From be3dd62de46bff8138d66f316c20e6fdefcaf793 Mon Sep 17 00:00:00 2001 From: Bagatur <22008038+baskaryan@users.noreply.github.com> Date: Thu, 4 Apr 2024 13:37:43 -0700 Subject: [PATCH] anthropic[patch]: fix experimental tests (#20021) --- .../integration_tests/test_experimental.py | 31 +++++-------------- 1 file changed, 8 insertions(+), 23 deletions(-) diff --git a/libs/partners/anthropic/tests/integration_tests/test_experimental.py b/libs/partners/anthropic/tests/integration_tests/test_experimental.py index bd768d3829b7e..cc035d4589f8c 100644 --- a/libs/partners/anthropic/tests/integration_tests/test_experimental.py +++ b/libs/partners/anthropic/tests/integration_tests/test_experimental.py @@ -1,6 +1,5 @@ """Test ChatAnthropic chat model.""" -import json from enum import Enum from typing import List, Optional @@ -104,33 +103,15 @@ def test_system_invoke() -> None: ################## -def test_tools() -> None: - class Person(BaseModel): - name: str - age: int - - llm = ChatAnthropicTools(model_name=BIG_MODEL_NAME, temperature=0).bind_tools( - [Person] - ) - result = llm.invoke("Erick is 27 years old") - assert result.content == "", f"content should be empty, not {result.content}" - assert "tool_calls" in result.additional_kwargs - tool_calls = result.additional_kwargs["tool_calls"] - assert len(tool_calls) == 1 - tool_call = tool_calls[0] - assert tool_call["type"] == "function" - function = tool_call["function"] - assert function["name"] == "Person" - assert json.loads(function["arguments"]) == {"name": "Erick", "age": "27"} - - def test_with_structured_output() -> None: class Person(BaseModel): name: str age: int chain = ChatAnthropicTools( - model_name=BIG_MODEL_NAME, temperature=0 + model_name=BIG_MODEL_NAME, + temperature=0, + default_headers={"anthropic-beta": "tools-2024-04-04"}, ).with_structured_output(Person) result = chain.invoke("Erick is 27 years old") assert isinstance(result, Person) @@ -172,7 +153,11 @@ class Email(BaseModel): ] ) - llm = ChatAnthropicTools(temperature=0, model_name=BIG_MODEL_NAME) + llm = ChatAnthropicTools( + temperature=0, + model_name=BIG_MODEL_NAME, + default_headers={"anthropic-beta": "tools-2024-04-04"}, + ) extraction_chain = prompt | llm.with_structured_output(Email)