From a86065c53686a66e2409c2a7f76f66cde7b85453 Mon Sep 17 00:00:00 2001 From: Erick Friis Date: Thu, 14 Dec 2023 11:47:34 -0800 Subject: [PATCH] docs[patch]: fix databricks metadata (#14727) --- docs/docs/integrations/llms/databricks.ipynb | 153 +------------- .../databricks_vector_search.ipynb | 189 ++---------------- 2 files changed, 29 insertions(+), 313 deletions(-) diff --git a/docs/docs/integrations/llms/databricks.ipynb b/docs/docs/integrations/llms/databricks.ipynb index d9dced42548fc..0773eff8d20a1 100644 --- a/docs/docs/integrations/llms/databricks.ipynb +++ b/docs/docs/integrations/llms/databricks.ipynb @@ -3,15 +3,7 @@ { "attachments": {}, "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "5147e458-3b83-449e-9c2f-e7e1972e43fc", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "# Databricks\n", "\n", @@ -145,15 +137,7 @@ { "attachments": {}, "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "94f6540e-40cd-4d9b-95d3-33d36f061dcc", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Wrapping a serving endpoint: Custom model\n", "\n", @@ -173,18 +157,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "7496dc7a-8a1a-4ce6-9648-4f69ed25275b", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -211,18 +184,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "0c86d952-4236-4a5e-bdac-cf4e3ccf3a16", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -242,18 +204,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "5f2507a2-addd-431d-9da5-dc2ae33783f6", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -288,18 +239,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "9b54f8ce-ffe5-4c47-a3f0-b4ebde524a6a", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -323,18 +263,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "50f172f5-ea1f-4ceb-8cf1-20289848de7b", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -370,13 +299,6 @@ "attachments": {}, "cell_type": "markdown", "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "8ea49319-a041-494d-afcd-87bcf00d5efb", - "showTitle": false, - "title": "" - } }, "source": [ "## Wrapping a cluster driver proxy app\n", @@ -448,18 +370,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "e3330a01-e738-4170-a176-9954aff56442", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -483,18 +394,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "39c121cf-0e44-4e31-91db-37fcac459677", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -519,18 +419,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "3d3de599-82fd-45e4-8d8b-bacfc49dc9ce", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -554,18 +443,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": { - "byteLimit": 2048000, - "rowLimit": 10000 - }, - "inputWidgets": {}, - "nuid": "853fae8e-8df4-41e6-9d45-7769f883fe80", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -607,15 +485,6 @@ } ], "metadata": { - "application/vnd.databricks.v1+notebook": { - "dashboards": [], - "language": "python", - "notebookMetadata": { - "pythonIndentUnit": 2 - }, - "notebookName": "databricks", - "widgets": {} - }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", diff --git a/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb b/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb index 52a53c758a0d2..4ac079b4afef3 100644 --- a/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb +++ b/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb @@ -2,15 +2,7 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "5a8c5767-adfe-4b9d-a665-a898756d7a6c", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "# Databricks Vector Search\n", "\n", @@ -21,15 +13,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "746cfacd-fb30-48fd-96a5-bbcc0d15ae49", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "Install `databricks-vectorsearch` and related Python packages used in this notebook." ] @@ -37,15 +21,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "9258a3e7-e050-4390-9d3f-9adff1460dab", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "!pip install langchain-core databricks-vectorsearch openai tiktoken" @@ -53,15 +29,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "f4f09d6d-002d-4cb0-a664-0a83bd2a13da", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "Use `OpenAIEmbeddings` for the embeddings." ] @@ -69,15 +37,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "f11b902d-a772-45e0-bbd9-526218b717cc", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "import getpass\n", @@ -88,15 +48,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "59b568f3-8db2-427e-9a4a-1df6fa7a1739", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "Split documents and get embeddings." ] @@ -104,15 +56,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "b28e1c7b-eae4-4be8-abbd-8433c7557dc2", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", @@ -130,15 +74,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "e8fcdda1-208a-45c9-816e-ff0d2c8f59d6", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Setup Databricks Vector Search client" ] @@ -146,15 +82,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "9b87fff1-99e5-4d9f-aba3-d21a7ccc498e", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "from databricks.vector_search.client import VectorSearchClient\n", @@ -181,15 +109,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "81090f87-3efd-4c1e-9f58-8d6adba7553d", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Create Direct Vector Access Index\n", "Direct Vector Access Index supports direct read and write of embedding vectors and metadata through a REST API or an SDK. For this index, you manage embedding vectors and index updates yourself." @@ -198,15 +118,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "9389ec6b-5885-411f-a26e-1a4b03651f5c", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "vector_search_endpoint_name = \"vector_search_demo_endpoint\"\n", @@ -232,15 +144,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "047a14c9-2f06-4f74-883d-815b2c69786c", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "from langchain.vectorstores import DatabricksVectorSearch\n", @@ -252,15 +156,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "951bd581-2ced-497f-9c70-4fda902fd3a1", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Add docs to the index" ] @@ -268,15 +164,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "1e85f235-901f-4cf5-845f-5dbf4ce42078", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "dvs.add_documents(docs)" @@ -284,15 +172,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "8bea6f0a-b305-455a-acba-99cc8c9350b5", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Similarity search" ] @@ -300,15 +180,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "25c5a044-a61a-4929-9e65-a0f0462925df", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "query = \"What did the president say about Ketanji Brown Jackson\"\n", @@ -318,15 +190,7 @@ }, { "cell_type": "markdown", - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "46e3f41b-dac2-4bed-91cb-a3914c25d275", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "source": [ "## Work with Delta Sync Index\n", "\n", @@ -336,15 +200,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "application/vnd.databricks.v1+cell": { - "cellMetadata": {}, - "inputWidgets": {}, - "nuid": "0c1f448e-77ca-41ce-887c-15948e866a0e", - "showTitle": false, - "title": "" - } - }, + "metadata": {}, "outputs": [], "source": [ "dvs_delta_sync = DatabricksVectorSearch(\"catalog_name.schema_name.delta_sync_index\")\n", @@ -353,15 +209,6 @@ } ], "metadata": { - "application/vnd.databricks.v1+notebook": { - "dashboards": [], - "language": "python", - "notebookMetadata": { - "pythonIndentUnit": 2 - }, - "notebookName": "databricks_vector_search", - "widgets": {} - }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python",