From b54a1a3ef1d7b7566395cd5d7604ca7c93012f98 Mon Sep 17 00:00:00 2001 From: Harutaka Kawamura Date: Tue, 12 Dec 2023 09:55:23 +0900 Subject: [PATCH] docs[patch]: Fix embeddings example for Databricks (#14576) Fix `from langchain.llms import DatabricksEmbeddings` to `from langchain.embeddings import DatabricksEmbeddings`. Signed-off-by: harupy <17039389+harupy@users.noreply.github.com> --- docs/docs/integrations/providers/databricks.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/docs/integrations/providers/databricks.md b/docs/docs/integrations/providers/databricks.md index d3db485ae0134..3ac64692cbf06 100644 --- a/docs/docs/integrations/providers/databricks.md +++ b/docs/docs/integrations/providers/databricks.md @@ -66,7 +66,7 @@ Databricks Foundation Model APIs [Databricks Foundation Model APIs](https://docs.databricks.com/machine-learning/foundation-models/index.html) allow you to access and query state-of-the-art open source models from dedicated serving endpoints. With Foundation Model APIs, developers can quickly and easily build applications that leverage a high-quality generative AI model without maintaining their own model deployment. The following example uses the `databricks-bge-large-en` endpoint to generate embeddings from text: ```python -from langchain.llms import DatabricksEmbeddings +from langchain.embeddings import DatabricksEmbeddings embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")