-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
142 lines (114 loc) · 5.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
from langchain_community.llms import LlamaCpp
from langchain.prompts import PromptTemplate
# from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.base import BaseCallbackHandler
from huggingface_hub import hf_hub_download
# StreamHandler to intercept streaming output from the LLM.
# This makes it appear that the Language Model is "typing"
# in realtime.
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
@st.cache_resource
def create_chain(system_prompt):
# A stream handler to direct streaming output on the chat screen.
# This will need to be handled somewhat differently.
# But it demonstrates what potential it carries.
# stream_handler = StreamHandler(st.empty())
# Callback manager is a way to intercept streaming output from the
# LLM and take some action on it. Here we are giving it our custom
# stream handler to make it appear that the LLM is typing the
# responses in real-time.
# callback_manager = CallbackManager([stream_handler])
(repo_id, model_file_name) = ("TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
"mistral-7b-instruct-v0.1.Q4_0.gguf")
model_path = hf_hub_download(repo_id=repo_id,
filename=model_file_name,
repo_type="model")
# initialize LlamaCpp LLM model
# n_gpu_layers, n_batch, and n_ctx are for GPU support.
# When not set, CPU will be used.
# set 1 for Mac m2, and higher numbers based on your GPU support
llm = LlamaCpp(
model_path=model_path,
temperature=0,
max_tokens=512,
top_p=1,
# callback_manager=callback_manager,
# n_gpu_layers=1,
# n_batch=512,
# n_ctx=4096,
stop=["[INST]"],
verbose=False,
streaming=True,
)
# Template you will use to structure your user input before converting
# into a prompt. Here, my template first injects the personality I wish to
# give to the LLM before in the form of system_prompt pushing the actual
# prompt from the user. Note that this chatbot doesn't have any memory of
# the conversation. So we will inject the system prompt for each message.
template = """
<s>[INST]{}[/INST]</s>
[INST]{}[/INST]
""".format(system_prompt, "{question}")
# We create a prompt from the template so we can use it with Langchain
prompt = PromptTemplate(template=template, input_variables=["question"])
# We create an llm chain with our LLM and prompt
# llm_chain = LLMChain(prompt=prompt, llm=llm) # Legacy
llm_chain = prompt | llm # LCEL
return llm_chain
# Set the webpage title
st.set_page_config(
page_title="Your own aiChat!"
)
# Create a header element
st.header("Your own aiChat!")
# This sets the LLM's personality for each prompt.
# The initial personality provided is basic.
# Try something interesting and notice how the LLM responses are affected.
system_prompt = st.text_area(
label="System Prompt",
value="You are a helpful AI assistant who answers questions in short sentences.",
key="system_prompt")
# Create LLM chain to use for our chatbot.
llm_chain = create_chain(system_prompt)
# We store the conversation in the session state.
# This will be used to render the chat conversation.
# We initialize it with the first message we want to be greeted with.
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "How may I help you today?"}
]
if "current_response" not in st.session_state:
st.session_state.current_response = ""
# We loop through each message in the session state and render it as
# a chat message.
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# We take questions/instructions from the chat input to pass to the LLM
if user_prompt := st.chat_input("Your message here", key="user_input"):
# Add our input to the session state
st.session_state.messages.append(
{"role": "user", "content": user_prompt}
)
# Add our input to the chat window
with st.chat_message("user"):
st.markdown(user_prompt)
# Pass our input to the LLM chain and capture the final responses.
# It is worth noting that the Stream Handler is already receiving the
# streaming response as the llm is generating. We get our response
# here once the LLM has finished generating the complete response.
response = llm_chain.invoke({"question": user_prompt})
# Add the response to the session state
st.session_state.messages.append(
{"role": "assistant", "content": response}
)
# Add the response to the chat window
with st.chat_message("assistant"):
st.markdown(response)