diff --git a/docs/extras/integrations/chat/baidu_qianfan_endpoint.ipynb b/docs/extras/integrations/chat/baidu_qianfan_endpoint.ipynb new file mode 100644 index 0000000000000..69dd217db22a6 --- /dev/null +++ b/docs/extras/integrations/chat/baidu_qianfan_endpoint.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Baidu Qianfan\n", + "\n", + "Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n", + "\n", + "Basically, those model are split into the following type:\n", + "\n", + "- Embedding\n", + "- Chat\n", + "- Completion\n", + "\n", + "In this notebook, we will introduce how to use langchain with [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html) mainly in `Chat` corresponding\n", + " to the package `langchain/chat_models` in langchain:\n", + "\n", + "\n", + "## API Initialization\n", + "\n", + "To use the LLM services based on Baidu Qianfan, you have to initialize these parameters:\n", + "\n", + "You could either choose to init the AK,SK in enviroment variables or init params:\n", + "\n", + "```base\n", + "export QIANFAN_AK=XXX\n", + "export QIANFAN_SK=XXX\n", + "```\n", + "\n", + "## Current supported models:\n", + "\n", + "- ERNIE-Bot-turbo (default models)\n", + "- ERNIE-Bot\n", + "- BLOOMZ-7B\n", + "- Llama-2-7b-chat\n", + "- Llama-2-13b-chat\n", + "- Llama-2-70b-chat\n", + "- Qianfan-BLOOMZ-7B-compressed\n", + "- Qianfan-Chinese-Llama-2-7B\n", + "- ChatGLM2-6B-32K\n", + "- AquilaChat-7B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"For basic init and call\"\"\"\n", + "from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint \n", + "from langchain.chat_models.base import HumanMessage\n", + "import os\n", + "os.environ[\"QIAFAN_AK\"] = \"xxx\"\n", + "os.environ[\"QIAFAN_AK\"] = \"xxx\"\n", + "\n", + "\n", + "chat = QianfanChatEndpoint(\n", + " qianfan_ak=\"xxx\",\n", + " qianfan_sk=\"xxx\",\n", + " streaming=True, \n", + " )\n", + "res = chat([HumanMessage(content=\"write a funny joke\")])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + " \n", + "from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint\n", + "from langchain.schema import HumanMessage\n", + "import asyncio\n", + "\n", + "chatLLM = QianfanChatEndpoint(\n", + " streaming=True,\n", + ")\n", + "res = chatLLM.stream([HumanMessage(content=\"hi\")], streaming=True)\n", + "for r in res:\n", + " print(\"chat resp1:\", r)\n", + "\n", + "\n", + "async def run_aio_generate():\n", + " resp = await chatLLM.agenerate(messages=[[HumanMessage(content=\"write a 20 words sentence about sea.\")]])\n", + " print(resp)\n", + " \n", + "await run_aio_generate()\n", + "\n", + "async def run_aio_stream():\n", + " async for res in chatLLM.astream([HumanMessage(content=\"write a 20 words sentence about sea.\")]):\n", + " print(\"astream\", res)\n", + " \n", + "await run_aio_stream()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use different models in Qianfan\n", + "\n", + "In the case you want to deploy your own model based on Ernie Bot or third-party open sources model, you could follow these steps:\n", + "\n", + "- 1. (Optional, if the model are included in the default models, skip it)Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n", + "- 2. Set up the field called `endpoint` in the initlization:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "chatBloom = QianfanChatEndpoint(\n", + " streaming=True, \n", + " model=\"BLOOMZ-7B\",\n", + " )\n", + "res = chatBloom([HumanMessage(content=\"hi\")])\n", + "print(res)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Params:\n", + "\n", + "For now, only `ERNIE-Bot` and `ERNIE-Bot-turbo` support model params below, we might support more models in the future.\n", + "\n", + "- temperature\n", + "- top_p\n", + "- penalty_score\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res = chat.stream([HumanMessage(content=\"hi\")], **{'top_p': 0.4, 'temperature': 0.1, 'penalty_score': 1})\n", + "\n", + "for r in res:\n", + " print(r)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + }, + "vscode": { + "interpreter": { + "hash": "2d8226dd90b7dc6e8932aea372a8bf9fc71abac4be3cdd5a63a36c2a19e3700f" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/extras/integrations/llms/baidu_qianfan_endpoint.ipynb b/docs/extras/integrations/llms/baidu_qianfan_endpoint.ipynb new file mode 100644 index 0000000000000..42f082ef24295 --- /dev/null +++ b/docs/extras/integrations/llms/baidu_qianfan_endpoint.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Baidu Qianfan\n", + "\n", + "Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n", + "\n", + "Basically, those model are split into the following type:\n", + "\n", + "- Embedding\n", + "- Chat\n", + "- Coompletion\n", + "\n", + "In this notebook, we will introduce how to use langchain with [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html) mainly in `Completion` corresponding\n", + " to the package `langchain/llms` in langchain:\n", + "\n", + "\n", + "\n", + "## API Initialization\n", + "\n", + "To use the LLM services based on Baidu Qianfan, you have to initialize these parameters:\n", + "\n", + "You could either choose to init the AK,SK in enviroment variables or init params:\n", + "\n", + "```base\n", + "export QIANFAN_AK=XXX\n", + "export QIANFAN_SK=XXX\n", + "```\n", + "\n", + "## Current supported models:\n", + "\n", + "- ERNIE-Bot-turbo (default models)\n", + "- ERNIE-Bot\n", + "- BLOOMZ-7B\n", + "- Llama-2-7b-chat\n", + "- Llama-2-13b-chat\n", + "- Llama-2-70b-chat\n", + "- Qianfan-BLOOMZ-7B-compressed\n", + "- Qianfan-Chinese-Llama-2-7B\n", + "- ChatGLM2-6B-32K\n", + "- AquilaChat-7B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"For basic init and call\"\"\"\n", + "from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n", + "\n", + "import os\n", + "\n", + "os.environ[\"QIANFAN_AK\"] = \"xx\"\n", + "os.environ[\"QIANFAN_SK\"] = \"xx\"\n", + "\n", + "llm = QianfanLLMEndpoint(streaming=True, ak=\"xx\", sk=\"xx\")\n", + "res = llm(\"hi\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\"\"\"Test for llm generate \"\"\"\n", + "res = llm.generate(prompts=[\"hillo?\"])\n", + "import asyncio\n", + "\"\"\"Test for llm aio generate\"\"\"\n", + "async def run_aio_generate():\n", + " resp = await llm.agenerate(prompts=[\"Write a 20-word article about rivers.\"])\n", + " print(resp)\n", + "\n", + "await run_aio_generate()\n", + "\n", + "\"\"\"Test for llm stream\"\"\"\n", + "for res in llm.stream(\"write a joke.\"):\n", + " print(res)\n", + "\n", + "\"\"\"Test for llm aio stream\"\"\"\n", + "async def run_aio_stream():\n", + " async for res in llm.astream(\"Write a 20-word article about mountains\"):\n", + " print(res)\n", + "\n", + "await run_aio_stream()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use different models in Qianfan\n", + "\n", + "In the case you want to deploy your own model based on EB or serval open sources model, you could follow these steps:\n", + "\n", + "- 1. (Optional, if the model are included in the default models, skip it)Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n", + "- 2. Set up the field called `endpoint` in the initlization:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "llm = QianfanLLMEndpoint(qianfan_ak='xxx', \n", + " qianfan_sk='xxx', \n", + " streaming=True, \n", + " model=\"ERNIE-Bot-turbo\",\n", + " endpoint=\"eb-instant\",\n", + " )\n", + "res = llm(\"hi\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Params:\n", + "\n", + "For now, only `ERNIE-Bot` and `ERNIE-Bot-turbo` support model params below, we might support more models in the future.\n", + "\n", + "- temperature\n", + "- top_p\n", + "- penalty_score\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res = llm.generate(prompts=[\"hi\"], streaming=True, **{'top_p': 0.4, 'temperature': 0.1, 'penalty_score': 1})\n", + "\n", + "for r in res:\n", + " print(r)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "6fa70026b407ae751a5c9e6bd7f7d482379da8ad616f98512780b705c84ee157" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/extras/integrations/text_embedding/baidu_qianfan_endpoint.ipynb b/docs/extras/integrations/text_embedding/baidu_qianfan_endpoint.ipynb new file mode 100644 index 0000000000000..21466d2b7655b --- /dev/null +++ b/docs/extras/integrations/text_embedding/baidu_qianfan_endpoint.ipynb @@ -0,0 +1,124 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Baidu Qianfan\n", + "\n", + "Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n", + "\n", + "Basically, those model are split into the following type:\n", + "\n", + "- Embedding\n", + "- Chat\n", + "- Completion\n", + "\n", + "In this notebook, we will introduce how to use langchain with [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html) mainly in `Embedding` corresponding\n", + " to the package `langchain/embeddings` in langchain:\n", + "\n", + "\n", + "\n", + "## API Initialization\n", + "\n", + "To use the LLM services based on Baidu Qianfan, you have to initialize these parameters:\n", + "\n", + "You could either choose to init the AK,SK in enviroment variables or init params:\n", + "\n", + "```base\n", + "export QIANFAN_AK=XXX\n", + "export QIANFAN_SK=XXX\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"For basic init and call\"\"\"\n", + "from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint \n", + "\n", + "import os\n", + "os.environ[\"QIANFAN_AK\"] = \"xx\"\n", + "os.environ[\"QIANFAN_SK\"] = \"xx\"\n", + "\n", + "embed = QianfanEmbeddingsEndpoint(qianfan_ak='xxx', \n", + " qianfan_sk='xxx')\n", + "res = embed.embed_documents([\"hi\", \"world\"])\n", + "\n", + "import asyncio\n", + "\n", + "async def aioEmbed():\n", + " res = await embed.aembed_query(\"qianfan\")\n", + " print(res)\n", + "await aioEmbed()\n", + "\n", + "import asyncio\n", + "async def aioEmbedDocs():\n", + " res = await embed.aembed_documents([\"hi\", \"world\"])\n", + " for r in res:\n", + " print(\"\", r[:8])\n", + "await aioEmbedDocs()\n", + "\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use different models in Qianfan\n", + "\n", + "In the case you want to deploy your own model based on Ernie Bot or third-party open sources model, you could follow these steps:\n", + "\n", + "- 1. (Optional, if the model are included in the default models, skip it)Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n", + "- 2. Set up the field called `endpoint` in the initlization:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "embed = QianfanEmbeddingsEndpoint(qianfan_ak='xxx', \n", + " qianfan_sk='xxx',\n", + " model=\"bge_large_zh\",\n", + " endpoint=\"bge_large_zh\")\n", + "\n", + "res = embed.embed_documents([\"hi\", \"world\"])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "6fa70026b407ae751a5c9e6bd7f7d482379da8ad616f98512780b705c84ee157" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/libs/langchain/langchain/chat_models/__init__.py b/libs/langchain/langchain/chat_models/__init__.py index f5b5c4e082e8f..2febdc1fe6c8f 100644 --- a/libs/langchain/langchain/chat_models/__init__.py +++ b/libs/langchain/langchain/chat_models/__init__.py @@ -20,6 +20,7 @@ from langchain.chat_models.anthropic import ChatAnthropic from langchain.chat_models.anyscale import ChatAnyscale from langchain.chat_models.azure_openai import AzureChatOpenAI +from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint from langchain.chat_models.bedrock import BedrockChat from langchain.chat_models.ernie import ErnieBotChat from langchain.chat_models.fake import FakeListChatModel @@ -51,4 +52,5 @@ "ChatLiteLLM", "ErnieBotChat", "ChatKonko", + "QianfanChatEndpoint", ] diff --git a/libs/langchain/langchain/chat_models/baidu_qianfan_endpoint.py b/libs/langchain/langchain/chat_models/baidu_qianfan_endpoint.py new file mode 100644 index 0000000000000..a58a7f6a1c7e3 --- /dev/null +++ b/libs/langchain/langchain/chat_models/baidu_qianfan_endpoint.py @@ -0,0 +1,293 @@ +from __future__ import annotations + +import logging +from typing import ( + Any, + AsyncIterator, + Dict, + Iterator, + List, + Mapping, + Optional, +) + +from langchain.callbacks.manager import ( + AsyncCallbackManagerForLLMRun, + CallbackManagerForLLMRun, +) +from langchain.chat_models.base import BaseChatModel +from langchain.pydantic_v1 import Field, root_validator +from langchain.schema import ChatGeneration, ChatResult +from langchain.schema.messages import ( + AIMessage, + AIMessageChunk, + BaseMessage, + BaseMessageChunk, + ChatMessage, + FunctionMessage, + HumanMessage, +) +from langchain.schema.output import ChatGenerationChunk +from langchain.utils import get_from_dict_or_env + +logger = logging.getLogger(__name__) + + +def _convert_resp_to_message_chunk(resp: Mapping[str, Any]) -> BaseMessageChunk: + return AIMessageChunk( + content=resp["result"], + role="assistant", + ) + + +def convert_message_to_dict(message: BaseMessage) -> dict: + message_dict: Dict[str, Any] + if isinstance(message, ChatMessage): + message_dict = {"role": message.role, "content": message.content} + elif isinstance(message, HumanMessage): + message_dict = {"role": "user", "content": message.content} + elif isinstance(message, AIMessage): + message_dict = {"role": "assistant", "content": message.content} + if "function_call" in message.additional_kwargs: + message_dict["functions"] = message.additional_kwargs["function_call"] + # If function call only, content is None not empty string + if message_dict["content"] == "": + message_dict["content"] = None + elif isinstance(message, FunctionMessage): + message_dict = { + "role": "function", + "content": message.content, + "name": message.name, + } + else: + raise TypeError(f"Got unknown type {message}") + + return message_dict + + +class QianfanChatEndpoint(BaseChatModel): + """Baidu Qianfan chat models. + + To use, you should have the ``qianfan`` python package installed, and + the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with your + API key and Secret Key. + + ak, sk are required parameters + which you could get from https://cloud.baidu.com/product/wenxinworkshop + + Example: + .. code-block:: python + + from langchain.chat_models import QianfanChatEndpoint + qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot", + endpoint="your_endpoint", ak="your_ak", sk="your_sk") + """ + + model_kwargs: Dict[str, Any] = Field(default_factory=dict) + + client: Any + + qianfan_ak: Optional[str] = None + qianfan_sk: Optional[str] = None + + streaming: Optional[bool] = False + """Whether to stream the results or not.""" + + request_timeout: Optional[int] = 60 + """request timeout for chat http requests""" + + top_p: Optional[float] = 0.8 + temperature: Optional[float] = 0.95 + penalty_score: Optional[float] = 1 + """Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo. + In the case of other model, passing these params will not affect the result. + """ + + model: str = "ERNIE-Bot-turbo" + """Model name. + you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu + + preset models are mapping to an endpoint. + `model` will be ignored if `endpoint` is set + """ + + endpoint: Optional[str] = None + """Endpoint of the Qianfan LLM, required if custom model used.""" + + @root_validator() + def validate_enviroment(cls, values: Dict) -> Dict: + values["qianfan_ak"] = get_from_dict_or_env( + values, + "qianfan_ak", + "QIANFAN_AK", + ) + values["qianfan_sk"] = get_from_dict_or_env( + values, + "qianfan_sk", + "QIANFAN_SK", + ) + params = { + "ak": values["qianfan_ak"], + "sk": values["qianfan_sk"], + "model": values["model"], + "stream": values["streaming"], + } + if values["endpoint"] is not None and values["endpoint"] != "": + params["endpoint"] = values["endpoint"] + try: + import qianfan + + values["client"] = qianfan.ChatCompletion(**params) + except ImportError: + raise ValueError( + "qianfan package not found, please install it with " + "`pip install qianfan`" + ) + return values + + @property + def _identifying_params(self) -> Dict[str, Any]: + return { + **{"endpoint": self.endpoint, "model": self.model}, + **super()._identifying_params, + } + + @property + def _llm_type(self) -> str: + """Return type of chat_model.""" + return "baidu-qianfan-chat" + + @property + def _default_params(self) -> Dict[str, Any]: + """Get the default parameters for calling OpenAI API.""" + normal_params = { + "stream": self.streaming, + "request_timeout": self.request_timeout, + "top_p": self.top_p, + "temperature": self.temperature, + "penalty_score": self.penalty_score, + } + + return {**normal_params, **self.model_kwargs} + + def _convert_prompt_msg_params( + self, + messages: List[BaseMessage], + **kwargs: Any, + ) -> dict: + return { + **{"messages": [convert_message_to_dict(m) for m in messages]}, + **self._default_params, + **kwargs, + } + + def _generate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> ChatResult: + """Call out to an qianfan models endpoint for each generation with a prompt. + Args: + messages: The messages to pass into the model. + stop: Optional list of stop words to use when generating. + Returns: + The string generated by the model. + + Example: + .. code-block:: python + response = qianfan_model("Tell me a joke.") + """ + if self.streaming: + completion = "" + for chunk in self._stream(messages, stop, run_manager, **kwargs): + completion += chunk.text + lc_msg = AIMessage(content=completion, additional_kwargs={}) + gen = ChatGeneration( + message=lc_msg, + generation_info=dict(finish_reason="finished"), + ) + return ChatResult( + generations=[gen], + llm_output={"token_usage": {}, "model_name": self.model}, + ) + params = self._convert_prompt_msg_params(messages, **kwargs) + response_payload = self.client.do(**params) + lc_msg = AIMessage(content=response_payload["result"], additional_kwargs={}) + gen = ChatGeneration( + message=lc_msg, + generation_info=dict(finish_reason="finished"), + ) + token_usage = response_payload.get("usage", {}) + llm_output = {"token_usage": token_usage, "model_name": self.model} + return ChatResult(generations=[gen], llm_output=llm_output) + + async def _agenerate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> ChatResult: + if self.streaming: + completion = "" + async for chunk in self._astream(messages, stop, run_manager, **kwargs): + completion += chunk.text + lc_msg = AIMessage(content=completion, additional_kwargs={}) + gen = ChatGeneration( + message=lc_msg, + generation_info=dict(finish_reason="finished"), + ) + return ChatResult( + generations=[gen], + llm_output={"token_usage": {}, "model_name": self.model}, + ) + params = self._convert_prompt_msg_params(messages, **kwargs) + response_payload = await self.client.ado(**params) + lc_msg = AIMessage(content=response_payload["result"], additional_kwargs={}) + generations = [] + gen = ChatGeneration( + message=lc_msg, + generation_info=dict(finish_reason="finished"), + ) + generations.append(gen) + token_usage = response_payload.get("usage", {}) + llm_output = {"token_usage": token_usage, "model_name": self.model} + return ChatResult(generations=generations, llm_output=llm_output) + + def _stream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[ChatGenerationChunk]: + params = self._convert_prompt_msg_params(messages, **kwargs) + for res in self.client.do(**params): + if res: + chunk = ChatGenerationChunk( + text=res["result"], + message=_convert_resp_to_message_chunk(res), + generation_info={"finish_reason": "finished"}, + ) + yield chunk + if run_manager: + run_manager.on_llm_new_token(chunk.text) + + async def _astream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> AsyncIterator[ChatGenerationChunk]: + params = self._convert_prompt_msg_params(messages, **kwargs) + async for res in await self.client.ado(**params): + if res: + chunk = ChatGenerationChunk( + text=res["result"], message=_convert_resp_to_message_chunk(res) + ) + yield chunk + if run_manager: + await run_manager.on_llm_new_token(chunk.text) diff --git a/libs/langchain/langchain/embeddings/__init__.py b/libs/langchain/langchain/embeddings/__init__.py index e8aa683a9a02e..32fdc9472720c 100644 --- a/libs/langchain/langchain/embeddings/__init__.py +++ b/libs/langchain/langchain/embeddings/__init__.py @@ -19,6 +19,7 @@ AlephAlphaSymmetricSemanticEmbedding, ) from langchain.embeddings.awa import AwaEmbeddings +from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint from langchain.embeddings.bedrock import BedrockEmbeddings from langchain.embeddings.cache import CacheBackedEmbeddings from langchain.embeddings.clarifai import ClarifaiEmbeddings @@ -105,6 +106,7 @@ "AwaEmbeddings", "HuggingFaceBgeEmbeddings", "ErnieEmbeddings", + "QianfanEmbeddingsEndpoint", ] diff --git a/libs/langchain/langchain/embeddings/baidu_qianfan_endpoint.py b/libs/langchain/langchain/embeddings/baidu_qianfan_endpoint.py new file mode 100644 index 0000000000000..7b024b04bda0c --- /dev/null +++ b/libs/langchain/langchain/embeddings/baidu_qianfan_endpoint.py @@ -0,0 +1,138 @@ +from __future__ import annotations + +import logging +from typing import Any, Dict, List, Optional + +from langchain.embeddings.base import Embeddings +from langchain.pydantic_v1 import BaseModel, root_validator +from langchain.utils import get_from_dict_or_env + +logger = logging.getLogger(__name__) + + +class QianfanEmbeddingsEndpoint(BaseModel, Embeddings): + """`Baidu Qianfan Embeddings` embedding models.""" + + qianfan_ak: Optional[str] = None + """Qianfan application apikey""" + + qianfan_sk: Optional[str] = None + """Qianfan application secretkey""" + + chunk_size: int = 16 + """Chunk size when multiple texts are input""" + + model: str = "Embedding-V1" + """Model name + you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu + + for now, we support Embedding-V1 and + - Embedding-V1 (默认模型) + - bge-large-en + - bge-large-zh + + preset models are mapping to an endpoint. + `model` will be ignored if `endpoint` is set + """ + + endpoint: str = "" + """Endpoint of the Qianfan Embedding, required if custom model used.""" + + client: Any + """Qianfan client""" + + max_retries: int = 5 + """Max reties times""" + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """ + Validate whether qianfan_ak and qianfan_sk in the environment variables or + configuration file are available or not. + + init qianfan embedding client with `ak`, `sk`, `model`, `endpoint` + + Args: + + values: a dictionary containing configuration information, must include the + fields of qianfan_ak and qianfan_sk + Returns: + + a dictionary containing configuration information. If qianfan_ak and + qianfan_sk are not provided in the environment variables or configuration + file,the original values will be returned; otherwise, values containing + qianfan_ak and qianfan_sk will be returned. + Raises: + + ValueError: qianfan package not found, please install it with `pip install + qianfan` + """ + values["qianfan_ak"] = get_from_dict_or_env( + values, + "qianfan_ak", + "QIANFAN_AK", + ) + values["qianfan_sk"] = get_from_dict_or_env( + values, + "qianfan_sk", + "QIANFAN_SK", + ) + + try: + import qianfan + + params = { + "ak": values["qianfan_ak"], + "sk": values["qianfan_sk"], + "model": values["model"], + } + if values["endpoint"] is not None and values["endpoint"] != "": + params["endpoint"] = values["endpoint"] + values["client"] = qianfan.Embedding(**params) + except ImportError: + raise ValueError( + "qianfan package not found, please install it with " + "`pip install qianfan`" + ) + return values + + def embed_query(self, text: str) -> List[float]: + resp = self.embed_documents([text]) + return resp[0] + + def embed_documents(self, texts: List[str]) -> List[List[float]]: + """ + Embeds a list of text documents using the AutoVOT algorithm. + + Args: + texts (List[str]): A list of text documents to embed. + + Returns: + List[List[float]]: A list of embeddings for each document in the input list. + Each embedding is represented as a list of float values. + """ + text_in_chunks = [ + texts[i : i + self.chunk_size] + for i in range(0, len(texts), self.chunk_size) + ] + lst = [] + for chunk in text_in_chunks: + resp = self.client.do(texts=chunk) + lst.extend([res["embedding"] for res in resp["data"]]) + return lst + + async def aembed_query(self, text: str) -> List[float]: + embeddings = await self.aembed_documents([text]) + return embeddings[0] + + async def aembed_documents(self, texts: List[str]) -> List[List[float]]: + text_in_chunks = [ + texts[i : i + self.chunk_size] + for i in range(0, len(texts), self.chunk_size) + ] + lst = [] + for chunk in text_in_chunks: + resp = await self.client.ado(texts=chunk) + for res in resp["data"]: + lst.extend([res["embedding"]]) + return lst diff --git a/libs/langchain/langchain/llms/__init__.py b/libs/langchain/langchain/llms/__init__.py index 34debd4810756..8e835ea0a9108 100644 --- a/libs/langchain/langchain/llms/__init__.py +++ b/libs/langchain/langchain/llms/__init__.py @@ -26,6 +26,7 @@ from langchain.llms.anyscale import Anyscale from langchain.llms.aviary import Aviary from langchain.llms.azureml_endpoint import AzureMLOnlineEndpoint +from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint from langchain.llms.bananadev import Banana from langchain.llms.base import BaseLLM from langchain.llms.baseten import Baseten @@ -160,6 +161,7 @@ "Writer", "OctoAIEndpoint", "Xinference", + "QianfanLLMEndpoint", ] type_to_cls_dict: Dict[str, Type[BaseLLM]] = { @@ -228,4 +230,5 @@ "vllm_openai": VLLMOpenAI, "writer": Writer, "xinference": Xinference, + "qianfan_endpoint": QianfanLLMEndpoint, } diff --git a/libs/langchain/langchain/llms/baidu_qianfan_endpoint.py b/libs/langchain/langchain/llms/baidu_qianfan_endpoint.py new file mode 100644 index 0000000000000..eaf0067485a14 --- /dev/null +++ b/libs/langchain/langchain/llms/baidu_qianfan_endpoint.py @@ -0,0 +1,217 @@ +from __future__ import annotations + +import logging +from typing import ( + Any, + AsyncIterator, + Dict, + Iterator, + List, + Optional, +) + +from langchain.callbacks.manager import ( + AsyncCallbackManagerForLLMRun, + CallbackManagerForLLMRun, +) +from langchain.llms.base import LLM +from langchain.pydantic_v1 import Field, root_validator +from langchain.schema.output import GenerationChunk +from langchain.utils import get_from_dict_or_env + +logger = logging.getLogger(__name__) + + +class QianfanLLMEndpoint(LLM): + """Baidu Qianfan hosted open source or customized models. + + To use, you should have the ``qianfan`` python package installed, and + the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with + your API key and Secret Key. + + ak, sk are required parameters which you could get from + https://cloud.baidu.com/product/wenxinworkshop + + Example: + .. code-block:: python + + from langchain.llms import QianfanLLMEndpoint + qianfan_model = QianfanLLMEndpoint(model="ERNIE-Bot", + endpoint="your_endpoint", ak="your_ak", sk="your_sk") + """ + + model_kwargs: Dict[str, Any] = Field(default_factory=dict) + + client: Any + + qianfan_ak: Optional[str] = None + qianfan_sk: Optional[str] = None + + streaming: Optional[bool] = False + """Whether to stream the results or not.""" + + model: str = "ERNIE-Bot-turbo" + """Model name. + you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu + + preset models are mapping to an endpoint. + `model` will be ignored if `endpoint` is set + """ + + endpoint: Optional[str] = None + """Endpoint of the Qianfan LLM, required if custom model used.""" + + request_timeout: Optional[int] = 60 + """request timeout for chat http requests""" + + top_p: Optional[float] = 0.8 + temperature: Optional[float] = 0.95 + penalty_score: Optional[float] = 1 + """Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo. + In the case of other model, passing these params will not affect the result. + """ + + @root_validator() + def validate_enviroment(cls, values: Dict) -> Dict: + values["qianfan_ak"] = get_from_dict_or_env( + values, + "qianfan_ak", + "QIANFAN_AK", + ) + values["qianfan_sk"] = get_from_dict_or_env( + values, + "qianfan_sk", + "QIANFAN_SK", + ) + + params = { + "ak": values["qianfan_ak"], + "sk": values["qianfan_sk"], + "model": values["model"], + } + if values["endpoint"] is not None and values["endpoint"] != "": + params["endpoint"] = values["endpoint"] + try: + import qianfan + + values["client"] = qianfan.Completion(**params) + except ImportError: + raise ValueError( + "qianfan package not found, please install it with " + "`pip install qianfan`" + ) + return values + + @property + def _identifying_params(self) -> Dict[str, Any]: + return { + **{"endpoint": self.endpoint, "model": self.model}, + **super()._identifying_params, + } + + @property + def _llm_type(self) -> str: + """Return type of llm.""" + return "baidu-qianfan-endpoint" + + @property + def _default_params(self) -> Dict[str, Any]: + """Get the default parameters for calling OpenAI API.""" + normal_params = { + "stream": self.streaming, + "request_timeout": self.request_timeout, + "top_p": self.top_p, + "temperature": self.temperature, + "penalty_score": self.penalty_score, + } + + return {**normal_params, **self.model_kwargs} + + def _convert_prompt_msg_params( + self, + prompt: str, + **kwargs: Any, + ) -> dict: + return { + **{"prompt": prompt, "model": self.model}, + **self._default_params, + **kwargs, + } + + def _call( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> str: + """Call out to an qianfan models endpoint for each generation with a prompt. + Args: + prompt: The prompt to pass into the model. + stop: Optional list of stop words to use when generating. + Returns: + The string generated by the model. + + Example: + .. code-block:: python + response = qianfan_model("Tell me a joke.") + """ + if self.streaming: + completion = "" + for chunk in self._stream(prompt, stop, run_manager, **kwargs): + completion += chunk.text + return completion + params = self._convert_prompt_msg_params(prompt, **kwargs) + response_payload = self.client.do(**params) + + return response_payload["result"] + + async def _acall( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> str: + if self.streaming: + completion = "" + async for chunk in self._astream(prompt, stop, run_manager, **kwargs): + completion += chunk.text + return completion + + params = self._convert_prompt_msg_params(prompt, **kwargs) + response_payload = await self.client.ado(**params) + + return response_payload["result"] + + def _stream( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[GenerationChunk]: + params = self._convert_prompt_msg_params(prompt, **kwargs) + + for res in self.client.do(**params): + if res: + chunk = GenerationChunk(text=res["result"]) + yield chunk + if run_manager: + run_manager.on_llm_new_token(chunk.text) + + async def _astream( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> AsyncIterator[GenerationChunk]: + params = self._convert_prompt_msg_params(prompt, **kwargs) + async for res in await self.client.ado(**params): + if res: + chunk = GenerationChunk(text=res["result"]) + + yield chunk + if run_manager: + await run_manager.on_llm_new_token(chunk.text) diff --git a/libs/langchain/tests/integration_tests/chat_models/test_qianfan_endpoint.py b/libs/langchain/tests/integration_tests/chat_models/test_qianfan_endpoint.py new file mode 100644 index 0000000000000..41300688bce64 --- /dev/null +++ b/libs/langchain/tests/integration_tests/chat_models/test_qianfan_endpoint.py @@ -0,0 +1,85 @@ +"""Test Baidu Qianfan Chat Endpoint.""" + +from langchain.callbacks.manager import CallbackManager +from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint +from langchain.schema import ( + AIMessage, + BaseMessage, + ChatGeneration, + HumanMessage, + LLMResult, +) +from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler + + +def test_default_call() -> None: + """Test default model(`ERNIE-Bot`) call.""" + chat = QianfanChatEndpoint() + response = chat(messages=[HumanMessage(content="Hello")]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +def test_model() -> None: + """Test model kwarg works.""" + chat = QianfanChatEndpoint(model="BLOOMZ-7B") + response = chat(messages=[HumanMessage(content="Hello")]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +def test_endpoint() -> None: + """Test user custom model deployments like some open source models.""" + chat = QianfanChatEndpoint(endpoint="qianfan_bloomz_7b_compressed") + response = chat(messages=[HumanMessage(content="Hello")]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +def test_multiple_history() -> None: + """Tests multiple history works.""" + chat = QianfanChatEndpoint() + + response = chat( + messages=[ + HumanMessage(content="Hello."), + AIMessage(content="Hello!"), + HumanMessage(content="How are you doing?"), + ] + ) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +def test_stream() -> None: + """Test that stream works.""" + chat = QianfanChatEndpoint(streaming=True) + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + response = chat( + messages=[ + HumanMessage(content="Hello."), + AIMessage(content="Hello!"), + HumanMessage(content="Who are you?"), + ], + stream=True, + callbacks=callback_manager, + ) + assert callback_handler.llm_streams > 0 + assert isinstance(response.content, str) + + +def test_multiple_messages() -> None: + """Tests multiple messages works.""" + chat = QianfanChatEndpoint() + message = HumanMessage(content="Hi, how are you.") + response = chat.generate([[message], [message]]) + + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + for generations in response.generations: + assert len(generations) == 1 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content diff --git a/libs/langchain/tests/integration_tests/embeddings/test_qianfan_endpoint.py b/libs/langchain/tests/integration_tests/embeddings/test_qianfan_endpoint.py new file mode 100644 index 0000000000000..5c707bcc2f769 --- /dev/null +++ b/libs/langchain/tests/integration_tests/embeddings/test_qianfan_endpoint.py @@ -0,0 +1,25 @@ +"""Test Baidu Qianfan Embedding Endpoint.""" +from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint + + +def test_embedding_multiple_documents() -> None: + documents = ["foo", "bar"] + embedding = QianfanEmbeddingsEndpoint() + output = embedding.embed_documents(documents) + assert len(output) == 2 + assert len(output[0]) == 384 + assert len(output[1]) == 384 + + +def test_embedding_query() -> None: + query = "foo" + embedding = QianfanEmbeddingsEndpoint() + output = embedding.embed_query(query) + assert len(output) == 384 + + +def test_model() -> None: + documents = ["hi", "qianfan"] + embedding = QianfanEmbeddingsEndpoint(model="Embedding-V1") + output = embedding.embed_documents(documents) + assert len(output) == 2 diff --git a/libs/langchain/tests/integration_tests/llms/test_qianfan_endpoint.py b/libs/langchain/tests/integration_tests/llms/test_qianfan_endpoint.py new file mode 100644 index 0000000000000..75f47444c8807 --- /dev/null +++ b/libs/langchain/tests/integration_tests/llms/test_qianfan_endpoint.py @@ -0,0 +1,37 @@ +"""Test Baidu Qianfan LLM Endpoint.""" +from typing import Generator + +import pytest + +from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint +from langchain.schema import LLMResult + + +def test_call() -> None: + """Test valid call to qianfan.""" + llm = QianfanLLMEndpoint() + output = llm("write a joke") + assert isinstance(output, str) + + +def test_generate() -> None: + """Test valid call to qianfan.""" + llm = QianfanLLMEndpoint() + output = llm.generate(["write a joke"]) + assert isinstance(output, LLMResult) + assert isinstance(output.generations, list) + + +def test_generate_stream() -> None: + """Test valid call to qianfan.""" + llm = QianfanLLMEndpoint() + output = llm.stream("write a joke") + assert isinstance(output, Generator) + + +@pytest.mark.asyncio +async def test_qianfan_aio() -> None: + llm = QianfanLLMEndpoint(streaming=True) + + async for token in llm.astream("hi qianfan."): + assert isinstance(token, str)