diff --git a/docs/docs/how_to/split_by_token.ipynb b/docs/docs/how_to/split_by_token.ipynb index 0d359b50ec2fe..87aad35bc6460 100644 --- a/docs/docs/how_to/split_by_token.ipynb +++ b/docs/docs/how_to/split_by_token.ipynb @@ -27,7 +27,7 @@ "1. How the text is split: by character passed in.\n", "2. How the chunk size is measured: by `tiktoken` tokenizer.\n", "\n", - "[CharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://python.langchain.com/api_reference/langchain_text_splitters/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly." + "[CharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://python.langchain.com/api_reference/text_splitters/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly." ] }, { diff --git a/docs/docs/tutorials/retrievers.ipynb b/docs/docs/tutorials/retrievers.ipynb index deb19463ec0e9..9c9bd12e04741 100644 --- a/docs/docs/tutorials/retrievers.ipynb +++ b/docs/docs/tutorials/retrievers.ipynb @@ -123,7 +123,7 @@ "\n", "Vector search is a common way to store and search over unstructured data (such as unstructured text). The idea is to store numeric vectors that are associated with the text. Given a query, we can [embed](/docs/concepts/embedding_models) it as a vector of the same dimension and use vector similarity metrics to identify related data in the store.\n", "\n", - "LangChain [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) objects contain methods for adding text and `Document` objects to the store, and querying them using various similarity metrics. They are often initialized with [embedding](/docs/how_to/embed_text) models, which determine how text data is translated to numeric vectors.\n", + "LangChain [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStore.html) objects contain methods for adding text and `Document` objects to the store, and querying them using various similarity metrics. They are often initialized with [embedding](/docs/how_to/embed_text) models, which determine how text data is translated to numeric vectors.\n", "\n", "LangChain includes a suite of [integrations](/docs/integrations/vectorstores) with different vector store technologies. Some vector stores are hosted by a provider (e.g., various cloud providers) and require specific credentials to use; some (such as [Postgres](/docs/integrations/vectorstores/pgvector)) run in separate infrastructure that can be run locally or via a third-party; others can run in-memory for lightweight workloads. Here we will demonstrate usage of LangChain VectorStores using [Chroma](/docs/integrations/vectorstores/chroma), which includes an in-memory implementation.\n", "\n", @@ -309,9 +309,9 @@ "\n", "## Retrievers\n", "\n", - "LangChain `VectorStore` objects do not subclass [Runnable](https://python.langchain.com/api_reference/core/index.html#module-langchain_core.runnables), and so cannot immediately be integrated into LangChain Expression Language [chains](/docs/concepts/lcel).\n", + "LangChain `VectorStore` objects do not subclass [Runnable](https://python.langchain.com/api_reference/core/index.html#langchain-core-runnables), and so cannot immediately be integrated into LangChain Expression Language [chains](/docs/concepts/lcel).\n", "\n", - "LangChain [Retrievers](https://python.langchain.com/api_reference/core/index.html#module-langchain_core.retrievers) are Runnables, so they implement a standard set of methods (e.g., synchronous and asynchronous `invoke` and `batch` operations) and are designed to be incorporated in LCEL chains.\n", + "LangChain [Retrievers](https://python.langchain.com/api_reference/core/index.html#langchain-core-retrievers) are Runnables, so they implement a standard set of methods (e.g., synchronous and asynchronous `invoke` and `batch` operations) and are designed to be incorporated in LCEL chains.\n", "\n", "We can create a simple version of this ourselves, without subclassing `Retriever`. If we choose what method we wish to use to retrieve documents, we can create a runnable easily. Below we will build one around the `similarity_search` method:" ]