6203//15310 6011//15311 6009//15312 -f 123//15313 4469//15314 5209//15315 -f 6086//15316 6204//15317 5907//15318 -f 5660//15319 4122//15320 4264//15321 -f 6275//15322 6013//15322 6091//15323 -f 5068//15324 4835//15325 4943//15326 -f 6241//15327 6089//15328 6054//15329 -f 6241//15330 6054//15330 6090//15330 -f 4600//15331 3746//15332 3418//15333 -f 6122//15334 6088//15335 6156//15336 -f 6205//15337 6156//15338 5977//15339 -f 5909//15340 6050//15341 6015//15342 -f 3025//15343 1550//15344 1562//15345 -f 5911//15346 6205//15347 5977//15348 -f 6157//15349 6122//15350 6156//15351 -f 2349//15352 4577//15353 98//15353 -f 6157//15354 6156//15355 6206//15356 -f 5373//15357 580//15358 5272//15358 -f 203//15359 1788//15360 3486//15361 -f 3316//15362 4980//15363 3351//15364 -f 1284//15365 4860//15366 4871//15367 -f 1926//15368 1927//15369 1383//15369 -f 720//15370 1150//15371 4579//15372 -f 680//15373 1136//15374 2060//15375 -f 2803//15376 2126//15377 2958//15378 -f 5515//15379 2595//15379 2895//15379 -f 2159//15380 3605//15380 1018//15380 -f 6208//15381 5862//15382 6501//15383 -f 4462//15384 926//15385 4417//15384 -f 3871//15386 6442//15387 3246//15388 -f 988//15389 4836//15390 3076//15391 -f 1835//15392 1318//15392 7229//15392 -f 4072//15393 1902//15393 657//15393 -f 4452//15394 1111//15395 220//15394 -f 3484//15396 2944//15396 3095//15396 -f 3026//15397 5523//15398 353//15399 -f 2159//15400 1854//15401 3434//15401 -f 5944//15402 6163//15403 5771//15403 -f 4503//15404 2900//15405 2638//15406 -f 363//15407 364//15408 1750//15409 -f 1362//15410 1417//15411 2270//15412 -f 5917//15413 6057//15414 6127//15415 -f 2675//15416 5612//15417 4559//15416 -f 6210//15418 5872//15418 6022//15418 -f 846//15419 5719//15419 670//15419 -f 3767//15420 4791//15421 95//15422 -f 790//15423 789//15424 3044//15425 -f 269//15426 3898//15426 5119//15426 -f 3580//15427 5653//15427 301//15427 -f 1063//15428 3930//15428 5255//15428 -f 5044//15429 949//15430 77//15429 -f 1319//15431 4471//15432 3555//15433 -f 3//15434 3432//15435 55//15436 -f 2164//15437 433//15438 1615//15438 -f 5873//15439 6021//15439 6023//15439 -f 6060//15440 5919//15440 6211//15441 -f 5919//15442 6062//15443 6211//15444 -f 3872//15445 903//15446 1741//15446 -f 4262//15447 2240//15448 4423//15449 -f 5920//15450 6211//15450 6062//15450 -f 3551//15451 1210//15452 5215//15453 -f 6166//15454 5921//15455 6096//15456 -f 906//15457 4471//15458 3785//15459 -f 3975//15460 4779//15461 539//15462 -f 4390//15463 1038//15464 1379//15463 -f 535//15465 2998//15466 4623//15467 -f 4197//15468 995//15469 4314//15469 -f 6024//15470 6025//15471 6377//15472 -f 2023//15473 1468//15474 4092//15475 -f 1911//15476 2352//15477 1462//15478 -f 6025//15479 5877//15479 6132//15479 -f 5877//15480 5878//15481 6132//15482 -f 622//15483 2842//15484 2230//15485 -f 6168//15486 5985//15487 6131//15488 -f 4083//15489 1696//15490 63//15491 -f 1630//15492 974//15493 4499//15492 -f 6133//15494 5833//15495 6169//15496 -f 714//15497 3367//15497 2290//15497 -f 6348//15498 6031//15499 6028//15499 -f 2309//15500 4014//15501 4504//15501 -f 641//15502 1371//15503 2469//15504 -f 2194//15505 546//15505 788//15506 -f 6171//15507 6032//15507 5950//15508 -f 3425//15509 5140//15510 4019//15511 -f 2539//15512 2696//15513 4455//15514 -f 6216//15515 6137//15516 6217//15517 -f 2362//15518 2391//15518 2390//15518 -f 6253//15519 6217//15519 6138//15520 -f 4799//15521 1899//15522 817//15523 -f 6217//15524 6137//15525 6138//15526 -f 6253//15527 6138//15528 6173//15529 -f 1939//15530 812//15531 1602//15532 -f 878//15533 3580//15534 4359//15535 -f 6137//15536 6218//15537 6098//15538 -f 6218//15539 6140//15539 6098//15539 -f 4777//15540 200//15541 1488//15542 -f 2403//15543 4373//15544 1733//15545 -f 6173//15546 6035//15546 6141//15546 -f 6068//15547 5953//15548 6219//15549 -f 5953//15550 6140//15551 6219//15552 -f 5884//15553 6220//15554 6069//15553 -f 6067//15555 5927//15556 6036//15557 -f 5559//15558 2949//15559 91//15560 -f 1242//15561 100//15562 1665//15562 -f 3014//15563 2304//15564 1636//15565 -f 3414//15566 3241//15567 2573//15568 -f 749//15569 1209//15570 1017//15571 -f 356//15572 5301//15573 1714//15574 -f 3843//15575 695//15576 5131//15577 -f 6221//15578 6174//15579 5994//15580 -f 4046//15581 1479//15582 4363//15583 -f 6103//15584 6221//15585 5994//15586 -f 5957//15587 5795//15587 6103//15587 -f 3864//15588 4165//15588 1130//15588 -f 1234//15589 5198//15590 395//15591 -f 5890//15592 6101//15592 6143//15592 -f 3733//15593 3280//15594 591//15595 -f 5097//15596 4761//15597 4342//15598 -f 2089//15599 4385//15600 1401//15601 -f 6176//15602 6175//15603 5795//15604 -f 953//15605 2273//15606 3817//15607 -f 953//15608 3817//15609 1203//15610 -f 2766//15611 4147//15612 2048//15613 -f 6142//15614 5798//15615 6222//15616 -f 5995//15617 5800//15618 6223//15619 -f 300//15620 4040//15621 130//15622 -f 4446//15623 1013//15623 2474//15624 -f 1606//15625 2984//15626 1507//15627 -f 5456//15628 4238//15629 2594//15629 -f 5800//15630 5847//15631 6178//15632 -f 6225//15633 6180//15634 6179//15634 -f 5847//15635 5802//15636 6105//15637 -f 6147//15638 6224//15639 6038//15639 -f 6145//15640 6180//15641 6181//15640 -f 2684//15642 4866//15642 2683//15642 -f 6146//15643 6145//15644 6183//15645 -f 663//15646 2908//15647 4950//15648 -f 4//15649 1540//15650 4141//15651 -f 6183//15652 5893//15652 6146//15652 -f 5240//15653 3388//15654 1858//15655 -f 6182//15656 6039//15657 6185//15658 -f 6041//15659 6185//15660 6039//15659 -f 6109//15661 6185//15662 6041//15663 -f 6109//15664 6041//15665 5997//15666 -f 3947//15667 360//15668 359//15667 -f 6110//15669 6188//15670 5931//15669 -f 6187//15671 5651//15672 5805//15673 -f 6148//15674 5931//15675 6188//15676 -f 6148//15677 6073//15677 5932//15677 -f 4895//15678 4421//15679 96//15680 -f 2236//15681 5656//15682 1567//15682 -f 5337//15683 850//15684 950//15685 -f 5999//15686 6226//15687 5998//15688 -f 6073//15689 6074//15690 5806//15690 -f 6226//15691 5999//15692 6112//15693 -f 2800//15694 92//15695 4885//15694 -f 1045//15696 5081//15697 4880//15698 -f 3322//15699 1549//15700 3801//15701 -f 2679//15702 2355//15703 2680//15703 -f 6077//15704 6228//15705 6297//15706 -f 2276//15707 31//15708 673//15709 -f 2442//15710 2632//15711 3821//15712 -f 3497//15713 1204//15714 1834//15715 -f 115//15716 2810//15717 3063//15716 -f 6078//15718 6191//15719 6113//15720 -f 175//15721 4064//15722 3699//15723 -f 399//15724 1268//15725 2416//15726 -f 398//15727 2794//15728 107//15729 -f 6192//15730 6078//15731 6001//15731 -f 6267//15732 5965//15733 6077//15734 -f 1127//15735 3591//15736 2846//15737 -f 88//15738 4317//15738 2306//15738 -f 6003//15739 6267//15740 6193//15741 -f 6044//15742 6229//15743 6080//15744 -f 3556//15745 1761//15745 91//15745 -f 2778//15746 4710//15746 5669//15747 -f 3534//15748 6230//15748 1103//15748 -f 4394//15749 145//15749 4435//15749 -f 2065//15750 2867//15751 1297//15750 -f 4380//15752 2762//15753 3376//15754 -f 5807//15755 6045//15756 6081//15757 -f 6197//15758 5579//15759 6231//15760 -f 3111//15761 1598//15761 4558//15761 -f 201//15762 200//15763 4777//15762 -f 6232//15764 6005//15764 6082//15765 -f 4430//15766 841//15767 4750//15768 -f 1267//15769 275//15770 2499//15771 -f 5492//15772 4115//15772 3651//15772 -f 4396//15773 4502//15774 5081//15775 -f 3793//15776 4193//15776 2309//15777 -f 2563//15778 1835//15779 1768//15780 -f 4211//15781 2204//15782 954//15783 -f 1492//15784 3592//15784 1919//15785 -f 1143//15786 3887//15787 2443//15788 -f 1893//15789 1346//15789 2818//15789 -f 2897//15790 1450//15791 7376//15791 -f 4099//15792 1350//15793 2872//15794 -f 1567//15795 1989//15796 5480//15797 -f 2891//15798 1596//15799 2181//15800 -f 710//15801 776//15801 5516//15801 -f 2716//15802 960//15803 4241//15804 -f 5905//15805 5903//15806 6235//15806 -f 5322//15807 3302//15808 4066//15809 -f 5973//15810 5858//15811 6121//15812 -f 6236//15813 5973//15814 6121//15815 -f 6084//15816 6047//15817 6238//15818 -f 931//15819 2080//15820 1935//15820 -f 265//15821 1176//15822 1469//15821 -f 4806//15823 817//15824 1960//15825 -f 1912//15826 3096//15827 1808//15828 -f 2988//15829 3491//15829 2113//15830 -f 4264//15831 1272//15832 4289//15831 -f 5907//15833 6204//15834 6087//15835 -f 4845//15836 3682//15837 4470//15837 -f 3853//15838 4389//15839 436//15838 -f 3761//15840 5382//15841 1122//15841 -f 6206//15842 6156//15843 6205//15844 -f 470//15845 4962//15845 1415//15845 -f 2019//15846 5212//15846 4270//15846 -f 6206//15847 6242//15848 6243//15848 -f 4440//15849 4551//15849 904//15849 -f 6205//15850 5911//15850 6244//15850 -f 2198//15851 2537//15852 935//15851 -f 4864//15853 4425//15854 832//15855 -f 6244//15856 5911//15857 6016//15858 -f 3175//15859 1463//15860 221//15861 -f 2803//15862 2958//15863 2957//15864 -f 1770//15865 4038//15865 3091//15865 -f 3164//15866 2020//15866 4149//15866 -f 6125//15867 6157//15867 6246//15867 -f 6123//15868 6245//15868 5913//15868 -f 4810//15869 3213//15869 4540//15870 -f 2820//15871 3960//15872 1278//15873 -f 2301//15874 5435//15874 2278//15874 -f 2609//15875 3755//15876 3168//15877 -f 3838//15878 1674//15879 3694//15880 -f 2626//15881 5152//15882 3660//15883 -f 6161//15884 5979//15885 5914//15886 -f 526//15887 3947//15888 4265//15889 -f 5913//15890 6247//15891 5865//15892 -f 4954//15893 4272//15894 2351//15895 -f 5133//15896 3743//15897 1672//15897 -f 6057//15898 5980//15899 6248//15900 -f 3033//15901 886//15902 3034//15903 -f 6094//15904 6209//15904 5914//15904 -f 4027//15905 47//15906 2727//15907 -f 3303//15908 2777//15909 4384//15910 -f 2107//15911 3771//15912 2743//15913 -f 6058//15914 6160//15915 6341//15914 -f 2810//15916 2811//15917 3063//15918 -f 967//15919 1898//15920 2271//15921 -f 6165//15922 5867//15923 6164//15924 -f 3135//15925 5570//15926 2738//15927 -f 4610//15928 4412//15928 1227//15928 -f 6095//15929 5601//15930 5915//15931 -f 6094//15932 5981//15933 6020//15934 -f 2129//15935 4963//15935 2862//15936 -f 5613//15937 2483//15938 5226//15939 -f 1956//15940 3639//15940 2965//15940 -f 2864//15941 3414//15942 2573//15943 -f 4550//15944 1797//15945 1802//15946 -f 778//15947 5105//15947 491//15948 -f 5827//15949 6127//15950 6250//15951 -f 3507//15952 3608//15953 3508//15954 -f 71//15955 5943//15956 139//15957 -f 2466//15958 4593//15959 511//15960 -f 2613//15961 3394//15962 5750//15961 -f 2841//15963 338//15964 4995//15965 -f 6213//15966 6211//15967 5920//15968 -f 1555//15969 2557//15970 708//15971 -f 2988//15972 4593//15972 3491//15972 -f 3496//15973 4761//15973 4870//15973 -f 764//15974 7359//15975 3966//15975 -f 5875//15976 5921//15976 6166//15977 -f 1359//15978 3288//15979 620//15980 -f 3899//15981 3285//15982 3284//15981 -f 6028//15983 5985//15984 6168//15984 -f 1497//15985 5567//15986 797//15987 -f 3020//15988 1591//15988 4917//15988 -f 1922//15989 1299//15990 1188//15990 -f 1196//15991 3380//15991 3812//15992 -f 6030//15993 5789//15994 6134//15995 -f 570//15996 1790//15997 2972//15998 -f 2219//15999 406//16000 2929//16001 -f 2012//16002 3699//16003 5727//16004 -f 1263//16005 4943//16006 4834//16007 -f 6065//16008 6032//16008 6171//16008 -f 1665//16009 3788//16009 4143//16010 -f 2170//16011 4724//16012 4545//16013 -f 5199//16014 1991//16015 7206//16015 -f 5081//16016 1045//16017 4396//16018 -f 6287//16019 6216//16020 6217//16020 -f 3641//16021 3416//16022 4754//16023 -f 6253//16024 6287//16025 6217//16026 -f 4194//16027 3505//16027 1101//16027 -f 2220//16028 1227//16029 2134//16030 -f 4226//16031 2755//16032 4428//16032 -f 2241//16033 5069//16034 4095//16035 -f 545//16036 456//16037 4924//16038 -f 4640//16039 4639//16040 706//16041 -f 2394//16042 3113//16042 405//16042 -f 3121//16043 3118//16044 2056//16045 -f 6067//16046 6256//16047 6139//16048 -f 1195//16049 2533//16050 2555//16051 -f 6258//16052 6068//16052 6219//16053 -f 1485//16054 354//16055 1909//16056 -f 2844//16057 1228//16058 2335//16059 -f 6259//16060 6068//16061 6257//16062 -f 6068//16063 6258//16064 6257//16065 -f 2512//16066 1405//16067 546//16068 -f 58//16069 284//16070 209//16071 -f 1588//16072 210//16073 3423//16074 -f 1787//16075 3793//16076 2310//16077 -f 1935//16078 3756//16079 1107//16080 -f 1163//16081 1104//16082 2155//16083 -f 6100//16084 6068//16085 6259//16086 -f 6141//16087 6037//16088 6260//16088 -f 52//16089 2569//16090 3821//16090 -f 432//16091 1036//16091 951//16091 -f 5655//16092 4419//16093 2893//16094 -f 6100//16095 6101//16096 6070//16095 -f 1677//16097 1623//16098 5155//16099 -f 6104//16100 6262//16101 6037//16102 -f 6103//16103 5795//16103 6175//16103 -f 2708//16104 839//16105 2047//16106 -f 88//16107 1693//16107 44//16107 -f 991//16108 5115//16109 65//16110 -f 4988//16111 2648//16112 4292//16112 -f 5076//16113 5892//16114 3800//16115 -f 6105//16116 5802//16116 6106//16116 -f 1632//16117 4025//16117 3050//16117 -f 6145//16118 6181//16119 6183//16118 -f 3096//16120 5540//16121 3840//16121 -f 4218//16122 4046//16122 3349//16122 -f 1094//16123 5826//16124 1881//16125 -f 2345//16126 1911//16127 2550//16128 -f 3292//16129 492//16130 4484//16131 -f 1673//16132 3132//16132 1252//16132 -f 6109//16133 5997//16134 6187//16135 -f 4682//16136 1860//16136 3839//16136 -f 6188//16137 6110//16138 5961//16138 -f 1869//16139 716//16140 1766//16140 -f 4185//16141 770//16141 56//16141 -f 5962//16142 6075//16143 6112//16144 -f 3315//16145 1201//16146 1518//16146 -f 4663//16147 1336//16148 1337//16149 -f 6114//16150 6189//16151 6266//16152 -f 454//16153 4758//16154 896//16155 -f 6266//16156 6228//16157 6114//16158 -f 3271//16159 21//16160 4619//16161 -f 5133//16162 954//16163 1492//16164 -f 2524//16165 3042//16166 1758//16165 -f 2179//16167 684//16168 683//16169 -f 6189//16170 6113//16171 6190//16172 -f 1878//16173 384//16174 4831//16175 -f 127//16176 1859//16177 1872//16178 -f 6149//16179 6003//16180 6193//16181 -f 4389//16182 2369//16183 436//16184 -f 2839//16185 739//16185 2393//16185 -f 6268//16186 6042//16186 6149//16187 -f 6043//16188 6042//16189 6229//16190 -f 5807//16191 6115//16191 6045//16191 -f 1167//16192 755//16193 4401//16194 -f 1599//16195 648//16196 4164//16196 -f 3877//16197 3321//16197 688//16198 -f 3484//16199 4147//16200 2766//16201 -f 5143//16202 5085//16203 333//16204 -f 4305//16205 1452//16205 3251//16206 -f 2206//16207 2497//16207 6327//16207 -f 5856//16208 5404//16208 6152//16208 -f 6233//16209 6196//16210 5969//16211 -f 6083//16212 6366//16213 6082//16214 -f 6300//16215 6270//16216 6195//16217 -f 6366//16218 6083//16218 6198//16218 -f 6118//16219 6195//16220 6270//16219 -f 1521//16221 2761//16222 254//16222 -f 6199//16223 6271//16224 6046//16225 -f 1468//16226 1570//16226 440//16227 -f 3251//16228 4739//16229 1085//16230 -f 6272//16231 6117//16232 5973//16233 -f 3753//16234 3635//16234 2781//16235 -f 6008//16236 6199//16236 6046//16236 -f 1454//16237 3856//16238 5387//16239 -f 3825//16240 3961//16240 1545//16241 -f 1570//16242 1468//16243 1814//16244 -f 144//16245 9//16246 5545//16246 -f 5974//16247 6198//16248 6083//16249 -f 6006//16250 5937//16251 5938//16251 -f 5128//16252 799//16253 2308//16254 -f 6200//16255 6273//16256 6008//16255 -f 1243//16257 2076//16258 901//16259 -f 6200//16260 6201//16261 6273//16262 -f 3414//16263 5510//16264 3241//16265 -f 1077//16266 2676//16267 3039//16268 -f 6201//16269 5658//16270 6202//16271 -f 6202//16272 5905//16273 6235//16274 -f 6272//16275 5973//16276 6236//16275 -f 1530//16277 346//16278 668//16277 -f 5904//16279 6119//16280 6237//16281 -f 2997//16282 1474//16283 4201//16284 -f 748//16285 3248//16286 804//16287 -f 6153//16288 6203//16288 6009//16288 -f 6203//16289 6372//16290 6010//16291 -f 6154//16292 6239//16293 6048//16292 -f 6239//16294 6086//16295 6048//16296 -f 6331//16297 6085//16298 6013//16299 -f 6086//16300 6333//16301 6204//16302 -f 6121//16303 6089//16303 6240//16303 -f 3810//16304 4075//16304 1436//16305 -f 1005//16306 3494//16307 2647//16307 -f 5205//16308 2497//16308 2206//16308 -f 1362//16309 2270//16310 426//16311 -f 2967//16312 1751//16313 4822//16314 -f 28//16315 4189//16316 3308//16317 -f 3922//16318 4958//16319 4363//16320 -f 4979//16321 587//16322 949//16323 -f 3535//16324 4195//16324 5776//16324 -f 6207//16325 6015//16325 6276//16325 -f 1205//16326 1562//16327 1550//16326 -f 140//16328 129//16328 4003//16329 -f 1670//16330 2856//16331 3870//16332 -f 80//16333 2988//16334 2361//16335 -f 6206//16336 6205//16336 6242//16336 -f 3479//16337 128//16338 1963//16339 -f 5862//16340 6091//16341 5818//16342 -f 6242//16343 6205//16343 6244//16343 -f 6056//16344 6015//16345 6207//16345 -f 6157//16346 6206//16346 6243//16347 -f 986//16348 1093//16348 4641//16348 -f 4488//16349 2956//16350 473//16350 -f 6246//16351 6157//16352 6243//16351 -f 6092//16353 6018//16354 6305//16353 -f 1621//16355 109//16356 110//16357 -f 6093//16358 6277//16359 6016//16360 -f 369//16361 3490//16362 891//16361 -f 2962//16363 5155//16364 3150//16365 -f 2098//16366 1695//16366 2271//16367 -f 2980//16368 628//16369 3801//16368 -f 5914//16370 6209//16371 6161//16370 -f 2061//16372 4203//16373 1879//16373 -f 693//16374 4365//16374 3366//16374 -f 2787//16375 4431//16375 3423//16376 -f 6058//16377 6341//16378 6019//16378 -f 4782//16379 4230//16380 5501//16380 -f 1549//16381 1847//16382 1823//16383 -f 2187//16384 20//16384 19//16384 -f 515//16385 4787//16385 4339//16385 -f 5982//16386 6019//16387 6278//16386 -f 2637//16388 2046//16389 4085//16390 -f 6095//16391 5915//16392 6249//16393 -f 5872//16394 6210//16395 6162//16396 -f 1819//16397 909//16398 1433//16399 -f 2720//16400 3872//16401 387//16402 -f 3164//16403 3860//16404 2627//16405 -f 3462//16406 3594//16407 147//16408 -f 4704//16409 4211//16410 3784//16411 -f 6128//16412 5827//16413 6250//16414 -f 13//16415 3384//16416 5065//16417 -f 2193//16418 2933//16419 2568//16420 -f 4052//16421 20//16421 4825//16422 -f 4631//16423 5036//16424 1913//16425 -f 6128//16426 6282//16427 5948//16428 -f 1719//16429 5067//16430 877//16429 -f 5948//16431 6282//16431 6212//16431 -f 3111//16432 4558//16433 2248//16434 -f 2841//16435 3527//16436 3722//16437 -f 1189//16438 5493//16439 2032//16440 -f 324//16441 139//16442 1214//16443 -f 6213//16444 5920//16444 6024//16445 -f 4015//16446 1292//16447 2314//16447 -f 6063//16448 6129//16449 6252//16449 -f 134//16450 2927//16451 2735//16452 -f 2287//16453 1742//16454 1135//16455 -f 4387//16456 4163//16457 3028//16458 -f 1421//16459 906//16460 292//16460 -f 3614//16461 3762//16462 3982//16463 -f 2924//16464 584//16465 1723//16466 -f 108//16467 1052//16467 1559//16468 -f 6129//16469 6026//16470 6133//16471 -f 2905//16472 5045//16473 1266//16473 -f 3470//16474 4621//16475 4686//16476 -f 3454//16477 2530//16478 4529//16477 -f 5602//16479 5411//16480 4497//16481 -f 5222//16482 4207//16483 1182//16483 -f 5876//16484 6130//16485 5922//16485 -f 2013//16486 146//16486 1439//16487 -f 4333//16488 2064//16489 2128//16490 -f 1569//16491 1348//16492 4049//16492 -f 5738//16493 1079//16494 1566//16495 -f 6029//16496 6027//16497 6134//16498 -f 277//16499 3278//16499 4121//16499 -f 6168//16500 6348//16501 6028//16502 -f 1346//16503 1893//16503 2857//16504 -f 3025//16505 897//16506 4566//16506 -f 6215//16507 6097//16508 5988//16509 -f 1222//16510 1503//16511 1537//16510 -f 3684//16512 4592//16512 4312//16512 -f 4422//16513 3613//16513 415//16513 -f 6215//16514 5988//16515 6286//16516 -f 6286//16517 5988//16518 5989//16517 -f 6287//16519 6312//16520 6216//16520 -f 6253//16521 6288//16522 6287//16523 -f 1525//16524 1755//16525 3003//16526 -f 6033//16527 5925//16528 6135//16529 -f 176//16530 1276//16531 219//16530 -f 3977//16532 993//16533 4470//16534 -f 482//16535 3379//16536 1475//16535 -f 6216//16537 6353//16538 6254//16539 -f 2071//16540 2254//16541 549//16542 -f 6137//16543 6216//16544 6254//16545 -f 2065//16546 3609//16547 100//16548 -f 3079//16549 5362//16549 1951//16549 -f 4488//16550 1144//16551 2272//16552 -f 1421//16553 292//16554 243//16555 -f 3679//16556 3678//16557 3287//16558 -f 2912//16559 4587//16559 1087//16559 -f 2604//16560 4037//16560 5128//16560 -f 1377//16561 3751//16562 4492//16563 -f 5150//16564 4491//16565 3473//16564 -f 6219//16566 6140//16567 6316//16568 -f 2342//16569 2600//16570 2563//16569 -f 1704//16571 1607//16572 2269//16573 -f 3109//16574 3040//16575 1009//16576 -f 67//16577 3472//16578 1824//16579 -f 6291//16580 6067//16581 6036//16581 -f 3935//16582 793//16582 587//16582 -f 2862//16583 4963//16583 4833//16583 -f 707//16584 3702//16584 4512//16585 -f 4418//16586 5036//16586 4631//16586 -f 2590//16587 165//16587 5224//16587 -f 131//16588 2604//16589 939//16590 -f 3682//16591 4845//16592 4784//16593 -f 3249//16594 2301//16595 2278//16594 -f 1377//16596 312//16597 3937//16598 -f 707//16599 5127//16600 3702//16601 -f 6037//16602 6262//16603 6260//16604 -f 4193//16605 3793//16606 2826//16607 -f 1693//16608 2306//16608 2322//16608 -f 3331//16609 3283//16609 4516//16609 -f 6143//16610 6101//16611 6293//16612 -f 2596//16613 604//16614 2597//16613 -f 5204//16615 153//16616 2285//16617 -f 6293//16618 6179//16619 6143//16620 -f 1680//16621 5516//16621 776//16621 -f 6222//16622 5798//16623 6177//16622 -f 5727//16624 4302//16625 1776//16626 -f 6223//16627 5800//16628 6178//16629 -f 287//16630 1628//16631 3048//16631 -f 6294//16632 6225//16633 6179//16632 -f 6178//16634 5847//16635 6105//16636 -f 1221//16637 1482//16638 864//16639 -f 5064//16640 4015//16641 877//16642 -f 3312//16643 1188//16644 1299//16643 -f 6147//16645 6038//16646 6182//16647 -f 1612//16648 553//16648 3315//16648 -f 1869//16649 5027//16650 1043//16651 -f 6183//16652 6184//16653 5893//16654 -f 844//16655 1400//16656 2996//16655 -f 1542//16657 4058//16657 2532//16657 -f 5894//16658 6108//16658 6263//16658 -f 6040//16659 5894//16660 6263//16661 -f 206//16662 123//16663 1356//16664 -f 6186//16665 6072//16666 6264//16665 -f 3905//16667 863//16668 4379//16669 -f 1055//16670 4020//16671 4654//16672 -f 6188//16673 5961//16674 6186//16675 -f 6296//16676 6188//16677 6264//16678 -f 4786//16679 4478//16680 2664//16681 -f 5805//16682 6265//16683 6187//16684 -f 6226//16685 6111//16685 5998//16685 -f 242//16686 1428//16686 3548//16686 -f 1545//16687 3824//16688 3825//16688 -f 1490//16689 2288//16690 1416//16691 -f 4977//16692 797//16692 1930//16692 -f 424//16693 3829//16693 192//16693 -f 1092//16694 1120//16695 1523//16696 -f 2657//16697 4127//16698 618//16699 -f 6077//16700 6297//16701 6267//16702 -f 3204//16703 1629//16704 3588//16705 -f 6298//16706 6078//16707 6192//16707 -f 3337//16708 4780//16709 444//16710 -f 4966//16711 4378//16711 2859//16711 -f 661//16712 3885//16712 594//16712 -f 4240//16713 4036//16713 1304//16713 -f 4504//16714 3562//16714 3971//16715 -f 6229//16716 6042//16717 6268//16718 -f 249//16719 3181//16720 250//16721 -f 4335//16722 14//16723 583//16724 -f 872//16725 1084//16726 893//16727 -f 959//16728 291//16729 2579//16730 -f 6299//16731 6195//16731 6194//16732 -f 6300//16733 6195//16734 6299//16735 -f 6196//16736 6299//16736 6194//16736 -f 6196//16737 6233//16737 6299//16738 -f 1506//16739 2678//16740 1595//16739 -f 3286//16741 719//16742 5743//16742 -f 6437//16743 6233//16743 5969//16743 -f 6197//16744 5902//16745 5579//16746 -f 1993//16747 3375//16748 3851//16749 -f 4228//16750 3001//16751 490//16752 -f 4059//16753 3011//16754 3481//16755 -f 3962//16756 4293//16757 5782//16758 -f 4645//16759 710//16760 2161//16761 -f 4725//16762 1694//16763 392//16764 -f 1483//16765 2115//16765 1556//16765 -f 412//16766 1324//16767 1576//16767 -f 3977//16768 3397//16769 2910//16770 -f 6199//16771 6008//16772 6273//16773 -f 1663//16774 175//16774 1025//16774 -f 3437//16775 5188//16776 114//16777 -f 6047//16778 6046//16779 6271//16780 -f 4814//16781 2260//16781 3335//16781 -f 601//16782 2930//16783 3889//16783 -f 550//16784 1561//16785 665//16785 -f 898//16786 3633//16787 3700//16788 -f 6119//16789 6118//16790 6270//16789 -f 6119//16791 6270//16792 6237//16793 -f 2393//16794 4700//16795 2710//16796 -f 3053//16797 2068//16798 5726//16799 -f 4512//16800 3009//16801 4562//16802 -f 4360//16803 867//16804 2143//16805 -f 4128//16806 374//16806 3399//16807 -f 4148//16808 3629//16809 2105//16808 -f 2836//16810 3764//16811 1541//16812 -f 1291//16813 3741//16814 2522//16815 -f 6237//16816 6153//16817 5904//16818 -f 850//16819 687//16820 2228//16821 -f 6154//16822 6010//16822 6372//16822 -f 6154//16823 6372//16823 6239//16823 -f 6239//16824 6333//16825 6086//16826 -f 450//16827 5332//16827 310//16827 -f 4354//16828 3519//16829 2560//16830 -f 4516//16831 3345//16832 4532//16833 -f 6087//16834 6204//16835 6304//16836 -f 6240//16837 6089//16837 6241//16837 -f 6331//16838 6013//16839 6275//16840 -f 4783//16841 2420//16842 2421//16843 -f 1863//16844 689//16845 3323//16846 -f 1746//16847 1900//16848 3992//16849 -f 6015//16850 6050//16851 6276//16852 -f 1117//16853 1833//16854 1057//16853 -f 2624//16855 4038//16856 1770//16857 -f 5654//16858 3261//16859 2187//16860 -f 2149//16861 3804//16862 1813//16861 -f 730//16863 720//16863 4579//16863 -f 2999//16864 4707//16865 5154//16866 -f 2583//16867 4574//16867 509//16867 -f 6305//16868 6018//16868 6159//16868 -f 3281//16869 1803//16870 650//16871 -f 2588//16872 4286//16873 2531//16874 -f 1053//16875 2237//16876 1732//16877 -f 6163//16878 6306//16879 6093//16880 -f 7254//16881 3621//16882 855//16883 -f 6159//16884 6018//16884 6162//16884 -f 924//16885 369//16886 2400//16886 -f 2920//16887 4968//16888 3195//16889 -f 3513//16890 4786//16891 1096//16892 -f 2706//16893 584//16894 3426//16895 -f 2444//16896 4431//16896 3451//16897 -f 4209//16898 4918//16899 5131//16900 -f 3195//16901 3976//16901 1736//16901 -f 1241//16902 3341//16903 3399//16902 -f 6019//16904 6341//16905 6278//16906 -f 428//16907 1673//16907 3247//16907 -f 6279//16908 6162//16908 6210//16908 -f 2679//16909 5291//16910 3754//16911 -f 244//16912 242//16913 1653//16914 -f 3455//16915 1769//16916 3240//16915 -f 154//16917 1004//16918 4587//16919 -f 3655//16920 4392//16920 1495//16921 -f 1965//16922 517//16922 4261//16922 -f 2964//16923 1006//16924 2085//16923 -f 4643//16925 4596//16926 181//16927 -f 4161//16928 4889//16928 2743//16928 -f 6280//16929 6020//16930 5947//16931 -f 6281//16932 6021//16933 6059//16934 -f 5719//16935 3606//16935 2660//16935 -f 4573//16936 5633//16937 1293//16938 -f 105//16939 867//16940 3288//16941 -f 3635//16942 478//16943 3085//16942 -f 1797//16944 2545//16945 1316//16946 -f 3716//16947 3741//16947 1465//16947 -f 2510//16948 666//16949 3998//16950 -f 933//16951 1727//16952 1726//16953 -f 6308//16954 6021//16955 6281//16956 -f 6023//16957 6021//16958 6308//16959 -f 1481//16960 1608//16961 3353//16962 -f 86//16963 1984//16964 371//16965 -f 4677//16966 4370//16967 4104//16967 -f 2812//16968 4616//16969 2691//16970 -f 3177//16971 8//16972 1453//16973 -f 3526//16974 2497//16974 1522//16974 -f 3034//16975 1907//16975 3033//16975 -f 472//16976 404//16977 1636//16976 -f 815//16978 1485//16978 4574//16979 -f 1840//16980 1752//16980 625//16980 -f 6131//16981 5986//16981 6310//16982 -f 2313//16983 2601//16984 5130//16985 -f 827//16986 4550//16987 1802//16988 -f 1731//16989 1240//16989 3237//16989 -f 4331//16990 4890//16991 4330//16992 -f 6167//16993 5878//16994 6284//16995 -f 1410//16996 4498//16997 1497//16998 -f 5312//16999 3308//17000 3662//17001 -f 397//17002 1170//17002 3028//17002 -f 5845//9147 1528//9147 4435//9147 -f 627//17003 4439//17004 3744//17005 -f 3623//17006 1193//17007 1200//17008 -f 6313//17009 6287//17009 6288//17009 -f 627//17010 4418//17010 3219//17011 -f 6216//17012 6312//17013 6314//17014 -f 6286//17015 5989//17016 5990//17017 -f 2311//17018 118//17019 2298//17020 -f 6286//17021 5990//17022 6136//17023 -f 2849//17024 1240//17024 1064//17025 -f 6216//17026 6314//17027 6353//17028 -f 3389//17029 1624//17030 717//17031 -f 4846//17032 3374//17033 4137//17034 -f 103//17035 3489//17035 417//17035 -f 4657//17036 4658//17037 658//17036 -f 6253//17038 6173//17039 6289//17040 -f 1903//17041 4677//17042 692//17043 -f 2848//17044 1446//17045 2807//17046 -f 302//17047 3452//17048 5892//17049 -f 6289//17050 6173//17051 6255//17052 -f 2689//17053 1694//17053 3856//17054 -f 4474//17055 1197//17056 4644//17057 -f 761//17058 2552//17058 4789//17058 -f 2151//17059 5502//17059 4096//17060 -f 4889//17061 3714//17061 2743//17061 -f 6140//17062 6218//17062 6290//17062 -f 816//17063 1281//17064 2790//17065 -f 6255//17066 6173//17067 6141//17068 -f 6316//17069 6258//17070 6219//17071 -f 599//17072 2258//17073 1018//17074 -f 1502//17075 5826//17076 1094//17077 -f 792//17078 2390//17079 5154//17080 -f 6066//17081 6317//17082 5884//17083 -f 4667//17084 3898//17085 5044//17086 -f 537//17087 3110//17088 1511//17089 -f 6174//17090 6291//17091 6036//17092 -f 513//17093 3746//17094 1190//17094 -f 6100//17095 6259//17095 6318//17095 -f 4395//17096 7203//17097 377//17098 -f 6100//17099 6293//17100 6101//17101 -f 6102//17102 5929//17103 6261//17104 -f 203//17105 2588//17106 1788//17107 -f 1394//17108 5372//17109 3919//17110 -f 2565//17111 148//17112 1012//17113 -f 3052//17114 1500//17115 5574//17116 -f 5996//17117 6224//17118 6104//17119 -f 3395//17120 730//17120 4579//17120 -f 4977//17121 4025//17122 1632//17122 -f 568//17123 4761//17124 2122//17125 -f 3231//17126 4279//17127 767//17128 -f 3771//17129 2107//17130 1439//17129 -f 6144//17131 5958//17132 6295//17133 -f 2706//17134 3426//17135 2432//17136 -f 6320//17137 6180//17138 6225//17139 -f 6181//17140 6180//17141 6320//17142 -f 6181//17143 6320//17144 6321//17145 -f 3003//17146 869//17147 1156//17146 -f 6264//17148 6072//17149 6040//17150 -f 2263//17151 1435//17151 1011//17152 -f 6188//17153 6186//17154 6264//17155 -f 4585//17156 4406//17157 4647//17158 -f 6296//17159 6322//17160 6188//17161 -f 2739//17162 3443//17162 4412//17162 -f 968//17163 4234//17164 4676//17165 -f 6111//17166 6265//17167 5805//17168 -f 2784//17169 5563//17170 5338//17171 -f 5596//17172 2901//17173 2349//17174 -f 1451//17175 1303//17175 1947//17176 -f 2726//17177 3432//17178 3125//17179 -f 4433//17180 900//17180 3336//17180 -f 6227//17181 5760//17182 6074//17183 -f 3544//17184 2357//17185 73//17186 -f 5560//17187 3717//17188 2059//17188 -f 6228//17189 6266//17190 6324//17191 -f 6189//17192 6360//17193 6266//17194 -f 795//17195 1551//17196 3545//17197 -f 6228//17198 6325//17198 6297//17199 -f 3714//17200 2107//17201 2743//17202 -f 922//17203 741//17204 1004//17205 -f 95//17206 4632//17207 1949//17206 -f 6298//17208 6191//17209 6078//17210 -f 5332//17211 4772//17212 3269//17213 -f 6079//17214 6576//17215 6192//17216 -f 6576//17217 6079//17218 6080//17219 -f 1226//17220 1877//17221 4072//17222 -f 82//17223 5831//17224 2977//17225 -f 3849//17226 6115//17227 2206//17228 -f 2249//17229 667//17230 3182//17229 -f 5138//17231 3851//17232 667//17233 -f 4518//17234 4185//17235 4728//17236 -f 135//17237 52//17238 4022//17238 -f 3930//17239 1063//17240 1821//17239 -f 3904//17241 2500//17241 241//17241 -f 4646//17242 286//17243 212//17244 -f 3774//17245 2822//17245 1069//17246 -f 5969//17247 6152//17247 6437//17247 -f 2445//17248 1132//17249 3453//17250 -f 6368//17251 6366//17252 6198//17253 -f 1015//17254 5010//17255 1042//17256 -f 3115//17257 390//17258 3598//17259 -f 2153//17260 2505//17260 1931//17261 -f 2101//17262 3828//17262 2683//17262 -f 3693//17263 1590//17264 2341//17265 -f 3121//17266 1220//17267 4223//17266 -f 5902//17268 6197//17269 6006//17270 -f 6328//17271 6273//17272 6201//17273 -f 4683//17274 471//17275 2118//17275 -f 627//17276 1202//17277 4418//17278 -f 657//17279 1902//17280 1903//17281 -f 6120//17282 5937//17283 6329//17284 -f 2001//17285 1565//17285 527//17286 -f 4904//17287 1738//17288 1381//17287 -f 5656//17289 2236//17289 5547//17289 -f 3222//17290 2744//17291 2891//17290 -f 1382//17292 2259//17293 2516//17294 -f 6302//17295 6202//17296 6235//17297 -f 4110//17298 47//17298 5678//17298 -f 824//17299 4139//17300 5122//17301 -f 6330//17302 6237//17303 6270//17304 -f 305//17305 2055//17306 1023//17305 -f 2885//17307 4244//17308 3270//17309 -f 4942//17310 2681//17311 1459//17312 -f 1481//17313 3353//17314 1140//17313 -f 6303//17315 5975//17315 6085//17316 -f 4657//17317 4373//17318 1440//17318 -f 6085//17319 6331//17320 6303//17321 -f 6403//17322 6372//17323 6203//17324 -f 1549//17325 1823//17326 2210//17327 -f 325//17328 994//17329 694//17330 -f 2888//17331 1380//17331 5298//17331 -f 4083//17332 1189//17333 2818//17334 -f 3142//17335 376//17336 2675//17336 -f 2172//17337 2355//17338 3754//17339 -f 1659//17340 4807//17340 4312//17340 -f 819//17341 3359//17341 855//17341 -f 3613//17342 3812//17343 2167//17344 -f 204//17345 2799//17346 4922//17345 -f 916//17347 1276//17347 176//17347 -f 6337//17348 5861//17349 6155//17350 -f 6091//17351 6335//17351 6275//17351 -f 3659//17352 1999//17353 7410//17354 -f 6123//17355 5861//17355 6337//17355 -f 4487//17356 2355//17357 2172//17358 -f 4091//17359 3647//17360 2808//17360 -f 875//17361 3265//17362 1056//17363 -f 6336//17364 6090//17365 6092//17366 -f 2526//17367 4729//17368 3733//17369 -f 667//17370 2249//17371 5138//17372 -f 1132//17373 2221//17373 494//17374 -f 6091//17375 5862//17376 6208//17377 -f 1969//17378 920//17378 604//17378 -f 5337//17379 2852//17380 850//17381 -f 2102//17382 4405//17382 1587//17382 -f 6243//17383 6242//17384 6338//17385 -f 6277//17386 6244//17387 6016//17388 -f 6338//17389 6242//17390 6244//17391 -f 1429//17392 1998//17393 408//17394 -f 2174//17395 5476//17396 4306//17397 -f 3123//17398 2013//17399 1706//17400 -f 6247//17401 5913//17402 6245//17401 -f 2331//17403 2491//17404 772//17405 -f 2243//17406 1325//17407 5311//17408 -f 3291//17409 728//17410 1028//17411 -f 6248//17412 5980//17413 6158//17414 -f 6160//17415 6126//17416 6339//17417 -f 4426//17418 3366//17419 3594//17420 -f 6163//17421 5944//17422 6095//17423 -f 4599//17424 1526//17425 3312//17426 -f 2708//17427 3860//17428 3071//17428 -f 3194//17429 441//17430 4284//17431 -f 2914//17432 2446//17433 5853//17434 -f 4858//17435 4371//17436 2696//17437 -f 1993//17438 709//17439 4770//17440 -f 4379//17441 3340//17442 170//17443 -f 6165//17444 6343//17444 5945//17444 -f 5915//17445 5945//17446 6307//17446 -f 5982//17447 6278//17448 6059//17449 -f 6210//17450 6022//17451 6344//17452 -f 1622//17453 2614//17454 3446//17454 -f 3590//17455 2535//17456 719//17457 -f 6250//17458 6127//17459 6376//17460 -f 6344//17461 6022//17462 5983//17463 -f 6345//17464 5947//17465 6060//17466 -f 5328//17467 3619//17468 1847//17469 -f 2855//17470 3814//17470 1383//17470 -f 6346//17471 6023//17471 6308//17471 -f 4472//17472 2634//17473 5312//17474 -f 1941//17475 323//17476 378//17477 -f 1862//17478 2514//17479 3108//17480 -f 6309//17481 6096//17481 6346//17481 -f 6310//17482 5948//17483 6212//17483 -f 5948//17484 6310//17485 5986//17486 -f 6377//17487 6025//17488 6283//17489 -f 255//17490 3789//17491 849//17492 -f 2666//17493 5199//17494 3297//17493 -f 1579//17495 595//17495 1840//17495 -f 23//17496 1587//17497 4405//17498 -f 6025//17499 6132//17500 6283//17501 -f 2927//17502 1882//17503 2506//17504 -f 61//17505 3999//17505 125//17506 -f 1630//17507 3111//17507 2248//17507 -f 5922//17508 6130//17509 6311//17510 -f 4654//17511 4020//17512 722//17513 -f 4245//17514 3886//17515 4231//17516 -f 3228//17517 4436//17518 680//17519 -f 1644//17520 4575//17521 1476//17522 -f 5098//17523 1762//17524 1105//17525 -f 3504//17526 4430//17526 1039//17527 -f 3950//17528 4257//17528 798//17528 -f 6215//17529 6349//17530 6097//17531 -f 2617//17532 3816//17533 2676//17534 -f 658//17535 4658//17536 4118//17537 -f 4153//17538 1046//17539 4101//17539 -f 6352//17540 6065//17541 6171//17542 -f 6312//17543 6350//17544 6351//17545 -f 6287//17546 6313//17547 6312//17548 -f 3566//17549 848//17549 1163//17549 -f 2569//17550 51//17550 4858//17550 -f 2030//17551 3428//17551 309//17551 -f 1232//17552 3605//17553 4655//17553 -f 6312//17554 6351//17555 6314//17556 -f 3413//17557 1791//17558 4429//17559 -f 2694//17560 3220//17561 3444//17562 -f 6351//17563 6353//17564 6314//17565 -f 6135//17566 6354//17567 6033//17566 -f 3244//17568 3508//17568 3608//17568 -f 6253//17569 6289//17570 6288//17571 -f 760//17572 612//17572 2193//17573 -f 4504//17574 3971//17575 50//17576 -f 1648//17577 3092//17578 1537//17579 -f 2126//17580 2465//17581 1880//17582 -f 4893//17583 4746//17583 1409//17584 -f 3000//17585 5044//17585 752//17585 -f 6137//17586 6254//17587 6218//17588 -f 1856//17589 2188//17590 2849//17591 -f 4696//17592 921//17593 267//17594 -f 5853//17595 4583//17596 3554//17597 -f 6290//17598 6218//17599 6254//17600 -f 6255//17601 6141//17602 6482//17603 -f 6316//17604 6140//17605 6290//17606 -f 3240//17607 653//17608 1314//17608 -f 2403//17609 2913//17610 1161//17611 -f 6220//17612 5884//17613 6317//17613 -f 6256//17614 6067//17615 6291//17615 -f 3845//17616 574//17617 3384//17618 -f 2051//17619 2052//17619 415//17619 -f 1311//17620 448//17620 2874//17620 -f 2243//17621 4875//17622 2351//17621 -f 2322//17623 168//17624 3780//17624 -f 3432//17625 2623//17626 3983//17627 -f 6104//17628 6224//17629 6484//17630 -f 3754//17631 2355//17632 2679//17631 -f 3778//17633 2483//17634 349//17635 -f 4587//17636 1004//17636 570//17636 -f 6356//17637 6224//17638 6147//17639 -f 246//17640 2412//17641 484//17642 -f 4701//17643 2136//17644 4271//17645 -f 4501//17646 4661//17647 3571//17647 -f 4303//17648 1855//17649 3589//17650 -f 2094//17651 4772//17652 4188//17651 -f 799//17653 763//17654 2913//17655 -f 1396//17656 2594//17656 695//17657 -f 6357//17658 6184//17659 6183//17660 -f 6393//17661 6182//17662 6185//17661 -f 317//17663 3831//17664 2377//17665 -f 6264//17666 6040//17667 6263//17668 -f 2992//17669 1450//17670 2897//17671 -f 2900//17672 1842//17673 2638//17674 -f 3565//17675 1928//17675 663//17676 -f 6358//17677 6322//17677 6296//17677 -f 2476//17678 910//17679 2451//17680 -f 3888//17681 1727//17682 2116//17683 -f 6111//17684 6226//17685 6359//17686 -f 1796//17687 1829//17688 18//17687 -f 934//17689 636//17690 288//17691 -f 2279//17692 2253//17693 4927//17694 -f 6227//17695 6074//17696 6073//17697 -f 5040//17698 1584//17699 5139//17700 -f 4238//17701 5456//17702 1771//17703 -f 6075//17704 5760//17705 6227//17706 -f 1815//17707 3875//17708 1487//17709 -f 4097//17710 1286//17711 878//17711 -f 3356//17712 4946//17713 578//17712 -f 3499//17714 4060//17715 5216//17716 -f 2789//17717 698//17718 2955//17719 -f 6191//17720 6361//17721 6190//17722 -f 2785//17723 1448//17723 4183//17723 -f 942//17724 4764//17725 3362//17726 -f 4292//17727 2648//17728 4815//17729 -f 6192//17730 6576//17731 6298//17732 -f 6193//17733 6267//17734 6362//17734 -f 5486//17735 5485//17736 6055//17737 -f 6149//17738 6193//17739 6363//17740 -f 6364//17741 6576//17742 6229//17743 -f 6576//17744 6080//17745 6229//17746 -f 6268//17747 6364//17748 6229//17749 -f 3769//17750 3263//17751 438//17752 -f 1127//17753 5089//17754 1040//17755 -f 3016//17756 1554//17757 946//17758 -f 6326//17759 6115//17760 3849//17761 -f 3104//17762 3925//17762 1604//17762 -f 3941//17763 1402//17763 1816//17763 -f 4665//17764 1711//17765 1132//17766 -f 134//17767 449//17767 305//17767 -f 6327//17768 5043//17769 6150//17770 -f 2715//17771 3301//17772 4486//17773 -f 2883//17774 3433//17775 2267//17776 -f 6081//17777 6045//17777 6365//17777 -f 2874//17778 3682//17779 2327//17778 -f 3900//17780 2332//17781 2191//17782 -f 6231//17783 6081//17783 6365//17783 -f 3620//17784 663//17785 4950//17786 -f 6366//17787 6232//17788 6082//17789 -f 341//17790 2524//17791 2869//17792 -f 6299//17793 6367//17794 6300//17793 -f 652//17795 3186//17796 2447//17797 -f 3049//17798 2821//17798 2088//17798 -f 6269//17799 6005//17799 6232//17799 -f 6233//17800 6367//17801 6299//17802 -f 6152//17803 5404//17803 5968//17803 -f 6401//17804 6367//17805 6233//17806 -f 2116//17807 933//17808 1388//17809 -f 6270//17810 6300//17811 6367//17812 -f 1057//17813 2789//17814 3806//17815 -f 4158//17816 5790//17817 5048//17818 -f 6301//17819 6199//17819 6328//17820 -f 6301//17821 6328//17822 6370//17821 -f 5857//17823 6269//17824 6234//17825 -f 391//17826 3042//17827 1784//17828 -f 3145//17829 2546//17830 3438//17829 -f 899//17831 4881//17832 4260//17833 -f 6199//17834 6301//17834 6271//17834 -f 6369//17835 6117//17836 6272//17837 -f 1203//17838 673//17839 953//17840 -f 6202//17841 6328//17842 6201//17843 -f 540//17844 4451//17845 552//17846 -f 5203//17847 1873//17848 678//17849 -f 5395//17850 3151//17851 4756//17852 -f 6270//17853 6401//17853 6330//17853 -f 1176//17854 5217//17855 4732//17856 -f 4546//17857 2061//17858 2669//17859 -f 1365//17860 1275//17861 1074//17862 -f 1401//17863 367//17864 5505//17865 -f 4645//17866 4540//17866 710//17867 -f 2048//17868 3622//17869 1582//17870 -f 1706//17871 4228//17871 5064//17871 -f 1751//17872 4898//17873 876//17874 -f 5279//17875 3935//17876 4979//17877 -f 3408//17878 2319//17879 2162//17878 -f 6203//17880 6153//17881 6332//17881 -f 2960//17882 3566//17883 1163//17884 -f 6239//17885 6372//17886 6374//17887 -f 6374//17888 6333//17889 6239//17890 -f 2979//17891 2967//17892 2924//17893 -f 1479//17894 937//17895 1574//17896 -f 1894//17897 3621//17898 3753//17899 -f 4072//17900 657//17900 3271//17901 -f 707//17902 4512//17903 706//17904 -f 2409//17905 3016//17905 946//17906 -f 983//17907 3834//17908 2749//17909 -f 3648//17910 2897//17911 4755//17910 -f 3769//17912 1690//17913 3263//17914 -f 6304//17915 6334//17916 6087//17917 -f 6334//17918 6155//17919 6087//17918 -f 4608//17920 5293//17921 4204//17922 -f 7359//17923 764//17924 1634//17925 -f 5648//17926 1001//17926 3018//17926 -f 4653//17927 3309//17928 5810//17929 -f 5549//17930 4073//17931 4888//17932 -f 828//17933 332//17934 3097//17935 -f 1667//17936 141//17937 2089//17937 -f 2869//17938 1758//17939 5126//17940 -f 6208//17941 6335//17942 6091//17943 -f 1278//17944 1041//17945 3934//17944 -f 2071//17946 1640//17947 2513//17948 -f 2603//17949 1769//17949 3455//17949 -f 1180//17950 3920//17951 3016//17952 -f 4186//17953 4538//17953 13//17953 -f 131//17954 96//17955 2604//17956 -f 4621//17957 31//17958 4686//17958 -f 5507//17959 621//17960 642//17960 -f 1224//17961 4269//17961 6442//17961 -f 3446//17962 3543//17962 1622//17963 -f 3167//17964 4063//17965 1170//17966 -f 3887//17967 3062//17968 2443//17969 -f 391//17970 3380//17971 4169//17972 -f 6020//17973 6209//17974 6094//17973 -f 2422//17975 4852//17976 699//17977 -f 6164//17978 5865//17978 6247//17979 -f 3065//17980 212//17980 3066//17980 -f 3425//17981 3095//17982 5140//17982 -f 3009//17983 4512//17984 3702//17984 -f 335//17985 1175//17985 1666//17985 -f 3600//17986 943//17987 3564//17988 -f 4635//17989 281//17990 4636//17991 -f 1026//17992 1000//17993 2906//17994 -f 1614//17995 724//17996 6051//17997 -f 3105//17998 540//17998 2761//17998 -f 4766//17999 4505//18000 4783//18001 -f 4337//18002 577//18003 1558//18003 -f 3291//18004 727//18005 728//18006 -f 4860//18007 1863//18008 4897//18009 -f 354//18010 355//18011 4793//18011 -f 3550//18012 1720//18013 4560//18014 -f 333//18015 1803//18016 427//18017 -f 5983//18018 6063//18019 6251//18020 -f 6309//18021 6166//18022 6096//18023 -f 3817//18024 3295//18025 1203//18026 -f 1637//18027 1636//18028 1068//18029 -f 152//18030 3582//18031 3583//18032 -f 141//18033 4385//18034 2089//18034 -f 6130//18035 5875//18035 6166//18035 -f 3085//18036 478//18037 2937//18036 -f 4654//18038 722//18039 3354//18040 -f 3031//18041 4963//18042 2016//18043 -f 3522//18044 4889//18045 4161//18045 -f 1761//18046 3556//18047 1871//18048 -f 3938//18049 704//18050 4222//18051 -f 6169//18052 6347//18053 6133//18054 -f 3525//18055 4891//18055 2617//18056 -f 3346//18057 1528//18058 4006//18059 -f 3664//18060 3864//18060 3574//18060 -f 2895//18061 2595//18061 995//18061 -f 1367//18062 455//18063 1979//18063 -f 3057//18064 2037//18064 216//18064 -f 1581//18065 2104//18066 4523//18066 -f 2241//18067 3116//18068 3332//18069 -f 3002//18070 7224//18071 299//18070 -f 6171//18072 5950//18073 6348//18074 -f 6380//18075 6351//18076 6350//18075 -f 3164//18077 4149//18078 3860//18079 -f 4097//18080 878//18081 2610//18080 -f 3210//18082 4479//18082 1943//18082 -f 2343//18083 3776//18083 2591//18083 -f 6353//18084 6351//18085 6382//18086 -f 97//18087 5726//18088 3496//18088 -f 500//18089 3800//18090 3442//18091 -f 5682//18092 4301//18093 1263//18094 -f 651//18095 1484//18096 3283//18095 -f 6136//18097 6034//18098 6384//18099 -f 495//18100 1901//18101 2291//18102 -f 6034//18103 6315//18103 6384//18103 -f 6034//18104 5991//18104 6315//18104 -f 6033//18105 6172//18106 6385//18107 -f 2090//18108 3110//18109 3583//18110 -f 4944//18111 4844//18112 2372//18113 -f 1243//18114 1949//18115 1087//18114 -f 2518//18116 3099//18116 2848//18117 -f 6315//18118 5991//18118 6139//18118 -f 2679//18119 2680//18120 8//18121 -f 723//18122 729//18123 724//18124 -f 708//18125 3635//18125 4744//18126 -f 3076//18127 162//18128 4084//18129 -f 6257//18130 6423//18131 6388//18132 -f 882//18133 1064//18134 1240//18135 -f 6482//18136 6141//18136 6389//18136 -f 6389//18137 6141//18138 6260//18137 -f 6318//18139 6259//18139 6257//18139 -f 230//18140 2156//18140 1601//18140 -f 538//18141 3816//18142 1241//18143 -f 121//18144 2814//18145 3154//18145 -f 6293//18146 6100//18146 6318//18147 -f 5929//18148 6069//18149 6292//18150 -f 2551//18151 4477//18151 4643//18151 -f 3158//18152 653//18153 5525//18152 -f 2091//18154 1431//18155 5686//18156 -f 3019//18157 4520//18157 2653//18158 -f 170//18159 4424//18160 3491//18160 -f 627//18161 3219//18162 3983//18163 -f 6390//18164 6177//18164 6102//18165 -f 4078//18166 1934//18167 1680//18168 -f 394//18169 2483//18170 3390//18171 -f 5193//18172 4138//18173 3417//18174 -f 6225//18175 6294//18176 6391//18177 -f 2311//18178 1115//18179 111//18179 -f 3241//18180 5510//18180 2003//18181 -f 422//18182 3698//18182 4184//18182 -f 6176//18183 5995//18184 6455//18185 -f 101//18186 2411//18187 4646//18188 -f 4318//18189 951//18189 1036//18189 -f 2267//18190 3433//18190 1169//18191 -f 3458//18192 2619//18193 1748//18194 -f 6321//18195 6392//18195 6181//18195 -f 4263//18196 4195//18196 713//18196 -f 6393//18197 6394//18197 6147//18197 -f 6357//18198 6183//18198 6181//18199 -f 1833//18200 477//18201 2915//18202 -f 396//18203 5174//18204 1890//18205 -f 4921//18206 5114//18206 5078//18206 -f 4032//18207 508//18208 4243//18209 -f 6109//18210 6187//18210 6323//18210 -f 984//18211 1769//18212 2603//18213 -f 6188//18214 6322//18215 6395//18216 -f 6148//18217 6188//18218 6395//18218 -f 6265//18219 6111//18220 6359//18221 -f 2279//18222 4927//18223 4268//18224 -f 209//18225 2195//18226 729//18227 -f 6073//18228 6148//18229 6396//18230 -f 1957//18231 1098//18232 3113//18232 -f 3409//18233 1301//18234 1144//18233 -f 6227//18235 6073//18236 6396//18237 -f 6112//18238 6397//18239 6226//18240 -f 3878//18241 1336//18242 3729//18243 -f 3523//18244 1940//18244 2502//18245 -f 1360//18246 571//18247 4183//18247 -f 5469//18248 4226//18248 3282//18249 -f 2035//18250 4829//18251 2393//18251 -f 6228//18252 6324//18253 6325//18254 -f 2150//18255 5056//18256 1173//18256 -f 2100//18257 3208//18258 4684//18259 -f 799//18260 1435//18261 2263//18262 -f 5066//18263 5550//18264 840//18265 -f 4956//18266 2149//18267 4176//18268 -f 3277//18269 3045//18270 3946//18271 -f 470//18272 445//18273 1064//18272 -f 6462//18274 6268//18275 6149//18276 -f 6462//18277 6364//18278 6268//18279 -f 3962//18280 185//18280 2294//18280 -f 2383//18281 391//18281 4169//18282 -f 1019//18283 3540//18284 3200//18284 -f 3266//18285 2359//18286 2558//18287 -f 254//18288 777//18288 255//18288 -f 6433//18289 6150//18290 6399//18291 -f 6150//18292 6117//18293 6399//18293 -f 3453//18294 4048//18295 2916//18296 -f 1357//18297 4757//18297 2241//18298 -f 3282//18299 443//18300 5469//18301 -f 6369//18302 6399//18303 6117//18304 -f 1945//18305 560//18306 3411//18307 -f 700//18308 4850//18309 699//18310 -f 3830//18311 3256//18312 1097//18313 -f 1260//18314 217//18315 314//18316 -f 6231//18317 6498//18318 6197//18319 -f 5122//18320 2418//18321 1308//18322 -f 3488//18323 5358//18323 1887//18323 -f 6270//18324 6367//18325 6401//18326 -f 2362//18327 3447//18327 4785//18327 -f 2281//18328 1830//18328 3614//18328 -f 2159//18329 4078//18330 4459//18331 -f 3317//18332 3954//18333 849//18333 -f 3319//18334 2474//18334 256//18334 -f 2131//18335 842//18336 3936//18335 -f 6328//18337 6202//18337 6302//18337 -f 619//18338 986//18339 5421//18340 -f 481//18341 187//18342 784//18343 -f 874//18344 3752//18344 2776//18345 -f 2238//18346 2131//18347 3936//18348 -f 4330//18349 1380//18350 4895//18351 -f 1414//18352 2023//18352 3373//18353 -f 425//18354 1715//18355 1279//18356 -f 6371//18357 5974//18358 5975//18359 -f 1843//18360 1601//18360 4739//18361 -f 1751//18362 4729//18363 7337//18364 -f 6371//18365 5975//18365 6402//18365 -f 3855//18366 4689//18366 3408//18366 -f 1072//18367 5133//18367 1672//18367 -f 6372//18368 6373//18368 6374//18368 -f 1375//18369 1827//18370 4103//18371 -f 6332//18372 6403//18373 6203//18374 -f 2452//18375 2321//18376 1444//18377 -f 6333//18378 6404//18379 6204//18378 -f 5009//18380 3021//18381 5492//18380 -f 4223//18382 4002//18382 3674//18383 -f 4508//18384 4486//18385 3301//18386 -f 703//18387 25//18387 3093//18388 -f 640//18389 1557//18390 5307//18391 -f 6405//18392 6275//18393 6335//18394 -f 4801//18395 1571//18396 795//18397 -f 1281//18398 2463//18399 1870//18400 -f 1293//18401 3202//18402 4573//18403 -f 141//18404 2932//18405 4853//18406 -f 1068//18407 3089//18408 1637//18409 -f 217//18410 385//18410 314//18410 -f 998//18411 3649//18412 1640//18412 -f 3628//18413 5157//18414 5158//18415 -f 645//18416 2426//18417 4296//18418 -f 6338//18419 6246//18420 6243//18419 -f 4881//18421 1838//18422 5287//18423 -f 4111//18424 2953//18425 1259//18425 -f 3283//18426 1484//18427 1524//18428 -f 6246//18429 6126//18430 6125//18431 -f 2896//18432 4352//18432 3021//18433 -f 6340//18434 6161//18435 6209//18436 -f 4152//18437 1801//18438 4594//18439 -f 4056//18440 2820//18441 3698//18441 -f 6279//18442 6408//18443 6162//18444 -f 5078//18445 4336//18446 2642//18447 -f 6163//18448 6095//18449 6623//18448 -f 511//18450 317//18451 1933//18452 -f 1849//18453 152//18454 370//18455 -f 953//18456 4255//18457 1782//18457 -f 4915//18458 4341//18458 5643//18458 -f 3179//18459 3521//18459 2788//18460 -f 6210//18461 6409//18462 6279//18463 -f 2229//18464 3375//18465 3120//18466 -f 4047//18467 2176//18468 2244//18469 -f 2363//18470 2473//18471 4675//18472 -f 1245//18473 5069//18474 3332//18475 -f 6376//18476 6127//18476 6342//18476 -f 5915//18477 6307//18478 6249//18477 -f 1690//18479 3769//18480 1956//18480 -f 1620//18481 712//18482 1893//18482 -f 1878//18483 3823//18484 2720//18484 -f 3383//18485 672//18486 27//18487 -f 556//18488 1207//18489 3365//18490 -f 2097//18491 3377//18492 2934//18492 -f 4321//18493 4980//18494 3316//18495 -f 4707//18496 3582//18497 5154//18497 -f 2906//18498 2388//18499 1026//18500 -f 2337//18501 2305//18502 1344//18503 -f 887//18504 4276//18504 4207//18504 -f 6252//18505 6133//18506 6379//18506 -f 777//18507 1861//18507 1822//18507 -f 3626//18508 3078//18508 3673//18508 -f 6132//18509 6167//18510 6378//18509 -f 3670//18511 251//18512 2855//18512 -f 2814//18513 3103//18513 3454//18514 -f 2164//18515 1929//18516 3402//18517 -f 6133//18518 6347//18519 6379//18520 -f 6027//18521 5922//18521 6311//18521 -f 5050//18522 1242//18523 2326//18522 -f 2181//18524 3409//18525 1298//18526 -f 4118//18527 565//18528 658//18529 -f 6313//18530 6412//18531 6350//18532 -f 6214//18533 6414//18534 5924//18533 -f 6349//18535 6413//18536 6097//18536 -f 6477//18537 6380//18538 6415//18539 -f 6350//18540 6415//18541 6380//18540 -f 3591//18542 3419//18543 2846//18542 -f 6313//18544 6350//18545 6312//18546 -f 132//18547 2358//18548 2699//18549 -f 2419//18550 815//18551 4574//18552 -f 3703//18553 1254//18553 1255//18553 -f 731//18554 2310//18555 2839//18556 -f 6416//18557 5926//18558 6065//18559 -f 940//18560 2171//18561 1912//18562 -f 3354//18563 2675//18563 4654//18563 -f 6418//18564 6215//18564 6286//18565 -f 829//18566 4331//18566 1207//18566 -f 6383//18567 6419//18568 6288//18568 -f 6383//18569 6288//18570 6289//18571 -f 5540//18572 2467//18573 3840//18574 -f 6383//18575 6289//18575 6420//18575 -f 6172//18576 6033//18577 6354//18578 -f 5550//18579 5066//18579 4824//18580 -f 6353//18581 6548//18582 6254//18583 -f 4197//18584 4314//18585 1678//18586 -f 2636//18587 4422//18587 348//18587 -f 5431//18588 487//18588 3414//18588 -f 6315//18589 6139//18590 6386//18591 -f 1143//18592 1612//18593 3882//18594 -f 4051//18595 514//18596 4998//18597 -f 6257//18598 6258//18599 6423//18600 -f 5368//18601 2730//18601 3680//18601 -f 3724//18602 2886//18603 4578//18604 -f 4085//18605 3021//18606 5009//18606 -f 1050//18607 4060//18608 4023//18609 -f 2220//18610 4703//18611 3815//18612 -f 2976//18613 977//18614 2975//18615 -f 6260//18616 6262//18616 6389//18617 -f 6261//18618 5929//18619 6292//18619 -f 6221//18620 6103//18620 6319//18620 -f 2322//18621 3657//18622 2847//18623 -f 5367//18624 1394//18625 3919//18626 -f 3844//18627 4271//18628 2136//18629 -f 6356//18630 6484//18631 6224//18632 -f 6426//18633 6142//18634 6222//18635 -f 6142//18636 6426//18636 6456//18637 -f 492//18638 4843//18639 4073//18640 -f 5322//18641 1587//18642 5419//18643 -f 1780//18644 210//18644 3501//18645 -f 4102//18646 1650//18647 151//18648 -f 2105//18649 242//18649 3909//18649 -f 4169//18650 1525//18650 609//18650 -f 6394//18651 6356//18651 6147//18651 -f 1102//18652 2771//18653 4377//18654 -f 6181//18655 6392//18656 6357//18655 -f 6147//18657 6182//18657 6393//18658 -f 2299//18659 3854//18660 4448//18661 -f 6357//18662 5959//18663 6184//18664 -f 1372//18665 2265//18666 4332//18667 -f 6185//18668 6489//18669 6393//18670 -f 881//18671 508//18672 4032//18672 -f 6427//18673 6428//18673 6358//18673 -f 6322//18674 6358//18675 6428//18674 -f 6323//18676 6187//18677 6265//18677 -f 684//18678 2326//18678 683//18679 -f 6395//18680 6322//18681 6428//18682 -f 2593//18683 3386//18683 2461//18683 -f 3762//18684 3015//18685 3212//18686 -f 6397//18687 6075//18687 6227//18688 -f 6112//18689 6075//18689 6397//18689 -f 5212//18690 3643//18690 2742//18691 -f 6360//18692 6494//18693 6266//18694 -f 2767//18695 4657//18695 2768//18696 -f 6429//18697 6190//18698 6361//18699 -f 3099//18700 136//18700 1486//18700 -f 578//18701 2681//18702 4942//18703 -f 6297//18704 6431//18705 6267//18706 -f 1392//18707 2352//18707 1911//18708 -f 1716//18709 3588//18709 2173//18709 -f 6363//18710 6193//18710 6362//18710 -f 3431//18711 1285//18712 1021//18713 -f 2120//18714 4526//18715 1114//18714 -f 2592//18716 649//18717 5204//18718 -f 839//18719 4472//18720 1464//18721 -f 3044//18722 427//18723 2471//18724 -f 4503//18725 2795//18726 2900//18726 -f 2730//18727 2729//18728 2559//18729 -f 3493//18730 823//18731 3529//18732 -f 6115//18733 6326//18734 6432//18735 -f 6398//18736 6327//18737 6150//18738 -f 6365//18739 6045//18740 6115//18741 -f 4146//18742 1867//18743 1986//18744 -f 2379//18745 1413//18746 3418//18747 -f 2157//18748 4476//18749 463//18750 -f 385//18751 4606//18752 1134//18753 -f 6433//18754 6398//18755 6150//18756 -f 6435//18757 6232//18758 6366//18759 -f 3109//18760 1009//18761 276//18762 -f 237//18763 107//18763 1467//18763 -f 6269//18764 6232//18765 6436//18766 -f 1364//18767 498//18767 1971//18768 -f 1736//18769 1737//18770 3195//18771 -f 6434//18772 6231//18772 6365//18772 -f 2326//18773 684//18774 3351//18773 -f 5049//18775 2382//18776 4140//18777 -f 6233//18778 6437//18779 6401//18780 -f 450//18781 4438//18782 5332//18783 -f 6328//18784 6199//18785 6273//18786 -f 66//18787 2957//18788 335//18789 -f 1986//18790 3562//18791 2926//18791 -f 435//18792 1512//18793 442//18794 -f 3658//18795 4334//18796 1921//18797 -f 6329//18798 5490//18799 6120//18800 -f 6006//18801 6197//18802 6498//18803 -f 1781//18804 2643//18805 5097//18806 -f 6497//18807 6330//18808 6401//18808 -f 400//18809 2088//18810 4125//18811 -f 5903//18812 6234//18813 6235//18814 -f 6198//18815 5974//18816 6371//18817 -f 2439//18818 4446//18819 3319//18820 -f 6438//18821 6369//18822 6272//18823 -f 5019//18824 96//18825 1379//18826 -f 6238//18827 6047//18827 6271//18827 -f 1985//18828 2657//18828 3531//18829 -f 1050//18830 4023//18831 5486//18832 -f 1172//18833 3052//18833 2041//18834 -f 4788//18835 1901//18836 495//18837 -f 6330//18838 6468//18839 6237//18840 -f 6240//18841 6236//18842 6121//18843 -f 6274//18844 6084//18844 6238//18844 -f 6153//18845 6237//18846 6468//18845 -f 6332//18847 6153//18847 6468//18847 -f 2700//18848 2379//18849 2808//18850 -f 6403//18851 6440//18852 6372//18853 -f 5776//18854 4195//18854 3913//18854 -f 2438//18855 1910//18855 5525//18855 -f 617//18856 421//18857 2798//18858 -f 2787//18859 3423//18859 210//18859 -f 6304//18860 6204//18861 6404//18861 -f 6331//18862 6275//18863 6441//18862 -f 5274//18864 6355//18865 6442//18864 -f 6084//18866 6274//18867 6050//18868 -f 2931//18869 3411//18869 3524//18869 -f 6240//18870 6241//18870 6336//18871 -f 6241//18872 6090//18872 6336//18872 -f 3763//18873 514//18873 4051//18874 -f 3208//18875 2100//18876 431//18877 -f 3443//18878 4096//18879 504//18880 -f 1214//18881 139//18882 5943//18883 -f 6208//18884 6443//18884 6335//18884 -f 6092//18885 6305//18886 6444//18887 -f 2499//18888 275//18889 4697//18890 -f 36//18891 6124//18891 4475//18891 -f 6245//18892 6123//18892 6445//18892 -f 991//18893 1787//18894 538//18893 -f 6056//18895 6207//18896 6406//18896 -f 5862//18897 5979//18898 6501//18899 -f 6338//18900 6244//18901 6375//18900 -f 436//18902 4489//18903 1171//18904 -f 6375//18905 6244//18906 6277//18907 -f 4120//18908 4765//18909 5174//18910 -f 3338//18911 3186//18912 845//18912 -f 2561//18913 4344//18913 2547//18913 -f 823//18914 2673//18914 1689//18915 -f 6306//18916 6277//18917 6093//18918 -f 582//18919 2463//18920 5207//18921 -f 775//18922 3534//18922 629//18922 -f 6126//18923 6246//18924 6539//18925 -f 3348//18926 3204//18927 2765//18927 -f 4678//18928 1967//18928 1141//18929 -f 1565//18930 2001//18931 5562//18932 -f 581//18933 1823//18934 3619//18935 -f 4448//18936 1698//18937 4338//18938 -f 855//18939 3621//18939 819//18940 -f 6159//18941 6162//18942 6408//18943 -f 2539//18944 4251//18945 1724//18946 -f 4193//18947 4014//18948 2309//18949 -f 3713//18950 424//18951 192//18952 -f 5507//18953 1386//18954 621//18954 -f 687//18955 2480//18956 1817//18957 -f 5528//18958 1395//18959 4411//18958 -f 2596//18960 4367//18961 215//18961 -f 4466//18962 414//18963 1339//18964 -f 6210//18965 6344//18966 6409//18967 -f 554//18968 1203//18969 3295//18970 -f 3323//18971 2380//18972 630//18973 -f 2196//18974 2291//18975 1901//18976 -f 1942//18977 1956//18978 3769//18979 -f 6280//18980 5947//18981 6345//18982 -f 233//18983 2370//18984 1030//18983 -f 2603//18985 1005//18986 984//18987 -f 2421//18988 2279//18989 4268//18990 -f 2314//18991 1292//18992 432//18993 -f 5534//18994 2353//18995 4876//18996 -f 6377//18997 6213//18998 6024//18999 -f 623//19000 1750//19001 2175//19000 -f 757//19002 2683//19003 4866//19004 -f 4366//19005 890//19005 5269//19006 -f 6129//19007 6133//19007 6252//19008 -f 3497//19009 4538//19010 1204//19009 -f 6446//19011 6283//19012 6132//19013 -f 2348//19014 5731//19014 289//19015 -f 2993//19016 2641//19017 4950//19018 -f 2517//19019 3088//19019 5499//19020 -f 3368//19021 3479//19022 1963//19023 -f 4123//19024 1953//19025 4239//19025 -f 6284//19026 6097//19027 6413//19028 -f 4140//19029 822//19030 5049//19031 -f 6350//19032 6412//19033 6415//19033 -f 6477//19034 6448//19034 6380//19034 -f 1873//19035 5203//19036 856//19037 -f 3156//19038 3208//19039 4327//19038 -f 682//19040 1609//19041 696//19042 -f 6380//19043 6448//19044 6449//19045 -f 6450//19046 6313//19046 6288//19046 -f 6352//19047 6416//19048 6065//19049 -f 4720//19050 5580//19051 1408//19051 -f 6351//19052 6380//19052 6417//19053 -f 4149//19054 3934//19055 1658//19056 -f 6349//19057 6215//19058 6418//19059 -f 25//19060 3472//19061 4912//19062 -f 1352//19063 2288//19064 7214//19065 -f 6351//19066 6417//19067 6382//19068 -f 2194//19069 3107//19069 409//19069 -f 3028//19070 371//19071 3766//19070 -f 1344//19072 1548//19073 1884//19074 -f 4067//19075 1557//19076 5020//19077 -f 6382//19078 6548//19078 6353//19078 -f 3576//19079 4091//19079 3848//19079 -f 6289//19080 6255//19081 6482//19082 -f 1093//19083 4705//19084 2129//19085 -f 6290//19086 6480//19086 6316//19087 -f 6139//19088 6256//19089 6386//19088 -f 6421//19090 6387//19091 6316//19092 -f 6387//19093 6258//19094 6316//19095 -f 402//19096 4143//19097 3788//19098 -f 6423//19099 6258//19100 6387//19101 -f 3930//19102 413//19103 5255//19104 -f 2832//19105 287//19106 3048//19107 -f 1993//19108 2754//19109 1992//19110 -f 6257//19111 6388//19112 6318//19113 -f 6291//19114 6174//19114 6424//19114 -f 940//19115 3298//19116 197//19117 -f 2036//19118 1576//19119 2095//19120 -f 4487//19121 4486//19122 4508//19123 -f 6262//19124 6104//19125 6484//19126 -f 4419//19127 3158//19128 2396//19129 -f 6103//19130 6175//19131 6319//19130 -f 1215//19132 2859//19132 1119//19132 -f 6486//19133 6222//19134 6390//19135 -f 5995//19136 6223//19137 6455//19138 -f 940//19139 1763//19140 2171//19141 -f 856//19142 2521//19143 3485//19144 -f 4447//19145 5156//19146 1394//19147 -f 6456//19148 5958//19149 6142//19150 -f 899//19151 1891//19151 4479//19151 -f 2478//19152 4227//19153 4336//19154 -f 1644//19155 1185//19155 2938//19156 -f 6106//19157 5752//19157 6144//19158 -f 6106//19159 6457//19160 6105//19159 -f 6458//19161 6321//19162 6320//19163 -f 1977//19164 1000//19165 4463//19166 -f 2523//19167 3524//19167 1716//19168 -f 1813//19169 3296//19169 3795//19169 -f 5959//19170 6487//19171 6107//19172 -f 3647//19173 201//19174 4777//19175 -f 3941//19176 1786//19176 1402//19177 -f 6459//19178 6263//19179 6108//19180 -f 6461//19181 6185//19182 6109//19181 -f 4923//19183 5027//19183 1869//19183 -f 6460//19184 6427//19185 6358//19186 -f 3680//19187 2730//19188 2559//19189 -f 2643//19190 485//19190 1514//19190 -f 2095//19191 620//19192 3757//19193 -f 2854//19194 2714//19195 2874//19196 -f 382//19197 1700//19197 4307//19197 -f 1414//19198 3373//19199 111//19200 -f 5331//19201 5123//19202 1841//19203 -f 104//19204 7249//19204 1389//19204 -f 2340//19205 3630//19206 3650//19207 -f 2883//19208 1212//19209 4303//19210 -f 6324//19211 6266//19212 6493//19211 -f 5505//19213 351//19214 1401//19215 -f 1052//19216 3692//19217 5169//19218 -f 3527//19219 5020//19219 3722//19219 -f 4167//19220 2476//19221 3927//19222 -f 6429//19223 6189//19224 6190//19225 -f 6430//19226 6297//19227 6325//19226 -f 2501//19228 3482//19229 230//19230 -f 6361//19231 6191//19232 6298//19233 -f 385//19234 548//19234 3146//19234 -f 2377//19235 431//19236 2621//19237 -f 6431//19238 6362//19239 6267//19239 -f 146//19240 3069//19240 1832//19241 -f 4587//19242 570//19243 2972//19244 -f 4621//19245 953//19246 31//19247 -f 2982//19248 3499//19248 5216//19249 -f 1244//19250 3372//19251 229//19252 -f 6363//19253 6462//19254 6149//19255 -f 3588//19256 3419//19256 4177//19256 -f 2240//19257 4262//19258 4201//19258 -f 5303//19259 3316//19260 3351//19261 -f 6432//19262 6327//19262 6398//19262 -f 6432//19263 6326//19263 6327//19263 -f 6463//19264 6115//19264 6432//19265 -f 4676//19266 4234//19267 4235//19268 -f 6464//19269 6432//19269 6398//19269 -f 5328//19270 5193//19270 4362//19270 -f 1847//19271 197//19272 3298//19271 -f 6115//19273 6463//19274 6365//19275 -f 4953//19276 1374//19277 2981//19278 -f 3674//19279 1456//19280 225//19281 -f 3157//19282 672//19283 3370//19284 -f 6435//19285 6436//19286 6232//19287 -f 5527//19288 1864//19289 1865//19290 -f 3253//19291 794//19292 3321//19293 -f 1832//19294 3069//19294 4731//19294 -f 6466//19295 6437//19296 6152//19297 -f 1364//19298 1842//19299 498//19300 -f 3985//19301 2577//19302 4695//19303 -f 3435//19304 4965//19305 1291//19304 -f 6437//19306 6467//19306 6401//19307 -f 2327//19308 3859//19309 2874//19310 -f 2385//19311 1806//19312 3640//19313 -f 6400//19314 6328//19315 6302//19316 -f 6498//19317 6231//19318 6434//19319 -f 3202//19320 4295//19321 1877//19322 -f 4471//19323 5581//19324 4982//19325 -f 1551//19326 4875//19326 3572//19326 -f 2496//19327 2143//19328 4902//19329 -f 5158//19330 3923//19331 1729//19332 -f 337//19333 2798//19333 1585//19333 -f 2510//19334 1856//19335 2333//19336 -f 4385//19337 367//19338 1401//19339 -f 6235//19340 6532//19341 6302//19342 -f 2447//19343 227//19344 1580//19345 -f 4697//19346 3974//19346 1266//19346 -f 5065//19347 363//19348 1750//19349 -f 6006//19350 6439//19351 5937//19352 -f 1809//19353 1138//19354 903//19355 -f 587//19356 2560//19356 948//19356 -f 1652//19357 4793//19358 4206//19359 -f 1873//19360 3918//19361 404//19362 -f 6402//19363 5975//19363 6303//19363 -f 650//19364 3231//19365 767//19366 -f 408//19367 6061//19367 3577//19367 -f 6373//19368 6469//19369 6374//19370 -f 1454//19371 2472//19371 1049//19372 -f 6374//19373 6469//19374 6333//19375 -f 3377//19376 711//19377 2934//19378 -f 5072//19379 504//19380 4746//19381 -f 3406//19382 3073//19383 744//19384 -f 4073//19385 3199//19385 4670//19385 -f 1784//19386 214//19386 2954//19386 -f 93//19387 2220//19388 4159//19389 -f 3440//19390 1339//19390 4454//19390 -f 950//19391 1378//19391 5337//19391 -f 6158//19392 6056//19392 6406//19393 -f 1390//19394 2337//19395 1884//19396 -f 4330//19397 4895//19398 5019//19399 -f 6126//19400 6539//19400 6339//19400 -f 4953//19401 2981//19402 248//19403 -f 6407//19404 6163//19404 6623//19405 -f 6339//19406 6341//19406 6160//19406 -f 5139//19407 5020//19407 3527//19408 -f 4525//19409 1593//19410 283//19411 -f 3629//19412 3424//19413 1094//19414 -f 4554//19415 2324//19416 7142//19417 -f 3182//19418 3253//19419 5110//19420 -f 6472//19421 6281//19421 6059//19422 -f 454//19423 2772//19424 4871//19425 -f 1045//19426 3029//19427 1845//19428 -f 4028//19429 1125//19430 43//19431 -f 2538//19432 3525//19433 3462//19433 -f 6410//19434 6345//19434 6060//19435 -f 6344//19436 5983//19437 6473//19437 -f 1241//19438 3399//19439 1250//19440 -f 6128//19441 6250//19442 6282//19443 -f 6346//19444 6308//19444 6474//19444 -f 126//19445 1437//19445 569//19445 -f 3749//19446 1107//19447 3756//19448 -f 1364//19449 5738//19449 1566//19449 -f 2937//19450 1186//19451 1490//19452 -f 635//19453 3302//19454 3327//19455 -f 2363//19456 4766//19457 2473//19458 -f 792//19459 1417//19459 2390//19460 -f 680//19461 607//19462 1136//19463 -f 3880//19464 4487//19465 2172//19466 -f 6475//19467 6412//19468 6544//19469 -f 4758//19470 454//19470 4871//19470 -f 5308//19471 4416//19471 1206//19471 -f 4300//19472 5718//19473 1042//19474 -f 6412//19475 6475//19476 6415//19477 -f 5633//19478 4311//19479 5195//19480 -f 5924//19481 6476//19482 6169//19483 -f 2093//19484 1970//19485 4327//19484 -f 1793//19486 1550//19487 3025//19488 -f 6415//19489 6475//19490 6477//19491 -f 6413//19492 6411//19493 6284//19492 -f 1933//19494 2466//19494 511//19494 -f 3052//19495 1172//19495 5070//19495 -f 6412//19496 6313//19497 6478//19498 -f 6414//19499 6214//19500 6285//19501 -f 6214//19502 5926//19503 6285//19504 -f 1334//19505 1078//19506 4359//19507 -f 4241//19508 3074//19509 2963//19510 -f 2938//19511 1185//19512 2525//19513 -f 6285//19514 5926//19515 6416//19516 -f 1318//19517 1835//19518 3695//19519 -f 1300//19520 3015//19520 1830//19520 -f 6449//19521 6417//19521 6380//19522 -f 1117//19523 4008//19523 2084//19523 -f 6288//19524 6419//19525 6450//19526 -f 476//19527 1653//19528 3802//19529 -f 6354//19530 6135//19531 6451//19530 -f 4053//19532 4031//19533 1737//19534 -f 230//19535 3482//19536 1957//19535 -f 735//19537 1800//19538 3183//19539 -f 5224//19540 165//19541 3686//19542 -f 3220//19543 4039//19543 4221//19544 -f 4909//19545 3904//19546 172//19545 -f 574//19547 3845//19548 3497//19549 -f 6315//19550 6386//19551 6479//19552 -f 4560//19553 237//19554 1179//19555 -f 6254//19556 6480//19557 6290//19557 -f 6055//19558 190//19559 4484//19560 -f 6066//19561 6385//19562 6317//19563 -f 6422//19564 6386//19564 6256//19564 -f 2997//19565 1517//19566 1474//19566 -f 4135//19567 3645//19568 396//19569 -f 2833//19570 4607//19571 1430//19572 -f 7400//19573 3338//19574 845//19573 -f 6388//19575 6423//19576 6511//19575 -f 4324//19577 3324//19577 1910//19577 -f 3765//19578 78//19578 4557//19579 -f 6482//19580 6389//19581 6513//19582 -f 1244//19583 1778//19584 1178//19585 -f 4557//19586 6836//19587 3765//19587 -f 6424//19588 6256//19589 6291//19590 -f 3141//19591 3313//19592 376//19593 -f 1254//19594 3703//19594 2978//19595 -f 1431//19596 72//19596 1534//19596 -f 5019//19597 1200//19598 4330//19599 -f 6424//19600 6174//19601 6483//19602 -f 4298//19603 933//19604 5699//19605 -f 6293//19606 6318//19606 6454//19606 -f 5207//19607 3481//19608 2950//19609 -f 6389//19610 6262//19611 6484//19611 -f 3501//19612 210//19613 1396//19614 -f 5212//19615 4977//19616 1930//19617 -f 6179//19618 6293//19618 6425//19618 -f 2497//19619 5205//19619 4460//19619 -f 6294//19620 6179//19620 6425//19620 -f 3649//19621 226//19622 1640//19623 -f 6484//19624 6356//19624 6556//19624 -f 5163//19625 5114//19626 4921//19627 -f 3381//19628 5512//19629 2594//19630 -f 6390//19631 6222//19632 6177//19631 -f 248//19633 368//19634 4953//19635 -f 1644//19636 5737//19637 1185//19638 -f 2018//19639 2550//19640 1462//19641 -f 3725//19642 340//19643 2529//19644 -f 593//19645 2102//19646 1587//19647 -f 4435//19648 1335//19648 4394//19648 -f 6106//19649 6144//19650 6457//19650 -f 238//19651 1065//19652 1329//19653 -f 1806//19654 2612//19655 2846//19656 -f 6487//19657 5959//19658 6357//19659 -f 6488//19660 6394//19660 6393//19660 -f 1340//19661 4662//19662 4515//19663 -f 6460//19664 6296//19664 6264//19664 -f 6185//19665 6461//19666 6489//19667 -f 6460//19668 6264//19669 6263//19670 -f 6460//19671 6358//19671 6296//19671 -f 1902//19672 4072//19673 4295//19674 -f 6109//19675 6323//19676 6461//19675 -f 1269//19677 278//19677 4586//19678 -f 3613//19679 184//19680 416//19681 -f 6395//19682 6490//19683 6148//19684 -f 6148//19685 6490//19686 6396//19687 -f 1166//19688 1749//19689 4960//19690 -f 6492//19691 6227//19692 6396//19693 -f 1901//19694 3367//19695 714//19694 -f 2515//19696 711//19697 1859//19696 -f 6494//19698 6493//19699 6266//19700 -f 1848//19701 3440//19702 4454//19703 -f 1872//19704 1859//19705 1760//19706 -f 238//19707 1697//19708 1065//19709 -f 5267//19710 4127//19711 2657//19712 -f 635//19713 3327//19714 2127//19715 -f 1433//19716 1463//19717 2037//19718 -f 1068//19719 3647//19720 4091//19721 -f 6430//19722 6431//19723 6297//19724 -f 4573//19725 3202//19725 4287//19725 -f 4552//19726 3401//19727 3378//19728 -f 1444//19729 2321//19729 4187//19729 -f 2865//19730 3814//19730 4105//19730 -f 4494//19731 5707//19732 67//19733 -f 2239//19734 3515//19735 2810//19736 -f 6526//19737 6463//19738 6432//19739 -f 6433//19740 6464//19741 6398//19742 -f 389//19743 1361//19744 1871//19745 -f 1698//19746 962//19747 4338//19747 -f 6614//19748 6399//19749 6369//19750 -f 4834//19751 4943//19751 4835//19752 -f 165//19753 2654//19754 3686//19755 -f 393//19756 813//19757 4797//19758 -f 4075//19759 3810//19760 3908//19761 -f 1360//19762 1104//19763 1163//19764 -f 1010//19765 879//19766 4286//19767 -f 4161//19768 2743//19768 4547//19768 -f 3882//19769 1612//19770 3315//19771 -f 2486//19772 5686//19772 1534//19773 -f 6235//19774 6531//19775 6532//19776 -f 3621//19777 4556//19778 3753//19779 -f 1755//19780 2145//19781 3437//19782 -f 6006//19783 6498//19784 6439//19785 -f 1138//19786 1137//19787 525//19788 -f 1712//19789 3257//19789 3943//19789 -f 3975//19790 4618//19791 584//19792 -f 985//19793 3342//19793 2112//19794 -f 5640//19795 1498//19796 810//19797 -f 4136//19798 1759//19799 4831//19800 -f 5561//19801 2469//19802 2482//19803 -f 6470//19804 6440//19805 6403//19806 -f 321//19807 3720//19808 2500//19809 -f 2671//19810 2183//19811 2199//19812 -f 3181//19813 3309//19814 4653//19813 -f 6304//19815 6500//19816 6334//19815 -f 933//19817 4298//19818 5946//19819 -f 2291//19820 3670//19821 495//19822 -f 6441//19823 6275//19824 6405//19825 -f 2943//19826 3951//19827 5105//19828 -f 6092//19829 6444//19829 6336//19829 -f 3981//19830 2788//19831 147//19832 -f 2102//19833 593//19833 518//19833 -f 1390//19834 1884//19834 3075//19834 -f 4206//19835 4793//19836 355//19837 -f 4209//19838 5131//19839 3020//19840 -f 3408//19841 5053//19842 465//19843 -f 2613//19844 5750//19845 3991//19846 -f 2252//19847 745//19848 311//19849 -f 3263//19850 4685//19851 3012//19851 -f 3046//19852 612//19852 2415//19852 -f 5979//19853 6161//19853 6501//19853 -f 6246//19854 6338//19855 6539//19856 -f 6247//19857 6245//19857 6502//19857 -f 323//19858 1941//19859 1014//19860 -f 4118//19861 1030//19861 565//19862 -f 6306//19863 6163//19864 6407//19865 -f 1044//19866 2398//19866 716//19867 -f 3908//19868 297//19869 3655//19870 -f 4665//19871 2445//19871 231//19872 -f 4496//19873 782//19874 3951//19875 -f 4063//19876 86//19877 371//19878 -f 1032//19879 4542//19880 3460//19881 -f 182//19882 4505//19883 2363//19884 -f 4781//19885 2284//19886 1718//19887 -f 6127//19888 6057//19888 6342//19888 -f 1695//19889 675//19890 2117//19890 -f 3176//19891 4083//19892 2818//19891 -f 463//19893 4476//19894 3029//19895 -f 3019//19896 3579//19897 4740//19898 -f 3537//19899 1381//19900 1738//19901 -f 2074//19902 3945//19903 5371//19904 -f 4113//19905 976//19905 1300//19905 -f 6674//19906 5945//19906 6343//19906 -f 681//19907 682//19908 2498//19909 -f 3094//19910 594//19911 3264//19910 -f 3133//19912 3704//19913 3899//19914 -f 4638//19915 2284//19916 3630//19916 -f 6410//19917 6060//19918 6211//19919 -f 313//19920 4659//19920 3006//19921 -f 142//19922 2881//19922 2662//19923 -f 3295//19924 4131//19925 554//19926 -f 3892//19927 628//19927 1651//19927 -f 4289//19928 1635//19929 12//19930 -f 404//19931 3918//19932 3014//19933 -f 5200//19934 2593//19935 1248//19936 -f 3143//19937 1071//19938 697//19939 -f 1453//19940 2680//19941 4508//19942 -f 6132//19943 6378//19944 6446//19945 -f 3704//19946 1153//19947 1446//19948 -f 3779//19949 4379//19950 170//19951 -f 183//19952 2975//19953 977//19954 -f 2919//19955 3248//19956 748//19957 -f 239//19958 2571//19959 2269//19960 -f 6379//19961 6347//19961 6447//19961 -f 4621//19962 3248//19963 4255//19964 -f 4911//19965 2146//19966 2103//19967 -f 6167//19968 6284//19969 6411//19970 -f 264//19971 3369//19972 265//19971 -f 3380//19973 3981//19973 2167//19973 -f 4425//19974 2939//19975 832//19976 -f 773//19977 966//19978 4437//19979 -f 287//19980 611//19981 4887//19982 -f 6594//19983 6477//19984 6475//19985 -f 4018//19986 3660//19986 5152//19986 -f 6628//19987 6348//19987 6168//19987 -f 4721//19988 3492//19989 3456//19989 -f 2419//19990 1754//19990 815//19990 -f 2102//19991 518//19992 2006//19993 -f 6476//19994 5924//19995 6414//19996 -f 1841//19997 5123//19998 1568//19999 -f 2804//20000 1319//20001 4356//20002 -f 6313//20003 6450//20004 6478//20005 -f 2998//20006 2259//20006 1382//20006 -f 4893//20007 2642//20008 4746//20007 -f 4465//20009 2715//20010 33//20011 -f 4670//20012 661//20013 598//20014 -f 206//20015 106//20015 54//20015 -f 3852//20016 764//20017 3320//20017 -f 5162//20018 3658//20018 80//20018 -f 3292//20019 4484//20020 4843//20021 -f 4275//20022 49//20022 3511//20023 -f 6449//20024 6508//20025 6417//20026 -f 403//20027 505//20028 5393//20027 -f 6286//20029 6136//20029 6452//20029 -f 6286//20030 6452//20030 6418//20030 -f 1378//20031 3109//20032 5337//20033 -f 2946//20034 4408//20035 4485//20036 -f 1152//20037 1418//20038 2340//20039 -f 3559//20040 2702//20041 2701//20042 -f 1676//20043 2551//20044 4643//20045 -f 3873//20046 865//20047 1708//20048 -f 4126//20049 4911//20050 2008//20051 -f 1409//20052 4096//20052 5502//20052 -f 2996//20053 679//20053 1609//20054 -f 2429//20055 4501//20055 3571//20055 -f 178//20056 1232//20057 4655//20058 -f 5984//20059 4240//20060 1818//20061 -f 2584//20062 4453//20063 2663//20064 -f 3842//20065 3800//20066 500//20067 -f 6480//20068 6421//20068 6316//20068 -f 1853//20069 1994//20069 1477//20070 -f 1774//20071 3209//20072 3768//20073 -f 5031//20074 3612//20074 3642//20074 -f 3463//20075 2858//20076 1671//20077 -f 4585//20078 4647//20079 1677//20078 -f 3800//20080 3842//20081 1668//20082 -f 6511//20083 6512//20083 6388//20084 -f 386//20085 5772//20086 4641//20085 -f 6424//20087 6514//20088 6256//20089 -f 4014//20090 3628//20091 4504//20092 -f 2//20093 3751//20094 3444//20095 -f 3360//20096 3085//20097 3687//20098 -f 2469//20099 5561//20100 1811//20101 -f 5507//20102 642//20102 3518//20102 -f 4836//20103 256//20104 3230//20105 -f 3510//20106 5181//20106 3624//20106 -f 4439//20107 2267//20107 3744//20107 -f 6389//20108 6484//20109 6516//20110 -f 6515//20111 6292//20111 6069//20111 -f 1387//20112 1727//20113 4368//20114 -f 3032//20115 2587//20116 815//20117 -f 1090//20118 630//20119 2380//20119 -f 49//20120 195//20121 283//20122 -f 404//20123 3014//20123 1636//20123 -f 6425//20124 6293//20125 6454//20126 -f 831//20127 3116//20128 4757//20128 -f 5181//20129 1454//20129 1049//20129 -f 6102//20130 6261//20130 6390//20130 -f 525//20131 5150//20132 3187//20133 -f 6425//20134 6729//20135 6294//20135 -f 1546//20136 417//20137 4651//20136 -f 3768//20138 4224//20139 2519//20140 -f 1615//20141 1929//20142 2164//20141 -f 6485//20143 6556//20144 6356//20145 -f 6175//20146 6176//20147 6455//20148 -f 6556//20149 6485//20150 6517//20151 -f 1134//20152 641//20153 2139//20154 -f 5//20155 4100//20156 3056//20156 -f 2465//20157 3795//20158 5277//20159 -f 6320//20160 6225//20160 6519//20160 -f 6518//20161 6517//20161 6485//20161 -f 4954//20162 2660//20163 4272//20164 -f 3339//20165 411//20166 5649//20167 -f 4944//20168 3976//20169 3195//20170 -f 6518//20171 6485//20172 6520//20173 -f 6828//20174 1036//20174 6706//20174 -f 6392//20175 6321//20176 6458//20176 -f 2237//20177 3198//20177 3760//20177 -f 6489//20178 6488//20179 6393//20180 -f 3145//20181 1249//20182 3749//20183 -f 2734//20184 4480//20185 1799//20186 -f 320//20187 3685//20188 5768//20189 -f 6523//20190 6323//20191 6265//20190 -f 3070//20192 649//20193 2592//20192 -f 3676//20194 2024//20195 4343//20196 -f 5078//20197 1553//20198 4336//20199 -f 5591//20200 89//20201 3307//20202 -f 3068//20203 1639//20203 3794//20204 -f 6495//20205 6494//20206 6360//20206 -f 1589//20207 2084//20208 3262//20209 -f 2624//20210 2939//20211 4425//20212 -f 359//20213 420//20213 3947//20213 -f 611//20214 1238//20215 4887//20216 -f 2685//20217 1838//20218 3026//20219 -f 2216//20220 1035//20221 3866//20222 -f 1405//20223 2512//20224 2010//20225 -f 6525//20226 6360//20227 6189//20228 -f 1342//20229 1834//20230 2295//20231 -f 4090//20232 4891//20233 2538//20234 -f 1120//20235 2654//20236 4491//20237 -f 189//20238 4111//20239 3959//20238 -f 538//20240 731//20241 3890//20242 -f 6363//20243 6362//20244 6744//20245 -f 3384//20246 2885//20247 3270//20248 -f 3129//20249 2263//20250 1011//20250 -f 4088//20251 1724//20252 2442//20253 -f 803//20254 1238//20254 2099//20254 -f 629//20255 4297//20256 2318//20257 -f 6465//20258 6365//20259 6463//20260 -f 1866//20261 225//20261 1456//20262 -f 6434//20263 6365//20264 6465//20265 -f 4036//20266 5327//20267 1211//20268 -f 675//20269 3551//20270 1948//20270 -f 6578//20271 6301//20271 6370//20271 -f 4724//20272 2170//20273 4403//20274 -f 4116//20275 545//20276 3895//20277 -f 3969//20278 1046//20279 437//20278 -f 6614//20280 6369//20280 6438//20280 -f 3314//20281 1625//20282 1230//20283 -f 6370//20284 6328//20285 6400//20286 -f 246//20287 484//20288 1530//20289 -f 4365//20290 693//20291 1148//20292 -f 2//20293 3205//20294 3136//20295 -f 1513//20296 3269//20297 4021//20298 -f 3251//20299 1452//20300 1843//20301 -f 6528//20302 6271//20303 6301//20304 -f 6400//20305 6302//20306 6499//20307 -f 2758//20308 4499//20309 947//20310 -f 3902//20311 5524//20312 678//20312 -f 6467//20313 6497//20314 6401//20315 -f 1940//20316 1939//20316 1850//20317 -f 3060//20318 3807//20319 6051//20320 -f 3676//20321 2492//20322 3850//20322 -f 3571//20323 1914//20324 1796//20325 -f 1851//20326 3819//20327 4325//20328 -f 4514//20329 1312//20330 5163//20331 -f 4661//20332 3828//20332 2101//20332 -f 549//20333 2096//20333 2873//20333 -f 4233//20334 1496//20335 2180//20336 -f 3006//20337 720//20338 2317//20339 -f 5937//20340 6439//20341 6329//20342 -f 4071//20343 709//20344 1992//20345 -f 4279//20346 3345//20347 3796//20348 -f 6330//20349 6497//20350 6583//20351 -f 98//20352 551//20353 2349//20354 -f 7117//20355 6236//20356 6240//20355 -f 1716//20357 3524//20357 1656//20357 -f 3276//20358 3174//20359 2178//20360 -f 6440//20361 6470//20362 6373//20363 -f 6372//20364 6440//20365 6373//20366 -f 531//20367 5077//20368 809//20369 -f 6470//20370 6403//20370 6534//20370 -f 5738//20371 833//20371 1283//20371 -f 4975//20372 555//20373 4351//20374 -f 4029//20375 2882//20376 601//20377 -f 6403//20378 6332//20379 6534//20380 -f 4104//20381 4099//20382 4677//20381 -f 4623//20383 2998//20384 5653//20385 -f 116//20386 660//20386 3299//20386 -f 3787//20387 1228//20387 1749//20387 -f 808//20388 3420//20388 3160//20389 -f 2202//20390 1293//20391 2697//20392 -f 4843//20393 2946//20394 4485//20395 -f 6586//20396 6336//20397 6444//20397 -f 4599//20398 1542//20398 1965//20398 -f 2312//20399 563//20400 702//20400 -f 6337//20401 6155//20402 6334//20402 -f 6123//20403 6337//20403 6445//20404 -f 637//20405 1159//20406 2440//20407 -f 5307//20408 2878//20409 5834//20410 -f 1349//20411 2727//20411 4110//20411 -f 235//20412 1393//20413 3084//20414 -f 3311//20415 2798//20416 421//20417 -f 1269//20418 4586//20419 2223//20418 -f 6539//20420 6338//20420 6538//20420 -f 5486//20421 4692//20422 5485//20423 -f 2540//20424 2958//20424 2126//20424 -f 6159//20425 6408//20426 6471//20427 -f 1614//20428 6051//20429 1825//20430 -f 6306//20431 6407//20432 6277//20431 -f 340//20433 3725//20434 1767//20434 -f 6503//20435 6247//20436 6502//20435 -f 4772//20437 2094//20438 3269//20439 -f 4646//20440 308//20441 644//20442 -f 2542//20443 3838//20444 782//20443 -f 4402//20445 1593//20446 1084//20445 -f 6209//20447 6020//20447 6504//20447 -f 600//20448 928//20449 4676//20450 -f 1435//20451 2913//20452 1011//20451 -f 6541//20453 6341//20453 6339//20453 -f 1187//20454 2542//20455 4496//20456 -f 5388//20457 597//20458 4150//20458 -f 3287//20459 3678//20460 3811//20461 -f 2524//20462 3512//20463 2834//20464 -f 888//20465 4687//20466 3667//20467 -f 5287//20468 1838//20469 4192//20470 -f 676//20471 4152//20471 725//20471 -f 1653//20472 5005//20472 2784//20472 -f 6307//20473 5945//20474 6674//20475 -f 1919//20476 3068//20476 4196//20476 -f 2644//20477 1424//20478 3412//20479 -f 2465//20480 2803//20481 4176//20482 -f 5545//20483 9//20483 260//20483 -f 6410//20484 6211//20485 6213//20486 -f 1985//20487 364//20488 3384//20489 -f 6063//20490 6252//20491 6506//20492 -f 5014//20493 2704//20493 593//20493 -f 3732//20494 4267//20495 1569//20496 -f 494//20497 2781//20498 2557//20499 -f 3687//20500 848//20501 3566//20502 -f 2631//20503 4933//20503 4704//20503 -f 1223//20504 2088//20505 400//20506 -f 1488//20507 4715//20508 3358//20509 -f 6544//20510 6596//20510 6594//20510 -f 3553//20511 2817//20512 1907//20513 -f 6544//20514 6594//20515 6475//20514 -f 3969//20516 270//20516 1046//20516 -f 2992//20517 2616//20517 4903//20518 -f 1651//20519 2980//20520 346//20521 -f 6546//20522 6412//20523 6478//20522 -f 6476//20524 6347//20525 6169//20526 -f 3629//20527 1094//20528 2105//20528 -f 2063//20529 4595//20530 3601//20531 -f 3237//20532 140//20533 1219//20532 -f 5345//20534 5984//20535 814//20536 -f 2626//20537 5831//20537 754//20537 -f 6030//20538 6134//20539 6507//20540 -f 6171//20541 6348//20542 6628//20543 -f 372//20544 4348//20545 3846//20546 -f 3419//20547 1629//20547 2846//20548 -f 6382//20549 6417//20549 6508//20549 -f 170//20550 3340//20551 4424//20550 -f 838//20552 3584//20553 5053//20554 -f 4070//20555 273//20556 2295//20557 -f 6452//20558 6136//20559 6384//20559 -f 4189//20560 3815//20561 4703//20562 -f 4201//20563 3043//20563 2240//20564 -f 6254//20565 6548//20566 6480//20567 -f 6289//20568 6482//20569 6547//20570 -f 2685//20571 4192//20572 1838//20573 -f 5029//20574 2774//20575 79//20575 -f 393//20576 1966//20577 3130//20578 -f 6480//20579 6481//20580 6421//20581 -f 6387//20582 6510//20583 6423//20584 -f 6481//20585 6550//20586 6387//20587 -f 6481//20588 6387//20589 6421//20590 -f 3800//20591 1668//20592 5076//20593 -f 2519//20594 2312//20595 3863//20596 -f 1391//20597 1314//20598 653//20599 -f 4748//20600 5240//20601 1858//20602 -f 226//20603 3649//20604 5393//20605 -f 6551//20606 6388//20607 6512//20608 -f 6552//20609 6220//20610 6317//20611 -f 6256//20612 6514//20612 6453//20612 -f 4826//20613 2674//20614 2764//20615 -f 4419//20616 5655//20616 2975//20617 -f 6604//20618 6389//20618 6516//20618 -f 153//20619 649//20619 3070//20620 -f 264//20621 567//20622 3790//20622 -f 6516//20623 6484//20623 6556//20623 -f 1051//20624 4372//20624 2177//20625 -f 5525//20626 1910//20627 2864//20628 -f 3202//20629 4696//20629 4287//20629 -f 3553//20630 2753//20630 3633//20630 -f 3077//20631 3730//20632 908//20633 -f 6557//20634 6556//20634 6517//20635 -f 6294//20636 6729//20637 6391//20638 -f 2282//20639 3817//20640 7383//20640 -f 6455//20641 6319//20642 6175//20643 -f 4274//20644 987//20645 4375//20645 -f 6558//20646 6517//20647 6518//20648 -f 6225//20649 6391//20650 6519//20651 -f 3545//20652 1551//20653 2027//20654 -f 4748//20655 3193//20656 4642//20655 -f 6559//20657 6295//20657 6456//20657 -f 6295//20658 5958//20658 6456//20658 -f 2866//20659 239//20660 1505//20661 -f 6561//20662 6105//20663 6560//20664 -f 6178//20665 6105//20665 6561//20665 -f 6562//20666 6564//20666 6392//20666 -f 6563//20667 6392//20668 6458//20669 -f 2496//20670 3711//20671 3114//20672 -f 6520//20673 6485//20674 6356//20675 -f 6520//20676 6565//20677 6518//20678 -f 2023//20679 4170//20680 3373//20681 -f 6520//20682 6356//20683 6394//20683 -f 275//20684 894//20685 4138//20686 -f 1069//20687 199//20688 3192//20688 -f 6394//20689 6488//20689 6520//20689 -f 6566//20690 6520//20690 6488//20690 -f 6568//20691 6566//20692 6488//20693 -f 6108//20694 6107//20694 6567//20694 -f 910//20695 1430//20696 4182//20697 -f 779//20698 3757//20699 2007//20700 -f 6568//20701 6488//20702 6489//20703 -f 4715//20704 3176//20705 1346//20706 -f 6460//20707 6263//20707 6522//20707 -f 484//20708 785//20709 1931//20710 -f 6569//20711 6489//20712 6461//20713 -f 6460//20714 6570//20715 6427//20716 -f 6395//20717 6428//20718 6571//20719 -f 1514//20720 5372//20721 1394//20722 -f 3675//20723 479//20724 4747//20724 -f 6395//20725 6571//20725 6524//20725 -f 5066//20726 4224//20726 4824//20726 -f 6395//20727 6524//20727 6490//20727 -f 6265//20728 6359//20729 6572//20730 -f 4114//20731 1292//20732 4544//20733 -f 6648//20734 6359//20735 6226//20734 -f 4031//20736 4053//20737 3651//20738 -f 6573//20739 6396//20740 6490//20741 -f 6227//20742 6492//20743 6397//20744 -f 4270//20745 5212//20746 1930//20746 -f 2882//20747 5630//20748 1987//20749 -f 6324//20750 6651//20750 6430//20750 -f 6495//20751 6360//20751 6496//20751 -f 6325//20752 6324//20753 6430//20754 -f 2528//20755 681//20755 2498//20755 -f 443//20756 2767//20756 4354//20756 -f 1389//20757 4126//20758 1905//20759 -f 5387//20760 4617//20761 3781//20760 -f 328//20762 1881//20763 4435//20764 -f 6462//20765 6363//20765 6613//20766 -f 6526//20767 6432//20767 6464//20767 -f 764//20768 3966//20769 895//20770 -f 3400//20771 1296//20771 2570//20772 -f 1974//20773 2018//20773 915//20774 -f 3571//20775 757//20775 1914//20775 -f 320//20776 1400//20777 844//20778 -f 3155//20779 2932//20780 113//20781 -f 5322//20782 4066//20783 5014//20784 -f 1501//20785 4655//20786 4540//20787 -f 6579//20788 6370//20789 6400//20788 -f 6580//20790 6466//20791 6152//20792 -f 575//20793 4057//20794 1710//20795 -f 6527//20796 6366//20796 6368//20797 -f 3400//20798 104//20798 1389//20798 -f 3111//20799 2410//20800 5390//20801 -f 6529//20802 5968//20803 5490//20804 -f 2564//20805 1602//20806 812//20805 -f 6371//20807 6527//20808 6198//20809 -f 6368//20810 6198//20811 6527//20812 -f 3253//20813 3182//20814 667//20815 -f 6498//20816 6434//20817 6581//20818 -f 6532//20819 6499//20820 6302//20821 -f 1334//20822 301//20823 2516//20824 -f 152//20825 1849//20826 3582//20827 -f 6238//20828 6271//20829 6528//20830 -f 6235//20831 6234//20832 6531//20833 -f 1988//20834 3683//20835 2245//20836 -f 6582//20837 6439//20838 6498//20838 -f 742//20839 2239//20839 3191//20839 -f 1161//20840 1440//20840 2403//20840 -f 6468//20841 6330//20842 6583//20843 -f 4955//20844 2156//20844 230//20844 -f 426//20845 45//20845 446//20845 -f 1888//20846 2290//20847 3376//20847 -f 3262//20848 3420//20849 1589//20850 -f 1815//20851 4170//20851 4092//20851 -f 2197//20852 5331//20853 470//20854 -f 3141//20855 2894//20855 2938//20855 -f 6534//20856 6468//20857 6583//20858 -f 2257//20859 500//20860 4524//20859 -f 5361//20861 1959//20862 960//20861 -f 6274//20863 6238//20864 6533//20865 -f 6468//20866 6534//20867 6332//20868 -f 6617//20869 6373//20869 6470//20869 -f 3924//20870 4687//20871 888//20872 -f 3438//20873 2384//20874 3008//20875 -f 1434//20876 7404//20876 824//20876 -f 5278//20877 352//20878 2800//20877 -f 1931//20879 785//20879 2153//20879 -f 6536//20880 6333//20880 6469//20880 -f 4466//20881 1307//20882 572//20882 -f 4668//20883 4979//20884 3000//20885 -f 3604//20886 1152//20887 3650//20887 -f 922//20888 2147//20889 2709//20889 -f 2760//20890 3627//20890 717//20891 -f 6619//20892 6276//20893 6050//20894 -f 6337//20895 6334//20895 6621//20895 -f 6443//20896 6405//20897 6335//20898 -f 4072//20899 1443//20900 1226//20901 -f 3116//20902 2241//20903 4757//20904 -f 2556//20905 547//20906 3592//20906 -f 1663//20907 4064//20907 175//20908 -f 6501//20909 6537//20910 6208//20909 -f 2034//20911 2748//20911 83//20912 -f 6471//20913 6305//20913 6159//20913 -f 3251//20914 1843//20915 4739//20916 -f 5831//20917 2626//20918 3660//20919 -f 260//20920 1225//20921 1721//20922 -f 6502//20923 6245//20923 6445//20923 -f 423//20924 565//20924 2370//20924 -f 6338//20925 6375//20926 6587//20926 -f 4058//20927 4599//20928 1896//20929 -f 6375//20930 6277//20931 6587//20932 -f 6540//20933 6277//20933 6407//20934 -f 2151//20935 2739//20936 4412//20937 -f 3878//20938 2484//20938 5216//20938 -f 3383//20939 27//20940 1549//20941 -f 118//20942 5080//20942 4034//20942 -f 4525//20943 2475//20944 1593//20943 -f 4684//20945 3930//20946 1821//20946 -f 1755//20947 114//20948 869//20948 -f 6247//20949 6503//20949 6164//20949 -f 4512//20950 4640//20950 706//20951 -f 1653//20952 3797//20953 244//20954 -f 6542//20955 6095//20956 6249//20957 -f 6542//20958 6623//20959 6095//20960 -f 2898//20961 167//20962 4389//20962 -f 6059//20963 6278//20963 6588//20963 -f 1865//20964 3894//20965 5527//20966 -f 2039//20967 3784//20967 3507//20967 -f 6308//20968 6281//20968 6589//20968 -f 1744//20969 1149//20970 4455//20971 -f 3710//20972 2127//20973 1887//20973 -f 2953//20974 1464//20974 4472//20975 -f 6346//20976 6474//20976 6309//20976 -f 1563//20977 4403//20978 4179//20977 -f 764//20979 887//20979 5222//20979 -f 4892//20980 1614//20981 3128//20982 -f 4721//20983 4924//20983 456//20983 -f 5026//20984 4576//20984 4195//20984 -f 58//20985 209//20986 2719//20985 -f 3085//20987 2937//20988 571//20989 -f 2953//20990 4200//20991 1807//20990 -f 986//20992 4641//20993 4473//20994 -f 1466//20995 3818//20996 270//20997 -f 3702//20998 738//20999 3009//21000 -f 3195//21001 1737//21002 2920//21003 -f 4961//21004 3290//21005 5371//21004 -f 6311//21006 6130//21006 6595//21007 -f 2762//21008 2732//21008 3574//21008 -f 4957//21009 4128//21010 4090//21011 -f 6168//21012 6131//21012 6545//21012 -f 6379//21013 6447//21014 6598//21015 -f 4953//21016 368//21017 2462//21018 -f 4209//21019 4917//21020 2215//21021 -f 4209//21022 2215//21023 4918//21022 -f 6476//21024 6447//21025 6347//21026 -f 6134//21027 6027//21027 6311//21027 -f 6594//21028 6597//21029 6477//21030 -f 6448//21031 6477//21032 6627//21033 -f 5626//21034 2400//21034 2961//21035 -f 5111//21036 2544//21037 2326//21038 -f 1329//21039 1765//21040 1608//21041 -f 2906//21042 2387//21043 2388//21044 -f 6448//21045 6627//21046 6449//21047 -f 4028//21048 5330//21049 2044//21050 -f 3815//21051 892//21051 4159//21052 -f 2278//21053 1193//21054 3249//21055 -f 4490//21056 4802//21057 2092//21058 -f 1935//21059 2787//21060 3756//21061 -f 1844//21062 3356//21063 1592//21064 -f 1769//21065 4324//21066 3240//21065 -f 35//21067 3774//21068 4044//21069 -f 1586//21070 3705//21071 2472//21072 -f 4395//21073 2660//21073 3606//21073 -f 1303//21074 1302//21075 1947//21076 -f 6135//21077 6507//21077 6601//21078 -f 4654//21079 4559//21080 1055//21081 -f 434//21082 763//21083 1583//21084 -f 3627//21085 2760//21086 5830//21087 -f 3128//21088 1614//21089 2416//21090 -f 6172//21091 6354//21091 6721//21091 -f 2008//21092 2593//21092 1332//21093 -f 2372//21094 4844//21095 2637//21096 -f 2265//21097 1707//21098 502//21099 -f 1611//21100 977//21101 2976//21102 -f 6547//21103 6482//21103 6549//21103 -f 3578//21104 1838//21105 4881//21106 -f 2484//21107 2982//21108 1050//21109 -f 375//21110 4588//21110 2324//21111 -f 6423//21112 6510//21113 6511//21114 -f 6510//21115 6634//21116 6511//21117 -f 352//21118 4719//21119 92//21120 -f 3212//21121 357//21121 340//21122 -f 3136//21123 159//21124 4563//21123 -f 1048//21125 548//21126 385//21127 -f 1117//21128 2994//21128 4008//21128 -f 5181//21129 1049//21130 1936//21131 -f 6515//21132 6069//21133 6220//21133 -f 6604//21134 6516//21135 6554//21136 -f 4458//21137 4547//21138 1502//21139 -f 6292//21140 6515//21140 6555//21141 -f 6516//21142 6556//21143 6554//21144 -f 468//21145 4608//21145 626//21145 -f 5743//21146 108//21147 1326//21148 -f 3350//21149 4015//21149 5064//21149 -f 5369//21150 4835//21150 5682//21151 -f 6557//21152 6517//21153 6558//21154 -f 518//21155 631//21156 2006//21157 -f 881//21158 2516//21159 508//21160 -f 4691//21161 2491//21161 5118//21162 -f 211//21163 1817//21164 2480//21165 -f 1996//21166 3052//21167 5574//21168 -f 3652//21169 2415//21170 2414//21171 -f 6223//21172 6178//21173 6455//21174 -f 740//21175 3822//21175 7405//21175 -f 6456//21176 6426//21177 6606//21178 -f 2785//21179 4183//21180 571//21181 -f 1872//21182 2406//21182 127//21182 -f 6144//21183 6295//21183 6559//21183 -f 4594//21184 4414//21184 725//21184 -f 749//21185 316//21186 1937//21187 -f 6105//21188 6457//21189 6560//21189 -f 2337//21190 325//21191 694//21192 -f 4721//21193 130//21193 4924//21193 -f 2756//21194 124//21195 4510//21196 -f 1650//21197 280//21198 3996//21198 -f 4225//21199 2537//21200 5329//21201 -f 6567//21202 6459//21203 6108//21204 -f 6566//21205 6568//21206 6609//21207 -f 2212//21208 4664//21209 1277//21210 -f 6568//21211 6489//21212 6609//21213 -f 4195//21214 228//21214 3911//21214 -f 6521//21215 6489//21216 6569//21217 -f 4186//21218 13//21218 3783//21218 -f 1883//21219 589//21220 1801//21221 -f 2844//21222 2843//21223 785//21224 -f 3783//21225 5124//21225 623//21225 -f 4305//21226 2640//21227 1452//21227 -f 3613//21228 416//21229 415//21230 -f 4721//21231 3456//21232 5528//21233 -f 1324//21234 792//21234 3582//21234 -f 3880//21235 2715//21236 2625//21237 -f 7200//21238 7111//21238 3945//21238 -f 6428//21239 6427//21240 6610//21240 -f 1121//21241 1523//21241 1120//21242 -f 1929//21243 3870//21243 2856//21243 -f 6490//21244 6524//21244 6573//21245 -f 3069//21246 491//21247 2055//21248 -f 1289//21249 42//21250 2015//21251 -f 1916//21252 56//21252 976//21252 -f 1253//21253 1565//21254 2899//21253 -f 6324//21255 6493//21256 6651//21255 -f 85//21257 4258//21258 3922//21259 -f 3436//21260 3629//21260 4148//21261 -f 6189//21262 6429//21263 6525//21264 -f 1126//21265 1520//21266 985//21266 -f 6430//21267 6575//21268 6431//21269 -f 4462//21270 1000//21271 926//21272 -f 6744//21273 6613//21274 6363//21275 -f 2124//21276 2888//21277 5298//21278 -f 6824//21279 6364//21280 6462//21279 -f 4669//21281 2399//21282 1581//21283 -f 1270//21284 870//21284 4361//21284 -f 5083//21285 5501//21286 4230//21287 -f 651//21288 3686//21289 1484//21290 -f 2954//21291 4011//21291 3179//21291 -f 784//21292 607//21293 481//21294 -f 1851//21295 1385//21296 2482//21297 -f 6656//21298 6269//21299 6436//21300 -f 769//21301 4136//21302 1785//21303 -f 1793//21304 762//21304 1078//21305 -f 6579//21306 6578//21306 6370//21306 -f 1738//21307 1099//21308 376//21309 -f 775//21310 2318//21311 7378//21312 -f 5011//21313 929//21314 3642//21315 -f 416//21316 147//21317 3594//21317 -f 6785//21318 6581//21319 6434//21320 -f 2946//21321 4409//21322 4408//21323 -f 2946//21324 2947//21325 4409//21326 -f 2212//21327 503//21328 3957//21329 -f 335//21330 422//21331 1175//21330 -f 6466//21332 6467//21333 6437//21334 -f 1295//21335 106//21336 206//21335 -f 2663//21337 3427//21338 2584//21339 -f 74//21340 66//21341 2627//21342 -f 6709//21343 6616//21343 6497//21344 -f 5490//21345 6329//21346 6530//21347 -f 2669//21348 2061//21349 1060//21349 -f 1236//21350 966//21350 773//21350 -f 4489//21351 732//21352 1141//21353 -f 6583//21354 6497//21355 6616//21356 -f 1788//21357 2588//21358 2531//21359 -f 3561//21360 2691//21361 2378//21362 -f 271//21363 651//21364 272//21365 -f 4416//21366 5308//21367 1165//21368 -f 2885//21369 3514//21369 4244//21369 -f 219//21370 1276//21370 2950//21371 -f 45//21372 2295//21372 1834//21373 -f 3302//21374 1631//21374 3488//21374 -f 167//21375 2453//21376 3881//21377 -f 2392//21378 932//21379 1994//21380 -f 6402//21381 6303//21382 6585//21383 -f 6617//21384 6470//21384 6534//21384 -f 2085//21385 941//21385 217//21385 -f 2406//21386 1086//21386 127//21386 -f 6979//21387 6274//21388 6533//21388 -f 4004//21389 2465//21390 5277//21390 -f 1903//21391 1902//21392 2455//21391 -f 3986//21393 754//21394 5831//21395 -f 6333//21396 6536//21397 6404//21398 -f 847//21399 304//21400 711//21401 -f 4549//21402 4779//21402 604//21402 -f 4968//21403 3585//21404 4945//21405 -f 7409//21406 4397//21407 5347//21408 -f 6500//21409 6621//21410 6334//21411 -f 4499//21412 1929//21413 3340//21414 -f 6537//21415 6443//21416 6208//21417 -f 2115//21418 3979//21418 1194//21418 -f 3588//21419 2765//21420 3204//21421 -f 4526//21422 2493//21423 2219//21424 -f 2072//21425 1432//21425 3290//21426 -f 6587//21427 6277//21428 6540//21428 -f 1836//21429 4199//21429 2875//21429 -f 3998//21430 2699//21431 2262//21432 -f 4260//21433 2187//21434 2736//21435 -f 3885//21436 885//21437 886//21438 -f 3428//21439 814//21440 5984//21441 -f 1433//21442 857//21443 5240//21444 -f 6504//21445 6020//21446 6280//21445 -f 4206//21447 57//21448 1262//21449 -f 6278//21450 6341//21450 6715//21451 -f 1845//21452 4476//21452 2595//21452 -f 3192//21453 2666//21454 3549//21455 -f 3707//21456 5581//21457 632//21458 -f 6543//21459 6542//21460 6249//21461 -f 6249//21462 6307//21463 6543//21464 -f 4871//21465 4860//21466 4758//21467 -f 6589//21468 6281//21468 6472//21468 -f 3215//21469 960//21470 1959//21471 -f 6473//21472 5983//21473 6251//21474 -f 6251//21475 6063//21476 6505//21475 -f 6213//21477 6377//21478 6591//21479 -f 6506//21480 6505//21481 6063//21480 -f 6212//21482 6894//21482 6310//21482 -f 6591//21483 6377//21483 6283//21484 -f 3971//21485 3562//21486 1986//21487 -f 3589//21488 689//21489 1284//21488 -f 3697//21490 3469//21491 3435//21492 -f 6625//21493 6506//21494 6252//21495 -f 4418//21496 1202//21496 5036//21496 -f 6446//21497 6378//21498 6626//21499 -f 6594//21500 6675//21501 6597//21500 -f 2188//21502 750//21503 1240//21504 -f 1181//21505 3696//21506 662//21507 -f 4888//21508 4073//21509 4485//21510 -f 6131//21511 6593//21512 6545//21511 -f 6546//21513 6544//21514 6412//21515 -f 6545//21516 6628//21517 6168//21518 -f 218//21519 5095//21519 4528//21520 -f 659//21521 1579//21522 1307//21522 -f 708//21523 4744//21524 4812//21525 -f 2396//21526 5525//21527 2864//21528 -f 5113//21529 1217//21530 3570//21531 -f 6477//21532 6597//21533 6627//21532 -f 6599//21534 6681//21535 6450//21536 -f 2229//21537 2174//21538 3310//21539 -f 1868//21540 5165//21541 3719//21542 -f 4966//21543 4870//21544 2119//21545 -f 2988//21546 511//21547 4593//21548 -f 417//21549 3489//21550 2280//21551 -f 307//21552 4608//21552 468//21553 -f 6627//21554 6629//21555 6449//21556 -f 6413//21557 6349//21557 6630//21557 -f 3729//21558 598//21559 3137//21560 -f 6600//21561 6450//21561 6419//21561 -f 6135//21562 6030//21562 6507//21562 -f 5534//21563 2528//21564 396//21565 -f 1717//21566 3229//21567 1838//21568 -f 3987//21569 2253//21570 2279//21571 -f 5147//21572 3600//21572 3564//21572 -f 6451//21573 6135//21574 6601//21575 -f 288//21576 978//21577 273//21578 -f 6631//21579 6382//21580 6508//21581 -f 4810//21582 4540//21583 2213//21584 -f 6289//21585 6684//21585 6420//21585 -f 6548//21586 6382//21587 6631//21588 -f 5150//21589 3473//21590 2313//21591 -f 1657//21592 5291//21593 8//21594 -f 124//21595 3617//21596 236//21597 -f 6385//21598 6172//21599 6721//21600 -f 6482//21601 6603//21601 6549//21601 -f 260//21602 9//21603 1225//21604 -f 6482//21605 6632//21606 6603//21607 -f 6509//21608 6385//21609 6721//21610 -f 6482//21611 6686//21612 6632//21613 -f 1247//21614 4643//21615 4477//21616 -f 5368//21617 3017//21618 5031//21619 -f 6317//21620 6385//21620 6509//21620 -f 5630//21621 2882//21622 1975//21623 -f 6481//21624 6480//21625 6602//21626 -f 168//21627 2322//21627 2306//21628 -f 4257//21629 3950//21630 2062//21631 -f 6686//21632 6482//21633 6513//21634 -f 6511//21635 6689//21636 6512//21637 -f 714//21638 1014//21639 2196//21640 -f 1272//21641 4264//21642 1987//21641 -f 6256//21643 6453//21644 6422//21643 -f 6389//21645 6604//21646 6513//21647 -f 1028//21648 2829//21648 1472//21648 -f 1315//21649 828//21650 3097//21651 -f 5394//21652 5424//21652 2345//21652 -f 667//21653 2809//21654 3253//21655 -f 3693//21656 2341//21657 3843//21658 -f 6483//21659 6174//21660 6221//21661 -f 2224//21662 2299//21663 4448//21664 -f 6557//21665 6554//21666 6556//21667 -f 51//21668 438//21669 4858//21670 -f 786//21671 3471//21672 4602//21673 -f 6292//21674 6636//21674 6261//21674 -f 5682//21675 4835//21676 5068//21677 -f 3710//21678 2899//21679 258//21680 -f 664//21681 872//21682 893//21682 -f 745//21683 1512//21684 1928//21685 -f 6637//21686 6391//21687 6729//21688 -f 1840//21689 3160//21690 1752//21691 -f 6638//21692 6557//21693 6558//21694 -f 1584//21695 4067//21696 5020//21697 -f 4380//21698 2732//21699 2762//21700 -f 3796//21701 2261//21702 542//21703 -f 6486//21704 6390//21705 6605//21706 -f 608//21707 2878//21707 5307//21707 -f 6558//21708 6518//21709 6639//21708 -f 6426//21710 6222//21711 6486//21712 -f 1306//21713 2641//21714 7216//21715 -f 6639//21716 6518//21717 6565//21718 -f 406//21719 2219//21720 4308//21721 -f 1314//21722 7371//21722 3240//21722 -f 1329//21723 3728//21724 1765//21725 -f 5055//21726 2967//21727 2979//21728 -f 6457//21729 6144//21730 6559//21731 -f 988//21732 4084//21733 5367//21734 -f 6520//21735 6641//21736 6565//21737 -f 5056//21738 2150//21739 466//21740 -f 6608//21741 6487//21742 6357//21743 -f 3770//21744 1767//21745 4544//21746 -f 6567//21747 6107//21748 6487//21749 -f 6520//21750 6566//21751 6641//21752 -f 6566//21753 6642//21754 6641//21755 -f 1646//21756 3824//21757 2756//21758 -f 586//21759 1596//21759 5227//21759 -f 4361//21760 1196//21761 1826//21762 -f 6609//21763 6642//21764 6566//21765 -f 3082//21766 4563//21767 1544//21768 -f 1062//21769 1112//21770 1147//21771 -f 6609//21772 6489//21772 6521//21772 -f 7378//21773 7243//21774 2971//21775 -f 6459//21776 6522//21777 6263//21778 -f 4715//21779 812//21780 351//21781 -f 2182//21782 3031//21783 1146//21784 -f 6643//21785 6569//21786 6461//21787 -f 2106//21788 1671//21789 2858//21790 -f 3386//21791 1995//21792 1604//21793 -f 6570//21794 6644//21795 6427//21796 -f 6610//21797 6427//21797 6645//21797 -f 6427//21798 6644//21799 6645//21800 -f 3451//21801 3210//21801 1943//21802 -f 6646//21803 6461//21804 6323//21805 -f 3293//21806 4663//21807 3292//21807 -f 6428//21808 6610//21809 6647//21810 -f 6571//21811 6611//21811 6524//21811 -f 2774//21812 3196//21813 4412//21814 -f 6226//21815 6397//21816 6649//21817 -f 6494//21818 6653//21819 6493//21818 -f 3401//21820 1685//21821 3378//21822 -f 3378//21823 835//21824 1214//21825 -f 6651//21826 6493//21827 6650//21828 -f 3986//21829 5831//21830 82//21829 -f 30//21831 2044//21832 457//21833 -f 1220//21834 1245//21835 3332//21836 -f 6496//21837 6360//21838 6525//21839 -f 112//21840 3709//21841 1520//21842 -f 2829//21843 2132//21844 2057//21845 -f 1489//21846 3108//21846 3989//21847 -f 6429//21848 6361//21849 6612//21850 -f 4588//21851 2959//21852 2801//21853 -f 6612//21854 6361//21855 6298//21856 -f 5369//21857 3325//21858 4835//21859 -f 1748//21860 1888//21861 3376//21862 -f 1083//21863 1082//21864 1827//21865 -f 520//21866 2048//21867 1582//21868 -f 4107//21869 157//21869 1118//21870 -f 4186//21871 4785//21872 3447//21873 -f 6655//21874 6364//21874 6824//21874 -f 6655//21875 6576//21876 6364//21877 -f 72//21878 2670//21879 1534//21878 -f 2209//21880 4305//21881 3251//21880 -f 3657//21882 2142//21883 2847//21882 -f 5183//21884 1952//21885 2177//21886 -f 2955//21887 5351//21888 2430//21888 -f 6435//21889 6366//21890 6527//21891 -f 1121//21892 3823//21892 2635//21892 -f 6658//21893 6301//21894 6578//21895 -f 4823//21896 1422//21897 1421//21898 -f 4264//21899 4104//21899 1987//21899 -f 2527//21900 3643//21900 3233//21900 -f 754//21901 3986//21901 1497//21901 -f 4956//21902 4176//21903 3289//21902 -f 6499//21904 6659//21905 6400//21906 -f 3518//21907 1961//21908 5507//21909 -f 4643//21910 1053//21911 1261//21912 -f 3505//21913 2606//21914 1101//21915 -f 6301//21916 6658//21917 6528//21918 -f 2166//21919 3846//21920 3067//21921 -f 4267//21922 4195//21922 3535//21922 -f 1366//21923 3131//21924 1934//21925 -f 94//21926 5524//21926 252//21927 -f 600//21928 4676//21929 4235//21930 -f 6467//21931 6709//21932 6497//21933 -f 6498//21934 6581//21935 6582//21936 -f 4062//21937 4335//21938 583//21939 -f 2414//21940 1353//21940 3652//21941 -f 1941//21942 378//21943 5604//21944 -f 3602//21945 2886//21946 3724//21946 -f 804//21947 4647//21948 748//21949 -f 455//21950 1367//21951 1548//21952 -f 3672//21953 4770//21954 4071//21955 -f 1052//21956 108//21957 3692//21958 -f 2421//21959 749//21960 1937//21961 -f 6236//21962 7117//21962 6272//21962 -f 819//21963 1894//21964 2191//21965 -f 4524//21966 4168//21966 4353//21967 -f 5662//21968 2093//21968 2364//21969 -f 6584//21970 6329//21970 6439//21970 -f 3219//21971 55//21972 3983//21973 -f 5027//21974 5393//21975 1043//21976 -f 2436//21977 5590//21978 2552//21979 -f 4797//21980 1900//21981 2322//21982 -f 2727//21983 1349//21983 3673//21984 -f 6665//21985 7117//21986 6535//21987 -f 2570//21988 1296//21989 2209//21990 -f 4549//21991 604//21992 920//21993 -f 7117//21994 6240//21995 6535//21996 -f 6619//21997 6274//21998 6979//21999 -f 6585//22000 6303//22001 6331//22002 -f 1316//22003 4111//22003 1259//22003 -f 3469//22004 3697//22004 4607//22005 -f 6585//22006 6331//22006 6620//22007 -f 6536//22008 6469//22008 6618//22008 -f 6535//22009 6240//22009 6666//22009 -f 221//22010 3235//22011 4642//22012 -f 6666//22013 6240//22014 6336//22015 -f 6620//22016 6331//22016 6441//22016 -f 6536//22017 6304//22018 6404//22018 -f 6536//22019 6500//22019 6304//22019 -f 3498//22020 4168//22021 3329//22022 -f 1458//22023 2064//22023 4333//22023 -f 3442//22024 1470//22025 1234//22026 -f 1648//22027 1537//22027 1095//22027 -f 6711//22028 6444//22028 6305//22028 -f 1040//22029 1536//22030 1127//22030 -f 6667//22031 6445//22032 6337//22033 -f 6305//22034 6471//22034 6668//22034 -f 632//22035 4692//22036 3707//22037 -f 4963//22038 3031//22039 2182//22040 -f 2175//22041 1735//22042 4824//22043 -f 6669//22044 6622//22045 6501//22046 -f 963//22047 364//22048 1735//22049 -f 3450//22050 1663//22051 1664//22052 -f 2615//22053 4304//22054 805//22055 -f 4867//22056 5499//22057 4387//22058 -f 4851//22059 4692//22060 1575//22059 -f 6342//22061 6057//22061 6248//22062 -f 4131//22063 5560//22064 2059//22065 -f 173//22066 1550//22067 2504//22068 -f 3987//22069 3053//22070 2250//22071 -f 3053//22072 800//22073 557//22074 -f 3326//22075 3047//22076 3681//22077 -f 2691//22078 2766//22079 2378//22079 -f 2522//22080 3716//22081 1436//22082 -f 2507//22083 2965//22084 3870//22085 -f 6164//22086 6672//22087 6165//22088 -f 1302//22089 269//22090 616//22091 -f 6165//22092 6672//22093 6343//22094 -f 1351//22095 486//22096 4509//22097 -f 920//22098 1969//22099 4307//22100 -f 6543//22101 6307//22102 6674//22103 -f 3039//22104 2676//22105 3890//22105 -f 348//22106 4165//22107 3664//22108 -f 7282//22109 1432//22110 4309//22111 -f 6590//22112 6344//22112 6473//22112 -f 683//22113 2544//22113 2179//22114 -f 6474//22115 6589//22115 6755//22115 -f 684//22116 5303//22117 3351//22118 -f 1387//22119 3888//22120 2116//22121 -f 3653//22122 3268//22123 218//22124 -f 586//22125 2181//22126 1596//22127 -f 6894//22128 6676//22129 6310//22130 -f 2453//22131 548//22132 4535//22133 -f 4991//22134 1922//22135 1188//22136 -f 6677//22137 6675//22137 6594//22137 -f 6677//22138 6594//22139 6596//22140 -f 2568//22141 2974//22142 4732//22143 -f 2745//22144 2612//22145 2534//22146 -f 4938//22147 2923//22148 3658//22149 -f 1459//22150 2002//22150 4942//22150 -f 6679//22151 6596//22152 6544//22153 -f 6598//22154 6625//22155 6379//22156 -f 3648//22157 4755//22158 529//22159 -f 2289//22160 864//22161 1482//22162 -f 6167//22163 6411//22164 6378//22164 -f 2804//22165 4471//22165 1319//22166 -f 3860//22167 2708//22168 2627//22169 -f 2685//22170 353//22171 4192//22172 -f 4853//22173 1216//22174 5035//22175 -f 4528//22176 865//22177 218//22177 -f 4575//22178 1222//22179 3092//22179 -f 901//22180 1949//22181 1243//22182 -f 3954//22183 1521//22184 254//22185 -f 6478//22186 6450//22187 6681//22188 -f 3443//22189 2739//22190 4096//22189 -f 6629//22191 6627//22192 6758//22193 -f 1034//22194 4437//22195 966//22196 -f 454//22197 896//22198 3148//22197 -f 1344//22199 2305//22200 2235//22201 -f 6600//22202 6599//22202 6450//22203 -f 2655//22204 335//22205 2668//22204 -f 732//22206 436//22207 2369//22208 -f 3413//22209 3265//22210 2245//22211 -f 98//22212 4577//22213 3180//22214 -f 1278//22215 4184//22216 2820//22217 -f 1979//22218 455//22218 4432//22218 -f 2229//22219 3310//22220 3851//22221 -f 6684//22222 6289//22222 6547//22222 -f 4144//22223 2580//22224 4954//22225 -f 6603//22226 6632//22227 6549//22228 -f 1088//22229 651//22230 271//22231 -f 6479//22232 6685//22233 6315//22234 -f 6631//22235 6480//22236 6548//22237 -f 579//22238 4244//22239 743//22240 -f 6689//22241 6763//22241 6688//22242 -f 4271//22243 3844//22244 2664//22245 -f 6479//22246 6386//22246 6422//22246 -f 1673//22247 4535//22247 1048//22247 -f 5390//22248 2410//22249 1788//22250 -f 2859//22251 1338//22252 1033//22253 -f 6687//22254 6689//22254 6688//22254 -f 1599//22255 4164//22256 30//22257 -f 6689//22258 6634//22259 6763//22260 -f 4293//22261 3962//22262 1701//22261 -f 6689//22263 6687//22264 6512//22265 -f 3065//22266 497//22267 952//22268 -f 6689//22269 6511//22270 6634//22271 -f 2377//22272 2621//22273 317//22274 -f 5329//22275 2537//22276 4102//22277 -f 2744//22278 2189//22279 625//22280 -f 3892//22281 271//22282 1958//22281 -f 6550//22283 6510//22284 6387//22285 -f 6481//22286 6635//22287 6550//22287 -f 3783//22288 13//22289 5065//22288 -f 6550//22290 6690//22291 6510//22291 -f 2576//22292 726//22292 581//22293 -f 4385//22294 4853//22294 367//22295 -f 6635//22296 6690//22296 6550//22296 -f 102//22297 5298//22297 4890//22297 -f 256//22298 41//22299 3230//22300 -f 613//22301 4017//22301 2786//22301 -f 2684//22302 3829//22302 4267//22302 -f 538//22303 1787//22303 731//22303 -f 4463//22304 5169//22305 3692//22306 -f 5079//22307 2109//22308 2837//22309 -f 1644//22310 1222//22311 4575//22312 -f 6554//22313 6691//22314 6604//22315 -f 6388//22316 6692//22317 6318//22318 -f 3979//22319 4940//22320 1194//22320 -f 6551//22321 6692//22321 6388//22322 -f 1973//22323 4316//22324 2618//22323 -f 6514//22325 6424//22326 6483//22326 -f 4491//22327 1137//22328 1120//22329 -f 6318//22330 6692//22330 6454//22330 -f 6557//22331 6693//22332 6554//22333 -f 4287//22334 5371//22335 3945//22336 -f 5373//22337 2161//22338 710//22339 -f 4709//22340 110//22341 1019//22340 -f 6292//22342 6555//22343 6636//22344 -f 5022//22345 3994//22346 3246//22347 -f 6558//22348 6860//22349 6638//22350 -f 1631//22351 5322//22352 5419//22353 -f 142//22354 2662//22354 2902//22354 -f 1754//22355 3712//22356 2600//22357 -f 3046//22358 307//22359 612//22360 -f 1291//22361 6004//22362 3741//22363 -f 3796//22364 542//22365 767//22366 -f 4155//22367 1331//22367 3239//22367 -f 2957//22368 66//22369 3289//22368 -f 4983//22370 472//22371 5330//22370 -f 6486//22372 6696//22373 6426//22374 -f 1518//22375 1517//22375 138//22375 -f 6519//22376 6458//22377 6320//22378 -f 6561//22379 6455//22380 6178//22381 -f 6392//22382 6564//22383 6640//22384 -f 1462//22385 915//22386 2018//22387 -f 2979//22388 3280//22388 5055//22388 -f 6606//22389 6559//22390 6456//22391 -f 2209//22392 3251//22393 1085//22394 -f 1910//22395 2438//22395 4324//22395 -f 6560//22396 6457//22397 6607//22398 -f 4715//22399 1488//22400 2564//22400 -f 3728//22401 2197//22401 470//22401 -f 3218//22402 728//22402 4999//22402 -f 6565//22403 6641//22404 6698//22405 -f 1094//22406 3424//22406 1502//22406 -f 5319//22407 1563//22407 1014//22407 -f 1162//22408 1297//22409 4566//22410 -f 1049//22411 2261//22412 1936//22413 -f 6567//22414 6735//22415 6459//22414 -f 3050//22416 5152//22417 2626//22418 -f 3655//22419 3185//22420 3908//22420 -f 6700//22421 6522//22422 6459//22423 -f 3393//22424 2198//22425 2601//22424 -f 4147//22426 3622//22427 2048//22426 -f 6776//22428 6460//22429 6522//22428 -f 2991//22430 1739//22431 2285//22432 -f 6701//22433 6521//22434 6569//22435 -f 6702//22436 6701//22437 6569//22438 -f 29//22439 5165//22440 1868//22441 -f 3818//22442 1466//22443 1179//22444 -f 1151//22445 1298//22446 3409//22447 -f 6646//22448 6323//22449 6523//22450 -f 2078//22451 5518//22452 2079//22452 -f 2805//22453 1233//22454 458//22455 -f 2060//22456 1458//22457 3228//22458 -f 1308//22459 2418//22460 4826//22460 -f 4238//22461 1771//22462 3558//22463 -f 6648//22464 6650//22464 6359//22464 -f 6572//22465 6359//22466 6650//22466 -f 6226//22467 6649//22467 6648//22468 -f 1322//22469 1079//22470 889//22471 -f 6574//22472 6396//22473 6573//22474 -f 2141//22475 1361//22475 4598//22476 -f 6650//22477 6493//22478 6652//22479 -f 2190//22480 2350//22481 3501//22482 -f 3456//22483 2275//22484 4321//22485 -f 6327//22486 3849//22486 2206//22486 -f 1700//22487 4549//22487 920//22487 -f 6495//22488 6653//22489 6494//22490 -f 6430//22491 6651//22492 6654//22491 -f 6575//22493 6430//22494 6654//22495 -f 1371//22496 3819//22497 2469//22498 -f 2385//22499 4903//22499 1806//22500 -f 6612//22501 6298//22502 6576//22503 -f 4462//22504 4463//22505 1000//22506 -f 404//22507 472//22508 4983//22509 -f 7169//22510 615//22511 117//22511 -f 6824//22512 6462//22512 6613//22513 -f 6706//22514 6464//22515 6577//22515 -f 6464//22516 6433//22517 6577//22518 -f 1867//22519 4146//22519 4700//22519 -f 6614//22520 6577//22521 6433//22522 -f 6707//22523 6578//22524 6579//22525 -f 6614//22526 6433//22527 6399//22527 -f 6579//22528 6400//22529 6659//22530 -f 2988//22531 2113//22532 3463//22531 -f 1849//22533 370//22534 1359//22535 -f 4344//22536 5843//22537 3020//22538 -f 702//22539 564//22539 3045//22539 -f 6434//22540 6465//22541 6785//22542 -f 1682//22543 461//22544 5565//22545 -f 1655//22546 3260//22547 2341//22548 -f 2121//22549 3457//22549 298//22550 -f 333//22551 427//22552 5143//22553 -f 2836//22554 515//22555 4339//22556 -f 1503//22557 3707//22558 4023//22559 -f 6234//22560 6269//22560 6708//22561 -f 6466//22562 6709//22563 6467//22564 -f 2730//22565 166//22566 3011//22567 -f 3880//22568 2172//22569 33//22570 -f 6581//22571 6661//22572 6582//22573 -f 4195//22574 4576//22574 3091//22574 -f 1108//22575 1194//22576 4940//22577 -f 3012//22578 3910//22579 1744//22580 -f 6584//22581 6439//22581 6582//22581 -f 4063//22582 810//22583 86//22584 -f 3297//22585 4298//22586 2392//22587 -f 61//22588 3047//22588 3999//22588 -f 3690//22589 907//22590 626//22591 -f 4403//22592 1351//22593 4509//22594 -f 6710//22595 6373//22596 6617//22597 -f 6373//22598 6710//22598 6469//22598 -f 4846//22599 759//22600 2081//22599 -f 1461//22601 1527//22602 2016//22603 -f 180//22604 5211//22604 2381//22604 -f 6274//22605 6619//22606 6050//22606 -f 6336//22607 6586//22608 6666//22609 -f 1714//22610 1715//22611 1738//22610 -f 6405//22612 6443//22613 6712//22614 -f 6667//22615 6337//22615 6621//22616 -f 2275//22617 3492//22618 2274//22619 -f 2056//22620 871//22621 5069//22622 -f 1270//22623 1271//22624 3129//22625 -f 3239//22626 3324//22627 4324//22628 -f 1983//22629 1501//22630 3213//22631 -f 29//22632 5722//22632 1734//22632 -f 863//22633 3905//22634 1010//22635 -f 6158//22636 6406//22637 6248//22638 -f 2103//22639 5094//22640 2338//22641 -f 2595//22642 5515//22643 1845//22644 -f 6161//22645 6669//22646 6501//22647 -f 4351//22648 3811//22649 2633//22649 -f 2271//22650 3920//22651 1180//22651 -f 6538//22652 6338//22652 6587//22653 -f 6340//22654 6209//22654 6670//22654 -f 6471//22655 6408//22656 6671//22657 -f 737//22658 545//22659 4116//22658 -f 3133//22660 3465//22660 339//22661 -f 2849//22662 5779//22662 3882//22662 -f 4745//22663 64//22664 4817//22665 -f 285//22666 823//22667 3493//22668 -f 1573//22669 3404//22670 779//22671 -f 6716//22672 6279//22673 6409//22674 -f 6342//22675 6673//22676 6376//22677 -f 6543//22678 6753//22679 6542//22680 -f 4119//22681 999//22681 4262//22681 -f 5035//22682 5505//22682 367//22682 -f 910//22683 4182//22684 3573//22685 -f 3699//22686 4302//22686 5727//22686 -f 1728//22687 3562//22688 4504//22689 -f 3514//22690 4074//22691 4244//22692 -f 6624//22693 6345//22694 6410//22695 -f 5419//22696 4756//22697 1631//22698 -f 459//22699 2554//22700 4430//22701 -f 3348//22702 2385//22703 3640//22702 -f 2565//22704 1850//22705 2521//22706 -f 437//22707 4153//22707 2189//22707 -f 6309//22708 6474//22709 6756//22710 -f 3742//22711 3323//22712 689//22713 -f 1860//22714 4682//22715 3429//22716 -f 262//22717 789//22718 1157//22719 -f 2557//22720 2781//22721 708//22722 -f 6252//22723 6379//22723 6625//22724 -f 4703//22725 1316//22726 3308//22727 -f 2063//22728 2064//22729 2152//22730 -f 5512//22731 3260//22731 1771//22732 -f 6597//22733 6675//22734 6678//22734 -f 1904//22735 725//22736 2816//22737 -f 3223//22738 2930//22739 4370//22740 -f 998//22741 999//22742 3649//22743 -f 702//22744 5214//22745 2312//22746 -f 2416//22747 1825//22748 281//22749 -f 3640//22750 5418//22751 1629//22752 -f 1856//22753 2358//22754 2188//22755 -f 3196//22756 4906//22757 1227//22758 -f 6478//22759 6681//22760 6546//22761 -f 625//22762 1752//22763 1596//22764 -f 6628//22765 6759//22766 6171//22767 -f 6411//22768 6413//22769 6630//22770 -f 6600//22771 6419//22771 6683//22771 -f 6761//22772 6449//22772 6629//22772 -f 4492//22773 3082//22773 4841//22773 -f 6508//22774 6449//22775 6761//22774 -f 1225//22776 2456//22777 1721//22778 -f 462//22779 847//22780 2428//22781 -f 3232//22782 3650//22782 905//22782 -f 6451//22783 6721//22784 6354//22785 -f 2630//22786 1179//22786 237//22787 -f 309//22788 3428//22789 308//22790 -f 6549//22791 6722//22791 6719//22791 -f 2251//22792 195//22792 5484//22792 -f 6719//22793 6547//22794 6549//22795 -f 6384//22796 6315//22796 6685//22797 -f 6602//22798 6480//22798 6631//22798 -f 6509//22799 6721//22800 6633//22799 -f 975//22801 697//22802 1071//22803 -f 3059//22804 4636//22805 3807//22805 -f 3617//22806 124//22806 2756//22806 -f 6634//22807 6723//22808 6763//22809 -f 1701//22810 5079//22811 1111//22812 -f 6690//22813 6634//22813 6510//22813 -f 5011//22814 825//22814 219//22815 -f 2135//22816 2991//22816 153//22817 -f 3187//22818 4208//22819 903//22820 -f 6453//22821 6724//22822 6422//22823 -f 563//22824 4224//22825 5066//22826 -f 1366//22827 1934//22827 3434//22827 -f 6552//22828 6317//22828 6509//22828 -f 6686//22829 6513//22830 6604//22831 -f 85//22832 958//22833 4258//22834 -f 848//22835 3085//22836 571//22837 -f 6220//22838 6552//22838 6515//22839 -f 6693//22840 6691//22840 6554//22840 -f 974//22841 2248//22842 2507//22843 -f 6726//22844 6555//22845 6515//22846 -f 4045//22847 2960//22848 1662//22848 -f 6483//22849 6221//22849 6730//22850 -f 3270//22851 742//22851 1985//22851 -f 6557//22852 6727//22853 6693//22854 -f 750//22855 3237//22855 1240//22855 -f 6728//22856 6483//22857 6730//22858 -f 2416//22859 281//22860 399//22860 -f 3585//22861 4968//22862 5286//22861 -f 6221//22863 6319//22863 6730//22864 -f 6694//22865 6261//22866 6636//22867 -f 6727//22868 6557//22869 6638//22869 -f 2154//22870 2054//22871 75//22872 -f 6261//22873 6694//22874 6390//22875 -f 6390//22876 6694//22877 6605//22878 -f 276//22879 774//22880 2744//22881 -f 783//22882 2058//22882 1924//22883 -f 1287//22884 4254//22884 4134//22884 -f 6455//22885 6732//22885 6810//22885 -f 7378//22886 2318//22887 2075//22888 -f 1731//22889 1765//22890 882//22890 -f 558//22891 2161//22892 5373//22893 -f 6455//22894 6561//22895 6697//22895 -f 2727//22896 47//22897 4110//22898 -f 6392//22899 6563//22899 6562//22899 -f 6639//22900 6565//22900 6698//22901 -f 3972//22902 2491//22903 4691//22904 -f 2609//22905 1580//22906 3755//22907 -f 1178//22908 2426//22909 1519//22910 -f 8//22911 2757//22912 1657//22912 -f 6640//22913 6608//22914 6357//22915 -f 100//22916 2911//22917 1665//22918 -f 7213//22919 5518//22920 2078//22921 -f 2054//22922 2967//22923 4822//22924 -f 1029//22925 728//22926 3218//22927 -f 4791//22928 2776//22929 4632//22930 -f 3191//22931 5267//22932 1985//22933 -f 4288//22934 4355//22935 4080//22936 -f 655//22937 2125//22938 656//22938 -f 2950//22939 3481//22940 3011//22941 -f 6922//22942 6735//22943 6567//22944 -f 6459//22945 6735//22946 6700//22947 -f 6609//22948 6736//22949 6642//22949 -f 6700//22950 6776//22951 6522//22952 -f 1260//22953 314//22954 1134//22955 -f 2380//22956 3294//22956 2610//22957 -f 6521//22958 6701//22958 6609//22958 -f 6701//22959 6702//22960 6703//22961 -f 6701//22962 6703//22963 6737//22964 -f 6569//22965 6643//22965 6702//22966 -f 3281//22967 427//22968 1803//22969 -f 6702//22970 6737//22970 6703//22971 -f 6738//22972 6570//22973 6460//22974 -f 3783//22975 5065//22975 5124//22976 -f 2650//22977 2665//22978 2651//22979 -f 99//22980 1465//22981 3776//22982 -f 4135//22983 396//22984 2771//22985 -f 132//22986 2292//22987 2914//22988 -f 6818//22989 6428//22990 6647//22991 -f 642//22992 621//22993 98//22994 -f 807//22995 4220//22996 4316//22997 -f 6572//22998 6523//22999 6265//23000 -f 1817//23001 686//23002 687//23003 -f 1672//23004 3743//23004 3475//23005 -f 3341//23006 1241//23007 3816//23008 -f 421//23009 617//23010 1619//23011 -f 4524//23012 5262//23013 2257//23012 -f 6573//23014 6524//23015 6611//23016 -f 3006//23017 546//23017 2194//23017 -f 6492//23018 6396//23019 6574//23019 -f 984//23020 4155//23021 1769//23022 -f 3623//23023 1200//23023 1038//23023 -f 3346//23024 48//23025 1528//23026 -f 6650//23027 6648//23028 6651//23027 -f 1386//23029 550//23029 551//23030 -f 6652//23031 6740//23032 6650//23033 -f 1707//23034 499//23035 502//23036 -f 4661//23037 2101//23038 757//23039 -f 6649//23040 6397//23040 6492//23040 -f 1640//23041 5027//23042 2513//23043 -f 6653//23044 6652//23045 6493//23046 -f 2741//23047 735//23048 2376//23049 -f 1026//23050 2388//23051 2577//23052 -f 6653//23053 6495//23054 6742//23055 -f 4245//23056 2496//23057 3114//23058 -f 6496//23059 6742//23060 6495//23060 -f 1682//23061 523//23061 3721//23061 -f 5608//23062 4999//23063 1158//23064 -f 275//23065 4138//23066 5193//23067 -f 4782//23068 4418//23069 914//23069 -f 3643//23070 5212//23071 2019//23072 -f 793//23073 3935//23074 1052//23073 -f 3865//23075 1042//23076 1950//23077 -f 6704//23078 6431//23079 6575//23080 -f 6431//23081 6704//23082 6362//23083 -f 4675//23084 2464//23084 479//23084 -f 6705//23085 6613//23086 6744//23087 -f 594//23088 2876//23088 4724//23088 -f 1051//23089 2868//23090 4482//23091 -f 40//23092 1919//23092 2268//23092 -f 6706//23093 6784//23094 6526//23095 -f 6706//23096 6526//23097 6464//23098 -f 338//23099 3387//23100 1438//23101 -f 537//23102 606//23103 3110//23104 -f 353//23105 1659//23106 4192//23107 -f 4303//23108 2772//23109 2707//23110 -f 6695//23111 6436//23112 6435//23113 -f 6465//23114 6463//23115 6746//23116 -f 6463//23117 6526//23118 6746//23119 -f 6745//23120 6435//23121 6527//23122 -f 3179//23123 4011//23124 3521//23124 -f 881//23125 1334//23126 2516//23127 -f 5562//23128 3853//23128 362//23128 -f 5163//23129 1312//23130 5114//23131 -f 3260//23132 1655//23133 1396//23134 -f 4085//23135 5009//23136 5102//23137 -f 2172//23138 1798//23139 33//23140 -f 4148//23141 2105//23142 1498//23142 -f 2191//23143 3359//23144 819//23143 -f 2716//23145 2963//23146 557//23145 -f 2281//23147 1300//23148 1830//23148 -f 2169//23149 1465//23150 2825//23150 -f 1166//23151 1895//23152 519//23153 -f 6530//23154 6529//23154 5490//23154 -f 148//23155 3468//23156 366//23157 -f 6662//23158 6660//23159 6438//23160 -f 1459//23161 586//23161 4719//23161 -f 6616//23162 6709//23163 6748//23164 -f 1051//23165 2177//23165 3326//23166 -f 1048//23167 3247//23168 1673//23167 -f 2653//23169 3243//23170 3553//23171 -f 6583//23172 6616//23173 6534//23174 -f 1207//23175 4788//23176 543//23177 -f 6617//23178 6534//23179 6750//23180 -f 1799//23181 2755//23181 1027//23181 -f 1128//23182 3458//23182 1748//23182 -f 6536//23183 6621//23184 6500//23185 -f 789//23186 2077//23187 3044//23187 -f 6711//23188 6586//23189 6444//23190 -f 4455//23191 1149//23192 313//23193 -f 7026//23194 6443//23195 6537//23196 -f 4606//23197 3625//23198 365//23199 -f 6501//23200 6622//23201 6537//23202 -f 1021//23203 1879//23204 2402//23205 -f 7089//23206 6668//23206 6471//23207 -f 1057//23208 1833//23209 698//23208 -f 6669//23210 6161//23211 6340//23212 -f 2837//23213 973//23214 3471//23215 -f 4780//23216 3782//23217 444//23218 -f 90//23219 1106//23219 5469//23219 -f 1812//23220 2293//23221 263//23222 -f 6164//23223 6503//23223 6714//23223 -f 1947//23224 4501//23225 2429//23225 -f 3530//23226 4430//23227 3504//23228 -f 6715//23229 6341//23229 6541//23229 -f 5375//23230 3520//23231 76//23232 -f 3089//23233 1068//23234 3576//23235 -f 2637//23236 4844//23237 330//23237 -f 6542//23238 6753//23239 6623//23240 -f 6164//23241 6714//23241 6672//23241 -f 2842//23242 622//23243 3564//23244 -f 4194//23245 880//23246 4406//23247 -f 2226//23248 4724//23249 1563//23250 -f 6472//23251 6059//23252 6588//23253 -f 1135//23254 607//23255 2287//23256 -f 6590//23257 6409//23258 6344//23259 -f 769//23260 1785//23261 2812//23262 -f 6308//23263 6589//23263 6474//23263 -f 529//23264 4755//23265 1311//23266 -f 702//23267 3045//23268 3277//23269 -f 6410//23270 6213//23271 6591//23272 -f 1220//23273 3101//23274 1445//23275 -f 3091//23276 713//23276 4195//23276 -f 1004//23277 3752//23278 922//23279 -f 4029//23280 1317//23281 3618//23282 -f 3651//23283 5198//23284 4031//23285 -f 6166//23286 6309//23286 6592//23286 -f 2381//23287 1776//23287 3634//23287 -f 4663//23288 3293//23289 4948//23290 -f 2528//23291 2498//23291 2771//23291 -f 6130//23292 6166//23293 6592//23294 -f 6675//23295 6717//23296 6678//23296 -f 3584//23297 4067//23298 1622//23299 -f 6678//23300 6717//23300 6795//23300 -f 1126//23301 1757//23302 1520//23303 -f 6310//23304 6676//23305 6593//23306 -f 3007//23307 3203//23308 3599//23309 -f 6597//23310 6678//23310 6795//23310 -f 4534//23311 3715//23312 5070//23313 -f 6593//23314 6131//23315 6310//23315 -f 4089//23316 3158//23317 4419//23316 -f 3321//23318 794//23319 3310//23320 -f 6679//23321 6544//23321 6546//23321 -f 31//23322 2276//23323 1585//23322 -f 3906//23324 1933//23325 2621//23326 -f 2438//23327 3240//23328 4324//23329 -f 3993//23330 722//23331 4356//23332 -f 1844//23333 2272//23333 1144//23334 -f 6597//23335 6718//23335 6627//23336 -f 2673//23337 823//23337 4139//23337 -f 3012//23338 2895//23339 2490//23339 -f 4863//23340 91//23341 1761//23342 -f 3777//23343 1420//23344 3184//23345 -f 2093//23346 5662//23347 4855//23347 -f 6134//23348 6311//23348 6797//23349 -f 1321//23350 3218//23351 2376//23352 -f 1098//23353 4388//23354 3803//23355 -f 3116//23356 831//23357 3760//23358 -f 6171//23359 6759//23360 6352//23359 -f 1035//23361 2578//23362 3866//23363 -f 2671//23364 2199//23365 2672//23364 -f 307//23366 5295//23367 4608//23367 -f 2871//23368 1069//23369 3192//23370 -f 3017//23371 3680//23372 3016//23373 -f 6349//23374 6418//23375 6630//23376 -f 6760//23377 6630//23378 6418//23379 -f 6683//23380 6419//23381 6383//23382 -f 1718//23383 2158//23383 2133//23384 -f 4300//23385 2991//23385 5223//23385 -f 2402//23386 1879//23387 2734//23388 -f 5055//23389 4729//23390 1751//23391 -f 2630//23392 1684//23393 1046//23394 -f 1573//23395 2007//23396 2921//23397 -f 6452//23398 6384//23398 6760//23399 -f 6721//23400 6451//23401 6601//23402 -f 6720//23403 6631//23403 6508//23403 -f 1543//23404 5486//23405 6055//23404 -f 4532//23406 3345//23407 460//23408 -f 5275//23409 3365//23410 4380//23411 -f 3066//23412 1412//23412 497//23412 -f 5421//23413 4006//23414 1528//23414 -f 444//23415 2387//23416 3337//23417 -f 2239//23418 1061//23419 5267//23420 -f 4558//23421 1598//23422 1690//23423 -f 4546//23424 2669//23425 944//23425 -f 3796//23426 767//23427 4279//23428 -f 6688//23429 6852//23430 6687//23431 -f 6602//23432 6631//23432 6764//23432 -f 321//23433 7401//23434 3720//23435 -f 187//23436 1739//23437 3124//23438 -f 3124//23439 1739//23440 3865//23441 -f 2237//23442 1053//23442 1247//23443 -f 5699//23444 4299//23445 4368//23446 -f 6764//23447 6481//23448 6602//23449 -f 4801//23450 1572//23451 3474//23452 -f 322//23453 2517//23454 5499//23455 -f 6766//23456 6635//23457 6481//23458 -f 6422//23459 6724//23459 6479//23459 -f 6686//23460 6604//23461 6765//23462 -f 4788//23463 1494//23464 543//23465 -f 1096//23466 2212//23467 3957//23468 -f 6691//23469 6725//23470 6604//23469 -f 1021//23471 2402//23472 1106//23473 -f 3962//23474 4012//23475 185//23475 -f 815//23476 2587//23476 1485//23476 -f 3358//23477 4715//23477 1346//23477 -f 727//23478 2428//23479 728//23480 -f 4607//23481 2602//23482 2522//23483 -f 2189//23484 572//23484 625//23485 -f 3194//23486 3149//23487 441//23488 -f 2414//23489 2056//23490 1353//23491 -f 67//23492 1824//23493 1327//23494 -f 3708//23495 3984//23496 718//23497 -f 4414//23498 4681//23498 721//23499 -f 528//23500 4598//23501 1883//23502 -f 6860//23503 6558//23503 6639//23503 -f 6767//23504 6605//23505 6694//23506 -f 6810//23507 6319//23508 6455//23509 -f 6860//23510 6639//23511 6768//23510 -f 3768//23512 3863//23513 4204//23514 -f 2757//23515 2756//23515 4510//23515 -f 6698//23516 6768//23516 6639//23516 -f 4700//23517 739//23517 1867//23517 -f 1906//23518 317//23519 511//23520 -f 298//23521 4115//23521 4352//23522 -f 6357//23523 6392//23523 6640//23524 -f 4040//23525 2842//23526 4924//23527 -f 6606//23528 6426//23528 6771//23528 -f 4028//23529 43//23530 5330//23531 -f 928//23532 3886//23533 4676//23534 -f 6606//23535 6771//23535 6699//23535 -f 6773//23536 6561//23537 6560//23538 -f 2910//23539 5122//23539 3977//23540 -f 5154//23541 2390//23542 2391//23543 -f 4579//23544 4349//23545 3395//23544 -f 6607//23546 6457//23547 6734//23548 -f 2256//23549 3452//23550 5597//23551 -f 2400//23552 3159//23552 2961//23552 -f 3745//23553 3066//23553 212//23553 -f 6775//23554 6606//23555 6699//23556 -f 1997//23557 2149//23558 4200//23559 -f 617//23560 1678//23561 4314//23562 -f 538//23563 1241//23564 1250//23565 -f 6777//23566 6736//23567 6609//23568 -f 6777//23569 6609//23569 6701//23569 -f 6701//23570 6737//23570 6777//23571 -f 2111//23572 980//23573 3819//23574 -f 6643//23575 6461//23576 6739//23577 -f 6739//23578 6461//23579 6646//23580 -f 1604//23581 1995//23582 3104//23583 -f 3812//23584 3613//23585 938//23586 -f 4235//23587 968//23588 37//23589 -f 6572//23590 6650//23591 6740//23592 -f 4170//23593 1487//23594 4584//23595 -f 6652//23596 6778//23597 6740//23597 -f 2289//23598 3988//23599 864//23598 -f 6611//23600 6741//23601 6573//23602 -f 3585//23603 5286//23604 654//23605 -f 6651//23606 6648//23607 6649//23608 -f 1563//23609 4179//23610 1014//23611 -f 1586//23612 2472//23612 1454//23612 -f 4533//23613 1867//23614 2839//23615 -f 924//23616 2400//23616 5626//23616 -f 1528//23617 1527//23618 1461//23619 -f 41//23620 509//23621 4219//23622 -f 6651//23623 6743//23624 6654//23625 -f 3264//23626 4723//23627 2226//23628 -f 1697//23629 2268//23630 1310//23631 -f 2945//23632 1932//23632 4142//23632 -f 3637//23633 5270//23633 2574//23634 -f 4453//23635 35//23636 4449//23637 -f 4538//23638 3845//23639 13//23640 -f 3203//23641 2266//23641 4236//23641 -f 6575//23642 6654//23643 6783//23644 -f 1176//23645 4732//23646 2973//23647 -f 743//23648 4103//23648 742//23648 -f 6695//23649 6435//23650 6745//23651 -f 1706//23652 2013//23652 2107//23652 -f 2582//23653 3675//23654 4747//23655 -f 145//23656 4394//23656 3398//23656 -f 1054//23657 2071//23657 1513//23658 -f 6578//23659 6707//23660 6658//23660 -f 4869//23661 2922//23662 3216//23661 -f 473//23663 1151//23664 4488//23665 -f 1188//23666 870//23667 4991//23668 -f 3086//23669 1878//23670 1524//23671 -f 3452//23672 2256//23673 5892//23673 -f 6659//23674 6499//23675 6786//23676 -f 6656//23677 6708//23678 6269//23679 -f 6785//23680 6747//23681 6581//23682 -f 4026//23683 3432//23684 3//23685 -f 2467//23686 5085//23687 2860//23688 -f 6747//23689 6661//23690 6581//23691 -f 4766//23692 4783//23693 4927//23693 -f 6786//23694 6499//23695 6532//23696 -f 3835//23697 2570//23697 2042//23697 -f 1414//23698 4001//23699 2023//23699 -f 4633//23700 820//23701 216//23702 -f 2240//23703 1932//23704 4423//23704 -f 2057//23705 3446//23705 576//23706 -f 6615//23707 6527//23707 6371//23707 -f 6466//23708 6788//23709 6709//23708 -f 3762//23710 3212//23711 3770//23712 -f 1832//23713 4731//23714 5845//23715 -f 5515//23716 4662//23717 1340//23718 -f 2835//23719 5396//23720 3125//23721 -f 320//23722 4664//23723 3018//23724 -f 6662//23725 6438//23725 6272//23725 -f 5050//23726 1369//23726 1242//23726 -f 315//23727 2356//23727 574//23727 -f 1984//23728 3792//23729 3766//23728 -f 1247//23730 4477//23730 3809//23730 -f 2794//23731 4056//23732 3698//23732 -f 6664//23733 6238//23733 6528//23733 -f 4142//23734 4668//23735 2945//23736 -f 1766//23737 4381//23737 3232//23737 -f 6582//23738 6661//23739 6879//23740 -f 2302//23741 1377//23741 2794//23742 -f 6662//23743 6272//23743 7117//23743 -f 6582//23744 6879//23745 6789//23746 -f 3723//23747 211//23748 1298//23749 -f 6329//23750 6584//23751 6663//23752 -f 6582//23753 6789//23754 6584//23755 -f 248//23756 3429//23756 2661//23757 -f 2350//23758 3382//23759 1990//23758 -f 6371//23760 6402//23760 7025//23760 -f 1990//23761 3382//23762 45//23763 -f 238//23764 5649//23765 1697//23766 -f 6616//23767 6749//23768 6534//23769 -f 6749//23770 6750//23770 6534//23770 -f 1927//23771 1926//23772 102//23773 -f 148//23774 366//23775 1012//23776 -f 3826//23777 4200//23777 2953//23777 -f 2042//23778 2209//23778 1085//23779 -f 6405//23780 6620//23781 6441//23782 -f 3252//23783 528//23784 106//23785 -f 5293//23786 1774//23787 4204//23788 -f 4017//23789 2496//23790 1294//23791 -f 2648//23792 5048//23793 2834//23792 -f 3846//23794 18//23794 3067//23794 -f 6667//23795 6621//23796 6833//23797 -f 2514//23798 2495//23798 3271//23798 -f 349//23799 2483//23800 394//23801 -f 6207//23802 6276//23802 6713//23802 -f 1696//23803 3176//23804 1216//23805 -f 6711//23806 6305//23806 6668//23806 -f 1204//23807 4538//23808 4186//23809 -f 19//23810 5399//23811 2187//23812 -f 4833//23813 2182//23814 2735//23815 -f 3264//23816 594//23817 4723//23818 -f 4403//23819 4509//23820 323//23821 -f 5327//23822 5099//23823 562//23824 -f 2469//23825 1851//23826 2482//23827 -f 969//23828 1676//23829 4643//23830 -f 1020//23831 1021//23832 1285//23833 -f 640//23834 5834//23835 982//23835 -f 3896//23836 2184//23837 1764//23837 -f 4102//23838 151//23839 5329//23840 -f 1054//23841 4021//23842 2094//23843 -f 6670//23844 6209//23845 6504//23846 -f 2119//23847 5156//23848 4084//23849 -f 4493//23850 2300//23850 1407//23850 -f 6671//23851 6408//23852 6279//23853 -f 2628//23854 4480//23854 2734//23854 -f 129//23855 140//23856 4686//23857 -f 4387//23858 2087//23858 5127//23858 -f 2114//23859 4259//23860 2579//23861 -f 890//23862 3175//23863 5269//23864 -f 3189//23865 3517//23866 4914//23867 -f 6278//23868 6715//23869 6588//23870 -f 1521//23871 3954//23872 3317//23873 -f 108//23874 1559//23875 1326//23876 -f 3090//23877 1407//23878 3637//23879 -f 2272//23880 1844//23881 5546//23882 -f 5030//23883 4951//23884 3424//23885 -f 5351//23886 2915//23887 477//23888 -f 3595//23889 2983//23890 3518//23889 -f 2983//23891 1961//23892 3518//23893 -f 2677//23894 2678//23895 2905//23894 -f 1269//23896 2223//23896 2277//23896 -f 2804//23897 948//23897 3197//23898 -f 1710//23899 4494//23899 67//23900 -f 2233//23901 1578//23902 2315//23901 -f 6677//23903 6793//23903 6675//23903 -f 6592//23904 6309//23905 6756//23906 -f 6283//23907 6446//23908 6591//23909 -f 6446//23910 6794//23911 6591//23912 -f 6717//23913 6757//23914 6795//23914 -f 841//23915 4430//23916 3530//23915 -f 3609//23917 5718//23918 5223//23919 -f 1246//23920 2790//23920 188//23920 -f 5411//23921 3876//23922 3162//23922 -f 2418//23923 4139//23924 285//23925 -f 6718//23926 6597//23927 6795//23928 -f 4034//23929 5080//23930 4584//23931 -f 1950//23932 5664//23933 3124//23934 -f 6627//23935 6718//23936 6758//23935 -f 3432//23937 2726//23938 2623//23938 -f 6599//23939 6848//23940 6681//23939 -f 5388//23941 2367//23941 597//23941 -f 6849//23942 6476//23943 6414//23943 -f 358//23944 3676//23945 3267//23946 -f 983//23947 2749//23947 1790//23948 -f 645//23949 4296//23950 5//23951 -f 6507//23952 6134//23953 6798//23954 -f 6682//23955 6416//23956 6352//23957 -f 4016//23958 454//23959 3148//23960 -f 6683//23961 6383//23962 6420//23963 -f 5660//23964 4619//23965 21//23966 -f 4580//23967 1492//23968 1919//23969 -f 681//23970 5534//23971 4876//23972 -f 991//23973 538//23973 5115//23974 -f 6760//23975 6418//23975 6452//23975 -f 7319//23976 3822//23976 448//23976 -f 6632//23977 6722//23978 6549//23979 -f 6800//23980 6722//23981 6632//23982 -f 6632//23983 6762//23983 6800//23983 -f 1348//23984 1408//23985 3343//23985 -f 498//23986 2900//23987 1971//23988 -f 1181//23989 4133//23990 400//23990 -f 6801//23991 6632//23992 6686//23993 -f 1556//23994 2115//23994 1194//23994 -f 5570//23995 3861//23996 268//23997 -f 3961//23998 3727//23998 3300//23999 -f 4195//24000 3911//24000 3913//24000 -f 5068//24001 4943//24002 5369//24001 -f 2574//24003 2885//24003 574//24003 -f 1058//24004 912//24005 3477//24006 -f 1891//24007 5400//24008 2793//24009 -f 4424//24010 3340//24010 1615//24010 -f 6686//24011 6765//24012 6801//24013 -f 527//24014 980//24014 2111//24014 -f 3361//24015 1871//24016 3556//24017 -f 3610//24018 4930//24019 402//24020 -f 6764//24021 6766//24021 6481//24021 -f 978//24022 636//24022 4493//24022 -f 4898//24023 7337//24024 5740//24025 -f 6725//24026 6765//24027 6604//24028 -f 2656//24029 1221//24029 1441//24029 -f 6725//24030 6691//24031 6693//24032 -f 336//24033 3785//24034 658//24035 -f 3549//24036 2392//24037 1994//24038 -f 2391//24039 2999//24040 5154//24039 -f 3558//24041 5456//24042 4238//24043 -f 6425//24044 6808//24045 6729//24046 -f 1140//24047 3237//24047 1219//24048 -f 3764//24049 1577//24050 2918//24051 -f 1417//24052 1362//24053 830//24054 -f 1246//24055 3989//24056 4619//24057 -f 2675//24058 4117//24059 4886//24060 -f 1932//24061 1499//24062 4423//24063 -f 4695//24064 4959//24065 1886//24065 -f 135//24066 438//24067 1213//24066 -f 6638//24068 6860//24069 6727//24070 -f 4542//24071 3107//24071 788//24071 -f 5395//24072 923//24073 3873//24074 -f 2771//24075 396//24076 2528//24077 -f 2163//24078 613//24078 827//24078 -f 6809//24079 6319//24080 6810//24081 -f 1047//24082 2755//24083 4480//24084 -f 68//24085 299//24086 174//24087 -f 4690//24088 1876//24088 2408//24089 -f 4666//24090 3237//24090 3554//24090 -f 2859//24091 4378//24091 1338//24091 -f 6694//24092 6811//24093 6767//24094 -f 6605//24095 6696//24096 6486//24097 -f 6770//24098 6605//24098 6915//24098 -f 6455//24099 6697//24099 6732//24099 -f 6563//24100 6917//24101 6562//24102 -f 1774//24103 4810//24104 3209//24104 -f 3795//24105 1923//24105 5277//24105 -f 5844//24106 4557//24107 480//24108 -f 5200//24109 3178//24110 1452//24111 -f 6559//24112 6606//24113 6772//24114 -f 3315//24115 553//24116 1201//24115 -f 6697//24117 6561//24117 6773//24117 -f 6426//24118 6696//24119 6770//24120 -f 3347//24121 1619//24122 617//24123 -f 1444//24124 3480//24125 344//24126 -f 737//24127 4116//24128 1865//24129 -f 5732//24130 2290//24130 1888//24130 -f 3651//24131 395//24132 5198//24133 -f 6815//24134 6698//24134 6641//24134 -f 4606//24135 365//24135 2750//24135 -f 786//24136 2106//24136 3203//24137 -f 6772//24138 6606//24139 6775//24140 -f 6734//24141 6457//24141 6733//24141 -f 518//24142 1119//24143 631//24144 -f 6641//24145 6642//24146 6815//24147 -f 54//24148 1883//24149 1801//24150 -f 6815//24151 6642//24152 6816//24151 -f 6816//24153 6642//24154 6736//24155 -f 722//24156 4020//24156 5119//24156 -f 6817//24157 6777//24158 6737//24159 -f 6776//24160 6738//24161 6460//24162 -f 3026//24163 1363//24164 5523//24165 -f 4379//24166 863//24167 947//24168 -f 5183//24169 4372//24170 148//24171 -f 6643//24172 6739//24173 6702//24174 -f 1411//24175 5830//24176 4678//24177 -f 6737//24178 6702//24179 6739//24180 -f 4073//24181 4843//24181 4485//24181 -f 923//24182 5395//24183 1962//24184 -f 6610//24185 6645//24185 6867//24186 -f 4886//24187 3828//24188 5612//24189 -f 6523//24190 6971//24190 6646//24190 -f 6571//24191 6428//24192 6818//24193 -f 2734//24194 957//24195 2628//24194 -f 2608//24196 5090//24196 2073//24196 -f 3927//24197 2457//24198 4167//24199 -f 4602//24200 2361//24200 2106//24200 -f 1962//24201 4756//24202 5412//24203 -f 6741//24204 6779//24205 6573//24206 -f 6780//24207 6651//24208 6649//24207 -f 2473//24209 59//24210 4675//24211 -f 2549//24212 1560//24213 2445//24214 -f 6780//24215 6743//24216 6651//24217 -f 2993//24218 4479//24218 7216//24218 -f 6654//24219 6821//24220 6782//24221 -f 6783//24222 6822//24223 6575//24224 -f 6782//24225 6783//24225 6654//24226 -f 6704//24227 6575//24228 6822//24229 -f 4520//24230 2604//24230 96//24230 -f 2077//24231 2860//24231 5143//24231 -f 2175//24232 1750//24233 963//24232 -f 4851//24234 5485//24234 4692//24234 -f 796//24235 3685//24236 319//24237 -f 3636//24238 4438//24239 905//24238 -f 2390//24240 3447//24241 2362//24242 -f 4502//24243 5669//24243 5081//24244 -f 3079//24245 2945//24246 1794//24247 -f 6706//24248 6577//24249 6828//24249 -f 3897//24250 1669//24251 3772//24252 -f 6746//24253 6526//24254 6784//24253 -f 1261//24255 3296//24256 1813//24257 -f 1654//24258 4047//24259 3607//24259 -f 6785//24260 6465//24260 6657//24260 -f 3082//24261 1544//24262 4841//24262 -f 427//24263 930//24264 2471//24265 -f 3096//24266 171//24267 3671//24268 -f 1234//24269 4524//24270 500//24271 -f 5565//24272 2699//24273 523//24273 -f 1019//24274 110//24275 2348//24276 -f 2662//24277 2031//24278 5339//24279 -f 87//24280 4274//24281 748//24282 -f 4415//24283 25//24284 4912//24285 -f 3458//24286 1128//24287 4339//24288 -f 3154//24289 2814//24290 3454//24289 -f 6466//24291 6580//24292 6788//24293 -f 5782//24294 4452//24294 5062//24295 -f 6709//24296 6788//24296 6748//24296 -f 5216//24297 191//24298 1337//24299 -f 4535//24300 1673//24301 3881//24302 -f 1493//24303 312//24304 198//24305 -f 886//24306 1600//24307 3885//24308 -f 6615//24309 6371//24310 7025//24311 -f 6530//24312 6329//24313 6663//24314 -f 7343//24315 489//24315 3569//24315 -f 3327//24316 3302//24317 3488//24316 -f 6616//24318 6748//24319 6880//24320 -f 6663//24321 6584//24322 6937//24323 -f 4860//24324 4897//24325 3912//24325 -f 3954//24326 254//24327 255//24328 -f 876//24329 633//24329 893//24330 -f 6616//24331 6880//24332 6830//24332 -f 5431//24333 264//24334 3790//24334 -f 2007//24335 1643//24336 2921//24337 -f 6831//24338 7025//24339 6402//24340 -f 3433//24341 5147//24342 3726//24343 -f 1207//24344 543//24345 102//24346 -f 4567//24347 811//24348 476//24349 -f 672//24350 3157//24351 246//24350 -f 6750//24352 6940//24353 6617//24354 -f 6710//24355 6617//24355 6940//24356 -f 2055//24357 491//24358 4278//24359 -f 5892//24360 5076//24361 215//24362 -f 741//24363 2709//24364 983//24365 -f 6405//24366 7163//24367 6620//24368 -f 2244//24369 1359//24370 370//24371 -f 2558//24372 2561//24373 3266//24374 -f 1757//24375 989//24376 1520//24377 -f 732//24378 4489//24379 436//24380 -f 6406//24381 6207//24382 6713//24383 -f 1419//24384 1420//24385 1720//24386 -f 4296//24387 2426//24388 1178//24389 -f 6836//24390 6669//24391 6340//24392 -f 2334//24393 3900//24394 3901//24394 -f 5643//24395 1025//24395 2929//24395 -f 6836//24396 6340//24397 6670//24398 -f 165//24399 3473//24400 4491//24401 -f 544//24402 4812//24402 4744//24402 -f 2441//24403 3607//24404 370//24404 -f 2411//24405 308//24406 4646//24407 -f 714//24408 2196//24408 1901//24408 -f 6716//24409 6671//24410 6279//24409 -f 3718//24411 224//24412 3498//24411 -f 2372//24413 2637//24414 3976//24413 -f 2942//24415 1841//24416 1568//24417 -f 2590//24418 2591//24419 2747//24420 -f 779//24421 3404//24422 2665//24423 -f 2080//24424 4431//24425 1935//24426 -f 1085//24427 4739//24428 3616//24429 -f 6753//24430 6543//24430 6791//24430 -f 4534//24431 4065//24432 3715//24433 -f 6754//24434 6280//24435 6345//24436 -f 69//24437 4622//24438 247//24438 -f 4531//24439 3250//24440 3560//24441 -f 2305//24442 2337//24443 694//24444 -f 4054//24445 488//24445 3567//24446 -f 6589//24447 6472//24448 6792//24449 -f 3968//24450 3850//24451 5265//24450 -f 4287//24452 4961//24453 5371//24454 -f 690//24455 1314//24456 1391//24457 -f 2361//24458 2988//24459 3463//24458 -f 1565//24460 2225//24461 258//24462 -f 398//24463 2168//24464 2302//24463 -f 385//24465 3146//24466 3625//24467 -f 1771//24468 2594//24469 5512//24470 -f 3142//24471 3354//24472 4694//24472 -f 6282//24473 6894//24473 6212//24473 -f 6890//24474 6757//24474 6892//24474 -f 2395//24475 1124//24476 1246//24477 -f 6757//24478 6890//24479 6842//24480 -f 3070//24481 5401//24482 4930//24483 -f 6892//24484 6757//24485 6717//24486 -f 6893//24487 6717//24488 6793//24489 -f 3495//24490 4808//24491 4047//24492 -f 2857//24493 1893//24494 712//24495 -f 6793//24496 6717//24497 6675//24496 -f 3372//24498 1244//24498 2238//24499 -f 1043//24500 5393//24501 4649//24502 -f 827//24503 2711//24503 4550//24503 -f 1646//24504 3727//24504 3961//24504 -f 3882//24505 5779//24506 1143//24507 -f 5127//24508 2087//24509 2086//24510 -f 4777//24511 2700//24512 3647//24512 -f 2796//24513 2952//24514 3591//24513 -f 6718//24515 6795//24516 6843//24515 -f 4844//24517 4761//24518 316//24519 -f 6595//24520 6130//24521 6845//24521 -f 6626//24522 6378//24523 6846//24524 -f 1173//24525 2600//24526 2150//24527 -f 3309//24528 249//24528 7344//24528 -f 6847//24529 6758//24530 6718//24531 -f 2568//24532 1258//24533 1876//24534 -f 305//24535 1023//24536 1373//24537 -f 6311//24538 6595//24539 6797//24540 -f 4250//24541 4120//24541 3151//24542 -f 6381//24543 2025//24543 2147//24543 -f 644//24544 4030//24545 286//24546 -f 1728//24547 4623//24548 3562//24549 -f 3923//24550 1728//24551 1729//24552 -f 6850//24553 6629//24553 6758//24553 -f 4425//24554 4038//24555 2624//24554 -f 5515//24556 1340//24557 4396//24558 -f 4341//24559 4915//24559 4199//24559 -f 2821//24560 2924//24561 3696//24562 -f 4212//24563 975//24564 1060//24563 -f 6799//24565 6507//24566 6798//24567 -f 6507//24568 6799//24568 6601//24568 -f 2510//24569 2333//24570 2791//24571 -f 6719//24572 6955//24573 6684//24572 -f 6508//24574 6761//24575 6720//24576 -f 6547//24577 6719//24578 6684//24578 -f 1664//24579 4341//24579 4228//24580 -f 5236//24581 1123//24582 3654//24583 -f 459//24584 3278//24584 2554//24585 -f 4721//24586 5528//24587 130//24588 -f 3841//24589 3541//24590 3005//24590 -f 6762//24591 6632//24592 6801//24593 -f 6688//24594 6763//24594 6852//24594 -f 4794//24595 586//24596 5227//24597 -f 4313//24598 290//24599 2901//24600 -f 6764//24601 6631//24601 6853//24601 -f 4361//24602 4169//24602 1196//24602 -f 1264//24603 4123//24603 4437//24603 -f 6854//24604 6723//24604 6855//24605 -f 6856//24606 6723//24607 6634//24608 -f 4137//24609 1232//24610 4846//24611 -f 4203//24612 4546//24613 944//24614 -f 2950//24615 5011//24616 219//24617 -f 1896//24618 443//24619 3282//24620 -f 4247//24621 1095//24622 3500//24623 -f 1226//24624 921//24625 1877//24624 -f 3344//24626 167//24627 1251//24628 -f 6857//24629 6512//24630 6687//24631 -f 4012//24632 5209//24633 185//24634 -f 6552//24635 6509//24636 6904//24635 -f 4697//24637 5193//24638 5328//24639 -f 1149//24640 1150//24641 4659//24642 -f 5528//24643 3456//24644 2328//24645 -f 3043//24646 4142//24646 2240//24647 -f 5506//24648 6828//24648 6834//24648 -f 1247//24649 1053//24650 4643//24651 -f 6515//24652 6552//24653 6806//24654 -f 4281//24655 12//24656 4416//24657 -f 6806//24658 6552//24658 6858//24658 -f 3242//24659 3350//24660 3001//24659 -f 1005//24661 4000//24662 984//24663 -f 1937//24664 2068//24665 2279//24666 -f 182//24667 479//24668 3112//24669 -f 6515//24670 6807//24670 6726//24670 -f 240//24671 4392//24672 3563//24671 -f 605//24673 2152//24674 3182//24675 -f 4427//24676 2816//24677 1221//24678 -f 1194//24679 4292//24679 1556//24679 -f 4831//24680 1759//24681 3345//24682 -f 2817//24683 3553//24684 3243//24685 -f 5549//24686 4888//24687 2947//24688 -f 794//24689 3253//24690 2809//24690 -f 2778//24691 1455//24692 2026//24693 -f 704//24694 1652//24694 2102//24695 -f 6808//24696 6637//24697 6729//24698 -f 6730//24699 6319//24700 6809//24701 -f 1018//24702 3374//24703 2555//24704 -f 1434//24705 824//24706 5122//24707 -f 3669//24708 263//24708 2293//24708 -f 2013//24709 2014//24710 146//24711 -f 1451//24712 1794//24713 4069//24714 -f 3894//24715 4116//24716 3895//24717 -f 6519//24718 6563//24719 6458//24720 -f 680//24721 3412//24721 481//24722 -f 6564//24723 6562//24723 6769//24723 -f 203//24724 3486//24725 143//24726 -f 1842//24727 2639//24728 2638//24729 -f 6810//24730 6732//24731 6861//24732 -f 4932//24733 3285//24734 3099//24735 -f 2091//24736 521//24737 1431//24737 -f 6608//24738 6640//24739 6862//24740 -f 803//24741 2319//24742 1238//24743 -f 1416//24744 1448//24745 1490//24746 -f 6812//24747 6771//24747 6426//24748 -f 2393//24749 739//24750 4700//24751 -f 5198//24752 1234//24752 1470//24752 -f 6968//24753 6487//24754 6608//24755 -f 6770//24756 6812//24757 6426//24758 -f 4387//24759 3088//24760 4931//24761 -f 6772//24762 6733//24763 6559//24764 -f 5633//24765 4573//24766 4482//24767 -f 1725//24768 3166//24769 7213//24770 -f 6457//24771 6559//24772 6733//24773 -f 6814//24774 6560//24775 6607//24776 -f 1167//24777 2247//24778 1963//24779 -f 6773//24780 6560//24781 6774//24782 -f 3032//24783 834//24784 3405//24785 -f 5559//24786 91//24786 4863//24786 -f 2646//24787 622//24787 2230//24787 -f 6734//24788 6864//24789 6607//24790 -f 115//24791 4434//24792 1061//24793 -f 505//24794 403//24795 1164//24795 -f 4212//24796 2061//24797 1879//24798 -f 1249//24799 3438//24799 3008//24799 -f 6817//24800 6737//24801 6866//24802 -f 4396//24803 1340//24803 2026//24804 -f 1634//24805 3852//24806 2079//24805 -f 2220//24807 2163//24808 1804//24809 -f 4610//24810 1227//24811 93//24811 -f 2050//24812 1789//24813 2404//24814 -f 328//24815 1428//24816 2105//24817 -f 3328//24818 836//24819 4093//24819 -f 6611//24820 6571//24821 6820//24822 -f 6740//24823 6778//24823 6572//24824 -f 3587//24825 5686//24826 3441//24827 -f 6780//24828 6649//24829 6868//24830 -f 3426//24831 380//24832 2909//24833 -f 164//24834 3915//24835 2878//24836 -f 995//24837 2490//24838 2895//24839 -f 1841//24840 3739//24841 2861//24841 -f 921//24842 4696//24843 3202//24844 -f 3178//24845 990//24846 1473//24845 -f 6742//24847 6496//24848 6781//24849 -f 3568//24850 1538//24851 2404//24852 -f 7348//24853 168//24854 1603//24855 -f 3584//24856 1622//24856 5053//24857 -f 6496//24858 6869//24859 6781//24860 -f 6869//24861 6496//24862 6525//24863 -f 862//24864 861//24865 3477//24864 -f 149//24866 5382//24867 4154//24868 -f 3329//24869 592//24869 3498//24870 -f 6612//24871 6525//24871 6429//24872 -f 6821//24873 6654//24874 6743//24875 -f 2532//24876 4428//24876 2755//24876 -f 1066//24877 647//24878 2197//24879 -f 326//24880 2341//24881 1590//24882 -f 474//24883 443//24884 1897//24885 -f 6822//24886 6870//24887 6704//24887 -f 2441//24888 152//24889 3583//24890 -f 6821//24891 6871//24891 6782//24891 -f 6871//24892 6821//24893 6872//24894 -f 51//24895 2569//24896 52//24897 -f 6873//24898 6872//24899 6821//24900 -f 3862//24901 3684//24902 4312//24903 -f 6873//24904 6825//24905 6872//24906 -f 6874//24907 6872//24908 6875//24909 -f 5469//24910 1799//24911 1027//24910 -f 6826//24912 6872//24913 6825//24914 -f 6875//24915 6872//24916 6826//24917 -f 5678//24918 2442//24918 1724//24918 -f 6873//24919 6827//24920 6825//24921 -f 6876//24922 6826//24922 6825//24922 -f 1297//24923 1162//24924 1852//24925 -f 6825//24926 6877//24927 6876//24928 -f 6877//24929 6825//24930 6827//24931 -f 2591//24932 5224//24933 2343//24934 -f 1852//24935 4166//24936 2065//24937 -f 4917//24938 5131//24939 4918//24940 -f 6828//24941 6577//24942 6614//24943 -f 6658//24944 6707//24944 228//24944 -f 6878//24945 6465//24946 6746//24946 -f 6659//24947 6707//24948 6579//24949 -f 4450//24950 980//24951 4377//24952 -f 595//24953 808//24954 3160//24955 -f 63//24956 2751//24957 4083//24957 -f 4046//24958 3567//24959 1479//24960 -f 1887//24961 4135//24962 2771//24963 -f 1643//24964 2007//24965 4215//24966 -f 1329//24967 1481//24968 238//24969 -f 6152//24970 5968//24970 6787//24971 -f 4968//24972 851//24973 5286//24974 -f 212//24975 5308//24976 3745//24977 -f 316//24978 3372//24978 330//24979 -f 793//24980 2246//24980 2560//24981 -f 5127//24982 2086//24983 3702//24982 -f 6708//24984 7087//24985 6234//24986 -f 6880//24987 6788//24988 6936//24989 -f 5067//24990 3069//24991 2014//24992 -f 2449//24993 2451//24993 1110//24993 -f 1164//24994 349//24995 505//24996 -f 994//24997 995//24998 3717//24999 -f 1159//25000 274//25001 2440//25002 -f 1160//25003 4839//25003 4007//25004 -f 6937//25005 6584//25006 6789//25007 -f 780//25008 5217//25008 1331//25008 -f 4780//25009 3334//25010 4065//25011 -f 1915//25012 5079//25013 4469//25014 -f 2168//25015 198//25016 2302//25017 -f 2634//25018 2830//25019 2375//25018 -f 5388//25020 783//25020 2367//25020 -f 7355//25021 5966//25021 2075//25022 -f 3868//25023 3467//25024 4932//25025 -f 3347//25026 1792//25027 1619//25028 -f 1875//25029 2313//25030 3473//25031 -f 3226//25032 3549//25032 1118//25033 -f 6832//25034 6619//25035 6979//25036 -f 6469//25037 6710//25038 6751//25039 -f 1331//25040 4000//25041 780//25042 -f 6469//25043 6751//25044 6618//25045 -f 2271//25046 1695//25046 2117//25046 -f 6618//25047 6881//25048 6536//25049 -f 5066//25050 840//25051 3952//25052 -f 6621//25053 6536//25054 6881//25055 -f 3394//25056 2613//25057 5396//25058 -f 948//25059 3519//25059 3197//25059 -f 990//25060 2698//25061 103//25060 -f 441//25062 2155//25063 4284//25062 -f 3169//25064 1896//25065 4599//25066 -f 1205//25067 4345//25068 2005//25069 -f 725//25070 4414//25071 721//25070 -f 3699//25072 4064//25073 4302//25074 -f 560//25075 489//25075 3348//25076 -f 6445//25077 6667//25077 6835//25077 -f 4958//25078 2832//25079 3048//25080 -f 223//25081 2759//25082 5427//25083 -f 2780//25084 422//25084 2655//25084 -f 4417//25085 926//25085 1026//25085 -f 3038//25086 397//25087 4639//25088 -f 2046//25089 2637//25090 329//25091 -f 2065//25092 100//25093 1242//25094 -f 4955//25095 1449//25096 3136//25097 -f 405//25098 2492//25099 1041//25100 -f 3296//25101 1923//25101 3795//25101 -f 2381//25102 5211//25103 4121//25104 -f 6339//25105 6539//25106 6752//25105 -f 4741//25107 2748//25108 5070//25109 -f 326//25110 4917//25111 1591//25112 -f 287//25113 3258//25114 611//25115 -f 3283//25116 272//25117 651//25118 -f 2703//25119 2395//25120 1165//25121 -f 37//25122 3434//25123 1854//25124 -f 4902//25125 3711//25126 2496//25127 -f 6883//25128 6790//25129 6753//25130 -f 1421//25131 243//25132 423//25131 -f 4484//25133 1543//25134 6055//25135 -f 6883//25136 6753//25137 6791//25138 -f 6715//25139 6884//25140 6588//25141 -f 4070//25142 5082//25143 273//25144 -f 6343//25145 6672//25145 6983//25146 -f 70//25147 1405//25148 3956//25149 -f 3835//25150 3254//25150 2749//25150 -f 6543//25151 6674//25152 6791//25153 -f 2079//25154 7327//25155 7359//25156 -f 6838//25157 6674//25157 6343//25157 -f 6791//25158 6674//25159 6946//25160 -f 6946//25161 6674//25161 6838//25161 -f 6838//25162 6343//25163 6885//25163 -f 1501//25164 4346//25164 178//25164 -f 1748//25165 3376//25165 1130//25165 -f 927//25166 67//25167 2344//25168 -f 6839//25169 6250//25170 6376//25171 -f 4878//25172 4697//25173 5328//25174 -f 6946//25175 6838//25176 6840//25177 -f 6946//25178 6840//25178 6886//25179 -f 3235//25180 1433//25180 5240//25180 -f 6840//25181 6838//25181 6885//25181 -f 2351//25182 4272//25183 2773//25184 -f 6887//25185 6886//25185 6840//25186 -f 6792//25187 6755//25188 6589//25189 -f 1801//25190 589//25191 517//25192 -f 6888//25193 6840//25193 6885//25194 -f 6890//25195 6887//25195 6840//25196 -f 3515//25197 2239//25198 1082//25199 -f 6473//25200 6251//25201 6841//25202 -f 6840//25203 6888//25204 6890//25205 -f 6892//25206 6887//25207 6890//25206 -f 6282//25208 6891//25208 6894//25208 -f 4403//25209 1563//25210 4724//25209 -f 5845//25211 146//25212 1832//25213 -f 6887//25214 6892//25214 6893//25215 -f 4883//25216 4203//25216 944//25217 -f 6892//25218 6717//25219 6893//25220 -f 6842//25221 6890//25221 6895//25221 -f 863//25222 1010//25222 4286//25223 -f 4235//25224 599//25225 600//25226 -f 2413//25227 2986//25227 4044//25227 -f 6793//25228 6677//25228 6948//25228 -f 5107//25229 1393//25229 235//25229 -f 6757//25230 6842//25231 6843//25232 -f 5141//25233 7348//25234 1603//25235 -f 482//25236 1753//25237 2125//25238 -f 2849//25239 2333//25240 1856//25241 -f 6795//25242 6757//25242 6843//25242 -f 2148//25243 2229//25244 3120//25245 -f 6794//25246 6446//25247 6626//25248 -f 6843//25249 6896//25250 6718//25251 -f 1915//25252 1885//25253 942//25254 -f 6897//25255 6596//25256 6679//25255 -f 2564//25257 761//25258 1602//25259 -f 4150//25260 597//25260 2002//25260 -f 1348//25261 4720//25262 1408//25263 -f 6848//25264 6599//25264 6600//25265 -f 2935//25266 462//25267 1980//25268 -f 959//25269 84//25270 239//25271 -f 6954//25272 6600//25273 6683//25274 -f 2546//25275 2350//25275 1990//25275 -f 6682//25276 6352//25277 6759//25278 -f 1089//25279 4559//25280 4501//25281 -f 274//25282 1159//25283 1812//25284 -f 4270//25285 2556//25286 3592//25287 -f 2229//25288 3851//25289 3375//25290 -f 6420//25291 6900//25291 6901//25292 -f 6420//25293 6902//25294 6900//25295 -f 6902//25296 6420//25297 6684//25298 -f 3512//25299 2648//25300 2834//25301 -f 3039//25302 3890//25302 731//25302 -f 2015//25303 42//25304 3427//25305 -f 1816//25306 652//25307 2718//25308 -f 7371//25309 4861//25310 3240//25311 -f 4072//25312 3271//25312 1443//25312 -f 6955//25313 6719//25314 6903//25315 -f 4208//25316 44//25317 5086//25318 -f 5523//25319 1423//25320 3862//25319 -f 401//25321 1496//25321 4233//25321 -f 4864//25322 4940//25323 2351//25324 -f 522//25325 4684//25326 1821//25327 -f 3599//25328 2303//25329 2173//25330 -f 6800//25331 6762//25332 6956//25333 -f 6384//25334 6685//25334 6957//25334 -f 7//25335 2505//25336 2153//25336 -f 2562//25337 488//25338 3183//25339 -f 3633//25340 3579//25341 3019//25342 -f 1178//25343 2131//25344 1244//25345 -f 4349//25346 4579//25347 3175//25348 -f 6687//25349 6852//25350 6802//25351 -f 6763//25352 6723//25353 6854//25354 -f 6856//25355 6855//25356 6723//25355 -f 4834//25357 4835//25357 1913//25358 -f 6685//25359 6479//25360 6959//25359 -f 4167//25361 2833//25362 2476//25363 -f 735//25364 2741//25365 2406//25366 -f 856//25367 3485//25368 2552//25369 -f 4340//25370 2644//25371 2826//25372 -f 6857//25373 6687//25374 6802//25373 -f 3786//25375 3841//25376 3005//25376 -f 1605//25377 3859//25377 2327//25377 -f 2360//25378 3120//25379 2000//25380 -f 4080//25381 2130//25382 4451//25383 -f 6766//25384 6804//25385 6635//25386 -f 4086//25387 3931//25388 3560//25389 -f 6905//25390 6634//25390 6690//25390 -f 3650//25391 1152//25392 2340//25393 -f 319//25394 3018//25395 1001//25396 -f 4846//25397 2255//25398 759//25399 -f 6552//25400 6904//25401 7052//25402 -f 6453//25403 6805//25404 6724//25405 -f 1399//25406 3429//25406 2058//25406 -f 2241//25407 3332//25408 5069//25409 -f 6806//25410 6807//25410 6515//25411 -f 6514//25412 6999//25413 6453//25414 -f 6806//25415 6858//25416 6906//25417 -f 1845//25418 5515//25418 1045//25418 -f 6728//25419 6514//25420 6483//25421 -f 6907//25422 6425//25423 6454//25424 -f 798//25425 1979//25426 2827//25427 -f 6859//25428 6693//25429 6727//25430 -f 2068//25431 316//25431 3496//25431 -f 3811//25432 3678//25432 1142//25433 -f 6908//25434 6636//25435 6555//25436 -f 4200//25437 2149//25438 4956//25438 -f 6726//25439 6909//25440 6910//25440 -f 6555//25441 6911//25442 6908//25443 -f 3868//25444 3775//25444 4461//25444 -f 1561//25445 4156//25446 665//25447 -f 6555//25448 6726//25448 6910//25448 -f 5156//25449 568//25450 1514//25451 -f 6555//25452 6910//25453 6911//25454 -f 2304//25455 3647//25456 3813//25457 -f 1316//25458 1259//25459 3662//25460 -f 6916//25461 6809//25461 6810//25461 -f 5387//25462 4725//25462 4617//25463 -f 4471//25464 906//25465 632//25466 -f 2747//25467 1650//25467 3996//25467 -f 6640//25468 6564//25469 6769//25470 -f 6767//25471 6811//25472 6915//25471 -f 6767//25473 6915//25474 6605//25475 -f 2615//25476 103//25477 1546//25478 -f 6916//25479 6810//25479 6861//25480 -f 1976//25481 2943//25482 4318//25481 -f 3185//25483 4182//25484 1430//25485 -f 602//25486 1489//25487 5690//25488 -f 6770//25489 6696//25490 6605//25491 -f 5110//25492 3253//25493 3877//25494 -f 53//25495 1289//25496 2015//25497 -f 6921//25498 6732//25499 6697//25500 -f 3078//25501 3626//25502 6061//25503 -f 180//25504 2217//25504 738//25504 -f 1892//25505 2798//25506 3311//25507 -f 4084//25508 4447//25509 5367//25510 -f 6861//25511 6732//25512 6921//25512 -f 3237//25513 4666//25514 140//25515 -f 3068//25516 126//25517 169//25516 -f 6921//25518 6697//25519 6773//25520 -f 6770//25521 6915//25522 6920//25523 -f 3830//25524 1274//25524 377//25524 -f 6560//25525 6814//25526 6774//25527 -f 1864//25528 4566//25529 737//25530 -f 3006//25531 2194//25532 313//25533 -f 155//25534 939//25535 3613//25536 -f 6774//25537 6863//25538 6773//25539 -f 727//25540 3291//25540 3861//25540 -f 5330//25541 472//25542 2374//25541 -f 6699//25543 6865//25544 6775//25545 -f 4236//25546 4862//25547 4433//25548 -f 6734//25549 6923//25550 6864//25550 -f 1280//25551 5188//25552 4376//25553 -f 311//25554 745//25555 3565//25555 -f 6777//25556 6816//25557 6736//25557 -f 372//25558 403//25559 3649//25560 -f 6737//25561 6739//25562 6866//25563 -f 1234//25564 500//25565 3442//25566 -f 6610//25567 6924//25568 6647//25569 -f 6610//25570 6867//25570 6924//25571 -f 1037//25572 2996//25573 1609//25574 -f 6818//25575 6647//25576 6819//25576 -f 6820//25577 6571//25578 6818//25579 -f 6572//25580 6925//25580 6523//25580 -f 6925//25581 6572//25582 6778//25583 -f 3285//25584 3944//25585 2848//25586 -f 2314//25587 3236//25588 1719//25589 -f 804//25590 179//25590 1358//25590 -f 6926//25591 6653//25592 6869//25593 -f 2115//25594 1483//25595 2869//25596 -f 3886//25597 536//25598 968//25599 -f 2747//25600 2169//25600 2825//25601 -f 961//25602 5028//25603 3958//25604 -f 6362//25605 6704//25606 6823//25606 -f 1937//25607 2279//25608 2421//25609 -f 2511//25610 3097//25611 7250//25612 -f 6782//25613 6928//25614 6783//25613 -f 6928//25615 6822//25616 6783//25617 -f 3433//25618 3726//25619 1169//25620 -f 4370//25621 4677//25621 3223//25621 -f 6705//25622 6974//25623 6613//25624 -f 3156//25625 3227//25626 4684//25627 -f 976//25628 4518//25628 3015//25628 -f 1434//25629 5122//25630 2910//25631 -f 6873//25632 6821//25633 6929//25634 -f 994//25635 325//25636 2490//25637 -f 2694//25638 3444//25638 312//25638 -f 4802//25639 4948//25640 2092//25641 -f 3938//25642 1485//25643 1909//25644 -f 729//25645 2719//25646 209//25647 -f 448//25648 3822//25649 2854//25648 -f 4422//25650 2052//25651 1577//25652 -f 4274//25653 2919//25654 748//25655 -f 957//25656 1879//25657 4203//25658 -f 6873//25659 6929//25660 6931//25660 -f 461//25661 1623//25662 2292//25662 -f 2080//25663 931//25664 2665//25664 -f 6930//25665 6875//25666 6826//25667 -f 3259//25668 855//25669 3359//25670 -f 6930//25671 6826//25672 6876//25673 -f 6873//25674 6931//25674 6827//25674 -f 2531//25675 2778//25675 2026//25675 -f 4707//25676 1511//25677 2090//25678 -f 1885//25679 676//25680 4764//25681 -f 6465//25682 6878//25683 6657//25684 -f 2801//25685 2324//25686 4588//25687 -f 1654//25688 1686//25689 2487//25690 -f 6932//25691 6828//25692 6614//25692 -f 2275//25693 2867//25694 1369//25695 -f 382//25696 5262//25697 3827//25698 -f 7249//25699 2108//25700 1389//25701 -f 4185//25702 1139//25703 4728//25704 -f 6933//25705 6659//25706 6786//25707 -f 6747//25708 6829//25708 6661//25708 -f 2619//25709 997//25710 1748//25711 -f 6532//25712 6934//25713 6786//25714 -f 2515//25715 5608//25716 1158//25717 -f 6787//25718 6580//25718 6152//25719 -f 2813//25720 284//25721 2082//25722 -f 1974//25723 915//25724 1975//25725 -f 4224//25726 2520//25727 2519//25728 -f 2928//25729 4652//25730 3970//25731 -f 5139//25732 1472//25733 5040//25734 -f 2730//25735 1347//25736 5099//25736 -f 2568//25737 1876//25738 2193//25739 -f 4579//25740 4633//25741 3175//25742 -f 2044//25743 2374//25744 3089//25745 -f 4662//25746 1598//25747 4515//25748 -f 2577//25749 2388//25750 73//25749 -f 4158//25751 65//25752 837//25753 -f 4871//25754 2772//25754 3589//25754 -f 5889//20984 1103//20984 6230//20984 -f 2134//25755 2163//25755 2220//25755 -f 6748//25756 6788//25757 6880//25758 -f 1542//25759 2532//25760 496//25761 -f 7022//25762 6937//25762 6879//25763 -f 2815//25764 350//25765 1123//25766 -f 2326//25767 1242//25768 4143//25769 -f 6879//25770 6937//25771 6789//25771 -f 6533//25772 6238//25773 6664//25772 -f 1306//25774 1508//25775 2641//25776 -f 4841//25777 1544//25777 2820//25777 -f 783//25778 3459//25779 2661//25780 -f 6402//25781 6585//25781 6831//25781 -f 4348//25782 372//25783 3649//25782 -f 6616//25784 6830//25785 6749//25786 -f 861//25787 1230//25788 196//25789 -f 6941//25790 6585//25791 6620//25792 -f 3426//25793 584//25794 380//25795 -f 2213//25796 2161//25796 2870//25796 -f 232//25797 2697//25798 1805//25799 -f 2473//25800 60//25801 59//25802 -f 1991//25803 5199//25804 2666//25805 -f 5099//25806 814//25806 2729//25806 -f 1825//25807 3807//25808 4636//25809 -f 6833//25810 6621//25811 6881//25810 -f 2718//25812 46//25813 1816//25813 -f 2505//25814 99//25814 2315//25815 -f 6276//25816 6619//25817 6832//25818 -f 2227//25819 1047//25820 4480//25821 -f 1051//25822 5394//25823 2868//25824 -f 5174//25825 3645//25826 4120//25827 -f 7088//25828 6835//25829 6667//25829 -f 6445//25830 6835//25830 6943//25831 -f 3986//25832 82//25833 3598//25834 -f 4897//25835 896//25836 3912//25837 -f 5045//25838 1506//25839 1645//25840 -f 761//25841 2436//25841 2552//25841 -f 2074//25842 5371//25842 1432//25843 -f 2938//25844 3313//25845 3141//25846 -f 1191//25847 1675//25848 3841//25847 -f 6471//25849 6671//25850 6837//25851 -f 1339//25852 2540//25853 4454//25854 -f 6752//25855 6539//25855 6538//25855 -f 2308//25856 799//25857 2263//25858 -f 539//25859 388//25860 1713//25860 -f 6623//25861 6790//25862 6407//25863 -f 6752//25864 6541//25865 6339//25865 -f 3599//25866 2173//25866 3588//25866 -f 110//25867 2687//25868 1621//25869 -f 2028//25870 3286//25871 3887//25872 -f 3230//25873 1338//25874 4836//25875 -f 6623//25876 6753//25877 6790//25877 -f 6983//25878 6672//25879 6714//25878 -f 1123//25880 5030//25880 3654//25881 -f 263//25882 4034//25883 4584//25883 -f 4406//25884 3972//25885 87//25886 -f 2474//25887 4275//25887 3511//25887 -f 6883//25888 6791//25889 6886//25890 -f 6886//25891 6791//25891 6946//25891 -f 3850//25892 3267//25893 3676//25893 -f 56//25894 1916//25895 3104//25896 -f 112//25897 989//25898 4092//25899 -f 817//25900 3189//25900 4914//25900 -f 2463//25901 582//25902 1870//25901 -f 3711//25903 3495//25904 606//25905 -f 6590//25906 6473//25907 7033//25907 -f 6885//25908 6947//25909 6889//25910 -f 4316//25911 2321//25912 2618//25913 -f 6885//25914 6889//25915 6888//25915 -f 858//25916 3137//25916 3264//25916 -f 2071//25917 549//25918 2873//25919 -f 692//25920 4099//25921 2872//25922 -f 1505//25923 1184//25924 2866//25925 -f 1411//25926 3520//25927 1564//25928 -f 7090//25929 6887//25930 6893//25930 -f 2923//25931 942//25932 3362//25933 -f 6888//25934 6895//25935 6890//25936 -f 2777//25937 3303//25938 1063//25939 -f 2028//25940 1143//25941 445//25942 -f 6893//25943 6793//25944 6948//25945 -f 2331//25946 5118//25946 2491//25947 -f 2913//25948 2403//25948 1011//25948 -f 6895//25949 6896//25950 6842//25951 -f 2016//25952 1527//25953 1146//25954 -f 3448//25955 1159//25956 637//25957 -f 5390//25958 4515//25959 1598//25960 -f 699//25961 423//25962 2422//25963 -f 6842//25964 6896//25965 6843//25966 -f 6844//25967 6718//25968 6896//25969 -f 6592//25970 6845//25970 6130//25970 -f 3010//25971 718//25972 3667//25973 -f 450//25974 3232//25975 4438//25976 -f 1551//25977 3572//25977 5189//25977 -f 6718//25978 6844//25978 6847//25978 -f 4851//25979 1627//25979 5485//25979 -f 6846//25980 6378//25980 6796//25980 -f 6378//25981 6411//25982 6796//25982 -f 1994//25983 1388//25984 1477//25985 -f 2213//25986 2870//25986 3209//25986 -f 3253//25987 3321//25988 3877//25989 -f 6951//25990 6447//25990 6476//25990 -f 6758//25991 6847//25991 6898//25992 -f 6951//25993 6476//25994 6953//25995 -f 6953//25996 6476//25997 6849//25998 -f 6595//25999 6952//25999 6797//26000 -f 6758//26001 6898//26002 6850//26001 -f 1328//26003 2852//26004 3109//26003 -f 352//26005 1459//26005 4719//26006 -f 3974//26007 2467//26007 3738//26007 -f 7093//26008 6414//26009 6285//26010 -f 2091//26011 3244//26012 521//26013 -f 6682//26014 7093//26015 6285//26016 -f 6416//26017 6682//26017 6285//26017 -f 3020//26018 5843//26018 3558//26018 -f 859//26019 3544//26019 73//26019 -f 1993//26020 3851//26021 5138//26022 -f 6761//26023 6629//26024 6850//26025 -f 3730//26026 3074//26027 1925//26028 -f 5743//26029 3887//26030 3286//26030 -f 4903//26031 2616//26032 1806//26033 -f 5300//26034 5420//26035 2518//26036 -f 6956//26037 6719//26037 6722//26037 -f 338//26038 2083//26039 4995//26040 -f 4858//26041 438//26042 4371//26043 -f 6956//26044 6722//26044 6800//26044 -f 1012//26045 366//26046 1940//26047 -f 6633//26048 6721//26048 6958//26048 -f 6851//26049 6631//26050 6720//26051 -f 1578//26052 3224//26053 3081//26054 -f 6993//26055 6852//26056 6763//26057 -f 2941//26058 388//26059 2458//26060 -f 6960//26061 6993//26061 6763//26062 -f 433//26063 2164//26064 4862//26065 -f 6960//26066 6763//26067 6855//26068 -f 3369//26069 3324//26070 3239//26070 -f 6904//26071 6633//26072 6958//26073 -f 952//26074 5561//26075 1385//26076 -f 1206//26077 4416//26078 12//26079 -f 978//26080 1342//26081 273//26082 -f 204//26083 1819//26084 2799//26085 -f 1899//26086 1898//26086 2559//26086 -f 6509//26087 6633//26088 6904//26088 -f 4937//26089 23//26090 4405//26091 -f 3721//26092 458//26093 1233//26094 -f 808//26095 659//26096 4474//26097 -f 6856//26098 6634//26099 6803//26100 -f 4917//26101 4209//26101 3020//26102 -f 2689//26103 2413//26104 157//26105 -f 1096//26106 4786//26107 5648//26107 -f 1088//26108 271//26109 4629//26110 -f 6453//26111 6962//26112 6805//26113 -f 4906//26114 3196//26114 3216//26114 -f 3582//26115 792//26116 5154//26117 -f 6692//26118 7055//26119 6454//26120 -f 5050//26121 3351//26122 2275//26123 -f 6806//26124 6906//26124 6807//26124 -f 6425//26125 6907//26126 6808//26125 -f 630//26127 1090//26128 896//26129 -f 1103//26130 7081//26130 1036//26130 -f 6727//26131 6860//26132 6964//26131 -f 6909//26133 6726//26133 6807//26134 -f 6637//26135 6808//26135 7142//26135 -f 3534//26136 1103//26136 1036//26136 -f 1664//26137 4228//26138 17//26139 -f 6912//26140 7004//26140 6637//26141 -f 3202//26142 1293//26143 3798//26144 -f 6914//26145 6694//26146 6908//26147 -f 1495//26148 4182//26149 3655//26148 -f 6811//26150 6694//26150 6914//26151 -f 4946//26152 1301//26152 3409//26152 -f 4138//26153 2469//26154 1811//26155 -f 509//26156 41//26157 256//26158 -f 1806//26159 2616//26160 2897//26161 -f 1701//26162 1111//26162 4452//26163 -f 6915//26164 6811//26165 6919//26166 -f 3382//26167 2160//26168 45//26169 -f 3477//26170 912//26171 862//26172 -f 3897//26173 3772//26173 3750//26174 -f 6698//26175 6815//26175 6813//26175 -f 1978//26176 5470//26176 674//26176 -f 1164//26177 3441//26177 2486//26177 -f 5376//26178 4552//26179 4510//26180 -f 4687//26181 502//26182 1521//26181 -f 6770//26183 6969//26184 6812//26185 -f 6814//26186 6607//26186 6864//26186 -f 710//26187 5516//26188 3593//26189 -f 6865//26190 6699//26190 6771//26191 -f 6733//26192 6772//26193 6775//26194 -f 4197//26195 2059//26196 3717//26195 -f 648//26197 1599//26198 952//26199 -f 6920//26200 6969//26201 6770//26202 -f 6733//26203 6775//26204 7010//26203 -f 2614//26205 1584//26206 5040//26207 -f 4049//26208 4270//26208 3592//26208 -f 237//26209 398//26210 107//26211 -f 5270//26212 1828//26213 925//26213 -f 6865//26214 7010//26215 6775//26214 -f 4397//26216 1257//26217 2192//26218 -f 2407//26219 2406//26220 1872//26221 -f 2140//26222 1129//26223 1260//26224 -f 467//26225 1328//26226 3222//26227 -f 5515//26228 4685//26228 4662//26228 -f 4408//26229 3293//26230 4843//26231 -f 6971//26232 6866//26233 6739//26234 -f 7015//26235 6819//26236 6647//26237 -f 5093//26238 2250//26239 3053//26240 -f 3121//26241 2056//26241 5069//26241 -f 5118//26242 2331//26243 1821//26242 -f 3797//26244 1653//26245 476//26246 -f 6573//26247 7153//26247 6574//26247 -f 119//26248 5087//26249 2452//26250 -f 6868//26251 6649//26251 6492//26251 -f 564//26252 4127//26252 3045//26252 -f 1726//26253 932//26254 933//26254 -f 3738//26255 2860//26256 262//26257 -f 885//26258 3885//26259 661//26260 -f 6780//26261 6972//26261 6743//26261 -f 6612//26262 6927//26263 6525//26263 -f 6821//26264 6743//26265 6972//26266 -f 3404//26267 3200//26268 3540//26269 -f 6491//26270 874//26271 895//26272 -f 3402//26273 1670//26273 1393//26273 -f 2589//26274 604//26275 2596//26276 -f 353//26277 5523//26277 4807//26277 -f 5087//26278 3926//26278 2452//26278 -f 6744//26279 6362//26280 6823//26281 -f 5892//26282 4367//26283 302//26284 -f 6744//26285 6823//26286 6973//26287 -f 2379//26288 1495//26289 4392//26289 -f 4781//26290 116//26290 3636//26291 -f 6705//26292 6744//26293 6973//26294 -f 6824//26295 6613//26296 6974//26297 -f 6821//26298 6972//26298 6929//26298 -f 6782//26299 6871//26300 6928//26301 -f 3390//26302 3897//26303 3750//26304 -f 6973//26305 6974//26306 6705//26307 -f 1893//26308 2818//26309 1620//26310 -f 4178//26311 1552//26311 1553//26311 -f 4430//26312 2554//26313 277//26314 -f 3664//26315 4390//26316 348//26317 -f 336//26318 423//26319 243//26320 -f 4128//26321 3399//26321 3341//26321 -f 184//26322 3981//26323 147//26324 -f 4479//26325 5731//26325 109//26325 -f 4170//26326 118//26327 3373//26328 -f 5375//26329 76//26330 6913//26331 -f 1580//26332 2718//26333 2447//26334 -f 2838//26335 1742//26335 3672//26335 -f 4547//26336 4951//26337 4161//26338 -f 4168//26339 3330//26340 3329//26341 -f 1015//26342 1016//26343 5010//26344 -f 4442//26345 3633//26346 2652//26347 -f 6436//26348 6695//26349 6355//26350 -f 3701//26351 7336//26351 4027//26351 -f 6977//26352 6745//26353 6527//26354 -f 28//26355 2375//26356 892//26357 -f 2945//26358 1951//26359 1932//26360 -f 7020//26361 6438//26362 6660//26361 -f 5213//26363 1645//26364 1506//26365 -f 2712//26366 2955//26367 4229//26368 -f 142//26369 2902//26369 1426//26369 -f 1451//26370 1947//26370 2429//26371 -f 6829//26372 6879//26372 6661//26372 -f 3870//26373 1929//26374 2507//26375 -f 925//26376 2887//26377 3514//26378 -f 6788//26379 6580//26380 6935//26381 -f 1030//26382 1161//26383 233//26384 -f 3100//26385 2980//26386 3801//26387 -f 2914//26388 2358//26388 132//26388 -f 6935//26389 6936//26390 6788//26391 -f 752//26392 4069//26392 1794//26392 -f 4398//26393 2128//26394 3601//26393 -f 1318//26395 1837//26396 664//26397 -f 4196//26398 3068//26399 418//26398 -f 4128//26400 4891//26401 4090//26402 -f 3835//26403 3834//26404 2025//26405 -f 775//26406 7378//26407 2971//26407 -f 4592//26408 3684//26409 883//26410 -f 944//26411 2669//26411 2277//26411 -f 6830//26412 6880//26413 6978//26414 -f 1963//26415 2247//26416 3368//26416 -f 2596//26417 2597//26418 4367//26419 -f 2767//26420 474//26421 4657//26422 -f 5528//26423 2328//26424 1395//26425 -f 4724//26426 2876//26427 4545//26428 -f 5324//26429 1042//26430 5010//26429 -f 1564//26431 3546//26432 889//26433 -f 807//26434 4316//26435 1973//26436 -f 2795//26437 3060//26437 3190//26437 -f 83//26438 2748//26439 3115//26440 -f 2651//26441 3540//26442 289//26441 -f 4499//26443 2758//26444 1630//26445 -f 664//26446 893//26447 633//26448 -f 925//26449 2885//26450 2574//26449 -f 3823//26451 3872//26451 2720//26451 -f 3742//26452 689//26453 1855//26454 -f 6276//26455 6832//26455 6713//26455 -f 1786//26456 3941//26457 2193//26457 -f 4222//26458 41//26458 4219//26458 -f 2132//26459 4218//26460 3349//26461 -f 6942//26462 6667//26463 6833//26464 -f 3960//26465 2394//26465 405//26465 -f 6882//26466 6537//26466 6622//26466 -f 6502//26467 6445//26468 6943//26469 -f 1641//26470 1347//26471 4059//26472 -f 6502//26473 6943//26473 6981//26473 -f 5072//26474 2687//26474 110//26475 -f 1350//26476 5660//26477 21//26478 -f 5169//26479 4417//26480 1052//26481 -f 6837//26482 7089//26483 6471//26484 -f 3213//26485 3656//26486 1983//26486 -f 4189//26487 892//26488 3815//26489 -f 6540//26490 6407//26491 6945//26490 -f 6381//26492 884//26493 2025//26494 -f 619//26495 2016//26496 4705//26495 -f 3952//26497 618//26498 4127//26498 -f 677//26499 44//26500 2198//26501 -f 5133//26502 1492//26503 4580//26503 -f 1793//26504 5458//26505 1550//26506 -f 302//26507 400//26507 4254//26507 -f 4885//26508 2712//26509 3653//26508 -f 6754//26510 6504//26511 6280//26512 -f 4924//26513 130//26514 4040//26515 -f 4468//26516 4110//26517 4251//26518 -f 3998//26519 2262//26520 2510//26520 -f 3690//26521 3863//26522 907//26521 -f 1302//26523 4559//26524 1089//26525 -f 7251//26526 6409//26527 6590//26527 -f 6345//26528 6624//26529 6754//26530 -f 6885//26531 6343//26531 6983//26532 -f 6885//26533 6983//26534 6947//26535 -f 4622//26536 3957//26537 247//26538 -f 3//26539 55//26539 515//26539 -f 2063//26540 2128//26541 2064//26542 -f 6985//26543 6886//26544 6887//26545 -f 4098//26546 2894//26547 4694//26548 -f 935//26549 2537//26550 4225//26551 -f 6250//26552 6839//26552 6282//26552 -f 4099//26553 4104//26554 1350//26555 -f 1537//26556 1503//26556 1095//26557 -f 6888//26558 6889//26558 6895//26559 -f 6986//26560 6251//26561 6505//26560 -f 6756//26562 6474//26562 6755//26563 -f 6948//26564 6677//26564 6949//26564 -f 1354//26565 494//26566 2221//26567 -f 4559//26568 4661//26569 4501//26569 -f 4829//26570 2035//26571 5396//26572 -f 4431//26573 2787//26573 1935//26574 -f 1664//26575 1025//26575 5643//26576 -f 2650//26577 3451//26577 2080//26577 -f 2354//26578 2155//26578 5062//26578 -f 6988//26579 6596//26579 6897//26580 -f 1215//26581 1762//26582 2144//26582 -f 270//26583 3818//26584 1046//26585 -f 4923//26586 3269//26587 1513//26587 -f 2926//26588 3580//26589 1986//26590 -f 4560//26591 3611//26591 237//26591 -f 722//26592 3993//26593 3354//26594 -f 2862//26595 1649//26596 2129//26597 -f 2723//26598 2268//26599 1919//26600 -f 1782//26601 919//26601 2273//26601 -f 3040//26602 1475//26603 1009//26603 -f 3959//26604 1195//26605 189//26606 -f 1724//26607 4251//26608 5678//26609 -f 4639//26610 4640//26611 3037//26612 -f 5012//26613 605//26614 4145//26613 -f 6796//26615 6411//26616 7130//26617 -f 7172//26618 6759//26619 6628//26620 -f 1345//26621 3546//26622 2959//26623 -f 2589//26624 215//26624 5076//26625 -f 1079//26626 2195//26626 407//26626 -f 4529//26627 2530//26628 2606//26627 -f 4577//26629 2349//26630 290//26631 -f 1433//26632 909//26633 857//26634 -f 6954//26635 6683//26636 6901//26637 -f 5277//26638 1923//26638 1126//26639 -f 3760//26640 144//26641 637//26640 -f 1771//26642 695//26643 2594//26644 -f 6902//26645 6684//26646 6955//26647 -f 3216//26648 3196//26649 4869//26650 -f 4600//26651 1413//26652 712//26651 -f 3011//26653 1347//26654 2730//26655 -f 980//26656 996//26657 4325//26658 -f 4178//26659 1508//26659 1552//26660 -f 6956//26661 6903//26662 6719//26663 -f 1745//26664 2145//26665 1460//26666 -f 6384//26667 6957//26668 6760//26669 -f 3898//26670 4667//26671 5119//26671 -f 6601//26672 6991//26673 6721//26674 -f 1536//26675 4457//26676 3591//26677 -f 4750//26678 2024//26679 358//26679 -f 6956//26680 6762//26681 6992//26682 -f 2765//26683 1656//26683 3348//26683 -f 5655//26684 544//26685 1660//26686 -f 6631//26687 6851//26688 6853//26689 -f 6992//26690 6762//26691 6801//26691 -f 6802//26692 6852//26693 6993//26694 -f 2767//26695 2768//26696 3519//26697 -f 6961//26698 6992//26699 6801//26700 -f 1532//26701 2181//26702 1298//26703 -f 2859//26704 1215//26705 2144//26706 -f 3484//26707 3541//26708 2944//26709 -f 3693//26710 1591//26711 1590//26712 -f 6996//26713 6960//26714 6855//26715 -f 4923//26716 2513//26717 5027//26718 -f 3763//26719 3629//26720 3436//26719 -f 3300//26721 3727//26722 1453//26723 -f 6764//26724 6804//26725 6766//26726 -f 3265//26727 875//26727 1988//26727 -f 6961//26728 6801//26729 6765//26730 -f 6803//26731 6634//26731 6905//26731 -f 768//26732 4136//26733 769//26734 -f 3428//26735 1818//26735 308//26736 -f 354//26737 3405//26737 4500//26737 -f 901//26738 2076//26739 3184//26740 -f 2047//26741 74//26742 2627//26743 -f 6512//26744 6857//26745 6551//26746 -f 602//26747 3013//26748 4465//26749 -f 6905//26750 6690//26751 6635//26752 -f 6635//26753 6804//26754 6998//26755 -f 57//26756 355//26756 1471//26756 -f 6905//26757 6635//26758 6998//26759 -f 6765//26760 6725//26761 6961//26760 -f 7052//26762 6858//26762 6552//26763 -f 3157//26764 3370//26765 4960//26766 -f 6514//26767 6728//26768 6999//26769 -f 873//26770 1675//26770 1633//26770 -f 7000//26771 7001//26772 6858//26773 -f 2981//26774 1374//26775 1699//26776 -f 3763//26777 3436//26778 5640//26779 -f 1691//26780 575//26780 1814//26780 -f 1473//26781 2501//26782 1355//26783 -f 3608//26784 1072//26784 5057//26784 -f 4599//26785 4058//26786 1542//26787 -f 6391//26788 6637//26789 7004//26790 -f 3157//26791 4960//26792 1749//26793 -f 2601//26794 44//26794 4208//26794 -f 6519//26795 6391//26796 7004//26797 -f 6964//26798 6860//26799 6768//26800 -f 6694//26801 6636//26802 6908//26802 -f 3861//26803 1438//26804 3706//26805 -f 7004//26806 6913//26807 6519//26808 -f 2922//26809 2143//26809 469//26809 -f 1959//26810 2127//26811 3710//26811 -f 6965//26812 6809//26812 6916//26812 -f 2804//26813 3785//26814 4471//26815 -f 7005//26816 6911//26817 6910//26818 -f 7006//26819 6862//26820 6769//26821 -f 1330//26822 3600//26823 5147//26823 -f 5057//26824 1672//26825 521//26826 -f 4955//26827 3205//26828 2156//26829 -f 2103//26830 56//26831 5094//26832 -f 1125//26833 1873//26834 404//26835 -f 6966//26836 6916//26837 6861//26836 -f 986//26838 4006//26839 5421//26840 -f 3055//26841 1424//26842 4340//26843 -f 4334//26844 2656//26844 2717//26844 -f 2922//26845 4869//26846 2921//26847 -f 6811//26848 6914//26849 6919//26850 -f 3829//26851 3828//26852 4886//26851 -f 4126//26853 1332//26853 1905//26853 -f 2874//26854 2714//26854 2371//26854 -f 3014//26855 3918//26856 2436//26857 -f 6967//26858 6861//26859 6921//26860 -f 6967//26861 7066//26861 6861//26862 -f 1139//26863 4297//26863 4517//26863 -f 6567//26864 6487//26865 6968//26866 -f 6567//26867 7007//26868 6922//26869 -f 6812//26870 7008//26871 6771//26872 -f 6969//26873 7009//26874 6812//26875 -f 916//26876 917//26877 236//26878 -f 7010//26879 6970//26880 6733//26881 -f 6923//26882 6733//26883 6970//26884 -f 6734//26885 6733//26886 6923//26887 -f 2924//26888 2967//26888 2054//26888 -f 1565//26889 1253//26889 527//26889 -f 1661//26890 2241//26890 871//26890 -f 7067//26891 6815//26892 6816//26893 -f 2511//26894 4716//26895 1827//26896 -f 2639//26897 2432//26898 3706//26899 -f 2546//26900 1780//26901 2350//26902 -f 78//26903 1886//26903 480//26903 -f 4958//26904 3048//26905 3349//26906 -f 5738//26907 1283//26908 729//26909 -f 2617//26910 2676//26911 3991//26912 -f 2892//26913 117//26914 3621//26915 -f 988//26916 3076//26917 4084//26918 -f 6645//26919 7014//26919 6867//26920 -f 6646//26921 6971//26922 6739//26923 -f 6924//26924 7015//26925 6647//26926 -f 4404//26927 7126//26928 4012//26929 -f 1716//26930 1656//26930 2765//26931 -f 6818//26932 6819//26933 7109//26934 -f 6925//26935 6971//26936 6523//26937 -f 1468//26938 2023//26939 1814//26940 -f 428//26941 4391//26942 1673//26942 -f 6778//26943 6652//26944 7152//26945 -f 7152//26946 6653//26947 6926//26948 -f 593//26949 1587//26949 5322//26949 -f 6927//26950 6869//26951 6525//26952 -f 2964//26953 2085//26954 1129//26955 -f 1181//26956 662//26956 2251//26956 -f 6655//26957 6927//26957 6612//26958 -f 6576//26959 6655//26960 6612//26961 -f 1189//26962 4083//26962 2751//26962 -f 695//26963 5512//26964 1396//26965 -f 3312//26966 3169//26967 4599//26968 -f 640//26969 982//26970 2840//26971 -f 3715//26972 5113//26973 5070//26974 -f 464//26975 2861//26976 3739//26977 -f 6824//26978 6974//26979 6655//26980 -f 4037//26981 2604//26981 4520//26981 -f 3537//26982 3313//26983 1185//26984 -f 7079//26985 6871//26986 6874//26987 -f 408//26988 1235//26989 6061//26988 -f 6975//26990 6931//26991 6929//26992 -f 4250//26993 1708//26994 4528//26993 -f 6975//26995 6976//26996 6931//26997 -f 330//26998 2238//26999 329//27000 -f 2948//27001 846//27002 795//27003 -f 6976//27004 6827//27005 6931//27006 -f 6976//27007 7017//27008 6827//27009 -f 6876//27010 6877//27011 7018//27012 -f 6827//27013 7018//27013 6877//27014 -f 7081//27015 6746//27015 6784//27016 -f 3871//27017 4625//27018 5274//27019 -f 2217//27020 180//27021 3634//27022 -f 2704//27023 705//27024 518//27025 -f 6659//27026 6933//27026 6707//27026 -f 6747//27027 6785//27028 7019//27027 -f 3411//27029 560//27029 3524//27029 -f 6614//27030 6438//27031 6932//27031 -f 6932//27032 6438//27033 7020//27032 -f 5740//27034 876//27035 4898//27035 -f 3611//27036 1420//27036 3777//27036 -f 6977//27037 6527//27038 6615//27039 -f 533//27040 3724//27041 4586//27040 -f 5056//27042 4402//27042 1173//27042 -f 2742//27043 4025//27044 4977//27045 -f 2423//27046 4598//27047 389//27048 -f 2346//27049 4406//27049 880//27050 -f 166//27051 5011//27052 2950//27053 -f 7021//27054 6934//27055 6532//27056 -f 6787//27057 5968//27058 6529//27059 -f 2640//27060 5200//27061 1452//27062 -f 1327//27063 3735//27064 1570//27064 -f 7021//27065 6532//27065 6531//27065 -f 6935//27066 7023//27067 6936//27068 -f 846//27069 670//27069 2580//27070 -f 3714//27071 4889//27072 327//27073 -f 4150//27074 4500//27075 3459//27076 -f 7024//27077 6529//27078 6530//27078 -f 4885//27079 92//27079 2712//27079 -f 360//27080 904//27081 4551//27080 -f 6978//27082 6880//27083 7023//27084 -f 6880//27085 6936//27086 7023//27087 -f 1669//27088 569//27089 1397//27090 -f 3587//27091 2091//27092 5686//27093 -f 969//27094 2255//27095 1456//27096 -f 4349//27097 5596//27098 665//27099 -f 6978//27100 6939//27100 6830//27100 -f 3789//27101 255//27102 3127//27103 -f 4361//27104 1525//27105 4169//27106 -f 7247//27107 6750//27108 6749//27109 -f 6940//27110 6750//27111 7247//27112 -f 1330//27113 2707//27114 2772//27115 -f 682//27116 4450//27117 2498//27118 -f 4158//27119 3055//27120 4340//27120 -f 429//27121 3387//27122 338//27123 -f 6618//27124 6751//27125 6980//27126 -f 4874//27127 996//27128 4806//27129 -f 6618//27130 6980//27131 6881//27131 -f 6881//27132 6942//27132 6833//27133 -f 7163//27134 6405//27135 6712//27136 -f 1410//27137 1497//27138 3986//27139 -f 1625//27140 3963//27141 1626//27140 -f 3555//27142 4356//27143 1319//27144 -f 5064//27145 877//27146 22//27147 -f 4261//27148 1871//27149 3464//27148 -f 2032//27150 1190//27151 1189//27152 -f 2344//27153 4912//27154 927//27155 -f 3896//27156 1023//27156 2055//27156 -f 4612//27157 2886//27158 3602//27159 -f 4494//27160 282//27160 5707//27160 -f 6502//27161 6981//27162 6944//27162 -f 3901//27163 4127//27164 1061//27165 -f 6752//27166 6538//27167 7027//27167 -f 6407//27168 6790//27169 6945//27170 -f 5782//27171 4293//27172 4452//27172 -f 5484//27173 4134//27174 2251//27175 -f 1915//27176 942//27176 2923//27176 -f 7029//27177 6715//27178 6541//27179 -f 6714//27180 6503//27181 6983//27182 -f 7251//27183 6716//27184 6409//27185 -f 441//27186 2425//27186 2155//27187 -f 2481//27188 1741//27189 5086//27188 -f 7031//27190 6754//27191 6624//27190 -f 6376//27192 6673//27193 6839//27194 -f 3656//27195 3652//27195 1353//27196 -f 6883//27197 6886//27197 7032//27198 -f 7032//27199 6886//27199 6985//27199 -f 1409//27200 5502//27201 2506//27202 -f 7033//27203 7034//27204 6590//27205 -f 3359//27206 2191//27206 2332//27206 -f 6889//27207 6947//27207 6984//27207 -f 4311//27208 2345//27208 2550//27208 -f 7370//27209 1113//27209 3455//27209 -f 3710//27210 1102//27211 4568//27212 -f 6948//27213 7090//27213 6893//27214 -f 6624//27215 6410//27216 7035//27217 -f 2782//27218 4648//27219 3350//27220 -f 6410//27221 6591//27222 7035//27223 -f 6895//27224 6889//27225 7036//27226 -f 5203//27227 94//27228 1952//27229 -f 119//27230 1554//27231 507//27232 -f 6505//27233 6506//27234 7037//27234 -f 4188//27235 3315//27236 2254//27237 -f 6988//27238 6949//27239 6677//27240 -f 1474//27241 1559//27241 5279//27241 -f 7037//27242 6506//27243 6625//27243 -f 6988//27244 6677//27245 6596//27246 -f 2405//27247 624//27248 224//27249 -f 6592//27250 6756//27251 7038//27251 -f 4633//27252 4257//27253 820//27254 -f 5181//27255 3921//27255 1454//27255 -f 7039//27256 6625//27257 6598//27257 -f 4240//27258 5984//27258 4036//27258 -f 6844//27259 7040//27259 7041//27259 -f 6626//27260 6846//27261 6794//27262 -f 3732//27263 2684//27263 4267//27263 -f 2874//27264 448//27264 2854//27264 -f 5030//27265 3629//27266 3763//27267 -f 7124//27268 6546//27269 6681//27270 -f 6061//27271 3460//27271 3577//27271 -f 1855//27272 689//27273 3589//27274 -f 6952//27275 6595//27276 6845//27277 -f 1951//27278 2824//27279 1499//27280 -f 6797//27281 6952//27282 7042//27281 -f 2982//27283 2484//27283 3499//27284 -f 2836//27285 4339//27285 1128//27285 -f 7170//27286 6849//27287 7093//27288 -f 2812//27289 2691//27290 3624//27291 -f 5327//27292 5345//27293 5099//27294 -f 6600//27295 6954//27296 6848//27297 -f 7093//27298 6849//27299 6414//27299 -f 4026//27300 4//27301 4141//27302 -f 6134//27303 6797//27304 6798//27305 -f 1498//27306 3909//27307 4444//27306 -f 4252//27308 4513//27309 3257//27310 -f 5664//27311 1950//27312 5324//27313 -f 6901//27314 6683//27315 6420//27316 -f 6630//27317 7045//27317 6899//27317 -f 4944//27318 4945//27318 186//27318 -f 6630//27319 6760//27319 7045//27320 -f 1031//27321 3277//27321 231//27321 -f 4602//27322 2106//27322 786//27323 -f 4389//27324 3853//27324 4976//27324 -f 6990//27325 6903//27325 6956//27325 -f 7046//27326 6601//27326 6799//27326 -f 6760//27327 6957//27327 7045//27327 -f 1391//27328 3158//27328 4089//27329 -f 6991//27330 6601//27331 7046//27330 -f 3991//27332 2676//27333 1077//27334 -f 762//27335 4566//27336 1864//27335 -f 514//27337 5640//27337 3167//27337 -f 1627//27338 190//27339 6055//27339 -f 466//27340 2150//27341 283//27342 -f 2880//27343 4259//27344 3258//27345 -f 3779//27346 1933//27347 3905//27348 -f 5403//27349 4094//27350 5654//27351 -f 2353//27352 1890//27352 1320//27353 -f 6993//27354 6960//27355 6995//27356 -f 6996//27357 6995//27358 6960//27359 -f 6855//27360 6763//27361 6854//27362 -f 6996//27363 6855//27363 6856//27364 -f 6802//27365 7050//27366 6857//27367 -f 4943//27368 3325//27369 5369//27370 -f 6764//27371 6853//27372 7051//27373 -f 2947//27374 190//27374 4683//27375 -f 4696//27376 3290//27377 4961//27378 -f 7341//27379 1689//27380 2673//27381 -f 6904//27382 6958//27382 7052//27382 -f 3313//27383 2938//27384 2525//27385 -f 2591//27386 2169//27387 2747//27388 -f 1852//27389 3940//27390 4166//27389 -f 71//27391 139//27392 1443//27393 -f 3289//27394 4176//27395 2957//27396 -f 2134//27397 469//27398 4017//27399 -f 6724//27400 6805//27401 7140//27402 -f 6857//27403 7055//27403 6551//27403 -f 2532//27404 2755//27405 496//27406 -f 4314//27407 2595//27408 4476//27409 -f 2919//27410 4274//27411 4375//27412 -f 6858//27413 7052//27414 7054//27415 -f 562//27416 4059//27417 2509//27417 -f 1529//27418 4470//27419 2764//27420 -f 553//27421 1143//27422 2443//27423 -f 2225//27424 3072//27425 3035//27426 -f 4144//27427 4954//27428 4875//27429 -f 6693//27430 7056//27430 6725//27431 -f 1950//27432 1042//27433 5324//27434 -f 2266//27435 4862//27435 4236//27435 -f 2308//27436 4361//27437 1826//27436 -f 6454//27438 7055//27439 6907//27440 -f 6858//27441 7057//27442 7000//27443 -f 1368//27444 384//27444 2890//27444 -f 3555//27445 4982//27445 4727//27445 -f 6964//27446 6859//27447 6727//27448 -f 7001//27449 6906//27450 6858//27451 -f 6807//27452 6906//27452 6909//27452 -f 1896//27453 1897//27454 443//27455 -f 2012//27456 5727//27457 1776//27458 -f 6963//27459 6728//27460 7058//27461 -f 6730//27462 6809//27463 7002//27464 -f 6909//27465 7003//27466 6910//27467 -f 6809//27468 7060//27469 7002//27468 -f 6809//27470 6965//27471 7060//27472 -f 2701//27473 2700//27474 4777//27475 -f 3549//27476 2666//27477 3297//27477 -f 7003//27478 7059//27479 6910//27480 -f 4822//27481 1751//27482 876//27483 -f 6910//27484 7059//27485 7005//27486 -f 2713//27487 1811//27488 293//27489 -f 6918//27490 6769//27490 6562//27490 -f 5165//27491 29//27491 4814//27491 -f 6519//27492 6913//27493 6563//27492 -f 4319//27494 4432//27495 2746//27496 -f 7062//27497 6768//27498 6698//27499 -f 6698//27500 6813//27501 7062//27502 -f 7389//27503 4771//27504 5344//27504 -f 5019//27505 4895//27506 96//27507 -f 909//27508 1819//27509 204//27510 -f 7065//27511 6915//27511 6919//27512 -f 1440//27513 1030//27514 4658//27515 -f 193//27516 1281//27517 3013//27518 -f 5216//27519 1050//27520 191//27521 -f 916//27522 236//27522 5207//27522 -f 7008//27523 7107//27524 6771//27525 -f 6863//27526 6921//27527 6773//27528 -f 7069//27529 6921//27530 6863//27531 -f 2168//27532 398//27533 3777//27534 -f 4481//27535 3280//27536 2979//27537 -f 6814//27538 6864//27539 7012//27540 -f 6735//27541 6922//27541 7146//27542 -f 1371//27543 4613//27543 3819//27543 -f 6920//27544 7071//27545 6969//27546 -f 7009//27547 7008//27547 6812//27547 -f 7070//27548 6970//27549 7010//27550 -f 1801//27551 517//27552 266//27553 -f 2149//27554 1813//27554 5219//27554 -f 1391//27555 3529//27556 823//27556 -f 6771//27557 7072//27558 6865//27557 -f 2042//27559 1085//27559 3254//27560 -f 6970//27561 7011//27561 6923//27562 -f 6865//27563 7072//27564 7010//27565 -f 7012//27566 6923//27567 7011//27568 -f 6923//27569 7012//27570 6864//27571 -f 7073//27572 6776//27572 6700//27572 -f 4055//27573 1062//27574 3752//27575 -f 6777//27576 6817//27577 6816//27578 -f 7014//27579 6645//27579 6644//27580 -f 3640//27581 1806//27581 5418//27581 -f 3862//27582 4312//27582 4807//27583 -f 5087//27584 1948//27585 3926//27586 -f 7074//27587 6819//27588 7015//27589 -f 5//27590 3056//27591 2582//27592 -f 6925//27593 7075//27594 6971//27593 -f 1924//27595 3083//27596 783//27595 -f 1559//27597 3062//27598 1326//27599 -f 6820//27600 6818//27600 7109//27600 -f 3371//27601 1987//27602 5630//27603 -f 6611//27604 6820//27605 7076//27606 -f 7153//27607 6492//27608 6574//27608 -f 7016//27609 6823//27610 6870//27611 -f 3494//27612 1005//27613 2603//27614 -f 6928//27615 7078//27616 6822//27616 -f 2793//27617 5400//27618 3381//27619 -f 999//27620 2873//27621 2096//27622 -f 5649//27623 238//27624 3339//27625 -f 6871//27626 6872//27627 6874//27628 -f 825//27629 3612//27630 4856//27629 -f 7079//27631 6874//27631 6875//27631 -f 1195//27632 4846//27633 2081//27632 -f 3138//27634 2557//27635 1555//27636 -f 7080//27637 6930//27638 6876//27639 -f 2674//27640 285//27640 3493//27640 -f 4902//27641 2143//27642 867//27643 -f 7018//27644 7080//27644 6876//27645 -f 7017//27646 7018//27647 6827//27647 -f 6442//20984 4269//20984 2527//20984 -f 7081//27648 6878//27649 6746//27650 -f 3858//27651 3471//27651 3007//27651 -f 4444//27652 476//27653 811//27654 -f 3694//27655 1674//27656 491//27655 -f 2591//27657 3776//27658 2169//27659 -f 6656//27660 6436//27661 6355//27662 -f 4175//27663 1857//27664 4698//27663 -f 34//27665 617//27665 2798//27666 -f 4201//27667 2096//27668 549//27668 -f 6528//27669 6658//27669 7082//27669 -f 1099//27670 425//27670 4117//27670 -f 1726//27671 1387//27672 2116//27673 -f 4354//27674 2767//27675 3519//27674 -f 7082//27676 6664//27677 6528//27678 -f 88//27679 2306//27680 1693//27681 -f 4651//27682 417//27683 2280//27684 -f 2829//27685 2057//27686 1472//27687 -f 2459//27688 3852//27689 656//27690 -f 3242//27691 4341//27691 4199//27691 -f 1898//27692 2098//27693 2271//27692 -f 7023//27694 6935//27695 7084//27696 -f 1808//27697 4878//27697 5328//27697 -f 6580//27698 7085//27699 6935//27700 -f 7086//27701 7085//27702 6580//27703 -f 6580//27704 6787//27705 7086//27706 -f 654//27707 4342//27707 3585//27708 -f 1705//27709 3010//27710 4688//27710 -f 3830//27711 1097//27711 2984//27711 -f 2252//27712 4178//27713 5202//27714 -f 7306//27715 7264//27715 1860//27715 -f 4041//27716 2779//27717 1538//27718 -f 2326//27719 2544//27720 683//27721 -f 1575//27722 700//27723 4852//27723 -f 4239//27724 4312//27724 4592//27724 -f 2888//27725 2881//27726 1380//27726 -f 3561//27727 2378//27728 2986//27729 -f 2496//27730 4245//27731 1294//27731 -f 2499//27732 1266//27733 1267//27734 -f 1360//27735 4183//27736 1104//27737 -f 2437//27738 6535//27738 6666//27738 -f 4814//27739 29//27740 1734//27741 -f 6710//27742 6940//27742 6751//27742 -f 3944//27743 3899//27744 3704//27745 -f 281//27746 1425//27747 399//27748 -f 3310//27749 794//27750 3851//27751 -f 2166//27752 403//27752 372//27752 -f 7026//27753 6712//27754 6443//27755 -f 54//27756 1801//27757 4152//27758 -f 955//27759 857//27760 222//27760 -f 6667//27761 6942//27762 7088//27763 -f 2829//27764 1028//27765 1029//27766 -f 7026//27767 6537//27768 6882//27768 -f 419//27769 2226//27770 1563//27769 -f 1414//27771 111//27772 1115//27773 -f 4139//27774 3879//27775 2673//27776 -f 1066//27777 1065//27778 1310//27779 -f 4069//27780 1303//27781 1451//27782 -f 3909//27783 3797//27783 4444//27783 -f 6503//27784 6502//27785 6944//27786 -f 6538//27787 6587//27787 7027//27788 -f 4481//27789 2979//27790 1723//27790 -f 1503//27791 4023//27792 1095//27793 -f 576//27794 2614//27795 5040//27796 -f 1684//27797 2434//27798 2668//27799 -f 394//27800 866//27801 505//27800 -f 4718//27802 1938//27803 1582//27804 -f 6790//27805 6883//27806 7030//27807 -f 3936//27808 2046//27809 2238//27808 -f 2882//27810 3618//27811 1974//27812 -f 3174//27813 2770//27814 2178//27815 -f 1608//27816 1481//27817 1329//27817 -f 126//27818 3339//27819 1437//27820 -f 6472//27821 6588//27821 6884//27821 -f 4183//27822 1448//27822 3962//27823 -f 3278//27824 2012//27824 4121//27824 -f 7251//27825 6590//27826 7034//27827 -f 6473//27828 6841//27829 7033//27830 -f 427//27831 3281//27832 930//27833 -f 6985//27834 6887//27834 7090//27834 -f 4398//27835 4333//27836 2128//27837 -f 614//27838 2328//27838 3316//27839 -f 6891//27840 6282//27841 6839//27841 -f 5690//27842 1489//27843 188//27844 -f 2581//27845 1903//27846 2455//27847 -f 6251//27848 6986//27849 6841//27848 -f 54//27850 676//27850 206//27850 -f 848//27851 571//27852 1360//27853 -f 343//27854 306//27854 2103//27854 -f 6889//27855 6984//27856 7036//27855 -f 2110//27857 1712//27858 3943//27858 -f 2234//27859 4507//27860 2956//27861 -f 3146//27862 548//27863 3217//27864 -f 1137//27865 4491//27866 525//27867 -f 1013//27868 4275//27869 2474//27870 -f 486//27871 1351//27872 2170//27873 -f 6987//27874 6625//27874 7039//27874 -f 2026//27875 5390//27876 1788//27875 -f 918//27877 5141//27877 4317//27877 -f 6844//27878 6896//27878 7040//27878 -f 2261//27879 2543//27879 1936//27879 -f 2807//27880 2746//27881 5300//27882 -f 6845//27883 6592//27884 7038//27885 -f 5376//27886 3844//27886 4552//27886 -f 4003//27887 129//27888 3159//27889 -f 3271//27890 657//27891 21//27892 -f 811//27893 4567//27894 5748//27895 -f 6847//27896 6844//27897 6898//27898 -f 6950//27899 6598//27899 6447//27900 -f 3133//27901 1153//27902 3704//27903 -f 7169//27904 6447//27905 6951//27904 -f 6951//27906 6953//27907 7092//27908 -f 288//27909 636//27909 978//27910 -f 6545//27911 7043//27912 6628//27911 -f 4189//27913 28//27914 892//27915 -f 6796//27916 7130//27917 7168//27918 -f 6411//27919 6630//27920 7130//27921 -f 2870//27922 4224//27923 3209//27924 -f 49//27925 5323//27925 3511//27925 -f 1054//27926 4188//27927 2254//27928 -f 336//27929 565//27930 423//27931 -f 6900//27932 6989//27933 6901//27934 -f 7131//27935 6900//27936 6902//27937 -f 2535//27938 2861//27939 4780//27940 -f 6899//27941 7130//27942 6630//27943 -f 6902//27944 6955//27944 7094//27945 -f 2486//27946 2670//27947 3778//27948 -f 474//27949 4373//27950 4657//27951 -f 5066//27952 3952//27953 563//27954 -f 6903//27955 7094//27956 6955//27957 -f 4019//27958 1746//27958 3992//27958 -f 2923//27959 4938//27959 1915//27959 -f 3347//27960 4314//27961 4476//27962 -f 3015//27963 357//27964 3212//27965 -f 4191//27966 3440//27966 1197//27967 -f 4060//27968 3500//27968 1095//27969 -f 4158//27970 5048//27971 4009//27972 -f 1784//27973 2954//27973 3179//27973 -f 3825//27974 3824//27974 1646//27975 -f 7183//27976 6958//27976 6721//27976 -f 679//27977 1400//27978 3516//27979 -f 4533//27980 2309//27980 50//27981 -f 6957//27982 6685//27982 7048//27982 -f 626//27983 4608//27983 3690//27983 -f 6685//27984 6959//27984 7048//27984 -f 6802//27985 7095//27986 6994//27987 -f 7095//27988 6802//27989 6993//27988 -f 6851//27990 7184//27991 6853//27992 -f 4509//27993 486//27993 1426//27994 -f 2836//27995 1128//27996 1130//27997 -f 1106//27998 2402//27999 1799//28000 -f 4577//28001 3193//28002 3180//28003 -f 3690//28004 4204//28005 3863//28006 -f 4596//28007 4643//28007 1261//28008 -f 522//28009 772//28009 2100//28010 -f 1336//28011 3878//28011 1337//28011 -f 2034//28012 83//28013 2977//28014 -f 6959//28015 6479//28016 7228//28017 -f 7137//28018 6996//28019 6856//28020 -f 2832//28021 3258//28022 287//28023 -f 1914//28024 757//28025 3507//28026 -f 6764//28027 6998//28027 6804//28027 -f 6803//28028 6905//28029 6997//28029 -f 7052//28030 6958//28031 7138//28031 -f 1458//28032 4333//28032 3228//28032 -f 1930//28033 5567//28034 4498//28035 -f 6724//28036 7140//28037 7053//28038 -f 3381//28039 5400//28040 4825//28041 -f 780//28042 2192//28043 1258//28044 -f 4662//28045 3263//28045 1598//28046 -f 5//28047 2582//28048 803//28049 -f 6858//28050 7054//28051 7057//28052 -f 4966//28053 1480//28053 4870//28054 -f 3217//28055 4976//28056 2001//28056 -f 2225//28057 1565//28058 5562//28059 -f 6692//28060 6551//28061 7055//28061 -f 7054//28062 7097//28063 7057//28064 -f 1765//28065 3728//28065 470//28066 -f 3827//28067 1700//28068 382//28067 -f 7098//28069 6728//28070 6963//28071 -f 5722//28072 6808//28073 6907//28074 -f 3718//28075 2405//28075 224//28076 -f 2860//28077 3738//28078 2467//28079 -f 1124//28080 2790//28081 1246//28082 -f 5044//28083 77//28084 4356//28085 -f 7001//28086 7099//28087 6906//28088 -f 6906//28089 7100//28089 6909//28089 -f 6906//28090 7099//28091 7100//28092 -f 6728//28093 6730//28094 7058//28094 -f 2262//28095 2699//28096 2358//28097 -f 1467//28098 2780//28099 2655//28100 -f 7058//28101 6730//28102 7002//28103 -f 99//28104 2233//28104 2315//28104 -f 4229//28105 2955//28106 2430//28107 -f 6909//28108 7100//28109 7003//28110 -f 5403//28111 3381//28112 1771//28113 -f 7062//28114 6964//28115 6768//28116 -f 3193//28117 4748//28118 3180//28119 -f 4157//28120 2488//28121 4629//28122 -f 6911//28123 7101//28124 6908//28125 -f 7190//28126 7101//28127 6911//28128 -f 4424//28129 1615//28130 433//28131 -f 2737//28132 428//28133 3247//28134 -f 7061//28135 6862//28136 7006//28137 -f 6911//28138 7005//28139 7190//28140 -f 6916//28141 7063//28141 6965//28141 -f 364//28142 3531//28142 1735//28143 -f 4723//28144 4724//28145 2226//28144 -f 6918//28146 6562//28147 6917//28148 -f 2503//28149 2715//28150 4465//28151 -f 749//28152 3372//28153 316//28152 -f 7062//28154 6813//28154 7103//28155 -f 6916//28156 6966//28157 7063//28158 -f 3855//28159 2162//28160 1698//28161 -f 6968//28162 6608//28162 7064//28163 -f 7065//28164 6919//28165 6914//28166 -f 6915//28167 7065//28168 7102//28169 -f 6920//28170 6915//28171 7102//28172 -f 6861//28173 7195//28174 6966//28173 -f 1178//28175 842//28175 2131//28175 -f 6861//28176 7066//28177 7195//28178 -f 5072//28179 4746//28180 4336//28181 -f 4259//28182 958//28183 2579//28184 -f 7067//28185 6813//28185 6815//28185 -f 7069//28186 6967//28187 6921//28187 -f 7068//28188 6774//28189 6814//28190 -f 1250//28191 65//28192 5115//28193 -f 7107//28194 7072//28195 6771//28196 -f 7010//28197 7108//28197 7070//28197 -f 1988//28198 2245//28199 3265//28199 -f 637//28200 144//28201 5545//28201 -f 6700//28202 6735//28203 7073//28204 -f 1239//28205 2605//28206 477//28205 -f 5395//28207 3873//28207 1708//28208 -f 1660//28209 261//28210 2976//28210 -f 3022//28211 2799//28212 1819//28213 -f 2297//28214 2504//28215 751//28216 -f 4417//28217 3143//28218 1052//28219 -f 7148//28220 6817//28220 6866//28220 -f 4032//28221 1791//28222 3163//28223 -f 4053//28224 5492//28225 3651//28226 -f 5169//28227 4462//28228 4417//28229 -f 338//28230 4813//28231 429//28232 -f 2776//28233 4276//28234 874//28234 -f 6819//28235 7074//28236 7109//28237 -f 2349//28238 2901//28239 290//28240 -f 7109//28241 7076//28242 6820//28243 -f 2331//28244 522//28245 1821//28246 -f 6611//28247 7076//28248 6741//28249 -f 3975//28250 2821//28251 3049//28252 -f 7152//28253 6652//28254 6653//28255 -f 6742//28256 6781//28257 6653//28258 -f 161//28259 160//28260 1289//28261 -f 2440//28262 1732//28262 2237//28262 -f 7077//28263 6492//28263 7111//28264 -f 6492//28265 7153//28265 7111//28265 -f 6868//28266 6492//28267 7077//28268 -f 6868//28269 7077//28270 6780//28271 -f 4622//28272 68//28273 174//28274 -f 2283//28275 5604//28276 610//28277 -f 5510//28278 487//28279 2916//28280 -f 6972//28281 6780//28281 7077//28282 -f 6869//28283 6927//28284 7155//28285 -f 4165//28286 4422//28287 1577//28288 -f 216//28289 1463//28290 4633//28291 -f 186//28292 4342//28293 4761//28294 -f 2008//28295 4911//28296 2338//28297 -f 6704//28298 6870//28298 6823//28298 -f 7078//28299 6870//28300 6822//28300 -f 3590//28301 2861//28302 2535//28303 -f 6871//28304 7156//28304 6928//28305 -f 3326//28306 3999//28307 3047//28308 -f 1229//28309 1675//28310 1191//28311 -f 1135//28312 1742//28313 2838//28314 -f 6875//28315 6930//28316 7079//28317 -f 4649//28318 3772//28319 1044//28320 -f 3339//28321 3490//28321 5090//28321 -f 829//28322 1207//28322 102//28323 -f 4683//28324 2422//28324 471//28324 -f 977//28325 3493//28325 3529//28326 -f 4105//28327 3814//28328 3105//28329 -f 6785//28330 7113//28330 7019//28330 -f 3733//28331 4729//28332 3280//28333 -f 6933//28334 6786//28335 6934//28335 -f 5748//28336 674//28336 2104//28336 -f 6747//28337 7019//28338 7083//28339 -f 3980//28340 4590//28341 2534//28342 -f 4263//28343 1507//28343 4195//28343 -f 1294//28344 4231//28345 2786//28346 -f 2039//28347 4866//28348 4704//28349 -f 379//28350 1406//28350 3166//28350 -f 6829//28351 7022//28352 6879//28353 -f 3261//28354 5654//28355 1655//28356 -f 6935//28357 7085//28358 7084//28359 -f 3486//28360 1788//28361 2410//28362 -f 3127//28363 3126//28363 3789//28363 -f 1366//28364 3434//28364 1341//28364 -f 6234//28365 7087//28366 6531//28367 -f 3534//6926 4114//6926 3997//6926 -f 7160//28368 6978//28369 7023//28370 -f 3085//28371 848//28371 3687//28371 -f 340//28372 1767//28373 3212//28374 -f 1508//28375 1306//28376 2478//28377 -f 4957//28378 374//28379 4128//28380 -f 6939//28381 6978//28381 7118//28381 -f 5209//28382 4469//28383 185//28384 -f 7341//28385 7340//28386 690//28387 -f 3537//28388 1738//28389 3313//28390 -f 6939//28391 6749//28392 6830//28393 -f 1418//28394 2073//28395 5626//28394 -f 1352//28396 475//28397 1416//28398 -f 2430//28399 5351//28400 172//28401 -f 1885//28402 206//28403 676//28404 -f 4618//28405 380//28406 584//28407 -f 1933//28408 3779//28409 2466//28409 -f 5427//28410 2514//28411 1862//28412 -f 2002//28413 1459//28414 352//28414 -f 18//28415 1829//28415 11//28415 -f 3097//28416 332//28417 3318//28418 -f 1891//28419 1588//28419 3423//28419 -f 7120//28420 6711//28421 6668//28422 -f 7088//28423 7121//28424 6943//28425 -f 4161//28426 350//28426 3522//28426 -f 6835//28427 7088//28428 6943//28428 -f 7121//28429 6981//28430 6943//28431 -f 390//28432 420//28433 3598//28434 -f 4996//28435 3858//28436 3007//28437 -f 2428//28438 1158//28438 728//28438 -f 936//28439 574//28439 2356//28440 -f 3761//28441 1122//28442 4811//28443 -f 2445//28444 3453//28445 1783//28446 -f 5506//28447 1363//28447 6828//28447 -f 6503//28448 6944//28448 6982//28448 -f 537//28449 536//28450 606//28451 -f 187//28452 512//28452 784//28452 -f 6342//28453 6248//28454 7028//28455 -f 201//28456 3014//28457 2436//28458 -f 5542//28459 2156//28459 3205//28459 -f 1567//28460 5480//28461 2236//28462 -f 6673//28463 6342//28464 7028//28465 -f 6983//28466 6503//28466 6982//28466 -f 1200//28467 2278//28468 4331//28469 -f 1599//28470 30//28471 1237//28472 -f 1487//28473 2440//28473 274//28473 -f 6884//28474 6715//28475 7029//28476 -f 1790//28477 2749//28478 4039//28479 -f 3700//28480 2753//28481 1907//28481 -f 7030//28482 6883//28483 7032//28484 -f 5786//28485 5157//28486 4345//28486 -f 1498//28487 2105//28488 3909//28487 -f 910//28489 3573//28490 5454//28491 -f 558//28492 5272//28493 623//28494 -f 2727//28495 3673//28496 4027//28497 -f 756//28498 1313//28499 3544//28500 -f 7090//28501 7032//28501 6985//28501 -f 3818//28502 2630//28502 1046//28502 -f 1410//28503 4551//28504 647//28505 -f 4039//28506 3254//28507 3616//28508 -f 2530//28509 3102//28510 2606//28511 -f 611//28512 3258//28513 4259//28514 -f 2187//28515 3381//28516 5403//28517 -f 3660//28518 1500//28519 2748//28520 -f 2543//28521 768//28522 1936//28523 -f 1169//28524 671//28524 3407//28524 -f 7091//28525 6986//28526 6505//28527 -f 737//28528 1865//28529 1864//28530 -f 351//28531 5505//28532 4715//28533 -f 5157//28534 3601//28535 4595//28536 -f 6895//28537 7036//28538 7040//28537 -f 6896//28539 6895//28539 7040//28539 -f 1971//28540 5738//28541 1364//28541 -f 4297//28542 629//28543 3161//28544 -f 1233//28545 2814//28546 121//28547 -f 4267//28548 4720//28548 1569//28549 -f 2219//28550 2929//28551 4526//28552 -f 5768//28553 3685//28554 807//28555 -f 7040//28556 7123//28557 7041//28558 -f 1139//28559 2103//28559 5159//28559 -f 3868//28560 4932//28560 3679//28560 -f 2322//28561 3780//28561 3657//28561 -f 1837//28562 3695//28563 1174//28564 -f 719//28565 1977//28566 5743//28567 -f 6844//28568 7041//28569 6898//28570 -f 838//28571 608//28572 4067//28571 -f 6950//28573 6447//28573 7169//28573 -f 3857//28574 4850//28574 906//28574 -f 3974//28575 4697//28576 3840//28575 -f 7128//28577 6951//28578 7092//28579 -f 7129//28580 7128//28581 7092//28582 -f 7128//28583 7127//28584 6951//28585 -f 2260//28586 2526//28586 3335//28586 -f 6953//28587 7127//28588 7128//28589 -f 6953//28590 7129//28591 7167//28592 -f 7092//28593 6953//28594 7167//28595 -f 6953//28596 7128//28597 7129//28598 -f 6953//28599 6849//28600 7127//28601 -f 3391//28602 821//28602 4832//28602 -f 2462//28603 368//28604 834//28605 -f 2461//28606 1248//28606 2593//28606 -f 383//28607 790//28608 3044//28609 -f 7044//28610 6848//28611 6954//28612 -f 5012//28613 3025//28614 1562//28615 -f 3355//28616 3575//28617 1310//28617 -f 2871//28618 4044//28618 3774//28619 -f 1006//28620 941//28621 2085//28620 -f 1557//28622 3722//28623 5020//28624 -f 2933//28625 2974//28626 2568//28627 -f 3570//28628 1217//28629 464//28629 -f 7094//28630 7131//28631 6902//28632 -f 4256//28633 430//28634 429//28635 -f 1607//28636 1574//28637 937//28638 -f 2228//28639 2850//28640 850//28641 -f 7094//28642 6903//28643 6990//28644 -f 6799//28645 6798//28645 7132//28645 -f 2783//28646 208//28646 5470//28646 -f 781//28647 2592//28648 5204//28649 -f 6938//20984 5026//20984 4195//20984 -f 507//28650 3920//28650 2271//28650 -f 7045//28651 6957//28651 7223//28651 -f 578//28652 597//28652 3083//28652 -f 5801//20984 6938//20984 4195//20984 -f 3672//28653 1742//28654 1955//28655 -f 1851//28656 4325//28656 2411//28657 -f 7047//28658 6956//28659 6992//28660 -f 6721//28661 6991//28662 7183//28663 -f 7135//28664 6957//28665 7048//28666 -f 721//28667 4919//28668 2816//28668 -f 7134//28669 7047//28670 6992//28671 -f 913//28672 1177//28673 2488//28674 -f 1176//28675 4093//28676 1469//28676 -f 2013//28677 3123//28677 2014//28677 -f 1417//28678 792//28679 1324//28680 -f 7136//28681 7048//28681 6959//28681 -f 5305//28682 1574//28683 2571//28684 -f 2012//28685 3278//28686 3968//28687 -f 3919//28688 4254//28689 1287//28690 -f 1193//28691 2278//28691 1200//28691 -f 7264//28692 6853//28693 7184//28694 -f 5188//28695 1280//28696 5189//28696 -f 6996//28697 7137//28697 6995//28698 -f 160//28699 161//28699 53//28700 -f 1700//28701 4738//28701 4549//28702 -f 3709//28703 3342//28704 985//28705 -f 7137//28706 6856//28707 6803//28706 -f 3178//28708 1843//28709 1452//28710 -f 293//28711 5561//28711 952//28712 -f 7137//28713 6803//28713 6997//28713 -f 7053//28714 6479//28714 6724//28714 -f 7228//28715 6479//28715 7053//28715 -f 7138//28716 6958//28717 7096//28718 -f 2678//28719 2659//28720 2905//28719 -f 5044//28721 4356//28722 4667//28721 -f 7139//28723 6905//28724 6998//28725 -f 1078//28726 762//28726 4359//28726 -f 6962//28727 7140//28728 6805//28729 -f 5131//28730 4917//28731 326//28730 -f 4646//28732 212//28732 3065//28732 -f 6962//28733 6453//28734 6999//28735 -f 7141//28736 6962//28737 6999//28738 -f 4335//28739 4578//28740 2886//28741 -f 6999//28742 6728//28743 7098//28744 -f 4177//28745 3419//28746 3591//28747 -f 3897//28748 169//28749 1669//28750 -f 1176//28751 2973//28752 4093//28753 -f 1232//28754 4137//28755 3605//28756 -f 1254//28757 1509//28758 1255//28759 -f 5657//28760 2297//28760 751//28760 -f 4056//28761 4492//28761 4841//28761 -f 6637//28762 7142//28763 6912//28764 -f 2607//28765 4919//28765 721//28766 -f 6862//28767 6640//28767 6769//28767 -f 7190//28768 7005//28769 7192//28770 -f 6908//28771 7101//28772 6914//28773 -f 7063//28774 7193//28775 6965//28776 -f 5540//28777 3671//28778 1803//28778 -f 1179//28779 1466//28780 4838//28781 -f 7064//28782 6608//28783 6862//28784 -f 2498//28785 4450//28786 4377//28785 -f 6862//28787 7061//28788 7064//28789 -f 7104//28790 7065//28791 6914//28792 -f 5322//28793 1631//28794 3302//28794 -f 2922//28795 469//28795 3216//28796 -f 7102//28797 7065//28798 7144//28799 -f 4442//28800 2652//28801 3553//28802 -f 2137//28803 2989//28804 4738//28805 -f 2894//28806 3142//28807 4694//28808 -f 7007//28809 6567//28810 6968//28810 -f 7071//28811 6920//28812 7102//28813 -f 7067//28814 7103//28815 6813//28814 -f 4705//28816 4963//28817 2129//28817 -f 4252//28818 544//28819 4513//28820 -f 387//28821 4019//28821 5140//28822 -f 7008//28823 7009//28824 7233//28825 -f 7068//28826 6814//28827 7145//28828 -f 6863//28829 6774//28830 7068//28831 -f 4424//28832 433//28832 2858//28833 -f 7071//28834 7233//28835 7009//28836 -f 2858//28837 433//28838 2266//28839 -f 7010//28840 7197//28841 7108//28841 -f 7012//28842 7145//28843 6814//28844 -f 7069//28845 6863//28846 7068//28847 -f 670//28848 4954//28849 2580//28850 -f 7009//28851 6969//28852 7071//28853 -f 7072//28854 7197//28855 7010//28856 -f 5048//28857 5790//28858 4818//28857 -f 7147//28859 7067//28860 7349//28861 -f 7067//28862 6816//28862 7349//28862 -f 6776//28863 7073//28864 6738//28865 -f 2317//28866 720//28866 2512//28866 -f 3805//28867 2504//28868 2297//28869 -f 6570//28870 7149//28871 6644//28872 -f 6971//28873 7151//28874 6866//28875 -f 6867//28876 7150//28877 6924//28878 -f 2063//28879 3601//28880 2128//28881 -f 1467//28882 2655//28883 2668//28884 -f 3350//28885 5064//28886 490//28887 -f 7076//28888 7109//28889 7110//28890 -f 7075//28891 6925//28892 6778//28893 -f 6778//28894 7152//28895 7075//28894 -f 3972//28896 2621//28897 2491//28898 -f 7153//28899 6573//28900 6779//28901 -f 6781//28902 6869//28903 6653//28904 -f 1976//28905 4318//28906 1920//28907 -f 3669//28908 4467//28909 2298//28910 -f 379//28911 3166//28912 1725//28911 -f 475//28913 4012//28913 3962//28913 -f 4302//28914 2815//28914 1776//28914 -f 3249//28915 3623//28915 2732//28915 -f 5325//28916 3958//28917 5028//28917 -f 403//28918 2166//28918 3587//28918 -f 1898//28919 2553//28919 2098//28919 -f 6928//28920 7156//28921 7078//28922 -f 196//28923 2082//28924 2389//28923 -f 7079//28925 7156//28926 6871//28927 -f 7241//28928 7079//28929 6930//28930 -f 3086//28931 1523//28932 2635//28933 -f 7080//28934 7241//28935 6930//28936 -f 7080//28937 7158//28938 7241//28939 -f 4035//28940 393//28941 3130//28940 -f 7158//28942 7080//28943 7018//28944 -f 883//28945 2050//28946 1236//28947 -f 3068//28948 3794//28949 126//28948 -f 2067//28950 4904//28950 1381//28950 -f 5801//28951 7159//28952 6938//28952 -f 597//28953 2367//28954 3083//28955 -f 847//28956 462//28957 304//28958 -f 2641//28959 2993//28959 7216//28959 -f 1965//28960 1542//28961 4527//28962 -f 4308//28963 2219//28964 2492//28965 -f 455//28966 1548//28967 2235//28968 -f 3254//28969 1085//28970 3616//28971 -f 7114//28972 7022//28973 6829//28972 -f 6708//28974 6656//28974 7245//28974 -f 1700//28975 3827//28975 624//28976 -f 1758//28977 3003//28977 1156//28977 -f 4192//28978 715//28979 2190//28980 -f 5470//28981 3747//28982 674//28983 -f 3764//28984 2918//28984 733//28985 -f 5079//28986 2294//28987 185//28988 -f 7084//28989 7160//28990 7023//28991 -f 4528//28992 5095//28993 4765//28993 -f 1470//28994 4031//28995 5198//28996 -f 3682//28997 2371//28997 4470//28997 -f 3857//28998 1421//28999 423//29000 -f 6937//29001 7022//29001 7161//29001 -f 3364//29002 4812//29003 544//29004 -f 4335//29005 5662//29005 14//29006 -f 2764//29007 2110//29007 1529//29007 -f 4034//29008 2298//29009 118//29009 -f 316//29010 4761//29011 3496//29011 -f 4141//29012 1148//29012 2835//29012 -f 3564//29013 943//29014 3895//29015 -f 3467//29016 3466//29017 4932//29018 -f 3662//29019 3308//29020 1316//29019 -f 3860//29021 4149//29022 3071//29023 -f 6620//29024 7163//29025 6941//29026 -f 1362//29027 1204//29027 3447//29027 -f 4823//29028 700//29029 699//29030 -f 1996//29031 5574//29032 4751//29033 -f 4764//29034 1904//29034 4427//29034 -f 6980//29035 6942//29036 6881//29037 -f 2671//29038 4624//29038 1609//29038 -f 3816//29039 538//29039 3890//29040 -f 2364//29041 3831//29042 317//29043 -f 3274//29044 327//29045 2815//29045 -f 4906//29046 2134//29047 1227//29048 -f 1018//29049 5392//29050 599//29050 -f 35//29051 1966//29051 3774//29052 -f 2291//29053 4288//29054 3670//29055 -f 243//29056 292//29057 336//29056 -f 465//29058 2319//29059 3408//29060 -f 2264//29061 897//29062 3201//29063 -f 230//29064 1957//29065 1449//29066 -f 153//29067 5204//29068 649//29069 -f 1858//29070 642//29070 98//29071 -f 36//29072 6248//29073 6406//29074 -f 4337//29075 2200//29076 4786//29077 -f 780//29078 1258//29079 5217//29080 -f 4799//29081 2775//29081 1899//29081 -f 1231//29082 4655//29083 4459//29084 -f 6587//29085 6540//29086 7027//29087 -f 5395//29088 4250//29089 3151//29090 -f 2610//29091 5527//29091 3894//29092 -f 4191//29093 1339//29094 3440//29094 -f 5834//29095 2878//29096 982//29097 -f 1247//29098 3809//29098 1445//29098 -f 2121//29099 3183//29100 1800//29101 -f 4845//29102 1662//29103 4784//29104 -f 1477//29105 1388//29106 1387//29107 -f 1776//29108 5236//29109 2217//29110 -f 2031//29111 2365//29112 4614//29113 -f 4311//29114 5394//29115 2345//29116 -f 641//29117 2469//29118 4138//29119 -f 146//29120 145//29121 1439//29122 -f 5077//29123 531//29124 1722//29125 -f 1604//29126 3489//29127 2698//29128 -f 6755//29129 6792//29130 7164//29131 -f 897//29132 2264//29132 4566//29132 -f 3970//29133 4514//29134 5163//29135 -f 1540//29136 3//29137 515//29138 -f 5338//29139 4473//29140 5772//29141 -f 4111//29142 189//29143 3826//29144 -f 1921//29145 2717//29146 2988//29147 -f 858//29148 3264//29149 2226//29150 -f 358//29151 459//29152 4750//29153 -f 2702//29154 3559//29155 1413//29156 -f 6987//29157 7037//29157 6625//29158 -f 7040//29159 7036//29160 7165//29159 -f 3400//29161 1905//29162 1296//29162 -f 7040//29163 7165//29164 7123//29164 -f 7253//29165 6987//29165 7039//29166 -f 2897//29167 2612//29167 1806//29168 -f 3059//29169 5106//29170 4636//29171 -f 5545//29172 531//29173 1610//29174 -f 6679//29175 6546//29176 7124//29177 -f 7125//29178 6845//29179 7038//29180 -f 7216//29181 4479//29181 1621//29181 -f 6848//29182 7124//29182 6681//29183 -f 6845//29184 7125//29184 6952//29184 -f 6593//29185 7126//29186 6545//29187 -f 1471//29188 4500//29189 4150//29188 -f 7169//29190 6951//29191 7127//29192 -f 1078//29193 4032//29194 3163//29193 -f 948//29195 2560//29195 3519//29195 -f 7129//29196 7127//29197 7167//29198 -f 7127//29199 7129//29200 7092//29200 -f 7092//29201 7169//29202 7127//29203 -f 7169//29204 7092//29205 6849//29206 -f 7092//29207 7167//29208 6849//29209 -f 3377//29210 2458//29211 4280//29212 -f 389//29213 4261//29214 517//29215 -f 182//29216 1209//29217 2424//29218 -f 7044//29219 6954//29220 7173//29220 -f 2252//29221 1312//29222 4514//29221 -f 2921//29223 1643//29224 2922//29225 -f 7174//29226 7093//29227 6682//29228 -f 6759//29229 7214//29230 6682//29230 -f 3166//29231 6850//29232 6898//29233 -f 6798//29234 6797//29235 7042//29236 -f 2251//29237 4134//29237 4133//29237 -f 7175//29238 6954//29239 6901//29239 -f 2370//29240 471//29241 2422//29242 -f 1853//29243 1477//29243 3132//29243 -f 686//29244 379//29245 2228//29246 -f 7179//29247 7177//29248 7176//29249 -f 3906//29250 2346//29251 3905//29252 -f 7133//29253 6761//29253 6850//29253 -f 7180//29254 7178//29254 7177//29254 -f 1350//29255 21//29256 2872//29257 -f 764//29258 895//29259 1777//29259 -f 3634//29260 180//29260 2381//29260 -f 2346//29261 880//29262 1010//29262 -f 7177//29263 7221//29264 7181//29265 -f 7180//29266 7177//29266 7181//29266 -f 715//29267 1264//29268 2190//29268 -f 921//29269 1810//29269 267//29270 -f 6761//29271 7133//29271 6720//29272 -f 6720//29273 7184//29274 6851//29275 -f 1835//29276 1374//29277 2462//29276 -f 7183//29278 6991//29279 7046//29280 -f 731//29281 2839//29281 3039//29281 -f 7183//29282 7046//29283 7182//29284 -f 4836//29285 988//29286 256//29287 -f 3781//29288 4068//29289 2964//29288 -f 1490//29290 1186//29290 2288//29291 -f 6834//29292 6828//29293 7185//29292 -f 1239//29294 279//29295 2605//29296 -f 5372//29297 485//29298 4254//29299 -f 3714//29300 1706//29301 2107//29302 -f 3515//29303 1083//29304 334//29305 -f 6853//29306 7264//29307 7051//29308 -f 7183//29309 7227//29310 7096//29311 -f 6958//29312 7183//29313 7096//29314 -f 3744//29315 2267//29316 4575//29317 -f 2079//29318 3852//29319 2459//29320 -f 2098//29321 2553//29322 2775//29322 -f 2130//29323 3533//29324 4451//29325 -f 4523//29326 2151//29326 1581//29327 -f 5069//29328 1245//29329 1220//29330 -f 7052//29331 7138//29332 7186//29333 -f 3768//29334 3209//29335 4224//29336 -f 7054//29337 7052//29337 7186//29337 -f 6961//29338 6725//29339 5271//29340 -f 7187//29341 7054//29342 7186//29343 -f 1743//29344 1742//29345 2287//29346 -f 328//29347 4435//29348 48//29349 -f 7187//29350 7097//29351 7054//29351 -f 4624//29352 2671//29353 503//29353 -f 6725//29354 7056//29355 5271//29356 -f 61//29357 4548//29358 295//29359 -f 1048//29360 4535//29360 548//29360 -f 7001//29361 7000//29362 7188//29363 -f 7056//29364 6693//29365 6859//29366 -f 2823//29367 3959//29367 2711//29367 -f 7188//29368 7099//29369 7001//29370 -f 1738//29371 376//29372 3313//29373 -f 1629//29374 3348//29375 3640//29376 -f 2198//29377 935//29378 677//29377 -f 3703//29379 724//29380 729//29381 -f 2073//29382 924//29382 5626//29382 -f 3497//29383 3845//29384 4538//29385 -f 5382//29386 3299//29387 3172//29388 -f 2383//29389 609//29390 3042//29391 -f 7191//29392 7101//29393 7190//29394 -f 2359//29395 3020//29396 5131//29397 -f 1327//29398 1710//29399 67//29399 -f 4858//29400 4088//29400 2569//29400 -f 2033//29401 1972//29401 1695//29401 -f 3872//29402 1809//29403 903//29404 -f 4683//29405 898//29406 3199//29407 -f 6965//29408 7193//29409 7060//29410 -f 7059//29411 7192//29412 7005//29413 -f 6563//29414 6913//29414 6917//29415 -f 3512//29416 341//29417 1483//29418 -f 7063//29419 7272//29420 7193//29421 -f 1684//29422 2668//29423 414//29424 -f 6124//29425 2948//29426 4475//29426 -f 682//29427 681//29428 4876//29429 -f 7194//29430 7063//29431 7195//29432 -f 6966//29433 7195//29434 7063//29435 -f 4344//29436 2558//29437 1771//29438 -f 3900//29439 2191//29440 4043//29439 -f 7104//29441 6914//29442 7143//29442 -f 671//29443 3668//29443 2611//29444 -f 7066//29445 7196//29446 7195//29446 -f 4651//29447 2281//29448 3614//29449 -f 128//29450 4401//29450 755//29451 -f 502//29452 499//29453 2761//29452 -f 7069//29454 7276//29455 6967//29455 -f 279//29456 1239//29456 1589//29456 -f 694//29457 128//29458 2305//29459 -f 3008//29460 412//29461 1249//29462 -f 7107//29463 7197//29464 7072//29465 -f 497//29466 648//29466 952//29466 -f 2582//29467 2178//29468 3675//29468 -f 7146//29469 6922//29470 7198//29469 -f 1764//29471 2184//29471 2542//29471 -f 7355//29472 306//29473 4323//29474 -f 6970//29475 7070//29475 7011//29475 -f 2181//29476 1532//29476 2891//29476 -f 6816//29477 6817//29477 7013//29477 -f 7280//29478 6866//29478 7151//29479 -f 307//29480 3046//29480 5295//29480 -f 1006//29481 5228//29481 941//29481 -f 2419//29482 4574//29483 2583//29484 -f 7075//29485 7151//29486 6971//29487 -f 6731//29488 6741//29488 7076//29488 -f 705//29489 2704//29490 1105//29491 -f 1530//29492 1177//29493 913//29493 -f 1103//29494 5889//29494 7083//29494 -f 3601//29495 3628//29496 3422//29496 -f 4120//29497 3645//29498 3151//29499 -f 1797//29500 4550//29501 2545//29502 -f 4720//29503 3245//29504 5580//29505 -f 5889//29506 6230//29506 7201//29506 -f 7202//29507 6927//29508 6655//29509 -f 2183//29510 1609//29510 682//29510 -f 6974//29511 7202//29512 6655//29513 -f 5545//29514 1610//29515 3448//29516 -f 5215//29517 1210//29518 2618//29519 -f 6973//29520 7239//29521 6974//29522 -f 4293//29523 1701//29524 4452//29524 -f 6972//29525 7157//29526 6929//29527 -f 2301//29528 3365//29528 5435//29529 -f 3951//29530 782//29531 5105//29532 -f 6975//29533 7112//29534 6976//29535 -f 6976//29536 7112//29536 7017//29537 -f 7158//29538 7018//29539 7017//29540 -f 320//29541 844//29542 4664//29543 -f 2239//29544 2810//29545 115//29546 -f 900//29547 2931//29548 3336//29549 -f 1385//29550 5561//29551 2482//29552 -f 2789//29553 2955//29553 3806//29553 -f 7113//29554 6785//29554 6657//29554 -f 2761//29555 777//29556 254//29557 -f 606//29558 3114//29558 3711//29558 -f 5563//29559 2784//29559 5005//29559 -f 339//29560 1153//29561 3133//29562 -f 4461//29563 3467//29564 3868//29565 -f 3764//29566 2836//29567 1130//29568 -f 520//29569 160//29570 53//29571 -f 7203//29572 6664//29572 7082//29573 -f 4040//29574 3903//29575 2842//29576 -f 7204//29577 7021//29578 6531//29579 -f 7161//29580 7022//29581 7114//29582 -f 4542//29583 788//29584 3460//29585 -f 7087//29586 7204//29586 6531//29587 -f 7205//29588 7086//29589 6787//29590 -f 1528//29591 3916//29591 1527//29591 -f 7245//29592 7087//29593 6708//29594 -f 5946//29595 3888//29596 7206//29597 -f 167//29598 3344//29599 2369//29599 -f 2707//29600 3433//29601 2883//29600 -f 1178//29602 1519//29602 1607//29602 -f 7118//29603 6978//29604 7160//29605 -f 2728//29606 764//29606 5222//29606 -f 3981//29607 391//29608 2788//29609 -f 3161//29610 3534//29610 3997//29610 -f 1633//29611 1675//29612 2720//29613 -f 7118//29614 7209//29615 6939//29616 -f 2203//29617 1743//29618 3940//29619 -f 5033//29620 5045//29621 1645//29622 -f 3444//29623 5542//29624 2//29625 -f 6665//29626 6535//29627 7119//29628 -f 6832//29629 6979//29630 3606//29631 -f 660//29632 2133//29633 2158//29634 -f 4160//29635 4946//29635 3409//29635 -f 4045//29636 3943//29636 3566//29636 -f 3550//29637 3170//29638 1516//29639 -f 7325//29640 6751//29640 6940//29640 -f 3476//29641 300//29642 4411//29643 -f 2417//29644 2911//29645 5223//29645 -f 1300//29646 976//29647 3015//29647 -f 2840//29648 1557//29649 640//29650 -f 3842//29651 4307//29652 1969//29653 -f 3359//29654 7398//29655 3259//29656 -f 5395//29657 4756//29658 1962//29659 -f 6712//29660 4751//29660 7163//29660 -f 959//29661 239//29662 2269//29663 -f 6666//29664 6586//29665 7248//29666 -f 6586//29667 6711//29668 7248//29669 -f 3705//29670 1586//29670 1989//29670 -f 957//29671 4883//29672 14//29673 -f 1325//29674 2115//29675 2869//29675 -f 7393//29676 89//29677 5591//29678 -f 3425//29679 1289//29680 4718//29681 -f 7081//29682 6706//29682 1036//29682 -f 6406//29683 6713//29683 6124//29684 -f 7210//29685 7121//29685 7088//29685 -f 2619//29686 5083//29687 997//29688 -f 7275//29689 76//29690 3344//29691 -f 4557//29692 6669//29693 6836//29694 -f 3103//29695 2814//29695 4710//29695 -f 6981//29696 7121//29697 7210//29698 -f 499//29699 4105//29700 3105//29701 -f 2917//29702 2398//29702 1044//29702 -f 7027//29703 6540//29703 6945//29704 -f 994//29705 3717//29706 128//29707 -f 2698//29708 1248//29708 2461//29709 -f 4211//29710 954//29710 5133//29710 -f 6790//29711 7287//29712 6945//29711 -f 6982//29713 6553//29713 6983//29714 -f 2187//29715 5403//29716 2186//29717 -f 7287//29718 7030//29718 7211//29719 -f 6671//29720 6716//29721 7251//29722 -f 5421//29723 1528//29724 1461//29725 -f 3156//29726 1970//29727 5063//29728 -f 3374//29729 4846//29730 1195//29731 -f 4828//29732 6472//29733 6884//29734 -f 1363//29735 5506//29735 3532//29735 -f 4453//29736 4035//29737 3130//29738 -f 220//29739 3858//29739 4996//29739 -f 3871//29740 3246//29740 3994//29740 -f 4301//29741 4834//29742 1913//29743 -f 3381//29744 3261//29745 1396//29746 -f 7212//29747 6986//29747 7091//29748 -f 3750//29749 3772//29750 866//29751 -f 7091//29752 6505//29752 7037//29752 -f 2130//29753 849//29753 3789//29753 -f 6756//29754 6755//29755 7122//29756 -f 2375//29757 28//29758 2634//29759 -f 2127//29760 3327//29761 3488//29761 -f 3322//29762 628//29763 3892//29762 -f 4164//29764 1125//29765 4028//29766 -f 3999//29767 3326//29768 2177//29769 -f 1275//29770 3435//29771 3469//29772 -f 1525//29773 3003//29773 609//29773 -f 695//29774 3843//29775 2341//29776 -f 236//29777 3617//29778 5207//29779 -f 7035//29780 6591//29781 6794//29780 -f 6794//29782 2777//29783 7035//29784 -f 1957//29785 3027//29786 1098//29787 -f 733//29788 2918//29789 1577//29790 -f 181//29791 3804//29792 1997//29793 -f 7039//29794 6598//29795 6950//29796 -f 3079//29797 1451//29798 5362//29799 -f 1519//29800 2426//29801 291//29802 -f 5458//29803 3163//29804 751//29804 -f 1428//29805 328//29806 48//29807 -f 1796//29808 3846//29809 1951//29810 -f 734//29811 2728//29812 5222//29813 -f 741//29814 570//29814 1004//29814 -f 4993//29815 1960//29816 2030//29817 -f 6849//29818 7167//29819 7127//29820 -f 7043//29821 6545//29821 7126//29821 -f 3892//29822 1651//29823 4629//29824 -f 2848//29825 3704//29826 1446//29827 -f 7169//29828 6849//29828 7170//29829 -f 3913//29830 7354//29830 5776//29830 -f 7043//29831 7172//29831 6628//29831 -f 3896//29832 4652//29833 1373//29833 -f 4073//29834 4670//29835 598//29835 -f 4207//29836 4276//29837 3767//29838 -f 6898//29839 7171//29840 3166//29841 -f 727//29842 3861//29843 5570//29844 -f 6954//29845 7175//29846 7173//29845 -f 631//29847 1033//29847 3677//29847 -f 4586//29848 1002//29849 7288//29850 -f 1126//29851 985//29852 603//29853 -f 240//29854 3563//29855 3848//29856 -f 4139//29857 2418//29858 5122//29859 -f 6989//29860 7175//29861 6901//29862 -f 4155//29863 4000//29863 1331//29863 -f 7177//29864 7257//29865 7176//29866 -f 7131//29867 6989//29867 6900//29867 -f 7178//29868 7257//29869 7177//29870 -f 7094//29871 7215//29872 7131//29873 -f 2924//29874 1723//29875 2979//29876 -f 6798//29877 7042//29878 7219//29877 -f 2338//29879 4911//29880 2103//29881 -f 6990//29882 7262//29883 7094//29884 -f 4813//29885 338//29886 2841//29887 -f 7178//29888 7180//29888 7217//29888 -f 7221//29889 7177//29890 7179//29891 -f 6990//29892 7222//29893 7262//29894 -f 1013//29895 1287//29896 4134//29897 -f 3198//29898 1247//29899 1445//29900 -f 1621//29901 2687//29902 4227//29903 -f 6990//29904 6956//29905 7222//29906 -f 2521//29907 1850//29908 4789//29909 -f 6977//29910 5018//29910 4269//29910 -f 1639//29911 411//29912 3794//29913 -f 2873//29914 998//29914 2071//29914 -f 1471//29915 5278//29916 2800//29917 -f 758//29918 2884//29919 1257//29920 -f 6720//29921 5546//29922 7184//29923 -f 7224//29924 6956//29925 7047//29926 -f 7223//29927 6957//29928 7225//29929 -f 7225//29930 6957//29931 7135//29932 -f 2328//29933 3456//29934 4321//29935 -f 48//29936 4435//29936 1528//29937 -f 3232//29938 3604//29939 3650//29940 -f 7226//29941 6802//29942 6994//29943 -f 6995//29944 7095//29945 6993//29946 -f 3157//29947 2412//29948 246//29949 -f 750//29950 2188//29951 2914//29952 -f 6802//29953 7226//29954 7050//29955 -f 5300//29956 2207//29956 4347//29956 -f 7134//29957 6992//29958 6961//29959 -f 665//29960 3395//29961 4349//29962 -f 2717//29963 511//29963 2988//29964 -f 3340//29965 1929//29966 1615//29966 -f 7134//29967 6961//29967 6170//29968 -f 3076//29969 4836//29970 1338//29971 -f 1296//29972 2640//29973 4305//29974 -f 248//29975 6998//29976 6764//29977 -f 6170//29978 6961//29979 5271//29980 -f 3633//29981 3958//29982 3579//29983 -f 6997//29984 7229//29984 7137//29984 -f 1839//29985 7321//29986 1075//29987 -f 2629//29988 919//29989 2919//29988 -f 5195//29990 2550//29991 2018//29991 -f 3129//29992 4361//29993 2308//29994 -f 1152//29995 3604//29995 1397//29995 -f 2859//29996 2144//29997 1003//29997 -f 4649//29998 1044//29999 1043//29999 -f 852//30000 2210//30001 1823//30000 -f 4469//30002 123//30003 1885//30004 -f 7230//30005 7140//30006 6962//30007 -f 1161//30008 2913//30009 763//30010 -f 7057//30011 7097//30012 7188//30013 -f 7057//30014 7188//30015 7000//30016 -f 5722//30017 6907//30018 7310//30018 -f 3770//30019 3212//30019 1767//30020 -f 3246//30021 6442//30022 2527//30023 -f 4852//30024 2422//30025 4851//30025 -f 7231//30026 7100//30027 7099//30028 -f 6808//30029 5722//30030 7142//30031 -f 2887//30032 3318//30033 332//30034 -f 377//30035 3256//30036 3830//30036 -f 7189//30037 7100//30037 7231//30038 -f 3369//30039 3239//30040 3430//30041 -f 7100//30042 7189//30043 7003//30044 -f 2440//30045 1487//30046 3875//30047 -f 575//30048 1691//30049 3691//30050 -f 6918//30051 7006//30052 6769//30053 -f 7101//30054 7271//30055 6914//30056 -f 1358//30057 4647//30057 804//30057 -f 1652//30058 4206//30058 4937//30059 -f 2124//30060 1926//30061 2365//30062 -f 1669//30063 1397//30063 1145//30064 -f 4098//30065 3993//30066 3555//30067 -f 3271//30068 2495//30069 1443//30070 -f 883//30071 3684//30071 643//30071 -f 7106//30072 7102//30073 7144//30074 -f 7065//30075 7104//30076 7144//30076 -f 7104//30077 7315//30078 7144//30079 -f 7008//30080 7232//30081 7107//30082 -f 3264//30083 598//30084 3094//30083 -f 3780//30085 7007//30086 6968//30086 -f 2611//30087 3407//30087 671//30087 -f 2240//30088 4142//30088 1932//30089 -f 2539//30090 4455//30091 4251//30092 -f 4439//30093 2623//30094 1212//30093 -f 5580//30095 2527//30095 3233//30095 -f 2999//30096 1366//30096 1341//30097 -f 7066//30098 6967//30099 7196//30100 -f 4678//30101 2760//30102 1967//30103 -f 1997//30104 3804//30105 2149//30106 -f 3913//30107 6934//30107 7354//30107 -f 7103//30108 7067//30109 7147//30110 -f 2567//30111 3268//30112 2199//30113 -f 7071//30114 7102//30115 7106//30116 -f 813//30117 1900//30118 4797//30119 -f 1970//30120 4855//30121 4612//30120 -f 3520//30122 5375//30123 972//30124 -f 7233//30125 7071//30126 7106//30127 -f 2617//30128 5750//30128 3525//30128 -f 1914//30129 1647//30129 1829//30130 -f 4613//30131 4606//30132 3819//30133 -f 2938//30134 2894//30135 3410//30134 -f 7199//30136 7145//30137 7011//30138 -f 3138//30139 4050//30139 2916//30140 -f 7011//30141 7145//30142 7012//30142 -f 4993//30143 4874//30144 4806//30145 -f 1954//30146 4159//30147 4669//30148 -f 1913//30149 4247//30150 4301//30151 -f 2644//30152 4436//30152 2826//30153 -f 2808//30154 4392//30155 240//30156 -f 3042//30157 214//30157 1784//30158 -f 3163//30159 5458//30160 1078//30160 -f 7349//30161 6816//30161 7013//30161 -f 4808//30162 105//30163 3288//30164 -f 210//30165 2546//30166 3145//30167 -f 7238//30168 7149//30169 6738//30170 -f 6570//30171 6738//30171 7149//30172 -f 7014//30173 6644//30174 7149//30175 -f 4267//30176 5058//30177 4720//30177 -f 7281//30178 7110//30179 7109//30180 -f 4253//30181 648//30182 252//30183 -f 3102//30184 2530//30185 3103//30184 -f 3969//30186 774//30187 276//30186 -f 5196//30188 2566//30189 4382//30190 -f 7200//30191 7154//30191 7077//30191 -f 5748//30192 1978//30193 674//30194 -f 3603//30195 2029//30195 52//30195 -f 7077//30196 7154//30196 7157//30196 -f 4883//30197 583//30198 14//30198 -f 6972//30199 7077//30199 7157//30199 -f 2848//30200 3099//30201 3285//30200 -f 7239//30202 7202//30203 6974//30204 -f 1065//30205 1697//30206 1310//30207 -f 1555//30208 708//30209 3364//30210 -f 3735//30211 3342//30212 3709//30212 -f 6870//30213 7078//30214 7016//30213 -f 491//30215 1674//30215 4278//30215 -f 1487//30216 274//30217 4584//30218 -f 6929//30219 7157//30220 6975//30221 -f 813//30222 42//30223 1900//30224 -f 4220//30225 577//30226 4316//30227 -f 4344//30228 3020//30229 2359//30229 -f 2984//30230 1606//30230 2985//30231 -f 5801//30232 5026//30233 6938//30234 -f 7235//30235 6658//30236 228//30236 -f 7020//30237 7242//30238 6932//30239 -f 7082//30240 6658//30241 7235//30242 -f 6829//30243 6747//30243 7083//30243 -f 1310//30244 547//30245 3355//30246 -f 3871//30247 4879//30247 4625//30247 -f 7164//30248 3168//30248 3755//30248 -f 945//30249 6660//30249 6662//30249 -f 798//30250 339//30251 3950//30252 -f 1882//30253 2928//30253 5078//30254 -f 44//30255 2481//30256 5086//30257 -f 7244//30258 7160//30259 7084//30260 -f 7085//30261 7244//30261 7084//30261 -f 7244//30262 7085//30263 7086//30264 -f 2939//30265 1770//30266 177//30267 -f 7246//30268 7086//30269 7205//30270 -f 4297//30271 1139//30272 5159//30273 -f 2602//30274 4607//30274 3697//30275 -f 7160//30276 7244//30276 7207//30277 -f 2915//30278 2955//30279 698//30279 -f 7355//30280 6530//30281 6663//30282 -f 1454//30283 3921//30284 3856//30283 -f 7207//30285 7118//30286 7160//30287 -f 6615//30288 7025//30289 7116//30288 -f 2559//30290 967//30291 1180//30292 -f 5943//30293 3754//30294 5291//30295 -f 1769//30296 3758//30297 4324//30298 -f 7118//30299 7208//30299 7209//30299 -f 4831//30300 384//30301 1368//30300 -f 6749//30302 6939//30303 7209//30304 -f 2204//30305 1569//30306 954//30306 -f 97//30307 3496//30308 4870//30309 -f 6940//30310 7247//30311 7162//30312 -f 7204//30313 7354//30313 6934//30313 -f 1962//30314 5412//30315 1262//30316 -f 2654//30317 1092//30318 3686//30319 -f 2741//30320 4999//30321 1086//30321 -f 7248//30322 2437//30322 6666//30323 -f 460//30324 342//30325 4532//30326 -f 4765//30327 5095//30328 5174//30329 -f 6942//30330 7357//30330 2108//30330 -f 7248//30331 6711//30331 7120//30331 -f 4269//30332 2742//30333 3643//30334 -f 3062//30335 3036//30335 2443//30336 -f 2060//30337 3932//30338 1458//30339 -f 1685//30340 835//30340 3378//30340 -f 289//30341 3210//30342 2651//30343 -f 1744//30344 3910//30345 1149//30346 -f 6670//30347 3765//30348 6836//30349 -f 1725//30350 410//30351 2850//30350 -f 1190//30352 4086//30352 513//30352 -f 2194//30353 409//30354 313//30354 -f 6670//30355 6504//30356 7288//30357 -f 3950//30358 339//30359 3465//30360 -f 7028//30361 6248//30362 36//30363 -f 2020//30364 1666//30365 4184//30366 -f 4818//30367 4011//30368 2954//30369 -f 6541//30370 4698//30371 7029//30372 -f 6982//30373 7286//30374 6553//30375 -f 2572//30376 861//30376 2851//30377 -f 266//30378 1965//30379 4594//30380 -f 6790//30381 7030//30381 7287//30381 -f 2613//30382 4829//30382 5396//30382 -f 7030//30383 7032//30383 7211//30383 -f 5782//30384 4183//30384 3962//30385 -f 2224//30386 4338//30387 2082//30388 -f 1413//30389 2379//30389 2702//30390 -f 1608//30391 1765//30391 1731//30392 -f 3337//30393 2535//30394 4780//30395 -f 2843//30396 3810//30397 2153//30398 -f 40//30399 1697//30400 1639//30400 -f 1167//30401 2207//30402 2247//30401 -f 6472//30403 4828//30404 6792//30405 -f 1875//30406 3996//30406 280//30406 -f 3389//30407 2813//30408 4024//30408 -f 4639//30409 397//30410 4163//30411 -f 4606//30412 1371//30413 1134//30414 -f 4993//30415 2030//30416 309//30417 -f 6984//30418 7165//30419 7036//30420 -f 4681//30421 1542//30422 4680//30422 -f 435//30423 4514//30424 361//30424 -f 4050//30425 1555//30425 3364//30425 -f 4176//30426 5219//30427 2465//30428 -f 368//30429 2038//30429 834//30429 -f 7252//30430 6988//30430 6897//30430 -f 3243//30431 2653//30432 142//30433 -f 1095//30434 5036//30435 1202//30434 -f 7122//30436 7038//30437 6756//30438 -f 4885//30439 2138//30440 2800//30440 -f 4781//30441 2133//30441 116//30442 -f 2274//30443 2867//30444 2275//30445 -f 912//30446 3314//30447 862//30448 -f 6593//30449 6676//30450 7166//30451 -f 2485//30452 1687//30453 7326//30454 -f 2956//30455 686//30456 1817//30457 -f 405//30458 4308//30458 2492//30459 -f 6950//30460 7254//30461 7039//30462 -f 1303//30463 269//30464 1302//30465 -f 562//30466 1641//30467 4059//30468 -f 7171//30469 7041//30469 7213//30469 -f 2844//30470 3964//30471 1228//30470 -f 7168//30472 6846//30472 6796//30473 -f 2925//30474 5411//30475 3162//30476 -f 2203//30477 1162//30478 2585//30479 -f 1242//30480 1369//30480 2065//30480 -f 5390//30481 2026//30481 1340//30481 -f 4608//30482 5295//30483 1846//30484 -f 613//30485 2163//30486 2134//30487 -f 2677//30488 383//30489 2678//30490 -f 6898//30491 7041//30492 7171//30493 -f 1891//30494 2736//30495 5399//30496 -f 5431//30497 3790//30497 487//30497 -f 7214//30498 6759//30499 7172//30498 -f 900//30500 4433//30500 4862//30500 -f 7258//30501 7257//30502 7178//30503 -f 1402//30504 652//30504 1816//30504 -f 4806//30505 1960//30506 4993//30507 -f 759//30508 181//30509 1997//30510 -f 7214//30511 7174//30511 6682//30512 -f 2342//30513 2563//30514 3032//30515 -f 3668//30516 3564//30517 2646//30516 -f 7176//30518 7257//30519 7259//30520 -f 3429//30521 7306//30522 1860//30523 -f 2766//30524 2048//30524 2378//30525 -f 3755//30526 227//30527 3275//30527 -f 4356//30528 3555//30529 3993//30530 -f 4932//30531 1486//30532 3678//30533 -f 7262//30534 7215//30535 7094//30536 -f 1258//30537 1257//30537 1876//30537 -f 7261//30538 7178//30539 7217//30540 -f 894//30541 5547//30541 4138//30541 -f 2991//30542 4300//30543 3865//30544 -f 6798//30545 7219//30546 7132//30547 -f 6899//30548 7045//30549 7220//30550 -f 1125//30551 3902//30552 678//30553 -f 1905//30554 2640//30554 1296//30554 -f 6355//30555 6695//30555 1224//30555 -f 7220//30556 7045//30557 7223//30558 -f 3642//30559 825//30560 5011//30559 -f 7046//30561 6799//30562 7132//30561 -f 577//30563 4337//30564 4187//30565 -f 7224//30566 7222//30567 6956//30568 -f 5303//30569 684//30569 2179//30570 -f 319//30571 1001//30571 796//30571 -f 3268//30572 2712//30573 69//30574 -f 2230//30575 2842//30576 3903//30577 -f 3523//30578 812//30579 1939//30580 -f 7299//30581 7180//30582 7181//30583 -f 2110//30584 3943//30585 4045//30584 -f 7224//30586 7047//30586 7134//30586 -f 3476//30587 3091//30587 4576//30587 -f 729//30588 1283//30588 3703//30589 -f 7263//30590 7183//30591 7182//30592 -f 3765//30593 1002//30594 278//30595 -f 4064//30596 3450//30597 4302//30597 -f 7265//30598 6994//30599 7095//30600 -f 4469//30601 5079//30601 185//30601 -f 49//30602 283//30603 5323//30603 -f 2456//30604 1225//30605 831//30606 -f 7095//30607 6995//30608 7265//30609 -f 311//30610 3565//30611 3620//30612 -f 2757//30613 4510//30614 4552//30613 -f 2640//30615 2593//30616 5200//30617 -f 4348//30618 3649//30619 999//30618 -f 1267//30620 5033//30620 1645//30621 -f 4250//30622 5395//30623 1708//30623 -f 6959//30624 7228//30625 7136//30626 -f 2083//30627 3291//30628 1028//30629 -f 2393//30630 3039//30631 2839//30631 -f 1925//30632 362//30633 3730//30634 -f 1660//30635 4252//30636 3791//30636 -f 7050//30637 7267//30638 6857//30639 -f 7055//30640 6857//30641 7267//30642 -f 3511//30643 1944//30644 2474//30644 -f 3546//30645 1564//30646 3520//30647 -f 3057//30648 4461//30649 555//30650 -f 5287//30651 4192//30651 2190//30651 -f 507//30652 506//30652 119//30652 -f 7138//30653 7096//30654 7268//30655 -f 7138//30656 7268//30657 7186//30658 -f 1473//30659 990//30659 805//30659 -f 3764//30660 4165//30661 1577//30662 -f 7307//30663 7053//30663 7140//30663 -f 7184//30664 1592//30665 3839//30666 -f 2212//30667 3018//30668 4664//30669 -f 165//30670 4491//30671 2654//30672 -f 7141//30673 7230//30674 6962//30675 -f 3143//30676 3985//30677 1071//30678 -f 2001//30679 527//30680 2111//30681 -f 3567//30682 4218//30682 4054//30682 -f 7188//30683 7339//30684 7099//30685 -f 7342//30686 7098//30687 6963//30688 -f 3156//30689 4327//30690 1970//30691 -f 5159//30692 2103//30693 306//30692 -f 5376//30694 344//30695 3844//30696 -f 7269//30697 7058//30698 7002//30699 -f 7189//30700 7059//30701 7003//30702 -f 7002//30703 7060//30704 7269//30703 -f 7270//30705 7190//30706 7192//30706 -f 1729//30707 4504//30708 3628//30709 -f 2049//30710 3573//30710 4182//30710 -f 3314//30711 912//30712 3077//30713 -f 4784//30714 3149//30715 3194//30716 -f 136//30717 4922//30718 1142//30717 -f 7272//30719 7060//30720 7193//30721 -f 495//30722 1494//30723 4788//30724 -f 5664//30725 5324//30726 1016//30727 -f 7185//30728 6834//30728 7273//30728 -f 6977//30729 1224//30729 6745//30730 -f 6913//30731 7275//30732 6917//30733 -f 7143//30734 6914//30734 7271//30734 -f 1526//30735 1370//30736 259//30736 -f 2230//30737 3903//30738 356//30739 -f 440//30740 3735//30740 3709//30740 -f 2223//30741 4578//30741 2277//30741 -f 4397//30742 2647//30742 5347//30742 -f 4648//30743 3770//30744 4015//30745 -f 3897//30746 3390//30747 5613//30748 -f 7316//30749 6918//30750 6917//30751 -f 4710//30752 3102//30753 3103//30754 -f 7106//30755 7144//30756 7274//30757 -f 7064//30758 3657//30758 3780//30758 -f 7289//30759 6553//30760 1062//30759 -f 4272//30761 2660//30762 3392//30763 -f 4638//30764 1619//30765 1792//30766 -f 7108//30767 7197//30767 7277//30768 -f 7108//30769 7277//30770 7234//30771 -f 4473//30772 3346//30772 4006//30773 -f 3822//30774 3397//30775 2854//30776 -f 5523//30777 1363//30778 3532//30779 -f 5382//30780 1233//30780 2805//30780 -f 7278//30781 7068//30782 7145//30783 -f 7069//30784 7279//30784 7276//30785 -f 7007//30786 5819//30786 6922//30787 -f 1508//30788 3620//30789 2641//30789 -f 1673//30790 1251//30791 3881//30792 -f 268//30793 2909//30793 2738//30793 -f 7070//30794 7108//30795 7011//30796 -f 7108//30797 7236//30798 7011//30799 -f 530//30800 4304//30801 1546//30800 -f 1375//30802 3097//30803 2511//30804 -f 7068//30805 7279//30805 7069//30805 -f 3179//30806 2788//30807 391//30808 -f 1516//30809 1182//30809 1720//30809 -f 90//30810 5469//30811 443//30812 -f 7237//30813 6735//30814 7146//30815 -f 5005//30816 2066//30817 3188//30816 -f 321//30818 3093//30818 25//30818 -f 340//30819 4517//30820 2529//30820 -f 6817//30821 7148//30822 7013//30822 -f 3114//30823 536//30824 4245//30823 -f 4219//30825 4574//30826 3938//30826 -f 4856//30827 860//30828 1613//30829 -f 6867//30830 7014//30830 3931//30830 -f 4086//30831 6924//30832 7150//30831 -f 4086//30833 7015//30834 6924//30835 -f 3453//30836 1132//30836 4048//30836 -f 7077//30837 7111//30838 7200//30839 -f 4025//30840 4269//30841 5018//30842 -f 7155//30843 6927//30844 7202//30845 -f 5732//30846 714//30847 2290//30848 -f 2311//30849 7291//30849 1115//30849 -f 3195//30850 4968//30850 4945//30850 -f 677//30851 935//30852 1343//30853 -f 7240//30854 6823//30855 7016//30856 -f 6823//30857 7240//30858 6973//30859 -f 95//30860 1949//30860 1183//30860 -f 187//30861 481//30862 1739//30863 -f 2254//30864 138//30865 2997//30866 -f 6975//30867 7157//30867 7282//30868 -f 7353//30869 7241//30870 7158//30871 -f 2538//30872 4957//30873 4090//30874 -f 326//30875 3843//30876 5131//30877 -f 7017//30878 7283//30879 7158//30880 -f 3911//30881 6933//30882 3913//30883 -f 7235//30884 228//30885 4195//30885 -f 3414//30886 487//30887 5510//30888 -f 6657//30889 6878//30889 1103//30890 -f 1103//30891 6878//30892 7081//30893 -f 3532//30894 1423//30894 5523//30894 -f 6230//30895 2971//30896 5889//30897 -f 745//30898 1928//30899 3565//30900 -f 4048//30901 3138//30902 2916//30903 -f 4478//30904 4786//30904 5271//30904 -f 1077//30905 4829//30906 3991//30907 -f 3140//30908 1110//30908 1109//30908 -f 572//30909 1579//30910 625//30911 -f 7185//30912 6932//30913 7242//30914 -f 1879//30915 957//30916 2734//30917 -f 3576//30918 1068//30919 4091//30920 -f 7185//30921 6828//30922 6932//30923 -f 7243//30924 6829//30925 7083//30926 -f 1601//30927 1355//30928 230//30929 -f 7185//30930 5506//30930 6834//30930 -f 7185//30931 7242//30931 5506//30931 -f 7204//30932 6934//30933 7021//30934 -f 1542//30935 496//30936 4680//30937 -f 511//30938 2717//30939 1906//30939 -f 7113//30940 6657//30941 1103//30942 -f 5274//30943 6442//30944 3871//30945 -f 3758//30946 4155//30946 4324//30946 -f 3588//30947 1629//30948 3419//30949 -f 4050//30950 3138//30951 1555//30952 -f 2266//30953 433//30954 4862//30953 -f 6787//30955 7284//30955 7205//30955 -f 3012//30956 2490//30956 4257//30956 -f 6529//30957 7284//30958 6787//30959 -f 2336//30960 2295//30961 2160//30961 -f 7244//30962 7086//30963 7246//30964 -f 7207//30965 7244//30966 7246//30967 -f 3439//30968 2041//30969 5120//30970 -f 1930//30971 797//30972 5567//30972 -f 4417//30973 1026//30974 3985//30973 -f 883//30975 945//30975 2050//30976 -f 2853//30977 2852//30978 467//30979 -f 6662//30980 7117//30980 1789//30980 -f 4666//30981 179//30982 5184//30983 -f 6533//30984 6664//30985 7115//30986 -f 7207//30987 7208//30987 7118//30987 -f 7208//30988 7207//30988 7285//30988 -f 4283//30989 4935//30990 5346//30989 -f 3591//30991 2952//30992 4177//30993 -f 4095//30994 5069//30995 871//30996 -f 3568//30997 7117//30997 6665//30998 -f 3568//30999 6665//31000 7119//30999 -f 523//31001 4188//31002 3721//31003 -f 488//31004 1607//31005 937//31006 -f 2392//31007 4368//31008 932//31009 -f 2486//31010 3441//31011 5686//31010 -f 3558//31012 5843//31013 5456//31014 -f 1270//31015 4361//31016 1271//31017 -f 7209//31018 7323//31019 6749//31020 -f 3576//31021 3848//31022 2335//31023 -f 6749//31024 7323//31025 7247//31026 -f 1998//31027 1429//31028 1376//31029 -f 4041//31030 7119//31031 6535//31031 -f 2992//31032 2897//31033 2616//31034 -f 740//31035 3397//31036 3822//31037 -f 4779//31038 3975//31038 3049//31038 -f 1258//31039 2192//31040 1257//31041 -f 1426//31042 2817//31043 3243//31043 -f 2933//31044 2193//31045 612//31046 -f 2507//31047 1929//31048 974//31047 -f 4876//31049 2199//31050 2183//31049 -f 6713//31051 6832//31052 5719//31053 -f 6942//31054 2108//31055 7088//31056 -f 818//31057 2053//31057 3916//31058 -f 2600//31059 1173//31060 2563//31059 -f 2908//31061 1717//31062 3578//31063 -f 1127//31064 2846//31065 5089//31064 -f 6668//31066 7089//31067 4620//31066 -f 1749//31068 3964//31069 2412//31070 -f 6944//31071 6981//31072 7286//31073 -f 3898//31074 752//31075 5044//31076 -f 6381//31077 2147//31078 1112//31079 -f 6982//31080 6944//31081 7286//31082 -f 2994//31083 3262//31084 4008//31085 -f 3061//31086 5026//31086 5801//31087 -f 5654//31088 4260//31089 5403//31090 -f 6752//31091 4698//31092 6541//31093 -f 3537//31094 3407//31095 1381//31096 -f 634//31097 2395//31097 2703//31097 -f 2820//31098 4184//31099 3698//31100 -f 5139//31101 2083//31102 1472//31103 -f 3633//31104 898//31105 961//31106 -f 1013//31107 5484//31108 4275//31109 -f 6983//31110 7289//31111 6947//31110 -f 3109//31112 1378//31112 3040//31113 -f 1560//31114 836//31115 907//31116 -f 1394//31117 5367//31117 4447//31118 -f 2364//31119 2628//31120 14//31120 -f 3075//31121 1884//31122 1548//31123 -f 169//31124 569//31125 1669//31126 -f 7290//31127 7032//31127 7090//31127 -f 2417//31128 402//31128 3788//31129 -f 3905//31130 1933//31131 3906//31132 -f 1103//31133 7083//31133 7113//31133 -f 1709//31134 575//31135 1710//31136 -f 7090//31137 6948//31138 6949//31138 -f 3616//31139 1601//31139 2156//31139 -f 110//31140 3443//31141 504//31142 -f 7165//31143 6984//31143 7381//31144 -f 7122//31145 6755//31146 7164//31147 -f 2180//31148 1496//31148 3387//31149 -f 3507//31150 3784//31151 3608//31152 -f 6987//31153 7253//31154 7037//31153 -f 3290//31155 4696//31156 267//31157 -f 3719//31158 1566//31159 1079//31160 -f 1682//31161 3150//31161 461//31161 -f 7328//31162 7253//31162 7039//31162 -f 6897//31163 6679//31164 7124//31165 -f 7039//31166 7254//31167 7328//31168 -f 2960//31169 1163//31170 2425//31169 -f 975//31171 4212//31172 1285//31173 -f 2432//31174 1022//31174 3706//31175 -f 7255//31176 7124//31177 6848//31176 -f 6593//31178 7166//31179 7126//31180 -f 4640//31181 514//31182 3037//31183 -f 1162//31184 2203//31185 1852//31186 -f 7256//31187 6846//31187 7168//31187 -f 3320//31188 764//31189 2728//31190 -f 3565//31191 663//31192 3620//31193 -f 3245//31194 3246//31195 2527//31196 -f 3958//31197 3633//31198 961//31197 -f 7292//31199 6952//31200 7125//31201 -f 7332//31202 7044//31202 7173//31202 -f 1914//31203 3507//31203 3508//31203 -f 214//31204 4818//31205 2954//31206 -f 5435//31207 1207//31208 4331//31209 -f 1740//31210 4833//31211 2735//31212 -f 2823//31213 1195//31214 3959//31215 -f 7175//31216 7293//31217 7173//31218 -f 1768//31219 2462//31220 834//31221 -f 2590//31222 2747//31223 3996//31224 -f 7294//31225 6989//31226 7131//31227 -f 679//31228 3516//31229 3517//31230 -f 4914//31231 4799//31232 817//31233 -f 3796//31234 2543//31234 2261//31235 -f 7215//31236 7294//31237 7131//31238 -f 6850//31239 3166//31240 7133//31241 -f 1581//31242 2325//31243 322//31242 -f 4126//31244 2008//31245 1332//31246 -f 7218//31247 6899//31248 7220//31249 -f 4468//31250 409//31251 1349//31252 -f 1841//31253 3590//31254 4962//31255 -f 7260//31256 7296//31257 7219//31258 -f 7042//31259 7260//31259 7219//31260 -f 2723//31261 547//31261 1310//31261 -f 7179//31262 7176//31263 7335//31263 -f 2078//31264 2079//31265 2459//31265 -f 1668//31266 2589//31266 5076//31266 -f 2600//31267 2342//31268 815//31269 -f 164//31270 2878//31271 38//31272 -f 5036//31273 4247//31274 1913//31275 -f 550//31276 1386//31277 1561//31278 -f 1146//31279 3916//31280 449//31281 -f 360//31282 3986//31283 359//31284 -f 7297//31285 7217//31285 7180//31285 -f 268//31286 3861//31287 1022//31288 -f 7132//31289 7219//31290 7298//31291 -f 6720//31292 7133//31292 5546//31292 -f 4692//31293 632//31294 1575//31295 -f 7046//31296 7132//31297 7182//31297 -f 2231//31298 5772//31298 386//31298 -f 760//31299 1816//31300 46//31301 -f 7301//31302 7182//31303 7367//31304 -f 3531//31305 618//31306 3952//31306 -f 1836//31307 2875//31308 4388//31309 -f 7221//31310 7386//31311 7181//31312 -f 1834//31313 1342//31314 3497//31315 -f 2542//31316 782//31317 4496//31318 -f 489//31319 4519//31319 3307//31319 -f 7299//31320 7181//31321 7302//31321 -f 2258//31322 599//31322 1854//31323 -f 570//31324 983//31325 1790//31326 -f 3997//31327 2529//31328 3161//31329 -f 7263//31330 7303//31331 7183//31332 -f 7227//31333 7183//31334 7303//31335 -f 4383//31336 4136//31336 1368//31336 -f 7048//31337 7304//31337 7135//31337 -f 7266//31338 6994//31339 7265//31340 -f 749//31341 1017//31341 3372//31341 -f 7303//31342 7096//31343 7227//31344 -f 2031//31345 4614//31346 2366//31347 -f 1208//31348 1311//31349 3859//31350 -f 3429//31351 248//31351 6764//31351 -f 885//31352 1907//31353 3034//31354 -f 2275//31355 3351//31356 4980//31357 -f 7053//31358 7307//31359 7228//31360 -f 3541//31361 3841//31361 873//31362 -f 7308//31363 7268//31363 7096//31364 -f 4125//31365 2821//31366 1181//31365 -f 4473//31367 4006//31368 986//31369 -f 6997//31370 6905//31370 7139//31370 -f 5435//31371 4331//31372 2278//31373 -f 3479//31374 3368//31375 2235//31374 -f 7097//31376 7187//31377 7309//31378 -f 663//31379 3229//31380 1717//31381 -f 1628//31382 3543//31383 3048//31384 -f 2958//31385 2540//31385 335//31386 -f 1331//31387 5217//31387 3430//31387 -f 6907//31388 7055//31388 7310//31388 -f 7188//31389 7097//31390 7339//31391 -f 1273//31392 1667//31393 4287//31394 -f 3791//31395 2674//31396 261//31397 -f 4257//31398 1390//31399 798//31398 -f 304//31400 2934//31401 711//31402 -f 7141//31403 6999//31403 7098//31404 -f 7339//31405 7231//31406 7099//31407 -f 2611//31408 1381//31408 3407//31408 -f 397//31409 3028//31410 4163//31411 -f 7058//31412 7342//31413 6963//31414 -f 2770//31415 3174//31416 3112//31417 -f 7311//31418 6964//31419 7062//31420 -f 7004//31421 6912//31422 5375//31423 -f 341//31424 2869//31425 1483//31426 -f 2108//31427 4126//31428 1389//31429 -f 7192//31430 7059//31431 7189//31432 -f 2083//31433 338//31434 3291//31435 -f 7271//31436 7101//31437 7191//31438 -f 7269//31439 7060//31440 7312//31441 -f 7312//31442 7060//31443 7272//31444 -f 6977//31445 4269//31446 1224//31447 -f 7313//31448 7061//31449 7006//31450 -f 4164//31451 648//31451 4253//31451 -f 3249//31452 2732//31452 4380//31452 -f 3864//31453 3664//31454 4165//31455 -f 4701//31456 7062//31457 7103//31458 -f 7400//31459 4839//31459 1160//31459 -f 7314//31460 7063//31461 7194//31462 -f 838//31463 5053//31464 3408//31465 -f 4752//31466 2293//31467 1812//31468 -f 7106//31469 7274//31470 7345//31469 -f 183//31471 4089//31472 4419//31473 -f 2916//31474 4050//31475 5510//31476 -f 7195//31477 7314//31478 7194//31479 -f 7315//31480 7104//31481 7143//31482 -f 7277//31483 7107//31484 7232//31485 -f 6968//31486 7064//31487 3780//31488 -f 7317//31489 4701//31490 7103//31491 -f 1814//31492 2023//31493 1692//31494 -f 7008//31495 7233//31495 7232//31495 -f 5581//31496 1594//31497 4982//31497 -f 1335//31498 1502//31499 4547//31500 -f 7232//31501 7233//31502 7106//31503 -f 7234//31504 7319//31505 7108//31506 -f 4596//31507 1813//31508 3804//31509 -f 4163//31510 207//31511 707//31512 -f 115//31513 1061//31514 2239//31515 -f 7317//31516 7103//31517 7147//31518 -f 7107//31519 7277//31519 7197//31520 -f 1106//31521 1799//31522 5469//31523 -f 7199//31524 7320//31525 7278//31526 -f 4950//31527 4479//31527 2993//31527 -f 705//31528 1105//31529 1762//31530 -f 31//31531 1585//31532 4686//31533 -f 705//31534 1215//31535 1119//31536 -f 810//31537 4063//31538 5640//31539 -f 7068//31540 7278//31541 7279//31542 -f 5//31543 803//31544 2099//31545 -f 2928//31546 1373//31546 4652//31546 -f 4516//31547 1524//31547 4831//31547 -f 7073//31548 6735//31548 7237//31549 -f 2901//31550 4366//31550 4313//31550 -f 7150//31551 6867//31552 3931//31553 -f 1842//31554 2900//31555 498//31556 -f 2752//31557 7074//31557 7015//31558 -f 7377//31559 7152//31560 6926//31561 -f 6779//31562 6741//31563 6731//31564 -f 6869//31565 7322//31566 6926//31567 -f 3205//31568 4955//31568 3136//31568 -f 7322//31569 6869//31570 7155//31571 -f 598//31572 661//31572 3094//31573 -f 420//31574 359//31575 3598//31576 -f 2744//31577 3222//31578 276//31577 -f 7240//31579 7239//31579 6973//31580 -f 7352//31581 7016//31582 7078//31583 -f 586//31584 4160//31584 2181//31584 -f 7156//31585 7079//31586 7241//31587 -f 7156//31588 7241//31589 7353//31590 -f 7112//31591 6975//31592 7282//31593 -f 2804//31594 4356//31595 77//31596 -f 2750//31597 3819//31597 4606//31598 -f 4790//31599 4750//31600 841//31599 -f 7353//31601 7158//31601 7283//31601 -f 7017//31602 7112//31603 7283//31604 -f 34//31605 2798//31606 337//31605 -f 1040//31607 1535//31608 1536//31609 -f 215//31610 2589//31610 2596//31611 -f 4025//31612 2742//31613 4269//31614 -f 5058//31615 5022//31615 3245//31615 -f 1677//31616 5155//31617 4585//31618 -f 3913//31619 6933//31620 6934//31620 -f 796//31621 4220//31622 3685//31623 -f 6656//31624 6355//31624 5274//31625 -f 7114//31626 6829//31627 7243//31626 -f 1991//31628 791//31628 4653//31628 -f 7020//31629 945//31630 5034//31631 -f 1571//31632 1918//31633 1572//31634 -f 4121//31635 2012//31636 2381//31637 -f 7115//31638 6664//31639 7203//31640 -f 6663//31641 6937//31641 7161//31641 -f 3474//31642 2580//31643 4144//31644 -f 1463//31645 1433//31646 3235//31647 -f 7285//31648 7207//31649 7246//31650 -f 4395//31651 6533//31652 7115//31653 -f 3660//31654 7116//31655 7025//31656 -f 540//31657 552//31658 1861//31657 -f 4395//31659 6979//31660 6533//31661 -f 4344//31662 5456//31663 5843//31664 -f 7208//31665 7323//31666 7209//31667 -f 7281//31668 2751//31669 63//31670 -f 1892//31671 4686//31672 1585//31673 -f 5574//31674 6831//31675 6585//31674 -f 5574//31676 6585//31677 6941//31678 -f 7162//31679 7247//31679 7324//31680 -f 7325//31681 6940//31682 7162//31683 -f 7163//31684 5574//31685 6941//31686 -f 4041//31687 6535//31688 2437//31689 -f 908//31690 1171//31690 4726//31691 -f 6942//31692 6980//31693 7357//31694 -f 5630//31695 295//31696 3371//31697 -f 4092//31698 4170//31699 2023//31698 -f 4600//31700 712//31701 3746//31702 -f 1904//31703 2816//31704 4427//31705 -f 2158//31706 463//31707 660//31707 -f 1163//31708 2155//31709 2425//31710 -f 7249//31711 7088//31712 2108//31713 -f 1480//31714 4966//31715 1003//31716 -f 871//31717 2414//31718 2415//31719 -f 7120//31720 6668//31721 4620//31720 -f 5844//31722 6669//31722 4557//31722 -f 6837//31723 6671//31724 5268//31724 -f 2735//31725 2182//31725 134//31725 -f 3994//31726 5058//31726 3535//31727 -f 5427//31728 602//31729 223//31730 -f 4397//31731 758//31732 1257//31733 -f 4188//31734 523//31735 3315//31736 -f 2391//31737 2362//31737 1323//31737 -f 1907//31738 2817//31738 1426//31738 -f 7289//31739 6983//31739 6553//31739 -f 1965//31740 4527//31740 4594//31740 -f 6839//31741 6673//31742 2536//31741 -f 1046//31743 414//31744 4101//31745 -f 4568//31746 527//31747 1253//31748 -f 113//31749 2932//31749 141//31749 -f 6986//31750 7326//31751 6841//31752 -f 575//31753 1709//31754 1570//31755 -f 413//31756 6624//31757 7035//31756 -f 7291//31758 6949//31759 6988//31760 -f 4706//31761 7091//31762 7037//31763 -f 3910//31764 4257//31765 1150//31766 -f 3089//31767 3576//31768 457//31769 -f 605//31770 5012//31770 2005//31770 -f 3872//31771 3823//31772 1809//31772 -f 814//31773 5099//31774 5345//31775 -f 5501//31776 5083//31776 2619//31776 -f 4680//31777 496//31777 1047//31778 -f 629//31779 3534//31779 3161//31780 -f 2520//31781 4224//31782 2312//31783 -f 1820//31784 3731//31784 4391//31785 -f 5094//31786 3104//31786 1995//31787 -f 2928//31788 3970//31789 4921//31790 -f 646//31791 4797//31792 2847//31793 -f 6848//31794 7331//31795 7255//31796 -f 1569//31797 4720//31798 1348//31799 -f 1409//31800 4746//31801 4096//31802 -f 1606//31803 1507//31804 4263//31805 -f 3314//31806 1230//31807 862//31806 -f 7130//31808 7256//31809 7168//31810 -f 581//31811 3619//31812 2576//31812 -f 4932//31813 3099//31814 1486//31815 -f 2019//31816 3233//31816 3643//31817 -f 3911//31818 6707//31819 6933//31820 -f 1396//31821 5287//31822 2190//31823 -f 7361//31824 7173//31825 7293//31826 -f 4281//31827 5660//31828 4289//31829 -f 2578//31830 2536//31831 2141//31832 -f 3850//31833 2493//31834 5265//31835 -f 7258//31836 7178//31837 7261//31838 -f 5748//31839 2104//31840 322//31841 -f 7042//31842 6952//31843 7295//31844 -f 447//31845 7093//31846 7174//31847 -f 6899//31848 7384//31849 7130//31849 -f 7176//31850 7259//31851 7333//31852 -f 248//31853 2981//31854 7139//31855 -f 3682//31856 4784//31857 4249//31856 -f 81//31858 1509//31859 1510//31860 -f 1724//31861 5434//31862 2539//31862 -f 891//31863 1747//31863 369//31863 -f 6706//31864 7081//31865 6784//31866 -f 3639//31867 3870//31868 2965//31869 -f 3013//31870 2503//31870 4465//31870 -f 2073//31871 1418//31872 1152//31873 -f 1662//31874 4845//31874 4045//31874 -f 2950//31875 1276//31875 5207//31875 -f 4265//31876 464//31877 526//31878 -f 3715//31879 4065//31880 3334//31881 -f 4727//31882 3907//31883 4098//31884 -f 1975//31885 915//31886 1462//31887 -f 7221//31888 7179//31889 7335//31888 -f 188//31890 193//31891 5690//31892 -f 7296//31893 7298//31894 7219//31895 -f 3025//31896 5012//31897 4145//31898 -f 7133//31899 2234//31900 5546//31901 -f 7222//31902 7224//31903 7262//31904 -f 1313//31905 756//31906 5120//31907 -f 2612//31908 2745//31909 5089//31910 -f 7367//31911 7132//31912 7298//31913 -f 7334//31914 7223//31915 7225//31916 -f 1535//31917 1040//31918 1155//31919 -f 4659//31920 1150//31920 720//31921 -f 3287//31922 3868//31923 3679//31924 -f 7132//31925 7367//31925 7182//31926 -f 7297//31927 7180//31928 7299//31929 -f 3274//31930 4302//31931 3450//31932 -f 2663//31933 53//31934 3427//31935 -f 7181//31936 7386//31937 7300//31938 -f 1057//31939 4719//31940 4794//31940 -f 7181//31941 7300//31942 7302//31943 -f 3281//31944 650//31945 767//31946 -f 1272//31947 4548//31947 4289//31947 -f 3293//31948 1543//31949 4484//31950 -f 7336//31951 7299//31952 7302//31953 -f 1423//31954 5506//31954 7242//31954 -f 1370//31955 3464//31956 3361//31957 -f 5834//31958 640//31959 5307//31960 -f 7301//31961 7263//31962 7182//31961 -f 3757//31963 620//31964 4215//31964 -f 7134//31965 6170//31966 7224//31967 -f 5050//31968 2275//31968 1369//31969 -f 1785//31970 4136//31971 4383//31971 -f 7337//31972 7226//31973 6994//31974 -f 817//31975 1899//31976 814//31977 -f 7304//31978 7048//31979 7136//31980 -f 5799//31981 7265//31982 6995//31983 -f 7304//31984 7136//31985 7338//31986 -f 7137//31987 7305//31988 6995//31988 -f 2635//31989 1878//31989 3086//31990 -f 7303//31991 7308//31991 7096//31992 -f 7228//31993 7338//31993 7136//31994 -f 7306//31995 6764//31996 7051//31997 -f 7306//31998 3429//31999 6764//32000 -f 2455//32001 3273//32002 2202//32003 -f 5312//32004 28//32004 3308//32004 -f 7309//32005 7187//32006 7186//32007 -f 4107//32008 1118//32009 3406//32010 -f 3151//32011 1631//32012 4756//32013 -f 1055//32014 4559//32014 1302//32014 -f 2241//32015 4095//32016 871//32017 -f 7341//32018 7189//32019 7231//32020 -f 7342//32021 7141//32022 7098//32022 -f 1959//32023 5361//32024 2127//32025 -f 4478//32026 7056//32027 6859//32028 -f 7058//32029 7392//32029 7342//32029 -f 2720//32030 387//32031 1633//32032 -f 6912//32033 7142//32033 2801//32033 -f 7270//32034 7191//32035 7190//32036 -f 3007//32037 3471//32037 786//32037 -f 7270//32038 7192//32039 7189//32039 -f 4752//32040 809//32041 5077//32040 -f 7269//32042 7312//32042 7343//32042 -f 3070//32043 2135//32044 153//32045 -f 1715//32046 1714//32047 1279//32048 -f 738//32049 2086//32050 180//32051 -f 2436//32052 200//32053 201//32054 -f 7144//32055 7315//32056 7374//32056 -f 7144//32057 7374//32058 7274//32057 -f 1583//32059 3958//32060 5325//32061 -f 4701//32062 7311//32063 7062//32062 -f 7314//32064 7272//32064 7063//32065 -f 7061//32066 7344//32067 7064//32068 -f 2175//32069 963//32069 1735//32069 -f 3417//32070 1811//32071 2713//32072 -f 3753//32073 1354//32074 2221//32075 -f 3344//32076 76//32077 1008//32078 -f 2902//32079 2662//32079 5339//32079 -f 7206//32080 6918//32081 7316//32082 -f 3717//32083 5560//32084 4401//32085 -f 6917//32086 7346//32087 7316//32088 -f 7345//32089 7232//32090 7106//32091 -f 3020//32092 1590//32093 1591//32094 -f 5098//32095 4066//32096 2144//32097 -f 1563//32098 5319//32099 419//32098 -f 5026//32100 3061//32101 4576//32102 -f 7196//32103 7347//32104 7195//32105 -f 3019//32106 2652//32107 3633//32108 -f 3245//32109 2527//32109 5580//32110 -f 6967//32111 7276//32112 7196//32113 -f 238//32114 3490//32114 3339//32114 -f 1446//32115 1153//32115 2827//32115 -f 383//32116 3705//32116 2678//32116 -f 7319//32117 7375//32118 7199//32119 -f 7145//32120 7199//32120 7278//32120 -f 102//32121 1494//32122 1927//32123 -f 5188//32124 5189//32124 114//32125 -f 7007//32126 7348//32126 5819//32126 -f 3582//32127 2090//32128 3583//32129 -f 4281//32130 4416//32130 2395//32130 -f 105//32131 4902//32132 867//32133 -f 3595//32134 3518//32135 642//32136 -f 7198//32137 5819//32138 7321//32139 -f 7198//32140 6922//32141 5819//32142 -f 5458//32143 751//32144 1550//32145 -f 1470//32146 2920//32147 4031//32148 -f 7238//32149 6738//32149 7073//32150 -f 551//32151 550//32152 5596//32153 -f 988//32154 5367//32155 2439//32156 -f 2068//32157 3496//32158 5726//32159 -f 7148//32160 6866//32161 7280//32162 -f 7377//32163 7350//32163 7151//32164 -f 2793//32165 210//32166 1588//32167 -f 2032//32168 7015//32169 4086//32170 -f 2752//32171 7109//32171 7074//32171 -f 7377//32172 7151//32173 7075//32174 -f 7377//32175 7075//32176 7152//32176 -f 7281//32177 7109//32177 2752//32178 -f 4668//32179 3000//32180 752//32181 -f 2736//32182 4052//32183 5399//32184 -f 6779//32185 6731//32186 7153//32187 -f 2466//32188 3779//32188 170//32188 -f 2542//32189 2184//32190 3837//32190 -f 2082//32191 2851//32192 2389//32193 -f 969//32194 4643//32195 181//32196 -f 7156//32197 7352//32198 7078//32199 -f 3621//32200 117//32201 4556//32202 -f 4104//32203 2882//32204 1987//32205 -f 5048//32206 4818//32206 2834//32207 -f 2971//32208 7243//32209 7083//32208 -f 1008//32210 76//32211 3520//32210 -f 1657//32212 4552//32213 3378//32214 -f 2475//32215 4082//32216 1084//32217 -f 2204//32218 4933//32219 3732//32220 -f 1361//32221 4863//32222 1761//32221 -f 5830//32223 1564//32223 3627//32224 -f 4932//32225 3466//32226 3284//32227 -f 4332//32228 888//32229 2366//32230 -f 3464//32231 1370//32231 1526//32231 -f 2943//32232 951//32233 4318//32234 -f 2942//32235 526//32236 3739//32237 -f 602//32238 5690//32238 3013//32238 -f 4479//32239 4881//32240 899//32241 -f 6977//32242 6615//32243 6680//32244 -f 3977//32245 1308//32246 993//32246 -f 401//32247 4503//32248 3706//32247 -f 7020//32249 6660//32250 945//32251 -f 4394//32252 3771//32253 3398//32254 -f 2072//32255 3891//32256 4935//32256 -f 3102//32257 4710//32258 2778//32259 -f 6663//32260 7161//32261 7355//32262 -f 4412//32263 3443//32264 2774//32265 -f 2597//32266 4779//32267 3049//32268 -f 1763//32269 940//32269 197//32270 -f 1039//32271 4430//32272 277//32272 -f 1535//32273 2354//32273 1290//32273 -f 7246//32274 7205//32275 7356//32276 -f 306//32277 2075//32278 2318//32279 -f 7285//32280 7246//32281 7356//32282 -f 1789//32283 7117//32283 3568//32283 -f 2014//32284 3069//32285 146//32286 -f 3512//32287 4815//32288 2648//32289 -f 1500//32290 6831//32290 5574//32290 -f 7247//32291 7323//32291 7324//32291 -f 149//32292 1233//32292 5382//32292 -f 7162//32293 7380//32294 7325//32294 -f 7397//32295 6751//32295 7325//32295 -f 7397//32296 7357//32297 6751//32298 -f 6751//32299 7357//32300 6980//32299 -f 2518//32301 5420//32302 3099//32303 -f 2135//32304 2417//32305 5223//32306 -f 4261//32307 389//32308 1871//32309 -f 5327//32310 5984//32311 5345//32311 -f 4122//32312 1350//32313 4104//32314 -f 1627//32315 6055//32315 5485//32315 -f 1576//32316 3749//32317 412//32318 -f 23//32319 4206//32320 5412//32321 -f 1770//32322 3476//32323 177//32324 -f 6882//32325 6622//32326 6669//32327 -f 6882//32328 6669//32329 5844//32330 -f 1770//32331 3091//32332 3476//32333 -f 1535//32334 4457//32335 1536//32336 -f 645//32337 5//32337 2099//32337 -f 354//32338 2587//32338 3405//32338 -f 6981//32339 7210//32340 6381//32341 -f 391//32342 1784//32343 3179//32344 -f 860//32345 4382//32346 917//32347 -f 3972//32348 4691//32349 987//32350 -f 6752//32351 7027//32352 4175//32353 -f 7027//32354 6945//32355 4981//32356 -f 2782//32357 3770//32358 4648//32359 -f 851//32360 2920//32361 1470//32360 -f 5268//32362 6671//32362 7250//32362 -f 4755//32363 7375//32364 1311//32365 -f 6504//32366 6754//32366 7288//32366 -f 1497//32367 4498//32368 5567//32369 -f 4204//32370 1774//32371 3768//32372 -f 1264//32373 715//32374 1953//32375 -f 7251//32376 7250//32377 6671//32378 -f 95//32379 4791//32380 4632//32381 -f 2360//32382 2585//32382 1162//32383 -f 290//32384 4642//32385 3193//32384 -f 3914//32386 5104//32386 992//32387 -f 211//32388 2480//32389 467//32390 -f 5329//32391 151//32392 6004//32393 -f 7032//32394 7290//32394 7211//32394 -f 7289//32395 6984//32396 6947//32397 -f 5005//32398 1653//32399 3548//32400 -f 7326//32401 1687//32402 7034//32403 -f 2063//32404 2152//32404 4595//32405 -f 3896//32406 4278//32407 2184//32408 -f 2948//32409 5559//32410 4475//32411 -f 7290//32412 7090//32413 6949//32414 -f 7290//32415 6949//32416 7291//32417 -f 4301//32418 5068//32419 4834//32420 -f 4077//32421 2035//32422 2710//32423 -f 3687//32424 3566//32425 3943//32426 -f 3322//32427 3892//32428 197//32427 -f 4231//32429 122//32430 2786//32431 -f 7327//32432 7165//32433 7359//32433 -f 95//32434 1182//32435 4207//32435 -f 1543//32436 1050//32437 5486//32438 -f 7316//32439 1387//32440 2165//32441 -f 7328//32442 7037//32443 7253//32444 -f 3422//32445 4014//32446 4193//32447 -f 376//32448 1099//32448 4117//32448 -f 4690//32449 2884//32450 3279//32451 -f 7123//32452 7165//32452 7327//32452 -f 7330//32453 6897//32454 7124//32453 -f 1841//32455 2861//32455 3590//32455 -f 3143//32456 793//32457 1052//32457 -f 2027//32458 1280//32459 91//32460 -f 7213//32461 7041//32461 7123//32461 -f 3013//32462 1281//32463 1870//32464 -f 4307//32465 1700//32465 920//32466 -f 2343//32467 1088//32468 2233//32469 -f 1036//32470 5221//32471 3229//32472 -f 3250//32473 3573//32474 2049//32475 -f 57//32476 1471//32477 2800//32478 -f 5159//32479 306//32480 2318//32481 -f 7331//32482 6848//32483 7044//32482 -f 2111//32484 3819//32485 2750//32486 -f 7332//32487 7331//32488 7044//32489 -f 5063//32490 4612//32491 4497//32492 -f 7354//32493 2705//32494 5776//32495 -f 5224//32496 3686//32497 651//32498 -f 3069//32499 2055//32499 4731//32499 -f 1064//32500 445//32500 2849//32500 -f 5367//32501 3919//32502 2439//32503 -f 7213//32504 3166//32505 7171//32506 -f 2555//32507 3374//32508 1195//32508 -f 3167//32509 3037//32510 514//32511 -f 2515//32512 1859//32513 127//32514 -f 4233//32515 2180//32516 5106//32517 -f 6952//32518 7292//32519 7295//32520 -f 2222//32521 1800//32522 592//32523 -f 7175//32524 6989//32525 7293//32526 -f 3834//32527 983//32528 2709//32528 -f 6899//32529 7218//32530 7384//32531 -f 3720//32532 6989//32533 7294//32534 -f 1684//32535 414//32536 1046//32537 -f 4777//32538 1488//32538 3559//32539 -f 2973//32540 4732//32540 2974//32540 -f 479//32541 3675//32542 3112//32541 -f 3971//32543 1986//32544 1867//32545 -f 7260//32546 7042//32546 7295//32547 -f 4823//32548 1421//32549 700//32550 -f 4821//32551 1810//32552 7350//32553 -f 7294//32554 7215//32555 7365//32556 -f 128//32557 755//32558 1963//32559 -f 1230//32560 4024//32560 196//32560 -f 1541//32561 4141//32562 1540//32563 -f 306//32564 343//32565 4323//32565 -f 457//32566 3576//32566 2335//32566 -f 7261//32567 7217//32568 4347//32569 -f 7296//32570 7260//32571 7366//32571 -f 3628//32572 5158//32573 1729//32574 -f 3436//32575 1498//32575 5640//32576 -f 2235//32577 2305//32577 3479//32577 -f 422//32578 335//32579 2655//32580 -f 3886//32581 928//32582 4231//32583 -f 4437//32584 2336//32584 1457//32584 -f 2907//32585 2019//32585 4270//32586 -f 7298//32587 7296//32588 7409//32588 -f 1894//32589 819//32590 3621//32591 -f 380//32592 1713//32593 2738//32594 -f 4434//32595 115//32595 685//32596 -f 2985//32597 4263//32598 713//32599 -f 2998//32600 1382//32601 5653//32602 -f 7225//32603 7369//32604 7368//32605 -f 1341//32606 1511//32606 4707//32607 -f 1568//32608 3947//32609 526//32610 -f 2487//32611 4047//32612 1654//32613 -f 1191//32614 2890//32614 1229//32614 -f 2659//32615 5045//32616 2905//32617 -f 513//32618 3560//32619 3746//32620 -f 149//32621 2814//32622 1233//32623 -f 4794//32624 1117//32625 1057//32626 -f 2155//32627 5782//32628 5062//32629 -f 4950//32630 4881//32631 4479//32631 -f 368//32632 248//32633 2661//32634 -f 2831//32635 1895//32635 1237//32635 -f 7308//32636 7303//32637 7370//32638 -f 4461//32639 3775//32640 555//32641 -f 398//32642 2302//32643 2794//32643 -f 6994//32644 7266//32645 7337//32645 -f 7226//32646 7337//32647 439//32648 -f 7265//32649 5799//32649 7387//32649 -f 1041//32650 4343//32651 4872//32652 -f 1365//32653 7348//32653 1275//32654 -f 7264//32655 7306//32656 7051//32657 -f 7050//32658 7226//32658 7267//32658 -f 5799//32659 6995//32660 7305//32661 -f 523//32662 2699//32662 3998//32662 -f 7307//32663 7338//32664 7228//32665 -f 4861//32666 7268//32667 7308//32667 -f 7186//32668 7268//32669 4861//32670 -f 7186//32671 4861//32672 7371//32673 -f 4659//32674 720//32675 3006//32676 -f 7309//32677 7186//32678 7371//32679 -f 3342//32680 3735//32680 279//32680 -f 488//32681 493//32682 1607//32682 -f 7229//32683 7305//32684 7137//32685 -f 249//32686 2847//32687 2142//32688 -f 250//32689 2847//32690 249//32691 -f 3741//32692 151//32693 2825//32694 -f 7339//32695 7097//32696 7309//32695 -f 3018//32697 1096//32698 5648//32699 -f 2670//32700 5226//32700 2483//32701 -f 7231//32702 7339//32703 7390//32702 -f 3580//32704 878//32705 1286//32706 -f 3944//32707 3704//32708 2848//32709 -f 7341//32710 7231//32711 7340//32712 -f 973//32713 5162//32714 4602//32715 -f 3706//32716 1022//32717 3861//32718 -f 2379//32719 2700//32720 2702//32719 -f 7342//32721 7372//32722 7141//32722 -f 2826//32723 3228//32724 4398//32725 -f 4593//32726 2466//32726 3491//32726 -f 5021//32727 4236//32728 4433//32727 -f 5227//32729 1117//32730 4794//32729 -f 2651//32731 3210//32732 3451//32733 -f 7392//32734 7058//32735 7269//32736 -f 5236//32737 3654//32737 738//32738 -f 7271//32739 7191//32740 7373//32740 -f 780//32741 1005//32742 2192//32741 -f 877//32743 5067//32744 22//32745 -f 4549//32746 4738//32747 2989//32748 -f 2550//32749 1911//32750 1462//32751 -f 2168//32752 3184//32753 198//32753 -f 7271//32754 7374//32755 7143//32756 -f 2195//32757 5738//32757 729//32758 -f 1111//32759 2837//32760 3858//32759 -f 4029//32761 3618//32761 2882//32761 -f 7275//32762 6913//32763 76//32764 -f 7315//32765 7143//32766 7374//32767 -f 4585//32768 3505//32769 4194//32770 -f 7394//32771 7272//32772 7314//32773 -f 4758//32774 4860//32774 3912//32774 -f 2729//32775 2730//32776 5099//32777 -f 1611//32778 2976//32779 261//32780 -f 2743//32781 4394//32782 1335//32782 -f 5272//32783 558//32784 5373//32785 -f 3520//32786 972//32787 3546//32788 -f 3875//32789 1815//32789 1968//32789 -f 2650//32790 2080//32791 2665//32792 -f 1397//32793 2397//32794 2398//32795 -f 296//32796 3217//32797 2001//32798 -f 7346//32799 6917//32799 7275//32799 -f 478//32800 3635//32801 3753//32801 -f 7314//32802 7195//32803 7347//32804 -f 3199//32805 898//32806 3700//32807 -f 343//32808 2146//32809 7406//32810 -f 3326//32811 3681//32812 1051//32813 -f 7276//32814 7318//32814 7347//32815 -f 4159//32816 1954//32817 93//32816 -f 7375//32818 7320//32819 7199//32820 -f 4187//32821 4337//32822 3480//32821 -f 473//32823 3723//32824 1151//32824 -f 2566//32825 344//32826 5376//32827 -f 2672//32828 247//32829 503//32830 -f 7318//32831 7276//32832 7279//32833 -f 7276//32834 7347//32835 7196//32836 -f 7199//32837 7011//32837 7319//32838 -f 7236//32839 7108//32839 7319//32839 -f 3160//32840 2994//32841 1752//32840 -f 7011//32842 7236//32843 7319//32844 -f 2871//32845 1118//32845 157//32845 -f 7317//32846 7147//32847 7349//32848 -f 7237//32849 7146//32850 7198//32851 -f 429//32852 430//32853 982//32854 -f 7073//32855 7237//32856 7238//32857 -f 2640//32858 1905//32859 1332//32860 -f 7014//32861 524//32862 3931//32863 -f 470//32864 1415//32864 445//32864 -f 2195//32865 3389//32866 407//32867 -f 4534//32868 1172//32869 2041//32870 -f 4270//32871 4049//32871 3343//32872 -f 5707//32873 2763//32874 67//32875 -f 576//32876 1472//32877 2057//32878 -f 7377//32879 6926//32879 7322//32880 -f 804//32881 4621//32882 179//32883 -f 3972//32884 4406//32884 2346//32884 -f 469//32885 4906//32886 3216//32885 -f 3968//32887 3699//32888 2012//32889 -f 4256//32890 2840//32891 430//32892 -f 7157//32893 2074//32894 7282//32895 -f 2961//32896 3159//32897 3311//32898 -f 7352//32899 7156//32900 7353//32901 -f 5946//32902 5699//32903 3888//32904 -f 3046//32905 2415//32905 3652//32905 -f 5421//32906 1461//32907 619//32908 -f 4154//32909 5382//32909 3172//32910 -f 7083//32911 7019//32912 7113//32913 -f 2187//32914 4260//32915 5654//32916 -f 1292//32917 4114//32917 432//32917 -f 930//32918 3281//32919 542//32919 -f 1359//32920 620//32921 1849//32922 -f 251//32923 540//32923 3814//32924 -f 4047//32925 4808//32925 2176//32925 -f 7245//32926 6656//32926 5274//32927 -f 3170//32928 3550//32929 4838//32930 -f 1157//32931 789//32932 2677//32933 -f 1805//32934 2930//32935 2581//32936 -f 7379//32937 7205//32938 7284//32939 -f 1309//32940 703//32941 4909//32940 -f 7024//32942 7284//32943 6529//32944 -f 6530//32945 7355//32946 7024//32947 -f 2124//32948 2031//32948 2888//32949 -f 3495//32950 105//32951 4808//32951 -f 296//32952 2001//32953 2111//32954 -f 2647//32955 4397//32956 2192//32956 -f 7285//32957 7356//32958 7208//32959 -f 2054//32960 4082//32961 75//32962 -f 6831//32963 1500//32964 7025//32963 -f 1500//32965 3660//32966 7025//32967 -f 4497//32968 3602//32969 5602//32970 -f 5279//32971 3043//32971 1474//32971 -f 7324//32972 7380//32973 7162//32974 -f 1766//32975 3232//32975 450//32975 -f 6491//32976 7289//32977 874//32978 -f 1019//32979 289//32979 3540//32979 -f 296//32980 2111//32981 2750//32982 -f 1019//32983 2348//32984 289//32985 -f 1413//32986 4600//32987 3418//32988 -f 2429//32989 3571//32990 1796//32991 -f 2793//32992 2594//32993 210//32994 -f 6712//32995 7026//32996 3214//32997 -f 7210//32998 7088//32999 7249//33000 -f 1577//33001 2052//33002 4365//33003 -f 4493//33004 1407//33005 3090//33005 -f 36//33006 6406//33007 6124//33008 -f 470//33009 1064//33010 882//33011 -f 5268//33012 7089//33013 6837//33014 -f 981//33015 3889//33015 1805//33016 -f 4698//33017 6752//33018 4175//33019 -f 5361//33020 4066//33021 635//33022 -f 3483//33023 4782//33024 5501//33025 -f 7288//33026 6754//33026 7031//33027 -f 3801//33028 628//33028 3322//33028 -f 1873//33029 1125//33030 678//33031 -f 2287//33032 590//33033 1743//33034 -f 3730//33035 3077//33035 3074//33036 -f 4998//33037 4562//33038 4051//33037 -f 4131//33039 3295//33040 2282//33041 -f 1408//33042 5580//33043 3233//33044 -f 4687//33045 3924//33046 502//33047 -f 3016//33048 3920//33049 1554//33050 -f 4185//33051 2103//33051 1139//33052 -f 2117//33053 1948//33054 5087//33055 -f 7326//33056 7033//33057 6841//33058 -f 982//33059 4635//33060 3387//33061 -f 7164//33062 6792//33063 4828//33064 -f 1657//33065 1214//33065 5943//33065 -f 7381//33066 6984//33066 6491//33066 -f 5375//33067 1059//33068 972//33069 -f 2282//33070 3295//33070 3817//33070 -f 3242//33071 2782//33071 3350//33071 -f 6988//33072 7252//33073 7291//33074 -f 4706//33075 7037//33076 3259//33077 -f 2928//33078 1882//33078 1373//33079 -f 7329//33080 7122//33081 7105//33082 -f 3259//33083 7037//33084 7328//33085 -f 7122//33086 7329//33087 7038//33086 -f 6676//33088 7382//33089 7166//33090 -f 1152//33091 569//33092 2073//33093 -f 7038//33094 7360//33095 7125//33095 -f 1858//33096 3595//33097 642//33098 -f 1575//33099 632//33100 4850//33101 -f 2366//33102 4509//33103 2902//33104 -f 5516//33105 3131//33106 3593//33107 -f 3361//33108 1745//33108 1460//33109 -f 4962//33110 470//33110 5331//33110 -f 523//33111 666//33112 3315//33113 -f 7383//33114 7257//33115 7258//33116 -f 104//33117 3400//33118 2025//33119 -f 469//33120 2143//33121 2496//33122 -f 1170//33123 3038//33124 3167//33125 -f 7332//33126 7173//33127 7361//33128 -f 4866//33129 2631//33130 4704//33131 -f 7043//33132 7126//33133 4404//33133 -f 4046//33134 4363//33135 3349//33136 -f 818//33137 3916//33138 1528//33139 -f 3374//33140 1018//33140 3605//33140 -f 273//33141 5082//33142 288//33143 -f 447//33144 615//33145 7170//33146 -f 7384//33147 7362//33147 7130//33147 -f 7333//33148 7259//33148 7384//33149 -f 2220//33150 3815//33150 4159//33151 -f 3175//33152 890//33153 4349//33153 -f 7384//33154 7218//33155 7333//33156 -f 1446//33157 4319//33158 2807//33159 -f 7363//33160 7295//33161 7292//33162 -f 2290//33163 556//33164 5275//33165 -f 4317//33166 168//33166 2306//33166 -f 5213//33167 1989//33167 1567//33167 -f 949//33168 3000//33169 4979//33170 -f 1561//33171 1998//33171 1376//33171 -f 3696//33172 3597//33172 662//33172 -f 7295//33173 7366//33174 7260//33175 -f 7220//33176 7335//33176 7333//33177 -f 2207//33178 7261//33179 4347//33180 -f 742//33181 1082//33182 2239//33183 -f 7220//33184 7333//33184 7218//33185 -f 7333//33186 7335//33187 7176//33188 -f 190//33189 2947//33190 4484//33191 -f 7365//33192 7215//33192 7262//33192 -f 2925//33193 3162//33194 3930//33195 -f 964//33196 7365//33197 7262//33198 -f 4347//33199 7217//33199 7297//33199 -f 964//33200 7262//33200 7224//33201 -f 7334//33202 7220//33203 7223//33204 -f 225//33205 4223//33206 3674//33207 -f 7367//33208 7298//33209 7409//33210 -f 3042//33211 2834//33212 214//33213 -f 7225//33214 7368//33215 7334//33216 -f 3324//33217 3414//33218 1910//33219 -f 4687//33220 4688//33221 3010//33222 -f 4257//33223 2062//33224 820//33225 -f 4427//33226 2656//33227 3362//33228 -f 4454//33229 2126//33229 1848//33230 -f 4094//33231 4260//33232 1655//33233 -f 7386//33234 7221//33235 7335//33236 -f 7386//33237 7335//33238 7385//33239 -f 1973//33240 2618//33241 1210//33242 -f 3560//33243 2049//33243 3746//33243 -f 4444//33244 810//33245 1498//33246 -f 5566//33247 7303//33248 7263//33248 -f 7411//33249 7225//33250 7135//33251 -f 4389//33252 4976//33253 2898//33254 -f 602//33255 1862//33256 1489//33256 -f 2665//33257 2036//33258 3757//33258 -f 3078//33259 7299//33259 3701//33259 -f 3582//33260 4707//33261 2090//33262 -f 3320//33263 655//33264 3852//33265 -f 7387//33266 7266//33267 7265//33268 -f 174//33269 299//33270 6170//33271 -f 1877//33272 921//33273 3202//33274 -f 1524//33275 1878//33276 4831//33277 -f 1582//33278 160//33279 520//33280 -f 439//33281 7267//33281 7226//33281 -f 5799//33282 7305//33283 1318//33284 -f 6997//33285 1699//33285 7229//33286 -f 4223//33287 225//33288 4346//33287 -f 966//33289 1236//33290 2050//33291 -f 2617//33292 3991//33293 5750//33293 -f 919//33294 1782//33295 4255//33296 -f 2945//33297 3079//33298 1951//33299 -f 7340//33300 7231//33300 7390//33300 -f 7372//33301 7230//33302 7141//33303 -f 7372//33304 7342//33305 7391//33306 -f 3798//33307 1293//33307 2202//33307 -f 446//33308 1362//33309 426//33310 -f 3176//33311 2818//33312 1346//33313 -f 7189//33314 7341//33315 7270//33316 -f 6859//33317 6964//33318 7311//33319 -f 7191//33320 3879//33321 7373//33322 -f 2710//33323 2035//33324 2393//33325 -f 1497//33326 2626//33326 754//33326 -f 323//33327 4509//33327 378//33327 -f 7269//33328 7343//33329 7392//33330 -f 6859//33331 7311//33332 163//33333 -f 1390//33334 2490//33335 325//33336 -f 4632//33337 2912//33338 1949//33337 -f 7374//33339 7271//33340 7373//33341 -f 815//33342 2342//33343 3032//33344 -f 2925//33345 3930//33345 3227//33346 -f 7374//33347 7404//33348 7274//33349 -f 5375//33350 6913//33351 7004//33351 -f 4684//33352 3227//33353 3930//33354 -f 4017//33355 1294//33355 2786//33355 -f 1664//33356 1663//33357 1025//33358 -f 873//33359 5140//33360 2944//33361 -f 7272//33362 7394//33363 7312//33364 -f 1377//33365 4492//33365 2794//33365 -f 2946//33366 4663//33366 191//33366 -f 1117//33367 2084//33368 1833//33369 -f 3608//33370 3784//33370 1072//33370 -f 4250//33371 4765//33372 4120//33372 -f 4184//33373 1175//33374 422//33373 -f 2971//33375 6230//33376 3534//33377 -f 2005//33378 4345//33378 4595//33379 -f 7064//33380 7344//33381 3657//33382 -f 5030//33383 3424//33383 3629//33383 -f 7277//33384 7232//33385 3822//33385 -f 1159//33386 1610//33387 1812//33388 -f 7376//33389 7412//33390 7318//33391 -f 5394//33392 4311//33393 2868//33394 -f 4372//33395 4482//33396 148//33397 -f 892//33398 841//33399 3530//33399 -f 4098//33400 3907//33401 2894//33402 -f 3384//33403 364//33404 363//33405 -f 5123//33406 5331//33406 904//33406 -f 7317//33407 2136//33408 4701//33409 -f 1920//33410 1036//33411 3305//33412 -f 1277//33413 503//33414 2212//33415 -f 3635//33416 3360//33417 4744//33418 -f 41//33419 631//33420 3677//33419 -f 646//33421 2847//33422 250//33422 -f 7320//33423 7279//33424 7278//33425 -f 1627//33426 4683//33427 190//33428 -f 2487//33429 1686//33429 606//33429 -f 1353//33430 2056//33431 3118//33432 -f 623//33433 5124//33434 1750//33435 -f 5547//33436 2139//33437 641//33438 -f 7362//33439 2273//33440 919//33441 -f 783//33442 5388//33442 3459//33443 -f 7149//33444 7238//33445 7014//33446 -f 851//33447 5522//33448 5286//33449 -f 4086//33450 7150//33451 3931//33452 -f 1598//33453 3111//33454 5390//33455 -f 1194//33456 1108//33457 2544//33458 -f 7351//33459 7076//33459 63//33459 -f 1275//33460 5141//33460 4965//33460 -f 6731//33461 7076//33462 7351//33463 -f 5612//33464 3828//33464 4559//33465 -f 1216//33466 7153//33467 6731//33468 -f 5121//33469 1166//33470 64//33471 -f 7153//33472 3155//33472 7111//33473 -f 2656//33474 1441//33474 2717//33474 -f 3659//33475 235//33475 3084//33476 -f 7157//33477 7154//33477 2074//33477 -f 3305//33478 1512//33479 1920//33480 -f 2436//33481 761//33482 200//33483 -f 4620//33484 2995//33484 1828//33485 -f 5226//33486 3743//33486 4196//33487 -f 1769//33488 4155//33488 3758//33488 -f 456//33489 3492//33489 4721//33489 -f 3846//33490 4348//33491 4119//33490 -f 5183//33492 2565//33493 1952//33494 -f 3154//33495 4671//33495 1682//33495 -f 1290//33496 1116//33497 2952//33498 -f 4529//33499 4671//33500 3154//33501 -f 5545//33502 260//33503 532//33504 -f 7243//33505 7378//33506 7114//33507 -f 3553//33508 3633//33509 4442//33510 -f 1387//33511 4368//33512 2165//33513 -f 79//33514 110//33515 4709//33516 -f 4056//33517 4841//33518 2820//33518 -f 5776//33519 2705//33519 4879//33519 -f 3427//33520 42//33521 813//33520 -f 3561//33522 2986//33523 2413//33524 -f 1231//33525 1680//33526 776//33527 -f 4829//33528 1077//33528 2393//33529 -f 302//33530 1223//33531 400//33532 -f 5966//33533 7355//33534 7161//33535 -f 945//33536 6662//33537 1789//33537 -f 4018//33538 6615//33539 7116//33540 -f 1871//33541 3361//33542 3464//33541 -f 3598//33543 359//33544 3986//33544 -f 7396//33545 7205//33546 7379//33547 -f 2778//33548 4286//33548 1101//33548 -f 897//33549 4145//33550 5110//33551 -f 420//33552 390//33552 4265//33553 -f 3163//33554 5657//33555 751//33556 -f 5314//33557 140//33558 4003//33559 -f 7323//33560 7208//33560 7356//33560 -f 7323//33561 7356//33562 7407//33563 -f 3198//33564 1445//33565 3101//33566 -f 3606//33567 6979//33568 4395//33569 -f 5211//33570 2087//33571 4931//33572 -f 1600//33573 3033//33574 4545//33575 -f 7323//33576 7407//33577 7324//33578 -f 2270//33579 3438//33580 1990//33581 -f 2440//33582 3875//33582 1732//33582 -f 2696//33583 2539//33584 5434//33585 -f 1313//33586 6712//33586 3214//33586 -f 2300//33587 7248//33588 7120//33589 -f 6124//33590 6713//33591 5719//33590 -f 2127//33592 3488//33593 1887//33594 -f 2170//33595 1351//33596 4403//33597 -f 2906//33598 1000//33598 1977//33598 -f 1574//33599 5305//33600 1479//33601 -f 7286//33602 6981//33603 6381//33602 -f 872//33604 1174//33605 4402//33606 -f 1112//33607 7286//33607 6381//33608 -f 5566//33609 1113//33610 7370//33611 -f 890//33612 2901//33613 5596//33612 -f 5599//33614 4981//33615 6945//33616 -f 4304//33617 2615//33618 1546//33619 -f 4233//33620 5106//33621 746//33622 -f 7358//33623 7287//33624 7211//33625 -f 6673//33626 7028//33627 2536//33628 -f 7031//33629 6624//33630 3876//33631 -f 647//33632 4440//33633 5331//33634 -f 7211//33635 7290//33635 4129//33635 -f 676//33636 54//33637 4152//33638 -f 7034//33639 7033//33639 7326//33639 -f 3197//33640 658//33641 3785//33642 -f 339//33643 2827//33644 1153//33645 -f 4066//33646 3302//33647 635//33646 -f 5633//33648 4482//33648 2868//33649 -f 996//33650 980//33651 4806//33652 -f 3725//33653 3997//33654 4114//33654 -f 413//33655 7035//33656 5255//33657 -f 1447//33658 3137//33659 4631//33659 -f 3838//33660 1091//33661 1674//33662 -f 4419//33663 2975//33664 183//33665 -f 3113//33666 406//33666 405//33666 -f 7164//33667 7105//33668 7122//33669 -f 7359//33670 7165//33670 7381//33670 -f 2933//33671 307//33671 468//33672 -f 4195//33673 1097//33674 7235//33673 -f 1227//33675 2220//33676 93//33677 -f 7330//33678 7252//33678 6897//33679 -f 870//33680 1525//33681 4361//33682 -f 5669//33683 4710//33683 4154//33683 -f 1844//33684 1144//33684 1301//33685 -f 6846//33686 7256//33687 6794//33688 -f 2290//33689 3367//33689 556//33689 -f 5518//33690 7327//33690 2079//33691 -f 660//33692 3172//33692 3299//33693 -f 5480//33694 1989//33695 1586//33696 -f 7038//33697 7400//33698 7360//33699 -f 2892//33700 7254//33701 6950//33702 -f 3131//33703 1323//33704 3593//33705 -f 3817//33706 2273//33707 7257//33708 -f 2050//33709 194//33709 966//33709 -f 4038//33710 713//33711 3091//33712 -f 3137//33713 598//33714 3264//33715 -f 2219//33716 2493//33716 2492//33717 -f 7292//33718 7125//33719 7360//33720 -f 1187//33721 3951//33722 1976//33723 -f 57//33724 2138//33724 1262//33724 -f 7259//33725 7257//33725 7362//33726 -f 5187//33727 7049//33727 7361//33727 -f 2674//33728 4826//33728 2418//33728 -f 7362//33729 7256//33729 7130//33729 -f 7293//33730 3720//33731 7401//33732 -f 7401//33733 7361//33734 7293//33734 -f 4404//33735 7172//33736 7043//33736 -f 5110//33737 3201//33738 897//33739 -f 3490//33740 1747//33741 891//33742 -f 7362//33743 7384//33744 7259//33745 -f 6989//33746 3720//33747 7293//33748 -f 2336//33749 4070//33750 2295//33751 -f 4312//33752 4239//33752 1953//33753 -f 2917//33754 1397//33754 2398//33755 -f 7170//33756 7093//33757 447//33758 -f 4773//33759 4460//33760 5205//33761 -f 734//33762 5222//33763 1516//33764 -f 2288//33765 447//33766 7174//33766 -f 2283//33767 610//33768 4355//33769 -f 3828//33770 2684//33771 2683//33772 -f 4401//33773 7364//33774 7261//33775 -f 7133//33776 3166//33776 1406//33777 -f 4738//33778 1700//33779 624//33780 -f 4361//33781 3129//33782 1271//33783 -f 1096//33784 174//33785 3513//33786 -f 7335//33787 7220//33788 7334//33789 -f 7366//33790 7409//33790 7296//33791 -f 5086//33792 1741//33792 4208//33792 -f 2234//33793 2272//33793 5546//33793 -f 7402//33794 7367//33795 7409//33796 -f 3113//33797 1098//33798 406//33799 -f 81//33800 6051//33801 1255//33802 -f 7334//33803 7368//33804 7335//33805 -f 2362//33806 580//33806 1323//33806 -f 4102//33807 3393//33808 1650//33809 -f 2743//33810 1335//33811 4547//33810 -f 7368//33812 7369//33813 7335//33812 -f 4257//33814 2490//33815 1390//33816 -f 136//33817 3678//33818 1486//33819 -f 7301//33820 7367//33821 7402//33822 -f 7385//33823 7335//33824 7369//33825 -f 7301//33826 7402//33826 7403//33826 -f 3026//33827 5221//33828 1363//33829 -f 3261//33830 1655//33831 5403//33832 -f 2736//33833 1891//33834 899//33835 -f 1660//33836 544//33837 4252//33838 -f 585//33839 7297//33839 7299//33840 -f 446//33841 1834//33842 1362//33843 -f 7263//33844 7301//33845 5566//33846 -f 5566//33847 7370//33847 7303//33847 -f 7411//33848 7135//33848 7304//33849 -f 3533//33850 3789//33851 3126//33852 -f 2632//33853 7302//33853 7300//33854 -f 72//33855 1431//33856 521//33857 -f 3425//33858 4718//33859 3095//33859 -f 3402//33860 3411//33861 2931//33860 -f 7336//33862 7302//33863 2632//33864 -f 3697//33865 3435//33866 1291//33867 -f 2374//33868 1636//33868 1637//33868 -f 1315//33869 4103//33870 828//33871 -f 3562//33872 4623//33873 5653//33873 -f 429//33874 4813//33875 4256//33876 -f 7338//33877 7307//33878 7388//33879 -f 1216//33880 6731//33880 1696//33881 -f 1318//33882 7305//33883 7229//33882 -f 1158//33884 4999//33884 728//33884 -f 746//33885 3060//33886 2795//33886 -f 4343//33887 1658//33888 4872//33887 -f 1595//33889 3705//33890 1989//33891 -f 3144//33892 1522//33892 2725//33893 -f 1649//33894 1093//33895 2129//33896 -f 7389//33897 7307//33898 5496//33899 -f 7140//33900 5496//33901 7307//33902 -f 5496//33903 7140//33904 7230//33905 -f 7339//33906 7309//33907 7390//33907 -f 7230//33908 7372//33909 5496//33910 -f 1655//33911 4260//33912 1396//33913 -f 2110//33914 4045//33914 4845//33915 -f 4218//33916 3567//33917 4046//33918 -f 910//33919 2476//33919 2833//33920 -f 1190//33921 1620//33922 1189//33923 -f 653//33924 2438//33925 5525//33926 -f 7342//33927 7392//33928 7391//33929 -f 2423//33930 589//33931 1883//33932 -f 2456//33933 831//33934 4757//33935 -f 4314//33936 995//33937 2595//33938 -f 3307//33939 4519//33940 7343//33941 -f 4154//33942 5081//33943 5669//33944 -f 4337//33945 2664//33946 3844//33946 -f 1651//33947 4157//33947 4629//33947 -f 7405//33948 7274//33949 7404//33950 -f 7374//33951 7373//33952 7404//33953 -f 1838//33954 3229//33955 5221//33956 -f 4607//33957 4075//33957 1430//33957 -f 7394//33958 5591//33959 7312//33960 -f 5083//33961 2226//33962 419//33961 -f 7274//33963 7405//33963 7345//33963 -f 7394//33964 7314//33964 7393//33964 -f 5174//33965 5095//33966 1890//33967 -f 7313//33968 5810//33968 7061//33968 -f 936//33969 3090//33970 3637//33971 -f 719//33972 2535//33973 1977//33974 -f 3918//33975 1873//33976 5590//33977 -f 56//33978 2103//33978 4185//33978 -f 2046//33979 3936//33980 2896//33981 -f 7345//33982 7405//33982 7232//33982 -f 3822//33983 7232//33983 7405//33983 -f 2986//33984 4449//33985 4044//33986 -f 3572//33987 114//33988 5189//33989 -f 7412//33990 7314//33990 7347//33991 -f 4704//33992 3784//33993 2039//33993 -f 7347//33994 7318//33994 7412//33994 -f 954//33995 1569//33995 1492//33995 -f 7318//33996 7320//33997 7376//33998 -f 4468//33999 313//34000 409//34001 -f 460//34002 3231//34003 3671//34004 -f 383//34005 3044//34006 2471//34007 -f 581//34008 4087//34009 3370//34010 -f 1741//34011 2481//34012 1746//34013 -f 7320//34014 7318//34015 7279//34016 -f 457//34017 519//34018 2831//34019 -f 1412//34020 4180//34021 497//34022 -f 1839//34023 7198//34024 7321//34025 -f 7198//34026 1839//34027 2457//34028 -f 2457//34029 3927//34030 7198//34031 -f 5403//34032 3260//34033 3261//34034 -f 1453//34035 8//34035 2680//34035 -f 7014//34036 7238//34037 3503//34038 -f 7014//34039 3139//34040 524//34041 -f 3059//34042 746//34043 5106//34042 -f 4788//34044 1207//34044 556//34044 -f 771//34045 772//34045 2491//34046 -f 2716//34047 801//34047 960//34047 -f 4142//34048 3043//34049 4668//34050 -f 660//34051 3171//34052 3172//34053 -f 685//34054 115//34055 2485//34056 -f 5499//34057 3792//34058 322//34059 -f 373//34060 4044//34061 2871//34062 -f 4227//34063 7216//34064 1621//34064 -f 3945//34065 7154//34066 7200//34067 -f 2074//34068 7154//34069 3945//34069 -f 26//34070 246//34071 668//34072 -f 3891//34073 7322//34074 7202//34075 -f 7202//34076 7322//34077 7155//34078 -f 7239//34079 3891//34080 7202//34081 -f 7240//34082 7016//34083 7395//34083 -f 7395//34084 7239//34085 7240//34086 -f 2028//34087 3887//34088 1143//34089 -f 7352//34090 7353//34091 5346//34092 -f 1371//34093 641//34094 1134//34095 -f 4802//34096 4490//34097 1336//34098 -f 7283//34099 4283//34100 7353//34099 -f 884//34101 104//34102 2025//34103 -f 5205//34104 2206//34105 5807//34106 -f 858//34107 4230//34108 4631//34109 -f 1888//34110 1748//34111 5732//34112 -f 1502//34113 1335//34114 5826//34114 -f 4183//34115 5782//34116 1104//34115 -f 6051//34117 3703//34117 1255//34118 -f 5402//34119 3526//34119 4464//34120 -f 6745//34121 1224//34122 6695//34123 -f 3423//34124 4431//34125 2444//34126 -f 995//34127 4197//34127 3717//34128 -f 767//34129 542//34130 3281//34131 -f 2538//34132 4891//34132 3525//34132 -f 1307//34133 1197//34133 659//34134 -f 2130//34135 3995//34136 849//34136 -f 3050//34137 5018//34137 6680//34138 -f 7242//34139 7020//34140 5034//34141 -f 4398//34142 3422//34143 4193//34143 -f 7114//34144 7378//34145 7161//34146 -f 2866//34147 5305//34148 2571//34149 -f 624//34150 1760//34151 4738//34152 -f 7087//34153 7354//34153 7204//34154 -f 3355//34155 4498//34156 1410//34157 -f 7406//34158 7379//34159 7284//34160 -f 7284//34161 7024//34162 4323//34163 -f 7356//34164 7205//34164 7396//34164 -f 3641//34165 3124//34166 5664//34167 -f 2584//34168 4035//34169 4453//34170 -f 1273//34171 141//34172 1667//34173 -f 7356//34174 7396//34175 7407//34176 -f 7324//34177 7407//34177 7380//34178 -f 4597//34179 7380//34180 7407//34181 -f 7325//34182 7380//34183 7397//34184 -f 439//34185 7337//34186 4729//34187 -f 284//34188 58//34189 2082//34190 -f 516//34191 4766//34192 2253//34193 -f 3392//34194 4395//34195 377//34195 -f 4671//34196 4529//34197 2962//34198 -f 741//34199 983//34199 570//34199 -f 3239//34200 1331//34200 3430//34200 -f 2674//34201 2418//34202 285//34203 -f 3851//34204 2809//34205 667//34206 -f 3214//34207 7026//34208 6882//34208 -f 2506//34209 4893//34209 1409//34209 -f 104//34210 7210//34210 7249//34210 -f 2816//34211 4919//34212 1482//34213 -f 2829//34214 1029//34215 1321//34216 -f 1954//34217 4610//34218 93//34219 -f 6381//34220 7210//34220 884//34220 -f 5656//34221 5213//34221 1567//34222 -f 4824//34223 1735//34223 5550//34223 -f 873//34224 3841//34225 1675//34225 -f 3279//34226 4007//34227 4690//34228 -f 3960//34229 405//34229 1041//34230 -f 5718//34231 3609//34232 1015//34233 -f 3563//34234 297//34234 2843//34234 -f 3144//34235 4464//34235 1522//34236 -f 4583//34237 179//34238 3554//34239 -f 5077//34240 7029//34240 4698//34240 -f 2374//34241 472//34242 1636//34243 -f 6884//34244 7029//34245 5077//34245 -f 2511//34246 7251//34247 7034//34248 -f 4995//34249 3527//34250 2841//34251 -f 5077//34252 4828//34253 6884//34254 -f 3223//34255 2581//34256 2930//34257 -f 7211//34258 4129//34258 7358//34258 -f 1035//34259 6839//34260 2536//34260 -f 3406//34261 1006//34261 4068//34261 -f 4903//34262 2385//34263 89//34264 -f 391//34265 2383//34265 3042//34266 -f 7289//34267 6491//34268 6984//34268 -f 2253//34269 3987//34269 516//34270 -f 3088//34271 2517//34272 3504//34273 -f 2909//34274 268//34275 1022//34274 -f 2092//34276 3729//34277 1336//34278 -f 7398//34279 4706//34280 3259//34281 -f 7359//34282 7381//34283 3966//34284 -f 3061//34285 1714//34285 5301//34285 -f 6676//34286 6894//34286 7382//34287 -f 4731//34288 818//34288 5845//34288 -f 3339//34289 2608//34289 1437//34289 -f 1826//34290 2604//34290 5128//34291 -f 1846//34292 3652//34292 3656//34292 -f 2362//34293 4785//34294 5272//34295 -f 7328//34296 7254//34297 855//34298 -f 4025//34299 5018//34299 3050//34299 -f 282//34300 7124//34300 7399//34301 -f 5224//34302 1088//34303 2343//34304 -f 1361//34305 1761//34306 1871//34306 -f 6794//34307 7256//34308 2629//34309 -f 2763//34310 7399//34311 7124//34312 -f 2763//34313 7124//34313 7255//34314 -f 3900//34315 4043//34316 3901//34317 -f 4503//34318 401//34319 746//34320 -f 4432//34321 5300//34322 2746//34323 -f 7408//34324 7255//34325 7331//34326 -f 4300//34327 1042//34328 3865//34329 -f 5518//34330 7213//34331 7123//34331 -f 3390//34332 2483//34332 5613//34332 -f 7408//34333 7331//34334 7049//34335 -f 4614//34336 4332//34337 2366//34338 -f 697//34339 2246//34340 3143//34341 -f 4740//34342 3579//34343 4037//34343 -f 3817//34344 7257//34344 7383//34345 -f 5368//34346 3642//34347 929//34348 -f 2829//34349 4218//34349 2132//34349 -f 7362//34350 7257//34351 2273//34352 -f 3314//34353 3077//34354 908//34353 -f 7332//34355 7049//34356 7331//34356 -f 3536//34357 2229//34358 2148//34359 -f 7401//34360 5187//34361 7361//34362 -f 2404//34363 1538//34364 5082//34365 -f 2282//34366 7383//34367 7258//34367 -f 615//34368 7169//34369 7170//34368 -f 7364//34370 7258//34371 7261//34372 -f 3258//34373 2832//34374 2880//34375 -f 2304//34376 3813//34377 1636//34378 -f 7292//34379 7360//34380 7363//34381 -f 4780//34382 2861//34382 3334//34382 -f 3746//34383 1620//34383 1190//34383 -f 4493//34384 7248//34384 2300//34384 -f 3689//34385 4583//34386 2446//34387 -f 7295//34388 758//34389 7366//34390 -f 3720//34391 7294//34392 965//34391 -f 7133//34393 4507//34394 2234//34395 -f 965//34396 7294//34397 7365//34398 -f 2078//34399 1725//34400 7213//34401 -f 1354//34402 3753//34403 2781//34404 -f 5810//34405 1991//34406 4653//34407 -f 3567//34408 488//34409 937//34410 -f 6115//34411 5807//34411 2206//34411 -f 2058//34412 4682//34413 1924//34414 -f 7409//34415 5852//34416 7402//34417 -f 5106//34418 2180//34418 4636//34419 -f 7224//34420 3002//34421 964//34422 -f 5402//34423 5936//34423 3526//34423 -f 2452//34424 3926//34424 5215//34425 -f 690//34426 7340//34427 1314//34428 -f 209//34429 284//34430 2195//34431 -f 4751//34432 1313//34433 1996//34433 -f 3706//34434 1496//34434 401//34434 -f 1268//34435 399//34436 1425//34437 -f 7225//34438 7385//34439 7369//34439 -f 2072//34440 3290//34441 267//34442 -f 7225//34443 7410//34444 7385//34445 -f 4601//34446 7297//34447 585//34446 -f 1551//34448 795//34449 4144//34448 -f 3554//34450 750//34451 5853//34452 -f 4245//34453 4231//34453 1294//34453 -f 7411//34454 7410//34454 7225//34455 -f 7385//34456 2029//34457 7386//34456 -f 2514//34458 71//34459 2495//34460 -f 535//34461 4623//34462 1728//34463 -f 2691//34464 3561//34465 3624//34466 -f 3700//34467 3633//34468 2753//34467 -f 7386//34469 3603//34469 7300//34469 -f 3839//34470 7264//34471 7184//34471 -f 3416//34472 5664//34473 1016//34474 -f 3839//34475 1860//34476 7264//34477 -f 1311//34478 2874//34479 3859//34480 -f 4861//34481 7308//34482 7370//34481 -f 7411//34483 7304//34483 235//34484 -f 907//34485 5214//34485 3953//34485 -f 1494//34486 102//34487 543//34487 -f 7387//34488 7337//34489 7266//34490 -f 1753//34491 656//34491 2125//34491 -f 3597//34492 4525//34492 195//34493 -f 412//34494 3008//34495 1417//34495 -f 457//34496 2335//34496 1228//34496 -f 235//34497 7304//34498 5107//34499 -f 4906//34500 469//34500 2134//34500 -f 1580//34501 2456//34502 1357//34503 -f 3760//34504 3198//34505 3101//34506 -f 3275//34507 7105//34507 3755//34507 -f 3701//34508 7299//34508 7336//34508 -f 7304//34509 7388//34510 5107//34511 -f 7338//34512 7388//34513 7304//34514 -f 4082//34515 876//34516 893//34517 -f 1109//34518 4531//34519 524//34519 -f 481//34520 5204//34521 2285//34522 -f 2366//34523 718//34523 3984//34523 -f 248//34524 7139//34525 6998//34526 -f 2778//34527 1101//34528 3102//34529 -f 1578//34530 1177//34531 2315//34532 -f 2863//34533 2862//34534 4833//34534 -f 1570//34535 1814//34535 575//34536 -f 4752//34537 4698//34538 1857//34539 -f 5830//34540 1411//34541 1564//34542 -f 3288//34543 2176//34544 4808//34544 -f 4923//34545 1513//34546 2513//34545 -f 378//34547 3984//34547 3708//34547 -f 4390//34548 2636//34549 348//34550 -f 768//34551 3624//34552 1936//34553 -f 1760//34554 2407//34555 1872//34556 -f 4988//34557 5111//34558 5401//34559 -f 7191//34560 7270//34561 3879//34562 -f 299//34563 4627//34564 241//34564 -f 2837//34565 3471//34565 3858//34565 -f 487//34566 1783//34567 3453//34568 -f 3810//34569 1436//34570 7//34571 -f 2365//34572 1372//34573 4614//34574 -f 614//34575 5303//34576 2179//34577 -f 3307//34578 7343//34579 5591//34580 -f 163//34581 7311//34581 4899//34581 -f 5591//34582 7343//34582 7312//34582 -f 435//34583 2542//34583 1187//34584 -f 2158//34585 2157//34585 463//34585 -f 1704//34586 2269//34587 2571//34588 -f 7344//34589 7061//34590 5810//34591 -f 1984//34592 86//34593 2598//34594 -f 1450//34595 7393//34596 7412//34596 -f 5810//34597 3309//34598 7344//34599 -f 4098//34600 4694//34601 3993//34602 -f 7412//34603 7393//34604 7314//34605 -f 3657//34606 7344//34607 2142//34608 -f 3401//34609 3539//34610 1685//34611 -f 405//34612 406//34613 4308//34614 -f 7006//34615 6918//34616 7206//34617 -f 7277//34618 3822//34619 7234//34619 -f 4755//34620 7320//34621 7375//34622 -f 4755//34623 7376//34624 7320//34625 -f 981//34626 601//34627 3889//34628 -f 502//34629 3924//34630 2265//34631 -f 1786//34632 4007//34633 1402//34632 -f 4387//34634 4931//34635 2087//34635 -f 4048//34636 494//34637 3138//34638 -f 3617//34639 3824//34639 582//34639 -f 4309//34640 1432//34641 2072//34642 -f 7316//34643 7413//34644 7206//34645 -f 7413//34646 7316//34647 7414//34646 -f 3025//34648 4566//34648 762//34648 -f 1388//34649 5946//34650 7413//34651 -f 7413//34652 7414//34653 1388//34654 -f 1178//34655 1607//34655 493//34656 -f 5819//34657 1365//34658 7321//34659 -f 1114//34660 4526//34661 2929//34662 -f 3927//34663 7237//34664 7198//34665 -f 7238//34666 7237//34667 3503//34667 -f 1961//34668 408//34668 5507//34669 -f 3140//34670 3139//34671 7014//34672 -f 1252//34673 7275//34674 3344//34675 -f 7151//34676 7350//34677 7280//34677 -f 3379//34678 4792//34679 1466//34680 -f 1202//34681 3744//34682 1648//34682 -f 2752//34683 7015//34683 2032//34683 -f 2937//34684 1490//34685 2785//34686 -f 3931//34687 4531//34687 3560//34687 -f 7322//34688 4821//34689 7377//34690 -f 8//34691 5291//34691 2679//34691 -f 7395//34692 3891//34693 7239//34694 -f 1048//34695 385//34695 217//34695 -f 3624//34696 3561//34697 3510//34698 -f 3037//34699 3038//34699 4639//34699 -f 107//34700 2794//34700 3698//34700 -f 5138//34701 2754//34702 1993//34703 -f 7395//34704 7016//34705 5346//34706 -f 7352//34707 5346//34708 7016//34709 -f 5596//34710 550//34710 665//34711 -f 3498//34712 224//34712 2599//34712 -f 3080//34713 5790//34713 837//34713 -f 5456//34714 2793//34715 4238//34716 -f 7112//34717 7282//34718 4309//34719 -f 4845//34720 4470//34721 1529//34722 -f 7112//34723 4309//34724 7283//34725 -f 424//34726 3061//34727 5801//34728 -f 4622//34729 1096//34729 3957//34729 -f 4225//34730 1343//34731 935//34732 -f 3725//34733 2529//34734 3997//34735 -f 3526//34736 5936//34737 5043//34738 -f 4813//34739 2841//34740 4256//34741 -f 3147//34742 2725//34742 2497//34742 -f 1943//34743 2444//34744 3451//34745 -f 421//34746 2961//34747 3311//34746 -f 2174//34748 688//34749 3310//34750 -f 186//34751 4761//34752 4844//34751 -f 3593//34753 1323//34754 580//34755 -f 3147//34756 2497//34757 4460//34758 -f 5090//34759 2608//34760 3339//34760 -f 4575//34761 2267//34762 1476//34763 -f 4039//34764 3220//34765 1790//34766 -f 7354//34767 7087//34767 2705//34768 -f 1925//34769 3035//34770 3072//34771 -f 1035//34772 2216//34772 3252//34772 -f 7203//34773 7082//34774 3256//34775 -f 7245//34776 4879//34777 7087//34778 -f 7087//34779 4879//34780 5218//34781 -f 125//34782 2177//34783 4180//34784 -f 1798//34785 223//34786 602//34787 -f 6680//34788 6615//34789 4018//34790 -f 7406//34791 7284//34792 4323//34793 -f 3903//34794 4040//34795 5301//34796 -f 4657//34797 658//34797 2768//34797 -f 5055//34798 3280//34798 4729//34798 -f 865//34799 3653//34800 218//34801 -f 5786//34802 1988//34803 875//34804 -f 1439//34805 3398//34806 3771//34805 -f 1505//34807 239//34808 84//34809 -f 4801//34810 846//34810 1572//34810 -f 980//34811 4450//34812 4806//34813 -f 3953//34814 5214//34815 702//34816 -f 2840//34817 982//34818 430//34819 -f 2196//34820 1941//34821 2283//34822 -f 7357//34823 7397//34824 2232//34825 -f 6832//34826 3606//34826 5719//34827 -f 668//34828 3100//34829 26//34830 -f 2357//34831 6882//34832 5844//34831 -f 4457//34833 1290//34833 2796//34833 -f 7252//34834 7330//34835 3691//34836 -f 5226//34837 4196//34838 5613//34839 -f 2770//34840 3112//34841 3675//34842 -f 7210//34843 104//34844 884//34845 -f 7120//34846 4620//34846 2300//34846 -f 2815//34847 1123//34848 5236//34849 -f 1209//34850 182//34851 3174//34852 -f 2995//34853 7089//34854 5268//34855 -f 3136//34856 1957//34856 159//34856 -f 3652//34857 1846//34857 5295//34857 -f 5022//34858 5058//34858 3994//34858 -f 3765//34859 6670//34860 1002//34861 -f 1002//34862 6670//34862 7288//34863 -f 1423//34864 3532//34865 5506//34866 -f 1647//34867 3508//34868 3244//34867 -f 7287//34869 5599//34870 6945//34871 -f 4449//34872 2663//34872 4453//34872 -f 3412//34873 781//34873 481//34873 -f 1091//34874 3837//34875 2184//34876 -f 595//34877 3160//34878 1840//34879 -f 1110//34880 5454//34881 3250//34882 -f 1062//34883 4055//34884 7289//34884 -f 723//34885 2224//34886 2719//34887 -f 3876//34888 6624//34888 413//34888 -f 1472//34889 2083//34889 1028//34889 -f 3592//34890 2723//34891 1919//34892 -f 1192//34893 15//34894 2890//34895 -f 6891//34896 6839//34896 1035//34897 -f 4592//34898 1236//34898 4239//34898 -f 6986//34899 4434//34900 7326//34901 -f 4368//34902 4298//34903 5699//34904 -f 3878//34905 3729//34906 3137//34907 -f 1605//34908 3194//34908 4590//34908 -f 1306//34909 7216//34910 4227//34910 -f 2458//34911 2989//34911 2137//34911 -f 7091//34912 4706//34912 7212//34913 -f 4466//34914 1197//34915 1307//34915 -f 1573//34916 3200//34917 3404//34918 -f 5204//34919 481//34920 781//34921 -f 1896//34922 3169//34923 1897//34924 -f 354//34925 4793//34926 1909//34925 -f 4276//34927 4791//34928 3767//34929 -f 5402//34930 4464//34931 4198//34932 -f 5347//34933 2647//34934 3494//34933 -f 3046//34935 3652//34935 5295//34935 -f 2249//34936 2152//34937 2754//34937 -f 855//34938 3259//34939 7328//34939 -f 4697//34940 1266//34941 2499//34942 -f 4413//34943 7330//34944 7124//34945 -f 282//34946 4413//34947 7124//34948 -f 1647//34949 2091//34950 1829//34951 -f 4201//34952 1474//34953 3043//34954 -f 4915//34955 2875//34955 4199//34956 -f 5087//34957 119//34958 506//34959 -f 5518//34960 7123//34960 7327//34960 -f 2312//34961 2519//34962 2520//34963 -f 7038//34964 7329//34965 7400//34966 -f 7408//34967 2763//34968 7255//34969 -f 1880//34970 2465//34971 4004//34972 -f 2314//34973 432//34974 3236//34975 -f 117//34976 6950//34977 7169//34978 -f 2893//34979 3364//34980 5655//34981 -f 2629//34982 4375//34983 4384//34984 -f 1471//34985 4150//34986 5278//34987 -f 5093//34988 2572//34989 2250//34990 -f 7049//34991 7332//34992 7361//34993 -f 4113//34994 3104//34995 1916//34996 -f 4292//34997 1194//34997 2544//34997 -f 357//34998 4728//34999 4517//35000 -f 2282//35001 7258//35002 7364//35001 -f 3757//35003 4215//35004 2007//35005 -f 1297//35006 2867//35007 456//35008 -f 991//35009 4158//35010 4340//35011 -f 6977//35012 6680//35012 5018//35013 -f 4661//35014 757//35015 3571//35016 -f 7363//35017 7360//35018 3279//35018 -f 3526//35019 5043//35020 6327//35021 -f 7214//35022 7172//35023 1352//35024 -f 3174//35025 3276//35026 1017//35027 -f 3217//35028 365//35029 3146//35030 -f 2187//35031 4052//35032 4825//35033 -f 2411//35034 309//35035 308//35036 -f 7363//35037 758//35038 7295//35039 -f 1167//35040 7261//35040 2207//35040 -f 934//35041 4041//35041 636//35041 -f 818//35042 4731//35043 2053//35044 -f 7365//35045 964//35046 965//35047 -f 7409//35048 5347//35049 5852//35050 -f 3210//35051 289//35052 5731//35053 -f 7055//35054 2260//35054 1734//35054 -f 7297//35055 5420//35056 4347//35057 -f 3587//35058 11//35058 2091//35059 -f 1270//35060 1011//35061 4991//35062 -f 7301//35063 7403//35064 5566//35065 -f 3857//35066 423//35067 699//35068 -f 4480//35069 2628//35070 3988//35071 -f 2511//35072 1687//35073 3063//35074 -f 797//35075 4977//35075 1632//35075 -f 7386//35076 2029//35077 3603//35077 -f 299//35078 7224//35079 6170//35080 -f 3493//35081 977//35082 1611//35083 -f 2065//35084 4166//35085 3609//35086 -f 1484//35087 1092//35088 1523//35089 -f 1235//35090 585//35090 7299//35090 -f 4680//35091 2227//35091 2607//35092 -f 3603//35093 2632//35093 7300//35094 -f 1863//35095 4860//35096 1284//35096 -f 7299//35097 3078//35098 1235//35099 -f 7387//35100 5799//35101 633//35100 -f 1157//35102 2905//35103 3740//35102 -f 475//35104 3962//35105 1448//35106 -f 1952//35107 2565//35108 856//35109 -f 3591//35110 4457//35111 2796//35110 -f 2423//35112 1883//35113 4598//35114 -f 1286//35115 4097//35116 4146//35117 -f 7309//35118 7371//35119 1314//35120 -f 7267//35121 439//35122 2526//35122 -f 664//35123 5799//35124 1318//35125 -f 7307//35126 7389//35127 7388//35128 -f 1749//35129 2412//35129 3157//35129 -f 752//35130 269//35131 4069//35130 -f 6997//35132 2981//35132 1699//35133 -f 2133//35134 660//35135 116//35136 -f 798//35137 2827//35138 339//35139 -f 3391//35140 1400//35141 320//35142 -f 5271//35143 3513//35144 6170//35145 -f 3184//35146 2168//35146 3777//35146 -f 7055//35147 7267//35148 2260//35149 -f 4365//35150 2052//35151 2051//35152 -f 6997//35153 7139//35154 2981//35153 -f 3595//35155 955//35155 222//35155 -f 612//35156 3736//35156 2415//35157 -f 475//35158 1448//35159 1416//35160 -f 4879//35161 3535//35162 5776//35163 -f 5722//35164 7310//35165 1734//35166 -f 145//35167 3398//35168 1439//35169 -f 4811//35170 5332//35171 4438//35172 -f 1315//35173 1375//35174 4103//35175 -f 7372//35176 7391//35177 3569//35176 -f 5271//35178 7056//35179 4478//35180 -f 3476//35181 4576//35181 300//35181 -f 4296//35182 3661//35183 4100//35184 -f 4097//35185 2710//35186 4700//35187 -f 3313//35188 2525//35189 1185//35190 -f 31//35191 953//35192 673//35191 -f 3597//35193 195//35194 662//35195 -f 4075//35196 4607//35197 1436//35198 -f 2999//35199 1323//35200 1366//35201 -f 3839//35202 1592//35203 3356//35203 -f 2706//35204 4481//35205 1723//35206 -f 7394//35207 7393//35208 5591//35209 -f 1717//35210 2908//35211 663//35212 -f 7393//35213 1450//35214 2992//35215 -f 1098//35216 530//35216 1836//35216 -f 982//35217 2878//35218 3915//35219 -f 1279//35220 3061//35220 424//35220 -f 4321//35221 2275//35222 4980//35222 -f 2428//35223 2515//35224 1158//35225 -f 7311//35226 4701//35227 4899//35228 -f 4170//35229 1815//35229 1487//35229 -f 1807//35230 4200//35231 3352//35232 -f 7313//35233 7006//35234 7206//35235 -f 2978//35236 2900//35237 1509//35238 -f 7413//35239 7414//35240 7206//35241 -f 7413//35242 5946//35243 7414//35243 -f 5946//35244 7415//35245 7414//35246 -f 7414//35247 7415//35248 1388//35249 -f 7415//35250 2165//35251 1388//35252 -f 1477//35253 7316//35254 7346//35255 -f 781//35256 3445//35256 2592//35256 -f 2054//35257 2154//35258 3696//35259 -f 4783//35260 4268//35261 4927//35260 -f 7348//35262 7007//35262 3780//35262 -f 3780//35263 168//35263 7348//35263 -f 1365//35264 5819//35265 7348//35266 -f 2144//35267 1480//35268 1003//35267 -f 1469//35269 2549//35269 567//35269 -f 3486//35270 2410//35270 3111//35270 -f 2794//35271 4492//35272 4056//35273 -f 3503//35274 7237//35275 3927//35276 -f 7014//35277 3503//35278 3140//35278 -f 7148//35279 1685//35280 7013//35281 -f 4940//35282 4864//35283 1108//35284 -f 3535//35285 4879//35286 3994//35286 -f 1076//35287 7280//35288 7350//35289 -f 1614//35290 4892//35291 723//35292 -f 2752//35293 2751//35294 7281//35293 -f 633//35295 876//35296 5740//35296 -f 7076//35297 7110//35298 63//35299 -f 7110//35300 7281//35301 63//35302 -f 2688//35303 3683//35304 1988//35304 -f 3523//35305 1401//35306 812//35307 -f 5358//35308 3151//35309 4135//35310 -f 2932//35311 7153//35311 1216//35312 -f 3155//35313 7153//35314 2932//35315 -f 267//35316 7322//35316 3891//35316 -f 362//35317 1925//35318 3072//35319 -f 1887//35320 5358//35321 4135//35322 -f 380//35323 4618//35323 1713//35324 -f 109//35325 5731//35326 2348//35326 -f 1087//35327 2972//35327 1493//35327 -f 1195//35328 2081//35329 1997//35330 -f 4850//35331 3857//35332 699//35331 -f 3695//35333 1173//35334 1174//35335 -f 2004//35336 3632//35336 4863//35337 -f 2642//35338 4893//35339 1882//35340 -f 1610//35341 531//35342 809//35343 -f 4642//35344 5240//35345 4748//35346 -f 2459//35347 3134//35347 2078//35347 -f 1108//35348 832//35349 2179//35350 -f 1613//35351 825//35352 4856//35353 -f 5522//35354 1470//35355 3442//35356 -f 5826//35357 4435//35357 1881//35358 -f 2150//35359 2600//35360 3712//35360 -f 1507//35361 1097//35361 4195//35361 -f 394//35362 3750//35362 866//35362 -f 2982//35363 4060//35364 1050//35365 -f 2725//35366 1522//35367 2497//35368 -f 2120//35369 3699//35370 3968//35370 -f 2099//35371 291//35372 645//35371 -f 4086//35373 1190//35374 2032//35375 -f 7161//35376 7378//35377 2075//35378 -f 2405//35379 3718//35380 2407//35381 -f 2944//35382 3541//35383 873//35382 -f 2075//35384 5966//35385 7161//35386 -f 2705//35387 7087//35387 5218//35387 -f 4625//35388 7245//35389 5274//35390 -f 4167//35391 3469//35392 2833//35392 -f 1548//35393 1344//35394 2235//35395 -f 1076//35396 324//35397 7280//35398 -f 3134//35399 410//35400 2078//35401 -f 4379//35402 947//35403 3340//35403 -f 6680//35404 4018//35405 3050//35404 -f 95//35406 1183//35407 1182//35408 -f 3352//35409 74//35410 2047//35411 -f 4323//35412 7024//35413 7355//35414 -f 4395//35415 7115//35416 7203//35417 -f 3611//35418 3777//35419 398//35420 -f 507//35421 1554//35422 3920//35423 -f 4597//35424 7407//35425 7396//35424 -f 1850//35426 2565//35427 1012//35426 -f 7380//35428 4597//35429 7397//35430 -f 3813//35431 1068//35432 1636//35433 -f 2283//35434 4355//35434 2291//35434 -f 5574//35435 7163//35436 4751//35436 -f 2283//35437 1941//35438 5604//35439 -f 508//35440 2259//35441 1056//35442 -f 1534//35443 2670//35444 2486//35445 -f 1239//35446 477//35446 1833//35447 -f 6327//35448 6326//35449 3849//35448 -f 1322//35450 3546//35451 1345//35452 -f 1384//35453 4114//35454 4544//35454 -f 616//35455 4020//35456 1055//35457 -f 4051//35458 3654//35459 5030//35460 -f 5434//35461 1724//35462 4088//35463 -f 1116//35464 5062//35465 220//35466 -f 4620//35467 7089//35468 2995//35469 -f 746//35470 401//35471 4233//35472 -f 1060//35473 78//35474 1269//35475 -f 7027//35476 4981//35476 381//35476 -f 4467//35477 5599//35478 7287//35479 -f 4140//35480 1705//35480 822//35480 -f 7287//35481 7358//35482 4467//35483 -f 5492//35484 4053//35485 5009//35486 -f 2170//35487 3033//35488 1907//35489 -f 7031//35490 533//35491 7288//35492 -f 7250//35493 7251//35494 2511//35495 -f 5454//35496 1110//35497 2451//35497 -f 3982//35498 3242//35499 4199//35500 -f 2823//35501 2711//35502 5519//35503 -f 2089//35504 1401//35505 2502//35506 -f 5604//35507 378//35508 3708//35509 -f 1687//35510 2511//35510 7034//35510 -f 4777//35511 3559//35512 2701//35513 -f 4881//35514 4950//35515 2908//35516 -f 4667//35517 722//35518 5119//35519 -f 1396//35520 2190//35521 3501//35522 -f 3552//35523 4129//35524 7290//35524 -f 2578//35525 1035//35526 2536//35527 -f 3162//35528 3876//35529 413//35530 -f 4240//35531 1304//35531 4030//35532 -f 2334//35533 6986//35534 7212//35535 -f 895//35536 3966//35537 6491//35536 -f 7381//35538 6491//35539 3966//35540 -f 2332//35541 7212//35542 4706//35543 -f 6894//35544 1035//35544 7382//35544 -f 1118//35545 3073//35545 3406//35546 -f 960//35547 1480//35548 5361//35549 -f 769//35550 2812//35551 3624//35552 -f 2777//35553 5255//35554 7035//35553 -f 1976//35555 3951//35556 2943//35557 -f 3338//35558 7105//35558 3275//35558 -f 6794//35559 4384//35559 2777//35559 -f 3338//35560 7329//35560 7105//35560 -f 4302//35561 3274//35561 2815//35561 -f 4726//35562 1626//35563 3963//35564 -f 474//35565 1733//35566 4373//35567 -f 3674//35568 2551//35569 1676//35570 -f 7400//35571 7329//35572 3338//35571 -f 2613//35573 3991//35574 4829//35575 -f 4814//35576 2639//35577 1842//35578 -f 4180//35579 2177//35580 1952//35581 -f 4792//35582 655//35582 734//35582 -f 4378//35583 162//35584 3076//35583 -f 5102//35585 2637//35586 4085//35587 -f 4586//35588 7288//35589 533//35590 -f 919//35591 7256//35592 7362//35593 -f 3022//35594 555//35595 4975//35596 -f 2957//35597 4176//35598 2803//35599 -f 369//35600 4003//35601 3159//35600 -f 1058//35602 557//35603 912//35604 -f 1160//35605 7360//35606 7400//35607 -f 3446//35608 2057//35609 3543//35610 -f 1936//35611 3624//35611 5181//35611 -f 3279//35612 7360//35613 1160//35614 -f 5493//35615 2751//35616 2752//35617 -f 1327//35618 1824//35619 703//35620 -f 5560//35621 2282//35622 7364//35623 -f 2115//35624 2243//35625 3979//35626 -f 3693//35627 2186//35628 1591//35629 -f 3279//35630 2884//35631 7363//35630 -f 4556//35632 615//35633 447//35634 -f 4765//35635 4250//35636 4528//35637 -f 2288//35638 7174//35639 7214//35640 -f 4401//35641 5560//35642 7364//35643 -f 2884//35644 758//35645 7363//35646 -f 1503//35647 3907//35648 4727//35649 -f 3344//35650 1251//35650 1252//35650 -f 4401//35651 7261//35652 1167//35653 -f 7133//35654 1406//35655 4507//35656 -f 3720//35657 965//35658 2500//35659 -f 5265//35660 2120//35661 3968//35662 -f 758//35663 4397//35664 7366//35663 -f 988//35665 3319//35666 256//35667 -f 4509//35668 1426//35669 2902//35670 -f 2810//35671 334//35672 4716//35673 -f 189//35674 1997//35674 4200//35674 -f 4397//35675 7409//35675 7366//35675 -f 1231//35676 4078//35677 1680//35678 -f 3420//35679 2112//35679 1589//35679 -f 3981//35680 3380//35681 391//35681 -f 7402//35682 5852//35683 1113//35684 -f 5300//35685 4347//35686 5420//35687 -f 3336//35688 3524//35689 2523//35690 -f 323//35691 4179//35692 4403//35693 -f 4601//35694 5420//35695 7297//35696 -f 5732//35697 997//35698 5319//35698 -f 2998//35699 875//35700 2259//35701 -f 7410//35702 1999//35702 7385//35702 -f 4814//35703 1842//35703 5165//35703 -f 7411//35704 235//35705 7410//35706 -f 7410//35707 235//35707 3659//35708 -f 7370//35709 3455//35709 3240//35709 -f 4861//35710 7370//35711 3240//35711 -f 1639//35712 1697//35712 411//35712 -f 4788//35713 3367//35714 1901//35715 -f 1456//35716 3674//35717 1676//35718 -f 4074//35719 332//35720 4244//35721 -f 255//35722 849//35723 3954//35724 -f 585//35725 1961//35726 2983//35727 -f 930//35728 542//35728 1049//35729 -f 5740//35730 7337//35731 7387//35732 -f 2445//35733 4665//35734 1132//35735 -f 293//35736 952//35737 1599//35738 -f 633//35739 5740//35739 7387//35739 -f 1235//35740 1961//35740 585//35741 -f 4027//35742 2632//35743 2442//35742 -f 1347//35744 1641//35745 5099//35746 -f 3134//35747 2459//35747 1753//35748 -f 5215//35749 2321//35750 2452//35751 -f 5344//35752 5107//35753 7388//35754 -f 929//35755 166//35755 2730//35756 -f 7389//35757 5344//35757 7388//35757 -f 1916//35758 976//35758 4113//35758 -f 3691//35759 1691//35759 3152//35759 -f 1372//35760 4105//35761 1707//35762 -f 487//35763 3453//35763 2916//35764 -f 1560//35765 231//35766 2445//35767 -f 1314//35768 7390//35769 7309//35770 -f 3600//35771 3148//35771 943//35771 -f 3767//35772 95//35773 4207//35774 -f 4484//35775 4409//35776 4485//35777 -f 3053//35778 557//35779 5093//35780 -f 1501//35781 178//35782 4655//35783 -f 7310//35784 7055//35785 1734//35786 -f 283//35787 2150//35787 5323//35787 -f 4883//35788 944//35789 4062//35790 -f 4962//35791 3286//35792 1415//35793 -f 3569//35794 5405//35795 7372//35795 -f 3843//35796 1590//35797 3020//35798 -f 7392//35799 3569//35800 7391//35800 -f 3429//35801 4682//35802 2058//35803 -f 3060//35804 746//35805 3059//35806 -f 1036//35807 3229//35808 1928//35809 -f 7343//35810 4519//35811 489//35812 -f 2801//35813 7142//35814 2324//35815 -f 5375//35816 6912//35816 2801//35817 -f 1196//35818 938//35819 2987//35820 -f 2582//35821 3056//35822 992//35822 -f 4478//35823 6859//35824 163//35825 -f 1970//35826 2093//35827 4855//35827 -f 7404//35828 1434//35828 7405//35828 -f 4157//35829 1683//35830 2488//35831 -f 2298//35832 3552//35833 2311//35834 -f 2067//35835 1333//35836 4904//35837 -f 2326//35838 402//35839 5111//35839 -f 3328//35840 4093//35841 2973//35842 -f 7412//35843 7376//35844 1450//35845 -f 159//35846 3113//35847 2394//35848 -f 7313//35849 7206//35850 5810//35851 -f 1337//35852 191//35853 4663//35853 -f 1332//35854 2593//35854 2640//35854 -f 3888//35855 4299//35855 7206//35855 -f 1148//35856 4141//35857 733//35858 -f 7415//35859 7206//35860 7414//35861 -f 7415//35862 7414//35863 2165//35864 -f 2165//35865 7414//35866 7316//35865 -f 7206//35867 7415//35868 5946//35869 -f 1388//35870 933//35871 5946//35872 -f 2165//35873 3888//35874 1388//35875 -f 154//35876 4587//35876 2912//35876 -f 852//35877 581//35878 3370//35879 -f 926//35880 1000//35881 1026//35882 -f 3539//35883 7317//35884 7349//35885 -f 5141//35886 1275//35886 7348//35887 -f 3256//35888 7082//35888 1097//35888 -f 7349//35889 7013//35890 1685//35890 -f 7349//35891 1685//35892 3539//35891 -f 775//35893 629//35893 2318//35894 -f 3937//35895 312//35896 3444//35897 -f 140//35898 5314//35899 1219//35900 -f 2449//35901 3503//35902 2450//35903 -f 835//35904 1685//35905 7148//35905 -f 3469//35906 4167//35907 1074//35908 -f 5361//35909 635//35910 2127//35911 -f 3599//35912 3203//35913 5021//35914 -f 7148//35915 7280//35916 835//35917 -f 3931//35918 524//35919 4531//35920 -f 5493//35921 2752//35922 2032//35923 -f 1454//35924 5387//35924 5480//35924 -f 7377//35925 4821//35926 7350//35927 -f 1166//35928 5121//35929 1895//35930 -f 63//35931 1696//35931 6731//35931 -f 7351//35932 63//35932 6731//35932 -f 1697//35933 40//35933 2268//35933 -f 1791//35934 4032//35935 4429//35936 -f 3681//35937 5394//35938 1051//35939 -f 1996//35940 1313//35941 5120//35942 -f 3330//35943 3457//35944 3329//35945 -f 382//35946 3842//35947 5262//35948 -f 3332//35949 3101//35949 1220//35949 -f 3458//35950 3483//35951 2619//35952 -f 5346//35953 7353//35954 4283//35955 -f 3982//35956 2782//35957 3242//35958 -f 3093//35959 321//35960 2500//35961 -f 4283//35962 7283//35963 4309//35964 -f 4198//35965 4464//35966 3153//35967 -f 3186//35968 227//35969 2447//35968 -f 1039//35970 4931//35970 3504//35971 -f 654//35972 5286//35973 2256//35974 -f 2743//35975 3771//35976 4394//35977 -f 2871//35978 3192//35979 3226//35980 -f 1920//35981 4318//35982 1036//35983 -f 416//35984 3594//35985 3366//35986 -f 4464//35987 3144//35988 3153//35988 -f 811//35989 5748//35989 2598//35990 -f 300//35991 4576//35991 3061//35991 -f 2556//35992 1930//35993 4498//35994 -f 1625//35995 4024//35995 1230//35995 -f 7267//35996 2526//35997 2260//35998 -f 2054//35999 4822//36000 4082//36000 -f 7382//36001 1295//36002 1356//36002 -f 428//36003 1820//36003 4391//36003 -f 322//36004 2325//36005 2517//36006 -f 55//36007 3432//36007 3983//36007 -f 4890//36008 5298//36009 1380//36010 -f 1849//36011 2095//36012 1576//36013 -f 5853//36014 2446//36015 4583//36014 -f 627//36016 3744//36017 1202//36018 -f 4625//36019 4879//36019 7245//36020 -f 4018//36021 5152//36022 3050//36023 -f 569//36024 2608//36025 2073//36026 -f 2971//36027 7083//36028 5889//36029 -f 1963//36030 755//36031 1167//36032 -f 3361//36033 3556//36034 4376//36035 -f 4597//36036 7396//36037 7379//36038 -f 5581//36039 4471//36040 632//36041 -f 1538//36042 7119//36043 4041//36043 -f 4597//36044 4929//36045 7397//36046 -f 740//36047 2910//36047 3397//36047 -f 434//36048 5325//36049 961//36050 -f 4617//36051 4068//36052 3781//36052 -f 2851//36053 2082//36054 4338//36055 -f 4319//36056 2827//36056 1979//36057 -f 3011//36058 4059//36059 1347//36060 -f 2//36061 5542//36061 3205//36061 -f 212//36062 286//36063 5308//36064 -f 20//36065 5400//36065 19//36065 -f 3568//36066 2404//36066 1789//36066 -f 4641//36067 5772//36068 4473//36069 -f 157//36070 2413//36070 373//36071 -f 4670//36072 3199//36072 3700//36072 -f 4811//36073 1122//36074 4772//36075 -f 3097//36076 3318//36077 5268//36078 -f 7028//36079 36//36080 3632//36081 -f 2139//36082 1129//36083 2140//36083 -f 2004//36084 7028//36084 3632//36084 -f 6553//36085 7286//36086 1062//36087 -f 1237//36088 293//36089 1599//36090 -f 3961//36091 2503//36092 1870//36091 -f 2004//36093 2536//36093 7028//36093 -f 1263//36094 4301//36095 3325//36096 -f 3029//36097 1045//36097 4880//36097 -f 7031//36098 3876//36099 533//36100 -f 3871//36101 3994//36102 4879//36103 -f 3384//36104 363//36105 5065//36105 -f 406//36106 1098//36107 3803//36106 -f 3788//36108 1665//36109 2911//36110 -f 4651//36111 3614//36112 1836//36113 -f 2985//36114 713//36115 4038//36115 -f 685//36116 2485//36117 7326//36118 -f 887//36119 4207//36120 5222//36121 -f 4049//36122 3592//36122 1492//36122 -f 2895//36123 3012//36124 4685//36124 -f 3736//36125 612//36126 760//36126 -f 7291//36127 3552//36128 7290//36129 -f 7164//36130 4828//36131 3168//36132 -f 4434//36133 6986//36134 2334//36135 -f 2956//36136 4507//36137 686//36136 -f 4862//36138 2164//36138 900//36138 -f 4172//36139 4390//36140 3664//36141 -f 5707//36142 7399//36143 2763//36144 -f 1343//36145 4965//36146 918//36146 -f 7105//36147 7164//36147 3755//36147 -f 2332//36148 2334//36148 7212//36148 -f 3938//36149 4222//36150 4219//36151 -f 455//36152 3368//36153 2208//36152 -f 1802//36154 1804//36154 827//36155 -f 1568//36156 526//36157 2942//36158 -f 953//36159 1782//36160 2273//36161 -f 7252//36162 3152//36163 1115//36162 -f 110//36164 109//36165 2348//36166 -f 976//36167 770//36167 4518//36167 -f 1268//36168 3128//36169 2416//36170 -f 919//36171 2629//36172 7256//36172 -f 297//36173 3908//36174 3810//36175 -f 772//36176 771//36177 431//36178 -f 479//36179 2464//36179 4747//36180 -f 2631//36181 4866//36182 2684//36183 -f 1566//36184 3719//36185 5165//36186 -f 220//36187 4996//36188 1116//36187 -f 3338//36189 3275//36189 3186//36190 -f 7126//36191 7166//36192 1356//36193 -f 3175//36194 221//36195 5269//36194 -f 7400//36196 845//36196 4839//36196 -f 123//36197 206//36198 1885//36199 -f 4071//36200 4770//36201 709//36202 -f 5005//36203 3188//36204 5563//36205 -f 7049//36206 4415//36207 7408//36208 -f 1665//36209 4143//36210 1242//36211 -f 2892//36212 6950//36213 117//36214 -f 4844//36215 4944//36216 186//36215 -f 2625//36217 4486//36218 4487//36219 -f 3477//36220 861//36221 2572//36220 -f 3248//36222 919//36222 4255//36223 -f 384//36224 1878//36225 1229//36226 -f 166//36227 929//36228 5011//36229 -f 306//36230 7355//36231 2075//36232 -f 4415//36233 7049//36234 5187//36235 -f 3680//36236 1180//36237 3016//36238 -f 4897//36239 1863//36240 3323//36241 -f 253//36242 4415//36243 5187//36244 -f 597//36245 578//36246 4942//36247 -f 3746//36248 2049//36249 3418//36248 -f 7401//36250 253//36250 5187//36251 -f 2617//36252 3341//36253 3816//36254 -f 237//36255 1467//36256 2434//36257 -f 7172//36258 4404//36259 1352//36260 From 20203be8def106bec2be432a009e5deb30c527f3 Mon Sep 17 00:00:00 2001 From: Samuel Felton Date: Wed, 18 Dec 2024 01:39:26 +0100 Subject: [PATCH 101/101] Remove display type parameter in display --- .../bindings/include/rbt/feature_tracker.hpp | 4 +- .../include/visp3/rbt/vpRBDenseDepthTracker.h | 2 +- .../include/visp3/rbt/vpRBFeatureTracker.h | 9 +-- .../rbt/include/visp3/rbt/vpRBKltTracker.h | 2 +- .../visp3/rbt/vpRBSilhouetteCCDTracker.h | 18 ++++- .../visp3/rbt/vpRBSilhouetteMeTracker.h | 2 +- .../rbt/include/visp3/rbt/vpRBTracker.h | 4 +- modules/tracker/rbt/src/core/vpRBTracker.cpp | 7 +- .../src/features/vpRBDenseDepthTracker.cpp | 3 +- .../rbt/src/features/vpRBKltTracker.cpp | 3 +- .../src/features/vpRBSilhouetteCCDTracker.cpp | 15 ++-- .../src/features/vpRBSilhouetteMeTracker.cpp | 74 +------------------ .../render-based/tutorial-rbt-realsense.cpp | 2 +- .../render-based/tutorial-rbt-sequence.cpp | 2 +- 14 files changed, 41 insertions(+), 106 deletions(-) diff --git a/modules/python/bindings/include/rbt/feature_tracker.hpp b/modules/python/bindings/include/rbt/feature_tracker.hpp index c2b2f76252..e51d96aa64 100644 --- a/modules/python/bindings/include/rbt/feature_tracker.hpp +++ b/modules/python/bindings/include/rbt/feature_tracker.hpp @@ -97,14 +97,14 @@ class TrampolineRBFeatureTracker : public vpRBFeatureTracker override(&frame, cMo, iteration); } } - virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE + virtual void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth) const VP_OVERRIDE { pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. // Try to look up the overridden method on the Python side. pybind11::function override = pybind11::get_override(this, "display"); if (override) { // method is found // Pybind seems to copy the frames, so we pass the pointers - override(cam, &I, &IRGB, &depth, type); + override(cam, &I, &IRGB, &depth); } } virtual const vpMatrix getCovariance() const VP_OVERRIDE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h index 39238ea161..07e1e9c3aa 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBDenseDepthTracker.h @@ -128,7 +128,7 @@ class VISP_EXPORT vpRBDenseDepthTracker : public vpRBFeatureTracker void initVVS(const vpRBFeatureTrackerInput &/*frame*/, const vpRBFeatureTrackerInput &/*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) VP_OVERRIDE { } void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; - void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth) const VP_OVERRIDE; struct vpDepthPoint { diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h index 838e98ee74..dd7a02a7c3 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBFeatureTracker.h @@ -50,12 +50,6 @@ #include VISP_NLOHMANN_JSON(json.hpp) #endif -enum vpRBFeatureDisplayType -{ - SIMPLE = 0, - IMPORTANCE = 1, - ERROR = 2 -}; BEGIN_VISP_NAMESPACE /** @@ -155,8 +149,7 @@ class VISP_EXPORT vpRBFeatureTracker const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, - const vpImage &depth, - const vpRBFeatureDisplayType type) const = 0; + const vpImage &depth) const = 0; /** * @} diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h index a2fa487027..6c0dffd5b5 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBKltTracker.h @@ -83,7 +83,7 @@ class VISP_EXPORT vpRBKltTracker : public vpRBFeatureTracker void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; - void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth) const VP_OVERRIDE; /** * \name Settings diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h index c9aa9384bf..97997a5d46 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteCCDTracker.h @@ -61,6 +61,15 @@ BEGIN_VISP_NAMESPACE + +enum vpRBSilhouetteCCDDisplayType +{ + SIMPLE = 0, + WEIGHT = 1, + ERROR = 2, + INVALID = 3 +}; + class VISP_EXPORT vpCCDParameters { public: @@ -239,6 +248,11 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker m_minMaskConfidence = confidence; } + void setDisplayType(vpRBSilhouetteCCDDisplayType type) + { + m_displayType = type; + } + /** * @} */ @@ -258,7 +272,7 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker m_cov = m_sigma; } - void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth) const VP_OVERRIDE; #if defined(VISP_HAVE_NLOHMANN_JSON) virtual void loadJsonConfiguration(const nlohmann::json &j) VP_OVERRIDE @@ -303,6 +317,8 @@ class VISP_EXPORT vpRBSilhouetteCCDTracker : public vpRBFeatureTracker bool m_useMask; double m_minMaskConfidence; + + vpRBSilhouetteCCDDisplayType m_displayType; }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h index a44437d2d4..fc25cc2a14 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBSilhouetteMeTracker.h @@ -82,7 +82,7 @@ class VISP_EXPORT vpRBSilhouetteMeTracker : public vpRBFeatureTracker void computeVVSIter(const vpRBFeatureTrackerInput &frame, const vpHomogeneousMatrix &cMo, unsigned int iteration) VP_OVERRIDE; - void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) const VP_OVERRIDE; + void display(const vpCameraParameters &cam, const vpImage &I, const vpImage &IRGB, const vpImage &depth) const VP_OVERRIDE; /** * \name Settings diff --git a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h index 9d794f7557..838c6ca1fc 100644 --- a/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h +++ b/modules/tracker/rbt/include/visp3/rbt/vpRBTracker.h @@ -211,7 +211,7 @@ class VISP_EXPORT vpRBTracker * @{ */ void displayMask(vpImage &Imask) const; - void display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type); + void display(const vpImage &I, const vpImage &IRGB, const vpImage &depth); /** * @} */ @@ -272,8 +272,6 @@ class VISP_EXPORT vpRBTracker std::shared_ptr m_driftDetector; std::shared_ptr m_odometry; - - // vpRBTrackerFilter m_filter; }; END_VISP_NAMESPACE diff --git a/modules/tracker/rbt/src/core/vpRBTracker.cpp b/modules/tracker/rbt/src/core/vpRBTracker.cpp index f70cb421dd..dc250cf88d 100644 --- a/modules/tracker/rbt/src/core/vpRBTracker.cpp +++ b/modules/tracker/rbt/src/core/vpRBTracker.cpp @@ -555,7 +555,7 @@ void vpRBTracker::displayMask(vpImage &Imask) const } } -void vpRBTracker::display(const vpImage &I, const vpImage &IRGB, const vpImage &depth, const vpRBFeatureDisplayType type) +void vpRBTracker::display(const vpImage &I, const vpImage &IRGB, const vpImage &depth) { if (m_currentFrame.renders.normals.getSize() == 0) { return; @@ -564,15 +564,13 @@ void vpRBTracker::display(const vpImage &I, const vpImage for (std::shared_ptr &tracker : m_trackers) { if (tracker->featuresShouldBeDisplayed()) { - tracker->display(m_currentFrame.cam, I, IRGB, depth, type); + tracker->display(m_currentFrame.cam, I, IRGB, depth); } } if (m_driftDetector) { m_driftDetector->display(IRGB); } - - // vpDisplay::displayRectangle(IRGB, m_renderer.getBoundingBox(), vpColor::red); } vpObjectCentricRenderer &vpRBTracker::getRenderer() @@ -594,7 +592,6 @@ void vpRBTracker::loadConfigurationFile(const std::string &filename) catch (nlohmann::json::parse_error &e) { std::stringstream msg; msg << "Could not parse JSON file : \n"; - msg << e.what() << std::endl; msg << "Byte position of error: " << e.byte; throw vpException(vpException::ioError, msg.str()); diff --git a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp index ecfee46fce..6b3ec0e50f 100644 --- a/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBDenseDepthTracker.cpp @@ -152,8 +152,7 @@ void vpRBDenseDepthTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*fram } void vpRBDenseDepthTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, - const vpImage &/*IRGB*/, const vpImage &depth, - const vpRBFeatureDisplayType /*type*/) const + const vpImage &/*IRGB*/, const vpImage &depth) const { for (unsigned int i = 0; i < m_depthPoints.size(); ++i) { const vpDepthPoint &p = m_depthPoints[i]; diff --git a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp index b86a206027..91f284a7bc 100644 --- a/modules/tracker/rbt/src/features/vpRBKltTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBKltTracker.cpp @@ -311,8 +311,7 @@ void vpRBKltTracker::computeVVSIter(const vpRBFeatureTrackerInput &/*frame*/, co } void vpRBKltTracker::display(const vpCameraParameters &cam, const vpImage &I, - const vpImage &/*IRGB*/, const vpImage &/*depth*/, - const vpRBFeatureDisplayType /*type*/) const + const vpImage &/*IRGB*/, const vpImage &/*depth*/) const { for (const std::pair &p : m_points) { double u = 0.0, v = 0.0; diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp index 1729a3fe4d..c9b5e9166e 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteCCDTracker.cpp @@ -141,7 +141,7 @@ template class FastVec3 }; -vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1), m_useMask(false), m_minMaskConfidence(0.0) +vpRBSilhouetteCCDTracker::vpRBSilhouetteCCDTracker() : vpRBFeatureTracker(), m_vvsConvergenceThreshold(0.0), m_temporalSmoothingFac(0.1), m_useMask(false), m_minMaskConfidence(0.0), m_displayType(vpRBSilhouetteCCDDisplayType::SIMPLE) { } void vpRBSilhouetteCCDTracker::extractFeatures(const vpRBFeatureTrackerInput &frame, const vpRBFeatureTrackerInput & /*previousFrame*/, const vpHomogeneousMatrix &/*cMo*/) @@ -258,12 +258,11 @@ void vpRBSilhouetteCCDTracker::computeVVSIter(const vpRBFeatureTrackerInput &fra } void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const vpImage &/*I*/, - const vpImage &IRGB, const vpImage &/*depth*/, - const vpRBFeatureDisplayType type) const + const vpImage &IRGB, const vpImage &/*depth*/) const { unsigned normal_points_number = floor(m_ccdParameters.h / m_ccdParameters.delta_h); unsigned nerror_per_point = 2 * normal_points_number * 3; - if (type == vpRBFeatureDisplayType::SIMPLE) { + if (m_displayType == vpRBSilhouetteCCDDisplayType::SIMPLE) { for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { const vpRBSilhouetteControlPoint &p = m_controlPoints[i]; @@ -274,7 +273,7 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const // vpDisplay::displayArrow(IRGB, p.icpoint, ip2, p.invnormal ? vpColor::red : vpColor::lightBlue); } } - else if (type == vpRBFeatureDisplayType::ERROR) { + else if (m_displayType == vpRBSilhouetteCCDDisplayType::ERROR) { vpColVector errorPerPoint(m_controlPoints.size()); double maxPointError = 0.0; for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { @@ -305,7 +304,7 @@ void vpRBSilhouetteCCDTracker::display(const vpCameraParameters &/*cam*/, const ++idx; } } - else if (type == vpRBFeatureDisplayType::IMPORTANCE) { + else if (m_displayType == vpRBSilhouetteCCDDisplayType::WEIGHT) { vpColVector weightPerPoint(m_controlPoints.size()); for (unsigned int i = 0; i < m_controlPoints.size(); ++i) { double sum = 0.0; @@ -387,7 +386,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, #if VISP_DEBUG_CCD_TRACKER if (std::isnan(nv_ptr[0]) || std::isnan(nv_ptr[1])) { throw vpException(vpException::fatalError, "x: %f, theta = %f", p.xs, p.getTheta()); - } + } #endif int k = 0; @@ -466,7 +465,7 @@ void vpRBSilhouetteCCDTracker::computeLocalStatistics(const vpImage &I, vic_ptr[10 * negative_normal + 9] = exp(-dist2[0] * dist2[0] / (2 * sigma * sigma)) / (sqrt(2 * CV_PI) * sigma); normalized_param[kk][1] += vic_ptr[10 * negative_normal + 7]; } -} + } #ifdef VISP_HAVE_OPENMP #pragma omp parallel for diff --git a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp index e9872a95c3..f9e058acf1 100644 --- a/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp +++ b/modules/tracker/rbt/src/features/vpRBSilhouetteMeTracker.cpp @@ -184,80 +184,14 @@ void vpRBSilhouetteMeTracker::computeVVSIter(const vpRBFeatureTrackerInput &fram } void vpRBSilhouetteMeTracker::display(const vpCameraParameters &/*cam*/, const vpImage &I, - const vpImage &/*IRGB*/, const vpImage &/*depth*/, - const vpRBFeatureDisplayType type) const + const vpImage &/*IRGB*/, const vpImage &/*depth*/) const { - if (type == vpRBFeatureDisplayType::SIMPLE) { - for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { - const vpMeSite &s = p.getSite(); - s.display(I); - // vpImagePoint diff(p.nys * m_me.getRange(), p.nxs * m_me.getRange()); - // vpImagePoint ip2 = p.icpoint + diff; - // vpDisplay::displayLine(I, p.icpoint, ip2, vpColor::lightBlue, 2); - // vpDisplay::displayPoint(I, p.icpoint, vpColor::red, 2); - - } - // vpColor cs[6] = { - // vpColor::red, - // vpColor::blue, - // vpColor::green, - // vpColor::purple, - // vpColor::cyan, - // vpColor::darkGreen - - // }; - // unsigned colorIndex = 0; - // for (const vpTrackedSilhouetteLine &line: m_lines) { - // if (line.getPoints().size() > 10) { - // for (const vpRBSilhouetteControlPoint *p: line.getPoints()) { - // vpDisplay::displayCross(I, p->getSite().m_i, p->getSite().m_j, 3, cs[colorIndex]); - // } - // colorIndex = (colorIndex + 1) % 6; - // } - // //line.getLine().display(I, cam); - // } - } - else if (type == vpRBFeatureDisplayType::IMPORTANCE) { - const double maxWeight = m_weights.getMaxValue(); - unsigned idx = 0; - const vpColor bestColor = vpColor::green; - for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { - const vpMeSite &s = p.getSite(); - - if (s.getState() == vpMeSite::NO_SUPPRESSION) { - double weight = m_weights[idx] / maxWeight; - vpColor c((unsigned char)((double)(bestColor.R) * weight), (unsigned char)((double)(bestColor.G) * weight), (unsigned char)((double)(bestColor.B) * weight)); - vpDisplay::displayCross(I, s.get_i(), s.get_j(), 3, c, 1); - } - else { - s.display(I); - } - ++idx; - } + for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { + const vpMeSite &s = p.getSite(); + s.display(I); } - else if (type == vpRBFeatureDisplayType::ERROR) { - unsigned idx = 0; - const vpColor bestColor = vpColor::green; - double maxError = m_error.getMaxValue(); - - for (const vpRBSilhouetteControlPoint &p: m_controlPoints) { - const vpMeSite &s = p.getSite(); - if (s.getState() == vpMeSite::NO_SUPPRESSION) { - double weight = m_error[idx] / maxError; - vpColor c((unsigned char)((double)(bestColor.R) * weight), (unsigned char)((double)(bestColor.G) * weight), (unsigned char)((double)(bestColor.B) * weight)); - vpDisplay::displayCross(I, s.get_i(), s.get_j(), 3, c, 1); - } - else { - s.display(I); - } - ++idx; - } - } - else { - throw vpException(vpException::notImplementedError, "Display not implemented for unknown type"); - } } END_VISP_NAMESPACE diff --git a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp index f0aa875c3f..7b3570286d 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-realsense.cpp @@ -205,7 +205,7 @@ int main(int argc, const char **argv) vpDisplay::display(IdepthDisplay); vpDisplay::display(Id); // vpDisplay::display(Icol); - tracker.display(Id, Icol, IdepthDisplay, vpRBFeatureDisplayType::SIMPLE); + tracker.display(Id, Icol, IdepthDisplay); vpDisplay::displayFrame(Icol, cMo, cam, 0.05, vpColor::none, 2); vpDisplay::displayText(Id, 20, 5, "Right click to exit", vpColor::red); vpMouseButton::vpMouseButtonType button; diff --git a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp index 23f376353f..71619676c0 100644 --- a/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp +++ b/tutorial/tracking/render-based/tutorial-rbt-sequence.cpp @@ -205,7 +205,7 @@ int main(int argc, const char **argv) vpDisplay::flush(IProbaDisplay); vpDisplay::display(Id); // vpDisplay::display(Icol); - tracker.display(Id, Icol, depthDisplay, vpRBFeatureDisplayType::SIMPLE); + tracker.display(Id, Icol, depthDisplay); vpDisplay::displayFrame(Icol, cMo, cam, 0.05, vpColor::none, 2); vpDisplay::flush(Icol);