diff --git a/libs/vertexai/langchain_google_vertexai/chat_models.py b/libs/vertexai/langchain_google_vertexai/chat_models.py
index da509328..3f7f42d8 100644
--- a/libs/vertexai/langchain_google_vertexai/chat_models.py
+++ b/libs/vertexai/langchain_google_vertexai/chat_models.py
@@ -4,7 +4,7 @@
 import json
 import logging
 from dataclasses import dataclass, field
-from typing import Any, Dict, Iterator, List, Optional, Union, cast
+from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast
 
 import proto  # type: ignore[import-untyped]
 from google.cloud.aiplatform_v1beta1.types.content import Part as GapicPart
@@ -539,6 +539,48 @@ def _stream(
                     ),
                 )
 
+    async def _astream(
+        self,
+        messages: List[BaseMessage],
+        stop: Optional[List[str]] = None,
+        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
+        **kwargs: Any,
+    ) -> AsyncIterator[ChatGenerationChunk]:
+        if not self._is_gemini_model:
+            raise NotImplementedError()
+        params = self._prepare_params(stop=stop, stream=True, **kwargs)
+        history_gemini = _parse_chat_history_gemini(
+            messages,
+            project=self.project,
+            convert_system_message_to_human=self.convert_system_message_to_human,
+        )
+        message = history_gemini.pop()
+        chat = self.client.start_chat(history=history_gemini)
+        raw_tools = params.pop("functions") if "functions" in params else None
+        tools = _format_tools_to_vertex_tool(raw_tools) if raw_tools else None
+        safety_settings = params.pop("safety_settings", None)
+        async for chunk in await chat.send_message_async(
+            message,
+            stream=True,
+            generation_config=params,
+            safety_settings=safety_settings,
+            tools=tools,
+        ):
+            message = _parse_response_candidate(chunk.candidates[0])
+            if run_manager:
+                await run_manager.on_llm_new_token(message.content)
+            yield ChatGenerationChunk(
+                message=AIMessageChunk(
+                    content=message.content,
+                    additional_kwargs=message.additional_kwargs,
+                ),
+                generation_info=get_generation_info(
+                    chunk.candidates[0],
+                    self._is_gemini_model,
+                    usage_metadata=chunk.to_dict().get("usage_metadata"),
+                ),
+            )
+
     def _start_chat(
         self, history: _ChatHistory, **kwargs: Any
     ) -> Union[ChatSession, CodeChatSession]:
diff --git a/libs/vertexai/langchain_google_vertexai/llms.py b/libs/vertexai/langchain_google_vertexai/llms.py
index 8b6f1062..c236ab3b 100644
--- a/libs/vertexai/langchain_google_vertexai/llms.py
+++ b/libs/vertexai/langchain_google_vertexai/llms.py
@@ -1,7 +1,7 @@
 from __future__ import annotations
 
 from concurrent.futures import Executor
-from typing import Any, ClassVar, Dict, Iterator, List, Optional, Union
+from typing import Any, AsyncIterator, ClassVar, Dict, Iterator, List, Optional, Union
 
 import vertexai  # type: ignore[import-untyped]
 from google.api_core.client_options import ClientOptions
@@ -95,6 +95,7 @@ async def _acompletion_with_retry(
     llm: VertexAI,
     prompt: str,
     is_gemini: bool = False,
+    stream: bool = False,
     run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
     **kwargs: Any,
 ) -> Any:
@@ -105,17 +106,22 @@ async def _acompletion_with_retry(
 
     @retry_decorator
     async def _acompletion_with_retry_inner(
-        prompt: str, is_gemini: bool = False, **kwargs: Any
+        prompt: str, is_gemini: bool = False, stream: bool = False, **kwargs: Any
     ) -> Any:
         if is_gemini:
             return await llm.client.generate_content_async(
                 prompt,
                 generation_config=kwargs,
+                stream=stream,
                 safety_settings=kwargs.pop("safety_settings", None),
             )
+        if stream:
+            raise ValueError("Async streaming is supported only for Gemini family!")
         return await llm.client.predict_async(prompt, **kwargs)
 
-    return await _acompletion_with_retry_inner(prompt, is_gemini, **kwargs)
+    return await _acompletion_with_retry_inner(
+        prompt, is_gemini, stream=stream, **kwargs
+    )
 
 
 class _VertexAIBase(BaseModel):
@@ -453,6 +459,34 @@ def _stream(
                     verbose=self.verbose,
                 )
 
+    async def _astream(
+        self,
+        prompt: str,
+        stop: Optional[List[str]] = None,
+        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
+        **kwargs: Any,
+    ) -> AsyncIterator[GenerationChunk]:
+        params = self._prepare_params(stop=stop, stream=True, **kwargs)
+        if not self._is_gemini_model:
+            raise ValueError("Async streaming is supported only for Gemini family!")
+        async for chunk in await _acompletion_with_retry(
+            self,
+            prompt,
+            stream=True,
+            is_gemini=self._is_gemini_model,
+            run_manager=run_manager,
+            **params,
+        ):
+            usage_metadata = chunk.to_dict().get("usage_metadata")
+            chunk = self._candidate_to_generation(
+                chunk.candidates[0], stream=True, usage_metadata=usage_metadata
+            )
+            yield chunk
+            if run_manager:
+                await run_manager.on_llm_new_token(
+                    chunk.text, chunk=chunk, verbose=self.verbose
+                )
+
 
 class VertexAIModelGarden(_VertexAIBase, BaseLLM):
     """Large language models served from Vertex AI Model Garden."""
diff --git a/libs/vertexai/tests/integration_tests/test_chat_models.py b/libs/vertexai/tests/integration_tests/test_chat_models.py
index c3721af3..365c7a21 100644
--- a/libs/vertexai/tests/integration_tests/test_chat_models.py
+++ b/libs/vertexai/tests/integration_tests/test_chat_models.py
@@ -86,6 +86,14 @@ def test_vertexai_stream(model_name: str) -> None:
         assert isinstance(chunk, AIMessageChunk)
 
 
+async def test_vertexai_astream() -> None:
+    model = ChatVertexAI(temperature=0, model_name="gemini-pro")
+    message = HumanMessage(content="Hello")
+
+    async for chunk in model.astream([message]):
+        assert isinstance(chunk, AIMessageChunk)
+
+
 def test_vertexai_single_call_with_context() -> None:
     model = ChatVertexAI()
     raw_context = (
diff --git a/libs/vertexai/tests/integration_tests/test_image_utils.py b/libs/vertexai/tests/integration_tests/test_image_utils.py
index b297fa0d..87f75a81 100644
--- a/libs/vertexai/tests/integration_tests/test_image_utils.py
+++ b/libs/vertexai/tests/integration_tests/test_image_utils.py
@@ -1,9 +1,11 @@
+import pytest
 from google.cloud import storage  # type: ignore[attr-defined]
 from google.cloud.exceptions import NotFound
 
 from langchain_google_vertexai._image_utils import ImageBytesLoader
 
 
+@pytest.mark.skip("CI testing not set up")
 def test_image_utils():
     base64_image = (
         ""
diff --git a/libs/vertexai/tests/integration_tests/test_llms.py b/libs/vertexai/tests/integration_tests/test_llms.py
index 29f29db2..6b252f42 100644
--- a/libs/vertexai/tests/integration_tests/test_llms.py
+++ b/libs/vertexai/tests/integration_tests/test_llms.py
@@ -113,6 +113,12 @@ async def test_vertex_consistency() -> None:
     assert output.generations[0][0].text == async_output.generations[0][0].text
 
 
+async def test_astream() -> None:
+    llm = VertexAI(temperature=0, model_name="gemini-pro")
+    async for token in llm.astream("I'm Pickle Rick"):
+        assert isinstance(token, str)
+
+
 @pytest.mark.skip("CI testing not set up")
 @pytest.mark.parametrize(
     "endpoint_os_variable_name,result_arg",