-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdiscriminator.py
55 lines (45 loc) · 1.99 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# coding:utf-8
import torch
import torch.nn as nn
from textcnn import TextCNN
class Discriminator(nn.Module):
"""Discriminator """
def __init__(self, emb_dim, filter_num, filter_sizes, dropout_p=0.5):
super(Discriminator, self).__init__()
# TODO: add dropout
self.query_cnn = TextCNN(emb_dim, filter_num, filter_sizes)
self.response_cnn = TextCNN(emb_dim, filter_num, filter_sizes)
self.dropout = nn.Dropout(p=dropout_p)
self.judger = nn.Sequential(
nn.Linear(2*filter_num*len(filter_sizes), 128),
#nn.ReLU(),
#nn.Linear(256, 128),
nn.ReLU(),
self.dropout,
nn.Linear(128, 1),
nn.Sigmoid()
)
def forward(self, query, response):
# query is [B, max_len] (after padding)
# embedded_query = word_embeddings(query)
# embedded_response = word_embeddings(response)
query_features = self.query_cnn(query) # [B, T, D] -> [B, all_features]
response_features = self.response_cnn(response)
inputs = torch.cat((query_features, response_features), 1)
return self.judger(inputs)
if __name__ == '__main__':
from torch.autograd import Variable
from visualize import make_dot
batch_size = 3
max_len = 8
vocab_size = 10
emb_dim = 6
query = Variable(torch.LongTensor([[1,2,4,5,3,0,0,0], [6,3,3,5,0,0,0,0], [8,6,0,0,0,0,0,0]]))
# reference = Variable(torch.LongTensor([[6,3,3,6,8,3,0,0], [2,1,5,0,0,0,0,0], [9,1,7,4,2,6,9,2]]))
fake = Variable(torch.LongTensor([[6,3,3,6,8,3,0,0], [2,1,5,0,0,0,0,0], [9,1,7,4,2,6,9,2]]))
# fake = Variable(torch.LongTensor([[1,2,8,3,6,3,2,0], [2,1,2,2,4,6,7,9], [4,2,2,6,0,0,0,0]]))
embeddings = nn.Embedding(vocab_size, emb_dim)
d = Discriminator(emb_dim, filter_num=100, filter_sizes=[1,2,3,4])
print d
a = d(query, fake, embeddings)
# make_dot(a).view()