Skip to content

Latest commit

 

History

History
85 lines (58 loc) · 2.96 KB

README.md

File metadata and controls

85 lines (58 loc) · 2.96 KB

langchain-postgres

Release Notes CI License: MIT Twitter Open Issues

The langchain-postgres package implementations of core LangChain abstractions using Postgres.

The package is released under the MIT license.

Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.

Requirements

The package currently only supports the psycogp3 driver.

Installation

pip install -U langchain-postgres

Change Log

0.0.6:

  • Remove langgraph as a dependency as it was causing dependency conflicts.
  • Base interface for checkpointer changed in langgraph, so existing implementation would've broken regardless.

Usage

ChatMessageHistory

The chat message history abstraction helps to persist chat message history in a postgres table.

PostgresChatMessageHistory is parameterized using a table_name and a session_id.

The table_name is the name of the table in the database where the chat messages will be stored.

The session_id is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4().

import uuid

from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_postgres import PostgresChatMessageHistory
import psycopg

# Establish a synchronous connection to the database
# (or use psycopg.AsyncConnection for async)
conn_info = ... # Fill in with your connection info
sync_connection = psycopg.connect(conn_info)

# Create the table schema (only needs to be done once)
table_name = "chat_history"
PostgresChatMessageHistory.create_tables(sync_connection, table_name)

session_id = str(uuid.uuid4())

# Initialize the chat history manager
chat_history = PostgresChatMessageHistory(
    table_name,
    session_id,
    sync_connection=sync_connection
)

# Add messages to the chat history
chat_history.add_messages([
    SystemMessage(content="Meow"),
    AIMessage(content="woof"),
    HumanMessage(content="bark"),
])

print(chat_history.messages)

Vectorstore

See example for the PGVector vectorstore here