From ebc75c5ca7dc5adda55ca111ab58416bb068c147 Mon Sep 17 00:00:00 2001 From: Erick Friis Date: Fri, 5 Jan 2024 15:03:28 -0800 Subject: [PATCH] openai[minor]: implement langchain-openai package (#15503) Todo - [x] copy over integration tests - [x] update docs with new instructions in #15513 - [x] add linear ticket to bump core -> community, community->langchain, and core->openai deps - [ ] (optional): add `pip install langchain-openai` command to each notebook using it - [x] Update docstrings to not need `openai` install - [x] Add serialization - [x] deprecate old models Contributor steps: - [x] Add secret names to manual integrations workflow in .github/workflows/_integration_test.yml - [x] Add secrets to release workflow (for pre-release testing) in .github/workflows/_release.yml Maintainer steps (Contributors should not do these): - [x] set up pypi and test pypi projects - [x] add credential secrets to Github Actions - [ ] add package to conda-forge Functional changes to existing classes: - now relies on openai client v1 (1.6.1) via concrete dep in langchain-openai package Codebase organization - some function calling stuff moved to `langchain_core.utils.function_calling` in order to be used in both community and langchain-openai --- .github/workflows/_integration_test.yml | 1 + .github/workflows/_release.yml | 1 + .../chat_models/azure_openai.py | 4 + .../langchain_community/chat_models/openai.py | 2 + .../embeddings/azure_openai.py | 4 + .../langchain_community/embeddings/openai.py | 6 + .../langchain_community/llms/openai.py | 4 + .../utils/openai_functions.py | 66 +- libs/community/poetry.lock | 34 +- libs/community/pyproject.toml | 2 +- .../integration_tests/llms/test_openai.py | 31 - .../tests/unit_tests/llms/test_openai.py | 4 + libs/core/langchain_core/load/mapping.py | 16 +- .../langchain_core/utils/function_calling.py | 202 +++ .../langchain/chains/openai_functions/base.py | 155 +-- libs/langchain/poetry.lock | 182 +-- libs/langchain/pyproject.toml | 4 +- .../tests/unit_tests/load/test_load.py | 43 +- libs/partners/openai/.gitignore | 1 + libs/partners/openai/LICENSE | 21 + libs/partners/openai/Makefile | 59 + libs/partners/openai/README.md | 1 + .../openai/langchain_openai/__init__.py | 18 + .../langchain_openai/chat_models/__init__.py | 7 + .../langchain_openai/chat_models/azure.py | 218 ++++ .../langchain_openai/chat_models/base.py | 655 ++++++++++ .../langchain_openai/embeddings/__init__.py | 7 + .../langchain_openai/embeddings/azure.py | 130 ++ .../langchain_openai/embeddings/base.py | 523 ++++++++ .../openai/langchain_openai/llms/__init__.py | 7 + .../openai/langchain_openai/llms/azure.py | 190 +++ .../openai/langchain_openai/llms/base.py | 611 +++++++++ .../partners/openai/langchain_openai/py.typed | 0 libs/partners/openai/poetry.lock | 1140 +++++++++++++++++ libs/partners/openai/pyproject.toml | 97 ++ libs/partners/openai/scripts/check_imports.py | 17 + .../partners/openai/scripts/check_pydantic.sh | 27 + libs/partners/openai/scripts/lint_imports.sh | 17 + libs/partners/openai/tests/__init__.py | 0 .../tests/integration_tests/__init__.py | 0 .../integration_tests/chat_models/__init__.py | 0 .../chat_models/test_azure.py | 221 ++++ .../chat_models/test_base.py | 393 ++++++ .../integration_tests/embeddings/__init__.py | 0 .../embeddings/test_azure.py | 132 ++ .../integration_tests/embeddings/test_base.py | 19 + .../tests/integration_tests/llms/__init__.py | 0 .../integration_tests/llms/test_azure.py | 176 +++ .../tests/integration_tests/llms/test_base.py | 280 ++++ .../tests/integration_tests/test_compile.py | 7 + .../openai/tests/unit_tests/__init__.py | 0 .../tests/unit_tests/chat_models/__init__.py | 0 .../tests/unit_tests/chat_models/test_base.py | 120 ++ .../unit_tests/chat_models/test_imports.py | 7 + .../tests/unit_tests/embeddings/__init__.py | 0 .../tests/unit_tests/embeddings/test_base.py | 18 + .../unit_tests/embeddings/test_imports.py | 7 + .../openai/tests/unit_tests/fake/__init__.py | 0 .../openai/tests/unit_tests/fake/callbacks.py | 393 ++++++ .../openai/tests/unit_tests/llms/__init__.py | 0 .../openai/tests/unit_tests/llms/test_base.py | 48 + .../tests/unit_tests/llms/test_imports.py | 7 + .../openai/tests/unit_tests/test_imports.py | 14 + .../tests/unit_tests/test_token_counts.py | 39 + 64 files changed, 5999 insertions(+), 389 deletions(-) create mode 100644 libs/core/langchain_core/utils/function_calling.py create mode 100644 libs/partners/openai/.gitignore create mode 100644 libs/partners/openai/LICENSE create mode 100644 libs/partners/openai/Makefile create mode 100644 libs/partners/openai/README.md create mode 100644 libs/partners/openai/langchain_openai/__init__.py create mode 100644 libs/partners/openai/langchain_openai/chat_models/__init__.py create mode 100644 libs/partners/openai/langchain_openai/chat_models/azure.py create mode 100644 libs/partners/openai/langchain_openai/chat_models/base.py create mode 100644 libs/partners/openai/langchain_openai/embeddings/__init__.py create mode 100644 libs/partners/openai/langchain_openai/embeddings/azure.py create mode 100644 libs/partners/openai/langchain_openai/embeddings/base.py create mode 100644 libs/partners/openai/langchain_openai/llms/__init__.py create mode 100644 libs/partners/openai/langchain_openai/llms/azure.py create mode 100644 libs/partners/openai/langchain_openai/llms/base.py create mode 100644 libs/partners/openai/langchain_openai/py.typed create mode 100644 libs/partners/openai/poetry.lock create mode 100644 libs/partners/openai/pyproject.toml create mode 100644 libs/partners/openai/scripts/check_imports.py create mode 100755 libs/partners/openai/scripts/check_pydantic.sh create mode 100755 libs/partners/openai/scripts/lint_imports.sh create mode 100644 libs/partners/openai/tests/__init__.py create mode 100644 libs/partners/openai/tests/integration_tests/__init__.py create mode 100644 libs/partners/openai/tests/integration_tests/chat_models/__init__.py create mode 100644 libs/partners/openai/tests/integration_tests/chat_models/test_azure.py create mode 100644 libs/partners/openai/tests/integration_tests/chat_models/test_base.py create mode 100644 libs/partners/openai/tests/integration_tests/embeddings/__init__.py create mode 100644 libs/partners/openai/tests/integration_tests/embeddings/test_azure.py create mode 100644 libs/partners/openai/tests/integration_tests/embeddings/test_base.py create mode 100644 libs/partners/openai/tests/integration_tests/llms/__init__.py create mode 100644 libs/partners/openai/tests/integration_tests/llms/test_azure.py create mode 100644 libs/partners/openai/tests/integration_tests/llms/test_base.py create mode 100644 libs/partners/openai/tests/integration_tests/test_compile.py create mode 100644 libs/partners/openai/tests/unit_tests/__init__.py create mode 100644 libs/partners/openai/tests/unit_tests/chat_models/__init__.py create mode 100644 libs/partners/openai/tests/unit_tests/chat_models/test_base.py create mode 100644 libs/partners/openai/tests/unit_tests/chat_models/test_imports.py create mode 100644 libs/partners/openai/tests/unit_tests/embeddings/__init__.py create mode 100644 libs/partners/openai/tests/unit_tests/embeddings/test_base.py create mode 100644 libs/partners/openai/tests/unit_tests/embeddings/test_imports.py create mode 100644 libs/partners/openai/tests/unit_tests/fake/__init__.py create mode 100644 libs/partners/openai/tests/unit_tests/fake/callbacks.py create mode 100644 libs/partners/openai/tests/unit_tests/llms/__init__.py create mode 100644 libs/partners/openai/tests/unit_tests/llms/test_base.py create mode 100644 libs/partners/openai/tests/unit_tests/llms/test_imports.py create mode 100644 libs/partners/openai/tests/unit_tests/test_imports.py create mode 100644 libs/partners/openai/tests/unit_tests/test_token_counts.py diff --git a/.github/workflows/_integration_test.yml b/.github/workflows/_integration_test.yml index e3507c4880c33..bf26ff460a847 100644 --- a/.github/workflows/_integration_test.yml +++ b/.github/workflows/_integration_test.yml @@ -44,6 +44,7 @@ jobs: ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }} MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }} TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }} + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} run: | make integration_tests diff --git a/.github/workflows/_release.yml b/.github/workflows/_release.yml index a5837927996b7..cf40e6d1ebca3 100644 --- a/.github/workflows/_release.yml +++ b/.github/workflows/_release.yml @@ -156,6 +156,7 @@ jobs: ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }} MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }} TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }} + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} run: make integration_tests working-directory: ${{ inputs.working-directory }} diff --git a/libs/community/langchain_community/chat_models/azure_openai.py b/libs/community/langchain_community/chat_models/azure_openai.py index f6284324a9542..bd5625e7226ec 100644 --- a/libs/community/langchain_community/chat_models/azure_openai.py +++ b/libs/community/langchain_community/chat_models/azure_openai.py @@ -6,6 +6,7 @@ import warnings from typing import Any, Callable, Dict, List, Union +from langchain_core._api.deprecation import deprecated from langchain_core.outputs import ChatResult from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env @@ -16,6 +17,9 @@ logger = logging.getLogger(__name__) +@deprecated( + since="0.1.0", removal="0.2.0", alternative="langchain_openai.AzureChatOpenAI" +) class AzureChatOpenAI(ChatOpenAI): """`Azure OpenAI` Chat Completion API. diff --git a/libs/community/langchain_community/chat_models/openai.py b/libs/community/langchain_community/chat_models/openai.py index acbcc943f0dec..1a340ccdffd7f 100644 --- a/libs/community/langchain_community/chat_models/openai.py +++ b/libs/community/langchain_community/chat_models/openai.py @@ -20,6 +20,7 @@ Union, ) +from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -143,6 +144,7 @@ def _convert_delta_to_message_chunk( return default_class(content=content) +@deprecated(since="0.1.0", removal="0.2.0", alternative="langchain_openai.ChatOpenAI") class ChatOpenAI(BaseChatModel): """`OpenAI` Chat large language models API. diff --git a/libs/community/langchain_community/embeddings/azure_openai.py b/libs/community/langchain_community/embeddings/azure_openai.py index 42dcc54a89776..da5ad573bb249 100644 --- a/libs/community/langchain_community/embeddings/azure_openai.py +++ b/libs/community/langchain_community/embeddings/azure_openai.py @@ -5,6 +5,7 @@ import warnings from typing import Callable, Dict, Optional, Union +from langchain_core._api.deprecation import deprecated from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env @@ -12,6 +13,9 @@ from langchain_community.utils.openai import is_openai_v1 +@deprecated( + since="0.1.0", removal="0.2.0", alternative="langchain_openai.AzureOpenAIEmbeddings" +) class AzureOpenAIEmbeddings(OpenAIEmbeddings): """`Azure OpenAI` Embeddings API.""" diff --git a/libs/community/langchain_community/embeddings/openai.py b/libs/community/langchain_community/embeddings/openai.py index 99f41e62856dd..8fc66519db723 100644 --- a/libs/community/langchain_community/embeddings/openai.py +++ b/libs/community/langchain_community/embeddings/openai.py @@ -19,6 +19,7 @@ ) import numpy as np +from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names @@ -137,6 +138,11 @@ async def _async_embed_with_retry(**kwargs: Any) -> Any: return await _async_embed_with_retry(**kwargs) +@deprecated( + since="0.1.0", + removal="0.2.0", + alternative="langchain_openai.OpenAIEmbeddings", +) class OpenAIEmbeddings(BaseModel, Embeddings): """OpenAI embedding models. diff --git a/libs/community/langchain_community/llms/openai.py b/libs/community/langchain_community/llms/openai.py index b9fb5aa4ef13e..2ee94f16c8eca 100644 --- a/libs/community/langchain_community/llms/openai.py +++ b/libs/community/langchain_community/llms/openai.py @@ -21,6 +21,7 @@ Union, ) +from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -724,6 +725,7 @@ def max_tokens_for_prompt(self, prompt: str) -> int: return self.max_context_size - num_tokens +@deprecated(since="0.1.0", removal="0.2.0", alternative="langchain_openai.OpenAI") class OpenAI(BaseOpenAI): """OpenAI large language models. @@ -750,6 +752,7 @@ def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} +@deprecated(since="0.1.0", removal="0.2.0", alternative="langchain_openai.AzureOpenAI") class AzureOpenAI(BaseOpenAI): """Azure-specific OpenAI large language models. @@ -953,6 +956,7 @@ def lc_attributes(self) -> Dict[str, Any]: } +@deprecated(since="0.1.0", removal="0.2.0", alternative="langchain_openai.ChatOpenAI") class OpenAIChat(BaseLLM): """OpenAI Chat large language models. diff --git a/libs/community/langchain_community/utils/openai_functions.py b/libs/community/langchain_community/utils/openai_functions.py index 308c14876b2d4..41dab3c76b3f5 100644 --- a/libs/community/langchain_community/utils/openai_functions.py +++ b/libs/community/langchain_community/utils/openai_functions.py @@ -1,51 +1,15 @@ -from typing import Literal, Optional, Type, TypedDict - -from langchain_core.pydantic_v1 import BaseModel -from langchain_core.utils.json_schema import dereference_refs - - -class FunctionDescription(TypedDict): - """Representation of a callable function to the OpenAI API.""" - - name: str - """The name of the function.""" - description: str - """A description of the function.""" - parameters: dict - """The parameters of the function.""" - - -class ToolDescription(TypedDict): - """Representation of a callable function to the OpenAI API.""" - - type: Literal["function"] - function: FunctionDescription - - -def convert_pydantic_to_openai_function( - model: Type[BaseModel], - *, - name: Optional[str] = None, - description: Optional[str] = None, -) -> FunctionDescription: - """Converts a Pydantic model to a function description for the OpenAI API.""" - schema = dereference_refs(model.schema()) - schema.pop("definitions", None) - return { - "name": name or schema["title"], - "description": description or schema["description"], - "parameters": schema, - } - - -def convert_pydantic_to_openai_tool( - model: Type[BaseModel], - *, - name: Optional[str] = None, - description: Optional[str] = None, -) -> ToolDescription: - """Converts a Pydantic model to a function description for the OpenAI API.""" - function = convert_pydantic_to_openai_function( - model, name=name, description=description - ) - return {"type": "function", "function": function} +# these stubs are just for backwards compatibility + +from langchain_core.utils.function_calling import ( + FunctionDescription, + ToolDescription, + convert_pydantic_to_openai_function, + convert_pydantic_to_openai_tool, +) + +__all__ = [ + "FunctionDescription", + "ToolDescription", + "convert_pydantic_to_openai_function", + "convert_pydantic_to_openai_tool", +] diff --git a/libs/community/poetry.lock b/libs/community/poetry.lock index cd8e7f5318f8d..2a812b6b80d5f 100644 --- a/libs/community/poetry.lock +++ b/libs/community/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. [[package]] name = "aenum" @@ -1173,7 +1173,6 @@ files = [ {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18a64814ae7bce73925131381603fff0116e2df25230dfc80d6d690aa6e20b37"}, {file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90c81f22b4f572f8a2110b0b741bb64e5a6427e0a198b2cdc1fbaf85f352a3aa"}, {file = "contourpy-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:53cc3a40635abedbec7f1bde60f8c189c49e84ac180c665f2cd7c162cc454baa"}, - {file = "contourpy-1.1.0-cp310-cp310-win32.whl", hash = "sha256:9b2dd2ca3ac561aceef4c7c13ba654aaa404cf885b187427760d7f7d4c57cff8"}, {file = "contourpy-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:1f795597073b09d631782e7245016a4323cf1cf0b4e06eef7ea6627e06a37ff2"}, {file = "contourpy-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0b7b04ed0961647691cfe5d82115dd072af7ce8846d31a5fac6c142dcce8b882"}, {file = "contourpy-1.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27bc79200c742f9746d7dd51a734ee326a292d77e7d94c8af6e08d1e6c15d545"}, @@ -1182,7 +1181,6 @@ files = [ {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e5cec36c5090e75a9ac9dbd0ff4a8cf7cecd60f1b6dc23a374c7d980a1cd710e"}, {file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f0cbd657e9bde94cd0e33aa7df94fb73c1ab7799378d3b3f902eb8eb2e04a3a"}, {file = "contourpy-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:181cbace49874f4358e2929aaf7ba84006acb76694102e88dd15af861996c16e"}, - {file = "contourpy-1.1.0-cp311-cp311-win32.whl", hash = "sha256:edb989d31065b1acef3828a3688f88b2abb799a7db891c9e282df5ec7e46221b"}, {file = "contourpy-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fb3b7d9e6243bfa1efb93ccfe64ec610d85cfe5aec2c25f97fbbd2e58b531256"}, {file = "contourpy-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bcb41692aa09aeb19c7c213411854402f29f6613845ad2453d30bf421fe68fed"}, {file = "contourpy-1.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5d123a5bc63cd34c27ff9c7ac1cd978909e9c71da12e05be0231c608048bb2ae"}, @@ -1191,7 +1189,6 @@ files = [ {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:317267d915490d1e84577924bd61ba71bf8681a30e0d6c545f577363157e5e94"}, {file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d551f3a442655f3dcc1285723f9acd646ca5858834efeab4598d706206b09c9f"}, {file = "contourpy-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7a117ce7df5a938fe035cad481b0189049e8d92433b4b33aa7fc609344aafa1"}, - {file = "contourpy-1.1.0-cp38-cp38-win32.whl", hash = "sha256:108dfb5b3e731046a96c60bdc46a1a0ebee0760418951abecbe0fc07b5b93b27"}, {file = "contourpy-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d4f26b25b4f86087e7d75e63212756c38546e70f2a92d2be44f80114826e1cd4"}, {file = "contourpy-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc00bb4225d57bff7ebb634646c0ee2a1298402ec10a5fe7af79df9a51c1bfd9"}, {file = "contourpy-1.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:189ceb1525eb0655ab8487a9a9c41f42a73ba52d6789754788d1883fb06b2d8a"}, @@ -1200,7 +1197,6 @@ files = [ {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:143dde50520a9f90e4a2703f367cf8ec96a73042b72e68fcd184e1279962eb6f"}, {file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e94bef2580e25b5fdb183bf98a2faa2adc5b638736b2c0a4da98691da641316a"}, {file = "contourpy-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ed614aea8462735e7d70141374bd7650afd1c3f3cb0c2dbbcbe44e14331bf002"}, - {file = "contourpy-1.1.0-cp39-cp39-win32.whl", hash = "sha256:71551f9520f008b2950bef5f16b0e3587506ef4f23c734b71ffb7b89f8721999"}, {file = "contourpy-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:438ba416d02f82b692e371858143970ed2eb6337d9cdbbede0d8ad9f3d7dd17d"}, {file = "contourpy-1.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a698c6a7a432789e587168573a864a7ea374c6be8d4f31f9d87c001d5a843493"}, {file = "contourpy-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:397b0ac8a12880412da3551a8cb5a187d3298a72802b45a3bd1805e204ad8439"}, @@ -3885,7 +3881,7 @@ files = [ [[package]] name = "langchain-core" -version = "0.1.5" +version = "0.1.6" description = "Building applications with LLMs through composability" optional = false python-versions = ">=3.8.1,<4.0" @@ -4132,16 +4128,6 @@ files = [ {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, @@ -6701,7 +6687,6 @@ files = [ {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, @@ -6709,15 +6694,8 @@ files = [ {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, @@ -6734,7 +6712,6 @@ files = [ {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, @@ -6742,7 +6719,6 @@ files = [ {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, @@ -7714,9 +7690,7 @@ python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:638c2c0b6b4661a4fd264f6fb804eccd392745c5887f9317feb64bb7cb03b3ea"}, {file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3b5036aa326dc2df50cba3c958e29b291a80f604b1afa4c8ce73e78e1c9f01d"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:787af80107fb691934a01889ca8f82a44adedbf5ef3d6ad7d0f0b9ac557e0c34"}, {file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c14eba45983d2f48f7546bb32b47937ee2cafae353646295f0e99f35b14286ab"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0666031df46b9badba9bed00092a1ffa3aa063a5e68fa244acd9f08070e936d3"}, {file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:89a01238fcb9a8af118eaad3ffcc5dedaacbd429dc6fdc43fe430d3a941ff965"}, {file = "SQLAlchemy-2.0.23-cp310-cp310-win32.whl", hash = "sha256:cabafc7837b6cec61c0e1e5c6d14ef250b675fa9c3060ed8a7e38653bd732ff8"}, {file = "SQLAlchemy-2.0.23-cp310-cp310-win_amd64.whl", hash = "sha256:87a3d6b53c39cd173990de2f5f4b83431d534a74f0e2f88bd16eabb5667e65c6"}, @@ -7753,9 +7727,7 @@ files = [ {file = "SQLAlchemy-2.0.23-cp38-cp38-win_amd64.whl", hash = "sha256:964971b52daab357d2c0875825e36584d58f536e920f2968df8d581054eada4b"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:616fe7bcff0a05098f64b4478b78ec2dfa03225c23734d83d6c169eb41a93e55"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0e680527245895aba86afbd5bef6c316831c02aa988d1aad83c47ffe92655e74"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9585b646ffb048c0250acc7dad92536591ffe35dba624bb8fd9b471e25212a35"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4895a63e2c271ffc7a81ea424b94060f7b3b03b4ea0cd58ab5bb676ed02f4221"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cc1d21576f958c42d9aec68eba5c1a7d715e5fc07825a629015fe8e3b0657fb0"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:967c0b71156f793e6662dd839da54f884631755275ed71f1539c95bbada9aaab"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-win32.whl", hash = "sha256:0a8c6aa506893e25a04233bc721c6b6cf844bafd7250535abb56cb6cc1368884"}, {file = "SQLAlchemy-2.0.23-cp39-cp39-win_amd64.whl", hash = "sha256:f3420d00d2cb42432c1d0e44540ae83185ccbbc67a6054dcc8ab5387add6620b"}, @@ -9172,4 +9144,4 @@ extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "as [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" -content-hash = "bccc7bda518d01eb91a86397c0b22b83db9d57ee45c2bca4e46fc8b22ddb6a17" +content-hash = "211766fff312525865b6b28225f61b70b18a0fcda9a3212ea8de7ef4f327c51a" diff --git a/libs/community/pyproject.toml b/libs/community/pyproject.toml index 227b1dac76768..ae6e82286daf7 100644 --- a/libs/community/pyproject.toml +++ b/libs/community/pyproject.toml @@ -141,7 +141,7 @@ wrapt = "^1.15.0" openai = "^1" python-dotenv = "^1.0.0" cassio = "^0.1.0" -tiktoken = "^0.3.2" +tiktoken = ">=0.3.2,<0.6.0" anthropic = "^0.3.11" langchain-core = { path = "../core", develop = true } fireworks-ai = "^0.9.0" diff --git a/libs/community/tests/integration_tests/llms/test_openai.py b/libs/community/tests/integration_tests/llms/test_openai.py index 9d5b8d3cbecaa..c1ec3c5d0ff11 100644 --- a/libs/community/tests/integration_tests/llms/test_openai.py +++ b/libs/community/tests/integration_tests/llms/test_openai.py @@ -22,37 +22,6 @@ def test_openai_call() -> None: assert isinstance(output, str) -def test_openai_model_param() -> None: - llm = OpenAI(model="foo") - assert llm.model_name == "foo" - llm = OpenAI(model_name="foo") - assert llm.model_name == "foo" - - -def test_openai_extra_kwargs() -> None: - """Test extra kwargs to openai.""" - # Check that foo is saved in extra_kwargs. - llm = OpenAI(foo=3, max_tokens=10) - assert llm.max_tokens == 10 - assert llm.model_kwargs == {"foo": 3} - - # Test that if extra_kwargs are provided, they are added to it. - llm = OpenAI(foo=3, model_kwargs={"bar": 2}) - assert llm.model_kwargs == {"foo": 3, "bar": 2} - - # Test that if provided twice it errors - with pytest.raises(ValueError): - OpenAI(foo=3, model_kwargs={"foo": 2}) - - # Test that if explicit param is specified in kwargs it errors - with pytest.raises(ValueError): - OpenAI(model_kwargs={"temperature": 0.2}) - - # Test that "model" cannot be specified in kwargs - with pytest.raises(ValueError): - OpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"}) - - def test_openai_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" llm = OpenAI(max_tokens=10) diff --git a/libs/community/tests/unit_tests/llms/test_openai.py b/libs/community/tests/unit_tests/llms/test_openai.py index 302cc4fa0b14e..3b1c4d8dfed23 100644 --- a/libs/community/tests/unit_tests/llms/test_openai.py +++ b/libs/community/tests/unit_tests/llms/test_openai.py @@ -34,6 +34,10 @@ def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAI(model_kwargs={"model_name": "foo"}) + # Test that "model" cannot be specified in kwargs + with pytest.raises(ValueError): + OpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"}) + @pytest.mark.requires("openai") def test_openai_incorrect_field() -> None: diff --git a/libs/core/langchain_core/load/mapping.py b/libs/core/langchain_core/load/mapping.py index dcec6affb406b..0c9b45605fd3e 100644 --- a/libs/core/langchain_core/load/mapping.py +++ b/libs/core/langchain_core/load/mapping.py @@ -90,9 +90,9 @@ "MessagesPlaceholder", ), ("langchain", "llms", "openai", "OpenAI"): ( - "langchain", + "langchain_openai", "llms", - "openai", + "base", "OpenAI", ), ("langchain", "prompts", "chat", "ChatPromptTemplate"): ( @@ -203,9 +203,9 @@ "StrOutputParser", ), ("langchain", "chat_models", "openai", "ChatOpenAI"): ( - "langchain", + "langchain_openai", "chat_models", - "openai", + "base", "ChatOpenAI", ), ("langchain", "output_parsers", "list", "CommaSeparatedListOutputParser"): ( @@ -221,9 +221,9 @@ "RunnableParallel", ), ("langchain", "chat_models", "azure_openai", "AzureChatOpenAI"): ( - "langchain", + "langchain_openai", "chat_models", - "azure_openai", + "azure", "AzureChatOpenAI", ), ("langchain", "chat_models", "bedrock", "BedrockChat"): ( @@ -323,9 +323,9 @@ "GooglePalm", ), ("langchain", "llms", "openai", "AzureOpenAI"): ( - "langchain", + "langchain_openai", "llms", - "openai", + "azure", "AzureOpenAI", ), ("langchain", "llms", "replicate", "Replicate"): ( diff --git a/libs/core/langchain_core/utils/function_calling.py b/libs/core/langchain_core/utils/function_calling.py new file mode 100644 index 0000000000000..b943eeaef5e8e --- /dev/null +++ b/libs/core/langchain_core/utils/function_calling.py @@ -0,0 +1,202 @@ +"""Methods for creating function specs in the style of OpenAI Functions""" + +import inspect +from typing import ( + Any, + Callable, + Dict, + List, + Literal, + Optional, + Tuple, + Type, + Union, + cast, +) + +from typing_extensions import TypedDict + +from langchain_core.pydantic_v1 import BaseModel +from langchain_core.utils.json_schema import dereference_refs + +PYTHON_TO_JSON_TYPES = { + "str": "string", + "int": "number", + "float": "number", + "bool": "boolean", +} + + +class FunctionDescription(TypedDict): + """Representation of a callable function to the OpenAI API.""" + + name: str + """The name of the function.""" + description: str + """A description of the function.""" + parameters: dict + """The parameters of the function.""" + + +class ToolDescription(TypedDict): + """Representation of a callable function to the OpenAI API.""" + + type: Literal["function"] + function: FunctionDescription + + +def convert_pydantic_to_openai_function( + model: Type[BaseModel], + *, + name: Optional[str] = None, + description: Optional[str] = None, +) -> FunctionDescription: + """Converts a Pydantic model to a function description for the OpenAI API.""" + schema = dereference_refs(model.schema()) + schema.pop("definitions", None) + return { + "name": name or schema["title"], + "description": description or schema["description"], + "parameters": schema, + } + + +def convert_pydantic_to_openai_tool( + model: Type[BaseModel], + *, + name: Optional[str] = None, + description: Optional[str] = None, +) -> ToolDescription: + """Converts a Pydantic model to a function description for the OpenAI API.""" + function = convert_pydantic_to_openai_function( + model, name=name, description=description + ) + return {"type": "function", "function": function} + + +def _get_python_function_name(function: Callable) -> str: + """Get the name of a Python function.""" + return function.__name__ + + +def _parse_python_function_docstring(function: Callable) -> Tuple[str, dict]: + """Parse the function and argument descriptions from the docstring of a function. + + Assumes the function docstring follows Google Python style guide. + """ + docstring = inspect.getdoc(function) + if docstring: + docstring_blocks = docstring.split("\n\n") + descriptors = [] + args_block = None + past_descriptors = False + for block in docstring_blocks: + if block.startswith("Args:"): + args_block = block + break + elif block.startswith("Returns:") or block.startswith("Example:"): + # Don't break in case Args come after + past_descriptors = True + elif not past_descriptors: + descriptors.append(block) + else: + continue + description = " ".join(descriptors) + else: + description = "" + args_block = None + arg_descriptions = {} + if args_block: + arg = None + for line in args_block.split("\n")[1:]: + if ":" in line: + arg, desc = line.split(":", maxsplit=1) + arg_descriptions[arg.strip()] = desc.strip() + elif arg: + arg_descriptions[arg.strip()] += " " + line.strip() + return description, arg_descriptions + + +def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -> dict: + """Get JsonSchema describing a Python functions arguments. + + Assumes all function arguments are of primitive types (int, float, str, bool) or + are subclasses of pydantic.BaseModel. + """ + properties = {} + annotations = inspect.getfullargspec(function).annotations + for arg, arg_type in annotations.items(): + if arg == "return": + continue + if isinstance(arg_type, type) and issubclass(arg_type, BaseModel): + # Mypy error: + # "type" has no attribute "schema" + properties[arg] = arg_type.schema() # type: ignore[attr-defined] + elif arg_type.__name__ in PYTHON_TO_JSON_TYPES: + properties[arg] = {"type": PYTHON_TO_JSON_TYPES[arg_type.__name__]} + if arg in arg_descriptions: + if arg not in properties: + properties[arg] = {} + properties[arg]["description"] = arg_descriptions[arg] + return properties + + +def _get_python_function_required_args(function: Callable) -> List[str]: + """Get the required arguments for a Python function.""" + spec = inspect.getfullargspec(function) + required = spec.args[: -len(spec.defaults)] if spec.defaults else spec.args + required += [k for k in spec.kwonlyargs if k not in (spec.kwonlydefaults or {})] + + is_class = type(function) is type + if is_class and required[0] == "self": + required = required[1:] + return required + + +def convert_python_function_to_openai_function( + function: Callable, +) -> Dict[str, Any]: + """Convert a Python function to an OpenAI function-calling API compatible dict. + + Assumes the Python function has type hints and a docstring with a description. If + the docstring has Google Python style argument descriptions, these will be + included as well. + """ + description, arg_descriptions = _parse_python_function_docstring(function) + return { + "name": _get_python_function_name(function), + "description": description, + "parameters": { + "type": "object", + "properties": _get_python_function_arguments(function, arg_descriptions), + "required": _get_python_function_required_args(function), + }, + } + + +def convert_to_openai_function( + function: Union[Dict[str, Any], Type[BaseModel], Callable], +) -> Dict[str, Any]: + """Convert a raw function/class to an OpenAI function. + + Args: + function: Either a dictionary, a pydantic.BaseModel class, or a Python function. + If a dictionary is passed in, it is assumed to already be a valid OpenAI + function. + + Returns: + A dict version of the passed in function which is compatible with the + OpenAI function-calling API. + """ + if isinstance(function, dict): + return function + elif isinstance(function, type) and issubclass(function, BaseModel): + return cast(Dict, convert_pydantic_to_openai_function(function)) + elif callable(function): + return convert_python_function_to_openai_function(function) + + else: + raise ValueError( + f"Unsupported function type {type(function)}. Functions must be passed in" + f" as Dict, pydantic.BaseModel, or Callable." + ) diff --git a/libs/langchain/langchain/chains/openai_functions/base.py b/libs/langchain/langchain/chains/openai_functions/base.py index da3aef2c77351..426a41a513150 100644 --- a/libs/langchain/langchain/chains/openai_functions/base.py +++ b/libs/langchain/langchain/chains/openai_functions/base.py @@ -1,16 +1,12 @@ """Methods for creating chains that use OpenAI function-calling APIs.""" -import inspect from typing import ( Any, Callable, Dict, - List, Optional, Sequence, - Tuple, Type, Union, - cast, ) from langchain_core.output_parsers import ( @@ -21,6 +17,10 @@ from langchain_core.prompts import BasePromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable +from langchain_core.utils.function_calling import ( + PYTHON_TO_JSON_TYPES, + convert_to_openai_function, +) from langchain.base_language import BaseLanguageModel from langchain.chains import LLMChain @@ -29,142 +29,6 @@ PydanticAttrOutputFunctionsParser, PydanticOutputFunctionsParser, ) -from langchain.utils.openai_functions import convert_pydantic_to_openai_function - -PYTHON_TO_JSON_TYPES = { - "str": "string", - "int": "number", - "float": "number", - "bool": "boolean", -} - - -def _get_python_function_name(function: Callable) -> str: - """Get the name of a Python function.""" - return function.__name__ - - -def _parse_python_function_docstring(function: Callable) -> Tuple[str, dict]: - """Parse the function and argument descriptions from the docstring of a function. - - Assumes the function docstring follows Google Python style guide. - """ - docstring = inspect.getdoc(function) - if docstring: - docstring_blocks = docstring.split("\n\n") - descriptors = [] - args_block = None - past_descriptors = False - for block in docstring_blocks: - if block.startswith("Args:"): - args_block = block - break - elif block.startswith("Returns:") or block.startswith("Example:"): - # Don't break in case Args come after - past_descriptors = True - elif not past_descriptors: - descriptors.append(block) - else: - continue - description = " ".join(descriptors) - else: - description = "" - args_block = None - arg_descriptions = {} - if args_block: - arg = None - for line in args_block.split("\n")[1:]: - if ":" in line: - arg, desc = line.split(":", maxsplit=1) - arg_descriptions[arg.strip()] = desc.strip() - elif arg: - arg_descriptions[arg.strip()] += " " + line.strip() - return description, arg_descriptions - - -def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -> dict: - """Get JsonSchema describing a Python functions arguments. - - Assumes all function arguments are of primitive types (int, float, str, bool) or - are subclasses of pydantic.BaseModel. - """ - properties = {} - annotations = inspect.getfullargspec(function).annotations - for arg, arg_type in annotations.items(): - if arg == "return": - continue - if isinstance(arg_type, type) and issubclass(arg_type, BaseModel): - # Mypy error: - # "type" has no attribute "schema" - properties[arg] = arg_type.schema() # type: ignore[attr-defined] - elif arg_type.__name__ in PYTHON_TO_JSON_TYPES: - properties[arg] = {"type": PYTHON_TO_JSON_TYPES[arg_type.__name__]} - if arg in arg_descriptions: - if arg not in properties: - properties[arg] = {} - properties[arg]["description"] = arg_descriptions[arg] - return properties - - -def _get_python_function_required_args(function: Callable) -> List[str]: - """Get the required arguments for a Python function.""" - spec = inspect.getfullargspec(function) - required = spec.args[: -len(spec.defaults)] if spec.defaults else spec.args - required += [k for k in spec.kwonlyargs if k not in (spec.kwonlydefaults or {})] - - is_class = type(function) is type - if is_class and required[0] == "self": - required = required[1:] - return required - - -def convert_python_function_to_openai_function( - function: Callable, -) -> Dict[str, Any]: - """Convert a Python function to an OpenAI function-calling API compatible dict. - - Assumes the Python function has type hints and a docstring with a description. If - the docstring has Google Python style argument descriptions, these will be - included as well. - """ - description, arg_descriptions = _parse_python_function_docstring(function) - return { - "name": _get_python_function_name(function), - "description": description, - "parameters": { - "type": "object", - "properties": _get_python_function_arguments(function, arg_descriptions), - "required": _get_python_function_required_args(function), - }, - } - - -def convert_to_openai_function( - function: Union[Dict[str, Any], Type[BaseModel], Callable], -) -> Dict[str, Any]: - """Convert a raw function/class to an OpenAI function. - - Args: - function: Either a dictionary, a pydantic.BaseModel class, or a Python function. - If a dictionary is passed in, it is assumed to already be a valid OpenAI - function. - - Returns: - A dict version of the passed in function which is compatible with the - OpenAI function-calling API. - """ - if isinstance(function, dict): - return function - elif isinstance(function, type) and issubclass(function, BaseModel): - return cast(Dict, convert_pydantic_to_openai_function(function)) - elif callable(function): - return convert_python_function_to_openai_function(function) - - else: - raise ValueError( - f"Unsupported function type {type(function)}. Functions must be passed in" - f" as Dict, pydantic.BaseModel, or Callable." - ) def get_openai_output_parser( @@ -557,3 +421,14 @@ class _OutputFormatter(BaseModel): output_parser=output_parser, **kwargs, ) + + +__all__ = [ + "create_openai_fn_chain", + "create_openai_fn_runnable", + "create_structured_output_chain", + "create_structured_output_runnable", + "get_openai_output_parser", + "PYTHON_TO_JSON_TYPES", + "convert_to_openai_function", +] diff --git a/libs/langchain/poetry.lock b/libs/langchain/poetry.lock index 45b7fc93e12c7..fe67e3865e6ad 100644 --- a/libs/langchain/poetry.lock +++ b/libs/langchain/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. [[package]] name = "aiodns" @@ -2358,7 +2358,7 @@ files = [ {file = "greenlet-3.0.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0b72b802496cccbd9b31acea72b6f87e7771ccfd7f7927437d592e5c92ed703c"}, {file = "greenlet-3.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:527cd90ba3d8d7ae7dceb06fda619895768a46a1b4e423bdb24c1969823b8362"}, {file = "greenlet-3.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:37f60b3a42d8b5499be910d1267b24355c495064f271cfe74bf28b17b099133c"}, - {file = "greenlet-3.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1482fba7fbed96ea7842b5a7fc11d61727e8be75a077e603e8ab49d24e234383"}, + {file = "greenlet-3.0.0-cp311-universal2-macosx_10_9_universal2.whl", hash = "sha256:c3692ecf3fe754c8c0f2c95ff19626584459eab110eaab66413b1e7425cd84e9"}, {file = "greenlet-3.0.0-cp312-cp312-macosx_13_0_arm64.whl", hash = "sha256:be557119bf467d37a8099d91fbf11b2de5eb1fd5fc5b91598407574848dc910f"}, {file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73b2f1922a39d5d59cc0e597987300df3396b148a9bd10b76a058a2f2772fc04"}, {file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1e22c22f7826096ad503e9bb681b05b8c1f5a8138469b255eb91f26a76634f2"}, @@ -2368,6 +2368,7 @@ files = [ {file = "greenlet-3.0.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:952256c2bc5b4ee8df8dfc54fc4de330970bf5d79253c863fb5e6761f00dda35"}, {file = "greenlet-3.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:269d06fa0f9624455ce08ae0179430eea61085e3cf6457f05982b37fd2cefe17"}, {file = "greenlet-3.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9adbd8ecf097e34ada8efde9b6fec4dd2a903b1e98037adf72d12993a1c80b51"}, + {file = "greenlet-3.0.0-cp312-universal2-macosx_10_9_universal2.whl", hash = "sha256:553d6fb2324e7f4f0899e5ad2c427a4579ed4873f42124beba763f16032959af"}, {file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6b5ce7f40f0e2f8b88c28e6691ca6806814157ff05e794cdd161be928550f4c"}, {file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecf94aa539e97a8411b5ea52fc6ccd8371be9550c4041011a091eb8b3ca1d810"}, {file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80dcd3c938cbcac986c5c92779db8e8ce51a89a849c135172c88ecbdc8c056b7"}, @@ -3475,7 +3476,7 @@ url = "../community" [[package]] name = "langchain-core" -version = "0.1.5" +version = "0.1.6" description = "Building applications with LLMs through composability" optional = false python-versions = ">=3.8.1,<4.0" @@ -3499,6 +3500,25 @@ extended-testing = ["jinja2 (>=3,<4)"] type = "directory" url = "../core" +[[package]] +name = "langchain-openai" +version = "0.0.1" +description = "An integration package connecting OpenAI and LangChain" +optional = true +python-versions = ">=3.8.1,<4.0" +files = [] +develop = false + +[package.dependencies] +langchain-core = ">=0.0.12" +numpy = "^1" +openai = "^1.6.1" +tiktoken = "^0.5.2" + +[package.source] +type = "directory" +url = "../partners/openai" + [[package]] name = "langsmith" version = "0.0.77" @@ -3727,16 +3747,6 @@ files = [ {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, @@ -4622,22 +4632,23 @@ sympy = "*" [[package]] name = "openai" -version = "1.2.4" +version = "1.6.1" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.2.4-py3-none-any.whl", hash = "sha256:53927a2ca276eec0a0efdc1ae829f74a51f49b7d3e14cc6f820aeafb0abfd802"}, - {file = "openai-1.2.4.tar.gz", hash = "sha256:d99a474049376be431d9b4dec3a5c895dd76e19165748c5944e80b7905d1b1ff"}, + {file = "openai-1.6.1-py3-none-any.whl", hash = "sha256:bc9f774838d67ac29fb24cdeb2d58faf57de8b311085dcd1348f7aa02a96c7ee"}, + {file = "openai-1.6.1.tar.gz", hash = "sha256:d553ca9dbf9486b08e75b09e8671e4f638462aaadccfced632bf490fc3d75fa2"}, ] [package.dependencies] -anyio = ">=3.5.0,<4" +anyio = ">=3.5.0,<5" distro = ">=1.7.0,<2" httpx = ">=0.23.0,<1" pydantic = ">=1.9.0,<3" +sniffio = "*" tqdm = ">4" -typing-extensions = ">=4.5,<5" +typing-extensions = ">=4.7,<5" [package.extras] datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] @@ -6305,7 +6316,6 @@ files = [ {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, @@ -6313,15 +6323,8 @@ files = [ {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, @@ -6338,7 +6341,6 @@ files = [ {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, @@ -6346,7 +6348,6 @@ files = [ {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, @@ -7554,54 +7555,6 @@ description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.22-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f146c61ae128ab43ea3a0955de1af7e1633942c2b2b4985ac51cc292daf33222"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:875de9414393e778b655a3d97d60465eb3fae7c919e88b70cc10b40b9f56042d"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13790cb42f917c45c9c850b39b9941539ca8ee7917dacf099cc0b569f3d40da7"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e04ab55cf49daf1aeb8c622c54d23fa4bec91cb051a43cc24351ba97e1dd09f5"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a42c9fa3abcda0dcfad053e49c4f752eef71ecd8c155221e18b99d4224621176"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:14cd3bcbb853379fef2cd01e7c64a5d6f1d005406d877ed9509afb7a05ff40a5"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-win32.whl", hash = "sha256:d143c5a9dada696bcfdb96ba2de4a47d5a89168e71d05a076e88a01386872f97"}, - {file = "SQLAlchemy-2.0.22-cp310-cp310-win_amd64.whl", hash = "sha256:ccd87c25e4c8559e1b918d46b4fa90b37f459c9b4566f1dfbce0eb8122571547"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4f6ff392b27a743c1ad346d215655503cec64405d3b694228b3454878bf21590"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f776c2c30f0e5f4db45c3ee11a5f2a8d9de68e81eb73ec4237de1e32e04ae81c"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8f1792d20d2f4e875ce7a113f43c3561ad12b34ff796b84002a256f37ce9437"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d80eeb5189d7d4b1af519fc3f148fe7521b9dfce8f4d6a0820e8f5769b005051"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:69fd9e41cf9368afa034e1c81f3570afb96f30fcd2eb1ef29cb4d9371c6eece2"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54bcceaf4eebef07dadfde424f5c26b491e4a64e61761dea9459103ecd6ccc95"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-win32.whl", hash = "sha256:7ee7ccf47aa503033b6afd57efbac6b9e05180f492aeed9fcf70752556f95624"}, - {file = "SQLAlchemy-2.0.22-cp311-cp311-win_amd64.whl", hash = "sha256:b560f075c151900587ade06706b0c51d04b3277c111151997ea0813455378ae0"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:2c9bac865ee06d27a1533471405ad240a6f5d83195eca481f9fc4a71d8b87df8"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:625b72d77ac8ac23da3b1622e2da88c4aedaee14df47c8432bf8f6495e655de2"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b39a6e21110204a8c08d40ff56a73ba542ec60bab701c36ce721e7990df49fb9"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53a766cb0b468223cafdf63e2d37f14a4757476157927b09300c8c5832d88560"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0e1ce8ebd2e040357dde01a3fb7d30d9b5736b3e54a94002641dfd0aa12ae6ce"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:505f503763a767556fa4deae5194b2be056b64ecca72ac65224381a0acab7ebe"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-win32.whl", hash = "sha256:154a32f3c7b00de3d090bc60ec8006a78149e221f1182e3edcf0376016be9396"}, - {file = "SQLAlchemy-2.0.22-cp312-cp312-win_amd64.whl", hash = "sha256:129415f89744b05741c6f0b04a84525f37fbabe5dc3774f7edf100e7458c48cd"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3940677d341f2b685a999bffe7078697b5848a40b5f6952794ffcf3af150c301"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55914d45a631b81a8a2cb1a54f03eea265cf1783241ac55396ec6d735be14883"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2096d6b018d242a2bcc9e451618166f860bb0304f590d205173d317b69986c95"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:19c6986cf2fb4bc8e0e846f97f4135a8e753b57d2aaaa87c50f9acbe606bd1db"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6ac28bd6888fe3c81fbe97584eb0b96804bd7032d6100b9701255d9441373ec1"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-win32.whl", hash = "sha256:cb9a758ad973e795267da334a92dd82bb7555cb36a0960dcabcf724d26299db8"}, - {file = "SQLAlchemy-2.0.22-cp37-cp37m-win_amd64.whl", hash = "sha256:40b1206a0d923e73aa54f0a6bd61419a96b914f1cd19900b6c8226899d9742ad"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3aa1472bf44f61dd27987cd051f1c893b7d3b17238bff8c23fceaef4f1133868"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:56a7e2bb639df9263bf6418231bc2a92a773f57886d371ddb7a869a24919face"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ccca778c0737a773a1ad86b68bda52a71ad5950b25e120b6eb1330f0df54c3d0"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c6c3e9350f9fb16de5b5e5fbf17b578811a52d71bb784cc5ff71acb7de2a7f9"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:564e9f9e4e6466273dbfab0e0a2e5fe819eec480c57b53a2cdee8e4fdae3ad5f"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:af66001d7b76a3fab0d5e4c1ec9339ac45748bc4a399cbc2baa48c1980d3c1f4"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-win32.whl", hash = "sha256:9e55dff5ec115316dd7a083cdc1a52de63693695aecf72bc53a8e1468ce429e5"}, - {file = "SQLAlchemy-2.0.22-cp38-cp38-win_amd64.whl", hash = "sha256:4e869a8ff7ee7a833b74868a0887e8462445ec462432d8cbeff5e85f475186da"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9886a72c8e6371280cb247c5d32c9c8fa141dc560124348762db8a8b236f8692"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a571bc8ac092a3175a1d994794a8e7a1f2f651e7c744de24a19b4f740fe95034"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8db5ba8b7da759b727faebc4289a9e6a51edadc7fc32207a30f7c6203a181592"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b0b3f2686c3f162123adba3cb8b626ed7e9b8433ab528e36ed270b4f70d1cdb"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c1fea8c0abcb070ffe15311853abfda4e55bf7dc1d4889497b3403629f3bf00"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4bb062784f37b2d75fd9b074c8ec360ad5df71f933f927e9e95c50eb8e05323c"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-win32.whl", hash = "sha256:58a3aba1bfb32ae7af68da3f277ed91d9f57620cf7ce651db96636790a78b736"}, - {file = "SQLAlchemy-2.0.22-cp39-cp39-win_amd64.whl", hash = "sha256:92e512a6af769e4725fa5b25981ba790335d42c5977e94ded07db7d641490a85"}, - {file = "SQLAlchemy-2.0.22-py3-none-any.whl", hash = "sha256:3076740335e4aaadd7deb3fe6dcb96b3015f1613bd190a4e1634e1b99b02ec86"}, {file = "SQLAlchemy-2.0.22.tar.gz", hash = "sha256:5434cc601aa17570d79e5377f5fd45ff92f9379e2abed0be5e8c2fba8d353d2b"}, ] @@ -7611,7 +7564,7 @@ typing-extensions = ">=4.2.0" [package.extras] aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] -aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"] +aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] @@ -7621,7 +7574,7 @@ mssql-pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)"] mysql = ["mysqlclient (>=1.4.0)"] mysql-connector = ["mysql-connector-python"] -oracle = ["cx-oracle (>=7)"] +oracle = ["cx_oracle (>=7)"] oracle-oracledb = ["oracledb (>=1.0.1)"] postgresql = ["psycopg2 (>=2.7)"] postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] @@ -7631,7 +7584,7 @@ postgresql-psycopg2binary = ["psycopg2-binary"] postgresql-psycopg2cffi = ["psycopg2cffi"] postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] pymysql = ["pymysql"] -sqlcipher = ["sqlcipher3-binary"] +sqlcipher = ["sqlcipher3_binary"] [[package]] name = "sqlite-vss" @@ -7839,40 +7792,47 @@ files = [ [[package]] name = "tiktoken" -version = "0.3.3" +version = "0.5.2" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" optional = false python-versions = ">=3.8" files = [ - {file = "tiktoken-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1f37fa75ba70c1bc7806641e8ccea1fba667d23e6341a1591ea333914c226a9"}, - {file = "tiktoken-0.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3d7296c38392a943c2ccc0b61323086b8550cef08dcf6855de9949890dbc1fd3"}, - {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c84491965e139a905280ac28b74baaa13445b3678e07f96767089ad1ef5ee7b"}, - {file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65970d77ea85ce6c7fce45131da9258cd58a802ffb29ead8f5552e331c025b2b"}, - {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bd3f72d0ba7312c25c1652292121a24c8f1711207b63c6d8dab21afe4be0bf04"}, - {file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:719c9e13432602dc496b24f13e3c3ad3ec0d2fbdb9aace84abfb95e9c3a425a4"}, - {file = "tiktoken-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:dc00772284c94e65045b984ed7e9f95d000034f6b2411df252011b069bd36217"}, - {file = "tiktoken-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db2c40f79f8f7a21a9fdbf1c6dee32dea77b0d7402355dc584a3083251d2e15"}, - {file = "tiktoken-0.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3c0f2231aa3829a1a431a882201dc27858634fd9989898e0f7d991dbc6bcc9d"}, - {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48c13186a479de16cfa2c72bb0631fa9c518350a5b7569e4d77590f7fee96be9"}, - {file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6674e4e37ab225020135cd66a392589623d5164c6456ba28cc27505abed10d9e"}, - {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4a0c1357f6191211c544f935d5aa3cb9d7abd118c8f3c7124196d5ecd029b4af"}, - {file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2e948d167fc3b04483cbc33426766fd742e7cefe5346cd62b0cbd7279ef59539"}, - {file = "tiktoken-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:5dca434c8680b987eacde2dbc449e9ea4526574dbf9f3d8938665f638095be82"}, - {file = "tiktoken-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:984758ebc07cd8c557345697c234f1f221bd730b388f4340dd08dffa50213a01"}, - {file = "tiktoken-0.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:891012f29e159a989541ae47259234fb29ff88c22e1097567316e27ad33a3734"}, - {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210f8602228e4c5d706deeb389da5a152b214966a5aa558eec87b57a1969ced5"}, - {file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd783564f80d4dc44ff0a64b13756ded8390ed2548549aefadbe156af9188307"}, - {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03f64bde9b4eb8338bf49c8532bfb4c3578f6a9a6979fc176d939f9e6f68b408"}, - {file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1ac369367b6f5e5bd80e8f9a7766ac2a9c65eda2aa856d5f3c556d924ff82986"}, - {file = "tiktoken-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:94600798891f78db780e5aa9321456cf355e54a4719fbd554147a628de1f163f"}, - {file = "tiktoken-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e59db6fca8d5ccea302fe2888917364446d6f4201a25272a1a1c44975c65406a"}, - {file = "tiktoken-0.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:19340d8ba4d6fd729b2e3a096a547ded85f71012843008f97475f9db484869ee"}, - {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542686cbc9225540e3a10f472f82fa2e1bebafce2233a211dee8459e95821cfd"}, - {file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a43612b2a09f4787c050163a216bf51123851859e9ab128ad03d2729826cde9"}, - {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a11674f0275fa75fb59941b703650998bd4acb295adbd16fc8af17051aaed19d"}, - {file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65fc0a449630bab28c30b4adec257442a4706d79cffc2337c1d9df3e91825cdd"}, - {file = "tiktoken-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0b9a7a9a8b781a50ee9289e85e28771d7e113cc0c656eadfb6fc6d3a106ff9bb"}, - {file = "tiktoken-0.3.3.tar.gz", hash = "sha256:97b58b7bfda945791ec855e53d166e8ec20c6378942b93851a6c919ddf9d0496"}, + {file = "tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8c4e654282ef05ec1bd06ead22141a9a1687991cef2c6a81bdd1284301abc71d"}, + {file = "tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b3134aa24319f42c27718c6967f3c1916a38a715a0fa73d33717ba121231307"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6092e6e77730929c8c6a51bb0d7cfdf1b72b63c4d033d6258d1f2ee81052e9e5"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72ad8ae2a747622efae75837abba59be6c15a8f31b4ac3c6156bc56ec7a8e631"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51cba7c8711afa0b885445f0637f0fcc366740798c40b981f08c5f984e02c9d1"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3d8c7d2c9313f8e92e987d585ee2ba0f7c40a0de84f4805b093b634f792124f5"}, + {file = "tiktoken-0.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:692eca18c5fd8d1e0dde767f895c17686faaa102f37640e884eecb6854e7cca7"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:138d173abbf1ec75863ad68ca289d4da30caa3245f3c8d4bfb274c4d629a2f77"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7388fdd684690973fdc450b47dfd24d7f0cbe658f58a576169baef5ae4658607"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a114391790113bcff670c70c24e166a841f7ea8f47ee2fe0e71e08b49d0bf2d4"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca96f001e69f6859dd52926d950cfcc610480e920e576183497ab954e645e6ac"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:15fed1dd88e30dfadcdd8e53a8927f04e1f6f81ad08a5ca824858a593ab476c7"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:93f8e692db5756f7ea8cb0cfca34638316dcf0841fb8469de8ed7f6a015ba0b0"}, + {file = "tiktoken-0.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:bcae1c4c92df2ffc4fe9f475bf8148dbb0ee2404743168bbeb9dcc4b79dc1fdd"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b76a1e17d4eb4357d00f0622d9a48ffbb23401dcf36f9716d9bd9c8e79d421aa"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:01d8b171bb5df4035580bc26d4f5339a6fd58d06f069091899d4a798ea279d3e"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42adf7d4fb1ed8de6e0ff2e794a6a15005f056a0d83d22d1d6755a39bffd9e7f"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3f894dbe0adb44609f3d532b8ea10820d61fdcb288b325a458dfc60fefb7db"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58ccfddb4e62f0df974e8f7e34a667981d9bb553a811256e617731bf1d007d19"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58902a8bad2de4268c2a701f1c844d22bfa3cbcc485b10e8e3e28a050179330b"}, + {file = "tiktoken-0.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:5e39257826d0647fcac403d8fa0a474b30d02ec8ffc012cfaf13083e9b5e82c5"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8bde3b0fbf09a23072d39c1ede0e0821f759b4fa254a5f00078909158e90ae1f"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2ddee082dcf1231ccf3a591d234935e6acf3e82ee28521fe99af9630bc8d2a60"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35c057a6a4e777b5966a7540481a75a31429fc1cb4c9da87b71c8b75b5143037"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c4a049b87e28f1dc60509f8eb7790bc8d11f9a70d99b9dd18dfdd81a084ffe6"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5bf5ce759089f4f6521ea6ed89d8f988f7b396e9f4afb503b945f5c949c6bec2"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0c964f554af1a96884e01188f480dad3fc224c4bbcf7af75d4b74c4b74ae0125"}, + {file = "tiktoken-0.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:368dd5726d2e8788e47ea04f32e20f72a2012a8a67af5b0b003d1e059f1d30a3"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2deef9115b8cd55536c0a02c0203512f8deb2447f41585e6d929a0b878a0dd2"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2ed7d380195affbf886e2f8b92b14edfe13f4768ff5fc8de315adba5b773815e"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c76fce01309c8140ffe15eb34ded2bb94789614b7d1d09e206838fc173776a18"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60a5654d6a2e2d152637dd9a880b4482267dfc8a86ccf3ab1cec31a8c76bfae8"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:41d4d3228e051b779245a8ddd21d4336f8975563e92375662f42d05a19bdff41"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c1cdec2c92fcde8c17a50814b525ae6a88e8e5b02030dc120b76e11db93f13"}, + {file = "tiktoken-0.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:84ddb36faedb448a50b246e13d1b6ee3437f60b7169b723a4b2abad75e914f3e"}, + {file = "tiktoken-0.5.2.tar.gz", hash = "sha256:f54c581f134a8ea96ce2023ab221d4d4d81ab614efa0b2fbce926387deb56c80"}, ] [package.dependencies] @@ -9093,7 +9053,7 @@ cli = ["typer"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] -extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "couchbase", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openai", "openapi-pydantic", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict"] +extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "couchbase", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "langchain-openai", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openai", "openapi-pydantic", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict"] javascript = ["esprima"] llms = ["clarifai", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"] openai = ["openai", "tiktoken"] @@ -9103,4 +9063,4 @@ text-helpers = ["chardet"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" -content-hash = "00dbfc7d9700a8ad488f42c4100abf615067e873bb6593b13a34738248606e83" +content-hash = "aa9f54772221cb8f6faa71e643fab30fc72761366b65cde9fd408e424478d77a" diff --git a/libs/langchain/pyproject.toml b/libs/langchain/pyproject.toml index f331dbd5eeee2..f11443c1f38ab 100644 --- a/libs/langchain/pyproject.toml +++ b/libs/langchain/pyproject.toml @@ -110,6 +110,7 @@ databricks-vectorsearch = {version = "^0.21", optional = true} couchbase = {version = "^4.1.9", optional = true} dgml-utils = {version = "^0.3.0", optional = true} datasets = {version = "^2.15.0", optional = true} +langchain-openai = {path = "../partners/openai", optional = true} [tool.poetry.group.test] optional = true @@ -164,7 +165,7 @@ wrapt = "^1.15.0" openai = "^1" python-dotenv = "^1.0.0" cassio = "^0.1.0" -tiktoken = "^0.3.2" +tiktoken = ">=0.3.2,<0.6.0" anthropic = "^0.3.11" langchain-core = {path = "../core", develop = true} langchain-community = {path = "../community", develop = true} @@ -294,6 +295,7 @@ extended_testing = [ "couchbase", "dgml-utils", "cohere", + "langchain-openai", ] [tool.ruff] diff --git a/libs/langchain/tests/unit_tests/load/test_load.py b/libs/langchain/tests/unit_tests/load/test_load.py index 7fb7eb455b6e7..4266c3f45bfd7 100644 --- a/libs/langchain/tests/unit_tests/load/test_load.py +++ b/libs/langchain/tests/unit_tests/load/test_load.py @@ -1,7 +1,7 @@ """Test for Serializable base class""" import pytest -from langchain_community.llms.openai import OpenAI +from langchain_community.llms.openai import OpenAI as CommunityOpenAI from langchain_core.load.dump import dumpd, dumps from langchain_core.load.load import load, loads from langchain_core.prompts.prompt import PromptTemplate @@ -13,20 +13,25 @@ class NotSerializable: pass -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_loads_openai_llm() -> None: - llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") + from langchain_openai import OpenAI + + llm = CommunityOpenAI(model="davinci", temperature=0.5, openai_api_key="hello") llm_string = dumps(llm) llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"}) assert llm2 == llm - assert dumps(llm2) == llm_string + llm_string_2 = dumps(llm2) + assert llm_string_2 == llm_string assert isinstance(llm2, OpenAI) -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_loads_llmchain() -> None: - llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") + from langchain_openai import OpenAI + + llm = CommunityOpenAI(model="davinci", temperature=0.5, openai_api_key="hello") prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_string = dumps(chain) @@ -39,10 +44,12 @@ def test_loads_llmchain() -> None: assert isinstance(chain2.prompt, PromptTemplate) -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_loads_llmchain_env() -> None: import os + from langchain_openai import OpenAI + has_env = "OPENAI_API_KEY" in os.environ if not has_env: os.environ["OPENAI_API_KEY"] = "env_variable" @@ -65,7 +72,7 @@ def test_loads_llmchain_env() -> None: @pytest.mark.requires("openai") def test_loads_llmchain_with_non_serializable_arg() -> None: - llm = OpenAI( + llm = CommunityOpenAI( model="davinci", temperature=0.5, openai_api_key="hello", @@ -78,9 +85,11 @@ def test_loads_llmchain_with_non_serializable_arg() -> None: loads(chain_string, secrets_map={"OPENAI_API_KEY": "hello"}) -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_load_openai_llm() -> None: - llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") + from langchain_openai import OpenAI + + llm = CommunityOpenAI(model="davinci", temperature=0.5, openai_api_key="hello") llm_obj = dumpd(llm) llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"}) @@ -89,9 +98,11 @@ def test_load_openai_llm() -> None: assert isinstance(llm2, OpenAI) -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_load_llmchain() -> None: - llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") + from langchain_openai import OpenAI + + llm = CommunityOpenAI(model="davinci", temperature=0.5, openai_api_key="hello") prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_obj = dumpd(chain) @@ -104,15 +115,17 @@ def test_load_llmchain() -> None: assert isinstance(chain2.prompt, PromptTemplate) -@pytest.mark.requires("openai") +@pytest.mark.requires("openai", "langchain_openai") def test_load_llmchain_env() -> None: import os + from langchain_openai import OpenAI + has_env = "OPENAI_API_KEY" in os.environ if not has_env: os.environ["OPENAI_API_KEY"] = "env_variable" - llm = OpenAI(model="davinci", temperature=0.5) + llm = CommunityOpenAI(model="davinci", temperature=0.5) prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_obj = dumpd(chain) @@ -130,7 +143,7 @@ def test_load_llmchain_env() -> None: @pytest.mark.requires("openai") def test_load_llmchain_with_non_serializable_arg() -> None: - llm = OpenAI( + llm = CommunityOpenAI( model="davinci", temperature=0.5, openai_api_key="hello", diff --git a/libs/partners/openai/.gitignore b/libs/partners/openai/.gitignore new file mode 100644 index 0000000000000..bee8a64b79a99 --- /dev/null +++ b/libs/partners/openai/.gitignore @@ -0,0 +1 @@ +__pycache__ diff --git a/libs/partners/openai/LICENSE b/libs/partners/openai/LICENSE new file mode 100644 index 0000000000000..426b65090341f --- /dev/null +++ b/libs/partners/openai/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023 LangChain, Inc. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/libs/partners/openai/Makefile b/libs/partners/openai/Makefile new file mode 100644 index 0000000000000..e318d45f8b359 --- /dev/null +++ b/libs/partners/openai/Makefile @@ -0,0 +1,59 @@ +.PHONY: all format lint test tests integration_tests docker_tests help extended_tests + +# Default target executed when no arguments are given to make. +all: help + +# Define a variable for the test file path. +TEST_FILE ?= tests/unit_tests/ + +test: + poetry run pytest $(TEST_FILE) + +tests: + poetry run pytest $(TEST_FILE) + + +###################### +# LINTING AND FORMATTING +###################### + +# Define a variable for Python and notebook files. +PYTHON_FILES=. +MYPY_CACHE=.mypy_cache +lint format: PYTHON_FILES=. +lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/partners/openai --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$') +lint_package: PYTHON_FILES=langchain_openai +lint_tests: PYTHON_FILES=tests +lint_tests: MYPY_CACHE=.mypy_cache_test + +lint lint_diff lint_package lint_tests: + poetry run ruff . + poetry run ruff format $(PYTHON_FILES) --diff + poetry run ruff --select I $(PYTHON_FILES) + mkdir $(MYPY_CACHE); poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE) + +format format_diff: + poetry run ruff format $(PYTHON_FILES) + poetry run ruff --select I --fix $(PYTHON_FILES) + +spell_check: + poetry run codespell --toml pyproject.toml + +spell_fix: + poetry run codespell --toml pyproject.toml -w + +check_imports: $(shell find langchain_openai -name '*.py') + poetry run python ./scripts/check_imports.py $^ + +###################### +# HELP +###################### + +help: + @echo '----' + @echo 'check_imports - check imports' + @echo 'format - run code formatters' + @echo 'lint - run linters' + @echo 'test - run unit tests' + @echo 'tests - run unit tests' + @echo 'test TEST_FILE= - run all tests in file' diff --git a/libs/partners/openai/README.md b/libs/partners/openai/README.md new file mode 100644 index 0000000000000..26b79b50f760c --- /dev/null +++ b/libs/partners/openai/README.md @@ -0,0 +1 @@ +# langchain-openai diff --git a/libs/partners/openai/langchain_openai/__init__.py b/libs/partners/openai/langchain_openai/__init__.py new file mode 100644 index 0000000000000..14b71f3aa7b8a --- /dev/null +++ b/libs/partners/openai/langchain_openai/__init__.py @@ -0,0 +1,18 @@ +from langchain_openai.chat_models import ( + AzureChatOpenAI, + ChatOpenAI, +) +from langchain_openai.embeddings import ( + AzureOpenAIEmbeddings, + OpenAIEmbeddings, +) +from langchain_openai.llms import AzureOpenAI, OpenAI + +__all__ = [ + "OpenAI", + "ChatOpenAI", + "OpenAIEmbeddings", + "AzureOpenAI", + "AzureChatOpenAI", + "AzureOpenAIEmbeddings", +] diff --git a/libs/partners/openai/langchain_openai/chat_models/__init__.py b/libs/partners/openai/langchain_openai/chat_models/__init__.py new file mode 100644 index 0000000000000..f5aea05620954 --- /dev/null +++ b/libs/partners/openai/langchain_openai/chat_models/__init__.py @@ -0,0 +1,7 @@ +from langchain_openai.chat_models.azure import AzureChatOpenAI +from langchain_openai.chat_models.base import ChatOpenAI + +__all__ = [ + "ChatOpenAI", + "AzureChatOpenAI", +] diff --git a/libs/partners/openai/langchain_openai/chat_models/azure.py b/libs/partners/openai/langchain_openai/chat_models/azure.py new file mode 100644 index 0000000000000..8c57825c6ffdc --- /dev/null +++ b/libs/partners/openai/langchain_openai/chat_models/azure.py @@ -0,0 +1,218 @@ +"""Azure OpenAI chat wrapper.""" +from __future__ import annotations + +import logging +import os +from typing import Any, Callable, Dict, List, Union + +import openai +from langchain_core.outputs import ChatResult +from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from langchain_core.utils import get_from_dict_or_env + +from langchain_openai.chat_models.base import ChatOpenAI + +logger = logging.getLogger(__name__) + + +class AzureChatOpenAI(ChatOpenAI): + """`Azure OpenAI` Chat Completion API. + + To use this class you + must have a deployed model on Azure OpenAI. Use `deployment_name` in the + constructor to refer to the "Model deployment name" in the Azure portal. + + In addition, you should have the + following environment variables set or passed in constructor in lower case: + - ``AZURE_OPENAI_API_KEY`` + - ``AZURE_OPENAI_ENDPOINT`` + - ``AZURE_OPENAI_AD_TOKEN`` + - ``OPENAI_API_VERSION`` + - ``OPENAI_PROXY`` + + For example, if you have `gpt-3.5-turbo` deployed, with the deployment name + `35-turbo-dev`, the constructor should look like: + + .. code-block:: python + + AzureChatOpenAI( + azure_deployment="35-turbo-dev", + openai_api_version="2023-05-15", + ) + + Be aware the API version may change. + + You can also specify the version of the model using ``model_version`` constructor + parameter, as Azure OpenAI doesn't return model version with the response. + + Default is empty. When you specify the version, it will be appended to the + model name in the response. Setting correct version will help you to calculate the + cost properly. Model version is not validated, so make sure you set it correctly + to get the correct cost. + + Any parameters that are valid to be passed to the openai.create call can be passed + in, even if not explicitly saved on this class. + """ + + azure_endpoint: Union[str, None] = None + """Your Azure endpoint, including the resource. + + Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. + + Example: `https://example-resource.azure.openai.com/` + """ + deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") + """A model deployment. + + If given sets the base client URL to include `/deployments/{azure_deployment}`. + Note: this means you won't be able to use non-deployment endpoints. + """ + openai_api_version: str = Field(default="", alias="api_version") + """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" + openai_api_key: Union[str, None] = Field(default=None, alias="api_key") + """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" + azure_ad_token: Union[str, None] = None + """Your Azure Active Directory token. + + Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. + + For more: + https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. + """ # noqa: E501 + azure_ad_token_provider: Union[Callable[[], str], None] = None + """A function that returns an Azure Active Directory token. + + Will be invoked on every request. + """ + model_version: str = "" + """Legacy, for openai<1.0.0 support.""" + openai_api_type: str = "" + """Legacy, for openai<1.0.0 support.""" + validate_base_url: bool = True + """For backwards compatibility. If legacy val openai_api_base is passed in, try to + infer if it is a base_url or azure_endpoint and update accordingly. + """ + + @classmethod + def get_lc_namespace(cls) -> List[str]: + """Get the namespace of the langchain object.""" + return ["langchain", "chat_models", "azure_openai"] + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + if values["n"] < 1: + raise ValueError("n must be at least 1.") + if values["n"] > 1 and values["streaming"]: + raise ValueError("n must be 1 when streaming.") + + # Check OPENAI_KEY for backwards compatibility. + # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using + # other forms of azure credentials. + values["openai_api_key"] = ( + values["openai_api_key"] + or os.getenv("AZURE_OPENAI_API_KEY") + or os.getenv("OPENAI_API_KEY") + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_api_version"] = values["openai_api_version"] or os.getenv( + "OPENAI_API_VERSION" + ) + # Check OPENAI_ORGANIZATION for backwards compatibility. + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( + "AZURE_OPENAI_ENDPOINT" + ) + values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( + "AZURE_OPENAI_AD_TOKEN" + ) + + values["openai_api_type"] = get_from_dict_or_env( + values, "openai_api_type", "OPENAI_API_TYPE", default="azure" + ) + values["openai_proxy"] = get_from_dict_or_env( + values, "openai_proxy", "OPENAI_PROXY", default="" + ) + # For backwards compatibility. Before openai v1, no distinction was made + # between azure_endpoint and base_url (openai_api_base). + openai_api_base = values["openai_api_base"] + if openai_api_base and values["validate_base_url"]: + if "/openai" not in openai_api_base: + raise ValueError( + "As of openai>=1.0.0, Azure endpoints should be specified via " + "the `azure_endpoint` param not `openai_api_base` " + "(or alias `base_url`)." + ) + if values["deployment_name"]: + raise ValueError( + "As of openai>=1.0.0, if `deployment_name` (or alias " + "`azure_deployment`) is specified then " + "`openai_api_base` (or alias `base_url`) should not be. " + "Instead use `deployment_name` (or alias `azure_deployment`) " + "and `azure_endpoint`." + ) + client_params = { + "api_version": values["openai_api_version"], + "azure_endpoint": values["azure_endpoint"], + "azure_deployment": values["deployment_name"], + "api_key": values["openai_api_key"], + "azure_ad_token": values["azure_ad_token"], + "azure_ad_token_provider": values["azure_ad_token_provider"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + values["client"] = openai.AzureOpenAI(**client_params).chat.completions + values["async_client"] = openai.AsyncAzureOpenAI( + **client_params + ).chat.completions + return values + + @property + def _identifying_params(self) -> Dict[str, Any]: + """Get the identifying parameters.""" + return {**self._default_params} + + @property + def _llm_type(self) -> str: + return "azure-openai-chat" + + @property + def lc_attributes(self) -> Dict[str, Any]: + return { + "openai_api_type": self.openai_api_type, + "openai_api_version": self.openai_api_version, + } + + def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: + if not isinstance(response, dict): + response = response.dict() + for res in response["choices"]: + if res.get("finish_reason", None) == "content_filter": + raise ValueError( + "Azure has not provided the response due to a content filter " + "being triggered" + ) + chat_result = super()._create_chat_result(response) + + if "model" in response: + model = response["model"] + if self.model_version: + model = f"{model}-{self.model_version}" + + if chat_result.llm_output is not None and isinstance( + chat_result.llm_output, dict + ): + chat_result.llm_output["model_name"] = model + + return chat_result diff --git a/libs/partners/openai/langchain_openai/chat_models/base.py b/libs/partners/openai/langchain_openai/chat_models/base.py new file mode 100644 index 0000000000000..06bd22485cf2d --- /dev/null +++ b/libs/partners/openai/langchain_openai/chat_models/base.py @@ -0,0 +1,655 @@ +"""OpenAI chat wrapper.""" +from __future__ import annotations + +import logging +import os +import sys +import warnings +from typing import ( + Any, + AsyncIterator, + Callable, + Dict, + Iterator, + List, + Mapping, + Optional, + Sequence, + Tuple, + Type, + Union, + cast, +) + +import openai +import tiktoken +from langchain_core.callbacks import ( + AsyncCallbackManagerForLLMRun, + CallbackManagerForLLMRun, +) +from langchain_core.language_models import LanguageModelInput +from langchain_core.language_models.chat_models import ( + BaseChatModel, + agenerate_from_stream, + generate_from_stream, +) +from langchain_core.messages import ( + AIMessage, + AIMessageChunk, + BaseMessage, + BaseMessageChunk, + ChatMessage, + ChatMessageChunk, + FunctionMessage, + FunctionMessageChunk, + HumanMessage, + HumanMessageChunk, + SystemMessage, + SystemMessageChunk, + ToolMessage, + ToolMessageChunk, +) +from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult +from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from langchain_core.runnables import Runnable +from langchain_core.utils import ( + get_from_dict_or_env, + get_pydantic_field_names, +) +from langchain_core.utils.function_calling import convert_to_openai_function + +logger = logging.getLogger(__name__) + + +def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: + """Convert a dictionary to a LangChain message. + + Args: + _dict: The dictionary. + + Returns: + The LangChain message. + """ + role = _dict.get("role") + if role == "user": + return HumanMessage(content=_dict.get("content", "")) + elif role == "assistant": + # Fix for azure + # Also OpenAI returns None for tool invocations + content = _dict.get("content", "") or "" + additional_kwargs: Dict = {} + if function_call := _dict.get("function_call"): + additional_kwargs["function_call"] = dict(function_call) + if tool_calls := _dict.get("tool_calls"): + additional_kwargs["tool_calls"] = tool_calls + return AIMessage(content=content, additional_kwargs=additional_kwargs) + elif role == "system": + return SystemMessage(content=_dict.get("content", "")) + elif role == "function": + return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name")) + elif role == "tool": + additional_kwargs = {} + if "name" in _dict: + additional_kwargs["name"] = _dict["name"] + return ToolMessage( + content=_dict.get("content", ""), + tool_call_id=_dict.get("tool_call_id"), + additional_kwargs=additional_kwargs, + ) + else: + return ChatMessage(content=_dict.get("content", ""), role=role) + + +def _convert_message_to_dict(message: BaseMessage) -> dict: + """Convert a LangChain message to a dictionary. + + Args: + message: The LangChain message. + + Returns: + The dictionary. + """ + message_dict: Dict[str, Any] + if isinstance(message, ChatMessage): + message_dict = {"role": message.role, "content": message.content} + elif isinstance(message, HumanMessage): + message_dict = {"role": "user", "content": message.content} + elif isinstance(message, AIMessage): + message_dict = {"role": "assistant", "content": message.content} + if "function_call" in message.additional_kwargs: + message_dict["function_call"] = message.additional_kwargs["function_call"] + # If function call only, content is None not empty string + if message_dict["content"] == "": + message_dict["content"] = None + if "tool_calls" in message.additional_kwargs: + message_dict["tool_calls"] = message.additional_kwargs["tool_calls"] + # If tool calls only, content is None not empty string + if message_dict["content"] == "": + message_dict["content"] = None + elif isinstance(message, SystemMessage): + message_dict = {"role": "system", "content": message.content} + elif isinstance(message, FunctionMessage): + message_dict = { + "role": "function", + "content": message.content, + "name": message.name, + } + elif isinstance(message, ToolMessage): + message_dict = { + "role": "tool", + "content": message.content, + "tool_call_id": message.tool_call_id, + } + else: + raise TypeError(f"Got unknown type {message}") + if "name" in message.additional_kwargs: + message_dict["name"] = message.additional_kwargs["name"] + return message_dict + + +def _convert_delta_to_message_chunk( + _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] +) -> BaseMessageChunk: + role = cast(str, _dict.get("role")) + content = cast(str, _dict.get("content") or "") + additional_kwargs: Dict = {} + if _dict.get("function_call"): + function_call = dict(_dict["function_call"]) + if "name" in function_call and function_call["name"] is None: + function_call["name"] = "" + additional_kwargs["function_call"] = function_call + if _dict.get("tool_calls"): + additional_kwargs["tool_calls"] = _dict["tool_calls"] + + if role == "user" or default_class == HumanMessageChunk: + return HumanMessageChunk(content=content) + elif role == "assistant" or default_class == AIMessageChunk: + return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) + elif role == "system" or default_class == SystemMessageChunk: + return SystemMessageChunk(content=content) + elif role == "function" or default_class == FunctionMessageChunk: + return FunctionMessageChunk(content=content, name=_dict["name"]) + elif role == "tool" or default_class == ToolMessageChunk: + return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) + elif role or default_class == ChatMessageChunk: + return ChatMessageChunk(content=content, role=role) + else: + return default_class(content=content) # type: ignore + + +class ChatOpenAI(BaseChatModel): + """`OpenAI` Chat large language models API. + + To use, you should have the + environment variable ``OPENAI_API_KEY`` set with your API key. + + Any parameters that are valid to be passed to the openai.create call can be passed + in, even if not explicitly saved on this class. + + Example: + .. code-block:: python + + from langchain_community.chat_models import ChatOpenAI + openai = ChatOpenAI(model_name="gpt-3.5-turbo") + """ + + @property + def lc_secrets(self) -> Dict[str, str]: + return {"openai_api_key": "OPENAI_API_KEY"} + + @classmethod + def get_lc_namespace(cls) -> List[str]: + """Get the namespace of the langchain object.""" + return ["langchain", "chat_models", "openai"] + + @property + def lc_attributes(self) -> Dict[str, Any]: + attributes: Dict[str, Any] = {} + + if self.openai_organization: + attributes["openai_organization"] = self.openai_organization + + if self.openai_api_base: + attributes["openai_api_base"] = self.openai_api_base + + if self.openai_proxy: + attributes["openai_proxy"] = self.openai_proxy + + return attributes + + @classmethod + def is_lc_serializable(cls) -> bool: + """Return whether this model can be serialized by Langchain.""" + return True + + client: Any = Field(default=None, exclude=True) #: :meta private: + async_client: Any = Field(default=None, exclude=True) #: :meta private: + model_name: str = Field(default="gpt-3.5-turbo", alias="model") + """Model name to use.""" + temperature: float = 0.7 + """What sampling temperature to use.""" + model_kwargs: Dict[str, Any] = Field(default_factory=dict) + """Holds any model parameters valid for `create` call not explicitly specified.""" + # When updating this to use a SecretStr + # Check for classes that derive from this class (as some of them + # may assume openai_api_key is a str) + openai_api_key: Optional[str] = Field(default=None, alias="api_key") + """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" + openai_api_base: Optional[str] = Field(default=None, alias="base_url") + """Base URL path for API requests, leave blank if not using a proxy or service + emulator.""" + openai_organization: Optional[str] = Field(default=None, alias="organization") + """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" + # to support explicit proxy for OpenAI + openai_proxy: Optional[str] = None + request_timeout: Union[float, Tuple[float, float], Any, None] = Field( + default=None, alias="timeout" + ) + """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or + None.""" + max_retries: int = 2 + """Maximum number of retries to make when generating.""" + streaming: bool = False + """Whether to stream the results or not.""" + n: int = 1 + """Number of chat completions to generate for each prompt.""" + max_tokens: Optional[int] = None + """Maximum number of tokens to generate.""" + tiktoken_model_name: Optional[str] = None + """The model name to pass to tiktoken when using this class. + Tiktoken is used to count the number of tokens in documents to constrain + them to be under a certain limit. By default, when set to None, this will + be the same as the embedding model name. However, there are some cases + where you may want to use this Embedding class with a model name not + supported by tiktoken. This can include when using Azure embeddings or + when using one of the many model providers that expose an OpenAI-like + API but with different models. In those cases, in order to avoid erroring + when tiktoken is called, you can specify a model name to use here.""" + default_headers: Union[Mapping[str, str], None] = None + default_query: Union[Mapping[str, object], None] = None + # Configure a custom httpx client. See the + # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. + http_client: Union[Any, None] = None + """Optional httpx.Client.""" + + class Config: + """Configuration for this pydantic object.""" + + allow_population_by_field_name = True + + @root_validator(pre=True) + def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + """Build extra kwargs from additional params that were passed in.""" + all_required_field_names = get_pydantic_field_names(cls) + extra = values.get("model_kwargs", {}) + for field_name in list(values): + if field_name in extra: + raise ValueError(f"Found {field_name} supplied twice.") + if field_name not in all_required_field_names: + warnings.warn( + f"""WARNING! {field_name} is not default parameter. + {field_name} was transferred to model_kwargs. + Please confirm that {field_name} is what you intended.""" + ) + extra[field_name] = values.pop(field_name) + + invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) + if invalid_model_kwargs: + raise ValueError( + f"Parameters {invalid_model_kwargs} should be specified explicitly. " + f"Instead they were passed in as part of `model_kwargs` parameter." + ) + + values["model_kwargs"] = extra + return values + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + if values["n"] < 1: + raise ValueError("n must be at least 1.") + if values["n"] > 1 and values["streaming"]: + raise ValueError("n must be 1 when streaming.") + + values["openai_api_key"] = get_from_dict_or_env( + values, "openai_api_key", "OPENAI_API_KEY" + ) + # Check OPENAI_ORGANIZATION for backwards compatibility. + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_proxy"] = get_from_dict_or_env( + values, + "openai_proxy", + "OPENAI_PROXY", + default="", + ) + + client_params = { + "api_key": values["openai_api_key"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + + if not values.get("client"): + values["client"] = openai.OpenAI(**client_params).chat.completions + if not values.get("async_client"): + values["async_client"] = openai.AsyncOpenAI( + **client_params + ).chat.completions + return values + + @property + def _default_params(self) -> Dict[str, Any]: + """Get the default parameters for calling OpenAI API.""" + params = { + "model": self.model_name, + "stream": self.streaming, + "n": self.n, + "temperature": self.temperature, + **self.model_kwargs, + } + if self.max_tokens is not None: + params["max_tokens"] = self.max_tokens + return params + + def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: + overall_token_usage: dict = {} + system_fingerprint = None + for output in llm_outputs: + if output is None: + # Happens in streaming + continue + token_usage = output["token_usage"] + if token_usage is not None: + for k, v in token_usage.items(): + if k in overall_token_usage: + overall_token_usage[k] += v + else: + overall_token_usage[k] = v + if system_fingerprint is None: + system_fingerprint = output.get("system_fingerprint") + combined = {"token_usage": overall_token_usage, "model_name": self.model_name} + if system_fingerprint: + combined["system_fingerprint"] = system_fingerprint + return combined + + def _stream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[ChatGenerationChunk]: + message_dicts, params = self._create_message_dicts(messages, stop) + params = {**params, **kwargs, "stream": True} + + default_chunk_class = AIMessageChunk + for chunk in self.client.create(messages=message_dicts, **params): + if not isinstance(chunk, dict): + chunk = chunk.dict() + if len(chunk["choices"]) == 0: + continue + choice = chunk["choices"][0] + chunk = _convert_delta_to_message_chunk( + choice["delta"], default_chunk_class + ) + finish_reason = choice.get("finish_reason") + generation_info = ( + dict(finish_reason=finish_reason) if finish_reason is not None else None + ) + default_chunk_class = chunk.__class__ + chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) + yield chunk + if run_manager: + run_manager.on_llm_new_token(chunk.text, chunk=chunk) + + def _generate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + stream: Optional[bool] = None, + **kwargs: Any, + ) -> ChatResult: + should_stream = stream if stream is not None else self.streaming + if should_stream: + stream_iter = self._stream( + messages, stop=stop, run_manager=run_manager, **kwargs + ) + return generate_from_stream(stream_iter) + message_dicts, params = self._create_message_dicts(messages, stop) + params = { + **params, + **({"stream": stream} if stream is not None else {}), + **kwargs, + } + response = self.client.create(messages=message_dicts, **params) + return self._create_chat_result(response) + + def _create_message_dicts( + self, messages: List[BaseMessage], stop: Optional[List[str]] + ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: + params = self._default_params + if stop is not None: + if "stop" in params: + raise ValueError("`stop` found in both the input and default params.") + params["stop"] = stop + message_dicts = [_convert_message_to_dict(m) for m in messages] + return message_dicts, params + + def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: + generations = [] + if not isinstance(response, dict): + response = response.dict() + for res in response["choices"]: + message = _convert_dict_to_message(res["message"]) + generation_info = dict(finish_reason=res.get("finish_reason")) + if "logprobs" in res: + generation_info["logprobs"] = res["logprobs"] + gen = ChatGeneration( + message=message, + generation_info=generation_info, + ) + generations.append(gen) + token_usage = response.get("usage", {}) + llm_output = { + "token_usage": token_usage, + "model_name": self.model_name, + "system_fingerprint": response.get("system_fingerprint", ""), + } + return ChatResult(generations=generations, llm_output=llm_output) + + async def _astream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> AsyncIterator[ChatGenerationChunk]: + message_dicts, params = self._create_message_dicts(messages, stop) + params = {**params, **kwargs, "stream": True} + + default_chunk_class = AIMessageChunk + async for chunk in await self.async_client.create( + messages=message_dicts, **params + ): + if not isinstance(chunk, dict): + chunk = chunk.dict() + if len(chunk["choices"]) == 0: + continue + choice = chunk["choices"][0] + chunk = _convert_delta_to_message_chunk( + choice["delta"], default_chunk_class + ) + finish_reason = choice.get("finish_reason") + generation_info = ( + dict(finish_reason=finish_reason) if finish_reason is not None else None + ) + default_chunk_class = chunk.__class__ + chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) + yield chunk + if run_manager: + await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk) + + async def _agenerate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + stream: Optional[bool] = None, + **kwargs: Any, + ) -> ChatResult: + should_stream = stream if stream is not None else self.streaming + if should_stream: + stream_iter = self._astream( + messages, stop=stop, run_manager=run_manager, **kwargs + ) + return await agenerate_from_stream(stream_iter) + + message_dicts, params = self._create_message_dicts(messages, stop) + params = { + **params, + **({"stream": stream} if stream is not None else {}), + **kwargs, + } + response = await self.async_client.create(messages=message_dicts, **params) + return self._create_chat_result(response) + + @property + def _identifying_params(self) -> Dict[str, Any]: + """Get the identifying parameters.""" + return {"model_name": self.model_name, **self._default_params} + + def _get_invocation_params( + self, stop: Optional[List[str]] = None, **kwargs: Any + ) -> Dict[str, Any]: + """Get the parameters used to invoke the model.""" + return { + "model": self.model_name, + **super()._get_invocation_params(stop=stop), + **self._default_params, + **kwargs, + } + + @property + def _llm_type(self) -> str: + """Return type of chat model.""" + return "openai-chat" + + def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: + if self.tiktoken_model_name is not None: + model = self.tiktoken_model_name + else: + model = self.model_name + if model == "gpt-3.5-turbo": + # gpt-3.5-turbo may change over time. + # Returning num tokens assuming gpt-3.5-turbo-0301. + model = "gpt-3.5-turbo-0301" + elif model == "gpt-4": + # gpt-4 may change over time. + # Returning num tokens assuming gpt-4-0314. + model = "gpt-4-0314" + # Returns the number of tokens used by a list of messages. + try: + encoding = tiktoken.encoding_for_model(model) + except KeyError: + logger.warning("Warning: model not found. Using cl100k_base encoding.") + model = "cl100k_base" + encoding = tiktoken.get_encoding(model) + return model, encoding + + def get_token_ids(self, text: str) -> List[int]: + """Get the tokens present in the text with tiktoken package.""" + # tiktoken NOT supported for Python 3.7 or below + if sys.version_info[1] <= 7: + return super().get_token_ids(text) + _, encoding_model = self._get_encoding_model() + return encoding_model.encode(text) + + def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: + """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. + + Official documentation: https://github.com/openai/openai-cookbook/blob/ + main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" + if sys.version_info[1] <= 7: + return super().get_num_tokens_from_messages(messages) + model, encoding = self._get_encoding_model() + if model.startswith("gpt-3.5-turbo-0301"): + # every message follows {role/name}\n{content}\n + tokens_per_message = 4 + # if there's a name, the role is omitted + tokens_per_name = -1 + elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"): + tokens_per_message = 3 + tokens_per_name = 1 + else: + raise NotImplementedError( + f"get_num_tokens_from_messages() is not presently implemented " + f"for model {model}. See " + "https://platform.openai.com/docs/guides/text-generation/managing-tokens" + " for information on how messages are converted to tokens." + ) + num_tokens = 0 + messages_dict = [_convert_message_to_dict(m) for m in messages] + for message in messages_dict: + num_tokens += tokens_per_message + for key, value in message.items(): + # Cast str(value) in case the message value is not a string + # This occurs with function messages + num_tokens += len(encoding.encode(str(value))) + if key == "name": + num_tokens += tokens_per_name + # every reply is primed with assistant + num_tokens += 3 + return num_tokens + + def bind_functions( + self, + functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], + function_call: Optional[str] = None, + **kwargs: Any, + ) -> Runnable[LanguageModelInput, BaseMessage]: + """Bind functions (and other objects) to this chat model. + + Args: + functions: A list of function definitions to bind to this chat model. + Can be a dictionary, pydantic model, or callable. Pydantic + models and callables will be automatically converted to + their schema dictionary representation. + function_call: Which function to require the model to call. + Must be the name of the single provided function or + "auto" to automatically determine which function to call + (if any). + kwargs: Any additional parameters to pass to the + :class:`~langchain.runnable.Runnable` constructor. + """ + + formatted_functions = [convert_to_openai_function(fn) for fn in functions] + if function_call is not None: + if len(formatted_functions) != 1: + raise ValueError( + "When specifying `function_call`, you must provide exactly one " + "function." + ) + if formatted_functions[0]["name"] != function_call: + raise ValueError( + f"Function call {function_call} was specified, but the only " + f"provided function was {formatted_functions[0]['name']}." + ) + function_call_ = {"name": function_call} + kwargs = {**kwargs, "function_call": function_call_} + return super().bind( + functions=formatted_functions, + **kwargs, + ) diff --git a/libs/partners/openai/langchain_openai/embeddings/__init__.py b/libs/partners/openai/langchain_openai/embeddings/__init__.py new file mode 100644 index 0000000000000..ef07a54960f36 --- /dev/null +++ b/libs/partners/openai/langchain_openai/embeddings/__init__.py @@ -0,0 +1,7 @@ +from langchain_openai.embeddings.azure import AzureOpenAIEmbeddings +from langchain_openai.embeddings.base import OpenAIEmbeddings + +__all__ = [ + "OpenAIEmbeddings", + "AzureOpenAIEmbeddings", +] diff --git a/libs/partners/openai/langchain_openai/embeddings/azure.py b/libs/partners/openai/langchain_openai/embeddings/azure.py new file mode 100644 index 0000000000000..dd99cfaaf6592 --- /dev/null +++ b/libs/partners/openai/langchain_openai/embeddings/azure.py @@ -0,0 +1,130 @@ +"""Azure OpenAI embeddings wrapper.""" +from __future__ import annotations + +import os +from typing import Callable, Dict, Optional, Union + +import openai +from langchain_core.pydantic_v1 import Field, root_validator +from langchain_core.utils import get_from_dict_or_env + +from langchain_openai.embeddings.base import OpenAIEmbeddings + + +class AzureOpenAIEmbeddings(OpenAIEmbeddings): + """`Azure OpenAI` Embeddings API.""" + + azure_endpoint: Union[str, None] = None + """Your Azure endpoint, including the resource. + + Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. + + Example: `https://example-resource.azure.openai.com/` + """ + deployment: Optional[str] = Field(default=None, alias="azure_deployment") + """A model deployment. + + If given sets the base client URL to include `/deployments/{azure_deployment}`. + Note: this means you won't be able to use non-deployment endpoints. + """ + openai_api_key: Union[str, None] = Field(default=None, alias="api_key") + """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" + azure_ad_token: Union[str, None] = None + """Your Azure Active Directory token. + + Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. + + For more: + https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. + """ # noqa: E501 + azure_ad_token_provider: Union[Callable[[], str], None] = None + """A function that returns an Azure Active Directory token. + + Will be invoked on every request. + """ + openai_api_version: Optional[str] = Field(default=None, alias="api_version") + """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" + validate_base_url: bool = True + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + # Check OPENAI_KEY for backwards compatibility. + # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using + # other forms of azure credentials. + values["openai_api_key"] = ( + values["openai_api_key"] + or os.getenv("AZURE_OPENAI_API_KEY") + or os.getenv("OPENAI_API_KEY") + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_api_version"] = values["openai_api_version"] or os.getenv( + "OPENAI_API_VERSION", default="2023-05-15" + ) + values["openai_api_type"] = get_from_dict_or_env( + values, "openai_api_type", "OPENAI_API_TYPE", default="azure" + ) + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + values["openai_proxy"] = get_from_dict_or_env( + values, + "openai_proxy", + "OPENAI_PROXY", + default="", + ) + values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( + "AZURE_OPENAI_ENDPOINT" + ) + values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( + "AZURE_OPENAI_AD_TOKEN" + ) + # Azure OpenAI embedding models allow a maximum of 16 texts + # at a time in each batch + # See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings + values["chunk_size"] = min(values["chunk_size"], 16) + # For backwards compatibility. Before openai v1, no distinction was made + # between azure_endpoint and base_url (openai_api_base). + openai_api_base = values["openai_api_base"] + if openai_api_base and values["validate_base_url"]: + if "/openai" not in openai_api_base: + values["openai_api_base"] += "/openai" + raise ValueError( + "As of openai>=1.0.0, Azure endpoints should be specified via " + "the `azure_endpoint` param not `openai_api_base` " + "(or alias `base_url`). " + ) + if values["deployment"]: + raise ValueError( + "As of openai>=1.0.0, if `deployment` (or alias " + "`azure_deployment`) is specified then " + "`openai_api_base` (or alias `base_url`) should not be. " + "Instead use `deployment` (or alias `azure_deployment`) " + "and `azure_endpoint`." + ) + client_params = { + "api_version": values["openai_api_version"], + "azure_endpoint": values["azure_endpoint"], + "azure_deployment": values["deployment"], + "api_key": values["openai_api_key"], + "azure_ad_token": values["azure_ad_token"], + "azure_ad_token_provider": values["azure_ad_token_provider"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + values["client"] = openai.AzureOpenAI(**client_params).embeddings + values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings + return values + + @property + def _llm_type(self) -> str: + return "azure-openai-chat" diff --git a/libs/partners/openai/langchain_openai/embeddings/base.py b/libs/partners/openai/langchain_openai/embeddings/base.py new file mode 100644 index 0000000000000..5a4ead9d2448e --- /dev/null +++ b/libs/partners/openai/langchain_openai/embeddings/base.py @@ -0,0 +1,523 @@ +from __future__ import annotations + +import logging +import os +import warnings +from typing import ( + Any, + Dict, + Iterable, + List, + Literal, + Mapping, + Optional, + Sequence, + Set, + Tuple, + Union, + cast, +) + +import numpy as np +import openai +import tiktoken +from langchain_core.embeddings import Embeddings +from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator +from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names + +logger = logging.getLogger(__name__) + + +class OpenAIEmbeddings(BaseModel, Embeddings): + """OpenAI embedding models. + + To use, you should have the + environment variable ``OPENAI_API_KEY`` set with your API key or pass it + as a named parameter to the constructor. + + Example: + .. code-block:: python + + from langchain_community.embeddings import OpenAIEmbeddings + openai = OpenAIEmbeddings(openai_api_key="my-api-key") + + In order to use the library with Microsoft Azure endpoints, you need to set + the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. + The OPENAI_API_TYPE must be set to 'azure' and the others correspond to + the properties of your endpoint. + In addition, the deployment name must be passed as the model parameter. + + Example: + .. code-block:: python + + import os + + os.environ["OPENAI_API_TYPE"] = "azure" + os.environ["OPENAI_API_BASE"] = "https:// Dict[str, Any]: + """Build extra kwargs from additional params that were passed in.""" + all_required_field_names = get_pydantic_field_names(cls) + extra = values.get("model_kwargs", {}) + for field_name in list(values): + if field_name in extra: + raise ValueError(f"Found {field_name} supplied twice.") + if field_name not in all_required_field_names: + warnings.warn( + f"""WARNING! {field_name} is not default parameter. + {field_name} was transferred to model_kwargs. + Please confirm that {field_name} is what you intended.""" + ) + extra[field_name] = values.pop(field_name) + + invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) + if invalid_model_kwargs: + raise ValueError( + f"Parameters {invalid_model_kwargs} should be specified explicitly. " + f"Instead they were passed in as part of `model_kwargs` parameter." + ) + + values["model_kwargs"] = extra + return values + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + values["openai_api_key"] = get_from_dict_or_env( + values, "openai_api_key", "OPENAI_API_KEY" + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_api_type"] = get_from_dict_or_env( + values, + "openai_api_type", + "OPENAI_API_TYPE", + default="", + ) + values["openai_proxy"] = get_from_dict_or_env( + values, + "openai_proxy", + "OPENAI_PROXY", + default="", + ) + if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): + default_api_version = "2023-05-15" + # Azure OpenAI embedding models allow a maximum of 16 texts + # at a time in each batch + # See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings + values["chunk_size"] = min(values["chunk_size"], 16) + else: + default_api_version = "" + values["openai_api_version"] = get_from_dict_or_env( + values, + "openai_api_version", + "OPENAI_API_VERSION", + default=default_api_version, + ) + # Check OPENAI_ORGANIZATION for backwards compatibility. + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): + raise ValueError( + "If you are using Azure, " + "please use the `AzureOpenAIEmbeddings` class." + ) + client_params = { + "api_key": values["openai_api_key"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + if not values.get("client"): + values["client"] = openai.OpenAI(**client_params).embeddings + if not values.get("async_client"): + values["async_client"] = openai.AsyncOpenAI(**client_params).embeddings + return values + + @property + def _invocation_params(self) -> Dict[str, Any]: + return {"model": self.model, **self.model_kwargs} + + # please refer to + # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb + def _get_len_safe_embeddings( + self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None + ) -> List[List[float]]: + """ + Generate length-safe embeddings for a list of texts. + + This method handles tokenization and embedding generation, respecting the + set embedding context length and chunk size. It supports both tiktoken + and HuggingFace tokenizer based on the tiktoken_enabled flag. + + Args: + texts (List[str]): A list of texts to embed. + engine (str): The engine or model to use for embeddings. + chunk_size (Optional[int]): The size of chunks for processing embeddings. + + Returns: + List[List[float]]: A list of embeddings for each input text. + """ + + tokens = [] + indices = [] + model_name = self.tiktoken_model_name or self.model + _chunk_size = chunk_size or self.chunk_size + + # If tiktoken flag set to False + if not self.tiktoken_enabled: + try: + from transformers import AutoTokenizer # noqa: F401 + except ImportError: + raise ValueError( + "Could not import transformers python package. " + "This is needed in order to for OpenAIEmbeddings without " + "`tiktoken`. Please install it with `pip install transformers`. " + ) + + tokenizer = AutoTokenizer.from_pretrained( + pretrained_model_name_or_path=model_name + ) + for i, text in enumerate(texts): + # Tokenize the text using HuggingFace transformers + tokenized = tokenizer.encode(text, add_special_tokens=False) + + # Split tokens into chunks respecting the embedding_ctx_length + for j in range(0, len(tokenized), self.embedding_ctx_length): + token_chunk = tokenized[j : j + self.embedding_ctx_length] + + # Convert token IDs back to a string + chunk_text = tokenizer.decode(token_chunk) + tokens.append(chunk_text) + indices.append(i) + else: + try: + encoding = tiktoken.encoding_for_model(model_name) + except KeyError: + logger.warning("Warning: model not found. Using cl100k_base encoding.") + model = "cl100k_base" + encoding = tiktoken.get_encoding(model) + for i, text in enumerate(texts): + if self.model.endswith("001"): + # See: https://github.com/openai/openai-python/ + # issues/418#issuecomment-1525939500 + # replace newlines, which can negatively affect performance. + text = text.replace("\n", " ") + + token = encoding.encode( + text=text, + allowed_special=self.allowed_special, + disallowed_special=self.disallowed_special, + ) + + # Split tokens into chunks respecting the embedding_ctx_length + for j in range(0, len(token), self.embedding_ctx_length): + tokens.append(token[j : j + self.embedding_ctx_length]) + indices.append(i) + + if self.show_progress_bar: + try: + from tqdm.auto import tqdm + + _iter: Iterable = tqdm(range(0, len(tokens), _chunk_size)) + except ImportError: + _iter = range(0, len(tokens), _chunk_size) + else: + _iter = range(0, len(tokens), _chunk_size) + + batched_embeddings: List[List[float]] = [] + for i in _iter: + response = self.client.create( + input=tokens[i : i + _chunk_size], **self._invocation_params + ) + if not isinstance(response, dict): + response = response.dict() + batched_embeddings.extend(r["embedding"] for r in response["data"]) + + results: List[List[List[float]]] = [[] for _ in range(len(texts))] + num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] + for i in range(len(indices)): + if self.skip_empty and len(batched_embeddings[i]) == 1: + continue + results[indices[i]].append(batched_embeddings[i]) + num_tokens_in_batch[indices[i]].append(len(tokens[i])) + + embeddings: List[List[float]] = [[] for _ in range(len(texts))] + for i in range(len(texts)): + _result = results[i] + if len(_result) == 0: + average_embedded = self.client.create( + input="", **self._invocation_params + ) + if not isinstance(average_embedded, dict): + average_embedded = average_embedded.dict() + average = average_embedded["data"][0]["embedding"] + else: + average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) + embeddings[i] = (average / np.linalg.norm(average)).tolist() + + return embeddings + + # please refer to + # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb + async def _aget_len_safe_embeddings( + self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None + ) -> List[List[float]]: + """ + Asynchronously generate length-safe embeddings for a list of texts. + + This method handles tokenization and asynchronous embedding generation, + respecting the set embedding context length and chunk size. It supports both + `tiktoken` and HuggingFace `tokenizer` based on the tiktoken_enabled flag. + + Args: + texts (List[str]): A list of texts to embed. + engine (str): The engine or model to use for embeddings. + chunk_size (Optional[int]): The size of chunks for processing embeddings. + + Returns: + List[List[float]]: A list of embeddings for each input text. + """ + + tokens = [] + indices = [] + model_name = self.tiktoken_model_name or self.model + _chunk_size = chunk_size or self.chunk_size + + # If tiktoken flag set to False + if not self.tiktoken_enabled: + try: + from transformers import AutoTokenizer + except ImportError: + raise ValueError( + "Could not import transformers python package. " + "This is needed in order to for OpenAIEmbeddings without " + " `tiktoken`. Please install it with `pip install transformers`." + ) + + tokenizer = AutoTokenizer.from_pretrained( + pretrained_model_name_or_path=model_name + ) + for i, text in enumerate(texts): + # Tokenize the text using HuggingFace transformers + tokenized = tokenizer.encode(text, add_special_tokens=False) + + # Split tokens into chunks respecting the embedding_ctx_length + for j in range(0, len(tokenized), self.embedding_ctx_length): + token_chunk = tokenized[j : j + self.embedding_ctx_length] + + # Convert token IDs back to a string + chunk_text = tokenizer.decode(token_chunk) + tokens.append(chunk_text) + indices.append(i) + else: + try: + encoding = tiktoken.encoding_for_model(model_name) + except KeyError: + logger.warning("Warning: model not found. Using cl100k_base encoding.") + model = "cl100k_base" + encoding = tiktoken.get_encoding(model) + for i, text in enumerate(texts): + if self.model.endswith("001"): + # See: https://github.com/openai/openai-python/ + # issues/418#issuecomment-1525939500 + # replace newlines, which can negatively affect performance. + text = text.replace("\n", " ") + + token = encoding.encode( + text=text, + allowed_special=self.allowed_special, + disallowed_special=self.disallowed_special, + ) + + # Split tokens into chunks respecting the embedding_ctx_length + for j in range(0, len(token), self.embedding_ctx_length): + tokens.append(token[j : j + self.embedding_ctx_length]) + indices.append(i) + + batched_embeddings: List[List[float]] = [] + _chunk_size = chunk_size or self.chunk_size + for i in range(0, len(tokens), _chunk_size): + response = await self.async_client.create( + input=tokens[i : i + _chunk_size], **self._invocation_params + ) + + if not isinstance(response, dict): + response = response.dict() + batched_embeddings.extend(r["embedding"] for r in response["data"]) + + results: List[List[List[float]]] = [[] for _ in range(len(texts))] + num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] + for i in range(len(indices)): + results[indices[i]].append(batched_embeddings[i]) + num_tokens_in_batch[indices[i]].append(len(tokens[i])) + + embeddings: List[List[float]] = [[] for _ in range(len(texts))] + for i in range(len(texts)): + _result = results[i] + if len(_result) == 0: + average_embedded = await self.async_client.create( + input="", **self._invocation_params + ) + if not isinstance(average_embedded, dict): + average_embedded = average_embedded.dict() + average = average_embedded["data"][0]["embedding"] + else: + average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) + embeddings[i] = (average / np.linalg.norm(average)).tolist() + + return embeddings + + def embed_documents( + self, texts: List[str], chunk_size: Optional[int] = 0 + ) -> List[List[float]]: + """Call out to OpenAI's embedding endpoint for embedding search docs. + + Args: + texts: The list of texts to embed. + chunk_size: The chunk size of embeddings. If None, will use the chunk size + specified by the class. + + Returns: + List of embeddings, one for each text. + """ + # NOTE: to keep things simple, we assume the list may contain texts longer + # than the maximum context and use length-safe embedding function. + engine = cast(str, self.deployment) + return self._get_len_safe_embeddings(texts, engine=engine) + + async def aembed_documents( + self, texts: List[str], chunk_size: Optional[int] = 0 + ) -> List[List[float]]: + """Call out to OpenAI's embedding endpoint async for embedding search docs. + + Args: + texts: The list of texts to embed. + chunk_size: The chunk size of embeddings. If None, will use the chunk size + specified by the class. + + Returns: + List of embeddings, one for each text. + """ + # NOTE: to keep things simple, we assume the list may contain texts longer + # than the maximum context and use length-safe embedding function. + engine = cast(str, self.deployment) + return await self._aget_len_safe_embeddings(texts, engine=engine) + + def embed_query(self, text: str) -> List[float]: + """Call out to OpenAI's embedding endpoint for embedding query text. + + Args: + text: The text to embed. + + Returns: + Embedding for the text. + """ + return self.embed_documents([text])[0] + + async def aembed_query(self, text: str) -> List[float]: + """Call out to OpenAI's embedding endpoint async for embedding query text. + + Args: + text: The text to embed. + + Returns: + Embedding for the text. + """ + embeddings = await self.aembed_documents([text]) + return embeddings[0] diff --git a/libs/partners/openai/langchain_openai/llms/__init__.py b/libs/partners/openai/langchain_openai/llms/__init__.py new file mode 100644 index 0000000000000..51cc7024e582d --- /dev/null +++ b/libs/partners/openai/langchain_openai/llms/__init__.py @@ -0,0 +1,7 @@ +from langchain_openai.llms.azure import AzureOpenAI +from langchain_openai.llms.base import OpenAI + +__all__ = [ + "OpenAI", + "AzureOpenAI", +] diff --git a/libs/partners/openai/langchain_openai/llms/azure.py b/libs/partners/openai/langchain_openai/llms/azure.py new file mode 100644 index 0000000000000..43b3a8335dc58 --- /dev/null +++ b/libs/partners/openai/langchain_openai/llms/azure.py @@ -0,0 +1,190 @@ +from __future__ import annotations + +import logging +import os +from typing import ( + Any, + Callable, + Dict, + List, + Mapping, + Union, +) + +import openai +from langchain_core.pydantic_v1 import Field, root_validator +from langchain_core.utils import get_from_dict_or_env + +from langchain_openai.llms.base import BaseOpenAI + +logger = logging.getLogger(__name__) + + +class AzureOpenAI(BaseOpenAI): + """Azure-specific OpenAI large language models. + + To use, you should have the ``openai`` python package installed, and the + environment variable ``OPENAI_API_KEY`` set with your API key. + + Any parameters that are valid to be passed to the openai.create call can be passed + in, even if not explicitly saved on this class. + + Example: + .. code-block:: python + + from langchain_community.llms import AzureOpenAI + openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct") + """ + + azure_endpoint: Union[str, None] = None + """Your Azure endpoint, including the resource. + + Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. + + Example: `https://example-resource.azure.openai.com/` + """ + deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") + """A model deployment. + + If given sets the base client URL to include `/deployments/{azure_deployment}`. + Note: this means you won't be able to use non-deployment endpoints. + """ + openai_api_version: str = Field(default="", alias="api_version") + """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" + openai_api_key: Union[str, None] = Field(default=None, alias="api_key") + """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" + azure_ad_token: Union[str, None] = None + """Your Azure Active Directory token. + + Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. + + For more: + https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. + """ # noqa: E501 + azure_ad_token_provider: Union[Callable[[], str], None] = None + """A function that returns an Azure Active Directory token. + + Will be invoked on every request. + """ + openai_api_type: str = "" + """Legacy, for openai<1.0.0 support.""" + validate_base_url: bool = True + """For backwards compatibility. If legacy val openai_api_base is passed in, try to + infer if it is a base_url or azure_endpoint and update accordingly. + """ + + @classmethod + def get_lc_namespace(cls) -> List[str]: + """Get the namespace of the langchain object.""" + return ["langchain", "llms", "openai"] + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + if values["n"] < 1: + raise ValueError("n must be at least 1.") + if values["streaming"] and values["n"] > 1: + raise ValueError("Cannot stream results when n > 1.") + if values["streaming"] and values["best_of"] > 1: + raise ValueError("Cannot stream results when best_of > 1.") + + # Check OPENAI_KEY for backwards compatibility. + # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using + # other forms of azure credentials. + values["openai_api_key"] = ( + values["openai_api_key"] + or os.getenv("AZURE_OPENAI_API_KEY") + or os.getenv("OPENAI_API_KEY") + ) + + values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( + "AZURE_OPENAI_ENDPOINT" + ) + values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( + "AZURE_OPENAI_AD_TOKEN" + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_proxy"] = get_from_dict_or_env( + values, + "openai_proxy", + "OPENAI_PROXY", + default="", + ) + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + values["openai_api_version"] = values["openai_api_version"] or os.getenv( + "OPENAI_API_VERSION" + ) + values["openai_api_type"] = get_from_dict_or_env( + values, "openai_api_type", "OPENAI_API_TYPE", default="azure" + ) + # For backwards compatibility. Before openai v1, no distinction was made + # between azure_endpoint and base_url (openai_api_base). + openai_api_base = values["openai_api_base"] + if openai_api_base and values["validate_base_url"]: + if "/openai" not in openai_api_base: + values["openai_api_base"] = ( + values["openai_api_base"].rstrip("/") + "/openai" + ) + raise ValueError( + "As of openai>=1.0.0, Azure endpoints should be specified via " + "the `azure_endpoint` param not `openai_api_base` " + "(or alias `base_url`)." + ) + if values["deployment_name"]: + raise ValueError( + "As of openai>=1.0.0, if `deployment_name` (or alias " + "`azure_deployment`) is specified then " + "`openai_api_base` (or alias `base_url`) should not be. " + "Instead use `deployment_name` (or alias `azure_deployment`) " + "and `azure_endpoint`." + ) + values["deployment_name"] = None + client_params = { + "api_version": values["openai_api_version"], + "azure_endpoint": values["azure_endpoint"], + "azure_deployment": values["deployment_name"], + "api_key": values["openai_api_key"], + "azure_ad_token": values["azure_ad_token"], + "azure_ad_token_provider": values["azure_ad_token_provider"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + values["client"] = openai.AzureOpenAI(**client_params).completions + values["async_client"] = openai.AsyncAzureOpenAI(**client_params).completions + + return values + + @property + def _identifying_params(self) -> Mapping[str, Any]: + return { + **{"deployment_name": self.deployment_name}, + **super()._identifying_params, + } + + @property + def _invocation_params(self) -> Dict[str, Any]: + openai_params = {"model": self.deployment_name} + return {**openai_params, **super()._invocation_params} + + @property + def _llm_type(self) -> str: + """Return type of llm.""" + return "azure" + + @property + def lc_attributes(self) -> Dict[str, Any]: + return { + "openai_api_type": self.openai_api_type, + "openai_api_version": self.openai_api_version, + } diff --git a/libs/partners/openai/langchain_openai/llms/base.py b/libs/partners/openai/langchain_openai/llms/base.py new file mode 100644 index 0000000000000..ef9af629ed023 --- /dev/null +++ b/libs/partners/openai/langchain_openai/llms/base.py @@ -0,0 +1,611 @@ +from __future__ import annotations + +import logging +import os +import sys +from typing import ( + AbstractSet, + Any, + AsyncIterator, + Collection, + Dict, + Iterator, + List, + Literal, + Mapping, + Optional, + Set, + Tuple, + Union, +) + +import openai +import tiktoken +from langchain_core.callbacks import ( + AsyncCallbackManagerForLLMRun, + CallbackManagerForLLMRun, +) +from langchain_core.language_models.llms import BaseLLM +from langchain_core.outputs import Generation, GenerationChunk, LLMResult +from langchain_core.pydantic_v1 import Field, root_validator +from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names +from langchain_core.utils.utils import build_extra_kwargs + +logger = logging.getLogger(__name__) + + +def _update_token_usage( + keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] +) -> None: + """Update token usage.""" + _keys_to_use = keys.intersection(response["usage"]) + for _key in _keys_to_use: + if _key not in token_usage: + token_usage[_key] = response["usage"][_key] + else: + token_usage[_key] += response["usage"][_key] + + +def _stream_response_to_generation_chunk( + stream_response: Dict[str, Any], +) -> GenerationChunk: + """Convert a stream response to a generation chunk.""" + if not stream_response["choices"]: + return GenerationChunk(text="") + return GenerationChunk( + text=stream_response["choices"][0]["text"], + generation_info=dict( + finish_reason=stream_response["choices"][0].get("finish_reason", None), + logprobs=stream_response["choices"][0].get("logprobs", None), + ), + ) + + +class BaseOpenAI(BaseLLM): + """Base OpenAI large language model class.""" + + @property + def lc_secrets(self) -> Dict[str, str]: + return {"openai_api_key": "OPENAI_API_KEY"} + + @property + def lc_attributes(self) -> Dict[str, Any]: + attributes: Dict[str, Any] = {} + if self.openai_api_base: + attributes["openai_api_base"] = self.openai_api_base + + if self.openai_organization: + attributes["openai_organization"] = self.openai_organization + + if self.openai_proxy: + attributes["openai_proxy"] = self.openai_proxy + + return attributes + + client: Any = Field(default=None, exclude=True) #: :meta private: + async_client: Any = Field(default=None, exclude=True) #: :meta private: + model_name: str = Field(default="gpt-3.5-turbo-instruct", alias="model") + """Model name to use.""" + temperature: float = 0.7 + """What sampling temperature to use.""" + max_tokens: int = 256 + """The maximum number of tokens to generate in the completion. + -1 returns as many tokens as possible given the prompt and + the models maximal context size.""" + top_p: float = 1 + """Total probability mass of tokens to consider at each step.""" + frequency_penalty: float = 0 + """Penalizes repeated tokens according to frequency.""" + presence_penalty: float = 0 + """Penalizes repeated tokens.""" + n: int = 1 + """How many completions to generate for each prompt.""" + best_of: int = 1 + """Generates best_of completions server-side and returns the "best".""" + model_kwargs: Dict[str, Any] = Field(default_factory=dict) + """Holds any model parameters valid for `create` call not explicitly specified.""" + # When updating this to use a SecretStr + # Check for classes that derive from this class (as some of them + # may assume openai_api_key is a str) + openai_api_key: Optional[str] = Field(default=None, alias="api_key") + """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" + openai_api_base: Optional[str] = Field(default=None, alias="base_url") + """Base URL path for API requests, leave blank if not using a proxy or service + emulator.""" + openai_organization: Optional[str] = Field(default=None, alias="organization") + """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" + # to support explicit proxy for OpenAI + openai_proxy: Optional[str] = None + batch_size: int = 20 + """Batch size to use when passing multiple documents to generate.""" + request_timeout: Union[float, Tuple[float, float], Any, None] = Field( + default=None, alias="timeout" + ) + """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or + None.""" + logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) + """Adjust the probability of specific tokens being generated.""" + max_retries: int = 2 + """Maximum number of retries to make when generating.""" + streaming: bool = False + """Whether to stream the results or not.""" + allowed_special: Union[Literal["all"], AbstractSet[str]] = set() + """Set of special tokens that are allowed。""" + disallowed_special: Union[Literal["all"], Collection[str]] = "all" + """Set of special tokens that are not allowed。""" + tiktoken_model_name: Optional[str] = None + """The model name to pass to tiktoken when using this class. + Tiktoken is used to count the number of tokens in documents to constrain + them to be under a certain limit. By default, when set to None, this will + be the same as the embedding model name. However, there are some cases + where you may want to use this Embedding class with a model name not + supported by tiktoken. This can include when using Azure embeddings or + when using one of the many model providers that expose an OpenAI-like + API but with different models. In those cases, in order to avoid erroring + when tiktoken is called, you can specify a model name to use here.""" + default_headers: Union[Mapping[str, str], None] = None + default_query: Union[Mapping[str, object], None] = None + # Configure a custom httpx client. See the + # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. + http_client: Union[Any, None] = None + """Optional httpx.Client.""" + + class Config: + """Configuration for this pydantic object.""" + + allow_population_by_field_name = True + + @root_validator(pre=True) + def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + """Build extra kwargs from additional params that were passed in.""" + all_required_field_names = get_pydantic_field_names(cls) + extra = values.get("model_kwargs", {}) + values["model_kwargs"] = build_extra_kwargs( + extra, values, all_required_field_names + ) + return values + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + if values["n"] < 1: + raise ValueError("n must be at least 1.") + if values["streaming"] and values["n"] > 1: + raise ValueError("Cannot stream results when n > 1.") + if values["streaming"] and values["best_of"] > 1: + raise ValueError("Cannot stream results when best_of > 1.") + + values["openai_api_key"] = get_from_dict_or_env( + values, "openai_api_key", "OPENAI_API_KEY" + ) + values["openai_api_base"] = values["openai_api_base"] or os.getenv( + "OPENAI_API_BASE" + ) + values["openai_proxy"] = get_from_dict_or_env( + values, + "openai_proxy", + "OPENAI_PROXY", + default="", + ) + values["openai_organization"] = ( + values["openai_organization"] + or os.getenv("OPENAI_ORG_ID") + or os.getenv("OPENAI_ORGANIZATION") + ) + + client_params = { + "api_key": values["openai_api_key"], + "organization": values["openai_organization"], + "base_url": values["openai_api_base"], + "timeout": values["request_timeout"], + "max_retries": values["max_retries"], + "default_headers": values["default_headers"], + "default_query": values["default_query"], + "http_client": values["http_client"], + } + if not values.get("client"): + values["client"] = openai.OpenAI(**client_params).completions + if not values.get("async_client"): + values["async_client"] = openai.AsyncOpenAI(**client_params).completions + + return values + + @property + def _default_params(self) -> Dict[str, Any]: + """Get the default parameters for calling OpenAI API.""" + normal_params: Dict[str, Any] = { + "temperature": self.temperature, + "top_p": self.top_p, + "frequency_penalty": self.frequency_penalty, + "presence_penalty": self.presence_penalty, + "n": self.n, + "logit_bias": self.logit_bias, + } + + if self.max_tokens is not None: + normal_params["max_tokens"] = self.max_tokens + + # Azure gpt-35-turbo doesn't support best_of + # don't specify best_of if it is 1 + if self.best_of > 1: + normal_params["best_of"] = self.best_of + + return {**normal_params, **self.model_kwargs} + + def _stream( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[GenerationChunk]: + params = {**self._invocation_params, **kwargs, "stream": True} + self.get_sub_prompts(params, [prompt], stop) # this mutates params + for stream_resp in self.client.create(prompt=prompt, **params): + if not isinstance(stream_resp, dict): + stream_resp = stream_resp.dict() + chunk = _stream_response_to_generation_chunk(stream_resp) + yield chunk + if run_manager: + run_manager.on_llm_new_token( + chunk.text, + chunk=chunk, + verbose=self.verbose, + logprobs=chunk.generation_info["logprobs"] + if chunk.generation_info + else None, + ) + + async def _astream( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> AsyncIterator[GenerationChunk]: + params = {**self._invocation_params, **kwargs, "stream": True} + self.get_sub_prompts(params, [prompt], stop) # this mutates params + async for stream_resp in await self.async_client.create( + prompt=prompt, **params + ): + if not isinstance(stream_resp, dict): + stream_resp = stream_resp.dict() + chunk = _stream_response_to_generation_chunk(stream_resp) + yield chunk + if run_manager: + await run_manager.on_llm_new_token( + chunk.text, + chunk=chunk, + verbose=self.verbose, + logprobs=chunk.generation_info["logprobs"] + if chunk.generation_info + else None, + ) + + def _generate( + self, + prompts: List[str], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> LLMResult: + """Call out to OpenAI's endpoint with k unique prompts. + + Args: + prompts: The prompts to pass into the model. + stop: Optional list of stop words to use when generating. + + Returns: + The full LLM output. + + Example: + .. code-block:: python + + response = openai.generate(["Tell me a joke."]) + """ + # TODO: write a unit test for this + params = self._invocation_params + params = {**params, **kwargs} + sub_prompts = self.get_sub_prompts(params, prompts, stop) + choices = [] + token_usage: Dict[str, int] = {} + # Get the token usage from the response. + # Includes prompt, completion, and total tokens used. + _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} + system_fingerprint: Optional[str] = None + for _prompts in sub_prompts: + if self.streaming: + if len(_prompts) > 1: + raise ValueError("Cannot stream results with multiple prompts.") + + generation: Optional[GenerationChunk] = None + for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs): + if generation is None: + generation = chunk + else: + generation += chunk + assert generation is not None + choices.append( + { + "text": generation.text, + "finish_reason": generation.generation_info.get("finish_reason") + if generation.generation_info + else None, + "logprobs": generation.generation_info.get("logprobs") + if generation.generation_info + else None, + } + ) + else: + response = self.client.create(prompt=_prompts, **params) + if not isinstance(response, dict): + # V1 client returns the response in an PyDantic object instead of + # dict. For the transition period, we deep convert it to dict. + response = response.dict() + + choices.extend(response["choices"]) + _update_token_usage(_keys, response, token_usage) + if not system_fingerprint: + system_fingerprint = response.get("system_fingerprint") + return self.create_llm_result( + choices, + prompts, + params, + token_usage, + system_fingerprint=system_fingerprint, + ) + + async def _agenerate( + self, + prompts: List[str], + stop: Optional[List[str]] = None, + run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> LLMResult: + """Call out to OpenAI's endpoint async with k unique prompts.""" + params = self._invocation_params + params = {**params, **kwargs} + sub_prompts = self.get_sub_prompts(params, prompts, stop) + choices = [] + token_usage: Dict[str, int] = {} + # Get the token usage from the response. + # Includes prompt, completion, and total tokens used. + _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} + system_fingerprint: Optional[str] = None + for _prompts in sub_prompts: + if self.streaming: + if len(_prompts) > 1: + raise ValueError("Cannot stream results with multiple prompts.") + + generation: Optional[GenerationChunk] = None + async for chunk in self._astream( + _prompts[0], stop, run_manager, **kwargs + ): + if generation is None: + generation = chunk + else: + generation += chunk + assert generation is not None + choices.append( + { + "text": generation.text, + "finish_reason": generation.generation_info.get("finish_reason") + if generation.generation_info + else None, + "logprobs": generation.generation_info.get("logprobs") + if generation.generation_info + else None, + } + ) + else: + response = await self.async_client.create(prompt=_prompts, **params) + if not isinstance(response, dict): + response = response.dict() + choices.extend(response["choices"]) + _update_token_usage(_keys, response, token_usage) + return self.create_llm_result( + choices, + prompts, + params, + token_usage, + system_fingerprint=system_fingerprint, + ) + + def get_sub_prompts( + self, + params: Dict[str, Any], + prompts: List[str], + stop: Optional[List[str]] = None, + ) -> List[List[str]]: + """Get the sub prompts for llm call.""" + if stop is not None: + if "stop" in params: + raise ValueError("`stop` found in both the input and default params.") + params["stop"] = stop + if params["max_tokens"] == -1: + if len(prompts) != 1: + raise ValueError( + "max_tokens set to -1 not supported for multiple inputs." + ) + params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) + sub_prompts = [ + prompts[i : i + self.batch_size] + for i in range(0, len(prompts), self.batch_size) + ] + return sub_prompts + + def create_llm_result( + self, + choices: Any, + prompts: List[str], + params: Dict[str, Any], + token_usage: Dict[str, int], + *, + system_fingerprint: Optional[str] = None, + ) -> LLMResult: + """Create the LLMResult from the choices and prompts.""" + generations = [] + n = params.get("n", self.n) + for i, _ in enumerate(prompts): + sub_choices = choices[i * n : (i + 1) * n] + generations.append( + [ + Generation( + text=choice["text"], + generation_info=dict( + finish_reason=choice.get("finish_reason"), + logprobs=choice.get("logprobs"), + ), + ) + for choice in sub_choices + ] + ) + llm_output = {"token_usage": token_usage, "model_name": self.model_name} + if system_fingerprint: + llm_output["system_fingerprint"] = system_fingerprint + return LLMResult(generations=generations, llm_output=llm_output) + + @property + def _invocation_params(self) -> Dict[str, Any]: + """Get the parameters used to invoke the model.""" + return self._default_params + + @property + def _identifying_params(self) -> Mapping[str, Any]: + """Get the identifying parameters.""" + return {**{"model_name": self.model_name}, **self._default_params} + + @property + def _llm_type(self) -> str: + """Return type of llm.""" + return "openai" + + def get_token_ids(self, text: str) -> List[int]: + """Get the token IDs using the tiktoken package.""" + # tiktoken NOT supported for Python < 3.8 + if sys.version_info[1] < 8: + return super().get_num_tokens(text) + + model_name = self.tiktoken_model_name or self.model_name + try: + enc = tiktoken.encoding_for_model(model_name) + except KeyError: + logger.warning("Warning: model not found. Using cl100k_base encoding.") + model = "cl100k_base" + enc = tiktoken.get_encoding(model) + + return enc.encode( + text, + allowed_special=self.allowed_special, + disallowed_special=self.disallowed_special, + ) + + @staticmethod + def modelname_to_contextsize(modelname: str) -> int: + """Calculate the maximum number of tokens possible to generate for a model. + + Args: + modelname: The modelname we want to know the context size for. + + Returns: + The maximum context size + + Example: + .. code-block:: python + + max_tokens = openai.modelname_to_contextsize("gpt-3.5-turbo-instruct") + """ + model_token_mapping = { + "gpt-4": 8192, + "gpt-4-0314": 8192, + "gpt-4-0613": 8192, + "gpt-4-32k": 32768, + "gpt-4-32k-0314": 32768, + "gpt-4-32k-0613": 32768, + "gpt-3.5-turbo": 4096, + "gpt-3.5-turbo-0301": 4096, + "gpt-3.5-turbo-0613": 4096, + "gpt-3.5-turbo-16k": 16385, + "gpt-3.5-turbo-16k-0613": 16385, + "gpt-3.5-turbo-instruct": 4096, + "text-ada-001": 2049, + "ada": 2049, + "text-babbage-001": 2040, + "babbage": 2049, + "text-curie-001": 2049, + "curie": 2049, + "davinci": 2049, + "text-davinci-003": 4097, + "text-davinci-002": 4097, + "code-davinci-002": 8001, + "code-davinci-001": 8001, + "code-cushman-002": 2048, + "code-cushman-001": 2048, + } + + # handling finetuned models + if "ft-" in modelname: + modelname = modelname.split(":")[0] + + context_size = model_token_mapping.get(modelname, None) + + if context_size is None: + raise ValueError( + f"Unknown model: {modelname}. Please provide a valid OpenAI model name." + "Known models are: " + ", ".join(model_token_mapping.keys()) + ) + + return context_size + + @property + def max_context_size(self) -> int: + """Get max context size for this model.""" + return self.modelname_to_contextsize(self.model_name) + + def max_tokens_for_prompt(self, prompt: str) -> int: + """Calculate the maximum number of tokens possible to generate for a prompt. + + Args: + prompt: The prompt to pass into the model. + + Returns: + The maximum number of tokens to generate for a prompt. + + Example: + .. code-block:: python + + max_tokens = openai.max_token_for_prompt("Tell me a joke.") + """ + num_tokens = self.get_num_tokens(prompt) + return self.max_context_size - num_tokens + + +class OpenAI(BaseOpenAI): + """OpenAI large language models. + + To use, you should have the ``openai`` python package installed, and the + environment variable ``OPENAI_API_KEY`` set with your API key. + + Any parameters that are valid to be passed to the openai.create call can be passed + in, even if not explicitly saved on this class. + + Example: + .. code-block:: python + + from langchain_community.llms import OpenAI + openai = OpenAI(model_name="gpt-3.5-turbo-instruct") + """ + + @classmethod + def get_lc_namespace(cls) -> List[str]: + """Get the namespace of the langchain object.""" + return ["langchain", "llms", "openai"] + + @classmethod + def is_lc_serializable(cls) -> bool: + """Return whether this model can be serialized by Langchain.""" + return True + + @property + def _invocation_params(self) -> Dict[str, Any]: + return {**{"model": self.model_name}, **super()._invocation_params} diff --git a/libs/partners/openai/langchain_openai/py.typed b/libs/partners/openai/langchain_openai/py.typed new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/poetry.lock b/libs/partners/openai/poetry.lock new file mode 100644 index 0000000000000..3eb2d4b1cb8ce --- /dev/null +++ b/libs/partners/openai/poetry.lock @@ -0,0 +1,1140 @@ +# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. + +[[package]] +name = "annotated-types" +version = "0.6.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, + {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + +[[package]] +name = "anyio" +version = "4.2.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.2.0-py3-none-any.whl", hash = "sha256:745843b39e829e108e518c489b31dc757de7d2131d53fac32bd8df268227bfee"}, + {file = "anyio-4.2.0.tar.gz", hash = "sha256:e1875bb4b4e2de1669f4bc7869b6d3f54231cdced71605e6e64c9be77e3be50f"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] + +[[package]] +name = "certifi" +version = "2023.11.17" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, + {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "codespell" +version = "2.2.6" +description = "Codespell" +optional = false +python-versions = ">=3.8" +files = [ + {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, + {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, +] + +[package.extras] +dev = ["Pygments", "build", "chardet", "pre-commit", "pytest", "pytest-cov", "pytest-dependency", "ruff", "tomli", "twine"] +hard-encoding-detection = ["chardet"] +toml = ["tomli"] +types = ["chardet (>=5.1.0)", "mypy", "pytest", "pytest-cov", "pytest-dependency"] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "distro" +version = "1.9.0" +description = "Distro - an OS platform information API" +optional = false +python-versions = ">=3.6" +files = [ + {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, + {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, + {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "freezegun" +version = "1.4.0" +description = "Let your Python tests travel through time" +optional = false +python-versions = ">=3.7" +files = [ + {file = "freezegun-1.4.0-py3-none-any.whl", hash = "sha256:55e0fc3c84ebf0a96a5aa23ff8b53d70246479e9a68863f1fcac5a3e52f19dd6"}, + {file = "freezegun-1.4.0.tar.gz", hash = "sha256:10939b0ba0ff5adaecf3b06a5c2f73071d9678e507c5eaedb23c761d56ac774b"}, +] + +[package.dependencies] +python-dateutil = ">=2.7" + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.2" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.2-py3-none-any.whl", hash = "sha256:096cc05bca73b8e459a1fc3dcf585148f63e534eae4339559c9b8a8d6399acc7"}, + {file = "httpcore-1.0.2.tar.gz", hash = "sha256:9fc092e4799b26174648e54b74ed5f683132a464e95643b226e00c2ed2fa6535"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.23.0)"] + +[[package]] +name = "httpx" +version = "0.26.0" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.26.0-py3-none-any.whl", hash = "sha256:8915f5a3627c4d47b73e8202457cb28f1266982d1159bd5779d86a80c0eab1cd"}, + {file = "httpx-0.26.0.tar.gz", hash = "sha256:451b55c30d5185ea6b23c2c793abf9bb237d2a7dfb901ced6ff69ad37ec1dfaf"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] + +[[package]] +name = "idna" +version = "3.6" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, + {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, +] + +[[package]] +name = "iniconfig" +version = "2.0.0" +description = "brain-dead simple config-ini parsing" +optional = false +python-versions = ">=3.7" +files = [ + {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, + {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, +] + +[[package]] +name = "jsonpatch" +version = "1.33" +description = "Apply JSON-Patches (RFC 6902)" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +files = [ + {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, + {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, +] + +[package.dependencies] +jsonpointer = ">=1.9" + +[[package]] +name = "jsonpointer" +version = "2.4" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +files = [ + {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, + {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, +] + +[[package]] +name = "langchain-core" +version = "0.1.4" +description = "Building applications with LLMs through composability" +optional = false +python-versions = ">=3.8.1,<4.0" +files = [] +develop = true + +[package.dependencies] +anyio = ">=3,<5" +jsonpatch = "^1.33" +langsmith = "~0.0.63" +packaging = "^23.2" +pydantic = ">=1,<3" +PyYAML = ">=5.3" +requests = "^2" +tenacity = "^8.1.0" + +[package.extras] +extended-testing = ["jinja2 (>=3,<4)"] + +[package.source] +type = "directory" +url = "../../core" + +[[package]] +name = "langsmith" +version = "0.0.75" +description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." +optional = false +python-versions = ">=3.8.1,<4.0" +files = [ + {file = "langsmith-0.0.75-py3-none-any.whl", hash = "sha256:3e008854204c5eaae007f34c7e249059218605689c385c037f6a40cac044833b"}, + {file = "langsmith-0.0.75.tar.gz", hash = "sha256:3fd44c58bd53cb9366af3de129c7f11b6947914f1bb598a585240df0e2c566eb"}, +] + +[package.dependencies] +pydantic = ">=1,<3" +requests = ">=2,<3" + +[[package]] +name = "mypy" +version = "0.991" +description = "Optional static typing for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, + {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, + {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, + {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, + {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, + {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, + {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, + {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, + {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, + {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, + {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, + {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, + {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, + {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, + {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, + {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, + {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, + {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, + {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, + {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, + {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, + {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, + {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, + {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, + {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, + {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, + {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, + {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, + {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, + {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, +] + +[package.dependencies] +mypy-extensions = ">=0.4.3" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = ">=3.10" + +[package.extras] +dmypy = ["psutil (>=4.0)"] +install-types = ["pip"] +python2 = ["typed-ast (>=1.4.0,<2)"] +reports = ["lxml"] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "openai" +version = "1.6.1" +description = "The official Python library for the openai API" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "openai-1.6.1-py3-none-any.whl", hash = "sha256:bc9f774838d67ac29fb24cdeb2d58faf57de8b311085dcd1348f7aa02a96c7ee"}, + {file = "openai-1.6.1.tar.gz", hash = "sha256:d553ca9dbf9486b08e75b09e8671e4f638462aaadccfced632bf490fc3d75fa2"}, +] + +[package.dependencies] +anyio = ">=3.5.0,<5" +distro = ">=1.7.0,<2" +httpx = ">=0.23.0,<1" +pydantic = ">=1.9.0,<3" +sniffio = "*" +tqdm = ">4" +typing-extensions = ">=4.7,<5" + +[package.extras] +datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pluggy" +version = "1.3.0" +description = "plugin and hook calling mechanisms for python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"}, + {file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"}, +] + +[package.extras] +dev = ["pre-commit", "tox"] +testing = ["pytest", "pytest-benchmark"] + +[[package]] +name = "pydantic" +version = "2.5.3" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pydantic-2.5.3-py3-none-any.whl", hash = "sha256:d0caf5954bee831b6bfe7e338c32b9e30c85dfe080c843680783ac2b631673b4"}, + {file = "pydantic-2.5.3.tar.gz", hash = "sha256:b3ef57c62535b0941697cce638c08900d87fcb67e29cfa99e8a68f747f393f7a"}, +] + +[package.dependencies] +annotated-types = ">=0.4.0" +pydantic-core = "2.14.6" +typing-extensions = ">=4.6.1" + +[package.extras] +email = ["email-validator (>=2.0.0)"] + +[[package]] +name = "pydantic-core" +version = "2.14.6" +description = "" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pydantic_core-2.14.6-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:72f9a942d739f09cd42fffe5dc759928217649f070056f03c70df14f5770acf9"}, + {file = "pydantic_core-2.14.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6a31d98c0d69776c2576dda4b77b8e0c69ad08e8b539c25c7d0ca0dc19a50d6c"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5aa90562bc079c6c290f0512b21768967f9968e4cfea84ea4ff5af5d917016e4"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:370ffecb5316ed23b667d99ce4debe53ea664b99cc37bfa2af47bc769056d534"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f85f3843bdb1fe80e8c206fe6eed7a1caeae897e496542cee499c374a85c6e08"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9862bf828112e19685b76ca499b379338fd4c5c269d897e218b2ae8fcb80139d"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036137b5ad0cb0004c75b579445a1efccd072387a36c7f217bb8efd1afbe5245"}, + {file = "pydantic_core-2.14.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:92879bce89f91f4b2416eba4429c7b5ca22c45ef4a499c39f0c5c69257522c7c"}, + {file = "pydantic_core-2.14.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0c08de15d50fa190d577e8591f0329a643eeaed696d7771760295998aca6bc66"}, + {file = "pydantic_core-2.14.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:36099c69f6b14fc2c49d7996cbf4f87ec4f0e66d1c74aa05228583225a07b590"}, + {file = "pydantic_core-2.14.6-cp310-none-win32.whl", hash = "sha256:7be719e4d2ae6c314f72844ba9d69e38dff342bc360379f7c8537c48e23034b7"}, + {file = "pydantic_core-2.14.6-cp310-none-win_amd64.whl", hash = "sha256:36fa402dcdc8ea7f1b0ddcf0df4254cc6b2e08f8cd80e7010d4c4ae6e86b2a87"}, + {file = "pydantic_core-2.14.6-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:dea7fcd62915fb150cdc373212141a30037e11b761fbced340e9db3379b892d4"}, + {file = "pydantic_core-2.14.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ffff855100bc066ff2cd3aa4a60bc9534661816b110f0243e59503ec2df38421"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b027c86c66b8627eb90e57aee1f526df77dc6d8b354ec498be9a757d513b92b"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:00b1087dabcee0b0ffd104f9f53d7d3eaddfaa314cdd6726143af6bc713aa27e"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:75ec284328b60a4e91010c1acade0c30584f28a1f345bc8f72fe8b9e46ec6a96"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e1f4744eea1501404b20b0ac059ff7e3f96a97d3e3f48ce27a139e053bb370b"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2602177668f89b38b9f84b7b3435d0a72511ddef45dc14446811759b82235a1"}, + {file = "pydantic_core-2.14.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6c8edaea3089bf908dd27da8f5d9e395c5b4dc092dbcce9b65e7156099b4b937"}, + {file = "pydantic_core-2.14.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:478e9e7b360dfec451daafe286998d4a1eeaecf6d69c427b834ae771cad4b622"}, + {file = "pydantic_core-2.14.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b6ca36c12a5120bad343eef193cc0122928c5c7466121da7c20f41160ba00ba2"}, + {file = "pydantic_core-2.14.6-cp311-none-win32.whl", hash = "sha256:2b8719037e570639e6b665a4050add43134d80b687288ba3ade18b22bbb29dd2"}, + {file = "pydantic_core-2.14.6-cp311-none-win_amd64.whl", hash = "sha256:78ee52ecc088c61cce32b2d30a826f929e1708f7b9247dc3b921aec367dc1b23"}, + {file = "pydantic_core-2.14.6-cp311-none-win_arm64.whl", hash = "sha256:a19b794f8fe6569472ff77602437ec4430f9b2b9ec7a1105cfd2232f9ba355e6"}, + {file = "pydantic_core-2.14.6-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:667aa2eac9cd0700af1ddb38b7b1ef246d8cf94c85637cbb03d7757ca4c3fdec"}, + {file = "pydantic_core-2.14.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cdee837710ef6b56ebd20245b83799fce40b265b3b406e51e8ccc5b85b9099b7"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c5bcf3414367e29f83fd66f7de64509a8fd2368b1edf4351e862910727d3e51"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:26a92ae76f75d1915806b77cf459811e772d8f71fd1e4339c99750f0e7f6324f"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a983cca5ed1dd9a35e9e42ebf9f278d344603bfcb174ff99a5815f953925140a"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cb92f9061657287eded380d7dc455bbf115430b3aa4741bdc662d02977e7d0af"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4ace1e220b078c8e48e82c081e35002038657e4b37d403ce940fa679e57113b"}, + {file = "pydantic_core-2.14.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef633add81832f4b56d3b4c9408b43d530dfca29e68fb1b797dcb861a2c734cd"}, + {file = "pydantic_core-2.14.6-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7e90d6cc4aad2cc1f5e16ed56e46cebf4877c62403a311af20459c15da76fd91"}, + {file = "pydantic_core-2.14.6-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e8a5ac97ea521d7bde7621d86c30e86b798cdecd985723c4ed737a2aa9e77d0c"}, + {file = "pydantic_core-2.14.6-cp312-none-win32.whl", hash = "sha256:f27207e8ca3e5e021e2402ba942e5b4c629718e665c81b8b306f3c8b1ddbb786"}, + {file = "pydantic_core-2.14.6-cp312-none-win_amd64.whl", hash = "sha256:b3e5fe4538001bb82e2295b8d2a39356a84694c97cb73a566dc36328b9f83b40"}, + {file = "pydantic_core-2.14.6-cp312-none-win_arm64.whl", hash = "sha256:64634ccf9d671c6be242a664a33c4acf12882670b09b3f163cd00a24cffbd74e"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:24368e31be2c88bd69340fbfe741b405302993242ccb476c5c3ff48aeee1afe0"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:e33b0834f1cf779aa839975f9d8755a7c2420510c0fa1e9fa0497de77cd35d2c"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af4b3f52cc65f8a0bc8b1cd9676f8c21ef3e9132f21fed250f6958bd7223bed"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d15687d7d7f40333bd8266f3814c591c2e2cd263fa2116e314f60d82086e353a"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:095b707bb287bfd534044166ab767bec70a9bba3175dcdc3371782175c14e43c"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94fc0e6621e07d1e91c44e016cc0b189b48db053061cc22d6298a611de8071bb"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ce830e480f6774608dedfd4a90c42aac4a7af0a711f1b52f807130c2e434c06"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a306cdd2ad3a7d795d8e617a58c3a2ed0f76c8496fb7621b6cd514eb1532cae8"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:2f5fa187bde8524b1e37ba894db13aadd64faa884657473b03a019f625cee9a8"}, + {file = "pydantic_core-2.14.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:438027a975cc213a47c5d70672e0d29776082155cfae540c4e225716586be75e"}, + {file = "pydantic_core-2.14.6-cp37-none-win32.whl", hash = "sha256:f96ae96a060a8072ceff4cfde89d261837b4294a4f28b84a28765470d502ccc6"}, + {file = "pydantic_core-2.14.6-cp37-none-win_amd64.whl", hash = "sha256:e646c0e282e960345314f42f2cea5e0b5f56938c093541ea6dbf11aec2862391"}, + {file = "pydantic_core-2.14.6-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:db453f2da3f59a348f514cfbfeb042393b68720787bbef2b4c6068ea362c8149"}, + {file = "pydantic_core-2.14.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3860c62057acd95cc84044e758e47b18dcd8871a328ebc8ccdefd18b0d26a21b"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36026d8f99c58d7044413e1b819a67ca0e0b8ebe0f25e775e6c3d1fabb3c38fb"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8ed1af8692bd8d2a29d702f1a2e6065416d76897d726e45a1775b1444f5928a7"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:314ccc4264ce7d854941231cf71b592e30d8d368a71e50197c905874feacc8a8"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:982487f8931067a32e72d40ab6b47b1628a9c5d344be7f1a4e668fb462d2da42"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dbe357bc4ddda078f79d2a36fc1dd0494a7f2fad83a0a684465b6f24b46fe80"}, + {file = "pydantic_core-2.14.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2f6ffc6701a0eb28648c845f4945a194dc7ab3c651f535b81793251e1185ac3d"}, + {file = "pydantic_core-2.14.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7f5025db12fc6de7bc1104d826d5aee1d172f9ba6ca936bf6474c2148ac336c1"}, + {file = "pydantic_core-2.14.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dab03ed811ed1c71d700ed08bde8431cf429bbe59e423394f0f4055f1ca0ea60"}, + {file = "pydantic_core-2.14.6-cp38-none-win32.whl", hash = "sha256:dfcbebdb3c4b6f739a91769aea5ed615023f3c88cb70df812849aef634c25fbe"}, + {file = "pydantic_core-2.14.6-cp38-none-win_amd64.whl", hash = "sha256:99b14dbea2fdb563d8b5a57c9badfcd72083f6006caf8e126b491519c7d64ca8"}, + {file = "pydantic_core-2.14.6-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:4ce8299b481bcb68e5c82002b96e411796b844d72b3e92a3fbedfe8e19813eab"}, + {file = "pydantic_core-2.14.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b9a9d92f10772d2a181b5ca339dee066ab7d1c9a34ae2421b2a52556e719756f"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd9e98b408384989ea4ab60206b8e100d8687da18b5c813c11e92fd8212a98e0"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4f86f1f318e56f5cbb282fe61eb84767aee743ebe32c7c0834690ebea50c0a6b"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86ce5fcfc3accf3a07a729779d0b86c5d0309a4764c897d86c11089be61da160"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dcf1978be02153c6a31692d4fbcc2a3f1db9da36039ead23173bc256ee3b91b"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eedf97be7bc3dbc8addcef4142f4b4164066df0c6f36397ae4aaed3eb187d8ab"}, + {file = "pydantic_core-2.14.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d5f916acf8afbcab6bacbb376ba7dc61f845367901ecd5e328fc4d4aef2fcab0"}, + {file = "pydantic_core-2.14.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8a14c192c1d724c3acbfb3f10a958c55a2638391319ce8078cb36c02283959b9"}, + {file = "pydantic_core-2.14.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0348b1dc6b76041516e8a854ff95b21c55f5a411c3297d2ca52f5528e49d8411"}, + {file = "pydantic_core-2.14.6-cp39-none-win32.whl", hash = "sha256:de2a0645a923ba57c5527497daf8ec5df69c6eadf869e9cd46e86349146e5975"}, + {file = "pydantic_core-2.14.6-cp39-none-win_amd64.whl", hash = "sha256:aca48506a9c20f68ee61c87f2008f81f8ee99f8d7f0104bff3c47e2d148f89d9"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d5c28525c19f5bb1e09511669bb57353d22b94cf8b65f3a8d141c389a55dec95"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:78d0768ee59baa3de0f4adac9e3748b4b1fffc52143caebddfd5ea2961595277"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b93785eadaef932e4fe9c6e12ba67beb1b3f1e5495631419c784ab87e975670"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a874f21f87c485310944b2b2734cd6d318765bcbb7515eead33af9641816506e"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b89f4477d915ea43b4ceea6756f63f0288941b6443a2b28c69004fe07fde0d0d"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:172de779e2a153d36ee690dbc49c6db568d7b33b18dc56b69a7514aecbcf380d"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dfcebb950aa7e667ec226a442722134539e77c575f6cfaa423f24371bb8d2e94"}, + {file = "pydantic_core-2.14.6-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:55a23dcd98c858c0db44fc5c04fc7ed81c4b4d33c653a7c45ddaebf6563a2f66"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:4241204e4b36ab5ae466ecec5c4c16527a054c69f99bba20f6f75232a6a534e2"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e574de99d735b3fc8364cba9912c2bec2da78775eba95cbb225ef7dda6acea24"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1302a54f87b5cd8528e4d6d1bf2133b6aa7c6122ff8e9dc5220fbc1e07bffebd"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f8e81e4b55930e5ffab4a68db1af431629cf2e4066dbdbfef65348b8ab804ea8"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c99462ffc538717b3e60151dfaf91125f637e801f5ab008f81c402f1dff0cd0f"}, + {file = "pydantic_core-2.14.6-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e4cf2d5829f6963a5483ec01578ee76d329eb5caf330ecd05b3edd697e7d768a"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:cf10b7d58ae4a1f07fccbf4a0a956d705356fea05fb4c70608bb6fa81d103cda"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:399ac0891c284fa8eb998bcfa323f2234858f5d2efca3950ae58c8f88830f145"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c6a5c79b28003543db3ba67d1df336f253a87d3112dac3a51b94f7d48e4c0e1"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:599c87d79cab2a6a2a9df4aefe0455e61e7d2aeede2f8577c1b7c0aec643ee8e"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43e166ad47ba900f2542a80d83f9fc65fe99eb63ceec4debec160ae729824052"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:3a0b5db001b98e1c649dd55afa928e75aa4087e587b9524a4992316fa23c9fba"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:747265448cb57a9f37572a488a57d873fd96bf51e5bb7edb52cfb37124516da4"}, + {file = "pydantic_core-2.14.6-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:7ebe3416785f65c28f4f9441e916bfc8a54179c8dea73c23023f7086fa601c5d"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:86c963186ca5e50d5c8287b1d1c9d3f8f024cbe343d048c5bd282aec2d8641f2"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:e0641b506486f0b4cd1500a2a65740243e8670a2549bb02bc4556a83af84ae03"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71d72ca5eaaa8d38c8df16b7deb1a2da4f650c41b58bb142f3fb75d5ad4a611f"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27e524624eace5c59af499cd97dc18bb201dc6a7a2da24bfc66ef151c69a5f2a"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a3dde6cac75e0b0902778978d3b1646ca9f438654395a362cb21d9ad34b24acf"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:00646784f6cd993b1e1c0e7b0fdcbccc375d539db95555477771c27555e3c556"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23598acb8ccaa3d1d875ef3b35cb6376535095e9405d91a3d57a8c7db5d29341"}, + {file = "pydantic_core-2.14.6-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7f41533d7e3cf9520065f610b41ac1c76bc2161415955fbcead4981b22c7611e"}, + {file = "pydantic_core-2.14.6.tar.gz", hash = "sha256:1fd0c1d395372843fba13a51c28e3bb9d59bd7aebfeb17358ffaaa1e4dbbe948"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pytest" +version = "7.4.4" +description = "pytest: simple powerful testing with Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, + {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} +iniconfig = "*" +packaging = "*" +pluggy = ">=0.12,<2.0" +tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} + +[package.extras] +testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] + +[[package]] +name = "pytest-asyncio" +version = "0.21.1" +description = "Pytest support for asyncio" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-asyncio-0.21.1.tar.gz", hash = "sha256:40a7eae6dded22c7b604986855ea48400ab15b069ae38116e8c01238e9eeb64d"}, + {file = "pytest_asyncio-0.21.1-py3-none-any.whl", hash = "sha256:8666c1c8ac02631d7c51ba282e0c69a8a452b211ffedf2599099845da5c5c37b"}, +] + +[package.dependencies] +pytest = ">=7.0.0" + +[package.extras] +docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] +testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] + +[[package]] +name = "pytest-mock" +version = "3.12.0" +description = "Thin-wrapper around the mock package for easier use with pytest" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pytest-mock-3.12.0.tar.gz", hash = "sha256:31a40f038c22cad32287bb43932054451ff5583ff094bca6f675df2f8bc1a6e9"}, + {file = "pytest_mock-3.12.0-py3-none-any.whl", hash = "sha256:0972719a7263072da3a21c7f4773069bcc7486027d7e8e1f81d98a47e701bc4f"}, +] + +[package.dependencies] +pytest = ">=5.0" + +[package.extras] +dev = ["pre-commit", "pytest-asyncio", "tox"] + +[[package]] +name = "pytest-watcher" +version = "0.3.4" +description = "Automatically rerun your tests on file modifications" +optional = false +python-versions = ">=3.7.0,<4.0.0" +files = [ + {file = "pytest_watcher-0.3.4-py3-none-any.whl", hash = "sha256:edd2bd9c8a1fb14d48c9f4947234065eb9b4c1acedc0bf213b1f12501dfcffd3"}, + {file = "pytest_watcher-0.3.4.tar.gz", hash = "sha256:d39491ba15b589221bb9a78ef4bed3d5d1503aed08209b1a138aeb95b9117a18"}, +] + +[package.dependencies] +tomli = {version = ">=2.0.1,<3.0.0", markers = "python_version < \"3.11\""} +watchdog = ">=2.0.0" + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pyyaml" +version = "6.0.1" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, +] + +[[package]] +name = "regex" +version = "2023.12.25" +description = "Alternative regular expression module, to replace re." +optional = false +python-versions = ">=3.7" +files = [ + {file = "regex-2023.12.25-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0694219a1d54336fd0445ea382d49d36882415c0134ee1e8332afd1529f0baa5"}, + {file = "regex-2023.12.25-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b014333bd0217ad3d54c143de9d4b9a3ca1c5a29a6d0d554952ea071cff0f1f8"}, + {file = "regex-2023.12.25-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d865984b3f71f6d0af64d0d88f5733521698f6c16f445bb09ce746c92c97c586"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e0eabac536b4cc7f57a5f3d095bfa557860ab912f25965e08fe1545e2ed8b4c"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c25a8ad70e716f96e13a637802813f65d8a6760ef48672aa3502f4c24ea8b400"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9b6d73353f777630626f403b0652055ebfe8ff142a44ec2cf18ae470395766e"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9cc99d6946d750eb75827cb53c4371b8b0fe89c733a94b1573c9dd16ea6c9e4"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88d1f7bef20c721359d8675f7d9f8e414ec5003d8f642fdfd8087777ff7f94b5"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cb3fe77aec8f1995611f966d0c656fdce398317f850d0e6e7aebdfe61f40e1cd"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7aa47c2e9ea33a4a2a05f40fcd3ea36d73853a2aae7b4feab6fc85f8bf2c9704"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:df26481f0c7a3f8739fecb3e81bc9da3fcfae34d6c094563b9d4670b047312e1"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:c40281f7d70baf6e0db0c2f7472b31609f5bc2748fe7275ea65a0b4601d9b392"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:d94a1db462d5690ebf6ae86d11c5e420042b9898af5dcf278bd97d6bda065423"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ba1b30765a55acf15dce3f364e4928b80858fa8f979ad41f862358939bdd1f2f"}, + {file = "regex-2023.12.25-cp310-cp310-win32.whl", hash = "sha256:150c39f5b964e4d7dba46a7962a088fbc91f06e606f023ce57bb347a3b2d4630"}, + {file = "regex-2023.12.25-cp310-cp310-win_amd64.whl", hash = "sha256:09da66917262d9481c719599116c7dc0c321ffcec4b1f510c4f8a066f8768105"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1b9d811f72210fa9306aeb88385b8f8bcef0dfbf3873410413c00aa94c56c2b6"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d902a43085a308cef32c0d3aea962524b725403fd9373dea18110904003bac97"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d166eafc19f4718df38887b2bbe1467a4f74a9830e8605089ea7a30dd4da8887"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7ad32824b7f02bb3c9f80306d405a1d9b7bb89362d68b3c5a9be53836caebdb"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:636ba0a77de609d6510235b7f0e77ec494d2657108f777e8765efc060094c98c"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fda75704357805eb953a3ee15a2b240694a9a514548cd49b3c5124b4e2ad01b"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f72cbae7f6b01591f90814250e636065850c5926751af02bb48da94dfced7baa"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db2a0b1857f18b11e3b0e54ddfefc96af46b0896fb678c85f63fb8c37518b3e7"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7502534e55c7c36c0978c91ba6f61703faf7ce733715ca48f499d3dbbd7657e0"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:e8c7e08bb566de4faaf11984af13f6bcf6a08f327b13631d41d62592681d24fe"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:283fc8eed679758de38fe493b7d7d84a198b558942b03f017b1f94dda8efae80"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f44dd4d68697559d007462b0a3a1d9acd61d97072b71f6d1968daef26bc744bd"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:67d3ccfc590e5e7197750fcb3a2915b416a53e2de847a728cfa60141054123d4"}, + {file = "regex-2023.12.25-cp311-cp311-win32.whl", hash = "sha256:68191f80a9bad283432385961d9efe09d783bcd36ed35a60fb1ff3f1ec2efe87"}, + {file = "regex-2023.12.25-cp311-cp311-win_amd64.whl", hash = "sha256:7d2af3f6b8419661a0c421584cfe8aaec1c0e435ce7e47ee2a97e344b98f794f"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8a0ccf52bb37d1a700375a6b395bff5dd15c50acb745f7db30415bae3c2b0715"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c3c4a78615b7762740531c27cf46e2f388d8d727d0c0c739e72048beb26c8a9d"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ad83e7545b4ab69216cef4cc47e344d19622e28aabec61574b20257c65466d6a"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7a635871143661feccce3979e1727c4e094f2bdfd3ec4b90dfd4f16f571a87a"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d498eea3f581fbe1b34b59c697512a8baef88212f92e4c7830fcc1499f5b45a5"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:43f7cd5754d02a56ae4ebb91b33461dc67be8e3e0153f593c509e21d219c5060"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51f4b32f793812714fd5307222a7f77e739b9bc566dc94a18126aba3b92b98a3"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba99d8077424501b9616b43a2d208095746fb1284fc5ba490139651f971d39d9"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4bfc2b16e3ba8850e0e262467275dd4d62f0d045e0e9eda2bc65078c0110a11f"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8c2c19dae8a3eb0ea45a8448356ed561be843b13cbc34b840922ddf565498c1c"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:60080bb3d8617d96f0fb7e19796384cc2467447ef1c491694850ebd3670bc457"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b77e27b79448e34c2c51c09836033056a0547aa360c45eeeb67803da7b0eedaf"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:518440c991f514331f4850a63560321f833979d145d7d81186dbe2f19e27ae3d"}, + {file = "regex-2023.12.25-cp312-cp312-win32.whl", hash = "sha256:e2610e9406d3b0073636a3a2e80db05a02f0c3169b5632022b4e81c0364bcda5"}, + {file = "regex-2023.12.25-cp312-cp312-win_amd64.whl", hash = "sha256:cc37b9aeebab425f11f27e5e9e6cf580be7206c6582a64467a14dda211abc232"}, + {file = "regex-2023.12.25-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:da695d75ac97cb1cd725adac136d25ca687da4536154cdc2815f576e4da11c69"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d126361607b33c4eb7b36debc173bf25d7805847346dd4d99b5499e1fef52bc7"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4719bb05094d7d8563a450cf8738d2e1061420f79cfcc1fa7f0a44744c4d8f73"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5dd58946bce44b53b06d94aa95560d0b243eb2fe64227cba50017a8d8b3cd3e2"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:22a86d9fff2009302c440b9d799ef2fe322416d2d58fc124b926aa89365ec482"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2aae8101919e8aa05ecfe6322b278f41ce2994c4a430303c4cd163fef746e04f"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e692296c4cc2873967771345a876bcfc1c547e8dd695c6b89342488b0ea55cd8"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:263ef5cc10979837f243950637fffb06e8daed7f1ac1e39d5910fd29929e489a"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:d6f7e255e5fa94642a0724e35406e6cb7001c09d476ab5fce002f652b36d0c39"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:88ad44e220e22b63b0f8f81f007e8abbb92874d8ced66f32571ef8beb0643b2b"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:3a17d3ede18f9cedcbe23d2daa8a2cd6f59fe2bf082c567e43083bba3fb00347"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d15b274f9e15b1a0b7a45d2ac86d1f634d983ca40d6b886721626c47a400bf39"}, + {file = "regex-2023.12.25-cp37-cp37m-win32.whl", hash = "sha256:ed19b3a05ae0c97dd8f75a5d8f21f7723a8c33bbc555da6bbe1f96c470139d3c"}, + {file = "regex-2023.12.25-cp37-cp37m-win_amd64.whl", hash = "sha256:a6d1047952c0b8104a1d371f88f4ab62e6275567d4458c1e26e9627ad489b445"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b43523d7bc2abd757119dbfb38af91b5735eea45537ec6ec3a5ec3f9562a1c53"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:efb2d82f33b2212898f1659fb1c2e9ac30493ac41e4d53123da374c3b5541e64"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7fca9205b59c1a3d5031f7e64ed627a1074730a51c2a80e97653e3e9fa0d415"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086dd15e9435b393ae06f96ab69ab2d333f5d65cbe65ca5a3ef0ec9564dfe770"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e81469f7d01efed9b53740aedd26085f20d49da65f9c1f41e822a33992cb1590"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:34e4af5b27232f68042aa40a91c3b9bb4da0eeb31b7632e0091afc4310afe6cb"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9852b76ab558e45b20bf1893b59af64a28bd3820b0c2efc80e0a70a4a3ea51c1"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff100b203092af77d1a5a7abe085b3506b7eaaf9abf65b73b7d6905b6cb76988"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cc038b2d8b1470364b1888a98fd22d616fba2b6309c5b5f181ad4483e0017861"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:094ba386bb5c01e54e14434d4caabf6583334090865b23ef58e0424a6286d3dc"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5cd05d0f57846d8ba4b71d9c00f6f37d6b97d5e5ef8b3c3840426a475c8f70f4"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:9aa1a67bbf0f957bbe096375887b2505f5d8ae16bf04488e8b0f334c36e31360"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:98a2636994f943b871786c9e82bfe7883ecdaba2ef5df54e1450fa9869d1f756"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:37f8e93a81fc5e5bd8db7e10e62dc64261bcd88f8d7e6640aaebe9bc180d9ce2"}, + {file = "regex-2023.12.25-cp38-cp38-win32.whl", hash = "sha256:d78bd484930c1da2b9679290a41cdb25cc127d783768a0369d6b449e72f88beb"}, + {file = "regex-2023.12.25-cp38-cp38-win_amd64.whl", hash = "sha256:b521dcecebc5b978b447f0f69b5b7f3840eac454862270406a39837ffae4e697"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f7bc09bc9c29ebead055bcba136a67378f03d66bf359e87d0f7c759d6d4ffa31"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e14b73607d6231f3cc4622809c196b540a6a44e903bcfad940779c80dffa7be7"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9eda5f7a50141291beda3edd00abc2d4a5b16c29c92daf8d5bd76934150f3edc"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc6bb9aa69aacf0f6032c307da718f61a40cf970849e471254e0e91c56ffca95"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298dc6354d414bc921581be85695d18912bea163a8b23cac9a2562bbcd5088b1"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2f4e475a80ecbd15896a976aa0b386c5525d0ed34d5c600b6d3ebac0a67c7ddf"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:531ac6cf22b53e0696f8e1d56ce2396311254eb806111ddd3922c9d937151dae"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22f3470f7524b6da61e2020672df2f3063676aff444db1daa283c2ea4ed259d6"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:89723d2112697feaa320c9d351e5f5e7b841e83f8b143dba8e2d2b5f04e10923"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0ecf44ddf9171cd7566ef1768047f6e66975788258b1c6c6ca78098b95cf9a3d"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:905466ad1702ed4acfd67a902af50b8db1feeb9781436372261808df7a2a7bca"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:4558410b7a5607a645e9804a3e9dd509af12fb72b9825b13791a37cd417d73a5"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7e316026cc1095f2a3e8cc012822c99f413b702eaa2ca5408a513609488cb62f"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3b1de218d5375cd6ac4b5493e0b9f3df2be331e86520f23382f216c137913d20"}, + {file = "regex-2023.12.25-cp39-cp39-win32.whl", hash = "sha256:11a963f8e25ab5c61348d090bf1b07f1953929c13bd2309a0662e9ff680763c9"}, + {file = "regex-2023.12.25-cp39-cp39-win_amd64.whl", hash = "sha256:e693e233ac92ba83a87024e1d32b5f9ab15ca55ddd916d878146f4e3406b5c91"}, + {file = "regex-2023.12.25.tar.gz", hash = "sha256:29171aa128da69afdf4bde412d5bedc335f2ca8fcfe4489038577d05f16181e5"}, +] + +[[package]] +name = "requests" +version = "2.31.0" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.7" +files = [ + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "ruff" +version = "0.1.9" +description = "An extremely fast Python linter and code formatter, written in Rust." +optional = false +python-versions = ">=3.7" +files = [ + {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e6a212f436122ac73df851f0cf006e0c6612fe6f9c864ed17ebefce0eff6a5fd"}, + {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:28d920e319783d5303333630dae46ecc80b7ba294aeffedf946a02ac0b7cc3db"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:104aa9b5e12cb755d9dce698ab1b97726b83012487af415a4512fedd38b1459e"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e63bf5a4a91971082a4768a0aba9383c12392d0d6f1e2be2248c1f9054a20da"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4d0738917c203246f3e275b37006faa3aa96c828b284ebfe3e99a8cb413c8c4b"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:69dac82d63a50df2ab0906d97a01549f814b16bc806deeac4f064ff95c47ddf5"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2aec598fb65084e41a9c5d4b95726173768a62055aafb07b4eff976bac72a592"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:744dfe4b35470fa3820d5fe45758aace6269c578f7ddc43d447868cfe5078bcb"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:479ca4250cab30f9218b2e563adc362bd6ae6343df7c7b5a7865300a5156d5a6"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:aa8344310f1ae79af9ccd6e4b32749e93cddc078f9b5ccd0e45bd76a6d2e8bb6"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:837c739729394df98f342319f5136f33c65286b28b6b70a87c28f59354ec939b"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:e6837202c2859b9f22e43cb01992373c2dbfeae5c0c91ad691a4a2e725392464"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:331aae2cd4a0554667ac683243b151c74bd60e78fb08c3c2a4ac05ee1e606a39"}, + {file = "ruff-0.1.9-py3-none-win32.whl", hash = "sha256:8151425a60878e66f23ad47da39265fc2fad42aed06fb0a01130e967a7a064f4"}, + {file = "ruff-0.1.9-py3-none-win_amd64.whl", hash = "sha256:c497d769164df522fdaf54c6eba93f397342fe4ca2123a2e014a5b8fc7df81c7"}, + {file = "ruff-0.1.9-py3-none-win_arm64.whl", hash = "sha256:0e17f53bcbb4fff8292dfd84cf72d767b5e146f009cccd40c2fad27641f8a7a9"}, + {file = "ruff-0.1.9.tar.gz", hash = "sha256:b041dee2734719ddbb4518f762c982f2e912e7f28b8ee4fe1dee0b15d1b6e800"}, +] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "sniffio" +version = "1.3.0" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, + {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, +] + +[[package]] +name = "syrupy" +version = "4.6.0" +description = "Pytest Snapshot Test Utility" +optional = false +python-versions = ">=3.8.1,<4" +files = [ + {file = "syrupy-4.6.0-py3-none-any.whl", hash = "sha256:747aae1bcf3cb3249e33b1e6d81097874d23615982d5686ebe637875b0775a1b"}, + {file = "syrupy-4.6.0.tar.gz", hash = "sha256:231b1f5d00f1f85048ba81676c79448076189c4aef4d33f21ae32f3b4c565a54"}, +] + +[package.dependencies] +pytest = ">=7.0.0,<8.0.0" + +[[package]] +name = "tenacity" +version = "8.2.3" +description = "Retry code until it succeeds" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tenacity-8.2.3-py3-none-any.whl", hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c"}, + {file = "tenacity-8.2.3.tar.gz", hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a"}, +] + +[package.extras] +doc = ["reno", "sphinx", "tornado (>=4.5)"] + +[[package]] +name = "tiktoken" +version = "0.5.2" +description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8c4e654282ef05ec1bd06ead22141a9a1687991cef2c6a81bdd1284301abc71d"}, + {file = "tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b3134aa24319f42c27718c6967f3c1916a38a715a0fa73d33717ba121231307"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6092e6e77730929c8c6a51bb0d7cfdf1b72b63c4d033d6258d1f2ee81052e9e5"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72ad8ae2a747622efae75837abba59be6c15a8f31b4ac3c6156bc56ec7a8e631"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51cba7c8711afa0b885445f0637f0fcc366740798c40b981f08c5f984e02c9d1"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3d8c7d2c9313f8e92e987d585ee2ba0f7c40a0de84f4805b093b634f792124f5"}, + {file = "tiktoken-0.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:692eca18c5fd8d1e0dde767f895c17686faaa102f37640e884eecb6854e7cca7"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:138d173abbf1ec75863ad68ca289d4da30caa3245f3c8d4bfb274c4d629a2f77"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7388fdd684690973fdc450b47dfd24d7f0cbe658f58a576169baef5ae4658607"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a114391790113bcff670c70c24e166a841f7ea8f47ee2fe0e71e08b49d0bf2d4"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca96f001e69f6859dd52926d950cfcc610480e920e576183497ab954e645e6ac"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:15fed1dd88e30dfadcdd8e53a8927f04e1f6f81ad08a5ca824858a593ab476c7"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:93f8e692db5756f7ea8cb0cfca34638316dcf0841fb8469de8ed7f6a015ba0b0"}, + {file = "tiktoken-0.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:bcae1c4c92df2ffc4fe9f475bf8148dbb0ee2404743168bbeb9dcc4b79dc1fdd"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b76a1e17d4eb4357d00f0622d9a48ffbb23401dcf36f9716d9bd9c8e79d421aa"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:01d8b171bb5df4035580bc26d4f5339a6fd58d06f069091899d4a798ea279d3e"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42adf7d4fb1ed8de6e0ff2e794a6a15005f056a0d83d22d1d6755a39bffd9e7f"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3f894dbe0adb44609f3d532b8ea10820d61fdcb288b325a458dfc60fefb7db"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58ccfddb4e62f0df974e8f7e34a667981d9bb553a811256e617731bf1d007d19"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58902a8bad2de4268c2a701f1c844d22bfa3cbcc485b10e8e3e28a050179330b"}, + {file = "tiktoken-0.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:5e39257826d0647fcac403d8fa0a474b30d02ec8ffc012cfaf13083e9b5e82c5"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8bde3b0fbf09a23072d39c1ede0e0821f759b4fa254a5f00078909158e90ae1f"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2ddee082dcf1231ccf3a591d234935e6acf3e82ee28521fe99af9630bc8d2a60"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35c057a6a4e777b5966a7540481a75a31429fc1cb4c9da87b71c8b75b5143037"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c4a049b87e28f1dc60509f8eb7790bc8d11f9a70d99b9dd18dfdd81a084ffe6"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5bf5ce759089f4f6521ea6ed89d8f988f7b396e9f4afb503b945f5c949c6bec2"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0c964f554af1a96884e01188f480dad3fc224c4bbcf7af75d4b74c4b74ae0125"}, + {file = "tiktoken-0.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:368dd5726d2e8788e47ea04f32e20f72a2012a8a67af5b0b003d1e059f1d30a3"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2deef9115b8cd55536c0a02c0203512f8deb2447f41585e6d929a0b878a0dd2"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2ed7d380195affbf886e2f8b92b14edfe13f4768ff5fc8de315adba5b773815e"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c76fce01309c8140ffe15eb34ded2bb94789614b7d1d09e206838fc173776a18"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60a5654d6a2e2d152637dd9a880b4482267dfc8a86ccf3ab1cec31a8c76bfae8"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:41d4d3228e051b779245a8ddd21d4336f8975563e92375662f42d05a19bdff41"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c1cdec2c92fcde8c17a50814b525ae6a88e8e5b02030dc120b76e11db93f13"}, + {file = "tiktoken-0.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:84ddb36faedb448a50b246e13d1b6ee3437f60b7169b723a4b2abad75e914f3e"}, + {file = "tiktoken-0.5.2.tar.gz", hash = "sha256:f54c581f134a8ea96ce2023ab221d4d4d81ab614efa0b2fbce926387deb56c80"}, +] + +[package.dependencies] +regex = ">=2022.1.18" +requests = ">=2.26.0" + +[package.extras] +blobfile = ["blobfile (>=2)"] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + +[[package]] +name = "tqdm" +version = "4.66.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, + {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "types-tqdm" +version = "4.66.0.5" +description = "Typing stubs for tqdm" +optional = false +python-versions = ">=3.7" +files = [ + {file = "types-tqdm-4.66.0.5.tar.gz", hash = "sha256:74bd7e469238c28816300f72a9b713d02036f6b557734616430adb7b7e74112c"}, + {file = "types_tqdm-4.66.0.5-py3-none-any.whl", hash = "sha256:d2c38085bec440e8ad1e94e8619f7cb3d1dd0a7ee06a863ccd0610a5945046ef"}, +] + +[[package]] +name = "typing-extensions" +version = "4.9.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, + {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, +] + +[[package]] +name = "urllib3" +version = "2.1.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, + {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "watchdog" +version = "3.0.0" +description = "Filesystem events monitoring" +optional = false +python-versions = ">=3.7" +files = [ + {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, + {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, + {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, + {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, + {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, + {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, + {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, + {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, + {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, + {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, + {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, + {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, + {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, + {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, + {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, + {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, + {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, + {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, + {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, + {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, + {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, +] + +[package.extras] +watchmedo = ["PyYAML (>=3.10)"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.8.1,<4.0" +content-hash = "0f47be39eaaf80f386105c97e0a3c6efb8a7f4b7945c849285ead4a25f9ac4dc" diff --git a/libs/partners/openai/pyproject.toml b/libs/partners/openai/pyproject.toml new file mode 100644 index 0000000000000..496a0319d6a55 --- /dev/null +++ b/libs/partners/openai/pyproject.toml @@ -0,0 +1,97 @@ +[tool.poetry] +name = "langchain-openai" +version = "0.0.1" +description = "An integration package connecting OpenAI and LangChain" +authors = [] +readme = "README.md" + +[tool.poetry.dependencies] +python = ">=3.8.1,<4.0" +langchain-core = ">=0.0.12" +openai = "^1.6.1" +numpy = "^1" +tiktoken = "^0.5.2" + +[tool.poetry.group.test] +optional = true + +[tool.poetry.group.test.dependencies] +pytest = "^7.3.0" +freezegun = "^1.2.2" +pytest-mock = "^3.10.0" +syrupy = "^4.0.2" +pytest-watcher = "^0.3.4" +pytest-asyncio = "^0.21.1" +langchain-core = {path = "../../core", develop = true} + +[tool.poetry.group.codespell] +optional = true + +[tool.poetry.group.codespell.dependencies] +codespell = "^2.2.0" + +[tool.poetry.group.test_integration] +optional = true + +[tool.poetry.group.test_integration.dependencies] + +[tool.poetry.group.lint] +optional = true + +[tool.poetry.group.lint.dependencies] +ruff = "^0.1.5" + +[tool.poetry.group.typing.dependencies] +mypy = "^0.991" +langchain-core = {path = "../../core", develop = true} +types-tqdm = "^4.66.0.5" + +[tool.poetry.group.dev] +optional = true + +[tool.poetry.group.dev.dependencies] +langchain-core = {path = "../../core", develop = true} + +[tool.ruff] +select = [ + "E", # pycodestyle + "F", # pyflakes + "I", # isort +] + +[tool.mypy] +disallow_untyped_defs = "True" + +[[tool.mypy.overrides]] +module = "transformers" +ignore_missing_imports = true + +[tool.coverage.run] +omit = [ + "tests/*", +] + +[build-system] +requires = ["poetry-core>=1.0.0"] +build-backend = "poetry.core.masonry.api" + +[tool.pytest.ini_options] +# --strict-markers will raise errors on unknown marks. +# https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks +# +# https://docs.pytest.org/en/7.1.x/reference/reference.html +# --strict-config any warnings encountered while parsing the `pytest` +# section of the configuration file raise errors. +# +# https://github.com/tophat/syrupy +# --snapshot-warn-unused Prints a warning on unused snapshots rather than fail the test suite. +addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" +# Registering custom markers. +# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", + "scheduled: mark tests to run in scheduled testing", +] +asyncio_mode = "auto" diff --git a/libs/partners/openai/scripts/check_imports.py b/libs/partners/openai/scripts/check_imports.py new file mode 100644 index 0000000000000..fd21a4975b7f0 --- /dev/null +++ b/libs/partners/openai/scripts/check_imports.py @@ -0,0 +1,17 @@ +import sys +import traceback +from importlib.machinery import SourceFileLoader + +if __name__ == "__main__": + files = sys.argv[1:] + has_failure = False + for file in files: + try: + SourceFileLoader("x", file).load_module() + except Exception: + has_faillure = True + print(file) + traceback.print_exc() + print() + + sys.exit(1 if has_failure else 0) diff --git a/libs/partners/openai/scripts/check_pydantic.sh b/libs/partners/openai/scripts/check_pydantic.sh new file mode 100755 index 0000000000000..06b5bb81ae236 --- /dev/null +++ b/libs/partners/openai/scripts/check_pydantic.sh @@ -0,0 +1,27 @@ +#!/bin/bash +# +# This script searches for lines starting with "import pydantic" or "from pydantic" +# in tracked files within a Git repository. +# +# Usage: ./scripts/check_pydantic.sh /path/to/repository + +# Check if a path argument is provided +if [ $# -ne 1 ]; then + echo "Usage: $0 /path/to/repository" + exit 1 +fi + +repository_path="$1" + +# Search for lines matching the pattern within the specified repository +result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') + +# Check if any matching lines were found +if [ -n "$result" ]; then + echo "ERROR: The following lines need to be updated:" + echo "$result" + echo "Please replace the code with an import from langchain_core.pydantic_v1." + echo "For example, replace 'from pydantic import BaseModel'" + echo "with 'from langchain_core.pydantic_v1 import BaseModel'" + exit 1 +fi diff --git a/libs/partners/openai/scripts/lint_imports.sh b/libs/partners/openai/scripts/lint_imports.sh new file mode 100755 index 0000000000000..695613c7ba8fd --- /dev/null +++ b/libs/partners/openai/scripts/lint_imports.sh @@ -0,0 +1,17 @@ +#!/bin/bash + +set -eu + +# Initialize a variable to keep track of errors +errors=0 + +# make sure not importing from langchain or langchain_experimental +git --no-pager grep '^from langchain\.' . && errors=$((errors+1)) +git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1)) + +# Decide on an exit status based on the errors +if [ "$errors" -gt 0 ]; then + exit 1 +else + exit 0 +fi diff --git a/libs/partners/openai/tests/__init__.py b/libs/partners/openai/tests/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/integration_tests/__init__.py b/libs/partners/openai/tests/integration_tests/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/integration_tests/chat_models/__init__.py b/libs/partners/openai/tests/integration_tests/chat_models/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py b/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py new file mode 100644 index 0000000000000..6cb6ec95f3d3b --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py @@ -0,0 +1,221 @@ +"""Test AzureChatOpenAI wrapper.""" +import os +from typing import Any + +import pytest +from langchain_core.callbacks import CallbackManager +from langchain_core.messages import BaseMessage, HumanMessage +from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult + +from langchain_openai import AzureChatOpenAI +from tests.unit_tests.fake.callbacks import FakeCallbackHandler + +OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") +OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") +OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") +DEPLOYMENT_NAME = os.environ.get( + "AZURE_OPENAI_DEPLOYMENT_NAME", + os.environ.get("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME", ""), +) + + +def _get_llm(**kwargs: Any) -> AzureChatOpenAI: + return AzureChatOpenAI( + deployment_name=DEPLOYMENT_NAME, + openai_api_version=OPENAI_API_VERSION, + azure_endpoint=OPENAI_API_BASE, + openai_api_key=OPENAI_API_KEY, + **kwargs, + ) + + +@pytest.mark.scheduled +@pytest.fixture +def llm() -> AzureChatOpenAI: + return _get_llm( + max_tokens=10, + ) + + +def test_chat_openai(llm: AzureChatOpenAI) -> None: + """Test AzureChatOpenAI wrapper.""" + message = HumanMessage(content="Hello") + response = llm([message]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +@pytest.mark.scheduled +def test_chat_openai_generate() -> None: + """Test AzureChatOpenAI wrapper with generate.""" + chat = _get_llm(max_tokens=10, n=2) + message = HumanMessage(content="Hello") + response = chat.generate([[message], [message]]) + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + for generations in response.generations: + assert len(generations) == 2 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +def test_chat_openai_multiple_completions() -> None: + """Test AzureChatOpenAI wrapper with multiple completions.""" + chat = _get_llm(max_tokens=10, n=5) + message = HumanMessage(content="Hello") + response = chat._generate([message]) + assert isinstance(response, ChatResult) + assert len(response.generations) == 5 + for generation in response.generations: + assert isinstance(generation.message, BaseMessage) + assert isinstance(generation.message.content, str) + + +@pytest.mark.scheduled +def test_chat_openai_streaming() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + chat = _get_llm( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + message = HumanMessage(content="Hello") + response = chat([message]) + assert callback_handler.llm_streams > 0 + assert isinstance(response, BaseMessage) + + +@pytest.mark.scheduled +def test_chat_openai_streaming_generation_info() -> None: + """Test that generation info is preserved when streaming.""" + + class _FakeCallback(FakeCallbackHandler): + saved_things: dict = {} + + def on_llm_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + # Save the generation + self.saved_things["generation"] = args[0] + + callback = _FakeCallback() + callback_manager = CallbackManager([callback]) + chat = _get_llm( + max_tokens=2, + temperature=0, + callback_manager=callback_manager, + ) + list(chat.stream("hi")) + generation = callback.saved_things["generation"] + # `Hello!` is two tokens, assert that that is what is returned + assert generation.generations[0][0].text == "Hello!" + + +@pytest.mark.scheduled +async def test_async_chat_openai() -> None: + """Test async generation.""" + chat = _get_llm(max_tokens=10, n=2) + message = HumanMessage(content="Hello") + response = await chat.agenerate([[message], [message]]) + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + for generations in response.generations: + assert len(generations) == 2 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +async def test_async_chat_openai_streaming() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + chat = _get_llm( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + message = HumanMessage(content="Hello") + response = await chat.agenerate([[message], [message]]) + assert callback_handler.llm_streams > 0 + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + for generations in response.generations: + assert len(generations) == 1 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +def test_openai_streaming(llm: AzureChatOpenAI) -> None: + """Test streaming tokens from OpenAI.""" + + for token in llm.stream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_astream(llm: AzureChatOpenAI) -> None: + """Test streaming tokens from OpenAI.""" + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_abatch(llm: AzureChatOpenAI) -> None: + """Test streaming tokens from AzureChatOpenAI.""" + + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_abatch_tags(llm: AzureChatOpenAI) -> None: + """Test batch tokens from AzureChatOpenAI.""" + + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +def test_openai_batch(llm: AzureChatOpenAI) -> None: + """Test batch tokens from AzureChatOpenAI.""" + + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_ainvoke(llm: AzureChatOpenAI) -> None: + """Test invoke tokens from AzureChatOpenAI.""" + + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result.content, str) + + +@pytest.mark.scheduled +def test_openai_invoke(llm: AzureChatOpenAI) -> None: + """Test invoke tokens from AzureChatOpenAI.""" + + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result.content, str) diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_base.py b/libs/partners/openai/tests/integration_tests/chat_models/test_base.py new file mode 100644 index 0000000000000..c86112891f139 --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_base.py @@ -0,0 +1,393 @@ +"""Test ChatOpenAI chat model.""" +from typing import Any, Optional + +import pytest +from langchain_core.callbacks import CallbackManager +from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage +from langchain_core.outputs import ( + ChatGeneration, + ChatResult, + LLMResult, +) +from langchain_core.prompts import ChatPromptTemplate +from langchain_core.pydantic_v1 import BaseModel, Field + +from langchain_openai import ChatOpenAI +from tests.unit_tests.fake.callbacks import FakeCallbackHandler + + +@pytest.mark.scheduled +def test_chat_openai() -> None: + """Test ChatOpenAI wrapper.""" + chat = ChatOpenAI( + temperature=0.7, + base_url=None, + organization=None, + openai_proxy=None, + timeout=10.0, + max_retries=3, + http_client=None, + n=1, + max_tokens=10, + default_headers=None, + default_query=None, + ) + message = HumanMessage(content="Hello") + response = chat([message]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +def test_chat_openai_model() -> None: + """Test ChatOpenAI wrapper handles model_name.""" + chat = ChatOpenAI(model="foo") + assert chat.model_name == "foo" + chat = ChatOpenAI(model_name="bar") + assert chat.model_name == "bar" + + +def test_chat_openai_system_message() -> None: + """Test ChatOpenAI wrapper with system message.""" + chat = ChatOpenAI(max_tokens=10) + system_message = SystemMessage(content="You are to chat with the user.") + human_message = HumanMessage(content="Hello") + response = chat([system_message, human_message]) + assert isinstance(response, BaseMessage) + assert isinstance(response.content, str) + + +@pytest.mark.scheduled +def test_chat_openai_generate() -> None: + """Test ChatOpenAI wrapper with generate.""" + chat = ChatOpenAI(max_tokens=10, n=2) + message = HumanMessage(content="Hello") + response = chat.generate([[message], [message]]) + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + assert response.llm_output + for generations in response.generations: + assert len(generations) == 2 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +def test_chat_openai_multiple_completions() -> None: + """Test ChatOpenAI wrapper with multiple completions.""" + chat = ChatOpenAI(max_tokens=10, n=5) + message = HumanMessage(content="Hello") + response = chat._generate([message]) + assert isinstance(response, ChatResult) + assert len(response.generations) == 5 + for generation in response.generations: + assert isinstance(generation.message, BaseMessage) + assert isinstance(generation.message.content, str) + + +@pytest.mark.scheduled +def test_chat_openai_streaming() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + chat = ChatOpenAI( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + message = HumanMessage(content="Hello") + response = chat([message]) + assert callback_handler.llm_streams > 0 + assert isinstance(response, BaseMessage) + + +@pytest.mark.scheduled +def test_chat_openai_streaming_generation_info() -> None: + """Test that generation info is preserved when streaming.""" + + class _FakeCallback(FakeCallbackHandler): + saved_things: dict = {} + + def on_llm_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + # Save the generation + self.saved_things["generation"] = args[0] + + callback = _FakeCallback() + callback_manager = CallbackManager([callback]) + chat = ChatOpenAI( + max_tokens=2, + temperature=0, + callback_manager=callback_manager, + ) + list(chat.stream("hi")) + generation = callback.saved_things["generation"] + # `Hello!` is two tokens, assert that that is what is returned + assert generation.generations[0][0].text == "Hello!" + + +def test_chat_openai_llm_output_contains_model_name() -> None: + """Test llm_output contains model_name.""" + chat = ChatOpenAI(max_tokens=10) + message = HumanMessage(content="Hello") + llm_result = chat.generate([[message]]) + assert llm_result.llm_output is not None + assert llm_result.llm_output["model_name"] == chat.model_name + + +def test_chat_openai_streaming_llm_output_contains_model_name() -> None: + """Test llm_output contains model_name.""" + chat = ChatOpenAI(max_tokens=10, streaming=True) + message = HumanMessage(content="Hello") + llm_result = chat.generate([[message]]) + assert llm_result.llm_output is not None + assert llm_result.llm_output["model_name"] == chat.model_name + + +def test_chat_openai_invalid_streaming_params() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + with pytest.raises(ValueError): + ChatOpenAI( + max_tokens=10, + streaming=True, + temperature=0, + n=5, + ) + + +@pytest.mark.scheduled +async def test_async_chat_openai() -> None: + """Test async generation.""" + chat = ChatOpenAI(max_tokens=10, n=2) + message = HumanMessage(content="Hello") + response = await chat.agenerate([[message], [message]]) + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + assert response.llm_output + for generations in response.generations: + assert len(generations) == 2 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +async def test_async_chat_openai_streaming() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + chat = ChatOpenAI( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + message = HumanMessage(content="Hello") + response = await chat.agenerate([[message], [message]]) + assert callback_handler.llm_streams > 0 + assert isinstance(response, LLMResult) + assert len(response.generations) == 2 + for generations in response.generations: + assert len(generations) == 1 + for generation in generations: + assert isinstance(generation, ChatGeneration) + assert isinstance(generation.text, str) + assert generation.text == generation.message.content + + +@pytest.mark.scheduled +async def test_async_chat_openai_bind_functions() -> None: + """Test ChatOpenAI wrapper with multiple completions.""" + + class Person(BaseModel): + """Identifying information about a person.""" + + name: str = Field(..., title="Name", description="The person's name") + age: int = Field(..., title="Age", description="The person's age") + fav_food: Optional[str] = Field( + default=None, title="Fav Food", description="The person's favorite food" + ) + + chat = ChatOpenAI( + max_tokens=30, + n=1, + streaming=True, + ).bind_functions(functions=[Person], function_call="Person") + + prompt = ChatPromptTemplate.from_messages( + [ + ("system", "Use the provided Person function"), + ("user", "{input}"), + ] + ) + + chain = prompt | chat + + message = HumanMessage(content="Sally is 13 years old") + response = await chain.abatch([{"input": message}]) + + assert isinstance(response, list) + assert len(response) == 1 + for generation in response: + assert isinstance(generation, AIMessage) + + +def test_chat_openai_extra_kwargs() -> None: + """Test extra kwargs to chat openai.""" + # Check that foo is saved in extra_kwargs. + llm = ChatOpenAI(foo=3, max_tokens=10) + assert llm.max_tokens == 10 + assert llm.model_kwargs == {"foo": 3} + + # Test that if extra_kwargs are provided, they are added to it. + llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2}) + assert llm.model_kwargs == {"foo": 3, "bar": 2} + + # Test that if provided twice it errors + with pytest.raises(ValueError): + ChatOpenAI(foo=3, model_kwargs={"foo": 2}) + + # Test that if explicit param is specified in kwargs it errors + with pytest.raises(ValueError): + ChatOpenAI(model_kwargs={"temperature": 0.2}) + + # Test that "model" cannot be specified in kwargs + with pytest.raises(ValueError): + ChatOpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"}) + + +@pytest.mark.scheduled +def test_openai_streaming() -> None: + """Test streaming tokens from OpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + for token in llm.stream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_astream() -> None: + """Test streaming tokens from OpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_abatch() -> None: + """Test streaming tokens from ChatOpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_abatch_tags() -> None: + """Test batch tokens from ChatOpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +def test_openai_batch() -> None: + """Test batch tokens from ChatOpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +@pytest.mark.scheduled +async def test_openai_ainvoke() -> None: + """Test invoke tokens from ChatOpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result.content, str) + + +@pytest.mark.scheduled +def test_openai_invoke() -> None: + """Test invoke tokens from ChatOpenAI.""" + llm = ChatOpenAI(max_tokens=10) + + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result.content, str) + + +def test_stream() -> None: + """Test streaming tokens from OpenAI.""" + llm = ChatOpenAI() + + for token in llm.stream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +async def test_astream() -> None: + """Test streaming tokens from OpenAI.""" + llm = ChatOpenAI() + + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token.content, str) + + +async def test_abatch() -> None: + """Test streaming tokens from ChatOpenAI.""" + llm = ChatOpenAI() + + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +async def test_abatch_tags() -> None: + """Test batch tokens from ChatOpenAI.""" + llm = ChatOpenAI() + + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token.content, str) + + +def test_batch() -> None: + """Test batch tokens from ChatOpenAI.""" + llm = ChatOpenAI() + + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token.content, str) + + +async def test_ainvoke() -> None: + """Test invoke tokens from ChatOpenAI.""" + llm = ChatOpenAI() + + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result.content, str) + + +def test_invoke() -> None: + """Test invoke tokens from ChatOpenAI.""" + llm = ChatOpenAI() + + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result.content, str) diff --git a/libs/partners/openai/tests/integration_tests/embeddings/__init__.py b/libs/partners/openai/tests/integration_tests/embeddings/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/integration_tests/embeddings/test_azure.py b/libs/partners/openai/tests/integration_tests/embeddings/test_azure.py new file mode 100644 index 0000000000000..e270faf092358 --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/embeddings/test_azure.py @@ -0,0 +1,132 @@ +"""Test azure openai embeddings.""" +import os +from typing import Any + +import numpy as np +import openai +import pytest + +from langchain_openai import AzureOpenAIEmbeddings + +OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") +OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") +OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") +DEPLOYMENT_NAME = os.environ.get( + "AZURE_OPENAI_DEPLOYMENT_NAME", + os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""), +) +print + + +def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings: + return AzureOpenAIEmbeddings( + azure_deployment=DEPLOYMENT_NAME, + api_version=OPENAI_API_VERSION, + openai_api_base=OPENAI_API_BASE, + openai_api_key=OPENAI_API_KEY, + **kwargs, + ) + + +@pytest.mark.scheduled +def test_azure_openai_embedding_documents() -> None: + """Test openai embeddings.""" + documents = ["foo bar"] + embedding = _get_embeddings() + output = embedding.embed_documents(documents) + assert len(output) == 1 + assert len(output[0]) == 1536 + + +@pytest.mark.scheduled +def test_azure_openai_embedding_documents_multiple() -> None: + """Test openai embeddings.""" + documents = ["foo bar", "bar foo", "foo"] + embedding = _get_embeddings(chunk_size=2) + embedding.embedding_ctx_length = 8191 + output = embedding.embed_documents(documents) + assert embedding.chunk_size == 2 + assert len(output) == 3 + assert len(output[0]) == 1536 + assert len(output[1]) == 1536 + assert len(output[2]) == 1536 + + +@pytest.mark.scheduled +def test_azure_openai_embedding_documents_chunk_size() -> None: + """Test openai embeddings.""" + documents = ["foo bar"] * 20 + embedding = _get_embeddings() + embedding.embedding_ctx_length = 8191 + output = embedding.embed_documents(documents) + # Max 16 chunks per batch on Azure OpenAI embeddings + assert embedding.chunk_size == 16 + assert len(output) == 20 + assert all([len(out) == 1536 for out in output]) + + +@pytest.mark.scheduled +async def test_azure_openai_embedding_documents_async_multiple() -> None: + """Test openai embeddings.""" + documents = ["foo bar", "bar foo", "foo"] + embedding = _get_embeddings(chunk_size=2) + embedding.embedding_ctx_length = 8191 + output = await embedding.aembed_documents(documents) + assert len(output) == 3 + assert len(output[0]) == 1536 + assert len(output[1]) == 1536 + assert len(output[2]) == 1536 + + +@pytest.mark.scheduled +def test_azure_openai_embedding_query() -> None: + """Test openai embeddings.""" + document = "foo bar" + embedding = _get_embeddings() + output = embedding.embed_query(document) + assert len(output) == 1536 + + +@pytest.mark.scheduled +async def test_azure_openai_embedding_async_query() -> None: + """Test openai embeddings.""" + document = "foo bar" + embedding = _get_embeddings() + output = await embedding.aembed_query(document) + assert len(output) == 1536 + + +@pytest.mark.scheduled +def test_azure_openai_embedding_with_empty_string() -> None: + """Test openai embeddings with empty string.""" + + document = ["", "abc"] + embedding = _get_embeddings() + output = embedding.embed_documents(document) + assert len(output) == 2 + assert len(output[0]) == 1536 + expected_output = ( + openai.AzureOpenAI( + api_version=OPENAI_API_VERSION, + api_key=OPENAI_API_KEY, + base_url=embedding.openai_api_base, + azure_deployment=DEPLOYMENT_NAME, + ) # type: ignore + .embeddings.create(input="", model="text-embedding-ada-002") + .data[0] + .embedding + ) + assert np.allclose(output[0], expected_output) + assert len(output[1]) == 1536 + + +@pytest.mark.scheduled +def test_embed_documents_normalized() -> None: + output = _get_embeddings().embed_documents(["foo walked to the market"]) + assert np.isclose(np.linalg.norm(output[0]), 1.0) + + +@pytest.mark.scheduled +def test_embed_query_normalized() -> None: + output = _get_embeddings().embed_query("foo walked to the market") + assert np.isclose(np.linalg.norm(output), 1.0) diff --git a/libs/partners/openai/tests/integration_tests/embeddings/test_base.py b/libs/partners/openai/tests/integration_tests/embeddings/test_base.py new file mode 100644 index 0000000000000..a68715ab81a41 --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/embeddings/test_base.py @@ -0,0 +1,19 @@ +"""Test OpenAI embeddings.""" +from langchain_openai.embeddings.base import OpenAIEmbeddings + + +def test_langchain_openai_embedding_documents() -> None: + """Test cohere embeddings.""" + documents = ["foo bar"] + embedding = OpenAIEmbeddings() + output = embedding.embed_documents(documents) + assert len(output) == 1 + assert len(output[0]) > 0 + + +def test_langchain_openai_embedding_query() -> None: + """Test cohere embeddings.""" + document = "foo bar" + embedding = OpenAIEmbeddings() + output = embedding.embed_query(document) + assert len(output) > 0 diff --git a/libs/partners/openai/tests/integration_tests/llms/__init__.py b/libs/partners/openai/tests/integration_tests/llms/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/integration_tests/llms/test_azure.py b/libs/partners/openai/tests/integration_tests/llms/test_azure.py new file mode 100644 index 0000000000000..66486bb2b74d2 --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/llms/test_azure.py @@ -0,0 +1,176 @@ +"""Test AzureOpenAI wrapper.""" +import os +from typing import Any, Generator + +import pytest +from langchain_core.callbacks import CallbackManager +from langchain_core.outputs import LLMResult + +from langchain_openai import AzureOpenAI +from tests.unit_tests.fake.callbacks import FakeCallbackHandler + +OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") +OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") +OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") +DEPLOYMENT_NAME = os.environ.get( + "AZURE_OPENAI_DEPLOYMENT_NAME", + os.environ.get("AZURE_OPENAI_LLM_DEPLOYMENT_NAME", ""), +) + + +def _get_llm(**kwargs: Any) -> AzureOpenAI: + return AzureOpenAI( + deployment_name=DEPLOYMENT_NAME, + openai_api_version=OPENAI_API_VERSION, + openai_api_base=OPENAI_API_BASE, + openai_api_key=OPENAI_API_KEY, + **kwargs, + ) + + +@pytest.fixture +def llm() -> AzureOpenAI: + return _get_llm( + max_tokens=10, + ) + + +@pytest.mark.scheduled +def test_openai_call(llm: AzureOpenAI) -> None: + """Test valid call to openai.""" + output = llm("Say something nice:") + assert isinstance(output, str) + + +@pytest.mark.scheduled +def test_openai_streaming(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + generator = llm.stream("I'm Pickle Rick") + + assert isinstance(generator, Generator) + + full_response = "" + for token in generator: + assert isinstance(token, str) + full_response += token + assert full_response + + +@pytest.mark.scheduled +async def test_openai_astream(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token, str) + + +@pytest.mark.scheduled +async def test_openai_abatch(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +async def test_openai_abatch_tags(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token, str) + + +@pytest.mark.scheduled +def test_openai_batch(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +@pytest.mark.scheduled +async def test_openai_ainvoke(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result, str) + + +@pytest.mark.scheduled +def test_openai_invoke(llm: AzureOpenAI) -> None: + """Test streaming tokens from AzureOpenAI.""" + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result, str) + + +@pytest.mark.scheduled +def test_openai_multiple_prompts(llm: AzureOpenAI) -> None: + """Test completion with multiple prompts.""" + output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"]) + assert isinstance(output, LLMResult) + assert isinstance(output.generations, list) + assert len(output.generations) == 2 + + +def test_openai_streaming_best_of_error() -> None: + """Test validation for streaming fails if best_of is not 1.""" + with pytest.raises(ValueError): + _get_llm(best_of=2, streaming=True) + + +def test_openai_streaming_n_error() -> None: + """Test validation for streaming fails if n is not 1.""" + with pytest.raises(ValueError): + _get_llm(n=2, streaming=True) + + +def test_openai_streaming_multiple_prompts_error() -> None: + """Test validation for streaming fails if multiple prompts are given.""" + with pytest.raises(ValueError): + _get_llm(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"]) + + +@pytest.mark.scheduled +def test_openai_streaming_call() -> None: + """Test valid call to openai.""" + llm = _get_llm(max_tokens=10, streaming=True) + output = llm("Say foo:") + assert isinstance(output, str) + + +def test_openai_streaming_callback() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + llm = _get_llm( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + llm("Write me a sentence with 100 words.") + assert callback_handler.llm_streams == 11 + + +@pytest.mark.scheduled +async def test_openai_async_generate() -> None: + """Test async generation.""" + llm = _get_llm(max_tokens=10) + output = await llm.agenerate(["Hello, how are you?"]) + assert isinstance(output, LLMResult) + + +async def test_openai_async_streaming_callback() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + llm = _get_llm( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + result = await llm.agenerate(["Write me a sentence with 100 words."]) + assert callback_handler.llm_streams == 11 + assert isinstance(result, LLMResult) diff --git a/libs/partners/openai/tests/integration_tests/llms/test_base.py b/libs/partners/openai/tests/integration_tests/llms/test_base.py new file mode 100644 index 0000000000000..608e42ed3e9fd --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/llms/test_base.py @@ -0,0 +1,280 @@ +"""Test OpenAI llm.""" +from typing import Generator + +import pytest +from langchain_core.callbacks import CallbackManager +from langchain_core.outputs import LLMResult + +from langchain_openai import OpenAI +from tests.unit_tests.fake.callbacks import ( + FakeCallbackHandler, +) + + +def test_stream() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI() + + for token in llm.stream("I'm Pickle Rick"): + assert isinstance(token, str) + + +async def test_astream() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI() + + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token, str) + + +async def test_abatch() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI() + + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +async def test_abatch_tags() -> None: + """Test batch tokens from OpenAI.""" + llm = OpenAI() + + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token, str) + + +def test_batch() -> None: + """Test batch tokens from OpenAI.""" + llm = OpenAI() + + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +async def test_ainvoke() -> None: + """Test invoke tokens from OpenAI.""" + llm = OpenAI() + + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result, str) + + +def test_invoke() -> None: + """Test invoke tokens from OpenAI.""" + llm = OpenAI() + + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result, str) + + +@pytest.mark.scheduled +def test_openai_call() -> None: + """Test valid call to openai.""" + llm = OpenAI() + output = llm("Say something nice:") + assert isinstance(output, str) + + +def test_openai_llm_output_contains_model_name() -> None: + """Test llm_output contains model_name.""" + llm = OpenAI(max_tokens=10) + llm_result = llm.generate(["Hello, how are you?"]) + assert llm_result.llm_output is not None + assert llm_result.llm_output["model_name"] == llm.model_name + + +def test_openai_stop_valid() -> None: + """Test openai stop logic on valid configuration.""" + query = "write an ordered list of five items" + first_llm = OpenAI(stop="3", temperature=0) + first_output = first_llm(query) + second_llm = OpenAI(temperature=0) + second_output = second_llm(query, stop=["3"]) + # Because it stops on new lines, shouldn't return anything + assert first_output == second_output + + +def test_openai_stop_error() -> None: + """Test openai stop logic on bad configuration.""" + llm = OpenAI(stop="3", temperature=0) + with pytest.raises(ValueError): + llm("write an ordered list of five items", stop=["\n"]) + + +@pytest.mark.scheduled +def test_openai_streaming() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + generator = llm.stream("I'm Pickle Rick") + + assert isinstance(generator, Generator) + + for token in generator: + assert isinstance(token, str) + + +@pytest.mark.scheduled +async def test_openai_astream() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + async for token in llm.astream("I'm Pickle Rick"): + assert isinstance(token, str) + + +@pytest.mark.scheduled +async def test_openai_abatch() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +async def test_openai_abatch_tags() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + result = await llm.abatch( + ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} + ) + for token in result: + assert isinstance(token, str) + + +@pytest.mark.scheduled +def test_openai_batch() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) + for token in result: + assert isinstance(token, str) + + +@pytest.mark.scheduled +async def test_openai_ainvoke() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) + assert isinstance(result, str) + + +@pytest.mark.scheduled +def test_openai_invoke() -> None: + """Test streaming tokens from OpenAI.""" + llm = OpenAI(max_tokens=10) + + result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) + assert isinstance(result, str) + + +@pytest.mark.scheduled +def test_openai_multiple_prompts() -> None: + """Test completion with multiple prompts.""" + llm = OpenAI(max_tokens=10) + output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"]) + assert isinstance(output, LLMResult) + assert isinstance(output.generations, list) + assert len(output.generations) == 2 + + +def test_openai_streaming_best_of_error() -> None: + """Test validation for streaming fails if best_of is not 1.""" + with pytest.raises(ValueError): + OpenAI(best_of=2, streaming=True) + + +def test_openai_streaming_n_error() -> None: + """Test validation for streaming fails if n is not 1.""" + with pytest.raises(ValueError): + OpenAI(n=2, streaming=True) + + +def test_openai_streaming_multiple_prompts_error() -> None: + """Test validation for streaming fails if multiple prompts are given.""" + with pytest.raises(ValueError): + OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"]) + + +@pytest.mark.scheduled +def test_openai_streaming_call() -> None: + """Test valid call to openai.""" + llm = OpenAI(max_tokens=10, streaming=True) + output = llm("Say foo:") + assert isinstance(output, str) + + +def test_openai_streaming_callback() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + llm = OpenAI( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + llm("Write me a sentence with 100 words.") + + # new client sometimes passes 2 tokens at once + assert callback_handler.llm_streams >= 5 + + +@pytest.mark.scheduled +async def test_openai_async_generate() -> None: + """Test async generation.""" + llm = OpenAI(max_tokens=10) + output = await llm.agenerate(["Hello, how are you?"]) + assert isinstance(output, LLMResult) + + +async def test_openai_async_streaming_callback() -> None: + """Test that streaming correctly invokes on_llm_new_token callback.""" + callback_handler = FakeCallbackHandler() + callback_manager = CallbackManager([callback_handler]) + llm = OpenAI( + max_tokens=10, + streaming=True, + temperature=0, + callback_manager=callback_manager, + verbose=True, + ) + result = await llm.agenerate(["Write me a sentence with 100 words."]) + + # new client sometimes passes 2 tokens at once + assert callback_handler.llm_streams >= 5 + assert isinstance(result, LLMResult) + + +def test_openai_modelname_to_contextsize_valid() -> None: + """Test model name to context size on a valid model.""" + assert OpenAI().modelname_to_contextsize("davinci") == 2049 + + +def test_openai_modelname_to_contextsize_invalid() -> None: + """Test model name to context size on an invalid model.""" + with pytest.raises(ValueError): + OpenAI().modelname_to_contextsize("foobar") + + +@pytest.fixture +def mock_completion() -> dict: + return { + "id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ", + "object": "text_completion", + "created": 1689989000, + "model": "gpt-3.5-turbo-instruct", + "choices": [ + {"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"} + ], + "usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3}, + } diff --git a/libs/partners/openai/tests/integration_tests/test_compile.py b/libs/partners/openai/tests/integration_tests/test_compile.py new file mode 100644 index 0000000000000..33ecccdfa0fbd --- /dev/null +++ b/libs/partners/openai/tests/integration_tests/test_compile.py @@ -0,0 +1,7 @@ +import pytest + + +@pytest.mark.compile +def test_placeholder() -> None: + """Used for compiling integration tests without running any real tests.""" + pass diff --git a/libs/partners/openai/tests/unit_tests/__init__.py b/libs/partners/openai/tests/unit_tests/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/unit_tests/chat_models/__init__.py b/libs/partners/openai/tests/unit_tests/chat_models/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/unit_tests/chat_models/test_base.py b/libs/partners/openai/tests/unit_tests/chat_models/test_base.py new file mode 100644 index 0000000000000..767ce0720caf1 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/chat_models/test_base.py @@ -0,0 +1,120 @@ +"""Test OpenAI Chat API wrapper.""" +import json +from typing import Any +from unittest.mock import MagicMock, patch + +import pytest +from langchain_core.messages import ( + AIMessage, + FunctionMessage, + HumanMessage, + SystemMessage, +) + +from langchain_openai import ChatOpenAI +from langchain_openai.chat_models.base import _convert_dict_to_message + + +def test_openai_model_param() -> None: + llm = ChatOpenAI(model="foo") + assert llm.model_name == "foo" + llm = ChatOpenAI(model_name="foo") + assert llm.model_name == "foo" + + +def test_function_message_dict_to_function_message() -> None: + content = json.dumps({"result": "Example #1"}) + name = "test_function" + result = _convert_dict_to_message( + { + "role": "function", + "name": name, + "content": content, + } + ) + assert isinstance(result, FunctionMessage) + assert result.name == name + assert result.content == content + + +def test__convert_dict_to_message_human() -> None: + message = {"role": "user", "content": "foo"} + result = _convert_dict_to_message(message) + expected_output = HumanMessage(content="foo") + assert result == expected_output + + +def test__convert_dict_to_message_ai() -> None: + message = {"role": "assistant", "content": "foo"} + result = _convert_dict_to_message(message) + expected_output = AIMessage(content="foo") + assert result == expected_output + + +def test__convert_dict_to_message_system() -> None: + message = {"role": "system", "content": "foo"} + result = _convert_dict_to_message(message) + expected_output = SystemMessage(content="foo") + assert result == expected_output + + +@pytest.fixture +def mock_completion() -> dict: + return { + "id": "chatcmpl-7fcZavknQda3SQ", + "object": "chat.completion", + "created": 1689989000, + "model": "gpt-3.5-turbo-0613", + "choices": [ + { + "index": 0, + "message": { + "role": "assistant", + "content": "Bar Baz", + }, + "finish_reason": "stop", + } + ], + } + + +def test_openai_predict(mock_completion: dict) -> None: + llm = ChatOpenAI() + mock_client = MagicMock() + completed = False + + def mock_create(*args: Any, **kwargs: Any) -> Any: + nonlocal completed + completed = True + return mock_completion + + mock_client.create = mock_create + with patch.object( + llm, + "client", + mock_client, + ): + res = llm.predict("bar") + assert res == "Bar Baz" + assert completed + + +async def test_openai_apredict(mock_completion: dict) -> None: + llm = ChatOpenAI() + mock_client = MagicMock() + completed = False + + def mock_create(*args: Any, **kwargs: Any) -> Any: + nonlocal completed + completed = True + return mock_completion + + mock_client.create = mock_create + with patch.object( + llm, + "client", + mock_client, + ): + res = llm.predict("bar") + assert res == "Bar Baz" + assert completed diff --git a/libs/partners/openai/tests/unit_tests/chat_models/test_imports.py b/libs/partners/openai/tests/unit_tests/chat_models/test_imports.py new file mode 100644 index 0000000000000..ef3ae2fb3e839 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/chat_models/test_imports.py @@ -0,0 +1,7 @@ +from langchain_openai.chat_models import __all__ + +EXPECTED_ALL = ["ChatOpenAI", "AzureChatOpenAI"] + + +def test_all_imports() -> None: + assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/openai/tests/unit_tests/embeddings/__init__.py b/libs/partners/openai/tests/unit_tests/embeddings/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/unit_tests/embeddings/test_base.py b/libs/partners/openai/tests/unit_tests/embeddings/test_base.py new file mode 100644 index 0000000000000..7f9a12e25781d --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/embeddings/test_base.py @@ -0,0 +1,18 @@ +import os + +import pytest + +from langchain_openai import OpenAIEmbeddings + +os.environ["OPENAI_API_KEY"] = "foo" + + +def test_openai_invalid_model_kwargs() -> None: + with pytest.raises(ValueError): + OpenAIEmbeddings(model_kwargs={"model": "foo"}) + + +def test_openai_incorrect_field() -> None: + with pytest.warns(match="not default parameter"): + llm = OpenAIEmbeddings(foo="bar") + assert llm.model_kwargs == {"foo": "bar"} diff --git a/libs/partners/openai/tests/unit_tests/embeddings/test_imports.py b/libs/partners/openai/tests/unit_tests/embeddings/test_imports.py new file mode 100644 index 0000000000000..288652410efa9 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/embeddings/test_imports.py @@ -0,0 +1,7 @@ +from langchain_openai.embeddings import __all__ + +EXPECTED_ALL = ["OpenAIEmbeddings", "AzureOpenAIEmbeddings"] + + +def test_all_imports() -> None: + assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/openai/tests/unit_tests/fake/__init__.py b/libs/partners/openai/tests/unit_tests/fake/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/unit_tests/fake/callbacks.py b/libs/partners/openai/tests/unit_tests/fake/callbacks.py new file mode 100644 index 0000000000000..b2bef343fff88 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/fake/callbacks.py @@ -0,0 +1,393 @@ +"""A fake callback handler for testing purposes.""" +from itertools import chain +from typing import Any, Dict, List, Optional, Union +from uuid import UUID + +from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler +from langchain_core.messages import BaseMessage +from langchain_core.pydantic_v1 import BaseModel + + +class BaseFakeCallbackHandler(BaseModel): + """Base fake callback handler for testing.""" + + starts: int = 0 + ends: int = 0 + errors: int = 0 + errors_args: List[Any] = [] + text: int = 0 + ignore_llm_: bool = False + ignore_chain_: bool = False + ignore_agent_: bool = False + ignore_retriever_: bool = False + ignore_chat_model_: bool = False + + # to allow for similar callback handlers that are not technicall equal + fake_id: Union[str, None] = None + + # add finer-grained counters for easier debugging of failing tests + chain_starts: int = 0 + chain_ends: int = 0 + llm_starts: int = 0 + llm_ends: int = 0 + llm_streams: int = 0 + tool_starts: int = 0 + tool_ends: int = 0 + agent_actions: int = 0 + agent_ends: int = 0 + chat_model_starts: int = 0 + retriever_starts: int = 0 + retriever_ends: int = 0 + retriever_errors: int = 0 + retries: int = 0 + + +class BaseFakeCallbackHandlerMixin(BaseFakeCallbackHandler): + """Base fake callback handler mixin for testing.""" + + def on_llm_start_common(self) -> None: + self.llm_starts += 1 + self.starts += 1 + + def on_llm_end_common(self) -> None: + self.llm_ends += 1 + self.ends += 1 + + def on_llm_error_common(self, *args: Any, **kwargs: Any) -> None: + self.errors += 1 + self.errors_args.append({"args": args, "kwargs": kwargs}) + + def on_llm_new_token_common(self) -> None: + self.llm_streams += 1 + + def on_retry_common(self) -> None: + self.retries += 1 + + def on_chain_start_common(self) -> None: + self.chain_starts += 1 + self.starts += 1 + + def on_chain_end_common(self) -> None: + self.chain_ends += 1 + self.ends += 1 + + def on_chain_error_common(self) -> None: + self.errors += 1 + + def on_tool_start_common(self) -> None: + self.tool_starts += 1 + self.starts += 1 + + def on_tool_end_common(self) -> None: + self.tool_ends += 1 + self.ends += 1 + + def on_tool_error_common(self) -> None: + self.errors += 1 + + def on_agent_action_common(self) -> None: + self.agent_actions += 1 + self.starts += 1 + + def on_agent_finish_common(self) -> None: + self.agent_ends += 1 + self.ends += 1 + + def on_chat_model_start_common(self) -> None: + self.chat_model_starts += 1 + self.starts += 1 + + def on_text_common(self) -> None: + self.text += 1 + + def on_retriever_start_common(self) -> None: + self.starts += 1 + self.retriever_starts += 1 + + def on_retriever_end_common(self) -> None: + self.ends += 1 + self.retriever_ends += 1 + + def on_retriever_error_common(self) -> None: + self.errors += 1 + self.retriever_errors += 1 + + +class FakeCallbackHandler(BaseCallbackHandler, BaseFakeCallbackHandlerMixin): + """Fake callback handler for testing.""" + + @property + def ignore_llm(self) -> bool: + """Whether to ignore LLM callbacks.""" + return self.ignore_llm_ + + @property + def ignore_chain(self) -> bool: + """Whether to ignore chain callbacks.""" + return self.ignore_chain_ + + @property + def ignore_agent(self) -> bool: + """Whether to ignore agent callbacks.""" + return self.ignore_agent_ + + @property + def ignore_retriever(self) -> bool: + """Whether to ignore retriever callbacks.""" + return self.ignore_retriever_ + + def on_llm_start( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_llm_start_common() + + def on_llm_new_token( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_llm_new_token_common() + + def on_llm_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_llm_end_common() + + def on_llm_error( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_llm_error_common(*args, **kwargs) + + def on_retry( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_retry_common() + + def on_chain_start( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_chain_start_common() + + def on_chain_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_chain_end_common() + + def on_chain_error( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_chain_error_common() + + def on_tool_start( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_tool_start_common() + + def on_tool_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_tool_end_common() + + def on_tool_error( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_tool_error_common() + + def on_agent_action( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_agent_action_common() + + def on_agent_finish( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_agent_finish_common() + + def on_text( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_text_common() + + def on_retriever_start( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_retriever_start_common() + + def on_retriever_end( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_retriever_end_common() + + def on_retriever_error( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_retriever_error_common() + + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + return self + + +class FakeCallbackHandlerWithChatStart(FakeCallbackHandler): + def on_chat_model_start( + self, + serialized: Dict[str, Any], + messages: List[List[BaseMessage]], + *, + run_id: UUID, + parent_run_id: Optional[UUID] = None, + **kwargs: Any, + ) -> Any: + assert all(isinstance(m, BaseMessage) for m in chain(*messages)) + self.on_chat_model_start_common() + + +class FakeAsyncCallbackHandler(AsyncCallbackHandler, BaseFakeCallbackHandlerMixin): + """Fake async callback handler for testing.""" + + @property + def ignore_llm(self) -> bool: + """Whether to ignore LLM callbacks.""" + return self.ignore_llm_ + + @property + def ignore_chain(self) -> bool: + """Whether to ignore chain callbacks.""" + return self.ignore_chain_ + + @property + def ignore_agent(self) -> bool: + """Whether to ignore agent callbacks.""" + return self.ignore_agent_ + + async def on_retry( + self, + *args: Any, + **kwargs: Any, + ) -> Any: + self.on_retry_common() + + async def on_llm_start( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_llm_start_common() + + async def on_llm_new_token( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_llm_new_token_common() + + async def on_llm_end( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_llm_end_common() + + async def on_llm_error( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_llm_error_common(*args, **kwargs) + + async def on_chain_start( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_chain_start_common() + + async def on_chain_end( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_chain_end_common() + + async def on_chain_error( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_chain_error_common() + + async def on_tool_start( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_tool_start_common() + + async def on_tool_end( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_tool_end_common() + + async def on_tool_error( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_tool_error_common() + + async def on_agent_action( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_agent_action_common() + + async def on_agent_finish( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_agent_finish_common() + + async def on_text( + self, + *args: Any, + **kwargs: Any, + ) -> None: + self.on_text_common() + + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + return self diff --git a/libs/partners/openai/tests/unit_tests/llms/__init__.py b/libs/partners/openai/tests/unit_tests/llms/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/libs/partners/openai/tests/unit_tests/llms/test_base.py b/libs/partners/openai/tests/unit_tests/llms/test_base.py new file mode 100644 index 0000000000000..ebcd420995fa3 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/llms/test_base.py @@ -0,0 +1,48 @@ +import os + +import pytest + +from langchain_openai import OpenAI + +os.environ["OPENAI_API_KEY"] = "foo" + + +@pytest.mark.requires("openai") +def test_openai_model_param() -> None: + llm = OpenAI(model="foo") + assert llm.model_name == "foo" + llm = OpenAI(model_name="foo") + assert llm.model_name == "foo" + + +@pytest.mark.requires("openai") +def test_openai_model_kwargs() -> None: + llm = OpenAI(model_kwargs={"foo": "bar"}) + assert llm.model_kwargs == {"foo": "bar"} + + +@pytest.mark.requires("openai") +def test_openai_invalid_model_kwargs() -> None: + with pytest.raises(ValueError): + OpenAI(model_kwargs={"model_name": "foo"}) + + +@pytest.mark.requires("openai") +def test_openai_incorrect_field() -> None: + with pytest.warns(match="not default parameter"): + llm = OpenAI(foo="bar") + assert llm.model_kwargs == {"foo": "bar"} + + +@pytest.fixture +def mock_completion() -> dict: + return { + "id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ", + "object": "text_completion", + "created": 1689989000, + "model": "text-davinci-003", + "choices": [ + {"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"} + ], + "usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3}, + } diff --git a/libs/partners/openai/tests/unit_tests/llms/test_imports.py b/libs/partners/openai/tests/unit_tests/llms/test_imports.py new file mode 100644 index 0000000000000..40c28b6334d33 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/llms/test_imports.py @@ -0,0 +1,7 @@ +from langchain_openai.llms import __all__ + +EXPECTED_ALL = ["OpenAI", "AzureOpenAI"] + + +def test_all_imports() -> None: + assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/openai/tests/unit_tests/test_imports.py b/libs/partners/openai/tests/unit_tests/test_imports.py new file mode 100644 index 0000000000000..324e71bda9b20 --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/test_imports.py @@ -0,0 +1,14 @@ +from langchain_openai import __all__ + +EXPECTED_ALL = [ + "OpenAI", + "ChatOpenAI", + "OpenAIEmbeddings", + "AzureOpenAI", + "AzureChatOpenAI", + "AzureOpenAIEmbeddings", +] + + +def test_all_imports() -> None: + assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/openai/tests/unit_tests/test_token_counts.py b/libs/partners/openai/tests/unit_tests/test_token_counts.py new file mode 100644 index 0000000000000..acaa570cf80ca --- /dev/null +++ b/libs/partners/openai/tests/unit_tests/test_token_counts.py @@ -0,0 +1,39 @@ +import pytest + +from langchain_openai import ChatOpenAI, OpenAI + +_EXPECTED_NUM_TOKENS = { + "ada": 17, + "babbage": 17, + "curie": 17, + "davinci": 17, + "gpt-4": 12, + "gpt-4-32k": 12, + "gpt-3.5-turbo": 12, +} + +_MODELS = models = [ + "ada", + "babbage", + "curie", + "davinci", +] +_CHAT_MODELS = [ + "gpt-4", + "gpt-4-32k", + "gpt-3.5-turbo", +] + + +@pytest.mark.parametrize("model", _MODELS) +def test_openai_get_num_tokens(model: str) -> None: + """Test get_tokens.""" + llm = OpenAI(model=model) + assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model] + + +@pytest.mark.parametrize("model", _CHAT_MODELS) +def test_chat_openai_get_num_tokens(model: str) -> None: + """Test get_tokens.""" + llm = ChatOpenAI(model=model) + assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]