-
Notifications
You must be signed in to change notification settings - Fork 38
/
data.py
326 lines (274 loc) · 12.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to read the train/eval/test data from file and process it, and read the vocab data from file and process it"""
import glob
import random
import struct
import csv
import json
from tensorflow.core.example import example_pb2
import codecs
# <s> and </s> are used in the data files to segment the abstracts into sentences. They don't receive vocab ids.
SENTENCE_START = '<s>'
SENTENCE_END = '</s>'
PAD_TOKEN = '[PAD]' # This has a vocab id, which is used to pad the encoder input, decoder input and target sequence
UNKNOWN_TOKEN = '[UNK]' # This has a vocab id, which is used to represent out-of-vocabulary words
START_DECODING = '[START]' # This has a vocab id, which is used at the start of every decoder input sequence
STOP_DECODING = '[STOP]' # This has a vocab id, which is used at the end of untruncated target sequences
STOP_DECODING_DOCUMENT = '[STOPDOC]'
# Note: none of <s>, </s>, [PAD], [UNK], [START], [STOP] should appear in the vocab file.
class Vocab(object):
"""Vocabulary class for mapping between words and ids (integers)"""
def __init__(self, vocab_file, max_size):
"""Creates a vocab of up to max_size words, reading from the vocab_file. If max_size is 0, reads the entire vocab file.
Args:
vocab_file: path to the vocab file, which is assumed to contain "<word> <frequency>" on each line, sorted with most frequent word first. This code doesn't actually use the frequencies, though.
max_size: integer. The maximum size of the resulting Vocabulary."""
self._word_to_id = {}
self._id_to_word = {}
self._count = 0 # keeps track of total number of words in the Vocab
# [UNK], [PAD], [START] and [STOP] get the ids 0,1,2,3.
for w in [UNKNOWN_TOKEN, PAD_TOKEN, START_DECODING, STOP_DECODING,STOP_DECODING_DOCUMENT]:
self._word_to_id[w] = self._count
self._id_to_word[self._count] = w
self._count += 1
# Read the vocab file and add words up to max_size
with codecs.open(vocab_file, 'r','utf-8') as vocab_f:
for line in vocab_f:
pieces = line.split()
if len(pieces) != 2:
print ('Warning: incorrectly formatted line in vocabulary file: %s\n' % line)
continue
w = pieces[0]
if w in [SENTENCE_START, SENTENCE_END, UNKNOWN_TOKEN, PAD_TOKEN, START_DECODING, STOP_DECODING,STOP_DECODING_DOCUMENT]:
raise Exception('<s>, </s>, [UNK], [PAD], [START] and [STOP] shouldn\'t be in the vocab file, but %s is' % w)
if w in self._word_to_id:
raise Exception('Duplicated word in vocabulary file: %s' % w)
self._word_to_id[w] = self._count
self._id_to_word[self._count] = w
self._count += 1
if max_size != 0 and self._count >= max_size:
print ("max_size of vocab was specified as %i; we now have %i words. Stopping reading." % (max_size, self._count))
break
print ("Finished constructing vocabulary of %i total words. Last word added: %s" % (self._count, self._id_to_word[self._count-1]))
def word2id(self, word):
"""Returns the id (integer) of a word (string). Returns [UNK] id if word is OOV."""
if word not in self._word_to_id:
return self._word_to_id[UNKNOWN_TOKEN]
return self._word_to_id[word]
def id2word(self, word_id):
"""Returns the word (string) corresponding to an id (integer)."""
if word_id not in self._id_to_word:
raise ValueError('Id not found in vocab: %d' % word_id)
return self._id_to_word[word_id]
def size(self):
"""Returns the total size of the vocabulary"""
return self._count
def write_metadata(self, fpath):
"""Writes metadata file for Tensorboard word embedding visualizer as described here:
https://www.tensorflow.org/get_started/embedding_viz
Args:
fpath: place to write the metadata file
"""
print ("Writing word embedding metadata file to %s..." % (fpath))
with open(fpath, "w") as f:
fieldnames = ['word']
writer = csv.DictWriter(f, delimiter="\t", fieldnames=fieldnames)
for i in range(self.size()):
writer.writerow({"word": self._id_to_word[i]})
def example_generator(data_path, single_pass):
"""Generates tf.Examples from data files.
Binary data format: <length><blob>. <length> represents the byte size
of <blob>. <blob> is serialized tf.Example proto. The tf.Example contains
the tokenized article text and summary.
Args:
data_path:
Path to tf.Example data files. Can include wildcards, e.g. if you have several training data chunk files train_001.bin, train_002.bin, etc, then pass data_path=train_* to access them all.
single_pass:
Boolean. If True, go through the dataset exactly once, generating examples in the order they appear, then return. Otherwise, generate random examples indefinitely.
Yields:
Deserialized tf.Example.
"""
while True:
filelist = glob.glob(data_path) # get the list of datafiles
assert filelist, ('Error: Empty filelist at %s' % data_path) # check filelist isn't empty
if single_pass:
filelist = sorted(filelist)
else:
random.shuffle(filelist)
for f in filelist:
reader = open(f, 'rb')
while True:
len_bytes = reader.read(8)
if not len_bytes: break # finished reading this file
str_len = struct.unpack('q', len_bytes)[0]
example_str = struct.unpack('%ds' % str_len, reader.read(str_len))[0]
yield example_pb2.Example.FromString(example_str)
if single_pass:
print ("example_generator completed reading all datafiles. No more data.")
break
def sentence_example_generator(data_path, single_pass):
while True:
filelist = glob.glob(data_path) # get the list of datafiles
assert filelist, ('Error: Empty filelist at %s' % data_path) # check filelist isn't empty
if single_pass:
filelist = sorted(filelist)
else:
random.shuffle(filelist)
for f in filelist:
reader = codecs.open(f, 'r','utf-8')
while True:
string_ = reader.readline()
if not string_: break
dict_example = json.loads(string_)
review = dict_example["review"]
yield (review)
if single_pass:
print ("example_generator completed reading all datafiles. No more data.")
break
def dis_sentence_example_generator(data_path, single_pass):
while True:
filelist = glob.glob(data_path) # get the list of datafiles
assert filelist, ('Error: Empty filelist at %s' % data_path) # check filelist isn't empty
if single_pass:
filelist = sorted(filelist)
else:
random.shuffle(filelist)
for f in filelist:
reader = codecs.open(f, 'r','utf-8')
while True:
string_ = reader.readline()
if not string_: break
dict_example = json.loads(string_)
review = dict_example["review"]
label = dict_example["label"]
yield (review, label)
if single_pass:
print ("example_generator completed reading all datafiles. No more data.")
break
def article2ids(article_words, vocab):
"""Map the article words to their ids. Also return a list of OOVs in the article.
Args:
article_words: list of words (strings)
vocab: Vocabulary object
Returns:
ids:
A list of word ids (integers); OOVs are represented by their temporary article OOV number. If the vocabulary size is 50k and the article has 3 OOVs, then these temporary OOV numbers will be 50000, 50001, 50002.
oovs:
A list of the OOV words in the article (strings), in the order corresponding to their temporary article OOV numbers."""
ids = []
oovs = []
unk_id = vocab.word2id(UNKNOWN_TOKEN)
for w in article_words:
i = vocab.word2id(w)
if i == unk_id: # If w is OOV
if w not in oovs: # Add to list of OOVs
oovs.append(w)
oov_num = oovs.index(w) # This is 0 for the first article OOV, 1 for the second article OOV...
ids.append(vocab.size() + oov_num) # This is e.g. 50000 for the first article OOV, 50001 for the second...
else:
ids.append(i)
return ids, oovs
def abstract2ids(abstract_words, vocab, article_oovs):
"""Map the abstract words to their ids. In-article OOVs are mapped to their temporary OOV numbers.
Args:
abstract_words: list of words (strings)
vocab: Vocabulary object
article_oovs: list of in-article OOV words (strings), in the order corresponding to their temporary article OOV numbers
Returns:
ids: List of ids (integers). In-article OOV words are mapped to their temporary OOV numbers. Out-of-article OOV words are mapped to the UNK token id."""
ids = []
unk_id = vocab.word2id(UNKNOWN_TOKEN)
for w in abstract_words:
i = vocab.word2id(w)
if i == unk_id: # If w is an OOV word
if w in article_oovs: # If w is an in-article OOV
vocab_idx = vocab.size() + article_oovs.index(w) # Map to its temporary article OOV number
ids.append(vocab_idx)
else: # If w is an out-of-article OOV
ids.append(unk_id) # Map to the UNK token id
else:
ids.append(i)
return ids
def outputids2words(id_list, vocab, article_oovs):
"""Maps output ids to words, including mapping in-article OOVs from their temporary ids to the original OOV string (applicable in pointer-generator mode).
Args:
id_list: list of ids (integers)
vocab: Vocabulary object
article_oovs: list of OOV words (strings) in the order corresponding to their temporary article OOV ids (that have been assigned in pointer-generator mode), or None (in baseline mode)
Returns:
words: list of words (strings)
"""
words = []
for i in id_list:
try:
w = vocab.id2word(i) # might be [UNK]
except ValueError as e: # w is OOV
assert article_oovs is not None, "Error: model produced a word ID that isn't in the vocabulary. This should not happen in baseline (no pointer-generator) mode"
article_oov_idx = i - vocab.size()
try:
w = article_oovs[article_oov_idx]
except ValueError as e: # i doesn't correspond to an article oov
raise ValueError('Error: model produced word ID %i which corresponds to article OOV %i but this example only has %i article OOVs' % (i, article_oov_idx, len(article_oovs)))
words.append(w)
return words
def abstract2sents(abstract):
"""Splits abstract text from datafile into list of sentences.
Args:
abstract: string containing <s> and </s> tags for starts and ends of sentences
Returns:
sents: List of sentence strings (no tags)"""
cur = 0
sents = []
while True:
try:
start_p = abstract.index(SENTENCE_START, cur)
end_p = abstract.index(SENTENCE_END, start_p + 1)
cur = end_p + len(SENTENCE_END)
sents.append(abstract[start_p+len(SENTENCE_START):end_p])
except ValueError as e: # no more sentences
return sents
def show_art_oovs(article, vocab):
"""Returns the article string, highlighting the OOVs by placing __underscores__ around them"""
unk_token = vocab.word2id(UNKNOWN_TOKEN)
words = article.split(' ')
words = [("__%s__" % w) if vocab.word2id(w)==unk_token else w for w in words]
out_str = ' '.join(words)
return out_str
def show_abs_oovs(abstract, vocab, article_oovs):
"""Returns the abstract string, highlighting the article OOVs with __underscores__.
If a list of article_oovs is provided, non-article OOVs are differentiated like !!__this__!!.
Args:
abstract: string
vocab: Vocabulary object
article_oovs: list of words (strings), or None (in baseline mode)
"""
unk_token = vocab.word2id(UNKNOWN_TOKEN)
words = abstract.split(' ')
new_words = []
for w in words:
if vocab.word2id(w) == unk_token: # w is oov
if article_oovs is None: # baseline mode
new_words.append("__%s__" % w)
else: # pointer-generator mode
if w in article_oovs:
new_words.append("__%s__" % w)
else:
new_words.append("!!__%s__!!" % w)
else: # w is in-vocab word
new_words.append(w)
out_str = ' '.join(new_words)
return out_str