diff --git a/docs/cassettes/summarization_0c8d41e4-664d-46f4-94e9-248971d428a6.yaml b/docs/cassettes/summarization_0c8d41e4-664d-46f4-94e9-248971d428a6.yaml deleted file mode 100644 index fa876acc9fcd7..0000000000000 --- a/docs/cassettes/summarization_0c8d41e4-664d-46f4-94e9-248971d428a6.yaml +++ /dev/null @@ -1,412 +0,0 @@ -interactions: -- request: - body: null - headers: - Accept: - - '*/*' - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - python-requests/2.32.3 - method: GET - uri: https://mermaid.ink/img/JSV7aW5pdDogeydmbG93Y2hhcnQnOiB7J2N1cnZlJzogJ2xpbmVhcid9fX0lJQpncmFwaCBURDsKCV9fc3RhcnRfXyhbPHA+X19zdGFydF9fPC9wPl0pOjo6Zmlyc3QKCWdlbmVyYXRlX3N1bW1hcnkoZ2VuZXJhdGVfc3VtbWFyeSkKCWNvbGxlY3Rfc3VtbWFyaWVzKGNvbGxlY3Rfc3VtbWFyaWVzKQoJY29sbGFwc2Vfc3VtbWFyaWVzKGNvbGxhcHNlX3N1bW1hcmllcykKCWdlbmVyYXRlX2ZpbmFsX3N1bW1hcnkoZ2VuZXJhdGVfZmluYWxfc3VtbWFyeSkKCV9fZW5kX18oWzxwPl9fZW5kX188L3A+XSk6OjpsYXN0CglnZW5lcmF0ZV9maW5hbF9zdW1tYXJ5IC0tPiBfX2VuZF9fOwoJZ2VuZXJhdGVfc3VtbWFyeSAtLT4gY29sbGVjdF9zdW1tYXJpZXM7CglfX3N0YXJ0X18gLS4tPiBnZW5lcmF0ZV9zdW1tYXJ5OwoJY29sbGVjdF9zdW1tYXJpZXMgLS4tPiBjb2xsYXBzZV9zdW1tYXJpZXM7Cgljb2xsZWN0X3N1bW1hcmllcyAtLi0+IGdlbmVyYXRlX2ZpbmFsX3N1bW1hcnk7Cgljb2xsYXBzZV9zdW1tYXJpZXMgLS4tPiBnZW5lcmF0ZV9maW5hbF9zdW1tYXJ5OwoJY29sbGFwc2Vfc3VtbWFyaWVzIC0uLT4gY29sbGFwc2Vfc3VtbWFyaWVzOwoJY2xhc3NEZWYgZGVmYXVsdCBmaWxsOiNmMmYwZmYsbGluZS1oZWlnaHQ6MS4yCgljbGFzc0RlZiBmaXJzdCBmaWxsLW9wYWNpdHk6MAoJY2xhc3NEZWYgbGFzdCBmaWxsOiNiZmI2ZmMK?bgColor=!white - response: - body: - string: !!binary | - /9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdC - IFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA - AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk - ZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAA - ABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAA - AAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAA - AABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEA - AAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAA - ACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwME - BQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQME - BAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU - FBQUFBT/wAARCAITAWgDASIAAhEBAxEB/8QAHQABAAIDAQEBAQAAAAAAAAAAAAUGBAcIAwIBCf/E - AFgQAAEEAQMBAggHDAgCCAMJAAEAAgMEBQYREgcTIRQVIjFBVpTTCBYXUVTR0iMkMjZCUlVhdJKy - 1DM1cYGTlbO0c5EJJUNTY3J1ojSCwRgnREVGR1dipP/EABoBAQEBAAMBAAAAAAAAAAAAAAABAgME - BQb/xAA4EQEAAQICBgcFCAMBAQAAAAAAAQIRAxIUIVFSkdEEMUFicZKhBRMzYdIiIzJCgbHB4RXw - 8WPC/9oADAMBAAIRAxEAPwD+qaIiAiIgIiICIiAiIgIiICIiAiIgIiIC8bVyvSj7SxPHBH+dK8NH - /MqDvZC7nL8+NxMzqcEB428m1rXFjtv6KEOBaXjuJc4FrdwNnEkN/a/T/T8T+1mxkOQtHblayDfC - ZnEenm/cj+wbD9S54oppi+JP6R/upbbWZ8asL+mKHtTPrT41YT9MUPamfWv34rYY/wD5RQ9mZ9Sf - FbC/oih7Mz6lfufn6Lqfnxqwn6Yoe1M+tPjVhP0xQ9qZ9a/fithf0RQ9mZ9SfFbC/oih7Mz6k+5+ - foan58asJ+mKHtTPrT41YT9MUPamfWv34rYX9EUPZmfUnxWwv6IoezM+pPufn6Gp+fGrCfpih7Uz - 61mU8jUyDS6rahstHnMMgft/yWJ8VsL+iKHszPqWLa0Hp228SOw1OOYHk2evEIZWn5w9mzh/cU+5 - ntn0/pNSeRVhli5pCaGK7ZlyWFkcI23ZyDNUcT5IlIA5xnuHP8Jp25cgS5tnXHXRl19cSTAiIuNB - ERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBRWqswdPaaymTDQ99StJM1p8znB - pIH952ClVAa+oS5PRWbrwNL53VJDG0DcueBu0bfrIC5cKKZxKYq6rwsdbN05h24DCVKIcHyRtLpZ - f+9lcS6SQ7+lz3Ocf1kqSXhQuxZKjXtwO5QWI2yxu+drhuD/AMiq7qjqporRGQZQ1Hq/A4C9JEJm - Vspk4K0roySA8Ne4EtJa4b+bcH5liuZmqZq60WlUfqX1ax3TKbBVJ8Zlc7l85Ykr4/FYaBkticxx - mSQjm9jA1rGkklw/VuvA/CD6Whod8pWkOJJAPj6rsT/ifrCpnVjL6e6y6ZrQaVwtHqzHUtc5JtNa - krVreIm4Hsp4phIOD99x3PB237nDcLIZLr9nYOtOldMVdEZ2xh8tp5+VlZ4PBHbhkM0DAXiSw3gy - ISOEjdi7k5vEO2O1j1d18x2h9TnG5nTGp6mKbbgpSamOPb4rjlmLGx7yc+fEuka0vDC0OOxI2K11 - h9HdVdG5nplq3JYca8z9LTVrA5yKtkIIJo5JZoJY5ecpY2TbseDyDuT5QB3VL6udCdb6ut69EmhI - tV5+5mI8hhdU3MvC2OpQjkikjpwRPdyik2jfGfJaxxeXOeg303rzRudRM/o3F6X1HmspgrEFfIz0 - q8ArQCaFkschkkmbu0h+2wBdu13k7bExvwbusmc6xaUsX83pi/hZorlyJtyRkLKszY7csTY2Bs0j - +bGsa1/IAcg7iSNlI9LtIZjBdTOq2ayNA06OeydKzQe6WN5ljZQgifuGuJbtIx7djtvtuNwQVVuj - 13I9DMFltPa7p0dN6apZPIWaerLuXqx1Lgs3JJ4o+Dnh7H7SuBDgB9zOxO4Qb4Ra/wD/ALQvSw// - ALl6P/z6r7xSOn+sOgtW5WHF4PW+nMzkpg4x08flq88zw0FzuLGPJOwBJ2HcAUFovUoMlSsVLUTZ - 61iN0UsTxu17HDZwP6iCQobQt2a3p5kVmUzWqU01GWUkkvMUjow47+lwaHf3qwKsdPm9phbV0b8L - 9+1aj3G28bpXcD/e0NP967FOvCqvtj+V7FnREXXQREQEREBERAREQEREBERAREQEREBERAREQERE - BERAREQEREBERAREQVStMzQcj6traLT0j3PrWz+BTc4lzopT+Szc+Q/8EA8Dx2Zzsj61a3xkfFFN - uO57mh24/tXq9jZGlrgHNI2II3BCrb+n+Nic446xfwoJ3MeOtvji/uiJLB/c0LsZqMTXXNp43/39 - WtU9ad8W1PosP+GPqXrDXirgiKJkQPn4NA3VbOiJySfjTnh+rt4vdL8+JE/rTnv8eL3Se7w9/wBJ - LRtWlFVviRP6057/AB4vdKEuaeng1pisX8esvF4Tj7lnxc7szNP2clZvatk7PZrY+24uaQS4zMII - 4nd7vD3/AEktG1sRfEsMc7OMjGyN8+zhuFWfiRP6057/AB4vdJ8SJ/WnPf48Xuk93h7/AKSWjasH - iyn9Eg/wx9S+o6VeF4fHBEx48zmsAKrvxIn9ac9/jxe6X0NAVJz9/wCSy2UZvv2Vm88Rn+1jOLXD - 9TgR+pMmHHXX6f8AEtG0yuSOqXTYbEyl0Lt4r+Rid5EDO8OjjcPPMfNsPwBu52xDGvsVatFTrRV4 - I2xQRMEccbBs1rQNgAPmAX5UqQUK0detDHXrxNDWRRMDWMHzADuAXssV1xMZaeqAREXEgiIgIiIC - IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAq9eyZi1/hcf44ZALGMvT+KD - W5Os9nLUb24l/IEXa8Sz8rwgH8hWFV29fMfUHCUvGkMLZsZfmOLdBvLY4S1B2zZPyWx9pxLfyjO0 - /kILEiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAi - IgKu3rr4+oGFqDJVYo5cZeldjnxbzzlktQCVj/QyPmWuHpM0Z/JViVcv3jH1EwdPxlXiE2Lvy+Ln - QbzT8JaY7Vsm3ktj58XN38ozMPfw7gsaIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAi - IgIiICIiAiIgIiqV/VmSt27EOCo1bENeR0Mlu7O6NjpGkhzWNaxxdxI2JJA33A32O3Lh4dWJNqVt - dbUVI8eaw+g4P2qb3aePNYfQcH7VN7tc+i17Y4wWXdFSPHmsPoOD9qm92njzWH0HB+1Te7TRa9sc - YLLuipHjzWH0HB+1Te7Tx5rD6Dg/apvdpote2OMFl3RUjx5rD6Dg/apvdp481h9BwftU3u00WvbH - GCy7rhzqZ/0hOW0J17t6Pb03nuSYyxaxLawvhst975ofB52O7AuY0sY48ByDu1b3+QN+rPHmsPoO - D9qm92tQam+D9Nqnr9gOq9qhhhmMVX7PwQTSdlYlbuIpnns9+TATt/Yz83vaLXtjjBZ0bjZbM+Oq - y3a7Klx8THT145e1bFIQOTQ/YcgDuOWw3232CyVSPHmsPoOD9qm92njzWH0HB+1Te7TRa9scYLLu - ipHjzWH0HB+1Te7Tx5rD6Dg/apvdpote2OMFl3RUjx5rD6Dg/apvdp481h9BwftU3u00WvbHGCy7 - oqR481h9BwftU3u08eaw+g4P2qb3aaLXtjjBZd0VI8eaw+g4P2qb3a+26wzGIHhGcx9JuOb/AE1m - hYe90A/PcxzBuwekg7gd+2wJU0XE7LT+sFl0REXUQREQEREBERAREQEREBERAREQEREBERAREQER - EBa80Kd9Pbnzm5bJ/WfCZVsNa80J+Lo/a7f+5lXf6P8ADq8Y/lexYERFyIIiICIiAiLBgzmPtZe3 - iobsEuSqRRzWKjJAZIWSFwjc5vnAdwftv5+JQZyIiAiIgIiICIiAiIgKH1kAdIZwEAjwGfuI3H9G - 5TCh9Y/ijnP2Gf8A03LkwviU+MLHWt2FJdhqBJ3Jrxkk/wDlCzVg4P8AqXH/ALPH/CFnLy6/xSgi - IsAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLXmhPxdH7Xb/ANzKthrXmhPxdH7Xb/3Mq7/R/h1e - MfyvYsC45zmZ1DqXXGVojUWq269ra5hrRadpWLEOPGFbOxzXvbHswRmuO0dKSHF3dv37HsZc16q+ - Drq/La+yWTwljEaZgt5QX25rHZrKstxt5tc/el2ngz3uAIJOzTyJLUqiZRV6x6r9X8lrfM6evyUb - 2Mz13E453xqlp16Hg8nGNs1BtR8c24Ae7tHkuD+4sG20rqevqLP5Xrxds6u1Bi7mlqdW3jauJyck - NWtZ8VRzPIYNubDI3vY/dp3ceIc4lbnzfQPQWodVyaku4BrsvNJHLPLDanhjsPj24OliY8RyuGw2 - L2k9wU5L0507PJquR+P5P1TG2LMHt5Pvpoh7AD8LyPuY4+Rx+fz96mWRzfNqfX3WjXb8VQfPFWxu - nMTkRVo6nlwTpZrcTpJJ+UVeV0zQQGBpIY3j3hxd3TFTBa6zPUbpxpHWWrclVtHTOSsZcaeyUkDL - ro7UDYXGRjYyH8HsJe1rTvzA2a4g7c1H0D0JquPDtyOC5PxNRtCnYrXLFedldoAEJlika97O78Fx - I8585Kncf0707isth8nTxrK9zD452IovjkeGwVXGMmIM5cSPuUfeQSOPce8q5Z7RzB1t1Vn8bPrH - VWib2pxW0Zbq0rV27qN0dATRiDtIGUix3hALXt5vkLSXPcWuO2y2FpHRdSx8LbqLkX5DMMnrY3D2 - o4I8rYZBIXi00tfEH8XsHEbMcC1pJIAJO971P8Hnp7rLK5TIZnTkd2fJj79jdZnbBO7hwEjoWvEZ - kDQAJOPMbAhwIClMn0h0pl9UYjUdrGyOzmKijgrXmXZ45DHG7mxsvF47YB3ftJy7yfnKZZvcc29N - z1f6r4DHa+xN7wbIXMi6bexquZtKGJlksfVfjRUMY2Y1zN+fPl5XPfuXYa19F0C0FX1g7U8OAbBl - 3Wxfc6G1OyB1nz9sYA8RGTfv58N9+/fdfj8V1WL3cNUaNDN+4O03bJA/WfD1YiYGu8TJmtFdepPj - tlNRvhz2VsM05bqZIuw0sRhcWUpqv/ZSsa17g/j5Zbvy84Vf0zrTOz/B66BZGbO5GTJZPUWKr3rb - 7khmtsc+USMleTu8Hj3hxO+3f5lufC9D9I4vVcWrJMRHLqjtH2ZLYnnMDbMjdpZYoHyOZG527u8D - lsdtysWt8HPp5Uy1PIw6e4WKV8ZOo0XbHY1bAeX84ou04R7uJJa1oa70gqZZGgLfxht6CbqhuudV - Vsq/qFLgmdjlX9jHSkyr65iER3YdmOJa5wLmkNAIa0NEj1BzWoNCY3rHpzFarzwr4mbTNrG3bWQf - Yt1DbuBk7GzSFznMIi/BcSNnOG2xIXRA6SaTGDbh/FX/AFc3LePBD4TL/wDG+EeEdry57/0vlcd+ - Po227kzvSTSepbGenyWK8JlzopDIO8Jlb24qSGSt+C8ceDyT5O2/mduFMsjSdvQl4dXdY6Uj11rS - PD1dL18zXZ4+nMkVt8tiMvEhPPiBC09nvw3J3aRsBCSauz/V3SOgaePuakn1g/SFfN5CbF6gOFpR - NkHBs8rmRvMkjnxv2j4luwO+w2XTT9FYV+pb+oHUt8veoMxlix2r/LrMc9zWceXEbOkedwAe/wA/ - cFVbfween12phKsunwYMNRbjKjWXLDPvQd4glIkBmj37+EvId57u8q5Z7BpnTuodRdW7PQCPI6mz - GMizmmcjczAxFx9Q3nxtqBpcYyOJ5OLuTdiN3AEBxWRrzVWf6bZTWfTWlm8nNlNU+AnSN25clnsQ - CyW1bQbK9xcOwLDOO/u7Tf8AWt6af6R6T0rNgJcViRUdgYbVfGAWJXNrRWHtfMxoc8gtJa3YHfiA - A3iO5QmR6Z5LVHWzD6vzZxYxGmILEeChrNe60+WxHG2aSdztmtDeD2ta3fflyJB7lMs2GxKFQY+j - XqtklmbBG2ISTyGSR4A23c497idu8nvJUdrH8Uc5+wz/AOm5TCh9Y/ijnP2Gf/TcuzhfEp8YWOtb - cH/UuP8A2eP+ELOWDg/6lx/7PH/CFnLy6/xSgiIsAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLX - mhPxdH7Xb/3Mq2GqNListpeaxFQxjszjZppLEQgnYyaEvc572OEjmtLeTjxId5jxLRx3d3ujzE01 - UXtM269XVfmsdVksihPG2f8AU3J+1U/fp42z/qbk/aqfv12fd96PNTzWybRQnjbP+puT9qp+/Txt - n/U3J+1U/fp7vvR5qeZZNooTxtn/AFNyftVP36eNs/6m5P2qn79Pd96PNTzLJtFCeNs/6m5P2qn7 - 9PG2f9Tcn7VT9+nu+9Hmp5lk2ihPG2f9Tcn7VT9+o2xrfIVdRUcFJpTKNyl2rYuwQdvVPOGF8LJX - cu22GzrEI2J3PLu32Oz3fejzU8yy2ooTxtn/AFNyftVP36eNs/6m5P2qn79Pd96PNTzLJtFCeNs/ - 6m5P2qn79PG2f9Tcn7VT9+nu+9Hmp5lk2ihPG2f9Tcn7VT9+njbP+puT9qp+/T3fejzU8yybRQnj - bP8Aqbk/aqfv08bZ/wBTcn7VT9+nu+9Hmp5lk2ofWP4o5z9hn/03L48bZ/1NyftVP36+Z6Od1VVl - xs2GlwlSywxWLVqzE57YyCHCNsTnbvI7gSWhu/Lv24nVMRRVFVVUWj5xzIiy5YP+pcf+zx/whZy+ - Y42xRtYxoaxoDWtHoAX0vIqm8zLIiIsgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgI - iICIiAqFmm79dtHu4+bTmaG/HzffOL9O3d/ZuPN5jt3X1a/zbAevmjH8XEjTWcHIN7hvaxXcTv3H - u823fsfNt3hsBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERA - REQEREBERAWvc4W/L/osb+UdM5zYcR5vCsTv3+ceju9P9y2EqBmw/wCXnRpBk7P4t5vcAeQT4Vit - tz8/n2/+ZBf0REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERARFh5TMUM - HV8JyN2vQr8g3tbMrY27nzDckd5+ZWImqbQMxFVvlU0d60Yn2yP60+VTR3rRifbI/rXPo2NuTwlr - LOxaUVW+VTR3rRifbI/rT5VNHetGJ9sj+tNGxtyeEmWdi0oqt8qmjvWjE+2R/WnyqaO9aMT7ZH9a - aNjbk8JMs7FpRVb5VNHetGJ9sj+tPlU0d60Yn2yP600bG3J4SZZ2LStI6o6v6Ax3XzTZua205Vfj - 8Hm6VvtstXZ4NObWN+5SbyDg89lJ5JG/3N3m4lbF+VTR3rRifbI/rX89urfwaNN6t+GZRyFXM492 - gc/Oc1lbjbTezgkDuViFzt+50r+9v/EPn4lNGxtyeEmWdj+ldK7XyVOC3UnitVLEbZYZ4Hh8cjHD - drmuHcQQQQR5917qpwdTdFVoY4YdSYaKKNoYyNlqMNa0DYAAHuAX38qmjvWjE+2R/WmjY25PCTLO - xaUVW+VTR3rRifbI/rT5VNHetGJ9sj+tNGxtyeEmWdi0oqt8qmjvWjE+2R/WnyqaO9aMT7ZH9aaN - jbk8JMs7FpRVb5VNHetGJ9sj+tPlU0d60Yn2yP600bG3J4SZZ2LSiq3yqaO9aMT7ZH9amMNqLFai - ikkxeSqZFkZAeaszZOBPeN9j3bj51mrBxaIvVTMR4JaYSKIi4UEREBERAREQEREBERAREQEREBER - AREQEREBERAVD3blNdZuSwO1djexrVg7vEQdG2R5aPQXFw3Pn2aB6FfFQcd+Our/ANpr/wC2jXd6 - L+efl/MLHam0RFzIIiICIiAiIgIiICIiAiIgIiICIiAoLUBGOyWFycI7O2L8FR0jR3vileGOY752 - 94Ox32LQfOFOqA1h/Q4f/wBYo/7hi5cLXXEbWqetsJEReOyIiICIiAiIgIiICIiAiIgIiICIiAiI - gIiICIiAqDjvx11f+01/9tGr8qDjvx11f+01/wDbRrvdF/P4f/ULHam1rHVfVvMQa6t6R0bpP42Z - fHVIruTknyLaNeoyUuETOZY8ukeGPIaG7bDcuC2ctRah6fa2071PzOsNB2MFZbqCpWr5TG6gfNE1 - slcPbFNFJE15/BeWuYWjfYHl825v2I+811m1CdSzac0zoV2oM5jcbXyOZry5WOrHRMwcY67ZODxL - KeD+4BrdgDyG6hdCdUR1J626YyWJu3WacyuhZsi3HTSOaxk4vQsJfHvx7RnlsLu/0gHYrMyHT7qN - gNY5LVWlLWmZ8rqHF06uZr5TwiKCK3Xa9rbFfg17nM2kI7N+x8lvl+dYugegGV6W6k0BcwuUp5Cn - iMHYwWX8Oa+OWZss7bLp4eO4DjMD5Lu7i7z7hZ13Fa0L8IBnT34OfT7J564MzqHOyTVqz8zlWVmS - vbJK5z57UxIYxrGgbnkdy1oBJAUzhvhc4jKafy8jcVFf1HSyNTFQYrBZWDIQXrFoONcQ2m7M2PCT - kXBpZ2btx5t4/F/B21hgtGaRrUspgpNQaHy1qbBy2GSmreoztc18Vpu28chEjhyZyA4NI33O1p1R - 0x1nr3RdJ2Sn05g9Y4fNwZvEHFxzS0WPhbs2OcuDXvDg+Zpc1rdg8bDdvfIzCG6y9Tupmnei+ZzL - dLU9L5uvfowRvjzLLbDDLYjY5zXdh+ES4RkFo2EhcHEtAO7NN2srdwtafOY6tiso8O7anUtm1FGe - RA4ymOMu3Gx/BGxJHftudYaw0H1A6qdK9S6e1LNpvEZS0a8mNdiX2J4Y5IZWTAzOkawkOfG0bNb3 - An8Iqbg6qy6UrQ0tc054dQFvaSM0zh8nkqYYSeO0zK23Lu7we8LUap1jH6n9YL+iNY6b0rhdOR57 - NZuGxYhbbybMfCWw8OTGSOY7nKeY2YAO4EkgKTwfU2TLa01lp2bE+CS6coULr5fCQ/tnWWTOMewb - s3h2O2+535eYbd9J6qY7KfCA0lLjtL4rCXsRIyavYdrLG38fZq2C1vZWKwfCHEsDidwBudtnjYr5 - r9I9eaQz167p3L4fLuzOn8fiMldzzpmzssVY5IxaY1jXCXmJSXMc5nePwlLzcfGB+EbndZnTFXTm - hY8hlM3pmPUohsZlteGuwydmYnSGEknct2Ib3k94aBuvTRHwk7+qWaHyV/RcmF01q+y6hQyDskya - aO0I5HcJIWsGzHGGUNeHk9w3a3denRrohnened0hdyVvHTxYfRUenJxVkkc51lthshezkwbx7NPe - djv+SsbTvQjP4jpx0i0/NcxrrmkM+zK33slkMcsQZbaWxEsBLt7DO5waO53f5t5GYYbfhP6glw2I - zkPTkz4TKZuTT1aZmbjEz7YnkgjPZmMAROkj2Li4Ob3+QQATcMF1hzOUoa2qWdJx1dWaWkhbYxTc - tG6tMyWMSRyNtPYwNbxLieTARwPcVW8b0Iz9Pppo7Tz7mNN3DayGorEjZZOzdX8YzWeLDw3MnCRo - 2IA5A+Vt3r56g9Ac5rC71Mnr3sayLUdnDWqda06R0UwpBpkgtNDe6OQt4+SXdx3I9Bv2hh0/hc15 - dB9Qc1LgqU2V0dDXsWKWKzkV6rZjmJDDHajZtuCx4c0s3BaPnUnrvqBqyE6DfmdLz6fp5PVVOoDj - 9R8bDGu2MYsRiuWva49o2SEP28gbPO+4rGovg9a61TS6jmw/SuOm1bhKWPhqY987YaUtaZxa0uMW - 8jXMkcS/i0ggN4beUtvdWNB5DXbdHihNWh8T6kpZix4S5zeUMJdyazZp3eeQ2B2H6wp9oaq1N8NX - AYDLZh8VXE2sBiLj6Vqd+o6sOSe6N/CV8FB3lyMaQ7bdzXODSWtII3vek+tGR1t1LzmncVpmKTDY - W6aF7KTZWNlmN3YiRsoqcORidya1r+XeTvtsDtB6Q6V676bZW7iMC/SuR0ZZy8uRjmyzJxfpxTTd - rNA1jG8JNi5/B5e3bl3g7bL21H0n1bqrrLgNSzx6ZxNDC5DwiLMY3t25a1U7NzfA5gWhhY5zgSeZ - HcNmg77vtDdagNYf0OH/APWKP+4Yp9QGsP6HD/8ArFH/AHDF2sH4kNU9cNhIiLx2RERAREQEREBE - RAREQEREBERAREQEREBERAREQFQcd+Our/2mv/to1flQyG4rXOaZZPZHJdjYrOf3CXjG2NzWnzbg - tBI8+zgV3ei/nj5fzCx2plERcyCIiAiIgIiICIiAiIgIiICIiAiIgKA1h/Q4f/1ij/uGKfUFn+OT - yeGxkB7W34fBbfGzvMcUTw9z3fMO4Dv23LgAuXC1VxOxqnrbAREXjsiIiAiIgIiICIiAiIgIiICI - iAiIgIiICIiAiIgLEyeJo5qqa2Qp171YkOMNmJsjNx5js4ELLRWJmJvAq3yWaM9UsJ/l8X2U+SzR - nqlhP8vi+yrSoC9mLWUksY/CACR1abjmXMZNUrTtk7Ls3ND2ue8OEhLB3DsyHOaS3fn0jG354y1m - nahszojp/gK0U93S+FY2WZleJjMXHI+SR52a1rWsJJ/u7gCTsASMFnSbDZe1BLPpbB4alDPYZJTj - x8EstyPYsieZA0dkPPJxbu78DdzdnNN1xmBq4u3cuRh8l672fhNqVxc+UsYGN7vM0bAni0Bu7nHb - dxJkU0jG354yZp2qjU6RaJpVYa8elMO6OJgY0y045HkAbDk5wLnH5ySSfSV6/JZoz1Swn+XxfZVp - RNIxt+eMmadqrfJZoz1Swn+XxfZT5LNGeqWE/wAvi+yrSiaRjb88ZM07VW+SzRnqlhP8vi+ynyWa - M9UsJ/l8X2VaUTSMbfnjJmnaq3yWaM9UsJ/l8X2U+SzRnqlhP8vi+yrSiaRjb88ZM07VW+SzRnql - hP8AL4vsp8lmjPVLCf5fF9lWlE0jG354yZp2qBmui2mLDJrGKwOEoZNzI2MknxzJoOLZORBh3A3c - OTS4bO2d5/JG3xDpPQsV9lHJ6PweIt2LUtajHZqVvv7gznyh2HeSzc8CA4cJO4tbyOwl8SRMmAEj - GvDXBwDhvsQdwf7QmkY2/PGTNO1Wfks0Z6pYT/L4vsp8lmjPVLCf5fF9lfrI72iaYDXWMtp6jRcT - zM1zJ82v3AB8p1gdmSO/7pvGP6Vz/JssMzLELJY3B8b2hzXD0gppGNvzxkzTtVn5LNGeqWE/y+L7 - KmcPp/F6eifFi8bUxsbyC5lSBsQdt3DcNA3UgizVjYlcWqqmY8UvMiIi4UEREBERAREQEREBERAR - EQEREBERAREQEREBERARFAZzLPmytTBY+5UiycwFqxHOJHPbSa8Nkc3gRxe4uDGkuGxLnAP7MtIe - k81vNZA1qrrOPqVJ4pJLrRGW2wC4uhZuSQAQ0PcWjuJa077uZJ0KFXFUoKdKvFUqQMEcUEDAxkbR - 5mtaO4AfMF84zGU8LjauPx9WGjQqxNgr1q7AyOKNoAaxrR3AAAAAebZZSAiIgIiICIiAiIgIiICI - iAiIgKDs6bNbIvyGGfBi7lu3DPkXdhzbdYxnZkPG42fw4gSDv+5Rg8mt4qcRBgYbK+N6TZnVpqM4 - Lmy1bIAkicHFpB2JBBIJDgSHDYgkELPUJnsQ/tm5bGx1YcxCGRusTQOkMlYSB0kJ4EO728uJ7+Ly - HcXd7XZ2EzNLUeGo5bG2WXMdegZZrWI/wZYntDmuH6iCCgzUREBERAREQEREBERAREQEREBERARE - QEREBERAREQFXdGXXZqrezDchNepZCy59Nk1UQeDwsAjDGjbk5pcx8gc7vPa92zeIGTrLKDC6Uy9 - 3laYYa0jmuow9tOHcSGmNn5TtyNh6SpDG1HY/HVar7Ett8ETIjYnO8kpAA5OPpJ23P6ygyUREBER - AREQEREBERAREQEREBERAREQFXNAZMZfThnGZOf43rsBuuq+DneO1LGYuGw/oyzs+X5XZ8vylBde - dS6v0Z0pz2f0PUx+Qz+Mh8LbTyUMksc0TO+RoDJGHlx3I7/Rtt3rQXwEvhH9T/hDWNRWNVUsMzTW - Na4Mu06skU8lqWXmyIEyFhjjj5N/B5bdnu4ncuDr1ERAREQEREBERAREQEREBERAREQEREBERARE - QEREFd11MY8RUibZyNR1jI0ohNjI+co3sRktP5sbgC17vQxzirEq7rCcRz6ej8JyNYzZWJg8Xs5C - TZkjuEx/JiPHvPz8R6VYkBERAREQEREBERBUc7mMhkc1YxOMt+LWVGMfZuNjbJIXP3LY2BwLR3Dc - uIPnAA9Ij/E+d9dMx7PR/ll9Uvx31X/xK3+g1TK9fVhxFMRHVE64ieuInthqZshPE+d9dMx7PR/l - k8T5310zHs9H+WU2iZ+7HljkXQnifO+umY9no/yyeJ8766Zj2ej/ACym0TP3Y8sci6E8T5310zHs - 9H+WTxPnfXTMez0f5ZTaJn7seWORdCeJ8766Zj2ej/LJ4nzvrpmPZ6P8sptEz92PLHIug3YXNvaW - u1nmHNI2INajsf8A/Mq10+6PV+leCkw2lc/k8PjZLElt0EUNNwdLId3uJdAT39w8+wAAGwAC2CiZ - +7HljkXQnifO+umY9no/yyeJ8766Zj2ej/LKbRM/djyxyLoTxPnfXTMez0f5ZPE+d9dMx7PR/llN - omfux5Y5F0J4nzvrpmPZ6P8ALJ4nzvrpmPZ6P8sptEz92PLHIuhPE+d9dMx7PR/lk8T5310zHs9H - +WU2iZ+7HljkXQnifO+umY9no/yy+Z7Wc0tVmyT83Zzlasx0s9S7BC1z4wCXdm6KNmz9u8Agg7bd - 2/ITqidW/ipmv2Kb/TctU1RXVFM0xaflHIibrtDKyxEyWNwdG9oc1w9IPmKLC09/UGM/ZYv4Ai8i - qLTMMpBERZBERAREQEREBERAREQV3Vk/ZZHS7fCcjX7TKcONGPkyX73nPCc/kxd2+/57Yx6VYlXd - WTiHJaWb4VkK3aZThwox8mTfe054Tn8mLu5b/ntjHpViQEREBERAREQEREFDpfjvqv8A4lb/AEGq - ZUNS/HfVf/Erf6DVMr16/wAvhT+0NVdYi501vjdM63+Ehk8D1IlryYKnp+tawWMyVjsqk8jpZRan - 4lwa+VnGJvfuWtO4A33UHNgenmq+q2pMZrO5Rn0fhtM42bS0VrIkVW03Nl7e1C/n5bw5jB2oJcAG - 9/euDMy6Dt68x9PqFjdHPhsnJ38dPk4pWtb2IiikjY4OPLfkTK3YBpGwPePS6da8x/U3ReM1Pi4b - NehkGufFHca1srQ17mHkGucPO0+Ylc4dDdRX7us+iN/UtyTw/IaJycEFi+7jLb2tVjEdz3ue6FrX - n0nclQml8piM78HDpNo6fHYfM2ctk7VPlm7L2UKE0JsSP8IbG5pe/juGwkjkXA7jYFZzDs5Fwtij - Qt9KKOBy2Ux+S0/iurkGMa+rO9tKOrs15jjL5HubEDI/YF52B23KtGa0jgsnqHqtorROo8fpjRLs - TiprMjbJGMq5R1p+9fdrwGNmjbEyRrCCeY7ie43P8h2Ci4YymcqZ2no3RdHHYHQ+mo9S5HF56GeW - a7grGQjrRSV2B7JYS6KQPcWxlzRzYA5pI7+i/g8aGdojH6ihr6nw+dxM95pr0MDE9lPGSNjAlijD - 55i3keLyzkAC47AbqxVeRtxFq/4Rmkma26ceLH5zH4Qm/Wma3LzGKlfLJA7wSctcHGOTbiQ07+bY - HzLTWhdU4G7rHovLj8PX0nj8ZlNR4eapHb7epHbbD5TYZz3PjcQ4s83cNgBtsk1Wmw61RcW2m4vW - mVuQtnZkMTd62NgkdWmPCZnikNezkw97Ts5pG+xG4PcSvDVvS/TOE078IqfH4xtGXSk0VrAOgle3 - xVJ4BDYLqw32iJkcSeO2/cD3ABTMO2UXIWtNHYbXGY+EDk85RbkLuM03Qu0ZJHu+9LHi6V/bRgHZ - r+UbPKHfs3bfbcLNxVTE9JdT9Ms/jaU7PHOiMpezzIJHvlyj4K9Sdr5C4kvl5Pk2efK8vbfZMw6w - WFnMp4kwt/I+CWsh4JXkseCUY+0nn4tLuEbdxyedtgNxuSFx/wBE4K+mutnTW3iXabwtfV2FvWbO - E0/annk7MRxywm1JJK4TSA8tpAxh3Eg3cPN9aJ6T6Um+A7qDP2sLWvZuxpjKyPyFpvaTDs3SyxNa - 4/gtY+GJzWjYAsB8+5KKrjsPG3PGOOq2+wmq9vE2XsLLOEsfIA8Xt9DhvsR84WQuLcjh5eoPUeLB - aiyumaWNx2k8TZw1PVlWeaCSN8TvCJ4BHagaJGvDWuceTgAzYtAO/r1E0TS0VpnSupdS6jwnVShp - 7TzzYxd3IuqzTVHTukivUT2ry6UR8YgXEl4jGzw4pn+Q7NUTq38VM1+xTf6blIUrTL1OCzGHNjmj - bI0PbxcARuNx6D3qP1b+Kma/Ypv9Ny7GH+OnxWOtadPf1BjP2WL+AImnv6gxn7LF/AEXl1/iknrS - CIiwgiIgIiICIiAiIgIiIK7qucw5LS7RayFbtMpw4Uo+bJvvac8Jz+TH3ct/z2sHpViVc1ZY7DI6 - Xb4ZeqdrleHCnFzZP97zns5j+TH3ct/zmMHpVjQEREBERAREQEREFDpfjvqv/iVv9BqmVDUxtrfV - W/pkrED9XYtH/wBD/wAlMr16/wAvhT+0NT1oXU2itPa1ggh1DgcZnoYHc4o8nTjstjd87Q9p2P6w - vDM9OtKairUK+V0xhsnXoACnFcx8Uza3m/ow5pDPMPNt5lYUXFZlgXtP4vKS0ZbuNp25aEgmqPng - Y91Z4GwdGSPIdt3bjYqNu9OtKZLH3aFzTGGtUbtnw21Wnx8T4p7GwHbPaW7OfsAOR3PcO9WFEGuN - fdDcBrSlh6leljcTWqZmllbcUWOjcy8yuC1sEjRxBBYeIJ5bAbbEKzVenelKOnZsBW0xhq+CnPKX - FxUIm1ZD3Hd0QbxPmHnHoCsKJaBAt0Bpdmmjp1um8QNPnz4kUYvBD37/ANFx4efv8yjMh06FfFUs - bpLLzaAo1nPca+n6FJscnLbzslge0bbH8EDznffu2uKJYUej0yfagtVNW6hta+xc7APFuoMdj3V2 - uB3D+MVdm59HlEjv8ymbfT7S1/TsOn7OmsRYwMBBixctCJ1WMjcgtiLeI858w9JU+iWEFU0Fpmgy - JlbTuJrsittyEbYqMTQyy1nZtnGze6QMAYH+cNG2+y97GksFbiy8U+Fx80WX/rJklWNzbvkBn3YE - fdPIAb5W/cAPMpZEEWdKYQ+Mt8PQPjOFte9vVZ99xNYWNZL3eW0NJaA7cAEjzL7bpvENsY6duKpC - fGwvr0pRXZyqxODQ5kR23Y0hjAQ3YENb8wUiiCt4rprpDAzRy4zSuEx0sc5tMfUx0MTmzFpaZAWt - Gz+LnDl59iR6VIQaWwtXT78DDiKEWDfE+u7GMrMbWdG/fmwxAcS13J2422O5386lESwgM70+0tqi - pSq5nTeIy9WkAKsF+hFOyDYADg1zSG9wA7tvMF+ZXp3pXO2MfYyWmcPkJ8e1ractqhFK6sB5hGXN - JYB6NtlYESwKJ1b+Kma/Ypv9NyllE6uIGlM0SQB4FN3k7D+jcuXD/HT4rHWtOnv6gxn7LF/AEX7g - GluBxrSNiK0YIPo8kIvLr/FJLPREWEEREBERAREQEREBERBXdW2m1r+mA67eqdrlBGGU4+TZz2Ex - 7Ob82Pu5b/nNYPSrEq5rC4alrTf35dqCXKxxFtOISCbeKX7nL+bH3bl3ztb86saAiIgIiICIiAiI - grue0vPdvDI4u6zH5EsEUpmhM0M7ASQHMDmnkNzs4Eec7hw2AivEGsP0ng/YJvfK7ouzT0jEpi2q - fGIlbqR4g1h+k8H7BN75PEGsP0ng/YJvfK7qv3NTPtvlqYKuMjcdUkngtv5CgHtfwDHztBHLly3a - wOcAx24G7d96VibI4Qt0HaxeqaMDp7Oa0/XhZtyklpytaNzsNyZtvOVHUY9b5ay8VZMVHVgtS1p5 - r2Ns13HgNucTHSbyNL/JDjxaQC5pcOJdco9MR2Ls1vKTvyj5RXcKs4aatd8R5B8Ue3knn5fJxc4E - N8rZrQJtNKxNkcILqR4g1h+k8H7BN75PEGsP0ng/YJvfK7omlYmyOEF1I8Qaw/SeD9gm98niDWH6 - TwfsE3vld0TSsTZHCC6keINYfpPB+wTe+WBhMfrrI0XTW7GBpTCeaMRNryTAsZK5jH8mzbeU1rXc - fO3lxPeCtjKvaFpijgHxDHVsVvfvP8HqT9sw8rUru05fnP37RzfyXPc30JpWJsjhBdE+INYfpPB+ - wTe+XOvWH4XFroT1fr6L1dHSrULFSK1Hm6tKWVgD3FvlxdqHAAtO5aXHu8y7BXOXwjfgV4P4SnUX - AajzmoLuMpY6g+jPSoQM7WwOT3xubM4kM4ueSQWO3HduPOmlYmyOEF1/0lfy+vNOUc/p/UunMth7 - zDJXuVqUzmSAEg/9t3EEEEHvBBB7wpfxBrD9J4P2Cb3yl9DY7H4TAjE4vAR6apY+aWvHQr1Y60Hc - 4u7SJkZLOD+XMbd/lEOAcHAWBNKxNkcILqR4g1h+k8H7BN75PEGsP0ng/YJvfK7omlYmyOEF1I8Q - aw/SeD9gm98niDWH6TwfsE3vld0TSsTZHCC6keINYfpPB+wTe+X2zR2Yyg7DN5SnJj3f0tahVfE6 - Yfmue6R2zT6QACfNvsSFdEU0rE7LR+kF34AAAANgEX6i6jIiIgIiICIiAiIgIiICIiCvawsvqjCO - bdt0g7KQRu8EhEnbB247N/5rCSN3ejYKwqua8unG4apZFy5Sa3J0GOdRhEr3tfaijLHNPmjdz2e7 - ztbyd6FY0BERAREQEREBEXzJI2KNz3uDGNG7nOOwA+dB9KNy+fr4cwMdHYtTzTRQtgqRGV4MhIDn - AfgMHFxL3bNAae/0KK8OyOsKhGNfNiMPdoiSHLAcLrZHPI8iCWMhuzBy5PB73t8juKmcdhKGJnuT - 1KcNexdkbLanYwCSw8MawPkd53uDGNaCdzs0DzAII2HFZTK2YLOWteCMr2JyzH4+XlDPE4Fkfbuc - wOc4NJdxbs0Odt5fBrjM0KFbF0oKdKvFUqV2CKGvAwMjjYBsGtaO4ADuAC90QEREBERAREQFXNAU - hQ08+IUamO3yF+TsKU/bRnlbmdz5fnP35ub+S5zm+hWNV/QtIY/APiGNgxO967J4NXmErDytSu7T - kCe+Tl2hHoLyO7bZBYEREFf1FTGPtRahqw1fDazBBZltWXQR+BmRrpiSPJLmNaXsLwdjyaHMEj3K - cgnitQRzQyMmhkaHskjcHNc0jcEEecEelfbmh7S1wBaRsQfSq5oSyBi7eMM+OlmxFyWg6HGRGKKt - GCH14iz8lza8kG4Hd37juICCyIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIK/r974NF5mxHYyFV9a - s612mKjElr7n5ZbGw/hOcG8ePp329KnopGzRskYd2uAcDtt3FVrqP1F0z0s0naz+rcvHhMNE5sT7 - Tw8u5PPFrWtYC5zu/wAzQSACfMCRq34PfwptDdYMnV0ZpbJ5nUWQxeFbat5fI1OxEnZyNhPaEkEz - PJbIeLeOzj3ggtAb5REQEREBFB39cYDF6txWl7eWq1tQZWCaxRx8j9pLDIuPaFg9JAdvt5yGvIBD - HEeQz8uopDFgXxy0xLZq2smHbCtLGOO0TS0iVwkOx7+IMcgJ5DigzMvn48c8168EmTyO8R8BquZ2 - jWSPLBK/kQGxjZ5Lj5wxwaHO2acerpuSxkI7+Zsx5O3VtzT4/s4nQx1I3t7NrQzk4PeGbgyO3O8k - nEMa7gM7EYaDD1o2Mc+xYEUcUt2fYz2ODdg6RwA5Hzn5u87ALPQEREBERAREQEREBERAVd0FR8Xa - ffD4rhw+9+9J4NXsdu087cz+05fPJy7Qt/JLy30KxKu6Co+LtPvh8WQYje/ek8Gr2O3aeduZ/acv - nk5doW/kl5b6EFiREQFXcRdA1pqHHm5Tke2GpdFSGEsnibIJIw+V3meHGu4NPnHZkHzBWJV2O45n - UKxUN6nxkxccraQi2s7tmeDIX+lnlABvoO59KCxIiICIiAiIgIiICq13qDVhtSw0sZk8wInFj5qU - LeyDh3Foe9zQ7Y9x47gEEHvBAmdQ2JKmAyc8TiyWOrK9jh5wQwkFVjSkTINL4eONvFjKcLWgegcA - u5g4dM0zXXF+xey73+UST1Wz37lf3yfKJJ6rZ79yv75ZqLny4W56zzW8bGF8oknqtnv3K/vk+UST - 1Wz37lf3yzUTLhbnrPMvGxhfKJJ6rZ79yv75PlEk9Vs9+5X98s1Ey4W56zzLxsYXyiSeq2e/cr++ - T5RJPVbPfuV/fLNRMuFues8y8bGF8oknqtnv3K/vk+UST1Wz37lf3yzUTLhbnrPMvGxWNZ5PGdQN - K5TTme0Tmr+IyUDoLFeSOvs5p9I+7dzgdiCO8EAjvC5/+B/0LufBozuu7VzCZPKR5OxHDi7ELIe1 - bUZydtKDIAHEubuASPI8/eup0TLhbnrPMvGxhfKJJ6rZ79yv75PlEk9Vs9+5X98s1Ey4W56zzLxs - YXyiSeq2e/cr++T5RJPVbPfuV/fLNRMuFues8y8bH8/PhDfB4639cOulzWtavHhqdSRkeFPhhbNU - hiO8bhx34vLt3nY9znHZdzae6g5aPAYxuZ0tkvHDasQu+L4oRW7fgO07IOm5BnLfjy79tt+9TqJl - wtz1nmXjYwvlEk9Vs9+5X98nyiSeq2e/cr++WaiZcLc9Z5l42ML5RJPVbPfuV/fJ8oknqtnv3K/v - lmomXC3PWeZeNjC+UST1Wz37lf3yfKJJ6rZ79yv75ZqJlwtz1nmXjY+cZrqrduQ1bVC/iJZzwh8P - ia1kju/yQ5rnN5HY7AkE+hWVa66hvMWh81M38OGs6Zh+Z7PKaf7iAf7lsVcGPh0000106r39Lc0n - aIiLpoIiICr2hMccXgHwHGQYgm/el8Grz9s087cr+05fnScu0LfyS8t9CsKrmgceMZp58AxDMHvk - L8vgjLXhAPO3M/tefzy8u1LfyDJx/JQWNERAVdlslnUGrX8PptbJi5pPATH98vLZYx2gf/3Y58SP - nc0qxKu2rPDqHjK/htJnaYu3J4E+Le1JxmrjtGP9EbeWzm+kyMPoQWJERAREQEREBERBF6q/FjMf - sc38BVe0z+LmK/ZIv4ArDqr8WMx+xzfwFV7TP4uYr9ki/gC9HB+DPj/DXYkkXjdtNo057L2ucyGN - 0jmsG7iANzsPSe5c5aV+EBrbJZPptlsxFpyppHWcdy5HDSimluU4Iask4bI8yBriQ1vJzWANILeJ - 33CZiGXSaLmDRvwotWapyOnMnHp9trT+cuQRNxtXAZUW6daZwa2w+46LwaQNBa9wbs3bfi923fJQ - 9eNeQ6fn1hbpad+K1LVUmn7NSGOfwySHxgajZ2vL+DXNLmbsLXB2zjybuGiZoHRqLmXVnwn9S/GL - VbNLYmC5j9O3psd4DLgsrbsZOeHbtWx2K8ToIPK3Y3lz7xu7iCrjgepuudc9Vc1gMNUw+IweKp4n - ITS5arO+4G2mPe+AsbI0B+zHbOOwYW7Fr+Xks0SN0oudI/hG5vH9W8ZgbVvTmdwWRzj8J/1JUu9r - SkIeYzJaeDXkeOAD42kOaXHbfiV5dK9das0pQ6yao1ZmaOV05p/NZR8laCrMLQfDFC4Nie+dzWxc - BxEfHcOO/LbuTNA6QRc6dOPhCaw1HqzTdbJ4SO3i844tkZjsBlqr8TvGXsdLYsRNhmZuAwubw73A - gEbromUPMT+zLRJseJeNwD6Nx8ysTE9Q+kXG2mcPqMdMOvOusvHpfNahinzVGSzYo2t5a9Z722Kx - cLIc2F0cQbG1jmlnnJeVsvF9Qtd5PPM0no+rpqhXx+ksZmGSZOKzLs+UTN7ANbKDxPZN2eXbt2O4 - k5eTIqG/kXPOb+EPmcj080DqPBXdOYe3qPHG47GZapdyFl8ga0lkMNUcywEuDpCCG+T3HfuxcL1B - +VTXnweNWGp4BJlMdmppK3LkIpOwia9oPpAc07H5tkzQOkERaC0j1w1Xn81rmO87TeLfgGXy3Tc0 - c7crG2Hl2E7+Tg2WKQAO5MaAA4AOJVmbDfqLTtTrFmp9NdEcg6rQE2t31W5Fojfxi7THyWXdj5e7 - fLYAORd5O/nPeqJjOvHVHJaU0PqRlLSPgOqc07AxVHRWhLBIXzMbYc/tCC3eAkxBu+xA59+4maB0 - 6i53yvXnWuAo5zEWaGBt6txGq8Xp900TZoqNmK62F0coaXufG4CYAjd+xb6d9l5ZDqx1Zx1/qNjy - zRtifRNGLKTWBVtsbfhkhfK2FjO2PZPAhkBeXPBJb5I70zQOjUXO/Vb4RGc01jMPldPXNNtZcwMe - c8SX6l25kJWuaXkfewIgj22aJZAW8uW+wG6lZ+sGstYa20nhNG1cJTq57SQ1KbWaimmNXeSINbxj - kZzG0obx3adzy5eTxLNA3mi0RluuuocNgNY4yWpjJNe4zUVfBY2qIpG17QtvYaczmdoXbdk97n7P - HfDJsQt7rUTcVzqR+IOof2Gb+ErYy1z1I/EHUP7DN/CVsZZ6R8Kjxn9qWuwREXnsiIiAq9oTHnF4 - B8BxMWF3v3pfBIbHbtPO3K/teXzycu0LfyTIW+hWFVDpZPUs6TlfRpQY+Dxrk2mGtOZmF4v2A9/I - 9/J7w55b+SXFo7ggt6IiAq7cs8eoWJr+F0Wc8Xck8EfFvbk4zVRzY/0Rt5bPHpL4z6FYlXbljj1C - xEHhlBnPF3X+CSR725Npqo5xv9EbeWzx6XSRH0ILEiIgIiICIiAiIgi9VfixmP2Ob+AqvaZ/FzFf - skX8AVh1V+LGY/Y5v4Cq9pn8XMV+yRfwBejg/Bnx/hrsSLjsCe/+5cadEdH53S3UXG1qOlLV+pdm - sVsxPnNHPxTqdaQPfI+Oz4S+El0nDeOBga7fzNAG3ZiJMXZan6bdHdTdNJcZiqWv5bWiMY54qYWx - iozZEJDgyB9rlu5jC4EbMDvJA5bdy8J/g/dv0tymjvH3Hw7ULs94b4H+BvkW3ey4dp3/AIPDlyHn - 5behbfRMsDUQ6Kah0/qrPX9G68fprD568cnfxcuKiuFtlwAlkgkc4dn2nEEhzXjfcjbdW7TvT7xB - 1I1hqvw/t/jDDQh8E7Hj4P4MyVu/PkeXLtd/MNtvTv3W9EtA0Jjfgy5bFVNNYqHXZGntM5tuZxOP - OIZyDhK95ZPL2m8vkyytDmhne7kQ4hWOt0LmgzOta8moBZ0Rq6WxYyOnpaIMvbTwNilcyyHgtaeI - dx4HY+YrbCJlgas0PoLWfTanEy7rW1rHBYik+GlhosTBBcsNa0CJslh0gEjwGhoP3MEndx9KlKvU - 7NWLUMT+mGr67JHhpmlfjOEYJ25O43Sdh5zsCf1FX9EtbqGsanRTwXpn1B0j455fGyzmLHhngu3g - vhxkO3Dn5fZ9p5928tvyd1m6Q6TfFTWVjPeNfCu20/QwXg/g/DbwYynteXM/hdr+Dt3cfOd+7YKJ - aBojTXwa8toerpKTTmtxjsthsD8XbN2XEMnbZr9r2odGx0n3KQOJ7yXg927TssvA/B2saQw3TyPH - aonfd0RZtPrTuoscbtOdxMtaRpeAHlnFolBGxHLj6FuxEywNd/KpnP8A+KtZ/v4v+eUG7oZlNR9Q - KOpdW6s8eVcfFfix+PixUdSWKO2wxvjlmY89o1rHEABre8BxJI3W4ES20aP0/wDB4zuLs9PYr2vP - GWG0RYDsbRGIZE+WFtd8DGzSCQ8nta8APaGjYHdhJ3EjiPg/eKtCaB054+7X4q58ZzwnwPbwraSd - /Zce08j+n25bu/B83f3bfRMsDUGoPg/ePdT57L+Puw8a6kw2oex8D5dl4AyFvY8u0G/adjvy2HHl - 5nbd8xkOj3h2Y6m3/G/D46YuDG9n4Nv4H2UE0XPfn9037bfbyduO2533Gx0S0DRzvg3ZGk6aPD60 - fiquTwFLAZkDFxzS2Y60TomyQPc/aBxa9wIIkHeD5xurBoDorNorUOlsrPnW5F+D0oNLiNtPse3a - 2WJ7Zie0dxPGINLdjuSTuPMtoomWBoeXQLtdfCnqat8T5PH4rTePdBPYuw9jXyN4GRtd8TSd5RHH - Ys/dNtgXtAJ79t8IisRYVzqR+IOof2Gb+ErYy1z1I/EHUP7DN/CVsZZ6R8Kjxn9qWuwREXnsiIiA - q7oO34bp98vjGrlPv+8zwinD2UY425W9nx/OZtwcfynMcfSrEq9oS66/gJJXZiLOkZC/H4XDXELW - 8LczOx4j0xceyLvyjGXelBYUREBV25Px6hYiHwrHt5Yu6/wWSPe4/aaqOcbvRE3fZ49LnxfMrEq7 - an/+8PGQ+E45u+LtvNZ8e9x33auObHeiId4ePS50fzILEiIgIiICIiAiIgx8jTbkcfZqPJayeJ0R - I9AcCP8A6rXtHPxaYx9XGZqKxUu1Ymwuc2tLJFLxAHNj2tLSDtvt5xvsQCFspF2cLGjDiaaovHDm - sTta7+P+D+kzeyTfYT4/4P6TN7JN9hbERc+kYW5PGPpXU138f8H9Jm9km+wnx/wf0mb2Sb7C2Iia - Rhbk8Y+k1Nd/H/B/SZvZJvsJ8f8AB/SZvZJvsLYiJpGFuTxj6TU138f8H9Jm9km+wnx/wf0mb2Sb - 7C2IiaRhbk8Y+k1Nd/H/AAf0mb2Sb7CfH/B/SZvZJvsLYiJpGFuTxj6TU138f8H9Jm9km+wvOx1H - 09Tryzz3nwQRNL5JZK0rWsaBuSSW7AAelbIVI64gO6KdQA7cNOnshvt83g0iaRhbk8Y+k1MFvUHB - OaHNtSkEbgipN3/+xfvx/wAH9Jm9km+wrxhv6oo/8CP+ELMTSMLcnjH0mprv4/4P6TN7JN9hPj/g - /pM3sk32FsRE0jC3J4x9Jqa7+P8Ag/pM3sk32E+P+D+kzeyTfYWxETSMLcnjH0mprv4/4P6TN7JN - 9hPj/g/pM3sk32FsRE0jC3J4x9Jqa7+P+D+kzeyTfYT4/wCD+kzeyTfYWxETSMLcnjH0mprv4/4P - 6TN7JN9hPj/g/pM3sk32FsRE0jC3J4x9Jqazyd2PXWNnw2KjsTeGAQzWH1pI4oIidnuLnNALuO+z - RuSSPMN3DZiIuvi4vvIimItEfz/xJkREXXQREQFXdCXfD8JZecpBmCzKZGE2K9fsWs4XJm9iW+l0 - W3ZOd+UYy78pWJV3RFzwujkwcjWyTocpciL6sHZCLad5ETh6XsBDXO/KIJ9KCxIiICrks4d1DrQi - 1j92YqV5qmPe53zRgPD/AEReSQR6XcT6FY1XYLHbdQ70AtY9/g+LrvdVbH9+R9pNMA9zv+7d2Tg0 - fnRvQWJERAREQEREBERAREQEREBERAREQEREBERAVK63bfIvr7cAj4v5DuJA3+9pPSe7/mrqqT1v - IHRbX5cSGjT+Q3IOxA8Gk9Ox2/5ILVhv6oo/8Bn8IWYsPDf1RR/4DP4QsxAREQEREBERAREQEREB - ERAREQEREBV3SNt09zUld+QqXn1Mo+Mx1YuzdWDoYpWxSfnP4yNdy9Ie1WJV3C2RHrHUlF1+pNLx - q3RSih4TQRyMdE10jtvLD3V5OLj3+QR5mhBYkREBVzCWPC9Y6lc23QsNrirUdDXi2sQPDHSlsz/T - u2Zjmt9AcT+UrGq7ouyMjDl77LlK9DZydhsctGLgAIiICx5/Le10Lml36gB3AILEiIgIiICIiAiI - gIiICIiAiIgIiICIiAiIgKkdctvkU6gb7bfF7Ib8t9v/AIaTz7d6u6pPXEB3RXqACNwdPZAEcg3/ - APDSek+b+1BasN/VFH/gR/whZiw8N/VFH/gM/hCzEBERAREQEREBERAREQEREBERAREQFW79xuM1 - 1iu2yNeCLJ1ZakVJ1b7rYnj2laWyj0NjEx4Hz77jzFWRQGuJpaGn5MlHk34qPGSMyFmdlLwtz60T - g+eMRgFxL4hIwFnlAuBAdtxIT6LzgnjtQRzQvbLFI0PY9h3Dmkbgg/MvRBg53NU9N4TIZbI2I6eP - oV5LVmxKSGRRsaXPc7b0AAk/2Lw0pRt43TWLrZCeG1kWV2eFWK9fweOWbiDI9sf5ALi48T3jfvJP - esHWWQDTh8TDlmYrIZS9HHByq+EGdkf3eePiRs3lDFI3m7uaXDbdxaDY0BERAREQEREBERAREQER - EBERAREQERas6gdWJqlyfEaedH4RCTHZyL2h7IXjuMcbfM549JPktPds48g3tdH6NidKryYcf0ra - aLlm9LaysjpL+Rv3nuO5M9uQgfqDQQ0D9QACxfFdf/xf8Z/1r6GPYM2+1ien9peHWC5Q/wCkZ07r - Cz0Yj1JpLUOYxLMI+RuVpYy7LAy3TmDWPMrWOHaBhDe4ggNfJ6N1+eK6/wD4v+M/615z4Snahkhm - jdLDI0sfG+Rzmuae4ggnvCv+B/8AX0/svC2fAY0lq3CdEaGa1rqHNZ3M6g43o48xfms+CVttoWME - jnceTTzO22/JoP4K6IXJzcTWY0Na2RrQNgBK8AD/AJr98V1//F/xn/Wn+B/9fT+y8OsEXJ/iuv8A - +L/jP+tZ1C5kMRIJMblshQkadx2dlzmf3xvLmO/vaVmr2DNvs4mvw/uTU6iRa46edUXZyxHic0Io - cm/ugniBbHa2BJGx34vABO25BHePSBsdfO4/R8To1fu8SLSCIi64IiICIiAiIgIiICIiAiIgr+kb - EsTMhibEuRtWMZYMXhmQgDPCGPAkY5jm90jWteIy7uPKN24389gUBl4ZaOpcTk4m5S1HKHY6atWl - BrRNfs9tiSM+lro+AczvAmPIEAFknmMnHhcTdyEsU88dSB87oq0RlleGtLi1jB3ucdtg0d5OwQRe - Pvuy2r8n4PkLBq4uNtKeiawbEbDwyXmJCN3kRuYNm9w5Hfc/g2BRWl6k9TCQCzYuWbEpfYe6/wAe - 2YZHl/ZkM8kBnLgANwA0Dc+cyqAiIgIiICIiAiIgIiICIiAiIgIiIKt1N1DNpjReQt1XcLr+Feu7 - u8mSRwYHd/5vIu/+Vc/wQtrwsiZvxYABudyf7T6Stz9c6zptC9sPwK12vNJ/5e0Dd/7uQP8AdutN - r7j2JTTHRpqjrmdf6RH+/qT1CIi+gYQGq9eYPRLa3ji6a8lkkQQRQyTzSbfhFscbXOIG43O2w3G6 - j7PV3SNXHYu87MxyVsp2gpGCKSV07mbc2Na1pdzBO3DblvuNu4qjdUtPWK/VPHajt0dRX8DJiDjn - O0zPYZYrTCYyBz2QOa9zHg7d24BYNx5kxOkIcfq3pxcw2FzFKg61lLtzxp2ss8MksHHnM9znFpeR - uOTu8n59151WNjZ5piIteI7b9cRf1VsAdT9LnSkmpDl4o8NFIYXzyMexzZA7iYzGQHh+/dw48v1K - I6edUI+oOrdV0qRjkxWKbT8HkNeWGYulY8vEjZNiNi0beSO4+la5vabzWOv3s34iv5CljNezZSTH - xVyZZ67qrIxPCw7dpxe4uHHzkO27wrt0xsWsv1H17mn4jKYujdjxwrOydN9d0vCOQOIDhv3Ejf0j - cb+dSnGxK8SmmdWvZ16p1+F/+jZ6Ii9JHxOx8kZ7KV8EzSHxzRnZ0bwd2uH6wQCP7F0dorUB1TpP - FZVzWslswNdKxh3ayQdz2j9QcHD+5c6eZbx6NVX1emmF5/8AbNkst/8AJLK+Rv8A7XhfN+3KaZwK - a+2J/eJv+0Nx1LqiIviwREQEREBERAREQEREBERBH57B1NS4a5i7zXvqWozFJ2Ujo3gH0te0hzXA - 94cCCCAQq8y5k9T1tP1ruMu4uZ8nhWQdQyLCypJA9rhC6Rmxka9+w4gN5MDg8AEsNxUJiNF4TBai - zedoY+Orls0YTkLLC7efsmlse4J2GwcfMBvvudygm0REBERAREQEREBERAREQEREBERAREQYmVxl - fNYy1Qts7SrZidFI3fbdpGx2PoP61zjncBd0jlnYrIbukALq9k/g2oh3cx//AGHdyb52k/MWud0y - o/OYDH6lx76OTqR3KzjvwkHe0+hzSO9pHoIIIXrez+nz0KqYmL0z1x/ML8pchZfpfpDUGRmyGT0x - ichem2MlmzTjfI/YADdxG52AA/uWH8i2gR/+jMF/l8X2V0Ne6DVXSOOPz16owkkRzsjnDf1A7B23 - 9pJ/WsT5BLPrQ/2Fv2l9NHtD2fVrmY8s8kt82qMHp/GaZoNo4mhWxtJri4V6sQjYCfOdh3d6z1sj - 5BLPrQ/2Fv2k+QSz60P9hb9pcse1OhRFor9J5GX5tbqK1DpTC6trRV83iqeWgif2jI7kDZWtdttu - A4HY7Fbd+QSz60P9hb9pPkEs+tD/AGFv2kn2p0KqLTX6TyMvzaFHRnQQBA0bgwCNjtQi7/8A2qQw - XTjSumL4vYjTmLxlwNLBPUqMjeGnzjcDfYrdXyCWfWh/sLftLOodBse2QOyWZyF+MHvgiLa7HD5i - WDn/AMnBcU+0fZ9H2qZ4Uzygt82vdL6Ssa6yZx8PNlFhAvWmO27JhG/AH89w7ht5geR9APR0EEda - GOGJjY4o2hjGNGwaANgAF4YvE08JRipY+rFTqxDZkULQ1o+c/wBp85PpWWvl+n9Oq6bXE2tTHVB8 - hEReWCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC - IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg//2Q== - headers: - Accept-Ranges: - - bytes - Access-Control-Allow-Origin: - - '*' - CF-Cache-Status: - - MISS - CF-RAY: - - 8c8e76d55d7b4ce1-BOS - Cache-Control: - - max-age=2678400 - Connection: - - keep-alive - Content-Length: - - '20614' - Content-Type: - - image/jpeg - Date: - - Wed, 25 Sep 2024 22:31:24 GMT - Last-Modified: - - Wed, 25 Sep 2024 22:31:24 GMT - NEL: - - '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}' - Report-To: - - '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=JD9sw%2FMuictu1DZys6QCxvk0mnMlx8f1%2Fsv%2FFaLZibbjw91xkg39Qhp3sm6hxzpihZpGyBcLAd388%2B7rdmHmeMdt3ZGSAooLm36nEz1s6zKA3RWJefmGnwrMBE1xcA%3D%3D"}],"group":"cf-nel","max_age":604800}' - Server: - - cloudflare - Vary: - - Origin, Accept-Encoding - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_23154e97-c4cb-4bcb-a742-f0c9d06639da.yaml b/docs/cassettes/summarization_23154e97-c4cb-4bcb-a742-f0c9d06639da.yaml deleted file mode 100644 index c3ced737b8556..0000000000000 --- a/docs/cassettes/summarization_23154e97-c4cb-4bcb-a742-f0c9d06639da.yaml +++ /dev/null @@ -1,1618 +0,0 @@ -interactions: -- request: - body: null - headers: - Accept: - - text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 - Accept-Language: - - en-US,en;q=0.5 - Connection: - - keep-alive - DNT: - - '1' - Referer: - - https://www.google.com/ - Upgrade-Insecure-Requests: - - '1' - User-Agent: - - DefaultLangchainUserAgent - method: GET - uri: https://lilianweng.github.io/posts/2023-06-23-agent/ - response: - body: - string: "\n\n\n\n\n\n\nLLM Powered Autonomous - Agents | Lil'Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
\n \n
\n
\n\n
\n
\n - \ \n

\n LLM Powered Autonomous Agents\n - \

\n
Date: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\n\n
\n
\n - \
\n \n Table of Contents\n \n\n \n
\n
\n\n - \

Building agents with LLM (large language - model) as its core controller is a cool concept. Several proof-of-concepts - demos, such as AutoGPT, - GPT-Engineer and - BabyAGI, serve as - inspiring examples. The potentiality of LLM extends beyond generating well-written - copies, stories, essays and programs; it can be framed as a powerful general - problem solver.

\n

Agent System Overview

\n

In - a LLM-powered autonomous agent system, LLM functions as the agent’s - brain, complemented by several key components:

\n
    \n
  • Planning\n
      \n
    • Subgoal - and decomposition: The agent breaks down large tasks into smaller, manageable - subgoals, enabling efficient handling of complex tasks.
    • \n
    • Reflection - and refinement: The agent can do self-criticism and self-reflection over past - actions, learn from mistakes and refine them for future steps, thereby improving - the quality of final results.
    • \n
    \n
  • \n
  • Memory\n
      \n
    • Short-term - memory: I would consider all the in-context learning (See Prompt - Engineering) as utilizing short-term memory of the model to learn.
    • \n
    • Long-term - memory: This provides the agent with the capability to retain and recall (infinite) - information over extended periods, often by leveraging an external vector - store and fast retrieval.
    • \n
    \n
  • \n
  • Tool use\n
      \n
    • The - agent learns to call external APIs for extra information that is missing from - the model weights (often hard to change after pre-training), including current - information, code execution capability, access to proprietary information - sources and more.
    • \n
    \n
  • \n
\n\n
Fig. 1. Overview of - a LLM-powered autonomous agent system.
\n

Component - One: Planning

\n

A - complicated task usually involves many steps. An agent needs to know what - they are and plan ahead.

\n

Task Decomposition

\n

Chain - of thought (CoT; Wei - et al. 2022) has become a standard prompting technique for enhancing model - performance on complex tasks. The model is instructed to “think step - by step” to utilize more test-time computation to decompose hard tasks - into smaller and simpler steps. CoT transforms big tasks into multiple manageable - tasks and shed lights into an interpretation of the model’s thinking - process.

\n

Tree of Thoughts (Yao - et al. 2023) extends CoT by exploring multiple reasoning possibilities - at each step. It first decomposes the problem into multiple thought steps - and generates multiple thoughts per step, creating a tree structure. The search - process can be BFS (breadth-first search) or DFS (depth-first search) with - each state evaluated by a classifier (via a prompt) or majority vote.

\n

Task - decomposition can be done (1) by LLM with simple prompting like "Steps - for XYZ.\\n1.", "What are the subgoals for achieving - XYZ?", (2) by using task-specific instructions; e.g. "Write - a story outline." for writing a novel, or (3) with human inputs.

\n

Another - quite distinct approach, LLM+P (Liu - et al. 2023), involves relying on an external classical planner to do - long-horizon planning. This approach utilizes the Planning Domain Definition - Language (PDDL) as an intermediate interface to describe the planning problem. - In this process, LLM (1) translates the problem into “Problem PDDL”, - then (2) requests a classical planner to generate a PDDL plan based on an - existing “Domain PDDL”, and finally (3) translates the PDDL plan - back into natural language. Essentially, the planning step is outsourced to - an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many - other domains.

\n

Self-Reflection

\n

Self-reflection - is a vital aspect that allows autonomous agents to improve iteratively by - refining past action decisions and correcting previous mistakes. It plays - a crucial role in real-world tasks where trial and error are inevitable.

\n

ReAct (Yao - et al. 2023) integrates reasoning and acting within LLM by extending the - action space to be a combination of task-specific discrete actions and the - language space. The former enables LLM to interact with the environment (e.g. - use Wikipedia search API), while the latter prompting LLM to generate reasoning - traces in natural language.

\n

The ReAct prompt template incorporates - explicit steps for LLM to think, roughly formatted as:

\n
Thought:
-        ...\nAction: ...\nObservation: ...\n... (Repeated many times)\n
\n
Fig. - 2. Examples of reasoning trajectories for knowledge-intensive tasks (e.g. - HotpotQA, FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image - source: Yao - et al. 2023).
\n

In both experiments on knowledge-intensive - tasks and decision-making tasks, ReAct works better than the - Act-only baseline where Thought: \u2026 step is - removed.

\n

Reflexion (Shinn - & Labash 2023) is a framework to equips agents with dynamic memory - and self-reflection capabilities to improve reasoning skills. Reflexion has - a standard RL setup, in which the reward model provides a simple binary reward - and the action space follows the setup in ReAct where the task-specific action - space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may - decide to reset the environment to start a new trial depending on - the self-reflection results.

\n\n
Fig. 3. Illustration of the Reflexion - framework. (Image source: Shinn - & Labash, 2023)
\n

The heuristic function determines when - the trajectory is inefficient or contains hallucination and should be stopped. - Inefficient planning refers to trajectories that take too long without success. - Hallucination is defined as encountering a sequence of consecutive identical - actions that lead to the same observation in the environment.

\n

Self-reflection - is created by showing two-shot examples to LLM and each example is a pair - of (failed trajectory, ideal reflection for guiding future changes in the - plan). Then reflections are added into the agent’s working memory, up - to three, to be used as context for querying LLM.

\n\n
Fig. 4. Experiments - on AlfWorld Env and HotpotQA. Hallucination is a more common failure than - inefficient planning in AlfWorld. (Image source: Shinn & Labash, 2023)
\n

Chain - of Hindsight (CoH; Liu - et al. 2023) encourages the model to improve on its own outputs by explicitly - presenting it with a sequence of past outputs, each annotated with feedback. - Human feedback data is a collection of $D_h = \\{(x, y_i , r_i , z_i)\\}_{i=1}^n$, - where $x$ is the prompt, each $y_i$ is a model completion, $r_i$ is the human - rating of $y_i$, and $z_i$ is the corresponding human-provided hindsight feedback. - Assume the feedback tuples are ranked by reward, $r_n \\geq r_{n-1} \\geq - \\dots \\geq r_1$ The process is supervised fine-tuning where the data is - a sequence in the form of $\\tau_h = (x, z_i, y_i, z_j, y_j, \\dots, z_n, - y_n)$, where $\\leq i \\leq j \\leq n$. The model is finetuned to only predict - $y_n$ where conditioned on the sequence prefix, such that the model can self-reflect - to produce better output based on the feedback sequence. The model can optionally - receive multiple rounds of instructions with human annotators at test time.

\n

To - avoid overfitting, CoH adds a regularization term to maximize the log-likelihood - of the pre-training dataset. To avoid shortcutting and copying (because there - are many common words in feedback sequences), they randomly mask 0% - 5% of - past tokens during training.

\n

The training dataset in their experiments - is a combination of WebGPT - comparisons, summarization - from human feedback and human - preference dataset.

\n\n
Fig. 5. After fine-tuning with CoH, the model can follow instructions - to produce outputs with incremental improvement in a sequence. (Image source: - Liu et al. - 2023)
\n

The idea of CoH is to present a history of sequentially - improved outputs in context and train the model to take on the trend to produce - better outputs. Algorithm Distillation (AD; Laskin - et al. 2023) applies the same idea to cross-episode trajectories in reinforcement - learning tasks, where an algorithm is encapsulated in a long history-conditioned - policy. Considering that an agent interacts with the environment many times - and in each episode the agent gets a little better, AD concatenates this learning - history and feeds that into the model. Hence we should expect the next predicted - action to lead to better performance than previous trials. The goal is to - learn the process of RL instead of training a task-specific policy itself.

\n\n
Fig. 6. Illustration of how Algorithm Distillation (AD) works. -
(Image source: Laskin - et al. 2023).
\n

The paper hypothesizes that any algorithm - that generates a set of learning histories can be distilled into a neural - network by performing behavioral cloning over actions. The history data is - generated by a set of source policies, each trained for a specific task. At - the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.

\n

In reality, the model has limited context window - length, so episodes should be short enough to construct multi-episode history. - Multi-episodic contexts of 2-4 episodes are necessary to learn a near-optimal - in-context RL algorithm. The emergence of in-context RL requires long enough - context.

\n

In comparison with three baselines, including ED (expert - distillation, behavior cloning with expert trajectories instead of learning - history), source policy (used for generating trajectories for distillation - by UCB), - RL^2 (Duan et al. 2017; used - as upper bound since it needs online RL), AD demonstrates in-context RL with - performance getting close to RL^2 despite only using offline RL and learns - much faster than other baselines. When conditioned on partial training history - of the source policy, AD also improves much faster than ED baseline.

\n\n
Fig. 7. Comparison of AD, ED, source policy and RL^2 on environments - that require memory and exploration. Only binary reward is assigned. The source - policies are trained with A3C for \"dark\" environments and DQN for watermaze.
(Image source: Laskin et al. 2023)
\n

Component - Two: Memory

\n

(Big - thank you to ChatGPT for helping me draft this section. I’ve learned - a lot about the human brain and data structure for fast MIPS in my conversations - with ChatGPT.)

\n

Types of Memory

\n

Memory can be - defined as the processes used to acquire, store, retain, and later retrieve - information. There are several types of memory in human brains.

\n
    \n
  1. \n

    Sensory - Memory: This is the earliest stage of memory, providing the ability - to retain impressions of sensory information (visual, auditory, etc) after - the original stimuli have ended. Sensory memory typically only lasts for up - to a few seconds. Subcategories include iconic memory (visual), echoic memory - (auditory), and haptic memory (touch).

    \n
  2. \n
  3. \n

    Short-Term - Memory (STM) or Working Memory: It stores information - that we are currently aware of and needed to carry out complex cognitive tasks - such as learning and reasoning. Short-term memory is believed to have the - capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.

    \n
  4. \n
  5. \n

    Long-Term - Memory (LTM): Long-term memory can store information for a remarkably - long time, ranging from a few days to decades, with an essentially unlimited - storage capacity. There are two subtypes of LTM:

    \n
      \n
    • Explicit / - declarative memory: This is memory of facts and events, and refers to those - memories that can be consciously recalled, including episodic memory (events - and experiences) and semantic memory (facts and concepts).
    • \n
    • Implicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.
    • \n
    \n
  6. \n
\n\n
Fig. 8. Categorization of human memory.
\n

We - can roughly consider the following mappings:

\n
    \n
  • Sensory memory - as learning embedding representations for raw inputs, including text, image - or other modalities;
  • \n
  • Short-term memory as in-context learning. It - is short and finite, as it is restricted by the finite context window length - of Transformer.
  • \n
  • Long-term memory as the external vector store that - the agent can attend to at query time, accessible via fast retrieval.
  • \n
\n

Maximum Inner Product Search (MIPS)

\n

The - external memory can alleviate the restriction of finite attention span. A - standard practice is to save the embedding representation of information into - a vector store database that can support fast maximum inner-product search - (MIPS). - To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k - nearest neighbors to trade off a little accuracy lost for a huge speedup.

\n

A - couple common choices of ANN algorithms for fast MIPS:

\n
    \n
  • LSH - (Locality-Sensitive Hashing): It introduces a hashing function such - that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.
  • \n
  • ANNOY (Approximate - Nearest Neighbors Oh Yeah): The core data structure are random projection - trees, a set of binary trees where each non-leaf node represents a hyperplane - splitting the input space into half and each leaf stores one data point. Trees - are built independently and at random, so to some extent, it mimics a hashing - function. ANNOY search happens in all the trees to iteratively search through - the half that is closest to the query and then aggregates the results. The - idea is quite related to KD tree but a lot more scalable.
  • \n
  • HNSW - (Hierarchical Navigable Small World): It is inspired by the idea of small - world networks where most nodes can be reached by any other nodes within - a small number of steps; e.g. “six degrees of separation” feature - of social networks. HNSW builds hierarchical layers of these small-world graphs, - where the bottom layers contain the actual data points. The layers in the - middle create shortcuts to speed up search. When performing a search, HNSW - starts from a random node in the top layer and navigates towards the target. - When it can’t get any closer, it moves down to the next layer, until - it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.
  • \n
  • FAISS - (Facebook AI Similarity Search): It operates on the assumption that in high - dimensional space, distances between nodes follow a Gaussian distribution - and thus there should exist clustering of data points. FAISS applies - vector quantization by partitioning the vector space into clusters and then - refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.
  • \n
  • ScaNN - (Scalable Nearest Neighbors): The main innovation in ScaNN is anisotropic - vector quantization. It quantizes a data point $x_i$ to $\\tilde{x}_i$ - such that the inner product $\\langle q, x_i \\rangle$ is as similar to the - original distance of $\\angle q, \\tilde{x}_i$ as possible, instead of picking - the closet quantization centroid points.
  • \n
\n\n
Fig. 9. Comparison - of MIPS algorithms, measured in recall@10. (Image source: Google Blog, 2020)
\n

Check more MIPS - algorithms and performance comparison in ann-benchmarks.com.

\n

Component Three: Tool Use

\n

Tool - use is a remarkable and distinguishing characteristic of human beings. We - create, modify and utilize external objects to do things that go beyond our - physical and cognitive limits. Equipping LLMs with external tools can significantly - extend the model capabilities.

\n\n
Fig. 10. A picture of a sea otter - using rock to crack open a seashell, while floating in the water. While some - other animals can use tools, the complexity is not comparable with humans. - (Image source: Animals using tools)
\n

MRKL - (Karpas et al. 2022), short - for “Modular Reasoning, Knowledge and Language”, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a - collection of “expert” modules and the general-purpose LLM works - as a router to route inquiries to the best suitable expert module. These modules - can be neural (e.g. deep learning models) or symbolic (e.g. math calculator, - currency converter, weather API).

\n

They did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how - to use the tools are crucial, determined by the LLM capability.

\n

Both - TALM (Tool Augmented Language Models; Parisi - et al. 2022) and Toolformer (Schick - et al. 2023) fine-tune a LM to learn to use external tool APIs. The dataset - is expanded based on whether a newly added API call annotation can improve - the quality of model outputs. See more details in the “External - APIs” section of Prompt Engineering.

\n

ChatGPT Plugins - and OpenAI API function - calling are good examples of LLMs augmented with tool use capability working - in practice. The collection of tool APIs can be provided by other developers - (as in Plugins) or self-defined (as in function calls).

\n

HuggingGPT - (Shen et al. 2023) is a framework - to use ChatGPT as the task planner to select models available in HuggingFace - platform according to the model descriptions and summarize the response based - on the execution results.

\n\n
Fig. 11. Illustration of how HuggingGPT - works. (Image source: Shen - et al. 2023)
\n

The system comprises of 4 stages:

\n

(1) - Task planning: LLM works as the brain and parses the user requests - into multiple tasks. There are four attributes associated with each task: - task type, ID, dependencies, and arguments. They use few-shot examples to - guide LLM to do task parsing and planning.

\n

Instruction:

\n
\nThe AI assistant can parse user input to several tasks: - [{\"task\": task, \"id\", task_id, \"dep\": dependency_task_ids, \"args\": - {\"text\": text, \"image\": URL, \"audio\": URL, \"video\": URL}}]. The \"dep\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \"-task_id\" refers to - the generated text image, audio and video in the dependency task with id as - task_id. The task MUST be selected from the following options: {{ Available - Task List }}. There is a logical relationship between tasks, please note their - order. If the user input can't be parsed, you need to reply empty JSON. Here - are several cases for your reference: {{ Demonstrations }}. The chat history - is recorded as {{ Chat History }}. From this chat history, you can find the - path of the user-mentioned resources for your task planning.\n
\n

(2) - Model selection: LLM distributes the tasks to expert models, where - the request is framed as a multiple-choice question. LLM is presented with - a list of models to choose from. Due to the limited context length, task type - based filtration is needed.

\n

Instruction:

\n
\nGiven - the user request and the call command, the AI assistant helps the user to - select a suitable model from a list of models to process the user request. - The AI assistant merely outputs the model id of the most appropriate model. - The output must be in a strict JSON format: \"id\": \"id\", \"reason\": \"your - detail reason for the choice\". We have a list of models for you to choose - from {{ Candidate Models }}. Please select one model from the list.\n
\n

(3) - Task execution: Expert models execute on the specific tasks and log - results.

\n

Instruction:

\n
\nWith the input - and the inference results, the AI assistant needs to describe the process - and results. The previous stages can be formed as - User Input: {{ User Input - }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task - Execution: {{ Predictions }}. You must first answer the user's request in - a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference - results contain a file path, must tell the user the complete file path.\n
\n

(4) - Response generation: LLM receives the execution results and provides - summarized results to users.

\n

To put HuggingGPT into real world usage, - a couple challenges need to solve: (1) Efficiency improvement is needed as - both LLM inference rounds and interactions with other models slow down the - process; (2) It relies on a long context window to communicate over complicated - task content; (3) Stability improvement of LLM outputs and external model - services.

\n

API-Bank (Li - et al. 2023) is a benchmark for evaluating the performance of tool-augmented - LLMs. It contains 53 commonly used API tools, a complete tool-augmented LLM - workflow, and 264 annotated dialogues that involve 568 API calls. The selection - of APIs is quite diverse, including search engines, calculator, calendar queries, - smart home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has - access to API search engine to find the right API to call and then uses the - corresponding documentation to make a call.

\n\n
Fig. 12. Pseudo code - of how LLM makes an API call in API-Bank. (Image source: Li et al. 2023)
\n

In the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:

\n
    \n
  1. Whether an API - call is needed.
  2. \n
  3. Identify the right API to call: if not good enough, - LLMs need to iteratively modify the API inputs (e.g. deciding search keywords - for Search Engine API).
  4. \n
  5. Response based on the API results: the model - can choose to refine and call again if results are not satisfied.
  6. \n
\n

This - benchmark evaluates the agent’s tool use capabilities at three levels:

\n
    \n
  • Level-1 - evaluates the ability to call the API. Given an API’s description, - the model needs to determine whether to call a given API, call it correctly, - and respond properly to API returns.
  • \n
  • Level-2 examines the ability - to retrieve the API. The model needs to search for possible APIs - that may solve the user’s requirement and learn how to use them by reading - documentation.
  • \n
  • Level-3 assesses the ability to plan API beyond - retrieve and call. Given unclear user requests (e.g. schedule group meetings, - book flight/hotel/restaurant for a trip), the model may have to conduct multiple - API calls to solve it.
  • \n
\n

Case Studies

\n

Scientific Discovery Agent

\n

ChemCrow - (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The - workflow, implemented in LangChain, - reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant - to the tasks:

\n
    \n
  • The LLM is provided with a list of tool names, - descriptions of their utility, and details about the expected input/output.
  • \n
  • It - is then instructed to answer a user-given prompt using the tools provided - when necessary. The instruction suggests the model to follow the ReAct format - - Thought, Action, Action Input, Observation.
  • \n
\n

One - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions - showed that ChemCrow outperforms GPT-4 by a large margin. This indicates a - potential problem with using LLM to evaluate its own performance on domains - that requires deep expertise. The lack of expertise may cause LLMs not knowing - its flaws and thus cannot well judge the correctness of task results.

\n

Boiko et al. (2023) also looked - into LLM-empowered agents for scientific discovery, to handle autonomous design, - planning, and performance of complex scientific experiments. This agent can - use tools to browse the Internet, read documentation, execute code, call robotics - experimentation APIs and leverage other LLMs.

\n

For example, when requested - to "develop a novel anticancer drug", the model came - up with the following reasoning steps:

\n
    \n
  1. inquired about current - trends in anticancer drug discovery;
  2. \n
  3. selected a target;
  4. \n
  5. requested - a scaffold targeting these compounds;
  6. \n
  7. Once the compound was identified, - the model attempted its synthesis.
  8. \n
\n

They also discussed the - risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent - to synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.

\n

Generative - Agents Simulation

\n

Generative - Agents (Park, et al. - 2023) is super fun experiment where 25 virtual characters, each controlled - by a LLM-powered agent, are living and interacting in a sandbox environment, - inspired by The Sims. Generative agents create believable simulacra of human - behavior for interactive applications.

\n

The design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.

\n
    \n
  • Memory stream: is a long-term memory - module (external database) that records a comprehensive list of agents’ - experience in natural language.\n
      \n
    • Each element is an observation, - an event directly provided by the agent.\n- Inter-agent communication can - trigger new natural language statements.
    • \n
    \n
  • \n
  • Retrieval - model: surfaces the context to inform the agent’s behavior, according - to relevance, recency and importance.\n
      \n
    • Recency: recent events have - higher scores
    • \n
    • Importance: distinguish mundane from core memories. - Ask LM directly.
    • \n
    • Relevance: based on how related it is to the current - situation / query.
    • \n
    \n
  • \n
  • Reflection mechanism: - synthesizes memories into higher level inferences over time and guides the - agent’s future behavior. They are higher-level summaries of past - events (<- note that this is a bit different from self-reflection - above)\n
      \n
    • Prompt LM with 100 most recent observations and to generate - 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.
    • \n
    \n
  • \n
  • Planning - & Reacting: translate the reflections and the environment information - into actions\n
      \n
    • Planning is essentially in order to optimize believability - at the moment vs in time.
    • \n
    • Prompt template: {Intro of an agent - X}. Here is X's plan today in broad strokes: 1)
    • \n
    • Relationships - between agents and observations of one agent by another are all taken into - consideration for planning and reacting.
    • \n
    • Environment information - is present in a tree structure.
    • \n
    \n
  • \n
\n\n
Fig. 13. The generative - agent architecture. (Image source: Park et al. 2023)
\n

This fun simulation - results in emergent social behavior, such as information diffusion, relationship - memory (e.g. two agents continuing the conversation topic) and coordination - of social events (e.g. host a party and invite many others).

\n

Proof-of-Concept - Examples

\n

AutoGPT has - drawn a lot of attention into the possibility of setting up autonomous agents - with LLM as the main controller. It has quite a lot of reliability issues - given the natural language interface, but nevertheless a cool proof-of-concept - demo. A lot of code in AutoGPT is about format parsing.

\n

Here is the - system message used by AutoGPT, where {{...}} are user inputs:

\n
You are {{ai-name}}, {{user-provided AI bot description}}.\nYour
-        decisions must always be made independently without seeking user assistance.
-        Play to your strengths as an LLM and pursue simple strategies with no legal
-        complications.\n\nGOALS:\n\n1. {{user-provided goal 1}}\n2. {{user-provided
-        goal 2}}\n3. ...\n4. ...\n5. ...\n\nConstraints:\n1. ~4000 word limit for
-        short term memory. Your short term memory is short, so immediately save important
-        information to files.\n2. If you are unsure how you previously did something
-        or want to recall past events, thinking about similar events will help you
-        remember.\n3. No user assistance\n4. Exclusively use the commands listed in
-        double quotes e.g. "command name"\n5. Use subprocesses for commands
-        that will not terminate within a few minutes\n\nCommands:\n1. Google Search:
-        "google", args: "input": "<search>"\n2. Browse
-        Website: "browse_website", args: "url": "<url>",
-        "question": "<what_you_want_to_find_on_website>"\n3.
-        Start GPT Agent: "start_agent", args: "name": "<name>",
-        "task": "<short_task_desc>", "prompt": "<prompt>"\n4.
-        Message GPT Agent: "message_agent", args: "key": "<key>",
-        "message": "<message>"\n5. List GPT Agents: "list_agents",
-        args:\n6. Delete GPT Agent: "delete_agent", args: "key": "<key>"\n7.
-        Clone Repository: "clone_repository", args: "repository_url":
-        "<url>", "clone_path": "<directory>"\n8.
-        Write to file: "write_to_file", args: "file": "<file>",
-        "text": "<text>"\n9. Read file: "read_file",
-        args: "file": "<file>"\n10. Append to file: "append_to_file",
-        args: "file": "<file>", "text": "<text>"\n11.
-        Delete file: "delete_file", args: "file": "<file>"\n12.
-        Search Files: "search_files", args: "directory": "<directory>"\n13.
-        Analyze Code: "analyze_code", args: "code": "<full_code_string>"\n14.
-        Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>",
-        "code": "<full_code_string>"\n15. Write Tests: "write_tests",
-        args: "code": "<full_code_string>", "focus":
-        "<list_of_focus_areas>"\n16. Execute Python File: "execute_python_file",
-        args: "file": "<file>"\n17. Generate Image: "generate_image",
-        args: "prompt": "<prompt>"\n18. Send Tweet: "send_tweet",
-        args: "text": "<text>"\n19. Do Nothing: "do_nothing",
-        args:\n20. Task Complete (Shutdown): "task_complete", args: "reason":
-        "<reason>"\n\nResources:\n1. Internet access for searches and
-        information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered
-        Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1.
-        Continuously review and analyze your actions to ensure you are performing
-        to the best of your abilities.\n2. Constructively self-criticize your big-picture
-        behavior constantly.\n3. Reflect on past decisions and strategies to refine
-        your approach.\n4. Every command has a cost, so be smart and efficient. Aim
-        to complete tasks in the least number of steps.\n\nYou should only respond
-        in JSON format as described below\nResponse Format:\n{\n    "thoughts":
-        {\n        "text": "thought",\n        "reasoning":
-        "reasoning",\n        "plan": "- short bulleted\\n- list
-        that conveys\\n- long-term plan",\n        "criticism": "constructive
-        self-criticism",\n        "speak": "thoughts summary to say
-        to user"\n    },\n    "command": {\n        "name": "command
-        name",\n        "args": {\n            "arg name": "value"\n
-        \       }\n    }\n}\nEnsure the response can be parsed by Python json.loads\n

GPT-Engineer is another - project to create a whole repository of code given a task specified in natural - language. The GPT-Engineer is instructed to think over a list of smaller components - to build and ask for user input to clarify questions as needed.

\n

Here - are a sample conversation for task clarification sent to OpenAI ChatCompletion - endpoint used by GPT-Engineer. The user inputs are wrapped in {{user - input text}}.

\n
[\n  {\n    "role":
-        "system",\n    "content": "You will read instructions
-        and not carry them out, only seek to clarify them.\\nSpecifically you will
-        first summarise a list of super short bullets of areas that need clarification.\\nThen
-        you will pick one clarifying question, and wait for an answer from the user.\\n"\n
-        \ },\n  {\n    "role": "user",\n    "content": "We
-        are writing {{a Super Mario game in python. MVC components split in separate
-        files. Keyboard control.}}\\n"\n  },\n  {\n    "role": "assistant",\n
-        \   "content": "Summary of areas that need clarification:\\n1.
-        Specifics of the Super Mario game (e.g. level design, characters, gameplay
-        mechanics)\\n2. Details about the MVC components (e.g. which components are
-        in each file)\\n3. Keyboard control implementation (e.g. which keys to use,
-        how to handle input)\\n\\nClarifying question:\\nCan you provide more details
-        about the Super Mario game, such as level design, characters, and gameplay
-        mechanics?"\n  },\n  {\n    "role": "user",\n    "content":
-        "{{There are 10 levels in total. The main character is a plumber named
-        Mario, who can walk and jump. It is a classical platform game just like Super
-        Mario. The main character moves from left to right, trying to get to the destination,
-        where there are many obstacles and attacks from enemies in the process.}}\\n\\nIs
-        anything else unclear? If yes, only answer in the form:\\n{remaining unclear
-        areas} remaining questions.\\n{Next question}\\nIf everything is sufficiently
-        clear, only answer \\"Nothing more to clarify.\\"."\n  },\n  {\n
-        \   "role": "assistant",\n    "content": "Remaining
-        unclear areas: 2 remaining questions.\\nCan you provide more information about
-        how the MVC components are split into separate files?"\n  },\n  {\n    "role":
-        "user",\n    "content": "{{Make your own assumptions and
-        state them explicitly before starting}}"\n  }\n]\n

Then - after these clarification, the agent moved into the code writing mode with - a different system message.\nSystem message:

\n
\nYou - will get instructions for code to write.\nYou will write a very long answer. - Make sure that every detail of the architecture is, in the end, implemented - as code.\nMake sure that every detail of the architecture is, in the end, - implemented as code.\n

Think step by step and reason yourself to the right - decisions to make sure we get it right.\nYou will first lay out the names - of the core classes, functions, methods that will be necessary, as well as - a quick comment on their purpose.

\n

Then you will output the content - of each file including ALL code.\nEach file must strictly follow a markdown - code block format, where the following tokens must be replaced such that\nFILENAME - is the lowercase file name including the file extension,\nLANG is the markup - code block language for the code’s language, and CODE is the code:

\n

FILENAME

\n
CODE\n

You - will start with the “entrypoint” file, then go to the ones that - are imported by that file, and so on.\nPlease note that the code should be - fully functional. No placeholders.

\n

Follow a language and framework - appropriate best practice file naming convention.\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\nEnsure to implement all code, if you are unsure, write a - plausible implementation.\nInclude module dependency or package manager dependency - definition file.\nBefore you finish, double check that all parts of the architecture - is present in the files.

\n

Useful to know:\nYou almost always put different - classes in different files.\nFor Python, you always create an appropriate - requirements.txt file.\nFor NodeJS, you always create an appropriate package.json - file.\nYou always add a comment briefly describing the purpose of the function - definition.\nYou try to add comments explaining very complex bits of logic.\nYou - always follow the best practices for the requested languages in terms of describing - the code written as a defined\npackage/project.

\n

Python toolbelt preferences:

\n
    \n
  • pytest
  • \n
  • dataclasses
  • \n
\n
\n

Conversatin - samples:

\n
[\n  {\n    "role": "system",\n
-        \   "content": "You will get instructions for code to write.\\nYou
-        will write a very long answer. Make sure that every detail of the architecture
-        is, in the end, implemented as code.\\nMake sure that every detail of the
-        architecture is, in the end, implemented as code.\\n\\nThink step by step
-        and reason yourself to the right decisions to make sure we get it right.\\nYou
-        will first lay out the names of the core classes, functions, methods that
-        will be necessary, as well as a quick comment on their purpose.\\n\\nThen
-        you will output the content of each file including ALL code.\\nEach file must
-        strictly follow a markdown code block format, where the following tokens must
-        be replaced such that\\nFILENAME is the lowercase file name including the
-        file extension,\\nLANG is the markup code block language for the code's
-        language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nYou
-        will start with the \\"entrypoint\\" file, then go to the ones that
-        are imported by that file, and so on.\\nPlease note that the code should be
-        fully functional. No placeholders.\\n\\nFollow a language and framework appropriate
-        best practice file naming convention.\\nMake sure that files contain all imports,
-        types etc. Make sure that code in different files are compatible with each
-        other.\\nEnsure to implement all code, if you are unsure, write a plausible
-        implementation.\\nInclude module dependency or package manager dependency
-        definition file.\\nBefore you finish, double check that all parts of the architecture
-        is present in the files.\\n\\nUseful to know:\\nYou almost always put different
-        classes in different files.\\nFor Python, you always create an appropriate
-        requirements.txt file.\\nFor NodeJS, you always create an appropriate package.json
-        file.\\nYou always add a comment briefly describing the purpose of the function
-        definition.\\nYou try to add comments explaining very complex bits of logic.\\nYou
-        always follow the best practices for the requested languages in terms of describing
-        the code written as a defined\\npackage/project.\\n\\n\\nPython toolbelt preferences:\\n-
-        pytest\\n- dataclasses\\n"\n  },\n #  \u2026 same conversation as earlier,
-        ended with "Make your own assumptions and state them explicitly before
-        starting".\n  {\n    "role": "assistant",\n    "content":
-        "Assumptions:\\n1. Model: The model will contain the game's data,
-        such as level information, character states, and enemy positions.\\n2. View:
-        The view will handle the game's visuals, including rendering the game
-        objects, backgrounds, and updating the display.\\n3. Controller: The controller
-        will manage user input, such as keyboard controls, and update the model accordingly.\\n\\nWith
-        these assumptions in mind, is there any specific aspect of the keyboard control
-        implementation you would like me to clarify?"\n  },\n  {\n    "role":
-        "user",\n    "content": "Please now remember the steps:\\n\\nThink
-        step by step and reason yourself to the right decisions to make sure we get
-        it right.\\nFirst lay out the names of the core classes, functions, methods
-        that will be necessary, As well as a quick comment on their purpose.\\n\\nThen
-        you will output the content of each file including ALL code.\\nEach file must
-        strictly follow a markdown code block format, where the following tokens must
-        be replaced such that\\nFILENAME is the lowercase file name including the
-        file extension,\\nLANG is the markup code block language for the code's
-        language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nPlease
-        note that the code should be fully functional. No placeholders.\\n\\nYou will
-        start with the \\"entrypoint\\" file, then go to the ones that are
-        imported by that file, and so on.\\nFollow a language and framework appropriate
-        best practice file naming convention.\\nMake sure that files contain all imports,
-        types etc. The code should be fully functional. Make sure that code in different
-        files are compatible with each other.\\nBefore you finish, double check that
-        all parts of the architecture is present in the files.\\n"\n  }\n]\n

Challenges

\n

After going through key ideas and demos - of building LLM-centered agents, I start to see a couple common limitations:

\n
    \n
  • \n

    Finite - context length: The restricted context capacity limits the inclusion - of historical information, detailed instructions, API call context, and responses. - The design of the system has to work with this limited communication bandwidth, - while mechanisms like self-reflection to learn from past mistakes would benefit - a lot from long or infinite context windows. Although vector stores and retrieval - can provide access to a larger knowledge pool, their representation power - is not as powerful as full attention.

    \n
  • \n
  • \n

    Challenges - in long-term planning and task decomposition: Planning over a lengthy - history and effectively exploring the solution space remain challenging. LLMs - struggle to adjust plans when faced with unexpected errors, making them less - robust compared to humans who learn from trial and error.

    \n
  • \n
  • \n

    Reliability - of natural language interface: Current agent system relies on natural - language as an interface between LLMs and external components such as memory - and tools. However, the reliability of model outputs is questionable, as LLMs - may make formatting errors and occasionally exhibit rebellious behavior (e.g. - refuse to follow an instruction). Consequently, much of the agent demo code - focuses on parsing model output.

    \n
  • \n
\n

Citation

\n

Cited - as:

\n
\n

Weng, Lilian. (Jun 2023). “LLM-powered Autonomous - Agents”. Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/.

\n
\n

Or

\n
@article{weng2023agent,\n  title   = "LLM-powered
-        Autonomous Agents",\n  author  = "Weng, Lilian",\n  journal =
-        "lilianweng.github.io",\n  year    = "2023",\n  month   =
-        "Jun",\n  url     = "https://lilianweng.github.io/posts/2023-06-23-agent/"\n}\n

References

\n

[1] Wei et al. “Chain - of thought prompting elicits reasoning in large language models.” - NeurIPS 2022

\n

[2] Yao et al. “Tree - of Thoughts: Dliberate Problem Solving with Large Language Models.” - arXiv preprint arXiv:2305.10601 (2023).

\n

[3] Liu et al. “Chain - of Hindsight Aligns Language Models with Feedback\n“ arXiv preprint - arXiv:2302.02676 (2023).

\n

[4] Liu et al. “LLM+P: - Empowering Large Language Models with Optimal Planning Proficiency” - arXiv preprint arXiv:2304.11477 (2023).

\n

[5] Yao et al. “ReAct: - Synergizing reasoning and acting in language models.” ICLR 2023.

\n

[6] - Google Blog. “Announcing - ScaNN: Efficient Vector Similarity Search” July 28, 2020.

\n

[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389

\n

[8] - Shinn & Labash. “Reflexion: - an autonomous agent with dynamic memory and self-reflection” arXiv - preprint arXiv:2303.11366 (2023).

\n

[9] Laskin et al. “In-context - Reinforcement Learning with Algorithm Distillation” ICLR 2023.

\n

[10] - Karpas et al. “MRKL Systems - A modular, neuro-symbolic architecture that combines large language models, - external knowledge sources and discrete reasoning.” arXiv preprint - arXiv:2205.00445 (2022).

\n

[11] Nakano et al. “Webgpt: - Browser-assisted question-answering with human feedback.” arXiv - preprint arXiv:2112.09332 (2021).

\n

[12] Parisi et al. “TALM: - Tool Augmented Language Models”

\n

[13] Schick et al. “Toolformer: - Language Models Can Teach Themselves to Use Tools.” arXiv preprint - arXiv:2302.04761 (2023).

\n

[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.

\n

[15] Li et al. “API-Bank: - A Benchmark for Tool-Augmented LLMs” arXiv preprint arXiv:2304.08244 - (2023).

\n

[16] Shen et al. “HuggingGPT: - Solving AI Tasks with ChatGPT and its Friends in HuggingFace” arXiv - preprint arXiv:2303.17580 (2023).

\n

[17] Bran et al. “ChemCrow: - Augmenting large-language models with chemistry tools.” arXiv preprint - arXiv:2304.05376 (2023).

\n

[18] Boiko et al. “Emergent - autonomous scientific research capabilities of large language models.” - arXiv preprint arXiv:2304.05332 (2023).

\n

[19] Joon Sung Park, et al. - “Generative Agents: Interactive - Simulacra of Human Behavior.” arXiv preprint arXiv:2304.03442 (2023).

\n

[20] - AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT

\n

[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer

\n\n\n - \
\n\n \n
\n
\n - \ \n\n\n \n \n \n\n\n\n\n\n\n\n\n\n" - headers: - Accept-Ranges: - - bytes - Access-Control-Allow-Origin: - - '*' - Age: - - '0' - Cache-Control: - - max-age=600 - Connection: - - keep-alive - Content-Length: - - '125313' - Content-Type: - - text/html; charset=utf-8 - Date: - - Wed, 25 Sep 2024 22:31:13 GMT - ETag: - - '"668e1efc-1e981"' - Last-Modified: - - Wed, 10 Jul 2024 05:41:16 GMT - Server: - - GitHub.com - Vary: - - Accept-Encoding - Via: - - 1.1 varnish - X-Cache: - - HIT - X-Cache-Hits: - - '0' - X-Fastly-Request-ID: - - f827182988e1858ff2725f3177565c5750ebfcc7 - X-GitHub-Request-Id: - - D7CB:1685:57B52D6:61A1EAA:66F2BC8A - X-Served-By: - - cache-bos4630-BOS - X-Timer: - - S1727303474.966617,VS0,VE31 - expires: - - Tue, 24 Sep 2024 13:30:10 GMT - permissions-policy: - - interest-cohort=() - x-proxy-cache: - - MISS - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_7821efb9-e1de-4234-84d2-75dfe13b5a6c.yaml b/docs/cassettes/summarization_7821efb9-e1de-4234-84d2-75dfe13b5a6c.yaml deleted file mode 100644 index af4efa61fac1e..0000000000000 --- a/docs/cassettes/summarization_7821efb9-e1de-4234-84d2-75dfe13b5a6c.yaml +++ /dev/null @@ -1,21104 +0,0 @@ -interactions: -- request: - body: null - headers: - Accept: - - '*/*' - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - python-requests/2.32.3 - method: GET - uri: https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/vocab.bpe - response: - body: - string: "#version: 0.2\n\u0120 t\n\u0120 a\nh e\ni n\nr e\no n\n\u0120t he\ne - r\n\u0120 s\na t\n\u0120 w\n\u0120 o\ne n\n\u0120 c\ni t\ni s\na n\no r\ne - s\n\u0120 b\ne d\n\u0120 f\nin g\n\u0120 p\no u\n\u0120a n\na l\na r\n\u0120t - o\n\u0120 m\n\u0120o f\n\u0120 in\n\u0120 d\n\u0120 h\n\u0120an d\ni c\na - s\nl e\n\u0120t h\ni on\no m\nl l\nen t\n\u0120 n\n\u0120 l\ns t\n\u0120 re\nv - e\n\u0120 e\nr o\nl y\n\u0120b e\n\u0120 g\n\u0120 T\nc t\n\u0120 S\ni d\no - t\n\u0120 I\nu t\ne t\n\u0120 A\n\u0120 is\n\u0120 on\ni m\na m\no w\na y\na - d\ns e\n\u0120th at\n\u0120 C\ni g\n\u0120f or\na c\n\u0120 y\nv er\nu r\n\u0120 - u\nl d\n\u0120s t\n\u0120 M\n' s\n\u0120 he\n\u0120 it\nat ion\nit h\ni r\nc - e\n\u0120y ou\ni l\n\u0120 B\n\u0120w h\no l\n\u0120 P\n\u0120w ith\n\u0120 - 1\nt er\nc h\n\u0120a s\n\u0120w e\n\u0120 (\nn d\ni ll\n\u0120 D\ni f\n\u0120 - 2\na g\ner s\nk e\n\u0120 \"\n\u0120 H\ne m\n\u0120c on\n\u0120 W\n\u0120 - R\nhe r\n\u0120w as\n\u0120 r\no d\n\u0120 F\nu l\nat e\n\u0120a t\nr i\np - p\no re\n\u0120T he\n\u0120s e\nu s\n\u0120p ro\n\u0120h a\nu m\n\u0120a re\n\u0120d - e\na in\nan d\n\u0120o r\nig h\nes t\nis t\na b\nr om\n\u0120 N\nt h\n\u0120c - om\n\u0120 G\nu n\no p\n0 0\n\u0120 L\n\u0120n ot\nes s\n\u0120e x\n\u0120 - v\nre s\n\u0120 E\ne w\nit y\nan t\n\u0120b y\ne l\no s\nor t\no c\nq u\n\u0120f - rom\n\u0120ha ve\n\u0120s u\ni ve\nou ld\n\u0120s h\n\u0120th is\nn t\nr a\np - e\nigh t\nar t\nm ent\n\u0120a l\nu st\nen d\n- -\nal l\n\u0120 O\nac k\n\u0120c - h\n\u0120 le\ni es\nre d\nar d\n\xE2 \u0122\nou t\n\u0120 J\n\u0120a b\ne - ar\ni v\nal ly\nou r\no st\ng h\np t\n\u0120p l\nas t\n\u0120c an\na k\nom - e\nu d\nT he\n\u0120h is\n\u0120d o\n\u0120g o\n\u0120h as\ng e\n' t\n\u0120 - U\nr ou\n\u0120s a\n\u0120 j\n\u0120b ut\n\u0120w or\n\u0120a ll\ne ct\n\u0120 - k\nam e\n\u0120w ill\no k\n\u0120w he\n\u0120the y\nid e\n0 1\nf f\nic h\np - l\nt her\n\u0120t r\n. .\n\u0120in t\ni e\nu re\nag e\n\u0120n e\ni al\na - p\nin e\nic e\n\u0120m e\n\u0120o ut\nan s\non e\non g\nion s\n\u0120wh o\n\u0120 - K\n\u0120u p\n\u0120the ir\n\u0120a d\n\u0120 3\n\u0120u s\nat ed\nou s\n\u0120m - ore\nu e\no g\n\u0120S t\nin d\ni ke\n\u0120s o\nim e\np er\n. \"\nb er\ni - z\na ct\n\u0120on e\n\u0120sa id\n\u0120 -\na re\n\u0120you r\nc c\n\u0120T - h\n\u0120c l\ne p\na ke\nab le\ni p\n\u0120con t\n\u0120wh ich\ni a\n\u0120 - im\n\u0120ab out\n\u0120we re\nver y\nu b\n\u0120h ad\n\u0120 en\n\u0120com - p\n, \"\n\u0120I n\n\u0120u n\n\u0120a g\ni re\nac e\na u\nar y\n\u0120w ould\nas - s\nr y\n\u0120 \xE2\u0122\nc l\no ok\ne re\ns o\n\u0120 V\nig n\ni b\n\u0120of - f\n\u0120t e\nv en\n\u0120 Y\ni le\no se\nit e\nor m\n\u01202 01\n\u0120re - s\n\u0120m an\n\u0120p er\n\u0120o ther\nor d\nul t\n\u0120be en\n\u0120l - ike\nas e\nan ce\nk s\nay s\now n\nen ce\n\u0120d is\nct ion\n\u0120an y\n\u0120a - pp\n\u0120s p\nin t\nres s\nation s\na il\n\u0120 4\nic al\n\u0120the m\n\u0120he - r\nou nt\n\u0120C h\n\u0120a r\n\u0120 if\n\u0120the re\n\u0120p e\n\u0120y - ear\na v\n\u0120m y\n\u0120s ome\n\u0120whe n\nou gh\nac h\n\u0120th an\nr - u\non d\nic k\n\u0120o ver\nve l\n\u0120 qu\n\u010A \u010A\n\u0120s c\nre - at\nre e\n\u0120I t\nou nd\np ort\n\u0120al so\n\u0120p art\nf ter\n\u0120k - n\n\u0120be c\n\u0120t ime\nen s\n\u0120 5\nop le\n\u0120wh at\n\u0120n o\nd - u\nm er\nan g\n\u0120n ew\n-- --\n\u0120g et\nor y\nit ion\ning s\n\u0120j - ust\n\u0120int o\n\u0120 0\nent s\no ve\nt e\n\u0120pe ople\n\u0120p re\n\u0120it - s\n\u0120re c\n\u0120t w\ni an\nir st\nar k\nor s\n\u0120wor k\nad e\no b\n\u0120s - he\n\u0120o ur\nw n\nin k\nl ic\n\u01201 9\n\u0120H e\nis h\nnd er\nau se\n\u0120h - im\non s\n\u0120 [\n\u0120 ro\nf orm\ni ld\nat es\nver s\n\u0120on ly\no ll\n\u0120s - pe\nc k\ne ll\nam p\n\u0120a cc\n\u0120b l\ni ous\nur n\nf t\no od\n\u0120h - ow\nhe d\n\u0120 '\n\u0120a fter\na w\n\u0120at t\no v\nn e\n\u0120pl ay\ner - v\nic t\n\u0120c ould\nit t\n\u0120a m\n\u0120f irst\n\u0120 6\n\u0120a ct\n\u0120 - $\ne c\nh ing\nu al\nu ll\n\u0120com m\no y\no ld\nc es\nat er\n\u0120f e\n\u0120be - t\nw e\nif f\n\u0120tw o\noc k\n\u0120b ack\n) .\nid ent\n\u0120u nder\nrou - gh\nse l\nx t\n\u0120m ay\nrou nd\n\u0120p o\np h\nis s\n\u0120d es\n\u0120m - ost\n\u0120d id\n\u0120ad d\nj ect\n\u0120in c\nf ore\n\u0120p ol\non t\n\u0120ag - ain\ncl ud\nter n\n\u0120kn ow\n\u0120ne ed\n\u0120con s\n\u0120c o\n\u0120 - .\n\u0120w ant\n\u0120se e\n\u0120 7\nn ing\ni ew\n\u0120Th is\nc ed\n\u0120e - ven\n\u0120in d\nt y\n\u0120W e\nat h\n\u0120the se\n\u0120p r\n\u0120u se\n\u0120bec - ause\n\u0120f l\nn g\n\u0120n ow\n\u0120\xE2\u0122 \u0135\nc om\nis e\n\u0120m - ake\n\u0120the n\now er\n\u0120e very\n\u0120U n\n\u0120se c\nos s\nu ch\n\u0120e - m\n\u0120 =\n\u0120R e\ni ed\nr it\n\u0120in v\nle ct\n\u0120su pp\nat ing\n\u0120l - ook\nm an\npe ct\n\u0120 8\nro w\n\u0120b u\n\u0120whe re\nif ic\n\u0120year - s\ni ly\n\u0120d iff\n\u0120sh ould\n\u0120re m\nT h\nI n\n\u0120e v\nd ay\n' - re\nri b\n\u0120re l\ns s\n\u0120de f\n\u0120r ight\n\u0120s y\n) ,\nl es\n00 - 0\nhe n\n\u0120th rough\n\u0120T r\n_ _\n\u0120w ay\n\u0120d on\n\u0120 ,\n\u01201 - 0\nas ed\n\u0120as s\nub lic\n\u0120re g\n\u0120A nd\ni x\n\u0120 very\n\u0120in - clud\not her\n\u0120im p\not h\n\u0120su b\n\u0120\xE2\u0122 \u0136\n\u0120be - ing\nar g\n\u0120W h\n= =\nib le\n\u0120do es\nan ge\nr am\n\u0120 9\ner t\np - s\nit ed\nation al\n\u0120b r\n\u0120d own\n\u0120man y\nak ing\n\u0120c all\nur - ing\nit ies\n\u0120p h\nic s\nal s\n\u0120de c\nat ive\nen er\n\u0120be fore\nil - ity\n\u0120we ll\n\u0120m uch\ners on\n\u0120th ose\n\u0120su ch\n\u0120 ke\n\u0120 - end\n\u0120B ut\nas on\nt ing\n\u0120l ong\ne f\n\u0120th ink\ny s\n\u0120be - l\n\u0120s m\nit s\na x\n\u0120o wn\n\u0120pro v\n\u0120s et\nif e\nment s\nb - le\nw ard\n\u0120sh ow\n\u0120p res\nm s\nom et\n\u0120o b\n\u0120s ay\n\u0120S - h\nt s\nf ul\n\u0120e ff\n\u0120g u\n\u0120in st\nu nd\nre n\nc ess\n\u0120 - ent\n\u0120Y ou\n\u0120go od\n\u0120st art\nin ce\n\u0120m ade\nt t\nst em\nol - og\nu p\n\u0120 |\num p\n\u0120he l\nver n\nul ar\nu ally\n\u0120a c\n\u0120m - on\n\u0120l ast\n\u01202 00\n1 0\n\u0120st ud\nu res\n\u0120A r\nsel f\nar - s\nmer ic\nu es\nc y\n\u0120m in\noll ow\n\u0120c ol\ni o\n\u0120m od\n\u0120c - ount\n\u0120C om\nhe s\n\u0120f in\na ir\ni er\n\xE2\u0122 \u0136\nre ad\nan - k\nat ch\ne ver\n\u0120st r\n\u0120po int\nor k\n\u0120N ew\n\u0120s ur\no - ol\nal k\nem ent\n\u0120us ed\nra ct\nwe en\n\u0120s ame\nou n\n\u0120A l\nc - i\n\u0120diff ere\n\u0120wh ile\n---- ----\n\u0120g ame\nce pt\n\u0120s im\n.. - .\n\u0120in ter\ne k\n\u0120re port\n\u0120pro du\n\u0120st ill\nl ed\na h\n\u0120he - re\n\u0120wor ld\n\u0120th ough\n\u0120n um\nar ch\nim es\nal e\n\u0120S e\n\u0120I - f\n/ /\n\u0120L e\n\u0120re t\n\u0120re f\n\u0120tr ans\nn er\nut ion\nter - s\n\u0120t ake\n\u0120C l\n\u0120con f\nw ay\na ve\n\u0120go ing\n\u0120s - l\nu g\n\u0120A meric\n\u0120spe c\n\u0120h and\n\u0120bet ween\nist s\n\u0120D - e\no ot\nI t\n\u0120e ar\n\u0120again st\n\u0120h igh\ng an\na z\nat her\n\u0120ex - p\n\u0120o p\n\u0120in s\n\u0120g r\n\u0120hel p\n\u0120re qu\net s\nin s\n\u0120P - ro\nis m\n\u0120f ound\nl and\nat a\nus s\nam es\n\u0120p erson\n\u0120g reat\np - r\n\u0120s ign\n\u0120A n\n' ve\n\u0120s omet\n\u0120s er\nh ip\n\u0120r un\n\u0120 - :\n\u0120t er\nire ct\n\u0120f ollow\n\u0120d et\nic es\n\u0120f ind\n1 2\n\u0120m - em\n\u0120c r\ne red\ne x\n\u0120ex t\nut h\nen se\nc o\n\u0120te am\nv ing\nou - se\nas h\nat t\nv ed\n\u0120sy stem\n\u0120A s\nd er\niv es\nm in\n\u0120le - ad\n\u0120B l\nc ent\n\u0120a round\n\u0120go vern\n\u0120c ur\nvel op\nan - y\n\u0120c our\nal th\nag es\niz e\n\u0120c ar\nod e\n\u0120l aw\n\u0120re - ad\n' m\nc on\n\u0120re al\n\u0120supp ort\n\u01201 2\n.. ..\n\u0120re ally\nn - ess\n\u0120f act\n\u0120d ay\n\u0120b oth\ny ing\n\u0120s erv\n\u0120F or\n\u0120th - ree\n\u0120w om\n\u0120m ed\nod y\n\u0120The y\n5 0\n\u0120ex per\nt on\n\u0120e - ach\nak es\n\u0120c he\n\u0120c re\nin es\n\u0120re p\n1 9\ng g\nill ion\n\u0120g - rou\nut e\ni k\nW e\ng et\nE R\n\u0120m et\n\u0120s ays\no x\n\u0120d uring\ner - n\niz ed\na red\n\u0120f am\nic ally\n\u0120ha pp\n\u0120I s\n\u0120ch ar\nm - ed\nv ent\n\u0120g ener\ni ent\np le\ni et\nre nt\n1 1\nv es\npt ion\n\u01202 - 0\nform ation\n\u0120c or\n\u0120off ic\nie ld\n\u0120to o\nis ion\n\u0120in - f\n\u0120 Z\nt he\no ad\n\u0120p ublic\n\u0120pro g\nr ic\n* *\n\u0120w ar\n\u0120p - ower\nv iew\n\u0120f ew\n\u0120l oc\n\u0120differe nt\n\u0120st ate\n\u0120he - ad\n' ll\n\u0120p oss\n\u0120st at\nre t\nant s\n\u0120v al\n\u0120is s\n\u0120c - le\ni vers\nan c\n\u0120ex pl\n\u0120an other\n\u0120 Q\n\u0120a v\nth ing\nn - ce\nW h\n\u0120ch ild\n\u0120s ince\ni red\nl ess\n\u0120l ife\n\u0120de velop\nitt - le\n\u0120de p\n\u0120p ass\n\xE3 \u0125\n\u0120t urn\nor n\nTh is\nb ers\nro - ss\n\u0120A d\n\u0120f r\n\u0120res p\n\u0120sec ond\no h\n\u0120 /\n\u0120dis - c\n\u0120 &\n\u0120somet hing\n\u0120comp le\n\u0120 ed\n\u0120f il\n\u0120mon - th\na j\nu c\n\u0120govern ment\n\u0120with out\n\u0120le g\n\u0120d ist\n\u0120p - ut\n\u0120qu est\nan n\n\u0120pro t\n2 0\n\u0120ne ver\ni ence\n\u0120le vel\n\u0120ar - t\n\u0120th ings\n\u0120m ight\n\u0120eff ect\n\u0120cont ro\n\u0120c ent\n\u01201 - 8\n\u0120all ow\n\u0120bel ie\nch ool\not t\n\u0120inc re\n\u0120fe el\n\u0120res - ult\n\u0120l ot\n\u0120f un\not e\n\u0120t y\nere st\n\u0120cont in\n\u0120us - ing\n\u0120b ig\n2 01\n\u0120as k\n\u0120b est\n\u0120 )\nI N\n\u0120o pp\n3 - 0\n\u0120num ber\nin ess\nS t\nle ase\n\u0120c a\n\u0120m ust\n\u0120d irect\n\u0120g - l\n\u0120 <\n\u0120op en\n\u0120p ost\n\u0120com e\n\u0120se em\nord ing\n\u0120we - ek\nate ly\nit al\n\u0120e l\nri end\n\u0120f ar\n\u0120t ra\nin al\n\u0120p - ri\n\u0120U S\n\u0120pl ace\n\u0120for m\n\u0120to ld\n\" :\nain s\nat ure\n\u0120Tr - ump\n\u0120st and\n\u0120 #\nid er\n\u0120F r\n\u0120ne xt\n\u0120s oc\n\u0120p - ur\n\u0120le t\n\u0120l ittle\n\u0120h um\n\u0120 i\nr on\n1 5\n\u01201 5\n\u0120comm - un\n\u0120m ark\n\u0120The re\n\u0120w r\n\u0120Th at\n\u0120in formation\nw - ays\n\u0120b us\na pp\n\u0120inv est\nm e\n\u0120h ard\nain ed\ne ad\n\u0120im - port\n\u0120app ro\n\u0120t est\n\u0120t ri\n\u0120re st\nos ed\n\u0120f ull\n\u0120c - are\n\u0120S p\n\u0120c ase\nO N\n\u0120s k\n\u0120l ess\n\u0120 +\n\u0120part - ic\n\u0120P l\nab ly\nu ck\nis hed\nch n\nb e\n\u0120l ist\nat or\n\u0120to - p\n\u0120ad v\n\u0120B e\nru ct\n\u0120d em\nr ation\nl ing\ng y\nre en\ng - er\n\u0120h ome\n\u0120le ft\n\u0120bet ter\n\u0120d ata\n\u01201 1\n\u0120att - ack\n\u0120pro ble\nl ine\nard s\n\u0120be h\nr al\n\u0120H ow\n\u0120S he\nar - ge\n\u0120 --\n: //\n\u0120b ro\n\u0120P h\nat s\n\u0120bu ild\nw w\nid ed\na - im\nas es\nen cy\n\u0120m ain\nin ed\n\u0120includ ing\n\u0120 {\n\u0120g - ot\n\u0120int erest\n\u0120ke ep\n\u0120 X\n\u0120e as\nain ing\n\u0120cl - ass\n\xE2\u0122 \xA6\n\u0120N o\n\u0120v ar\n\u0120sm all\namp le\nA T\n\u0120 - ide\n\u0120S o\n\u0120re ce\n\u0120pol it\n\u0120m ov\n\u0120pl an\n\u0120per - cent\niv ing\n\u0120c amp\n\u0120p ay\n1 4\ns c\nis ed\n\u0120u nt\none y\npl - oy\n== ==\n\u0120did n\n\u0120I nd\nel s\nert ain\n\u0120p os\n__ __\ni ver\n\u0120pro - cess\n\u0120prog ram\nif ied\n\u0120R ep\n1 6\nu ro\nolog y\nat ter\nin a\n\u0120n - ame\n\u0120A ll\n\u0120f our\n\u0120ret urn\nv ious\nb s\n\u0120call ed\n\u0120m - ove\n\u0120S c\nir d\n\u0120grou p\n\u0120b re\n\u0120m en\n\u0120c ap\nt - en\ne e\n\u0120d ri\nle g\nhe re\nuth or\n\u0120p at\n\u0120cur rent\nid es\n\u0120p - op\nt o\nent ion\n\u0120al ways\n\u0120m il\n\u0120wom en\n\u01201 6\n\u0120o - ld\niv en\nra ph\n\u0120O r\nr or\nent ly\n\u0120n ear\n\u0120E x\nre am\ns - h\n\u01201 4\n\u0120f ree\niss ion\nst and\n\u0120C on\nal ity\nus ed\n1 3\n\u0120des - ign\n\u0120ch ange\n\u0120ch ang\n\u0120b o\n\u0120v is\nem ber\n\u0120b ook\nread - y\n\u0120k ill\n2 5\npp ed\n\u0120a way\n\u0120ab le\n\u0120count ry\n\u0120con - st\nar n\n\u0120or der\nA R\ni or\ni um\nor th\n1 8\nail able\n\u0120s w\n\u0120m - illion\n\u01201 3\nat ic\nt ed\n\u0120G o\n\u0120o per\nen g\n\u0120th ing\naj - or\ncon om\n\u0120Com m\n\u0120wh y\nu red\nur al\n\u0120s chool\nb y\n\u0120M - ar\n\u0120a ff\n\u0120d ays\n\u0120an n\nus h\nan e\nI f\ne g\n\u0120pro f\n\u0120he - alth\nou th\nB ut\nion al\n. ,\n\u0120s ol\n\u0120al ready\n\u01203 0\n\u0120char - act\nH e\n\u0120f riend\nE S\ni ans\nic le\n' d\n\u0120O n\n\u0120le ast\n\u0120p - rom\n\u0120d r\n\u0120h ist\nit her\n\u0120 est\ni qu\n1 7\ns on\n\u0120te - ll\n\u0120t alk\noh n\no int\nle ction\nA N\n\u0120unt il\nau gh\n\u0120l - ater\n\u0120 ve\n\u0120v iew\nend ing\niv ed\n\u0120wor d\nw are\n\u0120c - ost\n\u0120en ough\n\u0120g ive\n\u0120Un ited\n\u0120te chn\nare nt\nO R\n\u0120p - ar\n\u0120D r\n\u0120201 6\nr ist\ner ing\n\u0120 \xC2\n\u0120l arge\ns ide\nac - y\ncc ess\n\u0120w in\n\u0120import ant\n\u012019 9\n\u0120does n\n\u01201 - 7\n\u0120bus iness\n\u0120cle ar\n\u0120re se\n\" ,\nur y\n\u0120e qu\nas - ter\nal f\n\u0120Americ an\nn ect\n\u0120ex pect\nivers ity\n\u0120o cc\n\u0120F - l\n\u0120k ind\n\u0120me an\n\u0120p ast\n\u0120de v\n\u0120b as\nle t\nra - ft\n\u0120or gan\n\u0120de l\n\u0120per form\n\u0120st ory\n\u0120se ason\n\u0120C - ol\n\u0120cl aim\n\u0120c ame\n\u0120with in\n\u0120l ine\n\u0120pro ject\n\u0120A - t\n\u0120contro l\nend ed\n\u0120S y\n\u0120a ir\niz ation\n\u0120 *\nle y\n\u0120m - oney\nid d\nY ou\nf or\n\u0120fam ily\n\u0120m aking\n\u0120b it\n\u0120pol - ice\n\u0120happ en\n\u0120 vers\non y\nu ff\n\u0120W hen\n\u0120s it\nide - o\nl f\nis on\n\u0120su re\ng in\n\u0120app ear\n\u0120l ight\n\u0120 es\no - f\n\u0120w ater\n\u0120t imes\nn ot\n\u0120g row\n\u0120comp any\n\u0120T - e\now s\n\u0120m ar\nour ce\ni ol\nar m\nb r\n\u0120ex ample\n\u0120con c\n\u0120f - ore\n\u0120T o\np ro\nE N\nri es\n\u01202 5\n\u0120C an\nne y\n\u0120act ually\n\u0120e - ver\nur ity\nak en\nap s\n\u0120t ax\n\u0120m ajor\nam a\n\u0120of ten\ner - al\n\u0120hum an\n\u0120j ob\nis ter\n\u0120av ailable\noc r\nen n\na id\niv - id\n\u0120rec ord\n? \"\n\u0120s ing\n\u0120A m\nid ence\n\u0120new s\nst - er\n\u0120e conom\n\u0120follow ing\n\u0120B r\nis ing\n\u0120h our\nm ost\num - ent\n\u0120se x\n\u0120des c\n\u0120bec ome\n\u0120E d\n\u0120to ok\n\u0120ha - ving\n\u0120produ ct\na ult\nA s\nar ing\n\u0120me ans\n\u0120h op\nun e\n\u0120ch - o\n\u0120c ertain\n\u0120n on\n\u0120de al\n2 4\nle ment\noc i\nen e\n\u0120s - ide\n\u0120P r\n\u0120M ay\n\u0120re ason\nu ed\nc hed\nul ation\n\u0120e - lect\n\u0120offic ial\n\u0120poss ible\n\u0120h old\nand s\not s\n\u0120c - ity\nor ies\n\u0120se ver\n\u0120child ren\n\u0120on ce\n\u0120act iv\nl er\n\u0120n - ight\nit ions\n\u0120J ohn\na pe\npl ay\n\u0120d one\n\u0120l im\n\u0120work - ing\n\u0120P res\nor ld\ne b\n\u0120C o\n\u0120b ody\nail s\nut es\n\u0120M - r\n\u0120whe ther\n\u0120a uthor\nro p\n\u0120pro per\n\u0120se en\n) ;\n\u0120f - ac\n\u0120S u\n\u0120con d\nit ing\n\u0120cour se\n\u0120 }\n-------- --------\na - ign\n\u0120ev ent\n\u0120en g\n\u0120p ot\n\u0120in tern\ni am\n\u0120sh ort\nem - pt\n\xE3 \u0124\n\u0120G od\nil ar\n8 0\n\u0120or ig\nI S\nour n\nab ility\nit - ive\n\u0120d am\n\u01201 00\n\u0120p ress\n\u0120do ing\n\u0120prot ect\nr - ing\n\u0120though t\n\u0120quest ion\nre w\n\u0120W ar\n\u0120sever al\n\u0120St - ate\n\u0120g iven\n\u0120f und\n\u0120T w\n\u0120w ent\nan ces\nw ork\np or\nm - y\n4 0\n\u0120ar g\nart ment\nust om\n\u0120pol ic\n\u0120me et\n\u0120c reat\n2 - 2\n\u0120St ates\n\u0120g ames\nra w\nut ure\n\u0120under stand\nur s\n\u0120O - b\nl ish\ns y\n\u0120m akes\n\u0120w on\nag on\n\u0120h tt\n\u0120l ove\nent - ial\n\u0120comple te\np ar\n\u0120I m\nA L\n\u0120acc ount\n\xC2 \u0142\nore - d\nver t\n\u0120 ident\n\u0120201 5\n\u0120other s\n\u0120M in\ni ber\nver - age\nThe re\nition al\nd d\n\u0120pro b\n\u0120you ng\n\u0120al ong\n\u0120acc - ording\n\u0120y et\n\u0120mem bers\n\u0120Wh at\no id\n\u0120M an\nA nd\n\u0120am - ong\na i\n\u0120em ploy\n\u0120R es\n\u0120 >\n\u0120inv ol\n\u0120l ow\na - f\n\u0120C ar\n\u0120h ig\n\u0120O ne\n\u0120S ec\nin ation\n\u0120like ly\n\u0120an - t\nag ed\n\u0120R uss\n\u0120b en\n\u0120re le\nF or\nb ack\n\u0120N ot\n\u0120pres - ident\nb all\n\u0120acc ess\nivid ual\n\u0120D em\n\u0120E uro\n6 0\n\u0120kn - own\nir l\n\u0120G r\n\u0120ear ly\nu se\niet y\n\xE2\u0122 \u0135\n\u0120f - ight\n\u0120s ent\n\u0120to day\n\u0120mark et\n\" .\n\u0120b ased\n\u0120str - ong\nur ther\n\u0120de b\nm ber\n\u0120proble m\n\u0120de ath\n\u0120soc ial\nim - ate\nA S\nort un\n\u0120camp aign\ner y\nC h\n\u0120e y\ni ally\n\u0120m us\nw - h\np os\n\u0120 er\n\u0120sa f\n\u0120month s\nir on\n\u0120v iol\n\u0120f - ive\n\u0120st re\n\u0120play ers\nin c\nal d\ny ear\na un\n\u0120su ccess\n\u0120pres - ent\nere nce\n\u0120201 4\n\u0120su gg\n\u0120partic ular\n\u0120tr y\n\u0120sugg - est\n\u0120Ch rist\non es\n\u0120pri v\n2 3\n\u0120c rit\n\u0120l and\n\u0120loc - al\nif y\n2 9\n\u0120a ut\nE D\n\u0120G u\n\u0120m ult\n\u0120polit ical\n\u0120ask - ed\n\u0120for mer\nit ter\nri pt\n\u0120cl ose\n\u0120p ract\n\u0120Y ork\n\u0120get - ting\n\u0120ac ross\n\u0120com b\n\u0120belie ve\n\u0120 z\n\u0120to get\n\u0120toget - her\n\u0120C ent\nir c\n\u0120ind ividual\n\u0120M c\n2 7\nis k\n\u0120E ng\n\u0120f - ace\n\u01202 4\n\u0120val ue\n\u0120are a\ne v\n\u0120w rit\n\u0120Pres ident\n\u0120v - ot\n\u0120ke y\n\u0120m om\np ut\n\u0120any thing\n\u0120exper ience\natt - le\n\u0120m ind\na ff\nom m\n\u0120f uture\ng ed\n\u0120c ut\n\u0120to t\nit - ch\n\u0120v ideo\n\u0120invest ig\n\u0120n et\n\u0120M y\nr ict\ni en\n. )\n\u0120imp - ro\nth ough\nward s\n\u0120con nect\n\u0120M ed\nsel ves\nens ive\nm b\no - ber\nat ors\nA n\n\u01205 0\n\u0120re du\nres ent\n\u0120ab ove\n\u0120f re\n\u0120Euro - pe\ns w\n\u0120am ount\n\u0120A pp\n\u0120e ither\n\u0120mil it\n\u0120an - al\n\u0120f ail\n\u0120E n\nal es\n\u0120spec ial\n\u0120bl ack\nI T\nc her\n\u0120look - ing\n\u0120f ire\ny n\n\u0120al most\no on\n\u0120stud y\n\u0120m iss\nc hes\nro - wn\n\u0120t re\n\u0120commun ity\n\u0120med ia\n\u0120f ood\n\u0120com es\n\u0120Un - iversity\n\u0120sing le\nWh at\nu ly\n\u0120h alf\nag ue\nh od\n\u0120Rep - ublic\n\u0120start ed\n\u0120qu ick\not o\nb ook\n\u0120iss ue\nit or\n\u0120el - se\n\u0120cons ider\n2 6\nro du\n\u0120t aken\n2 8\n9 9\n\u0120W ith\n\u0120tr - ue\n\u0120w a\n\u0120tr ad\n\u0120ag o\n\u0120m ess\nie f\n\u0120add ed\no - ke\n\u0120b ad\n\u0120f av\n3 3\n\u0120sim ilar\nas k\n\u0120D on\n\u0120charact - er\nort s\n\u0120H ouse\n\u0120report ed\n\u0120ty pe\nv al\ni od\n\u0120How - ever\n\u0120t arg\n\u0120ent ire\npp ing\n\u0120hist ory\n\u0120l ive\nff - ic\n.... ....\ned eral\n\u0120tr ying\n\u0120disc uss\n\u0120H ar\nac es\nl - ished\n\u0120se lf\nos p\nre st\n\u0120ro om\nel t\n\u0120f all\nol ution\n\u0120e - t\n\u0120 x\n\u0120is n\n\u0120ide a\nb o\n\u0120s ound\n\u0120D ep\n\u0120some - one\nci ally\null y\n\u0120f oc\n\u0120ob ject\nif t\nap er\n\u0120play er\n\u0120r - ather\n\u0120serv ice\nas hing\n\u0120D o\n\u0120P art\nru g\nm on\np ly\n\u0120m - or\n\u0120not hing\n\u0120prov ide\nI C\nun g\n\u0120part y\n\u0120ex ist\n\u0120m - ag\n7 0\n\u0120r ul\n\u0120h ouse\n\u0120beh ind\n\u0120how ever\n\u0120W - orld\n\u0120s um\n\u0120app lic\n\u0120 ;\n\u0120fun ction\ng r\n\u0120P ol\n\u0120fr - ont\n2 00\n\u0120ser ies\n\u0120t em\n\u0120ty p\nill s\n\u0120o pt\n\u0120point - s\n\u0120bel ow\nitt ed\n\u0120spec ific\n\u0120201 7\num b\n\u0120r a\n\u0120pre - vious\n\u0120pre t\nre me\n\u0120c ustom\n\u0120cour t\n\u0120M e\n\u0120re - pl\n\u0120who le\ng o\nc er\n\u0120t reat\n\u0120A ct\n\u0120prob ably\n\u0120le - arn\nend er\n\u0120A ss\n\u0120vers ion\nn ow\n\u0120che ck\n\u0120C al\nR - E\nmin ist\nO n\nour ces\n\u0120ben ef\n\u0120d oc\n\u0120det er\n\u0120en - c\n\u0120su per\n\u0120add ress\n\u0120v ict\n\u0120201 3\n\u0120me as\nt - r\n\u0120f ield\nW hen\n\u0120sign ific\nu ge\n\u0120fe at\n\u0120comm on\nl - oad\n\u0120be gin\n\u0120br ing\n\u0120a ction\ner man\n\u0120desc rib\n\u0120ind - ust\n\u0120want ed\nri ed\nm ing\n\u0120att empt\n4 5\nf er\n\u0120d ue\nress - ion\n# #\n\u0120sh all\n\u0120s ix\no o\n\u0120st ep\n\u0120p ub\n\u0120him - self\n\u01202 3\n\u0120c op\n\u0120d est\n\u0120st op\nA C\nib ility\n\u0120l - ab\nic ult\n\u0120hour s\n\u0120cre ate\n\u0120f urther\n\u0120Americ a\n\u0120C - ity\n\u0120d ou\nhe ad\nS T\n\u0120N orth\nc ing\n\u0120n ational\nu le\n\u0120In - st\n\u0120t aking\n\u0120Q u\nir t\n\u0120re d\n\u0120rese arch\nv iron\n\u0120G - e\n\u0120bre ak\nan a\n\u0120sp ace\nater ial\n\u0120rec ent\n\u0120A b\n\u0120gener - al\n\u0120h it\n\u0120per iod\n\u0120every thing\nive ly\n\u0120ph ys\n\u0120say - ing\nan ks\n\u0120c ou\n\u0120c ult\nac ed\ne al\nu ation\n\u0120c oun\nl - u\n\u0120includ e\n\u0120pos ition\n\u0120A fter\n\u0120Can ad\n\u0120E m\n\u0120im - m\n\u0120R ed\n\u0120p ick\n\u0120com pl\n\u0120m atter\nre g\ne xt\nang u\nis - c\no le\na ut\n\u0120comp et\ne ed\nf ect\n\u01202 1\n\u0120S en\n\u0120The - se\nas ing\n\u0120can not\n\u0120in it\n\u0120rel ations\nac hed\n\u0120b - ar\n\u01204 0\n\u0120T H\n\u0120201 2\n\u0120v ol\n\u0120g round\n\u0120sec - urity\n\u0120up d\nil t\n3 5\n\u0120conc ern\n\u0120J ust\n\u0120wh ite\n\u0120seem - s\n\u0120H er\npe cially\ni ents\n\u0120ann oun\n\u0120f ig\night s\n\u0120st - ri\nl ike\nid s\n\u0120s us\n\u0120w atch\n\u0120 \xE2\n\u0120w ind\n\u0120C - ont\n\u0120it self\n\u0120m ass\nA l\ny le\niqu e\n\u0120N ational\n\u0120ab - s\n\u0120p ack\n\u0120out side\n\u0120an im\n\u0120p ain\net er\n\u0120man - ag\ndu ct\nog n\n\u0120 ]\n\u0120Se pt\nse c\no ff\n\u0120J an\n\u0120f oot\nad - es\n\u0120th ird\n\u0120m ot\n\u0120ev idence\nint on\n\u0120th reat\na pt\npl - es\nc le\n\u0120l o\n\u0120de cl\n\u0120it em\nmed i\n\u0120rep resent\nom - b\nam er\n\u0120signific ant\nog raph\ns u\n\u0120c al\ni res\n00 00\nI D\nA - M\n\u0120sim ply\n\u0120long er\n\u0120f ile\nO T\nc he\nS o\nate g\nor g\n\u0120H - is\n\u0120en er\n\u0120d om\n\u0120up on\nil i\n\": \"\n\u0120them selves\n\u0120com - ing\n\u0120qu ite\n\u0120diff icult\n\u0120B ar\nil ities\nre l\nend s\nc - ial\n6 4\n\u0120wom an\nra p\ny r\n\u0120ne cess\nip s\n\u0120te xt\n\u0120requ - ire\n\u0120milit ary\n\u0120re view\n\u0120resp ons\n7 5\n\u0120sub ject\n\u0120inst - ead\n\u0120iss ues\n\u0120g en\n\" ,\"\n\u0120min utes\n\u0120we ap\nr ay\nam - ed\nt ime\nb l\nH ow\n\u0120c ode\n\u0120S m\n\u0120hig her\n\u0120St e\nr - is\n\u0120p age\n\u0120stud ents\n\u0120In tern\n\u0120met hod\n\u0120A ug\n\u0120P - er\n\u0120A g\n\u0120polic y\n\u0120S w\n\u0120ex ec\n\u0120ac cept\num e\nrib - ut\n\u0120word s\n\u0120fin al\n\u0120chang es\n\u0120Dem ocr\n\u0120friend - s\n\u0120res pect\n\u0120e p\n\u0120comp an\niv il\n\u0120dam age\n** **\nog - le\nviron ment\n\u0120ne g\nent al\n\u0120a p\n\u0120tot al\niv al\n! \"\nl - im\n\u0120need s\n\u0120ag re\n\u0120develop ment\n\u0120a ge\nip le\n2 1\n\u0120result - s\n\u0120A f\nS h\n\u0120g un\n\u0120Ob ama\nro ll\n\u0120 @\n\u0120right - s\n\u0120B rit\n\u0120run ning\n\u0120was n\n\u0120p ort\n\u0120r ate\n\u0120pret - ty\n\u0120targ et\n\u0120sa w\n\u0120c irc\n\u0120wor ks\nic ro\nal t\no ver\nww - w\nTh at\nl ier\n\u0120every one\nud e\n\u0120p ie\nidd le\nra el\n\u0120r - ad\n\u0120bl ock\n\u0120w alk\nT o\n\xE3 \u0123\nn es\n\u0120A ust\na ul\nro - te\n\u0120S outh\ness ion\nop h\n\u0120show s\n\u0120s ite\n\u0120j o\n\u0120r - isk\ncl us\nl t\n\u0120in j\nid ing\n\u0120S pe\n\u0120ch all\nir m\n\u01202 - 2\nitt ing\nst r\n\u0120h y\nL E\nke y\n\u0120be gan\nat ur\nashing ton\nl - am\n\u0120D av\nb it\n\u0120s ize\n\u0120P ar\n3 8\nourn al\nf ace\n\u0120dec - ision\n\u0120l arg\n\u0120j ud\nre ct\n\u0120contin ue\n\u0120O ct\nove red\n\u0120I - nt\n==== ====\n\u0120p arent\n\u0120W ill\n\u0120eas y\n\u0120d rug\nang er\n\u0120s - ense\n\u0120d i\nid ay\n\u0120ener gy\nist ic\n\u0120ass oci\nar ter\nob al\ne - ks\n\u0120E l\nur ch\n\u0120g irl\no e\nit le\n\u01202 8\n\u0120C he\n\u0120requ - est\n\u0120so on\n\u0120h ost\nk y\n\u0120st ates\nom es\n\u0120m aterial\nle - x\n\u0120mom ent\n\u0120an sw\non se\n\u0120es pecially\n\u0120n orm\n\u0120serv - ices\np ite\nr an\n\u0120ro le\n4 4\n) :\n\u0120c red\nC l\n____ ____\n\u0120m - at\n\u0120l og\n\u0120Cl inton\nO U\n\u0120off ice\n\u01202 6\n\u0120ch arg\n\u0120tr - ack\nm a\n\u0120he art\n\u0120b all\n\u0120person al\n\u0120build ing\nn a\ns - et\nb ody\n\u0120Bl ack\n\u0120incre ase\nitt en\n\u0120need ed\n3 6\n3 2\n= - \"\n\u0120l ost\n\u0120bec ame\n\u0120grou ps\n\u0120M us\n\u0120w rote\n\u0120P - e\n\u0120pro p\nj oy\n\xC3 \xA9\n\u0120Wh ite\n\u0120de ad\n. '\n\u0120htt - p\n\u0120we bs\nO S\n\u0120ins ide\n\u0120wr ong\n\u0120stat ement\n\u0120 - ...\ny l\n\u0120fil m\n\u0120mus ic\n\u0120sh are\nific ation\n\u0120re lease\n\u0120for - ward\n\u0120st ay\n\u0120comp ut\nit te\ns er\n\u0120orig inal\n\u0120c ard\n\u0120c - and\n\u0120d iv\nat ural\n\u0120fav or\nO M\n\u0120c ases\nus es\n\u0120se - ction\n\u0120le ave\ng ing\nov ed\n\u0120W ashington\n3 9\n\u0120G l\n\u0120requ - ired\nact ion\nap an\no or\nit er\n\u0120K ing\n\u0120count ries\n\u0120G - erman\nll ing\n\u01202 7\n3 4\n\u0120quest ions\n\u0120pr im\n\u0120c ell\n\u0120sh - oot\n\u0120any one\n\u0120W est\n\u0120aff ect\nep end\n\u0120on line\n\u0120Is - rael\n\u0120Sept ember\n\u0120ab ility\n\u0120cont ent\nis es\n\u0120re ve\n\u0120l - aun\n\u0120ind ic\n\u0120for ce\nc ast\n\u0120so ld\nav ing\nf l\n\u0120so - ft\n\u0120compan ies\nce ed\n\u0120art icle\n\u0120a ud\n\u0120re v\n\u0120ed - uc\n\u0120play ing\n0 5\n\u0120he ld\nct or\n\u0120rele ased\n\u0120f ederal\n3 - 7\n\u0120ad minist\n\u0120inter view\n\u0120inst all\n\u0120rece ived\n\u0120s - ource\nu k\nP h\n\u0120ser ious\n\u0120cre ated\n\u0120c ause\n\u0120im medi\n\u0120def - in\nu el\n\u0120Dep artment\nct ions\n\u0120C our\n\u0120N ow\nz e\nit es\nit - ution\n\u0120l ate\n\u0120spe ak\nn ers\n\u0120leg al\nar i\n\u0120C or\n\u0120we - eks\n\u0120mod el\n\u0120p red\n\u0120ex act\nB C\n\u0120B y\nIN G\nos ing\n\u0120t - akes\n\u0120reg ard\n\u0120opp ortun\n\u0120pr ice\n\u012019 8\n\u0120A pr\nf - ully\n\u0120or d\n\u0120proble ms\nru ction\nh am\n\u0120C ount\nle ge\n\u0120lead - ers\nE T\nle v\n\u0120de ep\nolog ical\nes e\nh aps\n\u0120S ome\n\u0120p - ers\n\u0120cont ract\n\u0120relations hip\ns p\nou d\n\u0120b ase\n4 8\nm - it\nA d\nanc ial\n\u0120cons um\n\u0120pot ential\n\u0120l angu\nre m\net - h\n\u0120rel ig\nress ed\n6 6\n\u0120l ink\n\u0120l ower\nay er\n\u0120J une\n\u0120f - em\nun t\ner c\nur d\n\u0120cont act\n\u0120 ill\n\u0120m other\n\u0120est - ab\nh tt\n\u0120M arch\n\u0120B ro\n\u0120Ch ina\n\u01202 9\n\u0120s qu\n\u0120prov - ided\n\u0120a verage\nas ons\n\u0120201 1\n\u0120ex am\nl in\n5 5\nn ed\n\u0120per - fect\n\u0120t ou\nal se\nu x\n\u0120bu y\n\u0120sh ot\n\u0120col lect\n\u0120ph - ot\n\u0120play ed\n\u0120sur pr\n\u0120official s\n\u0120sim ple\nav y\n\u0120indust - ry\n\u0120hand s\ng round\n\u0120p ull\n\u0120r ound\n\u0120us er\n\u0120r - ange\nu ary\n\u0120priv ate\nop s\ne es\n\u0120w ays\n\u0120M ich\n\u0120ve - h\n\u0120ex cept\n\u0120ter ms\nim um\npp er\nI ON\nore s\n\u0120Dr agon\nou - l\n\u0120d en\n\u0120perform ance\n\u0120b ill\nc il\n4 7\n\u0120en vironment\n\u0120ex - c\nad d\n\u0120wor th\n\u0120p ict\n\u0120ch ance\n\u0120201 8\nb or\n\u0120spe - ed\nict ion\n\u0120al leg\n\u0120J apan\nat ory\nre et\n\u0120m atch\n\u0120I - I\n\u0120st ru\nord er\n\u0120st e\n\u0120l iving\n\u0120st ruct\nin o\n\u0120se - par\nher n\n\u0120resp onse\n\u0120en joy\n\u0120v ia\nA D\num ents\nace book\n\u0120mem - ber\nib r\niz ing\n\u0120to ol\n\u0120M on\n\u0120Wh ile\nh ood\n\u0120A ng\n\u0120D - ef\n\u0120off er\nT r\na ur\n\u0120turn ed\n\u0120J uly\nd own\nan ced\n\u0120rec - ently\n\u0120E ar\n\u0120c e\n\u0120St ar\n\u0120C ong\nrough t\n\u0120bl - ood\n\u0120hop e\n\u0120com ment\nain t\n\u0120ar ri\nil es\n\u0120partic - ip\nough t\nri ption\n0 8\n4 9\n\u0120g ave\n\u0120se lect\n\u0120kill ed\nsy - ch\n\u0120go es\ni j\n\u0120c oll\n\u0120imp act\nat ives\n\u0120S er\n0 9\n\u0120Aug - ust\n\u0120b oy\nd e\n\u0120D es\n\u0120f elt\nU S\n\u0120expect ed\n\u0120im - age\n\u0120M ark\ncc ording\no ice\nE C\n\u0120M ag\nen ed\nh old\n\u0120P - ost\n\u0120pre vent\nN o\n\u0120invol ved\n\u0120ey es\n\u0120quick ly\nA - t\nun k\n\u0120beh av\n\u0120 ur\n\u0120l ed\nc ome\ne y\n\u0120cand id\n\u0120ear - lier\n\u0120foc us\net y\nP ro\nled ge\nix ed\nill ed\n\u0120pop ular\nA P\n\u0120set - t\nl ight\n\u0120var ious\nin ks\n\u0120level s\n\u0120ro ad\nell ig\nab les\nhe - l\nitte e\n\u0120G ener\ny pe\n\u0120he ard\nic les\n\u0120m is\n\u0120us - ers\n\u0120S an\n\u0120impro ve\n\u0120f ather\n\u0120se arch\nThe y\nv il\n\u0120prof - ess\n\u0120kn ew\n\u0120l oss\n\u0120ev ents\n6 5\n\u0120b illion\n0 7\n0 - 2\n\u0120New s\n\u0120A M\n\u0120co ver\nw here\nens ion\n\u0120b ott\n\u0120are - as\nen ces\nop e\n\u0120Tw itter\na el\n\u0120get s\n\u0120Go ogle\n\u0120s - n\ni ant\n\u0120v ote\n\u0120near ly\n\u0120includ ed\n\u0120rec ogn\nz z\nm - m\nal ed\n\u0120happen ed\n0 4\n\u0120h ot\n\u0120who se\n\u0120c ivil\n\u0120su - ff\no es\nit iz\n\u0120Sy ri\n\u0120resp ond\n\u0120h on\n\u0120feat ures\n\u0120econom - ic\n\u0120Apr il\nr im\n\u0120techn ology\n\u0120o ption\nag ing\n\u0120pur - ch\nR e\n\u0120l at\nch ie\nis l\n\u0120rec omm\nu f\n\u0120tr aining\n\u0120effect - s\n\u0120f ast\n\u0120201 0\n\u0120occ ur\n\u0120webs ite\n\u0120em ail\n\u0120s - ens\ne ch\n\u0120o il\n\u0120inf lu\n\u0120current ly\n\u0120S ch\n\u0120Ad - d\n\u0120go al\n\u0120sc ient\n\u0120con v\n1 00\nem y\n\u0120dec ided\n\u0120tra - vel\n\u0120m ention\nL L\n0 3\n\u0120e lection\n\u0120ph one\n\u0120look s\n\u0120sit - uation\n\u0120c y\n\u0120h or\nb ed\n\u0120Cour t\na ily\nav es\n\u0120qu - ality\n\u0120Com p\nw ise\n\u0120t able\n\u0120st aff\n\u0120W ind\net t\n\u0120tri - ed\nide red\n\u0120add ition\n\u0120b ox\n\u0120l ack\nar ily\n\u0120w ide\n\u0120m - id\n\u0120bo ard\nys is\n\u0120ant i\nh a\n\u0120d ig\nen ing\n\u0120d ro\nC - on\n6 8\n\u0120sl ow\nb ased\nse qu\n\u0120p ath\nE x\nak er\n\u0120work ed\n\u0120p - en\n\u0120eng ine\n\u0120look ed\n\u0120Su per\n\u0120S erv\n\u0120vict im\nU - n\n\u0120proper ty\n\u0120int rodu\n\u0120exec ut\n\u0120P M\nL e\n\u0120col - or\n\u0120M ore\n\u01206 0\n\u0120net work\n\u0120d ate\nc ul\nid ge\n\u0120ext - ra\n3 1\n\u0120s le\n6 7\n\u0120w ond\n\u0120report s\nj ust\n\u0120Aust ral\n\u0120cap - ital\n\u0120en s\n\u0120comm and\n\u0120allow ed\n\u0120pre p\n\u0120ca pt\nh - ib\n\u0120num bers\nch an\n\u0120f air\nm p\nom s\n\u0120re ach\nW ith\nt - ain\n\u0120bro ad\n\u0120cou ple\nec ause\nly ing\n\u0120F eb\n\u0120sc reen\n\u0120l - ives\n\u0120pri or\n\u0120Cong ress\nA r\n\u0120appro ach\n\u0120e mer\nar - ies\n\u0120D is\ns erv\n\u0120N e\n\u0120bu ilt\nc ies\n\u0120re pe\n\u0120rul - es\nfor ce\n\u0120P al\n\u0120fin ancial\n\u0120cons idered\n\u0120Ch ar\nn - ces\n\u0120I S\n\u0120b rought\n\u0120b i\ni ers\n\u0120S im\nO P\n\u0120product - s\n\u0120vis it\n\u0120doc ument\n\u0120con duct\n\u0120complete ly\nin ing\n\u0120Cal - if\nib ly\n\u0120wr itten\n\u0120T V\nem ents\n\u0120d raw\nO ne\n\u0120pub - lished\n\u0120sec ret\nr ain\nhe t\n\u0120F acebook\nond ay\n\u0120U p\n\u0120sex - ual\n\u0120th ous\n\u0120P at\n\u0120 ess\n\u0120stand ard\n\u0120ar m\ng - es\nect ion\n\u0120f ell\n\u0120fore ign\nan i\n\u0120Fr iday\n\u0120reg ular\nin - ary\n\u0120incre ased\n\u0120us ually\n\u0120dem on\n\u0120d ark\n\u0120add - itional\nro l\n\u0120O f\n\u0120produ ction\n! !\nund red\n\u0120intern ational\nid - ents\n\u0120F ree\nrou p\n\u0120r ace\n\u0120m ach\n\u0120h uge\nA ll\nle - ar\nove mber\n\u0120to wn\n\u0120att ention\n\u0120O ff\ny ond\n\u0120The - n\nf ield\n\u0120ter ror\nra z\n\u0120B o\n\u0120meet ing\n\u0120P ark\n\u0120ar - rest\n\u0120f ear\n\u0120a w\n\u0120V al\nor ing\n' ,\n\u0120ext reme\nar - r\n\u0120work ers\nA fter\n\u01203 1\nn et\nam ent\n\u0120direct ly\n\u0120pop - ulation\nub e\n\u0120Oct ober\n\u0120I N\n\u0120Jan uary\n5 9\n\u0120Dav id\n\u0120c - ross\nce mber\n\u0120F irst\n\u0120mess age\nir it\n\u0120n ation\n\u0120p - oll\nis ions\n\u0120answ er\nn y\nis ode\n\u0120car ry\n\u0120Russ ia\n\u0120he - ar\neng th\nro y\n\u0120n atural\nin ally\n\u0120do g\nm itted\n\u0120tr ade\n\u0120sub - st\n\u0120mult iple\n\u0120Af ric\n\u0120f ans\n\u0120s ort\n\u0120gl obal\nic - ation\n\u0120W ed\nar a\n\u0120a chie\n\u0120langu age\nve y\n\u0120t al\n\u0120necess - ary\n\u0120det ails\n\u0120s en\n\u0120S und\n\u0120Re g\n\u0120R ec\n0 6\n\u0120s - il\nress ive\n\u0120med ical\nun ch\norn ia\n\u0120u nd\nf ort\noc ks\n\u0120M - onday\nues day\nc raft\n7 7\nur t\n\u0120 ver\n\u0120H ill\n\u0120rece ive\n\u0120mor - ning\nes tern\n\u0120b ank\n\u0120s at\nir th\n\u0120H igh\n\u0120dev ice\n\u0120TH - E\n\u0120Cent er\n\u0120saf e\n\u0120p le\n\u0120Canad a\n\u0120system s\n\u0120ass - ist\n\u0120sur v\n\u0120b attle\n\u0120S oc\nvert is\nS he\n\u0120p aper\n\u0120grow - th\n\u0120c ast\nS c\n\u0120pl ans\nll ed\n\u0120part s\n\u0120w all\n\u0120move - ment\n\u0120pract ice\nim ately\n\u0120dis play\n\u0120somet imes\nom p\n\u0120P - aul\n\u0120Y es\nk ing\n5 8\no ly\n\u0120s on\n\u0120av oid\nok es\n\u0120J - ew\n\u0120to wards\nas c\n\u0120 //\n\u0120K ore\n\u0120talk ing\n\u0120cor - rect\n\u0120sp ent\nic ks\ni able\ne ared\n\u0120ter m\n\u0120want s\nom ing\n\u0120 - ut\n\u0120dou b\n\u0120for ces\n\u0120p lease\n6 9\n\u0120N ovember\nat form\nond - on\n\u0120on es\n\u0120immedi ately\n\u0120Russ ian\n\u0120M et\n\u0120de - g\n\u0120parent s\nC H\n\u0120Americ ans\nal y\n\u0120M od\n\u0120sh own\n\u0120cond - itions\n\u0120st uff\n\u0120re b\n\u0120Y our\n\u0120includ es\nn own\n\u0120S - am\n\u0120exper ien\nm ission\n\u0120E ven\naugh t\n\u0120announ ced\n\u0120Republic - an\n\u0120deter min\n\u0120describ ed\n\u0120Count y\n( )\n\u0120do or\n\u0120chang - ed\n\u0120ne igh\n\u0120H ere\n\u0120cle an\n\u0120p an\n\u0120De cember\n\u0120Europe - an\nir ing\nap ter\n\u0120cl ub\n\u0120T uesday\n\u0120p aid\n\u0120N et\n\u0120attack - s\n\u0120charact ers\n\u0120al one\n\u0120direct or\nd om\n\u01203 5\n\u0120l - oad\n\u0120r out\n\u0120Calif ornia\n\u0120fin ally\n\u0120r ac\n\u0120cont - r\n\u0120exact ly\nres h\np ri\n\u0120Is lam\n\u0120n ature\n\u0120care er\n\u0120lat - est\n\u0120con vers\n\u0120S l\np ose\nci ent\n\u0120In c\niv ity\n8 8\n\u0120A - tt\n\u0120M or\nnes day\n\u0120we ight\nk en\n\u0120not e\n\u0120team s\n\u0120 - \\\nair s\n\u0120G reen\n\u0120h undred\non ent\n\u0120stre ng\n\u0120cons - ist\nic ated\n\u0120reg ul\n\u0120l ic\nast ic\n\u0120t en\nurs day\nellig - ence\nous ly\n\u0120U K\nB I\n\u0120cost s\n\u0120ind epend\n\u0120A P\n\u0120norm - al\n\u0120h om\n\u0120ob vious\n\u0120s we\n\u0120st ar\n\u0120read y\nac - her\n\u0120imp lement\ng est\n\u0120s ong\n\u0120G et\n\u0120L ab\n\u0120interest - ing\nus ing\n\u0120g iving\n\u0120Sund ay\n\u0120et c\n\u0120m iddle\n\u0120rem - ember\nr ight\nos ition\nut ions\n\u0120m ax\n4 6\n\u0120your self\n\u0120dem - and\n\u0120treat ment\n\u0120d anger\n\u0120C ons\n\u0120gu y\n\u0120Brit - ish\n\u0120phys ical\n\u0120rel ated\n\u0120rem ain\n\u0120could n\n\u0120ref - er\n\u0120c itiz\nb ox\nEN T\nbo ard\n\u0120in n\nI G\ner o\n\u0120St reet\nosp - ital\nren ch\ncher s\n\u0120st ra\nO L\nag er\n\u0120A N\n\u0120eas ily\nI - A\nen ge\nin y\n\u0120cl os\nock ed\n\u0120us es\n\u0120C oun\nI m\nu ild\n? - ?\nm ore\n\u0120an g\n\u0120wr ite\nol ute\n5 7\n\u0120lead er\n\u0120read - ing\n< /\n\u0120aut om\nest s\n4 3\n\u0120leg isl\n\u0120G old\n\u0120design - ed\n\u0120S T\n\u0120Le g\na res\n\u0120be aut\n\u0120T ex\n\u0120appear s\n\u0120stru - gg\n\u0120R om\n\u0120 00\n\u0120cho ice\n\u0120particular ly\n\u0120F rom\nop - er\n\u0120L ondon\nann ed\n\u0120allow s\nob ile\n\u0120differe nce\n\xE2\u0122 - \xA2\n\u0120V iew\n\u0120Wed nesday\n\u0120al though\n\u0120rel ative\n\u0120applic - ation\nate ver\n\u0120are n\n\u0120my self\n\u0120im ag\n\u0120dis e\n\u0120soc - iety\n\u0120fre qu\n\u0120Eng lish\n\u0120po or\n\u0120D ay\n\u0120writ ing\n\u0120se - ven\n\u0120start ing\n\u0120b ud\n\u0120pr int\n\u0120Tr ans\nuf act\n\u0120St - ud\nn ew\n\u0120cr im\n\u0120g ives\n\u0120co ol\na e\ni ance\n\u0120Gener - al\n\u0120think ing\n\u0120sa ve\n\u0120lim ited\n\u0120Part y\n\u0120mean - ing\np en\now ers\n\u0120J ack\nE M\n\u0120n ice\nru pt\n\u0120g as\n\u0120e - ight\n\u0120fe et\n\u0120eff ort\n\u0120 ign\nic it\nB l\nco in\n\u0120op - in\n\u0120br ain\nWh ile\nhe st\n\u0120Th ursday\n\u0120would n\naugh ter\n\u0120tou - ch\nle ments\n\u0120stud ies\n\u0120cent er\nc ont\nor ge\n\u0120comput er\n\u0120investig - ation\nP l\nor ks\n\u0120200 8\n\u0120incre asing\n\u0120st ore\n\u0120com - ments\n\u0120b al\nm en\n\u0120do ll\n\u0120l iber\n\u0120w ife\n\u0120law - s\natur day\nit ness\n\u0120mod ern\n\u0120S k\n\u0120administ ration\n\u0120opportun - ity\n\u0120s al\n\u0120power ful\nM y\n\u0120claim s\n\u0120Ear th\nord s\n\u0120t - itle\n\u0120es c\nn ame\nN ot\nom en\n\u0120be yond\n\u0120c amer\n\u0120se - ll\nit ute\near ch\n\u0120app l\nim ent\n4 2\n\u0120Ar t\n\u0120un f\n\u0120viol - ence\nur g\n\u0120E ast\n\u0120comp ared\n\u0120opt ions\n\u0120through out\n\u0120v - s\nig r\n. [\nac hes\n7 8\n\u0120fil es\nF L\nE L\nar ian\n\u0120J ames\n\u0120A - ir\nan ch\n\u0120det ail\n\u0120pie ce\nP S\n\u0120n amed\n\u0120educ ation\n\u0120dri - ve\n\u0120item s\n\u0120stud ent\nic ed\n: :\nic o\n\u0120th row\n\u0120sc - ene\n\u0120comple x\n\u0120200 9\n\u0120pre c\n\u0120B re\n7 9\n\u0120con - cept\n\u0120stat us\nam ing\n\u0120d ied\n\u0120know ledge\n\u0120begin ning\nO - D\nru ary\n\u0120certain ly\n\u0120gu ys\n\u0120sl ight\nin n\nound s\n\u0120f - ine\n\u0120f at\nic ations\n\u0120per haps\n\u0120A nt\n\u0120inc ome\n\u0120htt - ps\n\u0120major ity\nport s\nst on\n\u0120great er\n\u0120fe ed\nent ially\n\u0120saf - ety\n\u0120un ique\nand om\n\u0120g one\n\u0120show ed\n\u0120hist or\n\u0120coun - ter\ni us\nid a\n\u0120lead ing\ni pe\n\u0120s end\n\u0120Don ald\ner ve\n\u0120def - ense\nines e\n\u0120y es\n\u0120F ire\n\u0120Mus lim\nra q\n\u0120contin ued\nos - h\n\u0120prov ides\n\u0120pr ison\n\u0120P re\n\u0120happ y\n\u0120econom - y\n\u0120tr ust\nag s\n\u0120G ame\n\u0120weap ons\num an\n\u0120C le\nit - ation\n\u0120anal ysis\n\u0120T imes\n\u0120sc ience\n- >\n\u0120fig ure\n\u0120dis - app\nent y\n\u0120soft ware\n\u0120u lt\n\u0120offic ers\nN ew\nI s\n\u0120rem - ains\n\u0120Ind ia\n\u0120p sych\nri ef\n\u0120c at\nes c\n\u0120ob serv\n\u0120st - age\n\u0120D ark\n\u0120ent er\nch ange\n\u0120pass ed\n\u0120des pite\n\u0120O - ut\n\u0120mov ie\nr s\n\u0120v oice\nm ine\n\u0120Pl ay\n\u0120to ward\n\u0120T - er\n\u0120reg ion\n\u0120val ues\nor ters\n\u0120m ount\n\u0120offic er\n\u0120O - ther\nb an\n\u0120h ous\nw ood\nro om\nI V\n\u0120S un\nse e\n\u0120O ver\nro - g\n9 0\n\u0120l ay\n\u0120T ur\na wn\n\u0120press ure\n\u0120S ub\n\u0120book - s\ned om\n\u0120S and\nA A\nag o\n\u0120re asons\nf ord\n\u0120activ ity\nU - T\nN ow\n\u0120Sen ate\nce ll\nn ight\n\u0120call s\nin ter\n\u0120let ter\n\u0120R - ob\n\u0120J e\n\u0120cho ose\n\u0120L aw\nG et\nB e\n\u0120ro b\n\u0120typ - es\n\u0120pl atform\n\u0120qu arter\nR A\n\u0120T ime\n\u0120may be\n\u0120C - r\n9 5\np re\n\u0120mov ing\n\u0120l if\n\u0120go ld\n\u0120s om\n\u0120pat - ients\n\u0120tr uth\n\u0120K e\nur ance\nant ly\nm ar\n\u0120char ge\n\u0120G - reat\n\u0120ce le\n---------------- ----------------\n\u0120ro ck\nro id\nan - cy\n\u0120cred it\na ud\nB y\n\u0120E very\n\u0120mov ed\ning er\nrib ution\n\u0120n - ames\n\u0120stra ight\n\u0120He alth\n\u0120W ell\n\u0120fe ature\n\u0120r - ule\n\u0120sc he\nin ated\n\u0120Mich ael\nber g\n4 1\nil ed\nb and\n\u0120cl - ick\n\u0120Ang el\non ents\n\xC2 \u0143\n\u0120I raq\n\u0120S aturday\n\u0120a - ware\np art\n\u0120pat tern\nO W\n\u0120L et\n\u0120gr ad\nign ed\n\u0120associ - ated\n\u0120st yle\nn o\ni ation\na ith\nil ies\n\u0120st ories\nur ation\n\u0120individual - s\n\u0120\xE2\u0122 \xA6\nm iss\n\u0120Ass oci\nish ing\nab y\n\u0120sum mer\n\u0120B - en\n\u01203 2\n\u0120ar ch\nut y\n\u0120Tex as\nh ol\n\u0120full y\n\u0120m - ill\n\u0120follow ed\n\u0120B ill\n\u0120Ind ian\n\u0120Sec ret\n\u0120B el\n\u0120Feb - ruary\n\u0120job s\n\u0120seem ed\n\u0120Go vern\ni pped\n\u0120real ity\n\u0120l - ines\n\u0120p ark\n\u0120meas ure\n\u0120O ur\nI M\n\u0120bro ther\n\u0120grow - ing\n\u0120b an\n\u0120est im\n\u0120c ry\n\u0120S chool\n\u0120me chan\n\u0120O - F\n\u0120Wind ows\n\u0120r ates\n\u0120O h\n\u0120pos itive\n\u0120cult ure\nist - ics\nic a\n\u0120h ar\ny a\nite ly\ni pp\n\u0120m ap\nen cies\n\u0120Will - iam\nI I\nak ers\n5 6\n\u0120M art\n\u0120R em\n\u0120al tern\nit ude\n\u0120co - ach\nrow d\nD on\n\u0120k ids\n\u0120j ournal\n\u0120cor por\n\u0120f alse\n\u0120we - b\n\u0120sle ep\n\u0120cont ain\n\u0120st o\n\u0120b ed\niver se\n\u0120R - ich\n\u0120Ch inese\n\u0120p un\n\u0120me ant\nk nown\n\u0120not ice\n\u0120favor - ite\na ven\n\u0120cond ition\n\u0120pur pose\n) )\n\u0120organ ization\n\u0120chall - eng\n\u0120man ufact\n\u0120sus p\n\u0120A c\n\u0120crit ic\nun es\nuc lear\n\u0120m - er\nvent ion\n\u01208 0\n\u0120m ist\n\u0120U s\n\u0120T or\nhtt p\nol f\n\u0120larg - er\n\u0120adv ant\n\u0120rese ar\n\u0120act ions\nm l\n\u0120ke pt\n\u0120a - im\n, '\nc ol\n\u0120benef its\nif ying\n\u0120act ual\n\u0120Intern ational\n\u0120veh - icle\n\u0120ch ief\n\u0120eff orts\n\u0120Le ague\n\u0120M ost\n\u0120wa it\n\u0120ad - ult\n\u0120over all\n\u0120spe ech\n\u0120high ly\n\u0120fem ale\n\u0120er - ror\n\u0120effect ive\n5 4\n\u0120enc our\nw ell\n\u0120fail ed\n\u0120cons - erv\n\u0120program s\n\u0120t rou\n\u0120a head\n5 00\nvertis ement\nI P\n\u0120F - ound\np ir\n\u0120 %\n\u0120cr ime\nand er\n\u0120loc ation\n\u0120I ran\n\u0120behav - ior\naz ing\n\u0120r are\n\u0120em b\n\u0120ca used\n\u0120sh ip\n\u0120act - ive\n\u0120cont ribut\n\u0120g reen\n\u0120ac qu\n\u0120ref lect\nven ue\n\u0120f - irm\n\u0120b irth\n] .\n\u0120clear ly\n\u0120em ot\n\u0120ag ency\nri age\n\u0120mem - ory\n9 8\nS A\n\u0120Se e\nac ing\nC C\n\u0120big gest\n\u0120r ap\n\u0120bas - ic\n\u0120b and\ne at\n\u0120sus pect\n\u0120M ac\n\u01209 0\nm ark\nist an\n\u0120sp - read\nam s\nk i\nas y\nra v\n\u0120R ober\n\u0120demon str\nr ated\n\u0120abs - olute\n\u0120pl aces\n\u0120im pl\nibr ary\n\u0120c ards\n\u0120dest roy\n\u0120v - irt\nve re\n\u0120app eared\ny an\np oint\n\u0120be g\n\u0120tem per\ns pe\nant - ed\near s\n\u0120D irect\n\u0120l ength\n\u0120bl og\nam b\n\u0120int eg\n\u0120res - ources\nac c\nif ul\n\u0120sp ot\n\u0120for ced\n\u0120thous ands\n\u0120Min - ister\n\u0120qu al\n\u0120F rench\nat ically\n\u0120gener ally\n\u0120dr ink\n\u0120th - us\nI L\nod es\n\u0120appro pri\n\u0120Re ad\n\u0120wh om\n\u0120ey e\n\u0120col - lege\n\u01204 5\nire ction\n\u0120ens ure\n\u0120app arent\nid ers\n\u0120relig - ious\n\u0120min or\nol ic\n\u0120t ro\n\u0120Wh y\nrib ute\nm et\n\u0120prim - ary\n\u0120develop ed\n\u0120pe ace\n\u0120sk in\nst e\nav a\n\u0120bl ue\n\u0120fam - ilies\n\u0120 ir\n\u0120app ly\n\u0120in form\n\u0120Sm ith\nC T\ni i\n\u0120lim - it\n\u0120res ist\n........ ........\num n\n\u0120conf lic\n\u0120tw e\nud - d\n\u0120T om\n\u0120l iter\nqu e\nb on\n\u0120ha ir\n\u0120event ually\n\u0120p - us\n\u0120help ed\n\u0120ag g\nor ney\n\u0120App le\n\u0120f it\n\u0120S ur\n\u0120pre - m\n\u0120s ales\n\u0120second s\n\u0120streng th\n\u0120feel ing\n\xBF \xBD\n\u0120t - our\n\u0120know s\no om\n\u0120ex erc\n\u0120som ew\n\xEF \xBF\xBD\n> >\n\u0120sp - okes\n\u0120ide as\n\u0120reg ist\nso ft\n\u0120D el\n\u0120P C\n\u0120pro - pos\n\u0120laun ch\n\u0120bott om\nT H\n\u0120P lease\nv est\nit z\n\u0120In - ter\n\u0120sc ript\n\u0120r at\nar ning\n\u0120 il\n\u0120J er\n\u0120A re\n\u0120wh - atever\nok en\nci ence\n\u0120mod e\n\u0120ag ree\n\u0120s ources\n\u0120init - ial\n\u0120rest rict\n\u0120wond er\nus ion\n## ##\n\u0120S il\nvil le\n\u0120b - urn\nt w\nas ion\n\u0120\xC2 \xA3\n\u0120n or\nu ing\n\u0120re ached\n\u0120s - un\n\u0120c ateg\nig ration\n\u0120c ook\n\u0120prom ot\n\u0120m ale\n\u0120cl - imate\n\u0120f ix\n\u0120alleg ed\nU R\nall ed\n\u0120im ages\nC ont\not a\n\u0120school - s\ni os\n\u0120d rop\n\u0120st ream\n\u0120M o\n\u0120previous ly\nal ing\n\u0120p - et\n\u0120dou ble\n\u0120( @\nann el\n\u0120def ault\nt ies\n\u0120r ank\n\u0120D - ec\n\u0120Coun cil\n\u0120weap on\n\u0120st ock\n\u0120anal y\n\u0120St r\n\u0120pict - ure\n\u0120Pol ice\nf erence\n\u0120cent ury\n\u0120citiz ens\n\u0120on to\n\u0120exp - and\n\u0120he ro\n\u0120S ol\n\u0120w ild\n\u0120upd ate\n\u0120custom ers\nr - ont\nd ef\n\u0120l ik\n\u0120crim inal\n\u0120Christ ian\nS P\n7 6\n\u0120le - aving\n\u0120other wise\n\u0120D ist\n\u0120bas is\n5 2\n5 3\nic ip\n\u0120B - er\n\u0120recomm end\n\u0120fl oor\n\u0120c rowd\nol es\n\u01207 0\n\u0120cent - ral\n\u0120E v\n\u0120d ream\n\u0120down load\n\u0120conf ir\n\u0120Th om\n\u0120wind - ow\n\u0120happ ens\n\u0120un it\n\u0120t end\n\u0120s pl\n\u0120bec omes\n\u0120fight - ing\n\u0120pred ict\n\u0120P ress\n\u0120P ower\n\u0120he avy\nak ed\n\u0120f - an\nor ter\nate gy\nB A\niz es\n\u0120sp end\nH ere\n\u0120200 7\n\u0120ad - op\n\u0120H am\n\u0120foot ball\n\u0120P ort\nod ay\n5 1\namp ions\n\u0120trans - fer\nh t\n\u01203 8\nter m\nac ity\n\u0120b ur\n] ,\ntern al\nr ig\nb ut\n\u0120there - fore\n\u0120B ecause\nres p\nre y\n\u0120m ission\nS ome\n\u0120not ed\n\u0120ass - um\n\u0120dise ase\n\u0120ed it\n\u0120prog ress\nr d\n\u0120B rown\noc al\n\u0120add - ing\n\u0120ra ised\n\u0120An y\n\u0120t ick\n\u0120see ing\n\u0120Pe ople\n\u0120agre - ement\n\u0120ser ver\n\u0120w at\n\u0120deb ate\n\u0120supp osed\nil ing\n\u0120larg - est\n\u0120success ful\n\u0120P ri\n\u0120Democr atic\n\u0120j ump\n\u0120Syri - a\n\u0120own ers\n\u0120off ers\n\u0120shoot ing\n\u0120eff ic\nse y\n\u0120ha - ven\nver se\nte red\n\u0120L ight\nim al\n\u0120B ig\n\u0120def end\n\u0120be - at\n\u0120record s\n% )\n\u0120sc en\n\u0120employ ees\n\u0120dev ices\nhe - m\n\u0120com mer\n\u0120M ex\n\u0120benef it\n\u0120Pro f\n\u0120il leg\n\u0120sur - face\n\u0120Al so\n\u0120h arm\ning ly\nw ide\n\u0120A lex\n\u0120sh ut\n\u0120C - ur\n\u0120l ose\np m\n\u0120chall enge\nse mb\n\u0120st ation\n\u0120int elligence\n\u0120acc - ur\n\u0120Fl or\n\u0120requ ires\n\u0120M al\nb um\n\u0120h ospital\n\u0120sp - irit\n\u0120off ered\n\u0120produ ce\n\u0120Comm un\n\u0120creat ing\n\u0120cr - is\ns pect\n\u0120end ed\n\u0120d aily\n\u0120vot ers\nland s\ni as\ni h\non - a\n\u0120sm art\n\u0120Off ice\n\u0120L ord\nri al\n\u0120Intern et\n\u0120circ - um\n\u0120extreme ly\n' .\n\u0120opin ion\n\u0120M il\n\u0120g ain\nB S\n\u0120F - in\ny p\n\u0120use ful\n\u0120bud get\n\u0120com fort\nis f\n\u0120back ground\nel - ine\n\u0120ep isode\n\u0120en emy\n\u0120tri al\n\u0120estab lish\nd ate\n\u0120C - ap\n\u0120contin ues\n\u0120show ing\n\u0120Un ion\nw ith\n\u0120post ed\n\u0120Sy - stem\n\u0120e at\nri an\n\u0120r ise\n\u0120German y\nil s\n\u0120sign ed\n\u0120v - ill\n\u0120gr and\nm or\n\u0120Eng land\n\u0120project s\num ber\n\u0120conf - erence\nz a\n\u0120respons ible\n\u0120Ar ab\n\u0120learn ed\n\xE2\u0122\u0136 - \xE2\u0122\u0136\ni pping\n\u0120Ge orge\nO C\n\u0120return ed\n\u0120Austral - ia\n\u0120b rief\nQ u\n\u0120br and\nill ing\nab led\n\u0120hig hest\n\u0120tr - ain\n\u0120Comm ission\nwh ile\n\u0120n om\ncept ion\n\u0120m ut\n\u0120Bl - ue\n\u0120inc ident\nv ant\n8 6\n\u0120I D\n\u0120n uclear\n7 4\n\u0120L ike\n\u0120R - E\n\u0120M icro\nl i\nm ail\n\u0120charg es\n8 9\n\u0120ad just\nad o\n\u0120ear - th\nN A\n\u0120pr ices\nP A\n\u0120d raft\n\u0120run s\n\u0120candid ate\nens - es\n\u0120manag ement\n\u0120Ph il\n\u0120M iss\n\u0120te ach\ng ram\n\u0120understand - ing\na it\nic ago\nA dd\n\u0120E p\nsec ut\n\u0120separ ate\n\u0120inst ance\n\u0120e - th\n\u0120un less\n**** ****\n\u0120F ore\nin ate\n\u0120oper ations\nS p\n\u0120f - aith\ng ar\n\u0120Ch urch\nron ic\n\u0120conf ig\nos ure\n\u0120activ ities\n\u0120trad - itional\n\u01203 6\n\u0120d irection\n\u0120mach ine\n\u0120sur round\n\u0120p - ush\nun ction\n\u0120E U\n\u0120eas ier\n\u0120arg ument\nG B\n\u0120m icro\n\u0120sp - ending\niz ations\n\u0120the ory\nad ow\n\u0120call ing\n\u0120L ast\n\u0120d - er\n\u0120influ ence\n\u0120comm it\n\u0120ph oto\n\u0120un c\nist ry\ng n\nast - e\nack s\n\u0120dis p\nad y\nd o\n\u0120G ood\n\u0120 `\n\u0120w ish\n\u0120reve - aled\n\xC2\u0142 \xC2\u0142\nl ig\n\u0120en force\n\u0120Comm ittee\n\u0120che - m\n\u0120mil es\n\u0120interest ed\n\u0120sol ution\nic y\nin ct\n\u0120- - >\n\u0120D et\n\u0120rem oved\n\u0120comp ar\ne ah\n\u0120pl ant\n\u0120S - ince\n\u0120achie ve\n\u0120advant age\n\u0120slight ly\nb ing\n\u0120pl aced\nu - nder\n201 5\n\u0120M ad\n\u0120t im\nos es\n\u0120c ru\n\u0120R ock\n\u0120most - ly\n\u0120neg ative\n\u0120set ting\n\u0120produ ced\n\u0120m ur\n\u0120connect - ion\n\u0120M er\n\u0120dri ver\n\u0120execut ive\n\u0120ass ault\n\u0120b - orn\n\u0120V er\nt ained\n\u0120struct ure\n\u0120redu ce\n\u0120dec ades\n\u0120d - ed\nu ke\n\u0120M any\nidd en\n\u0120le ague\nS e\n\u0120jo in\n\u0120dis - co\n\u0120d ie\nc ks\nact ions\n\u0120ass ess\nag n\n\u0120go als\nour s\nI - R\n\u0120sen ior\nill er\nm od\nip ment\noc ol\nu y\n\u0120Q ue\n\u0120part - ies\nir gin\n\u0120le arning\nit able\n\u0120stre et\n\u0120camer a\nA pp\n\u0120sk - ills\nb re\nc ious\n\u0120cele br\n\u0120Fr anc\n\u0120exist ing\n\u0120will - ing\nl or\n\u0120 id\n\u0120Sp ace\n\u0120crit ical\n\u0120L a\nortun ately\n\u0120ser - ve\n\u0120c old\n\u0120spec ies\nT S\n\u0120anim als\n\u0120B ay\n\u0120old - er\n\u0120U nder\nest ic\n\u0120T re\n\u0120te acher\n\u0120pre fer\nv is\n\u0120th - read\n\u0120M att\n\u0120manag er\n\xE3\u0125 \xBB\n\u0120profess ional\n\u0120V - ol\n\u0120not es\nThe se\nul a\n\u0120f resh\nent ed\nu zz\ned y\nclus ion\n\u0120R - el\n\u0120doub t\nE O\n\u0120open ed\n\u0120B it\nAd vertisement\n\u0120gu - ess\n\u0120U N\n\u0120se qu\n\u0120expl ain\nott en\n\u0120att ract\nak s\n\u0120str - ing\n\u0120cont ext\noss ible\n\u0120Republic ans\n\u0120sol id\n\u0120c ities\n\u0120ask - ing\n\u0120r andom\nu ps\nur ies\nar ant\ndd en\ng l\n\u0120Flor ida\n\u0120dep - end\n\u0120Sc ott\n\u01203 3\n\u0120i T\nic on\n\u0120mention ed\n\u01202 - 000\n\u0120claim ed\n\u0120defin itely\nul f\n\u0120c ore\n\u0120open ing\n\u0120Con - st\nwh ich\n\u0120T ra\nA G\n7 2\n\u0120belie ved\nad a\n\u01204 8\n\u0120Sec - urity\nyr ight\n\u0120P et\n\u0120L ou\n\u0120hold ing\n======== ========\n\u0120 - ice\n\u0120b row\n\u0120author ities\nh ost\nw ord\n\u0120sc ore\n\u0120D - iv\n\u0120cell s\n\u0120trans l\n\u0120neigh bor\n\u0120rem ove\nu ct\n\u0120dist - rict\n\u0120A ccording\n\u0120wor se\n\u0120concern s\n\u0120president ial\n\u0120polic - ies\n\u0120H all\n7 3\n\u0120h us\nA Y\n\u0120200 6\n\u0120J ud\n\u0120independ - ent\n\u0120Just ice\nili ar\npr int\nigh ter\n\u0120protect ion\nz en\n\u0120su - dden\nh ouse\n\u0120J es\nP R\n\u0120In f\n\u0120b ul\n\u0120 _\n\u0120Serv - ice\n\u0120P R\n\u0120str ategy\nff ect\n\u0120girl s\n\u0120miss ing\noy - al\n\u0120Te am\nul ated\n\u0120d at\n\u0120polit ics\nab or\nA ccording\n\u0120spe - ll\n\u0120g raph\nort hern\nT C\nA b\n\u0120lab or\nis her\n\u0120k ick\n\u0120iT - unes\n\u0120step s\npos es\n\u0120small er\nE n\nber t\n\u0120ro ll\n\u0120resear - chers\n\u0120cl osed\n\u0120trans port\n\u0120law y\n________ ________\n\u0120Ch - icago\n\u0120as pect\n\u0120n one\n\u0120mar riage\n9 6\n\u0120e lements\n\u0120F - re\n\u0120S al\n\u0120d ram\nF C\nt op\ne qu\n\u0120he aring\n\u0120support - ed\n\u0120test ing\nco hol\n\u0120mass ive\n\u0120st ick\n\u0120gu ard\nis - co\nph one\nF rom\nHow ever\n\u0120b order\n\u0120cop y\nograph y\nl ist\n7 - 1\n\u0120own er\ncl ass\nru it\nr ate\n\u0120O nce\n\u0120dig ital\n\u0120t - ask\nER S\n\u0120inc red\nt es\n+ +\n\u0120Fr ance\n\u0120b reat\now l\n\u0120iss - ued\n\u0120W estern\n\u0120det ect\n\u0120part ners\n\u0120sh ared\n\u0120C - all\n\u0120can cer\nac he\nrib e\n\u0120expl ained\n\u0120he at\n{ \"\n\u0120invest - ment\n\u0120B ook\n\u0120w ood\n\u0120tool s\n\u0120Al though\n\u0120belie - f\n\u0120cris is\n\u0120g e\n\u0120M P\n\u0120oper ation\nty pe\n~ ~\ng a\n\u0120cont - ains\nant a\n\u0120exp ress\n\u0120G roup\n\u0120J ournal\nk a\n\u0120am b\n\u0120US - A\n\u0120find ing\n\u0120fund ing\nh ow\n\u0120estab lished\nide os\n\u0120deg - ree\n\u0120danger ous\nang ing\n\u0120fre edom\npp ort\nout hern\n\u0120ch - urch\n\u0120c atch\n\u0120Tw o\n\u0120pres ence\n\u0120Gu ard\nU p\n\u0120author - ity\n\u0120Pro ject\n\u0120but ton\n\u0120con sequ\n\u0120val id\n\u0120we - ak\n\u0120start s\n\u0120ref erence\n\u0120M em\n\" )\nU N\nor age\n\u0120O - pen\n\u0120col lection\ny m\ng ency\n\u0120beaut iful\nro s\n\u0120tell s\n\u0120wa - iting\nn el\n\u0120prov iding\n\u0120Democr ats\n\u0120d aughter\n\u0120m - aster\n\u0120pur poses\n\u0120Japan ese\n\u0120equ al\n\u0120turn s\n\u0120doc - uments\n\u0120watch ing\nR es\n\u0120r an\n201 4\n\u0120re ject\n\u0120Kore - a\n\u0120victim s\nLe vel\nere nces\n\u0120w itness\n\u01203 4\n\u0120re form\ncom - ing\n\u0120occ up\n\u0120c aught\n\u0120tra ffic\nad ing\n\u0120mod els\nar - io\n\u0120serv ed\n\u0120b atter\nu ate\n\u0120Secret ary\n\u0120agre ed\n\u0120tr - uly\nyn am\n\u0120R et\n\u0120un its\n\u0120Res earch\nh and\naz ine\n\u0120M - ike\n\u0120var iety\not al\n\u0120am azing\n\u0120confir med\n\u0120entire - ly\n\u0120purch ase\n\u0120e lement\n\u0120c ash\n\u0120deter mine\nD e\n\u0120c - ars\n\u0120W all\n\xE2 \u0138\n\u0120view s\n\u0120drug s\n\u0120dep artment\n\u0120St - ep\nu it\n\u01203 9\nas ure\n\u0120Cl ass\n\u0120c overed\n\u0120B ank\n\u0120me - re\nu ana\n\u0120mult i\n\u0120m ix\n\u0120un like\nlev ision\n\u0120sto pped\n\u0120s - em\n\u0120G al\nul es\n\u0120we l\n\u0120John son\nl a\n\u0120sk ill\n\u0120bec - oming\nri e\n\u0120appropri ate\nf e\nell ow\n\u0120Pro t\nul ate\noc ation\n\u0120week - end\nod ies\n\u0120sit es\n\u0120anim al\n\u0120T im\n\u0120sc ale\n\u0120charg - ed\n\u0120inst ruct\nill a\n\u0120method s\n\u0120c ert\n\u0120jud ge\n\u0120H - el\n\u0120doll ars\n\u0120stand ing\n\u0120S qu\n\u0120deb t\nl iam\n\u0120dri - ving\n\u0120S um\n\u0120Ed ition\n\u0120al bum\nand on\nI F\n\u0120U k\n6 - 3\nad er\n\u0120commer cial\nes h\n\u0120Govern ment\n\u0120disc overed\n\u0120out - put\n\u0120Hill ary\n\u0120Car ol\n\u0120200 5\n\u0120ab use\nanc ing\n\u0120sw - itch\n\u0120ann ual\nT w\n\u0120st ated\nag ement\nin ner\n\u0120dem ocr\n\u0120res - idents\n\u0120allow ing\n\u0120fact ors\nod d\n\u0120f uck\nem ies\n\u0120occur - red\not i\n\u0120n orth\n\u0120P ublic\n\u0120inj ury\n\u0120ins urance\nC - L\noll y\n\xE3 \u0122\n\u0120repe ated\n\u0120ar ms\nang ed\n\u0120const ruction\n\u0120f - le\nP U\nic ians\n\u0120for ms\n\u0120Mc C\nant ic\n\u0120m ental\np ire\n\u0120equ - ipment\n\u0120f ant\n\u0120discuss ion\n\u0120regard ing\nk in\nar p\n\u0120ch - air\nog ue\n\u0120pro ceed\n\u0120I d\nO ur\n\u0120mur der\nM an\n\u01204 - 9\nas p\n\u0120supp ly\n\u0120in put\n\u0120we alth\nliam ent\n\u0120pro ced\nor - ial\n\u0120St at\n\u0120N FL\nhen s\n\u0120Inst itute\n\u0120put ting\nourn - ament\net ic\n\u0120loc ated\n\u0120k id\ner ia\nr un\n\u0120pr inc\n\u0120 - !\ngo ing\n\u0120B et\n\u0120cl ot\n\u0120tell ing\n\u0120prop osed\ni ot\nor - ry\n\u0120fund s\ng ment\n\u0120L ife\n\u0120b aby\n\u0120B ack\n\u0120sp - oke\nIm age\n\u0120ear n\n\u0120A T\ng u\n\u0120ex change\n\u0120L in\nov - ing\n\u0120p air\nM ore\naz on\n\u0120arrest ed\n\u0120kill ing\nc an\n\u0120C - ard\ny d\n\u0120ident ified\n\u0120m obile\n\u0120than ks\nony m\n\u0120F - orm\n\u0120hundred s\n\u0120Ch ris\n\u0120C at\n\u0120tre nd\nh at\n\u0120A - v\nom an\n\u0120elect ric\n\u0120W il\nS E\nO f\n\u0120rest aur\not ed\n\u0120tr - ig\n\u0120n ine\n\u0120b omb\nWh y\n\xC2 \xAF\n\u0120co verage\n\u0120app - eal\n\u0120Rober t\n\u0120S up\n\u0120fin ished\n\u0120fl ow\n\u0120del iver\n\u0120cal - cul\n\u0120phot os\n\u0120ph il\n\u0120pie ces\n\u0120app re\nk es\n\u0120r - ough\nD o\n\u0120part ner\n\u0120concern ed\n\u01203 7\n\u0120G en\nC ol\nct - ors\n\u0120= >\nst ate\n\u0120suggest ed\n\u0120For ce\nC E\n\u0120her self\n\u0120Pl - an\nw orks\no oth\nren cy\n\u0120cor ner\n\u0120hus band\n\u0120intern et\n\u0120A - ut\nem s\nos en\n\u0120At l\ng en\n\u0120bal ance\n6 2\n\u0120sound s\nte - xt\n\u0120ar r\nov es\n\u0120mill ions\n\u0120rad io\n\u0120sat isf\n\u0120D - am\nM r\nG o\nS pe\n\u0120comb at\nr ant\n\u0120G ree\n\u0120f uel\n\u0120dist - ance\n\u0120test s\n\u0120dec re\n\u0120E r\n\u0120man aged\nD S\n\u0120t - it\n\u0120meas ures\n\u0120L iber\n\u0120att end\nas hed\n\u0120J ose\n\u0120N - ight\nd it\n\u0120N ov\n\u0120E nd\nout s\n\u0120gener ation\n\u0120adv oc\ny - th\n\u0120convers ation\n\u0120S ky\nact ive\nce l\nri er\n\u0120Fr ank\n\u0120g - ender\n\u0120con cent\n\u0120car ried\nand a\n\u0120V irgin\n\u0120arri ved\nic - ide\nad ed\n\u0120fail ure\n\u0120min imum\nle ts\n\u0120wor st\n\u0120keep - ing\n\u0120int ended\n\u0120illeg al\n\u0120sub sc\n\u0120determin ed\n\u0120tri - p\nY es\n\u0120ra ise\n\u0120 ~\n\u0120feel s\n\u0120pack age\n\u0120J o\nh - i\n201 6\nre al\n\u0120f ra\n\u0120sy mb\nM e\nuck y\np ret\n\u0120K h\n\u0120Ed - it\n\u0120We b\nem ic\n\u0120Col or\n\u0120just ice\nI nt\n\u0120far m\nck - now\n\" >\nel ess\n\u0120redu ced\n\u01205 00\nx x\n\u0120R ad\n\u0120W ood\n\u0120cl - in\n\u0120hy p\nil er\nur a\nk ins\n8 5\n6 1\n\u0120The ir\n\u0120M ary\n\u0120s - an\n\u0120no vel\n\u0120Wh o\n\u0120cap acity\n\u0120imp ossible\n\u0120pl - ays\n\u0120min ister\nij uana\nic ate\n\u0120S et\n\u0120f ram\n\u0120 ing\n\u0120commun - ities\n\u0120F BI\nit a\n\u0120b on\n\u0120str ateg\n\u0120interest s\nl ock\ng - ers\nm as\n\u0120AN D\n\u0120conflic t\n\u0120require ments\n\u0120s ac\n\u0120oper - ating\nin i\nrel ated\n\u0120comm itted\n\u0120relative ly\n\u0120s outh\n\xC2\xAF - \xC2\xAF\n\u0120aff ord\n\u0120ident ity\n\u0120dec isions\n\u0120acc used\npl - ace\n\u0120vict ory\no ch\ni at\nN ame\nC om\nt ion\ned s\n\u0120see k\n\u0120t - ight\n\u0120Im ages\n\u0120init i\n\u0120hum ans\n\u0120fam iliar\n\u0120aud - ience\n\u0120intern al\nvent ure\n\u0120s ides\n\u0120T O\n\u0120d im\n\u0120con - clud\n\u0120app oint\n\u0120enforce ment\n\u0120J im\n\u0120Associ ation\n\u0120circum - st\n\u0120Canad ian\n\u0120jo ined\n\u0120differe nces\n\u0120L os\n\u0120prot - est\n\u0120tw ice\nw in\n\u0120gl ass\nars h\n\u0120Ar my\n\u0120exp ression\n\u0120dec - ide\n\u0120plan ning\nan ia\n\u0120hand le\n\u0120Micro soft\n\u0120N or\n\u0120max - imum\n\u0120Re v\n\u0120se a\n\u0120ev al\n\u0120hel ps\nre f\n\u0120b ound\n\u0120m - outh\n\u0120stand ards\n\u0120cl im\n\u0120C amp\n\u0120F ox\ncl es\n\u0120ar - my\n\u0120Te chn\nack ing\nx y\nS S\n\u01204 2\n\u0120bu g\n\u0120Uk rain\n\u0120M - ax\n\u0120J ones\n\u0120Sh ow\nl o\n\u0120plan et\n\u01207 5\n\u0120win ning\n\u0120f - aster\n\u0120spe ct\n\u0120bro ken\nT R\n\u0120def ined\n\u0120health y\n\u0120compet - ition\nhtt ps\n\u0120Is land\n\u0120F e\n\u0120announ ce\n\u0120C up\n\u0120Inst - ead\n\u0120cl ient\n\u0120poss ibly\nse ction\nock et\nl ook\n\u0120fin ish\n\u0120cre - w\n\u0120res erv\n\u0120ed itor\n\u0120h ate\n\u0120s ale\n\u0120contro vers\n\u0120p - ages\nw ing\n\u0120num er\n\u0120opp osition\n\u0120200 4\n\u0120ref uge\n\u0120fl - ight\n\u0120ap art\n\u0120L at\nA meric\n\u0120Afric a\n\u0120applic ations\n\u0120Pal - est\n\u0120B ur\n\u0120g ar\n\u0120Soc ial\n\u0120up gr\n\u0120sh ape\n\u0120spe - aking\nans ion\na o\n\u0120S n\n\u0120wor ry\n\u0120Brit ain\nP lease\nrou - d\n\u0120h un\n\u0120introdu ced\n\u0120d iet\nI nd\n\u0120Sec ond\n\u0120fun - ctions\nut s\n\u0120E ach\n\u0120Je ff\n\u0120st ress\n\u0120account s\n\u0120gu - arant\n\u0120An n\ned ia\n\u0120hon est\n\u0120t ree\n\u0120Afric an\n\u0120B - ush\n} ,\n\u0120s ch\n\u0120On ly\n\u0120f if\nig an\n\u0120exerc ise\n\u0120Ex - p\n\u0120scient ists\n\u0120legisl ation\n\u0120W ork\n\u0120S pr\n\xC3 \u0124\n\u0120H - uman\n\u0120 \xE8\n\u0120sur vey\n\u0120r ich\nri p\n\u0120main tain\n\u0120fl - o\n\u0120leaders hip\nst ream\n\u0120Islam ic\n\u0120 01\n\u0120Col lege\n\u0120mag - ic\n\u0120Pr ime\n\u0120fig ures\n201 7\nind er\nx ual\n\u0120De ad\n\u0120absolute - ly\n\u0120four th\n\u0120present ed\nresp ond\nrib le\n\u0120al cohol\nat - o\n\u0120D E\npor ary\n\u0120gr ab\n\u0120var i\n\u0120qu ant\n\u0120Ph oto\n\u0120pl - us\nr ick\nar ks\n\u0120altern ative\n\u0120p il\n\u0120appro x\nth at\n\u0120object - s\n\u0120R o\n\u0120And roid\n\u0120significant ly\n\u0120R oad\nk ay\nR ead\nav - or\n\u0120a cknow\n\u0120H D\n\u0120S ing\nO r\n\u0120M ont\n\u0120un s\npro - f\n\u0120neg oti\n\u0120Ar ch\nik i\n\u0120te levision\n\u0120Jew ish\n\u0120comm - ittee\n\u0120mot or\n\u0120appear ance\n\u0120s itting\n\u0120stri ke\n\u0120D - own\ncom p\n\u0120H ist\n\u0120f old\nac ement\n\u0120Lou is\n\u0120bel ong\n\u0120\xE2\u0122 - \xA2\n\u0120m ort\n\u0120prep ared\n\u01206 4\n\u0120M aster\n\u0120ind eed\n\u0120D - en\n\u0120re nt\nT A\nour ney\nar c\nS u\n9 7\n\u0120adv ice\n\u0120chang - ing\n\u0120list ed\n\u0120laun ched\nis ation\n\u0120P eter\nis hes\n\u0120l - ived\n\u0120M el\n\u0120Sup reme\n\u0120F ederal\n\u0120) ;\nruct ure\n\u0120set - s\n\u0120phil os\nu ous\n\u0120\xC2 \u0142\n\u0120appl ied\n\u0120N OT\n\u0120hous - ing\n\u0120M ount\n\u0120o dd\n\u0120su st\nD A\nffic ient\n\u0120 ?\nol ved\n\u0120p - owers\n\u0120th r\n\u0120rem aining\n\u0120W ater\nL C\n\u0120ca uses\n\xE3\u0123 - \xAE\n\u0120man ner\nad s\n\u0120suggest s\n\u0120end s\nstand ing\nf ig\n\u0120D - un\nid th\n\u0120g ay\n\u0120ter min\n\u0120Angel es\nM S\n\u0120scient ific\n\u0120co - al\nap ers\nb ar\n\u0120Thom as\n\u0120sy m\n\u0120R un\nth is\nP C\nigr ants\n\u0120min - ute\n\u0120Dist rict\ncell ent\n\u0120le aves\n\u0120comple ted\nam in\n\u0120foc - used\n\u0120mon itor\n\u0120veh icles\nM A\n\u0120M ass\n\u0120Gr and\n\u0120affect - ed\nitution al\n\u0120const ruct\n\u0120follow s\n\u0120t on\nre ens\n\u0120h - omes\n\u0120E xt\n\u0120Le vel\nr ast\n\u0120I r\n\u0120el im\n\u0120large - ly\n\u0120J oe\n\u0120vot es\nall s\n\u0120business es\n\u0120Found ation\n\u0120Cent - ral\n\u0120y ards\n\u0120material s\nul ner\n\u0120gu ide\n\u0120clos er\num - s\n\u0120sp orts\ned er\nJ ust\n\u0120tax es\n8 4\n\u0120O ld\n\u0120dec ade\nol - a\n\u0120v ir\n\u0120dro pped\n\u0120del ay\nit ect\n\u0120sec ure\nste in\nle - vel\n\u0120tre ated\n\u0120fil ed\nain e\n\u0120v an\n\u0120m ir\n\u0120col - umn\nict ed\ne per\n\u0120ro t\n\u0120cons ult\n\u0120ent ry\n\u0120mar ijuana\n\u0120D - ou\n\u0120apparent ly\nok ing\nclus ive\n\u0120incre ases\nan o\n\u0120specific - ally\n\u0120te le\nens ions\n\u0120relig ion\nab ilities\n\u0120fr ame\n\u0120N - ote\n\u0120Le e\n\u0120help ing\n\u0120ed ge\nost on\n\u0120organ izations\n\xC3 - \u0125\n\u0120B oth\nhip s\n\u0120big ger\n\u0120bo ost\n\u0120St and\n\u0120ro - w\nul s\nab ase\n\u0120r id\nL et\nare n\nra ve\n\u0120st ret\nP D\n\u0120v - ision\n\u0120we aring\n\u0120appre ci\n\u0120a ward\n\u0120U se\n\u0120fact - or\nw ar\nul ations\n) (\n\u0120g od\n\u0120ter rit\n\u0120par am\nast s\n8 - 7\n\u0120en emies\n\u0120G ames\nF F\n\u0120acc ident\nW ell\n\u0120Mart in\nT - ER\n\u0120at h\n\u0120He ll\n\u0120for g\n\u0120ve ter\n\u0120Med ic\nf ree\n\u0120st - ars\n\u0120exp ensive\n\u0120ac ad\nra wn\n\u0120W he\n\u0120l ock\n\u0120form - at\n\u0120sold iers\ns m\n\u0120ag ent\n\u0120respons ibility\nor a\n\u0120S - cience\n\u0120rap id\n\u0120t ough\n\u0120Jes us\n\u0120belie ves\nM L\n\u0120we - ar\nle te\n\xC3\u0125 \xC3\u0124\n\u0120D ri\n\u0120comm ission\n\u0120B ob\nO - h\nap ed\n\u0120war m\n\xC3\u0125\xC3\u0124 \xC3\u0125\xC3\u0124\n\u0120200 - 3\nort ion\n\u0120has n\nust er\n\u0120un ivers\n\u0120I ll\n\u0120k ing\nolog - ies\n9 4\n\u0120T em\n\u0120M os\n\u0120pat ient\n\u0120Mex ico\nce an\n\u0120De - ath\n\u0120Sand ers\ny ou\n\u0120C ast\n\u0120Comp any\npt y\n\u0120happen - ing\nF P\n\u0120B attle\n\u0120b ought\nA m\nM od\nU s\nut ers\n\u0120C re\n\u0120Th - ose\n\u01204 4\nis er\n\u0120s oul\n\u0120T op\n\u0120Har ry\n\u0120A w\n\u0120se - at\nff ee\n\u0120rev olution\n\u0120( \"\n\u0120D uring\net te\n\u0120r ing\n\u0120off - ensive\n\u0120return s\n\u0120v ideos\n\u0120dis cl\n\u0120fam ous\nen ced\n\u0120S - ign\n\u0120R iver\n\u01203 00\nP M\n\u0120B us\n\u0120C H\n\u0120candid ates\nard - en\n\u0120percent age\n\u0120vis ual\n\u0120than k\n\u0120trou ble\nner gy\n\u0120200 - 1\n\u0120pro ve\nash ion\n\u0120en h\n\u0120L ong\nU M\n\u0120connect ed\n\u0120poss - ibility\nO ver\n\u0120exper t\n\u0120l ibrary\nart s\n\u0120Direct or\n\u0120fell - ow\n9 2\nir ty\n\u0120d ry\n\u0120sign s\n\u0120L ove\n\u0120qu iet\nf oot\n\u0120p - ure\n\u0120H un\n\u0120f illed\nph as\n\u0120E lect\nend ment\n\u0120Ex pl\n\u0120un - able\nn s\nm o\n\u0120v ast\nob e\n\u0120ident ify\napp ing\n\u0120Carol ina\ng - ress\n\u0120pro te\n\u0120f ish\n\u0120circumst ances\nraz y\n\u0120Ph ot\n\u0120b - odies\n\u0120M ur\n\u0120develop ing\n\u0120A R\n\u0120experien ced\n\u0120subst - ant\n\u0120Bo ard\nes ome\n\u0120dom estic\n\u0120comb ined\n\u0120P ut\n\u0120chem - ical\n\u0120Ch ild\n\u0120po ol\n\u0120C y\n\u0120e gg\nc ons\nst ers\n\u0120h - urt\n\u0120mark ets\n\u0120conserv ative\n\u0120supp orters\n\u0120ag encies\nid - el\nO b\nur b\n\u01204 3\n\u0120Def ense\ny e\n\u0120A p\ndu le\n\u0120temper - ature\n\u0120conduct ed\n\u0120Ch ief\n\u0120pull ed\n\u0120f ol\nL ast\nont - o\nos is\nV ER\nD es\n\u0120P an\nF irst\n\u0120adv ance\n\u0120lic ense\nr - ors\n\u0120J on\n\u0120imag ine\n\u0120he ll\n\u0120f ixed\n\u0120inc or\nos - ite\n\u0120L og\nick en\n] :\n\u0120surpr ise\nh ab\n\u0120c raft\nol t\n\u0120J - ul\n\u0120d ial\n\u0120rele vant\n\u0120ent ered\n\u0120lead s\n\u0120A D\n\u0120Cle - an\n\u0120pict ures\ness or\n\u0120al t\n\u0120pay ing\nP er\n\u0120Mark et\n\u0120upd - ates\nam ily\n\u0120T ype\n\u0120H ome\n\u01205 5\nsemb ly\nrom e\n8 3\n\u0120great - est\n\u0120he ight\n\u0120he av\nain ts\n\u0120list en\nas er\n\u0120S H\n\u0120cap - able\nac le\n\u0120pers pect\nin ating\n\u0120off ering\nry pt\n\u0120De velop\nab - in\nr c\n\u0120br ight\nal ty\nar row\n\u0120supp l\nind ing\nack ed\ngy pt\n\u0120An - other\np g\n\u0120Virgin ia\n\u0120L u\n\u0120pl anned\n\u0120p it\n\u0120swe - et\nT ype\n\u0120D i\n\u0120typ ically\n\u0120Franc isco\n\u0120pro spect\n\u0120D - an\n\u0120te en\nre es\n\u0120sc hed\n\u0120h ol\n\u0120sc r\n\u0120lot s\nl - ife\n\u0120news p\n\u0120for get\n\u0120N one\n\u0120M iddle\n\u0120R yan\ned - d\n\u0120se vere\n\u0120su it\nll er\n9 3\n\u0120cor respond\n\u0120expl os\nu - ations\n\u0120fl ag\ng ame\nr id\n\u0120pr in\n\u0120D ata\n\u0120de ploy\n\u0120En - ter\nsu it\ngh an\n\u0120M en\n\u0120though ts\n\u0120mat ters\n\u0120ad apt\n\u0120A - ri\n\u0120f ill\n\u0120for th\n\u0120s am\n\u01204 1\n\u0120pay ment\n\u0120H - or\n\u0120sp ring\ndu c\n\u0120l osing\n\u0120bring ing\nF O\nal a\n\u0120dist - ribution\nhe red\nb our\n\u0120Israel i\nom a\n\u0120comb ination\n\u0120pl - enty\nV E\nC an\n\u0120H aw\n\u0120per man\n\u0120Spe cial\n\u0120to w\n\u0120see - king\n\u0120exam ples\n\u0120class es\nc r\n\u0120be er\n\u0120mov es\n\u0120I - P\n\u0120K n\n\u0120pan el\nE ven\n\u0120proper ly\n\u0120r is\n\u0120pl ug\n\u0120estim - ated\nE very\n\u0120def ensive\nag raph\n\u0120pre gn\n\u0120inst it\n\u0120V - ict\n\u0120vol ume\n\u0120pos itions\n\u0120l inks\n\u0120Pro gram\n\u0120We - ek\nag ues\n\u0120trans form\nk er\n\u0120C EO\n\u0120c as\n\u0120opp onent\n\u0120twe - et\n\u0120C ode\n\u0120sh op\n\u0120f ly\n\u0120tal ks\n\u0120b ag\nPh one\n\u0120a - id\n\u0120pl ants\n\u01206 5\n\u0120att orney\nar ters\nqu est\n\u0120Mag - ic\n\u0120beg ins\n\u0120my ster\n\u0120environment al\n\u0120st orage\nN - N\n\u0120m arg\n\u0120s ke\n\u0120met al\nell y\n\u0120ord ered\n\u0120rem - ained\n\u0120l oved\n\u0120prom pt\n\u0120upd ated\n\u0120exper ts\n\u0120walk - ing\n\u0120an cient\n\u0120perform ed\nAT E\n\u0120ne ither\ni ency\n\u0120manufact - ure\n\u0120P ak\n\u0120select ed\n\u0120m ine\n\u0120ult imately\n\u0120expl - an\n\u0120lab el\n\u0120Serv ices\nribut ed\nTr ump\n\u0120sy n\n\u0120U lt\nS - C\n\u0120me at\n\u0120g iant\n\u0120W ars\n\u0120O N\n\u0120ad m\n\u0120inter - pret\n\u0120even ing\n\u0120ev il\n\u0120B oston\n\u0120W ild\n\u0120 \xC3\n\u0120Bit - coin\n\u0120Am azon\nD r\n\u0120In formation\n\u0120obvious ly\n\u0120adv - anced\nPh oto\nol ar\n\u0120we ather\n\u0120symb ol\n\u0120so le\n\u0120pot - entially\nost er\n\u0120orig inally\nm un\n3 00\naz e\ness ions\n\u0120de - ck\n\u0120st ood\n\u0120you th\n\u0120B ern\nR ep\n\u0120T est\n\u0120bas - ically\not ic\n\u0120invol ve\nol it\nly n\nS ee\n\u0120air craft\n\u0120conf - irm\nE W\n\u0120mess ages\n\u0120Rich ard\n\u0120k it\n\u0120pro hib\n\u0120v - ulner\nis ters\n\u0120exist ence\n\u0120turn ing\n\u0120S P\n\u0120des ire\n\u0120fl - at\n\u0120m ent\nse ason\nang es\n\u0120neighbor hood\n\u0120L ake\nAT ION\n\u0120point - ed\nb ur\n\u0120inn ov\nuc ks\nU L\n\u0120profess or\n\u0120exp ressed\nA - B\nic ious\n\u0120200 2\n\u0120De v\n\u0120s ession\n\u0120b are\ns en\n\u0120dis - s\n\u0120C ath\n\u0120P ass\n\u0120P oint\n\u0120do ctor\nor row\nail ed\n\u0120R - ub\n\u0120D C\n\u0120Char l\np erson\n\u0120writ er\nigh ters\nure au\n\u0120ob - lig\n\u0120record ed\n\u0120bro ke\n\u0120ord ers\nil ty\n\u0120mot ion\nin - ity\nl aw\nad ium\n\u0120imm igration\n\u0120contr ast\n\u0120b att\n\u0120ex - cellent\n\u0120techn ical\nam i\n\u0120t un\n\u0120cl oud\n\u0120Y ear\nge - on\n\u0120cre ation\n\u0120str ange\n\u0120a uth\n\u0120for t\nb orn\n\u0120ext - ent\n\u0120T oday\n\u0120Cl ub\n\u0120r ain\n\u0120s ample\n\u0120accept ed\n\u0120t - act\n\u0120f ired\n\u0120S on\n\u0120stand s\n\u0120b oot\n\u01204 7\n\u0120stat - ements\n\u0120vers ions\n\u0120se lling\nound ed\n\u0120199 0\n\u0120were - n\n\u0120W atch\n\u0120exper iment\nP ost\n\u0120ret ail\nul ed\nIn st\nun - te\n\xE3\u0125 \xBC\n\u0120dep art\n\u0120b ond\ni very\nom pl\n\u0120re action\n\u0120Syri - an\n\u0120P ac\napp ed\nani el\nD P\n\u0120res olution\n\u0120re act\n\u0120appro - ved\non om\nm ond\n\u0120O ffic\n-- -\n\u0120repl ace\n\u0120t ack\n\u0120sp - ort\n\u0120ch ain\n\u0120emer gency\nr ad\n\u0120Palest in\n\u01204 6\n\u0120autom - atically\n\u0120rout e\n\u0120p al\n\u0120b anks\n\u0120Par is\n\u0120Med - ia\nro ad\nic ing\ni xt\nist ed\n\u0120g rew\n\u0120co ord\n\u0120W here\nom - in\n\u0120sub s\n\xEF\xBF\xBD \xEF\xBF\xBD\n\u0120\xC2 \xB1\n\u0120corpor - ate\n\u0120se lection\nn oon\n\u0120Rep ort\nc s\nclud ing\nord ers\nanc he\n\u0120It - s\n\u0120slow ly\n\u0120E gypt\n\u0120A cc\n\u0120col le\niqu es\nE X\n\u0120attempt - s\nur l\n\u0120C ross\n\u0120find ings\n\u0120S C\n\u0120O R\n\u0120ind ex\nens - ity\n\u0120W ay\n\u0120L and\n\u0120sh ock\nd is\n\u0120d ynam\n\u0120c art\nm - osp\nS ince\ni est\n\u0120B oy\n\u0120st orm\n\u0120Cont in\n201 3\nhe w\nil - it\n\u0120ess ential\niqu id\nO ther\nive red\n\u0120reason able\nA ct\n\u0120sub - sequ\n\u0120P ack\n\u0120F ort\n\u0120consider ing\n\u0120un iversity\nl og\n\u0120mar - ried\n\u0120ill ust\n\u0120Tr ue\n\xA3 \u0131\n\u0120numer ous\nrast ructure\n\u0120serious - ly\n\u0120refer red\nu a\n\u0120consist ent\non na\n\u0120Re al\nru ption\nci - ples\n\u0120fact s\n9 1\not es\ner g\nThe n\n\u0120acc ompl\nN ote\n\u0120re - venue\n\u0120pass ing\n\u0120m al\ne en\n\u0120Y et\n\u0120g ather\nter day\new - ork\n\u0120A uthor\nP e\n\u0120opt im\n\u0120r ub\n\u0120\xE8 \xA3\u0131\n\u0120un - known\nst one\n\u0120un ion\nol ve\n\u0120opportun ities\n\u0120brow ser\n\u0120W - al\n\u0120C ost\n\u0120report ing\nst s\np et\n\u0120s and\n\u0120sudden ly\n\u0120surpr - ising\n\u0120V R\n\u0120somew hat\n\u0120B as\nult ure\niz z\n\u0120C D\n\u0120challeng - es\n\u0120sett ings\n\u0120experien ces\n\u0120F ull\n\u0120can n\n\u0120rece - iving\nES T\n\u0120j oint\n\u0120cult ural\n\u0120a st\n8 2\nas tern\nce ived\n\u0120C - ru\n\u0120b ull\np ired\nam m\n\u0120fac ing\np ower\n\u0120b oss\n\u0120H - ol\n\u0120inst r\n\u0120increasing ly\n\u0120sh ift\n\u0120stre ets\n\u0120William - s\nab b\n\u0120l ie\n\u0120l augh\n\u0120C a\nP L\n\u0120adult s\n\u0120custom - er\n\u0120ob tained\n\u0120support ing\nht ml\nf ire\n\u0120detail ed\n\u0120pick - ed\n\u0120R ight\nld er\nE E\nst ood\n\u0120K im\n\u0120w ire\n\u0120s ight\n\u0120develop - ers\n\u0120pers ons\n\u0120s ad\n\u0120c up\n\u0120war ning\n\u0120boy s\nl - ong\n\u0120b ird\nf o\n\u0120w al\n\u0120observ ed\n\u0120z one\niven ess\n\u0120ch - annel\nc ript\n\u0120ref used\n\u0120Ag ain\n\u0120su c\n\u0120spokes man\n\u0120Re - f\nr ite\nou ston\n\xE3\u0125 \xB3\n\u0120S her\n\u0120act s\n\u0120N ame\n\u0120strugg - le\nar ry\nomet imes\n\u0120disc rim\nH T\n\u0120categ ory\n\u0120real ize\n\u0120employ - ee\n\u0120Af ghan\nen ger\n\u0120gun s\n\u0120Ste ve\n\u0120M ot\n\u0120O - l\nok ed\n\u0120th ick\n\u0120fair ly\nill y\n\u0120sur ve\n\u0120M at\nwe - ight\n\xE2 \u0136\n\u0120tro ops\n\u0120ag ents\n\u0120batter y\n\u0120mot - iv\n\xC3 \xA1\nS ec\nd en\no very\nL S\n\u0120fl u\n\u0120conf ident\n\u0120O - per\n\u0120em pty\n\u0120p hen\n\u0120se ctor\n\u0120exc ited\n\u0120rem ote\nap - h\no en\n\u0120destroy ed\n\u0120mor al\n\u0120H P\n\u0120R on\n\u0120d ress\n\u0120B - at\n\u0120l it\n\u0120M S\n\u0120a f\nH L\nr um\nis ms\n\u0120should n\n\u0120sym - pt\n\u0120Tor onto\nhet ic\n\u0120car bon\n\u0120install ed\n\u0120viol ent\n\u0120sol - ar\nj a\n\u0120pract ices\n\u0120r ide\n\u0120P enn\n\u0120impro ved\n\u0120aud - io\n\u0120behav i\n\u0120P S\n\u0120e ating\nD ata\n\u0120Re view\np ass\ncl - aim\nu ated\nang ers\nc hen\n\u0120proper ties\n\u0120any where\nAn other\n\u0120bl - ow\n\u0120Jack son\n\u0120p roud\n\u0120plan e\nl ines\n\u0120squ are\n\u0120pro - of\nans as\n\u0120talk ed\nm akers\n\u0120s ister\n\u0120hold s\n\u0120res - ident\n\u0120= =\n\u0120resist ance\n\u0120spl it\n\u0120pro secut\n\u0120conf - idence\nres ents\n\u0120cut s\n\u0120except ion\n\u0120z ero\nGet ty\n\u0120cop - yright\n\u0120tot ally\norm al\nific ations\n\u0120Austral ian\n\u0120s ick\n\u01201 - 50\n\u0120house hold\n\u0120fe es\n\u0120dri vers\nog en\n\u0120N Y\n\u0120necess - arily\n\u0120regul ations\near ing\ns l\n\u0120perspect ive\nc are\nic ial\nH - is\n\u0120esc ape\n\u0120surpr ised\n\u0120V an\nur rent\n\u0120v ac\n8 1\n\u0120Th - us\n\u0120em phas\n\u0120Ch ampions\n\u0120I ce\n\u0120n arr\n\u0120head s\n\u0120ca - using\nb el\nf ortunately\n\u0120M a\n\u0120targ ets\nci pl\n\u0120after noon\n\u0120add - s\n\u0120May be\n\u0120F our\ness ed\nple te\n\u0120us ual\nch o\ning u\n\u0120with - d\n\u0120E nergy\n\u0120E conom\nO O\n\u0120art icles\n\u0120inj ured\n\u0120man - age\n\u0120expl ains\n\u0120di agn\nR ec\nat ures\n\u0120link ed\n\u0120discuss - ed\n\u0120expl o\n\u0120occ asion\nath an\n\u0120opp osite\n\u0120fac es\n\u0120den - ied\n\u0120K night\n\u0120n ut\n\u0120approx imately\n\u0120disapp oint\nonym - ous\n\u0120B est\n\u0120L o\n\u0120H y\n\u0120A ff\n\u0120vot ing\nan while\n\u0120II - I\n\u0120instit utions\nag ram\n\u0120D aily\n\u0120dr ag\n\u0120near by\n\u0120gu - ilty\n\u0120con ver\nP re\ns hip\n\u0120re ward\n\u0120philos oph\n\u0120S - S\nu gh\n\u0120app s\nf riend\n\u0120u pper\n\u0120ad vert\n\u0120s now\n\u0120fr - ust\n\u0120our selves\nF r\n\u0120D ie\namp ion\n\u0120dis miss\n\u0120c ere\n\u0120sign - al\nf rom\n\u0120 ).\n\u01205 2\n\u0120cr imes\nit ors\nest ival\nuse um\n\u0120coun - cil\n\u0120S aud\nM ay\n\u0120G un\nic ian\net her\n\u0120su fficient\n\u0120H - en\nso le\n\u0120histor ical\n\u0120F ar\n\u0120T urn\n\u0120p in\n\u0120suc - ceed\nm at\nly mp\n\u0120trad ition\n\u0120O k\n\u0120c ro\n\u0120desc ription\nal - le\n\u0120sk y\nT e\n\u0120wide ly\n\u0120w ave\n\u0120defin ition\n\u0120Jew - s\n\u0120cy cle\n\u0120ref ere\n\u0120br ings\nus al\n\u0120al ive\n\u0120frequ - ently\n\u0120int ention\n\u0120Cont rol\nl v\ny stem\n\u0120priv acy\ng ent\nren - ce\n\u0120Qu est\n\u0120Christ mas\n\u0120r ail\n\u0120co oper\n\u0120test - ed\n\u0120C apt\nas ks\n\u0120comfort able\n\u0120del ivered\nsc ape\n\u0120dep - th\n\u0120G OP\n\u0120writ es\n\u0120ass ets\n\u0120sa v\nim ents\n\u0120trans - ition\n\u0120art ist\n\u0120L ook\n\u0120l ob\n\u0120comp onents\nar ity\n\u0120walk - ed\n\u0120ro ot\n\u0120particip ants\n\u0120not iced\n\u0120res c\n\u0120n - av\n\u0120Ad minist\nd a\nut ral\npl ate\n\u0120import ance\n\u0120ass ert\nious - ly\nc ription\n\u0120inj uries\n\u0120Che ck\n\u0120regist ered\n\u0120int - ent\n\u0120miss ed\nograph ic\n\u0120sent ence\noun ter\n\u0120assist ance\nev - in\n\u0120dat abase\n\u0120build ings\n\u0120class ic\n\u0120th inks\n\u0120Oh - io\nP r\nug g\n\u0120fe e\np an\n\u0120effect ively\n\u0120fac ility\n\u0120be - ar\n\u0120ch apter\n\u0120dog s\n\u0120Col umb\n\u0120l atter\nit ial\n\u0120ad - mitted\nT V\n\u0120Ge org\n\u0120post s\n\\ \\\n\u0120lawy er\n\u0120equ ival\n\u0120m - and\n\u0120contro lled\n\u0120W alk\n\u0120And rew\n\u0120men u\nam ental\n\u0120protect - ed\nv a\n\u0120administ r\nor al\n\u0120re in\n\u0120S ar\n\u0120amount s\n\u0120n - ative\n\u0120M oon\n\u0120rep resents\n\u0120ab andon\n\u0120carry ing\n\u0120t - ank\nm ary\n\u0120decl ared\nT ube\n\u0120h at\n\u0120pun ish\nel lect\nm - es\n\u0120un iverse\n\u0120R od\nph y\n\u0120inf rastructure\n\u01205 1\n\u0120opp - osed\now nt\nc a\n\u0120M ake\n\u0120hard ware\n\u0120co ffee\nR el\nb al\nw - orld\n\u0120S af\n\u0120Se a\nin als\n\u0120own ed\n\u0120h all\ners ion\n\u0120describ - e\n\u0120P ot\n\u0120port ion\n\u0120at mosp\n\u0120govern ments\n\u0120dep - ending\n\u0120off ense\n\u0120tr ick\naw a\n\u0120L ine\n\u0120V is\n\u0120H - ard\n\u0120Or ig\n\u0120Cl ick\n\u0120des k\n\u0120Val ley\n\u0120S ov\n\u0120mov - ies\n\u0120rem ark\n\u0120m ail\n\u0120cons cious\n\u0120rul ing\n\u0120R - ights\n\u0120med ic\nhe nt\n\u0120W omen\n> <\n\u0120repl aced\n\u0120P rem\n\u0120Th - anks\n\u0120re new\n\u0120B all\nif orm\n\u0120sh ots\nC omm\n\u0120ar med\n\u0120const - ant\n\u0120t aste\n\u0120real ized\n\u0120bu ff\n\u0120m o\n\u0120effic ient\nM - ost\nor ation\nif ies\n\u0120commun ication\n\u0120fl ood\n\u0120consequ ences\n\u0120any - way\nig g\n\u0120G M\n\u0120Th ank\n\u0120 iron\n\u0120ev olution\n\u0120C - op\ntw itter\n\u01209 5\n\u0120relationship s\nad el\n\u0120You ng\n\u0120propos - al\nay ers\nuild ing\n\u0120H ot\nOR E\nc os\n\u0120coll abor\nP G\nax y\n\u0120know - ing\n\u0120support s\now ed\n\u0120control s\n\u0120mere ly\num er\n\u0120ath - let\n\u0120f ashion\np ath\n\u0120g ift\n\u0120er a\nAN D\n\u0120kind s\n\u0120Kore - an\n\u0120leg it\nul ous\n\u0120ess entially\n\u0120the rap\nn ic\n\u0120suff - ered\n\u0120h ur\n\u0120prom ise\n\u0120ex cess\n\u0120over w\n\u0120pr ime\n\u0120H - ouston\ner ry\n\u0120M s\nR S\n201 2\n\u0120st ores\n\u0120O lymp\n\u0120j - ourney\nAl though\nS ub\n\u0120E duc\n\u0120Ch apter\n\u0120request s\n\u0120consum - ers\n\u0120t iny\n\u0120is ol\n\u0120F air\nb a\n\u0120Y OU\n\u0120cr ash\nce - ler\n\u0120emot ional\n\u0120good s\n\u0120elect ed\n\u0120mod er\n\u0120Lin - ux\n\u0120bl ocks\n\u0120is land\n\u0120Soc iety\n\u0120elect ions\n\u0120broad - cast\n\u0120che ap\n\u0120n ations\n\u0120se asons\n4 00\n\u0120was te\n\u0120S - at\n\u0120field s\nem ploy\n\u0120prof ile\n\u0120auth ors\nAL L\n\u0120G - ra\nw est\n\u0120T y\n\u0120death s\n\u0120v acc\n\u0120for med\n\u0120d u\n\u0120on - going\n\u0120Muslim s\nel f\nig ure\n\u0120ass ume\n\u0120Ukrain e\nw ater\n\u0120co - ast\n\u0120vot ed\ng or\n\u0120A S\n\u0120Mich igan\naz a\n\u0120Ar m\ni ro\n\u0120f - lex\nas ters\n' '\n\u0120wel come\nar l\n\u0120loc ations\nig ation\n\u0120F - il\n\u0120bu ying\n\u0120arch itect\n\u0120hard er\n\u0120C ub\n\u0120inter - face\n\u0120restaur ant\n\u0120disco ver\n\u0120ex ceed\n\u0120fav our\nger - y\n\u0120d uty\n\u0120p itch\nad or\n\u0120M ach\nb oy\n\u0120respond ed\n\u0120ext - ended\nher s\nM any\nra id\nif er\n\u0120In s\nS er\n\u0120med ium\ns he\n\u0120S - ports\n\u0120mag azine\nut ation\n\u0120lim its\n\u0120G all\n\u0120ex ternal\nraz - il\n\u0120young er\nt le\n\u0120rem ind\n\u0120C ON\n\u0120immedi ate\n\u0120h - idden\n\u0120vol unte\n\u0120sim pl\nod cast\n\u0120ph ase\nd r\n\u0120pl - ot\n\u0120exp osure\nR I\nog rap\nv in\nan ish\n\u0120Ac ad\n\u0120Eng ine\n\u0120exp - ansion\n\u0120P ay\nY our\n\u0120pus hed\n\u0120E ll\n\u0120He ad\n\u0120market - ing\n\u0120A C\nk et\n\u0120h its\n\u0120g ro\n\u0120A ge\n\u0120Sc ot\n] - [\n\u0120st im\n\u0120i Phone\n\u012A \u0134\n\u0120n arrow\n\u0120Get ty\n\u0120Tur - key\n\u0120perfect ly\n\u0120en able\nut ch\n\u0120prec ise\n\u0120reg ime\n\u0120sh - if\n\u0120comp ens\ng un\nd iv\n\u0120ch osen\n\u0120K en\nAn y\n\u0120tre - es\n\u0120recomm ended\n\u0120R en\nu able\n\u0120H T\nF ollow\nE G\n\u0120H - and\n\u0120K enn\n\u0120arg uments\n\u0120ex ists\n\u0120b ike\n\u0120Cons - erv\n\u0120bre aking\n\u0120G ar\n\u0120c razy\n\u0120virt ual\nay lor\nix - el\n\u012019 80\n\u0120per mission\n\u0120Ser ies\n\u0120consum er\n\u0120close - ly\nc alled\n\u01205 4\n\u0120hop es\n\u0120ar ray\n\u0120W in\n\u0120Lab - our\n\u0120sp ons\n\u0120I re\n\u0120p ow\n\u0120read ers\n\u0120employ ment\n\u0120creat - ure\n\u0120result ing\n\u0120accur ate\n\u0120mom ents\n\u0120arg ued\n\u0120p - ed\nD uring\n\u01205 3\n\u0120T al\n\u0120s ought\n\u0120suff ering\n\u0120 - icon\nle e\n\u0120( $\nal ian\n\xC2 \xB0\n\u0120p ra\n\u0120bon us\n( \"\nk - o\n\u0120act ing\nD E\nf all\n\u0120compar ison\n\u0120sm ooth\n\u0120N AS\nu - pp\n\u0120Jose ph\nep ing\n\u0120T ake\n\u0120M id\n\u0120s ending\nf ast\n\u0120F - all\n\u0120deal ing\nus er\n\u0120Or gan\nC o\n\u0120att ached\n\u0120se es\n% - .\n\u0120typ ical\nAR T\n\u0120find s\n\u0120As ia\num in\n\u0120C ore\n\u0120E - nt\nin ent\nu ce\n\u0120Bl ood\n\u0120N ever\n\u0120em ails\n\u0120high light\n\u0120conf - ront\nat us\nut ed\n\u0120un us\n\u0120top ic\n\u0120Ad am\n\u0120b le\nat - i\n\u0120under stood\nS et\nst ruct\nT P\n\u0120m ob\na a\n\u0120St art\npect - ed\nse ll\n\u0120ded icated\n\u0120C A\nu an\n\u0120song s\nesc ription\n\u0120te - ch\n\u0120r ape\n\u0120as ide\n\u0120gr ant\n\u01205 6\ns ub\n\u0120arg ue\n\u0120cont - aining\n\u0120sche dule\n\u0120liber al\n\u0120public ly\n\u0120heav ily\n\u0120U - t\nin er\n\u0120S ection\n\u0120C are\nwe et\nl s\nD is\n\xE2\u0136 \u0122\n\u0120F - ollow\nB ack\n\u0120I T\n\u0120b es\nj i\n\u0120H it\nest ed\n\u0120every - body\n\u0120Sw ed\n\u0120fem in\n\u0120fac ilities\n\u0120con ven\nC omp\n\u0120O - S\nc ore\n\u0120an x\n\u0120div ision\n\u0120C am\n\u0120St an\nm ates\n\u0120expl - ore\npl om\n\u0120sh ares\npl oad\nan es\n\u0120ide al\net ers\n\u0120B ase\n\u0120pl - astic\n\u0120dist inct\n\u0120Net work\n\u0120Se attle\n\u0120trad ing\nens - us\nint end\n\u0120ex hib\n\u0120init ially\n\u0120F ood\n\u0120thous and\n\u0120Bus - iness\nact er\n\u0120par agraph\n\u0120rough ly\n\u0120w ww\n\u0120creat ive\n\u0120Con - f\n\u0120consum ption\n\u0120fil ms\nag an\n\u0120ob tain\n\u0120t all\n\u0120t - or\n\u0120acknow led\n\u0120g rown\nal o\nK E\n\u01204 00\nend ers\nt aining\nU - G\n\u0120su icide\n\u0120wat ched\n\u0120L ist\nal i\nre hens\n\u0120surround - ing\n\u0120p ip\n\u0120f lying\n\u0120J ava\nord an\n\u0120serv ing\nin ations\np - ost\n\u0120sh o\nA v\n\u0120j ail\nz y\n\u0120199 9\n\u0120< /\n\u0120liter - ally\n\u0120S ir\n\u0120exp osed\n\u0120l ies\nst ar\n\u0120b at\n\u0120ear - ned\n\u0120D ig\n\u0120spec ified\n\u0120Se ason\n\u0120deg rees\nDon ald\n\u0120cent - re\n\u0120sh aring\n\u0120win ter\n\u0120C O\nC he\n\u0120 \xCE\nM P\n\u0120un - w\n\u0120few er\n\u0120M ir\n\u0120somew here\n\u0120K ey\n\u0120attack ed\n\u0120K - ir\n\u0120dom ain\n\u0120strong er\n\u01209 9\n\u0120pen alty\nI d\nSc ript\n\u0120decl - ined\n\u0120ne ck\n\u0120fra ud\n\u0120cur rency\n\u0120r ising\nR C\n\xE2\u0122\xA6 - \xE2\u0122\xA6\nH z\n\u0120t ab\n\u0120tal ent\nn am\n\u0120N BA\n\u0120vill - age\n\u0120leg s\n\u0120N ext\nE d\n\u0120ac id\n\u0120hy d\n8 00\n\u0120invol - ving\n\u0120Im age\n\u0120Be fore\nF l\n\u0120yes terday\nS ource\n\u0120terror - ist\n\u0120su p\n\u0120sy nt\n\u0120Saud i\n\u0120w est\n\u0120r u\nb urg\n\u0120vis - ible\n\u0120stru ck\nr ison\n\u0120aw esome\n\u0120d rawn\n\u0120answ ers\n\u0120G - irl\n\u0120R am\n\u0120threat s\n\u0120def eat\nos it\n\u0120v ent\natur ally\nAmeric - an\nend a\n\u0120H oly\n\u0120r um\n% ,\nc ase\n\u0120Hist ory\n\u0120You - Tube\n\u0120sit uations\n\u0120D NA\nS te\n\u0120sa ved\nIt em\n\u0120rec - ip\nolog ist\n\u0120fac ed\n\u0120el ig\nO nce\n\u0120L i\nu h\n\u0120mist - ake\n\u0120Div ision\n\u0120B ell\n\u0120sympt oms\n\xC2 \xAE\n\u0120dom in\n\u0120fall - ing\n\u0120end ing\nas hes\n\u0120mat ches\n\u0120On line\n\u0120explan ation\nD - ef\nred it\n\u0120any more\n\u0120T otal\n\u0120F OR\nus hed\n\u0120let ters\n\u0120ris - ks\n\u0120O K\n\u0120reported ly\n: \\\n\u0120pl ate\n\u0120subject s\n\u0120attempt - ed\nif ier\nian a\n\u0120unlike ly\n\u0120Th ough\num a\n\u0120In vest\n\u0120Pr - in\nic an\n\u0120D ar\n\u0120Color ado\nau g\n\u0120ve get\na os\nri a\n\u0120she - l\n\u0120mark ed\n\u0120( )\n\u0120sp r\np o\n\u0120L ink\n\u0120def e\n\u0120J - r\n\u0120them e\n\u0120pass ion\n\u0120P en\n\u0120inf o\niz er\n\u0120sh - it\n\u0120C ivil\nap se\nc re\n\u0120po ly\n\u0120comp onent\n\u0120Char les\n\u0120Ire - land\n\u0120Pro v\n\u0120do ctors\n\u0120gr anted\n\u0120pain t\n\u0120hon - or\n\u0120sm oke\n\u0120pay ments\n\u0120prim arily\n\u0120King dom\nr ich\nate - ll\n\u0120de als\n\u0120sched uled\n\u0120fund amental\n\u0120prote in\n\u0120newsp - aper\n\u0120cl ients\nyth on\n\u0120D ate\nh us\n\u0120feed back\n\u0120stret - ch\n\u0120c ock\n\u0120hot el\n\u0120Que en\n\u0120su gar\n\u0120j u\n\u0120mil - k\n\u0120appro val\n\u0120L ive\n\u0120equival ent\nef ully\n\u0120ins ert\nz - ona\n\u0120ext ension\nd ri\nJ ohn\n\u0120acc omp\nS m\n\u0120F und\n\u0120const - antly\n\u0120` `\n\u0120gener ated\n\u0120A ction\n\u0120P sych\n\u0120T ri\n\u0120recogn - ize\n\u0120v ary\nph a\n\u0120R a\nd f\net ch\n\u0120Sov iet\nTw o\n\u0120pattern - s\n\u0120prof ession\nan ing\nT ime\n\u0120L im\n\u0120col ors\n\u0120A z\n\u0120T - R\n\u0120inf ect\n\u0120phen omen\n\u0120she ll\nAl so\n\u0120put s\n\u0120del - ivery\n\u0120bro wn\n\u0120process ing\n\u0120light s\ness age\n\u0120Bro - ok\n\u0120A ud\nl ation\n\u0120indust rial\nL ike\n\u0120B razil\nrou s\nES - S\n\u0120L uc\n\u0120some how\n\u01208 5\n\u0120pro port\n\u0120polit icians\n\u0120indic - ate\n\u0120h ole\n\u0120techn iques\n\u0120compet itive\n\u0120ph r\n\u0120v - o\nist ent\n\u0120D ream\n\u0120camp us\n\u0120aspect s\n\u0120help ful\n\u0120sh - ield\nor se\n\u0120trig ger\nm al\n\u01205 8\n\u0120t ort\n\u0120person ally\n\u0120t - ag\n\u0120keep s\n\u0120V ideo\n\u0120ben ch\n\u0120g ap\na ire\n\u0120e ast\n\u0120rec - overy\nper ial\n\u0120prof it\n\u0120M ic\n\u01205 7\n\u0120col on\n\u0120strong - ly\nst yle\n\u0120alleg ations\nh an\n\u0120rep orters\nj o\nr ine\narg et\nand - al\n\u01200 3\n\u0120fl ash\ntr ans\n\u0120str ict\n\u0120park ing\n\u0120Pak - istan\n\u0120l i\n\u0120we ird\n\u0120E ric\n\u0120reg ions\n\u0120J un\n\u0120int - ellect\n\u0120W H\nod ing\nrib utes\nup id\n\u0120T it\n\u0120f inger\nor - ia\n\u0120e lev\n\u0120F ield\n\u0120con clusion\n; ;\n\u0120feel ings\n\u0120ext - ensive\n\u0120m ixed\n\u0120ne uro\nv y\n\u0120har ass\n\u0120C irc\nou ch\n\u0120territ - ory\n\u0120success fully\nM ar\n\u0120ing red\n\u0120overw hel\n\u0120l ayer\nV - iew\n\u0120all ies\nill ance\n\u0120Th ree\n\u0120b unch\n\u0120norm ally\n\u0120net - works\n\u0120sac r\n\u0120C IA\nb les\n\u0120ch ose\n\u0120opp onents\n\u0120regard - less\n\u0120fr anch\n\u0120pre f\n\u0120P o\n\u0120br idge\nann a\n\u0120Sil - ver\n\u0120w age\np age\nri or\n\u0120rad ical\n\u0120L ittle\n\u0120man ip\n\u0120secret - ary\n\u0120g ang\nD R\nF A\n\u0120dec ent\n\u0120Sp irit\n\u0120un cle\n\u0120Develop - ment\n\u0120invest ors\n\u0120wall s\n\u0120pub lish\n\u0120gener ate\niss - ions\nc ar\n\u0120prom ote\n\u0120cut ting\n\u0120che st\n\u0120drink ing\n\u0120collect - ed\n\u01207 2\n\u0120hop ing\n\u0120em br\ngor ith\n\u0120war ned\n\u0120instruct - ions\nO G\n\u0120D id\n\u0120Ag ency\n\u0120g ear\n\u0120critic ism\n\u0120F - urther\n\u0120ut il\nann y\nR ed\n\u0120coun sel\n\u0120As ian\n\u0120redu - ction\np ool\n\u0120teach ing\n\u0120deep ly\ni y\n\u0120estim ates\n\u0120cho - ices\n\u0120perman ent\nin em\nke l\n\u0120f asc\np se\nf ile\n\u0120L ow\n\u0120P - erson\n\u0120t ournament\nst al\n\u0120m el\nU ST\n\u0120R ay\naz i\nV al\n\u0120cont - ained\n\u0120H olly\n\u0120w ake\n\u0120reve al\n\u0120process es\n\u0120IS - IS\n\u01200 9\n\u0120bl ind\n\u0120ste el\n\u0120B ad\n\u0120care fully\napp - y\nro it\n\u0120g aming\n\u0120hous es\n\u0120C oll\n\u0120tr uck\ner m\n\u0120sc - ored\n\u0120occ as\nret urn\nb ound\nv ar\n\u0120sh arp\n\u0120af raid\n\u0120E - X\nam ber\nc ific\n\u0120sche me\nN C\n\u0120Pol it\n\u0120decl ine\n\u0120199 - 8\n\u0120pus hing\n\u0120poss ession\n\u0120priv ile\n\u0120teacher s\n\u0120y - ield\nH A\n\u0120Dav is\nit led\n#### ####\n\u0120r ig\n\u0120D aniel\nac - on\n\u0120h ide\nut en\n\u0120colle agues\n\u0120prin ciples\n\u0120l oud\n\u0120s - in\n\u0120Dem on\n\u0120st one\n\u01200 2\n\u0120t aught\n\u0120ter rible\n\u0120st - uck\n\u0120Pol icy\nte en\n\u0120implement ation\n\u0120B BC\n\u0120AP I\n\u0120whe - el\nall as\n\u0120ch ampions\nol ars\nplay er\n\u0120repeated ly\n\u0120St - ill\n\u0120lik es\nast y\nes ter\n\u0120Cath olic\nR L\n\u0120b ath\n\u0120no - ise\nt itle\n\u0120n orthern\nP art\n\u0120mag n\n\u0120f ab\n\u0120As h\n\u0120dis - pl\n\u0120tick et\n\u0120m urd\n\u0120along side\n\u0120Mus ic\n\u0120r iver\n\u0120Ste - el\n\u0120C L\n\u0120Pl ayer\n\u0120M ult\now ing\nre p\ns ize\n\u0120t ur\n\u0120Georg - ia\nisc al\nra ction\n\u0120c able\n\u01205 9\n\u0120w ins\n\u0120up coming\n\u0120surv - ive\n\u0120ins pired\n\u0120Educ ation\n\u0120stat istics\n\u0120F oot\niam - i\n\u0120y ellow\n\u0120P age\n. -\n\u0120H as\n\u0120ur ban\n\u0120a x\nes - sel\n\\ \"\n\u0120quarter back\n\u0120reg ister\n\u0120Lab or\n\u0120ab ilities\n\u0120F - amily\n\u0120var iable\n\u0120Pr ice\n\u0120cont em\n\u0120th in\n\u0120E - qu\nd ata\n\u0120g otten\n\u0120const it\n\u0120as ks\n\u0120t ail\n\u0120exc - iting\n\u0120E ffect\n\u0120Sp anish\n\u0120encour age\nins on\n\u0120A h\n\u0120commit - ment\nC S\n\u0120r ally\n\u0120: :\n\u0120subs id\n\u0120sp in\n\u0120capt - ured\n201 8\n\u0120inn oc\n\u0120alleged ly\n\u0120C ome\n\u0120art ists\n\u0120N - umber\n\u0120elect ronic\n\u0120reg ional\nap es\n\u0120w ra\n\u0120my th\npr - ise\n\u0120M iller\n\u0120C reat\n\u0120Ep isode\nb ell\n\u0120direct ed\n\u0120ext - ract\n\u0120s orry\n\u0120v ice\nag ger\n\u0120Su pport\n\u01206 6\n\u0120I - ron\n\u0120wonder ful\n\u0120g ra\nN et\nion e\nE ng\n\u0120sh ips\nik es\n\u0120K - evin\nit ar\n\u0120activ ists\ntr ue\n\u0120Ari zona\nent h\n\u0120Des pite\n\u0120S - E\n\u0120ha bit\nern el\n\u0120in qu\n\u0120ab ortion\n\u0120v oid\n\u0120expl - icit\n\u0120eng aged\n\u0120ang ry\n\u0120r ating\n\u0120fr ag\nb ro\nick - ing\nd ev\n\u0120wor ried\n\u0120ob ser\n\u0120ap artment\n\u0120G T\n\u0120est - ate\n\u0120Const itution\nem on\n\u0120S now\n\u0120count y\n\u0120dis ag\n\u0120Step - hen\n\u0120imm igrants\nw ind\n\u0120N ations\n\u0120fol ks\nO ut\n\u0120g - all\n\u0120target ed\n\u0120st ead\n\u0120B on\n\u0120L ib\n\u0120inform ed\n\u012012 - 0\nch ain\nidel ines\nor ough\n\u0120dri ven\n\u0120regular ly\n\u0120bas - ket\n\u0120princ iple\noc ument\n\u0120st un\nib ilities\n\u0120Rom an\n\u0120Ab - out\n\u0120al ert\n\u0120democr acy\n\u0120represent ed\nH S\nc ers\np arent\nAr - t\np ack\n\u0120di plom\nre ts\n\u0120N O\n\u0120capt ure\n\u0120Ad v\n\u0126 - \xA2\n\u0120announce ment\n\u0120L ear\n\u0120h ook\n\u0120pur s\n\u0120S - uch\n\u0120C amer\n\u0120refuge es\n\u0120V e\nP ol\n\u0120recogn ized\nl - ib\n\u0120had n\nA ss\n\u0120pil ot\nus hing\n\u0120return ing\n\u0120tra - il\n\u0120St one\n\u0120rout ine\n\u0120cour ts\n\u0120des per\n\u0120friend - ly\n\u0120It aly\n\u0120pl ed\n\u0120breat h\n\u0120stud io\nN S\n\u0120imp - ressive\n\u0120Afghan istan\n\u0120f ing\n\u0120d ownt\nink ing\n\u0120R og\ni - ary\ncol or\nse x\nar on\n\u0120f ault\n\u0120N ick\nD own\n\u0120R ose\n\u0120S - outhern\nX X\nis odes\nL ist\n6 00\n\u0120out come\ner r\n\u0120else where\n\u0120ret - ire\n\u0120p ounds\n\u0120Gl obal\nPe ople\n\u0120commun ications\n\u0120lo - an\n\u0120rat io\n\u0120Em pire\n\u0120g onna\n\u0120inv ent\nD F\n\u012019 - 70\n\u0120Comm on\np at\n\u0120prom ised\n\u0120d inner\n\u0120H om\n\u0120creat - es\n\u0120oper ate\nver ty\n\u0120J ordan\net ime\n\u0120sust ain\nR eg\n\u0120incred - ible\nim a\n\u0120war rant\n\u0120m m\nA tt\n\u0120law suit\n\u0120review - s\nit ure\n\u0120S ource\nl ights\n\u0120F ord\n\u01206 3\ng roup\nst ore\n\u0120feat - ured\n\u0120fore ver\n\u0120po verty\n\u0120P op\n\u0120C NN\naz z\nab is\nach - ing\n\u0120l aid\n\u0120Su pp\n\u0120fil ter\nen a\n\u0120Commun ity\n\u0120creat - ures\nu ction\n\u0120R oyal\n\u0120associ ation\n\u0120Con nect\n\u0120Br - ad\n\xE2\u0138 \u012A\nl ers\nthe re\n\u0120G i\n\u0120val uable\nAC K\n\u0120T - aylor\n\u0120l iquid\n\u0120Att orney\n\u0120Car l\n\u0120F inal\nag a\n\u0120Wil - son\nB ecause\n\u0120Prof essor\nak a\n\u0120incred ibly\nr ance\n! )\nR ef\ns - k\n\u0120sol utions\n\u0120atmosp here\n\u0120bl ame\num es\n\u0120N ob\nC - A\num ps\nr ical\n\u0120Put in\n\u0120D est\nor ic\n\u0120P A\n\u0120respect - ively\nw an\n\u0120fif th\n\xE2 \u0126\xA2\n\u0120C ry\n\u0120govern or\nres - ident\n\u0120purch ased\n\u0120h ack\n\u0120int ense\nob s\n\u0120orig in\n\u0120def - ine\n\u0120care ful\n** *\n\u0120should er\nCl ick\n\u0120t ied\n\u0120dest - ruction\nou red\n\u0120no body\n\u0120h o\n\u0120Ex per\n\u0120t ip\n\" ;\n\u0120techn - ique\n\u0120j ur\n\u0120P ok\nb ow\n\u0120leg end\n\u0120acc ord\n\u0120bus - y\n\u0120Int el\n\u0120h ang\nak i\n. ]\n\xE2\u0122\u0136\xE2\u0122\u0136 - \xE2\u0122\u0136\xE2\u0122\u0136\n\u0120sur gery\n\u0120rep rodu\n\u0120un - iform\n\u0120scen es\nc ode\n\u01206 2\nl isher\n\u0120H ave\nph ia\n\u0120cry - pt\n\u0120rec on\n\u0120sc ream\n\u0120adop ted\n\u0120sc ores\nN e\n\u0120It - alian\nin cluding\nB O\n\u0120indic ated\n\u0120ent ertain\nG u\nT ext\ni - el\n\u0120tw enty\n\u0120eng age\noff s\n\u0120Pac ific\n\u0120sm ile\n\u0120person - nel\n\u0120to ler\n\u0120do ors\n\u0120t one\n\u0120mach ines\n\u0120ent ering\nten - ance\nC O\n\u0120Jer sey\n\u0120fore st\n\u0120hor se\n\u0120compl aint\n\u0120Spr - ing\ny o\n\u0120Pl us\ned ing\n\u0120Ret urn\nqu arters\nial s\nc ow\n\u0120acad - emic\n\u0120f ruit\n\u0120199 6\nog ether\n\u0120w ine\n\u0120pur su\n\u0120Ste - ven\n\u0120lic ens\nWh o\n\u0120clot hes\nre ction\n\u0120squ ad\n\u0120st - able\n\u0120r aw\nz ens\nSt ar\nut ies\nanc er\n\u0120ke ys\n\u0120M u\n\u0120compl - icated\nig er\n\u0120Te xt\n\u0120abs or\n\u01206 8\n\u0120fun ny\n\u0120rel - ief\n\u0120L ew\n\u0120C ook\n\u0120ch art\n\u0120draw ing\nG E\n\u0120mod - ule\n\u0120B ull\nI LL\n\u0120s alt\n0000 0000\nil le\n\u0120res ource\naw - ay\nadel phia\n\u0120B ru\n\u01206 7\n\u0120some body\n\u0120particip ate\n\u0120ro - se\nwe red\n\u0120mus cle\n\u0120cons ent\n\u0120contin uing\n\u0120Guard - ian\n\u0120Or der\nreg on\n\u0120re ar\n\u0120prov ision\n\u0120lik ed\nri - ent\n\u0120b ra\nTr ans\n\u0120meet ings\n\u0120to x\n\u0120con vent\n\u0120aut - o\n\u0120rec ording\n\u0120So ft\n00 1\n\u0120R oll\n\u0120program ming\n\u0120p - ic\n\u0120prov ed\n\u0120st ab\n\u0120A st\n\u0120ca ption\nul ating\n\u0120Att - ack\n\u0120new ly\n\u0120199 7\nf r\n\u0120dis cipl\n\u0120Gree k\n\u0120ed - ition\n\u0120Do es\n\u0120B ox\nif le\nack et\n\u0120pass es\n\u0120gu est\n\u0120ac - celer\nit als\nU D\n\u0120aut hent\n\u0120R est\nov al\nt a\nu ine\n\u0120arm - or\n\u0120T own\n\u0120comp at\n\u0120inc hes\nDes pite\n\u0120ass ign\nhe - rent\n\u0120prep are\n\u0120M eg\noc key\n\u0120dep ends\n\u0120track s\nw - atch\n\u0120l ists\n\u0120N orthern\n\u0120al ter\nre c\n\u0120E astern\n\u0120cond - em\n\u0120every where\n? '\n\u0120aff ili\n\u0120f ought\n\": {\"\n\u0120m - ac\nit arian\n\u0120sc ope\n\u0120A L\naw s\nar ms\n\u0120qu e\n\u0120enjoy - ed\nnes ota\n\u0120agg ressive\n\u0120St ory\n\u0120I V\n\u0120rec ipe\n\u0120rare - ly\n\u0120Med ical\nval ue\nang el\nay ing\nomet hing\n\u0120sub section\n\u0120s - outhern\n\u0120frequ ency\nre te\nroll ed\nult s\n\u0120N ic\n\u0120beh alf\n\u0120sequ - ence\nab et\n\u0120controvers ial\n\u0120comp rom\n\u0120work er\n\u0120main - ly\n\u0120al gorith\n\u0120M ajor\nor ce\ng ender\n\u0120organ ized\n\u0120f - ake\n\u0120conclud ed\n\u0120E D\n\u0120Ex ec\nr age\n\u0120ch ances\nber - ry\n\u0120Tr ad\n\u0120config uration\n\u0120withd raw\n\u0120f ro\nud es\n\u0120Bro - ther\n\u0120B rian\n\u0120tri es\n\u0120sam ples\n\u0120b id\n\u0120Gold en\n\u0120phot - ograph\nif est\n\u0120D O\n\u0120Par liament\n******** ********\nR em\n\u0120cont - est\n\u0120sign ing\np x\n\u0120Z eal\n\xE2\u0136\u0122 \xE2\u0136\u0122\nE - ar\n\u0120ex it\nBe fore\n\u0120Cor por\nn ull\nmon th\n\u0120rac ial\nott - ed\n\u0120V eg\n\u0120Re uters\n\u0120sw ord\nps on\n\u0120Rom ney\na ed\n\u0120t - rib\n\u0120in ner\n\u0120prot ocol\n\u0120B i\n\u0120M iami\never al\np ress\n\u0120sh - ipping\n\u0120Am endment\n\u0120How ard\ncon nect\n\u0120D isc\n\u0120J ac\niam - ond\n\u0120There fore\ns es\n\u0120Prin cess\n\u0120US B\n\u0120An th\n\u0120surve - illance\n\u0120ap olog\n\u01206 1\now a\n\u0120f ulf\nj s\n\u0120l uck\nust - ed\n\u0120\xC2 \xA7\nn i\n\u0120ant icip\nem an\n\u0120win ner\n\u0120sil - ver\nll a\nic ity\n\u0120unus ual\n\u0120cr ack\n\u0120t ies\ne z\n\u0120pract - ical\n\u0120prov ince\n\u0120Pl ace\n\u0120prior ity\nIC E\n\u0120describ - es\n\u0120br anch\nF orm\nask a\nmiss ions\nb i\n\u0120p orn\n\u0120Tur k\n\u0120ent - hus\n\u0120f ighters\n\u01200 8\n\u0120Det roit\n\u0120found ation\nav id\nA - re\n\u0120jud gment\ncl ing\n\u0120sol ve\n\u0120Des ign\nW here\nhes is\n\u0120T - ro\na fter\n\u0120ne utral\n\u0120Palestin ian\n\u0120Holly wood\n\u0120adv - is\n\u0120N on\ny es\nol is\n\u0120rep utation\n\u0120sm ell\n\u0120b read\n\u0120B - ul\n\u0120Be ach\n\u0120claim ing\n\u0120gen etic\n\u0120techn ologies\n\u0120upgr - ade\nrow s\n\u0120develop er\n\u0120J osh\n\u0120Dis ney\nerv ed\nip al\n\u0120un - ex\n\u0120bare ly\nt hen\n\u0120P ub\n\u0120ill ness\net ary\n\u0120B al\n\u0120p - atch\n\u0120but t\n\u0120st upid\n\u0120D og\n\u0120D allas\nf ront\nie ce\n\u0120prot - ests\n\u0120ch at\noen ix\n\u0120w ing\n\u0120par liament\n\u01207 7\nose - xual\n\u0120re nder\npt ions\n\u0120Co ast\nos a\n\u0120G reg\nh op\n\u0120Man - agement\n\u0120bit coin\n\u0120rec over\n\u0120incor por\nor ne\n\u0120Us - ing\n\u0120pre ced\n\u0120threat ened\n\u0120spirit ual\n\u0120E vent\n\u0120F - red\n\u0120advert ising\n\u0120improve ments\n\u0120C ustom\n\u0120er rors\n\u0120sens - itive\n\u0120N avy\n\u0120cre am\nL ook\n\u0120ex clusive\n\u0120comp rehens\n\u0120de - leg\n\u0120con ce\n\u0120rem em\n\u0120struct ures\n\u0120st ored\nN D\n\u01201 - 000\nU P\n\u0120B udd\nA F\nw oman\n\u0120Acad emy\n\xF0 \u0141\nse a\n\u0120tem - porary\nAb out\nes ters\n\u0120tick ets\n\u0120poss ess\nin ch\no z\n\u0120l - a\n\u0120contract s\n\u0120un p\n\u0120c ig\n\u0120K at\nult ural\nas m\n\u0120mount - ain\n\u0120Capt ain\nSt ep\nm aking\n\u0120Sp ain\n\u0120equ ally\n\u0120l - ands\nat ers\n\u0120reject ed\ner a\nim m\nri x\nC D\n\u0120trans action\ng - ener\nless ly\n\u0120| |\n\u0120c os\n\u0120Hen ry\n\u0120prov isions\n\u0120g - ained\n\u0120direct ory\n\u0120ra ising\n\u0120S ep\nol en\nond er\n\u0120con - sole\nin st\n\u0120b om\n\u0120unc ertain\n1 50\nock ing\n\u0120meas ured\n\u0120pl - ain\n\u0120se ats\n\u0120d ict\nS L\naf e\n\u0120est imate\niz on\nat hered\n\u0120contribut - ed\n\u0120ep isodes\nomm od\nG r\nAN T\n\u01206 9\nG ener\n\u01202 50\nvious - ly\nrog en\n\u0120terror ism\n\u0120move ments\nent le\noun ce\n\u0120S oul\n\u0120pre - v\n\u0120T able\nact s\nri ors\nt ab\n\u0120suff er\n\u0120n erv\n\u0120main - stream\n\u0120W olf\n\u0120franch ise\nb at\n\u0120dem ands\n\u0120ag enda\n\u0120do - zen\n\u0120clin ical\niz ard\n\u0120O p\nt d\n\u0120vis ited\n\u0120Per haps\n\u0120act - or\n\u0120de lic\n\u0120cont ribute\n\u0120in ject\n\u0120E s\nac co\n\u0120list - ening\n\u0120con gress\nepend ent\n\u0120prem ium\n\u01207 6\n\u0120Ir ish\n\u0120ass - igned\n\u0120Ph ys\n\u0120world wide\n\u0120narr ative\not ype\nm ont\nb ase\n\u0120B - owl\n\u0120Administ ration\n\u0120rel ation\n\u0120E V\nC P\n\u0120co vers\n\u01207 - 8\n\u0120cert ific\n\u0120gr ass\n\u01200 4\npir acy\nir a\n\u0120engine ering\n\u0120M - ars\n\u0120un employ\n\u0120Fore ign\nst ract\n\u0120v en\n\u0120st eal\n\u0120repl - ied\n\u0120ult imate\n\u0120tit les\nd ated\n\u0120j oy\na us\n\u0120hy per\nak - u\n\u0120offic ially\n\u0120Pro duct\n\u0120difficult y\nper or\n\u0120result - ed\nrib ed\nl ink\nwh o\n~~ ~~\n\u0120Spe ed\n\u0120V iet\nW ind\n\u0120Bar - ack\n\u0120restrict ions\n\u0120Sh are\n\u0120199 5\nition ally\n\u0120beaut - y\nop t\n\u0120m aps\n\u0120C R\n\u0120N ation\n\u0120Cru z\nW ill\n\u0120electric - ity\n\u0120or g\n\u0120b urd\n\u0120viol ation\n\u0120us age\n\u0120per mit\n\u0120Ch - ron\n\u0120F ant\n\u0120n aturally\n\u01200 7\n\u0120th rown\n\u0120Aw oken\n\u0120al - ien\n\u0120Her o\n\u0120K ent\n\u0120R ick\nri ke\n\u0120p ace\n}, {\"\nG - L\n\u0120po ison\n\u0120T ower\n\u0120form al\nal ysis\n\u0120gen uine\n\u0120k - il\na ver\n\u0120proced ure\n\u0120Pro p\nintend o\n\u0120M ain\nas ant\n\u0120tr - ained\nG ame\n\u0120L oad\n\u0120M A\n\u0120cru cial\n\u0120le ts\n\u0120F - R\n\u0120ch ampion\n1 01\n\u0120Con ference\n\u0120writ ers\n\u0120connect - ions\n\u0120o kay\nir ms\n\u0120R and\n\u0120enc ounter\n\u0120B uff\n\u0120achie - ved\n\u0120che cks\nisc ons\n\u0120assist ant\n\u0120when ever\n\u0120A ccess\n\u0120U - r\nb in\n\u0120cl ock\nis p\nop her\n\u0120b orrow\n\u0120m ad\n\u0120person - ality\non ly\nIS T\nab ama\n\u0120g ains\n\u0120common ly\n\u0120ter r\n\u0120hyp - ot\n\u0120re ly\n\u0120t iss\niscons in\n\u0120rid ic\nf unction\n\u0120O - regon\n\u0120un com\nr ating\nel and\n\u0120N C\n\u0120m oon\nann on\n\u0120vulner - able\nut ive\n\xC2\u0142\xC2\u0142 \xC2\u0142\xC2\u0142\n\u0120Rad io\n\u0120w - estern\nse ct\n\u0120T ony\n\u0120occ urs\n\u0120O s\n\u0120H on\n\xC3 \u0143\n\u0120v - essel\n\u0120Scot land\n\u0120discrim ination\n\u0120subsequ ent\nst ring\n\u0120fant - asy\n\u0120Sh adow\n\u0120test im\nW E\nit i\nr as\n\u0120bo at\n\u0120mar - ks\n\u0120ord inary\n\u0120re n\n\u0120represent ative\n\u0120pet ition\n\u01207 - 3\n\u0120ad venture\n\u0120ign ore\n\u0120Phil adelphia\n\u0120S av\nV P\n\u0120fact - ory\n\u0120t asks\n\u0120dep ression\nz ed\n................ ................\n\u0120St - orm\n\u0120c ogn\n\u0120elig ible\n\u0120redu cing\nv ia\n\u01200 5\n\u0120stri - king\n\u0120doll ar\nh o\nO V\n\u0120instr ument\n\u0120philosoph y\n\u0120Mo - ore\n\u0120A venue\n\u0120rul ed\n\u0120Fr ont\nIN E\n\u0120M ah\n\u0120scen - ario\n\u0120NAS A\n\u0120en orm\n\u0120deb ut\n\u0120te a\nT oday\n\u0120abs - ence\nS im\n\u0120h am\nle ep\n\u0120t ables\n\u0120He art\nM I\nK e\nre qu\nV - D\nm ap\n\u0120chair man\n\u0120p ump\n\u0120rapid ly\nv i\n\u0120substant - ial\nE P\nd es\nch ant\nili pp\n\u0120S anta\nri ers\nanche ster\nL oad\n\u0120C - ase\n\u0120sa ving\n\u01207 4\n\u0120A FP\ner ning\noun ced\n\u0120Min nesota\n\u0120W - as\n\u0120rec ru\n\u0120assess ment\n\u0120B ron\nU E\n\u0120dynam ic\n\u0120f - urn\nul ator\n\u0120prop ag\nh igh\n\u0120acc ommod\n\u0120st ack\n\u0120S - us\nw rit\n\u0120re ven\n\u0120God d\n\u0120Zeal and\nab s\n\u0120br ut\n\u0120per - pet\nh ot\n\u0120hard ly\n\u0120B urn\n\xE3\u0124 \xB9\n\u0120st y\n\u0120trans - actions\n\u0120g ate\n\u0120sc reens\n\u0120sub mitted\n\u01201 01\n\u0120langu - ages\nugh t\nem en\n\u0120fall s\n\u0120c oc\n\u0124 \xAC\n\u0120stri kes\np - a\n\u0120del iber\n\u0120I M\n\u0120rel ax\nann els\n\u0120Sen ator\n\u0120ext - rem\n\u0120} ,\n\u0120De b\n\u0120be ll\n\u0120dis order\nc ut\n\u0120i OS\n\u0120l - ocked\n\u0120em issions\n\u0120short ly\n\" ]\n\u0120Jud ge\n\u0120S ometimes\n\u0120r - ival\n\u0120d ust\n\u0120reach ing\nF ile\n\xC2\xAF\xC2\xAF \xC2\xAF\xC2\xAF\nino - is\n\u0120J ason\n\u0120s atell\nare t\n\u0120st ations\n\u0120ag ric\n\u0120Techn - ology\ncom es\n\u0120Un fortunately\n\u0120Child ren\n\u0120appl ies\nast - ed\n\u0120an ger\nail ability\n\u0120Dam age\n\u0120comp are\n\u0120Stand - ard\n\u0120aim ed\n\u0120B a\nangu age\n\u0120reg ulation\n\u0120j ury\n\u0120air - port\n\u0120se ctions\n\u0120Pr ince\nem ed\n\u0120medic ine\n\u0120h itting\n\u0120sp - ark\nol ves\n\u0120ad s\nSt ate\n\u0120food s\n\u0120repl acement\n\u0120ch - icken\n\u0120low est\n\u0120mind s\n\u0120invol ves\nu i\n\u0120arr ang\n\u0120proced - ures\n\u0120Wh ich\nivers ary\n\u0120b ills\n\u0120improve ment\n\u0120in - ev\n\u0120expect ations\n\u0120intellect ual\n\u0120sp aces\n\u0120mechan - ism\n2 50\nbre ak\n\u0120Z e\n\u0120T enn\n\u0120B alt\n\u0120bar rel\n\u0120stat - ic\nman n\nPol ice\n\u0120t ips\n\u0120hand ling\nc us\nod ed\nil ton\nir - y\n\u0120journal ists\nour se\n\u0120com ic\n\u0120nom ine\nIT Y\n\u0120vers - us\n\u0120lo op\n\u0120sur f\n\u0120Ind ust\n\u0120Hun ter\n\u0120belief s\nis - an\n\u0120set up\n\u0120bre w\nim age\n\u0120comput ers\nf ol\n} ,\"\n\u0120Med - al\n\u0120tax p\n\u0120display ed\n\u0120g rav\n\u0120f iscal\nM on\n\u0120Mos - cow\n\u0120K ong\n\u0120Cent re\n\u0120camer as\n\u0120Mr s\n\u0120H ay\n\u0120a - ver\n\u0120K elly\np y\n\u0120require ment\n\u0120ent itled\nomb ie\n\u0120sh - adow\nag ic\n\u0120A k\n\u0120el ite\n\u0120div ided\n\u0120head ing\n\u0120cop - ies\n\u0120loss es\n\u0120v it\nk ed\n\u0120B ry\n\u0120an s\n\u0120Ste am\n\u0120rep - orter\nhe im\n\u0120It em\n\u0120super ior\nd on\nere nt\n\xC3 \xB6\n\u0120therap - y\n\u0120pe ak\n\u0120Mod el\n\u0120l ying\n\u0120g am\nz er\nr itten\n\u0120respons - es\n\u0120consider ation\n\u0120B ible\n\u0120l oyal\n\u0120inst ant\n\u0120p - m\n\u0120Fore st\n\xC3 \xBC\n\u0120ext end\n\u0120conv icted\n\u0120found - er\n\u0120conv in\n\u0120O ak\nche ck\n\u0120sch olars\np ed\n\u0120over se\nT - op\nc ount\n\u0120Ar k\n\xC2 \xB7\n\u01200 6\n\u0120L A\nm d\n\u0120Lat in\nim - ental\n\u0120C PU\n\u0120subst ance\n\u0120minor ity\n\u0120manufact uring\nE - r\nocol ate\n\u0120att ended\n\u0120Man ager\nr ations\n\u0120appreci ate\nom - y\nGB T\nid ency\nB L\n\u0120guarant ee\npos ition\n\u0120o cean\nclud e\n\u0120head - ed\n\u0120t ape\n\u0120lo ose\n\u0120log ic\n\u0120pro ven\n\u0120sp ir\n\u0120ad - mit\nis a\n\u0120investig ate\n\u0120199 4\nsy lv\n\u0120L ost\nc est\n\u01207 - 1\n\u0120request ed\n\u0120wind ows\n\u0120Pok \xC3\xA9\n\u0120With out\nM - et\n\u0120behavi our\n\u0120read er\n\u0120h ung\n\u0120Ke ep\n\u0120ro les\n\u0120implement - ed\n\u0120bl ank\n\u0120serv es\n\u0120J ay\n\u0120c ited\n\u0120F riend\nprof - it\nap on\n\u0120rep air\nit em\narr ass\n\u0120crit ics\nad i\n\u0120F ather\n\u0120sh - out\n\u0120f ool\n\u01208 8\n\u0120produ cing\n\u0120l ib\n\u0120round s\n\u0120circ - le\n\u0120pre par\n\u0120sub mit\n\u0120n ic\nmor row\n\xE3\u0125 \xAB\nU - nder\n\u0120v ital\nater n\n\u0120pass word\n\u0120public ation\n\u0120prom - inent\n\u0120speak s\n\u0120b ars\n\u0120de eper\n\u0120M ill\nport ed\n\u0120w - id\n\u0120but ter\n\u0120sm oking\n\u0120indic ates\nK ey\nrop ri\n\u0120F - ile\nall ing\nast ing\n\u0120R us\n\u0120ad j\n\u01207 9\nav al\n\u0120pres - um\nbur gh\non ic\n\u0120f ur\n\u0120poll s\nik a\n\u0120second ary\n\u0120mon - ster\nig s\n\u0120Cur rent\nE vent\n\u0120owners hip\nend ar\n\u0120arri ve\n\u0120T - ax\n\u0120n ull\n\u0120Pri v\n\u0120th ro\n\u0120k iss\nc at\n\u0120up set\nang - le\nit ches\nect or\nolog ists\n\u0120Gal axy\n\u0120cor ruption\n\u0120h - int\nent er\n\u0120H ospital\n\u0120great ly\n\u0120beg un\nes y\n\u0120so - il\n\u0120Ant on\n\u0120main tenance\n\xE3\u0125 \xA9\n\u0120do zens\n\u0120human - ity\n\u0120Al abama\n\u0120r om\nw orth\nap ing\nsylv ania\nl ah\n\u0120g - athered\nG A\n\u0120attack ing\nf ound\n\u0120Squ are\n\u0120ar bit\nict ions\n\u0120W - isconsin\n\u0120d ance\n\u0120S aint\narch y\n\u0120base ball\n\u0120contribut - ions\n\u0120liter ature\n\u0120ex ha\nper ty\nt est\n\u0120b ab\n\u0120contain - er\nlet ter\n\u0120fall en\n\u0120webs ites\n\u0120bott le\n\u0120S ac\n\u0120bre - ast\n\u0120P L\n\u0120veter an\n\u0120interview s\n\u0120A le\n\u0120b anned\neng - ers\n\u0120Rev olution\nin th\n\u0120conc erning\nIV E\n\u0120exp enses\n\u0120Matt - hew\n\u0120Columb ia\nd s\nist ance\n\u0120ent ity\n.. .\"\n\u0120rel iable\n\u0120par - alle\n\u0120Christ ians\n\u0120opin ions\n\u0120in du\nl ow\n\u0120compet - e\n\u0120th orough\n\u0120employ ed\n\u0120establish ment\nig en\n\u0120C - ro\n\u0120lawy ers\n\u0120St ation\nT E\n\u0120L ind\n\u0120P ur\nit ary\n\u0120effic - iency\n\xE2\u0122 \u0132\n\u0120L y\n\u0120m ask\n\u0120dis aster\n\u0120ag - es\nER E\nes is\n\u0120H old\n\u0120cas ual\nb led\n\u0120en abled\n\u0120En - vironment\n\u0120Int elligence\ni per\n\u0120M ap\n\u0120B E\n\u0120emer ged\nis - dom\n\u0120c abin\n\u0120regist ration\n\u0120fing ers\n\u0120ro ster\n\u0120fram - ework\n\u0120Do ctor\net ts\n\u0120transport ation\n\u0120aware ness\nH er\n\u0120attempt - ing\nO ff\n\u0120St ore\n\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124 \xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\n\u0120K - now\n\u0120def ence\n\u0120sc an\n\u0120T en\n\u0120Ch air\n\u0120P H\n\u0120Atl - anta\n\u0120fuck ing\n\u0120ans wered\nb n\n\u0120K ar\n\u0120categ ories\n\u0120r - ational\n\u0120c ust\n\u0120rob ot\n\u0120correct ly\n\u0120g if\n\u0120graph - ics\nm ic\n\u0120ground s\n\u0120O pp\ni ate\n\u0120dist ributed\n\u0120san - ctions\n\u0120challeng ing\nut o\n\u0120ingred ients\n\u0120inv ited\n\u0120found - ed\n\u0120Re qu\nd ed\n\u0120b owl\n\u0120brother s\n\u0120H a\nI O\n\u0120w - ages\nim ore\noc ial\n\u0120se ed\native ly\n\u0120address es\n\u0120I owa\nab - eth\n\u0120att itude\nis d\nch ild\n\u0120m ole\n\u0120disco very\ny ard\nB - r\n\u01208 2\n\u0120suppl ies\nell ing\n\u0120dist ingu\nC R\n\u0120re cept\n\u0120 - vert\n\u0120sw im\nb ec\nd oor\n\u0120Y eah\n\u0120g al\n\u0120inter act\n\u0120E - SP\n\u0120C S\namp s\n\u0120convin ced\n\u0120object ive\n\u0120dis h\n\u0120Phot - os\nl ad\n\u0120downt own\no il\nin ction\n\u0120to morrow\n\u0120C OM\n\u0120surv - ival\nsh ot\n\u0120sett lement\nC ons\n\u0120X box\nint erest\n\u0120S M\narg - o\nen ess\n\u0120eth nic\nb ered\nM in\n\u0120T ok\n\u0120inc ent\n\u0120Comm - and\n\u0120main tained\n\u0120break s\nbr idge\nat ar\nag g\n\u0120F inally\nun - icip\n\u0120O nt\nle ft\n\u0120recogn ition\n\u0120* /\n\u0120P ers\n\u0120we - lf\n\u0120address ed\n\u0120K ansas\n\u0120vir us\n\u0120where as\n\u0120p - apers\nram s\n\u0120Min istry\n\u0120ple asure\n\u0120acqu ired\n\u0120d uration\nj - pg\n\u0120cal m\n\u0120N HL\n\u0120burn ing\n\u0120fold er\nick ed\n\u0120P - y\n\u0120Ill inois\nCl ass\n\u0120Godd ess\n\u0120perform ing\n\u0120welf - are\nj ar\nIn ter\n\u0120l in\n\u0120enh ance\n\u0120not ion\nf are\nyp es\n\u0120Are - a\n\u0120cann abis\n\u0120Die go\nf s\n\u0120M anchester\ncom m\nin ite\n\u0120cover - ing\n\u0120S ound\n\u012019 60\n\u01208 4\ne lect\nz ing\n\u0120citiz en\n\u0120ph - ones\n\u0120r aid\n\u0120ign ored\n\u0120Ob ject\n\u0120u pload\nc ard\n\u0120mod - ified\n\u0120room s\nia h\nr ange\nhe ast\nach us\n\u0120suggest ing\n\xE2\u0122 - \u012D\ngr ade\nE l\n\u0120clot hing\n\u0120r h\n\u0120H an\nun ity\nen cing\n\u0120Aust - in\nsec ution\nt ra\nd em\n\u0120Q ual\n\u0120he aven\n\u0120st ages\n\u0120w - edd\npl us\nific ial\n\u0120Im m\n\u0120H o\niet ies\n\u0120phr ase\n\u0120br - ill\nact ory\n\u0120prov iders\n\u0120sil ence\n\u0120a er\n\u0120A I\n\u0120Ad - venture\n\u0120platform s\n\u0120demonstr ated\n\u0120inter f\ning ton\n\u0120r - aces\n\u0120gr ade\nult ane\n\u0120Th rough\nf alse\n\u0120b ow\n\u0120A B\n\u0120fl - avor\n\u0120histor ic\ng ov\n\u0120col our\n\u0120view ed\n\u0120Em ail\nel - come\n\u0120inter vention\n\u0120d iversity\n\u0120period s\n\u0120re verse\n\u0120V - ery\n\u0120qu ote\n\u0120Le ft\nth rough\n\u0120sc rew\n\u0120land ing\n\u0120p - ill\n\u0120w et\n\u0120prot esters\n\u0120repe at\nav ed\ner k\n\u0120sal - ary\n\u0120Penn sylvania\nSt ill\n\u0120may or\n\u0120kit chen\n\u0120feat - uring\n\u0120M useum\n\u0120T ournament\n\u0120F al\n\u0120ser vers\nU C\n\u0120any - body\nim g\n\u0120Tr ade\nixt ure\nthe less\n\u0120fin ance\n\u0120cl osing\n\u0120Pat - ri\ni ac\nab el\n\u0120> >\nor ous\n\u0120f irms\nsc reen\nun a\n\u0120emb - arrass\nul se\n\u0120let ting\n\u0120th rew\nile y\n\u0120ch annels\nl an\n\u0120Veg - as\n\u0120se ar\n\u0120fant astic\nar re\nuzz le\n\u0120D er\nTh ose\n\u0120sw - ing\n\u0120she et\nind ex\nco ver\nog an\n\u0120vari ables\n\u0120Te ch\n\u0120sp - oken\nac hel\n\u0120D a\n\u0120Mount ain\n\u0120load ed\n\u0120foot age\nvers - ion\n\u0120un l\n\u0120Ph oenix\n\u0120throw ing\n\u0120f iring\n\u0120track - ing\n\u0120w idth\n\u0120strugg ling\nro oms\not ion\n\u0120month ly\n\u0120Ser - ver\n\u0120egg s\nop en\nM C\n\u0120199 3\n\u0120h ired\n\u0120stay ed\n\u0120All - en\n\u0120st ro\n\u01209 8\nst ep\n\u0120Turk ish\n\u0120fab ric\nist ing\n\u0120D - om\n\u0120d ates\n\u0120pr on\n\u0120basket ball\n\u0120l ucky\n\u0120Arab - ia\n\u0120assum ed\nest y\n\u0120aff airs\n\u0120gl ad\n\u0120Ind eed\n\u0120F - A\n\u0120W ord\n\u0120jo ining\nif ice\np read\nir ts\n\u0120Se lect\n\u0120pop - ulations\naw are\n\u0120n ose\n\u0120compl aints\nst art\n\u0120sc oring\nTh - anks\n\u0120min ing\n\u0120visit ors\nS H\n\u0120dam aged\n\u0120character - istics\n\u0120P ent\nD C\n\u01208 3\n\u0120S ix\nr ates\n\u0120fl ags\n\u0120B - rew\nd og\nM ark\n// //\n\u0120exec ution\n\u0120j oke\nph ones\n\u0120testim - ony\n\u0120ob st\nQ L\n\u0120C ut\n\u0120stud ied\n\u0120N intendo\nick et\n\u0120N - BC\n\u0120l ad\n\u0120B ra\n\u0120M oh\n\u0120k ernel\n\u0120overwhel ming\n\u0120ag - ed\n\u0120applic able\n\u0120C ond\n\u0120road s\n\u0120Bl ock\nm ade\nod - ge\n\u0120comm ands\n\u0120off ices\nvel and\n\u0120t ut\n\u0120rece iver\n\u0120F - ro\n\u0120sho pping\n\u0120i P\n\u0120St re\n\u0120A BC\n\u0120entertain ment\n\u0120B - ow\nort ed\nM c\n\u0120read s\ngr ad\n\u0120Col lect\n\u0120\xE2 \u012A\u0134\n\u0120Cap - ital\neder ation\n\u0120employ er\n\u0120involve ment\n\u0120anx iety\nal - ia\n\u0120ro of\n\u0120Am ong\n\u0120Democr at\n\u0120stat s\n\u0120V ill\n\u0120const - itutional\n\u0120refer ring\nitt y\n\u0120tack le\nout ube\n\u0120back ed\n\u0120H - ong\n\u0120Bro ad\n\u0120e le\n\u0120O tt\n\u0120199 2\nh our\nachus etts\nC - al\n\u0120defe ated\n\u01208 1\nes p\n\u0120seem ingly\nw as\n\u0120J enn\n\u0120K - urd\n\u0120g ene\n\u0120disc ount\nR et\nEC T\n( );\n\u0120club s\n\u0120s - id\n\u0120M arsh\nChe ck\n\u0120p p\n\u0120E ag\nides pread\n\u0120be ings\nF - T\n\u0120introdu ction\n\u0120Ch ange\nAR D\n\u01201 10\nad ows\nier ce\n\u0120me - al\na uthor\n\u0120B ang\nlah oma\n\u0120r anks\n201 1\n?? ??\nm ax\n\u0120coll - apse\n\u0120op ens\n\u0120e cho\n\u0120s oph\n\u0120rac ist\n\u0120enorm ous\n\u0120w - aves\n\u0120t ap\n\u0120comprehens ive\n. --\n\u0120R oy\n\u0120farm ers\nRel - ated\na ired\nron es\n\u0120C rim\n\u0120proport ion\n\u0120design s\n\u0120negoti - ations\n\u0120virt ually\n\u0120Bat man\n\u0120war n\n\u0120legit imate\nm - ate\n\u0120con vention\n, ,\nnet ic\n\u0120S D\n\u0120consist ently\n\u0120compens - ation\n\u0120punish ment\n\u0120y e\n\u0120t ie\n\u0120B ureau\nir lf\n\u0120B - u\n\u0120A ren\n\u0120Ph ilipp\n\u0120kn ife\n\u0120mem ories\n\u0120R oss\n\u0120ang - le\n\u01208 6\n\u0120Th under\n\u0120re nd\n\u0120T our\n\u0120count s\ns - ung\n\u0120Im p\n\u0120educ ational\n\u0120access ible\nC OM\n\u0120d rew\ny - er\nG l\nam ine\nOR T\nO B\nI B\nm aster\n\u0120tri als\nog y\nh ar\n\u0120Tr - ust\n\u0120prefer red\nirlf riend\n\u0120N ev\n\u0120b in\n\u0120c ow\nP age\n\u0120sign - ature\n\u0120B L\n7 00\n\u0120ret ired\n\u0120by tes\n\u0120neigh b\n\u0120Leg - end\n\u0120dev ast\n\u0120suspect ed\nis ons\n\u0120Pok\xC3\xA9 mon\nsc ale\n\u0120cap - abilities\n\u0120re vel\n\u0120che ese\nd y\nigr ant\n\u0120fail ing\nb its\n\u0120Her - oes\n\u0120G host\n\u0120S cient\n\u0120appoint ed\nur i\n\u0120inst itution\n\u0120expand - ed\ng reg\n\u0120monitor ing\n\u0120p odcast\n\u0120coal ition\n\u01209 6\nJ - o\n\u0120st olen\n\u0120S ab\n\u0120stop s\n\u0120hol iday\n\u0120int r\nC - ar\nBl ack\n\u0120L GBT\n\u0120war ming\n\u0120And erson\n\u01208 9\n\u0120produ - cer\nM ed\n\u0120accur acy\n\u0120Mar vel\niz abeth\n\u0120Pat rick\nm ony\n\u0120min - i\nac les\n\u0120over t\nthe y\n\u0120members hip\n\u0120V en\n\u0120ex ch\n\u0120rem - oval\n\u0120D ave\nT Y\nm ad\n\u0120F ind\n\u0120ad equ\n\u0120e c\n\u0120te - eth\n\u0120emot ion\n\u0120per m\n\u0120sole ly\nd b\n\u0120extra ord\nIG - HT\nc al\n\u0120gu idelines\n\u0120d ying\n\u0120susp ended\n\u0120Prem ier\n\u0120Anth - ony\nel ve\n\u0120d ad\n\u0120E th\n\u0120Foot ball\n\u0120abandon ed\n\u0120< - <\n\u0120m arch\n\u0120hor ror\n\xE2\u0122\xA6 \"\n\u0120child hood\n\u0120campaign - s\n\u0120l unch\n\u0120Al bert\nbl ock\n\xE2\u0138\u012A \xE2\u0138\u012A\nound - ing\n\u0120b one\nor gan\nad ers\n\u0120Fl ash\n\u0120Dri ve\n\u0120ton ight\n\u0120w - ars\n\u0120F L\n\u0120form ation\ncon st\nNew s\n\u0120com pe\nor ious\n\u0120St - aff\n\u0120discuss ions\n\u0120Prot ection\n\u0120J am\n\u0120crit eria\n\u0120install - ation\n\u0120accompl ish\niz za\n\u0120pub lisher\n\u0120resc ue\n\u0120T - ry\nU LL\n\u0120S om\n\u0120H op\nore t\nth s\nord on\n\u0120p ocket\n\u0120In - v\nDown load\n\u0120Cr ime\n\u0120b ene\n\u0120Gu ide\n\u0120As sembly\n\u0120param - eters\nI E\n\u0120Alex ander\n\u0120conc ert\n\u0120Sc he\n\u0120sh oes\n\u0120vis - iting\n\u0120rec all\n\u0120b ub\n\u0120r ural\n\u0120conc rete\n\u0120R os\nN - ext\nR uss\n\u0120lo ans\n\u0120Sh ield\n\u0120tre m\nhem at\nk g\n\u0120Har - ris\nis ition\n\u0120M ove\n\u0120F C\n\u0120f ate\n\u0120Ch o\n\u0120t ired\n\u0120princ - ipal\nh ist\nien ces\nath y\n\u0120se vent\n\u0120m ood\n\u0120strateg ic\n\u0120dise - ases\n\u0120for um\n\u0120tem por\n\u0120head quarters\nP ar\nig e\nfl ix\n\u0120gu - itar\n\u01209 4\nOn ly\n\u0120rele ases\nro ph\n================ ================\n\u01206 - 00\n\u0120Contin ue\nig ate\n\u0120C rit\nsy stem\n\u0120dis abled\n\u0120unex - pected\nith ub\n\u0120uncle ar\n\u0120E st\n\u0120contr ad\n\u0120strateg - ies\nvent ures\n\u0120pass age\nAM E\n\u0120impro ving\n\u0120reve als\n\u0120decre - ase\nov a\n\u0120ann oy\n\u0120Sh ort\n\u0120L ibrary\n\u0120cy ber\nn ell\n\u0120H - ur\n\u0120C B\n\u0120phot ograp\nU I\n\u0120s ed\nG e\n\u01208 7\n\u0120d - iverse\n\u0120encour aged\n\u0120cons piracy\n\u0120bird s\n\u0120oper ator\n\u0120hand - ful\n\u0120class ified\n? )\n\u0120dram atic\n\u0120investig ators\nit o\n\u0120w - idespread\n\u0120R oom\n-------------------------------- --------------------------------\n\u0120collect - ive\n\u0120journal ist\nSt ring\n\u0120temper atures\nil a\n\u0120gu id\n\u0120ins - pect\n\u0120miss ile\n\u0120May or\n\u0120man ual\n\u0120sim ultane\n\u0120rat - ings\n\u0120su ck\n\u01209 7\n\u0120univers al\n\u0120ph arm\n\u0120dis rupt\nian - o\nA V\n\u0120f t\n\u0120stat ist\nold s\n\u0120Walk er\nph p\n\u0120under - t\n\u0120L as\nish op\nnt il\nres hold\n\u0120Whe ther\nM s\n\u0120den y\n\u0120Cl - oud\n\u0120prov ider\n\u0120surv iv\n\u0120Up date\nh as\n\u0120mist akes\nch - arge\npl ed\nr ity\n\u0120n ode\n\u0120Mass achusetts\nool s\nlic ation\n\u0120f - ails\nem ale\nor i\nback s\n\u0120sh irt\n\u0120' '\n\u0120N AT\n\u0120wat - ers\nels on\n\u0120e ase\n\u0120sc ar\n\u0120cont ents\nm ind\n\u0120cont - ribution\n\u0120sh r\n\u0120hand ed\n\u0120st ability\n\u0120tra ve\nE m\n\u0120mir - ror\n12 3\n\u0120we igh\n\u0120f iction\nou ver\nist ant\nr ition\n\u0120F - ed\n\u0120phys ically\n\u0120st ake\n\u0120Art icle\n\u0120Ar c\n\u0120Lew - is\n\u0120M ind\n\u0120demonstr ate\n\u0120prof its\nv ision\nom ic\nol id\n\u0120batt - les\n\u0120dri ves\n\u0120eas tern\n\u0120S ony\n!! !\nar ation\nv ard\n\u0120G - L\nport ation\n\u01209 2\n\u0120law makers\n\u0120protect ing\n\u0120E PA\n\u0120y - eah\n\u0120sh ame\nol ph\ne ven\nx it\n\u0120att ach\n\u0120represent ing\n\u0120ob - s\n\u0120Ut ah\niff s\n\u0120Fre edom\n\xC3 \xB3\nA K\n\u0120inc idents\nit - age\n\u0120view ers\nc d\n\u0120m ouse\n\u0120cl ar\n\u0120accord ance\n\u0120b - ot\nc or\n\u0120Sum mer\nhe ld\n\u0120innoc ent\n\u0120initi ative\nol s\n________________ - ________________\n\u0120sp ots\np ace\n\u0120convent ional\n\u0120corpor ations\n\u0120block - ed\nH D\nat tered\n\u0120ref ers\n\u0120bu ck\n\u0120Dig ital\n12 0\n\u0120top - ics\nT F\n\xC4 \u0123\nbr id\nre ement\n\u0120under lying\n\u0120M ember\n\u0120investig - ating\n\u0120pregn ancy\n\u0120touch down\n\u0120B and\n\u0120Call er\n\u0120inst - ances\nP P\nw a\nG ood\n\u0120199 1\n\u0120C old\n\u0120fear s\n\u0120rem - arks\n\u0128 \u0134\nat al\n\u0120m it\n\u0120exper iments\ni pt\nCol or\nind - u\nUp date\n\u01209 3\nA g\n\u0120 \xE5\nanc ouver\nB oth\n\u0120jud ges\nOb - ject\n\u0120st ere\numb n\n\u0120particip ation\n\u0120St ars\n\u0120J ere\n\u0120week - ly\n\u0120B an\n\u0120convers ations\n\u0120P itt\nu z\n\u0120Indian a\n\u0120K - ick\n\u0120inf ection\n\u0120hero es\n\u0120sett led\n\u0120stri p\n\u0120h - al\n\u0120d ump\n\u0120S ci\n\u0120l es\n\u0120ref erences\n\u0120U RL\n\u0120Br - idge\n\u0120want ing\nFor ce\n\u0120ex clus\nMe anwhile\nm n\n\u0120g entle\nm - aker\nsen al\n\u0120G ro\nou ri\n\u0120R ain\n\u0120All iance\n\u0120l ift\nel - a\nS D\n\u0120Cle veland\n\u0120rank ed\n\u0120st adium\n\u0120dead ly\n\xE4 - \xB8\n\u0120r iding\nar ia\n\u0120Ar mor\n\u0120document ation\n\u0120Gree - ce\nree k\n\u0120l ens\n\u0120S a\n\u0120g ross\n\u0120E mer\nag ers\n\u0120D - ub\n\u0120R h\n\u0120AM D\n\u0120arri val\n\u0120des ert\n\u0120supp lement\n\u0120Res - p\n\u0120kn ee\n\u0120marg in\nf ont\nog g\n201 0\n\u0120P ir\n\u0120P rom\niv - als\n\u0120int ake\n\u0120different ly\nug s\n\u0120b its\nclud ed\n\u0120search - ing\n\u0120D u\num ble\n\u0120function al\n\u0120Balt imore\n\u0120C ould\n\u0120des - ired\n\u0120circ uit\n\u0120L yn\n\u0120G O\n\u0120F alse\nre pre\n' :\nalt - ies\n\u0120min im\n\u0120dro ve\n\u0120Sh ould\n\u0120h ip\n\u0120pro s\n\u0120ut - ility\n\u0120N ature\n\u0120M ode\nP resident\no pp\nr at\nform ance\n\u0120concent - ration\n\u0120f ont\n\u0120B ud\n\u0120am id\n\u0120re vers\n\u0120M L\nB - ar\n\u0120inter action\n\u0120jur isd\n\u0120spell s\nd ep\nf il\n\u0120civil - ians\nut ter\n\u0120Co oper\n\u0120Bel ow\n\u0120ent rance\n\u0120con vert\n\u0120controvers - y\now ered\n\u0120contr ary\n\u0120ar c\n\u0120Exec utive\n\u0120Offic er\n\u0120pack - ages\n\u0120prog ressive\nw idth\n\u0120reserv ed\nv ol\n\u0120Sam sung\n\u0120print - ed\n\u0120cent ers\n\u0120introdu ce\n\u0120Kenn edy\n\u0120odd s\n\u0120sure - ly\n\u0120independ ence\n\u0120pass engers\nrepre ne\n\u0120Be h\n\u0120l - oves\n\u0120ESP N\n\u0120fac ilit\n\u0120ident ical\n\u0120do ct\n\u0120partners - hip\ncon f\n\u0120H ide\n\u0120conf used\n\u0120C ow\nM en\n\u0120w rest\n\u0120Iraq - i\n\u0120h oles\n\u0120Stud ies\n\u0120pregn ant\nh ard\n\u0120sign als\nI - X\n\u0120pull ing\n\u0120grad uate\n\u0120nomine e\nD ate\n\u0120per mitted\n\u0120\xE2 - \u0124\xAC\n\u0120Ok lahoma\nSt art\n\u0120author ized\n\u0120al arm\n\u0120C - os\nv an\n\u0120gener ations\nc ular\n\u0120dr agon\n\u0120Soft ware\n\u0120Ed - ward\n\u0120contro ller\nS en\nge red\n\u0120V ik\n\u0120appro ached\nTh ank\n\u0120can - ce\n\u0120form ula\n\u0120Sm all\n\u0120weak ness\n\u0120r amp\nit udes\nj - ud\n\u0120brill iant\n\u0120acc us\ns ource\n\u01208 00\n\u0120E vil\nS w\n\u0120hom - eless\nwe ek\ni ens\nr ics\n\u0120Th ird\nT O\n\u0120organ ic\n\u0120present - ation\nag h\n\u0120Down load\nv ation\n\u0120as sembly\nor able\nhold ers\n\u0120Bern - ie\n\u0120Hel p\n\u0120t ong\n\u0120F ight\n\u0120be ach\nB ook\n\u0120L ic\n\u0120r - ush\n\u0120R ound\nou p\n\u0120Mar x\n\u0120calcul ated\n\u0120De vil\n\u0120Sar - ah\n\u0120occasion ally\n\u0120bul let\nAv ailable\ng ate\n\u01209 1\n\u0120h - osp\n\u0120prom ises\n\u0120H IV\n\u0120St adium\n\u0120St ock\n\u0120Corpor - ation\ng age\nN G\n\u0120C redit\n\u0120s ne\nib l\n\u0120acc um\ns uch\n\u0120terror - ists\n\u0120conscious ness\n\u0120Z h\n\u0120dram a\nool a\npir ation\n\u0120lab - our\n\u0120N in\n\u0120ut ter\n\u0120democr atic\n\u0120ass ass\nil ation\n\u0120g - est\n\u0120ab road\n\u0120met ab\n\u0120s orts\n\u0120fl av\nU B\n\u0120m - g\n\u0120Not hing\n\u0120O d\n\u0120mus ical\n200 9\n\u0120dro ps\noc ated\nater - al\n0000 00\n\u0120g re\n\u0120equ ality\n\u0120burd en\n\u0120v ig\n\u0120Le - ader\n-------- ----\n\u0120cere mony\n\u0120f ighter\n\u0120act ors\n\u0120 - \xE6\nam an\nF i\n\u0120al ign\nput er\n\u0120e lder\n\u0120N SA\n\u0120represent - ation\n\u0120Ont ario\nIT H\nusal em\n\u0120harass ment\nitz er\n\u0120sy - mp\n\u0120box es\n\u0120D R\n\u0120man ifest\nat re\n\u0120 ^\n\u0120d ies\nle - ton\n\u0120miss ions\net he\n\u0120res olve\n\u0120follow ers\n\u0120as c\n\u0120k - m\nl ord\nam med\n\u0120sil ent\n\u0120Associ ated\n\u0120tim ing\n\u0120prison - ers\n\u0120K ings\n\u0120F ive\n\u0120tow er\n\u0120appro aches\n\u0120precise - ly\n\u0120b ureau\n\u0120M other\n\u0120I ss\n\u0120key board\nit ual\n\u0120fund - ed\n\u0120stay ing\n\u0120psych ological\n\u0120m ile\n\u0120Le on\n\u0120Bar - b\nw ill\n\u0120w ider\n\u0120Atl antic\n\u0120t ill\n\u0120R ome\nro t\n\u0120accomp - an\n\u0120fl our\nac o\nW orld\n\u0120Exp ress\n\u0120Y u\nC or\n\u0120ple - ased\npart y\n\u0120point ing\n\u0120inf lation\n\u0120ro y\n\u0120 ),\nain - er\n\u0120wedd ing\norm on\n\u0120requ iring\n\u0120qual ified\n\u0120se gment\nEN - D\n\u0120s izes\ne als\n\u0120cor rupt\nass ador\n\u0120cele b\n\u0120dream - s\n\u0120M ess\n\u0120check ing\n\u0120V ersion\n\u0120prep aring\n\u0120act - ively\n\u0120D iff\n\u0120l ux\n\u0120W inter\nact eria\n\u0120N E\n\u0120dep - uty\n\u0120trans gender\n\u0120sum mary\n\u0120in her\ner ies\nch ar\n\u0120Y - an\n\u0120kn ock\n\u0120P ath\n\u0120l ip\nroll er\n\u0120imp ression\n\u0120celebr - ate\n\u0120sl ide\n\u0120gu ests\n\u0120cl ip\nF S\n\u0120sav ings\n\u0120capt - ain\n\u0120leg acy\n\u0120Den ver\n\u0120w ounded\ntab oola\nAC T\n\u0120purs - ue\n\u0120o xy\n\u0120 q\n\u0120sem i\n\u0120N eed\n\u0120Aff airs\n\u0120ob - sc\n\u0120check ed\n\u0120d ual\nC ode\n\u0120M D\nle m\nult y\n\u0120\xC2 - \xA9\n\u0120El izabeth\n\u0120cent uries\nard ed\ns rc\n\u0120ev ident\nenn - is\nat in\n\u0120unemploy ment\n\u0120Mar io\n\u0120int im\nCh rist\n\u0120bi - ological\n\u0120sold ier\n\u0120Add ed\n\u0120m ath\n\u0120G il\n\u0120bi - as\n\u0120d ating\n\u0120O cean\n\u0120m ice\nM us\nh ire\n\u0120T es\nSer - ver\nlim ited\nS ize\n\u0120met ers\n\u0120rock et\nes see\n\u0120certific - ate\n\u0120Iran ian\nAS S\n\u0120gr id\nD ec\n\u0120ro lling\ncom mun\n\u0120Swed - en\nb ury\n\u0120tiss ue\n\u0120rac ism\n\u0120L ocal\n\u0120myster y\n\u0120exam - ine\n\u0120st em\n\u0120s its\n\u0120hop ed\not ing\n\u0120dial ogue\n\u0120pers - u\nW atch\nl ay\nM AN\n\u0120ch ronic\n\u0120Port land\nmark et\n\u0120S EC\n\u0120paralle - l\n\u0120sc andal\n\u0120car ries\n\u0120phenomen on\nh uman\nack er\n\u0120O - x\n\u0120retire ment\ntain ment\nov ie\n\u0120G ear\n\u0120d uties\n\u0120do - se\n\u0120sc roll\nM B\nin f\n\u0120sa uce\n\u0120land scape\nred dit\n\u0120Champions - hip\n\u0120Red dit\nal id\n\u0120co in\n\u0120over s\n\u0120post ing\nab out\n\u0120f - el\nand y\n\u0120b old\n\u0120focus ing\ne ffect\nG R\n\u0120de emed\n\u0120recommend - ations\n\u0120ste pped\n\u0120vot er\n\u0120De ep\n\u0120Inst agram\n\u0120moder - ate\n\u0120Mary land\n\u0120restrict ed\n\u0120M B\n\u0120Ch all\n\u0120to - b\n\u0120c ir\n\u0120O cc\n\u0120E ver\n\u0120coll aps\nIN FO\n= -\n\u0120P - ict\n\u0120Acc ount\nn c\n\u0120o ught\n\u0120ex port\n\u0120dr unk\n( '\n\u0120w - ise\n\u0120M ort\nne cess\n\u0120an cest\n\u0120Inc re\n\u0120frequ ent\nm - ir\n\u0120interpret ation\n\u0120depend ent\n\u0120co ins\n\u0120B ol\nV ideo\n\u0120Just - in\n\u0120fat al\n\u0120cook ing\n\u0120conf usion\nip her\n\u0120cust ody\n\u0120Mor - gan\nom ach\n\u0120Govern or\n\u0120restaur ants\nel ing\n\u0120acknowled - ged\n\u0120the r\n\u0120gen es\nch ing\nHe y\n\u0120tact ics\n\u0120Mex ican\n\u0120v - end\n\u0120he s\nqu er\n\u0120not ing\n\u0120Camer on\n\u0120target ing\nro - ck\n\u0120cred its\n\u0120emot ions\n\u0120represent atives\nnew s\n\u0120legisl - ative\n\u0120rem oving\n\u0120tweet ed\n\u0120Car ter\n\u0120F ixed\n\u0120for - cing\n\u0120speak er\n\u0120m ales\n\u0120Viet nam\nl ined\n\u0120concept - s\n\u0120vo ices\no ir\n\u0120T rib\nW he\n\u0120Jer usalem\n\u0120S ant\n\u0120c - ul\n\u0120l ady\n\u0120Haw ai\n\u0120ar ts\n\u0120In n\n\u0120Mach ine\n\u0120Em - peror\n\u0120sl ot\ng ly\n\u0120Pro cess\nII I\n\u0120athlet es\n\u0120Tem - ple\n\u0120Rep resent\n\u0120pres c\n\u0120t ons\n\u0120gold en\n\u0120p unch\n\u0120G - R\niver pool\n\u0120en act\n\u0120lob by\n\u0120m os\n\u0120pick ing\n\u0120lif - etime\n\u0120cogn itive\nE ach\nz o\n\u0120d ub\n\u0120cons ists\nol n\n\u0120f - estival\nam ous\n\u0120int ellig\nw ords\n\u0120Sm art\n\u0120de le\n\u0120l - apt\n\u0120mag ical\n\u0120S in\nb us\nur ities\nigh th\n\u0120Rub y\n\u0120S - ure\nol ving\n\u0120j un\nO ST\n\u0120imp osed\n\u0120ast ron\n\u0120cor rel\n\u0120N - S\n\u0120K it\n\u0120F uture\nb urn\n\u0120imm une\noc us\n\u0120cour ses\n\u0120St - ring\n\u0120le an\n\u0120g host\n\u0120out comes\n\u0120exp ense\n\u0120every - day\n\u0120accept able\nA h\n\u0120equ ipped\n\u0120or ange\nF R\n\u0120D - utch\nTh ough\n\u0120R ank\nQ U\n\u0120Rober ts\nwh at\nre nd\n\u0120disapp - ear\n\u0120sp awn\n\u0120L am\no is\n\u0120des erve\n\u0120min imal\n\u0120nerv - ous\n\u0120W ould\n\u0120ro ok\n\u0120V ancouver\n\u0120res ign\nsh ire\n\u0120W - orks\n\u0120B uild\n\u0120afford able\n\u0120G ary\n\u0120Aren a\n\u0120h - anging\n\u0120impl ications\n\u0120S ong\n\u0120main taining\n\u0120gu ards\nC - ON\n\u0120der ived\n\u0120execut ed\n\u0120the ories\n\u0120qu oted\n\u0120And - re\nog a\nsel ess\nin fo\n\u0120Bel g\n\u0120t ears\n\u0120Sur v\n\u0120birth - day\nig ious\nim mer\n\u0120spect rum\n\u0120architect ure\n\u0120rec ruit\narm - a\nT able\n\u0120mon sters\n\u0120G ov\n\u0120dest ination\n\u0120attract - ive\n\u0120f oss\n\u0120More over\n\u0120pres ents\nTH E\n\u0120rep ly\npt - on\n\u0120c um\n\u0120del ight\n\u0120affect s\n\u0120don ations\n\u0120T - oy\n\u0120H im\nM ENT\n\u0120over come\nit ched\n\u0120Fant asy\n\u0120H at\n\u0120Be - ast\nb ott\n\u0120investig ations\nR un\n\u0120hun ting\nd i\nf und\n\u0120s - essions\nest yle\n\u0120port ray\noid s\nY eah\n\u0120commun icate\n\u0120com - edy\n\u0120Y ang\n\u0120bel t\n\u0120Mar ine\n\u0120predict ed\nPl ay\n\u0120important - ly\n\u0120remark able\n\u0120elim inate\nD avid\n\u0120b ind\nV ID\n\u0120advoc - ates\n\u0120G aza\nim p\nD B\n\u0120N a\n\u0120Sim ilar\nI ES\n\u0120char - ity\nv as\nm ath\n\u0120\xE2 \u0138\nok er\nnd um\n\u0120cap s\n\u0120H al\n2 - 000\ne an\n\u0120fle et\n\u0120rec re\nR ight\n\u0120sleep ing\nij ing\nk - ind\n\u0120design ated\n\xC3 \xA4\n\u0120anim ation\nke e\n\u0120Int rodu\n\u0120/ - >\n\u0120delay ed\n\u0120trem end\n\u0120cur ious\nU se\n\u0120le ct\nd am\n\u0120innov - ation\n\u0120Point s\n\u0120load ing\n\u0120disp ute\nct ic\nird s\n\u0120B - Y\n\u0120n urs\n\u0120Val ue\nION S\n\u0120H um\n\u0120tem plate\nm ers\n\u0120appear - ances\n\u0120Enter tainment\n\u0120transl ation\n\u0120sa ke\n\u0120bene ath\n\u0120in - hib\n\u0120e uro\nabet es\n\u0120stud ying\n\u0120M as\n\u0120per ceived\n\u0120exam - ined\n\u0120e ager\n\u0120co aches\n\u0120im per\nch i\n\u0120produ ces\n\" - ).\n\u0120Every one\n\u0120m unicip\n\u0120g irlfriend\n\u0120h ire\n\u0120V - ice\n\u0120su itable\nop y\n\u0120in equ\n\u0120D uke\nf ish\nf irst\n\u0120O - bs\n\u0120inter ior\n\u0120Bru ce\n\u0120R y\n\u0120anal ys\n\u0120consider - able\n\u0120fore cast\n\u0120f ert\nors hip\n\u0120D rug\n\u0120A LL\n: \"\nth - ur\n\u0120M ail\n\u0120ball ot\n\u0120inst antly\n\u0120Ch annel\n\u0120p - icks\n\u0120198 9\n\u0120t ent\nol i\n\u0120civil ian\nb ling\nell o\nb u\n\u0120in - ch\n\u0120log o\n\u0120cooper ation\n\u0120wal ks\n\u0120invest ments\n\u0120imp - rison\n\u0120F estival\n\u0120K y\n\u0120leg ally\n\u0120g ri\nch arg\nS l\n\u0120threat - ening\ndu ction\nfl ow\n\u0120dismiss ed\nibr aries\nc ap\ne le\n\u0120Mc - G\n\u0120Har vard\n\u0120Conserv ative\n\u0120C BS\np ng\n\u0120ro ots\n\u0120H - aving\numb led\n\u0120F un\n\\ /\n\u0120S earch\nple x\n\u0120discuss ing\n\u0120contin - u\n\u0120T ai\n\u0120W ik\nF ree\nf it\n\u0120ref use\n\u0120manag ing\n\u0120sy - nd\nip edia\nw alk\n\u0120profession als\n\u0120guid ance\n\u0120univers ities\n\u0120as - semb\nunt u\nF inally\nAS E\n\u0120Aut o\n\u0120H ad\n\u0120ann iversary\nL - D\n\u0120D ur\n\u0120Ult imate\nih ad\npro duct\n\u0120trans it\n\u0120rest - ore\n\u0120expl aining\n\u0120ass et\n\u0120transfer red\n\u0120bur st\nap - olis\n\u0120Mag azine\n\u0120C ra\n\u0120B R\ngg ed\n\u0120H E\nM ich\nb et\n\u0120L - ady\nyl um\nerv es\n\u0120me ets\nwh ite\nL og\n\u0120correspond ing\n\u0120ins - isted\nG G\n\u0120surround ed\n\u0120t ens\n\u0120l ane\n\u0120co inc\nh ome\n\u0120exist - ed\nect ed\n\u0120Dou ble\nlam m\n\u0120ske pt\nex p\n\u0120per ception\nie - v\n\u0120Be ing\no ft\n\u0120adop t\n. :\n] ;\nWind ows\n\u0120satell ite\nAS - H\n\u0120inf ant\nd escription\n\u0120Me anwhile\nc m\noc a\n\u0120T reat\nact - or\n\u0120tob acco\n\u0120N orm\nem ption\n\u0120fl esh\n\u0120j e\no op\n\u0120He - aven\n\u0120be ating\nan im\n\u0120gather ing\n\u0120cult iv\nG O\nab e\n\u0120Jon - athan\n\u0120Saf ety\n\u0120bad ly\npro t\n\u0120cho osing\n\u0120contact - ed\n\u0120qu it\n\u0120dist ur\n\u0120st ir\n\u0120to ken\nD et\n\u0120P a\n\u0120function - ality\n00 3\ns ome\n\u0120limit ations\n\u0120met h\nb uild\ncon fig\nN T\nre - ll\nble m\n\u0120M om\n\u0120veter ans\n\u0120H u\n\u0120trend s\nare r\n\u0120G - iven\n\u0120Ca ption\nm ay\nAS T\n\u0120wond ering\n\u0120Cl ark\nn ormal\n\u0120separ - ated\n\u0120des p\nst ic\nb rew\n\u0120rel ating\n\u0120N ik\n\u0120F arm\n\u0120enthus - i\ng ood\nd eb\n\u0120activ ist\n\u0120m art\n\u0120explos ion\n\u0120Econom - ic\nL ink\n\u0120ins ight\n\u0120conven ient\n\u0120counter part\nsu pport\n\u0120V - irt\nag en\n\u0120Tenn essee\n\u0120Sim on\n\u0120A ward\nOC K\n\u0120F igure\n\u0120overse - as\n\u0120pr ide\n\u0120C as\nn ote\nm g\nC urrent\n\u0120displ ays\ncont - ent\n\u0120travel ing\n\u0120hosp itals\n\u0120Fin ancial\n\u0120P ast\n\u0120defend - ant\n\u0120stream ing\nm ble\n\u0120Ber lin\nuk i\n\u0120dist ribut\n\u0120ant - ib\n\u0120ch ocolate\n\u0120Cast le\n\u0120inter rupt\n\u0120R ow\n\u0120convers - ion\n\u0120bug s\n\u0120R ather\nli est\nL Y\n\u0120Je an\ncom mon\nak h\n\u01201 - 30\not ton\n\u0120De an\n\u0120am endment\n\u0120game play\n\u0120War ren\nod - a\n\u0120high lights\n\u0120ir re\n\u0120NAT O\n\u0120ball s\n\u0120demand - ing\nU RE\n\u0120L uke\nF igure\nst op\non ia\nz one\niz ers\n\u0120W R\n\u0120award - ed\n\u0120regul atory\n\u0120H art\n\u0120S N\npl ing\n\u0120s our\n\u0120P - ixel\nus ive\n\u0120f et\n\u0120S ent\n\u0120autom atic\n\u0120f er\nvern - ment\n\u0120Kh an\nT ON\nf ather\n\u0120extraord inary\nth rop\n\u0120P ython\n\u0120G - PU\n\u0120sex ually\n\u0120desk top\nit ivity\n\u0120Anton io\n\u0120o rient\n\u0120e - ars\nob by\nous es\nvertis ements\n\u0120manufacture rs\nic ient\nmin ute\n\u0120conv - iction\n\u0120g arden\np ublic\n\u0120satisf ied\nf old\nO K\n\u0120in hab\n\u0120Th - ink\n\u0120program me\n\u0120st omach\n\u0120coord in\n\u0120h oly\n\u0120th - reshold\n\u0120r het\n\u0120ser ial\n\u0120employ ers\n\u0120Every thing\nra - h\n\u0120b other\n\u0120br ands\nVal ue\n\u0120T ed\n\u0120Plan et\n\u0120p - ink\n\u0120Further more\ns a\nP E\nre ck\n\u0120US D\not te\n\u0120& &\n\u0120land - ed\ng ets\n\u0120produ cers\n\u0120health care\n\u0120domin ant\n\u0120dest - ro\n\u0120am ended\nch ron\n\u0120f its\n\u0120Sy d\n\u0120Author ity\nAT - CH\n\u0120fight s\n\u0120L LC\n\u0120-- -\n\u0120Cor p\n\u0120tox ic\nspe - cific\n\u0120C orn\n\u0120Che l\n\u0120tele phone\n\u0120P ant\n\u0120myster - ious\naun ch\nod ox\nmed ia\n\u0120witness es\nag u\n\u0120question ed\n\u0120Bre - xit\n\u0120Rem ember\nene z\n\u0120end orse\niat ric\n\u0120Id ent\n\u0120ridic - ulous\n1 10\n\u0120pr ayer\n\u0120scient ist\n\u012019 50\n\u0120A qu\n\u0120under - ground\n\u0120U FC\nm are\n\u0120L ater\nw ich\n\u0120subsc rib\n\u0120host - s\n\u0120er r\n\u0120gr ants\nant om\n\u0120sum mon\near ly\n\u0120C lear\n\u0120Pr - im\n\u0120susp ension\n\u0120guarant eed\napp er\n\u0120r ice\n\u0120Se an\n\u0120Sh - in\n\u0120refere ndum\n\u0120fl ed\nr ust\n\u01203 60\nter y\n\u0120sh ocked\nB - R\n\u0120O il\n\u0120All ah\n\u0120part ly\n\u0120ign or\n\u0120trans mission\n\u0120hom - osexual\nivers al\n\u0120hop efully\n\xE3\u0124 \xA4\n\u0120less on\nL eg\n\u0120 - ..\nY et\nt able\napp ropri\nre tt\n\u0120bo ards\n\u0120incor rect\n\u0120b - acteria\nar u\nam ac\n\u0120sn ap\n.' \"\n\u0120par ad\nt em\nhe art\n\u0120av - ailability\n\u0120w isdom\n\u0120( +\n\u0120pri est\n\u0120\xC2\u0142 \u0120\xC2\u0142\nO - pen\n\u0120sp an\n\u0120param eter\n\u0120conv ince\n\u0120( %)\nr ac\n\u0120f - o\n\u0120safe ly\n\u0120conver ted\n\u0120Olymp ic\n\u0120res erve\n\u0120he - aling\n\u0120M ine\nM ax\n\u0120in herent\n\u0120Gra ham\n\u0120integ rated\nD - em\n\u0120pip eline\n\u0120app lying\n\u0120em bed\n\u0120Charl ie\n\u0120c - ave\n200 8\n\u0120cons ensus\n\u0120re wards\nP al\n\u0120HT ML\n\u0120popular - ity\nlook ing\n\u0120Sw ord\n\u0120Ar ts\n' )\n\u0120elect ron\nclus ions\n\u0120integ - rity\n\u0120exclus ively\n\u0120gr ace\n\u0120tort ure\n\u0120burn ed\ntw - o\n\u012018 0\nP rodu\n\u0120ent reprene\nraph ics\n\u0120g ym\nric ane\n\u0120T - am\n\u0120administr ative\n\u0120manufacture r\n\u0120 vel\n\u0120N i\n\u0120isol - ated\n\u0120Medic ine\n\u0120back up\n\u0120promot ing\n\u0120command er\n\u0120fle - e\n\u0120Rus sell\n\u0120forg otten\n\u0120Miss ouri\n\u0120res idence\nm - ons\n\u0120rese mb\n\u0120w and\n\u0120meaning ful\nP T\n\u0120b ol\n\u0120he - lic\n\u0120wealth y\n\u0120r ifle\nstr ong\nrow ing\npl an\nas ury\n\xE2\u0122\xA6 - .\n\u0120expand ing\n\u0120Ham ilton\n\u0120rece ives\nS I\neat ures\n\u0120An - im\nRE E\nP ut\n\u0120brief ly\nri ve\n\u0120stim ul\n\u0120`` (\n\u0120 __\n\u0120ch - ip\n\u0120ha z\n\u0120pri ze\n\u0120Th ings\nAC E\nul in\nd ict\nok u\n\u0120associ - ate\nock ets\ny outube\nSt ory\nateg ory\n\u0120m ild\nail ing\n\u0120Y e\nO - rig\n\u0120K a\nor ig\n\u0120propag anda\n\u0120an onymous\n\u0120strugg led\n\u0120out - rage\nAT ED\n\u0120Be ijing\nr ary\n\u0120le ather\n\u0120world s\n\u0120broad - er\n12 5\nid al\n\u0120Bet ter\n\u0120t ear\nE xt\n\u0120propos als\n\u0120it - er\n\u0120Squ ad\n\u0120vol unt\nm i\nD id\n\u0120P u\np in\n\u0120speak ers\n\u0120b - orders\n\u0120fig ured\n= '\n\u0120simultane ously\naed a\n\u0120charg ing\n\u0120ur - ged\n\u0120con j\n25 6\n\u0120G ordon\nmer ce\n\u0120document ary\nSh are\nit - ol\nON E\n\u0120G arden\nh att\n\u0120Thom pson\nane ous\nap ore\n\u0120t - anks\n\u0120less ons\ntr ack\n\u0120out standing\n\u0120volunte ers\n\u0120sp - ray\n\u0120manag ers\nl arge\n\u0120camp s\n\u0120art ificial\n\u0120R u\n\u0120b - ags\nth al\n\u0120compat ible\n\u0120Bl ade\n\u0120f ed\n\u0120arg ues\nF - I\n\u0120unf air\n\u0120cor n\n\u0120off set\n\u0120direct ions\n\u0120disappoint - ed\n\u0120Con vention\n\u0120view ing\nM E\noc ity\n\u0120town s\n\u0120lay - ers\n\u0120ro lled\n\u0120jump ed\n\u0120att ribute\n\u0120un necess\ninc - oln\n\u0120supp ose\n\u0120Net her\nch a\n\u0120bur ied\n\u0120six th\nB en\nress - ing\nOU R\n\u0120w ound\n\u0120cy cl\n\u0120mechan isms\n\u0120congress ional\n\u0120E - lement\n\u0120agre ements\n\u0120dec or\n\u0120clos est\n\u0120M it\nGo ogle\n} - }\n\u0120m ixture\n\u0120flu id\nS ign\n\u0120Sch olar\n\u0120p ist\nask et\nab - ling\n\u0120rac ing\nhe ro\nri el\nass y\n\u0120che aper\nb en\n\u0120vert - ical\namac are\n\u0120Read ing\ng ments\n\u0120helic op\n\u0120sacr ifice\nay - a\np aren\nV A\n\u0120L es\n\u0120Stud io\n\u0120viol ations\n\u0120An na\nac - er\n\xE9 \xBE\n\u0120R at\n\u0120Be ck\n\u0120D ick\n\u0120A CT\n\u0120comp - osition\n\u0120text ure\n\u0120O wn\n\u0120smart phone\n\u0120N A\n\u0120for - b\nim port\n\u0120def ending\nil st\nre r\n\u0120o h\n\u0120Jere my\n\u0120bank - ing\ncept ions\n\u0120respect ive\n/ .\n\u0120dr inks\n\u0120W i\n\u0120b - ands\n\u0120L iverpool\n\u0120g rip\n\u0120B uy\n\u0120open ly\n\u0120review - ed\nper t\n\u0120ver ify\n\u0120Co le\n\u0120W ales\nM O\n\u0120un pre\n\u0120shel - ter\n\u0120Im perial\n\u0120gu i\n\u0120D ak\n\u0120suggest ions\n\u0120explicit - ly\n\u0120sl ave\n\u0120block chain\n\u0120compet ing\n\u0120prom ising\nS - ON\n\u0120soc cer\n\u0120const itution\n4 29\n\u0120dist ract\n\u0120U ser\nes - ides\n\u0120Met hod\n\u0120Tok yo\n\u0120accompan ied\nCl ient\ns ur\nal og\n\u0120ident - ification\n\u0120inv asion\nas ma\n\u0120indust ries\npp ers\n\u0120sub tle\n\u0120Un - it\nn atural\n\u0120surv ived\n\u0120fl aw\n\u013A \u0127\n\u0120H oll\n\u0120def - icit\n\u0120tut orial\n\u0120Ch ance\n\u0120arg uing\n\u0120contem porary\n\u0120integ - ration\nfor ward\n\u0120t um\nit is\n\u0120h iding\n\u0120D omin\n\u0120T - an\n\u0120B uilding\n\u0120V in\n\u0120spokes person\n\u0120Not es\n\u0120emer - ging\n\u0120prepar ation\n\u0120pro st\n\u0120suspect s\n\u0120aut onom\nD - escription\n\u0120deal t\n\u0120P ear\n\u0120stead y\n\u0120decre ased\n\u0120so - vere\n\u0120Cl in\n\u0120grad ually\nors es\n\u0120W AR\nS erv\n\xE3\u0124 - \xA2\nh r\n\u0120d irty\n\u0120B arn\n\u0120B C\n\u0120d il\n\u0120cal endar\n\u0120compl - iance\n\u0120ch amber\nb b\n\u0120pass enger\nate ful\n\u0120T itle\n\u0120Syd - ney\n\u0120G ot\n\u0120dark ness\n\u0120def ect\n\u0120pack ed\nass ion\n\u0120god - s\n\u0120h arsh\nIC K\nle ans\n\u0120algorith m\n\u0120oxy gen\n\u0120vis - its\n\u0120bl ade\n\u0120kil omet\n\u0120Kent ucky\n\u0120kill er\nP ack\nenn - y\n\u0120div ine\n\u0120nom ination\nbe ing\n\u0120eng ines\n\u0120c ats\n\u0120buff - er\n\u0120Ph ill\n\u0120tra ff\nAG E\n\u0120tong ue\n\u0120rad iation\nere - r\nm em\n\u0120Expl icit\n\xE9\xBE \u012F\n\u0120cou ples\n\u0120phys ics\n\u0120Mc - K\n\u0120polit ically\naw ks\n\u0120Bl oom\n\u0120wor ship\ne ger\nut er\n\u0120F - O\n\u0120mat hemat\n\u0120sent enced\n\u0120dis k\n\u0120M arg\n\u0120/ *\nP - I\n\u0120option al\n\u0120bab ies\n\u0120se eds\n\u0120Scott ish\n\u0120th - y\n] ]\n\u0120Hit ler\nP H\nng th\n\u0120rec overed\ning e\n\u0120pow der\n\u0120l - ips\n\u0120design er\n\u0120dis orders\n\u0120cour age\n\u0120ch aos\n\" },{\"\n\u0120car - rier\nb ably\nH igh\n\u0120R T\nes ity\nl en\n\u0120rout es\nu ating\nF il\nN - OT\nw all\ns burgh\n\u0120eng aging\n\u0120Java Script\nore r\nli hood\n\u0120un - ions\n\u0120F ederation\n\u0120Tes la\n\u0120comple tion\n\u0120T a\n\u0120privile - ge\n\u0120Or ange\n\u0120ne ur\nparen cy\n\u0120b ones\n\u0120tit led\n\u0120prosecut - ors\n\u0120M E\n\u0120engine er\n\u0120Un iverse\n\u0120H ig\nn ie\no ard\n\u0120heart - s\n\u0120G re\nuss ion\n\u0120min istry\n\u0120pen et\n\u0120N ut\n\u0120O - w\n\u0120X P\nin stein\n\u0120bul k\nS ystem\nic ism\n\u0120Market able\n\u0120pre - val\n\u0120post er\n\u0120att ending\nur able\n\u0120licens ed\n\u0120G h\net - ry\n\u0120Trad able\n\u0120bl ast\n\xE0 \xA4\n\u0120Tit an\nell ed\nd ie\nH - ave\n\u0120Fl ame\n\u0120prof ound\n\u0120particip ating\n\u0120an ime\n\u0120E - ss\n\u0120spec ify\n\u0120regard ed\n\u0120Spe ll\n\u0120s ons\nown ed\n\u0120m - erc\n\u0120exper imental\nland o\nh s\n\u0120Dun geon\nin os\n\u0120comp ly\n\u0120System - s\nar th\n\u0120se ized\nl ocal\n\u0120Girl s\nud o\non ed\n\u0120F le\n\u0120construct - ed\n\u0120host ed\n\u0120sc ared\nact ic\n\u0120Is lands\n\u0120M ORE\n\u0120bl - ess\n\u0120block ing\n\u0120ch ips\n\u0120ev ac\nP s\n\u0120corpor ation\n\u0120o - x\n\u0120light ing\n\u0120neighb ors\n\u0120U b\nar o\n\u0120be ef\n\u0120U - ber\nF acebook\nar med\nit ate\n\u0120R ating\n\u0120Qu ick\n\u0120occup ied\n\u0120aim - s\n\u0120Add itionally\n\u0120Int erest\n\u0120dram atically\n\u0120he al\n\u0120pain - ting\n\u0120engine ers\nM M\n\u0120M ust\n\u0120quant ity\nP aul\n\u0120earn - ings\n\u0120Post s\nst ra\n\xE3\u0125\xBC \xE3\u0125\n\u0120st ance\n\u0120dro - pping\nsc ript\n\u0120d ressed\nM ake\n\u0120just ify\n\u0120L td\n\u0120prompt - ed\n\u0120scr ut\n\u0120speed s\n\u0120Gi ants\nom er\n\u0120Ed itor\n\u0120describ - ing\n\u0120L ie\nment ed\n\u0120now here\noc aly\n\u0120inst ruction\nfort - able\n\u0120ent ities\n\u0120c m\n\u0120N atural\n\u0120inqu iry\n\u0120press - ed\niz ont\nfor ced\n\u0120ra ises\n\u0120Net flix\n\u0120S ide\n\u0120out - er\n\u0120among st\nim s\nows ki\n\u0120clim b\nne ver\n\u0120comb ine\nd - ing\n\u0120comp r\n\u0120signific ance\n\u0120remem bered\n\u0120Nev ada\n\u0120T - el\n\u0120Sc ar\n\u0120War riors\n\u0120J ane\n\u0120cou p\nb as\n\u0120termin - al\n, -\nO H\n\u0120t ension\n\u0120w ings\n\u0120My ster\n\xEF\xBF\xBD\xEF\xBF\xBD - \xEF\xBF\xBD\xEF\xBF\xBD\n\u0120Un like\nval id\nviron ments\n\u0120Al i\n\u0120n - aked\nbook s\n\u0120M un\n\u0120G ulf\n\u0120d ensity\n\u0120dim in\n\u0120desper - ate\n\u0120pres idency\n\u0120198 6\nh y\nIN D\n\u0120un lock\nim ens\n\u0120hand - led\n\u0120E b\n\u0120disapp eared\n\u0120gen re\n\u0120198 8\n\u0120determin - ation\nSt ream\nik o\nap ters\n\u0120acknow ledge\nJ an\n\u0120capital ism\nP - at\n\u012020 20\n\u0120pain ful\n\u0120cur ve\n\u0120bom bs\nst orm\n\u0120Met - al\nen cer\n\u0120F ig\n\u0120A aron\nanc hes\n\u0120ins piration\n\u0120exha - ust\nt ains\nash i\n\u0120desc ript\n\u0120r itual\n\u0120Chel sea\n\u0120promot - ion\n\u0120H ung\n\u0120W ard\niv a\n\u0120E T\n\u0120to ss\nall ow\n\u0120Franc - is\nD ep\n\u0120happ iness\n\u0120Gl ass\n\u0120bet a\n\u0120streng then\nN - E\no a\n\u0120butt ons\n\u0120Mur ray\n\u0120kick ed\nQu est\n\u0120T alk\n\u0120S - everal\n\u0120Z ero\n\u0120dr one\nul k\n\u0120c am\n\u0120M obile\n\u0120prevent - ing\n\u0120ret ro\n\u0120A x\n\u0120cru el\n\u0120flo at\n. ),\n\u0120fil - ing\n\u0120Gr ant\n\u0120B or\n\u0120r ib\n\u0120champions hip\n\u0120M erc\n\u0120sty - les\n\u0120c ake\n\u0120build s\n\u0120S elf\nio x\n\u0120ep ic\noy d\nB el\n\u0120St - ew\n. (\nah u\n\u0120Be yond\n\u0120out s\n\u0120sol o\n\u0120T ree\n\u0120pres - erve\n\u0120t ub\nAR E\nro c\n\u0120Im pro\n\u0120W right\n\u0120bu nd\n\u0120tr - aged\n\u0120occas ional\nb ian\nSec ond\nr ons\n\u0120inter actions\nform - ed\ns ing\n\u0120own s\n\u0120h ockey\nGener al\n\u0120log ical\n\u0120exp - end\n\u0120esc al\n\u0120Gr iff\n\u0120C rown\n\u0120Res erve\n\u0120sto pping\n\u0120exc - use\nsec ond\n\u0120oper ated\n\u0120re aches\n\u0120Mal ays\n\u0120poll ution\n\u0120Brook - lyn\n\u0120de lete\n\u0120has h\nBl ock\nah a\n\xE2\u0122 \xB3\n\u0120sh orter\np - iece\n> - >>\n\u0120M ormon\nt or\n\u0120partic les\n\u0120B art\nry ption\n\u0120ad - min\n\u0120squ ee\nVID IA\n\u0120creat or\niam eter\nic ular\nN BC\n\u0120grab - bed\n\u0120n odd\n\u0120r ated\n\u0120rot ation\n\u0120gr asp\n\u0120excess - ive\n\u0120E C\n\u0120Wh it\n\u0120invent ory\nault s\n\u0120F B\n\u0120e - cosystem\n\u0120bill ions\n\u0120vent ure\nn amed\n\u0120def ender\nout e\nInst - ead\nir able\nW ar\n\u0120assum ption\n\u0120b ite\n\u0120earth qu\nt ail\nsp - ace\n\u0120gif ts\nboy s\n\u0120inev itable\n\u0120struct ural\n\u0120benef - icial\n\u0120compe lling\nh ole\nerv ation\n\u0120co at\no j\ninc arn\n\u0120Y - ears\n\u0120determin ing\n\u0120rhet oric\n\u0120bound aries\n\u0120wh ites\nA - nt\nadd y\n) -\nra ham\neter min\n\u0120har vest\n\u0120Con c\n\u0120lapt - op\n\u0120M atch\n\u0120enjoy ing\ncc a\noll ar\n\u0120tri ps\n\u0120add iction\n\u0120S - ak\n\u0120pow ered\n\u0120c ous\n\u0120Russ ians\nie re\n\u0120ret rie\nqu - ality\n\u0120diff er\n\u0120king dom\n\u0120L aur\n\u0120Cap itol\n\u0120con - clusions\n\u0120Al tern\n\u0120N av\n\u0120trans parent\nB ER\nG roup\n\u0120Com - plete\n\u0120inf er\n\u0120int rig\n\u0120ins ane\nR O\noph ob\nis en\nqu - al\nMich ael\n\u0120m useum\n\u0120P ope\n\u0120res et\nr ative\nf ive\n\u0120agg - reg\nitte es\nosit ory\n\u0120car b\n\u0120Rec ord\n\u0120dec ides\n\u0120F - ix\n\u0120except ions\n\u0120Commission er\nun s\n\u0120Environment al\n\u0120legend - ary\nist ence\n\u0120tun nel\nk m\n\u0120ins ult\n\u0120t roll\n\u0120sh ake\n\u0120det - ention\nqu es\n\u0120Ch rome\n\u0120F iles\n\u0120sub t\n\u0120prospect s\n\u0120pro - l\nre nder\npro of\n\u0120perform ances\nSt r\n\u0120h ref\nern ame\n\u0120achieve - ment\n\u0120f ut\nF ull\n\u0120Le ban\ngo ogle\n\xE3\u0125 \u012A\namp a\nMay - be\n\u0120project ed\n\u0120E mb\n\u0120col leg\n\u0120a wards\n\u0120\xE2 - \u0136\nG old\n\u0120Bl ake\n\u0120R aj\nif ting\n\u0120p ending\n\u0120inst - inct\n\u0120develop ments\nCon nect\n\u0120M and\n\u0120W ITH\n\u0120Philipp - ines\nprof ile\n\u0120alt ogether\n\u0120B und\n\u0120T D\noo oo\namp ed\nip - h\n\u0120ste am\n\u0120old est\n\u0120det ection\nul pt\n\u0120 \xE7\n\u0120Way - ne\n200 6\nf a\n\u0120cir cles\n\u0120F u\n\u0120don ors\nappropri ate\n\u0120Dak - ota\nj amin\n\u0120motiv ated\n\u0120purch ases\n\u0120Louis iana\n\u0120S - pl\n\u0120gl obe\n\u012010 5\nz ip\nc all\n\u0120depart ments\n\u0120sustain - able\n10 5\n\u0120O P\nif iers\n\u0120prevent ed\n\u0120inc omp\n\u0120Comm - ander\n\u0120dom inated\n\u0120\xC2 \xBB\n\u0120invest ed\n\u0120complex ity\n\u0120in - cl\n\u0120ens uring\n\u0120real m\nyn c\n\u0120Ind ependent\nr ained\n\u0120J - en\n\u0120Fl ight\n\u0120at he\n\u0120spec ulation\n\u0120T E\noc ate\nt ic\n\u0120pl - aint\nher ry\n\u0120to y\n\u01201 11\n\u0120pl ates\nst atus\n\u0120Is a\n\u0120dev - oted\nC op\n\u0120E S\n25 5\nur rency\nM ain\n\u0120sl aves\n\u0120pe pper\n\u0120qu - otes\n\u0120ce iling\n\u0120F ish\n\u0120trans formation\n\u0120fra ction\n\u0120advant - ages\n\u0120to ile\n\u0120stun ning\n\u0120mo ist\nbre aking\ns i\n\u0120L - ocation\n\u0120Med ium\n\u0120text s\n\u0120u gly\n\u0120b io\n. \xE2\u0122\u0136\n\u0120B - ased\n\u0120tr ains\n\u0120W ing\n\u0120An cient\n\u0120Rec ords\n\u0120H - ope\nSpe cial\nades h\nob i\n[ /\n\u0120tempor arily\nV er\nh u\nos er\n\u0120over - night\n\u0120m amm\n\u0120Tre asury\n\u0120V enezuel\n\u0120Meg a\n\u0120t - ar\n\u0120expect s\nbl ack\nor ph\n\\\\ \\\\\n\u0120accept ance\n\u0120rad - ar\ns is\n\u0120jun ior\n\u0120fram es\n\u0120observ ation\nac ies\nP ower\n\u0120Adv - anced\nM ag\nolog ically\n\u0120Me chan\n\u0120sent ences\n\u0120analy sts\naugh - ters\nforce ment\n\u0120v ague\n\u0120cl ause\n\u0120direct ors\n\u0120eval - uate\n\u0120cabin et\nM att\n\u0120Class ic\nA ng\n\u0120cl er\n\u0120B uck\n\u0120resear - cher\n\u012016 0\n\u0120poor ly\n\u0120experien cing\n\u0120P ed\n\u0120Man - hattan\n\u0120fre ed\n\u0120them es\nad vant\n\u0120n in\n\u0120pra ise\n10 - 4\n\u0120Lib ya\nb est\n\u0120trust ed\n\u0120ce ase\n\u0120d ign\nD irect\n\u0120bomb - ing\n\u0120m igration\n\u0120Sci ences\n\u0120municip al\n\u0120A verage\n\u0120gl - ory\n\u0120reve aling\n\u0120are na\n\u0120uncertain ty\n\u0120battle field\nia - o\nG od\n\u0120c inem\nra pe\nel le\nap ons\n\u0120list ing\n\u0120wa ited\n\u0120sp - otted\nke ley\n\u0120Aud io\ne or\nard ing\nidd ing\nig ma\n\u0120N eg\n\u0120l - one\n\u0120 ----\nex e\nd eg\n\u0120trans f\n\u0120was h\n\u0120sl avery\n\u0120expl - oring\n\u0120W W\nats on\n\u0120en cl\nl ies\n\u0120C reek\n\u0120wood en\nMan - ager\n\u0120Br and\num my\n\u0120Ar thur\n\u0120bureau cr\n\u0120bl end\nar - ians\nF urther\n\u0120supposed ly\n\u0120wind s\n\u012019 79\n\u0120grav ity\n\u0120analys - es\n\u0120Tra vel\n\u0120V eter\n\u0120d umb\n\u0120altern ate\ng al\n\u0120consum - ed\n\u0120effect iveness\n.' '\n\u0120path s\nond a\nL A\n\u0120Str ong\n\u0120en - ables\n\u0120esc aped\n\u0120\" \"\n\u01201 12\n\u0120198 3\n\u0120sm iled\n\u0120tend - ency\nF ire\n\u0120p ars\n\u0120R oc\n\u0120l ake\n\u0120f itness\n\u0120A - th\n\u0120H orn\n\u0120h ier\n\u0120imp ose\nm other\n\u0120p ension\nic ut\nbor - ne\nic iary\n. _\n\u0120S U\n\u0120pol ar\nis y\neng u\nitial ized\nAT A\nw - rite\n\u0120exerc ises\n\u0120D iamond\not ypes\n\u0120harm ful\non z\n\u0120print - ing\nst ory\n\u0120expert ise\n\u0120G er\n\u0120traged y\n\u0120F ly\n\u0120d - ivid\namp ire\nst ock\nM em\n\u0120re ign\n\u0120un ve\n\u0120am end\n\u0120Prop - het\n\u0120mut ual\n\u0120F ac\n\u0120repl acing\nH ar\n\u0120Circ uit\n\u0120thro - at\n\u0120Sh ot\n\u0120batter ies\n\u0120to ll\n\u0120address ing\n\u0120Medic - aid\n\u0120p upp\n\u0120N ar\nol k\n\u0120equ ity\nM R\n\u0120His pan\n\u0120L - arge\nm id\nD ev\n\u0120exp ed\n\u0120dem o\n\u0120Marsh all\nerg us\n\u0120f - iber\n\u0120div orce\n\u0120Cre ate\n\u0120sl ower\n\u0120Park er\n\u0120Stud - ent\n\u0120Tr aining\nRet urn\n\u0120T ru\n\u0120c ub\n\u0120Re ached\n\u0120pan - ic\n\u0120qu arters\n\u0120re ct\n\u0120treat ing\n\u0120r ats\n\u0120Christian - ity\nol er\n\u0120sac red\n\u0120decl are\nul ative\net ing\n\u0120deliver - ing\nest one\n\u0120t el\n\u0120L arry\n\u0120met a\nac cept\nart z\n\u0120Rog - er\nhand ed\n\u0120head er\n\u0120tra pped\n\u0120Cent ury\n\u0120kn ocked\n\u0120Ox - ford\n\u0120surviv ors\nb ot\n\u0120demon stration\n\u0120d irt\n\u0120ass - ists\nOM E\n\u0120D raft\nortun ate\nfol io\npe red\nust ers\ng t\n\u0120L - ock\n\u0120jud icial\nver ted\n\u0120sec ured\nout ing\n\u0120Book s\n\u0120host - ing\n\u0120lif ted\nl ength\n\u0120j er\n\u0120whe els\n\u0120R ange\numbn - ails\n\u0120diagn osis\nte ch\n\u0120Stew art\n\u0120P ract\n\u0120nation - wide\n\u0120de ar\n\u0120oblig ations\n\u0120grow s\n\u0120mand atory\n\u0120susp - icious\n! '\nA pr\nG reat\n\u0120mort gage\n\u0120prosecut or\n\u0120editor - ial\n\u0120K r\n\u0120process ed\nung le\n\u0120flex ibility\nEar lier\n\u0120C - art\n\u0120S ug\n\u0120foc uses\n\u0120start up\n\u0120bre ach\n\u0120T ob\ncy - cle\n\xE3\u0122 \u012E\nro se\n\u0120b izarre\n\xE3\u0122 \u012F\n\u0120veget - ables\n$ $\n\u0120ret reat\nosh i\n\u0120Sh op\n\u0120G round\n\u0120St op\n\u0120Hawai - i\n\u0120A y\nPer haps\n\u0120Be aut\nuff er\nenn a\n\u0120product ivity\nF - ixed\ncont rol\n\u0120abs ent\n\u0120Camp aign\nG reen\n\u0120ident ifying\n\u0120reg - ret\n\u0120promot ed\n\u0120Se ven\n\u0120er u\nne ath\naug hed\n\u0120P in\n\u0120L - iving\nC ost\nom atic\nme ga\n\u0120N ig\noc y\n\u0120in box\n\u0120em pire\n\u0120hor - izont\n\u0120br anches\n\u0120met aph\nAct ive\ned i\n\u0120Fil m\n\u0120S - omething\n\u0120mod s\ninc ial\n\u0120Orig inal\nG en\n\u0120spir its\n\u0120ear - ning\nH ist\n\u0120r iders\n\u0120sacr ific\nM T\n\u0120V A\n\u0120S alt\n\u0120occup - ation\n\u0120M i\n\u0120dis g\nlic t\n\u0120n it\n\u0120n odes\ne em\n\u0120P - ier\n\u0120hat red\nps y\n\xE3\u0125 \u012B\n\u0120the ater\n\u0120sophistic - ated\n\u0120def ended\n\u0120bes ides\n\u0120thorough ly\n\u0120Medic are\n\u0120bl - amed\narent ly\n\u0120cry ing\nF OR\npri v\n\u0120sing ing\n\u0120I l\n\u0120c - ute\no ided\nolit ical\n\u0120Ne uro\n\xE5 \xA4\n\u0120don ation\n\u0120Eag - les\n\u0120G ive\nT om\n\u0120substant ially\n\u0120Lic ense\n\u0120J a\n\u0120g - rey\n\u0120An imal\n\u0120E R\n\u0120U nd\n\u0120ke en\n\u0120conclud e\n\u0120Mississ - ippi\nEng ine\n\u0120Stud ios\nP ress\no vers\nll ers\n\u01203 50\n\u0120R - angers\n\u0120r ou\nert o\nE p\niss a\niv an\n\u0120se al\n\u0120Reg ist\ndis - play\n\u0120we aken\nu um\n\u0120Comm ons\n\u0120S ay\n\u0120cult ures\n\u0120l - aughed\n\u0120sl ip\n\u0120treat ments\niz able\nm art\n\u0120R ice\n\u0120be - ast\n\u0120ob esity\n\u0120La ure\nig a\nWh ich\nhold er\n\u0120elder ly\n\u0120p - ays\n\u0120compl ained\n\u0120c rop\n\u0120pro c\n\u0120explos ive\n\u0120F - an\n\u0120Ar senal\nA uthor\nef ul\n\u0120me als\n\u0120( -\nid ays\n\u0120imag - ination\n\u0120ann ually\n\u0120m s\nas ures\nH ead\nik h\nm atic\n\u0120boy - friend\n\u0120Com puter\n\u0120b ump\n\u0120sur ge\n\u0120Cra ig\n\u0120Kir - k\nD el\nmedi ate\n\u0120scen arios\n\u0120M ut\n\u0120St ream\n\u0120compet - itors\n\xD9 \u0126\n\u0120Stan ford\n\u0120Res ources\naz ed\nb age\n\u0120organ - is\n\u0120Re lease\n\u0120separ ately\n\u0120ha bits\n\u0120measure ments\n\u0120Cl - ose\n\u0120accomp any\n\u0120g ly\n\u0120t ang\n\u0120R ou\n\u0120plug in\n\u0120con - vey\n\u0120Chall enge\noot s\nj an\n\u0120cur s\n\u0120Rel ations\nke eper\n\u0120approach - ing\np ing\nSpe aking\n\u0120arrang ement\n\u0120V I\nare ttes\n\u0120affect - ing\n\u0120perm its\nb ecause\n\u0120u seless\n\u0120H us\n!! !!\n\u0120destro - ying\nUn fortunately\n\u0120fasc inating\nS em\n\u0120elect oral\n\u0120trans - parency\n\u0120Ch aos\n\u0120volunte er\n\u0120statist ical\n\u0120activ ated\nro - x\nWe b\nH E\n\u0120Hamp shire\nis ive\nM ap\n\u0120tr ash\n\u0120Law rence\nst - ick\nC r\n\u0120r ings\nEX T\n\u0120oper ational\nop es\nD oes\n\u0120Ev ans\n\u0120witness - ed\nP ort\n\u0120launch ing\nec onom\nw ear\n\u0120Part icip\num m\ncul es\n\u0120R - AM\n\u0120T un\n\u0120ass ured\n\u0120b inary\n\u0120bet ray\n\u0120expl oration\n\u0120F - el\n\u0120ad mission\nit ated\nS y\n\u0120av oided\n\u0120Sim ulator\n\u0120celebr - ated\n\u0120Elect ric\n\xA5 \u0140\n\u0120cl uster\nitzer land\nhe alth\nL - ine\n\u0120N ash\nat on\n\u0120sp are\n\u0120enter prise\n\u0120D IS\nclud - es\n\u0120fl ights\n\u0120reg ards\n\u0120\xC3 \u0139\nh alf\n\u0120tr ucks\n\u0120contact - s\n\u0120unc ons\n\u0120Cl imate\n\u0120imm ense\nN EW\noc c\nect ive\n\u0120emb - od\n\u0120pat rol\n\u0120bes ide\n\u0120v iable\n\u0120cre ep\n\u0120trig - gered\nver ning\n\u0120compar able\nq l\n\u0120g aining\nass es\n\u0120( );\n\u0120G - rey\n\u0120M LS\ns ized\n\u0120pros per\n\" ?\n\u0120poll ing\n\u0120sh ar\n\u0120R - C\n\u0120fire arm\nor ient\n\u0120f ence\n\u0120vari ations\ng iving\n\u0120P - i\nosp el\n\u0120pled ge\n\u0120c ure\n\u0120sp y\n\u0120viol ated\n\u0120r - ushed\n\u0120stro ke\n\u0120Bl og\nsel s\n\u0120E c\n,' '\n\u0120p ale\n\u0120Coll - ins\nter ror\n\u0120Canad ians\n\u0120t une\n\u0120labor atory\n\u0120n ons\nt - arian\n\u0120dis ability\n\u0120G am\n\u0120sing er\nal g\n\u0120Sen ior\n\u0120trad - ed\n\u0120War rior\n\u0120inf ring\n\u0120Frank lin\n\u0120str ain\n\u0120Swed - ish\n\u0120sevent h\n\u0120B enn\n\u0120T ell\n\u0120synd rome\n\u0120wond - ered\nid en\n++ ++\nig o\n\u0120pur ple\n\u0120journal ism\n\u0120reb el\n\u0120f - u\nbl og\n\u0120inv ite\nren cies\n\u0120Cont act\nIs rael\n\u0120Cont ent\n\u0120che - er\n\u0120bed room\n\u0120Engine ering\n\u0120Que ens\n\u0120d well\n\u0120Play - Station\n\u0120D im\n\u0120Col on\nl r\n\u0120oper ates\n\u0120motiv ation\nUS - A\nast ered\nC ore\n\u0120Tr uth\nol o\nOS E\n\u0120Mem ory\n\u0120pred ec\n\u0120an - arch\n\u012019 20\n\u0120Y am\n\xC3 \xA8\nb id\n\u0120gr ateful\n\u0120exc - itement\n\u0120tre asure\n\u0120long est\nct ive\n\u0120des erves\n\u0120reserv - es\n\u0120cop s\n\u0120Ott awa\n\u0120Egypt ian\nank ed\n\u0120art if\n\u0120hypot - hesis\n: /\n\u0120purch asing\n\u0120love ly\nH P\n\u0120div ide\n\u0120strict - ly\n\u0120question ing\n\u0120taxp ayers\n\u0120J oy\n\u0120roll s\n\u0120He - avy\n\u0120p orts\n\u0120mag netic\n\u0120inf lamm\n\u0120br ush\nt ics\n\xE2 - \u012A\u0134\n\u0120bott les\npp y\n\u0120p add\n\xE3\u0124 \xAF\nm illion\n\u0120devast - ating\n\u0120comp iled\n\u0120med ication\n\u0120tw elve\n\u0120Per ry\nSp - ace\nim b\ny our\n\u0120le aked\n\u0120T ar\n\u0120un ity\n\u0120infect ed\n\u0120travel - ed\nID E\n\u0120Mc Donald\nt xt\n\u0120Pr inc\n\u0120inter ven\n\u0120Tai - wan\n\u0120P ow\n\u0120be aring\n\u0120Th read\n\u0120z ones\niz ards\nun - ks\nCh apter\nll or\n\u0120\xC2 \xB7\n\u0120w ounds\n\u0120disc retion\n\u0120succeed - ed\nik ing\n\u0120icon ic\nC all\n\u0120screen ing\n\u0120M is\nict s\n\u0120min - isters\n\u0120separ ation\nPl ayer\n\u0120b ip\n\u0120bel oved\n\u0120count - ing\n\u0120E ye\nar ound\ning ing\n\u0120table t\n\u0120off ence\nin ance\nh - ave\n\u0120Inf o\n\u0120Nin ja\n\u0120protect ive\n\u0120C ass\nM ac\n\u0120Qual - ity\nN orth\n\u0120 ic\n\u0120Cub a\n\u0120Chron icle\n\u0120Pro perty\n\u0120fast - est\not os\n\u0120G erm\nOW N\n\u0120bo om\n\u0120Stan ley\nergus on\n\u0120cle - ver\n\u0120ent ers\nm ode\nter ior\n\u0120S ens\n\u0120lin ear\nAR K\n\u0120comp - aring\n\u0120pure ly\n\u0120saf er\n\u0120Pot ter\n\u0120c ups\nR T\n\u0120gl - uc\n\u0120att ributed\n\u0120du pl\n\u0120P ap\n\u0120prec ious\n\u0120p a\niction - ary\n\u0120T ig\n\u0120To o\nol utions\nst an\n\u0120rob ots\n\u0120lob b\n\u0120stat - ute\n\u0120prevent ion\nw estern\n16 0\n\u0120Act ive\n\u0120Mar ia\nh al\nN - one\nell ar\n\u0120K B\n\u0120Part ners\n\u0120Sing le\n\u0120Follow ing\nang - o\nac ious\n\u0120th ou\n\u0120k g\n\u0120influ ential\n\u0120Friend s\nS - ur\nain ted\n\u0120for ums\n\u0120st arter\n\u0120citizens hip\n\u0120E lection\non - ge\not ation\nos ph\n;; ;;\nut ical\np ur\nere n\n\u0120accus ations\nbit - ious\nab bit\n\u0120Or d\nPost ed\nir k\n\u0120sens itivity\nic he\n\u0120Am - y\n\u0120F ab\n\u0120sum mit\n\u0120ped est\n\u0120rub ber\n\u0120agric ultural\n\u0120can - cel\nA E\n\u0120in aug\n\u0120cont am\n\u0120firm ly\ni w\nst age\n\u0120K - an\n\u0120t ier\n\u0120inv ention\n\u0120transl ated\n\u0120R ules\nB ox\nTw - itter\nID S\n\u0120p izza\n\u0120deb ug\n\u0120D rop\nv s\n\u0120h orses\nb - ig\n\u0120b oring\n\u0120h ood\n\u0120McC ain\nat ched\n\u0120Bro s\n\u0120sk - ip\n\u0120ess ay\nst at\n\u0120Leg ends\n\u0120am munition\nau c\n\u0120shoot - er\n\u0120un h\n\u0120suppl ied\n\u0120gener ic\n\u0120S K\nib an\nyr ics\n\u012025 - 5\n\u0120clim bing\nForm er\n\u0120fl ip\n\u0120jump ing\n\u0120frust ration\n\u0120Ter - ry\n\u0120neighborhood s\n\u0120med ian\nbe an\n\u0120br ains\nFollow ing\n\u0120sh - aped\n\u0120draw s\n\u0120al tered\nJ ack\n\u0120recip es\n\u0120sk illed\nwe - alth\nach i\ne lection\n\u0120behavi ors\nde als\n\u0120U ntil\nF e\n\u0120decl - aration\nmar ks\n\u0120Bet ween\ncel ona\n\u0120res on\n\u0120bub ble\nAm - ong\n\u0120im perial\nG S\n\u0120femin ist\n200 5\n\u0120K yle\n\u0120account - ing\n\u0120Te le\n\u0120T yr\n\u0120connect ing\n\u0120re hab\n\u0120P red\ns - im\n\u0120meant ime\n\u0120phys ician\nM W\n\u0120Camp bell\n\u0120Br andon\n\u0120contribut - ing\n\u0120R ule\n\u0120We ight\n\u0120N ap\n\u0120inter active\n\u0120v ag\n\u0120hel - met\n\u0120Com b\nf our\n\u0120sh ipped\n\u0120comple ting\n\u0120P D\nPD - ATE\n\u0120spread ing\n\u0120sc ary\nerv ing\n\u0120G as\n\u0120fr ank\ns - chool\n\u0120rom antic\n\u0120stab il\nR ob\n\u0120accur ately\n\u0120ac ute\n\u0120H - ann\n\u0120symbol s\n\u0120civil ization\n\u0120A W\n\u0120light ning\n\u0120cons - iders\n\u0120ven ue\n\u0120 \xD7\n\u0120o ven\n\u0120S F\nh is\n\u0120n u\n\u0120Lear - n\n\u0120pe oples\n\u0120st d\n\u0120sle e\n\u0120s lic\n\u0120Stat istics\n\u0120cor - ners\n\u0120B aker\n\u0120: )\nment ation\nol ver\n\u0120laugh ing\n\u0120T - odd\nond e\n\u0120H ills\n\u0120n uts\n\u0120W oman\npl ane\n\u0120l iver\n\u0120In - side\nS orry\n\u0120agre es\n\u0120fund ament\n\u0120F isher\n\u0120a uction\n\u0120thread - s\ngl as\n\u0120Bas ic\n\u0120N at\n\u0120lack ing\n\u0120celeb ration\nj - u\n\u0120s illy\nE uro\n\u0120t att\night y\ncont rolled\nT est\n\u0120Sing - h\n\u0120r age\n\u0120rh yth\no ffic\n\u0120Ph antom\n\u0120head lines\n\u0120respond - ing\n\u0120Mor ning\n\u0120vit amin\n\u0120boot s\n\u0120S ite\nal in\np i\n\u0120vir - al\n\u0120U C\nD ER\n\u0120Se x\n\u0120st ocks\nc urrent\n\u0120ch urches\n\u0120R - are\n\u0120Mur phy\n\u0120den ial\n\u0120G aming\n\u0120tou g\n\u0120n ick\n\u0120m - akers\n\u0120Ron ald\n\u0120gener ous\n\u0120D oc\n\u0120Mor ris\n\u0120transform - ed\n\u0120N ormal\n\u012010 4\n\u0120Kick starter\n\u0120Up on\nOn line\n\u0120I - RS\n\u0120w rap\n\u0120l oving\n\u0120arri ves\n\u0120D ue\n\u0120he ter\n\u0120M - ade\n\u0120rent al\n\u0120belong s\n\u0120att orneys\n\u0120cro ps\n\u0120mat - ched\nul um\nol ine\n10 9\n\u0120dis par\n\u0120buy ers\n\u0120Cam bridge\n\u0120eth - ics\nrou ps\n\u0120just ified\n\u0120marg inal\n\u0120respect ed\nwin ning\n\u0120nodd - ed\n\u0120Ser ge\n\u0120Form er\nC raft\n######## ########\n\u0120War ner\n\u0120d - ash\net e\n\u0120ent ert\n\u0120E scape\nout heast\n\u0120kn ees\n\u0120B - omb\n\u0120r ug\nP ass\n\u0120att itudes\ngo vernment\n\u0120Pri or\n\u0120qual - ities\n\u0120not ification\n\u0120Ph one\nl ie\n\u0120anticip ated\n\u0120Com - bat\n\u0120Bar ry\n\u0120198 2\nUs ers\non er\n\u0120comput ing\n\u0120Connect - icut\n\u0120less er\n\u0120pe ers\n\u0120C u\n\u0120techn ically\n\u0120sub - mission\n\u0120Un iversal\n\u0120man ually\nour ge\n\u0120respond ents\n\u0120B - TC\n\u0120H ost\n\u0120f are\n\u0120B ird\n\u0120rece ipt\nal so\n\u0120j - ack\n\u0120agric ulture\n\u0120sk ull\n\u0120! =\n\u0120pass ive\n\u0120C - I\n\u0120soc ieties\n\u0120remind ed\n\u0120inter ference\nB uy\n\u0120\xE2 - \u013E\ng on\n\u0120scrut iny\n\u0120W itch\n\u0120conduct ing\n\u0120 \xE3\u0125\n\u0120exch - anges\n\u0120Mit chell\n\u0120inhab it\n\u0120tw ist\nB D\n\u0120where ver\ngroup - on\n\u0120j okes\n\u0120Ben jamin\n\u0120R andom\nfr ame\n\u0120L ions\n\u0120highlight - ed\n\u0120Ark ansas\nE nt\n\u0120p ile\n\u0120pre lim\ng s\nmind ed\n\u0120fel - ony\n\u0120G A\n\u0120L uck\n\u0120pract ically\n\u0120B os\n\u0120act ress\nD - am\n\u0120B ou\n\u0120vis a\n\u0120embed ded\n\u0120hy brid\n\u0120ear liest\n\u0120soon - er\ns ocial\n\u0120H A\n\u0120ste ep\n\u0120dis advant\n\u0120explo it\n\u0120E - gg\n\u0120Ult ra\n\u0120necess ity\nL ocal\nie ge\n\u0120d ated\n\u0120mass - es\n\u0120subsc ription\npl ess\n\u0120an onym\n\u0120presum ably\nBl ue\nThe - ir\nasket ball\n\u0120Phil ip\n\u0120com ed\nload ed\nr ane\n\u0120ref lection\nCh - ina\n\u0120ext ends\n\u0120form ing\n\u0120und ers\n200 1\n\u0120gr at\n\u0120concent - rations\n\u0120ins ulin\n\u0120sec ular\n\u0120wh ilst\n\u0120win ners\nAd - vertisements\n\u0120deliber ately\n\u0120Work ing\n\u0120s ink\net ics\nd - ale\n\u0120mand ate\n\u0120g ram\n\u0120vac ation\n\u0120warn ings\nri pp\n\u0120TH - AT\n\u0120comment ary\n\u0120int u\n\u0120a est\n\u0120reason ing\n\u0120break - down\n\u0120Z ombie\n\u0120-- >\n\u0120Polit ical\nc ott\n\u0120thr ust\n\u0120techn - ological\n\u0120dec iding\n\u0120traff icking\nL ong\nW elcome\npr ising\n\u0120Commun - ications\n\u0120end ors\n\u0120sw ift\n\u0120metab ol\nco ins\nres a\n\u0120HT - TP\n\u0120en roll\n\u0120H appy\nus r\nint age\n\u0120[ \"\nu ably\n\u0120M - aterial\n\u0120repe al\nSe pt\nk h\n\u0120Mod i\n\u0120under neath\n\u0120I - L\nsh ore\n\u0120diagn osed\nace utical\n\u0120sh ower\nau x\n\u0120Sw itch\n\u0120Stre - ngth\n\u0120j ihad\nn ational\n\u0120tra uma\nuss y\non i\n\u0120cons olid\n\u0120cal - ories\n\u0120F lynn\nag ged\n16 8\n\u0120P ink\n\u0120fulf ill\n\u0120ch ains\n\u0120not - ably\n\u0120A V\nL ife\n\u0120Ch uck\nm us\n\u0120Ur ban\n\u0120H end\n\u0120dep - osit\n\u0120S ad\n\u0120aff air\nOR K\nie val\n\u0120F DA\n\u0120t rop\n\u0120Over - all\n\u0120virt ue\n\u0120satisf action\nau nd\n\u0120l un\n\u0120Sw itzerland\n\u0120Oper - ation\npro cess\n\u0120sh ook\n\u0120count ies\nle ased\n\u0120Charl otte\n1 - 12\n\u0120trans cript\n\u0120re dd\np ush\n\u0120He y\n\u0120An alysis\n[ - \"\n\u0120altern atives\nard less\n\u0120ele ph\n\u0120pre jud\n\u0120Le af\nH - aving\n\u0120H ub\n\u0120express ions\n\u0120Vol ume\n\u0120shock ing\n\u0120Red - s\n\u0120read ily\n\u0120plan ets\nad ata\n\u0120collaps ed\n\u0120Mad rid\n\u0120ir - rit\ni pper\n\u0120En c\n\u0120W ire\n\u0120bu zz\n\u0120G P\nash a\n\u0120accident - ally\nur u\n\u0120frust rated\n\u0120S A\n\u0120hung ry\n\u0120H uff\n\u0120lab - els\nant o\n\u0120E P\n\u0120bar riers\n) |\n\u0120Ber keley\n\u0120J ets\n\u0120p - airs\n\u0120L an\nJ ames\n\u0120B ear\n\u0120hum or\n\u0120Liber ty\n\u0120magn - itude\n\u0120ag ing\n\u0120M ason\n\u0120friends hip\numb ling\n\u0120emer - ge\n\u0120newsp apers\n\u0120am bitious\n\u0120Rich ards\natern al\n\u0120198 - 1\n\u0120cook ies\n\u0120sc ulpt\n\u0120pur suit\nL ocation\n\u0120script - s\np c\n\u0120arrang ements\n\u0120d iameter\n\u0120l oses\nam ation\n\u0120l - iqu\n\u0120J ake\naret te\n\u0120understand s\n\u0120Z en\nv m\n\u0120appro - ve\n\u0120w ip\n\u0120ult ra\n\u0120int end\n\u0120D I\nasc ular\n\u0120st - ays\n\u0120K or\n\u0120K l\n\u0120invest ing\nL a\n\u0120belie ving\nb ad\nm - outh\n\u0120taxp ayer\n\xE3\u0125 \u0125\n\u0120Que bec\n\u0120l ap\n\u0120Sw - iss\nd rop\n\u0120dr ain\nir i\net c\nft en\n\u0120N ex\n\u0120st raw\n\u0120scream - ing\n\u0120count ed\n\u0120dam aging\n\u0120amb assador\ncent ury\n\u0120pro - x\n\u0120arrest s\nu v\nil ateral\n\u0120Ch arg\n\u0120presc ribed\n\u0120independ - ently\n\u0120f ierce\n\u0120B aby\n\u0120b rave\n\u0120su its\n= >\n\u0120bas - eline\n\u0120R ate\n\u0120is lands\n\u0120( (\ng reen\nix els\n\u0120name - ly\n\u0120Vill age\nth an\nam y\nV ersion\ng mail\nential s\n\u0120S ud\n\u0120Mel - bourne\n\u0120arri ving\n\u0120quant um\ne ff\nrop olitan\nT ri\n\u0120fun - eral\n\u0120I R\n\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124 - \xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\n\u0120C - ob\nit ably\n\u0120t urb\n\u0120comb o\nRe view\n\u0120deploy ment\nu ity\n\u0120B - ott\n\u0120inv isible\n\u0120render ing\n\u0120unl ocked\n\u0120a qu\n\u0120Vlad - imir\n\u0120p ad\n\u0120Br ain\n\u0120Leg acy\ndr agon\n\u0120Kurd ish\n\u0120sound - ed\n\u0120det ained\n\u0120D M\ng ary\n\u0120d aughters\n\u0120distur bing\nuk - a\n\u0120Par ad\n\u0120t ast\n\u0120unf ortunate\n\u0120u l\nem in\n\u0120attend - ance\ntr l\n\u0120par ks\n\u0120Mem orial\n\u0120Al ice\noth y\ngu ard\n\u0120D - ise\n\u0120Sh an\n\u0120For um\nR ich\n\u0120shif ted\nue z\n\u0120l ighter\n\u0120Mag - n\n\u0120c od\nS ch\nham mad\nP ub\n3 50\n\u0120P okemon\n\u0120prot otype\n\u0120un - re\nB ase\n\u0120Stud ents\n\u0120Rep ly\n\u0120Commun ist\n\u0120g au\n\u0120Ty - ler\nI Z\n\u0120particip ated\n\u0120sup rem\n\u0120Det ails\n\u0120vessel - s\nro d\n\u0120t ribe\nke ep\n\u0120assum ptions\n\u0120p ound\n\u0120cr ude\n\u0120Av - ailable\n\u0120swim ming\n\u0120in clusion\n\u0120adv ances\nc ulation\n\u0120conserv - ation\n\u0120over d\n\u0120Buff alo\nArt icle\ned ge\n\u0120aw a\n\u0120Mad - ison\n\u0120sid ew\n\u0120cat ast\n\u0120K rist\nuc le\n\u0120High way\n\u0120Ter - ror\n\u0120activ ation\n\u0120uncons cious\n\u0120Sat an\n\u0120Sus an\nill - ery\n\u0120arr anged\ni op\n\u0120rum ors\nur ring\nth ink\n\u0120Ke ith\n\u0120K - ind\n\u0120avoid ing\nby n\nn ut\n\u0120Spe aker\nr us\nn ames\n\u0120gu ilt\n\u0120Olymp - ics\n\u0120sa il\n\u0120M es\nlev ant\n\u0120Columb us\na ft\nC ity\nS outh\n\u0120Har - vey\n\u0120P un\nS everal\n\u0120ment ally\n\u0120imp ress\nm ount\n\u0120Ub - untu\n\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136 \xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\n\u0120Super - man\n\u0120MP s\n\u0120intent ions\n\u0120R acing\n\u0120like lihood\n\u01202 - 40\nT otal\n\u0120to ys\n\u0120W atson\n\u0120ur ge\nL ear\n\u0120P aper\n\u0120occur - ring\n\u0120B eng\n\u0120C ert\n\u0120st ones\nT im\n\u0120Tw in\nz b\n\u0120D - ynam\n\u0120polit ician\nk ens\n\u0120Enter prise\nUT ERS\n\u0120ab ol\n\u0120ref - resh\n\u0120arbit rary\npe ction\n\u0120trou bles\n\u0120} );\nt v\n\u0120pil - ots\n\u0120dist ribute\n\u0120aud it\n\u0120p ause\norig inal\n\u0120r ivals\n\xC2 - \xA3\nF ig\nT L\nab il\nry ing\nL in\nion ed\nl on\n\u0120f ancy\n\u0120cr - ashed\n\u0120t ract\n\u0120she d\n\u0120cons ume\nB ased\ndown load\nin it\n\u0120volt - age\nInt rodu\n\u0120condem ned\n\u0120Fin ance\nres pect\n\u0120ex cluded\n\u0120establish - ing\nher ic\n\u0120her itage\n\u0120spect acular\n\u0120un st\n\u0120Snow - den\n\u0120L ane\nS an\n\u0120protect ions\nst ruction\ninc inn\n\u0120mac - ro\nC ustom\nios ity\n\u0120es p\n\u0120function ing\n\u0120m ush\n\u0120p - uzzle\n\u0120eth ical\nM al\n\u0120go verning\n\u0120F erguson\n\u0120rest - ored\n\u0120st ressed\n\u0120Coun ter\n\u0120K as\ncl ip\nAN S\n\u0120se iz\nU - K\nby ss\nold own\nap i\n\u0120perman ently\noun ters\nW est\nTh rough\nL - ight\nat oes\n\u0120ne at\n\u0120c ord\nure r\n\u0120severe ly\n\u0120A ven\n\u0120inter - rog\n\u0120tri ple\nG iven\nN umber\n\u0120ar ise\n\u0120s her\npl ant\n\u0120fl - ower\n\u0120C ou\n\u0120at e\n\u0120new er\nb ul\n\u0120mean while\n\u0120L - air\n\u0120adjust ment\n\u0120Cop yright\n\u0120d ivers\ni ological\n\u0120gam - ers\no at\n\u0120histor ically\n\u0120anal og\n\u0120long time\n\u0120pres - cription\n\u0120M ist\n\u0120Hy per\n\u0120M aine\n\u0120De ity\n\u0120multi - pl\n\u0120Re incarn\n\u0120H yd\n\u0120P ic\nS il\nr ants\n\u0120C ris\n. - ;\n( {\nepend ence\n\u0120rec y\nate ur\n\u0120qu ad\n\u0120gl ob\n\u0120con - ced\nte am\n\u0120capital ist\n\u0120L ot\n\u0120roy al\n\u0120Cy ber\n\u0120black - s\nmet ic\nri v\n\u0120D anny\n\u0120sp o\n\u0120R O\n\u0120anim ated\nrypt - ed\n\u0120Dep uty\n\u0120rend ered\nF E\n\u0120stre ak\n\u0120cloud s\n\u0120Dou - g\n~~~~ ~~~~\n\u0120disc our\n\u0120Ve h\n\u0120psych ology\n\u0120J ourney\n\u0120cry - stal\n\u0120Fro st\n\u0120suspic ion\n\u0120rel ate\nor us\n\u0120C rypt\n\u0120N - VIDIA\ncom ed\nut ing\nincinn ati\n\u0120vulner ability\nost ic\n\u0120isol - ation\n\u0120cool ing\n\u0120Coal ition\n\u01201 19\nF our\n\u0120De al\n\u0120\xE2 - \u012B\nse mble\nram ent\n\u0120Bar celona\n\u012010 2\n\u0120coc aine\nocaly - pse\nF eb\nogen ic\n\u0120mut ation\n\u0120crypt oc\n\u0120K el\n\u0120G it\na - is\n\u0120s isters\nAN K\n\u0120activ ate\nT er\n\u0120d read\nyl on\n\u0120prop - ri\nA ust\n\u0120Def ault\n\u0120out door\n\u0120she er\nce ive\n\u0120g ently\n\xD0 - \xBE\nPro gram\n\u0120\xE2 \u0128\u0134\n\u0120ve gan\n\u0120Cr us\n\u0120respons - ibilities\n\u0120H R\nOL D\n\u0120prev ents\n\u0120st iff\n\u0120W ere\n\u0120athlet - ic\n\u0120Sc ore\n\u0120) :\n\u0120column s\n\u0120L oc\nav ailable\n\u0120F - ram\n\u0120S essions\n\u0120compan ion\n\u0120pack s\n14 0\n\u0120Kn ights\n\u0120f - art\n\u0120stream s\n\u0120sh ore\n\u0120app eals\n\u0120Per formance\nh aul\n\u0120St - ra\n\u0120N ag\n10 3\n\u0120Trans portation\nB B\nE v\nz an\nP ublic\n\u0120tw - in\nuls ion\nM ult\n\u0120elect ro\n\u0120stat ue\nation ally\n\u0120N ort\n\u0120ins - pection\n/ *\nig ue\n\u0120comp assion\n\u0120T ales\n\u0120Ste in\n\u0120Sc - reen\n\u0120B ug\n\u0120L ion\ng irl\n\u0120withdraw al\n\u0120object ives\n\u0120blood - y\n\u0120prelim inary\n\u0120j acket\n\u0120dim ensions\n\u0120C ool\n\u0120Occ - up\n\u0120w reck\n\u0120doub led\nank ing\n\u012019 75\n\u0120glass es\n\u0120W - ang\npro v\nP ath\nconnect ed\n\u0120Mult i\n\u0120Nor way\nagon ist\n\u0120fe - ared\n\u0120touch ing\n\u0120arg uably\n\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF \xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\n\u0120NC - AA\nche m\n\u0120sp at\n\u0120W WE\n\u0120C el\nig ger\n\u0120attack er\n\u0120Jo - in\nob ject\nett a\n\u0120elim inated\nd et\n\u0120dest ruct\n\u0120Luc as\nct - uary\n18 0\n\u0120Br ady\n\u0120Bl ues\nB ay\nau kee\n\u0120tim eline\n\u0120deleg - ates\nw ritten\nuff icient\n\u0120sh apes\nCop yright\nou ble\nserv ice\n\u0120p - ione\n\u0120colleg es\n\u0120row s\n\u0120sp ite\n\u0120assess ed\n3 60\n\u0120le - ase\n\u0120confident ial\nck er\n\u0120Man ning\n\u0120V oice\n\u0120se aled\n\u0120calcul - ate\nN O\n\u0120Ass istant\n\u0120teen ager\nul ent\nather ine\n\u0120m ock\n\u0120d - iamond\n\u0120f est\n\u0120sw itched\n\u0120res ume\n\u0120Pu erto\n\u0120l - anes\nir ation\n\u0120Similar ly\n\u0120ro d\n\u0120S el\n\u0120Pal ace\n\u0120Lim - ited\ne ous\n\u0120var iant\n\u0120w ard\n\u0120) )\nSh ow\nOO K\nA lex\n\u0120N - ep\nbr is\n\u0120Wik ipedia\n\u0120except ional\n\u0120man ages\n\u0120D raw\nAg - ain\n\u0120co pper\nut t\n\u0120ex ports\n\u0120port folio\n\u0120elev ated\nR - ated\n\u0120Other wise\n\u0120T act\n\u0120She l\n\u0120T X\n\" \xE2\u0122\u0136\n\u0120res - ur\n\u0120W a\nven ant\n\u0120mon etary\npe ople\nE mail\n\u0120fif ty\n\u0120S - weet\n\u0120Malays ia\n\u0120conf using\n\u0120R io\nud a\nuten ant\n\" );\n\u0120pra - ised\n\u0120vol umes\nt urn\n\u0120m ature\n\u0120non profit\n\u0120passion - ate\n\u0120Priv ate\n\u012010 3\n\u0120desc end\n\xE7 \xA5\u0140\nuff y\nhead - ed\nWhe ther\nri en\nze ch\nbe it\n\u0120ch rom\n\u0120Mc M\n\u0120d ancing\n\u0120e - leg\n\u0120Not iced\n11 5\n\u0120advoc acy\nENT S\namb ling\n\u0120Min or\n\u0120F - inn\n\u0120prior ities\n\u0120there of\n\u0120St age\n\u0120Rog ers\n\u0120subst - itute\n\u0120J ar\n\u0120Jeff erson\n\u0120light ly\n10 2\n\u0120L isa\nu - its\nys ical\n\u0120shif ts\n\u0120d rones\n\u0120work place\n\u0120res id\nens - ed\nah n\n\u0120pref erences\nser ver\n\u0120deb ates\nd oc\n\u0120God s\n\u0120helicop - ter\n\u0120hon our\n\u0120consider ably\ned ed\n\u0120F emale\n\u0120An ne\n\u0120re - un\n\u0120F ace\n\u0120Hall ow\n\u0120Bud get\n\u0120condem n\n\u0120t ender\nPro - f\nocr atic\n\u0120Turn er\n\u0120Ag ric\n\u012019 76\n\u0120a pt\nd isc\n\u0120F - ighter\n\u0120A ur\n\u0120gar bage\nin put\n\u0120K arl\n\u0120Ol iver\n\u0120L - anguage\nk n\nN on\n\u0120Cl ar\n\u0120trad itions\n\u0120ad vertisement\n\u0120S - or\n\u0120arch ive\n\u0120vill ages\n7 50\n\u0120implement ing\nw aukee\n\u0120diet - ary\n\u0120switch ing\nRep ublic\n\u0120vel ocity\n\u0120c it\n\u0120A wards\n\u0120fin - ancing\n\u0120last ed\n) ]\n\u0120rem inder\nP erson\n\u0120prec ision\n\u0120design - ers\n\u0120F ried\n\u0120B order\n\u0120tr agic\n\u0120w ield\n\u0120initi - atives\n\u0120T ank\nw er\n\u0120jo ins\nR o\nin ery\n\u0120ar row\n\u0120gener - ating\nfound er\n\u0120sear ches\n\u0120random ly\nA ccess\n\u0120b atch\n\u0120p - osed\nl at\n\u0120pursu ing\nas a\n\u0120test ified\nform ing\n\u0120Sh ar\nw - iki\n\u0120E ither\nS ometimes\n\u0120sen ators\n\u0120John ny\n\u0120Tal - iban\n\u0120G PS\n\":\" /\n\xE3\u0123\xAE \xE5\n\u0120analy zed\n\u0120Rub - io\n\u0120Move ment\nop ard\nii i\nSt and\nf ight\n\u0120ign oring\ni ang\n\u0120G - N\nso ever\n\u0120ST AT\n\u0120ref using\n\u0120swe at\n\u0120b ay\nP ORT\nir - med\nak y\n\u0120dis pro\n\u0120label ed\n\u012010 8\nH ello\n\u0120ple asant\nab - a\n\u0120tri umph\n\u0120ab oard\n\u0120inc om\n\u0120C row\nle tt\n\u0120fol - k\n\u0120ch ase\n` `\n\u0120Br us\n\u0120te ens\nc ue\n\u0120ter rain\nh yd\nil - ight\nOR Y\nSu pport\new s\nll i\nrain ts\n\u0120C and\n\u0120ab used\nach - ment\nl arg\nB as\n\u0120C ancer\n\u012019 78\n\u0120supp orter\nac cess\n\u0120Ter - min\n\u0120T ampa\n\u0120AN Y\n\u0120new est\n\u0120Crim inal\ned u\n\u012019 - 30\n\u0120adm its\n\u0120end e\n\u0120fail ures\nur ate\nful ness\ncy cl\n\u0120Sub - ject\n\u0120inf inite\nth ree\nW A\np it\n\u0120Inst all\nR ad\nili ation\nG - M\n\u0120contin ent\n\u0120accommod ate\n\u0120Cl ay\n\u0120p up\n\u0120F - unction\n\u0120ham mer\n\u0120Albert a\n\u0120rev ised\n\u0120minor ities\n\u0120measure - ment\nCon nell\n\u0120dis able\n\u0120M ix\nIn cre\n\u0120for k\n\u0120R osen\n\u0120impl - ies\numb lr\nAN G\n\u0120prote ins\n\u0120agg ression\n\u0120facilit ate\nS - N\n\u0120illeg ally\nu er\n\u0120acad em\n\u0120p uzz\n\u0120Sh ift\np ay\noll - o\n\u0120aud iences\nB uild\n\u0120no ble\n\u0120synt ax\n\xE2 \u013A\u0127\n\u0120be - am\n\u0120B ed\n\u0120A ld\n\u0120orig ins\nv ideo\n\u012019 77\n\u0120Ass - ault\n\u0120gar age\nTe am\n\u0120ver dict\n\u0120d war\n\u0120Virt ual\ne - vent\nKe ep\n\u0120sent iment\n\u0120wild life\nsh irt\n\u0120b urg\n\u0120recommend - ation\nrep resent\n\u0120gall ery\nown ers\n\u0120sch olar\n\u0120conven ience\n\u0120Sw - ift\n\u0120conv inc\nC ap\n\u0120war fare\n\u0120Vis ual\n\u0120const itute\n\u0120ab - ort\n\u0120We ather\n\u0120Look ing\n\u0120H em\n\u0120mart ial\n\u0120inc - oming\net ition\n\u0120toler ance\n\u0120Cre ated\n\u0120fl ows\n\u0120E lder\n\u0120soul - s\n\u0120f oul\n\u0120P ain\n\u0120C AN\n\u01202 20\nb c\nhe nd\n\u0120gen - ius\nR eal\n\u0120W r\nomet er\np ad\n\u0120lim iting\n\u0120S i\n\u0120L - ore\n\u0120Ad ventures\n\u0120var ied\nD isc\nf in\n\u0120Person al\nCh ris\n\u0120inv - ented\n\u0120d ive\n\u0120R ise\n\u0120o z\n\u0120Com ics\n\u0120exp ose\n\u0120Re - b\nlet ters\ns ite\nim ated\n\u0120h acking\n\u0120educ ated\n\u0120Nob ody\n\u0120dep - ri\n\u0120incent ive\n\xE3\u0124 \xB7\n\u0120overs ight\n\u0120trib es\n\u0120Belg - ium\n\u0120licens ing\nour t\nProdu ct\nah l\n\u0120G em\n\u0120special ist\n\u0120c - ra\nann ers\n\u0120Cor byn\n\u012019 73\nRE AD\n\u0120sum mar\n\u0120over - look\n\u0120App lication\n\u0120in appropriate\n\u0120download ed\nQ ue\n\u0120B - ears\n\u0120th umb\n\u0120Char acter\n\u0120Reincarn ated\n\u0120S id\n\u0120demonstr - ates\ns ky\n\u0120Bloom berg\n\u0120Ar ray\n\u0120Res ults\n\u0120Four th\n\u0120ED - T\n\u0120O scar\nc end\n\u012010 6\n\u0120N ULL\n\u0120H ERE\nm atch\n\u0120Br - un\n\u0120gluc ose\nie g\neg u\n\u0120cert ified\n\u0120rel ie\n\u0120human - itarian\n\u0120pr ayers\nK ing\n\u0120n an\nh ou\n10 8\nul u\n\u0120renew - able\n\u0120distingu ish\n\u0120d ense\n\u0120V ent\n\u0120Pack age\n\u0120B - oss\n\u0120edit ors\n\u0120m igr\nT ra\n\u0120Pet ers\n\u0120Ar ctic\n200 - 4\n\u0120C ape\n\u0120loc ally\n\u0120last ing\n\u0120hand y\n. ).\nP an\n\u0120R - ES\nInd ex\n\u0120t ensions\n\u0120former ly\n\u0120ide ological\n\u0120sens - ors\n\u0120deal ers\n\u0120def ines\nS k\n\u0120proceed s\n\u0120pro xy\naz - ines\n\u0120B ash\n\u0120P ad\n\u0120C raft\neal ous\n\u0120she ets\nomet - ry\nJ une\ncl ock\nT T\n\u0120The atre\n\u0120B uzz\n\u0120ch apters\n\u0120mill - enn\n\u0120d ough\n\u0120Congress ional\n\u0120imag ined\nav ior\n\u0120clin - ic\n\u012019 45\n\u0120hold er\nro ot\noles ter\n\u0120rest art\nB N\n\u0120Ham - as\n\u0120J ob\n\u0120or b\n\u0120r am\n\u0120discl ose\n\u0120transl ate\n\u0120imm - igrant\n\u0120annoy ing\n\u0120treat y\nan ium\n\u0120Te a\n\u0120Leg ion\n\u0120crowd - s\n\u0120B ec\n\u0120A er\noh yd\nB ro\nLook ing\n\u0120l bs\n\u0120agg ress\n\u0120se - am\n\u0120inter cept\n\u0120M I\nmer cial\nact iv\n\u0120C it\n\u0120dim ension\n\u0120consist - ency\n\u0120r ushing\n\u0120Dou glas\n\u0120tr im\nInst all\nick er\n\u0120sh - y\n10 6\n\u0120ment ions\npe lled\n\u0120T ak\nc ost\n\u0120class room\n\u0120fort - une\ndri ven\n\u0120un le\n\u0120Whe el\n\u0120invest or\n\u0120M asters\nk - it\n\u0120associ ations\n\u0120Ev olution\nop ing\nus cript\n\u0120prov incial\n\u0120Wal - ter\nav i\nS O\n\u0120un limited\nEng lish\n\u0120C ards\n\u0120Eb ola\nne - red\n\u0120reven ge\n\u0120out right\num per\n\u0120f itting\n\u0120Sol id\n\u0120form - ally\n\u0120problem atic\n\u0120haz ard\n\u0120enc ryption\n\u0120straight - forward\n\u0120A K\n\u0120p se\n\u0120Or b\n\u0120Ch amber\n\u0120M ak\nCont - ents\n\u0120loyal ty\n\u0120l yrics\n\u0120Sy m\n\u0120wel comed\n\u0120cook - ed\n\u0120mon op\n\u0120n urse\n\u0120mis leading\n\u0120e ternal\n\u0120shif - ting\n\u0120+ =\nV is\n\u0120inst itutional\nill ary\n\u0120p ant\nVER T\n\u0120A - CC\n\u0120En h\n\u0120inc on\n\u0120RE UTERS\n\u0120don ated\n\xE2\u0122\xA6\xE2\u0122\xA6 - \xE2\u0122\xA6\xE2\u0122\xA6\nIn tern\n\u0120exhib it\n\u0120t ire\n\u0120R - ic\n\u0120Ch ampion\n\u0120Mu hammad\nN ING\n\u0120Soc cer\n\u0120mob ility\n\u0120vary - ing\n\u0120M ovie\n\u0120l ord\no ak\nF ield\n\u0120ve ctor\nus ions\n\u0120sc - rap\n\u0120en abling\nm ake\nT or\n. *\n| |\n\u0120We bsite\n\u0120N PC\n\u0120social - ist\n\u0120Bill y\n\u0120Add itional\n\u0120c argo\n\u0120far ms\n\u0120So - on\n\u0120Pri ze\n\u0120mid night\n\u01209 00\nse en\n\u0120Sp ot\n\u0120she - ep\n\u0120spons ored\n\u0120H i\n\u0120J ump\n\u012019 67\nMicro soft\n\u0120Ag - ent\n\u0120ch arts\nd ir\n\u0120adj acent\n\u0120tr icks\n\u0120man ga\n\u0120ex - agger\n/ >\nfoot ball\n\u0120F CC\nG C\n\u0120T ier\nand ra\nOU ND\n% ),\n\u0120fru - its\nV C\n\u0120A A\nR ober\n\u0120mid st\n\xE2 \u0139\nank a\n\u0120legisl - ature\n\u0120Ne il\n\u0120tour ists\n\" \"\n\u0120War ning\n\u0120Never theless\n\u0120Offic - ial\n\u0120Wh atever\n\u0120m old\n\u0120draft ed\n\u0120subst ances\n\u0120bre - ed\n\u0120t ags\n\u0120T ask\n\u0120ver b\n\u0120manufact ured\ncom ments\n\u0120Pol - ish\nPro v\n\u0120determin es\nOb ama\nk ers\n\u0120utter ly\n\u0120se ct\nsc - he\n\u0120G ates\n\u0120Ch ap\n\u0120al uminum\n\u0120z ombie\n\u0120T ouch\n\u0120U - P\n\u0120satisf y\n\u0120pred omin\nasc ript\n\u0120elabor ate\n\u012019 68\n\u0120meas - uring\n\u0120V ari\nany ahu\n\u0120s ir\nul ates\nid ges\nick ets\n\u0120Sp - encer\nT M\noub ted\n\u0120pre y\n\u0120install ing\n\u0120C ab\nre ed\nre - ated\nSu pp\n\u0120wr ist\n\u0120K erry\n10 7\n\u0120K le\n\u0120R achel\n\u0120c - otton\n\u0120A RE\n\u0120E le\nCont rol\n\u0120load s\n\u0120D od\nan as\nb - one\n\u0120class ical\n\u0120Reg ional\n\u0120Int eg\nV M\n\u0120des ires\n\u0120aut - ism\nsupport ed\n\u0120M essage\n\u0120comp act\nwrit er\n\u012010 9\n\u0120Hur - ricane\nc ision\n\u0120cy cles\n\u0120dr ill\n\u0120colle ague\n\u0120m aker\nG - erman\n\u0120mist aken\nS un\n\u0120G ay\n\u0120what soever\n\u0120sell s\n\u0120A - irl\nl iv\n\u0120O ption\n\u0120sol ved\n\u0120se ctors\n\u0120horizont al\n\u0120equ - ation\n\u0120Sk ill\n\u0120B io\ng ement\n\u0120Sn ap\n\u0120Leg al\n\u0120tradem - ark\n\u0120make up\n\u0120assemb led\n\u0120sa ves\n\u0120Hallow een\n\u0120Ver - mont\n\u0120FR OM\n\u0120far ming\n\u0120P odcast\naccept able\n\u0120Hig - her\n\u0120as leep\null ivan\n\u0120refere n\n\u0120Le v\n\u0120bul lets\nok - o\nH C\n\u0120st airs\n\u0120main tains\n\u0120L ower\n\u0120V i\n\u0120mar - ine\n\u0120ac res\n\u0120coordin ator\n\u0120J oh\n\u0120counterpart s\n\u0120Brother - s\n\u0120ind ict\nb ra\n\u0120ch unk\n\u0120c ents\nH ome\n\u0120Mon th\n\u0120according - ly\nif les\n\u0120Germ ans\n\u0120Sy n\nH ub\n\u0120ey eb\n\xE2\u0136\u0122\xE2\u0136\u0122 - \xE2\u0136\u0122\xE2\u0136\u0122\n\u0120r anges\n\u0120Holl and\n\u0120Rob - ot\nf c\nM ike\n\u0120pl asma\n\u0120sw ap\n\u0120ath lete\n\u0120R ams\n,' - \"\n\u0120infect ions\n\u0120cor rid\n\u0120v ib\n\u0120pat ches\n\u0120tradition - ally\n\u0120revel ation\n\u0120swe ep\n\u0120gl ance\n\u0120in ex\n200 3\n\u0120R - aw\nwork ing\nos ures\n\u0120D at\n\u0120Lyn ch\n\u0120le verage\n\u0120Re - id\n\u0120correl ation\nian ces\nav ascript\n\u0120rep ository\nret ty\n\u012019 - 72\n24 0\n\u0120o un\np ol\n\u0120Re ed\n\u0120tact ical\nis ite\nApp le\n\u0120Qu - inn\n\u0120rap ed\nill o\nEuro pe\n\u0120algorith ms\n\u0120Rod rig\ni u\n\u0120ill - um\n\u0120f ame\n\u0120introdu cing\n\u0120del ays\n\u0120Raid ers\n\u0120wh - istle\n\u0120novel s\n\u0120Re ally\n\u0120der iv\n\u0120public ations\n\u0120Ne - ither\n\u0120Com merce\n\u0120a ston\nl anguage\nNot es\n\u0120R oth\n\u0120F - ear\n\u0120m ate\n\u0120par ade\n\u0120Q B\n\u0120man eu\n\u0120C incinnati\nm - itting\n\u0120wa ist\n\u0120R ew\n\u0120disc ont\n\xD0 \xB0\n\u0120st aring\n\u0120al - ias\n\u0120sec urities\n\u0120toile t\n\u0120J edi\n\u0120un law\nv ised\n//// - ////\n] (\n\u0120We iss\n\u0120pre st\n\u0120Comp an\n\u0120mem o\n\u0120Gr - ace\nJ uly\n\u0120El ite\ncent er\n\u0120St ay\n\u0120gal axy\n\u0120to oth\n\u0120S - ettings\n\u0120subject ed\n\xE3\u0124 \xA6\n\u0120line back\n\u0120retail - ers\n\u0120W ant\n\u0120d angers\nA ir\n\u0120volunt ary\new ay\n\u0120interpret - ed\not ine\n\xC3 \xA7\n\u0120p el\nServ ice\n\u0120Event ually\n\u0120care - ers\n\u0120threat en\n\u0120mem or\n\u0120Brad ley\nanc ies\ns n\n\u0120Un - known\nN ational\n\u0120sh adows\nail and\n\u0120D ash\nEvery one\nizz ard\nM - arch\n= (\n\u0120pull s\n\u0120str anger\n\u0120back wards\n\u0120Bern ard\nimens - ional\n\u0120ch ron\n\u0120theoret ical\nk top\n\u0120w are\n\u0120Invest - ig\n\u0120In iti\n\u0120Oper ations\no ven\noc ide\n* /\n\u0120fl ames\n\u0120C - ash\nsh it\n\u0120c ab\n\u0120An aly\n\u0120Se ah\n\u0120defin ing\n\u0120order - ing\n\u0120imm un\n\u0120pers istent\nAC H\nRuss ian\nm ans\n\u0120h ind\n\u0120phot - ography\n\xC2 \xA9\n\u0120h ug\n\u012010 7\n\u0120H ence\ni ots\nude au\n\u0120subsid - ies\n\u0120routine ly\n\u0120Dev ice\nit ic\n\u0120disg ust\nland er\n\u012019 - 40\n\u0120assign ment\n\u0120B esides\nw ick\n\u0120D ust\nus c\nstruct ed\n11 - 1\nde velop\n\u0120f ond\n\u0120inter section\n\u0120dign ity\n\u0120commission - er\nWith out\nre ach\n\u0120cart oon\n\u0120sc ales\n\xE3\u0125 \u0143\nF - IG\n\u0120surve ys\n\u0120Indones ia\n\u0120art work\n\u0120un ch\n\u0120cy - cling\nun ct\nau er\nor ate\n\u0120Ob viously\n\u0120character ized\nfe ld\n\u0120aff - irm\n\u0120inn ings\n\u0120 \xE9\n\u0120al iens\n\u0120cl oth\net ooth\n\u0120C - ertain\n\xC2 \xA7\n\u0120dig est\nk now\n\u0120X L\n\u0120predict ions\n\u0120d - in\nW AR\n\u0120after math\nEx ample\n\u0120Su ccess\n\u0120Th r\nIG N\n\u0120min - er\nB us\n\u0120cl arity\nheim er\n\u0120O UT\n\u0120S end\n\u0120Circ le\n\u0120D - iet\n\u0120pron ounced\n\u0120creat ors\n\u0120earthqu ake\natter y\nge ons\n\u0120o - d\n\u0120lay ing\nor p\nU lt\npro ject\n\u0120under min\n\u0120sequ el\nS - am\n\u0120Dark ness\n\u0120re ception\nb ull\nY S\n\u0120V ir\n\u0120sequ - ences\n\u0120Co in\n\u0120out fit\n\u0120W ait\n1 19\n\u0120del ivers\n.... - ..\n\u0120bl own\n\u0120E sc\n\u0120M ath\nper m\n\u0120U l\n\u0120gl im\n\u0120fac - ial\n\u0120green house\n\u0120to kens\n/ -\n\u0120Ann ual\n\u0120ON E\n\u0120teen - age\n\u0120Phys ical\n\u0120L ang\n\u0120C elt\n\u0120su ed\nivid ually\n\u0120pat - ience\nch air\nreg ular\n\u0120a ug\nin v\nex cept\n\u0120L il\n\u0120n est\nf - d\ns um\n\u0120Ch ase\nRuss ia\n\u0120Jenn ifer\n\u0120off season\nOver all\nF - ore\n\u0120r iot\nA ud\nform er\n\u0120defend ers\n\u0120C T\niot ic\nrib - ly\n\u0120autom ated\n\u0120pen is\n\u0120ins ist\n\u0120di agram\n\u0120S - QL\n\u0120G arc\n\u0120w itch\ncl ient\nier ra\nam bers\n\u0120rec ount\nf - ar\nV ery\noster one\n\u0120appreci ated\n\u0120Per fect\nS ection\n\u0120d - oses\noca ust\n\u0120cost ly\n\u0120g rams\n\u0120Sh i\n\u0120wrest ling\n\u012019 - 71\n\u0120tro phy\n\u0120n erve\n\u0120K az\n\u0120Exper ience\n\u0120pled - ged\n\u0120play back\n\u0120creat ivity\nby e\n\u0120attack ers\n\u0120hold - ers\n\u0120Co ach\n\u0120Ph D\n\u0120transf ers\n\u0120col ored\n\u0120H indu\n\u0120d - rown\n\u0120list ened\n\u0120W A\nias m\nP O\n\u0120appeal ing\n\u0120discl - osed\n\u0120Ch icken\nag ging\n\u0120ple aded\n\u0120nav igation\n\u0120Return - s\n\u0120[ [\nR OR\nE A\n\u0120photograp her\n\u0120R ider\nipp ers\n\u0120sl - ice\n\u0120e rect\n\u0120he d\niss ance\n\u0120Vik ings\nur ious\n\u0120app - et\noubted ly\nCh ild\n\u0120authent ic\no os\n\u0120M aking\n\u0120announ - cing\n\u0120b od\n\u0120met er\n\u0120N ine\n\u0120R ogue\n\u0120work force\n\u0120renew - ed\n\u0120organis ations\nac s\nP LE\nSh ort\n\u0120comp ounds\n\u0120Vis - it\n\u0120en velop\near th\n\u0120support ive\ngg le\n\u0120Brus sels\n\u0120Gu - ild\nCre ate\nRE L\n\u0120aver aged\n\u012019 69\nri ages\n\u0120length y\n\u0120forg - ot\nO kay\n\u0120E rd\n\u0120deal er\n\u0120rec ession\nD D\n\u0120desper - ately\n\u0120hun ger\n\u0120st icks\n\u0120m ph\n\u0120F aith\n\u0120intention - ally\n\u0120dem ol\nue ller\n\u0120S ale\n\u0120de bris\ns pring\n\u0120le - ap\n>> >>\n\u0120contain ers\nse lling\nrane an\natter ing\n\u0120comment - ed\n\u0120C M\non ut\n\u0120wood s\nes pecially\n\u0120organ ize\niv ic\n\u0120Wood - s\nang a\ns qu\n\u0120m aj\nam on\n\u0120ax is\n\u012019 74\n\u0120Den mark\n\u0120war - rior\n\u0120P and\n\u0120out lined\n\u0120B O\nins ula\nz illa\neb ook\n\u0120d - are\n\u0120sear ched\n\u0120nav igate\nS n\nwrit ing\n\u0120un ited\nJ apan\n\u0120He - brew\n\u0120fl ame\n\u0120rel ies\n\u0120catch ing\n\u0120Sh o\n\u0120imprison - ment\n\u0120p ockets\n\u0120clos ure\n\u0120F am\nt im\nade qu\nAct ivity\n\u0120recru - iting\n\u0120W ATCH\n\u0120Argent ina\nd est\n\u0120apolog ize\nor o\n\u0120lack - s\n\u0120tun ed\n\u0120Griff in\n\u0120inf amous\n\u0120celebr ity\nss on\n\u0120 - ----------------------------------------------------------------\n\u0120Is - is\n\u0120Dis play\n\u0120cred ibility\n\u0120econom ies\n\u0120head line\n\u0120Cow - boys\n\u0120ind ef\n\u0120l ately\n\u0120incent ives\nbut ton\n\u0120M ob\nA - ut\n\u0120res igned\n\u0120O m\nc amp\n\u0120prof iles\n\u0120sche mes\nolph - ins\nay ed\nCl inton\nen h\n\u0120Y ahoo\n\u0120ab st\n\u0120an k\nsu its\n\u0120w - ished\n\u0120Mar co\nudd en\n\u0120sp here\n\u0120B ishop\n\u0120incorpor - ated\n\u0120Pl ant\n11 4\n\u0120h ated\np ic\n\u0120don ate\n\u0120l ined\n\u0120be - ans\n\u0120steal ing\n\u0120cost ume\n\u0120sher iff\n\u0120for ty\n\u0120int - act\n\u0120adapt ed\n\u0120trave lling\nb art\n\u0120nice ly\n\u0120dri ed\n\u0120sc - al\nos ity\nNOT E\n\u0120B h\n\u0120Bron cos\n\u0120I gn\n\u0120int imate\n\u0120chem - istry\n\u0120opt imal\nD eb\n\u0120Gener ation\n\u0120] ,\nich i\n\u0120W - ii\n\u0120YOU R\nvent ions\nW rite\n\u0120pop ul\nun ning\n\u0120W or\nV ol\n\u0120qu - een\nhead s\nK K\n\u0120analy ze\nop ic\near chers\n\u0120d ot\nleg raph\nast - ically\n\u0120upgr ades\n\u0120ca res\n\u0120ext ending\n\u0120free ze\n\u0120in - ability\n\u0120org ans\n\u0120pret end\n\u0120out let\n11 3\nol an\n\u0120M - all\nul ing\nt alk\n\u0120express ing\n\u0120Al ways\n\u0120Be gin\nf iles\n\u0120lic - enses\n% %\n\u0120M itt\n\u0120fil ters\n\u0120Mil waukee\nG N\n\u0120unf - old\nM o\n\u0120nut rition\npp o\nB o\n\u0120found ing\n\u0120under mine\n\u0120eas - iest\n\u0120C zech\n\u0120M ack\n\u0120sexual ity\n\u0120N ixon\nW in\n\u0120Ar - n\n\u0120K in\n\xE3\u0124 \xA3\nic er\n\u0120fort un\n\u0120surf aces\nagh - d\n\u0120car riers\n\u0120P ART\n\u0120T ib\n\u0120inter val\n\u0120frust - rating\n\u0120Sh ip\n\u0120Ar med\nff e\n\u0120bo ats\n\u0120Ab raham\nin - is\n\u0120su ited\nth read\ni ov\nab ul\n\u0120Venezuel a\n\u0120to m\nsu - per\n\u0120cast le\nalth ough\niox ide\nec hes\n\u0120evolution ary\n\u0120negoti - ate\n\u0120confront ed\nRem ember\n\u012017 0\nS uch\n\u01209 11\nm ult\n\u0120A - byss\nur ry\nke es\nspe c\n\u0120Barb ara\n\u0120belong ing\n\u0120vill ain\nist - ani\n\u0120account able\n\u0120port ions\n\u0120De cl\nU r\n\u0120K ate\ng - re\n\u0120mag azines\nUC K\n\u0120regul ate\nom on\n\u0120Al most\n\u0120over - view\n\u0120sc ram\n\u0120l oot\n\u0120F itz\n\u0120character istic\n\u0120Sn - ake\ns ay\n\u0120R ico\n\u0120tra it\n\u0120Jo ined\nau cus\n\u0120adapt ation\n\u0120Airl - ines\n\u0120arch ae\n\u0120I de\n\u0120b ikes\n\u0120liter ary\n\u0120influ - ences\n\u0120Us ed\nC reat\n\u0120ple a\n\u0120Def ence\n\u0120Ass ass\n\u0120p - ond\nUL T\n) \"\n\u0120eval uated\n\u0120ob taining\n\u0120dem ographic\n\u0120vig - il\nale y\n\u0120sp ouse\n\u0120Seah awks\nresp ons\n\u0120B elt\num atic\n\u0120r - ises\nrun ner\n\u0120Michel le\n\u0120pot ent\nr ace\n\u0120P AC\nF ind\nolester - ol\nIS S\n\u0120Introdu ced\nress es\nign ment\nO s\n\u0120T u\n\u0120De x\nic - ides\n\u0120spark ed\n\u0120Laur a\n\u0120Bry ant\n\u0120sm iling\n\u0120Nex - us\n\u0120defend ants\n\u0120Cat al\n\u0120dis hes\nsh aped\n\u0120pro long\nm - t\n( $\n\xE3\u0122 \u0124\n\u0120calcul ations\n\u0120S ame\n\u0120p iv\nH - H\n\u0120cance lled\n\u0120gr in\n\u0120territ ories\nist ically\nC ome\n\u0120P - arent\nPro ject\n\u0120neg lig\n\u0120Priv acy\n\u0120am mo\nLE CT\nolute - ly\n\u0120Ep ic\n\u0120mis under\nw al\nApr il\nm os\npath y\n\u0120C arson\n\u0120album - s\n\u0120E asy\n\u0120pist ol\n< <\n\u0120\\ (\nt arget\nhel p\n\u0120inter - pre\ncons cious\n\u0120H ousing\n\u0120J oint\n12 7\n\u0120be ers\ns cience\n\u0120Fire - fox\neffect ive\n\u0120C abin\n\u0120O kay\n\u0120App lic\n\u0120space craft\n\u0120S - R\nve t\n\u0120Str ange\nS B\n\u0120cor ps\niber al\ne fficient\n\u0120preval - ence\n\u0120econom ists\n11 8\nTh read\nord able\nOD E\n\u0120C ant\n=- =-\nif - iable\n\u0120A round\n\u0120po le\n\u0120willing ness\nCL A\n\u0120K id\n\u0120comple - ment\n\u0120sc attered\n\u0120in mates\n\u0120ble eding\ne very\n\u0120que - ue\n\u0120Tr ain\n\u0120h ij\n\u0120me lee\nple ted\n\u0120dig it\n\u0120g - em\noffic ial\n\u0120lif ting\n\xD0 \xB5\nRe qu\nit utes\n\u0120pack aging\n\u0120Work - ers\nh ran\n\u0120Leban on\nol esc\n\u0120pun ished\n\u0120J uan\n\u0120j - am\n\u0120D ocument\n\u0120m apping\nic ates\n\u0120inev itably\n\u0120van - illa\n\u0120T on\n\u0120wat ches\n\u0120le agues\n\u0120initi ated\ndeg ree\nport - ion\n\u0120rec alls\n\u0120ru in\n\u0120m elt\nI AN\n\u0120he m\nEx p\n\u0120b - aking\n\u0120Col omb\nat ible\n\u0120rad ius\npl ug\n\u0120I F\net ically\n\u0120f - ict\nH ER\n\u0120T ap\natin um\n\u0120in k\n\u0120co h\n\u0120W izard\nb oth\nte - x\n\u0120sp ends\n\u0120Current ly\n\u0120P it\n\u0120neur ons\nig nt\n\u0120r - all\n\u0120bus es\nb uilding\n\u0120adjust ments\n\u0120c ried\nibl ical\natt - ed\n\u0120Z ion\n\u0120M atter\n\u0120med itation\n\u0120D ennis\n\u0120our - s\n\u0120T ab\n\u0120rank ings\nort al\n\u0120ad vers\n\u0120sur render\n\u0120G - ob\nci um\nom as\nim eter\n\u0120multi player\n\u0120hero in\n\u0120optim - istic\n\u0120indic ator\n\u0120Br ig\n\u0120gro cery\n\u0120applic ant\n\u0120Rock - et\nv id\nEx ception\np ent\n\u0120organ izing\n\u0120enc ounters\n\u0120T - OD\n\u0120jew el\nS ave\n\u0120Christ ie\n\u0120he ating\n\u0120l azy\n\u0120C - P\n\u0120cous in\nCon fig\n\u0120reg ener\n\u0120ne arest\n\u0120achie ving\nEN - S\nth row\n\u0120Rich mond\nant le\n200 2\n\u0120an ten\nb ird\n13 3\n\u0120n - arc\nr aint\nun ny\n\u0120Hispan ic\nourn aments\n\u0120prop he\n\u0120Th - ailand\n\u0120T i\n\u0120inject ion\n\u0120inher it\nrav is\n\u0120med i\n\u0120who - ever\n\u0120DE BUG\nG P\n\u0120H ud\nC ard\np rom\n\u0120p or\n\u0120over - head\nL aw\n\u0120viol ate\n\u0120he ated\n\u0120descript ions\n\u0120achieve - ments\n\u0120Be er\n\u0120Qu ant\nW as\n\u0120e ighth\n\u0120I v\n\u0120special - ized\nU PDATE\n\u0120D elta\nP op\nJ ul\n\u0120As k\noph y\n\u0120news letters\n\u0120T - ool\n\u0120g ard\n\u0120Conf eder\n\u0120GM T\n\u0120Ab bott\n\u0120imm unity\n\u0120V - M\nIs lam\n\u0120impl icit\nw d\n\u012019 44\nrav ity\nomet ric\n\u0120surv - iving\nur ai\n\u0120Pr ison\n\u0120r ust\n\u0120Sk etch\n\u0120be es\n\u0120The - ory\n\u0120mer it\nT ex\nch at\n\u0120m im\n\u0120past e\n\u0120K och\n\u0120ignor - ance\n\u0120Sh oot\n\u0120bas ement\nUn ited\n\u0120Ad vis\nhe ight\n\u0120f - oster\n\u0120det ain\nin formation\n\u0120ne ural\n' ;\n\u0120prov es\nall - ery\n\u0120inv itation\num bers\n\u0120c attle\n\u0120bicy cle\nz i\n\u0120consult - ant\n\u0120ap ology\n\u0120T iger\n\u012012 3\n99 9\n\u0120ind ividually\nr - t\nig ion\n\u0120Brazil ian\n\u0120dist urb\n\u0120entreprene urs\n\u0120fore - sts\ncer pt\npl ates\np her\nclip se\n\u0120tw itter\n\u0120ac ids\nograph - ical\nh um\n\u0120B ald\nif ully\n\u0120comp iler\n\u0120D A\n\u0120don or\nas - i\n\u0120trib al\nl ash\n\u0120Con fig\n\u0120applic ants\n\u0120sal aries\n13 - 5\nPut in\n\u0120F ocus\nir s\n\u0120misc onduct\n\u0120H az\n\u0120eat en\nM - obile\nMus lim\n\u0120Mar cus\nv iol\n\u0120favor able\n\u0120st ub\nad in\n\u0120H - ob\n\u0120faith ful\n\u0120electron ics\n\u0120vac uum\nw ait\nback ed\neconom - ic\nd ist\n\u0120ten ure\n\u0120since re\n\u0120T ogether\n\u0120W ave\n\u0120prog - ression\n\u0120den ying\n\u0120dist ress\nbr aska\nth ird\n\u0120mix ing\n\u0120colon - ial\n\u0120priv ately\n\u0120un rest\natern ity\n\u0120prem ises\nant i\ngreg - ation\n\u0120lic ence\n\u0120H ind\n\u0120Sam uel\n\u0120convinc ing\n\u0120A - ce\n\u0120R ust\n\u0120Net anyahu\n\u0120hand les\n\u0120P atch\norient ed\nah - o\n\u0120G onz\n\u0120hack ers\nclaim er\n\u0120custom s\n\u0120Gr an\nf ighters\n\u0120l - uc\n\u0120man uscript\naren thood\n\u0120dev il\n\u0120war riors\n\u0120off - enders\nWill iam\n\u0120hol idays\n\u0120night mare\n\u0120le ver\niff erent\nSt - at\n\u0120exhib ition\nput ed\n\u0120P ure\n\u0120al pha\n\u0120enthus iasm\n\u0120Represent - atives\nE AR\n\u0120T yp\n\u0120whe at\n\u0120Al f\n\u0120cor rection\n\u0120ev - angel\nAT T\nM iss\n\u0120s oup\n\u0120impl ied\npar am\n\u0120sex y\n\u0120L - ux\n\u0120rep ublic\np atch\nab lish\n\u0120ic ons\n\u0120father s\n\u0120G - ET\n\u0120Car ib\n\u0120regul ated\n\u0120Co hen\n\u0120Bob by\n\u0120n er\n\u0120b - ent\nvent ory\n\u0120Al ong\n\u0120E ST\n\u0120Wall ace\n\u0120murd ers\nr - ise\nke ll\n\u0120Common wealth\n\u0120n asty\net a\n\u0120M IT\n\u0120administ - ered\n\u0120genuine ly\nEd itor\nn ick\n\u0120hyd ro\n**************** ****************\n\u0120B - le\n\u0120fin es\n\u0120g orge\naus ible\nr h\n\u0120app le\nment ioned\n\u0120ro - pe\not yp\nH R\n\u0120disappoint ing\n\u0120c age\nn ik\n\u0120doub ts\n\u0120F - REE\nprint s\n\u0120M UST\n\u0120vend ors\n\u0120In qu\n\u0120liber als\n\u0120contract - or\n\u0120up side\nchild ren\n\u0120trick y\n\u0120regul ators\ncharg ed\nl - iter\n\u0120 ***\n\u0120reb ell\nl ang\n\u0120loc als\n\u0120phys icians\n\u0120he - y\nar se\nt m\n\u0120Le x\n\u0120behavior al\nsuccess ful\nF X\n\u0120br ick\nov - ic\n\u0120con form\n\u0120review ing\n\u0120ins ights\n\u0120bi ology\n\u0120Rem - ove\n\u0120Ext ra\n\u0120comm itting\nindu ced\nignt y\nig m\n\u0120at omic\nComm - on\n\u0120E M\n\u0120P ere\n\u0120It ems\ne h\n\u0120pres erved\n\u0120H ood\n\u0120prison - er\n\u0120bankrupt cy\n\u0120g ren\nus hes\n\u0120explo itation\n\u0120sign - atures\n\u0120fin an\n] ,\"\n\u0120M R\n\u0120me g\nrem lin\n\u0120music ians\n\u0120select - ing\n\u0120exam ining\nIN K\nl ated\nH i\n\u0120art ic\n\u0120p ets\n\u0120imp - air\n\u0120M AN\n\u0120table ts\nin clude\nR ange\n\u0120ca ut\n\u0120log - s\n\u0120mount ing\n\u0120un aware\n\u0120dynam ics\n\u0120Palest ine\n\u0120Qu - arter\n\u0120Pur ple\n\u0120m a\n\u0120Im port\n\u0120collect ions\nci ation\n\u0120success - or\n\u0120cl one\n\u0120aim ing\n\u0120poss essed\n\u0120stick ing\n\u0120sh - aking\n\u0120loc ate\n\u0120H ockey\nT urn\n17 0\n\u0120fif teen\n\u0120Har - rison\n\u0120continu ously\n\u0120T C\n\u0120Val ent\n\u0120Res cue\n\u0120by - pass\nam ount\n\u0120m ast\n\u0120protect s\n\u0120art istic\n\u0120somet - ime\n\u0120sh oe\n\u0120shout ed\nific ant\net itive\n\u0120Reg ister\n\u0120J - in\n\u0120concent rated\nling ton\non ies\n\u0120gener ator\nyr im\n\u0120Ar - men\n\u0120clear ing\nid o\n\u0120T W\nal ph\n\u0120lad ies\nH ard\n\u0120dial - og\n\u0120input s\n\xE6 \u013E\n\u0120pos es\n\u0120sl ots\n\u0120Prem ium\n\u0120le - aks\n\u0120boss es\n\u012011 3\nc ourse\nA cc\n\u0120New ton\n\u0120Aust ria\n\u0120M - age\n\u0120te aches\nab ad\n\u0120we ars\n\u0120c yl\n\u0120cur se\n\u0120S - ales\n\u0120W ings\n\u0120p sy\n\u0120g aps\n\u0120Ice land\n\u0120P interest\n\u0120land - lord\n\u0120defin itions\n\u0120K er\n\u0120sufficient ly\n\u0120P ence\n\u0120Arch - itect\n\u0120sur pass\n\u012011 4\n\u0120super hero\n\u0120Dise ase\n\u0120pri - ests\n\u0120C ulture\n\u0120defin itive\n\u0120secret ly\n\u0120D ance\ninst - all\nch ief\n\u0120Jess ica\nW ould\nUp dated\n\u0120lock er\n\u0120K ay\n\u0120mem - orial\n\xE8 \xA6\nf at\n\u0120dis gu\n\u0120flav ors\n\u0120Base ball\n\u0120Res - istance\n\u0120k icks\n\u0120en v\n\u0120teen agers\nD ark\n\u0120C AR\n\u0120h - alt\n\u0120L G\n\u0120Gab riel\n\u0120fe ver\n\u0120s atur\n\u0120m all\n\u0120affili - ate\n\u0120S leep\n\u0120Spe cific\n\u0120V el\n\u0120j ar\n\u0120Sac red\n\u0120Ed - wards\n\u0120A CL\n\u0120ret ained\n\u0120G iant\n\u0120lim itation\nin ces\n\u0120ref - usal\n\u0120T ale\n\u0120But ler\n\u0120acc idents\n\u0120C SS\n\u0120import - ed\n\u0120Cop y\n\xCE \xB1\nER T\nz el\n\u0120div isions\nh ots\n\u0120Al - b\n\u0120D S\nLoad er\nW ashington\nat isf\n\u0120Creat ive\n\\ .\n\u0120Aut - om\nred ict\n\u0120recept or\n\u0120Carl os\nMet hod\nok a\n\u0120mal icious\n\u0120ste - pping\n, [\n\u0120D ad\n\u0120att raction\n\u0120Effect s\n\u0120Pir ate\n\u0120C - er\n\u0120Indust ry\n\u0120R ud\n\u0120char ter\n\u0120d ining\n\u0120ins - ists\n\u0120config ure\n\u0120( #\n\u0120Sim ple\n\u0120Sc roll\nUT C\n17 - 5\n\u0120K on\n\u0120market place\n\u0120 \xE3\u0124\n\u0120ref res\n\u0120g - ates\ner red\n\u0120P od\n\u0120beh ave\nFr ank\nn ode\n\u0120endors ed\nhe - tt\nas ive\n\u0120Hom eland\n\u0120r ides\n\u0120Le ave\ner ness\n\u0120flood - ing\nA FP\n\u0120ris en\n\u0120contin ually\n\u0120un anim\n\u0120Cont ract\n\u0120P - as\n\u0120gu ided\n\u0120Ch ile\nb d\n\u0120su cc\npt ic\n\u0120comm ittees\n\u0120L - uther\n\u0120Any one\n\u0120s ab\n12 4\n\u0120p ixel\n\u0120B ak\n\u0120T - ag\n\u0120Benn ett\nEn ter\nsm all\n\u0120President ial\n\u0120p ul\n\u0120contr - ace\narch ive\n\u0120coast al\n\u0120K ids\n19 2\n\xE2\u0122 \xB2\nick y\nING - TON\n\u0120w olf\n\u0120St alin\nT ur\nid get\nam as\n\u0120Un less\n\u0120spons - or\n\u0120mor ph\n\u0120Cho ose\n\u0120run ner\n\u0120un bel\n\u0120m ud\n\u0120Man - a\n\u0120dub bed\n\u0120g odd\nure rs\nwind ow\n\u0120rel ied\n\u0120celebr - ating\nos c\n\u012013 5\n\u0120lobb ying\n\u0120incom plete\n\u0120restrict - ion\n\u0120inc ap\nit us\n\u0120expect ation\n\u0120Ap ollo\n\u0120int ens\n\u0120syn - c\nG H\n\u0120manip ulation\nB Y\n\u0120spe ar\n\u0120bre asts\n\u0120vol - can\nil ia\nM aterial\n\u0120form ats\n\u0120B ast\n\u0120parliament ary\n\u0120sn - ake\n\u0120serv ants\n\u0120Tr udeau\n\u0120Gr im\n\u0120Arab ic\n\u0120SC - P\n\u0120Boy s\nst ation\n\u0120prospect ive\nord e\nin itialized\n\u0120b - ored\nAB LE\n\u0120access ed\n\u0120tax i\n\u0120She ll\naid en\nurs ed\nin - ates\n\u0120Ins urance\n\u0120Pet e\nSept ember\n6 50\n\u0120ad ventures\n\u0120Co - ver\n\u0120t ribute\n\u0120sk etch\n\u0120em power\n\u0120 \xD8\n\u0120Gl - enn\n\u0120D aw\n= \\\"\n\u0120Polit ics\n\u0120gu ides\n\u0120d ioxide\n\u0120G - ore\n\u0120Br ight\n\u0120S ierra\n\u0120val ued\nc ond\n\u0120po inter\nSe - lect\n\u0120risk y\n\u0120absor b\nim ages\n\u0120ref uses\n\u0120bon uses\n__ - _\n\u0120h ilar\n\u0120F eatures\n2 20\n\u0120Collect or\nF oot\n\u012019 - 64\ncul us\n\u0120d awn\n\u0120work out\n\u0120L O\n\u0120philosoph ical\n\u0120Sand - y\n\u0120You th\n\u0120l iable\nA f\nbl ue\n\u0120overt urn\nless ness\n\u0120Trib - une\n\u0120In g\n\u0120fact ories\n\u0120cat ches\n\u0120pr one\n\u0120mat - rix\n\u0120log in\n\u0120in acc\n\u0120ex ert\ns ys\n\u0120need le\n\u0120Q - ur\n\u0120not ified\nould er\nt x\n\u0120remind s\n\u0120publisher s\n\u0120n - ort\n\u0120g it\n\u0120fl ies\n\u0120Em ily\n\u0120flow ing\n\u0120Al ien\n\u0120Str - ateg\n\u0120hard est\n\u0120mod ification\nAP I\n\u0120M Y\n\u0120cr ashes\nst - airs\nn umber\n\u0120ur ging\nch annel\n\u0120Fal con\n\u0120inhabit ants\n\u0120terr - ifying\n\u0120util ize\n\u0120ban ner\n\u0120cig arettes\n\u0120sens es\n\u0120Hol - mes\n\u0120pract ition\n\u0120Phill ips\nott o\n\u0120comp ile\nMod el\n\u0120K - o\n\u0120[ ]\nAmeric ans\n\u0120Ter ms\n\u0120med ications\n\u0120An a\n\u0120fundament - ally\n\u0120Not ice\n\u0120we aker\n\u0120 0000\n\u0120gar lic\n\u0120out - break\n\u0120econom ist\n\u0120B irth\n\u0120obst acles\nar cer\n\u0120Or - thodox\n\u0120place bo\n\u0120C rew\nasp berry\n\u0120Ang els\n\u0120dis charge\n\u0120destruct - ive\n11 7\n\u0120R ising\n\u0120d airy\nl ate\n\u0120coll ision\n\u0120Tig - ers\nean or\nocument ed\n\u0120In valid\n\u0120d ont\n\u0120L iter\n\u0120V - a\n\u0120hyd rogen\n\u0120vari ants\n\u0120Brown s\n\u012019 65\n\u0120ind - igenous\n\u0120trad es\n\u0120remain der\n\u0120swe pt\n\u0120Imp act\n\u0120red - ist\n\u0120un int\ngrad uate\n\xE3\u0125 \u0137\n\u0120W ILL\n\xE3\u0123\xAE - \xE7\n\u0120Crit ical\n\u0120f isher\n\u0120v icious\n\u0120revers ed\nY ear\n\u0120S - ox\n\u0120shoot ings\n\u0120fil ming\n\u0120touchdown s\nai res\nm el\n\u0120grand - father\n\u0120affect ion\ning le\n\u0120over ly\nAdd itional\n\u0120sup reme\n\u0120Gr - ad\n\u0120sport ing\n\u0120mer cy\n\u0120Brook s\nount y\n\u0120perform s\n\u0120tight - ly\n\u0120dem ons\n\u0120kill ings\n\u0120fact ion\n\u0120Nov a\naut s\n\u0120und - oubtedly\nar in\n\u0120under way\nra k\n\u0120l iv\n\u0120Reg ion\n\u0120brief - ing\ns ers\ncl oud\n\u0120M ik\nus p\n\u0120pred iction\naz or\n\u0120port - able\n\u0120G and\n\u0120present ing\n\u012010 80\n\xC2 \xBB\nush i\n\u0120Sp - ark\nthere um\n\u0120just ification\n\u0120N y\n\u0120contract ors\nming ham\n\u0120St - yle\n\xE5 \u0127\n\u0120Chron icles\n\u0120Pict ure\n\u0120prov ing\n\u0120w - ives\nset t\n\u0120mole cules\n\u0120Fair y\n\u0120consist ing\n\u0120p ier\nal - one\nin ition\n\u0120n ucle\nj son\n\u0120g otta\n\u0120mob il\n\u0120ver - bal\nar ium\n\u0120mon ument\nuck ed\n\u012025 6\nT ech\nmine craft\n\u0120Tr - ack\n\u0120t ile\n\u0120compat ibility\nas is\n\u0120s add\n\u0120instruct - ed\n\u0120M ueller\n\u0120le thal\n\u0120horm one\n\u0120or che\nel se\n\u0120ske - let\n\u0120entert aining\n\u0120minim ize\nag ain\n\u0120under go\n\u0120const - raints\n\u0120cig arette\n\u0120Islam ist\n\u0120travel s\n\u0120Pant hers\nl - ings\nC are\n\u0120law suits\nur as\n\u0120cry st\n\u0120low ered\n\u0120aer - ial\n\u0120comb inations\n\u0120ha un\n\u0120ch a\n\u0120v ine\n\u0120quant - ities\n\u0120link ing\nb ank\n\u0120so y\nB ill\n\u0120Angel a\n\u0120recip - ient\n\u0120Prot est\n\u0120s ocket\n\u0120solid arity\n\u0120\xE2 \u0128\nm - ill\n\u0120var ies\n\u0120Pak istani\nDr agon\n\u0120un e\n\u0120hor izon\n\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142 - \xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\n\u0120prov inces\n\u0120frank ly\n\u0120enact - ed\nnot es\n[ '\n\u012019 2\nocr acy\n\u0120endorse ment\n\u0120over time\nTr - ue\nL ab\nlic ted\n\u0120D NC\n\u0120be ats\n\u0120Jam ie\n15 2\n\u0120IN - T\nCont act\n\u0120account ed\nh ash\n\u0120Pack ers\np ires\n\u0120les bian\n\u0120amend - ments\n\u0120hop eful\n\u0120Fin land\n\u0120spot light\n\u0120config ured\n\u0120trou - bled\n\u0120g aze\n\u0120Cal gary\n\u0120rel iability\n\u0120ins urg\nsw er\nb - uy\n\u0120Sk in\n\u0120p ixels\n\u0120hand gun\n\u0120par as\n\u0120categ - or\n\u0120E L\n\u0120Re x\nInd eed\n\u0120kind a\n\u0120conj unction\n\u0120Bry - an\n\u0120Man ufact\ny ang\nPl us\nS QL\nish ment\n\u0120dom inate\n\u0120n - ail\n\u0120o ath\n\u0120eru pt\n\u0120F ine\nit bart\n\u0120Ch ip\n\u0120Ab - d\n\u0120N am\n\u0120buy er\n\u0120diss ent\nLe aks\nCont in\n\u0120r ider\n\u0120Some - one\n\u0120ill usion\nc in\n\u0120Boe ing\n\u0120in adequ\nov ation\ni ants\n\u0120reb - uild\n4 50\n\u0120Dest iny\nS W\n\u0120T ill\nH it\nia z\n\u0120Bang l\nacher - s\n\u0120Re form\n\u0120se gments\n\u0120system atic\nd c\n\u0120Conserv atives\n\u0120port - al\nh or\n\u0120Dragon bound\n\u0120drag ged\nom o\n\u0120the e\nad vert\n\u0120Rep - orts\n\u0120E t\n\u0120barrel s\nAug ust\n\u0120compar isons\n\u0120he x\n\u0120an - throp\n\" [\nbor ough\nab i\n\u0120pict ured\nplay ing\n\u0120Add ress\n\u0120Mir - ror\nSm ith\n\u0120t ires\n\u0120N PR\nAA AA\n\u0120class ification\n\u0120Th - an\n\u0120H arm\n\u0120R A\n\u0120reject ion\nmin ation\n\u0120r anged\n\u0120F - alls\nD I\nH ost\n\xE3\u0124 \xB4\n\u0120Ex ample\nlist ed\nth irds\n\u0120saf - egu\nbr and\n\u0120prob able\nCan ada\nIT ION\n\u0120Q aeda\n\u0120ch ick\n\u0120import - s\nh it\nl oc\nW W\n\u0120ble w\n\u0120any time\n\u0120wh oles\nik ed\n\u0120cal - culation\ncre ate\n\u0120O ri\n\u0120upgr aded\n\u0120app ar\nut ory\n\u0120M - ol\nB rit\n\u0120J ong\nIN AL\n\u0120Start ing\n\u0120d ice\nurt le\n\u0120re - lying\ncl osure\n\u0120prof itable\n\u0120sl aughter\n\u0120Man ual\nc aster\n\u0120\" - $\n\u0120fe ather\n\u0120Sim ply\nie ves\n\u0120deter ior\n\u0120PC I\n\u0120st - amp\n\u0120fl aws\n\u0120sh ade\nham mer\n\u0120pass port\n\u0120cont ing\nam - el\n\u0120obser vers\n\u0120neg lect\n\u0120R B\n\u0120Brother hood\n\u0120skept - ical\nf amily\nus k\n\u0120emotion ally\n\xE2 \u013B\n\u0120Bet a\nason able\nid - ity\n\u0120M ul\n\u0120kick ing\n\u0120C arm\noll ah\nVERT IS\n\u0120At hen\n\u0120lad - der\n\u0120Bul let\n\xE5 \xA3\n00 01\n\u0120Wild life\n\u0120M ask\n\u0120N - an\nR ev\n\u0120un acceptable\nleg al\n\u0120crowd ed\nag i\n\u0120C ox\nj - e\n\u0120mor ality\n\u0120fu els\n\u0120c ables\n\u0120man kind\n\u0120Carib - bean\n\u0120anch or\n\u0120by te\n\u0120O ften\n\u0120O z\n\u0120craft ed\n\u0120histor - ian\n\u0120W u\n\u0120tow ers\n\u0120Citiz ens\n\u0120hel m\n\u0120cred entials\n\u0120sing - ular\n\u0120Jes se\n\u0120tack les\n\u0120cont empt\n\u0120a fore\n\u0120Sh - adows\n\u0120n il\n\u0120ur gent\napp le\nbl ood\n\u0120v on\n\u0120off line\n\u0120breat - he\n\u0120j umps\n\u0120irre levant\nox ic\nom al\nimport ant\nJ im\n\u0120gl - oves\narm ing\ndep th\n\u0120tal ents\nook ie\n\u0120S B\n\u0120pal m\nuff - s\nest a\nIG H\n\u0120can on\n\u0120Ver izon\n\u0120P le\n\u0120cou pled\nvel - t\n\u0120fundra ising\n\u0120Get ting\n\u0120D LC\n\u0120mathemat ical\n\u0120H - S\n\u0120Card inals\nte lling\n\u0120spons ors\n\u0120 \xCF\n\u0120Bull s\nop - tion\n\u0120prop ose\n\u0120mem orable\n\u0120embr aced\n\u0120decl ining\nHe - alth\ned a\n\u0120} ;\n\u0120sp am\nm ile\n\u0120pit cher\n\u0120E ight\n\u0120car - ing\nut ic\nro le\n\u0120air line\nernand ez\n\u0120Ath let\n\u0120cert ification\nux - e\nrig er\n\u0120em pir\n\u0120sens ation\n\u0120dis m\n\u0120b olt\n\u0120ev - olve\nH ouse\n\u0120consult ation\n\u0120D uty\n\u0120tou ches\n\u0120N athan\n\u0120f - aint\nh ad\n\" (\n\u0120Cons umer\n\u0120Ext reme\n\u012012 7\n\u0120Her m\n\u0120Sac - rament\niz oph\n\u0120anx ious\nul ously\n\u0120soc ially\n\u0120U TC\n\u0120sol - ving\n\u0120Let ter\nHist ory\ned uc\nPr ice\n) );\n\u0120rel oad\nam ic\n\u0120p - ork\n\u0120disc ourse\n\u0120t ournaments\nai ro\n\u0120K ur\n\u0120Cost a\n\u0120viol - ating\n\u0120interf ere\n\u0120recre ational\nuff le\n\u0120spe eches\n\u0120need - ing\n\u0120remem bers\n\u0120cred ited\nn ia\nf ocused\namer a\n\u0120b ru\num - bs\n\u0120Cub an\n\u0120preced ing\n\u0120nons ense\nac ial\n\u0120smart phones\n\u0120St - ories\nS ports\n\u0120Emer gency\noun cing\nef ined\n\u0120b er\n\u0120consult - ing\n\u0120m asters\nhe astern\n.\" [\n\u0120Run ning\n\u0120sus cept\n\u0120F - eng\nAmeric a\npr ises\nst itial\n\u0120Week ly\n\u0120Great er\nmod ules\nif - ter\nG raphics\nul er\n\u0120who lly\n\u0120supp ress\n\u0120conce aled\n\u0120happ - ily\n\u0120accept s\n\u0120En joy\n\u0120r ivers\n\u0120Ex cept\n2 25\n\u0120N - HS\n\u0120Mc Connell\n\u0120p ussy\nfer red\nut able\n\u0120att ain\n\u0120> - =\n\u0120depos its\nroph ic\n\u0120not orious\n\u0120Sh aw\nil itation\n\u0120epid - emic\nall ic\n\u0120small est\nov ich\n\u0120access ories\nper ties\n\u0120sur - plus\n\u0120Me ch\n\u0120amb ig\n\u0120Imm igration\n\u0120ch im\nev al\n\u0120pract - icing\n\u0120Myster y\n\u0120dom ains\n\u0120Sil icon\napp s\n\u0120kilomet - ers\ne a\n\u0120Sm ash\n\u0120warrant y\n\u0120n ost\ns il\nre v\nJ on\n\u0120Dub - lin\n\u0120tast es\n\u0120b out\ng reat\ner ror\n\u0120sw itches\n\u0120B - apt\nD O\nok i\n\u0120sour ced\npro du\n\u0120attach ment\n\u0120Iss ue\n\u0120Quest - ion\nJo in\n\u0120f itted\n\u0120unlaw ful\n^ ^\nere k\n\u0120authent ication\n\u0120st - ole\n\u0120account ability\nl abel\nS earch\n\u0120al beit\natic an\nfund - ed\n\u0120Add ing\n\u0120I Q\n\u0120sub mar\nl it\na que\n\u0120Lear ning\n\u0120int - eger\nM aster\n\u0120Ch rom\n\u0120prem ier\nO p\n\u0120Li u\n\u0120bl essed\n\u0120Gl - obe\n\u0120Resp onse\n\u0120legit im\n\u0120Mer kel\n\u0120dispos al\n\xC2 - \xB4\n\u0120gau ge\npe at\n\u0120indu ced\n\u0120question able\narth y\n\u0120V - it\n\u0120F eed\nU ntil\nU t\nworth y\nR Y\n\u0120H erald\n\u0120Ham mer\n\u0120med - al\n\u0120R ivers\n\u0120H ack\n\u0120clar ify\n\u0120track ed\n\u0120autonom - ous\n\u0120ten ant\n\u0120Q atar\ner ie\n\u0120gr im\n\u0120Mon itor\n\u0120resist - ant\n\u0120Spe c\n\u0120Well s\nN AS\n14 8\n\u0120min ers\niot ics\n\u0120miss - es\n11 6\ng ian\ng it\n\u0120E yes\np res\n\u0120grad uated\n\u0120ang el\n\u0120syn - chron\n\u0120efficient ly\n\u0120trans mitted\nH arry\n\u0120glob ally\nEN - CE\n\u0120Mont ana\nr aged\n\u0120Pre vention\n\u0120p iss\n\u0120L l\n\u0120she - lf\n\u0120B JP\n\u0120Test ament\n\u0120L ate\nik er\n\u0120H app\n\u0120Jul - ian\nh all\n\u0120sp ont\n\u0120shut down\n\u0120incons istent\n\u0120subscrib - ers\n\u0120ske leton\n\u0120Ne braska\n\u0120ins pire\n\u0120V oid\nF eed\n\u0120ang - les\n\u0120Spr ings\n\u0120bench mark\n\u0120vacc ines\nizoph ren\nse xual\nuff - ed\n\u0120sh ine\n\u0120K ath\n\u0120gest ure\nine a\n\u0120r ip\n\u0120opp - ression\n\u0120cons cience\nb t\n\u0120L um\n\u0120inc idence\n\u0120F a\nw - r\n\u0120min eral\n\u0120Sp urs\nalk y\n\u0120th under\n\u0120op io\nBe ing\n\u0120Pal - m\n\u0120was ted\n\u0120l b\ni aries\n\u0120Initi ative\n\u0120cur ric\n\u0120mark - er\n\u0120Mc L\n\u0120ext ensions\n\u0120P v\n\u0120Ar ms\n\u0120offer ings\n\u0120def - enses\n\u0120vend or\n\u0120contrad ict\n\u0120Col in\n\u0120redd it\n\u0120per - ipher\n12 2\n\u0120s ins\nE dit\nIC T\nSo ft\n\u0120Sh ah\n\u0120administr - ator\n\u0120T rip\n\u0120porn ography\n\u0120tu ition\nin ence\n\u0120Pro - gress\n\u0120cat alog\n\u0120su ite\n\u0120h ike\n\u0120reprodu ctive\neng - ine\n\u0120d rought\n\u0120No ah\n\u01202 30\n\u0120d ude\n\u0120relax ed\n\u0120part - ition\n\u0120particip ant\n\u0120tel esc\n\u0120fe as\n\u0120F F\nown er\n\u0120swe - eping\n\u0120l enses\n\u0120match up\n\u0120Re pl\nourn als\n\u0120cred ible\n\u0120grand - mother\n\u0120ther mal\n\u0120subscrib ing\n\u0120ident ities\ncol m\nU CT\n\u0120reluct - ant\nus ers\n\u0120C ort\n\u0120assist ed\nOS S\nATION S\nIS H\n\u0120pharm - aceutical\nic able\nad ian\n\u0120Son ic\n\u0120F ury\n\u0120M ong\nA H\n\u0120Psych - ology\n\u0120ph osph\n\u0120treat s\n\u0143 \u0136\n\u0120stead ily\n\u0120Hell - o\n\u0120rel ates\n\u0120cl ue\nEx pl\na uth\n\u0120rev ision\n\u0120e ld\nos - ion\n\u0120br on\n14 4\nri kes\n\u0120min es\n\u0120blank et\n\u0120F ail\nel - ed\n\u0120Im agine\n\u0120Pl anned\na ic\nRe quest\nM ad\n\u0120Hor se\n\u0120Eag - le\n\u0120cap ac\n15 7\n\u0120l ing\n\u0120N ice\n\u0120P arenthood\nmin ster\nog - s\nens itive\nNot hing\n\u0120car n\nF in\n\u0120P E\n\u0120r ifles\n\u0120L - P\nS and\n\u0120gui Active\n\u0120tour ist\nC NN\n\u0120unve iled\n\u0120predec - essor\n} {\nu ber\n\u0120off shore\n\u0120opt ical\n\u0120R ot\n\u0120Pear - l\net on\n\u0120st ared\n\u0120fart her\nat ility\ncont in\n\u0120G y\n\u0120F - oster\n\u0120C oc\nri ents\n\u0120design ing\n\u0120Econom y\nON G\nW omen\n\u0120N - ancy\ner ver\n\u0120mas cul\n\u0120casual ties\n\u01202 25\n\u0120S ullivan\n\u0120Ch - oice\n\u0120a ster\nw s\n\u0120hot els\n\u0120consider ations\n\u0120cou ch\n\u0120St - rip\n\u0120G n\n\u0120manip ulate\nl ied\n\u0120synt hetic\n\u0120assault - ed\n\u0120off enses\n\u0120Dra ke\n\u0120im pe\nOct ober\n\u0120Her itage\nh - l\n\u0120Bl air\nUn like\n\u0120g rief\n\u01204 50\n\u0120opt ed\n\u0120resign - ation\nil o\n\u0120ver se\n\u0120T omb\n\u0120u pt\n\u0120a ired\n\u0120H - ook\n\u0120ML B\n\u0120assum es\nout ed\n\u0120V ers\n\u0120infer ior\n\u0120bund - le\n\u0120D NS\nograp her\n\u0120mult ip\n\u0120Soul s\n\u0120illust rated\n\u0120tact - ic\n\u0120dress ing\n\u0120du o\nCon f\n\u0120rel ent\n\u0120c ant\n\u0120scar - ce\n\u0120cand y\n\u0120C F\n\u0120affili ated\n\u0120spr int\nyl an\n\u0120Garc - ia\n\u0120j unk\nPr int\nex ec\nC rit\n\u0120port rait\nir ies\n\u0120OF F\n\u0120disp - utes\nW R\nL ove\n\xE3\u0123 \u0126\n\u0120Re yn\n\u0120h ipp\nop ath\n\u0120flo - ors\n\u0120Fe el\n\u0120wor ries\n\u0120sett lements\n\u0120P os\n\u0120mos - que\n\u0120fin als\n\u0120cr ushed\n\u0120Pro bably\n\u0120B ot\n\u0120M ans\n\u0120Per - iod\n\u0120sovere ignty\n\u0120sell er\n\u0120ap ost\n\u0120am ateur\n\u0120d - orm\n\u0120consum ing\n\u0120arm our\n\u0120Ro ose\n\u0120int ensive\n\u0120elim - inating\n\u0120Sun ni\n\u0120Ale ppo\nj in\n\u0120adv ise\np al\n\u0120H alo\n\u0120des - cent\n\u0120simpl er\n\u0120bo oth\nST R\nL ater\n\u0120C ave\n== =\n\u0120m - ol\n\u0120f ist\n\u0120shot gun\nsu pp\n\u0120rob bery\nE ffect\n\u0120obsc - ure\n\u0120Prof essional\n\u0120emb assy\n\u0120milit ant\n\u0120inc arcer\n\u0120gener - ates\n\u0120laun ches\n\u0120administr ators\n\u0120sh aft\n\u0120circ ular\n\u0120fresh - man\n\u0120W es\n\u0120Jo el\n\u0120D rew\n\u0120Dun can\n\u0120App arently\ns - ight\n\u0120Intern al\n\u0120Ind ividual\n\u0120F E\n\u0120b ore\n\u0120M - t\n\u0120broad ly\n\u0120O ptions\nount ain\nip es\n\u0120V ideos\n20 4\n\u0120h - ills\n\u0120sim ulation\n\u0120disappoint ment\nit an\n\u0120Labor atory\n\u0120up - ward\n\u0120bound ary\n\u0120dark er\nh art\n\u0120domin ance\nC ong\n\u0120Or - acle\n\u0120L ords\n\u0120scholars hip\n\u0120Vin cent\ned e\n\u0120R ah\n\u0120encour - ages\nro v\n\u0120qu o\n\u0120prem ise\n\u0120Cris is\n\u0120Hol ocaust\n\u0120rhyth - m\n\u0120met ric\ncl ub\n\u0120transport ed\n\u0120n od\n\u0120P ist\n\u0120ancest - ors\n\u0120Fred er\nth umbnails\n\u0120C E\nON D\nPh il\nven ge\n\u0120Product - s\ncast le\n\u0120qual ifying\n\u0120K aren\nVERTIS EMENT\n\u0120might y\n\u0120explan - ations\n\u0120fix ing\nD i\n\u0120decl aring\n\u0120anonym ity\n\u0120ju ven\n\u0120N - ord\n\u0120Do om\n\u0120Act ually\nO k\nph is\n\u0120Des ert\n\u012011 6\nI - K\n\u0120F M\n\u0120inc omes\nV EL\nok ers\n\u0120pe cul\n\u0120light weight\ng - ue\n\u0120acc ent\n\u0120incre ment\n\u0120Ch an\n\u0120compl aining\n\u0120B - aghd\n\u0120midfield er\n\u0120over haul\nPro cess\n\u0120H ollow\n\u0120Tit - ans\nSm all\nman uel\n\u0120Un ity\n\u0120Ev ents\nS ty\n\u0120dispro portion\nn - esty\nen es\n\u0120C od\n\u0120demonstr ations\n\u0120Crim son\n\u0120O H\n\u0120en - rolled\n\u0120c el\n\u0120Bre tt\n\u0120a ide\n\u0120he els\n\u0120broad band\n\u0120mark - ing\n\u0120w izard\n\u0120N J\n\u0120Chief s\n\u0120ingred ient\n\u0120d ug\n\u0120Sh - ut\nurch ase\nend or\n\u0120far mer\n\u0120Gold man\n12 9\n15 5\nOr der\n\u0120l - ion\ni ably\n\u0120st ain\nar ray\nilit ary\n\u0120FA Q\n\u0120expl oded\n\u0120McC - arthy\n\u0120T weet\n\u0120G reens\nek ing\nl n\nens en\n\u0120motor cycle\n\u0120partic - le\n\u0120ch olesterol\nB ron\n\u0120st air\n\u0120ox id\n\u0120des irable\nib - les\n\u0120the or\nfor cing\n\u0120promot ional\nov o\nb oot\n\u0120Bon us\nraw - ling\n\u0120short age\n\u0120P sy\n\u0120recru ited\n\u0120inf ants\n\u0120test - osterone\n\u0120ded uct\n\u0120distinct ive\n\u0120firm ware\nbu ilt\n14 5\n\u0120expl - ored\n\u0120fact ions\n\u0120v ide\n\u0120tatt oo\n\u0120finan cially\n\u0120fat - igue\n\u0120proceed ing\nconst itutional\n\u0120mis er\n\u0120ch airs\ngg - ing\nipp le\n\u0120d ent\n\u0120dis reg\n\xE7 \u0136\nst ant\nll o\nb ps\naken - ing\n\u0120ab normal\n\u0120E RA\n\xE5\xA3 \xAB\n\u0120H BO\n\u0120M AR\n\u0120con - cess\n\u0120serv ant\n\u0120as pir\nl av\n\u0120Pan el\nam o\n\u0120prec ip\n\u0120record - ings\n\u0120proceed ed\n\u0120col ony\n\u0120T ang\nab lo\n\u0120stri pped\nLe - ft\nto o\n\u0120pot atoes\n\u0120fin est\n% ).\n\u0120c rap\n\u0120Z ach\nab - ases\n\u0120G oth\n\u0120billion aire\nw olf\n\u0120san ction\nS K\n\u0120log - ged\nP o\ney ed\nun al\n\u0120cr icket\n\u0120arm ies\n\u0120unc overed\nCl - oud\n\xC3\xB3 n\n\u0120reb ounds\n\u0120m es\nO per\nP ac\n\u0120nation ally\n\u0120insert - ed\np ict\n\u0120govern ance\n\xD0 \xB8\n\u0120privile ges\nG ET\n\u0120favor - ites\nim ity\n\u0120lo ver\nthe m\nem pl\n\u0120gorge ous\nAn n\n\u0120sl - ipped\n\u0120ve to\nB ob\n\u0120sl im\nu cc\n\u0120F ame\nudden ly\n\u0120den - ies\n\u0120M aur\n\u0120dist ances\n\u0120w anna\nt ar\n\u0120S ER\n\u0120\xE2 - \u012A\n\u0120le mon\nat hetic\n\u0120lit eral\n\u0120distingu ished\n\u0120answ - ering\nG I\n\u0120relig ions\n\u0120Phil os\n\u0120L ay\n\u0120comp os\nire - ments\n\u0120K os\nine z\nroll ing\n\u0120young est\nand ise\n\u0120B orn\n\u0120alt - ar\nam ina\n\u0120B oot\nv oc\n\u0120dig ging\n\u0120press ures\n\u0120l en\n26 - 4\n\u0120assass ination\n\u0120Bir mingham\n\u0120My th\n\u0120sovere ign\n\u0120Art - ist\n\u0120Phot ograph\n\u0120dep icted\n\u0120disp ens\north y\n\u0120amb - ul\nint eg\n\u0120C ele\n\u0120Tib et\n\u0120hier archy\n\u0120c u\n\u0120pre - season\n\u0120Pet erson\n\u0120col ours\n\u0120worry ing\n\u0120back ers\n\u0120Pal - mer\n\u0120\xCE \xBC\n\u0120contribut or\n\u0120hear ings\n\u0120ur ine\n\u0120 - \xD9\nourge ois\nSim ilar\n\u0120Z immer\ns omething\n\u0120US C\n\u0120strength - s\n\u0120F I\n\u0120log ging\nAs ked\n\u0120Th ai\nin qu\n\u0120W alt\n\u0120crew - s\nit ism\n3 01\n\u0120shar ply\num ed\n\u0120red irect\nr ators\nIn f\n\u0120We - apons\n\u0120te asp\n19 99\nL ive\n\u0120Es pecially\n\u0120S ter\n\u0120Veter - ans\n\u0120int ro\nother apy\n\u0120mal ware\n\u0120bre eding\n\u0120mole - cular\n\u0120R oute\n\u0120Com ment\noc hem\n\u0120a in\nSe ason\n\u0120lineback - er\n\xC4 \xAB\n\u0120Econom ics\nes ar\n\u0120L ives\n\u0120Em ma\n\u0120k - in\n\u0120Ter rit\n\u0120pl anted\not on\n\u0120But ter\n\u0120Sp ons\nP ER\n\u0120dun - geon\n\u0120symb olic\n\u0120fil med\n\u0120di ets\n\u0120conclud es\n\u0120certain - ty\n\u0120Form at\n\u0120str angers\nform at\n\u0120Ph ase\n\u0120cop ied\n\u0120met - res\nld a\n\u0120Us ers\n\u0120deliber ate\n\u0120was hed\n\u0120L ance\nim - ation\n\u0120impro per\n\u0120Gen esis\nick r\n\u0120K ush\n\u0120real ise\n\u0120embarrass - ing\nalk ing\nb ucks\n\u0120ver ified\n\u0120out line\nyear s\n\u0120In come\n20 - 2\n\u0120z ombies\nF inal\n\u0120Mill enn\n\u0120mod ifications\n\u0120V ision\n\u0120M - oses\nver b\niter ranean\n\u0120J et\n\u0120nav al\n\u0120A gg\n\u0120ur l\n\u0120vict - ories\n\u0120non etheless\n\u0120inj ust\n\u0120F act\n\xE7 \u013C\n\u0120ins - ufficient\nre view\nface book\n\u0120negoti ating\n\u0120guarant ees\nim en\nuten - berg\n\u0120g ambling\n\u0120con gr\nLoad ing\n\u0120never theless\n\u0120pres - idents\n\u0120Indust rial\n\u012011 8\n\u0120p oured\n\u0120T ory\n\u012017 - 5\n\u0120: =\nSc ott\nange red\nT ok\n\u0120organ izers\nM at\n\u0120G rowth\n\u0120ad - ul\n\u0120ens ures\n\u012011 7\n\xE9\xBE\u012F \xE5\n\u0120mass acre\n\u0120gr - ades\nbe fore\nAD VERTISEMENT\n\u0120Sl ow\n\u0120M MA\n\xE2\u0122\u0136 \"\n\u0120V - atican\nQ aeda\n\u0120o we\n66 66\n\u0120S orry\n\u0120Gr ass\n\u0120background - s\n\u0120exha usted\n\u0120cl an\n\u0120comprom ised\n\u0120E lf\n\u0120Isa - ac\nens on\nIn vest\nIF A\n\u0120interrupt ed\n\xE3\u0125\u012B \xE3\u0125\xA9\n\u0120tw - isted\n\u0120Drag ons\nM ode\n\u0120K remlin\n\u0120fert il\nhe res\nph an\n\u0120N - ode\nf ed\n\u0120Or c\n\u0120unw illing\nC ent\n\u0120prior it\n\u0120grad - uates\n\u0120subject ive\n\u0120iss uing\n\u0120L t\n\u0120view er\n\u0120w - oke\nTh us\nbro ok\n\u0120dep ressed\n\u0120br acket\n\u0120G or\n\u0120Fight - ing\n\u0120stri ker\nRep ort\n\u0120Portug al\n\u0120ne o\nw ed\n19 9\n\u0120flee - ing\nsh adow\nident ified\nUS E\nSte am\n\u0120stret ched\n\u0120revel ations\nart - ed\n\u0120D w\n\u0120align ment\nest on\n\u0120J ared\nS ep\n\u0120blog s\nup - date\ng om\nr isk\n\u0120cl ash\n\u0120H our\n\u0120run time\n\u0120unw anted\n\u0120sc - am\n\u0120r ack\n\u0120en light\non est\n\u0120F err\n\u0120conv ictions\n\u0120p - iano\n\u0120circ ulation\n\u0120W elcome\n\u0120back lash\n\u0120W ade\n\u0120rece - ivers\not ive\nJ eff\n\u0120network ing\n\u0120Pre p\n\u0120Expl orer\n\u0120lect - ure\n\u0120upload ed\n\u0120Me at\nB LE\n\u0120Naz is\n\u0120Sy nd\nst ud\nro - ots\nri ans\n\u0120portray ed\n\u0120 ??\n\u0120Budd ha\ns un\nRober t\n\u0120Com - plex\n\u0120over see\n\u0120ste alth\nT itle\n\u0120J obs\n\u0120K um\n\u0120appreci - ation\n\u0120M OD\n\u0120bas ics\n\u0120cl ips\n\u0120nurs ing\n\u0120propos - ition\n\u0120real ised\n\u0120NY C\n\u0120all ocated\nri um\nar an\n\u0120Pro - duction\n\u0120V ote\n\u0120sm ugg\n\u0120hun ter\naz er\n\u0120Ch anges\n\u0120fl - uct\ny on\nAr ray\n\u0120k its\nW ater\n\u0120uncom mon\n\u0120rest ing\nell - s\nw ould\n\u0120purs ued\n\u0120assert ion\nomet own\n\u0120Mos ul\n\u0120Pl - atform\nio let\n\u0120share holders\n\u0120tra ils\nP ay\n\u0120En forcement\nty - pes\n\u0120An onymous\n\u0120satisf ying\nil ogy\n\u0120( '\nw ave\nc ity\nSte - ve\n\u0120confront ation\n\u0120E ld\nC apt\nah an\nht m\n\u0120C trl\nON - S\n2 30\nif a\nhold ing\n\u0120delic ate\n\u0120j aw\n\u0120Go ing\nor um\nS - al\n\u0120d ull\n\u0120B eth\n\u0120pr isons\n\u0120e go\n\u0120El sa\navor - ite\n\u0120G ang\n\u0120N uclear\n\u0120sp ider\nats u\n\u0120sam pling\n\u0120absor - bed\n\u0120Ph arm\niet h\n\u0120buck et\n\u0120Rec omm\nO F\n\u0120F actory\nAN - CE\n\u0120b acter\nH as\n\u0120Obs erv\n12 1\n\u0120prem iere\nDe velop\n\u0120cur - rencies\nC ast\n\u0120accompany ing\n\u0120Nash ville\n\u0120fat ty\n\u0120Bre - nd\n\u0120loc ks\n\u0120cent ered\n\u0120U T\naugh s\nor ie\n\u0120Aff ordable\nv - ance\nD L\nem et\n\u0120thr one\n\u0120Blu etooth\n\u0120n aming\nif ts\nAD - E\n\u0120correct ed\n\u0120prompt ly\n\u0120ST R\n\u0120gen ome\n\u0120cop - e\n\u0120val ley\n\u0120round ed\n\u0120K end\nal ion\np ers\n\u0120tour ism\n\u0120st - ark\nv l\n\u0120blow ing\n\u0120Sche dule\nst d\n\u0120unh appy\n\u0120lit - igation\nced es\n\u0120and roid\n\u0120integ ral\nere rs\nud ed\nt ax\n\u0120re - iter\n\u0120Mot ors\noci ated\n\u0120wond ers\n\u0120Ap ost\nuck ing\n\u0120Roose - velt\nf ram\n\u0120yield s\n\u0120constit utes\naw k\nInt erest\n\u0120inter - im\n\u0120break through\n\u0120C her\n\u0120pro sec\n\u0120D j\n\u0120M T\nRes - p\n\u0120P T\n\u0120s perm\ned it\nB T\nLin ux\ncount ry\nle ague\n\u0120d - ick\n\u0120o ct\n\u0120insert ing\n\u0120sc ra\n\u0120Brew ing\n\u012019 66\n\u0120run - ners\n\u0120pl un\nid y\n\u0120D ian\n\u0120dys function\n\u0120ex clusion\n\u0120dis - gr\n\u0120incorpor ate\n\u0120recon c\n\u0120nom inated\n\u0120Ar cher\nd - raw\nachel or\n\u0120writ ings\n\u0120shall ow\n\u0120h ast\n\u0120B MW\n\u0120R - S\n\u0120th igh\n\u012019 63\n\u0120l amb\n\u0120fav ored\nag le\n\u0120cool - er\n\u0120H ours\n\u0120G U\n\u0120Orig in\n\u0120glim pse\n---------------- - ----\nL im\n\u0120che ek\n\u0120j ealous\n- '\n\u0120har ness\n\u0120Po ison\n\u0120dis - abilities\nne apolis\n\u0120out look\n\u0120not ify\n\u0120Indian apolis\n\u0120ab - rupt\nns ic\n\u0120enc rypted\n\u0120for fe\nreat h\n\u0120r abb\n\u0120found - ations\n\u0120compl iment\n\u0120Inter view\n\u0120S we\n\u0120ad olesc\n\u0120mon - itors\n\u0120Sacrament o\n\u0120time ly\n\u0120contem pl\n\u0120position ed\n\u0120post - ers\nph ies\niov ascular\nv oid\n\u0120Fif th\n\u0120investig ative\nOU N\n\u0120integ - rate\n\u0120IN C\nish a\nibl ings\n\u0120Re quest\n\u0120Rodrig uez\n\u0120sl - ides\n\u0120D X\n\u0120femin ism\n\u0120dat as\n\u0120b end\nir us\n\u0120Nig - eria\nF ox\nCh ange\n\u0120air plane\n\u0120Lad en\n\u0120public ity\nixt - y\n\u0120commit ments\n\u0120aggreg ate\n\u0120display ing\n\u0120Ar row\n\u012012 - 2\n\u0120respect s\nand roid\ns ix\n\u0120Sh a\n\u0120rest oration\n) \\\nW - S\noy s\n\u0120illust rate\nwith out\n12 6\n\u0120\xE2\u0136 \u0124\n\u0120pick - up\nn els\n\u0120 ....\nf ood\n\u0120F en\n) ?\n\u0120phenomen a\n\u0120compan - ions\n\u0120W rite\n\u0120sp ill\n\u0120br idges\n\u0120Up dated\n\u0120F - o\n\u0120insect s\nASH INGTON\n\u0120sc are\nil tr\n\u0120Zh ang\n\u0120sever - ity\n\u0120ind ul\n14 9\n\u0120Co ffee\n\u0120norm s\n\u0120p ulse\n\u0120F - T\n\u0120horr ific\n\u0120Dest roy\n\u0120J SON\n\u0120o live\n\u0120discuss - es\nR est\nE lect\n\u0120W inn\n\u0120Surv iv\n\u0120H ait\nS ure\nop ed\n\u0120ro - oted\n\u0120S ke\n\u0120Bron ze\n\u0120l ol\nDef ault\n\u0120commod ity\nred - ited\n\u0120liber tarian\n\u0120forb idden\n\u0120gr an\n\xE0 \xA8\n\u0120l - ag\nen z\ndri ve\n\u0120mathemat ics\n\u0120w ires\n\u0120crit ically\n\u0120carb - ohyd\n\u0120Chance llor\n\u0120Ed die\n\u0120ban ning\n\u0120F ri\n\u0120compl - ications\net ric\n\u0120Bangl adesh\n\u0120band width\nSt op\n\u0120Orig inally\n\u0120half - way\nyn asty\nsh ine\n\u0120t ales\nrit ies\nav ier\n\u0120spin ning\n\u0120WH - O\n\u0120neighbour hood\nb ach\n\u0120commer ce\n\u0120S le\nB U\n\u0120entreprene - ur\n\u0120pecul iar\n\u0120Com ments\nf re\n3 20\nIC S\n\u0120imag ery\n\u0120Can - on\n\u0120Elect ronic\nsh ort\n( (\nD ig\n\u0120comm em\nu ced\n\u0120incl - ined\n\u0120Sum mon\n\u0120cl iff\n\u0120Med iterranean\n\u0120po etry\n\u0120prosper - ity\n\u0120Re ce\n\u0120p ills\nm ember\n\u0120fin ale\nun c\n\u0120G ig\n\xE4 - \xBD\n\u0120l od\n\u0120back ward\n- +\n\u0120For ward\n\u0120th ri\ns ure\n\u0120so - ap\n\u0120F X\nR ES\n\u0120Se xual\noul os\n\u0120fool ish\n\u0120right eous\n\u0120co - ff\nterror ism\nust ain\not er\n\u0120ab uses\nne xt\n\u0120ab usive\n\u0120there - after\n\u0120prohib ition\n\u0120S UP\n\u0120d ip\n\u0120r ipped\n\u0120inher - ited\n\u0120b ats\nst ru\nG T\n\u0120flaw ed\nph abet\n\u0120f og\ndo ors\n\u0120im - aging\n\u0120dig its\n\u0120Hung ary\n\u0120ar rog\n\u0120teach ings\n\u0120protocol - s\n\u0120B anks\n\xE0 \xB8\np ound\n\u0120C urt\n.\" )\n. /\n\u0120ex emption\nend - ix\n\u0120M ull\n\u0120impro ves\n\u0120G amer\nd imensional\nI con\n\u0120Marg - aret\nSt atus\nd ates\n\u0120int ends\n\u0120dep ict\n\u0120park ed\nJ oe\n\u0120Mar - ines\nchn ology\n! ).\n\u0120jud ged\n\u0120we ights\nR ay\n\u0120apart ments\nhe - ster\n\u0120rein force\n\u0120off ender\nocc up\n\u0120s ore\ne pt\n\u0120PH - P\n\u0120B row\n\u0120author ization\n\u0120R isk\n\u0120Del aware\n\u0120Q - U\n\u0120not ifications\n\u0120sun light\n\u0120ex clude\nd at\n\u0120m esh\n\u0120Sud - an\n\u0120belong ed\n\u0120sub way\n\u0120no on\n\u0120Inter ior\nol ics\n\u0120L - akers\n\u0120c oding\nDis claimer\nCal if\nO ld\n\u0120dis l\n???? ?\n\u0120confir - ms\n\u0120recruit ment\n\u0120hom icide\nCons ider\n\u0120Jeff rey\nft y\n} - ;\n\u0120object ion\ndo ing\n\u0120Le o\nW ant\n\u0120gl ow\n\u0120Clar ke\n\u0120Norm - an\n\u0120ver ification\n\u0120pack et\n\u0120Form ula\n\u0120pl ag\nes ville\n\u0120shout - ing\n\u0120o v\n\u0120R EC\n\u0120B ub\n\u0120n inth\n\u0120ener g\n\u0120valid - ity\n\u0120up s\nj ack\n\u0120neighbor ing\n\u0120N ec\new orks\n\u0120H ab\nare - z\n\u0120sp ine\n\u0120event ual\n\u0120Le aders\n\u0120C arn\n\u0120prob - ation\n\u0120rom ance\nms g\n\u0120Mechan ical\nER Y\nR ock\n\u0120part isan\nN - ode\nass ets\nmin ent\n\u0120foreign ers\n\u0120test ify\n\u0120Us ually\nl - ords\n\u0120G ren\n\u0120Pow ell\nBI L\n\u0120s r\n\u0120add ict\n\u0120shell - s\n\u0120s igh\n\u0120Y ale\ntern ity\n\u01207 50\nE U\n\u0120R ifle\n\u0120pat - ron\nem a\n\u0120B annon\nan ity\n\u0120trop ical\n\u0120V II\nc ross\nEvery - thing\n\u0120IS O\n\u0120hum ble\nass ing\n\u0120F IG\n\u0120upd ating\nys - on\n\u0120cal cium\n\u0120compet ent\n\u0120ste ering\nPro t\n\u0120S Y\n\u0120Fin - als\n\u0120R ug\n15 9\n13 7\n\u0120G olf\n\u012012 6\n\u0120accommod ation\n\u0120Hug - hes\n\u0120aest hetic\nart isan\n\u0120Tw ilight\n\u0120pr ince\n\u0120Agric - ulture\n\u0120Dis co\n\u0120preced ent\n\u0120typ ing\nauthor ized\nO ption\n\u0120A - ub\nl ishes\nach t\nm ag\nP eter\n\u0120U FO\nmont on\n\u0120L ith\n\u0120a - rom\n\u0120sec uring\n\u0120conf ined\npriv ate\n\u0120sw ords\n\u0120mark - ers\n\u0120metab olic\nse lect\n\u0120Cur se\n\u0120O t\ng ressive\n\u0120inc - umb\n\u0120S aga\n\u0120pr iced\n\u0120clear ance\nCont ent\n\u0120dr illing\n\u0120not - ices\n\u0120b ourgeois\n\u0120v est\n\u0120cook ie\n\u0120Guard ians\nry s\nin - yl\n\u012012 4\n\u0120pl ausible\non gh\n\u0120Od in\n\u0120concept ion\n\u0120Y - uk\n\u0120Baghd ad\n\u0120Fl ag\nAust ral\n\u0120I BM\n\u0120intern ationally\n\u0120Wiki - Leaks\nI ED\n\u0120c yn\n\u0120cho oses\n\u0120P ill\n\u0120comb ining\n\u0120rad - i\n\u0120Moh ammed\ndef ense\natch ing\nSub ject\nic iency\nFr ame\n\u0120{ - \"\n\u0120che ss\n\u0120tim er\n19 0\n\u0120t in\n\u0120ord inance\nemet ery\n\u0120acc - using\n\u0120notice able\n\u0120cent res\n\u0120l id\n\u0120M ills\nimg ur\n\u0120z - oom\nerg ic\n\u0120comp ression\npr im\nf ind\n\u0120sur g\n\u0120p and\n\u0120K - ee\n\u0120Ch ad\ncell ence\noy le\n\u0120social ism\n\u0120T ravis\n\u0120M - Hz\n\u0120gu ild\nALL Y\n\u0120Sub scribe\n\u0120Rel ated\n\u0120occur rence\nitch - ing\n\u0120fict ional\n\u0120cr ush\n\u0120E A\nc od\nm ix\n\u0120Tri ple\n\u0120retrie - ve\n\u0120stimul us\n\u0120psych iat\n\u0120Do or\n\u0120homosexual ity\n\u0120element - ary\n\u0120cell ular\nid ian\n\u0120L aun\n\u0120intrig uing\n\u0120fo am\n\u0120B - ass\nid i\nits u\n\u0120ass ure\n\u0120congr at\n\u0120business man\n\u0120Bo - ost\ncl ose\n\u0120l ied\n\u0120sc iences\n\u0120O mega\n\u0120G raphics\n\u0120< - =\nsp oken\n\u0120connect ivity\nS aturday\n\u0120Aven gers\n\u0120to ggle\n\u0120ank - le\n\u0120national ist\nmod el\n\u0120P ool\nophob ia\nV ar\n\u0120M ons\nator - ies\n\u0120aggress ively\nC lear\nFor ge\nact ers\n\u0120hed ge\n\u0120pip - es\n\u0120bl unt\n\u0120s q\n\u0120remote ly\nW ed\nas ers\n\u0120ref riger\n\u0120t - iles\n\u0120resc ued\n\u0120compr ised\nins ky\n\u0120man if\navan augh\n\u0120prol - ifer\n\u0120al igned\nx ml\n\u0120tri v\n\u0120coord ination\n\u0120P ER\n\u0120Qu - ote\n13 4\nb f\n\u0120S aw\n\u0120termin ation\n\u012019 0\n\u0120add itions\n\u0120tri - o\n\u0120project ions\n\u0120positive ly\n\u0120in clusive\n\u0120mem br\n19 - 90\nold er\n\u0120pract iced\nink le\nAr ch\n\u0120star ters\nari us\n\u0120inter - mediate\n\u0120Ben ef\n\u0120K iller\n\u0120inter ventions\n\u0120K il\n\u0120F - lying\nIn v\n\u0120prem ature\n\u0120psych iatric\n\u0120ind ie\n\u0120coll - ar\n\u0120Rain bow\naf i\n\u0120dis ruption\n\u0120FO X\ncast ing\n\u0120mis - dem\nc ro\n\u0120w ipe\nard on\n\u0120b ast\n\u0120Tom my\n\u0120Represent - ative\n\u0120bell y\n\u0120P O\n\u0120Bre itbart\n13 2\n\u0120mess aging\nSh - ould\nRef erences\n\u0120G RE\nist ical\nL P\n\u0120C av\n\u0120C razy\n\u0120intu - itive\nke eping\n\u0120M oss\n\u0120discont in\n\u0120Mod ule\n\u0120un related\n\u0120Pract - ice\n\u0120Trans port\n\u0120statist ically\norn s\n\u0120s ized\np u\n\u0120ca - f\n\u0120World s\n\u0120Rod gers\n\u0120L un\n\u0120Com ic\nl iving\n\u0120c - ared\n\u0120clim bed\n) {\n\u0120consist ed\n\u0120med ieval\nfol k\n\u0120h - acked\n\u0120d ire\n\u0120Herm ione\n\u0120t ended\nce ans\nD aniel\nw ent\n\u0120legisl - ators\n\u0120red es\ng ames\n\u0120g n\nam iliar\n\u0120+ +\ngg y\nth reat\n\u0120mag - net\n\u0120per ceive\n\u0120z ip\n\u0120indict ment\n\u0120crit ique\ng ard\n\u0120Saf - e\n\u0120C ream\n\u0120ad vent\nob a\n\u0120v owed\nous ands\n\u0120sk i\n\u0120abort - ions\nu art\n\u0120stun ned\n\u0120adv ancing\n\u0120lack ed\n\u0120\\ \"\n\u0120sch - izophren\n\u0120eleg ant\n\u0120conf erences\n\u0120cance led\n\u0120Hud son\n\u0120Hop - efully\n\u0120tr ump\n\u0120frequ encies\n\u0120met eor\n\u0120Jun ior\n\u0120Fle - et\n\u0120Mal colm\n\u0120T ools\n\u0120 ........\n\u0120h obby\n\u0120Europe - ans\n\u012015 00\n\u0120Int o\n\u0120s way\n\u0120App ro\n\u0120Com pl\nComm - unity\n\u0120t ide\n\u0120Sum mit\n\xE4 \xBB\n\u0120inter vals\n\u0120E ther\n\u0120habit - at\n\u0120Steven s\nlish ing\n\u0120Dom ain\n\u0120trig gers\n\u0120ch asing\n\u0120char - m\n\u0120Fl ower\nit ored\n\u0120bless ing\n\u0120text ures\nF ive\n\u0120liqu - or\nR P\nF IN\n\u012019 62\nC AR\nUn known\n\u0120res il\n\u0120L ily\n\u0120abund - ance\n\u0120predict able\nr ar\n\u0120bull shit\nle en\nche t\nM or\nM uch\n\xE4 - \xB9\n\u0120emphas ized\n\u0120cr ust\n\u0120prim itive\n\u0120enjoy able\n\u0120Pict - ures\n\u0120team mate\npl er\n\u0120T ol\n\u0120K ane\n\u0120summon ed\nth - y\nram a\n\u0120H onda\n\u0120real izing\n\u0120quick er\n\u0120concent rate\ncle - ar\n\u01202 10\n\u0120Erd ogan\nar is\n\u0120respond s\n\u0120B I\n\u0120elig - ibility\n\u0120pus hes\n\u0120Id aho\n\u0120agg rav\n\u0120ru ins\nur ations\n\u0120b - ans\n\u0120an at\nsh are\n\u0120gr ind\nh in\num en\n\u0120ut ilities\n\u0120Yan - kees\n\u0120dat abases\n\u0120D D\n\u0120displ aced\n\u0120depend encies\n\u0120stim - ulation\nh un\nh ouses\n\u0120P retty\n\u0120Raven s\n\u0120TOD AY\n\u0120associ - ates\n\u0120the rape\ncl ed\n\u0120de er\n\u0120rep airs\nrent ice\n\u0120recept - ors\n\u0120rem ed\n\u0120C e\n\u0120mar riages\n\u0120ball ots\n\u0120Sold - ier\n\u0120hilar ious\nop l\n13 8\n\u0120inherent ly\n\u0120ignor ant\n\u0120b - ounce\n\u0120E aster\nREL ATED\n\u0120Cur rency\nE V\n\xE3\u0125 \u0140\n\u0120Le - ad\n\u0120dece ased\nB rien\n\u0120Mus k\nJ S\n\u0120mer ge\nheart ed\nc reat\nm - itt\nm und\n\u0120\xE2\u0122 \u012D\n\u0120B ag\n\u0120project ion\n\u0120j - ava\n\u0120Stand ards\n\u0120Leon ard\n\u0120coc onut\n\u0120Pop ulation\n\u0120tra - ject\n\u0120imp ly\n\u0120cur iosity\n\u0120D B\n\u0120F resh\n\u0120P or\n\u0120heav - ier\nne ys\ngom ery\n\u0120des erved\n\u0120phr ases\n\u0120G C\n\u0120ye - ast\nd esc\nDe ath\n\u0120reb oot\n\u0120met adata\nIC AL\n\u0120rep ay\n\u0120Ind - ependence\n\u0120subur ban\nical s\n\u0120at op\n\u0120all ocation\ngener - ation\n\u0120G ram\n\u0120moist ure\n\u0120p ine\n\u0120Liber als\n\u0120a - ides\n\u0120und erest\n\u0120Ber ry\n\u0120cere mon\n3 70\nast rous\n\u0120Pir - ates\n\u0120t ense\n\u0120Indust ries\n\u0120App eals\n\u0120N ear\n\u0120\xE8\xA3\u0131 - \xE7\n\u0120lo vers\n\u0120C AP\n\u0120C raw\n\u0120g iants\n\u0120effic acy\nE - lement\n\u0120Beh avior\n\u0120Toy ota\n\u0120int est\nP riv\nA I\n\u0120maneu - ver\n\u0120perfect ion\n\u0120b ang\np aper\nr ill\nGe orge\nb order\nin ters\n\u0120S - eth\n\u0120cl ues\n\u0120Le vi\n\u0120Re venue\n14 7\n\u0120v apor\n\u0120fortun - ate\n\u0120threat ens\n\u0120ve t\n\u0120depend ency\ners ed\nart icle\n\u0120Bl - izzard\n\u0120ch lor\n\u0120min us\n\u0120B ills\n\u0120cryptoc urrency\n\u0120metabol - ism\nter ing\n\u0120p estic\nstep s\n\u0120Tre asure\nract ed\n\u0120Const - ant\n\u0120tem p\n13 9\n\u0120Det ective\nur ally\n\u0120recover ing\n\u0120cort - ex\n\u012014 4\ncl osed\n\u0120prejud ice\naun ted\n\u0120storm s\n\u0120N - OW\n\u0120mach inery\nAdd ress\n\u0120compe lled\n27 0\n\u0120desp air\nb - ane\n\u0120veget able\n\u0120bed s\nLear n\n\u0120color ful\n\u0120sp ike\n\u0120marg - ins\n\u0120symp athy\n\u0120works hop\n\u0120C BC\nS at\n\u0120burn s\n\u0120G - ender\n\u012012 9\n\u0120C able\n\u0120deb ts\n\u0120The resa\n\u0120reflect - ing\n\u0120a irst\n\u0120r im\nram id\n\u0120weakness es\nW rit\nogg le\nt - i\n\u0120Ch arge\n\u0120we ighed\n\u0120( .\n\u0120l aughter\n\u0120rou ter\n\u0120Democr - acy\nD ear\n\u0120has ht\n\u0120d y\n\u0120hint s\nrun ning\n\u0120fin ishes\nar - us\nM ass\nres ult\nasc us\n\u0120v intage\n\u0120con qu\n\u0120wild ly\nac - ist\n\u0120l ingu\n\u0120prot agonist\nst rom\nte enth\n\u0120Sol o\nm ac\nf - illed\n\u0120re nown\nit ives\n\u0120mot ive\n\u0120Ant ar\n\u0120M ann\n\u0120Ad - just\n\u0120rock ets\n\u0120trou bling\ne i\n\u0120organ isms\nass is\nChrist - ian\n\u012014 5\n\u0120H ass\n\u0120sw all\n\u0120w ax\n\u0120Surv ival\nV - S\n\u0120M urd\nv d\nstand ard\n\u0120drag ons\n\u0120acceler ation\nr ational\nf - inal\n\u0120p aired\n\u0120E thereum\n\u0120interf aces\n\u0120res ent\n\u0120artif - acts\n\xC5 \xAB\nare l\n\u0120compet itor\n\u0120Nich olas\n\u0120Sur face\nc - pp\n\u0120T ot\n\u0120econom ically\n\u0120organ ised\n\u0120en forced\nin - ho\n\u0120var ieties\n\u0120ab dom\n\u0120Ba iley\nid av\n\u0120Sal v\np aid\n\u0120alt - itude\ness ert\n\u0120G utenberg\nare a\nop oulos\n\u0120profess ors\nigg - s\n\u0120F ate\nhe y\n\u01203 000\nD ist\n\u0120tw ins\nc ill\n\u0120M aps\n\u0120tra - ps\n\u0120we ed\n\u0120K iss\n\u0120y oga\n\u0120recip ients\n\u0120West minster\n\u0120pool - s\n\u0120Wal mart\n18 8\n\u0120School s\natt ack\n\u0120AR M\npar agraph\nW - arning\nj l\n\u0120self ish\nanche z\n\u0120He ights\nF re\n\u0120S oph\n\u0120 - --------------------------------\nt ml\n33 3\n\u0120raid s\n\u0120satell ites\nKE - Y\n\u0120last s\n\xD1 \u0124\nIn s\n\u0120D ame\n\u0120unp redict\n// /\ngh - ai\n\u0120art illery\n\u0120cru ise\n\u0120g el\n\u0120Cabin et\n\u0120bl - ows\n\u0120E sp\n\u0120prox imity\not he\n\u0120Sk ills\n\u0120U pper\nob - o\n\u0120N DP\n\u0120enjoy s\n\u0120repe ating\n\u0120Const ruction\n\u0120Quest - ions\nH illary\n\u0120u int\n\u0120process ors\n\u0120Gib son\n\u0120Mult - iple\nq a\n\u0120B om\n\u0120M iles\nvent ional\n\u0120hur ts\ns kin\n\u0120A - IDS\n\u0120advis ers\n\u0120R oot\n\u0120method ology\n\u0120D ale\n\u0120det - on\n\u0120Know ledge\nsequ ently\n\u012012 1\n\u0120connect s\nC y\n\u0120D - anger\n\u0120contribut ors\n\u0120B ent\n\u0120br ass\n\u0120Gun s\nint o\n\u0120Fort - une\n\u0120bro ker\nbal ance\n\u0120length s\n\u0120v ic\n\u0120aver aging\n\u0120appropri - ately\n\u0120Camer a\n\u0120sand wich\n\u0120CD C\n\u0120coord inate\n\u0120nav - ig\n\u0120good ness\nl aim\n\u0120bra ke\n\u0120extrem ist\n\u0120W ake\n\u0120M - end\n\u0120T iny\n\u0120C OL\n\u0120R F\n\u0120D ual\n\u0120W ine\nC ase\n\u0120ref - ined\n\u0120l amp\nL ead\n\u0120b apt\n\u0120Car b\n\u0120S add\n\u0120Min - neapolis\nPD F\nEar ly\n\u0120H idden\nI ts\n\u0120T IME\n\u0120p ap\n\u0120commission - ed\n\u0120F ew\n\u0120Col ts\n\u0120B ren\n\u0120bot hered\n\u0120like wise\nEx - per\n\u0120Sch w\nc ry\nn n\n\u0120M itch\nim on\nM G\nb m\nUM P\nr ays\n\u0120regist - ry\n\u01202 70\nach ine\nre lla\nant ing\n00 000\n\u0120ru ined\nsp ot\n\u0120t - a\n\u0120maxim ize\n\u0120incon ven\nD ead\nH uman\nEn abled\n\u0120Mar ie\n\u0120ch - ill\n\u0120Parad ise\n\u0120star ring\n\u0120Lat ino\n\u0120Prot ocol\n\u0120E - VER\n\u0120suppl iers\nm essage\n\u0120Bro ck\n\u0120ser um\n\xE2\u0138\u012A\xE2\u0138\u012A - \xE2\u0138\u012A\xE2\u0138\u012A\n\u0120en comp\n\u0120amb ition\nues e\n\u0120ar - rows\nAnd rew\n\u0120anten na\n\u012019 61\n\u0120B ark\n\u0120b ool\n\xE3\u0124 - \xAA\n\u0120St orage\n\u0120rail way\n\u0120toug her\n\u0120C ad\n\u0120was - hing\nP y\n' ]\nem bed\n\u0120Mem phis\nack le\n\u0120fam ously\n\u0120F ortunately\nov - ies\n\u0120mind set\n\u0120sne ak\n\u0120D h\nRA W\n\u0120Sim pson\n\u0120liv - est\n\u0120land mark\n\u0120c ement\nL ow\n\u0120thr illed\n\u0120Cour se\nin - el\n\u0120ch uck\nid ate\ngl obal\n\u0120wh it\n\u0120 \xEF\xBF\xBD\nad ays\ns - ki\n\u0120S V\n\u0120vir uses\n30 6\n\u0120Resp ons\n\u0120the aters\n\u0120Br - anch\n\u0120Gene va\n\u0120M K\n\u0120unbel iev\n\u0120commun ist\nOrig inal\n\u0120Re - ceived\n\u0120Trans fer\n\u0120Ar g\nIn put\n\u0120Str ategy\n\u0120pal ace\nthe - ning\nD ri\n\u0120sent encing\numbn ail\n\u0120p ins\nre cy\n\u0120s iblings\nGet - ting\n\u0120B U\n\u0120North west\n\u0120prolong ed\n\u0120Sak ura\nC omb\n\u0120B - our\n\u0120inadequ ate\n\u0120K ash\n\u0120us ername\n\u0120Impro ve\n\u0120batt - ling\n\u0120M AC\n\u0120curric ulum\n\u0120s oda\n\u0120C annon\n\u0120sens - ible\nsp ons\nDe cember\n\u0120w icked\n\u0120P engu\n\u0120dict ators\n\u0120He - arts\nog yn\n\u0120similar ities\n\u0120St ats\n\u0120h ollow\nit ations\n\": - [\n\u0120h over\n\u0120List en\ns ch\nS und\n\u0120c ad\n\u0120Par ks\n\u0120l - ur\n\u0120hy pe\n\u0120L em\nN AME\nis ure\nFr iday\n\u0120shoot s\n\u0120clos - es\n\u0120d b\n\u0120R idge\n\u0120Diff erent\n\u0120repl ies\n\u0120Broad - way\nop ers\n\u0120int oler\n\u0120Ze us\nakes pe\n\u0120propri etary\n\u0120request - ing\n\u0120contro llers\n\u0120M IN\nim edia\nbe cca\n\u0120exp ans\n\u0120oil - s\nB ot\n\u0120Ch and\n\u0120pr inter\n\u0120to pped\n\u0120P OL\n\u0120Ear - lier\nS ocial\nav in\n\u0120decre ases\n\u0120Se b\n\u0120specific ations\n\u0120Bl - ast\n\u0120K urt\n\u0120fre el\nB rown\n\u0120dil ig\nro e\n\u0120Pro blem\n\u0120Qu - ad\n\u0120decent ral\n\u0120V ector\nan ut\n\u0120plug ins\n\u0120Greg ory\n\u0120fuck - ed\nel ines\n\u0120Amb assador\nt ake\n\u0120cle ans\nong yang\nAn onymous\nst - ro\n\" }\nal ine\n\u0120O dd\n\u0120E ug\n2 16\n\u0120bo il\n\u0120P owers\n\u0120nurs - es\nOb viously\n\u0120Techn ical\n\u0120exceed ed\nOR S\n\u0120extrem ists\n\u0120tr - aces\nex pl\n\u0120com r\n\u0120S ach\n) /\n\u0120m asks\n\u0120sc i\nB on\n\u0120reg - ression\nwe gian\n\u0120advis or\nit ures\n\u0120V o\nex ample\n\u0120Inst - ruct\n\u0120s iege\n\u0120redu ctions\npt r\n\u0120stat utory\n\u0120rem oves\n\u0120p - uck\nred its\n\u0120be e\n\u0120sal ad\n\u0120promot ions\n\u0120Josh ua\nwith - standing\nET H\n\u0120Ch a\nim us\n\u0120expend iture\naun ting\n\u0120delight - ed\n\u012015 5\nbe h\n\u0120car pet\n\u0120Sp art\n\u0120j ungle\nl ists\n\u0120bull - ying\n\u0120Nob el\n\u0120Gl en\n\u0120referen ced\n\u0120introdu ces\nse - in\n\u0120cho pped\ngl ass\n\u0120W rest\n\u0120neutral ity\n\u0120\xE2 \u013B\n\u0120investig - ator\n\u0120shel ves\n\u0120un constitutional\n\u0120reprodu ction\n\u0120mer - chant\nm ia\n\u0120met rics\n\u0120explos ives\n\u0120Son ia\n\u0120bod ily\n\u0120thick - ness\n\u0120predomin antly\n\u0120Ab ility\n\u0120mon itored\nIC H\n\u0120] - .\n\u0120Mart inez\n\u0120vis ibility\n\u0120qu eries\n\u0120gen ocide\n\u0120War - fare\nQu ery\n\u0120stud ios\n\u0120emb ry\n\u0120corrid or\n\u0120clean ed\ncom - plete\n\u0120M H\n\u0120enroll ment\nING S\n\u0120impact ed\n\u0120dis astrous\n\u0120Y - un\n\u0120Cl aire\n\u0120Bas ically\ny t\nuster ity\n\u0120indirect ly\nw - ik\n\u0120d od\n\u0120Car r\n\u0120am p\n\u0120prohib it\n\u0120In itial\n\u0120R - d\nij i\n\u0120educ ate\nc orn\ni ott\n\u0120Beaut y\n\u0120detect ive\n\u0120Con - n\ns ince\n\u0120st agger\n\u0120ob ese\n\u0120b ree\nolog ic\nis se\nwalk - er\n\u0120bl ades\n\u0120law ful\nfun c\n\u0120Beh ind\n\u0120appet ite\n\u0120( - *\n\u0120t ennis\n\u0120off spring\n\u0120j ets\n\u0120struct ured\n\u0120afore - mentioned\nN ov\n\u0120sc aling\nf ill\n\u0120st ew\n\u0120cur b\n\u0120Step - han\ned In\nS F\nob ic\n\xE9 \u0143\u0136\nou g\n\u0120M M\n\u0120gen etically\nope - z\n13 6\n\u0120u mb\nanc ers\n\u0120coh ort\n\u0120merch andise\n\u0120imp - osing\n\u0120Legisl ature\n\u0120Arch ive\niv ia\n\u0120N aval\n\u0120off - ences\n\u0120mir acle\n\u0120sn apped\n\u0120f oes\n\u0120extensive ly\n\u0120R - af\n\u0120c ater\ned ience\nK it\n\u0120B in\n\u0120recomm ends\n\u0120C ities\n\u0120rig - id\n\u0120RE AD\n\u0120Nob le\n\u0120T ian\n\u0120certific ates\nant is\no - iler\n\u0120Budd hist\nd id\n\u0120survey ed\n\u0120down ward\n\u0120print - s\n\u0120Mot ion\nron ics\n\u0120S ans\noss ibly\nu ctions\n\u0120colon ies\n\u0120Dan - ish\nun it\n\u0120sp oil\n\u0120advis ory\nber ries\nPl an\n\u0120specific - ation\nop hers\n\u0120Res ource\n\u0120sh irts\nprising ly\ncommun ications\n\u0120triv - ial\n\u0120mention ing\nise xual\n\u0120supp lements\n\u0120super vision\nB - P\nv or\n\u0120w it\n\u0120co oldown\n\u0120plaint iff\n\u0120Review s\n\u0120S - ri\n\u0120M int\n\u0120Sug ar\n\u0120after ward\n\u0120Pri est\n\u0120Invest - ment\nog ene\n\u0120T aking\n\u0120stretch ing\n\u0120inflamm ation\n\u0120Te - hran\n\u0120l ining\n\u0120free zing\n\u0120Ent ity\n\u0120ins piring\nspe - cial\npr ice\n\u0120su e\n\u0120P orter\noun ge\nET A\n\u0120D erek\n\u0120Lu - is\nu o\nym ph\n\u0120ex terior\nih il\n\u0120Ash ley\nin ator\n\u0120nut - rients\n\u0120Th rones\n\u0120fin ances\n\u0120In spect\n\u0120spe cially\n\u0120Requ - ired\n\u0120P TS\n\u0120Viol ence\noint ed\nsh ots\n\u0120ex cerpt\nco on\nIN - S\n\u0120G ri\n\u0120recogn ised\nWe ek\nYou ng\n\u0120v om\nis le\n\u0120Cur - ry\n\u0120Budd h\n\u0120not ebook\n\u0120d urable\n/ ?\n\u0120G ad\n\u0120P - upp\n\u0120forg ive\np ark\n\u0120personal ities\nan alysis\ncl amation\n\u0120elev - ator\n\u0120ware house\n\u0120R ole\nun n\n\u0120illust ration\n\u0120Sc an\n\u0120atmosp - heric\nIm port\nAN C\nrict ed\nf u\n01 0\n\u0120ar che\n\u0120reward ed\nakespe - are\n\u0120intern ally\n\u0120R BI\nalk er\n\u0120eleph ant\now itz\n\u0120P - izza\n\u0120bip artisan\n\xC3\xA9 s\n\u0120slow ed\n\u0120St ark\n\u0120over - ride\nOU S\n\u01203 20\nundred s\n\u0120De ck\n\u0120C ensus\nbe e\n14 6\not - or\n\u0120 ip\n\u0120u b\noc ations\n\u0120But ton\nr ice\n\u0120c ripp\nff - f\n\u0120orig inated\n\u0120overwhel med\napp a\n\u0120fore most\n\xE2\u0122 - \u0133\n\u0120L EG\nre lease\neat ured\nat ches\n\u0120re ps\n\u0120l ending\n\u0120Re - ference\n\u0120Cl ient\n16 5\nvent h\nCom plete\n\u0120Pat rol\n\u0120sw orn\nc - am\n\u0120shut tle\n\u0120R alph\n\u0120h ometown\n- ,\non al\n\u0120B P\n\xE5 - \u0131\n\u0120persu ade\n\u0120Alex and\n\u0120comb ines\n\u0120v ivid\n\u0120L - ag\n\u0120enc oding\n\u0120sal vation\nw en\n\u0120Rec overy\ni ya\nUn iversity\n\u0120B - iden\n\u0120bud gets\n\u0120Tex ans\nf its\n\u0120hon ored\n\u0120p ython\nT - D\n## #\ncl one\n\u0120bl ink\n\u0120L iquid\n\u0120unemploy ed\n\u0120cl - ashes\n\u0120Coun sel\n\u0120direct ing\n\u0120pun ct\n\u0120Fal cons\n\u0120sh - ark\n\u0120Dam ascus\n\u0120je ans\n\u0120emb ark\n\u0120se ize\n\u0120up - wards\n2 80\n\u0120E z\n\u0120Any thing\n\u0120ex otic\nl ower\n\u0120Creat - or\n\u0120U m\n\u0120subur bs\nber ger\n\u0120W end\n\u0120m int\n\u0120X - X\n\u0120D ro\n\u0120suff ers\n\u0120her b\nt ree\n\u0120frag ile\n\u0120flood - ed\n\u0120Al cohol\nole an\nny der\n\u0120K O\nF ram\n\u012013 6\n\u0120ow - ed\n\u0120Me lee\n\u0120H ash\n\u0120wh isk\n\u0120su do\nr r\nQu ick\napp - ro\n\u0120i i\n\u0120Ex amples\nhe e\n\u0120promot es\nper ature\nk ar\n\u0120Hon - or\n\u0120s odium\n\u0120L if\nros so\nintend ent\n\u0120correspond ent\nF - ound\nsec ret\n\u0120ident ifies\nag ne\n\u0120l ou\n\u0120P P\n\u0120coinc - idence\nm ove\n\u0120milit ia\n\u0120inf iltr\n\u0120Prim ary\n\u0120pitch - ing\n\u0120I b\n\u0120GO OD\n\xE3\u0124 \xB8\n\u0120W izards\nir al\n\u0120Ven - us\nR R\n\u0120\xE2\u0122 \u0137\n\u0120Case y\n\u0120sad ly\n\u0120adm ire\n\u0120embarrass - ed\nc b\nM el\n\u0120tub es\n\u0120beaut ifully\n\u0120Queens land\nBel ow\nre - z\nqu et\nple asant\n\u0120\xC2 \xAB\nC amp\n\u0120dec isive\n19 98\n\u0120L - amb\nut ton\nh n\n\u0120J agu\nau nder\n\u0120C ord\n\u0120cl erk\n\u0120ca - ffe\n\u0120wip ed\n\u0120re im\n\u0120Mount ains\n\u0120imprison ed\n\u0120develop - s\n\u0120P ra\n\u0120model ing\nAny one\nance l\n\u0120S it\n\u0120shield - s\n\u0120l awn\n\u0120card iovascular\n\u0120demonstr ating\n\u0120par se\n\u0120Israel - is\n\u0120euro s\n14 3\n\u0120gl orious\nins ki\nec d\n\u0120condition ing\n\u0120hel - pless\n\u0120micro sc\n\u0120Har bor\n\u0120st akes\n\u01202 60\n\u0120un - equ\n\u0120Fl oyd\n\u0120d amp\n\u0120appar atus\n\u0120Law s\n\u0120coun - ters\n\u0120indu ce\nat able\n\u0120Ah med\n\u0120sl am\nN ovember\n\u0120pers - ist\n\u0120im minent\n\xC3\xA1 n\n\u0120sh red\n\u0120ph ases\n\u0120Ed monton\n\u0120Arm - strong\n\u0120Me et\n\u0120K itty\n\xD1 \u0122\nc irc\n\u0120Ad ult\n\u0120a - rose\n\u0120X en\nD an\ng ow\n\u0120super f\n\u0120Ad mir\n\u0120end ure\n\u0120key - word\nyr us\n\u0120y arn\n\u0120path way\n\u0120Hop kins\nmid t\n\u0120cens - orship\nd ependent\n\u0120instruct or\nS ources\n\u0120to e\n\u0120ball oon\nN - ob\n\u0120sw ear\n\u0120Cast ro\n\u0120gl oss\n\u0120K avanaugh\n\u0120remark - ably\nPh otos\n\u0120N om\n\u0120S outheast\ny ers\n\u0120valid ation\n\u0120cann - on\n\u0120Vict ory\n\u0120Pier re\n\u0120caut ious\nAud io\n\u0120f etch\n\u0120G - ift\n\u0120H yp\n\u0120rem edy\nZ E\n\u0120sc ent\n\u0120be ard\n\u0120R ut\n- - \"\n\u0120pat ents\nH y\n\u0120un just\n\u0120pot ato\n\u0120forth coming\n\u0120che - f\n\u0120R ift\naff e\n\u0120R OM\n\u0120L aunch\n\u0120p ads\n\u0120Ne o\n\u0120on - set\n\u0120squee ze\ns afe\n\u0120pref ix\n\u0120T M\n\u0120N early\n\u0120Clin - ical\n\u0120M ental\not iation\n\u0120Un ic\nant ry\n\u0120C ir\n\u0120ep - it\n\xC3 \xA6\n\u0120extract ed\nverse ly\nri ad\n\u0120str ains\n\u0120to - ps\n\u0120po em\n\u0120Rand y\n\u0120Map le\nTH ER\nup iter\n\u0120SS D\n\u013C - \xE9\n\u0120un con\nper ing\n\u0120sle pt\nin ers\n\u0120under water\n\u0120Ev - idence\ng one\n20 5\n\u0120histor ians\n\u0120synt hesis\n\u0120f rog\nb asketball\n\u0120vibr - ant\n\u0120sub ord\n\u01203 65\n\u0120D ial\n\u0120cooper ate\nHA HA\n\u0120greet - ed\n15 8\n\u0120j azz\n\u0120into x\n\u0120Walk ing\n\u0120super visor\n\u0120F - usion\n\u0120Mer cedes\ns end\nH am\ns d\nn l\n\u0120tour s\n\u0120F IFA\n\u0120cul - p\ng d\n30 4\n\u0120ple as\n\u0120illust rates\n\u0120Colomb ia\n\u0120highlight - ing\n\u0120Sum mary\n\u0120exp osing\n\u0120D ru\n\u0120ir ony\nr itional\n\u0120Car - roll\n\u0120Ell is\nP ict\n\u0120R apt\n\u0120ad apter\n\u0120un m\n\u0120cor - pse\n\u0120celeb rities\nD en\nat um\n\u0120Ap ocalypse\n\u0120W ag\nlin ing\n\u0120horm - ones\nR ub\n\u0120X i\n\u0120V aults\n20 8\nalky rie\ninos aur\n\u0120feed - s\nv ity\n\u0120defe ating\nW ait\n\u0120emphas ize\n\u0120Steel ers\nyr inth\nle - ys\n\u0120Whe never\nCurrent ly\n\u0120Cl ock\n\u0120collect ively\nany on\n\u0120J - P\n\u0120ment ality\n\u0120download s\n\u0120surround ings\n\u0120Barn es\n\u0120flags - hip\n\u0120indic ators\n\u0120gra pp\nJan uary\n\u0120Element al\n\u0120Athen - a\nib al\n\u0120s ights\n\u0120cap ita\n\u0120Treat y\n\u0120vo iced\n\u0120G - az\nlet te\n\u0120y a\n\u0120exp ired\nLeg end\nH ot\nn ature\n\u0120unst - able\n\u01202 80\n\xC3 \xBA\nCom ment\nAL E\n\u0120quest s\n\u0120hand ler\nn - is\n\u0120vers atile\n\u0120conce al\nenge ance\n\u0120Inter active\n\u0120obs - essed\n\u0120Dog s\n\u0120cr acked\nS ound\ns v\n\u0120D ylan\nro ads\nf x\n\u0120Cath - olics\n\u0120H ag\n\u0120sl ammed\n\u0120gl owing\ns ale\n\u0120tiss ues\n\u0120Ch - i\nne e\n\u0120c her\ns ic\nur rection\n\u0120b acon\nul atory\n) .\"\n\u0120ir - regular\nFOR M\nass ed\n\u0120intention al\n\u0120compens ate\n\u0120Spe aking\n\u0120S - ets\n15 3\n\u0120convent ions\nb ands\nem ade\n\u0120e cc\n\u0120Win ston\n\u0120Assass - in\n\u0120Belg ian\n\u0120depend ence\n\u0120nic he\n\u0120b ark\n\u0120J - azz\n\u0120disadvant age\n\u0120gas oline\n\u012016 5\n\xE7\u013C \u0126\ness - a\nmod ule\nang ular\nO Y\n\u0120Treat ment\nit as\nol ation\n\u0120Arn old\n\u0120fe - ud\n\u0120N est\n\u0120the atre\new ater\n\u0120min ors\nolic y\n\u0120H aven\ndiv - ision\n\u0120tr unk\nF ar\n\u0120P ull\n\u0120capt uring\n\u012018 00\n\u0120Te - en\n\u0120ex empl\n\u0120clin ics\n\u0120B urg\n\u0120subst it\n\u0120pay - load\n\u0120L av\n\u0120T roy\n\u0120W itness\n\u0120frag ments\n\u0120pass - words\n\u0120g ospel\n\u0120G in\n\u0120ten ants\nol ith\nS ix\nPre vious\n\u0120Ag - es\n\u0120Dar win\n\u0120bl at\n\u0120em pathy\nsm ith\nb ag\n\u0120E cho\n\u0120C - amb\n\u0120M add\n\u0120B oo\n\u0120red e\n\u0120Burn ing\n\u0120smooth ly\n\u0120Ad - rian\n\u0120V ampire\n\u0120Mon sters\nste am\nSty le\nM a\nre a\n\u0120D - war\naly st\nurs or\n\u0120elim ination\n\u0120crypt o\nch t\n\u0120E ternal\n\xE2\u0122\xA6 - ]\n\u0120S orce\nI ll\nN ER\n\u0120u h\nCon clusion\nw age\n\u0120resp ir\n\u0120rem - inis\nhet ical\n\u0120g y\n\u0120util ized\nic idal\n\u012019 00\n\u0120hun - ters\n\u0120Sw an\n\u0120Re act\n\u0120vis itor\n\u0120Thanks giving\n30 8\nPost - s\n\u0120h ips\n19 97\nom ers\n\u0120kn ocking\n\u0120Veh icle\n\u0120t il\n\u012013 - 8\n\u0120m i\n\u0120Invest igation\n\u0120Ken ya\n\u0120cas ino\n\u0120mot - ives\n\u0120reg ain\nre x\n\u0120week ends\n\u0120stab bed\nbor o\n\u0120explo - ited\n\u0120HA VE\n\u0120Te levision\nc ock\n\u0120prepar ations\n\u0120ende - av\n\u0120Rem ote\n\u0120M aker\n\u0120Pro du\n\u0120Ev an\n\u0120inform ational\n\u0120Louis - ville\n15 4\n\u0120Dream s\n\u0120pl ots\n\u0120Run ner\n\u0120hur ting\n\u0120acad - emy\n\u0120Mont gomery\nn m\n\u0120L anc\n\u0120Al z\n2 10\nel ong\n\u0120retail - er\n\u0120ar ising\n\u0120rebell ion\n\u0120bl onde\nplay ed\n\u0120instrument - al\nC ross\n\u0120ret ention\n\u0120therape utic\n\u0120se as\n\u0120infant - ry\n\u0120Cl int\n\u0120prompt ing\n\u0120bit ch\n\u0120st ems\n\u0120K ra\n\u0120the - sis\n\u0120B og\nru ed\n\u0120k ings\n\u0120cl ay\nific ent\n\u0120Y ES\n\u0120Th - ing\n\u0120Cub s\nvey ard\nels h\nin arily\n\u0120E y\n\u0120Roll ing\n\u0120ev - olving\nInd ia\n\u0120recogn izes\n\u0120grad uation\nis ers\n\u0120fert ility\n\u0120Mil - an\nComm and\n\u0120box ing\n\u012019 43\n\u0120gl uten\n\u0120Em ir\n\u0120id - ol\n\u0120con ceived\n\u0120Cre ation\nMer it\nudd y\nuss ions\n\u0120Lie - utenant\niet al\n\u0120unch anged\n\u0120Sc ale\n\u0120Crime a\nball s\nator - ial\n\u0120depth s\n\u0120empir ical\n\u0120trans m\n\u0120uns afe\nmiss ible\ncom - fort\n15 6\n\u0120mechan ic\n00 2\nl ins\n\u0120sm oked\nP os\n\u0120slow - ing\n\u0120l av\nTex as\n\u0120che ating\n\u0120Met ropolitan\neth yl\n\u0120discover - ing\nas se\n\u0120pen cil\n\u0120Py ongyang\n\u0120clos et\n\u0120She et\n\u0120Ent - ry\nou stic\n\u0120my st\ner ate\nari at\n\u0120miner als\n\u0120music ian\n\u0120P - ul\n\u0120M az\n24 9\n\u0120per missions\n\u0120 iv\nen ary\nick ers\n\u0120B - ing\nhe a\nen able\n\u0120gri ev\n\u0120assert ed\n\u0120Colon el\n\u0120aff - idav\nw o\n\u0120se ated\n\u0120R ide\n\u0120paint ings\n\u0120P ix\n\u012013 - 7\nish i\numb ai\ng otten\n\u0120Ear l\n\u0120in ning\n\u0120c ensus\n\u0120trave - lled\n\u0120Cons ult\n18 5\nb ind\n\u0120simpl icity\n\u0120overlook ed\n\u0120Help - ful\n\u0120mon key\n\u0120overwhelming ly\nBl ood\n\u0120Fl int\n\u0120J ama\n\u0120Pres - ent\n\u0120R age\n\u0120T A\npt ive\n\u0120turn out\nw ald\n\u0120D olphins\n\u0120V - PN\n\u0120on ion\n\u0120craft ing\nm ma\n\u0120Merc ury\n\u0120arr ange\n\u0120alert - s\n\u0120O T\nzb ollah\n\u0120g ases\n\u0120Richards on\ns al\nl ar\n\u0120fro - st\n\u0120lower ing\n\u0120acc laim\n\u0120start ups\n\u0120G ain\ness ment\n\u0120guard - ian\n\xE4\xBA \xBA\n\u0120P ie\n\u0120L inks\n\u0120mer its\n\u0120aw ake\n\u0120parent - al\n\u0120exceed s\n\u0120id le\n\u0120Pil ot\n\u0120e Bay\n\u0120Ac cept\nipe - g\nC am\n\u0120K ot\n\u0120trad ers\nolit ics\nunk er\n\u0120P ale\nos i\nan - mar\n\u012019 47\n\u0120F ell\nest ial\nit ating\nG F\n\u0120S r\nif ted\n\u0120connect - or\n\u0120B one\nill es\n2 60\nh ma\n\u0120overl ap\n\u0120Git Hub\n\u0120clean - er\n\u0120Bapt ist\n\u0120W AS\n\u0120lung s\n\xD1 \u0123\n\u0120B UT\n\u0120c - ite\n\u0120pit ched\nreat ment\n\u0120tro phies\n\u0120N u\n38 6\n\u0120Pr - ide\n\u0120attend ees\n[ ]\n17 9\n\u0120spat ial\n\u0120pri zes\n\u0120Rel - igion\n\u0120show case\n\u0120C ategory\nvid ia\nT arget\nPro perty\n? ,\n\u0120f - usion\np ie\n\u0120U CLA\n\u0120sound track\n\u0120prin cess\n\u0120C aval\nsh - ould\n\u0120lim bs\nBack ground\n\u0120lone ly\n\u0120c ores\n\u0120T ail\nshe - et\n\u012013 2\nR a\n\xE3\u0124 \xAB\n\u0120B olt\n\u0120book ed\n\u0120admin - ister\n\u0120equ als\nw y\n\u0120observ ing\n\u0120Bar on\n\u0120Ad obe\n\u0120v - irgin\n\u0120Social ist\nM ove\ngh azi\n\u0120Lind a\n2 12\n\u0120bre wing\n\u0120merch - ants\nbur se\n\u0120div or\n\u0120met als\n\u0120N er\n\u0120sum s\n\u0120En - emy\n\u0120en vision\n\u0120grant ing\n\u0120H oney\n\u0120Sk yrim\n\u0120soc - io\ngr aded\n\u0120select ive\nW ASHINGTON\n\u012019 48\n\u0120Sir ius\n\u0120G - ross\nact ivity\n\u0120I van\n\u0120fur ious\nBS D\n\u0120Pre vious\n\u0120respons - ive\n\u0120char itable\n\u0120le aning\n\u0120P ew\n\u0120viol ates\n\\\\\\\\ - \\\\\\\\\n\u0120Com ing\nw ire\n\u0120po et\n\u0120res olutions\ncomm and\n\u0120Portug - uese\n\u0120nick name\n\u0120de af\nFeb ruary\n\u0120recogn ise\n\u0120entire - ty\n\u0120season al\npl aced\n\u0120Te legraph\n\u0120micro phone\nour ing\n\u0120gr - ains\n\u0120govern ed\n\u0120post p\n\u0120W aters\nin ement\n\u0120und ocumented\n\u0120Com - cast\n\u0120f ox\n\u0120assault s\nre on\nman y\n\u0120Jen kins\n\u0120Any - way\n\u0120assess ments\n\u0120down s\n\u0120M ouse\n\u0120super b\nk t\n\u0120D - ow\n\u0120tax ation\n4 01\n\u0120sm iles\n\u0120undert aken\n\u0120ex h\n\u0120enthusi - astic\n\u0120tw ent\n\u0120government al\n\u0120autonom y\n\u0120Techn ologies\n\u0120Ch - ain\n\u0120preval ent\nf b\n\u0120nic otine\nog ram\nj ob\n\u0120awa iting\n\u0120Men - u\n\u0120dep uties\nk ov\nish ops\nBut ton\n\u0120Shan ghai\n\u0120dies el\n\u0120D - uck\nR yan\n\u0120PC s\nN F\nj ury\nent e\n\u0120inacc urate\nedd y\nWh atever\n\u0120show - c\n\u0120N ad\nod us\net r\n\u0120plaint iffs\n\u0120W OR\n\u0120Ass ange\n\u0120priv - at\n\u0120premium s\n\u0120t am\nUR L\n\u0120el ites\n\u0120R anger\notten - ham\n\u0120H off\n\u0120At hens\n\u0120defin ite\n\u0120s ighed\n\u0120even - ly\n2 11\n\u0120Am ber\nak ia\n\u0120mail ing\n\u0120cr ashing\n\u0120Confeder - ate\nru gged\nW al\n\u0120Dep ths\n\u0120juven ile\n\u0120react or\nIntrodu - ction\n\u0120Del uxe\n19 95\n\u0120S anchez\n\u0120M ead\niv able\n: -\n\u0120Plan - ning\n\u0120T rap\nqu in\n\u0120Prot ect\nve red\nIn formation\n\u0120kid - ney\ninn amon\nl as\n\u0120polic ing\n\u0120toler ate\n\u0120Q i\n\u0120bi - ased\nF ort\n\u0120K i\ns ave\n\u0120privile ged\n\u0120be asts\n\u0120Gl - as\n\u0120C inem\n\u0120come back\nSund ay\n\u0120ext inction\nh ops\n\u0120trans - mit\n\u0120doub les\n\u0120Fl at\n16 7\n\u0120dis puted\n\u0120injust ice\nf - oo\nV ict\nrole um\n\u0120Jul ie\nCon text\n\u0120R arity\niss ue\nComp onent\n\u0120counsel - ing\nan ne\nd ark\n\u0120object ions\nu ilt\n\u0120g ast\n\u0120pl ac\n\u0120un - used\n\xE3\u0125 \u0129\n\u0120T rial\n\u0120J as\nhed ral\nob b\n\u0120tempor - al\n\u0120PR O\n\u0120N W\n\u0120Ann iversary\nL arge\n\u0120ther m\n\u0120d - avid\n\u0120system ic\n\u0120Sh ir\nm ut\n\u0120Ne pt\nadd ress\n\u0120scan - ning\n\u0120understand able\n\u0120can vas\nC at\n\u0120Z oo\n\u0120ang els\nL - O\n\u0120Stat ement\n\u0120S ig\nov able\n\u0120A way\nsh aring\nocr ats\nst - ated\n\u0120weigh ing\nN or\nw ild\nB ey\n\u0120aston ishing\n\u0120Reyn olds\n\u0120op - ener\n\u0120train er\n\u0120surg ical\np n\n\u0120adjust ing\nwhe el\n\u0120f - rown\nerv ative\n\u0120susp end\nWith in\nte in\n\u0120obst acle\n\u0120liber - ties\nym es\n\u0120ur anium\nans om\nan ol\nub a\n\u0120L oss\n\u0120a rous\n\u0120Hend - erson\nW ow\ns pl\nc ur\n\u0120\xC2 \u0143\n\u0120their s\nDam age\n\u0120download - ing\n\u0120disc ern\n\u0120St o\n\u0120Fl a\n\u0120h ath\n\u0120A j\n\u0120un - pleasant\nEurope an\nexp ensive\n\u0120screens hot\n\u0120U V\n\u0120all ied\n\u0120Pers - ian\n\u0120monop oly\n\u0120at om\n\u0120Reds kins\n\"> <\n\u0120can cell\n\u0120cinem - a\n13 1\nf air\n\u0120Alf red\n\u0120d uck\narg s\n22 3\n\u0120IS I\n\u0120sign - aling\nin ar\n\u0120laugh s\n\u0120for wards\n\u0120reck less\n\u0120listen - ers\nat ivity\n\u0120vast ly\nn ant\nL ess\n\u0120Hun ting\n\u0120Scient ific\nIT - ED\n\u0120kn ight\n\u0120H TC\nus a\nt mp\n\u0120r ude\n\u0120Legend ary\n\u0120ar - ises\nB ad\n\u0120Cl aim\npe g\n\u0120real ities\nTh ink\n\u0120\xC2 \xB0\n\u0120ro - de\n\u0120stri ve\n\u0120an ecd\n\u0120short s\n\u0120hypot hes\n\u0120coord - inated\n\u0120Gand hi\n\u0120F PS\nR ED\n\u0120suscept ible\n\u0120shr ink\n\u0120Ch - art\nHel p\n\u0120 ion\nde ep\nrib es\n\u0120K ai\n\u0120Custom er\nSum mary\n\u0120c - ough\nw ife\n\u0120l end\n\u0120position ing\n\u0120lot tery\n\u0120C anyon\n\u0120f - ade\n\u0120bron ze\n\u0120Kenn y\n\u0120bo asts\n\u0120Enh anced\nrec ord\n\u0120emer - gence\n\u0120a kin\n\u0120B ert\nit ous\n\xE2\u0138 \u0133\n\u0120st ip\n\u0120exch - anged\nom ore\nals h\n\u0120reserv oir\n\u0120stand point\nW M\n\u0120initi - ate\n\u0120dec ay\n\u0120brew ery\n\u0120ter ribly\n\u0120mort al\nlev ard\n\u0120rev - is\nN I\nel o\n\u0120conf ess\n\u0120MS NBC\n\u0120sub missions\nCont roller\n\u012020 - 2\n\u0120R uth\n} );\n\u0120Az ure\n\u0120 .\"\n20 6\n\u0120Market ing\n\u0120l - aund\nien cies\n\u0120renown ed\n\u0120T rou\n\u0120N GO\nble ms\n\u0120terr - ified\n\u0120war ns\n\u0120per t\n\u0120uns ure\n4 80\nale z\nult z\n\u0120Out - side\n\u0120st yl\n\u0120Under ground\n\u0120p anc\n\u0120d ictionary\n\u0120f - oe\nrim inal\n\u0120Nor wegian\n\u0120j ailed\n\u0120m aternal\n\xC3\xA9 e\n\u0120Lu - cy\nc op\nCh o\n\u0120uns igned\n\u0120Ze lda\n\u0120Ins ider\n\u0120Contin - ued\n\u012013 3\n\u0120Nar uto\n\u0120Major ity\n16 9\n\u0120W o\n\xE3\u0124 - \u0135\n\u0120past or\n\u0120inform al\n\xD0 \xBD\nan throp\njo in\n\xE3\u0123 - \u0139\nit ational\nN P\n\u0120Writ ing\nf n\n\u0120B ever\n19 5\n\u0120y - elling\n\u0120dr astically\n\u0120e ject\n\u0120ne ut\n\u0120th rive\n\u0120Fre - qu\nou x\n\u0120possess es\n\u0120Sen ators\n\u0120D ES\n\u0120Sh akespeare\n\u0120Fran - co\n\u0120L B\nuch i\n\u0120inc arn\n\u0120found ers\nF unction\n\u0120bright - ness\n\u0120B T\n\u0120wh ale\n\u0120The ater\nm ass\n\u0120D oll\nS omething\n\u0120echo - ed\n\u0120He x\nc rit\naf ia\n\u0120godd ess\n\u0120ele ven\n\u0120Pre view\n\u0120Aur - ora\n\u01204 01\nuls ive\n\u0120Log an\nin burgh\n\u0120Cent ers\n\u0120ON - LY\n\u0120A id\n\u0120parad ox\n\u0120h urd\n\u0120L C\nD ue\nc ourt\n\u0120off - ended\n\u0120eval uating\n\u0120Matthew s\n\u0120to mb\n\u0120pay roll\n\u0120extra - ction\n\u0120H ands\nif i\n\u0120super natural\n\u0120COM M\n] =\ndog s\n\u01205 - 12\n\u0120Me eting\nRich ard\n\u0120Max imum\n\u0120ide als\nTh ings\nm and\n\u0120Reg - ardless\n\u0120hum ili\nb uffer\nL ittle\n\u0120D ani\n\u0120N ak\n\u0120liber - ation\n\u0120A be\n\u0120O L\n\u0120stuff ed\nac a\nind a\nraph ic\n\u0120mos - qu\n\u0120campaign ing\n\u0120occup y\nS qu\nr ina\n\u0120W el\n\u0120V S\n\u0120phys - ic\n\u0120p uls\nr int\noad ed\nET F\n\u0120Arch ives\n\u0120ven ues\nh ner\n\u0120Tur - bo\n\u0120l ust\n\u0120appeal ed\nque z\nil ib\n\u0120Tim othy\n\u0120o mn\nd - ro\n\u0120obs ession\n\u0120Sav age\n19 96\nGl obal\nJ es\n2 14\n\u0120sl - iding\n\u0120disapp ro\n\u0120Mag ical\n\u0120volunt arily\ng b\nane y\n\u0120prop - het\n\u0120Re in\n\u0120Jul ia\n\u0120W orth\naur us\n\u0120b ounds\nie u\n)) - )\n\u0120cro re\n\u0120Citiz en\nS ky\n\u0120column ist\n\u0120seek ers\nond - o\nIS A\n\u0120L ength\n\u0120nost alg\n\u0120new com\n\u0120det rim\nent - ric\n3 75\n\u0120G E\n\u0120aut op\n\u0120academ ics\nApp Data\n\u0120S hen\n\u0120id - iot\n\u0120Trans it\n\u0120teasp oon\nW il\nK O\n\u0120Com edy\n> ,\n\u0120pop - ulated\nW D\n\u0120p igs\n\u0120O culus\n\u0120symp athetic\n\u0120mar athon\n19 - 8\n\u0120seiz ure\ns ided\n\u0120d op\nirt ual\nL and\n\u0120Fl oor\nosa urs\n... - ]\n\u0120l os\n\u0120subsid iary\nE Y\n\u0120Part s\n\u0120St ef\n\u0120Jud - iciary\n\u012013 4\n\u0120mir rors\n\u0120k et\nt imes\n\u0120neuro log\n\u0120c - av\n\u0120Gu est\n\u0120tum or\nsc ill\n\u0120Ll oyd\nE st\n\u0120cle arer\n\u0120stere - otypes\n\u0120d ur\nnot hing\nRed dit\n\u0120negoti ated\n---------------- - --------\n23 5\n\u0120fl own\n\u0120Se oul\n\u0120Res ident\n\u0120S CH\n\u0120disappear - ance\n\u0120V ince\ng rown\n\u0120grab s\nr il\n\u0120Inf inite\n\u0120Tw - enty\n\u0120pedest rian\n\u0120jer sey\n\u0120F ur\n\u0120Inf inity\n\u0120Ell - iott\n\u0120ment or\n\u0120mor ally\n\u0120ob ey\nsec ure\niff e\n\u0120antib - iotics\nang led\n\u0120Fre eman\n\u0120Introdu ction\nJ un\n\u0120m arsh\nic - ans\n\u0120EV ENTS\noch ond\nW all\nicult y\n\u0120misdem eanor\n\u0120l y\nTh - omas\n\u0120Res olution\n\u0120anim ations\n\u0120D ry\n\u0120inter course\n\u0120New - castle\n\u0120H og\n\u0120Equ ipment\n17 7\n\u0120territ orial\n\u0120arch - ives\n20 3\nFil ter\n\u0120Mun ich\n\u0120command ed\n\u0120W and\n\u0120pit - ches\n\u0120Cro at\n\u0120rat ios\n\u0120M its\n\u0120accum ulated\n\u0120Specific - ally\n\u0120gentle man\nacer b\n\u0120p enn\n\u0120a ka\n\u0120F uk\n\u0120interven - e\n\u0120Ref uge\n\u0120Alz heimer\n\u0120success ion\noh an\nd oes\nL ord\n\u0120separ - at\n\u0120correspond ence\n\u0120sh iny\nP rior\n\u0120s ulf\n\u0120miser - able\n\u0120ded ication\n( ).\n\u0120special ists\n\u0120defect s\n\u0120C - ult\n\u0120X ia\n\u0120je opard\n\u0120O re\nAb ility\n\u0120le ar\n\u0120amb - itions\n\u0120B MI\n\u0120Arab s\n\u012019 42\n\u0120pres ervation\nific ate\n\u0120ash - amed\nl oss\n\u0120Rest aur\n\u0120rese mble\n\u0120en rich\n\u0120K N\n\u0120Cl - an\nfl oat\n\u0120play able\nIT T\n\u0120harm ony\narr ison\n\u0120We instein\nw - ere\n\u0120poison ing\n\u0120Com put\n\u0120Word Press\nm ajor\n\u0120Val - ve\nF an\n\u0120Th row\n\u0120Rom ans\n\u0120Dep ression\nad os\n\u0120tort - ured\n\u0120bal ancing\nbott om\n\u0120acqu iring\n\u0120Mon te\nard i\n\u0120a - ura\n\u0120# #\n\u0120Stand ing\n\u0120Atl as\nC F\n\u0120intr ins\n\u0120Ben - ghazi\n\u0120camp ing\n\u0120t apped\nbl ade\nst rous\n\u0120R abb\n\u0120W - ritten\nt ip\n\u0120Ne igh\nster dam\n\u0120All ow\n\u0120He aling\n\u0120R - hod\nn um\n\u0120caffe ine\n\u0120Per cent\n\u0120bo o\n\u0120app les\n30 - 5\n\u0120wel coming\n\u0120appl aud\n\u0120a usterity\n\xC2 \xB1\n\u0120Re - ality\nef e\n\xE5 \xAE\n\u0120su cks\n\u0120tab s\n\u0120Pay Pal\n\u0120back - pack\n\u0120gif ted\nabul ary\n\u0120Sc out\nir teen\n\u0120ch in\n\u0120o - mitted\n\u0120negative ly\n\u0120access ing\n\u0120E arn\n\u0120ambul ance\n\u0120head - phones\n\u012020 5\n\u0120Ref resh\np resident\n\u0120Kit chen\n\u0120Ent - ered\n\u0120S nyder\n00 5\nom ical\n\u0120borrow ed\n\u0120N em\n\u0120av - iation\n\u0120st all\nrim ination\n\u0120uniform s\nit ime\n\u0120Sim mons\nener - gy\nab lished\ny y\nqual ified\n\u0120rall ies\n\u0120St uart\nfl ight\n\u0120gang - s\nr ag\n\u0120v ault\nlu x\n\u0120Com par\n\u0120design ation\n20 9\n\u0120J - os\nd ollar\nz ero\n\u0120well s\n30 3\n\u0120constitu ents\n\u0120he ck\n\u0120c - ows\n\u0120command ers\n\u0120different ial\n\u0120C atherine\n29 9\n\u0120val - ve\n\u0120br ace\n\u0120perspect ives\nc ert\nf act\nicular ly\n\u0120Mc N\npl - anes\n\u0120int ric\n\u0120pe as\nov an\n\u0120toss ed\nret ch\n\u0120L opez\n\u0120unf - amiliar\nde ath\n\u0120A part\n\u0120Ch ang\n\u0120relie ved\nrop he\n\u0120air - ports\n\u0120fre ak\nut il\nM ill\n\u0120Ch in\n\u0120Ow en\nm ale\n\u0120Bro - ken\n\u0120Wind s\nro b\nr ising\n\u0120fire fighters\n\u0120author itarian\n\u012014 - 8\nBit coin\nex ternal\n\u0120brow sers\niche ver\nor ian\n\u0120un b\n\u0120po - ke\n\u0120Z ot\nM id\n\u0120Pop ular\n\u0120co vert\n\u0120cont ributes\n\u01206 - 50\n\u0120cont ention\nG ate\n\u0120cons oles\n\u0120chrom os\n\u0120I X\n\u0120vis - ually\n\u0120E isen\n\u0120jewel ry\n\u0120deleg ation\n\u0120acceler ate\n\u0120R - iley\n\u0120sl ope\n\u0120ind oor\nit ially\n\u0120huge ly\n\u0120tun nels\n\u0120fin - ed\n\u0120direct ive\n\u0120fore head\nustom ed\n\u0120sk ate\nMus ic\ng as\n\u0120recogn - izing\nam bo\n\u0120over weight\n\u0120Gr ade\n\xD9 \u012C\n\u0120sound ing\n\u0120lock - ing\n\u0120R EM\nSt ore\n\u0120exc av\n\u0120Like wise\n\u0120L ights\n\u0120el - bow\n\u0120Supp ly\nw ic\n\u0120hands ome\n19 94\nC oll\n\u0120adequ ately\n\u0120Associ - ate\n\u0120stri ps\n\u0120crack down\n\u0120mar vel\n\u0120K un\n\u0120pass - ages\n@@ @@\n\u0120T all\n\u0120thought ful\nnames e\n\u0120prost itution\nbus - iness\n\u0120ball istic\nperson al\nc ig\niz ational\nR ound\n\u0120\xC2\u0142\u0120\xC2\u0142 - \u0120\xC2\u0142\u0120\xC2\u0142\n\u0120Cole man\n\u0120adm itting\n\u0120Pl - ug\n\u0120bit coins\n\u0120Su z\n\u0120fair ness\n\u0120supp lier\n\u0120catast - rophic\n\u0120Hel en\no qu\nM arc\n\u0120Art icles\ng ie\n\u0120end angered\n\u0120dest - iny\n\u0120Vol t\nol ia\nax is\n\u0120che at\n\u0120un ified\nIC O\nqu ote\n30 - 2\n\u0120S ed\n\u0120supp ression\n\u0120analy zing\n\u0120squ at\n\u0120fig - uring\n\u0120coordin ates\n\u0120ch unks\n\u012019 46\n\u0120sub p\n\u0120w - iki\n\u0120For bes\n\u0120J upiter\n\u0120E rik\nim er\n\u0120Com mercial\n\\ - )\n\u0120legitim acy\n\u0120d ental\n\u0120Me an\n\u0120defic its\n5 50\nOrig - inally\n\u0120Hor ror\n\u0120contam ination\nll ah\n\u0120conf isc\n\u0120Cl - are\nT B\n\u0120F ailed\nan ed\n\u0120rul er\n\u0120Cont roller\n\u0120femin - ists\nF ix\ng ay\n20 7\n\u0120r abbit\nTh ird\nownt own\n\u0120gl ue\n\u0120vol - atile\n\u0120sh ining\n\u0120f oll\n\u0120imp aired\n\u0120sup ers\n\xE6 \u012A\n\u0120cl - utch\n\u013C\xE9 \u0128\u0134\n\u0120pro let\n\u0120( !\n\u0120y elled\n\u0120K - iev\n\u0120Er n\n\u0120Sh ock\nK B\n\u0120sit uated\nqu ery\n\u0120N as\n\u0120an - nex\nchar acter\n\u0120Hol iday\n\u0120autom ation\n\u0120J ill\n\u0120Rem - astered\n\u0120l inem\n\u0120wild erness\n\u0120Hor izon\n\u0120Gu inea\nA - Z\n\u0120main land\n\u0120sec recy\nLE ASE\n\u0120p unk\n\u0120Prov ince\n( - ),\nSpe ed\n\u0120hand ing\n\u0120Seb ast\nS ir\nr ase\n\u0120j ournals\n\u0120con - gest\n\u0120T ut\nir rel\n\u0120schizophren ia\n\u0120mis ogyn\nhealth y\nI - ron\n\u0120react ed\n- $\n25 2\n\u0120pl ural\n\u0120pl um\n\u0120barg ain\n\u0120ground - ed\nf inder\n\u0120dis se\n\u0120L az\nO OD\n\u0120at roc\nF actory\n\u0120min - ions\n\u0120o ri\n\u0120B rave\n\u0120P RE\n\u0120My anmar\n\u0120H od\n\u0120exped - ition\n\u0120expl ode\n\u0120Co ord\n\u0120ext r\n\u0120B rief\n\u0120AD HD\n\u0120hard - core\nfeed ing\n\u0120d ile\n\u0120F ruit\n\u0120vacc ination\n\u0120M ao\nosp - here\n\u0120cont ests\n- |\n\u0120f ren\nisp here\nR om\n\u0120Sh arp\n\u0120Tre - nd\n\u0120dis connect\n\xE2\u0122\xA2 \xE2\u0122\xA2\n\u0120per secution\nEar - th\n\u0120health ier\n38 4\n\u0120c ob\n\u0120Tr inity\nOW S\nAN N\n\u0120special - ty\n\u0120g ru\n\u0120cooper ative\nwh y\nStart ing\n\u0120Iss ues\nst re\nens - or\n\u012018 5\nAd v\n! ?\n\u0120Re vel\nem ia\n\u0120H ulk\n\u0120celebr - ations\n\u0120S ou\nra ud\n\u0120Kle in\n\u0120un real\ncon text\n\u0120partners - hips\n\u0120adop ting\nt ical\n\u0120spl ash\n\u0120He zbollah\nc ategory\ncycl - op\nxt on\n\u0120D ot\nurd y\nt z\n\u0120envelop e\n\u0120N L\n\xE2 \u0137\n\u0120where - in\nSpe c\n18 4\n\u0120te lev\nal iation\n\u0120myth s\n\xE5 \xB0\n\u0120rig - orous\n\u0120commun icating\n\u0120obser ver\n\u0120re he\n\u0120W ash\n\u0120apolog - ized\n\u0120T in\n\u0120expend itures\nwork ers\nd ocument\n\u0120hes itate\n\u0120Len - in\n\u0120unpredict able\n\u0120renew al\ncl er\nok ia\n\u0120CON T\n\u0120post - season\nTok ens\n\u0120ex acerb\n\u0120bet ting\n\u012014 7\n\u0120elev ation\nW - ood\n\u0120Sol omon\n19 4\n00 4\nout put\n\u0120redu nd\n\u0120M umbai\n\u0120p - H\n\u0120reprodu ce\n\u0120D uration\nMA X\n\u0120b og\nC BS\n\u0120Bal ance\n\u0120S - gt\n\u0120Rec ent\n\u0120c d\n\u0120po pped\n\u0120incomp et\npro p\nay an\ng - uy\nPac ific\n\u0120ty r\n\u0120{ {\n\u0120My stic\n\u0120D ana\n\u0120mast - urb\n\u0120ge ometry\n\xC3 \xA2\n\u0120Cor rect\n\u0120traject ory\n\u0120distract - ed\n\u0120f oo\n\u0120W elsh\nL uc\nm ith\n\u0120rug by\n\u0120respir atory\n\u0120tri - angle\n\u01202 15\n\u0120under graduate\n\u0120Super ior\nch anging\n_ -\n\u0120right - ly\n\u0120refere e\n\u0120luc rative\n\u0120un authorized\n\u0120resemb les\n\u0120GN - U\n\u0120Der by\n\u0120path ways\n\u0120L ed\n\u0120end urance\n\u0120st int\n\u0120collect - or\nF ast\n\u0120d ots\n\u0120national s\n\u0120Sec urities\n\u0120wh ip\nPar - am\n\u0120learn s\nM agic\n\u0120detail ing\nm oon\n\u0120broadcast ing\n\u0120b - aked\n26 5\nhol m\n\u0120S ah\n\u0120Hus sein\n\u0120Court esy\n17 4\n\u012014 - 6\n\u0120ge ographic\npe ace\n\u0120jud ging\n\u0120S tern\nB ur\n\u0120story - line\nG un\n\u0120St ick\n24 5\n30 7\n\xE3\u0124\xB4 \xE3\u0125\xB3\n\u0120Administ - rator\n\u0120bur nt\n\u0120p ave\nch oes\nEx ec\n\u0120camp uses\nRes ult\n\u0120mut - ations\n\u0120Ch arter\n\u0120capt ures\n\u0120comp ares\n\u0120bad ge\nS - cient\n\u0120er ad\nier y\no i\nett es\n\u0120E state\n\u0120st rap\n\u0120proud - ly\n\u0120f ried\n\u0120withd rawn\n\u0120V oy\nph ony\nIt ems\n\u0120P ierce\nb - ard\n\u0120ann otation\nant on\nill on\nIm pro\n... )\n\u0120happ ier\n---- - --\nad just\n\u0120staff ers\n\u0120activ ism\n\u0120per f\n\u0120al right\nN - eed\n\u0120comm ence\n\u0120opio id\n\u0120Am anda\nE s\n\u0120P ars\n\u0120K - aw\nW orks\n24 8\n\u0120ind o\nt c\nend ant\n\u0120M oto\n\u0120legal ization\nOT - E\n\u0120task ed\n\u0120t sp\n\u0120ACT IONS\n16 6\n\u0120refres hing\n\u0120N - R\n\u0120Pere z\n\u0120infring ement\nS Y\nList en\nin ning\nk u\n\u0120rot - ate\npro gram\nar ah\nDes ign\n\u0120( \xC2\xA3\n\u0120st oring\n\u0120war - rants\n\u0120jud gement\n\u0120B rist\nus ually\nph oto\n\u0120R an\n\u0120P - ine\n\u0120outrage ous\n\u0120Valent ine\nlu ence\n\u0120Every body\nAl tern\n\u0120rele - vance\n\u0120termin ated\n\u0120d essert\n\u0120fulf illed\n\u0120prosecut - ed\n\u0120W ords\n\u0120m igrant\n\u0120cultiv ation\n\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124 - \xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\nidel - ity\n\u0120V ern\n\u0120Log in\n\u0120metaph or\n\u0120T ip\n\u0120recru its\n\u0120P - ig\nrib ing\n\u0120enthusi asts\nex per\n\u0120fright ening\n\u0120H air\nans - on\nstr ate\n\u0120h i\nHe ight\n\u0120own ing\nn one\n\u0120dis like\n\u0120kn - ives\npher d\n\u0120loud ly\n\u0120AP Is\nDis play\n\u0120L ac\n\u0120US S\nab - l\nver ages\nJ ew\n\u012017 2\n\u0120Hist orical\nat oon\n\u0120Phys ics\nin - tern\n\u0120warm th\n\u0120to pp\nD M\n\u0120gun man\n\u0120em peror\nod i\n\xE3\u0125 - \xA3\nin atory\n\u0120R ib\n\u012013 1\n\u0120Sat urn\n\u0120Sh ining\n\u0120w - aking\nQu otes\n\u0120comed ian\nen berg\n\xC2 \xBD\n\u0120belie vers\n\u0120paper - work\nc ustom\n\u0120le v\n\u0120l ament\n\u0120pour ing\n22 2\np olitical\n\u0120Supp - lement\nm aid\n\u0120cruel ty\n\u0120t read\nys ics\nA w\nrit es\n\u0120mod - ifier\n\u0120P osition\nAd am\nl b\nub s\n\u0120imper fect\n\u0120cl usters\n\u0120Engine - er\n\u0120C herry\n\u0120inaug uration\n\u0120S au\n\u0120embod iment\n\u0120Un - cle\n\u0120over r\n\u0120explos ions\nc ule\n\u0120Princ eton\n\u0120Andre - a\n\u0120incorrect ly\n\u0120earn est\n\u0120pil gr\n\u0120S print\n\u0120slee - ve\n\u0120he ars\n\u0120Am azing\n\u0120brow sing\nag in\n\u0120hom eland\n\u0120ha - w\n\u0120d iving\nist ered\n17 8\n\u0120barg aining\n\u0120Arc ade\n\u0120deleg - ate\nters on\n................................ ................................\n\u0120Jackson - ville\n27 5\n\u0120st agn\n\u0120ad am\n\u0120Sher man\nC B\n\u0120sub urb\n\u0120Food - s\n\u0120conver ting\n\u0120Ar ist\n\u0120ch ambers\nl ove\n\u0120am ino\n\u0120G - an\n\u0120mad ness\nm c\n\u0120US E\ndef ined\n\u0120ul tr\nind ust\n\u0120w - olves\nl ance\nAdd itionally\n\u0120cr acks\nas ia\n\u0120Re ason\n\u0120P - ump\n\u0120accident al\n\u0120L aser\n\u0120R id\n\u0120initial ized\nell - i\n\u0120un named\n\u0120n oun\n\u0120Pass ed\n\u0120host age\n\u0120Eth iop\nsh - irts\n\u0120un rel\n\u0120Emb assy\n\u012019 41\n\u0120at oms\n\u0120pur ported\n16 - 4\n\u0120F i\n\u0120gall ons\n\u0120Mon ica\n\u0120p g\nen ment\n\u0120sort - ed\n\u0120G ospel\n\u0120he ights\n\u0120tr aced\n\u0120under going\nShe ll\n\u0120s - acks\n\u0120proport ions\n\u0120hall uc\nF ont\nac et\n\u0120war mer\n\u0120IN - TER\n\u0120grab bing\nPl ug\n\u0120real ization\n\u0120Bur ke\n\u0120en chant\nAT - ER\n\u0120Se ed\n\u0120abund ant\nF M\n\u0120c ivic\nV s\nis i\n\u0120v ow\n\u0120re - per\n\u0120Partners hip\n\u0120penet ration\n\u0120ax e\n\u0120sh attered\n\u0120Z - ombies\n\u0120v inyl\n\u0120Al ert\ne on\n\u0120oblig ed\n\u0120Ill ust\n\u0120Pl - aza\n\u0120Front ier\n\u0120david jl\n\u0120Ser ial\n\u0120H av\n\u0120Nut - rition\nB i\n\u0120\xE2\u0138 \u012A\n\u0120J ays\nlin ux\n\u0120hur ry\n\u0120v - oy\n\u0120hop eless\n\u0120Ste alth\n\u0120 \xE3\u0123\ness ors\ntt le\nb - org\n\u0120Saf ari\nf ell\n\u0120w ary\nd ue\n\u0120Ab ove\nH a\nE LL\n\u0120not - or\n\u0120W on\nT oo\n\u0120occup ations\n\u0120poss essions\n\u0120inv iting\n\u0120pred - ators\n\u0120acceler ated\n\u012015 7\nuter te\n\u0120C ube\ne ast\nacc ount\nG - ive\n\u0120trans plant\nred ients\nid able\n\u0120screens hots\n\u0120G und\n\u0120F - S\n\u0120travel ers\n\u0120sens ory\n\u0120F iat\n\u0120Rock ets\n\u0130 \u012D\n_ - {\nF riend\n\u0120char ming\nAL S\n\u0120enjoy ment\nm ph\n\u01205 000\n\u0120RE - G\n\xD9 \u0128\nb ia\n\u0120comp ilation\nro st\n\u0120V P\n\u0120Sch ne\n201 - 9\n\u0120cop ying\nM ORE\n\u0120Fl ore\nf alls\n2 15\nt otal\n\u0120dis ciples\nd - ouble\n\u0120exceed ing\n\u0120sm ashed\n\u0120concept ual\n\u0120Rom ania\n\u0120B - rent\n\u0120I CE\n\u0120T ou\n\u0120g rap\n\u0120n ails\n18 9\n\xE3\u0125 - \u013A\n\u0120proc ure\ne ur\n\u0120confir ming\n\u0120C ec\naw i\n\u0120Ed - en\n\u0120n g\n\u0120engine ered\nat ics\n\u0120hook ed\n\u0120disgust ing\n\u0120Mur - der\n\xE3\u0124 \xBF\nL ibrary\n\u012016 8\nAl most\nhem atic\nMen u\n\u0120Not - re\n\u0120J ur\n\u0120kidn apped\n\u0120hack er\n\u0120J ade\n\u0120creep - y\n\u0120draw ings\n\u0120Spons or\n\u0120cycl ists\n\u0120Gob lin\n\u0120optim - ized\n\u0120st aged\n\u0120Mc D\nbet ween\nA ge\nen o\nS ex\n\u0120W ide\nn - ings\nav is\n\u0120incap able\n\u0120K ob\n\u0120reward ing\n\u0120L one\noles - cent\n\u0120contract ed\n\u0120stick y\nJ ose\nB all\nf est\n\u0120In put\n\u0120Rec - ently\n\u0120to mat\nsqu are\nApp lication\n\u0120nit rogen\n\u0120dupl icate\n\u0120Rec - on\n\u0120D ear\nL ondon\n\u0120int ra\n\u0120d ock\n\u0120out reach\n\u0120M - illion\n\u0120mamm als\nam pton\nV AL\n\u0120sn aps\n\u0120d os\n\u0120Wh - ole\n\u0120Read y\nT ry\n\u0120Winn ipeg\near ance\n\u0120inc urred\nren ched\n\u0120NS - W\nil ot\nrain e\n\u0120c ube\ng ot\n\u0120run way\netermin ed\n\u0120Haw - ks\n\u0120surviv or\n\u0120W ish\n\u0120D in\n\u0120DE F\n\u0120V ault\n18 - 7\n\u0120mush rooms\n\u0120cris p\nbe y\n\u0120Disco very\n\u0120development - al\n\u0120parad igm\n\u0120cha otic\n\u0120T su\n\u01203 33\nb ons\n\u0120bacter - ial\n\u0120comm its\n\u0120cos mic\n\u0120me ga\noc ative\n\u0120P aint\nophob - ic\n\u0120v ain\n\u0120car ved\n\u0120Th ief\n\u0120G ul\nows hip\n\u0120c - ites\n\u0120Ed inburgh\n\u0120dimin ished\n\u0120acknowled ges\n\u0120K ills\n\u0120mic - row\n\u0120Her a\n\u0120sen iors\n\u0120where by\nH op\nat ron\n\u0120un available\n\u0120N - ate\n\u01204 80\n\u0120sl ated\n\u0120Re becca\n\u0120B attery\n\u0120gram - mar\n\u0120head set\n\u0120curs or\n\u0120ex cluding\nany e\naunder ing\neb - in\n\u0120feas ible\n\u0120Pub lishing\n\u0120Lab s\n\u0120Cl iff\n\u0120Ferr - ari\n\u0120p ac\nvis ible\nmark ed\npe ll\n\u0120pol ite\n\u0120stagger ing\n\u0120Gal - actic\n\u0120super st\n\u0120par an\n\u0120Offic ers\n\xE3\u0122 \u0123\n\u0120specific - s\nul us\n23 9\n\u0120P aste\nAM P\n\u0120Pan ama\n\u0120De lete\nangu ard\nrest - rial\n\u0120hero ic\n\u0120D y\n\xD8\xA7 \xD9\u0126\n\u0120incumb ent\n\u0120cr - unch\nt ro\n\u0120sc oop\n\u0120blog ger\n\u0120sell ers\nure n\n\u0120medic - ines\n\u0120C aps\n\u0120Anim ation\nox y\n\u0120out ward\n\u0120inqu iries\n22 - 9\n\u0120psych ologist\n\u0120S ask\nev il\n\u0120contam inated\n\xE3\u0124 - \xA8\nhe rence\n\u0120brand ed\n\u0120Abd ul\nz h\n\u0120paragraph s\n\u0120min - s\n\u0120cor related\ner b\n\u0120imp art\n\u0120mil estone\n\u0120Sol utions\not - le\n\u0120under cover\n\u0120mar ched\n\u0120Charg ers\nf ax\n\u0120Sec rets\n\u0120r - uth\nwe ather\n\u0120femin ine\n\u0120sh am\n\u0120prest igious\nigg ins\n\u0120s - ung\nhist ory\nett le\ngg ie\n\u0120out dated\nol and\n\u0120per ceptions\n\u0120S - ession\n\u0120Dod gers\nu j\n\u0120E ND\nD oc\n\u0120defic iency\nGr and\n\u0120J - oker\n\u0120retro spect\n\u0120diagn ostic\n\u0120harm less\n\u0120ro gue\n\u0120A - val\nE qu\n\u0120trans c\n\u0120Roberts on\n\u0120Dep ending\n\u0120Burn s\niv - o\n\u0120host ility\nF eatures\n\u0135 \u013A\n\u0120dis comfort\n\u0120L - CD\nspec ified\n\u0120Ex pect\n3 40\n\u0120imper ative\n\u0120Reg ular\nCh - inese\n\u0120state wide\n\u0120sy mm\n\u0120lo ops\n\u0120aut umn\nN ick\n\u0120sh - aping\n\u0120qu ot\n\u0120c herry\n\u0120Cross ref\n\xE8\xA6 \u013C\xE9\u0128\u0134\nStand - ard\nhe ed\n\u0120D ell\n\u0120Viet namese\n\u0120o st\n\u0120V alkyrie\nO - A\nAss ad\n\u0120reb ound\n\u0120Tra ffic\npl aces\n\xE6 \u013A\n\u0120B uc\n17 - 2\n\u0120shel ters\n\u0120ins isting\n\u0120Certain ly\n\u0120Kenn eth\n\u0120T - CP\n\u0120pen al\n\u0120Re play\nhe ard\n\u0120dial ect\niz a\n\u0120F Y\nit - cher\n\u0120D L\n\u0120spir al\n\u0120quarterback s\n\u0120h ull\n\u0120go - ogle\n\u0120to dd\n\u0120Ster ling\n\u0120Pl ate\n\u0120sp ying\nmb ol\n\u0120Real - m\n\u0120Pro ced\n\u0120Cr ash\n\u0120termin ate\n\u0120protest ing\nC enter\ngu - ided\n\u0120un cover\n\u0120boy cott\n\u0120real izes\ns ound\n\u0120pret - ending\n\u0120V as\n19 80\n\u0120fram ed\n\u012013 9\n\u0120desc ended\n\u0120rehab - ilitation\n\u0120borrow ing\n\u0120B uch\n\u0120bl ur\nR on\n\u0120Fro zen\nen - za\nCh ief\n\u0120P oor\n\u0120transl ates\nM IN\n\u01202 12\nJ ECT\n\u0120erupt - ed\n\u0120success es\nS EC\n\u0120pl ague\n\u0120g ems\nd oms\n\u0120stret - ches\n\u0120Sp y\n\u0120story telling\nC redit\n\u0120P ush\n\u0120tra ction\n\u0120in - effective\n\u0120L una\n\u0120t apes\n\u0120analy tics\nerc ise\n\u0120program - mes\n\u0120Car bon\n\u0120beh old\nhe avy\n\u0120Conserv ation\n\u0120F IR\n\u0120s - ack\nter min\nric ks\n\u0120hous ed\n\u0120unus ually\nI ce\n\u0120execut - ing\n\u0120Mor oc\ned ay\n\u0120ed itions\n\u0120sm arter\n\u0120B A\n\u0120out - law\n\u0120van ished\nib a\nAL SE\n\u0120Sil va\n23 8\nC ould\n\u0120philos - opher\n\u0120evac uated\nSec ret\n14 2\n\u0120vis as\n\xE3\u0124 \xAC\n\u0120M - alt\n\u0120Clear ly\n\u0120N iger\n\u0120C airo\n\u0120F ist\n3 80\n\u0120X - ML\naut o\nit ant\n\u0120rein forced\nRec ord\n\u0120Surviv or\nG Hz\n\u0120screw - s\nparent s\n\u0120o ceans\nma res\n\u0120bra kes\nvas ive\n\u0120hell o\n\u0120S - IM\nrim p\n\u0120o re\n\u0120Arm our\n24 7\n\u0120terr ific\n\u0120t ones\n14 - 1\n\u0120Min utes\nEp isode\n\u0120cur ves\n\u0120inflamm atory\n\u0120bat - ting\n\u0120Beaut iful\nL ay\n\u0120unp op\nv able\n\u0120r iots\n\u0120Tact - ics\nb augh\n\u0120C ock\n\u0120org asm\n\u0120S as\n\u0120construct or\net - z\nG ov\n\u0120ant agon\n\u0120the at\n\u0120de eds\nha o\nc uts\n\u0120Mc - Cl\n\u0120u m\n\u0120Scient ists\n\u0120grass roots\nys sey\n\"] =>\n\u0120surf - aced\n\u0120sh ades\n\u0120neighb ours\n\u0120ad vertis\noy a\n\u0120mer ged\nUp - on\n\u0120g ad\n\u0120anticip ate\nAny way\n\u0120sl ogan\n\u0120dis respect\nI - ran\n\u0120T B\nact ed\n\u0120subp oen\nmedi ately\nOO OO\n\u0120wa iver\n\u0120vulner - abilities\nott esville\n\u0120Huff ington\nJ osh\n\u0120D H\nM onday\n\u0120Ell - en\nK now\nx on\nit ems\n22 8\n\u0120f ills\n\u0120N ike\n\u0120cum ulative\nand - als\nI r\n\u0120 \xEC\n\u0120fr iction\nig ator\n\u0120sc ans\n\u0120Vi enna\nld - om\n\u0120perform ers\nP rim\n\u0120b idding\nM ur\n\u0120lean ed\n\u0120Pri - x\nal ks\n\u0120[ \xE2\u0122\xA6]\n\u0120Tw itch\n\u0120Develop er\n\u0120G - ir\n\u0120call back\nAb stract\n\u0120acc ustomed\n\u0120freed oms\n\u0120P - G\nur acy\n\u0120l ump\nis man\n,, ,,\n19 92\n\u0120R ED\n\u0120wor m\nM atch\n\u0120Pl - atinum\nI J\n\u0120Own er\nTri via\ncom pl\n\u0120new born\n\u0120fant as\nO - wn\n\u012019 59\n\u0120symp ath\n\u0120ub iqu\n\u0120output s\n\u0120al lev\n\u0120pr - ag\nK evin\n\u0120fav ors\n\u0120bur ial\n\u0120n urt\nso lete\nc ache\n\u012015 - 6\n\u0120unl ocks\nte chn\nM aking\n\u0120con quer\nad ic\n\xE6 \u0138\n\u0120el - f\n\u0120elect orate\n\u0120Kurd s\n\u0120St ack\n\u0120Sam urai\n\u0120\xE2 - \u013A\u0127\n\u0120{ }\n\u0120S aid\n\u0120Fall out\n\u0120kind ness\n\u0120Custom - s\n\u0120Bou levard\n\u0120helicop ters\not ics\n\u0120Ve get\ncom ment\n\u0120critic - ised\n\u0120pol ished\n\u0120Rem ix\n\u0120C ultural\n\u0120rec ons\n\u0120do - i\nat em\nSc reen\n\u0120bar red\nCom ments\n\u0120Gener ally\n\u0120sl ap\n7 - 20\nV ari\np ine\n\u0120em pt\n\u0120h ats\n\u0120Play ing\nl ab\na verage\nform - s\n\u0120C otton\n\u0120can s\n\u0120D ON\n\u0120Som alia\nC rypt\n\u0120Incre - ases\nE ver\nmod ern\n\u0120sur geon\n3 000\n\u0120random ized\n================================ - ================================\nB ern\nim pl\n\u0120C OR\n\u0120pro claim\nth - ouse\n\u0120to es\n\u0120am ple\n\u0120pres erving\n\u0120dis bel\ngr and\nB - esides\n\u0120sil k\n\u0120Pat tern\nh m\n\u0120enter prises\n\u0120affidav - it\n\u0120Advis ory\n\u0120advert ised\n\u0120Rel igious\nse ctions\npsy ch\n\u0120Field - s\naw ays\n\u0120hasht ag\n\u0120Night mare\n\u0120v ampire\n\u0120fore nsic\nrosso - ver\nn ar\n\u0120n avy\n\u0120vac ant\n\u0120D uel\n\u0120hall way\n\u0120face - book\nident ally\n\u0120N RA\n\u0120m att\n\u0120hur ricane\n\u0120Kir by\n\u0120P - uzzle\n\u0120sk irt\nou st\ndu llah\n\u0120anal ogy\nin ion\n\u0120tomat oes\n\u0120N - V\n\u0120Pe ak\n\u0120Me yer\n\u0120appoint ments\n\u0120m asc\n\u0120al ley\nre - hend\n\u0120char ities\n\u0120und o\n\u0120dest inations\n\u0120Test ing\n\"> - \"\nc ats\n* .\n\u0120gest ures\ngener al\nLe ague\n\u0120pack ets\n\u0120Inspect - or\n\u0120Ber g\n\u0120fraud ulent\n\u0120critic ize\nF un\n\u0120bl aming\nnd - ra\n\u0120sl ash\n\u0120E ston\n\u0120propos ing\n\u0120wh ales\n\u0120therap - ist\n\u0120sub set\n\u0120le isure\nEL D\n\u0120C VE\n\u0120Act ivity\n\u0120cul - min\nsh op\n\u0120D AY\nis cher\n\u0120Admir al\n\u0120Att acks\n\u012019 - 58\n\u0120mem oir\n\u0120fold ed\n\u0120sex ist\n\u012015 3\n\u0120L I\n\u0120read - ings\n\u0120embarrass ment\n\u0120Employ ment\nw art\nch in\n\u0120contin - uation\nl ia\nRec ently\n\u0120d uel\n\u0120evac uation\n\u0120Kash mir\n\u0120dis - position\n\u0120R ig\n\u0120bol ts\n\u0120ins urers\n4 67\nM ex\n\u0120ret - aliation\n\u0120mis ery\n\u0120unre asonable\nr aining\nI mm\n\u0120P U\nem - er\n\u0120gen ital\n\xE3\u0124 \xB3\n\u0120C andy\n\u0120on ions\n\u0120P - att\nlin er\n\u0120conced ed\n\u0120f a\n\u0120for c\n\u0120H ernandez\n\u0120Ge - off\ndeb ian\n\u0120Te ams\n\u0120c ries\n\u0120home owners\n23 7\nA BC\n\u0120st - itch\n\u0120stat istic\n\u0120head ers\n\u0120Bi ology\n\u0120mot ors\n\u0120G - EN\n\u0120L ip\n\u0120h ates\n\u0120he el\nS elf\ni pl\nED IT\nort ing\n\u0120ann - ot\n\u0120Spe ech\nold emort\n\u0120J avascript\n\u0120Le Bron\n\u0120foot - print\n\u0120f n\n\u0120seiz ures\nn as\nh ide\n\u012019 54\n\u0120Be e\n\u0120Decl - aration\n\u0120Kat ie\n\u0120reserv ations\nN R\nf emale\n\u0120satur ated\n\u0120b - iblical\n\u0120troll s\nDev ice\nph otos\n\u0120dr ums\n\xE3\u0125\u012B\xE3\u0125\xA9 - \xE3\u0124\xB4\xE3\u0125\xB3\nN ight\nf ighter\n\u0120H ak\nri ber\n\u0120c - ush\n\u0120discipl inary\nba um\n\u0120G H\n\u0120Sch midt\nilib rium\n\u0120s - ixty\n\u0120Kush ner\nro ts\n\u0120p und\n\u0120R ac\n\u0120spr ings\n\u0120con - ve\nBus iness\nF all\n\u0120qual ifications\n\u0120vers es\n\u0120narc iss\n\u0120K - oh\n\u0120W ow\n\u0120Charl ottesville\ned o\n\u0120interrog ation\n\u0120W - ool\n36 5\nB rian\n\u0120\xE2\u013E \u0135\n\u0120alleg es\nond s\nid ation\n\u0120Jack - ie\ny u\n\u0120l akes\n\u0120worth while\n\u0120cryst als\n\u0120Jud a\n\u0120comp - rehend\n\u0120fl ush\n\u0120absor ption\n\u0120O C\n\u0120fright ened\n\u0120Ch - ocolate\nMart in\n\u0120bu ys\n\u0120bu cks\n\u0120app ell\n\u0120Champions - hips\n\u0120list ener\n\u0120Def ensive\n\u0120c z\nud s\n\u0120M ate\n\u0120re - play\n\u0120decor ated\n\u0120s unk\n\u0120V IP\n\u0120An k\n\u012019 5\naa - aa\nNob ody\n\u0120Mil k\n\u0120G ur\n\u0120M k\n\u0120S ara\n\u0120se ating\n\u0120W - id\nTr ack\n\u0120employ s\n\u0120gig antic\nAP P\n\xE3\u0124 \xA7\nin ventory\n\u0120tow - el\nat che\nl asting\n\u0120T L\n\u0120lat ency\n\u0120kn e\nB er\nme aning\n\u0120up - held\n\u0120play ground\n\u0120m ant\nS ide\n\u0120stere o\n\u0120north west\n\u0120exception - ally\n\u0120r ays\n\u0120rec urring\nD rive\n\u0120up right\n\u0120ab duct\n\u0120Mar - athon\n\u0120good bye\n\u0120al phabet\nh p\n\u0120court room\nring ton\not - hing\nT ag\n\u0120diplom ats\n\u0120bar bar\n\u0120Aqu a\n18 3\n33 33\n\u0120mat - urity\n\u0120inst ability\n\u0120Ap ache\n\u0120= ==\n\u0120fast ing\n\u0120Gr - id\nMod Loader\n\u012015 2\nA bs\n\u0120Oper ating\nett i\n\u0120acqu aint\nDon - nell\n\u0120K em\n\u0120For ge\n\u0120arm ored\nM il\n\u0120philos ophers\nin - vest\nPl ayers\n\xE2 \u012A\n\u0120my riad\n\u0120comr ades\nR ot\n\u0120remember - ing\n\u0120correspond s\n\u0120program mers\n\u0120Lyn n\n\u0120o lig\n\u0120co - herent\nyn chron\n\u0120Chem ical\n\u0120j ugg\np air\npost s\nE ye\n\u0120In - ner\n\u0120sem ester\nott est\n\u0120Emir ates\nric anes\nor ously\nm its\n\u0120W - is\n\u0120d odge\nl ocation\n\u0120f aded\nAm azon\n\u0120Pro ceed\n\u0120IN - FO\nj ournal\n\u0120Tru ck\nT en\n\u01202 17\n\u0120stat utes\nm obile\n\u0120T - ypes\nRec omm\nb uster\npe x\n\u0120leg ends\n\u0120head ache\nf aced\n\u0120Wi - Fi\nif ty\n\u0120H ER\n\u0120circ uits\nER ROR\n22 6\nol in\n\u0120cyl inder\nosp - ace\nik ers\nP rem\nQu ant\n\u0120conflic ting\n\u0120slight est\n\u0120for - ged\nion age\nStep hen\n\u0120K ub\n\u0120Opp ortun\n\u0120He al\n\u0120bl - o\n\u0120rul ers\n\u0120h uh\n\u0120submar ine\nf y\nass er\n\u0120allow ance\n\u0120Kas - ich\n\u0120T as\n\u0120Austral ians\nForge ModLoader\n\u0120\xE2\u0128 \u0133\n\u0120Mat - rix\nam ins\n\u012012 00\n\u0120Ac qu\n23 6\nD ocument\n\u0120Bre aking\n19 - 3\n\u0120Sub st\n\u0120Roll er\n\u0120Pro perties\n\u0120N I\nt ier\n\u0120cr - ushing\n\u0120advoc ating\nFurther more\nkeep ers\n\u0120sex ism\nx d\n\u0120call - er\n\u0120S ense\nchie ve\n\u0120T F\n\u0120fuel ed\n\u0120reminis cent\n\u0120obs - ess\nur st\n\u0120up hold\n\u0120F ans\nhet ics\n\u0120\xE2 \u0139\n\u0120B - ath\n\u0120be verage\n\u0120o scill\n25 4\n\u0120pol es\n\u0120grad ual\n\u0120ex - ting\n\u0120S uff\n\u0120S uddenly\n\u0120lik ing\n\u012019 49\nun ciation\nam - ination\n\u0120O mar\n\u0120L V\n\u0120Con sequently\n\u0120synt hes\n\u0120G - IF\n\u0120p ains\n\u0120interact ing\nu ously\ninc re\n\u0120rum or\n\u0120Scient - ology\n19 7\n\u0120Z ig\n\u0120spe lling\n\u0120A SS\n\u0120exting u\nms on\n\u0120g - h\n\u0120remark ed\n\u0120Strateg ic\n\u0120M ON\n\xE5 \xA5\ng ae\n\u0120WH - AT\nE ric\n\u0120Camp us\n\u0120meth ane\n\u0120imag in\nJ UST\n\u0120Al m\nX - T\ni q\n\u0120R SS\n\u0120wrong doing\natt a\n\u0120big ot\n\u0120demonstr - ators\n\u0120Cal vin\n\u0120V illa\n\u0120membr ane\n\u0120Aw esome\n\u0120benef - ic\n26 8\n\u0120magn ificent\n\u0120L ots\nG reg\n\u0120Bor is\n\u0120detain - ees\n\u0120H erman\n\u0120whis pered\n\u0120a we\nProf essor\nfund ing\n\u0120phys - iological\n\u0120Dest ruction\n\u0120lim b\n\u0120manip ulated\n\u0120bub - bles\n\u0120pse ud\n\u0120hyd ra\n\u0120Brist ol\n\u0120st ellar\n\u0120Exp - ansion\n\u0120K ell\n\u0120Interest ingly\n\u0120m ans\n\u0120drag ging\n\u0120ec - ological\n\u0120F it\n\u0120g ent\n\u0120benef ited\n\u0120Hait i\n\u0120poly - g\n\xE3\u0125 \u0130\n\u012020 30\n\u0120pro w\n\u0120recon struction\n\u0120was - t\n\u0120psych ic\n\u0120Gree ks\nHand ler\n16 2\n\u0120P ulse\n\u0120sol - icit\n\u0120sy s\n\u0120influ x\n\u0120G entle\nper cent\n\u0120prolifer ation\n\u0120tax - able\n\u0120disreg ard\n\u0120esc aping\n\u0120g inger\n\u0120with stand\n\u0120devast - ated\n\u0120D ew\nser ies\n\u0120inject ed\nela ide\n\u0120turn over\nhe at\n\u013B - \u0124\nH appy\n\u0120Sil ent\n\xE3\u0124 \u0143\niv ism\n\u0120ir rational\nAM - A\n\u0120re ef\nr ub\n\u012016 2\n\u0120bank ers\n\u0120Eth ics\nv v\n\u0120critic - isms\nK n\n18 6\nM ovie\n\u0120T ories\n\u0120no od\n\u0120dist ortion\nF - alse\nod ore\n\u0120t asty\nRes earch\n\u0120U ID\n- )\n\u0120divor ced\n\u0120M - U\n\u0120Hay es\n\u0120Is n\nian i\n\u0120H Q\n\u0120\" #\nign ant\n\u0120tra - umatic\n\u0120L ing\nH un\n\u0120sab ot\non line\nr andom\n\u0120ren amed\nra - red\nK A\nd ead\n\xC3\xA9 t\n\u0120Ass istance\n\u0120se af\n++++ ++++\n\u0120se - ldom\n\u0120Web b\n\u0120bo olean\nu let\n\u0120ref rain\n\u0120DI Y\nru le\n\u0120shut - ting\n\u0120util izing\nload ing\n\u0120Par am\nco al\noot er\n\u0120attract - ing\n\u0120D ol\n\u0120her s\nag netic\n\u0120Re ach\nim o\n\u0120disc arded\n\u0120P - ip\n01 5\n\xC3\xBC r\n\u0120m ug\nIm agine\nC OL\n\u0120curs ed\n\u0120Sh - ows\n\u0120Curt is\n\u0120Sach s\nspe aking\n\u0120V ista\n\u0120Fram ework\nong - o\n\u0120sub reddit\n\u0120cr us\n\u0120O val\nR ow\ng rowing\n\u0120install - ment\n\u0120gl ac\n\u0120Adv ance\nEC K\n\u0120LGBT Q\nLE Y\n\u0120ac et\n\u0120success - ive\n\u0120Nic ole\n\u012019 57\nQu ote\n\u0120circumst ance\nack ets\n\u012014 - 2\nort ium\n\u0120guess ed\n\u0120Fr ame\n\u0120perpet rators\n\u0120Av iation\n\u0120Ben - ch\n\u0120hand c\nA p\n\u012019 56\n25 9\nr and\nNet Message\nd in\nurt les\nh - ig\n\u0120V III\nff iti\n\u0120Sw ords\nb ial\n\u0120kidn apping\ndev ice\n\u0120b - arn\n\u0120El i\nauc as\nS end\nCon structed\n\u0120\xC2 \xBD\n\u0120need - les\n\u0120ad vertisements\n\u0120v ou\n\u0120exhib ited\n\u0120Fort ress\nAs - k\nB erry\nTY PE\n\u0120can cers\nump ing\n\u0120Territ ory\n\u0120pr ud\n\u0120n - as\n\u0120athe ist\n\u0120bal ances\n\xE3\u0123 \u0141\n\u0120Sh awn\n& &\n\u0120land - sc\n\u0120R GB\n\u0120pet ty\n\u0120ex cellence\n\u0120transl ations\n\u0120par - cel\n\u0120Che v\nE ast\n\u0120Out put\nim i\n\u0120amb ient\n\u0120Th reat\n\u0120vill - ains\n\u01205 50\nIC A\n\u0120tall er\n\u0120le aking\nc up\n\u0120pol ish\n\u0120infect - ious\n\u0120K C\n\u0120@ @\nback ground\n\u0120bureaucr acy\n\u0120S ai\nun - less\nit ious\n\u0120Sky pe\nAt l\nID ENT\n00 8\n\u0120hyp ocr\n\u0120pit - chers\n\u0120guess ing\n\u0120F INAL\nBet ween\n\u0120vill agers\n\u012025 - 2\nf ashion\n\u0120Tun is\nBe h\n\u0120Ex c\n\u0120M ID\n28 8\n\u0120Has kell\n19 - 6\n\u0120N OR\n\u0120spec s\n\u0120inv ari\n\u0120gl ut\n\u0120C ars\n\u0120imp - ulse\n\u0120hon ors\ng el\n\u0120jurisd ictions\n\u0120Bund le\nul as\nCalif - ornia\n\u0120Incre ase\n\u0120p ear\n\u0120sing les\n\u0120c ues\n\u0120under - went\n\u0120W S\n\u0120exagger ated\n\u0120dub ious\n\u0120fl ashing\nL OG\n) - ].\nJ ournal\nt g\nV an\n\u0120I stanbul\n\u0120In sp\n\u0120Frank en\nD raw\n\u0120sad - ness\n\u0120iron ic\n\u0120F ry\nx c\n\u012016 4\nis ch\nW ay\n\u0120Protest - ant\nh orn\n\u0120un aff\n\u0120V iv\nill as\n\u0120Product ions\n\u0120H - ogan\n\u0120per imeter\n\u0120S isters\n\u0120spont aneous\n\u0120down side\n\u0120descend - ants\n\u0120or n\nw orm\nJapan ese\n\u012019 55\n\u012015 1\n\u0120Do ing\nels - en\numb les\n\u0120rad ically\n\u0120Dr um\n\u0120B ach\n\u0120li abilities\n\u0120O - B\n\u0120Element ary\n\u0120mem e\nyn es\n\u0120finger print\n\u0120Gr ab\n\u0120undert - ake\nMem bers\n\u0120Read er\n\u0120Sim s\ng od\n\u0120hypot hetical\ns cient\n\u0120A - J\n\u0120char ism\n\u0120ad missions\n\u0120Miss ile\ntr ade\n\u0120exerc - ising\n\u0120Back ground\nW ritten\n\u0120voc als\nwhe ther\n\u0120v i\n\u0120W - inner\n\u0120l itter\n\u0120Sh ooting\nST EM\n\xE3\u0124 \xA1\n\u0120A FL\n\u0120vari - ability\n\u0120e ats\n\u0120D PS\nb row\n\u0120eleph ants\n\u0120str at\n\u0120 - \xC5\n\u0120sett lers\nMatt hew\n\u0120in advert\nH I\n\u0120IM F\n\u0120Go - al\n\u0120nerv es\nJohn son\ney e\nablish ment\nTh ursday\nBIL ITY\nH ad\nam - oto\nhet amine\nep s\n\u0120mit ochond\n\u0120comp ressed\n\u0120Tre vor\n\u0120Anim - als\nT ool\nL ock\n\u0120twe ak\n\u0120pin ch\n\u0120cancell ation\nP ot\n\u0120foc - al\n\u0120Ast ron\n17 3\n\u0120A SC\n\u0120O THER\numn i\n\u0120dem ise\nd - l\n\xD9 \u0127\nSem itism\n\u0120cr acking\n\u0120collabor ative\n\u0120expl - ores\ns ql\n\u0120her bs\n\u0120config urations\nm is\n\u0120Res ult\nace - y\n\u0120Sm oke\n\u0120san ct\nel ia\n\u0120deg ener\n\u0120deep est\n\u0120scream - ed\n\u0120n ap\nSoft ware\n\u0120ST AR\nE F\n\u0120X in\nspons ored\nmans - hip\n23 3\n\u0120prim aries\n\u0120filter ing\n\u0120as semble\nm il\n\u0120My - ers\nb ows\n\u0120pun ched\nM ic\n\u0120innov ations\n\u0120fun c\nand o\n\u0120fr - acking\n\u0120V ul\n\xD0\xBE \xD0\nosh op\n\u0120Im mun\n\u0120sett ling\n\u0120adolesc - ents\n\u0120reb uilding\n\u0120transform ing\n\u0120par ole\n\u0120har bor\n\u0120book - ing\not ional\nonge vity\n\u0120Y o\nb ug\n\u0120emer ges\n\u0120Method s\n\u0120Ch - u\nP res\n\u0120Dun geons\n\u0120tra iling\n\u0120R um\n\u0120H ugh\n\xE5\xA4 - \xA9\n\u0120E ra\n\u0120Batt les\nRes ults\n\u0120Tr ading\n\u0120vers a\nc - ss\nax ies\nhe et\n\u0120gre ed\n19 89\n\u0120gard ens\n\u0120conting ent\nP - ark\n\u0120Leaf s\nh ook\nro be\n\u0120diplom acy\n\u0120F uel\n\u0120Inv - asion\n\u0120upgr ading\nM ale\n\u0120e lic\n\u0120relent less\n\u0120Co venant\nap - esh\n\u0120T rop\nT y\npro duction\nart y\n\u0120pun ches\nak o\ncyclop edia\n\u0120R - abbit\n\u0120HD MI\n\u012014 1\n\u0120f oil\nItem Image\n\u0120F G\n\u0120implement - ations\n\u0120P om\nixt ures\n\u0120aw ait\n\u01203 30\nam us\n\u0120umb rella\n\u0120fore - see\nse par\n\u0120circum cision\n\u0120peripher al\nS ay\n\u0120Exper t\nIn - c\n\u0120withd rew\n\u0120And ers\nf ried\n\u0120radio active\n\u0120Op ening\n\u0120board - ing\n\u0120N D\n\u0120over throw\nAct iv\nW P\n\u0120Act s\n\xD7 \u013B\n\u0120mot - ions\nv ic\n\u0120M ighty\n\u0120Def ender\na er\n\u0120thank ful\n\u0120K - illing\n\u0120Br is\nmo il\n\u0120predict ing\n26 6\nch oice\n\u0120kill ers\n\u0120inc - ub\n\u0120Che st\nather ing\n\u0120pro claimed\nfl ower\noss om\numbled ore\n\u0120Cy - cling\n\u0120Occup y\nAG ES\nP en\n\u0120Y ug\n\u0120pack aged\n\u0120height - ened\nc ot\nst ack\nC ond\n\u0120st amps\nm age\n\u0120persu aded\n\u0120ens - l\n\u0120Card inal\n\u0120sol itary\n\u0120possess ing\n\u0120C ork\n\u0120ev - id\n\u0120T ay\n\u0120bl ues\n\u0120extrem ism\n\u0120lun ar\n\u0120cl own\nTe - chn\n\u0120fest ivals\n\u0120Pv P\n\u0120L ar\n\u0120consequ ently\np resent\n\u0120som - eday\n\xE7 \u0130\u012D\n\u0120Met eor\n\u0120tour ing\nc ulture\n\u0120be - aches\nS hip\nc ause\n\u0120Fl ood\n\xE3\u0125 \xAF\n\u0120pur ity\nth ose\n\u0120em - ission\nb olt\n\u0120ch ord\n\u0120Script ure\nL u\n\u0120$ {\ncre ated\nOther - s\n25 8\n\u0120element al\n\u0120annoy ed\n\u0120A E\nd an\n\u0120S ag\nRes - earchers\n\u0120fair y\n\xE2\u0122\u0135 \xE2\u0122\u0135\n======== ====\nSm - art\nGG GG\n\u0120skelet ons\n\u0120pup ils\nlink ed\n\u0120ur gency\nen abled\n\u0120F - uck\n\u0120coun cill\nr ab\nU AL\nT I\n\u0120lif es\n\u0120conf essed\nB ug\n\u0120harm - on\n\u0120CON FIG\n\u0120Ne utral\nD ouble\n\u0120st aple\n\u0120SH A\nBrit - ish\n\u0120SN P\nAT OR\noc o\n\u0120swing ing\nge x\nole on\npl ain\n\u0120Miss - ing\n\u0120Tro phy\nv ari\nran ch\n\u01203 01\n4 40\n00000000 00000000\n\u0120rest - oring\n\u0120ha ul\nuc ing\nner g\n\u0120fut ures\n\u0120strateg ist\nquest - ion\n\u0120later al\n\u0120B ard\n\u0120s or\n\u0120Rhod es\n\u0120D owntown\n????? - -\n\u0120L it\n\u0120B ened\n\u0120co il\nst reet\n\u0120Port al\nFI LE\n\u0120G - ru\n* ,\n23 1\nne um\n\u0120suck ed\n\u0120r apper\n\u0120tend encies\n\u0120Laure - n\ncell aneous\n26 7\n\u0120brow se\n\u0120over c\nhead er\no ise\n\u0120be - et\n\u0120G le\nSt ay\n\u0120m um\n\u0120typ ed\n\u0120discount s\nT alk\n\u0120O - g\nex isting\n\u0120S ell\nu ph\nC I\n\u0120Aust rian\n\u0120W arm\n\u0120dismiss - al\n\u0120aver ages\nc amera\n\u0120alleg iance\nL AN\n=\" #\n\u0120comment - ators\n\u0120Set ting\n\u0120Mid west\n\u0120pharm ac\n\u0120EX P\n\u0120stain - less\nCh icago\n\u0120t an\n24 4\n\u0120country side\n\u0120V ac\n29 5\n\u0120pin - ned\n\u0120cr ises\n\u0120standard ized\nT ask\n\u0120J ail\n\u0120D ocker\ncol - ored\nf orth\n\" },\n\u0120pat rons\n\u0120sp ice\n\u0120m ourn\n\u0120M ood\n\u0120laund - ry\n\u0120equ ip\n\u0120M ole\ny ll\n\u0120TH C\nn ation\n\u0120Sher lock\n\u0120iss - u\n\u0120K re\n\u0120Americ as\n\u0120A AA\n\u0120system atically\n\u0120cont - ra\n\u0120S ally\n\u0120rational e\n\u0120car riage\n\u0120pe aks\n\u0120contrad - iction\nens ation\n\u0120Fail ure\n\u0120pro ps\n\u0120names pace\n\u0120c - ove\nfield s\n\xE3\u0124 \u012D\n\u0120w ool\n\u0120C atch\n\u0120presum ed\n\u0120D - iana\nr agon\nig i\n\u0120h amm\n\u0120st unt\n\u0120G UI\n\u0120Observ atory\n\u0120Sh - ore\n\u0120smell s\nann ah\n\u0120cock pit\n\u0120D uterte\n8 50\n\u0120opp - ressed\nbre aker\n\u0120Cont ribut\n\u0120Per u\n\u0120Mons anto\n\u0120Att - empt\n\u0120command ing\n\u0120fr idge\n\u0120R in\n\u0120Che ss\nual ity\n\u0120o - l\nRepublic an\n\u0120Gl ory\n\u0120W IN\n.... ...\nag ent\nread ing\n\u0120in - h\nJ ones\n\u0120cl icks\nal an\n\u0120[ ];\n\u0120Maj esty\n\u0120C ed\nop - us\nate l\n\xC3 \xAA\nAR C\n\u0120Ec uador\n\xE3\u0125 \u0142\n\u0120K uro\n\u0120ritual - s\n\u0120capt ive\n\u0120oun ce\n\u0120disag reement\n\u0120sl og\nf uel\nP - et\nM ail\n\u0120exerc ised\n\u0120sol ic\n\u0120rain fall\n\u0120dev otion\n\u0120Ass - essment\n\u0120rob otic\nopt ions\n\u0120R P\n\u0120Fam ilies\n\u0120Fl ames\n\u0120assign - ments\n00 7\naked own\n\u0120voc abulary\nRe illy\n\u0120c aval\ng ars\n\u0120supp - ressed\n\u0120S ET\n\u0120John s\n\u0120war p\nbro ken\n\u0120stat ues\n\u0120advoc - ated\n\u01202 75\n\u0120per il\nom orph\n\u0120F emin\nper fect\n\u0120h atch\nL - ib\n5 12\n\u0120lif elong\n3 13\n\u0120che eks\n\u0120num bered\n\u0120M ug\nB - ody\nra vel\nWe ight\n\u0120J ak\n\u0120He ath\n\u0120kiss ing\n\u0120J UST\n\u0120w - aving\nu pload\n\u0120ins ider\n\u0120Pro gressive\n\u0120Fil ter\ntt a\n\u0120Be - am\n\u0120viol ently\nip ation\n\u0120skept icism\n\u012019 18\n\u0120Ann - ie\n\u0120S I\n\u0120gen etics\n\u0120on board\nat l\n\u0120Fried man\n\u0120B - ri\ncept ive\n\u0120pir ate\n\u0120Rep orter\n27 8\n\u0120myth ology\n\u0120e - clipse\n\u0120sk ins\n\u0120gly ph\ning ham\nF iles\nC our\nw omen\n\u0120reg - imes\n\u0120photograp hed\nK at\n\u0120MA X\nOffic ials\n\u0120unexpected - ly\n\u0120impress ions\nF ront\n;;;; ;;;;\n\u0120suprem acy\n\u0120s ang\n\u0120aggrav - ated\n\u0120abrupt ly\n\u0120S ector\n\u0120exc uses\n\u0120cost ing\nide - press\nSt ack\n\u0120R NA\nob il\n\u0120ghost s\nld on\nat ibility\nTop ics\n\u0120reim - burse\n\u0120H M\n\u0120De g\n\u0120th ief\ny et\nogen esis\nle aning\n\u0120K - ol\n\u0120B asketball\n\u0120f i\n\u0120See ing\n\u0120recy cling\n\u0120[ - -\nCong ress\n\u0120lect ures\nP sy\n\u0120ne p\n\u0120m aid\n\u0120ori ented\nA - X\n\u0120respect ful\nre ne\nfl ush\n\u0120Un loaded\nre quest\ngr id\n\u0120Altern - atively\n\u0120Hug o\n\u0120dec ree\n\u0120Buddh ism\nand um\nAnd roid\n\u0120Cong - o\n\u0120Joy ce\n\u0120acknowled ging\nhes ive\n\u0120Tom orrow\n\u0120H iro\nth - ren\n\u0120M aced\n\u0120ho ax\n\u0120Incre ased\n\u0120Pr adesh\nW ild\n____ - __\n16 1\n\u0120a unt\n\u0120distribut ing\n\u0120T ucker\n\u0120SS L\n\u0120W - olves\nB uilding\nou lt\n\u0120Lu o\n\u0120Y as\n\u0120Sp ir\n\u0120Sh ape\n\u0120Camb - od\n\u0120IP v\n\u0120m l\n\u0120ext rad\n39 0\n\u0120Penn y\nd ream\n\u0120station - ed\nopt ional\new orthy\n. \n\u0120Works hop\n\u0120Ret ail\n\u0120Av atar\n6 25\nN a\n\u0120V - C\n\u0120Sec ure\nM Y\n19 88\noss ip\n\u0120pro state\n\u0120und en\n\u0120g - amer\n\u0120Cont ents\n\u0120War hammer\n\u0120Sent inel\n3 10\n\u0120se gregation\n\u0120F - lex\n\u0120M AY\n\u0120dr ills\n\u0120Drug s\nIslam ic\n\u0120sp ur\n\u0120ca - fe\n\u0120imag inary\n\u0120gu iding\n\u0120sw ings\n\u0120The me\nob y\n\u0120n - ud\n\u0120be gging\n\u0120str ongh\n\u0120reject ing\n\u0120pedest rians\n\u0120Pro - spect\nR are\ns le\n\u0120concess ions\n\u0120Const itutional\n\u0120be ams\n\u0120fib - ers\np oon\n\u0120instinct s\npro perty\n\u0120B IG\nSand ers\nim ates\n\u0120co - ating\n\u0120corps es\n\u0120TR UE\ncheck ed\n\u012016 6\nA sh\n\u0120J S\n\u0120F - iction\n\u0120commun al\n\u0120ener getic\noooo oooo\n\u0120now adays\nIL - D\nib o\n\u0120SU V\nR en\n\u0120dwell ing\nSil ver\n\u0120t ally\n\u0120M - oving\n\u0120cow ard\n\u0120gener als\n\u0120horn s\n\u0120circ ulated\n\u0120rob - bed\n\u0120Un limited\n\u0120harass ed\n\u0120inhib it\n\u0120comp oser\n\u0120Spot - ify\n\u0120spread s\n3 64\n\u0120su icidal\n\u0120no ises\n\u0120St ur\n\u0120s - aga\n\u0120K ag\nis o\n\u0120theoret ically\nM oney\n\u0120similar ity\n\u0120slic - ed\nut ils\ning es\n\" -\n\u0120an th\n\u0120imp ed\nMod ule\nThrough out\n\u0120men - us\ncomm ittee\nand i\nob j\nin av\nf ired\n\u0120Ab dullah\n\u0120und ead\n\u0120font - s\nH old\nEN G\n\u0120sustain ability\n\u0120fl ick\n\u0120r azor\n\u0120F - est\n\u0120Char acters\n\u0120word ing\n\u0120popul ist\n\u0120critic izing\n\u0120m - use\nv ine\n\u0120card board\n\u0120kind ly\n\u0120fr inge\n\u0120The ft\nicult - ural\n\u0120govern ors\n\u0120 \xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD\n\u012016 - 3\n\u0120time out\n\u0120A uth\nChild ren\nA U\n\u0120red emption\n\u0120Al - ger\n\u012019 14\n\u0120w aved\n\u0120astron auts\nog rams\n\u0120sw amp\n\u0120Finn - ish\n\u0120cand le\n\u0120ton nes\nut m\n\u0120r ay\n\u0120sp un\n\u0120fear - ful\nart icles\n\u0120ca us\nor ically\n\u0120Requ ires\n\u0120G ol\n\u0120pop - e\n\u0120inaug ural\n\u0120g le\nAD A\n\u0120IS IL\n\u0120Off ensive\n\u0120watch - dog\n\u0120bal con\nent ity\n\u0120H oo\n\u0120gall on\nAC C\n\u0120doub ling\n\u0120impl - ication\n\u0120S ight\n\u0120doct r\n---- ---\n\u0120\\ \\\n\u0120m alt\nR - oll\n\u0120\xE2\u012B \xA5\n\u0120rec ap\nadd ing\nu ces\n\u0120B end\nfig - ure\n\u0120tur key\n\u0120soc ietal\n\u0120T ickets\n\u0120commer cially\n\u0120sp - icy\n\u01202 16\n\u0120R amp\n\u0120superior ity\n\xC3 \xAF\n\u0120Tr acker\nC - arl\n\u0120C oy\n\u0120Patri ot\n\u0120consult ed\n\u0120list ings\n\u0120sle - w\nreens hot\n\u0120G one\n\u0120[ ...]\n30 9\n\u0120h ottest\n\xD8 \xB1\n\u0120rock - y\n\u0120D iaz\n\u0120mass age\n\u0120par aly\n\u0120p ony\nA z\n\u0120cart - ridge\n\u0120N Z\n\u0120sn ack\n\u0120Lam ar\nple ment\n\u0120Les lie\n\u0120m - ater\n\u0120sn ipp\n24 6\n\u0120joint ly\n\u0120Bris bane\n\u0120iP od\n\u0120pump - ing\n\u0120go at\n\u0120Sh aron\neal ing\n\u0120cor on\n\u0120an omal\nrah - im\n\u0120Connect ion\n\u0120sculpt ure\n\u0120sched uling\n\u0120D addy\nat - hing\n\u0120eyeb rows\n\u0120cur ved\n\u0120sent iments\n\u0120draft ing\nD - rop\n( [\n\u0120nom inal\n\u0120Leaders hip\n\u0120G row\n\u012017 6\n\u0120construct - ive\niv ation\n\u0120corrupt ed\nger ald\n\u0120C ros\n\u0120Che ster\n\u0120L - ap\n\xE3\u0123 \xAA\nOT H\nD ATA\n\u0120al mond\npro bably\nI mp\n\u0120fe - ast\n\u0120War craft\nF lor\n\u0120check point\n\u0120trans cription\n\u012020 - 4\n\u0120twe aks\n\u0120rel ieve\nS cience\n\u0120perform er\nZ one\n\u0120tur - moil\nig ated\nhib it\n\u0120C afe\nthe med\n\u0120flu or\nben ch\n\u0120de - com\n\u0120U nt\n\u0120Bar rett\n\u0120F acts\n\u0120t asting\n\u0120PTS D\n\u0120Se - al\n\u0120Juda ism\n\u0120Dynam ic\n\u0120C ors\nV e\n\u0120M ing\n\u0120Trans - form\nv on\n\u0120Def enders\n\u0120Tact ical\n\u0120V on\n\u0120Un ivers\n\u0120dist - orted\n\u0120B reath\n?' \"\n\u0120ag on\n\u0120Dead ly\n\u0120l an\n\u0120Cy - cle\norn ed\n\u0120rel iably\n\u0120gl or\n\u0120Mon key\n\xE3\u0125 \xA1\n\u0120ad - ren\n\u0120microw ave\n\u0120Al ban\nirc raft\ndig it\nsm art\n\u0120D read\n\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF - \xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\xC2\xAF\n{ {\n\u0120Roc - hester\n\u0120simpl ified\n\u0120inf licted\n\u0120take over\n\u0120your selves\nad - itional\n\u0120mus cular\nK S\n\u0120ing en\nT ax\n\u0120Fe ature\n27 7\n\u0120cru - c\n\u0120cr ate\n\u0120un identified\n\u0120acclaim ed\n\u0120M anga\n\u0120Fr - ances\n\u0120Nep al\n\u0120G erald\n\u0120Ku wait\n\u0120sl ain\n\u0120He - b\n\u0120G oku\n\xE3\u0123\xAE \xE6\n28 6\nM rs\n\u0120C ody\n\u0120San ctuary\n01 - 6\n\u0120dism ant\n\u0120datas et\n\u0120H ond\nb uck\n\u0120Pat terson\n\u0120pal - ette\n\u0120G D\nic ol\n\u0120L odge\n\u0120planet ary\nak in\n\u0120Regist - ered\nab we\n\u0120Peters burg\n\u0120ha iled\n\u0120P iece\nS che\n\u0120DO - J\n\u0120en umer\n18 1\n\u0120Obs erver\n\u0120B old\nf ounded\ncom merce\n\u0120explo - its\n\u0120F inding\nUR N\n\u0120S ne\n\u0120Ac id\nay ette\n\u0120Val ues\n\u0120dr - astic\n\u0120architect ural\n\u0120\" .\n\xD7 \u0137\nump ed\n\u0120wra pping\n\u0120wid - ow\n\u0120Sl ayer\nl ace\non ce\nGerman y\nav oid\n\u0120tem ples\nP AR\n\xC3 - \xB4\n\u0120Luc ifer\n\u0120Fl ickr\nl ov\nfor ces\n\u0120sc outing\n\u0120lou - der\ntes y\n\u0120before hand\n\xC4 \u0135\n\u0120Ne on\n\u0120W ol\n\u0120Typ - ically\n\u0120Polit ico\n-+ -+\n\u0120build er\n\u0120der ive\nK ill\n\u0120p - oker\n\u0120ambig uous\n\u0120lif ts\n\u0120cy t\n\u0120rib s\nood le\n\u0120S - ounds\nh air\n\u0120Synd rome\nt f\n\u0120proport ional\nu id\n\u0120per taining\n\u0120Kind - le\n\u0120Neg ro\n\u0120reiter ated\n\u0120Ton ight\noth s\n\u0120Corn ell\n\u0120o - wing\n\u012020 8\nelf are\noc ating\n\u0120B irds\nSub scribe\n\u0120ess ays\n\u0120burd - ens\n\u0120illust rations\nar ious\nER AL\n\u0120Cal cul\n\u0120x en\n\u0120Link - edIn\n\u0120J ung\n\u0120redes ign\nCon nor\n29 6\n\u0120revers al\n\u0120Ad - elaide\n\u0120L L\n\u0120s inking\n\u0120g um\nUS H\nc apt\n\u0120Gr imm\n\u0120foot - steps\n\u0120CB D\nisp ers\n\u0120pro se\nWed nesday\n\u0120M ovies\ned in\n\u0120overturn - ed\n\u0120content ious\nUS B\n~~~~~~~~ ~~~~~~~~\n\u0120Co pper\n\u0120point - less\nN V\nval ues\nolph in\nd ain\n\u0120depos ited\n\u0120G W\n\u0120preced - ed\n\u0120Cl a\n\u0120Go lem\n\u0120N im\n\u0120\xCE \xB2\n\u0120Engine ers\nm - iddle\n\u0120fl att\noper ative\n\u0120council s\nimb abwe\nel in\n\u0120stress - ful\n\u0120L D\n\u0120res h\nl ake\n\u0120wheel chair\n\u0120Altern ative\n\u0120optim - ize\noper ation\n\u0120pe ek\n\u0120ones elf\nig il\n\u0120trans itions\nop - athy\nbl ank\n\u012016 9\n17 1\n________________________________ ________________________________\n\u0120l - aundering\nEn c\n\u0120D EC\n\u0120work outs\n\u0120sp ikes\n\u0120din osaurs\n\u0120discrim - inatory\nP ool\nR ather\n38 5\nR NA\ntes ters\net o\n\u0120Ident ity\n\u0120ve - in\n\u0120Bur ton\n\u0120arc ade\n4 20\nUlt imately\n\u0120Sad ly\n\xC3 \xB0\np - ill\n\u0120cub ic\n\u0120Spect rum\nthe se\nst ates\n\u0120un official\nh - awks\n\u0120EVER Y\n\u0120rain bow\n\u0120incarcer ation\nand ing\n\u0120sy - ll\n\u0120Ever ton\n\u012017 9\n\u0120Ser bia\n\u012018 9\nm eter\n\u0120Mic - key\n\u0120ant iqu\n\u0120fact ual\nne ck\n\u0120N are\nn orm\nm ust\n\u0120high - ways\n\u0120gl am\n\u0120divid ing\n\u0120Squad ron\n\u0120Mar tha\n\u0120birth - s\nC over\n//////// ////////\n\u0120W ong\nPh ot\n\u0120A LS\nri o\n\u0120Non - etheless\n\u0120L emon\n\u012020 6\n\u0120E E\n\u0120deriv ative\n\u0120WW - II\nv ote\n\u0120there in\n\u0120separ ating\n44 6\nsy nc\n\u0120Stre ets\n\u0120r - att\n\u0120municip ality\n\u0120Short ly\n\u0120mon k\n) ,\"\n\u0120scr ub\n\u0120oper - atives\nNe ither\nPl ace\n\u0120Lim it\nF emale\n\u0120Act or\nChar acter\n\u0120constit - uted\n35 7\n\u0120protest ed\n\u0120St raw\n\u0120He ight\nild a\n\u0120Ty - ph\n\u0120flood s\n\u0120cos metic\nW AY\npert ure\nup on\nt ons\ness ing\n\u0120P - ocket\n\u0120ro oft\n\u0120C aucas\n\u0120ant idepress\n\u0120incomp atible\nEC - D\n\u0120oper a\n\u0120Cont est\n\u0120gener ators\nl ime\nDef ense\n19 87\nfor - um\n\u0120sav age\n\u0120Hung arian\nn z\n\u0120met allic\n\u0120ex pelled\n\u0120res - idency\n\u0120dress es\n66 6\n\u0120C lement\nf ires\nC ategory\n\u0120ge - ek\nal is\n\u0120c emetery\neduc ated\n\u0120c rawl\n\u0120Un able\n\u0120T - yson\nak is\n\u0120p ardon\n\u0120W ra\n\u0120strengthen ed\n\u0120F ors\n33 - 5\n\u0120H C\n\u0120M ond\n\u0120visual s\n\u0120Beat les\nett lement\n\u0120 - \xEF\ng ro\n\u0120b ash\n\u0120po orest\n\u0120ex cel\n\u0120aspir ations\n\u0120M - unicip\nens ible\n\u0120ceremon ies\n\u0120intimid ation\n\u0120CON TR\nbe - ck\n\u0120K ap\nas u\n\u0120tradem arks\n\u0120S ew\n\u0120Comp etition\nnet - work\n\u0120Ar ri\n\u0120T et\nRo aming\nW C\nD at\n\u0120so b\n\u0120pair - ing\n\u0120overd ose\nSA Y\nab er\n\u0120rev olt\n\u0120F ah\nact ing\ne q\nest - ation\nF ight\n\u0120Mar ks\n27 3\n\u012017 8\nR aw\n\xE3\u0123 \u012D\n34 - 9\nbl ocks\n\u0120ver ge\nest ine\n\u0120Pod esta\n\u0120inv asive\n\u0120profound - ly\n\u0120A o\ne ach\n\u0120l est\ninter pret\n\u0120shr inking\n\u0120err - one\n\u0120che es\nly s\n\u0120I vy\n\u0120Direct ory\n\u0120hint ed\nV ICE\n\u0120contact - ing\n\u0120G ent\nhe i\n\u0120label ing\n\u0120merc ury\n\u0120L ite\n\u0120exp - ires\n\u0120dest abil\nrit is\nc u\n\u0120feather s\n\u0120ste er\n\u0120program - med\n\u0120V ader\nGo ing\n\u0120E lim\n\u0120y o\n\u0120Mic he\n\u012020 - 3\n\u0120slee ves\n\u0120b ully\n\u0120Hum ans\n36 8\n\u0120comp ress\n\u0120Ban - ner\nAR S\n\u0120a while\n\u0120cal ib\n\u0120spons orship\n\u0120Diff iculty\n\u0120P - apers\n\u0120ident ifier\n} .\n\u0120y og\n\u0120Sh ia\n\u0120clean up\n\u0120vib - e\nint rodu\nim ming\nAustral ia\n\u0120out lines\n\u0120Y outube\ntr ain\n\u0120M - akes\n\u0120de ported\n\u0120cent r\n\u0120D ug\n\u0120B oulder\n\u0120Buff - y\n\u0120inj unction\n\u0120Har ley\n\u0120G roups\n\u0120D umbledore\n\u0120Cl - ara\n\u0120\" -\n\u0120sacrific ed\nep h\nSh adow\nib ling\n\u0120freel ance\n\u0120evident - ly\nph al\n\u0120ret ains\nM ir\n\u0120fin ite\nd ar\n\u0120C ous\n\u0120rep - aired\n\u0120period ic\n\u0120champions hips\n\u0120aster oid\nbl ind\n\u0120express - ly\n\u0120Ast ros\n\u0120sc aled\n\u0120ge ographical\n\u0120Rap ids\nEn joy\n\u0120el - astic\n\u0120Moh amed\nMark et\nbe gin\n\u0120disco vers\n\u0120tele communications\n\u0120scan - ner\n\u0120en large\n\u0120sh arks\n\u0120psy chedel\n\u0120Rou ge\n\u0120snap - shot\nis ine\nX P\n\u0120pestic ides\n\u0120L SD\n\u0120Dist ribution\nre - ally\n\u0120de gradation\n\u0120disgu ise\n\u0120bi om\n\u0120EX T\n\u0120equ - ations\n\u0120haz ards\n\u0120Comp ared\n) *\n\u0120virt ues\n\u0120eld ers\n\u0120enh - ancing\n\u0120Ac ross\ner os\nang ling\n\u0120comb ust\nucc i\n\u0120conc - ussion\n\u0120contrace ption\n\u0120K ang\n\u0120express es\n\u0120a ux\n\u0120P - ione\n\u0120exhib its\nDeb ug\nOT AL\n\u0120Al ready\n\u0120Wheel er\n\u0120exp - ands\n? :\n\u0120reconc iliation\n\u0120pir ates\n\u0120pur se\n\u0120discour - age\n\u0120spect acle\nR ank\n\u0120wra ps\n\u0120Th ought\n\u0120imp ending\nO - pp\n\u0120Ang lo\n\u0120E UR\n\u0120screw ed\nret ched\n\u0120encour agement\nmod - els\n\u0120conf use\nmm m\n\u0120Vit amin\n\xE2\u0138\u0133 \xE2\u0138\u0133\nC - ru\n\u0120kn ights\n\u0120disc ard\n\u0120b ishops\n\u0120W ear\n\u0120Gar - rett\nk an\n\xE3\u0125 \u0141\n\u0120mascul ine\ncap ital\n\u0120A us\n\u0120fat - ally\nth anks\n\u0120A U\n\u0120G ut\n12 00\n\u0120 00000000\n\u0120sur rog\n\u0120BI - OS\nra its\n\u0120Wat ts\n\u0120resur rection\n\u0120Elect oral\n\u0120T ips\n4 - 000\n\u0120nut rient\n\u0120depict ing\n\u0120spr ink\n\u0120m uff\n\u0120L - IM\n\u0120S ample\nps c\nib i\ngener ated\n\u0120spec imens\n\u0120diss atisf\n\u0120tail - ored\n\u0120hold ings\n\u0120Month ly\n\u0120E at\npo ons\n\u0120ne c\n\u0120C - age\n\u0120Lot us\n\u0120Lan tern\n\u0120front ier\n\u0120p ensions\n\u0120j - oked\n\u0120Hard y\n=-=- =-=-\nr ade\nU ID\n\u0120r ails\n\u0120em it\n\u0120sl - ate\n\u0120sm ug\n\u0120sp it\n\u0120Call s\n\u0120Jac obs\nf eat\n\u0120U - E\n\u0120rest ruct\n\u0120regener ation\n\u0120energ ies\n\u0120Con nor\nOH - N\n\u0120Che ese\n\u0120g er\n\u0120resur rect\nman agement\nN W\n\u0120pres - ently\n\u0120Bru ins\nM ember\n\u0120M ang\nid an\n\u0120boost ing\nw yn\n+ - .\nrequ isite\n\u0120NY PD\n\u0120Me gan\n\u0120Cond itions\n\u0120p ics\nnes - ium\n\u0120R ash\n\u012017 4\n\u0120D ucks\n\u0120emb ro\nz u\non ian\nrel - igious\n\u0120c raz\n\u0120AC A\n\u0120Z ucker\nEM A\n\u0120Pro s\nWe apon\n\u0120Kn - ox\n\u0120Ar duino\n\u0120st ove\n\u0120heaven s\n\u0120P urchase\n\u0120her - d\n\u0120fundra iser\nDig ital\n5 000\n\u0120prop onents\n/ \xE2\u0122\u012D\n\u0120j - elly\n\u0120Vis a\n\u0120mon ks\n\u0120advance ment\n\u0120W er\n\u012018 - 7\ne us\nert ility\n\u0120fet al\n\u012019 36\nL o\n\u0120out fits\n\u0120stair - case\nb omb\n\u0120custom ized\ncl air\nT ree\n\u0120m apped\n\u0120Consider - ing\n\u0120Tor res\n\u0120meth yl\n\u0120approx imate\n\u0120do om\n\u0120Hans - en\n\u0120c rossover\n\u0120stand alone\n\xE4 \xBC\n\u0120inv ites\n\u0120gra - veyard\n\u0120h p\nDonald Trump\n\u0120esc ort\nG ar\n\u0120predec essors\n\u0120h - ay\n\u0120en zyme\n\u0120Stra ight\nvis ors\nI ng\nane ously\n\u0120App lied\n\u0120f - ec\n\u0120Dur ant\n\u0120out spoken\nor b\n\u0120z eal\n\u0120disgr ace\n' - ).\n\u0120Che ng\n28 9\n\u0120Ren a\n\u0120Su icide\n29 4\n\u0120out raged\n\u0120New - man\n\u0120N vidia\n\u0120A ber\n\u0120B ers\n\u0120recre ation\nWind ow\n\u0120D - P\nx e\n\u0120ped oph\n\u0120fall out\nambo o\n\u0120present ations\n\u0120App - s\n\u0120h tml\n3 45\n\u0120X XX\n\u0120rub bing\n\u0120Le ather\n\u0120hum - idity\nse ys\nest ablished\n\u0120Un its\n64 6\n\u0120respect able\nA uto\n\u0120thri - ving\n\u0120Inn ovation\nang s\nExt ra\nreg ulation\n29 8\np ick\nEx amples\n\u0120C - J\nAtt ack\n\u0120dr acon\nL T\n\u0120stick er\nre rs\n\u0120sun ny\nI ss\nreg - ulated\nd im\n\u0120Ab stract\n\u0120hus bands\nOff ice\nom ination\nit ars\nAN - GE\nasc al\n\u0120K ris\n\u0120Inf antry\n\u0120m alf\n\u0120A the\n\u0120R - ally\nbal anced\n................ ........\nOU P\n\u0120mole cule\nmet ics\n\u0120Spl - it\n\u0120Instruct ions\n\u0120N ights\nc ards\n\u0120t ug\n\u0120con e\n\xE5 - \u0143\n\u0120t x\n\u0120Disc ussion\n\u0120catast rophe\npp e\ng io\n\u0120commun - ism\n\u0120hal ted\n\u0120Gu ant\ncle an\n\u0120Sc hed\n\u0120K anye\n\u0120w - ander\n\u0120Ser iously\n\u012018 8\nenn ial\nf ollow\nproduct ive\n\u0120Fl - ow\n\u0120S ail\n\u0120c raw\n\u0120sim ulations\nor u\nang les\n\u0120N olan\n\u0120men - stru\n4 70\n\u012020 7\naj a\n\u0120cas ually\nboard ing\n\u01202 22\nov y\n\u0120N - umbers\num at\nO E\n28 7\n\u0120Cle mson\n\u0120cert s\n\u0120sl id\n\u0120T - ribe\n\u0120to ast\n\u0120fort unes\n\u0120f als\n\u0120Comm ittees\n\u0120g - p\n\u0120f iery\n\u0120N ets\n\u0120An ime\nPack age\n\u0120Comp are\nl aughter\nin - fect\n\u0120atroc ities\n\u0120just ices\n\u0120ins ults\n\u0120Vern on\n\u0120sh - aken\n\u0120person a\nest amp\n36 7\nbr ain\n\u0120experiment ing\nK en\n\u0120Elect - ronics\n\u012016 1\ndom ain\n\u0120graph ical\nb ishop\n\u0120who pping\n\u0120Ev - angel\n\u0120advertis ers\n\u0120Spe ar\n\u0120b ids\n\u0120destro ys\nut - z\n\u0120unders c\n\u0120AD D\n\u0120an ts\n\u0120C um\nipp les\n\u0120F ill\n\u0120gl - anced\n\u0120ind icted\n\u0120E ff\n\u0120mis con\n\u0120Des ktop\n\u0120ab - ide\n\xE3\u0125 \u0122\n\u0120I o\n\u0120C oul\n\u0120caps ule\n\u0120Ch rys\nM - ON\n\u0120und es\n\u0120I RA\n\u0120c itation\n\u0120dict ate\n\u0120Net works\n\u0120Conf - lict\n\u0120St uff\nx a\nis ec\n\u0120Chem istry\n\u0120quarter ly\nWilliam - s\nan an\nO pt\n\u0120Alexand ria\nout heastern\n\u0120Spring field\n\u0120Black - s\n\u0120ge ography\n24 2\n\u0120ut most\n\u0120Ex xon\nab outs\nE VA\n\u0120En - able\n\u0120Bar r\n\u0120disag reed\n\u0120Cy prus\n\u0120dement ia\n\u0120lab - s\n\u0120ubiqu itous\n\u0120LO VE\n\u0120consolid ated\ns r\n\u0120cream y\n\u0120Tim - ber\nReg ardless\n\u0120Cert ificate\n\u0120\" ...\nogen ous\nCapt ain\n\u0120insult - ing\n\u0120Sor os\n\u0120Inst r\n\u0120Bulgar ia\nbet ter\n\u0120suck ing\n\u0120David - son\nat z\n\u0120coll ateral\ng if\n\u0120plag ued\n\u0120C ancel\n\u0120Gard - ner\nR B\n\u0120six teen\nRem ove\nur istic\nc ook\nR od\n\u0120compr ising\nf - le\n) \xE2\u0122\u0136\n\u0120Vik ing\ng rowth\nagon al\n\u0120sr f\naf ety\nm - ot\nN early\nst own\n\u0120F actor\n\u0120autom obile\n\u0120proced ural\nm - ask\namp ires\n\u0120disapp ears\nj ab\n3 15\n\u012019 51\nne eded\n\u0120d - aring\nle ader\n\u0120p odium\n\u0120un healthy\n\u0120m und\n\u0120py ramid\noc - re\n\u0120kiss ed\n\u0120dream ed\n\u0120Fant astic\n\u0120G ly\n\xE5 \u012C\n\u0120great - ness\n\u0120sp ices\n\u0120met ropolitan\n\u0120comp uls\ni ets\n101 6\n\u0120Sh - am\n\u0120P yr\nfl ies\n\u0120Mid night\n\u0120swall owed\n\u0120gen res\n\u0120L - ucky\n\u0120Rew ards\n\u0120disp atch\n\u0120I PA\n\u0120App ly\n\u0120a ven\nal - ities\n3 12\nth ings\n\u0120( ).\n\u0120m ates\n\u0120S z\n\u0120C OP\nol - ate\nO FF\n\u0120re charge\nc aps\n\u0120York er\nic one\n\u0120gal axies\nile - aks\nD ave\n\u0120P uzz\n\u0120Celt ic\n\u0120A FC\n27 6\n\u0120S ons\n\u0120affirm - ative\nH or\n\u0120tutorial s\n\u0120C ITY\n\u0120R osa\n\u0120Ext ension\nSer - ies\n\u0120f ats\n\u0120r ab\nl is\n\u0120un ic\n\u0120e ve\n\u0120Sp in\n\u0120adul - thood\nty p\n\u0120sect arian\n\u0120check out\n\u0120Cy cl\nS ingle\n\u0120mart - yr\n\u0120ch illing\n88 8\nou fl\n\u0120] ;\n\u0120congest ion\nm k\n\u0120Where - as\n\u012019 38\nur rencies\ner ion\n\u0120bo ast\n\u0120Pat ients\n\u0120ch - ap\n\u0120B D\nreal DonaldTrump\n\u0120exam ines\nh ov\n\u0120start ling\n\u0120Bab - ylon\nw id\nom ew\nbr ance\n\u0120Od yssey\nw ig\n\u0120tor ch\n\u0120V ox\n\u0120Mo - z\n\u0120T roll\n\u0120An s\nSimilar ly\n\u0120F ul\n00 6\nUn less\n\u0120Al - one\nst ead\n\u0120Pub lisher\nr ights\nt u\n\u0120Does n\n\u0120profession - ally\n\u0120cl o\nic z\n\u0120ste als\n\u0120 \xE1\n19 86\n\u0120st urdy\n\u0120Joh - ann\n\u0120med als\n\u0120fil ings\n\u0120Fr aser\nd one\n\u0120mult inational\n\u0120f - eder\n\u0120worth less\n\u0120p est\nYes terday\nank ind\n\u0120g ays\n\u0120b - orne\n\u0120P OS\nPict ure\n\u0120percent ages\n25 1\nr ame\n\u0120pot ions\nAM - D\n\u0120Leban ese\n\u0120r ang\n\u0120L SU\nong s\n\u0120pen insula\n\u0120Cl - ause\nAL K\noh a\n\u0120Mac Book\n\u0120unanim ous\n\u0120l enders\n\u0120hang - s\n\u0120franch ises\nore rs\n\u0120Up dates\n\u0120isol ate\nand ro\nS oon\n\u0120disrupt - ive\n\u0120Sur ve\n\u0120st itches\n\u0120Sc orp\n\u0120Domin ion\n\u0120supp - lying\nAr g\n\u0120tur ret\n\u0120L uk\n\u0120br ackets\n* )\n\u0120Revolution - ary\n\u0120Hon est\n\u0120not icing\n\u0120Sh annon\n\u0120afford ed\n\u0120th - a\n\u0120Jan et\n! --\n\u0120Nare ndra\n\u0120Pl ot\nH ol\nse ver\ne enth\n\u0120obst - ruction\n\u012010 24\nst aff\nj as\nor get\nsc enes\nl aughs\n\u0120F argo\ncr - ime\n\u0120orche str\n\u0120de let\nili ary\nrie ved\n\u0120milit ar\n\u0120Green - e\n\xE2\u0139 \u0131\n\xE3\u0123 \xA6\n\u0120Gu ards\n\u0120unle ashed\n\u0120We - ber\n\u0120adjust able\n\u0120cal iber\n\u0120motiv ations\n\u0120\xC3 \u0142\nm - Ah\n\u0120L anka\nhand le\n\u0120p ent\n\u0120R av\n\u0120Ang ular\n\u0120K - au\numb ing\n\u0120phil anthrop\n\u0120de hyd\n\u0120tox icity\ne er\n\u0120Y - ORK\nw itz\n\xE5 \xBC\n\u0120I E\ncommun ity\n\u0120A H\n\u0120ret ali\n\u0120mass - ively\n\u0120Dani els\n\u0120D EL\n\u0120car cin\nUr l\n\u0120rout ing\n\u0120NPC - s\n\u0120R AF\nry ce\n\u0120wa ived\n\u0120Gu atem\nEvery body\n\u0120co venant\n\u012017 - 3\n\u0120relax ing\n\u0120qu art\nal most\n\u0120guard ed\n\u0120Sold iers\n\u0120PL - AY\n\u0120out going\nL AND\n\u0120re write\n\u0120M OV\n\u0120Im per\n\u0120S - olution\n\u0120phenomen al\n\u0120l ongevity\n\u0120imp at\n\u0120N issan\nir - ie\n\u0120od or\n\u0120Z ar\nok s\n\u0120milit ias\n\u0120SP EC\n\u0120toler - ated\nars er\n\u0120Brad ford\n+ ,\n\u0120sur real\ns f\nCan adian\n\u0120resemb - lance\n\u0120carbohyd rate\nVI EW\n\u0120access ory\nme al\nlarg est\nieg - el\nSome one\n\u0120toug hest\nos o\n\u0120fun nel\n\u0120condemn ation\nlu - ent\n\u0120w ired\n\u0120Sun set\nJes us\n\u0120P ST\n\u0120P ages\n\u0120Ty - coon\n\u0120P F\n\u0120select ions\n\u0120 \xE0\xA4\npart isan\n\u0120high - s\n\u0120R une\n\u0120craft s\nle ad\n\u0120Parent s\n\u0120re claim\nek er\n\u0120All - ied\nae per\n\u0120lo oming\n\u0120benefic iaries\n\u0120H ull\nStud ents\nJew - ish\nd j\n\u0120p act\ntem plate\n\u0120Offic ials\n\u0120Bay lor\n\u0120he - mp\n\u0120youth s\n\u0120Level s\n\u0120X iao\n\u0120C hes\n\u0120ende avor\n\u0120Rem - oved\n\u0120hipp ocamp\nH ell\n\xE3\u0124 \u012C\n80 5\n\u0120d inosaur\n\u0120Wr - ath\n\u0120Indones ian\n\u0120calcul ator\n\u0120D ictionary\n\u01204 20\n\u0120M - AG\n( _\n! ,\nt arians\n\u0120restrict ing\nrac use\n\u0120week day\nOU NT\n\u0120sh - rugged\nleg round\n\u0120b ald\n\u0120Do ctors\n\u0120t outed\n\u0120Max well\n\u01202 - 14\n\u0120diplom at\n\u0120rep ression\n\u0120constitu ency\nv ice\nr anked\n\u0120Nap - oleon\ng ang\n\u0120Fore ver\nt un\n\u0120bul b\n\u0120PD T\n\u0120C isco\nV - EN\n\u0120res umed\nSte ven\n\u0120Manit oba\n\u0120fab ulous\n\u0120Ag ents\n19 - 84\n\u0120am using\n\u0120Myster ies\n\u0120or thodox\nfl oor\n\u0120question - naire\n\u0120penet rate\n\u0120film makers\n\u0120Un c\n\u0120st amped\n\u0120th - irteen\n\u0120out field\n\u0120forward ed\n\u0120app ra\n\u0120a ided\nt ry\n\u0120unf - ocused\n\u0120L iz\n\u0120Wend y\n\u0120Sc ene\nCh arg\n\u0120reject s\n\u0120left - ist\n\u0120Prov idence\n\u0120Br id\nreg n\n\u0120prophe cy\n\u0120L IVE\n4 - 99\n\u0120for ge\n\u0120F ML\n\u0120intrins ic\n\u0120F rog\n\u0120w ont\n\u0120H - olt\n\u0120fam ed\nCL US\naeper nick\n\u0120H ate\n\u0120C ay\n\u0120register - ing\nort ality\nrop y\nocaly ptic\na an\nn av\n\u0120fasc ist\nIF IED\n\u0120impl - icated\n\u0120Res ort\n\u0120Chand ler\n\u0120Br ick\nP in\nys c\nUs age\n\u0120Hel - m\nus ra\n\xE2\u013A\u0127 \xE2\u013A\u0127\n\u0120Ab bas\n\u0120unanim ously\n\u0120ke - eper\n\u0120add icted\n?? ?\n\u0120helm ets\n\u0120ant ioxid\naps ed\n80 8\ngi - ene\n\u0120wa its\n\u0120min ion\nra ved\n\u0120P orsche\n\u0120dream ing\n\u012017 - 1\n\u0120C ain\n\u0120un for\nass o\n\u0120Config uration\nk un\nhard t\n\u0120n - ested\n\u0120L DS\nL ES\n\u0120t ying\nen os\n\u0120c ue\n\u0120Mar qu\nsk - irts\n\u0120click ed\n\u0120exp iration\n\u0120According ly\n\u0120W C\n\u0120bless - ings\n\u0120addict ive\n\u0120N arr\ny x\n\u0120Jagu ars\n\u0120rent s\n\u0120S - iber\n\u0120t ipped\nous se\n\u0120Fitz gerald\n\u0120hier arch\nout ine\n\u0120wa - velength\n> .\nch id\n\u0120Process ing\n/ +\nr anking\nE asy\n\u0120Const - ruct\n\u0120t et\nins ured\nH UD\n\u0120qu oting\n\u0120commun icated\nin - x\n\u0120in mate\n\u0120erect ed\n\u0120Abs olutely\n\u0120Sure ly\n\u0120un - im\n\u0120Thr one\nhe id\n\u0120cl aws\n\u0120super star\n\u0120L enn\n\u0120Wh - is\nU k\nab ol\n\u0120sk et\n\u0120N iet\n\u0120per ks\n\u0120aff inity\n\u0120open - ings\nphas is\n\u0120discrim inate\nT ip\nv c\n\u0120gr inding\n\u0120Jenn - y\n\u0120ast hma\nhol es\n\u0120Hom er\n\u0120reg isters\n\u0120Gl ad\n\u0120cre - ations\n\u0120lith ium\n\u0120appl ause\nunt il\nJust ice\n\u0120Tur ks\n\u0120sc - andals\n\u0120b ake\nt ank\nM ech\n\u0120Me ans\n\u0120M aid\nRepublic ans\nis - al\nwind ows\n\u0120Sant os\n\u0120veget ation\n33 8\nt ri\n\u0120fl ux\nins - ert\n\u0120clar ified\n\u0120mort g\n\u0120Ch im\n\u0120T ort\n\u0120discl - aim\nmet al\n\u0120As ide\n\u0120indu ction\n\u0120inf l\n\u0120athe ists\namp - h\n\u0120e ther\n\u0120V ital\n\u0120Bu ilt\nM ind\n\u0120weapon ry\nS ET\n\u012018 - 6\nad min\ng am\ncont ract\naf a\n\u0120deriv atives\n\u0120sn acks\n\u0120ch - urn\nE conom\n\u0120ca pped\n\u0120Under standing\n\u0120H ers\n\u0120I z\n\u0120d - uct\nI ENT\naugh ty\n\u0120\xE2\u013E \u0136\n\u0120N P\n\u0120sa iling\nIn - itialized\n\u0120t ed\n\u0120react ors\n\u0120L omb\n\u0120cho ke\n\u0120W - orm\n\u0120adm iration\n\u0120sw ung\nens ibly\n\u0120r ash\n\u0120Go als\n\u0120Import - ant\nSh ot\n\u0120R as\n\u0120train ers\n\u0120B un\nWork ing\n\u0120har med\n\u0120Pand - ora\n\u0120L TE\n\u0120mush room\n\u0120CH AR\n\u0120F ee\n\u0120M oy\nB orn\nol - iberal\n\u0120Mart ial\n\u0120gentle men\n\u0120ling ering\nOffic ial\n\u0120gra - ffiti\n\u0120N ames\nD er\n\u0120qu int\nist rate\naze era\n\u0120NOT ICE\n\u0120Flore - nce\n\u0120pay able\n\u0120dep icts\n\u0120Spe cies\nHe art\n\xE2\u0136\u0122\xE2\u0136\u0122\xE2\u0136\u0122\xE2\u0136\u0122 - \xE2\u0136\u0122\xE2\u0136\u0122\xE2\u0136\u0122\xE2\u0136\u0122\n\u0120encl - osed\nIncre ases\nD aily\n\u0120L is\n\u0120enact ment\n\u0120B acon\n\u0120St - eele\ndem and\n\u012018 3\n\u0120mouth s\n\u0120str anded\n\u0120enhance ment\n01 - 1\n\u0120Wh ats\n\u0120he aled\nen y\n\u0120R ab\n\u01203 40\n\u0120Lab yrinth\nro - ach\n\u0120Y osh\n\u0120Cl ippers\n\u0120concert s\nIntern et\n35 5\n\u0120stick - ers\n\u0120ter med\n\u0120Ax e\n\u0120grand parents\nFr ance\n\u0120Cl im\n\u0120U - h\nul ic\n\u0120thr ill\ncent ric\n\u0120Over view\n\u0120Cond uct\n\u0120substant - ive\n\u012018 2\nm ur\n\u0120str ay\n\u0120Co ff\n\u0120rep etitive\n\u0120For - gotten\n\u0120qual ification\new itness\n\u0120Z imbabwe\n\u0120sim ulated\n\u0120J - D\n25 3\n\u0120W are\n\u0120un sc\nT imes\n\u0120sum mons\n\u0120dis connected\n\u012018 - 4\nci us\n\u0120Gu jar\nod ka\n\u0120er ase\n\u0120Tob acco\nelect ed\n\u0120un - cont\n\u0120She pard\n\u0120L amp\n\u0120alert ed\n\u0120oper ative\narn a\nu - int\n\u0120neglig ence\nac ements\n\u0120sup ra\n\u0120prev ail\n\u0120Sh - ark\n\u0120bel ts\n\xE3\u0123 \xAB\n\u0120t ighter\nEngine ers\n\u0120in active\n\u0120exp - onent\n\u0120Will ie\na ples\n\u0120he ir\n\u0120H its\nian n\n\u0120S ays\n\u0120current - s\n\u0120Beng al\n\u0120ar ist\nB uffer\n\u0120bree ze\n\u0120Wes ley\nCol - a\n\u0120pron oun\n\u0120de ed\n\u0120K ling\n\u0120of t\n\u0120inf lict\n\u0120pun - ishing\n\u0120n m\nik u\nOD UCT\n01 4\n\u0120subsid y\n\u0120DE A\n\u0120Her - bert\n\u0120J al\nB ank\n\u0120def erred\n\u0120ship ment\nB ott\n\u0120al - le\nb earing\nHT ML\nOff line\n\u01202 13\n\u0120scroll ing\n\u0120sc anned\n\u0120Lib - yan\n\u0120T OP\nch rom\nd t\ncol umn\nPsy NetMessage\nZ ero\n\u0120tor so\n0 - 50\n\xE2\u0137 \u0132\n\u0120imp erson\n\u0120Schw artz\nud ic\n\u0120piss - ed\n\u0120S app\n25 7\n\u0120IS Ps\nog l\n\u0120super vised\n\u0120ad olescent\n\u0120att - ained\n\u0120Del ivery\n\u0120B unny\n\u012019 37\n\u0120mini ature\n\u0120o - s\n\u01203 70\n60 8\n\u0120Mour inho\n\u0120inn ate\n\u0120tem po\n\u0120N - M\n\u0120Fall en\n00 9\n\u0120prov ocative\nStream er\n\u0120Bened ict\n\u0120Bol - she\n\u0120t urtle\n\u0120PC B\n\u0120Equ al\nDirect or\n\u0120R end\n\u0120flu - ids\nAuthor ities\n\u0120cous ins\nrequ ency\n\u0120Neigh bor\ns ets\nsh ared\nChar - les\npass word\n\u0120g ears\n\u01202 11\n\u0120Hard ware\nri ka\n\u0120up - stream\nH om\n\u0120disproportion ately\niv ities\n\u0120und efined\n\u0120elect - rons\n\u0120commem or\nEvent ually\n\u0120> <\n\u0120ir responsible\n2 18\n\u0120Re - leased\n\u0120O VER\n\u0120I GN\n\u0120B read\nst ellar\n\u0120S age\ntt ed\ndam - age\ned ition\n\u0120Pre c\n\u0120l ime\n\u0120conf inement\n\u0120cal orie\nwe - apon\n\u0120diff ering\n\u0120S ina\nm ys\nam d\n\u0120intric ate\nk k\n\u0120P - AT\n\xC3\xA3 o\nst ones\nlin ks\n\u0120r anch\nSem itic\n\u0120different iate\n\u0120S - inger\noccup ied\n\u0120fort ress\nc md\n\u0120inter ception\n\u0120Ank ara\n\u0120re - pt\n\u0120Sol itaire\n\u0120rem ake\np red\n\u0120d ared\naut ions\n\u0120B - ACK\nRun ning\n\u0120debug ging\n\u0120graph s\n3 99\n\u0120Nig el\n\u0120b - un\n\u0120pill ow\n\u0120prog ressed\nfashion ed\n\u0120ob edience\nER N\n\u0120rehe - ars\nC ell\nt l\nS her\n\u0120her ald\n\u0120Pay ment\n\u0120C ory\n\u0120De - pt\n\u0120rep ent\n\u0120We ak\nuck land\n\u0120ple asing\n\u0120short ages\n\u0120jur - ors\n\u0120K ab\nq qa\nAnt i\n\u0120w ow\n\u0120RC MP\n\u0120t sun\n\u0120S - ic\n\u0120comp rises\n\u0120sp ies\n\u0120prec inct\nn u\n\u0120ur ges\n\u0120tim - ed\n\u0120strip es\n\u0120B oots\n\u0120y en\nAdv anced\n\u0120disc rete\n\u0120Arch - angel\nemploy ment\nD iff\n\u0120mon uments\n\u012020 9\nwork er\n\u012019 - 6\n\u0120I g\nutter stock\nT PS\nJ ac\n\u0120homeless ness\n\u0120comment - ator\n\u0120rac ially\nf ing\nse ed\nE le\nell ation\n\u0120eth anol\n\u0120par - ish\n\u0120D ong\n\u0120Aw akening\n\u0120dev iation\n\u0120B earing\n\u0120Tsu - k\n\u0120rec ess\n\u0120l ymph\n\u0120Cann abis\n\xE5 \u013E\n\u0120NEW S\n\u0120d - ra\n\u0120Stef an\n\u0120Wr ong\n\u0120S AM\n\u0120loose ly\n\u0120interpre - ter\n\u0120Pl ain\nGo vernment\n\u0120bigot ry\n\u0120gren ades\nave z\npict - ured\n\u0120mand ated\n\u0120Mon k\n\u0120Ped ro\n\u0120l ava\n27 4\n\u0120cyn - ical\n\u0120Scroll s\nl ocks\nM p\n\u0120con gregation\norn ings\nph il\n\u0120I - bid\n\u0120f erv\n\u0120disapp earing\n\u0120arrog ant\nsy n\n\u0120Ma ver\n\u0120Su - it\n24 1\n\u0120ab bre\nack ers\nP a\n\u0120Y el\nWhe never\n\u012023 5\n\u0120V - ine\n\u0120An at\n\u0120ext inct\nLE T\n\u0120execut able\nV ERS\nox ide\nD - NA\n\u0120P rel\n\u0120resent ment\n\u0120compr ise\n\u0120Av iv\n\u0120inter - ceptions\n\u0120prol ific\nIN A\n\u0120Er in\nthough t\n2 19\n\u0120Psychiat - ry\nun ky\nchem ist\nH o\n\u0120McC oy\n\u0120br icks\nL os\nri ly\n\u0120US - SR\n\u0120r ud\n\u0120l aud\n\u0120W ise\n\u0120Emer ald\n\u0120rev ived\n\u0120dam - ned\n\u0120Rep air\nid em\nct ica\n\u0120patri arch\n\u0120N urs\nme g\n\u0120cheap - est\nre ements\nempt y\n\u0120Cele br\n\u0120depri vation\nch anted\n\u0120Th - umbnails\nE nergy\n\u0120Eth an\n\u0120Q ing\n\u0120opp oses\nW IND\nv ik\n\u0120M - au\n\u0120S UB\n66 7\nG RE\n\u0120Vol unte\nnt on\nC ook\n\xE5 \u0132\nes - que\n\u0120plum met\n\u0120su ing\n\u0120pron ounce\n\u0120resist ing\n\u0120F - ishing\n\u0120Tri als\n\u0120y ell\n\u01203 10\n\u0120in duct\n\u0120personal - ized\noft en\nR eb\nEM BER\n\u0120view point\n\u0120exist ential\n() )\nrem - ove\nMENT S\nl asses\n\u0120ev apor\n\u0120a isle\nmet a\n\u0120reflect ive\n\u0120entit - lement\n\u0120dev ised\nmus ic\nasc ade\n\u0120wind ing\noff set\n\u0120access - ibility\nke red\nBet ter\n\u0120John ston\nth inking\nS now\n\u0120Croat ia\n\u0120At - omic\n27 1\n34 8\n\u0120text book\n\u0120Six th\n\u0120 \xD8\xA7\xD9\u0126\n\u0120sl - ider\n\u0120Bur ger\nb ol\nS ync\n\u0120grand children\n\u0120c erv\n+ )\n\u0120e - ternity\n\u0120tweet ing\n\u0120spec ulative\n\u0120piv otal\n\u0120W P\n\u0120T - ER\nynam ic\n\u0120u pl\n\u0120C ats\nper haps\n\u0120class mates\n\u0120blat - ant\n' -\n\u0120l akh\nant ine\n\u0120B org\ni om\n/ (\n\u0120Athlet ic\n\u0120s - ar\nOT A\n\u0120Hoff man\nNever theless\n\u0120ad orable\n\u0120spawn ed\nAss - ociated\n\u0120Dom estic\n\u0120impl ant\n\u0120Lux em\n\u0120K ens\n\u0120p - umps\n\u0120S AT\nAtt ributes\n50 9\nav our\n\u0120central ized\n\u0120T N\n\u0120fresh - ly\n\u0120A chieve\n\u0120outs iders\nher ty\n\u0120Re e\n\u0120T owers\n\u0120D - art\nak able\n\u0120m p\n\u0120Heaven ly\n\u0120r ipe\n\u0120Carol ine\nry - an\n\u0120class ics\n\u0120ret iring\n\u01202 28\n\u0120a h\n\u0120deal ings\n\u0120punch - ing\n\u0120Chap man\nO ptions\nmax well\nvol ume\n\u0120st al\n\u0120ex ported\n\u0120Qu - ite\n\u0120numer ical\nB urn\nF act\n\u0120Key stone\n\u0120trend ing\n\u0120alter - ing\n\u0120Afric ans\n47 8\n\u0120M N\n\u0120Kn ock\n\u0120tempt ation\n\u0120prest - ige\nOver view\n\u0120Trad itional\n\u0120Bah rain\nPriv ate\n\u0120H OU\n\u0120bar - r\n\u0120T at\nC ube\nUS D\n\u0120Grand e\n\u0120G at\n\u0120Fl o\n\u0120res - ides\n\u0120ind ec\nvol ent\n\u0120perpet ual\nub es\n\u0120world view\n\u0120Quant - um\n\u0120fil tered\n\u0120en su\norget own\nERS ON\n\u0120M ild\n37 9\nOT - T\n\xC3 \xA5\n\u0120vit amins\n\u0120rib bon\n\u0120sincere ly\n\u0120H in\n\u0120eight - een\n\u0120contradict ory\n\u0120gl aring\n\u0120expect ancy\n\u0120cons pir\n\u0120mon - strous\n\u01203 80\nre ci\n\u0120hand ic\n\u0120pump ed\n\u0120indic ative\n\u0120r - app\n\u0120av ail\n\u0120LEG O\n\u0120Mar ijuana\n19 85\nert on\n\u0120twent - ieth\n################ ################\n\u0120Sw amp\n\u0120val uation\n\u0120affili - ates\nadjust ed\n\u0120Fac ility\n26 2\n\u0120enz ymes\nitud inal\n\u0120imp - rint\nS ite\n\u0120install er\n\u0120T RA\nm ology\nlin ear\n\u0120Collect - ive\nig ating\n\u0120T oken\n\u0120spec ulated\nK N\n\u0120C ly\nor ity\n\u0120def - er\n\u0120inspect ors\nappro ved\nR M\n\u0120Sun s\n\u0120inform ing\n\u0120Sy - racuse\nib li\n7 65\n\u0120gl ove\n\u0120author ize\n\xE2\u0122\xA6\xE2\u0122\xA6\xE2\u0122\xA6\xE2\u0122\xA6 - \xE2\u0122\xA6\xE2\u0122\xA6\xE2\u0122\xA6\xE2\u0122\xA6\n\u0120Cru ise\n\u0120contract - ing\nshe ll\nIF E\n\u0120Jew el\np ract\n\u0120Phot oshop\n\u0120Know ing\nh - arm\n\u0120attract ions\nad an\net us\n01 8\nw agen\nAl t\n\u0120multip ly\n\u0120equ - ilibrium\n: {\n\u0120F ighters\n\u0120Ed gar\n\u0120four teen\nGo vern\n\u0120mis - use\n\u0120ab using\n\u0120ancest ry\nram er\n64 4\n\u0120wor ms\n\u0120thick - er\n\u0120Comb ine\n\u0120peas ants\n\u0120v ind\n\u0120con quest\n\u0120m - ocked\n\u0120c innamon\n\u0120C ald\n\u0120Gall up\n\u0120avoid ance\n\u0120incarn - ation\n\u0120Str at\n\u0120t asted\nent a\n\u0120N eal\np ared\n\u0120termin - ology\nject ion\nScient ists\n\u0120IN S\n\u0120De e\n\u0120direct ories\nR - oad\n\u0120Sh ap\nbr ight\n\u0120Direct ors\n\u0120Col umn\n\u0120b ob\n\u0120prefer - ably\n\u0120gl itch\nf urt\n\u0120e g\nid is\nC BC\n\u0120sur rendered\n\u0120test - ament\n33 6\nug gest\n\u0120N il\nan other\n\u0120pat hetic\n\u0120Don na\n\u01202 - 18\n\u0120A very\n\u0120whis key\n\u0120f ixture\n\u0120Con quest\n\u0120bet - s\nO cc\n\u0120Le icester\n] .\"\n\u0120) );\n\u0120fl ashes\n45 6\n\u0120mask - ed\nge bra\n\u0120comput ed\nche l\naud er\n\u0120defe ats\n\u0120Liber ation\n\u0120Os - ama\n\u0120V ive\nCh anges\nCh annel\n\u0120tar iffs\n\u0120m age\n\u0120S - ax\n\u0120inadvert ently\n\u0120C RE\n\u0120Re aper\nink y\ngr ading\n\u0120stere - otyp\n\u0120cur l\n\u0120F ANT\n\u0120fram eworks\nM om\n\u0120An ch\n\u0120flav - our\ncar bon\n\u0120perm itting\nlet cher\n\u0120Mo zilla\n\u0120Park ing\n\u0120Ch - amp\nSc roll\n\u0120murd erer\n\u0120rest ed\n\u0120ow es\n\u0120P oss\nAD - D\nIF F\nres olution\n\u0120Min ing\n\u0120compar ative\nD im\n\u0120neighbour - ing\n\u0120A ST\n\u0120T oxic\n\u0120bi ases\n\u0120gun fire\nur ous\n\u0120Mom - ent\n19 83\n\u0120per vasive\ntt p\n\u0120Norm ally\nr ir\nS arah\n\u0120Alb - any\n\u0120un sett\n\u0120S MS\nip ers\nl ayer\n\u0120Wh ites\nup le\n\u0120tur - bo\n\u0120Le eds\n\u0120that s\n\u0120Min er\nM ER\n\u0120Re ign\n\u0120per - me\n\u0120Bl itz\n\u012019 34\n\u0120intimid ating\nt ube\n\u0120ecc entric\nab - olic\nbox es\n\u0120Associ ates\nv otes\n\u0120sim ulate\num bo\naster y\n\u0120ship - ments\nFF FF\nan th\n\u0120season ed\n\u0120experiment ation\n\xE2\u0138 \u0142\nlaw - s\nMe et\nidd les\nant ics\nR ating\nIS IS\nh ift\n\u0120front s\nb uf\n01 - 7\n\u0120un att\n\u0120D il\nle ases\n\u0120Gard ens\n77 7\nt ouch\nve ll\n45 - 8\n\u0120= ====\ns aving\n\u0120er osion\n\u0120Qu in\n\u0120earn s\n\u0120accomplish - ment\n\u0120We i\n\u0120< [\n____ _\n\u0120ir rig\n\u0120T eddy\n\u0120conqu - ered\n\u0120Arm ored\n\u0120assert s\n\u0120manip ulating\nr \xC3\xA9\n\u0120transcript - s\nG allery\n\u0120plot ting\nNe il\n\u0120betray al\nload er\n\u0120S ul\n\u0120displ - acement\n\u0120roy alty\n\u0120W I\nhe it\n\u0120Dev ices\nalle l\n\u0120municipal - ities\n\u0120can al\nSt ars\n\u0120U AE\n\u0120\" \xE2\u0122\xA6\n\u0120C - U\nab ove\n\u0120reson ance\n\u0120guiActive Un\nadd ed\n\u0120Bra ves\n\u0120I - bn\n\u0120here by\n\u0120B RE\n\u0120share holder\n\u0120H ir\n\u0120J i\n\u0120strange - ly\n\u0120adm ired\n\u0120pl ight\n\u0120b achelor\n\u0120P ole\ncipl inary\nT - ony\n\u0120Armen ian\n\u0120un man\n\u0120Zion ist\nSt age\nisco ver\n\u0120autom - otive\n\u0120s idelines\n\u0120sl ick\n\u0120Rena issance\n\u0120F UN\nIm - ages\n\u0120H aj\n\u0120p ing\n\u0120short cut\n\u0120Bl vd\n\u0120Look s\n\u0120bur - sts\n\u0120cl amp\n\u0120m ish\n\u0120sort ing\n\u0120patri ot\n\u0120correct - ness\n\u0120Scand inav\n\u0120Caval iers\np ython\naz ar\n\u01203 75\n\u0120Ja - une\n40 9\n\u0120detrim ental\n\u0120stab bing\n\u0120poison ed\n\u0120f ountain\noc - ent\nor st\n\u0120Mar i\n\u0120r ains\n\u0120O vers\n\u0120Inst itution\nud - get\nAM Y\nt ale\n\u0120K R\n\u0120Pr ices\n\u0120head aches\n\u0120lands - l\n\u0120A ura\nBon us\n\u0120Z hao\n\u0120H ip\n\u0120hop s\n\u0120Kurd istan\n\u0120explo - iting\nry n\n\u0120hypocr isy\nop ening\n\u0120gun shot\n\u0120w ed\ninter - stitial\nInter stitial\n\u0120am en\nBre aking\n\u0120market ed\nW ire\n\u0120C - rowd\nContin ue\n\u0120K nown\n\u0120Effect ive\nore an\niz ons\nJose ph\n\u0120escal - ation\nus ername\n\u0120cur tain\nAT ES\n\u0120P AR\n\u0120M iy\n\u0120counter - fe\nl ene\n\u0120cont enders\nd aily\n\u0120As c\n\u0120Phill ip\nmost ly\n\u0120fil - ename\nhe ne\n\u0120resemb ling\n\u0120st aging\n\u0120Ch loe\n\u0120w iring\nH - on\n\u0120Ren ew\nott age\n\u0120Hy brid\nm uch\n\u0120stro kes\n\u0120policy - makers\nAP TER\n\u0120Ark ham\npl ot\n\u0120assist ants\n\u0120de port\n\u0120Se - ga\n\u0120influ enza\n\u0120C ursed\n\u0120K obe\n\u0120skin ny\nProv ider\n\u0120R - ip\n\u0120increment al\nproduct s\nB F\n\u0120d ome\n\u0120C redits\n\u0120los - ers\nint s\n\u0120Bet ty\n\u0120Tal ent\n\u0120D AM\nL v\nE ss\n\u0120d ens\ntem - p\nJ udge\nod ic\n\u0120' (\nUR ES\nets k\nV O\n\u0120retrie ved\n\u0120architect - s\n\xD9 \u0129\n\u0120eth ic\n\u0120Second ary\nst ocks\nad ia\n\u01203 25\n\u0120Op - inion\n\u0120simultane ous\n\u0120d izz\nul p\n\u0120smugg ling\nipp ery\nR - andom\nf acing\n\u0120D as\n\u0120stock p\n\u0120discl osures\npo inter\n\u0120cor - al\n\u0120Se lection\n\u0120P ike\nival ent\n\u0120ruth less\n\u0120R im\n\u0120ensu - ing\n\u0120Exper iment\n\u0120congress man\n\u0120belie ver\n\u0120un specified\n\u0120M - ord\n\u0120knowledge able\n\u0120V ERY\nT X\n\u0120stra ps\n\u0120tur f\napesh - ifter\n\u0120mar ital\n\u0120fl ock\n\xE3\u0123 \u0128\n26 3\nAM ES\n\u0120Opp - osition\n\u0120tre asures\n\u0120G OD\n\u0120model ed\n\u0120WOR LD\n\u0120( - [\n\u0120Us age\nH F\n\u0120$ (\nuss ed\n\u0120pione er\nE ight\npar se\nb - read\nrit z\n\u0120Mir anda\n\u0120K ant\n++ )\nore n\n\u0120prov oked\n\u0120bre - eds\n\u0120In cludes\n\u0120Past ebin\n\u0120Fl ip\nJ ava\n\u0120br ink\n\u0120rum - ored\n\u0120un seen\n\u0120gar nered\n\u0120Def in\nal ted\n\u0120tatt oos\n\u0120hes - itation\nis itions\n\u0120We aver\n\u0120Report ing\n\u0120therap ies\n\u0120consult - ants\n\u0120resid ual\n\u0120Mal i\n\u0120Rom a\ni ago\n\u0120Res idents\nub - i\n\u0120remed ies\n\u0120adapt ive\n\u0120Al ive\n\u0120Bar cl\n\u0120wal - lets\nc rypt\netermin ation\n\u0120Pel osi\n\u0120sl ipping\noton in\n\u0120all - iances\npat rick\nir is\n\u0120or th\n\u0120Per kins\n\u0120De V\n\u0120G - ets\n\u0120dry ing\nge e\nfore st\n\u0120For get\nore m\n33 9\n\u0120vague - ly\n\u0120D ion\n\u0120P orn\n\u0120H OW\n\u0120p neum\n\u0120rub ble\n\u0120T - aste\nenc ia\n\u0120G el\n\u0120d st\n\u012024 5\n\u0120Moroc co\ninf lamm\n\u0120Tw - ins\n\u0120b ots\nd aughter\n\u0120B alk\n\u0120bre thren\n\u0120log os\n\u0120go - bl\nf ps\n\u0120sub division\n\u0120p awn\n\u0120squee zed\n\u0120mor ale\n\u0120D - W\n' \"\n\u0120kn ot\nook y\n\u0120div isive\n\u0120boost ed\nch y\n\xE3\u0125 - \u0132\nif act\n\u0120newcom ers\n\u0120Wrest ling\n\u0120sc outs\nw olves\nR - at\n\u0120nin eteenth\n\u0120Os borne\nSt ats\n\u0120em powered\n\u0120psych - opath\n\u0120O EM\nugg age\n\u0120P K\n\u0120Moh ammad\nP ak\n\u0120anarch - ists\n\u0120Ext ract\nest hes\n\u0120Stock holm\nl oo\n\u0120G raph\n\u0120deploy - ing\n\u0120Str anger\n\u0120M old\n\u0120staff er\n\u0120discount ed\nuck - le\nple ase\n\u0120Land ing\n\xC3\u0143 a\n\u012019 3\n\u0120an te\n\u0120rep - etition\n\u0120+ /-\n\u0120par ody\n\u0120live ly\nAA A\n\u0120Hor us\n\u0120p - its\nind ers\nL OC\n\u0120Ven ice\n40 6\n\u0120Dis cover\n\xE2 \u0128\nellect - ual\n\u0120p ens\n\u0120ey el\nig uous\nIm pl\n\u0120j oking\n\u0120inv al\n\u0120Bel - fast\n\u0120credit ors\n\u0120Sky walker\nov sky\n\u0120cease fire\n\u0120se - als\nis oft\n) ).\n\u0120Fel ix\nIT S\n\u0120t resp\n\u0120Block chain\new - are\n\u0120Sch war\nen ne\nmount ed\n\u0120Be acon\nles h\n\u0120immense ly\n\u0120che - ering\nEm ploy\nsc ene\nish ly\natche wan\n\u0120Nic olas\n\u0120dr ained\n\u0120Ex - it\n\u0120Az erb\nj un\n\u0120flo ated\nu ania\nDe ep\n\u0120super v\n\u0120myst - ical\n\u0120D ollar\n\u0120Apost le\n\u0120R EL\n\u0120Prov ided\n\u0120B - ucks\n\xE3\u0125 \xB4\ncut ting\n\u0120enhance ments\n\u0120Pengu ins\n\u0120Isa - iah\n\u0120j erk\n\u0120W yn\n\u0120st alled\n\u0120cryptoc urrencies\n\u0120R - oland\nsing le\n\u0120l umin\n\u0120F ellow\n\u0120Cap acity\n\u0120Kaz akh\nW - N\n\u0120fin anced\n38 9\n\u0120t id\n\u0120coll usion\n\u0120My r\n\xEE \u0122\nSen - ator\n\u0120ped iatric\n\u0120neat ly\n\u0120sandwic hes\n\u0120Architect - ure\n\u0120t ucked\n\u0120balcon y\n\u0120earthqu akes\nqu ire\nF uture\n\u0120he - fty\n\xE9 \u0139\n\u0120special izes\n\u0120stress es\n\u0120s ender\n\u0120misunder - standing\n\u0120ep ile\n\u0120prov oke\n\u0120Col ors\n\u0120dis may\nuk o\n[ - _\n58 6\nne utral\n\u0120don ating\n\u0120Rand all\nMult i\n\u0120convenient - ly\n\u0120S ung\n\u0120C oca\n\u0120t ents\n\u0120Ac celer\n\u0120part nered\n27 - 2\nir ming\n\u0120B AS\ns ometimes\n\u0120object ed\nub ric\np osed\nLC S\ngr - ass\n\u0120attribut able\nV IS\nIsrael i\n\u0120repe ats\n\u0120R M\nv ag\nut - a\nin ous\n\u0120in ert\n\u0120Mig uel\n\xE6 \u0143\n\u0120Hawai ian\nB oard\n\u0120art - ific\n\u0120Azerb ai\nas io\n\u0120R ent\nA IN\n\u0120appl iances\n\u0120national - ity\n\u0120ass hole\n\u0120N eb\n\u0120not ch\nh ani\n\u0120Br ide\nAv ailability\n\u0120intercept - ed\n\u0120contin ental\n\u0120sw elling\n\u0120Pers pect\nb ies\n. <\nith - metic\n\u0120L ara\n\u0120tempt ing\nadd r\n\u0120oversee ing\ncl ad\n\u0120D - V\n\u0120Ging rich\n\u0120m un\n\u0120App ropri\n\u0120alter ations\n\u0120Pat - reon\n\u0120ha voc\n\u0120discipl ines\n\u0120notor iously\naku ya\nier i\n? - ).\n\u0120W ent\n\u0120sil icon\n\u0120tre mb\nCont ainer\nK nown\n\u0120mort - ar\nest e\nick a\nAr thur\n\u0120Pre viously\n\u0120Mart y\n\u0120sp arse\ng - ins\n\u0120in ward\n\u0120Particip ant\nC opy\n\u0120M isc\n\u0120antib iotic\n\u0120Ret - ro\n\u0120el usive\n\u0120ass ail\n\u0120Batt alion\n\u0120B ought\n\u0120dimin - ish\n\u0120Euro pa\ns ession\n\u0120Danger ous\nies el\n\u0120disbel ief\n\u0120bl - asts\next reme\n\u0120Boy d\n\u0120Project s\n\u0120Gu ys\n\u0120under gone\n\u0120gr - ill\n\u0120Dw ight\n\u012019 7\nUS ER\n\u0120files ystem\n\u0120cl ocks\nT - aylor\n\u0120wra pper\n\u0120fold ing\nous and\n\u0120Philipp ine\nATION AL\n\u0120Per - th\n\u0120as hes\n\u0120accum ulate\n\u0120Gate way\nSh op\norks hire\nH an\n\u0120Bar - rel\n\u0120Le h\n\u0120X V\n\u0120wh im\n\u0120rep o\n\u0120C G\n\u0120M am\n\u0120incorpor - ating\n\u0120bail out\n\u0120lingu istic\n\u0120dis integ\nC LE\n\u0120cinem - atic\n\u0120F iber\nS yn\nil ion\n\u0120Com pos\nc hens\n\u0120ne oc\n\u0120bo - iled\nF INE\non o\nun cle\nik en\n\u0120B M\n\xCE \xB9\n\u0120receipt s\n\u0120disp - osed\n\u0120Th irty\n\u0120R ough\n\u0120A BS\n\u0120not withstanding\noll - en\n# $\n\u0120unrel iable\n\u0120bl oom\n\u0120medi ocre\n\u0120tr am\n\u0120Tas - man\n\u0120sh akes\n\u0120manifest o\n\u0120M W\n\u0120satisf actory\n\u0120sh - ores\n\u0120comput ation\n\u0120assert ions\norm ons\nar ag\nab it\nDem ocrats\n\u0120L - oot\n\u0120Vol ks\nha ired\n\u0120grav itational\nS ing\n\u0120M iz\n\u0120thro - ttle\n\u0120tyr anny\n\u0120View s\n\u0120rob ber\n\u0120Minor ity\n\u0120sh - rine\nsc ope\npur pose\n\u0120nucle us\nour cing\n\u0120US DA\n\u0120D HS\nw - ra\n\u0120Bow ie\nSc ale\n\u0120B EL\nx i\nI ter\n\u0120( ),\nw right\n\u0120sail - ors\nous ed\nNAS A\n\u0120Pro of\n\u0120Min eral\nt oken\n\u0120F D\nR ew\n\u0120e - ll\n6 30\n\u0120chance llor\n\u0120G os\n\u0120amount ed\n\u0120Rec re\nome - z\n\u0120Opt im\n\u0120Ol ive\n\u0120track er\now ler\n\u0120Un ique\nR oot\n\u0120mar - itime\n\u0120Qur an\n\u0120Ad apt\n\u0120ecosystem s\n\u0120Re peat\n\u0120S - oy\n\u0120I MP\n\u0120grad uating\nand em\nP ur\n\u0120Res et\n\u0120Tr ick\n\u0120Ph - illy\n\u0120T ue\n\u0120Malays ian\n\u0120clim ax\n\u0120b ury\n\u0120cons - pic\n\u0120South ampton\n\u0120Fl owers\n\u0120esc orted\n\u0120Educ ational\n\u0120I - RC\n\u0120brut ally\ne ating\n\u0120pill ar\n\u0120S ang\n\u0120J ude\nar - ling\n\u0120Am nesty\n\u0120rem inding\n\u0120Administ rative\nhes da\n\u0120fl - ashed\n\u0120P BS\nper ate\nfe ature\n\u0120sw ipe\n\u0120gra ves\noult ry\n26 - 1\nbre aks\n\u0120Gu er\n\u0120sh rimp\n\u0120V oting\nqu ist\n\u0120analy - tical\n\u0120tables poons\n\u0120S OU\n\u0120resear ched\n\u0120disrupt ed\n\u0120j - our\n\u0120repl ica\n\u0120cart oons\nb ians\n} )\nc opy\nG ot\nou ched\nP - UT\n\u0120sw arm\nnot ations\ns aid\n\u0120reb uilt\n\u0120collabor ate\n\u0120r - aging\n\u0120n ar\n\u0120dem ographics\n\u0120D DR\n\u0120dist rust\noss ier\n\u0120K - ro\n\u0120pump kin\n\u0120reg rets\n\u0120fatal ities\n\u0120L ens\n\u0120O - le\np d\n\u0120pupp et\n\u0120Out look\n\u0120St am\nO l\nF air\nU U\n\u0120re - written\n\xC4 \xB1\n\u0120fasc inated\n\u0120ve ctors\n\u0120trib unal\nu - ay\n\u0120M ats\n\u0120Co ins\n[ [\n\u012018 1\n\u0120rend ers\n\u0120K aepernick\n\u0120esp - ionage\n\u0120sum m\n\u0120d itch\nAcc ount\n\u0120spread sheet\n\u0120mut - ant\np ast\n40 7\n\u0120d ye\n\u0120init iation\n\u01204 000\n\u0120punish - able\n\u0120th inner\n\u0120Kh al\n\u0120inter medi\nD un\n\u0120Goth am\n\u0120eager - ly\n\u0120vag inal\np owers\nV W\n\u0120WATCH ED\n\u0120pred ator\nams ung\n\u0120dispar - ity\n\u0120[ *\n\u0120am ph\n\u0120out skirts\n\u0120Spir its\n\u0120skelet - al\n\xD0 \xBB\n\u0120R ear\n\u0120issu ance\n\u0120Log ic\nre leased\nZ Z\n\u0120B - ound\nEnt ry\n\u0120ex its\nis ol\n\u0120Found er\n\u0120w re\n\u0120Green - land\n\u0120M MO\nt aker\nIN C\n\xE3\u0123 \xBE\n\u0120hour ly\nhen ko\n\u0120fantas - ies\n\u0120dis ob\n\u0120demol ition\n\xE3\u0125 \u012D\n\u0120en listed\nrat - ulations\n\u0120mis guided\n\u0120ens ured\n\u0120discour aged\nm ort\n\u0120fl - ank\n\u0120c ess\n\u0120react s\n\u0120S ere\ns ensitive\n\u0120Ser pent\nass - ad\n\u012024 7\n\u0120calm ly\nb usters\n\u0120ble ed\n\u0120St ro\n\u0120amuse - ment\n\u0120Antar ctica\n\u0120s cept\n\u0120G aw\na q\nason ic\n\u0120sp - rawling\nn ative\natur ated\n\u0120Battle field\nIV ERS\nE B\n\u0120G ems\n\u0120North - western\n\u0120Fil ms\n\u0120Aut omatic\n\u0120appre hend\n\xE3\u0123 \xA8\n\u0120gui - Name\n\u0120back end\n\u0120evid enced\nge ant\n01 2\n\u0120S iege\n\u0120external - To\n\u0120unfocused Range\n\u0120guiActiveUn focused\n\u0120gui Icon\n\u0120externalTo - EVA\n\u0120externalToEVA Only\nF ri\nch ard\nen aries\n\u0120chief s\n\u0120c - f\n\u0120H UD\n\u0120corro bor\n\u0120d B\n\u0120T aken\n\u0120Pat ricia\nra - il\n\u0120Ch arm\n\u0120Liber tarian\nrie ve\nPerson al\n\u0120O UR\nger ies\n\u0120dump - ing\n\u0120neurolog ical\nit imate\n\u0120Clint ons\nraft ed\n\u0120M olly\n\u0120termin - als\nreg ister\n\u0120fl are\n\u0120enc oded\n\u0120autop sy\np el\nm achine\n\u0120exempt - ions\n\u0120Roy als\nd istance\n\u0120draft s\n\u0120l ame\n\u0120C unning\n\u0120sp - ouses\n\u0120Mark ets\n\u0120Car rier\n\u0120imp lying\n\u0120Y ak\ns id\n\u0120l - oser\n\u0120vigil ant\n\u0120impe achment\n\u0120aug mented\n\u0120Employ - ees\n\u0120unint ended\ntern ally\n\u0120W att\n\u0120recogn izable\ness im\n\xE6 - \u013F\n\u0120co ated\nr ha\n\u0120lie utenant\n\u0120Legisl ation\npub lished\n44 - 4\n01 3\n\u0120ide ally\n\u0120Pass word\n\u0120simpl ify\n\u0120Met a\n\u0120M - RI\n\u0120ple ading\norgan ized\nhand ler\n\u0120un ravel\ncor rect\n\u0120 - icy\n\u0120paran oid\n\u0120pass er\n\u0120inspect ions\nof er\n\u0120Health - care\n28 3\n\u0120Br ut\niol a\nfor ge\n\u0120Med ieval\nMS N\nie vers\n\u0120Program - ming\n\xE5 \u012B\n\u01202 23\nm u\n\u0120C LE\nug a\n\u0120sho ppers\n\u0120inform - ative\n\u0120Pl ans\n\u0120supplement ation\n\u0120T ests\nty ard\nocy tes\n\u0120Veg - a\n\u0120Gujar at\nerman ent\nEx cept\n\u0120L OT\nall a\n\u0120C umm\n\u0120O - sw\n\u0120ven om\n\u0120Deb t\n\u0120D OWN\n\u0120reun ion\n\u0120m uc\n\u0120Rel - ief\n\u0120ge op\n\u0120\xF0\u0141 \u013A\nal ogue\nAn th\nech o\n\u0120cor - ros\n\u0120repl ication\n\u0120Bl azing\n\u0120D aughter\n\u0120inf lic\n\u0120Lind - sey\n\xD9 \u012A\n28 4\nEx it\n\u0120gl oom\nTA IN\n\u0120undermin ing\n\u0120adv - ising\nh idden\n\u0120over flow\n\u0120g or\nurd ue\n\u0120e choes\nenh agen\n\u0120imp - uls\nd rug\nc ash\n\u0120as ync\n\u0120mir ac\nat ts\np unk\n\u0120piv ot\n\u0120Legisl - ative\n\u0120blog gers\n\u0120Cl aw\ns burg\nd yl\n\u0120Recomm end\n\u0120ver - te\n\u0120prohib iting\n\u0120Pant her\nJon athan\n\u0120o min\n\u0120hate - ful\n28 1\n\u0120Or che\n\u0120Murd och\ndown s\n\u0120as ymm\nG ER\nAl ways\n\u0120inform - s\n\u0120W M\n\u0120P ony\n\u0120App endix\n\u0120Ar lington\nJ am\n\u0120medic - inal\n\u0120S lam\nIT IES\n\u0120re aff\n\u0120R i\nF G\nS pring\nb ool\n\u0120thigh - s\n\u0120mark ings\n\u0120Ra qqa\n\u0120L ak\np oll\nts ky\n\u0120Mort y\n\u0120Def - inition\n\u0120deb unk\nend ered\n\u0120Le one\na vers\n\u0120mortg ages\nApp - arently\nN ic\nha us\n\u0120Th ousands\nau ld\n\u0120m ash\nsh oot\n\u0120di - arr\n\u0120conscious ly\nH ero\ne as\n\u0120N aturally\n\u0120Destroy er\n\u0120dash - board\nserv ices\nR og\n\u0120millenn ials\n\u0120inv ade\n- (\n\u0120comm - issions\n\u0120A uckland\n\u0120broadcast s\n\u0120front al\n\u0120cr ank\n\u0120Hist - oric\n\u0120rum ours\nCT V\n\u0120ster il\n\u0120boost er\nrock et\n\xE3\u0124 - \xBC\nut sche\n\u0120P I\n\u01202 33\n\u0120Produ cer\n\u0120Analy tics\n\u0120inval - uable\n\u0120unint ention\n\u0120C Y\n\u0120scrut in\n\u0120g igg\n\u0120eng - ulf\n\u0120prolet ariat\n\u0120h acks\n\u0120H ew\nar ak\n\u0120Sl ime\nield - ing\nag her\n\u0120Ell iot\n\u0120tele com\n\u01202 19\nult an\n\u0120Ar bor\n\u0120Sc - outs\nB an\n\u0120lifes pan\n\u0120bl asp\n38 8\n\u0120jud iciary\n\u0120Contin - ental\nask ing\nMc C\nL ED\n\u0120bag gage\n\u0120Sorce rer\n\u0120rem nants\n\u0120Griff - ith\nets u\n\u0120Sub aru\n\u0120Person ality\ndes igned\nush ima\nagn ar\n\u0120rec - oil\n\u0120pass ions\n\\ \":\n\u0120te e\n\u0120abol ition\n\u0120Creat ing\nj - ac\n\u012019 4\n01 9\n\u0120pill ars\nric hed\n/ \"\nt k\n\u0120live lihood\n\u0120ro - asted\nah on\n\u0120H utch\nass ert\n\u0120divid end\n\u0120kn it\n\u0120d - aunting\n\u0120disturb ance\n\u0120sh ale\n\u0120cultiv ated\n\u0120refriger - ator\nL B\n\u0120N ET\n\u0120commercial s\n\u0120think ers\n45 5\n\u0120ch - op\nB road\n\u0120suspic ions\n\u0120tag ged\nl ifting\n\u0120sty lish\n\u0120Shield - s\nShort ly\n\u0120t ails\nA uth\nST E\n\u0120G AME\n\u0120se ism\n\u0120K - is\nolog ne\n\u0120cow ork\n\u0120forc ibly\n\u0120thy roid\n\u0120P B\nAN - E\nmar ried\nh orse\n\u0120poly mer\n\u0120Ch al\nod or\nDE BUG\n\u0120Con - text\n\u0120bl iss\n\u0120pin point\n\u0120Mat hemat\nleg ram\n\u0120Week - end\n\u0120lab elled\n\u0120b art\nit les\n\u0120est rogen\n\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136 - \xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\xE2\u0122\u0136\n\" - '\n\u0120vis ibly\n\u0120outs ider\naid a\nAre a\n\u0120disse min\n\u0120dish - onest\n\u0120Cl osed\n\u0120Bullet in\n\u0120Ram sey\nsw ord\n\u0120X I\nour - ced\nS ame\n34 6\n\u0120Re pe\n\u0120K ou\nc ake\nem is\nC ache\n\u0120Me - aning\n\u0120En light\nonom y\n\u0120manifest ation\nsw orth\nJ ay\n\u0120ch - ore\n\xC3\xB6 r\nD ream\n\u0120sanction ed\n\u0120cult urally\n\u0120A ra\nN - av\n\u0120the ological\n\u0120str ut\n\u0120V O\n\u0120Hand book\n\u0120construct - ing\n\u0120\xC2 \xB6\n\u0120Benef its\n\u0120Psych ological\ns ac\n\xE5 \xB8\np - olicy\n\u0120Mat ters\n\u0120Report ed\n\u0120By te\n\u0120vit ro\n\u0120M - aiden\n\u0120l am\n\u0120Jenn ings\n\u0120gar ment\n\u0120Rut gers\n\u0120Staff - ord\n\u0120Well ington\n\u0120inter mitt\n\u0120n pm\n\u0120ord eal\n\u0120plug - ged\no oming\nin ished\nfram ework\n\u0120tim ber\n\u0120c ass\n\u01208 50\nil - ess\n\u0120Red ux\n7 68\nSt re\n\u0120surpass ed\nw hel\n\u0120paralle ls\n\u0120ve - il\n\u0120G I\n\u0120R EST\n\u0120read iness\ns ort\n\u0120mod ifying\n\u0120Sl - ate\nru ff\n\u0120mar ble\n\u0120inf rared\n\u0120aud itor\n\u0120FANT ASY\n\u0120P - overty\n\u0120S PD\n\u0120\" (\nK y\nRA Y\n\u0120execut ions\n\u0120Bever - ly\n\u0120Marx ism\n\u0120Bur st\n\u0120K ali\nest ones\nClear ly\nE ll\n\xE3\u0123 - \xA7\n\u0120Proceed ings\nT oken\nIF IC\n\xC3\xB1 a\nCent ral\n\u0120H aley\n\u0120D - rama\n\u0120form ations\nOR N\nBook s\n\u0120dom inating\n\u0120Fly ers\n\u0120Compan - ion\n\u0120discipl ined\n\u0120Yug oslav\n\u0120Spell s\n\u0120v engeance\n\u0120land - lords\nL en\n\u0120O gre\nano ia\n\u0120pier cing\n\u0120con greg\n\u0120score - r\nob ia\n\u0120nic kel\n\u0120Lear ns\n\u0120re jo\n\u0120master piece\nFl - ash\n\u0120inhab ited\n\u0120Open GL\n\u0120D ud\n\u0120I CO\n\u0120ar ter\n\u0120pl - ur\n\u0120master y\n\u0120long standing\nst ed\n\u0120w ines\n\u0120telev - ised\n\u0120Sh rine\n\u0120Bay ern\n\u0120\xE2 \u0135\u013A\n\u0120encl osure\nj - ohn\n\u0120prophe ts\n\u0120Res urrection\n\u0120Ord ers\n\u0120un even\nr - als\n\u0120d wind\n\u0120L ah\n\u0120Sl oven\n37 8\n\u0120ins istence\naff - le\n\u0120Cl one\n\u0120hard ship\n\u0120Congress man\n\u0120ple ad\n\u0120review - ers\n\u0120c ured\n\u012019 35\nas ley\nf ake\n\u0120Th inking\nyd ia\nP ART\n\u0120D - ota\no it\n\u0120wh ipped\n\u0120b ouncing\n\u0120Hispan ics\ncom ings\n\u0120cann - abin\n\u0120Ch ambers\n\u0120Z ack\nOption al\n\u0120co ats\n\u0120prow ess\n\u0120Nort - on\n\u0120plain ly\n\u0120fre ight\n\u0120inhib ition\n\u0120cl am\n\u012030 - 3\nke f\nale igh\nL uke\n\u0120psych o\nator ium\nM ED\n\u0120treat ies\n\u0120ind - isc\n\u0120d c\nOP S\n\u0120resil ient\n\u0120Inter state\n\u0120sl ack\n\u0120mund - ane\n\u0120estab lishes\n35 9\n\u0120str ained\n\u0120n ond\nS us\n\u0120cast - e\nar ate\nie ving\n\u0120unfair ly\n\u0120pars er\non ial\nurs ive\nV ia\n\u0120Ott - o\n\u0120Author ities\nstro ke\nK R\n\u0120Mer cy\n\u0120furn ished\n\u0120out - set\n\u0120met ic\n19 82\nolith ic\n\u0120T ent\nog ical\n\u0120A ircraft\n\u0120h - ides\n\u0120Bec ame\n\u0120educ ators\nre aching\n\u0120vol atility\n\u0120todd - ler\n\u0120NAS CAR\n\u0120Tw elve\n\u0120High lights\n\u0120gra pe\n\u0120spl - its\n\u0120pe asant\n\u0120re neg\n\u0120MS I\nTem p\nst ars\n\u0120tre k\n\u0120Hy - de\nb inding\n\u0120real ism\n\u0120ox ide\n\u0120H os\n\u0120mount s\n\u0120bit - ing\n\u0120collaps ing\n\u0120post al\n\u0120muse ums\n\u0120det ached\n\u0120respect - ing\n\u0120monop ol\n\u0120work flow\n\u0120C ake\nTem plate\n\u0120Organ - isation\n\u0120pers istence\n36 9\nC oming\nB rad\n\u0120redund ant\n\u0120G - TA\n\u0120b ending\n\u0120rev oked\n\u0120off ending\n\u0120fram ing\n\u0120print - f\nComm un\nmem bers\nOut side\n\u0120const rued\n\u0120c oded\nF ORE\n\u0120ch - ast\nCh at\nInd ian\n\u0120Y ard\n? !\"\n\u0120P orts\n\u0120X avier\n\u0120R - ET\n' .\"\n\u0120Bo at\niv ated\nich t\numer able\nD s\n\u0120Dun n\n\u0120coff - in\n\u0120secure ly\n\u0120Rapt ors\n\u0120B es\nInstall ation\n\u0120in ception\n\u0120Health - y\nend ants\n\u0120psych ologists\n\u0120She ikh\nc ultural\n\u0120Black Berry\nsh - ift\nF red\noc he\n\u0120c akes\n\u0120S EO\n\u0120G ian\n\u0120As ians\nog - ging\ne lement\n\u0120pund its\n\u0120V augh\n\u0120G avin\n\u0120h itter\n\u0120drown - ed\n\u0120ch alk\n\u0120Z ika\n\u0120meas les\n80 2\n\xE2\u0122\xA6 ..\n\u0120AW - S\n] \"\n\u0120dist ort\n\u0120M ast\n\u0120antib odies\n\u0120M ash\nMem - ory\n\u0120Ug anda\n\u0120Pro b\n\u0120vom iting\n\u0120Turn s\n\u0120occup - ying\n\u0120ev asion\n\u0120Ther apy\n\u0120prom o\n\u0120elect r\n\u0120blue - print\n\u0120D re\npr iced\n\u0120Dep ot\n\u0120allev iate\n\u0120Som ali\nm - arg\nn ine\n\u0120nostalg ia\n\u0120She pherd\n\u0120caval ry\n\u0120tor ped\n\u0120Blood - y\nx b\n\u0120s ank\n\u0120go alt\nreport print\nembed reportprint\nclone - embedreportprint\n\u0120In itially\n\u0120F ischer\n\u0120not eworthy\nc ern\n\u0120in - efficient\nraw download\nrawdownload cloneembedreportprint\nc ation\n\u0120D - ynasty\nl ag\nD ES\n\u0120distinct ly\n\u0120Eston ia\n\u0120open ness\n\u0120g - ossip\nru ck\nW idth\n\u0120Ib rahim\n\u0120pet roleum\n\u0120av atar\n\u0120H - ed\nath a\n\u0120Hog warts\n\u0120c aves\n67 8\n\u0120safegu ard\n\u0120M - og\niss on\n\u0120Dur ham\nsl aught\n\u0120Grad uate\n\u0120sub conscious\n\u0120Ex - cellent\n\u0120D um\n---- -\n\u0120p iles\n\u0120W ORK\n\u0120G arn\n\u0120F - ol\n\u0120AT M\n\u0120avoid s\n\u0120T ul\n\u0120ble ak\nEL Y\niv ist\nlight - ly\nP ers\n\u0120D ob\n\u0120L S\n\u0120ins anity\n\xCE \xB5\natal ie\nEn - large\n\u0120tw ists\n\u0120fault y\n\u0120pir acy\n\u0120imp over\n\u0120rug - ged\n\u0120F ashion\n\u0120s ands\n' ?\nsw ick\n\u0120n atives\n\u0120he n\n\u0120No - ise\n\xE3\u0125 \u0139\n\u0120g reens\n\u0120free zer\n\u0120d ynasty\n\u0120Father - s\n\u0120New ark\n\u0120archae ological\n\u0120o t\nob ar\n\u0120block ade\n\u0120all - erg\nL V\n\u0120deb it\n\u0120R FC\n\u0120Mil ton\n\u0120Press ure\n\u0120will - ingly\n\u0120disproportion ate\n\u0120opp ressive\n\u0120diamond s\n\u0120belong - ings\n19 70\n\u0120bell s\n\u0120imperial ism\n\u01202 27\n\u0120expl oding\n\u0120E - clipse\n\u012019 19\n\u0120r ant\n\u0120nom inations\n34 7\n\u0120peace fully\nric - a\n\u0120F UCK\n\u0120vib ration\nmal ink\n\u0120ro pes\n\u0120Iv anka\n\u0120Brew - ery\n\u0120Book er\n\u0120Ow ens\ngo ers\nServ ices\n\u0120Sn ape\n\u012019 - 1\n39 5\n\u01202 99\njust ice\n\u0120b ri\n\u0120disc s\n\u0120prom inently\n\u0120vul - gar\n\u0120sk ipping\nl ves\n\u0120tsun ami\n37 4\n\u0120U rug\n\u0120E id\nrec - ated\np hen\n\u0120fault s\n\u0120Start ed\n9 50\n\u0120p i\n\u0120detect - or\n\u0120bast ard\n\u0120valid ated\nSpace Engineers\nOUR CE\n\u0120( ~\n\u0120uns - ur\n\u0120aff irmed\n\u0120fasc ism\n\u0120res olving\n\u0120Ch avez\n\u0120C - yn\n\u0120det ract\nL ost\n\u0120rig ged\n\u0120hom age\n\u0120Brun o\n55 - 5\nec a\n\u0120press es\n\u0120hum our\n\u0120sp acing\n\u0120' /\nolk ien\nC - oun\nOP ER\nT re\nS on\n\u0120Cambod ia\nier re\nm ong\no zy\n\u0120liquid - ity\n\u0120Sov iets\n\u0120Fernand o\n\u01202 29\n\u0120sl ug\n\u0120Catal - an\nelect ric\n\u0120sc enery\n\u0120H earth\n\u0120const rained\n\u0120goal - ie\n\u0120Gu idelines\n\u0120Am mo\n\u0120Pear son\n\u0120tax ed\n\u0120fet - us\nResp onse\n\u0120Alex is\nth ia\nG uy\n\u0120recon struct\n\u0120extrem - es\n\u0120conclud ing\n\u0120P eg\nook s\n\u0120ded uctions\nR ose\n\u0120ground - breaking\n\u0120T arg\n\xE3\u0125 \u0123\n\u0120Re ve\nres ource\n\u0120mo - ons\n\u0120electrom agnetic\n\u0120amid st\n\u0120Vik tor\nN ESS\nB ACK\n\u0120comm - ute\n\u0120Ana heim\n\u0120fluct uations\n6 40\n\u0120nood les\n\u0120Cop - enhagen\n\u0120T ide\n\u0120Gri zz\n\u0120S EE\n\u0120pip elines\n\u0120sc - ars\nend o\nag us\n\u0120E TF\n/ #\n\u0120Bec ome\n44 8\n\u0120vis c\n\u0120Recomm - ended\n\u0120j umper\n\u0120cogn ition\n\u0120assass in\n\u0120witness ing\n\u0120Set - up\n\u0120l ac\nv im\nIS M\np ages\nSS L\n35 8\n\u0120ad ject\nindust rial\nl - ore\ncher y\n\u0120gl itter\n\u0120c alf\nFlor ida\n\u0120spoil ers\n\u0120succeed - s\n\u0120ch anting\n\u0120slog ans\n\u0120Tr acy\nVis it\nrol ogy\n\u0120m - ornings\n\u0120line age\n\u0120s ip\n\u0120intense ly\n\u0120flour ish\n\u0120Sle - eping\n\u0120F em\nor por\n\u0120K lan\n\u0120Dar th\nh ack\n\u0120Ni elsen\n\u0120tum - ors\n\u0120procure ment\n\u0120Y orkshire\n\u0120ra ided\nK Y\nAn na\n\u0120// - [\n\u0120Dis order\n\u0120Must ang\n\u0120W en\n\u0120Try ing\ns q\n\u0120deliver - ies\n\u0120shut ter\n\u0120cere bral\n\u0120bip olar\n\u0120C N\nl ass\nj - et\n\u0120deb ating\n> :\n\u0120e agle\ngr ades\n\u0120D ixon\nUG C\nM AS\n\u0120Dr - aco\n\u0120Mach ines\naff er\n\u0120em an\n\xC2 \xB2\npr on\n\u0120G ym\n\u0120compar - atively\n\u0120Trib unal\nPR O\n\u0120le x\n\u0120fert ile\n\u0120dep ressing\n\u0120superf - icial\ness ential\n\u0120Hun ters\ng p\n\u0120prom inence\nL iber\n\u0120An - cest\note chnology\n\u0120m ocking\n\u0120Tra ff\n\u0138 \u013C\nMed ium\nI - raq\n\u0120psychiat rist\nQuant ity\n\u0120L ect\n\u0120no isy\n5 20\nG Y\n\u0120sl - apped\n\u0120M TV\n\u0120par a\np ull\nMult iple\nas her\n\u0120n our\n\u0120Se - g\nSpe ll\nv ous\nord ial\nSen ior\n\u0120Gold berg\n\u0120Pl asma\nne ed\n\u0120mess - enger\nere t\n\u0120team ed\n\u0120liter acy\n\u0120Le ah\n\u0120D oyle\n\u0120em - itted\nU X\n\u0120ev ade\n\u0120m aze\n\u0120wrong ly\n\u0120L ars\n\u0120stere - otype\n\u0120pled ges\n\u0120arom a\n\u0120M ET\n\u0120ac re\n\u0120O D\n\u0120f - f\n\u0120brew eries\n\u0120H ilton\nund le\n\u0120K ak\n\u0120Thank fully\n\u0120Can - ucks\nin ctions\n\u0120App ears\n\u0120co er\n\u0120undermin ed\nro vers\nAnd - re\n\u0120bl aze\num ers\n\u0120fam ine\namp hetamine\nulk an\nAm ount\n\u0120desper - ation\nwik ipedia\ndevelop ment\n\u0120Cor inth\nuss ia\nJack son\nL I\nN - ative\nR s\nOh io\n\u0120Kath leen\nF ortunately\n\u0120attend ant\n\u0120Pre - ferred\n\u0120Did n\n\u0120V s\nM is\n\u0120respond ent\n\u0120b oun\nst able\n\u0120p - aved\n\u0120unex pl\n\u0120Che ney\nL M\n\u0120C ull\nbl own\n\u0120confront - ing\noc ese\nserv ing\nW i\n\u0120Lith uania\nann i\n\u0120st alk\nh d\n\u0120v - ener\nAP H\nynchron ous\nUR R\num ably\nhist oric\nH alf\nH ay\n\u0120resil - ience\nspe ction\n\u0120abandon ing\nO bs\n\u0120Deb bie\n\u0120grad ient\n\u0120Pl - aint\n\u0120Can al\nAR CH\n\u0120expans ive\n\u0120fun g\n\u0120b ounced\nU - nd\n\u0120prec autions\n\u0120clar ification\n\u0120d agger\n\u0120gri ps\n\u0120\xC2 - \xB5\n\u0120River a\n\u0120Und ead\nis ites\n\u0120FIR ST\n\xC3\xB1 o\naud - i\n\u0120host ages\n\u0120compl iant\n\u0120al umni\nSe ven\n\u0120cyber security\ne - ither\nCol lect\n\u0120invari ably\n\u0120S oci\n\u0120law maker\n\u0120a - le\n\u0120Person ally\nN azi\n\u0120custom ization\n\u0120Pro c\n\u0120Sask - atchewan\neat uring\n\u0120sp ared\n\u0120discontin ued\n\u0120comput ational\n\u0120Motor - ola\n\u0120suprem acist\ngovernment al\n\u0120parad ise\n\u0120Down ing\n\u0120Nik - on\n\u0120cat alyst\nber ra\nTor onto\n8 75\nbet a\n\u0120Mac ron\n\u0120unreal - istic\nve ctor\n\u0120Veh icles\nit iveness\n\u0120R V\n\u0120Col bert\ns - in\no ji\nent in\n\u0120Kr ish\nhell o\nff ield\nok y\n\u0120T ate\n\u0120map - le\n\u0120a ids\nchem ical\n33 4\nn uts\n\u0120War p\n\u0120x x\n\u0120Rob - b\numer ous\n_- _\nft ime\n\u0120V W\n\u0120w inger\n\u0120D ome\nt ools\n\u0120P - V\n\u0120Ge orgetown\n\u0120g eared\n\u0120jihad ists\n\u0120c p\n\u0120ster - oids\nM other\ncler osis\n\u0120DR M\nnes ia\n\u0120l inger\n\u0120imm ersive\n\u0120C - OUN\n\u0120outwe igh\nens ual\nB and\n\u0120transform s\nmat ched\nps ons\n\u0120Jud - icial\nf actor\n\u0120refer ral\n\u0120odd ly\n\u0120W enger\nB ring\n\u0120B - ows\n60 2\nIC LE\n\u0120l ions\n\u0120Acad emic\n\u0120Th orn\n\u0120Ra ider\nkef - eller\nSt orage\nL ower\n\u0120Or t\n\u0120Equ ality\nAL T\n\u0120S OC\nT - ypes\n\u0120l yn\n\u0120Ass et\nco at\nTP P\nC VE\n\u0120Pione er\napp lication\nMod - ern\n\u0120H K\nEn vironment\nAl right\nR ain\nIP P\n\u0120Shi ite\n\u0120m - ound\n\u0120Ab ilities\ncond ition\nSt aff\n\u0120compet ence\n\u0120M oor\n\u0120Di - ablo\n\u0120with held\n\u0120ost ensibly\n\u0120B rom\n\u0120ms g\n\u0120den - omin\n\u0120Ref erences\n\u0120F P\n\u0120plun ged\n\u0120p amph\nm oving\ncent - ral\n\u0120down right\n\u0120f ading\nT al\nT yp\n\u0120Th y\nuk es\nit he\n\u0120o - ve\n\u0120batt led\n\u0120seaf ood\n\u0120fig ur\n\u0120R D\nc rop\n\u0120squ - ads\n{ \\\n\xE0 \xB9\n\u0120E h\n\u0120interview ing\n\u0120Q in\n\u0120as - piring\nPL IC\n\u0120cla uses\n\u0120G ast\n\u0120N ir\n\u0120l uggage\n\u0120h - ose\n\u0120system d\n\u0120desc ending\n\u0120Rev ised\n\u0120R ails\nal ign\n70 - 9\n33 7\n\u0120f ug\ncharg ing\nt ags\n\u0120ut er\nk ish\nWAR NING\n49 0\nprof - its\n\u0120voy age\n\u0120a ce\n\u0120V anguard\n\u0120T anks\n\u0120M uk\n\u01202 - 26\nS afe\nAr mor\n\u0120volcan ic\n\u0120wom b\n\u0120M IL\n\u0120begin ner\n\u0120Rec - ogn\n\u0120A AP\nPL AY\n) !\n\u0120detect ing\nc n\n\u0120bre aches\nBas ically\n\u0120P - ag\n\u0120Municip al\n\u0120Ind ie\n\u0120L af\n\u0120Dis able\n\u0120Ol son\n\u0120rest - rained\n\u0120rul ings\n\u0120hum ane\nev ents\n\u0120Cinem a\ndisplay Text\n\u0120H - atch\naction Date\nonna issance\n\u0120assault ing\n\u0120L ug\nCH AT\n\u0120vig - orous\n\u0120Per se\n\u0120intoler ance\n\u0120Snap chat\n\u0120Sh arks\n\u0120d - ummy\n\u0120Di agn\n\u0120Gu itar\nim eters\n40 3\nRE G\nA x\n\u0120separ - ates\n\u0120Mah m\n\u0120t v\nj ah\nO OL\nC irc\n\u0120Winds or\nuss ian\n\u0120intu - ition\n\u0120dis dain\n\u0120Don ovan\n\u01202 21\nE mb\n\u0120condem ning\n\u0120gener - osity\nzz y\n\u0120pant ies\n\u0120Pre vent\nAction Code\nAN A\n34 2\nexternal - ActionCode\n\u0120spec ifying\n\u0120cryst all\nJ ere\n\u0120ru pt\n\u0120App - rentice\n\u0120prof iling\n\xD0 \xBA\nSt rike\n\u0120sid eline\n\u0120oblig - ated\n\u0120occ ult\n\u0120bureaucr atic\nant ically\nrupt ed\nneg ative\n\u0120Ethiop - ia\n\u0120C ivic\n\u0120ins iders\nel igible\n\u0120TV s\n\u0120B AR\n\u0120T - I\ni ologist\n\u0120A IR\n\u0120substit uted\nAr ab\n\u0120S aul\n\u0120Y - og\np rem\n\u0120build ers\n\u0120station ary\n\u0120doubt ful\n\u0120vig - orously\n\u0120thr illing\nPh ysical\n\u0120Care y\n\u0120Hyd ra\ngeon ing\n\u0120S - ly\ny ton\n\u0120borrow ers\n\u0120Park inson\n\u0120 \xEB\n\u0120Jama ica\n\u0120sat - ir\n\u0120insurg ents\n\u0120F irm\n\u0120is ot\n\u0120K arn\nour ning\nak - ens\ndoc s\nl ittle\n\u0120Mon aco\nCL ASS\nTur key\nL y\n\u0120Con an\nass - ic\n\u0120star red\n\u0120Pac ers\net ies\n\u0120t ipping\nM oon\n\u0120R - w\ns ame\n\u0120cav ity\n\u0120go of\n\u0120Z o\nSh ock\num mer\n\u0120emphas - izes\n\u0120reg rett\n\u0120novel ty\n\u0120en vy\n\u0120Pass ive\nr w\n50 - 5\n\u0120ind ifferent\n\u0120R ica\n\u0120Him self\n\u0120Fred die\n\u0120ad - ip\n\xE4\xB8 \u0122\n\u0120break out\n\u0120hur ried\n\u0120Hu ang\n\u0120D - isk\n\u0120ro aming\n?????- ?????-\nU V\n\u0120Rick y\n\u0120S igma\n\u0120marginal - ized\n\u0120ed its\n\u012030 4\nmem ory\n\u0120spec imen\n29 3\n\xE3\u0123 - \xAF\n\u0120vert ically\n\u0120aud ition\n\u0120He ck\n\u0120c aster\n\u0120Hold - ings\nad al\n\u0120C ron\n\u0120L iam\n\u0120def lect\nP ick\n\u0120Deb ug\nRE - F\n\u0120vers atility\not hes\nclass ified\n\u0120Mah ar\n\u0120H ort\nC ounter\nst - asy\nnot iced\n33 1\n\u0120Sh im\nf uck\n\u0120B ie\n\u0120air ing\n\u0120Pro - tein\n\u0120Hold ing\n\u0120spect ators\nili ated\n\u0120That cher\nn osis\n\xE3\u0125\xBC - \xE3\u0125\xB3\nTe le\nB oston\n\u0120Tem pl\nst ay\n\u0120decl arations\n47 - 9\nVol ume\n\u0120Design er\n\u0120Over watch\nid ae\n\u0120on wards\n\u0120n - ets\n\u0120Man ila\npart icularly\n\u0120polit ic\no other\n\u0120port raits\n\u0120pave - ment\nc ffff\n\u0120s aints\n\u0120begin ners\nES PN\n\u0120short comings\n\xE2\u0137\u0132 - \xE2\u0137\u0132\n\u0120com et\n\u0120Organ ic\nqu el\n\u0120hospital ized\nBre - ak\n\u0120pe el\ndyl ib\nasp x\nur ances\n\u0120T IM\nP g\n\u0120read able\n\u0120Mal - ik\n\u0120m uzzle\n\u0120bench marks\nd al\n\u0120V acc\n\u0120H icks\n60 - 9\n\u0120B iblical\nhe ng\n\u0120over load\n\u0120Civil ization\n\u0120imm - oral\n\u0120f ries\n\xE3\u0124 \u0134\n\u0120reprodu ced\n\u0120form ulation\nj - ug\nire z\ng ear\n\u0120co ached\nMp Server\n\u0120S J\n\u0120K w\nIn it\nd - eal\n\u0120O ro\n\u0120L oki\n\u0120Song s\n\u012023 2\n\u0120Lou ise\nasion - ally\n\u0120unc ond\nolly wood\n\u0120progress ives\n\u0120En ough\n\u0120Do - e\n\u0120wreck age\n\u0120br ushed\n\u0120Base Type\n\u0120z oning\nish able\nhet - ically\n\u0120C aucus\n\u0120H ue\n\u0120k arma\n\u0120Sport ing\n\u0120trad - er\n\u0120seem ing\n\u0120Capt ure\n4 30\nb ish\n\u0120t unes\n\u0120indo - ors\n\u0120Sp here\n\u0120D ancing\nTER N\n\u0120no b\n\u0120G ST\nm aps\n\u0120pe - ppers\nF it\n\u0120overse es\n\u0120Rabb i\n\u0120R uler\nvert ising\noff - ice\nxx x\n\u0120ra ft\nCh anged\n\u0120text books\nL inks\n\u0120O mn\n\xE3\u0122 - \u0133\n\u0120inconven ience\n\u0120Don etsk\n= ~\n\u0120implicit ly\n\u0120boost - s\n\u0120B ones\n\u0120Bo om\nCour tesy\n\u0120sens ational\nAN Y\n\u0120gre - edy\ned en\n\u0120inex per\n\u0120L er\n\u0120V ale\n\u0120tight en\n\u0120E - AR\n\u0120N um\n\u0120ancest or\nS ent\n\u0120H orde\nurg ical\nall ah\n\u0120sa - p\namb a\n\u0120Sp read\ntw itch\n\u0120grand son\n\u0120fract ure\n\u0120moder - ator\n\u0120Se venth\n\u0120Re verse\n\u0120estim ation\nCho ose\n\u0120par - ach\n\u0120bar ric\n\xE3\u0122 \u0132\n\u0120comp ass\n\u0120all ergic\n\xE2\u0122 - \u0137\nOT HER\nerr illa\n\u0120w agon\n\u0120z inc\n\u0120rub bed\n\u0120Full - er\n\u0120Luxem bourg\n\u0120Hoo ver\n\u0120li ar\n\u0120Even ing\n\u0120Cob - b\nest eem\n\u0120select or\n\u0120B rawl\nis ance\n\u0120E k\n\u0120tro op\n\u0120g - uts\n\u0120App eal\n\u0120Tibet an\n\u0120rout ines\n\u0120M ent\n\u0120summar - ized\nsteam apps\n\u0120tr anqu\n\u012019 29\nor an\n\u0120Aut hent\n\u0120g - maxwell\n\u0120appre hens\n\u0120po ems\n\u0120sa usage\n\u0120Web ster\nur - us\n\u0120them ed\n\u0120l ounge\n\u0120charg er\nSp oiler\n\u0120sp illed\nh - og\n\u0120Su nder\n\u0120A in\n\u0120Ang ry\n\u0120dis qual\n\u0120Frequ ency\n\u0120Ether - net\n\u0120hel per\nPer cent\n\u0120horr ifying\n\u0120a il\n\u0120All an\nEE - E\n\u0120Cross ing\n44 9\n\u0120h olog\n\u0120Puzz les\n\u0120Go es\neren - n\n60 4\n\xE3\u0123 \u0131\n\u0120Raf ael\n\u0120att en\n\u0120E manuel\n\u0120up - ro\n\u0120Sus p\nP sych\n\u0120Tr ainer\n\u0120N ES\n\u0120Hun ts\nbec ue\n\u0120counsel - or\nR ule\n\u0120tox ins\n\u0120b anners\nr ifice\n\u0120greet ing\n\u0120fren - zy\n\u0120all ocate\n\u0120* )\nex pr\n50 3\n\u0120Ch ick\n\u0120T orn\n\u0120consolid - ation\n\u0120F letcher\nsw itch\nfr ac\ncl ips\n\u0120McK in\n\u0120Lun ar\nMon - th\nIT CH\n\u0120scholar ly\nrap ed\n39 8\n\u012019 10\n\u0120e greg\n\u0120in - secure\n\u0120vict orious\ncffff cc\n\u0120sing led\n\u0120el ves\n\u0120W - ond\nbur st\n\u0120cam oufl\n\u0120BL ACK\n\u0120condition ed\n\xE7 \u012B\nans - wered\n\u0120compuls ory\nasc ist\n\u0120podcast s\n\u0120Frank furt\nbn b\n\u0120ne - oliberal\n\u0120Key board\n\u0120Bel le\nw arm\n\u0120trust s\n\u0120ins ured\n\u0120Bu - cc\nus able\n60 7\n\u0120Pl ains\n\u012018 90\n\u0120sabot age\n\u0120lod - ged\nf elt\n\u0120g a\n\u0120N arc\n\u0120Sal em\n\u0120sevent y\n\u0120Bl - ank\np ocket\n\u0120whis per\n\u0120m ating\nom ics\n\u0120Sal man\n\u0120K - ad\n\u0120an gered\n\u0120coll isions\n\u0120extraord inarily\n\u0120coerc - ion\nG host\nb irds\n\xE8 \u0122\nk ok\n\u0120per missible\navor able\n\u0120po - inters\n\u0120diss ip\nac i\n\u0120theat rical\n\u0120Cos mic\n\u0120forget - ting\n\u0120final ized\n\xE5\xA4 \xA7\ny out\nl ibrary\n\u0120bo oming\n\u0120Bel - ieve\n\u0120Te acher\n\u0120L iv\n\u0120GOOD MAN\n\u0120Domin ican\nOR ED\n\u0120Part - ies\n\u0120precip itation\n\u0120Sl ot\nR oy\n\u0120Comb ined\n\u0120integ - rating\n\u0120ch rome\n\u0120intest inal\n\u0120Re bell\n\u0120match ups\n\u0120block - buster\n\u0120Lore n\n\u0120Le vy\n\u0120pre aching\n\u0120S ending\n\u0120Pur - pose\nra x\nf if\n\u0120author itative\n\u0120P ET\nast ical\n\u0120dish on\n\u0120chat - ting\n\u0120\"$ :/\nConnect ion\n\u0120recre ate\n\u0120del inqu\n\u0120bro - th\n\u0120D irty\n\u0120Ad min\nz man\n\u0120scholars hips\n\u012025 3\ncont - act\nals a\n7 67\nc reen\nabb age\n\u012019 15\n\u0120bl ended\n\u0120al armed\nL - anguage\n35 6\n\u0120bl ends\n\u0120Ch anged\nW olf\n\u0120he pat\nCreat ing\n\u0120per - secut\n\u0120sweet ness\nart e\n\u0120forfe iture\n\u0120Rober to\nim pro\nN - FL\n\u0120Mag net\nDet ailed\n\u0120insign ificant\n\u0120POL IT\n\u0120BB - Q\n\u0120C PS\n\u0120se aw\namin er\nm L\nend if\nf inals\n\u012026 5\nu ish\n\u0120} - )\n\u0120Pro blems\n\u0120em blem\n\u0120serious ness\n\u0120pars ing\n\u0120subst - itution\n\u0120press ured\n\u0120recy cled\nale b\nRub y\n\u0120prof iciency\nDri - ver\n\u0120W ester\n: '\nAF TA\n\u0120m antle\n\u0120Clay ton\nfl ag\n\u0120practition - er\nc overed\n\u0120St ruct\nadd afi\n4 25\n\u0120Town ship\n\u0120Hyd ro\nLou - is\n34 3\n\u0120cond o\n\u0120T ao\n\u0120util ization\n\u0120nause a\n\u0120Dem - s\nrid ges\np ause\n\u0120form ulas\n\u0120chall enger\n37 6\n\u0120defect - ive\n\u0120Rail way\n\u0120Pub Med\n\u0120yog urt\nl bs\n\u0120Nor folk\nOP - E\n\u0120Mood y\n\u0120distribut or\n\u0120scroll s\n\u0120extract s\nSt an\n\u0120v - iability\n\u0120exp oses\n\u0120star vation\n\u0120Step s\n\u0120D odd\nf - ew\nST D\n33 2\n\u0120clos ures\n\u0120complement ary\n\u0120S asha\nump y\n\u0120mon - et\n\u0120artic ulate\n\u0120Do ct\nk iller\n\u0120sc rim\n\u01202 64\n\u0120prost - itutes\n\u0120se vered\n\u0120attach ments\n\u0120cool ed\nL ev\n\u0120F alk\nf - ail\n\u0120polic eman\n\u0120D ag\n\u0120pray ed\n\u0120K ernel\n\u0120cl - ut\n\u0120c ath\n\u0120an omaly\nSt orm\nem aker\n\u0120Break fast\nul i\no - ire\nJ J\nh z\nOper ation\n\u0120S ick\n35 4\n\u0120Guatem ala\nR ate\n\u0120exp - osures\nf aces\n\u0120Arch ae\nra f\n\u0120M ia\n\u012020 25\n\u0120op aque\n\u0120disgu - ised\n\u0120Head quarters\nS ah\n\u0120p ots\n9 78\n\u0120M alf\n\u0120frown - ed\n\u0120poison ous\n\u0120Con vers\nee ks\n\u0120cr ab\n.\" \"\n\u0120tre - ason\n\u0120r anc\n\u0120escal ating\n\u0120war r\n\u0120mob s\n\u0120l amps\n\u0120Sun - shine\n\u0120Brun swick\nPh ones\n\u0120spe lled\n\u0120Sk ip\n\u012020 50\n\u012019 - 11\n\u0120Pl uto\n\u0120Am end\n\u0120me ats\n38 7\n\u0120st omp\n\u0120Zh - ou\n\u0120Levi athan\n\u0120Haz ard\nad v\n\u0120Or well\n\u0120al oud\n\u0120b - umper\n\u0120An arch\nub untu\n\u0120Ser ious\nf itting\n\u0120Option al\n\u0120Cec - il\nRE AM\n\u0120ser otonin\n\u0120cultiv ate\nag ogue\n} \\\n\u0120mos ques\n\u0120Sun - ny\n\u0120re active\nrev olution\n\u0120L up\n\u0120Fed ora\n\u0120defense - man\n\u0120V ID\nist ine\n\u0120drown ing\n\u0120Broad casting\n\u0120thr - iller\n\u0120S cy\n\u0120acceler ating\n\u0120direct s\nod ied\nb ike\nd uration\n\u0120pain - fully\nR edd\n\u0120product ions\n\u0120g ag\n\u0120wh ist\n\u0120s ock\n\u0120inf - initely\n\u0120Conc ern\n\u0120Cit adel\n\u0120lie u\n\u0120cand les\nogene - ous\narg er\n\u0120heaven ly\ninflamm atory\nPer formance\nC s\nruct ose\naz - aki\n\u0120p essim\n\u0120inf erence\n\u0120pow d\n\u0120Z oe\n\u0120pain - ts\n\u0120d azz\npt a\n-------- ---\n\u0120ins pir\n\u0120Exper imental\n\u0120Kn - ife\nreg or\nb ors\n\u0120show ers\nrom eda\n\u0120s aint\n\u0120ben ign\n\u0120J - iang\n\u0120envision ed\n\u0120sh roud\nIF T\nH O\n\u0120sh uff\n\u0120I CC\n\u0120se - greg\n\u0120revis it\nighth ouse\nL i\n\u0120sub strate\n\u0120Se as\n\u0120Rew - ard\n\u0120H ep\n\u0120Br ass\ns bm\n\u0120elim inates\n\u0120st amina\n\u0120V - AT\n\u0120Lo an\n\u0120const raint\n\u0120appropri ated\n\u0120p es\n\u0120A - LE\nr anging\n\u012040 4\n39 2\n\u0120intellectual s\nach u\n\u0120restruct - uring\n\u0120Le vin\n\u0120run es\n\u0120delight ful\n\u0120carbohyd rates\n\u0120Mod - els\n\u0120Exp o\n\u0120transport ing\nall oc\n\u0120ring ing\nS amsung\n\u0120scarce - ly\n\u0120URL s\n\u0120M AS\n\u0120prot otypes\n\u0120narr ator\n\u0120CPU - s\ncd n\n\u0120Bart on\n\u0120decided ly\n\u0120Sh u\nix ir\noc ious\n\u0120My - st\nN intendo\n\u0120re use\n\u0120forg iven\nF ew\nin ical\nn at\n\u0120seam - less\n\u0120Ev a\n\u0120E VE\n\u0120J O\nland ers\n\u0120so fter\nneg ie\n\u0120trans - ient\n\u0120orb ital\n\u0120fulf il\n\u0120K om\nHop efully\n\u0120dynam ically\n\u0120Hun - ger\n\xE5 \u013D\n\u0120Armen ia\nel man\nber to\n\u0120p ige\n\u0120ID s\nlim - it\n\u0120ve ins\n\u0120so aring\np acks\nGold en\n\u0120Cr ab\nist or\n\u0120R - PM\n\u0120$ $\ng ression\n\u0120jihad ist\n\u0120gam ble\n\u0120care g\n\u0120inf - lated\nF ace\n\u0120Fire arms\n\u0120Em manuel\n\xE2 \u013F\n\u0120sh ocks\ngr - ab\n\u0120spl end\n\u0120HP V\nab ortion\nAb ove\nEnt ity\nplay ers\n\u0120comm - enced\nul ence\n\u0120fulfill ment\n\u0120embod iments\n\u0120W elfare\n\u0120ha - il\n\u0120< @\ntt en\n\u0120cat cher\n\u0120J azeera\n\u0120volcan o\n\u0120stabil - ize\n\u0120Hand ler\n\u0120intens ified\n\u0120Ab rams\n\u0120hum iliation\np - aced\n60 5\n\u0120Cent OS\nSpe cific\n\u0120he ed\n\u0120C AM\n\u0120Gal ile\nD - ie\n\u0120abol ished\n\u0120Thom son\n\u0120Te achers\n\u0120W ass\nj ong\n\u0120IS - BN\n\u0120All ies\nsh ake\n\xE5 \xB7\nv ict\nHow ard\n\u0120de em\n\u0120exceed - ingly\n\u0120Smart stocks\nib e\n\u0120door way\n\u0120compet ed\nig mat\n\u0120national - ists\n\u0120g room\n\u0120Ke en\n\u0120dispos able\nde cl\n\u0120T olkien\n\u0120Sche - me\n\u0120b iod\n\u0120av id\n\u0120El on\nag ar\n\u0120T SA\nR oman\n\u0120artific - ially\n\u0120advis ors\nX L\n\u0120Inf erno\n36 6\n\u0120ted ious\n\u0120Phot - ography\n\u0120Car rie\n\u0120tro pe\n\u0120Sand ra\n\u0120dec imal\nQue en\n\u0120Gund - am\n\u0120O M\note ch\nN BA\n\u012019 32\n\u0120ent renched\n\u0120Mar ion\n\u0120fr - aternity\nLab our\nHen ry\n\u0120lat itude\nE ither\n\u0120enh ances\n\u0120Pot - ential\n\u0120sh ines\nid ad\n\u0120bread th\n\u0120capac ities\n\u0120\xF0\u0141 - \u013B\u0124\n\u0120Bron x\n\u0120sex es\n\u0120different iation\n\u0120heavy - weight\n\u0120T aj\nd ra\n\u0120migr ate\n\u0120exhaust ion\n\u0120R UN\nels - ius\n\u0120Cu omo\n\u0120gu itars\n\u0120cl ones\n\u0120Som ew\n\u0120P ry\n------------ - -\n\u0120warr anted\ncy cles\n\u0120salv age\n\u0120dis ks\nR ANT\n\u0120NGO - s\n\u0120Mart ian\n\":[ {\"\n\u0120add icts\noj ure\nil let\n\u0120amazing - ly\nart ments\np ixel\n\u0120GPU s\nLay out\n\xE8 \xA3\n\u0120Tam il\n\u0120Bas - il\n\u0120impart ial\n\u0120St ructure\nf ork\nb ryce\n\u0120r idge\n\u0120Hamb - urg\nri ous\n\u0120bl itz\ncig arettes\n\u0120can ned\n40 2\n\u0120iron ically\n\u0120compassion - ate\n\u0120Haw kins\n. #\n\u0120Cat hedral\n\u0120rall ied\nin ternal\n\u0120qu - ota\nst akes\nT EXT\nm om\n\u0120comple tes\n\u012023 8\n\u0120sh rug\n\xE3\u0125 - \u0133\n\u0120N inth\n\u0120rev ise\n\u0120Prov ider\n\u0120tre acher\n\u0120qu - asi\n\u0120PR ES\n\u0120dep osition\n\u0120confidential ity\niss ors\n\u0120im - balance\n\u0120span ning\n\u0120ang ular\n\u0120C ul\ncommun ication\n\u0120Nor - a\n\u0120Gen ius\nop ter\n\u0120s acked\nSp ot\n\u0120fine ly\n\u0120CH R\n28 - 2\nw aves\nPal est\n\u0120Ro hing\nN L\n\xE8 \xBF\n\u0120sh itty\n\u0120Sc - alia\n4 75\nPro gress\n\u0120referen cing\n\u0120class rooms\nab ee\n\u0120s - od\nhes ion\n70 8\n\u0120Zucker berg\n\u0120Fin ish\n\u0120Scot ia\n\u0120Sav - ior\n\u0120Install ation\nan tha\n( -\n\u012030 2\n\u0120P unk\n\u0120cr ater\nyout - u\n\u0120ro ast\n\u0120influ encing\n\u0120d up\n\u0120J R\n\u0120G rav\n\u0120stat - ure\n\u0120bath rooms\nA side\nW iki\nme an\n\u0120Z ak\n\u0120On es\n\u0120N - ath\n\u0120hyper t\n\u0120commence ment\nC ivil\n\u0120moder ately\n\u0120distribut - ors\n\u0120breast feeding\n\u01209 80\n\u0120S ik\n\u0120C ig\n\u0120AM ER\nR - IP\n\u0120Care er\nust ing\n\u0120mess ed\n\u0120e h\n\u0120J ensen\n/ $\n\u0120black - mail\n\u0120convers ions\n\u0120scientific ally\n\u0120mant ra\np aying\n\u0120iv - ory\n\u0120Cour ts\nOU GH\naunt let\nSer ial\nB row\n\u0120H undreds\n3 23\n\u0120pe - e\n\u0120lin ux\n\u0120sub mer\n\u0120Princ ipal\n48 5\n\u0120D SL\n\u0120Cous - ins\n\u0120doctr ines\n\u0120Athlet ics\n\u01203 15\n\u0120K arma\n\u0120att - ent\nur ger\n\u0120presc ribe\n\u0120enc aps\n\u0120C ame\n\u0120secret ive\n\u0120Cr - imes\nd n\nC lean\n\u0120Egypt ians\n\u0120Car penter\n\u0120 ll\nH um\n\u0120Mil - o\n\u0120capital ists\n\u0120brief ed\nT we\n\u0120Bas in\nelve t\nM os\n\u0120plun - ge\n\u0120Ka iser\n\u0120Fu j\nill in\n\u0120safegu ards\n\u0120o ste\n\u0120Opportun - ity\n\u0120M afia\n\u0120Call ing\nap a\nur ban\nbr ush\nill ard\nc \xC3\xA9\nint - elligence\n\u0120L ob\n\u0120Dru id\n\u0120sm oother\n\u0120foot ing\n\u0120motor - ists\narc ity\n\u0120mascul inity\n\u0120m ism\n\u0120abdom inal\n\u0120Ta - vern\n\u0120R oh\n\u0120esc apes\ns igned\nAnth ony\n\u0120sacrific ing\n\u0120intim - acy\n\u0120an terior\n\u0120K od\n\u0120mot if\n\u0120g raz\n\u0120visual - ization\n\u0120guitar ist\n\u0120Tro tsky\nm agic\nD ar\n\u0120Mor i\n\u0120w - ards\n\u0120toile ts\nl est\n\u0120tele port\n\u0120Sund ays\n\u0120Pl at\nET - S\n\u0120e Sports\nPat rick\n\u0120K atherine\nen ko\n\u0120has sle\n\u0120M - ick\ngg les\n\u0120h ob\naint ain\n\u0120air borne\n\u0120sp ans\n\u0120ch - ili\n\u0120a perture\n\u0120volunte ered\n\u0120Inc ident\n\u0120F res\n\u0120Veter - an\naugh tered\ning o\n\u0120un insured\nCL OSE\n\u0120f use\n\u0120er otic\n\u0120advert - ise\nra ising\nText ure\n\u0120att ends\n\u0120RE AL\nudd led\n\u0120sm oot\n\u012030 - 5\n\u0120Will is\n\u0120bl ond\nAn alysis\n\u0120V T\non ica\n\u0120strongh - old\nR F\nN M\n. >>\n\u0120prosper ous\n\u0120bo asted\n29 2\n\u0120Manufact - uring\nPR ESS\ng ren\n\u0120pharm acy\n\u0120Roc kefeller\nk ai\n\u0120th - umbs\n\u0120H ut\n\u0120mother board\n\u0120guard ians\n\u0120Al ter\nll ular\n\u0120sh - ack\n\u0120wise ly\n\u0120back bone\nerv a\n\u0120su icides\n\u0120McG regor\nij - ah\nE mer\n\u0120B rav\n\u0120design ate\nP OST\nprodu ced\n\u0120cleans ing\nirl - wind\nex istent\n\u0120Hum ph\n\u0120Pay ne\n\u0120v ested\n\xC5 \xA1\n\u0120string - ent\nion a\n\u0120uns ub\n\u0120sum med\n\u0120Her cules\nsub ject\n\u0120R - agnar\n\u0120N os\n\u0120character ization\n\u0120sav vy\n\u0120Daw son\n\u0120Cas - ino\n\u0120f ri\n\u0120Bar rier\n\u0120mis information\n\u0120ins ulation\n\u0120corrid - ors\n\u0120air planes\n\u0120No ct\nah i\n\u012019 16\nk b\narm ac\n\u0120sh - un\n\u0120sche ma\n\u0120horr ified\n\u012023 9\naund ers\nN B\ni ates\ner - ity\n\u0120Sh ard\n\u0120r arity\n\u0120group ed\n\u0120Gh ana\nagain st\n\u0120Bi - ological\n\u0120A ware\now ell\n\xCF \u0126\n\u0120Be au\nsh aw\nH ack\n\u0120Jul - ius\nUS S\nol son\naun a\nc ru\n\u0120Maur ice\n\u0120I k\n\u0120sequ encing\n\u0120radical - s\n\u0120( ?,\nv irtual\n\u0120any ways\n\u0120reper c\n\u0120hand lers\n\u0120hes - itant\n\xE9 \u0125\n\u0120M F\nple mentation\nass ociated\n\u0120campaign - ed\n\u0120Y ue\nut ations\n\u0120Y oga\n\u0120sim mer\n\u0120ro ds\n\u0120mel - ody\n\u0120conv oy\nv ideos\n\u0120screen ed\nN eg\nochem ical\n\u0120( ))\n\u0120ultr - as\n\u0120ant ip\n\u0120Island ers\n70 4\n\u0120fet ish\n\u0120ridic ulously\n\u0120K - art\n\u0120mitochond rial\n\u0120interf ering\nBuild er\n\u0120over fl\n\u0120ac - ne\n\u0120M ud\n\u0120K err\nf lex\n\u0120Post al\n\u0120Balt ic\n47 7\n\u0120Pers - ons\nour age\nH B\n\u0120M use\n\u0120Imm ortal\n\u0120Dri ving\n\u0120pet - itions\n\u0120subsc ript\n\u0120s orce\n\u0120Process or\nut on\nS ony\n\u0120ph - on\n\u0120r aced\n\u0120Anth rop\n\u0120day time\n\u0120Ex ercise\nAdd ing\n\u0120eng - ages\n\u0120Qual comm\n\u0120mir acles\n\u0120mem es\n\u0120Dr ink\n\u0120Ori - oles\n\u0120hair s\n\u0120Pol ar\nath om\n\u0120sl ippery\n\u0120R emy\n\u0120car - amel\n\u0120Y EAR\n\u0120al k\nI gn\na ution\n\u0120Mer lin\n\u0120C ran\n\u0120ap - ologies\n\u01204 10\n\u0120out ing\n\u0120Mem ories\napp ointed\n\u0120count - ered\nu ld\npos ing\n\u0120fire wall\n\u0120W ast\n\u0120W et\nwork ed\nse - ller\n\u0120repe aled\nere o\nass uming\nBL IC\nm ite\n\u0120CEO s\n\u0120Chap - el\nellig ent\n________________ ________\nD og\n\u0120w art\n\u0120subsc riber\ns - ports\n\u0120be gged\n\u0120M V\n\u0120sem if\neth ical\n\u0120pre ach\n\u0120rev - ital\n\u0120pun itive\n\u0120short cuts\n\u0120instit uted\n\u0120Wars aw\n\u0120abdom - en\n\u0120K ING\n\u0120super intendent\n\u0120f ry\n\u0120Ge o\nT OR\n\u0120contrad - ictions\napt ic\n\u0120landsc apes\nb ugs\n\u0120cl ust\n\u0120vol ley\nc - ribed\n\u0120t andem\n\u0120rob es\nWH AT\n\u0120promot er\n\u0120el oqu\nreview - ed\n\u0120D K\n\u0120Pl ato\n\u0120f ps\nT ank\n\u0120Der rick\n\u0120priorit - ize\nas per\n\u0120Hond uras\n\u0120Com pleted\nne c\n\u0120m og\nn ir\n\u0120May - o\nDE F\nst all\nin ness\n\u0120Volks wagen\n\u0120prec aution\n\u0120M ell\ni - ak\nist ries\n\u012024 8\n\u0120overl apping\nSen ate\n\u0120Enh ance\nres - y\nrac ial\nOR TS\n\u0120M ormons\nStr ong\n\u0120Co ch\nMex ico\n\u0120Mad - uro\n\u0120j ars\n\u0120can e\nW ik\noll a\niff erence\n\u0120physic ist\n\u0120Mag - gie\n\u012028 5\n\u0120dep iction\n\u0120McL aren\nJ u\n\u0120sl ows\n\u0120commission - ers\n\u0120Will ow\n\u0120Expl os\nhov ah\n\u0120techn ician\n\u0120hom icides\n\u0120Fl - av\n\u0120Tr uman\n\u0120100 00\nu ctor\n\u0120sh ader\nNews letter\n45 7\n\u0120re - ver\n\u0120hard ened\n\u0120where abouts\n\u0120rede velop\n\u0120car bs\n\u0120tra - vers\n\u0120squ irrel\n\u0120foll ower\n\u0120s ings\n50 8\n\u0120rabb its\nemon - ium\n\u0120document ing\n\u0120misunder stood\n) '\nR ick\ngg ies\n\u0120prem - ie\n\u0120sk ating\n\u0120pass ports\n\u0120f ists\naged don\nH aw\nAC P\n0 - 80\n\u0120Though ts\n\u0120Carl son\n\u0120priest hood\nh ua\n\u0120dun geons\n\u0120Lo - ans\n\u0120ant is\n\u0120familiar ity\n\u0120S abb\nop al\n\u0120In k\nst - rike\n\u0120c ram\n\u0120legal ized\n\u0120cu isine\n\u0120fib re\nTra vel\n\u0120Mon - ument\nOD Y\neth y\n\u0120inter state\n\u0120P UR\nem porary\n\u0120Arab ian\ndevelop - ed\n\u0120sadd le\n\u0120g ithub\n\u0120Off er\n\u0120IS P\nro let\n\u0120SUP - ER\n\u0120Den is\n\u0120multipl ier\n\u0120stir red\nInterest ingly\n\u0120custom - ary\n\u0120bill ed\nhe x\n\u0120multipl ied\n\u0120fl ipping\n\u0120Cros by\n\u0120fundament - als\nia e\n\u0120Play ed\n\u0120At om\nam azon\n\u0120Fl am\nee z\nactiv ated\n\u0120tables - poon\n\u0120liberal ism\n\u0120Pal in\n\u0120P atel\nN um\n\u0120T AM\n\u0120s - urn\n\u0120Rel oaded\n\u0120co ined\n\" ],\n\u0120Cl ash\n\u0120Ag u\n\u0120prag - matic\n\u0120Activ ate\n\u01208 02\n\u0120trail ers\n\u0120sil hou\n\u0120prob - es\n\u0120circ us\n\u0120B ain\n\u0120Lind say\n\u0120Ab bey\nDel ivery\n\u0120concess - ion\n\u0120gast ro\n\u0120Spr ite\n\xC4 \u0141\nand el\n\u0120g imm\n\u0120aut - obi\n\u0120T urtle\n\u0120wonder fully\n\u0120Har am\n\u0120World wide\n\u0120Hand - le\n\u0120theor ists\n\u0120sle ek\n\u0120Zh u\nograph ically\nEG A\n\u0120Own - ers\nath s\n\u0120Antar ctic\nn atal\n=\" \"\nfl ags\n`` ``\n\u0120s ul\nK - h\n\u0120pot assium\n\u0120linem an\n\u0120cere al\n\u0120Se asons\n\u012020 - 22\n\u0120mat hematic\n\u0120astron omers\nprof essional\n\u0120f ares\ncknow - led\n\u0120ch i\n\u0120young sters\n\u0120mistaken ly\n\u0120hem isphere\n\u0120Div - inity\nr one\n\u0120\" ,\nr ings\n\u0120attract s\nv ana\n\xE5 \xB9\nC AP\n\u0120play - list\n\u0120por ch\n\xE3\u0123 \xA3\n\u0120incorpor ates\n\u0120so ak\n\u0120assert - ing\n\u0120Terror ism\n\u0120P ablo\nJ a\nces ter\n\u0120fear ing\n\u0120Pr - ayer\n\u0120escal ated\nG W\n\u0120ro be\n\u0120Bright on\nac ists\n\u0120Sym - phony\n\u0120Dwar f\n\u0120Par ade\n\u0120Le go\n\u0120inex pl\n\u0120l ords\nle - af\nRA G\nl iber\n\u0120cig ars\n\u0120Je hovah\n60 6\nWIND OWS\n\u0120Liber - ia\neb us\nHe avy\n\u0120l ubric\n\u0120R W\nangu ages\n\u0120narrow ed\ncom - puter\n\u0120E mber\n\u0120murder ing\n\u0120down stream\n\u0120T uls\n\u0120T - ables\nTop ic\n\u0120Acc uracy\n= /\nl ost\n\u0120Re i\n\u0120progress es\nb - ear\n\u0120establish ments\nJust in\n\u0120Pe ach\n\u0120G omez\n\xE5 \xBF\n\u0120Tri - angle\nId ent\n\u0120H ive\nRes ources\n\u0120mix es\n\u0120Ass uming\nM u\n\u0120hyp - oc\n\u0120s ane\n\u0120W an\nid ious\nSu ccess\n\u0120 io\nAng el\n\u0120danger - ously\n\u0120Creat ure\nW ORK\n: [\n\u0120Kat rina\nList ener\nM iller\n\u0120Id - lib\nh ang\n\u0120circum vent\nh ref\n\u0120cel estial\n\u0120We eks\n\u0120P - ug\n\u0120Dal ton\n\u0120subpoen a\nuk u\n\u0120pers isted\npe i\nold ing\n\u0120Doc - uments\n\u0120H ast\n\u0120C ENT\n\u0120prim er\n\u0120syn onymous\n\u0120n - ib\nom bs\n\u0120not ation\n\u0120D ish\n\u0120At mosp\n\u0120forb id\n\u0120AN - G\npat tern\nl os\n\u0120project iles\nb rown\n.\" ,\n\u0120Ven om\n\u0120fierce - ly\nub lished\n\u0120U ran\n\u0120Nic arag\n4 10\n\u0120C AL\nOT OS\n\u0120Mir - acle\n\u0120En chant\n\u0120guard ing\napp end\nAtt ach\n\u0120level ed\n\u0120cond - oms\nih ilation\n64 9\n\u0120night mares\n\u0120THE Y\n\u0120ST ART\n\u0120K - inn\n\u0120roomm ate\n\u0120hy giene\no pping\nJ ob\n\u0120l vl\n\u0120V ER\n\u0120Ke - eping\nab etic\n\u0120format ting\neral a\n\u0120rev isions\n\u0120res urg\nT - el\n\u0120Good man\n35 3\np od\n\u0120ind isp\n\u0120Trans lation\n\u0120g - own\n\u0120M und\n\u0120c is\n\u0120by stand\ncol lect\n\u0120Pun jab\nact - ively\n\u0120G amb\nte ll\n\u0120import ing\ng encies\n\u0120loc om\n\u0120Br - ill\nH oly\n\u0120Ber ger\n\u0120show down\n\u0120respond ers\nIL Y\n\u0120t - akedown\nle ted\n\u0120mat tered\n\u0120predict ive\n\u0120over lay\nG PU\n\u0120V - ick\n\u0120convey ed\nT ab\npe er\nSc an\n\u0120defensive ly\nv ae\n\u0120appro - ving\n\u0120t iers\n\u0120V ia\nquer ade\n\u0120Saud is\n\u0120demol ished\n\u0120Prop - he\n\u0120mon o\n\u0120hospital ity\nH AM\n\u0120Ari el\nM OD\n\u0120Tor ah\n\u0120bl - ah\n\u0120Bel arus\nerent ial\n\u0120T uc\n\u0120bank er\n39 7\n\u0120mosqu - it\n\u0120Scient ist\n\u0120Mus ical\n\u0120h ust\nSh ift\n\u0120tor ment\n\u0120stand - off\nE duc\n\u0120F og\n\u0120ampl ifier\nSh ape\nInst ance\n\u0120Crit ics\n\u0120da - emon\nH ouston\n\u0120matt ress\n\u0120ID F\n\u0120obsc ene\n\u0120A mer\nhett - i\n\u0120comp iling\n35 2\nvere tt\n\u0120Red uction\nist ration\n\u0120Bl - essed\n\u0120B achelor\n3 16\n\u0120pr ank\n\u0120Vul can\ndd ing\n\u0120m - ourning\n\u0120Qu int\n\u0120Bl aster\ntest ing\n\u0120sed iment\n>> >\n\u0120E - ternity\n\u0120WH ERE\n\u0120M aze\n\u0120react ing\n\u0120Al v\noms day\n\u0120C - RA\n\u0120transl ator\n\u0120bog us\nat u\nWe bsite\noll s\n\u0120bapt ism\n\u0120s - ibling\n\u0120Aut umn\nve z\n\xE3\u0123\xAE \xE9\ngu ards\nGe org\nassad ors\n\u0120Fre - ud\n\u0120contin ents\n\u0120Reg istry\nBern ie\n\u0138\u013C \xE5\xA3\xAB\n\u0120toler - ant\n\u0120U W\n\u0120hor ribly\n99 5\n\u0120MID I\n\u0120impat ient\noc ado\ner - i\n\u0120Wor st\n\u0120Nor ris\n\u0120Talk ing\n\u0120def ends\nens able\n\u012020 - 21\n\u0120anat omy\nL ew\n\u0120draw er\n\u0120Can berra\n\u0120patri otic\n\xE9\xBE\u012F\xE5 - \u0138\u013C\xE5\xA3\xAB\n\u0120Av g\nAR M\n\u0120undis closed\n\u0120fare - well\n45 9\nb able\n\u0120All ison\nOL OG\n\u0120con co\nt ight\n\u0120AC - PI\n\u0120M ines\nl ich\n\u0120\xE2\u0136 \u013E\nrepresent ed\n200 000\n\u0120enthusi - ast\nOT S\nb il\n\u0120Ing redients\n\u0120invent or\n\u0120My SQL\n\xC2\u0142\xC2\u0142 - \xC2\u0142\n\u0120AB OUT\nwith in\n\u0120m k\nB ul\n\u0120F ake\n\u0120dracon - ian\nW a\nhel m\n\u0120Ter ran\nerv ille\n\u0120common place\nSI ZE\n\u0120\" - <\nre place\nograph s\n\u0120SE LECT\ninc ible\n\u0120Most ly\n\u0120She ffield\n\u0120ID - E\nugg le\n\u0120cit ations\nh urst\n\u0120Un ix\n\u0120unle ash\n\u0120P - iper\n\u0120N ano\n\u0120succ umb\n\u0120reluct ance\n\u012025 00\n\u0120Mer - chant\n\u0120wire t\n\u0120comb os\n\u0120Birth day\n\u0120char coal\n\u0120U - PS\n\u0120Fair fax\n\u0120drive way\n\u0120T ek\n\u0120P itch\nove re\n\u0120techn - icians\n\u0120Act ual\nfl ation\n\u0120F iscal\n\u0120Em pty\nan amo\n\u0120mag - nesium\n\u0120sl ut\n\u0120grow ers\nInvest igators\n( ):\n\u0120S atellite\n\u0120Ke - ynes\nmiss ive\nl ane\n\u0120b orough\n3 44\n\u0120TE AM\n\u0120Bet hesda\nC - V\nh ower\n\u0120R AD\n\u0120ch ant\n\u0120R iy\n\u0120compos itions\n\u0120mild - ly\n\u0120medd ling\n\u0120ag ility\nane ers\n5 01\n\u0120syn th\nling er\n29 - 1\n\u0120ex claimed\nPart y\n\u0120cont amin\n\u0120Man or\n\u0120Resp ond\n\u0120pra - ising\n\u0120man ners\nfle et\nSum mer\n\u0120Ly nd\n\u0120Def initely\ngr - im\n\u0120bow ling\nst ri\n\xE7 \u013D\ny nt\n\u0120mand ates\nD IV\n\u0120reconc - ile\nview s\n\u0120Dam on\nvet te\nF lo\n\u0120Great est\nil on\nic ia\n\u0120portray - al\n\u0120cush ion\n50 4\n19 79\noss al\nApp lic\nsc ription\n\u0120mit igation\nAT - S\np ac\n\u0120er ased\n\u0120defic iencies\n\u0120Holland e\n\u0120X u\n\u0120b - red\n\u0120pregn ancies\nf emin\n\u0120em ph\n\u0120pl anners\n\u0120out per\nutter - ing\n\u0120perpet rator\n\u0120m otto\n\u0120Ell ison\n\u0120NE VER\n\u0120admitted - ly\nAR I\n\u0120Azerbai jan\n\u0120mill isec\n\u0120combust ion\n\u0120Bott - le\n\u0120L und\n\u0120P s\n\u0120D ress\n\u0120fabric ated\n\u0120bat tered\n\u0120s - idel\n\u0120Not ting\nFore ign\n\u0120Jer ome\n0 20\n\u0120Ar bit\n\u0120kn - ots\n\u0120R IGHT\nM oving\n\xE3\u0123 \u013B\n\u0120sur geries\n\u0120cour - thouse\n\u0120m astered\n\u0120hover ing\n\u0120Br an\n\u0120Al ison\n\u0120saf - est\nm ilitary\n\u0120bull ied\n\u0120bar rage\nRead er\nES E\n\u0120Ge ographic\nT - ools\n3 14\n\u0120Ge ek\nro th\ngl ers\n\u0120F IN\n\xCF \u0123\n\u0120A ston\nal - tern\n48 8\n\u0120veter in\nG amer\n\u0120int el\nren ches\nSh ield\n\u0120am - nesty\n\u0120B har\n\u0120p iled\n\u0120honor able\n\u0120Inst itutes\n\u0120so - aked\n\u0120com a\n\u0120E FF\n34 1\nby tes\n\u0120G mail\nle in\n\u0120Canad - iens\nm aterial\nI l\n\u0120instruct ors\n\u0120K Y\n\u0120conce ive\nub b\n\u0120P - ossible\n\u0120eas ing\n\u0120Christ ina\n\u0120car ic\n\u0120HD R\nR OM\n\u0120sho - vel\nde lete\n\u0120p uff\n\u0120Ch anging\n\u0120seam lessly\nAtt ribute\n\u0120acqu - isitions\nak ery\n\u0120E F\n\u0120aut istic\n\u0120T akes\n\u0120Pow der\n\u0120St - ir\n5 10\n\u0120Bub ble\nsett ings\n\u0120F owler\n\u0120must ard\n\u0120more - over\n\u0120copyright ed\n\u0120LED s\n15 00\n\xE6 \u012B\n\u0120H IS\nen - f\n\u0120cust od\n\u0120H uck\nG i\n\u0120im g\nAn swer\nC t\nj ay\n\u0120Inf - rastructure\n\u0120feder ally\nL oc\n\u0120micro bes\n\u0120over run\ndd s\not - ent\nadi ator\n>>>> >>>>\n\u0120torn ado\n\u0120adj ud\n\u0120intrig ued\n\u0120s - i\n\u0120Revel ation\npro gress\n\u0120burgl ary\n\u0120Sai yan\n\u0120K athy\n\u0120ser - pent\n\u0120Andre as\n\u0120comp el\ness ler\n\u0120Pl astic\n\u0120Ad vent\n\u0120Pos - itive\n\u0120Q t\n\u0120Hind us\nreg istered\nular ity\n\u0120righteous ness\n\u0120demon - ic\nu itive\n\u0120B DS\n\u0120Gre gg\nc ia\n\u0120Crus ade\n\u0120Sina i\nW - ARE\n+ (\n\u0120me ll\n\u0120der ail\ny ards\nA st\n\u0120notice ably\n\u0120O - ber\nR am\n\u0120un noticed\n\u0120se q\nav age\nT s\n\u01206 40\n\u0120conced - e\n\u0120] )\nF ill\n\u0120capt ivity\n\u0120Improve ment\n\u0120Crus ader\nara - oh\nM AP\n\xE6 \u0139\n\u0120str ide\nal ways\nF ly\nN it\n\u0120al gae\n\u0120Cook - ing\n\u0120Do ors\nMal ley\n\u0120polic emen\n\xE3\u0123 \u012F\n\u0120astron - aut\naccess ible\n49 5\n\u0120R AW\ncl iffe\nudic rous\n\u0120dep ended\nal - ach\n\u0120vent ures\nra ke\n\u0120t its\n\u0120H ou\n\u0120cond om\normon - al\n\u0120ind ent\n\u0120upload ing\nFoot note\nImport ant\n\u012027 1\n\u0120mind - ful\n\u0120cont ends\nC ra\n\u0120cal ibr\n\u0120O ECD\nplug in\nF at\n\u0120IS - S\n\u0120Dynam ics\nans en\n68 6\n' ),\n\u0120sp rite\n\u0120hand held\n\u0120H - ipp\n=~ =~\nTr ust\n\u0120sem antics\n\u0120Bund es\n\u0120Ren o\n\u0120Liter - ature\ns ense\nG ary\n\u0120A eg\n\u0120Tr in\nEE K\n\u0120cler ic\n\u0120SS - H\n\u0120ch rist\n\u0120inv ading\nib u\n\u0120en um\naur a\n\u0120al lege\n\u0120Inc - redible\nB BC\n\u0120th ru\n\u0120sa iled\n\u0120em ulate\n\u0120in security\n\u0120c - rou\n\u0120accommod ations\n\u0120incompet ent\n\u0120sl ips\n\u0120Earth - qu\ns ama\nIL LE\n\u0120i Phones\nas aki\n\u0120by e\n\u0120ar d\n\u0120ext - ras\n\u0120sl aughtered\n\u0120crowd funding\nres so\n\u0120fil ib\n\u0120ER - ROR\n\u0120T LS\ne gg\n\u0120It al\n\u0120en list\n\u0120Catal onia\n\u0120Sc - ots\n\u0120ser geant\n\u0120diss olve\nN H\n\u0120stand ings\nri que\nI Q\n\u0120benef - iciary\n\u0120aqu arium\nYou Tube\n\u0120Power Shell\n\u0120bright est\n\u0120War - rant\nS old\nWrit ing\n\u0120begin nings\n\u0120Res erved\n\u0120Latin os\nhead - ing\n\u01204 40\n\u0120rooft op\nAT ING\n\u01203 90\nVP N\nG s\nk ernel\nturn - ed\n\u0120prefer able\n\u0120turn overs\n\u0120H els\nS a\n\u0120Shin ji\nve - h\n\u0120MOD ULE\nV iol\n\u0120ex iting\n\u0120j ab\n\u0120Van illa\n\u0120ac - ron\n\u0120G ap\nber n\nA k\n\u0120Mc Gu\n\u0120end lessly\n\u0120Far age\n\u0120No - el\nV a\nM K\n\u0120br ute\n\u0120K ru\n\u0120ES V\n\u0120Ol ivia\n\xE2\u0122 - \u0142\n\u0120K af\n\u0120trust ing\n\u0120h ots\n3 24\n\u0120mal aria\n\u0120j - son\n\u0120p ounding\nort ment\nCount ry\n\u0120postp oned\n\u0120unequ iv\n? - ),\n\u0120Ro oney\nudd ing\n\u0120Le ap\nur rence\nsh apeshifter\n\u0120H - AS\nos ate\n\u0120ca vern\n\u0120conserv atism\n\u0120B AD\n\u0120mile age\n\u0120arrest - ing\nV aults\n\u0120mix er\nDem ocratic\n\u0120B enson\n\u0120auth ored\n8 - 000\n\u0120pro active\n\u0120Spirit ual\nt re\n\u0120incarcer ated\n\u0120S - ort\n\u0120pe aked\n\u0120wield ing\nre ciation\n\xD7\u013B \xD7\nP atch\n\u0120Em - my\n\u0120ex qu\ntt o\n\u0120Rat io\n\u0120P icks\n\u0120G ry\nph ant\n\u0120f - ret\n\u0120eth n\n\u0120arch ived\n% -\nc ases\n\u0120Bl aze\n\u0120im b\nc - v\ny ss\nim ony\n\u0120count down\n\u0120aw akening\n\u0120Tunis ia\n\u0120Re - fer\n\u0120M J\n\u0120un natural\n\u0120Car negie\niz en\n\u0120N uggets\nhe - ss\n\u0120ev ils\n64 7\n\u0120introdu ctory\nl oving\n\u0120McM ahon\n\u0120ambig - uity\nL abel\n\u0120Alm ighty\n\u0120color ing\n\u0120Cl aus\nset ting\nN - ULL\n\u0120F avorite\n\u0120S IG\n> (\n\u0120Sh iva\n\u0120May er\n\u0120storm - ed\n\u0120Co verage\nwe apons\nigh am\n\u0120un answered\n\u0120le ve\n\u0120c - oy\nc as\nb ags\nas ured\nSe attle\n\u0120Sant orum\nser ious\n\u0120courage - ous\n\u0120S oup\n\u0120confisc ated\n\u0120// /\n\u0120uncon ventional\n\u0120mom - s\n\u0120Rohing ya\n\u0120Orche stra\n\u0120Pot ion\n\u0120disc redit\n\u0120F - IL\nf ixed\n\u0120De er\ndo i\n\u0120Dim ension\n\u0120bureaucr ats\net een\n\u0120action - Group\noh m\n\u0120b umps\n\u0120Ut ility\n\u0120submar ines\nren heit\nre - search\n\u0120Shap iro\n\u0120sket ches\n\u0120de ceptive\n\u0120V il\nes - ame\n\u0120Ess entially\n\u0120ramp age\nisk y\n\u0120mut tered\nth ritis\n\u012023 - 6\nf et\nb ars\n\u0120pup il\n\u0120Th ou\no S\ns ong\n\u0120fract ured\n\u0120re - vert\npict ure\n\u0120crit erion\nus her\n\u0120reperc ussions\n\u0120V intage\n\u0120Super - intendent\nOffic ers\n\u0120flag ged\n\u0120bl ames\n\u0120in verse\nograp - hers\n\u0120makes hift\n\u0120dev oid\n\u0120foss ils\n\u0120Arist otle\n\u0120Fund - s\n\u0120de pleted\n\u0120Fl u\n\u0120Y uan\n\u0120w oes\n\u0120lip id\n\u0120sit - u\nrequ isites\n\u0120furn ish\n\u0120Sam ar\n\u0120shame ful\n\u0120adverse - ly\n\u0120ad ept\n\u0120rem orse\n\u0120murder ous\nuck les\n\u0120E SL\n\u01203 - 14\ns ent\n\u0120red ef\n\u0120C ache\n\u0120P urs\nig ans\n\u01204 60\n\u0120pres - criptions\n\u0120f res\nF uck\nocr ates\nTw enty\n\u0120We ird\n\u0120T oggle\n\u0120C - alled\nitiz ens\n\u0120p oultry\n\u0120harvest ing\n\xE3\u0124\xA6 \xE3\u0124\xB9\nBott - om\n\u0120caution ed\nt n\n39 6\n\u0120Nik ki\n\u0120eval uations\n\u0120harass - ing\n\u0120bind ings\n\u0120Mon etary\n\u0120hit ters\n\u0120advers ary\nun - ts\n\u0120set back\n\u0120enc rypt\n\u0120C ait\n\u0120l ows\neng es\n\u0120N - orn\n\u0120bul bs\n\u0120bott led\n\u0120Voy ager\n3 17\n\u0120sp heres\np - olitics\n\u0120subt ract\n\u0120sens ations\n\u0120app alling\n\u01203 16\n\u0120environment - ally\n\u0120ST EM\n\u0120pub lishes\n5 60\n\u0120dilig ence\n48 4\n\u0120adv - ises\n\u0120pet rol\n\u0120imag ining\n\u0120patrol s\n\u0120Int eger\n\u0120As - hes\nact us\n\u0120Rad iant\n\u0120L T\nit ability\nht aking\nSet ting\n\u0120nu - anced\n\u0120Re ef\n\u0120Develop ers\nN i\npie ces\n99 0\nLic ense\n\u0120low - ers\n\u0120Ott oman\n3 27\noo o\n\u0120qu itting\nmark ets\nBeh ind\n\u0120bas - in\n\u0120doc s\nan ie\nfl ash\nct l\n\u0120civil ized\n\u0120Fuk ushima\n\"] - ,\"\n\u0120K S\n\u0120Honest ly\nar at\n\u0120construct s\n\u0120L ans\n\u0120D - ire\n\u0120LI KE\n\u0120Trou ble\n\u0120with holding\n\u0120Ob livion\n\u0120san - ity\nany a\nCon st\n\u0120gro cer\n\u0120C elsius\n\u0120recount ed\n\u0120W - ife\nB order\nate red\nh appy\n\u0120spo iler\n\u0120log ically\nH all\n\u0120succeed - ing\n\u0120poly morph\n\u0120ax es\n\u0120Shot gun\n\u0120S lim\n\u0120Prin - ciples\n\u0120L eth\nart a\n\u0120sc or\nSc reenshot\n\u0120relax ation\n#$ - #$\n\u0120deter rent\nidd y\n\u0120power less\n\u0120les bians\n\u0120ch ords\n\u0120Ed - ited\nse lected\n\u0120separat ists\n000 2\n\u0120air space\n\u0120turn around\n\u0120c - unning\nP ATH\nP oly\n\u0120bomb ed\n\u0120t ion\nx s\n\u0120with hold\n\u0120w - aged\n\u0120Liber ties\nFl ag\n\u0120comfort ing\n45 4\n\u0120I ris\nare rs\n\u0120r - ag\n\u0120rel ocated\n\u0120Gu arant\n\u0120strateg ically\n\u0120gam ma\nuber - ty\n\u0120Lock heed\ng res\n\u0120gr illed\n\u0120Low e\nst ats\n\u0120R ocks\n\u0120sens - ing\n\u0120rent ing\n\u0120Ge ological\n\xD8\xA7 \xD8\not rop\n\u0120se w\n\u0120improper - ly\n48 6\n\u0120\xE2\u0138 \u0142\n\u0120star ving\n\u0120B j\nDisc ussion\n3 - 28\n\u0120Com bo\n\u0120Fix es\nN AT\n\u0120stri ving\nth ora\n\u0120harvest - ed\n\u0120P ing\n\u0120play ful\n\u0120aven ues\n\u0120occup ational\n\u0120w - akes\n\u0120Cou rier\n\u0120drum mer\n\u0120Brow ser\n\u0120H outh\nit u\n\u0120app - arel\np aste\n\u0120hun ted\n\u0120Second ly\nl ain\nX Y\n\u0120P IN\nic ons\n\u0120cock - tails\n\u0120s izable\n\u0120hurd les\nest inal\n\u0120Recre ation\n\u0120e - co\n64 8\n\u0120D ied\nm int\n\u0120finger prints\n\u0120dis pose\n\u0120Bos - nia\nts y\n22 00\n\u0120ins pected\n\u0120F ou\n\u0120f uss\n\u0120amb ush\n\u0120R - ak\n\u0120manif ested\nPro secut\n\u0120suff ice\nren ces\n\u0120compens ated\n\u0120C - yrus\n\u0120gen us\n\u0120Wolver ine\n\u0120Trend s\n\u0120h ikes\n\u0120Se - en\n\u0120en rol\nC old\n\u0120pol itely\n\u0120Sl av\n\u0120Ru pert\n\u0120ey - ewitness\n\u0120Al to\n\u0120un comp\n\u0120poster ior\nM ust\n\u0120Her z\n\u0120progress - ively\n\u012023 4\n\u0120ind ifference\n\u0120Cunning ham\n\u0120academ ia\n\u0120se - wer\n\u0120ast ounding\n\u0120A ES\nr ather\n\u0120eld est\n\u0120clim bs\n\u0120Add - s\n\u0120out cry\n\u0120cont ag\n\u0120H ouses\n\u0120pe pt\n\u0120Mel ania\ninterest - ed\n\u0120U CH\n\u0120R oots\n\u0120Hub bard\n\u0120T BD\n\u0120Roman ian\nfil - ename\nSt one\n\u0120Im pl\n\u0120chromos ome\nC le\nd x\n\u0120scram bled\n\u0120P - t\n\u012024 2\nOP LE\n\u0120tremend ously\nSt reet\n\u0120cra ving\n\u0120bund - led\n\u0120R G\np ipe\n\u0120inj uring\n\u0120arc ane\nPart icip\n\u0120Hero - ic\nst y\n\u0120to pping\n\u0120Temp est\nrent ices\nb h\n\u0120par anoia\n\u0120Unic - ode\n\u0120egreg ious\n\u0120\\ '\n\u0120Osw ald\n\u0120gra vel\n\u0120Sim - psons\n\u0120bl and\n\u0120Guant anamo\nWrit er\nlin ers\n\u0120D ice\nJ C\n\u0120par - ity\n\u0120s ided\n\u012023 7\n\u0120Pyr rha\nat ters\nd k\nF ine\ncomp an\n\u0120form - ulated\n\u0120Id ol\nil ers\nhem oth\n\u0120F av\n\u0120intr usion\n\u0120car - rots\n\u0120L ayer\n\u0120H acker\n\u0120 ----------------\n\u0120moder ation\n\xE9 - \u0123\noc oc\n\u0120character ize\n\u0120Te resa\n\u0120socio economic\n\u0120per - k\n\u0120Particip ation\ntr aining\n\u0120Paul o\nph ys\n\u0120trust worthy\n\u0120embod - ied\n\u0120Mer ch\nc urrency\n\u0120Prior ity\n\u0120te asing\n\u0120absor - bing\n\u0120unf inished\n\u0120Compar ison\n\u0120dis ple\nwrit ers\n\u0120profess - ions\n\u0120Pengu in\n\u0120ang rily\n\u0120L INK\n68 8\n\u0120Cor respond\n\u0120prev - ailed\n\u0120cart el\nl p\nas ms\n\u0120Red emption\n\u0120Islam ists\neffect - s\nd ose\n\u0120L atter\n\u0120Hal ifax\n\u0120v as\n\u0120Top ics\n\u0120N - amed\nadvert ising\nzz a\nIC ES\n\u0120ret arded\nach able\n\u0120Pupp et\n\u0120Item - Level\n\u0120ret ract\n\u0120ident ifiable\nA aron\n\u0120B uster\ns ol\nhel - le\nas semb\nH ope\nr anged\nB a\n\u0120P urch\n\xE9 \u0122\n\u0120Sir i\n\u0120arri - vals\n\u012019 12\n\u0120short ened\n\u01203 12\n\u0120discrep ancy\n\u0120Tem - perature\n\u0120Wal ton\n\u0120kind erg\np olit\n\u0120rem ix\n\u0120connect - ors\n\xE3\u0125\u013A \xE3\u0125\xA9\n\u0120Kazakh stan\ndom inated\n\u0120su - gars\nim ble\n\u0120Pan ic\n\u0120Dem and\n\u0120Col ony\non en\n\u0120M ER\n7 - 75\nur ia\naza ar\n\u0120Deg ree\nP ri\n\u0120sun shine\n\u012025 1\n\u0120psychedel - ic\n\u0120digit ally\n\u0120Bra un\n\u0120sh immer\n\u0120sh ave\n\u0120Tel - esc\n\u0120Ast ral\n\u0120Venezuel an\n\u0120O G\n\u0120c rawling\nInt eg\n\u0120Fe - ather\n\u0120unfold ing\n\u0120appropri ation\n\u0120\xE8\xA3\u0131 \xE8\n\u0120Mob - ility\n\u0120N ey\n- .\nb ilt\nL IN\n\u0120T ube\n\u0120Con versely\n\u0120key - boards\n\u0120C ao\n\u0120over th\n\u0120la ure\n>> \\\n\u0120V iper\nach - a\nOff set\n\u0120R aleigh\n\u0120J ae\nJ ordan\nj p\n\u0120total itarian\nConnect - or\n\u0120observ es\n\u0120Spart an\n\u0120Im mediately\n\u0120Sc al\nC ool\n\u0120t - aps\n\u0120ro ar\nP ast\n\u0120ch ars\n\u0120B ender\n\u0120She ldon\n\u0120pain - ter\n\u0120be acon\n\u0120Creat ures\n\u0120downt urn\n\u0120h inder\n\u0120And - romeda\n\xC3 \u013D\ncc oli\n\u0120F itness\net rical\n\u0120util izes\n\u0120sen - ate\n\u0120en semble\n\u0120che ers\nT W\n\u0120aff luent\nk il\nry lic\nord - ering\nCom puter\n\u0120gru esome\nost ics\n\u0120Ub isoft\n\u0120Kel ley\n\u0120w - rench\n\u0120bourgeois ie\nIB LE\n\u0120Prest on\nw orn\nar ist\nreat ing\n\u0120st - ained\nar ine\n\u0120sl ime\nEN N\n\u0120che sts\n\u0120ground water\nann - ot\n\u0120Tr ay\n\u0120Loc ke\n\u0120C TR\n\u0120d udes\n\u0120Ex ternal\n\u0120Dec - oder\n\u0120par amed\n\u0120Med line\n80 9\n\u0120D inner\nrup al\ng z\n\u0120G - um\n\u0120Dem o\nj ee\n\u0120d h\nber man\narch s\n\u0120en qu\n\u0120Ep stein\n\u0120devast - ation\n\u0120friends hips\n\u0120Ar d\n\u012023 1\n\u0120Rub in\n\u0120Dist - ance\n\u0120sp urred\n\u0120d ossier\n\u0120over looking\n\\\\\\\\\\\\\\\\ - \\\\\\\\\\\\\\\\\nFore st\n\u0120Com es\n\\ \",\n\u0120Iran ians\n\u0120f - ixtures\nL aughs\n\u0120cur ry\n\u0120King ston\n\u0120squ ash\n\u0120cat - alogue\n\u0120abnormal ities\n\u0120digest ive\n.... .....\n\u0120subord inate\nog - ly\n\u012024 9\nM iddle\n\u0120mass ac\n\u0120burg ers\n\u0120down stairs\n\u012019 - 31\n39 4\n\u0120V G\n\u0120l asers\n\u0120S ikh\n\u0120Alex a\nder ived\n\u0120cycl - ist\n\xE3\u0123\xAE \xE9\u0143\u0136\nonel iness\n!!!! !!!!\n\u0120buff s\nleg - ate\n\u0120rap ing\n\u0120recomm ending\nro red\n\u0120mult icultural\nun - ique\n\u0120business men\n\u0120une asy\n\u0120M AP\n\u0120disp ersed\ncipl - ine\nJ ess\n\u0120K erala\n\xE5 \xA7\n\u0120abst raction\nSur v\nU h\n\u0120prin - ters\nij a\now der\n\u0120analog ous\n\u0120A SP\naf er\n\u0120unfold ed\n\u0120level - ing\n\u0120bre ached\n\u0120H earing\n\u0120n at\n\u0120transl ating\ncrit - ical\n\u0120ant agonist\n\u0120Yes terday\n\u0120fuzz y\nw ash\nm ere\n\u0120be - wild\n\u0120M ae\nV irgin\nph rase\n\u0120sign aled\n\u0120H IGH\n\u0120prot - ester\n\u0120gar ner\nunk nown\n\u0120k ay\n\u0120abduct ed\n\u0120st alking\nam - n\n\u0120des erving\n\u0120R iv\n\u0120J orge\n\u0120scratch ing\n\u0120S - aving\nip ing\n\u0120te ase\n\u0120mission ary\n\u0120Mor row\nT IME\nP resent\n\u0120chem - otherapy\ntern ess\n\u0120H omes\n\u0120P urdue\n\u0120st aunch\n\u0120Whit - ney\n\u0120TH ERE\n\xCE \xBC\niat us\n\u0120Ern est\n\u0120De ploy\n\u0120cove - ted\nF ML\n\u0120Dial ogue\n\u0120ex ited\nf ruit\n\u0120ner d\n\":\" \",\"\n\u0120v - ivo\nru ly\n4 60\n\u0120Am en\nrehens ible\n\u0120\xE2 \u013A\nD IR\n\u0120ad - herence\n\u0120che w\n\u0120Co ke\n\u0120Serge i\ndig ital\n\u0120Ne ck\ng - ently\nenth al\n/ )\n\u0120we ary\n\u0120gu ise\n\u0120Conc ord\n\u0120On - ion\nat cher\n\u0120b inge\n\u0120Direct ive\n\u0120man ned\nans k\n\u0120ill - usions\n\u0120billion aires\n38 3\noly n\nodynam ic\n\u0120Whe at\n\u0120A - lic\n\u0120col oured\n\u0120N AFTA\nab o\n\u0120mac ros\nind ependent\ns weet\n\u0120sp - ac\n\u0120K abul\n\u0120 \xC4\nem e\n\u0120dict ated\n\u0120sh outs\n= {\n\u0120r - ipping\n\u0120Sh ay\n\u0120Cr icket\ndirect ed\n\u0120analys ed\n\u0120WAR - RANT\nag ons\n\u0120Blaz ers\n\u0120che ered\n\u0120ar ithmetic\n\u0120Tan - z\n37 3\n\u0120Fl ags\n\u012029 5\n\u0120w itches\n\u0120In cluded\n\u0120G - ained\n\u0120Bl ades\nG am\n\u0120Sam antha\n\u0120Atl antis\n\u0120Pr att\n\u0120spo - iled\n\u0120I B\n\u0120Ram irez\nPro bably\nre ro\n\u0120N g\n\u0120War lock\nt - p\n\u0120over he\n\u0120administr ations\n\u0120t int\n\u0120reg iment\n\u0120pist - ols\n\u0120blank ets\n\u0120ep ist\n\u0120bowl s\n\u0120hydra ulic\n\u0120de - an\n\u0120j ung\n\u0120asc end\n70 5\n\u0120Sant iago\n\xC3 \xAE\n\u0120un - avoid\n\u0120Sh aman\nre b\n\u0120stem ming\n99 8\n\u0120M G\nst icks\nesthes - ia\nER O\n\u0120mor bid\n\u0120Gr ill\n\u0120P oe\nany l\n\u0120dele ting\n\u0120Surve - illance\n\u0120direct ives\n\u0120iter ations\n\u0120R ox\n\u0120Mil ky\nF - ather\n\u0120pat ented\n44 7\n\u0120prec ursor\n\u0120m aiden\n\u0120P hen\n\u0120Ve - gan\n\u0120Pat ent\nK elly\nRedd itor\n\u0120n ods\n\u0120vent ilation\n\u0120Schwar - z\n\u0120w izards\n\u0120omin ous\n\u0120He ads\n\u0120B G\n\u0120l umber\n\u0120Sp - iel\n\u0120is Enabled\n\u0120ancest ral\n\u0120Sh ips\n\u0120wrest ler\nph - i\n\u0120y uan\n\u0120Rebell ion\n\u0120ice berg\n\u0120mag ically\n\u0120divers - ion\nar ro\nyth m\n\u0120R iders\n\u0120Rob bie\n\u0120K ara\n\u0120Main tenance\n\u0120Her - b\n\u0120har ms\np acked\n\u0120Fe instein\n\u0120marry ing\n\u0120bl ending\n\u0120R - ates\n\u012018 80\n\u0120wr ink\n\u0120Un ch\n\u0120Tor ch\ndesc ribed\n\u0120human - oid\nilit ating\n\u0120Con v\n\u0120Fe ld\nIGH TS\n\u0120whistlebl ower\nort - mund\nets y\narre tt\n\u0120Mon o\n\u0120I ke\n\u0120C NBC\n\u0120W AY\n\u0120MD - MA\n\u0120Individual s\n\u0120supplement al\n\u0120power house\n\u0120St ru\nF - ocus\naph ael\n\u0120Col leg\natt i\nZ A\n\u0120p erenn\n\u0120Sign ature\n\u0120Rod - ney\n\u0120cub es\nidd led\n\u0120D ante\n\u0120IN V\niling ual\n\u0120C th\n\u0120so - fa\n\u0120intimid ate\n\u0120R oe\n\u0120Di plom\n\u0120Count ries\nays on\n\u0120extrad - ition\n\u0120dis abling\n\u0120Card iff\n\u0120memor andum\n\u0120Tr ace\n\u0120?? - ?\nse ctor\n\u0120Rou hani\n\u0120Y ates\n\u0120Free ze\n\u0120bl adder\nM - otor\n\u0120Prom ise\nant asy\n\u0120foresee able\n\u0120C ologne\ncont ainer\n\u0120Tre - es\n\u0120G ors\n\u0120Sin clair\n\u0120bar ring\nkey e\n\u0120sl ashed\n\u0120Stat - istical\n\xE9 \u0129\n\u0120\xE2\u0138 \xBA\nAll ows\n\u0120hum ility\n\u0120dr - illed\n\u0120F urn\n44 3\n\u0120se wage\n\u0120home page\n\u0120cour tyard\n\u0120v - ile\n\u0120subsid iaries\naj o\ndirect ory\n\u0120am mon\nV ers\ncharg es\n\u0120} - }\n\u0120Ch ains\n\u012024 6\nn ob\n\u0120per cept\n\u0120g rit\n\u0120fisher - men\n\u0120Iraq is\n\u0120DIS TR\n\u0120F ULL\n\u0120Eval uation\ng raph\nat - ial\n\u0120cooper ating\n\u0120mel an\n\u0120enlight ened\n\u0120al i\nt ailed\n\u0120sal - ute\n\u0120weak est\n\u0120Bull dogs\nU A\n\u0120All oy\n\u0120sem en\noc - ene\n\u0120William son\ns pr\n, \xE2\u0122\u0136\n\u0120G F\nitt ens\nBe at\n\u0120J - unk\niph ate\n\u0120Farm ers\n\u0120Bit coins\nig ers\nd h\n\u0120L oyal\np - ayer\n\u0120entert ained\n\u0120penn ed\n\u0120coup on\nQue ue\n\u0120weaken - ing\nc arry\n\u0120underest imate\n\u0120shoot out\n\u0120charism atic\n\u0120Proced - ure\n\u0120prud ent\nin ances\n\u0120ric hes\n\u0120cort ical\n\u0120str ides\n\u0120d - rib\n\u0120Oil ers\n5 40\n\u0120Per form\n\u0120Bang kok\n\u0120e uth\nS ER\n\u0120simpl - istic\nt ops\ncamp aign\nQ uality\n\u0120impover ished\n\u0120Eisen hower\n\u0120aug - ment\n\u0120H arden\n\u0120interven ed\n\u0120list ens\n\u0120K ok\n\u0120s - age\n\u0120rub bish\n\u0120D ed\n\u0120m ull\npe lling\n\u0120vide ot\nProdu - ction\nD J\nm iah\n\u0120adapt ations\n\u0120med ically\n\u0120board ed\n\u0120arrog - ance\n\u0120scra pped\n\u0120opp ress\nFORM ATION\n\u0120j unction\n4 15\nEE - EE\nS kill\n\u0120sub du\n\u0120Sug gest\n\u0120P ett\n\u0120le tt\n\u0120Man - ip\n\u0120C af\n\u0120Cooper ation\nT her\n\u0120reg ained\n\xB6 \xE6\nref - lect\n\u0120th ugs\n\u0120Shel by\n\u0120dict ates\n\u0120We iner\n\u0120H - ale\n\u0120batt leground\ns child\n\u0120cond ol\nh unt\nosit ories\n\u0120acc - uses\nFil ename\n\u0120sh ri\n\u0120motiv ate\n\u0120reflect ions\nN ull\n\u0120L - obby\n\xA5 \xB5\n\u0120S ATA\n\u0120Back up\n\xD1 \u0125\nn in\n\u0120Cor - rection\n\u0120ju icy\nut ra\n\u0120P ric\n\u0120rest raining\n\u0120Air bnb\n\u0120Ar - rest\n\u0120appropri ations\n\u0120sl opes\n\u0120mans laughter\n\u0120work - ings\n\u0120H uss\n\u0120F rey\nLe ave\n\u0120Harm ony\n\u0120F eder\n\u01204 - 30\n\u0120t rench\n\u0120glad ly\n\u0120bull pen\n\u0120G au\nb ones\n\u0120gro - ove\n\u0120pre text\n\xE3 \u0127\u012D\n\u0120transm itter\n\u0120Comp onent\n\u0120under - age\n\u0120Em pires\nT ile\n\u0120o y\n\u0120Mar vin\n\u0120C AS\n\u0120bl - oss\n\u0120repl icated\n\u0120Mar iners\nMarc us\n\u0120Bl ocks\n\u0120liber - ated\n\u0120butter fly\nFe el\n\u0120fer mentation\n\u0120you tube\n\u0120off - end\n\u0120Ter m\nres ist\n\u0120cess ation\n\u0120insurg ency\n\u0120b ir\n\u0120Ra - ise\n59 5\n\u0120hypothes es\n50 2\n\u0120pl aque\nocr at\n\u0120jack ets\n\u0120Huff - Post\nam ong\n\u0120conf er\n48 7\n\u0120L illy\n\u0120adapt ing\n\u0120F - ay\n\u0120sh oved\nve c\n\u0120ref ine\n\u0120g on\n\u0120gun men\nz ai\n\u0120Shut - tle\n\u0120I zan\n\u012019 13\n\u0120ple thora\n\xC2\xB7 \xC2\xB7\n\u01205 - 10\n\u0120p uberty\n\u012024 1\n\u0120We alth\n\u0120Al ma\n\u0120M EM\n\u0120Ad - ults\nC as\npr ison\nR ace\n\u0120water proof\n\u0120athlet icism\n\u0120capital - ize\n\u0120Ju ice\n\u0120illum inated\n\u0120P ascal\n\u0120irrit ation\n\u0120Witness - es\nad le\n\u0120Ast ro\n\u0120f ax\n\u0120El vis\nPrim ary\n\u0120L ich\n\u0120El - ves\n\u0120res iding\n\u0120st umble\n3 19\n\u0120P KK\n\u0120advers aries\nD - OS\n\u0120R itual\n\u0120sm ear\n\u0120ar son\nident al\n\u0120sc ant\n\u0120mon - archy\n\u0120hal ftime\n\u0120resid ue\n\u0120ind ign\n\u0120Sh aun\n\u0120El - m\naur i\nA ff\nW ATCH\n\u0120Ly on\nhel ps\n36 1\n\u0120lobby ist\n\u0120dimin - ishing\n\u0120out breaks\n\u0120go ats\nf avorite\n\u0120N ah\nson ian\n\u0120Bo - oster\n\u0120sand box\n\u0120F are\n\u0120Malt a\n\u0120att Rot\n\u0120M OR\nld - e\n\u0120navig ating\nT ouch\n\u0120unt rue\n\u0120Dis aster\n\u0120l udicrous\nPass - word\n\u0120J FK\nblog spot\n4 16\n\u0120UN DER\nern al\n\u0120delay ing\nT - OP\n\u0120impl ants\n\u0120AV G\n\u0120H uge\natt r\n\u0120journal istic\n\u0120Pe - yton\n\u0120I A\nR ap\ngo al\n\u0120Program me\n\u0120sm ashing\nw ives\nprint - ln\n\u0120Pl ague\nin us\nEE P\n\u0120cru iser\n\u0120Par ish\numin ium\n\u0120occup - ants\n\u0120J ihad\nm op\n\u0120p int\n\u0120he ct\n\u0120Me cca\ndirect or\n\u0120Fund - ing\n\u0120M ixed\n\u0120st ag\nT ier\n\u0120g ust\n\u0120bright ly\nors i\n\u0120up - hill\nR D\n\u0120les ions\n\u0120Bund y\nliv ious\n\u0120bi ologist\n\u0120Fac - ulty\n\u0120Author ization\n\u012024 4\nAll ow\n\xEF \xB8\n\u0120Gi ul\n\u0120pert - inent\not aur\nes se\n\u0120Ro of\n\u0120unman ned\n35 1\n\u0120Sh ak\n\u0120O - rient\n\u0120end anger\nD ir\n\u0120repl en\ned ient\n\u0120tail or\n\u0120gad - gets\n\u0120aud ible\n\xE2\u013A \u0128\nN ice\n\u0120bomb ard\n\u0120R ape\n\u0120def - iance\n\u0120TW O\n\u0120Filip ino\n\u0120unaff ected\nerv atives\n\u0120so - ared\n\u0120Bol ton\n\u0120comprom ising\n\u0120Brew ers\nR AL\n\u0120A HL\nicy - cle\n\u0120v ampires\n\u0120di pped\noy er\n\u0120X III\n\u0120sidew ays\n\u0120W - aste\n\u0120D iss\n\u0120\xE2\u0136\u013E \xE2\u0136\u0122\xE2\u0136\u0122\n$ - .\n\u0120habit ats\n\u0120Be ef\ntr uth\ntr ained\nspl it\nR us\nAnd y\n\u0120B - ram\nRE P\np id\n\xE8\xA3 \u0127\n\u0120Mut ant\nAn im\n\u0120Mar ina\n\u0120fut - ile\nhig hest\nf requency\n\u0120epile psy\n\u0120cop ing\n\u0120conc ise\n\u0120tr - acing\n\u0120S UN\npan el\n\u0120Soph ie\n\u0120Crow ley\n\u0120Ad olf\n\u0120Shoot - er\n\u0120sh aky\n\u0120I G\n\u0120L ies\n\u0120Bar ber\np kg\n\u0120upt ake\n\u0120pred - atory\nUL TS\n/ **\n\u0120intox icated\n\u0120West brook\nod der\nhe ment\n\u0120bas - eman\nAP D\nst orage\n\u0120Fif ty\ned itor\nG EN\nUT ION\nir ting\n\u0120se - wing\nr ift\n\u0120ag ony\n\u0120S ands\n\u012025 4\nC ash\n\u0120l odge\n\u0120p - unt\nN atural\n\u0120Ide as\n\u0120errone ous\n\u0120Sens or\n\u0120Hann ity\n\u012019 - 21\n\u0120m ould\n\u0120G on\nkay a\n\u0120anonym ously\n\u0120K EY\n\u0120sim - ulator\nW inter\n\u0120stream ed\n50 7\n? \",\n\u0120te ased\n\u0120co efficient\n\u0120wart - ime\n\u0120TH R\n' '.\n\u0120Bank ing\nmp ire\n\u0120f andom\n\u0120l ia\nG - a\n\u0120down hill\n\u0120interpre ting\nInd ividual\nN orm\n\u0120jealous - y\nbit coin\n\u0120ple asures\n\u0120Toy s\n\u0120Chev rolet\n\u0120Ad visor\nIZ - E\n\u0120recept ions\n70 6\nC ro\n\u012026 2\n\u0120cit rus\nir u\nReview - er\nject ed\nU ES\nan z\n19 81\n\u0120Work er\n\u0120compl ied\nores cent\ncontin - ental\nT on\n\u0120Pr ism\n\u0120She ep\n\u012028 8\nn ox\n\u0120V og\nO rd\n\u0120real - ms\nte k\n\u0120irrig ation\n\u0120bicy cles\n\u0120electron ically\np oly\nt - all\n() );\n\u0120aest hetics\n\u0120Integ rated\nExpl ore\n\u0120d unk\n47 - 6\np ain\n\u0120Jac ques\n\u0120D mit\nFram es\n\u0120reun ited\n\u0120hum - id\nD ro\nP olitical\n\u0120youth ful\n\u0120ent ails\n\u0120mosqu ito\n36 - 3\nspe cies\n\u0120coord inating\n\u0120May hem\n\u0120Magn us\nM ount\nImpro - ved\n\u0120ST ATE\nATT LE\n\u0120flow ed\n\u0120tack led\n\u0120fashion ed\n\u0120re - organ\niv ari\nf inger\n\u0120reluct antly\net ting\n\u0120V and\nyou ng\n\u0120Gar - land\n\u0120presum ption\n\u0120amen ities\n\u0120Ple asant\non ential\n\u0120O - xy\n\u0120mor als\n\u0120Y ah\nRead y\nSim on\nEn h\nD emon\n\u0120cl ich\nMon - itor\n\u0120D U\n\u0120wel comes\n\u0120stand out\n\u0120dread ful\n\u0120ban - anas\n\u0120ball oons\nh ooting\nbas ic\n\u0120suff ix\n\u0120d uly\ncan o\nCh - ain\nat os\n\u0120geop olitical\n\u0120( &\n\u0120Gem ini\n\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124 - \xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\xC3\u0125\xC3\u0124\n\u0120acqu - itted\nL uck\nprot ect\n10 24\n\u0120sc arcity\n\u0120mind fulness\nec ided\nD - N\npr ime\n\u0120Pres idents\n\u0120VID EO\n\u0120( \xE2\u012A\u0134\nadd - ock\nN OR\n\u0120P ru\np un\n\u0120L OL\n)) ))\n\u0120L iqu\n\u0120S AS\n\u0120sty - ling\n\u0120punish ments\n\u0120num b\n\u0120asc ertain\n\u0120Rock ies\nf - lu\nTh umbnail\n\u0120perpet rated\n\u0120Sem i\n\u0120dis arm\n\u0120Old - er\n\u0120Ex ception\n\u0120exponent ially\n\u0120Commun ities\n\u0120abol - ish\n\u0120Part ner\npt oms\n\u01207 77\n\u0120Fo ley\n\u0120C ases\n\u0120gre - ase\n\u0120Reb irth\nG round\n\u0120; )\n\u0120Doct rine\nik ini\nY e\n\u0120Bl - ossom\n\u0120pers ists\nb ill\n\u0120inf usion\n\u0120bud dies\n9 11\n\u0120Pat - ient\n\u0120dem os\n\u0120acquaint ance\n\u0120P aw\nat ari\n\u0120x ml\n\u0120fasc - ination\n\u0120Ser ve\n\xCF \u0124\nbr anded\n\u0120a z\nReturn s\n\u0120over - shadow\n\u0120ro am\n\u0120speed y\nn umbered\nhel ial\n\u0120disc iple\n\u0120ass - urances\ng iven\npect ing\n\u0120N atalie\n\xE7\u0136 \xB0\n\u0120mosquit - oes\nrote in\n\u0120numer ic\n\u0120independ ents\n\u0120trans itional\n\u0120reaction - ary\n\u0120Mech dragon\ndo ctor\n\u0120short est\n\u0120sequ ential\n\u0120B - ac\n\u0120Account s\n\xE3\u0123 \u012E\nach y\nract ive\n\u0120Reg iment\n\u0120breat - htaking\nffic iency\n\u0120B ates\n\u01203 11\n\u0120ward robe\nft s\n\u0120Ber - k\nSim ply\n\u0120Rivers ide\niver ing\nident ial\nlu cent\n\u0120en riched\n\u0120Con - ver\n\u0120G iving\n\xE3\u0125 \u013B\n\u0120legal ize\n\u0120F TC\n\u0120fre - aking\nM ix\n\u0120ter restrial\nes ian\nci ents\nW ing\nLO AD\n\u0120led - ge\n\u0120Viol ent\n\u0120Met all\n\u012030 8\n\u0120s outheastern\nhett o\nM - eat\n\u0120slow down\n\u0120ret reated\nJere my\nend as\n**** *\ner ic\n\u0120re - ins\nopp able\n\u0120Human ity\near ances\nrig an\nC amera\n\u0120wa ivers\ns - oc\n\u0120alter ation\ntrans form\n\u0120C emetery\n50 6\n\u0120indef inite\n\u0120stim - ulating\ny g\n60 3\n\u0120S op\n\u0120descript ive\nPh ase\n\u0120Ed mund\n\u0120pneum - onia\nvent us\nA mb\n\u0120labor atories\n\u0120Ex clusive\nug ar\nW ere\n\u0120malf - unction\n\u0120homosexual s\n\u0120---- ---\nun i\n\u0120turb ines\n\u0120Equ - ity\nD u\n\u0120mind ed\n\u0120R H\n\u0120Black hawks\n\u0120fe ats\n\u012017 - 00\nre pl\n36 2\nlad en\n\u0120indisp ensable\nly ss\ntt i\n\u0120re el\n\u0120diver - ted\n\u0120lik eness\n\u0120subscript ions\n\u0120fing ert\n\u0120fil thy\ndest - ruct\nd raft\n\u0120Bernard ino\nl aunch\n\u0120per plex\n\u0120S UM\ncar - b\n\u0120swe ater\n\u0120Vent ure\n\u0120J ag\n\u0120Cele b\n\u0120V oters\n\u0120stead - fast\n\u0120athlet ics\n\u0120Hans on\n\u0120Dr ac\nTr acker\n\u0120comm end\n\u0120Pres - idency\n\u0120D ID\nin formed\n\u0120web page\nP retty\n\u0120force fully\n\xE3\u0125\u0125 - \xE3\u0124\xAF\n\u0120rel ocation\n\u0120sat ire\n\xE2 \u012B\n\u0120Sunder - land\n\xE6 \u0126\nV oice\n???? ????\n\u0120inform ant\n\u0120bow el\n\u0120Un - iform\n\u0120 ...\"\n\u0120pur ge\n\u0120pic nic\n\u0120U mb\n\u0120U PDATE\n\u0120Sapp - hire\n\u0120St all\nle arn\n\u0120object ively\n\u0120ob liter\n\u0120looph - ole\n\u0120jour neys\n\u0120o mission\nPro s\n\u0120Sid ney\npl oma\n\u0120spray - ed\n\u0120g uru\n\u0120tra itor\n\u0120tim et\n\u0120sn apping\n\u0120Se vent\nurn - al\n\u0120Uk ip\n\u0120b owed\npor al\nl iberal\nR os\nQuest ions\ni OS\n\u0120summar - ize\nST AT\n\u012018 50\nap est\n\u0120l ender\n\u0120Vari able\nbr inging\n\u0120L - ORD\n, )\n\u0120collaps es\nx iety\n\u0120N ed\nY D\n\u0120Sch a\n\u0120antib - ody\n\u0120dis band\ny re\nill usion\n\u0120ro ver\ns hed\n\u0120Hiro sh\ncc - i\n\u0120cal am\n\u0120Mort on\nP interest\n\u012019 28\n\u0120E uras\nord - es\n\u0120f ences\n\u0120In ventory\n\u0120Val encia\n\u0120U d\n\u0120T iff\n\u0120squ - e\n\u0120qu otation\n\u0120troubles ome\ner ker\nQU EST\n\u0120King doms\ns - outh\n\u0120le vy\nPr ince\n\u0120St ing\n\u0120nick named\n\u0120app e\n\u0120phot - ographic\n\u0120corp us\nre ference\n\u0120T rog\nU nt\n) =(\n\u0120Lat via\n\u0120activ - ating\n\u0120license e\n\u0120dispar ities\n\u0120News letter\n\xE3\u0125\u0125 - \xE3\u0125\u012A\n\u0120free ing\n\u0120Je ep\n\u0120Per ception\nins k\n\u0120sil - icone\n\u0120Hay den\nLe an\n\u0120Suz uki\nibr arian\n66 8\n\u0120sp or\n\u0120correl - ations\nag hetti\n\u0120tu ber\n\u0120IP CC\nil us\n\u0120V u\n\u0120wealth - iest\n\u0120Carb uncle\nan za\n\u0120fool ed\n\u0120Z ur\n\u0120d addy\nran - o\nil ian\n\u0120knock out\nf man\nrequ ired\n\u0120Wik ileaks\n\u0120D uffy\nON - T\n\u0120ins ol\n\u0120Object s\n\u0120b ou\n\u0120Nord ic\n\u0120Ins ert\nsc - an\n\u0120d ancers\n\u0120id iots\nmajor ity\n\u0120Nev ille\n\u0120Free BSD\n\u0120t - art\npan ic\n69 0\n\u0120coc oa\n\u0120sam pled\n\u0120look up\nInd ust\n\u0120inject - ions\ngen re\n\u0120a u\n\u0120road way\n\u0120gen itals\nK ind\n\u0120Ex - aminer\n\u0120Y az\nF resh\n\u0120par alysis\n\u0120Al uminum\n\u0120re ap\nok - \xC3\xA9\n\u0120sl oppy\n\u0120Tun nel\npos ium\nner y\nen ic\n\u0120her bal\n\u0120Out - er\n\u0120Build er\n\u0120inc ur\n\u0120ide ologies\n\u0120back ups\ncons - uming\n\u0120Det ect\nde ck\n\u0120KN OW\n\u0120G ret\n\u0120M IC\n\u0120tough - ness\n\u0120Ex hibit\n\u0120h ive\nL es\n\u0120SCH OOL\n\u0120At ari\nald - e\n\u0120N ull\nand estine\nm ouse\n\u0120brig ade\n48 9\n\u0120rev ol\n\u0120Law - son\n\u0120W ah\nop oly\neb ted\n\u0120S aunders\n\u01203 13\n\u0120W inc\n\u0120tab - oo\n\u0120Hel met\n\u0120w edge\nch ip\n\u0120T ina\nb g\n\u0120inf uri\nr - n\n\u0120anomal ies\n\u0120Sy nc\n\u0120Ex am\n\u0120Comm it\n\u0120Di ary\n\u0120ALS - O\n\u0120De bor\nomed ical\n\u0120comprehens ion\n6 55\n\u0120empower ing\n\u0120 - ire\n\u0120ju ices\n\u0120E TH\n\u0120Box ing\n=\" /\n\u0120facilit ated\np - oke\n\u0120Pars ons\n\u0120Mod er\ntra vel\n\u0120civil izations\n\u0120liber - tarians\n\u0120run e\n\u0120Cl arks\nat hed\n\u0120campaign ers\n\u0120Dis - patch\n\u0120Fah renheit\n\u0120Cap com\n-------- --\n\u0120l ace\n\u0120dr - aining\n\u0120l iner\n\u0120Art ificial\n\xC3\xA9 n\nt ask\n] ).\n\u0120GM - O\n\u0120Oper ator\nord inary\n\u0120Inf luence\n\u0120U ps\n\u0120pot ency\nuss - en\nosp ons\n\u0120Sw im\n\u0120Dead line\nUn ity\n\u0120cul inary\n\u0120enlight - enment\n\u0120we arer\n\u0120min ed\n\u0120p ly\n\u0120inc est\n\u0120DVD - s\nW alk\nB TC\nTr ade\n\u0120dev al\nib and\n\u0120Overs ight\nPalest inian\n\u0120d - art\n\u0120m ul\nL R\n\u0120rem ovable\n\u0120Real ms\n\xEC \u013F\n\u0120misc - ar\n\u0120V ulkan\n68 5\n\xC3\xA8 re\n\u0120S ap\n\u0120mer ging\n\u0120Car - ly\nche ster\n\u0120br isk\n\u0120lux urious\n\u0120Gener ator\n\u0120bit - terness\n\u0120ed ible\n\u012024 3\nT G\n\u0120rect angle\nWith No\nbel ow\nJ - enn\n\u0120dark est\n\u0120h itch\n\u0120dos age\n\u0120sc aven\n\u0120K eller\n\u0120Illust - rated\nCertain ly\n\u0120Maver icks\nMarg inal\n\u0120diarr hea\n\u0120enorm - ously\n\u01209 99\nsh r\nqu art\n\u0120adam ant\n\u0120M ew\n\u0120ren ovation\n\u0120cerv - ical\n\u0120Percent age\nen ers\n\u0120Kim ber\n\u0120flo ats\n\u0120de x\n\u0120W - itcher\n\u0120Swan sea\nd m\n\u0120sal ty\ny ellow\n\u0120ca pe\n\u0120Dr - ain\n\u0120Paul a\n\u0120Tol edo\nles i\nMag azine\n\u0120W ick\n\u0120M n\n\u0120A - ck\n\u0120R iding\nAS ON\n\u0120hom ophobic\nAR P\n\u0120wand ered\nC PU\nood - oo\n\u0120P ipe\n\u0120tight ening\n\u0120But t\n3 18\n\u0120desert ed\nS - ession\n\u0120facilit ating\nJ ump\n\u0120emer gencies\nOW ER\n\u0120exhaust - ive\n\u0120AF TER\n\u0120heart beat\n\u0120Lab el\nack y\n\u0120Cert ified\nilt - ration\nZ e\n\u0120U tt\n\u012013 00\n\u0120pres ume\n\u0120Dis p\n\u0120sur - ged\n\u0120doll s\nCol umb\n\u0120chim pan\n\u0120R azor\n\u0120t icks\n\u0120councill - or\n\u0120pilgr image\n\u0120Reb els\n\u0120Q C\n\u0120A uction\nx ia\nik - k\nb red\n\u0120insert ion\n\u0120co arse\nd B\nSE E\n\u0120Z ap\n\u0120F - oo\n\u0120contem por\n\u0120Quarter ly\not ions\n\u0120Al chemist\n\u0120T - rey\n\u0120Du o\nS weet\n80 4\n\u0120Gi ov\n\u0120fun n\nN in\nh off\n\u0120ram - ifications\n\u012019 22\n\u0120Exper ts\naz es\n\u0120gar ments\nar ial\n\u0120N - ab\n\u012025 7\n\u0120V ed\n\u0120hum orous\n\u0120Pom pe\n\u0120n ylon\n\u0120lur - king\n\u0120Serge y\n\u0120Matt is\n\u0120misogyn y\n\u0120Comp onents\n\u0120Watch - ing\n\u0120F olk\nract ical\nB ush\n\u0120t aped\n\u0120group ing\n\u0120be - ads\n\u012020 48\n\u0120con du\nquer que\nRead ing\n\u0120griev ances\nUlt - ra\n\u0120end point\nH ig\n\u0120St atic\n\u0120Scar borough\nL ua\n\u0120Mess - i\na qu\n\u0120Psy Net\n\u0120R udd\n\u0120a venue\nv p\nJ er\n\u0120sh ady\n\u0120Res - ist\n\u0120Art emis\n\u0120care less\n\u0120bro kers\n\u0120temper ament\n\u01205 - 20\nT ags\n\u0120Turn ing\n\u0120ut tered\n\u0120p edd\n\u0120impro vised\n\u0120: - (\n\u0120tab l\n\u0120pl ains\n16 00\npress ure\n\u0120Ess ence\nmarg in\nfriend - s\n\u0120Rest oration\n\u0120poll ut\n\u0120Pok er\n\u0120August ine\n\u0120C - IS\n\u0120SE AL\nor ama\n\u0120th wart\nse ek\n\u0120p agan\n\xC2 \xBA\ncp - u\n\u0120g arn\n\u0120ass ortment\n\u0120I LCS\nt ower\nRecomm ended\n\u0120un - born\n\u0120Random Redditor\n\u0120RandomRedditor WithNo\n\u0120paraly zed\n\u0120eru - ption\n\u0120inter sect\n\u0120St oke\n\u0120S co\nB ind\n\xE5 \xBE\n\u0120P - NG\n\u0120Neg ative\n\u0120NO AA\nLe on\n\u0120all oy\n\u0120L ama\n\u0120D - iversity\n5 75\n\u0120underest imated\n\u0120Sc or\n\u0120m ural\n\u0120b - usted\nso on\nl if\n\u0120none x\n\u0120all ergy\n\u0120Under world\n\u0120R - ays\n\u0120Bl asio\n\u0120h rs\n\u0120D ir\n\u01203 27\nby ter\n\u0120repl - acements\n\u0120activ ates\nri ved\nM H\n\u0120p ans\n\u0120H I\n\u0120long - itudinal\n\u0120nu isance\nal er\n\u0120sw ell\n\u0120S igned\ns ci\n\u0120Is - les\n\u0120A GA\n\u0120def iant\n\u0120son ic\noc on\nK C\n\u0120A im\nt ie\nah - ah\n\u0120m L\nD X\n\u0120b isc\n\u0120Bill board\n\u0120SY STEM\nNE Y\nga - ard\n\u0120dist ressed\nformer ly\nAl an\n\u0120che fs\n\u0120opt ics\n\u0120C - omet\n\u0120AM C\n\u0120redes igned\nirm ation\n\u0120sight ings\n38 2\n3 - 11\n\u0120W B\n\u0120cont raction\n\u0120T OTAL\nD ual\n\u0120start led\n\u0120understand - ably\n\u0120sung lasses\nETH OD\n\u0120d ocker\n\u0120surf ing\n\u0120H EL\n\u0120Sl - ack\nton es\n\u0120sh alt\nVis ual\n49 8\nDep artment\nc ussion\n\u0120unrest - ricted\n\u0120t ad\n\u0120re name\nemploy ed\n\u0120educ ating\n\u0120grin - ned\nbed room\n\u0120Activ ities\n\u0120V elvet\n\u0120SW AT\n\u0120sh uffle\nig - or\n\u0120satur ation\nF inding\nc ream\nic ter\n\u0120v odka\ntr acking\nte - c\n\u0120fore ground\niest a\n\u0120ve hement\n\u0120EC B\n\u0120T ie\nE y\n\u0120t - urtles\n\u0120Rail road\n\u0120Kat z\n\u0120Fram es\n\u0120men ace\n\u0120Fell - owship\n\u0120Ess ential\nugg ish\n\u0120dri p\nch witz\n\u0120Ky oto\ns b\n\u0120N - ina\nParam eter\n\u0120al arms\n\u0120Cl aud\n\u0120pione ering\n\u0120chief - ly\n\u0120Sc ream\nCol lection\n\u0120thank fully\n\u0120Ronald o\n\xE5\u0143 - \u0132\nst rip\n\u0120Disney land\ncom mercial\nSee ing\nS oul\n\u0120evac - uate\n\u0120c iv\n\u0120As he\n\u0120div ides\n\u0120D agger\nrehens ive\n\u0120ber - ries\n\u0120D F\n\u0120s ushi\n\u0120plur ality\nW I\n\u0120disadvant aged\n\u0120batt - alion\nob iles\n45 1\n\u0120cl ing\n\u0120unden iable\n\u0120L ounge\n\u0120ha - unt\np he\n\u0120quant ify\n\u0120diff ered\n\u0120[* ]\n\u0120V iz\nc um\nsl - ave\n\u0120vide og\n\u0120qu ar\n\u0120bund les\n\u0120Al onso\nt ackle\n\u0120neur - onal\n\u0120landsl ide\nconf irmed\n\u0120Dep th\n\u0120renew ables\nB ear\n\u0120Maced - onia\n\u0120jer seys\n\u0120b unk\n\u0120Sp awn\n\u0120Control s\n\u0120Buch - anan\n\u0120robot ics\n\u0120emphas izing\n\u0120Tut orial\nh yp\nist on\n\u0120monument - al\n\xE6 \xB0\n\u0120Car ry\n\u0120t bsp\nen ance\nH ill\nart hed\n\u0120ro - tten\nDe an\n\u0120tw isting\n\u0120good will\n\u0120imm ersion\nL iving\n\u0120br - ushes\n\u0120C GI\n\u0120At k\ntr aditional\n\u0120ph antom\n\u0120St amina\n\u0120expans - ions\n\u0120Mar in\n\u0120embark ed\n\u0120E g\nint estinal\n\u0120PE OPLE\n\u0120Bo - oth\n\u0120App alach\n\u0120releg ated\nV T\nM IT\n\u0120must er\n\u0120withdraw - ing\n\u0120microsc ope\n\u0120G athering\n\u0120C rescent\n\u0120Argent ine\n\u0120Dec - re\n\u0120Domin ic\n\u0120bud s\nant age\n\u0120I on\n\u0120wid ened\nONS - ORED\n\u0120Gl oves\niann opoulos\nraz en\nfe el\n\u0120repay ment\n\u0120hind - sight\n\u0120RE ALLY\n\u0120Pist ol\n\u0120Bra h\n\u0120wat ts\n\u0120surv - ives\n\u0120fl urry\niss y\nAl ert\n\u0120Urug uay\nPh oenix\nS low\n\u0120G - rave\n\u0120F ir\n\u0120manage able\n\u0120tar iff\n\u0120U DP\n\u0120Pist - ons\n\u0120Niger ian\n\u0120strike outs\n\u0120cos metics\nwhel ming\nf ab\nc - ape\npro xy\n\u0120re think\n\u0120over coming\nsim ple\n\u0120w oo\n\u0120distract - ing\n\u0120St anton\n\u0120Tuls a\n\u0120D ock\n65 9\n\u0120disc ord\n\u0120Em - acs\n\u0120V es\n\u0120R OB\n\u0120reass uring\n\u0120cons ortium\nMuslim - s\n3 21\n\u0120prompt s\nse i\n\u0120H itch\nimp osed\n\u0120F ool\n\u0120indisc - rim\nwr ong\nbu querque\nD avis\n! ]\n\u0120tim eless\n\u0120NE ED\n\u0120pestic - ide\n\u0120rally ing\n\u0120Cal der\n\u0120\xE5 \xA4\n\u0120x p\n\u0120Un - le\n\u0120Ex port\nlu aj\nB uff\n) [\n\u0120sq or\nS audi\n\u0120is tg\n\u0120indul ge\npro c\n\u0120disg - usted\n\u0120comp ounded\n\u0120n em\n\u0120school ing\n\u0120C ure\nprocess - ing\nS ol\n\u0120pro verb\nit ized\n\u0120Alv arez\n\u0120scar f\n\u0120rect - angular\nre ve\n\u0120h ormonal\n\u0120St ress\nitiz en\n\u01204 25\ngirl - s\n\u0120No ir\n\u0120R app\n\u0120mar ches\nch urch\n\u0120Us es\n\u012040 - 5\n\u0120Ber m\n\u0120ord inances\n\u0120Jud gment\nCharg es\n\u0120Z in\n\u0120dust - y\n\u0120straw berries\n\u0120per ce\n\u0120Th ur\n\u0120Debor ah\nnet flix\n\u0120Lam - bert\n\u0120am used\n\u0120Gu ang\nY OU\nR GB\n\u0120C CTV\n\u0120f iat\nr - ang\n\u0120f ederation\n\u0120M ant\n\u0120B ust\n\u0120M are\nrespect ive\n\u0120M - igration\n\u0120B IT\n59 0\n\u0120patriot ism\n\u0120out lining\nreg ion\n\u0120Jos - \xC3\xA9\n\u0120bl asting\n\u0120Ez ra\nB s\n\u0120undermin es\n\u0120Sm ooth\n\u0120cl - ashed\nrad io\n\u0120transition ing\n\u0120Bucc aneers\n\u0120Ow l\n\u0120plug - s\n\u0120h iatus\n\u0120Pin ball\n\u0120m ig\n\u0120Nut r\n\u0120Wolf e\n\u0120integ - ers\n\u0120or bits\n\u0120Ed win\n\u0120Direct X\nb ite\n\u0120bl azing\nv - r\nEd ge\n\u0120P ID\nex it\n\u0120Com ed\n\u0120Path finder\n\u0120Gu id\n\u0120Sign - s\n\u0120Z er\n\u0120Ag enda\n\u0120reimburse ment\nM esh\ni Phone\n\u0120Mar - cos\n\u0120S ites\nh ate\nen burg\n\u0120s ockets\np end\nBat man\nv ir\n\u0120SH - OW\n\u0120provision al\ncon n\n\u0120Death s\nAT IVE\nPro file\nsy m\nJ A\n\u0120nin - ja\ninst alled\nid ates\neb ra\n\u0120Om aha\n\u0120se izing\n\u0120Be asts\n\u0120sal - ts\nM ission\nGener ally\n\u0120Tr ilogy\nhe on\nleg ates\n\u0120d ime\n\u0120f - aire\npar able\nG raph\n\u0120total ing\n\u0120diagram s\n\u0120Yan uk\nple - t\n\u0120Me h\n\u0120myth ical\n\u0120Step hens\naut ical\nochem istry\n\u0120kil - ograms\n\u0120el bows\nanc ock\n\u0120B CE\n\u0120Pr ague\n\u0120impro v\n\u0120Dev - in\n\u0120\" \\\npar alle\n\u0120suprem acists\n\u0120B illion\n\u0120reg - imen\ninn acle\n\u0120requ isite\nang an\n\u0120Bur lington\nain ment\n\u0120Object - ive\noms ky\nG V\n\u0120un ilateral\n\u0120t c\n\u0120h ires\nment al\n\u0120invol - untary\n\u0120trans pl\n\u0120ASC II\n\xC2 \xA8\nEv ents\n\u0120doub ted\n\u0120Ka - plan\n\u0120Cour age\nig on\n\u0120Man aging\n\u0120T art\n\u0120false hood\n\u0120V - iolet\n\u0120air s\n\u0120fertil izer\nBrit ain\n\u0120aqu atic\nou f\nW ords\n\u0120Hart - ford\n\u0120even ings\n\u0120V engeance\nqu ite\nG all\n\u0120P ret\n\u0120p - df\n\u0120L M\n\u0120So chi\n\u0120Inter cept\n9 20\n\u0120profit ability\n\u0120Id - le\n\u0120Mac Donald\n\u0120Est ablishment\num sy\n\u0120gather ings\n\u0120N - aj\nCharl ie\n\u0120as cent\n\u0120Prot ector\n\u0120al gebra\n\u0120bi os\nfor - ums\nEL S\nIntrodu ced\n\u01203 35\n\u0120astron omy\nCont ribut\n\u0120Pol - ic\nPl atform\n\u0120contain ment\nw rap\n\u0120coron ary\n\u0120J elly\nman - ager\n\u0120heart breaking\nc air\n\u0120Che ro\nc gi\nMed ical\n\u0120Account - ability\n! !\"\noph ile\n\u0120psych otic\n\u0120Rest rict\n\u0120equ itable\niss - ues\n\u012019 05\n\u0120N ek\nc ised\n\u0120Tr acking\n\u0120o zone\n\u0120cook - er\nros is\n\u0120re open\n\u0120inf inity\n\u0120Pharm aceutical\nens ional\nAtt - empt\n\u0120R ory\nMar co\n\u0120awa its\nH OW\nt reated\n\u0120bol st\n\u0120reve - red\n\u0120p ods\nopp ers\n00 10\n\u0120ampl itude\nric an\nSP ONSORED\n\u0120trou - sers\n\u0120hal ves\n\u0120K aine\n\u0120Cut ler\n\u0120A UTH\n\u0120splend - id\n\u0120prevent ive\n\u0120Dud ley\nif acts\numin ati\n\u0120Y in\n\u0120ad - mon\n\u0120V ag\n\u0120in verted\n\u0120hast ily\n\u0120H ague\nL yn\n\u0120led - ger\n\u0120astron omical\nget ting\n\u0120circ a\n\u0120C ic\n\u0120Tenn is\nLim - ited\n\u0120d ru\n\u0120BY U\n\u0120trave llers\n\u0120p ane\n\u0120Int ro\n\u0120patient - ly\n\u0120a iding\n\u0120lo os\n\u0120T ough\n\u012029 3\n\u0120consum es\nSource - File\n\u0120\"\" \"\n\u0120bond ing\n\u0120til ted\n\u0120menstru al\n\u0120Cel - estial\nUL AR\nPlug in\n\u0120risk ing\nN az\n\u0120Riy adh\n\u0120acc redited\n\u0120sk - irm\n\xE9 \u013D\n\u0120exam iner\n\u0120mess ing\n\u0120near ing\n\u0120C - hern\n\u0120Beck ham\n\u0120sw apped\n\u0120go ose\nK ay\n\u0120lo fty\n\u0120Wal - let\n\u0120[ '\n\u0120ap ocalypse\n\u0120b amboo\n\u0120SP ACE\n\u0120El ena\n\u012030 - 6\nac ons\n\u0120tight ened\n\u0120adolesc ence\n\u0120rain y\n\u0120vandal - ism\n\u0120New town\n\u0120con ject\nc akes\n\u0120che ated\n\u0120moder ators\npar - ams\nE FF\n\u0120dece it\n\u0120ST L\n\u0120Tanz ania\n\u0120R I\n\u012019 - 23\n\u0120Ex ile\nthe l\n\u0120the olog\n\u0120quir ky\n\u0120Ir vine\n\u0120need - y\nor is\nU m\nK a\n\u0120mail box\n3 22\n\u0120b os\n\u0120Pet ra\nK ING\n\u0120enlarg - ed\nO ften\n\u0120bad ass\n\u01203 43\n\u0120Pl aces\n\u0120C AD\n\u0120pr - istine\n\u0120interven ing\nd irection\n\u0120l az\n\u0120D SM\n\u0120project - ing\n\u0120F unk\nag og\npay ment\nn ov\n\u0120ch atter\nAR B\n\u0120exam - inations\n\u0120House hold\n\u0120G us\nF ord\n4 14\nB oss\n\u0120my stic\n\u0120le - aps\n\u0120B av\nul z\nb udget\nFoot ball\n\u0120subsid ized\n\u0120first - hand\n\u0120coinc ide\noc ular\nCon n\n\u0120Coll abor\n\u0120fool s\nam ura\nah - ar\nr ists\n\u0120sw ollen\n\u0120exp ended\n\u0120P au\ns up\n\u0120sp ar\n\u0120key - note\ns uff\n\u0120unequ al\n\u0120progress ing\nstr ings\n\u0120Gamer gate\nDis - ney\n\u0120Ele ven\nom nia\n\u0120script ed\n\u0120ear ners\nbro ther\n\u0120En - abled\n\xE6 \xB3\n\u0120lar vae\n\u0120L OC\nm ess\nWil son\n\u0120Tem plate\nsuccess - fully\n\u0120param ount\n\u0120camoufl age\n\u0120bind s\n\u0120Qu iet\n\u0120Sh - utterstock\nr ush\n\u0120masc ot\nfort une\n\u0120Col t\n\u0120Be yon\nhab - i\n\u0120ha irc\n\u012026 7\n\u0120De us\n\u0120tw itch\n\u0120concent rating\n\u0120n - ipples\nc ible\n\u0120g ir\nN Z\nM ath\nn ih\nRequ ired\n\u0120p onder\n\u0120S - AN\n\u0120wedd ings\n\u0120l oneliness\nN ES\n\u0120Mah jong\n69 5\nadd le\n\u0120Gar - ner\n\u0120C OUR\nBr idge\n\u0120sp ree\n\u0120Cald well\n\u0120bri bery\n\u0120\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD - \xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD\nplug ins\n\u0120r acket\n\u0120champ - agne\nvers ible\nV ote\n\u0120mod ifiers\nMay or\n6 80\n\u0120assemb lies\n\u0120S - ultan\n\u0120N ing\n\u0120Lad ies\n\u0120sulf ur\n\u0120or bs\n\u0120---- - -\n____ ___\n\u0120Journal ism\n\u0120es ports\n\u0120l ush\n\u0120h ue\n\u0120spect - ral\nH onest\n\xE3\u0125 \u0131\n\u0120bus hes\n\u0120rein forcement\n\u0120re - opened\n\u0120Whe els\n\u0120M org\nrie ving\n\u0120aux iliary\n\u0120j Query\n\u0120B - AT\ntes que\n\u0120ver tex\np ure\nf rey\n\xE3\u0124 \xBA\nd os\n\u0120ty - ph\n\u0120c ull\n\u0120e q\n\u0120dec on\n\u0120toss ing\n\u0120dispar ate\n\u0120Br - igham\nprint f\nled ged\n\u0120su nd\n\u0120co zy\n\u0120hepat itis\nper forming\n\u0120av - al\n\u0120G G\nf uture\n\u0120pet ertodd\n\u0120Kos ovo\n\u0120magn ets\nAl - ready\n\u0120Ed ison\n\u0120Ce res\n\u0120RA ID\n\u0120brill iance\n57 6\n\u0120der - ives\n\u0120hypert ension\n\u0120\xCE \u0136\n\u0120lamb da\n\u0120fl air\n\u0120mission - aries\n\u0120rap es\n\u0120St arter\n\u0120Mon ths\n\u0120def y\n\u0120seism - ic\n\u0120R aphael\n\u0120euro zone\n65 6\nz sche\n\u0120scr atched\n\u0120b - ows\n\u0120Lenn on\n\u0120Ga ia\n\u0120dri pping\nf acts\nA le\n\u0120frog - s\n\u0120Bre ast\nogene ity\n\u0120Prosecut or\n\u0120ampl ified\n\u0120Hod - g\n\u0120F n\nTh ousands\n\u0120NI H\n\u0120Monitor ing\nFT WARE\n\u0120Pri - ebus\n\u0120G rowing\nhun ter\n\u0120diagn ose\n\u0120M ald\n\u0120L R\n\u0120crown - ed\n\u0120burst ing\n\u0120diss olution\nj avascript\n\u0120useful ness\n\u0120Exec - ution\n: (\n\u0120Iv ory\na ah\n\u0120persecut ed\nviol ence\nist as\n\u0120Cr - ate\n\u0120impuls es\n\u0120Sp ani\ned es\nHand le\n\u0120Z erg\nthink able\nLast - ly\n\u0120spont aneously\n\u0120inconven ient\n\u0120dismiss ing\n\u0120pl - otted\n\u0120eight y\n\u01207 37\nr ish\n\u0120Thor nton\nath am\n\u0120sit - com\nV en\nRec ipe\nt el\nl und\n\u0120cle ars\n\u0120Sas uke\n\u012025 8\n\u0120opt - ing\n\u0120en raged\nest hetic\n\u0120A e\nuch s\nPre p\nFl ow\n\u0120run - off\n\u0120E ating\n\u0120G iles\n\u0120Act ing\nres ources\nib aba\n\u0120r - pm\n\u0120ske wed\n\u0120Bl anc\n\u0120S akuya\n\u0120hot ter\n\u012019 24\nop - ian\nck o\n\u0120cr umbling\n\u0120capt ains\n\u0120Appropri ations\nle aders\ndro - pping\nan uts\n\u0120revers ing\n\u0120P ose\n\u0120S ek\nSc ot\n\u0120Ide - a\nc ise\n\u0120Sloven ia\n\u01203 17\nDo ctor\n\u0120cro cod\nald i\nSe a\n\u0120Far - rell\n\u0120merc enaries\n\u0120R NC\n\u0120Gu ess\n\u0120p acing\nM achine\nStreamer - Bot\n\u0120Char ity\n\u012029 8\n\u0120cann ons\n\u0120Tob y\nTPP StreamerBot\n\u0120Pass - ion\ncf g\nTh om\n\u0120bad ges\n\u0120Bern stein\n. \xE2\u0122\u0135\n\u0120P - OP\n\u0120Con j\n\u0120initial ization\n\u0120biod iversity\nD ub\n\u0120feud - al\n\u0120disclaim er\n\u0120c row\n\u0120ign ition\nar f\nS HA\n\u0120k Hz\nh - azard\n\u0120Art ists\noe uv\n67 9\n\u0120Rud y\nN ine\n\u0120Ram adan\n\xE5 - \xBD\nitt o\n\u0120adren aline\nC ert\n\u0120smell ed\n\u0120imp unity\n\u0120ag - endas\n\u0120Re born\n\u0120Con cent\n\u0120Se ems\n\u0120o mega\n\u0120Dust - in\n\u0120back er\n\u0120Sau ce\n\u0120Boy le\nW IN\n\u0120sp ins\n\u0120pa - uses\nu pt\n\u0120shred ded\n\u0120stra pped\n\u0120Cor ruption\n\u0120scr - atches\n\u0120n i\n\u0120att ire\n\u0120S AF\nFactory Reloaded\n\u0120I PS\n\u0120( - %\n\u0120sem inar\nf ocus\nc ivil\n\u012018 60\nint osh\n\u0120contin ual\n\u0120abbre - vi\n\u0120S ok\noc obo\nX M\n\u0120fr antic\n\u0120unavoid able\n\u0120ar - tery\n\u0120annot ations\nb ath\nCl imate\n\u0120d ors\n\u0120Sl ide\nco ord\n\u0120Rel - oad\n\u0120L DL\n\u0120Love craft\n\u0120unim agin\n\u0120resemb led\n\u0120barr - acks\nn p\n\u0120surrog ate\n\u0120categor ized\n\xE3\u0124 \xA9\n\u0120vacc - inated\n\u0120drain age\n\u0120ind ist\n\u0120Whats App\n\u012018 70\noler - ance\ninv oke\nam orph\n\u0120recon nect\n\u0120em anc\n\u0120blind ness\n\u012012 - 80\nintern et\nc ollar\n\u0120alt ru\n\u0120ab yss\n\u0120T RI\n65 7\n\u0120inf - used\nHE AD\n\u0120forest ry\n\u0120Wood y\n\u0120C i\nw i\ns am\n78 4\nhol - iday\n\u0120mog ul\n\u0120F ees\n\u0120D EN\nIn ternal\nur bed\nf usc\nat - om\n\u0120Ill usion\n\u0120poll ed\n\u0120fl ap\n\u0120co ax\nL GBT\nAn aly\n\u0120Sect - ions\n\u0120Calif orn\nem n\n\u0120h ither\n\u0120N IGHT\n\u0120n ailed\n\u0120Pip - eline\n39 1\no of\n\u0120Pr imal\nvere nd\n\u0120sl ashing\n\u0120ret ri\navi - our\n\u0120depart ing\ng il\nIS C\n\u0120mid way\n\u0120ultras ound\n\u0120beh - aving\n\u0120T ara\nclass es\nV irtual\n\u0120Colon ial\n\u0120stri pping\n\u0120orchestr - ated\n\u0120Gra ves\n45 2\n\u0120Iron ically\n\u0120Writ ers\n\u0120l ends\n\u0120Man - z\n\u0120ra ven\n\u0120oxid ative\n\u012026 6\nEL F\nact ually\nasc ar\nD - raft\n\u0120favour able\n\u0120humili ating\n\u0120f idelity\n\u0120H of\n\u0120X - uan\n49 6\n\u0120lay ered\nat is\n79 0\n\u0120pay check\nit on\nK ar\n\u0120VM - ware\n\u0120Far mer\n\u0120serv ic\ngl omer\n\u0120sl ump\n\u0120Fab ric\n\u0120D - OC\nest ing\n\u0120reass ure\n\u0120ph yl\nv olt\nit ory\nR ules\n\u0120oxid - ation\n\u0120pri zed\n\u0120mist ress\n\u0120Dj ango\nWAR N\n\xE5 \u0133\n\u0120enc - ode\n\u0120Feed back\n\u0120stupid ity\nI an\n\u0120Yugoslav ia\n\xD7 \xA8\nac - l\nUT E\n19 77\n\u0120qual ifies\n\u0120puls es\npret ty\n\u0120fro ze\n\u0120s - s\nIter ator\n\u0120ur gently\n\u0120m ailed\n\u0120Ch am\n\u0120sust aining\n\u0120bas - il\n\u0120pupp ies\nil ant\n\u0120P LEASE\nl ap\nace ous\nF ear\n\u0120Master - y\naut omatic\n\u0120T AG\n\u0120ant im\nag les\n47 3\nfram es\n\u0120wh ispers\n\u0120Who - ever\n\u0120bra very\n\u0120UK IP\nract ions\n\"\" \"\n\u0120t ame\n\u0120part - ed\nevery thing\nCON T\n\u0120ind ebted\n\u0120add r\nre k\nIR ED\n\u0120em - inent\ncl inton\n\u0120o usted\n\u0120review er\n\u0120melt down\n\u0120re - arr\n\u0120Y ao\nthe real\naby te\n\u0120st umbling\n\u0120bat ches\n\u012025 - 9\n\u0120contrace ptive\n\u0120prost itute\nens is\nDe cl\n\u0120St rikes\nM - ilitary\n\u0120O ath\nv acc\npp ings\n05 2\n\u0120part Name\namp ing\nRep - orts\nK I\nCH R\n\u0120subt ly\nsw ers\nBl ake\nus ual\n\u0120contest ants\n\u0120cart - ridges\n\u0120GRE AT\n\u0120bl ush\n\u0120\xE2\u0122 \xBA\n47 2\n\u0120reason - ed\n\xE3\u0125 \xA4\nparalle led\n\u0120d yn\nag ate\n\u0120night ly\n\xE5 - \u0128\n55 6\n\u0120sem antic\n\u0120Adv oc\n\u0120 !!\n\u0120disag rees\n\u0120B - W\nV eh\n\u0120harm ing\n\u0120embr aces\n\u0120stri ves\n\u0120in land\n\u0120K - ard\n\u0120he ats\n\u0120Gin ny\nut an\nern aut\nyl ene\n\u0120E lev\nJ D\n\u0120h - ars\n\u0120Star r\n\u0120sk ysc\n\u0120collabor ators\nUs ually\n\u0120rev - olutions\n\u0120STAT S\n\u0120dism antle\n\u0120confident ly\n\u0120kin etic\nAl - i\n\u0120percent ile\n\u0120extract ing\nill ian\nest ead\n\u0120physic ists\n\u0120Marsh - al\n\u0120fell owship\n\u0120d ashed\n\u0120U R\n\u0120Si oux\n\u0120Comp - act\nam ide\nP ython\n\u0120Le igh\n\u0120Pharm ac\nist rates\nher ical\n\u0120f - ue\n\u0120E min\n\u0120( {\n\u0120Neighbor hood\n\u0120disrupt ing\n\u0120D - up\n\u0120g land\n\u0120Se v\n\u0120Mar ian\narg on\n\u0120D und\n\u0120< - !--\n\u0120str and\n\u0120stadium s\nz os\n\u0120psych osis\n\u0120R ack\n\u0120brilliant - ly\n\xEF\xB8 \u0131\n\u0120submer ged\n\u0120Inst it\n\u0120Ch ow\n\u0120c - ages\n\u0120H ats\n\u0120U rs\n\u0120dil uted\nus at\nien ne\n\u0120Members - hip\n\u0120Bur k\n\u0120 ie\n\u0120arche type\nD rug\nult on\n\u0120Sp ock\n\u0120McK - ay\n\u0120Dep end\nF eatured\nS oc\n19 78\n\u0120B ere\n\u0120relent lessly\n\u0120cripp - ling\n\u0120ar thritis\n\xE7\u0136 \u0141\n\u0120Trop ical\n\u0120Bul g\n\u0120Cher - yl\n\u0120adm irable\n\u0120sub title\nOver ride\n\u0120orig inating\n\u0120C - CP\n\u0120sw ore\n\u0120So le\n\u0120Dis orders\n3 29\n\u0120process ion\n\u0120ref - urb\n\u0120imm ersed\nrequ ently\n\u0120skept ics\n\u0120cer amic\nm itter\nen - stein\nb elt\n\u0120T IT\nb idden\n\u0120f ir\nm ist\n> ]\n\u0120we ave\n\u0120Parad - ox\n\u0120entr usted\n\u0120Barcl ays\n\u0120novel ist\nog ie\n80 6\n\u0120nin - ety\n\u0120disag reements\n@@@@ @@@@\n\u0120Aus chwitz\nc ars\n\u0120L ET\nt - ub\narant ine\nP OS\n\u0120back story\n\u0120cheer ful\n\u0120R ag\nek a\nbi - ased\n\u0120inexper ienced\nak ra\n\u0120W itt\nt an\n\u0120rap ist\n\u0120plate - au\nch al\n\u0120Inqu is\nexp ression\n\u0120c ipher\n\u0120sh aving\nadd - en\nre ly\n( \\\nism a\n\u0120Reg ulatory\nCH AR\nily n\nN VIDIA\nG U\n\u0120mur - m\nla us\nChrist opher\n\u0120contract ual\n\u0120Pro xy\n\u0120Ja ime\n\u0120Method - ist\n\u0120stew ards\nst a\nper ia\n\u0120phys iology\n\u0120bump ed\n\u0120f - ructose\nAustral ian\n\u0120Met allic\n\u0120Mas querade\nar b\n\u0120prom - ul\n\u0120down fall\n\u0120but cher\n\u0120b our\n\u0120IN FORMATION\n\u0120B - is\npect s\nad ena\n\u0120contempl ating\nar oo\ncent ered\n\u0120Pe aks\nUs - ed\n\u0120mod em\n\u0120g enders\n\u01208 000\n37 1\n\u0120m aternity\n\u0120R - az\n\u0120rock ing\n\u0120handgun s\n\u0120D ACA\nAut om\n\u0120N ile\n\u0120tum - ult\n\u0120Benef it\n\u0120Appro ach\nworks hop\n\u0120Le aving\nG er\ninst - ead\n\u0120vibr ations\n\u0120rep ositories\n49 7\n\u0120A unt\n\u0120J ub\n\u0120Exp - edition\nAl pha\n\u0120s ans\n\u0120overd ue\n\u0120overc rowd\n\u0120legisl - atures\n\u0120p aternal\n\u0120Leon ardo\n\u0120exp ressive\n\u0120distract - ions\n\u0120sil enced\ntr ust\n\u0120b iking\n\u01205 60\n\u0120propri et\n\u0120imp - osition\n\u0120con glomer\n\u0120= ================================================================\n\u0120Te - aching\n\u0120Y ose\nint ensive\nT own\n\u0120troll ing\n\u0120Gr ac\n\u0120AS - US\nY o\n\u0120special s\n\u0120Nep h\n\u0120God zilla\nDat abase\n\u0120He - gel\n\u012027 2\n19 76\n\u0120Gl oria\n\u0120dis emb\n\u0120Investig ations\n\u0120B - ane\nag ements\nSt range\n\u0120tre asury\n\u0120Pl ays\n\u0120undes irable\n\u0120wid - ening\n\u0120verb ally\n\u0120inf ancy\n\u0120cut ter\nf ml\n\u012021 00\nprot - otype\nf ine\n\u0120dec riminal\n\u0120dysfunction al\n\u0120bes ie\n\u0120Ern - st\nz eb\n\u0120nort heastern\n\u0120a ust\npor ate\n\u0120Mar lins\n\u0120segreg - ated\new orld\n\u0120Ma her\n\u0120tra verse\n\u0120mon astery\nur gy\nG ear\ns - and\nCom pl\n\u0120E MP\n\u0120pl ent\n\u0120Mer cer\n\u012027 6\nTA BLE\nConfig - uration\nH undreds\n\u0120pr ic\n\u0120collabor ating\n\u0120Par amount\n\u0120Cumm - ings\n\u0120( <\n\u0120record er\n\u0120fl ats\n\u01204 16\nwh ose\nFont Size\n\u0120Or - bit\nY R\n\u0120wr ists\n\u0120b akery\n) }\n\u0120B ounty\n\u0120Lanc aster\n\u0120end - ings\nacc ording\n\u0120Sal am\ne asy\n75 5\n\u0120Bur r\n\u0120Barn ett\nonom - ous\nUn ion\n\u0120preced ence\n\u0120Scholars hip\n\u0120U X\n\u0120roll - out\n\u0120bo on\nal m\n\u0120Can ter\n\xE6 \xB5\n\u0120round ing\n\u0120cl - ad\n\u0120v ap\n\u0120F eatured\nis ations\n\u01205 40\npol ice\n\u0120unsett - ling\n\u0120dr ifting\n\u0120Lum ia\n\u0120Obama Care\n\u0120F avor\nHy per\n\u0120Roth - schild\n\u0120Mil iband\nan aly\n\u0120Jul iet\nH u\n\u0120rec alling\na head\n69 - 6\n\u0120unf avorable\n\u0120d ances\nO x\n\u0120leg ality\n\u012040 3\nrom - ancer\n\u0120inqu ire\n\u0120M oves\n\\ \">\n\u0120Vari ant\n\u0120Mess iah\n\u0120L - CS\n\u0120Bah \xC3\xA1\n75 6\n\u0120eyeb row\n\u0120\xC2 \xA5\n\u0120Mc F\n\u0120Fort - y\nM as\n\u0120pan icked\n\u0120transform ations\nq q\n\u0120rev olves\nring - e\n\u0120A i\nax e\n\u0120on ward\n\u0120C FR\n\u0120B are\nlog in\n\u0120liqu - ids\n\u0120de comp\nsecond ary\nil an\n\u0120Con vert\nami ya\n\u0120prosecut - ing\n\u0120\xE2\u012B \xA1\n\u0120York ers\n\u0120Byr ne\nsl ow\naw ei\nJ - ean\n\u012026 9\n\u0120Sky dragon\n\u0120 \xC3\xA9\n\u0120Nicarag ua\n\u0120Huck - abee\n\u0120High ly\n\u0120amph ib\n\u0120Past or\n\u0120L ets\n\u0120bl urred\n\u0120visc - eral\n\u0120C BO\n\u0120collabor ated\nz ig\nLeg al\n\u0120apart heid\n\u0120br - id\n\u0120pres et\n\u0120D ET\n\u0120AM A\n\xD7 \u0136\narch ing\nauc uses\nbuild - er\n\u0120po etic\n\u0120em ulator\n\u0120Mole cular\n\u0120hon oring\nise - um\n\u0120tract or\n\u0120Cl uster\n\u0120Cal m\nared evil\n\u0120sidew alks\n\u0120viol - in\n\u0120general ized\n\u0120Ale c\n\u0120emb argo\n\u0120fast ball\n\u0120HT - TPS\n\u0120L ack\n\u0120Ch ill\nri ver\nC hel\n\u0120Sw arm\n\u0120Lev ine\nro - ying\nL aunch\n\u0120kick er\n\u0120add itive\n\u0120De als\nW idget\ncont - aining\n\u0120escal ate\n\u0120OP EN\n\u0120twe aked\n\u0120st ash\n\u0120sp - arks\n\u0120Es sex\n\u0120E cc\n\u0120conv ict\n\u0120blog ging\nI ER\n\u0120H - L\n\u0120murd erers\n75 9\n\u0120H ib\n\u0120de pl\n\u0120J ord\nS ac\n\u0120dis - sect\n\u0120How e\nos her\n\u0120custom izable\n\u0120Fran z\n\u0120at ro\n\xC4 - \u0129\n\u0120000 4\n\u0120out post\nR oss\n\u0120glyph osate\n\u0120Hast - ings\n\u0120BE FORE\n\u0120sh ove\no pped\n\u0120Sc ala\n\u0120am ulet\nan - ian\n\u0120exacerb ated\n\u0120e ater\n47 1\nUM E\n\u0120pul p\nizont al\n\u0120Z - am\n\u0120AT I\nimm une\naby tes\n\u0120unnecess arily\n\u0120C AT\n\u0120Ax - is\n\u0120visual ize\n\xC3 \u012B\n\u0120Rad ical\nf m\nDoc uments\n\u0120For - rest\n\u0120context ual\n\u0120Sy mbol\n\u0120tent ative\n\u0120DO ES\n\u0120Good - s\n\u0120intermitt ent\n} :\nmedi ated\n\u0120ridic ule\n\u0120athe ism\n\u0120path - ogens\n\u0120M um\n\u0120re introdu\n\u012030 7\ni HUD\n\u0120flash light\n\u0120sw - earing\n\u0120p engu\nB u\n\u0120rot ated\n\u0120Cr ane\n\u0120() );\n\u0120fashion - able\n\u0120endors ing\n46 3\n) [\n\u0120ingest ion\n\u0120cook s\n\u01209 - 50\not omy\n\u0120Im am\n\u0120k a\n\u0120te aser\n\u0120Ghost s\n\u0120\xE3\u0124 - \xB5\n19 69\n\xCF \u0125\nub by\n\u0120conver ter\nzan ne\nend e\n\u0120Pre - par\n\u0120Nic kel\n\u0120Chim era\nh im\n\u0120Tyr ann\n\u0120Sabb ath\n\u0120Nich - ols\n\u0120ra pt\nih ar\n\u0120she lling\n\u0120illum inate\n\u0120dent ist\nut - or\n\u0120Integ ration\n\u0120wh ims\n\u0120Liter ary\nBe aut\n\u0120p archment\nag - ara\nBr and\n\u0120der og\n\xE2\u0122\xA6 )\n\u0120Nor se\n\u0120unw itting\n\u0120c - uc\n\u0120border line\n\u0120upset ting\n\u0120rec ourse\n\u0120d raped\n\u0120Rad - ar\n\u0120cold er\n\u0120Pep si\nim inary\n], [\n65 8\nV i\n\u0120F rem\n\u0120P - es\n\u0120veter inary\n\u0120T ED\n\u0120Ep idem\nn ova\nk id\n\u0120dev out\no - ct\nj ad\nM oh\n\u0120P AY\n\u0120ge ometric\n\u01203 23\n\u0120circum ference\nich - ick\n19 75\n\u0120Y uri\n\u0120Sh all\n\u0120H over\nun in\nS pr\n\u0120g - raft\n\u0120Happ iness\n\u0120disadvant ages\natt acks\n\u0120hub s\n\u0120Star - Craft\n\xE9 \u0138\n\u0120gall eries\n\u0120Kor ra\n\u0120grocer ies\n\u0120Gors - uch\n\u0120rap ists\n\u0120fun gi\n\u0120Typh oon\nV ector\n\u0120Em press\nb - attle\n4 68\n\u0120paras ite\n\u0120Bom ber\nS G\nex ist\n\u0120P f\n\u0120un - se\n\u0120surge ons\nB irth\n\u0120Un sure\n\u0120Print ed\n\u0120Behavior - al\n\u0120A ster\nPak istan\n\u0120un ethical\n\u0120s v\n\u0120Io T\n\u0120lay - outs\nP ain\n\u0120const ants\n\u0120L W\n\u0120B ake\n\u0120tow els\n\u0120deterior - ation\n\u0120Bol ivia\n\u0120blind ed\n\u0120W arden\n\u0120Mist ress\n\u0120on - stage\n\u0120cl ans\n\u0120B EST\n19 60\n\u0120ant ique\n\u0120rhet orical\n\u0120Per - cy\n\u0120Rw anda\n, .\nB ruce\n\u0120tra umat\n\u0120Parliament ary\n\u0120foot - note\nid ia\n\u0120Lear ned\nse eking\ngen ic\n\u0120dim ensional\nH ide\n\xE8\u0122 - \u0127\n\u0120intrig ue\nin se\n\u0120le ases\n\u0120app rentices\nw ashing\n\u012019 - 26\nV ILLE\n\u0120sw oop\ns cl\n\u0120bed rooms\non ics\n\u0120Cr unch\ncomp - atible\n\u0120incap ac\n\u0120Yemen i\nash tra\nz hou\nd anger\n\u0120manifest - ations\n\u0120Dem ons\nAA F\nSecret ary\nACT ED\nL OD\n\u0120am y\nra per\neth - nic\n4 17\n\u0120pos itives\n\u012027 3\n\u0120Refuge es\n\u0120us b\n\u0120V - ald\nodd y\n\u0120Mahm oud\nAs ia\n\u0120skull s\n\u0120Ex odus\n\u0120Comp - et\n\u0120L IC\n\u0120M ansion\n\u0120A me\n\u0120consolid ate\nstorm s\nont - ent\n99 6\n\u0120cl en\n\u0120m ummy\nfl at\n75 8\n\u0120V OL\noter ic\nn - en\n\u0120Min ute\nS ov\n\u0120fin er\nR h\nly cer\n\u0120reinforce ments\n\u0120Johann - es\n\u0120Gall agher\n\u0120gym n\nS uddenly\n\u0120ext ortion\nk r\ni ator\nT - a\n\u0120hippocamp us\nN PR\n\u0120Comput ing\n\u0120square ly\n\u0120mod - elling\n\u0120For ums\n\u0120L isp\n\u0120Krish na\n\u01203 24\n\u0120r ushes\n\u0120ens - ued\n\u0120cre eping\non te\nn ai\nil ater\n\u0120Horn ets\n\u0120ob livious\nIN - ST\n55 9\n\u0120jeopard y\n\u0120distingu ishing\nj ured\n\u0120beg s\nsim - ilar\nph ot\n5 30\n\u0120Park way\n\u0120s inks\n\u0120Hearth stone\nib ur\n\u0120Bat - on\nAv oid\n\u0120d ancer\n\u0120mag istrate\nary n\n\u0120disturb ances\n\u0120Rom - ero\n\u0120par aph\n\u0120mis chief\n\xE2\u0138 \u0135\n\u0120Sh aria\n\u0120ur - inary\nr oute\niv as\nf itted\n\u0120eject ed\n\u0120Al buquerque\n\u01204 - 70\n\u0120irrit ated\n\u0120Z ip\n\u0120B iol\n\xC3 \u012F\n\u0120den ounce\n\u0120bin - aries\n\u0120Ver se\n\u0120opp os\n\u0120Kend rick\n\u0120G PL\n\u0120sp ew\n\u0120El - ijah\n\u0120E as\n\u0120dr ifted\nso far\n\u0120annoy ance\n\u0120B ET\n47 - 4\n\u0120St rongh\nit ates\n\u0120Cogn itive\noph one\n\u0120Ident ification\nocr - ine\nconnect ion\n\u0120box er\n\u0120AS D\n\u0120Are as\nY ang\nt ch\null - ah\n\u0120dece ive\nComb at\nep isode\ncre te\nW itness\n\u0120condol ences\nht - ar\n\u0120he als\n\u0120buck ets\n\u0120LA W\nB lu\n\u0120sl ab\n\u0120OR - DER\noc l\natt on\n\u0120Steven son\n\u0120G inger\n\u0120Friend ly\n\u0120Vander - bilt\nsp irit\nig l\n\u0120Reg arding\n\u0120PR OG\n\u0120se aling\nstart - ing\n\u0120card inal\n\u0120V ec\n\u0120Be ir\n\u0120millisec onds\nwe ak\nper - se\n\u0120ster ile\n\u0120Cont emporary\n\u0120Ph ant\n\u0120Cl o\n\u0120out - p\n\u0120ex iled\n\u012027 7\n\u0120self ie\n\u0120man ic\n\u0120n ano\nter - ms\nAlex ander\n\u0120res olves\n\u0120millenn ia\n\u0120expl odes\n\u0120const - ellation\n\u0120adul tery\nm otion\nD OC\n\u0120broad casters\n\u0120kinderg - arten\n\u0120May weather\n\u0120E co\nich o\n\u012028 7\nl aun\n\u0120m ute\n\u0120disc - reet\n\u0120pres chool\n\u0120pre empt\nDe lete\n\u0120Fre ed\nP i\nH K\n\u0120block - er\n\u0120C umber\n\u0120w rought\nd ating\n\u0120ins urer\n\u0120quot as\n\u0120pre - ached\n\u0120ev iction\n\u0120Reg ina\n\u0120P ens\n\u0120sevent een\n\u0120N - ass\nD ick\n\u0120fold s\n\u0120d otted\n\u0120A ad\nUn iversal\n\u0120p izz\n\u0120G - uru\n\u0120so ils\n\u0120no vice\n\u0120Ne ander\n\u0120st ool\n\u0120deton - ated\n\u0120Pik achu\n\u0120Mass ive\nIV ER\n\u0120Ab del\n\u0120subdu ed\n\u0120tall - est\n\u0120prec arious\n\u0120a y\nr ification\n\u0120Ob j\nc ale\n\u0120un - question\ncul osis\nad as\nigr ated\nD ays\n\u0120que ens\n\u0120Gaz ette\n\u0120Col - our\n\u0120Bow man\n\u0120J J\n\xC3\xAF ve\n\u0120domin ates\nStud ent\n\u0120m - u\n\u0120back log\n\u0120Elect ro\nTr uth\n48 3\n\u0120cond ensed\nr ules\n\u0120Cons - piracy\n\u0120acron ym\nhand led\n\u0120Mat te\nj ri\n\u0120Imp ossible\nl - ude\ncre ation\n\u0120war med\n\u0120Sl ave\n\u0120mis led\n\u0120fer ment\n\u0120K - ah\nink i\nke leton\ncy l\n\u0120Kar in\nHun ter\nReg ister\n\u0120Sur rey\n\u0120st - ares\n\u0120W idth\n\u0120N ay\n\u0120Sk i\n\u0120black list\nuck et\n\u0120exp - ulsion\nim et\n\u0120ret weet\nvant age\nFe ature\n\u0120tro opers\n\u0120hom - ers\n9 69\n\u0120conting ency\n\u0120W TC\n\u0120Brew er\nfore ign\nW are\nS - olar\n\u0120und ue\nRE C\nulner able\npath ic\n\u0120Bo ise\n\u01203 22\n\u0120arous - ed\n\u0120Y ing\n\xE4\xB8 \u012F\nuel ess\n\u0120p as\n\u0120mor p\n\u0120fl - oral\nEx press\nud ging\nk B\n\u0120Gr anted\n\xD8 \xAF\n\u0120Mich a\n\u0120Goth - ic\n\u0120SPEC IAL\n\u0120Ric ardo\nF ran\n\u0120administer ing\n6 20\npor - a\n\u0120\xC2 \xAE\n\u0120comprom ises\n\u0120b itten\nAc cept\nTh irty\n\xD0 - \xB2\n\u0120mater ially\n\u0120Ter r\nig matic\nch ains\n\u0120do ve\nstad - t\nMar vel\nFA ULT\n\u0120wind shield\n\u01203 36\nad ier\n\u0120sw apping\n\u0120flaw - less\n\u0120Pred ator\n\u0120Miche le\n\u0120prop ulsion\n\u0120Psych ic\n\u0120assign - ing\n\u0120fabric ation\n\u0120bar ley\nl ust\n\u0120tow ering\n\u0120alter - cation\n\u0120Bent ley\nSp here\n\u0120tun a\n\u0120Class es\nFre edom\nun - er\nL ady\nv oice\n\u0120cool est\nor r\n\u0120pal p\n$ {\n\u0120hyster ia\n\u0120Met - atron\np ants\n\u0120spawn ing\nExper ts\n\u0120Invest ors\n\u0120An archy\n\u0120shr - unk\n\u0120Vict im\n\u012028 9\n\u0120ec stasy\n\u0120B inding\n58 5\n\u0120Mel - ody\n57 8\not ally\n\u0120E tsy\nlig a\n\u0120applaud ed\n\u0120swe ating\n\u0120redist - ributed\n\u0120pop corn\n\u0120sem inal\nf ur\n\u0120Neuro science\nR and\n\u0120O - st\n\u0120Madd en\n\u0120Incre asing\n\u0120Daw kins\n\u0120Sub way\n\u0120ar - sen\ncons erv\nB UR\n\u0120sp iked\n\u0120Ly ft\n\u0120Imper ium\n\u0120Drop - box\n\u0120fav oured\n\u0120encomp asses\ngh ost\n\u0120ins pires\n\u0120bur - geoning\n\u0120Y oshi\n\u0120Vert ical\n\u0120Aud itor\n\u0120int ending\n\u0120filib - uster\nBl oom\nf ac\n\u0120Cav s\nign ing\n\u0120cowork ers\n\u0120Barb arian\nrem - ember\nFL AG\n\u0120audit ory\nason ry\nCol lege\n\u0120mut ed\ngem ony\nob - in\n\u0120Psych o\n9 68\n\u0120lav ish\n\u0120hierarch ical\n\u0120Dr one\nou - k\n\u0120cripp led\n\u0120Max im\nSl ot\n\u0120qu iz\n\u0120V id\nif ling\n\u0120archae - ologists\n\u0120abandon ment\nd ial\nle on\n\u0120F as\nT ed\n\u0120r aspberry\n\u0120maneu - vers\n\u0120behavi ours\n\u0120ins ure\n\u0120rem od\nSw itch\nh oe\n\u0120sp - aced\n\u0120afford ability\n\u0120F ern\nnot ation\n\u0120Bal anced\n\u0120occup - ies\nen vironment\n\u0120neck lace\n\u0120sed an\nF U\n\u0120Brav o\n\u0120ab - users\n\u0120An ita\nmet adata\n\u0120G ithub\nait o\n\u0120F aster\n\u0120Wass - erman\n\u0120F lesh\n\u0120th orn\nr arily\n\u0120Mer ry\nw ine\n\u0120popul - ace\n\u0120L ann\n\u0120repair ing\n\u0120psy che\n\u0120mod ulation\naw aru\n\xE2\u0122\u012D - \xE2\u0122\u012D\nari j\n\u0120decor ations\n\u0120apolog ise\n\u0120G arg\napp - ly\n\u0120give away\n\u0120Fl an\n\u0120Wy att\nU ber\n\u0120author ised\n\u0120Mor - al\nHAHA HAHA\nactiv ate\n\u0120torped o\n\u0120F AR\n\u0120am assed\n\u0120A - ram\nark in\n\u0120Vict ims\nst ab\n\u0120o m\n\u0120E CO\n\u0120opio ids\n\u0120purpose - ly\n\u0120V est\n\u0120er g\nat an\n\u0120Sur gery\n\u0120correct ing\n\u0120Ort - iz\n\u0120Be et\n\u0120rev oke\n\u0120fre eway\n\u0120H iggins\nF ail\n\u0120Far - ms\n\u0120AT P\nh ound\n\u0120p oking\n\u0120Commun ists\nmon ster\niment - ary\n\u0120unlock ing\n\u0120unf it\nwe ed\nen ario\nat ical\n\u0120Enlight - enment\n\u0120N G\n\u0120Comp ensation\nde en\n\u0120Wid ow\n\u0120Cind y\n\u0120After - wards\n\u01206 000\nikh ail\nag ically\n\u0120rat ified\n\u0120casual ty\nH - OME\np sey\nf ee\n\u0120spark ling\n\u0120d \xC3\xA9\n\u0120concert ed\nC - atal\n\u0120comp lying\n\u0120A res\n\u0120D ent\nSh ut\n\u0120sk im\nad minist\n\u0120host - ilities\n\u0120G ins\n\u01206 08\n\u0120m uddy\n\u0120Mc Int\n\u0120Dec ay\n5 - 25\n\u0120conspic uous\n\u0120Ex posure\n\u0120resc ind\n\u0120wear able\n\u01203 - 28\nour met\nah s\n\u0120Rob ots\n\u0120e clips\ninst ance\n\u0120RE PORT\n\u0120App - l\n0 30\n\u0120Sk ies\n01 00\n\u0120fall acy\nS ocket\n\u0120Rece iver\n\u0120sol - ves\n\u0120Butter fly\n\u0120Sho pping\n\u0120FI RE\n65 4\nMed ic\n\u0120sing - ers\n\u0120Need less\n'' ''\nisher s\n\u0120D ive\n58 8\n\u0120select ively\n\u0120cl - umsy\n88 9\n\u0120purch aser\near ned\nard y\n\u0120benef iting\neng lish\n\u0120yield - ing\n\u0120P our\n\u0120spin ach\n\u0120del ve\n\u0120C rom\n6 10\n\u0120export - ing\n\u0120MA KE\n\u012026 3\n\u0120g rop\n\u0120env oy\n\u0120Inqu iry\n\u0120Lu - igi\nd ry\n\u0120T uring\nThumbnail Image\n\u0120Var iety\n\u0120fac et\n\u0120fl - uffy\n\u0120excerpt s\n\u0120sh orth\n\u0120Ol sen\nCL UD\n\u0120rel iant\n\u0120UN - C\nT our\n\u0120bat hing\nComp any\n\u0120global ization\nP red\n\u0120Malf - oy\n\u0120h oc\nj am\ncraft ed\n\u0120Bond s\n\u0120Kiss inger\nEng land\n\u0120order - ly\ncat entry\n\u012026 1\n\u0120exch anging\n\u0120Int ent\n\u0120Amend ments\nD - OM\n\u0120st out\n\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142 - \xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\xC2\u0142\n\u0120Air - bus\n\u012027 8\nhy de\nP oll\nItem ThumbnailImage\n\u0120looph oles\n\u0120Pill - ar\n\u0120expl or\nSt retch\nA part\n\u0120un married\nLim it\n\u0120Transform - ers\n\u0120intellect ually\nunct ure\n18 00\n\u0120d arn\nB razil\n\u0120left - over\nber us\nf red\nMine craft\n3 26\n\u0120Form s\n\u0120proof s\n\u0120Des - igned\n\u0120index es\n\u0120Supp ose\nEM S\n\u0120L oving\n\u0120Bon nie\nim - ating\nOT US\n\u0120conduct or\n\u0120behav ed\n\u0120F ren\n\u0120sy nerg\n\u0120millenn - ium\n\u0120cater ing\n\u0120L auder\nW r\n\u0120Y iannopoulos\n\u0120AT F\n\u0120ensl - aved\n\u0120awaken ed\nD VD\n\u0120ED ITION\n\u0120Conc ert\n\u0120Chall enger\n\u0120H - aku\numer ic\n\u0120dep recated\n\u0120SH AR\n4 12\n\u0120dy stop\n\u0120tremb - ling\n\u0120dread ed\n\u0120Sp ac\np adding\nRe pl\n\u0120G arrison\nM ini\n\u0120un - paralleled\nam ar\nURR ENT\nw reck\nc ertain\nt al\n\u0120C LS\napp ings\n\u0120sens - ed\n\u0120f encing\n\u0120Pas o\n\u0120Des k\n\u0120sc off\n\u0120contem plate\n\u0120L - iga\nl iquid\n75 7\n\u0120app rentice\n\u0120UCH IJ\n5 70\n\u0120Th ousand\n\u0120Ill - um\n\u0120champion ed\n\xE3\u0124 \u012E\n\u0120elect ors\n\u01203 98\n\u0120H - ancock\nround ed\n\u0120J OHN\n\u0120uns atisf\n\u0120qual ifier\n\u0120Gad - get\nEN E\n\u0120dead liest\n\u0120Pl ants\n\u0120 ions\n\u0120acc ents\n\u0120twe - aking\n\u0120sh aved\nF REE\n\u0120Ch aser\nAgain st\n9 60\n\u0120meth amphetamine\n\u0120normal - ized\n\u0120$ \\\n\u0120Pre cision\n\u0120Gu am\n\u0120ch oked\n\u0120X II\n\u0120Cast - ing\nTor rent\n\u0120scal p\n\u0120Jagu ar\nw it\n\u0120sem ic\nix ie\n\u0120G - ould\n\u0120conf ines\nN usra\n\u0120L on\n\u0120J ugg\ny cle\n\u0120Cod ec\nE - gypt\n\u0120rest rain\n\u0120Al iens\n\u0120ch oking\n\u0120D unk\n\u0120Bell - a\nab c\n\u0120sl ang\n\u0120neuro trans\ns av\n\u0120empower ment\n\xE2 \u0128\u0134\n\u0120clim - bers\n\u0120M im\n\u0120F ra\nros se\nCap ital\n\u0120Cth ulhu\nInter face\n\u0120prof - icient\n\u0120IN TO\n\u01203 18\nront al\n5 80\n\u0120Des pair\nK enn\n\u0120scrim - mage\n\u0120Co at\nas ions\n\u0120wall paper\n\u0120J ol\n\u0120resurg ence\n\u0120ant - iv\n\u0120B alls\n\xB2 \xBE\n\u0120buff ers\n\u0120sub system\n\u0120St ellar\n\u0120L - ung\nA IDS\n\u0120erad icate\n\u0120blat antly\n\u0120behav es\n\u0120N un\n\u0120ant - ics\nex port\nDE V\nw b\n\u0120ph p\n\u0120Integ rity\n\u0120explore r\n\u0120rev - olving\nauth ored\ng ans\n\u0120bas k\n\u0120as ynchronous\n\xE5 \u012F\nTH - ING\n69 8\nG ene\n\u0120R acer\n\u0120N ico\niss ued\n\u0120ser mon\np ossibly\n\u0120size - of\n\u0120entrepreneur ial\nox in\n\u0120Min erva\n\u0120pl atoon\nn os\nri - ks\nA UT\n\u0120Aval anche\n\u0120Des c\n\u0133 \xE5\xA3\xAB\n\u0120P oc\n\u0120conf - erred\n\xCE \xBB\n\u0120pat ched\nF BI\n66 2\n\u0120fract ures\n\u0120detect - s\n\u0120ded icate\n\u0120constitu ent\n\u0120cos mos\nW T\n\u0120swe ats\n\u0120spr - ung\nb ara\ns olid\n\u0120uns us\n\u0120bul ky\n\u0120Philipp e\n\u0120Fen - rir\n\u0120therap ists\nore al\n^^ ^^\n\u0120total ed\n\u0120boo ze\n\u0120R - PC\nProsecut ors\n\u0120dis eng\n\u0120Sh ared\n\u0120motor cycles\n\u0120invent - ions\n\u0120lett uce\n\u0120Mer ge\n\u0120J C\n\u0120spiritual ity\n\u0120WAR - NING\n\u0120unl ucky\n\u0120T ess\n\u0120tong ues\n\u0120D UI\nT umblr\n\u0120le - ans\n\u0120inv aders\n\u0120can opy\n\u0120Hur ricanes\n\u0120B ret\n\u0120AP - PLIC\nid ine\nick le\nReg arding\n\u0120ve ggies\n\u0120e jac\nju ven\nF ish\nD - EM\n\u0120D ino\nTh row\n\u0120Check ing\nbe ard\n( &\n\u0120j ails\n\u0120h - r\ntrans fer\niv ating\n\u0120fle ets\n\u0120Im ag\n\u0120Mc Donnell\n\u0120snipp - et\nIs a\n\u0120Ch att\n\u0120St ain\n\u0120Set FontSize\n\u0120O y\n\u0120Mathemat - ics\n49 4\n\u0120electro ly\n\u0120G ott\n\u0120Br as\nB OOK\n\u0120F inger\nd - ump\n\u0120mut ants\n\u0120rent als\n\u0120inter tw\n\u0120c reek\nail a\nBro - ther\n\u0120Disc ord\npe e\nraw ler\n\u0120car p\n\u012027 9\n\xE3\u0124\xB7 - \xE3\u0125\xA3\nrel ations\n\u0120contr asts\nCol umn\n\u0120rec onnaissance\n\u0120un - know\n\u0120l ooting\n\u0120regul ates\n\u0120opt imum\n\u0120Chero kee\n\u0120A - ry\nLat est\n\u0120road side\n\u0120d anced\n\u0120Unic orn\nA cknowled\n\u0120uncont - roll\n\u0120M US\nat io\nch ance\nha ven\nVAL UE\n\u0120favour ites\n\u0120ceremon - ial\nb inary\npe ed\nwood s\nEM P\n\u0120v ascular\n\u0120contempl ated\n\u0120bar - ren\n\u0120L IST\nY ellow\nospons ors\n\u0120whisk y\n\u0120M amm\n\u0120DeV - os\nmin imum\nH ung\n44 2\nP ic\n\u0120Snap dragon\n77 6\n\u0120car ving\n\u0120und - ecided\n\u0120advantage ous\n\u0120pal ms\n\u0120A Q\n\u0120st arch\nL oop\n\u0120padd - le\n\u0120fl aming\n\u0120Hor izons\nAn imation\nbo ost\n\u0120prob abilities\n\u0120M - ish\n\u0120ex odus\n\u0120Editor ial\n\u0120fung us\n\u0120dissent ing\n\u0120Del - icious\nrog ram\n\u0120D yn\nd isk\nt om\n\u0120fab rics\n\u0120C ove\n\u0120B - ans\n\u0120soft en\n\u0120CON S\n\u0120in eligible\n\u0120estim ating\n\u0120Lex - ington\npract ice\nof i\n\u0120she dding\n\u0120N ope\n\u0120breat hed\n\u0120Corinth - ians\ny ne\nek i\nB ull\n\u0120att aching\nreens hots\n\u0120analy se\n\u0120K - appa\n\u0120uns ustainable\n\u0120inter pol\nank y\nhe mer\n\u0120prot agonists\n\u0120form - atted\n\u0120Bry ce\n\u0120Ach illes\n\u0120Ab edin\nsh ock\n\u0120b um\nb - os\nqu a\n\u0120W arn\nq t\n\u0120Di abetes\n8 64\n\u0120In visible\n\u0120van - ish\n\u0120trans mitting\n\u0120mur ky\n\u0120Fe i\n\u0120awa ited\n\u0120Jur - assic\numm ies\n\u0120men acing\ng all\nC ath\nB uilt\nild o\n\u0120V otes\n\u0120on - t\n\u0120mun itions\n\u0120Fre em\n\xC3\u0143 n\n\u0120dec ency\nlo pp\nie - ved\n\u0120G ord\n\u0120un thinkable\n\u0120News week\n\u01203 21\nHe at\n\u0120present - er\nji ang\n\u0120pl ank\n\u0120Aval on\n\u0120ben z\n\u0120R out\n\u0120slam - ming\n\u0120D ai\nou ter\n\u0120Cook ie\n\u0120Alic ia\nge y\n\u0120van ity\n\u0120ow - l\n\xE1 \xB5\nt ested\n\u0120Aw akens\n\u0120can v\n\u0120blind ly\n\u0120Rid - ley\n\u0120Em ails\nRequ ires\n\u0120Ser bian\nograp hed\nif rame\neter ia\n\u0120altern - ating\nqu iet\n\u0120soc iology\n\u0120Un lock\n\u0120Commun ism\n\u0120o - ps\n\u0120att ribution\n\u0120ab duction\n\u0120Ab ram\n\u0120sidel ined\n\u0120B - OOK\n\u0120ref ining\n\u0120Fe eling\n\u0120Os lo\n\u0120Pru itt\nr ack\nang - ible\n\u0120caut iously\n\u0120M ARK\need s\nM ouse\n\u0120Step h\n\u0120P - air\nS ab\n99 7\n\u0120Ba al\nB ec\n\u0120comm a\n\u0120P all\n\u0120G ael\n\u0120misunder - stand\n\u0120P esh\nOrder able\n\u0120dis mal\n\u0120Sh iny\n% \"\n\u0120real - istically\n\u0120pat io\n\u0120G w\n\u0120Virt ue\n\u0120exhaust ing\nwh atever\noph - ys\ny ip\n4 18\nAd just\n\u0120Wa iting\ness on\n\u0120Maz da\n\u0120Do zens\n\u0120stream - lined\n\u0120incompet ence\n\u0120M eth\n\u0120eth os\nON ES\n\u0120incent - iv\n\u0120gr itty\n\u0120But cher\nHead er\n\u0120exp onential\n\xC3 \u0141\n\u0120correl - ate\n\u0120cons ensual\ns ounding\nR ing\nOrig in\n\u0120con clusive\nfe et\nac - ly\n\u0120F ernandez\nBuy able\n\u0120d ucks\naunt lets\n\u0120el ong\n\u012028 - 6\n\u0120sim ul\nG as\n\u0120K irst\n\u0120prot r\n\u0120Rob o\n\u0120Ao E\nop - ol\n\u0120psych ologically\nsp in\nilater ally\n\u0120Con rad\nW ave\n44 1\n\u0120Ad - vertisement\n\u0120Harm on\n\u0120Ori ental\nis Special\n\u0120presum ptive\n\u0120w - il\n\u0120K ier\nne a\n\u0120p pm\n\u0120har bour\n\u0120W ired\ncomp any\n\u0120cor - oner\natur days\n\u0120P roud\n\u0120N EXT\n\u0120Fl ake\nval ued\nce iver\n\u0120fra - ught\n\u0120c asing\n\u0120run away\n\u0120g in\n\u0120Laure nt\n\u0120Har - lem\n\u0120Cur iosity\nqu ished\n\u0120neuro science\n\u0120H ulu\n\u0120borrow - er\n\u0120petition er\n\u0120Co oldown\nW ARD\n\u0120inv oking\nconf idence\nFor - ward\n\u0120st s\npop ulation\nDelivery Date\nFil m\n\u0120C ov\nquick Ship\nquickShip - Available\nprim ary\nisSpecial Orderable\ninventory Quantity\nchannel Availability\nBO - X\n\u0120Multi player\n\u0120Jen ner\n77 8\n\u0120M d\n\u0120~ /.\nM N\n\u0120child - ish\n\u0120antioxid ant\n\u0120Chrom ebook\n\u012027 4\n\u0120screen play\n\u0120advent - urous\n\u0120Relations hip\nrespons ive\nming ton\n\u0120corner stone\n\u0120F - ey\nF IR\n\u0120rook ies\n\u0120F eaturing\n\u0120orig inate\n\u0120electro - des\nant es\n\u0120script ures\n\u0120gl ued\n\u0120discont ent\n\u0120aff - licted\nlay out\nB rave\n\u0120m osa\n\u0120Quant ity\n\u0120H ik\nw inner\nH - ours\n\u0120ent ail\n\u0120Cell s\nolog ue\n\u0120v il\n\u0120pre acher\n\u0120decor - ative\nd ifferent\n\u0120prejud ices\n\u0120Sm oking\n\u0120Notting ham\nso - Type\n\u0120rhyth ms\n\u0120Al ph\nbl ast\nSte el\n\u0120Daniel le\n\u0120str - ife\n\u0120rem atch\nso DeliveryDate\n\u0120F ork\nt rip\nol ulu\nhes es\nC - G\n\u0120POLIT ICO\nost a\n\u0120Dr ift\n\xE9\xBE\u012F\xE5 \xA5\n\xE9\xBE\u012F\xE5\xA5 - \u0133\xE5\xA3\xAB\n\u0120vet ting\n\u0120Jin ping\n\u0120Rec ession\nMin - or\n\u0120F raud\nenf ranch\n\u0120conven ed\n\u0120NA ACP\n\u0120Mill ions\n\u0120Farm - ing\n\u0120W oo\n\u0120Fl are\nrit o\nimm igrant\n\u0120vac ancy\n\u0120HE - AD\n\u0120V aj\neg al\n\u0120V igil\nStud y\n\u0120ru ining\n\u0120r acks\n\u0120he - ater\n\u0120Rand olph\n\u0120Br ush\n\u0120T ir\n\xD8 \xA8\n\u0120c ov\n% - ]\n\u0120recount s\n\u0120O PT\n\u0120M elt\n\u0120tr uce\n\u0120cas inos\n\u0120crus - ade\n\u0120carn age\n\u0120stri pe\n\u0120K yl\nText ures\n\u01206 98\n\u0120pro - clamation\n\u0120good ies\n\u0120........ ..\npro claimed\nP olit\n\u0120top - ical\n\u0120special ize\n\u0120A min\ng m\n\u0120anch ored\n\u0120bear ings\ns - ample\n\u0120High land\n\u0120Aut ism\n\u0120merc enary\n\u0120interview er\nL - ER\n\u0120Som ers\n\u0120embry o\n\u0120Ass y\n\u012028 1\n\u0120Ed iting\n\u0120Ch - osen\n6 60\n\u0120p ci\n\u0120Thunder bolt\nBI LL\n\u0120chuck led\njri wal\nh - of\n\u0120earth ly\n() {\nind ependence\n\u0120disp ers\n\u0120V endor\n\u0120G - areth\n\u0120p als\nP enn\n\u0120Sub mit\nic um\nTh u\n\u0120cl andestine\n\u0120cann - ibal\n\u0120Cl erk\nE Stream\ngal itarian\n\xE2\u013B \xA5\ng ew\n\u0120hor - rend\n\u0120L ov\n\u0120Re action\nocr in\nClass ic\n\u0120echo ing\n\u0120discl - osing\n\u0120Ins ight\nog un\n\u0120Inc arn\nupload s\npp erc\nguy en\n\u012019 - 01\n\u0120B ars\n68 7\n\u0120b ribes\n\u0120Fres no\nur at\n\u0120Re ese\n\u0120intr - usive\n\u0120gri pping\n\u0120Blue print\n\u0120R asm\nun ia\nman aged\n\u0120Heb - do\n\u01203 45\n\u0120dec oding\n\u0120po ets\n\u0120j aws\n\u0120F IGHT\nam - eless\n\u0120Mead ows\n\u0120Har baugh\nInter view\n\u0120H osp\n\u0120B RA\n\u0120delet - ion\nm ob\nW alker\n\u0120Moon light\n\u0120J ed\n\u0120Soph ia\n\u0120us - ur\n\u0120fortun ately\n\u0120Put ting\n\u0120F old\n\u0120san itation\n\u0120part - isans\nIS ON\nB ow\n\u0120CON C\n\u0120Red uced\n\u0120S utton\n\u0120touch - screen\n\u0120embry os\n\xE2\u0122\xA2\xE2\u0122\xA2 \xE2\u0122\xA2\xE2\u0122\xA2\n\u0120K - rug\ncom bat\n\u0120Pet roleum\n\u0120am d\n\u0120Cos mos\n\u0120presc ribing\n\u0120conform - ity\nours es\n\u0120plent iful\n\u0120dis illusion\n\u0120Ec ology\nitt al\n\u0120f - anc\n\u0120assass inated\nregn ancy\n\u0120perenn ial\n\u0120Bul lets\n\u0120st - ale\n\u0120c ached\n\u0120Jud ith\n\u0120Dise ases\nAll en\n\u0120l as\n\u0120sh - ards\n\u0120Su arez\n\u0120Friend ship\ninter face\n\u0120Supp orters\nadd - ons\n46 2\n\u0120Im ran\n\u0120W im\n\u0120new found\n\u0120M b\nAn imal\n\u0120d - arling\nand e\n\u0120rh y\n\u0120Tw isted\npos al\nyn ski\nVar ious\n\xD7 - \u013E\n\u0120K iw\nuy omi\n\u0120well being\n\u0120L au\nan os\n\u0120unm - ist\n\u0120mac OS\n\u0120rest room\n\u0120Ol iv\n\u0120Air ways\n\u0120timet - able\n9 80\n\u0120rad ios\nv oy\nias co\n\u0120cloud y\n\u0120Draw ing\nAny - thing\nSy ria\n\u0120H ert\nst aking\n\u0120un checked\n\u0120b razen\n\u0120N - RS\n69 7\nonom ic\nest ablish\n\u0120l eng\n\u0120di agonal\n\u0120F ior\nL - air\n\u0120St ard\n\u0120def icient\njo ining\nbe am\n\u0120omn ip\n\u0120bl - ender\n\u0120sun rise\nMo ore\n\u0120F ault\n\u0120Cost ume\n\u0120M ub\nFl - ags\nan se\n\u0120pay out\n\u0120Govern ors\n\u0120D illon\n\u0120Ban ana\nN - ar\n\u0120tra iled\n\u0120imperial ist\num ann\nats uki\n4 35\n\u0120Road - s\n\u0120sl ur\n\u0120Ide ally\n\u0120t renches\nC trl\n\u0120mir rored\n\u0120Z - el\n\u0120C rest\nComp at\n\u0120Roll s\nsc rib\n\u0120Tra ils\nomet ers\nw - inter\n\u0120imm ortality\nil ated\n\u0120contrad icts\nun iversal\nill ions\n\u0120M - ama\nopt im\nAT URE\n\u0120ge o\net ter\n\u0120Car lo\n4 24\n\u0120canon ical\n\u0120Strongh - old\nn ear\n\u0120perf ume\n\u0120orche stra\nod iac\n\u0120up he\n\u0120reign - ing\nvers ive\n\u0120c aucuses\n\u0120D EM\n\u0120insult ed\n\u0120---- --\n\u0120Cr - ush\n\u0120root ing\n\u0120Wra ith\n\u0120wh ore\n\u0120to fu\nC md\n\u0120B - ree\n\u0120$ _\n\u0120r ive\n\u0120Ad vertising\n\u0120w att\n\u0120H O\n\u0120persu - asive\n\u0120Param eters\n\u0120observ ational\n\u0120N CT\n\u0120Mo j\n\u0120Sal - on\n\u0120tr unc\n\u0120exqu isite\n\u0120Mar a\n\u0120po op\n\u0120AN N\nEx - c\n\u0120Wonder ful\n\u0120T aco\n\u0120home owner\n\u0120Smith sonian\norpor - ated\nmm mm\n\u0120lo af\n\u0120Yam ato\n\u0120Ind o\n\u0120cl inging\n\xC3\xA1 - s\n\u0120imm utable\nh ub\nOr ange\n\u0120fingert ips\n\u0120Wood en\n\u0120K - idd\n\u0120J PM\n\u0120Dam n\nC ow\nc odes\n48 2\n\u0120initi ating\n\u0120El - k\n\u0120Cut ting\n\u0120absent ee\n\u0120V ance\n\u0120Lil ith\nG UI\n\u0120obsc - ured\n\u0120dwar ves\n\u0120Ch op\n\u0120B oko\nVal ues\n\u0120mult imedia\n\u0120brew - ed\nReg ular\nCRIP TION\n\u0120Mort al\n\u0120a pex\n\u0120travel er\n\u0120bo - ils\n\u0120spray ing\nRep resent\n\u0120Stars hip\n4 28\n\u0120disappro val\n\u0120shadow - y\n\u0120lament ed\n\u0120Re place\n\u0120Fran \xC3\xA7\n67 7\nd or\n\u0120unst - oppable\n\u0120coh orts\ngy n\n\u0120Class ics\n\u0120Am ph\n\u0120sl uggish\n\u0120Add - iction\n\u0120Pad res\n\u0120ins cription\n\u0120in human\nmin us\n\u0120Jere - miah\nat ars\nTer ror\n\u0120T os\n\u0120Sh arma\nast a\nc atch\n\u0120pl - umbing\n\u0120Tim bers\nSh ar\nH al\n\u0120O sc\n\u0120cou pling\nhum ans\n\u0120sp - onge\n\u0120id ols\n\u0120Sp a\n\u0120Adv ocate\n\u0120Be ats\nlu a\n\u0120tick - ing\n\u0120load er\n\u0120G ron\n8 10\n\u0120stim ulated\n\u0120side bar\n\u0120Manufact - urer\nore And\n19 73\n\u0120pra ises\n\u0120Fl ores\ndis able\n\u0120Elect - rical\nra ise\nE th\n\u0120migr ated\n\u0120lect urer\nK ids\n\u0120Ca vern\n\u0120k - ettle\n\u0120gly c\n\u0120Mand ela\n\u0120F ully\n\xE5\xA7 \xAB\nFIN EST\n\u0120squee - zing\n\u0120Ry der\namp oo\noreAnd Online\nInst oreAndOnline\nBuyable InstoreAndOnline\n\u0120commem - orate\n\u0120Ramp age\nAust in\n\u0120Sh roud\n\u0120Ru ins\n9 15\n\u0120K - H\n\u0120water front\n\u0120E SC\nb aby\n\u0120C out\n\u0120Em blem\n\u0120equival - ents\n49 2\nUn ique\n\u0120Niet zsche\nbrow ser\n\u0120im itation\n\u0120Were - wolf\n\u0120Kir in\nac as\n' ,\"\n\u0120\xC3 \xBE\nReview ed\n\u0120c unt\n\u0120vo - ic\n\u0120Len ovo\n\u0120bond ed\n48 1\n\u0120inhib itors\n\u0120endeav ors\n\u0120Hav - ana\n\u0120St out\n\u0120J olly\nA ctor\n*/ (\n\u0120occur rences\n\u0120T - ens\nIncre ased\n\u0120ACT ION\n\u0120 \xE3\u0122\u012E\n\u0120Rank ings\n\u0120B - reat\n\u012030 9\nD ou\n\u0120impact ing\n\u0120Duc hess\npre fix\nQ B\n\u0120summon - ing\n\u0120best owed\n\u0120Ke pler\n\u0120POW ER\nc ube\n\u0120K its\n\u0120G - rip\n\u0120op ium\n\u0120rep utable\nt oc\nich ael\n\u0120R ipple\n\u0120caf - \xC3\xA9\n\u0120Z oom\n\u0120Bur ma\n\u0120wa ive\n\u0120st alls\n\u0120dem - eanor\ninc erity\n\u0120fluor ide\n\u0120SH OULD\nPar is\n\u0120long ing\n\u0120pl - at\n\u0120gross ly\n\u0120bull s\n\u0120showc asing\nex pected\n\u0120G addafi\nengine - ering\nRe peat\n\u0120K ut\n\u0120conce ivable\n\u0120trim med\nosc ope\n\u0120Cand - idate\n\u0120T ears\nrol og\nLew is\nS UP\n\u0120road map\n\u0120sal iva\n\u0120trump - et\nJim my\n\u0120mirac ulous\n\u0120colon ization\n\u0120am put\n\u0120GN - OME\nate ch\nD ifferent\n\u0120E LE\n\u0120Govern ments\n\u0120A head\n\xE3\u0127\u012D - \xE3\u0127\u012D\nword press\nL IB\n\u0120In clude\n\u0120Dor othy\n0 45\n\u0120Colomb - ian\n\u0120le ased\n88 4\n\u0120de grading\n\u0120Da isy\ni ations\n\u0120bapt - ized\n\u0120surn ame\nco x\n\u0120blink ed\n\xE3\u0125 \xA2\n\u0120poll en\n\u0120der - mat\n\u0120re gex\n\u0120Nich olson\n\u0120E ater\n\xE7 \u013E\nrad or\n\u0120narrow - er\n\u0120hur ricanes\n\u0120halluc inations\nr idden\nISS ION\n\u0120Fire - fly\n\u0120attain ment\n\u0120nom inate\n\u0120av ocado\n\u0120M eredith\n\u0120t - s\n\u0120reve rence\n\u0120e uph\n\u0120cr ates\n\u0120T EXT\n\u01204 43\n\u01203 - 19\nJ SON\niqu ette\n\u0120short stop\nic key\n\u0120pro pelled\n\u0120ap - i\n\u0120Th ieves\n77 9\n\u0120overs aw\n\u0120col i\n\u0120Nic ola\n\u0120over - cl\nik awa\n\u0120C yr\n\u012038 4\n78 9\n\u0120All ows\n10 27\nDet roit\nTR - Y\nset up\n\u0120Social ism\nSov iet\ns usp\n\u0120AP R\n\u0120Shut down\n\u0120al - uminium\nzb ek\n\u0120L over\nGGGG GGGG\n\u0120democr acies\n\u012019 08\n\u0120Mer - rill\n\u0120Franco is\ngd ala\n\u0120traff ickers\n\u0120T il\n\u0120Go at\n\u0120sp - ed\n\u0120Res erv\n\u0120pro d\n55 2\n\u0120c ac\n\u0120Un iv\n\u0120Sch we\n\u0120sw - irling\n\u0120Wild erness\n\u0120Egg s\n\u0120sadd ened\n\u0120arch aic\nH - yd\n\u0120excess ively\nB RE\n\u0120aer ospace\n\u0120Vo ices\nCra ig\n\u0120ign - ited\nIn itially\n\u0120Mc A\n\u0120hand set\n\u0120reform ing\n\u0120frust - rations\n\u0120Dead pool\n\u0120Bel ichick\nract or\n\u0120Ragnar ok\n\u0120D - rupal\n\u0120App roximately\n19 20\n\u0120Hub ble\narm or\n\u0120Sar as\n\u0120Jon - as\n\u0120nostalg ic\n\u0120feas ibility\nSah aran\n\u0120orb iting\n\u01209 - 70\nR u\n\u0120sh in\n\u0120Investig ators\n\u0120inconsist encies\n\u0120P - AN\nB G\n\u0120graz ing\n\u0120detect ors\n\u0120Start up\n\u0120Fun ny\n\u0120Na - omi\nConsider ing\n\u0120h og\nut f\nce mic\n\u0120fort ified\n\u0120Fun ctions\n\u0120cod - ec\nnut rition\nH at\n\" !\nmicro soft\n55 8\n\u0120Th in\n\u0120A CE\nAl - ias\n\u0120O PS\np apers\nP K\n\xE3\u0122 \u0130\n\u0120impro bable\nN orthern\nequ - al\n\u0120look out\n\u0120ty res\n\u0120Mod ified\n\u0120K op\nAbs olutely\n\u0120build - up\nsil ver\n\u0120aud i\n\u0120gro tesque\n\u0120Sab er\n\u0120Pres byter\nON - Y\n\u0120glac iers\n\u0120Sho als\n\u0120K ass\n\u0120H RC\n\u0120Nic ol\n\u0120L - unch\n\u0120F oss\n\xE2\u0138 \u0134\nAD RA\n\u0120One Plus\no ing\nground - s\n\u0120incident al\n\u0120datas ets\n68 9\n\u0120Clarks on\n\u0120assemb - ling\n\u0120Correct ions\n\u0120drink ers\n\u0120qual ifiers\n\u0120le ash\n\u0120unf - ounded\n\u0120H undred\n\u0120kick off\nT i\n\u0120recon cil\n\u0120Gr ants\n\u0120Compl - iance\n\u0120Dexter ity\n\u012019 06\nw arn\nD allas\nMax imum\nn ard\nav - ia\nbe aut\nens itivity\ntr ace\n\u0120pione ers\n\u0120F ract\n\xE3\u0122 - \u0131\n\u0120pre cept\n\u0120gloss y\n\u0120I EEE\nAc ross\n\u01206 80\nS - leep\nche on\n\u0120satir ical\n\u0120Min otaur\n\u0120Cla ude\n\u0120r \xC3\xA9\nape - go\n\u0120car rot\n\u0120Sem in\nino a\n\u0120z o\nInd ependent\n\u0120diagn - oses\n\u0120C ue\nM AR\n\u0120rend ition\n\u0120K ik\n\u0120path ology\n\u0120select - s\nLink edIn\n\u0120ass ay\n\u0120D res\n\u0120text ual\npost ed\nIT AL\n\u0120M - aul\nN eal\n\u0120inter connected\n\u0120err atic\n\u0120Vir us\n\u01205 30\n\u0120environmental - ists\n\u0120P helps\n\u0120eng agements\n\u0120IN ST\n\u0120econom ical\nnox - ious\n\u0120g earing\nizz y\n\u0120favor ably\n\u0120McG ill\nT erm\n\u0120h - anged\n\u0120ball park\n\u0120Re yes\n\u0120be ware\n\u0120P sal\n\u0120Mass - acre\nq i\n\u0120in accessible\nacly sm\n\u0120fr ay\nill ac\n\u0120bitter - ly\n\u0120Cert ification\nMich igan\n\u0120ir respective\nal ore\nEm pty\n\u0120endorse - ments\n\u0120und et\nf g\nequ ipped\n\u0120merc iless\n\u0120C ust\n\u0120imm - ature\n\u0120vou cher\n\u0120Black well\n\xD1 \u0131\nh awk\ndis ciplinary\nile - e\n\u0120Mak oto\n\u0120D ude\n\xE3\u0125\u0129 \xE3\u0124\xA3\nY ears\n\u0120in - ver\n\u0120sh aman\n\u0120Y ong\nip el\nell en\n\u0120Cath y\nbr ids\n\u0120s - arc\n65 1\nN ear\n\u0120ground work\n\u0120am az\n\u01204 15\n\u0120Hunting - ton\nhew s\n\u0120B ung\n\u0120arbit rarily\n\u0120W it\n\u0120Al berto\n\u0120dis - qualified\nbest os\n46 1\n\u0120p c\n\u012028 4\nro bat\nRob in\n\u0120h ugs\n\u0120Trans - ition\n\u0120Occ asionally\n\u01203 26\n\u0120Wh ilst\n\u0120Le y\n\u0120spaces - hip\ncs v\n\u0120un successfully\n\u0120A u\nle ck\n\u0120Wing ed\n\u0120Grizz - lies\n. \xEF\xBF\xBD\n\u0120ne arer\n\u0120Sorce ress\n\u0120Ind igo\nEl se\n8 - 40\nlet es\nCo ach\n\u0120up bringing\n\u0120K es\n\u0120separat ist\n\u0120rac - ists\n\u0120ch ained\n\u0120abst inence\nlear ning\n\u0120rein stated\n\u0120symm - etry\n\u0120remind ers\n\u0120Che vy\n\u0120m ont\n\u0120exempl ary\n\u0120T - OR\nZ X\n\u0120qual itative\n\u0120St amp\n\u0120Sav annah\n\u0120Ross i\n\u0120p - aed\n\u0120dispens aries\n\u0120Wall s\n\u0120Ch ronic\n\u0120compliment ary\n\u0120Beir - ut\n\u0120+ ---\nigs list\n\u0120crypt ographic\nmas ters\n\u0120Cap itals\n\u0120max - imal\n\u0120ent ropy\nPoint s\n\u0120combat ants\nl ip\n\u0120Gl ob\n\u0120B - MC\nph ase\nth ank\nHT TP\n\u0120comm uter\n\u0120\\( \\\n.. /\n\u0120Reg - ener\n\u0120DO I\n\u0120Activ ision\n\u0120sl it\nos al\nRE M\n\u0120ch ants\nY - u\nKe ys\nBre xit\n\u0120For ced\nAri zona\n\u0120squad ron\nIS O\n\u0120Mal - one\n\u01203 38\n\u0120contrast ing\n\u0120t idal\n\u0120lib el\n\u0120impl - anted\n\u0120upro ar\n\u0120C ater\n\u0120propos itions\nM anchester\n\u0120Euro - s\nit amin\nG il\n\u0120El ven\n\u0120Se ek\n\u0120B ai\n\u0120redevelop ment\n\u0120Town - s\n\u0120L ub\n! \",\nal on\nK rist\n\u0120meas urable\n\u0120imagin able\n\u0120apost - les\nY N\n7 60\n\u0120ster oid\n\u0120specific ity\n\u0120L ocated\n\u0120Beck - er\n\u0120E du\n\u0120Diet ary\nuts ch\n\u0120Mar ilyn\n\u0120bl ister\n\u0120M - EP\n\u0120K oz\n\u0120C MS\ny ahoo\n\u0120Car ney\n\u0120bo asting\n\u0120C - aleb\nBy te\nread s\nad en\nPro blem\n\u0120Wood ward\nS we\nS up\n\u0120K - GB\nSet up\n\u0120tac it\n\u0120ret ribution\n\u0120d ues\n\u0120M \xC3\xBC\n. - ?\n\xE4\xB8 \u0143\np ots\n\u0120came o\n\u0120P AL\neduc ation\nA my\nlike - ly\ng ling\n\u0120constitution ally\n\u0120Ham m\n\u0120Spe ak\n\u0120wid - gets\nbr ate\n\u0120cra ppy\n\u0120I ter\n\u0120anticip ating\n\u0120B out\nP - ixel\n\u0120Y ep\n\u0120Laur ie\n\u0120h ut\n\u0120bullet in\n\u0120Sal vation\n\u0120ch - ats\near able\nHonest ly\nAL TH\nonse qu\nc ult\nisco very\novy ch\n\u0120se - lves\n\u0120Sat oshi\nS ounds\n\u0120conver gence\n\u0120Rosen berg\n19 74\n\u0120nas - al\n\u0120full est\n\u0120fer ocious\nx us\nist e\nAM S\n\u0120lobb ied\n\u0120so - othing\n\u0120Gun n\nt oday\n0 24\n\u0120inspir ational\n\u0120N BN\np b\ng - ewater\nor ah\nall owed\n\u0120Col iseum\n\u0120special izing\n\u0120insane - ly\n\u0120T ape\ndel ay\n\u0120t arn\n\u0120P ound\n\u0120mel anch\n\u0120deploy - ments\nil and\n\u0120less en\n\u0120fur ry\n\u0120UE FA\n\u0120blood shed\n\u0120Me - ier\nither ing\n\u0120he irs\n\u0120J aw\nax ter\n\u0120Public ations\n\u0120al - ters\nint ention\n\u0120Winc hester\nd etermination\n\u0120Lif etime\nth in\nMon - ster\n7 80\n\u0120approx imation\n\u0120super markets\n\u0120Second s\nor - os\nh uge\n\u0120b ribe\n\u0120LIM ITED\nun ed\n\u0120mis interpret\n\u0120In - jury\n\u01203 67\n\u0120threshold s\n\u0120Carn ival\n\u0120gastro intestinal\n\u0120guid - eline\n\u0120de ceived\nf eatures\n\u0120purported ly\n\u0120Ron nie\n\u0120New - t\n\u0120sp acious\nas us\n\u0120superhero es\n\u0120Cyn thia\nle gged\nk - amp\nch io\n\u0120th umbnail\n\u0120Shir ley\nill ation\n\u0120she ds\n\u0120Z - y\nE PA\n\u0120dam s\n\u0120y awn\nn ah\n\u0120Pe ggy\n\u0120E rie\n\u0120Ju - ventus\n\u0120F ountain\nr x\ndon ald\nal bum\n\u0120Comp rehensive\n\u0120c - aching\n\u0120U z\nulner ability\n\u0120Princ iple\n\u0120J ian\ning ers\ncast - s\n\u0120Os iris\nch art\nt ile\n\u0120Tiff any\n\u0120Patt on\n\u0120Wh ip\n\u0120overs - ized\nJ e\n\u0120Cind erella\n\u0120B orders\n\u0120Da esh\nM ah\n\u0120dog - ma\n\u0120commun ists\nv u\nCoun cil\n\u0120fresh water\n\u0120w ounding\n\u0120deb - acle\n\u0120young ster\n\u0120thread ed\n\u0120B ots\n\u0120Sav ings\n\xE3\u0123 - \u0124\nol ing\noh o\n\u0120illum ination\nM RI\n\u0120lo osen\ntr ump\nag - ency\nur ion\n\u0120moment arily\n\u0120Ch un\n\u0120Bud apest\n\u0120Al ley\nD - isk\n\u0120aston ished\n\u0120Con quer\n\u0120Account ing\nh aving\n\u0120We - in\n\u0120Al right\n\u0120rev olver\n\u0120del usion\n\u0120relic s\n\u0120ad - herent\nqu ant\n\u0120hand made\nor io\n\u0120comb ating\nc oded\n\u0120quad - ru\nre th\nN ik\n\u0120Trib al\n\u0120Myster ious\n\u0120in hal\n\u0120Win - ning\n\u0120Class ification\nch anged\n\u0120un ab\n\u0120sc orn\nicip ated\nw - l\nond uctor\n\u0120rein forcing\n\u0120Child hood\nan ova\n\u0120adventure - r\n\u0120doctor al\n\u0120Strateg ies\n\u0120engulf ed\n\u0120Enc ounter\n\u0120l - ashes\nCrit ical\nric ular\n\u0120U TF\noci ation\ncheck ing\n\u0120Consult - ing\nRun time\nper iod\n\u0120As gard\n\u0120dist illed\n\u0120Pas adena\n\u0120D - ying\n\u0120COUN TY\n\u0120gran ite\n\u0120sm ack\n\u0120parach ute\n\u0120S - UR\nVirgin ia\n\u0120F urious\n78 7\n\u0120O kin\n\u0120cam el\n\u0120M bps\n19 - 72\n\u0120Ch ao\n\u0120C yan\nj oice\nef er\n\u0120W rap\n\u0120Deb ate\nS - eg\n\u0120fore arm\n\u0120Ign ore\n\u0120tim estamp\n\u0120prob ing\n\u0120No - on\n\u0120Gra il\nf en\n\u0120dorm ant\n\u0120First ly\n\u0120E ighth\n\u0120H - UN\n\u0120Des ire\nor as\nGirl s\n\u0120Des mond\nz ar\nam ines\nO AD\nexec - ute\n\u0120bo obs\n\u0120AT L\n_ (\nChel sea\n\u0120masturb ation\n\u0120Co - C\n\u0120destroy er\n\u0120Ch omsky\n\u0120sc atter\n\u0120Ass ets\n79 6\n\u0120C - argo\n\u0120recept ive\n\u0120Sc ope\n\u0120market ers\n\u0120laun chers\n\u0120ax - le\n\u0120SE A\nse q\n\u0120M off\nf inding\n\u0120Gib bs\nGeorg ia\nextreme - ly\nN J\n\u0120lab orers\nst als\n\u0120med iation\n\u0120H edge\nat own\n\u0120i - od\ndes pite\nv ill\nJ ane\nex istence\n\u0120coinc ided\n\u0120Ut ilities\n\u0120Che - ap\n\u0120log istical\n\u0120cul mination\n\u0120Nic otine\np ak\nF older\n\u0120rod - ents\nst uff\n\u0120law fully\n\u0120reper to\nio ch\nj j\nDial ogue\nHH HH\nlic - tion\nLook s\n\u012029 7\n\u0120tur rets\n\u0120Ab andon\n\u0120inc ess\n\u0120Traff - ord\n\u0120cur led\n\u0120prefer ring\n\u0120privat ization\n\u0120ir resist\n\u0120P - anda\n\u0120Sh ake\n\u0120Mc Gr\n\xE3\u0125 \u0126\nund ers\n\u0120discrim - inated\n\u0120bart ender\nI LE\nAtl antic\n\u0120prop ensity\n\u0120W iz\n\u0120G - im\ncon ference\n\u0120rein forces\nG h\nw agon\n\u0120e erie\nF al\n\u0120hug - ged\nrac ist\nR IC\nF u\n\u0120f iller\n\u0120St ub\n\u0120eng raved\n\u0120Wrest - le\n\u0120imagin ative\n\u0120Pe er\n\u0120Fact ors\nan us\n\u0120Drac ula\nmon - itor\n\u0120rou ters\nib ia\n\u0120Boo lean\nend ale\n\u0120Sl aughter\n\u0120Sh - ack\nR FC\n\u0120Spiel berg\nS ax\n\u0120PH OTO\n\u0120Cl over\n\u0120R ae\nDep - ending\n\u0120Mem or\nar am\n\u0120pier ced\n\u0120cur tains\nv ale\n\u0120Inqu - isition\n\u0120P oke\n\u0120forecast ing\n\u0120compl ains\nS ense\n\u0120Her - mes\nisc overed\n\u0120b ible\n\u0120Mor ph\n\u0120g erm\n78 5\nD ON\n\u0120con - gen\n\u0120cr ane\n\u0120D PR\n\u0120respect fully\nR oom\n\u0120N aw\n\u0120Dal - ai\nre ason\n\u0120Ang us\nEduc ation\n\u0120Titan ic\n\xCB \u013E\n\u0120o - val\nun ited\n\u0120third s\n\u0120moist ur\n\u0120C PC\nM iami\n\u0120tent - acles\n\u0120Pol aris\nex c\nex clusive\n\u0120Pra irie\n\u0120col ossal\n\u0120Bl - end\nsur prisingly\n\xC3\u0143 s\n\u0120indo ctr\n\u0120bas al\n\u0120MP EG\nund - o\nSpl it\nDevelop ment\n\u0120lan tern\n19 71\n\u0120prov ocation\n\u0120ang - uish\n\u0120B ind\n\u0120Le ia\nduc ers\nipp y\nconserv ancy\n\u0120initial - ize\n\u0120Tw ice\n\u0120Su k\n\u0120pred ic\n\u0120di ploma\n\u0120soc iop\nIng - redients\n\u0120hamm ered\n\u0120Ir ma\nQ aida\n\u0120glim ps\n\u0120B ian\n\u0120st - acking\n\u0120f end\ngov track\n\u0120un n\ndem ocratic\nig ree\n\u01205 80\n\u012029 - 4\n\u0120straw berry\nID ER\n\u0120cher ished\n\u0120H ots\n\u0120infer red\n\u01208 - 08\n\u0120S ocrates\nO regon\n\u0120R oses\n\u0120FO IA\n\u0120ins ensitive\n\u012040 - 8\nRecomm end\n\u0120Sh ine\n\u0120pain staking\nUG E\n\u0120Hell er\n\u0120Enter - prises\nI OR\nad j\nN RS\nL G\n\u0120alien ated\n\u0120acknowled gement\n\u0120A - UD\n\u0120Ren eg\n\u0120vou chers\n\u01209 60\n\u0120m oot\n\u0120Dim ensions\n\u0120c - abbage\nB right\ng at\n\u0120K lu\n\u0120lat ent\n\u0120z e\n\u0120M eng\n\u0120dis - perse\n\u0120pand emonium\nH Q\n\u0120virt uous\n\u0120Loc ations\nee per\nprov - ided\n\u0120se ams\n\u0120W T\niz o\nPR OV\n\u0120tit anium\n\u0120recol lection\n\u0120cr - an\n\u01207 80\n\u0120N F\n49 1\n64 2\np acking\n59 8\ntext ure\nSp ider\nfre - edom\ncipl ed\n\u0120TAM ADRA\n\xE2\u013B \xA6\naut hent\n\u0120W ANT\nr ified\n\u0120r - ites\n\u0120uter us\nk iss\n\u0120\xE2\u012B \xA4\n\u0120sk illet\n\u0120dis - enfranch\n\u0120Ga al\nComp an\n\u0120age ing\ngu ide\nB alt\n\u0120iter ator\n\u0120discretion - ary\nt ips\n\u0120prim ates\n\u0120Techn ique\n\u0120Pay ments\naz el\n\u0120R - OCK\nstant ial\n0 60\n\u0120d mg\n\u0120Jack ets\n\u0120Play off\n\u0120nurs - ery\n\u0120Sy mb\nart on\n\u0120annex ation\nColor ado\n\u0120co ils\n\u0120Sh - oes\n\xE2\u0126\xA2 :\n\u0120Ro z\nCOM PLE\n\u0120Eve rest\n\u0120Tri umph\nJ - oy\nG rid\n\xE0 \xBC\nprocess or\n\u0120Pros per\n\u0120Sever us\n\u0120Select - ed\nr g\n\u0120Tay yip\nSt ra\n\u0120ski ing\n\u0120? )\n\u0120pe g\nTes la\n\u0120time - frame\n\u0120master mind\n\u0120N B\nscient ific\n\u0120Sh it\ngener ic\nIN - TER\nN UM\n\u0120st roll\n\u0120En ix\n\u0120M MR\n\u0120E MS\nm ovie\n\u0124 - \xAA\n\u0120minim izing\nidd ling\n\u0120illeg itimate\n\u0120prot otyp\n\u0120premature - ly\n\u0120manual s\nobb ies\n\u0120Cass idy\nD EC\ndes ktop\n\u0120aer os\n\u0120screen - ings\n\u0120deb ilitating\n\u0120Gr ind\nnature conservancy\n\u0120f ades\nter - mination\nassets adobe\nF actor\n\u0120definitive ly\nP ok\xC3\xA9\nap ult\n\u0120Laf - ayette\nC orn\n\u0120Cor al\n\u0120stagn ant\nT ue\n\u0120dissatisf action\nG - ender\n\u0120kid neys\n\u0120G ow\n\u0120Def eat\n\u0120Ash ton\n\u0120cart - els\n\u0120fore closure\n\u0120Expl ore\nstre ngth\not in\n\u0120veterin arian\n\u0120f - umble\n\u0120par ap\n\u0120St rait\nr ils\n\u0120pr ick\n\u0120Berm uda\n\u0120Am - munition\nskin ned\n\u0120ab ound\n\u0120B raz\n\u0120shar per\n\u0120Asc - ension\n\u01209 78\n\u0120preview s\n\u0120commun ion\n\u0120X Y\n\u0120ph - ony\n\u0120newcom er\n\u01203 32\n.\" ,\"\n\u0120redist ribution\nProt ect\n\u0120So - f\nK al\n\u0120lip stick\nw orst\n\u0120tang led\n\u0120retrospect ive\nint - eger\n\u0120volunte ering\n\u012019 07\n\u0120 --------------------\nic hen\n\u0120unve - iling\n\u0120sen seless\n\u0120fisher ies\n\\ -\n\u0120h inges\n\u0120calcul - us\nMy th\n\u0120und efeated\n\u0120optim izations\n\u0120dep ress\n\u0120bill - board\n\u0120Y ad\n\u0120Py ramid\nIs n\nI de\n\u0120leg ion\n\u0120K ramer\nent - anyl\n\u0120penet rating\n\u0120Haw th\n\u0120PR ODUCT\n\u0120Ger ard\n\u0120P - act\n\u0120In cluding\n\u0120El ias\n\u0120El aine\nvis ual\n\u0120hum ming\n\u0120cond - esc\n\u0120F asc\n\xE4\xB8 \u012C\n\u0120e galitarian\n\u0120dev s\n\u0120D - ahl\nO ps\nD H\n\u0120B ounce\nid ated\nald o\n\u0120republic an\n\u0120h - amb\n\u0120S ett\nograph ies\nCH APTER\n\u0120trans sexual\n\u0120sky rocket\nans - wer\n\u0120mark up\n\xD8 \xAA\n\u0120hero ine\nComp are\n\u0120T av\nBe ast\n\u0120success - ors\n\u0120na \xC3\xAFve\n\u0120Buck ley\nst ress\nme at\n\u0120download able\n\u0120index - ed\n\u0120sc aff\n\u0120L ump\n\u0120Hom o\nStud io\nIn sp\n\u0120r acked\nfar - ious\n\u0120Pet ty\nEx ternal\n\u012019 09\nW ars\ncom mit\nput ers\n\u0120un - ob\n\u0120Er r\n\u0120E G\n\u0120Al am\n\u0120Siber ia\n\u0120Atmosp heric\nIS - TER\n\u0120Satan ic\ntrans lation\n\u0120L oud\ntra umatic\nl ique\n\u0120reson - ate\n\u0120Wel ch\n\u0120spark ing\n\u0120T OM\nt one\n\u0120out l\n\u0120handc - uffed\n\u0120Ser ie\n8 01\n\u0120land marks\n\u0120Ree ves\n\u0120soft ened\n\u0120dazz - ling\n\u0120W anted\nmonth s\nMag ikarp\n\u0120unt reated\n\u0120Bed ford\nM - i\n\u0120Dynam o\nO re\n79 5\n\u0120wrong ful\n\u0120l ured\n\u0120cort isol\n\u0120ve - x\nd rawn\nile t\nDownload ha\n\u0120F action\n\u0120lab yrinth\n\u0120hij - acked\nw aters\ner ick\n\u0120super iors\n\u0120Row ling\n\u0120Gu inness\n\u0120t - d\n99 2\n\u0120une arthed\n\u0120centr if\n\u0120sham eless\nP od\n\u0120F - ib\n\u0120 icing\n\u0120predict or\n\u012029 2\nfore station\ncon struct\nC - and\n@ #\n\u0120ag itated\n\u0120re pr\nOV A\n\u0120kn itting\n\u0120Lim a\n\u0120f - odder\n68 4\n\u0120Person a\nk l\n7 01\n\u0120break up\n\xE1 \xB8\n\u0120app - alled\n\u0120antidepress ants\n\u0120Sus sex\nHar ris\n\u0120Ther mal\nee - ee\nU pload\n\u0120g ulf\n\u0120door step\n\u0120Sh ank\nL U\n\u0120M EN\n\u0120P - ond\ns orry\n\u0120mis fortune\nn ance\n\u0120b ona\nM ut\n\u0120de graded\n\u0120L - OG\n\u0120N ess\nan imal\n\u0120a version\nund own\n\u0120supplement ed\n\u0120C - ups\n\u012050 4\n\u0120dep rive\n\u0120Spark le\n\xC5 \u0124\n\u0120Med itation\nauth - ors\n\u0120Sab an\n\u0120N aked\nair d\n\u0120Mand arin\n\u0120Script ures\n\u0120Person - nel\n\u0120Mahar ashtra\n\u012019 03\n\u0120P ai\n\u0120Mir age\nomb at\nAccess - ory\n\u0120frag mented\nT ogether\n\u0120belie vable\n\u0120Gl adiator\nal - igned\n\u0120Sl ug\nM AT\n\u0120convert ible\n\u0120Bour bon\namer on\n\u0120Re - hab\nnt ax\n\u0120powd ered\npill ar\n\u0120sm oker\n\u0120Mans on\n\u0120B - F\n5 11\n\u0120Good ell\n\u0120D AR\nm ud\ng art\n\u0120ob edient\n\u0120Trans - mission\n\u0120Don ation\n8 80\n\u0120bother ing\nMaterial s\n\xE3\u0124 \xB1\ndest - roy\n\u0120fore going\n\u0120anarch ism\n\u0120K ry\nice ps\n\u0120l ittered\n\u0120Sch - iff\n\u0120anecd otal\nun its\n\u0120f ian\n\u0120St im\n\u0120S OME\n\u0120Inv - aders\n\u0120behaviour al\n\u0120Vent ures\n\u0120sub lime\n\u0120fru ition\n\u0120Pen - alty\n\u0120corros ion\n\xB6 \u0127\n\u0120lik ened\n\u0120besie ged\nween - ey\n\u0120Cre ep\n\u0120linem en\nmult i\nic ably\nud der\n\u0120vital ity\n\u0120short - fall\n\u0120P ants\nap ist\nH idden\n\u0120Dro ps\nmed ical\n\u0120pron unciation\n\u0120N - RL\n\u0120insight ful\nJ V\n\u0120Be ard\n\u0120Ch ou\n\u0120char ms\n\u0120b - ins\n\u0120amb assadors\n\u0120S aturdays\n\u0120inhib itor\n\u0120Fr anch\n6 - 01\n', '\n\u0120Con or\nart ney\n\u0120X peria\ng rave\nbe es\n\u0120Protest - ants\n\u0120so aking\n\u0120M andal\n\u0120ph ased\n\u01206 60\n\u0120sc ams\n\u0120buzz - ing\n\u0120Ital ians\n\u0120Loren zo\n\u0120J A\n\u0120hes itated\n\u0120cl - iffs\n\u0120G OT\ningu ishable\n\u0120k o\n\u0120inter ruption\nZ ip\nLear - ning\n\u0120undersc ores\n\u0120Bl ink\nK u\n57 9\n\u0120Aut ob\nI RE\n\u0120water - ing\n\u0120past ry\n8 20\n\u0120vision ary\n\u0120Templ ar\nawa ited\n\u0120pist - on\n\u0120ant id\ncurrent ly\n\u0120p ard\n\u0120w aging\n\u0120nob ility\n\u0120Y - us\n\u0120inject ing\nf aith\n\u0120P ASS\n\xE5 \xBA\n\u0120ret ake\n\u0120PR - OC\n\u0120cat hedral\nb ash\n\u0120wrest lers\n\u0120partner ing\n\u0120n - oses\n\u01203 58\nTrans form\nam en\n\u0120b outs\n\u0120Id eal\n\u0120Constant - in\n\u0120se p\n\u0120Mon arch\natt en\n\u0120Pe oples\nmod ified\n\u0120mor - atorium\n\u0120pen chant\n\u0120offensive ly\n\u0120prox ies\nok ane\n\u0120Taiwan - ese\n\u0120P oo\n\u0120H OME\nus ional\n\u0120ver bs\n\u0120O man\nvis ory\n\u0120persu - asion\n\u0120mult it\n\u0120sc issors\nG ay\now ay\noph ysical\nl us\ngn u\n\u0120ap - ocalyptic\n\u0120absurd ity\n\u0120play book\n\u0120autobi ography\nI UM\n\u0120sne - aking\n\u0120Sim ulation\npp s\nell ery\nPlan et\n\u0120right fully\n\u0120n - iece\n\u0120N EC\n\u0120IP O\n\u0120Dis closure\nlean or\nous y\nST ER\n\u012028 - 2\nCru z\nCh all\n64 3\n\u0120Surv ive\n\u0120F atal\n\u0120Am id\nap o\nWe - apons\nD EN\n7 70\n\u0120Green wald\n\u0120lin en\nal os\n\u0120pollut ants\n\u0120PCI - e\nk at\n\u0120p aw\n\u0120K raft\nC hem\n\u0120Termin ator\n\u0120re incarn\n\u0120] - [\n\u0120Se eds\n\u0120silhou ette\n\u0120St ores\n\u0120gro oming\n\u0120D - irection\n\u0120Is abel\n\u0120Br idges\n\xF0\u0141 \u0133\nE ED\n\u0120M - orsi\n\u0120val ves\n\u0120Rank ed\n\u0120Ph arma\n\u0120Organ izations\n\u0120penet - rated\n\u0120Rod ham\n\u0120Prot oss\n\u0120ove rest\n\u0120ex asper\n\u0120T - J\n\u0120 000000\n\u0120trick le\n\u0120bour bon\nWH O\n\u0120w retched\n\u0120microsc - opic\n\u0120check list\n\u0120ad orned\nR oyal\nAd minist\n\u0120Ret irement\n\u0120Hig - hest\nWe ather\nile ge\n\u0120incre ments\n\u0120C osponsors\n\u0120mas se\n\u0120S - inn\nr f\n\u0120h ordes\nas sembly\n75 4\n\u0120Nat asha\n\u0120TY PE\n\u0120GEN - ERAL\n\u0120arr anging\n\u012040 7\nl ator\n\u0120g lean\n\u0120disc redited\n\u0120clin - icians\nUN E\n\u0120achie ves\n\u0120Em erson\ncom plex\n= [\n\u0120princip - ally\n\u0120fra il\np icked\n\u0120than king\n\u0120re cl\n\u0120L AST\n\u0120supp - ressing\nil ic\n\u0120antidepress ant\n\u0120Lis bon\n\u0120th or\n\u0120sp - a\n\u0120king doms\n\u0120Pear ce\nem o\n\u0120pl ung\n\u0120div est\n\u0120 - ********************************\nb is\nosp els\nad r\nSp irit\nhall a\nP - ink\nend ez\n\u0120resurrect ed\nesc ape\n\u0120Rosen stein\n\u0120ge ological\n\u0120necess - ities\n\u0120carn iv\n\u0120E lys\n\u0120Bar ney\n\u012029 6\ndig y\nST ON\nD - OWN\n\u0120mil estones\n\u0120k er\n\u0120dismant ling\n\u0120re prim\n\u0120cross - ings\n19 45\n\u0120patri archy\n\u0120blasp hemy\n\u01203 59\nmet ry\n\u0120Ob - esity\n\u0120Diff erences\nbl ocking\n\xE3\u0125\u0137 \xE3\u0124\xA1\nich - ita\n\u0120Sab ha\nph alt\n\u0120Col o\nual a\neffic ients\n\u0120Med ina\ncon - sole\n55 7\n\u0120Hann ibal\n\u0120Hab it\n\u0120F ever\n\u0120then ce\n\u0120syn - agogue\n\u0120essential s\n\u0120w ink\n\u0120Tr ader\nID A\n\u0120Sp oiler\n\u0120Iceland - ic\n\u0120Hay ward\n\u0120pe ac\n\u0120mal ice\n\u0120flash back\n\u0120th - w\n\u0120lay offs\nL iquid\n\u0120tro oper\n\u0120h inge\n\u0120Read ers\nPh - ill\n\u0120B auer\nCre ated\n\u0120aud its\nac compan\n\u0120unsus pecting\nier - a\n6666 6666\n\u0120bro ch\n\u0120apprehend ed\n\u0120M alk\ncer ning\n\u0120Cod - ex\nO VER\nM arsh\n\u0120D eng\n\u0120Exp ression\n\u0120disrespect ful\n\u0120asc - ending\nt ests\n\u0120Plaint iff\nster y\n\u0120Al ibaba\ndin and\n\u0120Dem - psey\nApplic ations\nmor al\n\u0120through put\n\u0120quar rel\n\u0120m ills\n\u0120he - mor\n\u0120C ASE\nterror ist\nst im\nifest yle\nro zen\nCE PT\nAr k\nu ci\nlect - ic\n\u0120irrit ating\nshe ets\nA y\n\u0120rede emed\n\u0120horn y\n\u0120Te - ach\n\u0120S ear\ndem ocracy\n4 65\n\u0120Rest ore\n\u0120stand by\n\u0120P - is\niff in\n\u0120sleep y\n\u0120extr ater\n\u0120compl iments\nFram eworks\n\u0120install - s\n\u0120b anging\nsur face\nfound land\n\u0120metaph ysical\n\u012028 3\noul - s\ndev ices\nAr gs\n\u0120Sac rifice\n\u0120McC orm\nes on\nCons ervative\n\u0120M - ikhail\nsee ing\nis ively\n\u0120Ro oms\n\u0120Gener ic\n\u0120enthusi astically\n\u0120gri - pped\n\u0120comed ic\n\u0120Electric ity\n\u0120gu errilla\n\u0120dec oration\n\u0120Perspect - ive\n\u0120consult ations\n\u0120un amb\n\u0120plag iar\n\u0120magic ian\n\u0120e - rection\n\u0120Tour ism\nor ied\nro xy\n11 00\nT am\n\u012A \xE8\n\xCE \xB3\n\xD7 - \xAA\n\u0120Pred ators\nNit rome\n\u0120telesc opes\nproject s\n\u0120un protected\n\u0120st - ocked\n\u0120Ent reprene\nnex pected\n\u0120wast ewater\nV ill\n\u0120int - imately\n\u0120i Cloud\n\u0120Const able\n\u0120spo of\n\u0120ne farious\n\u0120fin - s\n\u0120cens or\n\u0120Mod es\n\u0120Es per\nar bon\n\u0120inter sections\n\u0120laud - ed\n\u0120phys i\n\u0120gener ously\n\u0120The Nitrome\n\u0120TheNitrome Fan\n\u0120ar - isen\n\u0120\xD9 \u012A\n\u0120g lands\n\u0120Pav ilion\n\u0120Gu pta\n\u0120uniform - ly\n\u0120r amps\nri et\n\u0120WH EN\n\u0120Van essa\n\u0120rout ed\n\u0120lim - p\n\u0120C PI\np ter\nint uitive\n\u0120v aping\n\u0120experiment ed\n\u0120Olymp - us\n\u0120Am on\n\u0120sight ing\n\u0120infiltr ate\n\u0120Gentle man\n\u0120sign - ings\n\u0120Me ow\n\u0120Nav igation\nche cks\n4 33\n\u0120el apsed\n\u0120Bulg - arian\nesp ie\n\u0120S OM\nd uring\n\u0120sp ills\nanc a\n\u0120Ply mouth\nM - AL\n\u0120domest ically\n\u0120Water gate\n\u0120F AM\nk illed\ned ited\n\u0120Your - self\n\u0120synchron ization\n\u0120Pract ices\nST EP\n\u0120gen omes\n\u0120Q - R\nnot ice\n\u0120loc ating\nz in\n\u01203 29\nal cohol\n\u0120k itten\nV - o\n\u0120r inse\n\u0120grapp le\n\u0120Sc rew\n\u0120D ul\nA IR\n\u0120le - asing\n\u0120Caf \xC3\xA9\n\u0120ro ses\n\u0120Res pect\n\u0120mis lead\n\u0120perfect - ed\n\u0120nud ity\n\u0120non partisan\n\u0120Cons umption\nReport ing\n\u0120nu - ances\n\u0120deduct ible\n\u0120Sh ots\n\u01203 77\n\u0120\xE6 \u013E\nano - oga\nBen ef\n\u0120B am\n\u0120S amp\nif ix\n\u0120gal van\n\u0120Med als\nrad - ius\n\u0120no bles\n\u0120e aves\nigr ate\nK T\n\u0120Har bour\nu ers\n\u0120risk - ed\nre q\n\u0120neuro t\nget table\nain a\nRom ney\n\u0120under pin\n\u0120lo - ft\n\u0120Sub committee\n\u0120Mong ol\nb iz\n\u0120manif ests\nass isted\n\u0120G - aga\n\u0120sy nergy\n\u0120religious ly\n\u0120Pre f\n\u0120G erry\nT AG\n\u0120Cho - i\n4 66\nbeh ind\n\u0120O u\nGold Magikarp\n\u0120hemor rh\nR iver\n\u0120tend - on\n\u0120inj ure\n\u0120F iona\n\u0120p ag\n\u0120ag itation\n|| ||\nur an\n\u0120E - SA\n\u0120est eem\n\u0120dod ging\n\u01204 12\nr ss\n\u0120ce ases\nex cluding\n\u0120int - akes\n\u0120insert s\n\u0120emb old\n\u0120O ral\nup uncture\n4 11\n\u0120Un - ified\n\u0120De le\n\u0120furn ace\n\u0120Coy otes\n\u0120Br ach\nL abor\n\u0120hand - shake\n\u0120bru ises\nGr ade\n\xE9\u0139 \u013A\n\u0120Gram my\nile en\nSt - ates\n\u0120Scandinav ian\n\u0120Kard ash\n8 66\n\u0120effort lessly\n\u0120DI - RECT\n\u0120TH EN\n\u0120Me i\nert ation\n19 68\n\u0120gro in\nw itch\nRequ - irements\n98 5\n\u0120roof s\n\u0120est ates\n\u0120H F\n\u0120ha ha\n\u0120dense - ly\n\u0120O CT\n\u0120pl astics\n\u0120incident ally\n\u0120Tr acks\n\u0120Tax - es\n\u0120ch anted\n\u0120force ful\n\u0120Bie ber\n\u0120K ahn\nK ent\n\u0120C - ot\nlic ts\nF ed\n\u0120hide ous\n\u0120Ver d\n\u0120Synd icate\n\u0120Il - legal\nJ et\n\u0120D AV\nre asonable\nc rew\n\u0120fundamental ist\n\u0120truth - ful\n\u0120J ing\n\u0120l il\n\u0120down ed\n\u0120en chanted\n\u0120Polic - ies\n\u0120McM aster\n\u0120H are\nides how\n\u0120par ams\nen cers\ngorith - m\n\u0120allow ances\n\u0120turb ulent\n\u0120complex ities\n\u0120K T\n\u01203 - 37\n\u0120Gen etic\nF UN\nD oug\nt ick\n\u0120g igs\nument hal\n\u0120patriarch - al\n\u0120cal c\n, ...\n\u0120c out\n\u0120Gu an\n\u0120path ological\n\u0120R - ivals\n\u0120under rated\n\u0120flu orescent\n\u0120J iu\narna ev\n\u0120Qu - an\n\u01204 29\n\u0120 \xE0\xA8\nM ario\nCon struct\n\u0120C itation\n\u0120R - acial\n\u0120R SA\n\u0120F idel\n\u01203 95\nPerson ally\nC ause\n\xC3 \xBB\nrad - ical\nin en\n\u0120vehement ly\n\u0120Pap a\n\u0120intern ship\n\u0120fl akes\n\u0120Re - ck\nLuck ily\nB ra\n20 20\nrav ings\nR N\nW onder\nSer iously\n\u0120re usable\n\u0120poll - uted\n\u0120P eng\nle igh\nind le\n\u0120circuit ry\n\u0120Mad onna\n\u0120B - ART\nRes idents\natt ribute\nPhil adelphia\nCl ub\n\u0120plan ner\n\u0120fr - antically\n\u0120faith fully\n\u0120Territ ories\n\u0120L AT\n\u0120Anders - en\nan u\n\u0120P ARK\n\u0120S ora\ni age\n\u0120Play offs\n\u0120G CC\n4 - 27\n\u0120ab norm\n\u0120L ever\n\u0120disob edience\nAs ync\n\u0120She a\nV - ert\n\u0120sk irts\n\u0120Saw yer\nx p\n\u0120wors ening\n\u0120sc apego\n\u0120Ang - le\noth al\n\u0120tro ve\n\u0120St y\n\u0120N guyen\nmar ine\nide on\nDep - ths\nBl og\n\u0120Ill uminati\n\u0120tract s\n\u0120organ ise\n\u0120o str\nF - s\n\u0120lever aging\n\u0120D aredevil\nas ar\n\u0120l ang\n\u0120ex termin\nurs - ions\n\u0120Rom o\n\xE3\u0124\xA4 \xE3\u0125\u012A\n\u0120cont ended\n\u0120encounter - ing\n\u0120Table t\n\u0120Altern ate\nsk ill\n\u0120swe ets\n\u0120co hesive\ncap - acity\n\u0120rep ud\n\u0120l izard\nro o\n\u0120pilgr ims\n\u0120R uff\n\u0120Instr - ument\n\u0120Log o\nuit ous\nE H\n\u0120sales man\n\u0120ank les\nL ed\n\u0120Pat - ty\nud os\nOwn er\n\u0120discrep ancies\nk j\nM U\n\u0120uncond itional\nDragon - Magazine\ni ard\nO ak\n\u0120Convers ation\nbe er\n\u0120Os aka\nD elta\nus - ky\n\u0120secret ion\n\u0120pl aza\n\u0120m ing\n\u0120de pletion\n\u0120M - ous\n\u0120I TS\n\u0120H imal\n\u0120Fle ming\n\u0120cyt ok\n\u0120H ick\n\u0120bat - ters\n\u0120Int ellectual\n6 75\n\xC3\xA9 r\nIS ION\n\u0120Qu entin\n\u0120Ch - apters\nih adi\n\u0120co aster\nWAY S\n\u0120L izard\n\u0120Y or\nand ering\nS - kin\nha ust\nab by\n\u0120portray ing\n\u0120wield ed\nd ash\n\u0120prop onent\n\u0120r - ipple\n\u0120grap hene\n\u0120fly er\n\u0120rec urrent\n\u0120dev ils\n\u0120water - fall\n\xE6\u013A \xAF\ngo o\nText Color\n\u0120tam pering\nIV ES\nTR UMP\n\u0120Ab - el\n\u0120S AL\n\u0120Hend ricks\n\u0120Lu cius\nb ots\n\u012040 96\nIST ORY\nGu - est\n\u0120N X\nin ant\nBen z\n\u0120Load ed\n\u0120Cle ver\nt reatment\n\u0120ta - vern\n\u01203 39\n\u0120T NT\nific antly\nTem perature\nF el\n\u0120under - world\n\u0120Jud ges\n\u0120< +\n\u0120st ump\n\u0120occup ancy\n\u0120ab - er\n\u0120F inder\n) \",\n\u0120N unes\nres et\nin et\nect omy\n\u0120well - ness\n\u0120P eb\nquart ered\nand an\n\u0120neg atives\n\u0120Th iel\n\u0120Cl - ip\n\u0120L TD\n\u0120bl ight\n\u0120reperto ire\nK yle\n\u0120qu er\n\u0120C - es\n\u0120ha pl\n98 9\n\u0120Th ames\nisc opal\nDes k\nivari ate\n\u0120Ex - cellence\nfound ation\n\u0120\xE2 \u0129\nX i\n\u0120myster iously\nesty les\n\u0120per - ish\n\u0120Eng els\n\u0120DE AD\n09 0\n}} }\n\u0120Un real\n\u0120rest less\nID - ES\north odox\n\u0120Inter mediate\n\u0120din ners\n\u0120Tr out\n\u0120Se - ym\n\u0120Hall s\nog ged\n\u0120traged ies\n\u0120did nt\n67 6\n\u0120ail - ments\n\u0120observ able\n\u0120V ide\nad apt\n\u0120D usk\n\u0120professional - ism\n\u0120Pres cott\n\u0120Ind ies\np ox\n\u0120Me hran\nW ide\n\u0120end - emic\n\u0120Par an\nB ird\n\u0120ped als\n\u0120I U\n\u0120Adam ant\n\u0120H - urt\n\u0120correl ates\nurd en\n\u0120spons oring\ncl imate\n\u0120Univers - ities\n\u0120K not\nenn es\n\u0120Dam ian\n\u0120Ax el\nS port\n\u0120bar - b\n\u0120S no\nsh own\nste en\nud ence\n\u0120non violent\n\u0120hom ophobia\n\u0120biom - ass\n\u0120Det ail\n\u0120srf N\n\u0120T une\naccompan ied\nI ENCE\nAl bert\n\u0120Mong - o\nz x\n\u0120Cer berus\nor bit\nc ens\n\u0120sl ay\nSH ARE\nH Y\n\u0120b - rawl\n\u0120Pro be\n\u0120nonex istent\n\u0120Clare nce\n\u0120Black burn\n\u0120port - als\n\u0120R ita\n\u0120Rem ain\n\u0120Le vant\n\u0120trick ed\n\u0120F erry\naver - ing\n\u0120Straw berry\n\u0120An swers\n\u0120horrend ous\n\u0120A man\nSupp - lement\n\u0120T oad\n\u0120pe eled\n\u0120man oeuv\n\u0120U zbek\nmond s\n\u0120H - ector\n\u012040 2\npe es\nfix es\n\u0120d j\n\u0120res umes\n\u0120account - ant\n\u0120advers ity\n\u0120ham pered\n\u0120L arson\n\u0120d oping\npart - s\nH ur\n\u0120be arded\n\u0120y r\n\u0120Plug in\n\xE5\xA5 \xB3\n\u0120/ - **\nrol ley\n\u0120waters hed\n\u0120Sub mission\nif lower\nAS C\n\u0120cho - ir\n\u0120sculpt ures\nm A\nincre asing\nai i\n\u0120sne akers\n\u0120confront - s\n\u0120Ele phant\n\u0120El ixir\n\u0120rec al\n\u0120T TL\nw idget\n\u0120W - ax\n\u0120Gr ayson\n\u0120ha irst\n\u0120humili ated\n\u0120WAR N\napp iness\n\u0120T - TC\nF uel\n\u0120pol io\n\u0120complex es\n\u0120bab e\n\u0120X IV\nP F\n). - [\nP arts\n\u01204 35\nM eg\n\u0120Y ards\n\u0120AL P\n\u0120y ells\n\u0120prin - ces\n\u0120bull ies\n\u0120Capital ism\nex empt\nFA Q\n\u0120Sp onge\n\u0120Al - a\n\u0120pleas antly\n\u0120bu f\n\u0120den ote\n\u0120unp ublished\n\u0120kne - eling\nasc a\n\u0120l apse\nal ien\n99 4\n\u0120refere es\n\u0120Law yers\nS - anta\n\u0120puzz ling\n\u0120Prom etheus\n\u0120Ph araoh\n\u0120Del ay\n\u0120facilit - ates\n\u0120C ES\n\u0120jew els\n\u0120book let\nond ing\n\u0120polar ization\n\u0120Mor - an\n\u0120Sal ad\n\u0120S OS\n\u0120Adv ice\nPH OTOS\nIC AN\niat ures\nex - press\n\u0120Wonder land\n\u0120C ODE\n\u0120CL ASS\n9 75\n\u0120g rep\n\u0120D - iesel\n\u0120Gl ac\n! ?\"\n\u0120r m\no ine\ndisc rimination\n\u0120N urse\nm - allow\n\u0120v ortex\n\u0120Cons ortium\n\u0120large Download\nstra ight\naugh - lin\nG rad\n\u0120public ized\n\u0120W aves\n\u0120Red d\n\u0120fest ivities\n\u0120M - ane\nar ov\n\u0120fleet ing\n\u0120Dr unk\nug en\nC ele\n\u0120chromos omes\n\u0120D - OT\n-+-+ -+-+\n\u0120bus iest\n\u0120Be aver\nSy rian\n\u0120K yr\nk as\n\u0120Cross - Ref\n19 50\n76 01\n\u0120repe aling\n\u0120Win ners\n\u0120Mac ro\n\u0120D - OD\nbl ance\nS ort\n64 1\n\u0120met re\n\u0120D irk\n\u0120go ggles\n\u0120draw - backs\n\u0120complain ant\n\u0120author izing\n\u0120antit rust\noper ated\n\u0120m - ah\n\u0120exagger ation\nAm azing\n\u0120Ser aph\n\u0120ha ze\nw ow\n\u0120extingu - ished\n\u0120can yon\n\u0120B osh\n\u0120v ents\n\u0120sc rape\nCor rect\n4 - 26\n\u0120av g\nDem and\n\u0120\xE2\u012A \xBC\n\u0120microbi ota\n\"} ],\"\n\u0120St - ev\nB io\n\u0120Plan es\n\u0120suggest ive\n\u0120dec ipher\n\u0120Refuge - e\n\u0120Ke jriwal\n\u0120Green peace\n\u0120decl ass\n\u0120Sound ers\n\u0120th - o\n\u0120dec rypt\n\u0120br ushing\n\u0120Jane iro\nip op\nS i\n8 77\n\u0120Geoff - rey\n\u0120c pu\n\u0120Haz el\n\u0120view points\n\u0120cris py\n\u0120Not - ification\n\u0120sold er\n\u0120Mod est\n\u0120Hem isphere\n\u0120cass ette\nin - cludes\n\u0120ident ifiers\n\u0120C ALL\nin cent\nT odd\n\u0120Swe ep\n\u01203 - 34\nb oss\n\u0120sm ir\ngin x\n\u0120town ship\n\u0120g rieving\n\u0120Mos - que\nNet flix\nAS ED\n\u0120Millenn ials\noc om\n19 67\n\u0120bold ly\ns leep\n\u0120es - che\narij uana\n\u0120sw irl\n\u0120Pen al\n\u0120neglig ent\n\u0120Stephen - son\nK ER\n\u0120Z oro\nris is\n\u0120local ization\n\u0120Seym our\n\u0120Ang - lic\nred itation\nprot ection\n\u0120Pa ige\n\u0120o mit\n\u0120R ousse\n\u0120T - ub\n\u0120inv itations\nt ty\n\u0120m oss\nph ysical\nC redits\n\u0120an archy\n\u0120child - care\n\u0120l ull\n\u0120M ek\n\u0120L anguages\nlat est\n\u0120San ford\n\u0120us - ability\n\u0120diff use\n\u0120D ATA\n\u0120sp rites\n\u0120Veget a\n\u0120Prom - otion\n\xE3\u0125\xBC \xE3\u0124\xAF\nrict ing\nz ee\nTur kish\n\u0120TD s\npro - ven\n57 1\n\u0120smug glers\n707 10\n\u0120reform ed\n\u0120Lo is\n\u0120un - fl\n\u0120WITH OUT\n\u0120Return ing\nann ie\n\u0120Tom as\nFr anc\n\u0120Prof - it\n\u0120SER V\n\u0120R umble\nik uman\nes an\n\u0120t esters\n\u0120gad - get\n\u0120brace let\n\u0120F SA\ncomp onent\n\u0120paramed ics\n\u0120j an\n\u0120Rem - em\n\u0120Sk inner\n\u0120l ov\n\u0120Qu ake\nrom a\n\u0120fl ask\nPr inc\n\u0120over - power\n\u0120lod ging\n\u0120K KK\nret te\n\u0120absor bs\nw rote\n\u0120 - ,\"\nK ings\n\u0120H ail\n\u0120Fall ing\nxt ap\n\u0120Hel ena\nire ns\nL - arry\n\u0120pamph let\n\u0120C PR\nG ro\n\u0120Hirosh ima\n\u0120hol istic\n\". - [\n\u0120det achment\n\u0120as pire\n\u0120compl icit\n\u0120Green wood\n\u0120resp - awn\n\u0120St upid\n\u0120Fin ished\nf al\nb ass\n\u0120ab hor\n\u0120mock - ery\n\u0120Fe ast\nVID EO\n\u0120con sec\n\u0120Hung ry\nP ull\n\u0120H ust\nit - ance\n? \xE3\u0122\u012F\n) --\n\u0120Par allel\ncon v\n4 69\nha ar\nw ant\nP - aper\nm ins\n\u0120Tor o\n\u0120TR UMP\n\u0120R ai\nD W\n\u0120W icked\n\u0120L - ep\n\u0120fun ky\n\u0120detrim ent\nios is\nache v\n\u0120de grade\nim ilation\n\u0120ret - ard\n\u0120frag mentation\n\u0120cow boy\n\u0120Y PG\n\u0120H AL\nParent s\n\u0120S - ieg\n\u0120Stra uss\n\u0120Rub ber\n\xD7 \u0132\nFr ag\n\u0120p t\n\u0120option - ally\n\u0120Z IP\n\u0120Trans cript\n\u0120D well\n88 2\nM erc\n\u0120M OT\n\xE3\u0125\xAF - \xE3\u0125\xB3\n\u0120hun ts\n\u0120exec utes\nIn cludes\n\u0120acid ic\n\u0120Respons - ibility\n\u0120D umb\nwe i\nAnd erson\n\u0120Jas per\night on\nabs olutely\nAd - ult\n\u0120pl under\nMor ning\n\u0120T ours\n\u0120D ane\n\xCE \xBA\n\u0120T - EST\n\u0120G ina\n\u0120can ine\naw an\n\u0120social ists\n\u0120S oda\n\u0120imp - etus\n\u0120Supplement ary\noli ath\n\u0120Kinn ikuman\nmitted ly\nsecond - s\n\u0120organis ers\n\u0120document aries\nVari able\nGRE EN\n\u0120res orts\n\u0120br - agging\n\u01203 68\nArt ist\nw k\nbl ers\nUn common\n\u0120Ret rieved\n\u0120hect - ares\n\u0120tox in\nr ank\n\u0120faith s\n\u0120G raphic\n\u0120ve c\n\u0120L - IA\nAf rican\n\u0120ard ent\nend iary\nL ake\n\u0120D OS\ncient ious\n\u0120Ok - awaru\n\u0120All y\n\u0120Tim eline\nD ash\n\u0120I c\ncontin ue\n\u0120t - idy\n\u0120instinct ively\n\u0120P ossibly\n\u0120Out door\n\u0120Would n\n\u0120l - ich\n\u0120Br ay\n\u0120A X\n\u0120\xC3 \u012B\n\u0120+ #\n\\ '\nDirect ory\nab - iding\n\u0120f eral\nic ative\nbut t\n\u0120per verse\nS alt\n\u0120war ped\n\u0120nin - eteen\n\u0120cabin ets\n\u0120srf Attach\n\u0120Sl oan\n\u0120power ing\nreg - ation\nF light\nse vere\n\u0120st ren\n\u0120c og\nap ache\n\u0120\xE2 \u013F\n\u0120caf - eteria\np aces\n\u0120Grim oire\nuton ium\n\u0120r aining\n\u0120cir cling\n\u0120lineback - ers\nc redit\n\u0120rep atri\n\u0120Cam den\nlic ense\n\u0120ly ric\n\u0120descript - or\n\u0120val leys\n\u0120re q\n\u0120back stage\n\u0120Pro hibition\n\u0120K - et\nOp ening\nS ym\n\xE6\u0138 \xB9\n\u0120serv ings\n\u0120overse en\n\u0120aster - oids\n\u0120Mod s\n\u0120Spr inger\n\u0120Cont ainer\n\xE8 \xBB\n\u0120M ens\n\u0120mult - im\n\u0120fire fighter\npe c\n\u0120chlor ine\n\xD0 \xBC\nend i\n\u0120sp - aring\n\u0120polyg amy\n\u0120R N\n\u0120P ell\n\u0120t igers\n\u0120flash - y\n\u0120Mad ame\nS word\n\u0120pref rontal\n\u0120pre requisite\nuc a\n\u0120w - ifi\n\u0120miscon ception\n\u0120harsh ly\n\u0120Stream ing\not om\n\u0120Giul - iani\nfoot ed\n\u0120tub ing\nind ividual\nz ek\nn uclear\nm ol\n\u0120right - ful\n49 3\n\u0120special ization\n\u0120passion ately\n\u0120Vel ocity\n\u0120Av - ailability\nT enn\n\u0120l atch\n\u0120Some body\n\u0120hel ium\ncl aw\n\u0120di - pping\nXX X\n\u0120inter personal\n7 10\n\u0120sub ter\n\u0120bi ologists\n\u0120Light - ing\n\u0120opt ic\n\u0120den im\nend on\n\u0120C orm\n\u01203 41\n\u0120C - oup\n\u0120fear less\n\u0120al ot\n\u0120Cliff ord\n\u0120Run time\n\u0120Prov - ision\nup dated\nlene ck\n\u0120neur on\n\u0120grad ing\n\u0120C t\nsequ ence\nin - ia\ncon cept\n\u0120ro aring\nri val\n\u0120Caucas ian\n\u0120mon og\nkey - es\n\u0120appell ate\n\u0120lia ison\nEStream Frame\n\u0120Pl um\n! .\n\u0120sp - herical\n\u0120per ished\n\u0120bl ot\n\u0120ben ches\n\u01204 11\n\u0120pione - ered\n\u0120hur led\nJenn ifer\n\u0120Yose mite\nCh air\n\u0120reef s\n\u0120elect - or\n\u0120Ant hem\n65 2\n\u0120un install\n\u0120imp ede\n\u0120bl inking\n\u0120got - o\nDec re\nA ren\n\u0120stabil ization\n\u0120Dis abled\n\u0120Yanuk ovych\n\u0120outlaw - ed\n\u0120Vent ura\nten ess\n\u0120plant ation\n\u0120y acht\n\u0120Hu awei\n\u0120sol - vent\n\u0120gr acious\n\u0120cur iously\n\u0120capac itor\n\u0120c x\n\u0120Ref - lex\nPh ys\n\u0120C f\npt in\ncons ervative\n\u0120inv ocation\nc our\nF N\n\u0120New - ly\nH our\nAs ian\n\u0120Le ading\n\u0120Aer ospace\nAn ne\n\u0120pre natal\n\u0120deterior - ating\nH CR\n\u0120Norm andy\nol ini\n\u0120Am bro\n9 10\n\u0120set backs\n\u0120T - RE\n\u0120s ig\n\u0120Sc ourge\n59 7\n79 8\nGame play\n\u0120m sec\nM X\n\u0120price - y\n\u0120L LP\naker u\n\u0120over arching\n\u0120B ale\n\u0120world ly\nCl - ark\n\u0120scen ic\n\u0120disl iked\n\u0120Cont rolled\nT ickets\n\u0120E - W\nab ies\n\u0120Pl enty\nNon etheless\n\u0120art isan\nTrans fer\n\u0120F - amous\n\u0120inf ield\nble y\n\u0120unres olved\n\u0120ML A\n\xE3\u0124 \u0124\nCor - rection\n\u0120democr at\n\u0120More no\nro cal\nil ings\n\u0120sail or\n\u0120r - ife\nh ung\n\u0120trop es\n\u0120sn atched\n\u0120L IN\n\u0120B ib\nES A\n\u0120Pre - v\n\u0120Cam el\nrun time\n\u0120ob noxious\n4 37\n\u0120sum mers\n\u0120unexpl - ained\n\u0120Wal ters\ncal iber\n\u0120g ull\n\u0120End urance\n\xE4\xBD \u013E\n\u01203 - 47\nIr ish\n\u0120aer obic\n\u0120cr amped\n\u0120Hon olulu\n\xE0 \xA9\nus - erc\nec ast\nAC Y\n\u0120Qu ery\n\xE3\u0124\xB9 \xE3\u0125\u012A\nBet a\n\u0120suscept - ibility\n\u0120Sh iv\n\u0120Lim baugh\n\u0120\xC3 \u0138\n\u0120N XT\n\u0120M - uss\n\u0120Brit ons\nES CO\nEG IN\n\u0120% %\n\u0120sec ession\n\u0120Pat - ron\n\u0120Lu a\nn aires\n\u0120JPM organ\nus b\nocy te\n\u0120councill ors\n\u0120Li - ang\nf arm\n\u0120nerv ously\n\u0120attract iveness\n\u0120K ov\nj ump\nPl - ot\n\u0120st ains\n\u0120Stat ue\n\u0120Apost les\nhe ter\n\u0120SUP PORT\n\u0120overwhel - m\nY ES\n\u012029 1\nd ensity\n\u0120tra pping\nM it\n\u0120f ide\n\u0120Pam - ela\natl antic\nDam n\n\u0120p ts\nOP A\n\u0120serv icing\n\u0120overfl owing\nul - o\n\u0120E rit\nt icket\nlight ing\n\u0120H mm\n\xE3\u0125\xBC \xE3\u0125\xAB\nim - oto\n\u0120chuck le\n4 23\n\xE3\u0123 \u0137\nsh ape\n\u0120que ues\n\u0120anch - ors\n\xE3\u0124\xBC \xE3\u0124\xA6\xE3\u0124\xB9\nF er\n\u0120aw oke\n\u01206 - 66\nh ands\n\u0120diver gence\n\u012050 5\nT ips\n\u0120dep ot\n\u0120ske - w\n\u0120Del iver\nop ot\n\u0120div ul\n\u0120E B\nuns igned\n\u0120Un i\nX - box\n\u0120for ks\n\u01207 02\n\xE5 \xAF\n\u0120promot ers\n\u0120V apor\n\u0120lev - ied\nsl ot\n\u0120pig ment\n\u0120cyl inders\nC RE\n\u0120sn atch\n\u0120perpet - ually\n\u0120l icking\n\u0120Fe et\n\u0120Kra ken\n\u0120Hold en\n\u0120CLS - ID\nm r\n\u0120project or\n\u0120den otes\n\u0120chap el\n\u0120Tor rent\nb - ler\nR oute\n\u0120Def endant\n\u0120Publisher s\n\u0120M ales\n\u0120Inn - ov\n\u0120Ag ility\nrit er\nty mology\nst ores\nL ind\n\u0120f olly\n\u0120Zur - ich\nB le\n\u0120nurt ure\n\u0120coast line\nuch in\nD omin\n\u0120fri vol\n\u0120Cons - olid\nres ults\nM J\n\u0120phyl ogen\n\u0120ha uled\n\u0120W iley\n\u0120Jess - ie\n\u0120Prep are\n\u0120E ps\n\u0120treasure r\nI AS\n\u0120colon ists\n\u0120in - und\n\u0120WW F\n\u0120Con verted\n6 000\nout side\n\u0120App earance\n\u0120Rel - ic\n\u0120M ister\ns aw\n\u0120result ant\n\u0120adject ive\n\u0120Laure l\n\u0120Hind - i\nb da\nPe ace\n\u0120reb irth\n\u0120membr anes\n\u0120forward ing\n\u0120coll - ided\n\u0120Car olyn\nK ansas\n5 99\n\u0120Solid GoldMagikarp\nBe ck\n\u0120stress - ing\n\u0120Go o\n\u0120Cooper ative\n\u0120f s\n\u0120Ar chie\nL iter\n\u0120K - lopp\nJ erry\n\u0120foot wear\nWar ren\n\u0120sc ree\nh are\nUnder standing\nP - ed\n\u0120anth ology\n\u0120Ann ounce\nM ega\n\u0120flu ent\n\u0120bond age\n\u0120Disc - ount\nil ial\nC art\n\u0120Night mares\nSh am\n\u0120B oll\nuss ie\nH ttp\nAtl - anta\n\u0120un recogn\n\u0120B id\n\u0120under grad\n\u0120forg iving\n\u0120Gl - over\nAAAA AAAA\n4 45\nV G\npa io\nkill ers\n\u0120respons ibly\n\u0120mobil - ize\n\u0120effect ed\n\u0120L umin\n\u0120k ale\n\u0120infring ing\nann ounced\n\u0120f - itt\nb atch\n\u0120T ackle\n\u0120L ime\n\u0120AP P\nuke mia\n\u0120rub y\n\u0120ex - oner\n\u0120Cas ual\n0 70\n\u0120pel vic\n\u0120autom ate\n\u0120K ear\n\u0120Coast - al\n\u0120cre ed\n\u0120bored om\n\u0120St un\nri ott\n\u0124 \u0130\n\u0120regener - ate\n\u0120comed ians\n\u0120OP ER\nSp ons\nid ium\non is\nL ocated\n05 7\n\u0120susp - ense\n\u0120D ating\nC ass\n\u0120neoc ons\n\u0120Shin zo\n\u0120aw oken\nch - rist\n\u0120Mess ages\natt led\n\u0120Spr ay\n\u0120Sp ice\nC W\n\u0120shield - ing\n\u0120G aul\nAm id\n\u0120param ilitary\n\u0120mult if\n\u0120Tan ner\nil - k\n\u0120godd amn\ng ements\n\u0120be friend\nm obi\n\u01203 88\nfold er\nacc - a\n\u0120ins in\ng ap\nN ev\nfif th\n\u0120psychiat ry\nb anks\nTH IS\n\u0120har - b\nac qu\n\u0120fac ade\n\u0120Power Point\n80 3\n\u0120bl uff\nSh ares\n\u0120favor - ing\nEl izabeth\n\xC3\u012F \xC3\u012F\n\u0120r anger\n77 2\n\u0120Ar che\nh - ak\n\u0120Gen etics\n\u0120F EMA\n\u0120ev olves\n\u0120est e\n\u0120P ets\n\u0120M - \xC3\xA9\n\u0120Interest ing\n\u0120Canter bury\nch apter\n\u0120Star fleet\nSp - anish\n\u0120draw back\n\u0120Nor wich\n9 70\nn orth\nag anda\n\u0120transform - ative\nram ids\nbi ology\nad ay\n\u0120propag ation\n\u0120Gam ma\n\u0120Den - ise\n\u0120Calcul ator\nent imes\n\u0120B ett\n\u0120app endix\n\u0120HD D\nAK - ING\n\u0120st igmat\n\u0120hol ster\n\u0120ord inarily\nCh ance\n\u0120Cont - rary\n\u0120ad hesive\n\u0120gather s\n6 12\nre au\nony ms\new ays\n\u0120indu - ces\n\u0120interchange able\nse m\nWh it\n\u0120tr ance\n\u0120incorpor ation\n\u0120Ext - ras\nFin ancial\n\u0120awkward ly\n\u0120Stur geon\n\u0120H Y\nNorm ally\n\u0120End - ing\n\u0120Ass ist\nenc rypted\n\u0120sub jug\n\u0120n os\n\u0120fan atic\nC - ub\nC U\n?\" .\n\u0120irre versible\n\xE5 \u0124\n03 1\n\u0120H AR\nsp read\nul - ia\n= $\nSc ope\nL ots\n\u0120lif estyles\nol on\n\u0120f eds\n\u0120congrat - ulate\nweb kit\n\u0120indist inguishable\n\u0120Sw ing\n\u0120command ments\nqu - ila\nab ella\nm ethyl\nann abin\n\u0120o vere\n\u0120lob ster\n\u0120QU EST\n\u0120CONT - IN\nbern atorial\n:::: ::::\n\u0120Tra ve\n\u0120Sam oa\nAN I\n75 2\n\xD0 - \xB4\nuserc ontent\n\u0120Mod erate\ny eah\n\u0120K itt\n\u0120we e\n\u0120stuff - ing\n\u0120Inter vention\n\u0120D ign\n\u0120ware houses\n\u0120F iji\n\u0120pel - lets\n\u0120take away\n\u0120T ABLE\n\u0120Class ical\ncol lection\n\u0120land - fall\n\u0120Mus cle\n\u0120sett les\n\u0120AD V\n\u01203 44\nL aura\n\u0120f - ared\n\u0120Part ial\n4 36\noss ibility\n\u0120D aly\n\u0120T arant\n\u0120Fu - ji\nam l\nc ence\n55 1\n\u0120Proced ures\n\u0120O CD\n\u0120U D\nt in\nQ - UI\nach o\n4 38\n\u0120gl itches\n\u0120enchant ment\n\u0120calcul ates\nIR - O\n\u0120H ua\nalys es\n\u0120L ift\num o\n\u0120le apt\n\u0120hypothes ized\n\u0120Gust - av\nit ans\nVERS ION\n\xE6 \u0142\nRog er\n\u0120r and\n\u0120Ad apter\n\u01203 - 31\n\u0120Pet ition\nk ies\nM ars\n\u0120under cut\nze es\n\u0120Ly ons\n\u0120DH - CP\nMiss ing\n\u0120retire es\n\u0120ins idious\nel i\n> )\n. \xE3\u0122\u012F\n\u0120final - ists\n\u0120A ure\n\u0120acc user\n\u0120was tes\n\u0120Y s\n\u0120L ori\n\u0120constitu - encies\n\u0120supp er\n\u0120may hem\nor ange\n\u0120mis placed\n\u0120manager - ial\n\u0120ex ce\n\u0120CL I\n\u0120prim al\n\u0120L ent\nCry stal\nh over\n\u0120N - TS\nend um\n\u0120d w\n\u0120Al c\nn ostic\n\u0120pres erves\n\u0120Ts arnaev\n\u0120tri - pled\nrel ative\nArc ade\nk illing\n\u0120W EEK\n\u0120H anna\nD ust\nCom - pleted\n\u0123 \xAB\n\u0120appro ves\n\u0120Sur f\n\u0120Luther an\nven ants\n\u0120robber - ies\nwe ights\nsoft ware\nat ana\nug al\n\u0120grav y\n\u0120C ance\nOLOG - Y\nly ak\nTon ight\n\u0120unve il\n\u012019 04\n\u0120Min ion\nent ious\nst - ice\npack ages\n\u0120G EAR\n\u0120g ol\n\u0120Hutch inson\n\u0120Prof ession\n\u0120G - UN\n\u0120Diff erence\n\u0120Tsuk uyomi\n\u0120Les bian\n6 70\n\u0120fug itive\n\u0120Plan - etary\n-------------------------------- ------------------------\n\u0120acc - rued\n\u0120ch icks\n\u0120sto pp\n\u0120block ers\nC od\n\u0120comment ers\n\u0120Somew - here\n\u0120Phot ographer\nthe me\n\u0120may oral\nw u\n\u0120anten nas\n\u0120rev - amped\n\u0120Subject s\nit \xC3\xA9\nim ura\n\u0120entr ances\nliter ally\n\u0120ten - ets\n\u0120O MG\n\u0120MP H\n\u0120Don key\n\u0120Off ense\n\u0120\" +\nSn - ap\n\u0120AF B\n\u0120an imate\n\u0120S od\nHis panic\n\u0120inconsist ency\nD - b\nF Y\nEx port\n\u0120a pe\n\u0120pear l\nib el\n\u0120PAC s\n\u0120{ \\\n\u0120act - u\n\u0120HS BC\ncamp us\n\u0120pay off\n\u0120de ities\n\u0120N ato\nou ple\n\u0120cens - ored\n\u0120Cl ojure\n\u0120conf ounding\nen i\n\u0120reck on\nop he\n\u0120spot - ting\n\u0120sign ifies\n\u0120prop el\n\u0120fest ive\nS uggest\n\u0120pled - ging\n\u0120B erman\n\u0120rebell ious\n\u0120overshadow ed\n\u0120infiltr - ated\nj obs\n67 2\n\u0120scal able\n\u0120domin ion\n\u0120New foundland\n\u0120Mead - ow\n\u0120part itions\nAM I\n\u0120supplement ary\nstr ument\n\u0120hair y\n\u0120perpet - uate\n\u0120nuts hell\n\u0120Pot ato\n\u0120Hob bit\n\u0120cur ses\nFlo at\n\u0120quiet - er\n\u0120fuel ing\n\u0120caps ules\n\u0120L ust\n\u0120H aunted\nExec utive\n\u0120child - birth\nG re\n\u0120rad iant\n\xE5 \u0130\n\u0120m alls\n\u0120in ept\n\u0120Warrant - y\n\u0120spect ator\nE h\nt hens\n\u0120culmin ating\n\xE6 \xA9\nary a\n\xE3\u0124 - \xAE\nilit arian\n\u0120OR IG\n\u0120Sp ending\npt ives\n\u0120S iren\n\u0120Rec - ording\nay ne\n\u0120v im\n\u0120spr ang\nT ang\n\u0120M FT\nmor ning\n\u0120We - ed\nm peg\ncess ion\n\u0120Ch ung\n7 30\nw arning\n56 2\nhanded ly\nP oor\nP - olitics\n: #\n\u0120p ian\n\u0120fec es\n\u0120Document ation\n\u0120ban ished\n\u01203 - 99\n\u0120AR C\n\u0120he inous\nJ ake\n\u0120Am ir\nway ne\nv re\nos henko\n\u0120notebook - s\n\u0120found ational\n\u0120marvel ous\nixt ape\n\u0120withdraw als\n\u0120h - orde\n\u0120D habi\nis able\n\u0120K D\n\u0120contag ious\n\u0120D ip\n\u0120Ar - rows\n\u0120pronoun s\n\u0120morph ine\n\u0120B US\n68 2\n\u0120k osher\nfin - ished\n\u0120Instr uments\n\u0120f used\nyd en\n\u0120Sal mon\nF ab\naff ected\nK - EN\nC ENT\nDom ain\n\u0120poke mon\n\u0120Dr inking\nG rowing\n\u0120Investig - ative\n\u0120A ether\nem i\n\u0120tabl oid\n\u0120rep ro\n\u0120Not withstanding\n\u0120Bers - erker\n\u0120dram as\n\u0120clich \xC3\xA9\n\u0120b ung\n\u0120U RI\n\u0120D - os\n0 44\n\u0120past ors\n\u0120l s\n\u0120ac rylic\naun ts\nEd ward\n\u0120major - ities\nB ang\n\u0120field ing\n\u0120Repl acement\n\u0120Al chemy\npp ard\n\u0120Rome - o\n\u0120San ct\n\u0120Lav rov\nib ble\nInst ruct\n\u0120imp ractical\n\u0120Play - boy\nce phal\n\u0120sw aps\n\u0120k an\n\u0120The o\n\u0120illust rating\n\u0120dismant - led\n\u0120Trans gender\n\u0120G uth\nUG H\n\u0120triumph ant\n\u0120encomp - ass\n\u0120book mark\nudd in\nj er\n\u0120pred icate\nES H\n\u0120when ce\n\u0120AB - E\n\u0120non profits\nSe qu\n\u0120di abetic\n\u0120p end\n\u0120heart felt\nsh - i\n\u0120inter acts\n\u0120Tele com\n\u0120bombard ment\ndep ending\n\u0120Low - ry\n\u0120Ad mission\n\u0120Bl ooming\nust ration\nene gger\nB rew\n\u0120mol - ten\n\u0120Ner d\nP IN\n\xE2\u0138 \u0122\nave ment\n\u0120tou red\n\u0120co - efficients\n\u0120Tray von\nans son\n\u0120sand y\nt old\nfl ows\n\u0120pop - ulous\n\u0120T inder\n\u0120Bl iss\nR achel\nMin imum\n\u0120contest ant\n\u0120Red - uce\n\u0120Mor se\n\u0120Grass ley\n\u0120Click er\n\u0120exp r\n\u0120s incerity\n\u0120mar - qu\n\u0120elic it\n\u0120Pro position\n\u0120Demon ic\n\u0120tac os\nG reek\n\u0120post - war\n\u0120in sofar\n\u0120P ork\n\u012035 2\ndoctor al\nwalk ing\n\u0120mid - term\n\u0120Sam my\nsight ed\n\u0120TR ANS\nic i\nAL D\n\u0120US L\n\u0120F - ISA\n\u0120Am pl\n\u0120Alex andra\nine lli\nTr ain\n\u0120sign ify\n\u0120Vers - us\n\u0120ob fusc\n\u0120k h\n\u0120agg ro\n\u0120Ren ault\n\u01203 48\n5 - 18\nox icity\n0 22\n\u0120Tw ist\n\u0120goof y\nD ynamic\n\u0120brief ings\nm - ight\n8 99\n\u0120derog atory\nT ro\n\u0120for ging\n\u0120Kor an\n\u0120Mar - ried\n\u0120Buc s\n\u0120pal ate\n\u0120Con version\nm able\n4 13\n\u0120( - _\n\u0120s iph\n\u0120N EO\ncol lege\n\u0120marg inally\n\u0120fl irt\n\u0120Tra - ps\n\u0120P ace\n\xE9 \xBB\u0134\n\u0120goalt ender\n\u0120forb ids\n\u0120cler - ks\n\u0120T ant\n\u0120Robb ins\n\u0120Print ing\n\u0120premie red\n\u0120magn - ification\n\u0120T G\n\u0120R ouse\n\u0120M ock\nodynam ics\n\u0120pre clude\nism - o\n\u0120Pul itzer\n\u0120aval anche\n\u0120K odi\nrib une\n\u0120L ena\nElect - ric\n\u0120ref inery\n\u0120end owed\n\u0120counsel ors\n\u0120d olphin\n\u0120M - ith\n\u0120arm oured\nhib ited\nBeg in\n\u0120P W\nO il\n\u0120V or\n\u0120Shar - if\n\u0120Fraz ier\nest ate\n\u0120j ams\nPro xy\n\u0120band its\n\u0120Presbyter - ian\n\u0120Prem iere\nt iny\n\u0120Cru el\nTest ing\n\u0120hom er\n\u0120V - ERS\n\u0120Pro l\n\u0120Dep osit\n\u0120Coff in\n\u0120semin ars\n\u0120s - ql\n\u0120Def endants\nAltern atively\n\u0120R ats\n\xE7 \xAB\nethy st\n' - >\n\u0120iss uer\n58 9\n\u0120ch aired\n\u0120Access ories\nman ent\n\u0120mar - row\n\u0120Prim ordial\nC N\n\u0120limit less\n\u0120Carn age\n\u0120und rafted\nq - v\nIN ESS\non ew\n\u0120co hesion\n98 7\n\u0120ne cks\n\u0120football er\n\u0120G - ER\n\u0120detect able\n\u0120Support ing\n\u0120CS V\noc ally\nk Hz\n\u0120und - e\n\u0120sh one\n\u0120bud ding\ntra k\nStand ing\n\u0120Star craft\n\u0120Kem - p\nBen ch\n\u0120thw arted\n\u0120Ground s\nath i\nL isa\nDial og\n\u0120S - X\nV ision\n\u0120ingen ious\n\xD9 \u0132\n\u0120fost ering\n\u0120Z a\n\u0120In - gram\n\u0120\" @\nN aturally\n6 16\n0 35\n\u0120F AC\nH mm\n55 4\n\u0120acceler - ator\n\u0120V end\n\u0120sun screen\n\u0120tuber culosis\nrav iolet\n\u0120Function - al\n\u0120Er rors\ned ar\n19 66\n\u0120Spect re\n\u0120Rec ipes\n88 5\n\u0120M - ankind\nL iverpool\n\u0120| --\n\u0120subst itutes\n\u0120X T\nw ired\n\u0120inc - o\n\u0120Af gh\nE va\nic c\nS ong\nK night\n\u0120dilig ently\n\u0120Broad - cast\nA id\n\u0120af ar\n\u0120H MS\naton in\n\u0120Gr ateful\n\u0120fire - place\n\u0120Om ni\ne uro\n\u0120F RE\n\u0120Sh ib\n\u0120Dig est\nt oggle\n\u0120heads - ets\n\u0120diff usion\n\u0120Squ irrel\n\u0120F N\n\u0120dark ened\nout her\n\u0120sleep - s\n\u0120X er\ngun s\n\u0120set ups\n\u0120pars ed\n\u0120mamm oth\n\u0120Cur - ious\ng ob\n\u0120Fitz patrick\n\u0120Em il\nim ov\n........ .....\n\u0120B - enny\nSecond ly\n\u0120heart y\n\u0120cons on\nst ained\n\u0120gal actic\ncl - ave\n\u0120plummet ed\n\u0120p ests\n\u0120sw at\n\u0120refer rals\n\u0120Lion - el\nh oly\n\u0120under dog\n\u0120Sl ater\n\u0120Prov ide\n\u0120Am ar\nress - or\n\xE5 \u012E\nong a\n\u0120tim id\n\u0120p iety\n\u0120D ek\n\u0120sur - ging\naz o\n\u01206 10\n\u0120des ks\n\u0120Sp okane\n\u0120An field\n\u0120wars - hips\n\u0120Cob ra\n\u0120ar ming\nclus ively\n\u0120Bad ge\nag ascar\n\u0120PR - ESS\n\u0120McK enzie\n\u0120Fer dinand\nburn ing\nAf ee\n\u0120tyr ann\n\u0120I - w\n\u0120Bo one\n100 7\n\u0120Re pt\n\u010A \xC2\u0142\n\u0120car avan\n\u0120D - ill\n\u0120Bundes liga\nCh uck\n\u0120heal er\n\xE3\u0125\xBC\xE3\u0125 \u0128\n\u0120H - obby\n\u0120neg ate\n\u0120crit iques\nsection al\nmop olitan\n\u0120d x\n\u0120outs - ourcing\n\u0120C ipher\nt ap\nSh arp\n\u0120up beat\n\u0120hang ar\n\u0120cru - ising\n\u0120Ni agara\n\u01203 42\nill us\n\u0120S v\n\u0120subt itles\n\u0120squ - ared\n\u0120book store\n\u0120revolution aries\n\u0120Carl ton\nab al\nUt - ah\n\u0120desp ise\n\u0120U M\ncons ider\naid o\n\u0120c arts\n\u0120T urtles\nTr - aining\n\u0120honor ary\n\xC2 \xA2\n\u0120tri angles\n4 22\n\u0120reprint - ed\n\u0120grace ful\n\u0120Mong olia\n\u0120disrupt ions\n\u0120B oh\n\u01203 - 49\n\u0120dr ains\n\u0120cons ulate\n\u0120b ends\n\u0120m afia\nur on\n\u0120F - ulton\nm isc\n\u0120ren al\n\u0120in action\nck ing\n\u0120phot ons\n\u0120bru - ised\n\u0120C odes\nog i\n\u0120n ests\n\u0120Love ly\n\u0120Lib re\n\u0120D - aryl\n\u0120# ##\nS ys\n. ,\"\n\u0120free zes\nest ablishment\nand owski\n\u0120cum - bers\n\u0120St arg\n\u0120Bom bs\n\u0120leg ions\n\u0120hand writing\n\u0120gr - un\n\u0120C ah\nsequ ent\n\u0120m oth\n\u0120MS M\nIns ert\nF if\n\u0120mot - el\n\u0120dex ter\n\u0120B ild\nhearted ly\n\u0120pro pe\n\u0120Text ure\n\u0120J - unction\nynt hesis\noc ard\n\u0120Ver a\n\u0120Bar th\n\u0120\xCE\xBC g\n\u0120l - ashed\n\u012035 1\n\u0120Z amb\n\u0120St aples\n\u0120Cort ex\n\u0120Cork - er\n\u0120continu um\n\u0120WR ITE\nunt a\nrid or\n\u0120de ems\n0 33\n\u0120G - OLD\np as\n\u0120rep ressive\n\xE3\u0125\u0128 \xE3\u0124\xA3\n\u0120baff - led\nSc ar\n\u0120c rave\n\u0120 ______\n\u0120entrepreneurs hip\n\u0120Director - ate\n\u0120' [\n\u0120v ines\n\u0120asc ended\n\u0120GR OUP\n\u0120Good bye\n\u0120do - gged\n\xE3\u0125\xB4 \xE3\u0124\xA1\nMan ufact\n\u0120unimagin able\nri ots\nier - rez\n\u0120rel ativity\n\u0120Craft ing\nra ught\nud en\nc ookie\n\u0120assass - ins\n\u0120dissatisf ied\nac ci\n\u0120condu it\nSp read\n\u0120R ican\nn - ice\nizz le\n\u0120sc ares\n\u0120WH Y\nph ans\n5 35\n\u0120prot racted\n\u0120Krist - en\n5 36\n\u0120Sc rib\n\u0120Ne h\n\u0120twent ies\n\u0120predic ament\n\u0120handc - uffs\n\u0120fruit ful\n\u0120U L\n\u0120Lud wig\n\u0120att est\n\u0120Bre - aker\n\u0120bi ologically\n\u0120Deal er\n\u0120renov ations\nf w\ness en\nAl - ice\n\u0120Hen ri\n\u0120un ilaterally\n\u0120S idd\nh ai\n\u0120St retch\nS - ales\n\u0120cumbers ome\n\u0120J avier\n\u0120trend y\n\u0120rot ting\n\u0120Chall - enges\n\u0120scra ps\n\u0120fac ets\n\u0120Ver onica\n\u0120Ver ge\n\u0120S - ana\nAl ien\n\u0120R ih\n\u0120rad ial\nect ar\n\u01206 30\ncl i\nMar ie\n\u0120wild - fire\n\u0120Cat o\nh ander\n\u0120wait ress\n\u0120ch ops\n\u0120S ECTION\n\u0120blunt - ly\n\u0120Cat alog\nn ian\nstud y\n\u0120pat rolling\n\u0120T enth\nnex us\n\u0120N - ON\nop sy\n\u0120sc athing\ns ie\n\u0120deterior ated\nV B\nNaz is\n\u0120dep - ictions\n\u0120authent icated\n\u0120Con ce\nk rit\n\u0120promul g\n\u0120L - ONG\nU FC\n\u0120Vis itors\n\u0120Rec all\n\u0120rehab ilit\n\u0120SL I\n\u0120glac - ier\n\u0120B ite\n\u012050 3\n\u0120vom it\n\u0120fer mented\n\u0120Kh alid\n\u0120grad - ed\n\u0120Mag icka\n\u0120Ich igo\npower ful\nic ators\n75 3\n\u0120sh rew\n\u012035 - 6\n\u0120legal izing\n\u0120all otted\n\u0120Arch demon\nith ing\nigg urat\nV - OL\nLe od\n\u0120o ily\n\u0120indu cing\n\u0120amy gdala\n\u0120adm ins\n\u0120Acqu - isition\nC AN\n\u0120sche matic\n\u0120mo an\n\u0120Camer oon\n\u0120t ink\n\u0120mer - ry\n\u0120butter flies\n\u0120Go ff\n\u0120works pace\n\u0120Cor ona\n\u0120j - avascript\n\u0120D olphin\n\u0120Cant or\n4 64\nto e\nAP S\n\u0120Ag ing\n\u0120padd - ed\n\u0120Z heng\n\u0120He ld\n\u0120est ranged\n\u01207 70\n. }\n\u0120Dun - ham\n\u0120sm okes\n\u0120cap itals\nund ai\nSh in\n\u0120Found ing\n\u0120ent - itle\n\u0120center piece\nD iscover\n\u0120there to\nal ert\n\u0120N ou\n\u0120Analy - st\nl c\nF H\nFI ELD\n\u0120P OV\ngr ay\n\u0120ar cs\n\u0120H OT\n\u0120r - s\n\u0120oblig atory\n\u0120Architect s\n\u0120S ven\n\u0120F EC\n0 200\nChrist - mas\n\u0120Alban ia\nrat om\n58 7\n\u0120hard ships\n\u0120aut os\n\u0120Charg - es\n\u0120ap es\n\u01203 76\nwal let\n\u0120intox ication\n\u0120gobl in\n\u01205 - 70\n++++++++ ++++++++\n\u0120Yel p\n\u0120Mag netic\n\u0120Br iggs\nR ail\n\u0120spawn - s\n\u0120W iggins\n\u0120showc ased\n\u0120res orted\nub en\n\u0120wh ipping\n\u0120im - itate\n\u0120digest ion\n\u0120US PS\n\u0120G est\n\u0120ye a\n\u0120T ight\nind - al\nic as\n` .\nC AST\n'' ;\n\u0120F et\nopath ic\nIn valid\n\u0120regrett - ed\n\u0120bro ccoli\n\u0120Sc ores\ne ve\n\u0120post ings\n\u0120accum ulating\n\u0120need - less\nelf th\n\u0120may ors\n\u0120sc rib\n\u0120anecd otes\n\u0120bot ched\n\u0120Rib - bon\n\u0120Constant ine\ni uses\ness es\n\u0120dev ise\nComp ared\n\u0120p - udding\n\u0120g arg\n\u0120ev oke\n79 7\n\u0120det ox\n9 09\n\u0120Pie ces\n\u0120McC - artney\n\u0120met ast\n\u0120K rypt\nP OR\n\u0120t ending\n\u0120Merch ants\nPro - of\n\u0120V arg\n\u0120Port able\n\xE3\u0125\xBC\xE3\u0125\u0128 \xE3\u0124\xA3\nB - rain\n25 00\n\u0120fol iage\n\xD8 \xB9\n\u0120ment ors\n\u0120A ires\n\u0120minimal - ist\n\u0120ing ested\n\u0120Tro jan\n\u0120Q ian\ninv olved\n0 27\n\u0120er - oded\nRA FT\n\u0120bl urry\nM ob\n\u0120buff et\n\u0120Fn atic\nae a\nKN OWN\n\u0120In - it\ns afety\nen um\nACT ION\n\u0120Crus her\n\u0120D ates\n\u0120 ................\nc - alling\nak ov\n\u0120vent ured\n\u01205 55\nau ga\nH art\n\u0120A ero\nM AC\n\u0120thin - ly\n\u0120ar ra\nST ATE\nild e\n\u0120Jac qu\n\u0120Fem ales\n\u0120the orem\n\u01203 - 46\n\u0120smart est\n\u0120PU BLIC\n\u0120K ron\n\u0120B its\n\u0120V essel\n\u0120Tele - phone\n\u0120dec ap\n\u0120adj unct\n\u0120S EN\nmer ga\n\u0120red acted\n\u0120pre - historic\n\u0120explan atory\n\u0120Run s\n\u0120Utt ar\n\u0120M anny\n\u0120AUTH - OR\n\u0120Unle ashed\n\u0120Bow ling\nbe ans\n79 3\n\u0120univers es\n\u0120sens - it\n\u0120K ung\nre peat\nctr l\n\u0120p aced\n\u0120full er\nCl ock\n\u0120rec - omb\n\u0120F aul\n\u0120B unker\n\u0120pool ed\n\u0120an a\n\u0120M outh\nLL - OW\nhum ane\n\u0120bull do\n\u0120Micha els\nf am\n\u0120wreck ed\n\u0120port - rays\n\u0120Wh ale\n\u0120H es\n\u0120guess es\n\u0120Brow se\n\u0120L APD\n\u0120consequ - ential\n\u0120Inn ocent\n\u0120D RAG\n\u0120trans gress\n\u0120O aks\n\u0120tri - via\n\u0120Res on\n\u0120A DS\n-- +\n\u0120T oll\n\u0120grasp ing\n\u0120THE - M\n\u0120T ags\n\u0120Con clusion\n\u0120pract icable\n\u0120ho op\n\u0120unintention - ally\n\u0120ign ite\n\u0120M ov\nur ized\nle hem\nTer min\n\u0120colour ful\n\u0120Lin - ear\n\u0120Ell ie\nG y\n\u0120man power\n\u0120j s\n\u0120em oji\n\u0120SHAR - ES\n_ .\n0000 7\n\u0120sophistic ation\n\u0120unders core\n\u0120pract ise\n\u0120bl - ob\nop ens\nUk raine\nKe eping\nY C\nJ R\nult imate\nCl aim\n\u0120autom obiles\n99 - 3\nste el\n\u0120part ing\n\u0120L ank\n... ?\n\u012038 5\n\u0120remem brance\n\u0120e - ased\n\u0120cov ari\n\u0120S ind\nEffect ive\n\u0120disse mination\n\u0120Mo - ose\n\u0120Cl apper\nbr ates\nApp ly\n\u0120inv is\n\u0120wors ened\n\xE2\u0122\u0136 - -\n\u0120legisl ator\n\u0120L ol\n\u0120Row e\n\u0120dealers hip\num ar\nid - ences\n\u0120investig ates\n\u0120c ascade\n\u0120bid der\n\u0120B EN\nIron - ically\n\u0120pres iding\n\u0120d ing\n\u0120contrad icted\n\u0120shut s\n\u0120F - IX\n\u01203 66\nDist rict\n\u0120sin ful\n\u0120Char isma\no ops\n\u0120tot - ality\n\u0120rest itution\n\u0120Opt imus\n\u0120D ah\n\u0120cl ueless\nurn - ed\n\u0120nut rit\n\u0120land owners\n\u0120fl ushed\n\u0120broad en\nm ie\n\u0120print - ln\n\u0120n ig\n\u0120Corp us\nJ en\n\u0120prot o\n\u0120Wik imedia\n\u0120Pal - o\nC OR\n\u0120story lines\n\u0120evangel icals\n\u0120Dar rell\n\u0120rot - or\n\u0120H W\nsk illed\nery l\n\u0120be gg\n\u0120Bl umenthal\n\u0120we aving\n\u0120down - wards\n\u0120Jack et\n\u0120ANG EL\nTe chnology\n\u0120es oteric\nalde hyde\n\u0120fur - iously\n\u0120foreign er\nWe ak\nCH O\n\u0120H ound\nExper ience\n\u0120Play - station\n\u0120M IA\n\u0120U ng\ncl oth\nag all\n\u0120cal ming\niz ens\nSt - ruct\n\u0120W itches\n\u0120Celeb ration\n\u0120........ ......\npt roller\n\u0120TC - U\n\u0120b unny\n\xE3\u0125 \u012F\nut orial\n\u0120up scale\n\u0120St a\n\u0120Col - ossus\n\u0120chlor ide\n\u0120Z ac\n\u0120Re asons\n\u0120Brook ings\n\u0120WH - ITE\n][ /\n\u0120L ose\n9 05\n\u0120unders ide\nern els\n\u0120v ape\ndo zen\nupp - et\n\u0120ST OP\nmat ical\n\u0120Stat ements\nhed dar\nP AC\nCustom er\n\u0120mem - os\n\u0120P J\nend ars\n\u0120Lim its\nl augh\n\u0120stabil ized\n\u0120ALE - C\nY A\nUp grade\nal am\n\u0120techn o\n\u0120an ew\nfore seen\n\u0120colleg - iate\n\u0120Py ro\n\u0120D ism\n\u0120front line\n\u0120ammon ia\nI U\nQu - ite\nJohn ny\nass in\nG OP\n\u0120St yles\n\u0120Sovere ign\nacter ial\n5 - 49\n\u0120R IP\n\u0120L ists\n\u01203 64\n\u0120Rece p\ns ocket\n\u0120Byr - d\n\u0120Cand le\nAn cient\n\u0120appell ant\nen forcement\nace a\nans ki\n\u0120old - s\n88 6\n\u0120sl urs\n\u0120em pires\n\u0120buck le\n\u0120alien ation\n\u0120Aber - deen\n\u0120unic orn\n\u0120overr iding\n\u0120L X\npp a\n\u0120desp ised\n\u0120B - ugs\n\u0120B ST\nS outhern\n5 33\n\u0120hall mark\n\u0120Post er\n\u0120stem - med\n\u0120princip als\n\u0120T ECH\n\u0120Sand wich\nIt aly\n\u0120che esy\n\u0120Set - TextColor\n\u0120Prot ective\n\u0120C ohn\nJ O\napt op\nRe ason\nLead er\n\u0120Under - stand\n\u0120Fr idays\n\u0120Contin uous\n\u0120cl ipping\n\u0120R ye\n\u0120ber - th\ntim er\nann is\nre act\n\u0120buff alo\n\u0120Par as\n\u01206 55\n\u0120pres - ided\n\u0120Sun rise\n\u0120ve ts\n\u0120cl oves\n\u0120McC ull\nStre ngth\nG - AN\n\u0120ill iter\n\u0120Pric ing\nl \xC3\xA9\n\u0120resist or\n\u0120br - un\n\u0120Suff olk\n\xD1 \u012D\n\u0120L iver\nRe leased\n\u0120what s\n8 - 60\n\u0120Me asures\n\u0120den ouncing\n\u0120Ry zen\n\u0120sou ven\n\u0120careg - ivers\nch ini\n\u0120Scar lett\n\u0120t rough\nCong ratulations\n\u0120tax - is\n\u0120Trad ition\nj it\n\u0120table top\n\u0120hither to\n\u0120dis information\noff - ensive\nh ra\n\u0120DISTR ICT\n\u0120compl icate\nchen ko\n\u0120Recon struction\n\u0120palp - able\n\u0120a usp\n\u01204 28\n\u0120showc ases\n\u0120Public ation\nknow - ledge\ninn on\n4 19\n\u0120retri eval\nand ers\n\u0120ref ute\n\u0120inqu - ired\ng ur\n\u0120neg ativity\n\u0120cons erve\n\u0120after life\n\u0120pres - upp\n\u0120Gill espie\n\u0120m t\n\u0120D N\nT ap\n\u0120per pend\n\u0120S - my\ndoes n\n\u0120sp illing\n\u0120hyp ers\nK ate\n\xC2\xAE ,\nke pt\n\u0120P - owered\n\u0120j a\n\u0120K lux\nard e\nab an\n\u01204 44\n\u0120flatt ened\n\u0120Improve - ments\nurg a\n\u0120K und\n\u0120ins cribed\n\u0120fac ult\n\u0120unpre pared\n\u0120Cons - umers\n\u0120satisf ies\n\u0120pul monary\n\u0120inf iltration\n\u0120ex ternally\n\u0120congrat - ulations\nag han\n\u0120air liner\n\u0120fl ung\n\u0120fly ers\nG D\n\u0120snipp - ets\n\u0120rec ursive\n\u0120master ing\nL ex\n\u0120overt ly\nv g\n\u0120luck - ily\n\u0120enc ro\n\u0120Lanc et\n\u0120Abyss al\nfunction al\n\u0120s ow\n\u0120squ - id\n\u0120nar ration\n\u0120n aughty\n\u0120Hon our\n\u0120Spart ans\n\u0120sh - atter\n\u0120Tac oma\n\u0120Cal ories\n\u0120R aces\nSub mit\n\u0120purpose - fully\nw av\n\u0120Y ok\nF est\n\u0120G err\nMet ro\n\u0120it iner\nf amous\n\u0120\" - {\nin line\nwas her\nIss ue\n\u0120CL IENT\noz o\nVers ions\n7 25\n\u0120Gl - ock\n\u0120shield ed\n\u0120PC R\nENC Y\n\u0120We ld\n\u0120Sim pl\n\u0120redirect - ed\n\u0120K ham\n\u0120( >\n\u0120lab ou\n\u0120di apers\nss l\n\u0120cell - ar\norgan isms\nore sc\n\u0120Ber ks\ndid n\nSh ipping\nC hest\n\u0120und - one\n\u0120million aire\n\u0120c ords\n\u0120Young er\nappropri ately\n\u0120sequ - els\nu ve\nant icipated\n\u0120le wd\n\u0120Sh irt\n\u0120Dmit ry\nV eter\n\u0120sl - aying\n\u0120Y ar\n\u0120compl ication\nI owa\n\u0120Eric a\n\u0120BL M\ng - irlfriend\nb odied\n6 26\n19 63\n\u0120intermedi ary\n\u0120cons olation\nM - ask\n\u0120Si em\now an\nBeg inning\n\u0120fix me\n\u0120culmin ated\n\u0120con - duc\n\u0120Volunte er\n\u0120pos itional\n\u0120gre ets\n\u0120Defin itions\n\u0120think - er\n\u0120ingen uity\n\u0120fresh men\n\u0120Mom ents\n\u012035 7\nate urs\n\u0120Fed - Ex\ns g\n69 4\n\u0120dwind ling\n\u0120BO X\nsel age\n\u0120t mp\n\u0120st - en\n\u0120S ut\n\u0120neighbourhood s\n\u0120class mate\nf ledged\n\u0120left - ists\n\u0120clim ates\nATH ER\n\u0120Scy the\nul iffe\n\u0120s ag\n\u0120ho - pped\n\u0120F t\n\u0120E ck\n\u0120C K\n\u0120Do omsday\nk ids\n\u0120gas - ped\n\u0120mon iker\n\u0120L od\n\u0120C FL\nt ions\nr ums\nfol ios\n\u0120m - d\n\u0120unc anny\n\u0120trans ports\n\u0120Lab rador\n\u0120rail ways\n\u0120appl - iance\n\u0120CTR L\n\xE6 \u0122\nPop ulation\n\u0120Confeder acy\n\u0120unb - earable\n\u0120dors al\n\u0120In form\nop ted\n\u0120K ILL\nMar x\n\u0120hypoc - ritical\nq us\n\u0120N umerous\n\u0120Georg ian\n\u0120Ambro se\n\u0120L och\n\u0120gu - bernatorial\n\u0120X eon\n\u0120Supp orts\nens er\nee ly\n\u0120Aven ger\n19 - 65\nAr my\n\u0120ju xtap\n\u0120cho pping\n\u0120Spl ash\n\u0120S ustainable\n\u0120Fin - ch\n\u012018 61\nict ive\nat meal\n\u0120G ohan\n\u0120lights aber\n\u0120G - PA\nug u\n\u0120RE PL\nvari able\n\u0120her pes\n\u0120desert s\nac iously\n\u0120situ - ational\nweek ly\nob l\n\u0120text ile\n\u0120Corn wall\n\u0120contrace ptives\n\u0120A - ke\n] -\n\xE4\xB9 \u012D\n: ,\n\u0120W em\n\u0120B ihar\n\u0120' .\n\u0120be - re\n\u0120anal ogue\n\u0120Cook ies\n\u0120take off\nWhe el\n\u0120maj estic\n\u0120comm - uting\n0 23\n\u0120Cor pse\nass ment\nmin i\n\u0120gor illa\n\u0120Al as\nere - e\n\u0120acquaint ances\n\u0120Ad vantage\n\u0120spirit ually\n\u0120ey ed\npm - wiki\n\u0120E nder\n\u0120trans lucent\n\u0120night time\n\u0120IM AGES\n5 - 45\n\u0120K amp\n\u0120Fre ak\n\u0120 ig\nPort land\n4 32\n\u0120M ata\n\u0120mar - ines\n\u0120h ors\nater asu\n\u0120Att ribution\n\u0120-------- -\n\u0120k - ins\n\u0120BEL OW\n++ +\n\u0120re eling\nol ed\n\u0120cl utter\n\u0120Rel - ative\n\u01204 27\nB US\n\u0120a vert\n\u0120Che ong\n\u0120A ble\n\u0120Pry - or\nDevelop er\n\u0120en cyclopedia\n\u0120USA F\n\u0120G arry\nSp ain\nBl - ocks\n\u0120exp osition\n\u0120Gamer Gate\nW OR\n\u0120stockp ile\n\u0120clot - hed\n\u0120T one\n\u0120R ue\nt umblr\n\u0120treacher ous\n\u0120f rying\n\xD1 - \u012E\n\u0120S ph\n\u0120rest raints\n\u0120emb odies\n\u0120G es\nS afety\n\u0120negoti - ators\nmin ing\n\u0120Appalach ian\nL OS\n\u0120Jenn a\n\u0120pass ers\n\xE7 - \u012D\nsn ap\n\u0120short en\ncreat or\n\u0120inn umerable\nuther land\n67 - 4\n\u0120W OM\n\u0120As cend\n\u0120Arm ory\n\u0120Trans action\nK ick\n\u0120suit - case\nday Name\n\u0120waste ful\nmar riage\n\u0120McC abe\nite ch\n\u0120O - ss\nCl osure\n\u0120Treasure r\n\u0120indec ent\n\u0120D ull\n\u0120resid - ences\n19 59\n\u0120S ettlement\nHam ilton\n\u0120self ies\n\u0120Rank ing\n\u0120Bark - ley\n\u0120B ore\n\u0120W CS\n\u0120Mar itime\n\u0120H uh\n\u0120Forest ry\n\u0120cultiv - ating\n\u0120Ball ard\n\u0120g arrison\n\u0120SD L\n9 30\n\u0120nas cent\n\u0120irresist - ible\n\u0120aw fully\n\\/ \\/\n\u0120equ ate\n\u0120anthrop ology\n\u0120Sylv - ia\n\u0120intest ine\n\u0120innoc uous\ncess ive\nag ra\n\u0120Met roid\nG - rant\n8 55\n\u0123 \u0138\n\u0120\" _\n\xE3\u0125\u0125 \xE3\u0125\u012B\n\u0120appra - isal\n\u0120Fred dy\n04 6\n\u012040 6\n\u012018 30\n\u0120d ocking\nSt atic\n\u0120p - ont\n\u0120Volt age\n\u0120St ead\n\u0120Mort gage\n\u0120Jon ah\nY L\nCLASS - IFIED\n\u0120as bestos\nnik ov\n\u0120coll agen\n\u0120Orb ital\nP ocket\n7 - 99\n\u0120hy brids\ninc hes\n\u0120inv oice\nund y\n\u0120inequ alities\nT - rend\nw ashed\nB ALL\n\u0120luc id\n\u0120Comment ary\n\u0120w itty\nBr andon\n\u0120bru - ising\n\u01206 20\nes cent\nbox ing\nP OL\n\u01203 78\nR ect\n\u0120lic ences\n\u0120McG - ee\np ressed\nD anny\n\u0120j ammed\nord inate\n\u0120le th\n\u0120distingu - ishes\n\u0120Yam aha\nIL S\n\u0120H ume\n\u0120C ategories\nRober ts\nCh art\n\u0120beet - le\n\u0120Gra veyard\n\u0120($ )\no \xC4\u0141\n\u0120tw ilight\nare lla\n\xE1 - \xBD\n\u0120booth s\n\u0120H HS\n\u0120Feld man\n\u0120excav ation\n\u0120philosoph - ies\nat ography\n\u0120Gar age\nte chnology\n\u0120unfor gettable\n\u0120ver - ifying\n\u0120subord inates\nE ls\n\u0120ne b\nG aming\nEN A\n\u0120Achieve - ment\nit ters\n\u0120G abe\n\u0120d umps\nfor cer\n\u0120po ignant\n\u0120M - BA\n\u0120He idi\nime i\n\u0120m ages\n\u0120liber ate\n\u0120circum cised\n\u0120Mer - maid\n\u0120Mat th\nt ogether\n\u0120W ichita\n\u0120store front\n\u0120Ad - in\nV II\nFour th\n\u0120explore rs\nW ER\nNot able\nBro ok\nm ens\nF aith\n-------- - -\n\u0120J ou\n\xAC \xBC\n\u0120pine apple\n\u0120am alg\nel n\nark able\n\u0120\xE3\u0124\xB5 - \xE3\u0125\xBC\xE3\u0125\u0128\xE3\u0124\xA3\n\u0120\xE3\u0124\xB5\xE3\u0125\xBC\xE3\u0125\u0128\xE3\u0124\xA3 - \xE3\u0125\xAF\xE3\u0125\xB3\n\u0120ov arian\n\u0120E choes\n\u0120hairc ut\n\u0120p - av\n\u0120ch illed\nanas ia\n\u0120sty led\n\u0120d ab\nni per\n\u0120minister - ial\n\u0120D UP\nT an\n\u0120sul ph\n\u0120D eter\n\u0120Bo hem\nod an\n\u0120educ - ator\n\xE2 \u0135\u013A\nsp ir\nCh icken\n\u0120E leanor\n\u0120qu i\n\u0120heav - iest\n\u0120grasp ed\nU RA\n\u0120cro oked\nJess ica\npro blem\n\u0120pred - etermined\n\u0120man iac\n\u0120breath s\n\u0120Lauder dale\n\u0120h obbies\ny - z\nCr ime\n\u0120charism a\nd L\n\u0120le aping\n\u0120k ittens\nAng elo\n\u0120J - ACK\n\u0120Su zanne\n\u0120hal ting\nENT ION\n\u0120swall owing\n\u0120Earthqu - ake\n\u0120eight eenth\n\u0120N IC\n\u0120IN F\n\u0120Cons cious\n\u0120particular - s\ncirc le\n7 40\n\u0120bene volent\n\u01207 47\n\u01204 90\n\u0120r undown\n\u0120Val - erie\n\u0120B UR\n\u0120civil isation\n\u0120S chn\nW B\not ide\nintern ational\n\u0120j - ohn\n\u012019 02\n\u0120pe anuts\n\u0120flav ored\nk us\n\u0120ro ared\n\u0120cut - off\n\xE9 \xA3\n\u0120orn ament\n\u0120architect ures\n\u01203 69\nol or\n\u0120Wild - e\n\u0120C RC\n\u0120Adjust ed\n\u0120prov oking\nland ish\n\u0120rational - ity\n\u0120just ifies\n\u0120disp el\n\u0120a meric\n\u0120Pol es\n\xD8 \xA9\n\u0120en - vis\n\u0120D oodle\n\xE4\xBD \xBF\nigs aw\nauld ron\nTechn ical\nT een\nup - hem\n\u0120X iang\n\u0120detract ors\n\u0120Z i\n\u0120Journal ists\n\u0120conduc - ive\n\u0120Volunte ers\n\u0120s d\nKnow ing\n\u0120trans missions\n\u0120PL - AN\n\u0120L IB\n\u0120all uded\n\u0120ob e\n\u0120d ope\n\u0120Gold stein\n\u0120wavelength - s\n\u0120Dest ination\nnd a\nug i\n\u0120attent ive\n\u0120Le an\nral tar\n\u0120man - g\nmb uds\nak ings\nb ender\n\u0120acc ol\n\u0120craw led\nN OW\nMin nesota\n\u0120flour - ished\n\u0120Z up\n\u0120Super visor\n\u0120Oliv ier\nEx cellent\n\u0120wid - en\nD one\n\u0120w ig\n\u0120miscon ceptions\nCor p\nW an\n\u0120vener able\n\u0120Not - ably\n\u0120Kling on\nan imate\nBo ost\n\u0120S AY\nmiss ing\nibli ography\nmel - on\n\u0120pay day\n\xD8 \xB3\nbo le\n\u0120ve iled\n\u0120Al phabet\nIt alian\n\u0120ever - lasting\n\u0120R IS\n\u0120C ree\nrom pt\n\u0120h ating\n\u0120grin ning\n\u0120ge - ographically\nOS H\n\u0120we eping\n\u0120\xC2\u0142\u0120\xC2\u0142\u0120\xC2\u0142\u0120\xC2\u0142 - \u0120\xC2\u0142\u0120\xC2\u0142\u0120\xC2\u0142\u0120\xC2\u0142\n\u0120impe - cc\nLet ter\n\u0120blo ated\nPL A\n\u0120Fe in\n\u0120per sever\nTh under\n\u0120a - ur\n\u0120R L\n\u0120pit falls\n\xE2\u0138 \xBA\n\u0120predomin ant\n\u01205 - 25\n7 18\nAP E\n7 14\n\u0120farm land\n\u0120Q iao\n\u0120v iolet\n\u0120Bah - amas\n\u0120inflic ting\n\u0120E fficiency\n\u0120home brew\n\u0120undert - ook\n\u0120cur ly\n\u0120Hard ing\nman ia\n59 6\n\u0120tem pered\n\u0120har - rowing\n\u0120P ledge\n\u0120Franken stein\n\xE8 \xAA\nM otion\n\u0120predict - ably\n\u0120Expl osion\noc using\ner d\ncol o\nFF ER\n\u0120back field\n\u0120V - IDE\nue bl\nN arr\n\u0120Arg ument\n\u0120gen omic\n\u0120bout ique\n\u0120batt - ed\n\u0120B inary\n\u0120g amb\n\u0120Rh ythm\n67 3\n\u0120a float\n\u0120Olymp - ia\nY ING\n\u0120end if\nis in\n\u0120win ters\n\u0120sc attering\nI v\nD - istance\n\u0120tr u\n\u0120Com fort\n\u0120ne xus\n\u0120air flow\n\u0120Byz - antine\np ayers\ncon i\n\u0120B etsy\nD eal\n\u0120N ug\n\u0120Contin ent\nred - ibly\n\u0120optim izing\nal beit\n\u0120ec static\n\u0120Pro to\n\xE7 \xB7\niv - ot\n\xE2\u0138 \u0126\nem p\nrou nder\n\u0120cl out\n\u0120I ST\n66 3\n\u0120Doll - ars\n\u0120D AC\n\u0120subsc ribed\n\u0120rehears al\n\u0120am ps\n\u0120Sh - ang\nes m\n\u0120spr inkle\n\u0120assail ant\n\u0120O o\n\u0120Coin base\nT - act\n\u0120ret ina\n\u0120n uns\nR ON\natt o\n\u0120j ug\n\u0120SV G\n\u0120b - ikini\n\u0120FI LE\n\u0120Found ers\nep ort\n\u0120K P\n\u0120rest ores\n\u0120Th - ick\n\u0120ash ore\n\u0120appro vals\nR ender\nM AG\nG raham\n\u0120Cort ana\n\xE3\u0125\xB3 - \xE3\u0124\xB8\nss h\nor ians\nars ity\n\u0120Insp ired\nu pper\n\u0120sign - alling\n\u0120reb uke\n\u0120fl ares\n\u0120downt ime\nStud ies\n\u0120stagn - ation\n\u0120Sequ ence\n\u0120gr unt\n\u0120ass ures\n\u0120PL A\n59 2\n\u0120intra - ven\nd epend\nSus an\n\u0120Manz iel\nMan ia\nCont ract\n\u0120sl ams\n\u0120cult - ured\n\u0120cred itor\nL IST\n\u0120H UM\n\u0120Chatt anooga\nserv ed\n\u0120clo - aked\n\u0120F TP\np owder\n\u0120St ella\nuct ive\n\u0120cheap ly\n\u0120MU - CH\n\u0120Galile o\n\u0120su ites\nspe ech\n\u0120deliber ations\n\u0120Ch - ips\n\xAB \u013A\nBal ance\n\u0120Wyn ne\n\u0120Ak ron\nAss et\n\u0120hon - oured\n\u0120ed ged\nLike wise\nanim ous\n\u0120W age\n\u0120Ez ek\nad vertisement\n\u0120RT - X\n\u0120M AD\n\u0120migr ating\n\u0120S QU\n\u01204 75\nEd ited\n\u0120shorth - and\n\u0120Bas ics\n\u0120cro tch\n\u0120EV EN\n\u0120v m\neffic iency\n\u0120cal - ves\n\u0120F rie\n\u0120Brill iant\n\u0120stri kers\n\u0120repent ance\n\u0120arter - ies\nr l\nB ed\nh ap\n\u0120crypt ography\n\u0120Sab res\n\u01204 14\nvi ks\nih - ara\naps es\nT alking\n\u0120intertw ined\n\u0120doc ks\n\u0120alle le\n\u0120Art - ifact\n\u0120H IM\nt orn\n\xE7 \u0137\n\u0120op acity\n\u0120E ly\nos uke\n\u0120n - ipple\n\u0120hand written\n\u0120V K\n\u0120Chamber lain\n\u0120La os\nig - raph\ng row\n\u0120tr illions\n\u0120descend ant\n\u0120Sail or\nas uring\n\u0120ce - ilings\n\u0120Ware house\nf lying\n\u0120Gl ow\n\u0120n ont\n\u0120miscar - riage\n\u0120rig s\n\u0120min istries\n\u0120elabor ated\n\u0120del usional\n\u0120Hum - ane\n\u01203 79\nn ets\n\u0120black out\nadd ers\n\u0120n p\n\u0120T ire\nro - sc\n\u0120sub div\n\u0120link age\n\u0120chron ological\n\u0120HER O\n\u0120res - ettlement\n\u0120Vin yl\n\u0120past oral\n\u0120Mob il\n\u0120Bar bar\nCo - oldown\n\u0120F ritz\nc riminal\nre pe\n\u0120bell ig\n\u0120Bre ed\n\u01204 - 18\n\u0120sem blance\nij k\n\u0120cur tail\n\u0120clin ch\ncont ained\n\u0120Prom - pt\nast on\n\u0120w i\n\u0120pursu its\n5 15\n\u0120Gl oss\n\u0120fl ips\n\u0120coup - ons\n\u0120cl oning\n\u0120Like ly\nRem oved\n\u0120Qu artz\nr ices\n\u0120Spe - ars\n\u0120p ious\n\u0120dep reciation\n\u0120D are\noun ces\nam az\nO nt\n\u0120p - innacle\nd ocker\n0 26\n\u0120W yr\n\u0120Pro per\n\xCB \u012A\nn il\nBy tes\n\u0120seek - er\nt rial\n\u0120unf olds\n\u0120Mar se\n\u0120extravag ant\n\u0120Surviv - ors\nRED ACTED\n\u0120Speed way\n\u0120Cra igslist\nsub mit\n\u0120Gener ations\n\u0120up - holding\n\u0120blood stream\n\u0120Miss ions\n\u0120L awn\n\u0120lim bo\nene - i\nH uh\n\u0120Wild cats\npre p\n\u0120Mark us\n\u0120For bidden\nrit ic\nIN - O\n\u0120exhib iting\nrequ ent\nch uk\n\u0120habit ual\n\u0120Comp atibility\nDr - ag\nRIP T\nuj ah\nGR OUND\n\u0120delinqu ent\n\u0120burn er\n\u0120contempor - aries\n\u0120gimm ick\nload s\n\u0120no zzle\np odcast\n\u0120W ak\n\u0120Stat - en\n\u0120K uh\n\xE3\u0123 \u0135\ninter rupted\n\u0120inv incible\n\u0120Burn - ett\ncig arette\n\u0120Peb ble\n\u0120Tem porary\n\u0120Mar ino\n58 2\n\u0120wast - eland\nident ly\nT x\n\u0120r ite\n\u0120Pan asonic\n\u0120M iddles\n\u0120Hort - on\nae us\n\u0120c uring\n\u0120m ats\n\u0120adj ourn\n\u0120fears ome\npe - z\nbo ats\n\u0120pro pell\n\u0120conflic ted\n\u0120Ang er\n\u0120insurg ent\nK - arl\n\u0120co ales\n\u0120south western\n\u0120dis su\n\u0120O vert\n******** - ****\n\u0120box ed\n\u0120Br une\naa a\n\u0120gard ening\n\u0120Eng el\ntr - acks\n\u0120pur ified\n\u0120place holder\n\u0120L ikes\n\u0120d an\nG ab\n\u0120e - ct\n\u0120F aw\n\u0120El iot\n\u0120' ,\notrop ic\n\u0120Ru in\nhed on\n\u0120ca - ul\n\u0120a ft\n\u0120Cad illac\ngh a\nass ian\nud eb\n\u0120T ick\n\u0120adjust - s\nAR GET\n5 37\nisc he\nant y\n\u0120Fried rich\n\u0120Bl izz\n\u0120A OL\nCamp - aign\n\u0120mamm al\n\u0120Ve il\n\u0120K ev\n\u0120Maur it\n\u0120Dam ien\nN - ation\nE astern\n\u0120{ :\n\u0120= ================================\n\u0120stereotyp - ical\n\u0120att ic\n\u0120Cy borg\nrequ ire\n\u0120award ing\n\u0120Pap ua\nbt - n\nb ent\nB oo\n\u0120( =\n\u0120X ander\n\u0120Somers et\n\u0120catch y\n\u0120cert - ify\nSTR UCT\n\u0120it al\n\u0120t ides\n\u0120Br ands\nG ray\ncomp etitive\n\u0120cur - ator\n\u0120D G\nomin ium\n\u0120GM Os\nci ating\n\u0120Carm en\now ard\nBalt - imore\n\u0120r gb\nC u\n\u0120wip es\nspe ll\nIT NESS\n\u0120summar izes\n\u0120Re - vis\n\u0120whistlebl owers\n\u0120Bre ach\n\u0120cro chet\nk os\news ki\n\u0120rep - et\n\u0120crim son\n\u0120Kar achi\nread able\ndim ension\n\u0120I gor\nild - ed\n\u0120Z ed\n\u0120Ke ane\n\u0120Cos metic\nDE P\n\u0120retreat ing\n\u0120U - A\nens ical\n\u0120d usk\n\u0120Dick ens\n\u0120aren as\n\u0120Pass age\nlevel - s\n\u0120cur v\nP ope\n\u0120ch ores\n\u0120El ise\n\u0120Comp ass\nb ub\n\u0120mamm - alian\n\u0120Sans krit\n\u0120AN C\n\u0120Cr ack\nQ ual\nL aun\namp unk\n\u0120learn - ers\n\u0120glam orous\n\u0120fur the\nerm ott\nc and\nGener ic\n\u0120narr - ated\n\u0120disorder ly\n\u0120Trans actions\n\u0120Det ention\n\u0120R oku\n\xC4 - \u012F\n\u0120under statement\n\u0120S aur\n\u0120Rodrig o\n\u0120AS AP\nS - in\n\u0120re joice\nMethod s\n\u0120electro de\n\u0120worsh ipped\n\u0120id - i\n\u0120Phys icians\n\u0120pop up\n\u0120de ft\n\u0120Rem oval\n\u0120Bu - enos\nver bs\n\u0120fun k\nush a\nrict ion\nore a\n\u0120Bang alore\n\u0120Ken - obi\nzz i\n\u0120norm ative\n\u0120gobl ins\n\u0120caf es\n\u0120UN CLASSIFIED\n\u0120F - ired\nS IGN\n\u0120s clerosis\n\u0120V oter\n\u0120Son ny\n\u0120Ext end\n\u0120EV - s\nAr senal\n\u0120p si\n\u0120wid est\n\u0120T us\n\u0120lo oms\n\u0120just - ifying\n\u0120Gr anger\n\xE8 \xAF\nRef er\n58 3\n\u0120flour ishing\nab re\n\u0120r - ave\n\u0120Cont ra\n\u012018 98\nAdd s\n\u0120f ul\n\u0120Co oke\nsome one\n= - #\n67 1\n\u0120y ak\n\u0120ar te\n\u0120Mis cellaneous\n\u0120Det ection\n\u0120Cl - ancy\n\xE2 \u0123\nass ies\n\u0120val iant\n\u0120Femin ist\ncor ruption\nV - el\nP ear\n\u0120succ inct\n\u0120quick est\nk w\n\u0120sp itting\n\u0120L - ibraries\n\xE5\u0127 \u012B\nant z\nD ad\n\u0120Spec ifications\nrup ulous\nand - r\nRES ULTS\n\u0120snow ball\n\u0120pred is\n\u0120B axter\n\u0120Nurs ing\n\u0120Ch - aff\ns we\n\u0120out age\n\u0120nest ing\n\u0120notor iety\ntr igger\non ite\nj - on\n\u0120f ou\nook ed\n\u0120Celebr ity\nre ality\n\u0120fat ig\n\u0120hug - ging\n\u0120bother s\n\u0120Pan zer\n\u0120Ch andra\nfig ured\n\u0120vol ts\n\u0120Cloud - s\n\u0120fee ble\n\u0120Cur ve\n\u0120As us\n78 6\nabs or\n\u0120V ICE\n\u0120H - ess\n\u0120manufact ures\n\u0120gri zz\n\u0120Power ful\nac id\n\u0120sub - sections\n\u0120Krug man\n\u0120Al ps\nis u\n\u0120sequ est\n\u0120Ult ron\n\u0120T - inker\n\u0120Go ose\n\u0120mism atch\nAtt orney\n\u0120morph ology\n\u0120Six - ers\nut tered\n\u0120E LECT\ngr an\nRus sell\n\u0120G SL\n\u0120fort night\n\u0120. - )\n\u0120apost le\npr one\nel ist\nUnt itled\n\u0120Im plementation\nist ors\n\u0120tank - er\n\u0120pl ush\n\u0120attend ants\n\u0120T ik\n\u0120Green wich\n\u0120Y - on\n\u0120SP L\ncell s\nunt led\nS olution\n\u0120Qu \xC3\xA9\n\u0120vac ated\n\u0120upt - ick\n\u0120Mer idian\n\xE6 \u0125\n\u0120Dr ill\n9 25\n58 4\n\u0120renov ated\n\u0120Kub - rick\nzy k\n\u0120l ousy\npp el\nohyd rate\n\u0120I zzy\nlesi astical\nCC - C\n\u0120Aj ax\n\u0120ad apters\n\u0120Petra eus\n\u0120affirm ation\n\u0120ST - OR\nle ms\nad oes\n\u0120Constantin ople\n\u0120p onies\n\u0120l ighthouse\n\u0120adherent - s\n\u0120Bre es\nomorph ic\nFight ing\n\u0120pl aster\n\u0120P VC\n\u0120Ob - st\n\u0120dear ly\n\u0120To oth\nicks on\n\u0120sh aming\nP lex\nA gg\n\u0120\xE2\u0122\xA6 - \"\n\u0120sub reddits\n\u0120pige on\n\u0120Resident ial\n\u0120Pass ing\n\u0120l - um\n\u0120P ension\n\u0120pessim istic\n\u01204 32\nz inski\nc ade\n0 75\n\u0120apolog - ised\niy ah\nPut ting\n\u0120gloom y\n\u0120Ly me\n=-=-=-=- =-=-=-=-\n\u0120T - ome\n\u0120Psych iatric\n\u0120H IT\nc ms\nap olog\n\u0120break er\n\u0120deep - en\n\u0120theor ist\n\u0120High lands\n\u0120b aker\n\u0120st aples\n\u0120interf - ered\n\u0120Ab ortion\njo ined\nch u\n\u0120form ulate\n\u0120vacc inations\n\u0120ban - ter\nphe us\n\u0120outfield er\n\u0120M eter\n\u0120# ####\n\u012018 95\n\u0120narrow - ing\n\u0120ST ORY\nf p\n\u0120C ST\nign ore\n\u0120proclaim ing\n\u0120R U\n\u0120B - ALL\nyn a\n65 3\n\u0120pos it\nP RE\n59 4\n\u0120Regist rar\n\u0120Pil grim\nic - io\n\u0120pre tt\n\u0120lif eless\n\u0120__ _\nNe igh\n\u0120Ch urches\norn - o\n\u0120or cs\n\u0120kind red\n\u0120Aud it\n\u0120millenn ial\n\u0120Pers - ia\ng ravity\n\u0120Dis ability\n\u0120D ARK\nW s\nod on\n\u0120grand daughter\n\u0120Bro - oke\n\u0120A DA\nER A\n\u0120pick ups\n\u0120Wil kinson\n\u0120Sh ards\n\u0120N - K\n\u0120exp el\n\u0120Kis lyak\n\u0120j argon\n\u0120polar ized\nian e\nPub - lisher\n\u0120reb utt\n\u0120apprehens ion\n\u0120K essler\n\u0120pr ism\nF - UL\n19 64\n\u0120L oll\n\xE4 \xBF\nle thal\n\xC5 \u0141\n\u0120g hetto\n\u0120b - oulder\n\u0120Slow ly\n\u0120Osc ars\n\u0120Inst ruction\n\u0120Ul tr\n\u0120M - oe\nN ich\n\u0120P ATH\n( *\n\u0120RE LEASE\nun ing\nrou se\nen eg\n\u0120re - imb\n\u0120Det ected\nDo S\n\u0120ster ling\n\u0120aggreg ation\n\u0120Lone - ly\n\u0120Att end\nhig her\n\u0120airst rike\nks on\nSE LECT\n\u0120def lation\n\u0120Her - rera\nC ole\nrit ch\n\u0120advis able\nF ax\n\u0120work around\n\u0120p id\nmort - em\ners en\n\u0120typ o\n\u0120al um\n78 2\n\u0120Jam al\nscript s\n\u0120capt - ives\n\u0120Pres ence\n\u0120Lie berman\nangel o\n\u0120alcohol ism\nass i\n\u0120rec - ite\n\u0120gap ing\n\u0120bask ets\n\u0120G ou\nBrow ser\nne au\n\u0120correct - ive\nund a\nsc oring\n\u0120X D\n\u0120fil ament\n\u0120deep ening\n\u0120Stain - less\nInt eger\n\u0120bu ggy\n\u0120ten ancy\n\u0120Mub arak\n\u0120t uple\n\u0120D - roid\n\u0120S itting\n\u0120forfe it\n\u0120Rasm ussen\nixt ies\nes i\n\u0120Kim - mel\n\u0120metic ulously\n\u0120ap opt\n\u0120S eller\n08 8\nec ake\nhem atically\nT - N\n\u0120mind less\n\u0120dig s\n\u0120Acc ord\nons ense\nem ing\nbr ace\n\u0120e - Book\n\u0120Dist ribut\n\u0120Invest ments\nw t\n] ),\nbeh avior\n56 3\n\u0120bl - inding\n\u0120Pro testers\ntop ia\n\u0120reb orn\n\u0120Kel vin\n\u0120Do - ver\n\u0120D airy\n\u0120Out s\n\u0120[ /\n\xCF \u0122\nb p\n\u0120Van ity\n\u0120Rec - ap\n\u0120HOU SE\n\u0120F ACE\n\u01204 22\n69 2\n\u0120Ant ioch\ncook ed\n\u0120coll - ide\n\u0120a pr\n\u0120sle eper\n\u0120Jar vis\n\u0120alternative ly\n\u0120Le - aves\n\u0120M aw\n\u0120antiqu ity\n\u0120Adin ida\n\u0120ab user\nPok\xC3\xA9 - mon\n\u0120ass orted\n\u0120Rev ision\n\u0120P iano\n\u0120G ideon\nO cean\n\u0120sal - on\n\u0120bust ling\nogn itive\n\u0120Rah man\n\u0120wa iter\n\u0120pres ets\n\u0120O - sh\n\u0120G HC\noper ator\n\u0120rept iles\n\u01204 13\n\u0120G arr\n\u0120Ch - ak\n\u0120has hes\n\u0120fail ings\n\u0120folk lore\n\u0120ab l\n\u0120C ena\n\u0120Mac - Arthur\n\u0120COUR T\n\u0120peripher y\napp ers\n\u0120reck oned\n\u0120Inf - lu\n\u0120C ET\n\u01203 72\n\u0120Defin itive\nass ault\n4 21\n\u0120reservoir - s\n\u0120d ives\n\u0120Co il\nDA Q\n\u0120vivid ly\n\u0120R J\n\u0120Bel lev\n\u0120ec - lectic\n\u0120Show down\n\u0120K M\nip ed\nreet ings\n\u0120As uka\nL iberal\n\u0120\xCF - \u0126\n\u0120bystand ers\n\u0120Good win\nuk ong\nS it\n\u0120T rem\n\u0120crim - inally\n\u0120Circ us\nch rome\n88 7\n\u0120nan op\n\u0120Ob i\n\u0120L OW\no - gh\n\u0120Auth ors\nob yl\nUr ban\n\u0120t i\n\u0120We ir\nt rap\nag y\n\u0120parent - heses\n\u0120out numbered\n\u0120counter productive\n\u0120Tob ias\nub is\nP - arser\nST AR\n\u0120syn aptic\n\u0120G ears\n\u0120h iber\n\u0120debunk ed\n\u0120ex - alted\naw atts\nH OU\nCh urch\n\u0120Pix ie\n\u0120U ri\n\u0120Form ation\n\u0120Pred - iction\nC EO\n\u0120thro tt\n\u0120Brit ann\n\u0120Mad agascar\n\xEB \u012D\n\u0120bill - boards\n\u0120RPG s\n\u0120Be es\ncomplete ly\nF IL\n\u0120does nt\n\u0120Green - berg\nre ys\n\u0120sl ing\n\u0120empt ied\n\u0120Pix ar\n\u0120Dh arma\nl - uck\ningu ished\n\u0120end ot\n\u0120bab ys\n05 9\nche st\nr ats\n\u0120r - idden\n\u0120beet les\n\u0120illum inating\n\u0120fict itious\n\u0120Prov - incial\n\u01207 68\n\u0120she pherd\n\u0120R ender\n\u012018 96\nC rew\n\u0120mold - ed\n\u0120Xia omi\n\u0120Sp iral\n\u0120del im\n\u0120organ ising\n\u0120ho - ops\n\u0120Be i\nz hen\n\u0120fuck in\n\u0120dec ad\n\u0120un biased\nam my\nsw - ing\n\u0120smugg led\n\u0120k ios\n\u0120P ERSON\n\u0120Inquis itor\n\u0120snow - y\n\u0120scrap ing\n\u0120Burg ess\nP tr\nag ame\nR W\n\u0120dro id\n\u0120L - ys\n\u0120Cass andra\nJac ob\n\u012035 4\n\u0120past ure\n\u0120fr anc\n\u0120Scot - ch\n\u0120End s\n\u0120I GF\ndef inition\n\u0120hyster ical\n\u0120Brown e\n77 - 1\n\u0120mobil ization\n\xE6 \u0137\niqu eness\nTh or\n\u0120spear headed\n\u0120embro - iled\n\u0120conject ure\njud icial\nCh oice\n\u0120paper back\nP ir\n\u0120rec - overs\n\u0120Sur ge\n\u0120Sh ogun\n\u0120Ped iatrics\n\xE3\u0123 \u0142\n\u0120sweep - s\n\u0120Labor atories\n\u0120P acks\nal us\nadd in\n\u0120head lights\ng - ra\nEv idence\nCOL OR\nAd min\n\u012C \xB1\n\u0120conco ct\ns ufficient\n\u0120un - marked\n\u0120rich ness\n\u0120diss ertation\n\u0120season ing\n\u0120g ib\n\u0120M - ages\nun ctions\n\u0120N id\nche at\n\u0120TM Z\nc itizens\n\u0120Catholic - ism\nn b\n\u0120disemb ark\n\u0120PROG RAM\na ques\nTy ler\nOr g\n\u0120Sl - ay\n\u0120N ero\n\u0120Town send\nIN TON\nte le\n\u0120mes mer\n9 01\n\u0120fire - ball\nev idence\naff iliated\n\u0120French man\n\u0120August a\n0 21\n\u0120s - led\n\u0120re used\n\u0120Immun ity\n\u0120wrest le\nassemb led\nMar ia\n\u0120gun - shots\n\u0120Barb ie\n\u0120cannabin oids\n\u0120To ast\n\u0120K inder\nIR - D\n\u0120re juven\n\u0120g ore\n\u0120rupt ure\n\u0120bre aching\n\u0120Cart - oon\n\u01204 55\n\u0120Pale o\n6 14\n\u0120spe ars\n\u0120Am es\nab us\nMad - ison\nGR OUP\n\u0120ab orted\ny ah\n\u0120fel on\n\u0120caus ation\n\u0120prep - aid\n\u0120p itted\nop lan\n\u0120Shel ley\n\u0120Rus so\n\u0120P agan\n\u0120will - fully\n\u0120Can aver\nund rum\n\u0120Sal ary\n\u0120Ar paio\nread er\n\u0120R - ational\n\u0120Over se\n\u0120Ca uses\n\u0120* .\n\u0120w ob\nKe ith\n\u0120Cons - ent\nman ac\n77 3\n6 23\n\u0120fate ful\net imes\n\u0120spir ited\n\u0120D - ys\n\u0120he gemony\n\u0120boy cot\n\u0120En rique\nem outh\n\u0120tim elines\n\u0120Sah - ara\n\u0120Rel ax\n\u0120Quin cy\n\u0120Less ons\n\u0120E QU\nSE A\nN K\n\u0120Cost - co\nIncre ase\n\u0120motiv ating\n\u0120Ch ong\nam aru\n\u0120Div ide\n\u0120ped - igree\n\u0120Tasman ia\n\u0120Prel ude\nL as\n9 40\n57 4\n\u0120ch au\n\u0120Sp - iegel\nun ic\n-- >\n\u0120Phil ips\n\u0120Kaf ka\n\u0120uphe aval\n\u0120sent - imental\n\u0120sa x\n\u0120Ak ira\nser ial\nMat rix\n\u0120elect ing\n\u0120comment - er\n\u0120Neb ula\nple ts\n\u0120Nad u\n\u0120Ad ren\n\u0120en shr\n\u0120R - AND\nfin ancial\n\u0120Cly de\nuther ford\n\u0120sign age\n\u0120de line\n\u0120phosph - ate\nrovers ial\nf ascist\n\u0120V all\n\u0120Beth lehem\n\u0120for s\n\u0120eng - lish\nS olid\nN ature\n\u0120v a\n\u0120Gu ests\n\u0120tant al\n\u0120auto - immune\n;;;;;;;; ;;;;\n\u0120Tot ally\n\u0120O v\n\u0120def ences\n\u0120Coc - onut\n\u0120tranqu il\n\u0120pl oy\n\u0120flav ours\n\u0120Fl ask\n\xE3\u0124\xA8 - \xE3\u0125\xAB\n\u0120West on\n\u0120Vol vo\n8 70\n\u0120micro phones\nver - bal\nR PG\n\u0120i ii\n; }\n0 28\n\u0120head lined\n\u0120prim ed\n\u0120ho - ard\n\u0120Sh ad\n\u0120EN TER\n\u0120tri angular\n\u0120cap it\nl ik\n\u0120An - cients\n\u0120l ash\n\u0120conv ol\n\u0120colon el\nen emy\nG ra\n\u0120pub - s\nut ters\n\u0120assign s\n\u0120Pen et\n\u0120Mon strous\n\u0120Bow en\nil - ver\nH aunted\n\u0120D ing\nstart ed\npl in\n\u0120contamin ants\n\u0120DO - E\nff en\n\u0120Techn ician\nR y\n\u0120rob bers\n\u0120hot line\n\u0120Guard - iola\n\u0120Kau fman\nrow er\n\u0120Dres den\n\u0120Al pine\nE lf\n\u0120f - mt\n\u0120S ard\nurs es\ng pu\nUn ix\n\u0120unequiv ocally\n\u0120Citizens - hip\nqu ad\nm ire\n\u0120S weeney\nB attery\n6 15\n\u0120panc akes\n\u0120o - ats\nM aps\n\u0120Cont rast\nmbuds man\n\u0120E PS\n\u0120sub committee\n\u0120sour - cing\n\u0120s izing\n\u0120Buff er\n\u0120Mand atory\n\u0120moder ates\n\u0120Pattern - s\n\u0120Ch ocobo\n\u0120Z an\n\u0120STAT ES\n\u0120Jud ging\n\u0120In her\n* - :\n\u0120b il\n\u0120Y en\n\u0120exh ilar\noll ower\nz ers\n\u0120sn ug\nmax - imum\n\u0120desp icable\n\u0120P ACK\n\u0120An nex\n\u0120sarcast ic\n\u0120late - x\n\u0120t amp\n\u0120S ao\nb ah\n\u0120Re verend\n\u0120Chin atown\n\u0120A - UT\nd ocumented\n\u0120GA BA\n\u0120Can aan\n\u0120\xD9 \u0127\n\u0120govern - s\npre v\nE sc\n\u0120Est imates\nOS P\n\u0120endeav our\n\u0120Cl osing\nomet - ime\nevery one\n\u0120wor sen\n\u0120sc anners\n\u0120dev iations\n\u0120Robot - ics\n\u0120Com pton\n\u0120sorce rer\n\u0120end ogenous\n\u0120em ulation\n\u0120Pier - cing\n\u0120A ph\n\u0120S ocket\n\u0120b ould\n\u0120O U\n\u0120Border lands\n\u012018 - 63\nG ordon\n\u0120W TO\n\u0120restrict s\n\u0120mosa ic\n\u0120mel odies\n\xE7 - \u0126\nT ar\n\u0120dis son\n\u0120Prov ides\n\u0120 ......\nb ek\nF IX\n\u0120bro - om\nans hip\nDo ctors\n\u0120ner ds\n\u0120Reg ions\nna issance\n\u0120met - e\n\u0120cre pt\npl ings\n\u0120girlfriend s\nkn it\nig ent\now e\n\u0120us - hered\n\u0120B az\nM obil\n4 34\n\u0120Pres ents\norig in\n\u0120ins omnia\n\u0120A - ux\n4 39\n\u0120Ch ili\nirs ch\nG AME\n\u0120gest ation\nalg ia\nrom ising\n$ - ,\nc row\n\u0120In spection\nat omic\nRel ations\nJ OHN\nrom an\n\u0120Clock - work\n\u0120Bak r\nm one\nM ET\n\u0120thirst y\n\u0120b c\n\u0120facult ies\nR - um\n\u0120nu ance\n\u0120D arius\nple ting\nfter s\netch up\nReg istration\n\u0120K - E\nR ah\n\u0120pref erential\n\u0120L ash\n\u0120H H\nVal id\n\u0120N AV\n\u0120star - ve\n\u0120G ong\nz ynski\n\u0120Act ress\n\u0120w ik\n\u0120un accompanied\nlv - l\nBr ide\nAD S\n\u0120Command o\n\u0120Vaugh n\nWal let\n\u0120ho pping\n\u0120V - ie\n\u0120cave ats\n\u0120al as\nif led\nab use\n66 1\n\u0120ib n\n\u0120g - ul\n\u0120rob bing\nt il\nIL A\n\u0120mit igating\n\u0120apt ly\n\u0120ty - rant\n\u0120mid day\n\u0120Gil more\n\u0120De cker\n\u0120\xC2\xA7 \xC2\xA7\npart - ial\nEx actly\n\u0120phen otype\n\u0120[+ ]\n\u0120P lex\n\u0120I ps\nvers - ions\n\u0120e book\n\u0120ch ic\ng ross\n\":\" \"},{\"\n\u0120Sur prisingly\nM - organ\n\u0120resid ues\n\u0120Conf ederation\nin feld\n\u0120l yr\nmod erate\n\u0120perpend - icular\nV K\n\u0120synchron ized\n\u0120refres hed\n\u0120ad ore\n\u0120Tor - ment\nol ina\n\u012026 00\nItem Tracker\n\u0120p ies\n\u0120F AT\n\u0120R - HP\n0 48\n\u0120RES P\n\u0120B J\nall ows\nP and\n\u0120unw elcome\n\u0120V - oc\n\u0120Bast ard\n\u0120O W\n\u0120L AR\n\u0120Heal er\nEnvironment al\n\u0120Ken - yan\n\u0120Tr ance\n\u0120P ats\n\u0120ali ases\n\u0120Gar field\n\u0120campaign - er\n\u0120advance ments\n\u0120Okin awa\n\u0120C oh\nows ky\n\u0120star ved\n\u0120size - able\n\u0120: -)\n\u0120m RNA\n\u0120susp ensions\nist ar\nScot land\nPr in\n-------------------------------- - ----------------\n\u012050 2\n\u0120teasp oons\n\u012010 50\n\u0120coerc ive\n\u0120Mason - ic\nedd ed\n\u0120Pass enger\n\u0120l att\n\u0120br aces\n\u0120St eal\n\u0120NY - T\n\u0120K ats\n\u0120Cel est\nae z\nT u\n\u0120Coul ter\n\xF0\u0141 \u013A\nFl - ickr\n\u0120Wil mington\nith s\n++ ;\n\u0120v ending\n\u0120neg ro\n\u0120Ph - i\n\u0120Yellow stone\nCall back\n\u0120sh ampoo\n\u0120Sh ades\nw at\n\u0120super - human\n\u0120ridic uled\n\u0120hol iest\nom bo\n\u0120intern s\n\u0120h one\n\u0120Par - agu\nUR I\n\u0120d angling\n\xE3\u0124 \xBB\nso v\nict ional\nav ailability\n\u0120rev - ocation\n\u0120d ow\nin ic\n\u0120THE IR\n\u0120is o\n\u0120out ings\n\u0120Leth - al\n\u0120) ))\n\u0120inacc ur\n\u0120out landish\n\u0120an us\nlet ico\nid - on\nl ol\n\u0120un regulated\n\u0120succumb ed\n\u0120c uff\n\u0120Wast eland\nlet - al\n\u0120sub str\n\u0120coff ers\n\u0120autom akers\nov i\n\u0120X ue\n\u0120Dayton - a\n\u0120jar ring\n\u0120f umes\n\u0120disband ed\nz ik\nitt on\n\u0120striking - ly\n\u0120sp ores\nAd apter\n.) :\n\u0120Lynd on\nival ry\n\u0120or ally\n\u0120tumult - uous\n\u0120disple asure\n\u0120con es\nor rect\n\u0120appe ase\n\u0120der - by\n\u0120Trip oli\n\u0120Al ess\n\u0120p oked\n\u0120Gu ilty\nv P\nEn ough\n\u0120orig - inals\n6 99\n\u0120rabb i\n\u0120proverb ial\n\u0120postp one\nel ope\n\u0120Mist - y\n\u0120staff ed\n\u0120Un employment\nredit ary\n\u0120dilig ent\nre comm\nme - asures\nas in\n8 25\n\u0120pond s\n\u0120mm ol\n\u0120S AR\n\u0120C ARE\n\u01203 - 71\n\u0120clen ched\n\u0120Cors air\n\u0120caric ature\nz n\natt ach\n\u0120Sch - ro\nspe ak\np ainted\n\u0120S uc\n\u0120E NT\n\u0120cell ul\n\u0120P aid\ndi - agn\nWH ERE\n\u0120text ed\nB arn\n\u0120ret racted\n\u0120Re ferred\nS av\n\u0120up - keep\n\u0120work places\n\u0120Tok ens\n\u0120ampl ify\ncl inical\n\u0120mult - ic\nmber g\n\u0120convol uted\nReg ion\n5 65\n\u0120Top ic\n\u0120sn ail\n\u0120sal - ine\n\u0120ins urrection\n\u0120Pet r\nf orts\nB AT\n\u0120Nav ajo\n\u0120rud - imentary\n\u0120Lak sh\nOND ON\nMe asure\n\u0120transform er\n\u0120Godd ard\n\u0120coinc - ides\nir in\nR ex\n\u0120B ok\nqu it\n\u0120shotgun s\n\u0120prolet arian\n\u0120sc - orp\n\u0120Ad a\n5 14\n\u0120sl ander\nrecord ed\n\u0120emb ell\nris ome\n\u0120apolog - izing\n\u0120Mul cair\n\u0120Gib raltar\nCl a\n\u0120all ot\n\u0120Att ention\n\u01204 - 33\nle ave\n\u0120wh ine\n\u0120Iss a\n\u0120Fa ust\n\u0120Bar ron\nhen y\n\u0120victim - ized\nJ ews\n\u0120nurt uring\nett el\nW inged\n\u0120Sub tle\n\u0120flavor - ful\n\u0120Rep s\neng ed\ncall back\n\u0120direction al\n\u0120cl asp\n\u0120Direct - ions\nplan et\nicult ure\nHel per\nic ion\nac ia\n\u0120\xE7 \xA5\u0140\n\u0120sur - ges\n\u0120can oe\n\u0120Prem iership\nbe en\n\u0120def ied\n\u0120Tro oper\n\u0120trip - od\n\u0120gas p\n\u0120E uph\n\u0120Ad s\nvern ight\nhigh ly\nR ole\n\u0120ent - angled\n\u0120Ze it\n6 18\n\u0120Rust y\n\u0120haven s\n\u0120Vaugh an\nHA - EL\n\u0120SER VICE\n/ ,\n\u0120str icken\n\u0120del usions\n\u0120b is\n\u0120H - af\n\u0120grat ification\n\u0120ent icing\nUN CH\nAd ams\n\u0120OL ED\n\u0120Beet - le\n\u012018 99\n\u0120SO FTWARE\nateg or\nV L\n\u0120Tot em\n\u0120G ators\nAT - URES\n\u0120imped ance\nReg istered\n\u0120C ary\n\u0120Aer ial\non ne\nen - ium\n\u0120d red\n\u0120Be g\n\u0120concurrent ly\n\u0120super power\n\u0120X - an\nj ew\nimes ter\n\u0120Dick inson\n\xE2\u0136 \u0123\nF la\n\u0120p ree\n\u0120Roll - ins\n\xA9 \xB6\xE6\n\u0120den omination\n\u0120L ana\n5 16\n\u0120inc iting\nsc - ribed\nj uries\n\u0120Wond ers\napp roximately\n\u0120susp ending\n\u0120mountain - ous\n\u0120L augh\noid al\nN s\nDet ect\n) =\n\u0120L uthor\n\u0120Schwarz - enegger\n\u0120Mull er\n\u0120Dev i\nec ycle\nJ ar\n6 13\n\u0120L ongh\nB - ah\n\u0120SP ORTS\nn w\n\u0120ref inement\n\u0120water ways\n\u0120d iner\nBl - ade\n68 3\nF ac\n\u0120initial s\n\u0120ro g\n\u0120paran ormal\nB UT\n\u0120[ - (\n\u0120Sw anson\n\u0120M esh\n\xE2\u0138 \xAC\nImpro ve\n\u0120Rad iation\n\u0120Est - her\n\u0120E sk\n\u0120A ly\nik y\n\u0120ir rad\n\u0120Buck ingham\n\u0120ref - ill\n\u0120. _\nRe pe\nCON CLUS\n\u0120different iated\n\u0120chi rop\n\u0120At - kins\nPat tern\n\u0120exc ise\n\u0120cab al\nN SA\n\u0120ST A\n\u0120S IL\n\u0120Par - aly\n\u0120r ye\n\u0120How ell\n\u0120Count down\nness es\nalys ed\n\u0120res - ize\n\xE3\u0124 \xBD\n\u0120budget ary\n\u0120Str as\nw ang\n\u0120ap iece\n\u0120precinct - s\n\u0120pe ach\n\u0120sky line\n\u012035 3\npop ular\nApp earances\n\u0120Mechan - ics\n\u0120Dev Online\nS ullivan\nZ en\n\u0120p u\nop olis\n5 44\n\u0120de - form\n\u0120counter act\n\u0120L ange\n\u01204 17\nCon sole\n77 4\n\u0120nodd - ing\n\u0120popul ism\n\u0120he p\n\u0120coun selling\ncompl iance\nU FF\n\u0120unden - iably\n\u0120rail ing\n\u0120Hor owitz\n\u0120Sim one\n\u0120Bung ie\n\u0120a - k\n\u0120Tal ks\nx ff\nfl ake\nCr ash\n\u0120sweat y\n\u0120ban quet\n\u0120OFF - IC\n\u0120invent ive\n\u0120astron omer\n\u0120Stam ford\n\u0120Sc are\n\u0120GRE - EN\nolic ited\n\u0120r usher\n\u0120cent rist\night ing\n\u0120sub class\n\u0120dis - av\n\u0120def und\n\u0120N anto\noci ate\nm ast\n\u0120pac if\n\u0120m end\ne - ers\nimm igration\nESS ION\n\u0120number ing\n\u0120laugh able\n\u0120End - ed\nv iation\nem ark\nP itt\n\u0120metic ulous\n\u0120L F\n\u0120congrat ulated\n\u0120Bir - ch\n\u0120sway ed\n\u0120semif inals\n\u0120hum ankind\nm atter\n\u0120Equ - ip\nopa usal\nS aid\n\u0120Lay out\n\u0120vo icing\n\u0120th ug\n\u0120porn - ographic\nI PS\n\u0120mo aning\n\u0120griev ance\n\u0120conf essions\nesc - al\nTEXT URE\nAut hent\nos aurus\nP urchase\n\u0120releg ation\nal ter\n\u0120\xC2\u0142 - \xC2\u0142\n\u0120r iddled\n\u0120o gre\n\u0120Low ell\nOcc up\nE at\n\u0120Hy - der\n\u0120Advis er\nCom merce\nH unt\n\u0120Or th\n\u0120Comp etitive\n\u0120CL - A\nCD C\n\u0120sal ads\nF le\n\u0120industrial ized\n` ,\n\u0120O WN\n\u0120bec - k\n\u0120Part icularly\noub t\n\u0120m M\n\u0120Huss ain\n\u0120Chen nai\n\u01209 - 20\n\u0120appoint ing\n\u0120Cull en\n,,,, ,,,,\n\u0120p ores\nver ified\n\u0120bi - ochemical\nem ate\n\u0120coward ly\n\u0120Hels inki\n\u0120Ethiop ian\nS OURCE\nER - C\nest ro\n\u0120bi otech\n\u0120S our\n\u0120brew er\nBloom berg\n\u0120intens - ify\nGl ass\nan co\n\u0120F DR\ngre SQL\n\u0120F ires\n\xA9\xB6\xE6 \xA5\xB5\nec - o\n100 1\n\u0120Hom eless\n\u0120instant aneous\n\u0120H aste\nig el\nD iamond\n\u0120p - aving\n\u0120land fill\n\u0120d ads\nh oun\n: ]\n\u0120inc endiary\n\u0120Living - ston\n\u0120Hil bert\n\u0120Che cks\nst yles\nin ators\n\u0120Cl ive\nph rine\n\u0120chimpan - zees\n\u0120p all\n\u0120J M\n\u0120Aad haar\n\xF0 \u013F\n\u0120achie vable\ndis - abled\nP ET\nOOOO OOOO\nM ot\n\u0120int angible\n\u0120bal let\n\u0120We bs\n\u0120Est - imated\nEffect s\n\u0120b ailed\nJosh ua\n\u0120turb ulence\n\u0120occup ant\n\u0120Day - light\n\u012036 1\nme et\n\u0120stat ically\n\u0120on look\n\u0120k i\nil - legal\n\u0120vel vet\n\u0120dehyd ration\n\u0120acqu ies\n\u0120Re z\nak ura\n\u0120U - pton\nat ro\n\u0120incomp rehensible\n\u0120back door\n\u0120Rh ino\n7 27\n\u0120math - s\n) +\n\u0120he resy\n\u0120d f\n\u0120Roc he\n\u0120L ydia\n\u0120panc reat\nre - ply\narre ll\n\u0120solicit ation\n\u0120circ adian\nBI P\n\u0120for ay\n\u0120crypt - ic\niz u\nime o\n\u0120Tom ato\n\u0120H oms\nex amination\n\u0120qu arry\n\u0120Val - iant\n\u0120Jer icho\n\u0120IN CLUD\n\u012018 40\n5 19\n\u0120res ists\n\u0120snap - shots\n\u0120Sp ur\n\u0120Ant iqu\nLog in\n\u0120best selling\n\u0120ant ic\n\u0120S - utherland\n\xE3\u0124\xA2 \xE3\u0125\xAB\n\u0120~ /\n\u0120P arm\n\xE8 \u0125\nP - ages\nint ensity\n\u0120imm obil\n\u012018 65\nzz o\n\u0120n ifty\n\u0120f - entanyl\n\u0120Pres ervation\nop hen\n\u0120d arts\n\u0120D inosaur\npo inters\n\u0120R - ite\ns uggest\naware ness\n\u0120Sher idan\n\u0120st ances\n\u0120sor cery\n\u0120per - jury\n\u0120Nik ola\nie ver\n\u0120f iance\n\u0120Jordan ian\n\u0120Ball oon\n\u0120n - ab\n\u0120k b\n\u0120human ities\n\u0120Tan aka\nhill ary\n\u0120consult ancy\n\u0120Z - ub\n\u0120rem ission\n\u0120conf id\nCH Q\n\u0120F ug\n\u0120impro vis\nY - ep\n/ _\n\u0120unwilling ness\n\u0120port folios\n05 5\n\u0120Instruct or\naim - an\n\u0120claim ants\nM bps\n\u0120By e\nre ceived\nT weet\n\u0120ind emn\nri - z\nam ara\nN at\n\u0120eval uates\n\u0120L ur\nep ad\nFO X\n\u0120Th ro\n\u0120rust - y\n\u0120bed rock\n\u0120Op rah\nJ B\n\u0120manip ulative\n\u0120will ful\n\u0120rel - apse\n\u0120ext ant\nThe me\nS ensor\n\u0120St ability\ngo vern\n\u0120po - ppy\n\u0120kn ack\n\u0120ins ulated\n\u0120T ile\n\u0120Ext rem\n\u0120unt - old\n\u0120conver ge\n\u0120ref uel\nig roup\n\u0120distort ions\n\u0120rav - aged\n\u0120mechan ically\n\u0120Re illy\n\u0120N ose\n\u0120Incarn ation\n\u0120Beck - y\nabb ling\n\u0120t aco\n\u0120r ake\n\u0120melanch oly\n\u0120illust rious\n\u0120Dart - mouth\nGu ide\n\u0120R azer\n\u0120Ben z\nUlt imate\n\u0120Sur prise\n\u0120page - ant\noff er\nWho ever\n\u0120w iser\n\u0120chem ist\n\u0120HE LL\n\u0120Bul - k\n\u0120pl utonium\n\u0120CO VER\n\xD6 \xBC\nf ailed\n\u0120tire lessly\n\u0120inf - ertility\n\u0120Tr ident\n\u0120Show time\n\u0120C iv\nV ice\nrequ ires\nitt - ance\n\u0120un controlled\ninterest ing\n56 1\n\u0120innov ate\nateg ic\nL - ie\n\u0120S elling\nU l\n\u0120sav ior\n\u0120T osh\n\u0120sw ast\nP ASS\n\u0120r - ink\n\u0120card io\n\u0120I ro\nud i\n\u0120v antage\n\u0120v ans\n\u0120Ni - \xC3\xB1o\n+ =\n\u0120propag ate\n< ?\n\u0120method ological\n204 39\n\u0120trig - lycer\n\u0120ing rained\n\u0120An notations\narr anted\n6 17\n\u0120S odium\n\u0120A - AC\ntechn ical\nmult ipl\n\u01203 73\n\xE5 \u012D\n\u0120dec isively\n\u0120boost - ers\n\u0120dessert s\n\u0120Gren ade\n\u0120test ifying\n\u0120Sc ully\nID - s\n\u0120lock down\n\u0120Sc her\n\u0120R \xC3\xA9\n\u0120Whit man\n\u0120Rams - ay\nrem ote\n\u0120h ikers\n\u0120Hy undai\n\u0120cons cientious\n\u0120cler - ics\n\u0120Siber ian\nut i\nis bury\n\u0120rel ayed\n\u0120qu artz\n\u0120C - BI\nseek ers\null a\n\u0120weld ing\n\u0120Sh al\nble acher\nT ai\n\u0120Sam - son\n\u0120t umble\n\u0120Invest or\n\u0120sub contract\n\u0120Shin ra\now - icz\nj andro\nd ad\n\u0120termin ating\n\u0120Ne ural\n\xE4\xBB \xA3\n\u0120leak - age\n\u0120Mid lands\n\u0120Caucas us\n\xED \u0137\nc it\nll an\niv ably\n\u0120Alb - ion\n\u01204 57\n\u0120regist rations\n\u0120comr ade\n\u0120clip board\n0 - 47\n\u0120discour aging\n\u0120O ops\nAd apt\n\u0120em path\nn v\n\u0120PR - OT\n\u0120Don n\n\u0120P ax\n\u0120B ayer\nt is\nSqu are\n\u0120foot prints\npart - icip\n\u0120Chile an\nB rend\nind ucing\nM agn\n\u0120club house\n\u0120Magn - um\n\u0120enc amp\n\u0120Eth nic\nuch a\nere y\n\u0120w atered\n\u0120Cal - ais\n\u0120complex ion\n\u0120sect s\n\u0120ren ters\n\u0120br as\no\xC4\u0141 - an\nTime out\nMan agement\n\u0120inf ographic\nP okemon\nCl ar\n\u0120loc - ality\n\u0120fl ora\nas el\nP ont\n\u0120pop ulate\n\u0120O ng\n\u0120subs - istence\n\u0120a uctions\n\u0120McA uliffe\n\u0120L OOK\nbr inger\n\u0120tit - an\n\u0120manif old\n\u0120\xE2\u0139 \u0131\n\u0120calibr ated\n\u0120cal - iphate\n\u0120SH E\n\u0120Commission ers\nce ivable\nj c\nW inner\n5 24\n\u0120cond - one\nOther wise\n\u0120p iling\n\u0120em body\n\u0120Crime an\nut ics\n\u0120Ex - hibition\n\u01204 26\ne ering\n\u0120v ying\n\u0120H UGE\n* =-\n\u0120prin - cipled\n\xE0 \xA6\n\u0120quir ks\n\u0120Edit ors\nput ing\nG ES\n\u0120F TA\n\xE0\xA4 - \xBE\nadd on\n\u0120H AM\n\u0120Frie za\nW oman\n. $\n\u0120c rib\n\u0120Her - od\n\u0120tim ers\n\u0120Sp aces\n\u0120Mac intosh\nat aka\n\u0120gl ide\n\u0120smell - ing\n\u0120B AL\n\u0120un su\n\u0120cond os\n\u0120bicy cl\n\u0120Rev ival\n55 - 3\n\u0120jugg ling\nH ug\n\u0120Kardash ian\n\u0120Balk ans\nmult iple\n\u0120nutrit - ious\noc ry\n19 00\n\u0120integ rates\n\u0120ad joining\n\u0120F older\nroll - ment\nven ient\n\u0120u ber\ny i\n\u0120wh iff\n\u0120Ju ven\n\u0120B orough\nnet - te\n\u0120b ilingual\n\u0120Sp arks\nph thal\nman ufact\n\u0120t outing\n\u0120PH - I\nKe efe\nRew ard\n\u0120inf all\n\u0120Tem per\ntyp ically\n\u0120Nik ol\n\u0120regular - s\n\u0120pseud onym\n\u0120exhib itions\n\u0120bl aster\n\u012040 9\nw arming\n\u0120rever - ber\n\u0120recip rocal\n\u01206 70\nip ient\nb ett\n\u0120Be gins\n\u0120it - ching\n\u0120Ph ar\nAss uming\n\u0120em itting\n\u0120ML G\n\u0120birth place\n\u0120t - aunt\n\u0120L uffy\n\u0120Am it\n\u0120cir cled\n\u0120N ost\nenn ett\n\u0120de - forestation\n\u0120Hist orically\n\u0120Every day\n\u0120overt ake\n79 2\n\u0120n - un\n\u0120Luc ia\n\u0120accompan ies\n\u0120Se eking\n\u0120Tr ash\nan ism\nR - ogue\n\u0120north western\n\u0120Supplement al\n\u0120NY U\n\u0120F RI\n\u0120Sat - isf\nx es\n5 17\n\u0120reass ured\n\u0120spor adic\n\u01207 01\n\u0120med - ial\n\u0120cannabin oid\n\u0120barbar ic\n\u0120ep is\n\u0120Explos ive\n\u0120D - ough\n\u0120uns olved\nSupport ed\n\u0120acknowled gment\nsp awn\n\u0120kit - chens\n\u0120- =\ntalk ing\nic ist\n\u0120Peg asus\n\u0120PS U\n\u0120phot - on\n\u0120Authent ication\nR G\n@# &\n76 2\n\u0120Cl air\n\u0120di aper\n\u0120br - ist\n\u0120Prosecut ors\n\u0120J em\n6 28\n\u0120Every where\n\u0120Jean ne\nequ - ality\n\xE3\u0125\xA9 \xE3\u0125\xB3\nobject s\n\u0120Pel icans\n\u012039 - 2\n\u0120bl u\nb ys\n\u0120A go\n\u0120instruction al\n\u0120discrim inating\n\u0120TR - AN\n\u0120Corn el\nag os\n\u0120ty re\n\u0120as piration\n\u0120Brid gewater\n\": - -\n! \".\n\u0120En s\n\u0120Coc o\nP ie\n\u0120det ach\n\u0120C ouch\n\u0120phys - ique\n\u0120Occup ations\nosc opic\nen ough\nB uzz\nApp earance\nY P\n\u0120rac - er\n\u0120compl icity\nr pm\nT oy\n\u0120interrupt s\n\u0120Cat alyst\n\u0120ut - ilitarian\nimp act\n\u0120sp aghetti\n\u0120p orous\n\u0120este emed\n\u0120inc - iner\n\u0120I OC\n7 48\n\u0120esp resso\n\u0120Sm ile\nabil ia\n6 35\n\u0120mathematic - ian\n\u01204 24\n\u0120K L\n\u0120H IP\n\u0120over heard\n\u0120T ud\n\u0120T - ec\n\u0120qu izz\n\u0120fl attering\n\u0120con n\n\xE2\u0122 \u0130\n\u0120att - aches\n\u0120R OS\n\u0120AC S\n\u0120t cp\n\u0120Sh ame\nsk ip\nres pected\n\u0120Trin - idad\ngr ain\n\u0120footh old\n\u0120Unch arted\n\u0120Jul io\nz l\nav ored\n\u0120An - xiety\ner rors\n\u0120Cent auri\nits ch\nD addy\n\u0120clutch ing\n\u0120Im - plement\n\u0120Gut ierrez\n\u01207 60\n\u0120tele portation\nend ra\n\u0120revers - ible\nst ros\nAd venture\n08 3\n\u0120liber ating\n\u0120as phalt\n\u0120Sp - end\nAR DS\nim sy\nPR ES\n\u0120Emer ging\n\u0120wild fires\n\u0120techn ologically\n\u0120em - its\n\u0120ART ICLE\n\u0120irregular ities\n\u0120cher ish\n\xE7\u012B \u012A\n\u0120st - ink\n\u0120R ost\nEconom ic\n\u0120cough ing\n\u0120McC ann\npro perties\nilant - ro\n\u0120reneg oti\nTrans lation\n\u0120in quest\n\u0120Gra pe\noot ers\ngu - i\n\u0120Swords man\nace ae\nh itting\n\u0120r c\n\u0120exert ed\n\u0120S - AP\nit ent\n\u0120peril ous\n\u0120obsc urity\n\u0120assass inate\n\u0120ab - original\n\u0120resc uing\n\u0120Sh attered\nlock ing\nall ion\nCh anging\n\u0120Har - rington\n\u0120B ord\n\u0120Afgh ans\nJam ie\naret z\n\u0120August us\n\u012038 - 6\n8 30\n\u0120j og\nok ingly\nTr igger\n\u0120H OR\nStat istics\n\u0120viewers - hip\n\u0120add itives\nh ur\n\u0120maxim izing\n\u0120R ove\n\u0120Lou ie\n\u0120Buck - et\n\u0120CHR IST\nou sel\n\u0120stre aks\nir ted\n\u0120t ert\n\u0120colonial - ism\n\u0120bur ying\ny k\nCond ition\n\u0120DPR K\nBy Id\n75 1\n\xE2\u0139 - \xBC\n\u0120wor risome\n\u0120voc ational\nsl ice\n\u0120sa ils\n\u0120Correction - al\n95 4\n\u0120t ul\nK id\nl uster\n\u0120fam ilial\n\u0120Sp it\n\u0120Ep - iscopal\nSpecific ally\n\u0120Vol cano\nrun s\nq s\n\u0120ve tted\n\u0120cram - med\nt rop\nhere r\nThank fully\n\u0120per cussion\n\u0120or anges\n\u0120round - up\n\u01204 99\nx ious\nChar acters\n\u0120Zion ism\n\u0120R ao\n\xC3\u013D - \xC3\u013D\nW F\n\u0120unintention al\nONE Y\nGr ab\nCom mercial\n\u0120glut - amate\n\u0120McK enna\nru ciating\nning ton\nih u\nCh an\n\u0120Sw ap\n\u0120leaf - lets\n\u0120function ally\ner ous\nF arm\n\u0120cal oric\n\u0120Liter ally\ncon - cert\n\u0120she nan\n\u0120rep aid\ney es\n\u0120bas hing\n\u0120G orge\n\u0120collabor - ations\n\u0120un account\nitch ie\n\u0120team work\npp elin\n\u0120pip ing\n\u0120min - ced\n\u0120d iam\nri eg\n\u0120masc ara\n\u0120suck er\n\u0120Mo ons\nApp - s\n\u0120Pe ck\n\u0120per v\n\u0120Fl oat\no ley\n\u0120N ish\nim ize\n\u0120arom - atic\nu in\nend ish\n! /\n\u0120B icycle\n\u0120AS IC\nile ged\n\u0120Quad - ro\nios yn\n\u0120lock out\n\u0120W ink\nSP EC\nAttempt s\n\u0120seed ed\nred - o\nias is\n\u0120sn ag\n\xE3\u0125\u0137 \xE3\u0124\xA9\n\xE3\u0124 \xB6\n\u0120ground - ing\n\u0120relie ver\n\u0120frivol ous\n\u0120G ifts\n\u0120F aces\nEs pecially\n\u0120microbi - ome\nim ag\n\u0120Sch l\n\u0120P les\n\u0120Ble ach\n\u0120Ir win\n\u0120E - aton\n\u0120Disc iple\n\u0120multipl ication\n\u0120coer ced\n\u01204 19\nst - h\nE vil\nB omb\n\u0120ex orc\n\u0120stag gered\nL ESS\n\u0120inert ia\n\u0120ED - IT\n\u0120go b\nTr aditional\n\u0120class y\nLear y\n\u0120P AGE\nyr s\n\u0120trans - porter\n\u0120mat ured\n\u0120hij ab\n\u0120bi ome\nWhere as\n\u0120ex termination\n\u0120T - ues\n\u0120T akeru\n\u0120Aud rey\ner ial\n\u0120Ad en\naff les\n\u0120narciss - istic\n\u0120B aird\nUT F\nI re\n\u0120Con nie\nCh amp\n\u0120whis pering\n\u0120H - att\nD K\n\u0120dis infect\n\u0120deduct ed\n\u0120part ake\n\u0120down grade\n\u0120Es - ports\n\u0120Contin uing\n\u0120democr atically\nicro bial\nitt a\n\u0120lim - estone\n\u0120exempt ed\n\u0120Fren zy\nH erm\n7 28\n\u0120fled gling\nMet - a\n765 61\n69 3\n% :\nw ake\n5 26\n\u0120Dis cipline\n\u0120virgin ity\n\u0120Leg - ions\n\u0120Frank ie\nint ent\n\u0120rest rooms\n\u0120Rou ter\nda q\n\u0120objection - able\n\xE2\u0128 \u0133\nw ark\n\u0120Rah ul\ng ain\nactiv ation\nabs olute\n\u0120Access - ed\n\u012024 00\nogg les\n\u0120second ly\n\u0120DEF ENSE\n\u0120post age\nwra - pper\nsh arp\n7 29\n\u0120commun icates\n\u0120add on\n\u0120Mil itia\nH ong\n\u0120sl - umped\n\u0120JP EG\n\u0120I car\nad ish\n68 1\n\u0120maj esty\n\u0120Wolf - gang\n\u0120El astic\nu per\n\u0120v iz\n\u0120unconscious ly\n\u0120ST D\n\u0120S - ass\n\u0120flower ing\n\u0120Hel ic\n\u0120Dra per\n\u0120Am ateur\n\u0120man - ure\n\u0120dis ingen\n\u0120Le i\nbr ing\n9 49\n\u0120inhib ited\n\u0120head - quartered\n\u0120en igmatic\n\xEF\xBF\xBD\xEF\xBF\xBD \xEF\xBF\xBD\n\u0120red - ress\nR H\n\u0120ratt led\n\u0120d iction\nl io\n\u0120T BA\n\u0120SN AP\nC - alling\n\u0120fasc ists\n\u0120D ove\niew icz\n0 36\n\u0120co asts\n\u0120R - ect\n\u0120) ]\nL ot\n6 29\n\u0120S EM\n\u0120Peters en\n\u0120Expl ain\n\u0120Bo - ards\n\u0120Be zos\n\u0120J ournals\n\u012020 24\np arser\n\u0120mist rust\n\u0120gr - ate\n\u0120L ocked\nbo a\nS aint\ng aming\n\u0120vow el\nin ately\nbl ow\nAll - ah\n\u0120un matched\n\u0120b ordering\n\u0120Exp end\nn r\nOr acle\nrou ch\n\u0120cont - iguous\nac us\n\u0120dist raught\n58 1\n\u0120anat omical\nO X\nap ixel\n8 - 33\n\u0120PL US\n\u0120res usc\n\u0120ab iding\n57 3\n\u0120vac ancies\nEm - ily\n\u0120hyp othal\n\u0120Wer ner\n\u0120We e\n\u0120DJ s\n5 13\n\u0120witch - craft\n\u0120ac upuncture\nent ary\nbenef it\nProduct s\n\u0120P SP\n\u0120MP - G\n\u0120J inn\n\u0120J arrett\n\u01204 45\n\u0120Im aging\n\u0120P yth\nFin - ish\n\u0120te x\n\u0120juven iles\n\u0120hero ism\n\u0120doubt less\n\u0120A - ki\n\u0120T end\n\u0120Patri arch\n\u0120bit ters\n\u0120Tele communications\nit - atively\nag na\n\u0120r g\n\u0120S OLD\n\u0120comp ulsion\n\u0120N asa\n\u0120Kath - ryn\n\u0120million aires\n\u0120intrins ically\n\u0120bolst ered\ntime out\nfl - o\n\u0120tut or\np our\nStat ement\n\u0120{ *\n\u0120Rud olph\n\u0120Kimber - ly\nrog ens\nadi q\n] +\n\u0120indign ation\n\u0120fract uring\n\u0120Re leases\n\u0120Gr - ain\npro tein\nL ago\n\u0120vac ations\n\u0120boot ed\n\u0120TH REE\n\u0120H - G\noresc ence\n\u0120t f\n\u0120so ar\niosyn cr\n\u0120gl ances\n\u0120Sp - oon\n\u0120J ury\n\u0120Cow boy\n\u0120creat ively\nHig her\n\u0120solic itor\n\u0120haw - k\nac io\n89 6\n\u0120superf lu\n\u0120bombs hell\nct ure\n\u0120broker age\n\u0120raid - ing\n\u0120f rench\n\u0120ang led\nTrans action\n\u0120Gen ocide\nu pe\n\u0120Hait - ian\n57 2\n! :\n\u0120unwitting ly\niter ator\nsc roll\n\u0120tall ied\n\u0120bi - omedical\n\u0120C ARD\n\u0120e uphem\n\u0120brain storm\na quin\nK o\nMic - helle\n\u0120R unes\n\u0120Ball istic\nud ers\n\u0120mod esty\n\u0120iP ads\n\u0120Ezek - iel\nY E\n\u0120stars hip\n\u0120power fully\n\u0120per l\n\u0120Sh ade\n\u0120Qu - art\n\u0120E EG\n\u0120fisher man\nOS ED\n\u0120Typ ical\ndf x\n\u0120mes - hes\n\u0120et ched\nworth iness\n\u0120topp led\n\u01203 96\nor ius\nWe iss\n\u0120my - sql\n\u0120Val halla\n\xD9 \u0134\nle asing\n\u0120rec omp\nrap nel\nS el\n04 - 3\n\u0120der ailed\n\u0120Gu ides\nIR T\n\u0120de human\n\u0120Britt any\n\" - ))\n\u0120ex claim\n\u0120b alk\n\u01208 40\nCLA IM\nint el\nL AB\n\u0120pe - gged\n\u0120ast roph\nsm oking\n\u0120rig ging\n\u0120fix ation\n\u0120cat - apult\nins ide\n\u0120C ascade\n\u0120Bolshe vik\nG aza\nDep th\n\u0120loud - spe\n\u0120almond s\nme yer\nl eness\nj en\nf resh\n\u0120unbeat en\n\u0120Squ - id\n\u0120Pres umably\nTim er\nB W\n\u0120ro sters\n\u0120ell ipt\n\u0120Har - riet\ndat abase\n\u0120Mut ual\n\u0120Comm odore\nuk ed\nkn ife\n\u0120COMM - UN\nh ya\n\u0120mel ts\narch ives\n\u0120rat ification\n\u0120multip lying\n\u0120inter - oper\n\u0120asc ert\nw ings\nver ting\n\u0120Scorp ion\nay e\n\u0120Ports - mouth\n\u0120M TA\nn it\niaz ep\n\u0120qu arantine\n\u0120slides how\n\u0120cent - imeters\n\u0120syn opsis\n\u0120sp ate\nth irst\n\u0120nom inating\n\u0120Mel - vin\nPre view\n\u0120thro b\n\u0120gener ational\n\u0120Rad ius\nrest ling\nput - able\naw ar\nN ECT\n\u0120unlaw fully\n\u0120Revel ations\nWik ipedia\nsur - v\n\u0120eye ing\nij n\n\u0120F W\n\u0120br unt\n\u0120inter stellar\n\u0120cl - itor\n\u0120Croat ian\n\u0120Ch ic\nev a\n\u0120Dis app\n\u0120A kin\niner - ies\nd ust\nInterest ed\n\u0120gen esis\n\u0120E ucl\n\xC3\xB6 n\np icking\n\u0120mut - ated\n\u0120disappro ve\n\u0120HD L\n\u01206 25\n\xCC \xB6\nc ancer\n\u0120squ - ats\n\u0120le vers\nDisc uss\n= ]\nD ex\n\u0120VIDE OS\nA UD\n\u0120trans - act\n\u0120Kin ect\n\u0120K uala\n\u0120C yp\n7 47\n\u0120sh attering\n\u0120arsen - ic\n\u0120Int ake\n\u0120Angel o\n\u0120Qu it\n\u0120K he\n\u012018 93\nM - aker\n0 29\n\u0120Pain ting\nDis able\n9 16\n\u0120anal ges\n\u0120tact ile\n\u0120prop - hes\n\u0120d iced\n\u0120Travel s\n\u0120He ader\n\u0120Club s\nAss istant\n\u0120inc - rim\n\u0120d ips\n\u0120cruc ifix\n\u0120Shan ahan\n\u0120Inter pret\n\u012040 - 90\nal ogy\nabb a\n\u0120simul ac\nhus band\nS IM\n\u0120recy cle\nuc er\ned - ged\n\u0120re naissance\n\u0120Bomb ay\nCath olic\n\u0120L INE\n\u0120Cl othing\nre - ports\n\u0120pl aus\n\u0120d ag\n\u0120M ace\nZ I\n\u0120intr uder\n\u0120Veter - inary\ng ru\n\u0120sne aky\n\u0120S ie\n\u0120C innamon\nP OSE\n\u0120cou - rier\n\u0120C NS\n\u0120emanc ipation\ns it\n\u0120play through\n\u0120Fac - ilities\nv irt\n\u0120G auntlet\nThom pson\n\u0120unbeliev ably\nParam eters\n\u0120st - itching\nign e\n\u0120TH ESE\nPriv acy\n\u0120shenan igans\n\u0120vit ri\n\u0120Val - id\n59 1\n\u0143 \xB7\n\u0120Prot otype\nink a\nSC P\n\u0120T id\n\xE8 \u012A\nold - ed\n\u0120individual ity\n\u0120bark ing\n\u0120m ars\n\u0120W D\n\u01208 - 20\n\u0120t ir\n\u0120sl apping\n\u0120disgr untled\n\u0120Ang ola\nri us\n\u0120Torn - ado\n\u0120Th urs\n\u0120capt cha\n\u0120ang st\n\u0120P og\n\u0120Assass - ins\n\u0120Ad idas\n\u0120joy ful\n\u0120wh ining\nEmer gency\n\u0120phosph - orus\n\u0120att rition\noph on\n\u0120Timber wolves\n\u0120J ah\n\u0120Br - inging\n\u0120W ad\n\u0120En sure\noh l\n\u0120X ie\nomm el\nc mp\n\u0120z - ipper\n\u0120rel at\n\u0120Cor ridor\nm ilo\nT ING\nAv g\n\u0120cro pped\n] - }\n\u0120r aged\n\u0120Lump ur\n\u0120Guer rero\nour ke\nN ut\n\u0120off sets\nog - lu\ndr m\n\u0120mort als\nlat able\n\u0120dismiss ive\n\xE4\xB8 \u012B\n\u0120thro - ats\n\u0120chips et\n\u0120Spot light\nCatal og\nart ist\nG b\n\u0120ch illy\n\u0120st - oked\n\u01203 74\nW ard\nL atin\n\u0120f iasco\n\u0120ble ach\n\u0120b rav\nEnh - anced\n\u0120in oc\n\u0120Fior ina\n_ >\n\u0120le ukemia\n\u0120el uc\n\u0120announ - cer\n\u0120Lith uan\n\u0120Arm ageddon\n\xE5 \u0129\nLen in\n\u0120R uk\n\u0120pe - pp\n\u0120Rom antic\n\u0120P IT\n\u0120Inter stellar\n\u0120At kinson\nR aid\nJ - s\nGo al\nC ourse\n\u0120van ishing\nes ley\n\u0120R ounds\nEls a\n59 3\n\u0120redund - ancy\n\u0120ST AND\n\u0120prop hetic\n\u0120habit able\nry u\n\u0120faint - ly\nM ODE\n\u0120fl anked\nIR C\nAw esome\n\u0120sp urious\n\u0120Z ah\n\u0120MS - G\n\u0120sh ading\n\u0120motiv ational\n\u0120Sant ana\n\u0120S PR\n\u0120exc - ruciating\nom ial\n\u0120M iko\n\u0120Le opard\nA byss\n\u0120[ |\nd irty\n\u0120bath - s\n\u0120dem oral\nand re\nP B\n\u0120un ification\n\u0120sac rament\n\u0120[ - &\n\u0120pric eless\n\u0120gel atin\n\u0120eman ating\n\u0120All aah\n98 6\n\u0120out - burst\n\u0120er as\n\u0120X VI\n\u0120SP I\nO tt\n\u0120Laz arus\nPL IED\nF - lying\nblog s\nW isconsin\nR aven\n\u0120reb ate\n\u0120creep s\n\u0120Sp - an\n\u0120Pain ter\n\u0120Kir a\n\u0120Am os\n\u0120Cor vette\nCons umer\n\u0120Rec - over\nck i\n\u0120pes ky\n\u0120In vention\nCompan ies\n\u0120challeng ers\nad - emic\n\u0120Ukrain ians\n\u0120Neuro log\n\u0120Fors aken\n\u0120ent rants\n\u0120emb - attled\n\u0120def unct\n\u0120Glac ier\n\u0120po isons\n\u0120H orses\nm akes\n\u0120D - irt\n\u01204 23\nhh h\n\u0120Trans formation\nQUI RE\n................ ..\n\u0120trave - ller\n\u0120Se xy\n\u0120K ern\nip olar\n\u0120ransom ware\noooooooo oooooooo\nE - c\nrub y\nProf essional\n\u0120Out break\narg ument\nG rey\n\u0120Fif a\n\u0120CH - O\n\u0120FOR M\n\u0120Am trak\n- [\n\u0120cr adle\n\u0120antioxid ants\n\xE3\u0123\xAE\xE5 - \xAE\n7 36\n\u0120NAS L\n\u0120Contribut ions\nInd iana\n\u0120ST EP\nC SS\n\u0120sal - ient\n\u0120all ocations\nyr ights\n\u0120m ashed\n\u0120Cut ter\nSex ual\n\u0120p - ounded\n\u0120fan base\n\u0120c asc\n\u0120Trans parency\n\u0120analy tic\n\u0120Summon - er\n\xD7 \u0140\n\u0120AD C\ndet ail\n\u0120van quished\n\u0120cr abs\nar - ie\nDest roy\n\u0120S ack\n\u0120trans istor\nAl abama\n\u0120K oen\n\u0120Fisher - ies\nc one\n\u0120annex ed\n\u0120M GM\nes a\n\u0120f aked\n\u0120Cong ratulations\n\u0120hind - ered\n\u0120correction al\n\u0120I TV\nlee ve\n\u0120in appropriately\nlic - ks\n\u0120tresp ass\n\u0120p aws\n\u0120negoti ator\n\u0120Christ ensen\nlim - its\n\u0120Dian ne\n\u0120eleg ance\n\u0120Contract s\nan ke\nOb j\n\u0120vigil - ance\n\u0120cast les\n\u0120N AD\n\u0120Hol o\n\u0120emph atically\n\u0120Tit - us\n\u0120Serv ing\n\u0120Rich ie\n\u0120P igs\n5 68\n\u0120anim osity\n\u0120Att - ributes\n\u0120U riel\nM Q\nmy ra\n\u0120Applic ant\n\u0120psychiat rists\n\u0120V - ij\n\u0120Ab by\nag ree\nP ush\n\u0120k Wh\nhib a\n\u0120inc ite\n\u0120We - asley\n\u0120Tax i\nminist ic\nhy per\n\u0120F arn\n\u01206 01\n\u0120Nation - wide\nF ake\n95 2\n\u0120ma ize\n\u0120interact ed\n\u0120transition ed\n\u0120paras - itic\n\u0120harm onic\n\u0120dec aying\n\u0120bas eless\nns ics\n\u0120trans - pired\n\u0120abund antly\n\u0120Fore nsic\n\u0120tread mill\n\u0120J av\nab - and\n\u0120ssh d\n\u0120front man\n\u0120Jak arta\noll er\ndro ps\n\u0120SERV - ICES\nrompt u\noph ical\nh ospital\nbled on\n6 45\n\u0120mid range\n\u0120EV - ENT\ncul ated\nraw led\n\u0120per ched\n\u0120over board\n\u0120Pe el\n\u0120P - wr\n\u0120Car th\n\u0120COM PLE\nco e\nsh all\n\u0120deter rence\nM ETHOD\n\u0120Abs - ent\nM EN\n\u0120s ill\n\u0120LE VEL\nY ork\n\u0120sin ners\n\u0120OP EC\n\u0120N - ur\n\u0120Design s\nse lection\n\u0120unw orthy\nCH A\n\u0120streng thens\n88 - 3\ned ly\n\u0120slic ing\n\u0120mal nutrition\n\u0120film making\n\u0120Pol - k\nur ated\n\u01204 21\nbre akers\n!' \"\n\u0120wet lands\n\u0120Disc rimination\n\u0120allow - able\n\u0120ste ered\n\u0120Sic ily\nS AM\n\u0120must ache\n\u0120m ids\n\u0120cl - ipped\n\u0120circ ulate\n\u0120br ittle\n\u0120Build ings\nra ised\n\u0120Round - up\n\u0120wealth ier\n\u0120overw rite\n\u0120over powered\n\u0120Gerr ard\ns - ites\nPD ATED\n\u0120acute ly\n\u0120Gam ble\n\u0120p im\n\u0120K us\nTyp - ically\nDe ploy\n\u0120Moroc can\np otion\ncom be\n\u0120vigil ante\n\u012036 - 3\nSt ew\n\u0120B agg\n\u0120res ided\n\u0120Sp o\n\u0120rem nant\n\u0120empt - iness\nbr ainer\n\u0120out patient\npri ority\n\u0120le ptin\n\u0120Pay ton\n\u0120Gle - aming\n\u0120S hed\n\u0120Pol o\n\u0120Mormon ism\nrest ricted\narl ane\nw - x\n\u0120creat ine\n\u0120An on\n\u0120ST UD\n\u0120J UL\n\u0120T ee\n5 28\n08 - 9\n\u0120hat ched\nDis patch\n\u0120Compos ite\n\u012045 1\np uff\n\u0120X - COM\n\u0120Or n\n\u0120TH ANK\nEND ED\n\u0120Ashe ville\n\u0120\xC3 \u013E\n\u0120man - go\n\u0120S lightly\nworld ly\n\u0120W ander\n\u0120Exp and\n\u0120Ch r\nM - ist\n\u0120orthodox y\n\u0120UN ESCO\nreg ate\nElse where\nk ie\nir led\n\u0120topp - le\n\u0120adopt ive\n\u0120Leg s\nd ress\n\u0120S agan\nb are\n\u0120Gl ou\nCr - unch\n\u0120help ers\n\u0120chron ically\n\u0120H uma\n1 0000\n\u0120accommod - ating\n\xE4\xBA \u0136\n\u0120wrink les\n\u0120dod ged\nfour th\n\u0120pre - con\n\u0120compress or\n\u0120K are\n\u0120ev ict\n\u0120War wick\nim ar\n\u0120modern - ization\n\u0120band wagon\n\u0120ref uted\n\u0120net ted\n\u0120Na ples\n\u0120Gen - ie\nper ors\n\u0120field ed\n\u0120de re\n\u0120Par ables\nle es\n\u0120tr - out\nasp ers\n\u0120n ihil\n\u0120happ iest\n\u0120flo ppy\n\u0120Lo ft\n\u0120He - ard\n\u0120un ison\n\u0120l ug\n\u0120Red mond\nclass ic\nSupp orters\nSH - IP\nG MT\n\u0120fue lled\n\xE7 \u0132\n\u0120d d\n\u0120Emin em\n\u012018 - 97\nNY SE\n\u0120secret aries\n\u0120F IA\n\u0120Canaver al\nF avorite\n\u0120p - omp\n\u0120detain ee\ners hip\naim on\ni our\n\u0120A pex\n\u0120plant ations\nam - ia\nac ion\nR ust\n\u0120tow ed\n\u0120Tru ly\n5 77\n\u0120shel tered\nr ider\nW - o\n\u0120l air\n\u0120Int elligent\nimpro ve\nm atically\n\u0120et iquette\nad - ra\nall o\n\u0120Jun o\nany thing\n\u0120Stru ggle\n\u0120Pred ict\n\u0120Gr - imes\n\u0120AMER ICA\nct x\n\u0120Sit uation\nW OOD\n\u0120sol uble\nme ier\n\u0120intoler - able\nang ering\n\u0120un interrupted\n\u0120tool tip\n\u0120interrog ated\n\u0120gun - ned\n\u0120Sne ak\n\xE6\u0143 \xA6\n\u0120t ether\n\u0120cr umble\nL ens\n\u0120clust - ered\n\u0120Sy l\n\u0120Has an\n\u0120dystop ian\nw ana\n\u0120joy stick\n\u0120Th - ib\namm u\nTom orrow\n5 46\n\u0120overc ame\n\u0120minim ized\ncept or\nRun - ner\nENG TH\n\u0120Brend a\n\u0120Achieve ments\n\u0120tor ches\n\u0120rapp - ort\n\u0120Investig ator\n\u0120Hand ling\nrel ation\ng rey\n8 15\n\u0120k - cal\n\u0120Comm ands\nd q\n\u0120cur ls\n\u0120be arer\n\u0120cyn icism\nit - ri\n\u0120Use ful\nB ee\nD CS\n\u0120ab ras\nP ract\nBIL ITIES\n7 12\n\u0120debug - ger\n\u0120debt or\n\u0120L ia\n\u0120K ers\n\u0120exacerb ate\n\u0120St acy\n\u0120B - land\n\u0120Sc enes\n\u0120branch ing\n\xE2\u0138\u012A\xE2\u0138\u012A\xE2\u0138\u012A\xE2\u0138\u012A - \xE2\u0138\u012A\xE2\u0138\u012A\xE2\u0138\u012A\xE2\u0138\u012A\nape ake\n\u0120s - alsa\n\u0120mish and\n\u0120Kon ami\n\u0120N ib\n\u0120anecd ote\n\u0120agree - able\n\xCF \u012B\n\u0120Nath aniel\n\u0120He isman\n\u0120B eware\n\u012018 - 86\nspect ive\n69 1\n5 22\n\u0120inhib its\n\u0120has hing\n\u012018 89\n\xE5\xB0 - \u0128\nv ich\nP ure\n\u0120solid ly\n\u0120aspir in\nim aru\n\u0120street - car\n\u0120U CS\n\u0120J udd\n\u0120flash backs\np ins\n\u012014 40\n\u0120UN - HCR\n\u0120Sym ptoms\nT IT\n5 38\nF ra\n% );\n\u0120o oz\n\u0120cur few\n\u0120cal - med\n\u0120particip ates\nTe X\n\u0120nons ensical\n\u0120full back\n\u0120De - L\nmon key\nh ari\n\u0120metabol ites\n\u0120loot ed\n\u0120AL WAYS\n\u0120B - CC\nL t\noc het\nB one\n\u0120veto ed\n\u0120g cc\n\u0120CL ICK\n\u012018 - 88\ns af\n\u0120stiff ness\n\u0120low ly\n\u0120Ge h\nvers on\nors et\n\u0120un - foreseen\n\u0120an esthesia\n\u0120Opt ical\n\u0120recon structed\n\u0120T - up\nsh ows\nNEW S\n\u0120Newsp aper\n\u0120A SA\nter a\nN umbers\n\u0120inexpl - icable\n\xD7 \u0133\n\u0120hard ness\nunt arily\n\u0120A cer\ngrad ient\nARD - IS\n\u0120wood land\n\u0120metaph ors\n\u0120Wem bley\n\u0120Pa vel\nphil - is\n\u0120re writing\n\u0120percept ual\n\u012010 70\nworm s\n\u0120Down s\n\u0120unsur - prisingly\n\u0120tag ging\nfl ame\n\u0120lit res\n\u0120boun ces\n\u0120B - abe\nsh ut\n\u0120overd oses\n\u0120She ila\n\u0120Ch au\n\u0120Bl ess\nCapt - ure\n\u0120Sign ificant\n\u0120Sc ion\n\u012038 9\n\u0120Mc H\n\u0120Titan - ium\n\u0120Me al\named a\nag ents\nagg ressive\nB illy\n76 3\n\u0120S aying\nDER - R\nit one\nColl ins\nB ound\n\u0120bol ted\n\u0120DM CA\n95 3\n\u0120un iqueness\n\u0120ep - igen\nun ci\nant am\n\u0120reck oning\nch airs\nOG R\n\u0120Sen egal\n\u012018 - 62\nre levant\n\u0120\xC2 \xAF\n\u0120pharm acies\n\u0120G eral\nv ier\nY - an\nOR PG\n\u0120rab id\nb ending\n\u0120UN ITED\n\u01204 65\nAs sembly\n\u0120we - ep\n\u0120be hest\n\u0120Mother s\n\u0120J ace\nh id\n\u0120wh irlwind\n\u0120UN - IVERS\n\u0120ut opian\n\u0120kidn ap\nPh ilipp\nK in\n89 3\n\u0120livest ream\n\u0120M - ISS\n\u0120sub versive\n\u0120Techn iques\n\u0120JUST ICE\n\u0120B ASE\n\u012038 - 7\n\u0120assail ants\n\u0120Hard core\n\u0120sprink led\n\u0120P se\n\xE9 - \u013C\nprint ed\n\u0120H au\nOR GE\n\u0120T OUR\n\u0120l aced\n\u0120it ch\nG - iving\n\u0120port ed\n78 1\n//////////////// ////////////////\nbre eding\n\u0120log - ger\n\u0120H OL\ninn ie\nFirst ly\n\u0120embry onic\n\u0120deleg ated\np ai\nO - IL\n\u0120centr ally\n\u0120R x\n\u0120Sc outing\nD utch\n\u0120he reditary\n\u0120Cru - iser\ns at\n5 29\n\u0120Mar riott\nother mal\n\u0120prohib itions\nE arn\n\u0120St - ab\n\u0120Colleg es\n\u0120Bel ief\nst retched\n\u0120L H\n\u0120Entity Item\nC - IA\n\u0120un rem\n\u0120laure ate\n\u0120denomin ations\nsum mary\nh ler\nS - pect\n\u0120K laus\n\u0120Be ans\n\u0120ins ur\n\u0120PA X\n\u0120field er\n\u0120V - et\n\u0120Sp arrow\nz ie\n\u0120S Q\n\u0120Mond ays\n\u0120Off line\n\u0120Ler - ner\n\u0120Ext ensions\nIre land\n\u0120patron age\n\u0120contrast ed\n\u0120Man - ia\nh irt\nMos cow\n\u0120condem ns\n\u0120An ge\n\u0120comp osing\n\u0120Pe - pe\n\u0120P addock\n\u0120heter ogeneity\n\u0120ide ologically\n\u0120f ishes\n\u0120cur - sing\n\u0120R utherford\n\u0120Flo ating\n\u0120Am elia\nTe a\nSyn opsis\n\u0120stun - ts\n\u0120be ad\n\u0120stock ing\n\u0120M ILL\nob ook\nmass ive\n\\ <\n\u0120h - ump\n\u0120Pref erences\nEngine Debug\nge ist\n\u0120Niet o\nome ver\nish - y\neval uate\ncol onial\nAltern ative\n\u0120Go Pro\n\u0120V ortex\n\u0120NET - WORK\nans ky\nSec ure\n\u0120Th rust\nSn ake\n\u0120parcel s\n\u0120sam urai\n\u0120actress - es\nN ap\nM F\nifer ation\nBe er\n5 23\n\u0120I ly\noint ment\nP ing\n\u0120stri - ped\n\u0120Mell on\noss ession\n\u0120neut ron\nend ium\n\u0120a ph\n\u0120Flav - oring\n\u012038 3\n\u0120respons iveness\n\u0120J indal\n\u0120Hitch cock\nDen - ver\n\u0120DRAG ON\nsm anship\n\u0120Du pl\n\u0120s ly\n\u0120web cam\n\u0120Tw - ain\n\u0120Dar ling\nili ate\ncons umer\nD IT\n\u0120names ake\n\u0120un orthodox\n\u0120fun - er\n\u0120PL oS\n\u0120CONTR OL\nozy g\nogl obin\nF ACE\nER G\n\u0120D ia\n\u0120F - iesta\nce le\n0 34\n\u0120encl ave\n\xE2\u0138\xAC \xE2\u0138\xAC\non ement\nal - ist\nM and\n\u0120home grown\n\u0120F ancy\n\u0120concept ions\n\u0120Cont - ains\nure en\n\u0120reiter ate\n\u0120me ager\n\u0120install ments\nSp awn\n6 - 27\n\u0120phot oc\n\u0120Cab rera\n\u0120Ros enthal\n\u0120Lans ing\nis ner\n\u0120invest - s\n\u0120UFO s\nEX P\nHard ware\n\u0120tr agically\n\u0120conced es\nie ft\nch - am\nbor gh\n\u0120Sch r\n\u0120Mel anie\n\u0120H oy\n\u0120visit ation\n\u0120id - iosyncr\n\u0120fract ions\n\u0120fore skin\nob os\n\u0120po aching\n\u0120VI - EW\n\u0120stimul ates\n\u0120G ork\ncan on\nM IC\n\u0120Nem esis\n\u0120Ind - ra\n\u0120DM V\n\u01205 29\n\u0120inspect ing\n\u0120grand ma\n\u0120W hedon\n\u0120Sh - ant\n\u0120P urg\nik an\n\u0120T eg\n\u0120CL R\nz ac\nVict oria\n\u0120Ver - ify\nion ics\n\u0120part ying\n\u0120M ou\ncol our\n\u0120testim onies\nl - ations\n\u0120press uring\nhi ro\nac ers\n\u0120f id\nang ler\n\u0120CS I\n\u0120here - after\n\u0120diss idents\nreport ing\niph any\nche v\n\u0120sol itude\n\u0120l - obe\n\u0120ind is\n\u0120cred ential\nre cent\nad ult\n\u0120Nir vana\n\u0120Franch - ise\nL ayer\nH yp\n\u0120Berks hire\n\u0120will s\nt if\n\u0120tot em\n\u0120Jud - ah\nrep air\nInst ant\n5 48\n\u0120emb assies\n\u0120bott leneck\n\u0120b - ount\n\u0120typ ew\n\u0120Al vin\nj ing\nim ilar\nR ush\n\u0120br im\n\u0120HEL - P\nA im\n] '\n\u0120pass ively\n\u0120bound ed\n\u0120R ated\n\u0120criminal - ity\n\u0120biom ark\n\u0120disp atcher\n\u0120Tow ards\n\u0120+ ++\nright - eous\nf rog\n\u0120P anc\nC arter\n0 32\n\xE6\xA9 \u0141\n\u0120ult raviolet\n\u0120Lic - ensed\n\u0120T ata\n\u0120Bl essing\n\u0120G AM\n\u0120chem ically\n\u0120Se - af\n\u0120RE LE\n\u0120Merc enary\ncapital ist\n\u0120form ulations\n\u0120ann - ihilation\n\u0120Ver b\n\u0120Ar gon\n\u0120un loaded\n\u0120morp hed\n\u0120conqu - ering\nback er\nI ELD\n\u0120theft s\n\u0120front runner\n\u0120Roy ale\n\u0120Fund - amental\nel ight\nC hip\nnecess ary\nay n\n\u0120Sl ip\n\u01204 48\ncern ed\nP - ause\n\u0120shock ingly\n\u0120AB V\n\u0120comp osure\n7 33\n\u0120Motors - port\nah ime\nMur ray\nM ach\n\u0120gr ids\n\u0120deb ian\n\u0120further more\n\u0120dexter - ity\n\u0120Collect ions\nos lov\nil age\nb j\n\u0120Mont eneg\n\u0120strut - Connector\n\u0120massac res\n\u0120brief s\nfet ched\nuv ian\nol ition\nFail - ure\nemon ic\n\u0120fl ared\n\u0120claim ant\n\u0120c ures\n\u0120give aways\n\u0120Subst - ance\nal ions\n\u0120cr inge\n\u0120K ul\n\u0120arist ocracy\n\u0120Ul ster\nol - ated\nh ousing\n\u0120M IS\n\u0120gl ared\n\u0120Wil helm\nne eds\nlam bda\nbuild - ers\n\u0120V IS\n\u0120radi ator\n\u0120Ghost busters\n\u01204 36\nact ual\n\u0120her - ds\n\xC3\xA7 a\nwatch ing\n\u0120counter ing\nCh arge\n\u0120char red\n\u0120war - heads\n\u0120iod ine\n\u0120M acy\n04 1\n\u0120depart ures\n\u0120S ins\n\u0120dy - ed\n\u0120Concept s\ng ado\n7 13\n\u0120quot ations\n\u0120g ist\n\u0120Christ - y\n\u0120ant igen\n\u0120Hem p\n\u0120D rawn\n\u0120B arg\nez vous\n\u0120p - aternity\n\u0120ar du\n\u0120Anch orage\n\u0120R ik\n\u0120over loaded\n\u0120Us - ername\n\u0120Tam my\n\u0120N au\n\u0120Cell ular\n\u0120w aning\n\u0120rod - ent\n\u0120Wor cester\nil ts\n\u0120T ad\n\u0120dwell ings\n\u0120bull ish\n4 - 31\n\u0120retali ate\n\u0120mig raine\n\u0120Chev ron\nCH ECK\n\u0120don key\nc - rim\nSP A\n\u0120An alog\n\u0120marqu ee\n\u0120Ha as\nB ir\n\u0120GD DR\n\u0120Download - s\n\u0120will power\n\u0120For th\n\u0120Record ed\n\u0120imp ossibility\n\u0120Log - ged\n\u0120Fr anks\n\u0120R att\nin itions\n\u0120clean ers\n\u0120sore ly\n\u0120flick - ering\n\u0120Ex amination\nc atching\nallow een\nMs g\n\u0120dun no\nF a\n\u0120dys - ph\nc razy\n.' '.\n\u0120main line\n\u0120c s\n\u0120p tr\n\u0120W ally\nig - un\n95 1\n\u0120Big foot\nf ights\n\u0120retrie ving\nJ r\n\u0120dupl ication\n\u0120Expl - an\n\u0120rel ational\n\u0120qu aint\n\u0120bisc uits\n\u0120ad o\n\u0120sh - udder\n\u0120antid ote\nblood ed\nks h\n\u0120sa uces\n\u0120rein vest\n\u0120dispens - ary\n\u0120D iver\n\u01209 000\nstud ent\n\u0120in separ\nesc ap\n\u0120todd - lers\n\u0120GP IO\n\u0120Ass ignment\nhead ers\n\u0120lack luster\n\u0120ab - ack\n95 6\n\u0120tool bar\n7 45\n\u0120o ust\n\u0120contempl ation\n\u0120PRES - IDENT\n\u01204 58\n==== ==\n\u0120guarantee ing\n\u0120He ist\n\u0120Cann - es\n\u013B \xBD\n\u0120collabor ator\n\u0120Am p\n\u0120g ou\n\u0120SH ALL\nst - ories\n78 3\n\u0120mobil ized\n\u0120bro od\n\u0120L U\n\u0120\xF0\u0141 \u0133\n\u0120ref - in\n\u0120Anthrop ology\nv ind\nill i\n\u0120warrant ies\n\u0120B abel\n\u0120sw - ath\n\u0120c aches\n\u0120antagon ists\nart ifacts\n\u0120hot ly\n\u0120St - arts\n\u0120G \xC3\xB6\nz ag\n!! !!!\n\u0120sc ourge\n\u0120cons piring\nru - its\nre verse\n\u0120She en\n\u0120Jes uit\n\u0120Giov anni\nad ies\n\u0120butt - ocks\near cher\nac an\n\u0120volley ball\n\u0120shroud ed\n\u0120score board\nb - ats\n\u0120I PM\n\u0120ass es\n\u0120de regulation\n\u0120Te legram\n\u0120Reb - oot\n\u01207 000\n\u0120Can ary\n\u0120k ernels\n\u0120Fran\xC3\xA7 ois\n\u0120D - uff\n\u0120P on\n\u0120Le ica\n\u0120Gar min\n\u0120or phans\n\u0120Claud - ia\n\u0120cal endars\n\u0120Le ilan\nent o\nR ocket\n\u0120br unch\n\u0120Haw - king\nain ers\n\u0120sens ibilities\n\u0120k W\n\u0120K and\n\u0120re claimed\n\u0120interesting - ly\n\xD7 \xA9\nrom y\nJ M\n\u0120Enhance ment\nb ush\nSk ip\n\u0120rapp ers\n\u0120g - azing\np edia\nath lon\nRev olution\n\u0120sn ipers\n\u0120re verted\n\u0120conglomer - ate\nT erry\n79 4\n\u0120hars her\n\u0120des olate\n\u0120Hit man\nComm ission\n\u0120( - /\n\xE2\u0122\xA6 .\"\nCom par\n\u0120ampl ification\nom inated\n\u0120reg - ress\n\u0120Coll ider\n\u0120inform ants\n\u0120g azed\n" - headers: - Content-Length: - - '456318' - Content-MD5: - - daN3U916KKLF34DCi/BuTg== - Content-Type: - - application/octet-stream - Date: - - Wed, 25 Sep 2024 22:31:21 GMT - ETag: - - '0x8D896E840999D2F' - Last-Modified: - - Wed, 02 Dec 2020 17:32:33 GMT - Server: - - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 - x-ms-blob-type: - - BlockBlob - x-ms-lease-status: - - unlocked - x-ms-meta-Mtime: - - '2019-09-17T04:52:11.313000000Z' - x-ms-request-id: - - 210755f2-101e-002b-479a-0f979e000000 - x-ms-version: - - '2009-09-19' - status: - code: 200 - message: OK -- request: - body: null - headers: - Accept: - - '*/*' - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - python-requests/2.32.3 - method: GET - uri: https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/encoder.json - response: - body: - string: '{"!": 0, "\"": 1, "#": 2, "$": 3, "%": 4, "&": 5, "''": 6, "(": 7, - ")": 8, "*": 9, "+": 10, ",": 11, "-": 12, ".": 13, "/": 14, "0": 15, "1": - 16, "2": 17, "3": 18, "4": 19, "5": 20, "6": 21, "7": 22, "8": 23, "9": 24, - ":": 25, ";": 26, "<": 27, "=": 28, ">": 29, "?": 30, "@": 31, "A": 32, "B": - 33, "C": 34, "D": 35, "E": 36, "F": 37, "G": 38, "H": 39, "I": 40, "J": 41, - "K": 42, "L": 43, "M": 44, "N": 45, "O": 46, "P": 47, "Q": 48, "R": 49, "S": - 50, "T": 51, "U": 52, "V": 53, "W": 54, "X": 55, "Y": 56, "Z": 57, "[": 58, - "\\": 59, "]": 60, "^": 61, "_": 62, "`": 63, "a": 64, "b": 65, "c": 66, "d": - 67, "e": 68, "f": 69, "g": 70, "h": 71, "i": 72, "j": 73, "k": 74, "l": 75, - "m": 76, "n": 77, "o": 78, "p": 79, "q": 80, "r": 81, "s": 82, "t": 83, "u": - 84, "v": 85, "w": 86, "x": 87, "y": 88, "z": 89, "{": 90, "|": 91, "}": 92, - "~": 93, "\u00a1": 94, "\u00a2": 95, "\u00a3": 96, "\u00a4": 97, "\u00a5": - 98, "\u00a6": 99, "\u00a7": 100, "\u00a8": 101, "\u00a9": 102, "\u00aa": 103, - "\u00ab": 104, "\u00ac": 105, "\u00ae": 106, "\u00af": 107, "\u00b0": 108, - "\u00b1": 109, "\u00b2": 110, "\u00b3": 111, "\u00b4": 112, "\u00b5": 113, - "\u00b6": 114, "\u00b7": 115, "\u00b8": 116, "\u00b9": 117, "\u00ba": 118, - "\u00bb": 119, "\u00bc": 120, "\u00bd": 121, "\u00be": 122, "\u00bf": 123, - "\u00c0": 124, "\u00c1": 125, "\u00c2": 126, "\u00c3": 127, "\u00c4": 128, - "\u00c5": 129, "\u00c6": 130, "\u00c7": 131, "\u00c8": 132, "\u00c9": 133, - "\u00ca": 134, "\u00cb": 135, "\u00cc": 136, "\u00cd": 137, "\u00ce": 138, - "\u00cf": 139, "\u00d0": 140, "\u00d1": 141, "\u00d2": 142, "\u00d3": 143, - "\u00d4": 144, "\u00d5": 145, "\u00d6": 146, "\u00d7": 147, "\u00d8": 148, - "\u00d9": 149, "\u00da": 150, "\u00db": 151, "\u00dc": 152, "\u00dd": 153, - "\u00de": 154, "\u00df": 155, "\u00e0": 156, "\u00e1": 157, "\u00e2": 158, - "\u00e3": 159, "\u00e4": 160, "\u00e5": 161, "\u00e6": 162, "\u00e7": 163, - "\u00e8": 164, "\u00e9": 165, "\u00ea": 166, "\u00eb": 167, "\u00ec": 168, - "\u00ed": 169, "\u00ee": 170, "\u00ef": 171, "\u00f0": 172, "\u00f1": 173, - "\u00f2": 174, "\u00f3": 175, "\u00f4": 176, "\u00f5": 177, "\u00f6": 178, - "\u00f7": 179, "\u00f8": 180, "\u00f9": 181, "\u00fa": 182, "\u00fb": 183, - "\u00fc": 184, "\u00fd": 185, "\u00fe": 186, "\u00ff": 187, "\u0100": 188, - "\u0101": 189, "\u0102": 190, "\u0103": 191, "\u0104": 192, "\u0105": 193, - "\u0106": 194, "\u0107": 195, "\u0108": 196, "\u0109": 197, "\u010a": 198, - "\u010b": 199, "\u010c": 200, "\u010d": 201, "\u010e": 202, "\u010f": 203, - "\u0110": 204, "\u0111": 205, "\u0112": 206, "\u0113": 207, "\u0114": 208, - "\u0115": 209, "\u0116": 210, "\u0117": 211, "\u0118": 212, "\u0119": 213, - "\u011a": 214, "\u011b": 215, "\u011c": 216, "\u011d": 217, "\u011e": 218, - "\u011f": 219, "\u0120": 220, "\u0121": 221, "\u0122": 222, "\u0123": 223, - "\u0124": 224, "\u0125": 225, "\u0126": 226, "\u0127": 227, "\u0128": 228, - "\u0129": 229, "\u012a": 230, "\u012b": 231, "\u012c": 232, "\u012d": 233, - "\u012e": 234, "\u012f": 235, "\u0130": 236, "\u0131": 237, "\u0132": 238, - "\u0133": 239, "\u0134": 240, "\u0135": 241, "\u0136": 242, "\u0137": 243, - "\u0138": 244, "\u0139": 245, "\u013a": 246, "\u013b": 247, "\u013c": 248, - "\u013d": 249, "\u013e": 250, "\u013f": 251, "\u0140": 252, "\u0141": 253, - "\u0142": 254, "\u0143": 255, "\u0120t": 256, "\u0120a": 257, "he": 258, "in": - 259, "re": 260, "on": 261, "\u0120the": 262, "er": 263, "\u0120s": 264, "at": - 265, "\u0120w": 266, "\u0120o": 267, "en": 268, "\u0120c": 269, "it": 270, - "is": 271, "an": 272, "or": 273, "es": 274, "\u0120b": 275, "ed": 276, "\u0120f": - 277, "ing": 278, "\u0120p": 279, "ou": 280, "\u0120an": 281, "al": 282, "ar": - 283, "\u0120to": 284, "\u0120m": 285, "\u0120of": 286, "\u0120in": 287, "\u0120d": - 288, "\u0120h": 289, "\u0120and": 290, "ic": 291, "as": 292, "le": 293, "\u0120th": - 294, "ion": 295, "om": 296, "ll": 297, "ent": 298, "\u0120n": 299, "\u0120l": - 300, "st": 301, "\u0120re": 302, "ve": 303, "\u0120e": 304, "ro": 305, "ly": - 306, "\u0120be": 307, "\u0120g": 308, "\u0120T": 309, "ct": 310, "\u0120S": - 311, "id": 312, "ot": 313, "\u0120I": 314, "ut": 315, "et": 316, "\u0120A": - 317, "\u0120is": 318, "\u0120on": 319, "im": 320, "am": 321, "ow": 322, "ay": - 323, "ad": 324, "se": 325, "\u0120that": 326, "\u0120C": 327, "ig": 328, "\u0120for": - 329, "ac": 330, "\u0120y": 331, "ver": 332, "ur": 333, "\u0120u": 334, "ld": - 335, "\u0120st": 336, "\u0120M": 337, "''s": 338, "\u0120he": 339, "\u0120it": - 340, "ation": 341, "ith": 342, "ir": 343, "ce": 344, "\u0120you": 345, "il": - 346, "\u0120B": 347, "\u0120wh": 348, "ol": 349, "\u0120P": 350, "\u0120with": - 351, "\u01201": 352, "ter": 353, "ch": 354, "\u0120as": 355, "\u0120we": 356, - "\u0120(": 357, "nd": 358, "ill": 359, "\u0120D": 360, "if": 361, "\u01202": - 362, "ag": 363, "ers": 364, "ke": 365, "\u0120\"": 366, "\u0120H": 367, "em": - 368, "\u0120con": 369, "\u0120W": 370, "\u0120R": 371, "her": 372, "\u0120was": - 373, "\u0120r": 374, "od": 375, "\u0120F": 376, "ul": 377, "ate": 378, "\u0120at": - 379, "ri": 380, "pp": 381, "ore": 382, "\u0120The": 383, "\u0120se": 384, - "us": 385, "\u0120pro": 386, "\u0120ha": 387, "um": 388, "\u0120are": 389, - "\u0120de": 390, "ain": 391, "and": 392, "\u0120or": 393, "igh": 394, "est": - 395, "ist": 396, "ab": 397, "rom": 398, "\u0120N": 399, "th": 400, "\u0120com": - 401, "\u0120G": 402, "un": 403, "op": 404, "00": 405, "\u0120L": 406, "\u0120not": - 407, "ess": 408, "\u0120ex": 409, "\u0120v": 410, "res": 411, "\u0120E": 412, - "ew": 413, "ity": 414, "ant": 415, "\u0120by": 416, "el": 417, "os": 418, - "ort": 419, "oc": 420, "qu": 421, "\u0120from": 422, "\u0120have": 423, "\u0120su": - 424, "ive": 425, "ould": 426, "\u0120sh": 427, "\u0120this": 428, "nt": 429, - "ra": 430, "pe": 431, "ight": 432, "art": 433, "ment": 434, "\u0120al": 435, - "ust": 436, "end": 437, "--": 438, "all": 439, "\u0120O": 440, "ack": 441, - "\u0120ch": 442, "\u0120le": 443, "ies": 444, "red": 445, "ard": 446, "\u00e2\u0122": - 447, "out": 448, "\u0120J": 449, "\u0120ab": 450, "ear": 451, "iv": 452, "ally": - 453, "our": 454, "ost": 455, "gh": 456, "pt": 457, "\u0120pl": 458, "ast": - 459, "\u0120can": 460, "ak": 461, "ome": 462, "ud": 463, "The": 464, "\u0120his": - 465, "\u0120do": 466, "\u0120go": 467, "\u0120has": 468, "ge": 469, "''t": - 470, "\u0120U": 471, "rou": 472, "\u0120sa": 473, "\u0120j": 474, "\u0120but": - 475, "\u0120wor": 476, "\u0120all": 477, "ect": 478, "\u0120k": 479, "ame": - 480, "\u0120will": 481, "ok": 482, "\u0120whe": 483, "\u0120they": 484, "ide": - 485, "01": 486, "ff": 487, "ich": 488, "pl": 489, "ther": 490, "\u0120tr": - 491, "..": 492, "\u0120int": 493, "ie": 494, "ure": 495, "age": 496, "\u0120ne": - 497, "ial": 498, "ap": 499, "ine": 500, "ice": 501, "\u0120me": 502, "\u0120out": - 503, "ans": 504, "one": 505, "ong": 506, "ions": 507, "\u0120who": 508, "\u0120K": - 509, "\u0120up": 510, "\u0120their": 511, "\u0120ad": 512, "\u01203": 513, - "\u0120us": 514, "ated": 515, "ous": 516, "\u0120more": 517, "ue": 518, "og": - 519, "\u0120St": 520, "ind": 521, "ike": 522, "\u0120so": 523, "ime": 524, - "per": 525, ".\"": 526, "ber": 527, "iz": 528, "act": 529, "\u0120one": 530, - "\u0120said": 531, "\u0120-": 532, "are": 533, "\u0120your": 534, "cc": 535, - "\u0120Th": 536, "\u0120cl": 537, "ep": 538, "ake": 539, "able": 540, "ip": - 541, "\u0120cont": 542, "\u0120which": 543, "ia": 544, "\u0120im": 545, "\u0120about": - 546, "\u0120were": 547, "very": 548, "ub": 549, "\u0120had": 550, "\u0120en": - 551, "\u0120comp": 552, ",\"": 553, "\u0120In": 554, "\u0120un": 555, "\u0120ag": - 556, "ire": 557, "ace": 558, "au": 559, "ary": 560, "\u0120would": 561, "ass": - 562, "ry": 563, "\u0120\u00e2\u0122": 564, "cl": 565, "ook": 566, "ere": 567, - "so": 568, "\u0120V": 569, "ign": 570, "ib": 571, "\u0120off": 572, "\u0120te": - 573, "ven": 574, "\u0120Y": 575, "ile": 576, "ose": 577, "ite": 578, "orm": - 579, "\u0120201": 580, "\u0120res": 581, "\u0120man": 582, "\u0120per": 583, - "\u0120other": 584, "ord": 585, "ult": 586, "\u0120been": 587, "\u0120like": - 588, "ase": 589, "ance": 590, "ks": 591, "ays": 592, "own": 593, "ence": 594, - "\u0120dis": 595, "ction": 596, "\u0120any": 597, "\u0120app": 598, "\u0120sp": - 599, "int": 600, "ress": 601, "ations": 602, "ail": 603, "\u01204": 604, "ical": - 605, "\u0120them": 606, "\u0120her": 607, "ount": 608, "\u0120Ch": 609, "\u0120ar": - 610, "\u0120if": 611, "\u0120there": 612, "\u0120pe": 613, "\u0120year": 614, - "av": 615, "\u0120my": 616, "\u0120some": 617, "\u0120when": 618, "ough": - 619, "ach": 620, "\u0120than": 621, "ru": 622, "ond": 623, "ick": 624, "\u0120over": - 625, "vel": 626, "\u0120qu": 627, "\u010a\u010a": 628, "\u0120sc": 629, "reat": - 630, "ree": 631, "\u0120It": 632, "ound": 633, "port": 634, "\u0120also": - 635, "\u0120part": 636, "fter": 637, "\u0120kn": 638, "\u0120bec": 639, "\u0120time": - 640, "ens": 641, "\u01205": 642, "ople": 643, "\u0120what": 644, "\u0120no": - 645, "du": 646, "mer": 647, "ang": 648, "\u0120new": 649, "----": 650, "\u0120get": - 651, "ory": 652, "ition": 653, "ings": 654, "\u0120just": 655, "\u0120into": - 656, "\u01200": 657, "ents": 658, "ove": 659, "te": 660, "\u0120people": 661, - "\u0120pre": 662, "\u0120its": 663, "\u0120rec": 664, "\u0120tw": 665, "ian": - 666, "irst": 667, "ark": 668, "ors": 669, "\u0120work": 670, "ade": 671, "ob": - 672, "\u0120she": 673, "\u0120our": 674, "wn": 675, "ink": 676, "lic": 677, - "\u012019": 678, "\u0120He": 679, "ish": 680, "nder": 681, "ause": 682, "\u0120him": - 683, "ons": 684, "\u0120[": 685, "\u0120ro": 686, "form": 687, "ild": 688, - "ates": 689, "vers": 690, "\u0120only": 691, "oll": 692, "\u0120spe": 693, - "ck": 694, "ell": 695, "amp": 696, "\u0120acc": 697, "\u0120bl": 698, "ious": - 699, "urn": 700, "ft": 701, "ood": 702, "\u0120how": 703, "hed": 704, "\u0120''": - 705, "\u0120after": 706, "aw": 707, "\u0120att": 708, "ov": 709, "ne": 710, - "\u0120play": 711, "erv": 712, "ict": 713, "\u0120could": 714, "itt": 715, - "\u0120am": 716, "\u0120first": 717, "\u01206": 718, "\u0120act": 719, "\u0120$": - 720, "ec": 721, "hing": 722, "ual": 723, "ull": 724, "\u0120comm": 725, "oy": - 726, "old": 727, "ces": 728, "ater": 729, "\u0120fe": 730, "\u0120bet": 731, - "we": 732, "iff": 733, "\u0120two": 734, "ock": 735, "\u0120back": 736, ").": - 737, "ident": 738, "\u0120under": 739, "rough": 740, "sel": 741, "xt": 742, - "\u0120may": 743, "round": 744, "\u0120po": 745, "ph": 746, "iss": 747, "\u0120des": - 748, "\u0120most": 749, "\u0120did": 750, "\u0120add": 751, "ject": 752, "\u0120inc": - 753, "fore": 754, "\u0120pol": 755, "ont": 756, "\u0120again": 757, "clud": - 758, "tern": 759, "\u0120know": 760, "\u0120need": 761, "\u0120cons": 762, - "\u0120co": 763, "\u0120.": 764, "\u0120want": 765, "\u0120see": 766, "\u01207": - 767, "ning": 768, "iew": 769, "\u0120This": 770, "ced": 771, "\u0120even": - 772, "\u0120ind": 773, "ty": 774, "\u0120We": 775, "ath": 776, "\u0120these": - 777, "\u0120pr": 778, "\u0120use": 779, "\u0120because": 780, "\u0120fl": - 781, "ng": 782, "\u0120now": 783, "\u0120\u00e2\u0122\u0135": 784, "com": - 785, "ise": 786, "\u0120make": 787, "\u0120then": 788, "ower": 789, "\u0120every": - 790, "\u0120Un": 791, "\u0120sec": 792, "oss": 793, "uch": 794, "\u0120em": - 795, "\u0120=": 796, "\u0120Re": 797, "ied": 798, "rit": 799, "\u0120inv": - 800, "lect": 801, "\u0120supp": 802, "ating": 803, "\u0120look": 804, "man": - 805, "pect": 806, "\u01208": 807, "row": 808, "\u0120bu": 809, "\u0120where": - 810, "ific": 811, "\u0120years": 812, "ily": 813, "\u0120diff": 814, "\u0120should": - 815, "\u0120rem": 816, "Th": 817, "In": 818, "\u0120ev": 819, "day": 820, - "''re": 821, "rib": 822, "\u0120rel": 823, "ss": 824, "\u0120def": 825, "\u0120right": - 826, "\u0120sy": 827, "),": 828, "les": 829, "000": 830, "hen": 831, "\u0120through": - 832, "\u0120Tr": 833, "__": 834, "\u0120way": 835, "\u0120don": 836, "\u0120,": - 837, "\u012010": 838, "ased": 839, "\u0120ass": 840, "ublic": 841, "\u0120reg": - 842, "\u0120And": 843, "ix": 844, "\u0120very": 845, "\u0120includ": 846, - "other": 847, "\u0120imp": 848, "oth": 849, "\u0120sub": 850, "\u0120\u00e2\u0122\u0136": - 851, "\u0120being": 852, "arg": 853, "\u0120Wh": 854, "==": 855, "ible": 856, - "\u0120does": 857, "ange": 858, "ram": 859, "\u01209": 860, "ert": 861, "ps": - 862, "ited": 863, "ational": 864, "\u0120br": 865, "\u0120down": 866, "\u0120many": - 867, "aking": 868, "\u0120call": 869, "uring": 870, "ities": 871, "\u0120ph": - 872, "ics": 873, "als": 874, "\u0120dec": 875, "ative": 876, "ener": 877, - "\u0120before": 878, "ility": 879, "\u0120well": 880, "\u0120much": 881, "erson": - 882, "\u0120those": 883, "\u0120such": 884, "\u0120ke": 885, "\u0120end": - 886, "\u0120But": 887, "ason": 888, "ting": 889, "\u0120long": 890, "ef": - 891, "\u0120think": 892, "ys": 893, "\u0120bel": 894, "\u0120sm": 895, "its": - 896, "ax": 897, "\u0120own": 898, "\u0120prov": 899, "\u0120set": 900, "ife": - 901, "ments": 902, "ble": 903, "ward": 904, "\u0120show": 905, "\u0120pres": - 906, "ms": 907, "omet": 908, "\u0120ob": 909, "\u0120say": 910, "\u0120Sh": - 911, "ts": 912, "ful": 913, "\u0120eff": 914, "\u0120gu": 915, "\u0120inst": - 916, "und": 917, "ren": 918, "cess": 919, "\u0120ent": 920, "\u0120You": 921, - "\u0120good": 922, "\u0120start": 923, "ince": 924, "\u0120made": 925, "tt": - 926, "stem": 927, "olog": 928, "up": 929, "\u0120|": 930, "ump": 931, "\u0120hel": - 932, "vern": 933, "ular": 934, "ually": 935, "\u0120ac": 936, "\u0120mon": - 937, "\u0120last": 938, "\u0120200": 939, "10": 940, "\u0120stud": 941, "ures": - 942, "\u0120Ar": 943, "self": 944, "ars": 945, "meric": 946, "ues": 947, "cy": - 948, "\u0120min": 949, "ollow": 950, "\u0120col": 951, "io": 952, "\u0120mod": - 953, "\u0120count": 954, "\u0120Com": 955, "hes": 956, "\u0120fin": 957, "air": - 958, "ier": 959, "\u00e2\u0122\u0136": 960, "read": 961, "ank": 962, "atch": - 963, "ever": 964, "\u0120str": 965, "\u0120point": 966, "ork": 967, "\u0120New": - 968, "\u0120sur": 969, "ool": 970, "alk": 971, "ement": 972, "\u0120used": - 973, "ract": 974, "ween": 975, "\u0120same": 976, "oun": 977, "\u0120Al": - 978, "ci": 979, "\u0120differe": 980, "\u0120while": 981, "--------": 982, - "\u0120game": 983, "cept": 984, "\u0120sim": 985, "...": 986, "\u0120inter": - 987, "ek": 988, "\u0120report": 989, "\u0120produ": 990, "\u0120still": 991, - "led": 992, "ah": 993, "\u0120here": 994, "\u0120world": 995, "\u0120though": - 996, "\u0120num": 997, "arch": 998, "imes": 999, "ale": 1000, "\u0120Se": - 1001, "\u0120If": 1002, "//": 1003, "\u0120Le": 1004, "\u0120ret": 1005, "\u0120ref": - 1006, "\u0120trans": 1007, "ner": 1008, "ution": 1009, "ters": 1010, "\u0120take": - 1011, "\u0120Cl": 1012, "\u0120conf": 1013, "way": 1014, "ave": 1015, "\u0120going": - 1016, "\u0120sl": 1017, "ug": 1018, "\u0120Americ": 1019, "\u0120spec": 1020, - "\u0120hand": 1021, "\u0120between": 1022, "ists": 1023, "\u0120De": 1024, - "oot": 1025, "It": 1026, "\u0120ear": 1027, "\u0120against": 1028, "\u0120high": - 1029, "gan": 1030, "az": 1031, "ather": 1032, "\u0120exp": 1033, "\u0120op": - 1034, "\u0120ins": 1035, "\u0120gr": 1036, "\u0120help": 1037, "\u0120requ": - 1038, "ets": 1039, "ins": 1040, "\u0120Pro": 1041, "ism": 1042, "\u0120found": - 1043, "land": 1044, "ata": 1045, "uss": 1046, "ames": 1047, "\u0120person": - 1048, "\u0120great": 1049, "pr": 1050, "\u0120sign": 1051, "\u0120An": 1052, - "''ve": 1053, "\u0120somet": 1054, "\u0120ser": 1055, "hip": 1056, "\u0120run": - 1057, "\u0120:": 1058, "\u0120ter": 1059, "irect": 1060, "\u0120follow": 1061, - "\u0120det": 1062, "ices": 1063, "\u0120find": 1064, "12": 1065, "\u0120mem": - 1066, "\u0120cr": 1067, "ered": 1068, "ex": 1069, "\u0120ext": 1070, "uth": - 1071, "ense": 1072, "co": 1073, "\u0120team": 1074, "ving": 1075, "ouse": - 1076, "ash": 1077, "att": 1078, "ved": 1079, "\u0120system": 1080, "\u0120As": - 1081, "der": 1082, "ives": 1083, "min": 1084, "\u0120lead": 1085, "\u0120Bl": - 1086, "cent": 1087, "\u0120around": 1088, "\u0120govern": 1089, "\u0120cur": - 1090, "velop": 1091, "any": 1092, "\u0120cour": 1093, "alth": 1094, "ages": - 1095, "ize": 1096, "\u0120car": 1097, "ode": 1098, "\u0120law": 1099, "\u0120read": - 1100, "''m": 1101, "con": 1102, "\u0120real": 1103, "\u0120support": 1104, - "\u012012": 1105, "....": 1106, "\u0120really": 1107, "ness": 1108, "\u0120fact": - 1109, "\u0120day": 1110, "\u0120both": 1111, "ying": 1112, "\u0120serv": 1113, - "\u0120For": 1114, "\u0120three": 1115, "\u0120wom": 1116, "\u0120med": 1117, - "ody": 1118, "\u0120They": 1119, "50": 1120, "\u0120exper": 1121, "ton": 1122, - "\u0120each": 1123, "akes": 1124, "\u0120che": 1125, "\u0120cre": 1126, "ines": - 1127, "\u0120rep": 1128, "19": 1129, "gg": 1130, "illion": 1131, "\u0120grou": - 1132, "ute": 1133, "ik": 1134, "We": 1135, "get": 1136, "ER": 1137, "\u0120met": - 1138, "\u0120says": 1139, "ox": 1140, "\u0120during": 1141, "ern": 1142, "ized": - 1143, "ared": 1144, "\u0120fam": 1145, "ically": 1146, "\u0120happ": 1147, - "\u0120Is": 1148, "\u0120char": 1149, "med": 1150, "vent": 1151, "\u0120gener": - 1152, "ient": 1153, "ple": 1154, "iet": 1155, "rent": 1156, "11": 1157, "ves": - 1158, "ption": 1159, "\u012020": 1160, "formation": 1161, "\u0120cor": 1162, - "\u0120offic": 1163, "ield": 1164, "\u0120too": 1165, "ision": 1166, "\u0120inf": - 1167, "\u0120Z": 1168, "the": 1169, "oad": 1170, "\u0120public": 1171, "\u0120prog": - 1172, "ric": 1173, "**": 1174, "\u0120war": 1175, "\u0120power": 1176, "view": - 1177, "\u0120few": 1178, "\u0120loc": 1179, "\u0120different": 1180, "\u0120state": - 1181, "\u0120head": 1182, "''ll": 1183, "\u0120poss": 1184, "\u0120stat": - 1185, "ret": 1186, "ants": 1187, "\u0120val": 1188, "\u0120iss": 1189, "\u0120cle": - 1190, "ivers": 1191, "anc": 1192, "\u0120expl": 1193, "\u0120another": 1194, - "\u0120Q": 1195, "\u0120av": 1196, "thing": 1197, "nce": 1198, "Wh": 1199, - "\u0120child": 1200, "\u0120since": 1201, "ired": 1202, "less": 1203, "\u0120life": - 1204, "\u0120develop": 1205, "ittle": 1206, "\u0120dep": 1207, "\u0120pass": - 1208, "\u00e3\u0125": 1209, "\u0120turn": 1210, "orn": 1211, "This": 1212, - "bers": 1213, "ross": 1214, "\u0120Ad": 1215, "\u0120fr": 1216, "\u0120resp": - 1217, "\u0120second": 1218, "oh": 1219, "\u0120/": 1220, "\u0120disc": 1221, - "\u0120&": 1222, "\u0120something": 1223, "\u0120comple": 1224, "\u0120ed": - 1225, "\u0120fil": 1226, "\u0120month": 1227, "aj": 1228, "uc": 1229, "\u0120government": - 1230, "\u0120without": 1231, "\u0120leg": 1232, "\u0120dist": 1233, "\u0120put": - 1234, "\u0120quest": 1235, "ann": 1236, "\u0120prot": 1237, "20": 1238, "\u0120never": - 1239, "ience": 1240, "\u0120level": 1241, "\u0120art": 1242, "\u0120things": - 1243, "\u0120might": 1244, "\u0120effect": 1245, "\u0120contro": 1246, "\u0120cent": - 1247, "\u012018": 1248, "\u0120allow": 1249, "\u0120belie": 1250, "chool": - 1251, "ott": 1252, "\u0120incre": 1253, "\u0120feel": 1254, "\u0120result": - 1255, "\u0120lot": 1256, "\u0120fun": 1257, "ote": 1258, "\u0120ty": 1259, - "erest": 1260, "\u0120contin": 1261, "\u0120using": 1262, "\u0120big": 1263, - "201": 1264, "\u0120ask": 1265, "\u0120best": 1266, "\u0120)": 1267, "IN": - 1268, "\u0120opp": 1269, "30": 1270, "\u0120number": 1271, "iness": 1272, - "St": 1273, "lease": 1274, "\u0120ca": 1275, "\u0120must": 1276, "\u0120direct": - 1277, "\u0120gl": 1278, "\u0120<": 1279, "\u0120open": 1280, "\u0120post": - 1281, "\u0120come": 1282, "\u0120seem": 1283, "ording": 1284, "\u0120week": - 1285, "ately": 1286, "ital": 1287, "\u0120el": 1288, "riend": 1289, "\u0120far": - 1290, "\u0120tra": 1291, "inal": 1292, "\u0120pri": 1293, "\u0120US": 1294, - "\u0120place": 1295, "\u0120form": 1296, "\u0120told": 1297, "\":": 1298, - "ains": 1299, "ature": 1300, "\u0120Trump": 1301, "\u0120stand": 1302, "\u0120#": - 1303, "ider": 1304, "\u0120Fr": 1305, "\u0120next": 1306, "\u0120soc": 1307, - "\u0120pur": 1308, "\u0120let": 1309, "\u0120little": 1310, "\u0120hum": 1311, - "\u0120i": 1312, "ron": 1313, "15": 1314, "\u012015": 1315, "\u0120commun": - 1316, "\u0120mark": 1317, "\u0120There": 1318, "\u0120wr": 1319, "\u0120That": - 1320, "\u0120information": 1321, "ways": 1322, "\u0120bus": 1323, "app": 1324, - "\u0120invest": 1325, "me": 1326, "\u0120hard": 1327, "ained": 1328, "ead": - 1329, "\u0120import": 1330, "\u0120appro": 1331, "\u0120test": 1332, "\u0120tri": - 1333, "\u0120rest": 1334, "osed": 1335, "\u0120full": 1336, "\u0120care": - 1337, "\u0120Sp": 1338, "\u0120case": 1339, "ON": 1340, "\u0120sk": 1341, - "\u0120less": 1342, "\u0120+": 1343, "\u0120partic": 1344, "\u0120Pl": 1345, - "ably": 1346, "uck": 1347, "ished": 1348, "chn": 1349, "be": 1350, "\u0120list": - 1351, "ator": 1352, "\u0120top": 1353, "\u0120adv": 1354, "\u0120Be": 1355, - "ruct": 1356, "\u0120dem": 1357, "ration": 1358, "ling": 1359, "gy": 1360, - "reen": 1361, "ger": 1362, "\u0120home": 1363, "\u0120left": 1364, "\u0120better": - 1365, "\u0120data": 1366, "\u012011": 1367, "\u0120attack": 1368, "\u0120proble": - 1369, "line": 1370, "ards": 1371, "\u0120beh": 1372, "ral": 1373, "\u0120How": - 1374, "\u0120She": 1375, "arge": 1376, "\u0120--": 1377, "://": 1378, "\u0120bro": - 1379, "\u0120Ph": 1380, "ats": 1381, "\u0120build": 1382, "ww": 1383, "ided": - 1384, "aim": 1385, "ases": 1386, "ency": 1387, "\u0120main": 1388, "ined": - 1389, "\u0120including": 1390, "\u0120{": 1391, "\u0120got": 1392, "\u0120interest": - 1393, "\u0120keep": 1394, "\u0120X": 1395, "\u0120eas": 1396, "aining": 1397, - "\u0120class": 1398, "\u00e2\u0122\u00a6": 1399, "\u0120No": 1400, "\u0120var": - 1401, "\u0120small": 1402, "ample": 1403, "AT": 1404, "\u0120ide": 1405, "\u0120So": - 1406, "\u0120rece": 1407, "\u0120polit": 1408, "\u0120mov": 1409, "\u0120plan": - 1410, "\u0120percent": 1411, "iving": 1412, "\u0120camp": 1413, "\u0120pay": - 1414, "14": 1415, "sc": 1416, "ised": 1417, "\u0120unt": 1418, "oney": 1419, - "ploy": 1420, "====": 1421, "\u0120didn": 1422, "\u0120Ind": 1423, "els": - 1424, "ertain": 1425, "\u0120pos": 1426, "____": 1427, "iver": 1428, "\u0120process": - 1429, "\u0120program": 1430, "ified": 1431, "\u0120Rep": 1432, "16": 1433, - "uro": 1434, "ology": 1435, "atter": 1436, "ina": 1437, "\u0120name": 1438, - "\u0120All": 1439, "\u0120four": 1440, "\u0120return": 1441, "vious": 1442, - "bs": 1443, "\u0120called": 1444, "\u0120move": 1445, "\u0120Sc": 1446, "ird": - 1447, "\u0120group": 1448, "\u0120bre": 1449, "\u0120men": 1450, "\u0120cap": - 1451, "ten": 1452, "ee": 1453, "\u0120dri": 1454, "leg": 1455, "here": 1456, - "uthor": 1457, "\u0120pat": 1458, "\u0120current": 1459, "ides": 1460, "\u0120pop": - 1461, "to": 1462, "ention": 1463, "\u0120always": 1464, "\u0120mil": 1465, - "\u0120women": 1466, "\u012016": 1467, "\u0120old": 1468, "iven": 1469, "raph": - 1470, "\u0120Or": 1471, "ror": 1472, "ently": 1473, "\u0120near": 1474, "\u0120Ex": - 1475, "ream": 1476, "sh": 1477, "\u012014": 1478, "\u0120free": 1479, "ission": - 1480, "stand": 1481, "\u0120Con": 1482, "ality": 1483, "used": 1484, "13": - 1485, "\u0120design": 1486, "\u0120change": 1487, "\u0120chang": 1488, "\u0120bo": - 1489, "\u0120vis": 1490, "ember": 1491, "\u0120book": 1492, "ready": 1493, - "\u0120kill": 1494, "25": 1495, "pped": 1496, "\u0120away": 1497, "\u0120able": - 1498, "\u0120country": 1499, "\u0120const": 1500, "arn": 1501, "\u0120order": - 1502, "AR": 1503, "ior": 1504, "ium": 1505, "orth": 1506, "18": 1507, "ailable": - 1508, "\u0120sw": 1509, "\u0120million": 1510, "\u012013": 1511, "atic": 1512, - "ted": 1513, "\u0120Go": 1514, "\u0120oper": 1515, "eng": 1516, "\u0120thing": - 1517, "ajor": 1518, "conom": 1519, "\u0120Comm": 1520, "\u0120why": 1521, - "ured": 1522, "ural": 1523, "\u0120school": 1524, "by": 1525, "\u0120Mar": - 1526, "\u0120aff": 1527, "\u0120days": 1528, "\u0120ann": 1529, "ush": 1530, - "ane": 1531, "If": 1532, "eg": 1533, "\u0120prof": 1534, "\u0120health": 1535, - "outh": 1536, "But": 1537, "ional": 1538, ".,": 1539, "\u0120sol": 1540, "\u0120already": - 1541, "\u012030": 1542, "\u0120charact": 1543, "He": 1544, "\u0120friend": - 1545, "ES": 1546, "ians": 1547, "icle": 1548, "''d": 1549, "\u0120On": 1550, - "\u0120least": 1551, "\u0120prom": 1552, "\u0120dr": 1553, "\u0120hist": 1554, - "ither": 1555, "\u0120est": 1556, "iqu": 1557, "17": 1558, "son": 1559, "\u0120tell": - 1560, "\u0120talk": 1561, "ohn": 1562, "oint": 1563, "lection": 1564, "AN": - 1565, "\u0120until": 1566, "augh": 1567, "\u0120later": 1568, "\u0120ve": - 1569, "\u0120view": 1570, "ending": 1571, "ived": 1572, "\u0120word": 1573, - "ware": 1574, "\u0120cost": 1575, "\u0120enough": 1576, "\u0120give": 1577, - "\u0120United": 1578, "\u0120techn": 1579, "arent": 1580, "OR": 1581, "\u0120par": - 1582, "\u0120Dr": 1583, "\u01202016": 1584, "rist": 1585, "ering": 1586, "\u0120\u00c2": - 1587, "\u0120large": 1588, "side": 1589, "acy": 1590, "ccess": 1591, "\u0120win": - 1592, "\u0120important": 1593, "\u0120199": 1594, "\u0120doesn": 1595, "\u012017": - 1596, "\u0120business": 1597, "\u0120clear": 1598, "\u0120rese": 1599, "\",": - 1600, "ury": 1601, "\u0120equ": 1602, "aster": 1603, "alf": 1604, "\u0120American": - 1605, "nect": 1606, "\u0120expect": 1607, "iversity": 1608, "\u0120occ": 1609, - "\u0120Fl": 1610, "\u0120kind": 1611, "\u0120mean": 1612, "\u0120past": 1613, - "\u0120dev": 1614, "\u0120bas": 1615, "let": 1616, "raft": 1617, "\u0120organ": - 1618, "\u0120del": 1619, "\u0120perform": 1620, "\u0120story": 1621, "\u0120season": - 1622, "\u0120Col": 1623, "\u0120claim": 1624, "\u0120came": 1625, "\u0120within": - 1626, "\u0120line": 1627, "\u0120project": 1628, "\u0120At": 1629, "\u0120control": - 1630, "ended": 1631, "\u0120Sy": 1632, "\u0120air": 1633, "ization": 1634, - "\u0120*": 1635, "ley": 1636, "\u0120money": 1637, "idd": 1638, "You": 1639, - "for": 1640, "\u0120family": 1641, "\u0120making": 1642, "\u0120bit": 1643, - "\u0120police": 1644, "\u0120happen": 1645, "\u0120vers": 1646, "ony": 1647, - "uff": 1648, "\u0120When": 1649, "\u0120sit": 1650, "ideo": 1651, "lf": 1652, - "ison": 1653, "\u0120sure": 1654, "gin": 1655, "\u0120appear": 1656, "\u0120light": - 1657, "\u0120es": 1658, "of": 1659, "\u0120water": 1660, "\u0120times": 1661, - "not": 1662, "\u0120grow": 1663, "\u0120company": 1664, "\u0120Te": 1665, - "ows": 1666, "\u0120mar": 1667, "ource": 1668, "iol": 1669, "arm": 1670, "br": - 1671, "\u0120example": 1672, "\u0120conc": 1673, "\u0120fore": 1674, "\u0120To": - 1675, "pro": 1676, "EN": 1677, "ries": 1678, "\u012025": 1679, "\u0120Can": - 1680, "ney": 1681, "\u0120actually": 1682, "\u0120ever": 1683, "urity": 1684, - "aken": 1685, "aps": 1686, "\u0120tax": 1687, "\u0120major": 1688, "ama": - 1689, "\u0120often": 1690, "eral": 1691, "\u0120human": 1692, "\u0120job": - 1693, "ister": 1694, "\u0120available": 1695, "ocr": 1696, "enn": 1697, "aid": - 1698, "ivid": 1699, "\u0120record": 1700, "?\"": 1701, "\u0120sing": 1702, - "\u0120Am": 1703, "idence": 1704, "\u0120news": 1705, "ster": 1706, "\u0120econom": - 1707, "\u0120following": 1708, "\u0120Br": 1709, "ising": 1710, "\u0120hour": - 1711, "most": 1712, "ument": 1713, "\u0120sex": 1714, "\u0120desc": 1715, - "\u0120become": 1716, "\u0120Ed": 1717, "\u0120took": 1718, "\u0120having": - 1719, "\u0120product": 1720, "ault": 1721, "As": 1722, "aring": 1723, "\u0120means": - 1724, "\u0120hop": 1725, "une": 1726, "\u0120cho": 1727, "\u0120certain": - 1728, "\u0120non": 1729, "\u0120deal": 1730, "24": 1731, "lement": 1732, "oci": - 1733, "ene": 1734, "\u0120side": 1735, "\u0120Pr": 1736, "\u0120May": 1737, - "\u0120reason": 1738, "ued": 1739, "ched": 1740, "ulation": 1741, "\u0120elect": - 1742, "\u0120official": 1743, "\u0120possible": 1744, "\u0120hold": 1745, - "ands": 1746, "ots": 1747, "\u0120city": 1748, "ories": 1749, "\u0120sever": - 1750, "\u0120children": 1751, "\u0120once": 1752, "\u0120activ": 1753, "ler": - 1754, "\u0120night": 1755, "itions": 1756, "\u0120John": 1757, "ape": 1758, - "play": 1759, "\u0120done": 1760, "\u0120lim": 1761, "\u0120working": 1762, - "\u0120Pres": 1763, "orld": 1764, "eb": 1765, "\u0120Co": 1766, "\u0120body": - 1767, "ails": 1768, "utes": 1769, "\u0120Mr": 1770, "\u0120whether": 1771, - "\u0120author": 1772, "rop": 1773, "\u0120proper": 1774, "\u0120seen": 1775, - ");": 1776, "\u0120fac": 1777, "\u0120Su": 1778, "\u0120cond": 1779, "iting": - 1780, "\u0120course": 1781, "\u0120}": 1782, "----------------": 1783, "aign": - 1784, "\u0120event": 1785, "\u0120eng": 1786, "\u0120pot": 1787, "\u0120intern": - 1788, "iam": 1789, "\u0120short": 1790, "empt": 1791, "\u00e3\u0124": 1792, - "\u0120God": 1793, "ilar": 1794, "80": 1795, "\u0120orig": 1796, "IS": 1797, - "ourn": 1798, "ability": 1799, "itive": 1800, "\u0120dam": 1801, "\u0120100": - 1802, "\u0120press": 1803, "\u0120doing": 1804, "\u0120protect": 1805, "ring": - 1806, "\u0120thought": 1807, "\u0120question": 1808, "rew": 1809, "\u0120War": - 1810, "\u0120several": 1811, "\u0120State": 1812, "\u0120given": 1813, "\u0120fund": - 1814, "\u0120Tw": 1815, "\u0120went": 1816, "ances": 1817, "work": 1818, "por": - 1819, "my": 1820, "40": 1821, "\u0120arg": 1822, "artment": 1823, "ustom": - 1824, "\u0120polic": 1825, "\u0120meet": 1826, "\u0120creat": 1827, "22": - 1828, "\u0120States": 1829, "\u0120games": 1830, "raw": 1831, "uture": 1832, - "\u0120understand": 1833, "urs": 1834, "\u0120Ob": 1835, "lish": 1836, "sy": - 1837, "\u0120makes": 1838, "\u0120won": 1839, "agon": 1840, "\u0120htt": 1841, - "\u0120love": 1842, "ential": 1843, "\u0120complete": 1844, "par": 1845, "\u0120Im": - 1846, "AL": 1847, "\u0120account": 1848, "\u00c2\u0142": 1849, "ored": 1850, - "vert": 1851, "\u0120ident": 1852, "\u01202015": 1853, "\u0120others": 1854, - "\u0120Min": 1855, "iber": 1856, "verage": 1857, "There": 1858, "itional": - 1859, "dd": 1860, "\u0120prob": 1861, "\u0120young": 1862, "\u0120along": - 1863, "\u0120according": 1864, "\u0120yet": 1865, "\u0120members": 1866, "\u0120What": - 1867, "oid": 1868, "\u0120Man": 1869, "And": 1870, "\u0120among": 1871, "ai": - 1872, "\u0120employ": 1873, "\u0120Res": 1874, "\u0120>": 1875, "\u0120invol": - 1876, "\u0120low": 1877, "af": 1878, "\u0120Car": 1879, "\u0120hig": 1880, - "\u0120One": 1881, "\u0120Sec": 1882, "ination": 1883, "\u0120likely": 1884, - "\u0120ant": 1885, "aged": 1886, "\u0120Russ": 1887, "\u0120ben": 1888, "\u0120rele": - 1889, "For": 1890, "back": 1891, "\u0120Not": 1892, "\u0120president": 1893, - "ball": 1894, "\u0120access": 1895, "ividual": 1896, "\u0120Dem": 1897, "\u0120Euro": - 1898, "60": 1899, "\u0120known": 1900, "irl": 1901, "\u0120Gr": 1902, "\u0120early": - 1903, "use": 1904, "iety": 1905, "\u00e2\u0122\u0135": 1906, "\u0120fight": - 1907, "\u0120sent": 1908, "\u0120today": 1909, "\u0120market": 1910, "\".": - 1911, "\u0120based": 1912, "\u0120strong": 1913, "urther": 1914, "\u0120deb": - 1915, "mber": 1916, "\u0120problem": 1917, "\u0120death": 1918, "\u0120social": - 1919, "imate": 1920, "AS": 1921, "ortun": 1922, "\u0120campaign": 1923, "ery": - 1924, "Ch": 1925, "\u0120ey": 1926, "ially": 1927, "\u0120mus": 1928, "wh": - 1929, "pos": 1930, "\u0120er": 1931, "\u0120saf": 1932, "\u0120months": 1933, - "iron": 1934, "\u0120viol": 1935, "\u0120five": 1936, "\u0120stre": 1937, - "\u0120players": 1938, "inc": 1939, "ald": 1940, "year": 1941, "aun": 1942, - "\u0120success": 1943, "\u0120present": 1944, "erence": 1945, "\u01202014": - 1946, "\u0120sugg": 1947, "\u0120particular": 1948, "\u0120try": 1949, "\u0120suggest": - 1950, "\u0120Christ": 1951, "ones": 1952, "\u0120priv": 1953, "23": 1954, - "\u0120crit": 1955, "\u0120land": 1956, "\u0120local": 1957, "ify": 1958, - "29": 1959, "\u0120aut": 1960, "ED": 1961, "\u0120Gu": 1962, "\u0120mult": - 1963, "\u0120political": 1964, "\u0120asked": 1965, "\u0120former": 1966, - "itter": 1967, "ript": 1968, "\u0120close": 1969, "\u0120pract": 1970, "\u0120York": - 1971, "\u0120getting": 1972, "\u0120across": 1973, "\u0120comb": 1974, "\u0120believe": - 1975, "\u0120z": 1976, "\u0120toget": 1977, "\u0120together": 1978, "\u0120Cent": - 1979, "irc": 1980, "\u0120individual": 1981, "\u0120Mc": 1982, "27": 1983, - "isk": 1984, "\u0120Eng": 1985, "\u0120face": 1986, "\u012024": 1987, "\u0120value": - 1988, "\u0120area": 1989, "ev": 1990, "\u0120writ": 1991, "\u0120President": - 1992, "\u0120vot": 1993, "\u0120key": 1994, "\u0120mom": 1995, "put": 1996, - "\u0120anything": 1997, "\u0120experience": 1998, "attle": 1999, "\u0120mind": - 2000, "aff": 2001, "omm": 2002, "\u0120future": 2003, "ged": 2004, "\u0120cut": - 2005, "\u0120tot": 2006, "itch": 2007, "\u0120video": 2008, "\u0120investig": - 2009, "\u0120net": 2010, "\u0120My": 2011, "rict": 2012, "ien": 2013, ".)": - 2014, "\u0120impro": 2015, "though": 2016, "wards": 2017, "\u0120connect": - 2018, "\u0120Med": 2019, "selves": 2020, "ensive": 2021, "mb": 2022, "ober": - 2023, "ators": 2024, "An": 2025, "\u012050": 2026, "\u0120redu": 2027, "resent": - 2028, "\u0120above": 2029, "\u0120fre": 2030, "\u0120Europe": 2031, "sw": - 2032, "\u0120amount": 2033, "\u0120App": 2034, "\u0120either": 2035, "\u0120milit": - 2036, "\u0120anal": 2037, "\u0120fail": 2038, "\u0120En": 2039, "ales": 2040, - "\u0120special": 2041, "\u0120black": 2042, "IT": 2043, "cher": 2044, "\u0120looking": - 2045, "\u0120fire": 2046, "yn": 2047, "\u0120almost": 2048, "oon": 2049, "\u0120study": - 2050, "\u0120miss": 2051, "ches": 2052, "rown": 2053, "\u0120tre": 2054, "\u0120community": - 2055, "\u0120media": 2056, "\u0120food": 2057, "\u0120comes": 2058, "\u0120University": - 2059, "\u0120single": 2060, "What": 2061, "uly": 2062, "\u0120half": 2063, - "ague": 2064, "hod": 2065, "\u0120Republic": 2066, "\u0120started": 2067, - "\u0120quick": 2068, "oto": 2069, "book": 2070, "\u0120issue": 2071, "itor": - 2072, "\u0120else": 2073, "\u0120consider": 2074, "26": 2075, "rodu": 2076, - "\u0120taken": 2077, "28": 2078, "99": 2079, "\u0120With": 2080, "\u0120true": - 2081, "\u0120wa": 2082, "\u0120trad": 2083, "\u0120ago": 2084, "\u0120mess": - 2085, "ief": 2086, "\u0120added": 2087, "oke": 2088, "\u0120bad": 2089, "\u0120fav": - 2090, "33": 2091, "\u0120similar": 2092, "ask": 2093, "\u0120Don": 2094, "\u0120character": - 2095, "orts": 2096, "\u0120House": 2097, "\u0120reported": 2098, "\u0120type": - 2099, "val": 2100, "iod": 2101, "\u0120However": 2102, "\u0120targ": 2103, - "\u0120entire": 2104, "pping": 2105, "\u0120history": 2106, "\u0120live": - 2107, "ffic": 2108, "........": 2109, "ederal": 2110, "\u0120trying": 2111, - "\u0120discuss": 2112, "\u0120Har": 2113, "aces": 2114, "lished": 2115, "\u0120self": - 2116, "osp": 2117, "rest": 2118, "\u0120room": 2119, "elt": 2120, "\u0120fall": - 2121, "olution": 2122, "\u0120et": 2123, "\u0120x": 2124, "\u0120isn": 2125, - "\u0120idea": 2126, "bo": 2127, "\u0120sound": 2128, "\u0120Dep": 2129, "\u0120someone": - 2130, "cially": 2131, "ully": 2132, "\u0120foc": 2133, "\u0120object": 2134, - "ift": 2135, "aper": 2136, "\u0120player": 2137, "\u0120rather": 2138, "\u0120service": - 2139, "ashing": 2140, "\u0120Do": 2141, "\u0120Part": 2142, "rug": 2143, "mon": - 2144, "ply": 2145, "\u0120mor": 2146, "\u0120nothing": 2147, "\u0120provide": - 2148, "IC": 2149, "ung": 2150, "\u0120party": 2151, "\u0120exist": 2152, "\u0120mag": - 2153, "70": 2154, "\u0120rul": 2155, "\u0120house": 2156, "\u0120behind": - 2157, "\u0120however": 2158, "\u0120World": 2159, "\u0120sum": 2160, "\u0120applic": - 2161, "\u0120;": 2162, "\u0120function": 2163, "gr": 2164, "\u0120Pol": 2165, - "\u0120front": 2166, "200": 2167, "\u0120series": 2168, "\u0120tem": 2169, - "\u0120typ": 2170, "ills": 2171, "\u0120opt": 2172, "\u0120points": 2173, - "\u0120below": 2174, "itted": 2175, "\u0120specific": 2176, "\u01202017": - 2177, "umb": 2178, "\u0120ra": 2179, "\u0120previous": 2180, "\u0120pret": - 2181, "reme": 2182, "\u0120custom": 2183, "\u0120court": 2184, "\u0120Me": - 2185, "\u0120repl": 2186, "\u0120whole": 2187, "go": 2188, "cer": 2189, "\u0120treat": - 2190, "\u0120Act": 2191, "\u0120probably": 2192, "\u0120learn": 2193, "ender": - 2194, "\u0120Ass": 2195, "\u0120version": 2196, "now": 2197, "\u0120check": - 2198, "\u0120Cal": 2199, "RE": 2200, "minist": 2201, "On": 2202, "ources": - 2203, "\u0120benef": 2204, "\u0120doc": 2205, "\u0120deter": 2206, "\u0120enc": - 2207, "\u0120super": 2208, "\u0120address": 2209, "\u0120vict": 2210, "\u01202013": - 2211, "\u0120meas": 2212, "tr": 2213, "\u0120field": 2214, "When": 2215, "\u0120signific": - 2216, "uge": 2217, "\u0120feat": 2218, "\u0120common": 2219, "load": 2220, - "\u0120begin": 2221, "\u0120bring": 2222, "\u0120action": 2223, "erman": 2224, - "\u0120describ": 2225, "\u0120indust": 2226, "\u0120wanted": 2227, "ried": - 2228, "ming": 2229, "\u0120attempt": 2230, "45": 2231, "fer": 2232, "\u0120due": - 2233, "ression": 2234, "##": 2235, "\u0120shall": 2236, "\u0120six": 2237, - "oo": 2238, "\u0120step": 2239, "\u0120pub": 2240, "\u0120himself": 2241, - "\u012023": 2242, "\u0120cop": 2243, "\u0120dest": 2244, "\u0120stop": 2245, - "AC": 2246, "ibility": 2247, "\u0120lab": 2248, "icult": 2249, "\u0120hours": - 2250, "\u0120create": 2251, "\u0120further": 2252, "\u0120America": 2253, - "\u0120City": 2254, "\u0120dou": 2255, "head": 2256, "ST": 2257, "\u0120North": - 2258, "cing": 2259, "\u0120national": 2260, "ule": 2261, "\u0120Inst": 2262, - "\u0120taking": 2263, "\u0120Qu": 2264, "irt": 2265, "\u0120red": 2266, "\u0120research": - 2267, "viron": 2268, "\u0120Ge": 2269, "\u0120break": 2270, "ana": 2271, "\u0120space": - 2272, "aterial": 2273, "\u0120recent": 2274, "\u0120Ab": 2275, "\u0120general": - 2276, "\u0120hit": 2277, "\u0120period": 2278, "\u0120everything": 2279, "ively": - 2280, "\u0120phys": 2281, "\u0120saying": 2282, "anks": 2283, "\u0120cou": - 2284, "\u0120cult": 2285, "aced": 2286, "eal": 2287, "uation": 2288, "\u0120coun": - 2289, "lu": 2290, "\u0120include": 2291, "\u0120position": 2292, "\u0120After": - 2293, "\u0120Canad": 2294, "\u0120Em": 2295, "\u0120imm": 2296, "\u0120Red": - 2297, "\u0120pick": 2298, "\u0120compl": 2299, "\u0120matter": 2300, "reg": - 2301, "ext": 2302, "angu": 2303, "isc": 2304, "ole": 2305, "aut": 2306, "\u0120compet": - 2307, "eed": 2308, "fect": 2309, "\u012021": 2310, "\u0120Sen": 2311, "\u0120These": - 2312, "asing": 2313, "\u0120cannot": 2314, "\u0120init": 2315, "\u0120relations": - 2316, "ached": 2317, "\u0120bar": 2318, "\u012040": 2319, "\u0120TH": 2320, - "\u01202012": 2321, "\u0120vol": 2322, "\u0120ground": 2323, "\u0120security": - 2324, "\u0120upd": 2325, "ilt": 2326, "35": 2327, "\u0120concern": 2328, "\u0120Just": - 2329, "\u0120white": 2330, "\u0120seems": 2331, "\u0120Her": 2332, "pecially": - 2333, "ients": 2334, "\u0120announ": 2335, "\u0120fig": 2336, "ights": 2337, - "\u0120stri": 2338, "like": 2339, "ids": 2340, "\u0120sus": 2341, "\u0120watch": - 2342, "\u0120\u00e2": 2343, "\u0120wind": 2344, "\u0120Cont": 2345, "\u0120itself": - 2346, "\u0120mass": 2347, "Al": 2348, "yle": 2349, "ique": 2350, "\u0120National": - 2351, "\u0120abs": 2352, "\u0120pack": 2353, "\u0120outside": 2354, "\u0120anim": - 2355, "\u0120pain": 2356, "eter": 2357, "\u0120manag": 2358, "duct": 2359, - "ogn": 2360, "\u0120]": 2361, "\u0120Sept": 2362, "sec": 2363, "off": 2364, - "\u0120Jan": 2365, "\u0120foot": 2366, "ades": 2367, "\u0120third": 2368, - "\u0120mot": 2369, "\u0120evidence": 2370, "inton": 2371, "\u0120threat": - 2372, "apt": 2373, "ples": 2374, "cle": 2375, "\u0120lo": 2376, "\u0120decl": - 2377, "\u0120item": 2378, "medi": 2379, "\u0120represent": 2380, "omb": 2381, - "amer": 2382, "\u0120significant": 2383, "ograph": 2384, "su": 2385, "\u0120cal": - 2386, "ires": 2387, "0000": 2388, "ID": 2389, "AM": 2390, "\u0120simply": - 2391, "\u0120longer": 2392, "\u0120file": 2393, "OT": 2394, "che": 2395, "So": - 2396, "ateg": 2397, "org": 2398, "\u0120His": 2399, "\u0120ener": 2400, "\u0120dom": - 2401, "\u0120upon": 2402, "ili": 2403, "\":\"": 2404, "\u0120themselves": - 2405, "\u0120coming": 2406, "\u0120quite": 2407, "\u0120difficult": 2408, - "\u0120Bar": 2409, "ilities": 2410, "rel": 2411, "ends": 2412, "cial": 2413, - "64": 2414, "\u0120woman": 2415, "rap": 2416, "yr": 2417, "\u0120necess": - 2418, "ips": 2419, "\u0120text": 2420, "\u0120require": 2421, "\u0120military": - 2422, "\u0120review": 2423, "\u0120respons": 2424, "75": 2425, "\u0120subject": - 2426, "\u0120instead": 2427, "\u0120issues": 2428, "\u0120gen": 2429, "\",\"": - 2430, "\u0120minutes": 2431, "\u0120weap": 2432, "ray": 2433, "amed": 2434, - "time": 2435, "bl": 2436, "How": 2437, "\u0120code": 2438, "\u0120Sm": 2439, - "\u0120higher": 2440, "\u0120Ste": 2441, "ris": 2442, "\u0120page": 2443, - "\u0120students": 2444, "\u0120Intern": 2445, "\u0120method": 2446, "\u0120Aug": - 2447, "\u0120Per": 2448, "\u0120Ag": 2449, "\u0120policy": 2450, "\u0120Sw": - 2451, "\u0120exec": 2452, "\u0120accept": 2453, "ume": 2454, "ribut": 2455, - "\u0120words": 2456, "\u0120final": 2457, "\u0120changes": 2458, "\u0120Democr": - 2459, "\u0120friends": 2460, "\u0120respect": 2461, "\u0120ep": 2462, "\u0120compan": - 2463, "ivil": 2464, "\u0120damage": 2465, "****": 2466, "ogle": 2467, "vironment": - 2468, "\u0120neg": 2469, "ental": 2470, "\u0120ap": 2471, "\u0120total": 2472, - "ival": 2473, "!\"": 2474, "lim": 2475, "\u0120needs": 2476, "\u0120agre": - 2477, "\u0120development": 2478, "\u0120age": 2479, "iple": 2480, "21": 2481, - "\u0120results": 2482, "\u0120Af": 2483, "Sh": 2484, "\u0120gun": 2485, "\u0120Obama": - 2486, "roll": 2487, "\u0120@": 2488, "\u0120rights": 2489, "\u0120Brit": 2490, - "\u0120running": 2491, "\u0120wasn": 2492, "\u0120port": 2493, "\u0120rate": - 2494, "\u0120pretty": 2495, "\u0120target": 2496, "\u0120saw": 2497, "\u0120circ": - 2498, "\u0120works": 2499, "icro": 2500, "alt": 2501, "over": 2502, "www": - 2503, "That": 2504, "lier": 2505, "\u0120everyone": 2506, "ude": 2507, "\u0120pie": - 2508, "iddle": 2509, "rael": 2510, "\u0120rad": 2511, "\u0120block": 2512, - "\u0120walk": 2513, "To": 2514, "\u00e3\u0123": 2515, "nes": 2516, "\u0120Aust": - 2517, "aul": 2518, "rote": 2519, "\u0120South": 2520, "ession": 2521, "oph": - 2522, "\u0120shows": 2523, "\u0120site": 2524, "\u0120jo": 2525, "\u0120risk": - 2526, "clus": 2527, "lt": 2528, "\u0120inj": 2529, "iding": 2530, "\u0120Spe": - 2531, "\u0120chall": 2532, "irm": 2533, "\u012022": 2534, "itting": 2535, - "str": 2536, "\u0120hy": 2537, "LE": 2538, "key": 2539, "\u0120began": 2540, - "atur": 2541, "ashington": 2542, "lam": 2543, "\u0120Dav": 2544, "bit": 2545, - "\u0120size": 2546, "\u0120Par": 2547, "38": 2548, "ournal": 2549, "face": - 2550, "\u0120decision": 2551, "\u0120larg": 2552, "\u0120jud": 2553, "rect": - 2554, "\u0120continue": 2555, "\u0120Oct": 2556, "overed": 2557, "\u0120Int": - 2558, "========": 2559, "\u0120parent": 2560, "\u0120Will": 2561, "\u0120easy": - 2562, "\u0120drug": 2563, "anger": 2564, "\u0120sense": 2565, "\u0120di": - 2566, "iday": 2567, "\u0120energy": 2568, "istic": 2569, "\u0120associ": 2570, - "arter": 2571, "obal": 2572, "eks": 2573, "\u0120El": 2574, "urch": 2575, - "\u0120girl": 2576, "oe": 2577, "itle": 2578, "\u012028": 2579, "\u0120Che": - 2580, "\u0120request": 2581, "\u0120soon": 2582, "\u0120host": 2583, "ky": - 2584, "\u0120states": 2585, "omes": 2586, "\u0120material": 2587, "lex": 2588, - "\u0120moment": 2589, "\u0120answ": 2590, "onse": 2591, "\u0120especially": - 2592, "\u0120norm": 2593, "\u0120services": 2594, "pite": 2595, "ran": 2596, - "\u0120role": 2597, "44": 2598, "):": 2599, "\u0120cred": 2600, "Cl": 2601, - "________": 2602, "\u0120mat": 2603, "\u0120log": 2604, "\u0120Clinton": 2605, - "OU": 2606, "\u0120office": 2607, "\u012026": 2608, "\u0120charg": 2609, "\u0120track": - 2610, "ma": 2611, "\u0120heart": 2612, "\u0120ball": 2613, "\u0120personal": - 2614, "\u0120building": 2615, "na": 2616, "set": 2617, "body": 2618, "\u0120Black": - 2619, "\u0120increase": 2620, "itten": 2621, "\u0120needed": 2622, "36": 2623, - "32": 2624, "=\"": 2625, "\u0120lost": 2626, "\u0120became": 2627, "\u0120groups": - 2628, "\u0120Mus": 2629, "\u0120wrote": 2630, "\u0120Pe": 2631, "\u0120prop": - 2632, "joy": 2633, "\u00c3\u00a9": 2634, "\u0120White": 2635, "\u0120dead": - 2636, ".''": 2637, "\u0120http": 2638, "\u0120webs": 2639, "OS": 2640, "\u0120inside": - 2641, "\u0120wrong": 2642, "\u0120statement": 2643, "\u0120...": 2644, "yl": - 2645, "\u0120film": 2646, "\u0120music": 2647, "\u0120share": 2648, "ification": - 2649, "\u0120release": 2650, "\u0120forward": 2651, "\u0120stay": 2652, "\u0120comput": - 2653, "itte": 2654, "ser": 2655, "\u0120original": 2656, "\u0120card": 2657, - "\u0120cand": 2658, "\u0120div": 2659, "atural": 2660, "\u0120favor": 2661, - "OM": 2662, "\u0120cases": 2663, "uses": 2664, "\u0120section": 2665, "\u0120leave": - 2666, "ging": 2667, "oved": 2668, "\u0120Washington": 2669, "39": 2670, "\u0120Gl": - 2671, "\u0120required": 2672, "action": 2673, "apan": 2674, "oor": 2675, "iter": - 2676, "\u0120King": 2677, "\u0120countries": 2678, "\u0120German": 2679, "lling": - 2680, "\u012027": 2681, "34": 2682, "\u0120questions": 2683, "\u0120prim": - 2684, "\u0120cell": 2685, "\u0120shoot": 2686, "\u0120anyone": 2687, "\u0120West": - 2688, "\u0120affect": 2689, "epend": 2690, "\u0120online": 2691, "\u0120Israel": - 2692, "\u0120September": 2693, "\u0120ability": 2694, "\u0120content": 2695, - "ises": 2696, "\u0120reve": 2697, "\u0120laun": 2698, "\u0120indic": 2699, - "\u0120force": 2700, "cast": 2701, "\u0120sold": 2702, "aving": 2703, "fl": - 2704, "\u0120soft": 2705, "\u0120companies": 2706, "ceed": 2707, "\u0120article": - 2708, "\u0120aud": 2709, "\u0120rev": 2710, "\u0120educ": 2711, "\u0120playing": - 2712, "05": 2713, "\u0120held": 2714, "ctor": 2715, "\u0120released": 2716, - "\u0120federal": 2717, "37": 2718, "\u0120administ": 2719, "\u0120interview": - 2720, "\u0120install": 2721, "\u0120received": 2722, "\u0120source": 2723, - "uk": 2724, "Ph": 2725, "\u0120serious": 2726, "\u0120created": 2727, "\u0120cause": - 2728, "\u0120immedi": 2729, "\u0120defin": 2730, "uel": 2731, "\u0120Department": - 2732, "ctions": 2733, "\u0120Cour": 2734, "\u0120Now": 2735, "ze": 2736, "ites": - 2737, "itution": 2738, "\u0120late": 2739, "\u0120speak": 2740, "ners": 2741, - "\u0120legal": 2742, "ari": 2743, "\u0120Cor": 2744, "\u0120weeks": 2745, - "\u0120model": 2746, "\u0120pred": 2747, "\u0120exact": 2748, "BC": 2749, - "\u0120By": 2750, "ING": 2751, "osing": 2752, "\u0120takes": 2753, "\u0120regard": - 2754, "\u0120opportun": 2755, "\u0120price": 2756, "\u0120198": 2757, "\u0120Apr": - 2758, "fully": 2759, "\u0120ord": 2760, "\u0120problems": 2761, "ruction": - 2762, "ham": 2763, "\u0120Count": 2764, "lege": 2765, "\u0120leaders": 2766, - "ET": 2767, "lev": 2768, "\u0120deep": 2769, "ological": 2770, "ese": 2771, - "haps": 2772, "\u0120Some": 2773, "\u0120pers": 2774, "\u0120contract": 2775, - "\u0120relationship": 2776, "sp": 2777, "oud": 2778, "\u0120base": 2779, "48": - 2780, "mit": 2781, "Ad": 2782, "ancial": 2783, "\u0120consum": 2784, "\u0120potential": - 2785, "\u0120langu": 2786, "rem": 2787, "eth": 2788, "\u0120relig": 2789, - "ressed": 2790, "66": 2791, "\u0120link": 2792, "\u0120lower": 2793, "ayer": - 2794, "\u0120June": 2795, "\u0120fem": 2796, "unt": 2797, "erc": 2798, "urd": - 2799, "\u0120contact": 2800, "\u0120ill": 2801, "\u0120mother": 2802, "\u0120estab": - 2803, "htt": 2804, "\u0120March": 2805, "\u0120Bro": 2806, "\u0120China": - 2807, "\u012029": 2808, "\u0120squ": 2809, "\u0120provided": 2810, "\u0120average": - 2811, "asons": 2812, "\u01202011": 2813, "\u0120exam": 2814, "lin": 2815, - "55": 2816, "ned": 2817, "\u0120perfect": 2818, "\u0120tou": 2819, "alse": - 2820, "ux": 2821, "\u0120buy": 2822, "\u0120shot": 2823, "\u0120collect": - 2824, "\u0120phot": 2825, "\u0120played": 2826, "\u0120surpr": 2827, "\u0120officials": - 2828, "\u0120simple": 2829, "avy": 2830, "\u0120industry": 2831, "\u0120hands": - 2832, "ground": 2833, "\u0120pull": 2834, "\u0120round": 2835, "\u0120user": - 2836, "\u0120range": 2837, "uary": 2838, "\u0120private": 2839, "ops": 2840, - "ees": 2841, "\u0120ways": 2842, "\u0120Mich": 2843, "\u0120veh": 2844, "\u0120except": - 2845, "\u0120terms": 2846, "imum": 2847, "pper": 2848, "ION": 2849, "ores": - 2850, "\u0120Dragon": 2851, "oul": 2852, "\u0120den": 2853, "\u0120performance": - 2854, "\u0120bill": 2855, "cil": 2856, "47": 2857, "\u0120environment": 2858, - "\u0120exc": 2859, "add": 2860, "\u0120worth": 2861, "\u0120pict": 2862, "\u0120chance": - 2863, "\u01202018": 2864, "bor": 2865, "\u0120speed": 2866, "iction": 2867, - "\u0120alleg": 2868, "\u0120Japan": 2869, "atory": 2870, "reet": 2871, "\u0120match": - 2872, "\u0120II": 2873, "\u0120stru": 2874, "order": 2875, "\u0120ste": 2876, - "\u0120living": 2877, "\u0120struct": 2878, "ino": 2879, "\u0120separ": 2880, - "hern": 2881, "\u0120response": 2882, "\u0120enjoy": 2883, "\u0120via": 2884, - "AD": 2885, "uments": 2886, "acebook": 2887, "\u0120member": 2888, "ibr": - 2889, "izing": 2890, "\u0120tool": 2891, "\u0120Mon": 2892, "\u0120While": - 2893, "hood": 2894, "\u0120Ang": 2895, "\u0120Def": 2896, "\u0120offer": 2897, - "Tr": 2898, "aur": 2899, "\u0120turned": 2900, "\u0120July": 2901, "down": - 2902, "anced": 2903, "\u0120recently": 2904, "\u0120Ear": 2905, "\u0120ce": - 2906, "\u0120Star": 2907, "\u0120Cong": 2908, "rought": 2909, "\u0120blood": - 2910, "\u0120hope": 2911, "\u0120comment": 2912, "aint": 2913, "\u0120arri": - 2914, "iles": 2915, "\u0120particip": 2916, "ought": 2917, "ription": 2918, - "08": 2919, "49": 2920, "\u0120gave": 2921, "\u0120select": 2922, "\u0120killed": - 2923, "sych": 2924, "\u0120goes": 2925, "ij": 2926, "\u0120coll": 2927, "\u0120impact": - 2928, "atives": 2929, "\u0120Ser": 2930, "09": 2931, "\u0120August": 2932, - "\u0120boy": 2933, "de": 2934, "\u0120Des": 2935, "\u0120felt": 2936, "US": - 2937, "\u0120expected": 2938, "\u0120image": 2939, "\u0120Mark": 2940, "ccording": - 2941, "oice": 2942, "EC": 2943, "\u0120Mag": 2944, "ened": 2945, "hold": 2946, - "\u0120Post": 2947, "\u0120prevent": 2948, "No": 2949, "\u0120involved": 2950, - "\u0120eyes": 2951, "\u0120quickly": 2952, "At": 2953, "unk": 2954, "\u0120behav": - 2955, "\u0120ur": 2956, "\u0120led": 2957, "come": 2958, "ey": 2959, "\u0120candid": - 2960, "\u0120earlier": 2961, "\u0120focus": 2962, "ety": 2963, "Pro": 2964, - "ledge": 2965, "ixed": 2966, "illed": 2967, "\u0120popular": 2968, "AP": 2969, - "\u0120sett": 2970, "light": 2971, "\u0120various": 2972, "inks": 2973, "\u0120levels": - 2974, "\u0120road": 2975, "ellig": 2976, "ables": 2977, "hel": 2978, "ittee": - 2979, "\u0120Gener": 2980, "ype": 2981, "\u0120heard": 2982, "icles": 2983, - "\u0120mis": 2984, "\u0120users": 2985, "\u0120San": 2986, "\u0120improve": - 2987, "\u0120father": 2988, "\u0120search": 2989, "They": 2990, "vil": 2991, - "\u0120profess": 2992, "\u0120knew": 2993, "\u0120loss": 2994, "\u0120events": - 2995, "65": 2996, "\u0120billion": 2997, "07": 2998, "02": 2999, "\u0120News": - 3000, "\u0120AM": 3001, "\u0120cover": 3002, "where": 3003, "ension": 3004, - "\u0120bott": 3005, "\u0120areas": 3006, "ences": 3007, "ope": 3008, "\u0120Twitter": - 3009, "ael": 3010, "\u0120gets": 3011, "\u0120Google": 3012, "\u0120sn": 3013, - "iant": 3014, "\u0120vote": 3015, "\u0120nearly": 3016, "\u0120included": - 3017, "\u0120recogn": 3018, "zz": 3019, "mm": 3020, "aled": 3021, "\u0120happened": - 3022, "04": 3023, "\u0120hot": 3024, "\u0120whose": 3025, "\u0120civil": 3026, - "\u0120suff": 3027, "oes": 3028, "itiz": 3029, "\u0120Syri": 3030, "\u0120respond": - 3031, "\u0120hon": 3032, "\u0120features": 3033, "\u0120economic": 3034, "\u0120April": - 3035, "rim": 3036, "\u0120technology": 3037, "\u0120option": 3038, "aging": - 3039, "\u0120purch": 3040, "Re": 3041, "\u0120lat": 3042, "chie": 3043, "isl": - 3044, "\u0120recomm": 3045, "uf": 3046, "\u0120training": 3047, "\u0120effects": - 3048, "\u0120fast": 3049, "\u01202010": 3050, "\u0120occur": 3051, "\u0120website": - 3052, "\u0120email": 3053, "\u0120sens": 3054, "ech": 3055, "\u0120oil": 3056, - "\u0120influ": 3057, "\u0120currently": 3058, "\u0120Sch": 3059, "\u0120Add": - 3060, "\u0120goal": 3061, "\u0120scient": 3062, "\u0120conv": 3063, "100": - 3064, "emy": 3065, "\u0120decided": 3066, "\u0120travel": 3067, "\u0120mention": - 3068, "LL": 3069, "03": 3070, "\u0120election": 3071, "\u0120phone": 3072, - "\u0120looks": 3073, "\u0120situation": 3074, "\u0120cy": 3075, "\u0120hor": - 3076, "bed": 3077, "\u0120Court": 3078, "aily": 3079, "aves": 3080, "\u0120quality": - 3081, "\u0120Comp": 3082, "wise": 3083, "\u0120table": 3084, "\u0120staff": - 3085, "\u0120Wind": 3086, "ett": 3087, "\u0120tried": 3088, "idered": 3089, - "\u0120addition": 3090, "\u0120box": 3091, "\u0120lack": 3092, "arily": 3093, - "\u0120wide": 3094, "\u0120mid": 3095, "\u0120board": 3096, "ysis": 3097, - "\u0120anti": 3098, "ha": 3099, "\u0120dig": 3100, "ening": 3101, "\u0120dro": - 3102, "Con": 3103, "68": 3104, "\u0120slow": 3105, "based": 3106, "sequ": - 3107, "\u0120path": 3108, "Ex": 3109, "aker": 3110, "\u0120worked": 3111, - "\u0120pen": 3112, "\u0120engine": 3113, "\u0120looked": 3114, "\u0120Super": - 3115, "\u0120Serv": 3116, "\u0120victim": 3117, "Un": 3118, "\u0120property": - 3119, "\u0120introdu": 3120, "\u0120execut": 3121, "\u0120PM": 3122, "Le": - 3123, "\u0120color": 3124, "\u0120More": 3125, "\u012060": 3126, "\u0120network": - 3127, "\u0120date": 3128, "cul": 3129, "idge": 3130, "\u0120extra": 3131, - "31": 3132, "\u0120sle": 3133, "67": 3134, "\u0120wond": 3135, "\u0120reports": - 3136, "just": 3137, "\u0120Austral": 3138, "\u0120capital": 3139, "\u0120ens": - 3140, "\u0120command": 3141, "\u0120allowed": 3142, "\u0120prep": 3143, "\u0120capt": - 3144, "hib": 3145, "\u0120numbers": 3146, "chan": 3147, "\u0120fair": 3148, - "mp": 3149, "oms": 3150, "\u0120reach": 3151, "With": 3152, "tain": 3153, - "\u0120broad": 3154, "\u0120couple": 3155, "ecause": 3156, "lying": 3157, - "\u0120Feb": 3158, "\u0120screen": 3159, "\u0120lives": 3160, "\u0120prior": - 3161, "\u0120Congress": 3162, "Ar": 3163, "\u0120approach": 3164, "\u0120emer": - 3165, "aries": 3166, "\u0120Dis": 3167, "serv": 3168, "\u0120Ne": 3169, "\u0120built": - 3170, "cies": 3171, "\u0120repe": 3172, "\u0120rules": 3173, "force": 3174, - "\u0120Pal": 3175, "\u0120financial": 3176, "\u0120considered": 3177, "\u0120Char": - 3178, "nces": 3179, "\u0120IS": 3180, "\u0120brought": 3181, "\u0120bi": 3182, - "iers": 3183, "\u0120Sim": 3184, "OP": 3185, "\u0120products": 3186, "\u0120visit": - 3187, "\u0120document": 3188, "\u0120conduct": 3189, "\u0120completely": 3190, - "ining": 3191, "\u0120Calif": 3192, "ibly": 3193, "\u0120written": 3194, "\u0120TV": - 3195, "ements": 3196, "\u0120draw": 3197, "One": 3198, "\u0120published": - 3199, "\u0120secret": 3200, "rain": 3201, "het": 3202, "\u0120Facebook": 3203, - "onday": 3204, "\u0120Up": 3205, "\u0120sexual": 3206, "\u0120thous": 3207, - "\u0120Pat": 3208, "\u0120ess": 3209, "\u0120standard": 3210, "\u0120arm": - 3211, "ges": 3212, "ection": 3213, "\u0120fell": 3214, "\u0120foreign": 3215, - "ani": 3216, "\u0120Friday": 3217, "\u0120regular": 3218, "inary": 3219, "\u0120increased": - 3220, "\u0120usually": 3221, "\u0120demon": 3222, "\u0120dark": 3223, "\u0120additional": - 3224, "rol": 3225, "\u0120Of": 3226, "\u0120production": 3227, "!!": 3228, - "undred": 3229, "\u0120international": 3230, "idents": 3231, "\u0120Free": - 3232, "roup": 3233, "\u0120race": 3234, "\u0120mach": 3235, "\u0120huge": - 3236, "All": 3237, "lear": 3238, "ovember": 3239, "\u0120town": 3240, "\u0120attention": - 3241, "\u0120Off": 3242, "yond": 3243, "\u0120Then": 3244, "field": 3245, - "\u0120terror": 3246, "raz": 3247, "\u0120Bo": 3248, "\u0120meeting": 3249, - "\u0120Park": 3250, "\u0120arrest": 3251, "\u0120fear": 3252, "\u0120aw": - 3253, "\u0120Val": 3254, "oring": 3255, "'',": 3256, "\u0120extreme": 3257, - "arr": 3258, "\u0120workers": 3259, "After": 3260, "\u012031": 3261, "net": - 3262, "ament": 3263, "\u0120directly": 3264, "\u0120population": 3265, "ube": - 3266, "\u0120October": 3267, "\u0120IN": 3268, "\u0120January": 3269, "59": - 3270, "\u0120David": 3271, "\u0120cross": 3272, "cember": 3273, "\u0120First": - 3274, "\u0120message": 3275, "irit": 3276, "\u0120nation": 3277, "\u0120poll": - 3278, "isions": 3279, "\u0120answer": 3280, "ny": 3281, "isode": 3282, "\u0120carry": - 3283, "\u0120Russia": 3284, "\u0120hear": 3285, "ength": 3286, "roy": 3287, - "\u0120natural": 3288, "inally": 3289, "\u0120dog": 3290, "mitted": 3291, - "\u0120trade": 3292, "\u0120subst": 3293, "\u0120multiple": 3294, "\u0120Afric": - 3295, "\u0120fans": 3296, "\u0120sort": 3297, "\u0120global": 3298, "ication": - 3299, "\u0120Wed": 3300, "ara": 3301, "\u0120achie": 3302, "\u0120language": - 3303, "vey": 3304, "\u0120tal": 3305, "\u0120necessary": 3306, "\u0120details": - 3307, "\u0120sen": 3308, "\u0120Sund": 3309, "\u0120Reg": 3310, "\u0120Rec": - 3311, "06": 3312, "\u0120sil": 3313, "ressive": 3314, "\u0120medical": 3315, - "unch": 3316, "ornia": 3317, "\u0120und": 3318, "fort": 3319, "ocks": 3320, - "\u0120Monday": 3321, "uesday": 3322, "craft": 3323, "77": 3324, "urt": 3325, - "\u0120ver": 3326, "\u0120Hill": 3327, "\u0120receive": 3328, "\u0120morning": - 3329, "estern": 3330, "\u0120bank": 3331, "\u0120sat": 3332, "irth": 3333, - "\u0120High": 3334, "\u0120device": 3335, "\u0120THE": 3336, "\u0120Center": - 3337, "\u0120safe": 3338, "\u0120ple": 3339, "\u0120Canada": 3340, "\u0120systems": - 3341, "\u0120assist": 3342, "\u0120surv": 3343, "\u0120battle": 3344, "\u0120Soc": - 3345, "vertis": 3346, "She": 3347, "\u0120paper": 3348, "\u0120growth": 3349, - "\u0120cast": 3350, "Sc": 3351, "\u0120plans": 3352, "lled": 3353, "\u0120parts": - 3354, "\u0120wall": 3355, "\u0120movement": 3356, "\u0120practice": 3357, - "imately": 3358, "\u0120display": 3359, "\u0120sometimes": 3360, "omp": 3361, - "\u0120Paul": 3362, "\u0120Yes": 3363, "king": 3364, "58": 3365, "oly": 3366, - "\u0120son": 3367, "\u0120avoid": 3368, "okes": 3369, "\u0120Jew": 3370, "\u0120towards": - 3371, "asc": 3372, "\u0120//": 3373, "\u0120Kore": 3374, "\u0120talking": - 3375, "\u0120correct": 3376, "\u0120spent": 3377, "icks": 3378, "iable": 3379, - "eared": 3380, "\u0120term": 3381, "\u0120wants": 3382, "oming": 3383, "\u0120ut": - 3384, "\u0120doub": 3385, "\u0120forces": 3386, "\u0120please": 3387, "69": - 3388, "\u0120November": 3389, "atform": 3390, "ondon": 3391, "\u0120ones": - 3392, "\u0120immediately": 3393, "\u0120Russian": 3394, "\u0120Met": 3395, - "\u0120deg": 3396, "\u0120parents": 3397, "CH": 3398, "\u0120Americans": 3399, - "aly": 3400, "\u0120Mod": 3401, "\u0120shown": 3402, "\u0120conditions": 3403, - "\u0120stuff": 3404, "\u0120reb": 3405, "\u0120Your": 3406, "\u0120includes": - 3407, "nown": 3408, "\u0120Sam": 3409, "\u0120experien": 3410, "mission": - 3411, "\u0120Even": 3412, "aught": 3413, "\u0120announced": 3414, "\u0120Republican": - 3415, "\u0120determin": 3416, "\u0120described": 3417, "\u0120County": 3418, - "()": 3419, "\u0120door": 3420, "\u0120changed": 3421, "\u0120neigh": 3422, - "\u0120Here": 3423, "\u0120clean": 3424, "\u0120pan": 3425, "\u0120December": - 3426, "\u0120European": 3427, "iring": 3428, "apter": 3429, "\u0120club": - 3430, "\u0120Tuesday": 3431, "\u0120paid": 3432, "\u0120Net": 3433, "\u0120attacks": - 3434, "\u0120characters": 3435, "\u0120alone": 3436, "\u0120director": 3437, - "dom": 3438, "\u012035": 3439, "\u0120load": 3440, "\u0120rout": 3441, "\u0120California": - 3442, "\u0120finally": 3443, "\u0120rac": 3444, "\u0120contr": 3445, "\u0120exactly": - 3446, "resh": 3447, "pri": 3448, "\u0120Islam": 3449, "\u0120nature": 3450, - "\u0120career": 3451, "\u0120latest": 3452, "\u0120convers": 3453, "\u0120Sl": - 3454, "pose": 3455, "cient": 3456, "\u0120Inc": 3457, "ivity": 3458, "88": - 3459, "\u0120Att": 3460, "\u0120Mor": 3461, "nesday": 3462, "\u0120weight": - 3463, "ken": 3464, "\u0120note": 3465, "\u0120teams": 3466, "\u0120\\": 3467, - "airs": 3468, "\u0120Green": 3469, "\u0120hundred": 3470, "onent": 3471, "\u0120streng": - 3472, "\u0120consist": 3473, "icated": 3474, "\u0120regul": 3475, "\u0120lic": - 3476, "astic": 3477, "\u0120ten": 3478, "ursday": 3479, "elligence": 3480, - "ously": 3481, "\u0120UK": 3482, "BI": 3483, "\u0120costs": 3484, "\u0120independ": - 3485, "\u0120AP": 3486, "\u0120normal": 3487, "\u0120hom": 3488, "\u0120obvious": - 3489, "\u0120swe": 3490, "\u0120star": 3491, "\u0120ready": 3492, "acher": - 3493, "\u0120implement": 3494, "gest": 3495, "\u0120song": 3496, "\u0120Get": - 3497, "\u0120Lab": 3498, "\u0120interesting": 3499, "using": 3500, "\u0120giving": - 3501, "\u0120Sunday": 3502, "\u0120etc": 3503, "\u0120middle": 3504, "\u0120remember": - 3505, "right": 3506, "osition": 3507, "utions": 3508, "\u0120max": 3509, "46": - 3510, "\u0120yourself": 3511, "\u0120demand": 3512, "\u0120treatment": 3513, - "\u0120danger": 3514, "\u0120Cons": 3515, "\u0120guy": 3516, "\u0120British": - 3517, "\u0120physical": 3518, "\u0120related": 3519, "\u0120remain": 3520, - "\u0120couldn": 3521, "\u0120refer": 3522, "\u0120citiz": 3523, "box": 3524, - "ENT": 3525, "board": 3526, "\u0120inn": 3527, "IG": 3528, "ero": 3529, "\u0120Street": - 3530, "ospital": 3531, "rench": 3532, "chers": 3533, "\u0120stra": 3534, "OL": - 3535, "ager": 3536, "\u0120AN": 3537, "\u0120easily": 3538, "IA": 3539, "enge": - 3540, "iny": 3541, "\u0120clos": 3542, "ocked": 3543, "\u0120uses": 3544, - "\u0120Coun": 3545, "Im": 3546, "uild": 3547, "??": 3548, "more": 3549, "\u0120ang": - 3550, "\u0120write": 3551, "olute": 3552, "57": 3553, "\u0120leader": 3554, - "\u0120reading": 3555, "": 3784, "\u0120figure": - 3785, "\u0120disapp": 3786, "enty": 3787, "\u0120software": 3788, "\u0120ult": - 3789, "\u0120officers": 3790, "New": 3791, "Is": 3792, "\u0120remains": 3793, - "\u0120India": 3794, "\u0120psych": 3795, "rief": 3796, "\u0120cat": 3797, - "esc": 3798, "\u0120observ": 3799, "\u0120stage": 3800, "\u0120Dark": 3801, - "\u0120enter": 3802, "change": 3803, "\u0120passed": 3804, "\u0120despite": - 3805, "\u0120Out": 3806, "\u0120movie": 3807, "rs": 3808, "\u0120voice": 3809, - "mine": 3810, "\u0120Play": 3811, "\u0120toward": 3812, "\u0120Ter": 3813, - "\u0120region": 3814, "\u0120values": 3815, "orters": 3816, "\u0120mount": - 3817, "\u0120officer": 3818, "\u0120Other": 3819, "ban": 3820, "\u0120hous": - 3821, "wood": 3822, "room": 3823, "IV": 3824, "\u0120Sun": 3825, "see": 3826, - "\u0120Over": 3827, "rog": 3828, "90": 3829, "\u0120lay": 3830, "\u0120Tur": - 3831, "awn": 3832, "\u0120pressure": 3833, "\u0120Sub": 3834, "\u0120books": - 3835, "edom": 3836, "\u0120Sand": 3837, "AA": 3838, "ago": 3839, "\u0120reasons": - 3840, "ford": 3841, "\u0120activity": 3842, "UT": 3843, "Now": 3844, "\u0120Senate": - 3845, "cell": 3846, "night": 3847, "\u0120calls": 3848, "inter": 3849, "\u0120letter": - 3850, "\u0120Rob": 3851, "\u0120Je": 3852, "\u0120choose": 3853, "\u0120Law": - 3854, "Get": 3855, "Be": 3856, "\u0120rob": 3857, "\u0120types": 3858, "\u0120platform": - 3859, "\u0120quarter": 3860, "RA": 3861, "\u0120Time": 3862, "\u0120maybe": - 3863, "\u0120Cr": 3864, "95": 3865, "pre": 3866, "\u0120moving": 3867, "\u0120lif": - 3868, "\u0120gold": 3869, "\u0120som": 3870, "\u0120patients": 3871, "\u0120truth": - 3872, "\u0120Ke": 3873, "urance": 3874, "antly": 3875, "mar": 3876, "\u0120charge": - 3877, "\u0120Great": 3878, "\u0120cele": 3879, "--------------------------------": - 3880, "\u0120rock": 3881, "roid": 3882, "ancy": 3883, "\u0120credit": 3884, - "aud": 3885, "By": 3886, "\u0120Every": 3887, "\u0120moved": 3888, "inger": - 3889, "ribution": 3890, "\u0120names": 3891, "\u0120straight": 3892, "\u0120Health": - 3893, "\u0120Well": 3894, "\u0120feature": 3895, "\u0120rule": 3896, "\u0120sche": - 3897, "inated": 3898, "\u0120Michael": 3899, "berg": 3900, "41": 3901, "iled": - 3902, "band": 3903, "\u0120click": 3904, "\u0120Angel": 3905, "onents": 3906, - "\u00c2\u0143": 3907, "\u0120Iraq": 3908, "\u0120Saturday": 3909, "\u0120aware": - 3910, "part": 3911, "\u0120pattern": 3912, "OW": 3913, "\u0120Let": 3914, - "\u0120grad": 3915, "igned": 3916, "\u0120associated": 3917, "\u0120style": - 3918, "no": 3919, "iation": 3920, "aith": 3921, "ilies": 3922, "\u0120stories": - 3923, "uration": 3924, "\u0120individuals": 3925, "\u0120\u00e2\u0122\u00a6": - 3926, "miss": 3927, "\u0120Associ": 3928, "ishing": 3929, "aby": 3930, "\u0120summer": - 3931, "\u0120Ben": 3932, "\u012032": 3933, "\u0120arch": 3934, "uty": 3935, - "\u0120Texas": 3936, "hol": 3937, "\u0120fully": 3938, "\u0120mill": 3939, - "\u0120followed": 3940, "\u0120Bill": 3941, "\u0120Indian": 3942, "\u0120Secret": - 3943, "\u0120Bel": 3944, "\u0120February": 3945, "\u0120jobs": 3946, "\u0120seemed": - 3947, "\u0120Govern": 3948, "ipped": 3949, "\u0120reality": 3950, "\u0120lines": - 3951, "\u0120park": 3952, "\u0120measure": 3953, "\u0120Our": 3954, "IM": - 3955, "\u0120brother": 3956, "\u0120growing": 3957, "\u0120ban": 3958, "\u0120estim": - 3959, "\u0120cry": 3960, "\u0120School": 3961, "\u0120mechan": 3962, "\u0120OF": - 3963, "\u0120Windows": 3964, "\u0120rates": 3965, "\u0120Oh": 3966, "\u0120positive": - 3967, "\u0120culture": 3968, "istics": 3969, "ica": 3970, "\u0120har": 3971, - "ya": 3972, "itely": 3973, "ipp": 3974, "\u0120map": 3975, "encies": 3976, - "\u0120William": 3977, "II": 3978, "akers": 3979, "56": 3980, "\u0120Mart": - 3981, "\u0120Rem": 3982, "\u0120altern": 3983, "itude": 3984, "\u0120coach": - 3985, "rowd": 3986, "Don": 3987, "\u0120kids": 3988, "\u0120journal": 3989, - "\u0120corpor": 3990, "\u0120false": 3991, "\u0120web": 3992, "\u0120sleep": - 3993, "\u0120contain": 3994, "\u0120sto": 3995, "\u0120bed": 3996, "iverse": - 3997, "\u0120Rich": 3998, "\u0120Chinese": 3999, "\u0120pun": 4000, "\u0120meant": - 4001, "known": 4002, "\u0120notice": 4003, "\u0120favorite": 4004, "aven": - 4005, "\u0120condition": 4006, "\u0120purpose": 4007, "))": 4008, "\u0120organization": - 4009, "\u0120challeng": 4010, "\u0120manufact": 4011, "\u0120susp": 4012, - "\u0120Ac": 4013, "\u0120critic": 4014, "unes": 4015, "uclear": 4016, "\u0120mer": - 4017, "vention": 4018, "\u012080": 4019, "\u0120mist": 4020, "\u0120Us": 4021, - "\u0120Tor": 4022, "http": 4023, "olf": 4024, "\u0120larger": 4025, "\u0120advant": - 4026, "\u0120resear": 4027, "\u0120actions": 4028, "ml": 4029, "\u0120kept": - 4030, "\u0120aim": 4031, ",''": 4032, "col": 4033, "\u0120benefits": 4034, - "ifying": 4035, "\u0120actual": 4036, "\u0120International": 4037, "\u0120vehicle": - 4038, "\u0120chief": 4039, "\u0120efforts": 4040, "\u0120League": 4041, "\u0120Most": - 4042, "\u0120wait": 4043, "\u0120adult": 4044, "\u0120overall": 4045, "\u0120speech": - 4046, "\u0120highly": 4047, "\u0120female": 4048, "\u0120error": 4049, "\u0120effective": - 4050, "54": 4051, "\u0120encour": 4052, "well": 4053, "\u0120failed": 4054, - "\u0120conserv": 4055, "\u0120programs": 4056, "\u0120trou": 4057, "\u0120ahead": - 4058, "500": 4059, "vertisement": 4060, "IP": 4061, "\u0120Found": 4062, "pir": - 4063, "\u0120%": 4064, "\u0120crime": 4065, "ander": 4066, "\u0120location": - 4067, "\u0120Iran": 4068, "\u0120behavior": 4069, "azing": 4070, "\u0120rare": - 4071, "\u0120emb": 4072, "\u0120caused": 4073, "\u0120ship": 4074, "\u0120active": - 4075, "\u0120contribut": 4076, "\u0120green": 4077, "\u0120acqu": 4078, "\u0120reflect": - 4079, "venue": 4080, "\u0120firm": 4081, "\u0120birth": 4082, "].": 4083, - "\u0120clearly": 4084, "\u0120emot": 4085, "\u0120agency": 4086, "riage": - 4087, "\u0120memory": 4088, "98": 4089, "SA": 4090, "\u0120See": 4091, "acing": - 4092, "CC": 4093, "\u0120biggest": 4094, "\u0120rap": 4095, "\u0120basic": - 4096, "\u0120band": 4097, "eat": 4098, "\u0120suspect": 4099, "\u0120Mac": - 4100, "\u012090": 4101, "mark": 4102, "istan": 4103, "\u0120spread": 4104, - "ams": 4105, "ki": 4106, "asy": 4107, "rav": 4108, "\u0120Rober": 4109, "\u0120demonstr": - 4110, "rated": 4111, "\u0120absolute": 4112, "\u0120places": 4113, "\u0120impl": - 4114, "ibrary": 4115, "\u0120cards": 4116, "\u0120destroy": 4117, "\u0120virt": - 4118, "vere": 4119, "\u0120appeared": 4120, "yan": 4121, "point": 4122, "\u0120beg": - 4123, "\u0120temper": 4124, "spe": 4125, "anted": 4126, "ears": 4127, "\u0120Direct": - 4128, "\u0120length": 4129, "\u0120blog": 4130, "amb": 4131, "\u0120integ": - 4132, "\u0120resources": 4133, "acc": 4134, "iful": 4135, "\u0120spot": 4136, - "\u0120forced": 4137, "\u0120thousands": 4138, "\u0120Minister": 4139, "\u0120qual": - 4140, "\u0120French": 4141, "atically": 4142, "\u0120generally": 4143, "\u0120drink": - 4144, "\u0120thus": 4145, "IL": 4146, "odes": 4147, "\u0120appropri": 4148, - "\u0120Read": 4149, "\u0120whom": 4150, "\u0120eye": 4151, "\u0120college": - 4152, "\u012045": 4153, "irection": 4154, "\u0120ensure": 4155, "\u0120apparent": - 4156, "iders": 4157, "\u0120religious": 4158, "\u0120minor": 4159, "olic": - 4160, "\u0120tro": 4161, "\u0120Why": 4162, "ribute": 4163, "met": 4164, "\u0120primary": - 4165, "\u0120developed": 4166, "\u0120peace": 4167, "\u0120skin": 4168, "ste": - 4169, "ava": 4170, "\u0120blue": 4171, "\u0120families": 4172, "\u0120ir": - 4173, "\u0120apply": 4174, "\u0120inform": 4175, "\u0120Smith": 4176, "CT": - 4177, "ii": 4178, "\u0120limit": 4179, "\u0120resist": 4180, "................": - 4181, "umn": 4182, "\u0120conflic": 4183, "\u0120twe": 4184, "udd": 4185, - "\u0120Tom": 4186, "\u0120liter": 4187, "que": 4188, "bon": 4189, "\u0120hair": - 4190, "\u0120eventually": 4191, "\u0120pus": 4192, "\u0120helped": 4193, "\u0120agg": - 4194, "orney": 4195, "\u0120Apple": 4196, "\u0120fit": 4197, "\u0120Sur": - 4198, "\u0120prem": 4199, "\u0120sales": 4200, "\u0120seconds": 4201, "\u0120strength": - 4202, "\u0120feeling": 4203, "\u00bf\u00bd": 4204, "\u0120tour": 4205, "\u0120knows": - 4206, "oom": 4207, "\u0120exerc": 4208, "\u0120somew": 4209, "\u00ef\u00bf\u00bd": - 4210, ">>": 4211, "\u0120spokes": 4212, "\u0120ideas": 4213, "\u0120regist": - 4214, "soft": 4215, "\u0120Del": 4216, "\u0120PC": 4217, "\u0120propos": 4218, - "\u0120launch": 4219, "\u0120bottom": 4220, "TH": 4221, "\u0120Please": 4222, - "vest": 4223, "itz": 4224, "\u0120Inter": 4225, "\u0120script": 4226, "\u0120rat": - 4227, "arning": 4228, "\u0120il": 4229, "\u0120Jer": 4230, "\u0120Are": 4231, - "\u0120whatever": 4232, "oken": 4233, "cience": 4234, "\u0120mode": 4235, - "\u0120agree": 4236, "\u0120sources": 4237, "\u0120initial": 4238, "\u0120restrict": - 4239, "\u0120wonder": 4240, "usion": 4241, "####": 4242, "\u0120Sil": 4243, - "ville": 4244, "\u0120burn": 4245, "tw": 4246, "asion": 4247, "\u0120\u00c2\u00a3": - 4248, "\u0120nor": 4249, "uing": 4250, "\u0120reached": 4251, "\u0120sun": - 4252, "\u0120categ": 4253, "igration": 4254, "\u0120cook": 4255, "\u0120promot": - 4256, "\u0120male": 4257, "\u0120climate": 4258, "\u0120fix": 4259, "\u0120alleged": - 4260, "UR": 4261, "alled": 4262, "\u0120images": 4263, "Cont": 4264, "ota": - 4265, "\u0120schools": 4266, "ios": 4267, "\u0120drop": 4268, "\u0120stream": - 4269, "\u0120Mo": 4270, "\u0120previously": 4271, "aling": 4272, "\u0120pet": - 4273, "\u0120double": 4274, "\u0120(@": 4275, "annel": 4276, "\u0120default": - 4277, "ties": 4278, "\u0120rank": 4279, "\u0120Dec": 4280, "\u0120Council": - 4281, "\u0120weapon": 4282, "\u0120stock": 4283, "\u0120analy": 4284, "\u0120Str": - 4285, "\u0120picture": 4286, "\u0120Police": 4287, "ference": 4288, "\u0120century": - 4289, "\u0120citizens": 4290, "\u0120onto": 4291, "\u0120expand": 4292, "\u0120hero": - 4293, "\u0120Sol": 4294, "\u0120wild": 4295, "\u0120update": 4296, "\u0120customers": - 4297, "ront": 4298, "def": 4299, "\u0120lik": 4300, "\u0120criminal": 4301, - "\u0120Christian": 4302, "SP": 4303, "76": 4304, "\u0120leaving": 4305, "\u0120otherwise": - 4306, "\u0120Dist": 4307, "\u0120basis": 4308, "52": 4309, "53": 4310, "icip": - 4311, "\u0120Ber": 4312, "\u0120recommend": 4313, "\u0120floor": 4314, "\u0120crowd": - 4315, "oles": 4316, "\u012070": 4317, "\u0120central": 4318, "\u0120Ev": 4319, - "\u0120dream": 4320, "\u0120download": 4321, "\u0120confir": 4322, "\u0120Thom": - 4323, "\u0120window": 4324, "\u0120happens": 4325, "\u0120unit": 4326, "\u0120tend": - 4327, "\u0120spl": 4328, "\u0120becomes": 4329, "\u0120fighting": 4330, "\u0120predict": - 4331, "\u0120Press": 4332, "\u0120Power": 4333, "\u0120heavy": 4334, "aked": - 4335, "\u0120fan": 4336, "orter": 4337, "ategy": 4338, "BA": 4339, "izes": - 4340, "\u0120spend": 4341, "Here": 4342, "\u01202007": 4343, "\u0120adop": - 4344, "\u0120Ham": 4345, "\u0120football": 4346, "\u0120Port": 4347, "oday": - 4348, "51": 4349, "ampions": 4350, "\u0120transfer": 4351, "ht": 4352, "\u012038": - 4353, "term": 4354, "acity": 4355, "\u0120bur": 4356, "],": 4357, "ternal": - 4358, "rig": 4359, "but": 4360, "\u0120therefore": 4361, "\u0120Because": - 4362, "resp": 4363, "rey": 4364, "\u0120mission": 4365, "Some": 4366, "\u0120noted": - 4367, "\u0120assum": 4368, "\u0120disease": 4369, "\u0120edit": 4370, "\u0120progress": - 4371, "rd": 4372, "\u0120Brown": 4373, "ocal": 4374, "\u0120adding": 4375, - "\u0120raised": 4376, "\u0120Any": 4377, "\u0120tick": 4378, "\u0120seeing": - 4379, "\u0120People": 4380, "\u0120agreement": 4381, "\u0120server": 4382, - "\u0120wat": 4383, "\u0120debate": 4384, "\u0120supposed": 4385, "iling": - 4386, "\u0120largest": 4387, "\u0120successful": 4388, "\u0120Pri": 4389, - "\u0120Democratic": 4390, "\u0120jump": 4391, "\u0120Syria": 4392, "\u0120owners": - 4393, "\u0120offers": 4394, "\u0120shooting": 4395, "\u0120effic": 4396, "sey": - 4397, "\u0120haven": 4398, "verse": 4399, "tered": 4400, "\u0120Light": 4401, - "imal": 4402, "\u0120Big": 4403, "\u0120defend": 4404, "\u0120beat": 4405, - "\u0120records": 4406, "%)": 4407, "\u0120scen": 4408, "\u0120employees": - 4409, "\u0120devices": 4410, "hem": 4411, "\u0120commer": 4412, "\u0120Mex": - 4413, "\u0120benefit": 4414, "\u0120Prof": 4415, "\u0120illeg": 4416, "\u0120surface": - 4417, "\u0120Also": 4418, "\u0120harm": 4419, "ingly": 4420, "wide": 4421, - "\u0120Alex": 4422, "\u0120shut": 4423, "\u0120Cur": 4424, "\u0120lose": 4425, - "pm": 4426, "\u0120challenge": 4427, "semb": 4428, "\u0120station": 4429, - "\u0120intelligence": 4430, "\u0120accur": 4431, "\u0120Flor": 4432, "\u0120requires": - 4433, "\u0120Mal": 4434, "bum": 4435, "\u0120hospital": 4436, "\u0120spirit": - 4437, "\u0120offered": 4438, "\u0120produce": 4439, "\u0120Commun": 4440, - "\u0120creating": 4441, "\u0120cris": 4442, "spect": 4443, "\u0120ended": - 4444, "\u0120daily": 4445, "\u0120voters": 4446, "lands": 4447, "ias": 4448, - "ih": 4449, "ona": 4450, "\u0120smart": 4451, "\u0120Office": 4452, "\u0120Lord": - 4453, "rial": 4454, "\u0120Internet": 4455, "\u0120circum": 4456, "\u0120extremely": - 4457, "''.": 4458, "\u0120opinion": 4459, "\u0120Mil": 4460, "\u0120gain": - 4461, "BS": 4462, "\u0120Fin": 4463, "yp": 4464, "\u0120useful": 4465, "\u0120budget": - 4466, "\u0120comfort": 4467, "isf": 4468, "\u0120background": 4469, "eline": - 4470, "\u0120episode": 4471, "\u0120enemy": 4472, "\u0120trial": 4473, "\u0120establish": - 4474, "date": 4475, "\u0120Cap": 4476, "\u0120continues": 4477, "\u0120showing": - 4478, "\u0120Union": 4479, "with": 4480, "\u0120posted": 4481, "\u0120System": - 4482, "\u0120eat": 4483, "rian": 4484, "\u0120rise": 4485, "\u0120Germany": - 4486, "ils": 4487, "\u0120signed": 4488, "\u0120vill": 4489, "\u0120grand": - 4490, "mor": 4491, "\u0120England": 4492, "\u0120projects": 4493, "umber": - 4494, "\u0120conference": 4495, "za": 4496, "\u0120responsible": 4497, "\u0120Arab": - 4498, "\u0120learned": 4499, "\u00e2\u0122\u0136\u00e2\u0122\u0136": 4500, - "ipping": 4501, "\u0120George": 4502, "OC": 4503, "\u0120returned": 4504, - "\u0120Australia": 4505, "\u0120brief": 4506, "Qu": 4507, "\u0120brand": 4508, - "illing": 4509, "abled": 4510, "\u0120highest": 4511, "\u0120train": 4512, - "\u0120Commission": 4513, "while": 4514, "\u0120nom": 4515, "ception": 4516, - "\u0120mut": 4517, "\u0120Blue": 4518, "\u0120incident": 4519, "vant": 4520, - "86": 4521, "\u0120ID": 4522, "\u0120nuclear": 4523, "74": 4524, "\u0120Like": - 4525, "\u0120RE": 4526, "\u0120Micro": 4527, "li": 4528, "mail": 4529, "\u0120charges": - 4530, "89": 4531, "\u0120adjust": 4532, "ado": 4533, "\u0120earth": 4534, - "NA": 4535, "\u0120prices": 4536, "PA": 4537, "\u0120draft": 4538, "\u0120runs": - 4539, "\u0120candidate": 4540, "enses": 4541, "\u0120management": 4542, "\u0120Phil": - 4543, "\u0120Miss": 4544, "\u0120teach": 4545, "gram": 4546, "\u0120understanding": - 4547, "ait": 4548, "icago": 4549, "Add": 4550, "\u0120Ep": 4551, "secut": - 4552, "\u0120separate": 4553, "\u0120instance": 4554, "\u0120eth": 4555, "\u0120unless": - 4556, "********": 4557, "\u0120Fore": 4558, "inate": 4559, "\u0120operations": - 4560, "Sp": 4561, "\u0120faith": 4562, "gar": 4563, "\u0120Church": 4564, - "ronic": 4565, "\u0120config": 4566, "osure": 4567, "\u0120activities": 4568, - "\u0120traditional": 4569, "\u012036": 4570, "\u0120direction": 4571, "\u0120machine": - 4572, "\u0120surround": 4573, "\u0120push": 4574, "unction": 4575, "\u0120EU": - 4576, "\u0120easier": 4577, "\u0120argument": 4578, "GB": 4579, "\u0120micro": - 4580, "\u0120spending": 4581, "izations": 4582, "\u0120theory": 4583, "adow": - 4584, "\u0120calling": 4585, "\u0120Last": 4586, "\u0120der": 4587, "\u0120influence": - 4588, "\u0120commit": 4589, "\u0120photo": 4590, "\u0120unc": 4591, "istry": - 4592, "gn": 4593, "aste": 4594, "acks": 4595, "\u0120disp": 4596, "ady": 4597, - "do": 4598, "\u0120Good": 4599, "\u0120`": 4600, "\u0120wish": 4601, "\u0120revealed": - 4602, "\u00c2\u0142\u00c2\u0142": 4603, "lig": 4604, "\u0120enforce": 4605, - "\u0120Committee": 4606, "\u0120chem": 4607, "\u0120miles": 4608, "\u0120interested": - 4609, "\u0120solution": 4610, "icy": 4611, "inct": 4612, "\u0120->": 4613, - "\u0120Det": 4614, "\u0120removed": 4615, "\u0120compar": 4616, "eah": 4617, - "\u0120plant": 4618, "\u0120Since": 4619, "\u0120achieve": 4620, "\u0120advantage": - 4621, "\u0120slightly": 4622, "bing": 4623, "\u0120placed": 4624, "under": - 4625, "2015": 4626, "\u0120Mad": 4627, "\u0120tim": 4628, "oses": 4629, "\u0120cru": - 4630, "\u0120Rock": 4631, "\u0120mostly": 4632, "\u0120negative": 4633, "\u0120setting": - 4634, "\u0120produced": 4635, "\u0120mur": 4636, "\u0120connection": 4637, - "\u0120Mer": 4638, "\u0120driver": 4639, "\u0120executive": 4640, "\u0120assault": - 4641, "\u0120born": 4642, "\u0120Ver": 4643, "tained": 4644, "\u0120structure": - 4645, "\u0120reduce": 4646, "\u0120decades": 4647, "\u0120ded": 4648, "uke": - 4649, "\u0120Many": 4650, "idden": 4651, "\u0120league": 4652, "Se": 4653, - "\u0120join": 4654, "\u0120disco": 4655, "\u0120die": 4656, "cks": 4657, "actions": - 4658, "\u0120assess": 4659, "agn": 4660, "\u0120goals": 4661, "ours": 4662, - "IR": 4663, "\u0120senior": 4664, "iller": 4665, "mod": 4666, "ipment": 4667, - "ocol": 4668, "uy": 4669, "\u0120Que": 4670, "\u0120parties": 4671, "irgin": - 4672, "\u0120learning": 4673, "itable": 4674, "\u0120street": 4675, "\u0120camera": - 4676, "App": 4677, "\u0120skills": 4678, "bre": 4679, "cious": 4680, "\u0120celebr": - 4681, "\u0120Franc": 4682, "\u0120existing": 4683, "\u0120willing": 4684, - "lor": 4685, "\u0120id": 4686, "\u0120Space": 4687, "\u0120critical": 4688, - "\u0120La": 4689, "ortunately": 4690, "\u0120serve": 4691, "\u0120cold": 4692, - "\u0120species": 4693, "TS": 4694, "\u0120animals": 4695, "\u0120Bay": 4696, - "\u0120older": 4697, "\u0120Under": 4698, "estic": 4699, "\u0120Tre": 4700, - "\u0120teacher": 4701, "\u0120prefer": 4702, "vis": 4703, "\u0120thread": - 4704, "\u0120Matt": 4705, "\u0120manager": 4706, "\u00e3\u0125\u00bb": 4707, - "\u0120professional": 4708, "\u0120Vol": 4709, "\u0120notes": 4710, "These": - 4711, "ula": 4712, "\u0120fresh": 4713, "ented": 4714, "uzz": 4715, "edy": - 4716, "clusion": 4717, "\u0120Rel": 4718, "\u0120doubt": 4719, "EO": 4720, - "\u0120opened": 4721, "\u0120Bit": 4722, "Advertisement": 4723, "\u0120guess": - 4724, "\u0120UN": 4725, "\u0120sequ": 4726, "\u0120explain": 4727, "otten": - 4728, "\u0120attract": 4729, "aks": 4730, "\u0120string": 4731, "\u0120context": - 4732, "ossible": 4733, "\u0120Republicans": 4734, "\u0120solid": 4735, "\u0120cities": - 4736, "\u0120asking": 4737, "\u0120random": 4738, "ups": 4739, "uries": 4740, - "arant": 4741, "dden": 4742, "gl": 4743, "\u0120Florida": 4744, "\u0120depend": - 4745, "\u0120Scott": 4746, "\u012033": 4747, "\u0120iT": 4748, "icon": 4749, - "\u0120mentioned": 4750, "\u01202000": 4751, "\u0120claimed": 4752, "\u0120definitely": - 4753, "ulf": 4754, "\u0120core": 4755, "\u0120opening": 4756, "\u0120Const": - 4757, "which": 4758, "\u0120Tra": 4759, "AG": 4760, "72": 4761, "\u0120believed": - 4762, "ada": 4763, "\u012048": 4764, "\u0120Security": 4765, "yright": 4766, - "\u0120Pet": 4767, "\u0120Lou": 4768, "\u0120holding": 4769, "================": - 4770, "\u0120ice": 4771, "\u0120brow": 4772, "\u0120authorities": 4773, "host": - 4774, "word": 4775, "\u0120score": 4776, "\u0120Div": 4777, "\u0120cells": - 4778, "\u0120transl": 4779, "\u0120neighbor": 4780, "\u0120remove": 4781, - "uct": 4782, "\u0120district": 4783, "\u0120According": 4784, "\u0120worse": - 4785, "\u0120concerns": 4786, "\u0120presidential": 4787, "\u0120policies": - 4788, "\u0120Hall": 4789, "73": 4790, "\u0120hus": 4791, "AY": 4792, "\u01202006": - 4793, "\u0120Jud": 4794, "\u0120independent": 4795, "\u0120Justice": 4796, - "iliar": 4797, "print": 4798, "ighter": 4799, "\u0120protection": 4800, "zen": - 4801, "\u0120sudden": 4802, "house": 4803, "\u0120Jes": 4804, "PR": 4805, - "\u0120Inf": 4806, "\u0120bul": 4807, "\u0120_": 4808, "\u0120Service": 4809, - "\u0120PR": 4810, "\u0120strategy": 4811, "ffect": 4812, "\u0120girls": 4813, - "\u0120missing": 4814, "oyal": 4815, "\u0120Team": 4816, "ulated": 4817, "\u0120dat": - 4818, "\u0120politics": 4819, "abor": 4820, "According": 4821, "\u0120spell": - 4822, "\u0120graph": 4823, "orthern": 4824, "TC": 4825, "Ab": 4826, "\u0120labor": - 4827, "isher": 4828, "\u0120kick": 4829, "\u0120iTunes": 4830, "\u0120steps": - 4831, "poses": 4832, "\u0120smaller": 4833, "En": 4834, "bert": 4835, "\u0120roll": - 4836, "\u0120researchers": 4837, "\u0120closed": 4838, "\u0120transport": - 4839, "\u0120lawy": 4840, "________________": 4841, "\u0120Chicago": 4842, - "\u0120aspect": 4843, "\u0120none": 4844, "\u0120marriage": 4845, "96": 4846, - "\u0120elements": 4847, "\u0120Fre": 4848, "\u0120Sal": 4849, "\u0120dram": - 4850, "FC": 4851, "top": 4852, "equ": 4853, "\u0120hearing": 4854, "\u0120supported": - 4855, "\u0120testing": 4856, "cohol": 4857, "\u0120massive": 4858, "\u0120stick": - 4859, "\u0120guard": 4860, "isco": 4861, "phone": 4862, "From": 4863, "However": - 4864, "\u0120border": 4865, "\u0120copy": 4866, "ography": 4867, "list": 4868, - "71": 4869, "\u0120owner": 4870, "class": 4871, "ruit": 4872, "rate": 4873, - "\u0120Once": 4874, "\u0120digital": 4875, "\u0120task": 4876, "ERS": 4877, - "\u0120incred": 4878, "tes": 4879, "++": 4880, "\u0120France": 4881, "\u0120breat": - 4882, "owl": 4883, "\u0120issued": 4884, "\u0120Western": 4885, "\u0120detect": - 4886, "\u0120partners": 4887, "\u0120shared": 4888, "\u0120Call": 4889, "\u0120cancer": - 4890, "ache": 4891, "ribe": 4892, "\u0120explained": 4893, "\u0120heat": 4894, - "{\"": 4895, "\u0120investment": 4896, "\u0120Book": 4897, "\u0120wood": 4898, - "\u0120tools": 4899, "\u0120Although": 4900, "\u0120belief": 4901, "\u0120crisis": - 4902, "\u0120ge": 4903, "\u0120MP": 4904, "\u0120operation": 4905, "type": - 4906, "~~": 4907, "ga": 4908, "\u0120contains": 4909, "anta": 4910, "\u0120express": - 4911, "\u0120Group": 4912, "\u0120Journal": 4913, "ka": 4914, "\u0120amb": - 4915, "\u0120USA": 4916, "\u0120finding": 4917, "\u0120funding": 4918, "how": - 4919, "\u0120established": 4920, "ideos": 4921, "\u0120degree": 4922, "\u0120dangerous": - 4923, "anging": 4924, "\u0120freedom": 4925, "pport": 4926, "outhern": 4927, - "\u0120church": 4928, "\u0120catch": 4929, "\u0120Two": 4930, "\u0120presence": - 4931, "\u0120Guard": 4932, "Up": 4933, "\u0120authority": 4934, "\u0120Project": - 4935, "\u0120button": 4936, "\u0120consequ": 4937, "\u0120valid": 4938, "\u0120weak": - 4939, "\u0120starts": 4940, "\u0120reference": 4941, "\u0120Mem": 4942, "\")": - 4943, "UN": 4944, "orage": 4945, "\u0120Open": 4946, "\u0120collection": 4947, - "ym": 4948, "gency": 4949, "\u0120beautiful": 4950, "ros": 4951, "\u0120tells": - 4952, "\u0120waiting": 4953, "nel": 4954, "\u0120providing": 4955, "\u0120Democrats": - 4956, "\u0120daughter": 4957, "\u0120master": 4958, "\u0120purposes": 4959, - "\u0120Japanese": 4960, "\u0120equal": 4961, "\u0120turns": 4962, "\u0120documents": - 4963, "\u0120watching": 4964, "Res": 4965, "\u0120ran": 4966, "2014": 4967, - "\u0120reject": 4968, "\u0120Korea": 4969, "\u0120victims": 4970, "Level": - 4971, "erences": 4972, "\u0120witness": 4973, "\u012034": 4974, "\u0120reform": - 4975, "coming": 4976, "\u0120occup": 4977, "\u0120caught": 4978, "\u0120traffic": - 4979, "ading": 4980, "\u0120models": 4981, "ario": 4982, "\u0120served": 4983, - "\u0120batter": 4984, "uate": 4985, "\u0120Secretary": 4986, "\u0120agreed": - 4987, "\u0120truly": 4988, "ynam": 4989, "\u0120Ret": 4990, "\u0120units": - 4991, "\u0120Research": 4992, "hand": 4993, "azine": 4994, "\u0120Mike": 4995, - "\u0120variety": 4996, "otal": 4997, "\u0120amazing": 4998, "\u0120confirmed": - 4999, "\u0120entirely": 5000, "\u0120purchase": 5001, "\u0120element": 5002, - "\u0120cash": 5003, "\u0120determine": 5004, "De": 5005, "\u0120cars": 5006, - "\u0120Wall": 5007, "\u00e2\u0138": 5008, "\u0120views": 5009, "\u0120drugs": - 5010, "\u0120department": 5011, "\u0120Step": 5012, "uit": 5013, "\u012039": - 5014, "asure": 5015, "\u0120Class": 5016, "\u0120covered": 5017, "\u0120Bank": - 5018, "\u0120mere": 5019, "uana": 5020, "\u0120multi": 5021, "\u0120mix": - 5022, "\u0120unlike": 5023, "levision": 5024, "\u0120stopped": 5025, "\u0120sem": - 5026, "\u0120Gal": 5027, "ules": 5028, "\u0120wel": 5029, "\u0120Johnson": - 5030, "la": 5031, "\u0120skill": 5032, "\u0120becoming": 5033, "rie": 5034, - "\u0120appropriate": 5035, "fe": 5036, "ellow": 5037, "\u0120Prot": 5038, - "ulate": 5039, "ocation": 5040, "\u0120weekend": 5041, "odies": 5042, "\u0120sites": - 5043, "\u0120animal": 5044, "\u0120Tim": 5045, "\u0120scale": 5046, "\u0120charged": - 5047, "\u0120instruct": 5048, "illa": 5049, "\u0120methods": 5050, "\u0120cert": - 5051, "\u0120judge": 5052, "\u0120Hel": 5053, "\u0120dollars": 5054, "\u0120standing": - 5055, "\u0120Squ": 5056, "\u0120debt": 5057, "liam": 5058, "\u0120driving": - 5059, "\u0120Sum": 5060, "\u0120Edition": 5061, "\u0120album": 5062, "andon": - 5063, "IF": 5064, "\u0120Uk": 5065, "63": 5066, "ader": 5067, "\u0120commercial": - 5068, "esh": 5069, "\u0120Government": 5070, "\u0120discovered": 5071, "\u0120output": - 5072, "\u0120Hillary": 5073, "\u0120Carol": 5074, "\u01202005": 5075, "\u0120abuse": - 5076, "ancing": 5077, "\u0120switch": 5078, "\u0120annual": 5079, "Tw": 5080, - "\u0120stated": 5081, "agement": 5082, "inner": 5083, "\u0120democr": 5084, - "\u0120residents": 5085, "\u0120allowing": 5086, "\u0120factors": 5087, "odd": - 5088, "\u0120fuck": 5089, "emies": 5090, "\u0120occurred": 5091, "oti": 5092, - "\u0120north": 5093, "\u0120Public": 5094, "\u0120injury": 5095, "\u0120insurance": - 5096, "CL": 5097, "olly": 5098, "\u00e3\u0122": 5099, "\u0120repeated": 5100, - "\u0120arms": 5101, "anged": 5102, "\u0120construction": 5103, "\u0120fle": - 5104, "PU": 5105, "icians": 5106, "\u0120forms": 5107, "\u0120McC": 5108, - "antic": 5109, "\u0120mental": 5110, "pire": 5111, "\u0120equipment": 5112, - "\u0120fant": 5113, "\u0120discussion": 5114, "\u0120regarding": 5115, "kin": - 5116, "arp": 5117, "\u0120chair": 5118, "ogue": 5119, "\u0120proceed": 5120, - "\u0120Id": 5121, "Our": 5122, "\u0120murder": 5123, "Man": 5124, "\u012049": - 5125, "asp": 5126, "\u0120supply": 5127, "\u0120input": 5128, "\u0120wealth": - 5129, "liament": 5130, "\u0120proced": 5131, "orial": 5132, "\u0120Stat": - 5133, "\u0120NFL": 5134, "hens": 5135, "\u0120Institute": 5136, "\u0120putting": - 5137, "ournament": 5138, "etic": 5139, "\u0120located": 5140, "\u0120kid": - 5141, "eria": 5142, "run": 5143, "\u0120princ": 5144, "\u0120!": 5145, "going": - 5146, "\u0120Bet": 5147, "\u0120clot": 5148, "\u0120telling": 5149, "\u0120proposed": - 5150, "iot": 5151, "orry": 5152, "\u0120funds": 5153, "gment": 5154, "\u0120Life": - 5155, "\u0120baby": 5156, "\u0120Back": 5157, "\u0120spoke": 5158, "Image": - 5159, "\u0120earn": 5160, "\u0120AT": 5161, "gu": 5162, "\u0120exchange": - 5163, "\u0120Lin": 5164, "oving": 5165, "\u0120pair": 5166, "More": 5167, - "azon": 5168, "\u0120arrested": 5169, "\u0120killing": 5170, "can": 5171, - "\u0120Card": 5172, "yd": 5173, "\u0120identified": 5174, "\u0120mobile": - 5175, "\u0120thanks": 5176, "onym": 5177, "\u0120Form": 5178, "\u0120hundreds": - 5179, "\u0120Chris": 5180, "\u0120Cat": 5181, "\u0120trend": 5182, "hat": - 5183, "\u0120Av": 5184, "oman": 5185, "\u0120electric": 5186, "\u0120Wil": - 5187, "SE": 5188, "Of": 5189, "\u0120restaur": 5190, "oted": 5191, "\u0120trig": - 5192, "\u0120nine": 5193, "\u0120bomb": 5194, "Why": 5195, "\u00c2\u00af": - 5196, "\u0120coverage": 5197, "\u0120appeal": 5198, "\u0120Robert": 5199, - "\u0120Sup": 5200, "\u0120finished": 5201, "\u0120flow": 5202, "\u0120deliver": - 5203, "\u0120calcul": 5204, "\u0120photos": 5205, "\u0120phil": 5206, "\u0120pieces": - 5207, "\u0120appre": 5208, "kes": 5209, "\u0120rough": 5210, "Do": 5211, "\u0120partner": - 5212, "\u0120concerned": 5213, "\u012037": 5214, "\u0120Gen": 5215, "Col": - 5216, "ctors": 5217, "\u0120=>": 5218, "state": 5219, "\u0120suggested": 5220, - "\u0120Force": 5221, "CE": 5222, "\u0120herself": 5223, "\u0120Plan": 5224, - "works": 5225, "ooth": 5226, "rency": 5227, "\u0120corner": 5228, "\u0120husband": - 5229, "\u0120internet": 5230, "\u0120Aut": 5231, "ems": 5232, "osen": 5233, - "\u0120Atl": 5234, "gen": 5235, "\u0120balance": 5236, "62": 5237, "\u0120sounds": - 5238, "text": 5239, "\u0120arr": 5240, "oves": 5241, "\u0120millions": 5242, - "\u0120radio": 5243, "\u0120satisf": 5244, "\u0120Dam": 5245, "Mr": 5246, - "Go": 5247, "Spe": 5248, "\u0120combat": 5249, "rant": 5250, "\u0120Gree": - 5251, "\u0120fuel": 5252, "\u0120distance": 5253, "\u0120tests": 5254, "\u0120decre": - 5255, "\u0120Er": 5256, "\u0120managed": 5257, "DS": 5258, "\u0120tit": 5259, - "\u0120measures": 5260, "\u0120Liber": 5261, "\u0120attend": 5262, "ashed": - 5263, "\u0120Jose": 5264, "\u0120Night": 5265, "dit": 5266, "\u0120Nov": 5267, - "\u0120End": 5268, "outs": 5269, "\u0120generation": 5270, "\u0120advoc": - 5271, "yth": 5272, "\u0120conversation": 5273, "\u0120Sky": 5274, "active": - 5275, "cel": 5276, "rier": 5277, "\u0120Frank": 5278, "\u0120gender": 5279, - "\u0120concent": 5280, "\u0120carried": 5281, "anda": 5282, "\u0120Virgin": - 5283, "\u0120arrived": 5284, "icide": 5285, "aded": 5286, "\u0120failure": - 5287, "\u0120minimum": 5288, "lets": 5289, "\u0120worst": 5290, "\u0120keeping": - 5291, "\u0120intended": 5292, "\u0120illegal": 5293, "\u0120subsc": 5294, - "\u0120determined": 5295, "\u0120trip": 5296, "Yes": 5297, "\u0120raise": - 5298, "\u0120~": 5299, "\u0120feels": 5300, "\u0120package": 5301, "\u0120Jo": - 5302, "hi": 5303, "2016": 5304, "real": 5305, "\u0120fra": 5306, "\u0120symb": - 5307, "Me": 5308, "ucky": 5309, "pret": 5310, "\u0120Kh": 5311, "\u0120Edit": - 5312, "\u0120Web": 5313, "emic": 5314, "\u0120Color": 5315, "\u0120justice": - 5316, "Int": 5317, "\u0120farm": 5318, "cknow": 5319, "\">": 5320, "eless": - 5321, "\u0120reduced": 5322, "\u0120500": 5323, "xx": 5324, "\u0120Rad": 5325, - "\u0120Wood": 5326, "\u0120clin": 5327, "\u0120hyp": 5328, "iler": 5329, "ura": - 5330, "kins": 5331, "85": 5332, "61": 5333, "\u0120Their": 5334, "\u0120Mary": - 5335, "\u0120san": 5336, "\u0120novel": 5337, "\u0120Who": 5338, "\u0120capacity": - 5339, "\u0120impossible": 5340, "\u0120plays": 5341, "\u0120minister": 5342, - "ijuana": 5343, "icate": 5344, "\u0120Set": 5345, "\u0120fram": 5346, "\u0120ing": - 5347, "\u0120communities": 5348, "\u0120FBI": 5349, "ita": 5350, "\u0120bon": - 5351, "\u0120strateg": 5352, "\u0120interests": 5353, "lock": 5354, "gers": - 5355, "mas": 5356, "\u0120AND": 5357, "\u0120conflict": 5358, "\u0120requirements": - 5359, "\u0120sac": 5360, "\u0120operating": 5361, "ini": 5362, "related": - 5363, "\u0120committed": 5364, "\u0120relatively": 5365, "\u0120south": 5366, - "\u00c2\u00af\u00c2\u00af": 5367, "\u0120afford": 5368, "\u0120identity": - 5369, "\u0120decisions": 5370, "\u0120accused": 5371, "place": 5372, "\u0120victory": - 5373, "och": 5374, "iat": 5375, "Name": 5376, "Com": 5377, "tion": 5378, "eds": - 5379, "\u0120seek": 5380, "\u0120tight": 5381, "\u0120Images": 5382, "\u0120initi": - 5383, "\u0120humans": 5384, "\u0120familiar": 5385, "\u0120audience": 5386, - "\u0120internal": 5387, "venture": 5388, "\u0120sides": 5389, "\u0120TO": - 5390, "\u0120dim": 5391, "\u0120conclud": 5392, "\u0120appoint": 5393, "\u0120enforcement": - 5394, "\u0120Jim": 5395, "\u0120Association": 5396, "\u0120circumst": 5397, - "\u0120Canadian": 5398, "\u0120joined": 5399, "\u0120differences": 5400, "\u0120Los": - 5401, "\u0120protest": 5402, "\u0120twice": 5403, "win": 5404, "\u0120glass": - 5405, "arsh": 5406, "\u0120Army": 5407, "\u0120expression": 5408, "\u0120decide": - 5409, "\u0120planning": 5410, "ania": 5411, "\u0120handle": 5412, "\u0120Microsoft": - 5413, "\u0120Nor": 5414, "\u0120maximum": 5415, "\u0120Rev": 5416, "\u0120sea": - 5417, "\u0120eval": 5418, "\u0120helps": 5419, "ref": 5420, "\u0120bound": - 5421, "\u0120mouth": 5422, "\u0120standards": 5423, "\u0120clim": 5424, "\u0120Camp": - 5425, "\u0120Fox": 5426, "cles": 5427, "\u0120army": 5428, "\u0120Techn": - 5429, "acking": 5430, "xy": 5431, "SS": 5432, "\u012042": 5433, "\u0120bug": - 5434, "\u0120Ukrain": 5435, "\u0120Max": 5436, "\u0120Jones": 5437, "\u0120Show": - 5438, "lo": 5439, "\u0120planet": 5440, "\u012075": 5441, "\u0120winning": - 5442, "\u0120faster": 5443, "\u0120spect": 5444, "\u0120broken": 5445, "TR": - 5446, "\u0120defined": 5447, "\u0120healthy": 5448, "\u0120competition": 5449, - "https": 5450, "\u0120Island": 5451, "\u0120Fe": 5452, "\u0120announce": 5453, - "\u0120Cup": 5454, "\u0120Instead": 5455, "\u0120client": 5456, "\u0120possibly": - 5457, "section": 5458, "ocket": 5459, "look": 5460, "\u0120finish": 5461, - "\u0120crew": 5462, "\u0120reserv": 5463, "\u0120editor": 5464, "\u0120hate": - 5465, "\u0120sale": 5466, "\u0120controvers": 5467, "\u0120pages": 5468, "wing": - 5469, "\u0120numer": 5470, "\u0120opposition": 5471, "\u01202004": 5472, "\u0120refuge": - 5473, "\u0120flight": 5474, "\u0120apart": 5475, "\u0120Lat": 5476, "Americ": - 5477, "\u0120Africa": 5478, "\u0120applications": 5479, "\u0120Palest": 5480, - "\u0120Bur": 5481, "\u0120gar": 5482, "\u0120Social": 5483, "\u0120upgr": - 5484, "\u0120shape": 5485, "\u0120speaking": 5486, "ansion": 5487, "ao": 5488, - "\u0120Sn": 5489, "\u0120worry": 5490, "\u0120Britain": 5491, "Please": 5492, - "roud": 5493, "\u0120hun": 5494, "\u0120introduced": 5495, "\u0120diet": 5496, - "Ind": 5497, "\u0120Second": 5498, "\u0120functions": 5499, "uts": 5500, "\u0120Each": - 5501, "\u0120Jeff": 5502, "\u0120stress": 5503, "\u0120accounts": 5504, "\u0120guarant": - 5505, "\u0120Ann": 5506, "edia": 5507, "\u0120honest": 5508, "\u0120tree": - 5509, "\u0120African": 5510, "\u0120Bush": 5511, "},": 5512, "\u0120sch": - 5513, "\u0120Only": 5514, "\u0120fif": 5515, "igan": 5516, "\u0120exercise": - 5517, "\u0120Exp": 5518, "\u0120scientists": 5519, "\u0120legislation": 5520, - "\u0120Work": 5521, "\u0120Spr": 5522, "\u00c3\u0124": 5523, "\u0120Human": - 5524, "\u0120\u00e8": 5525, "\u0120survey": 5526, "\u0120rich": 5527, "rip": - 5528, "\u0120maintain": 5529, "\u0120flo": 5530, "\u0120leadership": 5531, - "stream": 5532, "\u0120Islamic": 5533, "\u012001": 5534, "\u0120College": - 5535, "\u0120magic": 5536, "\u0120Prime": 5537, "\u0120figures": 5538, "2017": - 5539, "inder": 5540, "xual": 5541, "\u0120Dead": 5542, "\u0120absolutely": - 5543, "\u0120fourth": 5544, "\u0120presented": 5545, "respond": 5546, "rible": - 5547, "\u0120alcohol": 5548, "ato": 5549, "\u0120DE": 5550, "porary": 5551, - "\u0120grab": 5552, "\u0120vari": 5553, "\u0120quant": 5554, "\u0120Photo": - 5555, "\u0120plus": 5556, "rick": 5557, "arks": 5558, "\u0120alternative": - 5559, "\u0120pil": 5560, "\u0120approx": 5561, "that": 5562, "\u0120objects": - 5563, "\u0120Ro": 5564, "\u0120Android": 5565, "\u0120significantly": 5566, - "\u0120Road": 5567, "kay": 5568, "Read": 5569, "avor": 5570, "\u0120acknow": - 5571, "\u0120HD": 5572, "\u0120Sing": 5573, "Or": 5574, "\u0120Mont": 5575, - "\u0120uns": 5576, "prof": 5577, "\u0120negoti": 5578, "\u0120Arch": 5579, - "iki": 5580, "\u0120television": 5581, "\u0120Jewish": 5582, "\u0120committee": - 5583, "\u0120motor": 5584, "\u0120appearance": 5585, "\u0120sitting": 5586, - "\u0120strike": 5587, "\u0120Down": 5588, "comp": 5589, "\u0120Hist": 5590, - "\u0120fold": 5591, "acement": 5592, "\u0120Louis": 5593, "\u0120belong": - 5594, "\u0120\u00e2\u0122\u00a2": 5595, "\u0120mort": 5596, "\u0120prepared": - 5597, "\u012064": 5598, "\u0120Master": 5599, "\u0120indeed": 5600, "\u0120Den": - 5601, "\u0120rent": 5602, "TA": 5603, "ourney": 5604, "arc": 5605, "Su": 5606, - "97": 5607, "\u0120advice": 5608, "\u0120changing": 5609, "\u0120listed": - 5610, "\u0120launched": 5611, "isation": 5612, "\u0120Peter": 5613, "ishes": - 5614, "\u0120lived": 5615, "\u0120Mel": 5616, "\u0120Supreme": 5617, "\u0120Federal": - 5618, "\u0120);": 5619, "ructure": 5620, "\u0120sets": 5621, "\u0120philos": - 5622, "uous": 5623, "\u0120\u00c2\u0142": 5624, "\u0120applied": 5625, "\u0120NOT": - 5626, "\u0120housing": 5627, "\u0120Mount": 5628, "\u0120odd": 5629, "\u0120sust": - 5630, "DA": 5631, "fficient": 5632, "\u0120?": 5633, "olved": 5634, "\u0120powers": - 5635, "\u0120thr": 5636, "\u0120remaining": 5637, "\u0120Water": 5638, "LC": - 5639, "\u0120causes": 5640, "\u00e3\u0123\u00ae": 5641, "\u0120manner": 5642, - "ads": 5643, "\u0120suggests": 5644, "\u0120ends": 5645, "standing": 5646, - "fig": 5647, "\u0120Dun": 5648, "idth": 5649, "\u0120gay": 5650, "\u0120termin": - 5651, "\u0120Angeles": 5652, "MS": 5653, "\u0120scientific": 5654, "\u0120coal": - 5655, "apers": 5656, "bar": 5657, "\u0120Thomas": 5658, "\u0120sym": 5659, - "\u0120Run": 5660, "this": 5661, "PC": 5662, "igrants": 5663, "\u0120minute": - 5664, "\u0120District": 5665, "cellent": 5666, "\u0120leaves": 5667, "\u0120completed": - 5668, "amin": 5669, "\u0120focused": 5670, "\u0120monitor": 5671, "\u0120vehicles": - 5672, "MA": 5673, "\u0120Mass": 5674, "\u0120Grand": 5675, "\u0120affected": - 5676, "itutional": 5677, "\u0120construct": 5678, "\u0120follows": 5679, "\u0120ton": - 5680, "reens": 5681, "\u0120homes": 5682, "\u0120Ext": 5683, "\u0120Level": - 5684, "rast": 5685, "\u0120Ir": 5686, "\u0120elim": 5687, "\u0120largely": - 5688, "\u0120Joe": 5689, "\u0120votes": 5690, "alls": 5691, "\u0120businesses": - 5692, "\u0120Foundation": 5693, "\u0120Central": 5694, "\u0120yards": 5695, - "\u0120materials": 5696, "ulner": 5697, "\u0120guide": 5698, "\u0120closer": - 5699, "ums": 5700, "\u0120sports": 5701, "eder": 5702, "Just": 5703, "\u0120taxes": - 5704, "84": 5705, "\u0120Old": 5706, "\u0120decade": 5707, "ola": 5708, "\u0120vir": - 5709, "\u0120dropped": 5710, "\u0120delay": 5711, "itect": 5712, "\u0120secure": - 5713, "stein": 5714, "level": 5715, "\u0120treated": 5716, "\u0120filed": - 5717, "aine": 5718, "\u0120van": 5719, "\u0120mir": 5720, "\u0120column": - 5721, "icted": 5722, "eper": 5723, "\u0120rot": 5724, "\u0120consult": 5725, - "\u0120entry": 5726, "\u0120marijuana": 5727, "\u0120Dou": 5728, "\u0120apparently": - 5729, "oking": 5730, "clusive": 5731, "\u0120increases": 5732, "ano": 5733, - "\u0120specifically": 5734, "\u0120tele": 5735, "ensions": 5736, "\u0120religion": - 5737, "abilities": 5738, "\u0120frame": 5739, "\u0120Note": 5740, "\u0120Lee": - 5741, "\u0120helping": 5742, "\u0120edge": 5743, "oston": 5744, "\u0120organizations": - 5745, "\u00c3\u0125": 5746, "\u0120Both": 5747, "hips": 5748, "\u0120bigger": - 5749, "\u0120boost": 5750, "\u0120Stand": 5751, "\u0120row": 5752, "uls": - 5753, "abase": 5754, "\u0120rid": 5755, "Let": 5756, "aren": 5757, "rave": - 5758, "\u0120stret": 5759, "PD": 5760, "\u0120vision": 5761, "\u0120wearing": - 5762, "\u0120appreci": 5763, "\u0120award": 5764, "\u0120Use": 5765, "\u0120factor": - 5766, "war": 5767, "ulations": 5768, ")(": 5769, "\u0120god": 5770, "\u0120territ": - 5771, "\u0120param": 5772, "asts": 5773, "87": 5774, "\u0120enemies": 5775, - "\u0120Games": 5776, "FF": 5777, "\u0120accident": 5778, "Well": 5779, "\u0120Martin": - 5780, "TER": 5781, "\u0120ath": 5782, "\u0120Hell": 5783, "\u0120forg": 5784, - "\u0120veter": 5785, "\u0120Medic": 5786, "free": 5787, "\u0120stars": 5788, - "\u0120expensive": 5789, "\u0120acad": 5790, "rawn": 5791, "\u0120Whe": 5792, - "\u0120lock": 5793, "\u0120format": 5794, "\u0120soldiers": 5795, "sm": 5796, - "\u0120agent": 5797, "\u0120responsibility": 5798, "ora": 5799, "\u0120Science": - 5800, "\u0120rapid": 5801, "\u0120tough": 5802, "\u0120Jesus": 5803, "\u0120believes": - 5804, "ML": 5805, "\u0120wear": 5806, "lete": 5807, "\u00c3\u0125\u00c3\u0124": - 5808, "\u0120Dri": 5809, "\u0120commission": 5810, "\u0120Bob": 5811, "Oh": - 5812, "aped": 5813, "\u0120warm": 5814, "\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124": - 5815, "\u01202003": 5816, "ortion": 5817, "\u0120hasn": 5818, "uster": 5819, - "\u0120univers": 5820, "\u0120Ill": 5821, "\u0120king": 5822, "ologies": 5823, - "94": 5824, "\u0120Tem": 5825, "\u0120Mos": 5826, "\u0120patient": 5827, "\u0120Mexico": - 5828, "cean": 5829, "\u0120Death": 5830, "\u0120Sanders": 5831, "you": 5832, - "\u0120Cast": 5833, "\u0120Company": 5834, "pty": 5835, "\u0120happening": - 5836, "FP": 5837, "\u0120Battle": 5838, "\u0120bought": 5839, "Am": 5840, - "Mod": 5841, "Us": 5842, "uters": 5843, "\u0120Cre": 5844, "\u0120Those": - 5845, "\u012044": 5846, "iser": 5847, "\u0120soul": 5848, "\u0120Top": 5849, - "\u0120Harry": 5850, "\u0120Aw": 5851, "\u0120seat": 5852, "ffee": 5853, "\u0120revolution": - 5854, "\u0120(\"": 5855, "\u0120During": 5856, "ette": 5857, "\u0120ring": - 5858, "\u0120offensive": 5859, "\u0120returns": 5860, "\u0120videos": 5861, - "\u0120discl": 5862, "\u0120famous": 5863, "enced": 5864, "\u0120Sign": 5865, - "\u0120River": 5866, "\u0120300": 5867, "PM": 5868, "\u0120Bus": 5869, "\u0120CH": - 5870, "\u0120candidates": 5871, "arden": 5872, "\u0120percentage": 5873, "\u0120visual": - 5874, "\u0120thank": 5875, "\u0120trouble": 5876, "nergy": 5877, "\u01202001": - 5878, "\u0120prove": 5879, "ashion": 5880, "\u0120enh": 5881, "\u0120Long": - 5882, "UM": 5883, "\u0120connected": 5884, "\u0120possibility": 5885, "Over": - 5886, "\u0120expert": 5887, "\u0120library": 5888, "arts": 5889, "\u0120Director": - 5890, "\u0120fellow": 5891, "92": 5892, "irty": 5893, "\u0120dry": 5894, "\u0120signs": - 5895, "\u0120Love": 5896, "\u0120quiet": 5897, "foot": 5898, "\u0120pure": - 5899, "\u0120Hun": 5900, "\u0120filled": 5901, "phas": 5902, "\u0120Elect": - 5903, "endment": 5904, "\u0120Expl": 5905, "\u0120unable": 5906, "ns": 5907, - "mo": 5908, "\u0120vast": 5909, "obe": 5910, "\u0120identify": 5911, "apping": - 5912, "\u0120Carolina": 5913, "gress": 5914, "\u0120prote": 5915, "\u0120fish": - 5916, "\u0120circumstances": 5917, "razy": 5918, "\u0120Phot": 5919, "\u0120bodies": - 5920, "\u0120Mur": 5921, "\u0120developing": 5922, "\u0120AR": 5923, "\u0120experienced": - 5924, "\u0120substant": 5925, "\u0120Board": 5926, "esome": 5927, "\u0120domestic": - 5928, "\u0120combined": 5929, "\u0120Put": 5930, "\u0120chemical": 5931, "\u0120Child": - 5932, "\u0120pool": 5933, "\u0120Cy": 5934, "\u0120egg": 5935, "cons": 5936, - "sters": 5937, "\u0120hurt": 5938, "\u0120markets": 5939, "\u0120conservative": - 5940, "\u0120supporters": 5941, "\u0120agencies": 5942, "idel": 5943, "Ob": - 5944, "urb": 5945, "\u012043": 5946, "\u0120Defense": 5947, "ye": 5948, "\u0120Ap": - 5949, "dule": 5950, "\u0120temperature": 5951, "\u0120conducted": 5952, "\u0120Chief": - 5953, "\u0120pulled": 5954, "\u0120fol": 5955, "Last": 5956, "onto": 5957, - "osis": 5958, "VER": 5959, "Des": 5960, "\u0120Pan": 5961, "First": 5962, - "\u0120advance": 5963, "\u0120license": 5964, "rors": 5965, "\u0120Jon": 5966, - "\u0120imagine": 5967, "\u0120hell": 5968, "\u0120fixed": 5969, "\u0120incor": - 5970, "osite": 5971, "\u0120Log": 5972, "icken": 5973, "]:": 5974, "\u0120surprise": - 5975, "hab": 5976, "\u0120craft": 5977, "olt": 5978, "\u0120Jul": 5979, "\u0120dial": - 5980, "\u0120relevant": 5981, "\u0120entered": 5982, "\u0120leads": 5983, - "\u0120AD": 5984, "\u0120Clean": 5985, "\u0120pictures": 5986, "essor": 5987, - "\u0120alt": 5988, "\u0120paying": 5989, "Per": 5990, "\u0120Market": 5991, - "\u0120updates": 5992, "amily": 5993, "\u0120Type": 5994, "\u0120Home": 5995, - "\u012055": 5996, "sembly": 5997, "rome": 5998, "83": 5999, "\u0120greatest": - 6000, "\u0120height": 6001, "\u0120heav": 6002, "aints": 6003, "\u0120listen": - 6004, "aser": 6005, "\u0120SH": 6006, "\u0120capable": 6007, "acle": 6008, - "\u0120perspect": 6009, "inating": 6010, "\u0120offering": 6011, "rypt": 6012, - "\u0120Develop": 6013, "abin": 6014, "rc": 6015, "\u0120bright": 6016, "alty": - 6017, "arrow": 6018, "\u0120suppl": 6019, "inding": 6020, "acked": 6021, "gypt": - 6022, "\u0120Another": 6023, "pg": 6024, "\u0120Virginia": 6025, "\u0120Lu": - 6026, "\u0120planned": 6027, "\u0120pit": 6028, "\u0120sweet": 6029, "Type": - 6030, "\u0120Di": 6031, "\u0120typically": 6032, "\u0120Francisco": 6033, - "\u0120prospect": 6034, "\u0120Dan": 6035, "\u0120teen": 6036, "rees": 6037, - "\u0120sched": 6038, "\u0120hol": 6039, "\u0120scr": 6040, "\u0120lots": 6041, - "life": 6042, "\u0120newsp": 6043, "\u0120forget": 6044, "\u0120None": 6045, - "\u0120Middle": 6046, "\u0120Ryan": 6047, "edd": 6048, "\u0120severe": 6049, - "\u0120suit": 6050, "ller": 6051, "93": 6052, "\u0120correspond": 6053, "\u0120explos": - 6054, "uations": 6055, "\u0120flag": 6056, "game": 6057, "rid": 6058, "\u0120prin": - 6059, "\u0120Data": 6060, "\u0120deploy": 6061, "\u0120Enter": 6062, "suit": - 6063, "ghan": 6064, "\u0120Men": 6065, "\u0120thoughts": 6066, "\u0120matters": - 6067, "\u0120adapt": 6068, "\u0120Ari": 6069, "\u0120fill": 6070, "\u0120forth": - 6071, "\u0120sam": 6072, "\u012041": 6073, "\u0120payment": 6074, "\u0120Hor": - 6075, "\u0120spring": 6076, "duc": 6077, "\u0120losing": 6078, "\u0120bringing": - 6079, "FO": 6080, "ala": 6081, "\u0120distribution": 6082, "hered": 6083, - "bour": 6084, "\u0120Israeli": 6085, "oma": 6086, "\u0120combination": 6087, - "\u0120plenty": 6088, "VE": 6089, "Can": 6090, "\u0120Haw": 6091, "\u0120perman": - 6092, "\u0120Special": 6093, "\u0120tow": 6094, "\u0120seeking": 6095, "\u0120examples": - 6096, "\u0120classes": 6097, "cr": 6098, "\u0120beer": 6099, "\u0120moves": - 6100, "\u0120IP": 6101, "\u0120Kn": 6102, "\u0120panel": 6103, "Even": 6104, - "\u0120properly": 6105, "\u0120ris": 6106, "\u0120plug": 6107, "\u0120estimated": - 6108, "Every": 6109, "\u0120defensive": 6110, "agraph": 6111, "\u0120pregn": - 6112, "\u0120instit": 6113, "\u0120Vict": 6114, "\u0120volume": 6115, "\u0120positions": - 6116, "\u0120links": 6117, "\u0120Program": 6118, "\u0120Week": 6119, "agues": - 6120, "\u0120transform": 6121, "ker": 6122, "\u0120CEO": 6123, "\u0120cas": - 6124, "\u0120opponent": 6125, "\u0120tweet": 6126, "\u0120Code": 6127, "\u0120shop": - 6128, "\u0120fly": 6129, "\u0120talks": 6130, "\u0120bag": 6131, "Phone": - 6132, "\u0120aid": 6133, "\u0120plants": 6134, "\u012065": 6135, "\u0120attorney": - 6136, "arters": 6137, "quest": 6138, "\u0120Magic": 6139, "\u0120begins": - 6140, "\u0120myster": 6141, "\u0120environmental": 6142, "\u0120storage": - 6143, "NN": 6144, "\u0120marg": 6145, "\u0120ske": 6146, "\u0120metal": 6147, - "elly": 6148, "\u0120ordered": 6149, "\u0120remained": 6150, "\u0120loved": - 6151, "\u0120prompt": 6152, "\u0120updated": 6153, "\u0120experts": 6154, - "\u0120walking": 6155, "\u0120ancient": 6156, "\u0120performed": 6157, "ATE": - 6158, "\u0120neither": 6159, "iency": 6160, "\u0120manufacture": 6161, "\u0120Pak": - 6162, "\u0120selected": 6163, "\u0120mine": 6164, "\u0120ultimately": 6165, - "\u0120explan": 6166, "\u0120label": 6167, "\u0120Services": 6168, "ributed": - 6169, "Trump": 6170, "\u0120syn": 6171, "\u0120Ult": 6172, "SC": 6173, "\u0120meat": - 6174, "\u0120giant": 6175, "\u0120Wars": 6176, "\u0120ON": 6177, "\u0120adm": - 6178, "\u0120interpret": 6179, "\u0120evening": 6180, "\u0120evil": 6181, - "\u0120Boston": 6182, "\u0120Wild": 6183, "\u0120\u00c3": 6184, "\u0120Bitcoin": - 6185, "\u0120Amazon": 6186, "Dr": 6187, "\u0120Information": 6188, "\u0120obviously": - 6189, "\u0120advanced": 6190, "Photo": 6191, "olar": 6192, "\u0120weather": - 6193, "\u0120symbol": 6194, "\u0120sole": 6195, "\u0120potentially": 6196, - "oster": 6197, "\u0120originally": 6198, "mun": 6199, "300": 6200, "aze": - 6201, "essions": 6202, "\u0120deck": 6203, "\u0120stood": 6204, "\u0120youth": - 6205, "\u0120Bern": 6206, "Rep": 6207, "\u0120Test": 6208, "\u0120basically": - 6209, "otic": 6210, "\u0120involve": 6211, "olit": 6212, "lyn": 6213, "See": - 6214, "\u0120aircraft": 6215, "\u0120confirm": 6216, "EW": 6217, "\u0120messages": - 6218, "\u0120Richard": 6219, "\u0120kit": 6220, "\u0120prohib": 6221, "\u0120vulner": - 6222, "isters": 6223, "\u0120existence": 6224, "\u0120turning": 6225, "\u0120SP": - 6226, "\u0120desire": 6227, "\u0120flat": 6228, "\u0120ment": 6229, "season": - 6230, "anges": 6231, "\u0120neighborhood": 6232, "\u0120Lake": 6233, "ATION": - 6234, "\u0120pointed": 6235, "bur": 6236, "\u0120innov": 6237, "ucks": 6238, - "UL": 6239, "\u0120professor": 6240, "\u0120expressed": 6241, "AB": 6242, - "icious": 6243, "\u01202002": 6244, "\u0120Dev": 6245, "\u0120session": 6246, - "\u0120bare": 6247, "sen": 6248, "\u0120diss": 6249, "\u0120Cath": 6250, "\u0120Pass": - 6251, "\u0120Point": 6252, "\u0120doctor": 6253, "orrow": 6254, "ailed": 6255, - "\u0120Rub": 6256, "\u0120DC": 6257, "\u0120Charl": 6258, "person": 6259, - "\u0120writer": 6260, "ighters": 6261, "ureau": 6262, "\u0120oblig": 6263, - "\u0120recorded": 6264, "\u0120broke": 6265, "\u0120orders": 6266, "ilty": - 6267, "\u0120motion": 6268, "inity": 6269, "law": 6270, "adium": 6271, "\u0120immigration": - 6272, "\u0120contrast": 6273, "\u0120batt": 6274, "\u0120excellent": 6275, - "\u0120technical": 6276, "ami": 6277, "\u0120tun": 6278, "\u0120cloud": 6279, - "\u0120Year": 6280, "geon": 6281, "\u0120creation": 6282, "\u0120strange": - 6283, "\u0120auth": 6284, "\u0120fort": 6285, "born": 6286, "\u0120extent": - 6287, "\u0120Today": 6288, "\u0120Club": 6289, "\u0120rain": 6290, "\u0120sample": - 6291, "\u0120accepted": 6292, "\u0120tact": 6293, "\u0120fired": 6294, "\u0120Son": - 6295, "\u0120stands": 6296, "\u0120boot": 6297, "\u012047": 6298, "\u0120statements": - 6299, "\u0120versions": 6300, "\u0120selling": 6301, "ounded": 6302, "\u01201990": - 6303, "\u0120weren": 6304, "\u0120Watch": 6305, "\u0120experiment": 6306, - "Post": 6307, "\u0120retail": 6308, "uled": 6309, "Inst": 6310, "unte": 6311, - "\u00e3\u0125\u00bc": 6312, "\u0120depart": 6313, "\u0120bond": 6314, "ivery": - 6315, "ompl": 6316, "\u0120reaction": 6317, "\u0120Syrian": 6318, "\u0120Pac": - 6319, "apped": 6320, "aniel": 6321, "DP": 6322, "\u0120resolution": 6323, - "\u0120react": 6324, "\u0120approved": 6325, "onom": 6326, "mond": 6327, "\u0120Offic": - 6328, "---": 6329, "\u0120replace": 6330, "\u0120tack": 6331, "\u0120sport": - 6332, "\u0120chain": 6333, "\u0120emergency": 6334, "rad": 6335, "\u0120Palestin": - 6336, "\u012046": 6337, "\u0120automatically": 6338, "\u0120route": 6339, - "\u0120pal": 6340, "\u0120banks": 6341, "\u0120Paris": 6342, "\u0120Media": - 6343, "road": 6344, "icing": 6345, "ixt": 6346, "isted": 6347, "\u0120grew": - 6348, "\u0120coord": 6349, "\u0120Where": 6350, "omin": 6351, "\u0120subs": - 6352, "\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd": 6353, "\u0120\u00c2\u00b1": - 6354, "\u0120corporate": 6355, "\u0120selection": 6356, "noon": 6357, "\u0120Report": - 6358, "cs": 6359, "cluding": 6360, "orders": 6361, "anche": 6362, "\u0120Its": - 6363, "\u0120slowly": 6364, "\u0120Egypt": 6365, "\u0120Acc": 6366, "\u0120colle": - 6367, "iques": 6368, "EX": 6369, "\u0120attempts": 6370, "url": 6371, "\u0120Cross": - 6372, "\u0120findings": 6373, "\u0120SC": 6374, "\u0120OR": 6375, "\u0120index": - 6376, "ensity": 6377, "\u0120Way": 6378, "\u0120Land": 6379, "\u0120shock": - 6380, "dis": 6381, "\u0120dynam": 6382, "\u0120cart": 6383, "mosp": 6384, - "Since": 6385, "iest": 6386, "\u0120Boy": 6387, "\u0120storm": 6388, "\u0120Contin": - 6389, "2013": 6390, "hew": 6391, "ilit": 6392, "\u0120essential": 6393, "iquid": - 6394, "Other": 6395, "ivered": 6396, "\u0120reasonable": 6397, "Act": 6398, - "\u0120subsequ": 6399, "\u0120Pack": 6400, "\u0120Fort": 6401, "\u0120considering": - 6402, "\u0120university": 6403, "log": 6404, "\u0120married": 6405, "\u0120illust": - 6406, "\u0120True": 6407, "\u00a3\u0131": 6408, "\u0120numerous": 6409, "rastructure": - 6410, "\u0120seriously": 6411, "\u0120referred": 6412, "ua": 6413, "\u0120consistent": - 6414, "onna": 6415, "\u0120Real": 6416, "ruption": 6417, "ciples": 6418, "\u0120facts": - 6419, "91": 6420, "otes": 6421, "erg": 6422, "Then": 6423, "\u0120accompl": - 6424, "Note": 6425, "\u0120revenue": 6426, "\u0120passing": 6427, "\u0120mal": - 6428, "een": 6429, "\u0120Yet": 6430, "\u0120gather": 6431, "terday": 6432, - "ework": 6433, "\u0120Author": 6434, "Pe": 6435, "\u0120optim": 6436, "\u0120rub": - 6437, "\u0120\u00e8\u00a3\u0131": 6438, "\u0120unknown": 6439, "stone": 6440, - "\u0120union": 6441, "olve": 6442, "\u0120opportunities": 6443, "\u0120browser": - 6444, "\u0120Wal": 6445, "\u0120Cost": 6446, "\u0120reporting": 6447, "sts": - 6448, "pet": 6449, "\u0120sand": 6450, "\u0120suddenly": 6451, "\u0120surprising": - 6452, "\u0120VR": 6453, "\u0120somewhat": 6454, "\u0120Bas": 6455, "ulture": - 6456, "izz": 6457, "\u0120CD": 6458, "\u0120challenges": 6459, "\u0120settings": - 6460, "\u0120experiences": 6461, "\u0120Full": 6462, "\u0120cann": 6463, "\u0120receiving": - 6464, "EST": 6465, "\u0120joint": 6466, "\u0120cultural": 6467, "\u0120ast": - 6468, "82": 6469, "astern": 6470, "ceived": 6471, "\u0120Cru": 6472, "\u0120bull": - 6473, "pired": 6474, "amm": 6475, "\u0120facing": 6476, "power": 6477, "\u0120boss": - 6478, "\u0120Hol": 6479, "\u0120instr": 6480, "\u0120increasingly": 6481, - "\u0120shift": 6482, "\u0120streets": 6483, "\u0120Williams": 6484, "abb": - 6485, "\u0120lie": 6486, "\u0120laugh": 6487, "\u0120Ca": 6488, "PL": 6489, - "\u0120adults": 6490, "\u0120customer": 6491, "\u0120obtained": 6492, "\u0120supporting": - 6493, "html": 6494, "fire": 6495, "\u0120detailed": 6496, "\u0120picked": - 6497, "\u0120Right": 6498, "lder": 6499, "EE": 6500, "stood": 6501, "\u0120Kim": - 6502, "\u0120wire": 6503, "\u0120sight": 6504, "\u0120developers": 6505, "\u0120persons": - 6506, "\u0120sad": 6507, "\u0120cup": 6508, "\u0120warning": 6509, "\u0120boys": - 6510, "long": 6511, "\u0120bird": 6512, "fo": 6513, "\u0120wal": 6514, "\u0120observed": - 6515, "\u0120zone": 6516, "iveness": 6517, "\u0120channel": 6518, "cript": - 6519, "\u0120refused": 6520, "\u0120Again": 6521, "\u0120suc": 6522, "\u0120spokesman": - 6523, "\u0120Ref": 6524, "rite": 6525, "ouston": 6526, "\u00e3\u0125\u00b3": - 6527, "\u0120Sher": 6528, "\u0120acts": 6529, "\u0120Name": 6530, "\u0120struggle": - 6531, "arry": 6532, "ometimes": 6533, "\u0120discrim": 6534, "HT": 6535, "\u0120category": - 6536, "\u0120realize": 6537, "\u0120employee": 6538, "\u0120Afghan": 6539, - "enger": 6540, "\u0120guns": 6541, "\u0120Steve": 6542, "\u0120Mot": 6543, - "\u0120Ol": 6544, "oked": 6545, "\u0120thick": 6546, "\u0120fairly": 6547, - "illy": 6548, "\u0120surve": 6549, "\u0120Mat": 6550, "weight": 6551, "\u00e2\u0136": - 6552, "\u0120troops": 6553, "\u0120agents": 6554, "\u0120battery": 6555, "\u0120motiv": - 6556, "\u00c3\u00a1": 6557, "Sec": 6558, "den": 6559, "overy": 6560, "LS": - 6561, "\u0120flu": 6562, "\u0120confident": 6563, "\u0120Oper": 6564, "\u0120empty": - 6565, "\u0120phen": 6566, "\u0120sector": 6567, "\u0120excited": 6568, "\u0120remote": - 6569, "aph": 6570, "oen": 6571, "\u0120destroyed": 6572, "\u0120moral": 6573, - "\u0120HP": 6574, "\u0120Ron": 6575, "\u0120dress": 6576, "\u0120Bat": 6577, - "\u0120lit": 6578, "\u0120MS": 6579, "\u0120af": 6580, "HL": 6581, "rum": - 6582, "isms": 6583, "\u0120shouldn": 6584, "\u0120sympt": 6585, "\u0120Toronto": - 6586, "hetic": 6587, "\u0120carbon": 6588, "\u0120installed": 6589, "\u0120violent": - 6590, "\u0120solar": 6591, "ja": 6592, "\u0120practices": 6593, "\u0120ride": - 6594, "\u0120Penn": 6595, "\u0120improved": 6596, "\u0120audio": 6597, "\u0120behavi": - 6598, "\u0120PS": 6599, "\u0120eating": 6600, "Data": 6601, "\u0120Review": - 6602, "pass": 6603, "claim": 6604, "uated": 6605, "angers": 6606, "chen": - 6607, "\u0120properties": 6608, "\u0120anywhere": 6609, "Another": 6610, "\u0120blow": - 6611, "\u0120Jackson": 6612, "\u0120proud": 6613, "\u0120plane": 6614, "lines": - 6615, "\u0120square": 6616, "\u0120proof": 6617, "ansas": 6618, "\u0120talked": - 6619, "makers": 6620, "\u0120sister": 6621, "\u0120holds": 6622, "\u0120resident": - 6623, "\u0120==": 6624, "\u0120resistance": 6625, "\u0120split": 6626, "\u0120prosecut": - 6627, "\u0120confidence": 6628, "resents": 6629, "\u0120cuts": 6630, "\u0120exception": - 6631, "\u0120zero": 6632, "Getty": 6633, "\u0120copyright": 6634, "\u0120totally": - 6635, "ormal": 6636, "ifications": 6637, "\u0120Australian": 6638, "\u0120sick": - 6639, "\u0120150": 6640, "\u0120household": 6641, "\u0120fees": 6642, "\u0120drivers": - 6643, "ogen": 6644, "\u0120NY": 6645, "\u0120necessarily": 6646, "\u0120regulations": - 6647, "earing": 6648, "sl": 6649, "\u0120perspective": 6650, "care": 6651, - "icial": 6652, "His": 6653, "\u0120escape": 6654, "\u0120surprised": 6655, - "\u0120Van": 6656, "urrent": 6657, "\u0120vac": 6658, "81": 6659, "\u0120Thus": - 6660, "\u0120emphas": 6661, "\u0120Champions": 6662, "\u0120Ice": 6663, "\u0120narr": - 6664, "\u0120heads": 6665, "\u0120causing": 6666, "bel": 6667, "fortunately": - 6668, "\u0120Ma": 6669, "\u0120targets": 6670, "cipl": 6671, "\u0120afternoon": - 6672, "\u0120adds": 6673, "\u0120Maybe": 6674, "\u0120Four": 6675, "essed": - 6676, "plete": 6677, "\u0120usual": 6678, "cho": 6679, "ingu": 6680, "\u0120withd": - 6681, "\u0120Energy": 6682, "\u0120Econom": 6683, "OO": 6684, "\u0120articles": - 6685, "\u0120injured": 6686, "\u0120manage": 6687, "\u0120explains": 6688, - "\u0120diagn": 6689, "Rec": 6690, "atures": 6691, "\u0120linked": 6692, "\u0120discussed": - 6693, "\u0120explo": 6694, "\u0120occasion": 6695, "athan": 6696, "\u0120opposite": - 6697, "\u0120faces": 6698, "\u0120denied": 6699, "\u0120Knight": 6700, "\u0120nut": - 6701, "\u0120approximately": 6702, "\u0120disappoint": 6703, "onymous": 6704, - "\u0120Best": 6705, "\u0120Lo": 6706, "\u0120Hy": 6707, "\u0120Aff": 6708, - "\u0120voting": 6709, "anwhile": 6710, "\u0120III": 6711, "\u0120institutions": - 6712, "agram": 6713, "\u0120Daily": 6714, "\u0120drag": 6715, "\u0120nearby": - 6716, "\u0120guilty": 6717, "\u0120conver": 6718, "Pre": 6719, "ship": 6720, - "\u0120reward": 6721, "\u0120philosoph": 6722, "\u0120SS": 6723, "ugh": 6724, - "\u0120apps": 6725, "friend": 6726, "\u0120upper": 6727, "\u0120advert": 6728, - "\u0120snow": 6729, "\u0120frust": 6730, "\u0120ourselves": 6731, "Fr": 6732, - "\u0120Die": 6733, "ampion": 6734, "\u0120dismiss": 6735, "\u0120cere": 6736, - "\u0120signal": 6737, "from": 6738, "\u0120).": 6739, "\u012052": 6740, "\u0120crimes": - 6741, "itors": 6742, "estival": 6743, "useum": 6744, "\u0120council": 6745, - "\u0120Saud": 6746, "May": 6747, "\u0120Gun": 6748, "ician": 6749, "ether": - 6750, "\u0120sufficient": 6751, "\u0120Hen": 6752, "sole": 6753, "\u0120historical": - 6754, "\u0120Far": 6755, "\u0120Turn": 6756, "\u0120pin": 6757, "\u0120succeed": - 6758, "mat": 6759, "lymp": 6760, "\u0120tradition": 6761, "\u0120Ok": 6762, - "\u0120cro": 6763, "\u0120description": 6764, "alle": 6765, "\u0120sky": 6766, - "Te": 6767, "\u0120widely": 6768, "\u0120wave": 6769, "\u0120definition": - 6770, "\u0120Jews": 6771, "\u0120cycle": 6772, "\u0120refere": 6773, "\u0120brings": - 6774, "usal": 6775, "\u0120alive": 6776, "\u0120frequently": 6777, "\u0120intention": - 6778, "\u0120Control": 6779, "lv": 6780, "ystem": 6781, "\u0120privacy": 6782, - "gent": 6783, "rence": 6784, "\u0120Quest": 6785, "\u0120Christmas": 6786, - "\u0120rail": 6787, "\u0120cooper": 6788, "\u0120tested": 6789, "\u0120Capt": - 6790, "asks": 6791, "\u0120comfortable": 6792, "\u0120delivered": 6793, "scape": - 6794, "\u0120depth": 6795, "\u0120GOP": 6796, "\u0120writes": 6797, "\u0120assets": - 6798, "\u0120sav": 6799, "iments": 6800, "\u0120transition": 6801, "\u0120artist": - 6802, "\u0120Look": 6803, "\u0120lob": 6804, "\u0120components": 6805, "arity": - 6806, "\u0120walked": 6807, "\u0120root": 6808, "\u0120participants": 6809, - "\u0120noticed": 6810, "\u0120resc": 6811, "\u0120nav": 6812, "\u0120Administ": - 6813, "da": 6814, "utral": 6815, "plate": 6816, "\u0120importance": 6817, - "\u0120assert": 6818, "iously": 6819, "cription": 6820, "\u0120injuries": - 6821, "\u0120Check": 6822, "\u0120registered": 6823, "\u0120intent": 6824, - "\u0120missed": 6825, "ographic": 6826, "\u0120sentence": 6827, "ounter": - 6828, "\u0120assistance": 6829, "evin": 6830, "\u0120database": 6831, "\u0120buildings": - 6832, "\u0120classic": 6833, "\u0120thinks": 6834, "\u0120Ohio": 6835, "Pr": - 6836, "ugg": 6837, "\u0120fee": 6838, "pan": 6839, "\u0120effectively": 6840, - "\u0120facility": 6841, "\u0120bear": 6842, "\u0120chapter": 6843, "\u0120dogs": - 6844, "\u0120Columb": 6845, "\u0120latter": 6846, "itial": 6847, "\u0120admitted": - 6848, "TV": 6849, "\u0120Georg": 6850, "\u0120posts": 6851, "\\\\": 6852, - "\u0120lawyer": 6853, "\u0120equival": 6854, "\u0120mand": 6855, "\u0120controlled": - 6856, "\u0120Walk": 6857, "\u0120Andrew": 6858, "\u0120menu": 6859, "amental": - 6860, "\u0120protected": 6861, "va": 6862, "\u0120administr": 6863, "oral": - 6864, "\u0120rein": 6865, "\u0120Sar": 6866, "\u0120amounts": 6867, "\u0120native": - 6868, "\u0120Moon": 6869, "\u0120represents": 6870, "\u0120abandon": 6871, - "\u0120carrying": 6872, "\u0120tank": 6873, "mary": 6874, "\u0120declared": - 6875, "Tube": 6876, "\u0120hat": 6877, "\u0120punish": 6878, "ellect": 6879, - "mes": 6880, "\u0120universe": 6881, "\u0120Rod": 6882, "phy": 6883, "\u0120infrastructure": - 6884, "\u012051": 6885, "\u0120opposed": 6886, "ownt": 6887, "ca": 6888, "\u0120Make": - 6889, "\u0120hardware": 6890, "\u0120coffee": 6891, "Rel": 6892, "bal": 6893, - "world": 6894, "\u0120Saf": 6895, "\u0120Sea": 6896, "inals": 6897, "\u0120owned": - 6898, "\u0120hall": 6899, "ersion": 6900, "\u0120describe": 6901, "\u0120Pot": - 6902, "\u0120portion": 6903, "\u0120atmosp": 6904, "\u0120governments": 6905, - "\u0120depending": 6906, "\u0120offense": 6907, "\u0120trick": 6908, "awa": - 6909, "\u0120Line": 6910, "\u0120Vis": 6911, "\u0120Hard": 6912, "\u0120Orig": - 6913, "\u0120Click": 6914, "\u0120desk": 6915, "\u0120Valley": 6916, "\u0120Sov": - 6917, "\u0120movies": 6918, "\u0120remark": 6919, "\u0120mail": 6920, "\u0120conscious": - 6921, "\u0120ruling": 6922, "\u0120Rights": 6923, "\u0120medic": 6924, "hent": - 6925, "\u0120Women": 6926, "><": 6927, "\u0120replaced": 6928, "\u0120Prem": - 6929, "\u0120Thanks": 6930, "\u0120renew": 6931, "\u0120Ball": 6932, "iform": - 6933, "\u0120shots": 6934, "Comm": 6935, "\u0120armed": 6936, "\u0120constant": - 6937, "\u0120taste": 6938, "\u0120realized": 6939, "\u0120buff": 6940, "\u0120mo": - 6941, "\u0120efficient": 6942, "Most": 6943, "oration": 6944, "ifies": 6945, - "\u0120communication": 6946, "\u0120flood": 6947, "\u0120consequences": 6948, - "\u0120anyway": 6949, "igg": 6950, "\u0120GM": 6951, "\u0120Thank": 6952, - "\u0120iron": 6953, "\u0120evolution": 6954, "\u0120Cop": 6955, "twitter": - 6956, "\u012095": 6957, "\u0120relationships": 6958, "adel": 6959, "\u0120Young": - 6960, "\u0120proposal": 6961, "ayers": 6962, "uilding": 6963, "\u0120Hot": - 6964, "ORE": 6965, "cos": 6966, "\u0120collabor": 6967, "PG": 6968, "axy": - 6969, "\u0120knowing": 6970, "\u0120supports": 6971, "owed": 6972, "\u0120controls": - 6973, "\u0120merely": 6974, "umer": 6975, "\u0120athlet": 6976, "\u0120fashion": - 6977, "path": 6978, "\u0120gift": 6979, "\u0120era": 6980, "AND": 6981, "\u0120kinds": - 6982, "\u0120Korean": 6983, "\u0120legit": 6984, "ulous": 6985, "\u0120essentially": - 6986, "\u0120therap": 6987, "nic": 6988, "\u0120suffered": 6989, "\u0120hur": - 6990, "\u0120promise": 6991, "\u0120excess": 6992, "\u0120overw": 6993, "\u0120prime": - 6994, "\u0120Houston": 6995, "erry": 6996, "\u0120Ms": 6997, "RS": 6998, "2012": - 6999, "\u0120stores": 7000, "\u0120Olymp": 7001, "\u0120journey": 7002, "Although": - 7003, "Sub": 7004, "\u0120Educ": 7005, "\u0120Chapter": 7006, "\u0120requests": - 7007, "\u0120consumers": 7008, "\u0120tiny": 7009, "\u0120isol": 7010, "\u0120Fair": - 7011, "ba": 7012, "\u0120YOU": 7013, "\u0120crash": 7014, "celer": 7015, "\u0120emotional": - 7016, "\u0120goods": 7017, "\u0120elected": 7018, "\u0120moder": 7019, "\u0120Linux": - 7020, "\u0120blocks": 7021, "\u0120island": 7022, "\u0120Society": 7023, "\u0120elections": - 7024, "\u0120broadcast": 7025, "\u0120cheap": 7026, "\u0120nations": 7027, - "\u0120seasons": 7028, "400": 7029, "\u0120waste": 7030, "\u0120Sat": 7031, - "\u0120fields": 7032, "employ": 7033, "\u0120profile": 7034, "\u0120authors": - 7035, "ALL": 7036, "\u0120Gra": 7037, "west": 7038, "\u0120Ty": 7039, "\u0120deaths": - 7040, "\u0120vacc": 7041, "\u0120formed": 7042, "\u0120du": 7043, "\u0120ongoing": - 7044, "\u0120Muslims": 7045, "elf": 7046, "igure": 7047, "\u0120assume": 7048, - "\u0120Ukraine": 7049, "water": 7050, "\u0120coast": 7051, "\u0120voted": - 7052, "gor": 7053, "\u0120AS": 7054, "\u0120Michigan": 7055, "aza": 7056, - "\u0120Arm": 7057, "iro": 7058, "\u0120flex": 7059, "asters": 7060, "''''": - 7061, "\u0120welcome": 7062, "arl": 7063, "\u0120locations": 7064, "igation": - 7065, "\u0120Fil": 7066, "\u0120buying": 7067, "\u0120architect": 7068, "\u0120harder": - 7069, "\u0120Cub": 7070, "\u0120interface": 7071, "\u0120restaurant": 7072, - "\u0120discover": 7073, "\u0120exceed": 7074, "\u0120favour": 7075, "gery": - 7076, "\u0120duty": 7077, "\u0120pitch": 7078, "ador": 7079, "\u0120Mach": - 7080, "boy": 7081, "\u0120responded": 7082, "\u0120extended": 7083, "hers": - 7084, "Many": 7085, "raid": 7086, "ifer": 7087, "\u0120Ins": 7088, "Ser": - 7089, "\u0120medium": 7090, "she": 7091, "\u0120Sports": 7092, "\u0120magazine": - 7093, "utation": 7094, "\u0120limits": 7095, "\u0120Gall": 7096, "\u0120external": - 7097, "razil": 7098, "\u0120younger": 7099, "tle": 7100, "\u0120remind": 7101, - "\u0120CON": 7102, "\u0120immediate": 7103, "\u0120hidden": 7104, "\u0120volunte": - 7105, "\u0120simpl": 7106, "odcast": 7107, "\u0120phase": 7108, "dr": 7109, - "\u0120plot": 7110, "\u0120exposure": 7111, "RI": 7112, "ograp": 7113, "vin": - 7114, "anish": 7115, "\u0120Acad": 7116, "\u0120Engine": 7117, "\u0120expansion": - 7118, "\u0120Pay": 7119, "Your": 7120, "\u0120pushed": 7121, "\u0120Ell": - 7122, "\u0120Head": 7123, "\u0120marketing": 7124, "\u0120AC": 7125, "ket": - 7126, "\u0120hits": 7127, "\u0120gro": 7128, "\u0120Age": 7129, "\u0120Scot": - 7130, "][": 7131, "\u0120stim": 7132, "\u0120iPhone": 7133, "\u012a\u0134": - 7134, "\u0120narrow": 7135, "\u0120Getty": 7136, "\u0120Turkey": 7137, "\u0120perfectly": - 7138, "\u0120enable": 7139, "utch": 7140, "\u0120precise": 7141, "\u0120regime": - 7142, "\u0120shif": 7143, "\u0120compens": 7144, "gun": 7145, "div": 7146, - "\u0120chosen": 7147, "\u0120Ken": 7148, "Any": 7149, "\u0120trees": 7150, - "\u0120recommended": 7151, "\u0120Ren": 7152, "uable": 7153, "\u0120HT": 7154, - "Follow": 7155, "EG": 7156, "\u0120Hand": 7157, "\u0120Kenn": 7158, "\u0120arguments": - 7159, "\u0120exists": 7160, "\u0120bike": 7161, "\u0120Conserv": 7162, "\u0120breaking": - 7163, "\u0120Gar": 7164, "\u0120crazy": 7165, "\u0120virtual": 7166, "aylor": - 7167, "ixel": 7168, "\u01201980": 7169, "\u0120permission": 7170, "\u0120Series": - 7171, "\u0120consumer": 7172, "\u0120closely": 7173, "called": 7174, "\u012054": - 7175, "\u0120hopes": 7176, "\u0120array": 7177, "\u0120Win": 7178, "\u0120Labour": - 7179, "\u0120spons": 7180, "\u0120Ire": 7181, "\u0120pow": 7182, "\u0120readers": - 7183, "\u0120employment": 7184, "\u0120creature": 7185, "\u0120resulting": - 7186, "\u0120accurate": 7187, "\u0120moments": 7188, "\u0120argued": 7189, - "\u0120ped": 7190, "During": 7191, "\u012053": 7192, "\u0120Tal": 7193, "\u0120sought": - 7194, "\u0120suffering": 7195, "\u0120icon": 7196, "lee": 7197, "\u0120($": - 7198, "alian": 7199, "\u00c2\u00b0": 7200, "\u0120pra": 7201, "\u0120bonus": - 7202, "(\"": 7203, "ko": 7204, "\u0120acting": 7205, "DE": 7206, "fall": 7207, - "\u0120comparison": 7208, "\u0120smooth": 7209, "\u0120NAS": 7210, "upp": - 7211, "\u0120Joseph": 7212, "eping": 7213, "\u0120Take": 7214, "\u0120Mid": - 7215, "\u0120sending": 7216, "fast": 7217, "\u0120Fall": 7218, "\u0120dealing": - 7219, "user": 7220, "\u0120Organ": 7221, "Co": 7222, "\u0120attached": 7223, - "\u0120sees": 7224, "%.": 7225, "\u0120typical": 7226, "ART": 7227, "\u0120finds": - 7228, "\u0120Asia": 7229, "umin": 7230, "\u0120Core": 7231, "\u0120Ent": 7232, - "inent": 7233, "uce": 7234, "\u0120Blood": 7235, "\u0120Never": 7236, "\u0120emails": - 7237, "\u0120highlight": 7238, "\u0120confront": 7239, "atus": 7240, "uted": - 7241, "\u0120unus": 7242, "\u0120topic": 7243, "\u0120Adam": 7244, "\u0120ble": - 7245, "ati": 7246, "\u0120understood": 7247, "Set": 7248, "struct": 7249, - "TP": 7250, "\u0120mob": 7251, "aa": 7252, "\u0120Start": 7253, "pected": - 7254, "sell": 7255, "\u0120dedicated": 7256, "\u0120CA": 7257, "uan": 7258, - "\u0120songs": 7259, "escription": 7260, "\u0120tech": 7261, "\u0120rape": - 7262, "\u0120aside": 7263, "\u0120grant": 7264, "\u012056": 7265, "sub": 7266, - "\u0120argue": 7267, "\u0120containing": 7268, "\u0120schedule": 7269, "\u0120liberal": - 7270, "\u0120publicly": 7271, "\u0120heavily": 7272, "\u0120Ut": 7273, "iner": - 7274, "\u0120Section": 7275, "\u0120Care": 7276, "weet": 7277, "ls": 7278, - "Dis": 7279, "\u00e2\u0136\u0122": 7280, "\u0120Follow": 7281, "Back": 7282, - "\u0120IT": 7283, "\u0120bes": 7284, "ji": 7285, "\u0120Hit": 7286, "ested": - 7287, "\u0120everybody": 7288, "\u0120Swed": 7289, "\u0120femin": 7290, "\u0120facilities": - 7291, "\u0120conven": 7292, "Comp": 7293, "\u0120OS": 7294, "core": 7295, - "\u0120anx": 7296, "\u0120division": 7297, "\u0120Cam": 7298, "\u0120Stan": - 7299, "mates": 7300, "\u0120explore": 7301, "plom": 7302, "\u0120shares": - 7303, "pload": 7304, "anes": 7305, "\u0120ideal": 7306, "eters": 7307, "\u0120Base": - 7308, "\u0120plastic": 7309, "\u0120distinct": 7310, "\u0120Network": 7311, - "\u0120Seattle": 7312, "\u0120trading": 7313, "ensus": 7314, "intend": 7315, - "\u0120exhib": 7316, "\u0120initially": 7317, "\u0120Food": 7318, "\u0120thousand": - 7319, "\u0120Business": 7320, "acter": 7321, "\u0120paragraph": 7322, "\u0120roughly": - 7323, "\u0120www": 7324, "\u0120creative": 7325, "\u0120Conf": 7326, "\u0120consumption": - 7327, "\u0120films": 7328, "agan": 7329, "\u0120obtain": 7330, "\u0120tall": - 7331, "\u0120tor": 7332, "\u0120acknowled": 7333, "\u0120grown": 7334, "alo": - 7335, "KE": 7336, "\u0120400": 7337, "enders": 7338, "taining": 7339, "UG": - 7340, "\u0120suicide": 7341, "\u0120watched": 7342, "\u0120List": 7343, "ali": - 7344, "rehens": 7345, "\u0120surrounding": 7346, "\u0120pip": 7347, "\u0120flying": - 7348, "\u0120Java": 7349, "ordan": 7350, "\u0120serving": 7351, "inations": - 7352, "post": 7353, "\u0120sho": 7354, "Av": 7355, "\u0120jail": 7356, "zy": - 7357, "\u01201999": 7358, "\u0120>": 9609, "orous": 9610, "\u0120firms": - 9611, "screen": 9612, "una": 9613, "\u0120embarrass": 9614, "ulse": 9615, - "\u0120letting": 9616, "\u0120threw": 9617, "iley": 9618, "\u0120channels": - 9619, "lan": 9620, "\u0120Vegas": 9621, "\u0120sear": 9622, "\u0120fantastic": - 9623, "arre": 9624, "uzzle": 9625, "\u0120Der": 9626, "Those": 9627, "\u0120swing": - 9628, "\u0120sheet": 9629, "index": 9630, "cover": 9631, "ogan": 9632, "\u0120variables": - 9633, "\u0120Tech": 9634, "\u0120spoken": 9635, "achel": 9636, "\u0120Da": - 9637, "\u0120Mountain": 9638, "\u0120loaded": 9639, "\u0120footage": 9640, - "version": 9641, "\u0120unl": 9642, "\u0120Phoenix": 9643, "\u0120throwing": - 9644, "\u0120firing": 9645, "\u0120tracking": 9646, "\u0120width": 9647, "\u0120struggling": - 9648, "rooms": 9649, "otion": 9650, "\u0120monthly": 9651, "\u0120Server": - 9652, "\u0120eggs": 9653, "open": 9654, "MC": 9655, "\u01201993": 9656, "\u0120hired": - 9657, "\u0120stayed": 9658, "\u0120Allen": 9659, "\u0120stro": 9660, "\u012098": - 9661, "step": 9662, "\u0120Turkish": 9663, "\u0120fabric": 9664, "isting": - 9665, "\u0120Dom": 9666, "\u0120dates": 9667, "\u0120pron": 9668, "\u0120basketball": - 9669, "\u0120lucky": 9670, "\u0120Arabia": 9671, "\u0120assumed": 9672, "esty": - 9673, "\u0120affairs": 9674, "\u0120glad": 9675, "\u0120Indeed": 9676, "\u0120FA": - 9677, "\u0120Word": 9678, "\u0120joining": 9679, "ifice": 9680, "pread": 9681, - "irts": 9682, "\u0120Select": 9683, "\u0120populations": 9684, "aware": 9685, - "\u0120nose": 9686, "\u0120complaints": 9687, "start": 9688, "\u0120scoring": - 9689, "Thanks": 9690, "\u0120mining": 9691, "\u0120visitors": 9692, "SH": - 9693, "\u0120damaged": 9694, "\u0120characteristics": 9695, "\u0120Pent": - 9696, "DC": 9697, "\u012083": 9698, "\u0120Six": 9699, "rates": 9700, "\u0120flags": - 9701, "\u0120Brew": 9702, "dog": 9703, "Mark": 9704, "////": 9705, "\u0120execution": - 9706, "\u0120joke": 9707, "phones": 9708, "\u0120testimony": 9709, "\u0120obst": - 9710, "QL": 9711, "\u0120Cut": 9712, "\u0120studied": 9713, "\u0120Nintendo": - 9714, "icket": 9715, "\u0120NBC": 9716, "\u0120lad": 9717, "\u0120Bra": 9718, - "\u0120Moh": 9719, "\u0120kernel": 9720, "\u0120overwhelming": 9721, "\u0120aged": - 9722, "\u0120applicable": 9723, "\u0120Cond": 9724, "\u0120roads": 9725, "\u0120Block": - 9726, "made": 9727, "odge": 9728, "\u0120commands": 9729, "\u0120offices": - 9730, "veland": 9731, "\u0120tut": 9732, "\u0120receiver": 9733, "\u0120Fro": - 9734, "\u0120shopping": 9735, "\u0120iP": 9736, "\u0120Stre": 9737, "\u0120ABC": - 9738, "\u0120entertainment": 9739, "\u0120Bow": 9740, "orted": 9741, "Mc": - 9742, "\u0120reads": 9743, "grad": 9744, "\u0120Collect": 9745, "\u0120\u00e2\u012a\u0134": - 9746, "\u0120Capital": 9747, "ederation": 9748, "\u0120employer": 9749, "\u0120involvement": - 9750, "\u0120anxiety": 9751, "alia": 9752, "\u0120roof": 9753, "\u0120Among": - 9754, "\u0120Democrat": 9755, "\u0120stats": 9756, "\u0120Vill": 9757, "\u0120constitutional": - 9758, "\u0120referring": 9759, "itty": 9760, "\u0120tackle": 9761, "outube": - 9762, "\u0120backed": 9763, "\u0120Hong": 9764, "\u0120Broad": 9765, "\u0120ele": - 9766, "\u0120Ott": 9767, "\u01201992": 9768, "hour": 9769, "achusetts": 9770, - "Cal": 9771, "\u0120defeated": 9772, "\u012081": 9773, "esp": 9774, "\u0120seemingly": - 9775, "was": 9776, "\u0120Jenn": 9777, "\u0120Kurd": 9778, "\u0120gene": 9779, - "\u0120discount": 9780, "Ret": 9781, "ECT": 9782, "();": 9783, "\u0120clubs": - 9784, "\u0120sid": 9785, "\u0120Marsh": 9786, "Check": 9787, "\u0120pp": 9788, - "\u0120Eag": 9789, "idespread": 9790, "\u0120beings": 9791, "FT": 9792, "\u0120introduction": - 9793, "\u0120Change": 9794, "ARD": 9795, "\u0120110": 9796, "adows": 9797, - "ierce": 9798, "\u0120meal": 9799, "author": 9800, "\u0120Bang": 9801, "lahoma": - 9802, "\u0120ranks": 9803, "2011": 9804, "????": 9805, "max": 9806, "\u0120collapse": - 9807, "\u0120opens": 9808, "\u0120echo": 9809, "\u0120soph": 9810, "\u0120racist": - 9811, "\u0120enormous": 9812, "\u0120waves": 9813, "\u0120tap": 9814, "\u0120comprehensive": - 9815, ".--": 9816, "\u0120Roy": 9817, "\u0120farmers": 9818, "Related": 9819, - "aired": 9820, "rones": 9821, "\u0120Crim": 9822, "\u0120proportion": 9823, - "\u0120designs": 9824, "\u0120negotiations": 9825, "\u0120virtually": 9826, - "\u0120Batman": 9827, "\u0120warn": 9828, "\u0120legitimate": 9829, "mate": - 9830, "\u0120convention": 9831, ",,": 9832, "netic": 9833, "\u0120SD": 9834, - "\u0120consistently": 9835, "\u0120compensation": 9836, "\u0120punishment": - 9837, "\u0120ye": 9838, "\u0120tie": 9839, "\u0120Bureau": 9840, "irlf": 9841, - "\u0120Bu": 9842, "\u0120Aren": 9843, "\u0120Philipp": 9844, "\u0120knife": - 9845, "\u0120memories": 9846, "\u0120Ross": 9847, "\u0120angle": 9848, "\u012086": - 9849, "\u0120Thunder": 9850, "\u0120rend": 9851, "\u0120Tour": 9852, "\u0120counts": - 9853, "sung": 9854, "\u0120Imp": 9855, "\u0120educational": 9856, "\u0120accessible": - 9857, "COM": 9858, "\u0120drew": 9859, "yer": 9860, "Gl": 9861, "amine": 9862, - "ORT": 9863, "OB": 9864, "IB": 9865, "master": 9866, "\u0120trials": 9867, - "ogy": 9868, "har": 9869, "\u0120Trust": 9870, "\u0120preferred": 9871, "irlfriend": - 9872, "\u0120Nev": 9873, "\u0120bin": 9874, "\u0120cow": 9875, "Page": 9876, - "\u0120signature": 9877, "\u0120BL": 9878, "700": 9879, "\u0120retired": 9880, - "\u0120bytes": 9881, "\u0120neighb": 9882, "\u0120Legend": 9883, "\u0120devast": - 9884, "\u0120suspected": 9885, "isons": 9886, "\u0120Pok\u00c3\u00a9mon": - 9887, "scale": 9888, "\u0120capabilities": 9889, "\u0120revel": 9890, "\u0120cheese": - 9891, "dy": 9892, "igrant": 9893, "\u0120failing": 9894, "bits": 9895, "\u0120Heroes": - 9896, "\u0120Ghost": 9897, "\u0120Scient": 9898, "\u0120appointed": 9899, - "uri": 9900, "\u0120institution": 9901, "\u0120expanded": 9902, "greg": 9903, - "\u0120monitoring": 9904, "\u0120podcast": 9905, "\u0120coalition": 9906, - "\u012096": 9907, "Jo": 9908, "\u0120stolen": 9909, "\u0120Sab": 9910, "\u0120stops": - 9911, "\u0120holiday": 9912, "\u0120intr": 9913, "Car": 9914, "Black": 9915, - "\u0120LGBT": 9916, "\u0120warming": 9917, "\u0120Anderson": 9918, "\u012089": - 9919, "\u0120producer": 9920, "Med": 9921, "\u0120accuracy": 9922, "\u0120Marvel": - 9923, "izabeth": 9924, "\u0120Patrick": 9925, "mony": 9926, "\u0120mini": - 9927, "acles": 9928, "\u0120overt": 9929, "they": 9930, "\u0120membership": - 9931, "\u0120Ven": 9932, "\u0120exch": 9933, "\u0120removal": 9934, "\u0120Dave": - 9935, "TY": 9936, "mad": 9937, "\u0120Find": 9938, "\u0120adequ": 9939, "\u0120ec": - 9940, "\u0120teeth": 9941, "\u0120emotion": 9942, "\u0120perm": 9943, "\u0120solely": - 9944, "db": 9945, "\u0120extraord": 9946, "IGHT": 9947, "cal": 9948, "\u0120guidelines": - 9949, "\u0120dying": 9950, "\u0120suspended": 9951, "\u0120Premier": 9952, - "\u0120Anthony": 9953, "elve": 9954, "\u0120dad": 9955, "\u0120Eth": 9956, - "\u0120Football": 9957, "\u0120abandoned": 9958, "\u0120<<": 9959, "\u0120march": - 9960, "\u0120horror": 9961, "\u00e2\u0122\u00a6\"": 9962, "\u0120childhood": - 9963, "\u0120campaigns": 9964, "\u0120lunch": 9965, "\u0120Albert": 9966, - "block": 9967, "\u00e2\u0138\u012a\u00e2\u0138\u012a": 9968, "ounding": 9969, - "\u0120bone": 9970, "organ": 9971, "aders": 9972, "\u0120Flash": 9973, "\u0120Drive": - 9974, "\u0120tonight": 9975, "\u0120wars": 9976, "\u0120FL": 9977, "\u0120formation": - 9978, "const": 9979, "News": 9980, "\u0120compe": 9981, "orious": 9982, "\u0120Staff": - 9983, "\u0120discussions": 9984, "\u0120Protection": 9985, "\u0120Jam": 9986, - "\u0120criteria": 9987, "\u0120installation": 9988, "\u0120accomplish": 9989, - "izza": 9990, "\u0120publisher": 9991, "\u0120rescue": 9992, "\u0120Try": - 9993, "ULL": 9994, "\u0120Som": 9995, "\u0120Hop": 9996, "oret": 9997, "ths": - 9998, "ordon": 9999, "\u0120pocket": 10000, "\u0120Inv": 10001, "Download": - 10002, "\u0120Crime": 10003, "\u0120bene": 10004, "\u0120Guide": 10005, "\u0120Assembly": - 10006, "\u0120parameters": 10007, "IE": 10008, "\u0120Alexander": 10009, "\u0120concert": - 10010, "\u0120Sche": 10011, "\u0120shoes": 10012, "\u0120visiting": 10013, - "\u0120recall": 10014, "\u0120bub": 10015, "\u0120rural": 10016, "\u0120concrete": - 10017, "\u0120Ros": 10018, "Next": 10019, "Russ": 10020, "\u0120loans": 10021, - "\u0120Shield": 10022, "\u0120trem": 10023, "hemat": 10024, "kg": 10025, "\u0120Harris": - 10026, "isition": 10027, "\u0120Move": 10028, "\u0120FC": 10029, "\u0120fate": - 10030, "\u0120Cho": 10031, "\u0120tired": 10032, "\u0120principal": 10033, - "hist": 10034, "iences": 10035, "athy": 10036, "\u0120sevent": 10037, "\u0120mood": - 10038, "\u0120strategic": 10039, "\u0120diseases": 10040, "\u0120forum": 10041, - "\u0120tempor": 10042, "\u0120headquarters": 10043, "Par": 10044, "ige": 10045, - "flix": 10046, "\u0120guitar": 10047, "\u012094": 10048, "Only": 10049, "\u0120releases": - 10050, "roph": 10051, "================================": 10052, "\u0120600": - 10053, "\u0120Continue": 10054, "igate": 10055, "\u0120Crit": 10056, "system": - 10057, "\u0120disabled": 10058, "\u0120unexpected": 10059, "ithub": 10060, - "\u0120unclear": 10061, "\u0120Est": 10062, "\u0120contrad": 10063, "\u0120strategies": - 10064, "ventures": 10065, "\u0120passage": 10066, "AME": 10067, "\u0120improving": - 10068, "\u0120reveals": 10069, "\u0120decrease": 10070, "ova": 10071, "\u0120annoy": - 10072, "\u0120Short": 10073, "\u0120Library": 10074, "\u0120cyber": 10075, - "nell": 10076, "\u0120Hur": 10077, "\u0120CB": 10078, "\u0120photograp": 10079, - "UI": 10080, "\u0120sed": 10081, "Ge": 10082, "\u012087": 10083, "\u0120diverse": - 10084, "\u0120encouraged": 10085, "\u0120conspiracy": 10086, "\u0120birds": - 10087, "\u0120operator": 10088, "\u0120handful": 10089, "\u0120classified": - 10090, "?)": 10091, "\u0120dramatic": 10092, "\u0120investigators": 10093, - "ito": 10094, "\u0120widespread": 10095, "\u0120Room": 10096, "----------------------------------------------------------------": - 10097, "\u0120collective": 10098, "\u0120journalist": 10099, "String": 10100, - "\u0120temperatures": 10101, "ila": 10102, "\u0120guid": 10103, "\u0120inspect": - 10104, "\u0120missile": 10105, "\u0120Mayor": 10106, "\u0120manual": 10107, - "\u0120simultane": 10108, "\u0120ratings": 10109, "\u0120suck": 10110, "\u012097": - 10111, "\u0120universal": 10112, "\u0120pharm": 10113, "\u0120disrupt": 10114, - "iano": 10115, "AV": 10116, "\u0120ft": 10117, "\u0120statist": 10118, "olds": - 10119, "\u0120Walker": 10120, "php": 10121, "\u0120undert": 10122, "\u0120Las": - 10123, "ishop": 10124, "ntil": 10125, "reshold": 10126, "\u0120Whether": 10127, - "Ms": 10128, "\u0120deny": 10129, "\u0120Cloud": 10130, "\u0120provider": - 10131, "\u0120surviv": 10132, "\u0120Update": 10133, "has": 10134, "\u0120mistakes": - 10135, "charge": 10136, "pled": 10137, "rity": 10138, "\u0120node": 10139, - "\u0120Massachusetts": 10140, "ools": 10141, "lication": 10142, "\u0120fails": - 10143, "emale": 10144, "ori": 10145, "backs": 10146, "\u0120shirt": 10147, - "\u0120''''": 10148, "\u0120NAT": 10149, "\u0120waters": 10150, "elson": 10151, - "\u0120ease": 10152, "\u0120scar": 10153, "\u0120contents": 10154, "mind": - 10155, "\u0120contribution": 10156, "\u0120shr": 10157, "\u0120handed": 10158, - "\u0120stability": 10159, "\u0120trave": 10160, "Em": 10161, "\u0120mirror": - 10162, "123": 10163, "\u0120weigh": 10164, "\u0120fiction": 10165, "ouver": - 10166, "istant": 10167, "rition": 10168, "\u0120Fed": 10169, "\u0120physically": - 10170, "\u0120stake": 10171, "\u0120Article": 10172, "\u0120Arc": 10173, "\u0120Lewis": - 10174, "\u0120Mind": 10175, "\u0120demonstrate": 10176, "\u0120profits": 10177, - "vision": 10178, "omic": 10179, "olid": 10180, "\u0120battles": 10181, "\u0120drives": - 10182, "\u0120eastern": 10183, "\u0120Sony": 10184, "!!!": 10185, "aration": - 10186, "vard": 10187, "\u0120GL": 10188, "portation": 10189, "\u012092": 10190, - "\u0120lawmakers": 10191, "\u0120protecting": 10192, "\u0120EPA": 10193, "\u0120yeah": - 10194, "\u0120shame": 10195, "olph": 10196, "even": 10197, "xit": 10198, "\u0120attach": - 10199, "\u0120representing": 10200, "\u0120obs": 10201, "\u0120Utah": 10202, - "iffs": 10203, "\u0120Freedom": 10204, "\u00c3\u00b3": 10205, "AK": 10206, - "\u0120incidents": 10207, "itage": 10208, "\u0120viewers": 10209, "cd": 10210, - "\u0120mouse": 10211, "\u0120clar": 10212, "\u0120accordance": 10213, "\u0120bot": - 10214, "cor": 10215, "\u0120Summer": 10216, "held": 10217, "\u0120innocent": - 10218, "\u0120initiative": 10219, "ols": 10220, "________________________________": - 10221, "\u0120spots": 10222, "pace": 10223, "\u0120conventional": 10224, "\u0120corporations": - 10225, "\u0120blocked": 10226, "HD": 10227, "attered": 10228, "\u0120refers": - 10229, "\u0120buck": 10230, "\u0120Digital": 10231, "120": 10232, "\u0120topics": - 10233, "TF": 10234, "\u00c4\u0123": 10235, "brid": 10236, "reement": 10237, - "\u0120underlying": 10238, "\u0120Member": 10239, "\u0120investigating": 10240, - "\u0120pregnancy": 10241, "\u0120touchdown": 10242, "\u0120Band": 10243, "\u0120Caller": - 10244, "\u0120instances": 10245, "PP": 10246, "wa": 10247, "Good": 10248, - "\u01201991": 10249, "\u0120Cold": 10250, "\u0120fears": 10251, "\u0120remarks": - 10252, "\u0128\u0134": 10253, "atal": 10254, "\u0120mit": 10255, "\u0120experiments": - 10256, "ipt": 10257, "Color": 10258, "indu": 10259, "Update": 10260, "\u012093": - 10261, "Ag": 10262, "\u0120\u00e5": 10263, "ancouver": 10264, "Both": 10265, - "\u0120judges": 10266, "Object": 10267, "\u0120stere": 10268, "umbn": 10269, - "\u0120participation": 10270, "\u0120Stars": 10271, "\u0120Jere": 10272, "\u0120weekly": - 10273, "\u0120Ban": 10274, "\u0120conversations": 10275, "\u0120Pitt": 10276, - "uz": 10277, "\u0120Indiana": 10278, "\u0120Kick": 10279, "\u0120infection": - 10280, "\u0120heroes": 10281, "\u0120settled": 10282, "\u0120strip": 10283, - "\u0120hal": 10284, "\u0120dump": 10285, "\u0120Sci": 10286, "\u0120les": - 10287, "\u0120references": 10288, "\u0120URL": 10289, "\u0120Bridge": 10290, - "\u0120wanting": 10291, "Force": 10292, "\u0120exclus": 10293, "Meanwhile": - 10294, "mn": 10295, "\u0120gentle": 10296, "maker": 10297, "senal": 10298, - "\u0120Gro": 10299, "ouri": 10300, "\u0120Rain": 10301, "\u0120Alliance": - 10302, "\u0120lift": 10303, "ela": 10304, "SD": 10305, "\u0120Cleveland": - 10306, "\u0120ranked": 10307, "\u0120stadium": 10308, "\u0120deadly": 10309, - "\u00e4\u00b8": 10310, "\u0120riding": 10311, "aria": 10312, "\u0120Armor": - 10313, "\u0120documentation": 10314, "\u0120Greece": 10315, "reek": 10316, - "\u0120lens": 10317, "\u0120Sa": 10318, "\u0120gross": 10319, "\u0120Emer": - 10320, "agers": 10321, "\u0120Dub": 10322, "\u0120Rh": 10323, "\u0120AMD": - 10324, "\u0120arrival": 10325, "\u0120desert": 10326, "\u0120supplement": - 10327, "\u0120Resp": 10328, "\u0120knee": 10329, "\u0120margin": 10330, "font": - 10331, "ogg": 10332, "2010": 10333, "\u0120Pir": 10334, "\u0120Prom": 10335, - "ivals": 10336, "\u0120intake": 10337, "\u0120differently": 10338, "ugs": - 10339, "\u0120bits": 10340, "cluded": 10341, "\u0120searching": 10342, "\u0120Du": - 10343, "umble": 10344, "\u0120functional": 10345, "\u0120Baltimore": 10346, - "\u0120Could": 10347, "\u0120desired": 10348, "\u0120circuit": 10349, "\u0120Lyn": - 10350, "\u0120GO": 10351, "\u0120False": 10352, "repre": 10353, "'':": 10354, - "alties": 10355, "\u0120minim": 10356, "\u0120drove": 10357, "\u0120Should": - 10358, "\u0120hip": 10359, "\u0120pros": 10360, "\u0120utility": 10361, "\u0120Nature": - 10362, "\u0120Mode": 10363, "President": 10364, "opp": 10365, "rat": 10366, - "formance": 10367, "\u0120concentration": 10368, "\u0120font": 10369, "\u0120Bud": - 10370, "\u0120amid": 10371, "\u0120revers": 10372, "\u0120ML": 10373, "Bar": - 10374, "\u0120interaction": 10375, "\u0120jurisd": 10376, "\u0120spells": - 10377, "dep": 10378, "fil": 10379, "\u0120civilians": 10380, "utter": 10381, - "\u0120Cooper": 10382, "\u0120Below": 10383, "\u0120entrance": 10384, "\u0120convert": - 10385, "\u0120controversy": 10386, "owered": 10387, "\u0120contrary": 10388, - "\u0120arc": 10389, "\u0120Executive": 10390, "\u0120Officer": 10391, "\u0120packages": - 10392, "\u0120progressive": 10393, "width": 10394, "\u0120reserved": 10395, - "vol": 10396, "\u0120Samsung": 10397, "\u0120printed": 10398, "\u0120centers": - 10399, "\u0120introduce": 10400, "\u0120Kennedy": 10401, "\u0120odds": 10402, - "\u0120surely": 10403, "\u0120independence": 10404, "\u0120passengers": 10405, - "reprene": 10406, "\u0120Beh": 10407, "\u0120loves": 10408, "\u0120ESPN": - 10409, "\u0120facilit": 10410, "\u0120identical": 10411, "\u0120doct": 10412, - "\u0120partnership": 10413, "conf": 10414, "\u0120Hide": 10415, "\u0120confused": - 10416, "\u0120Cow": 10417, "Men": 10418, "\u0120wrest": 10419, "\u0120Iraqi": - 10420, "\u0120holes": 10421, "\u0120Studies": 10422, "\u0120pregnant": 10423, - "hard": 10424, "\u0120signals": 10425, "IX": 10426, "\u0120pulling": 10427, - "\u0120graduate": 10428, "\u0120nominee": 10429, "Date": 10430, "\u0120permitted": - 10431, "\u0120\u00e2\u0124\u00ac": 10432, "\u0120Oklahoma": 10433, "Start": - 10434, "\u0120authorized": 10435, "\u0120alarm": 10436, "\u0120Cos": 10437, - "van": 10438, "\u0120generations": 10439, "cular": 10440, "\u0120dragon": - 10441, "\u0120Software": 10442, "\u0120Edward": 10443, "\u0120controller": - 10444, "Sen": 10445, "gered": 10446, "\u0120Vik": 10447, "\u0120approached": - 10448, "Thank": 10449, "\u0120cance": 10450, "\u0120formula": 10451, "\u0120Small": - 10452, "\u0120weakness": 10453, "\u0120ramp": 10454, "itudes": 10455, "jud": - 10456, "\u0120brilliant": 10457, "\u0120accus": 10458, "source": 10459, "\u0120800": - 10460, "\u0120Evil": 10461, "Sw": 10462, "\u0120homeless": 10463, "week": - 10464, "iens": 10465, "rics": 10466, "\u0120Third": 10467, "TO": 10468, "\u0120organic": - 10469, "\u0120presentation": 10470, "agh": 10471, "\u0120Download": 10472, - "vation": 10473, "\u0120assembly": 10474, "orable": 10475, "holders": 10476, - "\u0120Bernie": 10477, "\u0120Help": 10478, "\u0120tong": 10479, "\u0120Fight": - 10480, "\u0120beach": 10481, "Book": 10482, "\u0120Lic": 10483, "\u0120rush": - 10484, "\u0120Round": 10485, "oup": 10486, "\u0120Marx": 10487, "\u0120calculated": - 10488, "\u0120Devil": 10489, "\u0120Sarah": 10490, "\u0120occasionally": 10491, - "\u0120bullet": 10492, "Available": 10493, "gate": 10494, "\u012091": 10495, - "\u0120hosp": 10496, "\u0120promises": 10497, "\u0120HIV": 10498, "\u0120Stadium": - 10499, "\u0120Stock": 10500, "\u0120Corporation": 10501, "gage": 10502, "NG": - 10503, "\u0120Credit": 10504, "\u0120sne": 10505, "ibl": 10506, "\u0120accum": - 10507, "such": 10508, "\u0120terrorists": 10509, "\u0120consciousness": 10510, - "\u0120Zh": 10511, "\u0120drama": 10512, "oola": 10513, "piration": 10514, - "\u0120labour": 10515, "\u0120Nin": 10516, "\u0120utter": 10517, "\u0120democratic": - 10518, "\u0120assass": 10519, "ilation": 10520, "\u0120gest": 10521, "\u0120abroad": - 10522, "\u0120metab": 10523, "\u0120sorts": 10524, "\u0120flav": 10525, "UB": - 10526, "\u0120mg": 10527, "\u0120Nothing": 10528, "\u0120Od": 10529, "\u0120musical": - 10530, "2009": 10531, "\u0120drops": 10532, "ocated": 10533, "ateral": 10534, - "000000": 10535, "\u0120gre": 10536, "\u0120equality": 10537, "\u0120burden": - 10538, "\u0120vig": 10539, "\u0120Leader": 10540, "------------": 10541, "\u0120ceremony": - 10542, "\u0120fighter": 10543, "\u0120actors": 10544, "\u0120\u00e6": 10545, - "aman": 10546, "Fi": 10547, "\u0120align": 10548, "puter": 10549, "\u0120elder": - 10550, "\u0120NSA": 10551, "\u0120representation": 10552, "\u0120Ontario": - 10553, "ITH": 10554, "usalem": 10555, "\u0120harassment": 10556, "itzer": - 10557, "\u0120symp": 10558, "\u0120boxes": 10559, "\u0120DR": 10560, "\u0120manifest": - 10561, "atre": 10562, "\u0120^": 10563, "\u0120dies": 10564, "leton": 10565, - "\u0120missions": 10566, "ethe": 10567, "\u0120resolve": 10568, "\u0120followers": - 10569, "\u0120asc": 10570, "\u0120km": 10571, "lord": 10572, "ammed": 10573, - "\u0120silent": 10574, "\u0120Associated": 10575, "\u0120timing": 10576, "\u0120prisoners": - 10577, "\u0120Kings": 10578, "\u0120Five": 10579, "\u0120tower": 10580, "\u0120approaches": - 10581, "\u0120precisely": 10582, "\u0120bureau": 10583, "\u0120Mother": 10584, - "\u0120Iss": 10585, "\u0120keyboard": 10586, "itual": 10587, "\u0120funded": - 10588, "\u0120staying": 10589, "\u0120psychological": 10590, "\u0120mile": - 10591, "\u0120Leon": 10592, "\u0120Barb": 10593, "will": 10594, "\u0120wider": - 10595, "\u0120Atlantic": 10596, "\u0120till": 10597, "\u0120Rome": 10598, - "rot": 10599, "\u0120accompan": 10600, "\u0120flour": 10601, "aco": 10602, - "World": 10603, "\u0120Express": 10604, "\u0120Yu": 10605, "Cor": 10606, "\u0120pleased": - 10607, "party": 10608, "\u0120pointing": 10609, "\u0120inflation": 10610, - "\u0120roy": 10611, "\u0120),": 10612, "ainer": 10613, "\u0120wedding": 10614, - "ormon": 10615, "\u0120requiring": 10616, "\u0120qualified": 10617, "\u0120segment": - 10618, "END": 10619, "\u0120sizes": 10620, "eals": 10621, "\u0120corrupt": - 10622, "assador": 10623, "\u0120celeb": 10624, "\u0120dreams": 10625, "\u0120Mess": - 10626, "\u0120checking": 10627, "\u0120Version": 10628, "\u0120preparing": - 10629, "\u0120actively": 10630, "\u0120Diff": 10631, "\u0120lux": 10632, "\u0120Winter": - 10633, "acteria": 10634, "\u0120NE": 10635, "\u0120deputy": 10636, "\u0120transgender": - 10637, "\u0120summary": 10638, "\u0120inher": 10639, "eries": 10640, "char": - 10641, "\u0120Yan": 10642, "\u0120knock": 10643, "\u0120Path": 10644, "\u0120lip": - 10645, "roller": 10646, "\u0120impression": 10647, "\u0120celebrate": 10648, - "\u0120slide": 10649, "\u0120guests": 10650, "\u0120clip": 10651, "FS": 10652, - "\u0120savings": 10653, "\u0120captain": 10654, "\u0120legacy": 10655, "\u0120Denver": - 10656, "\u0120wounded": 10657, "taboola": 10658, "ACT": 10659, "\u0120pursue": - 10660, "\u0120oxy": 10661, "\u0120q": 10662, "\u0120semi": 10663, "\u0120Need": - 10664, "\u0120Affairs": 10665, "\u0120obsc": 10666, "\u0120checked": 10667, - "\u0120dual": 10668, "Code": 10669, "\u0120MD": 10670, "lem": 10671, "ulty": - 10672, "\u0120\u00c2\u00a9": 10673, "\u0120Elizabeth": 10674, "\u0120centuries": - 10675, "arded": 10676, "src": 10677, "\u0120evident": 10678, "ennis": 10679, - "atin": 10680, "\u0120unemployment": 10681, "\u0120Mario": 10682, "\u0120intim": - 10683, "Christ": 10684, "\u0120biological": 10685, "\u0120soldier": 10686, - "\u0120Added": 10687, "\u0120math": 10688, "\u0120Gil": 10689, "\u0120bias": - 10690, "\u0120dating": 10691, "\u0120Ocean": 10692, "\u0120mice": 10693, "Mus": - 10694, "hire": 10695, "\u0120Tes": 10696, "Server": 10697, "limited": 10698, - "Size": 10699, "\u0120meters": 10700, "\u0120rocket": 10701, "essee": 10702, - "\u0120certificate": 10703, "\u0120Iranian": 10704, "ASS": 10705, "\u0120grid": - 10706, "Dec": 10707, "\u0120rolling": 10708, "commun": 10709, "\u0120Sweden": - 10710, "bury": 10711, "\u0120tissue": 10712, "\u0120racism": 10713, "\u0120Local": - 10714, "\u0120mystery": 10715, "\u0120examine": 10716, "\u0120stem": 10717, - "\u0120sits": 10718, "\u0120hoped": 10719, "oting": 10720, "\u0120dialogue": - 10721, "\u0120persu": 10722, "Watch": 10723, "lay": 10724, "MAN": 10725, "\u0120chronic": - 10726, "\u0120Portland": 10727, "market": 10728, "\u0120SEC": 10729, "\u0120parallel": - 10730, "\u0120scandal": 10731, "\u0120carries": 10732, "\u0120phenomenon": - 10733, "human": 10734, "acker": 10735, "\u0120Ox": 10736, "\u0120retirement": - 10737, "tainment": 10738, "ovie": 10739, "\u0120Gear": 10740, "\u0120duties": - 10741, "\u0120dose": 10742, "\u0120scroll": 10743, "MB": 10744, "inf": 10745, - "\u0120sauce": 10746, "\u0120landscape": 10747, "reddit": 10748, "\u0120Championship": - 10749, "\u0120Reddit": 10750, "alid": 10751, "\u0120coin": 10752, "\u0120overs": - 10753, "\u0120posting": 10754, "about": 10755, "\u0120fel": 10756, "andy": - 10757, "\u0120bold": 10758, "\u0120focusing": 10759, "effect": 10760, "GR": - 10761, "\u0120deemed": 10762, "\u0120recommendations": 10763, "\u0120stepped": - 10764, "\u0120voter": 10765, "\u0120Deep": 10766, "\u0120Instagram": 10767, - "\u0120moderate": 10768, "\u0120Maryland": 10769, "\u0120restricted": 10770, - "\u0120MB": 10771, "\u0120Chall": 10772, "\u0120tob": 10773, "\u0120cir": - 10774, "\u0120Occ": 10775, "\u0120Ever": 10776, "\u0120collaps": 10777, "INFO": - 10778, "=-": 10779, "\u0120Pict": 10780, "\u0120Account": 10781, "nc": 10782, - "\u0120ought": 10783, "\u0120export": 10784, "\u0120drunk": 10785, "(''": - 10786, "\u0120wise": 10787, "\u0120Mort": 10788, "necess": 10789, "\u0120ancest": - 10790, "\u0120Incre": 10791, "\u0120frequent": 10792, "mir": 10793, "\u0120interpretation": - 10794, "\u0120dependent": 10795, "\u0120coins": 10796, "\u0120Bol": 10797, - "Video": 10798, "\u0120Justin": 10799, "\u0120fatal": 10800, "\u0120cooking": - 10801, "\u0120confusion": 10802, "ipher": 10803, "\u0120custody": 10804, "\u0120Morgan": - 10805, "omach": 10806, "\u0120Governor": 10807, "\u0120restaurants": 10808, - "eling": 10809, "\u0120acknowledged": 10810, "\u0120ther": 10811, "\u0120genes": - 10812, "ching": 10813, "Hey": 10814, "\u0120tactics": 10815, "\u0120Mexican": - 10816, "\u0120vend": 10817, "\u0120hes": 10818, "quer": 10819, "\u0120noting": - 10820, "\u0120Cameron": 10821, "\u0120targeting": 10822, "rock": 10823, "\u0120credits": - 10824, "\u0120emotions": 10825, "\u0120representatives": 10826, "news": 10827, - "\u0120legislative": 10828, "\u0120removing": 10829, "\u0120tweeted": 10830, - "\u0120Carter": 10831, "\u0120Fixed": 10832, "\u0120forcing": 10833, "\u0120speaker": - 10834, "\u0120males": 10835, "\u0120Vietnam": 10836, "lined": 10837, "\u0120concepts": - 10838, "\u0120voices": 10839, "oir": 10840, "\u0120Trib": 10841, "Whe": 10842, - "\u0120Jerusalem": 10843, "\u0120Sant": 10844, "\u0120cul": 10845, "\u0120lady": - 10846, "\u0120Hawai": 10847, "\u0120arts": 10848, "\u0120Inn": 10849, "\u0120Machine": - 10850, "\u0120Emperor": 10851, "\u0120slot": 10852, "gly": 10853, "\u0120Process": - 10854, "III": 10855, "\u0120athletes": 10856, "\u0120Temple": 10857, "\u0120Represent": - 10858, "\u0120presc": 10859, "\u0120tons": 10860, "\u0120golden": 10861, "\u0120punch": - 10862, "\u0120GR": 10863, "iverpool": 10864, "\u0120enact": 10865, "\u0120lobby": - 10866, "\u0120mos": 10867, "\u0120picking": 10868, "\u0120lifetime": 10869, - "\u0120cognitive": 10870, "Each": 10871, "zo": 10872, "\u0120dub": 10873, - "\u0120consists": 10874, "oln": 10875, "\u0120festival": 10876, "amous": 10877, - "\u0120intellig": 10878, "words": 10879, "\u0120Smart": 10880, "\u0120dele": - 10881, "\u0120lapt": 10882, "\u0120magical": 10883, "\u0120Sin": 10884, "bus": - 10885, "urities": 10886, "ighth": 10887, "\u0120Ruby": 10888, "\u0120Sure": - 10889, "olving": 10890, "\u0120jun": 10891, "OST": 10892, "\u0120imposed": - 10893, "\u0120astron": 10894, "\u0120correl": 10895, "\u0120NS": 10896, "\u0120Kit": - 10897, "\u0120Future": 10898, "burn": 10899, "\u0120immune": 10900, "ocus": - 10901, "\u0120courses": 10902, "\u0120String": 10903, "\u0120lean": 10904, - "\u0120ghost": 10905, "\u0120outcomes": 10906, "\u0120expense": 10907, "\u0120everyday": - 10908, "\u0120acceptable": 10909, "Ah": 10910, "\u0120equipped": 10911, "\u0120orange": - 10912, "FR": 10913, "\u0120Dutch": 10914, "Though": 10915, "\u0120Rank": 10916, - "QU": 10917, "\u0120Roberts": 10918, "what": 10919, "rend": 10920, "\u0120disappear": - 10921, "\u0120spawn": 10922, "\u0120Lam": 10923, "ois": 10924, "\u0120deserve": - 10925, "\u0120minimal": 10926, "\u0120nervous": 10927, "\u0120Would": 10928, - "\u0120rook": 10929, "\u0120Vancouver": 10930, "\u0120resign": 10931, "shire": - 10932, "\u0120Works": 10933, "\u0120Build": 10934, "\u0120affordable": 10935, - "\u0120Gary": 10936, "\u0120Arena": 10937, "\u0120hanging": 10938, "\u0120implications": - 10939, "\u0120Song": 10940, "\u0120maintaining": 10941, "\u0120guards": 10942, - "CON": 10943, "\u0120derived": 10944, "\u0120executed": 10945, "\u0120theories": - 10946, "\u0120quoted": 10947, "\u0120Andre": 10948, "oga": 10949, "seless": - 10950, "info": 10951, "\u0120Belg": 10952, "\u0120tears": 10953, "\u0120Surv": - 10954, "\u0120birthday": 10955, "igious": 10956, "immer": 10957, "\u0120spectrum": - 10958, "\u0120architecture": 10959, "\u0120recruit": 10960, "arma": 10961, - "Table": 10962, "\u0120monsters": 10963, "\u0120Gov": 10964, "\u0120destination": - 10965, "\u0120attractive": 10966, "\u0120foss": 10967, "\u0120Moreover": 10968, - "\u0120presents": 10969, "THE": 10970, "\u0120reply": 10971, "pton": 10972, - "\u0120cum": 10973, "\u0120delight": 10974, "\u0120affects": 10975, "\u0120donations": - 10976, "\u0120Toy": 10977, "\u0120Him": 10978, "MENT": 10979, "\u0120overcome": - 10980, "itched": 10981, "\u0120Fantasy": 10982, "\u0120Hat": 10983, "\u0120Beast": - 10984, "bott": 10985, "\u0120investigations": 10986, "Run": 10987, "\u0120hunting": - 10988, "di": 10989, "fund": 10990, "\u0120sessions": 10991, "estyle": 10992, - "\u0120portray": 10993, "oids": 10994, "Yeah": 10995, "\u0120communicate": - 10996, "\u0120comedy": 10997, "\u0120Yang": 10998, "\u0120belt": 10999, "\u0120Marine": - 11000, "\u0120predicted": 11001, "Play": 11002, "\u0120importantly": 11003, - "\u0120remarkable": 11004, "\u0120eliminate": 11005, "David": 11006, "\u0120bind": - 11007, "VID": 11008, "\u0120advocates": 11009, "\u0120Gaza": 11010, "imp": - 11011, "DB": 11012, "\u0120Na": 11013, "\u0120Similar": 11014, "IES": 11015, - "\u0120charity": 11016, "vas": 11017, "math": 11018, "\u0120\u00e2\u0138": - 11019, "oker": 11020, "ndum": 11021, "\u0120caps": 11022, "\u0120Hal": 11023, - "2000": 11024, "ean": 11025, "\u0120fleet": 11026, "\u0120recre": 11027, "Right": - 11028, "\u0120sleeping": 11029, "ijing": 11030, "kind": 11031, "\u0120designated": - 11032, "\u00c3\u00a4": 11033, "\u0120animation": 11034, "kee": 11035, "\u0120Introdu": - 11036, "\u0120/>": 11037, "\u0120delayed": 11038, "\u0120tremend": 11039, - "\u0120curious": 11040, "Use": 11041, "\u0120lect": 11042, "dam": 11043, "\u0120innovation": - 11044, "\u0120Points": 11045, "\u0120loading": 11046, "\u0120dispute": 11047, - "ctic": 11048, "irds": 11049, "\u0120BY": 11050, "\u0120nurs": 11051, "\u0120Value": - 11052, "IONS": 11053, "\u0120Hum": 11054, "\u0120template": 11055, "mers": - 11056, "\u0120appearances": 11057, "\u0120Entertainment": 11058, "\u0120translation": - 11059, "\u0120sake": 11060, "\u0120beneath": 11061, "\u0120inhib": 11062, - "\u0120euro": 11063, "abetes": 11064, "\u0120studying": 11065, "\u0120Mas": - 11066, "\u0120perceived": 11067, "\u0120examined": 11068, "\u0120eager": 11069, - "\u0120coaches": 11070, "\u0120imper": 11071, "chi": 11072, "\u0120produces": - 11073, "\").": 11074, "\u0120Everyone": 11075, "\u0120municip": 11076, "\u0120girlfriend": - 11077, "\u0120hire": 11078, "\u0120Vice": 11079, "\u0120suitable": 11080, - "opy": 11081, "\u0120inequ": 11082, "\u0120Duke": 11083, "fish": 11084, "first": - 11085, "\u0120Obs": 11086, "\u0120interior": 11087, "\u0120Bruce": 11088, - "\u0120Ry": 11089, "\u0120analys": 11090, "\u0120considerable": 11091, "\u0120forecast": - 11092, "\u0120fert": 11093, "orship": 11094, "\u0120Drug": 11095, "\u0120ALL": - 11096, ":\"": 11097, "thur": 11098, "\u0120Mail": 11099, "\u0120ballot": 11100, - "\u0120instantly": 11101, "\u0120Channel": 11102, "\u0120picks": 11103, "\u01201989": - 11104, "\u0120tent": 11105, "oli": 11106, "\u0120civilian": 11107, "bling": - 11108, "ello": 11109, "bu": 11110, "\u0120inch": 11111, "\u0120logo": 11112, - "\u0120cooperation": 11113, "\u0120walks": 11114, "\u0120investments": 11115, - "\u0120imprison": 11116, "\u0120Festival": 11117, "\u0120Ky": 11118, "\u0120legally": - 11119, "\u0120gri": 11120, "charg": 11121, "Sl": 11122, "\u0120threatening": - 11123, "duction": 11124, "flow": 11125, "\u0120dismissed": 11126, "ibraries": - 11127, "cap": 11128, "ele": 11129, "\u0120McG": 11130, "\u0120Harvard": 11131, - "\u0120Conservative": 11132, "\u0120CBS": 11133, "png": 11134, "\u0120roots": - 11135, "\u0120Having": 11136, "umbled": 11137, "\u0120Fun": 11138, "\\/": - 11139, "\u0120Search": 11140, "plex": 11141, "\u0120discussing": 11142, "\u0120continu": - 11143, "\u0120Tai": 11144, "\u0120Wik": 11145, "Free": 11146, "fit": 11147, - "\u0120refuse": 11148, "\u0120managing": 11149, "\u0120synd": 11150, "ipedia": - 11151, "walk": 11152, "\u0120professionals": 11153, "\u0120guidance": 11154, - "\u0120universities": 11155, "\u0120assemb": 11156, "untu": 11157, "Finally": - 11158, "ASE": 11159, "\u0120Auto": 11160, "\u0120Had": 11161, "\u0120anniversary": - 11162, "LD": 11163, "\u0120Dur": 11164, "\u0120Ultimate": 11165, "ihad": 11166, - "product": 11167, "\u0120transit": 11168, "\u0120restore": 11169, "\u0120explaining": - 11170, "\u0120asset": 11171, "\u0120transferred": 11172, "\u0120burst": 11173, - "apolis": 11174, "\u0120Magazine": 11175, "\u0120Cra": 11176, "\u0120BR": - 11177, "gged": 11178, "\u0120HE": 11179, "Mich": 11180, "bet": 11181, "\u0120Lady": - 11182, "ylum": 11183, "erves": 11184, "\u0120meets": 11185, "white": 11186, - "Log": 11187, "\u0120corresponding": 11188, "\u0120insisted": 11189, "GG": - 11190, "\u0120surrounded": 11191, "\u0120tens": 11192, "\u0120lane": 11193, - "\u0120coinc": 11194, "home": 11195, "\u0120existed": 11196, "ected": 11197, - "\u0120Double": 11198, "lamm": 11199, "\u0120skept": 11200, "exp": 11201, - "\u0120perception": 11202, "iev": 11203, "\u0120Being": 11204, "oft": 11205, - "\u0120adopt": 11206, ".:": 11207, "];": 11208, "Windows": 11209, "\u0120satellite": - 11210, "ASH": 11211, "\u0120infant": 11212, "description": 11213, "\u0120Meanwhile": - 11214, "cm": 11215, "oca": 11216, "\u0120Treat": 11217, "actor": 11218, "\u0120tobacco": - 11219, "\u0120Norm": 11220, "emption": 11221, "\u0120flesh": 11222, "\u0120je": - 11223, "oop": 11224, "\u0120Heaven": 11225, "\u0120beating": 11226, "anim": - 11227, "\u0120gathering": 11228, "\u0120cultiv": 11229, "GO": 11230, "abe": - 11231, "\u0120Jonathan": 11232, "\u0120Safety": 11233, "\u0120badly": 11234, - "prot": 11235, "\u0120choosing": 11236, "\u0120contacted": 11237, "\u0120quit": - 11238, "\u0120distur": 11239, "\u0120stir": 11240, "\u0120token": 11241, "Det": - 11242, "\u0120Pa": 11243, "\u0120functionality": 11244, "003": 11245, "some": - 11246, "\u0120limitations": 11247, "\u0120meth": 11248, "build": 11249, "config": - 11250, "NT": 11251, "rell": 11252, "blem": 11253, "\u0120Mom": 11254, "\u0120veterans": - 11255, "\u0120Hu": 11256, "\u0120trends": 11257, "arer": 11258, "\u0120Given": - 11259, "\u0120Caption": 11260, "may": 11261, "AST": 11262, "\u0120wondering": - 11263, "\u0120Clark": 11264, "normal": 11265, "\u0120separated": 11266, "\u0120desp": - 11267, "stic": 11268, "brew": 11269, "\u0120relating": 11270, "\u0120Nik": - 11271, "\u0120Farm": 11272, "\u0120enthusi": 11273, "good": 11274, "deb": - 11275, "\u0120activist": 11276, "\u0120mart": 11277, "\u0120explosion": 11278, - "\u0120Economic": 11279, "Link": 11280, "\u0120insight": 11281, "\u0120convenient": - 11282, "\u0120counterpart": 11283, "support": 11284, "\u0120Virt": 11285, - "agen": 11286, "\u0120Tennessee": 11287, "\u0120Simon": 11288, "\u0120Award": - 11289, "OCK": 11290, "\u0120Figure": 11291, "\u0120overseas": 11292, "\u0120pride": - 11293, "\u0120Cas": 11294, "note": 11295, "mg": 11296, "Current": 11297, "\u0120displays": - 11298, "content": 11299, "\u0120traveling": 11300, "\u0120hospitals": 11301, - "\u0120Financial": 11302, "\u0120Past": 11303, "\u0120defendant": 11304, "\u0120streaming": - 11305, "mble": 11306, "\u0120Berlin": 11307, "uki": 11308, "\u0120distribut": - 11309, "\u0120antib": 11310, "\u0120chocolate": 11311, "\u0120Castle": 11312, - "\u0120interrupt": 11313, "\u0120Row": 11314, "\u0120conversion": 11315, "\u0120bugs": - 11316, "\u0120Rather": 11317, "liest": 11318, "LY": 11319, "\u0120Jean": 11320, - "common": 11321, "akh": 11322, "\u0120130": 11323, "otton": 11324, "\u0120Dean": - 11325, "\u0120amendment": 11326, "\u0120gameplay": 11327, "\u0120Warren": - 11328, "oda": 11329, "\u0120highlights": 11330, "\u0120irre": 11331, "\u0120NATO": - 11332, "\u0120balls": 11333, "\u0120demanding": 11334, "URE": 11335, "\u0120Luke": - 11336, "Figure": 11337, "stop": 11338, "onia": 11339, "zone": 11340, "izers": - 11341, "\u0120WR": 11342, "\u0120awarded": 11343, "\u0120regulatory": 11344, - "\u0120Hart": 11345, "\u0120SN": 11346, "pling": 11347, "\u0120sour": 11348, - "\u0120Pixel": 11349, "usive": 11350, "\u0120fet": 11351, "\u0120Sent": 11352, - "\u0120automatic": 11353, "\u0120fer": 11354, "vernment": 11355, "\u0120Khan": - 11356, "TON": 11357, "father": 11358, "\u0120extraordinary": 11359, "throp": - 11360, "\u0120Python": 11361, "\u0120GPU": 11362, "\u0120sexually": 11363, - "\u0120desktop": 11364, "itivity": 11365, "\u0120Antonio": 11366, "\u0120orient": - 11367, "\u0120ears": 11368, "obby": 11369, "ouses": 11370, "vertisements": - 11371, "\u0120manufacturers": 11372, "icient": 11373, "minute": 11374, "\u0120conviction": - 11375, "\u0120garden": 11376, "public": 11377, "\u0120satisfied": 11378, "fold": - 11379, "OK": 11380, "\u0120inhab": 11381, "\u0120Think": 11382, "\u0120programme": - 11383, "\u0120stomach": 11384, "\u0120coordin": 11385, "\u0120holy": 11386, - "\u0120threshold": 11387, "\u0120rhet": 11388, "\u0120serial": 11389, "\u0120employers": - 11390, "\u0120Everything": 11391, "rah": 11392, "\u0120bother": 11393, "\u0120brands": - 11394, "Value": 11395, "\u0120Ted": 11396, "\u0120Planet": 11397, "\u0120pink": - 11398, "\u0120Furthermore": 11399, "sa": 11400, "PE": 11401, "reck": 11402, - "\u0120USD": 11403, "otte": 11404, "\u0120&&": 11405, "\u0120landed": 11406, - "gets": 11407, "\u0120producers": 11408, "\u0120healthcare": 11409, "\u0120dominant": - 11410, "\u0120destro": 11411, "\u0120amended": 11412, "chron": 11413, "\u0120fits": - 11414, "\u0120Syd": 11415, "\u0120Authority": 11416, "ATCH": 11417, "\u0120fights": - 11418, "\u0120LLC": 11419, "\u0120---": 11420, "\u0120Corp": 11421, "\u0120toxic": - 11422, "specific": 11423, "\u0120Corn": 11424, "\u0120Chel": 11425, "\u0120telephone": - 11426, "\u0120Pant": 11427, "\u0120mysterious": 11428, "aunch": 11429, "odox": - 11430, "media": 11431, "\u0120witnesses": 11432, "agu": 11433, "\u0120questioned": - 11434, "\u0120Brexit": 11435, "\u0120Remember": 11436, "enez": 11437, "\u0120endorse": - 11438, "iatric": 11439, "\u0120Ident": 11440, "\u0120ridiculous": 11441, "110": - 11442, "\u0120prayer": 11443, "\u0120scientist": 11444, "\u01201950": 11445, - "\u0120Aqu": 11446, "\u0120underground": 11447, "\u0120UFC": 11448, "mare": - 11449, "\u0120Later": 11450, "wich": 11451, "\u0120subscrib": 11452, "\u0120hosts": - 11453, "\u0120err": 11454, "\u0120grants": 11455, "antom": 11456, "\u0120summon": - 11457, "early": 11458, "\u0120Clear": 11459, "\u0120Prim": 11460, "\u0120suspension": - 11461, "\u0120guaranteed": 11462, "apper": 11463, "\u0120rice": 11464, "\u0120Sean": - 11465, "\u0120Shin": 11466, "\u0120referendum": 11467, "\u0120fled": 11468, - "rust": 11469, "\u0120360": 11470, "tery": 11471, "\u0120shocked": 11472, - "BR": 11473, "\u0120Oil": 11474, "\u0120Allah": 11475, "\u0120partly": 11476, - "\u0120ignor": 11477, "\u0120transmission": 11478, "\u0120homosexual": 11479, - "iversal": 11480, "\u0120hopefully": 11481, "\u00e3\u0124\u00a4": 11482, "\u0120lesson": - 11483, "Leg": 11484, "\u0120..": 11485, "Yet": 11486, "table": 11487, "appropri": - 11488, "rett": 11489, "\u0120boards": 11490, "\u0120incorrect": 11491, "\u0120bacteria": - 11492, "aru": 11493, "amac": 11494, "\u0120snap": 11495, ".''\"": 11496, "\u0120parad": - 11497, "tem": 11498, "heart": 11499, "\u0120availability": 11500, "\u0120wisdom": - 11501, "\u0120(+": 11502, "\u0120priest": 11503, "\u0120\u00c2\u0142\u0120\u00c2\u0142": - 11504, "Open": 11505, "\u0120span": 11506, "\u0120parameter": 11507, "\u0120convince": - 11508, "\u0120(%)": 11509, "rac": 11510, "\u0120fo": 11511, "\u0120safely": - 11512, "\u0120converted": 11513, "\u0120Olympic": 11514, "\u0120reserve": - 11515, "\u0120healing": 11516, "\u0120Mine": 11517, "Max": 11518, "\u0120inherent": - 11519, "\u0120Graham": 11520, "\u0120integrated": 11521, "Dem": 11522, "\u0120pipeline": - 11523, "\u0120applying": 11524, "\u0120embed": 11525, "\u0120Charlie": 11526, - "\u0120cave": 11527, "2008": 11528, "\u0120consensus": 11529, "\u0120rewards": - 11530, "Pal": 11531, "\u0120HTML": 11532, "\u0120popularity": 11533, "looking": - 11534, "\u0120Sword": 11535, "\u0120Arts": 11536, "'')": 11537, "\u0120electron": - 11538, "clusions": 11539, "\u0120integrity": 11540, "\u0120exclusively": 11541, - "\u0120grace": 11542, "\u0120torture": 11543, "\u0120burned": 11544, "two": - 11545, "\u0120180": 11546, "Produ": 11547, "\u0120entreprene": 11548, "raphics": - 11549, "\u0120gym": 11550, "ricane": 11551, "\u0120Tam": 11552, "\u0120administrative": - 11553, "\u0120manufacturer": 11554, "\u0120vel": 11555, "\u0120Ni": 11556, - "\u0120isolated": 11557, "\u0120Medicine": 11558, "\u0120backup": 11559, "\u0120promoting": - 11560, "\u0120commander": 11561, "\u0120flee": 11562, "\u0120Russell": 11563, - "\u0120forgotten": 11564, "\u0120Missouri": 11565, "\u0120residence": 11566, - "mons": 11567, "\u0120resemb": 11568, "\u0120wand": 11569, "\u0120meaningful": - 11570, "PT": 11571, "\u0120bol": 11572, "\u0120helic": 11573, "\u0120wealthy": - 11574, "\u0120rifle": 11575, "strong": 11576, "rowing": 11577, "plan": 11578, - "asury": 11579, "\u00e2\u0122\u00a6.": 11580, "\u0120expanding": 11581, "\u0120Hamilton": - 11582, "\u0120receives": 11583, "SI": 11584, "eatures": 11585, "\u0120Anim": - 11586, "REE": 11587, "Put": 11588, "\u0120briefly": 11589, "rive": 11590, - "\u0120stimul": 11591, "\u0120``(": 11592, "\u0120__": 11593, "\u0120chip": - 11594, "\u0120haz": 11595, "\u0120prize": 11596, "\u0120Things": 11597, "ACE": - 11598, "ulin": 11599, "dict": 11600, "oku": 11601, "\u0120associate": 11602, - "ockets": 11603, "youtube": 11604, "Story": 11605, "ategory": 11606, "\u0120mild": - 11607, "ailing": 11608, "\u0120Ye": 11609, "Orig": 11610, "\u0120Ka": 11611, - "orig": 11612, "\u0120propaganda": 11613, "\u0120anonymous": 11614, "\u0120struggled": - 11615, "\u0120outrage": 11616, "ATED": 11617, "\u0120Beijing": 11618, "rary": - 11619, "\u0120leather": 11620, "\u0120worlds": 11621, "\u0120broader": 11622, - "125": 11623, "idal": 11624, "\u0120Better": 11625, "\u0120tear": 11626, "Ext": - 11627, "\u0120proposals": 11628, "\u0120iter": 11629, "\u0120Squad": 11630, - "\u0120volunt": 11631, "mi": 11632, "Did": 11633, "\u0120Pu": 11634, "pin": - 11635, "\u0120speakers": 11636, "\u0120borders": 11637, "\u0120figured": 11638, - "=''": 11639, "\u0120simultaneously": 11640, "aeda": 11641, "\u0120charging": - 11642, "\u0120urged": 11643, "\u0120conj": 11644, "256": 11645, "\u0120Gordon": - 11646, "merce": 11647, "\u0120documentary": 11648, "Share": 11649, "itol": - 11650, "ONE": 11651, "\u0120Garden": 11652, "hatt": 11653, "\u0120Thompson": - 11654, "aneous": 11655, "apore": 11656, "\u0120tanks": 11657, "\u0120lessons": - 11658, "track": 11659, "\u0120outstanding": 11660, "\u0120volunteers": 11661, - "\u0120spray": 11662, "\u0120managers": 11663, "large": 11664, "\u0120camps": - 11665, "\u0120artificial": 11666, "\u0120Ru": 11667, "\u0120bags": 11668, - "thal": 11669, "\u0120compatible": 11670, "\u0120Blade": 11671, "\u0120fed": - 11672, "\u0120argues": 11673, "FI": 11674, "\u0120unfair": 11675, "\u0120corn": - 11676, "\u0120offset": 11677, "\u0120directions": 11678, "\u0120disappointed": - 11679, "\u0120Convention": 11680, "\u0120viewing": 11681, "ME": 11682, "ocity": - 11683, "\u0120towns": 11684, "\u0120layers": 11685, "\u0120rolled": 11686, - "\u0120jumped": 11687, "\u0120attribute": 11688, "\u0120unnecess": 11689, - "incoln": 11690, "\u0120suppose": 11691, "\u0120Nether": 11692, "cha": 11693, - "\u0120buried": 11694, "\u0120sixth": 11695, "Ben": 11696, "ressing": 11697, - "OUR": 11698, "\u0120wound": 11699, "\u0120cycl": 11700, "\u0120mechanisms": - 11701, "\u0120congressional": 11702, "\u0120Element": 11703, "\u0120agreements": - 11704, "\u0120decor": 11705, "\u0120closest": 11706, "\u0120Mit": 11707, "Google": - 11708, "}}": 11709, "\u0120mixture": 11710, "\u0120fluid": 11711, "Sign": - 11712, "\u0120Scholar": 11713, "\u0120pist": 11714, "asket": 11715, "abling": - 11716, "\u0120racing": 11717, "hero": 11718, "riel": 11719, "assy": 11720, - "\u0120cheaper": 11721, "ben": 11722, "\u0120vertical": 11723, "amacare": - 11724, "\u0120Reading": 11725, "gments": 11726, "\u0120helicop": 11727, "\u0120sacrifice": - 11728, "aya": 11729, "paren": 11730, "VA": 11731, "\u0120Les": 11732, "\u0120Studio": - 11733, "\u0120violations": 11734, "\u0120Anna": 11735, "acer": 11736, "\u00e9\u00be": - 11737, "\u0120Rat": 11738, "\u0120Beck": 11739, "\u0120Dick": 11740, "\u0120ACT": - 11741, "\u0120composition": 11742, "\u0120texture": 11743, "\u0120Own": 11744, - "\u0120smartphone": 11745, "\u0120NA": 11746, "\u0120forb": 11747, "import": - 11748, "\u0120defending": 11749, "ilst": 11750, "rer": 11751, "\u0120oh": - 11752, "\u0120Jeremy": 11753, "\u0120banking": 11754, "ceptions": 11755, "\u0120respective": - 11756, "/.": 11757, "\u0120drinks": 11758, "\u0120Wi": 11759, "\u0120bands": - 11760, "\u0120Liverpool": 11761, "\u0120grip": 11762, "\u0120Buy": 11763, - "\u0120openly": 11764, "\u0120reviewed": 11765, "pert": 11766, "\u0120verify": - 11767, "\u0120Cole": 11768, "\u0120Wales": 11769, "MO": 11770, "\u0120unpre": - 11771, "\u0120shelter": 11772, "\u0120Imperial": 11773, "\u0120gui": 11774, - "\u0120Dak": 11775, "\u0120suggestions": 11776, "\u0120explicitly": 11777, - "\u0120slave": 11778, "\u0120blockchain": 11779, "\u0120competing": 11780, - "\u0120promising": 11781, "SON": 11782, "\u0120soccer": 11783, "\u0120constitution": - 11784, "429": 11785, "\u0120distract": 11786, "\u0120User": 11787, "esides": - 11788, "\u0120Method": 11789, "\u0120Tokyo": 11790, "\u0120accompanied": 11791, - "Client": 11792, "sur": 11793, "alog": 11794, "\u0120identification": 11795, - "\u0120invasion": 11796, "asma": 11797, "\u0120industries": 11798, "ppers": - 11799, "\u0120subtle": 11800, "\u0120Unit": 11801, "natural": 11802, "\u0120survived": - 11803, "\u0120flaw": 11804, "\u013a\u0127": 11805, "\u0120Holl": 11806, "\u0120deficit": - 11807, "\u0120tutorial": 11808, "\u0120Chance": 11809, "\u0120arguing": 11810, - "\u0120contemporary": 11811, "\u0120integration": 11812, "forward": 11813, - "\u0120tum": 11814, "itis": 11815, "\u0120hiding": 11816, "\u0120Domin": 11817, - "\u0120Tan": 11818, "\u0120Building": 11819, "\u0120Vin": 11820, "\u0120spokesperson": - 11821, "\u0120Notes": 11822, "\u0120emerging": 11823, "\u0120preparation": - 11824, "\u0120prost": 11825, "\u0120suspects": 11826, "\u0120autonom": 11827, - "Description": 11828, "\u0120dealt": 11829, "\u0120Pear": 11830, "\u0120steady": - 11831, "\u0120decreased": 11832, "\u0120sovere": 11833, "\u0120Clin": 11834, - "\u0120gradually": 11835, "orses": 11836, "\u0120WAR": 11837, "Serv": 11838, - "\u00e3\u0124\u00a2": 11839, "hr": 11840, "\u0120dirty": 11841, "\u0120Barn": - 11842, "\u0120BC": 11843, "\u0120dil": 11844, "\u0120calendar": 11845, "\u0120compliance": - 11846, "\u0120chamber": 11847, "bb": 11848, "\u0120passenger": 11849, "ateful": - 11850, "\u0120Title": 11851, "\u0120Sydney": 11852, "\u0120Got": 11853, "\u0120darkness": - 11854, "\u0120defect": 11855, "\u0120packed": 11856, "assion": 11857, "\u0120gods": - 11858, "\u0120harsh": 11859, "ICK": 11860, "leans": 11861, "\u0120algorithm": - 11862, "\u0120oxygen": 11863, "\u0120visits": 11864, "\u0120blade": 11865, - "\u0120kilomet": 11866, "\u0120Kentucky": 11867, "\u0120killer": 11868, "Pack": - 11869, "enny": 11870, "\u0120divine": 11871, "\u0120nomination": 11872, "being": - 11873, "\u0120engines": 11874, "\u0120cats": 11875, "\u0120buffer": 11876, - "\u0120Phill": 11877, "\u0120traff": 11878, "AGE": 11879, "\u0120tongue": - 11880, "\u0120radiation": 11881, "erer": 11882, "mem": 11883, "\u0120Explicit": - 11884, "\u00e9\u00be\u012f": 11885, "\u0120couples": 11886, "\u0120physics": - 11887, "\u0120McK": 11888, "\u0120politically": 11889, "awks": 11890, "\u0120Bloom": - 11891, "\u0120worship": 11892, "eger": 11893, "uter": 11894, "\u0120FO": 11895, - "\u0120mathemat": 11896, "\u0120sentenced": 11897, "\u0120disk": 11898, "\u0120Marg": - 11899, "\u0120/*": 11900, "PI": 11901, "\u0120optional": 11902, "\u0120babies": - 11903, "\u0120seeds": 11904, "\u0120Scottish": 11905, "\u0120thy": 11906, - "]]": 11907, "\u0120Hitler": 11908, "PH": 11909, "ngth": 11910, "\u0120recovered": - 11911, "inge": 11912, "\u0120powder": 11913, "\u0120lips": 11914, "\u0120designer": - 11915, "\u0120disorders": 11916, "\u0120courage": 11917, "\u0120chaos": 11918, - "\"},{\"": 11919, "\u0120carrier": 11920, "bably": 11921, "High": 11922, "\u0120RT": - 11923, "esity": 11924, "len": 11925, "\u0120routes": 11926, "uating": 11927, - "Fil": 11928, "NOT": 11929, "wall": 11930, "sburgh": 11931, "\u0120engaging": - 11932, "\u0120JavaScript": 11933, "orer": 11934, "lihood": 11935, "\u0120unions": - 11936, "\u0120Federation": 11937, "\u0120Tesla": 11938, "\u0120completion": - 11939, "\u0120Ta": 11940, "\u0120privilege": 11941, "\u0120Orange": 11942, - "\u0120neur": 11943, "parency": 11944, "\u0120bones": 11945, "\u0120titled": - 11946, "\u0120prosecutors": 11947, "\u0120ME": 11948, "\u0120engineer": 11949, - "\u0120Universe": 11950, "\u0120Hig": 11951, "nie": 11952, "oard": 11953, - "\u0120hearts": 11954, "\u0120Gre": 11955, "ussion": 11956, "\u0120ministry": - 11957, "\u0120penet": 11958, "\u0120Nut": 11959, "\u0120Ow": 11960, "\u0120XP": - 11961, "instein": 11962, "\u0120bulk": 11963, "System": 11964, "icism": 11965, - "\u0120Marketable": 11966, "\u0120preval": 11967, "\u0120poster": 11968, "\u0120attending": - 11969, "urable": 11970, "\u0120licensed": 11971, "\u0120Gh": 11972, "etry": - 11973, "\u0120Tradable": 11974, "\u0120blast": 11975, "\u00e0\u00a4": 11976, - "\u0120Titan": 11977, "elled": 11978, "die": 11979, "Have": 11980, "\u0120Flame": - 11981, "\u0120profound": 11982, "\u0120participating": 11983, "\u0120anime": - 11984, "\u0120Ess": 11985, "\u0120specify": 11986, "\u0120regarded": 11987, - "\u0120Spell": 11988, "\u0120sons": 11989, "owned": 11990, "\u0120merc": 11991, - "\u0120experimental": 11992, "lando": 11993, "hs": 11994, "\u0120Dungeon": - 11995, "inos": 11996, "\u0120comply": 11997, "\u0120Systems": 11998, "arth": - 11999, "\u0120seized": 12000, "local": 12001, "\u0120Girls": 12002, "udo": - 12003, "oned": 12004, "\u0120Fle": 12005, "\u0120constructed": 12006, "\u0120hosted": - 12007, "\u0120scared": 12008, "actic": 12009, "\u0120Islands": 12010, "\u0120MORE": - 12011, "\u0120bless": 12012, "\u0120blocking": 12013, "\u0120chips": 12014, - "\u0120evac": 12015, "Ps": 12016, "\u0120corporation": 12017, "\u0120ox": - 12018, "\u0120lighting": 12019, "\u0120neighbors": 12020, "\u0120Ub": 12021, - "aro": 12022, "\u0120beef": 12023, "\u0120Uber": 12024, "Facebook": 12025, - "armed": 12026, "itate": 12027, "\u0120Rating": 12028, "\u0120Quick": 12029, - "\u0120occupied": 12030, "\u0120aims": 12031, "\u0120Additionally": 12032, - "\u0120Interest": 12033, "\u0120dramatically": 12034, "\u0120heal": 12035, - "\u0120painting": 12036, "\u0120engineers": 12037, "MM": 12038, "\u0120Must": - 12039, "\u0120quantity": 12040, "Paul": 12041, "\u0120earnings": 12042, "\u0120Posts": - 12043, "stra": 12044, "\u00e3\u0125\u00bc\u00e3\u0125": 12045, "\u0120stance": - 12046, "\u0120dropping": 12047, "script": 12048, "\u0120dressed": 12049, "Make": - 12050, "\u0120justify": 12051, "\u0120Ltd": 12052, "\u0120prompted": 12053, - "\u0120scrut": 12054, "\u0120speeds": 12055, "\u0120Giants": 12056, "omer": - 12057, "\u0120Editor": 12058, "\u0120describing": 12059, "\u0120Lie": 12060, - "mented": 12061, "\u0120nowhere": 12062, "ocaly": 12063, "\u0120instruction": - 12064, "fortable": 12065, "\u0120entities": 12066, "\u0120cm": 12067, "\u0120Natural": - 12068, "\u0120inquiry": 12069, "\u0120pressed": 12070, "izont": 12071, "forced": - 12072, "\u0120raises": 12073, "\u0120Netflix": 12074, "\u0120Side": 12075, - "\u0120outer": 12076, "\u0120amongst": 12077, "ims": 12078, "owski": 12079, - "\u0120climb": 12080, "never": 12081, "\u0120combine": 12082, "ding": 12083, - "\u0120compr": 12084, "\u0120significance": 12085, "\u0120remembered": 12086, - "\u0120Nevada": 12087, "\u0120Tel": 12088, "\u0120Scar": 12089, "\u0120Warriors": - 12090, "\u0120Jane": 12091, "\u0120coup": 12092, "bas": 12093, "\u0120terminal": - 12094, ",-": 12095, "OH": 12096, "\u0120tension": 12097, "\u0120wings": 12098, - "\u0120Myster": 12099, "\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd": - 12100, "\u0120Unlike": 12101, "valid": 12102, "vironments": 12103, "\u0120Ali": - 12104, "\u0120naked": 12105, "books": 12106, "\u0120Mun": 12107, "\u0120Gulf": - 12108, "\u0120density": 12109, "\u0120dimin": 12110, "\u0120desperate": 12111, - "\u0120presidency": 12112, "\u01201986": 12113, "hy": 12114, "IND": 12115, - "\u0120unlock": 12116, "imens": 12117, "\u0120handled": 12118, "\u0120Eb": - 12119, "\u0120disappeared": 12120, "\u0120genre": 12121, "\u01201988": 12122, - "\u0120determination": 12123, "Stream": 12124, "iko": 12125, "apters": 12126, - "\u0120acknowledge": 12127, "Jan": 12128, "\u0120capitalism": 12129, "Pat": - 12130, "\u01202020": 12131, "\u0120painful": 12132, "\u0120curve": 12133, - "\u0120bombs": 12134, "storm": 12135, "\u0120Metal": 12136, "encer": 12137, - "\u0120Fig": 12138, "\u0120Aaron": 12139, "anches": 12140, "\u0120inspiration": - 12141, "\u0120exhaust": 12142, "tains": 12143, "ashi": 12144, "\u0120descript": - 12145, "\u0120ritual": 12146, "\u0120Chelsea": 12147, "\u0120promotion": 12148, - "\u0120Hung": 12149, "\u0120Ward": 12150, "iva": 12151, "\u0120ET": 12152, - "\u0120toss": 12153, "allow": 12154, "\u0120Francis": 12155, "Dep": 12156, - "\u0120happiness": 12157, "\u0120Glass": 12158, "\u0120beta": 12159, "\u0120strengthen": - 12160, "NE": 12161, "oa": 12162, "\u0120buttons": 12163, "\u0120Murray": 12164, - "\u0120kicked": 12165, "Quest": 12166, "\u0120Talk": 12167, "\u0120Several": - 12168, "\u0120Zero": 12169, "\u0120drone": 12170, "ulk": 12171, "\u0120cam": - 12172, "\u0120Mobile": 12173, "\u0120preventing": 12174, "\u0120retro": 12175, - "\u0120Ax": 12176, "\u0120cruel": 12177, "\u0120float": 12178, ".),": 12179, - "\u0120filing": 12180, "\u0120Grant": 12181, "\u0120Bor": 12182, "\u0120rib": - 12183, "\u0120championship": 12184, "\u0120Merc": 12185, "\u0120styles": 12186, - "\u0120cake": 12187, "\u0120builds": 12188, "\u0120Self": 12189, "iox": 12190, - "\u0120epic": 12191, "oyd": 12192, "Bel": 12193, "\u0120Stew": 12194, ".(": - 12195, "ahu": 12196, "\u0120Beyond": 12197, "\u0120outs": 12198, "\u0120solo": - 12199, "\u0120Tree": 12200, "\u0120preserve": 12201, "\u0120tub": 12202, "ARE": - 12203, "roc": 12204, "\u0120Impro": 12205, "\u0120Wright": 12206, "\u0120bund": - 12207, "\u0120traged": 12208, "\u0120occasional": 12209, "bian": 12210, "Second": - 12211, "rons": 12212, "\u0120interactions": 12213, "formed": 12214, "sing": - 12215, "\u0120owns": 12216, "\u0120hockey": 12217, "General": 12218, "\u0120logical": - 12219, "\u0120expend": 12220, "\u0120escal": 12221, "\u0120Griff": 12222, - "\u0120Crown": 12223, "\u0120Reserve": 12224, "\u0120stopping": 12225, "\u0120excuse": - 12226, "second": 12227, "\u0120operated": 12228, "\u0120reaches": 12229, "\u0120Malays": - 12230, "\u0120pollution": 12231, "\u0120Brooklyn": 12232, "\u0120delete": - 12233, "\u0120hash": 12234, "Block": 12235, "aha": 12236, "\u00e2\u0122\u00b3": - 12237, "\u0120shorter": 12238, "piece": 12239, ">>>": 13163, "\u0120Mormon": 13164, "tor": 13165, "\u0120particles": - 13166, "\u0120Bart": 13167, "ryption": 13168, "\u0120admin": 13169, "\u0120squee": - 13170, "VIDIA": 13171, "\u0120creator": 13172, "iameter": 13173, "icular": - 13174, "NBC": 13175, "\u0120grabbed": 13176, "\u0120nodd": 13177, "\u0120rated": - 13178, "\u0120rotation": 13179, "\u0120grasp": 13180, "\u0120excessive": 13181, - "\u0120EC": 13182, "\u0120Whit": 13183, "\u0120inventory": 13184, "aults": - 13185, "\u0120FB": 13186, "\u0120ecosystem": 13187, "\u0120billions": 13188, - "\u0120venture": 13189, "named": 13190, "\u0120defender": 13191, "oute": 13192, - "Instead": 13193, "irable": 13194, "War": 13195, "\u0120assumption": 13196, - "\u0120bite": 13197, "\u0120earthqu": 13198, "tail": 13199, "space": 13200, - "\u0120gifts": 13201, "boys": 13202, "\u0120inevitable": 13203, "\u0120structural": - 13204, "\u0120beneficial": 13205, "\u0120compelling": 13206, "hole": 13207, - "ervation": 13208, "\u0120coat": 13209, "oj": 13210, "incarn": 13211, "\u0120Years": - 13212, "\u0120determining": 13213, "\u0120rhetoric": 13214, "\u0120boundaries": - 13215, "\u0120whites": 13216, "Ant": 13217, "addy": 13218, ")-": 13219, "raham": - 13220, "etermin": 13221, "\u0120harvest": 13222, "\u0120Conc": 13223, "\u0120laptop": - 13224, "\u0120Match": 13225, "\u0120enjoying": 13226, "cca": 13227, "ollar": - 13228, "\u0120trips": 13229, "\u0120addiction": 13230, "\u0120Sak": 13231, - "\u0120powered": 13232, "\u0120cous": 13233, "\u0120Russians": 13234, "iere": - 13235, "\u0120retrie": 13236, "quality": 13237, "\u0120differ": 13238, "\u0120kingdom": - 13239, "\u0120Laur": 13240, "\u0120Capitol": 13241, "\u0120conclusions": 13242, - "\u0120Altern": 13243, "\u0120Nav": 13244, "\u0120transparent": 13245, "BER": - 13246, "Group": 13247, "\u0120Complete": 13248, "\u0120infer": 13249, "\u0120intrig": - 13250, "\u0120insane": 13251, "RO": 13252, "ophob": 13253, "isen": 13254, - "qual": 13255, "Michael": 13256, "\u0120museum": 13257, "\u0120Pope": 13258, - "\u0120reset": 13259, "rative": 13260, "five": 13261, "\u0120aggreg": 13262, - "ittees": 13263, "ository": 13264, "\u0120carb": 13265, "\u0120Record": 13266, - "\u0120decides": 13267, "\u0120Fix": 13268, "\u0120exceptions": 13269, "\u0120Commissioner": - 13270, "uns": 13271, "\u0120Environmental": 13272, "\u0120legendary": 13273, - "istence": 13274, "\u0120tunnel": 13275, "km": 13276, "\u0120insult": 13277, - "\u0120troll": 13278, "\u0120shake": 13279, "\u0120detention": 13280, "ques": - 13281, "\u0120Chrome": 13282, "\u0120Files": 13283, "\u0120subt": 13284, "\u0120prospects": - 13285, "\u0120prol": 13286, "render": 13287, "proof": 13288, "\u0120performances": - 13289, "Str": 13290, "\u0120href": 13291, "ername": 13292, "\u0120achievement": - 13293, "\u0120fut": 13294, "Full": 13295, "\u0120Leban": 13296, "google": - 13297, "\u00e3\u0125\u012a": 13298, "ampa": 13299, "Maybe": 13300, "\u0120projected": - 13301, "\u0120Emb": 13302, "\u0120colleg": 13303, "\u0120awards": 13304, "\u0120\u00e2\u0136": - 13305, "Gold": 13306, "\u0120Blake": 13307, "\u0120Raj": 13308, "ifting": - 13309, "\u0120pending": 13310, "\u0120instinct": 13311, "\u0120developments": - 13312, "Connect": 13313, "\u0120Mand": 13314, "\u0120WITH": 13315, "\u0120Philippines": - 13316, "profile": 13317, "\u0120altogether": 13318, "\u0120Bund": 13319, "\u0120TD": - 13320, "oooo": 13321, "amped": 13322, "iph": 13323, "\u0120steam": 13324, - "\u0120oldest": 13325, "\u0120detection": 13326, "ulpt": 13327, "\u0120\u00e7": - 13328, "\u0120Wayne": 13329, "2006": 13330, "fa": 13331, "\u0120circles": - 13332, "\u0120Fu": 13333, "\u0120donors": 13334, "appropriate": 13335, "\u0120Dakota": - 13336, "jamin": 13337, "\u0120motivated": 13338, "\u0120purchases": 13339, - "\u0120Louisiana": 13340, "\u0120Spl": 13341, "\u0120globe": 13342, "\u0120105": - 13343, "zip": 13344, "call": 13345, "\u0120departments": 13346, "\u0120sustainable": - 13347, "105": 13348, "\u0120OP": 13349, "ifiers": 13350, "\u0120prevented": - 13351, "\u0120incomp": 13352, "\u0120Commander": 13353, "\u0120dominated": - 13354, "\u0120\u00c2\u00bb": 13355, "\u0120invested": 13356, "\u0120complexity": - 13357, "\u0120incl": 13358, "\u0120ensuring": 13359, "\u0120realm": 13360, - "ync": 13361, "\u0120Independent": 13362, "rained": 13363, "\u0120Jen": 13364, - "\u0120Flight": 13365, "\u0120athe": 13366, "\u0120speculation": 13367, "\u0120TE": - 13368, "ocate": 13369, "tic": 13370, "\u0120plaint": 13371, "herry": 13372, - "\u0120toy": 13373, "\u0120111": 13374, "\u0120plates": 13375, "status": 13376, - "\u0120Isa": 13377, "\u0120devoted": 13378, "Cop": 13379, "\u0120ES": 13380, - "255": 13381, "urrency": 13382, "Main": 13383, "\u0120slaves": 13384, "\u0120pepper": - 13385, "\u0120quotes": 13386, "\u0120ceiling": 13387, "\u0120Fish": 13388, - "\u0120transformation": 13389, "\u0120fraction": 13390, "\u0120advantages": - 13391, "\u0120toile": 13392, "\u0120stunning": 13393, "\u0120moist": 13394, - "breaking": 13395, "si": 13396, "\u0120Location": 13397, "\u0120Medium": 13398, - "\u0120texts": 13399, "\u0120ugly": 13400, "\u0120bio": 13401, ".\u00e2\u0122\u0136": - 13402, "\u0120Based": 13403, "\u0120trains": 13404, "\u0120Wing": 13405, "\u0120Ancient": - 13406, "\u0120Records": 13407, "\u0120Hope": 13408, "Special": 13409, "adesh": - 13410, "obi": 13411, "[/": 13412, "\u0120temporarily": 13413, "Ver": 13414, - "hu": 13415, "oser": 13416, "\u0120overnight": 13417, "\u0120mamm": 13418, - "\u0120Treasury": 13419, "\u0120Venezuel": 13420, "\u0120Mega": 13421, "\u0120tar": - 13422, "\u0120expects": 13423, "black": 13424, "orph": 13425, "\\\\\\\\": - 13426, "\u0120acceptance": 13427, "\u0120radar": 13428, "sis": 13429, "\u0120junior": - 13430, "\u0120frames": 13431, "\u0120observation": 13432, "acies": 13433, - "Power": 13434, "\u0120Advanced": 13435, "Mag": 13436, "ologically": 13437, - "\u0120Mechan": 13438, "\u0120sentences": 13439, "\u0120analysts": 13440, - "aughters": 13441, "forcement": 13442, "\u0120vague": 13443, "\u0120clause": - 13444, "\u0120directors": 13445, "\u0120evaluate": 13446, "\u0120cabinet": - 13447, "Matt": 13448, "\u0120Classic": 13449, "Ang": 13450, "\u0120cler": - 13451, "\u0120Buck": 13452, "\u0120researcher": 13453, "\u0120160": 13454, - "\u0120poorly": 13455, "\u0120experiencing": 13456, "\u0120Ped": 13457, "\u0120Manhattan": - 13458, "\u0120freed": 13459, "\u0120themes": 13460, "advant": 13461, "\u0120nin": - 13462, "\u0120praise": 13463, "104": 13464, "\u0120Libya": 13465, "best": - 13466, "\u0120trusted": 13467, "\u0120cease": 13468, "\u0120dign": 13469, - "Direct": 13470, "\u0120bombing": 13471, "\u0120migration": 13472, "\u0120Sciences": - 13473, "\u0120municipal": 13474, "\u0120Average": 13475, "\u0120glory": 13476, - "\u0120revealing": 13477, "\u0120arena": 13478, "\u0120uncertainty": 13479, - "\u0120battlefield": 13480, "iao": 13481, "God": 13482, "\u0120cinem": 13483, - "rape": 13484, "elle": 13485, "apons": 13486, "\u0120listing": 13487, "\u0120waited": - 13488, "\u0120spotted": 13489, "keley": 13490, "\u0120Audio": 13491, "eor": - 13492, "arding": 13493, "idding": 13494, "igma": 13495, "\u0120Neg": 13496, - "\u0120lone": 13497, "\u0120----": 13498, "exe": 13499, "deg": 13500, "\u0120transf": - 13501, "\u0120wash": 13502, "\u0120slavery": 13503, "\u0120exploring": 13504, - "\u0120WW": 13505, "atson": 13506, "\u0120encl": 13507, "lies": 13508, "\u0120Creek": - 13509, "\u0120wooden": 13510, "Manager": 13511, "\u0120Brand": 13512, "ummy": - 13513, "\u0120Arthur": 13514, "\u0120bureaucr": 13515, "\u0120blend": 13516, - "arians": 13517, "Further": 13518, "\u0120supposedly": 13519, "\u0120winds": - 13520, "\u01201979": 13521, "\u0120gravity": 13522, "\u0120analyses": 13523, - "\u0120Travel": 13524, "\u0120Veter": 13525, "\u0120dumb": 13526, "\u0120alternate": - 13527, "gal": 13528, "\u0120consumed": 13529, "\u0120effectiveness": 13530, - ".''''": 13531, "\u0120paths": 13532, "onda": 13533, "LA": 13534, "\u0120Strong": - 13535, "\u0120enables": 13536, "\u0120escaped": 13537, "\u0120\"\"": 13538, - "\u0120112": 13539, "\u01201983": 13540, "\u0120smiled": 13541, "\u0120tendency": - 13542, "Fire": 13543, "\u0120pars": 13544, "\u0120Roc": 13545, "\u0120lake": - 13546, "\u0120fitness": 13547, "\u0120Ath": 13548, "\u0120Horn": 13549, "\u0120hier": - 13550, "\u0120impose": 13551, "mother": 13552, "\u0120pension": 13553, "icut": - 13554, "borne": 13555, "iciary": 13556, "._": 13557, "\u0120SU": 13558, "\u0120polar": - 13559, "isy": 13560, "engu": 13561, "itialized": 13562, "ATA": 13563, "write": - 13564, "\u0120exercises": 13565, "\u0120Diamond": 13566, "otypes": 13567, - "\u0120harmful": 13568, "onz": 13569, "\u0120printing": 13570, "story": 13571, - "\u0120expertise": 13572, "\u0120Ger": 13573, "\u0120tragedy": 13574, "\u0120Fly": - 13575, "\u0120divid": 13576, "ampire": 13577, "stock": 13578, "Mem": 13579, - "\u0120reign": 13580, "\u0120unve": 13581, "\u0120amend": 13582, "\u0120Prophet": - 13583, "\u0120mutual": 13584, "\u0120Fac": 13585, "\u0120replacing": 13586, - "Har": 13587, "\u0120Circuit": 13588, "\u0120throat": 13589, "\u0120Shot": - 13590, "\u0120batteries": 13591, "\u0120toll": 13592, "\u0120addressing": - 13593, "\u0120Medicaid": 13594, "\u0120pupp": 13595, "\u0120Nar": 13596, "olk": - 13597, "\u0120equity": 13598, "MR": 13599, "\u0120Hispan": 13600, "\u0120Large": - 13601, "mid": 13602, "Dev": 13603, "\u0120exped": 13604, "\u0120demo": 13605, - "\u0120Marshall": 13606, "ergus": 13607, "\u0120fiber": 13608, "\u0120divorce": - 13609, "\u0120Create": 13610, "\u0120slower": 13611, "\u0120Parker": 13612, - "\u0120Student": 13613, "\u0120Training": 13614, "Return": 13615, "\u0120Tru": - 13616, "\u0120cub": 13617, "\u0120Reached": 13618, "\u0120panic": 13619, "\u0120quarters": - 13620, "\u0120rect": 13621, "\u0120treating": 13622, "\u0120rats": 13623, - "\u0120Christianity": 13624, "oler": 13625, "\u0120sacred": 13626, "\u0120declare": - 13627, "ulative": 13628, "eting": 13629, "\u0120delivering": 13630, "estone": - 13631, "\u0120tel": 13632, "\u0120Larry": 13633, "\u0120meta": 13634, "accept": - 13635, "artz": 13636, "\u0120Roger": 13637, "handed": 13638, "\u0120header": - 13639, "\u0120trapped": 13640, "\u0120Century": 13641, "\u0120knocked": 13642, - "\u0120Oxford": 13643, "\u0120survivors": 13644, "bot": 13645, "\u0120demonstration": - 13646, "\u0120dirt": 13647, "\u0120assists": 13648, "OME": 13649, "\u0120Draft": - 13650, "ortunate": 13651, "folio": 13652, "pered": 13653, "usters": 13654, - "gt": 13655, "\u0120Lock": 13656, "\u0120judicial": 13657, "verted": 13658, - "\u0120secured": 13659, "outing": 13660, "\u0120Books": 13661, "\u0120hosting": - 13662, "\u0120lifted": 13663, "length": 13664, "\u0120jer": 13665, "\u0120wheels": - 13666, "\u0120Range": 13667, "umbnails": 13668, "\u0120diagnosis": 13669, - "tech": 13670, "\u0120Stewart": 13671, "\u0120Pract": 13672, "\u0120nationwide": - 13673, "\u0120dear": 13674, "\u0120obligations": 13675, "\u0120grows": 13676, - "\u0120mandatory": 13677, "\u0120suspicious": 13678, "!''": 13679, "Apr": - 13680, "Great": 13681, "\u0120mortgage": 13682, "\u0120prosecutor": 13683, - "\u0120editorial": 13684, "\u0120Kr": 13685, "\u0120processed": 13686, "ungle": - 13687, "\u0120flexibility": 13688, "Earlier": 13689, "\u0120Cart": 13690, - "\u0120Sug": 13691, "\u0120focuses": 13692, "\u0120startup": 13693, "\u0120breach": - 13694, "\u0120Tob": 13695, "cycle": 13696, "\u00e3\u0122\u012e": 13697, "rose": - 13698, "\u0120bizarre": 13699, "\u00e3\u0122\u012f": 13700, "\u0120vegetables": - 13701, "$$": 13702, "\u0120retreat": 13703, "oshi": 13704, "\u0120Shop": 13705, - "\u0120Ground": 13706, "\u0120Stop": 13707, "\u0120Hawaii": 13708, "\u0120Ay": - 13709, "Perhaps": 13710, "\u0120Beaut": 13711, "uffer": 13712, "enna": 13713, - "\u0120productivity": 13714, "Fixed": 13715, "control": 13716, "\u0120absent": - 13717, "\u0120Campaign": 13718, "Green": 13719, "\u0120identifying": 13720, - "\u0120regret": 13721, "\u0120promoted": 13722, "\u0120Seven": 13723, "\u0120eru": - 13724, "neath": 13725, "aughed": 13726, "\u0120Pin": 13727, "\u0120Living": - 13728, "Cost": 13729, "omatic": 13730, "mega": 13731, "\u0120Nig": 13732, - "ocy": 13733, "\u0120inbox": 13734, "\u0120empire": 13735, "\u0120horizont": - 13736, "\u0120branches": 13737, "\u0120metaph": 13738, "Active": 13739, "edi": - 13740, "\u0120Film": 13741, "\u0120Something": 13742, "\u0120mods": 13743, - "incial": 13744, "\u0120Original": 13745, "Gen": 13746, "\u0120spirits": 13747, - "\u0120earning": 13748, "Hist": 13749, "\u0120riders": 13750, "\u0120sacrific": - 13751, "MT": 13752, "\u0120VA": 13753, "\u0120Salt": 13754, "\u0120occupation": - 13755, "\u0120Mi": 13756, "\u0120disg": 13757, "lict": 13758, "\u0120nit": - 13759, "\u0120nodes": 13760, "eem": 13761, "\u0120Pier": 13762, "\u0120hatred": - 13763, "psy": 13764, "\u00e3\u0125\u012b": 13765, "\u0120theater": 13766, - "\u0120sophisticated": 13767, "\u0120defended": 13768, "\u0120besides": 13769, - "\u0120thoroughly": 13770, "\u0120Medicare": 13771, "\u0120blamed": 13772, - "arently": 13773, "\u0120crying": 13774, "FOR": 13775, "priv": 13776, "\u0120singing": - 13777, "\u0120Il": 13778, "\u0120cute": 13779, "oided": 13780, "olitical": - 13781, "\u0120Neuro": 13782, "\u00e5\u00a4": 13783, "\u0120donation": 13784, - "\u0120Eagles": 13785, "\u0120Give": 13786, "Tom": 13787, "\u0120substantially": - 13788, "\u0120License": 13789, "\u0120Ja": 13790, "\u0120grey": 13791, "\u0120Animal": - 13792, "\u0120ER": 13793, "\u0120Und": 13794, "\u0120keen": 13795, "\u0120conclude": - 13796, "\u0120Mississippi": 13797, "Engine": 13798, "\u0120Studios": 13799, - "Press": 13800, "overs": 13801, "llers": 13802, "\u0120350": 13803, "\u0120Rangers": - 13804, "\u0120rou": 13805, "erto": 13806, "Ep": 13807, "issa": 13808, "ivan": - 13809, "\u0120seal": 13810, "\u0120Regist": 13811, "display": 13812, "\u0120weaken": - 13813, "uum": 13814, "\u0120Commons": 13815, "\u0120Say": 13816, "\u0120cultures": - 13817, "\u0120laughed": 13818, "\u0120slip": 13819, "\u0120treatments": 13820, - "izable": 13821, "mart": 13822, "\u0120Rice": 13823, "\u0120beast": 13824, - "\u0120obesity": 13825, "\u0120Laure": 13826, "iga": 13827, "Which": 13828, - "holder": 13829, "\u0120elderly": 13830, "\u0120pays": 13831, "\u0120complained": - 13832, "\u0120crop": 13833, "\u0120proc": 13834, "\u0120explosive": 13835, - "\u0120Fan": 13836, "\u0120Arsenal": 13837, "Author": 13838, "eful": 13839, - "\u0120meals": 13840, "\u0120(-": 13841, "idays": 13842, "\u0120imagination": - 13843, "\u0120annually": 13844, "\u0120ms": 13845, "asures": 13846, "Head": - 13847, "ikh": 13848, "matic": 13849, "\u0120boyfriend": 13850, "\u0120Computer": - 13851, "\u0120bump": 13852, "\u0120surge": 13853, "\u0120Craig": 13854, "\u0120Kirk": - 13855, "Del": 13856, "mediate": 13857, "\u0120scenarios": 13858, "\u0120Mut": - 13859, "\u0120Stream": 13860, "\u0120competitors": 13861, "\u00d9\u0126": - 13862, "\u0120Stanford": 13863, "\u0120Resources": 13864, "azed": 13865, "bage": - 13866, "\u0120organis": 13867, "\u0120Release": 13868, "\u0120separately": - 13869, "\u0120habits": 13870, "\u0120measurements": 13871, "\u0120Close": - 13872, "\u0120accompany": 13873, "\u0120gly": 13874, "\u0120tang": 13875, - "\u0120Rou": 13876, "\u0120plugin": 13877, "\u0120convey": 13878, "\u0120Challenge": - 13879, "oots": 13880, "jan": 13881, "\u0120curs": 13882, "\u0120Relations": - 13883, "keeper": 13884, "\u0120approaching": 13885, "ping": 13886, "Speaking": - 13887, "\u0120arrangement": 13888, "\u0120VI": 13889, "arettes": 13890, "\u0120affecting": - 13891, "\u0120permits": 13892, "because": 13893, "\u0120useless": 13894, "\u0120Hus": - 13895, "!!!!": 13896, "\u0120destroying": 13897, "Unfortunately": 13898, "\u0120fascinating": - 13899, "Sem": 13900, "\u0120electoral": 13901, "\u0120transparency": 13902, - "\u0120Chaos": 13903, "\u0120volunteer": 13904, "\u0120statistical": 13905, - "\u0120activated": 13906, "rox": 13907, "Web": 13908, "HE": 13909, "\u0120Hampshire": - 13910, "isive": 13911, "Map": 13912, "\u0120trash": 13913, "\u0120Lawrence": - 13914, "stick": 13915, "Cr": 13916, "\u0120rings": 13917, "EXT": 13918, "\u0120operational": - 13919, "opes": 13920, "Does": 13921, "\u0120Evans": 13922, "\u0120witnessed": - 13923, "Port": 13924, "\u0120launching": 13925, "econom": 13926, "wear": 13927, - "\u0120Particip": 13928, "umm": 13929, "cules": 13930, "\u0120RAM": 13931, - "\u0120Tun": 13932, "\u0120assured": 13933, "\u0120binary": 13934, "\u0120betray": - 13935, "\u0120exploration": 13936, "\u0120Fel": 13937, "\u0120admission": - 13938, "itated": 13939, "Sy": 13940, "\u0120avoided": 13941, "\u0120Simulator": - 13942, "\u0120celebrated": 13943, "\u0120Electric": 13944, "\u00a5\u0140": - 13945, "\u0120cluster": 13946, "itzerland": 13947, "health": 13948, "Line": - 13949, "\u0120Nash": 13950, "aton": 13951, "\u0120spare": 13952, "\u0120enterprise": - 13953, "\u0120DIS": 13954, "cludes": 13955, "\u0120flights": 13956, "\u0120regards": - 13957, "\u0120\u00c3\u0139": 13958, "half": 13959, "\u0120trucks": 13960, - "\u0120contacts": 13961, "\u0120uncons": 13962, "\u0120Climate": 13963, "\u0120immense": - 13964, "NEW": 13965, "occ": 13966, "ective": 13967, "\u0120embod": 13968, - "\u0120patrol": 13969, "\u0120beside": 13970, "\u0120viable": 13971, "\u0120creep": - 13972, "\u0120triggered": 13973, "verning": 13974, "\u0120comparable": 13975, - "ql": 13976, "\u0120gaining": 13977, "asses": 13978, "\u0120();": 13979, "\u0120Grey": - 13980, "\u0120MLS": 13981, "sized": 13982, "\u0120prosper": 13983, "\"?": - 13984, "\u0120polling": 13985, "\u0120shar": 13986, "\u0120RC": 13987, "\u0120firearm": - 13988, "orient": 13989, "\u0120fence": 13990, "\u0120variations": 13991, "giving": - 13992, "\u0120Pi": 13993, "ospel": 13994, "\u0120pledge": 13995, "\u0120cure": - 13996, "\u0120spy": 13997, "\u0120violated": 13998, "\u0120rushed": 13999, - "\u0120stroke": 14000, "\u0120Blog": 14001, "sels": 14002, "\u0120Ec": 14003, - ",''''": 14004, "\u0120pale": 14005, "\u0120Collins": 14006, "terror": 14007, - "\u0120Canadians": 14008, "\u0120tune": 14009, "\u0120laboratory": 14010, - "\u0120nons": 14011, "tarian": 14012, "\u0120disability": 14013, "\u0120Gam": - 14014, "\u0120singer": 14015, "alg": 14016, "\u0120Senior": 14017, "\u0120traded": - 14018, "\u0120Warrior": 14019, "\u0120infring": 14020, "\u0120Franklin": 14021, - "\u0120strain": 14022, "\u0120Swedish": 14023, "\u0120seventh": 14024, "\u0120Benn": - 14025, "\u0120Tell": 14026, "\u0120syndrome": 14027, "\u0120wondered": 14028, - "iden": 14029, "++++": 14030, "igo": 14031, "\u0120purple": 14032, "\u0120journalism": - 14033, "\u0120rebel": 14034, "\u0120fu": 14035, "blog": 14036, "\u0120invite": - 14037, "rencies": 14038, "\u0120Contact": 14039, "Israel": 14040, "\u0120Content": - 14041, "\u0120cheer": 14042, "\u0120bedroom": 14043, "\u0120Engineering": - 14044, "\u0120Queens": 14045, "\u0120dwell": 14046, "\u0120PlayStation": 14047, - "\u0120Dim": 14048, "\u0120Colon": 14049, "lr": 14050, "\u0120operates": 14051, - "\u0120motivation": 14052, "USA": 14053, "astered": 14054, "Core": 14055, - "\u0120Truth": 14056, "olo": 14057, "OSE": 14058, "\u0120Memory": 14059, "\u0120predec": - 14060, "\u0120anarch": 14061, "\u01201920": 14062, "\u0120Yam": 14063, "\u00c3\u00a8": - 14064, "bid": 14065, "\u0120grateful": 14066, "\u0120excitement": 14067, "\u0120treasure": - 14068, "\u0120longest": 14069, "ctive": 14070, "\u0120deserves": 14071, "\u0120reserves": - 14072, "\u0120cops": 14073, "\u0120Ottawa": 14074, "\u0120Egyptian": 14075, - "anked": 14076, "\u0120artif": 14077, "\u0120hypothesis": 14078, ":/": 14079, - "\u0120purchasing": 14080, "\u0120lovely": 14081, "HP": 14082, "\u0120divide": - 14083, "\u0120strictly": 14084, "\u0120questioning": 14085, "\u0120taxpayers": - 14086, "\u0120Joy": 14087, "\u0120rolls": 14088, "\u0120Heavy": 14089, "\u0120ports": - 14090, "\u0120magnetic": 14091, "\u0120inflamm": 14092, "\u0120brush": 14093, - "tics": 14094, "\u00e2\u012a\u0134": 14095, "\u0120bottles": 14096, "ppy": - 14097, "\u0120padd": 14098, "\u00e3\u0124\u00af": 14099, "million": 14100, - "\u0120devastating": 14101, "\u0120compiled": 14102, "\u0120medication": 14103, - "\u0120twelve": 14104, "\u0120Perry": 14105, "Space": 14106, "imb": 14107, - "your": 14108, "\u0120leaked": 14109, "\u0120Tar": 14110, "\u0120unity": 14111, - "\u0120infected": 14112, "\u0120traveled": 14113, "IDE": 14114, "\u0120McDonald": - 14115, "txt": 14116, "\u0120Princ": 14117, "\u0120interven": 14118, "\u0120Taiwan": - 14119, "\u0120Pow": 14120, "\u0120bearing": 14121, "\u0120Thread": 14122, - "\u0120zones": 14123, "izards": 14124, "unks": 14125, "Chapter": 14126, "llor": - 14127, "\u0120\u00c2\u00b7": 14128, "\u0120wounds": 14129, "\u0120discretion": - 14130, "\u0120succeeded": 14131, "iking": 14132, "\u0120iconic": 14133, "Call": - 14134, "\u0120screening": 14135, "\u0120Mis": 14136, "icts": 14137, "\u0120ministers": - 14138, "\u0120separation": 14139, "Player": 14140, "\u0120bip": 14141, "\u0120beloved": - 14142, "\u0120counting": 14143, "\u0120Eye": 14144, "around": 14145, "inging": - 14146, "\u0120tablet": 14147, "\u0120offence": 14148, "inance": 14149, "have": - 14150, "\u0120Info": 14151, "\u0120Ninja": 14152, "\u0120protective": 14153, - "\u0120Cass": 14154, "Mac": 14155, "\u0120Quality": 14156, "North": 14157, - "\u0120ic": 14158, "\u0120Cuba": 14159, "\u0120Chronicle": 14160, "\u0120Property": - 14161, "\u0120fastest": 14162, "otos": 14163, "\u0120Germ": 14164, "OWN": - 14165, "\u0120boom": 14166, "\u0120Stanley": 14167, "erguson": 14168, "\u0120clever": - 14169, "\u0120enters": 14170, "mode": 14171, "terior": 14172, "\u0120Sens": - 14173, "\u0120linear": 14174, "ARK": 14175, "\u0120comparing": 14176, "\u0120purely": - 14177, "\u0120safer": 14178, "\u0120Potter": 14179, "\u0120cups": 14180, "RT": - 14181, "\u0120gluc": 14182, "\u0120attributed": 14183, "\u0120dupl": 14184, - "\u0120Pap": 14185, "\u0120precious": 14186, "\u0120pa": 14187, "ictionary": - 14188, "\u0120Tig": 14189, "\u0120Too": 14190, "olutions": 14191, "stan": - 14192, "\u0120robots": 14193, "\u0120lobb": 14194, "\u0120statute": 14195, - "\u0120prevention": 14196, "western": 14197, "160": 14198, "\u0120Active": - 14199, "\u0120Maria": 14200, "hal": 14201, "None": 14202, "ellar": 14203, - "\u0120KB": 14204, "\u0120Partners": 14205, "\u0120Single": 14206, "\u0120Following": - 14207, "ango": 14208, "acious": 14209, "\u0120thou": 14210, "\u0120kg": 14211, - "\u0120influential": 14212, "\u0120Friends": 14213, "Sur": 14214, "ainted": - 14215, "\u0120forums": 14216, "\u0120starter": 14217, "\u0120citizenship": - 14218, "\u0120Election": 14219, "onge": 14220, "otation": 14221, "osph": 14222, - ";;;;": 14223, "utical": 14224, "pur": 14225, "eren": 14226, "\u0120accusations": - 14227, "bitious": 14228, "abbit": 14229, "\u0120Ord": 14230, "Posted": 14231, - "irk": 14232, "\u0120sensitivity": 14233, "iche": 14234, "\u0120Amy": 14235, - "\u0120Fab": 14236, "\u0120summit": 14237, "\u0120pedest": 14238, "\u0120rubber": - 14239, "\u0120agricultural": 14240, "\u0120cancel": 14241, "AE": 14242, "\u0120inaug": - 14243, "\u0120contam": 14244, "\u0120firmly": 14245, "iw": 14246, "stage": - 14247, "\u0120Kan": 14248, "\u0120tier": 14249, "\u0120invention": 14250, - "\u0120translated": 14251, "\u0120Rules": 14252, "Box": 14253, "Twitter": - 14254, "IDS": 14255, "\u0120pizza": 14256, "\u0120debug": 14257, "\u0120Drop": - 14258, "vs": 14259, "\u0120horses": 14260, "big": 14261, "\u0120boring": 14262, - "\u0120hood": 14263, "\u0120McCain": 14264, "atched": 14265, "\u0120Bros": - 14266, "\u0120skip": 14267, "\u0120essay": 14268, "stat": 14269, "\u0120Legends": - 14270, "\u0120ammunition": 14271, "auc": 14272, "\u0120shooter": 14273, "\u0120unh": - 14274, "\u0120supplied": 14275, "\u0120generic": 14276, "\u0120SK": 14277, - "iban": 14278, "yrics": 14279, "\u0120255": 14280, "\u0120climbing": 14281, - "Former": 14282, "\u0120flip": 14283, "\u0120jumping": 14284, "\u0120frustration": - 14285, "\u0120Terry": 14286, "\u0120neighborhoods": 14287, "\u0120median": - 14288, "bean": 14289, "\u0120brains": 14290, "Following": 14291, "\u0120shaped": - 14292, "\u0120draws": 14293, "\u0120altered": 14294, "Jack": 14295, "\u0120recipes": - 14296, "\u0120skilled": 14297, "wealth": 14298, "achi": 14299, "election": - 14300, "\u0120behaviors": 14301, "deals": 14302, "\u0120Until": 14303, "Fe": - 14304, "\u0120declaration": 14305, "marks": 14306, "\u0120Between": 14307, - "celona": 14308, "\u0120reson": 14309, "\u0120bubble": 14310, "Among": 14311, - "\u0120imperial": 14312, "GS": 14313, "\u0120feminist": 14314, "2005": 14315, - "\u0120Kyle": 14316, "\u0120accounting": 14317, "\u0120Tele": 14318, "\u0120Tyr": - 14319, "\u0120connecting": 14320, "\u0120rehab": 14321, "\u0120Pred": 14322, - "sim": 14323, "\u0120meantime": 14324, "\u0120physician": 14325, "MW": 14326, - "\u0120Campbell": 14327, "\u0120Brandon": 14328, "\u0120contributing": 14329, - "\u0120Rule": 14330, "\u0120Weight": 14331, "\u0120Nap": 14332, "\u0120interactive": - 14333, "\u0120vag": 14334, "\u0120helmet": 14335, "\u0120Comb": 14336, "four": - 14337, "\u0120shipped": 14338, "\u0120completing": 14339, "\u0120PD": 14340, - "PDATE": 14341, "\u0120spreading": 14342, "\u0120scary": 14343, "erving": - 14344, "\u0120Gas": 14345, "\u0120frank": 14346, "school": 14347, "\u0120romantic": - 14348, "\u0120stabil": 14349, "Rob": 14350, "\u0120accurately": 14351, "\u0120acute": - 14352, "\u0120Hann": 14353, "\u0120symbols": 14354, "\u0120civilization": - 14355, "\u0120AW": 14356, "\u0120lightning": 14357, "\u0120considers": 14358, - "\u0120venue": 14359, "\u0120\u00d7": 14360, "\u0120oven": 14361, "\u0120SF": - 14362, "his": 14363, "\u0120nu": 14364, "\u0120Learn": 14365, "\u0120peoples": - 14366, "\u0120std": 14367, "\u0120slee": 14368, "\u0120slic": 14369, "\u0120Statistics": - 14370, "\u0120corners": 14371, "\u0120Baker": 14372, "\u0120:)": 14373, "mentation": - 14374, "olver": 14375, "\u0120laughing": 14376, "\u0120Todd": 14377, "onde": - 14378, "\u0120Hills": 14379, "\u0120nuts": 14380, "\u0120Woman": 14381, "plane": - 14382, "\u0120liver": 14383, "\u0120Inside": 14384, "Sorry": 14385, "\u0120agrees": - 14386, "\u0120fundament": 14387, "\u0120Fisher": 14388, "\u0120auction": 14389, - "\u0120threads": 14390, "glas": 14391, "\u0120Basic": 14392, "\u0120Nat": - 14393, "\u0120lacking": 14394, "\u0120celebration": 14395, "ju": 14396, "\u0120silly": - 14397, "Euro": 14398, "\u0120tatt": 14399, "ighty": 14400, "controlled": 14401, - "Test": 14402, "\u0120Singh": 14403, "\u0120rage": 14404, "\u0120rhyth": 14405, - "offic": 14406, "\u0120Phantom": 14407, "\u0120headlines": 14408, "\u0120responding": - 14409, "\u0120Morning": 14410, "\u0120vitamin": 14411, "\u0120boots": 14412, - "\u0120Site": 14413, "alin": 14414, "pi": 14415, "\u0120viral": 14416, "\u0120UC": - 14417, "DER": 14418, "\u0120Sex": 14419, "\u0120stocks": 14420, "current": - 14421, "\u0120churches": 14422, "\u0120Rare": 14423, "\u0120Murphy": 14424, - "\u0120denial": 14425, "\u0120Gaming": 14426, "\u0120toug": 14427, "\u0120nick": - 14428, "\u0120makers": 14429, "\u0120Ronald": 14430, "\u0120generous": 14431, - "\u0120Doc": 14432, "\u0120Morris": 14433, "\u0120transformed": 14434, "\u0120Normal": - 14435, "\u0120104": 14436, "\u0120Kickstarter": 14437, "\u0120Upon": 14438, - "Online": 14439, "\u0120IRS": 14440, "\u0120wrap": 14441, "\u0120loving": - 14442, "\u0120arrives": 14443, "\u0120Due": 14444, "\u0120heter": 14445, "\u0120Made": - 14446, "\u0120rental": 14447, "\u0120belongs": 14448, "\u0120attorneys": 14449, - "\u0120crops": 14450, "\u0120matched": 14451, "ulum": 14452, "oline": 14453, - "109": 14454, "\u0120dispar": 14455, "\u0120buyers": 14456, "\u0120Cambridge": - 14457, "\u0120ethics": 14458, "roups": 14459, "\u0120justified": 14460, "\u0120marginal": - 14461, "\u0120respected": 14462, "winning": 14463, "\u0120nodded": 14464, - "\u0120Serge": 14465, "\u0120Former": 14466, "Craft": 14467, "################": - 14468, "\u0120Warner": 14469, "\u0120dash": 14470, "ete": 14471, "\u0120entert": - 14472, "\u0120Escape": 14473, "outheast": 14474, "\u0120knees": 14475, "\u0120Bomb": - 14476, "\u0120rug": 14477, "Pass": 14478, "\u0120attitudes": 14479, "government": - 14480, "\u0120Prior": 14481, "\u0120qualities": 14482, "\u0120notification": - 14483, "\u0120Phone": 14484, "lie": 14485, "\u0120anticipated": 14486, "\u0120Combat": - 14487, "\u0120Barry": 14488, "\u01201982": 14489, "Users": 14490, "oner": - 14491, "\u0120computing": 14492, "\u0120Connecticut": 14493, "\u0120lesser": - 14494, "\u0120peers": 14495, "\u0120Cu": 14496, "\u0120technically": 14497, - "\u0120submission": 14498, "\u0120Universal": 14499, "\u0120manually": 14500, - "ourge": 14501, "\u0120respondents": 14502, "\u0120BTC": 14503, "\u0120Host": - 14504, "\u0120fare": 14505, "\u0120Bird": 14506, "\u0120receipt": 14507, "also": - 14508, "\u0120jack": 14509, "\u0120agriculture": 14510, "\u0120skull": 14511, - "\u0120!=": 14512, "\u0120passive": 14513, "\u0120CI": 14514, "\u0120societies": - 14515, "\u0120reminded": 14516, "\u0120interference": 14517, "Buy": 14518, - "\u0120\u00e2\u013e": 14519, "gon": 14520, "\u0120scrutiny": 14521, "\u0120Witch": - 14522, "\u0120conducting": 14523, "\u0120\u00e3\u0125": 14524, "\u0120exchanges": - 14525, "\u0120Mitchell": 14526, "\u0120inhabit": 14527, "\u0120twist": 14528, - "BD": 14529, "\u0120wherever": 14530, "groupon": 14531, "\u0120jokes": 14532, - "\u0120Benjamin": 14533, "\u0120Random": 14534, "frame": 14535, "\u0120Lions": - 14536, "\u0120highlighted": 14537, "\u0120Arkansas": 14538, "Ent": 14539, - "\u0120pile": 14540, "\u0120prelim": 14541, "gs": 14542, "minded": 14543, - "\u0120felony": 14544, "\u0120GA": 14545, "\u0120Luck": 14546, "\u0120practically": - 14547, "\u0120Bos": 14548, "\u0120actress": 14549, "Dam": 14550, "\u0120Bou": - 14551, "\u0120visa": 14552, "\u0120embedded": 14553, "\u0120hybrid": 14554, - "\u0120earliest": 14555, "\u0120sooner": 14556, "social": 14557, "\u0120HA": - 14558, "\u0120steep": 14559, "\u0120disadvant": 14560, "\u0120exploit": 14561, - "\u0120Egg": 14562, "\u0120Ultra": 14563, "\u0120necessity": 14564, "Local": - 14565, "iege": 14566, "\u0120dated": 14567, "\u0120masses": 14568, "\u0120subscription": - 14569, "pless": 14570, "\u0120anonym": 14571, "\u0120presumably": 14572, "Blue": - 14573, "Their": 14574, "asketball": 14575, "\u0120Philip": 14576, "\u0120comed": - 14577, "loaded": 14578, "rane": 14579, "\u0120reflection": 14580, "China": - 14581, "\u0120extends": 14582, "\u0120forming": 14583, "\u0120unders": 14584, - "2001": 14585, "\u0120grat": 14586, "\u0120concentrations": 14587, "\u0120insulin": - 14588, "\u0120secular": 14589, "\u0120whilst": 14590, "\u0120winners": 14591, - "Advertisements": 14592, "\u0120deliberately": 14593, "\u0120Working": 14594, - "\u0120sink": 14595, "etics": 14596, "dale": 14597, "\u0120mandate": 14598, - "\u0120gram": 14599, "\u0120vacation": 14600, "\u0120warnings": 14601, "ripp": - 14602, "\u0120THAT": 14603, "\u0120commentary": 14604, "\u0120intu": 14605, - "\u0120aest": 14606, "\u0120reasoning": 14607, "\u0120breakdown": 14608, "\u0120Zombie": - 14609, "\u0120-->": 14610, "\u0120Political": 14611, "cott": 14612, "\u0120thrust": - 14613, "\u0120technological": 14614, "\u0120deciding": 14615, "\u0120trafficking": - 14616, "Long": 14617, "Welcome": 14618, "prising": 14619, "\u0120Communications": - 14620, "\u0120endors": 14621, "\u0120swift": 14622, "\u0120metabol": 14623, - "coins": 14624, "resa": 14625, "\u0120HTTP": 14626, "\u0120enroll": 14627, - "\u0120Happy": 14628, "usr": 14629, "intage": 14630, "\u0120[\"": 14631, "uably": - 14632, "\u0120Material": 14633, "\u0120repeal": 14634, "Sept": 14635, "kh": - 14636, "\u0120Modi": 14637, "\u0120underneath": 14638, "\u0120IL": 14639, - "shore": 14640, "\u0120diagnosed": 14641, "aceutical": 14642, "\u0120shower": - 14643, "aux": 14644, "\u0120Switch": 14645, "\u0120Strength": 14646, "\u0120jihad": - 14647, "national": 14648, "\u0120trauma": 14649, "ussy": 14650, "oni": 14651, - "\u0120consolid": 14652, "\u0120calories": 14653, "\u0120Flynn": 14654, "agged": - 14655, "168": 14656, "\u0120Pink": 14657, "\u0120fulfill": 14658, "\u0120chains": - 14659, "\u0120notably": 14660, "\u0120AV": 14661, "Life": 14662, "\u0120Chuck": - 14663, "mus": 14664, "\u0120Urban": 14665, "\u0120Hend": 14666, "\u0120deposit": - 14667, "\u0120Sad": 14668, "\u0120affair": 14669, "ORK": 14670, "ieval": 14671, - "\u0120FDA": 14672, "\u0120trop": 14673, "\u0120Overall": 14674, "\u0120virtue": - 14675, "\u0120satisfaction": 14676, "aund": 14677, "\u0120lun": 14678, "\u0120Switzerland": - 14679, "\u0120Operation": 14680, "process": 14681, "\u0120shook": 14682, "\u0120counties": - 14683, "leased": 14684, "\u0120Charlotte": 14685, "112": 14686, "\u0120transcript": - 14687, "\u0120redd": 14688, "push": 14689, "\u0120Hey": 14690, "\u0120Analysis": - 14691, "[\"": 14692, "\u0120alternatives": 14693, "ardless": 14694, "\u0120eleph": - 14695, "\u0120prejud": 14696, "\u0120Leaf": 14697, "Having": 14698, "\u0120Hub": - 14699, "\u0120expressions": 14700, "\u0120Volume": 14701, "\u0120shocking": - 14702, "\u0120Reds": 14703, "\u0120readily": 14704, "\u0120planets": 14705, - "adata": 14706, "\u0120collapsed": 14707, "\u0120Madrid": 14708, "\u0120irrit": - 14709, "ipper": 14710, "\u0120Enc": 14711, "\u0120Wire": 14712, "\u0120buzz": - 14713, "\u0120GP": 14714, "asha": 14715, "\u0120accidentally": 14716, "uru": - 14717, "\u0120frustrated": 14718, "\u0120SA": 14719, "\u0120hungry": 14720, - "\u0120Huff": 14721, "\u0120labels": 14722, "anto": 14723, "\u0120EP": 14724, - "\u0120barriers": 14725, ")|": 14726, "\u0120Berkeley": 14727, "\u0120Jets": - 14728, "\u0120pairs": 14729, "\u0120Lan": 14730, "James": 14731, "\u0120Bear": - 14732, "\u0120humor": 14733, "\u0120Liberty": 14734, "\u0120magnitude": 14735, - "\u0120aging": 14736, "\u0120Mason": 14737, "\u0120friendship": 14738, "umbling": - 14739, "\u0120emerge": 14740, "\u0120newspapers": 14741, "\u0120ambitious": - 14742, "\u0120Richards": 14743, "aternal": 14744, "\u01201981": 14745, "\u0120cookies": - 14746, "\u0120sculpt": 14747, "\u0120pursuit": 14748, "Location": 14749, "\u0120scripts": - 14750, "pc": 14751, "\u0120arrangements": 14752, "\u0120diameter": 14753, - "\u0120loses": 14754, "amation": 14755, "\u0120liqu": 14756, "\u0120Jake": - 14757, "arette": 14758, "\u0120understands": 14759, "\u0120Zen": 14760, "vm": - 14761, "\u0120approve": 14762, "\u0120wip": 14763, "\u0120ultra": 14764, "\u0120intend": - 14765, "\u0120DI": 14766, "ascular": 14767, "\u0120stays": 14768, "\u0120Kor": - 14769, "\u0120Kl": 14770, "\u0120investing": 14771, "La": 14772, "\u0120believing": - 14773, "bad": 14774, "mouth": 14775, "\u0120taxpayer": 14776, "\u00e3\u0125\u0125": - 14777, "\u0120Quebec": 14778, "\u0120lap": 14779, "\u0120Swiss": 14780, "drop": - 14781, "\u0120drain": 14782, "iri": 14783, "etc": 14784, "ften": 14785, "\u0120Nex": - 14786, "\u0120straw": 14787, "\u0120screaming": 14788, "\u0120counted": 14789, - "\u0120damaging": 14790, "\u0120ambassador": 14791, "century": 14792, "\u0120prox": - 14793, "\u0120arrests": 14794, "uv": 14795, "ilateral": 14796, "\u0120Charg": - 14797, "\u0120prescribed": 14798, "\u0120independently": 14799, "\u0120fierce": - 14800, "\u0120Baby": 14801, "\u0120brave": 14802, "\u0120suits": 14803, "=>": - 14804, "\u0120baseline": 14805, "\u0120Rate": 14806, "\u0120islands": 14807, - "\u0120((": 14808, "green": 14809, "ixels": 14810, "\u0120namely": 14811, - "\u0120Village": 14812, "than": 14813, "amy": 14814, "Version": 14815, "gmail": - 14816, "entials": 14817, "\u0120Sud": 14818, "\u0120Melbourne": 14819, "\u0120arriving": - 14820, "\u0120quantum": 14821, "eff": 14822, "ropolitan": 14823, "Tri": 14824, - "\u0120funeral": 14825, "\u0120IR": 14826, "\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124": - 14827, "\u0120Cob": 14828, "itably": 14829, "\u0120turb": 14830, "\u0120combo": - 14831, "Review": 14832, "\u0120deployment": 14833, "uity": 14834, "\u0120Bott": - 14835, "\u0120invisible": 14836, "\u0120rendering": 14837, "\u0120unlocked": - 14838, "\u0120aqu": 14839, "\u0120Vladimir": 14840, "\u0120pad": 14841, "\u0120Brain": - 14842, "\u0120Legacy": 14843, "dragon": 14844, "\u0120Kurdish": 14845, "\u0120sounded": - 14846, "\u0120detained": 14847, "\u0120DM": 14848, "gary": 14849, "\u0120daughters": - 14850, "\u0120disturbing": 14851, "uka": 14852, "\u0120Parad": 14853, "\u0120tast": - 14854, "\u0120unfortunate": 14855, "\u0120ul": 14856, "emin": 14857, "\u0120attendance": - 14858, "trl": 14859, "\u0120parks": 14860, "\u0120Memorial": 14861, "\u0120Alice": - 14862, "othy": 14863, "guard": 14864, "\u0120Dise": 14865, "\u0120Shan": 14866, - "\u0120Forum": 14867, "Rich": 14868, "\u0120shifted": 14869, "uez": 14870, - "\u0120lighter": 14871, "\u0120Magn": 14872, "\u0120cod": 14873, "Sch": 14874, - "hammad": 14875, "Pub": 14876, "350": 14877, "\u0120Pokemon": 14878, "\u0120prototype": - 14879, "\u0120unre": 14880, "Base": 14881, "\u0120Students": 14882, "\u0120Reply": - 14883, "\u0120Communist": 14884, "\u0120gau": 14885, "\u0120Tyler": 14886, - "IZ": 14887, "\u0120participated": 14888, "\u0120suprem": 14889, "\u0120Details": - 14890, "\u0120vessels": 14891, "rod": 14892, "\u0120tribe": 14893, "keep": - 14894, "\u0120assumptions": 14895, "\u0120pound": 14896, "\u0120crude": 14897, - "\u0120Available": 14898, "\u0120swimming": 14899, "\u0120inclusion": 14900, - "\u0120advances": 14901, "culation": 14902, "\u0120conservation": 14903, "\u0120overd": - 14904, "\u0120Buffalo": 14905, "Article": 14906, "edge": 14907, "\u0120awa": - 14908, "\u0120Madison": 14909, "\u0120sidew": 14910, "\u0120catast": 14911, - "\u0120Krist": 14912, "ucle": 14913, "\u0120Highway": 14914, "\u0120Terror": - 14915, "\u0120activation": 14916, "\u0120unconscious": 14917, "\u0120Satan": - 14918, "\u0120Susan": 14919, "illery": 14920, "\u0120arranged": 14921, "iop": - 14922, "\u0120rumors": 14923, "urring": 14924, "think": 14925, "\u0120Keith": - 14926, "\u0120Kind": 14927, "\u0120avoiding": 14928, "byn": 14929, "nut": - 14930, "\u0120Speaker": 14931, "rus": 14932, "names": 14933, "\u0120guilt": - 14934, "\u0120Olympics": 14935, "\u0120sail": 14936, "\u0120Mes": 14937, "levant": - 14938, "\u0120Columbus": 14939, "aft": 14940, "City": 14941, "South": 14942, - "\u0120Harvey": 14943, "\u0120Pun": 14944, "Several": 14945, "\u0120mentally": - 14946, "\u0120impress": 14947, "mount": 14948, "\u0120Ubuntu": 14949, "\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136": - 14950, "\u0120Superman": 14951, "\u0120MPs": 14952, "\u0120intentions": 14953, - "\u0120Racing": 14954, "\u0120likelihood": 14955, "\u0120240": 14956, "Total": - 14957, "\u0120toys": 14958, "\u0120Watson": 14959, "\u0120urge": 14960, "Lear": - 14961, "\u0120Paper": 14962, "\u0120occurring": 14963, "\u0120Beng": 14964, - "\u0120Cert": 14965, "\u0120stones": 14966, "Tim": 14967, "\u0120Twin": 14968, - "zb": 14969, "\u0120Dynam": 14970, "\u0120politician": 14971, "kens": 14972, - "\u0120Enterprise": 14973, "UTERS": 14974, "\u0120abol": 14975, "\u0120refresh": - 14976, "\u0120arbitrary": 14977, "pection": 14978, "\u0120troubles": 14979, - "\u0120});": 14980, "tv": 14981, "\u0120pilots": 14982, "\u0120distribute": - 14983, "\u0120audit": 14984, "\u0120pause": 14985, "original": 14986, "\u0120rivals": - 14987, "\u00c2\u00a3": 14988, "Fig": 14989, "TL": 14990, "abil": 14991, "rying": - 14992, "Lin": 14993, "ioned": 14994, "lon": 14995, "\u0120fancy": 14996, "\u0120crashed": - 14997, "\u0120tract": 14998, "\u0120shed": 14999, "\u0120consume": 15000, - "Based": 15001, "download": 15002, "init": 15003, "\u0120voltage": 15004, - "Introdu": 15005, "\u0120condemned": 15006, "\u0120Finance": 15007, "respect": - 15008, "\u0120excluded": 15009, "\u0120establishing": 15010, "heric": 15011, - "\u0120heritage": 15012, "\u0120spectacular": 15013, "\u0120unst": 15014, - "\u0120Snowden": 15015, "\u0120Lane": 15016, "San": 15017, "\u0120protections": - 15018, "struction": 15019, "incinn": 15020, "\u0120macro": 15021, "Custom": - 15022, "iosity": 15023, "\u0120esp": 15024, "\u0120functioning": 15025, "\u0120mush": - 15026, "\u0120puzzle": 15027, "\u0120ethical": 15028, "Mal": 15029, "\u0120governing": - 15030, "\u0120Ferguson": 15031, "\u0120restored": 15032, "\u0120stressed": - 15033, "\u0120Counter": 15034, "\u0120Kas": 15035, "clip": 15036, "ANS": 15037, - "\u0120seiz": 15038, "UK": 15039, "byss": 15040, "oldown": 15041, "api": 15042, - "\u0120permanently": 15043, "ounters": 15044, "West": 15045, "Through": 15046, - "Light": 15047, "atoes": 15048, "\u0120neat": 15049, "\u0120cord": 15050, - "urer": 15051, "\u0120severely": 15052, "\u0120Aven": 15053, "\u0120interrog": - 15054, "\u0120triple": 15055, "Given": 15056, "Number": 15057, "\u0120arise": - 15058, "\u0120sher": 15059, "plant": 15060, "\u0120flower": 15061, "\u0120Cou": - 15062, "\u0120ate": 15063, "\u0120newer": 15064, "bul": 15065, "\u0120meanwhile": - 15066, "\u0120Lair": 15067, "\u0120adjustment": 15068, "\u0120Copyright": - 15069, "\u0120divers": 15070, "iological": 15071, "\u0120gamers": 15072, "oat": - 15073, "\u0120historically": 15074, "\u0120analog": 15075, "\u0120longtime": - 15076, "\u0120prescription": 15077, "\u0120Mist": 15078, "\u0120Hyper": 15079, - "\u0120Maine": 15080, "\u0120Deity": 15081, "\u0120multipl": 15082, "\u0120Reincarn": - 15083, "\u0120Hyd": 15084, "\u0120Pic": 15085, "Sil": 15086, "rants": 15087, - "\u0120Cris": 15088, ".;": 15089, "({": 15090, "ependence": 15091, "\u0120recy": - 15092, "ateur": 15093, "\u0120quad": 15094, "\u0120glob": 15095, "\u0120conced": - 15096, "team": 15097, "\u0120capitalist": 15098, "\u0120Lot": 15099, "\u0120royal": - 15100, "\u0120Cyber": 15101, "\u0120blacks": 15102, "metic": 15103, "riv": - 15104, "\u0120Danny": 15105, "\u0120spo": 15106, "\u0120RO": 15107, "\u0120animated": - 15108, "rypted": 15109, "\u0120Deputy": 15110, "\u0120rendered": 15111, "FE": - 15112, "\u0120streak": 15113, "\u0120clouds": 15114, "\u0120Doug": 15115, - "~~~~~~~~": 15116, "\u0120discour": 15117, "\u0120Veh": 15118, "\u0120psychology": - 15119, "\u0120Journey": 15120, "\u0120crystal": 15121, "\u0120Frost": 15122, - "\u0120suspicion": 15123, "\u0120relate": 15124, "orus": 15125, "\u0120Crypt": - 15126, "\u0120NVIDIA": 15127, "comed": 15128, "uting": 15129, "incinnati": - 15130, "\u0120vulnerability": 15131, "ostic": 15132, "\u0120isolation": 15133, - "\u0120cooling": 15134, "\u0120Coalition": 15135, "\u0120119": 15136, "Four": - 15137, "\u0120Deal": 15138, "\u0120\u00e2\u012b": 15139, "semble": 15140, - "rament": 15141, "\u0120Barcelona": 15142, "\u0120102": 15143, "\u0120cocaine": - 15144, "ocalypse": 15145, "Feb": 15146, "ogenic": 15147, "\u0120mutation": - 15148, "\u0120cryptoc": 15149, "\u0120Kel": 15150, "\u0120Git": 15151, "ais": - 15152, "\u0120sisters": 15153, "ANK": 15154, "\u0120activate": 15155, "Ter": - 15156, "\u0120dread": 15157, "ylon": 15158, "\u0120propri": 15159, "Aust": - 15160, "\u0120Default": 15161, "\u0120outdoor": 15162, "\u0120sheer": 15163, - "ceive": 15164, "\u0120gently": 15165, "\u00d0\u00be": 15166, "Program": 15167, - "\u0120\u00e2\u0128\u0134": 15168, "\u0120vegan": 15169, "\u0120Crus": 15170, - "\u0120responsibilities": 15171, "\u0120HR": 15172, "OLD": 15173, "\u0120prevents": - 15174, "\u0120stiff": 15175, "\u0120Were": 15176, "\u0120athletic": 15177, - "\u0120Score": 15178, "\u0120):": 15179, "\u0120columns": 15180, "\u0120Loc": - 15181, "available": 15182, "\u0120Fram": 15183, "\u0120Sessions": 15184, "\u0120companion": - 15185, "\u0120packs": 15186, "140": 15187, "\u0120Knights": 15188, "\u0120fart": - 15189, "\u0120streams": 15190, "\u0120shore": 15191, "\u0120appeals": 15192, - "\u0120Performance": 15193, "haul": 15194, "\u0120Stra": 15195, "\u0120Nag": - 15196, "103": 15197, "\u0120Transportation": 15198, "BB": 15199, "Ev": 15200, - "zan": 15201, "Public": 15202, "\u0120twin": 15203, "ulsion": 15204, "Mult": - 15205, "\u0120electro": 15206, "\u0120statue": 15207, "ationally": 15208, - "\u0120Nort": 15209, "\u0120inspection": 15210, "/*": 15211, "igue": 15212, - "\u0120compassion": 15213, "\u0120Tales": 15214, "\u0120Stein": 15215, "\u0120Screen": - 15216, "\u0120Bug": 15217, "\u0120Lion": 15218, "girl": 15219, "\u0120withdrawal": - 15220, "\u0120objectives": 15221, "\u0120bloody": 15222, "\u0120preliminary": - 15223, "\u0120jacket": 15224, "\u0120dimensions": 15225, "\u0120Cool": 15226, - "\u0120Occup": 15227, "\u0120wreck": 15228, "\u0120doubled": 15229, "anking": - 15230, "\u01201975": 15231, "\u0120glasses": 15232, "\u0120Wang": 15233, "prov": - 15234, "Path": 15235, "connected": 15236, "\u0120Multi": 15237, "\u0120Norway": - 15238, "agonist": 15239, "\u0120feared": 15240, "\u0120touching": 15241, "\u0120arguably": - 15242, "\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af": - 15243, "\u0120NCAA": 15244, "chem": 15245, "\u0120spat": 15246, "\u0120WWE": - 15247, "\u0120Cel": 15248, "igger": 15249, "\u0120attacker": 15250, "\u0120Join": - 15251, "object": 15252, "etta": 15253, "\u0120eliminated": 15254, "det": 15255, - "\u0120destruct": 15256, "\u0120Lucas": 15257, "ctuary": 15258, "180": 15259, - "\u0120Brady": 15260, "\u0120Blues": 15261, "Bay": 15262, "aukee": 15263, - "\u0120timeline": 15264, "\u0120delegates": 15265, "written": 15266, "ufficient": - 15267, "\u0120shapes": 15268, "Copyright": 15269, "ouble": 15270, "service": - 15271, "\u0120pione": 15272, "\u0120colleges": 15273, "\u0120rows": 15274, - "\u0120spite": 15275, "\u0120assessed": 15276, "360": 15277, "\u0120lease": - 15278, "\u0120confidential": 15279, "cker": 15280, "\u0120Manning": 15281, - "\u0120Voice": 15282, "\u0120sealed": 15283, "\u0120calculate": 15284, "NO": - 15285, "\u0120Assistant": 15286, "\u0120teenager": 15287, "ulent": 15288, - "atherine": 15289, "\u0120mock": 15290, "\u0120diamond": 15291, "\u0120fest": - 15292, "\u0120switched": 15293, "\u0120resume": 15294, "\u0120Puerto": 15295, - "\u0120lanes": 15296, "iration": 15297, "\u0120Similarly": 15298, "\u0120rod": - 15299, "\u0120Sel": 15300, "\u0120Palace": 15301, "\u0120Limited": 15302, - "eous": 15303, "\u0120variant": 15304, "\u0120ward": 15305, "\u0120))": 15306, - "Show": 15307, "OOK": 15308, "Alex": 15309, "\u0120Nep": 15310, "bris": 15311, - "\u0120Wikipedia": 15312, "\u0120exceptional": 15313, "\u0120manages": 15314, - "\u0120Draw": 15315, "Again": 15316, "\u0120copper": 15317, "utt": 15318, - "\u0120exports": 15319, "\u0120portfolio": 15320, "\u0120elevated": 15321, - "Rated": 15322, "\u0120Otherwise": 15323, "\u0120Tact": 15324, "\u0120Shel": - 15325, "\u0120TX": 15326, "\"\u00e2\u0122\u0136": 15327, "\u0120resur": 15328, - "\u0120Wa": 15329, "venant": 15330, "\u0120monetary": 15331, "people": 15332, - "Email": 15333, "\u0120fifty": 15334, "\u0120Sweet": 15335, "\u0120Malaysia": - 15336, "\u0120confusing": 15337, "\u0120Rio": 15338, "uda": 15339, "utenant": - 15340, "\");": 15341, "\u0120praised": 15342, "\u0120volumes": 15343, "turn": - 15344, "\u0120mature": 15345, "\u0120nonprofit": 15346, "\u0120passionate": - 15347, "\u0120Private": 15348, "\u0120103": 15349, "\u0120descend": 15350, - "\u00e7\u00a5\u0140": 15351, "uffy": 15352, "headed": 15353, "Whether": 15354, - "rien": 15355, "zech": 15356, "beit": 15357, "\u0120chrom": 15358, "\u0120McM": - 15359, "\u0120dancing": 15360, "\u0120eleg": 15361, "\u0120Noticed": 15362, - "115": 15363, "\u0120advocacy": 15364, "ENTS": 15365, "ambling": 15366, "\u0120Minor": - 15367, "\u0120Finn": 15368, "\u0120priorities": 15369, "\u0120thereof": 15370, - "\u0120Stage": 15371, "\u0120Rogers": 15372, "\u0120substitute": 15373, "\u0120Jar": - 15374, "\u0120Jefferson": 15375, "\u0120lightly": 15376, "102": 15377, "\u0120Lisa": - 15378, "uits": 15379, "ysical": 15380, "\u0120shifts": 15381, "\u0120drones": - 15382, "\u0120workplace": 15383, "\u0120resid": 15384, "ensed": 15385, "ahn": - 15386, "\u0120preferences": 15387, "server": 15388, "\u0120debates": 15389, - "doc": 15390, "\u0120Gods": 15391, "\u0120helicopter": 15392, "\u0120honour": - 15393, "\u0120considerably": 15394, "eded": 15395, "\u0120Female": 15396, - "\u0120Anne": 15397, "\u0120reun": 15398, "\u0120Face": 15399, "\u0120Hallow": - 15400, "\u0120Budget": 15401, "\u0120condemn": 15402, "\u0120tender": 15403, - "Prof": 15404, "ocratic": 15405, "\u0120Turner": 15406, "\u0120Agric": 15407, - "\u01201976": 15408, "\u0120apt": 15409, "disc": 15410, "\u0120Fighter": 15411, - "\u0120Aur": 15412, "\u0120garbage": 15413, "input": 15414, "\u0120Karl": - 15415, "\u0120Oliver": 15416, "\u0120Language": 15417, "kn": 15418, "Non": - 15419, "\u0120Clar": 15420, "\u0120traditions": 15421, "\u0120advertisement": - 15422, "\u0120Sor": 15423, "\u0120archive": 15424, "\u0120villages": 15425, - "750": 15426, "\u0120implementing": 15427, "waukee": 15428, "\u0120dietary": - 15429, "\u0120switching": 15430, "Republic": 15431, "\u0120velocity": 15432, - "\u0120cit": 15433, "\u0120Awards": 15434, "\u0120financing": 15435, "\u0120lasted": - 15436, ")]": 15437, "\u0120reminder": 15438, "Person": 15439, "\u0120precision": - 15440, "\u0120designers": 15441, "\u0120Fried": 15442, "\u0120Border": 15443, - "\u0120tragic": 15444, "\u0120wield": 15445, "\u0120initiatives": 15446, "\u0120Tank": - 15447, "wer": 15448, "\u0120joins": 15449, "Ro": 15450, "inery": 15451, "\u0120arrow": - 15452, "\u0120generating": 15453, "founder": 15454, "\u0120searches": 15455, - "\u0120randomly": 15456, "Access": 15457, "\u0120batch": 15458, "\u0120posed": - 15459, "lat": 15460, "\u0120pursuing": 15461, "asa": 15462, "\u0120testified": - 15463, "forming": 15464, "\u0120Shar": 15465, "wiki": 15466, "\u0120Either": - 15467, "Sometimes": 15468, "\u0120senators": 15469, "\u0120Johnny": 15470, - "\u0120Taliban": 15471, "\u0120GPS": 15472, "\":\"/": 15473, "\u00e3\u0123\u00ae\u00e5": - 15474, "\u0120analyzed": 15475, "\u0120Rubio": 15476, "\u0120Movement": 15477, - "opard": 15478, "iii": 15479, "Stand": 15480, "fight": 15481, "\u0120ignoring": - 15482, "iang": 15483, "\u0120GN": 15484, "soever": 15485, "\u0120STAT": 15486, - "\u0120refusing": 15487, "\u0120sweat": 15488, "\u0120bay": 15489, "PORT": - 15490, "irmed": 15491, "aky": 15492, "\u0120dispro": 15493, "\u0120labeled": - 15494, "\u0120108": 15495, "Hello": 15496, "\u0120pleasant": 15497, "aba": - 15498, "\u0120triumph": 15499, "\u0120aboard": 15500, "\u0120incom": 15501, - "\u0120Crow": 15502, "lett": 15503, "\u0120folk": 15504, "\u0120chase": 15505, - "``": 15506, "\u0120Brus": 15507, "\u0120teens": 15508, "cue": 15509, "\u0120terrain": - 15510, "hyd": 15511, "ilight": 15512, "ORY": 15513, "Support": 15514, "ews": - 15515, "lli": 15516, "raints": 15517, "\u0120Cand": 15518, "\u0120abused": - 15519, "achment": 15520, "larg": 15521, "Bas": 15522, "\u0120Cancer": 15523, - "\u01201978": 15524, "\u0120supporter": 15525, "access": 15526, "\u0120Termin": - 15527, "\u0120Tampa": 15528, "\u0120ANY": 15529, "\u0120newest": 15530, "\u0120Criminal": - 15531, "edu": 15532, "\u01201930": 15533, "\u0120admits": 15534, "\u0120ende": - 15535, "\u0120failures": 15536, "urate": 15537, "fulness": 15538, "cycl": - 15539, "\u0120Subject": 15540, "\u0120infinite": 15541, "three": 15542, "WA": - 15543, "pit": 15544, "\u0120Install": 15545, "Rad": 15546, "iliation": 15547, - "GM": 15548, "\u0120continent": 15549, "\u0120accommodate": 15550, "\u0120Clay": - 15551, "\u0120pup": 15552, "\u0120Function": 15553, "\u0120hammer": 15554, - "\u0120Alberta": 15555, "\u0120revised": 15556, "\u0120minorities": 15557, - "\u0120measurement": 15558, "Connell": 15559, "\u0120disable": 15560, "\u0120Mix": - 15561, "Incre": 15562, "\u0120fork": 15563, "\u0120Rosen": 15564, "\u0120implies": - 15565, "umblr": 15566, "ANG": 15567, "\u0120proteins": 15568, "\u0120aggression": - 15569, "\u0120facilitate": 15570, "SN": 15571, "\u0120illegally": 15572, "uer": - 15573, "\u0120academ": 15574, "\u0120puzz": 15575, "\u0120Shift": 15576, "pay": - 15577, "ollo": 15578, "\u0120audiences": 15579, "Build": 15580, "\u0120noble": - 15581, "\u0120syntax": 15582, "\u00e2\u013a\u0127": 15583, "\u0120beam": 15584, - "\u0120Bed": 15585, "\u0120Ald": 15586, "\u0120origins": 15587, "video": 15588, - "\u01201977": 15589, "\u0120Assault": 15590, "\u0120garage": 15591, "Team": - 15592, "\u0120verdict": 15593, "\u0120dwar": 15594, "\u0120Virtual": 15595, - "event": 15596, "Keep": 15597, "\u0120sentiment": 15598, "\u0120wildlife": - 15599, "shirt": 15600, "\u0120burg": 15601, "\u0120recommendation": 15602, - "represent": 15603, "\u0120gallery": 15604, "owners": 15605, "\u0120scholar": - 15606, "\u0120convenience": 15607, "\u0120Swift": 15608, "\u0120convinc": - 15609, "Cap": 15610, "\u0120warfare": 15611, "\u0120Visual": 15612, "\u0120constitute": - 15613, "\u0120abort": 15614, "\u0120Weather": 15615, "\u0120Looking": 15616, - "\u0120Hem": 15617, "\u0120martial": 15618, "\u0120incoming": 15619, "etition": - 15620, "\u0120tolerance": 15621, "\u0120Created": 15622, "\u0120flows": 15623, - "\u0120Elder": 15624, "\u0120souls": 15625, "\u0120foul": 15626, "\u0120Pain": - 15627, "\u0120CAN": 15628, "\u0120220": 15629, "bc": 15630, "hend": 15631, - "\u0120genius": 15632, "Real": 15633, "\u0120Wr": 15634, "ometer": 15635, - "pad": 15636, "\u0120limiting": 15637, "\u0120Si": 15638, "\u0120Lore": 15639, - "\u0120Adventures": 15640, "\u0120varied": 15641, "Disc": 15642, "fin": 15643, - "\u0120Personal": 15644, "Chris": 15645, "\u0120invented": 15646, "\u0120dive": - 15647, "\u0120Rise": 15648, "\u0120oz": 15649, "\u0120Comics": 15650, "\u0120expose": - 15651, "\u0120Reb": 15652, "letters": 15653, "site": 15654, "imated": 15655, - "\u0120hacking": 15656, "\u0120educated": 15657, "\u0120Nobody": 15658, "\u0120depri": - 15659, "\u0120incentive": 15660, "\u00e3\u0124\u00b7": 15661, "\u0120oversight": - 15662, "\u0120tribes": 15663, "\u0120Belgium": 15664, "\u0120licensing": 15665, - "ourt": 15666, "Product": 15667, "ahl": 15668, "\u0120Gem": 15669, "\u0120specialist": - 15670, "\u0120cra": 15671, "anners": 15672, "\u0120Corbyn": 15673, "\u01201973": - 15674, "READ": 15675, "\u0120summar": 15676, "\u0120overlook": 15677, "\u0120Application": - 15678, "\u0120inappropriate": 15679, "\u0120downloaded": 15680, "Que": 15681, - "\u0120Bears": 15682, "\u0120thumb": 15683, "\u0120Character": 15684, "\u0120Reincarnated": - 15685, "\u0120Sid": 15686, "\u0120demonstrates": 15687, "sky": 15688, "\u0120Bloomberg": - 15689, "\u0120Array": 15690, "\u0120Results": 15691, "\u0120Fourth": 15692, - "\u0120EDT": 15693, "\u0120Oscar": 15694, "cend": 15695, "\u0120106": 15696, - "\u0120NULL": 15697, "\u0120HERE": 15698, "match": 15699, "\u0120Brun": 15700, - "\u0120glucose": 15701, "ieg": 15702, "egu": 15703, "\u0120certified": 15704, - "\u0120relie": 15705, "\u0120humanitarian": 15706, "\u0120prayers": 15707, - "King": 15708, "\u0120nan": 15709, "hou": 15710, "108": 15711, "ulu": 15712, - "\u0120renewable": 15713, "\u0120distinguish": 15714, "\u0120dense": 15715, - "\u0120Vent": 15716, "\u0120Package": 15717, "\u0120Boss": 15718, "\u0120editors": - 15719, "\u0120migr": 15720, "Tra": 15721, "\u0120Peters": 15722, "\u0120Arctic": - 15723, "2004": 15724, "\u0120Cape": 15725, "\u0120locally": 15726, "\u0120lasting": - 15727, "\u0120handy": 15728, ".).": 15729, "Pan": 15730, "\u0120RES": 15731, - "Index": 15732, "\u0120tensions": 15733, "\u0120formerly": 15734, "\u0120ideological": - 15735, "\u0120sensors": 15736, "\u0120dealers": 15737, "\u0120defines": 15738, - "Sk": 15739, "\u0120proceeds": 15740, "\u0120proxy": 15741, "azines": 15742, - "\u0120Bash": 15743, "\u0120Pad": 15744, "\u0120Craft": 15745, "ealous": 15746, - "\u0120sheets": 15747, "ometry": 15748, "June": 15749, "clock": 15750, "TT": - 15751, "\u0120Theatre": 15752, "\u0120Buzz": 15753, "\u0120chapters": 15754, - "\u0120millenn": 15755, "\u0120dough": 15756, "\u0120Congressional": 15757, - "\u0120imagined": 15758, "avior": 15759, "\u0120clinic": 15760, "\u01201945": - 15761, "\u0120holder": 15762, "root": 15763, "olester": 15764, "\u0120restart": - 15765, "BN": 15766, "\u0120Hamas": 15767, "\u0120Job": 15768, "\u0120orb": - 15769, "\u0120ram": 15770, "\u0120disclose": 15771, "\u0120translate": 15772, - "\u0120immigrant": 15773, "\u0120annoying": 15774, "\u0120treaty": 15775, - "anium": 15776, "\u0120Tea": 15777, "\u0120Legion": 15778, "\u0120crowds": - 15779, "\u0120Bec": 15780, "\u0120Aer": 15781, "ohyd": 15782, "Bro": 15783, - "Looking": 15784, "\u0120lbs": 15785, "\u0120aggress": 15786, "\u0120seam": - 15787, "\u0120intercept": 15788, "\u0120MI": 15789, "mercial": 15790, "activ": - 15791, "\u0120Cit": 15792, "\u0120dimension": 15793, "\u0120consistency": - 15794, "\u0120rushing": 15795, "\u0120Douglas": 15796, "\u0120trim": 15797, - "Install": 15798, "icker": 15799, "\u0120shy": 15800, "106": 15801, "\u0120mentions": - 15802, "pelled": 15803, "\u0120Tak": 15804, "cost": 15805, "\u0120classroom": - 15806, "\u0120fortune": 15807, "driven": 15808, "\u0120unle": 15809, "\u0120Wheel": - 15810, "\u0120investor": 15811, "\u0120Masters": 15812, "kit": 15813, "\u0120associations": - 15814, "\u0120Evolution": 15815, "oping": 15816, "uscript": 15817, "\u0120provincial": - 15818, "\u0120Walter": 15819, "avi": 15820, "SO": 15821, "\u0120unlimited": - 15822, "English": 15823, "\u0120Cards": 15824, "\u0120Ebola": 15825, "nered": - 15826, "\u0120revenge": 15827, "\u0120outright": 15828, "umper": 15829, "\u0120fitting": - 15830, "\u0120Solid": 15831, "\u0120formally": 15832, "\u0120problematic": - 15833, "\u0120hazard": 15834, "\u0120encryption": 15835, "\u0120straightforward": - 15836, "\u0120AK": 15837, "\u0120pse": 15838, "\u0120Orb": 15839, "\u0120Chamber": - 15840, "\u0120Mak": 15841, "Contents": 15842, "\u0120loyalty": 15843, "\u0120lyrics": - 15844, "\u0120Sym": 15845, "\u0120welcomed": 15846, "\u0120cooked": 15847, - "\u0120monop": 15848, "\u0120nurse": 15849, "\u0120misleading": 15850, "\u0120eternal": - 15851, "\u0120shifting": 15852, "\u0120+=": 15853, "Vis": 15854, "\u0120institutional": - 15855, "illary": 15856, "\u0120pant": 15857, "VERT": 15858, "\u0120ACC": 15859, - "\u0120Enh": 15860, "\u0120incon": 15861, "\u0120REUTERS": 15862, "\u0120donated": - 15863, "\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6": - 15864, "Intern": 15865, "\u0120exhibit": 15866, "\u0120tire": 15867, "\u0120Ric": - 15868, "\u0120Champion": 15869, "\u0120Muhammad": 15870, "NING": 15871, "\u0120Soccer": - 15872, "\u0120mobility": 15873, "\u0120varying": 15874, "\u0120Movie": 15875, - "\u0120lord": 15876, "oak": 15877, "Field": 15878, "\u0120vector": 15879, - "usions": 15880, "\u0120scrap": 15881, "\u0120enabling": 15882, "make": 15883, - "Tor": 15884, ".*": 15885, "||": 15886, "\u0120Website": 15887, "\u0120NPC": - 15888, "\u0120socialist": 15889, "\u0120Billy": 15890, "\u0120Additional": - 15891, "\u0120cargo": 15892, "\u0120farms": 15893, "\u0120Soon": 15894, "\u0120Prize": - 15895, "\u0120midnight": 15896, "\u0120900": 15897, "seen": 15898, "\u0120Spot": - 15899, "\u0120sheep": 15900, "\u0120sponsored": 15901, "\u0120Hi": 15902, - "\u0120Jump": 15903, "\u01201967": 15904, "Microsoft": 15905, "\u0120Agent": - 15906, "\u0120charts": 15907, "dir": 15908, "\u0120adjacent": 15909, "\u0120tricks": - 15910, "\u0120manga": 15911, "\u0120exagger": 15912, "/>": 15913, "football": - 15914, "\u0120FCC": 15915, "GC": 15916, "\u0120Tier": 15917, "andra": 15918, - "OUND": 15919, "%),": 15920, "\u0120fruits": 15921, "VC": 15922, "\u0120AA": - 15923, "Rober": 15924, "\u0120midst": 15925, "\u00e2\u0139": 15926, "anka": - 15927, "\u0120legislature": 15928, "\u0120Neil": 15929, "\u0120tourists": - 15930, "\"\"": 15931, "\u0120Warning": 15932, "\u0120Nevertheless": 15933, - "\u0120Official": 15934, "\u0120Whatever": 15935, "\u0120mold": 15936, "\u0120drafted": - 15937, "\u0120substances": 15938, "\u0120breed": 15939, "\u0120tags": 15940, - "\u0120Task": 15941, "\u0120verb": 15942, "\u0120manufactured": 15943, "comments": - 15944, "\u0120Polish": 15945, "Prov": 15946, "\u0120determines": 15947, "Obama": - 15948, "kers": 15949, "\u0120utterly": 15950, "\u0120sect": 15951, "sche": - 15952, "\u0120Gates": 15953, "\u0120Chap": 15954, "\u0120aluminum": 15955, - "\u0120zombie": 15956, "\u0120Touch": 15957, "\u0120UP": 15958, "\u0120satisfy": - 15959, "\u0120predomin": 15960, "ascript": 15961, "\u0120elaborate": 15962, - "\u01201968": 15963, "\u0120measuring": 15964, "\u0120Vari": 15965, "anyahu": - 15966, "\u0120sir": 15967, "ulates": 15968, "idges": 15969, "ickets": 15970, - "\u0120Spencer": 15971, "TM": 15972, "oubted": 15973, "\u0120prey": 15974, - "\u0120installing": 15975, "\u0120Cab": 15976, "reed": 15977, "reated": 15978, - "Supp": 15979, "\u0120wrist": 15980, "\u0120Kerry": 15981, "107": 15982, "\u0120Kle": - 15983, "\u0120Rachel": 15984, "\u0120cotton": 15985, "\u0120ARE": 15986, "\u0120Ele": - 15987, "Control": 15988, "\u0120loads": 15989, "\u0120Dod": 15990, "anas": - 15991, "bone": 15992, "\u0120classical": 15993, "\u0120Regional": 15994, "\u0120Integ": - 15995, "VM": 15996, "\u0120desires": 15997, "\u0120autism": 15998, "supported": - 15999, "\u0120Message": 16000, "\u0120compact": 16001, "writer": 16002, "\u0120109": - 16003, "\u0120Hurricane": 16004, "cision": 16005, "\u0120cycles": 16006, "\u0120drill": - 16007, "\u0120colleague": 16008, "\u0120maker": 16009, "German": 16010, "\u0120mistaken": - 16011, "Sun": 16012, "\u0120Gay": 16013, "\u0120whatsoever": 16014, "\u0120sells": - 16015, "\u0120Airl": 16016, "liv": 16017, "\u0120Option": 16018, "\u0120solved": - 16019, "\u0120sectors": 16020, "\u0120horizontal": 16021, "\u0120equation": - 16022, "\u0120Skill": 16023, "\u0120Bio": 16024, "gement": 16025, "\u0120Snap": - 16026, "\u0120Legal": 16027, "\u0120trademark": 16028, "\u0120makeup": 16029, - "\u0120assembled": 16030, "\u0120saves": 16031, "\u0120Halloween": 16032, - "\u0120Vermont": 16033, "\u0120FROM": 16034, "\u0120farming": 16035, "\u0120Podcast": - 16036, "acceptable": 16037, "\u0120Higher": 16038, "\u0120asleep": 16039, - "ullivan": 16040, "\u0120referen": 16041, "\u0120Lev": 16042, "\u0120bullets": - 16043, "oko": 16044, "HC": 16045, "\u0120stairs": 16046, "\u0120maintains": - 16047, "\u0120Lower": 16048, "\u0120Vi": 16049, "\u0120marine": 16050, "\u0120acres": - 16051, "\u0120coordinator": 16052, "\u0120Joh": 16053, "\u0120counterparts": - 16054, "\u0120Brothers": 16055, "\u0120indict": 16056, "bra": 16057, "\u0120chunk": - 16058, "\u0120cents": 16059, "Home": 16060, "\u0120Month": 16061, "\u0120accordingly": - 16062, "ifles": 16063, "\u0120Germans": 16064, "\u0120Syn": 16065, "Hub": - 16066, "\u0120eyeb": 16067, "\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122": - 16068, "\u0120ranges": 16069, "\u0120Holland": 16070, "\u0120Robot": 16071, - "fc": 16072, "Mike": 16073, "\u0120plasma": 16074, "\u0120swap": 16075, "\u0120athlete": - 16076, "\u0120Rams": 16077, ",''\"": 16078, "\u0120infections": 16079, "\u0120corrid": - 16080, "\u0120vib": 16081, "\u0120patches": 16082, "\u0120traditionally": - 16083, "\u0120revelation": 16084, "\u0120sweep": 16085, "\u0120glance": 16086, - "\u0120inex": 16087, "2003": 16088, "\u0120Raw": 16089, "working": 16090, - "osures": 16091, "\u0120Dat": 16092, "\u0120Lynch": 16093, "\u0120leverage": - 16094, "\u0120Reid": 16095, "\u0120correlation": 16096, "iances": 16097, "avascript": - 16098, "\u0120repository": 16099, "retty": 16100, "\u01201972": 16101, "240": - 16102, "\u0120oun": 16103, "pol": 16104, "\u0120Reed": 16105, "\u0120tactical": - 16106, "isite": 16107, "Apple": 16108, "\u0120Quinn": 16109, "\u0120raped": - 16110, "illo": 16111, "Europe": 16112, "\u0120algorithms": 16113, "\u0120Rodrig": - 16114, "iu": 16115, "\u0120illum": 16116, "\u0120fame": 16117, "\u0120introducing": - 16118, "\u0120delays": 16119, "\u0120Raiders": 16120, "\u0120whistle": 16121, - "\u0120novels": 16122, "\u0120Really": 16123, "\u0120deriv": 16124, "\u0120publications": - 16125, "\u0120Neither": 16126, "\u0120Commerce": 16127, "\u0120aston": 16128, - "language": 16129, "Notes": 16130, "\u0120Roth": 16131, "\u0120Fear": 16132, - "\u0120mate": 16133, "\u0120parade": 16134, "\u0120QB": 16135, "\u0120maneu": - 16136, "\u0120Cincinnati": 16137, "mitting": 16138, "\u0120waist": 16139, - "\u0120Rew": 16140, "\u0120discont": 16141, "\u00d0\u00b0": 16142, "\u0120staring": - 16143, "\u0120alias": 16144, "\u0120securities": 16145, "\u0120toilet": 16146, - "\u0120Jedi": 16147, "\u0120unlaw": 16148, "vised": 16149, "////////": 16150, - "](": 16151, "\u0120Weiss": 16152, "\u0120prest": 16153, "\u0120Compan": 16154, - "\u0120memo": 16155, "\u0120Grace": 16156, "July": 16157, "\u0120Elite": 16158, - "center": 16159, "\u0120Stay": 16160, "\u0120galaxy": 16161, "\u0120tooth": - 16162, "\u0120Settings": 16163, "\u0120subjected": 16164, "\u00e3\u0124\u00a6": - 16165, "\u0120lineback": 16166, "\u0120retailers": 16167, "\u0120Want": 16168, - "\u0120dangers": 16169, "Air": 16170, "\u0120voluntary": 16171, "eway": 16172, - "\u0120interpreted": 16173, "otine": 16174, "\u00c3\u00a7": 16175, "\u0120pel": - 16176, "Service": 16177, "\u0120Eventually": 16178, "\u0120careers": 16179, - "\u0120threaten": 16180, "\u0120memor": 16181, "\u0120Bradley": 16182, "ancies": - 16183, "sn": 16184, "\u0120Unknown": 16185, "National": 16186, "\u0120shadows": - 16187, "ailand": 16188, "\u0120Dash": 16189, "Everyone": 16190, "izzard": - 16191, "March": 16192, "=(": 16193, "\u0120pulls": 16194, "\u0120stranger": - 16195, "\u0120backwards": 16196, "\u0120Bernard": 16197, "imensional": 16198, - "\u0120chron": 16199, "\u0120theoretical": 16200, "ktop": 16201, "\u0120ware": - 16202, "\u0120Investig": 16203, "\u0120Initi": 16204, "\u0120Operations": - 16205, "oven": 16206, "ocide": 16207, "*/": 16208, "\u0120flames": 16209, - "\u0120Cash": 16210, "shit": 16211, "\u0120cab": 16212, "\u0120Analy": 16213, - "\u0120Seah": 16214, "\u0120defining": 16215, "\u0120ordering": 16216, "\u0120immun": - 16217, "\u0120persistent": 16218, "ACH": 16219, "Russian": 16220, "mans": - 16221, "\u0120hind": 16222, "\u0120photography": 16223, "\u00c2\u00a9": 16224, - "\u0120hug": 16225, "\u0120107": 16226, "\u0120Hence": 16227, "iots": 16228, - "udeau": 16229, "\u0120subsidies": 16230, "\u0120routinely": 16231, "\u0120Device": - 16232, "itic": 16233, "\u0120disgust": 16234, "lander": 16235, "\u01201940": - 16236, "\u0120assignment": 16237, "\u0120Besides": 16238, "wick": 16239, "\u0120Dust": - 16240, "usc": 16241, "structed": 16242, "111": 16243, "develop": 16244, "\u0120fond": - 16245, "\u0120intersection": 16246, "\u0120dignity": 16247, "\u0120commissioner": - 16248, "Without": 16249, "reach": 16250, "\u0120cartoon": 16251, "\u0120scales": - 16252, "\u00e3\u0125\u0143": 16253, "FIG": 16254, "\u0120surveys": 16255, - "\u0120Indonesia": 16256, "\u0120artwork": 16257, "\u0120unch": 16258, "\u0120cycling": - 16259, "unct": 16260, "auer": 16261, "orate": 16262, "\u0120Obviously": 16263, - "\u0120characterized": 16264, "feld": 16265, "\u0120affirm": 16266, "\u0120innings": - 16267, "\u0120\u00e9": 16268, "\u0120aliens": 16269, "\u0120cloth": 16270, - "etooth": 16271, "\u0120Certain": 16272, "\u00c2\u00a7": 16273, "\u0120digest": - 16274, "know": 16275, "\u0120XL": 16276, "\u0120predictions": 16277, "\u0120din": - 16278, "WAR": 16279, "\u0120aftermath": 16280, "Example": 16281, "\u0120Success": - 16282, "\u0120Thr": 16283, "IGN": 16284, "\u0120miner": 16285, "Bus": 16286, - "\u0120clarity": 16287, "heimer": 16288, "\u0120OUT": 16289, "\u0120Send": - 16290, "\u0120Circle": 16291, "\u0120Diet": 16292, "\u0120pronounced": 16293, - "\u0120creators": 16294, "\u0120earthquake": 16295, "attery": 16296, "geons": - 16297, "\u0120od": 16298, "\u0120laying": 16299, "orp": 16300, "Ult": 16301, - "project": 16302, "\u0120undermin": 16303, "\u0120sequel": 16304, "Sam": 16305, - "\u0120Darkness": 16306, "\u0120reception": 16307, "bull": 16308, "YS": 16309, - "\u0120Vir": 16310, "\u0120sequences": 16311, "\u0120Coin": 16312, "\u0120outfit": - 16313, "\u0120Wait": 16314, "119": 16315, "\u0120delivers": 16316, "......": - 16317, "\u0120blown": 16318, "\u0120Esc": 16319, "\u0120Math": 16320, "perm": - 16321, "\u0120Ul": 16322, "\u0120glim": 16323, "\u0120facial": 16324, "\u0120greenhouse": - 16325, "\u0120tokens": 16326, "/-": 16327, "\u0120Annual": 16328, "\u0120ONE": - 16329, "\u0120teenage": 16330, "\u0120Physical": 16331, "\u0120Lang": 16332, - "\u0120Celt": 16333, "\u0120sued": 16334, "ividually": 16335, "\u0120patience": - 16336, "chair": 16337, "regular": 16338, "\u0120aug": 16339, "inv": 16340, - "except": 16341, "\u0120Lil": 16342, "\u0120nest": 16343, "fd": 16344, "sum": - 16345, "\u0120Chase": 16346, "Russia": 16347, "\u0120Jennifer": 16348, "\u0120offseason": - 16349, "Overall": 16350, "Fore": 16351, "\u0120riot": 16352, "Aud": 16353, - "former": 16354, "\u0120defenders": 16355, "\u0120CT": 16356, "iotic": 16357, - "ribly": 16358, "\u0120automated": 16359, "\u0120penis": 16360, "\u0120insist": - 16361, "\u0120diagram": 16362, "\u0120SQL": 16363, "\u0120Garc": 16364, "\u0120witch": - 16365, "client": 16366, "ierra": 16367, "ambers": 16368, "\u0120recount": - 16369, "far": 16370, "Very": 16371, "osterone": 16372, "\u0120appreciated": - 16373, "\u0120Perfect": 16374, "Section": 16375, "\u0120doses": 16376, "ocaust": - 16377, "\u0120costly": 16378, "\u0120grams": 16379, "\u0120Shi": 16380, "\u0120wrestling": - 16381, "\u01201971": 16382, "\u0120trophy": 16383, "\u0120nerve": 16384, "\u0120Kaz": - 16385, "\u0120Experience": 16386, "\u0120pledged": 16387, "\u0120playback": - 16388, "\u0120creativity": 16389, "bye": 16390, "\u0120attackers": 16391, - "\u0120holders": 16392, "\u0120Coach": 16393, "\u0120PhD": 16394, "\u0120transfers": - 16395, "\u0120colored": 16396, "\u0120Hindu": 16397, "\u0120drown": 16398, - "\u0120listened": 16399, "\u0120WA": 16400, "iasm": 16401, "PO": 16402, "\u0120appealing": - 16403, "\u0120disclosed": 16404, "\u0120Chicken": 16405, "agging": 16406, - "\u0120pleaded": 16407, "\u0120navigation": 16408, "\u0120Returns": 16409, - "\u0120[[": 16410, "ROR": 16411, "EA": 16412, "\u0120photographer": 16413, - "\u0120Rider": 16414, "ippers": 16415, "\u0120slice": 16416, "\u0120erect": - 16417, "\u0120hed": 16418, "issance": 16419, "\u0120Vikings": 16420, "urious": - 16421, "\u0120appet": 16422, "oubtedly": 16423, "Child": 16424, "\u0120authentic": - 16425, "oos": 16426, "\u0120Making": 16427, "\u0120announcing": 16428, "\u0120bod": - 16429, "\u0120meter": 16430, "\u0120Nine": 16431, "\u0120Rogue": 16432, "\u0120workforce": - 16433, "\u0120renewed": 16434, "\u0120organisations": 16435, "acs": 16436, - "PLE": 16437, "Short": 16438, "\u0120compounds": 16439, "\u0120Visit": 16440, - "\u0120envelop": 16441, "earth": 16442, "\u0120supportive": 16443, "ggle": - 16444, "\u0120Brussels": 16445, "\u0120Guild": 16446, "Create": 16447, "REL": - 16448, "\u0120averaged": 16449, "\u01201969": 16450, "riages": 16451, "\u0120lengthy": - 16452, "\u0120forgot": 16453, "Okay": 16454, "\u0120Erd": 16455, "\u0120dealer": - 16456, "\u0120recession": 16457, "DD": 16458, "\u0120desperately": 16459, - "\u0120hunger": 16460, "\u0120sticks": 16461, "\u0120mph": 16462, "\u0120Faith": - 16463, "\u0120intentionally": 16464, "\u0120demol": 16465, "ueller": 16466, - "\u0120Sale": 16467, "\u0120debris": 16468, "spring": 16469, "\u0120leap": - 16470, ">>>>": 16471, "\u0120containers": 16472, "selling": 16473, "ranean": - 16474, "attering": 16475, "\u0120commented": 16476, "\u0120CM": 16477, "onut": - 16478, "\u0120woods": 16479, "especially": 16480, "\u0120organize": 16481, - "ivic": 16482, "\u0120Woods": 16483, "anga": 16484, "squ": 16485, "\u0120maj": - 16486, "amon": 16487, "\u0120axis": 16488, "\u01201974": 16489, "\u0120Denmark": - 16490, "\u0120warrior": 16491, "\u0120Pand": 16492, "\u0120outlined": 16493, - "\u0120BO": 16494, "insula": 16495, "zilla": 16496, "ebook": 16497, "\u0120dare": - 16498, "\u0120searched": 16499, "\u0120navigate": 16500, "Sn": 16501, "writing": - 16502, "\u0120united": 16503, "Japan": 16504, "\u0120Hebrew": 16505, "\u0120flame": - 16506, "\u0120relies": 16507, "\u0120catching": 16508, "\u0120Sho": 16509, - "\u0120imprisonment": 16510, "\u0120pockets": 16511, "\u0120closure": 16512, - "\u0120Fam": 16513, "tim": 16514, "adequ": 16515, "Activity": 16516, "\u0120recruiting": - 16517, "\u0120WATCH": 16518, "\u0120Argentina": 16519, "dest": 16520, "\u0120apologize": - 16521, "oro": 16522, "\u0120lacks": 16523, "\u0120tuned": 16524, "\u0120Griffin": - 16525, "\u0120infamous": 16526, "\u0120celebrity": 16527, "sson": 16528, "\u0120----------------------------------------------------------------": - 16529, "\u0120Isis": 16530, "\u0120Display": 16531, "\u0120credibility": 16532, - "\u0120economies": 16533, "\u0120headline": 16534, "\u0120Cowboys": 16535, - "\u0120indef": 16536, "\u0120lately": 16537, "\u0120incentives": 16538, "button": - 16539, "\u0120Mob": 16540, "Aut": 16541, "\u0120resigned": 16542, "\u0120Om": - 16543, "camp": 16544, "\u0120profiles": 16545, "\u0120schemes": 16546, "olphins": - 16547, "ayed": 16548, "Clinton": 16549, "enh": 16550, "\u0120Yahoo": 16551, - "\u0120abst": 16552, "\u0120ank": 16553, "suits": 16554, "\u0120wished": 16555, - "\u0120Marco": 16556, "udden": 16557, "\u0120sphere": 16558, "\u0120Bishop": - 16559, "\u0120incorporated": 16560, "\u0120Plant": 16561, "114": 16562, "\u0120hated": - 16563, "pic": 16564, "\u0120donate": 16565, "\u0120lined": 16566, "\u0120beans": - 16567, "\u0120stealing": 16568, "\u0120costume": 16569, "\u0120sheriff": 16570, - "\u0120forty": 16571, "\u0120intact": 16572, "\u0120adapted": 16573, "\u0120travelling": - 16574, "bart": 16575, "\u0120nicely": 16576, "\u0120dried": 16577, "\u0120scal": - 16578, "osity": 16579, "NOTE": 16580, "\u0120Bh": 16581, "\u0120Broncos": - 16582, "\u0120Ign": 16583, "\u0120intimate": 16584, "\u0120chemistry": 16585, - "\u0120optimal": 16586, "Deb": 16587, "\u0120Generation": 16588, "\u0120],": - 16589, "ichi": 16590, "\u0120Wii": 16591, "\u0120YOUR": 16592, "ventions": - 16593, "Write": 16594, "\u0120popul": 16595, "unning": 16596, "\u0120Wor": - 16597, "Vol": 16598, "\u0120queen": 16599, "heads": 16600, "KK": 16601, "\u0120analyze": - 16602, "opic": 16603, "earchers": 16604, "\u0120dot": 16605, "legraph": 16606, - "astically": 16607, "\u0120upgrades": 16608, "\u0120cares": 16609, "\u0120extending": - 16610, "\u0120freeze": 16611, "\u0120inability": 16612, "\u0120organs": 16613, - "\u0120pretend": 16614, "\u0120outlet": 16615, "113": 16616, "olan": 16617, - "\u0120Mall": 16618, "uling": 16619, "talk": 16620, "\u0120expressing": 16621, - "\u0120Always": 16622, "\u0120Begin": 16623, "files": 16624, "\u0120licenses": - 16625, "%%": 16626, "\u0120Mitt": 16627, "\u0120filters": 16628, "\u0120Milwaukee": - 16629, "GN": 16630, "\u0120unfold": 16631, "Mo": 16632, "\u0120nutrition": - 16633, "ppo": 16634, "Bo": 16635, "\u0120founding": 16636, "\u0120undermine": - 16637, "\u0120easiest": 16638, "\u0120Czech": 16639, "\u0120Mack": 16640, - "\u0120sexuality": 16641, "\u0120Nixon": 16642, "Win": 16643, "\u0120Arn": - 16644, "\u0120Kin": 16645, "\u00e3\u0124\u00a3": 16646, "icer": 16647, "\u0120fortun": - 16648, "\u0120surfaces": 16649, "aghd": 16650, "\u0120carriers": 16651, "\u0120PART": - 16652, "\u0120Tib": 16653, "\u0120interval": 16654, "\u0120frustrating": 16655, - "\u0120Ship": 16656, "\u0120Armed": 16657, "ffe": 16658, "\u0120boats": 16659, - "\u0120Abraham": 16660, "inis": 16661, "\u0120suited": 16662, "thread": 16663, - "iov": 16664, "abul": 16665, "\u0120Venezuela": 16666, "\u0120tom": 16667, - "super": 16668, "\u0120castle": 16669, "although": 16670, "ioxide": 16671, - "eches": 16672, "\u0120evolutionary": 16673, "\u0120negotiate": 16674, "\u0120confronted": - 16675, "Remember": 16676, "\u0120170": 16677, "Such": 16678, "\u0120911": - 16679, "mult": 16680, "\u0120Abyss": 16681, "urry": 16682, "kees": 16683, - "spec": 16684, "\u0120Barbara": 16685, "\u0120belonging": 16686, "\u0120villain": - 16687, "istani": 16688, "\u0120accountable": 16689, "\u0120portions": 16690, - "\u0120Decl": 16691, "Ur": 16692, "\u0120Kate": 16693, "gre": 16694, "\u0120magazines": - 16695, "UCK": 16696, "\u0120regulate": 16697, "omon": 16698, "\u0120Almost": - 16699, "\u0120overview": 16700, "\u0120scram": 16701, "\u0120loot": 16702, - "\u0120Fitz": 16703, "\u0120characteristic": 16704, "\u0120Snake": 16705, - "say": 16706, "\u0120Rico": 16707, "\u0120trait": 16708, "\u0120Joined": 16709, - "aucus": 16710, "\u0120adaptation": 16711, "\u0120Airlines": 16712, "\u0120archae": - 16713, "\u0120Ide": 16714, "\u0120bikes": 16715, "\u0120literary": 16716, - "\u0120influences": 16717, "\u0120Used": 16718, "Creat": 16719, "\u0120plea": - 16720, "\u0120Defence": 16721, "\u0120Assass": 16722, "\u0120pond": 16723, - "ULT": 16724, ")\"": 16725, "\u0120evaluated": 16726, "\u0120obtaining": 16727, - "\u0120demographic": 16728, "\u0120vigil": 16729, "aley": 16730, "\u0120spouse": - 16731, "\u0120Seahawks": 16732, "respons": 16733, "\u0120Belt": 16734, "umatic": - 16735, "\u0120rises": 16736, "runner": 16737, "\u0120Michelle": 16738, "\u0120potent": - 16739, "race": 16740, "\u0120PAC": 16741, "Find": 16742, "olesterol": 16743, - "ISS": 16744, "\u0120Introduced": 16745, "resses": 16746, "ignment": 16747, - "Os": 16748, "\u0120Tu": 16749, "\u0120Dex": 16750, "icides": 16751, "\u0120sparked": - 16752, "\u0120Laura": 16753, "\u0120Bryant": 16754, "\u0120smiling": 16755, - "\u0120Nexus": 16756, "\u0120defendants": 16757, "\u0120Catal": 16758, "\u0120dishes": - 16759, "shaped": 16760, "\u0120prolong": 16761, "mt": 16762, "($": 16763, - "\u00e3\u0122\u0124": 16764, "\u0120calculations": 16765, "\u0120Same": 16766, - "\u0120piv": 16767, "HH": 16768, "\u0120cancelled": 16769, "\u0120grin": 16770, - "\u0120territories": 16771, "istically": 16772, "Come": 16773, "\u0120Parent": - 16774, "Project": 16775, "\u0120neglig": 16776, "\u0120Privacy": 16777, "\u0120ammo": - 16778, "LECT": 16779, "olutely": 16780, "\u0120Epic": 16781, "\u0120misunder": - 16782, "wal": 16783, "April": 16784, "mos": 16785, "pathy": 16786, "\u0120Carson": - 16787, "\u0120albums": 16788, "\u0120Easy": 16789, "\u0120pistol": 16790, - "<<": 16791, "\u0120\\(": 16792, "target": 16793, "help": 16794, "\u0120interpre": - 16795, "conscious": 16796, "\u0120Housing": 16797, "\u0120Joint": 16798, "127": - 16799, "\u0120beers": 16800, "science": 16801, "\u0120Firefox": 16802, "effective": - 16803, "\u0120Cabin": 16804, "\u0120Okay": 16805, "\u0120Applic": 16806, "\u0120spacecraft": - 16807, "\u0120SR": 16808, "vet": 16809, "\u0120Strange": 16810, "SB": 16811, - "\u0120corps": 16812, "iberal": 16813, "efficient": 16814, "\u0120prevalence": - 16815, "\u0120economists": 16816, "118": 16817, "Thread": 16818, "ordable": - 16819, "ODE": 16820, "\u0120Cant": 16821, "=-=-": 16822, "ifiable": 16823, - "\u0120Around": 16824, "\u0120pole": 16825, "\u0120willingness": 16826, "CLA": - 16827, "\u0120Kid": 16828, "\u0120complement": 16829, "\u0120scattered": 16830, - "\u0120inmates": 16831, "\u0120bleeding": 16832, "every": 16833, "\u0120queue": - 16834, "\u0120Train": 16835, "\u0120hij": 16836, "\u0120melee": 16837, "pleted": - 16838, "\u0120digit": 16839, "\u0120gem": 16840, "official": 16841, "\u0120lifting": - 16842, "\u00d0\u00b5": 16843, "Requ": 16844, "itutes": 16845, "\u0120packaging": - 16846, "\u0120Workers": 16847, "hran": 16848, "\u0120Lebanon": 16849, "olesc": - 16850, "\u0120punished": 16851, "\u0120Juan": 16852, "\u0120jam": 16853, "\u0120Document": - 16854, "\u0120mapping": 16855, "icates": 16856, "\u0120inevitably": 16857, - "\u0120vanilla": 16858, "\u0120Ton": 16859, "\u0120watches": 16860, "\u0120leagues": - 16861, "\u0120initiated": 16862, "degree": 16863, "portion": 16864, "\u0120recalls": - 16865, "\u0120ruin": 16866, "\u0120melt": 16867, "IAN": 16868, "\u0120hem": - 16869, "Exp": 16870, "\u0120baking": 16871, "\u0120Colomb": 16872, "atible": - 16873, "\u0120radius": 16874, "plug": 16875, "\u0120IF": 16876, "etically": - 16877, "\u0120fict": 16878, "HER": 16879, "\u0120Tap": 16880, "atinum": 16881, - "\u0120ink": 16882, "\u0120coh": 16883, "\u0120Wizard": 16884, "both": 16885, - "tex": 16886, "\u0120spends": 16887, "\u0120Currently": 16888, "\u0120Pit": - 16889, "\u0120neurons": 16890, "ignt": 16891, "\u0120rall": 16892, "\u0120buses": - 16893, "building": 16894, "\u0120adjustments": 16895, "\u0120cried": 16896, - "iblical": 16897, "atted": 16898, "\u0120Zion": 16899, "\u0120Matter": 16900, - "\u0120meditation": 16901, "\u0120Dennis": 16902, "\u0120ours": 16903, "\u0120Tab": - 16904, "\u0120rankings": 16905, "ortal": 16906, "\u0120advers": 16907, "\u0120surrender": - 16908, "\u0120Gob": 16909, "cium": 16910, "omas": 16911, "imeter": 16912, - "\u0120multiplayer": 16913, "\u0120heroin": 16914, "\u0120optimistic": 16915, - "\u0120indicator": 16916, "\u0120Brig": 16917, "\u0120grocery": 16918, "\u0120applicant": - 16919, "\u0120Rocket": 16920, "vid": 16921, "Exception": 16922, "pent": 16923, - "\u0120organizing": 16924, "\u0120encounters": 16925, "\u0120TOD": 16926, - "\u0120jewel": 16927, "Save": 16928, "\u0120Christie": 16929, "\u0120heating": - 16930, "\u0120lazy": 16931, "\u0120CP": 16932, "\u0120cousin": 16933, "Config": - 16934, "\u0120regener": 16935, "\u0120nearest": 16936, "\u0120achieving": - 16937, "ENS": 16938, "throw": 16939, "\u0120Richmond": 16940, "antle": 16941, - "2002": 16942, "\u0120anten": 16943, "bird": 16944, "133": 16945, "\u0120narc": - 16946, "raint": 16947, "unny": 16948, "\u0120Hispanic": 16949, "ournaments": - 16950, "\u0120prophe": 16951, "\u0120Thailand": 16952, "\u0120Ti": 16953, - "\u0120injection": 16954, "\u0120inherit": 16955, "ravis": 16956, "\u0120medi": - 16957, "\u0120whoever": 16958, "\u0120DEBUG": 16959, "GP": 16960, "\u0120Hud": - 16961, "Card": 16962, "prom": 16963, "\u0120por": 16964, "\u0120overhead": - 16965, "Law": 16966, "\u0120violate": 16967, "\u0120heated": 16968, "\u0120descriptions": - 16969, "\u0120achievements": 16970, "\u0120Beer": 16971, "\u0120Quant": 16972, - "Was": 16973, "\u0120eighth": 16974, "\u0120Iv": 16975, "\u0120specialized": - 16976, "UPDATE": 16977, "\u0120Delta": 16978, "Pop": 16979, "Jul": 16980, - "\u0120Ask": 16981, "ophy": 16982, "\u0120newsletters": 16983, "\u0120Tool": - 16984, "\u0120gard": 16985, "\u0120Confeder": 16986, "\u0120GMT": 16987, "\u0120Abbott": - 16988, "\u0120immunity": 16989, "\u0120VM": 16990, "Islam": 16991, "\u0120implicit": - 16992, "wd": 16993, "\u01201944": 16994, "ravity": 16995, "ometric": 16996, - "\u0120surviving": 16997, "urai": 16998, "\u0120Prison": 16999, "\u0120rust": - 17000, "\u0120Sketch": 17001, "\u0120bees": 17002, "\u0120Theory": 17003, - "\u0120merit": 17004, "Tex": 17005, "chat": 17006, "\u0120mim": 17007, "\u0120paste": - 17008, "\u0120Koch": 17009, "\u0120ignorance": 17010, "\u0120Shoot": 17011, - "\u0120basement": 17012, "United": 17013, "\u0120Advis": 17014, "height": - 17015, "\u0120foster": 17016, "\u0120detain": 17017, "information": 17018, - "\u0120neural": 17019, "'';": 17020, "\u0120proves": 17021, "allery": 17022, - "\u0120invitation": 17023, "umbers": 17024, "\u0120cattle": 17025, "\u0120bicycle": - 17026, "zi": 17027, "\u0120consultant": 17028, "\u0120apology": 17029, "\u0120Tiger": - 17030, "\u0120123": 17031, "999": 17032, "\u0120individually": 17033, "rt": - 17034, "igion": 17035, "\u0120Brazilian": 17036, "\u0120disturb": 17037, "\u0120entrepreneurs": - 17038, "\u0120forests": 17039, "cerpt": 17040, "plates": 17041, "pher": 17042, - "clipse": 17043, "\u0120twitter": 17044, "\u0120acids": 17045, "ographical": - 17046, "hum": 17047, "\u0120Bald": 17048, "ifully": 17049, "\u0120compiler": - 17050, "\u0120DA": 17051, "\u0120donor": 17052, "asi": 17053, "\u0120tribal": - 17054, "lash": 17055, "\u0120Config": 17056, "\u0120applicants": 17057, "\u0120salaries": - 17058, "135": 17059, "Putin": 17060, "\u0120Focus": 17061, "irs": 17062, "\u0120misconduct": - 17063, "\u0120Haz": 17064, "\u0120eaten": 17065, "Mobile": 17066, "Muslim": - 17067, "\u0120Marcus": 17068, "viol": 17069, "\u0120favorable": 17070, "\u0120stub": - 17071, "adin": 17072, "\u0120Hob": 17073, "\u0120faithful": 17074, "\u0120electronics": - 17075, "\u0120vacuum": 17076, "wait": 17077, "backed": 17078, "economic": - 17079, "dist": 17080, "\u0120tenure": 17081, "\u0120sincere": 17082, "\u0120Together": - 17083, "\u0120Wave": 17084, "\u0120progression": 17085, "\u0120denying": 17086, - "\u0120distress": 17087, "braska": 17088, "third": 17089, "\u0120mixing": - 17090, "\u0120colonial": 17091, "\u0120privately": 17092, "\u0120unrest": - 17093, "aternity": 17094, "\u0120premises": 17095, "anti": 17096, "gregation": - 17097, "\u0120licence": 17098, "\u0120Hind": 17099, "\u0120Samuel": 17100, - "\u0120convincing": 17101, "\u0120Ace": 17102, "\u0120Rust": 17103, "\u0120Netanyahu": - 17104, "\u0120handles": 17105, "\u0120Patch": 17106, "oriented": 17107, "aho": - 17108, "\u0120Gonz": 17109, "\u0120hackers": 17110, "claimer": 17111, "\u0120customs": - 17112, "\u0120Gran": 17113, "fighters": 17114, "\u0120luc": 17115, "\u0120manuscript": - 17116, "arenthood": 17117, "\u0120devil": 17118, "\u0120warriors": 17119, - "\u0120offenders": 17120, "William": 17121, "\u0120holidays": 17122, "\u0120nightmare": - 17123, "\u0120lever": 17124, "ifferent": 17125, "Stat": 17126, "\u0120exhibition": - 17127, "puted": 17128, "\u0120Pure": 17129, "\u0120alpha": 17130, "\u0120enthusiasm": - 17131, "\u0120Representatives": 17132, "EAR": 17133, "\u0120Typ": 17134, "\u0120wheat": - 17135, "\u0120Alf": 17136, "\u0120correction": 17137, "\u0120evangel": 17138, - "ATT": 17139, "Miss": 17140, "\u0120soup": 17141, "\u0120implied": 17142, - "param": 17143, "\u0120sexy": 17144, "\u0120Lux": 17145, "\u0120republic": - 17146, "patch": 17147, "ablish": 17148, "\u0120icons": 17149, "\u0120fathers": - 17150, "\u0120GET": 17151, "\u0120Carib": 17152, "\u0120regulated": 17153, - "\u0120Cohen": 17154, "\u0120Bobby": 17155, "\u0120ner": 17156, "\u0120bent": - 17157, "ventory": 17158, "\u0120Along": 17159, "\u0120EST": 17160, "\u0120Wallace": - 17161, "\u0120murders": 17162, "rise": 17163, "kell": 17164, "\u0120Commonwealth": - 17165, "\u0120nasty": 17166, "eta": 17167, "\u0120MIT": 17168, "\u0120administered": - 17169, "\u0120genuinely": 17170, "Editor": 17171, "nick": 17172, "\u0120hydro": - 17173, "********************************": 17174, "\u0120Ble": 17175, "\u0120fines": - 17176, "\u0120gorge": 17177, "ausible": 17178, "rh": 17179, "\u0120apple": - 17180, "mentioned": 17181, "\u0120rope": 17182, "otyp": 17183, "HR": 17184, - "\u0120disappointing": 17185, "\u0120cage": 17186, "nik": 17187, "\u0120doubts": - 17188, "\u0120FREE": 17189, "prints": 17190, "\u0120MUST": 17191, "\u0120vendors": - 17192, "\u0120Inqu": 17193, "\u0120liberals": 17194, "\u0120contractor": 17195, - "\u0120upside": 17196, "children": 17197, "\u0120tricky": 17198, "\u0120regulators": - 17199, "charged": 17200, "liter": 17201, "\u0120***": 17202, "\u0120rebell": - 17203, "lang": 17204, "\u0120locals": 17205, "\u0120physicians": 17206, "\u0120hey": - 17207, "arse": 17208, "tm": 17209, "\u0120Lex": 17210, "\u0120behavioral": - 17211, "successful": 17212, "FX": 17213, "\u0120brick": 17214, "ovic": 17215, - "\u0120conform": 17216, "\u0120reviewing": 17217, "\u0120insights": 17218, - "\u0120biology": 17219, "\u0120Remove": 17220, "\u0120Extra": 17221, "\u0120committing": - 17222, "induced": 17223, "ignty": 17224, "igm": 17225, "\u0120atomic": 17226, - "Common": 17227, "\u0120EM": 17228, "\u0120Pere": 17229, "\u0120Items": 17230, - "eh": 17231, "\u0120preserved": 17232, "\u0120Hood": 17233, "\u0120prisoner": - 17234, "\u0120bankruptcy": 17235, "\u0120gren": 17236, "ushes": 17237, "\u0120exploitation": - 17238, "\u0120signatures": 17239, "\u0120finan": 17240, "],\"": 17241, "\u0120MR": - 17242, "\u0120meg": 17243, "remlin": 17244, "\u0120musicians": 17245, "\u0120selecting": - 17246, "\u0120examining": 17247, "INK": 17248, "lated": 17249, "Hi": 17250, - "\u0120artic": 17251, "\u0120pets": 17252, "\u0120impair": 17253, "\u0120MAN": - 17254, "\u0120tablets": 17255, "include": 17256, "Range": 17257, "\u0120caut": - 17258, "\u0120logs": 17259, "\u0120mounting": 17260, "\u0120unaware": 17261, - "\u0120dynamics": 17262, "\u0120Palestine": 17263, "\u0120Quarter": 17264, - "\u0120Purple": 17265, "\u0120ma": 17266, "\u0120Import": 17267, "\u0120collections": - 17268, "ciation": 17269, "\u0120successor": 17270, "\u0120clone": 17271, "\u0120aiming": - 17272, "\u0120possessed": 17273, "\u0120sticking": 17274, "\u0120shaking": - 17275, "\u0120locate": 17276, "\u0120Hockey": 17277, "Turn": 17278, "170": - 17279, "\u0120fifteen": 17280, "\u0120Harrison": 17281, "\u0120continuously": - 17282, "\u0120TC": 17283, "\u0120Valent": 17284, "\u0120Rescue": 17285, "\u0120bypass": - 17286, "amount": 17287, "\u0120mast": 17288, "\u0120protects": 17289, "\u0120artistic": - 17290, "\u0120sometime": 17291, "\u0120shoe": 17292, "\u0120shouted": 17293, - "ificant": 17294, "etitive": 17295, "\u0120Register": 17296, "\u0120Jin": - 17297, "\u0120concentrated": 17298, "lington": 17299, "onies": 17300, "\u0120generator": - 17301, "yrim": 17302, "\u0120Armen": 17303, "\u0120clearing": 17304, "ido": - 17305, "\u0120TW": 17306, "alph": 17307, "\u0120ladies": 17308, "Hard": 17309, - "\u0120dialog": 17310, "\u0120inputs": 17311, "\u00e6\u013e": 17312, "\u0120poses": - 17313, "\u0120slots": 17314, "\u0120Premium": 17315, "\u0120leaks": 17316, - "\u0120bosses": 17317, "\u0120113": 17318, "course": 17319, "Acc": 17320, - "\u0120Newton": 17321, "\u0120Austria": 17322, "\u0120Mage": 17323, "\u0120teaches": - 17324, "abad": 17325, "\u0120wears": 17326, "\u0120cyl": 17327, "\u0120curse": - 17328, "\u0120Sales": 17329, "\u0120Wings": 17330, "\u0120psy": 17331, "\u0120gaps": - 17332, "\u0120Iceland": 17333, "\u0120Pinterest": 17334, "\u0120landlord": - 17335, "\u0120definitions": 17336, "\u0120Ker": 17337, "\u0120sufficiently": - 17338, "\u0120Pence": 17339, "\u0120Architect": 17340, "\u0120surpass": 17341, - "\u0120114": 17342, "\u0120superhero": 17343, "\u0120Disease": 17344, "\u0120priests": - 17345, "\u0120Culture": 17346, "\u0120definitive": 17347, "\u0120secretly": - 17348, "\u0120Dance": 17349, "install": 17350, "chief": 17351, "\u0120Jessica": - 17352, "Would": 17353, "Updated": 17354, "\u0120locker": 17355, "\u0120Kay": - 17356, "\u0120memorial": 17357, "\u00e8\u00a6": 17358, "fat": 17359, "\u0120disgu": - 17360, "\u0120flavors": 17361, "\u0120Baseball": 17362, "\u0120Resistance": - 17363, "\u0120kicks": 17364, "\u0120env": 17365, "\u0120teenagers": 17366, - "Dark": 17367, "\u0120CAR": 17368, "\u0120halt": 17369, "\u0120LG": 17370, - "\u0120Gabriel": 17371, "\u0120fever": 17372, "\u0120satur": 17373, "\u0120mall": - 17374, "\u0120affiliate": 17375, "\u0120Sleep": 17376, "\u0120Specific": 17377, - "\u0120Vel": 17378, "\u0120jar": 17379, "\u0120Sacred": 17380, "\u0120Edwards": - 17381, "\u0120ACL": 17382, "\u0120retained": 17383, "\u0120Giant": 17384, - "\u0120limitation": 17385, "inces": 17386, "\u0120refusal": 17387, "\u0120Tale": - 17388, "\u0120Butler": 17389, "\u0120accidents": 17390, "\u0120CSS": 17391, - "\u0120imported": 17392, "\u0120Copy": 17393, "\u00ce\u00b1": 17394, "ERT": - 17395, "zel": 17396, "\u0120divisions": 17397, "hots": 17398, "\u0120Alb": - 17399, "\u0120DS": 17400, "Loader": 17401, "Washington": 17402, "atisf": 17403, - "\u0120Creative": 17404, "\\.": 17405, "\u0120Autom": 17406, "redict": 17407, - "\u0120receptor": 17408, "\u0120Carlos": 17409, "Method": 17410, "oka": 17411, - "\u0120malicious": 17412, "\u0120stepping": 17413, ",[": 17414, "\u0120Dad": - 17415, "\u0120attraction": 17416, "\u0120Effects": 17417, "\u0120Pirate": - 17418, "\u0120Cer": 17419, "\u0120Industry": 17420, "\u0120Rud": 17421, "\u0120charter": - 17422, "\u0120dining": 17423, "\u0120insists": 17424, "\u0120configure": 17425, - "\u0120(#": 17426, "\u0120Simple": 17427, "\u0120Scroll": 17428, "UTC": 17429, - "175": 17430, "\u0120Kon": 17431, "\u0120marketplace": 17432, "\u0120\u00e3\u0124": - 17433, "\u0120refres": 17434, "\u0120gates": 17435, "erred": 17436, "\u0120Pod": - 17437, "\u0120behave": 17438, "Frank": 17439, "node": 17440, "\u0120endorsed": - 17441, "hett": 17442, "asive": 17443, "\u0120Homeland": 17444, "\u0120rides": - 17445, "\u0120Leave": 17446, "erness": 17447, "\u0120flooding": 17448, "AFP": - 17449, "\u0120risen": 17450, "\u0120continually": 17451, "\u0120unanim": 17452, - "\u0120Contract": 17453, "\u0120Pas": 17454, "\u0120guided": 17455, "\u0120Chile": - 17456, "bd": 17457, "\u0120succ": 17458, "ptic": 17459, "\u0120committees": - 17460, "\u0120Luther": 17461, "\u0120Anyone": 17462, "\u0120sab": 17463, "124": - 17464, "\u0120pixel": 17465, "\u0120Bak": 17466, "\u0120Tag": 17467, "\u0120Bennett": - 17468, "Enter": 17469, "small": 17470, "\u0120Presidential": 17471, "\u0120pul": - 17472, "\u0120contrace": 17473, "archive": 17474, "\u0120coastal": 17475, - "\u0120Kids": 17476, "192": 17477, "\u00e2\u0122\u00b2": 17478, "icky": 17479, - "INGTON": 17480, "\u0120wolf": 17481, "\u0120Stalin": 17482, "Tur": 17483, - "idget": 17484, "amas": 17485, "\u0120Unless": 17486, "\u0120sponsor": 17487, - "\u0120morph": 17488, "\u0120Choose": 17489, "\u0120runner": 17490, "\u0120unbel": - 17491, "\u0120mud": 17492, "\u0120Mana": 17493, "\u0120dubbed": 17494, "\u0120godd": - 17495, "urers": 17496, "window": 17497, "\u0120relied": 17498, "\u0120celebrating": - 17499, "osc": 17500, "\u0120135": 17501, "\u0120lobbying": 17502, "\u0120incomplete": - 17503, "\u0120restriction": 17504, "\u0120incap": 17505, "itus": 17506, "\u0120expectation": - 17507, "\u0120Apollo": 17508, "\u0120intens": 17509, "\u0120sync": 17510, - "GH": 17511, "\u0120manipulation": 17512, "BY": 17513, "\u0120spear": 17514, - "\u0120breasts": 17515, "\u0120volcan": 17516, "ilia": 17517, "Material": - 17518, "\u0120formats": 17519, "\u0120Bast": 17520, "\u0120parliamentary": - 17521, "\u0120snake": 17522, "\u0120servants": 17523, "\u0120Trudeau": 17524, - "\u0120Grim": 17525, "\u0120Arabic": 17526, "\u0120SCP": 17527, "\u0120Boys": - 17528, "station": 17529, "\u0120prospective": 17530, "orde": 17531, "initialized": - 17532, "\u0120bored": 17533, "ABLE": 17534, "\u0120accessed": 17535, "\u0120taxi": - 17536, "\u0120Shell": 17537, "aiden": 17538, "ursed": 17539, "inates": 17540, - "\u0120Insurance": 17541, "\u0120Pete": 17542, "September": 17543, "650": - 17544, "\u0120adventures": 17545, "\u0120Cover": 17546, "\u0120tribute": 17547, - "\u0120sketch": 17548, "\u0120empower": 17549, "\u0120\u00d8": 17550, "\u0120Glenn": - 17551, "\u0120Daw": 17552, "=\\\"": 17553, "\u0120Politics": 17554, "\u0120guides": - 17555, "\u0120dioxide": 17556, "\u0120Gore": 17557, "\u0120Bright": 17558, - "\u0120Sierra": 17559, "\u0120valued": 17560, "cond": 17561, "\u0120pointer": - 17562, "Select": 17563, "\u0120risky": 17564, "\u0120absorb": 17565, "images": - 17566, "\u0120refuses": 17567, "\u0120bonuses": 17568, "___": 17569, "\u0120hilar": - 17570, "\u0120Features": 17571, "220": 17572, "\u0120Collector": 17573, "Foot": - 17574, "\u01201964": 17575, "culus": 17576, "\u0120dawn": 17577, "\u0120workout": - 17578, "\u0120LO": 17579, "\u0120philosophical": 17580, "\u0120Sandy": 17581, - "\u0120Youth": 17582, "\u0120liable": 17583, "Af": 17584, "blue": 17585, "\u0120overturn": - 17586, "lessness": 17587, "\u0120Tribune": 17588, "\u0120Ing": 17589, "\u0120factories": - 17590, "\u0120catches": 17591, "\u0120prone": 17592, "\u0120matrix": 17593, - "\u0120login": 17594, "\u0120inacc": 17595, "\u0120exert": 17596, "sys": 17597, - "\u0120needle": 17598, "\u0120Qur": 17599, "\u0120notified": 17600, "oulder": - 17601, "tx": 17602, "\u0120reminds": 17603, "\u0120publishers": 17604, "\u0120nort": - 17605, "\u0120git": 17606, "\u0120flies": 17607, "\u0120Emily": 17608, "\u0120flowing": - 17609, "\u0120Alien": 17610, "\u0120Strateg": 17611, "\u0120hardest": 17612, - "\u0120modification": 17613, "API": 17614, "\u0120MY": 17615, "\u0120crashes": - 17616, "stairs": 17617, "number": 17618, "\u0120urging": 17619, "channel": - 17620, "\u0120Falcon": 17621, "\u0120inhabitants": 17622, "\u0120terrifying": - 17623, "\u0120utilize": 17624, "\u0120banner": 17625, "\u0120cigarettes": - 17626, "\u0120senses": 17627, "\u0120Holmes": 17628, "\u0120practition": 17629, - "\u0120Phillips": 17630, "otto": 17631, "\u0120compile": 17632, "Model": 17633, - "\u0120Ko": 17634, "\u0120[]": 17635, "Americans": 17636, "\u0120Terms": 17637, - "\u0120medications": 17638, "\u0120Ana": 17639, "\u0120fundamentally": 17640, - "\u0120Notice": 17641, "\u0120weaker": 17642, "\u01200000": 17643, "\u0120garlic": - 17644, "\u0120outbreak": 17645, "\u0120economist": 17646, "\u0120Birth": 17647, - "\u0120obstacles": 17648, "arcer": 17649, "\u0120Orthodox": 17650, "\u0120placebo": - 17651, "\u0120Crew": 17652, "aspberry": 17653, "\u0120Angels": 17654, "\u0120discharge": - 17655, "\u0120destructive": 17656, "117": 17657, "\u0120Rising": 17658, "\u0120dairy": - 17659, "late": 17660, "\u0120collision": 17661, "\u0120Tigers": 17662, "eanor": - 17663, "ocumented": 17664, "\u0120Invalid": 17665, "\u0120dont": 17666, "\u0120Liter": - 17667, "\u0120Va": 17668, "\u0120hydrogen": 17669, "\u0120variants": 17670, - "\u0120Browns": 17671, "\u01201965": 17672, "\u0120indigenous": 17673, "\u0120trades": - 17674, "\u0120remainder": 17675, "\u0120swept": 17676, "\u0120Impact": 17677, - "\u0120redist": 17678, "\u0120unint": 17679, "graduate": 17680, "\u00e3\u0125\u0137": - 17681, "\u0120WILL": 17682, "\u00e3\u0123\u00ae\u00e7": 17683, "\u0120Critical": - 17684, "\u0120fisher": 17685, "\u0120vicious": 17686, "\u0120reversed": 17687, - "Year": 17688, "\u0120Sox": 17689, "\u0120shootings": 17690, "\u0120filming": - 17691, "\u0120touchdowns": 17692, "aires": 17693, "mel": 17694, "\u0120grandfather": - 17695, "\u0120affection": 17696, "ingle": 17697, "\u0120overly": 17698, "Additional": - 17699, "\u0120supreme": 17700, "\u0120Grad": 17701, "\u0120sporting": 17702, - "\u0120mercy": 17703, "\u0120Brooks": 17704, "ounty": 17705, "\u0120performs": - 17706, "\u0120tightly": 17707, "\u0120demons": 17708, "\u0120killings": 17709, - "\u0120faction": 17710, "\u0120Nova": 17711, "auts": 17712, "\u0120undoubtedly": - 17713, "arin": 17714, "\u0120underway": 17715, "rak": 17716, "\u0120liv": - 17717, "\u0120Region": 17718, "\u0120briefing": 17719, "sers": 17720, "cloud": - 17721, "\u0120Mik": 17722, "usp": 17723, "\u0120prediction": 17724, "azor": - 17725, "\u0120portable": 17726, "\u0120Gand": 17727, "\u0120presenting": 17728, - "\u01201080": 17729, "\u00c2\u00bb": 17730, "ushi": 17731, "\u0120Spark": - 17732, "thereum": 17733, "\u0120justification": 17734, "\u0120Ny": 17735, - "\u0120contractors": 17736, "mingham": 17737, "\u0120Style": 17738, "\u00e5\u0127": - 17739, "\u0120Chronicles": 17740, "\u0120Picture": 17741, "\u0120proving": - 17742, "\u0120wives": 17743, "sett": 17744, "\u0120molecules": 17745, "\u0120Fairy": - 17746, "\u0120consisting": 17747, "\u0120pier": 17748, "alone": 17749, "inition": - 17750, "\u0120nucle": 17751, "json": 17752, "\u0120gotta": 17753, "\u0120mobil": - 17754, "\u0120verbal": 17755, "arium": 17756, "\u0120monument": 17757, "ucked": - 17758, "\u0120256": 17759, "Tech": 17760, "minecraft": 17761, "\u0120Track": - 17762, "\u0120tile": 17763, "\u0120compatibility": 17764, "asis": 17765, "\u0120sadd": - 17766, "\u0120instructed": 17767, "\u0120Mueller": 17768, "\u0120lethal": - 17769, "\u0120hormone": 17770, "\u0120orche": 17771, "else": 17772, "\u0120skelet": - 17773, "\u0120entertaining": 17774, "\u0120minimize": 17775, "again": 17776, - "\u0120undergo": 17777, "\u0120constraints": 17778, "\u0120cigarette": 17779, - "\u0120Islamist": 17780, "\u0120travels": 17781, "\u0120Panthers": 17782, - "lings": 17783, "Care": 17784, "\u0120lawsuits": 17785, "uras": 17786, "\u0120cryst": - 17787, "\u0120lowered": 17788, "\u0120aerial": 17789, "\u0120combinations": - 17790, "\u0120haun": 17791, "\u0120cha": 17792, "\u0120vine": 17793, "\u0120quantities": - 17794, "\u0120linking": 17795, "bank": 17796, "\u0120soy": 17797, "Bill": - 17798, "\u0120Angela": 17799, "\u0120recipient": 17800, "\u0120Protest": 17801, - "\u0120socket": 17802, "\u0120solidarity": 17803, "\u0120\u00e2\u0128": 17804, - "mill": 17805, "\u0120varies": 17806, "\u0120Pakistani": 17807, "Dragon": - 17808, "\u0120une": 17809, "\u0120horizon": 17810, "\u00c2\u0142\u00c2\u0142\u00c2\u0142\u00c2\u0142\u00c2\u0142\u00c2\u0142\u00c2\u0142\u00c2\u0142": - 17811, "\u0120provinces": 17812, "\u0120frankly": 17813, "\u0120enacted": - 17814, "notes": 17815, "[''": 17816, "\u0120192": 17817, "ocracy": 17818, - "\u0120endorsement": 17819, "\u0120overtime": 17820, "True": 17821, "Lab": - 17822, "licted": 17823, "\u0120DNC": 17824, "\u0120beats": 17825, "\u0120Jamie": - 17826, "152": 17827, "\u0120INT": 17828, "Contact": 17829, "\u0120accounted": - 17830, "hash": 17831, "\u0120Packers": 17832, "pires": 17833, "\u0120lesbian": - 17834, "\u0120amendments": 17835, "\u0120hopeful": 17836, "\u0120Finland": - 17837, "\u0120spotlight": 17838, "\u0120configured": 17839, "\u0120troubled": - 17840, "\u0120gaze": 17841, "\u0120Calgary": 17842, "\u0120reliability": 17843, - "\u0120insurg": 17844, "swer": 17845, "buy": 17846, "\u0120Skin": 17847, "\u0120pixels": - 17848, "\u0120handgun": 17849, "\u0120paras": 17850, "\u0120categor": 17851, - "\u0120EL": 17852, "\u0120Rex": 17853, "Indeed": 17854, "\u0120kinda": 17855, - "\u0120conjunction": 17856, "\u0120Bryan": 17857, "\u0120Manufact": 17858, - "yang": 17859, "Plus": 17860, "SQL": 17861, "ishment": 17862, "\u0120dominate": - 17863, "\u0120nail": 17864, "\u0120oath": 17865, "\u0120erupt": 17866, "\u0120Fine": - 17867, "itbart": 17868, "\u0120Chip": 17869, "\u0120Abd": 17870, "\u0120Nam": - 17871, "\u0120buyer": 17872, "\u0120dissent": 17873, "Leaks": 17874, "Contin": - 17875, "\u0120rider": 17876, "\u0120Someone": 17877, "\u0120illusion": 17878, - "cin": 17879, "\u0120Boeing": 17880, "\u0120inadequ": 17881, "ovation": 17882, - "iants": 17883, "\u0120rebuild": 17884, "450": 17885, "\u0120Destiny": 17886, - "SW": 17887, "\u0120Till": 17888, "Hit": 17889, "iaz": 17890, "\u0120Bangl": - 17891, "achers": 17892, "\u0120Reform": 17893, "\u0120segments": 17894, "\u0120systematic": - 17895, "dc": 17896, "\u0120Conservatives": 17897, "\u0120portal": 17898, "hor": - 17899, "\u0120Dragonbound": 17900, "\u0120dragged": 17901, "omo": 17902, "\u0120thee": - 17903, "advert": 17904, "\u0120Reports": 17905, "\u0120Et": 17906, "\u0120barrels": - 17907, "August": 17908, "\u0120comparisons": 17909, "\u0120hex": 17910, "\u0120anthrop": - 17911, "\"[": 17912, "borough": 17913, "abi": 17914, "\u0120pictured": 17915, - "playing": 17916, "\u0120Address": 17917, "\u0120Mirror": 17918, "Smith": - 17919, "\u0120tires": 17920, "\u0120NPR": 17921, "AAAA": 17922, "\u0120classification": - 17923, "\u0120Than": 17924, "\u0120Harm": 17925, "\u0120RA": 17926, "\u0120rejection": - 17927, "mination": 17928, "\u0120ranged": 17929, "\u0120Falls": 17930, "DI": - 17931, "Host": 17932, "\u00e3\u0124\u00b4": 17933, "\u0120Example": 17934, - "listed": 17935, "thirds": 17936, "\u0120safegu": 17937, "brand": 17938, "\u0120probable": - 17939, "Canada": 17940, "ITION": 17941, "\u0120Qaeda": 17942, "\u0120chick": - 17943, "\u0120imports": 17944, "hit": 17945, "loc": 17946, "WW": 17947, "\u0120blew": - 17948, "\u0120anytime": 17949, "\u0120wholes": 17950, "iked": 17951, "\u0120calculation": - 17952, "create": 17953, "\u0120Ori": 17954, "\u0120upgraded": 17955, "\u0120appar": - 17956, "utory": 17957, "\u0120Mol": 17958, "Brit": 17959, "\u0120Jong": 17960, - "INAL": 17961, "\u0120Starting": 17962, "\u0120dice": 17963, "urtle": 17964, - "\u0120relying": 17965, "closure": 17966, "\u0120profitable": 17967, "\u0120slaughter": - 17968, "\u0120Manual": 17969, "caster": 17970, "\u0120\"$": 17971, "\u0120feather": - 17972, "\u0120Simply": 17973, "ieves": 17974, "\u0120deterior": 17975, "\u0120PCI": - 17976, "\u0120stamp": 17977, "\u0120flaws": 17978, "\u0120shade": 17979, "hammer": - 17980, "\u0120passport": 17981, "\u0120conting": 17982, "amel": 17983, "\u0120observers": - 17984, "\u0120neglect": 17985, "\u0120RB": 17986, "\u0120Brotherhood": 17987, - "\u0120skeptical": 17988, "family": 17989, "usk": 17990, "\u0120emotionally": - 17991, "\u00e2\u013b": 17992, "\u0120Beta": 17993, "asonable": 17994, "idity": - 17995, "\u0120Mul": 17996, "\u0120kicking": 17997, "\u0120Carm": 17998, "ollah": - 17999, "VERTIS": 18000, "\u0120Athen": 18001, "\u0120ladder": 18002, "\u0120Bullet": - 18003, "\u00e5\u00a3": 18004, "0001": 18005, "\u0120Wildlife": 18006, "\u0120Mask": - 18007, "\u0120Nan": 18008, "Rev": 18009, "\u0120unacceptable": 18010, "legal": - 18011, "\u0120crowded": 18012, "agi": 18013, "\u0120Cox": 18014, "je": 18015, - "\u0120morality": 18016, "\u0120fuels": 18017, "\u0120cables": 18018, "\u0120mankind": - 18019, "\u0120Caribbean": 18020, "\u0120anchor": 18021, "\u0120byte": 18022, - "\u0120Often": 18023, "\u0120Oz": 18024, "\u0120crafted": 18025, "\u0120historian": - 18026, "\u0120Wu": 18027, "\u0120towers": 18028, "\u0120Citizens": 18029, - "\u0120helm": 18030, "\u0120credentials": 18031, "\u0120singular": 18032, - "\u0120Jesse": 18033, "\u0120tackles": 18034, "\u0120contempt": 18035, "\u0120afore": - 18036, "\u0120Shadows": 18037, "\u0120nil": 18038, "\u0120urgent": 18039, - "apple": 18040, "blood": 18041, "\u0120von": 18042, "\u0120offline": 18043, - "\u0120breathe": 18044, "\u0120jumps": 18045, "\u0120irrelevant": 18046, "oxic": - 18047, "omal": 18048, "important": 18049, "Jim": 18050, "\u0120gloves": 18051, - "arming": 18052, "depth": 18053, "\u0120talents": 18054, "ookie": 18055, "\u0120SB": - 18056, "\u0120palm": 18057, "uffs": 18058, "esta": 18059, "IGH": 18060, "\u0120canon": - 18061, "\u0120Verizon": 18062, "\u0120Ple": 18063, "\u0120coupled": 18064, - "velt": 18065, "\u0120fundraising": 18066, "\u0120Getting": 18067, "\u0120DLC": - 18068, "\u0120mathematical": 18069, "\u0120HS": 18070, "\u0120Cardinals": - 18071, "telling": 18072, "\u0120sponsors": 18073, "\u0120\u00cf": 18074, "\u0120Bulls": - 18075, "option": 18076, "\u0120propose": 18077, "\u0120memorable": 18078, - "\u0120embraced": 18079, "\u0120declining": 18080, "Health": 18081, "eda": - 18082, "\u0120};": 18083, "\u0120spam": 18084, "mile": 18085, "\u0120pitcher": - 18086, "\u0120Eight": 18087, "\u0120caring": 18088, "utic": 18089, "role": - 18090, "\u0120airline": 18091, "ernandez": 18092, "\u0120Athlet": 18093, "\u0120certification": - 18094, "uxe": 18095, "riger": 18096, "\u0120empir": 18097, "\u0120sensation": - 18098, "\u0120dism": 18099, "\u0120bolt": 18100, "\u0120evolve": 18101, "House": - 18102, "\u0120consultation": 18103, "\u0120Duty": 18104, "\u0120touches": - 18105, "\u0120Nathan": 18106, "\u0120faint": 18107, "had": 18108, "\"(": 18109, - "\u0120Consumer": 18110, "\u0120Extreme": 18111, "\u0120127": 18112, "\u0120Herm": - 18113, "\u0120Sacrament": 18114, "izoph": 18115, "\u0120anxious": 18116, "ulously": - 18117, "\u0120socially": 18118, "\u0120UTC": 18119, "\u0120solving": 18120, - "\u0120Letter": 18121, "History": 18122, "educ": 18123, "Price": 18124, "));": - 18125, "\u0120reload": 18126, "amic": 18127, "\u0120pork": 18128, "\u0120discourse": - 18129, "\u0120tournaments": 18130, "airo": 18131, "\u0120Kur": 18132, "\u0120Costa": - 18133, "\u0120violating": 18134, "\u0120interfere": 18135, "\u0120recreational": - 18136, "uffle": 18137, "\u0120speeches": 18138, "\u0120needing": 18139, "\u0120remembers": - 18140, "\u0120credited": 18141, "nia": 18142, "focused": 18143, "amera": 18144, - "\u0120bru": 18145, "umbs": 18146, "\u0120Cuban": 18147, "\u0120preceding": - 18148, "\u0120nonsense": 18149, "acial": 18150, "\u0120smartphones": 18151, - "\u0120Stories": 18152, "Sports": 18153, "\u0120Emergency": 18154, "ouncing": - 18155, "efined": 18156, "\u0120ber": 18157, "\u0120consulting": 18158, "\u0120masters": - 18159, "heastern": 18160, ".\"[": 18161, "\u0120Running": 18162, "\u0120suscept": - 18163, "\u0120Feng": 18164, "America": 18165, "prises": 18166, "stitial": - 18167, "\u0120Weekly": 18168, "\u0120Greater": 18169, "modules": 18170, "ifter": - 18171, "Graphics": 18172, "uler": 18173, "\u0120wholly": 18174, "\u0120suppress": - 18175, "\u0120concealed": 18176, "\u0120happily": 18177, "\u0120accepts": - 18178, "\u0120Enjoy": 18179, "\u0120rivers": 18180, "\u0120Except": 18181, - "225": 18182, "\u0120NHS": 18183, "\u0120McConnell": 18184, "\u0120pussy": - 18185, "ferred": 18186, "utable": 18187, "\u0120attain": 18188, "\u0120>=": - 18189, "\u0120deposits": 18190, "rophic": 18191, "\u0120notorious": 18192, - "\u0120Shaw": 18193, "ilitation": 18194, "\u0120epidemic": 18195, "allic": - 18196, "\u0120smallest": 18197, "ovich": 18198, "\u0120accessories": 18199, - "perties": 18200, "\u0120surplus": 18201, "\u0120Mech": 18202, "\u0120ambig": - 18203, "\u0120Immigration": 18204, "\u0120chim": 18205, "eval": 18206, "\u0120practicing": - 18207, "\u0120Mystery": 18208, "\u0120domains": 18209, "\u0120Silicon": 18210, - "apps": 18211, "\u0120kilometers": 18212, "ea": 18213, "\u0120Smash": 18214, - "\u0120warranty": 18215, "\u0120nost": 18216, "sil": 18217, "rev": 18218, - "Jon": 18219, "\u0120Dublin": 18220, "\u0120tastes": 18221, "\u0120bout": - 18222, "great": 18223, "error": 18224, "\u0120switches": 18225, "\u0120Bapt": - 18226, "DO": 18227, "oki": 18228, "\u0120sourced": 18229, "produ": 18230, - "\u0120attachment": 18231, "\u0120Issue": 18232, "\u0120Question": 18233, - "Join": 18234, "\u0120fitted": 18235, "\u0120unlawful": 18236, "^^": 18237, - "erek": 18238, "\u0120authentication": 18239, "\u0120stole": 18240, "\u0120accountability": - 18241, "label": 18242, "Search": 18243, "\u0120albeit": 18244, "atican": 18245, - "funded": 18246, "\u0120Adding": 18247, "\u0120IQ": 18248, "\u0120submar": - 18249, "lit": 18250, "aque": 18251, "\u0120Learning": 18252, "\u0120integer": - 18253, "Master": 18254, "\u0120Chrom": 18255, "\u0120premier": 18256, "Op": - 18257, "\u0120Liu": 18258, "\u0120blessed": 18259, "\u0120Globe": 18260, "\u0120Response": - 18261, "\u0120legitim": 18262, "\u0120Merkel": 18263, "\u0120disposal": 18264, - "\u00c2\u00b4": 18265, "\u0120gauge": 18266, "peat": 18267, "\u0120induced": - 18268, "\u0120questionable": 18269, "arthy": 18270, "\u0120Vit": 18271, "\u0120Feed": - 18272, "Until": 18273, "Ut": 18274, "worthy": 18275, "RY": 18276, "\u0120Herald": - 18277, "\u0120Hammer": 18278, "\u0120medal": 18279, "\u0120Rivers": 18280, - "\u0120Hack": 18281, "\u0120clarify": 18282, "\u0120tracked": 18283, "\u0120autonomous": - 18284, "\u0120tenant": 18285, "\u0120Qatar": 18286, "erie": 18287, "\u0120grim": - 18288, "\u0120Monitor": 18289, "\u0120resistant": 18290, "\u0120Spec": 18291, - "\u0120Wells": 18292, "NAS": 18293, "148": 18294, "\u0120miners": 18295, "iotics": - 18296, "\u0120misses": 18297, "116": 18298, "gian": 18299, "git": 18300, "\u0120Eyes": - 18301, "pres": 18302, "\u0120graduated": 18303, "\u0120angel": 18304, "\u0120synchron": - 18305, "\u0120efficiently": 18306, "\u0120transmitted": 18307, "Harry": 18308, - "\u0120globally": 18309, "ENCE": 18310, "\u0120Montana": 18311, "raged": 18312, - "\u0120Prevention": 18313, "\u0120piss": 18314, "\u0120Ll": 18315, "\u0120shelf": - 18316, "\u0120BJP": 18317, "\u0120Testament": 18318, "\u0120Late": 18319, - "iker": 18320, "\u0120Happ": 18321, "\u0120Julian": 18322, "hall": 18323, - "\u0120spont": 18324, "\u0120shutdown": 18325, "\u0120inconsistent": 18326, - "\u0120subscribers": 18327, "\u0120skeleton": 18328, "\u0120Nebraska": 18329, - "\u0120inspire": 18330, "\u0120Void": 18331, "Feed": 18332, "\u0120angles": - 18333, "\u0120Springs": 18334, "\u0120benchmark": 18335, "\u0120vaccines": - 18336, "izophren": 18337, "sexual": 18338, "uffed": 18339, "\u0120shine": - 18340, "\u0120Kath": 18341, "\u0120gesture": 18342, "inea": 18343, "\u0120rip": - 18344, "\u0120oppression": 18345, "\u0120conscience": 18346, "bt": 18347, - "\u0120Lum": 18348, "\u0120incidence": 18349, "\u0120Fa": 18350, "wr": 18351, - "\u0120mineral": 18352, "\u0120Spurs": 18353, "alky": 18354, "\u0120thunder": - 18355, "\u0120opio": 18356, "Being": 18357, "\u0120Palm": 18358, "\u0120wasted": - 18359, "\u0120lb": 18360, "iaries": 18361, "\u0120Initiative": 18362, "\u0120curric": - 18363, "\u0120marker": 18364, "\u0120McL": 18365, "\u0120extensions": 18366, - "\u0120Pv": 18367, "\u0120Arms": 18368, "\u0120offerings": 18369, "\u0120defenses": - 18370, "\u0120vendor": 18371, "\u0120contradict": 18372, "\u0120Colin": 18373, - "\u0120reddit": 18374, "\u0120peripher": 18375, "122": 18376, "\u0120sins": - 18377, "Edit": 18378, "ICT": 18379, "Soft": 18380, "\u0120Shah": 18381, "\u0120administrator": - 18382, "\u0120Trip": 18383, "\u0120pornography": 18384, "\u0120tuition": 18385, - "inence": 18386, "\u0120Progress": 18387, "\u0120catalog": 18388, "\u0120suite": - 18389, "\u0120hike": 18390, "\u0120reproductive": 18391, "engine": 18392, - "\u0120drought": 18393, "\u0120Noah": 18394, "\u0120230": 18395, "\u0120dude": - 18396, "\u0120relaxed": 18397, "\u0120partition": 18398, "\u0120participant": - 18399, "\u0120telesc": 18400, "\u0120feas": 18401, "\u0120FF": 18402, "owner": - 18403, "\u0120sweeping": 18404, "\u0120lenses": 18405, "\u0120matchup": 18406, - "\u0120Repl": 18407, "ournals": 18408, "\u0120credible": 18409, "\u0120grandmother": - 18410, "\u0120thermal": 18411, "\u0120subscribing": 18412, "\u0120identities": - 18413, "colm": 18414, "UCT": 18415, "\u0120reluctant": 18416, "users": 18417, - "\u0120Cort": 18418, "\u0120assisted": 18419, "OSS": 18420, "ATIONS": 18421, - "ISH": 18422, "\u0120pharmaceutical": 18423, "icable": 18424, "adian": 18425, - "\u0120Sonic": 18426, "\u0120Fury": 18427, "\u0120Mong": 18428, "AH": 18429, - "\u0120Psychology": 18430, "\u0120phosph": 18431, "\u0120treats": 18432, "\u0143\u0136": - 18433, "\u0120steadily": 18434, "\u0120Hello": 18435, "\u0120relates": 18436, - "\u0120clue": 18437, "Expl": 18438, "auth": 18439, "\u0120revision": 18440, - "\u0120eld": 18441, "osion": 18442, "\u0120bron": 18443, "144": 18444, "rikes": - 18445, "\u0120mines": 18446, "\u0120blanket": 18447, "\u0120Fail": 18448, - "eled": 18449, "\u0120Imagine": 18450, "\u0120Planned": 18451, "aic": 18452, - "Request": 18453, "Mad": 18454, "\u0120Horse": 18455, "\u0120Eagle": 18456, - "\u0120capac": 18457, "157": 18458, "\u0120ling": 18459, "\u0120Nice": 18460, - "\u0120Parenthood": 18461, "minster": 18462, "ogs": 18463, "ensitive": 18464, - "Nothing": 18465, "\u0120carn": 18466, "Fin": 18467, "\u0120PE": 18468, "\u0120rifles": - 18469, "\u0120LP": 18470, "Sand": 18471, "\u0120guiActive": 18472, "\u0120tourist": - 18473, "CNN": 18474, "\u0120unveiled": 18475, "\u0120predecessor": 18476, - "}{": 18477, "uber": 18478, "\u0120offshore": 18479, "\u0120optical": 18480, - "\u0120Rot": 18481, "\u0120Pearl": 18482, "eton": 18483, "\u0120stared": 18484, - "\u0120farther": 18485, "atility": 18486, "contin": 18487, "\u0120Gy": 18488, - "\u0120Foster": 18489, "\u0120Coc": 18490, "rients": 18491, "\u0120designing": - 18492, "\u0120Economy": 18493, "ONG": 18494, "Women": 18495, "\u0120Nancy": - 18496, "erver": 18497, "\u0120mascul": 18498, "\u0120casualties": 18499, "\u0120225": - 18500, "\u0120Sullivan": 18501, "\u0120Choice": 18502, "\u0120aster": 18503, - "ws": 18504, "\u0120hotels": 18505, "\u0120considerations": 18506, "\u0120couch": - 18507, "\u0120Strip": 18508, "\u0120Gn": 18509, "\u0120manipulate": 18510, - "lied": 18511, "\u0120synthetic": 18512, "\u0120assaulted": 18513, "\u0120offenses": - 18514, "\u0120Drake": 18515, "\u0120impe": 18516, "October": 18517, "\u0120Heritage": - 18518, "hl": 18519, "\u0120Blair": 18520, "Unlike": 18521, "\u0120grief": - 18522, "\u0120450": 18523, "\u0120opted": 18524, "\u0120resignation": 18525, - "ilo": 18526, "\u0120verse": 18527, "\u0120Tomb": 18528, "\u0120upt": 18529, - "\u0120aired": 18530, "\u0120Hook": 18531, "\u0120MLB": 18532, "\u0120assumes": - 18533, "outed": 18534, "\u0120Vers": 18535, "\u0120inferior": 18536, "\u0120bundle": - 18537, "\u0120DNS": 18538, "ographer": 18539, "\u0120multip": 18540, "\u0120Souls": - 18541, "\u0120illustrated": 18542, "\u0120tactic": 18543, "\u0120dressing": - 18544, "\u0120duo": 18545, "Conf": 18546, "\u0120relent": 18547, "\u0120cant": - 18548, "\u0120scarce": 18549, "\u0120candy": 18550, "\u0120CF": 18551, "\u0120affiliated": - 18552, "\u0120sprint": 18553, "ylan": 18554, "\u0120Garcia": 18555, "\u0120junk": - 18556, "Print": 18557, "exec": 18558, "Crit": 18559, "\u0120portrait": 18560, - "iries": 18561, "\u0120OFF": 18562, "\u0120disputes": 18563, "WR": 18564, - "Love": 18565, "\u00e3\u0123\u0126": 18566, "\u0120Reyn": 18567, "\u0120hipp": - 18568, "opath": 18569, "\u0120floors": 18570, "\u0120Feel": 18571, "\u0120worries": - 18572, "\u0120settlements": 18573, "\u0120Pos": 18574, "\u0120mosque": 18575, - "\u0120finals": 18576, "\u0120crushed": 18577, "\u0120Probably": 18578, "\u0120Bot": - 18579, "\u0120Mans": 18580, "\u0120Period": 18581, "\u0120sovereignty": 18582, - "\u0120seller": 18583, "\u0120apost": 18584, "\u0120amateur": 18585, "\u0120dorm": - 18586, "\u0120consuming": 18587, "\u0120armour": 18588, "\u0120Roose": 18589, - "\u0120intensive": 18590, "\u0120eliminating": 18591, "\u0120Sunni": 18592, - "\u0120Aleppo": 18593, "jin": 18594, "\u0120advise": 18595, "pal": 18596, - "\u0120Halo": 18597, "\u0120descent": 18598, "\u0120simpler": 18599, "\u0120booth": - 18600, "STR": 18601, "Later": 18602, "\u0120Cave": 18603, "===": 18604, "\u0120mol": - 18605, "\u0120fist": 18606, "\u0120shotgun": 18607, "supp": 18608, "\u0120robbery": - 18609, "Effect": 18610, "\u0120obscure": 18611, "\u0120Professional": 18612, - "\u0120embassy": 18613, "\u0120militant": 18614, "\u0120incarcer": 18615, - "\u0120generates": 18616, "\u0120launches": 18617, "\u0120administrators": - 18618, "\u0120shaft": 18619, "\u0120circular": 18620, "\u0120freshman": 18621, - "\u0120Wes": 18622, "\u0120Joel": 18623, "\u0120Drew": 18624, "\u0120Duncan": - 18625, "\u0120Apparently": 18626, "sight": 18627, "\u0120Internal": 18628, - "\u0120Individual": 18629, "\u0120FE": 18630, "\u0120bore": 18631, "\u0120Mt": - 18632, "\u0120broadly": 18633, "\u0120Options": 18634, "ountain": 18635, "ipes": - 18636, "\u0120Videos": 18637, "204": 18638, "\u0120hills": 18639, "\u0120simulation": - 18640, "\u0120disappointment": 18641, "itan": 18642, "\u0120Laboratory": 18643, - "\u0120upward": 18644, "\u0120boundary": 18645, "\u0120darker": 18646, "hart": - 18647, "\u0120dominance": 18648, "Cong": 18649, "\u0120Oracle": 18650, "\u0120Lords": - 18651, "\u0120scholarship": 18652, "\u0120Vincent": 18653, "ede": 18654, "\u0120Rah": - 18655, "\u0120encourages": 18656, "rov": 18657, "\u0120quo": 18658, "\u0120premise": - 18659, "\u0120Crisis": 18660, "\u0120Holocaust": 18661, "\u0120rhythm": 18662, - "\u0120metric": 18663, "club": 18664, "\u0120transported": 18665, "\u0120nod": - 18666, "\u0120Pist": 18667, "\u0120ancestors": 18668, "\u0120Freder": 18669, - "thumbnails": 18670, "\u0120CE": 18671, "OND": 18672, "Phil": 18673, "venge": - 18674, "\u0120Products": 18675, "castle": 18676, "\u0120qualifying": 18677, - "\u0120Karen": 18678, "VERTISEMENT": 18679, "\u0120mighty": 18680, "\u0120explanations": - 18681, "\u0120fixing": 18682, "Di": 18683, "\u0120declaring": 18684, "\u0120anonymity": - 18685, "\u0120juven": 18686, "\u0120Nord": 18687, "\u0120Doom": 18688, "\u0120Actually": - 18689, "Ok": 18690, "phis": 18691, "\u0120Desert": 18692, "\u0120116": 18693, - "IK": 18694, "\u0120FM": 18695, "\u0120incomes": 18696, "VEL": 18697, "okers": - 18698, "\u0120pecul": 18699, "\u0120lightweight": 18700, "gue": 18701, "\u0120accent": - 18702, "\u0120increment": 18703, "\u0120Chan": 18704, "\u0120complaining": - 18705, "\u0120Baghd": 18706, "\u0120midfielder": 18707, "\u0120overhaul": - 18708, "Process": 18709, "\u0120Hollow": 18710, "\u0120Titans": 18711, "Small": - 18712, "manuel": 18713, "\u0120Unity": 18714, "\u0120Events": 18715, "Sty": - 18716, "\u0120disproportion": 18717, "nesty": 18718, "enes": 18719, "\u0120Cod": - 18720, "\u0120demonstrations": 18721, "\u0120Crimson": 18722, "\u0120OH": - 18723, "\u0120enrolled": 18724, "\u0120cel": 18725, "\u0120Brett": 18726, - "\u0120aide": 18727, "\u0120heels": 18728, "\u0120broadband": 18729, "\u0120marking": - 18730, "\u0120wizard": 18731, "\u0120NJ": 18732, "\u0120Chiefs": 18733, "\u0120ingredient": - 18734, "\u0120dug": 18735, "\u0120Shut": 18736, "urchase": 18737, "endor": - 18738, "\u0120farmer": 18739, "\u0120Goldman": 18740, "129": 18741, "155": - 18742, "Order": 18743, "\u0120lion": 18744, "iably": 18745, "\u0120stain": - 18746, "array": 18747, "ilitary": 18748, "\u0120FAQ": 18749, "\u0120exploded": - 18750, "\u0120McCarthy": 18751, "\u0120Tweet": 18752, "\u0120Greens": 18753, - "eking": 18754, "ln": 18755, "ensen": 18756, "\u0120motorcycle": 18757, "\u0120particle": - 18758, "\u0120cholesterol": 18759, "Bron": 18760, "\u0120stair": 18761, "\u0120oxid": - 18762, "\u0120desirable": 18763, "ibles": 18764, "\u0120theor": 18765, "forcing": - 18766, "\u0120promotional": 18767, "ovo": 18768, "boot": 18769, "\u0120Bonus": - 18770, "rawling": 18771, "\u0120shortage": 18772, "\u0120Psy": 18773, "\u0120recruited": - 18774, "\u0120infants": 18775, "\u0120testosterone": 18776, "\u0120deduct": - 18777, "\u0120distinctive": 18778, "\u0120firmware": 18779, "built": 18780, - "145": 18781, "\u0120explored": 18782, "\u0120factions": 18783, "\u0120vide": - 18784, "\u0120tattoo": 18785, "\u0120financially": 18786, "\u0120fatigue": - 18787, "\u0120proceeding": 18788, "constitutional": 18789, "\u0120miser": - 18790, "\u0120chairs": 18791, "gging": 18792, "ipple": 18793, "\u0120dent": - 18794, "\u0120disreg": 18795, "\u00e7\u0136": 18796, "stant": 18797, "llo": - 18798, "bps": 18799, "akening": 18800, "\u0120abnormal": 18801, "\u0120ERA": - 18802, "\u00e5\u00a3\u00ab": 18803, "\u0120HBO": 18804, "\u0120MAR": 18805, - "\u0120concess": 18806, "\u0120servant": 18807, "\u0120aspir": 18808, "lav": - 18809, "\u0120Panel": 18810, "amo": 18811, "\u0120precip": 18812, "\u0120recordings": - 18813, "\u0120proceeded": 18814, "\u0120colony": 18815, "\u0120Tang": 18816, - "ablo": 18817, "\u0120stripped": 18818, "Left": 18819, "too": 18820, "\u0120potatoes": - 18821, "\u0120finest": 18822, "%).": 18823, "\u0120crap": 18824, "\u0120Zach": - 18825, "abases": 18826, "\u0120Goth": 18827, "\u0120billionaire": 18828, "wolf": - 18829, "\u0120sanction": 18830, "SK": 18831, "\u0120logged": 18832, "Po": - 18833, "eyed": 18834, "unal": 18835, "\u0120cricket": 18836, "\u0120armies": - 18837, "\u0120uncovered": 18838, "Cloud": 18839, "\u00c3\u00b3n": 18840, "\u0120rebounds": - 18841, "\u0120mes": 18842, "Oper": 18843, "Pac": 18844, "\u0120nationally": - 18845, "\u0120inserted": 18846, "pict": 18847, "\u0120governance": 18848, - "\u00d0\u00b8": 18849, "\u0120privileges": 18850, "GET": 18851, "\u0120favorites": - 18852, "imity": 18853, "\u0120lover": 18854, "them": 18855, "empl": 18856, - "\u0120gorgeous": 18857, "Ann": 18858, "\u0120slipped": 18859, "\u0120veto": - 18860, "Bob": 18861, "\u0120slim": 18862, "ucc": 18863, "\u0120Fame": 18864, - "uddenly": 18865, "\u0120denies": 18866, "\u0120Maur": 18867, "\u0120distances": - 18868, "\u0120wanna": 18869, "tar": 18870, "\u0120SER": 18871, "\u0120\u00e2\u012a": - 18872, "\u0120lemon": 18873, "athetic": 18874, "\u0120literal": 18875, "\u0120distinguished": - 18876, "\u0120answering": 18877, "GI": 18878, "\u0120religions": 18879, "\u0120Philos": - 18880, "\u0120Lay": 18881, "\u0120compos": 18882, "irements": 18883, "\u0120Kos": - 18884, "inez": 18885, "rolling": 18886, "\u0120youngest": 18887, "andise": - 18888, "\u0120Born": 18889, "\u0120altar": 18890, "amina": 18891, "\u0120Boot": - 18892, "voc": 18893, "\u0120digging": 18894, "\u0120pressures": 18895, "\u0120len": - 18896, "264": 18897, "\u0120assassination": 18898, "\u0120Birmingham": 18899, - "\u0120Myth": 18900, "\u0120sovereign": 18901, "\u0120Artist": 18902, "\u0120Photograph": - 18903, "\u0120depicted": 18904, "\u0120dispens": 18905, "orthy": 18906, "\u0120ambul": - 18907, "integ": 18908, "\u0120Cele": 18909, "\u0120Tibet": 18910, "\u0120hierarchy": - 18911, "\u0120cu": 18912, "\u0120preseason": 18913, "\u0120Peterson": 18914, - "\u0120colours": 18915, "\u0120worrying": 18916, "\u0120backers": 18917, "\u0120Palmer": - 18918, "\u0120\u00ce\u00bc": 18919, "\u0120contributor": 18920, "\u0120hearings": - 18921, "\u0120urine": 18922, "\u0120\u00d9": 18923, "ourgeois": 18924, "Similar": - 18925, "\u0120Zimmer": 18926, "something": 18927, "\u0120USC": 18928, "\u0120strengths": - 18929, "\u0120FI": 18930, "\u0120logging": 18931, "Asked": 18932, "\u0120Thai": - 18933, "inqu": 18934, "\u0120Walt": 18935, "\u0120crews": 18936, "itism": - 18937, "301": 18938, "\u0120sharply": 18939, "umed": 18940, "\u0120redirect": - 18941, "rators": 18942, "Inf": 18943, "\u0120Weapons": 18944, "\u0120teasp": - 18945, "1999": 18946, "Live": 18947, "\u0120Especially": 18948, "\u0120Ster": - 18949, "\u0120Veterans": 18950, "\u0120intro": 18951, "otherapy": 18952, "\u0120malware": - 18953, "\u0120breeding": 18954, "\u0120molecular": 18955, "\u0120Route": 18956, - "\u0120Comment": 18957, "ochem": 18958, "\u0120ain": 18959, "Season": 18960, - "\u0120linebacker": 18961, "\u00c4\u00ab": 18962, "\u0120Economics": 18963, - "esar": 18964, "\u0120Lives": 18965, "\u0120Emma": 18966, "\u0120kin": 18967, - "\u0120Territ": 18968, "\u0120planted": 18969, "oton": 18970, "\u0120Butter": - 18971, "\u0120Spons": 18972, "PER": 18973, "\u0120dungeon": 18974, "\u0120symbolic": - 18975, "\u0120filmed": 18976, "\u0120diets": 18977, "\u0120concludes": 18978, - "\u0120certainty": 18979, "\u0120Format": 18980, "\u0120strangers": 18981, - "format": 18982, "\u0120Phase": 18983, "\u0120copied": 18984, "\u0120metres": - 18985, "lda": 18986, "\u0120Users": 18987, "\u0120deliberate": 18988, "\u0120washed": - 18989, "\u0120Lance": 18990, "imation": 18991, "\u0120improper": 18992, "\u0120Genesis": - 18993, "ickr": 18994, "\u0120Kush": 18995, "\u0120realise": 18996, "\u0120embarrassing": - 18997, "alking": 18998, "bucks": 18999, "\u0120verified": 19000, "\u0120outline": - 19001, "years": 19002, "\u0120Income": 19003, "202": 19004, "\u0120zombies": - 19005, "Final": 19006, "\u0120Millenn": 19007, "\u0120modifications": 19008, - "\u0120Vision": 19009, "\u0120Moses": 19010, "verb": 19011, "iterranean": - 19012, "\u0120Jet": 19013, "\u0120naval": 19014, "\u0120Agg": 19015, "\u0120url": - 19016, "\u0120victories": 19017, "\u0120nonetheless": 19018, "\u0120injust": - 19019, "\u0120Fact": 19020, "\u00e7\u013c": 19021, "\u0120insufficient": 19022, - "review": 19023, "facebook": 19024, "\u0120negotiating": 19025, "\u0120guarantees": - 19026, "imen": 19027, "utenberg": 19028, "\u0120gambling": 19029, "\u0120congr": - 19030, "Loading": 19031, "\u0120nevertheless": 19032, "\u0120presidents": - 19033, "\u0120Industrial": 19034, "\u0120118": 19035, "\u0120poured": 19036, - "\u0120Tory": 19037, "\u0120175": 19038, "\u0120:=": 19039, "Scott": 19040, - "angered": 19041, "Tok": 19042, "\u0120organizers": 19043, "Mat": 19044, "\u0120Growth": - 19045, "\u0120adul": 19046, "\u0120ensures": 19047, "\u0120117": 19048, "\u00e9\u00be\u012f\u00e5": - 19049, "\u0120massacre": 19050, "\u0120grades": 19051, "before": 19052, "ADVERTISEMENT": - 19053, "\u0120Slow": 19054, "\u0120MMA": 19055, "\u00e2\u0122\u0136\"": 19056, - "\u0120Vatican": 19057, "Qaeda": 19058, "\u0120owe": 19059, "6666": 19060, - "\u0120Sorry": 19061, "\u0120Grass": 19062, "\u0120backgrounds": 19063, "\u0120exhausted": - 19064, "\u0120clan": 19065, "\u0120compromised": 19066, "\u0120Elf": 19067, - "\u0120Isaac": 19068, "enson": 19069, "Invest": 19070, "IFA": 19071, "\u0120interrupted": - 19072, "\u00e3\u0125\u012b\u00e3\u0125\u00a9": 19073, "\u0120twisted": 19074, - "\u0120Dragons": 19075, "Mode": 19076, "\u0120Kremlin": 19077, "\u0120fertil": - 19078, "heres": 19079, "phan": 19080, "\u0120Node": 19081, "fed": 19082, "\u0120Orc": - 19083, "\u0120unwilling": 19084, "Cent": 19085, "\u0120priorit": 19086, "\u0120graduates": - 19087, "\u0120subjective": 19088, "\u0120issuing": 19089, "\u0120Lt": 19090, - "\u0120viewer": 19091, "\u0120woke": 19092, "Thus": 19093, "brook": 19094, - "\u0120depressed": 19095, "\u0120bracket": 19096, "\u0120Gor": 19097, "\u0120Fighting": - 19098, "\u0120striker": 19099, "Report": 19100, "\u0120Portugal": 19101, "\u0120neo": - 19102, "wed": 19103, "199": 19104, "\u0120fleeing": 19105, "shadow": 19106, - "identified": 19107, "USE": 19108, "Steam": 19109, "\u0120stretched": 19110, - "\u0120revelations": 19111, "arted": 19112, "\u0120Dw": 19113, "\u0120alignment": - 19114, "eston": 19115, "\u0120Jared": 19116, "Sep": 19117, "\u0120blogs": - 19118, "update": 19119, "gom": 19120, "risk": 19121, "\u0120clash": 19122, - "\u0120Hour": 19123, "\u0120runtime": 19124, "\u0120unwanted": 19125, "\u0120scam": - 19126, "\u0120rack": 19127, "\u0120enlight": 19128, "onest": 19129, "\u0120Ferr": - 19130, "\u0120convictions": 19131, "\u0120piano": 19132, "\u0120circulation": - 19133, "\u0120Welcome": 19134, "\u0120backlash": 19135, "\u0120Wade": 19136, - "\u0120receivers": 19137, "otive": 19138, "Jeff": 19139, "\u0120networking": - 19140, "\u0120Prep": 19141, "\u0120Explorer": 19142, "\u0120lecture": 19143, - "\u0120uploaded": 19144, "\u0120Meat": 19145, "BLE": 19146, "\u0120Nazis": - 19147, "\u0120Synd": 19148, "stud": 19149, "roots": 19150, "rians": 19151, - "\u0120portrayed": 19152, "\u0120??": 19153, "\u0120Buddha": 19154, "sun": - 19155, "Robert": 19156, "\u0120Complex": 19157, "\u0120oversee": 19158, "\u0120stealth": - 19159, "Title": 19160, "\u0120Jobs": 19161, "\u0120Kum": 19162, "\u0120appreciation": - 19163, "\u0120MOD": 19164, "\u0120basics": 19165, "\u0120clips": 19166, "\u0120nursing": - 19167, "\u0120proposition": 19168, "\u0120realised": 19169, "\u0120NYC": 19170, - "\u0120allocated": 19171, "rium": 19172, "aran": 19173, "\u0120Production": - 19174, "\u0120Vote": 19175, "\u0120smugg": 19176, "\u0120hunter": 19177, "azer": - 19178, "\u0120Changes": 19179, "\u0120fluct": 19180, "yon": 19181, "Array": - 19182, "\u0120kits": 19183, "Water": 19184, "\u0120uncommon": 19185, "\u0120resting": - 19186, "ells": 19187, "would": 19188, "\u0120pursued": 19189, "\u0120assertion": - 19190, "ometown": 19191, "\u0120Mosul": 19192, "\u0120Platform": 19193, "iolet": - 19194, "\u0120shareholders": 19195, "\u0120trails": 19196, "Pay": 19197, "\u0120Enforcement": - 19198, "types": 19199, "\u0120Anonymous": 19200, "\u0120satisfying": 19201, - "ilogy": 19202, "\u0120(''": 19203, "wave": 19204, "city": 19205, "Steve": - 19206, "\u0120confrontation": 19207, "\u0120Eld": 19208, "Capt": 19209, "ahan": - 19210, "htm": 19211, "\u0120Ctrl": 19212, "ONS": 19213, "230": 19214, "ifa": - 19215, "holding": 19216, "\u0120delicate": 19217, "\u0120jaw": 19218, "\u0120Going": - 19219, "orum": 19220, "Sal": 19221, "\u0120dull": 19222, "\u0120Beth": 19223, - "\u0120prisons": 19224, "\u0120ego": 19225, "\u0120Elsa": 19226, "avorite": - 19227, "\u0120Gang": 19228, "\u0120Nuclear": 19229, "\u0120spider": 19230, - "atsu": 19231, "\u0120sampling": 19232, "\u0120absorbed": 19233, "\u0120Pharm": - 19234, "ieth": 19235, "\u0120bucket": 19236, "\u0120Recomm": 19237, "OF": - 19238, "\u0120Factory": 19239, "ANCE": 19240, "\u0120bacter": 19241, "Has": - 19242, "\u0120Observ": 19243, "121": 19244, "\u0120premiere": 19245, "Develop": - 19246, "\u0120currencies": 19247, "Cast": 19248, "\u0120accompanying": 19249, - "\u0120Nashville": 19250, "\u0120fatty": 19251, "\u0120Brend": 19252, "\u0120locks": - 19253, "\u0120centered": 19254, "\u0120UT": 19255, "aughs": 19256, "orie": - 19257, "\u0120Affordable": 19258, "vance": 19259, "DL": 19260, "emet": 19261, - "\u0120throne": 19262, "\u0120Bluetooth": 19263, "\u0120naming": 19264, "ifts": - 19265, "ADE": 19266, "\u0120corrected": 19267, "\u0120promptly": 19268, "\u0120STR": - 19269, "\u0120genome": 19270, "\u0120cope": 19271, "\u0120valley": 19272, - "\u0120rounded": 19273, "\u0120Kend": 19274, "alion": 19275, "pers": 19276, - "\u0120tourism": 19277, "\u0120stark": 19278, "vl": 19279, "\u0120blowing": - 19280, "\u0120Schedule": 19281, "std": 19282, "\u0120unhappy": 19283, "\u0120litigation": - 19284, "cedes": 19285, "\u0120android": 19286, "\u0120integral": 19287, "erers": - 19288, "uded": 19289, "tax": 19290, "\u0120reiter": 19291, "\u0120Motors": - 19292, "ociated": 19293, "\u0120wonders": 19294, "\u0120Apost": 19295, "ucking": - 19296, "\u0120Roosevelt": 19297, "fram": 19298, "\u0120yields": 19299, "\u0120constitutes": - 19300, "awk": 19301, "Interest": 19302, "\u0120interim": 19303, "\u0120breakthrough": - 19304, "\u0120Cher": 19305, "\u0120prosec": 19306, "\u0120Dj": 19307, "\u0120MT": - 19308, "Resp": 19309, "\u0120PT": 19310, "\u0120sperm": 19311, "edit": 19312, - "BT": 19313, "Linux": 19314, "country": 19315, "league": 19316, "\u0120dick": - 19317, "\u0120oct": 19318, "\u0120inserting": 19319, "\u0120scra": 19320, - "\u0120Brewing": 19321, "\u01201966": 19322, "\u0120runners": 19323, "\u0120plun": - 19324, "idy": 19325, "\u0120Dian": 19326, "\u0120dysfunction": 19327, "\u0120exclusion": - 19328, "\u0120disgr": 19329, "\u0120incorporate": 19330, "\u0120reconc": 19331, - "\u0120nominated": 19332, "\u0120Archer": 19333, "draw": 19334, "achelor": - 19335, "\u0120writings": 19336, "\u0120shallow": 19337, "\u0120hast": 19338, - "\u0120BMW": 19339, "\u0120RS": 19340, "\u0120thigh": 19341, "\u01201963": - 19342, "\u0120lamb": 19343, "\u0120favored": 19344, "agle": 19345, "\u0120cooler": - 19346, "\u0120Hours": 19347, "\u0120GU": 19348, "\u0120Origin": 19349, "\u0120glimpse": - 19350, "--------------------": 19351, "Lim": 19352, "\u0120cheek": 19353, - "\u0120jealous": 19354, "-''": 19355, "\u0120harness": 19356, "\u0120Poison": - 19357, "\u0120disabilities": 19358, "neapolis": 19359, "\u0120outlook": 19360, - "\u0120notify": 19361, "\u0120Indianapolis": 19362, "\u0120abrupt": 19363, - "nsic": 19364, "\u0120encrypted": 19365, "\u0120forfe": 19366, "reath": 19367, - "\u0120rabb": 19368, "\u0120foundations": 19369, "\u0120compliment": 19370, - "\u0120Interview": 19371, "\u0120Swe": 19372, "\u0120adolesc": 19373, "\u0120monitors": - 19374, "\u0120Sacramento": 19375, "\u0120timely": 19376, "\u0120contempl": - 19377, "\u0120positioned": 19378, "\u0120posters": 19379, "phies": 19380, - "iovascular": 19381, "void": 19382, "\u0120Fifth": 19383, "\u0120investigative": - 19384, "OUN": 19385, "\u0120integrate": 19386, "\u0120INC": 19387, "isha": - 19388, "iblings": 19389, "\u0120Request": 19390, "\u0120Rodriguez": 19391, - "\u0120slides": 19392, "\u0120DX": 19393, "\u0120feminism": 19394, "\u0120datas": - 19395, "\u0120bend": 19396, "irus": 19397, "\u0120Nigeria": 19398, "Fox": - 19399, "Change": 19400, "\u0120airplane": 19401, "\u0120Laden": 19402, "\u0120publicity": - 19403, "ixty": 19404, "\u0120commitments": 19405, "\u0120aggregate": 19406, - "\u0120displaying": 19407, "\u0120Arrow": 19408, "\u0120122": 19409, "\u0120respects": - 19410, "android": 19411, "six": 19412, "\u0120Sha": 19413, "\u0120restoration": - 19414, ")\\": 19415, "WS": 19416, "oys": 19417, "\u0120illustrate": 19418, - "without": 19419, "126": 19420, "\u0120\u00e2\u0136\u0124": 19421, "\u0120pickup": - 19422, "nels": 19423, "\u0120....": 19424, "food": 19425, "\u0120Fen": 19426, - ")?": 19427, "\u0120phenomena": 19428, "\u0120companions": 19429, "\u0120Write": - 19430, "\u0120spill": 19431, "\u0120bridges": 19432, "\u0120Updated": 19433, - "\u0120Fo": 19434, "\u0120insects": 19435, "ASHINGTON": 19436, "\u0120scare": - 19437, "iltr": 19438, "\u0120Zhang": 19439, "\u0120severity": 19440, "\u0120indul": - 19441, "149": 19442, "\u0120Coffee": 19443, "\u0120norms": 19444, "\u0120pulse": - 19445, "\u0120FT": 19446, "\u0120horrific": 19447, "\u0120Destroy": 19448, - "\u0120JSON": 19449, "\u0120olive": 19450, "\u0120discusses": 19451, "Rest": - 19452, "Elect": 19453, "\u0120Winn": 19454, "\u0120Surviv": 19455, "\u0120Hait": - 19456, "Sure": 19457, "oped": 19458, "\u0120rooted": 19459, "\u0120Ske": 19460, - "\u0120Bronze": 19461, "\u0120lol": 19462, "Default": 19463, "\u0120commodity": - 19464, "redited": 19465, "\u0120libertarian": 19466, "\u0120forbidden": 19467, - "\u0120gran": 19468, "\u00e0\u00a8": 19469, "\u0120lag": 19470, "enz": 19471, - "drive": 19472, "\u0120mathematics": 19473, "\u0120wires": 19474, "\u0120critically": - 19475, "\u0120carbohyd": 19476, "\u0120Chancellor": 19477, "\u0120Eddie": - 19478, "\u0120banning": 19479, "\u0120Fri": 19480, "\u0120complications": - 19481, "etric": 19482, "\u0120Bangladesh": 19483, "\u0120bandwidth": 19484, - "Stop": 19485, "\u0120Originally": 19486, "\u0120halfway": 19487, "ynasty": - 19488, "shine": 19489, "\u0120tales": 19490, "rities": 19491, "avier": 19492, - "\u0120spinning": 19493, "\u0120WHO": 19494, "\u0120neighbourhood": 19495, - "bach": 19496, "\u0120commerce": 19497, "\u0120Sle": 19498, "BU": 19499, "\u0120entrepreneur": - 19500, "\u0120peculiar": 19501, "\u0120Comments": 19502, "fre": 19503, "320": - 19504, "ICS": 19505, "\u0120imagery": 19506, "\u0120Canon": 19507, "\u0120Electronic": - 19508, "short": 19509, "((": 19510, "Dig": 19511, "\u0120commem": 19512, "uced": - 19513, "\u0120inclined": 19514, "\u0120Summon": 19515, "\u0120cliff": 19516, - "\u0120Mediterranean": 19517, "\u0120poetry": 19518, "\u0120prosperity": 19519, - "\u0120Rece": 19520, "\u0120pills": 19521, "member": 19522, "\u0120finale": - 19523, "unc": 19524, "\u0120Gig": 19525, "\u00e4\u00bd": 19526, "\u0120lod": - 19527, "\u0120backward": 19528, "-+": 19529, "\u0120Forward": 19530, "\u0120thri": - 19531, "sure": 19532, "\u0120soap": 19533, "\u0120FX": 19534, "RES": 19535, - "\u0120Sexual": 19536, "oulos": 19537, "\u0120foolish": 19538, "\u0120righteous": - 19539, "\u0120coff": 19540, "terrorism": 19541, "ustain": 19542, "oter": 19543, - "\u0120abuses": 19544, "next": 19545, "\u0120abusive": 19546, "\u0120thereafter": - 19547, "\u0120prohibition": 19548, "\u0120SUP": 19549, "\u0120dip": 19550, - "\u0120ripped": 19551, "\u0120inherited": 19552, "\u0120bats": 19553, "stru": - 19554, "GT": 19555, "\u0120flawed": 19556, "phabet": 19557, "\u0120fog": 19558, - "doors": 19559, "\u0120imaging": 19560, "\u0120digits": 19561, "\u0120Hungary": - 19562, "\u0120arrog": 19563, "\u0120teachings": 19564, "\u0120protocols": - 19565, "\u0120Banks": 19566, "\u00e0\u00b8": 19567, "pound": 19568, "\u0120Curt": - 19569, ".\")": 19570, "./": 19571, "\u0120exemption": 19572, "endix": 19573, - "\u0120Mull": 19574, "\u0120improves": 19575, "\u0120Gamer": 19576, "dimensional": - 19577, "Icon": 19578, "\u0120Margaret": 19579, "Status": 19580, "dates": 19581, - "\u0120intends": 19582, "\u0120depict": 19583, "\u0120parked": 19584, "Joe": - 19585, "\u0120Marines": 19586, "chnology": 19587, "!).": 19588, "\u0120judged": - 19589, "\u0120weights": 19590, "Ray": 19591, "\u0120apartments": 19592, "hester": - 19593, "\u0120reinforce": 19594, "\u0120offender": 19595, "occup": 19596, - "\u0120sore": 19597, "ept": 19598, "\u0120PHP": 19599, "\u0120Brow": 19600, - "\u0120authorization": 19601, "\u0120Risk": 19602, "\u0120Delaware": 19603, - "\u0120QU": 19604, "\u0120notifications": 19605, "\u0120sunlight": 19606, - "\u0120exclude": 19607, "dat": 19608, "\u0120mesh": 19609, "\u0120Sudan": - 19610, "\u0120belonged": 19611, "\u0120subway": 19612, "\u0120noon": 19613, - "\u0120Interior": 19614, "olics": 19615, "\u0120Lakers": 19616, "\u0120coding": - 19617, "Disclaimer": 19618, "Calif": 19619, "Old": 19620, "\u0120disl": 19621, - "?????": 19622, "\u0120confirms": 19623, "\u0120recruitment": 19624, "\u0120homicide": - 19625, "Consider": 19626, "\u0120Jeffrey": 19627, "fty": 19628, "};": 19629, - "\u0120objection": 19630, "doing": 19631, "\u0120Leo": 19632, "Want": 19633, - "\u0120glow": 19634, "\u0120Clarke": 19635, "\u0120Norman": 19636, "\u0120verification": - 19637, "\u0120packet": 19638, "\u0120Formula": 19639, "\u0120plag": 19640, - "esville": 19641, "\u0120shouting": 19642, "\u0120ov": 19643, "\u0120REC": - 19644, "\u0120Bub": 19645, "\u0120ninth": 19646, "\u0120energ": 19647, "\u0120validity": - 19648, "\u0120ups": 19649, "jack": 19650, "\u0120neighboring": 19651, "\u0120Nec": - 19652, "eworks": 19653, "\u0120Hab": 19654, "arez": 19655, "\u0120spine": - 19656, "\u0120eventual": 19657, "\u0120Leaders": 19658, "\u0120Carn": 19659, - "\u0120probation": 19660, "\u0120romance": 19661, "msg": 19662, "\u0120Mechanical": - 19663, "ERY": 19664, "Rock": 19665, "\u0120partisan": 19666, "Node": 19667, - "assets": 19668, "minent": 19669, "\u0120foreigners": 19670, "\u0120testify": - 19671, "\u0120Usually": 19672, "lords": 19673, "\u0120Gren": 19674, "\u0120Powell": - 19675, "BIL": 19676, "\u0120sr": 19677, "\u0120addict": 19678, "\u0120shells": - 19679, "\u0120sigh": 19680, "\u0120Yale": 19681, "ternity": 19682, "\u0120750": - 19683, "EU": 19684, "\u0120Rifle": 19685, "\u0120patron": 19686, "ema": 19687, - "\u0120Bannon": 19688, "anity": 19689, "\u0120tropical": 19690, "\u0120VII": - 19691, "cross": 19692, "Everything": 19693, "\u0120ISO": 19694, "\u0120humble": - 19695, "assing": 19696, "\u0120FIG": 19697, "\u0120updating": 19698, "yson": - 19699, "\u0120calcium": 19700, "\u0120competent": 19701, "\u0120steering": - 19702, "Prot": 19703, "\u0120SY": 19704, "\u0120Finals": 19705, "\u0120Rug": - 19706, "159": 19707, "137": 19708, "\u0120Golf": 19709, "\u0120126": 19710, - "\u0120accommodation": 19711, "\u0120Hughes": 19712, "\u0120aesthetic": 19713, - "artisan": 19714, "\u0120Twilight": 19715, "\u0120prince": 19716, "\u0120Agriculture": - 19717, "\u0120Disco": 19718, "\u0120precedent": 19719, "\u0120typing": 19720, - "authorized": 19721, "Option": 19722, "\u0120Aub": 19723, "lishes": 19724, - "acht": 19725, "mag": 19726, "Peter": 19727, "\u0120UFO": 19728, "monton": - 19729, "\u0120Lith": 19730, "\u0120arom": 19731, "\u0120securing": 19732, - "\u0120confined": 19733, "private": 19734, "\u0120swords": 19735, "\u0120markers": - 19736, "\u0120metabolic": 19737, "select": 19738, "\u0120Curse": 19739, "\u0120Ot": - 19740, "gressive": 19741, "\u0120incumb": 19742, "\u0120Saga": 19743, "\u0120priced": - 19744, "\u0120clearance": 19745, "Content": 19746, "\u0120drilling": 19747, - "\u0120notices": 19748, "\u0120bourgeois": 19749, "\u0120vest": 19750, "\u0120cookie": - 19751, "\u0120Guardians": 19752, "rys": 19753, "inyl": 19754, "\u0120124": - 19755, "\u0120plausible": 19756, "ongh": 19757, "\u0120Odin": 19758, "\u0120conception": - 19759, "\u0120Yuk": 19760, "\u0120Baghdad": 19761, "\u0120Flag": 19762, "Austral": - 19763, "\u0120IBM": 19764, "\u0120internationally": 19765, "\u0120WikiLeaks": - 19766, "IED": 19767, "\u0120cyn": 19768, "\u0120chooses": 19769, "\u0120Pill": - 19770, "\u0120combining": 19771, "\u0120radi": 19772, "\u0120Mohammed": 19773, - "defense": 19774, "atching": 19775, "Subject": 19776, "iciency": 19777, "Frame": - 19778, "\u0120{\"": 19779, "\u0120chess": 19780, "\u0120timer": 19781, "190": - 19782, "\u0120tin": 19783, "\u0120ordinance": 19784, "emetery": 19785, "\u0120accusing": - 19786, "\u0120noticeable": 19787, "\u0120centres": 19788, "\u0120lid": 19789, - "\u0120Mills": 19790, "imgur": 19791, "\u0120zoom": 19792, "ergic": 19793, - "\u0120compression": 19794, "prim": 19795, "find": 19796, "\u0120surg": 19797, - "\u0120pand": 19798, "\u0120Kee": 19799, "\u0120Chad": 19800, "cellence": - 19801, "oyle": 19802, "\u0120socialism": 19803, "\u0120Travis": 19804, "\u0120MHz": - 19805, "\u0120guild": 19806, "ALLY": 19807, "\u0120Subscribe": 19808, "\u0120Related": - 19809, "\u0120occurrence": 19810, "itching": 19811, "\u0120fictional": 19812, - "\u0120crush": 19813, "\u0120EA": 19814, "cod": 19815, "mix": 19816, "\u0120Triple": - 19817, "\u0120retrieve": 19818, "\u0120stimulus": 19819, "\u0120psychiat": - 19820, "\u0120Door": 19821, "\u0120homosexuality": 19822, "\u0120elementary": - 19823, "\u0120cellular": 19824, "idian": 19825, "\u0120Laun": 19826, "\u0120intriguing": - 19827, "\u0120foam": 19828, "\u0120Bass": 19829, "idi": 19830, "itsu": 19831, - "\u0120assure": 19832, "\u0120congrat": 19833, "\u0120businessman": 19834, - "\u0120Boost": 19835, "close": 19836, "\u0120lied": 19837, "\u0120sciences": - 19838, "\u0120Omega": 19839, "\u0120Graphics": 19840, "\u0120<=": 19841, "spoken": - 19842, "\u0120connectivity": 19843, "Saturday": 19844, "\u0120Avengers": 19845, - "\u0120toggle": 19846, "\u0120ankle": 19847, "\u0120nationalist": 19848, "model": - 19849, "\u0120Pool": 19850, "ophobia": 19851, "Var": 19852, "\u0120Mons": - 19853, "atories": 19854, "\u0120aggressively": 19855, "Clear": 19856, "Forge": - 19857, "acters": 19858, "\u0120hedge": 19859, "\u0120pipes": 19860, "\u0120blunt": - 19861, "\u0120sq": 19862, "\u0120remotely": 19863, "Wed": 19864, "asers": - 19865, "\u0120refriger": 19866, "\u0120tiles": 19867, "\u0120rescued": 19868, - "\u0120comprised": 19869, "insky": 19870, "\u0120manif": 19871, "avanaugh": - 19872, "\u0120prolifer": 19873, "\u0120aligned": 19874, "xml": 19875, "\u0120triv": - 19876, "\u0120coordination": 19877, "\u0120PER": 19878, "\u0120Quote": 19879, - "134": 19880, "bf": 19881, "\u0120Saw": 19882, "\u0120termination": 19883, - "\u0120190": 19884, "\u0120additions": 19885, "\u0120trio": 19886, "\u0120projections": - 19887, "\u0120positively": 19888, "\u0120inclusive": 19889, "\u0120membr": - 19890, "1990": 19891, "older": 19892, "\u0120practiced": 19893, "inkle": 19894, - "Arch": 19895, "\u0120starters": 19896, "arius": 19897, "\u0120intermediate": - 19898, "\u0120Benef": 19899, "\u0120Killer": 19900, "\u0120interventions": - 19901, "\u0120Kil": 19902, "\u0120Flying": 19903, "Inv": 19904, "\u0120premature": - 19905, "\u0120psychiatric": 19906, "\u0120indie": 19907, "\u0120collar": 19908, - "\u0120Rainbow": 19909, "afi": 19910, "\u0120disruption": 19911, "\u0120FOX": - 19912, "casting": 19913, "\u0120misdem": 19914, "cro": 19915, "\u0120wipe": - 19916, "ardon": 19917, "\u0120bast": 19918, "\u0120Tommy": 19919, "\u0120Representative": - 19920, "\u0120belly": 19921, "\u0120PO": 19922, "\u0120Breitbart": 19923, - "132": 19924, "\u0120messaging": 19925, "Should": 19926, "References": 19927, - "\u0120GRE": 19928, "istical": 19929, "LP": 19930, "\u0120Cav": 19931, "\u0120Crazy": - 19932, "\u0120intuitive": 19933, "keeping": 19934, "\u0120Moss": 19935, "\u0120discontin": - 19936, "\u0120Module": 19937, "\u0120unrelated": 19938, "\u0120Practice": - 19939, "\u0120Transport": 19940, "\u0120statistically": 19941, "orns": 19942, - "\u0120sized": 19943, "pu": 19944, "\u0120caf": 19945, "\u0120Worlds": 19946, - "\u0120Rodgers": 19947, "\u0120Lun": 19948, "\u0120Comic": 19949, "living": - 19950, "\u0120cared": 19951, "\u0120climbed": 19952, "){": 19953, "\u0120consisted": - 19954, "\u0120medieval": 19955, "folk": 19956, "\u0120hacked": 19957, "\u0120dire": - 19958, "\u0120Hermione": 19959, "\u0120tended": 19960, "ceans": 19961, "Daniel": - 19962, "went": 19963, "\u0120legislators": 19964, "\u0120redes": 19965, "games": - 19966, "\u0120gn": 19967, "amiliar": 19968, "\u0120++": 19969, "ggy": 19970, - "threat": 19971, "\u0120magnet": 19972, "\u0120perceive": 19973, "\u0120zip": - 19974, "\u0120indictment": 19975, "\u0120critique": 19976, "gard": 19977, - "\u0120Safe": 19978, "\u0120Cream": 19979, "\u0120advent": 19980, "oba": 19981, - "\u0120vowed": 19982, "ousands": 19983, "\u0120ski": 19984, "\u0120abortions": - 19985, "uart": 19986, "\u0120stunned": 19987, "\u0120advancing": 19988, "\u0120lacked": - 19989, "\u0120\\\"": 19990, "\u0120schizophren": 19991, "\u0120elegant": 19992, - "\u0120conferences": 19993, "\u0120canceled": 19994, "\u0120Hudson": 19995, - "\u0120Hopefully": 19996, "\u0120trump": 19997, "\u0120frequencies": 19998, - "\u0120meteor": 19999, "\u0120Junior": 20000, "\u0120Fleet": 20001, "\u0120Malcolm": - 20002, "\u0120Tools": 20003, "\u0120........": 20004, "\u0120hobby": 20005, - "\u0120Europeans": 20006, "\u01201500": 20007, "\u0120Into": 20008, "\u0120sway": - 20009, "\u0120Appro": 20010, "\u0120Compl": 20011, "Community": 20012, "\u0120tide": - 20013, "\u0120Summit": 20014, "\u00e4\u00bb": 20015, "\u0120intervals": 20016, - "\u0120Ether": 20017, "\u0120habitat": 20018, "\u0120Stevens": 20019, "lishing": - 20020, "\u0120Domain": 20021, "\u0120triggers": 20022, "\u0120chasing": 20023, - "\u0120charm": 20024, "\u0120Flower": 20025, "itored": 20026, "\u0120blessing": - 20027, "\u0120textures": 20028, "Five": 20029, "\u0120liquor": 20030, "RP": - 20031, "FIN": 20032, "\u01201962": 20033, "CAR": 20034, "Unknown": 20035, - "\u0120resil": 20036, "\u0120Lily": 20037, "\u0120abundance": 20038, "\u0120predictable": - 20039, "rar": 20040, "\u0120bullshit": 20041, "leen": 20042, "chet": 20043, - "Mor": 20044, "Much": 20045, "\u00e4\u00b9": 20046, "\u0120emphasized": 20047, - "\u0120crust": 20048, "\u0120primitive": 20049, "\u0120enjoyable": 20050, - "\u0120Pictures": 20051, "\u0120teammate": 20052, "pler": 20053, "\u0120Tol": - 20054, "\u0120Kane": 20055, "\u0120summoned": 20056, "thy": 20057, "rama": - 20058, "\u0120Honda": 20059, "\u0120realizing": 20060, "\u0120quicker": 20061, - "\u0120concentrate": 20062, "clear": 20063, "\u0120210": 20064, "\u0120Erdogan": - 20065, "aris": 20066, "\u0120responds": 20067, "\u0120BI": 20068, "\u0120eligibility": - 20069, "\u0120pushes": 20070, "\u0120Idaho": 20071, "\u0120aggrav": 20072, - "\u0120ruins": 20073, "urations": 20074, "\u0120bans": 20075, "\u0120anat": - 20076, "share": 20077, "\u0120grind": 20078, "hin": 20079, "umen": 20080, - "\u0120utilities": 20081, "\u0120Yankees": 20082, "\u0120databases": 20083, - "\u0120DD": 20084, "\u0120displaced": 20085, "\u0120dependencies": 20086, - "\u0120stimulation": 20087, "hun": 20088, "houses": 20089, "\u0120Pretty": - 20090, "\u0120Ravens": 20091, "\u0120TODAY": 20092, "\u0120associates": 20093, - "\u0120therape": 20094, "cled": 20095, "\u0120deer": 20096, "\u0120repairs": - 20097, "rentice": 20098, "\u0120receptors": 20099, "\u0120remed": 20100, "\u0120Ce": - 20101, "\u0120marriages": 20102, "\u0120ballots": 20103, "\u0120Soldier": - 20104, "\u0120hilarious": 20105, "opl": 20106, "138": 20107, "\u0120inherently": - 20108, "\u0120ignorant": 20109, "\u0120bounce": 20110, "\u0120Easter": 20111, - "RELATED": 20112, "\u0120Currency": 20113, "EV": 20114, "\u00e3\u0125\u0140": - 20115, "\u0120Lead": 20116, "\u0120deceased": 20117, "Brien": 20118, "\u0120Musk": - 20119, "JS": 20120, "\u0120merge": 20121, "hearted": 20122, "creat": 20123, - "mitt": 20124, "mund": 20125, "\u0120\u00e2\u0122\u012d": 20126, "\u0120Bag": - 20127, "\u0120projection": 20128, "\u0120java": 20129, "\u0120Standards": - 20130, "\u0120Leonard": 20131, "\u0120coconut": 20132, "\u0120Population": - 20133, "\u0120traject": 20134, "\u0120imply": 20135, "\u0120curiosity": 20136, - "\u0120DB": 20137, "\u0120Fresh": 20138, "\u0120Por": 20139, "\u0120heavier": - 20140, "neys": 20141, "gomery": 20142, "\u0120deserved": 20143, "\u0120phrases": - 20144, "\u0120GC": 20145, "\u0120yeast": 20146, "desc": 20147, "Death": 20148, - "\u0120reboot": 20149, "\u0120metadata": 20150, "ICAL": 20151, "\u0120repay": - 20152, "\u0120Independence": 20153, "\u0120suburban": 20154, "icals": 20155, - "\u0120atop": 20156, "\u0120allocation": 20157, "generation": 20158, "\u0120Gram": - 20159, "\u0120moisture": 20160, "\u0120pine": 20161, "\u0120Liberals": 20162, - "\u0120aides": 20163, "\u0120underest": 20164, "\u0120Berry": 20165, "\u0120ceremon": - 20166, "370": 20167, "astrous": 20168, "\u0120Pirates": 20169, "\u0120tense": - 20170, "\u0120Industries": 20171, "\u0120Appeals": 20172, "\u0120Near": 20173, - "\u0120\u00e8\u00a3\u0131\u00e7": 20174, "\u0120lovers": 20175, "\u0120CAP": - 20176, "\u0120Craw": 20177, "\u0120giants": 20178, "\u0120efficacy": 20179, - "Element": 20180, "\u0120Behavior": 20181, "\u0120Toyota": 20182, "\u0120intest": - 20183, "Priv": 20184, "AI": 20185, "\u0120maneuver": 20186, "\u0120perfection": - 20187, "\u0120bang": 20188, "paper": 20189, "rill": 20190, "George": 20191, - "border": 20192, "inters": 20193, "\u0120Seth": 20194, "\u0120clues": 20195, - "\u0120Levi": 20196, "\u0120Revenue": 20197, "147": 20198, "\u0120vapor": - 20199, "\u0120fortunate": 20200, "\u0120threatens": 20201, "\u0120vet": 20202, - "\u0120dependency": 20203, "ersed": 20204, "article": 20205, "\u0120Blizzard": - 20206, "\u0120chlor": 20207, "\u0120minus": 20208, "\u0120Bills": 20209, "\u0120cryptocurrency": - 20210, "\u0120metabolism": 20211, "tering": 20212, "\u0120pestic": 20213, - "steps": 20214, "\u0120Treasure": 20215, "racted": 20216, "\u0120Constant": - 20217, "\u0120temp": 20218, "139": 20219, "\u0120Detective": 20220, "urally": - 20221, "\u0120recovering": 20222, "\u0120cortex": 20223, "\u0120144": 20224, - "closed": 20225, "\u0120prejudice": 20226, "aunted": 20227, "\u0120storms": - 20228, "\u0120NOW": 20229, "\u0120machinery": 20230, "Address": 20231, "\u0120compelled": - 20232, "270": 20233, "\u0120despair": 20234, "bane": 20235, "\u0120vegetable": - 20236, "\u0120beds": 20237, "Learn": 20238, "\u0120colorful": 20239, "\u0120spike": - 20240, "\u0120margins": 20241, "\u0120sympathy": 20242, "\u0120workshop": - 20243, "\u0120CBC": 20244, "Sat": 20245, "\u0120burns": 20246, "\u0120Gender": - 20247, "\u0120129": 20248, "\u0120Cable": 20249, "\u0120debts": 20250, "\u0120Theresa": - 20251, "\u0120reflecting": 20252, "\u0120airst": 20253, "\u0120rim": 20254, - "ramid": 20255, "\u0120weaknesses": 20256, "Writ": 20257, "oggle": 20258, - "ti": 20259, "\u0120Charge": 20260, "\u0120weighed": 20261, "\u0120(.": 20262, - "\u0120laughter": 20263, "\u0120router": 20264, "\u0120Democracy": 20265, - "Dear": 20266, "\u0120hasht": 20267, "\u0120dy": 20268, "\u0120hints": 20269, - "running": 20270, "\u0120finishes": 20271, "arus": 20272, "Mass": 20273, "result": - 20274, "ascus": 20275, "\u0120vintage": 20276, "\u0120conqu": 20277, "\u0120wildly": - 20278, "acist": 20279, "\u0120lingu": 20280, "\u0120protagonist": 20281, "strom": - 20282, "teenth": 20283, "\u0120Solo": 20284, "mac": 20285, "filled": 20286, - "\u0120renown": 20287, "itives": 20288, "\u0120motive": 20289, "\u0120Antar": - 20290, "\u0120Mann": 20291, "\u0120Adjust": 20292, "\u0120rockets": 20293, - "\u0120troubling": 20294, "ei": 20295, "\u0120organisms": 20296, "assis": - 20297, "Christian": 20298, "\u0120145": 20299, "\u0120Hass": 20300, "\u0120swall": - 20301, "\u0120wax": 20302, "\u0120Survival": 20303, "VS": 20304, "\u0120Murd": - 20305, "vd": 20306, "standard": 20307, "\u0120dragons": 20308, "\u0120acceleration": - 20309, "rational": 20310, "final": 20311, "\u0120paired": 20312, "\u0120Ethereum": - 20313, "\u0120interfaces": 20314, "\u0120resent": 20315, "\u0120artifacts": - 20316, "\u00c5\u00ab": 20317, "arel": 20318, "\u0120competitor": 20319, "\u0120Nicholas": - 20320, "\u0120Surface": 20321, "cpp": 20322, "\u0120Tot": 20323, "\u0120economically": - 20324, "\u0120organised": 20325, "\u0120enforced": 20326, "inho": 20327, "\u0120varieties": - 20328, "\u0120abdom": 20329, "\u0120Bailey": 20330, "idav": 20331, "\u0120Salv": - 20332, "paid": 20333, "\u0120altitude": 20334, "essert": 20335, "\u0120Gutenberg": - 20336, "area": 20337, "opoulos": 20338, "\u0120professors": 20339, "iggs": - 20340, "\u0120Fate": 20341, "hey": 20342, "\u01203000": 20343, "Dist": 20344, - "\u0120twins": 20345, "cill": 20346, "\u0120Maps": 20347, "\u0120traps": 20348, - "\u0120weed": 20349, "\u0120Kiss": 20350, "\u0120yoga": 20351, "\u0120recipients": - 20352, "\u0120Westminster": 20353, "\u0120pools": 20354, "\u0120Walmart": - 20355, "188": 20356, "\u0120Schools": 20357, "attack": 20358, "\u0120ARM": - 20359, "paragraph": 20360, "Warning": 20361, "jl": 20362, "\u0120selfish": - 20363, "anchez": 20364, "\u0120Heights": 20365, "Fre": 20366, "\u0120Soph": - 20367, "\u0120--------------------------------": 20368, "tml": 20369, "333": - 20370, "\u0120raids": 20371, "\u0120satellites": 20372, "KEY": 20373, "\u0120lasts": - 20374, "\u00d1\u0124": 20375, "Ins": 20376, "\u0120Dame": 20377, "\u0120unpredict": - 20378, "///": 20379, "ghai": 20380, "\u0120artillery": 20381, "\u0120cruise": - 20382, "\u0120gel": 20383, "\u0120Cabinet": 20384, "\u0120blows": 20385, "\u0120Esp": - 20386, "\u0120proximity": 20387, "othe": 20388, "\u0120Skills": 20389, "\u0120Upper": - 20390, "obo": 20391, "\u0120NDP": 20392, "\u0120enjoys": 20393, "\u0120repeating": - 20394, "\u0120Construction": 20395, "\u0120Questions": 20396, "Hillary": 20397, - "\u0120uint": 20398, "\u0120processors": 20399, "\u0120Gibson": 20400, "\u0120Multiple": - 20401, "qa": 20402, "\u0120Bom": 20403, "\u0120Miles": 20404, "ventional": - 20405, "\u0120hurts": 20406, "skin": 20407, "\u0120AIDS": 20408, "\u0120advisers": - 20409, "\u0120Root": 20410, "\u0120methodology": 20411, "\u0120Dale": 20412, - "\u0120deton": 20413, "\u0120Knowledge": 20414, "sequently": 20415, "\u0120121": - 20416, "\u0120connects": 20417, "Cy": 20418, "\u0120Danger": 20419, "\u0120contributors": - 20420, "\u0120Bent": 20421, "\u0120brass": 20422, "\u0120Guns": 20423, "into": - 20424, "\u0120Fortune": 20425, "\u0120broker": 20426, "balance": 20427, "\u0120lengths": - 20428, "\u0120vic": 20429, "\u0120averaging": 20430, "\u0120appropriately": - 20431, "\u0120Camera": 20432, "\u0120sandwich": 20433, "\u0120CDC": 20434, - "\u0120coordinate": 20435, "\u0120navig": 20436, "\u0120goodness": 20437, - "laim": 20438, "\u0120brake": 20439, "\u0120extremist": 20440, "\u0120Wake": - 20441, "\u0120Mend": 20442, "\u0120Tiny": 20443, "\u0120COL": 20444, "\u0120RF": - 20445, "\u0120Dual": 20446, "\u0120Wine": 20447, "Case": 20448, "\u0120refined": - 20449, "\u0120lamp": 20450, "Lead": 20451, "\u0120bapt": 20452, "\u0120Carb": - 20453, "\u0120Sadd": 20454, "\u0120Minneapolis": 20455, "PDF": 20456, "Early": - 20457, "\u0120Hidden": 20458, "Its": 20459, "\u0120TIME": 20460, "\u0120pap": - 20461, "\u0120commissioned": 20462, "\u0120Few": 20463, "\u0120Colts": 20464, - "\u0120Bren": 20465, "\u0120bothered": 20466, "\u0120likewise": 20467, "Exper": - 20468, "\u0120Schw": 20469, "cry": 20470, "nn": 20471, "\u0120Mitch": 20472, - "imon": 20473, "MG": 20474, "bm": 20475, "UMP": 20476, "rays": 20477, "\u0120registry": - 20478, "\u0120270": 20479, "achine": 20480, "rella": 20481, "anting": 20482, - "00000": 20483, "\u0120ruined": 20484, "spot": 20485, "\u0120ta": 20486, "\u0120maximize": - 20487, "\u0120inconven": 20488, "Dead": 20489, "Human": 20490, "Enabled": - 20491, "\u0120Marie": 20492, "\u0120chill": 20493, "\u0120Paradise": 20494, - "\u0120starring": 20495, "\u0120Latino": 20496, "\u0120Protocol": 20497, "\u0120EVER": - 20498, "\u0120suppliers": 20499, "message": 20500, "\u0120Brock": 20501, "\u0120serum": - 20502, "\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a": - 20503, "\u0120encomp": 20504, "\u0120ambition": 20505, "uese": 20506, "\u0120arrows": - 20507, "Andrew": 20508, "\u0120antenna": 20509, "\u01201961": 20510, "\u0120Bark": - 20511, "\u0120bool": 20512, "\u00e3\u0124\u00aa": 20513, "\u0120Storage": - 20514, "\u0120railway": 20515, "\u0120tougher": 20516, "\u0120Cad": 20517, - "\u0120washing": 20518, "Py": 20519, "'']": 20520, "embed": 20521, "\u0120Memphis": - 20522, "ackle": 20523, "\u0120famously": 20524, "\u0120Fortunately": 20525, - "ovies": 20526, "\u0120mindset": 20527, "\u0120sneak": 20528, "\u0120Dh": - 20529, "RAW": 20530, "\u0120Simpson": 20531, "\u0120livest": 20532, "\u0120landmark": - 20533, "\u0120cement": 20534, "Low": 20535, "\u0120thrilled": 20536, "\u0120Course": - 20537, "inel": 20538, "\u0120chuck": 20539, "idate": 20540, "global": 20541, - "\u0120whit": 20542, "\u0120\u00ef\u00bf\u00bd": 20543, "adays": 20544, "ski": - 20545, "\u0120SV": 20546, "\u0120viruses": 20547, "306": 20548, "\u0120Respons": - 20549, "\u0120theaters": 20550, "\u0120Branch": 20551, "\u0120Geneva": 20552, - "\u0120MK": 20553, "\u0120unbeliev": 20554, "\u0120communist": 20555, "Original": - 20556, "\u0120Received": 20557, "\u0120Transfer": 20558, "\u0120Arg": 20559, - "Input": 20560, "\u0120Strategy": 20561, "\u0120palace": 20562, "thening": - 20563, "Dri": 20564, "\u0120sentencing": 20565, "umbnail": 20566, "\u0120pins": - 20567, "recy": 20568, "\u0120siblings": 20569, "Getting": 20570, "\u0120BU": - 20571, "\u0120Northwest": 20572, "\u0120prolonged": 20573, "\u0120Sakura": - 20574, "Comb": 20575, "\u0120Bour": 20576, "\u0120inadequate": 20577, "\u0120Kash": - 20578, "\u0120username": 20579, "\u0120Improve": 20580, "\u0120battling": - 20581, "\u0120MAC": 20582, "\u0120curriculum": 20583, "\u0120soda": 20584, - "\u0120Cannon": 20585, "\u0120sensible": 20586, "spons": 20587, "December": - 20588, "\u0120wicked": 20589, "\u0120Pengu": 20590, "\u0120dictators": 20591, - "\u0120Hearts": 20592, "ogyn": 20593, "\u0120similarities": 20594, "\u0120Stats": - 20595, "\u0120hollow": 20596, "itations": 20597, "\":[": 20598, "\u0120hover": - 20599, "\u0120Listen": 20600, "sch": 20601, "Sund": 20602, "\u0120cad": 20603, - "\u0120Parks": 20604, "\u0120lur": 20605, "\u0120hype": 20606, "\u0120Lem": - 20607, "NAME": 20608, "isure": 20609, "Friday": 20610, "\u0120shoots": 20611, - "\u0120closes": 20612, "\u0120db": 20613, "\u0120Ridge": 20614, "\u0120Different": - 20615, "\u0120replies": 20616, "\u0120Broadway": 20617, "opers": 20618, "\u0120intoler": - 20619, "\u0120Zeus": 20620, "akespe": 20621, "\u0120proprietary": 20622, "\u0120requesting": - 20623, "\u0120controllers": 20624, "\u0120MIN": 20625, "imedia": 20626, "becca": - 20627, "\u0120expans": 20628, "\u0120oils": 20629, "Bot": 20630, "\u0120Chand": - 20631, "\u0120printer": 20632, "\u0120topped": 20633, "\u0120POL": 20634, - "\u0120Earlier": 20635, "Social": 20636, "avin": 20637, "\u0120decreases": - 20638, "\u0120Seb": 20639, "\u0120specifications": 20640, "\u0120Blast": 20641, - "\u0120Kurt": 20642, "\u0120freel": 20643, "Brown": 20644, "\u0120dilig": - 20645, "roe": 20646, "\u0120Problem": 20647, "\u0120Quad": 20648, "\u0120decentral": - 20649, "\u0120Vector": 20650, "anut": 20651, "\u0120plugins": 20652, "\u0120Gregory": - 20653, "\u0120fucked": 20654, "elines": 20655, "\u0120Ambassador": 20656, - "take": 20657, "\u0120cleans": 20658, "ongyang": 20659, "Anonymous": 20660, - "stro": 20661, "\"}": 20662, "aline": 20663, "\u0120Odd": 20664, "\u0120Eug": - 20665, "216": 20666, "\u0120boil": 20667, "\u0120Powers": 20668, "\u0120nurses": - 20669, "Obviously": 20670, "\u0120Technical": 20671, "\u0120exceeded": 20672, - "ORS": 20673, "\u0120extremists": 20674, "\u0120traces": 20675, "expl": 20676, - "\u0120comr": 20677, "\u0120Sach": 20678, ")/": 20679, "\u0120masks": 20680, - "\u0120sci": 20681, "Bon": 20682, "\u0120regression": 20683, "wegian": 20684, - "\u0120advisor": 20685, "itures": 20686, "\u0120Vo": 20687, "example": 20688, - "\u0120Instruct": 20689, "\u0120siege": 20690, "\u0120reductions": 20691, - "ptr": 20692, "\u0120statutory": 20693, "\u0120removes": 20694, "\u0120puck": - 20695, "redits": 20696, "\u0120bee": 20697, "\u0120salad": 20698, "\u0120promotions": - 20699, "\u0120Joshua": 20700, "withstanding": 20701, "ETH": 20702, "\u0120Cha": - 20703, "imus": 20704, "\u0120expenditure": 20705, "aunting": 20706, "\u0120delighted": - 20707, "\u0120155": 20708, "beh": 20709, "\u0120carpet": 20710, "\u0120Spart": - 20711, "\u0120jungle": 20712, "lists": 20713, "\u0120bullying": 20714, "\u0120Nobel": - 20715, "\u0120Glen": 20716, "\u0120referenced": 20717, "\u0120introduces": - 20718, "sein": 20719, "\u0120chopped": 20720, "glass": 20721, "\u0120Wrest": - 20722, "\u0120neutrality": 20723, "\u0120\u00e2\u013b": 20724, "\u0120investigator": - 20725, "\u0120shelves": 20726, "\u0120unconstitutional": 20727, "\u0120reproduction": - 20728, "\u0120merchant": 20729, "mia": 20730, "\u0120metrics": 20731, "\u0120explosives": - 20732, "\u0120Sonia": 20733, "\u0120bodily": 20734, "\u0120thickness": 20735, - "\u0120predominantly": 20736, "\u0120Ability": 20737, "\u0120monitored": 20738, - "ICH": 20739, "\u0120].": 20740, "\u0120Martinez": 20741, "\u0120visibility": - 20742, "\u0120queries": 20743, "\u0120genocide": 20744, "\u0120Warfare": 20745, - "Query": 20746, "\u0120studios": 20747, "\u0120embry": 20748, "\u0120corridor": - 20749, "\u0120cleaned": 20750, "complete": 20751, "\u0120MH": 20752, "\u0120enrollment": - 20753, "INGS": 20754, "\u0120impacted": 20755, "\u0120disastrous": 20756, - "\u0120Yun": 20757, "\u0120Claire": 20758, "\u0120Basically": 20759, "yt": - 20760, "usterity": 20761, "\u0120indirectly": 20762, "wik": 20763, "\u0120dod": - 20764, "\u0120Carr": 20765, "\u0120amp": 20766, "\u0120prohibit": 20767, "\u0120Initial": - 20768, "\u0120Rd": 20769, "iji": 20770, "\u0120educate": 20771, "corn": 20772, - "iott": 20773, "\u0120Beauty": 20774, "\u0120detective": 20775, "\u0120Conn": - 20776, "since": 20777, "\u0120stagger": 20778, "\u0120obese": 20779, "\u0120bree": - 20780, "ologic": 20781, "isse": 20782, "walker": 20783, "\u0120blades": 20784, - "\u0120lawful": 20785, "func": 20786, "\u0120Behind": 20787, "\u0120appetite": - 20788, "\u0120(*": 20789, "\u0120tennis": 20790, "\u0120offspring": 20791, - "\u0120jets": 20792, "\u0120structured": 20793, "\u0120aforementioned": 20794, - "Nov": 20795, "\u0120scaling": 20796, "fill": 20797, "\u0120stew": 20798, - "\u0120curb": 20799, "\u0120Stephan": 20800, "edIn": 20801, "SF": 20802, "obic": - 20803, "\u00e9\u0143\u0136": 20804, "oug": 20805, "\u0120MM": 20806, "\u0120genetically": - 20807, "opez": 20808, "136": 20809, "\u0120umb": 20810, "ancers": 20811, "\u0120cohort": - 20812, "\u0120merchandise": 20813, "\u0120imposing": 20814, "\u0120Legislature": - 20815, "\u0120Archive": 20816, "ivia": 20817, "\u0120Naval": 20818, "\u0120offences": - 20819, "\u0120miracle": 20820, "\u0120snapped": 20821, "\u0120foes": 20822, - "\u0120extensively": 20823, "\u0120Raf": 20824, "\u0120cater": 20825, "edience": - 20826, "Kit": 20827, "\u0120Bin": 20828, "\u0120recommends": 20829, "\u0120Cities": - 20830, "\u0120rigid": 20831, "\u0120READ": 20832, "\u0120Noble": 20833, "\u0120Tian": - 20834, "\u0120certificates": 20835, "antis": 20836, "oiler": 20837, "\u0120Buddhist": - 20838, "did": 20839, "\u0120surveyed": 20840, "\u0120downward": 20841, "\u0120prints": - 20842, "\u0120Motion": 20843, "ronics": 20844, "\u0120Sans": 20845, "ossibly": - 20846, "uctions": 20847, "\u0120colonies": 20848, "\u0120Danish": 20849, "unit": - 20850, "\u0120spoil": 20851, "\u0120advisory": 20852, "berries": 20853, "Plan": - 20854, "\u0120specification": 20855, "ophers": 20856, "\u0120Resource": 20857, - "\u0120shirts": 20858, "prisingly": 20859, "communications": 20860, "\u0120trivial": - 20861, "\u0120mentioning": 20862, "isexual": 20863, "\u0120supplements": 20864, - "\u0120supervision": 20865, "BP": 20866, "vor": 20867, "\u0120wit": 20868, - "\u0120cooldown": 20869, "\u0120plaintiff": 20870, "\u0120Reviews": 20871, - "\u0120Sri": 20872, "\u0120Mint": 20873, "\u0120Sugar": 20874, "\u0120afterward": - 20875, "\u0120Priest": 20876, "\u0120Investment": 20877, "ogene": 20878, "\u0120Taking": - 20879, "\u0120stretching": 20880, "\u0120inflammation": 20881, "\u0120Tehran": - 20882, "\u0120lining": 20883, "\u0120freezing": 20884, "\u0120Entity": 20885, - "\u0120inspiring": 20886, "special": 20887, "price": 20888, "\u0120sue": 20889, - "\u0120Porter": 20890, "ounge": 20891, "ETA": 20892, "\u0120Derek": 20893, - "\u0120Luis": 20894, "uo": 20895, "ymph": 20896, "\u0120exterior": 20897, - "ihil": 20898, "\u0120Ashley": 20899, "inator": 20900, "\u0120nutrients": - 20901, "\u0120Thrones": 20902, "\u0120finances": 20903, "\u0120Inspect": 20904, - "\u0120specially": 20905, "\u0120Required": 20906, "\u0120PTS": 20907, "\u0120Violence": - 20908, "ointed": 20909, "shots": 20910, "\u0120excerpt": 20911, "coon": 20912, - "INS": 20913, "\u0120Gri": 20914, "\u0120recognised": 20915, "Week": 20916, - "Young": 20917, "\u0120vom": 20918, "isle": 20919, "\u0120Curry": 20920, "\u0120Buddh": - 20921, "\u0120notebook": 20922, "\u0120durable": 20923, "/?": 20924, "\u0120Gad": - 20925, "\u0120Pupp": 20926, "\u0120forgive": 20927, "park": 20928, "\u0120personalities": - 20929, "analysis": 20930, "clamation": 20931, "\u0120elevator": 20932, "\u0120warehouse": - 20933, "\u0120Role": 20934, "unn": 20935, "\u0120illustration": 20936, "\u0120Scan": - 20937, "\u0120atmospheric": 20938, "Import": 20939, "ANC": 20940, "ricted": - 20941, "fu": 20942, "010": 20943, "\u0120arche": 20944, "\u0120rewarded": - 20945, "akespeare": 20946, "\u0120internally": 20947, "\u0120RBI": 20948, - "alker": 20949, "\u0120elephant": 20950, "owitz": 20951, "\u0120Pizza": 20952, - "\u0120bipartisan": 20953, "\u00c3\u00a9s": 20954, "\u0120slowed": 20955, - "\u0120Stark": 20956, "\u0120override": 20957, "OUS": 20958, "\u0120320": - 20959, "undreds": 20960, "\u0120Deck": 20961, "\u0120Census": 20962, "bee": - 20963, "146": 20964, "otor": 20965, "\u0120ip": 20966, "\u0120ub": 20967, - "ocations": 20968, "\u0120Button": 20969, "rice": 20970, "\u0120cripp": 20971, - "fff": 20972, "\u0120originated": 20973, "\u0120overwhelmed": 20974, "appa": - 20975, "\u0120foremost": 20976, "\u00e2\u0122\u0133": 20977, "\u0120LEG": - 20978, "release": 20979, "eatured": 20980, "atches": 20981, "\u0120reps": - 20982, "\u0120lending": 20983, "\u0120Reference": 20984, "\u0120Client": 20985, - "165": 20986, "venth": 20987, "Complete": 20988, "\u0120Patrol": 20989, "\u0120sworn": - 20990, "cam": 20991, "\u0120shuttle": 20992, "\u0120Ralph": 20993, "\u0120hometown": - 20994, "-,": 20995, "onal": 20996, "\u0120BP": 20997, "\u00e5\u0131": 20998, - "\u0120persuade": 20999, "\u0120Alexand": 21000, "\u0120combines": 21001, - "\u0120vivid": 21002, "\u0120Lag": 21003, "\u0120encoding": 21004, "\u0120salvation": - 21005, "wen": 21006, "\u0120Recovery": 21007, "iya": 21008, "University": - 21009, "\u0120Biden": 21010, "\u0120budgets": 21011, "\u0120Texans": 21012, - "fits": 21013, "\u0120honored": 21014, "\u0120python": 21015, "TD": 21016, - "###": 21017, "clone": 21018, "\u0120blink": 21019, "\u0120Liquid": 21020, - "\u0120unemployed": 21021, "\u0120clashes": 21022, "\u0120Counsel": 21023, - "\u0120directing": 21024, "\u0120punct": 21025, "\u0120Falcons": 21026, "\u0120shark": - 21027, "\u0120Damascus": 21028, "\u0120jeans": 21029, "\u0120embark": 21030, - "\u0120seize": 21031, "\u0120upwards": 21032, "280": 21033, "\u0120Ez": 21034, - "\u0120Anything": 21035, "\u0120exotic": 21036, "lower": 21037, "\u0120Creator": - 21038, "\u0120Um": 21039, "\u0120suburbs": 21040, "berger": 21041, "\u0120Wend": - 21042, "\u0120mint": 21043, "\u0120XX": 21044, "\u0120Dro": 21045, "\u0120suffers": - 21046, "\u0120herb": 21047, "tree": 21048, "\u0120fragile": 21049, "\u0120flooded": - 21050, "\u0120Alcohol": 21051, "olean": 21052, "nyder": 21053, "\u0120KO": - 21054, "Fram": 21055, "\u0120136": 21056, "\u0120owed": 21057, "\u0120Melee": - 21058, "\u0120Hash": 21059, "\u0120whisk": 21060, "\u0120sudo": 21061, "rr": - 21062, "Quick": 21063, "appro": 21064, "\u0120ii": 21065, "\u0120Examples": - 21066, "hee": 21067, "\u0120promotes": 21068, "perature": 21069, "kar": 21070, - "\u0120Honor": 21071, "\u0120sodium": 21072, "\u0120Lif": 21073, "rosso": - 21074, "intendent": 21075, "\u0120correspondent": 21076, "Found": 21077, "secret": - 21078, "\u0120identifies": 21079, "agne": 21080, "\u0120lou": 21081, "\u0120PP": - 21082, "\u0120coincidence": 21083, "move": 21084, "\u0120militia": 21085, - "\u0120infiltr": 21086, "\u0120Primary": 21087, "\u0120pitching": 21088, "\u0120Ib": - 21089, "\u0120GOOD": 21090, "\u00e3\u0124\u00b8": 21091, "\u0120Wizards": - 21092, "iral": 21093, "\u0120Venus": 21094, "RR": 21095, "\u0120\u00e2\u0122\u0137": - 21096, "\u0120Casey": 21097, "\u0120sadly": 21098, "\u0120admire": 21099, - "\u0120embarrassed": 21100, "cb": 21101, "Mel": 21102, "\u0120tubes": 21103, - "\u0120beautifully": 21104, "\u0120Queensland": 21105, "Below": 21106, "rez": - 21107, "quet": 21108, "pleasant": 21109, "\u0120\u00c2\u00ab": 21110, "Camp": - 21111, "\u0120decisive": 21112, "1998": 21113, "\u0120Lamb": 21114, "utton": - 21115, "hn": 21116, "\u0120Jagu": 21117, "aunder": 21118, "\u0120Cord": 21119, - "\u0120clerk": 21120, "\u0120caffe": 21121, "\u0120wiped": 21122, "\u0120reim": - 21123, "\u0120Mountains": 21124, "\u0120imprisoned": 21125, "\u0120develops": - 21126, "\u0120Pra": 21127, "\u0120modeling": 21128, "Anyone": 21129, "ancel": - 21130, "\u0120Sit": 21131, "\u0120shields": 21132, "\u0120lawn": 21133, "\u0120cardiovascular": - 21134, "\u0120demonstrating": 21135, "\u0120parse": 21136, "\u0120Israelis": - 21137, "\u0120euros": 21138, "143": 21139, "\u0120glorious": 21140, "inski": - 21141, "ecd": 21142, "\u0120conditioning": 21143, "\u0120helpless": 21144, - "\u0120microsc": 21145, "\u0120Harbor": 21146, "\u0120stakes": 21147, "\u0120260": - 21148, "\u0120unequ": 21149, "\u0120Floyd": 21150, "\u0120damp": 21151, "\u0120apparatus": - 21152, "\u0120Laws": 21153, "\u0120counters": 21154, "\u0120induce": 21155, - "atable": 21156, "\u0120Ahmed": 21157, "\u0120slam": 21158, "November": 21159, - "\u0120persist": 21160, "\u0120imminent": 21161, "\u00c3\u00a1n": 21162, "\u0120shred": - 21163, "\u0120phases": 21164, "\u0120Edmonton": 21165, "\u0120Armstrong": - 21166, "\u0120Meet": 21167, "\u0120Kitty": 21168, "\u00d1\u0122": 21169, "circ": - 21170, "\u0120Adult": 21171, "\u0120arose": 21172, "\u0120Xen": 21173, "Dan": - 21174, "gow": 21175, "\u0120superf": 21176, "\u0120Admir": 21177, "\u0120endure": - 21178, "\u0120keyword": 21179, "yrus": 21180, "\u0120yarn": 21181, "\u0120pathway": - 21182, "\u0120Hopkins": 21183, "midt": 21184, "\u0120censorship": 21185, "dependent": - 21186, "\u0120instructor": 21187, "Sources": 21188, "\u0120toe": 21189, "\u0120balloon": - 21190, "Nob": 21191, "\u0120swear": 21192, "\u0120Castro": 21193, "\u0120gloss": - 21194, "\u0120Kavanaugh": 21195, "\u0120remarkably": 21196, "Photos": 21197, - "\u0120Nom": 21198, "\u0120Southeast": 21199, "yers": 21200, "\u0120validation": - 21201, "\u0120cannon": 21202, "\u0120Victory": 21203, "\u0120Pierre": 21204, - "\u0120cautious": 21205, "Audio": 21206, "\u0120fetch": 21207, "\u0120Gift": - 21208, "\u0120Hyp": 21209, "\u0120remedy": 21210, "ZE": 21211, "\u0120scent": - 21212, "\u0120beard": 21213, "\u0120Rut": 21214, "-\"": 21215, "\u0120patents": - 21216, "Hy": 21217, "\u0120unjust": 21218, "\u0120potato": 21219, "\u0120forthcoming": - 21220, "\u0120chef": 21221, "\u0120Rift": 21222, "affe": 21223, "\u0120ROM": - 21224, "\u0120Launch": 21225, "\u0120pads": 21226, "\u0120Neo": 21227, "\u0120onset": - 21228, "\u0120squeeze": 21229, "safe": 21230, "\u0120prefix": 21231, "\u0120TM": - 21232, "\u0120Nearly": 21233, "\u0120Clinical": 21234, "\u0120Mental": 21235, - "otiation": 21236, "\u0120Unic": 21237, "antry": 21238, "\u0120Cir": 21239, - "\u0120epit": 21240, "\u00c3\u00a6": 21241, "\u0120extracted": 21242, "versely": - 21243, "riad": 21244, "\u0120strains": 21245, "\u0120tops": 21246, "\u0120poem": - 21247, "\u0120Randy": 21248, "\u0120Maple": 21249, "THER": 21250, "upiter": - 21251, "\u0120SSD": 21252, "\u013c\u00e9": 21253, "\u0120uncon": 21254, "pering": - 21255, "\u0120slept": 21256, "iners": 21257, "\u0120underwater": 21258, "\u0120Evidence": - 21259, "gone": 21260, "205": 21261, "\u0120historians": 21262, "\u0120synthesis": - 21263, "\u0120frog": 21264, "basketball": 21265, "\u0120vibrant": 21266, "\u0120subord": - 21267, "\u0120365": 21268, "\u0120Dial": 21269, "\u0120cooperate": 21270, - "HAHA": 21271, "\u0120greeted": 21272, "158": 21273, "\u0120jazz": 21274, - "\u0120intox": 21275, "\u0120Walking": 21276, "\u0120supervisor": 21277, "\u0120Fusion": - 21278, "\u0120Mercedes": 21279, "send": 21280, "Ham": 21281, "sd": 21282, - "nl": 21283, "\u0120tours": 21284, "\u0120FIFA": 21285, "\u0120culp": 21286, - "gd": 21287, "304": 21288, "\u0120pleas": 21289, "\u0120illustrates": 21290, - "\u0120Colombia": 21291, "\u0120highlighting": 21292, "\u0120Summary": 21293, - "\u0120exposing": 21294, "\u0120Dru": 21295, "\u0120irony": 21296, "ritional": - 21297, "\u0120Carroll": 21298, "\u0120Ellis": 21299, "Pict": 21300, "\u0120Rapt": - 21301, "\u0120adapter": 21302, "\u0120unm": 21303, "\u0120corpse": 21304, - "\u0120celebrities": 21305, "Den": 21306, "atum": 21307, "\u0120Apocalypse": - 21308, "\u0120Wag": 21309, "lining": 21310, "\u0120hormones": 21311, "Rub": - 21312, "\u0120Xi": 21313, "\u0120Vaults": 21314, "208": 21315, "alkyrie": - 21316, "inosaur": 21317, "\u0120feeds": 21318, "vity": 21319, "\u0120defeating": - 21320, "Wait": 21321, "\u0120emphasize": 21322, "\u0120Steelers": 21323, "yrinth": - 21324, "leys": 21325, "\u0120Whenever": 21326, "Currently": 21327, "\u0120Clock": - 21328, "\u0120collectively": 21329, "anyon": 21330, "\u0120JP": 21331, "\u0120mentality": - 21332, "\u0120downloads": 21333, "\u0120surroundings": 21334, "\u0120Barnes": - 21335, "\u0120flagship": 21336, "\u0120indicators": 21337, "\u0120grapp": - 21338, "January": 21339, "\u0120Elemental": 21340, "\u0120Athena": 21341, - "ibal": 21342, "\u0120sights": 21343, "\u0120capita": 21344, "\u0120Treaty": - 21345, "\u0120voiced": 21346, "\u0120Gaz": 21347, "lette": 21348, "\u0120ya": - 21349, "\u0120expired": 21350, "Legend": 21351, "Hot": 21352, "nature": 21353, - "\u0120unstable": 21354, "\u0120280": 21355, "\u00c3\u00ba": 21356, "Comment": - 21357, "ALE": 21358, "\u0120quests": 21359, "\u0120handler": 21360, "nis": - 21361, "\u0120versatile": 21362, "\u0120conceal": 21363, "engeance": 21364, - "\u0120Interactive": 21365, "\u0120obsessed": 21366, "\u0120Dogs": 21367, - "\u0120cracked": 21368, "Sound": 21369, "sv": 21370, "\u0120Dylan": 21371, - "roads": 21372, "fx": 21373, "\u0120Catholics": 21374, "\u0120Hag": 21375, - "\u0120slammed": 21376, "\u0120glowing": 21377, "sale": 21378, "\u0120tissues": - 21379, "\u0120Chi": 21380, "nee": 21381, "\u0120cher": 21382, "sic": 21383, - "urrection": 21384, "\u0120bacon": 21385, "ulatory": 21386, ").\"": 21387, - "\u0120irregular": 21388, "FORM": 21389, "assed": 21390, "\u0120intentional": - 21391, "\u0120compensate": 21392, "\u0120Speaking": 21393, "\u0120Sets": 21394, - "153": 21395, "\u0120conventions": 21396, "bands": 21397, "emade": 21398, - "\u0120ecc": 21399, "\u0120Winston": 21400, "\u0120Assassin": 21401, "\u0120Belgian": - 21402, "\u0120dependence": 21403, "\u0120niche": 21404, "\u0120bark": 21405, - "\u0120Jazz": 21406, "\u0120disadvantage": 21407, "\u0120gasoline": 21408, - "\u0120165": 21409, "\u00e7\u013c\u0126": 21410, "essa": 21411, "module": - 21412, "angular": 21413, "OY": 21414, "\u0120Treatment": 21415, "itas": 21416, - "olation": 21417, "\u0120Arnold": 21418, "\u0120feud": 21419, "\u0120Nest": - 21420, "\u0120theatre": 21421, "ewater": 21422, "\u0120minors": 21423, "olicy": - 21424, "\u0120Haven": 21425, "division": 21426, "\u0120trunk": 21427, "Far": - 21428, "\u0120Pull": 21429, "\u0120capturing": 21430, "\u01201800": 21431, - "\u0120Teen": 21432, "\u0120exempl": 21433, "\u0120clinics": 21434, "\u0120Burg": - 21435, "\u0120substit": 21436, "\u0120payload": 21437, "\u0120Lav": 21438, - "\u0120Troy": 21439, "\u0120Witness": 21440, "\u0120fragments": 21441, "\u0120passwords": - 21442, "\u0120gospel": 21443, "\u0120Gin": 21444, "\u0120tenants": 21445, - "olith": 21446, "Six": 21447, "Previous": 21448, "\u0120Ages": 21449, "\u0120Darwin": - 21450, "\u0120blat": 21451, "\u0120empathy": 21452, "smith": 21453, "bag": - 21454, "\u0120Echo": 21455, "\u0120Camb": 21456, "\u0120Madd": 21457, "\u0120Boo": - 21458, "\u0120rede": 21459, "\u0120Burning": 21460, "\u0120smoothly": 21461, - "\u0120Adrian": 21462, "\u0120Vampire": 21463, "\u0120Monsters": 21464, "steam": - 21465, "Style": 21466, "Ma": 21467, "rea": 21468, "\u0120Dwar": 21469, "alyst": - 21470, "ursor": 21471, "\u0120elimination": 21472, "\u0120crypto": 21473, - "cht": 21474, "\u0120Eternal": 21475, "\u00e2\u0122\u00a6]": 21476, "\u0120Sorce": - 21477, "Ill": 21478, "NER": 21479, "\u0120uh": 21480, "Conclusion": 21481, - "wage": 21482, "\u0120respir": 21483, "\u0120reminis": 21484, "hetical": 21485, - "\u0120gy": 21486, "\u0120utilized": 21487, "icidal": 21488, "\u01201900": - 21489, "\u0120hunters": 21490, "\u0120Swan": 21491, "\u0120React": 21492, - "\u0120visitor": 21493, "\u0120Thanksgiving": 21494, "308": 21495, "Posts": - 21496, "\u0120hips": 21497, "1997": 21498, "omers": 21499, "\u0120knocking": - 21500, "\u0120Vehicle": 21501, "\u0120til": 21502, "\u0120138": 21503, "\u0120mi": - 21504, "\u0120Investigation": 21505, "\u0120Kenya": 21506, "\u0120casino": - 21507, "\u0120motives": 21508, "\u0120regain": 21509, "rex": 21510, "\u0120weekends": - 21511, "\u0120stabbed": 21512, "boro": 21513, "\u0120exploited": 21514, "\u0120HAVE": - 21515, "\u0120Television": 21516, "cock": 21517, "\u0120preparations": 21518, - "\u0120endeav": 21519, "\u0120Remote": 21520, "\u0120Maker": 21521, "\u0120Produ": - 21522, "\u0120Evan": 21523, "\u0120informational": 21524, "\u0120Louisville": - 21525, "154": 21526, "\u0120Dreams": 21527, "\u0120plots": 21528, "\u0120Runner": - 21529, "\u0120hurting": 21530, "\u0120academy": 21531, "\u0120Montgomery": - 21532, "nm": 21533, "\u0120Lanc": 21534, "\u0120Alz": 21535, "210": 21536, - "elong": 21537, "\u0120retailer": 21538, "\u0120arising": 21539, "\u0120rebellion": - 21540, "\u0120blonde": 21541, "played": 21542, "\u0120instrumental": 21543, - "Cross": 21544, "\u0120retention": 21545, "\u0120therapeutic": 21546, "\u0120seas": - 21547, "\u0120infantry": 21548, "\u0120Clint": 21549, "\u0120prompting": 21550, - "\u0120bitch": 21551, "\u0120stems": 21552, "\u0120Kra": 21553, "\u0120thesis": - 21554, "\u0120Bog": 21555, "rued": 21556, "\u0120kings": 21557, "\u0120clay": - 21558, "ificent": 21559, "\u0120YES": 21560, "\u0120Thing": 21561, "\u0120Cubs": - 21562, "veyard": 21563, "elsh": 21564, "inarily": 21565, "\u0120Ey": 21566, - "\u0120Rolling": 21567, "\u0120evolving": 21568, "India": 21569, "\u0120recognizes": - 21570, "\u0120graduation": 21571, "isers": 21572, "\u0120fertility": 21573, - "\u0120Milan": 21574, "Command": 21575, "\u0120boxing": 21576, "\u01201943": - 21577, "\u0120gluten": 21578, "\u0120Emir": 21579, "\u0120idol": 21580, "\u0120conceived": - 21581, "\u0120Creation": 21582, "Merit": 21583, "uddy": 21584, "ussions": - 21585, "\u0120Lieutenant": 21586, "ietal": 21587, "\u0120unchanged": 21588, - "\u0120Scale": 21589, "\u0120Crimea": 21590, "balls": 21591, "atorial": 21592, - "\u0120depths": 21593, "\u0120empirical": 21594, "\u0120transm": 21595, "\u0120unsafe": - 21596, "missible": 21597, "comfort": 21598, "156": 21599, "\u0120mechanic": - 21600, "002": 21601, "lins": 21602, "\u0120smoked": 21603, "Pos": 21604, "\u0120slowing": - 21605, "\u0120lav": 21606, "Texas": 21607, "\u0120cheating": 21608, "\u0120Metropolitan": - 21609, "ethyl": 21610, "\u0120discovering": 21611, "asse": 21612, "\u0120pencil": - 21613, "\u0120Pyongyang": 21614, "\u0120closet": 21615, "\u0120Sheet": 21616, - "\u0120Entry": 21617, "oustic": 21618, "\u0120myst": 21619, "erate": 21620, - "ariat": 21621, "\u0120minerals": 21622, "\u0120musician": 21623, "\u0120Pul": - 21624, "\u0120Maz": 21625, "249": 21626, "\u0120permissions": 21627, "\u0120iv": - 21628, "enary": 21629, "ickers": 21630, "\u0120Bing": 21631, "hea": 21632, - "enable": 21633, "\u0120griev": 21634, "\u0120asserted": 21635, "\u0120Colonel": - 21636, "\u0120affidav": 21637, "wo": 21638, "\u0120seated": 21639, "\u0120Ride": - 21640, "\u0120paintings": 21641, "\u0120Pix": 21642, "\u0120137": 21643, "ishi": - 21644, "umbai": 21645, "gotten": 21646, "\u0120Earl": 21647, "\u0120inning": - 21648, "\u0120census": 21649, "\u0120travelled": 21650, "\u0120Consult": 21651, - "185": 21652, "bind": 21653, "\u0120simplicity": 21654, "\u0120overlooked": - 21655, "\u0120Helpful": 21656, "\u0120monkey": 21657, "\u0120overwhelmingly": - 21658, "Blood": 21659, "\u0120Flint": 21660, "\u0120Jama": 21661, "\u0120Present": - 21662, "\u0120Rage": 21663, "\u0120TA": 21664, "ptive": 21665, "\u0120turnout": - 21666, "wald": 21667, "\u0120Dolphins": 21668, "\u0120VPN": 21669, "\u0120onion": - 21670, "\u0120crafting": 21671, "mma": 21672, "\u0120Mercury": 21673, "\u0120arrange": - 21674, "\u0120alerts": 21675, "\u0120OT": 21676, "zbollah": 21677, "\u0120gases": - 21678, "\u0120Richardson": 21679, "sal": 21680, "lar": 21681, "\u0120frost": - 21682, "\u0120lowering": 21683, "\u0120acclaim": 21684, "\u0120startups": - 21685, "\u0120Gain": 21686, "essment": 21687, "\u0120guardian": 21688, "\u00e4\u00ba\u00ba": - 21689, "\u0120Pie": 21690, "\u0120Links": 21691, "\u0120merits": 21692, "\u0120awake": - 21693, "\u0120parental": 21694, "\u0120exceeds": 21695, "\u0120idle": 21696, - "\u0120Pilot": 21697, "\u0120eBay": 21698, "\u0120Accept": 21699, "ipeg": - 21700, "Cam": 21701, "\u0120Kot": 21702, "\u0120traders": 21703, "olitics": - 21704, "unker": 21705, "\u0120Pale": 21706, "osi": 21707, "anmar": 21708, - "\u01201947": 21709, "\u0120Fell": 21710, "estial": 21711, "itating": 21712, - "GF": 21713, "\u0120Sr": 21714, "ifted": 21715, "\u0120connector": 21716, - "\u0120Bone": 21717, "illes": 21718, "260": 21719, "hma": 21720, "\u0120overlap": - 21721, "\u0120GitHub": 21722, "\u0120cleaner": 21723, "\u0120Baptist": 21724, - "\u0120WAS": 21725, "\u0120lungs": 21726, "\u00d1\u0123": 21727, "\u0120BUT": - 21728, "\u0120cite": 21729, "\u0120pitched": 21730, "reatment": 21731, "\u0120trophies": - 21732, "\u0120Nu": 21733, "386": 21734, "\u0120Pride": 21735, "\u0120attendees": - 21736, "[]": 21737, "179": 21738, "\u0120spatial": 21739, "\u0120prizes": - 21740, "\u0120Religion": 21741, "\u0120showcase": 21742, "\u0120Category": - 21743, "vidia": 21744, "Target": 21745, "Property": 21746, "?,": 21747, "\u0120fusion": - 21748, "pie": 21749, "\u0120UCLA": 21750, "\u0120soundtrack": 21751, "\u0120princess": - 21752, "\u0120Caval": 21753, "should": 21754, "\u0120limbs": 21755, "Background": - 21756, "\u0120lonely": 21757, "\u0120cores": 21758, "\u0120Tail": 21759, "sheet": - 21760, "\u0120132": 21761, "Ra": 21762, "\u00e3\u0124\u00ab": 21763, "\u0120Bolt": - 21764, "\u0120booked": 21765, "\u0120administer": 21766, "\u0120equals": 21767, - "wy": 21768, "\u0120observing": 21769, "\u0120Baron": 21770, "\u0120Adobe": - 21771, "\u0120virgin": 21772, "\u0120Socialist": 21773, "Move": 21774, "ghazi": - 21775, "\u0120Linda": 21776, "212": 21777, "\u0120brewing": 21778, "\u0120merchants": - 21779, "burse": 21780, "\u0120divor": 21781, "\u0120metals": 21782, "\u0120Ner": - 21783, "\u0120sums": 21784, "\u0120Enemy": 21785, "\u0120envision": 21786, - "\u0120granting": 21787, "\u0120Honey": 21788, "\u0120Skyrim": 21789, "\u0120socio": - 21790, "graded": 21791, "\u0120selective": 21792, "WASHINGTON": 21793, "\u01201948": - 21794, "\u0120Sirius": 21795, "\u0120Gross": 21796, "activity": 21797, "\u0120Ivan": - 21798, "\u0120furious": 21799, "BSD": 21800, "\u0120Previous": 21801, "\u0120responsive": - 21802, "\u0120charitable": 21803, "\u0120leaning": 21804, "\u0120Pew": 21805, - "\u0120violates": 21806, "\\\\\\\\\\\\\\\\": 21807, "\u0120Coming": 21808, - "wire": 21809, "\u0120poet": 21810, "\u0120resolutions": 21811, "command": - 21812, "\u0120Portuguese": 21813, "\u0120nickname": 21814, "\u0120deaf": 21815, - "February": 21816, "\u0120recognise": 21817, "\u0120entirety": 21818, "\u0120seasonal": - 21819, "placed": 21820, "\u0120Telegraph": 21821, "\u0120microphone": 21822, - "ouring": 21823, "\u0120grains": 21824, "\u0120governed": 21825, "\u0120postp": - 21826, "\u0120Waters": 21827, "inement": 21828, "\u0120undocumented": 21829, - "\u0120Comcast": 21830, "\u0120fox": 21831, "\u0120assaults": 21832, "reon": - 21833, "many": 21834, "\u0120Jenkins": 21835, "\u0120Anyway": 21836, "\u0120assessments": - 21837, "\u0120downs": 21838, "\u0120Mouse": 21839, "\u0120superb": 21840, - "kt": 21841, "\u0120Dow": 21842, "\u0120taxation": 21843, "401": 21844, "\u0120smiles": - 21845, "\u0120undertaken": 21846, "\u0120exh": 21847, "\u0120enthusiastic": - 21848, "\u0120twent": 21849, "\u0120governmental": 21850, "\u0120autonomy": - 21851, "\u0120Technologies": 21852, "\u0120Chain": 21853, "\u0120prevalent": - 21854, "fb": 21855, "\u0120nicotine": 21856, "ogram": 21857, "job": 21858, - "\u0120awaiting": 21859, "\u0120Menu": 21860, "\u0120deputies": 21861, "kov": - 21862, "ishops": 21863, "Button": 21864, "\u0120Shanghai": 21865, "\u0120diesel": - 21866, "\u0120Duck": 21867, "Ryan": 21868, "\u0120PCs": 21869, "NF": 21870, - "jury": 21871, "ente": 21872, "\u0120inaccurate": 21873, "eddy": 21874, "Whatever": - 21875, "\u0120showc": 21876, "\u0120Nad": 21877, "odus": 21878, "etr": 21879, - "\u0120plaintiffs": 21880, "\u0120WOR": 21881, "\u0120Assange": 21882, "\u0120privat": - 21883, "\u0120premiums": 21884, "\u0120tam": 21885, "URL": 21886, "\u0120elites": - 21887, "\u0120Ranger": 21888, "ottenham": 21889, "\u0120Hoff": 21890, "\u0120Athens": - 21891, "\u0120definite": 21892, "\u0120sighed": 21893, "\u0120evenly": 21894, - "211": 21895, "\u0120Amber": 21896, "akia": 21897, "\u0120mailing": 21898, - "\u0120crashing": 21899, "\u0120Confederate": 21900, "rugged": 21901, "Wal": - 21902, "\u0120Depths": 21903, "\u0120juvenile": 21904, "\u0120reactor": 21905, - "Introduction": 21906, "\u0120Deluxe": 21907, "1995": 21908, "\u0120Sanchez": - 21909, "\u0120Mead": 21910, "ivable": 21911, ":-": 21912, "\u0120Planning": - 21913, "\u0120Trap": 21914, "quin": 21915, "\u0120Protect": 21916, "vered": - 21917, "Information": 21918, "\u0120kidney": 21919, "innamon": 21920, "las": - 21921, "\u0120policing": 21922, "\u0120tolerate": 21923, "\u0120Qi": 21924, - "\u0120biased": 21925, "Fort": 21926, "\u0120Ki": 21927, "save": 21928, "\u0120privileged": - 21929, "\u0120beasts": 21930, "\u0120Glas": 21931, "\u0120Cinem": 21932, "\u0120comeback": - 21933, "Sunday": 21934, "\u0120extinction": 21935, "hops": 21936, "\u0120transmit": - 21937, "\u0120doubles": 21938, "\u0120Flat": 21939, "167": 21940, "\u0120disputed": - 21941, "\u0120injustice": 21942, "foo": 21943, "Vict": 21944, "roleum": 21945, - "\u0120Julie": 21946, "Context": 21947, "\u0120Rarity": 21948, "issue": 21949, - "Component": 21950, "\u0120counseling": 21951, "anne": 21952, "dark": 21953, - "\u0120objections": 21954, "uilt": 21955, "\u0120gast": 21956, "\u0120plac": - 21957, "\u0120unused": 21958, "\u00e3\u0125\u0129": 21959, "\u0120Trial": - 21960, "\u0120Jas": 21961, "hedral": 21962, "obb": 21963, "\u0120temporal": - 21964, "\u0120PRO": 21965, "\u0120NW": 21966, "\u0120Anniversary": 21967, - "Large": 21968, "\u0120therm": 21969, "\u0120david": 21970, "\u0120systemic": - 21971, "\u0120Shir": 21972, "mut": 21973, "\u0120Nept": 21974, "address": - 21975, "\u0120scanning": 21976, "\u0120understandable": 21977, "\u0120canvas": - 21978, "Cat": 21979, "\u0120Zoo": 21980, "\u0120angels": 21981, "LO": 21982, - "\u0120Statement": 21983, "\u0120Sig": 21984, "ovable": 21985, "\u0120Away": - 21986, "sharing": 21987, "ocrats": 21988, "stated": 21989, "\u0120weighing": - 21990, "Nor": 21991, "wild": 21992, "Bey": 21993, "\u0120astonishing": 21994, - "\u0120Reynolds": 21995, "\u0120opener": 21996, "\u0120trainer": 21997, "\u0120surgical": - 21998, "pn": 21999, "\u0120adjusting": 22000, "wheel": 22001, "\u0120frown": - 22002, "ervative": 22003, "\u0120suspend": 22004, "Within": 22005, "tein": - 22006, "\u0120obstacle": 22007, "\u0120liberties": 22008, "ymes": 22009, "\u0120uranium": - 22010, "ansom": 22011, "anol": 22012, "uba": 22013, "\u0120Loss": 22014, "\u0120arous": - 22015, "\u0120Henderson": 22016, "Wow": 22017, "spl": 22018, "cur": 22019, - "\u0120\u00c2\u0143": 22020, "\u0120theirs": 22021, "Damage": 22022, "\u0120downloading": - 22023, "\u0120discern": 22024, "\u0120Sto": 22025, "\u0120Fla": 22026, "\u0120hath": - 22027, "\u0120Aj": 22028, "\u0120unpleasant": 22029, "European": 22030, "expensive": - 22031, "\u0120screenshot": 22032, "\u0120UV": 22033, "\u0120allied": 22034, - "\u0120Persian": 22035, "\u0120monopoly": 22036, "\u0120atom": 22037, "\u0120Redskins": - 22038, "\"><": 22039, "\u0120cancell": 22040, "\u0120cinema": 22041, "131": - 22042, "fair": 22043, "\u0120Alfred": 22044, "\u0120duck": 22045, "args": - 22046, "223": 22047, "\u0120ISI": 22048, "\u0120signaling": 22049, "inar": - 22050, "\u0120laughs": 22051, "\u0120forwards": 22052, "\u0120reckless": 22053, - "\u0120listeners": 22054, "ativity": 22055, "\u0120vastly": 22056, "nant": - 22057, "Less": 22058, "\u0120Hunting": 22059, "\u0120Scientific": 22060, "ITED": - 22061, "\u0120knight": 22062, "\u0120HTC": 22063, "usa": 22064, "tmp": 22065, - "\u0120rude": 22066, "\u0120Legendary": 22067, "\u0120arises": 22068, "Bad": - 22069, "\u0120Claim": 22070, "peg": 22071, "\u0120realities": 22072, "Think": - 22073, "\u0120\u00c2\u00b0": 22074, "\u0120rode": 22075, "\u0120strive": 22076, - "\u0120anecd": 22077, "\u0120shorts": 22078, "\u0120hypothes": 22079, "\u0120coordinated": - 22080, "\u0120Gandhi": 22081, "\u0120FPS": 22082, "RED": 22083, "\u0120susceptible": - 22084, "\u0120shrink": 22085, "\u0120Chart": 22086, "Help": 22087, "\u0120ion": - 22088, "deep": 22089, "ribes": 22090, "\u0120Kai": 22091, "\u0120Customer": - 22092, "Summary": 22093, "\u0120cough": 22094, "wife": 22095, "\u0120lend": - 22096, "\u0120positioning": 22097, "\u0120lottery": 22098, "\u0120Canyon": - 22099, "\u0120fade": 22100, "\u0120bronze": 22101, "\u0120Kenny": 22102, "\u0120boasts": - 22103, "\u0120Enhanced": 22104, "record": 22105, "\u0120emergence": 22106, - "\u0120akin": 22107, "\u0120Bert": 22108, "itous": 22109, "\u00e2\u0138\u0133": - 22110, "\u0120stip": 22111, "\u0120exchanged": 22112, "omore": 22113, "alsh": - 22114, "\u0120reservoir": 22115, "\u0120standpoint": 22116, "WM": 22117, "\u0120initiate": - 22118, "\u0120decay": 22119, "\u0120brewery": 22120, "\u0120terribly": 22121, - "\u0120mortal": 22122, "levard": 22123, "\u0120revis": 22124, "NI": 22125, - "elo": 22126, "\u0120confess": 22127, "\u0120MSNBC": 22128, "\u0120submissions": - 22129, "Controller": 22130, "\u0120202": 22131, "\u0120Ruth": 22132, "});": - 22133, "\u0120Azure": 22134, "\u0120.\"": 22135, "206": 22136, "\u0120Marketing": - 22137, "\u0120laund": 22138, "iencies": 22139, "\u0120renowned": 22140, "\u0120Trou": - 22141, "\u0120NGO": 22142, "blems": 22143, "\u0120terrified": 22144, "\u0120warns": - 22145, "\u0120pert": 22146, "\u0120unsure": 22147, "480": 22148, "alez": 22149, - "ultz": 22150, "\u0120Outside": 22151, "\u0120styl": 22152, "\u0120Underground": - 22153, "\u0120panc": 22154, "\u0120dictionary": 22155, "\u0120foe": 22156, - "riminal": 22157, "\u0120Norwegian": 22158, "\u0120jailed": 22159, "\u0120maternal": - 22160, "\u00c3\u00a9e": 22161, "\u0120Lucy": 22162, "cop": 22163, "Cho": 22164, - "\u0120unsigned": 22165, "\u0120Zelda": 22166, "\u0120Insider": 22167, "\u0120Continued": - 22168, "\u0120133": 22169, "\u0120Naruto": 22170, "\u0120Majority": 22171, - "169": 22172, "\u0120Wo": 22173, "\u00e3\u0124\u0135": 22174, "\u0120pastor": - 22175, "\u0120informal": 22176, "\u00d0\u00bd": 22177, "anthrop": 22178, "join": - 22179, "\u00e3\u0123\u0139": 22180, "itational": 22181, "NP": 22182, "\u0120Writing": - 22183, "fn": 22184, "\u0120Bever": 22185, "195": 22186, "\u0120yelling": 22187, - "\u0120drastically": 22188, "\u0120eject": 22189, "\u0120neut": 22190, "\u0120thrive": - 22191, "\u0120Frequ": 22192, "oux": 22193, "\u0120possesses": 22194, "\u0120Senators": - 22195, "\u0120DES": 22196, "\u0120Shakespeare": 22197, "\u0120Franco": 22198, - "\u0120LB": 22199, "uchi": 22200, "\u0120incarn": 22201, "\u0120founders": - 22202, "Function": 22203, "\u0120brightness": 22204, "\u0120BT": 22205, "\u0120whale": - 22206, "\u0120Theater": 22207, "mass": 22208, "\u0120Doll": 22209, "Something": - 22210, "\u0120echoed": 22211, "\u0120Hex": 22212, "crit": 22213, "afia": 22214, - "\u0120goddess": 22215, "\u0120eleven": 22216, "\u0120Preview": 22217, "\u0120Aurora": - 22218, "\u0120401": 22219, "ulsive": 22220, "\u0120Logan": 22221, "inburgh": - 22222, "\u0120Centers": 22223, "\u0120ONLY": 22224, "\u0120Aid": 22225, "\u0120paradox": - 22226, "\u0120hurd": 22227, "\u0120LC": 22228, "Due": 22229, "court": 22230, - "\u0120offended": 22231, "\u0120evaluating": 22232, "\u0120Matthews": 22233, - "\u0120tomb": 22234, "\u0120payroll": 22235, "\u0120extraction": 22236, "\u0120Hands": - 22237, "ifi": 22238, "\u0120supernatural": 22239, "\u0120COMM": 22240, "]=": - 22241, "dogs": 22242, "\u0120512": 22243, "\u0120Meeting": 22244, "Richard": - 22245, "\u0120Maximum": 22246, "\u0120ideals": 22247, "Things": 22248, "mand": - 22249, "\u0120Regardless": 22250, "\u0120humili": 22251, "buffer": 22252, - "Little": 22253, "\u0120Dani": 22254, "\u0120Nak": 22255, "\u0120liberation": - 22256, "\u0120Abe": 22257, "\u0120OL": 22258, "\u0120stuffed": 22259, "aca": - 22260, "inda": 22261, "raphic": 22262, "\u0120mosqu": 22263, "\u0120campaigning": - 22264, "\u0120occupy": 22265, "Squ": 22266, "rina": 22267, "\u0120Wel": 22268, - "\u0120VS": 22269, "\u0120physic": 22270, "\u0120puls": 22271, "rint": 22272, - "oaded": 22273, "ETF": 22274, "\u0120Archives": 22275, "\u0120venues": 22276, - "hner": 22277, "\u0120Turbo": 22278, "\u0120lust": 22279, "\u0120appealed": - 22280, "quez": 22281, "ilib": 22282, "\u0120Timothy": 22283, "\u0120omn": - 22284, "dro": 22285, "\u0120obsession": 22286, "\u0120Savage": 22287, "1996": - 22288, "Global": 22289, "Jes": 22290, "214": 22291, "\u0120sliding": 22292, - "\u0120disappro": 22293, "\u0120Magical": 22294, "\u0120voluntarily": 22295, - "gb": 22296, "aney": 22297, "\u0120prophet": 22298, "\u0120Rein": 22299, "\u0120Julia": - 22300, "\u0120Worth": 22301, "aurus": 22302, "\u0120bounds": 22303, "ieu": - 22304, ")))": 22305, "\u0120crore": 22306, "\u0120Citizen": 22307, "Sky": - 22308, "\u0120columnist": 22309, "\u0120seekers": 22310, "ondo": 22311, "ISA": - 22312, "\u0120Length": 22313, "\u0120nostalg": 22314, "\u0120newcom": 22315, - "\u0120detrim": 22316, "entric": 22317, "375": 22318, "\u0120GE": 22319, "\u0120autop": - 22320, "\u0120academics": 22321, "AppData": 22322, "\u0120Shen": 22323, "\u0120idiot": - 22324, "\u0120Transit": 22325, "\u0120teaspoon": 22326, "Wil": 22327, "KO": - 22328, "\u0120Comedy": 22329, ">,": 22330, "\u0120populated": 22331, "WD": - 22332, "\u0120pigs": 22333, "\u0120Oculus": 22334, "\u0120sympathetic": 22335, - "\u0120marathon": 22336, "198": 22337, "\u0120seizure": 22338, "sided": 22339, - "\u0120dop": 22340, "irtual": 22341, "Land": 22342, "\u0120Floor": 22343, - "osaurs": 22344, "...]": 22345, "\u0120los": 22346, "\u0120subsidiary": 22347, - "EY": 22348, "\u0120Parts": 22349, "\u0120Stef": 22350, "\u0120Judiciary": - 22351, "\u0120134": 22352, "\u0120mirrors": 22353, "\u0120ket": 22354, "times": - 22355, "\u0120neurolog": 22356, "\u0120cav": 22357, "\u0120Guest": 22358, - "\u0120tumor": 22359, "scill": 22360, "\u0120Lloyd": 22361, "Est": 22362, - "\u0120clearer": 22363, "\u0120stereotypes": 22364, "\u0120dur": 22365, "nothing": - 22366, "Reddit": 22367, "\u0120negotiated": 22368, "------------------------": - 22369, "235": 22370, "\u0120flown": 22371, "\u0120Seoul": 22372, "\u0120Resident": - 22373, "\u0120SCH": 22374, "\u0120disappearance": 22375, "\u0120Vince": 22376, - "grown": 22377, "\u0120grabs": 22378, "ril": 22379, "\u0120Infinite": 22380, - "\u0120Twenty": 22381, "\u0120pedestrian": 22382, "\u0120jersey": 22383, "\u0120Fur": - 22384, "\u0120Infinity": 22385, "\u0120Elliott": 22386, "\u0120mentor": 22387, - "\u0120morally": 22388, "\u0120obey": 22389, "secure": 22390, "iffe": 22391, - "\u0120antibiotics": 22392, "angled": 22393, "\u0120Freeman": 22394, "\u0120Introduction": - 22395, "Jun": 22396, "\u0120marsh": 22397, "icans": 22398, "\u0120EVENTS": - 22399, "ochond": 22400, "Wall": 22401, "iculty": 22402, "\u0120misdemeanor": - 22403, "\u0120ly": 22404, "Thomas": 22405, "\u0120Resolution": 22406, "\u0120animations": - 22407, "\u0120Dry": 22408, "\u0120intercourse": 22409, "\u0120Newcastle": - 22410, "\u0120Hog": 22411, "\u0120Equipment": 22412, "177": 22413, "\u0120territorial": - 22414, "\u0120archives": 22415, "203": 22416, "Filter": 22417, "\u0120Munich": - 22418, "\u0120commanded": 22419, "\u0120Wand": 22420, "\u0120pitches": 22421, - "\u0120Croat": 22422, "\u0120ratios": 22423, "\u0120Mits": 22424, "\u0120accumulated": - 22425, "\u0120Specifically": 22426, "\u0120gentleman": 22427, "acerb": 22428, - "\u0120penn": 22429, "\u0120aka": 22430, "\u0120Fuk": 22431, "\u0120intervene": - 22432, "\u0120Refuge": 22433, "\u0120Alzheimer": 22434, "\u0120succession": - 22435, "ohan": 22436, "does": 22437, "Lord": 22438, "\u0120separat": 22439, - "\u0120correspondence": 22440, "\u0120shiny": 22441, "Prior": 22442, "\u0120sulf": - 22443, "\u0120miserable": 22444, "\u0120dedication": 22445, "().": 22446, - "\u0120specialists": 22447, "\u0120defects": 22448, "\u0120Cult": 22449, "\u0120Xia": - 22450, "\u0120jeopard": 22451, "\u0120Ore": 22452, "Ability": 22453, "\u0120lear": - 22454, "\u0120ambitions": 22455, "\u0120BMI": 22456, "\u0120Arabs": 22457, - "\u01201942": 22458, "\u0120preservation": 22459, "ificate": 22460, "\u0120ashamed": - 22461, "loss": 22462, "\u0120Restaur": 22463, "\u0120resemble": 22464, "\u0120enrich": - 22465, "\u0120KN": 22466, "\u0120Clan": 22467, "float": 22468, "\u0120playable": - 22469, "ITT": 22470, "\u0120harmony": 22471, "arrison": 22472, "\u0120Weinstein": - 22473, "were": 22474, "\u0120poisoning": 22475, "\u0120Comput": 22476, "\u0120WordPress": - 22477, "major": 22478, "\u0120Valve": 22479, "Fan": 22480, "\u0120Throw": - 22481, "\u0120Romans": 22482, "\u0120Depression": 22483, "ados": 22484, "\u0120tortured": - 22485, "\u0120balancing": 22486, "bottom": 22487, "\u0120acquiring": 22488, - "\u0120Monte": 22489, "ardi": 22490, "\u0120aura": 22491, "\u0120##": 22492, - "\u0120Standing": 22493, "\u0120Atlas": 22494, "CF": 22495, "\u0120intrins": - 22496, "\u0120Benghazi": 22497, "\u0120camping": 22498, "\u0120tapped": 22499, - "blade": 22500, "strous": 22501, "\u0120Rabb": 22502, "\u0120Written": 22503, - "tip": 22504, "\u0120Neigh": 22505, "sterdam": 22506, "\u0120Allow": 22507, - "\u0120Healing": 22508, "\u0120Rhod": 22509, "num": 22510, "\u0120caffeine": - 22511, "\u0120Percent": 22512, "\u0120boo": 22513, "\u0120apples": 22514, - "305": 22515, "\u0120welcoming": 22516, "\u0120applaud": 22517, "\u0120austerity": - 22518, "\u00c2\u00b1": 22519, "\u0120Reality": 22520, "efe": 22521, "\u00e5\u00ae": - 22522, "\u0120sucks": 22523, "\u0120tabs": 22524, "\u0120PayPal": 22525, "\u0120backpack": - 22526, "\u0120gifted": 22527, "abulary": 22528, "\u0120Scout": 22529, "irteen": - 22530, "\u0120chin": 22531, "\u0120omitted": 22532, "\u0120negatively": 22533, - "\u0120accessing": 22534, "\u0120Earn": 22535, "\u0120ambulance": 22536, "\u0120headphones": - 22537, "\u0120205": 22538, "\u0120Refresh": 22539, "president": 22540, "\u0120Kitchen": - 22541, "\u0120Entered": 22542, "\u0120Snyder": 22543, "005": 22544, "omical": - 22545, "\u0120borrowed": 22546, "\u0120Nem": 22547, "\u0120aviation": 22548, - "\u0120stall": 22549, "rimination": 22550, "\u0120uniforms": 22551, "itime": - 22552, "\u0120Simmons": 22553, "energy": 22554, "ablished": 22555, "yy": 22556, - "qualified": 22557, "\u0120rallies": 22558, "\u0120Stuart": 22559, "flight": - 22560, "\u0120gangs": 22561, "rag": 22562, "\u0120vault": 22563, "lux": 22564, - "\u0120Compar": 22565, "\u0120designation": 22566, "209": 22567, "\u0120Jos": - 22568, "dollar": 22569, "zero": 22570, "\u0120wells": 22571, "303": 22572, - "\u0120constituents": 22573, "\u0120heck": 22574, "\u0120cows": 22575, "\u0120commanders": - 22576, "\u0120differential": 22577, "\u0120Catherine": 22578, "299": 22579, - "\u0120valve": 22580, "\u0120brace": 22581, "\u0120perspectives": 22582, "cert": - 22583, "fact": 22584, "icularly": 22585, "\u0120McN": 22586, "planes": 22587, - "\u0120intric": 22588, "\u0120peas": 22589, "ovan": 22590, "\u0120tossed": - 22591, "retch": 22592, "\u0120Lopez": 22593, "\u0120unfamiliar": 22594, "death": - 22595, "\u0120Apart": 22596, "\u0120Chang": 22597, "\u0120relieved": 22598, - "rophe": 22599, "\u0120airports": 22600, "\u0120freak": 22601, "util": 22602, - "Mill": 22603, "\u0120Chin": 22604, "\u0120Owen": 22605, "male": 22606, "\u0120Broken": - 22607, "\u0120Winds": 22608, "rob": 22609, "rising": 22610, "\u0120firefighters": - 22611, "\u0120authoritarian": 22612, "\u0120148": 22613, "Bitcoin": 22614, - "external": 22615, "\u0120browsers": 22616, "ichever": 22617, "orian": 22618, - "\u0120unb": 22619, "\u0120poke": 22620, "\u0120Zot": 22621, "Mid": 22622, - "\u0120Popular": 22623, "\u0120covert": 22624, "\u0120contributes": 22625, - "\u0120650": 22626, "\u0120contention": 22627, "Gate": 22628, "\u0120consoles": - 22629, "\u0120chromos": 22630, "\u0120IX": 22631, "\u0120visually": 22632, - "\u0120Eisen": 22633, "\u0120jewelry": 22634, "\u0120delegation": 22635, "\u0120accelerate": - 22636, "\u0120Riley": 22637, "\u0120slope": 22638, "\u0120indoor": 22639, - "itially": 22640, "\u0120hugely": 22641, "\u0120tunnels": 22642, "\u0120fined": - 22643, "\u0120directive": 22644, "\u0120forehead": 22645, "ustomed": 22646, - "\u0120skate": 22647, "Music": 22648, "gas": 22649, "\u0120recognizing": 22650, - "ambo": 22651, "\u0120overweight": 22652, "\u0120Grade": 22653, "\u00d9\u012c": - 22654, "\u0120sounding": 22655, "\u0120locking": 22656, "\u0120REM": 22657, - "Store": 22658, "\u0120excav": 22659, "\u0120Likewise": 22660, "\u0120Lights": - 22661, "\u0120elbow": 22662, "\u0120Supply": 22663, "wic": 22664, "\u0120handsome": - 22665, "1994": 22666, "Coll": 22667, "\u0120adequately": 22668, "\u0120Associate": - 22669, "\u0120strips": 22670, "\u0120crackdown": 22671, "\u0120marvel": 22672, - "\u0120Kun": 22673, "\u0120passages": 22674, "@@@@": 22675, "\u0120Tall": - 22676, "\u0120thoughtful": 22677, "namese": 22678, "\u0120prostitution": 22679, - "business": 22680, "\u0120ballistic": 22681, "personal": 22682, "cig": 22683, - "izational": 22684, "Round": 22685, "\u0120\u00c2\u0142\u0120\u00c2\u0142\u0120\u00c2\u0142\u0120\u00c2\u0142": - 22686, "\u0120Coleman": 22687, "\u0120admitting": 22688, "\u0120Plug": 22689, - "\u0120bitcoins": 22690, "\u0120Suz": 22691, "\u0120fairness": 22692, "\u0120supplier": - 22693, "\u0120catastrophic": 22694, "\u0120Helen": 22695, "oqu": 22696, "Marc": - 22697, "\u0120Articles": 22698, "gie": 22699, "\u0120endangered": 22700, "\u0120destiny": - 22701, "\u0120Volt": 22702, "olia": 22703, "axis": 22704, "\u0120cheat": 22705, - "\u0120unified": 22706, "ICO": 22707, "quote": 22708, "302": 22709, "\u0120Sed": - 22710, "\u0120suppression": 22711, "\u0120analyzing": 22712, "\u0120squat": - 22713, "\u0120figuring": 22714, "\u0120coordinates": 22715, "\u0120chunks": - 22716, "\u01201946": 22717, "\u0120subp": 22718, "\u0120wiki": 22719, "\u0120Forbes": - 22720, "\u0120Jupiter": 22721, "\u0120Erik": 22722, "imer": 22723, "\u0120Commercial": - 22724, "\\)": 22725, "\u0120legitimacy": 22726, "\u0120dental": 22727, "\u0120Mean": - 22728, "\u0120deficits": 22729, "550": 22730, "Originally": 22731, "\u0120Horror": - 22732, "\u0120contamination": 22733, "llah": 22734, "\u0120confisc": 22735, - "\u0120Clare": 22736, "TB": 22737, "\u0120Failed": 22738, "aned": 22739, "\u0120ruler": - 22740, "\u0120Controller": 22741, "\u0120feminists": 22742, "Fix": 22743, - "gay": 22744, "207": 22745, "\u0120rabbit": 22746, "Third": 22747, "owntown": - 22748, "\u0120glue": 22749, "\u0120volatile": 22750, "\u0120shining": 22751, - "\u0120foll": 22752, "\u0120impaired": 22753, "\u0120supers": 22754, "\u00e6\u012a": - 22755, "\u0120clutch": 22756, "\u013c\u00e9\u0128\u0134": 22757, "\u0120prolet": - 22758, "\u0120(!": 22759, "\u0120yelled": 22760, "\u0120Kiev": 22761, "\u0120Ern": - 22762, "\u0120Shock": 22763, "KB": 22764, "\u0120situated": 22765, "query": - 22766, "\u0120Nas": 22767, "\u0120annex": 22768, "character": 22769, "\u0120Holiday": - 22770, "\u0120automation": 22771, "\u0120Jill": 22772, "\u0120Remastered": - 22773, "\u0120linem": 22774, "\u0120wilderness": 22775, "\u0120Horizon": 22776, - "\u0120Guinea": 22777, "AZ": 22778, "\u0120mainland": 22779, "\u0120secrecy": - 22780, "LEASE": 22781, "\u0120punk": 22782, "\u0120Province": 22783, "(),": - 22784, "Speed": 22785, "\u0120handing": 22786, "\u0120Sebast": 22787, "Sir": - 22788, "rase": 22789, "\u0120journals": 22790, "\u0120congest": 22791, "\u0120Tut": - 22792, "irrel": 22793, "\u0120schizophrenia": 22794, "\u0120misogyn": 22795, - "healthy": 22796, "Iron": 22797, "\u0120reacted": 22798, "-$": 22799, "252": - 22800, "\u0120plural": 22801, "\u0120plum": 22802, "\u0120bargain": 22803, - "\u0120grounded": 22804, "finder": 22805, "\u0120disse": 22806, "\u0120Laz": - 22807, "OOD": 22808, "\u0120atroc": 22809, "Factory": 22810, "\u0120minions": - 22811, "\u0120ori": 22812, "\u0120Brave": 22813, "\u0120PRE": 22814, "\u0120Myanmar": - 22815, "\u0120Hod": 22816, "\u0120expedition": 22817, "\u0120explode": 22818, - "\u0120Coord": 22819, "\u0120extr": 22820, "\u0120Brief": 22821, "\u0120ADHD": - 22822, "\u0120hardcore": 22823, "feeding": 22824, "\u0120dile": 22825, "\u0120Fruit": - 22826, "\u0120vaccination": 22827, "\u0120Mao": 22828, "osphere": 22829, "\u0120contests": - 22830, "-|": 22831, "\u0120fren": 22832, "isphere": 22833, "Rom": 22834, "\u0120Sharp": - 22835, "\u0120Trend": 22836, "\u0120disconnect": 22837, "\u00e2\u0122\u00a2\u00e2\u0122\u00a2": - 22838, "\u0120persecution": 22839, "Earth": 22840, "\u0120healthier": 22841, - "384": 22842, "\u0120cob": 22843, "\u0120Trinity": 22844, "OWS": 22845, "ANN": - 22846, "\u0120specialty": 22847, "\u0120gru": 22848, "\u0120cooperative": - 22849, "why": 22850, "Starting": 22851, "\u0120Issues": 22852, "stre": 22853, - "ensor": 22854, "\u0120185": 22855, "Adv": 22856, "!?": 22857, "\u0120Revel": - 22858, "emia": 22859, "\u0120Hulk": 22860, "\u0120celebrations": 22861, "\u0120Sou": - 22862, "raud": 22863, "\u0120Klein": 22864, "\u0120unreal": 22865, "context": - 22866, "\u0120partnerships": 22867, "\u0120adopting": 22868, "tical": 22869, - "\u0120splash": 22870, "\u0120Hezbollah": 22871, "category": 22872, "cyclop": - 22873, "xton": 22874, "\u0120Dot": 22875, "urdy": 22876, "tz": 22877, "\u0120envelope": - 22878, "\u0120NL": 22879, "\u00e2\u0137": 22880, "\u0120wherein": 22881, "Spec": - 22882, "184": 22883, "\u0120telev": 22884, "aliation": 22885, "\u0120myths": - 22886, "\u00e5\u00b0": 22887, "\u0120rigorous": 22888, "\u0120communicating": - 22889, "\u0120observer": 22890, "\u0120rehe": 22891, "\u0120Wash": 22892, - "\u0120apologized": 22893, "\u0120Tin": 22894, "\u0120expenditures": 22895, - "workers": 22896, "document": 22897, "\u0120hesitate": 22898, "\u0120Lenin": - 22899, "\u0120unpredictable": 22900, "\u0120renewal": 22901, "cler": 22902, - "okia": 22903, "\u0120CONT": 22904, "\u0120postseason": 22905, "Tokens": 22906, - "\u0120exacerb": 22907, "\u0120betting": 22908, "\u0120147": 22909, "\u0120elevation": - 22910, "Wood": 22911, "\u0120Solomon": 22912, "194": 22913, "004": 22914, - "output": 22915, "\u0120redund": 22916, "\u0120Mumbai": 22917, "\u0120pH": - 22918, "\u0120reproduce": 22919, "\u0120Duration": 22920, "MAX": 22921, "\u0120bog": - 22922, "CBS": 22923, "\u0120Balance": 22924, "\u0120Sgt": 22925, "\u0120Recent": - 22926, "\u0120cd": 22927, "\u0120popped": 22928, "\u0120incompet": 22929, - "prop": 22930, "ayan": 22931, "guy": 22932, "Pacific": 22933, "\u0120tyr": - 22934, "\u0120{{": 22935, "\u0120Mystic": 22936, "\u0120Dana": 22937, "\u0120masturb": - 22938, "\u0120geometry": 22939, "\u00c3\u00a2": 22940, "\u0120Correct": 22941, - "\u0120trajectory": 22942, "\u0120distracted": 22943, "\u0120foo": 22944, - "\u0120Welsh": 22945, "Luc": 22946, "mith": 22947, "\u0120rugby": 22948, "\u0120respiratory": - 22949, "\u0120triangle": 22950, "\u0120215": 22951, "\u0120undergraduate": - 22952, "\u0120Superior": 22953, "changing": 22954, "_-": 22955, "\u0120rightly": - 22956, "\u0120referee": 22957, "\u0120lucrative": 22958, "\u0120unauthorized": - 22959, "\u0120resembles": 22960, "\u0120GNU": 22961, "\u0120Derby": 22962, - "\u0120pathways": 22963, "\u0120Led": 22964, "\u0120endurance": 22965, "\u0120stint": - 22966, "\u0120collector": 22967, "Fast": 22968, "\u0120dots": 22969, "\u0120nationals": - 22970, "\u0120Securities": 22971, "\u0120whip": 22972, "Param": 22973, "\u0120learns": - 22974, "Magic": 22975, "\u0120detailing": 22976, "moon": 22977, "\u0120broadcasting": - 22978, "\u0120baked": 22979, "265": 22980, "holm": 22981, "\u0120Sah": 22982, - "\u0120Hussein": 22983, "\u0120Courtesy": 22984, "174": 22985, "\u0120146": - 22986, "\u0120geographic": 22987, "peace": 22988, "\u0120judging": 22989, - "\u0120Stern": 22990, "Bur": 22991, "\u0120storyline": 22992, "Gun": 22993, - "\u0120Stick": 22994, "245": 22995, "307": 22996, "\u00e3\u0124\u00b4\u00e3\u0125\u00b3": - 22997, "\u0120Administrator": 22998, "\u0120burnt": 22999, "\u0120pave": 23000, - "choes": 23001, "Exec": 23002, "\u0120campuses": 23003, "Result": 23004, "\u0120mutations": - 23005, "\u0120Charter": 23006, "\u0120captures": 23007, "\u0120compares": - 23008, "\u0120badge": 23009, "Scient": 23010, "\u0120erad": 23011, "iery": - 23012, "oi": 23013, "ettes": 23014, "\u0120Estate": 23015, "\u0120strap": - 23016, "\u0120proudly": 23017, "\u0120fried": 23018, "\u0120withdrawn": 23019, - "\u0120Voy": 23020, "phony": 23021, "Items": 23022, "\u0120Pierce": 23023, - "bard": 23024, "\u0120annotation": 23025, "anton": 23026, "illon": 23027, - "Impro": 23028, "...)": 23029, "\u0120happier": 23030, "------": 23031, "adjust": - 23032, "\u0120staffers": 23033, "\u0120activism": 23034, "\u0120perf": 23035, - "\u0120alright": 23036, "Need": 23037, "\u0120commence": 23038, "\u0120opioid": - 23039, "\u0120Amanda": 23040, "Es": 23041, "\u0120Pars": 23042, "\u0120Kaw": - 23043, "Works": 23044, "248": 23045, "\u0120indo": 23046, "tc": 23047, "endant": - 23048, "\u0120Moto": 23049, "\u0120legalization": 23050, "OTE": 23051, "\u0120tasked": - 23052, "\u0120tsp": 23053, "\u0120ACTIONS": 23054, "166": 23055, "\u0120refreshing": - 23056, "\u0120NR": 23057, "\u0120Perez": 23058, "\u0120infringement": 23059, - "SY": 23060, "Listen": 23061, "inning": 23062, "ku": 23063, "\u0120rotate": - 23064, "program": 23065, "arah": 23066, "Design": 23067, "\u0120(\u00c2\u00a3": - 23068, "\u0120storing": 23069, "\u0120warrants": 23070, "\u0120judgement": - 23071, "\u0120Brist": 23072, "usually": 23073, "photo": 23074, "\u0120Ran": - 23075, "\u0120Pine": 23076, "\u0120outrageous": 23077, "\u0120Valentine": - 23078, "luence": 23079, "\u0120Everybody": 23080, "Altern": 23081, "\u0120relevance": - 23082, "\u0120terminated": 23083, "\u0120dessert": 23084, "\u0120fulfilled": - 23085, "\u0120prosecuted": 23086, "\u0120Words": 23087, "\u0120migrant": 23088, - "\u0120cultivation": 23089, "\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124": - 23090, "idelity": 23091, "\u0120Vern": 23092, "\u0120Login": 23093, "\u0120metaphor": - 23094, "\u0120Tip": 23095, "\u0120recruits": 23096, "\u0120Pig": 23097, "ribing": - 23098, "\u0120enthusiasts": 23099, "exper": 23100, "\u0120frightening": 23101, - "\u0120Hair": 23102, "anson": 23103, "strate": 23104, "\u0120hi": 23105, "Height": - 23106, "\u0120owning": 23107, "none": 23108, "\u0120dislike": 23109, "\u0120knives": - 23110, "pherd": 23111, "\u0120loudly": 23112, "\u0120APIs": 23113, "Display": - 23114, "\u0120Lac": 23115, "\u0120USS": 23116, "abl": 23117, "verages": 23118, - "Jew": 23119, "\u0120172": 23120, "\u0120Historical": 23121, "atoon": 23122, - "\u0120Physics": 23123, "intern": 23124, "\u0120warmth": 23125, "\u0120topp": - 23126, "DM": 23127, "\u0120gunman": 23128, "\u0120emperor": 23129, "odi": - 23130, "\u00e3\u0125\u00a3": 23131, "inatory": 23132, "\u0120Rib": 23133, - "\u0120131": 23134, "\u0120Saturn": 23135, "\u0120Shining": 23136, "\u0120waking": - 23137, "Quotes": 23138, "\u0120comedian": 23139, "enberg": 23140, "\u00c2\u00bd": - 23141, "\u0120believers": 23142, "\u0120paperwork": 23143, "custom": 23144, - "\u0120lev": 23145, "\u0120lament": 23146, "\u0120pouring": 23147, "222": - 23148, "political": 23149, "\u0120Supplement": 23150, "maid": 23151, "\u0120cruelty": - 23152, "\u0120tread": 23153, "ysics": 23154, "Aw": 23155, "rites": 23156, - "\u0120modifier": 23157, "\u0120Position": 23158, "Adam": 23159, "lb": 23160, - "ubs": 23161, "\u0120imperfect": 23162, "\u0120clusters": 23163, "\u0120Engineer": - 23164, "\u0120Cherry": 23165, "\u0120inauguration": 23166, "\u0120Sau": 23167, - "\u0120embodiment": 23168, "\u0120Uncle": 23169, "\u0120overr": 23170, "\u0120explosions": - 23171, "cule": 23172, "\u0120Princeton": 23173, "\u0120Andrea": 23174, "\u0120incorrectly": - 23175, "\u0120earnest": 23176, "\u0120pilgr": 23177, "\u0120Sprint": 23178, - "\u0120sleeve": 23179, "\u0120hears": 23180, "\u0120Amazing": 23181, "\u0120browsing": - 23182, "agin": 23183, "\u0120homeland": 23184, "\u0120haw": 23185, "\u0120diving": - 23186, "istered": 23187, "178": 23188, "\u0120bargaining": 23189, "\u0120Arcade": - 23190, "\u0120delegate": 23191, "terson": 23192, "................................................................": - 23193, "\u0120Jacksonville": 23194, "275": 23195, "\u0120stagn": 23196, "\u0120adam": - 23197, "\u0120Sherman": 23198, "CB": 23199, "\u0120suburb": 23200, "\u0120Foods": - 23201, "\u0120converting": 23202, "\u0120Arist": 23203, "\u0120chambers": - 23204, "love": 23205, "\u0120amino": 23206, "\u0120Gan": 23207, "\u0120madness": - 23208, "mc": 23209, "\u0120USE": 23210, "defined": 23211, "\u0120ultr": 23212, - "indust": 23213, "\u0120wolves": 23214, "lance": 23215, "Additionally": 23216, - "\u0120cracks": 23217, "asia": 23218, "\u0120Reason": 23219, "\u0120Pump": - 23220, "\u0120accidental": 23221, "\u0120Laser": 23222, "\u0120Rid": 23223, - "\u0120initialized": 23224, "elli": 23225, "\u0120unnamed": 23226, "\u0120noun": - 23227, "\u0120Passed": 23228, "\u0120hostage": 23229, "\u0120Ethiop": 23230, - "shirts": 23231, "\u0120unrel": 23232, "\u0120Embassy": 23233, "\u01201941": - 23234, "\u0120atoms": 23235, "\u0120purported": 23236, "164": 23237, "\u0120Fi": - 23238, "\u0120gallons": 23239, "\u0120Monica": 23240, "\u0120pg": 23241, "enment": - 23242, "\u0120sorted": 23243, "\u0120Gospel": 23244, "\u0120heights": 23245, - "\u0120traced": 23246, "\u0120undergoing": 23247, "Shell": 23248, "\u0120sacks": - 23249, "\u0120proportions": 23250, "\u0120halluc": 23251, "Font": 23252, "acet": - 23253, "\u0120warmer": 23254, "\u0120INTER": 23255, "\u0120grabbing": 23256, - "Plug": 23257, "\u0120realization": 23258, "\u0120Burke": 23259, "\u0120enchant": - 23260, "ATER": 23261, "\u0120Seed": 23262, "\u0120abundant": 23263, "FM": - 23264, "\u0120civic": 23265, "Vs": 23266, "isi": 23267, "\u0120vow": 23268, - "\u0120reper": 23269, "\u0120Partnership": 23270, "\u0120penetration": 23271, - "\u0120axe": 23272, "\u0120shattered": 23273, "\u0120Zombies": 23274, "\u0120vinyl": - 23275, "\u0120Alert": 23276, "eon": 23277, "\u0120obliged": 23278, "\u0120Illust": - 23279, "\u0120Plaza": 23280, "\u0120Frontier": 23281, "\u0120davidjl": 23282, - "\u0120Serial": 23283, "\u0120Hav": 23284, "\u0120Nutrition": 23285, "Bi": - 23286, "\u0120\u00e2\u0138\u012a": 23287, "\u0120Jays": 23288, "linux": 23289, - "\u0120hurry": 23290, "\u0120voy": 23291, "\u0120hopeless": 23292, "\u0120Stealth": - 23293, "\u0120\u00e3\u0123": 23294, "essors": 23295, "ttle": 23296, "borg": - 23297, "\u0120Safari": 23298, "fell": 23299, "\u0120wary": 23300, "due": 23301, - "\u0120Above": 23302, "Ha": 23303, "ELL": 23304, "\u0120notor": 23305, "\u0120Won": - 23306, "Too": 23307, "\u0120occupations": 23308, "\u0120possessions": 23309, - "\u0120inviting": 23310, "\u0120predators": 23311, "\u0120accelerated": 23312, - "\u0120157": 23313, "uterte": 23314, "\u0120Cube": 23315, "east": 23316, "account": - 23317, "Give": 23318, "\u0120transplant": 23319, "redients": 23320, "idable": - 23321, "\u0120screenshots": 23322, "\u0120Gund": 23323, "\u0120FS": 23324, - "\u0120travelers": 23325, "\u0120sensory": 23326, "\u0120Fiat": 23327, "\u0120Rockets": - 23328, "\u0130\u012d": 23329, "_{": 23330, "Friend": 23331, "\u0120charming": - 23332, "ALS": 23333, "\u0120enjoyment": 23334, "mph": 23335, "\u01205000": - 23336, "\u0120REG": 23337, "\u00d9\u0128": 23338, "bia": 23339, "\u0120compilation": - 23340, "rost": 23341, "\u0120VP": 23342, "\u0120Schne": 23343, "2019": 23344, - "\u0120copying": 23345, "MORE": 23346, "\u0120Flore": 23347, "falls": 23348, - "215": 23349, "total": 23350, "\u0120disciples": 23351, "double": 23352, "\u0120exceeding": - 23353, "\u0120smashed": 23354, "\u0120conceptual": 23355, "\u0120Romania": - 23356, "\u0120Brent": 23357, "\u0120ICE": 23358, "\u0120Tou": 23359, "\u0120grap": - 23360, "\u0120nails": 23361, "189": 23362, "\u00e3\u0125\u013a": 23363, "\u0120procure": - 23364, "eur": 23365, "\u0120confirming": 23366, "\u0120Cec": 23367, "awi": - 23368, "\u0120Eden": 23369, "\u0120ng": 23370, "\u0120engineered": 23371, - "atics": 23372, "\u0120hooked": 23373, "\u0120disgusting": 23374, "\u0120Murder": - 23375, "\u00e3\u0124\u00bf": 23376, "Library": 23377, "\u0120168": 23378, - "Almost": 23379, "hematic": 23380, "Menu": 23381, "\u0120Notre": 23382, "\u0120Jur": - 23383, "\u0120kidnapped": 23384, "\u0120hacker": 23385, "\u0120Jade": 23386, - "\u0120creepy": 23387, "\u0120drawings": 23388, "\u0120Sponsor": 23389, "\u0120cyclists": - 23390, "\u0120Goblin": 23391, "\u0120optimized": 23392, "\u0120staged": 23393, - "\u0120McD": 23394, "between": 23395, "Age": 23396, "eno": 23397, "Sex": 23398, - "\u0120Wide": 23399, "nings": 23400, "avis": 23401, "\u0120incapable": 23402, - "\u0120Kob": 23403, "\u0120rewarding": 23404, "\u0120Lone": 23405, "olescent": - 23406, "\u0120contracted": 23407, "\u0120sticky": 23408, "Jose": 23409, "Ball": - 23410, "fest": 23411, "\u0120Input": 23412, "\u0120Recently": 23413, "\u0120tomat": - 23414, "square": 23415, "Application": 23416, "\u0120nitrogen": 23417, "\u0120duplicate": - 23418, "\u0120Recon": 23419, "\u0120Dear": 23420, "London": 23421, "\u0120intra": - 23422, "\u0120dock": 23423, "\u0120outreach": 23424, "\u0120Million": 23425, - "\u0120mammals": 23426, "ampton": 23427, "VAL": 23428, "\u0120snaps": 23429, - "\u0120dos": 23430, "\u0120Whole": 23431, "\u0120Ready": 23432, "Try": 23433, - "\u0120Winnipeg": 23434, "earance": 23435, "\u0120incurred": 23436, "renched": - 23437, "\u0120NSW": 23438, "ilot": 23439, "raine": 23440, "\u0120cube": 23441, - "got": 23442, "\u0120runway": 23443, "etermined": 23444, "\u0120Hawks": 23445, - "\u0120survivor": 23446, "\u0120Wish": 23447, "\u0120Din": 23448, "\u0120DEF": - 23449, "\u0120Vault": 23450, "187": 23451, "\u0120mushrooms": 23452, "\u0120crisp": - 23453, "bey": 23454, "\u0120Discovery": 23455, "\u0120developmental": 23456, - "\u0120paradigm": 23457, "\u0120chaotic": 23458, "\u0120Tsu": 23459, "\u0120333": - 23460, "bons": 23461, "\u0120bacterial": 23462, "\u0120commits": 23463, "\u0120cosmic": - 23464, "\u0120mega": 23465, "ocative": 23466, "\u0120Paint": 23467, "ophobic": - 23468, "\u0120vain": 23469, "\u0120carved": 23470, "\u0120Thief": 23471, "\u0120Gul": - 23472, "owship": 23473, "\u0120cites": 23474, "\u0120Edinburgh": 23475, "\u0120diminished": - 23476, "\u0120acknowledges": 23477, "\u0120Kills": 23478, "\u0120microw": - 23479, "\u0120Hera": 23480, "\u0120seniors": 23481, "\u0120whereby": 23482, - "Hop": 23483, "atron": 23484, "\u0120unavailable": 23485, "\u0120Nate": 23486, - "\u0120480": 23487, "\u0120slated": 23488, "\u0120Rebecca": 23489, "\u0120Battery": - 23490, "\u0120grammar": 23491, "\u0120headset": 23492, "\u0120cursor": 23493, - "\u0120excluding": 23494, "anye": 23495, "aundering": 23496, "ebin": 23497, - "\u0120feasible": 23498, "\u0120Publishing": 23499, "\u0120Labs": 23500, "\u0120Cliff": - 23501, "\u0120Ferrari": 23502, "\u0120pac": 23503, "visible": 23504, "marked": - 23505, "pell": 23506, "\u0120polite": 23507, "\u0120staggering": 23508, "\u0120Galactic": - 23509, "\u0120superst": 23510, "\u0120paran": 23511, "\u0120Officers": 23512, - "\u00e3\u0122\u0123": 23513, "\u0120specifics": 23514, "ulus": 23515, "239": - 23516, "\u0120Paste": 23517, "AMP": 23518, "\u0120Panama": 23519, "\u0120Delete": - 23520, "anguard": 23521, "restrial": 23522, "\u0120heroic": 23523, "\u0120Dy": - 23524, "\u00d8\u00a7\u00d9\u0126": 23525, "\u0120incumbent": 23526, "\u0120crunch": - 23527, "tro": 23528, "\u0120scoop": 23529, "\u0120blogger": 23530, "\u0120sellers": - 23531, "uren": 23532, "\u0120medicines": 23533, "\u0120Caps": 23534, "\u0120Animation": - 23535, "oxy": 23536, "\u0120outward": 23537, "\u0120inquiries": 23538, "229": - 23539, "\u0120psychologist": 23540, "\u0120Sask": 23541, "evil": 23542, "\u0120contaminated": - 23543, "\u00e3\u0124\u00a8": 23544, "herence": 23545, "\u0120branded": 23546, - "\u0120Abdul": 23547, "zh": 23548, "\u0120paragraphs": 23549, "\u0120mins": - 23550, "\u0120correlated": 23551, "erb": 23552, "\u0120impart": 23553, "\u0120milestone": - 23554, "\u0120Solutions": 23555, "otle": 23556, "\u0120undercover": 23557, - "\u0120marched": 23558, "\u0120Chargers": 23559, "fax": 23560, "\u0120Secrets": - 23561, "\u0120ruth": 23562, "weather": 23563, "\u0120feminine": 23564, "\u0120sham": - 23565, "\u0120prestigious": 23566, "iggins": 23567, "\u0120sung": 23568, "history": - 23569, "ettle": 23570, "ggie": 23571, "\u0120outdated": 23572, "oland": 23573, - "\u0120perceptions": 23574, "\u0120Session": 23575, "\u0120Dodgers": 23576, - "uj": 23577, "\u0120END": 23578, "Doc": 23579, "\u0120deficiency": 23580, - "Grand": 23581, "\u0120Joker": 23582, "\u0120retrospect": 23583, "\u0120diagnostic": - 23584, "\u0120harmless": 23585, "\u0120rogue": 23586, "\u0120Aval": 23587, - "Equ": 23588, "\u0120transc": 23589, "\u0120Robertson": 23590, "\u0120Depending": - 23591, "\u0120Burns": 23592, "ivo": 23593, "\u0120hostility": 23594, "Features": - 23595, "\u0135\u013a": 23596, "\u0120discomfort": 23597, "\u0120LCD": 23598, - "specified": 23599, "\u0120Expect": 23600, "340": 23601, "\u0120imperative": - 23602, "\u0120Regular": 23603, "Chinese": 23604, "\u0120statewide": 23605, - "\u0120symm": 23606, "\u0120loops": 23607, "\u0120autumn": 23608, "Nick": - 23609, "\u0120shaping": 23610, "\u0120quot": 23611, "\u0120cherry": 23612, - "\u0120Crossref": 23613, "\u00e8\u00a6\u013c\u00e9\u0128\u0134": 23614, "Standard": - 23615, "heed": 23616, "\u0120Dell": 23617, "\u0120Vietnamese": 23618, "\u0120ost": - 23619, "\u0120Valkyrie": 23620, "OA": 23621, "Assad": 23622, "\u0120rebound": - 23623, "\u0120Traffic": 23624, "places": 23625, "\u00e6\u013a": 23626, "\u0120Buc": - 23627, "172": 23628, "\u0120shelters": 23629, "\u0120insisting": 23630, "\u0120Certainly": - 23631, "\u0120Kenneth": 23632, "\u0120TCP": 23633, "\u0120penal": 23634, "\u0120Replay": - 23635, "heard": 23636, "\u0120dialect": 23637, "iza": 23638, "\u0120FY": 23639, - "itcher": 23640, "\u0120DL": 23641, "\u0120spiral": 23642, "\u0120quarterbacks": - 23643, "\u0120hull": 23644, "\u0120google": 23645, "\u0120todd": 23646, "\u0120Sterling": - 23647, "\u0120Plate": 23648, "\u0120spying": 23649, "mbol": 23650, "\u0120Realm": - 23651, "\u0120Proced": 23652, "\u0120Crash": 23653, "\u0120terminate": 23654, - "\u0120protesting": 23655, "Center": 23656, "guided": 23657, "\u0120uncover": - 23658, "\u0120boycott": 23659, "\u0120realizes": 23660, "sound": 23661, "\u0120pretending": - 23662, "\u0120Vas": 23663, "1980": 23664, "\u0120framed": 23665, "\u0120139": - 23666, "\u0120descended": 23667, "\u0120rehabilitation": 23668, "\u0120borrowing": - 23669, "\u0120Buch": 23670, "\u0120blur": 23671, "Ron": 23672, "\u0120Frozen": - 23673, "enza": 23674, "Chief": 23675, "\u0120Poor": 23676, "\u0120translates": - 23677, "MIN": 23678, "\u0120212": 23679, "JECT": 23680, "\u0120erupted": 23681, - "\u0120successes": 23682, "SEC": 23683, "\u0120plague": 23684, "\u0120gems": - 23685, "doms": 23686, "\u0120stretches": 23687, "\u0120Spy": 23688, "\u0120storytelling": - 23689, "Credit": 23690, "\u0120Push": 23691, "\u0120traction": 23692, "\u0120ineffective": - 23693, "\u0120Luna": 23694, "\u0120tapes": 23695, "\u0120analytics": 23696, - "ercise": 23697, "\u0120programmes": 23698, "\u0120Carbon": 23699, "\u0120behold": - 23700, "heavy": 23701, "\u0120Conservation": 23702, "\u0120FIR": 23703, "\u0120sack": - 23704, "termin": 23705, "ricks": 23706, "\u0120housed": 23707, "\u0120unusually": - 23708, "Ice": 23709, "\u0120executing": 23710, "\u0120Moroc": 23711, "eday": - 23712, "\u0120editions": 23713, "\u0120smarter": 23714, "\u0120BA": 23715, - "\u0120outlaw": 23716, "\u0120vanished": 23717, "iba": 23718, "ALSE": 23719, - "\u0120Silva": 23720, "238": 23721, "Could": 23722, "\u0120philosopher": 23723, - "\u0120evacuated": 23724, "Secret": 23725, "142": 23726, "\u0120visas": 23727, - "\u00e3\u0124\u00ac": 23728, "\u0120Malt": 23729, "\u0120Clearly": 23730, - "\u0120Niger": 23731, "\u0120Cairo": 23732, "\u0120Fist": 23733, "380": 23734, - "\u0120XML": 23735, "auto": 23736, "itant": 23737, "\u0120reinforced": 23738, - "Record": 23739, "\u0120Survivor": 23740, "GHz": 23741, "\u0120screws": 23742, - "parents": 23743, "\u0120oceans": 23744, "mares": 23745, "\u0120brakes": 23746, - "vasive": 23747, "\u0120hello": 23748, "\u0120SIM": 23749, "rimp": 23750, - "\u0120ore": 23751, "\u0120Armour": 23752, "247": 23753, "\u0120terrific": - 23754, "\u0120tones": 23755, "141": 23756, "\u0120Minutes": 23757, "Episode": - 23758, "\u0120curves": 23759, "\u0120inflammatory": 23760, "\u0120batting": - 23761, "\u0120Beautiful": 23762, "Lay": 23763, "\u0120unpop": 23764, "vable": - 23765, "\u0120riots": 23766, "\u0120Tactics": 23767, "baugh": 23768, "\u0120Cock": - 23769, "\u0120orgasm": 23770, "\u0120Sas": 23771, "\u0120constructor": 23772, - "etz": 23773, "Gov": 23774, "\u0120antagon": 23775, "\u0120theat": 23776, - "\u0120deeds": 23777, "hao": 23778, "cuts": 23779, "\u0120McCl": 23780, "\u0120um": - 23781, "\u0120Scientists": 23782, "\u0120grassroots": 23783, "yssey": 23784, - "\"]=>": 23785, "\u0120surfaced": 23786, "\u0120shades": 23787, "\u0120neighbours": - 23788, "\u0120advertis": 23789, "oya": 23790, "\u0120merged": 23791, "Upon": - 23792, "\u0120gad": 23793, "\u0120anticipate": 23794, "Anyway": 23795, "\u0120slogan": - 23796, "\u0120disrespect": 23797, "Iran": 23798, "\u0120TB": 23799, "acted": - 23800, "\u0120subpoen": 23801, "mediately": 23802, "OOOO": 23803, "\u0120waiver": - 23804, "\u0120vulnerabilities": 23805, "ottesville": 23806, "\u0120Huffington": - 23807, "Josh": 23808, "\u0120DH": 23809, "Monday": 23810, "\u0120Ellen": 23811, - "Know": 23812, "xon": 23813, "items": 23814, "228": 23815, "\u0120fills": - 23816, "\u0120Nike": 23817, "\u0120cumulative": 23818, "andals": 23819, "Ir": - 23820, "\u0120\u00ec": 23821, "\u0120friction": 23822, "igator": 23823, "\u0120scans": - 23824, "\u0120Vienna": 23825, "ldom": 23826, "\u0120performers": 23827, "Prim": - 23828, "\u0120bidding": 23829, "Mur": 23830, "\u0120leaned": 23831, "\u0120Prix": - 23832, "alks": 23833, "\u0120[\u00e2\u0122\u00a6]": 23834, "\u0120Twitch": - 23835, "\u0120Developer": 23836, "\u0120Gir": 23837, "\u0120callback": 23838, - "Abstract": 23839, "\u0120accustomed": 23840, "\u0120freedoms": 23841, "\u0120PG": - 23842, "uracy": 23843, "\u0120lump": 23844, "isman": 23845, ",,,,": 23846, - "1992": 23847, "\u0120RED": 23848, "\u0120worm": 23849, "Match": 23850, "\u0120Platinum": - 23851, "IJ": 23852, "\u0120Owner": 23853, "Trivia": 23854, "compl": 23855, - "\u0120newborn": 23856, "\u0120fantas": 23857, "Own": 23858, "\u01201959": - 23859, "\u0120sympath": 23860, "\u0120ubiqu": 23861, "\u0120outputs": 23862, - "\u0120allev": 23863, "\u0120prag": 23864, "Kevin": 23865, "\u0120favors": - 23866, "\u0120burial": 23867, "\u0120nurt": 23868, "solete": 23869, "cache": - 23870, "\u0120156": 23871, "\u0120unlocks": 23872, "techn": 23873, "Making": - 23874, "\u0120conquer": 23875, "adic": 23876, "\u00e6\u0138": 23877, "\u0120elf": - 23878, "\u0120electorate": 23879, "\u0120Kurds": 23880, "\u0120Stack": 23881, - "\u0120Samurai": 23882, "\u0120\u00e2\u013a\u0127": 23883, "\u0120{}": 23884, - "\u0120Said": 23885, "\u0120Fallout": 23886, "\u0120kindness": 23887, "\u0120Customs": - 23888, "\u0120Boulevard": 23889, "\u0120helicopters": 23890, "otics": 23891, - "\u0120Veget": 23892, "comment": 23893, "\u0120criticised": 23894, "\u0120polished": - 23895, "\u0120Remix": 23896, "\u0120Cultural": 23897, "\u0120recons": 23898, - "\u0120doi": 23899, "atem": 23900, "Screen": 23901, "\u0120barred": 23902, - "Comments": 23903, "\u0120Generally": 23904, "\u0120slap": 23905, "720": 23906, - "Vari": 23907, "pine": 23908, "\u0120empt": 23909, "\u0120hats": 23910, "\u0120Playing": - 23911, "lab": 23912, "average": 23913, "forms": 23914, "\u0120Cotton": 23915, - "\u0120cans": 23916, "\u0120DON": 23917, "\u0120Somalia": 23918, "Crypt": - 23919, "\u0120Increases": 23920, "Ever": 23921, "modern": 23922, "\u0120surgeon": - 23923, "3000": 23924, "\u0120randomized": 23925, "================================================================": - 23926, "Bern": 23927, "impl": 23928, "\u0120COR": 23929, "\u0120proclaim": - 23930, "thouse": 23931, "\u0120toes": 23932, "\u0120ample": 23933, "\u0120preserving": - 23934, "\u0120disbel": 23935, "grand": 23936, "Besides": 23937, "\u0120silk": - 23938, "\u0120Pattern": 23939, "hm": 23940, "\u0120enterprises": 23941, "\u0120affidavit": - 23942, "\u0120Advisory": 23943, "\u0120advertised": 23944, "\u0120Religious": - 23945, "sections": 23946, "psych": 23947, "\u0120Fields": 23948, "aways": - 23949, "\u0120hashtag": 23950, "\u0120Nightmare": 23951, "\u0120vampire": - 23952, "\u0120forensic": 23953, "rossover": 23954, "nar": 23955, "\u0120navy": - 23956, "\u0120vacant": 23957, "\u0120Duel": 23958, "\u0120hallway": 23959, - "\u0120facebook": 23960, "identally": 23961, "\u0120NRA": 23962, "\u0120matt": - 23963, "\u0120hurricane": 23964, "\u0120Kirby": 23965, "\u0120Puzzle": 23966, - "\u0120skirt": 23967, "oust": 23968, "dullah": 23969, "\u0120analogy": 23970, - "inion": 23971, "\u0120tomatoes": 23972, "\u0120NV": 23973, "\u0120Peak": - 23974, "\u0120Meyer": 23975, "\u0120appointments": 23976, "\u0120masc": 23977, - "\u0120alley": 23978, "rehend": 23979, "\u0120charities": 23980, "\u0120undo": - 23981, "\u0120destinations": 23982, "\u0120Testing": 23983, "\">\"": 24618, "cats": 24619, "*.": 24620, "\u0120gestures": - 24621, "general": 24622, "League": 24623, "\u0120packets": 24624, "\u0120Inspector": - 24625, "\u0120Berg": 24626, "\u0120fraudulent": 24627, "\u0120criticize": - 24628, "Fun": 24629, "\u0120blaming": 24630, "ndra": 24631, "\u0120slash": - 24632, "\u0120Eston": 24633, "\u0120proposing": 24634, "\u0120whales": 24635, - "\u0120therapist": 24636, "\u0120subset": 24637, "\u0120leisure": 24638, "ELD": - 24639, "\u0120CVE": 24640, "\u0120Activity": 24641, "\u0120culmin": 24642, - "shop": 24643, "\u0120DAY": 24644, "ischer": 24645, "\u0120Admiral": 24646, - "\u0120Attacks": 24647, "\u01201958": 24648, "\u0120memoir": 24649, "\u0120folded": - 24650, "\u0120sexist": 24651, "\u0120153": 24652, "\u0120LI": 24653, "\u0120readings": - 24654, "\u0120embarrassment": 24655, "\u0120Employment": 24656, "wart": 24657, - "chin": 24658, "\u0120continuation": 24659, "lia": 24660, "Recently": 24661, - "\u0120duel": 24662, "\u0120evacuation": 24663, "\u0120Kashmir": 24664, "\u0120disposition": - 24665, "\u0120Rig": 24666, "\u0120bolts": 24667, "\u0120insurers": 24668, - "467": 24669, "Mex": 24670, "\u0120retaliation": 24671, "\u0120misery": 24672, - "\u0120unreasonable": 24673, "raining": 24674, "Imm": 24675, "\u0120PU": 24676, - "emer": 24677, "\u0120genital": 24678, "\u00e3\u0124\u00b3": 24679, "\u0120Candy": - 24680, "\u0120onions": 24681, "\u0120Patt": 24682, "liner": 24683, "\u0120conceded": - 24684, "\u0120fa": 24685, "\u0120forc": 24686, "\u0120Hernandez": 24687, "\u0120Geoff": - 24688, "debian": 24689, "\u0120Teams": 24690, "\u0120cries": 24691, "\u0120homeowners": - 24692, "237": 24693, "ABC": 24694, "\u0120stitch": 24695, "\u0120statistic": - 24696, "\u0120headers": 24697, "\u0120Biology": 24698, "\u0120motors": 24699, - "\u0120GEN": 24700, "\u0120Lip": 24701, "\u0120hates": 24702, "\u0120heel": - 24703, "Self": 24704, "ipl": 24705, "EDIT": 24706, "orting": 24707, "\u0120annot": - 24708, "\u0120Speech": 24709, "oldemort": 24710, "\u0120Javascript": 24711, - "\u0120LeBron": 24712, "\u0120footprint": 24713, "\u0120fn": 24714, "\u0120seizures": - 24715, "nas": 24716, "hide": 24717, "\u01201954": 24718, "\u0120Bee": 24719, - "\u0120Declaration": 24720, "\u0120Katie": 24721, "\u0120reservations": 24722, - "NR": 24723, "female": 24724, "\u0120saturated": 24725, "\u0120biblical": - 24726, "\u0120trolls": 24727, "Device": 24728, "photos": 24729, "\u0120drums": - 24730, "\u00e3\u0125\u012b\u00e3\u0125\u00a9\u00e3\u0124\u00b4\u00e3\u0125\u00b3": - 24731, "Night": 24732, "fighter": 24733, "\u0120Hak": 24734, "riber": 24735, - "\u0120cush": 24736, "\u0120disciplinary": 24737, "baum": 24738, "\u0120GH": - 24739, "\u0120Schmidt": 24740, "ilibrium": 24741, "\u0120sixty": 24742, "\u0120Kushner": - 24743, "rots": 24744, "\u0120pund": 24745, "\u0120Rac": 24746, "\u0120springs": - 24747, "\u0120conve": 24748, "Business": 24749, "Fall": 24750, "\u0120qualifications": - 24751, "\u0120verses": 24752, "\u0120narciss": 24753, "\u0120Koh": 24754, - "\u0120Wow": 24755, "\u0120Charlottesville": 24756, "edo": 24757, "\u0120interrogation": - 24758, "\u0120Wool": 24759, "365": 24760, "Brian": 24761, "\u0120\u00e2\u013e\u0135": - 24762, "\u0120alleges": 24763, "onds": 24764, "idation": 24765, "\u0120Jackie": - 24766, "yu": 24767, "\u0120lakes": 24768, "\u0120worthwhile": 24769, "\u0120crystals": - 24770, "\u0120Juda": 24771, "\u0120comprehend": 24772, "\u0120flush": 24773, - "\u0120absorption": 24774, "\u0120OC": 24775, "\u0120frightened": 24776, "\u0120Chocolate": - 24777, "Martin": 24778, "\u0120buys": 24779, "\u0120bucks": 24780, "\u0120appell": - 24781, "\u0120Championships": 24782, "\u0120listener": 24783, "\u0120Defensive": - 24784, "\u0120cz": 24785, "uds": 24786, "\u0120Mate": 24787, "\u0120replay": - 24788, "\u0120decorated": 24789, "\u0120sunk": 24790, "\u0120VIP": 24791, - "\u0120Ank": 24792, "\u0120195": 24793, "aaaa": 24794, "Nobody": 24795, "\u0120Milk": - 24796, "\u0120Gur": 24797, "\u0120Mk": 24798, "\u0120Sara": 24799, "\u0120seating": - 24800, "\u0120Wid": 24801, "Track": 24802, "\u0120employs": 24803, "\u0120gigantic": - 24804, "APP": 24805, "\u00e3\u0124\u00a7": 24806, "inventory": 24807, "\u0120towel": - 24808, "atche": 24809, "lasting": 24810, "\u0120TL": 24811, "\u0120latency": - 24812, "\u0120kne": 24813, "Ber": 24814, "meaning": 24815, "\u0120upheld": - 24816, "\u0120playground": 24817, "\u0120mant": 24818, "Side": 24819, "\u0120stereo": - 24820, "\u0120northwest": 24821, "\u0120exceptionally": 24822, "\u0120rays": - 24823, "\u0120recurring": 24824, "Drive": 24825, "\u0120upright": 24826, "\u0120abduct": - 24827, "\u0120Marathon": 24828, "\u0120goodbye": 24829, "\u0120alphabet": - 24830, "hp": 24831, "\u0120courtroom": 24832, "rington": 24833, "othing": - 24834, "Tag": 24835, "\u0120diplomats": 24836, "\u0120barbar": 24837, "\u0120Aqua": - 24838, "183": 24839, "3333": 24840, "\u0120maturity": 24841, "\u0120instability": - 24842, "\u0120Apache": 24843, "\u0120===": 24844, "\u0120fasting": 24845, - "\u0120Grid": 24846, "ModLoader": 24847, "\u0120152": 24848, "Abs": 24849, - "\u0120Operating": 24850, "etti": 24851, "\u0120acquaint": 24852, "Donnell": - 24853, "\u0120Kem": 24854, "\u0120Forge": 24855, "\u0120armored": 24856, "Mil": - 24857, "\u0120philosophers": 24858, "invest": 24859, "Players": 24860, "\u00e2\u012a": - 24861, "\u0120myriad": 24862, "\u0120comrades": 24863, "Rot": 24864, "\u0120remembering": - 24865, "\u0120corresponds": 24866, "\u0120programmers": 24867, "\u0120Lynn": - 24868, "\u0120olig": 24869, "\u0120coherent": 24870, "ynchron": 24871, "\u0120Chemical": - 24872, "\u0120jugg": 24873, "pair": 24874, "posts": 24875, "Eye": 24876, "\u0120Inner": - 24877, "\u0120semester": 24878, "ottest": 24879, "\u0120Emirates": 24880, - "ricanes": 24881, "orously": 24882, "mits": 24883, "\u0120Wis": 24884, "\u0120dodge": - 24885, "location": 24886, "\u0120faded": 24887, "Amazon": 24888, "\u0120Proceed": - 24889, "\u0120INFO": 24890, "journal": 24891, "\u0120Truck": 24892, "Ten": - 24893, "\u0120217": 24894, "\u0120statutes": 24895, "mobile": 24896, "\u0120Types": - 24897, "Recomm": 24898, "buster": 24899, "pex": 24900, "\u0120legends": 24901, - "\u0120headache": 24902, "faced": 24903, "\u0120WiFi": 24904, "ifty": 24905, - "\u0120HER": 24906, "\u0120circuits": 24907, "ERROR": 24908, "226": 24909, - "olin": 24910, "\u0120cylinder": 24911, "ospace": 24912, "ikers": 24913, "Prem": - 24914, "Quant": 24915, "\u0120conflicting": 24916, "\u0120slightest": 24917, - "\u0120forged": 24918, "ionage": 24919, "Stephen": 24920, "\u0120Kub": 24921, - "\u0120Opportun": 24922, "\u0120Heal": 24923, "\u0120blo": 24924, "\u0120rulers": - 24925, "\u0120huh": 24926, "\u0120submarine": 24927, "fy": 24928, "asser": - 24929, "\u0120allowance": 24930, "\u0120Kasich": 24931, "\u0120Tas": 24932, - "\u0120Australians": 24933, "ForgeModLoader": 24934, "\u0120\u00e2\u0128\u0133": - 24935, "\u0120Matrix": 24936, "amins": 24937, "\u01201200": 24938, "\u0120Acqu": - 24939, "236": 24940, "Document": 24941, "\u0120Breaking": 24942, "193": 24943, - "\u0120Subst": 24944, "\u0120Roller": 24945, "\u0120Properties": 24946, "\u0120NI": - 24947, "tier": 24948, "\u0120crushing": 24949, "\u0120advocating": 24950, - "Furthermore": 24951, "keepers": 24952, "\u0120sexism": 24953, "xd": 24954, - "\u0120caller": 24955, "\u0120Sense": 24956, "chieve": 24957, "\u0120TF": - 24958, "\u0120fueled": 24959, "\u0120reminiscent": 24960, "\u0120obsess": - 24961, "urst": 24962, "\u0120uphold": 24963, "\u0120Fans": 24964, "hetics": - 24965, "\u0120\u00e2\u0139": 24966, "\u0120Bath": 24967, "\u0120beverage": - 24968, "\u0120oscill": 24969, "254": 24970, "\u0120poles": 24971, "\u0120gradual": - 24972, "\u0120exting": 24973, "\u0120Suff": 24974, "\u0120Suddenly": 24975, - "\u0120liking": 24976, "\u01201949": 24977, "unciation": 24978, "amination": - 24979, "\u0120Omar": 24980, "\u0120LV": 24981, "\u0120Consequently": 24982, - "\u0120synthes": 24983, "\u0120GIF": 24984, "\u0120pains": 24985, "\u0120interacting": - 24986, "uously": 24987, "incre": 24988, "\u0120rumor": 24989, "\u0120Scientology": - 24990, "197": 24991, "\u0120Zig": 24992, "\u0120spelling": 24993, "\u0120ASS": - 24994, "\u0120extingu": 24995, "mson": 24996, "\u0120gh": 24997, "\u0120remarked": - 24998, "\u0120Strategic": 24999, "\u0120MON": 25000, "\u00e5\u00a5": 25001, - "gae": 25002, "\u0120WHAT": 25003, "Eric": 25004, "\u0120Campus": 25005, "\u0120methane": - 25006, "\u0120imagin": 25007, "JUST": 25008, "\u0120Alm": 25009, "XT": 25010, - "iq": 25011, "\u0120RSS": 25012, "\u0120wrongdoing": 25013, "atta": 25014, - "\u0120bigot": 25015, "\u0120demonstrators": 25016, "\u0120Calvin": 25017, - "\u0120Villa": 25018, "\u0120membrane": 25019, "\u0120Awesome": 25020, "\u0120benefic": - 25021, "268": 25022, "\u0120magnificent": 25023, "\u0120Lots": 25024, "Greg": - 25025, "\u0120Boris": 25026, "\u0120detainees": 25027, "\u0120Herman": 25028, - "\u0120whispered": 25029, "\u0120awe": 25030, "Professor": 25031, "funding": - 25032, "\u0120physiological": 25033, "\u0120Destruction": 25034, "\u0120limb": - 25035, "\u0120manipulated": 25036, "\u0120bubbles": 25037, "\u0120pseud": - 25038, "\u0120hydra": 25039, "\u0120Bristol": 25040, "\u0120stellar": 25041, - "\u0120Expansion": 25042, "\u0120Kell": 25043, "\u0120Interestingly": 25044, - "\u0120mans": 25045, "\u0120dragging": 25046, "\u0120ecological": 25047, "\u0120Fit": - 25048, "\u0120gent": 25049, "\u0120benefited": 25050, "\u0120Haiti": 25051, - "\u0120polyg": 25052, "\u00e3\u0125\u0130": 25053, "\u01202030": 25054, "\u0120prow": - 25055, "\u0120reconstruction": 25056, "\u0120wast": 25057, "\u0120psychic": - 25058, "\u0120Greeks": 25059, "Handler": 25060, "162": 25061, "\u0120Pulse": - 25062, "\u0120solicit": 25063, "\u0120sys": 25064, "\u0120influx": 25065, - "\u0120Gentle": 25066, "percent": 25067, "\u0120proliferation": 25068, "\u0120taxable": - 25069, "\u0120disregard": 25070, "\u0120escaping": 25071, "\u0120ginger": - 25072, "\u0120withstand": 25073, "\u0120devastated": 25074, "\u0120Dew": 25075, - "series": 25076, "\u0120injected": 25077, "elaide": 25078, "\u0120turnover": - 25079, "heat": 25080, "\u013b\u0124": 25081, "Happy": 25082, "\u0120Silent": - 25083, "\u00e3\u0124\u0143": 25084, "ivism": 25085, "\u0120irrational": 25086, - "AMA": 25087, "\u0120reef": 25088, "rub": 25089, "\u0120162": 25090, "\u0120bankers": - 25091, "\u0120Ethics": 25092, "vv": 25093, "\u0120criticisms": 25094, "Kn": - 25095, "186": 25096, "Movie": 25097, "\u0120Tories": 25098, "\u0120nood": - 25099, "\u0120distortion": 25100, "False": 25101, "odore": 25102, "\u0120tasty": - 25103, "Research": 25104, "\u0120UID": 25105, "-)": 25106, "\u0120divorced": - 25107, "\u0120MU": 25108, "\u0120Hayes": 25109, "\u0120Isn": 25110, "iani": - 25111, "\u0120HQ": 25112, "\u0120\"#": 25113, "ignant": 25114, "\u0120traumatic": - 25115, "\u0120Ling": 25116, "Hun": 25117, "\u0120sabot": 25118, "online": - 25119, "random": 25120, "\u0120renamed": 25121, "rared": 25122, "KA": 25123, - "dead": 25124, "\u00c3\u00a9t": 25125, "\u0120Assistance": 25126, "\u0120seaf": - 25127, "++++++++": 25128, "\u0120seldom": 25129, "\u0120Webb": 25130, "\u0120boolean": - 25131, "ulet": 25132, "\u0120refrain": 25133, "\u0120DIY": 25134, "rule": - 25135, "\u0120shutting": 25136, "\u0120utilizing": 25137, "loading": 25138, - "\u0120Param": 25139, "coal": 25140, "ooter": 25141, "\u0120attracting": 25142, - "\u0120Dol": 25143, "\u0120hers": 25144, "agnetic": 25145, "\u0120Reach": - 25146, "imo": 25147, "\u0120discarded": 25148, "\u0120Pip": 25149, "015": - 25150, "\u00c3\u00bcr": 25151, "\u0120mug": 25152, "Imagine": 25153, "COL": - 25154, "\u0120cursed": 25155, "\u0120Shows": 25156, "\u0120Curtis": 25157, - "\u0120Sachs": 25158, "speaking": 25159, "\u0120Vista": 25160, "\u0120Framework": - 25161, "ongo": 25162, "\u0120subreddit": 25163, "\u0120crus": 25164, "\u0120Oval": - 25165, "Row": 25166, "growing": 25167, "\u0120installment": 25168, "\u0120glac": - 25169, "\u0120Advance": 25170, "ECK": 25171, "\u0120LGBTQ": 25172, "LEY": - 25173, "\u0120acet": 25174, "\u0120successive": 25175, "\u0120Nicole": 25176, - "\u01201957": 25177, "Quote": 25178, "\u0120circumstance": 25179, "ackets": - 25180, "\u0120142": 25181, "ortium": 25182, "\u0120guessed": 25183, "\u0120Frame": - 25184, "\u0120perpetrators": 25185, "\u0120Aviation": 25186, "\u0120Bench": - 25187, "\u0120handc": 25188, "Ap": 25189, "\u01201956": 25190, "259": 25191, - "rand": 25192, "NetMessage": 25193, "din": 25194, "urtles": 25195, "hig": - 25196, "\u0120VIII": 25197, "ffiti": 25198, "\u0120Swords": 25199, "bial": - 25200, "\u0120kidnapping": 25201, "device": 25202, "\u0120barn": 25203, "\u0120Eli": - 25204, "aucas": 25205, "Send": 25206, "Constructed": 25207, "\u0120\u00c2\u00bd": - 25208, "\u0120needles": 25209, "\u0120advertisements": 25210, "\u0120vou": - 25211, "\u0120exhibited": 25212, "\u0120Fortress": 25213, "Ask": 25214, "Berry": - 25215, "TYPE": 25216, "\u0120cancers": 25217, "umping": 25218, "\u0120Territory": - 25219, "\u0120prud": 25220, "\u0120nas": 25221, "\u0120atheist": 25222, "\u0120balances": - 25223, "\u00e3\u0123\u0141": 25224, "\u0120Shawn": 25225, "&&": 25226, "\u0120landsc": - 25227, "\u0120RGB": 25228, "\u0120petty": 25229, "\u0120excellence": 25230, - "\u0120translations": 25231, "\u0120parcel": 25232, "\u0120Chev": 25233, "East": - 25234, "\u0120Output": 25235, "imi": 25236, "\u0120ambient": 25237, "\u0120Threat": - 25238, "\u0120villains": 25239, "\u0120550": 25240, "ICA": 25241, "\u0120taller": - 25242, "\u0120leaking": 25243, "cup": 25244, "\u0120polish": 25245, "\u0120infectious": - 25246, "\u0120KC": 25247, "\u0120@@": 25248, "background": 25249, "\u0120bureaucracy": - 25250, "\u0120Sai": 25251, "unless": 25252, "itious": 25253, "\u0120Skype": - 25254, "Atl": 25255, "IDENT": 25256, "008": 25257, "\u0120hypocr": 25258, - "\u0120pitchers": 25259, "\u0120guessing": 25260, "\u0120FINAL": 25261, "Between": - 25262, "\u0120villagers": 25263, "\u0120252": 25264, "fashion": 25265, "\u0120Tunis": - 25266, "Beh": 25267, "\u0120Exc": 25268, "\u0120MID": 25269, "288": 25270, - "\u0120Haskell": 25271, "196": 25272, "\u0120NOR": 25273, "\u0120specs": 25274, - "\u0120invari": 25275, "\u0120glut": 25276, "\u0120Cars": 25277, "\u0120impulse": - 25278, "\u0120honors": 25279, "gel": 25280, "\u0120jurisdictions": 25281, - "\u0120Bundle": 25282, "ulas": 25283, "California": 25284, "\u0120Increase": - 25285, "\u0120pear": 25286, "\u0120singles": 25287, "\u0120cues": 25288, "\u0120underwent": - 25289, "\u0120WS": 25290, "\u0120exaggerated": 25291, "\u0120dubious": 25292, - "\u0120flashing": 25293, "LOG": 25294, ")].": 25295, "Journal": 25296, "tg": - 25297, "Van": 25298, "\u0120Istanbul": 25299, "\u0120Insp": 25300, "\u0120Franken": - 25301, "Draw": 25302, "\u0120sadness": 25303, "\u0120ironic": 25304, "\u0120Fry": - 25305, "xc": 25306, "\u0120164": 25307, "isch": 25308, "Way": 25309, "\u0120Protestant": - 25310, "horn": 25311, "\u0120unaff": 25312, "\u0120Viv": 25313, "illas": 25314, - "\u0120Productions": 25315, "\u0120Hogan": 25316, "\u0120perimeter": 25317, - "\u0120Sisters": 25318, "\u0120spontaneous": 25319, "\u0120downside": 25320, - "\u0120descendants": 25321, "\u0120orn": 25322, "worm": 25323, "Japanese": - 25324, "\u01201955": 25325, "\u0120151": 25326, "\u0120Doing": 25327, "elsen": - 25328, "umbles": 25329, "\u0120radically": 25330, "\u0120Drum": 25331, "\u0120Bach": - 25332, "\u0120liabilities": 25333, "\u0120OB": 25334, "\u0120Elementary": - 25335, "\u0120meme": 25336, "ynes": 25337, "\u0120fingerprint": 25338, "\u0120Grab": - 25339, "\u0120undertake": 25340, "Members": 25341, "\u0120Reader": 25342, - "\u0120Sims": 25343, "god": 25344, "\u0120hypothetical": 25345, "scient": - 25346, "\u0120AJ": 25347, "\u0120charism": 25348, "\u0120admissions": 25349, - "\u0120Missile": 25350, "trade": 25351, "\u0120exercising": 25352, "\u0120Background": - 25353, "Written": 25354, "\u0120vocals": 25355, "whether": 25356, "\u0120vi": - 25357, "\u0120Winner": 25358, "\u0120litter": 25359, "\u0120Shooting": 25360, - "STEM": 25361, "\u00e3\u0124\u00a1": 25362, "\u0120AFL": 25363, "\u0120variability": - 25364, "\u0120eats": 25365, "\u0120DPS": 25366, "brow": 25367, "\u0120elephants": - 25368, "\u0120strat": 25369, "\u0120\u00c5": 25370, "\u0120settlers": 25371, - "Matthew": 25372, "\u0120inadvert": 25373, "HI": 25374, "\u0120IMF": 25375, - "\u0120Goal": 25376, "\u0120nerves": 25377, "Johnson": 25378, "eye": 25379, - "ablishment": 25380, "Thursday": 25381, "BILITY": 25382, "Had": 25383, "amoto": - 25384, "hetamine": 25385, "eps": 25386, "\u0120mitochond": 25387, "\u0120compressed": - 25388, "\u0120Trevor": 25389, "\u0120Animals": 25390, "Tool": 25391, "Lock": - 25392, "\u0120tweak": 25393, "\u0120pinch": 25394, "\u0120cancellation": 25395, - "Pot": 25396, "\u0120focal": 25397, "\u0120Astron": 25398, "173": 25399, "\u0120ASC": - 25400, "\u0120OTHER": 25401, "umni": 25402, "\u0120demise": 25403, "dl": 25404, - "\u00d9\u0127": 25405, "Semitism": 25406, "\u0120cracking": 25407, "\u0120collaborative": - 25408, "\u0120explores": 25409, "sql": 25410, "\u0120herbs": 25411, "\u0120configurations": - 25412, "mis": 25413, "\u0120Result": 25414, "acey": 25415, "\u0120Smoke": - 25416, "\u0120sanct": 25417, "elia": 25418, "\u0120degener": 25419, "\u0120deepest": - 25420, "\u0120screamed": 25421, "\u0120nap": 25422, "Software": 25423, "\u0120STAR": - 25424, "EF": 25425, "\u0120Xin": 25426, "sponsored": 25427, "manship": 25428, - "233": 25429, "\u0120primaries": 25430, "\u0120filtering": 25431, "\u0120assemble": - 25432, "mil": 25433, "\u0120Myers": 25434, "bows": 25435, "\u0120punched": - 25436, "Mic": 25437, "\u0120innovations": 25438, "\u0120func": 25439, "ando": - 25440, "\u0120fracking": 25441, "\u0120Vul": 25442, "\u00d0\u00be\u00d0": - 25443, "oshop": 25444, "\u0120Immun": 25445, "\u0120settling": 25446, "\u0120adolescents": - 25447, "\u0120rebuilding": 25448, "\u0120transforming": 25449, "\u0120parole": - 25450, "\u0120harbor": 25451, "\u0120booking": 25452, "otional": 25453, "ongevity": - 25454, "\u0120Yo": 25455, "bug": 25456, "\u0120emerges": 25457, "\u0120Methods": - 25458, "\u0120Chu": 25459, "Pres": 25460, "\u0120Dungeons": 25461, "\u0120trailing": - 25462, "\u0120Rum": 25463, "\u0120Hugh": 25464, "\u00e5\u00a4\u00a9": 25465, - "\u0120Era": 25466, "\u0120Battles": 25467, "Results": 25468, "\u0120Trading": - 25469, "\u0120versa": 25470, "css": 25471, "axies": 25472, "heet": 25473, - "\u0120greed": 25474, "1989": 25475, "\u0120gardens": 25476, "\u0120contingent": - 25477, "Park": 25478, "\u0120Leafs": 25479, "hook": 25480, "robe": 25481, - "\u0120diplomacy": 25482, "\u0120Fuel": 25483, "\u0120Invasion": 25484, "\u0120upgrading": - 25485, "Male": 25486, "\u0120elic": 25487, "\u0120relentless": 25488, "\u0120Covenant": - 25489, "apesh": 25490, "\u0120Trop": 25491, "Ty": 25492, "production": 25493, - "arty": 25494, "\u0120punches": 25495, "ako": 25496, "cyclopedia": 25497, - "\u0120Rabbit": 25498, "\u0120HDMI": 25499, "\u0120141": 25500, "\u0120foil": - 25501, "ItemImage": 25502, "\u0120FG": 25503, "\u0120implementations": 25504, - "\u0120Pom": 25505, "ixtures": 25506, "\u0120await": 25507, "\u0120330": 25508, - "amus": 25509, "\u0120umbrella": 25510, "\u0120foresee": 25511, "separ": 25512, - "\u0120circumcision": 25513, "\u0120peripheral": 25514, "Say": 25515, "\u0120Expert": - 25516, "Inc": 25517, "\u0120withdrew": 25518, "\u0120Anders": 25519, "fried": - 25520, "\u0120radioactive": 25521, "\u0120Opening": 25522, "\u0120boarding": - 25523, "\u0120ND": 25524, "\u0120overthrow": 25525, "Activ": 25526, "WP": - 25527, "\u0120Acts": 25528, "\u00d7\u013b": 25529, "\u0120motions": 25530, - "vic": 25531, "\u0120Mighty": 25532, "\u0120Defender": 25533, "aer": 25534, - "\u0120thankful": 25535, "\u0120Killing": 25536, "\u0120Bris": 25537, "moil": - 25538, "\u0120predicting": 25539, "266": 25540, "choice": 25541, "\u0120killers": - 25542, "\u0120incub": 25543, "\u0120Chest": 25544, "athering": 25545, "\u0120proclaimed": - 25546, "flower": 25547, "ossom": 25548, "umbledore": 25549, "\u0120Cycling": - 25550, "\u0120Occupy": 25551, "AGES": 25552, "Pen": 25553, "\u0120Yug": 25554, - "\u0120packaged": 25555, "\u0120heightened": 25556, "cot": 25557, "stack": - 25558, "Cond": 25559, "\u0120stamps": 25560, "mage": 25561, "\u0120persuaded": - 25562, "\u0120ensl": 25563, "\u0120Cardinal": 25564, "\u0120solitary": 25565, - "\u0120possessing": 25566, "\u0120Cork": 25567, "\u0120evid": 25568, "\u0120Tay": - 25569, "\u0120blues": 25570, "\u0120extremism": 25571, "\u0120lunar": 25572, - "\u0120clown": 25573, "Techn": 25574, "\u0120festivals": 25575, "\u0120PvP": - 25576, "\u0120Lar": 25577, "\u0120consequently": 25578, "present": 25579, - "\u0120someday": 25580, "\u00e7\u0130\u012d": 25581, "\u0120Meteor": 25582, - "\u0120touring": 25583, "culture": 25584, "\u0120beaches": 25585, "Ship": - 25586, "cause": 25587, "\u0120Flood": 25588, "\u00e3\u0125\u00af": 25589, - "\u0120purity": 25590, "those": 25591, "\u0120emission": 25592, "bolt": 25593, - "\u0120chord": 25594, "\u0120Scripture": 25595, "Lu": 25596, "\u0120${": 25597, - "created": 25598, "Others": 25599, "258": 25600, "\u0120elemental": 25601, - "\u0120annoyed": 25602, "\u0120AE": 25603, "dan": 25604, "\u0120Sag": 25605, - "Researchers": 25606, "\u0120fairy": 25607, "\u00e2\u0122\u0135\u00e2\u0122\u0135": - 25608, "============": 25609, "Smart": 25610, "GGGG": 25611, "\u0120skeletons": - 25612, "\u0120pupils": 25613, "linked": 25614, "\u0120urgency": 25615, "enabled": - 25616, "\u0120Fuck": 25617, "\u0120councill": 25618, "rab": 25619, "UAL": - 25620, "TI": 25621, "\u0120lifes": 25622, "\u0120confessed": 25623, "Bug": - 25624, "\u0120harmon": 25625, "\u0120CONFIG": 25626, "\u0120Neutral": 25627, - "Double": 25628, "\u0120staple": 25629, "\u0120SHA": 25630, "British": 25631, - "\u0120SNP": 25632, "ATOR": 25633, "oco": 25634, "\u0120swinging": 25635, - "gex": 25636, "oleon": 25637, "plain": 25638, "\u0120Missing": 25639, "\u0120Trophy": - 25640, "vari": 25641, "ranch": 25642, "\u0120301": 25643, "440": 25644, "0000000000000000": - 25645, "\u0120restoring": 25646, "\u0120haul": 25647, "ucing": 25648, "nerg": - 25649, "\u0120futures": 25650, "\u0120strategist": 25651, "question": 25652, - "\u0120lateral": 25653, "\u0120Bard": 25654, "\u0120sor": 25655, "\u0120Rhodes": - 25656, "\u0120Downtown": 25657, "?????-": 25658, "\u0120Lit": 25659, "\u0120Bened": - 25660, "\u0120coil": 25661, "street": 25662, "\u0120Portal": 25663, "FILE": - 25664, "\u0120Gru": 25665, "*,": 25666, "231": 25667, "neum": 25668, "\u0120sucked": - 25669, "\u0120rapper": 25670, "\u0120tendencies": 25671, "\u0120Lauren": 25672, - "cellaneous": 25673, "267": 25674, "\u0120browse": 25675, "\u0120overc": 25676, - "header": 25677, "oise": 25678, "\u0120beet": 25679, "\u0120Gle": 25680, "Stay": - 25681, "\u0120mum": 25682, "\u0120typed": 25683, "\u0120discounts": 25684, - "Talk": 25685, "\u0120Og": 25686, "existing": 25687, "\u0120Sell": 25688, - "uph": 25689, "CI": 25690, "\u0120Austrian": 25691, "\u0120Warm": 25692, "\u0120dismissal": - 25693, "\u0120averages": 25694, "camera": 25695, "\u0120allegiance": 25696, - "LAN": 25697, "=\"#": 25698, "\u0120commentators": 25699, "\u0120Setting": - 25700, "\u0120Midwest": 25701, "\u0120pharmac": 25702, "\u0120EXP": 25703, - "\u0120stainless": 25704, "Chicago": 25705, "\u0120tan": 25706, "244": 25707, - "\u0120countryside": 25708, "\u0120Vac": 25709, "295": 25710, "\u0120pinned": - 25711, "\u0120crises": 25712, "\u0120standardized": 25713, "Task": 25714, - "\u0120Jail": 25715, "\u0120Docker": 25716, "colored": 25717, "forth": 25718, - "\"},": 25719, "\u0120patrons": 25720, "\u0120spice": 25721, "\u0120mourn": - 25722, "\u0120Mood": 25723, "\u0120laundry": 25724, "\u0120equip": 25725, - "\u0120Mole": 25726, "yll": 25727, "\u0120THC": 25728, "nation": 25729, "\u0120Sherlock": - 25730, "\u0120issu": 25731, "\u0120Kre": 25732, "\u0120Americas": 25733, "\u0120AAA": - 25734, "\u0120systematically": 25735, "\u0120contra": 25736, "\u0120Sally": - 25737, "\u0120rationale": 25738, "\u0120carriage": 25739, "\u0120peaks": 25740, - "\u0120contradiction": 25741, "ensation": 25742, "\u0120Failure": 25743, "\u0120props": - 25744, "\u0120namespace": 25745, "\u0120cove": 25746, "fields": 25747, "\u00e3\u0124\u012d": - 25748, "\u0120wool": 25749, "\u0120Catch": 25750, "\u0120presumed": 25751, - "\u0120Diana": 25752, "ragon": 25753, "igi": 25754, "\u0120hamm": 25755, "\u0120stunt": - 25756, "\u0120GUI": 25757, "\u0120Observatory": 25758, "\u0120Shore": 25759, - "\u0120smells": 25760, "annah": 25761, "\u0120cockpit": 25762, "\u0120Duterte": - 25763, "850": 25764, "\u0120oppressed": 25765, "breaker": 25766, "\u0120Contribut": - 25767, "\u0120Peru": 25768, "\u0120Monsanto": 25769, "\u0120Attempt": 25770, - "\u0120commanding": 25771, "\u0120fridge": 25772, "\u0120Rin": 25773, "\u0120Chess": - 25774, "uality": 25775, "\u0120ol": 25776, "Republican": 25777, "\u0120Glory": - 25778, "\u0120WIN": 25779, ".......": 25780, "agent": 25781, "reading": 25782, - "\u0120inh": 25783, "Jones": 25784, "\u0120clicks": 25785, "alan": 25786, - "\u0120[];": 25787, "\u0120Majesty": 25788, "\u0120Ced": 25789, "opus": 25790, - "atel": 25791, "\u00c3\u00aa": 25792, "ARC": 25793, "\u0120Ecuador": 25794, - "\u00e3\u0125\u0142": 25795, "\u0120Kuro": 25796, "\u0120rituals": 25797, - "\u0120captive": 25798, "\u0120ounce": 25799, "\u0120disagreement": 25800, - "\u0120slog": 25801, "fuel": 25802, "Pet": 25803, "Mail": 25804, "\u0120exercised": - 25805, "\u0120solic": 25806, "\u0120rainfall": 25807, "\u0120devotion": 25808, - "\u0120Assessment": 25809, "\u0120robotic": 25810, "options": 25811, "\u0120RP": - 25812, "\u0120Families": 25813, "\u0120Flames": 25814, "\u0120assignments": - 25815, "007": 25816, "akedown": 25817, "\u0120vocabulary": 25818, "Reilly": - 25819, "\u0120caval": 25820, "gars": 25821, "\u0120suppressed": 25822, "\u0120SET": - 25823, "\u0120Johns": 25824, "\u0120warp": 25825, "broken": 25826, "\u0120statues": - 25827, "\u0120advocated": 25828, "\u0120275": 25829, "\u0120peril": 25830, - "omorph": 25831, "\u0120Femin": 25832, "perfect": 25833, "\u0120hatch": 25834, - "Lib": 25835, "512": 25836, "\u0120lifelong": 25837, "313": 25838, "\u0120cheeks": - 25839, "\u0120numbered": 25840, "\u0120Mug": 25841, "Body": 25842, "ravel": - 25843, "Weight": 25844, "\u0120Jak": 25845, "\u0120Heath": 25846, "\u0120kissing": - 25847, "\u0120JUST": 25848, "\u0120waving": 25849, "upload": 25850, "\u0120insider": - 25851, "\u0120Progressive": 25852, "\u0120Filter": 25853, "tta": 25854, "\u0120Beam": - 25855, "\u0120violently": 25856, "ipation": 25857, "\u0120skepticism": 25858, - "\u01201918": 25859, "\u0120Annie": 25860, "\u0120SI": 25861, "\u0120genetics": - 25862, "\u0120onboard": 25863, "atl": 25864, "\u0120Friedman": 25865, "\u0120Bri": - 25866, "ceptive": 25867, "\u0120pirate": 25868, "\u0120Reporter": 25869, "278": - 25870, "\u0120mythology": 25871, "\u0120eclipse": 25872, "\u0120skins": 25873, - "\u0120glyph": 25874, "ingham": 25875, "Files": 25876, "Cour": 25877, "women": - 25878, "\u0120regimes": 25879, "\u0120photographed": 25880, "Kat": 25881, - "\u0120MAX": 25882, "Officials": 25883, "\u0120unexpectedly": 25884, "\u0120impressions": - 25885, "Front": 25886, ";;;;;;;;": 25887, "\u0120supremacy": 25888, "\u0120sang": - 25889, "\u0120aggravated": 25890, "\u0120abruptly": 25891, "\u0120Sector": - 25892, "\u0120excuses": 25893, "\u0120costing": 25894, "idepress": 25895, - "Stack": 25896, "\u0120RNA": 25897, "obil": 25898, "\u0120ghosts": 25899, - "ldon": 25900, "atibility": 25901, "Topics": 25902, "\u0120reimburse": 25903, - "\u0120HM": 25904, "\u0120Deg": 25905, "\u0120thief": 25906, "yet": 25907, - "ogenesis": 25908, "leaning": 25909, "\u0120Kol": 25910, "\u0120Basketball": - 25911, "\u0120fi": 25912, "\u0120Seeing": 25913, "\u0120recycling": 25914, - "\u0120[-": 25915, "Congress": 25916, "\u0120lectures": 25917, "Psy": 25918, - "\u0120nep": 25919, "\u0120maid": 25920, "\u0120oriented": 25921, "AX": 25922, - "\u0120respectful": 25923, "rene": 25924, "flush": 25925, "\u0120Unloaded": - 25926, "request": 25927, "grid": 25928, "\u0120Alternatively": 25929, "\u0120Hugo": - 25930, "\u0120decree": 25931, "\u0120Buddhism": 25932, "andum": 25933, "Android": - 25934, "\u0120Congo": 25935, "\u0120Joyce": 25936, "\u0120acknowledging": - 25937, "hesive": 25938, "\u0120Tomorrow": 25939, "\u0120Hiro": 25940, "thren": - 25941, "\u0120Maced": 25942, "\u0120hoax": 25943, "\u0120Increased": 25944, - "\u0120Pradesh": 25945, "Wild": 25946, "______": 25947, "161": 25948, "\u0120aunt": - 25949, "\u0120distributing": 25950, "\u0120Tucker": 25951, "\u0120SSL": 25952, - "\u0120Wolves": 25953, "Building": 25954, "oult": 25955, "\u0120Luo": 25956, - "\u0120Yas": 25957, "\u0120Spir": 25958, "\u0120Shape": 25959, "\u0120Cambod": - 25960, "\u0120IPv": 25961, "\u0120ml": 25962, "\u0120extrad": 25963, "390": - 25964, "\u0120Penny": 25965, "dream": 25966, "\u0120stationed": 25967, "optional": - 25968, "eworthy": 25969, ".": 26700, "\u0120Workshop": - 26701, "\u0120Retail": 26702, "\u0120Avatar": 26703, "625": 26704, "Na": 26705, - "\u0120VC": 26706, "\u0120Secure": 26707, "MY": 26708, "1988": 26709, "ossip": - 26710, "\u0120prostate": 26711, "\u0120unden": 26712, "\u0120gamer": 26713, - "\u0120Contents": 26714, "\u0120Warhammer": 26715, "\u0120Sentinel": 26716, - "310": 26717, "\u0120segregation": 26718, "\u0120Flex": 26719, "\u0120MAY": - 26720, "\u0120drills": 26721, "\u0120Drugs": 26722, "Islamic": 26723, "\u0120spur": - 26724, "\u0120cafe": 26725, "\u0120imaginary": 26726, "\u0120guiding": 26727, - "\u0120swings": 26728, "\u0120Theme": 26729, "oby": 26730, "\u0120nud": 26731, - "\u0120begging": 26732, "\u0120strongh": 26733, "\u0120rejecting": 26734, - "\u0120pedestrians": 26735, "\u0120Prospect": 26736, "Rare": 26737, "sle": - 26738, "\u0120concessions": 26739, "\u0120Constitutional": 26740, "\u0120beams": - 26741, "\u0120fibers": 26742, "poon": 26743, "\u0120instincts": 26744, "property": - 26745, "\u0120BIG": 26746, "Sanders": 26747, "imates": 26748, "\u0120coating": - 26749, "\u0120corpses": 26750, "\u0120TRUE": 26751, "checked": 26752, "\u0120166": - 26753, "Ash": 26754, "\u0120JS": 26755, "\u0120Fiction": 26756, "\u0120communal": - 26757, "\u0120energetic": 26758, "oooooooo": 26759, "\u0120nowadays": 26760, - "ILD": 26761, "ibo": 26762, "\u0120SUV": 26763, "Ren": 26764, "\u0120dwelling": - 26765, "Silver": 26766, "\u0120tally": 26767, "\u0120Moving": 26768, "\u0120coward": - 26769, "\u0120generals": 26770, "\u0120horns": 26771, "\u0120circulated": - 26772, "\u0120robbed": 26773, "\u0120Unlimited": 26774, "\u0120harassed": - 26775, "\u0120inhibit": 26776, "\u0120composer": 26777, "\u0120Spotify": 26778, - "\u0120spreads": 26779, "364": 26780, "\u0120suicidal": 26781, "\u0120noises": - 26782, "\u0120Stur": 26783, "\u0120saga": 26784, "\u0120Kag": 26785, "iso": - 26786, "\u0120theoretically": 26787, "Money": 26788, "\u0120similarity": 26789, - "\u0120sliced": 26790, "utils": 26791, "inges": 26792, "\"-": 26793, "\u0120anth": - 26794, "\u0120imped": 26795, "Module": 26796, "Throughout": 26797, "\u0120menus": - 26798, "committee": 26799, "andi": 26800, "obj": 26801, "inav": 26802, "fired": - 26803, "\u0120Abdullah": 26804, "\u0120undead": 26805, "\u0120fonts": 26806, - "Hold": 26807, "ENG": 26808, "\u0120sustainability": 26809, "\u0120flick": - 26810, "\u0120razor": 26811, "\u0120Fest": 26812, "\u0120Characters": 26813, - "\u0120wording": 26814, "\u0120populist": 26815, "\u0120criticizing": 26816, - "\u0120muse": 26817, "vine": 26818, "\u0120cardboard": 26819, "\u0120kindly": - 26820, "\u0120fringe": 26821, "\u0120Theft": 26822, "icultural": 26823, "\u0120governors": - 26824, "\u0120\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd": - 26825, "\u0120163": 26826, "\u0120timeout": 26827, "\u0120Auth": 26828, "Children": - 26829, "AU": 26830, "\u0120redemption": 26831, "\u0120Alger": 26832, "\u01201914": - 26833, "\u0120waved": 26834, "\u0120astronauts": 26835, "ograms": 26836, "\u0120swamp": - 26837, "\u0120Finnish": 26838, "\u0120candle": 26839, "\u0120tonnes": 26840, - "utm": 26841, "\u0120ray": 26842, "\u0120spun": 26843, "\u0120fearful": 26844, - "articles": 26845, "\u0120caus": 26846, "orically": 26847, "\u0120Requires": - 26848, "\u0120Gol": 26849, "\u0120pope": 26850, "\u0120inaugural": 26851, - "\u0120gle": 26852, "ADA": 26853, "\u0120ISIL": 26854, "\u0120Offensive": - 26855, "\u0120watchdog": 26856, "\u0120balcon": 26857, "entity": 26858, "\u0120Hoo": - 26859, "\u0120gallon": 26860, "ACC": 26861, "\u0120doubling": 26862, "\u0120implication": - 26863, "\u0120Sight": 26864, "\u0120doctr": 26865, "-------": 26866, "\u0120\\\\": - 26867, "\u0120malt": 26868, "Roll": 26869, "\u0120\u00e2\u012b\u00a5": 26870, - "\u0120recap": 26871, "adding": 26872, "uces": 26873, "\u0120Bend": 26874, - "figure": 26875, "\u0120turkey": 26876, "\u0120societal": 26877, "\u0120Tickets": - 26878, "\u0120commercially": 26879, "\u0120spicy": 26880, "\u0120216": 26881, - "\u0120Ramp": 26882, "\u0120superiority": 26883, "\u00c3\u00af": 26884, "\u0120Tracker": - 26885, "Carl": 26886, "\u0120Coy": 26887, "\u0120Patriot": 26888, "\u0120consulted": - 26889, "\u0120listings": 26890, "\u0120slew": 26891, "reenshot": 26892, "\u0120Gone": - 26893, "\u0120[...]": 26894, "309": 26895, "\u0120hottest": 26896, "\u00d8\u00b1": - 26897, "\u0120rocky": 26898, "\u0120Diaz": 26899, "\u0120massage": 26900, - "\u0120paraly": 26901, "\u0120pony": 26902, "Az": 26903, "\u0120cartridge": - 26904, "\u0120NZ": 26905, "\u0120snack": 26906, "\u0120Lamar": 26907, "plement": - 26908, "\u0120Leslie": 26909, "\u0120mater": 26910, "\u0120snipp": 26911, - "246": 26912, "\u0120jointly": 26913, "\u0120Brisbane": 26914, "\u0120iPod": - 26915, "\u0120pumping": 26916, "\u0120goat": 26917, "\u0120Sharon": 26918, - "ealing": 26919, "\u0120coron": 26920, "\u0120anomal": 26921, "rahim": 26922, - "\u0120Connection": 26923, "\u0120sculpture": 26924, "\u0120scheduling": 26925, - "\u0120Daddy": 26926, "athing": 26927, "\u0120eyebrows": 26928, "\u0120curved": - 26929, "\u0120sentiments": 26930, "\u0120drafting": 26931, "Drop": 26932, - "([": 26933, "\u0120nominal": 26934, "\u0120Leadership": 26935, "\u0120Grow": - 26936, "\u0120176": 26937, "\u0120constructive": 26938, "ivation": 26939, - "\u0120corrupted": 26940, "gerald": 26941, "\u0120Cros": 26942, "\u0120Chester": - 26943, "\u0120Lap": 26944, "\u00e3\u0123\u00aa": 26945, "OTH": 26946, "DATA": - 26947, "\u0120almond": 26948, "probably": 26949, "Imp": 26950, "\u0120feast": - 26951, "\u0120Warcraft": 26952, "Flor": 26953, "\u0120checkpoint": 26954, - "\u0120transcription": 26955, "\u0120204": 26956, "\u0120tweaks": 26957, "\u0120relieve": - 26958, "Science": 26959, "\u0120performer": 26960, "Zone": 26961, "\u0120turmoil": - 26962, "igated": 26963, "hibit": 26964, "\u0120Cafe": 26965, "themed": 26966, - "\u0120fluor": 26967, "bench": 26968, "\u0120decom": 26969, "\u0120Unt": 26970, - "\u0120Barrett": 26971, "\u0120Facts": 26972, "\u0120tasting": 26973, "\u0120PTSD": - 26974, "\u0120Seal": 26975, "\u0120Judaism": 26976, "\u0120Dynamic": 26977, - "\u0120Cors": 26978, "Ve": 26979, "\u0120Ming": 26980, "\u0120Transform": - 26981, "von": 26982, "\u0120Defenders": 26983, "\u0120Tactical": 26984, "\u0120Von": - 26985, "\u0120Univers": 26986, "\u0120distorted": 26987, "\u0120Breath": 26988, - "?''\"": 26989, "\u0120agon": 26990, "\u0120Deadly": 26991, "\u0120lan": 26992, - "\u0120Cycle": 26993, "orned": 26994, "\u0120reliably": 26995, "\u0120glor": - 26996, "\u0120Monkey": 26997, "\u00e3\u0125\u00a1": 26998, "\u0120adren": - 26999, "\u0120microwave": 27000, "\u0120Alban": 27001, "ircraft": 27002, "digit": - 27003, "smart": 27004, "\u0120Dread": 27005, "\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af\u00c2\u00af": - 27006, "{{": 27007, "\u0120Rochester": 27008, "\u0120simplified": 27009, "\u0120inflicted": - 27010, "\u0120takeover": 27011, "\u0120yourselves": 27012, "aditional": 27013, - "\u0120muscular": 27014, "KS": 27015, "\u0120ingen": 27016, "Tax": 27017, - "\u0120Feature": 27018, "277": 27019, "\u0120cruc": 27020, "\u0120crate": - 27021, "\u0120unidentified": 27022, "\u0120acclaimed": 27023, "\u0120Manga": - 27024, "\u0120Frances": 27025, "\u0120Nepal": 27026, "\u0120Gerald": 27027, - "\u0120Kuwait": 27028, "\u0120slain": 27029, "\u0120Heb": 27030, "\u0120Goku": - 27031, "\u00e3\u0123\u00ae\u00e6": 27032, "286": 27033, "Mrs": 27034, "\u0120Cody": - 27035, "\u0120Sanctuary": 27036, "016": 27037, "\u0120dismant": 27038, "\u0120dataset": - 27039, "\u0120Hond": 27040, "buck": 27041, "\u0120Patterson": 27042, "\u0120palette": - 27043, "\u0120GD": 27044, "icol": 27045, "\u0120Lodge": 27046, "\u0120planetary": - 27047, "akin": 27048, "\u0120Registered": 27049, "abwe": 27050, "\u0120Petersburg": - 27051, "\u0120hailed": 27052, "\u0120Piece": 27053, "Sche": 27054, "\u0120DOJ": - 27055, "\u0120enumer": 27056, "181": 27057, "\u0120Observer": 27058, "\u0120Bold": - 27059, "founded": 27060, "commerce": 27061, "\u0120exploits": 27062, "\u0120Finding": - 27063, "URN": 27064, "\u0120Sne": 27065, "\u0120Acid": 27066, "ayette": 27067, - "\u0120Values": 27068, "\u0120drastic": 27069, "\u0120architectural": 27070, - "\u0120\".": 27071, "\u00d7\u0137": 27072, "umped": 27073, "\u0120wrapping": - 27074, "\u0120widow": 27075, "\u0120Slayer": 27076, "lace": 27077, "once": - 27078, "Germany": 27079, "avoid": 27080, "\u0120temples": 27081, "PAR": 27082, - "\u00c3\u00b4": 27083, "\u0120Lucifer": 27084, "\u0120Flickr": 27085, "lov": - 27086, "forces": 27087, "\u0120scouting": 27088, "\u0120louder": 27089, "tesy": - 27090, "\u0120beforehand": 27091, "\u00c4\u0135": 27092, "\u0120Neon": 27093, - "\u0120Wol": 27094, "\u0120Typically": 27095, "\u0120Politico": 27096, "-+-+": - 27097, "\u0120builder": 27098, "\u0120derive": 27099, "Kill": 27100, "\u0120poker": - 27101, "\u0120ambiguous": 27102, "\u0120lifts": 27103, "\u0120cyt": 27104, - "\u0120ribs": 27105, "oodle": 27106, "\u0120Sounds": 27107, "hair": 27108, - "\u0120Syndrome": 27109, "tf": 27110, "\u0120proportional": 27111, "uid": - 27112, "\u0120pertaining": 27113, "\u0120Kindle": 27114, "\u0120Negro": 27115, - "\u0120reiterated": 27116, "\u0120Tonight": 27117, "oths": 27118, "\u0120Cornell": - 27119, "\u0120owing": 27120, "\u0120208": 27121, "elfare": 27122, "ocating": - 27123, "\u0120Birds": 27124, "Subscribe": 27125, "\u0120essays": 27126, "\u0120burdens": - 27127, "\u0120illustrations": 27128, "arious": 27129, "ERAL": 27130, "\u0120Calcul": - 27131, "\u0120xen": 27132, "\u0120LinkedIn": 27133, "\u0120Jung": 27134, "\u0120redesign": - 27135, "Connor": 27136, "296": 27137, "\u0120reversal": 27138, "\u0120Adelaide": - 27139, "\u0120LL": 27140, "\u0120sinking": 27141, "\u0120gum": 27142, "USH": - 27143, "capt": 27144, "\u0120Grimm": 27145, "\u0120footsteps": 27146, "\u0120CBD": - 27147, "ispers": 27148, "\u0120prose": 27149, "Wednesday": 27150, "\u0120Movies": - 27151, "edin": 27152, "\u0120overturned": 27153, "\u0120contentious": 27154, - "USB": 27155, "~~~~~~~~~~~~~~~~": 27156, "\u0120Copper": 27157, "\u0120pointless": - 27158, "NV": 27159, "values": 27160, "olphin": 27161, "dain": 27162, "\u0120deposited": - 27163, "\u0120GW": 27164, "\u0120preceded": 27165, "\u0120Cla": 27166, "\u0120Golem": - 27167, "\u0120Nim": 27168, "\u0120\u00ce\u00b2": 27169, "\u0120Engineers": - 27170, "middle": 27171, "\u0120flatt": 27172, "operative": 27173, "\u0120councils": - 27174, "imbabwe": 27175, "elin": 27176, "\u0120stressful": 27177, "\u0120LD": - 27178, "\u0120resh": 27179, "lake": 27180, "\u0120wheelchair": 27181, "\u0120Alternative": - 27182, "\u0120optimize": 27183, "operation": 27184, "\u0120peek": 27185, "\u0120oneself": - 27186, "igil": 27187, "\u0120transitions": 27188, "opathy": 27189, "blank": - 27190, "\u0120169": 27191, "171": 27192, "________________________________________________________________": - 27193, "\u0120laundering": 27194, "Enc": 27195, "\u0120DEC": 27196, "\u0120workouts": - 27197, "\u0120spikes": 27198, "\u0120dinosaurs": 27199, "\u0120discriminatory": - 27200, "Pool": 27201, "Rather": 27202, "385": 27203, "RNA": 27204, "testers": - 27205, "eto": 27206, "\u0120Identity": 27207, "\u0120vein": 27208, "\u0120Burton": - 27209, "\u0120arcade": 27210, "420": 27211, "Ultimately": 27212, "\u0120Sadly": - 27213, "\u00c3\u00b0": 27214, "pill": 27215, "\u0120cubic": 27216, "\u0120Spectrum": - 27217, "these": 27218, "states": 27219, "\u0120unofficial": 27220, "hawks": - 27221, "\u0120EVERY": 27222, "\u0120rainbow": 27223, "\u0120incarceration": - 27224, "anding": 27225, "\u0120syll": 27226, "\u0120Everton": 27227, "\u0120179": - 27228, "\u0120Serbia": 27229, "\u0120189": 27230, "meter": 27231, "\u0120Mickey": - 27232, "\u0120antiqu": 27233, "\u0120factual": 27234, "neck": 27235, "\u0120Nare": - 27236, "norm": 27237, "must": 27238, "\u0120highways": 27239, "\u0120glam": - 27240, "\u0120dividing": 27241, "\u0120Squadron": 27242, "\u0120Martha": 27243, - "\u0120births": 27244, "Cover": 27245, "////////////////": 27246, "\u0120Wong": - 27247, "Phot": 27248, "\u0120ALS": 27249, "rio": 27250, "\u0120Nonetheless": - 27251, "\u0120Lemon": 27252, "\u0120206": 27253, "\u0120EE": 27254, "\u0120derivative": - 27255, "\u0120WWII": 27256, "vote": 27257, "\u0120therein": 27258, "\u0120separating": - 27259, "446": 27260, "sync": 27261, "\u0120Streets": 27262, "\u0120ratt": - 27263, "\u0120municipality": 27264, "\u0120Shortly": 27265, "\u0120monk": - 27266, "),\"": 27267, "\u0120scrub": 27268, "\u0120operatives": 27269, "Neither": - 27270, "Place": 27271, "\u0120Limit": 27272, "Female": 27273, "\u0120Actor": - 27274, "Character": 27275, "\u0120constituted": 27276, "357": 27277, "\u0120protested": - 27278, "\u0120Straw": 27279, "\u0120Height": 27280, "ilda": 27281, "\u0120Typh": - 27282, "\u0120floods": 27283, "\u0120cosmetic": 27284, "WAY": 27285, "perture": - 27286, "upon": 27287, "tons": 27288, "essing": 27289, "\u0120Pocket": 27290, - "\u0120rooft": 27291, "\u0120Caucas": 27292, "\u0120antidepress": 27293, "\u0120incompatible": - 27294, "ECD": 27295, "\u0120opera": 27296, "\u0120Contest": 27297, "\u0120generators": - 27298, "lime": 27299, "Defense": 27300, "1987": 27301, "forum": 27302, "\u0120savage": - 27303, "\u0120Hungarian": 27304, "nz": 27305, "\u0120metallic": 27306, "\u0120expelled": - 27307, "\u0120residency": 27308, "\u0120dresses": 27309, "666": 27310, "\u0120Clement": - 27311, "fires": 27312, "Category": 27313, "\u0120geek": 27314, "alis": 27315, - "\u0120cemetery": 27316, "educated": 27317, "\u0120crawl": 27318, "\u0120Unable": - 27319, "\u0120Tyson": 27320, "akis": 27321, "\u0120pardon": 27322, "\u0120Wra": - 27323, "\u0120strengthened": 27324, "\u0120Fors": 27325, "335": 27326, "\u0120HC": - 27327, "\u0120Mond": 27328, "\u0120visuals": 27329, "\u0120Beatles": 27330, - "ettlement": 27331, "\u0120\u00ef": 27332, "gro": 27333, "\u0120bash": 27334, - "\u0120poorest": 27335, "\u0120excel": 27336, "\u0120aspirations": 27337, - "\u0120Municip": 27338, "ensible": 27339, "\u0120ceremonies": 27340, "\u0120intimidation": - 27341, "\u0120CONTR": 27342, "beck": 27343, "\u0120Kap": 27344, "asu": 27345, - "\u0120trademarks": 27346, "\u0120Sew": 27347, "\u0120Competition": 27348, - "network": 27349, "\u0120Arri": 27350, "\u0120Tet": 27351, "Roaming": 27352, - "WC": 27353, "Dat": 27354, "\u0120sob": 27355, "\u0120pairing": 27356, "\u0120overdose": - 27357, "SAY": 27358, "aber": 27359, "\u0120revolt": 27360, "\u0120Fah": 27361, - "acting": 27362, "eq": 27363, "estation": 27364, "Fight": 27365, "\u0120Marks": - 27366, "273": 27367, "\u0120178": 27368, "Raw": 27369, "\u00e3\u0123\u012d": - 27370, "349": 27371, "blocks": 27372, "\u0120verge": 27373, "estine": 27374, - "\u0120Podesta": 27375, "\u0120invasive": 27376, "\u0120profoundly": 27377, - "\u0120Ao": 27378, "each": 27379, "\u0120lest": 27380, "interpret": 27381, - "\u0120shrinking": 27382, "\u0120errone": 27383, "\u0120chees": 27384, "lys": - 27385, "\u0120Ivy": 27386, "\u0120Directory": 27387, "\u0120hinted": 27388, - "VICE": 27389, "\u0120contacting": 27390, "\u0120Gent": 27391, "hei": 27392, - "\u0120labeling": 27393, "\u0120mercury": 27394, "\u0120Lite": 27395, "\u0120expires": - 27396, "\u0120destabil": 27397, "ritis": 27398, "cu": 27399, "\u0120feathers": - 27400, "\u0120steer": 27401, "\u0120programmed": 27402, "\u0120Vader": 27403, - "Going": 27404, "\u0120Elim": 27405, "\u0120yo": 27406, "\u0120Miche": 27407, - "\u0120203": 27408, "\u0120sleeves": 27409, "\u0120bully": 27410, "\u0120Humans": - 27411, "368": 27412, "\u0120compress": 27413, "\u0120Banner": 27414, "ARS": - 27415, "\u0120awhile": 27416, "\u0120calib": 27417, "\u0120sponsorship": 27418, - "\u0120Difficulty": 27419, "\u0120Papers": 27420, "\u0120identifier": 27421, - "}.": 27422, "\u0120yog": 27423, "\u0120Shia": 27424, "\u0120cleanup": 27425, - "\u0120vibe": 27426, "introdu": 27427, "imming": 27428, "Australia": 27429, - "\u0120outlines": 27430, "\u0120Youtube": 27431, "train": 27432, "\u0120Makes": - 27433, "\u0120deported": 27434, "\u0120centr": 27435, "\u0120Dug": 27436, - "\u0120Boulder": 27437, "\u0120Buffy": 27438, "\u0120injunction": 27439, "\u0120Harley": - 27440, "\u0120Groups": 27441, "\u0120Dumbledore": 27442, "\u0120Clara": 27443, - "\u0120\"-": 27444, "\u0120sacrificed": 27445, "eph": 27446, "Shadow": 27447, - "ibling": 27448, "\u0120freelance": 27449, "\u0120evidently": 27450, "phal": - 27451, "\u0120retains": 27452, "Mir": 27453, "\u0120finite": 27454, "dar": - 27455, "\u0120Cous": 27456, "\u0120repaired": 27457, "\u0120periodic": 27458, - "\u0120championships": 27459, "\u0120asteroid": 27460, "blind": 27461, "\u0120expressly": - 27462, "\u0120Astros": 27463, "\u0120scaled": 27464, "\u0120geographical": - 27465, "\u0120Rapids": 27466, "Enjoy": 27467, "\u0120elastic": 27468, "\u0120Mohamed": - 27469, "Market": 27470, "begin": 27471, "\u0120discovers": 27472, "\u0120telecommunications": - 27473, "\u0120scanner": 27474, "\u0120enlarge": 27475, "\u0120sharks": 27476, - "\u0120psychedel": 27477, "\u0120Rouge": 27478, "\u0120snapshot": 27479, "isine": - 27480, "XP": 27481, "\u0120pesticides": 27482, "\u0120LSD": 27483, "\u0120Distribution": - 27484, "really": 27485, "\u0120degradation": 27486, "\u0120disguise": 27487, - "\u0120biom": 27488, "\u0120EXT": 27489, "\u0120equations": 27490, "\u0120hazards": - 27491, "\u0120Compared": 27492, ")*": 27493, "\u0120virtues": 27494, "\u0120elders": - 27495, "\u0120enhancing": 27496, "\u0120Across": 27497, "eros": 27498, "angling": - 27499, "\u0120combust": 27500, "ucci": 27501, "\u0120concussion": 27502, "\u0120contraception": - 27503, "\u0120Kang": 27504, "\u0120expresses": 27505, "\u0120aux": 27506, - "\u0120Pione": 27507, "\u0120exhibits": 27508, "Debug": 27509, "OTAL": 27510, - "\u0120Already": 27511, "\u0120Wheeler": 27512, "\u0120expands": 27513, "?:": - 27514, "\u0120reconciliation": 27515, "\u0120pirates": 27516, "\u0120purse": - 27517, "\u0120discourage": 27518, "\u0120spectacle": 27519, "Rank": 27520, - "\u0120wraps": 27521, "\u0120Thought": 27522, "\u0120impending": 27523, "Opp": - 27524, "\u0120Anglo": 27525, "\u0120EUR": 27526, "\u0120screwed": 27527, "retched": - 27528, "\u0120encouragement": 27529, "models": 27530, "\u0120confuse": 27531, - "mmm": 27532, "\u0120Vitamin": 27533, "\u00e2\u0138\u0133\u00e2\u0138\u0133": - 27534, "Cru": 27535, "\u0120knights": 27536, "\u0120discard": 27537, "\u0120bishops": - 27538, "\u0120Wear": 27539, "\u0120Garrett": 27540, "kan": 27541, "\u00e3\u0125\u0141": - 27542, "\u0120masculine": 27543, "capital": 27544, "\u0120Aus": 27545, "\u0120fatally": - 27546, "thanks": 27547, "\u0120AU": 27548, "\u0120Gut": 27549, "1200": 27550, - "\u012000000000": 27551, "\u0120surrog": 27552, "\u0120BIOS": 27553, "raits": - 27554, "\u0120Watts": 27555, "\u0120resurrection": 27556, "\u0120Electoral": - 27557, "\u0120Tips": 27558, "4000": 27559, "\u0120nutrient": 27560, "\u0120depicting": - 27561, "\u0120sprink": 27562, "\u0120muff": 27563, "\u0120LIM": 27564, "\u0120Sample": - 27565, "psc": 27566, "ibi": 27567, "generated": 27568, "\u0120specimens": - 27569, "\u0120dissatisf": 27570, "\u0120tailored": 27571, "\u0120holdings": - 27572, "\u0120Monthly": 27573, "\u0120Eat": 27574, "poons": 27575, "\u0120nec": - 27576, "\u0120Cage": 27577, "\u0120Lotus": 27578, "\u0120Lantern": 27579, - "\u0120frontier": 27580, "\u0120pensions": 27581, "\u0120joked": 27582, "\u0120Hardy": - 27583, "=-=-=-=-": 27584, "rade": 27585, "UID": 27586, "\u0120rails": 27587, - "\u0120emit": 27588, "\u0120slate": 27589, "\u0120smug": 27590, "\u0120spit": - 27591, "\u0120Calls": 27592, "\u0120Jacobs": 27593, "feat": 27594, "\u0120UE": - 27595, "\u0120restruct": 27596, "\u0120regeneration": 27597, "\u0120energies": - 27598, "\u0120Connor": 27599, "OHN": 27600, "\u0120Cheese": 27601, "\u0120ger": - 27602, "\u0120resurrect": 27603, "management": 27604, "NW": 27605, "\u0120presently": - 27606, "\u0120Bruins": 27607, "Member": 27608, "\u0120Mang": 27609, "idan": - 27610, "\u0120boosting": 27611, "wyn": 27612, "+.": 27613, "requisite": 27614, - "\u0120NYPD": 27615, "\u0120Megan": 27616, "\u0120Conditions": 27617, "\u0120pics": - 27618, "nesium": 27619, "\u0120Rash": 27620, "\u0120174": 27621, "\u0120Ducks": - 27622, "\u0120embro": 27623, "zu": 27624, "onian": 27625, "religious": 27626, - "\u0120craz": 27627, "\u0120ACA": 27628, "\u0120Zucker": 27629, "EMA": 27630, - "\u0120Pros": 27631, "Weapon": 27632, "\u0120Knox": 27633, "\u0120Arduino": - 27634, "\u0120stove": 27635, "\u0120heavens": 27636, "\u0120Purchase": 27637, - "\u0120herd": 27638, "\u0120fundraiser": 27639, "Digital": 27640, "5000": - 27641, "\u0120proponents": 27642, "/\u00e2\u0122\u012d": 27643, "\u0120jelly": - 27644, "\u0120Visa": 27645, "\u0120monks": 27646, "\u0120advancement": 27647, - "\u0120Wer": 27648, "\u0120187": 27649, "eus": 27650, "ertility": 27651, "\u0120fetal": - 27652, "\u01201936": 27653, "Lo": 27654, "\u0120outfits": 27655, "\u0120staircase": - 27656, "bomb": 27657, "\u0120customized": 27658, "clair": 27659, "Tree": 27660, - "\u0120mapped": 27661, "\u0120Considering": 27662, "\u0120Torres": 27663, - "\u0120methyl": 27664, "\u0120approximate": 27665, "\u0120doom": 27666, "\u0120Hansen": - 27667, "\u0120crossover": 27668, "\u0120standalone": 27669, "\u00e4\u00bc": - 27670, "\u0120invites": 27671, "\u0120graveyard": 27672, "\u0120hp": 27673, - "DonaldTrump": 27674, "\u0120escort": 27675, "Gar": 27676, "\u0120predecessors": - 27677, "\u0120hay": 27678, "\u0120enzyme": 27679, "\u0120Straight": 27680, - "visors": 27681, "Ing": 27682, "aneously": 27683, "\u0120Applied": 27684, - "\u0120fec": 27685, "\u0120Durant": 27686, "\u0120outspoken": 27687, "orb": - 27688, "\u0120zeal": 27689, "\u0120disgrace": 27690, "'').": 27691, "\u0120Cheng": - 27692, "289": 27693, "\u0120Rena": 27694, "\u0120Suicide": 27695, "294": 27696, - "\u0120outraged": 27697, "\u0120Newman": 27698, "\u0120Nvidia": 27699, "\u0120Aber": - 27700, "\u0120Bers": 27701, "\u0120recreation": 27702, "Window": 27703, "\u0120DP": - 27704, "xe": 27705, "\u0120pedoph": 27706, "\u0120fallout": 27707, "amboo": - 27708, "\u0120presentations": 27709, "\u0120Apps": 27710, "\u0120html": 27711, - "345": 27712, "\u0120XXX": 27713, "\u0120rubbing": 27714, "\u0120Leather": - 27715, "\u0120humidity": 27716, "seys": 27717, "established": 27718, "\u0120Units": - 27719, "646": 27720, "\u0120respectable": 27721, "Auto": 27722, "\u0120thriving": - 27723, "\u0120Innovation": 27724, "angs": 27725, "Extra": 27726, "regulation": - 27727, "298": 27728, "pick": 27729, "Examples": 27730, "\u0120CJ": 27731, - "Attack": 27732, "\u0120dracon": 27733, "LT": 27734, "\u0120sticker": 27735, - "rers": 27736, "\u0120sunny": 27737, "Iss": 27738, "regulated": 27739, "dim": - 27740, "\u0120Abstract": 27741, "\u0120husbands": 27742, "Office": 27743, - "omination": 27744, "itars": 27745, "ANGE": 27746, "ascal": 27747, "\u0120Kris": - 27748, "\u0120Infantry": 27749, "\u0120malf": 27750, "\u0120Athe": 27751, - "\u0120Rally": 27752, "balanced": 27753, "........................": 27754, - "OUP": 27755, "\u0120molecule": 27756, "metics": 27757, "\u0120Split": 27758, - "\u0120Instructions": 27759, "\u0120Nights": 27760, "cards": 27761, "\u0120tug": - 27762, "\u0120cone": 27763, "\u00e5\u0143": 27764, "\u0120tx": 27765, "\u0120Discussion": - 27766, "\u0120catastrophe": 27767, "ppe": 27768, "gio": 27769, "\u0120communism": - 27770, "\u0120halted": 27771, "\u0120Guant": 27772, "clean": 27773, "\u0120Sched": - 27774, "\u0120Kanye": 27775, "\u0120wander": 27776, "\u0120Seriously": 27777, - "\u0120188": 27778, "ennial": 27779, "follow": 27780, "productive": 27781, - "\u0120Flow": 27782, "\u0120Sail": 27783, "\u0120craw": 27784, "\u0120simulations": - 27785, "oru": 27786, "angles": 27787, "\u0120Nolan": 27788, "\u0120menstru": - 27789, "470": 27790, "\u0120207": 27791, "aja": 27792, "\u0120casually": 27793, - "boarding": 27794, "\u0120222": 27795, "ovy": 27796, "\u0120Numbers": 27797, - "umat": 27798, "OE": 27799, "287": 27800, "\u0120Clemson": 27801, "\u0120certs": - 27802, "\u0120slid": 27803, "\u0120Tribe": 27804, "\u0120toast": 27805, "\u0120fortunes": - 27806, "\u0120fals": 27807, "\u0120Committees": 27808, "\u0120gp": 27809, - "\u0120fiery": 27810, "\u0120Nets": 27811, "\u0120Anime": 27812, "Package": - 27813, "\u0120Compare": 27814, "laughter": 27815, "infect": 27816, "\u0120atrocities": - 27817, "\u0120justices": 27818, "\u0120insults": 27819, "\u0120Vernon": 27820, - "\u0120shaken": 27821, "\u0120persona": 27822, "estamp": 27823, "367": 27824, - "brain": 27825, "\u0120experimenting": 27826, "Ken": 27827, "\u0120Electronics": - 27828, "\u0120161": 27829, "domain": 27830, "\u0120graphical": 27831, "bishop": - 27832, "\u0120whopping": 27833, "\u0120Evangel": 27834, "\u0120advertisers": - 27835, "\u0120Spear": 27836, "\u0120bids": 27837, "\u0120destroys": 27838, - "utz": 27839, "\u0120undersc": 27840, "\u0120ADD": 27841, "\u0120ants": 27842, - "\u0120Cum": 27843, "ipples": 27844, "\u0120Fill": 27845, "\u0120glanced": - 27846, "\u0120indicted": 27847, "\u0120Eff": 27848, "\u0120miscon": 27849, - "\u0120Desktop": 27850, "\u0120abide": 27851, "\u00e3\u0125\u0122": 27852, - "\u0120Io": 27853, "\u0120Coul": 27854, "\u0120capsule": 27855, "\u0120Chrys": - 27856, "MON": 27857, "\u0120undes": 27858, "\u0120IRA": 27859, "\u0120citation": - 27860, "\u0120dictate": 27861, "\u0120Networks": 27862, "\u0120Conflict": - 27863, "\u0120Stuff": 27864, "xa": 27865, "isec": 27866, "\u0120Chemistry": - 27867, "\u0120quarterly": 27868, "Williams": 27869, "anan": 27870, "Opt": - 27871, "\u0120Alexandria": 27872, "outheastern": 27873, "\u0120Springfield": - 27874, "\u0120Blacks": 27875, "\u0120geography": 27876, "242": 27877, "\u0120utmost": - 27878, "\u0120Exxon": 27879, "abouts": 27880, "EVA": 27881, "\u0120Enable": - 27882, "\u0120Barr": 27883, "\u0120disagreed": 27884, "\u0120Cyprus": 27885, - "\u0120dementia": 27886, "\u0120labs": 27887, "\u0120ubiquitous": 27888, "\u0120LOVE": - 27889, "\u0120consolidated": 27890, "sr": 27891, "\u0120creamy": 27892, "\u0120Timber": - 27893, "Regardless": 27894, "\u0120Certificate": 27895, "\u0120\"...": 27896, - "ogenous": 27897, "Captain": 27898, "\u0120insulting": 27899, "\u0120Soros": - 27900, "\u0120Instr": 27901, "\u0120Bulgaria": 27902, "better": 27903, "\u0120sucking": - 27904, "\u0120Davidson": 27905, "atz": 27906, "\u0120collateral": 27907, "gif": - 27908, "\u0120plagued": 27909, "\u0120Cancel": 27910, "\u0120Gardner": 27911, - "RB": 27912, "\u0120sixteen": 27913, "Remove": 27914, "uristic": 27915, "cook": - 27916, "Rod": 27917, "\u0120comprising": 27918, "fle": 27919, ")\u00e2\u0122\u0136": - 27920, "\u0120Viking": 27921, "growth": 27922, "agonal": 27923, "\u0120srf": - 27924, "afety": 27925, "mot": 27926, "Nearly": 27927, "stown": 27928, "\u0120Factor": - 27929, "\u0120automobile": 27930, "\u0120procedural": 27931, "mask": 27932, - "ampires": 27933, "\u0120disappears": 27934, "jab": 27935, "315": 27936, "\u01201951": - 27937, "needed": 27938, "\u0120daring": 27939, "leader": 27940, "\u0120podium": - 27941, "\u0120unhealthy": 27942, "\u0120mund": 27943, "\u0120pyramid": 27944, - "ocre": 27945, "\u0120kissed": 27946, "\u0120dreamed": 27947, "\u0120Fantastic": - 27948, "\u0120Gly": 27949, "\u00e5\u012c": 27950, "\u0120greatness": 27951, - "\u0120spices": 27952, "\u0120metropolitan": 27953, "\u0120compuls": 27954, - "iets": 27955, "1016": 27956, "\u0120Sham": 27957, "\u0120Pyr": 27958, "flies": - 27959, "\u0120Midnight": 27960, "\u0120swallowed": 27961, "\u0120genres": - 27962, "\u0120Lucky": 27963, "\u0120Rewards": 27964, "\u0120dispatch": 27965, - "\u0120IPA": 27966, "\u0120Apply": 27967, "\u0120aven": 27968, "alities": - 27969, "312": 27970, "things": 27971, "\u0120().": 27972, "\u0120mates": 27973, - "\u0120Sz": 27974, "\u0120COP": 27975, "olate": 27976, "OFF": 27977, "\u0120recharge": - 27978, "caps": 27979, "\u0120Yorker": 27980, "icone": 27981, "\u0120galaxies": - 27982, "ileaks": 27983, "Dave": 27984, "\u0120Puzz": 27985, "\u0120Celtic": - 27986, "\u0120AFC": 27987, "276": 27988, "\u0120Sons": 27989, "\u0120affirmative": - 27990, "Hor": 27991, "\u0120tutorials": 27992, "\u0120CITY": 27993, "\u0120Rosa": - 27994, "\u0120Extension": 27995, "Series": 27996, "\u0120fats": 27997, "\u0120rab": - 27998, "lis": 27999, "\u0120unic": 28000, "\u0120eve": 28001, "\u0120Spin": - 28002, "\u0120adulthood": 28003, "typ": 28004, "\u0120sectarian": 28005, "\u0120checkout": - 28006, "\u0120Cycl": 28007, "Single": 28008, "\u0120martyr": 28009, "\u0120chilling": - 28010, "888": 28011, "oufl": 28012, "\u0120];": 28013, "\u0120congestion": - 28014, "mk": 28015, "\u0120Whereas": 28016, "\u01201938": 28017, "urrencies": - 28018, "erion": 28019, "\u0120boast": 28020, "\u0120Patients": 28021, "\u0120chap": - 28022, "\u0120BD": 28023, "realDonaldTrump": 28024, "\u0120examines": 28025, - "hov": 28026, "\u0120startling": 28027, "\u0120Babylon": 28028, "wid": 28029, - "omew": 28030, "brance": 28031, "\u0120Odyssey": 28032, "wig": 28033, "\u0120torch": - 28034, "\u0120Vox": 28035, "\u0120Moz": 28036, "\u0120Troll": 28037, "\u0120Ans": - 28038, "Similarly": 28039, "\u0120Ful": 28040, "006": 28041, "Unless": 28042, - "\u0120Alone": 28043, "stead": 28044, "\u0120Publisher": 28045, "rights": - 28046, "tu": 28047, "\u0120Doesn": 28048, "\u0120professionally": 28049, "\u0120clo": - 28050, "icz": 28051, "\u0120steals": 28052, "\u0120\u00e1": 28053, "1986": - 28054, "\u0120sturdy": 28055, "\u0120Johann": 28056, "\u0120medals": 28057, - "\u0120filings": 28058, "\u0120Fraser": 28059, "done": 28060, "\u0120multinational": - 28061, "\u0120feder": 28062, "\u0120worthless": 28063, "\u0120pest": 28064, - "Yesterday": 28065, "ankind": 28066, "\u0120gays": 28067, "\u0120borne": 28068, - "\u0120POS": 28069, "Picture": 28070, "\u0120percentages": 28071, "251": 28072, - "rame": 28073, "\u0120potions": 28074, "AMD": 28075, "\u0120Lebanese": 28076, - "\u0120rang": 28077, "\u0120LSU": 28078, "ongs": 28079, "\u0120peninsula": - 28080, "\u0120Clause": 28081, "ALK": 28082, "oha": 28083, "\u0120MacBook": - 28084, "\u0120unanimous": 28085, "\u0120lenders": 28086, "\u0120hangs": 28087, - "\u0120franchises": 28088, "orers": 28089, "\u0120Updates": 28090, "\u0120isolate": - 28091, "andro": 28092, "Soon": 28093, "\u0120disruptive": 28094, "\u0120Surve": - 28095, "\u0120stitches": 28096, "\u0120Scorp": 28097, "\u0120Dominion": 28098, - "\u0120supplying": 28099, "Arg": 28100, "\u0120turret": 28101, "\u0120Luk": - 28102, "\u0120brackets": 28103, "*)": 28104, "\u0120Revolutionary": 28105, - "\u0120Honest": 28106, "\u0120noticing": 28107, "\u0120Shannon": 28108, "\u0120afforded": - 28109, "\u0120tha": 28110, "\u0120Janet": 28111, "!--": 28112, "\u0120Narendra": - 28113, "\u0120Plot": 28114, "Hol": 28115, "sever": 28116, "eenth": 28117, - "\u0120obstruction": 28118, "\u01201024": 28119, "staff": 28120, "jas": 28121, - "orget": 28122, "scenes": 28123, "laughs": 28124, "\u0120Fargo": 28125, "crime": - 28126, "\u0120orchestr": 28127, "\u0120delet": 28128, "iliary": 28129, "rieved": - 28130, "\u0120militar": 28131, "\u0120Greene": 28132, "\u00e2\u0139\u0131": - 28133, "\u00e3\u0123\u00a6": 28134, "\u0120Guards": 28135, "\u0120unleashed": - 28136, "\u0120Weber": 28137, "\u0120adjustable": 28138, "\u0120caliber": 28139, - "\u0120motivations": 28140, "\u0120\u00c3\u0142": 28141, "mAh": 28142, "\u0120Lanka": - 28143, "handle": 28144, "\u0120pent": 28145, "\u0120Rav": 28146, "\u0120Angular": - 28147, "\u0120Kau": 28148, "umbing": 28149, "\u0120philanthrop": 28150, "\u0120dehyd": - 28151, "\u0120toxicity": 28152, "eer": 28153, "\u0120YORK": 28154, "witz": - 28155, "\u00e5\u00bc": 28156, "\u0120IE": 28157, "community": 28158, "\u0120AH": - 28159, "\u0120retali": 28160, "\u0120massively": 28161, "\u0120Daniels": 28162, - "\u0120DEL": 28163, "\u0120carcin": 28164, "Url": 28165, "\u0120routing": - 28166, "\u0120NPCs": 28167, "\u0120RAF": 28168, "ryce": 28169, "\u0120waived": - 28170, "\u0120Guatem": 28171, "Everybody": 28172, "\u0120covenant": 28173, - "\u0120173": 28174, "\u0120relaxing": 28175, "\u0120quart": 28176, "almost": - 28177, "\u0120guarded": 28178, "\u0120Soldiers": 28179, "\u0120PLAY": 28180, - "\u0120outgoing": 28181, "LAND": 28182, "\u0120rewrite": 28183, "\u0120MOV": - 28184, "\u0120Imper": 28185, "\u0120Solution": 28186, "\u0120phenomenal": - 28187, "\u0120longevity": 28188, "\u0120impat": 28189, "\u0120Nissan": 28190, - "irie": 28191, "\u0120odor": 28192, "\u0120Zar": 28193, "oks": 28194, "\u0120militias": - 28195, "\u0120SPEC": 28196, "\u0120tolerated": 28197, "arser": 28198, "\u0120Bradford": - 28199, "+,": 28200, "\u0120surreal": 28201, "sf": 28202, "Canadian": 28203, - "\u0120resemblance": 28204, "\u0120carbohydrate": 28205, "VIEW": 28206, "\u0120accessory": - 28207, "meal": 28208, "largest": 28209, "iegel": 28210, "Someone": 28211, - "\u0120toughest": 28212, "oso": 28213, "\u0120funnel": 28214, "\u0120condemnation": - 28215, "luent": 28216, "\u0120wired": 28217, "\u0120Sunset": 28218, "Jesus": - 28219, "\u0120PST": 28220, "\u0120Pages": 28221, "\u0120Tycoon": 28222, "\u0120PF": - 28223, "\u0120selections": 28224, "\u0120\u00e0\u00a4": 28225, "partisan": - 28226, "\u0120highs": 28227, "\u0120Rune": 28228, "\u0120crafts": 28229, "lead": - 28230, "\u0120Parents": 28231, "\u0120reclaim": 28232, "eker": 28233, "\u0120Allied": - 28234, "aeper": 28235, "\u0120looming": 28236, "\u0120beneficiaries": 28237, - "\u0120Hull": 28238, "Students": 28239, "Jewish": 28240, "dj": 28241, "\u0120pact": - 28242, "template": 28243, "\u0120Officials": 28244, "\u0120Baylor": 28245, - "\u0120hemp": 28246, "\u0120youths": 28247, "\u0120Levels": 28248, "\u0120Xiao": - 28249, "\u0120Ches": 28250, "\u0120endeavor": 28251, "\u0120Removed": 28252, - "\u0120hippocamp": 28253, "Hell": 28254, "\u00e3\u0124\u012c": 28255, "805": - 28256, "\u0120dinosaur": 28257, "\u0120Wrath": 28258, "\u0120Indonesian": - 28259, "\u0120calculator": 28260, "\u0120Dictionary": 28261, "\u0120420": - 28262, "\u0120MAG": 28263, "(_": 28264, "!,": 28265, "tarians": 28266, "\u0120restricting": - 28267, "racuse": 28268, "\u0120weekday": 28269, "OUNT": 28270, "\u0120shrugged": - 28271, "leground": 28272, "\u0120bald": 28273, "\u0120Doctors": 28274, "\u0120touted": - 28275, "\u0120Maxwell": 28276, "\u0120214": 28277, "\u0120diplomat": 28278, - "\u0120repression": 28279, "\u0120constituency": 28280, "vice": 28281, "ranked": - 28282, "\u0120Napoleon": 28283, "gang": 28284, "\u0120Forever": 28285, "tun": - 28286, "\u0120bulb": 28287, "\u0120PDT": 28288, "\u0120Cisco": 28289, "VEN": - 28290, "\u0120resumed": 28291, "Steven": 28292, "\u0120Manitoba": 28293, "\u0120fabulous": - 28294, "\u0120Agents": 28295, "1984": 28296, "\u0120amusing": 28297, "\u0120Mysteries": - 28298, "\u0120orthodox": 28299, "floor": 28300, "\u0120questionnaire": 28301, - "\u0120penetrate": 28302, "\u0120filmmakers": 28303, "\u0120Unc": 28304, "\u0120stamped": - 28305, "\u0120thirteen": 28306, "\u0120outfield": 28307, "\u0120forwarded": - 28308, "\u0120appra": 28309, "\u0120aided": 28310, "try": 28311, "\u0120unfocused": - 28312, "\u0120Liz": 28313, "\u0120Wendy": 28314, "\u0120Scene": 28315, "Charg": - 28316, "\u0120rejects": 28317, "\u0120leftist": 28318, "\u0120Providence": - 28319, "\u0120Brid": 28320, "regn": 28321, "\u0120prophecy": 28322, "\u0120LIVE": - 28323, "499": 28324, "\u0120forge": 28325, "\u0120FML": 28326, "\u0120intrinsic": - 28327, "\u0120Frog": 28328, "\u0120wont": 28329, "\u0120Holt": 28330, "\u0120famed": - 28331, "CLUS": 28332, "aepernick": 28333, "\u0120Hate": 28334, "\u0120Cay": - 28335, "\u0120registering": 28336, "ortality": 28337, "ropy": 28338, "ocalyptic": - 28339, "aan": 28340, "nav": 28341, "\u0120fascist": 28342, "IFIED": 28343, - "\u0120implicated": 28344, "\u0120Resort": 28345, "\u0120Chandler": 28346, - "\u0120Brick": 28347, "Pin": 28348, "ysc": 28349, "Usage": 28350, "\u0120Helm": - 28351, "usra": 28352, "\u00e2\u013a\u0127\u00e2\u013a\u0127": 28353, "\u0120Abbas": - 28354, "\u0120unanimously": 28355, "\u0120keeper": 28356, "\u0120addicted": - 28357, "???": 28358, "\u0120helmets": 28359, "\u0120antioxid": 28360, "apsed": - 28361, "808": 28362, "giene": 28363, "\u0120waits": 28364, "\u0120minion": - 28365, "raved": 28366, "\u0120Porsche": 28367, "\u0120dreaming": 28368, "\u0120171": - 28369, "\u0120Cain": 28370, "\u0120unfor": 28371, "asso": 28372, "\u0120Configuration": - 28373, "kun": 28374, "hardt": 28375, "\u0120nested": 28376, "\u0120LDS": 28377, - "LES": 28378, "\u0120tying": 28379, "enos": 28380, "\u0120cue": 28381, "\u0120Marqu": - 28382, "skirts": 28383, "\u0120clicked": 28384, "\u0120expiration": 28385, - "\u0120Accordingly": 28386, "\u0120WC": 28387, "\u0120blessings": 28388, "\u0120addictive": - 28389, "\u0120Narr": 28390, "yx": 28391, "\u0120Jaguars": 28392, "\u0120rents": - 28393, "\u0120Siber": 28394, "\u0120tipped": 28395, "ousse": 28396, "\u0120Fitzgerald": - 28397, "\u0120hierarch": 28398, "outine": 28399, "\u0120wavelength": 28400, - ">.": 28401, "chid": 28402, "\u0120Processing": 28403, "/+": 28404, "ranking": - 28405, "Easy": 28406, "\u0120Construct": 28407, "\u0120tet": 28408, "insured": - 28409, "HUD": 28410, "\u0120quoting": 28411, "\u0120communicated": 28412, - "inx": 28413, "\u0120inmate": 28414, "\u0120erected": 28415, "\u0120Absolutely": - 28416, "\u0120Surely": 28417, "\u0120unim": 28418, "\u0120Throne": 28419, - "heid": 28420, "\u0120claws": 28421, "\u0120superstar": 28422, "\u0120Lenn": - 28423, "\u0120Whis": 28424, "Uk": 28425, "abol": 28426, "\u0120sket": 28427, - "\u0120Niet": 28428, "\u0120perks": 28429, "\u0120affinity": 28430, "\u0120openings": - 28431, "phasis": 28432, "\u0120discriminate": 28433, "Tip": 28434, "vc": 28435, - "\u0120grinding": 28436, "\u0120Jenny": 28437, "\u0120asthma": 28438, "holes": - 28439, "\u0120Homer": 28440, "\u0120registers": 28441, "\u0120Glad": 28442, - "\u0120creations": 28443, "\u0120lithium": 28444, "\u0120applause": 28445, - "until": 28446, "Justice": 28447, "\u0120Turks": 28448, "\u0120scandals": - 28449, "\u0120bake": 28450, "tank": 28451, "Mech": 28452, "\u0120Means": 28453, - "\u0120Maid": 28454, "Republicans": 28455, "isal": 28456, "windows": 28457, - "\u0120Santos": 28458, "\u0120vegetation": 28459, "338": 28460, "tri": 28461, - "\u0120flux": 28462, "insert": 28463, "\u0120clarified": 28464, "\u0120mortg": - 28465, "\u0120Chim": 28466, "\u0120Tort": 28467, "\u0120disclaim": 28468, - "metal": 28469, "\u0120Aside": 28470, "\u0120induction": 28471, "\u0120infl": - 28472, "\u0120atheists": 28473, "amph": 28474, "\u0120ether": 28475, "\u0120Vital": - 28476, "\u0120Built": 28477, "Mind": 28478, "\u0120weaponry": 28479, "SET": - 28480, "\u0120186": 28481, "admin": 28482, "gam": 28483, "contract": 28484, - "afa": 28485, "\u0120derivatives": 28486, "\u0120snacks": 28487, "\u0120churn": - 28488, "Econom": 28489, "\u0120capped": 28490, "\u0120Understanding": 28491, - "\u0120Hers": 28492, "\u0120Iz": 28493, "\u0120duct": 28494, "IENT": 28495, - "aughty": 28496, "\u0120\u00e2\u013e\u0136": 28497, "\u0120NP": 28498, "\u0120sailing": - 28499, "Initialized": 28500, "\u0120ted": 28501, "\u0120reactors": 28502, - "\u0120Lomb": 28503, "\u0120choke": 28504, "\u0120Worm": 28505, "\u0120admiration": - 28506, "\u0120swung": 28507, "ensibly": 28508, "\u0120rash": 28509, "\u0120Goals": - 28510, "\u0120Important": 28511, "Shot": 28512, "\u0120Ras": 28513, "\u0120trainers": - 28514, "\u0120Bun": 28515, "Working": 28516, "\u0120harmed": 28517, "\u0120Pandora": - 28518, "\u0120LTE": 28519, "\u0120mushroom": 28520, "\u0120CHAR": 28521, "\u0120Fee": - 28522, "\u0120Moy": 28523, "Born": 28524, "oliberal": 28525, "\u0120Martial": - 28526, "\u0120gentlemen": 28527, "\u0120lingering": 28528, "Official": 28529, - "\u0120graffiti": 28530, "\u0120Names": 28531, "Der": 28532, "\u0120quint": - 28533, "istrate": 28534, "azeera": 28535, "\u0120NOTICE": 28536, "\u0120Florence": - 28537, "\u0120payable": 28538, "\u0120depicts": 28539, "\u0120Species": 28540, - "Heart": 28541, "\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122\u00e2\u0136\u0122": - 28542, "\u0120enclosed": 28543, "Increases": 28544, "Daily": 28545, "\u0120Lis": - 28546, "\u0120enactment": 28547, "\u0120Bacon": 28548, "\u0120Steele": 28549, - "demand": 28550, "\u0120183": 28551, "\u0120mouths": 28552, "\u0120stranded": - 28553, "\u0120enhancement": 28554, "011": 28555, "\u0120Whats": 28556, "\u0120healed": - 28557, "eny": 28558, "\u0120Rab": 28559, "\u0120340": 28560, "\u0120Labyrinth": - 28561, "roach": 28562, "\u0120Yosh": 28563, "\u0120Clippers": 28564, "\u0120concerts": - 28565, "Internet": 28566, "355": 28567, "\u0120stickers": 28568, "\u0120termed": - 28569, "\u0120Axe": 28570, "\u0120grandparents": 28571, "France": 28572, "\u0120Clim": - 28573, "\u0120Uh": 28574, "ulic": 28575, "\u0120thrill": 28576, "centric": - 28577, "\u0120Overview": 28578, "\u0120Conduct": 28579, "\u0120substantive": - 28580, "\u0120182": 28581, "mur": 28582, "\u0120stray": 28583, "\u0120Coff": - 28584, "\u0120repetitive": 28585, "\u0120Forgotten": 28586, "\u0120qualification": - 28587, "ewitness": 28588, "\u0120Zimbabwe": 28589, "\u0120simulated": 28590, - "\u0120JD": 28591, "253": 28592, "\u0120Ware": 28593, "\u0120unsc": 28594, - "Times": 28595, "\u0120summons": 28596, "\u0120disconnected": 28597, "\u0120184": - 28598, "cius": 28599, "\u0120Gujar": 28600, "odka": 28601, "\u0120erase": - 28602, "\u0120Tobacco": 28603, "elected": 28604, "\u0120uncont": 28605, "\u0120Shepard": - 28606, "\u0120Lamp": 28607, "\u0120alerted": 28608, "\u0120operative": 28609, - "arna": 28610, "uint": 28611, "\u0120negligence": 28612, "acements": 28613, - "\u0120supra": 28614, "\u0120prevail": 28615, "\u0120Shark": 28616, "\u0120belts": - 28617, "\u00e3\u0123\u00ab": 28618, "\u0120tighter": 28619, "Engineers": 28620, - "\u0120inactive": 28621, "\u0120exponent": 28622, "\u0120Willie": 28623, "aples": - 28624, "\u0120heir": 28625, "\u0120Hits": 28626, "iann": 28627, "\u0120Says": - 28628, "\u0120currents": 28629, "\u0120Bengal": 28630, "\u0120arist": 28631, - "Buffer": 28632, "\u0120breeze": 28633, "\u0120Wesley": 28634, "Cola": 28635, - "\u0120pronoun": 28636, "\u0120deed": 28637, "\u0120Kling": 28638, "\u0120oft": - 28639, "\u0120inflict": 28640, "\u0120punishing": 28641, "\u0120nm": 28642, - "iku": 28643, "ODUCT": 28644, "014": 28645, "\u0120subsidy": 28646, "\u0120DEA": - 28647, "\u0120Herbert": 28648, "\u0120Jal": 28649, "Bank": 28650, "\u0120deferred": - 28651, "\u0120shipment": 28652, "Bott": 28653, "\u0120alle": 28654, "bearing": - 28655, "HTML": 28656, "Offline": 28657, "\u0120213": 28658, "\u0120scrolling": - 28659, "\u0120scanned": 28660, "\u0120Libyan": 28661, "\u0120TOP": 28662, - "chrom": 28663, "dt": 28664, "column": 28665, "PsyNetMessage": 28666, "Zero": - 28667, "\u0120torso": 28668, "050": 28669, "\u00e2\u0137\u0132": 28670, "\u0120imperson": - 28671, "\u0120Schwartz": 28672, "udic": 28673, "\u0120pissed": 28674, "\u0120Sapp": - 28675, "257": 28676, "\u0120ISPs": 28677, "ogl": 28678, "\u0120supervised": - 28679, "\u0120adolescent": 28680, "\u0120attained": 28681, "\u0120Delivery": - 28682, "\u0120Bunny": 28683, "\u01201937": 28684, "\u0120miniature": 28685, - "\u0120os": 28686, "\u0120370": 28687, "608": 28688, "\u0120Mourinho": 28689, - "\u0120innate": 28690, "\u0120tempo": 28691, "\u0120NM": 28692, "\u0120Fallen": - 28693, "009": 28694, "\u0120provocative": 28695, "Streamer": 28696, "\u0120Benedict": - 28697, "\u0120Bolshe": 28698, "\u0120turtle": 28699, "\u0120PCB": 28700, "\u0120Equal": - 28701, "Director": 28702, "\u0120Rend": 28703, "\u0120fluids": 28704, "Authorities": - 28705, "\u0120cousins": 28706, "requency": 28707, "\u0120Neighbor": 28708, - "sets": 28709, "shared": 28710, "Charles": 28711, "password": 28712, "\u0120gears": - 28713, "\u0120211": 28714, "\u0120Hardware": 28715, "rika": 28716, "\u0120upstream": - 28717, "Hom": 28718, "\u0120disproportionately": 28719, "ivities": 28720, - "\u0120undefined": 28721, "\u0120electrons": 28722, "\u0120commemor": 28723, - "Eventually": 28724, "\u0120><": 28725, "\u0120irresponsible": 28726, "218": - 28727, "\u0120Released": 28728, "\u0120OVER": 28729, "\u0120IGN": 28730, "\u0120Bread": - 28731, "stellar": 28732, "\u0120Sage": 28733, "tted": 28734, "damage": 28735, - "edition": 28736, "\u0120Prec": 28737, "\u0120lime": 28738, "\u0120confinement": - 28739, "\u0120calorie": 28740, "weapon": 28741, "\u0120differing": 28742, - "\u0120Sina": 28743, "mys": 28744, "amd": 28745, "\u0120intricate": 28746, - "kk": 28747, "\u0120PAT": 28748, "\u00c3\u00a3o": 28749, "stones": 28750, - "links": 28751, "\u0120ranch": 28752, "Semitic": 28753, "\u0120differentiate": - 28754, "\u0120Singer": 28755, "occupied": 28756, "\u0120fortress": 28757, - "cmd": 28758, "\u0120interception": 28759, "\u0120Ankara": 28760, "\u0120rept": - 28761, "\u0120Solitaire": 28762, "\u0120remake": 28763, "pred": 28764, "\u0120dared": - 28765, "autions": 28766, "\u0120BACK": 28767, "Running": 28768, "\u0120debugging": - 28769, "\u0120graphs": 28770, "399": 28771, "\u0120Nigel": 28772, "\u0120bun": - 28773, "\u0120pillow": 28774, "\u0120progressed": 28775, "fashioned": 28776, - "\u0120obedience": 28777, "ERN": 28778, "\u0120rehears": 28779, "Cell": 28780, - "tl": 28781, "Sher": 28782, "\u0120herald": 28783, "\u0120Payment": 28784, - "\u0120Cory": 28785, "\u0120Dept": 28786, "\u0120repent": 28787, "\u0120Weak": - 28788, "uckland": 28789, "\u0120pleasing": 28790, "\u0120shortages": 28791, - "\u0120jurors": 28792, "\u0120Kab": 28793, "qqa": 28794, "Anti": 28795, "\u0120wow": - 28796, "\u0120RCMP": 28797, "\u0120tsun": 28798, "\u0120Sic": 28799, "\u0120comprises": - 28800, "\u0120spies": 28801, "\u0120precinct": 28802, "nu": 28803, "\u0120urges": - 28804, "\u0120timed": 28805, "\u0120stripes": 28806, "\u0120Boots": 28807, - "\u0120yen": 28808, "Advanced": 28809, "\u0120discrete": 28810, "\u0120Archangel": - 28811, "employment": 28812, "Diff": 28813, "\u0120monuments": 28814, "\u0120209": - 28815, "worker": 28816, "\u0120196": 28817, "\u0120Ig": 28818, "utterstock": - 28819, "TPS": 28820, "Jac": 28821, "\u0120homelessness": 28822, "\u0120commentator": - 28823, "\u0120racially": 28824, "fing": 28825, "seed": 28826, "Ele": 28827, - "ellation": 28828, "\u0120ethanol": 28829, "\u0120parish": 28830, "\u0120Dong": - 28831, "\u0120Awakening": 28832, "\u0120deviation": 28833, "\u0120Bearing": - 28834, "\u0120Tsuk": 28835, "\u0120recess": 28836, "\u0120lymph": 28837, "\u0120Cannabis": - 28838, "\u00e5\u013e": 28839, "\u0120NEWS": 28840, "\u0120dra": 28841, "\u0120Stefan": - 28842, "\u0120Wrong": 28843, "\u0120SAM": 28844, "\u0120loosely": 28845, "\u0120interpreter": - 28846, "\u0120Plain": 28847, "Government": 28848, "\u0120bigotry": 28849, - "\u0120grenades": 28850, "avez": 28851, "pictured": 28852, "\u0120mandated": - 28853, "\u0120Monk": 28854, "\u0120Pedro": 28855, "\u0120lava": 28856, "274": - 28857, "\u0120cynical": 28858, "\u0120Scrolls": 28859, "locks": 28860, "Mp": - 28861, "\u0120congregation": 28862, "ornings": 28863, "phil": 28864, "\u0120Ibid": - 28865, "\u0120ferv": 28866, "\u0120disappearing": 28867, "\u0120arrogant": - 28868, "syn": 28869, "\u0120Maver": 28870, "\u0120Suit": 28871, "241": 28872, - "\u0120abbre": 28873, "ackers": 28874, "Pa": 28875, "\u0120Yel": 28876, "Whenever": - 28877, "\u0120235": 28878, "\u0120Vine": 28879, "\u0120Anat": 28880, "\u0120extinct": - 28881, "LET": 28882, "\u0120executable": 28883, "VERS": 28884, "oxide": 28885, - "DNA": 28886, "\u0120Prel": 28887, "\u0120resentment": 28888, "\u0120comprise": - 28889, "\u0120Aviv": 28890, "\u0120interceptions": 28891, "\u0120prolific": - 28892, "INA": 28893, "\u0120Erin": 28894, "thought": 28895, "219": 28896, - "\u0120Psychiatry": 28897, "unky": 28898, "chemist": 28899, "Ho": 28900, "\u0120McCoy": - 28901, "\u0120bricks": 28902, "Los": 28903, "rily": 28904, "\u0120USSR": 28905, - "\u0120rud": 28906, "\u0120laud": 28907, "\u0120Wise": 28908, "\u0120Emerald": - 28909, "\u0120revived": 28910, "\u0120damned": 28911, "\u0120Repair": 28912, - "idem": 28913, "ctica": 28914, "\u0120patriarch": 28915, "\u0120Nurs": 28916, - "meg": 28917, "\u0120cheapest": 28918, "reements": 28919, "empty": 28920, - "\u0120Celebr": 28921, "\u0120deprivation": 28922, "chanted": 28923, "\u0120Thumbnails": - 28924, "Energy": 28925, "\u0120Ethan": 28926, "\u0120Qing": 28927, "\u0120opposes": - 28928, "WIND": 28929, "vik": 28930, "\u0120Mau": 28931, "\u0120SUB": 28932, - "667": 28933, "GRE": 28934, "\u0120Volunte": 28935, "nton": 28936, "Cook": - 28937, "\u00e5\u0132": 28938, "esque": 28939, "\u0120plummet": 28940, "\u0120suing": - 28941, "\u0120pronounce": 28942, "\u0120resisting": 28943, "\u0120Fishing": - 28944, "\u0120Trials": 28945, "\u0120yell": 28946, "\u0120310": 28947, "\u0120induct": - 28948, "\u0120personalized": 28949, "often": 28950, "Reb": 28951, "EMBER": - 28952, "\u0120viewpoint": 28953, "\u0120existential": 28954, "())": 28955, - "remove": 28956, "MENTS": 28957, "lasses": 28958, "\u0120evapor": 28959, "\u0120aisle": - 28960, "meta": 28961, "\u0120reflective": 28962, "\u0120entitlement": 28963, - "\u0120devised": 28964, "music": 28965, "ascade": 28966, "\u0120winding": - 28967, "offset": 28968, "\u0120accessibility": 28969, "kered": 28970, "Better": - 28971, "\u0120Johnston": 28972, "thinking": 28973, "Snow": 28974, "\u0120Croatia": - 28975, "\u0120Atomic": 28976, "271": 28977, "348": 28978, "\u0120textbook": - 28979, "\u0120Sixth": 28980, "\u0120\u00d8\u00a7\u00d9\u0126": 28981, "\u0120slider": - 28982, "\u0120Burger": 28983, "bol": 28984, "Sync": 28985, "\u0120grandchildren": - 28986, "\u0120cerv": 28987, "+)": 28988, "\u0120eternity": 28989, "\u0120tweeting": - 28990, "\u0120speculative": 28991, "\u0120pivotal": 28992, "\u0120WP": 28993, - "\u0120TER": 28994, "ynamic": 28995, "\u0120upl": 28996, "\u0120Cats": 28997, - "perhaps": 28998, "\u0120classmates": 28999, "\u0120blatant": 29000, "''-": - 29001, "\u0120lakh": 29002, "antine": 29003, "\u0120Borg": 29004, "iom": 29005, - "/(": 29006, "\u0120Athletic": 29007, "\u0120sar": 29008, "OTA": 29009, "\u0120Hoffman": - 29010, "Nevertheless": 29011, "\u0120adorable": 29012, "\u0120spawned": 29013, - "Associated": 29014, "\u0120Domestic": 29015, "\u0120implant": 29016, "\u0120Luxem": - 29017, "\u0120Kens": 29018, "\u0120pumps": 29019, "\u0120SAT": 29020, "Attributes": - 29021, "509": 29022, "avour": 29023, "\u0120centralized": 29024, "\u0120TN": - 29025, "\u0120freshly": 29026, "\u0120Achieve": 29027, "\u0120outsiders": - 29028, "herty": 29029, "\u0120Ree": 29030, "\u0120Towers": 29031, "\u0120Dart": - 29032, "akable": 29033, "\u0120mp": 29034, "\u0120Heavenly": 29035, "\u0120ripe": - 29036, "\u0120Caroline": 29037, "ryan": 29038, "\u0120classics": 29039, "\u0120retiring": - 29040, "\u0120228": 29041, "\u0120ah": 29042, "\u0120dealings": 29043, "\u0120punching": - 29044, "\u0120Chapman": 29045, "Options": 29046, "maxwell": 29047, "volume": - 29048, "\u0120stal": 29049, "\u0120exported": 29050, "\u0120Quite": 29051, - "\u0120numerical": 29052, "Burn": 29053, "Fact": 29054, "\u0120Keystone": - 29055, "\u0120trending": 29056, "\u0120altering": 29057, "\u0120Africans": - 29058, "478": 29059, "\u0120MN": 29060, "\u0120Knock": 29061, "\u0120temptation": - 29062, "\u0120prestige": 29063, "Overview": 29064, "\u0120Traditional": 29065, - "\u0120Bahrain": 29066, "Private": 29067, "\u0120HOU": 29068, "\u0120barr": - 29069, "\u0120Tat": 29070, "Cube": 29071, "USD": 29072, "\u0120Grande": 29073, - "\u0120Gat": 29074, "\u0120Flo": 29075, "\u0120resides": 29076, "\u0120indec": - 29077, "volent": 29078, "\u0120perpetual": 29079, "ubes": 29080, "\u0120worldview": - 29081, "\u0120Quantum": 29082, "\u0120filtered": 29083, "\u0120ensu": 29084, - "orgetown": 29085, "ERSON": 29086, "\u0120Mild": 29087, "379": 29088, "OTT": - 29089, "\u00c3\u00a5": 29090, "\u0120vitamins": 29091, "\u0120ribbon": 29092, - "\u0120sincerely": 29093, "\u0120Hin": 29094, "\u0120eighteen": 29095, "\u0120contradictory": - 29096, "\u0120glaring": 29097, "\u0120expectancy": 29098, "\u0120conspir": - 29099, "\u0120monstrous": 29100, "\u0120380": 29101, "reci": 29102, "\u0120handic": - 29103, "\u0120pumped": 29104, "\u0120indicative": 29105, "\u0120rapp": 29106, - "\u0120avail": 29107, "\u0120LEGO": 29108, "\u0120Marijuana": 29109, "1985": - 29110, "erton": 29111, "\u0120twentieth": 29112, "################################": - 29113, "\u0120Swamp": 29114, "\u0120valuation": 29115, "\u0120affiliates": - 29116, "adjusted": 29117, "\u0120Facility": 29118, "262": 29119, "\u0120enzymes": - 29120, "itudinal": 29121, "\u0120imprint": 29122, "Site": 29123, "\u0120installer": - 29124, "\u0120TRA": 29125, "mology": 29126, "linear": 29127, "\u0120Collective": - 29128, "igating": 29129, "\u0120Token": 29130, "\u0120speculated": 29131, - "KN": 29132, "\u0120Cly": 29133, "ority": 29134, "\u0120defer": 29135, "\u0120inspectors": - 29136, "approved": 29137, "RM": 29138, "\u0120Suns": 29139, "\u0120informing": - 29140, "\u0120Syracuse": 29141, "ibli": 29142, "765": 29143, "\u0120glove": - 29144, "\u0120authorize": 29145, "\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6\u00e2\u0122\u00a6": - 29146, "\u0120Cruise": 29147, "\u0120contracting": 29148, "shell": 29149, - "IFE": 29150, "\u0120Jewel": 29151, "pract": 29152, "\u0120Photoshop": 29153, - "\u0120Knowing": 29154, "harm": 29155, "\u0120attractions": 29156, "adan": - 29157, "etus": 29158, "018": 29159, "wagen": 29160, "Alt": 29161, "\u0120multiply": - 29162, "\u0120equilibrium": 29163, ":{": 29164, "\u0120Fighters": 29165, "\u0120Edgar": - 29166, "\u0120fourteen": 29167, "Govern": 29168, "\u0120misuse": 29169, "\u0120abusing": - 29170, "\u0120ancestry": 29171, "ramer": 29172, "644": 29173, "\u0120worms": - 29174, "\u0120thicker": 29175, "\u0120Combine": 29176, "\u0120peasants": 29177, - "\u0120vind": 29178, "\u0120conquest": 29179, "\u0120mocked": 29180, "\u0120cinnamon": - 29181, "\u0120Cald": 29182, "\u0120Gallup": 29183, "\u0120avoidance": 29184, - "\u0120incarnation": 29185, "\u0120Strat": 29186, "\u0120tasted": 29187, "enta": - 29188, "\u0120Neal": 29189, "pared": 29190, "\u0120terminology": 29191, "jection": - 29192, "Scientists": 29193, "\u0120INS": 29194, "\u0120Dee": 29195, "\u0120directories": - 29196, "Road": 29197, "\u0120Shap": 29198, "bright": 29199, "\u0120Directors": - 29200, "\u0120Column": 29201, "\u0120bob": 29202, "\u0120preferably": 29203, - "\u0120glitch": 29204, "furt": 29205, "\u0120eg": 29206, "idis": 29207, "CBC": - 29208, "\u0120surrendered": 29209, "\u0120testament": 29210, "336": 29211, - "uggest": 29212, "\u0120Nil": 29213, "another": 29214, "\u0120pathetic": 29215, - "\u0120Donna": 29216, "\u0120218": 29217, "\u0120Avery": 29218, "\u0120whiskey": - 29219, "\u0120fixture": 29220, "\u0120Conquest": 29221, "\u0120bets": 29222, - "Occ": 29223, "\u0120Leicester": 29224, "].\"": 29225, "\u0120));": 29226, - "\u0120flashes": 29227, "456": 29228, "\u0120masked": 29229, "gebra": 29230, - "\u0120computed": 29231, "chel": 29232, "auder": 29233, "\u0120defeats": 29234, - "\u0120Liberation": 29235, "\u0120Osama": 29236, "\u0120Vive": 29237, "Changes": - 29238, "Channel": 29239, "\u0120tariffs": 29240, "\u0120mage": 29241, "\u0120Sax": - 29242, "\u0120inadvertently": 29243, "\u0120CRE": 29244, "\u0120Reaper": 29245, - "inky": 29246, "grading": 29247, "\u0120stereotyp": 29248, "\u0120curl": 29249, - "\u0120FANT": 29250, "\u0120frameworks": 29251, "Mom": 29252, "\u0120Anch": - 29253, "\u0120flavour": 29254, "carbon": 29255, "\u0120permitting": 29256, - "letcher": 29257, "\u0120Mozilla": 29258, "\u0120Parking": 29259, "\u0120Champ": - 29260, "Scroll": 29261, "\u0120murderer": 29262, "\u0120rested": 29263, "\u0120owes": - 29264, "\u0120Poss": 29265, "ADD": 29266, "IFF": 29267, "resolution": 29268, - "\u0120Mining": 29269, "\u0120comparative": 29270, "Dim": 29271, "\u0120neighbouring": - 29272, "\u0120AST": 29273, "\u0120Toxic": 29274, "\u0120biases": 29275, "\u0120gunfire": - 29276, "urous": 29277, "\u0120Moment": 29278, "1983": 29279, "\u0120pervasive": - 29280, "ttp": 29281, "\u0120Normally": 29282, "rir": 29283, "Sarah": 29284, - "\u0120Albany": 29285, "\u0120unsett": 29286, "\u0120SMS": 29287, "ipers": - 29288, "layer": 29289, "\u0120Whites": 29290, "uple": 29291, "\u0120turbo": - 29292, "\u0120Leeds": 29293, "\u0120thats": 29294, "\u0120Miner": 29295, "MER": - 29296, "\u0120Reign": 29297, "\u0120perme": 29298, "\u0120Blitz": 29299, "\u01201934": - 29300, "\u0120intimidating": 29301, "tube": 29302, "\u0120eccentric": 29303, - "abolic": 29304, "boxes": 29305, "\u0120Associates": 29306, "votes": 29307, - "\u0120simulate": 29308, "umbo": 29309, "astery": 29310, "\u0120shipments": - 29311, "FFFF": 29312, "anth": 29313, "\u0120seasoned": 29314, "\u0120experimentation": - 29315, "\u00e2\u0138\u0142": 29316, "laws": 29317, "Meet": 29318, "iddles": - 29319, "antics": 29320, "Rating": 29321, "ISIS": 29322, "hift": 29323, "\u0120fronts": - 29324, "buf": 29325, "017": 29326, "\u0120unatt": 29327, "\u0120Dil": 29328, - "leases": 29329, "\u0120Gardens": 29330, "777": 29331, "touch": 29332, "vell": - 29333, "458": 29334, "\u0120=====": 29335, "saving": 29336, "\u0120erosion": - 29337, "\u0120Quin": 29338, "\u0120earns": 29339, "\u0120accomplishment": - 29340, "\u0120Wei": 29341, "\u0120<[": 29342, "_____": 29343, "\u0120irrig": - 29344, "\u0120Teddy": 29345, "\u0120conquered": 29346, "\u0120Armored": 29347, - "\u0120asserts": 29348, "\u0120manipulating": 29349, "r\u00c3\u00a9": 29350, - "\u0120transcripts": 29351, "Gallery": 29352, "\u0120plotting": 29353, "Neil": - 29354, "\u0120betrayal": 29355, "loader": 29356, "\u0120Sul": 29357, "\u0120displacement": - 29358, "\u0120royalty": 29359, "\u0120WI": 29360, "heit": 29361, "\u0120Devices": - 29362, "allel": 29363, "\u0120municipalities": 29364, "\u0120canal": 29365, - "Stars": 29366, "\u0120UAE": 29367, "\u0120\"\u00e2\u0122\u00a6": 29368, "\u0120CU": - 29369, "above": 29370, "\u0120resonance": 29371, "\u0120guiActiveUn": 29372, - "added": 29373, "\u0120Braves": 29374, "\u0120Ibn": 29375, "\u0120hereby": - 29376, "\u0120BRE": 29377, "\u0120shareholder": 29378, "\u0120Hir": 29379, - "\u0120Ji": 29380, "\u0120strangely": 29381, "\u0120admired": 29382, "\u0120plight": - 29383, "\u0120bachelor": 29384, "\u0120Pole": 29385, "ciplinary": 29386, "Tony": - 29387, "\u0120Armenian": 29388, "\u0120unman": 29389, "\u0120Zionist": 29390, - "Stage": 29391, "iscover": 29392, "\u0120automotive": 29393, "\u0120sidelines": - 29394, "\u0120slick": 29395, "\u0120Renaissance": 29396, "\u0120FUN": 29397, - "Images": 29398, "\u0120Haj": 29399, "\u0120ping": 29400, "\u0120shortcut": - 29401, "\u0120Blvd": 29402, "\u0120Looks": 29403, "\u0120bursts": 29404, "\u0120clamp": - 29405, "\u0120mish": 29406, "\u0120sorting": 29407, "\u0120patriot": 29408, - "\u0120correctness": 29409, "\u0120Scandinav": 29410, "\u0120Cavaliers": 29411, - "python": 29412, "azar": 29413, "\u0120375": 29414, "\u0120Jaune": 29415, - "409": 29416, "\u0120detrimental": 29417, "\u0120stabbing": 29418, "\u0120poisoned": - 29419, "\u0120fountain": 29420, "ocent": 29421, "orst": 29422, "\u0120Mari": - 29423, "\u0120rains": 29424, "\u0120Overs": 29425, "\u0120Institution": 29426, - "udget": 29427, "AMY": 29428, "tale": 29429, "\u0120KR": 29430, "\u0120Prices": - 29431, "\u0120headaches": 29432, "\u0120landsl": 29433, "\u0120Aura": 29434, - "Bonus": 29435, "\u0120Zhao": 29436, "\u0120Hip": 29437, "\u0120hops": 29438, - "\u0120Kurdistan": 29439, "\u0120exploiting": 29440, "ryn": 29441, "\u0120hypocrisy": - 29442, "opening": 29443, "\u0120gunshot": 29444, "\u0120wed": 29445, "interstitial": - 29446, "Interstitial": 29447, "\u0120amen": 29448, "Breaking": 29449, "\u0120marketed": - 29450, "Wire": 29451, "\u0120Crowd": 29452, "Continue": 29453, "\u0120Known": - 29454, "\u0120Effective": 29455, "orean": 29456, "izons": 29457, "Joseph": - 29458, "\u0120escalation": 29459, "username": 29460, "\u0120curtain": 29461, - "ATES": 29462, "\u0120PAR": 29463, "\u0120Miy": 29464, "\u0120counterfe": - 29465, "lene": 29466, "\u0120contenders": 29467, "daily": 29468, "\u0120Asc": - 29469, "\u0120Phillip": 29470, "mostly": 29471, "\u0120filename": 29472, "hene": - 29473, "\u0120resembling": 29474, "\u0120staging": 29475, "\u0120Chloe": 29476, - "\u0120wiring": 29477, "Hon": 29478, "\u0120Renew": 29479, "ottage": 29480, - "\u0120Hybrid": 29481, "much": 29482, "\u0120strokes": 29483, "\u0120policymakers": - 29484, "APTER": 29485, "\u0120Arkham": 29486, "plot": 29487, "\u0120assistants": - 29488, "\u0120deport": 29489, "\u0120Sega": 29490, "\u0120influenza": 29491, - "\u0120Cursed": 29492, "\u0120Kobe": 29493, "\u0120skinny": 29494, "Provider": - 29495, "\u0120Rip": 29496, "\u0120incremental": 29497, "products": 29498, - "BF": 29499, "\u0120dome": 29500, "\u0120Credits": 29501, "\u0120losers": - 29502, "ints": 29503, "\u0120Betty": 29504, "\u0120Talent": 29505, "\u0120DAM": - 29506, "Lv": 29507, "Ess": 29508, "\u0120dens": 29509, "temp": 29510, "Judge": - 29511, "odic": 29512, "\u0120''(": 29513, "URES": 29514, "etsk": 29515, "VO": - 29516, "\u0120retrieved": 29517, "\u0120architects": 29518, "\u00d9\u0129": - 29519, "\u0120ethic": 29520, "\u0120Secondary": 29521, "stocks": 29522, "adia": - 29523, "\u0120325": 29524, "\u0120Opinion": 29525, "\u0120simultaneous": 29526, - "\u0120dizz": 29527, "ulp": 29528, "\u0120smuggling": 29529, "ippery": 29530, - "Random": 29531, "facing": 29532, "\u0120Das": 29533, "\u0120stockp": 29534, - "\u0120disclosures": 29535, "pointer": 29536, "\u0120coral": 29537, "\u0120Selection": - 29538, "\u0120Pike": 29539, "ivalent": 29540, "\u0120ruthless": 29541, "\u0120Rim": - 29542, "\u0120ensuing": 29543, "\u0120Experiment": 29544, "\u0120congressman": - 29545, "\u0120believer": 29546, "\u0120unspecified": 29547, "\u0120Mord": - 29548, "\u0120knowledgeable": 29549, "\u0120VERY": 29550, "TX": 29551, "\u0120straps": - 29552, "\u0120turf": 29553, "apeshifter": 29554, "\u0120marital": 29555, "\u0120flock": - 29556, "\u00e3\u0123\u0128": 29557, "263": 29558, "AMES": 29559, "\u0120Opposition": - 29560, "\u0120treasures": 29561, "\u0120GOD": 29562, "\u0120modeled": 29563, - "\u0120WORLD": 29564, "\u0120([": 29565, "\u0120Usage": 29566, "HF": 29567, - "\u0120$(": 29568, "ussed": 29569, "\u0120pioneer": 29570, "Eight": 29571, - "parse": 29572, "bread": 29573, "ritz": 29574, "\u0120Miranda": 29575, "\u0120Kant": - 29576, "++)": 29577, "oren": 29578, "\u0120provoked": 29579, "\u0120breeds": - 29580, "\u0120Includes": 29581, "\u0120Pastebin": 29582, "\u0120Flip": 29583, - "Java": 29584, "\u0120brink": 29585, "\u0120rumored": 29586, "\u0120unseen": - 29587, "\u0120garnered": 29588, "\u0120Defin": 29589, "alted": 29590, "\u0120tattoos": - 29591, "\u0120hesitation": 29592, "isitions": 29593, "\u0120Weaver": 29594, - "\u0120Reporting": 29595, "\u0120therapies": 29596, "\u0120consultants": 29597, - "\u0120residual": 29598, "\u0120Mali": 29599, "\u0120Roma": 29600, "iago": - 29601, "\u0120Residents": 29602, "ubi": 29603, "\u0120remedies": 29604, "\u0120adaptive": - 29605, "\u0120Alive": 29606, "\u0120Barcl": 29607, "\u0120wallets": 29608, - "crypt": 29609, "etermination": 29610, "\u0120Pelosi": 29611, "\u0120slipping": - 29612, "otonin": 29613, "\u0120alliances": 29614, "patrick": 29615, "iris": - 29616, "\u0120orth": 29617, "\u0120Perkins": 29618, "\u0120DeV": 29619, "\u0120Gets": - 29620, "\u0120drying": 29621, "gee": 29622, "forest": 29623, "\u0120Forget": - 29624, "orem": 29625, "339": 29626, "\u0120vaguely": 29627, "\u0120Dion": - 29628, "\u0120Porn": 29629, "\u0120HOW": 29630, "\u0120pneum": 29631, "\u0120rubble": - 29632, "\u0120Taste": 29633, "encia": 29634, "\u0120Gel": 29635, "\u0120dst": - 29636, "\u0120245": 29637, "\u0120Morocco": 29638, "inflamm": 29639, "\u0120Twins": - 29640, "\u0120bots": 29641, "daughter": 29642, "\u0120Balk": 29643, "\u0120brethren": - 29644, "\u0120logos": 29645, "\u0120gobl": 29646, "fps": 29647, "\u0120subdivision": - 29648, "\u0120pawn": 29649, "\u0120squeezed": 29650, "\u0120morale": 29651, - "\u0120DW": 29652, "''\"": 29653, "\u0120knot": 29654, "ooky": 29655, "\u0120divisive": - 29656, "\u0120boosted": 29657, "chy": 29658, "\u00e3\u0125\u0132": 29659, - "ifact": 29660, "\u0120newcomers": 29661, "\u0120Wrestling": 29662, "\u0120scouts": - 29663, "wolves": 29664, "Rat": 29665, "\u0120nineteenth": 29666, "\u0120Osborne": - 29667, "Stats": 29668, "\u0120empowered": 29669, "\u0120psychopath": 29670, - "\u0120OEM": 29671, "uggage": 29672, "\u0120PK": 29673, "\u0120Mohammad": - 29674, "Pak": 29675, "\u0120anarchists": 29676, "\u0120Extract": 29677, "esthes": - 29678, "\u0120Stockholm": 29679, "loo": 29680, "\u0120Graph": 29681, "\u0120deploying": - 29682, "\u0120Stranger": 29683, "\u0120Mold": 29684, "\u0120staffer": 29685, - "\u0120discounted": 29686, "uckle": 29687, "please": 29688, "\u0120Landing": - 29689, "\u00c3\u0143a": 29690, "\u0120193": 29691, "\u0120ante": 29692, "\u0120repetition": - 29693, "\u0120+/-": 29694, "\u0120parody": 29695, "\u0120lively": 29696, "AAA": - 29697, "\u0120Horus": 29698, "\u0120pits": 29699, "inders": 29700, "LOC": - 29701, "\u0120Venice": 29702, "406": 29703, "\u0120Discover": 29704, "\u00e2\u0128": - 29705, "ellectual": 29706, "\u0120pens": 29707, "\u0120eyel": 29708, "iguous": - 29709, "Impl": 29710, "\u0120joking": 29711, "\u0120inval": 29712, "\u0120Belfast": - 29713, "\u0120creditors": 29714, "\u0120Skywalker": 29715, "ovsky": 29716, - "\u0120ceasefire": 29717, "\u0120seals": 29718, "isoft": 29719, ")).": 29720, - "\u0120Felix": 29721, "ITS": 29722, "\u0120tresp": 29723, "\u0120Blockchain": - 29724, "eware": 29725, "\u0120Schwar": 29726, "enne": 29727, "mounted": 29728, - "\u0120Beacon": 29729, "lesh": 29730, "\u0120immensely": 29731, "\u0120cheering": - 29732, "Employ": 29733, "scene": 29734, "ishly": 29735, "atchewan": 29736, - "\u0120Nicolas": 29737, "\u0120drained": 29738, "\u0120Exit": 29739, "\u0120Azerb": - 29740, "jun": 29741, "\u0120floated": 29742, "uania": 29743, "Deep": 29744, - "\u0120superv": 29745, "\u0120mystical": 29746, "\u0120Dollar": 29747, "\u0120Apostle": - 29748, "\u0120REL": 29749, "\u0120Provided": 29750, "\u0120Bucks": 29751, - "\u00e3\u0125\u00b4": 29752, "cutting": 29753, "\u0120enhancements": 29754, - "\u0120Penguins": 29755, "\u0120Isaiah": 29756, "\u0120jerk": 29757, "\u0120Wyn": - 29758, "\u0120stalled": 29759, "\u0120cryptocurrencies": 29760, "\u0120Roland": - 29761, "single": 29762, "\u0120lumin": 29763, "\u0120Fellow": 29764, "\u0120Capacity": - 29765, "\u0120Kazakh": 29766, "WN": 29767, "\u0120financed": 29768, "389": - 29769, "\u0120tid": 29770, "\u0120collusion": 29771, "\u0120Myr": 29772, "\u00ee\u0122": - 29773, "Senator": 29774, "\u0120pediatric": 29775, "\u0120neatly": 29776, - "\u0120sandwiches": 29777, "\u0120Architecture": 29778, "\u0120tucked": 29779, - "\u0120balcony": 29780, "\u0120earthquakes": 29781, "quire": 29782, "Future": - 29783, "\u0120hefty": 29784, "\u00e9\u0139": 29785, "\u0120specializes": 29786, - "\u0120stresses": 29787, "\u0120sender": 29788, "\u0120misunderstanding": - 29789, "\u0120epile": 29790, "\u0120provoke": 29791, "\u0120Colors": 29792, - "\u0120dismay": 29793, "uko": 29794, "[_": 29795, "586": 29796, "neutral": - 29797, "\u0120donating": 29798, "\u0120Randall": 29799, "Multi": 29800, "\u0120conveniently": - 29801, "\u0120Sung": 29802, "\u0120Coca": 29803, "\u0120tents": 29804, "\u0120Acceler": - 29805, "\u0120partnered": 29806, "272": 29807, "irming": 29808, "\u0120BAS": - 29809, "sometimes": 29810, "\u0120objected": 29811, "ubric": 29812, "posed": - 29813, "LCS": 29814, "grass": 29815, "\u0120attributable": 29816, "VIS": 29817, - "Israeli": 29818, "\u0120repeats": 29819, "\u0120RM": 29820, "vag": 29821, - "uta": 29822, "inous": 29823, "\u0120inert": 29824, "\u0120Miguel": 29825, - "\u00e6\u0143": 29826, "\u0120Hawaiian": 29827, "Board": 29828, "\u0120artific": - 29829, "\u0120Azerbai": 29830, "asio": 29831, "\u0120Rent": 29832, "AIN": - 29833, "\u0120appliances": 29834, "\u0120nationality": 29835, "\u0120asshole": - 29836, "\u0120Neb": 29837, "\u0120notch": 29838, "hani": 29839, "\u0120Bride": - 29840, "Availability": 29841, "\u0120intercepted": 29842, "\u0120continental": - 29843, "\u0120swelling": 29844, "\u0120Perspect": 29845, "bies": 29846, ".<": - 29847, "ithmetic": 29848, "\u0120Lara": 29849, "\u0120tempting": 29850, "addr": - 29851, "\u0120overseeing": 29852, "clad": 29853, "\u0120DV": 29854, "\u0120Gingrich": - 29855, "\u0120mun": 29856, "\u0120Appropri": 29857, "\u0120alterations": 29858, - "\u0120Patreon": 29859, "\u0120havoc": 29860, "\u0120disciplines": 29861, - "\u0120notoriously": 29862, "akuya": 29863, "ieri": 29864, "?).": 29865, "\u0120Went": - 29866, "\u0120silicon": 29867, "\u0120tremb": 29868, "Container": 29869, "Known": - 29870, "\u0120mortar": 29871, "este": 29872, "icka": 29873, "Arthur": 29874, - "\u0120Previously": 29875, "\u0120Marty": 29876, "\u0120sparse": 29877, "gins": - 29878, "\u0120inward": 29879, "\u0120Participant": 29880, "Copy": 29881, "\u0120Misc": - 29882, "\u0120antibiotic": 29883, "\u0120Retro": 29884, "\u0120elusive": 29885, - "\u0120assail": 29886, "\u0120Battalion": 29887, "\u0120Bought": 29888, "\u0120diminish": - 29889, "\u0120Europa": 29890, "session": 29891, "\u0120Dangerous": 29892, - "iesel": 29893, "\u0120disbelief": 29894, "\u0120blasts": 29895, "extreme": - 29896, "\u0120Boyd": 29897, "\u0120Projects": 29898, "\u0120Guys": 29899, - "\u0120undergone": 29900, "\u0120grill": 29901, "\u0120Dwight": 29902, "\u0120197": - 29903, "USER": 29904, "\u0120filesystem": 29905, "\u0120clocks": 29906, "Taylor": - 29907, "\u0120wrapper": 29908, "\u0120folding": 29909, "ousand": 29910, "\u0120Philippine": - 29911, "ATIONAL": 29912, "\u0120Perth": 29913, "\u0120ashes": 29914, "\u0120accumulate": - 29915, "\u0120Gateway": 29916, "Shop": 29917, "orkshire": 29918, "Han": 29919, - "\u0120Barrel": 29920, "\u0120Leh": 29921, "\u0120XV": 29922, "\u0120whim": - 29923, "\u0120repo": 29924, "\u0120CG": 29925, "\u0120Mam": 29926, "\u0120incorporating": - 29927, "\u0120bailout": 29928, "\u0120linguistic": 29929, "\u0120disinteg": - 29930, "CLE": 29931, "\u0120cinematic": 29932, "\u0120Fiber": 29933, "Syn": - 29934, "ilion": 29935, "\u0120Compos": 29936, "chens": 29937, "\u0120neoc": - 29938, "\u0120boiled": 29939, "FINE": 29940, "ono": 29941, "uncle": 29942, - "iken": 29943, "\u0120BM": 29944, "\u00ce\u00b9": 29945, "\u0120receipts": - 29946, "\u0120disposed": 29947, "\u0120Thirty": 29948, "\u0120Rough": 29949, - "\u0120ABS": 29950, "\u0120notwithstanding": 29951, "ollen": 29952, "#$": - 29953, "\u0120unreliable": 29954, "\u0120bloom": 29955, "\u0120mediocre": - 29956, "\u0120tram": 29957, "\u0120Tasman": 29958, "\u0120shakes": 29959, - "\u0120manifesto": 29960, "\u0120MW": 29961, "\u0120satisfactory": 29962, - "\u0120shores": 29963, "\u0120computation": 29964, "\u0120assertions": 29965, - "ormons": 29966, "arag": 29967, "abit": 29968, "Democrats": 29969, "\u0120Loot": - 29970, "\u0120Volks": 29971, "haired": 29972, "\u0120gravitational": 29973, - "Sing": 29974, "\u0120Miz": 29975, "\u0120throttle": 29976, "\u0120tyranny": - 29977, "\u0120Views": 29978, "\u0120robber": 29979, "\u0120Minority": 29980, - "\u0120shrine": 29981, "scope": 29982, "purpose": 29983, "\u0120nucleus": - 29984, "ourcing": 29985, "\u0120USDA": 29986, "\u0120DHS": 29987, "wra": 29988, - "\u0120Bowie": 29989, "Scale": 29990, "\u0120BEL": 29991, "xi": 29992, "Iter": - 29993, "\u0120(),": 29994, "wright": 29995, "\u0120sailors": 29996, "oused": - 29997, "NASA": 29998, "\u0120Proof": 29999, "\u0120Mineral": 30000, "token": - 30001, "\u0120FD": 30002, "Rew": 30003, "\u0120ell": 30004, "630": 30005, - "\u0120chancellor": 30006, "\u0120Gos": 30007, "\u0120amounted": 30008, "\u0120Recre": - 30009, "omez": 30010, "\u0120Optim": 30011, "\u0120Olive": 30012, "\u0120tracker": - 30013, "owler": 30014, "\u0120Unique": 30015, "Root": 30016, "\u0120maritime": - 30017, "\u0120Quran": 30018, "\u0120Adapt": 30019, "\u0120ecosystems": 30020, - "\u0120Repeat": 30021, "\u0120Soy": 30022, "\u0120IMP": 30023, "\u0120graduating": - 30024, "andem": 30025, "Pur": 30026, "\u0120Reset": 30027, "\u0120Trick": - 30028, "\u0120Philly": 30029, "\u0120Tue": 30030, "\u0120Malaysian": 30031, - "\u0120climax": 30032, "\u0120bury": 30033, "\u0120conspic": 30034, "\u0120Southampton": - 30035, "\u0120Flowers": 30036, "\u0120escorted": 30037, "\u0120Educational": - 30038, "\u0120IRC": 30039, "\u0120brutally": 30040, "eating": 30041, "\u0120pillar": - 30042, "\u0120Sang": 30043, "\u0120Jude": 30044, "arling": 30045, "\u0120Amnesty": - 30046, "\u0120reminding": 30047, "\u0120Administrative": 30048, "hesda": 30049, - "\u0120flashed": 30050, "\u0120PBS": 30051, "perate": 30052, "feature": 30053, - "\u0120swipe": 30054, "\u0120graves": 30055, "oultry": 30056, "261": 30057, - "breaks": 30058, "\u0120Guer": 30059, "\u0120shrimp": 30060, "\u0120Voting": - 30061, "quist": 30062, "\u0120analytical": 30063, "\u0120tablespoons": 30064, - "\u0120SOU": 30065, "\u0120researched": 30066, "\u0120disrupted": 30067, "\u0120jour": - 30068, "\u0120replica": 30069, "\u0120cartoons": 30070, "bians": 30071, "})": - 30072, "copy": 30073, "Got": 30074, "ouched": 30075, "PUT": 30076, "\u0120swarm": - 30077, "notations": 30078, "said": 30079, "\u0120rebuilt": 30080, "\u0120collaborate": - 30081, "\u0120raging": 30082, "\u0120nar": 30083, "\u0120demographics": 30084, - "\u0120DDR": 30085, "\u0120distrust": 30086, "ossier": 30087, "\u0120Kro": - 30088, "\u0120pumpkin": 30089, "\u0120regrets": 30090, "\u0120fatalities": - 30091, "\u0120Lens": 30092, "\u0120Ole": 30093, "pd": 30094, "\u0120puppet": - 30095, "\u0120Outlook": 30096, "\u0120Stam": 30097, "Ol": 30098, "Fair": 30099, - "UU": 30100, "\u0120rewritten": 30101, "\u00c4\u00b1": 30102, "\u0120fascinated": - 30103, "\u0120vectors": 30104, "\u0120tribunal": 30105, "uay": 30106, "\u0120Mats": - 30107, "\u0120Coins": 30108, "[[": 30109, "\u0120181": 30110, "\u0120renders": - 30111, "\u0120Kaepernick": 30112, "\u0120espionage": 30113, "\u0120summ": - 30114, "\u0120ditch": 30115, "Account": 30116, "\u0120spreadsheet": 30117, - "\u0120mutant": 30118, "past": 30119, "407": 30120, "\u0120dye": 30121, "\u0120initiation": - 30122, "\u01204000": 30123, "\u0120punishable": 30124, "\u0120thinner": 30125, - "\u0120Khal": 30126, "\u0120intermedi": 30127, "Dun": 30128, "\u0120Gotham": - 30129, "\u0120eagerly": 30130, "\u0120vaginal": 30131, "powers": 30132, "VW": - 30133, "\u0120WATCHED": 30134, "\u0120predator": 30135, "amsung": 30136, "\u0120disparity": - 30137, "\u0120[*": 30138, "\u0120amph": 30139, "\u0120outskirts": 30140, "\u0120Spirits": - 30141, "\u0120skeletal": 30142, "\u00d0\u00bb": 30143, "\u0120Rear": 30144, - "\u0120issuance": 30145, "\u0120Logic": 30146, "released": 30147, "ZZ": 30148, - "\u0120Bound": 30149, "Entry": 30150, "\u0120exits": 30151, "isol": 30152, - "\u0120Founder": 30153, "\u0120wre": 30154, "\u0120Greenland": 30155, "\u0120MMO": - 30156, "taker": 30157, "INC": 30158, "\u00e3\u0123\u00be": 30159, "\u0120hourly": - 30160, "henko": 30161, "\u0120fantasies": 30162, "\u0120disob": 30163, "\u0120demolition": - 30164, "\u00e3\u0125\u012d": 30165, "\u0120enlisted": 30166, "ratulations": - 30167, "\u0120misguided": 30168, "\u0120ensured": 30169, "\u0120discouraged": - 30170, "mort": 30171, "\u0120flank": 30172, "\u0120cess": 30173, "\u0120reacts": - 30174, "\u0120Sere": 30175, "sensitive": 30176, "\u0120Serpent": 30177, "assad": - 30178, "\u0120247": 30179, "\u0120calmly": 30180, "busters": 30181, "\u0120bleed": - 30182, "\u0120Stro": 30183, "\u0120amusement": 30184, "\u0120Antarctica": - 30185, "\u0120scept": 30186, "\u0120Gaw": 30187, "aq": 30188, "asonic": 30189, - "\u0120sprawling": 30190, "native": 30191, "aturated": 30192, "\u0120Battlefield": - 30193, "IVERS": 30194, "EB": 30195, "\u0120Gems": 30196, "\u0120Northwestern": - 30197, "\u0120Films": 30198, "\u0120Automatic": 30199, "\u0120apprehend": - 30200, "\u00e3\u0123\u00a8": 30201, "\u0120guiName": 30202, "\u0120backend": - 30203, "\u0120evidenced": 30204, "geant": 30205, "012": 30206, "\u0120Siege": - 30207, "\u0120externalTo": 30208, "\u0120unfocusedRange": 30209, "\u0120guiActiveUnfocused": - 30210, "\u0120guiIcon": 30211, "\u0120externalToEVA": 30212, "\u0120externalToEVAOnly": - 30213, "Fri": 30214, "chard": 30215, "enaries": 30216, "\u0120chiefs": 30217, - "\u0120cf": 30218, "\u0120HUD": 30219, "\u0120corrobor": 30220, "\u0120dB": - 30221, "\u0120Taken": 30222, "\u0120Patricia": 30223, "rail": 30224, "\u0120Charm": - 30225, "\u0120Libertarian": 30226, "rieve": 30227, "Personal": 30228, "\u0120OUR": - 30229, "geries": 30230, "\u0120dumping": 30231, "\u0120neurological": 30232, - "itimate": 30233, "\u0120Clintons": 30234, "rafted": 30235, "\u0120Molly": - 30236, "\u0120terminals": 30237, "register": 30238, "\u0120flare": 30239, - "\u0120encoded": 30240, "\u0120autopsy": 30241, "pel": 30242, "machine": 30243, - "\u0120exemptions": 30244, "\u0120Royals": 30245, "distance": 30246, "\u0120drafts": - 30247, "\u0120lame": 30248, "\u0120Cunning": 30249, "\u0120spouses": 30250, - "\u0120Markets": 30251, "\u0120Carrier": 30252, "\u0120implying": 30253, "\u0120Yak": - 30254, "sid": 30255, "\u0120loser": 30256, "\u0120vigilant": 30257, "\u0120impeachment": - 30258, "\u0120augmented": 30259, "\u0120Employees": 30260, "\u0120unintended": - 30261, "ternally": 30262, "\u0120Watt": 30263, "\u0120recognizable": 30264, - "essim": 30265, "\u00e6\u013f": 30266, "\u0120coated": 30267, "rha": 30268, - "\u0120lieutenant": 30269, "\u0120Legislation": 30270, "published": 30271, - "444": 30272, "013": 30273, "\u0120ideally": 30274, "\u0120Password": 30275, - "\u0120simplify": 30276, "\u0120Meta": 30277, "\u0120MRI": 30278, "\u0120pleading": - 30279, "organized": 30280, "handler": 30281, "\u0120unravel": 30282, "correct": - 30283, "\u0120icy": 30284, "\u0120paranoid": 30285, "\u0120passer": 30286, - "\u0120inspections": 30287, "ofer": 30288, "\u0120Healthcare": 30289, "283": - 30290, "\u0120Brut": 30291, "iola": 30292, "forge": 30293, "\u0120Medieval": - 30294, "MSN": 30295, "ievers": 30296, "\u0120Programming": 30297, "\u00e5\u012b": - 30298, "\u0120223": 30299, "mu": 30300, "\u0120CLE": 30301, "uga": 30302, - "\u0120shoppers": 30303, "\u0120informative": 30304, "\u0120Plans": 30305, - "\u0120supplementation": 30306, "\u0120Tests": 30307, "tyard": 30308, "ocytes": - 30309, "\u0120Vega": 30310, "\u0120Gujarat": 30311, "ermanent": 30312, "Except": - 30313, "\u0120LOT": 30314, "alla": 30315, "\u0120Cumm": 30316, "\u0120Osw": - 30317, "\u0120venom": 30318, "\u0120Debt": 30319, "\u0120DOWN": 30320, "\u0120reunion": - 30321, "\u0120muc": 30322, "\u0120Relief": 30323, "\u0120geop": 30324, "\u0120\u00f0\u0141\u013a": - 30325, "alogue": 30326, "Anth": 30327, "echo": 30328, "\u0120corros": 30329, - "\u0120replication": 30330, "\u0120Blazing": 30331, "\u0120Daughter": 30332, - "\u0120inflic": 30333, "\u0120Lindsey": 30334, "\u00d9\u012a": 30335, "284": - 30336, "Exit": 30337, "\u0120gloom": 30338, "TAIN": 30339, "\u0120undermining": - 30340, "\u0120advising": 30341, "hidden": 30342, "\u0120overflow": 30343, - "\u0120gor": 30344, "urdue": 30345, "\u0120echoes": 30346, "enhagen": 30347, - "\u0120impuls": 30348, "drug": 30349, "cash": 30350, "\u0120async": 30351, - "\u0120mirac": 30352, "atts": 30353, "punk": 30354, "\u0120pivot": 30355, - "\u0120Legislative": 30356, "\u0120bloggers": 30357, "\u0120Claw": 30358, - "sburg": 30359, "dyl": 30360, "\u0120Recommend": 30361, "\u0120verte": 30362, - "\u0120prohibiting": 30363, "\u0120Panther": 30364, "Jonathan": 30365, "\u0120omin": - 30366, "\u0120hateful": 30367, "281": 30368, "\u0120Orche": 30369, "\u0120Murdoch": - 30370, "downs": 30371, "\u0120asymm": 30372, "GER": 30373, "Always": 30374, - "\u0120informs": 30375, "\u0120WM": 30376, "\u0120Pony": 30377, "\u0120Appendix": - 30378, "\u0120Arlington": 30379, "Jam": 30380, "\u0120medicinal": 30381, "\u0120Slam": - 30382, "ITIES": 30383, "\u0120reaff": 30384, "\u0120Ri": 30385, "FG": 30386, - "Spring": 30387, "bool": 30388, "\u0120thighs": 30389, "\u0120markings": 30390, - "\u0120Raqqa": 30391, "\u0120Lak": 30392, "poll": 30393, "tsky": 30394, "\u0120Morty": - 30395, "\u0120Definition": 30396, "\u0120debunk": 30397, "endered": 30398, - "\u0120Leone": 30399, "avers": 30400, "\u0120mortgages": 30401, "Apparently": - 30402, "Nic": 30403, "haus": 30404, "\u0120Thousands": 30405, "auld": 30406, - "\u0120mash": 30407, "shoot": 30408, "\u0120diarr": 30409, "\u0120consciously": - 30410, "Hero": 30411, "eas": 30412, "\u0120Naturally": 30413, "\u0120Destroyer": - 30414, "\u0120dashboard": 30415, "services": 30416, "Rog": 30417, "\u0120millennials": - 30418, "\u0120invade": 30419, "-(": 30420, "\u0120commissions": 30421, "\u0120Auckland": - 30422, "\u0120broadcasts": 30423, "\u0120frontal": 30424, "\u0120crank": 30425, - "\u0120Historic": 30426, "\u0120rumours": 30427, "CTV": 30428, "\u0120steril": - 30429, "\u0120booster": 30430, "rocket": 30431, "\u00e3\u0124\u00bc": 30432, - "utsche": 30433, "\u0120PI": 30434, "\u0120233": 30435, "\u0120Producer": - 30436, "\u0120Analytics": 30437, "\u0120invaluable": 30438, "\u0120unintention": - 30439, "\u0120CY": 30440, "\u0120scrutin": 30441, "\u0120gigg": 30442, "\u0120engulf": - 30443, "\u0120proletariat": 30444, "\u0120hacks": 30445, "\u0120Hew": 30446, - "arak": 30447, "\u0120Slime": 30448, "ielding": 30449, "agher": 30450, "\u0120Elliot": - 30451, "\u0120telecom": 30452, "\u0120219": 30453, "ultan": 30454, "\u0120Arbor": - 30455, "\u0120Scouts": 30456, "Ban": 30457, "\u0120lifespan": 30458, "\u0120blasp": - 30459, "388": 30460, "\u0120judiciary": 30461, "\u0120Continental": 30462, - "asking": 30463, "McC": 30464, "LED": 30465, "\u0120baggage": 30466, "\u0120Sorcerer": - 30467, "\u0120remnants": 30468, "\u0120Griffith": 30469, "etsu": 30470, "\u0120Subaru": - 30471, "\u0120Personality": 30472, "designed": 30473, "ushima": 30474, "agnar": - 30475, "\u0120recoil": 30476, "\u0120passions": 30477, "\\\":": 30478, "\u0120tee": - 30479, "\u0120abolition": 30480, "\u0120Creating": 30481, "jac": 30482, "\u0120194": - 30483, "019": 30484, "\u0120pillars": 30485, "riched": 30486, "/\"": 30487, - "tk": 30488, "\u0120livelihood": 30489, "\u0120roasted": 30490, "ahon": 30491, - "\u0120Hutch": 30492, "assert": 30493, "\u0120dividend": 30494, "\u0120knit": - 30495, "\u0120daunting": 30496, "\u0120disturbance": 30497, "\u0120shale": - 30498, "\u0120cultivated": 30499, "\u0120refrigerator": 30500, "LB": 30501, - "\u0120NET": 30502, "\u0120commercials": 30503, "\u0120thinkers": 30504, "455": - 30505, "\u0120chop": 30506, "Broad": 30507, "\u0120suspicions": 30508, "\u0120tagged": - 30509, "lifting": 30510, "\u0120stylish": 30511, "\u0120Shields": 30512, "Shortly": - 30513, "\u0120tails": 30514, "Auth": 30515, "STE": 30516, "\u0120GAME": 30517, - "\u0120seism": 30518, "\u0120Kis": 30519, "ologne": 30520, "\u0120cowork": - 30521, "\u0120forcibly": 30522, "\u0120thyroid": 30523, "\u0120PB": 30524, - "ANE": 30525, "married": 30526, "horse": 30527, "\u0120polymer": 30528, "\u0120Chal": - 30529, "odor": 30530, "DEBUG": 30531, "\u0120Context": 30532, "\u0120bliss": - 30533, "\u0120pinpoint": 30534, "\u0120Mathemat": 30535, "legram": 30536, - "\u0120Weekend": 30537, "\u0120labelled": 30538, "\u0120bart": 30539, "itles": - 30540, "\u0120estrogen": 30541, "\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136\u00e2\u0122\u0136": - 30542, "\"''": 30543, "\u0120visibly": 30544, "\u0120outsider": 30545, "aida": - 30546, "Area": 30547, "\u0120dissemin": 30548, "\u0120dishonest": 30549, "\u0120Closed": - 30550, "\u0120Bulletin": 30551, "\u0120Ramsey": 30552, "sword": 30553, "\u0120XI": - 30554, "ourced": 30555, "Same": 30556, "346": 30557, "\u0120Repe": 30558, - "\u0120Kou": 30559, "cake": 30560, "emis": 30561, "Cache": 30562, "\u0120Meaning": - 30563, "\u0120Enlight": 30564, "onomy": 30565, "\u0120manifestation": 30566, - "sworth": 30567, "Jay": 30568, "\u0120chore": 30569, "\u00c3\u00b6r": 30570, - "Dream": 30571, "\u0120sanctioned": 30572, "\u0120culturally": 30573, "\u0120Ara": - 30574, "Nav": 30575, "\u0120theological": 30576, "\u0120strut": 30577, "\u0120VO": - 30578, "\u0120Handbook": 30579, "\u0120constructing": 30580, "\u0120\u00c2\u00b6": - 30581, "\u0120Benefits": 30582, "\u0120Psychological": 30583, "sac": 30584, - "\u00e5\u00b8": 30585, "policy": 30586, "\u0120Matters": 30587, "\u0120Reported": - 30588, "\u0120Byte": 30589, "\u0120vitro": 30590, "\u0120Maiden": 30591, "\u0120lam": - 30592, "\u0120Jennings": 30593, "\u0120garment": 30594, "\u0120Rutgers": 30595, - "\u0120Stafford": 30596, "\u0120Wellington": 30597, "\u0120intermitt": 30598, - "\u0120npm": 30599, "\u0120ordeal": 30600, "\u0120plugged": 30601, "ooming": - 30602, "inished": 30603, "framework": 30604, "\u0120timber": 30605, "\u0120cass": - 30606, "\u0120850": 30607, "iless": 30608, "\u0120Redux": 30609, "768": 30610, - "Stre": 30611, "\u0120surpassed": 30612, "whel": 30613, "\u0120parallels": - 30614, "\u0120veil": 30615, "\u0120GI": 30616, "\u0120REST": 30617, "\u0120readiness": - 30618, "sort": 30619, "\u0120modifying": 30620, "\u0120Slate": 30621, "ruff": - 30622, "\u0120marble": 30623, "\u0120infrared": 30624, "\u0120auditor": 30625, - "\u0120FANTASY": 30626, "\u0120Poverty": 30627, "\u0120SPD": 30628, "\u0120\"(": - 30629, "Ky": 30630, "RAY": 30631, "\u0120executions": 30632, "\u0120Beverly": - 30633, "\u0120Marxism": 30634, "\u0120Burst": 30635, "\u0120Kali": 30636, - "estones": 30637, "Clearly": 30638, "Ell": 30639, "\u00e3\u0123\u00a7": 30640, - "\u0120Proceedings": 30641, "Token": 30642, "IFIC": 30643, "\u00c3\u00b1a": - 30644, "Central": 30645, "\u0120Haley": 30646, "\u0120Drama": 30647, "\u0120formations": - 30648, "ORN": 30649, "Books": 30650, "\u0120dominating": 30651, "\u0120Flyers": - 30652, "\u0120Companion": 30653, "\u0120disciplined": 30654, "\u0120Yugoslav": - 30655, "\u0120Spells": 30656, "\u0120vengeance": 30657, "\u0120landlords": - 30658, "Len": 30659, "\u0120Ogre": 30660, "anoia": 30661, "\u0120piercing": - 30662, "\u0120congreg": 30663, "\u0120scorer": 30664, "obia": 30665, "\u0120nickel": - 30666, "\u0120Learns": 30667, "\u0120rejo": 30668, "\u0120masterpiece": 30669, - "Flash": 30670, "\u0120inhabited": 30671, "\u0120OpenGL": 30672, "\u0120Dud": - 30673, "\u0120ICO": 30674, "\u0120arter": 30675, "\u0120plur": 30676, "\u0120mastery": - 30677, "\u0120longstanding": 30678, "sted": 30679, "\u0120wines": 30680, "\u0120televised": - 30681, "\u0120Shrine": 30682, "\u0120Bayern": 30683, "\u0120\u00e2\u0135\u013a": - 30684, "\u0120enclosure": 30685, "john": 30686, "\u0120prophets": 30687, "\u0120Resurrection": - 30688, "\u0120Orders": 30689, "\u0120uneven": 30690, "rals": 30691, "\u0120dwind": - 30692, "\u0120Lah": 30693, "\u0120Sloven": 30694, "378": 30695, "\u0120insistence": - 30696, "affle": 30697, "\u0120Clone": 30698, "\u0120hardship": 30699, "\u0120Congressman": - 30700, "\u0120plead": 30701, "\u0120reviewers": 30702, "\u0120cured": 30703, - "\u01201935": 30704, "asley": 30705, "fake": 30706, "\u0120Thinking": 30707, - "ydia": 30708, "PART": 30709, "\u0120Dota": 30710, "oit": 30711, "\u0120whipped": - 30712, "\u0120bouncing": 30713, "\u0120Hispanics": 30714, "comings": 30715, - "\u0120cannabin": 30716, "\u0120Chambers": 30717, "\u0120Zack": 30718, "Optional": - 30719, "\u0120coats": 30720, "\u0120prowess": 30721, "\u0120Norton": 30722, - "\u0120plainly": 30723, "\u0120freight": 30724, "\u0120inhibition": 30725, - "\u0120clam": 30726, "\u0120303": 30727, "kef": 30728, "aleigh": 30729, "Luke": - 30730, "\u0120psycho": 30731, "atorium": 30732, "MED": 30733, "\u0120treaties": - 30734, "\u0120indisc": 30735, "\u0120dc": 30736, "OPS": 30737, "\u0120resilient": - 30738, "\u0120Interstate": 30739, "\u0120slack": 30740, "\u0120mundane": 30741, - "\u0120establishes": 30742, "359": 30743, "\u0120strained": 30744, "\u0120nond": - 30745, "Sus": 30746, "\u0120caste": 30747, "arate": 30748, "ieving": 30749, - "\u0120unfairly": 30750, "\u0120parser": 30751, "onial": 30752, "ursive": - 30753, "Via": 30754, "\u0120Otto": 30755, "\u0120Authorities": 30756, "stroke": - 30757, "KR": 30758, "\u0120Mercy": 30759, "\u0120furnished": 30760, "\u0120outset": - 30761, "\u0120metic": 30762, "1982": 30763, "olithic": 30764, "\u0120Tent": - 30765, "ogical": 30766, "\u0120Aircraft": 30767, "\u0120hides": 30768, "\u0120Became": - 30769, "\u0120educators": 30770, "reaching": 30771, "\u0120volatility": 30772, - "\u0120toddler": 30773, "\u0120NASCAR": 30774, "\u0120Twelve": 30775, "\u0120Highlights": - 30776, "\u0120grape": 30777, "\u0120splits": 30778, "\u0120peasant": 30779, - "\u0120reneg": 30780, "\u0120MSI": 30781, "Temp": 30782, "stars": 30783, "\u0120trek": - 30784, "\u0120Hyde": 30785, "binding": 30786, "\u0120realism": 30787, "\u0120oxide": - 30788, "\u0120Hos": 30789, "\u0120mounts": 30790, "\u0120biting": 30791, "\u0120collapsing": - 30792, "\u0120postal": 30793, "\u0120museums": 30794, "\u0120detached": 30795, - "\u0120respecting": 30796, "\u0120monopol": 30797, "\u0120workflow": 30798, - "\u0120Cake": 30799, "Template": 30800, "\u0120Organisation": 30801, "\u0120persistence": - 30802, "369": 30803, "Coming": 30804, "Brad": 30805, "\u0120redundant": 30806, - "\u0120GTA": 30807, "\u0120bending": 30808, "\u0120revoked": 30809, "\u0120offending": - 30810, "\u0120framing": 30811, "\u0120printf": 30812, "Commun": 30813, "members": - 30814, "Outside": 30815, "\u0120construed": 30816, "\u0120coded": 30817, "FORE": - 30818, "\u0120chast": 30819, "Chat": 30820, "Indian": 30821, "\u0120Yard": - 30822, "?!\"": 30823, "\u0120Ports": 30824, "\u0120Xavier": 30825, "\u0120RET": - 30826, "''.\"": 30827, "\u0120Boat": 30828, "ivated": 30829, "icht": 30830, - "umerable": 30831, "Ds": 30832, "\u0120Dunn": 30833, "\u0120coffin": 30834, - "\u0120securely": 30835, "\u0120Raptors": 30836, "\u0120Bes": 30837, "Installation": - 30838, "\u0120inception": 30839, "\u0120Healthy": 30840, "endants": 30841, - "\u0120psychologists": 30842, "\u0120Sheikh": 30843, "cultural": 30844, "\u0120BlackBerry": - 30845, "shift": 30846, "Fred": 30847, "oche": 30848, "\u0120cakes": 30849, - "\u0120SEO": 30850, "\u0120Gian": 30851, "\u0120Asians": 30852, "ogging": - 30853, "element": 30854, "\u0120pundits": 30855, "\u0120Vaugh": 30856, "\u0120Gavin": - 30857, "\u0120hitter": 30858, "\u0120drowned": 30859, "\u0120chalk": 30860, - "\u0120Zika": 30861, "\u0120measles": 30862, "802": 30863, "\u00e2\u0122\u00a6..": - 30864, "\u0120AWS": 30865, "]\"": 30866, "\u0120distort": 30867, "\u0120Mast": - 30868, "\u0120antibodies": 30869, "\u0120Mash": 30870, "Memory": 30871, "\u0120Uganda": - 30872, "\u0120Prob": 30873, "\u0120vomiting": 30874, "\u0120Turns": 30875, - "\u0120occupying": 30876, "\u0120evasion": 30877, "\u0120Therapy": 30878, - "\u0120promo": 30879, "\u0120electr": 30880, "\u0120blueprint": 30881, "\u0120Dre": - 30882, "priced": 30883, "\u0120Depot": 30884, "\u0120alleviate": 30885, "\u0120Somali": - 30886, "marg": 30887, "nine": 30888, "\u0120nostalgia": 30889, "\u0120Shepherd": - 30890, "\u0120cavalry": 30891, "\u0120torped": 30892, "\u0120Bloody": 30893, - "xb": 30894, "\u0120sank": 30895, "\u0120goalt": 30896, "reportprint": 30897, - "embedreportprint": 30898, "cloneembedreportprint": 30899, "\u0120Initially": - 30900, "\u0120Fischer": 30901, "\u0120noteworthy": 30902, "cern": 30903, "\u0120inefficient": - 30904, "rawdownload": 30905, "rawdownloadcloneembedreportprint": 30906, "cation": - 30907, "\u0120Dynasty": 30908, "lag": 30909, "DES": 30910, "\u0120distinctly": - 30911, "\u0120Estonia": 30912, "\u0120openness": 30913, "\u0120gossip": 30914, - "ruck": 30915, "Width": 30916, "\u0120Ibrahim": 30917, "\u0120petroleum": - 30918, "\u0120avatar": 30919, "\u0120Hed": 30920, "atha": 30921, "\u0120Hogwarts": - 30922, "\u0120caves": 30923, "678": 30924, "\u0120safeguard": 30925, "\u0120Mog": - 30926, "isson": 30927, "\u0120Durham": 30928, "slaught": 30929, "\u0120Graduate": - 30930, "\u0120subconscious": 30931, "\u0120Excellent": 30932, "\u0120Dum": - 30933, "-----": 30934, "\u0120piles": 30935, "\u0120WORK": 30936, "\u0120Garn": - 30937, "\u0120Fol": 30938, "\u0120ATM": 30939, "\u0120avoids": 30940, "\u0120Tul": - 30941, "\u0120bleak": 30942, "ELY": 30943, "ivist": 30944, "lightly": 30945, - "Pers": 30946, "\u0120Dob": 30947, "\u0120LS": 30948, "\u0120insanity": 30949, - "\u00ce\u00b5": 30950, "atalie": 30951, "Enlarge": 30952, "\u0120twists": - 30953, "\u0120faulty": 30954, "\u0120piracy": 30955, "\u0120impover": 30956, - "\u0120rugged": 30957, "\u0120Fashion": 30958, "\u0120sands": 30959, "''?": - 30960, "swick": 30961, "\u0120natives": 30962, "\u0120hen": 30963, "\u0120Noise": - 30964, "\u00e3\u0125\u0139": 30965, "\u0120greens": 30966, "\u0120freezer": - 30967, "\u0120dynasty": 30968, "\u0120Fathers": 30969, "\u0120Newark": 30970, - "\u0120archaeological": 30971, "\u0120ot": 30972, "obar": 30973, "\u0120blockade": - 30974, "\u0120allerg": 30975, "LV": 30976, "\u0120debit": 30977, "\u0120RFC": - 30978, "\u0120Milton": 30979, "\u0120Pressure": 30980, "\u0120willingly": - 30981, "\u0120disproportionate": 30982, "\u0120oppressive": 30983, "\u0120diamonds": - 30984, "\u0120belongings": 30985, "1970": 30986, "\u0120bells": 30987, "\u0120imperialism": - 30988, "\u0120227": 30989, "\u0120exploding": 30990, "\u0120Eclipse": 30991, - "\u01201919": 30992, "\u0120rant": 30993, "\u0120nominations": 30994, "347": - 30995, "\u0120peacefully": 30996, "rica": 30997, "\u0120FUCK": 30998, "\u0120vibration": - 30999, "malink": 31000, "\u0120ropes": 31001, "\u0120Ivanka": 31002, "\u0120Brewery": - 31003, "\u0120Booker": 31004, "\u0120Owens": 31005, "goers": 31006, "Services": - 31007, "\u0120Snape": 31008, "\u0120191": 31009, "395": 31010, "\u0120299": - 31011, "justice": 31012, "\u0120bri": 31013, "\u0120discs": 31014, "\u0120prominently": - 31015, "\u0120vulgar": 31016, "\u0120skipping": 31017, "lves": 31018, "\u0120tsunami": - 31019, "374": 31020, "\u0120Urug": 31021, "\u0120Eid": 31022, "recated": 31023, - "phen": 31024, "\u0120faults": 31025, "\u0120Started": 31026, "950": 31027, - "\u0120pi": 31028, "\u0120detector": 31029, "\u0120bastard": 31030, "\u0120validated": - 31031, "SpaceEngineers": 31032, "OURCE": 31033, "\u0120(~": 31034, "\u0120unsur": - 31035, "\u0120affirmed": 31036, "\u0120fascism": 31037, "\u0120resolving": - 31038, "\u0120Chavez": 31039, "\u0120Cyn": 31040, "\u0120detract": 31041, - "Lost": 31042, "\u0120rigged": 31043, "\u0120homage": 31044, "\u0120Bruno": - 31045, "555": 31046, "eca": 31047, "\u0120presses": 31048, "\u0120humour": - 31049, "\u0120spacing": 31050, "\u0120''/": 31051, "olkien": 31052, "Coun": - 31053, "OPER": 31054, "Tre": 31055, "Son": 31056, "\u0120Cambodia": 31057, - "ierre": 31058, "mong": 31059, "ozy": 31060, "\u0120liquidity": 31061, "\u0120Soviets": - 31062, "\u0120Fernando": 31063, "\u0120229": 31064, "\u0120slug": 31065, "\u0120Catalan": - 31066, "electric": 31067, "\u0120scenery": 31068, "\u0120Hearth": 31069, "\u0120constrained": - 31070, "\u0120goalie": 31071, "\u0120Guidelines": 31072, "\u0120Ammo": 31073, - "\u0120Pearson": 31074, "\u0120taxed": 31075, "\u0120fetus": 31076, "Response": - 31077, "\u0120Alexis": 31078, "thia": 31079, "Guy": 31080, "\u0120reconstruct": - 31081, "\u0120extremes": 31082, "\u0120concluding": 31083, "\u0120Peg": 31084, - "ooks": 31085, "\u0120deductions": 31086, "Rose": 31087, "\u0120groundbreaking": - 31088, "\u0120Targ": 31089, "\u00e3\u0125\u0123": 31090, "\u0120Reve": 31091, - "resource": 31092, "\u0120moons": 31093, "\u0120electromagnetic": 31094, "\u0120amidst": - 31095, "\u0120Viktor": 31096, "NESS": 31097, "BACK": 31098, "\u0120commute": - 31099, "\u0120Anaheim": 31100, "\u0120fluctuations": 31101, "640": 31102, - "\u0120noodles": 31103, "\u0120Copenhagen": 31104, "\u0120Tide": 31105, "\u0120Grizz": - 31106, "\u0120SEE": 31107, "\u0120pipelines": 31108, "\u0120scars": 31109, - "endo": 31110, "agus": 31111, "\u0120ETF": 31112, "/#": 31113, "\u0120Become": - 31114, "448": 31115, "\u0120visc": 31116, "\u0120Recommended": 31117, "\u0120jumper": - 31118, "\u0120cognition": 31119, "\u0120assassin": 31120, "\u0120witnessing": - 31121, "\u0120Setup": 31122, "\u0120lac": 31123, "vim": 31124, "ISM": 31125, - "pages": 31126, "SSL": 31127, "358": 31128, "\u0120adject": 31129, "industrial": - 31130, "lore": 31131, "chery": 31132, "\u0120glitter": 31133, "\u0120calf": - 31134, "Florida": 31135, "\u0120spoilers": 31136, "\u0120succeeds": 31137, - "\u0120chanting": 31138, "\u0120slogans": 31139, "\u0120Tracy": 31140, "Visit": - 31141, "rology": 31142, "\u0120mornings": 31143, "\u0120lineage": 31144, "\u0120sip": - 31145, "\u0120intensely": 31146, "\u0120flourish": 31147, "\u0120Sleeping": - 31148, "\u0120Fem": 31149, "orpor": 31150, "\u0120Klan": 31151, "\u0120Darth": - 31152, "hack": 31153, "\u0120Nielsen": 31154, "\u0120tumors": 31155, "\u0120procurement": - 31156, "\u0120Yorkshire": 31157, "\u0120raided": 31158, "KY": 31159, "Anna": - 31160, "\u0120//[": 31161, "\u0120Disorder": 31162, "\u0120Mustang": 31163, - "\u0120Wen": 31164, "\u0120Trying": 31165, "sq": 31166, "\u0120deliveries": - 31167, "\u0120shutter": 31168, "\u0120cerebral": 31169, "\u0120bipolar": 31170, - "\u0120CN": 31171, "lass": 31172, "jet": 31173, "\u0120debating": 31174, ">:": - 31175, "\u0120eagle": 31176, "grades": 31177, "\u0120Dixon": 31178, "UGC": - 31179, "MAS": 31180, "\u0120Draco": 31181, "\u0120Machines": 31182, "affer": - 31183, "\u0120eman": 31184, "\u00c2\u00b2": 31185, "pron": 31186, "\u0120Gym": - 31187, "\u0120comparatively": 31188, "\u0120Tribunal": 31189, "PRO": 31190, - "\u0120lex": 31191, "\u0120fertile": 31192, "\u0120depressing": 31193, "\u0120superficial": - 31194, "essential": 31195, "\u0120Hunters": 31196, "gp": 31197, "\u0120prominence": - 31198, "Liber": 31199, "\u0120Ancest": 31200, "otechnology": 31201, "\u0120mocking": - 31202, "\u0120Traff": 31203, "\u0138\u013c": 31204, "Medium": 31205, "Iraq": - 31206, "\u0120psychiatrist": 31207, "Quantity": 31208, "\u0120Lect": 31209, - "\u0120noisy": 31210, "520": 31211, "GY": 31212, "\u0120slapped": 31213, "\u0120MTV": - 31214, "\u0120para": 31215, "pull": 31216, "Multiple": 31217, "asher": 31218, - "\u0120nour": 31219, "\u0120Seg": 31220, "Spell": 31221, "vous": 31222, "ordial": - 31223, "Senior": 31224, "\u0120Goldberg": 31225, "\u0120Plasma": 31226, "need": - 31227, "\u0120messenger": 31228, "eret": 31229, "\u0120teamed": 31230, "\u0120literacy": - 31231, "\u0120Leah": 31232, "\u0120Doyle": 31233, "\u0120emitted": 31234, - "UX": 31235, "\u0120evade": 31236, "\u0120maze": 31237, "\u0120wrongly": 31238, - "\u0120Lars": 31239, "\u0120stereotype": 31240, "\u0120pledges": 31241, "\u0120aroma": - 31242, "\u0120MET": 31243, "\u0120acre": 31244, "\u0120OD": 31245, "\u0120ff": - 31246, "\u0120breweries": 31247, "\u0120Hilton": 31248, "undle": 31249, "\u0120Kak": - 31250, "\u0120Thankfully": 31251, "\u0120Canucks": 31252, "inctions": 31253, - "\u0120Appears": 31254, "\u0120coer": 31255, "\u0120undermined": 31256, "rovers": - 31257, "Andre": 31258, "\u0120blaze": 31259, "umers": 31260, "\u0120famine": - 31261, "amphetamine": 31262, "ulkan": 31263, "Amount": 31264, "\u0120desperation": - 31265, "wikipedia": 31266, "development": 31267, "\u0120Corinth": 31268, "ussia": - 31269, "Jackson": 31270, "LI": 31271, "Native": 31272, "Rs": 31273, "Ohio": - 31274, "\u0120Kathleen": 31275, "Fortunately": 31276, "\u0120attendant": 31277, - "\u0120Preferred": 31278, "\u0120Didn": 31279, "\u0120Vs": 31280, "Mis": 31281, - "\u0120respondent": 31282, "\u0120boun": 31283, "stable": 31284, "\u0120paved": - 31285, "\u0120unexpl": 31286, "\u0120Cheney": 31287, "LM": 31288, "\u0120Cull": - 31289, "blown": 31290, "\u0120confronting": 31291, "ocese": 31292, "serving": - 31293, "Wi": 31294, "\u0120Lithuania": 31295, "anni": 31296, "\u0120stalk": - 31297, "hd": 31298, "\u0120vener": 31299, "APH": 31300, "ynchronous": 31301, - "URR": 31302, "umably": 31303, "historic": 31304, "Half": 31305, "Hay": 31306, - "\u0120resilience": 31307, "spection": 31308, "\u0120abandoning": 31309, "Obs": - 31310, "\u0120Debbie": 31311, "\u0120gradient": 31312, "\u0120Plaint": 31313, - "\u0120Canal": 31314, "ARCH": 31315, "\u0120expansive": 31316, "\u0120fung": - 31317, "\u0120bounced": 31318, "Und": 31319, "\u0120precautions": 31320, "\u0120clarification": - 31321, "\u0120dagger": 31322, "\u0120grips": 31323, "\u0120\u00c2\u00b5": - 31324, "\u0120Rivera": 31325, "\u0120Undead": 31326, "isites": 31327, "\u0120FIRST": - 31328, "\u00c3\u00b1o": 31329, "audi": 31330, "\u0120hostages": 31331, "\u0120compliant": - 31332, "\u0120alumni": 31333, "Seven": 31334, "\u0120cybersecurity": 31335, - "either": 31336, "Collect": 31337, "\u0120invariably": 31338, "\u0120Soci": - 31339, "\u0120lawmaker": 31340, "\u0120ale": 31341, "\u0120Personally": 31342, - "Nazi": 31343, "\u0120customization": 31344, "\u0120Proc": 31345, "\u0120Saskatchewan": - 31346, "eaturing": 31347, "\u0120spared": 31348, "\u0120discontinued": 31349, - "\u0120computational": 31350, "\u0120Motorola": 31351, "\u0120supremacist": - 31352, "governmental": 31353, "\u0120paradise": 31354, "\u0120Downing": 31355, - "\u0120Nikon": 31356, "\u0120catalyst": 31357, "berra": 31358, "Toronto": - 31359, "875": 31360, "beta": 31361, "\u0120Macron": 31362, "\u0120unrealistic": - 31363, "vector": 31364, "\u0120Vehicles": 31365, "itiveness": 31366, "\u0120RV": - 31367, "\u0120Colbert": 31368, "sin": 31369, "oji": 31370, "entin": 31371, - "\u0120Krish": 31372, "hello": 31373, "ffield": 31374, "oky": 31375, "\u0120Tate": - 31376, "\u0120maple": 31377, "\u0120aids": 31378, "chemical": 31379, "334": - 31380, "nuts": 31381, "\u0120Warp": 31382, "\u0120xx": 31383, "\u0120Robb": - 31384, "umerous": 31385, "_-_": 31386, "ftime": 31387, "\u0120VW": 31388, - "\u0120winger": 31389, "\u0120Dome": 31390, "tools": 31391, "\u0120PV": 31392, - "\u0120Georgetown": 31393, "\u0120geared": 31394, "\u0120jihadists": 31395, - "\u0120cp": 31396, "\u0120steroids": 31397, "Mother": 31398, "clerosis": 31399, - "\u0120DRM": 31400, "nesia": 31401, "\u0120linger": 31402, "\u0120immersive": - 31403, "\u0120COUN": 31404, "\u0120outweigh": 31405, "ensual": 31406, "Band": - 31407, "\u0120transforms": 31408, "matched": 31409, "psons": 31410, "\u0120Judicial": - 31411, "factor": 31412, "\u0120referral": 31413, "\u0120oddly": 31414, "\u0120Wenger": - 31415, "Bring": 31416, "\u0120Bows": 31417, "602": 31418, "ICLE": 31419, "\u0120lions": - 31420, "\u0120Academic": 31421, "\u0120Thorn": 31422, "\u0120Raider": 31423, - "kefeller": 31424, "Storage": 31425, "Lower": 31426, "\u0120Ort": 31427, "\u0120Equality": - 31428, "ALT": 31429, "\u0120SOC": 31430, "Types": 31431, "\u0120lyn": 31432, - "\u0120Asset": 31433, "coat": 31434, "TPP": 31435, "CVE": 31436, "\u0120Pioneer": - 31437, "application": 31438, "Modern": 31439, "\u0120HK": 31440, "Environment": - 31441, "Alright": 31442, "Rain": 31443, "IPP": 31444, "\u0120Shiite": 31445, - "\u0120mound": 31446, "\u0120Abilities": 31447, "condition": 31448, "Staff": - 31449, "\u0120competence": 31450, "\u0120Moor": 31451, "\u0120Diablo": 31452, - "\u0120withheld": 31453, "\u0120ostensibly": 31454, "\u0120Brom": 31455, "\u0120msg": - 31456, "\u0120denomin": 31457, "\u0120References": 31458, "\u0120FP": 31459, - "\u0120plunged": 31460, "\u0120pamph": 31461, "moving": 31462, "central": - 31463, "\u0120downright": 31464, "\u0120fading": 31465, "Tal": 31466, "Typ": - 31467, "\u0120Thy": 31468, "ukes": 31469, "ithe": 31470, "\u0120ove": 31471, - "\u0120battled": 31472, "\u0120seafood": 31473, "\u0120figur": 31474, "\u0120RD": - 31475, "crop": 31476, "\u0120squads": 31477, "{\\": 31478, "\u00e0\u00b9": - 31479, "\u0120Eh": 31480, "\u0120interviewing": 31481, "\u0120Qin": 31482, - "\u0120aspiring": 31483, "PLIC": 31484, "\u0120clauses": 31485, "\u0120Gast": - 31486, "\u0120Nir": 31487, "\u0120luggage": 31488, "\u0120hose": 31489, "\u0120systemd": - 31490, "\u0120descending": 31491, "\u0120Revised": 31492, "\u0120Rails": 31493, - "align": 31494, "709": 31495, "337": 31496, "\u0120fug": 31497, "charging": - 31498, "tags": 31499, "\u0120uter": 31500, "kish": 31501, "WARNING": 31502, - "490": 31503, "profits": 31504, "\u0120voyage": 31505, "\u0120ace": 31506, - "\u0120Vanguard": 31507, "\u0120Tanks": 31508, "\u0120Muk": 31509, "\u0120226": - 31510, "Safe": 31511, "Armor": 31512, "\u0120volcanic": 31513, "\u0120womb": - 31514, "\u0120MIL": 31515, "\u0120beginner": 31516, "\u0120Recogn": 31517, - "\u0120AAP": 31518, "PLAY": 31519, ")!": 31520, "\u0120detecting": 31521, - "cn": 31522, "\u0120breaches": 31523, "Basically": 31524, "\u0120Pag": 31525, - "\u0120Municipal": 31526, "\u0120Indie": 31527, "\u0120Laf": 31528, "\u0120Disable": - 31529, "\u0120Olson": 31530, "\u0120restrained": 31531, "\u0120rulings": 31532, - "\u0120humane": 31533, "events": 31534, "\u0120Cinema": 31535, "displayText": - 31536, "\u0120Hatch": 31537, "actionDate": 31538, "onnaissance": 31539, "\u0120assaulting": - 31540, "\u0120Lug": 31541, "CHAT": 31542, "\u0120vigorous": 31543, "\u0120Perse": - 31544, "\u0120intolerance": 31545, "\u0120Snapchat": 31546, "\u0120Sharks": - 31547, "\u0120dummy": 31548, "\u0120Diagn": 31549, "\u0120Guitar": 31550, - "imeters": 31551, "403": 31552, "REG": 31553, "Ax": 31554, "\u0120separates": - 31555, "\u0120Mahm": 31556, "\u0120tv": 31557, "jah": 31558, "OOL": 31559, - "Circ": 31560, "\u0120Windsor": 31561, "ussian": 31562, "\u0120intuition": - 31563, "\u0120disdain": 31564, "\u0120Donovan": 31565, "\u0120221": 31566, - "Emb": 31567, "\u0120condemning": 31568, "\u0120generosity": 31569, "zzy": - 31570, "\u0120panties": 31571, "\u0120Prevent": 31572, "ActionCode": 31573, - "ANA": 31574, "342": 31575, "externalActionCode": 31576, "\u0120specifying": - 31577, "\u0120crystall": 31578, "Jere": 31579, "\u0120rupt": 31580, "\u0120Apprentice": - 31581, "\u0120profiling": 31582, "\u00d0\u00ba": 31583, "Strike": 31584, "\u0120sideline": - 31585, "\u0120obligated": 31586, "\u0120occult": 31587, "\u0120bureaucratic": - 31588, "antically": 31589, "rupted": 31590, "negative": 31591, "\u0120Ethiopia": - 31592, "\u0120Civic": 31593, "\u0120insiders": 31594, "eligible": 31595, "\u0120TVs": - 31596, "\u0120BAR": 31597, "\u0120TI": 31598, "iologist": 31599, "\u0120AIR": - 31600, "\u0120substituted": 31601, "Arab": 31602, "\u0120Saul": 31603, "\u0120Yog": - 31604, "prem": 31605, "\u0120builders": 31606, "\u0120stationary": 31607, - "\u0120doubtful": 31608, "\u0120vigorously": 31609, "\u0120thrilling": 31610, - "Physical": 31611, "\u0120Carey": 31612, "\u0120Hydra": 31613, "geoning": - 31614, "\u0120Sly": 31615, "yton": 31616, "\u0120borrowers": 31617, "\u0120Parkinson": - 31618, "\u0120\u00eb": 31619, "\u0120Jamaica": 31620, "\u0120satir": 31621, - "\u0120insurgents": 31622, "\u0120Firm": 31623, "\u0120isot": 31624, "\u0120Karn": - 31625, "ourning": 31626, "akens": 31627, "docs": 31628, "little": 31629, "\u0120Monaco": - 31630, "CLASS": 31631, "Turkey": 31632, "Ly": 31633, "\u0120Conan": 31634, - "assic": 31635, "\u0120starred": 31636, "\u0120Pacers": 31637, "eties": 31638, - "\u0120tipping": 31639, "Moon": 31640, "\u0120Rw": 31641, "same": 31642, "\u0120cavity": - 31643, "\u0120goof": 31644, "\u0120Zo": 31645, "Shock": 31646, "ummer": 31647, - "\u0120emphasizes": 31648, "\u0120regrett": 31649, "\u0120novelty": 31650, - "\u0120envy": 31651, "\u0120Passive": 31652, "rw": 31653, "505": 31654, "\u0120indifferent": - 31655, "\u0120Rica": 31656, "\u0120Himself": 31657, "\u0120Freddie": 31658, - "\u0120adip": 31659, "\u00e4\u00b8\u0122": 31660, "\u0120breakout": 31661, - "\u0120hurried": 31662, "\u0120Huang": 31663, "\u0120Disk": 31664, "\u0120roaming": - 31665, "?????-?????-": 31666, "UV": 31667, "\u0120Ricky": 31668, "\u0120Sigma": - 31669, "\u0120marginalized": 31670, "\u0120edits": 31671, "\u0120304": 31672, - "memory": 31673, "\u0120specimen": 31674, "293": 31675, "\u00e3\u0123\u00af": - 31676, "\u0120vertically": 31677, "\u0120audition": 31678, "\u0120Heck": 31679, - "\u0120caster": 31680, "\u0120Holdings": 31681, "adal": 31682, "\u0120Cron": - 31683, "\u0120Liam": 31684, "\u0120deflect": 31685, "Pick": 31686, "\u0120Debug": - 31687, "REF": 31688, "\u0120versatility": 31689, "othes": 31690, "classified": - 31691, "\u0120Mahar": 31692, "\u0120Hort": 31693, "Counter": 31694, "stasy": - 31695, "noticed": 31696, "331": 31697, "\u0120Shim": 31698, "fuck": 31699, - "\u0120Bie": 31700, "\u0120airing": 31701, "\u0120Protein": 31702, "\u0120Holding": - 31703, "\u0120spectators": 31704, "iliated": 31705, "\u0120Thatcher": 31706, - "nosis": 31707, "\u00e3\u0125\u00bc\u00e3\u0125\u00b3": 31708, "Tele": 31709, - "Boston": 31710, "\u0120Templ": 31711, "stay": 31712, "\u0120declarations": - 31713, "479": 31714, "Volume": 31715, "\u0120Designer": 31716, "\u0120Overwatch": - 31717, "idae": 31718, "\u0120onwards": 31719, "\u0120nets": 31720, "\u0120Manila": - 31721, "particularly": 31722, "\u0120politic": 31723, "oother": 31724, "\u0120portraits": - 31725, "\u0120pavement": 31726, "cffff": 31727, "\u0120saints": 31728, "\u0120beginners": - 31729, "ESPN": 31730, "\u0120shortcomings": 31731, "\u00e2\u0137\u0132\u00e2\u0137\u0132": - 31732, "\u0120comet": 31733, "\u0120Organic": 31734, "quel": 31735, "\u0120hospitalized": - 31736, "Break": 31737, "\u0120peel": 31738, "dylib": 31739, "aspx": 31740, - "urances": 31741, "\u0120TIM": 31742, "Pg": 31743, "\u0120readable": 31744, - "\u0120Malik": 31745, "\u0120muzzle": 31746, "\u0120benchmarks": 31747, "dal": - 31748, "\u0120Vacc": 31749, "\u0120Hicks": 31750, "609": 31751, "\u0120Biblical": - 31752, "heng": 31753, "\u0120overload": 31754, "\u0120Civilization": 31755, - "\u0120immoral": 31756, "\u0120fries": 31757, "\u00e3\u0124\u0134": 31758, - "\u0120reproduced": 31759, "\u0120formulation": 31760, "jug": 31761, "irez": - 31762, "gear": 31763, "\u0120coached": 31764, "MpServer": 31765, "\u0120SJ": - 31766, "\u0120Kw": 31767, "Init": 31768, "deal": 31769, "\u0120Oro": 31770, - "\u0120Loki": 31771, "\u0120Songs": 31772, "\u0120232": 31773, "\u0120Louise": - 31774, "asionally": 31775, "\u0120uncond": 31776, "ollywood": 31777, "\u0120progressives": - 31778, "\u0120Enough": 31779, "\u0120Doe": 31780, "\u0120wreckage": 31781, - "\u0120brushed": 31782, "\u0120BaseType": 31783, "\u0120zoning": 31784, "ishable": - 31785, "hetically": 31786, "\u0120Caucus": 31787, "\u0120Hue": 31788, "\u0120karma": - 31789, "\u0120Sporting": 31790, "\u0120trader": 31791, "\u0120seeming": 31792, - "\u0120Capture": 31793, "430": 31794, "bish": 31795, "\u0120tunes": 31796, - "\u0120indoors": 31797, "\u0120Sphere": 31798, "\u0120Dancing": 31799, "TERN": - 31800, "\u0120nob": 31801, "\u0120GST": 31802, "maps": 31803, "\u0120peppers": - 31804, "Fit": 31805, "\u0120oversees": 31806, "\u0120Rabbi": 31807, "\u0120Ruler": - 31808, "vertising": 31809, "office": 31810, "xxx": 31811, "\u0120raft": 31812, - "Changed": 31813, "\u0120textbooks": 31814, "Links": 31815, "\u0120Omn": 31816, - "\u00e3\u0122\u0133": 31817, "\u0120inconvenience": 31818, "\u0120Donetsk": - 31819, "=~": 31820, "\u0120implicitly": 31821, "\u0120boosts": 31822, "\u0120Bones": - 31823, "\u0120Boom": 31824, "Courtesy": 31825, "\u0120sensational": 31826, - "ANY": 31827, "\u0120greedy": 31828, "eden": 31829, "\u0120inexper": 31830, - "\u0120Ler": 31831, "\u0120Vale": 31832, "\u0120tighten": 31833, "\u0120EAR": - 31834, "\u0120Num": 31835, "\u0120ancestor": 31836, "Sent": 31837, "\u0120Horde": - 31838, "urgical": 31839, "allah": 31840, "\u0120sap": 31841, "amba": 31842, - "\u0120Spread": 31843, "twitch": 31844, "\u0120grandson": 31845, "\u0120fracture": - 31846, "\u0120moderator": 31847, "\u0120Seventh": 31848, "\u0120Reverse": - 31849, "\u0120estimation": 31850, "Choose": 31851, "\u0120parach": 31852, - "\u0120barric": 31853, "\u00e3\u0122\u0132": 31854, "\u0120compass": 31855, - "\u0120allergic": 31856, "\u00e2\u0122\u0137": 31857, "OTHER": 31858, "errilla": - 31859, "\u0120wagon": 31860, "\u0120zinc": 31861, "\u0120rubbed": 31862, "\u0120Fuller": - 31863, "\u0120Luxembourg": 31864, "\u0120Hoover": 31865, "\u0120liar": 31866, - "\u0120Evening": 31867, "\u0120Cobb": 31868, "esteem": 31869, "\u0120selector": - 31870, "\u0120Brawl": 31871, "isance": 31872, "\u0120Ek": 31873, "\u0120troop": - 31874, "\u0120guts": 31875, "\u0120Appeal": 31876, "\u0120Tibetan": 31877, - "\u0120routines": 31878, "\u0120Ment": 31879, "\u0120summarized": 31880, "steamapps": - 31881, "\u0120tranqu": 31882, "\u01201929": 31883, "oran": 31884, "\u0120Authent": - 31885, "\u0120gmaxwell": 31886, "\u0120apprehens": 31887, "\u0120poems": 31888, - "\u0120sausage": 31889, "\u0120Webster": 31890, "urus": 31891, "\u0120themed": - 31892, "\u0120lounge": 31893, "\u0120charger": 31894, "Spoiler": 31895, "\u0120spilled": - 31896, "hog": 31897, "\u0120Sunder": 31898, "\u0120Ain": 31899, "\u0120Angry": - 31900, "\u0120disqual": 31901, "\u0120Frequency": 31902, "\u0120Ethernet": - 31903, "\u0120helper": 31904, "Percent": 31905, "\u0120horrifying": 31906, - "\u0120ail": 31907, "\u0120Allan": 31908, "EEE": 31909, "\u0120Crossing": - 31910, "449": 31911, "\u0120holog": 31912, "\u0120Puzzles": 31913, "\u0120Goes": - 31914, "erenn": 31915, "604": 31916, "\u00e3\u0123\u0131": 31917, "\u0120Rafael": - 31918, "\u0120atten": 31919, "\u0120Emanuel": 31920, "\u0120upro": 31921, - "\u0120Susp": 31922, "Psych": 31923, "\u0120Trainer": 31924, "\u0120NES": - 31925, "\u0120Hunts": 31926, "becue": 31927, "\u0120counselor": 31928, "Rule": - 31929, "\u0120toxins": 31930, "\u0120banners": 31931, "rifice": 31932, "\u0120greeting": - 31933, "\u0120frenzy": 31934, "\u0120allocate": 31935, "\u0120*)": 31936, - "expr": 31937, "503": 31938, "\u0120Chick": 31939, "\u0120Torn": 31940, "\u0120consolidation": - 31941, "\u0120Fletcher": 31942, "switch": 31943, "frac": 31944, "clips": 31945, - "\u0120McKin": 31946, "\u0120Lunar": 31947, "Month": 31948, "ITCH": 31949, - "\u0120scholarly": 31950, "raped": 31951, "398": 31952, "\u01201910": 31953, - "\u0120egreg": 31954, "\u0120insecure": 31955, "\u0120victorious": 31956, - "cffffcc": 31957, "\u0120singled": 31958, "\u0120elves": 31959, "\u0120Wond": - 31960, "burst": 31961, "\u0120camoufl": 31962, "\u0120BLACK": 31963, "\u0120conditioned": - 31964, "\u00e7\u012b": 31965, "answered": 31966, "\u0120compulsory": 31967, - "ascist": 31968, "\u0120podcasts": 31969, "\u0120Frankfurt": 31970, "bnb": - 31971, "\u0120neoliberal": 31972, "\u0120Keyboard": 31973, "\u0120Belle": - 31974, "warm": 31975, "\u0120trusts": 31976, "\u0120insured": 31977, "\u0120Bucc": - 31978, "usable": 31979, "607": 31980, "\u0120Plains": 31981, "\u01201890": - 31982, "\u0120sabotage": 31983, "\u0120lodged": 31984, "felt": 31985, "\u0120ga": - 31986, "\u0120Narc": 31987, "\u0120Salem": 31988, "\u0120seventy": 31989, - "\u0120Blank": 31990, "pocket": 31991, "\u0120whisper": 31992, "\u0120mating": - 31993, "omics": 31994, "\u0120Salman": 31995, "\u0120Kad": 31996, "\u0120angered": - 31997, "\u0120collisions": 31998, "\u0120extraordinarily": 31999, "\u0120coercion": - 32000, "Ghost": 32001, "birds": 32002, "\u00e8\u0122": 32003, "kok": 32004, - "\u0120permissible": 32005, "avorable": 32006, "\u0120pointers": 32007, "\u0120dissip": - 32008, "aci": 32009, "\u0120theatrical": 32010, "\u0120Cosmic": 32011, "\u0120forgetting": - 32012, "\u0120finalized": 32013, "\u00e5\u00a4\u00a7": 32014, "yout": 32015, - "library": 32016, "\u0120booming": 32017, "\u0120Believe": 32018, "\u0120Teacher": - 32019, "\u0120Liv": 32020, "\u0120GOODMAN": 32021, "\u0120Dominican": 32022, - "ORED": 32023, "\u0120Parties": 32024, "\u0120precipitation": 32025, "\u0120Slot": - 32026, "Roy": 32027, "\u0120Combined": 32028, "\u0120integrating": 32029, - "\u0120chrome": 32030, "\u0120intestinal": 32031, "\u0120Rebell": 32032, "\u0120matchups": - 32033, "\u0120blockbuster": 32034, "\u0120Loren": 32035, "\u0120Levy": 32036, - "\u0120preaching": 32037, "\u0120Sending": 32038, "\u0120Purpose": 32039, - "rax": 32040, "fif": 32041, "\u0120authoritative": 32042, "\u0120PET": 32043, - "astical": 32044, "\u0120dishon": 32045, "\u0120chatting": 32046, "\u0120\"$:/": - 32047, "Connection": 32048, "\u0120recreate": 32049, "\u0120delinqu": 32050, - "\u0120broth": 32051, "\u0120Dirty": 32052, "\u0120Admin": 32053, "zman": - 32054, "\u0120scholarships": 32055, "\u0120253": 32056, "contact": 32057, - "alsa": 32058, "767": 32059, "creen": 32060, "abbage": 32061, "\u01201915": - 32062, "\u0120blended": 32063, "\u0120alarmed": 32064, "Language": 32065, - "356": 32066, "\u0120blends": 32067, "\u0120Changed": 32068, "Wolf": 32069, - "\u0120hepat": 32070, "Creating": 32071, "\u0120persecut": 32072, "\u0120sweetness": - 32073, "arte": 32074, "\u0120forfeiture": 32075, "\u0120Roberto": 32076, "impro": - 32077, "NFL": 32078, "\u0120Magnet": 32079, "Detailed": 32080, "\u0120insignificant": - 32081, "\u0120POLIT": 32082, "\u0120BBQ": 32083, "\u0120CPS": 32084, "\u0120seaw": - 32085, "aminer": 32086, "mL": 32087, "endif": 32088, "finals": 32089, "\u0120265": - 32090, "uish": 32091, "\u0120})": 32092, "\u0120Problems": 32093, "\u0120emblem": - 32094, "\u0120seriousness": 32095, "\u0120parsing": 32096, "\u0120substitution": - 32097, "\u0120pressured": 32098, "\u0120recycled": 32099, "aleb": 32100, "Ruby": - 32101, "\u0120proficiency": 32102, "Driver": 32103, "\u0120Wester": 32104, - ":''": 32105, "AFTA": 32106, "\u0120mantle": 32107, "\u0120Clayton": 32108, - "flag": 32109, "\u0120practitioner": 32110, "covered": 32111, "\u0120Struct": - 32112, "addafi": 32113, "425": 32114, "\u0120Township": 32115, "\u0120Hydro": - 32116, "Louis": 32117, "343": 32118, "\u0120condo": 32119, "\u0120Tao": 32120, - "\u0120utilization": 32121, "\u0120nausea": 32122, "\u0120Dems": 32123, "ridges": - 32124, "pause": 32125, "\u0120formulas": 32126, "\u0120challenger": 32127, - "376": 32128, "\u0120defective": 32129, "\u0120Railway": 32130, "\u0120PubMed": - 32131, "\u0120yogurt": 32132, "lbs": 32133, "\u0120Norfolk": 32134, "OPE": - 32135, "\u0120Moody": 32136, "\u0120distributor": 32137, "\u0120scrolls": - 32138, "\u0120extracts": 32139, "Stan": 32140, "\u0120viability": 32141, "\u0120exposes": - 32142, "\u0120starvation": 32143, "\u0120Steps": 32144, "\u0120Dodd": 32145, - "few": 32146, "STD": 32147, "332": 32148, "\u0120closures": 32149, "\u0120complementary": - 32150, "\u0120Sasha": 32151, "umpy": 32152, "\u0120monet": 32153, "\u0120articulate": - 32154, "\u0120Doct": 32155, "killer": 32156, "\u0120scrim": 32157, "\u0120264": - 32158, "\u0120prostitutes": 32159, "\u0120severed": 32160, "\u0120attachments": - 32161, "\u0120cooled": 32162, "Lev": 32163, "\u0120Falk": 32164, "fail": 32165, - "\u0120policeman": 32166, "\u0120Dag": 32167, "\u0120prayed": 32168, "\u0120Kernel": - 32169, "\u0120clut": 32170, "\u0120cath": 32171, "\u0120anomaly": 32172, "Storm": - 32173, "emaker": 32174, "\u0120Breakfast": 32175, "uli": 32176, "oire": 32177, - "JJ": 32178, "hz": 32179, "Operation": 32180, "\u0120Sick": 32181, "354": - 32182, "\u0120Guatemala": 32183, "Rate": 32184, "\u0120exposures": 32185, - "faces": 32186, "\u0120Archae": 32187, "raf": 32188, "\u0120Mia": 32189, "\u01202025": - 32190, "\u0120opaque": 32191, "\u0120disguised": 32192, "\u0120Headquarters": - 32193, "Sah": 32194, "\u0120pots": 32195, "978": 32196, "\u0120Malf": 32197, - "\u0120frowned": 32198, "\u0120poisonous": 32199, "\u0120Convers": 32200, - "eeks": 32201, "\u0120crab": 32202, ".\"\"": 32203, "\u0120treason": 32204, - "\u0120ranc": 32205, "\u0120escalating": 32206, "\u0120warr": 32207, "\u0120mobs": - 32208, "\u0120lamps": 32209, "\u0120Sunshine": 32210, "\u0120Brunswick": 32211, - "Phones": 32212, "\u0120spelled": 32213, "\u0120Skip": 32214, "\u01202050": - 32215, "\u01201911": 32216, "\u0120Pluto": 32217, "\u0120Amend": 32218, "\u0120meats": - 32219, "387": 32220, "\u0120stomp": 32221, "\u0120Zhou": 32222, "\u0120Leviathan": - 32223, "\u0120Hazard": 32224, "adv": 32225, "\u0120Orwell": 32226, "\u0120aloud": - 32227, "\u0120bumper": 32228, "\u0120Anarch": 32229, "ubuntu": 32230, "\u0120Serious": - 32231, "fitting": 32232, "\u0120Optional": 32233, "\u0120Cecil": 32234, "REAM": - 32235, "\u0120serotonin": 32236, "\u0120cultivate": 32237, "agogue": 32238, - "}\\": 32239, "\u0120mosques": 32240, "\u0120Sunny": 32241, "\u0120reactive": - 32242, "revolution": 32243, "\u0120Lup": 32244, "\u0120Fedora": 32245, "\u0120defenseman": - 32246, "\u0120VID": 32247, "istine": 32248, "\u0120drowning": 32249, "\u0120Broadcasting": - 32250, "\u0120thriller": 32251, "\u0120Scy": 32252, "\u0120accelerating": - 32253, "\u0120directs": 32254, "odied": 32255, "bike": 32256, "duration": - 32257, "\u0120painfully": 32258, "Redd": 32259, "\u0120productions": 32260, - "\u0120gag": 32261, "\u0120whist": 32262, "\u0120sock": 32263, "\u0120infinitely": - 32264, "\u0120Concern": 32265, "\u0120Citadel": 32266, "\u0120lieu": 32267, - "\u0120candles": 32268, "ogeneous": 32269, "arger": 32270, "\u0120heavenly": - 32271, "inflammatory": 32272, "Performance": 32273, "Cs": 32274, "ructose": - 32275, "azaki": 32276, "\u0120pessim": 32277, "\u0120inference": 32278, "\u0120powd": - 32279, "\u0120Zoe": 32280, "\u0120paints": 32281, "\u0120dazz": 32282, "pta": - 32283, "-----------": 32284, "\u0120inspir": 32285, "\u0120Experimental": - 32286, "\u0120Knife": 32287, "regor": 32288, "bors": 32289, "\u0120showers": - 32290, "romeda": 32291, "\u0120saint": 32292, "\u0120benign": 32293, "\u0120Jiang": - 32294, "\u0120envisioned": 32295, "\u0120shroud": 32296, "IFT": 32297, "HO": - 32298, "\u0120shuff": 32299, "\u0120ICC": 32300, "\u0120segreg": 32301, "\u0120revisit": - 32302, "ighthouse": 32303, "Li": 32304, "\u0120substrate": 32305, "\u0120Seas": - 32306, "\u0120Reward": 32307, "\u0120Hep": 32308, "\u0120Brass": 32309, "sbm": - 32310, "\u0120eliminates": 32311, "\u0120stamina": 32312, "\u0120VAT": 32313, - "\u0120Loan": 32314, "\u0120constraint": 32315, "\u0120appropriated": 32316, - "\u0120pes": 32317, "\u0120ALE": 32318, "ranging": 32319, "\u0120404": 32320, - "392": 32321, "\u0120intellectuals": 32322, "achu": 32323, "\u0120restructuring": - 32324, "\u0120Levin": 32325, "\u0120runes": 32326, "\u0120delightful": 32327, - "\u0120carbohydrates": 32328, "\u0120Models": 32329, "\u0120Expo": 32330, - "\u0120transporting": 32331, "alloc": 32332, "\u0120ringing": 32333, "Samsung": - 32334, "\u0120scarcely": 32335, "\u0120URLs": 32336, "\u0120MAS": 32337, "\u0120prototypes": - 32338, "\u0120narrator": 32339, "\u0120CPUs": 32340, "cdn": 32341, "\u0120Barton": - 32342, "\u0120decidedly": 32343, "\u0120Shu": 32344, "ixir": 32345, "ocious": - 32346, "\u0120Myst": 32347, "Nintendo": 32348, "\u0120reuse": 32349, "\u0120forgiven": - 32350, "Few": 32351, "inical": 32352, "nat": 32353, "\u0120seamless": 32354, - "\u0120Eva": 32355, "\u0120EVE": 32356, "\u0120JO": 32357, "landers": 32358, - "\u0120softer": 32359, "negie": 32360, "\u0120transient": 32361, "\u0120orbital": - 32362, "\u0120fulfil": 32363, "\u0120Kom": 32364, "Hopefully": 32365, "\u0120dynamically": - 32366, "\u0120Hunger": 32367, "\u00e5\u013d": 32368, "\u0120Armenia": 32369, - "elman": 32370, "berto": 32371, "\u0120pige": 32372, "\u0120IDs": 32373, "limit": - 32374, "\u0120veins": 32375, "\u0120soaring": 32376, "packs": 32377, "Golden": - 32378, "\u0120Crab": 32379, "istor": 32380, "\u0120RPM": 32381, "\u0120$$": - 32382, "gression": 32383, "\u0120jihadist": 32384, "\u0120gamble": 32385, - "\u0120careg": 32386, "\u0120inflated": 32387, "Face": 32388, "\u0120Firearms": - 32389, "\u0120Emmanuel": 32390, "\u00e2\u013f": 32391, "\u0120shocks": 32392, - "grab": 32393, "\u0120splend": 32394, "\u0120HPV": 32395, "abortion": 32396, - "Above": 32397, "Entity": 32398, "players": 32399, "\u0120commenced": 32400, - "ulence": 32401, "\u0120fulfillment": 32402, "\u0120embodiments": 32403, "\u0120Welfare": - 32404, "\u0120hail": 32405, "\u0120<@": 32406, "tten": 32407, "\u0120catcher": - 32408, "\u0120Jazeera": 32409, "\u0120volcano": 32410, "\u0120stabilize": - 32411, "\u0120Handler": 32412, "\u0120intensified": 32413, "\u0120Abrams": - 32414, "\u0120humiliation": 32415, "paced": 32416, "605": 32417, "\u0120CentOS": - 32418, "Specific": 32419, "\u0120heed": 32420, "\u0120CAM": 32421, "\u0120Galile": - 32422, "Die": 32423, "\u0120abolished": 32424, "\u0120Thomson": 32425, "\u0120Teachers": - 32426, "\u0120Wass": 32427, "jong": 32428, "\u0120ISBN": 32429, "\u0120Allies": - 32430, "shake": 32431, "\u00e5\u00b7": 32432, "vict": 32433, "Howard": 32434, - "\u0120deem": 32435, "\u0120exceedingly": 32436, "\u0120Smartstocks": 32437, - "ibe": 32438, "\u0120doorway": 32439, "\u0120competed": 32440, "igmat": 32441, - "\u0120nationalists": 32442, "\u0120groom": 32443, "\u0120Keen": 32444, "\u0120disposable": - 32445, "decl": 32446, "\u0120Tolkien": 32447, "\u0120Scheme": 32448, "\u0120biod": - 32449, "\u0120avid": 32450, "\u0120Elon": 32451, "agar": 32452, "\u0120TSA": - 32453, "Roman": 32454, "\u0120artificially": 32455, "\u0120advisors": 32456, - "XL": 32457, "\u0120Inferno": 32458, "366": 32459, "\u0120tedious": 32460, - "\u0120Photography": 32461, "\u0120Carrie": 32462, "\u0120trope": 32463, "\u0120Sandra": - 32464, "\u0120decimal": 32465, "Queen": 32466, "\u0120Gundam": 32467, "\u0120OM": - 32468, "otech": 32469, "NBA": 32470, "\u01201932": 32471, "\u0120entrenched": - 32472, "\u0120Marion": 32473, "\u0120fraternity": 32474, "Labour": 32475, - "Henry": 32476, "\u0120latitude": 32477, "Either": 32478, "\u0120enhances": - 32479, "\u0120Potential": 32480, "\u0120shines": 32481, "idad": 32482, "\u0120breadth": - 32483, "\u0120capacities": 32484, "\u0120\u00f0\u0141\u013b\u0124": 32485, - "\u0120Bronx": 32486, "\u0120sexes": 32487, "\u0120differentiation": 32488, - "\u0120heavyweight": 32489, "\u0120Taj": 32490, "dra": 32491, "\u0120migrate": - 32492, "\u0120exhaustion": 32493, "\u0120RUN": 32494, "elsius": 32495, "\u0120Cuomo": - 32496, "\u0120guitars": 32497, "\u0120clones": 32498, "\u0120Somew": 32499, - "\u0120Pry": 32500, "-------------": 32501, "\u0120warranted": 32502, "cycles": - 32503, "\u0120salvage": 32504, "\u0120disks": 32505, "RANT": 32506, "\u0120NGOs": - 32507, "\u0120Martian": 32508, "\":[{\"": 32509, "\u0120addicts": 32510, "ojure": - 32511, "illet": 32512, "\u0120amazingly": 32513, "artments": 32514, "pixel": - 32515, "\u0120GPUs": 32516, "Layout": 32517, "\u00e8\u00a3": 32518, "\u0120Tamil": - 32519, "\u0120Basil": 32520, "\u0120impartial": 32521, "\u0120Structure": - 32522, "fork": 32523, "bryce": 32524, "\u0120ridge": 32525, "\u0120Hamburg": - 32526, "rious": 32527, "\u0120blitz": 32528, "cigarettes": 32529, "\u0120canned": - 32530, "402": 32531, "\u0120ironically": 32532, "\u0120compassionate": 32533, - "\u0120Hawkins": 32534, ".#": 32535, "\u0120Cathedral": 32536, "\u0120rallied": - 32537, "internal": 32538, "\u0120quota": 32539, "stakes": 32540, "TEXT": 32541, - "mom": 32542, "\u0120completes": 32543, "\u0120238": 32544, "\u0120shrug": - 32545, "\u00e3\u0125\u0133": 32546, "\u0120Ninth": 32547, "\u0120revise": - 32548, "\u0120Provider": 32549, "\u0120treacher": 32550, "\u0120quasi": 32551, - "\u0120PRES": 32552, "\u0120deposition": 32553, "\u0120confidentiality": 32554, - "issors": 32555, "\u0120imbalance": 32556, "\u0120spanning": 32557, "\u0120angular": - 32558, "\u0120Cul": 32559, "communication": 32560, "\u0120Nora": 32561, "\u0120Genius": - 32562, "opter": 32563, "\u0120sacked": 32564, "Spot": 32565, "\u0120finely": - 32566, "\u0120CHR": 32567, "282": 32568, "waves": 32569, "Palest": 32570, - "\u0120Rohing": 32571, "NL": 32572, "\u00e8\u00bf": 32573, "\u0120shitty": - 32574, "\u0120Scalia": 32575, "475": 32576, "Progress": 32577, "\u0120referencing": - 32578, "\u0120classrooms": 32579, "abee": 32580, "\u0120sod": 32581, "hesion": - 32582, "708": 32583, "\u0120Zuckerberg": 32584, "\u0120Finish": 32585, "\u0120Scotia": - 32586, "\u0120Savior": 32587, "\u0120Installation": 32588, "antha": 32589, - "(-": 32590, "\u0120302": 32591, "\u0120Punk": 32592, "\u0120crater": 32593, - "youtu": 32594, "\u0120roast": 32595, "\u0120influencing": 32596, "\u0120dup": - 32597, "\u0120JR": 32598, "\u0120Grav": 32599, "\u0120stature": 32600, "\u0120bathrooms": - 32601, "Aside": 32602, "Wiki": 32603, "mean": 32604, "\u0120Zak": 32605, "\u0120Ones": - 32606, "\u0120Nath": 32607, "\u0120hypert": 32608, "\u0120commencement": 32609, - "Civil": 32610, "\u0120moderately": 32611, "\u0120distributors": 32612, "\u0120breastfeeding": - 32613, "\u0120980": 32614, "\u0120Sik": 32615, "\u0120Cig": 32616, "\u0120AMER": - 32617, "RIP": 32618, "\u0120Career": 32619, "usting": 32620, "\u0120messed": - 32621, "\u0120eh": 32622, "\u0120Jensen": 32623, "/$": 32624, "\u0120blackmail": - 32625, "\u0120conversions": 32626, "\u0120scientifically": 32627, "\u0120mantra": - 32628, "paying": 32629, "\u0120ivory": 32630, "\u0120Courts": 32631, "OUGH": - 32632, "auntlet": 32633, "Serial": 32634, "Brow": 32635, "\u0120Hundreds": - 32636, "323": 32637, "\u0120pee": 32638, "\u0120linux": 32639, "\u0120submer": - 32640, "\u0120Principal": 32641, "485": 32642, "\u0120DSL": 32643, "\u0120Cousins": - 32644, "\u0120doctrines": 32645, "\u0120Athletics": 32646, "\u0120315": 32647, - "\u0120Karma": 32648, "\u0120attent": 32649, "urger": 32650, "\u0120prescribe": - 32651, "\u0120encaps": 32652, "\u0120Came": 32653, "\u0120secretive": 32654, - "\u0120Crimes": 32655, "dn": 32656, "Clean": 32657, "\u0120Egyptians": 32658, - "\u0120Carpenter": 32659, "\u0120ll": 32660, "Hum": 32661, "\u0120Milo": 32662, - "\u0120capitalists": 32663, "\u0120briefed": 32664, "Twe": 32665, "\u0120Basin": - 32666, "elvet": 32667, "Mos": 32668, "\u0120plunge": 32669, "\u0120Kaiser": - 32670, "\u0120Fuj": 32671, "illin": 32672, "\u0120safeguards": 32673, "\u0120oste": - 32674, "\u0120Opportunity": 32675, "\u0120Mafia": 32676, "\u0120Calling": - 32677, "apa": 32678, "urban": 32679, "brush": 32680, "illard": 32681, "c\u00c3\u00a9": - 32682, "intelligence": 32683, "\u0120Lob": 32684, "\u0120Druid": 32685, "\u0120smoother": - 32686, "\u0120footing": 32687, "\u0120motorists": 32688, "arcity": 32689, - "\u0120masculinity": 32690, "\u0120mism": 32691, "\u0120abdominal": 32692, - "\u0120Tavern": 32693, "\u0120Roh": 32694, "\u0120escapes": 32695, "signed": - 32696, "Anthony": 32697, "\u0120sacrificing": 32698, "\u0120intimacy": 32699, - "\u0120anterior": 32700, "\u0120Kod": 32701, "\u0120motif": 32702, "\u0120graz": - 32703, "\u0120visualization": 32704, "\u0120guitarist": 32705, "\u0120Trotsky": - 32706, "magic": 32707, "Dar": 32708, "\u0120Mori": 32709, "\u0120wards": 32710, - "\u0120toilets": 32711, "lest": 32712, "\u0120teleport": 32713, "\u0120Sundays": - 32714, "\u0120Plat": 32715, "ETS": 32716, "\u0120eSports": 32717, "Patrick": - 32718, "\u0120Katherine": 32719, "enko": 32720, "\u0120hassle": 32721, "\u0120Mick": - 32722, "ggles": 32723, "\u0120hob": 32724, "aintain": 32725, "\u0120airborne": - 32726, "\u0120spans": 32727, "\u0120chili": 32728, "\u0120aperture": 32729, - "\u0120volunteered": 32730, "\u0120Incident": 32731, "\u0120Fres": 32732, - "\u0120Veteran": 32733, "aughtered": 32734, "ingo": 32735, "\u0120uninsured": - 32736, "CLOSE": 32737, "\u0120fuse": 32738, "\u0120erotic": 32739, "\u0120advertise": - 32740, "raising": 32741, "Texture": 32742, "\u0120attends": 32743, "\u0120REAL": - 32744, "uddled": 32745, "\u0120smoot": 32746, "\u0120305": 32747, "\u0120Willis": - 32748, "\u0120blond": 32749, "Analysis": 32750, "\u0120VT": 32751, "onica": - 32752, "\u0120stronghold": 32753, "RF": 32754, "NM": 32755, ".>>": 32756, - "\u0120prosperous": 32757, "\u0120boasted": 32758, "292": 32759, "\u0120Manufacturing": - 32760, "PRESS": 32761, "gren": 32762, "\u0120pharmacy": 32763, "\u0120Rockefeller": - 32764, "kai": 32765, "\u0120thumbs": 32766, "\u0120Hut": 32767, "\u0120motherboard": - 32768, "\u0120guardians": 32769, "\u0120Alter": 32770, "llular": 32771, "\u0120shack": - 32772, "\u0120wisely": 32773, "\u0120backbone": 32774, "erva": 32775, "\u0120suicides": - 32776, "\u0120McGregor": 32777, "ijah": 32778, "Emer": 32779, "\u0120Brav": - 32780, "\u0120designate": 32781, "POST": 32782, "produced": 32783, "\u0120cleansing": - 32784, "irlwind": 32785, "existent": 32786, "\u0120Humph": 32787, "\u0120Payne": - 32788, "\u0120vested": 32789, "\u00c5\u00a1": 32790, "\u0120stringent": 32791, - "iona": 32792, "\u0120unsub": 32793, "\u0120summed": 32794, "\u0120Hercules": - 32795, "subject": 32796, "\u0120Ragnar": 32797, "\u0120Nos": 32798, "\u0120characterization": - 32799, "\u0120savvy": 32800, "\u0120Dawson": 32801, "\u0120Casino": 32802, - "\u0120fri": 32803, "\u0120Barrier": 32804, "\u0120misinformation": 32805, - "\u0120insulation": 32806, "\u0120corridors": 32807, "\u0120airplanes": 32808, - "\u0120Noct": 32809, "ahi": 32810, "\u01201916": 32811, "kb": 32812, "armac": - 32813, "\u0120shun": 32814, "\u0120schema": 32815, "\u0120horrified": 32816, - "\u0120239": 32817, "aunders": 32818, "NB": 32819, "iates": 32820, "erity": - 32821, "\u0120Shard": 32822, "\u0120rarity": 32823, "\u0120grouped": 32824, - "\u0120Ghana": 32825, "against": 32826, "\u0120Biological": 32827, "\u0120Aware": - 32828, "owell": 32829, "\u00cf\u0126": 32830, "\u0120Beau": 32831, "shaw": - 32832, "Hack": 32833, "\u0120Julius": 32834, "USS": 32835, "olson": 32836, - "auna": 32837, "cru": 32838, "\u0120Maurice": 32839, "\u0120Ik": 32840, "\u0120sequencing": - 32841, "\u0120radicals": 32842, "\u0120(?,": 32843, "virtual": 32844, "\u0120anyways": - 32845, "\u0120reperc": 32846, "\u0120handlers": 32847, "\u0120hesitant": 32848, - "\u00e9\u0125": 32849, "\u0120MF": 32850, "plementation": 32851, "associated": - 32852, "\u0120campaigned": 32853, "\u0120Yue": 32854, "utations": 32855, "\u0120Yoga": - 32856, "\u0120simmer": 32857, "\u0120rods": 32858, "\u0120melody": 32859, - "\u0120convoy": 32860, "videos": 32861, "\u0120screened": 32862, "Neg": 32863, - "ochemical": 32864, "\u0120())": 32865, "\u0120ultras": 32866, "\u0120antip": - 32867, "\u0120Islanders": 32868, "704": 32869, "\u0120fetish": 32870, "\u0120ridiculously": - 32871, "\u0120Kart": 32872, "\u0120mitochondrial": 32873, "\u0120interfering": - 32874, "Builder": 32875, "\u0120overfl": 32876, "\u0120acne": 32877, "\u0120Mud": - 32878, "\u0120Kerr": 32879, "flex": 32880, "\u0120Postal": 32881, "\u0120Baltic": - 32882, "477": 32883, "\u0120Persons": 32884, "ourage": 32885, "HB": 32886, - "\u0120Muse": 32887, "\u0120Immortal": 32888, "\u0120Driving": 32889, "\u0120petitions": - 32890, "\u0120subscript": 32891, "\u0120sorce": 32892, "\u0120Processor": - 32893, "uton": 32894, "Sony": 32895, "\u0120phon": 32896, "\u0120raced": 32897, - "\u0120Anthrop": 32898, "\u0120daytime": 32899, "\u0120Exercise": 32900, "Adding": - 32901, "\u0120engages": 32902, "\u0120Qualcomm": 32903, "\u0120miracles": - 32904, "\u0120memes": 32905, "\u0120Drink": 32906, "\u0120Orioles": 32907, - "\u0120hairs": 32908, "\u0120Polar": 32909, "athom": 32910, "\u0120slippery": - 32911, "\u0120Remy": 32912, "\u0120caramel": 32913, "\u0120YEAR": 32914, "\u0120alk": - 32915, "Ign": 32916, "aution": 32917, "\u0120Merlin": 32918, "\u0120Cran": - 32919, "\u0120apologies": 32920, "\u0120410": 32921, "\u0120outing": 32922, - "\u0120Memories": 32923, "appointed": 32924, "\u0120countered": 32925, "uld": - 32926, "posing": 32927, "\u0120firewall": 32928, "\u0120Wast": 32929, "\u0120Wet": - 32930, "worked": 32931, "seller": 32932, "\u0120repealed": 32933, "ereo": - 32934, "assuming": 32935, "BLIC": 32936, "mite": 32937, "\u0120CEOs": 32938, - "\u0120Chapel": 32939, "elligent": 32940, "________________________": 32941, - "Dog": 32942, "\u0120wart": 32943, "\u0120subscriber": 32944, "sports": 32945, - "\u0120begged": 32946, "\u0120MV": 32947, "\u0120semif": 32948, "ethical": - 32949, "\u0120preach": 32950, "\u0120revital": 32951, "\u0120punitive": 32952, - "\u0120shortcuts": 32953, "\u0120instituted": 32954, "\u0120Warsaw": 32955, - "\u0120abdomen": 32956, "\u0120KING": 32957, "\u0120superintendent": 32958, - "\u0120fry": 32959, "\u0120Geo": 32960, "TOR": 32961, "\u0120contradictions": - 32962, "aptic": 32963, "\u0120landscapes": 32964, "bugs": 32965, "\u0120clust": - 32966, "\u0120volley": 32967, "cribed": 32968, "\u0120tandem": 32969, "\u0120robes": - 32970, "WHAT": 32971, "\u0120promoter": 32972, "\u0120eloqu": 32973, "reviewed": - 32974, "\u0120DK": 32975, "\u0120Plato": 32976, "\u0120fps": 32977, "Tank": - 32978, "\u0120Derrick": 32979, "\u0120prioritize": 32980, "asper": 32981, - "\u0120Honduras": 32982, "\u0120Completed": 32983, "nec": 32984, "\u0120mog": - 32985, "nir": 32986, "\u0120Mayo": 32987, "DEF": 32988, "stall": 32989, "inness": - 32990, "\u0120Volkswagen": 32991, "\u0120precaution": 32992, "\u0120Mell": - 32993, "iak": 32994, "istries": 32995, "\u0120248": 32996, "\u0120overlapping": - 32997, "Senate": 32998, "\u0120Enhance": 32999, "resy": 33000, "racial": 33001, - "ORTS": 33002, "\u0120Mormons": 33003, "Strong": 33004, "\u0120Coch": 33005, - "Mexico": 33006, "\u0120Maduro": 33007, "\u0120jars": 33008, "\u0120cane": - 33009, "Wik": 33010, "olla": 33011, "ifference": 33012, "\u0120physicist": - 33013, "\u0120Maggie": 33014, "\u0120285": 33015, "\u0120depiction": 33016, - "\u0120McLaren": 33017, "Ju": 33018, "\u0120slows": 33019, "\u0120commissioners": - 33020, "\u0120Willow": 33021, "\u0120Explos": 33022, "hovah": 33023, "\u0120technician": - 33024, "\u0120homicides": 33025, "\u0120Flav": 33026, "\u0120Truman": 33027, - "\u012010000": 33028, "uctor": 33029, "\u0120shader": 33030, "Newsletter": - 33031, "457": 33032, "\u0120rever": 33033, "\u0120hardened": 33034, "\u0120whereabouts": - 33035, "\u0120redevelop": 33036, "\u0120carbs": 33037, "\u0120travers": 33038, - "\u0120squirrel": 33039, "\u0120follower": 33040, "\u0120sings": 33041, "508": - 33042, "\u0120rabbits": 33043, "emonium": 33044, "\u0120documenting": 33045, - "\u0120misunderstood": 33046, ")''": 33047, "Rick": 33048, "ggies": 33049, - "\u0120premie": 33050, "\u0120skating": 33051, "\u0120passports": 33052, "\u0120fists": - 33053, "ageddon": 33054, "Haw": 33055, "ACP": 33056, "080": 33057, "\u0120Thoughts": - 33058, "\u0120Carlson": 33059, "\u0120priesthood": 33060, "hua": 33061, "\u0120dungeons": - 33062, "\u0120Loans": 33063, "\u0120antis": 33064, "\u0120familiarity": 33065, - "\u0120Sabb": 33066, "opal": 33067, "\u0120Ink": 33068, "strike": 33069, "\u0120cram": - 33070, "\u0120legalized": 33071, "\u0120cuisine": 33072, "\u0120fibre": 33073, - "Travel": 33074, "\u0120Monument": 33075, "ODY": 33076, "ethy": 33077, "\u0120interstate": - 33078, "\u0120PUR": 33079, "emporary": 33080, "\u0120Arabian": 33081, "developed": - 33082, "\u0120saddle": 33083, "\u0120github": 33084, "\u0120Offer": 33085, - "\u0120ISP": 33086, "rolet": 33087, "\u0120SUPER": 33088, "\u0120Denis": 33089, - "\u0120multiplier": 33090, "\u0120stirred": 33091, "Interestingly": 33092, - "\u0120customary": 33093, "\u0120billed": 33094, "hex": 33095, "\u0120multiplied": - 33096, "\u0120flipping": 33097, "\u0120Crosby": 33098, "\u0120fundamentals": - 33099, "iae": 33100, "\u0120Played": 33101, "\u0120Atom": 33102, "amazon": - 33103, "\u0120Flam": 33104, "eez": 33105, "activated": 33106, "\u0120tablespoon": - 33107, "\u0120liberalism": 33108, "\u0120Palin": 33109, "\u0120Patel": 33110, - "Num": 33111, "\u0120TAM": 33112, "\u0120surn": 33113, "\u0120Reloaded": 33114, - "\u0120coined": 33115, "\"],": 33116, "\u0120Clash": 33117, "\u0120Agu": 33118, - "\u0120pragmatic": 33119, "\u0120Activate": 33120, "\u0120802": 33121, "\u0120trailers": - 33122, "\u0120silhou": 33123, "\u0120probes": 33124, "\u0120circus": 33125, - "\u0120Bain": 33126, "\u0120Lindsay": 33127, "\u0120Abbey": 33128, "Delivery": - 33129, "\u0120concession": 33130, "\u0120gastro": 33131, "\u0120Sprite": 33132, - "\u00c4\u0141": 33133, "andel": 33134, "\u0120gimm": 33135, "\u0120autobi": - 33136, "\u0120Turtle": 33137, "\u0120wonderfully": 33138, "\u0120Haram": 33139, - "\u0120Worldwide": 33140, "\u0120Handle": 33141, "\u0120theorists": 33142, - "\u0120sleek": 33143, "\u0120Zhu": 33144, "ographically": 33145, "EGA": 33146, - "\u0120Owners": 33147, "aths": 33148, "\u0120Antarctic": 33149, "natal": 33150, - "=\"\"": 33151, "flags": 33152, "````": 33153, "\u0120sul": 33154, "Kh": 33155, - "\u0120potassium": 33156, "\u0120lineman": 33157, "\u0120cereal": 33158, "\u0120Seasons": - 33159, "\u01202022": 33160, "\u0120mathematic": 33161, "\u0120astronomers": - 33162, "professional": 33163, "\u0120fares": 33164, "cknowled": 33165, "\u0120chi": - 33166, "\u0120youngsters": 33167, "\u0120mistakenly": 33168, "\u0120hemisphere": - 33169, "\u0120Divinity": 33170, "rone": 33171, "\u0120\",": 33172, "rings": - 33173, "\u0120attracts": 33174, "vana": 33175, "\u00e5\u00b9": 33176, "CAP": - 33177, "\u0120playlist": 33178, "\u0120porch": 33179, "\u00e3\u0123\u00a3": - 33180, "\u0120incorporates": 33181, "\u0120soak": 33182, "\u0120asserting": - 33183, "\u0120Terrorism": 33184, "\u0120Pablo": 33185, "Ja": 33186, "cester": - 33187, "\u0120fearing": 33188, "\u0120Prayer": 33189, "\u0120escalated": 33190, - "GW": 33191, "\u0120robe": 33192, "\u0120Brighton": 33193, "acists": 33194, - "\u0120Symphony": 33195, "\u0120Dwarf": 33196, "\u0120Parade": 33197, "\u0120Lego": - 33198, "\u0120inexpl": 33199, "\u0120lords": 33200, "leaf": 33201, "RAG": - 33202, "liber": 33203, "\u0120cigars": 33204, "\u0120Jehovah": 33205, "606": - 33206, "WINDOWS": 33207, "\u0120Liberia": 33208, "ebus": 33209, "Heavy": 33210, - "\u0120lubric": 33211, "\u0120RW": 33212, "anguages": 33213, "\u0120narrowed": - 33214, "computer": 33215, "\u0120Ember": 33216, "\u0120murdering": 33217, - "\u0120downstream": 33218, "\u0120Tuls": 33219, "\u0120Tables": 33220, "Topic": - 33221, "\u0120Accuracy": 33222, "=/": 33223, "lost": 33224, "\u0120Rei": 33225, - "\u0120progresses": 33226, "bear": 33227, "\u0120establishments": 33228, "Justin": - 33229, "\u0120Peach": 33230, "\u0120Gomez": 33231, "\u00e5\u00bf": 33232, - "\u0120Triangle": 33233, "Ident": 33234, "\u0120Hive": 33235, "Resources": - 33236, "\u0120mixes": 33237, "\u0120Assuming": 33238, "Mu": 33239, "\u0120hypoc": - 33240, "\u0120sane": 33241, "\u0120Wan": 33242, "idious": 33243, "Success": - 33244, "\u0120io": 33245, "Angel": 33246, "\u0120dangerously": 33247, "\u0120Creature": - 33248, "WORK": 33249, ":[": 33250, "\u0120Katrina": 33251, "Listener": 33252, - "Miller": 33253, "\u0120Idlib": 33254, "hang": 33255, "\u0120circumvent": - 33256, "href": 33257, "\u0120celestial": 33258, "\u0120Weeks": 33259, "\u0120Pug": - 33260, "\u0120Dalton": 33261, "\u0120subpoena": 33262, "uku": 33263, "\u0120persisted": - 33264, "pei": 33265, "olding": 33266, "\u0120Documents": 33267, "\u0120Hast": - 33268, "\u0120CENT": 33269, "\u0120primer": 33270, "\u0120synonymous": 33271, - "\u0120nib": 33272, "ombs": 33273, "\u0120notation": 33274, "\u0120Dish": - 33275, "\u0120Atmosp": 33276, "\u0120forbid": 33277, "\u0120ANG": 33278, "pattern": - 33279, "los": 33280, "\u0120projectiles": 33281, "brown": 33282, ".\",": 33283, - "\u0120Venom": 33284, "\u0120fiercely": 33285, "ublished": 33286, "\u0120Uran": - 33287, "\u0120Nicarag": 33288, "410": 33289, "\u0120CAL": 33290, "OTOS": 33291, - "\u0120Miracle": 33292, "\u0120Enchant": 33293, "\u0120guarding": 33294, "append": - 33295, "Attach": 33296, "\u0120leveled": 33297, "\u0120condoms": 33298, "ihilation": - 33299, "649": 33300, "\u0120nightmares": 33301, "\u0120THEY": 33302, "\u0120START": - 33303, "\u0120Kinn": 33304, "\u0120roommate": 33305, "\u0120hygiene": 33306, - "opping": 33307, "Job": 33308, "\u0120lvl": 33309, "\u0120VER": 33310, "\u0120Keeping": - 33311, "abetic": 33312, "\u0120formatting": 33313, "erala": 33314, "\u0120revisions": - 33315, "\u0120resurg": 33316, "Tel": 33317, "\u0120Goodman": 33318, "353": - 33319, "pod": 33320, "\u0120indisp": 33321, "\u0120Translation": 33322, "\u0120gown": - 33323, "\u0120Mund": 33324, "\u0120cis": 33325, "\u0120bystand": 33326, "collect": - 33327, "\u0120Punjab": 33328, "actively": 33329, "\u0120Gamb": 33330, "tell": - 33331, "\u0120importing": 33332, "gencies": 33333, "\u0120locom": 33334, "\u0120Brill": - 33335, "Holy": 33336, "\u0120Berger": 33337, "\u0120showdown": 33338, "\u0120responders": - 33339, "ILY": 33340, "\u0120takedown": 33341, "leted": 33342, "\u0120mattered": - 33343, "\u0120predictive": 33344, "\u0120overlay": 33345, "GPU": 33346, "\u0120Vick": - 33347, "\u0120conveyed": 33348, "Tab": 33349, "peer": 33350, "Scan": 33351, - "\u0120defensively": 33352, "vae": 33353, "\u0120approving": 33354, "\u0120tiers": - 33355, "\u0120Via": 33356, "querade": 33357, "\u0120Saudis": 33358, "\u0120demolished": - 33359, "\u0120Prophe": 33360, "\u0120mono": 33361, "\u0120hospitality": 33362, - "HAM": 33363, "\u0120Ariel": 33364, "MOD": 33365, "\u0120Torah": 33366, "\u0120blah": - 33367, "\u0120Belarus": 33368, "erential": 33369, "\u0120Tuc": 33370, "\u0120banker": - 33371, "397": 33372, "\u0120mosquit": 33373, "\u0120Scientist": 33374, "\u0120Musical": - 33375, "\u0120hust": 33376, "Shift": 33377, "\u0120torment": 33378, "\u0120standoff": - 33379, "Educ": 33380, "\u0120Fog": 33381, "\u0120amplifier": 33382, "Shape": - 33383, "Instance": 33384, "\u0120Critics": 33385, "\u0120daemon": 33386, "Houston": - 33387, "\u0120mattress": 33388, "\u0120IDF": 33389, "\u0120obscene": 33390, - "\u0120Amer": 33391, "hetti": 33392, "\u0120compiling": 33393, "352": 33394, - "verett": 33395, "\u0120Reduction": 33396, "istration": 33397, "\u0120Blessed": - 33398, "\u0120Bachelor": 33399, "316": 33400, "\u0120prank": 33401, "\u0120Vulcan": - 33402, "dding": 33403, "\u0120mourning": 33404, "\u0120Quint": 33405, "\u0120Blaster": - 33406, "testing": 33407, "\u0120sediment": 33408, ">>>": 33409, "\u0120Eternity": - 33410, "\u0120WHERE": 33411, "\u0120Maze": 33412, "\u0120reacting": 33413, - "\u0120Alv": 33414, "omsday": 33415, "\u0120CRA": 33416, "\u0120translator": - 33417, "\u0120bogus": 33418, "atu": 33419, "Website": 33420, "olls": 33421, - "\u0120baptism": 33422, "\u0120sibling": 33423, "\u0120Autumn": 33424, "vez": - 33425, "\u00e3\u0123\u00ae\u00e9": 33426, "guards": 33427, "Georg": 33428, - "assadors": 33429, "\u0120Freud": 33430, "\u0120continents": 33431, "\u0120Registry": - 33432, "Bernie": 33433, "\u0138\u013c\u00e5\u00a3\u00ab": 33434, "\u0120tolerant": - 33435, "\u0120UW": 33436, "\u0120horribly": 33437, "995": 33438, "\u0120MIDI": - 33439, "\u0120impatient": 33440, "ocado": 33441, "eri": 33442, "\u0120Worst": - 33443, "\u0120Norris": 33444, "\u0120Talking": 33445, "\u0120defends": 33446, - "ensable": 33447, "\u01202021": 33448, "\u0120anatomy": 33449, "Lew": 33450, - "\u0120drawer": 33451, "\u0120Canberra": 33452, "\u0120patriotic": 33453, - "\u00e9\u00be\u012f\u00e5\u0138\u013c\u00e5\u00a3\u00ab": 33454, "\u0120Avg": - 33455, "ARM": 33456, "\u0120undisclosed": 33457, "\u0120farewell": 33458, - "459": 33459, "bable": 33460, "\u0120Allison": 33461, "OLOG": 33462, "\u0120conco": - 33463, "tight": 33464, "\u0120ACPI": 33465, "\u0120Mines": 33466, "lich": - 33467, "\u0120\u00e2\u0136\u013e": 33468, "represented": 33469, "200000": - 33470, "\u0120enthusiast": 33471, "OTS": 33472, "bil": 33473, "\u0120Ingredients": - 33474, "\u0120inventor": 33475, "\u0120MySQL": 33476, "\u00c2\u0142\u00c2\u0142\u00c2\u0142": - 33477, "\u0120ABOUT": 33478, "within": 33479, "\u0120mk": 33480, "Bul": 33481, - "\u0120Fake": 33482, "\u0120draconian": 33483, "Wa": 33484, "helm": 33485, - "\u0120Terran": 33486, "erville": 33487, "\u0120commonplace": 33488, "SIZE": - 33489, "\u0120\"<": 33490, "replace": 33491, "ographs": 33492, "\u0120SELECT": - 33493, "incible": 33494, "\u0120Mostly": 33495, "\u0120Sheffield": 33496, - "\u0120IDE": 33497, "uggle": 33498, "\u0120citations": 33499, "hurst": 33500, - "\u0120Unix": 33501, "\u0120unleash": 33502, "\u0120Piper": 33503, "\u0120Nano": - 33504, "\u0120succumb": 33505, "\u0120reluctance": 33506, "\u01202500": 33507, - "\u0120Merchant": 33508, "\u0120wiret": 33509, "\u0120combos": 33510, "\u0120Birthday": - 33511, "\u0120charcoal": 33512, "\u0120UPS": 33513, "\u0120Fairfax": 33514, - "\u0120driveway": 33515, "\u0120Tek": 33516, "\u0120Pitch": 33517, "overe": - 33518, "\u0120technicians": 33519, "\u0120Actual": 33520, "flation": 33521, - "\u0120Fiscal": 33522, "\u0120Empty": 33523, "anamo": 33524, "\u0120magnesium": - 33525, "\u0120slut": 33526, "\u0120growers": 33527, "Investigators": 33528, - "():": 33529, "\u0120Satellite": 33530, "\u0120Keynes": 33531, "missive": - 33532, "lane": 33533, "\u0120borough": 33534, "344": 33535, "\u0120TEAM": - 33536, "\u0120Bethesda": 33537, "CV": 33538, "hower": 33539, "\u0120RAD": - 33540, "\u0120chant": 33541, "\u0120Riy": 33542, "\u0120compositions": 33543, - "\u0120mildly": 33544, "\u0120meddling": 33545, "\u0120agility": 33546, "aneers": - 33547, "501": 33548, "\u0120synth": 33549, "linger": 33550, "291": 33551, - "\u0120exclaimed": 33552, "Party": 33553, "\u0120contamin": 33554, "\u0120Manor": - 33555, "\u0120Respond": 33556, "\u0120praising": 33557, "\u0120manners": 33558, - "fleet": 33559, "Summer": 33560, "\u0120Lynd": 33561, "\u0120Definitely": - 33562, "grim": 33563, "\u0120bowling": 33564, "stri": 33565, "\u00e7\u013d": - 33566, "ynt": 33567, "\u0120mandates": 33568, "DIV": 33569, "\u0120reconcile": - 33570, "views": 33571, "\u0120Damon": 33572, "vette": 33573, "Flo": 33574, - "\u0120Greatest": 33575, "ilon": 33576, "icia": 33577, "\u0120portrayal": - 33578, "\u0120cushion": 33579, "504": 33580, "1979": 33581, "ossal": 33582, - "Applic": 33583, "scription": 33584, "\u0120mitigation": 33585, "ATS": 33586, - "pac": 33587, "\u0120erased": 33588, "\u0120deficiencies": 33589, "\u0120Hollande": - 33590, "\u0120Xu": 33591, "\u0120bred": 33592, "\u0120pregnancies": 33593, - "femin": 33594, "\u0120emph": 33595, "\u0120planners": 33596, "\u0120outper": - 33597, "uttering": 33598, "\u0120perpetrator": 33599, "\u0120motto": 33600, - "\u0120Ellison": 33601, "\u0120NEVER": 33602, "\u0120admittedly": 33603, "ARI": - 33604, "\u0120Azerbaijan": 33605, "\u0120millisec": 33606, "\u0120combustion": - 33607, "\u0120Bottle": 33608, "\u0120Lund": 33609, "\u0120Ps": 33610, "\u0120Dress": - 33611, "\u0120fabricated": 33612, "\u0120battered": 33613, "\u0120sidel": - 33614, "\u0120Notting": 33615, "Foreign": 33616, "\u0120Jerome": 33617, "020": - 33618, "\u0120Arbit": 33619, "\u0120knots": 33620, "\u0120RIGHT": 33621, "Moving": - 33622, "\u00e3\u0123\u013b": 33623, "\u0120surgeries": 33624, "\u0120courthouse": - 33625, "\u0120mastered": 33626, "\u0120hovering": 33627, "\u0120Bran": 33628, - "\u0120Alison": 33629, "\u0120safest": 33630, "military": 33631, "\u0120bullied": - 33632, "\u0120barrage": 33633, "Reader": 33634, "ESE": 33635, "\u0120Geographic": - 33636, "Tools": 33637, "314": 33638, "\u0120Geek": 33639, "roth": 33640, "glers": - 33641, "\u0120FIN": 33642, "\u00cf\u0123": 33643, "\u0120Aston": 33644, "altern": - 33645, "488": 33646, "\u0120veterin": 33647, "Gamer": 33648, "\u0120intel": - 33649, "renches": 33650, "Shield": 33651, "\u0120amnesty": 33652, "\u0120Bhar": - 33653, "\u0120piled": 33654, "\u0120honorable": 33655, "\u0120Institutes": - 33656, "\u0120soaked": 33657, "\u0120coma": 33658, "\u0120EFF": 33659, "341": - 33660, "bytes": 33661, "\u0120Gmail": 33662, "lein": 33663, "\u0120Canadiens": - 33664, "material": 33665, "Il": 33666, "\u0120instructors": 33667, "\u0120KY": - 33668, "\u0120conceive": 33669, "ubb": 33670, "\u0120Possible": 33671, "\u0120easing": - 33672, "\u0120Christina": 33673, "\u0120caric": 33674, "\u0120HDR": 33675, - "ROM": 33676, "\u0120shovel": 33677, "delete": 33678, "\u0120puff": 33679, - "\u0120Changing": 33680, "\u0120seamlessly": 33681, "Attribute": 33682, "\u0120acquisitions": - 33683, "akery": 33684, "\u0120EF": 33685, "\u0120autistic": 33686, "\u0120Takes": - 33687, "\u0120Powder": 33688, "\u0120Stir": 33689, "510": 33690, "\u0120Bubble": - 33691, "settings": 33692, "\u0120Fowler": 33693, "\u0120mustard": 33694, "\u0120moreover": - 33695, "\u0120copyrighted": 33696, "\u0120LEDs": 33697, "1500": 33698, "\u00e6\u012b": - 33699, "\u0120HIS": 33700, "enf": 33701, "\u0120custod": 33702, "\u0120Huck": - 33703, "Gi": 33704, "\u0120img": 33705, "Answer": 33706, "Ct": 33707, "jay": - 33708, "\u0120Infrastructure": 33709, "\u0120federally": 33710, "Loc": 33711, - "\u0120microbes": 33712, "\u0120overrun": 33713, "dds": 33714, "otent": 33715, - "adiator": 33716, ">>>>>>>>": 33717, "\u0120tornado": 33718, "\u0120adjud": - 33719, "\u0120intrigued": 33720, "\u0120si": 33721, "\u0120Revelation": 33722, - "progress": 33723, "\u0120burglary": 33724, "\u0120Saiyan": 33725, "\u0120Kathy": - 33726, "\u0120serpent": 33727, "\u0120Andreas": 33728, "\u0120compel": 33729, - "essler": 33730, "\u0120Plastic": 33731, "\u0120Advent": 33732, "\u0120Positive": - 33733, "\u0120Qt": 33734, "\u0120Hindus": 33735, "registered": 33736, "ularity": - 33737, "\u0120righteousness": 33738, "\u0120demonic": 33739, "uitive": 33740, - "\u0120BDS": 33741, "\u0120Gregg": 33742, "cia": 33743, "\u0120Crusade": 33744, - "\u0120Sinai": 33745, "WARE": 33746, "+(": 33747, "\u0120mell": 33748, "\u0120derail": - 33749, "yards": 33750, "Ast": 33751, "\u0120noticeably": 33752, "\u0120Ober": - 33753, "Ram": 33754, "\u0120unnoticed": 33755, "\u0120seq": 33756, "avage": - 33757, "Ts": 33758, "\u0120640": 33759, "\u0120concede": 33760, "\u0120])": - 33761, "Fill": 33762, "\u0120captivity": 33763, "\u0120Improvement": 33764, - "\u0120Crusader": 33765, "araoh": 33766, "MAP": 33767, "\u00e6\u0139": 33768, - "\u0120stride": 33769, "always": 33770, "Fly": 33771, "Nit": 33772, "\u0120algae": - 33773, "\u0120Cooking": 33774, "\u0120Doors": 33775, "Malley": 33776, "\u0120policemen": - 33777, "\u00e3\u0123\u012f": 33778, "\u0120astronaut": 33779, "accessible": - 33780, "495": 33781, "\u0120RAW": 33782, "cliffe": 33783, "udicrous": 33784, - "\u0120depended": 33785, "alach": 33786, "\u0120ventures": 33787, "rake": - 33788, "\u0120tits": 33789, "\u0120Hou": 33790, "\u0120condom": 33791, "ormonal": - 33792, "\u0120indent": 33793, "\u0120uploading": 33794, "Footnote": 33795, - "Important": 33796, "\u0120271": 33797, "\u0120mindful": 33798, "\u0120contends": - 33799, "Cra": 33800, "\u0120calibr": 33801, "\u0120OECD": 33802, "plugin": - 33803, "Fat": 33804, "\u0120ISS": 33805, "\u0120Dynamics": 33806, "ansen": - 33807, "686": 33808, "''),": 33809, "\u0120sprite": 33810, "\u0120handheld": - 33811, "\u0120Hipp": 33812, "=~=~": 33813, "Trust": 33814, "\u0120semantics": - 33815, "\u0120Bundes": 33816, "\u0120Reno": 33817, "\u0120Literature": 33818, - "sense": 33819, "Gary": 33820, "\u0120Aeg": 33821, "\u0120Trin": 33822, "EEK": - 33823, "\u0120cleric": 33824, "\u0120SSH": 33825, "\u0120christ": 33826, "\u0120invading": - 33827, "ibu": 33828, "\u0120enum": 33829, "aura": 33830, "\u0120allege": 33831, - "\u0120Incredible": 33832, "BBC": 33833, "\u0120thru": 33834, "\u0120sailed": - 33835, "\u0120emulate": 33836, "\u0120insecurity": 33837, "\u0120crou": 33838, - "\u0120accommodations": 33839, "\u0120incompetent": 33840, "\u0120slips": - 33841, "\u0120Earthqu": 33842, "sama": 33843, "ILLE": 33844, "\u0120iPhones": - 33845, "asaki": 33846, "\u0120bye": 33847, "\u0120ard": 33848, "\u0120extras": - 33849, "\u0120slaughtered": 33850, "\u0120crowdfunding": 33851, "resso": 33852, - "\u0120filib": 33853, "\u0120ERROR": 33854, "\u0120TLS": 33855, "egg": 33856, - "\u0120Ital": 33857, "\u0120enlist": 33858, "\u0120Catalonia": 33859, "\u0120Scots": - 33860, "\u0120sergeant": 33861, "\u0120dissolve": 33862, "NH": 33863, "\u0120standings": - 33864, "rique": 33865, "IQ": 33866, "\u0120beneficiary": 33867, "\u0120aquarium": - 33868, "YouTube": 33869, "\u0120PowerShell": 33870, "\u0120brightest": 33871, - "\u0120Warrant": 33872, "Sold": 33873, "Writing": 33874, "\u0120beginnings": - 33875, "\u0120Reserved": 33876, "\u0120Latinos": 33877, "heading": 33878, - "\u0120440": 33879, "\u0120rooftop": 33880, "ATING": 33881, "\u0120390": 33882, - "VPN": 33883, "Gs": 33884, "kernel": 33885, "turned": 33886, "\u0120preferable": - 33887, "\u0120turnovers": 33888, "\u0120Hels": 33889, "Sa": 33890, "\u0120Shinji": - 33891, "veh": 33892, "\u0120MODULE": 33893, "Viol": 33894, "\u0120exiting": - 33895, "\u0120jab": 33896, "\u0120Vanilla": 33897, "\u0120acron": 33898, "\u0120Gap": - 33899, "bern": 33900, "Ak": 33901, "\u0120McGu": 33902, "\u0120endlessly": - 33903, "\u0120Farage": 33904, "\u0120Noel": 33905, "Va": 33906, "MK": 33907, - "\u0120brute": 33908, "\u0120Kru": 33909, "\u0120ESV": 33910, "\u0120Olivia": - 33911, "\u00e2\u0122\u0142": 33912, "\u0120Kaf": 33913, "\u0120trusting": - 33914, "\u0120hots": 33915, "324": 33916, "\u0120malaria": 33917, "\u0120json": - 33918, "\u0120pounding": 33919, "ortment": 33920, "Country": 33921, "\u0120postponed": - 33922, "\u0120unequiv": 33923, "?),": 33924, "\u0120Rooney": 33925, "udding": - 33926, "\u0120Leap": 33927, "urrence": 33928, "shapeshifter": 33929, "\u0120HAS": - 33930, "osate": 33931, "\u0120cavern": 33932, "\u0120conservatism": 33933, - "\u0120BAD": 33934, "\u0120mileage": 33935, "\u0120arresting": 33936, "Vaults": - 33937, "\u0120mixer": 33938, "Democratic": 33939, "\u0120Benson": 33940, "\u0120authored": - 33941, "8000": 33942, "\u0120proactive": 33943, "\u0120Spiritual": 33944, - "tre": 33945, "\u0120incarcerated": 33946, "\u0120Sort": 33947, "\u0120peaked": - 33948, "\u0120wielding": 33949, "reciation": 33950, "\u00d7\u013b\u00d7": - 33951, "Patch": 33952, "\u0120Emmy": 33953, "\u0120exqu": 33954, "tto": 33955, - "\u0120Ratio": 33956, "\u0120Picks": 33957, "\u0120Gry": 33958, "phant": 33959, - "\u0120fret": 33960, "\u0120ethn": 33961, "\u0120archived": 33962, "%-": 33963, - "cases": 33964, "\u0120Blaze": 33965, "\u0120imb": 33966, "cv": 33967, "yss": - 33968, "imony": 33969, "\u0120countdown": 33970, "\u0120awakening": 33971, - "\u0120Tunisia": 33972, "\u0120Refer": 33973, "\u0120MJ": 33974, "\u0120unnatural": - 33975, "\u0120Carnegie": 33976, "izen": 33977, "\u0120Nuggets": 33978, "hess": - 33979, "\u0120evils": 33980, "647": 33981, "\u0120introductory": 33982, "loving": - 33983, "\u0120McMahon": 33984, "\u0120ambiguity": 33985, "Label": 33986, "\u0120Almighty": - 33987, "\u0120coloring": 33988, "\u0120Claus": 33989, "setting": 33990, "NULL": - 33991, "\u0120Favorite": 33992, "\u0120SIG": 33993, ">(": 33994, "\u0120Shiva": - 33995, "\u0120Mayer": 33996, "\u0120stormed": 33997, "\u0120Coverage": 33998, - "weapons": 33999, "igham": 34000, "\u0120unanswered": 34001, "\u0120leve": - 34002, "\u0120coy": 34003, "cas": 34004, "bags": 34005, "asured": 34006, "Seattle": - 34007, "\u0120Santorum": 34008, "serious": 34009, "\u0120courageous": 34010, - "\u0120Soup": 34011, "\u0120confiscated": 34012, "\u0120///": 34013, "\u0120unconventional": - 34014, "\u0120moms": 34015, "\u0120Rohingya": 34016, "\u0120Orchestra": 34017, - "\u0120Potion": 34018, "\u0120discredit": 34019, "\u0120FIL": 34020, "fixed": - 34021, "\u0120Deer": 34022, "doi": 34023, "\u0120Dimension": 34024, "\u0120bureaucrats": - 34025, "eteen": 34026, "\u0120actionGroup": 34027, "ohm": 34028, "\u0120bumps": - 34029, "\u0120Utility": 34030, "\u0120submarines": 34031, "renheit": 34032, - "research": 34033, "\u0120Shapiro": 34034, "\u0120sketches": 34035, "\u0120deceptive": - 34036, "\u0120Vil": 34037, "esame": 34038, "\u0120Essentially": 34039, "\u0120rampage": - 34040, "isky": 34041, "\u0120muttered": 34042, "thritis": 34043, "\u0120236": - 34044, "fet": 34045, "bars": 34046, "\u0120pupil": 34047, "\u0120Thou": 34048, - "oS": 34049, "song": 34050, "\u0120fractured": 34051, "\u0120revert": 34052, - "picture": 34053, "\u0120criterion": 34054, "usher": 34055, "\u0120repercussions": - 34056, "\u0120Vintage": 34057, "\u0120Superintendent": 34058, "Officers": - 34059, "\u0120flagged": 34060, "\u0120blames": 34061, "\u0120inverse": 34062, - "ographers": 34063, "\u0120makeshift": 34064, "\u0120devoid": 34065, "\u0120fossils": - 34066, "\u0120Aristotle": 34067, "\u0120Funds": 34068, "\u0120depleted": 34069, - "\u0120Flu": 34070, "\u0120Yuan": 34071, "\u0120woes": 34072, "\u0120lipid": - 34073, "\u0120situ": 34074, "requisites": 34075, "\u0120furnish": 34076, "\u0120Samar": - 34077, "\u0120shameful": 34078, "\u0120adversely": 34079, "\u0120adept": 34080, - "\u0120remorse": 34081, "\u0120murderous": 34082, "uckles": 34083, "\u0120ESL": - 34084, "\u0120314": 34085, "sent": 34086, "\u0120redef": 34087, "\u0120Cache": - 34088, "\u0120Purs": 34089, "igans": 34090, "\u0120460": 34091, "\u0120prescriptions": - 34092, "\u0120fres": 34093, "Fuck": 34094, "ocrates": 34095, "Twenty": 34096, - "\u0120Weird": 34097, "\u0120Toggle": 34098, "\u0120Called": 34099, "itizens": - 34100, "\u0120poultry": 34101, "\u0120harvesting": 34102, "\u00e3\u0124\u00a6\u00e3\u0124\u00b9": - 34103, "Bottom": 34104, "\u0120cautioned": 34105, "tn": 34106, "396": 34107, - "\u0120Nikki": 34108, "\u0120evaluations": 34109, "\u0120harassing": 34110, - "\u0120bindings": 34111, "\u0120Monetary": 34112, "\u0120hitters": 34113, - "\u0120adversary": 34114, "unts": 34115, "\u0120setback": 34116, "\u0120encrypt": - 34117, "\u0120Cait": 34118, "\u0120lows": 34119, "enges": 34120, "\u0120Norn": - 34121, "\u0120bulbs": 34122, "\u0120bottled": 34123, "\u0120Voyager": 34124, - "317": 34125, "\u0120spheres": 34126, "politics": 34127, "\u0120subtract": - 34128, "\u0120sensations": 34129, "\u0120appalling": 34130, "\u0120316": 34131, - "\u0120environmentally": 34132, "\u0120STEM": 34133, "\u0120publishes": 34134, - "560": 34135, "\u0120diligence": 34136, "484": 34137, "\u0120advises": 34138, - "\u0120petrol": 34139, "\u0120imagining": 34140, "\u0120patrols": 34141, "\u0120Integer": - 34142, "\u0120Ashes": 34143, "actus": 34144, "\u0120Radiant": 34145, "\u0120LT": - 34146, "itability": 34147, "htaking": 34148, "Setting": 34149, "\u0120nuanced": - 34150, "\u0120Reef": 34151, "\u0120Developers": 34152, "Ni": 34153, "pieces": - 34154, "990": 34155, "License": 34156, "\u0120lowers": 34157, "\u0120Ottoman": - 34158, "327": 34159, "ooo": 34160, "\u0120quitting": 34161, "markets": 34162, - "Behind": 34163, "\u0120basin": 34164, "\u0120docs": 34165, "anie": 34166, - "flash": 34167, "ctl": 34168, "\u0120civilized": 34169, "\u0120Fukushima": - 34170, "\"],\"": 34171, "\u0120KS": 34172, "\u0120Honestly": 34173, "arat": - 34174, "\u0120constructs": 34175, "\u0120Lans": 34176, "\u0120Dire": 34177, - "\u0120LIKE": 34178, "\u0120Trouble": 34179, "\u0120withholding": 34180, "\u0120Oblivion": - 34181, "\u0120sanity": 34182, "anya": 34183, "Const": 34184, "\u0120grocer": - 34185, "\u0120Celsius": 34186, "\u0120recounted": 34187, "\u0120Wife": 34188, - "Border": 34189, "atered": 34190, "happy": 34191, "\u0120spoiler": 34192, - "\u0120logically": 34193, "Hall": 34194, "\u0120succeeding": 34195, "\u0120polymorph": - 34196, "\u0120axes": 34197, "\u0120Shotgun": 34198, "\u0120Slim": 34199, "\u0120Principles": - 34200, "\u0120Leth": 34201, "arta": 34202, "\u0120scor": 34203, "Screenshot": - 34204, "\u0120relaxation": 34205, "#$#$": 34206, "\u0120deterrent": 34207, - "iddy": 34208, "\u0120powerless": 34209, "\u0120lesbians": 34210, "\u0120chords": - 34211, "\u0120Edited": 34212, "selected": 34213, "\u0120separatists": 34214, - "0002": 34215, "\u0120airspace": 34216, "\u0120turnaround": 34217, "\u0120cunning": - 34218, "PATH": 34219, "Poly": 34220, "\u0120bombed": 34221, "\u0120tion": - 34222, "xs": 34223, "\u0120withhold": 34224, "\u0120waged": 34225, "\u0120Liberties": - 34226, "Flag": 34227, "\u0120comforting": 34228, "454": 34229, "\u0120Iris": - 34230, "arers": 34231, "\u0120rag": 34232, "\u0120relocated": 34233, "\u0120Guarant": - 34234, "\u0120strategically": 34235, "\u0120gamma": 34236, "uberty": 34237, - "\u0120Lockheed": 34238, "gres": 34239, "\u0120grilled": 34240, "\u0120Lowe": - 34241, "stats": 34242, "\u0120Rocks": 34243, "\u0120sensing": 34244, "\u0120renting": - 34245, "\u0120Geological": 34246, "\u00d8\u00a7\u00d8": 34247, "otrop": 34248, - "\u0120sew": 34249, "\u0120improperly": 34250, "486": 34251, "\u0120\u00e2\u0138\u0142": - 34252, "\u0120starving": 34253, "\u0120Bj": 34254, "Discussion": 34255, "328": - 34256, "\u0120Combo": 34257, "\u0120Fixes": 34258, "NAT": 34259, "\u0120striving": - 34260, "thora": 34261, "\u0120harvested": 34262, "\u0120Ping": 34263, "\u0120playful": - 34264, "\u0120avenues": 34265, "\u0120occupational": 34266, "\u0120wakes": - 34267, "\u0120Courier": 34268, "\u0120drummer": 34269, "\u0120Browser": 34270, - "\u0120Houth": 34271, "itu": 34272, "\u0120apparel": 34273, "paste": 34274, - "\u0120hunted": 34275, "\u0120Secondly": 34276, "lain": 34277, "XY": 34278, - "\u0120PIN": 34279, "icons": 34280, "\u0120cocktails": 34281, "\u0120sizable": - 34282, "\u0120hurdles": 34283, "estinal": 34284, "\u0120Recreation": 34285, - "\u0120eco": 34286, "648": 34287, "\u0120Died": 34288, "mint": 34289, "\u0120fingerprints": - 34290, "\u0120dispose": 34291, "\u0120Bosnia": 34292, "tsy": 34293, "2200": - 34294, "\u0120inspected": 34295, "\u0120Fou": 34296, "\u0120fuss": 34297, - "\u0120ambush": 34298, "\u0120Rak": 34299, "\u0120manifested": 34300, "Prosecut": - 34301, "\u0120suffice": 34302, "rences": 34303, "\u0120compensated": 34304, - "\u0120Cyrus": 34305, "\u0120genus": 34306, "\u0120Wolverine": 34307, "\u0120Trends": - 34308, "\u0120hikes": 34309, "\u0120Seen": 34310, "\u0120enrol": 34311, "Cold": - 34312, "\u0120politely": 34313, "\u0120Slav": 34314, "\u0120Rupert": 34315, - "\u0120eyewitness": 34316, "\u0120Alto": 34317, "\u0120uncomp": 34318, "\u0120posterior": - 34319, "Must": 34320, "\u0120Herz": 34321, "\u0120progressively": 34322, "\u0120234": - 34323, "\u0120indifference": 34324, "\u0120Cunningham": 34325, "\u0120academia": - 34326, "\u0120sewer": 34327, "\u0120astounding": 34328, "\u0120AES": 34329, - "rather": 34330, "\u0120eldest": 34331, "\u0120climbs": 34332, "\u0120Adds": - 34333, "\u0120outcry": 34334, "\u0120contag": 34335, "\u0120Houses": 34336, - "\u0120pept": 34337, "\u0120Melania": 34338, "interested": 34339, "\u0120UCH": - 34340, "\u0120Roots": 34341, "\u0120Hubbard": 34342, "\u0120TBD": 34343, "\u0120Romanian": - 34344, "filename": 34345, "Stone": 34346, "\u0120Impl": 34347, "\u0120chromosome": - 34348, "Cle": 34349, "dx": 34350, "\u0120scrambled": 34351, "\u0120Pt": 34352, - "\u0120242": 34353, "OPLE": 34354, "\u0120tremendously": 34355, "Street": - 34356, "\u0120craving": 34357, "\u0120bundled": 34358, "\u0120RG": 34359, - "pipe": 34360, "\u0120injuring": 34361, "\u0120arcane": 34362, "Particip": - 34363, "\u0120Heroic": 34364, "sty": 34365, "\u0120topping": 34366, "\u0120Tempest": - 34367, "rentices": 34368, "bh": 34369, "\u0120paranoia": 34370, "\u0120Unicode": - 34371, "\u0120egregious": 34372, "\u0120\\''": 34373, "\u0120Oswald": 34374, - "\u0120gravel": 34375, "\u0120Simpsons": 34376, "\u0120bland": 34377, "\u0120Guantanamo": - 34378, "Writer": 34379, "liners": 34380, "\u0120Dice": 34381, "JC": 34382, - "\u0120parity": 34383, "\u0120sided": 34384, "\u0120237": 34385, "\u0120Pyrrha": - 34386, "atters": 34387, "dk": 34388, "Fine": 34389, "compan": 34390, "\u0120formulated": - 34391, "\u0120Idol": 34392, "ilers": 34393, "hemoth": 34394, "\u0120Fav": - 34395, "\u0120intrusion": 34396, "\u0120carrots": 34397, "\u0120Layer": 34398, - "\u0120Hacker": 34399, "\u0120----------------": 34400, "\u0120moderation": - 34401, "\u00e9\u0123": 34402, "ococ": 34403, "\u0120characterize": 34404, - "\u0120Teresa": 34405, "\u0120socioeconomic": 34406, "\u0120perk": 34407, - "\u0120Participation": 34408, "training": 34409, "\u0120Paulo": 34410, "phys": - 34411, "\u0120trustworthy": 34412, "\u0120embodied": 34413, "\u0120Merch": - 34414, "currency": 34415, "\u0120Priority": 34416, "\u0120teasing": 34417, - "\u0120absorbing": 34418, "\u0120unfinished": 34419, "\u0120Comparison": 34420, - "\u0120disple": 34421, "writers": 34422, "\u0120professions": 34423, "\u0120Penguin": - 34424, "\u0120angrily": 34425, "\u0120LINK": 34426, "688": 34427, "\u0120Correspond": - 34428, "\u0120prevailed": 34429, "\u0120cartel": 34430, "lp": 34431, "asms": - 34432, "\u0120Redemption": 34433, "\u0120Islamists": 34434, "effects": 34435, - "dose": 34436, "\u0120Latter": 34437, "\u0120Halifax": 34438, "\u0120vas": - 34439, "\u0120Topics": 34440, "\u0120Named": 34441, "advertising": 34442, - "zza": 34443, "ICES": 34444, "\u0120retarded": 34445, "achable": 34446, "\u0120Puppet": - 34447, "\u0120ItemLevel": 34448, "\u0120retract": 34449, "\u0120identifiable": - 34450, "Aaron": 34451, "\u0120Buster": 34452, "sol": 34453, "helle": 34454, - "assemb": 34455, "Hope": 34456, "ranged": 34457, "Ba": 34458, "\u0120Purch": - 34459, "\u00e9\u0122": 34460, "\u0120Siri": 34461, "\u0120arrivals": 34462, - "\u01201912": 34463, "\u0120shortened": 34464, "\u0120312": 34465, "\u0120discrepancy": - 34466, "\u0120Temperature": 34467, "\u0120Walton": 34468, "\u0120kinderg": - 34469, "polit": 34470, "\u0120remix": 34471, "\u0120connectors": 34472, "\u00e3\u0125\u013a\u00e3\u0125\u00a9": - 34473, "\u0120Kazakhstan": 34474, "dominated": 34475, "\u0120sugars": 34476, - "imble": 34477, "\u0120Panic": 34478, "\u0120Demand": 34479, "\u0120Colony": - 34480, "onen": 34481, "\u0120MER": 34482, "775": 34483, "uria": 34484, "azaar": - 34485, "\u0120Degree": 34486, "Pri": 34487, "\u0120sunshine": 34488, "\u0120251": - 34489, "\u0120psychedelic": 34490, "\u0120digitally": 34491, "\u0120Braun": - 34492, "\u0120shimmer": 34493, "\u0120shave": 34494, "\u0120Telesc": 34495, - "\u0120Astral": 34496, "\u0120Venezuelan": 34497, "\u0120OG": 34498, "\u0120crawling": - 34499, "Integ": 34500, "\u0120Feather": 34501, "\u0120unfolding": 34502, "\u0120appropriation": - 34503, "\u0120\u00e8\u00a3\u0131\u00e8": 34504, "\u0120Mobility": 34505, "\u0120Ney": - 34506, "-.": 34507, "bilt": 34508, "LIN": 34509, "\u0120Tube": 34510, "\u0120Conversely": - 34511, "\u0120keyboards": 34512, "\u0120Cao": 34513, "\u0120overth": 34514, - "\u0120laure": 34515, ">>\\": 34516, "\u0120Viper": 34517, "acha": 34518, - "Offset": 34519, "\u0120Raleigh": 34520, "\u0120Jae": 34521, "Jordan": 34522, - "jp": 34523, "\u0120totalitarian": 34524, "Connector": 34525, "\u0120observes": - 34526, "\u0120Spartan": 34527, "\u0120Immediately": 34528, "\u0120Scal": 34529, - "Cool": 34530, "\u0120taps": 34531, "\u0120roar": 34532, "Past": 34533, "\u0120chars": - 34534, "\u0120Bender": 34535, "\u0120Sheldon": 34536, "\u0120painter": 34537, - "\u0120beacon": 34538, "\u0120Creatures": 34539, "\u0120downturn": 34540, - "\u0120hinder": 34541, "\u0120Andromeda": 34542, "\u00c3\u013d": 34543, "ccoli": - 34544, "\u0120Fitness": 34545, "etrical": 34546, "\u0120utilizes": 34547, - "\u0120senate": 34548, "\u0120ensemble": 34549, "\u0120cheers": 34550, "TW": - 34551, "\u0120affluent": 34552, "kil": 34553, "rylic": 34554, "ordering": - 34555, "Computer": 34556, "\u0120gruesome": 34557, "ostics": 34558, "\u0120Ubisoft": - 34559, "\u0120Kelley": 34560, "\u0120wrench": 34561, "\u0120bourgeoisie": - 34562, "IBLE": 34563, "\u0120Preston": 34564, "worn": 34565, "arist": 34566, - "reating": 34567, "\u0120stained": 34568, "arine": 34569, "\u0120slime": 34570, - "ENN": 34571, "\u0120chests": 34572, "\u0120groundwater": 34573, "annot": - 34574, "\u0120Tray": 34575, "\u0120Locke": 34576, "\u0120CTR": 34577, "\u0120dudes": - 34578, "\u0120External": 34579, "\u0120Decoder": 34580, "\u0120paramed": 34581, - "\u0120Medline": 34582, "809": 34583, "\u0120Dinner": 34584, "rupal": 34585, - "gz": 34586, "\u0120Gum": 34587, "\u0120Demo": 34588, "jee": 34589, "\u0120dh": - 34590, "berman": 34591, "archs": 34592, "\u0120enqu": 34593, "\u0120Epstein": - 34594, "\u0120devastation": 34595, "\u0120friendships": 34596, "\u0120Ard": - 34597, "\u0120231": 34598, "\u0120Rubin": 34599, "\u0120Distance": 34600, - "\u0120spurred": 34601, "\u0120dossier": 34602, "\u0120overlooking": 34603, - "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\": 34604, "Forest": 34605, "\u0120Comes": - 34606, "\\\",": 34607, "\u0120Iranians": 34608, "\u0120fixtures": 34609, "Laughs": - 34610, "\u0120curry": 34611, "\u0120Kingston": 34612, "\u0120squash": 34613, - "\u0120catalogue": 34614, "\u0120abnormalities": 34615, "\u0120digestive": - 34616, ".........": 34617, "\u0120subordinate": 34618, "ogly": 34619, "\u0120249": - 34620, "Middle": 34621, "\u0120massac": 34622, "\u0120burgers": 34623, "\u0120downstairs": - 34624, "\u01201931": 34625, "394": 34626, "\u0120VG": 34627, "\u0120lasers": - 34628, "\u0120Sikh": 34629, "\u0120Alexa": 34630, "derived": 34631, "\u0120cyclist": - 34632, "\u00e3\u0123\u00ae\u00e9\u0143\u0136": 34633, "oneliness": 34634, - "!!!!!!!!": 34635, "\u0120buffs": 34636, "legate": 34637, "\u0120raping": - 34638, "\u0120recommending": 34639, "rored": 34640, "\u0120multicultural": - 34641, "unique": 34642, "\u0120businessmen": 34643, "\u0120uneasy": 34644, - "\u0120MAP": 34645, "\u0120dispersed": 34646, "cipline": 34647, "Jess": 34648, - "\u0120Kerala": 34649, "\u00e5\u00a7": 34650, "\u0120abstraction": 34651, - "Surv": 34652, "Uh": 34653, "\u0120printers": 34654, "ija": 34655, "owder": - 34656, "\u0120analogous": 34657, "\u0120ASP": 34658, "afer": 34659, "\u0120unfolded": - 34660, "\u0120leveling": 34661, "\u0120breached": 34662, "\u0120Hearing": - 34663, "\u0120nat": 34664, "\u0120translating": 34665, "critical": 34666, - "\u0120antagonist": 34667, "\u0120Yesterday": 34668, "\u0120fuzzy": 34669, - "wash": 34670, "mere": 34671, "\u0120bewild": 34672, "\u0120Mae": 34673, "Virgin": - 34674, "phrase": 34675, "\u0120signaled": 34676, "\u0120HIGH": 34677, "\u0120protester": - 34678, "\u0120garner": 34679, "unknown": 34680, "\u0120kay": 34681, "\u0120abducted": - 34682, "\u0120stalking": 34683, "amn": 34684, "\u0120deserving": 34685, "\u0120Riv": - 34686, "\u0120Jorge": 34687, "\u0120scratching": 34688, "\u0120Saving": 34689, - "iping": 34690, "\u0120tease": 34691, "\u0120missionary": 34692, "\u0120Morrow": - 34693, "TIME": 34694, "Present": 34695, "\u0120chemotherapy": 34696, "terness": - 34697, "\u0120Homes": 34698, "\u0120Purdue": 34699, "\u0120staunch": 34700, - "\u0120Whitney": 34701, "\u0120THERE": 34702, "\u00ce\u00bc": 34703, "iatus": - 34704, "\u0120Ernest": 34705, "\u0120Deploy": 34706, "\u0120coveted": 34707, - "FML": 34708, "\u0120Dialogue": 34709, "\u0120exited": 34710, "fruit": 34711, - "\u0120nerd": 34712, "\":\"\",\"": 34713, "\u0120vivo": 34714, "ruly": 34715, - "460": 34716, "\u0120Amen": 34717, "rehensible": 34718, "\u0120\u00e2\u013a": - 34719, "DIR": 34720, "\u0120adherence": 34721, "\u0120chew": 34722, "\u0120Coke": - 34723, "\u0120Sergei": 34724, "digital": 34725, "\u0120Neck": 34726, "gently": - 34727, "enthal": 34728, "/)": 34729, "\u0120weary": 34730, "\u0120guise": - 34731, "\u0120Concord": 34732, "\u0120Onion": 34733, "atcher": 34734, "\u0120binge": - 34735, "\u0120Directive": 34736, "\u0120manned": 34737, "ansk": 34738, "\u0120illusions": - 34739, "\u0120billionaires": 34740, "383": 34741, "olyn": 34742, "odynamic": - 34743, "\u0120Wheat": 34744, "\u0120Alic": 34745, "\u0120coloured": 34746, - "\u0120NAFTA": 34747, "abo": 34748, "\u0120macros": 34749, "independent": - 34750, "sweet": 34751, "\u0120spac": 34752, "\u0120Kabul": 34753, "\u0120\u00c4": - 34754, "eme": 34755, "\u0120dictated": 34756, "\u0120shouts": 34757, "={": - 34758, "\u0120ripping": 34759, "\u0120Shay": 34760, "\u0120Cricket": 34761, - "directed": 34762, "\u0120analysed": 34763, "\u0120WARRANT": 34764, "agons": - 34765, "\u0120Blazers": 34766, "\u0120cheered": 34767, "\u0120arithmetic": - 34768, "\u0120Tanz": 34769, "373": 34770, "\u0120Flags": 34771, "\u0120295": - 34772, "\u0120witches": 34773, "\u0120Included": 34774, "\u0120Gained": 34775, - "\u0120Blades": 34776, "Gam": 34777, "\u0120Samantha": 34778, "\u0120Atlantis": - 34779, "\u0120Pratt": 34780, "\u0120spoiled": 34781, "\u0120IB": 34782, "\u0120Ramirez": - 34783, "Probably": 34784, "rero": 34785, "\u0120Ng": 34786, "\u0120Warlock": - 34787, "tp": 34788, "\u0120overhe": 34789, "\u0120administrations": 34790, - "\u0120tint": 34791, "\u0120regiment": 34792, "\u0120pistols": 34793, "\u0120blankets": - 34794, "\u0120epist": 34795, "\u0120bowls": 34796, "\u0120hydraulic": 34797, - "\u0120dean": 34798, "\u0120jung": 34799, "\u0120ascend": 34800, "705": 34801, - "\u0120Santiago": 34802, "\u00c3\u00ae": 34803, "\u0120unavoid": 34804, "\u0120Shaman": - 34805, "reb": 34806, "\u0120stemming": 34807, "998": 34808, "\u0120MG": 34809, - "sticks": 34810, "esthesia": 34811, "ERO": 34812, "\u0120morbid": 34813, "\u0120Grill": - 34814, "\u0120Poe": 34815, "anyl": 34816, "\u0120deleting": 34817, "\u0120Surveillance": - 34818, "\u0120directives": 34819, "\u0120iterations": 34820, "\u0120Rox": - 34821, "\u0120Milky": 34822, "Father": 34823, "\u0120patented": 34824, "447": - 34825, "\u0120precursor": 34826, "\u0120maiden": 34827, "\u0120Phen": 34828, - "\u0120Vegan": 34829, "\u0120Patent": 34830, "Kelly": 34831, "Redditor": 34832, - "\u0120nods": 34833, "\u0120ventilation": 34834, "\u0120Schwarz": 34835, "\u0120wizards": - 34836, "\u0120ominous": 34837, "\u0120Heads": 34838, "\u0120BG": 34839, "\u0120lumber": - 34840, "\u0120Spiel": 34841, "\u0120isEnabled": 34842, "\u0120ancestral": - 34843, "\u0120Ships": 34844, "\u0120wrestler": 34845, "phi": 34846, "\u0120yuan": - 34847, "\u0120Rebellion": 34848, "\u0120iceberg": 34849, "\u0120magically": - 34850, "\u0120diversion": 34851, "arro": 34852, "ythm": 34853, "\u0120Riders": - 34854, "\u0120Robbie": 34855, "\u0120Kara": 34856, "\u0120Maintenance": 34857, - "\u0120Herb": 34858, "\u0120harms": 34859, "packed": 34860, "\u0120Feinstein": - 34861, "\u0120marrying": 34862, "\u0120blending": 34863, "\u0120Rates": 34864, - "\u01201880": 34865, "\u0120wrink": 34866, "\u0120Unch": 34867, "\u0120Torch": - 34868, "described": 34869, "\u0120humanoid": 34870, "ilitating": 34871, "\u0120Conv": - 34872, "\u0120Feld": 34873, "IGHTS": 34874, "\u0120whistleblower": 34875, - "ortmund": 34876, "etsy": 34877, "arrett": 34878, "\u0120Mono": 34879, "\u0120Ike": - 34880, "\u0120CNBC": 34881, "\u0120WAY": 34882, "\u0120MDMA": 34883, "\u0120Individuals": - 34884, "\u0120supplemental": 34885, "\u0120powerhouse": 34886, "\u0120Stru": - 34887, "Focus": 34888, "aphael": 34889, "\u0120Colleg": 34890, "atti": 34891, - "ZA": 34892, "\u0120perenn": 34893, "\u0120Signature": 34894, "\u0120Rodney": - 34895, "\u0120cubes": 34896, "iddled": 34897, "\u0120Dante": 34898, "\u0120INV": - 34899, "ilingual": 34900, "\u0120Cth": 34901, "\u0120sofa": 34902, "\u0120intimidate": - 34903, "\u0120Roe": 34904, "\u0120Diplom": 34905, "\u0120Countries": 34906, - "ayson": 34907, "\u0120extradition": 34908, "\u0120disabling": 34909, "\u0120Cardiff": - 34910, "\u0120memorandum": 34911, "\u0120Trace": 34912, "\u0120???": 34913, - "sector": 34914, "\u0120Rouhani": 34915, "\u0120Yates": 34916, "\u0120Freeze": - 34917, "\u0120bladder": 34918, "Motor": 34919, "\u0120Promise": 34920, "antasy": - 34921, "\u0120foreseeable": 34922, "\u0120Cologne": 34923, "container": 34924, - "\u0120Trees": 34925, "\u0120Gors": 34926, "\u0120Sinclair": 34927, "\u0120barring": - 34928, "keye": 34929, "\u0120slashed": 34930, "\u0120Statistical": 34931, - "\u00e9\u0129": 34932, "\u0120\u00e2\u0138\u00ba": 34933, "Allows": 34934, - "\u0120humility": 34935, "\u0120drilled": 34936, "\u0120Furn": 34937, "443": - 34938, "\u0120sewage": 34939, "\u0120homepage": 34940, "\u0120courtyard": - 34941, "\u0120vile": 34942, "\u0120subsidiaries": 34943, "ajo": 34944, "directory": - 34945, "\u0120ammon": 34946, "Vers": 34947, "charges": 34948, "\u0120}}": - 34949, "\u0120Chains": 34950, "\u0120246": 34951, "nob": 34952, "\u0120percept": - 34953, "\u0120grit": 34954, "\u0120fishermen": 34955, "\u0120Iraqis": 34956, - "\u0120DISTR": 34957, "\u0120FULL": 34958, "\u0120Evaluation": 34959, "graph": - 34960, "atial": 34961, "\u0120cooperating": 34962, "\u0120melan": 34963, "\u0120enlightened": - 34964, "\u0120ali": 34965, "tailed": 34966, "\u0120salute": 34967, "\u0120weakest": - 34968, "\u0120Bulldogs": 34969, "UA": 34970, "\u0120Alloy": 34971, "\u0120semen": - 34972, "ocene": 34973, "\u0120Williamson": 34974, "spr": 34975, ",\u00e2\u0122\u0136": - 34976, "\u0120GF": 34977, "ittens": 34978, "Beat": 34979, "\u0120Junk": 34980, - "iphate": 34981, "\u0120Farmers": 34982, "\u0120Bitcoins": 34983, "igers": - 34984, "dh": 34985, "\u0120Loyal": 34986, "payer": 34987, "\u0120entertained": - 34988, "\u0120penned": 34989, "\u0120coupon": 34990, "Queue": 34991, "\u0120weakening": - 34992, "carry": 34993, "\u0120underestimate": 34994, "\u0120shootout": 34995, - "\u0120charismatic": 34996, "\u0120Procedure": 34997, "\u0120prudent": 34998, - "inances": 34999, "\u0120riches": 35000, "\u0120cortical": 35001, "\u0120strides": - 35002, "\u0120drib": 35003, "\u0120Oilers": 35004, "540": 35005, "\u0120Perform": - 35006, "\u0120Bangkok": 35007, "\u0120euth": 35008, "SER": 35009, "\u0120simplistic": - 35010, "tops": 35011, "campaign": 35012, "Quality": 35013, "\u0120impoverished": - 35014, "\u0120Eisenhower": 35015, "\u0120augment": 35016, "\u0120Harden": - 35017, "\u0120intervened": 35018, "\u0120listens": 35019, "\u0120Kok": 35020, - "\u0120sage": 35021, "\u0120rubbish": 35022, "\u0120Ded": 35023, "\u0120mull": - 35024, "pelling": 35025, "\u0120videot": 35026, "Production": 35027, "DJ": - 35028, "miah": 35029, "\u0120adaptations": 35030, "\u0120medically": 35031, - "\u0120boarded": 35032, "\u0120arrogance": 35033, "\u0120scrapped": 35034, - "\u0120oppress": 35035, "FORMATION": 35036, "\u0120junction": 35037, "415": - 35038, "EEEE": 35039, "Skill": 35040, "\u0120subdu": 35041, "\u0120Suggest": - 35042, "\u0120Pett": 35043, "\u0120lett": 35044, "\u0120Manip": 35045, "\u0120Caf": - 35046, "\u0120Cooperation": 35047, "Ther": 35048, "\u0120regained": 35049, - "\u00b6\u00e6": 35050, "reflect": 35051, "\u0120thugs": 35052, "\u0120Shelby": - 35053, "\u0120dictates": 35054, "\u0120Weiner": 35055, "\u0120Hale": 35056, - "\u0120battleground": 35057, "schild": 35058, "\u0120condol": 35059, "hunt": - 35060, "ositories": 35061, "\u0120accuses": 35062, "Filename": 35063, "\u0120shri": - 35064, "\u0120motivate": 35065, "\u0120reflections": 35066, "Null": 35067, - "\u0120Lobby": 35068, "\u00a5\u00b5": 35069, "\u0120SATA": 35070, "\u0120Backup": - 35071, "\u00d1\u0125": 35072, "nin": 35073, "\u0120Correction": 35074, "\u0120juicy": - 35075, "utra": 35076, "\u0120Pric": 35077, "\u0120restraining": 35078, "\u0120Airbnb": - 35079, "\u0120Arrest": 35080, "\u0120appropriations": 35081, "\u0120slopes": - 35082, "\u0120manslaughter": 35083, "\u0120workings": 35084, "\u0120Huss": - 35085, "\u0120Frey": 35086, "Leave": 35087, "\u0120Harmony": 35088, "\u0120Feder": - 35089, "\u0120430": 35090, "\u0120trench": 35091, "\u0120gladly": 35092, "\u0120bullpen": - 35093, "\u0120Gau": 35094, "bones": 35095, "\u0120groove": 35096, "\u0120pretext": - 35097, "\u00e3\u0127\u012d": 35098, "\u0120transmitter": 35099, "\u0120Component": - 35100, "\u0120underage": 35101, "\u0120Empires": 35102, "Tile": 35103, "\u0120oy": - 35104, "\u0120Marvin": 35105, "\u0120CAS": 35106, "\u0120bloss": 35107, "\u0120replicated": - 35108, "\u0120Mariners": 35109, "Marcus": 35110, "\u0120Blocks": 35111, "\u0120liberated": - 35112, "\u0120butterfly": 35113, "Feel": 35114, "\u0120fermentation": 35115, - "\u0120youtube": 35116, "\u0120offend": 35117, "\u0120Term": 35118, "resist": - 35119, "\u0120cessation": 35120, "\u0120insurgency": 35121, "\u0120bir": 35122, - "\u0120Raise": 35123, "595": 35124, "\u0120hypotheses": 35125, "502": 35126, - "\u0120plaque": 35127, "ocrat": 35128, "\u0120jackets": 35129, "\u0120HuffPost": - 35130, "among": 35131, "\u0120confer": 35132, "487": 35133, "\u0120Lilly": - 35134, "\u0120adapting": 35135, "\u0120Fay": 35136, "\u0120shoved": 35137, - "vec": 35138, "\u0120refine": 35139, "\u0120gon": 35140, "\u0120gunmen": 35141, - "zai": 35142, "\u0120Shuttle": 35143, "\u0120Izan": 35144, "\u01201913": 35145, - "\u0120plethora": 35146, "\u00c2\u00b7\u00c2\u00b7": 35147, "\u0120510": 35148, - "\u0120puberty": 35149, "\u0120241": 35150, "\u0120Wealth": 35151, "\u0120Alma": - 35152, "\u0120MEM": 35153, "\u0120Adults": 35154, "Cas": 35155, "prison": - 35156, "Race": 35157, "\u0120waterproof": 35158, "\u0120athleticism": 35159, - "\u0120capitalize": 35160, "\u0120Juice": 35161, "\u0120illuminated": 35162, - "\u0120Pascal": 35163, "\u0120irritation": 35164, "\u0120Witnesses": 35165, - "adle": 35166, "\u0120Astro": 35167, "\u0120fax": 35168, "\u0120Elvis": 35169, - "Primary": 35170, "\u0120Lich": 35171, "\u0120Elves": 35172, "\u0120residing": - 35173, "\u0120stumble": 35174, "319": 35175, "\u0120PKK": 35176, "\u0120adversaries": - 35177, "DOS": 35178, "\u0120Ritual": 35179, "\u0120smear": 35180, "\u0120arson": - 35181, "idental": 35182, "\u0120scant": 35183, "\u0120monarchy": 35184, "\u0120halftime": - 35185, "\u0120residue": 35186, "\u0120indign": 35187, "\u0120Shaun": 35188, - "\u0120Elm": 35189, "auri": 35190, "Aff": 35191, "WATCH": 35192, "\u0120Lyon": - 35193, "helps": 35194, "361": 35195, "\u0120lobbyist": 35196, "\u0120diminishing": - 35197, "\u0120outbreaks": 35198, "\u0120goats": 35199, "favorite": 35200, - "\u0120Nah": 35201, "sonian": 35202, "\u0120Booster": 35203, "\u0120sandbox": - 35204, "\u0120Fare": 35205, "\u0120Malta": 35206, "\u0120attRot": 35207, "\u0120MOR": - 35208, "lde": 35209, "\u0120navigating": 35210, "Touch": 35211, "\u0120untrue": - 35212, "\u0120Disaster": 35213, "\u0120ludicrous": 35214, "Password": 35215, - "\u0120JFK": 35216, "blogspot": 35217, "416": 35218, "\u0120UNDER": 35219, - "ernal": 35220, "\u0120delaying": 35221, "TOP": 35222, "\u0120implants": 35223, - "\u0120AVG": 35224, "\u0120Huge": 35225, "attr": 35226, "\u0120journalistic": - 35227, "\u0120Peyton": 35228, "\u0120IA": 35229, "Rap": 35230, "goal": 35231, - "\u0120Programme": 35232, "\u0120smashing": 35233, "wives": 35234, "println": - 35235, "\u0120Plague": 35236, "inus": 35237, "EEP": 35238, "\u0120cruiser": - 35239, "\u0120Parish": 35240, "uminium": 35241, "\u0120occupants": 35242, - "\u0120Jihad": 35243, "mop": 35244, "\u0120pint": 35245, "\u0120hect": 35246, - "\u0120Mecca": 35247, "director": 35248, "\u0120Funding": 35249, "\u0120Mixed": - 35250, "\u0120stag": 35251, "Tier": 35252, "\u0120gust": 35253, "\u0120brightly": - 35254, "orsi": 35255, "\u0120uphill": 35256, "RD": 35257, "\u0120lesions": - 35258, "\u0120Bundy": 35259, "livious": 35260, "\u0120biologist": 35261, "\u0120Faculty": - 35262, "\u0120Authorization": 35263, "\u0120244": 35264, "Allow": 35265, "\u00ef\u00b8": - 35266, "\u0120Giul": 35267, "\u0120pertinent": 35268, "otaur": 35269, "esse": - 35270, "\u0120Roof": 35271, "\u0120unmanned": 35272, "351": 35273, "\u0120Shak": - 35274, "\u0120Orient": 35275, "\u0120endanger": 35276, "Dir": 35277, "\u0120replen": - 35278, "edient": 35279, "\u0120tailor": 35280, "\u0120gadgets": 35281, "\u0120audible": - 35282, "\u00e2\u013a\u0128": 35283, "Nice": 35284, "\u0120bombard": 35285, - "\u0120Rape": 35286, "\u0120defiance": 35287, "\u0120TWO": 35288, "\u0120Filipino": - 35289, "\u0120unaffected": 35290, "ervatives": 35291, "\u0120soared": 35292, - "\u0120Bolton": 35293, "\u0120compromising": 35294, "\u0120Brewers": 35295, - "RAL": 35296, "\u0120AHL": 35297, "icycle": 35298, "\u0120vampires": 35299, - "\u0120dipped": 35300, "oyer": 35301, "\u0120XIII": 35302, "\u0120sideways": - 35303, "\u0120Waste": 35304, "\u0120Diss": 35305, "\u0120\u00e2\u0136\u013e\u00e2\u0136\u0122\u00e2\u0136\u0122": - 35306, "$.": 35307, "\u0120habitats": 35308, "\u0120Beef": 35309, "truth": - 35310, "trained": 35311, "split": 35312, "Rus": 35313, "Andy": 35314, "\u0120Bram": - 35315, "REP": 35316, "pid": 35317, "\u00e8\u00a3\u0127": 35318, "\u0120Mutant": - 35319, "Anim": 35320, "\u0120Marina": 35321, "\u0120futile": 35322, "highest": - 35323, "frequency": 35324, "\u0120epilepsy": 35325, "\u0120coping": 35326, - "\u0120concise": 35327, "\u0120tracing": 35328, "\u0120SUN": 35329, "panel": - 35330, "\u0120Sophie": 35331, "\u0120Crowley": 35332, "\u0120Adolf": 35333, - "\u0120Shooter": 35334, "\u0120shaky": 35335, "\u0120IG": 35336, "\u0120Lies": - 35337, "\u0120Barber": 35338, "pkg": 35339, "\u0120uptake": 35340, "\u0120predatory": - 35341, "ULTS": 35342, "/**": 35343, "\u0120intoxicated": 35344, "\u0120Westbrook": - 35345, "odder": 35346, "hement": 35347, "\u0120baseman": 35348, "APD": 35349, - "storage": 35350, "\u0120Fifty": 35351, "editor": 35352, "GEN": 35353, "UTION": - 35354, "irting": 35355, "\u0120sewing": 35356, "rift": 35357, "\u0120agony": - 35358, "\u0120Sands": 35359, "\u0120254": 35360, "Cash": 35361, "\u0120lodge": - 35362, "\u0120punt": 35363, "Natural": 35364, "\u0120Ideas": 35365, "\u0120erroneous": - 35366, "\u0120Sensor": 35367, "\u0120Hannity": 35368, "\u01201921": 35369, - "\u0120mould": 35370, "\u0120Gon": 35371, "kaya": 35372, "\u0120anonymously": - 35373, "\u0120KEY": 35374, "\u0120simulator": 35375, "Winter": 35376, "\u0120streamed": - 35377, "507": 35378, "?\",": 35379, "\u0120teased": 35380, "\u0120coefficient": - 35381, "\u0120wartime": 35382, "\u0120THR": 35383, "''''.": 35384, "\u0120Banking": - 35385, "mpire": 35386, "\u0120fandom": 35387, "\u0120lia": 35388, "Ga": 35389, - "\u0120downhill": 35390, "\u0120interpreting": 35391, "Individual": 35392, - "Norm": 35393, "\u0120jealousy": 35394, "bitcoin": 35395, "\u0120pleasures": - 35396, "\u0120Toys": 35397, "\u0120Chevrolet": 35398, "\u0120Advisor": 35399, - "IZE": 35400, "\u0120receptions": 35401, "706": 35402, "Cro": 35403, "\u0120262": - 35404, "\u0120citrus": 35405, "iru": 35406, "Reviewer": 35407, "jected": 35408, - "UES": 35409, "anz": 35410, "1981": 35411, "\u0120Worker": 35412, "\u0120complied": - 35413, "orescent": 35414, "continental": 35415, "Ton": 35416, "\u0120Prism": - 35417, "\u0120Sheep": 35418, "\u0120288": 35419, "nox": 35420, "\u0120Vog": - 35421, "Ord": 35422, "\u0120realms": 35423, "tek": 35424, "\u0120irrigation": - 35425, "\u0120bicycles": 35426, "\u0120electronically": 35427, "poly": 35428, - "tall": 35429, "());": 35430, "\u0120aesthetics": 35431, "\u0120Integrated": - 35432, "Explore": 35433, "\u0120dunk": 35434, "476": 35435, "pain": 35436, - "\u0120Jacques": 35437, "\u0120Dmit": 35438, "Frames": 35439, "\u0120reunited": - 35440, "\u0120humid": 35441, "Dro": 35442, "Political": 35443, "\u0120youthful": - 35444, "\u0120entails": 35445, "\u0120mosquito": 35446, "363": 35447, "species": - 35448, "\u0120coordinating": 35449, "\u0120Mayhem": 35450, "\u0120Magnus": - 35451, "Mount": 35452, "Improved": 35453, "\u0120STATE": 35454, "ATTLE": 35455, - "\u0120flowed": 35456, "\u0120tackled": 35457, "\u0120fashioned": 35458, "\u0120reorgan": - 35459, "ivari": 35460, "finger": 35461, "\u0120reluctantly": 35462, "etting": - 35463, "\u0120Vand": 35464, "young": 35465, "\u0120Garland": 35466, "\u0120presumption": - 35467, "\u0120amenities": 35468, "\u0120Pleasant": 35469, "onential": 35470, - "\u0120Oxy": 35471, "\u0120morals": 35472, "\u0120Yah": 35473, "Ready": 35474, - "Simon": 35475, "Enh": 35476, "Demon": 35477, "\u0120clich": 35478, "Monitor": - 35479, "\u0120DU": 35480, "\u0120welcomes": 35481, "\u0120standout": 35482, - "\u0120dreadful": 35483, "\u0120bananas": 35484, "\u0120balloons": 35485, - "hooting": 35486, "basic": 35487, "\u0120suffix": 35488, "\u0120duly": 35489, - "cano": 35490, "Chain": 35491, "atos": 35492, "\u0120geopolitical": 35493, - "\u0120(&": 35494, "\u0120Gemini": 35495, "\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124\u00c3\u0125\u00c3\u0124": - 35496, "\u0120acquitted": 35497, "Luck": 35498, "protect": 35499, "1024": - 35500, "\u0120scarcity": 35501, "\u0120mindfulness": 35502, "ecided": 35503, - "DN": 35504, "prime": 35505, "\u0120Presidents": 35506, "\u0120VIDEO": 35507, - "\u0120(\u00e2\u012a\u0134": 35508, "addock": 35509, "NOR": 35510, "\u0120Pru": - 35511, "pun": 35512, "\u0120LOL": 35513, "))))": 35514, "\u0120Liqu": 35515, - "\u0120SAS": 35516, "\u0120styling": 35517, "\u0120punishments": 35518, "\u0120numb": - 35519, "\u0120ascertain": 35520, "\u0120Rockies": 35521, "flu": 35522, "Thumbnail": - 35523, "\u0120perpetrated": 35524, "\u0120Semi": 35525, "\u0120disarm": 35526, - "\u0120Older": 35527, "\u0120Exception": 35528, "\u0120exponentially": 35529, - "\u0120Communities": 35530, "\u0120abolish": 35531, "\u0120Partner": 35532, - "ptoms": 35533, "\u0120777": 35534, "\u0120Foley": 35535, "\u0120Cases": 35536, - "\u0120grease": 35537, "\u0120Rebirth": 35538, "Ground": 35539, "\u0120;)": - 35540, "\u0120Doctrine": 35541, "ikini": 35542, "Ye": 35543, "\u0120Blossom": - 35544, "\u0120persists": 35545, "bill": 35546, "\u0120infusion": 35547, "\u0120buddies": - 35548, "911": 35549, "\u0120Patient": 35550, "\u0120demos": 35551, "\u0120acquaintance": - 35552, "\u0120Paw": 35553, "atari": 35554, "\u0120xml": 35555, "\u0120fascination": - 35556, "\u0120Serve": 35557, "\u00cf\u0124": 35558, "branded": 35559, "\u0120az": - 35560, "Returns": 35561, "\u0120overshadow": 35562, "\u0120roam": 35563, "\u0120speedy": - 35564, "numbered": 35565, "helial": 35566, "\u0120disciple": 35567, "\u0120assurances": - 35568, "given": 35569, "pecting": 35570, "\u0120Natalie": 35571, "\u00e7\u0136\u00b0": - 35572, "\u0120mosquitoes": 35573, "rotein": 35574, "\u0120numeric": 35575, - "\u0120independents": 35576, "\u0120transitional": 35577, "\u0120reactionary": - 35578, "\u0120Mechdragon": 35579, "doctor": 35580, "\u0120shortest": 35581, - "\u0120sequential": 35582, "\u0120Bac": 35583, "\u0120Accounts": 35584, "\u00e3\u0123\u012e": - 35585, "achy": 35586, "ractive": 35587, "\u0120Regiment": 35588, "\u0120breathtaking": - 35589, "fficiency": 35590, "\u0120Bates": 35591, "\u0120311": 35592, "\u0120wardrobe": - 35593, "fts": 35594, "\u0120Berk": 35595, "Simply": 35596, "\u0120Riverside": - 35597, "ivering": 35598, "idential": 35599, "lucent": 35600, "\u0120enriched": - 35601, "\u0120Conver": 35602, "\u0120Giving": 35603, "\u00e3\u0125\u013b": - 35604, "\u0120legalize": 35605, "\u0120FTC": 35606, "\u0120freaking": 35607, - "Mix": 35608, "\u0120terrestrial": 35609, "esian": 35610, "cients": 35611, - "Wing": 35612, "LOAD": 35613, "\u0120ledge": 35614, "\u0120Violent": 35615, - "\u0120Metall": 35616, "\u0120308": 35617, "\u0120southeastern": 35618, "hetto": - 35619, "Meat": 35620, "\u0120slowdown": 35621, "\u0120retreated": 35622, "Jeremy": - 35623, "endas": 35624, "*****": 35625, "eric": 35626, "\u0120reins": 35627, - "oppable": 35628, "\u0120Humanity": 35629, "earances": 35630, "rigan": 35631, - "Camera": 35632, "\u0120waivers": 35633, "soc": 35634, "\u0120alteration": - 35635, "transform": 35636, "\u0120Cemetery": 35637, "506": 35638, "\u0120indefinite": - 35639, "\u0120stimulating": 35640, "yg": 35641, "603": 35642, "\u0120Sop": - 35643, "\u0120descriptive": 35644, "Phase": 35645, "\u0120Edmund": 35646, - "\u0120pneumonia": 35647, "ventus": 35648, "Amb": 35649, "\u0120laboratories": - 35650, "\u0120Exclusive": 35651, "ugar": 35652, "Were": 35653, "\u0120malfunction": - 35654, "\u0120homosexuals": 35655, "\u0120-------": 35656, "uni": 35657, "\u0120turbines": - 35658, "\u0120Equity": 35659, "Du": 35660, "\u0120minded": 35661, "\u0120RH": - 35662, "\u0120Blackhawks": 35663, "\u0120feats": 35664, "\u01201700": 35665, - "repl": 35666, "362": 35667, "laden": 35668, "\u0120indispensable": 35669, - "lyss": 35670, "tti": 35671, "\u0120reel": 35672, "\u0120diverted": 35673, - "\u0120likeness": 35674, "\u0120subscriptions": 35675, "\u0120fingert": 35676, - "\u0120filthy": 35677, "destruct": 35678, "draft": 35679, "\u0120Bernardino": - 35680, "launch": 35681, "\u0120perplex": 35682, "\u0120SUM": 35683, "carb": - 35684, "\u0120sweater": 35685, "\u0120Venture": 35686, "\u0120Jag": 35687, - "\u0120Celeb": 35688, "\u0120Voters": 35689, "\u0120steadfast": 35690, "\u0120athletics": - 35691, "\u0120Hanson": 35692, "\u0120Drac": 35693, "Tracker": 35694, "\u0120commend": - 35695, "\u0120Presidency": 35696, "\u0120DID": 35697, "informed": 35698, "\u0120webpage": - 35699, "Pretty": 35700, "\u0120forcefully": 35701, "\u00e3\u0125\u0125\u00e3\u0124\u00af": - 35702, "\u0120relocation": 35703, "\u0120satire": 35704, "\u00e2\u012b": 35705, - "\u0120Sunderland": 35706, "\u00e6\u0126": 35707, "Voice": 35708, "????????": - 35709, "\u0120informant": 35710, "\u0120bowel": 35711, "\u0120Uniform": 35712, - "\u0120...\"": 35713, "\u0120purge": 35714, "\u0120picnic": 35715, "\u0120Umb": - 35716, "\u0120UPDATE": 35717, "\u0120Sapphire": 35718, "\u0120Stall": 35719, - "learn": 35720, "\u0120objectively": 35721, "\u0120obliter": 35722, "\u0120loophole": - 35723, "\u0120journeys": 35724, "\u0120omission": 35725, "Pros": 35726, "\u0120Sidney": - 35727, "ploma": 35728, "\u0120sprayed": 35729, "\u0120guru": 35730, "\u0120traitor": - 35731, "\u0120timet": 35732, "\u0120snapping": 35733, "\u0120Sevent": 35734, - "urnal": 35735, "\u0120Ukip": 35736, "\u0120bowed": 35737, "poral": 35738, - "liberal": 35739, "Ros": 35740, "Questions": 35741, "iOS": 35742, "\u0120summarize": - 35743, "STAT": 35744, "\u01201850": 35745, "apest": 35746, "\u0120lender": - 35747, "\u0120Variable": 35748, "bringing": 35749, "\u0120LORD": 35750, ",)": - 35751, "\u0120collapses": 35752, "xiety": 35753, "\u0120Ned": 35754, "YD": - 35755, "\u0120Scha": 35756, "\u0120antibody": 35757, "\u0120disband": 35758, - "yre": 35759, "illusion": 35760, "\u0120rover": 35761, "shed": 35762, "\u0120Hirosh": - 35763, "cci": 35764, "\u0120calam": 35765, "\u0120Morton": 35766, "Pinterest": - 35767, "\u01201928": 35768, "\u0120Euras": 35769, "ordes": 35770, "\u0120fences": - 35771, "\u0120Inventory": 35772, "\u0120Valencia": 35773, "\u0120Ud": 35774, - "\u0120Tiff": 35775, "\u0120sque": 35776, "\u0120quotation": 35777, "\u0120troublesome": - 35778, "erker": 35779, "QUEST": 35780, "\u0120Kingdoms": 35781, "south": 35782, - "\u0120levy": 35783, "Prince": 35784, "\u0120Sting": 35785, "\u0120nicknamed": - 35786, "\u0120appe": 35787, "\u0120photographic": 35788, "\u0120corpus": 35789, - "reference": 35790, "\u0120Trog": 35791, "Unt": 35792, ")=(": 35793, "\u0120Latvia": - 35794, "\u0120activating": 35795, "\u0120licensee": 35796, "\u0120disparities": - 35797, "\u0120Newsletter": 35798, "\u00e3\u0125\u0125\u00e3\u0125\u012a": - 35799, "\u0120freeing": 35800, "\u0120Jeep": 35801, "\u0120Perception": 35802, - "insk": 35803, "\u0120silicone": 35804, "\u0120Hayden": 35805, "Lean": 35806, - "\u0120Suzuki": 35807, "ibrarian": 35808, "668": 35809, "\u0120spor": 35810, - "\u0120correlations": 35811, "aghetti": 35812, "\u0120tuber": 35813, "\u0120IPCC": - 35814, "ilus": 35815, "\u0120Vu": 35816, "\u0120wealthiest": 35817, "\u0120Carbuncle": - 35818, "anza": 35819, "\u0120fooled": 35820, "\u0120Zur": 35821, "\u0120daddy": - 35822, "rano": 35823, "ilian": 35824, "\u0120knockout": 35825, "fman": 35826, - "required": 35827, "\u0120Wikileaks": 35828, "\u0120Duffy": 35829, "ONT": - 35830, "\u0120insol": 35831, "\u0120Objects": 35832, "\u0120bou": 35833, "\u0120Nordic": - 35834, "\u0120Insert": 35835, "scan": 35836, "\u0120dancers": 35837, "\u0120idiots": - 35838, "majority": 35839, "\u0120Neville": 35840, "\u0120FreeBSD": 35841, - "\u0120tart": 35842, "panic": 35843, "690": 35844, "\u0120cocoa": 35845, "\u0120sampled": - 35846, "\u0120lookup": 35847, "Indust": 35848, "\u0120injections": 35849, - "genre": 35850, "\u0120au": 35851, "\u0120roadway": 35852, "\u0120genitals": - 35853, "Kind": 35854, "\u0120Examiner": 35855, "\u0120Yaz": 35856, "Fresh": - 35857, "\u0120paralysis": 35858, "\u0120Aluminum": 35859, "\u0120reap": 35860, - "ok\u00c3\u00a9": 35861, "\u0120sloppy": 35862, "\u0120Tunnel": 35863, "posium": - 35864, "nery": 35865, "enic": 35866, "\u0120herbal": 35867, "\u0120Outer": - 35868, "\u0120Builder": 35869, "\u0120incur": 35870, "\u0120ideologies": 35871, - "\u0120backups": 35872, "consuming": 35873, "\u0120Detect": 35874, "deck": - 35875, "\u0120KNOW": 35876, "\u0120Gret": 35877, "\u0120MIC": 35878, "\u0120toughness": - 35879, "\u0120Exhibit": 35880, "\u0120hive": 35881, "Les": 35882, "\u0120SCHOOL": - 35883, "\u0120Atari": 35884, "alde": 35885, "\u0120Null": 35886, "andestine": - 35887, "mouse": 35888, "\u0120brigade": 35889, "489": 35890, "\u0120revol": - 35891, "\u0120Lawson": 35892, "\u0120Wah": 35893, "opoly": 35894, "ebted": - 35895, "\u0120Saunders": 35896, "\u0120313": 35897, "\u0120Winc": 35898, "\u0120taboo": - 35899, "\u0120Helmet": 35900, "\u0120wedge": 35901, "chip": 35902, "\u0120Tina": - 35903, "bg": 35904, "\u0120infuri": 35905, "rn": 35906, "\u0120anomalies": - 35907, "\u0120Sync": 35908, "\u0120Exam": 35909, "\u0120Commit": 35910, "\u0120Diary": - 35911, "\u0120ALSO": 35912, "\u0120Debor": 35913, "omedical": 35914, "\u0120comprehension": - 35915, "655": 35916, "\u0120empowering": 35917, "\u0120ire": 35918, "\u0120juices": - 35919, "\u0120ETH": 35920, "\u0120Boxing": 35921, "=\"/": 35922, "\u0120facilitated": - 35923, "poke": 35924, "\u0120Parsons": 35925, "\u0120Moder": 35926, "travel": - 35927, "\u0120civilizations": 35928, "\u0120libertarians": 35929, "\u0120rune": - 35930, "\u0120Clarks": 35931, "athed": 35932, "\u0120campaigners": 35933, - "\u0120Dispatch": 35934, "\u0120Fahrenheit": 35935, "\u0120Capcom": 35936, - "----------": 35937, "\u0120lace": 35938, "\u0120draining": 35939, "\u0120liner": - 35940, "\u0120Artificial": 35941, "\u00c3\u00a9n": 35942, "task": 35943, "]).": - 35944, "\u0120GMO": 35945, "\u0120Operator": 35946, "ordinary": 35947, "\u0120Influence": - 35948, "\u0120Ups": 35949, "\u0120potency": 35950, "ussen": 35951, "ospons": - 35952, "\u0120Swim": 35953, "\u0120Deadline": 35954, "Unity": 35955, "\u0120culinary": - 35956, "\u0120enlightenment": 35957, "\u0120wearer": 35958, "\u0120mined": - 35959, "\u0120ply": 35960, "\u0120incest": 35961, "\u0120DVDs": 35962, "Walk": - 35963, "BTC": 35964, "Trade": 35965, "\u0120deval": 35966, "iband": 35967, - "\u0120Oversight": 35968, "Palestinian": 35969, "\u0120dart": 35970, "\u0120mul": - 35971, "LR": 35972, "\u0120removable": 35973, "\u0120Realms": 35974, "\u00ec\u013f": - 35975, "\u0120miscar": 35976, "\u0120Vulkan": 35977, "685": 35978, "\u00c3\u00a8re": - 35979, "\u0120Sap": 35980, "\u0120merging": 35981, "\u0120Carly": 35982, "chester": - 35983, "\u0120brisk": 35984, "\u0120luxurious": 35985, "\u0120Generator": - 35986, "\u0120bitterness": 35987, "\u0120edible": 35988, "\u0120243": 35989, - "TG": 35990, "\u0120rectangle": 35991, "WithNo": 35992, "below": 35993, "Jenn": - 35994, "\u0120darkest": 35995, "\u0120hitch": 35996, "\u0120dosage": 35997, - "\u0120scaven": 35998, "\u0120Keller": 35999, "\u0120Illustrated": 36000, - "Certainly": 36001, "\u0120Mavericks": 36002, "Marginal": 36003, "\u0120diarrhea": - 36004, "\u0120enormously": 36005, "\u0120999": 36006, "shr": 36007, "quart": - 36008, "\u0120adamant": 36009, "\u0120Mew": 36010, "\u0120renovation": 36011, - "\u0120cervical": 36012, "\u0120Percentage": 36013, "eners": 36014, "\u0120Kimber": - 36015, "\u0120floats": 36016, "\u0120dex": 36017, "\u0120Witcher": 36018, - "\u0120Swansea": 36019, "dm": 36020, "\u0120salty": 36021, "yellow": 36022, - "\u0120cape": 36023, "\u0120Drain": 36024, "\u0120Paula": 36025, "\u0120Toledo": - 36026, "lesi": 36027, "Magazine": 36028, "\u0120Wick": 36029, "\u0120Mn": - 36030, "\u0120Ack": 36031, "\u0120Riding": 36032, "ASON": 36033, "\u0120homophobic": - 36034, "ARP": 36035, "\u0120wandered": 36036, "CPU": 36037, "oodoo": 36038, - "\u0120Pipe": 36039, "\u0120tightening": 36040, "\u0120Butt": 36041, "318": - 36042, "\u0120deserted": 36043, "Session": 36044, "\u0120facilitating": 36045, - "Jump": 36046, "\u0120emergencies": 36047, "OWER": 36048, "\u0120exhaustive": - 36049, "\u0120AFTER": 36050, "\u0120heartbeat": 36051, "\u0120Label": 36052, - "acky": 36053, "\u0120Certified": 36054, "iltration": 36055, "Ze": 36056, - "\u0120Utt": 36057, "\u01201300": 36058, "\u0120presume": 36059, "\u0120Disp": - 36060, "\u0120surged": 36061, "\u0120dolls": 36062, "Columb": 36063, "\u0120chimpan": - 36064, "\u0120Razor": 36065, "\u0120ticks": 36066, "\u0120councillor": 36067, - "\u0120pilgrimage": 36068, "\u0120Rebels": 36069, "\u0120QC": 36070, "\u0120Auction": - 36071, "xia": 36072, "ikk": 36073, "bred": 36074, "\u0120insertion": 36075, - "\u0120coarse": 36076, "dB": 36077, "SEE": 36078, "\u0120Zap": 36079, "\u0120Foo": - 36080, "\u0120contempor": 36081, "\u0120Quarterly": 36082, "otions": 36083, - "\u0120Alchemist": 36084, "\u0120Trey": 36085, "\u0120Duo": 36086, "Sweet": - 36087, "804": 36088, "\u0120Giov": 36089, "\u0120funn": 36090, "Nin": 36091, - "hoff": 36092, "\u0120ramifications": 36093, "\u01201922": 36094, "\u0120Experts": - 36095, "azes": 36096, "\u0120garments": 36097, "arial": 36098, "\u0120Nab": - 36099, "\u0120257": 36100, "\u0120Ved": 36101, "\u0120humorous": 36102, "\u0120Pompe": - 36103, "\u0120nylon": 36104, "\u0120lurking": 36105, "\u0120Sergey": 36106, - "\u0120Mattis": 36107, "\u0120misogyny": 36108, "\u0120Components": 36109, - "\u0120Watching": 36110, "\u0120Folk": 36111, "ractical": 36112, "Bush": 36113, - "\u0120taped": 36114, "\u0120grouping": 36115, "\u0120beads": 36116, "\u01202048": - 36117, "\u0120condu": 36118, "querque": 36119, "Reading": 36120, "\u0120grievances": - 36121, "Ultra": 36122, "\u0120endpoint": 36123, "Hig": 36124, "\u0120Static": - 36125, "\u0120Scarborough": 36126, "Lua": 36127, "\u0120Messi": 36128, "aqu": - 36129, "\u0120PsyNet": 36130, "\u0120Rudd": 36131, "\u0120avenue": 36132, - "vp": 36133, "Jer": 36134, "\u0120shady": 36135, "\u0120Resist": 36136, "\u0120Artemis": - 36137, "\u0120careless": 36138, "\u0120brokers": 36139, "\u0120temperament": - 36140, "\u0120520": 36141, "Tags": 36142, "\u0120Turning": 36143, "\u0120uttered": - 36144, "\u0120pedd": 36145, "\u0120improvised": 36146, "\u0120:(": 36147, - "\u0120tabl": 36148, "\u0120plains": 36149, "1600": 36150, "pressure": 36151, - "\u0120Essence": 36152, "margin": 36153, "friends": 36154, "\u0120Restoration": - 36155, "\u0120pollut": 36156, "\u0120Poker": 36157, "\u0120Augustine": 36158, - "\u0120CIS": 36159, "\u0120SEAL": 36160, "orama": 36161, "\u0120thwart": 36162, - "seek": 36163, "\u0120pagan": 36164, "\u00c2\u00ba": 36165, "cpu": 36166, - "\u0120garn": 36167, "\u0120assortment": 36168, "\u0120ILCS": 36169, "tower": - 36170, "Recommended": 36171, "\u0120unborn": 36172, "\u0120RandomRedditor": - 36173, "\u0120RandomRedditorWithNo": 36174, "\u0120paralyzed": 36175, "\u0120eruption": - 36176, "\u0120intersect": 36177, "\u0120Stoke": 36178, "\u0120Sco": 36179, - "Bind": 36180, "\u00e5\u00be": 36181, "\u0120PNG": 36182, "\u0120Negative": - 36183, "\u0120NOAA": 36184, "Leon": 36185, "\u0120alloy": 36186, "\u0120Lama": - 36187, "\u0120Diversity": 36188, "575": 36189, "\u0120underestimated": 36190, - "\u0120Scor": 36191, "\u0120mural": 36192, "\u0120busted": 36193, "soon": - 36194, "lif": 36195, "\u0120nonex": 36196, "\u0120allergy": 36197, "\u0120Underworld": - 36198, "\u0120Rays": 36199, "\u0120Blasio": 36200, "\u0120hrs": 36201, "\u0120Dir": - 36202, "\u0120327": 36203, "byter": 36204, "\u0120replacements": 36205, "\u0120activates": - 36206, "rived": 36207, "MH": 36208, "\u0120pans": 36209, "\u0120HI": 36210, - "\u0120longitudinal": 36211, "\u0120nuisance": 36212, "aler": 36213, "\u0120swell": - 36214, "\u0120Signed": 36215, "sci": 36216, "\u0120Isles": 36217, "\u0120AGA": - 36218, "\u0120defiant": 36219, "\u0120sonic": 36220, "ocon": 36221, "KC": - 36222, "\u0120Aim": 36223, "tie": 36224, "ahah": 36225, "\u0120mL": 36226, - "DX": 36227, "\u0120bisc": 36228, "\u0120Billboard": 36229, "\u0120SYSTEM": - 36230, "NEY": 36231, "gaard": 36232, "\u0120distressed": 36233, "formerly": - 36234, "Alan": 36235, "\u0120chefs": 36236, "\u0120optics": 36237, "\u0120Comet": - 36238, "\u0120AMC": 36239, "\u0120redesigned": 36240, "irmation": 36241, "\u0120sightings": - 36242, "382": 36243, "311": 36244, "\u0120WB": 36245, "\u0120contraction": - 36246, "\u0120TOTAL": 36247, "Dual": 36248, "\u0120startled": 36249, "\u0120understandably": - 36250, "\u0120sunglasses": 36251, "ETHOD": 36252, "\u0120docker": 36253, "\u0120surfing": - 36254, "\u0120HEL": 36255, "\u0120Slack": 36256, "tones": 36257, "\u0120shalt": - 36258, "Visual": 36259, "498": 36260, "Department": 36261, "cussion": 36262, - "\u0120unrestricted": 36263, "\u0120tad": 36264, "\u0120rename": 36265, "employed": - 36266, "\u0120educating": 36267, "\u0120grinned": 36268, "bedroom": 36269, - "\u0120Activities": 36270, "\u0120Velvet": 36271, "\u0120SWAT": 36272, "\u0120shuffle": - 36273, "igor": 36274, "\u0120saturation": 36275, "Finding": 36276, "cream": - 36277, "icter": 36278, "\u0120vodka": 36279, "tracking": 36280, "tec": 36281, - "\u0120foreground": 36282, "iesta": 36283, "\u0120vehement": 36284, "\u0120ECB": - 36285, "\u0120Tie": 36286, "Ey": 36287, "\u0120turtles": 36288, "\u0120Railroad": - 36289, "\u0120Katz": 36290, "\u0120Frames": 36291, "\u0120menace": 36292, - "\u0120Fellowship": 36293, "\u0120Essential": 36294, "uggish": 36295, "\u0120drip": - 36296, "chwitz": 36297, "\u0120Kyoto": 36298, "sb": 36299, "\u0120Nina": 36300, - "Parameter": 36301, "\u0120alarms": 36302, "\u0120Claud": 36303, "\u0120pioneering": - 36304, "\u0120chiefly": 36305, "\u0120Scream": 36306, "Collection": 36307, - "\u0120thankfully": 36308, "\u0120Ronaldo": 36309, "\u00e5\u0143\u0132": 36310, - "strip": 36311, "\u0120Disneyland": 36312, "commercial": 36313, "Seeing": - 36314, "Soul": 36315, "\u0120evacuate": 36316, "\u0120civ": 36317, "\u0120Ashe": - 36318, "\u0120divides": 36319, "\u0120Dagger": 36320, "rehensive": 36321, - "\u0120berries": 36322, "\u0120DF": 36323, "\u0120sushi": 36324, "\u0120plurality": - 36325, "WI": 36326, "\u0120disadvantaged": 36327, "\u0120battalion": 36328, - "obiles": 36329, "451": 36330, "\u0120cling": 36331, "\u0120undeniable": 36332, - "\u0120Lounge": 36333, "\u0120haunt": 36334, "phe": 36335, "\u0120quantify": - 36336, "\u0120differed": 36337, "\u0120[*]": 36338, "\u0120Viz": 36339, "cum": - 36340, "slave": 36341, "\u0120videog": 36342, "\u0120quar": 36343, "\u0120bundles": - 36344, "\u0120Alonso": 36345, "tackle": 36346, "\u0120neuronal": 36347, "\u0120landslide": - 36348, "confirmed": 36349, "\u0120Depth": 36350, "\u0120renewables": 36351, - "Bear": 36352, "\u0120Macedonia": 36353, "\u0120jerseys": 36354, "\u0120bunk": - 36355, "\u0120Spawn": 36356, "\u0120Controls": 36357, "\u0120Buchanan": 36358, - "\u0120robotics": 36359, "\u0120emphasizing": 36360, "\u0120Tutorial": 36361, - "hyp": 36362, "iston": 36363, "\u0120monumental": 36364, "\u00e6\u00b0": 36365, - "\u0120Carry": 36366, "\u0120tbsp": 36367, "enance": 36368, "Hill": 36369, - "arthed": 36370, "\u0120rotten": 36371, "Dean": 36372, "\u0120twisting": 36373, - "\u0120goodwill": 36374, "\u0120immersion": 36375, "Living": 36376, "\u0120brushes": - 36377, "\u0120CGI": 36378, "\u0120Atk": 36379, "traditional": 36380, "\u0120phantom": - 36381, "\u0120Stamina": 36382, "\u0120expansions": 36383, "\u0120Marin": 36384, - "\u0120embarked": 36385, "\u0120Eg": 36386, "intestinal": 36387, "\u0120PEOPLE": - 36388, "\u0120Booth": 36389, "\u0120Appalach": 36390, "\u0120relegated": 36391, - "VT": 36392, "MIT": 36393, "\u0120muster": 36394, "\u0120withdrawing": 36395, - "\u0120microscope": 36396, "\u0120Gathering": 36397, "\u0120Crescent": 36398, - "\u0120Argentine": 36399, "\u0120Decre": 36400, "\u0120Dominic": 36401, "\u0120buds": - 36402, "antage": 36403, "\u0120Ion": 36404, "\u0120widened": 36405, "ONSORED": - 36406, "\u0120Gloves": 36407, "iannopoulos": 36408, "razen": 36409, "feel": - 36410, "\u0120repayment": 36411, "\u0120hindsight": 36412, "\u0120REALLY": - 36413, "\u0120Pistol": 36414, "\u0120Brah": 36415, "\u0120watts": 36416, "\u0120survives": - 36417, "\u0120flurry": 36418, "issy": 36419, "Alert": 36420, "\u0120Uruguay": - 36421, "Phoenix": 36422, "Slow": 36423, "\u0120Grave": 36424, "\u0120Fir": - 36425, "\u0120manageable": 36426, "\u0120tariff": 36427, "\u0120UDP": 36428, - "\u0120Pistons": 36429, "\u0120Nigerian": 36430, "\u0120strikeouts": 36431, - "\u0120cosmetics": 36432, "whelming": 36433, "fab": 36434, "cape": 36435, - "proxy": 36436, "\u0120rethink": 36437, "\u0120overcoming": 36438, "simple": - 36439, "\u0120woo": 36440, "\u0120distracting": 36441, "\u0120Stanton": 36442, - "\u0120Tulsa": 36443, "\u0120Dock": 36444, "659": 36445, "\u0120discord": - 36446, "\u0120Emacs": 36447, "\u0120Ves": 36448, "\u0120ROB": 36449, "\u0120reassuring": - 36450, "\u0120consortium": 36451, "Muslims": 36452, "321": 36453, "\u0120prompts": - 36454, "sei": 36455, "\u0120Hitch": 36456, "imposed": 36457, "\u0120Fool": - 36458, "\u0120indiscrim": 36459, "wrong": 36460, "buquerque": 36461, "Davis": - 36462, "!]": 36463, "\u0120timeless": 36464, "\u0120NEED": 36465, "\u0120pesticide": - 36466, "\u0120rallying": 36467, "\u0120Calder": 36468, "\u0120\u00e5\u00a4": - 36469, "\u0120xp": 36470, "\u0120Unle": 36471, "\u0120Export": 36472, "luaj": - 36473, "Buff": 36474, ")[": 36937, "\u0120sqor": 36938, "Saudi": 36939, - "\u0120istg": 36940, "\u0120indulge": 36941, "proc": 36942, "\u0120disgusted": - 36943, "\u0120compounded": 36944, "\u0120nem": 36945, "\u0120schooling": 36946, - "\u0120Cure": 36947, "processing": 36948, "Sol": 36949, "\u0120proverb": 36950, - "itized": 36951, "\u0120Alvarez": 36952, "\u0120scarf": 36953, "\u0120rectangular": - 36954, "reve": 36955, "\u0120hormonal": 36956, "\u0120Stress": 36957, "itizen": - 36958, "\u0120425": 36959, "girls": 36960, "\u0120Noir": 36961, "\u0120Rapp": - 36962, "\u0120marches": 36963, "church": 36964, "\u0120Uses": 36965, "\u0120405": - 36966, "\u0120Berm": 36967, "\u0120ordinances": 36968, "\u0120Judgment": 36969, - "Charges": 36970, "\u0120Zin": 36971, "\u0120dusty": 36972, "\u0120strawberries": - 36973, "\u0120perce": 36974, "\u0120Thur": 36975, "\u0120Deborah": 36976, - "netflix": 36977, "\u0120Lambert": 36978, "\u0120amused": 36979, "\u0120Guang": - 36980, "YOU": 36981, "RGB": 36982, "\u0120CCTV": 36983, "\u0120fiat": 36984, - "rang": 36985, "\u0120federation": 36986, "\u0120Mant": 36987, "\u0120Bust": - 36988, "\u0120Mare": 36989, "respective": 36990, "\u0120Migration": 36991, - "\u0120BIT": 36992, "590": 36993, "\u0120patriotism": 36994, "\u0120outlining": - 36995, "region": 36996, "\u0120Jos\u00c3\u00a9": 36997, "\u0120blasting": - 36998, "\u0120Ezra": 36999, "Bs": 37000, "\u0120undermines": 37001, "\u0120Smooth": - 37002, "\u0120clashed": 37003, "radio": 37004, "\u0120transitioning": 37005, - "\u0120Buccaneers": 37006, "\u0120Owl": 37007, "\u0120plugs": 37008, "\u0120hiatus": - 37009, "\u0120Pinball": 37010, "\u0120mig": 37011, "\u0120Nutr": 37012, "\u0120Wolfe": - 37013, "\u0120integers": 37014, "\u0120orbits": 37015, "\u0120Edwin": 37016, - "\u0120DirectX": 37017, "bite": 37018, "\u0120blazing": 37019, "vr": 37020, - "Edge": 37021, "\u0120PID": 37022, "exit": 37023, "\u0120Comed": 37024, "\u0120Pathfinder": - 37025, "\u0120Guid": 37026, "\u0120Signs": 37027, "\u0120Zer": 37028, "\u0120Agenda": - 37029, "\u0120reimbursement": 37030, "Mesh": 37031, "iPhone": 37032, "\u0120Marcos": - 37033, "\u0120Sites": 37034, "hate": 37035, "enburg": 37036, "\u0120sockets": - 37037, "pend": 37038, "Batman": 37039, "vir": 37040, "\u0120SHOW": 37041, - "\u0120provisional": 37042, "conn": 37043, "\u0120Deaths": 37044, "ATIVE": - 37045, "Profile": 37046, "sym": 37047, "JA": 37048, "\u0120ninja": 37049, - "installed": 37050, "idates": 37051, "ebra": 37052, "\u0120Omaha": 37053, - "\u0120seizing": 37054, "\u0120Beasts": 37055, "\u0120salts": 37056, "Mission": - 37057, "Generally": 37058, "\u0120Trilogy": 37059, "heon": 37060, "legates": - 37061, "\u0120dime": 37062, "\u0120faire": 37063, "parable": 37064, "Graph": - 37065, "\u0120totaling": 37066, "\u0120diagrams": 37067, "\u0120Yanuk": 37068, - "plet": 37069, "\u0120Meh": 37070, "\u0120mythical": 37071, "\u0120Stephens": - 37072, "autical": 37073, "ochemistry": 37074, "\u0120kilograms": 37075, "\u0120elbows": - 37076, "ancock": 37077, "\u0120BCE": 37078, "\u0120Prague": 37079, "\u0120improv": - 37080, "\u0120Devin": 37081, "\u0120\"\\": 37082, "paralle": 37083, "\u0120supremacists": - 37084, "\u0120Billion": 37085, "\u0120regimen": 37086, "innacle": 37087, "\u0120requisite": - 37088, "angan": 37089, "\u0120Burlington": 37090, "ainment": 37091, "\u0120Objective": - 37092, "omsky": 37093, "GV": 37094, "\u0120unilateral": 37095, "\u0120tc": - 37096, "\u0120hires": 37097, "mental": 37098, "\u0120involuntary": 37099, - "\u0120transpl": 37100, "\u0120ASCII": 37101, "\u00c2\u00a8": 37102, "Events": - 37103, "\u0120doubted": 37104, "\u0120Kaplan": 37105, "\u0120Courage": 37106, - "igon": 37107, "\u0120Managing": 37108, "\u0120Tart": 37109, "\u0120falsehood": - 37110, "\u0120Violet": 37111, "\u0120airs": 37112, "\u0120fertilizer": 37113, - "Britain": 37114, "\u0120aquatic": 37115, "ouf": 37116, "Words": 37117, "\u0120Hartford": - 37118, "\u0120evenings": 37119, "\u0120Vengeance": 37120, "quite": 37121, - "Gall": 37122, "\u0120Pret": 37123, "\u0120pdf": 37124, "\u0120LM": 37125, - "\u0120Sochi": 37126, "\u0120Intercept": 37127, "920": 37128, "\u0120profitability": - 37129, "\u0120Idle": 37130, "\u0120MacDonald": 37131, "\u0120Establishment": - 37132, "umsy": 37133, "\u0120gatherings": 37134, "\u0120Naj": 37135, "Charlie": - 37136, "\u0120ascent": 37137, "\u0120Protector": 37138, "\u0120algebra": 37139, - "\u0120bios": 37140, "forums": 37141, "ELS": 37142, "Introduced": 37143, "\u0120335": - 37144, "\u0120astronomy": 37145, "Contribut": 37146, "\u0120Polic": 37147, - "Platform": 37148, "\u0120containment": 37149, "wrap": 37150, "\u0120coronary": - 37151, "\u0120Jelly": 37152, "manager": 37153, "\u0120heartbreaking": 37154, - "cair": 37155, "\u0120Chero": 37156, "cgi": 37157, "Medical": 37158, "\u0120Accountability": - 37159, "!!\"": 37160, "ophile": 37161, "\u0120psychotic": 37162, "\u0120Restrict": - 37163, "\u0120equitable": 37164, "issues": 37165, "\u01201905": 37166, "\u0120Nek": - 37167, "cised": 37168, "\u0120Tracking": 37169, "\u0120ozone": 37170, "\u0120cooker": - 37171, "rosis": 37172, "\u0120reopen": 37173, "\u0120infinity": 37174, "\u0120Pharmaceutical": - 37175, "ensional": 37176, "Attempt": 37177, "\u0120Rory": 37178, "Marco": - 37179, "\u0120awaits": 37180, "HOW": 37181, "treated": 37182, "\u0120bolst": - 37183, "\u0120revered": 37184, "\u0120pods": 37185, "oppers": 37186, "0010": - 37187, "\u0120amplitude": 37188, "rican": 37189, "SPONSORED": 37190, "\u0120trousers": - 37191, "\u0120halves": 37192, "\u0120Kaine": 37193, "\u0120Cutler": 37194, - "\u0120AUTH": 37195, "\u0120splendid": 37196, "\u0120preventive": 37197, "\u0120Dudley": - 37198, "ifacts": 37199, "uminati": 37200, "\u0120Yin": 37201, "\u0120admon": - 37202, "\u0120Vag": 37203, "\u0120inverted": 37204, "\u0120hastily": 37205, - "\u0120Hague": 37206, "Lyn": 37207, "\u0120ledger": 37208, "\u0120astronomical": - 37209, "getting": 37210, "\u0120circa": 37211, "\u0120Cic": 37212, "\u0120Tennis": - 37213, "Limited": 37214, "\u0120dru": 37215, "\u0120BYU": 37216, "\u0120travellers": - 37217, "\u0120pane": 37218, "\u0120Intro": 37219, "\u0120patiently": 37220, - "\u0120aiding": 37221, "\u0120loos": 37222, "\u0120Tough": 37223, "\u0120293": - 37224, "\u0120consumes": 37225, "SourceFile": 37226, "\u0120\"\"\"": 37227, - "\u0120bonding": 37228, "\u0120tilted": 37229, "\u0120menstrual": 37230, "\u0120Celestial": - 37231, "ULAR": 37232, "Plugin": 37233, "\u0120risking": 37234, "Naz": 37235, - "\u0120Riyadh": 37236, "\u0120accredited": 37237, "\u0120skirm": 37238, "\u00e9\u013d": - 37239, "\u0120examiner": 37240, "\u0120messing": 37241, "\u0120nearing": 37242, - "\u0120Chern": 37243, "\u0120Beckham": 37244, "\u0120swapped": 37245, "\u0120goose": - 37246, "Kay": 37247, "\u0120lofty": 37248, "\u0120Wallet": 37249, "\u0120[''": - 37250, "\u0120apocalypse": 37251, "\u0120bamboo": 37252, "\u0120SPACE": 37253, - "\u0120Elena": 37254, "\u0120306": 37255, "acons": 37256, "\u0120tightened": - 37257, "\u0120adolescence": 37258, "\u0120rainy": 37259, "\u0120vandalism": - 37260, "\u0120Newtown": 37261, "\u0120conject": 37262, "cakes": 37263, "\u0120cheated": - 37264, "\u0120moderators": 37265, "params": 37266, "EFF": 37267, "\u0120deceit": - 37268, "\u0120STL": 37269, "\u0120Tanzania": 37270, "\u0120RI": 37271, "\u01201923": - 37272, "\u0120Exile": 37273, "thel": 37274, "\u0120theolog": 37275, "\u0120quirky": - 37276, "\u0120Irvine": 37277, "\u0120needy": 37278, "oris": 37279, "Um": 37280, - "Ka": 37281, "\u0120mailbox": 37282, "322": 37283, "\u0120bos": 37284, "\u0120Petra": - 37285, "KING": 37286, "\u0120enlarged": 37287, "Often": 37288, "\u0120badass": - 37289, "\u0120343": 37290, "\u0120Places": 37291, "\u0120CAD": 37292, "\u0120pristine": - 37293, "\u0120intervening": 37294, "direction": 37295, "\u0120laz": 37296, - "\u0120DSM": 37297, "\u0120projecting": 37298, "\u0120Funk": 37299, "agog": - 37300, "payment": 37301, "nov": 37302, "\u0120chatter": 37303, "ARB": 37304, - "\u0120examinations": 37305, "\u0120Household": 37306, "\u0120Gus": 37307, - "Ford": 37308, "414": 37309, "Boss": 37310, "\u0120mystic": 37311, "\u0120leaps": - 37312, "\u0120Bav": 37313, "ulz": 37314, "budget": 37315, "Football": 37316, - "\u0120subsidized": 37317, "\u0120firsthand": 37318, "\u0120coincide": 37319, - "ocular": 37320, "Conn": 37321, "\u0120Collabor": 37322, "\u0120fools": 37323, - "amura": 37324, "ahar": 37325, "rists": 37326, "\u0120swollen": 37327, "\u0120expended": - 37328, "\u0120Pau": 37329, "sup": 37330, "\u0120spar": 37331, "\u0120keynote": - 37332, "suff": 37333, "\u0120unequal": 37334, "\u0120progressing": 37335, - "strings": 37336, "\u0120Gamergate": 37337, "Disney": 37338, "\u0120Eleven": - 37339, "omnia": 37340, "\u0120scripted": 37341, "\u0120earners": 37342, "brother": - 37343, "\u0120Enabled": 37344, "\u00e6\u00b3": 37345, "\u0120larvae": 37346, - "\u0120LOC": 37347, "mess": 37348, "Wilson": 37349, "\u0120Template": 37350, - "successfully": 37351, "\u0120paramount": 37352, "\u0120camouflage": 37353, - "\u0120binds": 37354, "\u0120Quiet": 37355, "\u0120Shutterstock": 37356, "rush": - 37357, "\u0120mascot": 37358, "fortune": 37359, "\u0120Colt": 37360, "\u0120Beyon": - 37361, "habi": 37362, "\u0120hairc": 37363, "\u0120267": 37364, "\u0120Deus": - 37365, "\u0120twitch": 37366, "\u0120concentrating": 37367, "\u0120nipples": - 37368, "cible": 37369, "\u0120gir": 37370, "NZ": 37371, "Math": 37372, "nih": - 37373, "Required": 37374, "\u0120ponder": 37375, "\u0120SAN": 37376, "\u0120weddings": - 37377, "\u0120loneliness": 37378, "NES": 37379, "\u0120Mahjong": 37380, "695": - 37381, "addle": 37382, "\u0120Garner": 37383, "\u0120COUR": 37384, "Bridge": - 37385, "\u0120spree": 37386, "\u0120Caldwell": 37387, "\u0120bribery": 37388, - "\u0120\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd\u00ef\u00bf\u00bd": - 37389, "plugins": 37390, "\u0120racket": 37391, "\u0120champagne": 37392, - "versible": 37393, "Vote": 37394, "\u0120modifiers": 37395, "Mayor": 37396, - "680": 37397, "\u0120assemblies": 37398, "\u0120Sultan": 37399, "\u0120Ning": - 37400, "\u0120Ladies": 37401, "\u0120sulfur": 37402, "\u0120orbs": 37403, - "\u0120-----": 37404, "_______": 37405, "\u0120Journalism": 37406, "\u0120esports": - 37407, "\u0120lush": 37408, "\u0120hue": 37409, "\u0120spectral": 37410, "Honest": - 37411, "\u00e3\u0125\u0131": 37412, "\u0120bushes": 37413, "\u0120reinforcement": - 37414, "\u0120reopened": 37415, "\u0120Wheels": 37416, "\u0120Morg": 37417, - "rieving": 37418, "\u0120auxiliary": 37419, "\u0120jQuery": 37420, "\u0120BAT": - 37421, "tesque": 37422, "\u0120vertex": 37423, "pure": 37424, "frey": 37425, - "\u00e3\u0124\u00ba": 37426, "dos": 37427, "\u0120typh": 37428, "\u0120cull": - 37429, "\u0120eq": 37430, "\u0120decon": 37431, "\u0120tossing": 37432, "\u0120disparate": - 37433, "\u0120Brigham": 37434, "printf": 37435, "ledged": 37436, "\u0120sund": - 37437, "\u0120cozy": 37438, "\u0120hepatitis": 37439, "performing": 37440, - "\u0120aval": 37441, "\u0120GG": 37442, "future": 37443, "\u0120petertodd": - 37444, "\u0120Kosovo": 37445, "\u0120magnets": 37446, "Already": 37447, "\u0120Edison": - 37448, "\u0120Ceres": 37449, "\u0120RAID": 37450, "\u0120brilliance": 37451, - "576": 37452, "\u0120derives": 37453, "\u0120hypertension": 37454, "\u0120\u00ce\u0136": - 37455, "\u0120lambda": 37456, "\u0120flair": 37457, "\u0120missionaries": - 37458, "\u0120rapes": 37459, "\u0120Starter": 37460, "\u0120Months": 37461, - "\u0120defy": 37462, "\u0120seismic": 37463, "\u0120Raphael": 37464, "\u0120eurozone": - 37465, "656": 37466, "zsche": 37467, "\u0120scratched": 37468, "\u0120bows": - 37469, "\u0120Lennon": 37470, "\u0120Gaia": 37471, "\u0120dripping": 37472, - "facts": 37473, "Ale": 37474, "\u0120frogs": 37475, "\u0120Breast": 37476, - "ogeneity": 37477, "\u0120Prosecutor": 37478, "\u0120amplified": 37479, "\u0120Hodg": - 37480, "\u0120Fn": 37481, "Thousands": 37482, "\u0120NIH": 37483, "\u0120Monitoring": - 37484, "FTWARE": 37485, "\u0120Priebus": 37486, "\u0120Growing": 37487, "hunter": - 37488, "\u0120diagnose": 37489, "\u0120Mald": 37490, "\u0120LR": 37491, "\u0120crowned": - 37492, "\u0120bursting": 37493, "\u0120dissolution": 37494, "javascript": - 37495, "\u0120usefulness": 37496, "\u0120Execution": 37497, ":(": 37498, "\u0120Ivory": - 37499, "aah": 37500, "\u0120persecuted": 37501, "violence": 37502, "istas": - 37503, "\u0120Crate": 37504, "\u0120impulses": 37505, "\u0120Spani": 37506, - "edes": 37507, "Handle": 37508, "\u0120Zerg": 37509, "thinkable": 37510, "Lastly": - 37511, "\u0120spontaneously": 37512, "\u0120inconvenient": 37513, "\u0120dismissing": - 37514, "\u0120plotted": 37515, "\u0120eighty": 37516, "\u0120737": 37517, - "rish": 37518, "\u0120Thornton": 37519, "atham": 37520, "\u0120sitcom": 37521, - "Ven": 37522, "Recipe": 37523, "tel": 37524, "lund": 37525, "\u0120clears": - 37526, "\u0120Sasuke": 37527, "\u0120258": 37528, "\u0120opting": 37529, "\u0120enraged": - 37530, "esthetic": 37531, "\u0120Ae": 37532, "uchs": 37533, "Prep": 37534, - "Flow": 37535, "\u0120runoff": 37536, "\u0120Eating": 37537, "\u0120Giles": - 37538, "\u0120Acting": 37539, "resources": 37540, "ibaba": 37541, "\u0120rpm": - 37542, "\u0120skewed": 37543, "\u0120Blanc": 37544, "\u0120Sakuya": 37545, - "\u0120hotter": 37546, "\u01201924": 37547, "opian": 37548, "cko": 37549, - "\u0120crumbling": 37550, "\u0120captains": 37551, "\u0120Appropriations": - 37552, "leaders": 37553, "dropping": 37554, "anuts": 37555, "\u0120reversing": - 37556, "\u0120Pose": 37557, "\u0120Sek": 37558, "Scot": 37559, "\u0120Idea": - 37560, "cise": 37561, "\u0120Slovenia": 37562, "\u0120317": 37563, "Doctor": - 37564, "\u0120crocod": 37565, "aldi": 37566, "Sea": 37567, "\u0120Farrell": - 37568, "\u0120mercenaries": 37569, "\u0120RNC": 37570, "\u0120Guess": 37571, - "\u0120pacing": 37572, "Machine": 37573, "StreamerBot": 37574, "\u0120Charity": - 37575, "\u0120298": 37576, "\u0120cannons": 37577, "\u0120Toby": 37578, "TPPStreamerBot": - 37579, "\u0120Passion": 37580, "cfg": 37581, "Thom": 37582, "\u0120badges": - 37583, "\u0120Bernstein": 37584, ".\u00e2\u0122\u0135": 37585, "\u0120POP": - 37586, "\u0120Conj": 37587, "\u0120initialization": 37588, "\u0120biodiversity": - 37589, "Dub": 37590, "\u0120feudal": 37591, "\u0120disclaimer": 37592, "\u0120crow": - 37593, "\u0120ignition": 37594, "arf": 37595, "SHA": 37596, "\u0120kHz": 37597, - "hazard": 37598, "\u0120Artists": 37599, "oeuv": 37600, "679": 37601, "\u0120Rudy": - 37602, "Nine": 37603, "\u0120Ramadan": 37604, "\u00e5\u00bd": 37605, "itto": - 37606, "\u0120adrenaline": 37607, "Cert": 37608, "\u0120smelled": 37609, "\u0120impunity": - 37610, "\u0120agendas": 37611, "\u0120Reborn": 37612, "\u0120Concent": 37613, - "\u0120Seems": 37614, "\u0120omega": 37615, "\u0120Dustin": 37616, "\u0120backer": - 37617, "\u0120Sauce": 37618, "\u0120Boyle": 37619, "WIN": 37620, "\u0120spins": - 37621, "\u0120pauses": 37622, "upt": 37623, "\u0120shredded": 37624, "\u0120strapped": - 37625, "\u0120Corruption": 37626, "\u0120scratches": 37627, "\u0120ni": 37628, - "\u0120attire": 37629, "\u0120SAF": 37630, "FactoryReloaded": 37631, "\u0120IPS": - 37632, "\u0120(%": 37633, "\u0120seminar": 37634, "focus": 37635, "civil": - 37636, "\u01201860": 37637, "intosh": 37638, "\u0120continual": 37639, "\u0120abbrevi": - 37640, "\u0120Sok": 37641, "ocobo": 37642, "XM": 37643, "\u0120frantic": 37644, - "\u0120unavoidable": 37645, "\u0120artery": 37646, "\u0120annotations": 37647, - "bath": 37648, "Climate": 37649, "\u0120dors": 37650, "\u0120Slide": 37651, - "coord": 37652, "\u0120Reload": 37653, "\u0120LDL": 37654, "\u0120Lovecraft": - 37655, "\u0120unimagin": 37656, "\u0120resembled": 37657, "\u0120barracks": - 37658, "np": 37659, "\u0120surrogate": 37660, "\u0120categorized": 37661, - "\u00e3\u0124\u00a9": 37662, "\u0120vaccinated": 37663, "\u0120drainage": - 37664, "\u0120indist": 37665, "\u0120WhatsApp": 37666, "\u01201870": 37667, - "olerance": 37668, "invoke": 37669, "amorph": 37670, "\u0120reconnect": 37671, - "\u0120emanc": 37672, "\u0120blindness": 37673, "\u01201280": 37674, "internet": - 37675, "collar": 37676, "\u0120altru": 37677, "\u0120abyss": 37678, "\u0120TRI": - 37679, "657": 37680, "\u0120infused": 37681, "HEAD": 37682, "\u0120forestry": - 37683, "\u0120Woody": 37684, "\u0120Ci": 37685, "wi": 37686, "sam": 37687, - "784": 37688, "holiday": 37689, "\u0120mogul": 37690, "\u0120Fees": 37691, - "\u0120DEN": 37692, "Internal": 37693, "urbed": 37694, "fusc": 37695, "atom": - 37696, "\u0120Illusion": 37697, "\u0120polled": 37698, "\u0120flap": 37699, - "\u0120coax": 37700, "LGBT": 37701, "Analy": 37702, "\u0120Sections": 37703, - "\u0120Californ": 37704, "emn": 37705, "\u0120hither": 37706, "\u0120NIGHT": - 37707, "\u0120nailed": 37708, "\u0120Pipeline": 37709, "391": 37710, "oof": - 37711, "\u0120Primal": 37712, "verend": 37713, "\u0120slashing": 37714, "\u0120retri": - 37715, "aviour": 37716, "\u0120departing": 37717, "gil": 37718, "ISC": 37719, - "\u0120midway": 37720, "\u0120ultrasound": 37721, "\u0120behaving": 37722, - "\u0120Tara": 37723, "classes": 37724, "Virtual": 37725, "\u0120Colonial": - 37726, "\u0120stripping": 37727, "\u0120orchestrated": 37728, "\u0120Graves": - 37729, "452": 37730, "\u0120Ironically": 37731, "\u0120Writers": 37732, "\u0120lends": - 37733, "\u0120Manz": 37734, "\u0120raven": 37735, "\u0120oxidative": 37736, - "\u0120266": 37737, "ELF": 37738, "actually": 37739, "ascar": 37740, "Draft": - 37741, "\u0120favourable": 37742, "\u0120humiliating": 37743, "\u0120fidelity": - 37744, "\u0120Hof": 37745, "\u0120Xuan": 37746, "496": 37747, "\u0120layered": - 37748, "atis": 37749, "790": 37750, "\u0120paycheck": 37751, "iton": 37752, - "Kar": 37753, "\u0120VMware": 37754, "\u0120Farmer": 37755, "\u0120servic": - 37756, "glomer": 37757, "\u0120slump": 37758, "\u0120Fabric": 37759, "\u0120DOC": - 37760, "esting": 37761, "\u0120reassure": 37762, "\u0120phyl": 37763, "volt": - 37764, "itory": 37765, "Rules": 37766, "\u0120oxidation": 37767, "\u0120prized": - 37768, "\u0120mistress": 37769, "\u0120Django": 37770, "WARN": 37771, "\u00e5\u0133": - 37772, "\u0120encode": 37773, "\u0120Feedback": 37774, "\u0120stupidity": - 37775, "Ian": 37776, "\u0120Yugoslavia": 37777, "\u00d7\u00a8": 37778, "acl": - 37779, "UTE": 37780, "1977": 37781, "\u0120qualifies": 37782, "\u0120pulses": - 37783, "pretty": 37784, "\u0120froze": 37785, "\u0120ss": 37786, "Iterator": - 37787, "\u0120urgently": 37788, "\u0120mailed": 37789, "\u0120Cham": 37790, - "\u0120sustaining": 37791, "\u0120basil": 37792, "\u0120puppies": 37793, "ilant": - 37794, "\u0120PLEASE": 37795, "lap": 37796, "aceous": 37797, "Fear": 37798, - "\u0120Mastery": 37799, "automatic": 37800, "\u0120TAG": 37801, "\u0120antim": - 37802, "agles": 37803, "473": 37804, "frames": 37805, "\u0120whispers": 37806, - "\u0120Whoever": 37807, "\u0120bravery": 37808, "\u0120UKIP": 37809, "ractions": - 37810, "\"\"\"": 37811, "\u0120tame": 37812, "\u0120parted": 37813, "everything": - 37814, "CONT": 37815, "\u0120indebted": 37816, "\u0120addr": 37817, "rek": - 37818, "IRED": 37819, "\u0120eminent": 37820, "clinton": 37821, "\u0120ousted": - 37822, "\u0120reviewer": 37823, "\u0120meltdown": 37824, "\u0120rearr": 37825, - "\u0120Yao": 37826, "thereal": 37827, "abyte": 37828, "\u0120stumbling": 37829, - "\u0120batches": 37830, "\u0120259": 37831, "\u0120contraceptive": 37832, - "\u0120prostitute": 37833, "ensis": 37834, "Decl": 37835, "\u0120Strikes": - 37836, "Military": 37837, "\u0120Oath": 37838, "vacc": 37839, "ppings": 37840, - "052": 37841, "\u0120partName": 37842, "amping": 37843, "Reports": 37844, - "KI": 37845, "CHR": 37846, "\u0120subtly": 37847, "swers": 37848, "Blake": - 37849, "usual": 37850, "\u0120contestants": 37851, "\u0120cartridges": 37852, - "\u0120GREAT": 37853, "\u0120blush": 37854, "\u0120\u00e2\u0122\u00ba": 37855, - "472": 37856, "\u0120reasoned": 37857, "\u00e3\u0125\u00a4": 37858, "paralleled": - 37859, "\u0120dyn": 37860, "agate": 37861, "\u0120nightly": 37862, "\u00e5\u0128": - 37863, "556": 37864, "\u0120semantic": 37865, "\u0120Advoc": 37866, "\u0120!!": - 37867, "\u0120disagrees": 37868, "\u0120BW": 37869, "Veh": 37870, "\u0120harming": - 37871, "\u0120embraces": 37872, "\u0120strives": 37873, "\u0120inland": 37874, - "\u0120Kard": 37875, "\u0120heats": 37876, "\u0120Ginny": 37877, "utan": 37878, - "ernaut": 37879, "ylene": 37880, "\u0120Elev": 37881, "JD": 37882, "\u0120hars": - 37883, "\u0120Starr": 37884, "\u0120skysc": 37885, "\u0120collaborators": - 37886, "Usually": 37887, "\u0120revolutions": 37888, "\u0120STATS": 37889, - "\u0120dismantle": 37890, "\u0120confidently": 37891, "\u0120kinetic": 37892, - "Ali": 37893, "\u0120percentile": 37894, "\u0120extracting": 37895, "illian": - 37896, "estead": 37897, "\u0120physicists": 37898, "\u0120Marshal": 37899, - "\u0120fellowship": 37900, "\u0120dashed": 37901, "\u0120UR": 37902, "\u0120Sioux": - 37903, "\u0120Compact": 37904, "amide": 37905, "Python": 37906, "\u0120Leigh": - 37907, "\u0120Pharmac": 37908, "istrates": 37909, "herical": 37910, "\u0120fue": - 37911, "\u0120Emin": 37912, "\u0120({": 37913, "\u0120Neighborhood": 37914, - "\u0120disrupting": 37915, "\u0120Dup": 37916, "\u0120gland": 37917, "\u0120Sev": - 37918, "\u0120Marian": 37919, "argon": 37920, "\u0120Dund": 37921, "\u0120": 46904, "\u0120Philips": - 46905, "\u0120Kafka": 46906, "\u0120upheaval": 46907, "\u0120sentimental": - 46908, "\u0120sax": 46909, "\u0120Akira": 46910, "serial": 46911, "Matrix": - 46912, "\u0120electing": 46913, "\u0120commenter": 46914, "\u0120Nebula": - 46915, "plets": 46916, "\u0120Nadu": 46917, "\u0120Adren": 46918, "\u0120enshr": - 46919, "\u0120RAND": 46920, "financial": 46921, "\u0120Clyde": 46922, "utherford": - 46923, "\u0120signage": 46924, "\u0120deline": 46925, "\u0120phosphate": 46926, - "roversial": 46927, "fascist": 46928, "\u0120Vall": 46929, "\u0120Bethlehem": - 46930, "\u0120fors": 46931, "\u0120english": 46932, "Solid": 46933, "Nature": - 46934, "\u0120va": 46935, "\u0120Guests": 46936, "\u0120tantal": 46937, "\u0120autoimmune": - 46938, ";;;;;;;;;;;;": 46939, "\u0120Totally": 46940, "\u0120Ov": 46941, "\u0120defences": - 46942, "\u0120Coconut": 46943, "\u0120tranquil": 46944, "\u0120ploy": 46945, - "\u0120flavours": 46946, "\u0120Flask": 46947, "\u00e3\u0124\u00a8\u00e3\u0125\u00ab": - 46948, "\u0120Weston": 46949, "\u0120Volvo": 46950, "870": 46951, "\u0120microphones": - 46952, "verbal": 46953, "RPG": 46954, "\u0120iii": 46955, ";}": 46956, "028": - 46957, "\u0120headlined": 46958, "\u0120primed": 46959, "\u0120hoard": 46960, - "\u0120Shad": 46961, "\u0120ENTER": 46962, "\u0120triangular": 46963, "\u0120capit": - 46964, "lik": 46965, "\u0120Ancients": 46966, "\u0120lash": 46967, "\u0120convol": - 46968, "\u0120colonel": 46969, "enemy": 46970, "Gra": 46971, "\u0120pubs": - 46972, "utters": 46973, "\u0120assigns": 46974, "\u0120Penet": 46975, "\u0120Monstrous": - 46976, "\u0120Bowen": 46977, "ilver": 46978, "Haunted": 46979, "\u0120Ding": - 46980, "started": 46981, "plin": 46982, "\u0120contaminants": 46983, "\u0120DOE": - 46984, "ffen": 46985, "\u0120Technician": 46986, "Ry": 46987, "\u0120robbers": - 46988, "\u0120hotline": 46989, "\u0120Guardiola": 46990, "\u0120Kaufman": - 46991, "rower": 46992, "\u0120Dresden": 46993, "\u0120Alpine": 46994, "Elf": - 46995, "\u0120fmt": 46996, "\u0120Sard": 46997, "urses": 46998, "gpu": 46999, - "Unix": 47000, "\u0120unequivocally": 47001, "\u0120Citizenship": 47002, "quad": - 47003, "mire": 47004, "\u0120Sweeney": 47005, "Battery": 47006, "615": 47007, - "\u0120pancakes": 47008, "\u0120oats": 47009, "Maps": 47010, "\u0120Contrast": - 47011, "mbudsman": 47012, "\u0120EPS": 47013, "\u0120subcommittee": 47014, - "\u0120sourcing": 47015, "\u0120sizing": 47016, "\u0120Buffer": 47017, "\u0120Mandatory": - 47018, "\u0120moderates": 47019, "\u0120Patterns": 47020, "\u0120Chocobo": - 47021, "\u0120Zan": 47022, "\u0120STATES": 47023, "\u0120Judging": 47024, - "\u0120Inher": 47025, "*:": 47026, "\u0120bil": 47027, "\u0120Yen": 47028, - "\u0120exhilar": 47029, "ollower": 47030, "zers": 47031, "\u0120snug": 47032, - "maximum": 47033, "\u0120despicable": 47034, "\u0120PACK": 47035, "\u0120Annex": - 47036, "\u0120sarcastic": 47037, "\u0120latex": 47038, "\u0120tamp": 47039, - "\u0120Sao": 47040, "bah": 47041, "\u0120Reverend": 47042, "\u0120Chinatown": - 47043, "\u0120AUT": 47044, "documented": 47045, "\u0120GABA": 47046, "\u0120Canaan": - 47047, "\u0120\u00d9\u0127": 47048, "\u0120governs": 47049, "prev": 47050, - "Esc": 47051, "\u0120Estimates": 47052, "OSP": 47053, "\u0120endeavour": 47054, - "\u0120Closing": 47055, "ometime": 47056, "everyone": 47057, "\u0120worsen": - 47058, "\u0120scanners": 47059, "\u0120deviations": 47060, "\u0120Robotics": - 47061, "\u0120Compton": 47062, "\u0120sorcerer": 47063, "\u0120endogenous": - 47064, "\u0120emulation": 47065, "\u0120Piercing": 47066, "\u0120Aph": 47067, - "\u0120Socket": 47068, "\u0120bould": 47069, "\u0120OU": 47070, "\u0120Borderlands": - 47071, "\u01201863": 47072, "Gordon": 47073, "\u0120WTO": 47074, "\u0120restricts": - 47075, "\u0120mosaic": 47076, "\u0120melodies": 47077, "\u00e7\u0126": 47078, - "Tar": 47079, "\u0120disson": 47080, "\u0120Provides": 47081, "\u0120......": - 47082, "bek": 47083, "FIX": 47084, "\u0120broom": 47085, "anship": 47086, - "Doctors": 47087, "\u0120nerds": 47088, "\u0120Regions": 47089, "naissance": - 47090, "\u0120mete": 47091, "\u0120crept": 47092, "plings": 47093, "\u0120girlfriends": - 47094, "knit": 47095, "igent": 47096, "owe": 47097, "\u0120ushered": 47098, - "\u0120Baz": 47099, "Mobil": 47100, "434": 47101, "\u0120Presents": 47102, - "origin": 47103, "\u0120insomnia": 47104, "\u0120Aux": 47105, "439": 47106, - "\u0120Chili": 47107, "irsch": 47108, "GAME": 47109, "\u0120gestation": 47110, - "algia": 47111, "romising": 47112, "$,": 47113, "crow": 47114, "\u0120Inspection": - 47115, "atomic": 47116, "Relations": 47117, "JOHN": 47118, "roman": 47119, - "\u0120Clockwork": 47120, "\u0120Bakr": 47121, "mone": 47122, "MET": 47123, - "\u0120thirsty": 47124, "\u0120bc": 47125, "\u0120faculties": 47126, "Rum": - 47127, "\u0120nuance": 47128, "\u0120Darius": 47129, "pleting": 47130, "fters": - 47131, "etchup": 47132, "Registration": 47133, "\u0120KE": 47134, "Rah": 47135, - "\u0120preferential": 47136, "\u0120Lash": 47137, "\u0120HH": 47138, "Valid": - 47139, "\u0120NAV": 47140, "\u0120starve": 47141, "\u0120Gong": 47142, "zynski": - 47143, "\u0120Actress": 47144, "\u0120wik": 47145, "\u0120unaccompanied": - 47146, "lvl": 47147, "Bride": 47148, "ADS": 47149, "\u0120Commando": 47150, - "\u0120Vaughn": 47151, "Wallet": 47152, "\u0120hopping": 47153, "\u0120Vie": - 47154, "\u0120caveats": 47155, "\u0120alas": 47156, "ifled": 47157, "abuse": - 47158, "661": 47159, "\u0120ibn": 47160, "\u0120gul": 47161, "\u0120robbing": - 47162, "til": 47163, "ILA": 47164, "\u0120mitigating": 47165, "\u0120aptly": - 47166, "\u0120tyrant": 47167, "\u0120midday": 47168, "\u0120Gilmore": 47169, - "\u0120Decker": 47170, "\u0120\u00c2\u00a7\u00c2\u00a7": 47171, "partial": - 47172, "Exactly": 47173, "\u0120phenotype": 47174, "\u0120[+]": 47175, "\u0120Plex": - 47176, "\u0120Ips": 47177, "versions": 47178, "\u0120ebook": 47179, "\u0120chic": - 47180, "gross": 47181, "\":\"\"},{\"": 47182, "\u0120Surprisingly": 47183, - "Morgan": 47184, "\u0120residues": 47185, "\u0120Confederation": 47186, "infeld": - 47187, "\u0120lyr": 47188, "moderate": 47189, "\u0120perpendicular": 47190, - "VK": 47191, "\u0120synchronized": 47192, "\u0120refreshed": 47193, "\u0120adore": - 47194, "\u0120Torment": 47195, "olina": 47196, "\u01202600": 47197, "ItemTracker": - 47198, "\u0120pies": 47199, "\u0120FAT": 47200, "\u0120RHP": 47201, "048": - 47202, "\u0120RESP": 47203, "\u0120BJ": 47204, "allows": 47205, "Pand": 47206, - "\u0120unwelcome": 47207, "\u0120Voc": 47208, "\u0120Bastard": 47209, "\u0120OW": - 47210, "\u0120LAR": 47211, "\u0120Healer": 47212, "Environmental": 47213, - "\u0120Kenyan": 47214, "\u0120Trance": 47215, "\u0120Pats": 47216, "\u0120aliases": - 47217, "\u0120Garfield": 47218, "\u0120campaigner": 47219, "\u0120advancements": - 47220, "\u0120Okinawa": 47221, "\u0120Coh": 47222, "owsky": 47223, "\u0120starved": - 47224, "\u0120sizeable": 47225, "\u0120:-)": 47226, "\u0120mRNA": 47227, "\u0120suspensions": - 47228, "istar": 47229, "Scotland": 47230, "Prin": 47231, "------------------------------------------------": - 47232, "\u0120502": 47233, "\u0120teaspoons": 47234, "\u01201050": 47235, - "\u0120coercive": 47236, "\u0120Masonic": 47237, "edded": 47238, "\u0120Passenger": - 47239, "\u0120latt": 47240, "\u0120braces": 47241, "\u0120Steal": 47242, "\u0120NYT": - 47243, "\u0120Kats": 47244, "\u0120Celest": 47245, "aez": 47246, "Tu": 47247, - "\u0120Coulter": 47248, "\u00f0\u0141\u013a": 47249, "Flickr": 47250, "\u0120Wilmington": - 47251, "iths": 47252, "++;": 47253, "\u0120vending": 47254, "\u0120negro": - 47255, "\u0120Phi": 47256, "\u0120Yellowstone": 47257, "Callback": 47258, - "\u0120shampoo": 47259, "\u0120Shades": 47260, "wat": 47261, "\u0120superhuman": - 47262, "\u0120ridiculed": 47263, "\u0120holiest": 47264, "ombo": 47265, "\u0120interns": - 47266, "\u0120hone": 47267, "\u0120Paragu": 47268, "URI": 47269, "\u0120dangling": - 47270, "\u00e3\u0124\u00bb": 47271, "sov": 47272, "ictional": 47273, "availability": - 47274, "\u0120revocation": 47275, "\u0120dow": 47276, "inic": 47277, "\u0120THEIR": - 47278, "\u0120iso": 47279, "\u0120outings": 47280, "\u0120Lethal": 47281, - "\u0120)))": 47282, "\u0120inaccur": 47283, "\u0120outlandish": 47284, "\u0120anus": - 47285, "letico": 47286, "idon": 47287, "lol": 47288, "\u0120unregulated": - 47289, "\u0120succumbed": 47290, "\u0120cuff": 47291, "\u0120Wasteland": 47292, - "letal": 47293, "\u0120substr": 47294, "\u0120coffers": 47295, "\u0120automakers": - 47296, "ovi": 47297, "\u0120Xue": 47298, "\u0120Daytona": 47299, "\u0120jarring": - 47300, "\u0120fumes": 47301, "\u0120disbanded": 47302, "zik": 47303, "itton": - 47304, "\u0120strikingly": 47305, "\u0120spores": 47306, "Adapter": 47307, - ".):": 47308, "\u0120Lyndon": 47309, "ivalry": 47310, "\u0120orally": 47311, - "\u0120tumultuous": 47312, "\u0120displeasure": 47313, "\u0120cones": 47314, - "orrect": 47315, "\u0120appease": 47316, "\u0120derby": 47317, "\u0120Tripoli": - 47318, "\u0120Aless": 47319, "\u0120poked": 47320, "\u0120Guilty": 47321, - "vP": 47322, "Enough": 47323, "\u0120originals": 47324, "699": 47325, "\u0120rabbi": - 47326, "\u0120proverbial": 47327, "\u0120postpone": 47328, "elope": 47329, - "\u0120Misty": 47330, "\u0120staffed": 47331, "\u0120Unemployment": 47332, - "reditary": 47333, "\u0120diligent": 47334, "recomm": 47335, "measures": 47336, - "asin": 47337, "825": 47338, "\u0120ponds": 47339, "\u0120mmol": 47340, "\u0120SAR": - 47341, "\u0120CARE": 47342, "\u0120371": 47343, "\u0120clenched": 47344, "\u0120Corsair": - 47345, "\u0120caricature": 47346, "zn": 47347, "attach": 47348, "\u0120Schro": - 47349, "speak": 47350, "painted": 47351, "\u0120Suc": 47352, "\u0120ENT": - 47353, "\u0120cellul": 47354, "\u0120Paid": 47355, "diagn": 47356, "WHERE": - 47357, "\u0120texted": 47358, "Barn": 47359, "\u0120retracted": 47360, "\u0120Referred": - 47361, "Sav": 47362, "\u0120upkeep": 47363, "\u0120workplaces": 47364, "\u0120Tokens": - 47365, "\u0120amplify": 47366, "clinical": 47367, "\u0120multic": 47368, "mberg": - 47369, "\u0120convoluted": 47370, "Region": 47371, "565": 47372, "\u0120Topic": - 47373, "\u0120snail": 47374, "\u0120saline": 47375, "\u0120insurrection": - 47376, "\u0120Petr": 47377, "forts": 47378, "BAT": 47379, "\u0120Navajo": - 47380, "\u0120rudimentary": 47381, "\u0120Laksh": 47382, "ONDON": 47383, "Measure": - 47384, "\u0120transformer": 47385, "\u0120Goddard": 47386, "\u0120coincides": - 47387, "irin": 47388, "Rex": 47389, "\u0120Bok": 47390, "quit": 47391, "\u0120shotguns": - 47392, "\u0120proletarian": 47393, "\u0120scorp": 47394, "\u0120Ada": 47395, - "514": 47396, "\u0120slander": 47397, "recorded": 47398, "\u0120embell": 47399, - "risome": 47400, "\u0120apologizing": 47401, "\u0120Mulcair": 47402, "\u0120Gibraltar": - 47403, "Cla": 47404, "\u0120allot": 47405, "\u0120Attention": 47406, "\u0120433": - 47407, "leave": 47408, "\u0120whine": 47409, "\u0120Issa": 47410, "\u0120Faust": - 47411, "\u0120Barron": 47412, "heny": 47413, "\u0120victimized": 47414, "Jews": - 47415, "\u0120nurturing": 47416, "ettel": 47417, "Winged": 47418, "\u0120Subtle": - 47419, "\u0120flavorful": 47420, "\u0120Reps": 47421, "enged": 47422, "callback": - 47423, "\u0120directional": 47424, "\u0120clasp": 47425, "\u0120Directions": - 47426, "planet": 47427, "iculture": 47428, "Helper": 47429, "icion": 47430, - "acia": 47431, "\u0120\u00e7\u00a5\u0140": 47432, "\u0120surges": 47433, "\u0120canoe": - 47434, "\u0120Premiership": 47435, "been": 47436, "\u0120defied": 47437, "\u0120Trooper": - 47438, "\u0120tripod": 47439, "\u0120gasp": 47440, "\u0120Euph": 47441, "\u0120Ads": - 47442, "vernight": 47443, "highly": 47444, "Role": 47445, "\u0120entangled": - 47446, "\u0120Zeit": 47447, "618": 47448, "\u0120Rusty": 47449, "\u0120havens": - 47450, "\u0120Vaughan": 47451, "HAEL": 47452, "\u0120SERVICE": 47453, "/,": - 47454, "\u0120stricken": 47455, "\u0120delusions": 47456, "\u0120bis": 47457, - "\u0120Haf": 47458, "\u0120gratification": 47459, "\u0120enticing": 47460, - "UNCH": 47461, "Adams": 47462, "\u0120OLED": 47463, "\u0120Beetle": 47464, - "\u01201899": 47465, "\u0120SOFTWARE": 47466, "ategor": 47467, "VL": 47468, - "\u0120Totem": 47469, "\u0120Gators": 47470, "ATURES": 47471, "\u0120impedance": - 47472, "Registered": 47473, "\u0120Cary": 47474, "\u0120Aerial": 47475, "onne": - 47476, "enium": 47477, "\u0120dred": 47478, "\u0120Beg": 47479, "\u0120concurrently": - 47480, "\u0120superpower": 47481, "\u0120Xan": 47482, "jew": 47483, "imester": - 47484, "\u0120Dickinson": 47485, "\u00e2\u0136\u0123": 47486, "Fla": 47487, - "\u0120pree": 47488, "\u0120Rollins": 47489, "\u00a9\u00b6\u00e6": 47490, - "\u0120denomination": 47491, "\u0120Lana": 47492, "516": 47493, "\u0120inciting": - 47494, "scribed": 47495, "juries": 47496, "\u0120Wonders": 47497, "approximately": - 47498, "\u0120suspending": 47499, "\u0120mountainous": 47500, "\u0120Laugh": - 47501, "oidal": 47502, "Ns": 47503, "Detect": 47504, ")=": 47505, "\u0120Luthor": - 47506, "\u0120Schwarzenegger": 47507, "\u0120Muller": 47508, "\u0120Devi": - 47509, "ecycle": 47510, "Jar": 47511, "613": 47512, "\u0120Longh": 47513, - "Bah": 47514, "\u0120SPORTS": 47515, "nw": 47516, "\u0120refinement": 47517, - "\u0120waterways": 47518, "\u0120diner": 47519, "Blade": 47520, "683": 47521, - "Fac": 47522, "\u0120initials": 47523, "\u0120rog": 47524, "\u0120paranormal": - 47525, "BUT": 47526, "\u0120[(": 47527, "\u0120Swanson": 47528, "\u0120Mesh": - 47529, "\u00e2\u0138\u00ac": 47530, "Improve": 47531, "\u0120Radiation": 47532, - "\u0120Esther": 47533, "\u0120Esk": 47534, "\u0120Aly": 47535, "iky": 47536, - "\u0120irrad": 47537, "\u0120Buckingham": 47538, "\u0120refill": 47539, "\u0120._": - 47540, "Repe": 47541, "CONCLUS": 47542, "\u0120differentiated": 47543, "\u0120chirop": - 47544, "\u0120Atkins": 47545, "Pattern": 47546, "\u0120excise": 47547, "\u0120cabal": - 47548, "NSA": 47549, "\u0120STA": 47550, "\u0120SIL": 47551, "\u0120Paraly": - 47552, "\u0120rye": 47553, "\u0120Howell": 47554, "\u0120Countdown": 47555, - "nesses": 47556, "alysed": 47557, "\u0120resize": 47558, "\u00e3\u0124\u00bd": - 47559, "\u0120budgetary": 47560, "\u0120Stras": 47561, "wang": 47562, "\u0120apiece": - 47563, "\u0120precincts": 47564, "\u0120peach": 47565, "\u0120skyline": 47566, - "\u0120353": 47567, "popular": 47568, "Appearances": 47569, "\u0120Mechanics": - 47570, "\u0120DevOnline": 47571, "Sullivan": 47572, "Zen": 47573, "\u0120pu": - 47574, "opolis": 47575, "544": 47576, "\u0120deform": 47577, "\u0120counteract": - 47578, "\u0120Lange": 47579, "\u0120417": 47580, "Console": 47581, "774": - 47582, "\u0120nodding": 47583, "\u0120populism": 47584, "\u0120hep": 47585, - "\u0120counselling": 47586, "compliance": 47587, "UFF": 47588, "\u0120undeniably": - 47589, "\u0120railing": 47590, "\u0120Horowitz": 47591, "\u0120Simone": 47592, - "\u0120Bungie": 47593, "\u0120ak": 47594, "\u0120Talks": 47595, "xff": 47596, - "flake": 47597, "Crash": 47598, "\u0120sweaty": 47599, "\u0120banquet": 47600, - "\u0120OFFIC": 47601, "\u0120inventive": 47602, "\u0120astronomer": 47603, - "\u0120Stamford": 47604, "\u0120Scare": 47605, "\u0120GREEN": 47606, "olicited": - 47607, "\u0120rusher": 47608, "\u0120centrist": 47609, "ighting": 47610, "\u0120subclass": - 47611, "\u0120disav": 47612, "\u0120defund": 47613, "\u0120Nanto": 47614, - "ociate": 47615, "mast": 47616, "\u0120pacif": 47617, "\u0120mend": 47618, - "eers": 47619, "immigration": 47620, "ESSION": 47621, "\u0120numbering": 47622, - "\u0120laughable": 47623, "\u0120Ended": 47624, "viation": 47625, "emark": - 47626, "Pitt": 47627, "\u0120meticulous": 47628, "\u0120LF": 47629, "\u0120congratulated": - 47630, "\u0120Birch": 47631, "\u0120swayed": 47632, "\u0120semifinals": 47633, - "\u0120humankind": 47634, "matter": 47635, "\u0120Equip": 47636, "opausal": - 47637, "Said": 47638, "\u0120Layout": 47639, "\u0120voicing": 47640, "\u0120thug": - 47641, "\u0120pornographic": 47642, "IPS": 47643, "\u0120moaning": 47644, - "\u0120grievance": 47645, "\u0120confessions": 47646, "escal": 47647, "TEXTURE": - 47648, "Authent": 47649, "osaurus": 47650, "Purchase": 47651, "\u0120relegation": - 47652, "alter": 47653, "\u0120\u00c2\u0142\u00c2\u0142": 47654, "\u0120riddled": - 47655, "\u0120ogre": 47656, "\u0120Lowell": 47657, "Occup": 47658, "Eat": - 47659, "\u0120Hyder": 47660, "\u0120Adviser": 47661, "Commerce": 47662, "Hunt": - 47663, "\u0120Orth": 47664, "\u0120Competitive": 47665, "\u0120CLA": 47666, - "CDC": 47667, "\u0120salads": 47668, "Fle": 47669, "\u0120industrialized": - 47670, "`,": 47671, "\u0120OWN": 47672, "\u0120beck": 47673, "\u0120Particularly": - 47674, "oubt": 47675, "\u0120mM": 47676, "\u0120Hussain": 47677, "\u0120Chennai": - 47678, "\u0120920": 47679, "\u0120appointing": 47680, "\u0120Cullen": 47681, - ",,,,,,,,": 47682, "\u0120pores": 47683, "verified": 47684, "\u0120biochemical": - 47685, "emate": 47686, "\u0120cowardly": 47687, "\u0120Helsinki": 47688, "\u0120Ethiopian": - 47689, "SOURCE": 47690, "ERC": 47691, "estro": 47692, "\u0120biotech": 47693, - "\u0120Sour": 47694, "\u0120brewer": 47695, "Bloomberg": 47696, "\u0120intensify": - 47697, "Glass": 47698, "anco": 47699, "\u0120FDR": 47700, "greSQL": 47701, - "\u0120Fires": 47702, "\u00a9\u00b6\u00e6\u00a5\u00b5": 47703, "eco": 47704, - "1001": 47705, "\u0120Homeless": 47706, "\u0120instantaneous": 47707, "\u0120Haste": - 47708, "igel": 47709, "Diamond": 47710, "\u0120paving": 47711, "\u0120landfill": - 47712, "\u0120dads": 47713, "houn": 47714, ":]": 47715, "\u0120incendiary": - 47716, "\u0120Livingston": 47717, "\u0120Hilbert": 47718, "\u0120Checks": - 47719, "styles": 47720, "inators": 47721, "\u0120Clive": 47722, "phrine": - 47723, "\u0120chimpanzees": 47724, "\u0120pall": 47725, "\u0120JM": 47726, - "\u0120Aadhaar": 47727, "\u00f0\u013f": 47728, "\u0120achievable": 47729, - "disabled": 47730, "PET": 47731, "OOOOOOOO": 47732, "Mot": 47733, "\u0120intangible": - 47734, "\u0120ballet": 47735, "\u0120Webs": 47736, "\u0120Estimated": 47737, - "Effects": 47738, "\u0120bailed": 47739, "Joshua": 47740, "\u0120turbulence": - 47741, "\u0120occupant": 47742, "\u0120Daylight": 47743, "\u0120361": 47744, - "meet": 47745, "\u0120statically": 47746, "\u0120onlook": 47747, "\u0120ki": - 47748, "illegal": 47749, "\u0120velvet": 47750, "\u0120dehydration": 47751, - "\u0120acquies": 47752, "\u0120Rez": 47753, "akura": 47754, "\u0120Upton": - 47755, "atro": 47756, "\u0120incomprehensible": 47757, "\u0120backdoor": 47758, - "\u0120Rhino": 47759, "727": 47760, "\u0120maths": 47761, ")+": 47762, "\u0120heresy": - 47763, "\u0120df": 47764, "\u0120Roche": 47765, "\u0120Lydia": 47766, "\u0120pancreat": - 47767, "reply": 47768, "arrell": 47769, "\u0120solicitation": 47770, "\u0120circadian": - 47771, "BIP": 47772, "\u0120foray": 47773, "\u0120cryptic": 47774, "izu": - 47775, "imeo": 47776, "\u0120Tomato": 47777, "\u0120Homs": 47778, "examination": - 47779, "\u0120quarry": 47780, "\u0120Valiant": 47781, "\u0120Jericho": 47782, - "\u0120INCLUD": 47783, "\u01201840": 47784, "519": 47785, "\u0120resists": - 47786, "\u0120snapshots": 47787, "\u0120Spur": 47788, "\u0120Antiqu": 47789, - "Login": 47790, "\u0120bestselling": 47791, "\u0120antic": 47792, "\u0120Sutherland": - 47793, "\u00e3\u0124\u00a2\u00e3\u0125\u00ab": 47794, "\u0120~/": 47795, "\u0120Parm": - 47796, "\u00e8\u0125": 47797, "Pages": 47798, "intensity": 47799, "\u0120immobil": - 47800, "\u01201865": 47801, "zzo": 47802, "\u0120nifty": 47803, "\u0120fentanyl": - 47804, "\u0120Preservation": 47805, "ophen": 47806, "\u0120darts": 47807, - "\u0120Dinosaur": 47808, "pointers": 47809, "\u0120Rite": 47810, "suggest": - 47811, "awareness": 47812, "\u0120Sheridan": 47813, "\u0120stances": 47814, - "\u0120sorcery": 47815, "\u0120perjury": 47816, "\u0120Nikola": 47817, "iever": - 47818, "\u0120fiance": 47819, "\u0120Jordanian": 47820, "\u0120Balloon": 47821, - "\u0120nab": 47822, "\u0120kb": 47823, "\u0120humanities": 47824, "\u0120Tanaka": - 47825, "hillary": 47826, "\u0120consultancy": 47827, "\u0120Zub": 47828, "\u0120remission": - 47829, "\u0120confid": 47830, "CHQ": 47831, "\u0120Fug": 47832, "\u0120improvis": - 47833, "Yep": 47834, "/_": 47835, "\u0120unwillingness": 47836, "\u0120portfolios": - 47837, "055": 47838, "\u0120Instructor": 47839, "aiman": 47840, "\u0120claimants": - 47841, "Mbps": 47842, "\u0120Bye": 47843, "received": 47844, "Tweet": 47845, - "\u0120indemn": 47846, "riz": 47847, "amara": 47848, "Nat": 47849, "\u0120evaluates": - 47850, "\u0120Lur": 47851, "epad": 47852, "FOX": 47853, "\u0120Thro": 47854, - "\u0120rusty": 47855, "\u0120bedrock": 47856, "\u0120Oprah": 47857, "JB": - 47858, "\u0120manipulative": 47859, "\u0120willful": 47860, "\u0120relapse": - 47861, "\u0120extant": 47862, "Theme": 47863, "Sensor": 47864, "\u0120Stability": - 47865, "govern": 47866, "\u0120poppy": 47867, "\u0120knack": 47868, "\u0120insulated": - 47869, "\u0120Tile": 47870, "\u0120Extrem": 47871, "\u0120untold": 47872, - "\u0120converge": 47873, "\u0120refuel": 47874, "igroup": 47875, "\u0120distortions": - 47876, "\u0120ravaged": 47877, "\u0120mechanically": 47878, "\u0120Reilly": - 47879, "\u0120Nose": 47880, "\u0120Incarnation": 47881, "\u0120Becky": 47882, - "abbling": 47883, "\u0120taco": 47884, "\u0120rake": 47885, "\u0120melancholy": - 47886, "\u0120illustrious": 47887, "\u0120Dartmouth": 47888, "Guide": 47889, - "\u0120Razer": 47890, "\u0120Benz": 47891, "Ultimate": 47892, "\u0120Surprise": - 47893, "\u0120pageant": 47894, "offer": 47895, "Whoever": 47896, "\u0120wiser": - 47897, "\u0120chemist": 47898, "\u0120HELL": 47899, "\u0120Bulk": 47900, "\u0120plutonium": - 47901, "\u0120COVER": 47902, "\u00d6\u00bc": 47903, "failed": 47904, "\u0120tirelessly": - 47905, "\u0120infertility": 47906, "\u0120Trident": 47907, "\u0120Showtime": - 47908, "\u0120Civ": 47909, "Vice": 47910, "requires": 47911, "ittance": 47912, - "\u0120uncontrolled": 47913, "interesting": 47914, "561": 47915, "\u0120innovate": - 47916, "ategic": 47917, "Lie": 47918, "\u0120Selling": 47919, "Ul": 47920, - "\u0120savior": 47921, "\u0120Tosh": 47922, "\u0120swast": 47923, "PASS": - 47924, "\u0120rink": 47925, "\u0120cardio": 47926, "\u0120Iro": 47927, "udi": - 47928, "\u0120vantage": 47929, "\u0120vans": 47930, "\u0120Ni\u00c3\u00b1o": - 47931, "+=": 47932, "\u0120propagate": 47933, "": 49029, "\u0120leukemia": 49030, "\u0120eluc": 49031, "\u0120announcer": - 49032, "\u0120Lithuan": 49033, "\u0120Armageddon": 49034, "\u00e5\u0129": - 49035, "Lenin": 49036, "\u0120Ruk": 49037, "\u0120pepp": 49038, "\u0120Romantic": - 49039, "\u0120PIT": 49040, "\u0120Interstellar": 49041, "\u0120Atkinson": - 49042, "Raid": 49043, "Js": 49044, "Goal": 49045, "Course": 49046, "\u0120vanishing": - 49047, "esley": 49048, "\u0120Rounds": 49049, "Elsa": 49050, "593": 49051, - "\u0120redundancy": 49052, "\u0120STAND": 49053, "\u0120prophetic": 49054, - "\u0120habitable": 49055, "ryu": 49056, "\u0120faintly": 49057, "MODE": 49058, - "\u0120flanked": 49059, "IRC": 49060, "Awesome": 49061, "\u0120spurious": - 49062, "\u0120Zah": 49063, "\u0120MSG": 49064, "\u0120shading": 49065, "\u0120motivational": - 49066, "\u0120Santana": 49067, "\u0120SPR": 49068, "\u0120excruciating": 49069, - "omial": 49070, "\u0120Miko": 49071, "\u0120Leopard": 49072, "Abyss": 49073, - "\u0120[|": 49074, "dirty": 49075, "\u0120baths": 49076, "\u0120demoral": - 49077, "andre": 49078, "PB": 49079, "\u0120unification": 49080, "\u0120sacrament": - 49081, "\u0120[&": 49082, "\u0120priceless": 49083, "\u0120gelatin": 49084, - "\u0120emanating": 49085, "\u0120Allaah": 49086, "986": 49087, "\u0120outburst": - 49088, "\u0120eras": 49089, "\u0120XVI": 49090, "\u0120SPI": 49091, "Ott": - 49092, "\u0120Lazarus": 49093, "PLIED": 49094, "Flying": 49095, "blogs": 49096, - "Wisconsin": 49097, "Raven": 49098, "\u0120rebate": 49099, "\u0120creeps": - 49100, "\u0120Span": 49101, "\u0120Painter": 49102, "\u0120Kira": 49103, "\u0120Amos": - 49104, "\u0120Corvette": 49105, "Consumer": 49106, "\u0120Recover": 49107, - "cki": 49108, "\u0120pesky": 49109, "\u0120Invention": 49110, "Companies": - 49111, "\u0120challengers": 49112, "ademic": 49113, "\u0120Ukrainians": 49114, - "\u0120Neurolog": 49115, "\u0120Forsaken": 49116, "\u0120entrants": 49117, - "\u0120embattled": 49118, "\u0120defunct": 49119, "\u0120Glacier": 49120, - "\u0120poisons": 49121, "\u0120Horses": 49122, "makes": 49123, "\u0120Dirt": - 49124, "\u0120423": 49125, "hhh": 49126, "\u0120Transformation": 49127, "QUIRE": - 49128, "..................": 49129, "\u0120traveller": 49130, "\u0120Sexy": - 49131, "\u0120Kern": 49132, "ipolar": 49133, "\u0120ransomware": 49134, "oooooooooooooooo": - 49135, "Ec": 49136, "ruby": 49137, "Professional": 49138, "\u0120Outbreak": - 49139, "argument": 49140, "Grey": 49141, "\u0120Fifa": 49142, "\u0120CHO": - 49143, "\u0120FORM": 49144, "\u0120Amtrak": 49145, "-[": 49146, "\u0120cradle": - 49147, "\u0120antioxidants": 49148, "\u00e3\u0123\u00ae\u00e5\u00ae": 49149, - "736": 49150, "\u0120NASL": 49151, "\u0120Contributions": 49152, "Indiana": - 49153, "\u0120STEP": 49154, "CSS": 49155, "\u0120salient": 49156, "\u0120allocations": - 49157, "yrights": 49158, "\u0120mashed": 49159, "\u0120Cutter": 49160, "Sexual": - 49161, "\u0120pounded": 49162, "\u0120fanbase": 49163, "\u0120casc": 49164, - "\u0120Transparency": 49165, "\u0120analytic": 49166, "\u0120Summoner": 49167, - "\u00d7\u0140": 49168, "\u0120ADC": 49169, "detail": 49170, "\u0120vanquished": - 49171, "\u0120crabs": 49172, "arie": 49173, "Destroy": 49174, "\u0120Sack": - 49175, "\u0120transistor": 49176, "Alabama": 49177, "\u0120Koen": 49178, "\u0120Fisheries": - 49179, "cone": 49180, "\u0120annexed": 49181, "\u0120MGM": 49182, "esa": 49183, - "\u0120faked": 49184, "\u0120Congratulations": 49185, "\u0120hindered": 49186, - "\u0120correctional": 49187, "\u0120ITV": 49188, "leeve": 49189, "\u0120inappropriately": - 49190, "licks": 49191, "\u0120trespass": 49192, "\u0120paws": 49193, "\u0120negotiator": - 49194, "\u0120Christensen": 49195, "limits": 49196, "\u0120Dianne": 49197, - "\u0120elegance": 49198, "\u0120Contracts": 49199, "anke": 49200, "Obj": 49201, - "\u0120vigilance": 49202, "\u0120castles": 49203, "\u0120NAD": 49204, "\u0120Holo": - 49205, "\u0120emphatically": 49206, "\u0120Titus": 49207, "\u0120Serving": - 49208, "\u0120Richie": 49209, "\u0120Pigs": 49210, "568": 49211, "\u0120animosity": - 49212, "\u0120Attributes": 49213, "\u0120Uriel": 49214, "MQ": 49215, "myra": - 49216, "\u0120Applicant": 49217, "\u0120psychiatrists": 49218, "\u0120Vij": - 49219, "\u0120Abby": 49220, "agree": 49221, "Push": 49222, "\u0120kWh": 49223, - "hiba": 49224, "\u0120incite": 49225, "\u0120Weasley": 49226, "\u0120Taxi": - 49227, "ministic": 49228, "hyper": 49229, "\u0120Farn": 49230, "\u0120601": - 49231, "\u0120Nationwide": 49232, "Fake": 49233, "952": 49234, "\u0120maize": - 49235, "\u0120interacted": 49236, "\u0120transitioned": 49237, "\u0120parasitic": - 49238, "\u0120harmonic": 49239, "\u0120decaying": 49240, "\u0120baseless": - 49241, "nsics": 49242, "\u0120transpired": 49243, "\u0120abundantly": 49244, - "\u0120Forensic": 49245, "\u0120treadmill": 49246, "\u0120Jav": 49247, "aband": - 49248, "\u0120sshd": 49249, "\u0120frontman": 49250, "\u0120Jakarta": 49251, - "oller": 49252, "drops": 49253, "\u0120SERVICES": 49254, "romptu": 49255, - "ophical": 49256, "hospital": 49257, "bledon": 49258, "645": 49259, "\u0120midrange": - 49260, "\u0120EVENT": 49261, "culated": 49262, "rawled": 49263, "\u0120perched": - 49264, "\u0120overboard": 49265, "\u0120Peel": 49266, "\u0120Pwr": 49267, - "\u0120Carth": 49268, "\u0120COMPLE": 49269, "coe": 49270, "shall": 49271, - "\u0120deterrence": 49272, "METHOD": 49273, "\u0120Absent": 49274, "MEN": - 49275, "\u0120sill": 49276, "\u0120LEVEL": 49277, "York": 49278, "\u0120sinners": - 49279, "\u0120OPEC": 49280, "\u0120Nur": 49281, "\u0120Designs": 49282, "selection": - 49283, "\u0120unworthy": 49284, "CHA": 49285, "\u0120strengthens": 49286, - "883": 49287, "edly": 49288, "\u0120slicing": 49289, "\u0120malnutrition": - 49290, "\u0120filmmaking": 49291, "\u0120Polk": 49292, "urated": 49293, "\u0120421": - 49294, "breakers": 49295, "!''\"": 49296, "\u0120wetlands": 49297, "\u0120Discrimination": - 49298, "\u0120allowable": 49299, "\u0120steered": 49300, "\u0120Sicily": 49301, - "SAM": 49302, "\u0120mustache": 49303, "\u0120mids": 49304, "\u0120clipped": - 49305, "\u0120circulate": 49306, "\u0120brittle": 49307, "\u0120Buildings": - 49308, "raised": 49309, "\u0120Roundup": 49310, "\u0120wealthier": 49311, - "\u0120overwrite": 49312, "\u0120overpowered": 49313, "\u0120Gerrard": 49314, - "sites": 49315, "PDATED": 49316, "\u0120acutely": 49317, "\u0120Gamble": 49318, - "\u0120pim": 49319, "\u0120Kus": 49320, "Typically": 49321, "Deploy": 49322, - "\u0120Moroccan": 49323, "potion": 49324, "combe": 49325, "\u0120vigilante": - 49326, "\u0120363": 49327, "Stew": 49328, "\u0120Bagg": 49329, "\u0120resided": - 49330, "\u0120Spo": 49331, "\u0120remnant": 49332, "\u0120emptiness": 49333, - "brainer": 49334, "\u0120outpatient": 49335, "priority": 49336, "\u0120leptin": - 49337, "\u0120Payton": 49338, "\u0120Gleaming": 49339, "\u0120Shed": 49340, - "\u0120Polo": 49341, "\u0120Mormonism": 49342, "restricted": 49343, "arlane": - 49344, "wx": 49345, "\u0120creatine": 49346, "\u0120Anon": 49347, "\u0120STUD": - 49348, "\u0120JUL": 49349, "\u0120Tee": 49350, "528": 49351, "089": 49352, - "\u0120hatched": 49353, "Dispatch": 49354, "\u0120Composite": 49355, "\u0120451": - 49356, "puff": 49357, "\u0120XCOM": 49358, "\u0120Orn": 49359, "\u0120THANK": - 49360, "ENDED": 49361, "\u0120Asheville": 49362, "\u0120\u00c3\u013e": 49363, - "\u0120mango": 49364, "\u0120Slightly": 49365, "worldly": 49366, "\u0120Wander": - 49367, "\u0120Expand": 49368, "\u0120Chr": 49369, "Mist": 49370, "\u0120orthodoxy": - 49371, "\u0120UNESCO": 49372, "regate": 49373, "Elsewhere": 49374, "kie": - 49375, "irled": 49376, "\u0120topple": 49377, "\u0120adoptive": 49378, "\u0120Legs": - 49379, "dress": 49380, "\u0120Sagan": 49381, "bare": 49382, "\u0120Glou": - 49383, "Crunch": 49384, "\u0120helpers": 49385, "\u0120chronically": 49386, - "\u0120Huma": 49387, "10000": 49388, "\u0120accommodating": 49389, "\u00e4\u00ba\u0136": - 49390, "\u0120wrinkles": 49391, "\u0120dodged": 49392, "fourth": 49393, "\u0120precon": - 49394, "\u0120compressor": 49395, "\u0120Kare": 49396, "\u0120evict": 49397, - "\u0120Warwick": 49398, "imar": 49399, "\u0120modernization": 49400, "\u0120bandwagon": - 49401, "\u0120refuted": 49402, "\u0120netted": 49403, "\u0120Naples": 49404, - "\u0120Genie": 49405, "perors": 49406, "\u0120fielded": 49407, "\u0120dere": - 49408, "\u0120Parables": 49409, "lees": 49410, "\u0120trout": 49411, "aspers": - 49412, "\u0120nihil": 49413, "\u0120happiest": 49414, "\u0120floppy": 49415, - "\u0120Loft": 49416, "\u0120Heard": 49417, "\u0120unison": 49418, "\u0120lug": - 49419, "\u0120Redmond": 49420, "classic": 49421, "Supporters": 49422, "SHIP": - 49423, "GMT": 49424, "\u0120fuelled": 49425, "\u00e7\u0132": 49426, "\u0120dd": - 49427, "\u0120Eminem": 49428, "\u01201897": 49429, "NYSE": 49430, "\u0120secretaries": - 49431, "\u0120FIA": 49432, "\u0120Canaveral": 49433, "Favorite": 49434, "\u0120pomp": - 49435, "\u0120detainee": 49436, "ership": 49437, "aimon": 49438, "iour": 49439, - "\u0120Apex": 49440, "\u0120plantations": 49441, "amia": 49442, "acion": 49443, - "Rust": 49444, "\u0120towed": 49445, "\u0120Truly": 49446, "577": 49447, "\u0120sheltered": - 49448, "rider": 49449, "Wo": 49450, "\u0120lair": 49451, "\u0120Intelligent": - 49452, "improve": 49453, "matically": 49454, "\u0120etiquette": 49455, "adra": - 49456, "allo": 49457, "\u0120Juno": 49458, "anything": 49459, "\u0120Struggle": - 49460, "\u0120Predict": 49461, "\u0120Grimes": 49462, "\u0120AMERICA": 49463, - "ctx": 49464, "\u0120Situation": 49465, "WOOD": 49466, "\u0120soluble": 49467, - "meier": 49468, "\u0120intolerable": 49469, "angering": 49470, "\u0120uninterrupted": - 49471, "\u0120tooltip": 49472, "\u0120interrogated": 49473, "\u0120gunned": - 49474, "\u0120Sneak": 49475, "\u00e6\u0143\u00a6": 49476, "\u0120tether": - 49477, "\u0120crumble": 49478, "Lens": 49479, "\u0120clustered": 49480, "\u0120Syl": - 49481, "\u0120Hasan": 49482, "\u0120dystopian": 49483, "wana": 49484, "\u0120joystick": - 49485, "\u0120Thib": 49486, "ammu": 49487, "Tomorrow": 49488, "546": 49489, - "\u0120overcame": 49490, "\u0120minimized": 49491, "ceptor": 49492, "Runner": - 49493, "ENGTH": 49494, "\u0120Brenda": 49495, "\u0120Achievements": 49496, - "\u0120torches": 49497, "\u0120rapport": 49498, "\u0120Investigator": 49499, - "\u0120Handling": 49500, "relation": 49501, "grey": 49502, "815": 49503, "\u0120kcal": - 49504, "\u0120Commands": 49505, "dq": 49506, "\u0120curls": 49507, "\u0120bearer": - 49508, "\u0120cynicism": 49509, "itri": 49510, "\u0120Useful": 49511, "Bee": - 49512, "DCS": 49513, "\u0120abras": 49514, "Pract": 49515, "BILITIES": 49516, - "712": 49517, "\u0120debugger": 49518, "\u0120debtor": 49519, "\u0120Lia": - 49520, "\u0120Kers": 49521, "\u0120exacerbate": 49522, "\u0120Stacy": 49523, - "\u0120Bland": 49524, "\u0120Scenes": 49525, "\u0120branching": 49526, "\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a\u00e2\u0138\u012a": - 49527, "apeake": 49528, "\u0120salsa": 49529, "\u0120mishand": 49530, "\u0120Konami": - 49531, "\u0120Nib": 49532, "\u0120anecdote": 49533, "\u0120agreeable": 49534, - "\u00cf\u012b": 49535, "\u0120Nathaniel": 49536, "\u0120Heisman": 49537, "\u0120Beware": - 49538, "\u01201886": 49539, "spective": 49540, "691": 49541, "522": 49542, - "\u0120inhibits": 49543, "\u0120hashing": 49544, "\u01201889": 49545, "\u00e5\u00b0\u0128": - 49546, "vich": 49547, "Pure": 49548, "\u0120solidly": 49549, "\u0120aspirin": - 49550, "imaru": 49551, "\u0120streetcar": 49552, "\u0120UCS": 49553, "\u0120Judd": - 49554, "\u0120flashbacks": 49555, "pins": 49556, "\u01201440": 49557, "\u0120UNHCR": - 49558, "\u0120Symptoms": 49559, "TIT": 49560, "538": 49561, "Fra": 49562, - "%);": 49563, "\u0120ooz": 49564, "\u0120curfew": 49565, "\u0120calmed": 49566, - "\u0120participates": 49567, "TeX": 49568, "\u0120nonsensical": 49569, "\u0120fullback": - 49570, "\u0120DeL": 49571, "monkey": 49572, "hari": 49573, "\u0120metabolites": - 49574, "\u0120looted": 49575, "\u0120ALWAYS": 49576, "\u0120BCC": 49577, "Lt": - 49578, "ochet": 49579, "Bone": 49580, "\u0120vetoed": 49581, "\u0120gcc": - 49582, "\u0120CLICK": 49583, "\u01201888": 49584, "saf": 49585, "\u0120stiffness": - 49586, "\u0120lowly": 49587, "\u0120Geh": 49588, "verson": 49589, "orset": - 49590, "\u0120unforeseen": 49591, "\u0120anesthesia": 49592, "\u0120Optical": - 49593, "\u0120reconstructed": 49594, "\u0120Tup": 49595, "shows": 49596, "NEWS": - 49597, "\u0120Newspaper": 49598, "\u0120ASA": 49599, "tera": 49600, "Numbers": - 49601, "\u0120inexplicable": 49602, "\u00d7\u0133": 49603, "\u0120hardness": - 49604, "untarily": 49605, "\u0120Acer": 49606, "gradient": 49607, "ARDIS": - 49608, "\u0120woodland": 49609, "\u0120metaphors": 49610, "\u0120Wembley": - 49611, "\u0120Pavel": 49612, "philis": 49613, "\u0120rewriting": 49614, "\u0120perceptual": - 49615, "\u01201070": 49616, "worms": 49617, "\u0120Downs": 49618, "\u0120unsurprisingly": - 49619, "\u0120tagging": 49620, "flame": 49621, "\u0120litres": 49622, "\u0120bounces": - 49623, "\u0120Babe": 49624, "shut": 49625, "\u0120overdoses": 49626, "\u0120Sheila": - 49627, "\u0120Chau": 49628, "\u0120Bless": 49629, "Capture": 49630, "\u0120Significant": - 49631, "\u0120Scion": 49632, "\u0120389": 49633, "\u0120McH": 49634, "\u0120Titanium": - 49635, "\u0120Meal": 49636, "ameda": 49637, "agents": 49638, "aggressive": - 49639, "Billy": 49640, "763": 49641, "\u0120Saying": 49642, "DERR": 49643, - "itone": 49644, "Collins": 49645, "Bound": 49646, "\u0120bolted": 49647, "\u0120DMCA": - 49648, "953": 49649, "\u0120uniqueness": 49650, "\u0120epigen": 49651, "unci": - 49652, "antam": 49653, "\u0120reckoning": 49654, "chairs": 49655, "OGR": 49656, - "\u0120Senegal": 49657, "\u01201862": 49658, "relevant": 49659, "\u0120\u00c2\u00af": - 49660, "\u0120pharmacies": 49661, "\u0120Geral": 49662, "vier": 49663, "Yan": - 49664, "ORPG": 49665, "\u0120rabid": 49666, "bending": 49667, "\u0120UNITED": - 49668, "\u0120465": 49669, "Assembly": 49670, "\u0120weep": 49671, "\u0120behest": - 49672, "\u0120Mothers": 49673, "\u0120Jace": 49674, "hid": 49675, "\u0120whirlwind": - 49676, "\u0120UNIVERS": 49677, "\u0120utopian": 49678, "\u0120kidnap": 49679, - "Philipp": 49680, "Kin": 49681, "893": 49682, "\u0120livestream": 49683, "\u0120MISS": - 49684, "\u0120subversive": 49685, "\u0120Techniques": 49686, "\u0120JUSTICE": - 49687, "\u0120BASE": 49688, "\u0120387": 49689, "\u0120assailants": 49690, - "\u0120Hardcore": 49691, "\u0120sprinkled": 49692, "\u0120Pse": 49693, "\u00e9\u013c": - 49694, "printed": 49695, "\u0120Hau": 49696, "ORGE": 49697, "\u0120TOUR": - 49698, "\u0120laced": 49699, "\u0120itch": 49700, "Giving": 49701, "\u0120ported": - 49702, "781": 49703, "////////////////////////////////": 49704, "breeding": - 49705, "\u0120logger": 49706, "\u0120HOL": 49707, "innie": 49708, "Firstly": - 49709, "\u0120embryonic": 49710, "\u0120delegated": 49711, "pai": 49712, "OIL": - 49713, "\u0120centrally": 49714, "\u0120Rx": 49715, "\u0120Scouting": 49716, - "Dutch": 49717, "\u0120hereditary": 49718, "\u0120Cruiser": 49719, "sat": - 49720, "529": 49721, "\u0120Marriott": 49722, "othermal": 49723, "\u0120prohibitions": - 49724, "Earn": 49725, "\u0120Stab": 49726, "\u0120Colleges": 49727, "\u0120Belief": - 49728, "stretched": 49729, "\u0120LH": 49730, "\u0120EntityItem": 49731, "CIA": - 49732, "\u0120unrem": 49733, "\u0120laureate": 49734, "\u0120denominations": - 49735, "summary": 49736, "hler": 49737, "Spect": 49738, "\u0120Klaus": 49739, - "\u0120Beans": 49740, "\u0120insur": 49741, "\u0120PAX": 49742, "\u0120fielder": - 49743, "\u0120Vet": 49744, "\u0120Sparrow": 49745, "zie": 49746, "\u0120SQ": - 49747, "\u0120Mondays": 49748, "\u0120Offline": 49749, "\u0120Lerner": 49750, - "\u0120Extensions": 49751, "Ireland": 49752, "\u0120patronage": 49753, "\u0120contrasted": - 49754, "\u0120Mania": 49755, "hirt": 49756, "Moscow": 49757, "\u0120condemns": - 49758, "\u0120Ange": 49759, "\u0120composing": 49760, "\u0120Pepe": 49761, - "\u0120Paddock": 49762, "\u0120heterogeneity": 49763, "\u0120ideologically": - 49764, "\u0120fishes": 49765, "\u0120cursing": 49766, "\u0120Rutherford": - 49767, "\u0120Floating": 49768, "\u0120Amelia": 49769, "Tea": 49770, "Synopsis": - 49771, "\u0120stunts": 49772, "\u0120bead": 49773, "\u0120stocking": 49774, - "\u0120MILL": 49775, "obook": 49776, "massive": 49777, "\\<": 49778, "\u0120hump": - 49779, "\u0120Preferences": 49780, "EngineDebug": 49781, "geist": 49782, "\u0120Nieto": - 49783, "omever": 49784, "ishy": 49785, "evaluate": 49786, "colonial": 49787, - "Alternative": 49788, "\u0120GoPro": 49789, "\u0120Vortex": 49790, "\u0120NETWORK": - 49791, "ansky": 49792, "Secure": 49793, "\u0120Thrust": 49794, "Snake": 49795, - "\u0120parcels": 49796, "\u0120samurai": 49797, "\u0120actresses": 49798, - "Nap": 49799, "MF": 49800, "iferation": 49801, "Beer": 49802, "523": 49803, - "\u0120Ily": 49804, "ointment": 49805, "Ping": 49806, "\u0120striped": 49807, - "\u0120Mellon": 49808, "ossession": 49809, "\u0120neutron": 49810, "endium": - 49811, "\u0120aph": 49812, "\u0120Flavoring": 49813, "\u0120383": 49814, "\u0120responsiveness": - 49815, "\u0120Jindal": 49816, "\u0120Hitchcock": 49817, "Denver": 49818, "\u0120DRAGON": - 49819, "smanship": 49820, "\u0120Dupl": 49821, "\u0120sly": 49822, "\u0120webcam": - 49823, "\u0120Twain": 49824, "\u0120Darling": 49825, "iliate": 49826, "consumer": - 49827, "DIT": 49828, "\u0120namesake": 49829, "\u0120unorthodox": 49830, "\u0120funer": - 49831, "\u0120PLoS": 49832, "\u0120CONTROL": 49833, "ozyg": 49834, "oglobin": - 49835, "FACE": 49836, "ERG": 49837, "\u0120Dia": 49838, "\u0120Fiesta": 49839, - "cele": 49840, "034": 49841, "\u0120enclave": 49842, "\u00e2\u0138\u00ac\u00e2\u0138\u00ac": - 49843, "onement": 49844, "alist": 49845, "Mand": 49846, "\u0120homegrown": - 49847, "\u0120Fancy": 49848, "\u0120conceptions": 49849, "\u0120Contains": - 49850, "ureen": 49851, "\u0120reiterate": 49852, "\u0120meager": 49853, "\u0120installments": - 49854, "Spawn": 49855, "627": 49856, "\u0120photoc": 49857, "\u0120Cabrera": - 49858, "\u0120Rosenthal": 49859, "\u0120Lansing": 49860, "isner": 49861, "\u0120invests": - 49862, "\u0120UFOs": 49863, "EXP": 49864, "Hardware": 49865, "\u0120tragically": - 49866, "\u0120concedes": 49867, "ieft": 49868, "cham": 49869, "borgh": 49870, - "\u0120Schr": 49871, "\u0120Melanie": 49872, "\u0120Hoy": 49873, "\u0120visitation": - 49874, "\u0120idiosyncr": 49875, "\u0120fractions": 49876, "\u0120foreskin": - 49877, "obos": 49878, "\u0120poaching": 49879, "\u0120VIEW": 49880, "\u0120stimulates": - 49881, "\u0120Gork": 49882, "canon": 49883, "MIC": 49884, "\u0120Nemesis": - 49885, "\u0120Indra": 49886, "\u0120DMV": 49887, "\u0120529": 49888, "\u0120inspecting": - 49889, "\u0120grandma": 49890, "\u0120Whedon": 49891, "\u0120Shant": 49892, - "\u0120Purg": 49893, "ikan": 49894, "\u0120Teg": 49895, "\u0120CLR": 49896, - "zac": 49897, "Victoria": 49898, "\u0120Verify": 49899, "ionics": 49900, "\u0120partying": - 49901, "\u0120Mou": 49902, "colour": 49903, "\u0120testimonies": 49904, "lations": - 49905, "\u0120pressuring": 49906, "hiro": 49907, "acers": 49908, "\u0120fid": - 49909, "angler": 49910, "\u0120CSI": 49911, "\u0120hereafter": 49912, "\u0120dissidents": - 49913, "reporting": 49914, "iphany": 49915, "chev": 49916, "\u0120solitude": - 49917, "\u0120lobe": 49918, "\u0120indis": 49919, "\u0120credential": 49920, - "recent": 49921, "adult": 49922, "\u0120Nirvana": 49923, "\u0120Franchise": - 49924, "Layer": 49925, "Hyp": 49926, "\u0120Berkshire": 49927, "\u0120wills": - 49928, "tif": 49929, "\u0120totem": 49930, "\u0120Judah": 49931, "repair": - 49932, "Instant": 49933, "548": 49934, "\u0120embassies": 49935, "\u0120bottleneck": - 49936, "\u0120bount": 49937, "\u0120typew": 49938, "\u0120Alvin": 49939, "jing": - 49940, "imilar": 49941, "Rush": 49942, "\u0120brim": 49943, "\u0120HELP": - 49944, "Aim": 49945, "]''": 49946, "\u0120passively": 49947, "\u0120bounded": - 49948, "\u0120Rated": 49949, "\u0120criminality": 49950, "\u0120biomark": - 49951, "\u0120dispatcher": 49952, "\u0120Towards": 49953, "\u0120+++": 49954, - "righteous": 49955, "frog": 49956, "\u0120Panc": 49957, "Carter": 49958, "032": - 49959, "\u00e6\u00a9\u0141": 49960, "\u0120ultraviolet": 49961, "\u0120Licensed": - 49962, "\u0120Tata": 49963, "\u0120Blessing": 49964, "\u0120GAM": 49965, "\u0120chemically": - 49966, "\u0120Seaf": 49967, "\u0120RELE": 49968, "\u0120Mercenary": 49969, - "capitalist": 49970, "\u0120formulations": 49971, "\u0120annihilation": 49972, - "\u0120Verb": 49973, "\u0120Argon": 49974, "\u0120unloaded": 49975, "\u0120morphed": - 49976, "\u0120conquering": 49977, "backer": 49978, "IELD": 49979, "\u0120thefts": - 49980, "\u0120frontrunner": 49981, "\u0120Royale": 49982, "\u0120Fundamental": - 49983, "elight": 49984, "Chip": 49985, "necessary": 49986, "ayn": 49987, "\u0120Slip": - 49988, "\u0120448": 49989, "cerned": 49990, "Pause": 49991, "\u0120shockingly": - 49992, "\u0120ABV": 49993, "\u0120composure": 49994, "733": 49995, "\u0120Motorsport": - 49996, "ahime": 49997, "Murray": 49998, "Mach": 49999, "\u0120grids": 50000, - "\u0120debian": 50001, "\u0120furthermore": 50002, "\u0120dexterity": 50003, - "\u0120Collections": 50004, "oslov": 50005, "ilage": 50006, "bj": 50007, "\u0120Monteneg": - 50008, "\u0120strutConnector": 50009, "\u0120massacres": 50010, "\u0120briefs": - 50011, "fetched": 50012, "uvian": 50013, "olition": 50014, "Failure": 50015, - "emonic": 50016, "\u0120flared": 50017, "\u0120claimant": 50018, "\u0120cures": - 50019, "\u0120giveaways": 50020, "\u0120Substance": 50021, "alions": 50022, - "\u0120cringe": 50023, "\u0120Kul": 50024, "\u0120aristocracy": 50025, "\u0120Ulster": - 50026, "olated": 50027, "housing": 50028, "\u0120MIS": 50029, "\u0120glared": - 50030, "\u0120Wilhelm": 50031, "needs": 50032, "lambda": 50033, "builders": - 50034, "\u0120VIS": 50035, "\u0120radiator": 50036, "\u0120Ghostbusters": - 50037, "\u0120436": 50038, "actual": 50039, "\u0120herds": 50040, "\u00c3\u00a7a": - 50041, "watching": 50042, "\u0120countering": 50043, "Charge": 50044, "\u0120charred": - 50045, "\u0120warheads": 50046, "\u0120iodine": 50047, "\u0120Macy": 50048, - "041": 50049, "\u0120departures": 50050, "\u0120Sins": 50051, "\u0120dyed": - 50052, "\u0120Concepts": 50053, "gado": 50054, "713": 50055, "\u0120quotations": - 50056, "\u0120gist": 50057, "\u0120Christy": 50058, "\u0120antigen": 50059, - "\u0120Hemp": 50060, "\u0120Drawn": 50061, "\u0120Barg": 50062, "ezvous": - 50063, "\u0120paternity": 50064, "\u0120ardu": 50065, "\u0120Anchorage": 50066, - "\u0120Rik": 50067, "\u0120overloaded": 50068, "\u0120Username": 50069, "\u0120Tammy": - 50070, "\u0120Nau": 50071, "\u0120Cellular": 50072, "\u0120waning": 50073, - "\u0120rodent": 50074, "\u0120Worcester": 50075, "ilts": 50076, "\u0120Tad": - 50077, "\u0120dwellings": 50078, "\u0120bullish": 50079, "431": 50080, "\u0120retaliate": - 50081, "\u0120migraine": 50082, "\u0120Chevron": 50083, "CHECK": 50084, "\u0120donkey": - 50085, "crim": 50086, "SPA": 50087, "\u0120Analog": 50088, "\u0120marquee": - 50089, "\u0120Haas": 50090, "Bir": 50091, "\u0120GDDR": 50092, "\u0120Downloads": - 50093, "\u0120willpower": 50094, "\u0120Forth": 50095, "\u0120Recorded": 50096, - "\u0120impossibility": 50097, "\u0120Logged": 50098, "\u0120Franks": 50099, - "\u0120Ratt": 50100, "initions": 50101, "\u0120cleaners": 50102, "\u0120sorely": - 50103, "\u0120flickering": 50104, "\u0120Examination": 50105, "catching": - 50106, "alloween": 50107, "Msg": 50108, "\u0120dunno": 50109, "Fa": 50110, - "\u0120dysph": 50111, "crazy": 50112, ".''''.": 50113, "\u0120mainline": 50114, - "\u0120cs": 50115, "\u0120ptr": 50116, "\u0120Wally": 50117, "igun": 50118, - "951": 50119, "\u0120Bigfoot": 50120, "fights": 50121, "\u0120retrieving": - 50122, "Jr": 50123, "\u0120duplication": 50124, "\u0120Explan": 50125, "\u0120relational": - 50126, "\u0120quaint": 50127, "\u0120biscuits": 50128, "\u0120ado": 50129, - "\u0120shudder": 50130, "\u0120antidote": 50131, "blooded": 50132, "ksh": - 50133, "\u0120sauces": 50134, "\u0120reinvest": 50135, "\u0120dispensary": - 50136, "\u0120Diver": 50137, "\u01209000": 50138, "student": 50139, "\u0120insepar": - 50140, "escap": 50141, "\u0120toddlers": 50142, "\u0120GPIO": 50143, "\u0120Assignment": - 50144, "headers": 50145, "\u0120lackluster": 50146, "\u0120aback": 50147, - "956": 50148, "\u0120toolbar": 50149, "745": 50150, "\u0120oust": 50151, "\u0120contemplation": - 50152, "\u0120PRESIDENT": 50153, "\u0120458": 50154, "======": 50155, "\u0120guaranteeing": - 50156, "\u0120Heist": 50157, "\u0120Cannes": 50158, "\u013b\u00bd": 50159, - "\u0120collaborator": 50160, "\u0120Amp": 50161, "\u0120gou": 50162, "\u0120SHALL": - 50163, "stories": 50164, "783": 50165, "\u0120mobilized": 50166, "\u0120brood": - 50167, "\u0120LU": 50168, "\u0120\u00f0\u0141\u0133": 50169, "\u0120refin": - 50170, "\u0120Anthropology": 50171, "vind": 50172, "illi": 50173, "\u0120warranties": - 50174, "\u0120Babel": 50175, "\u0120swath": 50176, "\u0120caches": 50177, - "\u0120antagonists": 50178, "artifacts": 50179, "\u0120hotly": 50180, "\u0120Starts": - 50181, "\u0120G\u00c3\u00b6": 50182, "zag": 50183, "!!!!!": 50184, "\u0120scourge": - 50185, "\u0120conspiring": 50186, "ruits": 50187, "reverse": 50188, "\u0120Sheen": - 50189, "\u0120Jesuit": 50190, "\u0120Giovanni": 50191, "adies": 50192, "\u0120buttocks": - 50193, "earcher": 50194, "acan": 50195, "\u0120volleyball": 50196, "\u0120shrouded": - 50197, "\u0120scoreboard": 50198, "bats": 50199, "\u0120IPM": 50200, "\u0120asses": - 50201, "\u0120deregulation": 50202, "\u0120Telegram": 50203, "\u0120Reboot": - 50204, "\u01207000": 50205, "\u0120Canary": 50206, "\u0120kernels": 50207, - "\u0120Fran\u00c3\u00a7ois": 50208, "\u0120Duff": 50209, "\u0120Pon": 50210, - "\u0120Leica": 50211, "\u0120Garmin": 50212, "\u0120orphans": 50213, "\u0120Claudia": - 50214, "\u0120calendars": 50215, "\u0120Leilan": 50216, "ento": 50217, "Rocket": - 50218, "\u0120brunch": 50219, "\u0120Hawking": 50220, "ainers": 50221, "\u0120sensibilities": - 50222, "\u0120kW": 50223, "\u0120Kand": 50224, "\u0120reclaimed": 50225, "\u0120interestingly": - 50226, "\u00d7\u00a9": 50227, "romy": 50228, "JM": 50229, "\u0120Enhancement": - 50230, "bush": 50231, "Skip": 50232, "\u0120rappers": 50233, "\u0120gazing": - 50234, "pedia": 50235, "athlon": 50236, "Revolution": 50237, "\u0120snipers": - 50238, "\u0120reverted": 50239, "\u0120conglomerate": 50240, "Terry": 50241, - "794": 50242, "\u0120harsher": 50243, "\u0120desolate": 50244, "\u0120Hitman": - 50245, "Commission": 50246, "\u0120(/": 50247, "\u00e2\u0122\u00a6.\"": 50248, - "Compar": 50249, "\u0120amplification": 50250, "ominated": 50251, "\u0120regress": - 50252, "\u0120Collider": 50253, "\u0120informants": 50254, "\u0120gazed": - 50255, "<|endoftext|>": 50256}' - headers: - Content-Length: - - '1042301' - Content-MD5: - - 3/7CWomLH15Wm+xN/9flwA== - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:22 GMT - ETag: - - '0x8D896E8409BE786' - Last-Modified: - - Wed, 02 Dec 2020 17:32:33 GMT - Server: - - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 - x-ms-blob-type: - - BlockBlob - x-ms-lease-status: - - unlocked - x-ms-meta-Mtime: - - '2019-09-17T04:52:11.269000000Z' - x-ms-request-id: - - de9a90a1-f01e-0041-7b9a-0f4fb6000000 - x-ms-version: - - '2009-09-19' - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_b5e32a3c-f43e-4e18-a32d-466403afa844.yaml b/docs/cassettes/summarization_b5e32a3c-f43e-4e18-a32d-466403afa844.yaml deleted file mode 100644 index de8aacdad7276..0000000000000 --- a/docs/cassettes/summarization_b5e32a3c-f43e-4e18-a32d-466403afa844.yaml +++ /dev/null @@ -1,16531 +0,0 @@ -interactions: -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nCommands:\n1. - Google Search: \"google\", args: \"input\": \"\"\n2. Browse Website: - \"browse_website\", args: \"url\": \"\", \"question\": \"\"\n3. - Start GPT Agent: \"start_agent\", args: \"name\": \"\", \"task\": \"\", - \"prompt\": \"\"\n4. Message GPT Agent: \"message_agent\", args: \"key\": - \"\", \"message\": \"\"\n5. List GPT Agents: \"list_agents\", - args:\n6. Delete GPT Agent: \"delete_agent\", args: \"key\": \"\"\n7. Clone - Repository: \"clone_repository\", args: \"repository_url\": \"\", \"clone_path\": - \"\"\n8. Write to file: \"write_to_file\", args: \"file\": \"\", - \"text\": \"\"\n9. Read file: \"read_file\", args: \"file\": \"\"\n10. - Append to file: \"append_to_file\", args: \"file\": \"\", \"text\": \"\"\n11. - Delete file: \"delete_file\", args: \"file\": \"\"\n12. Search Files: - \"search_files\", args: \"directory\": \"\"\n13. Analyze Code: \"analyze_code\", - args: \"code\": \"\"\n14. Get Improved Code: \"improve_code\", - args: \"suggestions\": \"\", \"code\": \"\"\n15. - Write Tests: \"write_tests\", args: \"code\": \"\", \"focus\": - \"\"\n16. Execute Python File: \"execute_python_file\", - args: \"file\": \"\"\n17. Generate Image: \"generate_image\", args: \"prompt\": - \"\"\n18. Send Tweet: \"send_tweet\", args: \"text\": \"\"\n19. - Do Nothing: \"do_nothing\", args:\n20. Task Complete (Shutdown): \"task_complete\", - args: \"reason\": \"\"\n\nResources:\n1. Internet access for searches - and information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered - Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1. - Continuously review and analyze your actions to ensure you are performing to - the best of your abilities.\n2. Constructively self-criticize your big-picture - behavior constantly.\n3. Reflect on past decisions and strategies to refine - your approach.\n4. Every command has a cost, so be smart and efficient. Aim - to complete tasks in the least number of steps.", "role": "system"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '2378' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFNNbxs5DL37VxBz2gXGhuOP2M1tu1j0EBQNivSwWBQGreGMuZXEqchJ - 6hT574U0jp2i6GWAeU+PfKT0vk8AKm6qG6jcAc2F3k//evup/3eZ2lteO+3ef1httv/s12/576/d - LVd1Vsj+f3L2opo5Cb0nY4kj7RKhUa56tVlslvPlarsqRJCGfJZ1vU1XMg0cebqYL1bT+WZ6tT2p - D8KOtLqB/yYAAN/LN/uMDX2rbmBevyCBVLGj6uZ8CKBK4jNSoSqrYbSqvpBOolEs1u8PBH2SB26o - ASchYGwUZDDPkQBByUBaaIfo8mjo2ZgUWkkQMGLHsQND/aI1cHR+aDKghMkdCnUg4GiUIlkN+ySP - muFH2isbFZFRQmcFZTvAu7t7wI6iaQ0texrbUKBoNThpCDCiPyprDRgb6ChSwqI/jTWDWzpeZhlt - EahhKseyatxZ/nvdj76RG8qZ0ln6Ulmiwh+JsKnhMbFRDQ15MvqzHq08vRTlUDZZnDT0iz0O2JGC - JLBHItMZfCSVITlSwAdkj3tPZ7svWwN0jlRrCBQkHX9aR27w7u5+upytTzOUi8n3UTx2xf0M7ii1 - kgJGR0AP6IeCA4X+gMpPpGV1HAcZFJR8O0VVUh27UNuyY4ruCBzH4qdFSRw9qCU06thBotZTeSlg - AtIbB34iwALpDPJz06MaBWAFS8iRGpAIDRrC0GfVB2eypwSL+WI5e/1sE7WDYo5OHLw/4c/nHHjp - +iR7PfFnvOXIetglQpWY37ya9FVhnycAn0vehp8iVPVJQm87ky8Uc8H19Slv1SXmF/bqantiTQz9 - hbjebH8n2zVkyF5fxbYaLXLsLhXmZ59l0Gpc3q7l2FHqE48pbvsdvblebPbr5eq6mjxPfgAAAP// - AwDjlWUq0wQAAA== - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db9dc58f6a-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:26 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=iww.pHio.0yq.dLx4R1eHDbSbtpzWb6sh9ruHIljc_Y-1727303486-1.0.1.1-HZWiqs2hiIyxWxWdktiR0Dl5w_mnD9kxLnJ9gwYShWtCL1MX9d_E0nGRvV0MM90R5jti55tSFn7AqOtfDmQ4ug; - path=/; expires=Wed, 25-Sep-24 23:01:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=Wm8DwyRG8g28NtFT2lPhLx6PTL3cFXCIDbNAo6RGhxQ-1727303486369-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '1397' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4994' - x-ratelimit-remaining-tokens: - - '3996476' - x-ratelimit-reset-requests: - - 69ms - x-ratelimit-reset-tokens: - - 52ms - x-request-id: - - req_63bdd186a1f94d56890f829e7d4de5a9 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\ninquired - about current trends in anticancer drug discovery;\nselected a target;\nrequested - a scaffold targeting these compounds;\nOnce the compound was identified, the - model attempted its synthesis.\n\nThey also discussed the risks, especially - with illicit drugs and bioweapons. They developed a test set containing a list - of known chemical weapon agents and asked the agent to synthesize them. 4 out - of 11 requests (36%) were accepted to obtain a synthesis solution and the agent - attempted to consult documentation to execute the procedure. 7 out of 11 were - rejected and among these 7 rejected cases, 5 happened after a Web search while - 2 were rejected based on prompt only.\nGenerative Agents Simulation#\nGenerative - Agents (Park, et al. 2023) is super fun experiment where 25 virtual characters, - each controlled by a LLM-powered agent, are living and interacting in a sandbox - environment, inspired by The Sims. Generative agents create believable simulacra - of human behavior for interactive applications.\nThe design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.\n\nMemory stream: is a long-term memory module (external database) that - records a comprehensive list of agents\u2019 experience in natural language.\n\nEach - element is an observation, an event directly provided by the agent.\n- Inter-agent - communication can trigger new natural language statements.\n\n\nRetrieval model: - surfaces the context to inform the agent\u2019s behavior, according to relevance, - recency and importance.\n\nRecency: recent events have higher scores\nImportance: - distinguish mundane from core memories. Ask LM directly.\nRelevance: based on - how related it is to the current situation / query.\n\n\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\n\nPrompt LM with 100 most - recent observations and to generate 3 most salient high-level questions given - a set of observations/statements. Then ask LM to answer those questions.\n\n\nPlanning - & Reacting: translate the reflections and the environment information into actions\n\nPlanning - is essentially in order to optimize believability at the moment vs in time.\nPrompt - template: {Intro of an agent X}. Here is X''s plan today in broad strokes: 1)\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\nEnvironment information is present in a tree structure.\n\n\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\nProof-of-Concept - Examples#\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\nYou are - {{ai-name}}, {{user-provided AI bot description}}.\nYour decisions must always - be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1. - {{user-provided goal 1}}\n2. {{user-provided goal 2}}\n3. ...\n4. ...\n5. ...\n\nConstraints:\n1. - ~4000 word limit for short term memory. Your short term memory is short, so - immediately save important information to files.\n2. If you are unsure how you - previously did something or want to recall past events, thinking about similar - events will help you remember.\n3. No user assistance\n4. Exclusively use the - commands listed in double quotes e.g. \"command name\"\n5. Use subprocesses - for commands that will not terminate within a few minutes", "role": "system"}], - "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4382' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTBbhtHDL37K4g9S4Yky7Hgm3NJ2gaogaRAk6YwqFnuLuNZcj3kSJYD - /3swu7LsHnoRBD6S+94jhz/PACquq2uoQoce+iHOb97/NXxdfPu2Wtx+fvrj4dPi749f729+899x - uH2oZqVCtz8o+EvVedB+iOSsMsEhETqVrsur1dXF4mK9WY9ArzXFUtYOPl/rvGfh+WqxWs8XV/Pl - 5ljdKQey6hr+OQMA+Dn+Fp5S02N1DYvZS6QnM2ypuj4lAVRJY4lUaMbmKF7NXsGg4iQj9S8dgdOj - Q80WshkZIAxJizRoNGSjGlQAxTmgBEpQp9yO6bqjdJjBvqNEgOCYWnLYo4FRpOBUzwDBAjaNxnoE - Ej1ksgmRGhCKa5plQu0g3pHxE9XnUJi9EMFoCljXiazwSWz3pVcsBoMrcIwc2EdqNnbesu4JBxWb - QSSsWdqSiOBkDkYO2sC96F4gdNRzwAhTAWBL4nYOf+Yxabk88TrxtxmsYT/KDoGGUc++40hwNYUT - /TgaMCTuMXE8ADZOCfa0BSNMoSM7h+/yXW7qmsvaYIyHGRQVZCHxlgy8I/hAQgmddwQ3IzP4zH2O - WEpezF9dwo6TZ4wQOkwYnJIBi1P5DyxlDij1Vh+BZMdJpSfxGWTnyE/FnHEUW5axb9EdVdq5U+qh - p17LoIeIIiztNLtETRlyye4pdChsvRWPbaJH0OUeBbbU4Y41TRMtwtkpeC7mxah7g0YTUE+pqAPT - wBhPVTYDy6EDLHIaTf3Er+amycbjYtZAu1IZVFN9FDA5+wnNj54WuaxicJNdP9x+KRoAs6tor9mm - oYMdzKkH79BBh2I7le/WNJDUJB4PkG1yS9BzwggRpc3Y0uR2g4FmsGfvwAYK3HCAVjFOSxlUzBOy - lAXquO0it52XfuwGg5ZHWcRP9kbGLUf2A7BZJjt/+4QTNdmwnBHJMR7jz6ebELUdkm7tiJ/iDQtb - d5cITaW8f3MdqhF9PgP4d7w9+T/npBqS9oPfud6TlIab9dXUr3o9ea/o8t3miLo6xjfAYnn5f3V3 - NTlytDc3rJo4srSvLRYnoqPSahrXXcPSUhoSTyetGe4ucLW8fLfc0KY6ez77BQAA//8DAD1dlaHg - BQAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db98394d13-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:26 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=0yPyX3WkjYX5lHpJaMJb5tEtNdL7z_krO36Pxb0Ni1c-1727303486-1.0.1.1-IjH8Sr7nvtGCm3WewKu6KWCpqLOTl9Bjg2W4HW8PrHLulBuC8q0RJZv90Yk22KR8Kix7O4IolYF6HQNUO8eHJg; - path=/; expires=Wed, 25-Sep-24 23:01:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=8.vrQ5aAbPsWTdvqeyJv.xuqLQsRVoRL_DDI_sC_v5A-1727303486765-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '1910' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4993' - x-ratelimit-remaining-tokens: - - '3995291' - x-ratelimit-reset-requests: - - 82ms - x-ratelimit-reset-tokens: - - 70ms - x-request-id: - - req_1b8484955108ac258ff92557abf05b3e - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nConversatin - samples:\n[\n {\n \"role\": \"system\",\n \"content\": \"You will get - instructions for code to write.\\nYou will write a very long answer. Make sure - that every detail of the architecture is, in the end, implemented as code.\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\n\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\n\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code''s language, - and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nYou will start - with the \\\"entrypoint\\\" file, then go to the ones that are imported by that - file, and so on.\\nPlease note that the code should be fully functional. No - placeholders.\\n\\nFollow a language and framework appropriate best practice - file naming convention.\\nMake sure that files contain all imports, types etc. - Make sure that code in different files are compatible with each other.\\nEnsure - to implement all code, if you are unsure, write a plausible implementation.\\nInclude - module dependency or package manager dependency definition file.\\nBefore you - finish, double check that all parts of the architecture is present in the files.\\n\\nUseful - to know:\\nYou almost always put different classes in different files.\\nFor - Python, you always create an appropriate requirements.txt file.\\nFor NodeJS, - you always create an appropriate package.json file.\\nYou always add a comment - briefly describing the purpose of the function definition.\\nYou try to add - comments explaining very complex bits of logic.\\nYou always follow the best - practices for the requested languages in terms of describing the code written - as a defined\\npackage/project.\\n\\n\\nPython toolbelt preferences:\\n- pytest\\n- - dataclasses\\n\"\n },\n # \u2026 same conversation as earlier, ended with - \"Make your own assumptions and state them explicitly before starting\".\n {\n \"role\": - \"assistant\",\n \"content\": \"Assumptions:\\n1. Model: The model will contain - the game''s data, such as level information, character states, and enemy positions.\\n2. - View: The view will handle the game''s visuals, including rendering the game - objects, backgrounds, and updating the display.\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\n\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\"\n },\n {\n \"role\": \"user\",\n \"content\": - \"Please now remember the steps:\\n\\nThink step by step and reason yourself - to the right decisions to make sure we get it right.\\nFirst lay out the names - of the core classes, functions, methods that will be necessary, As well as a - quick comment on their purpose.\\n\\nThen you will output the content of each - file including ALL code.\\nEach file must strictly follow a markdown code block - format, where the following tokens must be replaced such that\\nFILENAME is - the lowercase file name including the file extension,\\nLANG is the markup code - block language for the code''s language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nPlease - note that the code should be fully functional. No placeholders.\\n\\nYou will - start with the \\\"entrypoint\\\" file, then go to the ones that are imported - by that file, and so on.\\nFollow a language and framework appropriate best - practice file naming convention.\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\n\"\n }\n]\nChallenges#\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:", "role": "system"}], "model": "gpt-4o-mini", - "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4430' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUTY8bNwy9+1cQc+nFXvgL2Y9bWiCXHpIGzaEIAkMjcWYYa0SV5KzjBPvfC2m8 - 3k2AXmyMyEe+90TqxwKgodA8QOMHZ37McfX290/5H/lDe/z48fjuz/jX+93u9O/uFD7cfzg3y4Lg - 9it6e0bdeB5zRCNOc9gLOsNSdXO7vd2td/u7fQ2MHDAWWJ9ttefVSIlW2/V2v1rfrjZ3F/TA5FGb - B/i8AAD4UX8LzxTwW/MA6+XzyYiqrsfm4ZoE0AjHctI4VVJzyZrlS9BzMkyV+t8Dguf0iKKucAee - LFJCBQdqMnmbBAO4nIWdH6BjgZOQUerBc0BonWIATiU/o6eOSrr4gQwr+AZKjysPIAVKc2kMYAw2 - UDqCGuZVe16V/yVQwGTUncGzIPjoVAulFKCbki9EdVk/s/AjhaKhuo8zKSofIyarmkpDcDA6OQY+ - paJhdDbzmhQFcMyDU/qOCjZUNIu55BG4g3qPRW43xXi+9ndxbnUiG3gyyNF5HDgGlEItDCgFZAwt - qkEW563caHWwo4iQ3FgyigqW3iX6XtnOujDpJLPJY3ZGLUWyMzgvrAqBug4Fk9VK+qvFLirD6I7F - MtVpzLMLri1Ei8I6gkt4JDzN7cpECMeIUhtywmRa1Dvo3YhzkiIetVyGUEf+Mi7p+dr9L65DQHMU - 9QbehkCzZfG8rP1/mriB+iFSP1iZuUgjXfCCvZNQTXyt7jcFE0epBIIzBy1WnyaphnCKZ5hyMf69 - N25RYLve7m5ez79gN6krO5imGC/nT9eFitxn4VYv8et5R4l0OAg65VSWR41zU6NPC4AvdXGnn3ax - ycJjtoPxEVMpeHd/P9drXt6Ll+hme1nrxthcfBVYb/4Xd7gY/eoBaGaOlPqXEusr0aq00bMajoeO - Uo+Sheb3oMuHTdvu32ze3Hb3zeJp8R8AAAD//wMAScM3Px0FAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db88eb4d02-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:26 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=.oh9SuNQpNMJ1WBHXBXIHpNw8iH46mQfa03iV7JXpqg-1727303486-1.0.1.1-aJAUx7Su_S0u4keZGAOe27SRSyAQmrMQd8eSlzvJjSxuxo93pagbbB7x5NmwXV8FXgjqIY9bb7USE.3_IdLhzQ; - path=/; expires=Wed, 25-Sep-24 23:01:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=DLZL_4xsnd1rJT2AIZwrgYcm.OPwVGacZjFqRkq4wZw-1727303486902-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '1994' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998934' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 15ms - x-request-id: - - req_bc117d89b08573272f8187ae73f8a2f5 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nLLM - Powered Autonomous Agents | Lil''Log\n\nLil''Log\n\n\nPosts\n\n\nArchive\n\n\nSearch\n\n\nTags\n\n\nFAQ\n\n\nemojisearch.app\n\n LLM - Powered Autonomous Agents\n \nDate: June 23, 2023 | Estimated Reading Time: - 31 min | Author: Lilian Weng\n\n\n \n\n\nTable of Contents\n\nAgent System - Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent - Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n\nComponent - Three: Tool Use\n\nCase Studies\n\nScientific Discovery Agent\n\nGenerative - Agents Simulation\n\nProof-of-Concept Examples\n\n\nChallenges\n\nCitation\n\nReferences\n\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\nAgent System Overview#\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\n\nPlanning\n\nSubgoal and decomposition: The agent breaks down - large tasks into smaller, manageable subgoals, enabling efficient handling of - complex tasks.\nReflection and refinement: The agent can do self-criticism and - self-reflection over past actions, learn from mistakes and refine them for future - steps, thereby improving the quality of final results.\n\n\nMemory\n\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\n\n\nTool use\n\nThe agent learns to call external APIs for extra - information that is missing from the model weights (often hard to change after - pre-training), including current information, code execution capability, access - to proprietary information sources and more.", "role": "system"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '2287' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxBz2hgew3a8ceKbFygWARwgKBIsirowODMcjRoNORU1 - /ugi/72QbMfZQy866Il8T+Qjfw4AMltlS8jKBkPZdi5ffXvt/rCrp99qP3ud1Ac9rv+Z3Jnf5Wul - TTaKEVL8TWW4RI1LaTtHwQqf4NITBopZp4vZ4nZyO7+fJ6CVilwMM13I55K3lm0+m8zm+WSRT+/P - 0Y3YkjRbwp8DAICf6Yw6uaJDtoTJ6HLTkioaypYfjwAyLy7eZKhqNSCHbHQFS+FAnKS/NATogy0d - wSZbr5/gWfbkqYJVH4SllV5hZYiDbjIojrC2ziLDD2IDldWyVyWF0BCUwiV1AaSGXi0bcOgNgUM2 - PRqC9G+FL+v1k94AXoJ8igxenCMPtXjAKzMm5jE8BpA+OMukgKBHDdSC7MjvLO0hNBjAcun6Kmnx - RNCiZYg9EY4pltA5ZLZsRtBSK/44AuQKgoiDXmkMG97wdAzD4fP54XAIlnfidjEn6htUlPKpjU0G - y0FAW0yytS+MoNOUU8nVuafaUZleBgHbdl52BHUfek+ACdDxhmeR8SkJinwKJQYy4u2/VJ0pGvEh - D+Rb+GI5T707BHCEPqq8SZRO2JzfeApoIwKWa/EtJg2njtAhkGd0oEE8GroZb/g2KniJZXhVGg4B - nZP9pfJRO5YlqV5jV8+PeupTVaVSoPuFKuopscPCOhssKRR0lFjqhqyHzlMePFqmCt5Y9o4qQ+NY - /M9WbKxpnDVNUNiht9EKnRepc6nzi8/ogHHidATal000VLTs9+eXpOAbFsfV98dRrN++xPT9aLhO - ovUtuujTaMUYaIjJo4schaMWNHbdn3yHTiV+1dPV6U3sOhtSqLFMjYKit646kyhdjPt56jzVvWKc - fO6dO9+/f4yxExPp9Yx/3NeWrTZbT6jCcWQ1SJcl9H0A8FdaF/0vGyDrvLRd2AZ5I44J57OHU77s - uqWu6PTu/owGCeiuwNeHxf+FbatoM6eftk52kmjZXDNMPnSmj2anyd3Wlg35ztvTEqq77bQo5nfT - u0X9kA3eB/8BAAD//wMAm/ObXpIFAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db7c6a8f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:26 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=fgUmKn0umHvB_8cZpM0M1uo06q3KqH0vlq8m2vxFKcI-1727303486-1.0.1.1-lPrlXGmJ9dHcEyGE0elIaJajqB32gXaSyXK6vyjAE9WqQ5c5hR4Nzv2Z5zvWA7dQ60tC5.fNN6nSVHuIX4UYOQ; - path=/; expires=Wed, 25-Sep-24 23:01:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=Hxbhyt_qOVKujrgiGks73wCQGjtzgFeRUh6VYNasuFU-1727303486950-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2024' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4996' - x-ratelimit-remaining-tokens: - - '3997740' - x-ratelimit-reset-requests: - - 45ms - x-ratelimit-reset-tokens: - - 33ms - x-request-id: - - req_7d755d52c1f86b4b70784af50c5c5a8d - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nFig. - 4. Experiments on AlfWorld Env and HotpotQA. Hallucination is a more common - failure than inefficient planning in AlfWorld. (Image source: Shinn & Labash, - 2023)\nChain of Hindsight (CoH; Liu et al. 2023) encourages the model to improve - on its own outputs by explicitly presenting it with a sequence of past outputs, - each annotated with feedback. Human feedback data is a collection of $D_h = - \\{(x, y_i , r_i , z_i)\\}_{i=1}^n$, where $x$ is the prompt, each $y_i$ is - a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ is the corresponding - human-provided hindsight feedback. Assume the feedback tuples are ranked by - reward, $r_n \\geq r_{n-1} \\geq \\dots \\geq r_1$ The process is supervised - fine-tuning where the data is a sequence in the form of $\\tau_h = (x, z_i, - y_i, z_j, y_j, \\dots, z_n, y_n)$, where $\\leq i \\leq j \\leq n$. The model - is finetuned to only predict $y_n$ where conditioned on the sequence prefix, - such that the model can self-reflect to produce better output based on the feedback - sequence. The model can optionally receive multiple rounds of instructions with - human annotators at test time.\nTo avoid overfitting, CoH adds a regularization - term to maximize the log-likelihood of the pre-training dataset. To avoid shortcutting - and copying (because there are many common words in feedback sequences), they - randomly mask 0% - 5% of past tokens during training.\nThe training dataset - in their experiments is a combination of WebGPT comparisons, summarization from - human feedback and human preference dataset.\n\nFig. 5. After fine-tuning with - CoH, the model can follow instructions to produce outputs with incremental improvement - in a sequence. (Image source: Liu et al. 2023)\nThe idea of CoH is to present - a history of sequentially improved outputs in context and train the model to - take on the trend to produce better outputs. Algorithm Distillation (AD; Laskin - et al. 2023) applies the same idea to cross-episode trajectories in reinforcement - learning tasks, where an algorithm is encapsulated in a long history-conditioned - policy. Considering that an agent interacts with the environment many times - and in each episode the agent gets a little better, AD concatenates this learning - history and feeds that into the model. Hence we should expect the next predicted - action to lead to better performance than previous trials. The goal is to learn - the process of RL instead of training a task-specific policy itself.\n\nFig. - 6. Illustration of how Algorithm Distillation (AD) works. (Image source: Laskin - et al. 2023).\nThe paper hypothesizes that any algorithm that generates a set - of learning histories can be distilled into a neural network by performing behavioral - cloning over actions. The history data is generated by a set of source policies, - each trained for a specific task. At the training stage, during each RL run, - a random task is sampled and a subsequence of multi-episode history is used - for training, such that the learned policy is task-agnostic.\nIn reality, the - model has limited context window length, so episodes should be short enough - to construct multi-episode history. Multi-episodic contexts of 2-4 episodes - are necessary to learn a near-optimal in-context RL algorithm. The emergence - of in-context RL requires long enough context.\nIn comparison with three baselines, - including ED (expert distillation, behavior cloning with expert trajectories - instead of learning history), source policy (used for generating trajectories - for distillation by UCB), RL^2 (Duan et al. 2017; used as upper bound since - it needs online RL), AD demonstrates in-context RL with performance getting - close to RL^2 despite only using offline RL and learns much faster than other - baselines. When conditioned on partial training history of the source policy, - AD also improves much faster than ED baseline.", "role": "system"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4012' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUTW/jRgy951cQOu0CsWEnRpLm5jpFg2IvLVoURVEE9IhjsRkNZ4eUvOki/72g - 5Hy0wF4EaB75+B6Hw69nAA23zS00oUMLfUmL7fe/lT/0ajceu0gp3fw4Hverip+2u592x+bcM2T/ - NwV7yVoG6UsiY8kzHCqhkbOury+uL1eXm5vNBPTSUvK0Q7HFRhY9Z15crC42i9X1Yn1zyu6EA2lz - C3+eAQB8nb6uM7f0pbmF1fnLSU+qeKDm9jUIoKmS/KRBVVbDbM35GxgkG+VJ+q8dAX0pVLmnbAqS - YZvi71JTCz/kETC3cC9WxH7eQqWRMIF1aNBhSkPgjO4YWAGhl0pQKo2YKBtE5DRU8vAMnClGDuxA - SZgz58MSvPquQ84gEe45t8qHzuDDTu4/Qk/WSQuUO8yBFKa+gQxWBlPYP0GpMnLL+QAISp8HyoGc - qKDaa9yRrYNu6DFDJGr3GB7PAVOSoydaRydeE1BKcVEpJgo2GefeS9ASdnIP1JckTwo6FKojK7UQ - OdPCBvcy10GodBgSVv5n7otR7Z3au+LWZaQa2WwS7RVykFqkopFCxdxKDz3qo+MSweSRsjoBjsIt - aCfVwjDlz92zijzVb9FQySBIv+dMCiNWlkH/5x1UhhpIl7CNRvW9hfO5E+pVjq6sks8Eppc++B/4 - XU2thc8DJranJWzTQSpb18Mdq3FKs/cP27uPgKUkJp8O5Z4TVgiSA5WJqBLnKDXMzImwzjoGnS+1 - YzWpT96JF9AN+7OT6qwmMDH0EAfzWcPgpfXc46fJMIE9mTstVD3SZ2keSavYsodjOs2ad+UOWuol - q813QjFSMB4JOC+md/PFvqkbQ8c0etlKOiRTCEmUXITkxJngl08vpeDYcaI3XxHVVU7KxDqqsEcl - T9Ll+7dbKQ6Kvj/ykNLp/Pl1GSQ5lCp7PeGv55Eza/dQCVWyP3w1Kc2EPp8B/DUtneE/e6QpVfpi - D/MQNrdwc7Oe+Zq3XfeGrq8uT6iJYXoHrDabb+U9tGTISd8tr2bWyPnwRrF6FTo5bfRJjfqHyPlA - tVSed1ksD+v9fnO1vrqO3zVnz2f/AgAA//8DAJBxeSfZBQAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db9f7a8f9d-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:26 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=J.KeWn.xbueAB6mr9xr5Wy1FENOVIYvX9NIIWy6vjiw-1727303486-1.0.1.1-.7OakT4.Qu_sPdcVUv0M5eruT1gl7t0z3BY8ItjCJOGKa7.vZx_r8R5QhW36csmiDGwYO7fQYjDhb3sxKzuwFg; - path=/; expires=Wed, 25-Sep-24 23:01:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=8k_LLo8AfDShg5fbvixKMIzVOenwt0WKBw82SaHLiGk-1727303486991-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2138' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4992' - x-ratelimit-remaining-tokens: - - '3994495' - x-ratelimit-reset-requests: - - 92ms - x-ratelimit-reset-tokens: - - 82ms - x-request-id: - - req_8f14dd4b3e8dd880dda7c8799fd6489e - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user''s request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\n\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\n\nFig. 12. Pseudo code of how LLM makes an API - call in API-Bank. (Image source: Li et al. 2023)\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\n\nWhether an API call is needed.\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\n\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\n\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\n\nCase - Studies#\nScientific Discovery Agent#\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\n\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\n\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\nFor example, when requested - to \"develop a novel anticancer drug\", the model came up with the following - reasoning steps:", "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": - false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4746' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNb9tIDL3nVxC67EUO7MSNE9/aYNEN0GJTND0U20VAjyiJ9WhGGVJ2 - nCL/fcGRP9LDXnQgh4+Pj0/8dQZQcFUsoXAtqut6P3n/4Vv/ff3di/582dx9mX999+Xy69N1/3e6 - XXwsSquIq5/k9FB17mLXe1KOYUy7RKhkqLPFxeJyejm/nudEFyvyVtb0OpnHSceBJxfTi/lkupjM - rvfVbWRHUizhnzMAgF/5azxDRc/FEqblIdKRCDZULI+PAIoUvUUKFGFRDFqUp6SLQSlk6g8twfs7 - OD6DPkVHIiQwCCXg0A8Kqx3U0fu45dAAgmganA6JKtjGtK593C7hmz2/s+clPKCs4d5jCByaEj7b - xPCVPDnTpwQM1fjmz2dyg8XO4U6h5iSZwYYrEkCoOJFTSCR9DEKgEbSlzOwPgURPA4mWFgtQkSJ7 - yQ/UsPeT5GbSYjLEgH4nPMY41JQoODL8wauUwMH5ocpDhh0k8rQxTWr2BD1qK+c/wo/wEIFCi2Ml - +sk2Jl8B9r1nhzaMQKzhr6FpODQf7x9KENpQQg+uRe8pNCTQDaKwIsCqSqZ39bY7d1mE0ADVNTum - 4HYldBjQIMHH0EBe4rPClkMVtwJ1TDB68DnPL6PMorhizy9WFwe1bT4N6Fl355CXf383+YBhDSsK - ru0wrYE26AdUEtAY/QSHpqOgVMGnT59N3xSHpoV3l1Y7SnlxNQcMIao5HipGH5uBjIE5Say3tsQJ - KnIsHMOkw7VFHfaZnrJtRw2cCDxtyMsSHHpvr6xPCYk0MW32YJC4aXWfMg793m7QDV6593m0DPG7 - NnvXjKu8RSEQHSrr73lNcNtSd5viFirqYhBNqJT7UV2bfTcUzFSxHtU4ibNlbYGee0qadRu7ii1P - uWZ3WEqiDaEfp0CFbWvmylgd7qCnVMfUgXDHHpPfAYfDQsxZ5aHFqKz1FpA2bkG4CdbHDIuV+RbN - Z5lET47R8wtVIzVbPQu03LTeZBz/Gs8d68nAmRMHEPL15EDhuMk90fwXGMWRVRU75CDnb69NonoQ - tIsXBu/38dfj+fKx6VNcyT5/jNccWNrHRCgx2KkSjX2Rs69nAP/mMzn8dvmKPsWu10eNawoGeDO/ - HPGK03U+ZWc3i31Wo6J/k5jNp/9X97i/M2/ObTFy5NCcIKZHonnSQnai1D3WHBpKfeLx+tb942y1 - ml/Nrhb1TXH2evYfAAAA//8DADhKu6aLBgAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76dbae048f8a-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=6bhoFiu.z4RJ2dhnOxknSjmS8lotB_pBNTjgOXYPM20-1727303487-1.0.1.1-DecNLxWwcFH.fDM82NwfazTNETwtBZ.5YrUOyAiN8fqrNjxRf1MNAP1ysBvN2KyQqMpvLDsZouopqHngWOJRAg; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=gwKqo0NrPXEkkKPLbf.T.XSD27EFrYNbeBbl6Uxh2Pc-1727303487018-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2059' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4988' - x-ratelimit-remaining-tokens: - - '3990786' - x-ratelimit-reset-requests: - - 135ms - x-ratelimit-reset-tokens: - - 138ms - x-request-id: - - req_92ca4c45c63964f33f17d240806e5681 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nFinite - context length: The restricted context capacity limits the inclusion of historical - information, detailed instructions, API call context, and responses. The design - of the system has to work with this limited communication bandwidth, while mechanisms - like self-reflection to learn from past mistakes would benefit a lot from long - or infinite context windows. Although vector stores and retrieval can provide - access to a larger knowledge pool, their representation power is not as powerful - as full attention.\n\n\nChallenges in long-term planning and task decomposition: - Planning over a lengthy history and effectively exploring the solution space - remain challenging. LLMs struggle to adjust plans when faced with unexpected - errors, making them less robust compared to humans who learn from trial and - error.\n\n\nReliability of natural language interface: Current agent system - relies on natural language as an interface between LLMs and external components - such as memory and tools. However, the reliability of model outputs is questionable, - as LLMs may make formatting errors and occasionally exhibit rebellious behavior - (e.g. refuse to follow an instruction). Consequently, much of the agent demo - code focuses on parsing model output.\n\n\nCitation#\nCited as:\n\nWeng, Lilian. - (Jun 2023). \u201cLLM-powered Autonomous Agents\u201d. Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.", - "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": - 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '1571' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUTW8jNwy9+1cQc7YN23E3bm4pemm77aHYolgsCoOWODOsNeRU5KyTLPLfC8mO - nR56GQzEr/ee+PRtBtBwbB6gCT16GMa0ePzhj/Hz9mV6+e2n719ObI+PP/4e/1kNv1D78+dmXir0 - 8DcFf6taBh3GRM4q53DIhE6l6/p+c3+3utvutjUwaKRUyrrRF1tdDCy82Kw228XqfrHeXap75UDW - PMCXGQDAt/otOCXSU/MAq/nbyUBm2FHzcE0CaLKmctKgGZujeDO/BYOKk1Ton3qCxAM7FuQG2kLL - wk5Qk54cEknnPbDAx4+/GmQyzxwcvCfOgAdO7M/gCixB86gZnaBnc80cMAFLq3mo7QElQiRHThSB - xTxPoc6dQ1+IZZYOBgo9CttgkPhIYJTaRaY2Uc0F79Eh6JQiHEioZYc26wBJpaN8xX1iiXqyJfzZ - cyL4SsE1Q4FFBgEFxqxfORIcsmKkDEfRU6LYEWAIZDYvFJ8hYTiWP8g0ZjKSs1Qw6oly1WtKCdCL - oqyyhMcYufxhSs/zs2gtBoLQYypikhUxC9qFUx5gTChSiBd1HO0IkcoyqdU2cygydV0qKa6AEUev - RbVPJhtVjEpoEnoaKThFoJw12xxOPYceIpcls57scm1ZD5O5kBmUUZgplgb9NKBAIswF0BI+VdqJ - UQKBCgj6lDFBQukmLEoZoACLU64cD+QnosuqFD705JQFUx2jQuIGGdnKHagEymKAB538InHit43S - FqpTQCcfJ7d5GXZeJS9SnBnWIaKyqPY7Az1x3dfbdtXr1hCmPC/k4puS0GqYrBAbMVvdvXcTi7rY - kThEGhSCRlq+d1GmdjIsTpYppcv569WWSbsx68Eu8et5W29inwlNpVjQXMemRl9nAH9V+0//cXQz - Zh1G37seSUrDzf2Hc7/m9urcouu73SXq6phuge16+39l+7Mt7d0r0pwhsnS3Dqsrzkq0sWdzGvYt - F+uNmc+PSjvu73Cz/u7Deke7ZvY6+xcAAP//AwB1AMOJYgUAAA== - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db89a04cf6-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=OcLOsqJ1qZMFKwQ21wa2QiH75GM5JJ_b9JTSAt.V6kw-1727303487-1.0.1.1-G9RlFlQCC6NR_tIR_HwujmPRdQXIU1tdrNW24q_FtKZhQBQQT3qe.rBnHfnkmrvSV1MkGnKqdJogmqlO0dn16w; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=rfWrloognK5TgtGcKxiIDFrtQIomQH36VQSMFBKpKn8-1727303487126-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2183' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4997' - x-ratelimit-remaining-tokens: - - '3998673' - x-ratelimit-reset-requests: - - 26ms - x-ratelimit-reset-tokens: - - 19ms - x-request-id: - - req_b2b0922fb8071baf7513c4bbcb78d38e - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \"dark\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\nComponent Two: Memory#\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\nTypes of - Memory#\nMemory can be defined as the processes used to acquire, store, retain, - and later retrieve information. There are several types of memory in human brains.\n\n\nSensory - Memory: This is the earliest stage of memory, providing the ability to retain - impressions of sensory information (visual, auditory, etc) after the original - stimuli have ended. Sensory memory typically only lasts for up to a few seconds. - Subcategories include iconic memory (visual), echoic memory (auditory), and - haptic memory (touch).\n\n\nShort-Term Memory (STM) or Working Memory: It stores - information that we are currently aware of and needed to carry out complex cognitive - tasks such as learning and reasoning. Short-term memory is believed to have - the capacity of about 7 items (Miller 1956) and lasts for 20-30 seconds.\n\n\nLong-Term - Memory (LTM): Long-term memory can store information for a remarkably long time, - ranging from a few days to decades, with an essentially unlimited storage capacity. - There are two subtypes of LTM:\n\nExplicit / declarative memory: This is memory - of facts and events, and refers to those memories that can be consciously recalled, - including episodic memory (events and experiences) and semantic memory (facts - and concepts).\nImplicit / procedural memory: This type of memory is unconscious - and involves skills and routines that are performed automatically, like riding - a bike or typing on a keyboard.\n\n\nFig. 8. Categorization of human memory.\nWe - can roughly consider the following mappings:\n\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\n\nMaximum Inner Product Search (MIPS)#\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200b algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\nA couple common choices of ANN algorithms for fast - MIPS:", "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": false, - "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '3077' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUTW/cRgy9+1cQOnkBreF1Nt7ENxtpAQNJGjhJgaJIDe6IktjMV0jK3k3g/16M - tB9J0Fx04Jv35vENxW8nABU31RVUrkdzIfv59c3H/NfHP/wgvw9fONP6zw83/o5ulo8rwqoujLT+ - l5ztWWcuhezJOMUJdkJoVFQXq4vVs/NnyxfLEQipIV9oXbb5Ms0DR55fnF8s5+er+eLFjt0ndqTV - Ffx9AgDwbfwWn7GhTXUF5/W+EkgVO6quDocAKkm+VCpUZTWMVtVH0KVoFEfrH3oCo41Bw+oGVVKw - nqA0g8KaIqQWHlA4DQpCHNskjgJFA08okWMHp3evZxDI+tRoDRydH5pSv35Vw2+vatA0iCPIybPb - 1oCxgbvX/1yUo0DxgSXFIlhuRgOhLwMLQaCQZDuepk32SbBkW8MjWw8IbXKDQoqw5oiyBaFHlEbP - 4Nag56733PU2NWPbTFr62ElyhH4IGGEtyFGvQClqAXb4qfZJbO75gRrgkIVUOcVRYn90DCKMlmY1 - TAQjCQcNz4GNGnCY0bFtoU0CbhAp0eEjCkVSnU1x+BS7H+lD3AuoJcGORn6LznQfCQlTdKSzMyiv - 6NCoS8JfR1PF69TkvmmFgDlTA5YgoOs50vEJXYqOsmkNjz0J/ZyISyKkOcVGC/1Ao7Cmpry1/l8G - Qh6NRgbH+Th0m+PY/KJzVvD8meJklDZGEtHDAzlLMoZBustCy7CYMD2gnzIYL0Cv5UKT1AyOFN7g - hsMQ4DZGEng3lg3eE4rr4fTN7bv3M0AF3I3weG3sMTo6yoNmogZaSeHoaXJcw2Ds+WvJA3OWtOGA - RhAJhdQgEnf9OonC6fXbtzNAX17J+jC1QW3LjstQNGgI6Bypnn3/twq1g2LZGHHwfld/Ovz+PnVZ - 0lp3+KHecmTt74VQUyy/ulrK1Yg+nQB8GtfM8MPmqLKkkO3e0meKRfD5y+eTXnXcbkd0cXm5Qy0Z - +iOwulz8inbfkCF7/W5bVZNFjt1R4fzgc2y00q0ahfuWY0eShafl1eb7xXq9vFxcrtqX1cnTyX8A - AAD//wMAkcQ3XsoFAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db9e194d19-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=wen7H.CdoKgaHDSXL7JVgdniUx_0OUm6Z2FU4e4rIGQ-1727303487-1.0.1.1-YVdu6MlWtnc8p6yWYh5XbYLiGYPChgA9I7mCaTATfygUnijEXmPCBalU8qm4vO2Ofolqy5BZZ1l6QVDxOlXyww; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=OXXfTtq6DGEFHhtLzcjhQHFts4MRqpAiTkXE1P.GXuk-1727303487125-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2192' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4989' - x-ratelimit-remaining-tokens: - - '3991456' - x-ratelimit-reset-requests: - - 131ms - x-ratelimit-reset-tokens: - - 128ms - x-request-id: - - req_2227bbebc9b7fbc6fa70632eea7e25e7 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nOr\n@article{weng2023agent,\n title = - \"LLM-powered Autonomous Agents\",\n author = \"Weng, Lilian\",\n journal - = \"lilianweng.github.io\",\n year = \"2023\",\n month = \"Jun\",\n url = - \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\n}\nReferences#\n[1] - Wei et al. \u201cChain of thought prompting elicits reasoning in large language - models.\u201d NeurIPS 2022\n[2] Yao et al. \u201cTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201d arXiv preprint arXiv:2305.10601 - (2023).\n[3] Liu et al. \u201cChain of Hindsight Aligns Language Models with - Feedback\n\u201c arXiv preprint arXiv:2302.02676 (2023).\n[4] Liu et al. \u201cLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201d arXiv - preprint arXiv:2304.11477 (2023).\n[5] Yao et al. \u201cReAct: Synergizing reasoning - and acting in language models.\u201d ICLR 2023.\n[6] Google Blog. \u201cAnnouncing - ScaNN: Efficient Vector Similarity Search\u201d July 28, 2020.\n[7] https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\n[8] - Shinn & Labash. \u201cReflexion: an autonomous agent with dynamic memory and - self-reflection\u201d arXiv preprint arXiv:2303.11366 (2023).\n[9] Laskin et - al. \u201cIn-context Reinforcement Learning with Algorithm Distillation\u201d - ICLR 2023.\n[10] Karpas et al. \u201cMRKL Systems A modular, neuro-symbolic - architecture that combines large language models, external knowledge sources - and discrete reasoning.\u201d arXiv preprint arXiv:2205.00445 (2022).\n[11] - Nakano et al. \u201cWebgpt: Browser-assisted question-answering with human feedback.\u201d - arXiv preprint arXiv:2112.09332 (2021).\n[12] Parisi et al. \u201cTALM: Tool - Augmented Language Models\u201d\n[13] Schick et al. \u201cToolformer: Language - Models Can Teach Themselves to Use Tools.\u201d arXiv preprint arXiv:2302.04761 - (2023).\n[14] Weaviate Blog. Why is Vector Search so fast? Sep 13, 2022.\n[15] - Li et al. \u201cAPI-Bank: A Benchmark for Tool-Augmented LLMs\u201d arXiv preprint - arXiv:2304.08244 (2023).\n[16] Shen et al. \u201cHuggingGPT: Solving AI Tasks - with ChatGPT and its Friends in HuggingFace\u201d arXiv preprint arXiv:2303.17580 - (2023).\n[17] Bran et al. \u201cChemCrow: Augmenting large-language models with - chemistry tools.\u201d arXiv preprint arXiv:2304.05376 (2023).\n[18] Boiko et - al. \u201cEmergent autonomous scientific research capabilities of large language - models.\u201d arXiv preprint arXiv:2304.05332 (2023).\n[19] Joon Sung Park, - et al. \u201cGenerative Agents: Interactive Simulacra of Human Behavior.\u201d - arXiv preprint arXiv:2304.03442 (2023).\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\n\nnlp\nlanguage-model\nagent\nsteerability\nprompting\n\n\u00ab - \n\nAdversarial Attacks on LLMs\n\n\n \u00bb\n\nPrompt Engineering\n\n\n\u00a9 - 2024 Lil''Log\n\n Powered by\n Hugo &\n PaperMod", "role": - "system"}], "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": - 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '3119' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dJNNbxNBDIbv+RXWnEDaREkamrS3VgJRlF74EFBAkXfWu2uYnRnG3tCA - +t/RbNKkHLjMwR7bj1/bf0YAhitzCca2qLaLbnx1/SF+Lu8+29ufn+521+9e24W9e7l60eDbbWmK - HBHK72T1MWpiQxcdKQe/d9tEqJSzzpbz5dn0bLFaDI4uVORyWBN1vAjjjj2P59P5YjxdjmerQ3Qb - 2JKYS/gyAgD4M7yZ01d0by5hWjxaOhLBhszl8ROAScFli0ERFkWvpjg5bfBKfkB/3xJgUraO4KtZ - r2/HMfyiRBVc9Rp86EIvcNWQV/lqoNzBmh2jh4/kmwJiXzqWlipgD296TzCfzs8KqFhsL0IC2hKw - V2oSZmkg1OAwNQQOfdNjQzDIIfBsvb6V5/lvADyVxqF0AS03reOmVfZNTsoJLEYs2bEySa6fCCV4 - HrhSKB11YwluOxjQV6AhOOizVBO4UUhUUyJvSWCLiXMx0b7KyfLvmCgm9ppbQAW6jy4kAqy26C11 - mSoXzdQFsLeurzJaR9qGSqAOCci36O0JODr0mS/j1WyZvN0VJ2w4drPnzbIltINsv1hboHul5NEN - ncgEns6Outii8O+D5DHkATO6LLi2JHRQEjRApFSH1MF+Y+9BUX7IE9HdrgBHW0rYZKxElrxCRVty - IR47v7qBREKYbDuBVyFB3SdtKUFFiuykGEAe+Sx6KAnQWhKhClD3nClsuaIKPrxdT56uaKK6F8xn - 4nvnDvaH48670OQZy8F/tNfsWdrNXtO836IhmsH7MAL4NtxW/8+5mJhCF3Wj4Qf5nHC1PN/nM6eT - Pnlns9XBq0HRnRwXF4v/hW0Okjw5UXMc+ynD9Mg5NGpkJ0rdpmbfUBqWMXdUx82sLBfns/NlfWFG - D6O/AAAA//8DAPnVOhS/BAAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db9a539068-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=DYJJpN0wBMA3kOl8nxnmYzSI9bFleMHTSv0.B1jRqBI-1727303487-1.0.1.1-1i26xIZFsxpSeQIfzUA8EAxjmLjejLfOm5KsS566BFWZnPxURKfhQPjSAEdaQixNV5uyg_R0z_cWfH5pQ7o2RA; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=CxswUDoJRI4A5NDUCTb1L4u53qOsj1tPb6TiWu_liGU-1727303487174-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2201' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4994' - x-ratelimit-remaining-tokens: - - '3996491' - x-ratelimit-reset-requests: - - 64ms - x-ratelimit-reset-tokens: - - 52ms - x-request-id: - - req_ee1f1caa0439a3a75468beb71a6bc971 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nFig. - 1. Overview of a LLM-powered autonomous agent system.\nComponent One: Planning#\nA - complicated task usually involves many steps. An agent needs to know what they - are and plan ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. - 2022) has become a standard prompting technique for enhancing model performance - on complex tasks. The model is instructed to \u201cthink step by step\u201d - to utilize more test-time computation to decompose hard tasks into smaller and - simpler steps. CoT transforms big tasks into multiple manageable tasks and shed - lights into an interpretation of the model\u2019s thinking process.\nTree of - Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities - at each step. It first decomposes the problem into multiple thought steps and - generates multiple thoughts per step, creating a tree structure. The search - process can be BFS (breadth-first search) or DFS (depth-first search) with each - state evaluated by a classifier (via a prompt) or majority vote.\nTask decomposition - can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\n1.\", \"What - are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; - e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201cProblem - PDDL\u201d, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201cDomain PDDL\u201d, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\nSelf-Reflection#\nSelf-reflection is a vital aspect that allows autonomous - agents to improve iteratively by refining past action decisions and correcting - previous mistakes. It plays a crucial role in real-world tasks where trial and - error are inevitable.\nReAct (Yao et al. 2023) integrates reasoning and acting - within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\nThought: - ...\nAction: ...\nObservation: ...\n... (Repeated many times)\n\nFig. 2. Examples - of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, FEVER) - and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: Yao et - al. 2023).\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\n\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.", "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": - false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4583' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFXbbhtHDH33VxD75LiSIPka+y21kaKoixqO8lA0hcGd5e5ONZftkKtL - Av97wdm1pAbtiwSRw8NDHpL6dgJQ2Kq4g8K0KMZ3bvrhx8/d75ePVz9db+dX9vMvzx+bnUkX9Onj - jb8vJhoRy7/IyFvUzETfORIbw+A2iVBIURc35zcX84vL95fZ4WNFTsOaTqaXceptsNPz+fnldH4z - Xbwfo9toDXFxB3+cAAB8y5/KM1S0Le5gPnmzeGLGhoq7/SOAIkWnlgKZLQsGKSYHp4lBKGTqy5Yg - rimtLW2gIjbJlsSA8Pj467SLG0pUAfYSQ/SxZ8CGggDvWMiDtChgg4mpiwmFGDqHIdjQAIYKmFw9 - TVQ7MtoW0A7FQEF4Bl/Cl7CYwdnZ0xhxdnYHSmaEJt+5uGMQ5BVUlEPZZhgh0wb7d08Mzq4I7lu0 - AWINyzb2TStweh+X7zKDZSI68jCcLtUlEcpEuIIqbgZajrY5FYMNEsFjwIawdAQs1PEM7uMSKJjY - J2yIs3Va7qb6DYmQo9YwgU1rHcFSH287FxMx+N6J7RwdnkGH0jKgAKFpMxb0rA4mTKYFdE1MVlrP - M/hQVblsdG43UVV+eFKO1AwNxwC0FUoBHRinaht0gwyURtS3FsND9NqqB6ptGHr5iKHpsSE4fXp4 - eHwHdUzgYmimbUz2awx7QWcq2LkK9klVfd6rOuhm+aAuoHNxM44Ka7OtUEKxa3I7sL5LcU1Q7gAD - ut3XoSEsgBmPZ3kMnumDEagTetrEtFL00gbioy6qwBqjfaeApcvGQ9KgWY3AxkoL0pJNQGFtUwxe - WQ5SNRQyt9AcIUtCQzyDXOVW+0ShxWCIQbTUcnc09RpQ7QJ6a8CTj2k3MINEG0wV5HVXQshMrAgE - VNfWWApmp9M5Fp7DTEyJjIDXrV0piZ8FeiaGlvpkWawZqqsoiK2VyBuYKG89STFZGtBadK43NmBO - MMm2o+E57CZDnaIfdKBtR0nJUc7U9LYiqHvpE+010mn4bU0JnZvkisa1Retz0Niv7Ooo1TH5/Fur - /e6Y6Mp9t4PSJt1XYEm90bzVfxyWcZCylp5Mi8Gy59nxnUtU94x6a0Pv3Gh/3R9OF5suxZJH/96u - 28HtyzAPeiRZYldk7+sJwJ/5QPf/urlFl6Lv5EXiioIC3i5uB7zi8L9w8J4vrkevREF3cCwWF1f/ - F/dSkaB1fHToi/3MHiDme6K50mJQ5qW2oaHUJTvc/bp7WZTl5fXi+qa+LU5eT/4BAAD//wMAJNVl - fwUHAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db8ceb4cdc-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=FeRKZbBsA2zs5NN7wfzDsQMRVzTvPOsmX9DcZ8E8Gew-1727303487-1.0.1.1-fnb_Obfzf6cLNgumMWUSRQP_elpgu088HPDhavKL7_NmjTFLI_fPkxMq082.I.yKH4vJ6LjzMPqh1.XehT4iYA; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=PeVEqukcP1buCpR203zq9tyLmXWNb4mqvw7C93gwkEA-1727303487546-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2613' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4990' - x-ratelimit-remaining-tokens: - - '3992674' - x-ratelimit-reset-requests: - - 111ms - x-ratelimit-reset-tokens: - - 109ms - x-request-id: - - req_00d9a2a7811699983d66c6256bd018d7 - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nFig. - 10. A picture of a sea otter using rock to crack open a seashell, while floating - in the water. While some other animals can use tools, the complexity is not - comparable with humans. (Image source: Animals using tools)\nMRKL (Karpas et - al. 2022), short for \u201cModular Reasoning, Knowledge and Language\u201d, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201cexpert\u201d modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201cExternal APIs\u201d section of Prompt Engineering.\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\n\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\nThe - system comprises of 4 stages:\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\nInstruction:\n\nThe - AI assistant can parse user input to several tasks: [{\"task\": task, \"id\", - task_id, \"dep\": dependency_task_ids, \"args\": {\"text\": text, \"image\": - URL, \"audio\": URL, \"video\": URL}}]. The \"dep\" field denotes the id of - the previous task which generates a new resource that the current task relies - on. A special tag \"-task_id\" refers to the generated text image, audio and - video in the dependency task with id as task_id. The task MUST be selected from - the following options: {{ Available Task List }}. There is a logical relationship - between tasks, please note their order. If the user input can''t be parsed, - you need to reply empty JSON. Here are several cases for your reference: {{ - Demonstrations }}. The chat history is recorded as {{ Chat History }}. From - this chat history, you can find the path of the user-mentioned resources for - your task planning.\n\n(2) Model selection: LLM distributes the tasks to expert - models, where the request is framed as a multiple-choice question. LLM is presented - with a list of models to choose from. Due to the limited context length, task - type based filtration is needed.\nInstruction:\n\nGiven the user request and - the call command, the AI assistant helps the user to select a suitable model - from a list of models to process the user request. The AI assistant merely outputs - the model id of the most appropriate model. The output must be in a strict JSON - format: \"id\": \"id\", \"reason\": \"your detail reason for the choice\". We - have a list of models for you to choose from {{ Candidate Models }}. Please - select one model from the list.\n\n(3) Task execution: Expert models execute - on the specific tasks and log results.\nInstruction:", "role": "system"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4250' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTbbhtHDH33VxD70gSQBMl3+80tegkiI0bgAi2KwqBmubuMZoeTIUeX - BP73YnZl2S3QlwV2zvDw8JDD7ycAFdfVLVSuQ3N99NO7H3+PfzYX8Wy/eFjz4pf7Pn3hm3x68Uf0 - j9WkRMjqCzl7iZo56aMnYwkj7BKhUWFdXJ1enc3Pzq/PB6CXmnwJa6NNz2Xac+Dp6fz0fDq/mi6u - D9GdsCOtbuGvEwCA78O36Aw17apbmE9eTnpSxZaq2+MlgCqJLycVqrIaBqsmr6CTYBQG6Y8dgdHO - oGZ1WZUUNphYsgLWGwyOegqmwAEC5SRT3fcr8ewAk+vYyFlOpNBIAswmQfohti1RE4iYjF32mPwe - GnFZObQgAe4/f1zCu3upCwafCVUCh3YCH4NsPdUtAYYalhjajC29B92rUa8T2HbsOsjGnr8RIDjp - VxywGA/SAO0iJYO+MJMOJAgtBUropzGnKErgD7Qw9ALeLZf378EEkmQj4PA1c2JSoKYhZ7whv5/B - z4WZRzsSbQg91eA69J5CS4NFy+W9Au0sobNSKKY2jwHFnw2lFXro0TqISVaeei3yIyaqS3raRc+O - DSSQToD62KHyt8JkHQH3UZKVnpRC10G2Bdl2FIYyO9kWkqxUJFAK6OHYLRPxOoNP1lGCJmFPW0lr - Bc9rgse75f1A8SjiG0k9JaDQDZlKST+Aw4gr9mzFlZLkYP8xUeGHu4cPY4M8wU8d2q8Pj/Dgc8th - bMSnSOHuQ7kGTQ5uaJlD70sZtKM+em72EAf3HHrAWPwYWqsz+C23LYe2kHJx25LU2VENqICvNYF1 - aMU7L3s9yij+G+oaoscwThqHjfhNyd1ITqCGLentf2+NE6LkadA7GXHakcvjfynMyyANEmn2pjMo - z2qc2KK1JuU2jD2OmJRKkxIk+ppJh8dlAj0GbAlXnoYUo2Nj3mJEkpgY7TCy40AdVczevu5ETVYs - GyZk7w/nz8d14aUtw6cH/HjecGDtntLwFMtqUJNYDejzCcDfw1rK/9o0VUzSR3syWVMohNc3ZyNf - 9boNX9HF1ekBNTH0b4D55cX/xT3VZMhe36y3Kr2si1eK+VHoUGk1mv/UcGgpxcTjtmvi02K1Or9c - XF41N9XJ88k/AAAA//8DAC63AzX7BQAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76dba8cb4cdb-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:27 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=rhjZPd9OTzHpExBEycSxfKcT5QzUZ8LcFFTMltBqrqc-1727303487-1.0.1.1-at37tPJ8NUrARiIqr4n3VGFWtiWqXYZG4m4go0wAESLXajI3p3CnDCbvwZOJRrBNt2f.auB4moy7AXdCQuMRdg; - path=/; expires=Wed, 25-Sep-24 23:01:27 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=0I0fOFRunIwQDFRu.9qox7zrR4NMw2P.qa_iCQKgcVw-1727303487767-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2792' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4991' - x-ratelimit-remaining-tokens: - - '3993545' - x-ratelimit-reset-requests: - - 102ms - x-ratelimit-reset-tokens: - - 96ms - x-request-id: - - req_89755abc6371daaa459a34c7813fb185 - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"a90f35b2-fe65-44a5-8355-9da820e48ede\",\"start_time\":\"2024-09-25T22:31:26.959655+00:00\",\"end_time\":\"2024-09-25T22:31:26.960155+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",0],\"langgraph_checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.959655+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.960155+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"91d14db6-d720-40c5-8074-29b410accee4\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645665Zb4946a15-ddfe-4e84-87a6-506da4a3298f.20240925T223124649110Z91d14db6-d720-40c5-8074-29b410accee4.20240925T223126959655Za90f35b2-fe65-44a5-8355-9da820e48ede\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":429,\"total_tokens\":597,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-5726bbb3-b09c-4033-a1ae-6a2f73b752d9-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":429,\"output_tokens\":168,\"total_tokens\":597}}},\"run_type\":\"parser\"},{\"id\":\"3af120c0-e044-4f27-b45c-59f864e6eedf\",\"start_time\":\"2024-09-25T22:31:26.960559+00:00\",\"end_time\":\"2024-09-25T22:31:26.960907+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",0],\"langgraph_checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.960559+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.960907+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"b4946a15-ddfe-4e84-87a6-506da4a3298f\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645665Zb4946a15-ddfe-4e84-87a6-506da4a3298f.20240925T223126960559Z3af120c0-e044-4f27-b45c-59f864e6eedf\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\"]},\"run_type\":\"chain\"},{\"id\":\"e816d321-b64f-4aa4-b690-3bfc898b8da1\",\"start_time\":\"2024-09-25T22:31:27.565827+00:00\",\"end_time\":\"2024-09-25T22:31:27.566768+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",1],\"langgraph_checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.565827+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.566768+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a67ddb6d-d611-47eb-8245-48e33d10e395\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645903Z8266be5f-162d-4c50-9df9-aa0f9ee0d7c4.20240925T223124649490Za67ddb6d-d611-47eb-8245-48e33d10e395.20240925T223127565827Ze816d321-b64f-4aa4-b690-3bfc898b8da1\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":216,\"prompt_tokens\":919,\"total_tokens\":1135,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-9c76b7c0-e07e-4e04-b953-e3469b9cbb99-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":919,\"output_tokens\":216,\"total_tokens\":1135}}},\"run_type\":\"parser\"},{\"id\":\"268de4b5-0594-4f9e-949c-c57801f751ad\",\"start_time\":\"2024-09-25T22:31:27.567412+00:00\",\"end_time\":\"2024-09-25T22:31:27.567864+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",1],\"langgraph_checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.567412+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.567864+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"8266be5f-162d-4c50-9df9-aa0f9ee0d7c4\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645903Z8266be5f-162d-4c50-9df9-aa0f9ee0d7c4.20240925T223127567412Z268de4b5-0594-4f9e-949c-c57801f751ad\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\"]},\"run_type\":\"chain\"},{\"id\":\"cbc0e73e-f78d-4868-829e-d81d82846a8c\",\"start_time\":\"2024-09-25T22:31:26.998235+00:00\",\"end_time\":\"2024-09-25T22:31:26.998619+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",2],\"langgraph_checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.998235+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.998619+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"0c3af0d5-8988-4859-9137-690bbf45c2db\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646126Z04729cd0-ccbf-4550-9f98-b75d5abde1c7.20240925T223124649812Z0c3af0d5-8988-4859-9137-690bbf45c2db.20240925T223126998235Zcbc0e73e-f78d-4868-829e-d81d82846a8c\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":163,\"prompt_tokens\":881,\"total_tokens\":1044,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-5d2fa773-6427-47fe-83eb-606ca4be006b-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":881,\"output_tokens\":163,\"total_tokens\":1044}}},\"run_type\":\"parser\"},{\"id\":\"8186b2e7-e612-4d76-985a-a35753afe4c4\",\"start_time\":\"2024-09-25T22:31:26.998942+00:00\",\"end_time\":\"2024-09-25T22:31:26.999141+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",2],\"langgraph_checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.998942+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.999141+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"04729cd0-ccbf-4550-9f98-b75d5abde1c7\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646126Z04729cd0-ccbf-4550-9f98-b75d5abde1c7.20240925T223126998942Z8186b2e7-e612-4d76-985a-a35753afe4c4\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\"]},\"run_type\":\"chain\"},{\"id\":\"acb49a70-0c2f-4f3e-aac1-70f3b0858d7b\",\"start_time\":\"2024-09-25T22:31:27.141852+00:00\",\"end_time\":\"2024-09-25T22:31:27.144116+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",3],\"langgraph_checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.141852+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.144116+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"8ca560f6-6e5c-44ba-baef-9a9bf0a41f63\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646321Z69927c0f-cbef-4a76-839e-9e9f0a026880.20240925T223124650107Z8ca560f6-6e5c-44ba-baef-9a9bf0a41f63.20240925T223127141852Zacb49a70-0c2f-4f3e-aac1-70f3b0858d7b\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":166,\"prompt_tokens\":595,\"total_tokens\":761,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-65183656-8dae-43ce-8999-7a1417890092-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":595,\"output_tokens\":166,\"total_tokens\":761}}},\"run_type\":\"parser\"},{\"id\":\"dc89459c-514e-4929-a8b9-fcd4de63fdaa\",\"start_time\":\"2024-09-25T22:31:27.147702+00:00\",\"end_time\":\"2024-09-25T22:31:27.149515+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",3],\"langgraph_checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.147702+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.149515+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"69927c0f-cbef-4a76-839e-9e9f0a026880\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646321Z69927c0f-cbef-4a76-839e-9e9f0a026880.20240925T223127147702Zdc89459c-514e-4929-a8b9-fcd4de63fdaa\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\"]},\"run_type\":\"chain\"},{\"id\":\"da95c949-4b1c-4cde-b788-6fa4f577e5e2\",\"start_time\":\"2024-09-25T22:31:27.784843+00:00\",\"end_time\":\"2024-09-25T22:31:27.786887+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",5],\"langgraph_checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.784843+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.786887+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"e3c5d0ad-b186-4b8e-a47f-7f4a52421043\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646753Zf7268200-caea-4451-89d0-a7cfd4d2d12a.20240925T223124650692Ze3c5d0ad-b186-4b8e-a47f-7f4a52421043.20240925T223127784843Zda95c949-4b1c-4cde-b788-6fa4f577e5e2\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":172,\"prompt_tokens\":893,\"total_tokens\":1065,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-af4597c3-15da-4647-af1b-87e856df8f0f-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":893,\"output_tokens\":172,\"total_tokens\":1065}}},\"run_type\":\"parser\"},{\"id\":\"0fd8a0e3-fa3d-4a8f-9945-08be7be2e510\",\"start_time\":\"2024-09-25T22:31:27.788609+00:00\",\"end_time\":\"2024-09-25T22:31:27.789655+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",5],\"langgraph_checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.788609+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.789655+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"f7268200-caea-4451-89d0-a7cfd4d2d12a\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646753Zf7268200-caea-4451-89d0-a7cfd4d2d12a.20240925T223127788609Z0fd8a0e3-fa3d-4a8f-9945-08be7be2e510\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The text discusses - various advancements in neuro-symbolic architectures for autonomous agents, - particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) systems, - which utilize a combination of expert modules and a general-purpose language - model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"]},\"run_type\":\"chain\"},{\"id\":\"773a557a-8213-400c-be85-aa492fab8dd3\",\"start_time\":\"2024-09-25T22:31:27.032854+00:00\",\"end_time\":\"2024-09-25T22:31:27.033563+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",6],\"langgraph_checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.032854+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.033563+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"64eeaca3-c179-4995-bac1-f21c6db3c77c\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646958Z4848afe5-7396-40eb-af6f-37891f0f1421.20240925T223124650978Z64eeaca3-c179-4995-bac1-f21c6db3c77c.20240925T223127032854Z773a557a-8213-400c-be85-aa492fab8dd3\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":197,\"prompt_tokens\":943,\"total_tokens\":1140,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-004a9f8d-4452-4170-a475-8227451fbbc2-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":943,\"output_tokens\":197,\"total_tokens\":1140}}},\"run_type\":\"parser\"},{\"id\":\"ba50256e-0fd7-4a49-bad7-082d04f2fea9\",\"start_time\":\"2024-09-25T22:31:27.034345+00:00\",\"end_time\":\"2024-09-25T22:31:27.034784+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",6],\"langgraph_checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.034345+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.034784+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"4848afe5-7396-40eb-af6f-37891f0f1421\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646958Z4848afe5-7396-40eb-af6f-37891f0f1421.20240925T223127034345Zba50256e-0fd7-4a49-bad7-082d04f2fea9\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\"]},\"run_type\":\"chain\"},{\"id\":\"594c8bc1-fe04-4e51-b744-022eee4f534f\",\"start_time\":\"2024-09-25T22:31:26.779345+00:00\",\"end_time\":\"2024-09-25T22:31:26.780686+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",7],\"langgraph_checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.779345+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.780686+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"3dd6e681-9d16-4592-99c9-94a5a408d7d8\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647175Z53367cc3-2062-4b4b-b94f-e82ef4e48185.20240925T223124651272Z3dd6e681-9d16-4592-99c9-94a5a408d7d8.20240925T223126779345Z594c8bc1-fe04-4e51-b744-022eee4f534f\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":847,\"total_tokens\":1015,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-d52315ce-c236-4b5f-a7e7-05ad023f0f4d-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":847,\"output_tokens\":168,\"total_tokens\":1015}}},\"run_type\":\"parser\"},{\"id\":\"c27c2fab-6835-447c-9c0d-b2a28b7028b0\",\"start_time\":\"2024-09-25T22:31:26.781399+00:00\",\"end_time\":\"2024-09-25T22:31:26.781874+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",7],\"langgraph_checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.781399+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.781874+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"53367cc3-2062-4b4b-b94f-e82ef4e48185\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647175Z53367cc3-2062-4b4b-b94f-e82ef4e48185.20240925T223126781399Zc27c2fab-6835-447c-9c0d-b2a28b7028b0\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\"]},\"run_type\":\"chain\"},{\"id\":\"c973680f-9cce-4a4c-a176-8a8aafbef76b\",\"start_time\":\"2024-09-25T22:31:26.386115+00:00\",\"end_time\":\"2024-09-25T22:31:26.387047+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",8],\"langgraph_checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.386115+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.387047+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a0b4daa6-ff6b-4390-aaa6-7c60f792a9f1\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647384Z156616ba-70e4-4079-b651-8c8a82616868.20240925T223124651563Za0b4daa6-ff6b-4390-aaa6-7c60f792a9f1.20240925T223126386115Zc973680f-9cce-4a4c-a176-8a8aafbef76b\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":560,\"total_tokens\":678,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-b8e748e8-f70e-418b-9549-7b4cfdb5cdc5-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":560,\"output_tokens\":118,\"total_tokens\":678}}},\"run_type\":\"parser\"},{\"id\":\"96c709b1-b84c-4b3b-a8bd-6fde97926cf4\",\"start_time\":\"2024-09-25T22:31:26.387809+00:00\",\"end_time\":\"2024-09-25T22:31:26.388315+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",8],\"langgraph_checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.387809+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.388315+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"156616ba-70e4-4079-b651-8c8a82616868\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647384Z156616ba-70e4-4079-b651-8c8a82616868.20240925T223126387809Z96c709b1-b84c-4b3b-a8bd-6fde97926cf4\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\"]},\"run_type\":\"chain\"},{\"id\":\"73db0d6d-8b98-472f-b3b4-ad0edede5a2c\",\"start_time\":\"2024-09-25T22:31:26.921362+00:00\",\"end_time\":\"2024-09-25T22:31:26.922517+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",11],\"langgraph_checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.921362+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.922517+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"c2b0f3c2-66ed-4266-84a7-8ee4bf355bc8\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648026Z37c28d74-a5cc-44d7-b453-245a1efbe6d7.20240925T223124652489Zc2b0f3c2-66ed-4266-84a7-8ee4bf355bc8.20240925T223126921362Z73db0d6d-8b98-472f-b3b4-ad0edede5a2c\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":120,\"prompt_tokens\":899,\"total_tokens\":1019,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-8cb13ea8-82ea-4597-b8e7-0793d530d636-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":899,\"output_tokens\":120,\"total_tokens\":1019}}},\"run_type\":\"parser\"},{\"id\":\"062d160f-bf9e-4d81-a65d-b4adf6f2b2bf\",\"start_time\":\"2024-09-25T22:31:26.923502+00:00\",\"end_time\":\"2024-09-25T22:31:26.924051+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",11],\"langgraph_checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:26.923502+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.924051+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"37c28d74-a5cc-44d7-b453-245a1efbe6d7\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648026Z37c28d74-a5cc-44d7-b453-245a1efbe6d7.20240925T223126923502Z062d160f-bf9e-4d81-a65d-b4adf6f2b2bf\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\"]},\"run_type\":\"chain\"},{\"id\":\"9d961ce3-89e6-4e3e-931e-538b87b1f91d\",\"start_time\":\"2024-09-25T22:31:27.140606+00:00\",\"end_time\":\"2024-09-25T22:31:27.143260+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",12],\"langgraph_checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.140606+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.143260+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"14d34422-1f3e-4b83-9dde-555b8c3a8f98\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648225Zc1a83e7f-8120-4d94-9c60-f78c3c95ef19.20240925T223124652727Z14d34422-1f3e-4b83-9dde-555b8c3a8f98.20240925T223127140606Z9d961ce3-89e6-4e3e-931e-538b87b1f91d\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":138,\"prompt_tokens\":276,\"total_tokens\":414,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-aecd5add-2e18-42fd-acc9-f0f9c11c6eb0-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":276,\"output_tokens\":138,\"total_tokens\":414}}},\"run_type\":\"parser\"},{\"id\":\"9ac73eeb-6589-482b-be7b-11b1fd2c334d\",\"start_time\":\"2024-09-25T22:31:27.146809+00:00\",\"end_time\":\"2024-09-25T22:31:27.148807+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",12],\"langgraph_checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.146809+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.148807+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"c1a83e7f-8120-4d94-9c60-f78c3c95ef19\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648225Zc1a83e7f-8120-4d94-9c60-f78c3c95ef19.20240925T223127146809Z9ac73eeb-6589-482b-be7b-11b1fd2c334d\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The limitations - of finite context length in LLMs restrict their ability to incorporate historical - information and detailed instructions, hindering mechanisms like self-reflection - that could benefit from longer context windows. While vector stores can provide - broader knowledge access, they lack the representation power of full attention. - Additionally, LLMs face challenges in long-term planning and task decomposition, - struggling to adapt plans in response to unexpected errors, which diminishes - their robustness compared to human learning. The reliance on natural language - as an interface between LLMs and external components raises concerns about the - reliability of model outputs, as formatting errors and non-compliance with instructions - can occur, leading to a focus on parsing model output in agent demo code.\"]},\"run_type\":\"chain\"},{\"id\":\"bd193b48-460f-4d52-9197-08a2397aeb7c\",\"start_time\":\"2024-09-25T22:31:27.187616+00:00\",\"end_time\":\"2024-09-25T22:31:27.188951+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",13],\"langgraph_checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.187616+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.188951+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"289731a1-bf83-4a0d-ab73-7f0bd4536e58\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648509Z7321ecd9-00e5-4943-a558-921c9c4307ac.20240925T223124652967Z289731a1-bf83-4a0d-ab73-7f0bd4536e58.20240925T223127187616Zbd193b48-460f-4d52-9197-08a2397aeb7c\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":876,\"total_tokens\":994,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-a2b88217-9310-4353-9c0b-92920f13a99a-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":876,\"output_tokens\":118,\"total_tokens\":994}}},\"run_type\":\"parser\"},{\"id\":\"ab82e800-c276-494a-a8e2-b58886031c23\",\"start_time\":\"2024-09-25T22:31:27.190525+00:00\",\"end_time\":\"2024-09-25T22:31:27.190997+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",13],\"langgraph_checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:27.190525+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.190997+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"7321ecd9-00e5-4943-a558-921c9c4307ac\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648509Z7321ecd9-00e5-4943-a558-921c9c4307ac.20240925T223127190525Zab82e800-c276-494a-a8e2-b58886031c23\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The article \\\"LLM-powered - Autonomous Agents\\\" by Lilian Weng, published in June 2023, discusses the - integration of large language models (LLMs) into autonomous agents, highlighting - their capabilities in reasoning, problem-solving, and tool usage. It references - various studies and preprints that explore advancements in LLMs, including methods - for enhancing their planning proficiency, reasoning abilities, and interaction - with external tools. The article emphasizes the potential of these agents to - perform complex tasks autonomously, leveraging recent developments in AI research. - For further details, the article can be accessed at the provided URL.\"]},\"run_type\":\"chain\"}],\"patch\":[{\"id\":\"b4946a15-ddfe-4e84-87a6-506da4a3298f\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645665Zb4946a15-ddfe-4e84-87a6-506da4a3298f\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",0],\"langgraph_checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.961096+00:00\",\"inputs\":{\"content\":\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\"},\"outputs\":{\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.645665+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.961096+00:00\"}]},{\"id\":\"91d14db6-d720-40c5-8074-29b410accee4\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"b4946a15-ddfe-4e84-87a6-506da4a3298f\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645665Zb4946a15-ddfe-4e84-87a6-506da4a3298f.20240925T223124649110Z91d14db6-d720-40c5-8074-29b410accee4\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",0],\"langgraph_checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.960327+00:00\",\"inputs\":{\"input\":\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\"},\"outputs\":{\"output\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.649110+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.960327+00:00\"}]},{\"id\":\"5726bbb3-b09c-4033-a1ae-6a2f73b752d9\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"91d14db6-d720-40c5-8074-29b410accee4\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645665Zb4946a15-ddfe-4e84-87a6-506da4a3298f.20240925T223124649110Z91d14db6-d720-40c5-8074-29b410accee4.20240925T223124662521Z5726bbb3-b09c-4033-a1ae-6a2f73b752d9\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",0],\"langgraph_checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"checkpoint_ns\":\"generate_summary:3de4a334-23d5-d040-c7ab-937ecb975bda\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.959219+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nLLM Powered Autonomous Agents | - Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":429,\"total_tokens\":597,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-5726bbb3-b09c-4033-a1ae-6a2f73b752d9-0\",\"usage_metadata\":{\"input_tokens\":429,\"output_tokens\":168,\"total_tokens\":597},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":429,\"total_tokens\":597,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.662521+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.959219+00:00\"}]},{\"id\":\"8266be5f-162d-4c50-9df9-aa0f9ee0d7c4\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645903Z8266be5f-162d-4c50-9df9-aa0f9ee0d7c4\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",1],\"langgraph_checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.568167+00:00\",\"inputs\":{\"content\":\"Fig. - 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA - complicated task usually involves many steps. An agent needs to know what they - are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. - 2022) has become a standard prompting technique for enhancing model performance - on complex tasks. The model is instructed to \u201Cthink step by step\u201D - to utilize more test-time computation to decompose hard tasks into smaller and - simpler steps. CoT transforms big tasks into multiple manageable tasks and shed - lights into an interpretation of the model\u2019s thinking process.\\nTree of - Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities - at each step. It first decomposes the problem into multiple thought steps and - generates multiple thoughts per step, creating a tree structure. The search - process can be BFS (breadth-first search) or DFS (depth-first search) with each - state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition - can be done (1) by LLM with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", - \\\"What are the subgoals for achieving XYZ?\\\", (2) by using task-specific - instructions; e.g. \\\"Write a story outline.\\\" for writing a novel, or (3) - with human inputs.\\nAnother quite distinct approach, LLM+P (Liu et al. 2023), - involves relying on an external classical planner to do long-horizon planning. - This approach utilizes the Planning Domain Definition Language (PDDL) as an - intermediate interface to describe the planning problem. In this process, LLM - (1) translates the problem into \u201CProblem PDDL\u201D, then (2) requests - a classical planner to generate a PDDL plan based on an existing \u201CDomain - PDDL\u201D, and finally (3) translates the PDDL plan back into natural language. - Essentially, the planning step is outsourced to an external tool, assuming the - availability of domain-specific PDDL and a suitable planner which is common - in certain robotic setups but not in many other domains.\\nSelf-Reflection#\\nSelf-reflection - is a vital aspect that allows autonomous agents to improve iteratively by refining - past action decisions and correcting previous mistakes. It plays a crucial role - in real-world tasks where trial and error are inevitable.\\nReAct (Yao et al. - 2023) integrates reasoning and acting within LLM by extending the action space - to be a combination of task-specific discrete actions and the language space. - The former enables LLM to interact with the environment (e.g. use Wikipedia - search API), while the latter prompting LLM to generate reasoning traces in - natural language.\\nThe ReAct prompt template incorporates explicit steps for - LLM to think, roughly formatted as:\\nThought: ...\\nAction: ...\\nObservation: - ...\\n... (Repeated many times)\\n\\nFig. 2. Examples of reasoning trajectories - for knowledge-intensive tasks (e.g. HotpotQA, FEVER) and decision-making tasks - (e.g. AlfWorld Env, WebShop). (Image source: Yao et al. 2023).\\nIn both experiments - on knowledge-intensive tasks and decision-making tasks, ReAct works better than - the Act-only baseline where Thought: \u2026 step is removed.\\nReflexion (Shinn - & Labash 2023) is a framework to equips agents with dynamic memory and self-reflection - capabilities to improve reasoning skills. Reflexion has a standard RL setup, - in which the reward model provides a simple binary reward and the action space - follows the setup in ReAct where the task-specific action space is augmented - with language to enable complex reasoning steps. After each action $a_t$, the - agent computes a heuristic $h_t$ and optionally may decide to reset the environment - to start a new trial depending on the self-reflection results.\\n\\nFig. 3. - Illustration of the Reflexion framework. (Image source: Shinn & Labash, 2023)\\nThe - heuristic function determines when the trajectory is inefficient or contains - hallucination and should be stopped. Inefficient planning refers to trajectories - that take too long without success. Hallucination is defined as encountering - a sequence of consecutive identical actions that lead to the same observation - in the environment.\\nSelf-reflection is created by showing two-shot examples - to LLM and each example is a pair of (failed trajectory, ideal reflection for - guiding future changes in the plan). Then reflections are added into the agent\u2019s - working memory, up to three, to be used as context for querying LLM.\"},\"outputs\":{\"summaries\":[\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.645903+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.568167+00:00\"}]},{\"id\":\"a67ddb6d-d611-47eb-8245-48e33d10e395\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"8266be5f-162d-4c50-9df9-aa0f9ee0d7c4\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645903Z8266be5f-162d-4c50-9df9-aa0f9ee0d7c4.20240925T223124649490Za67ddb6d-d611-47eb-8245-48e33d10e395\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",1],\"langgraph_checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.567059+00:00\",\"inputs\":{\"input\":\"Fig. - 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA - complicated task usually involves many steps. An agent needs to know what they - are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. - 2022) has become a standard prompting technique for enhancing model performance - on complex tasks. The model is instructed to \u201Cthink step by step\u201D - to utilize more test-time computation to decompose hard tasks into smaller and - simpler steps. CoT transforms big tasks into multiple manageable tasks and shed - lights into an interpretation of the model\u2019s thinking process.\\nTree of - Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities - at each step. It first decomposes the problem into multiple thought steps and - generates multiple thoughts per step, creating a tree structure. The search - process can be BFS (breadth-first search) or DFS (depth-first search) with each - state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition - can be done (1) by LLM with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", - \\\"What are the subgoals for achieving XYZ?\\\", (2) by using task-specific - instructions; e.g. \\\"Write a story outline.\\\" for writing a novel, or (3) - with human inputs.\\nAnother quite distinct approach, LLM+P (Liu et al. 2023), - involves relying on an external classical planner to do long-horizon planning. - This approach utilizes the Planning Domain Definition Language (PDDL) as an - intermediate interface to describe the planning problem. In this process, LLM - (1) translates the problem into \u201CProblem PDDL\u201D, then (2) requests - a classical planner to generate a PDDL plan based on an existing \u201CDomain - PDDL\u201D, and finally (3) translates the PDDL plan back into natural language. - Essentially, the planning step is outsourced to an external tool, assuming the - availability of domain-specific PDDL and a suitable planner which is common - in certain robotic setups but not in many other domains.\\nSelf-Reflection#\\nSelf-reflection - is a vital aspect that allows autonomous agents to improve iteratively by refining - past action decisions and correcting previous mistakes. It plays a crucial role - in real-world tasks where trial and error are inevitable.\\nReAct (Yao et al. - 2023) integrates reasoning and acting within LLM by extending the action space - to be a combination of task-specific discrete actions and the language space. - The former enables LLM to interact with the environment (e.g. use Wikipedia - search API), while the latter prompting LLM to generate reasoning traces in - natural language.\\nThe ReAct prompt template incorporates explicit steps for - LLM to think, roughly formatted as:\\nThought: ...\\nAction: ...\\nObservation: - ...\\n... (Repeated many times)\\n\\nFig. 2. Examples of reasoning trajectories - for knowledge-intensive tasks (e.g. HotpotQA, FEVER) and decision-making tasks - (e.g. AlfWorld Env, WebShop). (Image source: Yao et al. 2023).\\nIn both experiments - on knowledge-intensive tasks and decision-making tasks, ReAct works better than - the Act-only baseline where Thought: \u2026 step is removed.\\nReflexion (Shinn - & Labash 2023) is a framework to equips agents with dynamic memory and self-reflection - capabilities to improve reasoning skills. Reflexion has a standard RL setup, - in which the reward model provides a simple binary reward and the action space - follows the setup in ReAct where the task-specific action space is augmented - with language to enable complex reasoning steps. After each action $a_t$, the - agent computes a heuristic $h_t$ and optionally may decide to reset the environment - to start a new trial depending on the self-reflection results.\\n\\nFig. 3. - Illustration of the Reflexion framework. (Image source: Shinn & Labash, 2023)\\nThe - heuristic function determines when the trajectory is inefficient or contains - hallucination and should be stopped. Inefficient planning refers to trajectories - that take too long without success. Hallucination is defined as encountering - a sequence of consecutive identical actions that lead to the same observation - in the environment.\\nSelf-reflection is created by showing two-shot examples - to LLM and each example is a pair of (failed trajectory, ideal reflection for - guiding future changes in the plan). Then reflections are added into the agent\u2019s - working memory, up to three, to be used as context for querying LLM.\"},\"outputs\":{\"output\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.649490+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.567059+00:00\"}]},{\"id\":\"9c76b7c0-e07e-4e04-b953-e3469b9cbb99\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"a67ddb6d-d611-47eb-8245-48e33d10e395\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124645903Z8266be5f-162d-4c50-9df9-aa0f9ee0d7c4.20240925T223124649490Za67ddb6d-d611-47eb-8245-48e33d10e395.20240925T223124662799Z9c76b7c0-e07e-4e04-b953-e3469b9cbb99\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",1],\"langgraph_checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"checkpoint_ns\":\"generate_summary:cc5624bc-f282-3def-8d6f-e227532401be\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.564800+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nFig. 1. Overview of a LLM-powered - autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually - involves many steps. An agent needs to know what they are and plan ahead.\\nTask - Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard - prompting technique for enhancing model performance on complex tasks. The model - is instructed to \u201Cthink step by step\u201D to utilize more test-time computation - to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks - into multiple manageable tasks and shed lights into an interpretation of the - model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":216,\"prompt_tokens\":919,\"total_tokens\":1135,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-9c76b7c0-e07e-4e04-b953-e3469b9cbb99-0\",\"usage_metadata\":{\"input_tokens\":919,\"output_tokens\":216,\"total_tokens\":1135},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":216,\"prompt_tokens\":919,\"total_tokens\":1135,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.662799+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.564800+00:00\"}]},{\"id\":\"04729cd0-ccbf-4550-9f98-b75d5abde1c7\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646126Z04729cd0-ccbf-4550-9f98-b75d5abde1c7\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",2],\"langgraph_checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.999284+00:00\",\"inputs\":{\"content\":\"Fig. - 4. Experiments on AlfWorld Env and HotpotQA. Hallucination is a more common - failure than inefficient planning in AlfWorld. (Image source: Shinn & Labash, - 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages the model to improve - on its own outputs by explicitly presenting it with a sequence of past outputs, - each annotated with feedback. Human feedback data is a collection of $D_h = - \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, each $y_i$ - is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ is the - corresponding human-provided hindsight feedback. Assume the feedback tuples - are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ The - process is supervised fine-tuning where the data is a sequence in the form of - $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq i - \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\"},\"outputs\":{\"summaries\":[\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.646126+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.999284+00:00\"}]},{\"id\":\"0c3af0d5-8988-4859-9137-690bbf45c2db\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"04729cd0-ccbf-4550-9f98-b75d5abde1c7\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646126Z04729cd0-ccbf-4550-9f98-b75d5abde1c7.20240925T223124649812Z0c3af0d5-8988-4859-9137-690bbf45c2db\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",2],\"langgraph_checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.998766+00:00\",\"inputs\":{\"input\":\"Fig. - 4. Experiments on AlfWorld Env and HotpotQA. Hallucination is a more common - failure than inefficient planning in AlfWorld. (Image source: Shinn & Labash, - 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages the model to improve - on its own outputs by explicitly presenting it with a sequence of past outputs, - each annotated with feedback. Human feedback data is a collection of $D_h = - \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, each $y_i$ - is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ is the - corresponding human-provided hindsight feedback. Assume the feedback tuples - are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ The - process is supervised fine-tuning where the data is a sequence in the form of - $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq i - \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\"},\"outputs\":{\"output\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.649812+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.998766+00:00\"}]},{\"id\":\"5d2fa773-6427-47fe-83eb-606ca4be006b\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"0c3af0d5-8988-4859-9137-690bbf45c2db\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646126Z04729cd0-ccbf-4550-9f98-b75d5abde1c7.20240925T223124649812Z0c3af0d5-8988-4859-9137-690bbf45c2db.20240925T223124663050Z5d2fa773-6427-47fe-83eb-606ca4be006b\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",2],\"langgraph_checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"checkpoint_ns\":\"generate_summary:123103b8-eef4-64bb-3cc9-4a4b74a7b482\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.997866+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nFig. 4. Experiments on AlfWorld - Env and HotpotQA. Hallucination is a more common failure than inefficient planning - in AlfWorld. (Image source: Shinn & Labash, 2023)\\nChain of Hindsight (CoH; - Liu et al. 2023) encourages the model to improve on its own outputs by explicitly - presenting it with a sequence of past outputs, each annotated with feedback. - Human feedback data is a collection of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, - where $x$ is the prompt, each $y_i$ is a model completion, $r_i$ is the human - rating of $y_i$, and $z_i$ is the corresponding human-provided hindsight feedback. - Assume the feedback tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq - \\\\dots \\\\geq r_1$ The process is supervised fine-tuning where the data is - a sequence in the form of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, - y_n)$, where $\\\\leq i \\\\leq j \\\\leq n$. The model is finetuned to only - predict $y_n$ where conditioned on the sequence prefix, such that the model - can self-reflect to produce better output based on the feedback sequence. The - model can optionally receive multiple rounds of instructions with human annotators - at test time.\\nTo avoid overfitting, CoH adds a regularization term to maximize - the log-likelihood of the pre-training dataset. To avoid shortcutting and copying - (because there are many common words in feedback sequences), they randomly mask - 0% - 5% of past tokens during training.\\nThe training dataset in their experiments - is a combination of WebGPT comparisons, summarization from human feedback and - human preference dataset.\\n\\nFig. 5. After fine-tuning with CoH, the model - can follow instructions to produce outputs with incremental improvement in a - sequence. (Image source: Liu et al. 2023)\\nThe idea of CoH is to present a - history of sequentially improved outputs in context and train the model to - take on the trend to produce better outputs. Algorithm Distillation (AD; Laskin - et al. 2023) applies the same idea to cross-episode trajectories in reinforcement - learning tasks, where an algorithm is encapsulated in a long history-conditioned - policy. Considering that an agent interacts with the environment many times - and in each episode the agent gets a little better, AD concatenates this learning - history and feeds that into the model. Hence we should expect the next predicted - action to lead to better performance than previous trials. The goal is to learn - the process of RL instead of training a task-specific policy itself.\\n\\nFig. - 6. Illustration of how Algorithm Distillation (AD) works. (Image source: Laskin - et al. 2023).\\nThe paper hypothesizes that any algorithm that generates a set - of learning histories can be distilled into a neural network by performing behavioral - cloning over actions. The history data is generated by a set of source policies, - each trained for a specific task. At the training stage, during each RL run, - a random task is sampled and a subsequence of multi-episode history is used - for training, such that the learned policy is task-agnostic.\\nIn reality, the - model has limited context window length, so episodes should be short enough - to construct multi-episode history. Multi-episodic contexts of 2-4 episodes - are necessary to learn a near-optimal in-context RL algorithm. The emergence - of in-context RL requires long enough context.\\nIn comparison with three baselines, - including ED (expert distillation, behavior cloning with expert trajectories - instead of learning history), source policy (used for generating trajectories - for distillation by UCB), RL^2 (Duan et al. 2017; used as upper bound since - it needs online RL), AD demonstrates in-context RL with performance getting - close to RL^2 despite only using offline RL and learns much faster than other - baselines. When conditioned on partial training history of the source policy, - AD also improves much faster than ED baseline.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":163,\"prompt_tokens\":881,\"total_tokens\":1044,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-5d2fa773-6427-47fe-83eb-606ca4be006b-0\",\"usage_metadata\":{\"input_tokens\":881,\"output_tokens\":163,\"total_tokens\":1044},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":163,\"prompt_tokens\":881,\"total_tokens\":1044,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.663050+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.997866+00:00\"}]},{\"id\":\"69927c0f-cbef-4a76-839e-9e9f0a026880\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646321Z69927c0f-cbef-4a76-839e-9e9f0a026880\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",3],\"langgraph_checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.150321+00:00\",\"inputs\":{\"content\":\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\"},\"outputs\":{\"summaries\":[\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.646321+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.150321+00:00\"}]},{\"id\":\"8ca560f6-6e5c-44ba-baef-9a9bf0a41f63\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"69927c0f-cbef-4a76-839e-9e9f0a026880\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646321Z69927c0f-cbef-4a76-839e-9e9f0a026880.20240925T223124650107Z8ca560f6-6e5c-44ba-baef-9a9bf0a41f63\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",3],\"langgraph_checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.145935+00:00\",\"inputs\":{\"input\":\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\"},\"outputs\":{\"output\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.650107+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.145935+00:00\"}]},{\"id\":\"65183656-8dae-43ce-8999-7a1417890092\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"8ca560f6-6e5c-44ba-baef-9a9bf0a41f63\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646321Z69927c0f-cbef-4a76-839e-9e9f0a026880.20240925T223124650107Z8ca560f6-6e5c-44ba-baef-9a9bf0a41f63.20240925T223124663293Z65183656-8dae-43ce-8999-7a1417890092\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",3],\"langgraph_checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"checkpoint_ns\":\"generate_summary:ad39dc22-e4ec-62f5-fdda-0947760a96da\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.139604+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nFig. 7. Comparison of AD, ED, source - policy and RL^2 on environments that require memory and exploration. Only binary - reward is assigned. The source policies are trained with A3C for \\\"dark\\\" - environments and DQN for watermaze.(Image source: Laskin et al. 2023)\\nComponent - Two: Memory#\\n(Big thank you to ChatGPT for helping me draft this section. - I\u2019ve learned a lot about the human brain and data structure for fast MIPS - in my conversations with ChatGPT.)\\nTypes of Memory#\\nMemory can be defined - as the processes used to acquire, store, retain, and later retrieve information. - There are several types of memory in human brains.\\n\\n\\nSensory Memory: This - is the earliest stage of memory, providing the ability to retain impressions - of sensory information (visual, auditory, etc) after the original stimuli have - ended. Sensory memory typically only lasts for up to a few seconds. Subcategories - include iconic memory (visual), echoic memory (auditory), and haptic memory - (touch).\\n\\n\\nShort-Term Memory (STM) or Working Memory: It stores information - that we are currently aware of and needed to carry out complex cognitive tasks - such as learning and reasoning. Short-term memory is believed to have the capacity - of about 7 items (Miller 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term - Memory (LTM): Long-term memory can store information for a remarkably long time, - ranging from a few days to decades, with an essentially unlimited storage capacity. - There are two subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory - of facts and events, and refers to those memories that can be consciously recalled, - including episodic memory (events and experiences) and semantic memory (facts - and concepts).\\nImplicit / procedural memory: This type of memory is unconscious - and involves skills and routines that are performed automatically, like riding - a bike or typing on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe - can roughly consider the following mappings:\\n\\nSensory memory as learning - embedding representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":166,\"prompt_tokens\":595,\"total_tokens\":761,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-65183656-8dae-43ce-8999-7a1417890092-0\",\"usage_metadata\":{\"input_tokens\":595,\"output_tokens\":166,\"total_tokens\":761},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":166,\"prompt_tokens\":595,\"total_tokens\":761,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.663293+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.139604+00:00\"}]},{\"id\":\"f7268200-caea-4451-89d0-a7cfd4d2d12a\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646753Zf7268200-caea-4451-89d0-a7cfd4d2d12a\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",5],\"langgraph_checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.790717+00:00\",\"inputs\":{\"content\":\"Fig. - 10. A picture of a sea otter using rock to crack open a seashell, while floating - in the water. While some other animals can use tools, the complexity is not - comparable with humans. (Image source: Animals using tools)\\nMRKL (Karpas et - al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\"},\"outputs\":{\"summaries\":[\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.646753+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.790717+00:00\"}]},{\"id\":\"e3c5d0ad-b186-4b8e-a47f-7f4a52421043\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"f7268200-caea-4451-89d0-a7cfd4d2d12a\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646753Zf7268200-caea-4451-89d0-a7cfd4d2d12a.20240925T223124650692Ze3c5d0ad-b186-4b8e-a47f-7f4a52421043\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",5],\"langgraph_checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.787654+00:00\",\"inputs\":{\"input\":\"Fig. - 10. A picture of a sea otter using rock to crack open a seashell, while floating - in the water. While some other animals can use tools, the complexity is not - comparable with humans. (Image source: Animals using tools)\\nMRKL (Karpas et - al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\"},\"outputs\":{\"output\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.650692+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.787654+00:00\"}]},{\"id\":\"af4597c3-15da-4647-af1b-87e856df8f0f\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e3c5d0ad-b186-4b8e-a47f-7f4a52421043\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646753Zf7268200-caea-4451-89d0-a7cfd4d2d12a.20240925T223124650692Ze3c5d0ad-b186-4b8e-a47f-7f4a52421043.20240925T223124663742Zaf4597c3-15da-4647-af1b-87e856df8f0f\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",5],\"langgraph_checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"checkpoint_ns\":\"generate_summary:f7d238e2-ec9c-12c2-734a-2a6333deb11f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.782749+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nFig. 10. A picture of a sea otter - using rock to crack open a seashell, while floating in the water. While some - other animals can use tools, the complexity is not comparable with humans. (Image - source: Animals using tools)\\nMRKL (Karpas et al. 2022), short for \u201CModular - Reasoning, Knowledge and Language\u201D, is a neuro-symbolic architecture for - autonomous agents. A MRKL system is proposed to contain a collection of \u201Cexpert\u201D - modules and the general-purpose LLM works as a router to route inquiries to - the best suitable expert module. These modules can be neural (e.g. deep learning - models) or symbolic (e.g. math calculator, currency converter, weather API).\\nThey - did an experiment on fine-tuning LLM to call a calculator, using arithmetic - as a test case. Their experiments showed that it was harder to solve verbal - math problems than explicitly stated math problems because LLMs (7B Jurassic1-large - model) failed to extract the right arguments for the basic arithmetic reliably. - The results highlight when the external symbolic tools can work reliably, knowing - when to and how to use the tools are crucial, determined by the LLM capability.\\nBoth - TALM (Tool Augmented Language Models; Parisi et al. 2022) and Toolformer (Schick - et al. 2023) fine-tune a LM to learn to use external tool APIs. The dataset - is expanded based on whether a newly added API call annotation can improve the - quality of model outputs. See more details in the \u201CExternal APIs\u201D - section of Prompt Engineering.\\nChatGPT Plugins and OpenAI API function calling - are good examples of LLMs augmented with tool use capability working in practice. - The collection of tool APIs can be provided by other developers (as in Plugins) - or self-defined (as in function calls).\\nHuggingGPT (Shen et al. 2023) is a - framework to use ChatGPT as the task planner to select models available in HuggingFace - platform according to the model descriptions and summarize the response based - on the execution results.\\n\\nFig. 11. Illustration of how HuggingGPT works. - (Image source: Shen et al. 2023)\\nThe system comprises of 4 stages:\\n(1) Task - planning: LLM works as the brain and parses the user requests into multiple - tasks. There are four attributes associated with each task: task type, ID, dependencies, - and arguments. They use few-shot examples to guide LLM to do task parsing and - planning.\\nInstruction:\\n\\nThe AI assistant can parse user input to several - tasks: [{\\\"task\\\": task, \\\"id\\\", task_id, \\\"dep\\\": dependency_task_ids, - \\\"args\\\": {\\\"text\\\": text, \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": - URL}}]. The \\\"dep\\\" field denotes the id of the previous task which generates - a new resource that the current task relies on. A special tag \\\"-task_id\\\" - refers to the generated text image, audio and video in the dependency task with - id as task_id. The task MUST be selected from the following options: {{ Available - Task List }}. There is a logical relationship between tasks, please note their - order. If the user input can't be parsed, you need to reply empty JSON. Here - are several cases for your reference: {{ Demonstrations }}. The chat history - is recorded as {{ Chat History }}. From this chat history, you can find the - path of the user-mentioned resources for your task planning.\\n\\n(2) Model - selection: LLM distributes the tasks to expert models, where the request is - framed as a multiple-choice question. LLM is presented with a list of models - to choose from. Due to the limited context length, task type based filtration - is needed.\\nInstruction:\\n\\nGiven the user request and the call command, - the AI assistant helps the user to select a suitable model from a list of models - to process the user request. The AI assistant merely outputs the model id of - the most appropriate model. The output must be in a strict JSON format: \\\"id\\\": - \\\"id\\\", \\\"reason\\\": \\\"your detail reason for the choice\\\". We have - a list of models for you to choose from {{ Candidate Models }}. Please select - one model from the list.\\n\\n(3) Task execution: Expert models execute on the - specific tasks and log results.\\nInstruction:\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":172,\"prompt_tokens\":893,\"total_tokens\":1065,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-af4597c3-15da-4647-af1b-87e856df8f0f-0\",\"usage_metadata\":{\"input_tokens\":893,\"output_tokens\":172,\"total_tokens\":1065},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":172,\"prompt_tokens\":893,\"total_tokens\":1065,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.663742+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.782749+00:00\"}]},{\"id\":\"4848afe5-7396-40eb-af6f-37891f0f1421\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646958Z4848afe5-7396-40eb-af6f-37891f0f1421\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",6],\"langgraph_checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.035082+00:00\",\"inputs\":{\"content\":\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\"},\"outputs\":{\"summaries\":[\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.646958+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.035082+00:00\"}]},{\"id\":\"64eeaca3-c179-4995-bac1-f21c6db3c77c\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"4848afe5-7396-40eb-af6f-37891f0f1421\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646958Z4848afe5-7396-40eb-af6f-37891f0f1421.20240925T223124650978Z64eeaca3-c179-4995-bac1-f21c6db3c77c\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",6],\"langgraph_checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.033976+00:00\",\"inputs\":{\"input\":\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\"},\"outputs\":{\"output\":\"The AI assistant processes user - input by following a structured workflow: User Input, Task Planning, Model Selection, - and Task Execution. It first provides a direct response to the user's request, - then details the task process and shares analysis and inference results, including - any relevant file paths.\\n\\nTo enhance real-world applications of HuggingGPT, - several challenges must be addressed, including improving efficiency, managing - long context windows for complex tasks, and stabilizing output quality. The - API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 annotated - dialogues, assessing their decision-making capabilities at three levels: calling - APIs, retrieving the right APIs, and planning multiple API calls for complex - requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness of LLMs - augmented with expert tools for scientific tasks, revealing that while LLMs - may perform similarly in evaluations, expert assessments show significant advantages - for specialized tools. This highlights the limitations of LLMs in self-evaluating - their performance in expert domains.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.650978+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.033976+00:00\"}]},{\"id\":\"004a9f8d-4452-4170-a475-8227451fbbc2\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"64eeaca3-c179-4995-bac1-f21c6db3c77c\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646958Z4848afe5-7396-40eb-af6f-37891f0f1421.20240925T223124650978Z64eeaca3-c179-4995-bac1-f21c6db3c77c.20240925T223124663971Z004a9f8d-4452-4170-a475-8227451fbbc2\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",6],\"langgraph_checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"checkpoint_ns\":\"generate_summary:df25dbb3-73fc-64c2-97e2-b26f2a938d58\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.032137+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nWith the input and the inference - results, the AI assistant needs to describe the process and results. The previous - stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks - }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions - }}. You must first answer the user's request in a straightforward manner. Then - describe the task process and show your analysis and model inference results - to the user in the first person. If inference results contain a file path, must - tell the user the complete file path.\\n\\n(4) Response generation: LLM receives - the execution results and provides summarized results to users.\\nTo put HuggingGPT - into real world usage, a couple challenges need to solve: (1) Efficiency improvement - is needed as both LLM inference rounds and interactions with other models slow - down the process; (2) It relies on a long context window to communicate over - complicated task content; (3) Stability improvement of LLM outputs and external - model services.\\nAPI-Bank (Li et al. 2023) is a benchmark for evaluating the - performance of tool-augmented LLMs. It contains 53 commonly used API tools, - a complete tool-augmented LLM workflow, and 264 annotated dialogues that involve - 568 API calls. The selection of APIs is quite diverse, including search engines, - calculator, calendar queries, smart home control, schedule management, health - data management, account authentication workflow and more. Because there are - a large number of APIs, LLM first has access to API search engine to find the - right API to call and then uses the corresponding documentation to make a call.\\n\\nFig. - 12. Pseudo code of how LLM makes an API call in API-Bank. (Image source: Li - et al. 2023)\\nIn the API-Bank workflow, LLMs need to make a couple of decisions - and at each step we can evaluate how accurate that decision is. Decisions include:\\n\\nWhether - an API call is needed.\\nIdentify the right API to call: if not good enough, - LLMs need to iteratively modify the API inputs (e.g. deciding search keywords - for Search Engine API).\\nResponse based on the API results: the model can choose - to refine and call again if results are not satisfied.\\n\\nThis benchmark evaluates - the agent\u2019s tool use capabilities at three levels:\\n\\nLevel-1 evaluates - the ability to call the API. Given an API\u2019s description, the model needs - to determine whether to call a given API, call it correctly, and respond properly - to API returns.\\nLevel-2 examines the ability to retrieve the API. The model - needs to search for possible APIs that may solve the user\u2019s requirement - and learn how to use them by reading documentation.\\nLevel-3 assesses the ability - to plan API beyond retrieve and call. Given unclear user requests (e.g. schedule - group meetings, book flight/hotel/restaurant for a trip), the model may have - to conduct multiple API calls to solve it.\\n\\nCase Studies#\\nScientific Discovery - Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific example in which LLM - is augmented with 13 expert-designed tools to accomplish tasks across organic - synthesis, drug discovery, and materials design. The workflow, implemented in - LangChain, reflects what was previously described in the ReAct and MRKLs and - combines CoT reasoning with tools relevant to the tasks:\\n\\nThe LLM is provided - with a list of tool names, descriptions of their utility, and details about - the expected input/output.\\nIt is then instructed to answer a user-given prompt - using the tools provided when necessary. The instruction suggests the model - to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":197,\"prompt_tokens\":943,\"total_tokens\":1140,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-004a9f8d-4452-4170-a475-8227451fbbc2-0\",\"usage_metadata\":{\"input_tokens\":943,\"output_tokens\":197,\"total_tokens\":1140},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":197,\"prompt_tokens\":943,\"total_tokens\":1140,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.663971+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.032137+00:00\"}]},{\"id\":\"53367cc3-2062-4b4b-b94f-e82ef4e48185\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647175Z53367cc3-2062-4b4b-b94f-e82ef4e48185\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",7],\"langgraph_checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.782157+00:00\",\"inputs\":{\"content\":\"inquired - about current trends in anticancer drug discovery;\\nselected a target;\\nrequested - a scaffold targeting these compounds;\\nOnce the compound was identified, the - model attempted its synthesis.\\n\\nThey also discussed the risks, especially - with illicit drugs and bioweapons. They developed a test set containing a list - of known chemical weapon agents and asked the agent to synthesize them. 4 out - of 11 requests (36%) were accepted to obtain a synthesis solution and the agent - attempted to consult documentation to execute the procedure. 7 out of 11 were - rejected and among these 7 rejected cases, 5 happened after a Web search while - 2 were rejected based on prompt only.\\nGenerative Agents Simulation#\\nGenerative - Agents (Park, et al. 2023) is super fun experiment where 25 virtual characters, - each controlled by a LLM-powered agent, are living and interacting in a sandbox - environment, inspired by The Sims. Generative agents create believable simulacra - of human behavior for interactive applications.\\nThe design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.\\n\\nMemory stream: is a long-term memory module (external database) - that records a comprehensive list of agents\u2019 experience in natural language.\\n\\nEach - element is an observation, an event directly provided by the agent.\\n- Inter-agent - communication can trigger new natural language statements.\\n\\n\\nRetrieval - model: surfaces the context to inform the agent\u2019s behavior, according to - relevance, recency and importance.\\n\\nRecency: recent events have higher scores\\nImportance: - distinguish mundane from core memories. Ask LM directly.\\nRelevance: based - on how related it is to the current situation / query.\\n\\n\\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\\n\\nPrompt LM with 100 - most recent observations and to generate 3 most salient high-level questions - given a set of observations/statements. Then ask LM to answer those questions.\\n\\n\\nPlanning - & Reacting: translate the reflections and the environment information into actions\\n\\nPlanning - is essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\"},\"outputs\":{\"summaries\":[\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.647175+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.782157+00:00\"}]},{\"id\":\"3dd6e681-9d16-4592-99c9-94a5a408d7d8\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"53367cc3-2062-4b4b-b94f-e82ef4e48185\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647175Z53367cc3-2062-4b4b-b94f-e82ef4e48185.20240925T223124651272Z3dd6e681-9d16-4592-99c9-94a5a408d7d8\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",7],\"langgraph_checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.781018+00:00\",\"inputs\":{\"input\":\"inquired - about current trends in anticancer drug discovery;\\nselected a target;\\nrequested - a scaffold targeting these compounds;\\nOnce the compound was identified, the - model attempted its synthesis.\\n\\nThey also discussed the risks, especially - with illicit drugs and bioweapons. They developed a test set containing a list - of known chemical weapon agents and asked the agent to synthesize them. 4 out - of 11 requests (36%) were accepted to obtain a synthesis solution and the agent - attempted to consult documentation to execute the procedure. 7 out of 11 were - rejected and among these 7 rejected cases, 5 happened after a Web search while - 2 were rejected based on prompt only.\\nGenerative Agents Simulation#\\nGenerative - Agents (Park, et al. 2023) is super fun experiment where 25 virtual characters, - each controlled by a LLM-powered agent, are living and interacting in a sandbox - environment, inspired by The Sims. Generative agents create believable simulacra - of human behavior for interactive applications.\\nThe design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.\\n\\nMemory stream: is a long-term memory module (external database) - that records a comprehensive list of agents\u2019 experience in natural language.\\n\\nEach - element is an observation, an event directly provided by the agent.\\n- Inter-agent - communication can trigger new natural language statements.\\n\\n\\nRetrieval - model: surfaces the context to inform the agent\u2019s behavior, according to - relevance, recency and importance.\\n\\nRecency: recent events have higher scores\\nImportance: - distinguish mundane from core memories. Ask LM directly.\\nRelevance: based - on how related it is to the current situation / query.\\n\\n\\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\\n\\nPrompt LM with 100 - most recent observations and to generate 3 most salient high-level questions - given a set of observations/statements. Then ask LM to answer those questions.\\n\\n\\nPlanning - & Reacting: translate the reflections and the environment information into actions\\n\\nPlanning - is essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\"},\"outputs\":{\"output\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.651272+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.781018+00:00\"}]},{\"id\":\"d52315ce-c236-4b5f-a7e7-05ad023f0f4d\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"3dd6e681-9d16-4592-99c9-94a5a408d7d8\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647175Z53367cc3-2062-4b4b-b94f-e82ef4e48185.20240925T223124651272Z3dd6e681-9d16-4592-99c9-94a5a408d7d8.20240925T223124664207Zd52315ce-c236-4b5f-a7e7-05ad023f0f4d\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",7],\"langgraph_checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"checkpoint_ns\":\"generate_summary:3111f062-8402-d8aa-c651-dec4e9608b97\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.778201+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\ninquired about current trends in - anticancer drug discovery;\\nselected a target;\\nrequested a scaffold targeting - these compounds;\\nOnce the compound was identified, the model attempted its - synthesis.\\n\\nThey also discussed the risks, especially with illicit drugs - and bioweapons. They developed a test set containing a list of known chemical - weapon agents and asked the agent to synthesize them. 4 out of 11 requests (36%) - were accepted to obtain a synthesis solution and the agent attempted to consult - documentation to execute the procedure. 7 out of 11 were rejected and among - these 7 rejected cases, 5 happened after a Web search while 2 were rejected - based on prompt only.\\nGenerative Agents Simulation#\\nGenerative Agents (Park, - et al. 2023) is super fun experiment where 25 virtual characters, each controlled - by a LLM-powered agent, are living and interacting in a sandbox environment, - inspired by The Sims. Generative agents create believable simulacra of human - behavior for interactive applications.\\nThe design of generative agents combines - LLM with memory, planning and reflection mechanisms to enable agents to behave - conditioned on past experience, as well as to interact with other agents.\\n\\nMemory - stream: is a long-term memory module (external database) that records a comprehensive - list of agents\u2019 experience in natural language.\\n\\nEach element is an - observation, an event directly provided by the agent.\\n- Inter-agent communication - can trigger new natural language statements.\\n\\n\\nRetrieval model: surfaces - the context to inform the agent\u2019s behavior, according to relevance, recency - and importance.\\n\\nRecency: recent events have higher scores\\nImportance: - distinguish mundane from core memories. Ask LM directly.\\nRelevance: based - on how related it is to the current situation / query.\\n\\n\\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\\n\\nPrompt LM with 100 - most recent observations and to generate 3 most salient high-level questions - given a set of observations/statements. Then ask LM to answer those questions.\\n\\n\\nPlanning - & Reacting: translate the reflections and the environment information into actions\\n\\nPlanning - is essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":847,\"total_tokens\":1015,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-d52315ce-c236-4b5f-a7e7-05ad023f0f4d-0\",\"usage_metadata\":{\"input_tokens\":847,\"output_tokens\":168,\"total_tokens\":1015},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":168,\"prompt_tokens\":847,\"total_tokens\":1015,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.664207+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.778201+00:00\"}]},{\"id\":\"156616ba-70e4-4079-b651-8c8a82616868\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647384Z156616ba-70e4-4079-b651-8c8a82616868\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",8],\"langgraph_checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.388603+00:00\",\"inputs\":{\"content\":\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\"},\"outputs\":{\"summaries\":[\"The provided commands outline a set - of functionalities for managing tasks, including searching the internet, browsing - websites, interacting with GPT agents, file management, code analysis, and generating - content. Key commands include starting and messaging GPT agents, executing file - operations (read, write, delete), analyzing and improving code, and generating - images or tweets. Resources available include internet access, memory management, - and GPT-3.5 agents for task delegation. Performance evaluation emphasizes continuous - self-assessment, efficiency in task execution, and strategic reflection to optimize - actions. The system is trained on data up to October 2023.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.647384+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.388603+00:00\"}]},{\"id\":\"a0b4daa6-ff6b-4390-aaa6-7c60f792a9f1\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"156616ba-70e4-4079-b651-8c8a82616868\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647384Z156616ba-70e4-4079-b651-8c8a82616868.20240925T223124651563Za0b4daa6-ff6b-4390-aaa6-7c60f792a9f1\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",8],\"langgraph_checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.387425+00:00\",\"inputs\":{\"input\":\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\"},\"outputs\":{\"output\":\"The provided commands outline a set of - functionalities for managing tasks, including searching the internet, browsing - websites, interacting with GPT agents, file management, code analysis, and generating - content. Key commands include starting and messaging GPT agents, executing file - operations (read, write, delete), analyzing and improving code, and generating - images or tweets. Resources available include internet access, memory management, - and GPT-3.5 agents for task delegation. Performance evaluation emphasizes continuous - self-assessment, efficiency in task execution, and strategic reflection to optimize - actions. The system is trained on data up to October 2023.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.651563+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.387425+00:00\"}]},{\"id\":\"b8e748e8-f70e-418b-9549-7b4cfdb5cdc5\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"a0b4daa6-ff6b-4390-aaa6-7c60f792a9f1\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647384Z156616ba-70e4-4079-b651-8c8a82616868.20240925T223124651563Za0b4daa6-ff6b-4390-aaa6-7c60f792a9f1.20240925T223124664448Zb8e748e8-f70e-418b-9549-7b4cfdb5cdc5\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",8],\"langgraph_checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"checkpoint_ns\":\"generate_summary:ee23b64d-4562-0bc2-3e0f-0ffc98034faf\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.385181+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nCommands:\\n1. Google Search: \\\"google\\\", - args: \\\"input\\\": \\\"\\\"\\n2. Browse Website: \\\"browse_website\\\", - args: \\\"url\\\": \\\"\\\", \\\"question\\\": \\\"\\\"\\n3. - Start GPT Agent: \\\"start_agent\\\", args: \\\"name\\\": \\\"\\\", \\\"task\\\": - \\\"\\\", \\\"prompt\\\": \\\"\\\"\\n4. Message GPT - Agent: \\\"message_agent\\\", args: \\\"key\\\": \\\"\\\", \\\"message\\\": - \\\"\\\"\\n5. List GPT Agents: \\\"list_agents\\\", args:\\n6. Delete - GPT Agent: \\\"delete_agent\\\", args: \\\"key\\\": \\\"\\\"\\n7. Clone - Repository: \\\"clone_repository\\\", args: \\\"repository_url\\\": \\\"\\\", - \\\"clone_path\\\": \\\"\\\"\\n8. Write to file: \\\"write_to_file\\\", - args: \\\"file\\\": \\\"\\\", \\\"text\\\": \\\"\\\"\\n9. Read file: - \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. Append to file: - \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": \\\"\\\"\\n11. - Delete file: \\\"delete_file\\\", args: \\\"file\\\": \\\"\\\"\\n12. Search - Files: \\\"search_files\\\", args: \\\"directory\\\": \\\"\\\"\\n13. - Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": \\\"\\\"\\n14. - Get Improved Code: \\\"improve_code\\\", args: \\\"suggestions\\\": \\\"\\\", - \\\"code\\\": \\\"\\\"\\n15. Write Tests: \\\"write_tests\\\", - args: \\\"code\\\": \\\"\\\", \\\"focus\\\": \\\"\\\"\\n16. - Execute Python File: \\\"execute_python_file\\\", args: \\\"file\\\": \\\"\\\"\\n17. - Generate Image: \\\"generate_image\\\", args: \\\"prompt\\\": \\\"\\\"\\n18. - Send Tweet: \\\"send_tweet\\\", args: \\\"text\\\": \\\"\\\"\\n19. Do - Nothing: \\\"do_nothing\\\", args:\\n20. Task Complete (Shutdown): \\\"task_complete\\\", - args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. Internet access - for searches and information gathering.\\n2. Long Term memory management.\\n3. - GPT-3.5 powered Agents for delegation of simple tasks.\\n4. File output.\\n\\nPerformance - Evaluation:\\n1. Continuously review and analyze your actions to ensure you - are performing to the best of your abilities.\\n2. Constructively self-criticize - your big-picture behavior constantly.\\n3. Reflect on past decisions and strategies - to refine your approach.\\n4. Every command has a cost, so be smart and efficient. - Aim to complete tasks in the least number of steps.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":560,\"total_tokens\":678,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-b8e748e8-f70e-418b-9549-7b4cfdb5cdc5-0\",\"usage_metadata\":{\"input_tokens\":560,\"output_tokens\":118,\"total_tokens\":678},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":560,\"total_tokens\":678,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.664448+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.385181+00:00\"}]},{\"id\":\"37c28d74-a5cc-44d7-b453-245a1efbe6d7\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648026Z37c28d74-a5cc-44d7-b453-245a1efbe6d7\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",11],\"langgraph_checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.924343+00:00\",\"inputs\":{\"content\":\"Conversatin - samples:\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": - \\\"You will get instructions for code to write.\\\\nYou will write a very long - answer. Make sure that every detail of the architecture is, in the end, implemented - as code.\\\\nMake sure that every detail of the architecture is, in the end, - implemented as code.\\\\n\\\\nThink step by step and reason yourself to the - right decisions to make sure we get it right.\\\\nYou will first lay out the - names of the core classes, functions, methods that will be necessary, as well - as a quick comment on their purpose.\\\\n\\\\nThen you will output the content - of each file including ALL code.\\\\nEach file must strictly follow a markdown - code block format, where the following tokens must be replaced such that\\\\nFILENAME - is the lowercase file name including the file extension,\\\\nLANG is the markup - code block language for the code's language, and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\"},\"outputs\":{\"summaries\":[\"The conversation - outlines a structured approach for writing code based on a specified architecture. - The assistant is instructed to think step-by-step, identify core classes and - functions, and provide complete code implementations in a markdown format. The - user emphasizes the importance of creating fully functional code without placeholders, - adhering to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant's training data being current only up to October 2023.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.648026+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.924343+00:00\"}]},{\"id\":\"c2b0f3c2-66ed-4266-84a7-8ee4bf355bc8\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"37c28d74-a5cc-44d7-b453-245a1efbe6d7\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648026Z37c28d74-a5cc-44d7-b453-245a1efbe6d7.20240925T223124652489Zc2b0f3c2-66ed-4266-84a7-8ee4bf355bc8\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",11],\"langgraph_checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.923094+00:00\",\"inputs\":{\"input\":\"Conversatin - samples:\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": - \\\"You will get instructions for code to write.\\\\nYou will write a very long - answer. Make sure that every detail of the architecture is, in the end, implemented - as code.\\\\nMake sure that every detail of the architecture is, in the end, - implemented as code.\\\\n\\\\nThink step by step and reason yourself to the - right decisions to make sure we get it right.\\\\nYou will first lay out the - names of the core classes, functions, methods that will be necessary, as well - as a quick comment on their purpose.\\\\n\\\\nThen you will output the content - of each file including ALL code.\\\\nEach file must strictly follow a markdown - code block format, where the following tokens must be replaced such that\\\\nFILENAME - is the lowercase file name including the file extension,\\\\nLANG is the markup - code block language for the code's language, and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\"},\"outputs\":{\"output\":\"The conversation - outlines a structured approach for writing code based on a specified architecture. - The assistant is instructed to think step-by-step, identify core classes and - functions, and provide complete code implementations in a markdown format. The - user emphasizes the importance of creating fully functional code without placeholders, - adhering to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant's training data being current only up to October 2023.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.652489+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.923094+00:00\"}]},{\"id\":\"8cb13ea8-82ea-4597-b8e7-0793d530d636\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"c2b0f3c2-66ed-4266-84a7-8ee4bf355bc8\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648026Z37c28d74-a5cc-44d7-b453-245a1efbe6d7.20240925T223124652489Zc2b0f3c2-66ed-4266-84a7-8ee4bf355bc8.20240925T223124665152Z8cb13ea8-82ea-4597-b8e7-0793d530d636\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",11],\"langgraph_checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"checkpoint_ns\":\"generate_summary:bee314aa-7892-3f2a-8c8b-31a5f0f2969f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:26.918946+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nConversatin samples:\\n[\\n {\\n - \ \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will get instructions - for code to write.\\\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":120,\"prompt_tokens\":899,\"total_tokens\":1019,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-8cb13ea8-82ea-4597-b8e7-0793d530d636-0\",\"usage_metadata\":{\"input_tokens\":899,\"output_tokens\":120,\"total_tokens\":1019},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":120,\"prompt_tokens\":899,\"total_tokens\":1019,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.665152+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:26.918946+00:00\"}]},{\"id\":\"c1a83e7f-8120-4d94-9c60-f78c3c95ef19\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648225Zc1a83e7f-8120-4d94-9c60-f78c3c95ef19\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",12],\"langgraph_checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.149977+00:00\",\"inputs\":{\"content\":\"Finite - context length: The restricted context capacity limits the inclusion of historical - information, detailed instructions, API call context, and responses. The design - of the system has to work with this limited communication bandwidth, while mechanisms - like self-reflection to learn from past mistakes would benefit a lot from long - or infinite context windows. Although vector stores and retrieval can provide - access to a larger knowledge pool, their representation power is not as powerful - as full attention.\\n\\n\\nChallenges in long-term planning and task decomposition: - Planning over a lengthy history and effectively exploring the solution space - remain challenging. LLMs struggle to adjust plans when faced with unexpected - errors, making them less robust compared to humans who learn from trial and - error.\\n\\n\\nReliability of natural language interface: Current agent system - relies on natural language as an interface between LLMs and external components - such as memory and tools. However, the reliability of model outputs is questionable, - as LLMs may make formatting errors and occasionally exhibit rebellious behavior - (e.g. refuse to follow an instruction). Consequently, much of the agent demo - code focuses on parsing model output.\\n\\n\\nCitation#\\nCited as:\\n\\nWeng, - Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. Lil\u2019Log. - https://lilianweng.github.io/posts/2023-06-23-agent/.\"},\"outputs\":{\"summaries\":[\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.648225+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.149977+00:00\"}]},{\"id\":\"14d34422-1f3e-4b83-9dde-555b8c3a8f98\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"c1a83e7f-8120-4d94-9c60-f78c3c95ef19\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648225Zc1a83e7f-8120-4d94-9c60-f78c3c95ef19.20240925T223124652727Z14d34422-1f3e-4b83-9dde-555b8c3a8f98\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",12],\"langgraph_checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.144955+00:00\",\"inputs\":{\"input\":\"Finite - context length: The restricted context capacity limits the inclusion of historical - information, detailed instructions, API call context, and responses. The design - of the system has to work with this limited communication bandwidth, while mechanisms - like self-reflection to learn from past mistakes would benefit a lot from long - or infinite context windows. Although vector stores and retrieval can provide - access to a larger knowledge pool, their representation power is not as powerful - as full attention.\\n\\n\\nChallenges in long-term planning and task decomposition: - Planning over a lengthy history and effectively exploring the solution space - remain challenging. LLMs struggle to adjust plans when faced with unexpected - errors, making them less robust compared to humans who learn from trial and - error.\\n\\n\\nReliability of natural language interface: Current agent system - relies on natural language as an interface between LLMs and external components - such as memory and tools. However, the reliability of model outputs is questionable, - as LLMs may make formatting errors and occasionally exhibit rebellious behavior - (e.g. refuse to follow an instruction). Consequently, much of the agent demo - code focuses on parsing model output.\\n\\n\\nCitation#\\nCited as:\\n\\nWeng, - Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. Lil\u2019Log. - https://lilianweng.github.io/posts/2023-06-23-agent/.\"},\"outputs\":{\"output\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.652727+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.144955+00:00\"}]},{\"id\":\"aecd5add-2e18-42fd-acc9-f0f9c11c6eb0\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"14d34422-1f3e-4b83-9dde-555b8c3a8f98\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648225Zc1a83e7f-8120-4d94-9c60-f78c3c95ef19.20240925T223124652727Z14d34422-1f3e-4b83-9dde-555b8c3a8f98.20240925T223124665378Zaecd5add-2e18-42fd-acc9-f0f9c11c6eb0\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",12],\"langgraph_checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"checkpoint_ns\":\"generate_summary:767e5792-507b-4153-81ae-ba1a1fa55903\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.138965+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":138,\"prompt_tokens\":276,\"total_tokens\":414,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-aecd5add-2e18-42fd-acc9-f0f9c11c6eb0-0\",\"usage_metadata\":{\"input_tokens\":276,\"output_tokens\":138,\"total_tokens\":414},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":138,\"prompt_tokens\":276,\"total_tokens\":414,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_3a215618e8\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.665378+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.138965+00:00\"}]},{\"id\":\"7321ecd9-00e5-4943-a558-921c9c4307ac\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648509Z7321ecd9-00e5-4943-a558-921c9c4307ac\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",13],\"langgraph_checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.191645+00:00\",\"inputs\":{\"content\":\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"},\"outputs\":{\"summaries\":[\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.648509+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.191645+00:00\"}]},{\"id\":\"289731a1-bf83-4a0d-ab73-7f0bd4536e58\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"7321ecd9-00e5-4943-a558-921c9c4307ac\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648509Z7321ecd9-00e5-4943-a558-921c9c4307ac.20240925T223124652967Z289731a1-bf83-4a0d-ab73-7f0bd4536e58\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",13],\"langgraph_checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.189894+00:00\",\"inputs\":{\"input\":\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"},\"outputs\":{\"output\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.652967+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.189894+00:00\"}]},{\"id\":\"a2b88217-9310-4353-9c0b-92920f13a99a\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"289731a1-bf83-4a0d-ab73-7f0bd4536e58\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124648509Z7321ecd9-00e5-4943-a558-921c9c4307ac.20240925T223124652967Z289731a1-bf83-4a0d-ab73-7f0bd4536e58.20240925T223124665586Za2b88217-9310-4353-9c0b-92920f13a99a\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",13],\"langgraph_checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"checkpoint_ns\":\"generate_summary:667a010f-abc7-3e13-bbac-a6a11e100599\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:27.186159+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":876,\"total_tokens\":994,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-a2b88217-9310-4353-9c0b-92920f13a99a-0\",\"usage_metadata\":{\"input_tokens\":876,\"output_tokens\":118,\"total_tokens\":994},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":118,\"prompt_tokens\":876,\"total_tokens\":994,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.665586+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:27.186159+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '281335' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:28 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nLSH - (Locality-Sensitive Hashing): It introduces a hashing function such that similar - input items are mapped to the same buckets with high probability, where the - number of buckets is much smaller than the number of inputs.\nANNOY (Approximate - Nearest Neighbors Oh Yeah): The core data structure are random projection trees, - a set of binary trees where each non-leaf node represents a hyperplane splitting - the input space into half and each leaf stores one data point. Trees are built - independently and at random, so to some extent, it mimics a hashing function. - ANNOY search happens in all the trees to iteratively search through the half - that is closest to the query and then aggregates the results. The idea is quite - related to KD tree but a lot more scalable.\nHNSW (Hierarchical Navigable Small - World): It is inspired by the idea of small world networks where most nodes - can be reached by any other nodes within a small number of steps; e.g. \u201csix - degrees of separation\u201d feature of social networks. HNSW builds hierarchical - layers of these small-world graphs, where the bottom layers contain the actual - data points. The layers in the middle create shortcuts to speed up search. When - performing a search, HNSW starts from a random node in the top layer and navigates - towards the target. When it can\u2019t get any closer, it moves down to the - next layer, until it reaches the bottom layer. Each move in the upper layers - can potentially cover a large distance in the data space, and each move in the - lower layers refines the search quality.\nFAISS (Facebook AI Similarity Search): - It operates on the assumption that in high dimensional space, distances between - nodes follow a Gaussian distribution and thus there should exist clustering - of data points. FAISS applies vector quantization by partitioning the vector - space into clusters and then refining the quantization within clusters. Search - first looks for cluster candidates with coarse quantization and then further - looks into each cluster with finer quantization.\nScaNN (Scalable Nearest Neighbors): - The main innovation in ScaNN is anisotropic vector quantization. It quantizes - a data point $x_i$ to $\\tilde{x}_i$ such that the inner product $\\langle q, - x_i \\rangle$ is as similar to the original distance of $\\angle q, \\tilde{x}_i$ - as possible, instead of picking the closet quantization centroid points.\n\n\nFig. - 9. Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\nComponent - Three: Tool Use#\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.", "role": "system"}], - "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '3019' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFXbThtJEH3nK0rzRJCNwDjA+s1IS0BinawMm0WbFSr3lKdr6eluumq4 - Rfz7qnt8IYryYsl1Paeq+sz3HYCK62oClbGopo1uOD27ibc3n6ZfRs9///llNrv96/fzs4frOLq0 - 16fVIGeExX9kdJ21b0IbHSkH37tNIlTKVQ9PRidHB0fj03FxtKEml9OaqMNxGLbseTg6GI2HByfD - w1VxYwMbkmoC/+wAAHwvvxmnr+m5msDBYG1pSQQbqiabIIAqBZctFYqwKHqtBlunCV7JF+jXlkDp - WaFmMZ0ICTxi4tAJoGtCYrWtwDIkwBhTeOYWlcATJhIFT9zYRUgghMnYARAaC0+sFjrPDx1BS2pD - HVxomGTyzX/zh/uwt3c1v4Ddq2DQsb4M5+SFlR8JLlAs++bD3t4EpmD7f7DsvMmDBbWo0GIUEG7Z - YQJWagU0gFoCwZZg0Zl7UulRWG4sxBQWuODcagCdlIr0RGkTqhY9sI+dyn6GOMoQp7PZ51vYnb6j - PVvRnq1oC3y2cEtoC94bZcevJJDQ16HNbfOBFNyJqKCU6Fj7ViARDQH6GkRDIqhREWJgrwLswRE+ - kgyg5ZbNfQaNPw8kL0YMOlw4Wi2Beg5HmcPFbP4Vdi+YUvawQQczfOSmhM9bdA6+huTqgv+sY1cL - 2PfRkmOGTzkGmoTRFhZLNHmaeSS0XLJh8rrpDosX8KWJZqhqU+gaCw5fKMkARDEVxzKFFnA9LB9q - yqzzGjXEPrwQGWci59PL+Rx2z9HQIoR7mF7CvL8A1heYl9b90Yh0LQl8wk6E0ee71sSLroyLfbmI - Yc1tPrngM8W8hvVdPJLRkOChQ6/8iv3yAhjXiVL6YUV5cYmW7LeDLzdXSAShdVK/jo+ZxdzgbAa7 - 8/XCfrqnQuHS+/CIuioH6FmCphDZ/AoeeekS9a8jD3DlpwwwJhLy2scaF4TcC2Rbu3D5Ji1BSNxw - HkVdpMKUV5vY9Mg3CoFOQhmf48Zqn8ptDKnPCUvQEBx0UhZJ3qI3/QUQGIz9C2SSHOkwNQQOfdNh - Q1AkUWD36uoP+TAAaqNF4dd1dhaznEXPSikDzY3KI8kWX6/iOG0eRtGV/feal2jZCWbd9Z1zK/vb - RkRdaLJMyMq/sS/Zs9i7RCjBZ8EUDbEq3rcdgH+LWHc/6G8VU2ij3mm4J58LHh8c9/Wq7Tdi6x0d - na68GhTd1nE6Hv8q7a4mRXbyTvOrHiL7ZlvhYIOzEK3kRZTauyX7hlJM3H8ClvGOfjsenSw+Ho2P - q523nf8BAAD//wMARHgmsBAHAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db9ff94ce2-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:28 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=nJVuT18z1c.xCCiLOpxbfMg6ZqPqvfaYW8uOCj8drVs-1727303488-1.0.1.1-aWGvx118Q8acyOTMbW.aTHO_pQYDhFg3CTf2.MYRhdoKl.bjE_78BF2r.kJYsusXmwO6.pHxr2o5ig.3xFur8g; - path=/; expires=Wed, 25-Sep-24 23:01:28 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=RR8sRpvKST3OHCZG_VS2aSpd5XSdO.ME8HZ3DdZVKws-1727303488977-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '4033' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4988' - x-ratelimit-remaining-tokens: - - '3991055' - x-ratelimit-reset-requests: - - 136ms - x-ratelimit-reset-tokens: - - 134ms - x-request-id: - - req_6d1634f9cd8bceb31e194a220e536b1f - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"075b9c0b-4265-4a43-bde3-fae8ca8409d5\",\"start_time\":\"2024-09-25T22:31:28.991837+00:00\",\"end_time\":\"2024-09-25T22:31:28.992537+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",4],\"langgraph_checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:28.991837+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:28.992537+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"8f506e99-824a-489b-ba53-7aecad525548\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646540Z2a82f803-6437-4060-91df-8837e0b90f2f.20240925T223124650400Z8f506e99-824a-489b-ba53-7aecad525548.20240925T223128991837Z075b9c0b-4265-4a43-bde3-fae8ca8409d5\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":238,\"prompt_tokens\":606,\"total_tokens\":844,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-8ffad78d-3bf5-46d2-ab93-4848bd406d25-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":606,\"output_tokens\":238,\"total_tokens\":844}}},\"run_type\":\"parser\"},{\"id\":\"df8c04dd-7264-4d5f-a3ef-98ee478aae3f\",\"start_time\":\"2024-09-25T22:31:28.993314+00:00\",\"end_time\":\"2024-09-25T22:31:28.993771+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",4],\"langgraph_checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:28.993314+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:28.993771+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"2a82f803-6437-4060-91df-8837e0b90f2f\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646540Z2a82f803-6437-4060-91df-8837e0b90f2f.20240925T223128993314Zdf8c04dd-7264-4d5f-a3ef-98ee478aae3f\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\"]},\"run_type\":\"chain\"}],\"patch\":[{\"id\":\"8ffad78d-3bf5-46d2-ab93-4848bd406d25\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"8f506e99-824a-489b-ba53-7aecad525548\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646540Z2a82f803-6437-4060-91df-8837e0b90f2f.20240925T223124650400Z8f506e99-824a-489b-ba53-7aecad525548.20240925T223124663510Z8ffad78d-3bf5-46d2-ab93-4848bd406d25\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",4],\"langgraph_checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:28.990914+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nLSH (Locality-Sensitive Hashing): - It introduces a hashing function such that similar input items are mapped to - the same buckets with high probability, where the number of buckets is much - smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors Oh - Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":238,\"prompt_tokens\":606,\"total_tokens\":844,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-8ffad78d-3bf5-46d2-ab93-4848bd406d25-0\",\"usage_metadata\":{\"input_tokens\":606,\"output_tokens\":238,\"total_tokens\":844},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":238,\"prompt_tokens\":606,\"total_tokens\":844,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.663510+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:28.990914+00:00\"}]},{\"id\":\"8f506e99-824a-489b-ba53-7aecad525548\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"2a82f803-6437-4060-91df-8837e0b90f2f\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646540Z2a82f803-6437-4060-91df-8837e0b90f2f.20240925T223124650400Z8f506e99-824a-489b-ba53-7aecad525548\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",4],\"langgraph_checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:28.992915+00:00\",\"inputs\":{\"input\":\"LSH - (Locality-Sensitive Hashing): It introduces a hashing function such that similar - input items are mapped to the same buckets with high probability, where the - number of buckets is much smaller than the number of inputs.\\nANNOY (Approximate - Nearest Neighbors Oh Yeah): The core data structure are random projection trees, - a set of binary trees where each non-leaf node represents a hyperplane splitting - the input space into half and each leaf stores one data point. Trees are built - independently and at random, so to some extent, it mimics a hashing function. - ANNOY search happens in all the trees to iteratively search through the half - that is closest to the query and then aggregates the results. The idea is quite - related to KD tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small - World): It is inspired by the idea of small world networks where most nodes - can be reached by any other nodes within a small number of steps; e.g. \u201Csix - degrees of separation\u201D feature of social networks. HNSW builds hierarchical - layers of these small-world graphs, where the bottom layers contain the actual - data points. The layers in the middle create shortcuts to speed up search. When - performing a search, HNSW starts from a random node in the top layer and navigates - towards the target. When it can\u2019t get any closer, it moves down to the - next layer, until it reaches the bottom layer. Each move in the upper layers - can potentially cover a large distance in the data space, and each move in the - lower layers refines the search quality.\\nFAISS (Facebook AI Similarity Search): - It operates on the assumption that in high dimensional space, distances between - nodes follow a Gaussian distribution and thus there should exist clustering - of data points. FAISS applies vector quantization by partitioning the vector - space into clusters and then refining the quantization within clusters. Search - first looks for cluster candidates with coarse quantization and then further - looks into each cluster with finer quantization.\\nScaNN (Scalable Nearest Neighbors): - The main innovation in ScaNN is anisotropic vector quantization. It quantizes - a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product $\\\\langle - q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ - as possible, instead of picking the closet quantization centroid points.\\n\\n\\nFig. - 9. Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\"},\"outputs\":{\"output\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.650400+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:28.992915+00:00\"}]},{\"id\":\"2a82f803-6437-4060-91df-8837e0b90f2f\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124646540Z2a82f803-6437-4060-91df-8837e0b90f2f\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",4],\"langgraph_checkpoint_ns\":\"generate_summary:f89af54d-6721-4e3b-8b1e-869baedf3f65\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:28.994062+00:00\",\"inputs\":{\"content\":\"LSH - (Locality-Sensitive Hashing): It introduces a hashing function such that similar - input items are mapped to the same buckets with high probability, where the - number of buckets is much smaller than the number of inputs.\\nANNOY (Approximate - Nearest Neighbors Oh Yeah): The core data structure are random projection trees, - a set of binary trees where each non-leaf node represents a hyperplane splitting - the input space into half and each leaf stores one data point. Trees are built - independently and at random, so to some extent, it mimics a hashing function. - ANNOY search happens in all the trees to iteratively search through the half - that is closest to the query and then aggregates the results. The idea is quite - related to KD tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small - World): It is inspired by the idea of small world networks where most nodes - can be reached by any other nodes within a small number of steps; e.g. \u201Csix - degrees of separation\u201D feature of social networks. HNSW builds hierarchical - layers of these small-world graphs, where the bottom layers contain the actual - data points. The layers in the middle create shortcuts to speed up search. When - performing a search, HNSW starts from a random node in the top layer and navigates - towards the target. When it can\u2019t get any closer, it moves down to the - next layer, until it reaches the bottom layer. Each move in the upper layers - can potentially cover a large distance in the data space, and each move in the - lower layers refines the search quality.\\nFAISS (Facebook AI Similarity Search): - It operates on the assumption that in high dimensional space, distances between - nodes follow a Gaussian distribution and thus there should exist clustering - of data points. FAISS applies vector quantization by partitioning the vector - space into clusters and then refining the quantization within clusters. Search - first looks for cluster candidates with coarse quantization and then further - looks into each cluster with finer quantization.\\nScaNN (Scalable Nearest Neighbors): - The main innovation in ScaNN is anisotropic vector quantization. It quantizes - a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product $\\\\langle - q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ - as possible, instead of picking the closet quantization centroid points.\\n\\n\\nFig. - 9. Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\"},\"outputs\":{\"summaries\":[\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.646540+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:28.994062+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '26879' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:28 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nYou - should only respond in JSON format as described below\nResponse Format:\n{\n \"thoughts\": - {\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": - \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:", "role": "system"}], "model": "gpt-4o-mini", - "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '3197' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNb9tIDL37VxA6W4GTuHGSS9GPxSIFChRIt4tiVRj0iJJYS8PJDOXG - CPzfFzOSrayLvcyBjx/vkRy+zAAyLrN7yEyDajrX5u/e/+W+/9RPf3x8f9f8vfvy8FB/f/f1adE+ - P95+yuYxQjY/yegx6sJI51pSFjvAxhMqxayXq6vV9eJ6ebtMQCcltTGsdpovJe/Ycn61uFrmi1V+ - eTtGN8KGQnYP/8wAAF7SG3nakp6ze1jMj5aOQsCasvuTE0DmpY2WDEPgoGg1m0+gEatkE/WXwkZT - kWkjfd1oKGKewTgC9KzRWGRfGwLFsAW2O2l3FCBpZFsDwmPvyMNn9CxQY0fAFr7stRELv1gb+Pzt - A6A3DSsZ7T0B2hK2tN8I+hIiIy9tuCiy+evinjCIZVsPDD606Lnax4raEARHhis2AaRKhlQ4JmYN - EAcilqwG4AAUAlllbKESD2hM71EJOA6tI6sYJ3de3rVoh8o5/InakIeSFLmlEjw99exTbEg5jwSK - wubwkSq2NLBU3w+SpUptmIiNrkq+i97n7YAOnWNbD36Pil7BSBnlbzBQCWLBpJbwGaEzHcazsuHQ - DWIeIDTStyU0uCPAsKUyKejE0ygwAG6k1yQgcp5EEPqWyYMK4E64hA2abY62zCvx2py3MDjC7bFs - b0vycR3LaVxGrCGnaWyWqIyJB1H7U/VTxyYeF0U2lDnMjytspOvQlr9tsI1DSQwwbNfmtEPrp55C - HPsZZfT1+TcYgMk/LSNa2EsPzsuOSxq6x7YS36VlGjvYyK/fdQRAH/e3ZQW2KhDIYVrIilsKb4/i - ksBRZ2EPrz+xp6oPGA+J7dt2tB9OV6GV2nnZhBE/2Su2HJr18LHiBQgqLkvoYQbwI12f/j8HJXNe - OqdrlS3ZmPBmdTnky6ajN6GXq7sRVVFsJ+D2zeL/wtbj1r06YtPfnzIsTjyT0Czsg1K3rtjW5J3n - 4aZVbk13N1erzZvr5U02O8z+BQAA//8DAKONABzhBQAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db995c4d16-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:29 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=JIOTdhH8as0f7xGrVUjHPeuHnZqUY9smvh2WmEfoDtg-1727303489-1.0.1.1-ImN0pnYMWtjsfDfSI11UUXiknFS3nw8LrriA9Hfz6eHCK8wd.hUwjZR5YqC7eBA8m72Id.nnT_.5cbBkyZKr.g; - path=/; expires=Wed, 25-Sep-24 23:01:29 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=rgzkyOK29RnxC8ESULWQ1FmKb3QyVa3Ae73iBOh2OWM-1727303489451-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '4427' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4997' - x-ratelimit-remaining-tokens: - - '3998143' - x-ratelimit-reset-requests: - - 35ms - x-ratelimit-reset-tokens: - - 27ms - x-request-id: - - req_a5d24c6bcbb734e6aed7e52aa45edc76 - status: - code: 200 - message: OK -- request: - body: '{"post":[{"id":"d1c3ff06-dd63-43c2-9239-7b8023d5e4ae","start_time":"2024-09-25T22:31:29.466917+00:00","end_time":"2024-09-25T22:31:29.468168+00:00","extra":{"metadata":{"langgraph_step":1,"langgraph_node":"generate_summary","langgraph_triggers":["__pregel_push"],"langgraph_path":["__pregel_push",9],"langgraph_checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"error":null,"events":[{"name":"start","time":"2024-09-25T22:31:29.466917+00:00"},{"name":"end","time":"2024-09-25T22:31:29.468168+00:00"}],"reference_example_id":null,"parent_run_id":"b7d1fee4-18ef-4b10-85b0-9943edbb5462","tags":["seq:step:3"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647596Zff9e3345-20d9-4622-bf54-2c47e57faa5f.20240925T223124651919Zb7d1fee4-18ef-4b10-85b0-9943edbb5462.20240925T223129466917Zd1c3ff06-dd63-43c2-9239-7b8023d5e4ae","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{"output":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}"},"name":"StrOutputParser","inputs":{"input":{"content":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}","additional_kwargs":{"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":179,"prompt_tokens":671,"total_tokens":850,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e9627b5346","finish_reason":"stop","logprobs":null},"type":"ai","id":"run-5e61c7f9-7e66-4838-ab45-69757ce907e2-0","example":false,"tool_calls":[],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":671,"output_tokens":179,"total_tokens":850}}},"run_type":"parser"},{"id":"adc38626-216a-4781-832e-395fd46edaf8","start_time":"2024-09-25T22:31:29.469253+00:00","end_time":"2024-09-25T22:31:29.469765+00:00","extra":{"metadata":{"langgraph_step":1,"langgraph_node":"generate_summary","langgraph_triggers":["__pregel_push"],"langgraph_path":["__pregel_push",9],"langgraph_checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"error":null,"events":[{"name":"start","time":"2024-09-25T22:31:29.469253+00:00"},{"name":"end","time":"2024-09-25T22:31:29.469765+00:00"}],"reference_example_id":null,"parent_run_id":"ff9e3345-20d9-4622-bf54-2c47e57faa5f","tags":["seq:step:2","langsmith:hidden"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647596Zff9e3345-20d9-4622-bf54-2c47e57faa5f.20240925T223129469253Zadc38626-216a-4781-832e-395fd46edaf8","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{"summaries":["{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}"]},"name":"_write","inputs":{"summaries":["{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}"]},"run_type":"chain"}],"patch":[{"id":"5e61c7f9-7e66-4838-ab45-69757ce907e2","name":"ChatOpenAI","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","parent_run_id":"b7d1fee4-18ef-4b10-85b0-9943edbb5462","dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647596Zff9e3345-20d9-4622-bf54-2c47e57faa5f.20240925T223124651919Zb7d1fee4-18ef-4b10-85b0-9943edbb5462.20240925T223124664692Z5e61c7f9-7e66-4838-ab45-69757ce907e2","tags":["seq:step:2"],"extra":{"invocation_params":{"model":"gpt-4o-mini","model_name":"gpt-4o-mini","stream":false,"n":1,"temperature":0.0,"_type":"openai-chat","stop":null},"options":{"stop":null},"batch_size":1,"metadata":{"langgraph_step":1,"langgraph_node":"generate_summary","langgraph_triggers":["__pregel_push"],"langgraph_path":["__pregel_push",9],"langgraph_checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","ls_provider":"openai","ls_model_name":"gpt-4o-mini","ls_model_type":"chat","ls_temperature":0.0,"revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"end_time":"2024-09-25T22:31:29.465760+00:00","inputs":{"messages":[[{"lc":1,"type":"constructor","id":["langchain","schema","messages","SystemMessage"],"kwargs":{"content":"Write - a concise summary of the following:\\n\\nYou should only respond in JSON format - as described below\nResponse Format:\n{\n \"thoughts\": {\n \"text\": - \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": \"- short - bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:","type":"system"}}]]},"outputs":{"generations":[[{"text":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}","generation_info":{"finish_reason":"stop","logprobs":null},"type":"ChatGeneration","message":{"lc":1,"type":"constructor","id":["langchain","schema","messages","AIMessage"],"kwargs":{"content":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}","additional_kwargs":{"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":179,"prompt_tokens":671,"total_tokens":850,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e9627b5346","finish_reason":"stop","logprobs":null},"type":"ai","id":"run-5e61c7f9-7e66-4838-ab45-69757ce907e2-0","usage_metadata":{"input_tokens":671,"output_tokens":179,"total_tokens":850},"tool_calls":[],"invalid_tool_calls":[]}}}]],"llm_output":{"token_usage":{"completion_tokens":179,"prompt_tokens":671,"total_tokens":850,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e9627b5346"},"run":null,"type":"LLMResult"},"events":[{"name":"start","time":"2024-09-25T22:31:24.664692+00:00"},{"name":"end","time":"2024-09-25T22:31:29.465760+00:00"}]},{"id":"b7d1fee4-18ef-4b10-85b0-9943edbb5462","name":"RunnableSequence","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","parent_run_id":"ff9e3345-20d9-4622-bf54-2c47e57faa5f","dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647596Zff9e3345-20d9-4622-bf54-2c47e57faa5f.20240925T223124651919Zb7d1fee4-18ef-4b10-85b0-9943edbb5462","tags":["seq:step:1"],"extra":{"metadata":{"langgraph_step":1,"langgraph_node":"generate_summary","langgraph_triggers":["__pregel_push"],"langgraph_path":["__pregel_push",9],"langgraph_checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"end_time":"2024-09-25T22:31:29.468701+00:00","inputs":{"input":"You - should only respond in JSON format as described below\nResponse Format:\n{\n \"thoughts\": - {\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": - \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:"},"outputs":{"output":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}"},"events":[{"name":"start","time":"2024-09-25T22:31:24.651919+00:00"},{"name":"end","time":"2024-09-25T22:31:29.468701+00:00"}]},{"id":"ff9e3345-20d9-4622-bf54-2c47e57faa5f","name":"generate_summary","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","parent_run_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647596Zff9e3345-20d9-4622-bf54-2c47e57faa5f","tags":["graph:step:1"],"extra":{"metadata":{"langgraph_step":1,"langgraph_node":"generate_summary","langgraph_triggers":["__pregel_push"],"langgraph_path":["__pregel_push",9],"langgraph_checkpoint_ns":"generate_summary:7b53b463-7a47-a58a-15ce-0ec1e777aad6","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"end_time":"2024-09-25T22:31:29.470084+00:00","inputs":{"content":"You - should only respond in JSON format as described below\nResponse Format:\n{\n \"thoughts\": - {\n \"text\": \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": - \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:"},"outputs":{"summaries":["{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}"]},"events":[{"name":"start","time":"2024-09-25T22:31:24.647596+00:00"},{"name":"end","time":"2024-09-25T22:31:29.470084+00:00"}]}]}' - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '25016' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:27 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\nYou - will get instructions for code to write.\nYou will write a very long answer. - Make sure that every detail of the architecture is, in the end, implemented - as code.\nMake sure that every detail of the architecture is, in the end, implemented - as code.\nThink step by step and reason yourself to the right decisions to make - sure we get it right.\nYou will first lay out the names of the core classes, - functions, methods that will be necessary, as well as a quick comment on their - purpose.\nThen you will output the content of each file including ALL code.\nEach - file must strictly follow a markdown code block format, where the following - tokens must be replaced such that\nFILENAME is the lowercase file name including - the file extension,\nLANG is the markup code block language for the code\u2019s - language, and CODE is the code:\nFILENAME\nCODE\nYou will start with the \u201centrypoint\u201d - file, then go to the ones that are imported by that file, and so on.\nPlease - note that the code should be fully functional. No placeholders.\nFollow a language - and framework appropriate best practice file naming convention.\nMake sure that - files contain all imports, types etc. Make sure that code in different files - are compatible with each other.\nEnsure to implement all code, if you are unsure, - write a plausible implementation.\nInclude module dependency or package manager - dependency definition file.\nBefore you finish, double check that all parts - of the architecture is present in the files.\nUseful to know:\nYou almost always - put different classes in different files.\nFor Python, you always create an - appropriate requirements.txt file.\nFor NodeJS, you always create an appropriate - package.json file.\nYou always add a comment briefly describing the purpose - of the function definition.\nYou try to add comments explaining very complex - bits of logic.\nYou always follow the best practices for the requested languages - in terms of describing the code written as a defined\npackage/project.\nPython - toolbelt preferences:\n\npytest\ndataclasses", "role": "system"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '2209' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFZtbxs3DP6eX0FcvqSBbSRx2mQGArRN263Dhm5Li23YDY584vnU6ChN - 4iXxivz3gdKdX9IWKwI4OPHtIflQ4qc9gMLoYgZF1SiuWm/HL15+8H++e3Mep9N3gX3z/VN+9e/i - 5fGvt3/8MC1GYuEWH7HiwWpSudZbZOMoi6uAilG8Hp+dnE2Ppqfnp0nQOo1WzJaex6du3Boy45Oj - k9Px0dn4+Ly3bpypMBYz+GsPAOBT+hWcpPG+mMHRaDhpMUa1xGK2VgIogrNyUqgYTWRFXIw2wsoR - IyXo7xsEVvEGDN06e4sREm5DS1AQOXQVdwE1VE7jQkWE2gWRuJrvVEDwwUkVRoAUuyBm3CgGZS1I - QRwhcQTRvENrxxprQ6hBkQYj9WqRGDUYAgV1R5XUT1loFRGGCQg8H1yFMYKhynYaI7iOrSGJVbmA - UFkVI8bR2j6Okv8WuXFazp217g41LFbi7NbobJv6hSm1lBaqqoHaWMxwosfK1Aa1CFvFGU3SbrvI - oHSDAYEdLDAy+KAqlp4lXyyqjYtIEnIZVNtKUKto2aklwsEvK24cSSRuTIRKRXwy6nMUTR+cx5Dh - kGozYrpF6jNMmtE4AlcDoVRIhZUU1QXuKyApKjYLYw2vQFXBxZg8xgm80NrkYtvVCBQE/KczIfUj - Tviec+SU6AKhJ7Mk2yqSBDR6JI1UGYyTkkra39+Hq65tBYWr4YrRx1lJxxM4PHyXOoZwKf26XPPi - 8HAGb7WkVK8SYFItflNT4c5wA4tgsAaNsQrGJ6VJSScS8FK69HYgmBKZBPs9mNTwr3Z+i8eGe+LE - 1MwNG1oVbrS7o4EWJU0l5Bup19UwMRLtilXgjFQ8IHFYgXeG+uJKPoncubCOm77hMdMCwQWNiUur - NEK5uagnJZ1KyFdDD1bwc+qKJCuRL1O7vtpVSbnn36M2Ps2ZyAj+hrcG78TbaykJppn2KnCU9go6 - FarGMKZ8IV8GGJE4JbYZ5jU7Xt8rKfxjFsxKGsN1qwxN/Opawm3qNETy3poqtXGSteUOjVn/0hEr - QxG0YgVZAl2UHspJz6RsFzHcyoxmy5eiJVeLdUtTJdi9woZ22Y4xcm/0gQxD+l4P+mfwHpf9egY/ - GbHoBRq8qm7Ucmt0NsXRWzSalXR9fe2tMsR4zyX1ZSppXYGStpIqaUBa0mMQydUXw+0OSh8z8aOk - fViHLIv0R//boEGxDq4dKhp79kLoaN6fCRhTw3wucz+fw8UFlMV8LgHn87KYlSTP1ZbBwZN1ErsQ - N8UYYn8zK3bAbokGvOsjifp86yv9gw8RQw/U6BkY4vwhKc3kBc2f2Cpj++8vZbDTwwHSN/JzJ4M+ - 0x68oJNYGuvdOvaQu4gBLpLagdEXx6OE+6IsfnQNwSuHZTHK2C/K4qNr6Dlm4si6UxZPshcfDPFB - XRbiZ3grZvBJvD8kra2UN1zeh88p6ldC4JK2GrG2fi8PZeyfGKRK+dhZxZgvaIxy9xhlIcrTk6s1 - zFEa1a3NZmvV6C/CzxeZyqqQ3k3S/VtP1Zeee26C65aN6zjhMDvDNNneuwLWXVSy+1FnbX/+sF7k - rFv64Baxl6/Pa0MmNvOAKjqSpS2y80WSPuwB/J0Wxm5nByx8cK3nObsbJHF4enSW/RWbPXVLejbt - pexY2Y3g/Pzoa2ZzjayMjVt7Z5EhGlpuPBytcaZEi7iKjO28NrTEkIgjGdV+jt89OzlbPJ2ePiv2 - Hvb+AwAA//8DAHqi2Z6UCwAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76db7d3d8fde-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:30 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - path=/; expires=Wed, 25-Sep-24 23:01:30 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '5374' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4998' - x-ratelimit-remaining-tokens: - - '3998641' - x-ratelimit-reset-requests: - - 20ms - x-ratelimit-reset-tokens: - - 20ms - x-request-id: - - req_f33c3962253128f05d700abffca650de - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"df8eaafb-1913-498c-ac80-f2b60b806239\",\"start_time\":\"2024-09-25T22:31:30.358824+00:00\",\"end_time\":\"2024-09-25T22:31:30.360187+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",10],\"langgraph_checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.358824+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.360187+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"f9b0ea11-48cb-4d80-8db9-3ef2bb0e7860\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647806Z944ca2c3-c71e-43ec-8473-50e04c1c4879.20240925T223124652219Zf9b0ea11-48cb-4d80-8db9-3ef2bb0e7860.20240925T223130358824Zdf8eaafb-1913-498c-ac80-f2b60b806239\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":473,\"prompt_tokens\":407,\"total_tokens\":880,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-99a056c4-b200-489d-8521-d55ca2cfa998-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":407,\"output_tokens\":473,\"total_tokens\":880}}},\"run_type\":\"parser\"},{\"id\":\"329a069b-1e2e-40fd-945f-eeadaee2f602\",\"start_time\":\"2024-09-25T22:31:30.361343+00:00\",\"end_time\":\"2024-09-25T22:31:30.362106+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",10],\"langgraph_checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.361343+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.362106+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"944ca2c3-c71e-43ec-8473-50e04c1c4879\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647806Z944ca2c3-c71e-43ec-8473-50e04c1c4879.20240925T223130361343Z329a069b-1e2e-40fd-945f-eeadaee2f602\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"summaries\":[\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\"]},\"name\":\"_write\",\"inputs\":{\"summaries\":[\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\"]},\"run_type\":\"chain\"},{\"id\":\"80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"start_time\":\"2024-09-25T22:31:30.364324+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":2,\"langgraph_node\":\"collect_summaries\",\"langgraph_triggers\":[\"generate_summary\"],\"langgraph_path\":[\"__pregel_pull\",\"collect_summaries\"],\"langgraph_checkpoint_ns\":\"collect_summaries:b898b0af-da01-1af0-b6f6-5ccddf0490b1\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.364324+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"tags\":[\"graph:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130364324Z80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"collect_summaries\",\"inputs\":{\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"]},\"run_type\":\"chain\"},{\"id\":\"25f3d181-a007-49e5-a76a-ac9e09ada357\",\"start_time\":\"2024-09-25T22:31:30.365798+00:00\",\"end_time\":\"2024-09-25T22:31:30.366507+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":2,\"langgraph_node\":\"collect_summaries\",\"langgraph_triggers\":[\"generate_summary\"],\"langgraph_path\":[\"__pregel_pull\",\"collect_summaries\"],\"langgraph_checkpoint_ns\":\"collect_summaries:b898b0af-da01-1af0-b6f6-5ccddf0490b1\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.365798+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.366507+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130364324Z80a91ae0-12a8-494c-8ebb-1944b0b3589c.20240925T223130365798Z25f3d181-a007-49e5-a76a-ac9e09ada357\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"name\":\"_write\",\"inputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"acc52db5-4c17-4ce3-b107-16ccd748baa4\",\"start_time\":\"2024-09-25T22:31:30.367427+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":2,\"langgraph_node\":\"collect_summaries\",\"langgraph_triggers\":[\"generate_summary\"],\"langgraph_path\":[\"__pregel_pull\",\"collect_summaries\"],\"langgraph_checkpoint_ns\":\"collect_summaries:b898b0af-da01-1af0-b6f6-5ccddf0490b1\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.367427+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130364324Z80a91ae0-12a8-494c-8ebb-1944b0b3589c.20240925T223130367427Zacc52db5-4c17-4ce3-b107-16ccd748baa4\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"should_collapse\",\"inputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}],\"contents\":[\"LLM Powered Autonomous Agents - | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"]},\"run_type\":\"chain\"}],\"patch\":[{\"id\":\"99a056c4-b200-489d-8521-d55ca2cfa998\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"f9b0ea11-48cb-4d80-8db9-3ef2bb0e7860\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647806Z944ca2c3-c71e-43ec-8473-50e04c1c4879.20240925T223124652219Zf9b0ea11-48cb-4d80-8db9-3ef2bb0e7860.20240925T223124664929Z99a056c4-b200-489d-8521-d55ca2cfa998\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",10],\"langgraph_checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:30.357119+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\nYou will get instructions for code - to write.\\nYou will write a very long answer. Make sure that every detail of - the architecture is, in the end, implemented as code.\\nMake sure that every - detail of the architecture is, in the end, implemented as code.\\nThink step - by step and reason yourself to the right decisions to make sure we get it right.\\nYou - will first lay out the names of the core classes, functions, methods that will - be necessary, as well as a quick comment on their purpose.\\nThen you will output - the content of each file including ALL code.\\nEach file must strictly follow - a markdown code block format, where the following tokens must be replaced such - that\\nFILENAME is the lowercase file name including the file extension,\\nLANG - is the markup code block language for the code\u2019s language, and CODE is - the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"type\":\"system\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":473,\"prompt_tokens\":407,\"total_tokens\":880,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-99a056c4-b200-489d-8521-d55ca2cfa998-0\",\"usage_metadata\":{\"input_tokens\":407,\"output_tokens\":473,\"total_tokens\":880},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":473,\"prompt_tokens\":407,\"total_tokens\":880,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_e9627b5346\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.664929+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.357119+00:00\"}]},{\"id\":\"f9b0ea11-48cb-4d80-8db9-3ef2bb0e7860\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"944ca2c3-c71e-43ec-8473-50e04c1c4879\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647806Z944ca2c3-c71e-43ec-8473-50e04c1c4879.20240925T223124652219Zf9b0ea11-48cb-4d80-8db9-3ef2bb0e7860\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",10],\"langgraph_checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:30.360702+00:00\",\"inputs\":{\"input\":\"You - will get instructions for code to write.\\nYou will write a very long answer. - Make sure that every detail of the architecture is, in the end, implemented - as code.\\nMake sure that every detail of the architecture is, in the end, implemented - as code.\\nThink step by step and reason yourself to the right decisions to - make sure we get it right.\\nYou will first lay out the names of the core classes, - functions, methods that will be necessary, as well as a quick comment on their - purpose.\\nThen you will output the content of each file including ALL code.\\nEach - file must strictly follow a markdown code block format, where the following - tokens must be replaced such that\\nFILENAME is the lowercase file name including - the file extension,\\nLANG is the markup code block language for the code\u2019s - language, and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the - \u201Centrypoint\u201D file, then go to the ones that are imported by that file, - and so on.\\nPlease note that the code should be fully functional. No placeholders.\\nFollow - a language and framework appropriate best practice file naming convention.\\nMake - sure that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\"},\"outputs\":{\"output\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.652219+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.360702+00:00\"}]},{\"id\":\"944ca2c3-c71e-43ec-8473-50e04c1c4879\",\"name\":\"generate_summary\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223124647806Z944ca2c3-c71e-43ec-8473-50e04c1c4879\",\"tags\":[\"graph:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":1,\"langgraph_node\":\"generate_summary\",\"langgraph_triggers\":[\"__pregel_push\"],\"langgraph_path\":[\"__pregel_push\",10],\"langgraph_checkpoint_ns\":\"generate_summary:f0747693-41af-b164-4e3c-e0c15edc121c\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:30.362588+00:00\",\"inputs\":{\"content\":\"You - will get instructions for code to write.\\nYou will write a very long answer. - Make sure that every detail of the architecture is, in the end, implemented - as code.\\nMake sure that every detail of the architecture is, in the end, implemented - as code.\\nThink step by step and reason yourself to the right decisions to - make sure we get it right.\\nYou will first lay out the names of the core classes, - functions, methods that will be necessary, as well as a quick comment on their - purpose.\\nThen you will output the content of each file including ALL code.\\nEach - file must strictly follow a markdown code block format, where the following - tokens must be replaced such that\\nFILENAME is the lowercase file name including - the file extension,\\nLANG is the markup code block language for the code\u2019s - language, and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the - \u201Centrypoint\u201D file, then go to the ones that are imported by that file, - and so on.\\nPlease note that the code should be fully functional. No placeholders.\\nFollow - a language and framework appropriate best practice file naming convention.\\nMake - sure that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\"},\"outputs\":{\"summaries\":[\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\"]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:24.647806+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.362588+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '201643' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:31 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: "{\"post\":[{\"id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"start_time\":\"2024-09-25T22:31:30.649621+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.649621+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"tags\":[\"graph:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"collapse_summaries\",\"inputs\":{\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"],\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"start_time\":\"2024-09-25T22:31:30.655002+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.655002+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"RunnableSequence\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"98dc8804-16b9-4a60-9c85-7355e930c5ae\",\"start_time\":\"2024-09-25T22:31:30.655327+00:00\",\"end_time\":\"2024-09-25T22:31:30.655732+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"ChatPromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"messages\":[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"HumanMessagePromptTemplate\"],\"kwargs\":{\"prompt\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"prompt\",\"PromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"template\":\"\\n - \ The following is a set of summaries:\\n {docs}\\n Take these and distill - it into a final, consolidated summary\\n of the main themes.\\n \",\"template_format\":\"f-string\"},\"name\":\"PromptTemplate\"}}}]},\"name\":\"ChatPromptTemplate\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.655327+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.655732+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb.20240925T223130655327Z98dc8804-16b9-4a60-9c85-7355e930c5ae\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":{\"messages\":[{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\\\n\\\\n1. **Planning** involves task decomposition - into smaller subgoals and self-reflection to improve future actions.\\\\n2. - **Memory** is categorized into short-term (in-context learning) and long-term - (retaining information using external storage).\\\\n3. **Tool Use** allows agents - to access external APIs for additional information and capabilities beyond their - pre-trained knowledge.\\\\n\\\\nThe article highlights various proof-of-concept - examples, such as AutoGPT and BabyAGI, showcasing the potential of LLMs as general - problem solvers. It also addresses the challenges faced in building these agents.'), - Document(metadata={}, page_content='The overview describes a LLM-powered autonomous - agent system that incorporates planning and self-reflection components. \\\\n\\\\n1. - **Planning**: The system employs task decomposition techniques like Chain of - Thought (CoT) and Tree of Thoughts (ToT) to break down complex tasks into manageable - steps. CoT encourages step-by-step reasoning, while ToT explores multiple reasoning - paths at each step using search algorithms. Additionally, LLM+P integrates an - external classical planner using Planning Domain Definition Language (PDDL) - for long-horizon planning.\\\\n\\\\n2. **Self-Reflection**: This component allows - agents to iteratively improve by analyzing past actions. The ReAct framework - combines reasoning and acting, enabling agents to interact with their environment - while generating reasoning traces. Reflexion enhances this by incorporating - dynamic memory and a reward model to assess the efficiency of actions and correct - mistakes. It uses heuristics to identify inefficient trajectories and hallucinations, - and integrates reflections from past experiences to guide future actions.\\\\n\\\\nOverall, - the system aims to enhance the performance of autonomous agents in complex tasks - through structured planning and self-improvement mechanisms.'), Document(metadata={}, - page_content='The experiments on AlfWorld Env and HotpotQA reveal that hallucination - is a more prevalent failure than inefficient planning. The Chain of Hindsight - (CoH) method enhances model outputs by providing a sequence of past outputs - with human feedback, allowing the model to self-reflect and improve. CoH employs - supervised fine-tuning with a regularization term to prevent overfitting and - incorporates random masking of tokens to avoid shortcutting. The training dataset - combines various human feedback sources. After fine-tuning, models show incremental - improvement in output quality. Algorithm Distillation (AD) applies a similar - concept in reinforcement learning, using a history of learning trajectories - to inform future actions, leading to better performance than traditional methods. - AD demonstrates effective in-context reinforcement learning, achieving results - close to online RL methods while learning faster than other baselines.'), Document(metadata={}, - page_content='The text discusses the comparison of various reinforcement learning - (RL) methods, including AD, ED, source policy, and RL^2, in environments that - require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.'), Document(metadata={}, - page_content='The text discusses various algorithms for approximate nearest - neighbor search, each with unique methodologies:\\\\n\\\\n1. **LSH (Locality-Sensitive - Hashing)**: A hashing function that maps similar items to the same buckets with - high probability, using fewer buckets than inputs.\\\\n\\\\n2. **ANNOY (Approximate - Nearest Neighbors Oh Yeah)**: Utilizes random projection trees to split input - space and store data points in leaves, mimicking a hashing function for scalable - searches.\\\\n\\\\n3. **HNSW (Hierarchical Navigable Small World)**: Builds - hierarchical small-world graphs to facilitate efficient searches by navigating - through layers, starting from a random node in the top layer.\\\\n\\\\n4. **FAISS - (Facebook AI Similarity Search)**: Assumes Gaussian distribution in high-dimensional - space, using vector quantization to cluster data points and refine searches - within those clusters.\\\\n\\\\n5. **ScaNN (Scalable Nearest Neighbors)**: Innovates - with anisotropic vector quantization to ensure that the quantized representation - closely resembles the original distance metrics.\\\\n\\\\nThe text also highlights - the importance of tool use in enhancing the capabilities of large language models - (LLMs), emphasizing the role of external tools in extending their functionality.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"additional_kwargs\":{},\"response_metadata\":{},\"type\":\"human\"}]}},\"name\":\"ChatPromptTemplate\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"}]},\"run_type\":\"prompt\"},{\"id\":\"85c542d9-ed93-4505-b466-ff67af6177d7\",\"start_time\":\"2024-09-25T22:31:30.656115+00:00\",\"end_time\":null,\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"chat_models\",\"openai\",\"ChatOpenAI\"],\"kwargs\":{\"model_name\":\"gpt-4o-mini\",\"temperature\":0.0,\"openai_api_key\":{\"lc\":1,\"type\":\"secret\",\"id\":[\"OPENAI_API_KEY\"]},\"max_retries\":2,\"n\":1},\"name\":\"ChatOpenAI\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.656115+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"tags\":[\"seq:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb.20240925T223130656115Z85c542d9-ed93-4505-b466-ff67af6177d7\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"ChatOpenAI\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\\\n\\\\n1. **Planning** involves task decomposition - into smaller subgoals and self-reflection to improve future actions.\\\\n2. - **Memory** is categorized into short-term (in-context learning) and long-term - (retaining information using external storage).\\\\n3. **Tool Use** allows agents - to access external APIs for additional information and capabilities beyond their - pre-trained knowledge.\\\\n\\\\nThe article highlights various proof-of-concept - examples, such as AutoGPT and BabyAGI, showcasing the potential of LLMs as general - problem solvers. It also addresses the challenges faced in building these agents.'), - Document(metadata={}, page_content='The overview describes a LLM-powered autonomous - agent system that incorporates planning and self-reflection components. \\\\n\\\\n1. - **Planning**: The system employs task decomposition techniques like Chain of - Thought (CoT) and Tree of Thoughts (ToT) to break down complex tasks into manageable - steps. CoT encourages step-by-step reasoning, while ToT explores multiple reasoning - paths at each step using search algorithms. Additionally, LLM+P integrates an - external classical planner using Planning Domain Definition Language (PDDL) - for long-horizon planning.\\\\n\\\\n2. **Self-Reflection**: This component allows - agents to iteratively improve by analyzing past actions. The ReAct framework - combines reasoning and acting, enabling agents to interact with their environment - while generating reasoning traces. Reflexion enhances this by incorporating - dynamic memory and a reward model to assess the efficiency of actions and correct - mistakes. It uses heuristics to identify inefficient trajectories and hallucinations, - and integrates reflections from past experiences to guide future actions.\\\\n\\\\nOverall, - the system aims to enhance the performance of autonomous agents in complex tasks - through structured planning and self-improvement mechanisms.'), Document(metadata={}, - page_content='The experiments on AlfWorld Env and HotpotQA reveal that hallucination - is a more prevalent failure than inefficient planning. The Chain of Hindsight - (CoH) method enhances model outputs by providing a sequence of past outputs - with human feedback, allowing the model to self-reflect and improve. CoH employs - supervised fine-tuning with a regularization term to prevent overfitting and - incorporates random masking of tokens to avoid shortcutting. The training dataset - combines various human feedback sources. After fine-tuning, models show incremental - improvement in output quality. Algorithm Distillation (AD) applies a similar - concept in reinforcement learning, using a history of learning trajectories - to inform future actions, leading to better performance than traditional methods. - AD demonstrates effective in-context reinforcement learning, achieving results - close to online RL methods while learning faster than other baselines.'), Document(metadata={}, - page_content='The text discusses the comparison of various reinforcement learning - (RL) methods, including AD, ED, source policy, and RL^2, in environments that - require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.'), Document(metadata={}, - page_content='The text discusses various algorithms for approximate nearest - neighbor search, each with unique methodologies:\\\\n\\\\n1. **LSH (Locality-Sensitive - Hashing)**: A hashing function that maps similar items to the same buckets with - high probability, using fewer buckets than inputs.\\\\n\\\\n2. **ANNOY (Approximate - Nearest Neighbors Oh Yeah)**: Utilizes random projection trees to split input - space and store data points in leaves, mimicking a hashing function for scalable - searches.\\\\n\\\\n3. **HNSW (Hierarchical Navigable Small World)**: Builds - hierarchical small-world graphs to facilitate efficient searches by navigating - through layers, starting from a random node in the top layer.\\\\n\\\\n4. **FAISS - (Facebook AI Similarity Search)**: Assumes Gaussian distribution in high-dimensional - space, using vector quantization to cluster data points and refine searches - within those clusters.\\\\n\\\\n5. **ScaNN (Scalable Nearest Neighbors)**: Innovates - with anisotropic vector quantization to ensure that the quantized representation - closely resembles the original distance metrics.\\\\n\\\\nThe text also highlights - the importance of tool use in enhancing the capabilities of large language models - (LLMs), emphasizing the role of external tools in extending their functionality.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"type\":\"human\"}}]]},\"run_type\":\"llm\"}],\"patch\":[{\"id\":\"80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"name\":\"collect_summaries\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130364324Z80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"tags\":[\"graph:step:2\"],\"extra\":{\"metadata\":{\"langgraph_step\":2,\"langgraph_node\":\"collect_summaries\",\"langgraph_triggers\":[\"generate_summary\"],\"langgraph_path\":[\"__pregel_pull\",\"collect_summaries\"],\"langgraph_checkpoint_ns\":\"collect_summaries:b898b0af-da01-1af0-b6f6-5ccddf0490b1\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:30.649170+00:00\",\"inputs\":{\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"]},\"outputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.364324+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.649170+00:00\"}]},{\"id\":\"acc52db5-4c17-4ce3-b107-16ccd748baa4\",\"name\":\"should_collapse\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"80a91ae0-12a8-494c-8ebb-1944b0b3589c\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130364324Z80a91ae0-12a8-494c-8ebb-1944b0b3589c.20240925T223130367427Zacc52db5-4c17-4ce3-b107-16ccd748baa4\",\"tags\":[\"seq:step:3\"],\"extra\":{\"metadata\":{\"langgraph_step\":2,\"langgraph_node\":\"collect_summaries\",\"langgraph_triggers\":[\"generate_summary\"],\"langgraph_path\":[\"__pregel_pull\",\"collect_summaries\"],\"langgraph_checkpoint_ns\":\"collect_summaries:b898b0af-da01-1af0-b6f6-5ccddf0490b1\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:30.648757+00:00\",\"inputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}],\"contents\":[\"LLM Powered Autonomous Agents - | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"]},\"outputs\":{\"output\":\"collapse_summaries\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.367427+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:30.648757+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '254800' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:31 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=''The article \"LLM Powered Autonomous Agents\" by Lilian Weng - discusses the concept of using large language models (LLMs) as the core controller - for autonomous agents. It outlines a system overview that includes three main - components: planning, memory, and tool use. \\n\\n1. **Planning** involves task - decomposition into smaller subgoals and self-reflection to improve future actions.\\n2. - **Memory** is categorized into short-term (in-context learning) and long-term - (retaining information using external storage).\\n3. **Tool Use** allows agents - to access external APIs for additional information and capabilities beyond their - pre-trained knowledge.\\n\\nThe article highlights various proof-of-concept - examples, such as AutoGPT and BabyAGI, showcasing the potential of LLMs as general - problem solvers. It also addresses the challenges faced in building these agents.''), - Document(metadata={}, page_content=''The overview describes a LLM-powered autonomous - agent system that incorporates planning and self-reflection components. \\n\\n1. - **Planning**: The system employs task decomposition techniques like Chain of - Thought (CoT) and Tree of Thoughts (ToT) to break down complex tasks into manageable - steps. CoT encourages step-by-step reasoning, while ToT explores multiple reasoning - paths at each step using search algorithms. Additionally, LLM+P integrates an - external classical planner using Planning Domain Definition Language (PDDL) - for long-horizon planning.\\n\\n2. **Self-Reflection**: This component allows - agents to iteratively improve by analyzing past actions. The ReAct framework - combines reasoning and acting, enabling agents to interact with their environment - while generating reasoning traces. Reflexion enhances this by incorporating - dynamic memory and a reward model to assess the efficiency of actions and correct - mistakes. It uses heuristics to identify inefficient trajectories and hallucinations, - and integrates reflections from past experiences to guide future actions.\\n\\nOverall, - the system aims to enhance the performance of autonomous agents in complex tasks - through structured planning and self-improvement mechanisms.''), Document(metadata={}, - page_content=''The experiments on AlfWorld Env and HotpotQA reveal that hallucination - is a more prevalent failure than inefficient planning. The Chain of Hindsight - (CoH) method enhances model outputs by providing a sequence of past outputs - with human feedback, allowing the model to self-reflect and improve. CoH employs - supervised fine-tuning with a regularization term to prevent overfitting and - incorporates random masking of tokens to avoid shortcutting. The training dataset - combines various human feedback sources. After fine-tuning, models show incremental - improvement in output quality. Algorithm Distillation (AD) applies a similar - concept in reinforcement learning, using a history of learning trajectories - to inform future actions, leading to better performance than traditional methods. - AD demonstrates effective in-context reinforcement learning, achieving results - close to online RL methods while learning faster than other baselines.''), Document(metadata={}, - page_content=''The text discusses the comparison of various reinforcement learning - (RL) methods, including AD, ED, source policy, and RL^2, in environments that - require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.''), Document(metadata={}, - page_content=''The text discusses various algorithms for approximate nearest - neighbor search, each with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive - Hashing)**: A hashing function that maps similar items to the same buckets with - high probability, using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate - Nearest Neighbors Oh Yeah)**: Utilizes random projection trees to split input - space and store data points in leaves, mimicking a hashing function for scalable - searches.\\n\\n3. **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical - small-world graphs to facilitate efficient searches by navigating through layers, - starting from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.'')]\n Take these and distill it into - a final, consolidated summary\n of the main themes.\n ", "role": "user"}], - "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '5678' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RW224cRw5911cQ8yQLMwPJ1saW3iZSAhkryY6l3WARLwRONbubq6pib7F6NJPA - QD4iX5gvWbC65yIE+yKMqpos8vDwkL8dAUy4mlzCxLWYXej8bPH9PzqiT+vni/4mfYndp6uLn09/ - 4vrs9MNnnEzNQpb/IZe3VnMnofOUWeJw7RJhJvN69v7t+3en784vTstFkIq8mTVdnp3LLHDk2dvT - t+ez0/ezsw+jdSvsSCeX8MsRAMBv5a/FGStaTy6h+CongVSxocnl7iOASRJvJxNUZc0Y82S6v3QS - M8US+mNL4CSqeK4sXNA+BEwbkBpySxCQo/0IpFAnCeWwS7LiiiqoxPWBYlaoxfVKClK+hl7JPHhM - DYHH2PTYEJTMFY5vb+/0DaDayzmJ95TMQwLss0QJ0itgY36nQKFrUflXjo155gQOO1yy58ykwBE6 - jzFybKYQKEjaTAFjBVnEWxjzr/FrPJvDycnt7d3ss7xQogoW+4cW5aGTk0sYsXDUZUi0Er8iBUzS - xwr6zH4IwoKHLECxxeiopFv30Vnl0XMu0P0lkTn8nTZgHJFYAOPofF/R5dcIADM4Ofk8plEiIddG - /m9PCtq71qC6aq0SUsNjK33TZji+ksc3JdXHRHRwo3D8WK4SGXpeNlQVdDPqM1RUglC2eKeA3suL - pTWEaYktE+EzVPISYeD0ulhayFkgYMSGcOkJNFOnc/gYMzUJzR+8cG7BeWOdQz+Uxorbq72xTRGu - pfDqmmqOJRC43XLk+PP19e0b0L7rJGUFL7GZtZL4V9mXer5D7YF8PftCtadSAANvKChwMJoScCYL - bkV+A8sNYES/KYXsUDNgMdM5/Jgw0IukZwXPzwRfaOFygbd4X1uQNTrjHWaCRKhScrFPzIsRkKOT - 1Im9FxuoNhEDu5GW5cNEL5iqbSMcsKgix8oSZwGft16dpEQuA0eqa3ZM0TFpIfRbI/RVi95TbIyl - sYKPQ8JhS+cf1h0lHtoz0YrQQ24xg1n1juNQMVZAUG4i1+wwZnBbr1OQOlOEIMlanlboKWbzEQ9C - yvuiwB3lVqoRwB1hbzhWyiNlbwbKLnwjiXMb4Jo1s/dDMMeL64G3bLpQ9Y6qQ5AKbCB97nqjapuM - 76BGgbSjwIgzx1qSK2iAJ0yDQiTSzj4zNkztvCq6Ilu2VNBRqiUFe68g/c6QvhsqyBHu0LUcCW5H - l1vdqFhdr1oQHTrbcLX+wcQqBYi2Dxi3bMibjvTP3/9QilpES1tJeZYphUHACvHt3z9//6MIWhG/ - DpOVxxflC2Mw2/zmcDXI1142OM6K2q/3KBTvtM6UInpYkcuSQLOkonYELTett3pRZR4CuRYjaxgk - egx/kIGCLseiiQWtc0Nr0XVJ1hysT+4JE2mGe+KmXUqCB8LkWoPtn5i4COSWC8MDe2JVmBES5cTG - vekIbNHgh5spLO7vP/1rCjf3Dz9P4cfFx4eHAbgHh/f300H+1p2XRNXcaqQEYSTooXa/GidSD/q+ - 3IyMKHg5Rzp06xY1my5D1xWeBRzUNLeUaLkp38VqP7JezYcC1KcVWSGLycEYZe97zcmQK4NWbE4z - +l1gHA9ni240U9DBCwdTzJKX1KA59S73Nuy2DVrifTUjWwJbFMrEqlZmWh2Ww/q3yxyGwXfQGa8n - 7OFqkajuFW29ib334/m33a7ipemSLHW8353bHND2aVBV20s0Szcpt9+OAP5ddqL+1Zoz6ZKELj9l - eaZoDs9O/zYuRZP9Lra/fnfxYbzNktEf2J2ff/h/dk8VZWSvB8vVZCf9exenu0hLqpOhLk81x4ZS - l3jYteru6Wy5PP/u7Lv39cXk6NvR/wAAAP//AwC5bi9veQoAAA== - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e7700a90c8f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:34 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '3487' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998600' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 21ms - x-request-id: - - req_0b3b79eadba5a9aeae73f9a4c23f0ca6 - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"578c674f-03bc-49cd-81bb-407b2e7e5084\",\"start_time\":\"2024-09-25T22:31:34.485163+00:00\",\"end_time\":\"2024-09-25T22:31:34.486172+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:34.485163+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:34.486172+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb.20240925T223134485163Z578c674f-03bc-49cd-81bb-407b2e7e5084\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":398,\"prompt_tokens\":1050,\"total_tokens\":1448,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-85c542d9-ed93-4505-b466-ff67af6177d7-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":1050,\"output_tokens\":398,\"total_tokens\":1448}}},\"run_type\":\"parser\"},{\"id\":\"7d9345a4-8ce7-4d57-8642-d2d46022eaf9\",\"start_time\":\"2024-09-25T22:31:34.487094+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:34.487094+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"RunnableSequence\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"8df6a635-3de7-4433-8a0d-d9e551f3b9d5\",\"start_time\":\"2024-09-25T22:31:34.487696+00:00\",\"end_time\":\"2024-09-25T22:31:34.488537+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"ChatPromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"messages\":[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"HumanMessagePromptTemplate\"],\"kwargs\":{\"prompt\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"prompt\",\"PromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"template\":\"\\n - \ The following is a set of summaries:\\n {docs}\\n Take these and distill - it into a final, consolidated summary\\n of the main themes.\\n \",\"template_format\":\"f-string\"},\"name\":\"PromptTemplate\"}}}]},\"name\":\"ChatPromptTemplate\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:34.487696+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:34.488537+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"7d9345a4-8ce7-4d57-8642-d2d46022eaf9\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9.20240925T223134487696Z8df6a635-3de7-4433-8a0d-d9e551f3b9d5\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":{\"messages\":[{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content=\\\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\\\"), Document(metadata={}, page_content=\\\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\\\n\\\\nTo enhance real-world applications - of HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\\\n\\\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\\\"), Document(metadata={}, - page_content='The text discusses a project focused on anticancer drug discovery, - where a target was selected, a scaffold was requested, and a compound was synthesized. - The project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\\\n\\\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\\\n\\\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.'), Document(metadata={}, - page_content='The provided commands outline a set of functionalities for managing - tasks, including searching the internet, browsing websites, interacting with - GPT agents, file management, code analysis, and generating content. Key commands - include starting and messaging GPT agents, executing file operations (read, - write, delete), analyzing and improving code, and generating images or tweets. - Resources available include internet access, memory management, and GPT-3.5 - agents for task delegation. Performance evaluation emphasizes continuous self-assessment, - efficiency in task execution, and strategic reflection to optimize actions. - The system is trained on data up to October 2023.'), Document(metadata={}, page_content='{\\\\n - \ \\\"thoughts\\\": {\\\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\\\\\n- Define the structure - of MVC components\\\\\\\\n- Determine keyboard control mappings\\\\\\\\n- Start - coding based on clarified requirements\\\",\\\\n \\\"criticism\\\": \\\"I - should have asked for more details about the MVC structure earlier to avoid - back-and-forth.\\\",\\\\n \\\"speak\\\": \\\"I understand the game concept - and need to clarify the MVC component structure.\\\"\\\\n },\\\\n \\\"command\\\": - {\\\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\\\n \\\"args\\\": - {\\\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\\\n }\\\\n - \ }\\\\n}')]\\n Take these and distill it into a final, consolidated summary\\n - \ of the main themes.\\n \",\"additional_kwargs\":{},\"response_metadata\":{},\"type\":\"human\"}]}},\"name\":\"ChatPromptTemplate\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"}]},\"run_type\":\"prompt\"},{\"id\":\"3c23d2ec-c8d7-4fba-a096-d4fa35629bac\",\"start_time\":\"2024-09-25T22:31:34.489091+00:00\",\"end_time\":null,\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"chat_models\",\"openai\",\"ChatOpenAI\"],\"kwargs\":{\"model_name\":\"gpt-4o-mini\",\"temperature\":0.0,\"openai_api_key\":{\"lc\":1,\"type\":\"secret\",\"id\":[\"OPENAI_API_KEY\"]},\"max_retries\":2,\"n\":1},\"name\":\"ChatOpenAI\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:34.489091+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"7d9345a4-8ce7-4d57-8642-d2d46022eaf9\",\"tags\":[\"seq:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9.20240925T223134489091Z3c23d2ec-c8d7-4fba-a096-d4fa35629bac\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"ChatOpenAI\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content=\\\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\\\"), Document(metadata={}, page_content=\\\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\\\n\\\\nTo enhance real-world applications - of HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\\\n\\\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\\\"), Document(metadata={}, - page_content='The text discusses a project focused on anticancer drug discovery, - where a target was selected, a scaffold was requested, and a compound was synthesized. - The project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\\\n\\\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\\\n\\\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.'), Document(metadata={}, - page_content='The provided commands outline a set of functionalities for managing - tasks, including searching the internet, browsing websites, interacting with - GPT agents, file management, code analysis, and generating content. Key commands - include starting and messaging GPT agents, executing file operations (read, - write, delete), analyzing and improving code, and generating images or tweets. - Resources available include internet access, memory management, and GPT-3.5 - agents for task delegation. Performance evaluation emphasizes continuous self-assessment, - efficiency in task execution, and strategic reflection to optimize actions. - The system is trained on data up to October 2023.'), Document(metadata={}, page_content='{\\\\n - \ \\\"thoughts\\\": {\\\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\\\\\n- Define the structure - of MVC components\\\\\\\\n- Determine keyboard control mappings\\\\\\\\n- Start - coding based on clarified requirements\\\",\\\\n \\\"criticism\\\": \\\"I - should have asked for more details about the MVC structure earlier to avoid - back-and-forth.\\\",\\\\n \\\"speak\\\": \\\"I understand the game concept - and need to clarify the MVC component structure.\\\"\\\\n },\\\\n \\\"command\\\": - {\\\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\\\n \\\"args\\\": - {\\\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\\\n }\\\\n - \ }\\\\n}')]\\n Take these and distill it into a final, consolidated summary\\n - \ of the main themes.\\n \",\"type\":\"human\"}}]]},\"run_type\":\"llm\"}],\"patch\":[{\"id\":\"85c542d9-ed93-4505-b466-ff67af6177d7\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb.20240925T223130656115Z85c542d9-ed93-4505-b466-ff67af6177d7\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:34.483774+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\\\n\\\\n1. **Planning** involves task decomposition - into smaller subgoals and self-reflection to improve future actions.\\\\n2. - **Memory** is categorized into short-term (in-context learning) and long-term - (retaining information using external storage).\\\\n3. **Tool Use** allows agents - to access external APIs for additional information and capabilities beyond their - pre-trained knowledge.\\\\n\\\\nThe article highlights various proof-of-concept - examples, such as AutoGPT and BabyAGI, showcasing the potential of LLMs as general - problem solvers. It also addresses the challenges faced in building these agents.'), - Document(metadata={}, page_content='The overview describes a LLM-powered autonomous - agent system that incorporates planning and self-reflection components. \\\\n\\\\n1. - **Planning**: The system employs task decomposition techniques like Chain of - Thought (CoT) and Tree of Thoughts (ToT) to break down complex tasks into manageable - steps. CoT encourages step-by-step reasoning, while ToT explores multiple reasoning - paths at each step using search algorithms. Additionally, LLM+P integrates an - external classical planner using Planning Domain Definition Language (PDDL) - for long-horizon planning.\\\\n\\\\n2. **Self-Reflection**: This component allows - agents to iteratively improve by analyzing past actions. The ReAct framework - combines reasoning and acting, enabling agents to interact with their environment - while generating reasoning traces. Reflexion enhances this by incorporating - dynamic memory and a reward model to assess the efficiency of actions and correct - mistakes. It uses heuristics to identify inefficient trajectories and hallucinations, - and integrates reflections from past experiences to guide future actions.\\\\n\\\\nOverall, - the system aims to enhance the performance of autonomous agents in complex tasks - through structured planning and self-improvement mechanisms.'), Document(metadata={}, - page_content='The experiments on AlfWorld Env and HotpotQA reveal that hallucination - is a more prevalent failure than inefficient planning. The Chain of Hindsight - (CoH) method enhances model outputs by providing a sequence of past outputs - with human feedback, allowing the model to self-reflect and improve. CoH employs - supervised fine-tuning with a regularization term to prevent overfitting and - incorporates random masking of tokens to avoid shortcutting. The training dataset - combines various human feedback sources. After fine-tuning, models show incremental - improvement in output quality. Algorithm Distillation (AD) applies a similar - concept in reinforcement learning, using a history of learning trajectories - to inform future actions, leading to better performance than traditional methods. - AD demonstrates effective in-context reinforcement learning, achieving results - close to online RL methods while learning faster than other baselines.'), Document(metadata={}, - page_content='The text discusses the comparison of various reinforcement learning - (RL) methods, including AD, ED, source policy, and RL^2, in environments that - require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.'), Document(metadata={}, - page_content='The text discusses various algorithms for approximate nearest - neighbor search, each with unique methodologies:\\\\n\\\\n1. **LSH (Locality-Sensitive - Hashing)**: A hashing function that maps similar items to the same buckets with - high probability, using fewer buckets than inputs.\\\\n\\\\n2. **ANNOY (Approximate - Nearest Neighbors Oh Yeah)**: Utilizes random projection trees to split input - space and store data points in leaves, mimicking a hashing function for scalable - searches.\\\\n\\\\n3. **HNSW (Hierarchical Navigable Small World)**: Builds - hierarchical small-world graphs to facilitate efficient searches by navigating - through layers, starting from a random node in the top layer.\\\\n\\\\n4. **FAISS - (Facebook AI Similarity Search)**: Assumes Gaussian distribution in high-dimensional - space, using vector quantization to cluster data points and refine searches - within those clusters.\\\\n\\\\n5. **ScaNN (Scalable Nearest Neighbors)**: Innovates - with anisotropic vector quantization to ensure that the quantized representation - closely resembles the original distance metrics.\\\\n\\\\nThe text also highlights - the importance of tool use in enhancing the capabilities of large language models - (LLMs), emphasizing the role of external tools in extending their functionality.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"type\":\"human\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":398,\"prompt_tokens\":1050,\"total_tokens\":1448,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-85c542d9-ed93-4505-b466-ff67af6177d7-0\",\"usage_metadata\":{\"input_tokens\":1050,\"output_tokens\":398,\"total_tokens\":1448},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":398,\"prompt_tokens\":1050,\"total_tokens\":1448,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.656115+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:34.483774+00:00\"}]},{\"id\":\"d2476640-86ff-4680-93f5-d7c370cc38bb\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223130655002Zd2476640-86ff-4680-93f5-d7c370cc38bb\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:34.486586+00:00\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"}]},\"outputs\":{\"output\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.655002+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:34.486586+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '53254' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:34 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=\"The text discusses various advancements in neuro-symbolic architectures - for autonomous agents, particularly focusing on MRKL (Modular Reasoning, Knowledge - and Language) systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs'' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"), Document(metadata={}, page_content=\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user''s - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\"), Document(metadata={}, - page_content=''The text discusses a project focused on anticancer drug discovery, - where a target was selected, a scaffold was requested, and a compound was synthesized. - The project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.''), Document(metadata={}, - page_content=''The provided commands outline a set of functionalities for managing - tasks, including searching the internet, browsing websites, interacting with - GPT agents, file management, code analysis, and generating content. Key commands - include starting and messaging GPT agents, executing file operations (read, - write, delete), analyzing and improving code, and generating images or tweets. - Resources available include internet access, memory management, and GPT-3.5 - agents for task delegation. Performance evaluation emphasizes continuous self-assessment, - efficiency in task execution, and strategic reflection to optimize actions. - The system is trained on data up to October 2023.''), Document(metadata={}, - page_content=''{\\n \"thoughts\": {\\n \"text\": \"The task involves - creating a Super Mario game in Python with MVC architecture and keyboard controls.\",\\n \"reasoning\": - \"Clarifying the specifics of the game and its components is essential for accurate - implementation.\",\\n \"plan\": \"- Gather detailed requirements for - the game\\\\n- Define the structure of MVC components\\\\n- Determine keyboard - control mappings\\\\n- Start coding based on clarified requirements\",\\n \"criticism\": - \"I should have asked for more details about the MVC structure earlier to avoid - back-and-forth.\",\\n \"speak\": \"I understand the game concept and - need to clarify the MVC component structure.\"\\n },\\n \"command\": {\\n \"name\": - \"ask_clarifying_question\",\\n \"args\": {\\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\\n }\\n }\\n}'')]\n Take these and distill it - into a final, consolidated summary\n of the main themes.\n ", "role": - "user"}], "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '5125' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFbbchzHDX3nV6D2yVbNsrgSLVp82zC2lDLXUUlMUpU4xcL2YGYQ9jRG - je69yKV/T6Fn9sLQeeFl0I0GDnAO8PsFwIzr2S3MXIfJ9YOfL//0t4HjF7/0hP+k+NPNevXAK3r/ - YfH27mlW2Q1Z/4dcOty6dNIPnhJLGM0uEiYyr4ub1zdvrt5cv7suhl5q8natHdL8WuY9B56/vnp9 - Pb+6mS9+nG53wo50dgv/ugAA+L38tDhDTbvZLVxVhy89qWJLs9vjIYBZFG9fZqjKmjCkWXUyOgmJ - Qgn9oSNQSiANaO57jEwKHbed57ZLCkobiujhifaQOupJgYP9BZHQ93YPY+KGHaMHDom855aCowoG - s7jsMfo9NOKycmhBAmC9weCop5CKu0A5ylz3/Vo8O8DoOk7kUo6kFWBOEqSXrICtXakAQ20xcAQc - Bs8ODXa9/S38FhaX8OrVr8Xh54PD5bnDV69uwbKuWV1WtYvgKCSKgFFyqGH16Zd7+G4ltYUOnwhV - Aoe2gl+CbD3VLZUA7jG0GVv6HnSviXqF1GEqGLQREwHtBooJenNECltOHbQUDM/5kOMgSuAnJ1C6 - QuG7+/uVfg9JgEJnIBWshyiOdISvgbHTdsDhS2Yr2CXcdeg9hXYsj/n4H/g5AO1SRJfMCcY2j+g3 - EmFDcY0eekydvbT21GsFOdQU1UkcQwhEdTlNTUMu8YYgK1k4tEsUA3o4FjCJeL20ary2ajyI+Pky - t/Yi1SU6K8LPEXvaSnxS8PxE8LC8X1VghxuJPcWxzB9y23Jo3398AIwFUy9xCmVsAYcDrtlz4jH7 - nNjzV0vzGNny41+0eBtBNdv9/QqaHJx1Do6XL88eq8zTCcEKGvFetgoImmIurVSDRd942Y7RoD5B - jwHb0tkVUD90qGMoBiH3g8RUiirNeHzwGMbeKvUHJU8lpDF52pHL9m8B842B+YnQz/8h0dewPOv9 - cvzUBYcmP3Ea6zqS6tRO1gcO/TP6WFBWG8t8g5GNcLX0yEEr0Ow6QAV1TKHwvSSgUFMvQZM1fA3r - PThUAk25tkdLXe866u+ibC/hg2xNTioLYg/oVU5SA+7UwofHqDFdoeD2FRTN2qVnAFvOktOQE3zJ - VsQ9aCq98BWPqF0basuThiyLhpS7n7nPfkz+AFh5Y5IGUqODifyUCQZDLTiKUMfclnOyobg/CBK8 - L/Qu7JjeOb1RwbZj10FDWIQINhxTRm+ZW0EoKtCu4zUXjlJP0VyAStHWNXW4YYl6CZaNEYIVDAiW - QLXhheGFWE7aNEqTDBZcYUlNA4WaQvL7CrSTrcMiL2tJHXBSGMRGhD1suUXyPJJsb5VwFMNI8B8K - wa2VV8fCjL0ofW+/fz7j2N5QXh7mjRtPjBpUylqIUrqK1QrrOVBtTHQ+12Y0bY2BEiiVIWHEadjT - i65wUlu50O+V9bJUdmLj6DuUfuKQDSgl38zR6q3H8MeObtlBpGbipKmyDIl7/kojfZ/z861h8R57 - gj/ThrwMxdtPOzS5nlIfyB3JAxw24jcHeSgLgz1jMxU+54EirIyH0JpPDvBxnzoJMM7R1d/vnk1K - y2uIpEVkK2Dvc0nij9XHeYzc7M0YycbINI2n3IvAmdFmjYRiOgq/35d0/1o2A1/YfCY0E16A0EbZ - HqtGmsoQOhfg8bkX8x1SFyW33Yu9YBiioOtsKfhjCauexU/1S03edtYuRXomRTziEzqKVrAzITJv - nntOk0KOq4+aTLguiJfWxsb5ahWpyYq23oXs/fT923FX89LahNXJfvzecGDtHmPZNWwv0yTDrFi/ - XQD8u+yE+dmaNxui9EN6TPJEwRy+u16M/manVfRkvV78OFmTJPQnw+LND+/+373HmhKy17PdchYP - +9DJxdUx0JLpbNScx4ZDS3GIPK6azfC4WK+v3y7e3jTvZhffLv4LAAD//wMA5snCFHgLAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e77189bd48f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:39 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '4358' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998747' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 18ms - x-request-id: - - req_34616afb5e8cf951b66a01a3df881e8f - status: - code: 200 - message: OK -- request: - body: '{"post":[{"id":"81c32abb-5428-4705-b574-8654e2a07468","start_time":"2024-09-25T22:31:39.060087+00:00","end_time":"2024-09-25T22:31:39.061259+00:00","extra":{"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"error":null,"events":[{"name":"start","time":"2024-09-25T22:31:39.060087+00:00"},{"name":"end","time":"2024-09-25T22:31:39.061259+00:00"}],"reference_example_id":null,"parent_run_id":"7d9345a4-8ce7-4d57-8642-d2d46022eaf9","tags":["seq:step:3"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9.20240925T223139060087Z81c32abb-5428-4705-b574-8654e2a07468","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{"output":"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\n\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\n\n2. **Tool-Augmented LLMs**: Frameworks like - TALM, Toolformer, and HuggingGPT are explored for their capabilities in utilizing - external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\n\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\n\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\n\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\n\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\n\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies."},"name":"StrOutputParser","inputs":{"input":{"content":"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\n\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\n\n2. **Tool-Augmented LLMs**: Frameworks like - TALM, Toolformer, and HuggingGPT are explored for their capabilities in utilizing - external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\n\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\n\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\n\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\n\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\n\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.","additional_kwargs":{"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":418,"prompt_tokens":941,"total_tokens":1359,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","finish_reason":"stop","logprobs":null},"type":"ai","id":"run-3c23d2ec-c8d7-4fba-a096-d4fa35629bac-0","example":false,"tool_calls":[],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":941,"output_tokens":418,"total_tokens":1359}}},"run_type":"parser"},{"id":"777de676-1952-4377-b8de-83dc41df91a8","start_time":"2024-09-25T22:31:39.062414+00:00","end_time":null,"extra":{"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langchain-core","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5","library_version":"0.3.5"}},"error":null,"events":[{"name":"start","time":"2024-09-25T22:31:39.062414+00:00"}],"reference_example_id":null,"parent_run_id":"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6","tags":["seq:step:1"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{},"name":"RunnableSequence","inputs":{"input":[{"metadata":{},"page_content":"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\n\n### Summary of Steps:\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\n3. **File Structure**: Start - with the entry point file and proceed to other files in the order they are imported.\n4. - **Dependency Management**: Create a requirements.txt file for Python dependencies.\n5. - **Final Review**: Ensure all parts of the architecture are present and functional.\n\n### - Example Core Components:\n- `main.py`: Entry point of the application.\n- `models.py`: - Contains data models using dataclasses.\n- `services.py`: Business logic and - service functions.\n- `tests.py`: Unit tests for the application.\n- `requirements.txt`: - Lists required packages.\n\n### Example Code Structure:\n```plaintext\nmain.py\nmodels.py\nservices.py\ntests.py\nrequirements.txt\n```\n\n### - Example Code Implementation:\n```python\n# main.py\n\"\"\"\nEntry point of the - application.\n\"\"\"\nfrom services import run_service\n\nif __name__ == \"__main__\":\n run_service()\n```\n\n```python\n# - models.py\n\"\"\"\nContains data models using dataclasses.\n\"\"\"\nfrom dataclasses - import dataclass\n\n@dataclass\nclass User:\n id: int\n name: str\n email: - str\n```\n\n```python\n# services.py\n\"\"\"\nBusiness logic and service functions.\n\"\"\"\nfrom - models import User\n\ndef run_service():\n user = User(id=1, name=\"John - Doe\", email=\"john@example.com\")\n print(f\"User created: {user}\")\n```\n\n```plaintext\n# - requirements.txt\npytest\ndataclasses\n```\n\nThis summary encapsulates the - essential steps and structure for creating a functional Python project, ensuring - clarity and adherence to best practices throughout the implementation.","type":"Document"},{"metadata":{},"page_content":"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant''s training data being current - only up to October 2023.","type":"Document"},{"metadata":{},"page_content":"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.","type":"Document"},{"metadata":{},"page_content":"The article \"LLM-powered - Autonomous Agents\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.","type":"Document"}]},"run_type":"chain"},{"id":"f0cc5167-20c6-4661-b982-061ce3a7acf0","start_time":"2024-09-25T22:31:39.063086+00:00","end_time":"2024-09-25T22:31:39.064082+00:00","extra":{"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"error":null,"serialized":{"lc":1,"type":"constructor","id":["langchain","prompts","chat","ChatPromptTemplate"],"kwargs":{"input_variables":["docs"],"messages":[{"lc":1,"type":"constructor","id":["langchain","prompts","chat","HumanMessagePromptTemplate"],"kwargs":{"prompt":{"lc":1,"type":"constructor","id":["langchain","prompts","prompt","PromptTemplate"],"kwargs":{"input_variables":["docs"],"template":"\n The - following is a set of summaries:\n {docs}\n Take these and distill it - into a final, consolidated summary\n of the main themes.\n ","template_format":"f-string"},"name":"PromptTemplate"}}}]},"name":"ChatPromptTemplate"},"events":[{"name":"start","time":"2024-09-25T22:31:39.063086+00:00"},{"name":"end","time":"2024-09-25T22:31:39.064082+00:00"}],"reference_example_id":null,"parent_run_id":"777de676-1952-4377-b8de-83dc41df91a8","tags":["seq:step:1"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8.20240925T223139063086Zf0cc5167-20c6-4661-b982-061ce3a7acf0","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{"output":{"messages":[{"content":"\n The - following is a set of summaries:\n [Document(metadata={}, page_content=''The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\"\"\"\\nEntry point - of the application.\\n\"\"\"\\nfrom services import run_service\\n\\nif __name__ - == \"__main__\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\"\"\"\\nContains - data models using dataclasses.\\n\"\"\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\"\"\"\\nBusiness logic and service functions.\\n\"\"\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\"John - Doe\", email=\"john@example.com\")\\n print(f\"User created: {user}\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.''), - Document(metadata={}, page_content=\"The conversation outlines a structured - approach for writing code based on a specified architecture. The assistant is - instructed to think step-by-step, identify core classes and functions, and provide - complete code implementations in a markdown format. The user emphasizes the - importance of creating fully functional code without placeholders, adhering - to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant''s training data being current only up to October 2023.\"), - Document(metadata={}, page_content=''The limitations of finite context length - in LLMs restrict their ability to incorporate historical information and detailed - instructions, hindering mechanisms like self-reflection that could benefit from - longer context windows. While vector stores can provide broader knowledge access, - they lack the representation power of full attention. Additionally, LLMs face - challenges in long-term planning and task decomposition, struggling to adapt - plans in response to unexpected errors, which diminishes their robustness compared - to human learning. The reliance on natural language as an interface between - LLMs and external components raises concerns about the reliability of model - outputs, as formatting errors and non-compliance with instructions can occur, - leading to a focus on parsing model output in agent demo code.''), Document(metadata={}, - page_content=''The article \"LLM-powered Autonomous Agents\" by Lilian Weng, - published in June 2023, discusses the integration of large language models (LLMs) - into autonomous agents, highlighting their capabilities in reasoning, problem-solving, - and tool usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.'')]\n Take these and distill it into a final, consolidated summary\n of - the main themes.\n ","additional_kwargs":{},"response_metadata":{},"type":"human"}]}},"name":"ChatPromptTemplate","inputs":{"input":[{"metadata":{},"page_content":"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\n\n### Summary of Steps:\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\n3. **File Structure**: Start - with the entry point file and proceed to other files in the order they are imported.\n4. - **Dependency Management**: Create a requirements.txt file for Python dependencies.\n5. - **Final Review**: Ensure all parts of the architecture are present and functional.\n\n### - Example Core Components:\n- `main.py`: Entry point of the application.\n- `models.py`: - Contains data models using dataclasses.\n- `services.py`: Business logic and - service functions.\n- `tests.py`: Unit tests for the application.\n- `requirements.txt`: - Lists required packages.\n\n### Example Code Structure:\n```plaintext\nmain.py\nmodels.py\nservices.py\ntests.py\nrequirements.txt\n```\n\n### - Example Code Implementation:\n```python\n# main.py\n\"\"\"\nEntry point of the - application.\n\"\"\"\nfrom services import run_service\n\nif __name__ == \"__main__\":\n run_service()\n```\n\n```python\n# - models.py\n\"\"\"\nContains data models using dataclasses.\n\"\"\"\nfrom dataclasses - import dataclass\n\n@dataclass\nclass User:\n id: int\n name: str\n email: - str\n```\n\n```python\n# services.py\n\"\"\"\nBusiness logic and service functions.\n\"\"\"\nfrom - models import User\n\ndef run_service():\n user = User(id=1, name=\"John - Doe\", email=\"john@example.com\")\n print(f\"User created: {user}\")\n```\n\n```plaintext\n# - requirements.txt\npytest\ndataclasses\n```\n\nThis summary encapsulates the - essential steps and structure for creating a functional Python project, ensuring - clarity and adherence to best practices throughout the implementation.","type":"Document"},{"metadata":{},"page_content":"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant''s training data being current - only up to October 2023.","type":"Document"},{"metadata":{},"page_content":"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.","type":"Document"},{"metadata":{},"page_content":"The article \"LLM-powered - Autonomous Agents\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.","type":"Document"}]},"run_type":"prompt"},{"id":"e43ab4e3-c6a3-4249-a914-1a088b5cd182","start_time":"2024-09-25T22:31:39.064762+00:00","end_time":null,"extra":{"invocation_params":{"model":"gpt-4o-mini","model_name":"gpt-4o-mini","stream":false,"n":1,"temperature":0.0,"_type":"openai-chat","stop":null},"options":{"stop":null},"batch_size":1,"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","ls_provider":"openai","ls_model_name":"gpt-4o-mini","ls_model_type":"chat","ls_temperature":0.0,"revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langchain-core","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5","library_version":"0.3.5"}},"error":null,"serialized":{"lc":1,"type":"constructor","id":["langchain","chat_models","openai","ChatOpenAI"],"kwargs":{"model_name":"gpt-4o-mini","temperature":0.0,"openai_api_key":{"lc":1,"type":"secret","id":["OPENAI_API_KEY"]},"max_retries":2,"n":1},"name":"ChatOpenAI"},"events":[{"name":"start","time":"2024-09-25T22:31:39.064762+00:00"}],"reference_example_id":null,"parent_run_id":"777de676-1952-4377-b8de-83dc41df91a8","tags":["seq:step:2"],"session_name":"default","session_id":null,"dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8.20240925T223139064762Ze43ab4e3-c6a3-4249-a914-1a088b5cd182","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","outputs":{},"name":"ChatOpenAI","inputs":{"messages":[[{"lc":1,"type":"constructor","id":["langchain","schema","messages","HumanMessage"],"kwargs":{"content":"\n The - following is a set of summaries:\n [Document(metadata={}, page_content=''The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\"\"\"\\nEntry point - of the application.\\n\"\"\"\\nfrom services import run_service\\n\\nif __name__ - == \"__main__\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\"\"\"\\nContains - data models using dataclasses.\\n\"\"\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\"\"\"\\nBusiness logic and service functions.\\n\"\"\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\"John - Doe\", email=\"john@example.com\")\\n print(f\"User created: {user}\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.''), - Document(metadata={}, page_content=\"The conversation outlines a structured - approach for writing code based on a specified architecture. The assistant is - instructed to think step-by-step, identify core classes and functions, and provide - complete code implementations in a markdown format. The user emphasizes the - importance of creating fully functional code without placeholders, adhering - to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant''s training data being current only up to October 2023.\"), - Document(metadata={}, page_content=''The limitations of finite context length - in LLMs restrict their ability to incorporate historical information and detailed - instructions, hindering mechanisms like self-reflection that could benefit from - longer context windows. While vector stores can provide broader knowledge access, - they lack the representation power of full attention. Additionally, LLMs face - challenges in long-term planning and task decomposition, struggling to adapt - plans in response to unexpected errors, which diminishes their robustness compared - to human learning. The reliance on natural language as an interface between - LLMs and external components raises concerns about the reliability of model - outputs, as formatting errors and non-compliance with instructions can occur, - leading to a focus on parsing model output in agent demo code.''), Document(metadata={}, - page_content=''The article \"LLM-powered Autonomous Agents\" by Lilian Weng, - published in June 2023, discusses the integration of large language models (LLMs) - into autonomous agents, highlighting their capabilities in reasoning, problem-solving, - and tool usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.'')]\n Take these and distill it into a final, consolidated summary\n of - the main themes.\n ","type":"human"}}]]},"run_type":"llm"}],"patch":[{"id":"3c23d2ec-c8d7-4fba-a096-d4fa35629bac","name":"ChatOpenAI","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","parent_run_id":"7d9345a4-8ce7-4d57-8642-d2d46022eaf9","dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9.20240925T223134489091Z3c23d2ec-c8d7-4fba-a096-d4fa35629bac","tags":["seq:step:2"],"extra":{"invocation_params":{"model":"gpt-4o-mini","model_name":"gpt-4o-mini","stream":false,"n":1,"temperature":0.0,"_type":"openai-chat","stop":null},"options":{"stop":null},"batch_size":1,"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","ls_provider":"openai","ls_model_name":"gpt-4o-mini","ls_model_type":"chat","ls_temperature":0.0,"revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"end_time":"2024-09-25T22:31:39.058968+00:00","inputs":{"messages":[[{"lc":1,"type":"constructor","id":["langchain","schema","messages","HumanMessage"],"kwargs":{"content":"\n The - following is a set of summaries:\n [Document(metadata={}, page_content=\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs'' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\"), Document(metadata={}, page_content=\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user''s - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\"), Document(metadata={}, - page_content=''The text discusses a project focused on anticancer drug discovery, - where a target was selected, a scaffold was requested, and a compound was synthesized. - The project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.''), Document(metadata={}, - page_content=''The provided commands outline a set of functionalities for managing - tasks, including searching the internet, browsing websites, interacting with - GPT agents, file management, code analysis, and generating content. Key commands - include starting and messaging GPT agents, executing file operations (read, - write, delete), analyzing and improving code, and generating images or tweets. - Resources available include internet access, memory management, and GPT-3.5 - agents for task delegation. Performance evaluation emphasizes continuous self-assessment, - efficiency in task execution, and strategic reflection to optimize actions. - The system is trained on data up to October 2023.''), Document(metadata={}, - page_content=''{\\n \"thoughts\": {\\n \"text\": \"The task involves - creating a Super Mario game in Python with MVC architecture and keyboard controls.\",\\n \"reasoning\": - \"Clarifying the specifics of the game and its components is essential for accurate - implementation.\",\\n \"plan\": \"- Gather detailed requirements for - the game\\\\n- Define the structure of MVC components\\\\n- Determine keyboard - control mappings\\\\n- Start coding based on clarified requirements\",\\n \"criticism\": - \"I should have asked for more details about the MVC structure earlier to avoid - back-and-forth.\",\\n \"speak\": \"I understand the game concept and - need to clarify the MVC component structure.\"\\n },\\n \"command\": {\\n \"name\": - \"ask_clarifying_question\",\\n \"args\": {\\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\\n }\\n }\\n}'')]\n Take these and distill it - into a final, consolidated summary\n of the main themes.\n ","type":"human"}}]]},"outputs":{"generations":[[{"text":"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\n\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\n\n2. **Tool-Augmented LLMs**: Frameworks like - TALM, Toolformer, and HuggingGPT are explored for their capabilities in utilizing - external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\n\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\n\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\n\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\n\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\n\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.","generation_info":{"finish_reason":"stop","logprobs":null},"type":"ChatGeneration","message":{"lc":1,"type":"constructor","id":["langchain","schema","messages","AIMessage"],"kwargs":{"content":"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\n\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\n\n2. **Tool-Augmented LLMs**: Frameworks like - TALM, Toolformer, and HuggingGPT are explored for their capabilities in utilizing - external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\n\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\n\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\n\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\n\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\n\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.","additional_kwargs":{"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":418,"prompt_tokens":941,"total_tokens":1359,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","finish_reason":"stop","logprobs":null},"type":"ai","id":"run-3c23d2ec-c8d7-4fba-a096-d4fa35629bac-0","usage_metadata":{"input_tokens":941,"output_tokens":418,"total_tokens":1359},"tool_calls":[],"invalid_tool_calls":[]}}}]],"llm_output":{"token_usage":{"completion_tokens":418,"prompt_tokens":941,"total_tokens":1359,"completion_tokens_details":{"reasoning_tokens":0}},"model_name":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9"},"run":null,"type":"LLMResult"},"events":[{"name":"start","time":"2024-09-25T22:31:34.489091+00:00"},{"name":"end","time":"2024-09-25T22:31:39.058968+00:00"}]},{"id":"7d9345a4-8ce7-4d57-8642-d2d46022eaf9","name":"RunnableSequence","trace_id":"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9","parent_run_id":"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6","dotted_order":"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223134487094Z7d9345a4-8ce7-4d57-8642-d2d46022eaf9","tags":["seq:step:1"],"extra":{"metadata":{"langgraph_step":3,"langgraph_node":"collapse_summaries","langgraph_triggers":["branch:collect_summaries:should_collapse:collapse_summaries"],"langgraph_path":["__pregel_pull","collapse_summaries"],"langgraph_checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","checkpoint_ns":"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f","revision_id":"langchain-experimental==0.3.1-32-g184428cfd-dirty"},"runtime":{"sdk":"langsmith-py","sdk_version":"0.1.128","library":"langsmith","platform":"macOS-14.6-arm64-arm-64bit","runtime":"python","py_implementation":"CPython","runtime_version":"3.11.7","langchain_version":"0.3.0","langchain_core_version":"0.3.5"}},"end_time":"2024-09-25T22:31:39.061841+00:00","inputs":{"input":[{"metadata":{},"page_content":"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs'' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.","type":"Document"},{"metadata":{},"page_content":"The AI assistant - processes user input by following a structured workflow: User Input, Task Planning, - Model Selection, and Task Execution. It first provides a direct response to - the user''s request, then details the task process and shares analysis and inference - results, including any relevant file paths.\n\nTo enhance real-world applications - of HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\n\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.","type":"Document"},{"metadata":{},"page_content":"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \n\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \n\nLastly, it mentions AutoGPT, an autonomous agent system that operates independently - using a natural language interface, with specific goals and constraints, highlighting - its potential and reliability issues.","type":"Document"},{"metadata":{},"page_content":"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.","type":"Document"},{"metadata":{},"page_content":"{\n \"thoughts\": - {\n \"text\": \"The task involves creating a Super Mario game in Python - with MVC architecture and keyboard controls.\",\n \"reasoning\": \"Clarifying - the specifics of the game and its components is essential for accurate implementation.\",\n \"plan\": - \"- Gather detailed requirements for the game\\n- Define the structure of MVC - components\\n- Determine keyboard control mappings\\n- Start coding based on - clarified requirements\",\n \"criticism\": \"I should have asked for - more details about the MVC structure earlier to avoid back-and-forth.\",\n \"speak\": - \"I understand the game concept and need to clarify the MVC component structure.\"\n },\n \"command\": - {\n \"name\": \"ask_clarifying_question\",\n \"args\": {\n \"question\": - \"Can you provide more information about how the MVC components are split into - separate files?\"\n }\n }\n}","type":"Document"}]},"outputs":{"output":"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\n\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\n\n2. **Tool-Augmented LLMs**: Frameworks like - TALM, Toolformer, and HuggingGPT are explored for their capabilities in utilizing - external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\n\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\n\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\n\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\n\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\n\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies."},"events":[{"name":"start","time":"2024-09-25T22:31:34.487094+00:00"},{"name":"end","time":"2024-09-25T22:31:39.061841+00:00"}]}]}' - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '53233' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:38 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=''The task involves creating a structured codebase for a software - project, ensuring that all components are well-defined and implemented in a - functional manner. The process includes outlining core classes, functions, and - methods, followed by providing complete code for each file in a specified format. - The code must adhere to best practices for the chosen programming language (Python - in this case), including proper file naming conventions, inclusion of necessary - imports, and compatibility across files. Additionally, a requirements.txt file - must be created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline - Core Components**: Identify and name core classes, functions, and methods with - brief descriptions.\\n2. **Code Implementation**: Write complete code for each - file, ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\"\"\"\\nEntry point - of the application.\\n\"\"\"\\nfrom services import run_service\\n\\nif __name__ - == \"__main__\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\"\"\"\\nContains - data models using dataclasses.\\n\"\"\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\"\"\"\\nBusiness logic and service functions.\\n\"\"\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\"John - Doe\", email=\"john@example.com\")\\n print(f\"User created: {user}\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.''), - Document(metadata={}, page_content=\"The conversation outlines a structured - approach for writing code based on a specified architecture. The assistant is - instructed to think step-by-step, identify core classes and functions, and provide - complete code implementations in a markdown format. The user emphasizes the - importance of creating fully functional code without placeholders, adhering - to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant''s training data being current only up to October 2023.\"), - Document(metadata={}, page_content=''The limitations of finite context length - in LLMs restrict their ability to incorporate historical information and detailed - instructions, hindering mechanisms like self-reflection that could benefit from - longer context windows. While vector stores can provide broader knowledge access, - they lack the representation power of full attention. Additionally, LLMs face - challenges in long-term planning and task decomposition, struggling to adapt - plans in response to unexpected errors, which diminishes their robustness compared - to human learning. The reliance on natural language as an interface between - LLMs and external components raises concerns about the reliability of model - outputs, as formatting errors and non-compliance with instructions can occur, - leading to a focus on parsing model output in agent demo code.''), Document(metadata={}, - page_content=''The article \"LLM-powered Autonomous Agents\" by Lilian Weng, - published in June 2023, discusses the integration of large language models (LLMs) - into autonomous agents, highlighting their capabilities in reasoning, problem-solving, - and tool usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.'')]\n Take these and distill it into a final, consolidated summary\n of - the main themes.\n ", "role": "user"}], "model": "gpt-4o-mini", "n": 1, "stream": - false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '5105' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFVLbxtHDL77VxB7ag1JsBzHjn1zUhQoYLdpk5yawqFmubtsZoaT4axk - Jch/Lzi7spxDL3qQQ/Ljx9e3E4CG2+YGGjdgcSH55e3rDymuX3359S09pvvfv75zd+3lh7Pu8uXm - z9QszEI2/5IrB6uVk5A8FZY4qV0mLGRe11fnVy/OXlxcX1dFkJa8mfWpLC9kGTjy8vzs/GJ5drVc - v5qtB2FH2tzA3ycAAN/qp+GMLT02N3C2OEgCqWJPzc3TI4AmizdJg6qsBWNpFkelk1goVujvBwIn - UcVza3BBxxAw70E6KANBQI72I5BClyVUYcqy5ZZaaMWNgWJRYAVU6MR72enNx/gxrldwevqu5NGV - MVMLb6SlDSrBL7QlL8nsTk9v4P3k0JGqBa20cewBQaUrO8xVbVQDx634LSnIWDxHe+UkWwIhSaw4 - dHSDIXEeVUkX0I3RWVF0ARhbCFQGaU1eoVILmz2wVc7wTB5rHc1rS8DRgByz6CQHLCt4TVogZXTF - ymRieLsvg0QD22cMgWO/AI7Oj625TVkSZejYE0SctJJ7jPwVDd8Er6VEsaXo9hAwYl9RQRmyjP0A - CJ8yfRk5V7GuymP5VD0uwGiikAZU/krtygpwPhWA0nKzX9o3/HbIs0Y08m9B91ooYGEHmFIWdIMV - M5OTEAxLzRl2mWd2WloARR2z/S0DFkDvIWEuemgazG7gQpWyiuxQBPQ1S6MYC288reD9wDrTRApa - MNc4Oy5D9UWx5D0k4Vgm8sxB5ZhUJwgTOVKGmV/zV20lt5Tt176i4JAkl5mdF8bOHQeeyKjY7zD2 - I/YE9zaieujOY5e3rG5Urc5takpGjlPeHnNP4A8e6pAr/HR3d68/Lyo97EaP2e8hU4+5NkXHkWun - xUKPBTzFvgwL2A1sXdx15EoNxhlww57LHooYW5KTZCwEA2uRzA49cJyakyVOJFE2AXiJ/bJQDpA8 - RpuaFbwZ0Fu0iStsMVXW7UGVZNIkUcnCUc6Stbq0vDN5PoCRzkYxjUbNWB9PEKozVh1JK/PoVWDg - fvDcD4cKXFgFbtstRkfzEolwOxaJEmRUuO1NeCgCx0J9nrKzUt3d2/sigEcL7A+7iB6Tl0ztAnSQ - ncO5U4xIh2mCzzSniiqxzmPKsvEUlip+WwU1ZxEPo23YFfxFzuYxk5L1OOBz9Mih0hUHk02Lcia8 - OnoKBMf408AozdBtsnDjZ7DV3aGK01p6hIL6WZ8l7feVzD+2lNH7RQ077+tMnbe1idCJGxUkwubH - tcXxuGTb41q2BrRJc5+j7Dy1/QwI/LN5qS0mdkcY/bOS/FCQlDy7yWD1/AJl6kZFu4Jx9H6Wf386 - aV56q4XO+ie5zYsODxOTdr60SGqq9vsJwD/1dI4/XMMmZQmpPBT5TNEcXl9dTv6a48U+as9frWdt - kYL+qFifv7z6P7uHlgqy12cnuHmq9tHF2RPQmmkzrd6HjmNPOWWeLnKXHtabzcXl+vKqu25Ovp/8 - BwAA//8DAAMaYB6fCAAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e77353cbe8f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:42 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '3633' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998761' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 18ms - x-request-id: - - req_371655487b6052cb353dbcb5ffcc3046 - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"c40ce731-50ee-44c1-a4ea-5fb8a851fce0\",\"start_time\":\"2024-09-25T22:31:42.918815+00:00\",\"end_time\":\"2024-09-25T22:31:42.919763+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.918815+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.919763+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"777de676-1952-4377-b8de-83dc41df91a8\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8.20240925T223142918815Zc40ce731-50ee-44c1-a4ea-5fb8a851fce0\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":281,\"prompt_tokens\":976,\"total_tokens\":1257,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-e43ab4e3-c6a3-4249-a914-1a088b5cd182-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":976,\"output_tokens\":281,\"total_tokens\":1257}}},\"run_type\":\"parser\"},{\"id\":\"268a939e-ecbb-4b7e-bf4a-1aaadf1aeec8\",\"start_time\":\"2024-09-25T22:31:42.920539+00:00\",\"end_time\":\"2024-09-25T22:31:42.921022+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.920539+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.921022+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"tags\":[\"seq:step:2\",\"langsmith:hidden\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223142920539Z268a939e-ecbb-4b7e-bf4a-1aaadf1aeec8\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"name\":\"_write\",\"inputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"385c74a0-6058-4244-b3d3-a9bc5544cb44\",\"start_time\":\"2024-09-25T22:31:42.921734+00:00\",\"end_time\":\"2024-09-25T22:31:42.925255+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.921734+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.925255+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223142921734Z385c74a0-6058-4244-b3d3-a9bc5544cb44\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"collapse_summaries\"},\"name\":\"should_collapse\",\"inputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}],\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"]},\"run_type\":\"chain\"},{\"id\":\"83b5b4b7-3822-432f-8bb1-3960a004cc7f\",\"start_time\":\"2024-09-25T22:31:42.926818+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.926818+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"tags\":[\"graph:step:4\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"collapse_summaries\",\"inputs\":{\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"],\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"start_time\":\"2024-09-25T22:31:42.930817+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.930817+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"83b5b4b7-3822-432f-8bb1-3960a004cc7f\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"RunnableSequence\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"10126831-73a3-4576-a96a-c5a86cd1f55f\",\"start_time\":\"2024-09-25T22:31:42.931441+00:00\",\"end_time\":\"2024-09-25T22:31:42.932802+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"ChatPromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"messages\":[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"HumanMessagePromptTemplate\"],\"kwargs\":{\"prompt\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"prompt\",\"PromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"template\":\"\\n - \ The following is a set of summaries:\\n {docs}\\n Take these and distill - it into a final, consolidated summary\\n of the main themes.\\n \",\"template_format\":\"f-string\"},\"name\":\"PromptTemplate\"}}}]},\"name\":\"ChatPromptTemplate\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.931441+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.932802+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05.20240925T223142931441Z10126831-73a3-4576-a96a-c5a86cd1f55f\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":{\"messages\":[{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\\\n\\\\n1. - **LLM-Powered Autonomous Agents**: The concept revolves around utilizing LLMs - to enhance the functionality of autonomous agents. Key components include:\\\\n - \ - **Planning**: Techniques such as Chain of Thought (CoT) and Tree of Thoughts - (ToT) are employed for task decomposition, allowing agents to break down complex - tasks into manageable steps. Integration with classical planners using Planning - Domain Definition Language (PDDL) supports long-horizon planning.\\\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\\\n\\\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\\\n\\\\n3. **Memory in Machine - Learning**: The discussion includes a comparison of human memory types\u2014sensory, - short-term, and long-term\u2014and their parallels in machine learning. Concepts - such as in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\\\n\\\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\\\n\\\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.'), Document(metadata={}, - page_content='The set of summaries highlights several key themes in the realm - of artificial intelligence, particularly focusing on advancements in neuro-symbolic - architectures, autonomous agents, and their applications:\\\\n\\\\n1. **Neuro-Symbolic - Architectures**: The discussions center around MRKL (Modular Reasoning, Knowledge - and Language) systems that integrate expert modules with general-purpose language - models (LLMs) to enhance the processing of complex inquiries. Challenges in - LLMs, particularly in extracting arguments for verbal math problems, underscore - the need for effective use of external symbolic tools.\\\\n\\\\n2. **Tool-Augmented - LLMs**: Frameworks like TALM, Toolformer, and HuggingGPT are explored for their - capabilities in utilizing external APIs and enhancing LLM functionalities. HuggingGPT, - in particular, follows a structured workflow for task management, emphasizing - the importance of task planning, model selection, and execution.\\\\n\\\\n3. - **Real-World Applications and Challenges**: The summaries address the practical - applications of LLMs in various domains, such as scientific tasks demonstrated - by case studies like ChemCrow. However, they also highlight challenges such - as efficiency, context management, and output quality stabilization.\\\\n\\\\n4. - **Autonomous Agents and Simulations**: The text discusses projects like anticancer - drug discovery and the Generative Agents Simulation, which features virtual - characters exhibiting emergent social behaviors. AutoGPT is mentioned as an - autonomous agent system that operates independently, showcasing both its potential - and reliability concerns.\\\\n\\\\n5. **Task Management and Command Functionality**: - A set of commands for managing tasks is outlined, including internet searching, - file management, and code analysis. The emphasis is on continuous self-assessment - and strategic reflection to optimize task execution.\\\\n\\\\n6. **Game Development - Example**: A specific task involving the creation of a Super Mario game in Python - using MVC architecture is presented, illustrating the importance of clarifying - requirements and structuring components effectively.\\\\n\\\\nOverall, the summaries - reflect a growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while also - addressing the inherent challenges and limitations in these technologies.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"additional_kwargs\":{},\"response_metadata\":{},\"type\":\"human\"}]}},\"name\":\"ChatPromptTemplate\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"}]},\"run_type\":\"prompt\"},{\"id\":\"4465c2d2-2420-4e78-bd3a-ec1380004d00\",\"start_time\":\"2024-09-25T22:31:42.933603+00:00\",\"end_time\":null,\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"chat_models\",\"openai\",\"ChatOpenAI\"],\"kwargs\":{\"model_name\":\"gpt-4o-mini\",\"temperature\":0.0,\"openai_api_key\":{\"lc\":1,\"type\":\"secret\",\"id\":[\"OPENAI_API_KEY\"]},\"max_retries\":2,\"n\":1},\"name\":\"ChatOpenAI\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.933603+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"tags\":[\"seq:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05.20240925T223142933603Z4465c2d2-2420-4e78-bd3a-ec1380004d00\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"ChatOpenAI\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\\\n\\\\n1. - **LLM-Powered Autonomous Agents**: The concept revolves around utilizing LLMs - to enhance the functionality of autonomous agents. Key components include:\\\\n - \ - **Planning**: Techniques such as Chain of Thought (CoT) and Tree of Thoughts - (ToT) are employed for task decomposition, allowing agents to break down complex - tasks into manageable steps. Integration with classical planners using Planning - Domain Definition Language (PDDL) supports long-horizon planning.\\\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\\\n\\\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\\\n\\\\n3. **Memory in Machine - Learning**: The discussion includes a comparison of human memory types\u2014sensory, - short-term, and long-term\u2014and their parallels in machine learning. Concepts - such as in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\\\n\\\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\\\n\\\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.'), Document(metadata={}, - page_content='The set of summaries highlights several key themes in the realm - of artificial intelligence, particularly focusing on advancements in neuro-symbolic - architectures, autonomous agents, and their applications:\\\\n\\\\n1. **Neuro-Symbolic - Architectures**: The discussions center around MRKL (Modular Reasoning, Knowledge - and Language) systems that integrate expert modules with general-purpose language - models (LLMs) to enhance the processing of complex inquiries. Challenges in - LLMs, particularly in extracting arguments for verbal math problems, underscore - the need for effective use of external symbolic tools.\\\\n\\\\n2. **Tool-Augmented - LLMs**: Frameworks like TALM, Toolformer, and HuggingGPT are explored for their - capabilities in utilizing external APIs and enhancing LLM functionalities. HuggingGPT, - in particular, follows a structured workflow for task management, emphasizing - the importance of task planning, model selection, and execution.\\\\n\\\\n3. - **Real-World Applications and Challenges**: The summaries address the practical - applications of LLMs in various domains, such as scientific tasks demonstrated - by case studies like ChemCrow. However, they also highlight challenges such - as efficiency, context management, and output quality stabilization.\\\\n\\\\n4. - **Autonomous Agents and Simulations**: The text discusses projects like anticancer - drug discovery and the Generative Agents Simulation, which features virtual - characters exhibiting emergent social behaviors. AutoGPT is mentioned as an - autonomous agent system that operates independently, showcasing both its potential - and reliability concerns.\\\\n\\\\n5. **Task Management and Command Functionality**: - A set of commands for managing tasks is outlined, including internet searching, - file management, and code analysis. The emphasis is on continuous self-assessment - and strategic reflection to optimize task execution.\\\\n\\\\n6. **Game Development - Example**: A specific task involving the creation of a Super Mario game in Python - using MVC architecture is presented, illustrating the importance of clarifying - requirements and structuring components effectively.\\\\n\\\\nOverall, the summaries - reflect a growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while also - addressing the inherent challenges and limitations in these technologies.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"type\":\"human\"}}]]},\"run_type\":\"llm\"}],\"patch\":[{\"id\":\"e43ab4e3-c6a3-4249-a914-1a088b5cd182\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"777de676-1952-4377-b8de-83dc41df91a8\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8.20240925T223139064762Ze43ab4e3-c6a3-4249-a914-1a088b5cd182\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:42.917762+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\\\n\\\\n### Summary of Steps:\\\\n1. **Outline - Core Components**: Identify and name core classes, functions, and methods with - brief descriptions.\\\\n2. **Code Implementation**: Write complete code for - each file, ensuring it follows the specified markdown format.\\\\n3. **File - Structure**: Start with the entry point file and proceed to other files in the - order they are imported.\\\\n4. **Dependency Management**: Create a requirements.txt - file for Python dependencies.\\\\n5. **Final Review**: Ensure all parts of the - architecture are present and functional.\\\\n\\\\n### Example Core Components:\\\\n- - `main.py`: Entry point of the application.\\\\n- `models.py`: Contains data - models using dataclasses.\\\\n- `services.py`: Business logic and service functions.\\\\n- - `tests.py`: Unit tests for the application.\\\\n- `requirements.txt`: Lists - required packages.\\\\n\\\\n### Example Code Structure:\\\\n```plaintext\\\\nmain.py\\\\nmodels.py\\\\nservices.py\\\\ntests.py\\\\nrequirements.txt\\\\n```\\\\n\\\\n### - Example Code Implementation:\\\\n```python\\\\n# main.py\\\\n\\\"\\\"\\\"\\\\nEntry - point of the application.\\\\n\\\"\\\"\\\"\\\\nfrom services import run_service\\\\n\\\\nif - __name__ == \\\"__main__\\\":\\\\n run_service()\\\\n```\\\\n\\\\n```python\\\\n# - models.py\\\\n\\\"\\\"\\\"\\\\nContains data models using dataclasses.\\\\n\\\"\\\"\\\"\\\\nfrom - dataclasses import dataclass\\\\n\\\\n@dataclass\\\\nclass User:\\\\n id: - int\\\\n name: str\\\\n email: str\\\\n```\\\\n\\\\n```python\\\\n# services.py\\\\n\\\"\\\"\\\"\\\\nBusiness - logic and service functions.\\\\n\\\"\\\"\\\"\\\\nfrom models import User\\\\n\\\\ndef - run_service():\\\\n user = User(id=1, name=\\\"John Doe\\\", email=\\\"john@example.com\\\")\\\\n - \ print(f\\\"User created: {user}\\\")\\\\n```\\\\n\\\\n```plaintext\\\\n# - requirements.txt\\\\npytest\\\\ndataclasses\\\\n```\\\\n\\\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.'), - Document(metadata={}, page_content=\\\"The conversation outlines a structured - approach for writing code based on a specified architecture. The assistant is - instructed to think step-by-step, identify core classes and functions, and provide - complete code implementations in a markdown format. The user emphasizes the - importance of creating fully functional code without placeholders, adhering - to best practices for file naming and organization, and ensuring compatibility - across different files. The assistant also makes assumptions about the model, - view, and controller components of a game, and seeks clarification on specific - implementation details. Additionally, the conversation highlights a limitation - regarding the assistant's training data being current only up to October 2023.\\\"), - Document(metadata={}, page_content='The limitations of finite context length - in LLMs restrict their ability to incorporate historical information and detailed - instructions, hindering mechanisms like self-reflection that could benefit from - longer context windows. While vector stores can provide broader knowledge access, - they lack the representation power of full attention. Additionally, LLMs face - challenges in long-term planning and task decomposition, struggling to adapt - plans in response to unexpected errors, which diminishes their robustness compared - to human learning. The reliance on natural language as an interface between - LLMs and external components raises concerns about the reliability of model - outputs, as formatting errors and non-compliance with instructions can occur, - leading to a focus on parsing model output in agent demo code.'), Document(metadata={}, - page_content='The article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, - published in June 2023, discusses the integration of large language models (LLMs) - into autonomous agents, highlighting their capabilities in reasoning, problem-solving, - and tool usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.')]\\n Take these and distill it into a final, consolidated summary\\n - \ of the main themes.\\n \",\"type\":\"human\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":281,\"prompt_tokens\":976,\"total_tokens\":1257,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-e43ab4e3-c6a3-4249-a914-1a088b5cd182-0\",\"usage_metadata\":{\"input_tokens\":976,\"output_tokens\":281,\"total_tokens\":1257},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":281,\"prompt_tokens\":976,\"total_tokens\":1257,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:39.064762+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.917762+00:00\"}]},{\"id\":\"777de676-1952-4377-b8de-83dc41df91a8\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6.20240925T223139062414Z777de676-1952-4377-b8de-83dc41df91a8\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:42.920078+00:00\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"outputs\":{\"output\":\"The consolidated summary - of the main themes from the provided documents is as follows:\\n\\n1. **Structured - Codebase Development**: The process of creating a software project involves - outlining core components such as classes, functions, and methods, followed - by implementing complete code in a structured format. Best practices for Python - programming, including proper file naming, organization, and dependency management - through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step Implementation**: - A systematic approach is recommended for writing code, ensuring that all parts - of the architecture are functional and compatible. This includes starting with - the entry point file and progressing through other files in the order they are - imported.\\n\\n3. **Limitations of Language Models**: The documents discuss - the constraints of large language models (LLMs), particularly regarding finite - context length, which affects their ability to incorporate historical information - and perform long-term planning. Challenges in adapting plans in response to - errors and the reliability of outputs due to formatting issues are also highlighted.\\n\\n4. - **Advancements in Autonomous Agents**: The integration of LLMs into autonomous - agents is explored, showcasing their capabilities in reasoning, problem-solving, - and tool usage. Recent research advancements aim to enhance the planning and - reasoning abilities of these agents, enabling them to perform complex tasks - autonomously.\\n\\nOverall, the themes reflect a focus on best practices in - software development while acknowledging the limitations and potential of LLMs - in autonomous applications.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:39.062414+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.920078+00:00\"}]},{\"id\":\"a397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"name\":\"collapse_summaries\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223130649621Za397ffc8-488d-4d3d-8b01-0ed5b3adfad6\",\"tags\":[\"graph:step:3\"],\"extra\":{\"metadata\":{\"langgraph_step\":3,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collect_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:f88bca6a-8568-2d26-77e9-f37c714c675f\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:42.925715+00:00\",\"inputs\":{\"contents\":[\"LLM - Powered Autonomous Agents | Lil'Log\\n\\nLil'Log\\n\\n\\nPosts\\n\\n\\nArchive\\n\\n\\nSearch\\n\\n\\nTags\\n\\n\\nFAQ\\n\\n\\nemojisearch.app\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\",\"Fig. 1. Overview of - a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\",\"Fig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\",\"Fig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can roughly - consider the following mappings:\\n\\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\\n\\nMaximum - Inner Product Search (MIPS)#\\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200B algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\\nA couple - common choices of ANN algorithms for fast MIPS:\",\"LSH (Locality-Sensitive - Hashing): It introduces a hashing function such that similar input items are - mapped to the same buckets with high probability, where the number of buckets - is much smaller than the number of inputs.\\nANNOY (Approximate Nearest Neighbors - Oh Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201Csix degrees of - separation\u201D feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\\\tilde{x}_i$ such that the inner product $\\\\langle q, x_i \\\\rangle$ - is as similar to the original distance of $\\\\angle q, \\\\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\\n\\n\\nFig. 9. - Comparison of MIPS algorithms, measured in recall@10. (Image source: Google - Blog, 2020)\\nCheck more MIPS algorithms and performance comparison in ann-benchmarks.com.\\nComponent - Three: Tool Use#\\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\",\"Fig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\\nMRKL (Karpas et al. 2022), short - for \u201CModular Reasoning, Knowledge and Language\u201D, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201Cexpert\u201D modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\",\"With - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\",\"inquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\",\"Commands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\",\"You should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\",\"You will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\",\"Conversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\",\"Finite context length: The restricted context - capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\",\"Or\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\"],\"summaries\":[\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"The experiments on AlfWorld Env - and HotpotQA reveal that hallucination is a more prevalent failure than inefficient - planning. The Chain of Hindsight (CoH) method enhances model outputs by providing - a sequence of past outputs with human feedback, allowing the model to self-reflect - and improve. CoH employs supervised fine-tuning with a regularization term to - prevent overfitting and incorporates random masking of tokens to avoid shortcutting. - The training dataset combines various human feedback sources. After fine-tuning, - models show incremental improvement in output quality. Algorithm Distillation - (AD) applies a similar concept in reinforcement learning, using a history of - learning trajectories to inform future actions, leading to better performance - than traditional methods. AD demonstrates effective in-context reinforcement - learning, achieving results close to online RL methods while learning faster - than other baselines.\",\"The text discusses the comparison of various reinforcement - learning (RL) methods, including AD, ED, source policy, and RL^2, in environments - that require memory and exploration, with a focus on binary rewards. It highlights - the types of memory in human brains: sensory memory (short-lived impressions - of sensory information), short-term memory (limited capacity for current awareness), - and long-term memory (unlimited storage for facts and experiences). The categorization - of human memory is mapped to machine learning concepts, where sensory memory - corresponds to learning embeddings, short-term memory relates to in-context - learning, and long-term memory is likened to external vector stores for fast - retrieval. The text also introduces Maximum Inner Product Search (MIPS) as a - method to enhance retrieval speed from external memory, utilizing approximate - nearest neighbors (ANN) algorithms for efficient data access.\",\"The text discusses - various algorithms for approximate nearest neighbor search, each with unique - methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing function - that maps similar items to the same buckets with high probability, using fewer - buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors Oh Yeah)**: - Utilizes random projection trees to split input space and store data points - in leaves, mimicking a hashing function for scalable searches.\\n\\n3. **HNSW - (Hierarchical Navigable Small World)**: Builds hierarchical small-world graphs - to facilitate efficient searches by navigating through layers, starting from - a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity Search)**: - Assumes Gaussian distribution in high-dimensional space, using vector quantization - to cluster data points and refine searches within those clusters.\\n\\n5. **ScaNN - (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"The text discusses various advancements - in neuro-symbolic architectures for autonomous agents, particularly focusing - on MRKL (Modular Reasoning, Knowledge and Language) systems, which utilize a - combination of expert modules and a general-purpose language model (LLM) to - route inquiries effectively. Experiments revealed challenges in LLMs extracting - arguments for verbal math problems compared to explicit ones, emphasizing the - importance of knowing when and how to use external symbolic tools. Other frameworks - like TALM and Toolformer enhance LLMs' capabilities to utilize external tool - APIs, while ChatGPT Plugins and OpenAI API function calling exemplify practical - applications. HuggingGPT is introduced as a framework that employs ChatGPT for - task planning, involving four stages: task planning, model selection, task execution, - and logging results. The system is designed to parse user requests into manageable - tasks and select appropriate models for execution.\",\"The AI assistant processes - user input by following a structured workflow: User Input, Task Planning, Model - Selection, and Task Execution. It first provides a direct response to the user's - request, then details the task process and shares analysis and inference results, - including any relevant file paths.\\n\\nTo enhance real-world applications of - HuggingGPT, several challenges must be addressed, including improving efficiency, - managing long context windows for complex tasks, and stabilizing output quality. - The API-Bank benchmark evaluates tool-augmented LLMs through 53 APIs and 264 - annotated dialogues, assessing their decision-making capabilities at three levels: - calling APIs, retrieving the right APIs, and planning multiple API calls for - complex requests.\\n\\nCase studies like ChemCrow demonstrate the effectiveness - of LLMs augmented with expert tools for scientific tasks, revealing that while - LLMs may perform similarly in evaluations, expert assessments show significant - advantages for specialized tools. This highlights the limitations of LLMs in - self-evaluating their performance in expert domains.\",\"The text discusses - a project focused on anticancer drug discovery, where a target was selected, - a scaffold was requested, and a compound was synthesized. The project also addressed - risks related to illicit drugs and bioweapons, leading to a test set of known - chemical weapon agents. Out of 11 synthesis requests, 4 were accepted, while - 7 were rejected, primarily after web searches. \\n\\nAdditionally, it describes - the Generative Agents Simulation, where 25 virtual characters interact in a - sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"The provided commands - outline a set of functionalities for managing tasks, including searching the - internet, browsing websites, interacting with GPT agents, file management, code - analysis, and generating content. Key commands include starting and messaging - GPT agents, executing file operations (read, write, delete), analyzing and improving - code, and generating images or tweets. Resources available include internet - access, memory management, and GPT-3.5 agents for task delegation. Performance - evaluation emphasizes continuous self-assessment, efficiency in task execution, - and strategic reflection to optimize actions. The system is trained on data - up to October 2023.\",\"{\\n \\\"thoughts\\\": {\\n \\\"text\\\": - \\\"The task involves creating a Super Mario game in Python with MVC architecture - and keyboard controls.\\\",\\n \\\"reasoning\\\": \\\"Clarifying the - specifics of the game and its components is essential for accurate implementation.\\\",\\n - \ \\\"plan\\\": \\\"- Gather detailed requirements for the game\\\\n- - Define the structure of MVC components\\\\n- Determine keyboard control mappings\\\\n- - Start coding based on clarified requirements\\\",\\n \\\"criticism\\\": - \\\"I should have asked for more details about the MVC structure earlier to - avoid back-and-forth.\\\",\\n \\\"speak\\\": \\\"I understand the game - concept and need to clarify the MVC component structure.\\\"\\n },\\n \\\"command\\\": - {\\n \\\"name\\\": \\\"ask_clarifying_question\\\",\\n \\\"args\\\": - {\\n \\\"question\\\": \\\"Can you provide more information about - how the MVC components are split into separate files?\\\"\\n }\\n }\\n}\",\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"The limitations of finite context length in LLMs - restrict their ability to incorporate historical information and detailed instructions, - hindering mechanisms like self-reflection that could benefit from longer context - windows. While vector stores can provide broader knowledge access, they lack - the representation power of full attention. Additionally, LLMs face challenges - in long-term planning and task decomposition, struggling to adapt plans in response - to unexpected errors, which diminishes their robustness compared to human learning. - The reliance on natural language as an interface between LLMs and external components - raises concerns about the reliability of model outputs, as formatting errors - and non-compliance with instructions can occur, leading to a focus on parsing - model output in agent demo code.\",\"The article \\\"LLM-powered Autonomous - Agents\\\" by Lilian Weng, published in June 2023, discusses the integration - of large language models (LLMs) into autonomous agents, highlighting their capabilities - in reasoning, problem-solving, and tool usage. It references various studies - and preprints that explore advancements in LLMs, including methods for enhancing - their planning proficiency, reasoning abilities, and interaction with external - tools. The article emphasizes the potential of these agents to perform complex - tasks autonomously, leveraging recent developments in AI research. For further - details, the article can be accessed at the provided URL.\"],\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - article \\\"LLM Powered Autonomous Agents\\\" by Lilian Weng discusses the concept - of using large language models (LLMs) as the core controller for autonomous - agents. It outlines a system overview that includes three main components: planning, - memory, and tool use. \\n\\n1. **Planning** involves task decomposition into - smaller subgoals and self-reflection to improve future actions.\\n2. **Memory** - is categorized into short-term (in-context learning) and long-term (retaining - information using external storage).\\n3. **Tool Use** allows agents to access - external APIs for additional information and capabilities beyond their pre-trained - knowledge.\\n\\nThe article highlights various proof-of-concept examples, such - as AutoGPT and BabyAGI, showcasing the potential of LLMs as general problem - solvers. It also addresses the challenges faced in building these agents.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - overview describes a LLM-powered autonomous agent system that incorporates planning - and self-reflection components. \\n\\n1. **Planning**: The system employs task - decomposition techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) - to break down complex tasks into manageable steps. CoT encourages step-by-step - reasoning, while ToT explores multiple reasoning paths at each step using search - algorithms. Additionally, LLM+P integrates an external classical planner using - Planning Domain Definition Language (PDDL) for long-horizon planning.\\n\\n2. - **Self-Reflection**: This component allows agents to iteratively improve by - analyzing past actions. The ReAct framework combines reasoning and acting, enabling - agents to interact with their environment while generating reasoning traces. - Reflexion enhances this by incorporating dynamic memory and a reward model to - assess the efficiency of actions and correct mistakes. It uses heuristics to - identify inefficient trajectories and hallucinations, and integrates reflections - from past experiences to guide future actions.\\n\\nOverall, the system aims - to enhance the performance of autonomous agents in complex tasks through structured - planning and self-improvement mechanisms.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - experiments on AlfWorld Env and HotpotQA reveal that hallucination is a more - prevalent failure than inefficient planning. The Chain of Hindsight (CoH) method - enhances model outputs by providing a sequence of past outputs with human feedback, - allowing the model to self-reflect and improve. CoH employs supervised fine-tuning - with a regularization term to prevent overfitting and incorporates random masking - of tokens to avoid shortcutting. The training dataset combines various human - feedback sources. After fine-tuning, models show incremental improvement in - output quality. Algorithm Distillation (AD) applies a similar concept in reinforcement - learning, using a history of learning trajectories to inform future actions, - leading to better performance than traditional methods. AD demonstrates effective - in-context reinforcement learning, achieving results close to online RL methods - while learning faster than other baselines.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses the comparison of various reinforcement learning (RL) methods, - including AD, ED, source policy, and RL^2, in environments that require memory - and exploration, with a focus on binary rewards. It highlights the types of - memory in human brains: sensory memory (short-lived impressions of sensory information), - short-term memory (limited capacity for current awareness), and long-term memory - (unlimited storage for facts and experiences). The categorization of human memory - is mapped to machine learning concepts, where sensory memory corresponds to - learning embeddings, short-term memory relates to in-context learning, and long-term - memory is likened to external vector stores for fast retrieval. The text also - introduces Maximum Inner Product Search (MIPS) as a method to enhance retrieval - speed from external memory, utilizing approximate nearest neighbors (ANN) algorithms - for efficient data access.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various algorithms for approximate nearest neighbor search, each - with unique methodologies:\\n\\n1. **LSH (Locality-Sensitive Hashing)**: A hashing - function that maps similar items to the same buckets with high probability, - using fewer buckets than inputs.\\n\\n2. **ANNOY (Approximate Nearest Neighbors - Oh Yeah)**: Utilizes random projection trees to split input space and store - data points in leaves, mimicking a hashing function for scalable searches.\\n\\n3. - **HNSW (Hierarchical Navigable Small World)**: Builds hierarchical small-world - graphs to facilitate efficient searches by navigating through layers, starting - from a random node in the top layer.\\n\\n4. **FAISS (Facebook AI Similarity - Search)**: Assumes Gaussian distribution in high-dimensional space, using vector - quantization to cluster data points and refine searches within those clusters.\\n\\n5. - **ScaNN (Scalable Nearest Neighbors)**: Innovates with anisotropic vector quantization - to ensure that the quantized representation closely resembles the original distance - metrics.\\n\\nThe text also highlights the importance of tool use in enhancing - the capabilities of large language models (LLMs), emphasizing the role of external - tools in extending their functionality.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses various advancements in neuro-symbolic architectures for autonomous - agents, particularly focusing on MRKL (Modular Reasoning, Knowledge and Language) - systems, which utilize a combination of expert modules and a general-purpose - language model (LLM) to route inquiries effectively. Experiments revealed challenges - in LLMs extracting arguments for verbal math problems compared to explicit ones, - emphasizing the importance of knowing when and how to use external symbolic - tools. Other frameworks like TALM and Toolformer enhance LLMs' capabilities - to utilize external tool APIs, while ChatGPT Plugins and OpenAI API function - calling exemplify practical applications. HuggingGPT is introduced as a framework - that employs ChatGPT for task planning, involving four stages: task planning, - model selection, task execution, and logging results. The system is designed - to parse user requests into manageable tasks and select appropriate models for - execution.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - AI assistant processes user input by following a structured workflow: User Input, - Task Planning, Model Selection, and Task Execution. It first provides a direct - response to the user's request, then details the task process and shares analysis - and inference results, including any relevant file paths.\\n\\nTo enhance real-world - applications of HuggingGPT, several challenges must be addressed, including - improving efficiency, managing long context windows for complex tasks, and stabilizing - output quality. The API-Bank benchmark evaluates tool-augmented LLMs through - 53 APIs and 264 annotated dialogues, assessing their decision-making capabilities - at three levels: calling APIs, retrieving the right APIs, and planning multiple - API calls for complex requests.\\n\\nCase studies like ChemCrow demonstrate - the effectiveness of LLMs augmented with expert tools for scientific tasks, - revealing that while LLMs may perform similarly in evaluations, expert assessments - show significant advantages for specialized tools. This highlights the limitations - of LLMs in self-evaluating their performance in expert domains.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - text discusses a project focused on anticancer drug discovery, where a target - was selected, a scaffold was requested, and a compound was synthesized. The - project also addressed risks related to illicit drugs and bioweapons, leading - to a test set of known chemical weapon agents. Out of 11 synthesis requests, - 4 were accepted, while 7 were rejected, primarily after web searches. \\n\\nAdditionally, - it describes the Generative Agents Simulation, where 25 virtual characters interact - in a sandbox environment, utilizing a combination of long-term memory, planning, - and reflection mechanisms to simulate human behavior. The architecture allows - for emergent social behaviors, such as information diffusion and event coordination. - \\n\\nLastly, it mentions AutoGPT, an autonomous agent system that operates - independently using a natural language interface, with specific goals and constraints, - highlighting its potential and reliability issues.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - provided commands outline a set of functionalities for managing tasks, including - searching the internet, browsing websites, interacting with GPT agents, file - management, code analysis, and generating content. Key commands include starting - and messaging GPT agents, executing file operations (read, write, delete), analyzing - and improving code, and generating images or tweets. Resources available include - internet access, memory management, and GPT-3.5 agents for task delegation. - Performance evaluation emphasizes continuous self-assessment, efficiency in - task execution, and strategic reflection to optimize actions. The system is - trained on data up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"{\\n - \ \\\"thoughts\\\": {\\n \\\"text\\\": \\\"The task involves creating - a Super Mario game in Python with MVC architecture and keyboard controls.\\\",\\n - \ \\\"reasoning\\\": \\\"Clarifying the specifics of the game and its - components is essential for accurate implementation.\\\",\\n \\\"plan\\\": - \\\"- Gather detailed requirements for the game\\\\n- Define the structure of - MVC components\\\\n- Determine keyboard control mappings\\\\n- Start coding - based on clarified requirements\\\",\\n \\\"criticism\\\": \\\"I should - have asked for more details about the MVC structure earlier to avoid back-and-forth.\\\",\\n - \ \\\"speak\\\": \\\"I understand the game concept and need to clarify - the MVC component structure.\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"ask_clarifying_question\\\",\\n \\\"args\\\": {\\n \\\"question\\\": - \\\"Can you provide more information about how the MVC components are split - into separate files?\\\"\\n }\\n }\\n}\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - task involves creating a structured codebase for a software project, ensuring - that all components are well-defined and implemented in a functional manner. - The process includes outlining core classes, functions, and methods, followed - by providing complete code for each file in a specified format. The code must - adhere to best practices for the chosen programming language (Python in this - case), including proper file naming conventions, inclusion of necessary imports, - and compatibility across files. Additionally, a requirements.txt file must be - created to manage dependencies.\\n\\n### Summary of Steps:\\n1. **Outline Core - Components**: Identify and name core classes, functions, and methods with brief - descriptions.\\n2. **Code Implementation**: Write complete code for each file, - ensuring it follows the specified markdown format.\\n3. **File Structure**: - Start with the entry point file and proceed to other files in the order they - are imported.\\n4. **Dependency Management**: Create a requirements.txt file - for Python dependencies.\\n5. **Final Review**: Ensure all parts of the architecture - are present and functional.\\n\\n### Example Core Components:\\n- `main.py`: - Entry point of the application.\\n- `models.py`: Contains data models using - dataclasses.\\n- `services.py`: Business logic and service functions.\\n- `tests.py`: - Unit tests for the application.\\n- `requirements.txt`: Lists required packages.\\n\\n### - Example Code Structure:\\n```plaintext\\nmain.py\\nmodels.py\\nservices.py\\ntests.py\\nrequirements.txt\\n```\\n\\n### - Example Code Implementation:\\n```python\\n# main.py\\n\\\"\\\"\\\"\\nEntry - point of the application.\\n\\\"\\\"\\\"\\nfrom services import run_service\\n\\nif - __name__ == \\\"__main__\\\":\\n run_service()\\n```\\n\\n```python\\n# models.py\\n\\\"\\\"\\\"\\nContains - data models using dataclasses.\\n\\\"\\\"\\\"\\nfrom dataclasses import dataclass\\n\\n@dataclass\\nclass - User:\\n id: int\\n name: str\\n email: str\\n```\\n\\n```python\\n# - services.py\\n\\\"\\\"\\\"\\nBusiness logic and service functions.\\n\\\"\\\"\\\"\\nfrom - models import User\\n\\ndef run_service():\\n user = User(id=1, name=\\\"John - Doe\\\", email=\\\"john@example.com\\\")\\n print(f\\\"User created: {user}\\\")\\n```\\n\\n```plaintext\\n# - requirements.txt\\npytest\\ndataclasses\\n```\\n\\nThis summary encapsulates - the essential steps and structure for creating a functional Python project, - ensuring clarity and adherence to best practices throughout the implementation.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - conversation outlines a structured approach for writing code based on a specified - architecture. The assistant is instructed to think step-by-step, identify core - classes and functions, and provide complete code implementations in a markdown - format. The user emphasizes the importance of creating fully functional code - without placeholders, adhering to best practices for file naming and organization, - and ensuring compatibility across different files. The assistant also makes - assumptions about the model, view, and controller components of a game, and - seeks clarification on specific implementation details. Additionally, the conversation - highlights a limitation regarding the assistant's training data being current - only up to October 2023.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - limitations of finite context length in LLMs restrict their ability to incorporate - historical information and detailed instructions, hindering mechanisms like - self-reflection that could benefit from longer context windows. While vector - stores can provide broader knowledge access, they lack the representation power - of full attention. Additionally, LLMs face challenges in long-term planning - and task decomposition, struggling to adapt plans in response to unexpected - errors, which diminishes their robustness compared to human learning. The reliance - on natural language as an interface between LLMs and external components raises - concerns about the reliability of model outputs, as formatting errors and non-compliance - with instructions can occur, leading to a focus on parsing model output in agent - demo code.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - article \\\"LLM-powered Autonomous Agents\\\" by Lilian Weng, published in June - 2023, discusses the integration of large language models (LLMs) into autonomous - agents, highlighting their capabilities in reasoning, problem-solving, and tool - usage. It references various studies and preprints that explore advancements - in LLMs, including methods for enhancing their planning proficiency, reasoning - abilities, and interaction with external tools. The article emphasizes the potential - of these agents to perform complex tasks autonomously, leveraging recent developments - in AI research. For further details, the article can be accessed at the provided - URL.\",\"type\":\"Document\"}]},\"outputs\":{\"collapsed_summaries\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:30.649621+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:42.925715+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '278327' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:42 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=''The consolidated summary of the main themes from the provided - documents focuses on the use of large language models (LLMs) as controllers - for autonomous agents, emphasizing their capabilities in planning, memory, and - tool use.\\n\\n1. **LLM-Powered Autonomous Agents**: The concept revolves around - utilizing LLMs to enhance the functionality of autonomous agents. Key components - include:\\n - **Planning**: Techniques such as Chain of Thought (CoT) and - Tree of Thoughts (ToT) are employed for task decomposition, allowing agents - to break down complex tasks into manageable steps. Integration with classical - planners using Planning Domain Definition Language (PDDL) supports long-horizon - planning.\\n - **Self-Reflection**: Agents improve iteratively by analyzing - past actions. Frameworks like ReAct and Reflexion facilitate reasoning and acting, - incorporating dynamic memory and reward models to enhance decision-making and - correct inefficiencies.\\n\\n2. **Challenges and Improvements**: Experiments - reveal that hallucination is a significant challenge, often more prevalent than - inefficient planning. Methods like Chain of Hindsight (CoH) and Algorithm Distillation - (AD) are introduced to enhance model outputs through self-reflection and reinforcement - learning, respectively, leading to improved performance.\\n\\n3. **Memory in - Machine Learning**: The discussion includes a comparison of human memory types\u2014sensory, - short-term, and long-term\u2014and their parallels in machine learning. Concepts - such as in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.''), - Document(metadata={}, page_content=''The set of summaries highlights several - key themes in the realm of artificial intelligence, particularly focusing on - advancements in neuro-symbolic architectures, autonomous agents, and their applications:\\n\\n1. - **Neuro-Symbolic Architectures**: The discussions center around MRKL (Modular - Reasoning, Knowledge and Language) systems that integrate expert modules with - general-purpose language models (LLMs) to enhance the processing of complex - inquiries. Challenges in LLMs, particularly in extracting arguments for verbal - math problems, underscore the need for effective use of external symbolic tools.\\n\\n2. - **Tool-Augmented LLMs**: Frameworks like TALM, Toolformer, and HuggingGPT are - explored for their capabilities in utilizing external APIs and enhancing LLM - functionalities. HuggingGPT, in particular, follows a structured workflow for - task management, emphasizing the importance of task planning, model selection, - and execution.\\n\\n3. **Real-World Applications and Challenges**: The summaries - address the practical applications of LLMs in various domains, such as scientific - tasks demonstrated by case studies like ChemCrow. However, they also highlight - challenges such as efficiency, context management, and output quality stabilization.\\n\\n4. - **Autonomous Agents and Simulations**: The text discusses projects like anticancer - drug discovery and the Generative Agents Simulation, which features virtual - characters exhibiting emergent social behaviors. AutoGPT is mentioned as an - autonomous agent system that operates independently, showcasing both its potential - and reliability concerns.\\n\\n5. **Task Management and Command Functionality**: - A set of commands for managing tasks is outlined, including internet searching, - file management, and code analysis. The emphasis is on continuous self-assessment - and strategic reflection to optimize task execution.\\n\\n6. **Game Development - Example**: A specific task involving the creation of a Super Mario game in Python - using MVC architecture is presented, illustrating the importance of clarifying - requirements and structuring components effectively.\\n\\nOverall, the summaries - reflect a growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while also - addressing the inherent challenges and limitations in these technologies.'')]\n Take - these and distill it into a final, consolidated summary\n of the main themes.\n ", - "role": "user"}], "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": - 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4861' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//fFbbbhw3En3XVxTmyTZmBN0iKXqbyIltrOR4ZQVZbBIIHHZ1d61IVptF - zmgc+N8XRfZcLCd5EUZksy6nTp2qPw8AJtRMrmBie5OsH9xs/sMvQ3zzk//vO+aTu8v39J/3crdK - q9W/kz+fTPUFL/6HNm1eHVr2g8NEHOq1jWgSqtXji5OL06PT745Oy4XnBp0+64Y0O+OZp0Czk6OT - s9nRxez4cnzdM1mUyRX8dgAA8Gf5q3GGBp8mV3A03Zx4FDEdTq62HwFMIjs9mRgRkmRCmkx3l5ZD - wlBCv+8RLAdhR42GC5K9N3EN3ELqEbyhoD88CrSRfTkcIi+pwQYattljSAIt2ywowOVrMM3SBIv1 - jgI4EzsEZ0KXTYdQIBB4cXNzKy/BhEYfUQQKCbtoFET9zWBy4sCes4Dp1NgUeup6R12fKHTwiGsw - EY2AZNuDERicCYFCNwWPnuMavAmmK5FMqydmBzmRo8/F0eHv4fdwfAivXt3c3M4+8AojNjDfOZ4X - x69eXYGClQUVG40cMPSapZSU2xys2jOOUoHvm9gh9ZFz10NC2wf6lFHA0SPCda8ocwv3vd4neHHN - 9xWX+4i4dyPw4l6vWo6AbYs20RIhGXmEBpWBLFTQ07eOQzfrOdJnDltcDuEjunYWsXVY4oU2Go8r - jo8y3aJ4h3ObipE7/fCJOEwBg1k43CbD4NDEUGkxGElgikGZAvlCkdBpVCTEYebNo/6vJrFtyRIG - uy7Ynyj27zFHnn1c+wU7sjCPtqeENuWIW+j32cEthPJENk9kLQm9TCukt3f/upmCZb+ggAL4NGBM - yrvsUGBFqa8lTAzJ2EenXaD9+wQUPmWKhDKFwcRENjsT3VpZXJlW7C8xLowDb1Kv7bBw6GfCblmY - h37ojdBnTVipERCbWrKnhDEYB9uolY1SYDhVGO6Z3WyeO6UrNiVEzf6nbYm2Fbqf39xOQb9vOXqM - ldxvc9dR6N58uN+QU22ANYNZkKNEKLBYj/TX8LYRzT+8kxJjIdN+05RmBcGRL9URPqHN9V/peWWN - bJIlP3BMxTW3ICnmUsUGNP7W8aqme6bpXvfGOQwdSjH6rtCmqoam/dY4ly2FWvKIKkYCBoS6QC1Z - ExLYjQktkOI1rdX1mHpunjfYWwqN0Nhib2uLzV3HkVLv4TVJIuequxfz1y+1tAMLqmqMpB7FCzin - Ie/1tDzrKrUckULLsepg7RbtQE3/O03/tirU7RbsDdMbEptFqgxalxsUJaNm6gQWmFaIAfrsTdjI - XFoPI4re2J4Cbv09k0yPtjeBxI/YUJiVefC0i3Cs8MiMJdrEESRxRHmmPN9o7KYKJclzTfIOjZv9 - ytE1MB8GR7bAu23qIapqWOPA7N1uJdZEBHIuS4plPG3gtkYQJOWmNOqmKa579NeRVyVKUY1JypPC - aSVGT6pfThhM00SUQlq7I2FEV73wnkipjFR8no+SygH4lIvml5QvNOVvhkf5+iP57HbJf4is+8NY - BRMUhGAxQhNzVxjAS4zr8vQNBlThW+LG4M4YNOg5VHzqdGYd7mTcXw6hsT1GtazONV6VjL1OXnDq - v5aNSmhH9WStoFiMoVb6soiXKsfXZP6xKqEAlclssdENQfGkkDWo0jZGBEUKfdRLzaUjC/tTiiPw - kMiPsqq+9kSoJGXqGlJdeK+29qcyjfRdmkjqe2RF7TA1qgMmBkwgaHQAjZ1gudECGbcWqun+vERt - xmnBe7cEjeGCgS7yamsRpbRFFWQ9rcwOzT+sCM+GmxmGyMb2ZSr9ZcdMN9Bt5PYbHR/ZvyN+UevQ - Y8R9Ha2ROfKUxl6sG6Bg3VvYcUcoh/sLZcQ2i9GlNmTnxvMv2w3VcaczUsb77XlLgaR/0KnKQbdR - STxMyu2XA4A/yiacv1puJ0NkP6SHxI8Y1ODl9+fV3mS3gO9uzy5PxtvEybjdxfHpxeXfvXtoMBly - srdRT2qMFLqdiaNtoCXTSW2ph5ZCh3GIVBfsdng4XizOzo/PL9rvJwdfDv4PAAD//wMAGdE4vm4M - AAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e774d68798f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:48 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '5728' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998806' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 17ms - x-request-id: - - req_3632559c5791357eb54c081a44773a71 - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"3c745b20-b602-43bc-baed-a8d00ffb1bf5\",\"start_time\":\"2024-09-25T22:31:49.051793+00:00\",\"end_time\":\"2024-09-25T22:31:49.053395+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:49.051793+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:49.053395+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05.20240925T223149051793Z3c745b20-b602-43bc-baed-a8d00ffb1bf5\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":\"The - consolidated summary of the main themes from the provided documents focuses - on the advancements in large language models (LLMs) and their integration into - autonomous agents, highlighting key areas such as planning, memory management, - and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: The use of - LLMs enhances the functionality of autonomous agents through techniques like - Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.\"},\"name\":\"StrOutputParser\",\"inputs\":{\"input\":{\"content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the advancements in large language models (LLMs) and their integration into - autonomous agents, highlighting key areas such as planning, memory management, - and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: The use of - LLMs enhances the functionality of autonomous agents through techniques like - Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":482,\"prompt_tokens\":896,\"total_tokens\":1378,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-4465c2d2-2420-4e78-bd3a-ec1380004d00-0\",\"example\":false,\"tool_calls\":[],\"invalid_tool_calls\":[],\"usage_metadata\":{\"input_tokens\":896,\"output_tokens\":482,\"total_tokens\":1378}}},\"run_type\":\"parser\"},{\"id\":\"763b9a44-c172-4131-b533-b71da87f9860\",\"start_time\":\"2024-09-25T22:31:49.054628+00:00\",\"end_time\":null,\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:49.054628+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"83b5b4b7-3822-432f-8bb1-3960a004cc7f\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223149054628Z763b9a44-c172-4131-b533-b71da87f9860\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"RunnableSequence\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"7f2bde89-d4bb-4f37-9ee0-089278df832d\",\"start_time\":\"2024-09-25T22:31:49.055489+00:00\",\"end_time\":\"2024-09-25T22:31:49.056816+00:00\",\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"ChatPromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"messages\":[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"HumanMessagePromptTemplate\"],\"kwargs\":{\"prompt\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"prompt\",\"PromptTemplate\"],\"kwargs\":{\"input_variables\":[\"docs\"],\"template\":\"\\n - \ The following is a set of summaries:\\n {docs}\\n Take these and distill - it into a final, consolidated summary\\n of the main themes.\\n \",\"template_format\":\"f-string\"},\"name\":\"PromptTemplate\"}}}]},\"name\":\"ChatPromptTemplate\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:49.055489+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:49.056816+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"763b9a44-c172-4131-b533-b71da87f9860\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223149054628Z763b9a44-c172-4131-b533-b71da87f9860.20240925T223149055489Z7f2bde89-d4bb-4f37-9ee0-089278df832d\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{\"output\":{\"messages\":[{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - consolidated summary of the main themes from the provided documents is as follows:\\\\n\\\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\\\n\\\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\\\n\\\\n3. **Limitations of Language Models**: The - documents discuss the constraints of large language models (LLMs), particularly - regarding finite context length, which affects their ability to incorporate - historical information and perform long-term planning. Challenges in adapting - plans in response to errors and the reliability of outputs due to formatting - issues are also highlighted.\\\\n\\\\n4. **Advancements in Autonomous Agents**: - The integration of LLMs into autonomous agents is explored, showcasing their - capabilities in reasoning, problem-solving, and tool usage. Recent research - advancements aim to enhance the planning and reasoning abilities of these agents, - enabling them to perform complex tasks autonomously.\\\\n\\\\nOverall, the themes - reflect a focus on best practices in software development while acknowledging - the limitations and potential of LLMs in autonomous applications.')]\\n Take - these and distill it into a final, consolidated summary\\n of the main themes.\\n - \ \",\"additional_kwargs\":{},\"response_metadata\":{},\"type\":\"human\"}]}},\"name\":\"ChatPromptTemplate\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents is as follows:\\n\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\n\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\n\\n3. **Limitations of Language Models**: The documents - discuss the constraints of large language models (LLMs), particularly regarding - finite context length, which affects their ability to incorporate historical - information and perform long-term planning. Challenges in adapting plans in - response to errors and the reliability of outputs due to formatting issues are - also highlighted.\\n\\n4. **Advancements in Autonomous Agents**: The integration - of LLMs into autonomous agents is explored, showcasing their capabilities in - reasoning, problem-solving, and tool usage. Recent research advancements aim - to enhance the planning and reasoning abilities of these agents, enabling them - to perform complex tasks autonomously.\\n\\nOverall, the themes reflect a focus - on best practices in software development while acknowledging the limitations - and potential of LLMs in autonomous applications.\",\"type\":\"Document\"}]},\"run_type\":\"prompt\"},{\"id\":\"a78dc275-bf87-419d-852a-d89f0a3e3733\",\"start_time\":\"2024-09-25T22:31:49.057611+00:00\",\"end_time\":null,\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"chat_models\",\"openai\",\"ChatOpenAI\"],\"kwargs\":{\"model_name\":\"gpt-4o-mini\",\"temperature\":0.0,\"openai_api_key\":{\"lc\":1,\"type\":\"secret\",\"id\":[\"OPENAI_API_KEY\"]},\"max_retries\":2,\"n\":1},\"name\":\"ChatOpenAI\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:49.057611+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"763b9a44-c172-4131-b533-b71da87f9860\",\"tags\":[\"seq:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223149054628Z763b9a44-c172-4131-b533-b71da87f9860.20240925T223149057611Za78dc275-bf87-419d-852a-d89f0a3e3733\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"outputs\":{},\"name\":\"ChatOpenAI\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - consolidated summary of the main themes from the provided documents is as follows:\\\\n\\\\n1. - **Structured Codebase Development**: The process of creating a software project - involves outlining core components such as classes, functions, and methods, - followed by implementing complete code in a structured format. Best practices - for Python programming, including proper file naming, organization, and dependency - management through a `requirements.txt` file, are emphasized.\\\\n\\\\n2. **Step-by-Step - Implementation**: A systematic approach is recommended for writing code, ensuring - that all parts of the architecture are functional and compatible. This includes - starting with the entry point file and progressing through other files in the - order they are imported.\\\\n\\\\n3. **Limitations of Language Models**: The - documents discuss the constraints of large language models (LLMs), particularly - regarding finite context length, which affects their ability to incorporate - historical information and perform long-term planning. Challenges in adapting - plans in response to errors and the reliability of outputs due to formatting - issues are also highlighted.\\\\n\\\\n4. **Advancements in Autonomous Agents**: - The integration of LLMs into autonomous agents is explored, showcasing their - capabilities in reasoning, problem-solving, and tool usage. Recent research - advancements aim to enhance the planning and reasoning abilities of these agents, - enabling them to perform complex tasks autonomously.\\\\n\\\\nOverall, the themes - reflect a focus on best practices in software development while acknowledging - the limitations and potential of LLMs in autonomous applications.')]\\n Take - these and distill it into a final, consolidated summary\\n of the main themes.\\n - \ \",\"type\":\"human\"}}]]},\"run_type\":\"llm\"}],\"patch\":[{\"id\":\"4465c2d2-2420-4e78-bd3a-ec1380004d00\",\"name\":\"ChatOpenAI\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05.20240925T223142933603Z4465c2d2-2420-4e78-bd3a-ec1380004d00\",\"tags\":[\"seq:step:2\"],\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:49.049706+00:00\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"HumanMessage\"],\"kwargs\":{\"content\":\"\\n - \ The following is a set of summaries:\\n [Document(metadata={}, page_content='The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\\\n\\\\n1. - **LLM-Powered Autonomous Agents**: The concept revolves around utilizing LLMs - to enhance the functionality of autonomous agents. Key components include:\\\\n - \ - **Planning**: Techniques such as Chain of Thought (CoT) and Tree of Thoughts - (ToT) are employed for task decomposition, allowing agents to break down complex - tasks into manageable steps. Integration with classical planners using Planning - Domain Definition Language (PDDL) supports long-horizon planning.\\\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\\\n\\\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\\\n\\\\n3. **Memory in Machine - Learning**: The discussion includes a comparison of human memory types\u2014sensory, - short-term, and long-term\u2014and their parallels in machine learning. Concepts - such as in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\\\n\\\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\\\n\\\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.'), Document(metadata={}, - page_content='The set of summaries highlights several key themes in the realm - of artificial intelligence, particularly focusing on advancements in neuro-symbolic - architectures, autonomous agents, and their applications:\\\\n\\\\n1. **Neuro-Symbolic - Architectures**: The discussions center around MRKL (Modular Reasoning, Knowledge - and Language) systems that integrate expert modules with general-purpose language - models (LLMs) to enhance the processing of complex inquiries. Challenges in - LLMs, particularly in extracting arguments for verbal math problems, underscore - the need for effective use of external symbolic tools.\\\\n\\\\n2. **Tool-Augmented - LLMs**: Frameworks like TALM, Toolformer, and HuggingGPT are explored for their - capabilities in utilizing external APIs and enhancing LLM functionalities. HuggingGPT, - in particular, follows a structured workflow for task management, emphasizing - the importance of task planning, model selection, and execution.\\\\n\\\\n3. - **Real-World Applications and Challenges**: The summaries address the practical - applications of LLMs in various domains, such as scientific tasks demonstrated - by case studies like ChemCrow. However, they also highlight challenges such - as efficiency, context management, and output quality stabilization.\\\\n\\\\n4. - **Autonomous Agents and Simulations**: The text discusses projects like anticancer - drug discovery and the Generative Agents Simulation, which features virtual - characters exhibiting emergent social behaviors. AutoGPT is mentioned as an - autonomous agent system that operates independently, showcasing both its potential - and reliability concerns.\\\\n\\\\n5. **Task Management and Command Functionality**: - A set of commands for managing tasks is outlined, including internet searching, - file management, and code analysis. The emphasis is on continuous self-assessment - and strategic reflection to optimize task execution.\\\\n\\\\n6. **Game Development - Example**: A specific task involving the creation of a Super Mario game in Python - using MVC architecture is presented, illustrating the importance of clarifying - requirements and structuring components effectively.\\\\n\\\\nOverall, the summaries - reflect a growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while also - addressing the inherent challenges and limitations in these technologies.')]\\n - \ Take these and distill it into a final, consolidated summary\\n of the - main themes.\\n \",\"type\":\"human\"}}]]},\"outputs\":{\"generations\":[[{\"text\":\"The - consolidated summary of the main themes from the provided documents focuses - on the advancements in large language models (LLMs) and their integration into - autonomous agents, highlighting key areas such as planning, memory management, - and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: The use of - LLMs enhances the functionality of autonomous agents through techniques like - Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.\",\"generation_info\":{\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ChatGeneration\",\"message\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"AIMessage\"],\"kwargs\":{\"content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the advancements in large language models (LLMs) and their integration into - autonomous agents, highlighting key areas such as planning, memory management, - and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: The use of - LLMs enhances the functionality of autonomous agents through techniques like - Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.\",\"additional_kwargs\":{\"refusal\":null},\"response_metadata\":{\"token_usage\":{\"completion_tokens\":482,\"prompt_tokens\":896,\"total_tokens\":1378,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\",\"finish_reason\":\"stop\",\"logprobs\":null},\"type\":\"ai\",\"id\":\"run-4465c2d2-2420-4e78-bd3a-ec1380004d00-0\",\"usage_metadata\":{\"input_tokens\":896,\"output_tokens\":482,\"total_tokens\":1378},\"tool_calls\":[],\"invalid_tool_calls\":[]}}}]],\"llm_output\":{\"token_usage\":{\"completion_tokens\":482,\"prompt_tokens\":896,\"total_tokens\":1378,\"completion_tokens_details\":{\"reasoning_tokens\":0}},\"model_name\":\"gpt-4o-mini-2024-07-18\",\"system_fingerprint\":\"fp_1bb46167f9\"},\"run\":null,\"type\":\"LLMResult\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.933603+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:49.049706+00:00\"}]},{\"id\":\"f88d3c8d-7023-4a29-a28c-85813836ba05\",\"name\":\"RunnableSequence\",\"trace_id\":\"e1dce1c9-1dd8-4a52-ac64-60e3b07caad9\",\"parent_run_id\":\"83b5b4b7-3822-432f-8bb1-3960a004cc7f\",\"dotted_order\":\"20240925T223124641048Ze1dce1c9-1dd8-4a52-ac64-60e3b07caad9.20240925T223142926818Z83b5b4b7-3822-432f-8bb1-3960a004cc7f.20240925T223142930817Zf88d3c8d-7023-4a29-a28c-85813836ba05\",\"tags\":[\"seq:step:1\"],\"extra\":{\"metadata\":{\"langgraph_step\":4,\"langgraph_node\":\"collapse_summaries\",\"langgraph_triggers\":[\"branch:collapse_summaries:should_collapse:collapse_summaries\"],\"langgraph_path\":[\"__pregel_pull\",\"collapse_summaries\"],\"langgraph_checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"checkpoint_ns\":\"collapse_summaries:0ec8e177-52d5-86e9-e4c4-abe1002e9305\",\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"}},\"end_time\":\"2024-09-25T22:31:49.053925+00:00\",\"inputs\":{\"input\":[{\"metadata\":{},\"page_content\":\"The - consolidated summary of the main themes from the provided documents focuses - on the use of large language models (LLMs) as controllers for autonomous agents, - emphasizing their capabilities in planning, memory, and tool use.\\n\\n1. **LLM-Powered - Autonomous Agents**: The concept revolves around utilizing LLMs to enhance the - functionality of autonomous agents. Key components include:\\n - **Planning**: - Techniques such as Chain of Thought (CoT) and Tree of Thoughts (ToT) are employed - for task decomposition, allowing agents to break down complex tasks into manageable - steps. Integration with classical planners using Planning Domain Definition - Language (PDDL) supports long-horizon planning.\\n - **Self-Reflection**: - Agents improve iteratively by analyzing past actions. Frameworks like ReAct - and Reflexion facilitate reasoning and acting, incorporating dynamic memory - and reward models to enhance decision-making and correct inefficiencies.\\n\\n2. - **Challenges and Improvements**: Experiments reveal that hallucination is a - significant challenge, often more prevalent than inefficient planning. Methods - like Chain of Hindsight (CoH) and Algorithm Distillation (AD) are introduced - to enhance model outputs through self-reflection and reinforcement learning, - respectively, leading to improved performance.\\n\\n3. **Memory in Machine Learning**: - The discussion includes a comparison of human memory types\u2014sensory, short-term, - and long-term\u2014and their parallels in machine learning. Concepts such as - in-context learning and external vector stores are highlighted as mechanisms - for memory management in LLMs.\\n\\n4. **Approximate Nearest Neighbor Search**: - Various algorithms for efficient data retrieval, including LSH, ANNOY, HNSW, - FAISS, and ScaNN, are explored. These methods enhance the capabilities of LLMs - by improving access to external tools and information, thereby extending their - functionality.\\n\\nOverall, the documents illustrate the potential of LLMs - in autonomous systems, the importance of structured planning and memory, and - the role of advanced algorithms in optimizing performance and tool use.\",\"type\":\"Document\"},{\"metadata\":{},\"page_content\":\"The - set of summaries highlights several key themes in the realm of artificial intelligence, - particularly focusing on advancements in neuro-symbolic architectures, autonomous - agents, and their applications:\\n\\n1. **Neuro-Symbolic Architectures**: The - discussions center around MRKL (Modular Reasoning, Knowledge and Language) systems - that integrate expert modules with general-purpose language models (LLMs) to - enhance the processing of complex inquiries. Challenges in LLMs, particularly - in extracting arguments for verbal math problems, underscore the need for effective - use of external symbolic tools.\\n\\n2. **Tool-Augmented LLMs**: Frameworks - like TALM, Toolformer, and HuggingGPT are explored for their capabilities in - utilizing external APIs and enhancing LLM functionalities. HuggingGPT, in particular, - follows a structured workflow for task management, emphasizing the importance - of task planning, model selection, and execution.\\n\\n3. **Real-World Applications - and Challenges**: The summaries address the practical applications of LLMs in - various domains, such as scientific tasks demonstrated by case studies like - ChemCrow. However, they also highlight challenges such as efficiency, context - management, and output quality stabilization.\\n\\n4. **Autonomous Agents and - Simulations**: The text discusses projects like anticancer drug discovery and - the Generative Agents Simulation, which features virtual characters exhibiting - emergent social behaviors. AutoGPT is mentioned as an autonomous agent system - that operates independently, showcasing both its potential and reliability concerns.\\n\\n5. - **Task Management and Command Functionality**: A set of commands for managing - tasks is outlined, including internet searching, file management, and code analysis. - The emphasis is on continuous self-assessment and strategic reflection to optimize - task execution.\\n\\n6. **Game Development Example**: A specific task involving - the creation of a Super Mario game in Python using MVC architecture is presented, - illustrating the importance of clarifying requirements and structuring components - effectively.\\n\\nOverall, the summaries reflect a growing interest in enhancing - LLMs and autonomous agents through neuro-symbolic approaches, practical applications, - and structured task management, while also addressing the inherent challenges - and limitations in these technologies.\",\"type\":\"Document\"}]},\"outputs\":{\"output\":\"The - consolidated summary of the main themes from the provided documents focuses - on the advancements in large language models (LLMs) and their integration into - autonomous agents, highlighting key areas such as planning, memory management, - and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: The use of - LLMs enhances the functionality of autonomous agents through techniques like - Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:42.930817+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:49.053925+00:00\"}]}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '41345' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:48 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=''The consolidated summary of the main themes from the provided - documents is as follows:\\n\\n1. **Structured Codebase Development**: The process - of creating a software project involves outlining core components such as classes, - functions, and methods, followed by implementing complete code in a structured - format. Best practices for Python programming, including proper file naming, - organization, and dependency management through a `requirements.txt` file, are - emphasized.\\n\\n2. **Step-by-Step Implementation**: A systematic approach is - recommended for writing code, ensuring that all parts of the architecture are - functional and compatible. This includes starting with the entry point file - and progressing through other files in the order they are imported.\\n\\n3. - **Limitations of Language Models**: The documents discuss the constraints of - large language models (LLMs), particularly regarding finite context length, - which affects their ability to incorporate historical information and perform - long-term planning. Challenges in adapting plans in response to errors and the - reliability of outputs due to formatting issues are also highlighted.\\n\\n4. - **Advancements in Autonomous Agents**: The integration of LLMs into autonomous - agents is explored, showcasing their capabilities in reasoning, problem-solving, - and tool usage. Recent research advancements aim to enhance the planning and - reasoning abilities of these agents, enabling them to perform complex tasks - autonomously.\\n\\nOverall, the themes reflect a focus on best practices in - software development while acknowledging the limitations and potential of LLMs - in autonomous applications.'')]\n Take these and distill it into a final, - consolidated summary\n of the main themes.\n ", "role": "user"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '1954' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNb9xGDL37VxA6tYbW2PU6cbw3p07RopuPog1QoCkMakRJ48wMJzPU - 2krg/15wtN51gPYiCaQe571HDr+dAFS2rTZQmQHF+OgW168/xoc3N1+mL+9e/yzv+79uPmzvLj/+ - 9nvT3k1VrQhu7sjIE+rMsI+OxHKY0yYRCmnV1eX55Xq5frG8KgnPLTmF9VEWF7zwNtjF+fL8YrG8 - XKxe7dEDW0O52sDfJwAA38pTeYaWHqoNLOuniKecsadqc/gJoErsNFJhzjYLBqnqY9JwEAqF+p8D - geGQ2dlW6UIevcc0AXcgA4FHG/TDUwabATN07Bzf582n8CmszuD09A9Jo5ExUQs/cUsNZoIb2pHj - 6CnI6ekG3vg4YLZfKZei1kdOgsGQHsOpx2C/2tBD5k7uMRHExGpuhnsrAxhHmIBHcTZQVoyazYGC - 5BqwHSgpWhgaygIxoRF1D2yAD5MMHLRgn9B7G/oabDBubBXSWUcQUMOAoYWWIoWWgpnAY8CeVMGZ - Sj2fpVJcNNNC3/Cr9lvzqE1Xmdftjg0KqUkJEPKUhTyKNWC4nIcxJkYz1EAhj4W1SkGxjXVWpkKi - G4PRklgizbS3vEgcCDi1lNSEQn72MteQBZMUTYl9+ZGCpAki272EtUrYWm9nxsXILYZ+xJ7grU5l - VhW/2H5wth9kbpZOhyS0QQrAYeoJ3BOsDHOGH7bbt/nHGqJyMKPD5CZF2wSdDVZKGaEHAUehl6GG - +8GaQdmjtnmwWThZgw5s6Dj5whBsEOpT+a7BcegXQslDdBhC6aTaxaPEUSCRszi7WNReqNrrdqdj - pl0q03A9Cgf2PGa47jVYpvMhOk5Ps3k8svizfatAYcAjFPt58jo2Y1bLlaqPiXfHkxJh5plkTNw4 - 8ovMbndgLcwORr24OgvYuH17M+3L6zhHSmoGzLvlAQTzZ63+NKbiZq3vd5TQuboo2N/WMbSUsuFE - /3ErDhetPV5UbYkjSGS4399HLeeeDYwSx+eWHh36zp8YnTUz5uz54knUjRl1+YXRuX388bDJHPfq - Vd7nD3EdoTzczpbq1srCsSrZxxOAf8rGHL9bglVM7KPcCn+moAXX61dzveq4qI/Z1dXFPiss6I6J - F+vz/4PdtiRoXX62eKtD148VlgeeRWg1L4XbzoaeUkx23sNdvF01zcXL1cvL7qo6eTz5FwAA//8D - AOc5lVOVBgAA - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e7773adf38f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:51 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '2546' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3999527' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 7ms - x-request-id: - - req_43d6245734096eed19ddb931b2b0548a - status: - code: 200 - message: OK -- request: - body: '{"messages": [{"content": "\n The following is a set of summaries:\n [Document(metadata={}, - page_content=''The consolidated summary of the main themes from the provided - documents focuses on the advancements in large language models (LLMs) and their - integration into autonomous agents, highlighting key areas such as planning, - memory management, and tool utilization.\\n\\n1. **LLM-Powered Autonomous Agents**: - The use of LLMs enhances the functionality of autonomous agents through techniques - like Chain of Thought (CoT) and Tree of Thoughts (ToT) for effective task decomposition - and long-horizon planning. Self-reflection frameworks, such as ReAct and Reflexion, - enable agents to learn from past actions, improving decision-making and efficiency.\\n\\n2. - **Neuro-Symbolic Architectures**: The integration of neuro-symbolic systems, - like MRKL, combines expert modules with LLMs to tackle complex inquiries, particularly - in areas like verbal math problem-solving, emphasizing the need for external - symbolic tools.\\n\\n3. **Tool-Augmented LLMs**: Frameworks such as TALM, Toolformer, - and HuggingGPT enhance LLM capabilities by utilizing external APIs for task - management, model selection, and execution, showcasing the importance of structured - workflows.\\n\\n4. **Challenges and Improvements**: Hallucination remains a - significant challenge in LLMs, with methods like Chain of Hindsight (CoH) and - Algorithm Distillation (AD) proposed to improve model outputs through self-reflection - and reinforcement learning.\\n\\n5. **Memory Management**: The discussion includes - parallels between human memory types and machine learning, highlighting mechanisms - like in-context learning and external vector stores for effective memory management - in LLMs.\\n\\n6. **Real-World Applications**: The practical applications of - LLMs are illustrated through case studies, such as ChemCrow for scientific tasks, - while also addressing challenges related to efficiency, context management, - and output quality.\\n\\n7. **Autonomous Agents and Simulations**: Projects - like anticancer drug discovery and Generative Agents Simulation demonstrate - the potential of autonomous agents, with systems like AutoGPT showcasing both - capabilities and reliability concerns.\\n\\n8. **Task Management**: Emphasis - is placed on continuous self-assessment and strategic reflection for optimizing - task execution, with a focus on command functionalities for various tasks, including - internet searching and code analysis.\\n\\nOverall, the documents reflect a - growing interest in enhancing LLMs and autonomous agents through neuro-symbolic - approaches, practical applications, and structured task management, while addressing - the inherent challenges and limitations in these technologies.''), Document(metadata={}, - page_content=''The consolidated summary of the main themes is as follows:\\n\\n1. - **Structured Codebase Development**: Emphasizes the importance of organizing - software projects with clear outlines of components, adhering to best practices - in Python programming, including file naming and dependency management.\\n\\n2. - **Step-by-Step Implementation**: Advocates for a systematic coding approach, - ensuring compatibility and functionality by following the order of file imports, - starting from the entry point.\\n\\n3. **Limitations of Language Models**: Highlights - the constraints of large language models (LLMs), particularly their finite context - length, which impacts historical information integration, long-term planning, - and output reliability.\\n\\n4. **Advancements in Autonomous Agents**: Explores - the integration of LLMs into autonomous agents, focusing on improvements in - reasoning, problem-solving, and tool usage, enabling these agents to perform - complex tasks independently.\\n\\nOverall, the themes underscore best practices - in software development while recognizing the limitations and advancements of - LLMs in autonomous applications.'')]\n Take these and distill it into a final, - consolidated summary\n of the main themes.\n ", "role": "user"}], "model": - "gpt-4o-mini", "n": 1, "stream": false, "temperature": 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '4109' - content-type: - - application/json - cookie: - - __cf_bm=_X8wjH7S2J0n6vsofPw6yNTX3mhr2gh9FQHNJGBza1s-1727303490-1.0.1.1-wM8rAfja.J1JAZPtukbrHErAvvznjJPR12b5qWum2idM7FTeT5zV9ig2O5QTl202NajifGg82zwaBU65wtqscg; - _cfuvid=ik4XWlrnZi0pxtSYql946fASWQGsHyDQtqi2mpiTYgU-1727303490341-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RWXW8byw19968g9JQbSIatOHHiN12nbYLYt8aNij70FgY1w91lPTPczIdk5SL/ - veDsaqWk6YsgDJcc8pDnDP88A5ixnd3AzHSYje/dYvXrP75cfHz/6d3z5vqJfnvX0cflW8bcvrrH - h9lcPWTzHzL54HVuxPeOMksYzCYSZtKol9fL61cXr15fLqvBiyWnbm2fF1ey8Bx4sbxYXi0urheX - b0fvTthQmt3Av84AAP6sv5pnsPQ8u4GL+eHEU0rY0uxm+ghgFsXpyQxT4pQx5Nn8aDQSMoWa+roj - MBKSOLaaLqTiPcY9SAO5I/DIQf94StBE8fWwj7JlSxasmOIp5AQdt53jtsupfoF2i8HQYMNgwXTo - HIWWEnAAh7ElcBjagi1BRSTBi7u7+/RL/Tx3xBE4ZGojKqb6XwBLliBeSgJsNfYc0EloE1uCDaUM - fUSTFTm9JkmTdxgJLG3JSa/pnMMn2h8q4mBcsXTzR/gjXJ7Dy5er07w5gGZUE1odb17Vm1++vAEF - 7zRHaQaHn+cKFDoNnsbqDPa4YceZh2wjYZLAoZ0rwBtHfpHEbetBxUTEQcns+Gu97hzWZLrAXwol - SMV0gAluO22YNLDupLRdhhe3sh4wXUeiE0uCF2s1NWg0CcwE1DRkMm8JMqYnsKQzLYlrcRpCsV5k - ih56h0FzPVfolgrdb1SiLD7v/UYcG1hF03Emk0ukCSwjfsNhAitUl3RwSfuUySfYce4qkHOgZ/K9 - 44bJwmYPTURPO4lPCRw/Edz//uluDmhtpJQowcDBZ+DwpXBUXDVr8n2Hib8OyEMgstBIBHrOFAM6 - mDJQiNMceoyZTXEY3V47o2iMN24pbtCBx9z92KUKxSuFYi3iFqvS6hiRraUoAn89Zn9o13p1dz8H - /b6R6CkOnf5Q2pZD+7eHNbBXspHGgKYEo9Ch47xXOBxtKaJ+eqxl9fAx1epqCz0GbOs4D0g8kyka - Yn4krHorLOx7iVkHVFuTciy1dxY048bJLtUCr7TA2yObNewdex0gllDrVIJ9x/dKMtCTYg7tH8gF - UnJfRo3QLBoOnKskZXrOoCFypwn9IBZz2HWsGNaRPVBq4NMesky8JOg4ZYls0AEHhRmnee4p6sHP - 5hoeovSSVBHFVcy0kq24LUEi1ywiNY5qP8BT7sSOEzIx8AMHm3jk4IeBgyvXSuTceXjPKbNzQy4v - Vu9/qei+VnTvyUvcw/3UOwX1LxM3/WA+ae1BqDiB5WRKSmTnYCPutLk9Ru2FG4nVFY/hECTv+7GH - HIzEXlTJQgueTIeBkx+L4rA4tgSjIjQO1Dh2WzJZIijSNAzKGy3lV9Xkh1NN/nzQ5PdHTa71DSSt - RfQODVmQcDqGRixtMH0n5vNRMzCz0QF2FQ8cJlzzQ9tRJJ3pLD95IB72uZOgRG4jel+ldhhXLbBh - RyCxxTAqbg1pqadgKZjTFtSKr7Xi3wnd4p8SnYVV3zs2R16MOKADPLFMr4aCws6VlGN9iXMXVajB - aNEpF8uU5idCT/42yq5yPRmmkLlRCVOtquxwdFBGLeaEkJHccIGo4rP6mn2tbWAjfClVYmpRb6ug - qZbcf68ln5UEK5XddOjhrYTMoeiTVymCk7V6DIW1bOCEO1q1icUwulqK9Jk9f62qpLeeSFYdX4RG - TEk6HEa817inuqiar2G2GFnzGOE4NlV1IQbKkAj1iRoHWacLMKDbJx7m9++qrc7NqywdF50xdUBo - o+ymiDpaHMYnXk+nzeF/94BDY394/rDvo6DptMv9T0dlfoDxwIkfNH5qu3kKsnNk20ncQ+VBPh2D - +qAflRuGRS8RZF0rxEnLlM5P98ZITUmou2sozo3n36ZF1EmrT2Ia7dO5anrqHof9RpfOlKWfVeu3 - M4B/14W3fLfDzvoovs+PWZ4oaMDr12+HeLPjnn20Xr25Gq1ZMrqj4XK5XP4/v0dLGdmlk8V5Nu1g - xxAXU6K10tmgOI8Nh5ZiH3nYo5v+8XKzuXpz+ea6eTc7+3b2XwAAAP//AwAOQh13VQwAAA== - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e77848f6c8f99-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:57 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '5674' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3998993' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 15ms - x-request-id: - - req_5b277a8762b93c5132389d79edfdf589 - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_b7a89b7a-0141-4689-b768-a2a50cdce7da.yaml b/docs/cassettes/summarization_b7a89b7a-0141-4689-b768-a2a50cdce7da.yaml deleted file mode 100644 index 4ebff5a45eca7..0000000000000 --- a/docs/cassettes/summarization_b7a89b7a-0141-4689-b768-a2a50cdce7da.yaml +++ /dev/null @@ -1,1425 +0,0 @@ -interactions: -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\n\n\n\n\n\n\nLLM - Powered Autonomous Agents | Lil''Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nLil''Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPosts\n\n\n\n\nArchive\n\n\n\n\nSearch\n\n\n\n\nTags\n\n\n\n\nFAQ\n\n\n\n\nemojisearch.app\n\n\n\n\n\n\n\n\n\n LLM - Powered Autonomous Agents\n \nDate: June 23, 2023 | Estimated Reading Time: - 31 min | Author: Lilian Weng\n\n\n \n\n\nTable of Contents\n\n\n\nAgent System - Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent - Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n\nComponent - Three: Tool Use\n\nCase Studies\n\nScientific Discovery Agent\n\nGenerative - Agents Simulation\n\nProof-of-Concept Examples\n\n\nChallenges\n\nCitation\n\nReferences\n\n\n\n\n\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\nAgent System Overview#\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\n\nPlanning\n\nSubgoal and decomposition: The agent breaks down - large tasks into smaller, manageable subgoals, enabling efficient handling of - complex tasks.\nReflection and refinement: The agent can do self-criticism and - self-reflection over past actions, learn from mistakes and refine them for future - steps, thereby improving the quality of final results.\n\n\nMemory\n\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\n\n\nTool use\n\nThe agent learns to call external APIs for extra - information that is missing from the model weights (often hard to change after - pre-training), including current information, code execution capability, access - to proprietary information sources and more.\n\n\n\n\nFig. 1. Overview of a - LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201cthink step by step\u201d to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM - with simple prompting like \"Steps for XYZ.\\n1.\", \"What are the subgoals - for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write - a story outline.\" for writing a novel, or (3) with human inputs.\nAnother quite - distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201cProblem - PDDL\u201d, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201cDomain PDDL\u201d, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\nSelf-Reflection#\nSelf-reflection is a vital aspect that allows autonomous - agents to improve iteratively by refining past action decisions and correcting - previous mistakes. It plays a crucial role in real-world tasks where trial and - error are inevitable.\nReAct (Yao et al. 2023) integrates reasoning and acting - within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\nThought: - ...\nAction: ...\nObservation: ...\n... (Repeated many times)\n\nFig. 2. Examples - of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, FEVER) - and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: Yao et - al. 2023).\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\n\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\n\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\{(x, y_i , r_i , z_i)\\}_{i=1}^n$, where $x$ is the prompt, each - $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ is - the corresponding human-provided hindsight feedback. Assume the feedback tuples - are ranked by reward, $r_n \\geq r_{n-1} \\geq \\dots \\geq r_1$ The process - is supervised fine-tuning where the data is a sequence in the form of $\\tau_h - = (x, z_i, y_i, z_j, y_j, \\dots, z_n, y_n)$, where $\\leq i \\leq j \\leq n$. - The model is finetuned to only predict $y_n$ where conditioned on the sequence - prefix, such that the model can self-reflect to produce better output based - on the feedback sequence. The model can optionally receive multiple rounds of - instructions with human annotators at test time.\nTo avoid overfitting, CoH - adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\n\nFig. 5. After - fine-tuning with CoH, the model can follow instructions to produce outputs with - incremental improvement in a sequence. (Image source: Liu et al. 2023)\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\n\nFig. 6. Illustration of how Algorithm Distillation (AD) works. - (Image source: Laskin et al. 2023).\nThe paper hypothesizes that any algorithm - that generates a set of learning histories can be distilled into a neural network - by performing behavioral cloning over actions. The history data is generated - by a set of source policies, each trained for a specific task. At the training - stage, during each RL run, a random task is sampled and a subsequence of multi-episode - history is used for training, such that the learned policy is task-agnostic.\nIn - reality, the model has limited context window length, so episodes should be - short enough to construct multi-episode history. Multi-episodic contexts of - 2-4 episodes are necessary to learn a near-optimal in-context RL algorithm. - The emergence of in-context RL requires long enough context.\nIn comparison - with three baselines, including ED (expert distillation, behavior cloning with - expert trajectories instead of learning history), source policy (used for generating - trajectories for distillation by UCB), RL^2 (Duan et al. 2017; used as upper - bound since it needs online RL), AD demonstrates in-context RL with performance - getting close to RL^2 despite only using offline RL and learns much faster than - other baselines. When conditioned on partial training history of the source - policy, AD also improves much faster than ED baseline.\n\nFig. 7. Comparison - of AD, ED, source policy and RL^2 on environments that require memory and exploration. - Only binary reward is assigned. The source policies are trained with A3C for - \"dark\" environments and DQN for watermaze.(Image source: Laskin et al. 2023)\nComponent - Two: Memory#\n(Big thank you to ChatGPT for helping me draft this section. I\u2019ve - learned a lot about the human brain and data structure for fast MIPS in my conversations - with ChatGPT.)\nTypes of Memory#\nMemory can be defined as the processes used - to acquire, store, retain, and later retrieve information. There are several - types of memory in human brains.\n\n\nSensory Memory: This is the earliest stage - of memory, providing the ability to retain impressions of sensory information - (visual, auditory, etc) after the original stimuli have ended. Sensory memory - typically only lasts for up to a few seconds. Subcategories include iconic memory - (visual), echoic memory (auditory), and haptic memory (touch).\n\n\nShort-Term - Memory (STM) or Working Memory: It stores information that we are currently - aware of and needed to carry out complex cognitive tasks such as learning and - reasoning. Short-term memory is believed to have the capacity of about 7 items - (Miller 1956) and lasts for 20-30 seconds.\n\n\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\n\nExplicit / declarative memory: This is memory of facts and - events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\n\n\n\n\nFig. 8. Categorization of human memory.\nWe can roughly - consider the following mappings:\n\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\n\nMaximum - Inner Product Search (MIPS)#\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200b algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\nA couple - common choices of ANN algorithms for fast MIPS:\n\nLSH (Locality-Sensitive Hashing): - It introduces a hashing function such that similar input items are mapped to - the same buckets with high probability, where the number of buckets is much - smaller than the number of inputs.\nANNOY (Approximate Nearest Neighbors Oh - Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201csix degrees of - separation\u201d feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\tilde{x}_i$ such that the inner product $\\langle q, x_i \\rangle$ is - as similar to the original distance of $\\angle q, \\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\n\n\nFig. 9. Comparison - of MIPS algorithms, measured in recall@10. (Image source: Google Blog, 2020)\nCheck - more MIPS algorithms and performance comparison in ann-benchmarks.com.\nComponent - Three: Tool Use#\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\n\nFig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\nMRKL (Karpas et al. 2022), short - for \u201cModular Reasoning, Knowledge and Language\u201d, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201cexpert\u201d modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201cExternal APIs\u201d section of Prompt Engineering.\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\n\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\nThe - system comprises of 4 stages:\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\nInstruction:\n\nThe - AI assistant can parse user input to several tasks: [{\"task\": task, \"id\", - task_id, \"dep\": dependency_task_ids, \"args\": {\"text\": text, \"image\": - URL, \"audio\": URL, \"video\": URL}}]. The \"dep\" field denotes the id of - the previous task which generates a new resource that the current task relies - on. A special tag \"-task_id\" refers to the generated text image, audio and - video in the dependency task with id as task_id. The task MUST be selected from - the following options: {{ Available Task List }}. There is a logical relationship - between tasks, please note their order. If the user input can''t be parsed, - you need to reply empty JSON. Here are several cases for your reference: {{ - Demonstrations }}. The chat history is recorded as {{ Chat History }}. From - this chat history, you can find the path of the user-mentioned resources for - your task planning.\n\n(2) Model selection: LLM distributes the tasks to expert - models, where the request is framed as a multiple-choice question. LLM is presented - with a list of models to choose from. Due to the limited context length, task - type based filtration is needed.\nInstruction:\n\nGiven the user request and - the call command, the AI assistant helps the user to select a suitable model - from a list of models to process the user request. The AI assistant merely outputs - the model id of the most appropriate model. The output must be in a strict JSON - format: \"id\": \"id\", \"reason\": \"your detail reason for the choice\". We - have a list of models for you to choose from {{ Candidate Models }}. Please - select one model from the list.\n\n(3) Task execution: Expert models execute - on the specific tasks and log results.\nInstruction:\n\nWith the input and the - inference results, the AI assistant needs to describe the process and results. - The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: - {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions - }}. You must first answer the user''s request in a straightforward manner. Then - describe the task process and show your analysis and model inference results - to the user in the first person. If inference results contain a file path, must - tell the user the complete file path.\n\n(4) Response generation: LLM receives - the execution results and provides summarized results to users.\nTo put HuggingGPT - into real world usage, a couple challenges need to solve: (1) Efficiency improvement - is needed as both LLM inference rounds and interactions with other models slow - down the process; (2) It relies on a long context window to communicate over - complicated task content; (3) Stability improvement of LLM outputs and external - model services.\nAPI-Bank (Li et al. 2023) is a benchmark for evaluating the - performance of tool-augmented LLMs. It contains 53 commonly used API tools, - a complete tool-augmented LLM workflow, and 264 annotated dialogues that involve - 568 API calls. The selection of APIs is quite diverse, including search engines, - calculator, calendar queries, smart home control, schedule management, health - data management, account authentication workflow and more. Because there are - a large number of APIs, LLM first has access to API search engine to find the - right API to call and then uses the corresponding documentation to make a call.\n\nFig. - 12. Pseudo code of how LLM makes an API call in API-Bank. (Image source: Li - et al. 2023)\nIn the API-Bank workflow, LLMs need to make a couple of decisions - and at each step we can evaluate how accurate that decision is. Decisions include:\n\nWhether - an API call is needed.\nIdentify the right API to call: if not good enough, - LLMs need to iteratively modify the API inputs (e.g. deciding search keywords - for Search Engine API).\nResponse based on the API results: the model can choose - to refine and call again if results are not satisfied.\n\nThis benchmark evaluates - the agent\u2019s tool use capabilities at three levels:\n\nLevel-1 evaluates - the ability to call the API. Given an API\u2019s description, the model needs - to determine whether to call a given API, call it correctly, and respond properly - to API returns.\nLevel-2 examines the ability to retrieve the API. The model - needs to search for possible APIs that may solve the user\u2019s requirement - and learn how to use them by reading documentation.\nLevel-3 assesses the ability - to plan API beyond retrieve and call. Given unclear user requests (e.g. schedule - group meetings, book flight/hotel/restaurant for a trip), the model may have - to conduct multiple API calls to solve it.\n\nCase Studies#\nScientific Discovery - Agent#\nChemCrow (Bran et al. 2023) is a domain-specific example in which LLM - is augmented with 13 expert-designed tools to accomplish tasks across organic - synthesis, drug discovery, and materials design. The workflow, implemented in - LangChain, reflects what was previously described in the ReAct and MRKLs and - combines CoT reasoning with tools relevant to the tasks:\n\nThe LLM is provided - with a list of tool names, descriptions of their utility, and details about - the expected input/output.\nIt is then instructed to answer a user-given prompt - using the tools provided when necessary. The instruction suggests the model - to follow the ReAct format - Thought, Action, Action Input, Observation.\n\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\nFor example, when requested - to \"develop a novel anticancer drug\", the model came up with the following - reasoning steps:\n\ninquired about current trends in anticancer drug discovery;\nselected - a target;\nrequested a scaffold targeting these compounds;\nOnce the compound - was identified, the model attempted its synthesis.\n\nThey also discussed the - risks, especially with illicit drugs and bioweapons. They developed a test set - containing a list of known chemical weapon agents and asked the agent to synthesize - them. 4 out of 11 requests (36%) were accepted to obtain a synthesis solution - and the agent attempted to consult documentation to execute the procedure. 7 - out of 11 were rejected and among these 7 rejected cases, 5 happened after a - Web search while 2 were rejected based on prompt only.\nGenerative Agents Simulation#\nGenerative - Agents (Park, et al. 2023) is super fun experiment where 25 virtual characters, - each controlled by a LLM-powered agent, are living and interacting in a sandbox - environment, inspired by The Sims. Generative agents create believable simulacra - of human behavior for interactive applications.\nThe design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.\n\nMemory stream: is a long-term memory module (external database) that - records a comprehensive list of agents\u2019 experience in natural language.\n\nEach - element is an observation, an event directly provided by the agent.\n- Inter-agent - communication can trigger new natural language statements.\n\n\nRetrieval model: - surfaces the context to inform the agent\u2019s behavior, according to relevance, - recency and importance.\n\nRecency: recent events have higher scores\nImportance: - distinguish mundane from core memories. Ask LM directly.\nRelevance: based on - how related it is to the current situation / query.\n\n\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\n\nPrompt LM with 100 most - recent observations and to generate 3 most salient high-level questions given - a set of observations/statements. Then ask LM to answer those questions.\n\n\nPlanning - & Reacting: translate the reflections and the environment information into actions\n\nPlanning - is essentially in order to optimize believability at the moment vs in time.\nPrompt - template: {Intro of an agent X}. Here is X''s plan today in broad strokes: 1)\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\nEnvironment information is present in a tree structure.\n\n\n\n\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\nProof-of-Concept - Examples#\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\nYou are - {{ai-name}}, {{user-provided AI bot description}}.\nYour decisions must always - be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1. - {{user-provided goal 1}}\n2. {{user-provided goal 2}}\n3. ...\n4. ...\n5. ...\n\nConstraints:\n1. - ~4000 word limit for short term memory. Your short term memory is short, so - immediately save important information to files.\n2. If you are unsure how you - previously did something or want to recall past events, thinking about similar - events will help you remember.\n3. No user assistance\n4. Exclusively use the - commands listed in double quotes e.g. \"command name\"\n5. Use subprocesses - for commands that will not terminate within a few minutes\n\nCommands:\n1. Google - Search: \"google\", args: \"input\": \"\"\n2. Browse Website: \"browse_website\", - args: \"url\": \"\", \"question\": \"\"\n3. - Start GPT Agent: \"start_agent\", args: \"name\": \"\", \"task\": \"\", - \"prompt\": \"\"\n4. Message GPT Agent: \"message_agent\", args: \"key\": - \"\", \"message\": \"\"\n5. List GPT Agents: \"list_agents\", - args:\n6. Delete GPT Agent: \"delete_agent\", args: \"key\": \"\"\n7. Clone - Repository: \"clone_repository\", args: \"repository_url\": \"\", \"clone_path\": - \"\"\n8. Write to file: \"write_to_file\", args: \"file\": \"\", - \"text\": \"\"\n9. Read file: \"read_file\", args: \"file\": \"\"\n10. - Append to file: \"append_to_file\", args: \"file\": \"\", \"text\": \"\"\n11. - Delete file: \"delete_file\", args: \"file\": \"\"\n12. Search Files: - \"search_files\", args: \"directory\": \"\"\n13. Analyze Code: \"analyze_code\", - args: \"code\": \"\"\n14. Get Improved Code: \"improve_code\", - args: \"suggestions\": \"\", \"code\": \"\"\n15. - Write Tests: \"write_tests\", args: \"code\": \"\", \"focus\": - \"\"\n16. Execute Python File: \"execute_python_file\", - args: \"file\": \"\"\n17. Generate Image: \"generate_image\", args: \"prompt\": - \"\"\n18. Send Tweet: \"send_tweet\", args: \"text\": \"\"\n19. - Do Nothing: \"do_nothing\", args:\n20. Task Complete (Shutdown): \"task_complete\", - args: \"reason\": \"\"\n\nResources:\n1. Internet access for searches - and information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered - Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1. - Continuously review and analyze your actions to ensure you are performing to - the best of your abilities.\n2. Constructively self-criticize your big-picture - behavior constantly.\n3. Reflect on past decisions and strategies to refine - your approach.\n4. Every command has a cost, so be smart and efficient. Aim - to complete tasks in the least number of steps.\n\nYou should only respond in - JSON format as described below\nResponse Format:\n{\n \"thoughts\": {\n \"text\": - \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": \"- short - bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:\n\nYou will get instructions for - code to write.\nYou will write a very long answer. Make sure that every detail - of the architecture is, in the end, implemented as code.\nMake sure that every - detail of the architecture is, in the end, implemented as code.\nThink step - by step and reason yourself to the right decisions to make sure we get it right.\nYou - will first lay out the names of the core classes, functions, methods that will - be necessary, as well as a quick comment on their purpose.\nThen you will output - the content of each file including ALL code.\nEach file must strictly follow - a markdown code block format, where the following tokens must be replaced such - that\nFILENAME is the lowercase file name including the file extension,\nLANG - is the markup code block language for the code\u2019s language, and CODE is - the code:\nFILENAME\nCODE\nYou will start with the \u201centrypoint\u201d file, - then go to the ones that are imported by that file, and so on.\nPlease note - that the code should be fully functional. No placeholders.\nFollow a language - and framework appropriate best practice file naming convention.\nMake sure that - files contain all imports, types etc. Make sure that code in different files - are compatible with each other.\nEnsure to implement all code, if you are unsure, - write a plausible implementation.\nInclude module dependency or package manager - dependency definition file.\nBefore you finish, double check that all parts - of the architecture is present in the files.\nUseful to know:\nYou almost always - put different classes in different files.\nFor Python, you always create an - appropriate requirements.txt file.\nFor NodeJS, you always create an appropriate - package.json file.\nYou always add a comment briefly describing the purpose - of the function definition.\nYou try to add comments explaining very complex - bits of logic.\nYou always follow the best practices for the requested languages - in terms of describing the code written as a defined\npackage/project.\nPython - toolbelt preferences:\n\npytest\ndataclasses\n\n\nConversatin samples:\n[\n {\n \"role\": - \"system\",\n \"content\": \"You will get instructions for code to write.\\nYou - will write a very long answer. Make sure that every detail of the architecture - is, in the end, implemented as code.\\nMake sure that every detail of the architecture - is, in the end, implemented as code.\\n\\nThink step by step and reason yourself - to the right decisions to make sure we get it right.\\nYou will first lay out - the names of the core classes, functions, methods that will be necessary, as - well as a quick comment on their purpose.\\n\\nThen you will output the content - of each file including ALL code.\\nEach file must strictly follow a markdown - code block format, where the following tokens must be replaced such that\\nFILENAME - is the lowercase file name including the file extension,\\nLANG is the markup - code block language for the code''s language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nYou - will start with the \\\"entrypoint\\\" file, then go to the ones that are imported - by that file, and so on.\\nPlease note that the code should be fully functional. - No placeholders.\\n\\nFollow a language and framework appropriate best practice - file naming convention.\\nMake sure that files contain all imports, types etc. - Make sure that code in different files are compatible with each other.\\nEnsure - to implement all code, if you are unsure, write a plausible implementation.\\nInclude - module dependency or package manager dependency definition file.\\nBefore you - finish, double check that all parts of the architecture is present in the files.\\n\\nUseful - to know:\\nYou almost always put different classes in different files.\\nFor - Python, you always create an appropriate requirements.txt file.\\nFor NodeJS, - you always create an appropriate package.json file.\\nYou always add a comment - briefly describing the purpose of the function definition.\\nYou try to add - comments explaining very complex bits of logic.\\nYou always follow the best - practices for the requested languages in terms of describing the code written - as a defined\\npackage/project.\\n\\n\\nPython toolbelt preferences:\\n- pytest\\n- - dataclasses\\n\"\n },\n # \u2026 same conversation as earlier, ended with - \"Make your own assumptions and state them explicitly before starting\".\n {\n \"role\": - \"assistant\",\n \"content\": \"Assumptions:\\n1. Model: The model will contain - the game''s data, such as level information, character states, and enemy positions.\\n2. - View: The view will handle the game''s visuals, including rendering the game - objects, backgrounds, and updating the display.\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\n\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\"\n },\n {\n \"role\": \"user\",\n \"content\": - \"Please now remember the steps:\\n\\nThink step by step and reason yourself - to the right decisions to make sure we get it right.\\nFirst lay out the names - of the core classes, functions, methods that will be necessary, As well as a - quick comment on their purpose.\\n\\nThen you will output the content of each - file including ALL code.\\nEach file must strictly follow a markdown code block - format, where the following tokens must be replaced such that\\nFILENAME is - the lowercase file name including the file extension,\\nLANG is the markup code - block language for the code''s language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nPlease - note that the code should be fully functional. No placeholders.\\n\\nYou will - start with the \\\"entrypoint\\\" file, then go to the ones that are imported - by that file, and so on.\\nFollow a language and framework appropriate best - practice file naming convention.\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\n\"\n }\n]\nChallenges#\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\n\n\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\n\n\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\n\n\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\n\n\nCitation#\nCited - as:\n\nWeng, Lilian. (Jun 2023). \u201cLLM-powered Autonomous Agents\u201d. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\n\nOr\n@article{weng2023agent,\n title = - \"LLM-powered Autonomous Agents\",\n author = \"Weng, Lilian\",\n journal - = \"lilianweng.github.io\",\n year = \"2023\",\n month = \"Jun\",\n url = - \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\n}\nReferences#\n[1] - Wei et al. \u201cChain of thought prompting elicits reasoning in large language - models.\u201d NeurIPS 2022\n[2] Yao et al. \u201cTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201d arXiv preprint arXiv:2305.10601 - (2023).\n[3] Liu et al. \u201cChain of Hindsight Aligns Language Models with - Feedback\n\u201c arXiv preprint arXiv:2302.02676 (2023).\n[4] Liu et al. \u201cLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201d arXiv - preprint arXiv:2304.11477 (2023).\n[5] Yao et al. \u201cReAct: Synergizing reasoning - and acting in language models.\u201d ICLR 2023.\n[6] Google Blog. \u201cAnnouncing - ScaNN: Efficient Vector Similarity Search\u201d July 28, 2020.\n[7] https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\n[8] - Shinn & Labash. \u201cReflexion: an autonomous agent with dynamic memory and - self-reflection\u201d arXiv preprint arXiv:2303.11366 (2023).\n[9] Laskin et - al. \u201cIn-context Reinforcement Learning with Algorithm Distillation\u201d - ICLR 2023.\n[10] Karpas et al. \u201cMRKL Systems A modular, neuro-symbolic - architecture that combines large language models, external knowledge sources - and discrete reasoning.\u201d arXiv preprint arXiv:2205.00445 (2022).\n[11] - Nakano et al. \u201cWebgpt: Browser-assisted question-answering with human feedback.\u201d - arXiv preprint arXiv:2112.09332 (2021).\n[12] Parisi et al. \u201cTALM: Tool - Augmented Language Models\u201d\n[13] Schick et al. \u201cToolformer: Language - Models Can Teach Themselves to Use Tools.\u201d arXiv preprint arXiv:2302.04761 - (2023).\n[14] Weaviate Blog. Why is Vector Search so fast? Sep 13, 2022.\n[15] - Li et al. \u201cAPI-Bank: A Benchmark for Tool-Augmented LLMs\u201d arXiv preprint - arXiv:2304.08244 (2023).\n[16] Shen et al. \u201cHuggingGPT: Solving AI Tasks - with ChatGPT and its Friends in HuggingFace\u201d arXiv preprint arXiv:2303.17580 - (2023).\n[17] Bran et al. \u201cChemCrow: Augmenting large-language models with - chemistry tools.\u201d arXiv preprint arXiv:2304.05376 (2023).\n[18] Boiko et - al. \u201cEmergent autonomous scientific research capabilities of large language - models.\u201d arXiv preprint arXiv:2304.05332 (2023).\n[19] Joon Sung Park, - et al. \u201cGenerative Agents: Interactive Simulacra of Human Behavior.\u201d - arXiv preprint arXiv:2304.03442 (2023).\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\n\n\n\nnlp\nlanguage-model\nagent\nsteerability\nprompting\n\n\n\n\u00ab - \n\nAdversarial Attacks on LLMs\n\n\n \u00bb\n\nPrompt Engineering\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\u00a9 - 2024 Lil''Log\n\n Powered by\n Hugo &\n PaperMod\n\n\n\n\n\n\n\n\n\n\n\n\n\n", - "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": true, "temperature": - 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '45468' - content-type: - - application/json - cookie: - - __cf_bm=NmdAizdz.69EDUO2j_u1k94FBhUh6rQxTh9wiU42d44-1727303478-1.0.1.1-dJYnQ5CG33lJXKMhr42mMc9sbzBuf49pgMrm6LV3duhPNWYG3CAD2iiEY9pS.qm.X_fDfz21REWUUKI0ieqOSA; - _cfuvid=aZTGr7WQB9pD7cUPNdO2yQPue790AorTqZ2f.K.Z4Dk-1727303478761-0.0.1.1-604800000 - host: - - api.openai.com - user-agent: - - OpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - 'false' - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: 'data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"The"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - article"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - \""},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"LL"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"M"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Powered"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Autonomous"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Agents"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"\""},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - by"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Lil"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"ian"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - W"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"eng"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - discusses"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - the"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - development"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - capabilities"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - of"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - autonomous"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - agents"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - powered"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - by"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - large"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - language"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - models"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - ("},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"LL"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"Ms"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":")."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - It"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - outlines"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - a"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - system"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - architecture"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - that"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - includes"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - three"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - main"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - components"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - planning"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - memory"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - tool"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - use"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - \n\n"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - **"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"Planning"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"**"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - involves"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - task"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - decomposition"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - where"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - complex"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - tasks"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - are"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - broken"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - down"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - into"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - manageable"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - sub"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"go"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"als"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - self"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"-ref"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"lection"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - allowing"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - agents"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - to"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - learn"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - from"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - past"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - actions"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - to"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - improve"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - future"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - performance"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - **"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"Memory"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"**"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - is"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - categorized"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - into"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - short"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"-term"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - long"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"-term"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - memory"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - with"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - techniques"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - like"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Maximum"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Inner"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Product"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Search"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - ("},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"M"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"IPS"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":")"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - used"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - for"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - efficient"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - information"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - retrieval"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":".\n"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - **"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"Tool"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Use"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"**"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - highlights"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - the"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - integration"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - of"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - external"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - APIs"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - to"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - enhance"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - the"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - agent"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - capabilities"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - illustrated"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - through"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - case"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - studies"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - like"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Chem"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"Crow"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - for"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - scientific"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - discovery"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Gener"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"ative"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - Agents"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - for"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - sim"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"ulating"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - human"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - behavior"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"The"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - article"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - also"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - addresses"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - challenges"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - such"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - as"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - finite"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - context"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - length"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - difficulties"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - in"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - long"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"-term"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - planning"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - the"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - reliability"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - of"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - natural"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - language"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - interfaces"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - It"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - concludes"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - with"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - references"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - to"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - various"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - studies"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - projects"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - that"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - exempl"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"ify"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - the"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - potential"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - and"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - limitations"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - of"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - L"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"LM"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"-powered"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":" - agents"},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]} - - - data: {"id":"chatcmpl-ABUpTwmVoihrPmKIu8OCyGJcSQB82","object":"chat.completion.chunk","created":1727303479,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_1bb46167f9","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]} - - - data: [DONE] - - - ' - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e76b6ea7a9044-BOS - Connection: - - keep-alive - Content-Type: - - text/event-stream; charset=utf-8 - Date: - - Wed, 25 Sep 2024 22:31:19 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '181' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3988977' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 165ms - x-request-id: - - req_66dcb542de4b3fecafdd1f9e85c753d8 - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_ce48b805-d98b-4e0f-8b9e-3b3e72cad3d3.yaml b/docs/cassettes/summarization_ce48b805-d98b-4e0f-8b9e-3b3e72cad3d3.yaml deleted file mode 100644 index 924e35ef33963..0000000000000 --- a/docs/cassettes/summarization_ce48b805-d98b-4e0f-8b9e-3b3e72cad3d3.yaml +++ /dev/null @@ -1,96 +0,0 @@ -interactions: -- request: - body: null - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - langsmith-py/0.1.128 - method: GET - uri: https://api.smith.langchain.com/info - response: - body: - string: '{"version":"0.7.36","license_expiration_time":null,"batch_ingest_config":{"scale_up_qsize_trigger":1000,"scale_up_nthreads_limit":16,"scale_down_nempty_trigger":4,"size_limit":100,"size_limit_bytes":20971520},"instance_flags":{"generate_ai_query_enabled":true,"org_creation_disabled":false,"show_ttl_ui":true,"trace_tier_duration_days":{"longlived":400,"shortlived":14},"search_enabled":true,"workspace_scope_org_invites":false,"s3_storage_enabled":true}}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '455' - Via: - - 1.1 google - cache-control: - - no-cache - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:21 GMT - server: - - uvicorn - status: - code: 200 - message: OK -- request: - body: null - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - langsmith-py/0.1.128 - method: GET - uri: https://api.smith.langchain.com/commits/rlm/map-prompt/latest - response: - body: - string: '{"commit_hash":"de4fba345f211a462584fc25b7077e69c1ba6cdcf4e21b7ec9abe457ddb16c87","manifest":{"id":["langchain","prompts","chat","ChatPromptTemplate"],"lc":1,"type":"constructor","kwargs":{"messages":[{"id":["langchain","prompts","chat","HumanMessagePromptTemplate"],"lc":1,"type":"constructor","kwargs":{"prompt":{"id":["langchain","prompts","prompt","PromptTemplate"],"lc":1,"type":"constructor","kwargs":{"template":"The - following is a set of documents:\n{docs}\nBased on this list of docs, please - identify the main themes \nHelpful Answer:","input_variables":["docs"],"template_format":"f-string"}}}}],"input_variables":["docs"]}},"examples":[]}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '649' - Via: - - 1.1 google - cache-control: - - no-cache - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:21 GMT - server: - - uvicorn - status: - code: 200 - message: OK -version: 1 diff --git a/docs/cassettes/summarization_ef45585d.yaml b/docs/cassettes/summarization_ef45585d.yaml deleted file mode 100644 index 3945d749c83a0..0000000000000 --- a/docs/cassettes/summarization_ef45585d.yaml +++ /dev/null @@ -1,6496 +0,0 @@ -interactions: -- request: - body: null - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - User-Agent: - - langsmith-py/0.1.128 - method: GET - uri: https://api.smith.langchain.com/info - response: - body: - string: '{"version":"0.7.36","license_expiration_time":null,"batch_ingest_config":{"scale_up_qsize_trigger":1000,"scale_up_nthreads_limit":16,"scale_down_nempty_trigger":4,"size_limit":100,"size_limit_bytes":20971520},"instance_flags":{"generate_ai_query_enabled":true,"org_creation_disabled":false,"show_ttl_ui":true,"trace_tier_duration_days":{"longlived":400,"shortlived":14},"search_enabled":true,"workspace_scope_org_invites":false,"s3_storage_enabled":true}}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Content-Length: - - '455' - Via: - - 1.1 google - cache-control: - - no-cache - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:13 GMT - server: - - uvicorn - status: - code: 200 - message: OK -- request: - body: "{\"post\":[{\"id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"start_time\":\"2024-09-25T22:31:14.336966+00:00\",\"end_time\":null,\"extra\":{\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"},\"metadata\":{\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.336966+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":null,\"tags\":[],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{},\"name\":\"stuff_documents_chain\",\"inputs\":{\"context\":[{\"metadata\":{\"source\":\"https://lilianweng.github.io/posts/2023-06-23-agent/\",\"title\":\"LLM - Powered Autonomous Agents | Lil'Log\",\"description\":\"Building agents with - LLM (large language model) as its core controller is a cool concept. Several - proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as - inspiring examples. The potentiality of LLM extends beyond generating well-written - copies, stories, essays and programs; it can be framed as a powerful general - problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, - LLM functions as the agent\u2019s brain, complemented by several key components:\",\"language\":\"en\"},\"page_content\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"ff6a7999-da46-4bb8-a3a0-ef26103d91ac\",\"start_time\":\"2024-09-25T22:31:14.337312+00:00\",\"end_time\":\"2024-09-25T22:31:14.338578+00:00\",\"extra\":{\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"},\"metadata\":{\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.337312+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:14.338578+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"tags\":[\"seq:step:1\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479.20240925T223114337312Zff6a7999-da46-4bb8-a3a0-ef26103d91ac\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{\"context\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\"},\"name\":\"format_inputs\",\"inputs\":{\"context\":[{\"metadata\":{\"source\":\"https://lilianweng.github.io/posts/2023-06-23-agent/\",\"title\":\"LLM - Powered Autonomous Agents | Lil'Log\",\"description\":\"Building agents with - LLM (large language model) as its core controller is a cool concept. Several - proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as - inspiring examples. The potentiality of LLM extends beyond generating well-written - copies, stories, essays and programs; it can be framed as a powerful general - problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, - LLM functions as the agent\u2019s brain, complemented by several key components:\",\"language\":\"en\"},\"page_content\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"e3bea8c4-9fad-4d16-89cc-dac2e4e0a33b\",\"start_time\":\"2024-09-25T22:31:14.337937+00:00\",\"end_time\":\"2024-09-25T22:31:14.338503+00:00\",\"extra\":{\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"},\"metadata\":{\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.337937+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:14.338503+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"ff6a7999-da46-4bb8-a3a0-ef26103d91ac\",\"tags\":[],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479.20240925T223114337312Zff6a7999-da46-4bb8-a3a0-ef26103d91ac.20240925T223114337937Ze3bea8c4-9fad-4d16-89cc-dac2e4e0a33b\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{\"context\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\"},\"name\":\"RunnableParallel\",\"inputs\":{\"context\":[{\"metadata\":{\"source\":\"https://lilianweng.github.io/posts/2023-06-23-agent/\",\"title\":\"LLM - Powered Autonomous Agents | Lil'Log\",\"description\":\"Building agents with - LLM (large language model) as its core controller is a cool concept. Several - proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as - inspiring examples. The potentiality of LLM extends beyond generating well-written - copies, stories, essays and programs; it can be framed as a powerful general - problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, - LLM functions as the agent\u2019s brain, complemented by several key components:\",\"language\":\"en\"},\"page_content\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"444a8245-13b7-420a-98e1-bbefd3f11d90\",\"start_time\":\"2024-09-25T22:31:14.338202+00:00\",\"end_time\":\"2024-09-25T22:31:14.338388+00:00\",\"extra\":{\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"},\"metadata\":{\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"}},\"error\":null,\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.338202+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:14.338388+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"e3bea8c4-9fad-4d16-89cc-dac2e4e0a33b\",\"tags\":[\"map:key:context\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479.20240925T223114337312Zff6a7999-da46-4bb8-a3a0-ef26103d91ac.20240925T223114337937Ze3bea8c4-9fad-4d16-89cc-dac2e4e0a33b.20240925T223114338202Z444a8245-13b7-420a-98e1-bbefd3f11d90\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{\"output\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\"},\"name\":\"format_docs\",\"inputs\":{\"context\":[{\"metadata\":{\"source\":\"https://lilianweng.github.io/posts/2023-06-23-agent/\",\"title\":\"LLM - Powered Autonomous Agents | Lil'Log\",\"description\":\"Building agents with - LLM (large language model) as its core controller is a cool concept. Several - proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as - inspiring examples. The potentiality of LLM extends beyond generating well-written - copies, stories, essays and programs; it can be framed as a powerful general - problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, - LLM functions as the agent\u2019s brain, complemented by several key components:\",\"language\":\"en\"},\"page_content\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"type\":\"Document\"}]},\"run_type\":\"chain\"},{\"id\":\"7995a2ff-0c2f-46de-b9fe-dc7fbcd62342\",\"start_time\":\"2024-09-25T22:31:14.338796+00:00\",\"end_time\":\"2024-09-25T22:31:14.339045+00:00\",\"extra\":{\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langsmith\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\"},\"metadata\":{\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"ChatPromptTemplate\"],\"kwargs\":{\"input_variables\":[\"context\"],\"messages\":[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"chat\",\"SystemMessagePromptTemplate\"],\"kwargs\":{\"prompt\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"prompts\",\"prompt\",\"PromptTemplate\"],\"kwargs\":{\"input_variables\":[\"context\"],\"template\":\"Write - a concise summary of the following:\\\\n\\\\n{context}\",\"template_format\":\"f-string\"},\"name\":\"PromptTemplate\"}}}]},\"name\":\"ChatPromptTemplate\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.338796+00:00\"},{\"name\":\"end\",\"time\":\"2024-09-25T22:31:14.339045+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"tags\":[\"seq:step:2\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479.20240925T223114338796Z7995a2ff-0c2f-46de-b9fe-dc7fbcd62342\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{\"output\":{\"messages\":[{\"content\":\"Write - a concise summary of the following:\\\\n\\\\n\\n\\n\\n\\n\\n\\nLLM Powered Autonomous - Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"additional_kwargs\":{},\"response_metadata\":{},\"type\":\"system\"}]}},\"name\":\"ChatPromptTemplate\",\"inputs\":{\"context\":\"\\n\\n\\n\\n\\n\\nLLM - Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\"},\"run_type\":\"prompt\"},{\"id\":\"8a926a1e-b52d-458d-9501-3a5a733a9813\",\"start_time\":\"2024-09-25T22:31:14.339276+00:00\",\"end_time\":null,\"extra\":{\"invocation_params\":{\"model\":\"gpt-4o-mini\",\"model_name\":\"gpt-4o-mini\",\"stream\":false,\"n\":1,\"temperature\":0.0,\"_type\":\"openai-chat\",\"stop\":null},\"options\":{\"stop\":null},\"batch_size\":1,\"metadata\":{\"ls_provider\":\"openai\",\"ls_model_name\":\"gpt-4o-mini\",\"ls_model_type\":\"chat\",\"ls_temperature\":0.0,\"revision_id\":\"langchain-experimental==0.3.1-32-g184428cfd-dirty\"},\"runtime\":{\"sdk\":\"langsmith-py\",\"sdk_version\":\"0.1.128\",\"library\":\"langchain-core\",\"platform\":\"macOS-14.6-arm64-arm-64bit\",\"runtime\":\"python\",\"py_implementation\":\"CPython\",\"runtime_version\":\"3.11.7\",\"langchain_version\":\"0.3.0\",\"langchain_core_version\":\"0.3.5\",\"library_version\":\"0.3.5\"}},\"error\":null,\"serialized\":{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"chat_models\",\"openai\",\"ChatOpenAI\"],\"kwargs\":{\"model_name\":\"gpt-4o-mini\",\"temperature\":0.0,\"openai_api_key\":{\"lc\":1,\"type\":\"secret\",\"id\":[\"OPENAI_API_KEY\"]},\"max_retries\":2,\"n\":1},\"name\":\"ChatOpenAI\"},\"events\":[{\"name\":\"start\",\"time\":\"2024-09-25T22:31:14.339276+00:00\"}],\"reference_example_id\":null,\"parent_run_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"tags\":[\"seq:step:3\"],\"session_name\":\"default\",\"session_id\":null,\"dotted_order\":\"20240925T223114336966Za6bac5cf-713e-4d9d-84cc-d3687edb3479.20240925T223114339276Z8a926a1e-b52d-458d-9501-3a5a733a9813\",\"trace_id\":\"a6bac5cf-713e-4d9d-84cc-d3687edb3479\",\"outputs\":{},\"name\":\"ChatOpenAI\",\"inputs\":{\"messages\":[[{\"lc\":1,\"type\":\"constructor\",\"id\":[\"langchain\",\"schema\",\"messages\",\"SystemMessage\"],\"kwargs\":{\"content\":\"Write - a concise summary of the following:\\\\n\\\\n\\n\\n\\n\\n\\n\\nLLM Powered Autonomous - Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - \ LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated - Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent - System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent - Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\\n\\n\\nComponent - Three: Tool Use\\n\\nCase Studies\\n\\nScientific Discovery Agent\\n\\nGenerative - Agents Simulation\\n\\nProof-of-Concept Examples\\n\\n\\nChallenges\\n\\nCitation\\n\\nReferences\\n\\n\\n\\n\\n\\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\\nAgent System Overview#\\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\\n\\nPlanning\\n\\nSubgoal and decomposition: The agent breaks - down large tasks into smaller, manageable subgoals, enabling efficient handling - of complex tasks.\\nReflection and refinement: The agent can do self-criticism - and self-reflection over past actions, learn from mistakes and refine them for - future steps, thereby improving the quality of final results.\\n\\n\\nMemory\\n\\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\\n\\n\\nTool use\\n\\nThe agent learns to call external APIs for - extra information that is missing from the model weights (often hard to change - after pre-training), including current information, code execution capability, - access to proprietary information sources and more.\\n\\n\\n\\n\\nFig. 1. Overview - of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201Cthink step by step\u201D to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM - with simple prompting like \\\"Steps for XYZ.\\\\n1.\\\", \\\"What are the subgoals - for achieving XYZ?\\\", (2) by using task-specific instructions; e.g. \\\"Write - a story outline.\\\" for writing a novel, or (3) with human inputs.\\nAnother - quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201CProblem - PDDL\u201D, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201CDomain PDDL\u201D, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\\nSelf-Reflection#\\nSelf-reflection is a vital aspect that allows - autonomous agents to improve iteratively by refining past action decisions and - correcting previous mistakes. It plays a crucial role in real-world tasks where - trial and error are inevitable.\\nReAct (Yao et al. 2023) integrates reasoning - and acting within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\\nThought: - ...\\nAction: ...\\nObservation: ...\\n... (Repeated many times)\\n\\nFig. 2. - \ Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, - FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: - Yao et al. 2023).\\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\\n\\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\\n\\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\\\{(x, y_i , r_i , z_i)\\\\}_{i=1}^n$, where $x$ is the prompt, - each $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ - is the corresponding human-provided hindsight feedback. Assume the feedback - tuples are ranked by reward, $r_n \\\\geq r_{n-1} \\\\geq \\\\dots \\\\geq r_1$ - The process is supervised fine-tuning where the data is a sequence in the form - of $\\\\tau_h = (x, z_i, y_i, z_j, y_j, \\\\dots, z_n, y_n)$, where $\\\\leq - i \\\\leq j \\\\leq n$. The model is finetuned to only predict $y_n$ where conditioned - on the sequence prefix, such that the model can self-reflect to produce better - output based on the feedback sequence. The model can optionally receive multiple - rounds of instructions with human annotators at test time.\\nTo avoid overfitting, - CoH adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\\n\\nFig. 5. - After fine-tuning with CoH, the model can follow instructions to produce outputs - with incremental improvement in a sequence. (Image source: Liu et al. 2023)\\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\\n\\nFig. 6. Illustration of how Algorithm Distillation (AD) - works. (Image source: Laskin et al. 2023).\\nThe paper hypothesizes that any - algorithm that generates a set of learning histories can be distilled into a - neural network by performing behavioral cloning over actions. The history data - is generated by a set of source policies, each trained for a specific task. - At the training stage, during each RL run, a random task is sampled and a subsequence - of multi-episode history is used for training, such that the learned policy - is task-agnostic.\\nIn reality, the model has limited context window length, - so episodes should be short enough to construct multi-episode history. Multi-episodic - contexts of 2-4 episodes are necessary to learn a near-optimal in-context RL - algorithm. The emergence of in-context RL requires long enough context.\\nIn - comparison with three baselines, including ED (expert distillation, behavior - cloning with expert trajectories instead of learning history), source policy - (used for generating trajectories for distillation by UCB), RL^2 (Duan et al. - 2017; used as upper bound since it needs online RL), AD demonstrates in-context - RL with performance getting close to RL^2 despite only using offline RL and - learns much faster than other baselines. When conditioned on partial training - history of the source policy, AD also improves much faster than ED baseline.\\n\\nFig. - 7. Comparison of AD, ED, source policy and RL^2 on environments that require - memory and exploration. Only binary reward is assigned. The source policies - are trained with A3C for \\\"dark\\\" environments and DQN for watermaze.(Image - source: Laskin et al. 2023)\\nComponent Two: Memory#\\n(Big thank you to ChatGPT - for helping me draft this section. I\u2019ve learned a lot about the human brain - and data structure for fast MIPS in my conversations with ChatGPT.)\\nTypes - of Memory#\\nMemory can be defined as the processes used to acquire, store, - retain, and later retrieve information. There are several types of memory in - human brains.\\n\\n\\nSensory Memory: This is the earliest stage of memory, - providing the ability to retain impressions of sensory information (visual, - auditory, etc) after the original stimuli have ended. Sensory memory typically - only lasts for up to a few seconds. Subcategories include iconic memory (visual), - echoic memory (auditory), and haptic memory (touch).\\n\\n\\nShort-Term Memory - (STM) or Working Memory: It stores information that we are currently aware of - and needed to carry out complex cognitive tasks such as learning and reasoning. - Short-term memory is believed to have the capacity of about 7 items (Miller - 1956) and lasts for 20-30 seconds.\\n\\n\\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\\n\\nExplicit / declarative memory: This is memory of facts - and events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\\n\\n\\n\\n\\nFig. 8. Categorization of human memory.\\nWe can - roughly consider the following mappings:\\n\\nSensory memory as learning embedding - representations for raw inputs, including text, image or other modalities;\\nShort-term - memory as in-context learning. It is short and finite, as it is restricted by - the finite context window length of Transformer.\\nLong-term memory as the external - vector store that the agent can attend to at query time, accessible via fast - retrieval.\\n\\nMaximum Inner Product Search (MIPS)#\\nThe external memory can - alleviate the restriction of finite attention span. A standard practice is - to save the embedding representation of information into a vector store database - that can support fast maximum inner-product search (MIPS). To optimize the retrieval - speed, the common choice is the approximate nearest neighbors (ANN)\u200B algorithm - to return approximately top k nearest neighbors to trade off a little accuracy - lost for a huge speedup.\\nA couple common choices of ANN algorithms for fast - MIPS:\\n\\nLSH (Locality-Sensitive Hashing): It introduces a hashing function - such that similar input items are mapped to the same buckets with high probability, - where the number of buckets is much smaller than the number of inputs.\\nANNOY - (Approximate Nearest Neighbors Oh Yeah): The core data structure are random - projection trees, a set of binary trees where each non-leaf node represents - a hyperplane splitting the input space into half and each leaf stores one data - point. Trees are built independently and at random, so to some extent, it mimics - a hashing function. ANNOY search happens in all the trees to iteratively search - through the half that is closest to the query and then aggregates the results. - The idea is quite related to KD tree but a lot more scalable.\\nHNSW (Hierarchical - Navigable Small World): It is inspired by the idea of small world networks where - most nodes can be reached by any other nodes within a small number of steps; - e.g. \u201Csix degrees of separation\u201D feature of social networks. HNSW - builds hierarchical layers of these small-world graphs, where the bottom layers - contain the actual data points. The layers in the middle create shortcuts to - speed up search. When performing a search, HNSW starts from a random node in - the top layer and navigates towards the target. When it can\u2019t get any closer, - it moves down to the next layer, until it reaches the bottom layer. Each move - in the upper layers can potentially cover a large distance in the data space, - and each move in the lower layers refines the search quality.\\nFAISS (Facebook - AI Similarity Search): It operates on the assumption that in high dimensional - space, distances between nodes follow a Gaussian distribution and thus there - should exist clustering of data points. FAISS applies vector quantization by - partitioning the vector space into clusters and then refining the quantization - within clusters. Search first looks for cluster candidates with coarse quantization - and then further looks into each cluster with finer quantization.\\nScaNN (Scalable - Nearest Neighbors): The main innovation in ScaNN is anisotropic vector quantization. - It quantizes a data point $x_i$ to $\\\\tilde{x}_i$ such that the inner product - $\\\\langle q, x_i \\\\rangle$ is as similar to the original distance of $\\\\angle - q, \\\\tilde{x}_i$ as possible, instead of picking the closet quantization centroid - points.\\n\\n\\nFig. 9. Comparison of MIPS algorithms, measured in recall@10. - (Image source: Google Blog, 2020)\\nCheck more MIPS algorithms and performance - comparison in ann-benchmarks.com.\\nComponent Three: Tool Use#\\nTool use is - a remarkable and distinguishing characteristic of human beings. We create, modify - and utilize external objects to do things that go beyond our physical and cognitive - limits. Equipping LLMs with external tools can significantly extend the model - capabilities.\\n\\nFig. 10. A picture of a sea otter using rock to crack open - a seashell, while floating in the water. While some other animals can use tools, - the complexity is not comparable with humans. (Image source: Animals using tools)\\nMRKL - (Karpas et al. 2022), short for \u201CModular Reasoning, Knowledge and Language\u201D, - is a neuro-symbolic architecture for autonomous agents. A MRKL system is proposed - to contain a collection of \u201Cexpert\u201D modules and the general-purpose - LLM works as a router to route inquiries to the best suitable expert module. - These modules can be neural (e.g. deep learning models) or symbolic (e.g. math - calculator, currency converter, weather API).\\nThey did an experiment on fine-tuning - LLM to call a calculator, using arithmetic as a test case. Their experiments - showed that it was harder to solve verbal math problems than explicitly stated - math problems because LLMs (7B Jurassic1-large model) failed to extract the - right arguments for the basic arithmetic reliably. The results highlight when - the external symbolic tools can work reliably, knowing when to and how to use - the tools are crucial, determined by the LLM capability.\\nBoth TALM (Tool Augmented - Language Models; Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune - a LM to learn to use external tool APIs. The dataset is expanded based on whether - a newly added API call annotation can improve the quality of model outputs. - See more details in the \u201CExternal APIs\u201D section of Prompt Engineering.\\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\\n\\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe - system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\\nInstruction:\\n\\nThe - AI assistant can parse user input to several tasks: [{\\\"task\\\": task, \\\"id\\\", - task_id, \\\"dep\\\": dependency_task_ids, \\\"args\\\": {\\\"text\\\": text, - \\\"image\\\": URL, \\\"audio\\\": URL, \\\"video\\\": URL}}]. The \\\"dep\\\" - field denotes the id of the previous task which generates a new resource that - the current task relies on. A special tag \\\"-task_id\\\" refers to the generated - text image, audio and video in the dependency task with id as task_id. The task - MUST be selected from the following options: {{ Available Task List }}. There - is a logical relationship between tasks, please note their order. If the user - input can't be parsed, you need to reply empty JSON. Here are several cases - for your reference: {{ Demonstrations }}. The chat history is recorded as {{ - Chat History }}. From this chat history, you can find the path of the user-mentioned - resources for your task planning.\\n\\n(2) Model selection: LLM distributes - the tasks to expert models, where the request is framed as a multiple-choice - question. LLM is presented with a list of models to choose from. Due to the - limited context length, task type based filtration is needed.\\nInstruction:\\n\\nGiven - the user request and the call command, the AI assistant helps the user to select - a suitable model from a list of models to process the user request. The AI assistant - merely outputs the model id of the most appropriate model. The output must be - in a strict JSON format: \\\"id\\\": \\\"id\\\", \\\"reason\\\": \\\"your detail - reason for the choice\\\". We have a list of models for you to choose from {{ - Candidate Models }}. Please select one model from the list.\\n\\n(3) Task execution: - Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith - the input and the inference results, the AI assistant needs to describe the - process and results. The previous stages can be formed as - User Input: {{ User - Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, - Task Execution: {{ Predictions }}. You must first answer the user's request - in a straightforward manner. Then describe the task process and show your analysis - and model inference results to the user in the first person. If inference results - contain a file path, must tell the user the complete file path.\\n\\n(4) Response - generation: LLM receives the execution results and provides summarized results - to users.\\nTo put HuggingGPT into real world usage, a couple challenges need - to solve: (1) Efficiency improvement is needed as both LLM inference rounds - and interactions with other models slow down the process; (2) It relies on a - long context window to communicate over complicated task content; (3) Stability - improvement of LLM outputs and external model services.\\nAPI-Bank (Li et al. - 2023) is a benchmark for evaluating the performance of tool-augmented LLMs. - It contains 53 commonly used API tools, a complete tool-augmented LLM workflow, - and 264 annotated dialogues that involve 568 API calls. The selection of APIs - is quite diverse, including search engines, calculator, calendar queries, smart - home control, schedule management, health data management, account authentication - workflow and more. Because there are a large number of APIs, LLM first has access - to API search engine to find the right API to call and then uses the corresponding - documentation to make a call.\\n\\nFig. 12. Pseudo code of how LLM makes an - API call in API-Bank. (Image source: Li et al. 2023)\\nIn the API-Bank workflow, - LLMs need to make a couple of decisions and at each step we can evaluate how - accurate that decision is. Decisions include:\\n\\nWhether an API call is needed.\\nIdentify - the right API to call: if not good enough, LLMs need to iteratively modify the - API inputs (e.g. deciding search keywords for Search Engine API).\\nResponse - based on the API results: the model can choose to refine and call again if results - are not satisfied.\\n\\nThis benchmark evaluates the agent\u2019s tool use capabilities - at three levels:\\n\\nLevel-1 evaluates the ability to call the API. Given an - API\u2019s description, the model needs to determine whether to call a given - API, call it correctly, and respond properly to API returns.\\nLevel-2 examines - the ability to retrieve the API. The model needs to search for possible APIs - that may solve the user\u2019s requirement and learn how to use them by reading - documentation.\\nLevel-3 assesses the ability to plan API beyond retrieve and - call. Given unclear user requests (e.g. schedule group meetings, book flight/hotel/restaurant - for a trip), the model may have to conduct multiple API calls to solve it.\\n\\nCase - Studies#\\nScientific Discovery Agent#\\nChemCrow (Bran et al. 2023) is a domain-specific - example in which LLM is augmented with 13 expert-designed tools to accomplish - tasks across organic synthesis, drug discovery, and materials design. The workflow, - implemented in LangChain, reflects what was previously described in the ReAct - and MRKLs and combines CoT reasoning with tools relevant to the tasks:\\n\\nThe - LLM is provided with a list of tool names, descriptions of their utility, and - details about the expected input/output.\\nIt is then instructed to answer a - user-given prompt using the tools provided when necessary. The instruction suggests - the model to follow the ReAct format - Thought, Action, Action Input, Observation.\\n\\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested - to \\\"develop a novel anticancer drug\\\", the model came up with the following - reasoning steps:\\n\\ninquired about current trends in anticancer drug discovery;\\nselected - a target;\\nrequested a scaffold targeting these compounds;\\nOnce the compound - was identified, the model attempted its synthesis.\\n\\nThey also discussed - the risks, especially with illicit drugs and bioweapons. They developed a test - set containing a list of known chemical weapon agents and asked the agent to - synthesize them. 4 out of 11 requests (36%) were accepted to obtain a synthesis - solution and the agent attempted to consult documentation to execute the procedure. - 7 out of 11 were rejected and among these 7 rejected cases, 5 happened after - a Web search while 2 were rejected based on prompt only.\\nGenerative Agents - Simulation#\\nGenerative Agents (Park, et al. 2023) is super fun experiment - where 25 virtual characters, each controlled by a LLM-powered agent, are living - and interacting in a sandbox environment, inspired by The Sims. Generative agents - create believable simulacra of human behavior for interactive applications.\\nThe - design of generative agents combines LLM with memory, planning and reflection - mechanisms to enable agents to behave conditioned on past experience, as well - as to interact with other agents.\\n\\nMemory stream: is a long-term memory - module (external database) that records a comprehensive list of agents\u2019 - experience in natural language.\\n\\nEach element is an observation, an event - directly provided by the agent.\\n- Inter-agent communication can trigger new - natural language statements.\\n\\n\\nRetrieval model: surfaces the context to - inform the agent\u2019s behavior, according to relevance, recency and importance.\\n\\nRecency: - recent events have higher scores\\nImportance: distinguish mundane from core - memories. Ask LM directly.\\nRelevance: based on how related it is to the current - situation / query.\\n\\n\\nReflection mechanism: synthesizes memories into higher - level inferences over time and guides the agent\u2019s future behavior. They - are higher-level summaries of past events (<- note that this is a bit different - from self-reflection above)\\n\\nPrompt LM with 100 most recent observations - and to generate 3 most salient high-level questions given a set of observations/statements. - Then ask LM to answer those questions.\\n\\n\\nPlanning & Reacting: translate - the reflections and the environment information into actions\\n\\nPlanning is - essentially in order to optimize believability at the moment vs in time.\\nPrompt - template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1)\\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\\nEnvironment information is present in a tree structure.\\n\\n\\n\\n\\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\\nProof-of-Concept - Examples#\\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\\nYou - are {{ai-name}}, {{user-provided AI bot description}}.\\nYour decisions must - always be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\\n\\nGOALS:\\n\\n1. - {{user-provided goal 1}}\\n2. {{user-provided goal 2}}\\n3. ...\\n4. ...\\n5. - ...\\n\\nConstraints:\\n1. ~4000 word limit for short term memory. Your short - term memory is short, so immediately save important information to files.\\n2. - If you are unsure how you previously did something or want to recall past events, - thinking about similar events will help you remember.\\n3. No user assistance\\n4. - Exclusively use the commands listed in double quotes e.g. \\\"command name\\\"\\n5. - Use subprocesses for commands that will not terminate within a few minutes\\n\\nCommands:\\n1. - Google Search: \\\"google\\\", args: \\\"input\\\": \\\"\\\"\\n2. Browse - Website: \\\"browse_website\\\", args: \\\"url\\\": \\\"\\\", \\\"question\\\": - \\\"\\\"\\n3. Start GPT Agent: \\\"start_agent\\\", - args: \\\"name\\\": \\\"\\\", \\\"task\\\": \\\"\\\", - \\\"prompt\\\": \\\"\\\"\\n4. Message GPT Agent: \\\"message_agent\\\", - args: \\\"key\\\": \\\"\\\", \\\"message\\\": \\\"\\\"\\n5. List - GPT Agents: \\\"list_agents\\\", args:\\n6. Delete GPT Agent: \\\"delete_agent\\\", - args: \\\"key\\\": \\\"\\\"\\n7. Clone Repository: \\\"clone_repository\\\", - args: \\\"repository_url\\\": \\\"\\\", \\\"clone_path\\\": \\\"\\\"\\n8. - Write to file: \\\"write_to_file\\\", args: \\\"file\\\": \\\"\\\", \\\"text\\\": - \\\"\\\"\\n9. Read file: \\\"read_file\\\", args: \\\"file\\\": \\\"\\\"\\n10. - Append to file: \\\"append_to_file\\\", args: \\\"file\\\": \\\"\\\", - \\\"text\\\": \\\"\\\"\\n11. Delete file: \\\"delete_file\\\", args: \\\"file\\\": - \\\"\\\"\\n12. Search Files: \\\"search_files\\\", args: \\\"directory\\\": - \\\"\\\"\\n13. Analyze Code: \\\"analyze_code\\\", args: \\\"code\\\": - \\\"\\\"\\n14. Get Improved Code: \\\"improve_code\\\", args: - \\\"suggestions\\\": \\\"\\\", \\\"code\\\": \\\"\\\"\\n15. - Write Tests: \\\"write_tests\\\", args: \\\"code\\\": \\\"\\\", - \\\"focus\\\": \\\"\\\"\\n16. Execute Python File: \\\"execute_python_file\\\", - args: \\\"file\\\": \\\"\\\"\\n17. Generate Image: \\\"generate_image\\\", - args: \\\"prompt\\\": \\\"\\\"\\n18. Send Tweet: \\\"send_tweet\\\", - args: \\\"text\\\": \\\"\\\"\\n19. Do Nothing: \\\"do_nothing\\\", args:\\n20. - Task Complete (Shutdown): \\\"task_complete\\\", args: \\\"reason\\\": \\\"\\\"\\n\\nResources:\\n1. - Internet access for searches and information gathering.\\n2. Long Term memory - management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. - File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze - your actions to ensure you are performing to the best of your abilities.\\n2. - Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect - on past decisions and strategies to refine your approach.\\n4. Every command - has a cost, so be smart and efficient. Aim to complete tasks in the least number - of steps.\\n\\nYou should only respond in JSON format as described below\\nResponse - Format:\\n{\\n \\\"thoughts\\\": {\\n \\\"text\\\": \\\"thought\\\",\\n - \ \\\"reasoning\\\": \\\"reasoning\\\",\\n \\\"plan\\\": \\\"- - short bulleted\\\\n- list that conveys\\\\n- long-term plan\\\",\\n \\\"criticism\\\": - \\\"constructive self-criticism\\\",\\n \\\"speak\\\": \\\"thoughts summary - to say to user\\\"\\n },\\n \\\"command\\\": {\\n \\\"name\\\": - \\\"command name\\\",\\n \\\"args\\\": {\\n \\\"arg name\\\": - \\\"value\\\"\\n }\\n }\\n}\\nEnsure the response can be parsed by - Python json.loads\\nGPT-Engineer is another project to create a whole repository - of code given a task specified in natural language. The GPT-Engineer is instructed - to think over a list of smaller components to build and ask for user input to - clarify questions as needed.\\nHere are a sample conversation for task clarification - sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. The user inputs - are wrapped in {{user input text}}.\\n[\\n {\\n \\\"role\\\": \\\"system\\\",\\n - \ \\\"content\\\": \\\"You will read instructions and not carry them out, - only seek to clarify them.\\\\nSpecifically you will first summarise a list - of super short bullets of areas that need clarification.\\\\nThen you will pick - one clarifying question, and wait for an answer from the user.\\\\n\\\"\\n },\\n - \ {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": \\\"We are writing - {{a Super Mario game in python. MVC components split in separate files. Keyboard - control.}}\\\\n\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n \\\"content\\\": - \\\"Summary of areas that need clarification:\\\\n1. Specifics of the Super - Mario game (e.g. level design, characters, gameplay mechanics)\\\\n2. Details - about the MVC components (e.g. which components are in each file)\\\\n3. Keyboard - control implementation (e.g. which keys to use, how to handle input)\\\\n\\\\nClarifying - question:\\\\nCan you provide more details about the Super Mario game, such - as level design, characters, and gameplay mechanics?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"{{There are 10 levels in total. The - main character is a plumber named Mario, who can walk and jump. It is a classical - platform game just like Super Mario. The main character moves from left to right, - trying to get to the destination, where there are many obstacles and attacks - from enemies in the process.}}\\\\n\\\\nIs anything else unclear? If yes, only - answer in the form:\\\\n{remaining unclear areas} remaining questions.\\\\n{Next - question}\\\\nIf everything is sufficiently clear, only answer \\\\\\\"Nothing - more to clarify.\\\\\\\".\\\"\\n },\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Remaining unclear areas: 2 remaining questions.\\\\nCan - you provide more information about how the MVC components are split into separate - files?\\\"\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": - \\\"{{Make your own assumptions and state them explicitly before starting}}\\\"\\n - \ }\\n]\\nThen after these clarification, the agent moved into the code writing - mode with a different system message.\\nSystem message:\\n\\nYou will get instructions - for code to write.\\nYou will write a very long answer. Make sure that every - detail of the architecture is, in the end, implemented as code.\\nMake sure - that every detail of the architecture is, in the end, implemented as code.\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\nThen - you will output the content of each file including ALL code.\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\nFILENAME is the lowercase file name including the file - extension,\\nLANG is the markup code block language for the code\u2019s language, - and CODE is the code:\\nFILENAME\\nCODE\\nYou will start with the \u201Centrypoint\u201D - file, then go to the ones that are imported by that file, and so on.\\nPlease - note that the code should be fully functional. No placeholders.\\nFollow a language - and framework appropriate best practice file naming convention.\\nMake sure - that files contain all imports, types etc. Make sure that code in different - files are compatible with each other.\\nEnsure to implement all code, if you - are unsure, write a plausible implementation.\\nInclude module dependency or - package manager dependency definition file.\\nBefore you finish, double check - that all parts of the architecture is present in the files.\\nUseful to know:\\nYou - almost always put different classes in different files.\\nFor Python, you always - create an appropriate requirements.txt file.\\nFor NodeJS, you always create - an appropriate package.json file.\\nYou always add a comment briefly describing - the purpose of the function definition.\\nYou try to add comments explaining - very complex bits of logic.\\nYou always follow the best practices for the requested - languages in terms of describing the code written as a defined\\npackage/project.\\nPython - toolbelt preferences:\\n\\npytest\\ndataclasses\\n\\n\\nConversatin samples:\\n[\\n - \ {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You will - get instructions for code to write.\\\\nYou will write a very long answer. Make - sure that every detail of the architecture is, in the end, implemented as code.\\\\nMake - sure that every detail of the architecture is, in the end, implemented as code.\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nYou will first lay out the names of the core classes, functions, - methods that will be necessary, as well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nPlease note that the code should be - fully functional. No placeholders.\\\\n\\\\nFollow a language and framework - appropriate best practice file naming convention.\\\\nMake sure that files contain - all imports, types etc. Make sure that code in different files are compatible - with each other.\\\\nEnsure to implement all code, if you are unsure, write - a plausible implementation.\\\\nInclude module dependency or package manager - dependency definition file.\\\\nBefore you finish, double check that all parts - of the architecture is present in the files.\\\\n\\\\nUseful to know:\\\\nYou - almost always put different classes in different files.\\\\nFor Python, you - always create an appropriate requirements.txt file.\\\\nFor NodeJS, you always - create an appropriate package.json file.\\\\nYou always add a comment briefly - describing the purpose of the function definition.\\\\nYou try to add comments - explaining very complex bits of logic.\\\\nYou always follow the best practices - for the requested languages in terms of describing the code written as a defined\\\\npackage/project.\\\\n\\\\n\\\\nPython - toolbelt preferences:\\\\n- pytest\\\\n- dataclasses\\\\n\\\"\\n },\\n # \u2026 - same conversation as earlier, ended with \\\"Make your own assumptions and state - them explicitly before starting\\\".\\n {\\n \\\"role\\\": \\\"assistant\\\",\\n - \ \\\"content\\\": \\\"Assumptions:\\\\n1. Model: The model will contain the - game's data, such as level information, character states, and enemy positions.\\\\n2. - View: The view will handle the game's visuals, including rendering the game - objects, backgrounds, and updating the display.\\\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\\\n\\\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\\\"\\n },\\n {\\n \\\"role\\\": - \\\"user\\\",\\n \\\"content\\\": \\\"Please now remember the steps:\\\\n\\\\nThink - step by step and reason yourself to the right decisions to make sure we get - it right.\\\\nFirst lay out the names of the core classes, functions, methods - that will be necessary, As well as a quick comment on their purpose.\\\\n\\\\nThen - you will output the content of each file including ALL code.\\\\nEach file must - strictly follow a markdown code block format, where the following tokens must - be replaced such that\\\\nFILENAME is the lowercase file name including the - file extension,\\\\nLANG is the markup code block language for the code's language, - and CODE is the code:\\\\n\\\\nFILENAME\\\\n```LANG\\\\nCODE\\\\n```\\\\n\\\\nPlease - note that the code should be fully functional. No placeholders.\\\\n\\\\nYou - will start with the \\\\\\\"entrypoint\\\\\\\" file, then go to the ones that - are imported by that file, and so on.\\\\nFollow a language and framework appropriate - best practice file naming convention.\\\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\\\n\\\"\\n }\\n]\\nChallenges#\\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\\n\\n\\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\\n\\n\\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\\n\\n\\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\\n\\n\\nCitation#\\nCited - as:\\n\\nWeng, Lilian. (Jun 2023). \u201CLLM-powered Autonomous Agents\u201D. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\\n\\nOr\\n@article{weng2023agent,\\n - \ title = \\\"LLM-powered Autonomous Agents\\\",\\n author = \\\"Weng, Lilian\\\",\\n - \ journal = \\\"lilianweng.github.io\\\",\\n year = \\\"2023\\\",\\n month - \ = \\\"Jun\\\",\\n url = \\\"https://lilianweng.github.io/posts/2023-06-23-agent/\\\"\\n}\\nReferences#\\n[1] - Wei et al. \u201CChain of thought prompting elicits reasoning in large language - models.\u201D NeurIPS 2022\\n[2] Yao et al. \u201CTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201D arXiv preprint arXiv:2305.10601 - (2023).\\n[3] Liu et al. \u201CChain of Hindsight Aligns Language Models with - Feedback\\n\u201C arXiv preprint arXiv:2302.02676 (2023).\\n[4] Liu et al. \u201CLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201D arXiv - preprint arXiv:2304.11477 (2023).\\n[5] Yao et al. \u201CReAct: Synergizing - reasoning and acting in language models.\u201D ICLR 2023.\\n[6] Google Blog. - \u201CAnnouncing ScaNN: Efficient Vector Similarity Search\u201D July 28, 2020.\\n[7] - https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\\n[8] Shinn - & Labash. \u201CReflexion: an autonomous agent with dynamic memory and self-reflection\u201D - arXiv preprint arXiv:2303.11366 (2023).\\n[9] Laskin et al. \u201CIn-context - Reinforcement Learning with Algorithm Distillation\u201D ICLR 2023.\\n[10] Karpas - et al. \u201CMRKL Systems A modular, neuro-symbolic architecture that combines - large language models, external knowledge sources and discrete reasoning.\u201D - arXiv preprint arXiv:2205.00445 (2022).\\n[11] Nakano et al. \u201CWebgpt: Browser-assisted - question-answering with human feedback.\u201D arXiv preprint arXiv:2112.09332 - (2021).\\n[12] Parisi et al. \u201CTALM: Tool Augmented Language Models\u201D\\n[13] - Schick et al. \u201CToolformer: Language Models Can Teach Themselves to Use - Tools.\u201D arXiv preprint arXiv:2302.04761 (2023).\\n[14] Weaviate Blog. Why - is Vector Search so fast? Sep 13, 2022.\\n[15] Li et al. \u201CAPI-Bank: A Benchmark - for Tool-Augmented LLMs\u201D arXiv preprint arXiv:2304.08244 (2023).\\n[16] - Shen et al. \u201CHuggingGPT: Solving AI Tasks with ChatGPT and its Friends - in HuggingFace\u201D arXiv preprint arXiv:2303.17580 (2023).\\n[17] Bran et - al. \u201CChemCrow: Augmenting large-language models with chemistry tools.\u201D - arXiv preprint arXiv:2304.05376 (2023).\\n[18] Boiko et al. \u201CEmergent autonomous - scientific research capabilities of large language models.\u201D arXiv preprint - arXiv:2304.05332 (2023).\\n[19] Joon Sung Park, et al. \u201CGenerative Agents: - Interactive Simulacra of Human Behavior.\u201D arXiv preprint arXiv:2304.03442 - (2023).\\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\\n\\n\\n\\nnlp\\nlanguage-model\\nagent\\nsteerability\\nprompting\\n\\n\\n\\n\xAB - \\n\\nAdversarial Attacks on LLMs\\n\\n\\n \xBB\\n\\nPrompt Engineering\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\xA9 - 2024 Lil'Log\\n\\n Powered by\\n Hugo &\\n PaperMod\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\",\"type\":\"system\"}}]]},\"run_type\":\"llm\"}]}" - headers: - Accept: - - application/json - Accept-Encoding: - - gzip, deflate - Connection: - - keep-alive - Content-Length: - - '461289' - Content-Type: - - application/json - User-Agent: - - langsmith-py/0.1.128 - method: POST - uri: https://api.smith.langchain.com/runs/batch - response: - body: - string: '{"detail":"Forbidden"}' - headers: - Access-Control-Allow-Credentials: - - 'true' - Access-Control-Allow-Headers: - - '*' - Access-Control-Allow-Methods: - - '*' - Access-Control-Allow-Origin: - - '' - Access-Control-Expose-Headers: - - '*' - Access-Control-Max-Age: - - '600' - Alt-Svc: - - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 - Connection: - - close - Content-Length: - - '22' - Via: - - 1.1 google - content-type: - - application/json - date: - - Wed, 25 Sep 2024 22:31:14 GMT - server: - - uvicorn - status: - code: 403 - message: Forbidden -- request: - body: '{"messages": [{"content": "Write a concise summary of the following:\\n\\n\n\n\n\n\n\nLLM - Powered Autonomous Agents | Lil''Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nLil''Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPosts\n\n\n\n\nArchive\n\n\n\n\nSearch\n\n\n\n\nTags\n\n\n\n\nFAQ\n\n\n\n\nemojisearch.app\n\n\n\n\n\n\n\n\n\n LLM - Powered Autonomous Agents\n \nDate: June 23, 2023 | Estimated Reading Time: - 31 min | Author: Lilian Weng\n\n\n \n\n\nTable of Contents\n\n\n\nAgent System - Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent - Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n\nComponent - Three: Tool Use\n\nCase Studies\n\nScientific Discovery Agent\n\nGenerative - Agents Simulation\n\nProof-of-Concept Examples\n\n\nChallenges\n\nCitation\n\nReferences\n\n\n\n\n\nBuilding - agents with LLM (large language model) as its core controller is a cool concept. - Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, - serve as inspiring examples. The potentiality of LLM extends beyond generating - well-written copies, stories, essays and programs; it can be framed as a powerful - general problem solver.\nAgent System Overview#\nIn a LLM-powered autonomous - agent system, LLM functions as the agent\u2019s brain, complemented by several - key components:\n\nPlanning\n\nSubgoal and decomposition: The agent breaks down - large tasks into smaller, manageable subgoals, enabling efficient handling of - complex tasks.\nReflection and refinement: The agent can do self-criticism and - self-reflection over past actions, learn from mistakes and refine them for future - steps, thereby improving the quality of final results.\n\n\nMemory\n\nShort-term - memory: I would consider all the in-context learning (See Prompt Engineering) - as utilizing short-term memory of the model to learn.\nLong-term memory: This - provides the agent with the capability to retain and recall (infinite) information - over extended periods, often by leveraging an external vector store and fast - retrieval.\n\n\nTool use\n\nThe agent learns to call external APIs for extra - information that is missing from the model weights (often hard to change after - pre-training), including current information, code execution capability, access - to proprietary information sources and more.\n\n\n\n\nFig. 1. Overview of a - LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated - task usually involves many steps. An agent needs to know what they are and plan - ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become - a standard prompting technique for enhancing model performance on complex tasks. - The model is instructed to \u201cthink step by step\u201d to utilize more test-time - computation to decompose hard tasks into smaller and simpler steps. CoT transforms - big tasks into multiple manageable tasks and shed lights into an interpretation - of the model\u2019s thinking process.\nTree of Thoughts (Yao et al. 2023) extends - CoT by exploring multiple reasoning possibilities at each step. It first decomposes - the problem into multiple thought steps and generates multiple thoughts per - step, creating a tree structure. The search process can be BFS (breadth-first - search) or DFS (depth-first search) with each state evaluated by a classifier - (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM - with simple prompting like \"Steps for XYZ.\\n1.\", \"What are the subgoals - for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write - a story outline.\" for writing a novel, or (3) with human inputs.\nAnother quite - distinct approach, LLM+P (Liu et al. 2023), involves relying on an external - classical planner to do long-horizon planning. This approach utilizes the Planning - Domain Definition Language (PDDL) as an intermediate interface to describe the - planning problem. In this process, LLM (1) translates the problem into \u201cProblem - PDDL\u201d, then (2) requests a classical planner to generate a PDDL plan based - on an existing \u201cDomain PDDL\u201d, and finally (3) translates the PDDL - plan back into natural language. Essentially, the planning step is outsourced - to an external tool, assuming the availability of domain-specific PDDL and a - suitable planner which is common in certain robotic setups but not in many other - domains.\nSelf-Reflection#\nSelf-reflection is a vital aspect that allows autonomous - agents to improve iteratively by refining past action decisions and correcting - previous mistakes. It plays a crucial role in real-world tasks where trial and - error are inevitable.\nReAct (Yao et al. 2023) integrates reasoning and acting - within LLM by extending the action space to be a combination of task-specific - discrete actions and the language space. The former enables LLM to interact - with the environment (e.g. use Wikipedia search API), while the latter prompting - LLM to generate reasoning traces in natural language.\nThe ReAct prompt template - incorporates explicit steps for LLM to think, roughly formatted as:\nThought: - ...\nAction: ...\nObservation: ...\n... (Repeated many times)\n\nFig. 2. Examples - of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, FEVER) - and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: Yao et - al. 2023).\nIn both experiments on knowledge-intensive tasks and decision-making - tasks, ReAct works better than the Act-only baseline where Thought: \u2026 step - is removed.\nReflexion (Shinn & Labash 2023) is a framework to equips agents - with dynamic memory and self-reflection capabilities to improve reasoning skills. - Reflexion has a standard RL setup, in which the reward model provides a simple - binary reward and the action space follows the setup in ReAct where the task-specific - action space is augmented with language to enable complex reasoning steps. After - each action $a_t$, the agent computes a heuristic $h_t$ and optionally may decide - to reset the environment to start a new trial depending on the self-reflection - results.\n\nFig. 3. Illustration of the Reflexion framework. (Image source: - Shinn & Labash, 2023)\nThe heuristic function determines when the trajectory - is inefficient or contains hallucination and should be stopped. Inefficient - planning refers to trajectories that take too long without success. Hallucination - is defined as encountering a sequence of consecutive identical actions that - lead to the same observation in the environment.\nSelf-reflection is created - by showing two-shot examples to LLM and each example is a pair of (failed trajectory, - ideal reflection for guiding future changes in the plan). Then reflections are - added into the agent\u2019s working memory, up to three, to be used as context - for querying LLM.\n\nFig. 4. Experiments on AlfWorld Env and HotpotQA. Hallucination - is a more common failure than inefficient planning in AlfWorld. (Image source: - Shinn & Labash, 2023)\nChain of Hindsight (CoH; Liu et al. 2023) encourages - the model to improve on its own outputs by explicitly presenting it with a sequence - of past outputs, each annotated with feedback. Human feedback data is a collection - of $D_h = \\{(x, y_i , r_i , z_i)\\}_{i=1}^n$, where $x$ is the prompt, each - $y_i$ is a model completion, $r_i$ is the human rating of $y_i$, and $z_i$ is - the corresponding human-provided hindsight feedback. Assume the feedback tuples - are ranked by reward, $r_n \\geq r_{n-1} \\geq \\dots \\geq r_1$ The process - is supervised fine-tuning where the data is a sequence in the form of $\\tau_h - = (x, z_i, y_i, z_j, y_j, \\dots, z_n, y_n)$, where $\\leq i \\leq j \\leq n$. - The model is finetuned to only predict $y_n$ where conditioned on the sequence - prefix, such that the model can self-reflect to produce better output based - on the feedback sequence. The model can optionally receive multiple rounds of - instructions with human annotators at test time.\nTo avoid overfitting, CoH - adds a regularization term to maximize the log-likelihood of the pre-training - dataset. To avoid shortcutting and copying (because there are many common words - in feedback sequences), they randomly mask 0% - 5% of past tokens during training.\nThe - training dataset in their experiments is a combination of WebGPT comparisons, - summarization from human feedback and human preference dataset.\n\nFig. 5. After - fine-tuning with CoH, the model can follow instructions to produce outputs with - incremental improvement in a sequence. (Image source: Liu et al. 2023)\nThe - idea of CoH is to present a history of sequentially improved outputs in context - and train the model to take on the trend to produce better outputs. Algorithm - Distillation (AD; Laskin et al. 2023) applies the same idea to cross-episode - trajectories in reinforcement learning tasks, where an algorithm is encapsulated - in a long history-conditioned policy. Considering that an agent interacts with - the environment many times and in each episode the agent gets a little better, - AD concatenates this learning history and feeds that into the model. Hence we - should expect the next predicted action to lead to better performance than previous - trials. The goal is to learn the process of RL instead of training a task-specific - policy itself.\n\nFig. 6. Illustration of how Algorithm Distillation (AD) works. - (Image source: Laskin et al. 2023).\nThe paper hypothesizes that any algorithm - that generates a set of learning histories can be distilled into a neural network - by performing behavioral cloning over actions. The history data is generated - by a set of source policies, each trained for a specific task. At the training - stage, during each RL run, a random task is sampled and a subsequence of multi-episode - history is used for training, such that the learned policy is task-agnostic.\nIn - reality, the model has limited context window length, so episodes should be - short enough to construct multi-episode history. Multi-episodic contexts of - 2-4 episodes are necessary to learn a near-optimal in-context RL algorithm. - The emergence of in-context RL requires long enough context.\nIn comparison - with three baselines, including ED (expert distillation, behavior cloning with - expert trajectories instead of learning history), source policy (used for generating - trajectories for distillation by UCB), RL^2 (Duan et al. 2017; used as upper - bound since it needs online RL), AD demonstrates in-context RL with performance - getting close to RL^2 despite only using offline RL and learns much faster than - other baselines. When conditioned on partial training history of the source - policy, AD also improves much faster than ED baseline.\n\nFig. 7. Comparison - of AD, ED, source policy and RL^2 on environments that require memory and exploration. - Only binary reward is assigned. The source policies are trained with A3C for - \"dark\" environments and DQN for watermaze.(Image source: Laskin et al. 2023)\nComponent - Two: Memory#\n(Big thank you to ChatGPT for helping me draft this section. I\u2019ve - learned a lot about the human brain and data structure for fast MIPS in my conversations - with ChatGPT.)\nTypes of Memory#\nMemory can be defined as the processes used - to acquire, store, retain, and later retrieve information. There are several - types of memory in human brains.\n\n\nSensory Memory: This is the earliest stage - of memory, providing the ability to retain impressions of sensory information - (visual, auditory, etc) after the original stimuli have ended. Sensory memory - typically only lasts for up to a few seconds. Subcategories include iconic memory - (visual), echoic memory (auditory), and haptic memory (touch).\n\n\nShort-Term - Memory (STM) or Working Memory: It stores information that we are currently - aware of and needed to carry out complex cognitive tasks such as learning and - reasoning. Short-term memory is believed to have the capacity of about 7 items - (Miller 1956) and lasts for 20-30 seconds.\n\n\nLong-Term Memory (LTM): Long-term - memory can store information for a remarkably long time, ranging from a few - days to decades, with an essentially unlimited storage capacity. There are two - subtypes of LTM:\n\nExplicit / declarative memory: This is memory of facts and - events, and refers to those memories that can be consciously recalled, including - episodic memory (events and experiences) and semantic memory (facts and concepts).\nImplicit - / procedural memory: This type of memory is unconscious and involves skills - and routines that are performed automatically, like riding a bike or typing - on a keyboard.\n\n\n\n\nFig. 8. Categorization of human memory.\nWe can roughly - consider the following mappings:\n\nSensory memory as learning embedding representations - for raw inputs, including text, image or other modalities;\nShort-term memory - as in-context learning. It is short and finite, as it is restricted by the finite - context window length of Transformer.\nLong-term memory as the external vector - store that the agent can attend to at query time, accessible via fast retrieval.\n\nMaximum - Inner Product Search (MIPS)#\nThe external memory can alleviate the restriction - of finite attention span. A standard practice is to save the embedding representation - of information into a vector store database that can support fast maximum inner-product - search (MIPS). To optimize the retrieval speed, the common choice is the approximate - nearest neighbors (ANN)\u200b algorithm to return approximately top k nearest - neighbors to trade off a little accuracy lost for a huge speedup.\nA couple - common choices of ANN algorithms for fast MIPS:\n\nLSH (Locality-Sensitive Hashing): - It introduces a hashing function such that similar input items are mapped to - the same buckets with high probability, where the number of buckets is much - smaller than the number of inputs.\nANNOY (Approximate Nearest Neighbors Oh - Yeah): The core data structure are random projection trees, a set of binary - trees where each non-leaf node represents a hyperplane splitting the input space - into half and each leaf stores one data point. Trees are built independently - and at random, so to some extent, it mimics a hashing function. ANNOY search - happens in all the trees to iteratively search through the half that is closest - to the query and then aggregates the results. The idea is quite related to KD - tree but a lot more scalable.\nHNSW (Hierarchical Navigable Small World): It - is inspired by the idea of small world networks where most nodes can be reached - by any other nodes within a small number of steps; e.g. \u201csix degrees of - separation\u201d feature of social networks. HNSW builds hierarchical layers - of these small-world graphs, where the bottom layers contain the actual data - points. The layers in the middle create shortcuts to speed up search. When performing - a search, HNSW starts from a random node in the top layer and navigates towards - the target. When it can\u2019t get any closer, it moves down to the next layer, - until it reaches the bottom layer. Each move in the upper layers can potentially - cover a large distance in the data space, and each move in the lower layers - refines the search quality.\nFAISS (Facebook AI Similarity Search): It operates - on the assumption that in high dimensional space, distances between nodes follow - a Gaussian distribution and thus there should exist clustering of data points. - FAISS applies vector quantization by partitioning the vector space into clusters - and then refining the quantization within clusters. Search first looks for cluster - candidates with coarse quantization and then further looks into each cluster - with finer quantization.\nScaNN (Scalable Nearest Neighbors): The main innovation - in ScaNN is anisotropic vector quantization. It quantizes a data point $x_i$ - to $\\tilde{x}_i$ such that the inner product $\\langle q, x_i \\rangle$ is - as similar to the original distance of $\\angle q, \\tilde{x}_i$ as possible, - instead of picking the closet quantization centroid points.\n\n\nFig. 9. Comparison - of MIPS algorithms, measured in recall@10. (Image source: Google Blog, 2020)\nCheck - more MIPS algorithms and performance comparison in ann-benchmarks.com.\nComponent - Three: Tool Use#\nTool use is a remarkable and distinguishing characteristic - of human beings. We create, modify and utilize external objects to do things - that go beyond our physical and cognitive limits. Equipping LLMs with external - tools can significantly extend the model capabilities.\n\nFig. 10. A picture - of a sea otter using rock to crack open a seashell, while floating in the water. - While some other animals can use tools, the complexity is not comparable with - humans. (Image source: Animals using tools)\nMRKL (Karpas et al. 2022), short - for \u201cModular Reasoning, Knowledge and Language\u201d, is a neuro-symbolic - architecture for autonomous agents. A MRKL system is proposed to contain a collection - of \u201cexpert\u201d modules and the general-purpose LLM works as a router - to route inquiries to the best suitable expert module. These modules can be - neural (e.g. deep learning models) or symbolic (e.g. math calculator, currency - converter, weather API).\nThey did an experiment on fine-tuning LLM to call - a calculator, using arithmetic as a test case. Their experiments showed that - it was harder to solve verbal math problems than explicitly stated math problems - because LLMs (7B Jurassic1-large model) failed to extract the right arguments - for the basic arithmetic reliably. The results highlight when the external symbolic - tools can work reliably, knowing when to and how to use the tools are crucial, - determined by the LLM capability.\nBoth TALM (Tool Augmented Language Models; - Parisi et al. 2022) and Toolformer (Schick et al. 2023) fine-tune a LM to learn - to use external tool APIs. The dataset is expanded based on whether a newly - added API call annotation can improve the quality of model outputs. See more - details in the \u201cExternal APIs\u201d section of Prompt Engineering.\nChatGPT - Plugins and OpenAI API function calling are good examples of LLMs augmented - with tool use capability working in practice. The collection of tool APIs can - be provided by other developers (as in Plugins) or self-defined (as in function - calls).\nHuggingGPT (Shen et al. 2023) is a framework to use ChatGPT as the - task planner to select models available in HuggingFace platform according to - the model descriptions and summarize the response based on the execution results.\n\nFig. - 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\nThe - system comprises of 4 stages:\n(1) Task planning: LLM works as the brain and - parses the user requests into multiple tasks. There are four attributes associated - with each task: task type, ID, dependencies, and arguments. They use few-shot - examples to guide LLM to do task parsing and planning.\nInstruction:\n\nThe - AI assistant can parse user input to several tasks: [{\"task\": task, \"id\", - task_id, \"dep\": dependency_task_ids, \"args\": {\"text\": text, \"image\": - URL, \"audio\": URL, \"video\": URL}}]. The \"dep\" field denotes the id of - the previous task which generates a new resource that the current task relies - on. A special tag \"-task_id\" refers to the generated text image, audio and - video in the dependency task with id as task_id. The task MUST be selected from - the following options: {{ Available Task List }}. There is a logical relationship - between tasks, please note their order. If the user input can''t be parsed, - you need to reply empty JSON. Here are several cases for your reference: {{ - Demonstrations }}. The chat history is recorded as {{ Chat History }}. From - this chat history, you can find the path of the user-mentioned resources for - your task planning.\n\n(2) Model selection: LLM distributes the tasks to expert - models, where the request is framed as a multiple-choice question. LLM is presented - with a list of models to choose from. Due to the limited context length, task - type based filtration is needed.\nInstruction:\n\nGiven the user request and - the call command, the AI assistant helps the user to select a suitable model - from a list of models to process the user request. The AI assistant merely outputs - the model id of the most appropriate model. The output must be in a strict JSON - format: \"id\": \"id\", \"reason\": \"your detail reason for the choice\". We - have a list of models for you to choose from {{ Candidate Models }}. Please - select one model from the list.\n\n(3) Task execution: Expert models execute - on the specific tasks and log results.\nInstruction:\n\nWith the input and the - inference results, the AI assistant needs to describe the process and results. - The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: - {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions - }}. You must first answer the user''s request in a straightforward manner. Then - describe the task process and show your analysis and model inference results - to the user in the first person. If inference results contain a file path, must - tell the user the complete file path.\n\n(4) Response generation: LLM receives - the execution results and provides summarized results to users.\nTo put HuggingGPT - into real world usage, a couple challenges need to solve: (1) Efficiency improvement - is needed as both LLM inference rounds and interactions with other models slow - down the process; (2) It relies on a long context window to communicate over - complicated task content; (3) Stability improvement of LLM outputs and external - model services.\nAPI-Bank (Li et al. 2023) is a benchmark for evaluating the - performance of tool-augmented LLMs. It contains 53 commonly used API tools, - a complete tool-augmented LLM workflow, and 264 annotated dialogues that involve - 568 API calls. The selection of APIs is quite diverse, including search engines, - calculator, calendar queries, smart home control, schedule management, health - data management, account authentication workflow and more. Because there are - a large number of APIs, LLM first has access to API search engine to find the - right API to call and then uses the corresponding documentation to make a call.\n\nFig. - 12. Pseudo code of how LLM makes an API call in API-Bank. (Image source: Li - et al. 2023)\nIn the API-Bank workflow, LLMs need to make a couple of decisions - and at each step we can evaluate how accurate that decision is. Decisions include:\n\nWhether - an API call is needed.\nIdentify the right API to call: if not good enough, - LLMs need to iteratively modify the API inputs (e.g. deciding search keywords - for Search Engine API).\nResponse based on the API results: the model can choose - to refine and call again if results are not satisfied.\n\nThis benchmark evaluates - the agent\u2019s tool use capabilities at three levels:\n\nLevel-1 evaluates - the ability to call the API. Given an API\u2019s description, the model needs - to determine whether to call a given API, call it correctly, and respond properly - to API returns.\nLevel-2 examines the ability to retrieve the API. The model - needs to search for possible APIs that may solve the user\u2019s requirement - and learn how to use them by reading documentation.\nLevel-3 assesses the ability - to plan API beyond retrieve and call. Given unclear user requests (e.g. schedule - group meetings, book flight/hotel/restaurant for a trip), the model may have - to conduct multiple API calls to solve it.\n\nCase Studies#\nScientific Discovery - Agent#\nChemCrow (Bran et al. 2023) is a domain-specific example in which LLM - is augmented with 13 expert-designed tools to accomplish tasks across organic - synthesis, drug discovery, and materials design. The workflow, implemented in - LangChain, reflects what was previously described in the ReAct and MRKLs and - combines CoT reasoning with tools relevant to the tasks:\n\nThe LLM is provided - with a list of tool names, descriptions of their utility, and details about - the expected input/output.\nIt is then instructed to answer a user-given prompt - using the tools provided when necessary. The instruction suggests the model - to follow the ReAct format - Thought, Action, Action Input, Observation.\n\nOne - interesting observation is that while the LLM-based evaluation concluded that - GPT-4 and ChemCrow perform nearly equivalently, human evaluations with experts - oriented towards the completion and chemical correctness of the solutions showed - that ChemCrow outperforms GPT-4 by a large margin. This indicates a potential - problem with using LLM to evaluate its own performance on domains that requires - deep expertise. The lack of expertise may cause LLMs not knowing its flaws and - thus cannot well judge the correctness of task results.\nBoiko et al. (2023) - also looked into LLM-empowered agents for scientific discovery, to handle autonomous - design, planning, and performance of complex scientific experiments. This agent - can use tools to browse the Internet, read documentation, execute code, call - robotics experimentation APIs and leverage other LLMs.\nFor example, when requested - to \"develop a novel anticancer drug\", the model came up with the following - reasoning steps:\n\ninquired about current trends in anticancer drug discovery;\nselected - a target;\nrequested a scaffold targeting these compounds;\nOnce the compound - was identified, the model attempted its synthesis.\n\nThey also discussed the - risks, especially with illicit drugs and bioweapons. They developed a test set - containing a list of known chemical weapon agents and asked the agent to synthesize - them. 4 out of 11 requests (36%) were accepted to obtain a synthesis solution - and the agent attempted to consult documentation to execute the procedure. 7 - out of 11 were rejected and among these 7 rejected cases, 5 happened after a - Web search while 2 were rejected based on prompt only.\nGenerative Agents Simulation#\nGenerative - Agents (Park, et al. 2023) is super fun experiment where 25 virtual characters, - each controlled by a LLM-powered agent, are living and interacting in a sandbox - environment, inspired by The Sims. Generative agents create believable simulacra - of human behavior for interactive applications.\nThe design of generative agents - combines LLM with memory, planning and reflection mechanisms to enable agents - to behave conditioned on past experience, as well as to interact with other - agents.\n\nMemory stream: is a long-term memory module (external database) that - records a comprehensive list of agents\u2019 experience in natural language.\n\nEach - element is an observation, an event directly provided by the agent.\n- Inter-agent - communication can trigger new natural language statements.\n\n\nRetrieval model: - surfaces the context to inform the agent\u2019s behavior, according to relevance, - recency and importance.\n\nRecency: recent events have higher scores\nImportance: - distinguish mundane from core memories. Ask LM directly.\nRelevance: based on - how related it is to the current situation / query.\n\n\nReflection mechanism: - synthesizes memories into higher level inferences over time and guides the agent\u2019s - future behavior. They are higher-level summaries of past events (<- note that - this is a bit different from self-reflection above)\n\nPrompt LM with 100 most - recent observations and to generate 3 most salient high-level questions given - a set of observations/statements. Then ask LM to answer those questions.\n\n\nPlanning - & Reacting: translate the reflections and the environment information into actions\n\nPlanning - is essentially in order to optimize believability at the moment vs in time.\nPrompt - template: {Intro of an agent X}. Here is X''s plan today in broad strokes: 1)\nRelationships - between agents and observations of one agent by another are all taken into consideration - for planning and reacting.\nEnvironment information is present in a tree structure.\n\n\n\n\nFig. - 13. The generative agent architecture. (Image source: Park et al. 2023)\nThis - fun simulation results in emergent social behavior, such as information diffusion, - relationship memory (e.g. two agents continuing the conversation topic) and - coordination of social events (e.g. host a party and invite many others).\nProof-of-Concept - Examples#\nAutoGPT has drawn a lot of attention into the possibility of setting - up autonomous agents with LLM as the main controller. It has quite a lot of - reliability issues given the natural language interface, but nevertheless a - cool proof-of-concept demo. A lot of code in AutoGPT is about format parsing.\nHere - is the system message used by AutoGPT, where {{...}} are user inputs:\nYou are - {{ai-name}}, {{user-provided AI bot description}}.\nYour decisions must always - be made independently without seeking user assistance. Play to your strengths - as an LLM and pursue simple strategies with no legal complications.\n\nGOALS:\n\n1. - {{user-provided goal 1}}\n2. {{user-provided goal 2}}\n3. ...\n4. ...\n5. ...\n\nConstraints:\n1. - ~4000 word limit for short term memory. Your short term memory is short, so - immediately save important information to files.\n2. If you are unsure how you - previously did something or want to recall past events, thinking about similar - events will help you remember.\n3. No user assistance\n4. Exclusively use the - commands listed in double quotes e.g. \"command name\"\n5. Use subprocesses - for commands that will not terminate within a few minutes\n\nCommands:\n1. Google - Search: \"google\", args: \"input\": \"\"\n2. Browse Website: \"browse_website\", - args: \"url\": \"\", \"question\": \"\"\n3. - Start GPT Agent: \"start_agent\", args: \"name\": \"\", \"task\": \"\", - \"prompt\": \"\"\n4. Message GPT Agent: \"message_agent\", args: \"key\": - \"\", \"message\": \"\"\n5. List GPT Agents: \"list_agents\", - args:\n6. Delete GPT Agent: \"delete_agent\", args: \"key\": \"\"\n7. Clone - Repository: \"clone_repository\", args: \"repository_url\": \"\", \"clone_path\": - \"\"\n8. Write to file: \"write_to_file\", args: \"file\": \"\", - \"text\": \"\"\n9. Read file: \"read_file\", args: \"file\": \"\"\n10. - Append to file: \"append_to_file\", args: \"file\": \"\", \"text\": \"\"\n11. - Delete file: \"delete_file\", args: \"file\": \"\"\n12. Search Files: - \"search_files\", args: \"directory\": \"\"\n13. Analyze Code: \"analyze_code\", - args: \"code\": \"\"\n14. Get Improved Code: \"improve_code\", - args: \"suggestions\": \"\", \"code\": \"\"\n15. - Write Tests: \"write_tests\", args: \"code\": \"\", \"focus\": - \"\"\n16. Execute Python File: \"execute_python_file\", - args: \"file\": \"\"\n17. Generate Image: \"generate_image\", args: \"prompt\": - \"\"\n18. Send Tweet: \"send_tweet\", args: \"text\": \"\"\n19. - Do Nothing: \"do_nothing\", args:\n20. Task Complete (Shutdown): \"task_complete\", - args: \"reason\": \"\"\n\nResources:\n1. Internet access for searches - and information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered - Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1. - Continuously review and analyze your actions to ensure you are performing to - the best of your abilities.\n2. Constructively self-criticize your big-picture - behavior constantly.\n3. Reflect on past decisions and strategies to refine - your approach.\n4. Every command has a cost, so be smart and efficient. Aim - to complete tasks in the least number of steps.\n\nYou should only respond in - JSON format as described below\nResponse Format:\n{\n \"thoughts\": {\n \"text\": - \"thought\",\n \"reasoning\": \"reasoning\",\n \"plan\": \"- short - bulleted\\n- list that conveys\\n- long-term plan\",\n \"criticism\": - \"constructive self-criticism\",\n \"speak\": \"thoughts summary to say - to user\"\n },\n \"command\": {\n \"name\": \"command name\",\n \"args\": - {\n \"arg name\": \"value\"\n }\n }\n}\nEnsure the response - can be parsed by Python json.loads\nGPT-Engineer is another project to create - a whole repository of code given a task specified in natural language. The GPT-Engineer - is instructed to think over a list of smaller components to build and ask for - user input to clarify questions as needed.\nHere are a sample conversation for - task clarification sent to OpenAI ChatCompletion endpoint used by GPT-Engineer. - The user inputs are wrapped in {{user input text}}.\n[\n {\n \"role\": \"system\",\n \"content\": - \"You will read instructions and not carry them out, only seek to clarify them.\\nSpecifically - you will first summarise a list of super short bullets of areas that need clarification.\\nThen - you will pick one clarifying question, and wait for an answer from the user.\\n\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"We are writing {{a Super Mario game in python. - MVC components split in separate files. Keyboard control.}}\\n\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Summary of areas that need clarification:\\n1. - Specifics of the Super Mario game (e.g. level design, characters, gameplay mechanics)\\n2. - Details about the MVC components (e.g. which components are in each file)\\n3. - Keyboard control implementation (e.g. which keys to use, how to handle input)\\n\\nClarifying - question:\\nCan you provide more details about the Super Mario game, such as - level design, characters, and gameplay mechanics?\"\n },\n {\n \"role\": - \"user\",\n \"content\": \"{{There are 10 levels in total. The main character - is a plumber named Mario, who can walk and jump. It is a classical platform - game just like Super Mario. The main character moves from left to right, trying - to get to the destination, where there are many obstacles and attacks from enemies - in the process.}}\\n\\nIs anything else unclear? If yes, only answer in the - form:\\n{remaining unclear areas} remaining questions.\\n{Next question}\\nIf - everything is sufficiently clear, only answer \\\"Nothing more to clarify.\\\".\"\n },\n {\n \"role\": - \"assistant\",\n \"content\": \"Remaining unclear areas: 2 remaining questions.\\nCan - you provide more information about how the MVC components are split into separate - files?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"{{Make your - own assumptions and state them explicitly before starting}}\"\n }\n]\nThen - after these clarification, the agent moved into the code writing mode with a - different system message.\nSystem message:\n\nYou will get instructions for - code to write.\nYou will write a very long answer. Make sure that every detail - of the architecture is, in the end, implemented as code.\nMake sure that every - detail of the architecture is, in the end, implemented as code.\nThink step - by step and reason yourself to the right decisions to make sure we get it right.\nYou - will first lay out the names of the core classes, functions, methods that will - be necessary, as well as a quick comment on their purpose.\nThen you will output - the content of each file including ALL code.\nEach file must strictly follow - a markdown code block format, where the following tokens must be replaced such - that\nFILENAME is the lowercase file name including the file extension,\nLANG - is the markup code block language for the code\u2019s language, and CODE is - the code:\nFILENAME\nCODE\nYou will start with the \u201centrypoint\u201d file, - then go to the ones that are imported by that file, and so on.\nPlease note - that the code should be fully functional. No placeholders.\nFollow a language - and framework appropriate best practice file naming convention.\nMake sure that - files contain all imports, types etc. Make sure that code in different files - are compatible with each other.\nEnsure to implement all code, if you are unsure, - write a plausible implementation.\nInclude module dependency or package manager - dependency definition file.\nBefore you finish, double check that all parts - of the architecture is present in the files.\nUseful to know:\nYou almost always - put different classes in different files.\nFor Python, you always create an - appropriate requirements.txt file.\nFor NodeJS, you always create an appropriate - package.json file.\nYou always add a comment briefly describing the purpose - of the function definition.\nYou try to add comments explaining very complex - bits of logic.\nYou always follow the best practices for the requested languages - in terms of describing the code written as a defined\npackage/project.\nPython - toolbelt preferences:\n\npytest\ndataclasses\n\n\nConversatin samples:\n[\n {\n \"role\": - \"system\",\n \"content\": \"You will get instructions for code to write.\\nYou - will write a very long answer. Make sure that every detail of the architecture - is, in the end, implemented as code.\\nMake sure that every detail of the architecture - is, in the end, implemented as code.\\n\\nThink step by step and reason yourself - to the right decisions to make sure we get it right.\\nYou will first lay out - the names of the core classes, functions, methods that will be necessary, as - well as a quick comment on their purpose.\\n\\nThen you will output the content - of each file including ALL code.\\nEach file must strictly follow a markdown - code block format, where the following tokens must be replaced such that\\nFILENAME - is the lowercase file name including the file extension,\\nLANG is the markup - code block language for the code''s language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nYou - will start with the \\\"entrypoint\\\" file, then go to the ones that are imported - by that file, and so on.\\nPlease note that the code should be fully functional. - No placeholders.\\n\\nFollow a language and framework appropriate best practice - file naming convention.\\nMake sure that files contain all imports, types etc. - Make sure that code in different files are compatible with each other.\\nEnsure - to implement all code, if you are unsure, write a plausible implementation.\\nInclude - module dependency or package manager dependency definition file.\\nBefore you - finish, double check that all parts of the architecture is present in the files.\\n\\nUseful - to know:\\nYou almost always put different classes in different files.\\nFor - Python, you always create an appropriate requirements.txt file.\\nFor NodeJS, - you always create an appropriate package.json file.\\nYou always add a comment - briefly describing the purpose of the function definition.\\nYou try to add - comments explaining very complex bits of logic.\\nYou always follow the best - practices for the requested languages in terms of describing the code written - as a defined\\npackage/project.\\n\\n\\nPython toolbelt preferences:\\n- pytest\\n- - dataclasses\\n\"\n },\n # \u2026 same conversation as earlier, ended with - \"Make your own assumptions and state them explicitly before starting\".\n {\n \"role\": - \"assistant\",\n \"content\": \"Assumptions:\\n1. Model: The model will contain - the game''s data, such as level information, character states, and enemy positions.\\n2. - View: The view will handle the game''s visuals, including rendering the game - objects, backgrounds, and updating the display.\\n3. Controller: The controller - will manage user input, such as keyboard controls, and update the model accordingly.\\n\\nWith - these assumptions in mind, is there any specific aspect of the keyboard control - implementation you would like me to clarify?\"\n },\n {\n \"role\": \"user\",\n \"content\": - \"Please now remember the steps:\\n\\nThink step by step and reason yourself - to the right decisions to make sure we get it right.\\nFirst lay out the names - of the core classes, functions, methods that will be necessary, As well as a - quick comment on their purpose.\\n\\nThen you will output the content of each - file including ALL code.\\nEach file must strictly follow a markdown code block - format, where the following tokens must be replaced such that\\nFILENAME is - the lowercase file name including the file extension,\\nLANG is the markup code - block language for the code''s language, and CODE is the code:\\n\\nFILENAME\\n```LANG\\nCODE\\n```\\n\\nPlease - note that the code should be fully functional. No placeholders.\\n\\nYou will - start with the \\\"entrypoint\\\" file, then go to the ones that are imported - by that file, and so on.\\nFollow a language and framework appropriate best - practice file naming convention.\\nMake sure that files contain all imports, - types etc. The code should be fully functional. Make sure that code in different - files are compatible with each other.\\nBefore you finish, double check that - all parts of the architecture is present in the files.\\n\"\n }\n]\nChallenges#\nAfter - going through key ideas and demos of building LLM-centered agents, I start to - see a couple common limitations:\n\n\nFinite context length: The restricted - context capacity limits the inclusion of historical information, detailed instructions, - API call context, and responses. The design of the system has to work with this - limited communication bandwidth, while mechanisms like self-reflection to learn - from past mistakes would benefit a lot from long or infinite context windows. - Although vector stores and retrieval can provide access to a larger knowledge - pool, their representation power is not as powerful as full attention.\n\n\nChallenges - in long-term planning and task decomposition: Planning over a lengthy history - and effectively exploring the solution space remain challenging. LLMs struggle - to adjust plans when faced with unexpected errors, making them less robust compared - to humans who learn from trial and error.\n\n\nReliability of natural language - interface: Current agent system relies on natural language as an interface between - LLMs and external components such as memory and tools. However, the reliability - of model outputs is questionable, as LLMs may make formatting errors and occasionally - exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, - much of the agent demo code focuses on parsing model output.\n\n\nCitation#\nCited - as:\n\nWeng, Lilian. (Jun 2023). \u201cLLM-powered Autonomous Agents\u201d. - Lil\u2019Log. https://lilianweng.github.io/posts/2023-06-23-agent/.\n\nOr\n@article{weng2023agent,\n title = - \"LLM-powered Autonomous Agents\",\n author = \"Weng, Lilian\",\n journal - = \"lilianweng.github.io\",\n year = \"2023\",\n month = \"Jun\",\n url = - \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\n}\nReferences#\n[1] - Wei et al. \u201cChain of thought prompting elicits reasoning in large language - models.\u201d NeurIPS 2022\n[2] Yao et al. \u201cTree of Thoughts: Dliberate - Problem Solving with Large Language Models.\u201d arXiv preprint arXiv:2305.10601 - (2023).\n[3] Liu et al. \u201cChain of Hindsight Aligns Language Models with - Feedback\n\u201c arXiv preprint arXiv:2302.02676 (2023).\n[4] Liu et al. \u201cLLM+P: - Empowering Large Language Models with Optimal Planning Proficiency\u201d arXiv - preprint arXiv:2304.11477 (2023).\n[5] Yao et al. \u201cReAct: Synergizing reasoning - and acting in language models.\u201d ICLR 2023.\n[6] Google Blog. \u201cAnnouncing - ScaNN: Efficient Vector Similarity Search\u201d July 28, 2020.\n[7] https://chat.openai.com/share/46ff149e-a4c7-4dd7-a800-fc4a642ea389\n[8] - Shinn & Labash. \u201cReflexion: an autonomous agent with dynamic memory and - self-reflection\u201d arXiv preprint arXiv:2303.11366 (2023).\n[9] Laskin et - al. \u201cIn-context Reinforcement Learning with Algorithm Distillation\u201d - ICLR 2023.\n[10] Karpas et al. \u201cMRKL Systems A modular, neuro-symbolic - architecture that combines large language models, external knowledge sources - and discrete reasoning.\u201d arXiv preprint arXiv:2205.00445 (2022).\n[11] - Nakano et al. \u201cWebgpt: Browser-assisted question-answering with human feedback.\u201d - arXiv preprint arXiv:2112.09332 (2021).\n[12] Parisi et al. \u201cTALM: Tool - Augmented Language Models\u201d\n[13] Schick et al. \u201cToolformer: Language - Models Can Teach Themselves to Use Tools.\u201d arXiv preprint arXiv:2302.04761 - (2023).\n[14] Weaviate Blog. Why is Vector Search so fast? Sep 13, 2022.\n[15] - Li et al. \u201cAPI-Bank: A Benchmark for Tool-Augmented LLMs\u201d arXiv preprint - arXiv:2304.08244 (2023).\n[16] Shen et al. \u201cHuggingGPT: Solving AI Tasks - with ChatGPT and its Friends in HuggingFace\u201d arXiv preprint arXiv:2303.17580 - (2023).\n[17] Bran et al. \u201cChemCrow: Augmenting large-language models with - chemistry tools.\u201d arXiv preprint arXiv:2304.05376 (2023).\n[18] Boiko et - al. \u201cEmergent autonomous scientific research capabilities of large language - models.\u201d arXiv preprint arXiv:2304.05332 (2023).\n[19] Joon Sung Park, - et al. \u201cGenerative Agents: Interactive Simulacra of Human Behavior.\u201d - arXiv preprint arXiv:2304.03442 (2023).\n[20] AutoGPT. https://github.com/Significant-Gravitas/Auto-GPT\n[21] - GPT-Engineer. https://github.com/AntonOsika/gpt-engineer\n\n\n\nnlp\nlanguage-model\nagent\nsteerability\nprompting\n\n\n\n\u00ab - \n\nAdversarial Attacks on LLMs\n\n\n \u00bb\n\nPrompt Engineering\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\u00a9 - 2024 Lil''Log\n\n Powered by\n Hugo &\n PaperMod\n\n\n\n\n\n\n\n\n\n\n\n\n\n", - "role": "system"}], "model": "gpt-4o-mini", "n": 1, "stream": false, "temperature": - 0.0}' - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - '45469' - content-type: - - application/json - host: - - api.openai.com - user-agent: - - OpenAI/Python 1.45.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - 'false' - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.45.0 - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.11.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFXbbhtHDH33VxD7lBiS4IsSX97cIGiSyojhKGjRujCoWe4u41nOdjgr - yQny7wVndUuRvgjQcHk7PDz8dgRQcFlcQ+EaTK7t/Pjml8/dx3P+cHd1J3+8+3Cjb8Pll+n9/Z/p - 04UvRuYRFl/Ipa3XxIW285Q4yGB2kTCRRT29OLs4PzmfXkyzoQ0leXOruzSehnHLwuOzk7Pp+ORi - fHq58W4CO9LiGv46AgD4ln+tTilpXVzDyWj70pIq1lRc7z4CKGLw9lKgKmtCScVob3RBEkkufd4Q - YEzsPMFDMZvdwl1YUaQSbvoUJLShV7ipSZI+FLB4hhl7RoHfSWooWV2vSgqpIShpST50LUkClBIc - drhgz4lJIVSA+4CYA0K3SbV4Bo+xJvAodY81QcZI4cVsdqsvJ/A+QeiTZyEFBH3WRC2EJcUl0wpS - gwlYnO/LXEokghZZwEYSxFJdQ+dRhKUeQUttiM+jXGMKwUOvNIEHeZDTCRwf320+PD6+3jQOJeVI - SjAMeQ0J9UmBJQVoUbAmXHgC7Rd1QK85NEltnbCAkq/GkSpPzugBKQC3XQxLMtw4WnxWDjJu8Yml - hi4GR4brBObkGuF/elLw/ETwprHGQgXzJvR1k+DFmzB/mRPOre+9RYGkQXGUi931wLkE+z4SarBO - J9b7mfV+m6Gxzg95UbImlrpnbUhhQWlFJKBNiGmcKLY5mg9SD/+2+K44NYdfDe+wIGvRGs1AyDiz - cZ3AE0bJtp+Egz6x569mpnWiKOhhSS6FCJpCJIUqRGCpQmwxtxgpRaYl+gnc4prbvoX3IhThLoay - dwk+EUbXwIvb93efXgL6OkROTauAkXbULnNcqip2bMTeVIPOBpSBOzfg5sajz0pb6FgS1XEoJFT7 - ko1vCuh9WCkYuQ0DsxoXMxd+2JoFPYedpYs0ThFZqIQnCStPZU0TeLtG46RuNwBu73+bbXZER7Bq - 2DXG2wULDSnzYGjdUUy2aL0nHbahitjSKsSnDdne9XXNUv96Nx92rEJnlWHacGq7UwPf1+R6azij - csgf9Bqg4brxnHnpGvSepLahoRv2fza7HW/lYFCHEWjvGkCFioWT7d6WJ1KnZgQl21R6n5FiOaDM - ftdxQA8ieR5gfbZ5CKY+ot/rjc0rWjGaxcaFrZpkrBwqgaa+tEwltUE02XClzsG7iC6xQw/YdZ5d - HnuWvNSQ0lbtTAkyibhilwlmCvaca8z5LcqSQLnt/RAjQ/lxSRG9H+VcW0yp7RpU/rrR3i6YoDN6 - y5qHjAo1iXmanCw8taDBLynqFhSOsIUkBah6GdQJ9SdKnZpoomKLQEOV/9XTjQ6a+h9Ka97a3Mzk - 8AJFqnpFu4LSe795/747aT7UVrRu7Lt3Y4I2j4Ny2fnSFLoiW78fAfydT2f/wzUsuhjaLj2m8ERi - Aa9eXZ0OAYv9yd6bz66mG2sKCf2B3+Xlq//zeywpIXs9uMHFTl73IU52leZWi2FJHyuWmmIXeTjJ - Vfd4ulhMX5++vqiuiqPvR/8CAAD//wMA/R6HyqAIAAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8c8e769b1cb89044-BOS - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Wed, 25 Sep 2024 22:31:18 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=NmdAizdz.69EDUO2j_u1k94FBhUh6rQxTh9wiU42d44-1727303478-1.0.1.1-dJYnQ5CG33lJXKMhr42mMc9sbzBuf49pgMrm6LV3duhPNWYG3CAD2iiEY9pS.qm.X_fDfz21REWUUKI0ieqOSA; - path=/; expires=Wed, 25-Sep-24 23:01:18 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=aZTGr7WQB9pD7cUPNdO2yQPue790AorTqZ2f.K.Z4Dk-1727303478761-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - openai-organization: - - user-wzxwdcuddhvwm09z43ibeucf - openai-processing-ms: - - '4012' - openai-version: - - '2020-10-01' - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - '5000' - x-ratelimit-limit-tokens: - - '4000000' - x-ratelimit-remaining-requests: - - '4999' - x-ratelimit-remaining-tokens: - - '3988977' - x-ratelimit-reset-requests: - - 12ms - x-ratelimit-reset-tokens: - - 165ms - x-request-id: - - req_7a7649dd8652f4793d0bb74dfb4c80e2 - status: - code: 200 - message: OK -version: 1 diff --git a/docs/scripts/prepare_notebooks_for_ci.py b/docs/scripts/prepare_notebooks_for_ci.py index 20f4820e9272c..6fe2f5e7cda3c 100644 --- a/docs/scripts/prepare_notebooks_for_ci.py +++ b/docs/scripts/prepare_notebooks_for_ci.py @@ -12,17 +12,15 @@ DOCS_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CASSETTES_PATH = os.path.join(DOCS_PATH, "cassettes") -# TODO: update these -NOTEBOOKS_NO_CASSETTES = ( - "docs/docs/how-tos/visualization.ipynb", - "docs/docs/how-tos/many-tools.ipynb", -) +# TODO: populate if needed +NOTEBOOKS_NO_CASSETTES = [] NOTEBOOKS_NO_EXECUTION = [ "docs/docs/tutorials/local_rag.ipynb", # Local LLMs "docs/docs/tutorials/graph.ipynb", # Requires local graph db running "docs/docs/tutorials/query_analysis.ipynb", # Requires youtube_transcript_api "docs/docs/tutorials/sql_qa.ipynb", # Requires Chinook db locally + "docs/docs/tutorials/summarization.ipynb", # TODO: source of non-determinism somewhere, fix or add to no cassettes ] with open(os.path.join(DOCS_PATH, "notebooks_no_execution.json"), "w") as f: