-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathaudio_utils.py
46 lines (38 loc) · 2.03 KB
/
audio_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from typing import List
import torch
from scipy.io import wavfile
from transformers import WhisperProcessor, WhisperForConditionalGeneration, AutoProcessor, BarkModel
class Whisper:
def __init__(self, model_name="openai/whisper-small"):
self.__device = "cuda:0" if torch.cuda.is_available() else "cpu"
# whisper
self.__model = WhisperForConditionalGeneration.from_pretrained(model_name).to(
self.__device)
self.__model.config.forced_decoder_ids = None
self.__processor = WhisperProcessor.from_pretrained(model_name)
def transcribe(self, data) -> List[str]:
input_features = self.__processor(data, sampling_rate=16000,
return_tensors="pt").input_features
if self.__device != "cpu":
input_features = input_features.to(self.__device, torch.float32)
# generate token ids
predicted_ids = self.__model.generate(input_features)
transcription = self.__processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription
class Bark:
def __init__(self, model_name="suno/bark-small", voice_preset="v2/en_speaker_0"):
self.__device = "cuda:0" if torch.cuda.is_available() else "cpu"
# suno/bark
self.__model = BarkModel.from_pretrained(model_name).to(self.__device)
self.__synthesiser = AutoProcessor.from_pretrained(model_name)
self.__voice_preset = voice_preset
def set_voice_preset(self, voice_preset):
self.__voice_preset = voice_preset
def synthesize(self, text):
input_features = self.__synthesiser(f"{text}", voice_preset=self.__voice_preset).to(self.__device)
audio_array = self.__model.generate(**input_features)
if self.__device != "cpu":
audio_array = audio_array.to(self.__device, torch.float32)
audio_array = audio_array.cpu().numpy().squeeze()
sample_rate = self.__model.generation_config.sample_rate
wavfile.write("bark_out.wav", rate=sample_rate, data=audio_array)