From b34088c38e12dbeb47851c786992fd1304606a08 Mon Sep 17 00:00:00 2001 From: Rafael Irgolic Date: Wed, 13 Dec 2023 15:45:27 +0000 Subject: [PATCH] Initialize GuardrailsOutputParser documentation --- .../model_io/output_parsers/guardrails.ipynb | 226 ++++++++++++++++++ 1 file changed, 226 insertions(+) create mode 100644 docs/docs/modules/model_io/output_parsers/guardrails.ipynb diff --git a/docs/docs/modules/model_io/output_parsers/guardrails.ipynb b/docs/docs/modules/model_io/output_parsers/guardrails.ipynb new file mode 100644 index 0000000000000..a9388336669a3 --- /dev/null +++ b/docs/docs/modules/model_io/output_parsers/guardrails.ipynb @@ -0,0 +1,226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a1ae632a", + "metadata": {}, + "source": [ + "# Guardrails parser\n", + "\n", + "This output parser invokes [Guardrails](https://docs.guardrailsai.com/) to parse the output of a language model, given a schema defined either in XML or as a pydantic model. Guardrails validates strings, or fields in a JSON, using [its predefined validators](https://docs.guardrailsai.com/api_reference/validators/), or a custom validator you define." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "outputs": [], + "source": [ + "from guardrails import Guard\n", + "from guardrails.validators import LowerCase, TwoWords, UpperCase\n", + "from langchain.chat_models import ChatOpenAI\n", + "from langchain.output_parsers import GuardrailsOutputParser\n", + "from langchain.prompts import PromptTemplate\n", + "from pydantic import BaseModel, Field" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-12-13T17:40:28.263352Z", + "start_time": "2023-12-13T17:40:28.258570Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "## With strings" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 11, + "outputs": [ + { + "data": { + "text/plain": "'colorful comforts'" + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "guard = Guard.from_string([LowerCase(on_fail=\"fix\")])\n", + "\n", + "guardrails_parser = GuardrailsOutputParser.from_guard(guard)\n", + "\n", + "prompt = PromptTemplate.from_template(\n", + " \"What is a good name for a company that makes {product}?\"\n", + ")\n", + "\n", + "runnable = prompt | ChatOpenAI() | guardrails_parser\n", + "\n", + "runnable.invoke({\"product\": \"colorful socks\"})" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-12-13T17:40:29.345599Z", + "start_time": "2023-12-13T17:40:28.664661Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "## With pydantic" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "b3f16168", + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-13T17:42:45.201398Z", + "start_time": "2023-12-13T17:42:44.058209Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "{'pet_type': 'DOG', 'name': 'Buddy'}" + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Here's an example of a Guard constructed from a pydantic model\n", + "\n", + "\n", + "class Pet(BaseModel):\n", + " pet_type: str = Field(validators=[UpperCase(on_fail=\"fix\")])\n", + " name: str = Field(validators=[TwoWords(on_fail=\"fix\")])\n", + "\n", + "\n", + "prompt = \"\"\"\n", + " What kind of pet should I get and what should I name it?\n", + "\n", + " ${gr.complete_json_suffix_v2}\n", + "\"\"\"\n", + "\n", + "guard = Guard.from_pydantic(Pet, prompt=prompt)\n", + "parser = GuardrailsOutputParser.from_guard(guard)\n", + "\n", + "prompt_template = PromptTemplate(\n", + " template=\"Answer the user query.\\n{format_instructions}\\n{prompt}\\n\",\n", + " input_variables=[\"prompt\"],\n", + " partial_variables={\"format_instructions\": parser.get_format_instructions()},\n", + ")\n", + "\n", + "runnable = prompt_template | ChatOpenAI() | parser\n", + "\n", + "runnable.invoke(\n", + " {\n", + " \"product\": \"colorful socks\",\n", + " \"prompt\": prompt,\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fd8c3347-4d0b-459b-ab7b-cf5443297026", + "metadata": { + "collapsed": false + }, + "source": [ + "### With XML" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "03049f88", + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-13T17:42:35.469586Z", + "start_time": "2023-12-13T17:42:34.578496Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "{'pet_type': 'DOG', 'name': 'Buddy'}" + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Here's another example, of a Guard constructed from an XML RAIL schema\n", + "\n", + "rail_spec = \"\"\"\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + " What kind of pet should I get and what should I name it?\n", + " ${gr.complete_json_suffix_v2}\n", + "\n", + "\n", + "\"\"\"\n", + "\n", + "guard = Guard.from_rail_string(rail_spec)\n", + "parser = GuardrailsOutputParser.from_guard(guard)\n", + "\n", + "prompt_template = PromptTemplate(\n", + " template=\"Answer the user query.\\n{format_instructions}\\n{prompt}\\n\",\n", + " input_variables=[\"prompt\"],\n", + " partial_variables={\"format_instructions\": parser.get_format_instructions()},\n", + ")\n", + "\n", + "runnable = prompt_template | ChatOpenAI() | parser\n", + "\n", + "runnable.invoke(\n", + " {\n", + " \"product\": \"colorful socks\",\n", + " \"prompt\": prompt,\n", + " }\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}